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Abstract

Covariance regularization is important when the dimension p of a covariance matrix is
close to or even larger than the sample size n. This thesis concerns estimating large
covariance matrix in both low and high frequency setting.

First, we introduce an integration covariance matrix estimator which is a linear
combination of a rotation-equivariant and a regularized covariance matrix estimator
that assumed a specific structure for true covariance Σ0, under the practical scenario
where one is not 100% certain of which regularization method to use. We estimate the
weights in the linear combination and show that they asymptotically go to the true
underlying weights. To generalize, we can put two regularized estimators into the linear
combination, each assumes a specific structure for Σ0. Our estimated weights can then
be shown to go to the true weights too, and if one regularized estimator is converging
to Σ0 in the spectral norm, the corresponding weight then tends to 1 and others tend
to 0 asymptotically. We demonstrate the performance of our estimator when compared
to other state-of-the-art estimators through extensive simulation studies and a real
data analysis.

Next, in high-frequency setting with non-synchronous trading and contamination
of microstructure noise, we propose a Nonparametrically Eigenvalue-Regularized In-
tegrated coVariance matrix Estimator (NERIVE) which does not assume specific
structures for the underlying integrated covariance matrix. We show that NERIVE is
positive definite in probability, with extreme eigenvalues shrunk nonlinearly under the
high dimensional framework p/n → c > 0. We also prove that in portfolio allocation,
the minimum variance optimal weight vector constructed using NERIVE has maximum
exposure and actual risk upper bounds of order p−1/2. The practical performance of
NERIVE is illustrated by comparing to the usual two-scale realized covariance matrix
as well as some other nonparametric alternatives using different simulation settings
and a real data set.
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Last, another nonlinear shrinkage estimator of large integrated covariance matrix in
high-frequency setting is explored, which shrinks the extreme eigenvalues of a realized
covariance matrix back to an acceptable level, and enjoys a certain asymptotic efficiency
when the number of assets is of the same order as the number of data points. Novel
maximum exposure and actual risk bounds are derived when our estimator is used in
constructing the minimum-variance portfolio. In simulations and a real data analysis,
our estimator performs favourably in comparison with other methods.
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Chapter 1

Introduction

Estimation of a covariance matrix or its inverse, called the precision matrix, is an
important and sometimes inevitable task in data analysis. Examples range from risk
estimation and portfolio allocation in finance to classification or multiple hypotheses
testing in general statistical analysis. Although it is easier than ever nowadays to
obtain relatively large data set for study, such richness of data also means that more
often than not the data we obtain are high-dimensional in nature, in the sense that
the number of variables under study is comparable to or even larger than the sample
size. This creates problems for traditional estimator such as the sample covariance
matrix. Well documented in Bai and Yin (1993) and subsequent random matrix theory
researches (see Bai and Silverstein (2010), for example), a particularly serious problem
is that the eigenvalues of the sample covariance matrix are more extreme than their
population counterpart. Moreover, when the dimension p is larger than the sample
size n, the sample covariance matrix is not invertible, where regularization is needed.

This thesis contains three parts where covariance matrix estimation under different
data frequency settings is applied: weighted average of a rotation-equivariant and a
regularized covariance matrix estimator under low-frequency setting, a nonparametri-
cally eigenvalue-regularized integrated covariance matrix estimator and a nonlinear
shrinkage estimator of large integrated covariance matrix under high-frequency setting.
The thesis is organised as follows.

In Chapter 2, state-of-the-art regularization methods developed for covariance
matrix estimation are reviewed. One main branch of the estimations assumes a special
structure of the population covariance matrix Σ0 or the corresponding precision matrix
Σ−1

0 . The commonly exploit structure in applications include the sparseness of Σ0
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(Bickel and Levina, 2008a; Cai and Liu, 2011; Rothman et al., 2009), bandable type
structure (Bickel and Levina, 2008b; Cai and Yuan, 2012; Cai et al., 2010), and a factor
structure (Fan et al., 2008, 2011, 2013). Another branch concerns with regularizing, or
“shrinking”, the eigenvalues of the sample covariance matrix under the high-dimensional
setting p/n → c > 0. Research include the linear shrinkage (Ledoit and Wolf, 2004)
and nonlinear shrinkage (Abadir et al., 2014; Huang and Fryzlewicz, 2015; Lam, 2016;
Ledoit and Wolf, 2012, 2013).

While both branch of researches provide good estimators under different scenarios,
there are no methods that can “take advantage” of what each branch of estimators
can offer. In Chapter 3, we introduce an integration covariance matrix estimator that
is a linear combination of a rotation-equivariant and a regularized covariance matrix
estimator that assumed a specific structure for Σ0, under the practical scenario where
one is not 100% certain of which regularization method to use. By minimizing the
Frobenius loss, we derive explicit formulae for the weights which can be estimated
consistently, or even almost surely, through a data splitting scheme which is similar to
the one in Lam (2016). To generalize, we can put two regularized estimators into the
linear combination, each assumes a specific structure for Σ0. Our estimated weights can
then be shown to go to the true weights, and if one regularized estimator is converging
to Σ0 in the spectral norm, the corresponding weight then tends to 1 and others tend
to 0 asymptotically. Extensive simulations also reveal that our estimator can indeed
gather the advantages from a regularized estimator and perform well, even when the
regularized estimator itself does not. We also show that our estimator is asymptotically
efficient when compared to an ideal estimator constructed with the knowledge of Σ0.

In Chapter 4, we propose a nonparametrically eigenvalue-regularized integrated
covariance matrix estimator (NERIVE) which does not assume a specific structure for
the underlying integrated covariance matrix in high-frequency data analysis. Under
such setting, the extreme eigenvalues of a realized covariance matrix are biased when
its dimension p is large relative to the sample size n. Together with non-synchronous
trading and contamination of microstructure noise, the associated challenges have to
be overcome at the same time. By a data splitting method, we show that the resulting
integrated covariance matrix estimator is consistent with a certain positive definite
matrix with regularized eigenvalues at a rate of n−1/6 under the setting p/n → c > 0.We
also prove that in portfolio allocation, the minimum variance optimal weight vector
constructed using NERIVE has maximum exposure and actual risk upper bounds
of order p−1/2. Incidentally, the same maximum exposure bound is also satisfied by
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the theoretical minimum variance portfolio weights. All these results hold true also
under a jump-diffusion model for the log-price processes with jumps removed using
the wavelet method proposed in Fan and Wang (2007). They are further extended
to accommodate the existence of pervasive factors such as a market factor under the
setting p/n → c > 0. The practical performance of NERIVE is tested by a traditional
portfolio allocation problem, where our estimator is compared to other state-of-the-art
estimators including the usual two-scale realized covariance matrix.

Finally in Chapter 5, we modify the data splitting method similar to NERIVE
to achieve nonlinear shrinkage of eigenvalues in a covariance matrix. It produces a
positive definite estimator of the integrated covariance matrix asymptotically almost
surely, and involves only eigen-decompositions of matrices of size p× p, which are not
computationally expensive when p is of the order of hundreds, the typical order in
portfolio allocation. We also present the maximum exposure and actual risk bounds for
minimum variance portfolio construction using our estimator. The maximum exposure
bound is of particular importance, as it is shared by the theoretical minimum-variance
portfolio which assumes that the integrated covariance matrix is known. The practical
performance is compared to other popular estimators.



Chapter 2

Review on Covariance Matrix
Estimation

In this chapter, we provide a review on the estimation of covariance matrix or its
inverse (known as precision matrix) related to this thesis, as well as the most popular
state-of-the-art covariance estimators in applications for both high-dimensional and
high-frequency data setting.

The most commonly used estimator is the sample covariance. Let Y = (y1, . . . ,yn),
where yt = (y1t, y2t, . . . , ypt)T’s are independent p× 1 vectors for t = 1, . . . , n, being the
data observed at time t, for example, the stock market daily returns. Let Σ0 = (σij)p×p

be the population covariance matrix. The p× p sample covariance matrix is defined as

Σ̂sam = 1
n− 1

n∑
t=1

(yt − ȳ)(yt − ȳ)T,

where ȳ = 1
n

∑n
t=1 yi is the sample mean. Σ̂sam is an unbiased estimator and easy to

calculate. We can also use the maximum likelihood estimation (MLE) of the covariance
matrix

Σ̂MLE = 1
n

n∑
t=1

(yt − ȳ)(yt − ȳ)T.

for the Gaussian distributed data. The use of the coefficient 1/n instead of 1/(n− 1)
makes Σ̂MLE a biased estimator. The ratio of 1/(n− 1) to 1/n tends to 1 when n is
sufficiently large, however, making this MLE covariance approximately equal to the
sample covariance Σ̂sam.
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We enjoy the simplicity of the calculation of Σ̂sam and Σ̂MLE, however, they are well
known to have poor performance when the dimension p is larger than or comparable
to the sample size n. In this high-dimensional setting, sample covariance matrix is
no longer a consistent estimator as the eigenvalues of Σ̂sam are not converging to the
true ones based on the random matrix theory (Chen et al., 2013; Johnstone, 2001;
Marčenko and Pastur, 1967). Also, its inverse, the sample precision matrix Σ̂−1

sam, is
not defined due to the singular sample covariance matrix.

As a result, regularization is needed in high-dimensional covariance matrix estima-
tion. There are two main branches for estimating a large covariance matrix nowadays:
one assumes a specific structure of the population covariance matrix, sparsity as an
example; the other branch focuses on regularizing, or we say ’shrinking’, the eigenvalues
of the sample covariance matrix. Here, we start from the sparsity setting of the large
covariance estimation.

2.1 Estimation of Covariance Matrix through Thresh-
olding

2.1.1 Simple Thresholding

To deal with the ill-conditioned estimation problem of sample covariance matrix in
high-dimensional setting, thresholding is one of the simplest method to apply under the
assumption that the population covariance matrix is sparse or approximately sparse,
i.e. most of the non-diagonal elements in the matrix are zero or nearly but not exactly
zero (Bickel and Levina, 2008a). The uniformity class of the approximately sparse
covariance matrices is defined as

U(q, c0(p),M) = {Σ : σii ≤ M,max
i

p∑
j=1

|σij|q ≤ c0(p)}, (2.1)

for 0 ≤ q < 1. If q = 0, the matrix is truly sparse; otherwise 0 < q < 1, the matrix is
approximately sparse. According to Bickel and Levina (2008a), if some elements of the
sample covariance matrix Σ̂sam = (σ̂ij)p×p have small values, it can be thresholded to a



2.1 Estimation of Covariance Matrix through Thresholding 6

new estimator Σ̂thre = (σ̃ij)p×p defined as

σ̃ij =

σ̂ij for i = j,

σ̂ij1{|σ̂ij |>ω} for i ̸= j,
(2.2)

where 1{·} is the indicator function and ω is the threshold parameter. This is called
the hard thresholding. They proved the consistency of this estimator if the variables
yi’s are Gaussian or sub-Gaussian, uniformly on U(q, c0(p),M), log p/n = o(1), and
ω = C(log p/n)1/2 for sufficiently large C,

∥Σ̂thre − Σ0∥ = Op(c0(p)ω1−q), ∥Σ̂−1
thre − Σ−1

0 ∥ = Op(c0(p)ω1−q),

where ∥·∥ is the operator norm, also known as spectral norm or l2 matrix norm, as
∥A∥ = λ1/2

max(ATA) for any matrix A. The choice of threshold ω can be estimated by
cross-validation method.

Thresholding decreases the estimation errors for small valued elements, since the
errors are not accumulated with estimation. On the other hand, choosing elements that
should be thresholded is always easier than estimating these small values. Although
positive definiteness of Σ̂thre cannot be gaurenteed, the probability of it being positive
definite is approaching to 1 as long as log p/n → 0. Despite on the simplicity and
computational advantage, simple thresholding neglects the difference of covariance
scales, i.e. the observed data series are usually on different scales. To solve the scale
inconsistency problem, Cai and Liu (2011) proposed the entry-depandent adaptive
thresholding, taking varying scales into account.

2.1.2 Adaptive Thresholding

One of the most natural and simplest solutions to deal with the variability of variances
is to threshold on the sample correlation matrix instead of the sample covariance
matrix. Denote the population correlation matrix R0 = (rij)p×p and sample correlation
matrix R̂sam = (r̂ij)p×p, where r̂ij = σ̂ij/

√
σ̂iiσ̂jj. The thresholded correlation matrix

estimator R̂thre = (r̃ij)p×p is defined by

r̃ij =

r̂ij for i = j,

r̂ij1{|r̂ij |>ω} for i ̸= j,
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and the corresponding covariance matrix is Σ̂R = D1/2R̂threD1/2, where D is the diagnal
matrix of the sample covariance matrix Σ̂sam. It is easily to see that ω = C

√
log p/n is

a good threshold choice for any constant C > 0, and if C is sufficiently large, it can be
shown that minimax rate of convergence is c0(p)ω1−q, same as the simple thresholding
above. This method well solves the variability of variance, nevertheless, the sample
correlation coefficients r̂ij’s are still not homoscedastic.

As a result, the entry-depandent adaptive thresholding is introduced. Here, a new
larger class of sparse covariance matrices (Cai and Liu, 2011) is defined by

Uadp(q, c0(p)) = {Σ : max
i

p∑
j=1

(σiiσjj)(1−q)/2|σij|q ≤ c0(p)}, (2.3)

for 0 ≤ q < 1. The parameter space Uadp(q, c0(p)) contains the uniformity class
U(q, c0(p),M) defined in equation (2.1), and it allows the largest variance maxi σii → ∞,
not requiring the variances uniformly bounded by M any more. Different from the
simple thresholding, the threshold ω is not universal, but changing with the entries. It
is defined as

ωij = δ

√
θ̂ij

log p
n

, i, j = 1, . . . , p,

where
θ̂ij = 1

n

n∑
t=1

[(Yit − Ȳ i)(Yjt − Ȳ j) − σ̂ij]2, (2.4)

with Ȳ i being the sample mean of the ith row of the observed data matrix Y, and
σ̂ij being the corresponding sample covariance element. Note that the regularization
parameter δ can be chosen by cross-validation, or just be set fixed to 2 as recommonded
by Cai and Liu (2011). Then the adaptive estimator of covariance matrix is Σ̂adp =
(σ̂adp

ij )p×p with

σ̂adp
ij =

σ̂ij for i = j,

σ̂ij1{|σ̂ij |>ωij} for i ̸= j.

Alternatively, Σ̂adp = (σ̂adp
ij )p×p can be defined in an universal entry independent way

as

σ̂adp
ij =


σ̂ij for i = j,

σ̂ij1{|σ̂ij |/θ̂
1/2
ij >ω} for i ̸= j,
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where θ̂1/2
ij is the estimated standard error of the estimated covariance element σ̂ij defined

in equation (2.4), and ω is the universal threshold same as the simple thresholding
method (Bickel and Levina, 2008a). It is shown that Σ̂adp achieves the optimal rate of
convergence c0(p)ω1−q over the parameter space Uadp(q, c0(p)).

2.1.3 Generalized Thresholding Function

Other than the hard thresholding used above, there are more complex thresholding
functions that can be applied, for example, soft-thresholding. Rothman et al. (2009)
proposed a generalized thresholding function sω : R → R, for any ω and z ∈ R,
satisfying the following three conditions:

1. |sω(z)| ≤ |z| ;

2. sω(z) = 0, for |z| ≤ ω;

3. |sω(z) − z| ≤ ω.

Condition 1 establishes the shrinkage. Although the bias increases, the variances
are reduced and the estimator is more stable. Condition 2 enforces the thresholding,
and Condition 3 limits the amount of shrinkage to no more than ω. Note that the
parameter ω in the last two conditions can be different. Most of the commonly used
thresholding procedures satisfy these conditions, such as the hard thresholding as we
discussed above, and the soft thresholding proposed by Donoho and Johnstone (1994)
which is defined as

ssoft
ω (z) = z1{|z|>ω}. (2.5)

Moreover, the Smoothly Clipped Absolute Deviation (SCAD) penalty proposed by
Fan and Li (2001) (see Chapter 2.1.4) and Adaptive LASSO proposed by Zou (2006)
are both special cases of the generalized thresholding function sω(z). It is shown that,
uniformly on the class U(q, c0(p),M), for ω = C

√
log p/n where C is sufficiently large,

∥sω(Σ̂) − Σ0∥ = Op(c0(p)ω1−q).

For the generalized thresholding, the corresponding covariance estimator is defined as

Σ̂gen = (σ̂gen
ij )p×p, σ̂ij =

σ̂ij, for i = j,

sω(σ̂ij), for i ̸= j.
(2.6)
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The disadvantage of thresholding is that the estimator is not positive definite for
certain.

2.1.4 Penalized Likelihood

Penalized likelihood is another powerful method for exploring sparsity. Dempster (1972)
recognised the inverse covariance matrix as the canonical parameter of a multivariate
normal distribution, through whih the parsimony can be identified through modified
Cholesky decomposition. The nonredundant entries of this matrix are the regression
coefficients of one variable based on its predecessors, so that the task of modelling
a covariance matrix can be reduced to that of modelling regression models (Wu and
Pourahmadi, 2003), where penalized likelihood function can be used to shrink the
off-diagonal elements of the matrix.

Antoniadis and Fan (2001) proposed a penalty function (2.6) with similar properties
to the generalized thresholding function in Chapter 2.1.3. Considering a linear regression
model

y = Xβ + ϵ

where parameter β is a d×1 vector, y and ϵ are n×1 vectors and the design matrix X is
a n×d matrix. β can be estimated by solving the penalized least squares minimization
problem

1
2∥y − Xβ∥2 +

d∑
j=1

pλ(|βj|),

where pλ(·) is a penalty function with parameter λ. Naturally, if L0 penalty is used,
pλ(|β|) = λ1{β ̸=0}, it will lead to the Best-Subset selection. It finds the subset of size k
that gives the smallest residual sum of squares ∥y − Xβ∥2 for k = 0, 1, . . . d. The L1

penalty pλ(|β|) = λ|β| yields to the soft thresholding rule as stated in equation (2.5),
or Least Absolute Shrinkage and Selection Operator (LASSO) (Tibshirani, 1996) in the
general least squares and likelihood settings. Moreover, the L2 penalty pλ(|β|) = λ|β|2

gives a ridge regression and the Lq penalty pλ(|β|) = λ|β|q results in a bridge regression.
And if we take pλ(|β|) = λ2 − (|β| − λ)2

1{|β|<λ}, it will lead to the hard thresholding
rule stated in equation (2.2).

The penalty functions we discussed above do not simultaneously satisfy the three
properties for a good penalty function: unbiasedness, sparsity and continuity. Therefore,
Fan and Li (2001) proposed a Smoothly Clipped Absolute Deviation (SCAD) penalty,
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defined by
p′

λ(β) = λ{1{β≤λ} + (aλ− β)+

(a− 1)λ 1{β>λ}},

for some a > 2 and positive β. Here (a)+ = max(0, a). The corresponding piecewise
linear thresholding function is then

sλ(z) =


sgn(z)(|z| − λ)+ for |z| ≤ 2λ,

[(a− 1) − sgn(z)aλ]/(a− 2) for 2λ ≤ |z| ≤ aλ,

z for |z| > aλ.

SCAD can be seen as a combination of the soft and hard thresholding penalty
functions, with improvements in the properties of these two penalty functions, selecting
significant variables without creating excessive biases. The amount of shrinkage
decreases when the magnitude of z rises. Note that a = 3.7 is suggested by Fan and Li
(2001).

2.2 Estimation of Covariance Matrix with Band-
able Structure

Apart from assuming the sparse structure of the true covariance matrix, other popular
assumptions on matrix sturcture are widely used as well, for example the bandable
structure, where the elements of the matrix decay while moving away from the diagonal.
Introduced by Bickel and Levina (2008b), we consider the following class of positive
definite symmetric well-conditioned matrices

Uband(α,M,C) = {Σ : max
j

∑
i

{|σij| : |i− j| > k} ≤ Ck−α for all k > 0,

and 0 < 1/M ≤ λmin(Σ) ≤ λmax(Σ) ≤ M <∞}, (2.7)

where λmin(·) and λmax(·) represent the maximal and minimal eigenvalues of the matrix.
Under this assumption, regularizing sample covariance by banding, tapering and block
thresholding will provide good estimators.
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2.2.1 Banding

Bickel and Levina (2008b) proposed to estimate the covariance matrix by banding the
sample covariance matrix Σ̂sam as

Σ̂band(k) = (σ̂ij1{|i−j|≤k})p×p

for some 0 ≤ k < p. It can also be written as the Schur products of the sample
covariance matrix and a banding matrix Bk, defined as

Bk = (1{|i−j|<k})1≤i,j≤p.

The estimator Σ̂band(k) = Σ̂sam ◦ Bk, where ◦ represents the Schur coordinate-wise
matrix multiplication.

This regularization works ideally when the population covariance matrix element
σij = 0 for |i−j| > k after arranging the indexes i’s of the observed data yit, t = 1, . . . , n
under some special way, for example finite inhomogenous moving average process
yit = ∑k

m=1 at,t−mϵm with independent and identically distributed mean zero ϵm.

They proved that the estimator Σ̂band(k) is consistent under the operator norm
if n−1 log p → 0, uniformly over Uband. The rate of convergence is (n−1 log p)α/2(α+1)

with parameter k ≍ (n/ log p)1/2(α+1). Due to the lack of information on the decay rate
α in real case studies, K-folded cross-validation is recommended to better choose the
parameter k in banding method.

Banding method discards the off-diagonal entries of the sample covariance matrix
that are k step away from the main diagonal, setting those values to zero, while keeping
the sub-diagonal or super-diagonal elements near the main diagonal unchanged. It
can be generalized to the ’tapering’ method, where the elements gradually decay while
moving away from the main diagonal of the matrix.

2.2.2 Tapering

Cai et al. (2010) suggested to estimate the covariance matrix by tapering the maximum
likelihood estimator Σ̂MLE. For large n, Σ̂MLE is very close to the sample covariance
matrix. So, I will simply use σ̂ij here for the entries of Σ̂MLE.
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The tapering estimator is defined as the Schur products of the sample covariance
matrix and tapering matrix Tk = (wij)p×p as

Σ̂taper(k) = Σ̂MLE ◦ Tk = (σ̂ij · wij)p×p,

for some even integer k with 1 ≤ k ≤ p, and the weights

wij =


1 for |i− j| ≤ k/2,

2 − |i−j|
k/2 for k/2 < |i− j| < k,

0 for |i− j| ≥ k.

For simplicity, the weights can also be written as

wij = (k/2)−1{(k − |i− j|)+ − (k/2 − |i− j|)+}.

Over the parameter space Uband(α,M,C) defined in equation (2.7), this estimator
Σ̂taper(k) was proven to obtain the optimal rate of convergence n−2α/(2α+1) + (log p)/n
under operator norm with parameter k ≍ n1/(2α+1).

Compared with the rate of convergence of banding estimator Σ̂band(k), which was
shown to be sub-optimal, Cai et al. (2010) proved the minimax rate of convergence for
Σ̂taper(k) is indeed optimal.

The estimator Σ̂taper(k) can also be written as the sum of many small block matrices
along the main diagonal, and the size of the small blocks depends on the decay rate α.

2.2.3 Block Thresholding

As banding and tapering estimators are critically depending on the decay rate α, which
is unknown in practice, Cai and Yuan (2012) introduced an adaptive estimator Σ̂block,
independent of α and obtaining the optimal rate of convergence as we discussed in last
section.

Under the same class setting as equation (2.7), Σ̂block is a data-driven block
thresholding method constructed in two steps. First, the sample covariance matrix
Σ̂sam is divided into small blocks with different size. By choosing the size k0 = ⌊log p⌋
of the diagonal blocks, we gradually increase the size of blocks while moving away from
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the diagnal. The floor function ⌊a⌋ represents the greatest integer less than or equal to
a. Then estimating the entries in each block by thresholding simutaneously such that:

• For the blocks located in the diagonal: keep their original values;

• For the large blocks whose dimension is larger than n/ log n, ’kill’ them by setting
these blocks as 0;

• For other blocks, threshold them by a certain thresholding rule, for example,
hard thresholding, soft thresholding or adaptive Lasso.

This entire data-driven estimator Σ̂block benefits from no requirement to choose α,
and Cai and Yuan (2012) showed that it simultaneously attains the optimal rate of
convergence n−2α/(2α+1) + (log p)/n for estimating bandable covariance matrices over
the full range of the parameter spaces Uband(α,M,C).

Block thresholding has a wide range of applications, such as financial stock market
prices. Traditional thresholding, as we discussed in Chapter 2.1, requires the assumption
of sparsity, which the stock market along with a lot types of other empirical data
cannot satisfy. In financial portfolio management, simple sparsity is not realistic for
some cases, as the stock prices for similar type of stocks will have high correlation. As
a result, the reasonable assumption in practice is to assume a block structure of the
population covariance matrix, which is that the data are divided into groups or blocks
by their features.

2.3 Estimation of Covariance Matrix with Factor
Analysis

The assumptions of the sparse or bandable stucture of population coariance matrix
are widely used nowadays. However, these assumptions are not always perfectly fit for
all applications. We take financial market analysis as an example. Under the same
stock exchange or market, although each stock has its own unique risk, they share
the same systematic risk of that particular exchange or market. This results in the
high correlation between every pair of stocks which cannot be neglected. Apparently,
sparsity and banding assumptions do not fit well in this case. Based on the fact that the
stock prices are actually controlled by only a few common factors, factor analysis is then
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introduced. The benefit of factor modelling comes from the reduction of dimensions,
that the number of parameters needed for estimation is reduced significantly from
p× (p+ 1)/2 parameters to p× (K + 1) for the best scenario, where K is the number
of factors and 0 ≤ K < p.

Let yt = (y1t, . . . , ypt)T be the observed data at time t = 1, . . . , n, the factor model
is defined by

yt = at + Bft + ut, (2.8)

where at is a p-dimension vector of data means, B = (b1, . . . ,bp)T is a p×K matrix of
factor loadings, ft is a vector of common factors in dimension K, and ut = (u1t, . . . , upt)T

is a vector of idiosyncratic components, i.e. error or noise terms.

2.3.1 Factor Model with Observable Factors

Factor models have been widely used both theoretically and empirically in economics
and finance, such as the famous Fama and French three factor model, Capital Asset
Pricing Model (CAPM), and Arbitrage Pricing Theory (APT). In some applications,
the factors can be observed, such as the Fama and French three factor model, in which
the excess return, market capitalization and book-to-market ratio are the three factors
considered. Without loss of generality, we assume the mean vector at = 0 in equation
(2.8), and the factors ft are independent of the noises ut. The factor model covariance
matrix estimator for yt is

ΣFM = BΣfBT + Σu, (2.9)

where Σf and Σu are the covariance matrices for factors ft and noises ut, respectively.

If we further assume the cross-sectional independence among the idiosyncratic
components, which implies that the noise covariance matrix Σu = diag(σ1, . . . , σp) for
ut is diagonal, we call this a strict factor model (Fan et al., 2008). Here, diag(a1, . . . , am)
denote the diagonal matrix of dimension m whose diagonal elements equal to a1, . . . , am

and off-diagonal elements are all zero. After regressing on yt, estimation of loading
matrix B̂ and the residuals Σ̂u = diag(σ̂1, . . . , σ̂p) can be obtained. B̂ = (b̂1, . . . , b̂p)T

can be estimated by applying the least squares estimation as

b̂i = arg min
bi

1
n

n∑
t=1

(yit − bT
i ft)2, for i = 1, . . . , p,
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and ût = yt −B̂ft. Since the factors ft’s are observable, Σ̂f is just the sample covariance
matrix for the factors. The resulting estimator for strict factor model is given by

Σ̂SFM = B̂Σ̂fB̂T + Σ̂u.

For any matrix A, the Frobenius norm is defined as ∥A∥F = {tr(AAT)}1/2. Under
the Frobenius norm, the dimensionality reduces the rate of convergence by the order of
pK, same as that of the sample covariance matrix. Since the sample covariance matrix
achieving the optimal rate as well, the factor structure does not give many advantages
in estimating the population covariance matrix.

On the other hand, in the aspect of estimating the precision matrix Σ−1
0 , it can be

estimated by using the Sherman-Morrison-Woodbury formula as

Σ̂−1
SFM = Σ̂−1

u − Σ̂−1
u B̂(Σ̂−1

f + B̂TΣ̂−1
u B̂)−1B̂TΣ̂−1

u .

Fan et al. (2008) proved that Σ̂−1
SFM performs much better than Σ̂−1

sam when the number
of factor K = O(p).

Compared to the sample covariance matrix, Σ̂SFM gets better convergence rate for
estimating the precision matrix Σ−1

0 but the same rate for estimation of Σ0. As a
result, factor modelling performs better in portfolio allocation, but not much for risk
assessment.

Strict factor model requires the chosen factors explaining all relationships between
the data, which is too restricted to satisfy in practical sense. The approximate factor
model estimator Σ̂AFM is introduced by Fan et al. (2011), loosing the strict diagonal
structrue of error covariance matrix to an approximate diagonal structrue. This allows
the existence of small valued off-diagonal entries in estimated idiosyncratic matrix,
suggesting the allowance of the presence of cross-sectional correlation even after taking
out the common factors. The estimator is defined as

Σ̂AFM = B̂Σ̂fB̂T + Σ̃u.

Similar to strict factor model, B̂ can be estimated by least squares method. Since
the factors are all observable, Σ̂f is estimated by the sample covariance matrix of ft,
and Σ̂u is the sample covariance of ût = yt − B̂ft. As the estimated covariance matrix
for the idiosyncratic terms is no longer a diagonal matrix but a sparse matrix, adaptive
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thresholding (Cai and Liu, 2011) is used to regularize Σ̂u = (σ̂u,ij)p×p as

Σ̃u = (σ̃u,ij)p×p, σ̃u,ij =

σ̂u,ij i = j,

sω(σ̂u,ij) i ̸= j,

where sω(·) is the general thresholding function and here adaptive threshoding sω(σ̂u,ij) =
σ̂u,ij1{|σ̂u,ij |>ωij} is applied in their paper (see Chapter 2.1.2 for adaptive thresholding
and Chapter 2.1.3 for generalized thresholding function).

Fan et al. (2011) proved that the estimated covariacne matrix is still invertible
after thresholding even if p > n. It is clearly shown that p can be much larger than
n when estimating the precision matrix. Eigenvalues of Σ̂AFM diverge quickly while
those of Σ̂−1

AFM are uniformly bounded, suggesting a good performance of the estimated
precision matrix also for approximate factor structure.

2.3.2 Factor Model with Unobservable Factors

In many practical applications, the common factors are always unobservable, i.e. latent.
So estimation of the latent factors are needed. We apply the pervasive assumption
that the number of factors K are bounded and eigenvalues of p−1BTB are uniformly
bounded away from 0 and ∞ as p → ∞.

We cannot observe the factors directly since they are latent. As the dimension p

increases, the information about the common factors accumulates while that about the
error terms does not. It helps to distinguish the factor term Bft from the idiosyncratic
term ut. As a result, the principal component analysis related method is widely used
in this field.

When the number of variables, i.e. dimension p, is large, we can use Principal
Component Analysis (PCA) to analyze the factor model. We assume that at = 0 for
simplicity, and factor model in equation (2.8) is then

yt = Bft + ut = (BH)(H−1ft) + ut,

where H is a K × K non-singular matrix. The solution for the pair (H, ft) is not
unique, caused by the problem of ’identifiability’ due to the unknown B and ft. To
solve the ambiguity of the solution, we further assume that the covariance of ft is a K
dimensional identity matrix such that Σf = IK , and the columns of B are orthogonal.
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Similar to equation (2.9), the covariance matrix is defined as

ΣPC = BΣfBT + Σu = BBT + Σu,

where B = (b1, · · · ,bK). The K orthogonal columns bj, j = 1, . . . , K are in a
descending order according to the the norms ∥bj∥. For simplicity, we assume a strictly
descending order of ∥bj∥. It is easy to get the j-th eigenvector of B is the normalized
vector bj/∥bj∥. The corresponding j-th largest eigenvalue is ∥bj∥2 for j < K, and 0
for the remaining p−K eigenvalues since

(BBT)bj/∥bj∥ = (
K∑

i=1
bjbT

j )bj/∥bj∥ = ∥bj∥2bj/∥bj∥.

If the j-th factor satisfies the pervasive assumption, the eigenvalue ∥bj∥2 = ∑p
i=1 b

2
ij is

of order p, and j-th factor influences a non-negligible fraction of the data Y among
the p dimensions.

It is well known from linear algebra that the first K eigenvalues of BBT are the
same as those of BTB. If Σu = 0 and ΣPC = BBT, the j-th eigenvlue of ΣPC = BBT

is

λj =

∥bj∥2 for j ≤ K,

0 for j > K,
(2.10)

and the corresponding eigenvector is

pj = bj/∥bj∥, (2.11)

making the covariance matrix be just the simple version of the spectral decompsition

ΣPC =
K∑

j=1
λjpjpT

j .

If we allow a more general case of Σu, the eigenvalues and eigenvectors in equations
(2.10) and (2.11) only hold approximately. By the Wely’s theorem and the sin(θ)
theorem of Davis and Kahan (1970), we have that

∥∥∥∥pj − bj/∥bj∥
∥∥∥∥ = O(p−1∥Σu∥) and
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∣∣∣λj − ∥bj∥2
∣∣∣ ≤ ∥Σu∥ for j ≤ K, and |λj| ≤ ∥Σu∥ for j > K. As a result,

Σ0 ≈
K∑

j=1
λjpjpT

j + Σu.

Under factor model assumptions, the first K eigenvalues of Σ0 are very spiked, while
the rest are either bounded or growing slowly. So the latent factors and the loadings can
be approximated using the eigen-decomposition of Σ0. As a result, high-dimensional
factor model can be estimated by the principal component analysis.

To take advantage of the factor structure estimation and the sparseness exploitation
in the error covariance matrix, Fan et al. (2013) proposed the Principal Orthogonal
complEment Thresholding (POET) method for the approximate factor structure with
sparsity, allowing the presence of some cross-sectional correlations.

POET uses the principal component analysis on the sample covariance matrix, and
then thresholds the idiosyncratic matrix. Consider a factor model like equation (2.8)
with at = 0. The p× p covariance matrix of yt is given by Σ0 = BΣfBT + Σu. POET
assumes an approximate factor model that the first K eigenvalues of Σ0 are spiked
and grow at a rate O(p), and Σu is approximately sparse.

Now let λi and pi be the descending ordered eigenvalues and corresponding eigen-
vectors of the sample covariance matrix Σ̂sam, and K be the number of diverging
eigenvalues of Σ0. Then, the spectral decomposition of Σ̂sam becomes

Σ̂sam =
K∑

i=1
λipipT

i + Σ̂u,

where Σ̂u = ∑p
i=K+1 λ̂ip̂ip̂T

i = (σ̂u,ij)p×p is the principal orthogonal complement. Due
to the conditional sparsity assumption, they threshold on Σ̂u as

Σ̃u = (σ̃u,ij)p×p, σ̃u,ij =

σ̂u,ii, i = j;

sω(σ̂u,ij), i ̸= j,

where sω(.) is a generalized thresholding function (see Chapter 2.1.3), and the adaptive
thresholding sω(zij) = zij1{|ẑij |≥ωij} is suggested here. The POET estimator is then

Σ̂POET =
K∑

i=1
λippT + Σ̃u.
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When K = 0, this estimator is the same as the simple adaptive thresholding (Cai and
Liu, 2011) or more general thresholding cases depending on the choice of thresholding
function (Rothman et al., 2009).

The estimator has an equivalent representation using a constrained least squares
method with results B̂ = (b̂1, . . . , b̂p) and f̂t. Let ûit = yit−b̂T

i f̂t, σ̂u,ij = n−1∑n
t=1 ûitûjt,

and denote θ̂ij = n−1∑n
t=1(ûitûjt − σ̂u,ij)2. The adaptive threshold parameter for sω(·)

applied here is

ωij = C
√
θ̂ij · ( 1

√
p

+
√

log p
n

),

where C > 0 is a sufficiently large constant.

Fan et al. (2013) proved that the estimated idiosyncratic matrix Σ̃u and POET
estimator Σ̂POET are consistent estimators for Σu and Σ0 respectively. With the
increase of dimension p, more information can be provided. It is easier to distinguish
the factors with the noise, making this unknown factor case equivalent to the known
factor one.

The advantage of this low rank with sparse matrix estimation is that POET is
simple, optimization-free and it uses the data only through the sample covariance
matrix.

For most empirical applications, the number of factors K is unknown. The multi-fold
cross-validation method can be used to estimate K. After determining the estimated
parameter K̂, the POET method above then can be applied

Σ̂POET =
K̂∑

i=1
λippT + Σ̃u.

2.4 Estimation of Covariance Matrix by Shrinkage

The estimation methods discussed in previous sections all require a beforehand knowl-
edge of covariance matrix structure. Although these methods perform well under their
own assumed structure, the estimators would still go far away from the true matrix if
this prior information is inaccurate. In real world cases, we usually cannot know the
true covariance matrix structure in advance, leading to the difficulty of choosing the
correct matrix structure or estimation method.
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Researchers begin to find estimation methods that do not require assumptions
on the structure of the true covariance matrix. Simple sample covariance matrix
estimation does not assume any special structure, but the drawback is well-known
that it is ill-conditioned when the dimension p is large relative to the sample size n.
Here, we introduce four cutting edge researches developing covariance estimation by
shrinking the sample eigenvalues.

Stein (1956) first used this idea to estimate the mean vector. This shrinkage method
is substituting the original ill-conditioned estimator with a convex combination of
itself and a target matrix. It balances between the estimation error coming from the
ill-conditioned variance matrix and the specification error associated with the target
matrix.

2.4.1 Linear Shrinkage

There is one type of covariance matrix estimation combining linearly two or even more
existing estimators. For example, Ledoit and Wolf (2004) proposed a well-conditioned
estimator Σ̂lin, which is the asymptotically optimal convex linear combination of the
sample covariance matrix with the identity matrix under quadratic loss function.

Here, we define the condition number as the ratio of the maximal and minimal
singular values of the estimator. If the condition number is not much larger than
one, we say the matrix is well-conditioned, which means its inverse can be computed
with good accuracy. If the condition number is very large, the matrix is said to be
ill-conditioned. Practically, such a matrix is almost singular, and the computation of
its inverse or the solution of a linear system of equations is more likely to cause large
numerical errors. A non-invertible matrix has condition number equal to infinity. As a
result, well-condition is a very important property that a good estimator should obtain.

Sample covariance matrix works well only if p ≪ n. For the estimation of large
covariance matrices, p is large and it is difficult to find enough samples with size n to
make p/n negligible. While p/n < 1 but not negligible, the estimator may be invertible,
but will be ill-conditioned. Sample covariance matrix is worse-conditioned than the
true covariance matrix. Researchers showed that sample eigenvalues are more dispersed
around their grand mean than the true ones, and the excess dispersion is equal to the
error of sample covariance matrix. Excess dispersion implies that the largest sample
eigenvalues are biased upwards and the smallest ones downwards. To make an estimator
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well-conditioned, a direct method is to force it to be well-conditioned in structure by
diagonality or factor model for example. But the absence of prior information would
lead the structure to be mis-specified in general.

To shrink sample covariance towards to the identity matrix, Ledoit and Wolf (2004)
introduced a linear combination of sample covariance matrix and the identity matrix
as,

Σ̂lin = w · tr(Σ̂)/p · Ip + (1 − w) · Σ̂sam, where

w = min
(
1,

1
n2
∑n

i=1 ∥yiyT
i − Σ̂∥2

F

∥Σ̂ − tr(Σ̂)/p∥2
F

)
.

Here, Ip is the identity matrix with dimension p, and w is the shrinkage intensity
measuring the amount of shrinkage of Σ̂sam towards Ip. This weighted average of sample
covariance and identity matrix is equivalent to linearly shrink the sample eigenvalues
to the grand mean while retaining the sample eigenvectors.

In the general asymptotics framework, where p/n → c > 0, the optimal shrinkage
intensity w can be estimated consistently. This estimator Σ̂lin benefits from its
free of distribution and computational advantage. Simulation results show that Σ̂lin

outperforms the sample covariance matrix and does well in finite sample version. More
importantly, Σ̂lin is better-conditioned, and always be invertible even when p > n.

2.4.2 Nonlinear Shrinkage on Eigenvalues

Different from their previous paper we discussed in last section applying the one-size-
fits-all approach (Ledoit and Wolf, 2004), Ledoit and Wolf (2012) proposed a new
rotation equivariant estimator focusing on the individualized shrinkage intensity to
every sample eigenvalue. A covariance matrix estimator is rotation equivariant if and
only if it has the same eigenvectors as the sample covariance matrix. As such an
estimator, it can only differentiate itself by its eigenvalues.

To do this, the eigen-decomposition is applied in the sample covariance matrix by

Σ̂sam = PDPT,
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where P = (p1, . . . ,pp) and D = diag(λ1, . . . , λp) are the p× p matrix of eigenvectors
and p-dimension digonal matrix of all eigenvalues of Σ̂sam, respectively.

Under large-dimensional asymptotics p/n → c ∈ (0, 1) as n → ∞, define Hn as the
empirical distribution function of the population covariance matrix and Fn as that
of the sample covariance matrix. Assume Hn converges to some limit H. Using the
Stieltjes transformation mFn(z),∀z ∈ C+, the Marcenko-Pastur equation mF (z) of
function Fn and the estimation of m̃F (λ) ≡ limz→λ mF (z), they proposed the estimator
through the minimization problem under Frobenius loss

min
A

∥∥∥∥PAPT − Σ0

∥∥∥∥
F
,

where A = diag(a1, . . . , ap) is the p-dimension diagonal matrix. Ledoit and Péché (2011)
showed the solution for the minimization problem ai, i = 1, . . . , p can be approximated
by

ãi = λi

|1 − c− cλim̃F (λi)|2
,

where ãi only depends on the limiting distribution of sample eigenvalues. Hence, they
proposed an estimator Σ̂nonlin through nonlinearly shrinkage of the sample eigenvalues:

Σ̂nonlin = P · diag
(
ãi

)
i=1,...,p

· PT.

Simulation study shows a significant improvement over the sample covariance matrix
Σ̂sam and the linear shrinkage estimator Σ̂lin (Ledoit and Wolf, 2004) when the sample
size n is very large compared to the dimension p.

2.4.3 Condition Number Regularized Estimator

Based on the fact that orthogonal matrices are never ill-conditioned, Abadir et al. (2014)
proposed a new rotation equivariant estimator by applying orthogonal decomposition
of the sample covariance matrix under high-dimensional setting p/n → 0.

The condition number of any orthogonal matrix is always equal to 1, so the ill-
condition of the sample covariance matrix only comes from the eigenvalues part of
Σ̂sam. As a result, our focus should be on the improvement of the sample eigenvalues
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λi, i = 1, . . . , p. The estimated diagonal matrix of eigenvalues is

D = PTΣ̂samP = diag(var(pT
1 Y), . . . , var(pT

p Y)). (2.12)

Now, instead of using the whole dataset Y to estimate P, only m (m < n) observations
are used to approximately orthogonalize the rest of the n−m observations, which are
used to re-estimate D. Assume m → ∞ and n−m → ∞ as n → ∞, and yi’s are i.i.d.
distributed. The reason of spliting the whole sample set is that D cannot reuse the
data that has already been used for calculating P, since they worsen the estimate of
D. Denote the whole data as Y = (Y1,Y2), where Y1 has dimension p×m and Y2

has dimension p× (n−m). Here, Σ̃1 and Σ̃2 are the sample covariance of Y1 and Y2,
respectively. Define Σ̃1 = P1D1PT

1 , where P1 is the matrix of eigenvectors of Y1. The
new estimator for eigenvalues is then defined as

D̂ = diag(var(PT
1 Y2)) = diag(PT

1 Σ̃2P1),

and the resulting Condition number Regularized Covariance matrix estimator (CRC)
is then defined as

Σ̂CRC = Pdiag(PT
1 Σ̃2P1)PT. (2.13)

Abadir et al. (2014) further improved the estimator by repeatly choose different sub-
samples (Y1 and Y2) and taking the average of the estimators by all cases. For
simulation study, the split point is selected by balancing the trade-off between variance
and bias through bootstraps.

Such an estimator reduces the multi-variate problem to p univariate ones, enabling
also the easy-to-apply estimation of the functions on Σ0, such as the estimation of
the precision matrix. Σ̂CRC is also always design-free and well-conditioned even when
p > n.

2.4.4 NERCOME

Inspired by Abadir et al. (2014), Lam (2016) proposed a covariance matrix estimator
that nonparametrically regularize the eigenvalues (NERCOME).

They first proved the theoretical properties of the regularized eigenvalues in Abadir
et al. (2014). When the observations can be written as yi = Σ1/2

0 zi, where zi’s are
independently and identically distributed entries, the regularized eigenvalues in Σ̂CRC
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are asymptotically the same as the nonlinearly shrunk ones in Σ̂nonlin (Ledoit and
Wolf, 2012). The computer advantage for Σ̂CRC cones from the only involvement of
eigen-decompositions of p×p matrices, while Σ̂nonlin requiring nonconvex optimizations
could be computational expansive.

Lam (2016) also showed that the nonlinear shrinkage formula in Ledoit and Wolf
(2012) is not correct if the data is from factor model, due to the low dimensional
factors. The data splitting regularized eigenvalues are still asymtotically optimal when
we consider the Frobenius loss minimization.

Relaxing from the high-dimensional setting Abadir et al. (2014) that p/n → 0, Lam
(2016) considered p/n → c > 0. They focused on the optimization problem

min
D

∥P1DPT
1 − Σ0∥F ,

and the optimal solution for D = diag(d1, . . . , dp) is

di = pT
1iΣ0p1i.

Through splitting the data into two independent parts, the estimated eigenvalues
are the diagonal elements of matrix PT

1 Σ̃2P1, same as those in Abadir et al. (2014).
The estimator is similar to Σ̂CRC in equation (2.13), expect that P is substituted by P1,
the matrix of eigenvectors for the first m of the whole data, Y1, only. They proposed
the estimator as

Σ̂m = P1diag(PT
1 Σ̃2P1)PT

1 .

The change from P to P1 makes sense due to their optimization problem under
Frobenius loss and they showed that the pT

1iΣ̃2p1i is asytotically the same as di.
Apparently, this estimator is not as informative as Σ̂CRC, due to the change of P1. As a
result, they announced the final estimator as the averaging over all Σ̂m’s calculated by
different choices of Y1 and Y2. Referring to the assumption that each vector yi in Y
is independent of each other and identically distributed, the data Y can be permuted
so that there can be multiple choices of data matrix Y(j)

1 and Y(j)
2 . The corresponding

covariance estimator for jth permutation is Σ̂(j)
m and the final NERCOME estimator is

Σ̂NERCOME = 1
M

M∑
j=1

Σ̂(j)
m .
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They showed theoretically and empirically better performance of Σ̂NERCOME, com-
pared to Σ̂CRC. The regularization of eigenvalues gives NERCOME asymptotically
optimal nonlinear shrinkage with respect to Frobenius norm. Σ̂NERCOME is positive defi-
nite almost surely as long as the population covariance Σ0 is, even in a high-dimensional
setting (p > n).

2.4.5 NOVELIST

The linear combination of two covriance estimators can be considered as an other
kind of nonlinear eigenvalue shrinkage. Huang and Fryzlewicz (2015) proposed a
NOVEL Integration of the Sample and Thresholded covariance estimators (NOVELIST),
performing shrinkage of the sample covariance / correlation towards its thresholded
version.

Denote R̂sam as the sample correlation matrix, and sλ(·) as the generalized thresh-
olding function (Rothman et al., 2009) with threshold λ (see Chapter 2.1.3). The
correlation version of NOVELIST is defined as

R̂NOVELIST = (1 − δ) · R̂sam + δ · sλ(R̂sam),

where δ is the weight parameter for the thresholded estimator. The corresponding
covariance version of NOVELIST is defined as Σ̂NOVELIST = D1/2R̂NOVELISTD1/2, with
D as the diagnal matrix the sample covariance matrix Σ̂sam.

The parameters (λ, δ) do not have a theoretical optimal solution, so that they are
obtained by cross-validation or just a fixed set of parameter choice based on different
scenarios in data analysis. Thanks to the flexible control of the degree of shrinkage
and thresholding, NOVELIST, as a simple, good all-round covariance, correlation
and precision matrix estimator, offer competitive performance across other covariance
matrix estimation methods.

2.5 Estimation of Covariance Matrix in High Fre-
quency Setting

With the rapid development in technology, people are not satisfied with the limited
amount of data any more. The demand of big data analysis becomes higher and higher.
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For example, in stock market, there are thousands of transactions for a stock every
day, not even include the tons of bid and ask data. Why would investors only use the
daily closing price, the low frequency data, for analysis? The dramatical increase in
data will benefit the research through bringing lots of extra information, but it will
also cause some problems. In this section, the problems caused by high-frequency data
and possible solutions are discussed.

2.5.1 Integrated Variance

First, we only consider the simplest case, where the dimension equals to one. When
the input data’s frequency increases, the common variance is no longer useful, as we
are more interested in the total variation over a certain period, i.e. the integrated
variance. The most commonly used estimator is the Realized Variance (RV). Let Xt

be the price process for stock return in logarithm, following an Ito process,

dXt = µtdt+ σtdWt, t ∈ [0, 1],

where µt and σt are the drift and volatility terms which can follow some random
processes, and Bt is a standard Brownian motion. Under the continuous setting, the
quadratic variation, i.e. the true variance of our interest, is given by

[X] =
∫ 1

0
σ2

t dt.

To estimate this variance, the commonly used method is called the realized variance or
the quadratic covariation, defined as

[X] = lim
n→∞

n∑
i=1

(Xti
−Xti−1)2, (2.14)

for any sequence of partitions 0 = t0 < t1 < · · · < tn = 1 with supi(ti − ti−1) → 0 for
n → ∞. Here Xti

represents the ith transaction price during the periond [0, 1], and ti

is the time when this ith transaction happens.

Theoretically, this method would work, like the sample variance for low-frequency
data. However, in real case analysis, problems occur. Since the existence of noises,
the prices which we can observe are not the true underlying prices, but the ones
contanminated by some noise like the bid-ask spread. We call this noise the market
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microstructure noise. Let Yti
be the log-price we observe at time ti, it is equal to the

sum of true underlying log-price Xti
and the microstructure noise ϵti

:

Yti
= Xti

+ ϵti
,

where ϵ is independent of X.

As a result, we can only get the realized volatility using all the data in Y , [Y ]all,
but not [X] in equation (2.14) that we need. The contamination of microstructure
noise will grow with the increase of data frequency, due to the fact that the change in
true returns gets smaller while the noise remains at the same magnitude.

A natural solution is to choose a proper frequency interval to have a trade-off
between the extra information and the unwanted extra noise. So we will have a sparse
set of data based on Y . The realized volatility based on this sparse data is denoted as
[Y ]sparse. We can further improve the method by choosing the interval according to the
minimization of the Mean Squared Error (MSE). Although the sparse method would
keep the error in a relatively low level, but it discards a lot of data!

A reasonable solution is to get different sparse subsamples of data, calculated
[Y ]sparse separately and then averaging all the subsamples’ realized volatilities. Denote
this as [Y ]avg. It will benefit from the low level of noise due to the sparse dataset, and
gain as much information as possible because of the use of different subsamples in the
same time.

All the estimations try to decrease the variance of the noise, but they are still
biased. Zhang et al. (2005) proposed a Two-Scale Realized Volatility (TSRV) method
that combining [Y ]all and [Y ]avg together. TSRV is defined as

⟨̂X⟩ = [Y ]avg − n̄

n
[Y ]all,

where n is the sample size of whole Y , and n̄ = (n−K + 1)/K for K being the number
of subgrids.

This method benefits from the rich sources of tick-by-tick data and corrects for the
adverse effects of microstructure noise on volatiltiy estimation to a great extent.

Besides TSRV, the recent literature on realized volatility also includes works by
Barndorff-Nielsen and Shephard (2002), Meddahi (2002), Andersen et al. (2003), and
Hansen and Lunde (2006).



2.5 Estimation of Covariance Matrix in High Frequency Setting 28

2.5.2 Integrated Covariance Matrix

If we increase the dimesion to two or more, the Integrated CoVariance (ICV) matrix is
of interest. Let Xt = (X(1)

t , · · · , X(p)
t )T be a p-dimensional log-price diffusion process

modeled by
dXt = µtdt+ σtdWt, t ∈ [0, 1],

where µt is the drift, σt is a p × p matrix of instantaneous covolatility process, and
Wt is a p-dimensional standard Brownian motion. We want to estimate the integrated
covariance matrix, defined by

Σ0 =
∫ 1

0
σtσ

T
t dt.

A so-called Realized CoVariance (RCV) matrix is widely used to estimate this ICV,
when the observed data are synchronous at high frequency. RCV is defined as

ΣRCV =
n∑

i=1
∆Xℓ∆XT

i , where ∆Xi = Xti
− Xti−1 .

In real cases, for example the financial applications with the contamination of noises,
RCV usually is not the perfect estimator for the desired true covariance. Actually
more problems will come out, such as the nonsynchronized trading time and the Epps
effect (Epps, 1979). The transactions take place discretely at different times for the
two assets, as well as the noise obtain. As a result, the correlation estimates between
assets tend to decrease for high frequencies trading. For two log-price series X(1)

t and
X

(2)
t following Ito processes,

dX
(1)
t = µ

(1)
t dt+ σ

(1)
t dW

(1)
t ,

dX
(2)
t = µ

(2)
t dt+ σ

(2)
t dW

(2)
t ,

where W (1)
t and W (1)

t are both standard Brownian motions with correlation ρt at time
t. The integrated covariation during time [0, 1] will be

〈
X(1), X(2)

〉
=
∫ 1

0
σ

(1)
t σ

(2)
t d

〈
W (1),W (2)

〉
t
.

To solve the non-synchronous problem, a refresh time method (Barndorff-Nielsen
et al., 2011) is applied. From some starting point (the previous refresh time vi−1), the
current refresh time vi is that when both assets are traded at least once. The refresh
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times for two assets are defined as the last transaction time before or at this refresh
time, ti and si for X(1) and X(2) respectively. Similar to TSRV, Zhang (2011) proposed
the Two-Scales realized CoVariance (TSCV) estimator using observed data Y (1) and
Y (2) as

̂⟨X(1), X(2)⟩ = c · ([Y (1), Y (2)]K − nK

nJ

[Y (1), Y (2)]J), (2.15)

where [Y (1), Y (2)]K = 1
K

∑n
i=K(Y (1)

ti
−Y (1)

ti−K
)(Y (2)

si
−Y (2)

si−K
) is the averaged lag K previous-

tick realized covariance, c = 1 + op(n−1/6) is a constant, K = O(n2/3) and 1 ≤ J ≪ K.
In the classical two scales setting, J is usually set as 1.

For positively associated assets X(1) and X(2), a negative bias is introduced to
the estimator due to the non-synchronous trading. By applying TSCV, the two scale
estimation could eliminate the bias due to asynchronicity and microstructure noise,
achieving better performance in high-frequency setting without loss of information.

Apart from TSCV, Multi-Scale Realized Volatility Matrix (MSRVM) by Tao et al.
(2013), the Kernel Realized Volatility Matrix (KRVM) by Barndorff-Nielsen et al.
(2011) and the Pre-averaging Realized Volatility Matrix (PRVM) by Christensen et al.
(2010) are also giving good performance for estimating the covariance matrix under
the high-frequency setting.



Chapter 3

Integrating Regularized Covariance
Matrix Estimators

3.1 Introduction

Estimation of a covariance matrix or its inverse, precision matrix, is an important
and sometimes inevitable task in data analysis. Thanks to the richness of data we
can obtain nowadays, more often than not the data are high-dimensional in natrue,
creating problems for traditional estimators, such as the sample covariance matrix. A
particularly serious problem is that the eigenvalues of the sample covariance matrix
are more extreme than their population counterpart, as well documented in Bai and
Yin (1993) and subsequent random matrix theory researches (see Bai and Silverstein
(2010) for example). Moreover, when the dimension p is larger than the sample size n,
the sample covariance matrix is not invertible.

As reviewed in Chapter 2, two major branches of regularization methods are
developed for covariance matrix estimation in view of the problems above. One branch
assumes that the population covariance matrix Σ0 or the corresponding precision
matrix Σ−1

0 has special structures. Sparseness of Σ0 is one of the most commonly
exploit structure in applications (Bickel and Levina, 2008a; Cai and Yuan, 2012; Cai
and Zhou, 2012; Lam and Fan, 2009; Rothman et al., 2009). Sparseness of Σ−1

0 is
closely connected to graphical modelling (Friedman et al., 2008, Meinshausen and
Bühlmann, 2006). Banded structure of Σ0 and Σ−1

0 (i.e., only limited number of
off-diagonals and the main diagonal are non-zero) are treated in Bickel and Levina
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(2008b). If the data follows a factor model, then Σ0 can have a factor structure (Fan
et al., 2008, 2011). Fan et al. (2013) combines factor structure estimation as well as
sparseness exploitation in the residual covariance matrix.

Another branch concerns with regularizing, or "shrinking", the eigenvalues of the
sample covariance matrix under the high-dimensional setting p/n → c > 0. Ledoit and
Wolf (2004) proposed the linear shrinkage estimator, which is a weighted average of
the identity and the sample covariance matrix, shrinking the eigenvalues towards a
grand mean. This is generalized to shrinkage towards a specified matrix “target” other
than the identity in Schäfer and Strimmer (2005). Won et al. (2013) regularized on the
condition number, winsorizing the extreme eigenvalues of the sample covariance matrix
at certain constants. Ledoit and Wolf (2012, 2013) proposed a rotation-equivariant
estimator with nonlinear shrinkage of eigenvalues, while Lam (2016), using a data-
splitting idea from Abadir et al. (2014), proved that such nonlinear shrinkage can
be achieved through data-splitting with theoretical justification of the split location.
Recently, Huang and Fryzlewicz (2015) proposed the NOVELIST, a weighted average of
the sample covariance matrix and a thresholded estimator, and obtained good practical
results. This can also be considered as a form of nonlinear shrinkage estimator, although
there are no theoretical justifications in the exact form of shrinkage.

While both branches of researches provide good estimators under different scenarios,
there are no methods that can “take advantage” of what each branch of estimators
can offer. For instance, if the sparse assumption on Σ0 is correct, then a thresholded
estimator T is good. Yet, T can be far from Σ0 if the sparse assumption turns out to
be only roughly true or not true at all. Even when the sparse assumption is correct,
finite sample performance of T can still be not as good as a shrinkage estimator.
With this in mind, a desirable estimator is one that can be automatically similar to a
structured estimator T when it is indeed close to Σ0 in a certain sense, and be similar
to a shrinkage estimator automatically when T is not performing well. Moreover, when
Σ0 is approximately banded and approximately sparse for instance, we hope that a
regularized covariance matrix estimator can take advantages from both banded and
thresholded estimators at the same time, and be able to “switch” to one particular
estimator if that is close enough to Σ0 in a certain sense.

To bridge the gap described above, we propose an estimator that combines two
or even three regularized covariance estimators through a weighted average. This is
not dissimilar with the NOVELIST in Huang and Fryzlewicz (2015), except that we
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are combining a rotation-equivariant estimator, instead of just the sample covariance
matrix, with other regularized estimators. The freedom of the diagonals in the rotation-
equivariant estimator, together with the weight on each regularized estimator, allows for
a flexible final estimator. One major contribution in this chapter is that, by minimizing
the Frobenius loss, we derive explicit formulae for the weights which can be estimated
consistently, or even almost surely, through a data splitting scheme which is similar to
the one in Lam (2016). These weights indeed allow our estimator to have the desirable
property that it approaches a particular regularized estimator T if it is indeed close
to Σ0 in a certain sense, and approaches the rotation-equivariant estimator if other
regularized estimators are not performing well. See Chapter 3.2 and Theorem 3.2
and 3.5 for more details. Extensive simulations also reveal that our estimator can
indeed gather the advantages from a regularized estimator and perform well, even when
the regularized estimator itself does not. As another contribution, we show that our
estimator is asymptotically efficient when compared to an ideal estimator constructed
with the knowledge of Σ0. Such efficiency proof, similar to Lam (2016), also provides
possible theoretical split locations, and give insights into choosing a practical one for
the data. Finally, extension to even more regularized estimators is not difficult using
the mathematics behind the proof of Theorem 3.1 and 3.4, although we do not pursue
in this direction in this chapter.

The rest of this chapter is organized as follows. Chapter 3.2 defines the concept
of our estimator, and shows the form of an ideal estimator through Frobenius loss
minimization. A bona fide estimator is introduced in Chapter 3.2.2 with data splitting,
and its theoretical properties presented in Chapter 3.2.3. Chapter 3.3 extends everything
to two regularized covariance matrices. Chapter 3.4.1 introduces an averaged estimator
which has better performance and is more stable, while detailing the practical procedures
in the choice of split location for the data and other practical concerns. Chapter 3.5
presents the extensive simulation results with a real data analysis as well. Finally
Chapter 3.6 includes all the proof of the theorems in this chapter.
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3.2 Proposed Estimator with a Single Regularized
Matrix

We consider a covariance matrix estimator of the form

Σ(δ,D) = (1 − δ)PDPT + δT, (3.1)

where T is a regularized covariance matrix using a chosen regularization method, and
P is an orthogonal matrix. The above estimator is weighted between the regularized
estimator T and the matrix PDPT. Lam (2016) used a rotation-equivariant estimator
PDPT as the basis of a covariance matrix estimator, where P contains all the eigen-
vectors of a sample covariance matrix constructed from the available data. Similar
to Abadir et al. (2014), a sample splitting scheme is used in Lam (2016) to find the
diagonal matrix D.

Our estimator closely resembles the NOVEL Integration of the Sample and Thresh-
olded covariance estimators (NOVELIST) proposed in Huang and Fryzlewicz (2015),
in the sense that our estimator also aims to integrate with a regularized estimator,
for instance, a thresholded covariance matrix estimator T, using a linear weighting
scheme. As such, if T is a fixed “target” matrix which does not depend on data, it also
resembles the linear shrinkage estimator proposed in Ledoit and Wolf (2004), where
a linear combination of the sample covariance matrix and a fixed target matrix is
considered.

The major difference, however, is that the sample covariance matrix in both papers
is replaced by a rotation-equivariant estimator PDPT, where D is diagonal matrix
to be determined. Hence, we are integrating two regularized covariance matrices,
instead of just regularizing the sample covariance matrix through linear weighting with
another regularized estimator. The major motivation in doing so is that while the
rotation-equivariant estimator can help achieve nonlinear shrinkage of eigenvalues as
in Lam (2016) without assuming a specific structure of the true covariance matrix Σ0,
it may lose accuracy against a regularized estimator which assumes a specific structure
for Σ0, if such an assumption does ultimately hold. In this sense, we hope to achieve a
better estimator through Σ(δ,D) when we are not certain if a particular assumption
on Σ0 holds. Ideally, the weight δ should be close to 1 if T is regularized correctly
assuming a specific structure on Σ0, and close to 0 if T is too far away from the true one
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due to a wrong assumption on Σ0. We show that this is indeed the case asymptotically
almost surely using our proposed estimator (3.5) in Chapter 3.2.2 below.

3.2.1 Frobenius Loss Minimization

We propose to estimate δ and D through minimizing the Frobenius loss. Ledoit and
Wolf (2004) also used Frobenius loss minimization for their linear shrinkage estimator.
Hence, we consider

min
δ,D

∥(1 − δ)PDPT + δT − Σ0∥2
F , (3.2)

where ∥A∥2
F = tr(AAT), with tr(A) being the trace of a matrix A. We present the

solution to the minimization problem above in the following theorem.

Theorem 3.1 Suppose δ ̸= 1 and T is not of the form PDPT for some diagonal
matrix D. Define Σ̂T = Pdiag(PTTP)PT, where diag(A) represents a diagonal matrix
with diagonal entries as in the matrix A. Then the solution to the minimization problem
(3.2) is

D = 1
1 − δ

diag(PTΣ0P) − δ

1 − δ
diag(PTTP), with δ = tr[(T − Σ̂T)Σ0]

tr(T − Σ̂T)2
.

The requirement that T cannot be of the form PDPT is a regularity condition. If this
condition is not satisfied, then tr(T − Σ̂T)2 = 0, and the original problem actually
reduces to the one considered in Lam (2016) or Ledoit and Wolf (2012). The same
thing happens if Σ0 = σ2Ip, since then tr((T − Σ̂T)Σ0) = 0, and so δ = 0. This
condition is only required by theoretical proofs but not have a bearing in practice
(see Chapter 3.4.2 for details). Substituting the forms of D and δ into Σ(δ,D), the
corresponding covariance matrix estimator depends on P,T and Σ0, and is given by

Σ(P,T,Σ0) = Pdiag(PTΣ0P)PT + tr[(T − Σ̂T)Σ0]
tr(T − Σ̂T)2

(T − Σ̂T). (3.3)

The first part of the estimator coincides with the "ideal" nonlinear shrinkage estimator in
Ledoit and Wolf (2012) and Lam (2016) for efficiency comparisons purpose. The second
part is a weighted version of T−Σ̂T, which is itself congruent to a hollow matrix, in the
sense that P(T − Σ̂T)PT has zero diagonal. The weight tr[(T − Σ̂T)Σ0]/tr(T − Σ̂T)2

can actually go negative or above 1. Looking at its formula, it is a generalized angle
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between Σ0 and T − Σ̂T, calculated using the inner product tr(AB) for symmetric
real square matrices A and B. When the inner product tr[(T − Σ̂T)Σ0] = 0, it means
that Σ0 and T − Σ̂T are “orthogonal” to each other in a generalized sense, and hence
T − Σ̂T is not important and is therefore weighted 0, leaving only the ideal nonlinear
shrinkage estimator Pdiag(PTΣ0P)PT. Obviously we cannot use this estimator in
practice since it depends on Σ0 itself.

Remark 3.1 Theorem 3.1 does not allow δ = 1. However, as δ → 1, using tr[(T −
Σ̂T)Σ̂T] = 0, we can easily deduce from the form of δ in the result of Theorem 3.1 that
the estimator Σ(P,T,Σ0) approaches the form T + Pdiag(PT(Σ0 − T)P)PT. This
makes sense, since even if T is a good estimator in itself so that we assume δ → 1 in
equation (3.1), in terms of minimizing the Frobenius loss, T + Pdiag(PT(Σ0 − T)P)PT

is always better than T alone by easy calculation.

3.2.2 Proposed Estimator with Data Splitting

Since Σ0 is unknown, we need to propose a practical estimator which can be constructed
from the data Y = (y1, . . . ,yn), where each observed vector yi is of dimension p. Hence
Σ0 is a p× p matrix. Hereafter we assume that the yi’s are independent of each other,
each with mean 0 and covariance Σ0.

We use the sample splitting idea used in Abadir et al. (2014) and Lam (2016), and
split the data into two independent portions Y = (Y1,Y2), where Y1 is of size p×m

and Y2 of size p× (n−m). Construct two sample covariance matrices, and perform
an eigen-decomposition on the first one:

Σ̃1 = m−1Y1YT
1 = P1D1PT

1 , Σ̃2 = (n−m)−1Y2YT
2 .

We then consider the Frobenius loss minimization problem

min
δ,D

∥(1 − δ)P1DPT
1 + δT − Σ0∥2

F , (3.4)

where T here is constructed from Y1 only instead of the whole data matrix Y. This
results in the estimator Σ(P1,T,Σ0) similar to that in equation (3.3). We then propose
our estimator to be Σ(P1,T, Σ̃2), that is,

Σ(P1,T, Σ̃2) = P1diag(PT
1 Σ̃2P1)PT

1 + tr[(T − Σ̂T)Σ̃2]
tr(T − Σ̂T)2

(T − Σ̂T). (3.5)
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Note here Σ̂T = P1diag(PT
1 TP1)PT

1 . The first part of this estimator is exactly the
NERCOME introduced in Lam (2016) for nonlinear shrinkage of the eigenvalues of
the sample covariance matrix. The salient feature that gives this estimator its nice
properties (to be introduced in later theorems) is that both P1 and T are independent
of Σ̃2 by our construction. For the theoretical value of the split m and a practical one,
see Chapter 3.2.3 and Chapter 3.4 respectively.

3.2.3 Theoretical Results with Single Regularized Estimator

To present the asymptotically properties of our estimator Σ(P1,T, Σ̃2), we list our
assumptions below.

(A1) The observed vectors are independent of each other, and each yi can be written
as yi = Σ1/2

0 zi for i = 1, . . . , n, where each zi is a p× 1 vector of independent and
identically distributed random variables zij . Each zij has mean 0 and variance 1,
with E|zij|k ≤ B < ∞ for some constant B and 2 < k ≤ 20.

(A2) The population covariance matrix is non-random and of size p× p. Furthermore,
∥Σ0∥ = O(1).

(A3) Let τn,1 ≥ . . . ≥ τn,p be the p eigenvalues of Σ0, with corresponding eigenvectors
vn,1, . . . ,vn,p. Define Hn(τ) = p−1∑p

i=1 1{τn,i≤τ} the empirical distribution func-
tion (e.d.f.) of the population eigenvalues . We assume Hn(τ) converges to some
non-random limit H at every point of continuity of H.

(A4) The support of H defined above is the union of a finite number of compact
intervals bounded away from zero and infinity. Also, there exists a compact
interval in (0,+∞) that contains the support of Hn for each n.

For data coming from a factor model, with

yi = Axi + ϵi, i = 1, . . . , n,

we still assume that the yi’s are independent of each other. Furthermore, we assuming
the following.

(F1) The series {ϵi} has ϵi = Σ1/2
ϵ ξi, where ξi is a p × 1 vector of independent

and identically distributed random variables ξij. Each ξij has mean 0 and unit
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variance, and E|ξij|k ≤ B < ∞ for some constant B and k ≤ 20. The factor
series {xt} has a constant dimension r, and xt = Σ1/2

x x∗
t where x∗

t is a r × 1
vector of independent and identically distributed random variables x∗

tj. Also,
E|x∗

tj|k ≤ B < ∞ for some constant B and 2 < k ≤ 20.

(F2) The covariance matrix Σx = var(xi) is such that ∥Σx∥ = O(1). The covariance
matrix Σϵ = var(ϵi) also has ∥Σϵ∥ = O(1). Both matrices are non-random. The
factor loading matrix A is such that ∥A∥2

F = O(p).

Assumptions (A1) and (A2) here coincide with assumptions (A1)’ and (A2)’, while
(A3) and (A4) coincide with (A3) and (A4) in Lam (2016). They are needed for
proving the asymptotic efficiency for our estimator Σ(P1,T, Σ̃2). For data from a
factor model, (F1) is assumption (F1)’, while (F2) coincides with (F2) in Lam (2016).
We first present some asymptotic properties of the estimated weight

δ̂ = tr[(T − Σ̂T)Σ̃2]
tr(T − Σ̂T)2

, (3.6)

which uses Y1 for the construction of T, and substitutes Σ0 in the result of Theorem
3.1 by Σ̃2.

Theorem 3.2 Let Assumptions (A1)-(A4) be satisfied, and the split location m = m(n)
satisfies the constraint ∑n≥1 p(n − m)−5 < ∞ while p = p(n) satisfies p/n → c > 0.
If p−1tr(T − Σ̂T)2 9 0 and is finite in probability/almost surely, and δ is defined in
Theorem 3.1 with T constructed using Y1 and Σ̂T = P1diag(PT

1 TP1)PT
1 , then we have

δ̂ − δ → 0 in probability/almost surely.

Furthermore, supposing Σ0 ̸= σ2Ip, if we have ∥T − Σ0∥ → 0 in probability/almost
surely, then δ̂ → 1 and ∥Σ(P1,T, Σ̃2) − Σ0∥ → 0 in probability/almost surely.

For data from a factor model, let Assumptions (F1) and (F2) be satisfied. Assume
the split location m = m(n) satisfies the constraint ∑n≥1 p(n−m)−5 < ∞ while p = p(n)
satisfies p/n → c > 0. If p−2tr(T − Σ̂T)2 9 0 and is finite in probability/almost surely,
then we have δ̂ − δ → 0 in probability/almost surely.

Furthermore, if p−1∥T − Σ0∥ → 0 in probability/almost surely, then δ̂ → 1 and
p−1∥Σ(P1,T, Σ̃2) − Σ0∥ → 0 in probability/almost surely.

Our estimated weight approaches the true weight using data Y1 if T is significantly
different from the form P1DPT

1 , so that p−1tr(T − Σ̂T)2 is not going to 0. If T
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approaches Σ0 in the spectral norm, then T is a good enough estimator, and the
theoretical result matches our intuition, that δ̂ should go to 1, and favor T completely.
The resulting estimator then approaches Σ0 in the spectral norm as well.

For data from a factor model, Σ0 is spiked with a few eigenvalues of order p
from the assumptions. Then the theorem says that if T can estimate those spiked
eigenvalues accurately enough such that p−1∥T − Σ0∥ goes to 0, we still favor T over
a rotation-equivariant estimator completely.

These results are very useful in practice. For example, if Σ0 is banded, then a
banded estimator T will have ∥T − Σ0∥ go to 0 in probability at a certain rate (see
Bickel and Levina (2008b) for details). It means that if we are using Σ(P1,T, Σ̃2) as
our estimator, then it asymptotically approaches T itself since δ̂ approaches 1, which
is desirable. For data from a factor model, POET from Fan et al. (2013) can serve as
T and our results above can be applied as well.

To present efficiency properties of our estimator, we define the ideal estimator for
our purpose of comparison as

ΣIdeal = Σ(P,T,Σ0),

which is the same as the one in equation (3.3) except that T here is defined as the one
constructed using Y1. The efficiency loss of an estimator Σ̂ can then be defined as

EL(Σ0, Σ̂) = 1 − ∥ΣIdeal − Σ0∥2
F

∥Σ̂ − Σ0∥2
F

. (3.7)

When Σ̂ has a larger Frobenius loss then the ideal estimator, the efficiency loss is
positive, and is negative vice versa.

Theorem 3.3 Let Assumptions (A1)-(A4) be satisfied, and Σ0 ̸= σ2Ip. Assume the
split location m = m(n) satisfies the constraints m/n → 1, n−m → ∞ and ∑n≥1 p(n−
m)−5 < ∞ while p = p(n) satisfies p/n → c > 0. If p−1tr(T − Σ̂T)2 9 0 and is finite
in probability/almost surely, then EL(Σ0,Σ(P1,T, Σ̃2)) → 0 in probability/almost
surely.

We do not attempt to prove asymptotic efficiency when the data is from a factor model
in this chapter. We illustrate the corresponding results in our simulations instead,
when a regularized covariance matrix estimator like POET from Fan et al. (2013) is
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used as T in equation (3.5). Note that Σ0 ≠ σ2Ip in the theorem. As discussed earlier,
the problem actually reduces to the one in Lam (2016) when Σ0 = σ2Ip, and our
estimator reduces to NERCOME too in Lam (2016), which still works well empirically
(see the simulation results in Lam (2016) for more details).

3.3 Extension to Two Regularized Matrices

When we are truly uncertain what assumptions to make on Σ0, it is natural for
us to try more than one regularization methods. In this chapter we introduce two
regularized estimators to be included in a linear combination with a rotation-equivariant
estimator. This way, we do not need to determine what regularization methods are
more appropriate in advance if, like the results in Theorem 3.2, the weights are going
to 0 or 1 matching our intuition when one particular regularization is more appropriate
than the other.

Given two regularized estimators T1 and T2 and a fixed orthogonal matrix P (we
use the eigenmatrix from the eigen-decomposition of the sample covariance matrix),
we consider

min
δ1,δ2,D

∥(1 − δ1 − δ2)PDPT + δ1T1 + δ2T2 − Σ0∥2
F . (3.8)

Theorem 3.4 Suppose δ1 + δ2 ̸= 1, and T1, T2 and T1 − T2 are not of the form
PDPT for some diagonal matrix D. Then defining Σ̂Ti

= Pdiag(PTTiP)PT, the
solution to the minimization problem (3.8) is

δ1 = tr[(T1 − Σ̂T1)Σ0]tr(T2 − Σ̂T2)2 − tr[(T2 − Σ̂T2)(T1 − Σ̂T1)]tr[(T2 − Σ̂T2)Σ0]
tr(T2 − Σ̂T2)2tr(T1 − Σ̂T1)2 − tr2[(T2 − Σ̂T2)(T1 − Σ̂T1)]

,

δ2 = tr[(T2 − Σ̂T2)Σ0]tr(T1 − Σ̂T1)2 − tr[(T2 − Σ̂T2)(T1 − Σ̂T1)]tr[(T1 − Σ̂T1)Σ0]
tr(T2 − Σ̂T2)2tr(T1 − Σ̂T1)2 − tr2[(T2 − Σ̂T2)(T1 − Σ̂T1)]

,

D = 1
1 − δ1 − δ2

(diag(PTΣ0P) − δ1diag(PTT1P) − δ2diag(PTT2P)) .

The regularity conditions are sound, since the violation of one or more of these reduces
the problem to either (3.2) or even the one considered in Lam (2016). Same thing
happens when Σ0 = σ2Ip, since then δ1 = δ2 = 0. And, the denominator in δ1 and δ2

is 0 when any one of the regularity conditions are violated. The resulting estimator is
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given by

Σ(P,T,Σ0) = Pdiag(PTΣ0P)PT + δ1(T1 − Σ̂T1) + δ2(T2 − Σ̂T2). (3.9)

3.3.1 Proposed Estimator and Theoretical Results

We use the same data splitting idea as in Chapter 3.2.2, and consider the minimization
problem

min
δ1,δ2,D

∥(1 − δ1 − δ2)P1DPT
1 + δ1T1 + δ2T2 − Σ0∥2

F ,

where T1 and T2 are both constructed from the data matrix Y1. Substituting Σ0 by
Σ̃2 in the resulting solution, we have our estimator

Σ(P1,T, Σ̃2) = P1diag(PT
1 Σ̃2P1)PT

1 + δ̂1(T1 − Σ̂T1) + δ̂2(T2 − Σ̂T2), (3.10)

where δ̂i is the same as the corresponding δi in the results of Theorem 3.4, except that
Σ0 is substituted by Σ̃2 and Σ̂Ti

= P1diag(PT
1 TiP1)PT

1 .

To present further results, define aij = tr[(Ti − Σ̂Ti
)(Tj − Σ̂Tj

)] for i, j = 1, 2.

Theorem 3.5 Let Assumptions (A1)-(A4) be satisfied. Assume the split location
m = m(n) satisfies the constraint ∑n≥1 p(n − m)−5 < ∞ while p = p(n) satisfies
p/n → c > 0. If p−1aii, p

−2(a11a22 − a2
12) 9 0 and are finite in probability/almost

surely, then we have δ̂i−δi → 0 in probability/almost surely for i = 1, 2, where δi is as in
the result of Theorem 3.4 with Ti constructed using Y1 and Σ̂Ti

= P1diag(PT
1 TiP1)PT

1 .
Furthermore, supposing Σ0 ≠ σ2Ip, if we have ∥Ti − Σ0∥ → 0 in probability/almost
surely while ∥T3−i − Σ0∥ 9 0 but is finite for i = 1, 2, then δ̂i → 1, δ̂3−i → 0 and
∥Σ(P1,T, Σ̃2) − Σ0∥ → 0 in probability/almost surely.

For data from a factor model, let Assumptions (F1) and (F2) be satisfied. Assume
the split location m = m(n) satisfies the constraint ∑n≥1 p(n − m)−5 < ∞ while
p = p(n) satisfies p/n → c > 0. If p−2aii, p

−4(a11a22 − a2
12) 9 0 and are finite in

probability/almost surely, then we have δ̂i − δi → 0 in probability/almost surely for i =
1, 2. Furthermore, if p−1∥Ti − Σ0∥ → 0 in probability/almost surely while p−1∥T3−i −
Σ0∥ 9 0 but is finite for i = 1, 2, then δ̂i → 1, δ̂3−i → 0 and p−1∥Σ(P1,T, Σ̃2)−Σ0∥ →
0 in probability/almost surely.

Theorem 3.5 shows that our estimator is adaptive to the inclusion of two regularized
estimators, and favors the correct one asymptotically. This is a very useful property
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when we want to take advantages of different regularization methods. See the simulation
results in Chapter 3.5 for more details.

Similar to Chapter 3.2.3, we define the ideal estimator as ΣIdeal = Σ(P,T,Σ0),
which is the one in equation (3.9) except that T1 and T2 are constructed using Y1.

Theorem 3.6 Let Assumptions (A1)-(A4) be satisfied, and Σ0 ̸= σ2Ip. Assume
the split location m = m(n) satisfies the constraints m/n → 1, n − m → ∞ and∑

n≥1 p(n − m)−5 < ∞ while p = p(n) satisfies p/n → c > 0. If p−1aii, p
−2(a11a22 −

a2
12) 9 0 and are finite in probability/almost surely, then EL(Σ0,Σ(P1,T, Σ̃2)) → 0

in probability/almost surely, where EL(Σ0, Σ̂) is as define in equation (3.7) using
ΣIdeal = Σ(P,T,Σ0).

3.4 Properties of an Averaged Estimator

In this chapter, we illustrate an improved estimator using averaging when two regular-
ized covariance matrices are concerned. The same idea can be applied to the version
with one regularized estimator. Since the covariance matrices in equations (3.5) and
(3.10) are both constructed from the data Y1, and the yi’s are all independent of
each other, a new permutation of the data will result in a different Y1 even if we
use the same split location m. (The "permutation" idea is from Lam (2016) with the
permutation of Y and with the same split location m, different subsets Y1 and Y2

can be obtained.) Similar to Lam (2016), we permute the data each time, and for the
jth permutation where j = 1, . . . ,M , we use the resulting data Y(j) = (Y(j)

1 ,Y(j)
2 ) to

construct

Σ̂(j)
m = Σ(P1j,Tj, Σ̃(j)

2 )
= P1jdiag(PT

1jΣ̃
(j)
2 P1j)PT

1j + δ̂1j(T1j − Σ̂T1j
) + δ̂2j(T2j − Σ̂T2j

). (3.11)

In the above, Σ̃(j)
1 = m−1Y(j)

1 Y(j)T
1 = P1jD1jPT

1j , and Σ̃(j)
2 = (n−m)−1Y(j)

2 Y(j)T
2 . Each

Tij denotes the ith regularized estimator constructed from Y(j)
1 in the jth permutation,

i = 1, 2, j = 1, . . . ,M . Finally, for i = 1, 2 and j = 1, . . . ,M , δ̂ij is the same as the
corresponding δi in the result of Theorem 3.4, except that Σ0 is substituted by Σ̃(j)

2 ,
and Ti by Tij with Σ̂Tij

= P1jdiag(PT
1jTijP1j)PT

1j. We can then average all these
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estimators and arrive at the final estimator

Σ̂m,M = 1
M

M∑
j=1

Σ̂(j)
m . (3.12)

In practice, usingM = 50 achieves a good trade-off between accuracy and computational
efficiency. The resulting estimator is usually much better than using just M = 1 alone.

Theorem 3.7 Let Assumptions (A1)-(A4) be satisfied, and Σ0 ̸= σ2Ip. Assume
the split location m = m(n) satisfies the constraints m/n → 1, n − m → ∞ and∑

n≥1 p(n − m)−5 < ∞ while p = p(n) satisfies p/n → c > 0. If the corresponding
p−1aii, p

−2(a11a22 − a2
12) 9 0 and are finite in probability/almost surely for all M

permutations, then EL(Σ0, Σ̂m,M) ≤ 0 in probability/almost surely.

Furthermore, if ∑n≥1(n−m)−3 < ∞, then in probability/almost surely, we have

1
p

(tr(Σ̂m,M) − tr(Σ0)) → 0, 1
p

tr(Σ̂m,MΣ0) ≥ λ2
min(Σ0),

where λmin(A) denotes the minimum eigenvalue of a matrix A. The first trace property
above are true if the data is from a factor model with Assumptions (A1),(A2) replaced
by (F1),(F2), and the corresponding p−2aii, p

−4(a11a22 − a2
12) 9 0 and are finite in

probability/almost surely for all M permutations. The second trace property is true if
it is modified to

1
p3 tr(Σ̂m,MΣ0) ≥ 1

p2λ
2
min(Σ0).

The above theorem shows that asymptotic efficiency still holds for the averaged
estimator. Moreover, although we cannot prove the asymptotic positive definiteness of
the estimator Σ̂m,M in general, the two trace properties are important characteristics
for our estimator. This is because the true covariance matrix Σ0 also satisfies the two
trace properties above.

3.4.1 Speed Boosting and Choice of Split Location

The estimator Σ̂m,M in equation (3.12) involves calculating the regularized covariance
matrices T1 and T2 M times for a particular split location m. If we search for several
split locations (see below), then the computational burden is high even when p is not
too large.
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To speed up the calculation of the estimator, we concentrate on banding estimator
in Bickel and Levina (2008b) and POET in Fan et al. (2013) for T1 and T2. POET
includes generalized thresholding when set with K = 0 factor. To speed up the repeated
calculations of the banding estimators, we first find the banding number k chosen by
a 5-fold cross-validation (see Bickel and Levina (2008b) for details) when the whole
data set Y is used. Then we use such a k to band each T1j constructed from the
permutated data set Y(j).

For speeding up the repeated calculations of the POET estimators with K factors,
note that an eigen-decomposition of the sample covariance matrix Σ̃(j)

1 is needed in
both the calculation of P1j and the factor loading matrix in the POET method, and
hence one eigen-decomposition is all that is needed in each repeated calculation. It
means that we are using the solution p1/2 times the matrix of the K column vectors
in P1j corresponding to the K largest eigenvalues of Σ̃(j)

1 to be the estimated factor
loading matrix (see for example Bai and Ng (2002) for more details). We indeed
implement this in our codes to minimize the number of eigen-decompositions required.

One major parameter we need to decide is the split location for our estimator.
From Theorems 3.3, 3.6 and 3.7, the conditions that have to be satisfied for the split
location are that ∑n≥1 p(n − m)−5 < ∞, n − m → ∞ and m/n → 1. Coupling with
the high-dimensional assumption that p/n → c > 0, one possible solution is to set
m = n− an1/2. This is indeed a solution adopted by Lam (2016), and we propose a
similar criterion for choosing m here:

g(m) =
∥∥∥∥∥Σ̂m,M − 1

M

M∑
j=1

Σ̃(j)
2

∥∥∥∥∥
2

F

, (3.13)

where Σ̃(j)
2 is defined in equation (3.11). We choose m that minimizes g(m) above. In

practice we search the following 7 split locations for minimizing g(m):

m = [2n1/2, 0.2n, 0.4n, 0.6n, 0.8n, n− 2.5n1/2, n− 1.5n1/2].

The last two split locations are of the form n − an1/2. The four locations 0.2n to
0.8n are there to accommodate finite sample performance. The split location 2n1/2 is
for the case Σ0 = σ2Ip, when all proposed estimators are reduced to NERCOME in
Lam (2016) asymptotically, and it is discussed in Lam (2016) explicitly that this case
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requires m to be as small as possible while still going to infinity. The order n1/2 is a
good choice in the end.

3.4.2 Other Practical Concerns

The regularity condition that T cannot be of the form PDPT in Theorem 3.1 does have
a bearing in practice. For instance, when T is a banded or a thresholded estimator,
it can be that T becomes a diagonal matrix and somehow becomes “too close” to
the form PDPT because the diagonal elements in T are very similar. This will make
tr(T − Σ̂T)2 much smaller than usual, and hence δ will be inflated in magnitude,
making the estimator Σ(P1,T, Σ̃2) in equation (3.5) unstable. The same holds true
when integrating two regularized estimators T1 and T2. For instance if T1 is banded
and T2 is soft-thresholded, they can both be diagonal with almost identical diagonal
elements. This will make the denominator in δ1 and δ2 in Theorem 3.4 very small,
making the estimator Σ(P1,T, Σ̃2) in equation (3.10) unstable.

In practice, we find that when a weight has a magnitude larger than 3 (can be
δ or 1 − δ, or δ1,δ2 or 1 − δ1 − δ2), the corresponding estimator exhibits substantial
instability. For a single T, it means that T is starting to be too close to the form
PDPT, so that the whole problem is approaching the construction of NERCOME in
Lam (2016). Hence we impose our estimator to be exactly the NERCOME estimator
whenever this happens to protect it from becoming too unstable. For the averaged
estimator Σ̂m,M in equation (3.12), we monitor how many times the estimator is made
exactly the NERCOME among the M permutations. Practically, for more accurate
estimator, we want at least 30 of the estimators among the M permutations are not
made exactly to NERCOME. Suppose there are Me ≥ 30 permutations, indexed by
the set S so that Me = |S|, where the estimator is not made to NERCOME exactly.
Then our average estimator becomes

Σ̂m,M = 1
M

M∑
j=1

P1jdiag(PT
1jΣ̃

(j)
2 P1j)PT

1j + 1
Me

∑
j∈S

tr[(Tj − Σ̂Tj
)Σ̃(j)

2 ]
tr(Tj − Σ̂Tj

)2
(Tj − Σ̂Tj

).

(3.14)
If Me < 30, we just take the first term in equation (3.14) above, which is exactly the
averaged NERCOME proposed in Lam (2016). This works very well in practice and
reduces instability substantially.
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We use similar rules for our averaged estimator for integrating T1 and T2. For a
particular permutation, if any of δ̂1, δ̂2 or 1 − δ̂1 − δ̂2 are larger than 3 in magnitude,
then we discard it. Defining the set S as above, with Me = |S|, if Me ≥ 30, the
resulting averaged estimator is then

Σ̂m,M = 1
M

M∑
j=1

P1jdiag(PT
1jΣ̃

(j)
2 P1j)PT

1j + 1
Me

∑
j∈S

(
δ̂1j(T1j − Σ̂T1j

)+ δ̂2j(T2j − Σ̂T2j
)
)
.

(3.15)
If Me < 30, we reduce the above to the one in equation (3.14), getting two averaged
estimators, one for T1 and one for T2. If say T1 has Me ≥ 30 and T2 has Me < 30,
then we choose the averaged estimator with T1 and vice versa. If Me ≥ 30 for both
T1 and T2, then it means that originally T1 and T2 are perhaps too similar, causing
instability in the final estimator. Hence we average the two integrated estimators with
T1 and T2 in this case. Finally, if both Me < 30, then it is reduced to the averaged
NERCOME estimator. We impose all these rules in our simulations and real data
analysis.

3.5 Empirical Results

3.5.1 Simulation Experiments

We have three proposed estimators to be compared with other methods in this chapter.
They are the estimator integrated with Banding (abbreviated as INT-BAND), the one
integrated with POET (abbreviated as INT-POET), and finally the one integrated with
both (abbreviated as INT-Double). For POET and related methods, we use C = 0.5
throughout. We use the averaged estimator as in equation (3.12), and to speed up the
simulations, we use M = 40 and search for 4 split locations

m = [2n1/2, 0.3n, 0.7n, n− 2n1/2].

This way, the time to compute our estimator is cut by half, without losing accuracy
and efficiency practically. Other methods to be compared with our estimators include
Banding (with banding number chosen by 5-fold cross-validation for each simulated
data set) and POET themselves, with POET includes pure adaptive thresholding as a
special case. We also compare to three eigenvalues shrinkage methods, namely, the
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Nonparametric Eigenvalues-Regularized COvariane Matrix Estimator (NERCOME)
from Lam (2016), the nonlinear shrinkage estimator (NONLIN) from Ledoit and Wolf
(2012), and the grand average estimator (Grand Avg) from Abadir et al. (2014). Finally,
we also compare to the NOVELIST estimator from Huang and Fryzlewicz (2015), which
combines the sample covariance matrix with a thresholded estimator. We create 10
different profiles below.

(I) Sparse Σ0 with 20% non-zeros, generated randomly each time, yt ∼ N(0,Σ0).

(II) General non-sparse Σ0 = QDQT, where Q is an orthogonal matrix generated
randomly each time, and D is diagonal with values 1, 4 , 7 and 10 each appears
25% of times, yt ∼ N(0,Σ0).

(III) (Sparse + Banded) Σ0 = Σ1 + Σ2, where Σ1 is the same as the Σ0 in profile (I),
and Σ2 = (0.9|i−j|)1≤i,j≤p, yt ∼ N(0,Σ0).

(IV) (Cross) Σ0 = Qdiag(λ11{λ1>0}, . . . , λp1{λp>0})QT+Ip, where Qdiag(λ1, . . . , λp)QT

is the eigen-decomposition of the left-right flipped matrix of (0.9|i−j|)1≤i,j≤p,
yt ∼ N(0,Σ0).

(V) (Factor model) Y = AX + E, where A is p× 2, X = (x1, . . . , xn) is 2 × n, and
finally E = Σ1/2Z, where Σ is the Σ0 in profile (I). The factor loading matrix A,
the matrix of factor series X and Z are generated each time with independent
and identically distributed N(0, 1) elements.

(It-IVt) Same as the corresponding profiles (I) to (IV), except that Y = Σ1/2
0 Z with Z

having independent and identically distributed t5 elements.

(Vt) Same as the corresponding profile (V), except that E = Σ1/2Z where Z has
independent and identically distributed t5 elements.

Profile (I) favors POET (K = 0), while profile (III) favors banding and profile (V)
POET with K = 2. Profile (IV) also has sparse Σ0, but the cross-shaped non-zero
pattern on Σ0 means it is partly banded as well. Thresholding or banding alone are
not able to take full advantage of the structure of Σ0 then. The 5 other profiles are
created to test the robustness of our methods to fat-tailed distribution.
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We simulate 500 times from the 10 profiles under n = 200 and p = 100, 200, 400.
We use the following 7 loss functions for comparisons:

L1(Σ, Σ̂) = ∥Σ − Σ̂∥F ,

L2(Σ, Σ̂) = tr(ΣΣ̂−1) − log det(ΣΣ̂−1) − p,

L3(Σ, Σ̂) = ∥Σ−1 − Σ̂−1∥,

L4(Σ, Σ̂) = tr(Σ−1Σ̂) − log det(Σ−1Σ̂) − p,

L5(Σ, Σ̂) = ∥Σ − Σ̂∥,

L6(Σ, Σ̂) =
p∑

i=1
|λi(Σ − Σ̂)|,

L7(Σ, Σ̂) = tr(Σ + Σ̂ − 2Σ1/2Σ̂1/2).

The L1 loss is the Frobenius loss which our estimator is supposed to minimize. The
second is the inverse Stein’s loss, and the fourth one is the Stein’s loss. We also include
L5 the spectral loss and L6 the nuclear loss, while L7 is called the Fréchet loss. All of
them are non-negative and is 0 when Σ̂ = Σ.

From Table 3.1, under profile (I), the INT-BAND and NERCOME have virtually
the same performance. This is understandable, since Banding is performing badly, and
hence the δ in INT-BAND is small, virtually turning it into NERCOME. POET, being
the adaptive soft-thresholding with K = 0, is doing well since Σ0 is indeed sparse
in profile (I). It is therefore remarkable for INT-POET, which is the combination of
NERCOME and POET, to outperform both NERCOME and POET in all 7 losses.
Even more remarkable is that INT-Double, being INT-POET combined with Banding,
outperforms (albeit only slightly) INT-POET in all 7 losses despite the fact that
Banding is not doing good (and not even positive definite in many instances) at all.
It would seem that Banding, despite its bad performance, still “contains” some tiny
advantages over other estimators, and INT-Double helps extract these tiny advantages
out. Incidentally, it outperforms all other methods in all 7 losses, except for NONLIN
in L3.

Within the same profile (I), when p = n = 200 (so now p/n = 1), it is much more
difficult for POET to perform well relative to NERCOME or NONLIN in terms of
minimizing the Frobenius loss, hence INT-POET or INT-Double both have weight on
POET reduced compared to the case when p = 100, n = 200. The results are closer for
all the methods as well since the integrated estimators do not have as much advantages
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over other estimators as before as a result of POET doing worse than before relative to
other estimators (except for L3). This trend continues as we increase p from 200 to 400
in Table 3.2, when the ratio p/n becomes 2, which is difficult for regularized estimators
to perform well with this relatively small n. The weight on POET for INT-POET and
INT-Double decrease further, as POET itself is performing even worse than Banding
on average. Hence both integrated estimators, albeit still better than NERCOME
itself, is much closer to NERCOME in performance over all losses. The results for
p = 200 under profile (It) is also included in Table 3.2, and the pattern is similar to
that for profile (I) when p = 200. Profile (It) for p = 100 and p = 400 are similar to
the respective profile (I) for p = 100 and p = 400 too and we omit the results to save
space.

From Table 3.3, the performance of the integrated estimators under profile (II)
or (IIt) are virtually the same as NERCOME, which is to be expected since Σ0 has
no sparsity or banded structure to be exploit, so that the corresponding weights for
Banding and POET are small around 0. As such, NONLIN shows slightly better
performance on average compared to NERCOME under profile (II) or (IIt), which is
also documented in Lam (2016). From Table 3.4, profile (III) and (IIIt) feature a Σ0

which is constructed by adding a sparse and a banded covariance matrix together, so
that Σ0 itself is partly banded at best, and further from the diagonal it is roughly
approximately sparse. Hence it is expected for the integrated estimators to put more
emphasis on POET with K = 0, and less on Banding. This is exactly the case from
Table 3.2, where the weight for banding is on average positive but in fact fluctuates
around 0 for all integrated estimators. The emphasis on POET is much larger, although
similar to profile (I) or (It) in Table 3.1, the weight decreases in general as p increases
from 200 to 400. Under profile (III) or (IIIt), the integrated estimators, especially
INT-Double, has an edge over all other estimators on average.

Table 3.5 shows the results under profile (IV) and (IVt). Because of the cross
non-zero pattern on Σ0, banding can result in gross deviation from the true values
in the off-diagonal entries as long as the banding number is not very large. It is
no surprise that Banding is performing very badly. INT-BAND is performing worse
than NERCOME on L3, but is still close to NERCOME on other losses. Looking at
the corresponding weight, Banding still exploits and takes advantages of the special
structure of Σ0, but definitely not much. POET itself is also not performing particularly
well, but INT-POET, having taken advantages of the sparsity of Σ0 from POET itself,
has performed well in all the losses. INT-Double suffers from the bad performance
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of Banding itself, and is not performing as good as INT-POET in L3, although it
still helps INT-Double to achieve the smallest Frobenius loss L1 overall. NONLIN
and Grand Avg also have good performance overall, especially when p = 200. Under
profile (V) in Table 3.6, with the correct number of factors specified, POET performs
well overall, but INT-POET still outperforms POET in L2, L6 and L7. The weight
on Banding is virtually 0, which should be the case ideally, so that INT-Double has
virtually the same performance as INT-POET. The same goes for profile (Vt) with
p = 400, where the weight on Banding is virtually 0 for INT-BAND and INT-Double.
The weight on POET has decreased comparing to profile (V) at p = 200, so that
NONLIN and Grand Avg have closer performance to the integrated estimators. Again,
this reflects the increased difficulties for POET to achieve a good performance as
p/n = 2 with n relatively small at 200.

3.5.2 Forecasting the Number of Phone Calls

We are interested in forecasting the number of phone calls for a call center. The data is
used in Huang et al. (2006) and Bickel and Levina (2008b), and is re-analyzed in Lam
(2016). Phone calls to a call center are recorded from 7am to midnight everyday in 2002,
except for weekends, holiday and when equipments are malfunctioning, leaving n = 239
days of calls in total. A 17-hour recording period is divided into 10-minute intervals
each day, resulting in 102 intervals. Let Nij be the number of calls at the jth interval
on the ith day, i = 1, . . . , 239, j = 1, . . . , 102. The transformation yij = (Nij + 1/4)1/2

is applied to bring the data closer to normal (see Huang et al. (2006) for more details).

We consider predicting the number of phone calls in the latter half of the day for the
last 29-day period of the data using the data from the first half of the day. Lam (2016)
has illustrated empirically that the last 29-day period of the data is particularly difficult
to forecast, and we bring in our proposed estimators to compare to other methods used
in the simulations to see if our proposed estimators can improve forecasting. In details,
let yi = ((y(1)

i )T, (y(2)
i )T)T, where y(1)

i = (yi,1, . . . , yi,51)T and y(2)
i = (yi,52, . . . , yi,102)T.

Let µj = E(y(j)
i ) for j = 1, 2, and Σjk = cov(y(j)

i y(k)
i ), 1 ≤ j, k ≤ 2. We use the best

linear predictor
ŷ(2)

i = µ2 + Σ21Σ−1
11 (y(1)

i − µ1)

for predicting the number of calls in the second half of the day. We need to estimate
Σ = cov(yi) using past data. We consider 30,60,90,120,150,180 and 210 days of training
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data prior to the 29-day period we want to forecast, and for each training data set,
we compare all the methods used in the simulations in Chapter 3.5.1, plus sample
covariance, pure adaptive soft thresholding (SOFT, i.e., POET with K = 0), integrated
estimator with soft thresholding (INT-SOFT), and integrated estimator with banding
and soft-thresholding (INT-bandsoft). For POET, we consider K = 1 to explore if
some parts of the data exhibits factor model structure. For banding, we consider the
banding of the modified Cholesky factor instead of direct banding of the covariance
matrix (see Bickel and Levina (2008b) for more details), since the components in yi are
time-ordered, so the dependence on distant past can be weak, meaning the modified
Cholesky factor can be naturally banded.

For k = 30, 60, . . . , 210, we compare for different methods the absolute forecast
errors

Ek = 1
51

102∑
j=52

Ek,j, where Ek,j = 1
29

239∑
r=211

|ŷ(2)
rj,k − y

(2)
rj |, (3.16)

where ŷ(2)
rj,k is the forecast on day r and time interval j, using k prior days for constructing

an estimator for Σ. Except for SOFT, POET and NONLIN, we repeatedly estimate Σ
for 80 times and average the forecast results to arrive at ŷ(2)

rj,k to reduce the variability
from data splitting, and the choice of banding number for banding or the choice of
thresholding parameter for NOVELIST by cross-validation.

From Table 3.7, the best forecasts come from soft-thresholding when we use more
data (k ≥ 150) in estimating Σ, followed closely by INT-Double and INT-bandsoft
when using k ≤ 90. Banding is good in general for larger k, which makes sense
since a larger k means some components in yi are further apart in time, so that the
modified Cholesky factor is more banded. INT-SOFT and INT-bandsoft perform well
in general for each particular k, and are in general better than the nonlinear shrinkage
methods like NERCOME, NONLIN and Grand Avg. It indicates that, despite the bad
performance for banding and soft-thresholding when k ≤ 60, there are still advantages
from the banding and sparse assumptions, and the corresponding integrated estimators
help squeeze them out. Certainly, when k gets larger, it becomes apparent that Σ
becomes sparser and with more banded structure, and banding and soft-thresholding
themselves fare better.

The integrated estimators INT-SOFT and INT-bandsoft are also better than the
NOVELIST in general, even when NERCOME and sample covariance are performing
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at the same level when k ≥ 150. It means that the integrated estimators are better in
extracting the advantages from the sparsity of Σ on average in this study.

To better take a colse look at the comparisions of different methods, we present an
example boxplot of all estimators’ absolute errors with k = 120 in Figure 3.1, where
the proposed estimators INT-SOFT and INT-bandsoft outperform almost all other
methods with a lower mean as well as standard deviation.

Remark 3.2 Due to the uncerntainty of the positive definiteness of proposed esti-
mators, same as most of the covariance matrix estimators, we do not provide the
stock market experiments in the following empirical study. The percentage of having
positive definite estimator varies with different dataset and different choices of the
regularized estimators. For example, if we estimate based on a 4-week training window
with 26 NYSE stocks’ daily closing log-price (the detailed background is similar to
Chapter 4.5.4), 100% positive definiteness can be obtained by INT-BAND, INT-Double,
INT-SOFT, INT-bandsoft, INT-bandcrc, INT-softcrc and INT-bandsoftcrc (where "crc"
represents "Grand Avg"). However, INT-POET achieves 97.96% positive definiteness
rate while INT-poetcrc and INT-doublecrc only have the rates as 26.53% and 73.47%.
As a result, the choice of regularized would be important. We would suggest for a careful
choices of regularized estimators. For non positive definite estimator, we propose to
diagonalise the proposed estimator and replace any eigenvalues that fall under a certain
small positive threshold by the value of that threshold.

3.6 Proof of Theorems

Proof of Theorem 3.1. Define R(δ,D) as the squared Frobenius norm of Σ(δ,D) − Σ0

in equation (3.2) in the chapter. Then

R(δ,D) =
∥∥∥∥(1 − δ)PDPT + δT − Σ0

∥∥∥∥2

F

=
∥∥∥∥(1 − δ)(PDPT − Σ0) + δ(T − Σ0)

∥∥∥∥2

F

= (1 − δ)2
∥∥∥∥PDPT − Σ0

∥∥∥∥2

F
+ 2δ(1 − δ)tr[(PDPT − Σ0)(T − Σ0)]

+ δ2
∥∥∥∥T − Σ0

∥∥∥∥2

F
. (3.17)
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First, we calculate the solution for D = diag(d1, . . . , dp) to the minimization problem
in terms of δ. For each j = 1, . . . , p, we have for P = (p1, . . . ,pp),

∂R(δ,D)
∂dj

= (1 − δ)2 ∂

∂dj

(tr(PDPTPDPT) − 2tr(PDPTΣ0))

+ 2δ(1 − δ) ∂

∂dj

(PDPT(T − Σ0))

= (1 − δ)2 ∂

∂dj

(
p∑

i=1
d2

i − 2
p∑

i=1
dipT

i Σ0pi) + 2δ(1 − δ) ∂

∂dj

(
p∑

i=1
dipT

i (T − Σ0)pi)

= (1 − δ)2(2dj − 2pT
j Σ0pj) + 2δ(1 − δ)pT

j (T − Σ0)pj

= 2[(1 − δ)2dj − (1 − δ)2pT
j Σ0pj + δ(1 − δ)pT

j (T − Σ0)pj].

Set ∂R(δ,D)
∂dj

= 0, then since we assumed δ ̸= 1,

dj =
(1 − δ)2pT

j Σ0pj − δ(1 − δ)pT
j (T − Σ0)pj

(1 − δ)2

= pT
j Σ0pj − δ

1 − δ
(pT

j Tpj − pT
j Σ0pj)

= 1
1 − δ

pT
j Σ0pj − δ

1 − δ
pT

j Tpj, so that

D = 1
1 − δ

diag(PTΣ0P) − δ

1 − δ
diag(PTTP). (3.18)

This proves the first part of Theorem 1. For the second part of the proof, we substitute
D from (3.18) into the original function R(δ,D) in (3.17). Hence

R(δ,D) = R(δ) =
∥∥∥∥Pdiag(PTΣ0P)PT − δPdiag(PTTP)PT + δT − Σ0

∥∥∥∥2

F

=
∥∥∥∥Pdiag(PTΣ0P)PT − Σ0

∥∥∥∥2

F
+ δ2

∥∥∥∥Σ̂T − T
∥∥∥∥2

F

− 2δtr[(Pdiag(PTΣ0P)PT − Σ0)(Σ̂T − T)].
∂R(δ)
∂δ

= 2δ
∥∥∥∥Σ̂T − T

∥∥∥∥2

F
− 2tr[(Pdiag(PTΣ0P)PT − Σ0)(Σ̂T − T)]

= 2[δtr(Σ̂T − T)2 − tr(Σ0(Σ̂T − T))], (3.19)

where Σ̂T = Pdiag(PTTP)P, and we arrive at the equality in (3.19) since
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tr(Pdiag(PTΣ0P)PT(Σ̂T − T))
= tr(Pdiag(PTΣ0P)PTPdiag(PTTP)PT) − tr(Pdiag(PTΣ0P)PTT)
= tr(diag(PTΣ0P)diag(PTTP)) − tr(diag(PTΣ0P)PTTP) = 0. (3.20)

Setting ∂R(δ)
∂δ

= 0, we have the result as stated in Theorem 3.1, since tr(T−Σ̂T)2 ≠ 0
as T is not of the form PDPT for some diagonal matrix D. �

To prove Theorem 3.2, we need to state a lemma first, which closely resembles
Lemma 1 of Lam (2016).

Lemma 3.1 Let Assumptions (A1) be satisfied. If the split location m is such that∑
n≥1 p(n−m)−5 < ∞, then we have

max
1≤i≤p

∣∣∣∣∣qT
i Σ̃2qi − qT

i Σ0qi

qT
i Σ0qi

∣∣∣∣∣ → 0

almost surely, where q1, . . . ,qp are unit vectors independent of the data Y2. The same
holds true of the data is from a factor model, with Assumption (F1) satisfied together
with ∑n≥1 p(n−m)−5 < ∞.

The proof of this lemma is exactly the same as that for Lemma 1 of Lam (2016), the
only difference is the substitution of p1i there by qi here.

Proof of Theorem 3.2. With T − Σ̃T being real symmetric, assume that T − Σ̃T =
QDTQT, where Q = (q1, . . . ,qp) is orthogonal and DT = diag(d1, . . . , dp) is diagonal.
The qi’s are independent of Y2 since T is constructed from the data Y1. Then with
Assumptions (A1) to (A2) assuming the data is not from a factor model,

|δ̂ − δ| = |tr[(T − Σ̃T)(Σ̃2 − Σ0)]|
tr(T − Σ̃T)2

=

∣∣∣∑p
i=1 di(qT

i Σ̃2qi − qiΣ0qi)
∣∣∣

tr(T − Σ̃T)2

≤

(
p−1∑p

i=1 d
2
i

)1/2(
p−1∑p

i=1(qT
i Σ̃2qi − qiΣ0qi)2

)1/2

p−1tr(T − Σ̃T)2

≤
max1≤i≤p

∣∣∣∣∣qT
i Σ̃2qi−qT

i Σ0qi

qT
i Σ0qi

∣∣∣∣∣
(
p−1∑p

i=1(qT
i Σ0qi)2

)1/2

(
p−1tr(T − Σ̃T)2

)1/2 → 0 (3.21)
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in probability/almost surely by Lemma 3.1, the fact that (p−1∑p
i=1(qT

i Σ0qi)2)1/2 ≤
λmax(Σ0) < ∞ by Assumption (A2), and finally by the assumption that p−1tr(T −
Σ̃T)2 9 0 in probability/almost surely. This proves δ̂ − δ → 0 in probability/almost
surely.

Now consider

δ̂ = tr[(T − Σ̃T)Σ0]
tr(T − Σ̃T)2

= tr[(T − Σ̃T)(Σ0 − T)] + tr[(T − Σ̃T)T]
tr(T − Σ̃T)2

= 1 + tr[(T − Σ̃T)(Σ0 − T)]
tr(T − Σ̃T)2

,

where the last line follows since tr[(T − Σ̃T)Σ̃T] = 0. But with the assumption
∥T − Σ0∥ → 0 in probability/almost surely, then

∣∣∣∣∣tr[(T − Σ̃T)(Σ0 − T)]
tr(T − Σ̃T)2

∣∣∣∣∣ ≤

(
p−1tr(T − Σ̃T)2

)1/2(
p−1tr(T − Σ0)2

)1/2

p−1tr(T − Σ̃T)2

≤ ∥T − Σ0∥(
p−1tr(T − Σ̃T)2

)1/2 → 0

in probability/almost surely by the assumption that p−1tr(T − Σ̃T)2 9 0 in proba-
bility/almost surely. This proves that δ̂ → 1 in probability/almost surely. With this,
then

∥Σ(P1,T, Σ̃2) − Σ0∥

= ∥P1diag(PT
1 Σ̃2P1)PT

1 + δ̂(T − Σ̃T) − Σ0∥

≤ ∥P1diag(PT
1 Σ̃2P1)PT

1 − Σ̃T∥ + ∥T − Σ0∥ + |δ̂ − 1| · ∥T − Σ̃T∥

= max
1≤i≤p

|pT
1iΣ̃2p1i − pT

1iTp1i| + ∥T − Σ0∥ + |δ̂ − 1| · ∥T − Σ̃T∥

≤ max
1≤i≤p

∣∣∣∣∣pT
1iΣ̃2p1i − pT

1iΣ0p1i

pT
1iΣ0p1i

∣∣∣∣∣ · ∥Σ0∥ + max
1≤i≤p

|pT
1iTp1i − pT

1iΣ0p1i|

+ ∥T − Σ0∥ + 2|δ̂ − 1| · ∥T∥

≤ max
1≤i≤p

∣∣∣∣∣pT
1iΣ̃2p1i − pT

1iΣ0p1i

pT
1iΣ0p1i

∣∣∣∣∣ · ∥Σ0∥ + 2∥T − Σ0∥ + 2|δ̂ − 1| · ∥T∥ → 0
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in probability/almost surely, where the last line follows from Lemma 1 of Lam (2016),
Assumption (A2) that ∥Σ0∥ is finite, and the assumption that ∥T∥ is finite in proba-
bility/almost surely.

For data from a factor model, almost every details of the proofs are exactly the
same as before, except that we now have p−2tr(T − Σ̃T)2 9 0 while p−1∥Σ0∥ = O(1)
and p−1∥T∥ are finite in probability/almost surely. This completes the proof of the
theorem. �

To prove Theorem 3.3, we need to state and prove another lemma first.

Lemma 3.2 Let Assumptions (A1) to (A4) be satisfied, and Σ0 ̸= σ2Ip. Assume
the split location m = m(n) satisfies the constraints m/n → 1, n − m → ∞ and∑

n≥1 p(n−m)−5 < ∞ while p = p(n) satisfies p/n → c > 0. Then we have ∥P1−P∥ →
0 almost surely. In particular, assuming ∥T∥ finite in probability/almost surely, we
have in probability/almost surely,

1
p

p∑
i=1

|pT
1iTp1i − pT

i Tpi| → 0, 1
p

p∑
i=1

|pT
1iΣ0p1i − pT

i Σ0pi| → 0.

Proof of Lemma 3.2. The setting is the same as that in Lemma S.4 of Lam (2016).
As such, for λi and λ1i being the eigenvalues of Σ̃ = n−1YYT and Σ̃1 = m−1Y1YT

1

respectively (with corresponding eigenvectors pi and p1i), we have for any continuous
function g(·) over the positive real line,

p−1
p∑

i=1
g(pT

i Σ0pi)1{λi≤x}
a.s.→

∫ x

∞
g(δ(λ))dF (λ), (3.22)

where F (·) is such that

Fp(λ) = p−1
p∑

i=1
1{λi≤λ}

a.s.→ F (λ).

equation (3.22) is the same as equation (S.3) in Lam (2016). Please refer to equation
(2.7) of Lam (2016) for the definition of δ(·). Similarly, we have

p−1
p∑

i=1
g(pT

1iΣ0p1i)1{λ1i≤x}
a.s.→

∫ x

∞
g(δ1(λ))dF1(λ), (3.23)



3.6 Proof of Theorems 64

where δ1(·) is as in (2.9) of Lam (2016), and F1(·) is such that

F1p(λ) = p−1
p∑

i=1
1{λ1i≤λ}

a.s.→ F1(λ).

But since m/n → 1, we have p/m, p/n both go to the same limit c > 0. Theorem 4.1
of Bai and Silverstein (2010) tells us then both Fp and F1p converge to the same limit
almost surely under Assumptions (A1) to (A4). Hence F = F1 almost surely, implying
δ1(·) = δ(·) almost surely. Setting g ≡ 1, we see that λ1i and λi are almost surely the
same.

Then using Theorem 3 of Ledoit and Péché (2011), we can arrive at that both pT
1ivj

and pT
i vj for i, j = 1, . . . , p are almost surely the same as a function ϕ(λi, τj) uniformly

for each i and j (which depends on the same constant c where p/m, p/n → c > 0
since m/n → 1), where vj is the eigenvector of Σ0 corresponding to the j-th largest
eigenvalue τj of Σ0. Hence

max
1≤i,j≤p

|(p1i − pi)Tvj|
a.s.→ 0.

It means that we must have max1≤i≤p ∥p1i − pi∥
a.s.→ 0. Hence ∥P1 − P∥ a.s.→ 0 follows.

With this, then

1
p

p∑
i=1

|pT
1iTp1i − pT

i Tpi| = 1
p

p∑
i=1

|(p1i − pi)TT(p1i + pi)| ≤ 2∥T∥ max
1≤i≤p

∥p1i − pi∥ → 0

in probability/almost surely, since ∥T∥ is finite in probability/almost surely. Replacing
T by Σ0 proves the almost sure convergence of the other by Assumption (A2) that
∥Σ0∥ = O(1). �
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Proof of Theorem 3.3. Recall the notations Σ̂T = Pdiag(PTTP)PT and Σ̃T =
P1diag(PT

1 TP1)PT
1 . Consider

1
p

∥∥∥∥ΣIdeal − Σ0

∥∥∥∥2

F
= 1
p

∥∥∥∥Pdiag(PTΣ0P)PT − Σ0 + tr[(T − Σ̂T)Σ0]
tr(T − Σ̂T)2

(T − Σ̂T)
∥∥∥∥2

F

= 1
p

∥∥∥∥Pdiag(PTΣ0P)PT − Σ0

∥∥∥∥2

F
+ 1
p

tr2[(T − Σ̂T)Σ0]
tr2(T − Σ̂T)2

tr(T − Σ̂T)2

+ 2
p

tr[(Pdiag(PTΣ0P)PT − Σ0)(T − Σ̂T)]tr[(T − Σ̂T)Σ0]
tr(T − Σ̂T)2

= 1
p

∥∥∥∥diag(PTΣ0P) − PTΣ0P
∥∥∥∥2

F
− 1
p

tr2[(T − Σ̂T)Σ0]
tr(T − Σ̂T)2

.

Similarly, we have

1
p

∥∥∥∥Σ(P1,T, Σ̃2) − Σ0

∥∥∥∥2

F
= 1
p

∥∥∥∥diag(PT
1 Σ̃2P) − PT

1 Σ0P1

∥∥∥∥2

F
+ 1
p

tr2[(T − Σ̃T)Σ̃2]
tr(T − Σ̃T)2

− 2
p

tr[(T − Σ̃T)Σ̃2]
tr(T − Σ̃T)2

tr[(T − Σ̃2)Σ0]

= 1
p

p∑
i=1

(pT
1iΣ̃2p1i − pT

1iΣ0p1i)2 + 1
p

tr2[(T − Σ̃T)(Σ̃2 − Σ0)]
tr(T − Σ̃T)2

− 1
p

tr2[(T − Σ̃T)Σ0]
tr(T − Σ̃T)2

+ 1
p

∥∥∥∥diag(PT
1 Σ0P) − PT

1 Σ0P1

∥∥∥∥2

F
.

With these, we can expand the efficiency loss as

EL(Σ0,Σ(P1,T, Σ̃2)) = 1 −

p−1
∥∥∥∥Σ(P1,T, Σ̃2) − Σ0

∥∥∥∥2

F

p−1
∥∥∥∥ΣIdeal − Σ0

∥∥∥∥2

F

−1

= 1 −

R1 +R2 +R3 +R4

p−1
∥∥∥∥ΣIdeal − Σ0

∥∥∥∥2

F

−1

,
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where

R1 = 1
p

∥∥∥∥diag(PT
1 Σ0P) − PT

1 Σ0P1

∥∥∥∥2

F
− 1
p

tr2[(T − Σ̂T)Σ0]
tr(T − Σ̂T)2

,

R2 = 1
p

p∑
i=1

(pT
1iΣ̃2p1i − pT

1iΣ0p1i)2,

R3 = 1
p

tr2[(T − Σ̂T)Σ0]
tr(T − Σ̂T)2

− 1
p

tr2[(T − Σ̃T)Σ0]
tr(T − Σ̃T)2

,

R4 = 1
p

tr2[(T − Σ̃T)(Σ̃2 − Σ0)]
tr(T − Σ̃T)2

.

Firstly, we have R1
p−1∥ΣIdeal−Σ0∥2

F
→ 1 almost surely by Lemma S.4 of Lam (2016). If

we can prove that R2, R3, R4 → 0 in probability/almost surely, then since p−1∥ΣIdeal −
Σ0∥2

F 9 0 as Σ0 ̸= σ2Ip (see the proof of Lemma S.4 in Lam (2016) for more details),
the proof will be completed.

To this end, apply Lemma 3.1 with qi = p1i,

R2 ≤

max
1≤i≤p

∣∣∣∣∣∣p
T
1iΣ̃2p1i − pT

1iΣ0p1i

pT
1iΣ0p1i

∣∣∣∣∣∣
2

· max
1≤i≤p

(pT
1iΣ0p1i)2

≤

max
1≤i≤p

∣∣∣∣∣∣p
T
1iΣ̃2p1i − pT

1iΣ0p1i

pT
1iΣ0p1i

∣∣∣∣∣∣
2

· ∥Σ0∥2 → 0 (3.24)

almost surely as ∥Σ0∥ = O(1) by Assumption (A2). For the term R3, consider

R3 = R3,1 +R3,2, where

R3,1 = 1
p

(tr(T − Σ̃T)2 − tr(T − Σ̂T)2) · tr2(T − Σ̃T)Σ0

tr(T − Σ̂T)2tr(T − Σ̃T)2
,

R3,2 = 1
p

tr2(T − Σ̂T)Σ0 − tr2(T − Σ̃T)Σ0

tr(T − Σ̂T)2
.

To bound R3,1, consider
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|R3,1| = 1
p

|tr(T − Σ̃T)2 − tr(T − Σ̂T)2| · tr2[(T − Σ̃T)Σ0]
tr(T − Σ̂T)2tr(T − Σ̃T)2

≤ 1
p

|tr(T − Σ̃T)2 − tr(T − Σ̂T)2| · p−1tr(Σ2
0)

p−1tr(T − Σ̂T)2

=
∣∣∣∣∣∣1p(tr(T2) −

p∑
i=1

(pT
i Tpi)2) − 1

p
(tr(T2) −

p∑
i=1

(pT
1iTp1i)2)

∣∣∣∣∣∣ · p−1tr(Σ2
0)

p−1tr(T − Σ̂T)2

≤ max
1≤i≤p

|pT
1iTp1i + pT

i Tpi| · 1
p

p∑
i=1

|pT
1iTp1i − pT

i Tpi| · ∥Σ0∥2

p−1tr(T − Σ̂T)2

≤ 2∥T∥ · 1
p

p∑
i=1

|pT
1iTp1i − pT

i Tpi| · ∥Σ0∥2

p−1tr(T − Σ̂T)2
→ 0

in probability/almost surely by the assumption p−1tr(T − Σ̃T)2 9 0 in probabil-
ity/alsmost surely with ∥T∥ being finite, that ∥Σ0∥ = O(1) by Assumption (A2), and
finally by the result of Lemma 3.2.

Also, we have

1
p

|tr[(Σ̂T − Σ̃T)Σ0]|

= 1
p

|tr(diag(PTTP)PTΣ0P) − tr(diag(PT
1 TP1)PT

1 Σ0P1|

≤ 1
p

p∑
i=1

|pT
i Tpi| · |pT

i Σ0pi − pT
1iΣ0p1i| + 1

p

p∑
i=1

|pT
1iΣ0p1i| · |pT

i Tpi − pT
1iTp1i|

≤ ∥T∥ · 1
p

p∑
i=1

|pT
i Σ0pi − pT

1iΣ0p1i| + ∥Σ0∥ · 1
p

p∑
i=1

|pT
i Tpi − pT

1iTp1i| → 0 (3.25)

in probability/almost surely by Lemma 3.2. We can then bound R3,2 by noting that

|R3,2| = 1
p

|tr2[(T − Σ̂T)Σ0] − tr2[(T − Σ̃T)Σ0]|
tr(T − Σ̂T)2

=
∣∣∣∣∣1ptr[(T − Σ̃T)Σ0] − 1

p
tr[(T − Σ̂T)Σ0]

∣∣∣∣∣
· |2tr[(T − Σ̂T)Σ0] + tr[(Σ̂T − Σ̃T)Σ0]|

tr(T − Σ̂T)2

≤ 1
p

|tr[(Σ̂T − Σ̃T)Σ0]| ·
(

2∥Σ0∥
(p−1tr(T − Σ̂T)2)1/2

+ |p−1tr[(Σ̂T − Σ̃T)Σ0]|
p−1tr(T − Σ̂T)2

)
→ 0
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in probability/almost surely by what we have just proved that p−1tr[(Σ̂T − Σ̃T)Σ0] →
0 in probability/almost surely, that ∥Σ0∥ = O(1) by Assumption (A2), and the
assumption that p−1tr(T − Σ̂T)2 9 0 in probability/almost surely.

Combining, hence we have R3 = R3,1 +R3,2 → 0 in probability/almost surely.

Finally, similar to the proof of Theorem 3.2, assuming T − Σ̃T = QDTQT, we have

R4 = 1
p

[∑p
i=1 di(qT

i Σ̃2qi − qT
i Σ0qi)]2

tr(T − Σ̃T)2

≤ p−1∑p
i=1(qT

i Σ̃2qi − qT
i Σ0qi)2 · p−1∑p

i=1 d
2
i

p−1tr(T − Σ̃T)2

≤ max
1≤i≤p

∣∣∣∣∣∣q
T
i Σ̃2qi − qT

i Σ0qi

qT
i Σ0qi

∣∣∣∣∣∣ · p−1
p∑

i=1
(qT

i Σ0qi)2 → 0

in probability/almost surely by Lemma 1, the fact that p−1tr(T − Σ̃T)2 9 0 in
probability/alsmost surely by assumption, and p−1∑p

i=1(qT
i Σ0qi)2 ≤ ∥Σ0∥2 < ∞ by

Assumption (A2). This completes the proof of the Theorem. �

Proof of Theorem 3.4. Similar to the proof of Theorem 3.1, define R(δ1, δ2,D) as
the squared Frobenius norm of Σ(δ1, δ2,D) − Σ0 in equation (3.8). Then

R(δ1, δ2,D) = (1 − δ1 − δ2)2∥PDPT − Σ0∥2
F + δ2

1∥T1 − Σ0∥2
F + δ2

2∥T2 − Σ0∥2
F

+ 2δ1(1 − δ1 − δ2)tr[(PDPT − Σ0)(T1 − Σ0)]
+ 2δ2(1 − δ1 − δ2)tr[(PDPT − Σ0)(T2 − Σ0)]
+ 2δ1δ2tr[(T1 − Σ0)(T2 − Σ0)]. (3.26)

To minimize R(δ1, δ2,D), we first calculate the solution for D = diag(d1, . . . , dp) in
terms of δ1 and δ2. For each j = 1, . . . , p, we have
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∂R(δ1, δ2,D)
∂dj

= (1 − δ1 − δ2)2 ∂

∂dj

(tr(PDPTPDPT) − 2tr(PDPTΣ0))

+ 2δ1(1 − δ1 − δ2)
∂

∂dj

tr(PDPT(T1 − Σ0))

+ 2δ2(1 − δ1 − δ2)
∂

∂dj

tr(PDPT(T2 − Σ0))

= (1 − δ1 − δ2)2 ∂

∂dj

(
p∑

i=1
d2

i − 2
p∑

i=1
dipT

i Σ0pi)

+ 2δ1(1 − δ1 − δ2)
∂

∂dj

(
p∑

i=1
dipT

i (T1 − Σ0)pi)

+ 2δ2(1 − δ1 − δ2)
∂

∂dj

(
p∑

i=1
dipT

i (T2 − Σ0)pi)

= 2(1 − δ1 − δ2)[(1 − δ1 − δ2)(dj − pT
j Σ0pj)

+ δ1pT
j (T1 − Σ0)pj + δ2pT

j (T2 − Σ0)pj].

Set ∂R(δ1,δ2,D)
∂dj

= 0, then since we assumed δ1 + δ2 ̸= 1,

dj =
(1 − δ1 − δ2)pT

j Σ0pj − δ1pT
j (T1 − Σ0)pj − δ2pT

j (T2 − Σ0)pj

1 − δ1 − δ2

= 1
1 − δ1 − δ2

(pT
j Σ0pj − δ1pT

j T1pj − δ2pT
j T2pj), so that

D = 1
1 − δ1 − δ2

(diag(PTΣ0P) − δ1diag(PTT1P) − δ2diag(PTT2P)). (3.27)

This proves the first part of Theorem 3.4. equation (3.27) can be substituted into
R(δ1, δ2,D) in (3.26) for solving for the optimal δ1 and δ2 then. We have
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R(δ1, δ2,D) = R(δ1, δ2)
= ∥Pdiag(PTΣ0P)PT − δ1Σ̂T1 − δ2Σ̂T2 + δ1T1 + δ2T2 − Σ0∥2

F

= ∥(Pdiag(PTΣ0P)PT − Σ0) − δ1(Σ̂T1 − T1) − δ2(Σ̂T2 − T2)∥2
F

= tr(Pdiag(PTΣ0P)PT − Σ0)2 + δ2
1tr(Σ̂T1 − T1)2 + δ2

2tr(Σ̂T2 − T2)2

− 2δ1tr[(Pdiag(PTΣ0P)PT − Σ0)(Σ̂T1 − T1)]
− 2δ2tr[(Pdiag(PTΣ0P)PT − Σ0)(Σ̂T2 − T2)]
+ 2δ1δ2tr[(Σ̂T1 − T1)(Σ̂T2 − T2)], (3.28)

where Σ̂Ti
= Pdiag(PTTiP)PT, i = 1, 2. To find the optimal δ1 and δ2, we take the

partial derivative of R with respect to δ1 and δ2 respectively,

∂R(δ1, δ2)
∂δ1

= 2δ1tr(Σ̂T1 − T1)2 − 2tr[(Pdiag(PTΣ0P)PT − Σ0)(Σ̂T1 − T1)]

+ 2δ2tr(Σ̂T1 − T1)(Σ̂T2 − T2),
∂R(δ1, δ2)

∂δ2
= 2δ2tr(Σ̂T2 − T2)2 − 2tr[(Pdiag(PTΣ0P)PT − Σ0)(Σ̂T2 − T2)]

+ 2δ1tr(Σ̂T1 − T1)(Σ̂T2 − T2).

Setting ∂R(δ1,δ2)
∂δ1

= 0 and ∂R(δ1,δ2)
∂δ2

= 0, we get

δ1tr(Σ̂T1 − T1)2 + δ2tr[(Σ̂T1 − T1)(Σ̂T2 − T2)]
=tr[(Pdiag(PTΣ0P)PT − Σ0)(Σ̂T1 − T1)],
δ2tr(Σ̂T2 − T2)2 + δ1tr[(Σ̂T1 − T1)(Σ̂T2 − T2)]

=tr[(Pdiag(PTΣ0P)PT − Σ0)(Σ̂T2 − T2)].

Similar to (3.20), tr[Pdiag(PTΣ0P)PT(Σ̂Ti
− Ti)] = 0, i = 1, 2. Solving for δ1 and δ2,

we get the results as stated in Theorem 3.4. The denominator in δ1 and δ2 is not 0
since T1, T2 and T1 − T2 are not of the form PDPT for some diagonal matrix D. �

Proof of Theorem 3.5. Let Assumptions (A1) and (A2) be satisfied and the data
is not from a factor model. Write Ti − Σ̃Ti

= QiDTi
QT

i , where Qi = (qi1, . . . ,qip)
is orthogonal and DTi

= diag(di1, . . . , dip). Then for i, j = 1, 2, using the notation
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aij = tr[(Ti − Σ̃Ti
)(Tj − Σ̃Tj

)],

|δ̂i − δi| ≤
|tr[(Ti − Σ̃Ti

)(Σ0 − Σ̃2)]a3−i,3−i| + |tr[(T3−i − Σ̃T3−i
)(Σ0 − Σ̃2)]a12|

a22a11 − a2
12

≤

∣∣∣∣∣ tr[(Ti−Σ̃Ti
)(Σ0−Σ̃2)]

tr(Ti−Σ̃Ti
)2 · p−2a11a22

∣∣∣∣∣+
∣∣∣∣∣ tr[(T3−i−Σ̃T3−i

)(Σ0−Σ̃2)]
tr(T3−i−Σ̃T3−i

)2 · p−2a12a3−i,3−i

∣∣∣∣∣
p−2(a22a11 − a2

12)
→ 0

in probability/almost surely, where we have used the same lines of proof in (3.21),
and the assumption that p−1aii, p

−2(a22a11 − a2
12) 9 0 and are finite. This proves

δ̂i − δi → 0 in probability/almost surely.

Now assume ∥T1 − Σ0∥ → 0 in probability/almost surely. Then using tr[(Ti −
Σ̃Ti

)Σ̃Tj
] = 0 for i, j = 1, 2,

δ̂1 = tr[(T1 − Σ̃T1)(Σ0 − T1)]a22 + a11a22 − tr[(T2 − Σ̃T2)(Σ0 − T1)]a12 − a2
12

a22a11 − a2
12

,

with

|δ̂1 − 1| ≤ (p−1a11)1/2 · p−1a22 · ∥T1 − Σ0∥ + (p−1a22)1/2 · |p−1a12| · ∥T1 − Σ0∥
p−2(a22a11 − a2

12)
→ 0

in probability/almost surely, where we use p−1aii, p
−2(a22a11 − a2

12) 9 0 and are finite.
At the same time,

δ̂2 = tr[(T2 − Σ̃T2)(Σ0 − T1)]a11 + a12a11 − tr[(T1 − Σ̃T1)(Σ0 − T1)]a12 − a12a11

a22a11 − a2
12

,

with

|δ̂2| ≤ (p−1a22)1/2 · p−1a11 · ∥T1 − Σ0∥ + (p−1a11)1/2 · |p−1a12| · ∥T1 − Σ0∥
p−2(a22a11 − a2

12)
→ 0

in probability/almost surely. If ∥T2 − Σ0∥ → 0 in probability/almost surely, the
lines to follow are exactly the same with the roles of δ̂1 and δ̂2 swapped. Hence we
have proved that if ∥Ti − Σ0∥ → 0 in probability/almost surely, we have δ̂i → 1 and
δ̂3−i → 0 in probability/almost surely.
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With ∥Ti − Σ0∥ → 0 in probabiliy/almost surely assumed, consider

∥Σ(P1,T, Σ̃2) − Σ0∥ ≤ ∥P1diag(PT
1 Σ̃2P1)PT

1 − Σ̃Ti
∥ + ∥Ti − Σ0∥

+ |δ̂i − 1| · ∥Ti − Σ̃Ti
∥ + |δ̂3−i| · ∥T3−i − Σ̃T3−i

∥

≤ max
1≤i≤p

∣∣∣∣∣pT
1iΣ̃2p1i − pT

1iΣ0p1i

pT
1iΣ0p1i

∣∣∣∣∣ · ∥Σ0∥ + 2∥Ti − Σ0∥

+ 2|δ̂i − 1| · ∥Ti∥ + 2|δ̂3−i| · ∥T3−i∥ → 0

in probability/almost surely, where we used Lemma 1 of Lam (2016) and Assumption
(A2), as well as the finiteness of ∥Ti∥ in probability/almost surely.

For data from a factor model with Assumptions (F1) and (F2) in place, the proof
follows exactly the same as before, except that we now have p−2aii, p

−4(a11a22−a2
12) 9 0

while p−1∥Σ0∥, p−1∥Ti∥ are finite in probability/almost surely. This completes the
proof of the theorem. �

Proof of Theorem 3.6. Recall the notations aij = tr[(Ti − Σ̃Ti
)(Tj − Σ̃Tj

)] and
bij = tr[(Ti − Σ̂Ti

)(Tj − Σ̂Tj
)] for i, j = 1, 2. In this proof, we define δi for i = 1, 2

which corresponds to the ΣIdeal constructed using P rather than P1, and at the same
time with knowledge of Σ0 itself. Hence we have

δi = b3−i,3−itr[(Ti − Σ̂Ti
)Σ0] − b12tr[(T3−i − Σ̂T3−i

)Σ0]
b22b11 − b2

12
,

δ̂i = a3−i,3−itr[(Ti − Σ̃Ti
)Σ̃2] − a12tr[(T3−i − Σ̃T3−i

)Σ̃2]
a22a11 − a2

12
.
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We first consider

1
p

∥∥∥∥ΣIdeal − Σ0

∥∥∥∥2

F
= 1
p

∥∥∥∥Pdiag(PTΣ0P)PT − Σ0 + δ1(T1 − Σ̂T1) + δ2(T2 − Σ̂T2)
∥∥∥∥2

F

= 1
p

∥∥∥∥diag(PTΣ0P) − PTΣ0P
∥∥∥∥2

F
+ 1
p

∥∥∥∥δ1(T1 − Σ̂T1) + δ2(T2 − Σ̂T2)
∥∥∥∥2

F

+ 2
p

tr[(Pdiag(PTΣ0P)PT − Σ0)(δ1(T1 − Σ̂T1) + δ2(T2 − Σ̂T2))]

= 1
p

∥∥∥∥diag(PTΣ0P) − PTΣ0P
∥∥∥∥2

F
+ 1
p

(δ2
1b11 + δ2

2b22 + 2δ1δ2b12)

− 2
p

· (δ1tr[(T1 − Σ̂T1)Σ0] + δ2tr[(T2 − Σ̂T2)Σ0])

= 1
p

(∥∥∥∥diag(PTΣ0P) − PTΣ0P
∥∥∥∥2

F
− δ1tr[(T1 − Σ̂T1)Σ0]

− δ2tr[(T2 − Σ̂T2)Σ0]
)
,

where the last equality uses the result

δ2
1b11 + δ2

2b22 + 2δ1δ2b12 = δ1tr[(T1 − Σ̂T1)Σ0] + δ2tr[(T2 − Σ̂T2)Σ0],

which can be proved with simple algebra.
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Similarly, we have

1
p

∥∥∥∥Σ(P1,T, Σ̃2) − Σ0

∥∥∥∥2

F

= 1
p

∥∥∥∥P1diag(PT
1 Σ̃2P1)PT

1 − Σ0 + δ̂1(T1 − Σ̃T1) + δ̂2(T2 − Σ̃T2)
∥∥∥∥2

F

= 1
p

∥∥∥∥diag(PT
1 Σ̃2P1) − PT

1 Σ0P1

∥∥∥∥2

F
+ 1
p

∥∥∥∥δ̂1(T1 − Σ̃T1) + δ̂2(T2 − Σ̃T2)
∥∥∥∥2

F

+ 2
p

tr[(P1diag(PT
1 Σ̃2P1)PT

1 − Σ0)(δ̂1(T1 − Σ̃T1) + δ̂2(T2 − Σ̃T2))]

= 1
p

p∑
r=1

(pT
1rΣ̃2p1r − pT

1rΣ0p1r)2 + 1
p

∥∥∥∥diag(PT
1 Σ0P1) − PT

1 Σ0P1

∥∥∥∥2

F

+ 1
p
a22tr[(T1 − Σ̃T1)Σ̃2] · tr[(T1 − Σ̃T1)Σ̃2] − 2tr[(T1 − Σ̃T1)Σ0]

a22a11 − a2
12

+ 1
p
a11tr[(T2 − Σ̃T2)Σ̃2] · tr[(T2 − Σ̃T2)Σ̃2] − 2tr[(T2 − Σ̃T2)Σ0]

a22a11 − a2
12

+ 2
p
a12

(
tr[(T2 − Σ̃T2)Σ̃2]tr[(T1 − Σ̃T1)Σ0]

a22a11 − a2
12

+ tr[(T1 − Σ̃T1)Σ̃2]tr[(T2 − Σ̃T2)Σ0]
a22a11 − a2

12

− tr[(T1 − Σ̃T1)Σ̃2]tr[(T2 − Σ̃T2)Σ̃2]
a22a11 − a2

12

)
= R1 +R2 +R3 +R4, where

R1 = 1
p

(∥∥∥∥diag(PT
1 Σ0P) − PT

1 Σ0P1

∥∥∥∥2

F
− δ1tr[(T1 − Σ̂T1)Σ0] − δ2tr[(T2 − Σ̂T2)Σ0]

)
,

R2 = 1
p

p∑
r=1

(pT
1rΣ̃2p1r − pT

1rΣ0p1r)2,

R3 = 1
p

(
(a22tr[(T1 − Σ̃T1)Σ̃2] − 2a12tr[(T2 − Σ̃T2)Σ̃2])

tr[(T1 − Σ̃T1)(Σ̃2 − Σ0)]
a22a11 − a2

12

+ (a11tr[(T2 − Σ̃T2)Σ̃2] − 2a12tr[(T1 − Σ̃T1)Σ̃2])
tr[(T2 − Σ̃T2)(Σ̃2 − Σ0)]

a22a11 − a2
12

)
,

R4 = 1
p

(
2a12tr[(T1 − Σ̃T1)Σ̃2]tr[(T2 − Σ̃T2)Σ̃2]

a22a11 − a2
12

− a22tr[(T1 − Σ̃T1)Σ̃2]tr[(T1 − Σ̃T1)Σ0]
a22a11 − a2

12

− a11tr[(T2 − Σ̃T2)Σ̃2]tr[(T2 − Σ̃T2)Σ0]
a22a11 − a2

12

+ δ1tr[(T1 − Σ̂T1)Σ0] + δ2tr[(T2 − Σ̂T2)Σ0]
)
.
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With these, we can expand the efficiency loss as

EL(Σ0,Σ(P1,T, Σ̃2)) = 1 −

p−1
∥∥∥∥Σ(P1,T, Σ̃2) − Σ0

∥∥∥∥2

F

p−1
∥∥∥∥ΣIdeal − Σ0

∥∥∥∥2

F

−1

= 1 −

R1 +R2 +R3 +R4

p−1
∥∥∥∥ΣIdeal − Σ0

∥∥∥∥2

F

−1

.

Similar to the proof of Theorem 3.3, we have R1
p−1∥ΣIdeal−Σ0∥2

F
→ 1 almost surely by

Lemma S.4 of Lam (2016), and R2 → 0 almost surely by Lemma 3.1, following the
exact lines of proof in (3.24). The proof completes if we can prove that R3, R4 → 0 in
probability/almost surely.

To do so, we prove several intermediate results first. Firstly,

1
p

|aij − bij| = 1
p

∣∣∣tr[(Ti − Σ̃Ti
)(Tj − Σ̃Tj

)] − tr[(Ti − Σ̂Ti
)(Tj − Σ̂Tj

)]
∣∣∣

= 1
p

|tr[(Σ̂Ti
− Σ̃Ti

)Tj]|

≤ ∥Ti∥
p

p∑
r=1

|pT
r Tjpr − pT

1rTjp1r| + ∥Tj∥
p

p∑
r=1

|pT
r Tipr − pT

1rTip1r|

→ 0 (3.29)

almost surely for i, j = 1, 2 by Lemma 3.2, and the assumption that ∥Ti∥ is finite in
probability/almost surely. Secondly,

1
p

|tr[(Ti − Σ̃Ti
)(Σ0 − Σ̃2)]| = 1

p
aii

∣∣∣∣∣∣tr[(Ti − Σ̃Ti
)(Σ0 − Σ̃2)]

tr(Ti − Σ̃Ti
)2

∣∣∣∣∣∣ → 0 (3.30)

in probability/almost surely for i = 1, 2 by (3.21), and the assumption that p−1aii is
finite in probability/almost surely. Also, in probability/almost surely,

1
p

|tr[(Ti − Σ̂Ti
)Σ0]| ≤

(1
p

tr(Ti − Σ̂Ti
)2
)1/2

·
(1
p

tr(Σ2
0)
)1/2

≤ (p−1bii)1/2 · ∥Σ0∥ < ∞

(3.31)
by the assumptions that p−1bii and ∥Σ0∥ are both finite. Similarly, we have 1

p
|tr[(Ti −

Σ̃Ti
)Σ0]| < ∞ in probability/almost surely. Combining these results with (3.30), we
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get

1
p

|tr[(Ti − Σ̂Ti
)Σ̃2]| ≤ 1

p
|tr[(Ti − Σ̃Ti

)(Σ0 − Σ̃2)]| + 1
p

|tr[(Ti − Σ̃Ti
)Σ0]| < ∞ (3.32)

in probability/almost surely. At the same time,

p−2|tr2[(Ti − Σ̂Ti
)Σ0] − tr2[(Ti − Σ̃Ti

)Σ0]|
≤ |p−1tr[(Σ̂T − Σ̃T)Σ0] + 2p−1tr[(Ti − Σ̂Ti

)Σ0]| · p−1|tr[(Σ̂T − Σ̃T)Σ0]|
→ 0 (3.33)

in probability/almost surely by (3.25) and (3.31).

We can then bound R3 by noting that

|R3| ≤
(1
p
a22 · 1

p
|tr[(T1 − Σ̃T1)Σ̃2]| + 2

p
|a12| · 1

p
|tr[(T2 − Σ̃T2)Σ̃2]|

)

· p
−1|tr[(T1 − Σ̃T1)(Σ̃2 − Σ0)]|

p−2|a22a11 − a2
12|

+
(1
p
a11 · 1

p
|tr[(T2 − Σ̃T2)Σ̃2]| + 2

p
|a12| · 1

p
|tr[(T1 − Σ̃T1)Σ̃2]|

)

· p
−1|tr[(T2 − Σ̃T2)(Σ̃2 − Σ0)]|

p−2|a22a11 − a2
12|

→ 0

in probability/almost surely by the results in (3.30) and (3.32), along with the assump-
tions for the finiteness of p−1aij and p−2(a22a11 − a2

12) in probability/almost surely for
i, j = 1, 2.
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Also, we can decompose R4 further. Consider

R4 = 1
p

(
2a12tr[(T1 − Σ̃T1)Σ̃2]tr[(T2 − Σ̃T2)Σ̃2]

a22a11 − a2
12

− a22tr[(T1 − Σ̃T1)Σ̃2]tr[(T1 − Σ̃T1)Σ0]
a22a11 − a2

12

− a11tr[(T2 − Σ̃T2)Σ̃2]tr[(T2 − Σ̃T2)Σ0]
a22a11 − a2

12

− 2b12tr[(T1 − Σ̂T1)Σ0]tr[(T2 − Σ̂T2)Σ0]
b22b11 − b2

12

+ b22tr2[(T1 − Σ̂T1)Σ0] + b11tr2[(T2 − Σ̂T2)Σ0]
b22b11 − b2

12

)

= 2p−3a12tr[(T1 − Σ̃T1)Σ̃2]tr[(T2 − Σ̃T2)Σ̃2]
p−2(a22a11 − a2

12)

− p−3a22tr[(T1 − Σ̃T1)Σ̃2]tr[(T1 − Σ̃T1)Σ0]
p−2(a22a11 − a2

12)

− p−3a11tr[(T2 − Σ̃T2)Σ̃2]tr[(T2 − Σ̃T2)Σ0]
p−2(a22a11 − a2

12)

− 2p−3b12tr[(T1 − Σ̂T1)Σ0]tr[(T2 − Σ̂T2)Σ0]
p−2(a22a11 − a2

12)

+ p−3(b22tr2[(T1 − Σ̂T1)Σ0] + b11tr2[(T2 − Σ̂T2)Σ0])
p−2(a22a11 − a2

12)

− p−1(δ1tr[(T1 − Σ̂T1)Σ0] + δ2tr[(T2 − Σ̂T2)Σ0])
p−2(a22a11 − a2

12)

· p
−2(b22b11 − b2

12 − a22a11 + a2
12)

p−2(a22a11 − a2
12)

= R4,1 +R4,2 + 2R4,3

p−2(a22a11 − a2
12)

+ R4,4 ·R4,5

p−2(a22a11 − a2
12)
, where

R4,1 = p−3b22tr2[(T1 − Σ̂T1)Σ0] − p−3a22tr[(T1 − Σ̃T1)Σ̃2]tr[(T1 − Σ̃T1)Σ0],
R4,2 = p−3b11tr2[(T2 − Σ̂T2)Σ0] − p−3a11tr[(T2 − Σ̃T2)Σ̃2]tr[(T2 − Σ̃T2)Σ0],
R4,3 = p−3a12tr[(T1 − Σ̃T1)Σ̃2]tr[(T2 − Σ̃T2)Σ̃2]

− p−3b12tr[(T1 − Σ̂T1)Σ0]tr[(T2 − Σ̂T2)Σ0],
R4,4 = p−2(b22b11 − b2

12 − a22a11 + a2
12),

R4,5 = −p−1(δ1tr[(T1 − Σ̂T1)Σ0] + δ2tr[(T2 − Σ̂T2)Σ0]).
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To bound R4,1, consider

|R4,1| = |p−3(b22 − a22)tr2[(T1 − Σ̂T1)Σ0]
+ p−3a22(tr2[(T1 − Σ̂T1)Σ0] − tr2[(T1 − Σ̃T1)Σ0])
+ p−3a22tr[(T1 − Σ̃T1)Σ0]tr[(T1 − Σ̃T1)(Σ0 − Σ̃2)]|

≤ p−1|b22 − a22| · p−2tr2[(T1 − Σ̂T1)Σ0]
+ p−1a22 · p−2|tr2[(T1 − Σ̂T1)Σ0] − tr2[(T1 − Σ̃T1)Σ0]|
+ p−1a22 · p−1|tr[(T1 − Σ̃T1)Σ0]| · p−1|tr[(T1 − Σ̃T1)(Σ0 − Σ̃2)]|

→ 0

in probability/almost surely by the results of (3.29), (3.30), (3.31), (3.32) and (3.33),
together with the assumption that p−1a22 is finite. Follow the exactly the same proof,
we can easily get R4,2 → 0 in probability/almost surely. Furthermore,

|R4,3| ≤ p−1|b12| · p−1|tr[(T2 − Σ̃T2)Σ̃2]|
· (p−1|tr[(T1 − Σ̃T1)(Σ̃2 − Σ0)]| + p−1|tr[(Σ̂T1 − Σ̃T1)Σ0]|)

+ p−1|b12| · p−1|tr[(T1 − Σ̂T1)Σ0]|
· (p−1|tr[(T2 − Σ̃T2)(Σ̃2 − Σ0)]| + p−1|tr[(Σ̂T2 − Σ̃T2)Σ0]|)

+ p−1|a12 − b12| · p−1|tr[(T1 − Σ̃T1)Σ̃2]| · p−1|tr[(T2 − Σ̃T2)Σ̃2]|
→ 0

in probability/almost surely by the results of (3.25), (3.29), (3.30), (3.31) and (3.32),
together with the assumption that p−1b12 is finite in probability/almost surely.

|R4,4| = p−2(b22b11 − b2
12 − a22a11 + a2

12)
= p−2(b11(b22 − a22) + a22(b11 − a11) + (a12 + b12)(a12 − b12))
≤ p−1b11 · p−1|b22 − a22| + p−1a22 · p−1|b11 − a11| + p−1|b12 + a12| · p−1|b12 − a12|

→ 0

almost surely by the result of (3.29) and the assumption that p−1aij, p
−1bij are all finite

in probability/almost surely. Also, in probability/almost surely,
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R4,5 = 2p−1b12 · p−1tr[(T1 − Σ̂T1)Σ0] · p−1tr[(T2 − Σ̂T2)Σ0]
p−2(b22b11 − b2

12)

− p−1b22 · p−2tr2[(T1 − Σ̂T1)Σ0] + p−1b11 · p−2tr2[(T2 − Σ̂T2)Σ0]
p−2(b22b11 − b2

12)
< ∞

by the result of (3.31) and the assumption that p−1bij and p−2(b22b11 − b2
12) are all

finite in probability/almost surely for i, j = 1, 2.

So, R4,5 is finite. By the assumption for the finiteness of p−2(a22a11 − a2
12) in

probability/almost surely, we can finally conclude that R4 → 0 in probability/almost
surely. This completes the proof of the theorem. �

Proof of Theorem 3.7. For Frobenius loss,

∥∥∥∥Σ̂m,M −Σ0

∥∥∥∥2

F
=
∥∥∥∥ 1
M

M∑
j=1

(Σ̂(j)
m −Σ0)

∥∥∥∥2

F
≤ ( 1

M

M∑
j=1

∥∥∥∥Σ̂(j)
m −Σ0

∥∥∥∥
F

)2 ≤ 1
M

M∑
j=1

∥∥∥∥Σ̂(j)
m −Σ0

∥∥∥∥2

F
,

(3.34)
so that,

EL(Σ0, Σ̂m,M) ≤ 1 −

∥∥∥∥Σ̂Ideal − Σ0

∥∥∥∥2

F

1
M

∑M
j=1

∥∥∥∥Σ̂(j)
m − Σ0

∥∥∥∥2

F

≤ 1 − 1
1

M

∑M
j=1

1
1−EL(Σ0,Σ̂(j)

m )

→ 0. (3.35)

The last step follows Theorem 3.6 that, if p−1a11, p
−1a22 and p−2(a11a22 − a2

12) ̸→ 0 in
probability/almost surely, then EL(Σ0, Σ̂(j)

m ) → 0 in probability/almost surely. This
proves the first part of the theorem.

To prove the remaining part of theorem, for i = 1, 2 and j = 1, . . . ,M , we note first
that

tr(Σ̃Tij
) = tr(PT

1 diag(P1jTijPT
1j)P1j) = tr(diag(P1jTijPT

1j)) = tr(P1jTijPT
1j) = tr(Tij).

(3.36)
Using (3.36), with δ̂ij being finite in probability/almost surely since the corresponding
p−1a11, p

−1a22 and p−2(a11a22 − a2
12) ̸→ 0 in probability/almost surely,
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1
p

[tr(Σ̂m,M) − tr(Σ0)] = 1
p

[
tr
( 1
M

M∑
j=1

P1jdiag(PT
1jΣ̃

(j)
2 P1j)PT

1j

)
− tr(Σ0)

]

= 1
pM

M∑
j=1

[tr(P1jdiag(PT
1jΣ̃

(j)
2 P1j)PT

1j) − tr(Σ0)]

= 1
M

M∑
j=1

1
p

[tr(PT
1jΣ̃

(j)
2 P1j) − tr(PT

1jΣ0P1j)] → 0, (3.37)

where the last convergence step follows from Theorem 1 of Lam (2016) if Assumptions
(A1), (A2) are satisfied, and it follows from Theorem 3 of Lam (2016) if the data
follows a factor model with Assumptions (F1), (F2) satisfied.

Finally, to prove the last inequality, we first consider data under Assumptions (A1)
and (A2) first. Observe that

1
p

tr(Σ̂m,MΣ0) = 1
M

M∑
j=1

1
p

(
tr(P1jdiag(PT

1jΣ̃
(j)
2 P1j)PT

1jΣ0) + δ̂1jtr[(T1j − Σ̃T1j
)Σ0]

+ δ̂2jtr[(T2j − Σ̃T2j
)Σ0]

)
= 1
M

M∑
j=1

5∑
i=1

Rij, where

R1j = 1
p

tr(P1jdiag(PT
1jΣ̃

(j)
2 P1j)PT

1jΣ0),

R2j = 1
p
δ1jtr[(T1j − Σ̃T1j

)Σ0], R3j = 1
p
δ2jtr[(T2j − Σ̃T2j

)Σ0],

R4j = 1
p

(δ̂1j − δ1j)tr[(T1j − Σ̃T1j
)Σ0], R5j = 1

p
(δ̂2j − δ2j)tr[(T2j − Σ̃T2j

)Σ0].

We analyze each term above. Firstly, we have for P1j = (p1j,1, . . . ,p1j,p),

R1j = R1j,1 +R1j,2, where

R1j,1 = 1
p

p∑
r=1

(
pT

1j,rΣ̃
(j)
2 p1j,r

pT
1j,rΣ0p1j,r

− 1
)

(pT
1j,rΣ0p1j,r)2, R1j,2 = 1

p

p∑
r=1

(pT
1j,rΣ0p1j,r)2.

The first term has

|R1j,1| ≤ max
1≤r≤p

∣∣∣∣∣p
T
1j,rΣ̃

(j)
2 p1j,r

pT
1j,rΣ0p1j,r

− 1
∣∣∣∣∣ · 1
p

p∑
r=1

(pT
1j,rΣ0p1j,r)2

≤ max
1≤r≤p

∣∣∣∣∣p
T
1j,rΣ̃

(j)
2 p1j,r

pT
1j,rΣ0p1j,r

− 1
∣∣∣∣∣ · λ2

max(Σ0) → 0,
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where the last step used the almost sure convergence result in Lemma 1 of Lam (2016),
and that ∥Σ0∥ = O(1). We also have R1j,2 ≥ λ2

min(Σ0), so that we have proved almost
surely,

R1j ≥ λ2
min(Σ0). (3.38)

Next, consider

p(R2j +R3j)

=
tr2[(T1j − Σ̃T1j

)Σ0]tr(T2j − Σ̃T2j
)2 + tr2[(T2j − Σ̃T2j

)Σ0]tr(T1j − Σ̃T1j
)2

tr(T1j − Σ̃T1j
)2tr(T2j − Σ̃T2j

)2 − tr2[(T1j − Σ̃T1j
)(T2j − Σ̃T2j

)]

−
2tr[(T1j − Σ̃T1j

)Σ0]tr[(T2j − Σ̃T2j
)Σ0]tr[(T1j − Σ̃T1j

)(T2j − Σ̃T2j
)]

tr(T1j − Σ̃T1j
)2tr(T2j − Σ̃T2j

)2 − tr2[(T1j − Σ̃T1j
)(T2j − Σ̃T2j

)]

=
tr
(

(T1j − Σ̃T1j
)tr[(T2j − Σ̃T2j

)Σ0] − (T2j − Σ̃T2j
)tr[(T1j − Σ̃T1j

)Σ0]
)2

tr(T1j − Σ̃T1j
)2tr(T2j − Σ̃T2j

)2 − tr2[(T1j − Σ̃T1j
)(T2j − Σ̃T2j

)]
≥ 0

in probability/almost surely, since the denominator above is also non-negative by the
Cauchy-Schwarz inequality on the inner product tr(AB) where A,B are real square
matrices, and by our assumptions it is positive in probability/almost surely.

Finally,

|R4j| ≤ |δ̂1j − δ1j|
(1
p

tr(T1j − Σ̃T1j
)2
)1/2(1

p
tr(Σ2

0)
)1/2

→ 0

in probability/almost surely, which is the result of Theorem 3.5 and our assumptions
that p−1a11 < ∞ and ∥Σ0∥ = O(1). Similar result holds for |R5j|. Hence combining
(3.38) and the results we proved for R2j to R5j, the result follows.

It remains to show the trace property for data from a factor model under Assump-
tions (F1) and (F2). But in fact all the above steps follow, except we need to note that
now p−2aii and p−2λmax(Σ0) are finite. This completes the proof of the theorem. �



Chapter 4

A Nonparametric
Eigenvalue-Regularized Integrated
Covariance Matrix Estimator for
Asset Return Data

Declaration This chapter is based on joint work with Dr. Clifford Lam as accepted
by Journal of Econometrics (Lam and Feng, 2018).

4.1 Introduction

In modern day finance, the so-called tick-by-tick data on the prices of financial assets
are readily available together with huge volume of other financial data. Advanced
computational power and efficient data storage facilities mean that these data are
analyzed on a daily basis by various market makers and academic researchers. While the
Markowitz portfolio theory (Markowitz, 1952) is originally proposed for a finite number
of assets using inter-day price data, the easily accessible intra-day high-frequency price
data for a large number assets nowadays gives rise to new possibilities for efficient
portfolio allocation, on top of the apparent increase in sample size for returns and
volatility matrix estimation.

Certainly, the associated challenges for using high-frequency data have to be
overcome at the same time. One main challenge comes from the well documented
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market microstructure noise in the recorded tick-by-tick price data (Aït-Sahalia et al.,
2005; Asparouhova et al., 2013). Another challenge comes from the non-synchronous
trading times when more than one asset are considered. In terms of integrated
covariance estimation, Xiu (2010) suggested a maximum likelihood approach for
consistent estimation under market microstructure noise. Aït-Sahalia et al. (2010)
proposed a quasi-maximum likelihood approach for estimating the covariance between
two assets, while Zhang (2011) proposed a two- or multi-scale covariance estimator
to remove the bias accumulated due to the microstructure noise in the usual realized
covariance formula, at the same time overcoming the non-synchronous trading times
problem by using previous-tick times (see Chapter 4.2 also). Other attempts to
overcome these two challenges together include Barndorff-Nielsen et al. (2011) and
Griffin and Oomen (2011), to name but a few.

When there are more than one asset to manage, the integrated covariance matrix
for the asset returns is an important input for risk management or portfolio allocation.
A large number of assets requires an estimation of a large integrated covariance
matrix. Even in the simplest case of independent and identically distributed random
vectors, random matrix theory tells us that the sample covariance matrix will have
severely biased extreme eigenvalues (see Chapter 5.2 of Bai and Silverstein (2010)
for instance). To give a simple demonstration of how serious the bias problem can
be, suppose we have independent and identically distributed p-dimensional random
vectors X = (x1, . . . , xn)T with mean 0 and covariance matrix Σ = σ2Ip, where Ip is
the p × p identity matrix. The Marčenko-Pastur Law (Marčenko and Pastur, 1967)
states that the density function of the limiting spectrum of the sample covariance
matrix Σ̂sam = n−1XXT as p, n → with p/n → c > 0, is

pc(x) =


1
2πxcσ2

√
(b− x)(x− a), a ≤ x ≤ b;

0, otherwise,

where a = σ2(1 −
√
c)2, b = σ2(1 +

√
c)2. (See Bai and Silverstein (2010) Chapter 3.1

also.) With this, say p = 25 and n = 500, i.e., p is just 5% of n, the largest and smallest
eigenvalues are 50% larger and 40% smaller than the corresponding population ones, i.e.
σ2, respectively. It means that a seemingly small p is enough already for the sample
covariance matrix to suffer from significant distortion for the extreme eigenvalues,
creating instability. When Σ ̸= σ2Ip, the distortion can potentially be more severe.
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To ameliorate the bias issue above, researchers propose different methods to reduce
the dimension of the estimation problem, which is of order p2, where p is the number
of assets. Wang and Zou (2010), Tao et al. (2013) and Kim et al. (2016) assume a
sparsity condition (perhaps after removing a market factor) and use thresholding to
regularize different integrated covariance matrix estimators based on previous-tick
times. Tao et al. (2011) uses a thresholded estimator to find a factor model structure
for the daily dynamics of the integrated covariance matrix. These methods reduce
the effective number of parameters to estimate to the order of p or less (or p log p for
approximate sparsity, see Tao et al. (2013)). While consistent results are established in
these methods, sparsity or factor model structure imposed regularities in the integrated
covariance matrix which may not be completely satisfied in practice.

At the same time, with respect to portfolio allocation, DeMiguel et al. (2009)
constrains the portfolio norm of a portfolio w = (w1, . . . , wp)T using either the L1 or
squared L2 norm, defined respectively by ∥w∥1 = ∑

i |wi| and ∥w∥2
2 = ∑

i w
2
i . Fan et al.

(2012) proposes to regularize the portfolio weights by constraining the L1 norm of the
portfolio, termed the gross exposure of a portfolio in the paper. These two portfolio
allocation methods do not regularize the integrated covariance matrix, but directly
regularize the portfolio weights. The two-scale covariance matrix constructed in Fan
et al. (2012) using the pairwise refresh method, however, may not be positive definite
and adjustments are necessary to make it so. In a very broad sense, these two methods
are variations of sparsity or factor model-assumed papers mentioned in the previous
paragraph, essentially reducing an order p2 problem to order p or less by assuming a
sparse optimal portfolio weight.

In this chapter, we address the estimation of the integrated covariance matrix by
reducing it to exactly an order p problem without assuming inherent structures to the
population integrated covariance matrix or optimal portfolio weight. While this makes
it impossible to estimate the integrated covariance matrix consistently, we achieve
another important objective - regularization of extreme eigenvalues of the realized
covariance matrix under the setting p/n → c > 0 - through introducing a class of
rotation-equivariant estimators and bringing it as close to the population counterpart
as possible. Indeed, it is clear in our simulations and portfolio allocation exercises
in Chapter 4.5 that the two-scale covariance matrix, which is essentially a realized
covariance matrix, suffers from bad performance because of the instability created by
the biases in its extreme eigenvalues compared to its population counterpart.
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The said regularization above is achieved by minimizing a certain Frobenius error,
to be discussed in Chapter 4.2.2. Such a regularization is inspired by a data splitting
method originated from Abadir et al. (2014), which is proved in Lam (2016) to
nonlinearly shrink the sample covariance eigenvalues at a certain data splitting ratio.
We show that the resulting integrated covariance matrix estimator is consistent with a
certain positive definite matrix with regularized eigenvalues at a rate of n−1/6 under
the setting p/n → c > 0, with n being the sample size. This is the same rate as the
univariate two-scale realized covariance estimator by Zhang (2011). We also prove the
same rate of convergence when there are pervasive factors but with p3/2/n → c > 0.
Using its inverse in the construction of the minimum variance portfolio induces a
natural upper bound on the maximum exposure of the portfolio, which decays at a
rate of p−1/2 in probability when there are no pervasive factors. The importance of
this bound is that the theoretical minimum variance portfolio satisfies such a bound
also. See Theorem 4.3 for more details, which include results when there are pervasive
factors like a market factor in the data.

The rest of the chapter is organized as follows. Chapter 4.2 presents the notations
and model for the high-frequency data and introduce our way to perform nonlinear
shrinkage on the two-scale covariance matrix estimator. Asymptotic theories and
detailed assumptions, including those involving jumps removed data in the case of
jump-diffusion log-price processes, can be found in Chapter 4.3. Practical concerns
and implementation can be found in Chapter 4.4, while all simulations and a thorough
empirical study are presented in Chapter 4.5. We give the conclusion in Chapter 4.6,
before all the proofs of the theorems in Chapter 4.7.

4.2 Framework and Methodology

Let
(

Ω,F ,
{
Ft

}
0≤t≤1

,P
)

be a filtered probability space on which the log-price process

of the p assets under study, {Xt}0≤t≤1, is adapted, where Xt = (X(1)
t , . . . , X

(p)
t )T. We

assume Xt follows a diffusion process

dXt = µtdt+ σtdWt, t ∈ [0, 1], (4.1)
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so that the time period is normalized to have length 1. Let L be the number of
partitions of the data, with

0 = τ0 < τ1 < · · · < τL = 1,

and (τℓ−1, τℓ] represents the ℓth partition. The reason we partition the data is that our
method of regularization is carried out within a partition at a time, with data from
outside of the partition help regularize the estimator within. The partition lengths can
be different, and in our case here, we set the partition as one natual day or a quarter
of natual day. The ultimate estimator is then the sum of all regularized estimators for
the partitions (see Chapter 4.2.2 for full details).

We assume that L is finite throughout the chapter. The process {Wt} is a p-
dimensional standard Brownian motion. The drift µt ∈ Rp is random which can be
correlated with {Wt}. The volatility σt ∈ Rp×p is assumed to be càdlàg and non-
random. For each time interval [a, b] ⊂ [0, 1], the corresponding integrated covariance
matrix is defined as

Σ(a, b) =
∫ b

a
σuσT

udu.

This matrix is an important input in risk assessment and in Markowitz portfolio
allocation. If we have a portfolio w which stays constant over a period of time [a, b],
then the risk of the portfolio over this period of time can be expressed as

R1/2(w) = (wTΣ(a, b)w)1/2 =
( ∫ b

a
wTσtσ

T
t w dt

)1/2
.

The integrand wTσtσ
T
t w can be considered an instantaneous squared risk at time t for

w, and hence R(w) is a measure of the total risk accumulated over the period [a, b].
At the same time, in Markowitz portfolio allocation for instance, Σ(a, b)−1 is required
for the construction of the minimum variance portfolio (see Chapter 4.3.2 for more
details).

Let {vs}, 1 ≤ s ≤ nL be the set of all-refresh times for the log prices in Xt, where
n(ℓ) is the number of all-refresh times at partition ℓ, ℓ = 1, . . . , L, and n = L−1∑L

ℓ=1 n(ℓ)
is the average number of all-refresh times in a partition, which has the same order as
the total sample size nL since L is finite. To recall, an all-refresh time vs is the time
when all assets have been traded at least once from the last all-refresh time vs−1. Let
tjs ∈ (vs−1, vs] be the sth previous-tick time for the jth asset, which is the last trading
time before or at vs. For non-synchronous trading, tj1

s ̸= tj2
s for j1 ̸= j2 in general. Also,
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high-frequency prices are typically contaminated by microstructure noise, so that at
the all-refresh time vs, we only observe

Y(s) = X(s) + ϵ(s), s = 1, . . . , nL, (4.2)

where X(s) = (X(1)
t1
s
, . . . , X

(p)
tp
s

)T and ϵ(s) = (ϵ(1)
t1
s
, . . . , ϵ

(p)
tp
s

)T, and ϵ(·) can be dependent
on X(·) in general (see the assumptions in Chapter 4.3). The underlying microstructure
noise process {ϵt}0≤t≤1 is assumed to be adapted to {Ft}0≤t≤1, so that the observed
price process {Yt}0≤t≤1 is also adapted.

4.2.1 Two-Scale Covariance Estimator

Contamination of microstructure noise in high-frequency data means that the usual
realized covariance is heavily biased. Hence in Zhang (2011), a Two-Scale CoVariance
estimator (TSCV) is introduced to remove this bias. In this chapter, we use a slightly
modified multivariate version of the two-scale covariance estimator, also by Zhang
(2011). For ℓ = 1, . . . , L, define

̂⟨Y,YT⟩ℓ = [Y,YT](K)
ℓ − |Sℓ(K)|K

|Sℓ(1)| [Y,YT](1)
ℓ , with

(
[Y,YT](m)

ℓ

)
i,j

= [Y (i), Y (j)](m)
ℓ = 1

m

∑
r∈Sℓ(m)

(Y (i)
ti
r

− Y
(i)

ti
r−m

)(Y (j)
tj
r

− Y
(j)

tj
r−m

), and

Sℓ(m) = {r : tir, tir−m ∈ (τℓ−1, τℓ] for all i}, |Sℓ(m)|m = |Sℓ(m)| −m+ 1
m

.

(4.3)

Here |S(m)| denotes the number of elements in S while |S(m)|m represents the adjusted
number of elements. Note that [Y (i), Y (j)](1)

ℓ is the usual realized covariance matrix
when returns are calculated using adjacent previous-tick times, whereas [Y (i), Y (j)](K)

ℓ

can be seen as a realized covariance matrix when returns are calculated at time points
which are K previous-tick times apart instead of 1, i.e. another scale. Ultimately,
while both are dominated by the market microstructure noise, the difference defined in
̂⟨Y,YT⟩ℓ is proved in Zhang (2011) to be able to cancel out the dominating effect of

the microstructure noise. With this, we define TSCV for the partition (τℓ−1, τℓ] to be

Σ̃(τℓ−1, τℓ) = ̂⟨Y,YT⟩ℓ. (4.4)
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We suppress the dependence on K in the notation Σ̃(τℓ−1, τℓ) and all related definitions
in the next chapter. In Chapter 4.3, we show that K works well at the order n2/3,
which is indeed the order of magnitude suggested in Zhang (2011).

Remark 4.1 The Multi-Scale Realized Volatility Matrix (MSRVM) by Tao et al.
(2013), the Kernel Realized Volatility Matrix (KRVM) by Barndorff-Nielsen et al.
(2011) and the Pre-averaging Realized Volatility Matrix (PRVM) by Christensen et al.
(2010) all have better convergence rates than the TSCV for multivariate settings. The
latter two estimators can be constructed to be positive semi-definite, although all three
estimators do not allow p to be growing with n. In principle, our regularized estimator,
to be introduced in Chapter 4.2.2, can be based on regularizing these three estimators.
However, while the proof of our regularization method on the MSRVM is an extension
of ours on the TSCV (because MSRVM involves sums of order of n1/2 terms), the
jittering and pre-averaging operations on the KRVM and PRVM respectively are more
difficult to handle in the proofs. We decide to leave the extensions of our regularization
method to these estimators in a future project.

4.2.2 Our Proposed Integrated Covariance Matrix Estimator

Although the two-scale covariance estimator in equation (4.4) removes the bias con-
tributed from the microstructure noise, it does not solve the bias issue for the extreme
eigenvalues when p is large such that p/n → c > 0, where the spread of the eigenvalues
in the realized covariance matrix Σ̃(τj−1, τj) is much larger than the population counter-
part, creating instability. In a setting with stationary covariance matrix, Abadir et al.
(2014) introduced the idea of splitting the data into two parts in order to regularize
the sample covariance matrix constructed from one part of the data. Lam (2016)
showed that with a certain splitting ratio, in fact the extreme eigenvalues of the sample
covariance matrix are nonlinear shrunk asymptotically, the same as the nonlinear
shrinkage introduced in Ledoit and Wolf (2012). We employ the data splitting idea in
Abadir et al. (2014) for our high-frequency data setting in this chapter. In order to
regularize the realized covariance matrix in the time period (τj−1, τj], j = 1, . . . , L, we
follow Lam (2016) and consider a rotation-equivariant estimator Σ(D) = P−jDPT

−j,
where D is a diagonal matrix, and P−j is orthogonal such that

Σ̃−j = P−jD−jPT
−j, j = 1, . . . , L, with Σ̃−j =

∑
ℓ ̸=j

Σ̃(τℓ−1, τℓ). (4.5)
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The class of rotation-equivariant estimators allows for the same rotation of the estimator
when the observed vectors are rotated. This is first introduced in James and Stein
(1961) for estimating a covariance matrix under the Stein’s loss function, with respect
to which this class is invariant under rotation. Hence with no a priori information
of the eigenvectors of the population covariance matrix, this class provides a good
starting point as an estimator. Ledoit and Wolf (2012) used this class of estimators
for the purpose of nonlinear shrinkage of eigenvalues. However, high-frequency data
vectors are in general not independent and identically distributed, so that the explicit
nonlinear shrinkage formula in Ledoit and Wolf (2012) cannot be used.

To introduce our estimator, consider the following optimization problem, with
similar problem considered in Ledoit and Wolf (2012) and Lam (2016):

min
D diagonal

∥P−jDPT
−j − Σ(τj−1, τj)∥F , (4.6)

where ∥ · ∥F denotes the Frobenius norm. Unlike Ledoit and Wolf (2012) which uses
the eigenmatrix of the sample covariance constructed from the full data set, we use
P−j for the rotation-equivariant class. This facilitates regularization by allowing us
to condition on the information outside of partition j, which weaken the correlation
between {Xt} and {ϵt}, and the serial correlation within {ϵt} (see Assumption (E3) in
Chapter 4.3).

Proposition 4.1 The optimization problem (4.6) has solution D = diag(PT
−jΣ(τj−1, τj)P−j),

where diag(A) creates a diagonal matrix using the diagonal elements of A.

Proof of Proposition 4.1. To simplify notations in this proof, write D = diag(d1, . . . , dp),
P−j = Q = (q1, . . . ,qp) and Σ(τj−1, τj) = Σj. Then

∥P−jDPT
−j − Σ(τj−1, τj)∥2

F = tr(D − QTΣjQ)2 =
p∑

i=1
d2

i − 2tr(DQTΣjQ) + tr(QTΣ2
jQ)

=
p∑

i=1
d2

i − 2
p∑

i=1
diqT

i Σjqi + tr(QTΣ2
jQ).

Differentiating the above with respect to di and set the derivative to 0, we get di =
qT

i Σjqi, which leads to the solution D = diag(PT
−jΣ(τj−1, τj)P−j). �

Clearly, all eigenvalues of D are contained within the largest and smallest eigenvalues
of Σ(τj−1, τj). This way, the spread of the eigenvalues in D is regularized. Ultimately,
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we can prove that all the elements in diag(PT
−jΣ̃(τj−1, τj)P−j) are asymptotically close

to those in D = diag(PT
−jΣ(τj−1, τj)P−j) in probability (see Theorem 4.1). This allows

us to define our integrated covariance matrix estimator for the partition (τj−1, τj] to
be

Σ̂(τj−1, τj) = P−jdiag(PT
−jΣ̃(τj−1, τj)P−j)PT

−j. (4.7)

The overall integrated covariance matrix estimator for the period [0, 1] is then defined
to be

Σ̂(0, 1) =
L∑

j=1
Σ̂(τj−1, τj) =

L∑
j=1

P−jdiag(PT
−jΣ̃(τj−1, τj)P−j)PT

−j. (4.8)

In using P−j, we assume that each interval (τj−1, τj] is small, so that at the popula-
tion level, the eigenvectors of each Σ−j = ∑

ℓ̸=j Σ(τℓ−1, τℓ) is not far from those for
Σ(0, 1). Then each P−j should also be similar to the eigenmatrix P for Σ̃(0, 1) =∑L

ℓ=1 Σ̃(τℓ−1, τℓ). The estimator Σ̂(0, 1) in (4.8) is then

Σ̂(0, 1) ≈
L∑

j=1
P−jdiag(PT

−jΣ(τj−1, τj)P−j)PT
−j

≈ Pdiag
PT

L∑
j=1

Σ(τj−1, τj)P
PT = Pdiag(PTΣ(0, 1)P)PT.

The first approximation uses the result in Theorem 4.1 to be presented in Chapter 4.3
below. The estimator Pdiag(PTΣ(0, 1)P)PT can be considered as an ideal rotation-
equivariant estimator, where P is an eigenmatrix utilizing all of the all-refresh data
points, and diag(PTΣ(0, 1)P) is the ideal diagonal matrix in terms of the Frobenius
error.

In practice, a small interval can be a trading day or a quarter of it, depending on
the number of trading days of data we have and the number of all-refresh data points
in them. We propose an optimization criterion to choose the number of partitions (not
necessarily uniform) in Chapter 4.4. In our simulations and empirical examples in
Chapter 4.5, we use 5 or 1 day of training data with (τℓ−1, τℓ] set as 1 day or a quarter
of a day, with the number of all-refresh data points in the order of hundreds in each
interval.
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4.3 Asymptotic Theory

In this chapter, we show that our proposed estimator (4.7) in the jth partition of the
data is asymptotically close to the corresponding ideal rotation-equivariant estimator

ΣIdeal(τj−1, τj) = P−jdiag(PT
−jΣ(τj−1, τj)P−j)PT

−j. (4.9)

This is exactly the optimal estimator that solves (4.6) following Proposition 4.1. While
Σ̃(τj−1, τj) can have its spread of eigenvalues much larger than that of Σ(τj−1, τj)
when p/n → c > 0, our estimator Σ̂(τj−1, τj) in equation (4.7) has its spread of
eigenvalues contained within the spread of Σ(τj−1, τj) asymptotically by being close
to ΣIdeal(τj−1, τj) in equation (4.9) above (see Theorem 4.1 below). We first introduce
some assumptions for our theorems to hold. We write a ≍ b to mean that a = O(b)
and b = O(a), and a ≍P b to mean that a = OP (b) and b = OP (a).

For j = 1, . . . , L, and vs = vj
s which is the sth all-refresh time within partition j,

define
F−j = Fτj−1 ∪ F/Fτj

, F j
s = Fvs/Fτj−1 ,

with F j
s = ∅ for s ≤ 0. The following assumptions are true for K = 1 or K ≍ n2/3.

Assumptions on the drift µt:

(D1) The drift µt has càdlàg components and is random, such that for s = K,K +
1, . . . , n(j), ∫ vs

vs−K

µtdt = A(vs−K , vs)Zj
d,s,

where A(vs−K , vs) ̸= 0 is a non-random p× p matrix and can be asymmetric and
singular. It has ∥A(vs−K , vs)∥ = O(p1/2K1/2|vs − vs−1|), where the order p1/2

only appears when there are only finite number of columns (say r) that are non-
zero. The random vector Zj

d,s ∈ F j
s has components conditionally independent

of each other given F−j, with eighth moments exist. Also, E(Zj
d,s|F−j) = 0 and

var(Zj
d,s|F−j) = Ip almost surely.

The drift term µt can also be non-random, in which case Zj
d,s = (1, 0, . . . , 0)T for

small s, and the assumption for A(vs−K , vs) is the same as above.

(D2) Write P−j = (p1j, . . . ,ppj). We assume for each i = 1, . . . , p, and s = rK + q for
r = 1, . . . , |Sj(K)|K and q = 0, 1, . . . , K − 1, there exists ρj

d,K,q ∈ F−j such that
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0 ≤ ρj
d,K,q ≤ ξ < 1 with ξ a constant, and for ℓ = K + q, 2K + q, . . . , rK + q,

E
(
(pT

ijA(vs−K , vs)Zj
d,ℓ)2|F−j ∪ F j

ℓ−K

)
= ρj

d,K,q(pT
ijA(vs−K , vs)Zj

d,ℓ−K)2 + (1 − ρj
d,K,q)pT

ijA(vs−K , vs)A(vs−K , vs)Tpij + eij
d,ℓ−K ,

where we define Zj
d,ℓZ

jT
d,ℓ = Ip and eij

d,ℓ = 0 for ℓ ≤ 0. The process {eij
d,ℓ} with

eij
d,ℓ ∈ F j

ℓ has E(eij
d,ℓ|F−j ∪ F j

ℓ−K) = 0 almost surely, and eij
d,ℓ|F−j ∪ F j

ℓ−K =
OP (∥A(vs−K , vs)∥2).

(D3) Let ψ(x) = ex2 − 1. We assume that for ℓ = 0, 1, . . . , s,

E

{
ψ

(
|(pT

ijA(vs−K , vs)Zj
d,ℓ)2 − pT

ijA(vs−K , vs)A(vs−K , vs)Tpij|
(pT

ijA(vs−K , vs)Zj
d,ℓ−K)2 + ∥A(vs−K , vs)∥2

)∣∣∣∣F−j ∪ F j
ℓ−K

}
< ∞,

E

{
ψ

(
|eij

d,ℓ|
(pT

ijA(vs−K , vs)Zj
d,ℓ−K)2 + ∥A(vs−K , vs)∥2

)∣∣∣∣F−j ∪ F j
ℓ−K

}
< ∞.

Assumptions on the volatility σt and Brownian motion Wt:

(V1) The volatility σt has càdlàg components and is non-random, and the Brownian
motion {Wt} can be correlated with {µt} in general. Write

∫ vs

vs−K

σtdWt = Σ(vs−K , vs)1/2Zj
v,s,

where Σ(vs−K , vs) is a symmetric positive definite p × p matrix which can be
random, with

λmin(Σ(τj−1, τj)) ≥ C(τj−τj−1)−1, λmax(Σ(vs−K , vs)) ≍P ∥A(vs−K , vs)∥2/|vs−vs−K |,

where C > 0 is a constant. The process {σt} is independent of all other processes.
Also, E(Zj

v,s|F−j) = 0 and var(Zj
v,s|F−j) = Ip almost surely. The random vector

Zj
v,s ∈ F j

s has components conditionally independent of each other given F−j,
with eighth moments exist.

(V2) Parallel to (D2), but expectations are taken conditional on F−j ∪ F j
ℓ−K ∪ Fσ

vs
,

where Fσ
t is the σ-algebra generated by the process {σt} up to time t.

Also, ρj
d,K,q replaced by ρj

v,K,q ∈ F−j, A(vs−K , vs) by Σ(vs−K , vs)1/2, Zj
d,ℓ by Zj

v,ℓ

and eij
d,ℓ by eij

v,ℓ with eij
v,ℓ|F−j ∪ F j

ℓ−K ∪ Fσ
vs

= OP (eij
d,ℓ|F−j ∪ F j

ℓ−K)/|vs − vs−K |.
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(V3) Parallel to (D3), replacements the same as in (V2).

Assumptions on the microstructure noise ϵt:

(E1) Within the jth partition, E(ϵ(s)ϵ(s)T|F−j) = Σj
ϵ,s, which is random and indepen-

dent of all other processes given F−j. Also, E(Σj
ϵ,s) = Σj

ϵ, and ∥Σj
ϵ,s∥ ≤ λϵ < ∞

uniformly as n, p → ∞ where λϵ is a constant.

(E2) Within the jth partition, we can write ϵ(s) = (Σj
ϵ,s)1/2Zj

ϵ,s, with Zj
ϵ,s ∈ F j

s having
conditionally independent components given F−j. Also E(Zj

ϵ,s|F−j) = 0 almost
surely and eighth order moments exist for the components of Zj

ϵ,s.

(E3) Let FX
t be the σ-algebra generated by the log-price processes up to time t,

and F ϵ
t the one by the microstructure noise processes up to time t, so that

Ft = ⋂
s>t FX

s ⊗ F ϵ
s . Then for s1, s2 time points within partition j, given F−j , we

assume the ϕ-mixing coefficient between two σ-algebras satisfies

ϕ(FX
s1 ,F

ϵ
s2|F−j) = O(n−1) = ϕ(F ϵ

s2 ,F
X
s1 |F−j).

Also, for s2 > s1 time points within partition j, we assume

ϕ(F ϵ
s1 ,F

ϵ
s2/F

ϵ
s1|F−j) = O(n−1) = ϕ(F ϵ

s2/F
ϵ
s1 ,F

ϵ
s1|F−j).

Other assumptions:

(O1) The observation times are independent of X(·) and ϵ(·), and the partition
boundaries τℓ, ℓ = 0, 1, . . . , L, satisfy 0 < C1 ≤ minℓ=1,...,L L(τℓ − τℓ−1) ≤
maxℓ=1,...,L L(τℓ − τℓ−1) ≤ C2 < ∞, where C1, C2 are generic constants. Also, the
all-refresh times vs, s = 1, . . . , nL satisfy maxs=1,...,nL nL(vs − vs−1) ≤ C3 for a
generic constant C3 > 0. Moreover, maxℓ=1,...,L nL(τℓ − vn(ℓ)) = o(1). The sample
size in the jth partition has n(j)/n → 1.

O2) The pervasive factors, if any, persist within an interval (vs−1, vs] for s = 1, . . . , nL.

There is another set of assumptions (O3) to (O5) in Chapter 4.7. They involve the drift
and volatility in Xvs − X(s), i.e. the drift and volatility in between the all-refresh and
the previous-tick times. These assumptions are in many ways parallel to assumptions
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(D1) to (D3) and (V1) to (V3), but the decompositions are more involved, so that we
choose to present them in Chapter 4.7 to aid the flow of the chapter.

The matrix A(vs−K , vs) in assumptions (D1) to (D3) plays the role of a factor
loading matrix in a factor model if the drift µt is random. Within partition j, if
A(vs−K , vs) is diagonal, the contribution of drift among all assets over vs−K to vs are
conditionally independent given F−j . If A(vs−K , vs) is singular with only the first r ≪ p

columns being non-zero, then it represents an exact r-factor model with no noise on the
drift. The first r singular values of A(vs−K , vs) are then of order p1/2K1/2|vs − vs−1|,
with K1/2|vs − vs−1| accounting for the length of the time interval considered.

The serial dependence of the drift vector is depicted in Assumption (D2). This
assumption is more general than it seems. For instance, Zj

d,ℓ can be a random vector
of maringales, so that

E(Zj
d,ℓ|F−j ∪ F j

ℓ−K) = Zj
d,ℓ−K ,

and hence E(pT
ijA(vs−K , vs)Zj

d,ℓ|F−j∪F j
ℓ−K) = pT

ijA(vs−K , vs)Zj
d,ℓ−K . Then by Jensen’s

inequality,

E((pT
ijA(vs−K , vs)Zj

d,ℓ)2|F−j ∪ F j
ℓ−K) ≥ (pT

ijA(vs−K , vs)Zj
d,ℓ−K)2,

and the assumption only requires a uniformly strict inequality above, so that ρj
d,K,q

can be uniformly smaller than 1. Note also

E((pT
ijA(vs−K,vs)Z

j
d,ℓ)2|F−j) = pT

ijA(vs−K , vs)A(vs−K , vs)Tpij,

and hence the assumption blances this mean with the squared conditional expected
value of the martingale, subject to an error eij

d,ℓ.

If Zj
d,ℓ is independent of any past information such that E(Zj

d,ℓ|F−j ∪ F j
ℓ−K) = 0,

then

E((pT
ijA(vs−K,vs)Z

j
d,ℓ)2|F−j ∪ F j

ℓ−K) = pT
ijA(vs−K , vs)A(vs−K , vs)Tpij,

so that Assumption (D2) means that ρj
d,K,q = eij

d,ℓ = 0.

Assumption (D3) says that quadratic forms not too far in time apart can be very
different but with sub-Gaussian-tailed probability. Assumptions (D1) to (D3) together
allow us to use certain Hoeffding’s inequalities for sums of martingale differences (see
van de Geer (2002), Theorem 2.2).
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If the drift µt is non-random, then the matrix A(vs−K , vs) can be set as zero
except the first column which is a non-zero known vector. With Zj

d,s = (1, 0, . . . , 0)T,
assumptions (D2) and (D3) are automatically satisfied with eij

d,ℓ = 0. We do not make
further assumptions for A(·, ·), and hence the drift can include longer term trends
(where components of A(·, ·) can be increasing or decreasing over different tie segments)
and pervasive factors.

Assumption (V1) to (V3) for the volatility are parallel to (D1) to (D3). The subtler
part is in Assumption (V1), where ∥Σ(vs−K , vs)∥ depends on ∥A(vs−K , vs)∥. In doing
so, we are essentially assuming that if there are pervasive factors such as the market
factor, then they affect both the drift and the volatility of the log-price process at the
same time, which certainly makes sense. Then order p1/2 singular values in A(vs−K , vs)
translates to order p eigenvalues in Σ(vs−K , vs) in the presence of pervasive factors,
appropriately adjusted by |vs − vs−K |.

Assumption (E1) allows for time-varying covariance matrix for the microstructure
noise. Assumption (E3) particularly assumes a weak dependence between the log-price
process and the microstructure noise process within partition j, as well as a weak
serial dependence among the microstructure noise vectors, when F−j is given. This
assumption is inspired by Chen and Mykland (2017), where they assumed that given
the entire information of the log-price process, the microstructure noise at different time
points are independent. In our case, we are not given the entire picture of the log-price
process, but not far from that either since with F−j we are given nL − n(j) data
points from the total of nL. Then instead of assuming the microstructure noise vectors
are independent, we assume that they are weakly dependent, and with n larger (i.e.,
more information at more time points available outside partition j), the dependence is
weaker.

The first part of Assumption (O1) is automatically satisfied if the boundary set
{τℓ}0≤ℓ≤L is pre-set, for instance, to be the daily opening or closing time of the L days
of data, or a quarter of it, just as described in Chapter 4.2.2. See also Chapter 4.4
on a criterion in choosing these tuning parameters. Assumption (O2) means that the
pervasive factors are either present between two all-refresh times, or they are absent.

Theorem 4.1 Let Assumptions (D1) to (D3), (V1) to (V3), (E1) to (E3) and (O1) to
(O5) hold. For the all-refresh log-price data Y(s), s = 1, . . . , nL in (4.2), as n, p → ∞
such that p/n → c > 0, if there are no pervasive factors, i.e. ∥A(vs−K , vs)∥ =
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O(K1/2|vs − vs−1|), the integrated covariance matrix estimator constructed in (4.7) and
Σ̂(0, 1) in (4.8) satisfy

max
j=1,...,L

∥Σ̂(τj−1, τj)ΣIdeal(τj−1, τj)−1 − Ip∥ = OP (n−1/6),

∥Σ̂(0, 1)ΣIdeal(0, 1)−1 − Ip∥ = OP (n−1/6),

where ∥ · ∥ denotes the spectral norm of a matrix. If there are pervasive factors so
that ∥A(vs−K , vs)∥ = O(p1/2K1/2|vs − vs−1|) (this includes the case when µt is assumed
non-random), then assuming p3/2/n → c > 0, the above results still hold.

The proof can be found in Chapter 4.7. The rate of convergence of our estimator
is n−1/6, the same as the TSCV in the univariate case (Zhang, 2011). Note that
Assumptions (D1) and (V1) allow for the existence of pervasive factors like the market
factor, and our estimator is still converging to the ideal estimator in probability at
a rate of n−1/6 if p3/2/n → c > 0. One remarkable fact is that this rate does not
depend on p. We require p to be growing slower than n in the presence of pervasive
factors mainly because the drift term that can overwhelm the estimator when there are
pervasive factors. When the drift is non-random under Assumption (D1), it certainly
can behave as if there are pervasive factors when there are no further assumptions
on A(·, ·), and we do need p3/2/n → c > 0 for the results in Theorem 4.1 to hold
(see Remark 4.2 as well). Indeed, without a drift term, Lam (2016) allows the (low
frequency) data to have a factor structure under p/n → c > 0.

Since P−j is orthogonal, it is easy to see that ΣIdeal(τj−1, τj) in (4.9) has

Cond(ΣIdeal(τj−1, τj−1)) ≤ Cond(Σ(τj−1, τj)),

where Cond(·) is the condition number of a matrix, defined by dividing the maximum
over the minimum magnitude of eigenvalue of the matrix. Theorem 4.1 then implies
that

Cond(Σ̂(τj−1, τj−1)) ≤ Cond(Σ(τj−1, τj))

in probability. This is the result of nonlinear shrinkage of the eigenvalues in Σ̂(τj−1, τj).
Our estimator then has its spread of eigenvalues contained within the population
counterpart, so that it is more stable than Σ̃(τj−1, τj), which can have its extreme
eigenvalues sverely biased when p/n → c > 0, creating instability. The TSCV indeed
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performs worse than all other methods in Chapter 4.5. Incidentally, since all eigenvalues
of Σ(τj−1, τj) are non-negative, the results of Theorem 4.1 also prove the following.

Corollary 4.1 Let all the assumptions in Theorem 4.1 hold. Then as n, p → ∞ such
that p/n → c > 0 , the integrated covariance matrix estimator Σ̂(τj−1, τj) in (4.7),
and also Σ̂(0, 1) in (4.8), are positive definite in probability as long as Σ(τj−1, τj) and
Σ(0, 1) are.

This corollary shows that the positive definiteness of an integrated covariance
matrix is preserved in our proposed estimator in probability as we have large enough
sample size. In practice, after testing different choices of n and p under simulation
settings in Chapter 4.5, we always have positive definiteness of the estimator with a
moderate sample size n and a similar dimension p.

Remark 4.2 In Theorem 4.1, unlike Lam (2016), we do not require the partition to
be very small with the number of data points of order smaller than the total sample size.
This is because we are not proving efficiency relative to using the majority of data points
in constructing the eigenmatrix for our rotation-equivariant estimator. We can pursue
it, but then a very small partition essentially means L → ∞ also, which unfortunately
makes the rate of convergence to be slower than n−1/6 due to the complications of
microstructure noise. This can be seen explicitly in the proof of Lemma 4.4, where
one of the term has rate n−1/6L. The practical performance is also worse if we use a
very small partition, resulting in too many of them. Hence we decide not to pursue
something like Theorem 5 of Lam (2016), for the sake of a better rate of convergence,
and a better practical performance overall.

Remark 4.3 The term pT
ijA(vs−K , vs)A(vs−K , vs)Tpij is bounded by ∥A(vs−K , vs)∥2

in our proofs, defining pij as an eigenvector for P−j, when there are pervasive factors,
which is an order p larger then when there are no factors. The same treatment goes
when µt is assumed non-random, where A(·, ·) essentially has only one non-zero column.
In the end, this is exactly the reason why p3/2/n → c > 0 is needed instead of just
p/n → c > 0. We conjecture that p/n → c > 0 is enough for our results to hold even
with pervasive factors, since pij is in fact a random eigenvector of a sample covariance-
like matrix ∑ℓ̸=j Σ̃(τj−1, τj). If it were a proper sample covariance matrix, then for any
known unit vector x ∈ Rp,pT

ijx = OP (p−1/2) (see Theorem 1 and Remark 1 of Bai et al.
(2007)), so that pT

ijA(vs−K , vs)A(vs−K , vs)Tpij should be of order ∥A(vs−K , vs)∥2/p in
probability, i.e. the same order as when there are no factors.
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4.3.1 Extension to Jump-Diffusion Processes

Our method can be extended to include jumps in the underlying log-price process Xt.
We introduce the relevant model first. With jumps, the underlying log-price process is
modeled as

dXt = µtdt+ σtdWt + dJt, t ∈ [0, 1], (4.10)

where µt and σt are as in the pure diffusion model (4.1), and Jt = (J (1)
t , . . . , J

(p)
t )T

denotes a p-dimensional right-continuous pure jump process. Each element in Jt is
assumed to have finite activity in [0, 1], so that there are only finite number of jumps
in each log-price process X(j)

t in the time interval we consider. The J (j)
t ’s can be

correlated with each other, and each is modeled by

J
(j)
t =

N
(j)
t∑

ℓ=1
B

(j)
ℓ , t ∈ [0, 1],

where each count process N (j)
t can be correlated with each other. The same holds true

for each jump size B(j)
ℓ . The quadratic covariation over [0, 1] for the process Xt is then

QV =
∫ 1

0
σtσ

T
t dt+

∑
0≤t≤1

∆Jt∆JT
t , (4.11)

where ∆Jt = Jt − Jt−. It is clear that an off-diagonal entry in ∆Jt∆JT
t will only be

non-zero in general when both the corresponding log-price processes have jumps at
the same time (cojumps) for at least once. It can correspond to, for example, certain
major market news reacted by a number of stocks at the same time. To account for
the jump risks contributed by regular occurrence of cojumps (see Gilder et al. (2014)
for examples of systematic or non-systematic cojumps), QV should be estimated as a
whole rather than just the integrated covariance matrix.

To this end, we propose to use the wavelet method described in Section 3.2 of Fan
and Wang (2007) to first remove the jumps in the log-price processes and construct
our nonlinear shrinkage estimator in (4.8) using the jumps-removed data. The wavelet
approach is also considered in Xue et al. (2014) to test for the presence of jumps in
high-frequency financial time series. We give the practical details on how we implement
the wavelet method for each observed log-price process at the end of the chapter.
The estimated jump process Ĵt using the wavelet method is then used to construct
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∑
0≤t≤1 ∆Ĵt∆ĴT

t , giving us an estimator of QV as

Q̂V = Σ̂(0, 1) +
∑

0≤t≤1
∆Ĵt∆ĴT

t . (4.12)

Note that from Theorem 1 of Fan and Wang (2007), using our notations, we can
deduce immediately that the finite number of jumps in each log-price process are
removed at a rate at least (nL)−1/4 using the wavelet method, with nL being the total
number of all-refresh data points. Individual asset may do even better since we use
all data points available in practice for each asset before evaluating the all-refresh
time points. This jump removal rate is in fact the key to the successful adaptation of
wavelet jumps removal to our proposed nonlinear shrinkage estimator. More detailed
assumptions:

(W1) The wavelet used in jump estimation are differentiable.

(W2) For the jump part of X(j)
t in [0, 1] for j = 1, . . . , p, its jump locations η(j)

ℓ and
jump sizes B(j)

ℓ satisfy

N
(j)
1 < ∞, η

(j)
1 < . . . < η

(j)
ℓ < . . . , 0 < |B(j)

ℓ | < ∞ almost surely.

(W3) The number of stocks involved in a cojump is finite.

Assumptions (W1) and (W2) are technical assumptions adapted from Fan and Wang
(2007). Assumption (W2) means that we are dealing with finite number of jumps for
each log-price process, and the sizes of the jumps are bounded from 0 almost surely.
If Assumption (W3) is not satisfied, then the rate of convergence of Σ̂(τj − 1, τj) in
Theorem 4.1 using the jumps-removed data will be dependent on how many stocks
is involved in a cojump in general. Our assumptions allow the jump process to be
dependent on the drift, volatility and the microstructure noise process in general.

Theorem 4.2 Let all the assumptions in Theorem 4.1 hold, as well as (W1) to (W3)
for the jump-diffusion model (4.10). Using the jumps-removed all-refresh log-price
data Y∗(s) = Y(s) − Ĵvs, s = 1, . . . , nL in constructing the integrated covariance
matrix estimator in (4.7), the same conclusions in Theorem 4.1 and Corollary 4.1 hold.
Moreover, we have

∥
∑

0≤t≤1
(∆Jt∆JT

t − ∆Ĵt∆ĴT
t )∥ = OP (n−1/4).
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The following is the jumps removal procedure:

1. Denote Y (j)
i,k the wavelet coefficients of {Y (j)

t }, k = 1, . . . , 2i, i = 1, . . . , log2(n), j =
1, . . . , p.

2. Let D(j)
n = d

√
2 log n be the universal threshold with d as the median of |Y (j)

in,k|.
If |Y (j)

in,k| > D(j)
n , the estimated jump location is τ̂ = k2−in .

3. For a small neighbourhood δn of the estimated jump location, denote Ȳ (j)
τ̂l+

and
Ȳ

(j)
τ̂l−

as the average value over periods [τ̂l, τ̂l + δn] and [τ̂l − δn, τ̂l) respectively. We
take δn as the square root of the total number of data points after data cleaning,
following Fan and Wang (2007).

4. The estimated jump size is B̂(j)
l = Ȳ

(j)
τ̂l+

− Ȳ
(j)

τ̂l−
, and the estimated jump variation

is ∑q̂
l=1(B̂

(j)
l )2, where q̂ is the estimated number of jumps.

5. We remove the jump effect from the original observed data as Y ∗(j)
t = Y

(j)
t −∑

τ̂l≤t B̂
(j)
l .

4.3.2 Application to Portfolio Allocation

In this chapter we investigate the theoretical performance of our estimator when it is
used to construct minimum-variance portfolios. Defining 1p as a column vector of p
ones, we define the estimated optimal minimum-variance portfolio weights to be

ŵopt = Σ̂(0, 1)−11p

1T
p Σ̂(0, 1)−11p

,

where Σ̂(0, 1) is our estimator of Σ(0, 1). In Chapter 4.5, we empirically compare
our estimator to other estimators using different measures, including performance in
minimizing portfolio risks.

Unlike DeMiguel et al. (2009) or Fan et al. (2012) which constrain the L1 or L2

norm of a portfolio vector w explicitly through a tuning parameter, our method
enjoys a natural upper bound on the maximum exposure asymptotically in probability.
The maximum exposure of a portfolio vector w is defined as ∥w∥max = maxi |wi|.
The bound for our method is important since the theoretical minimum-variance
portfolio is also subjected to the same bound. At the same time, the actual risk
R1/2(ŵopt) = (ŵT

optΣ(0, 1)ŵopt)1/2 also has a natural upper bound, as presented below.
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Theorem 4.3 Let all the assumptions in Theorem 4.1 hold. Define the theoretical
minimum-variance portfolio weight to be

wtheo = Σ(0, 1)−11p

1T
p Σ(0, 1)−11p

.

In the case of no pervasive factors with p/n → c > 0, or the existence of pervasive
factors with p3/2/n → c > 0, the maximum exposures of ŵopt and wtheo satisfy, in
probability,

p1/2∥ŵopt∥max, p
1/2∥wtheo∥max ≤ max1≤j≤L λmax(Σ(τj−1, τj))

min1≤j≤L λmin(Σ(τj−1, τj))
,

where λmax(·) and λmin(·) denote the maximum and minimum eigenvalues of a matrix
respectively.

If there are no pervasive factors and p/n → c > 0, the actual risks of ŵopt and
wtheo satisfy, in probability,

p1/2R1/2(ŵopt) ≤ max1≤j≤L λmax(Σ(τj−1, τj))
min1≤j≤L λmin(Σ(τj−1, τj))

· λ1/2
max(Σ(0, 1)),

p1/2R1/2(wtheo) ≤ λ1/2
max(Σ(0, 1)).

If there are pervasive factors and p3/2n → c > 0, then R(ŵopt) = OP (λmax(Σ)) = OP (p),
where the bound for R(wtheo) remains the same as above.

If Assumptions (W1) to (W3) hold also under the jump-diffusion model (4.10), then
the same conclusions as above hold for the maximum exposure and actual risk bounds,
as long as we are using the jumps-removed data as described in Chapter 4.3.1.

The proof of this theorem is in Chapter 4.7. The gross exposure constraint by
Fan et al. (2012) or the L2-norm constraint by DeMiguel et al. (2009) are useful in
constraining the total exposure of a portfolio and obtaining special ones like the no-
short-sale portfolio (by setting ∥w∥1 ≤ 1). In practice, as illustrated by our simulation
experiments and real data analysis in Chapter 4.5, the maximum exposure can still
be large while these explicit constraints are in place. Certainly, there are a lot of
examples where concentrated portfolios can be rewarding. However, with respect to
the minimum-variance portfolio, the theoretical one does satisfy an upper bound on
the maximum exposure as presented in Theorem 4.3. Our method has the same upper
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bound in probability, which decays as p increases when there are no pervasive factors
in the data. As illustrated in Chapter 4.5, the maximum exposure in ŵopt is on average
smaller than other state-of-the-art methods in various settings, especially when using a
quarter of a trading day as a partition. At the same time, in the real data analysis, the
risk for our method measured as the out-of-sample standard deviation of the return for
a portfolio is smaller than all other methods in the two portfolio studies. The relatively
small turnover of our portfolio as shown in Table 4.6, 4.7, 4.8 and 4.9 is also important
when profitability is concerned. See Chapter 4.5 for more details.

When there are pervasive factors like the market factor in the data, we have
∥ŵopt∥max = OP (p1/2) = ∥wtheo∥, and R(∥ŵopt∥) = OP (p). It would seem that explicit
constraints in the portfolio weights would be better than our method. However, these
bounds are certainly not tight. Simulation results with pervasive factors in Tables 4.4
and 4.5 show that our method still performs better than others with the smallest L2

distance from the theoretical portfolio, and matches closely to its out-of-sample risk.
It would need more sophisticated analysis to obtain tighter bounds when there are
pervasive factors.

4.4 Practical Implementation

There are two parameters that can be tuned for potentially better performance, namely
the partition (τj−1, τj ] of the period [0, 1] (thus also determining L itself which represents
the number of partitions), and the scale parameter K used in the TSCV in (4.4). For
example, suppose we are given a period of 10 days of tick-by-tick data, if we set
(τj−1, τj] to be one day, then L = 10. Note that the length of each partition can be
different. Similar to the function g(m) in equation (4.7) of Lam (2016), we propose to
minimize the following criterion for a good choice of τ = {τj}0≤j≤L and K:

g(τ , K) =
∥∥∥∥∥

L∑
j=1

(
Σ̂(τj−1, τj) − Σ̃(τj−1, τj)

)∥∥∥∥∥
2

F

, (4.13)

where Σ̃(τj−1, τj) and Σ̂(τj−1, τj) are defined in (4.4) and (4.7) respectively. This
function is inspired by Bickel and Levina (2008b), where a similar function, with
the population covariance matrix replaced by the sample covariance matrix, is used
for the determination of the banding number in banding a large covariance matrix
estimator. In our case, the above aligns with the optimization problem (4.6), but with
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Σ(τj−1, τj) replaced by the sample counterpart Σ̃(τj−1, τj). From our experience, as
long as the intervals are not too different in length and that each interval has enough
data points (at least the same order as p), the performance of the estimator is in fact
more dependent on L, the number of partitions we choose. Hence we suggest to divide
the time interval into equal length partitions, checking that each one has enough data
points. We can then choose L by minimizing the criterion (4.13) above. In practice,
our estimator is not too sensitive to the suitable choices of L (see Table 4.2 and 4.4
for the comparison of L being one trading day (NERIVE) and L being a quarter day
(quarNERIVE)).

For the choice of K, since we are using K ≍ n2/3 as in Zhang (2011), we can search
K = [bn2/3] on a preset grid of constant b. In practice, we found from our simulation
results and real data analysis that using b = 1 provide good results, and portfolio
performance is not too different from using other values of b, hence in this paper we
use b = 1.

4.5 Empirical Results

4.5.1 Simulation

In this chapter, we simulate high-frequency trading transactions of 100 stocks for one
year (250 trading days). The price processes and the asynchronous transaction times
are simulated independently. The observed log-price is defined as Xo(i)

t = X
(i)
t + ε

(i)
t ,

where X(i)
t represents the latent log-price, and the microstructure noise has ε(i)

t
iid∼

N(0, 0.00052). We generate p = 100 latent log-prices by the following Heston-like
multivariate factor model with stochastic volatilities:

dX
(i)
t = µ(i)dt+

√
1 − (ρ(i))2σ

(i)
t dB

(i)
t +ρ(i)σ

(i)
t dWt +Cν(i)dZt, i = 1, . . . , 100, (4.14)

where {Wt}, {Zt} and the {B(i)
t }’s are independent standard Brownian motions. The

processes {Wt} and {Zt} imitate factors in the market. The constant C = 1{model 2} is
0 for the first model we consider. We set ρ(i) = −0.7C, so that it is 0 in the first model,
and hence there are no factors. For the second model, C = 1, so that it contains two
factors. The spot volatility σ(i)

t =
√
ϱ

(i)
t follows the Cox-Ingersoll-Ross (CIR) process

dϱ
(i)
t = κ(i)(θ(i) − ϱ

(i)
t )dt+ ξ(i)dU

(i)
t ,
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where the {U (i)
t }’s are independent standard Brownian motions. Other parameters of

X
(i)
t are set at (µ(i), κ(i), ξ(i), θ(i)) = (0.03x(i)

1 , 1.1x
(i)
2 , 0.5x

(i)
3 , 0.25x(i)

4 ) and ν(i) =
√
θ(i),

where the x(i)
j ’s are independent uniform random variables on the interval [0.7, 1.3].

The initial value of each log-price X(i)
0 is set randomly on the interval [0.5, 1.5] and the

starting spot volatility ϱ(i)
0 on the interval [0.5θ(i), 1.5θ(i)].

For the transaction times, we generate 100 different Poisson processes with intensities
λ1, . . . , λ100 respectively. Since the normal trading time for one day is 23400 seconds,
λi is set to be 0.01i× 23400, where i = 1, . . . , 100.

4.5.2 Comparison of Different Estimators

Comparisons with TSCV and thresholded method

We compare out estimator to the TSCV, as well as the Thresholded Average Realized
Volatility Matrix (TARVM) which is essentially a thresholded TSCV introduced in
Wang and Zou (2010). The reason we choose to compare to the TARVM on top of the
TSCV is because when there are no factors, sparseness or approximate sparseness in
Σ(0, 1) can be natural as its eigenvalues are of constant order even with a diverging
matrix dimension, giving potential advantages to thresholded estimators. Our estimator
is a modified TSCV, and so comparing to another modified TSCV like the TARVM
makes sense. Hereafter, we abbreviate our estimator as NERIVE when we are using
one trading day as a partition length, and quarNERIVE when we are using a quarter
of a trading day.

We use two measures for comparing the estimators. One is the Frobenius error,
another is the average bias in eigenvalues, defined by

Frobenius error = tr(Σ̂(0, 1) − Σ(0, 1))2, Average bias = tr(Σ̂(0, 1) − Σ(0, 1))/p.

The integrated covariance matrix Σ(0, 1) is evaluated using the simulated latent log-
prices at the finest grid (1 per second). We divide the 250 trading days into disjoint
5-day intervals, and calculate the two error measures for different estimators over each
5-day interval. The means and standard deviations of these errors are reported in
Table 4.1. It also includes the same exercise when 5-day becomes 1-day intervals.

When we are using 5-day training windows, with roughly 200 points per day after
all refresh method, it is clear that NERIVE, especially quarNERIVE, performs better
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than TSCV and TAVRM in both measures. However, in using 1-day training windows,
TAVRM is better in terms of average bias in the eigenvalues. When there are factors,
TAVRM is also better in Frobenius norm error using 1-day training windows. It is
clear that there are advantages in thresholding, especially when we consider a shorter
window for the integrated covariance matrix, but our method is better in general when
such window increases.

Comparisons with POET and related methods

POET, originally proposed as a general low-frequency data method in Fan et al. (2013),
essentially assumes that the true covariance matrix can be decomposed into a low rank
matrix (induced from factors in the data) plus a sparse residual one. Aït-Sahalia and
Xiu (2017) proposes such a decomposition on the realized covariance matrix of sub-
sampled return data (15 or 30 minutes interval) to reduce the effects of microstructure
noise contamination, while the residual covariance is assumed to be block diagonal
with known blocks (e.g. blocking by industry). Dai et al. (2017) proposed the POET
method on realized covariance matrix calculated on pre-averaged return data (PRVM),
with thresholding developed for the residual matrix. We find that such thresholding
usually works better than blocking using industry, and so we compare our method to
such a POET method applied on TSCV (TS-POET), since NERIVE or quarNERIVE
are based on nonlinear shrinkage of the TSCV.

We also explore if our nonlinear shrinkage can be applied to the PRVM rather than
TSCV. To be precise, we replace Σ̃(τℓ−1, τℓ) in (4.4) by the corresponding PRVM, and
follow Chapter 4.2.2 to construct Σ̂(0, 1) in (4.8). We abbreviate nonlinear shrinkage
based on PRVM as PR-NERIVE or PR-quarNERIVE, and compare them with the
POET in Dai et al. (2017) (PR-POET). Since Fan and Kim (2017) has developed a
robust version of PRVM with POET (RPR-POET), we compare this to PR-NERIVE
and PR-quarNERIVE as well. Throughout the rest of the chapter, all POET methods
use 5 factors which is enough to achieve consistently good results.

Figure 4.1 shows the Frobenius errors when there are no factors in model (4.14).
It is clear that quarNERIVE is better than NERIVE and TS-POET. When we
use pre-averaged data for nonlinear shrinkage, PR-quarNERIVE is also better than
PR-NERIVE, PR-POET and RPR-POET. When there are factors in model (4.14),
quarNERIVE is still better than NERIVE and TS-POET, but PR-quarNERIVE is
not as good as RPR-POET when we consider a longer time horizon for the integrated
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Fig. 4.1 Boxplot of Frobenius errors when there are no factors in model (4.14) (C = 0).
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Fig. 4.2 Boxplot of Frobenius errors when there are factors in model (4.14) (C = 1).
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covariance matrix (5-day) in Figure 4.2. Clearly PR-NERIVE has a lot of potential,
and we hope to develop its theoretical performances in another project (see Remark 4.1
as well). We have also considered the spectral error, but the patterns are very similar
to Figures 4.1 and 4.2, and hence they are omitted.

4.5.3 Comparison of Portfolio Allocation Performance

To compare the performance of different methods, we focus on the minimum-variance
portfolio

wopt = Σ̂(0, 1)−11p

1T
p Σ̂(0, 1)−11p

, which solves min
w:wT1p=1

wTΣ̂(0, 1)w.

We first set the benchmark for comparisons. Following Fan et al. (2012), we create a
theoretical portfolio wtheo, which is a minimum variance portfolio with Σ(0, 1) evaluated
similarly as in Chapter 4.5.2. For all other methods, we use the all-refresh time points
evaluated from the data (we do not hold positions overnight for all methods to avoid
overnight price jumps, since they are not what our study is about).

Other portfolios are constructed and compared to the theoretical minimum variance
portfolio (THEO) above. The first one is the equal weight portfolio (EQUAL). The
second one is the minimum variance portfolio with Σ(0, 1) substituted by the Two Scale
CoVariance matrix (TSCV). We abbreviate it as TARVM when Σ(0, 1) is replaced by
the TARVM as in Chapter 4.5.2. When Σ(0, 1) is substituted with our estimator, we
abbreviate it as NERIVE with one trading day as a partition length, and quarNERIVE
when a partition length is a quarter of a trading day. We also compare with the
Gross Exposure Constraint (GEC) method (Fan et al., 2012), and finally the L2 norm
constraint (NORM) (DeMiguel et al., 2009) based on TSCV. The GEC and NORM
methods solve respectively

GEC: min
w:wT=1,∥w∥1≤c

wTΣ̃(0, 1)w,

NORM: min
w:wT=1,∥w∥2

2≤δ
wTΣ̃(0, 1)w.

We constructed 3 GEC portfolios with tuning parameters c = 1, 2, 3, as well as 3
NORM portfolios with tuning parameters δ = 0.1, 0.5, 1 for comparisons. We do not
use the pairwise refresh method for GEC to save significant computational time in
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both the simulations and the real data analysis, as well as that the features of our
method can be compared more directly to those of GEC. Finally, we also compare to
TS-POET, PR-NERIVE, PR-quarNERIVE, PR-POET and RPR-POET when the
corresponding estimator substitutes Σ(0, 1) in wopt.

The portfolio exercise is carried out as follows for all methods. We invest 1 unit of
capital to the different portfolios above at a certain start date (e.g., day 6 if we are
using a 5-day training window), and rebalance the portfolio weights daily, moving the
training window one day ahead. There are two investment strategies for comparisons
under each model 1 or 2. The first one rebalances the portfolio daily with a 5-day
training window. The second one rebalances the portfolio daily with a 1-day training
window.

The quantities to be compared for different portfolios are as follows. For daily
rebalancing with a k-day training window (k = 1 or 5), we calculate the annualized
portfolio return and annualized out-of-sample standard deviation, given respectively by

µ̂ = 250 × 1
250 − k

250∑
i=k+1

wTri, σ̂ =
(

250 × 1
250 − k

250∑
i=k+1

(wTri − µ̂

250)2
)1/2

.

The out-of-sample standard deviation is a good indicator of how much risk is associated
with a portfolio (DeMiguel et al., 2009), and is our main quantity for performance
comparisons, whereas portfolio return is of secondary importance. We also calculate
the Sharpe ratio µ̂/σ̂. The average maximum exposure and the maximum of the
maximum exposure over the whole investment horizon are two important measures for
comparisons too. Since this is a simulation experiment, we can calculate the actual
risk of a portfolio w, R1/2(w) = (wTΣw)1/2, over a trading day. We compare the
averaged actual risks of different methods over the whole investment horizon. Finally
we compare the error norm compared to wtheo, defined as Norm = ∥w − wtheo∥, and
also the portfolio turnover for different methods.

Table 4.2 and 4.3 show the results for model (4.14) with no factors. Excluding all
methods based on pre-averaged return data, the out-of-sample standard deviations of
NERIVE and quarNERIVE are among the smallest for both 5-day and 1-day training
windows, and closely match that of the theoretical minimum portfolio. TS-POET is
the best when we are using 1-day training window. Pre-averaging tends to improve on
nonlinear shrinkage and POET also, with PR-POET the best when we are using 1-day
training window. The equal weight portfolio performs well also but is not as good as
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our methods when we use 5-day training windows. Our methods also have (together
with TS-POET and PR-POET) the closest L2 distance from the theoretical minimum
portfolio weight, and apart from GEC1, PR-quarNERIVE has the smallest portfolio
turnover. Both TSCV and TARVM are having much larger actual risks than other
methods, and a lot of times with impractical maximum exposures.

Table 4.4 and 4.5 show the results for model (4.14) with factors. In general, risks
are higher with factors, even for the theoretical portfolio. Our methods (quarNERIVE
or PR-quarNERIVE) have risks close to the theoretical ones, with portfolio weights the
closest to the theoretical portfolio weights among all methods. Equal weight portfolio
now performs at a similar level to other methods (apart from TSCV and TARVM)
in terms of risk minimization, but our methods are around 50% better in minimizing
the our-of-sample SD or the actual risk. TSCV and TARVM are still the worst in
terms of risks, maximum exposures and portfolio turnover. Overall, NERIVE or
quarNERIVE (and their pre-averaging versions) do well in risk minimization compared
to all other methods including the equal weight portfolio, with reasonable and often
small maximum exposures and portfolio turnover.

4.5.4 Portfolio Allocation Study

In this study, we choose the stocks based on two lists, the “Fifty Most Active Stocks
on NYSE, Round Lots (mils. of shares), 2013” and “Fifty Most Active Stocks by
Dollar Volume on NYSE ($ in mils.), 2013”, from the New York Stock Exchange
Data official website http://www.nyxdata.com/. There are 26 stocks appearing
in both of the lists above, and 74 stocks in either of them. We downloaded all
the trading transactions of these 74 stocks in Year 2013 from Wharton Research
Data Services (WRDS, https://wrds-web.wharton.upenn.edu/). We omit the stock
Sprint Corporation due to missing price data. We first clean all the data by the
R-package “highfrequency”, which follows the high-frequency data cleaning steps
presented in Barndorff-Nielsen et al. (2009). We conduct our portfolio allocation study
on two portfolios, one with the p = 26 stocks appearing in both lists, and the other
with p = 73 stocks appearing in either of the lists.

We carry out the same portfolio allocation exercises as in our simulations for both
the 26-stock and 73-stock portfolios. First we do not remove jumps from the cleaned
data. The results are displayed in Tables 4.6, 4.7, 4.8 and 4.9. Both NERIVE and
quarNERIVE achieve the lowest out-of-sample SD in the two scenarios presented for
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both portfolios, which are all under 4.5%. PR-POET has similarly good performance
too, although with higher maximum exposure compared to NERIVE, quarNERIVE and
their pre-averaging versions. The maximum exposure of our methods are reasonably
low even compared to the no short sale or L2-constraint portfolios, with among the
lowest portfolio turnovers under all scenarios for both p = 26 and p = 73 portfolios.

We also considered jumps removed data. The results are presented in Table 4.10,
Table 4.11, Table 4.12 and Table 4.13. In general, the out-of-sample SD do not change
much for all methods, except for TSCV and TARVM which can see huge increase or
decrease in the risk. It is not surprising though as both methods can invest heavily
in all stocks, rendering them more sensitive to jumps removal. In fact the number of
jumps estimated for each date is typically around 4 or 5, which is a very small number
compared to the number of all-refresh data points.

4.6 Conclusion

We generalize nonlinear shrinkage of eigenvalues in a large sample covariance matrix
for independent and identically distributed random vectors (Lam, 2016) to that of a
large two-scale covariance matrix estimator (TSCV) for high-frequency returns, which
are not independent and identically distributed in general. To do this, we split the
data into partitions and regularize the eigenvalues of the TSCV within a partition by
the data from other partitions. Regularization is indeed achieved both theoretically
and empirically, as demonstrated by the good performance in our simulations and
portfolio allocation exercises.

Since TSCV has a slower rate of convergence than the multi-scale realized volatility
matrix (Tao et al., 2013), the kernel realized volatility matrix (Barndorff-Nielsen et al.,
2011) or the pre-averaging realized volatility positive semi-definite matrix (Christensen
et al., 2010), there are potential improvements if our method is applied to these
estimators. Indeed, simulation and empirical results in Chapter 4.5 do suggest that
pre-averaging can improve nonlinear shrinkage performance further. Comparisons with
the thresholded version of these estimators (Kim et al., 2016) will then be revealing,
and we leave these works in a future project.
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4.7 Proof of Theorems

Before presenting the proofs, we present the last set of assumptions which are required
for Theorem 4.1 to hold. We first need to decompose Xvs − X(s). Consider the
previous-tick time tis ∈ (vs−1, vs] for the ith asset, which should satisfy

vs−1 < t(i1)
s ≤ t(i2)

s ≤ · · · ≤ t(ip)
s = vs,

where {i1, . . . , ip} is some permutation of 1, . . . , p. Letting bs denote the number of
tides, we can write the above as

vs−1 < tj1
s < tj2

s < · · · < tjp−bs
s = vs,

where j1, . . . , jp−bs ∈ {1, . . . , p}.

Then we can write, for s = 1, . . . , nL,

Xvs −X(s) =
p−bs−1∑

m=1
Ds

mA(tjm
s , tjm+1

s )Zj
d,s(m+1)+

p−bs−1∑
m=1

Ds
mΣ(tjm

s , tjm+1
s )1/2Zj

v,s(m+1),

(4.15)
where Ds

m is a diagonal matrix with either 0 or 1 as elements. The jth diagonal element
is 1 if the jth asset is already traded at time tjm

s , and 0 otherwise. The matrices A(·, ·)
and Σ(·, ·) are as defined in Assumption (D1) and (V1) respectively.

(O3) The components of Zj
d,s(m+1), Zj

v,s(m+1) ∈ F j

t
jm+1
s

are conditionally independent
given F−j , E(Zj

d,s(m+1)|F−j) = 0 = E(Zj
v,s(m+1)|F−j), var(Zj

d,s(m+1)|F−j) =
Ip = var(Zj

v,s(m+ 1)|F−j) almost surely. Eighth moments exist for their compo-
nents as well.
If the drift µt is non-random, then Zj

d,s(m+ 1) = (1, 0, . . . 0)T.

(O4) (Only for random drift.) Using notations in Assumption (D2), we assume that
for some cd,j,s ∈ F−j ∪ F j

s greater than 0, and for ℓ = 1, . . . ,m,

E
(

pT
ijDs

mA(tjm
s , tjm+1

s )Zj
d,s(ℓ+ 1)

∣∣∣F−j ∪ F j

t
jℓ
s

)
=
(

1 − cd,j,s

(p− bs − 1)1/6

)
pT

ijDs
mA(tjm

s , tjm+1
s )Zj

d,s(ℓ) + eij
d,s(ℓ),
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where we define Zj
d,s(ℓ)Z

j
d,s(ℓ)T = Ip and eij

d,s(ℓ) = 0 for ℓ ≤ 0. The process
{eij

d,s(ℓ)} with eij
d,s(ℓ) ∈ F j

t
jℓ
s

has E(eij
d,s(ℓ)|F−j ∪ F j

t
jℓ−1
s

) = 0 almost surely, and
eij

d,s(ℓ)|F−j ∪ F j

t
jℓ−1
s

= OP (∥A(tjℓ−1
s , tjℓ

s )∥) = OP (p1/2 · (p− bs − 1)−1n−1L−1).

The assumption for E
(

pT
ijDs

mΣ(tjm
s , tjm+1

s )1/2Zj
v,s(ℓ+ 1)

∣∣∣F−j ∪ F j

t
jℓ
s

∪ Fσ
vs

)
runs

parallel to the above, with cv,j,s ∈ F−j ∪ F j
s replaces cd,j,s, Zj

v,s(·) replaces Zj
d,s(·),

and eij
v,s(·) replaces eij

d,s(·) with

eij
v,s(ℓ)|F−j ∪ F j

t
jℓ−1
s

= OP (∥Σ(tjℓ−1
s , tjℓ

s )1/2∥) = OP (∥A(tjℓ−1
s , tjℓ

s )∥/|tjℓ
s − tjℓ−1

s |1/2).

(O5) (Only for random drift.) Let ψ(x) = ex2 − 1. We assume that for ℓ = 1, . . . ,m,

E

{
ψ

(
|pT

ijDs
mA(tjm

s , tjm+1
s )Zj

d,s(ℓ)|
|pT

ijDs
mA(tjm

s , t
jm+1
s )Zj

d,s(ℓ− 1)|

)∣∣∣∣F−j ∪ F j

t
jℓ−1
s

}
< ∞,

E

{
ψ

(
|eij

d,s(ℓ)|
|pT

ijDs
mA(tjm

s , t
jm+1
s )Zj

d,s(ℓ− 1)|

)∣∣∣∣F−j ∪ F j

t
jℓ−1
s

}
< ∞.

The assumption for the volatility runs parallel to the above, with the expectations
now conditional on F−j ∪ F j

t
jℓ−1
s

∪ Fσ
vs

replaces A(·, ·), Σ(·, ·)1/2 replaces A(·, ·),
Zj

v,s(·) replaces Zj
d,s(·) and eij

v,s(·) replaces eij
d,s(·).

Assumptions (O3), (O4) and (O5) are parallel to (D1), (D2) and (D3) respectively.
The major difference is that the coefficients ρj

d,K,q, ρ
j
v,K,q ≤ ξ < 1 are now replaced

by coefficients that are going to 1 as n, p → ∞. This reflects that the correlations
among variables between tick-by-tick trading times are high, since the time length
between ticks is usually very small. Note that if the drift is non-random, we only need
Assumption (O3) that Zj

d,s(m+ 1) = (1, 0, . . . , 0)T, which is just a matter of notation
rather than assumption.

We provide the proof of all the theorems of the chapter here. We assume the
jump-diffusion model (4.10) for the log-price process {Xt}, and prove Theorem 4.2, so
that Theorem 4.1 then follows automatically. Define

Ỹt = Yt − Ĵt = (Xt − Ĵt) + ϵt = X̃t + ϵt, (4.16)

where {Ĵt} is the estimated jump process using the wavelet method in Fan and Wang
(2007) described in Chapter 4.3.1. Then {X̃t} represents the jumps-removed log-price
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process. For j = 1, . . . , L and vs = vj
s for s = 0, . . . , n(j), we then have

Ỹ(s) = X̃(s) + ϵ(s) = X̃vs + E(s),

where we define

E(s) = ϵ(s) + X̃(s) − X̃vs = ϵ(s) + (X(s) − Ĵ(s)) − (Xvs − Ĵvs).

We can then decompose, for i = 1, . . . , p, j = 1, . . . , L with P−j = (p1j, . . . ,ppj),

pT
ijΣ̃(τj−1, τj)pij = pT

ij[Ỹ, ỸT](K)
j pij − |Sj(K)|K

|Sj(1)| pT
ij[Ỹ, ỸT](1)

j pij

= I1 + 2I2 + I3,

where Σ̃(τj−1, τj) is the TSCV in (4.4) constructed using jumps-removed data, and

I1 = pT
ij[X̃v, X̃T

v ](K)
j pij − |Sj(K)|K

|Sj(1)| pT
ij[X̃v, X̃T

v ](1)
j pij,

I2 = pT
ij[X̃v,ET](K)

j pij − |Sj(K)|K
|Sj(1)| pT

ij[X̃v,ET](1)
j pij,

I3 = pT
ij[E,ET](K)

j pij − |Sj(K)|K
|Sj(1)| pT

ij[E,ET](1)
j pij,

(4.17)

with [X̃v, X̃T
v ](m)

j , [X̃v,ET](m)
j and [E,ET](m)

j defined by

[X̃v, X̃T
v ](m)

j = 1
m

∑
s,s+m∈Sj(m)

(X̃vs+m − X̃vs)(X̃vs+m − X̃vs)T,

[X̃v,ET](m)
j = 1

m

∑
s,s+m∈Sj(m)

(X̃vs+m − X̃vs)(E(s+m) − E(s))T,

[E,ET](m)
j = 1

m

∑
s,s+m∈Sj(m)

(E(s+m) − E(s))(E(s+m) − E(s))T.

Lemma 4.1 Let all the assumptions in Theorem 4.2 hold. Then with p/n → c > 0
when there are no pervasive factors, or p3/2/n → c > 0 when there are pervasive factors,

max
i=1,...,p
j=1,...,L

∣∣∣∣∣ I1

pT
ijΣ(τj−1, τj)pij

− 1
∣∣∣∣∣ = OP (n−1/6).
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Proof of Lemma 4.1. By Assumption (D1) and (V1), we first decompose for an
integer m ≥ 1, and i = 1, . . . , p, j = 1, . . . , L,

pT
ij[X̃v, X̃T

v ](m)
j pij = I11 + 2I12 + I13, where

I11 = 1
m

m−1∑
q=0

|Sj(m)|m∑
r=1

(pT
ijA(v(r−1)m+q, vrm+q)Zj

d,rm+q + pT
ijΣ(v(r−1)m+q, vrm+q)1/2Zj

v,rm+q)2,

I12 = 1
m

m−1∑
q=0

|Sj(m)|m∑
r=1

(pT
ijA(v(r−1)m+q, vrm+q)Zj

d,rm+q + pT
ijΣ(v(r−1)m+q, vrm+q)1/2Zj

v,rm+q)

· (Jvrm+q − Ĵvrm+q − Jv(r−1)m+q
+ Ĵv(r−1)m+q

)Tpij,

I13 = 1
m

m−1∑
q=0

|Sj(m)|m∑
r=1

(
(Jvrm+q − Ĵvrm+q − Jv(r−1)m+q

+ Ĵv(r−1)m+q
)Tpij

)2
.

(4.18)

Consider further decomposition

∣∣∣∣∣ I11

pT
ijΣ(τj−1, τj)pij

− 1
∣∣∣∣∣ ≤

∣∣∣∣∣ 1
m

m−1∑
q=0

|Sj(m)|m∑
r=1

(aij
d,r,m,q(r))2

∣∣∣∣∣+
∣∣∣∣∣ 2
m

m−1∑
q=0

|Sj(m)|m∑
r=1

aij
d,r,m,q(r)bij

v,r,m,q(r)
∣∣∣∣∣

+
∣∣∣∣∣ 1
m

m−1∑
q=0

|Sj(m)|m∑
r=1

(bij
v,r,m,q(r))2 − 1

∣∣∣∣∣, where

(aij
d,r,m,q(ℓ))2 = (pT

ijA(v(r−1)m+q, vrm+q)Zj
d,ℓm+q)2/pT

ijΣ(τj−1, τj)pij,

(bij
v,r,m,q(ℓ))2 = (pT

ijΣ(v(r−1)m+q, vrm+q)1/2Zj
v,ℓm+q)2/pT

ijΣ(τj−1, τj)pij.

To find the order of I11/pT
ijΣ(τj−1, τj)pij − 1, define

gij
d,r,m,q(ℓ) = (aij

d,r,m,q(ℓ))2 − E((aij
d,r,m,q(ℓ))2|F−j ∪ F j

(ℓ−1)m+q),

gij
v,r,m,q(ℓ) = (bij

v,r,m,q(ℓ))2 − E((bij
v,r,m,q(ℓ))2|F−j ∪ F j

(ℓ−1)m+q ∪ Fσ
vrm+q

).

Then we first consider
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1
m

m−1∑
q=0

|Sj(m)|m∑
r=1

(aij
d,r,m,q(r))2

= 1
m

m−1∑
q=0

|Sj(m)|m∑
r=1

[(aij
d,r,m,q(r))2 − E((aij

d,r,m,q(r))2|F−j ∪ F j
(r−1)m+q)]

+ 1
m

m−1∑
q=0

|Sj(m)|m∑
r=1

{
ρj

d,m,q(a
ij
d,r,m,q(r − 1))2

+ (1 − ρj
d,m,q)

(pT
ijA(v(r−1)m+q, vrm+q))2

pT
ijΣ(τj−1, τj)pij

+
eij

d,(r−1)m+q

pT
ijΣ(τj−1, τj)pij

}

= 1
m

m−1∑
q=0

|Sj(m)|m∑
r=1

gij
d,r,m,q(r) + ρj

d,m,q · 1
m

m−1∑
q=0

|Sj(m)|m∑
r=2

gij
d,r,m,q(r − 1)

+ 1
m

m−1∑
q=0

|Sj(m)|m∑
r=1

{
eij

d,(r−1)m+q

pT
ijΣ(τj−1, τj)pij

+ ρj
d,m,q ·

eij
d,(r−2)m+q

pT
ijΣ(τj−1, τj)pij

}

+ (ρj
d,m,q)2 · 1

m

m−1∑
q=0

|Sj(m)|m∑
r=3

{
(a(ij)

d,r,m,q(r − 2))2 −
(pT

ijA(v(r−1)m+q, vrm+q))2

pT
ijΣ(τj−1, τj)pij

}

+ 1
m

m−1∑
q=0

|Sj(m)|m∑
r=1

(pT
ijA(v(r−1)m+q, vrm+q))2

pT
ijΣ(τj−1, τj)pij

= I11,1 + I11,2 + I11,3 + I11,4,

where the equalities use Assumption (D2), and

I11,1 = 1
m

m−1∑
q=0


⌊|Sj(m)|m/2⌋−1∑

ℓ=0
(ρj

d,m,q)ℓ
|Sj(m)|m∑

r=1+ℓ

gij
d,r,m,q(r − ℓ)

 ,
I11,2 = 1

m

m−1∑
q=0


⌊|Sj(m)|m/2⌋−1∑

ℓ=0
(ρj

d,m,q)ℓ
|Sj(m)|m∑

r=1+ℓ

eij
d,(r−1−ℓ)m+q

pT
ijΣ(τj−1, τj)pij

 ,
I11,3 = (ρj

d,m,q)⌊|Sj(m)|m/2⌋

· 1
m

m−1∑
q=0

|Sj(m)|m∑
r=⌊|Sj(m)|m/2⌋+1

{
(a(ij)

d,r,m,q(r − 2))2 −
(pT

ijA(v(r−1)m+q, vrm+q))2

pT
ijΣ(τj−1, τj)pij

}
,

I11,4 = 1
m

m−1∑
q=0

|Sj(m)|m∑
r=1

(pT
ijA(v(r−1)m+q, vrm+q))2

pT
ijΣ(τj−1, τj)pij

.
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Letting Kij
d,r,m,q(ℓ) =

(pT
ijA(v(r−1)m+q ,vrm+q)Zj

d,(ℓ−1)m+q
)2

pT
ijΣ(τj−1,τj)pij

, by Assumption (D2),

E

ψ
 |gij

d,r,m,q(r − ℓ)|
Kij

d,r,m,q(r − ℓ)

 ∣∣∣∣F−j ∪ F j
(r−1−ℓ)m+q ∪ Fσ

τj

 < ∞,

E

ψ
 |eij

d,(r−1−ℓ)m+q/pT
ijΣ(τj−1, τj)pij|

Kij
d,r,m,q(r − 1 − ℓ)

 ∣∣∣∣F−j ∪ F j
(r−2−ℓ)m+q ∪ Fσ

τj

 < ∞.

(4.19)

At the same time, by Assumption (D1) that eighth moments exist for the Zj
d,(r−1−ℓ)m+q’s

and are conditionally independent given F−j, we can use Lemma 2.7 of Bai and
Silverstein (1998) to arrive at

E((Kij
d,r,m,q(r − ℓ))4|F−j ∪ Fσ

τj
) = O(∥A(v(r−1)m+q, vrm+q)∥8/(pT

ijΣ(τj−1, τj)pij)4)

= O(pfm · 1
(nL)2/

1
L

)4 = O(pfm

n2L
)2, so that

Kij
d,r,m,q(r − ℓ)2 = OP

(
pfm · 1

(nL)2/
1
L

)2
= OP

(
pfm

n2L

)2
, (4.20)

where the last line used Assumption (D1), with pf = 1 if there are no pervasive factors
and pf = p if there are pervasive factors or the drift is non-random, and the second
line used Assumption (V1) on the rate of λmin(Σ(τj−1, τj)). With (4.19) and (4.20),
we can apply Theorem 2.2 of van de Geer (2002) to arrive at

|Sj(m)|m∑
r=1+ℓ

gij
d,r,m,q(r − ℓ),

|Sj(m)|m∑
r=1+ℓ

eij
d,(r−1−ℓ)m+q

pT
ijΣ(τj−1, τj)pij

= OP

(
|Sj(m)|1/2

m · pfm

n2L

)
= OP

(
pfm

1/2

n3/2L

)
,

for ℓ = 0, 1, . . . , ⌊|Sj(m)|m/2⌋ − 1. Since ρj
d,m,q ≤ ξ < 1 uniformly by Assumption (D2),

we have
I11,1, I11,2 = OP

(
pfm

1/2

n3/2L

)
. (4.21)

Similar techniques in finding the order of Kij
d,r,m,q(r − ℓ) show that

I11,3 = OP

(
ξn/m · pfm

n2L

)
. (4.22)

For I11,4, by (4.20), we have

I11,4 = O
(

|Sj(m)|m · pfm

n2L

)
= O

(
pf

nL

)
. (4.23)
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Combining (4.21), (4.22) and (4.23), we have

1
m

m−1∑
q=0

|Sj(m)|m∑
r=1

(aij
d,r,m,q(r))2 = OP (pfn

−1L−1). (4.24)

Similar to the above calculations, by Assumption (V2), we can decompose

1
m

m−1∑
q=0

|Sj(m)|m∑
r=1

(bij
v,r,m,q(r))2 − 1 = J11,1 + J11,2 + J11,3 + J11,4, where

J11,1 = 1
m

m−1∑
q=0


⌊|Sj(m)|m/2⌋−1∑

ℓ=0
(ρj

v,m,q)ℓ
|Sj(m)|m∑

r=1+ℓ

gij
v,r,m,q(r − ℓ)

 ,
J11,2 = 1

m

m−1∑
q=0


⌊|Sj(m)|m/2⌋−1∑

ℓ=0
(ρj

v,m,q)ℓ
|Sj(m)|m∑

r=1+ℓ

eij
v,(r−1−ℓ)m+q

pT
ijΣ(τj−1, τj)pij

 ,
J11,3 = (ρj

v,m,q)⌊|Sj(m)|m/2⌋

· 1
m

m−1∑
q=0

|Sj(m)|m∑
r=⌊|Sj(m)|m/2⌋+1

{
(b(ij)

v,r,m,q(r − 2))2 −
pT

ijΣ(v(r−1)m+q, vrm+q)pij

pT
ijΣ(τj−1, τj)pij

}
,

J11,4 = 1
m

m−1∑
q=0

|Sj(m)|m∑
r=1

pT
ijΣ(v(r−1)m+q, vrm+q)pij

pT
ijΣ(τj−1, τj)pij

− 1.

Letting Kij
v,r,m,q(ℓ) =

(pT
ijΣ(v(r−1)m+q ,vrm+q)1/2Zj

d,(ℓ−1)m+q
)2

pT
ijΣ(τj−1,τj)pij

, by Assumption (V2),

E

{
ψ

(
|gij

v,r,m,q(r − ℓ)|
Kij

v,r,m,q(r − ℓ)

) ∣∣∣∣F−j ∪ F j
(r−1−ℓ)m+q

}
< ∞,

E

ψ
 |eij

v,(r−1−ℓ)m+q/pT
ijΣ(τj−1, τj)pij|

Kij
v,r,m,q(r − 1 − ℓ)

 ∣∣∣∣F−j ∪ F j
(r−2−ℓ)m+q

 < ∞.

(4.25)

At the same time, by Assumption (V1) that eighth moments exist for the Zj
v,(r−1−ℓ)m+q’s

and are conditionally independent given F−j, we can use Lemma 2.7 of Bai and
Silverstein (1998) to arrive at
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E((Kij
v,r,m,q(r − ℓ))4|F−j ∪ Fσ

τj
) = O((pT

ijΣ(v(r−1)m+q, vrm+q)pij)4/(pT
ijΣ(τj−1, τj)pij)4)

= O(pf · m
nL

/
pf

L
)4, so that

Kij
v,r,m,q(r − ℓ)2 = OP

(
pf · m

nL
/
pf

L

)2
= OP

(
m

n

)2
, (4.26)

where the last line used Assumption (V1), with pf = 1 if there are no pervasive factors
and pf = p if there are pervasive factors. The main difference between (4.20) and
(4.26) is that in (4.26), the numerator is a part of the denominator, and if pervasive
factors affect the numerator, they have to affect the denominator too. This results in
the balance of orders and hence pf disappears from the order of the term. With (4.25)
and (4.26), we can apply Theorem 2.2 of van de Geer (2002) to arrive at

J11,1, J11,2 = OP

(
|Sj(m)|1/2

m · m
n

)
= OP (m1/2n−1/2). (4.27)

Similar to I11,3, we have
J11,3 = OP (ξn/m ·mn−1). (4.28)

For J11,4, using Assumption (V1),

J11,4 = 1
m

m−1∑
q=0

pT
ijΣ(vq, vn(j)−m+1+q)pij − pT

ijΣ(τj−1, τj)pij

pT
ijΣ(τj−1, τj)pij

= − 1
m

m−1∑
q=0

pT
ijΣ(vn(j)−m+1+q, τj)pij + pT

ijΣ(τj−1, vq)pij

pT
ijΣ(τj−1, τj)pij

= OP

 1
m

m−1∑
q=0

(m− 1 − q) + q

nL
/

1
L

 = OP (mn−1). (4.29)

Combining (4.27), (4.28) and (4.29), we have

1
m

m−1∑
q=0

|Sj(m)|m∑
r=1

(bij
v,r,m,q(r))2 − 1 = OP (m1/2n−1/2). (4.30)
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Using the Cauchy-Schwarz inequality, using (4.24) and (4.30), we have
∣∣∣∣∣ I11

pT
ijΣ(τj−1, τj)pij

− 1
∣∣∣∣∣ = OP (pfn

−1L−1 +m1/2n−1/2 + p
1/2
f n−1/2L−1/2)

= OP (n−1/6), (4.31)

if there are pervasive factors such that pf = p ≍ n2/3 and m = O(n2/3). Turning to I12

and I13 defined in (4.17), using Assumption (W1) to (W3), and the rate in Fan and
Wang (2007), we have

I13/pT
ijΣ(τj−1, τj)pij = OP (n−1/2L1/2).

The above implies, through using the Cauchy-Schwarz inequality,

I12/pT
ijΣ(τj−1, τj)pij = OP (n−1/4L1/4).

Combining all results, we have for K ≍ n2/3,

∣∣∣∣∣p
T
ij[X̃v, X̃T

v ](K)
j pij

pT
ijΣ(τj−1, τj)pij

− 1
∣∣∣∣∣ = OP (n−1/6),

|Sj(K)|K
|Sj(1)| ·

∣∣∣∣∣p
T
ij[X̃v, X̃T

v ](1)
j pij

pT
ijΣ(τj−1, τj)pij

∣∣∣∣∣ = Op(K−1 · 1) = OP (n−2/3).

Note that the above bounds are independent of the indices i and j, and hence

max
i=1,...,p
j=1,...,L

∣∣∣∣∣ I1

pT
ijΣ(τj−1, τj)pij

− 1
∣∣∣∣∣ = OP (n−1/6 + n−2/3) = OP (n−1/6).

This completes of proof of the lemma. �

Lemma 4.2 Let all the assumptions in Theorem 4.2 hold. Then with p/n → c > 0
when there are no pervasive factors, or p3/2/n → c > 0 when there are pervasive factors,

max
i=1,...,p
j=1,...,L

max
s=1,...,n(j)

∣∣∣∣∣ pT
ij(Xvs − X(s))

(pT
ijΣ(τj−1, τj)pij)1/2

∣∣∣∣∣ = OP (p1/6n−1/2).
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Proof of Lemma 4.2. Consider pT
ij(Xvs −X(s))

(pT
ijΣ(τj−1,τj)pij)1/2 = Aij

d (s) + Aij
v (s), where using

(4.15),

Aij
d (s) =

p−bs−1∑
m=1

pT
ijDs

mA(tjm
s , tjm+1

s )Zj
d,s(m+ 1)

(pT
ijΣ(τj−1, τj)pij)1/2 ,

Aij
v (s) =

p−bs−1∑
m=1

pT
ijDs

mΣ(tjm
s , tjm+1

s )1/2Zj
v,s(m+ 1)

(pT
ijΣ(τj−1, τj)pij)1/2 .

We first deal with non-random drift for Aij
d (s). By Assumption (D1) and (V1), we have

|Aij
d (s)| ≤

p−bs−1∑
m=1

∥pT
ijDs

mA(tjm
s , tjm+1

s )∥
(pT

ijΣ(τj−1, τj)pij)1/2

= OP ((p− bs − 1) · p1/2 · (p− bs − 1)−1n−1L−1/L1/2)
= OP (p1/2n−1). (4.32)

Now we focus on random drift. Define for ℓ = 1, . . . ,m+ 1,

gij
d,s,m(ℓ) =

pT
ijDs

mA(tjm
s , tjm+1

s )Zj
d,s(ℓ) − E(pT

ijDs
mA(tjm

s , tjm+1
s )Zj

d,s(ℓ)|F−j ∪ F j

t
jℓ−1
s

)

(pT
ijΣ(τj−1, τj)pij)1/2 ,

gij
v,s,m(ℓ) =

pT
ijDs

mΣ(tjm
s , tjm+1

s )1/2Zj
v,s(ℓ) − E(pT

ijDs
mΣ(tjm

s , tjm+1
s )1/2Zj

v,s(ℓ)|F−j ∪ F j

t
jℓ−1
s

∪ Fσ
τj

)

(pT
ijΣ(τj−1, τj)pij)1/2 .

Consider Aij
d (s) first. By Assumption (O4), we can decompose

Aij
d (s) =

p−bs−1∑
m=1

gij
d,s,m(m+ 1) +

(
1 − cd,j,s

(p− bs − 1)1/6

) p−bs−1∑
m=1

pT
ijDs

mA(tjm
s , tjm+1

s )Zj
d,s(m)

(pT
ijΣ(τj−1, τj)pij)1/2

+
p−bs−1∑

m=1

eij
d,s(m)

(pT
ijΣ(τj−1, τj)pij)1/2

= J1 + J2 + J3,
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where

J1 =
⌊(p−bs−1)/2⌋−1∑

ℓ=0

(
1 − cd,j,s

(p− bs − 1)1/6

)ℓ p−bs−1∑
m=1

gij
d,s,m(m− ℓ+ 1),

J2 =
⌊(p−bs−1)/2⌋−1∑

ℓ=0

(
1 − cd,j,s

(p− bs − 1)1/6

)ℓ p−bs−1∑
m=1

eij
d,s(m− ℓ)

(pT
ijΣ(τj−1, τj)pij)1/2 ,

J3 =
(

1 − cd,j,s

(p− bs − 1)1/6

)⌊(p−bs−1)/2⌋

·
p−bs−1∑

m=1

pT
ijDs

mA(tjm
s , tjm+1

s )Zj
d,s(m+ 1 − ⌊(p− bs − 1)/2⌋)

(pT
ijΣ(τj−1, τj)pij)1/2 .

Letting Kij
d,s,m(ℓ) = |pT

ijDs
mA(tjm

s ,t
jm+1
s )Zj

d,s
(ℓ−1)|

(pT
ijΣ(τj−1,τj)pij)1/2 , by Assumption (O5),

E

ψ
 |gij

d,s,m(m− ℓ+ 1)|
Kij

d,s,m(m− ℓ+ 1)

 ∣∣∣∣F−j ∪ F j

t
jm−ℓ
s

 < ∞,

E

ψ
 |eij

d,(s(m− ℓ)/(pT
ijΣ(τj−1, τj)pij)1/2|

Kij
d,s,m(m− ℓ)

 ∣∣∣∣F−j ∪ F j

t
jm−ℓ−1
s

 < ∞.

(4.33)

At the same time, by Assumption (O3) that fourth moments exist for the Zj
d,s(ℓ)’s and

are conditionally independent given Fj, we can use Lemma 2.7 of Bai and Silverstein
(1998) to arrive at

E(Kij
d,s,m(m− ℓ+ 1)4|F−j) = O(∥A(tjm

s , tjm+1
s )∥4/(pT

ijΣ(τj−1, τj)pij)2)
= O(pf · (p− bs − 1)−2n−2L−2/L−1)
= O(pf · (p− bs − 1)−2n−2L−1), so that

Kij
d,s,m(m− ℓ+ 1)2 = OP (pf · (p− bs − 1)−2n−2L−1), (4.34)

where pf = 1 if there are no pervasive factors and pf = p if there are pervasive factors.
With (4.33) and (4.34), we can apply Theorem 2.2 of van de Geer (2002) to arrive at

p−bs−1∑
m=1

gij
d,s,m(m− ℓ− 1),

p−bs−1∑
m=1

eij
d,s(m− ℓ)

(pT
ijΣ(τj−1, τj)pij)1/2

= OP (p1/2 · p1/2
f · (p− bs − 1)−1n−1L−1/2)

= OP (p1/2
f p−1/2n−1L−1/2).



4.7 Proof of Theorems 135

The above implies that

J1, J2 = OP ((p− bs − 1)1/6 · p1/2
f p−1/2n−1L−1/2) = OP (p1/2

f p−1/3n−1L−1/2).

We also have, as p → ∞,

J3 = OP (e−cd,j,sp5/6/2p
1/2
f n−1L−1/2).

The above results give

Aij
d (s) = OP (p1/2

f p−1/3n−1L−1/2). (4.35)

Parallel arguments show that

p−bs−1∑
m=1

gij
v,s,m(m− ℓ− 1),

p−bs−1∑
m=1

eij
v,s(m− ℓ)

(pT
ijΣ(τj−1, τj)pij)1/2

= OP ((p− bs − 1)1/2 · (pT
ijDs

mΣ(tjm
s , tjm+1

s )Ds
mpij)1/2/(pT

ijΣ(τj−1, τj)pij)1/2)
= OP ((p− bs − 1)1/2 · (p− bs − 1)−1/2n−1/2L−1/2/L−1/2)
= OP (n−1/2),

where pf cancels since Ds
m is only a diagonal matrix of 1 or 0, and hence if pervasive

factors are affecting the numerator, it has to affect the denominator too. Parallel
arguments as before show that

Aij
v (s) = OP (p1/6n−1/2). (4.36)

Combining (4.32), (4.35) and (4.36), since we at most have p3/2/n → c > 0,

pT
ij(Xvs − X(s))

(pT
ijΣ(τj−1, τj)pij)1/2 = OP (p1/6n−1/2 + p1/2n−1) = OP (p1/6n−1/2). (4.37)

This completes the proof of the theorem, since the above rate is free of all indices. �

Lemma 4.3 Let all the assumptions in Theorem 4.2 hold. Then with p/n → c > 0
when there are no pervasive factors, or p3/2/n → c > 0 when there are pervasive factors,

max
i=1,...,p
j=1,...,L

∣∣∣∣∣ I2

pT
ijΣ(τj−1, τj)pij

∣∣∣∣∣ = OP (n−1/6).
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Proof of Lemma 4.3 For an integer m ≥ 1, i = 1, . . . , p and j = 1, . . . , L, write

pT
ij[X̃v,ET](m)

j pij

pT
ijΣ(τj−1, τj)pij

=
3∑

i=1
(I2,i + Ji +Ki), where, defining e(Jt) = Jt − Ĵt,

I2,1 = 1
m

∑
s,s−m∈Sj(m)

pT
ijA(vs−m, vs)Zj

d,s(ϵ(s) − ϵ(s−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

I2,2 = 1
m

∑
s,s−m∈Sj(m)

pT
ijΣ(vs−m, vs)1/2Zj

v,s(ϵ(s) − ϵ(s−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

I2,3 = 1
m

∑
s,s−m∈Sj(m)

pT
ij(e(Jvs) − e(Jvs−m))(ϵ(s) − ϵ(s−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

J1 = 1
m

∑
s,s−m∈Sj(m)

pT
ijA(vs−m, vs)Zj

d,s(X(s) − Xvs + Xvs−m − X(s−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

J2 = 1
m

∑
s,s−m∈Sj(m)

pT
ijΣ(vs−m, vs)1/2Zj

v,s(X(s) − Xvs + Xvs−m − X(s−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

J3 = 1
m

∑
s,s−m∈Sj(m)

pT
ij(e(Jvs) − e(Jvs−m)(X(s) − Xvs + Xvs−m − X(s−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

K1 = 1
m

∑
s,s−m∈Sj(m)

pT
ijA(vs−m, vs)Zj

d,s(e(J(s)) − e(Jvs) − e(J(s−m)) + e(Jvs−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

K2 = 1
m

∑
s,s−m∈Sj(m)

pT
ijΣ(vs−m, vs)1/2Zj

v,s(e(J(s)) − e(Jvs) − e(J(s−m)) + e(Jvs−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

K3 = 1
m

∑
s,s−m∈Sj(m)

pT
ij(e(Jvs) − e(Jvs−m))(e(J(s)) − e(Jvs) − e(J(s−m)) + e(Jvs−m))Tpij

pT
ijΣ(τj−1, τj)pij

.

Consider gij
d,s = pT

ijA(vs−m, vs)Zj
d,sϵ(s)Tpij. Then

E

(( 1
m

∑
s,s−m∈Sj(m)

gij
d,s

)2∣∣∣∣F−j

)
= 1
m2

∑
s,s−m∈Sj(m)

E((gij
d,s)2|F−j)

+ 1
m2

∑
sk,sk+m∈Sj(m)

s1 ̸=s2

E(gij
d,s1g

ij
d,s2|F−j). (4.38)
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With Assumption (D1) and (E2), we can use Lemma 2.7 of Bai and Silverstein (1998)
to arrive at

E((gij
d,s)2|F−j) ≤ E1/2((pT

ijA(vs−m, vs)Zj
d,s)4|F−j)E1/2((pT

ij(Σj
ϵ,s)1/2Zj

ϵ,s)4|F−j)
= O(pT

ijA(vs−m, vs)A(vs−m, vs)Tpij · E1/2((pT
ijΣj

ϵ,spij)2|F−j))
= O(∥A(vs−m, vs)∥2 · λϵ) = OP (pfmn

−2L−2),

where pf = p if there are pervasive factors, and pf = 1 otherwise. Also, by Assumption
(E3), since E(pT

ijϵ(s)|F−j) = 0, by Theorem 1.4 in Rio (2013) we have that

E(gij
d,s1g

ij
v,s2|F−j) ≤ 2O(n−1)E1/2((pT

ijϵ(s1))2|F−j)
· E1/2((pT

ijϵ(s2)pT
ijA(vs1−m, vs1)Zj

d,s1pT
ijA(vs2−m, vs2)Zj

d,s2)2|F−j)
≤ 2O(n−1)E1/2((pT

ijϵ(s1))2|F−j) · E1/4((pT
ijϵ(s2))4|F−j)

· E1/8((pT
ijA(vs1−m, vs1)Zj

d,s1)8|F−j)E1/8((pT
ijA(vs2−m, vs2)Zj

d,s2)8|F−j)
= O(n−1∥A(vs−m, vs)∥2) = O(pfmn

−3L−2),

where the third inequality sign used Lemma 2.7 of Bai and Silverstein (1998). Using
these two results, (4.38) becomes

E

(( 1
m

∑
s,s−m∈Sj(m)

gij
d,s

)2∣∣∣∣F−j

)
= O(m−2pfmn

−1L−2) = O(pfm
−1n−1L−2).

This implies that

I2,1 = OP (p1/2
f m−1/2n−1/2L−1/L−1) = OP (p1/2

f m−1/2n−1/2). (4.39)

Now consider gij
v,s = pT

ijΣ(vs−m, vs)1/2Zj
v,sϵ(s)Tpij/pT

ijΣ(τj−1, τj)pij. Parallel argu-
ments using Assumption (V1) and (E2) give

E((gij
v,s)2|F−j ∪ Fσ

τj
) = O(pT

ijΣ(vs−m, vs)pij/(pT
ijΣ(τj−1, τj)pij)2) = O(pfmn

−1L−1/(p2
fL

−2))
= O(p−1

f mn−1L),
E(gij

v,s1g
ij
v,s2|F−j ∪ Fσ

τj
) = O(n−1p−1

f mn−1L) = O(p−1
f mn−2L)).

Hence using decomposition parallel to (4.38),

I2,2 = OP (m−2 · p−1
f mL)1/2 = OP (p−1/2

f m−1/2L1/2). (4.40)
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For terms involving jumps, using Assumption (W1) to (W3) and the rate in Fan and
Wang (2007), we have

I2,3 = OP (n−1/4L3/4),
J3 = OP (n−1/4L1/4 · p1/6n−1/2) = OP (p1/6n−3/4L1/4),
K1 = OP (∥A(vs−m, vs)∥/L−1 · n−1/4L−1/4) = OP (p1/2

f m1/2n−5/4L−1/4),
K2 = OP (p−1/2

f m1/2n−1/2L1/2 · n−1/4L−1/4) = OP (p−1/2
f m1/2n−3/4L1/4),

K3 = OP (n−1/2L1/2),

(4.41)

where J3 used the result of Lemma 4.2. Using the result of Lemma 4.2 again, we have

J1 = OP (nm−1 · p1/2
f m1/2n−1L−1/2 · p1/6n−1/2) = OP (p1/2

f p1/6m−1/2n−1/2L−1/2),
J2 = OP (nm−1 ·m1/2n−1/2 · p1/6n−1/2) = OP (m−1/2p1/6).

(4.42)

At m = K ≍ n2/3, (4.39), (4.40), (4.41) and (4.42) imply that, for pf = 1 with p ≍ n

or pf = p ≍ n2/3,
pT

ij[X̃v,ET](K)
j pij

pT
ijΣ(τj−1, τj)pij

= OP (n−1/6).

At m = 1, (4.39), (4.40), (4.41) and (4.42) imply that, for pf = 1 with p ≍ n or
pf = p ≍ n2/3,

pT
ij[X̃v,ET](1)

j pij

pT
ijΣ(τj−1, τj)pij

= OP (p1/6).

Since the above two results are free of all indices, they imply that

max
i=1,...,p
j=1,...,L

∣∣∣∣∣ I2

pT
ijΣ(τj−1, τj)pij

∣∣∣∣∣ = OP (n−1/6 + p1/6K−1) = OP (n−1/6).

This completes the proof of the lemma. �

Lemma 4.4 Let all the assumptions in Theorem 4.2 hold. Then with p/n → c > 0
when there are no pervasive factors, or p3/2/n → c > 0 when there are pervasive factors,

max
i=1,...,p
j=1,...,L

∣∣∣∣∣ I3

pT
ijΣ(τj−1, τj)pij

∣∣∣∣∣ = OP (n−1/6).



4.7 Proof of Theorems 139

Proof of Lemma 4.4. Consider for an integer m ≥ 1 and i = 1, . . . , p, j = 1, . . . , L,
using the notations in the proof of Lemma 4.3,

pT
ij[E,ET](m)

j pij

pT
ijΣ(τj−1, τj)pij

=
3∑

ℓ=1
I3,ℓ + 2

3∑
ℓ=1

I3,ℓ, where

I3,1(m) = 1
m

∑
s,s−m∈Sj(m)

(pT
ij(ϵ(s) − ϵ(s−m)))2

pT
ijΣ(τj−1, τj)pij

,

I3,2 = 1
m

∑
s,s−m∈Sj(m)

(pT
ij(X(s) − Xvs + Xvs−m − X(s−m)))2

pT
ijΣ(τj−1, τj)pij

,

I3,3 = 1
m

∑
s,s−m∈Sj(m)

(pT
ij(e(J(s)) − e(Jvs) − e(J(s−m)) + e(Jvs−m)))2

pT
ijΣ(τj−1, τj)pij

,

I3,4 = 1
m

∑
s,s−m∈Sj(m)

pT
ij(ϵ(s) − ϵ(s−m))(X(s) − Xvs + Xvs−m − X(s−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

I3,5 = 1
m

∑
s,s−m∈Sj(m)

pT
ij(ϵ(s) − ϵ(s−m))(e(J(s)) − e(Jvs) − e(J(s−m)) + e(Jvs−m))Tpij

pT
ijΣ(τj−1, τj)pij

,

I3,6 = 1
m

∑
s,s−m∈Sj(m)

pT
ij(X(s) − Xvs + Xvs−m − X(s−m))

pT
ijΣ(τj−1, τj)pij

· (e(J(s)) − e(Jvs) − e(J(s−m)) + e(Jvs−m))Tpij.

We consider I3,2 first, which by Lemma 4.2 has

I3,2 = OP (nm−1 · p1/3n−1) = OP (p1/3m−1).

Using Assumption (W1) to (W3) and the rate of wavelet removal in Fan and Wang
(2007), we have

I3,3 = OP (n−1/2L1/2),
I3,5 = OP (n−1/4L3/4),
I3,6 = OP (p1/6n−1/2 · n−1/4L1/4) = OP (p1/6n−3/4L1/4).

Consider hij
s = pT

ijϵ(s)(X(s) − Xvs)Tpij/pT
ijΣ(τj−1, τj)pij. Then using Assumption

(E3), (D1) and (V1) that eighth moments exist, with s1 ̸= s2,

E((hij
s )2|F−j ∪ Fσ

τj
) = O(p1/3n−1L),

E(hij
s1h

ij
s2|F−j ∪ Fσ

τj
) = O(n−1 · L · p1/3n−1) = O(p1/3n−2L).
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Hence using decomposition parallel to (4.38), we can conclude that

I3,4 = OP (m−2 · n · p1/3n−1L+m−2 · n2 · p1/3n−2L)1/2 = OP (p1/6m−1L1/2).

Finally, for K ≍ n2/3, we consider the rate of

(pT
ijΣ(τj−1, τj)pij)

(
I3,1(K) − |Sj(K)|K

|Sj(1)| I3,1(1)
)

= J1 − 2J2 + J3, where

J1 = 1
K

∑
s,s−K∈Sj(K)

(pT
ijϵ(s))2 − |Sj(K)|K

|Sj(1)|
∑

s,s−1∈Sj(1)
(pT

ijϵ(s))2,

J2 = 1
K

∑
s,s−K∈Sj(K)

pT
ijϵ(s)ϵ(s−K)Tpij − |Sj(K)|K

|Sj(1)|
∑

s,s−1∈Sj(1)
pT

ijϵ(s)ϵ(s− 1)Tpij,

J3 = 1
K

∑
s,s−K∈Sj(K)

(pT
ijϵ(s−K))2 − |Sj(K)|K

|Sj(1)|
∑

s,s−1∈Sj(1)
(pT

ijϵ(s− 1))2.

With Assumption (E1) to (E3), writing gij
m,s = pT

ijϵ(s)ϵ(s−m)Tpij, by Lemma 2.7 of
Bai and Silverstein (1998),

E

{( 1
m

∑
s,s−m∈Sj(m)

gij
m,s

)2∣∣∣∣F−j

}
= O(m−2n · 1 + n−1 ·m−2n2 · 1) = O(m−2n), hence

1
m

∑
s,s−m∈Sj(m)

gij
m,s = OP (m−1n1/2),

which implies that
J2 = OP (K−1n1/2) = OP (n−1/6).

We can further decompose J1 = J11 − J12 + J13, where

J11 = 1
K

∑
s,s−K∈Sj(K)

((pT
ijϵ(s))2 − pT

ijΣj
ϵ,spij),

J12 = |Sj(K)|K
|Sj(1)|

∑
s,s−1∈Sj(1)

((pT
ijϵ(s))2 − pT

ijΣj
ϵ,spij),

J13 = 1
K

∑
s,s−K∈Sj(K)

pT
ijΣj

ϵ,spij − |Sj(K)|K
|Sj(1)|

∑
s,s−1∈Sj(1)

pT
ijΣj

ϵ,spij.
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Consider

J13 = 1
K

∑
s,s−K∈Sj(K)

pT
ijΣj

ϵ,spij − 1
K

∑
s,s−1∈Sj(1)

pT
ijΣj

ϵ,spij + K − 1
Kn(j)

∑
s,s−1∈Sj(1)

pT
ijΣϵ,spij

= − 1
K

K−1∑
s=1

pT
ijΣj

ϵ,spij + K − 1
Kn(j)

n(j)∑
s=1

pT
ijΣj

ϵ,spij

=
(

pT
ijE(Σj

ϵ,s)pij − 1
K

K−1∑
s=1

pT
ijΣj

ϵ,spij

)
+
(

1
n(j)

n(j)∑
s=1

pT
ijΣj

ϵ,spij − pT
ijE(Σj

ϵ,s)pij

)

− 1
Kn(j)

n(j)∑
s=1

pT
ijΣj

ϵ,spij

= OP (K−1/2) +OP (n−1/2) +OP (K−1) = OP (n−1/3),

where the last line used the weak law of large number given F−j.

Now define gij
s = pT

ijϵ(s) − pT
ijΣj

ϵ,spij. Using Lemma 2.7 of Bai and Silverstein
(1998) under Assumption (E1) to (E3), we have

E(J2
11|F−j ∪ {Σϵ,u, u ∈ [0, 1]}) = K−2 ∑

s,s−K∈Sj(K)
E((gij

s )2|F−j ∪ {Σϵ,u, u ∈ [0, 1]})

+K−2 ∑
s1 ̸=s2

E(gij
s1g

ij
s2|F−j ∪ {Σϵ,u, u ∈ [0, 1]})

= O(K−2n · 1 +K−2n2 · n−1 · 1) = O(n−1/3).

The above implies that
J11 = OP (n−1/6) = J12.

The rates for J11, J12 and J13 imply that

J1 = OP (n−1/6) = J3,

so that combining with the rate of J2, we have

I3,1(K) − |Sj(K)|K
|Sj(1)| I3,1(1) = OP (n−1/6L).
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Finally, among I3,2 to I3,6, when m = K ≍ n2/3, the dominating term is I3,5 =
OP (n−1/4L3/4), while it is I3,2 = OP (p1/3) when m = 1. Hence

max
i=1,...,p
j=1,...,L

∣∣∣∣∣ I3

pT
ijΣ(τj−1, τj)pij

∣∣∣∣∣ = OP (n−1/6L) +OP (n−1/4L3/4) +OP (K−1 · p1/3)

= OP (n−1/6L) = OP (n−1/6),

since L is finite. This completes the proof of the lemma. �

Proof of Theorem 4.1, 4.2. Combining the results of Lemma 4.1, 4.3 and 4.4, we
have

max
i=1,...,p
j=1,...,L

∣∣∣∣∣p
T
ijΣ̃(τj−1, τj)pij

pT
ijΣ(τj−1, τj)pij

− 1
∣∣∣∣∣ ≤ max

i=1,...,p
j=1,...,L

∣∣∣∣∣ I1

pT
ijΣ(τj−1, τj)pij

− 1
∣∣∣∣∣+ 2 max

i=1,...,p
j=1,...,L

∣∣∣∣∣ I2

pT
ijΣ(τj−1, τj)pij

∣∣∣∣∣
+ max

i=1,...,p
j=1,...,L

∣∣∣∣∣ I3

pT
ijΣ(τj−1, τj)pij

∣∣∣∣∣ = OP (n−1/6).

Note that the above result is equivalent to the main result in Theorem 4.1. For the
second main result,

∥Σ̂(0, 1)Σ−1
Ideal − Ip∥ =

∥∥∥∥ L∑
j=1

(Σ̂(τj−1, τj)ΣIdeal(τj−1, τj)−1 − Ip)ΣIdeal(τj−1, τj)ΣIdeal(0, 1)−1
∥∥∥∥

≤
L∑

j=1
∥Σ̂(τj−1, τj)ΣIdeal(τj−1, τj)−1 − Ip∥

·
∥∥∥∥diag(PT

−jΣ(τj−1, τj)P−j) ·
(
diag(PT

−jΣ(τj−1, τj)P−j) +
∑
i ̸=j

PT
−jΣ(τi−1, τi)P−j

)−1
∥∥∥∥

= OP

(
Ln−1/6 · max

j=1,...,L

∥∥∥∥(Ip +
∑
i ̸=j

PT
−jΣIdeal(τi−1, τi)P−jdiag−1(PT

−jΣ(τj−1, τj)P−j)
)−1

∥∥∥∥
)

= OP (n−1/6).

Hence these completes the proof of Theorem 4.1 and the equivalent part in Theorem
4.2 under jumps removed data.
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To complete the proof of Theorem 4.2, note that for a generic constant C > 0,∥∥∥∥ ∑
0≤t≤1

(∆Jt∆JT
t − ∆Ĵt∆ĴT

t )
∥∥∥∥ ≤ C max

0≤t≤1
∥∆Jt∆JT

t − ∆Ĵt∆ĴT
t )∥

≤ 2C max
0≤t≤1

∥∆Jt − ∆Ĵt∥ · ∥∆Jt∥ + C max
0≤t≤1

∥∆Jt − ∆Ĵt∥2

= OP (n−1/4L−1/4),

where the first line used Assumption (W2) that there are only finite number of jumps
in [0, 1] for each stock, and the second line used Assumption (W3) that there are only
finite number of cojumps, with rate of jumps removal given as in Fan and Wang (2007).
This completes the proof of Theorem 4.2. �

Proof of Theorem 4.3. Define Dj = diag(PT
−jΣ(τj−1, τj)P−j) and D̃j =

diag(PT
−jΣ̃(τj−1, τj)P−j). Define ei to be the unit vector with 1 on the ith posi-

tion and 0 elsewhere, and ∥A∥1 = maxj
∑

i |aij| the L1 norm of a matrix A. Then for
some i = 1, . . . , p,

p1/2∥ŵopt∥max = p1/2|eT
i Σ̂(0, 1)−11p|

1T
p Σ̂(0, 1)−11p

≤ p1/2∥Σ̂(0, 1)−1∥1

pλmin(Σ̂(0, 1)−1)
≤ p1/2 · p1/2/λmin(Σ̂(0, 1))

p/λmax(Σ̂(0, 1))

≤
∑L

j=1 λmax(D̃j)∑L
j=1 λmin(D̃j)

≤
Lmax1≤j≤L λmax(D̃jD−1

j − Ip)λmax(Dj) +∑L
j=1 λmax(Dj)

Lmin1≤j≤L λmin(D̃jD−1
j − Ip)λmin(Dj) +∑L

j=1 λmin(Dj)

≤
(max1≤j≤L λmax(D̃jD−1

j − Ip) + 1) max1≤j≤L λmax(Dj)
(min1≤j≤L λmin(D̃jD−1

j − Ip) + 1) min1≤j≤L λmin(Dj)
P−→ max1≤j≤L λmax(Dj)

min1≤j≤L λmin(Dj)
≤ max1≤j≤L λmax(Σ(τj−1, τj))

min1≤j≤L λmin(Σ(τj−1, τj))
,

where the last line follows from the results of Theorem 4.1 and Theorem 4.2. For the
theoretical minimum-variance portfolio,

p1/2∥wtheo∥max = p1/2|eT
i Σ(0, 1)−11p|

1T
p Σ(0, 1)−11p

≤ p1/2∥Σ(0, 1)−1∥1

pλmin(Σ(0, 1)−1) ≤ p1/2 · p1/2/λmin(Σ(0, 1))
p/λmax(Σ(0, 1))

≤
∑L

j=1 λmax(Dj)∑L
j=1 λmin(Dj)

= max1≤j≤L λmax(Dj)
min1≤j≤L λmin(Dj)

≤ max1≤j≤L λmax(Σ(τj−1, τj))
min1≤j≤L λmin(Σ(τj−1, τj))

.
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For the actual risk bound, define R = ∑L
j=1 P−j(D̃jD−1

j − Ip)DjPT
−j. We first

consider the case of no pervasive factors. Consider

Σ̂(0, 1)−1 =
(

L∑
j=1

P−jD̃jPT
−j

)−1

=
(

L∑
j=1

P−j(D̃jD−1
j − Ip)DjPT

−j +
L∑

j=1
P−jDjPT

−j

)−1

= (Ip + ΣIdeal(0, 1)−1R)−1ΣIdeal(0, 1)−1

= ΣIdeal(0, 1)−1 +
∑
k≥1

(
− ΣIdeal(0, 1)−1R

)k
ΣIdeal(0, 1)−1,

where the Neumann’s series expansion in the last line is valid since

∑
k≥0

∥ΣIdeal(0, 1)−1∥k∥R∥k ≤ 1 +
∑
k≥1

∥R∥k

λk
min(ΣIdeal(0, 1))

≤ 1 +
∑
k≥1

Lk max1≤j≤L ∥D̃jD−1
j − Ip∥k max1≤j≤L ∥Σ(τj−1, τj)∥k

Lk min1≤j≤L λk
min(Σ(τj−1, τj))

P−→ 1 < ∞,

where the last line follows from the results in Theorem 4.1 and 4.2. This implies that,
in probability,

∥Σ̂(0, 1)−1 − ΣIdeal(0, 1)−1∥ ≤ λmax(ΣIdeal(0, 1)−1)
∑
k≥1

∥R∥k

λk
min(ΣIdeal(0, 1))

P−→ 0.

(4.43)

With the above, consider the decomposition pR(ŵopt) = I1 + I2 + I3, where

I1 =
p1T

p (Σ̂(0, 1)−1 − ΣIdeal(0, 1)−1)Σ(0, 1)Σ̂(0, 1)−11p

(1T
p Σ̂(0, 1)−11p)2

,

I2 =
p1T

p ΣIdeal(0, 1)−1Σ(0, 1)(Σ̂(0, 1)−1 − ΣIdeal(0, 1)−1)1p

(1T
p Σ̂(0, 1)−11p)2

,

I3 =
p1T

p ΣIdeal(0, 1)−1Σ(0, 1)ΣIdeal(0, 1)−11p

(1T
p Σ̂(0, 1)−11p)2

.
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By (4.43), with ∥Σ(0, 1)∥ ≤ C where C is a generic constant since there are no pervasive
factors,

|I1| ≤ p2∥Σ̂(0, 1)−1 − ΣIdeal(0, 1)−1∥ · C · (∥Σ̂(0, 1)−1 − ΣIdeal(0, 1)−1∥ + λmax(ΣIdeal(0, 1)−1))
p2
(
λmin(ΣIdeal(0, 1)−1) − ∥Σ̂(0, 1)−1 − ΣIdeal(0, 1)−1∥

)2

P−→ 0.

Similarly, |I2|
P−→ 0. For I3, by (4.43),

|I3| ≤ p2λ2
max(ΣIdeal(0, 1)−1)λmax(Σ(0, 1))

p2
(
λmin(ΣIdeal(0, 1)−1) − ∥Σ̂(0, 1)−1 − ΣIdeal(0, 1)−1∥

)2

P−→ λ2
max(ΣIdeal(0, 1))
λ2

min(ΣIdeal(0, 1)) λmax(Σ(0, 1))

≤
(∑L

j=1 λmax(Σ(τj−1, τj))∑L
j=1 λmin(Σ(τj−1, τj))

)2

λmax(Σ(0, 1))

=
(

max1≤j≤L λmax(Σ(τj−1, τj))
min1≤j≤L λmin(Σ(τj−1, τj))

)2

λmax(Σ(0, 1)),

which leads to the result in the theorem.

If there are pervasive factors, abbreviating Σ(0, 1) as Σ etc, consider

R(ŵopt) =
1T

p Σ̂−1ΣΣ̂−11p

(1T
p Σ̂−11p)2

≤ λmax(Σ̂−1Σ)
1T

p Σ̂−11p

≤ λmax(Σ̂)λmax(Σ)
pλmin(Σ̂)

= OP (λmax(Σ)),

where the last line follows from the results in Theorem 4.1 and 4.2. For the actual risk
bound for wtheo,

pR(wtheo) = p

1T
p Σ(0, 1)−11p

≤ λmax(Σ(0, 1)).

This completes the proof of the theorem. �



Chapter 5

Nonlinear Shrinkage Estimation of
Large Integrated Covariance
Matrices

Declaration This chapter is based on joint work with Dr. Clifford Lam and Dr.
Charlie Hu as published by Biometrika (Lam et al., 2017). Under university policy,
this chapter only include the joint work with Dr. Clifford Lam.

5.1 Introduction

Intraday data on financial asset returns are of increasing interest for portfolio allocation
and risk management (Fan et al., 2012). Models for such data need to account for
rapid changes in volatility during a trading day. To capture such changes, it is natural
to consider covolatility processes and to combine covariances between pairs of asset
returns over time through what is called an integrated covariance matrix. There are
various challenges in estimating this matrix (Aït-Sahalia et al., 2005; Asparouhova
et al., 2013).

Similar to Chapter 4, we consider the bias that arises when the number of assets
p is large. Specifically, we suppose that p has the same order as the sample size n,
i.e., p/n → c > 0 for some constant c > 0. If synchronous time data points are
observed, a natural estimator of the integrated covariance matrix can be obtained from
an empirical covariance matrix of the observed returns. However, this estimator suffers
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from bias, which can be expressed in terms of the bias of its extreme eigenvalues (Bai
and Silverstein, 2010).

To rectify this bias problem, many researchers have focused on regularized estimation
of covariance or precision matrices with special structures, such as banded (Bickel and
Levina, 2008b) or sparse covariance matrix (Bickel and Levina, 2008a; Cai and Zhou,
2012; Lam and Fan, 2009; Rothman et al., 2008), sparse precision matrix (Friedman
et al., 2008; Meinshausen and Bühlmann, 2006), a spiked covariance matrix from a
factor model (Fan et al., 2008, 2011), or combinations of these (Fan et al., 2013).
Instead of assuming a particular structrue for the true covariance matrix, nonlinear
shrinkage of eigenvalues (Lam, 2016; Ledoit and Wolf, 2012) are also well researched.

In this chapter, we modify the method proposed in Lam (2016) to achieve nonlinear
shrinkage of eigenvalues in a covariance matrix. Different from Chapter 4, we do not
consider microstructure noise in this chapter, although this proposed estimator share
very similar settings as the previous chapter. Our method produces a positive definite
estimator of the integrated covariance matrix asymptotically almost surely, and involves
only eigendecompositions of matrices of size p × p, which are not computationally
expensive when p is of the order of hundreds, the typical order in portfolio allocation.
We also present the maximum exposure and actual risk bounds for minimum variance
portfolio construction using our estimator. The maximum exposure bound is of
particular importance, as it is shared by the theoretical minimum-variance portfolio
which assumes that the integrated covariance matrix is known.

The rest of the chapter is organized as follows. We first present the framework for
the data together with the notations and the main assumptions to be used in Chapter
5.2, with our proposed estimator is presented in Chapter 5.2.3. Chapter 5.3 presents
all related theories. Simulation results and a real data example of portfolio allocation
is presented in Chapter 5.4. All proofs are given in the supplementary materials (Lam
et al., 2017) available at Biometrika website (https://doi.org/10.1093/biomet/asx021),
which is not part of this thesis.
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5.2 Framework and Methodology

5.2.1 Integrated and Realized Covariance Matrices

Let Xt = (X(1)
t , · · · , X(p)

t )T be a p-dimensional log-price diffusion process modeled by

dXt = µtdt+ ΘtdWt, t ∈ [0, 1], (5.1)

where µt is the drift, Θt is a p× p matrix of instantaneous covolatility process, and
Wt = (W (1)

t , . . . ,W
(p)
t )T is a p-dimensional standard Brownian motion. We want to

estimate the integrated covariance matrix, defined by

Σ0 =
∫ 1

0
ΘtΘT

t dt.

This matrix is important in risk management, the hedging and pricing of financial
derivatives, and portfolio allocation, to name but a few areas of finance (Hounyo,
2017). In portfolio allocation, Σ0 replaces the usual population covariance matrix for
intraday data. If Θt is constant, then we can take Θt = Σ1/2

0 , and Σ0 is just the usual
covariance matrix for asset returns.

In this chapter, we consider sparsely sampled return data synchronized by refresh
times (Andersen et al., 2001; Barndorff-Nielsen et al., 2011). Suppose that we observe
Xt at synchronous time points τn,ℓ, ℓ = 0, . . . , n. The realized covariance matrix is then

ΣRCV
p =

n∑
ℓ=1

∆Xℓ∆XT
ℓ , where ∆Xℓ = Xτn,ℓ

− Xτn,ℓ−1 .

Jacod and Protter (1998) shows that as n → ∞,ΣRCV
p → Σ0 weakly when p is fixed.

5.2.2 Time Variation Adjusted Realized Covariance Matrix

In this section, we present the important contributions from Zheng and Li (2011).
Write dX(j)

t = µ
(j)
t dt+ σ

(j)
t dZ

(j)
t , j = 1, . . . , p, where µ(j)

t , σ
(j)
t are assumed to be càdlàg

over [0, 1], and the Z(j)
t ’s are one dimensional standard Brownian motions. Define

⟨X, Y ⟩t to be the quadratic covariation between the processes X and Y .

(S1) The correlation matrix process of Zt = (Z(1)
t , . . . , Z

(p)
t )T, ⟨Z(j), Z(k)⟩t/t, 1 ≤

j, k ≤ p, is constant and non-zero on (0, 1] for each pair of j, k. Further-
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more, the correlation matrix process of Xt,
∫ t

0 σ
(j)
s σ(k)

s d⟨Z(j), Z(k)⟩s{
∫ t

0(σ(j)
s )2ds ·∫ t

0(σ(k)
s )2ds}−1/2, 1 ≤ j, k ≤ p, is constant on (0, 1] for each pair of j, k.

Then, by Proposition 4 in Zheng and Li (2011), there exists a càdlàg process
(γt)t∈[0,1] and a p × p matrix Λ satisfying tr(ΛΛT) = p such that we can make the
decomposition Θt = γtΛ implying that Σ0 = (

∫ 1
0 γ

2
t dt)ΛΛT. The time-variation

adjusted realized covariance matrix is defined by

Σ̌p =
tr(ΣRCV

p )
p

Φ̌, where Φ̌ = p

n

n∑
ℓ=1

∆Xℓ∆XT
ℓ

∥∆Xℓ∥2 , (5.2)

and ∥ · ∥ denotes the L2 norm of a vector. It is shown in Zheng and Li (2011) that
tr(ΣRCV

p )/p is a good estimator for
∫ 1

0 γ
2
t dt, while Φ̌ estimates Φ = ΛΛT.

5.2.3 Nonlinear Shrinkage Estimator

The estimator Φ̌ is a sample covariance matrix of rℓ = p1/2∆Xℓ/∥∆Xℓ∥, ℓ = 1, . . . , n,
the self-normalized returns. Under the setting p/n → c > 0, the eigenvalues in Φ̌
are biased estimators of those in Φ. The way in which each rℓ is defined means that
we cannot apply the nonlinear shrinkage formula of Ledoit and Wolf (2012) directly.
Instead, we use the data splitting idea for nonlinear shrinkage of eigenvalues from Lam
(2016).

To this end, we permute the return data M times follow Lam (2016). At the
jth permutation, we split the data ∆X(j) into two independent parts, say ∆X(j) =
(∆X(j)

1 ,∆X(j)
2 ), j = 1, . . . ,M , with ∆X(j)

i having size p × ni, i = 1, 2, such that
n1 = m and n2 = n − m. Define Φ̃(j)

i = n−1
i

∑
ℓ∈Ii,j

rℓrT
ℓ , where Ii,j = {ℓ : ∆Xℓ ∈

∆X(j)
i }, i = 1, 2, j = 1, . . . ,M . Carrying out an eigen-analysis on Φ̃(j)

1 , suppose that
Φ̃(j)

1 = P(j)
1 D(j)

1 P(j)
1 . Then we define our estimator as

Σ̂m,M =
tr(ΣRCV

p )
p

1
M

M∑
j=1

Φ̂(j), where Φ̂(j) = P(j)
1 diag(P(j)T

1 Φ̃(j)
2 P(j)

1 )P(j)T
1 , (5.3)

where diag(·) sets all non-diagonal elements of a matrix to zero. Compared to the
estimator Σ̌p in (5.2), we substitute the sample covariance matrix Φ̌ to the aver-
aged NERCOME estimator Σ̂m,M in (5.3). The estimator Φ̂(j) belongs to a class
of rotation equivariant estimators Φ(D) = P(j)

1 DP(j)T
1 , where D is diagonal. We
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choose D = diag(P(j)T
1 Φ̃(j)

2 P(j)
1 ) solves minD ∥P(j)

1 DP(j)T
1 − Φ∥F and by Lemma 5.1,

D(j) = diag(P(j)T
1 Φ̃(j)

2 P(j)
1 ) estimates diag(P(j)T

1 ΦP(j)
1 ) well. We use the Frobenius

norm mainly for ease of deriving theoretical results. In Theorem 5.2 we also consider
the inverse Stein loss.

5.3 Asmptotic Theory and Practical Implementa-
tion

We introduce four more assumptions needed for our results to hold.

(S2) The drift in (5.1) satisfies µt = 0 for t ∈ [0, 1], and Θt is deterministic. All
eigenvalues of ΘtΘT

t are bounded uniformly between zero and infinity in t ∈ [0, 1].
Also, M is finite.

(S3) The observation times τn,ℓ’s are independent of the log-price Xt, and there exists a
constant C > 0 such that for all positive integer n, max1≤ℓ≤n n(τn,ℓ − τn,ℓ−1) ≤ C.

(S4) Let vn,1 ≥ · · · ≥ vn,p be the p eigenvalues of Φ. Let Hn(v) = p−1∑p
i=1 1{vn,i≤v} be

the empirical distribution function of the vn,i. We assume that Hn(v) converges
to some non-random limit H at every point of continuity of H.

(S5) The support of H defined above is the union of a finite number of compact
intervals bounded away from zero and infinity. Also, there exists a compact
interval in (0,+∞) that contains the support of Hn for each n.

We set µt = 0 in Assumption (S2) to make the proofs and presentation simpler. If
µt is slowly varing locally, the results presented here remain valid at the expense of
longer proofs. The deterministic nature of Θt is essential to the independence of ∆Xℓ.
The uniform bounds on the eigenvalues of ΘtΘT

t are needed so that the individual
volatility process for each X(i)

t is bounded uniformly,
∫ 1

0 γ
2
t dt > 0 uniformly, and finally

∥Σp∥ = O(1) uniformly. The last two assumptions are essentially assumptions (A3)
and (A4) in Lam (2016) applied to Φ.

Lemma 5.1 Let Assumption (S1), (S2) and (S3) hold for the log-price process Xt in
(5.1). If p/n → c > 0 and ∑

n2≥1 pn
−5
2 < ∞, then maxj=1,...,M ∥diag(P(j)T

1 Φ̃(j)
2 P(j)

1 ) ·
diag−1(P(j)T

1 ΦP(j)
1 ) − 1∥ → 0 almost surely.
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With this result, we have the following theorem.

Theorem 5.1 Let all the assumptions in Lemma 5.1 hold. Then Σ̂m,M defined in
(5.3) is asymptotically almost surely positive definite.

This is an important result since Σ0 is always positive definite, which is not always the
case for a realized covariance matrix, especially when p > n. The proof are given in
the supplementary materials (Lam et al., 2017).

To present the rest of the results, we introduce a benchmark ideal estimator

Σideal =
(∫ 1

0
γ2

t dt

)
Pdiag(PTΦP)PT.

This is similar to Σ̂m,M defined in equation (5.3), except that tr(ΣRCV
p )/p is replaced

by the population counterpart
∫ 1

0 γ
2
t dt, while Φ̂(j) is replaced by Pdiag(PTΦP)PT,

where P is such that Φ̌ = PĎPT, the eigen-decomposition of Φ̌ defined in equation
(5.2). Define the efficiency loss of Σ̂ as

EL(Σ0, Σ̂) = 1 − L(Σ0,ΣIdeal)
L(Σ0, Σ̂)

,

where L(Σ0, Σ̂) is a loss function. We consider the Frobenius loss L(Σp, Σ̂) = ∥Σ̂ −
Σp∥2

F , and the inverse Stein’s loss function, L(Σp, Σ̂) = tr(ΣpΣ̂−1)−log det(ΣpΣ̂−1)−p.
If Σ̂ incurs a larger loss than ΣIdeal, then EL(Σ0, Σ̂) > 0, and vice versa.

Theorem 5.2 Let all the assumptions in Lemma 5.1 hold, together with Assumption
(S4) and (S5). Moreover, if n1/n → 1 and n2 → ∞, then EL(Σ0, Σ̂m,M) ≤ 0
asymptotically almost surely with respect to both the Frobenius and the inverse Stein’s
loss functions, provided that p−1L(Σ0,ΣIdeal) 9 0 almost surely.

The requirement that p−1L(Σ0,ΣIdeal) 9 0 almost surely eliminates the case where
Σ0 = (

∫ 1
0 γ

2
t dt)Ip, when both loss functions attain zero for ΣIdeal. Simulation confrims

that Σ̂m,M performs well even in this special case.

To find the best split location m empirically, we minimize

g(m) =
∥∥∥∥ 1
M

M∑
j=1

(Φ̂(j) − Φ̃(j)
2 )
∥∥∥∥2

F
.
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In practice, we use M = 50 which provides a good trade-off between computational
complexity and estimation accuracy. We search the following split locations for
minimizing g(m):

m = [2n1/2, 0.2n, 0.4n, 0.6n, 0.8n, n− 2.5n1/2, n− 1.5n1/2].

The location 2n1/2 is suitable for Σ0 = (
∫ 1

0 γ
2
t dt)Ip, while n− 2.5n1/2 and n− 1.5n1/2

satisfy the conditions ∑n2≥1 pn
−5
2 < ∞, n1/n → 1 and n2 → ∞ needed in Theorem

5.2. We include 0.2n to 0.8n for boosting finite sample performance.

5.4 Empirical Results

5.4.1 Simulations with Varying γt

In this section, we compare our method to banding (Band) in Bickel and Levina
(2008b), the condition number regularized estimator (CRC) proposed in Abadir et al.
(2014), the nonlinear shrinkage method (NONLIN) in Ledoit and Wolf (2012), the
principal orthogonal complement thresholding method (POET) in Fan et al. (2013),
the graphical LASSO (GLASSO) in Friedman et al. (2008), and adaptive thresholding
with the smmothly clipped absolute devition penalty (SCAD) in Fan and Li (2001).
All these methods are applied to Φ̌ in equation (5.2).

We consider two scenarios for the diffusion process {Xt}:

Design I: Piecewise constants. We take γt to be

γt =
 0.01 × 71/2, 0 ≤ t < 1/4 or 3/4 ≤ t ≤ 1,

0.01, 1/4 ≤ t < 3/4.

Design II: Continuous path. We take γt to be

γt = (0.0009 + 0.0008 cos(2πt))1/2, 0 ≤ t ≤ 1.

We assume Λ = (0.5|i−j|)i,j=1,...,p and the observation times are τn,ℓ = ℓ/n, ℓ = 1, . . . , n.
We generate {Xt} using model (5.1), obtaining n = 200 observations, and take
p = 100, 200. For each design and (n, p) combination, we repeat the simulations 500
times and compare the mean Frobenius and inverse Stein’s losses for the estimators.
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We use 5-fold cross-validation to choose the tuning parameter for Band, and use K = 3
factors for POET with θ = 0.5 as the thresholding parameter, the same as for SCAD.
Finally, we use θ = 0.8 for the tuning parameter for GLASSO. These parameters are
chosen to allow the methods to have the best possible performances overall. Pre-setting
these parameters also speeds up the simulations significantly.

Table 5.1 presents the simulation results. All methods perform better than the
realized covariance, as expected. GLASSO is best at minimizing the Frobenius loss,
while the CRC with p = 100, and POET with p = 200 are the best for the inverse Stein
loss. Both our method and the CRC outperform NONLIN, which is expected since
nonlinear shrinkage cannot readily be applied to self-normalized vectors. Although the
way in which Λ is defined favours Band, that method had substantially larger standard
deviations in all the settings.

5.4.2 Portfolio Allocation on NYSE Data

As an application in finance, we construct minimum-variance portfolios using seven
different estimators compared in the previous section, except for GLASSO because
of nonconvergence issues. Given an integrated covariance matrix Σ0, the minimum-
variance portfolio solves minw:wT1p=1 wTΣpw, where 1p is a vector of p ones. The
solution is

wopt = Σ−1
0 1p

1T
p Σ−1

0 1p

. (5.4)

Before presenting the empirical results, we state a theorem concerning wopt con-
structed with Σ̂m,M substitude for Σ0. In what follows, we denote ∥·∥max the maximum
absolute value of a vector, and define the condition number of a positive semi-definite
matrix A to be Cond(A) = λmax(A)/λmin(A).

Theorem 5.3 Let all the assumptions in Lemma 5.1 hold. Then almost surely,

p1/2∥ŵopt∥max ≤ Cond(Φ), p1/2R(ŵopt) ≤ Cond(Φ)λ1/2
max(Σp),

p1/2∥wopt∥max ≤ Cond(Φ), p1/2R(wopt) ≤ λ1/2
max(Σp),

where ŵopt is the weight in (5.4) with Σ0 substituted by Σ̂m,M . The function R(w) =
(wTΣpw)1/2 represents the actual risk when investing using w as the portfolio weights.
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This theorem shows that the maximum absolute weight, which we define as the
maximum exposure of the portfolio, is decaying at a rate p−1/2, the same as that for
the actual risk. This maximum exposure bound iss important, since the theoretical
minimum-variance portfolio satisfies the same bound. If Cond(Φ) = 1, the actual risk
for our portfolio can also enjoy the same upper bound as its theoretial counterpart.

We consider p = 154 finance stocks with large capitalization from the New York
Stock Exchange (NYSE). There are 82 weeks of data, from June 2014 to the end
of December 2015. We downloaded all the trades of these stocks from Wharton
Research Data Services (WRDS). The raw data are high-frequency. The stocks have
nonsynchronous trading times and all the log-prices are contaminated by market
microstructure noise (Asparouhova et al., 2013).

We consider trades in 15-minute intervals on every trading day from 9:30 to 16:00,
with each log-price being the observed one from a trade right before the end of a
15-minute interval. This results in a total of n = 10267 synchronized return data
points. Overnight returns are not included in the calculations as overnight price jumps
are usually influenced by the arrival of news, which is irrelevant to the comparison
of portfolios. At the start, we invest one unit of capital using (5.4) constructed from
different estimators of Σ0. We consider two-week, four-week and six-week training
windows and re-evaluate portfolio weights every week. We use the annualized out-
of-sample standard deviation σ̂, together with the annualized portfolio return µ̂ and
the Sharpe ratio µ̂/σ̂, to gauge the performance of each method. For ℓ-week training
windows and a weekly re-evaluation period, µ̂ and σ̂ are defined by

µ̂ = 52 × 1
30 − ℓ

30∑
i=ℓ+1

wT
i ri, σ̂ =

(
52 × 1

30 − ℓ

30∑
i=ell+1

(wT
i ri − µ̂/52)2

)1/2
, ℓ = 2, 4, 6,

where wi and ri are the portfolio weights and returns respectively, for the ith week.
We also report the mean and the maximum of ∥ŵopt∥max over all investment periods
for the portfolios constructed with different methods.

Table 5.2 shows the results. POET and SCAD are unstable, with maximum
exposures going above 200% at times, meaning that the long or short position on a
single stock can be over 200%. This is not practically sound without further information
on the stocks. The nonlinear shrinkage method has the smallest σ̂ in all settings,
followed by our method, Band and CRC. With six-week training windows, realized
covariance has the second smallest σ̂, but on average the maximum exposures are much
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larger than in our method and the grand average estimator. Our method has small
maximum exposures while maintaining Sharpe ratios greater than 0.7 in all settings.
It has the largest Sharpe ratio when we use four-week training windows.

5.5 Conclusion

We introduce a novel nonlinear shrinkage estimator for the integrated volatility matrix
using the data splitting method similar to NERIVE in Chapter 4. Different from
Chapter 4, we do not consider microstructure noise here although the estimator
share very similar settings as NERIVE. It produces a positive definite estimator of
the integrated covariance matrix asymptotically almost surely, and involvoes only
eigendecompositions of matrices of size p× p that are not computationally expensive.
We also present the maximum exposure and acutal risk bounds for minimum variance
portfolio construction using proposed estimator. With the numerical examples and
real data from stock market trading data, we demostrated that our estimator has a
favorable performance in general compared to other covariance matrix estimators.



5.5 Conclusion 157
p

=
15

4
A

nn
.

re
tu

rn
(%

)
A

nn
.

st
d

de
v.

(%
)

Sh
ar

pe
ra

tio
M

ax
.

ex
po

su
re

(%
)

M
ax

.
of

m
ax

.
ex

po
su

re
(%

)
W

ee
kl

y
re

ba
la

nc
in

g
w

ith
2-

we
ek

tr
ai

ni
ng

w
in

do
w

RC
V

21
.8

12
.5

1.
7

25
.3

12
.5

81
.3

Pr
op

os
ed

10
.2

9.
4

1.
1

7.
2 1

.7
13
.6

Ba
nd

12
.5

8.
5

1.
5

15
.9

8.
7

39
.2

C
RC

10
.4

8.
9

1.
2

7.
4 2

.1
14
.0

N
O

N
LI

N
−

0.
3

8.
2

0.
0

5.
6 3

.5
14
.1

PO
ET

−
3.

9
11
.2

−
0.

3
19
.9

44
.2

39
9.

3
SC

A
D

−
15
.5

21
.2

−
0.

7
29
.7

43
.6

32
6.

3
W

ee
kl

y
re

ba
la

nc
in

g
w

ith
4-

we
ek

tr
ai

ni
ng

w
in

do
w

RC
V

10
.8

11
.0

1.
0

20
.9

11
.4

48
.4

Pr
op

os
ed

13
.4

9.
8

1.
4

8.
7 2

.7
17
.4

Ba
nd

9.
3

10
.0

0.
9

17
.0

7.
5

37
.6

C
RC

11
.4

11
.1

1.
0

8.
0 1

.7
13
.3

N
O

N
LI

N
7.

6
7.

8
1.

0
7.

7 6
.0

22
.8

PO
ET

1.
1

11
.4

0.
1

20
.8

32
.9

23
5.

3
SC

A
D

−
4.

3
13
.7

−
0.

3
27
.9

97
.1

86
0.

6
W

ee
kl

y
re

ba
la

nc
in

g
w

ith
6-

we
ek

tr
ai

ni
ng

w
in

do
w

RC
V

8.
7

8.
8

1.
0

19
.6

11
.3

46
.0

Pr
op

os
ed

7.
5

10
.2

0.
7

10
.0

4.
4

21
.7

Ba
nd

3.
7

12
.0

0.
3

16
.2

7.
5

33
.6

C
RC

2.
9

12
.2

0.
2

8.
7 2

.5
14
.8

N
O

N
LI

N
6.

8
7.

3
0.

9
9.

0 7
.4

26
.1

PO
ET

−
9.

3
14
.4

−
0.

6
21
.5

32
.5

25
9.

6
SC

A
D

11
4.

9
14

0.
7

0.
8

13
0.

3 9
59

.1
83

75
.3

Ta
bl

e
5.

2
R

es
ul

ts
of

th
e

an
al

ys
is

fo
r

N
Y

SE
la

rg
e

ca
pi

ta
liz

at
io

n
fin

an
ce

st
oc

ks
(s

ta
nd

ar
d

er
ro

rs
ar

e
gi

ve
n

in
su

bs
cr

ip
t)

.

* R
C

V
:r

ea
liz

ed
co

va
ria

nc
e;

B
an

d:
B

an
di

ng
;

C
R

C
:c

on
di

tio
n

nu
m

be
r

re
gu

liz
ed

;
N

O
N

LI
N

:n
on

lin
ea

r
sh

rin
ka

ge
;

PO
ET

:p
rin

ci
pa

lo
rt

ho
go

na
lc

om
pl

em
en

t
th

re
sh

ol
di

ng
;

SC
A

D
:a

da
pt

iv
e

th
re

sh
ol

di
ng

w
ith

sm
oo

th
ly

cl
ip

pe
d

ab
so

lu
te

de
vi

at
io

n
pe

na
lty

.



References

Abadir, K. M., Distaso, W., and Žikeš, F. (2014). Design-free estimation of variance
matrices. Journal of Econometrics, 181(2):165–180.

Aït-Sahalia, Y., Fan, J., and Xiu, D. (2010). High-frequency covariance estimates
with noisy and asynchronous financial data. Journal of the American Statistical
Association, 105(492):1504–1517.

Aït-Sahalia, Y., Mykland, P. A., and Zhang, L. (2005). How often to sample a
continuous-time process in the presence of market microstructure noise. The review
of financial studies, 18(2):351–416.

Aït-Sahalia, Y. and Xiu, D. (2017). Using principal component analysis to estimate a
high dimensional factor model with high-frequency data. Journal of Econometrics,
201(2):384–399.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Ebens, H. (2001). The distribution
of realized stock return volatility. Journal of financial economics, 61(1):43–76.

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003). Modeling and
forecasting realized volatility. Econometrica, 71(2):579–625.

Antoniadis, A. and Fan, J. (2001). Regularization of wavelet approximations. Journal
of the American Statistical Association, 96(455):939–967.

Asparouhova, E., Bessembinder, H., and Kalcheva, I. (2013). Noisy prices and inference
regarding returns. The Journal of Finance, 68(2):665–714.

Bai, J. and Ng, S. (2002). Determining the number of factors in approximate factor
models. Econometrica, 70(1):191–221.

Bai, Z., Miao, B., and Pan, G. (2007). On asymptotics of eigenvectors of large sample
covariance matrix. The Annals of Probability, 35(4):1532–1572.

Bai, Z. and Silverstein, J. W. (2010). Spectral analysis of large dimensional random
matrices, volume 20. Springer.

Bai, Z. and Yin, Y. (1993). Limit of the smallest eigenvalue of a large dimensional
sample covariance matrix. The Annals of Probability, pages 1275–1294.



References 159

Bai, Z.-D. and Silverstein, J. W. (1998). No eigenvalues outside the support of the
limiting spectral distribution of large-dimensional sample covariance matrices. Annals
of probability, pages 316–345.

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2009). Realized
kernels in practice: Trades and quotes. The Econometrics Journal, 12(3).

Barndorff-Nielsen, O. E., Hansen, P. R., Lunde, A., and Shephard, N. (2011). Multi-
variate realised kernels: consistent positive semi-definite estimators of the covariation
of equity prices with noise and non-synchronous trading. Journal of Econometrics,
162(2):149–169.

Barndorff-Nielsen, O. E. and Shephard, N. (2002). Econometric analysis of realized
volatility and its use in estimating stochastic volatility models. Journal of the Royal
Statistical Society: Series B (Statistical Methodology), 64(2):253–280.

Bickel, P. J. and Levina, E. (2008a). Covariance regularization by thresholding. The
Annals of Statistics, pages 2577–2604.

Bickel, P. J. and Levina, E. (2008b). Regularized estimation of large covariance matrices.
The Annals of Statistics, pages 199–227.

Cai, T. and Liu, W. (2011). Adaptive thresholding for sparse covariance matrix
estimation. Journal of the American Statistical Association, 106(494):672–684.

Cai, T. T. and Yuan, M. (2012). Adaptive covariance matrix estimation through block
thresholding. The Annals of Statistics, 40(4):2014–2042.

Cai, T. T., Zhang, C.-H., and Zhou, H. H. (2010). Optimal rates of convergence for
covariance matrix estimation. The Annals of Statistics, 38(4):2118–2144.

Cai, T. T. and Zhou, H. H. (2012). Optimal rates of convergence for sparse covariance
matrix estimation. The Annals of Statistics, 40(5):2389–2420.

Chen, R. Y. and Mykland, P. A. (2017). Model-free approaches to discern non-stationary
microstructure noise and time-varying liquidity in high-frequency data. Journal of
Econometrics, 200(1):79–103.

Chen, X., Xu, M., and Wu, W. B. (2013). Covariance and precision matrix estimation
for high-dimensional time series. The Annals of Statistics, 41(6):2994–3021.

Christensen, K., Kinnebrock, S., and Podolskij, M. (2010). Pre-averaging estimators of
the ex-post covariance matrix in noisy diffusion models with non-synchronous data.
Journal of Econometrics, 159(1):116–133.

Dai, C., Lu, K., and Xiu, D. (2017). Knowing factors or factor loadings, or neither?
evaluating estimators of large covariance matrices with noisy and asynchronous data.

Davis, C. and Kahan, W. M. (1970). The rotation of eigenvectors by a perturbation.
iii. SIAM Journal on Numerical Analysis, 7(1):1–46.



References 160

DeMiguel, V., Garlappi, L., Nogales, F. J., and Uppal, R. (2009). A generalized
approach to portfolio optimization: Improving performance by constraining portfolio
norms. Management Science, 55(5):798–812.

Dempster, A. P. (1972). Covariance selection. Biometrics, pages 157–175.

Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet
shrinkage. biometrika, pages 425–455.

Epps, T. W. (1979). Comovements in stock prices in the very short run. Journal of
the American Statistical Association, 74(366a):291–298.

Fan, J., Fan, Y., and Lv, J. (2008). High dimensional covariance matrix estimation
using a factor model. Journal of Econometrics, 147(1):186–197.

Fan, J. and Kim, D. (2017). Robust high-dimensional volatility matrix estimation for
high-frequency factor model. Journal of the American Statistical Association.

Fan, J. and Li, R. (2001). Variable selection via nonconcave penalized likelihood and its
oracle properties. Journal of the American statistical Association, 96(456):1348–1360.

Fan, J., Li, Y., and Yu, K. (2012). Vast volatility matrix estimation using high-
frequency data for portfolio selection. Journal of the American Statistical Association,
107(497):412–428.

Fan, J., Liao, Y., and Mincheva, M. (2011). High dimensional covariance matrix
estimation in approximate factor models. Annals of statistics, 39(6):3320.

Fan, J., Liao, Y., and Mincheva, M. (2013). Large covariance estimation by thresholding
principal orthogonal complements. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 75(4):603–680.

Fan, J. and Wang, Y. (2007). Multi-scale jump and volatility analysis for high-frequency
financial data. Journal of the American Statistical Association, 102(480):1349–1362.

Friedman, J., Hastie, T., and Tibshirani, R. (2008). Sparse inverse covariance estimation
with the graphical lasso. Biostatistics, 9(3):432–441.

Gilder, D., Shackleton, M. B., and Taylor, S. J. (2014). Cojumps in stock prices:
Empirical evidence. Journal of Banking & Finance, 40:443–459.

Griffin, J. E. and Oomen, R. C. (2011). Covariance measurement in the presence of
non-synchronous trading and market microstructure noise. Journal of Econometrics,
160(1):58–68.

Hansen, P. R. and Lunde, A. (2006). Realized variance and market microstructure
noise. Journal of Business & Economic Statistics, 24(2):127–161.

Hounyo, U. (2017). Bootstrapping integrated covariance matrix estimators in noisy
jump–diffusion models with non-synchronous trading. Journal of Econometrics,
197(1):130–152.



References 161

Huang, J. Z., Liu, N., Pourahmadi, M., and Liu, L. (2006). Covariance matrix selection
and estimation via penalised normal likelihood. Biometrika, 93(1):85–98.

Huang, N. and Fryzlewicz, P. (2015). Novelist estimator of large correlation and
covariance matrices and their inverses. London School of Economics and Political
Science: Technical report, Department of Statistics.

Jacod, J. and Protter, P. (1998). Asymptotic error distributions for the euler method
for stochastic differential equations. The Annals of Probability, 26(1):267–307.

James, W. and Stein, C. (1961). Estimation with quadratic loss. In Proceedings of
the fourth Berkeley symposium on mathematical statistics and probability, volume 1,
pages 361–379.

Johnstone, I. M. (2001). On the distribution of the largest eigenvalue in principal
components analysis. Annals of statistics, pages 295–327.

Kim, D., Wang, Y., and Zou, J. (2016). Asymptotic theory for large volatility matrix
estimation based on high-frequency financial data. Stochastic Processes and their
Applications, 126(11):3527–3577.

Lam, C. (2016). Nonparametric eigenvalue-regularized precision or covariance matrix
estimator. The Annals of Statistics, 44(3):928–953.

Lam, C. and Fan, J. (2009). Sparsistency and rates of convergence in large covariance
matrix estimation. Annals of statistics, 37(6B):4254.

Lam, C. and Feng, P. (2018). A nonparametric eigenvalue-regularized integrated
covariance matrix estimator for asset return data. Journal of Econometrics.

Lam, C., Feng, P., and Hu, C. (2017). Nonlinear shrinkage estimation of large integrated
covariance matrices. Biometrika, 104(2):481–488.

Ledoit, O. and Péché, S. (2011). Eigenvectors of some large sample covariance matrix
ensembles. Probability Theory and Related Fields, 151(1-2):233–264.

Ledoit, O. and Wolf, M. (2004). A well-conditioned estimator for large-dimensional
covariance matrices. Journal of multivariate analysis, 88(2):365–411.

Ledoit, O. and Wolf, M. (2012). Nonlinear shrinkage estimation of large-dimensional
covariance matrices. The Annals of Statistics, 40(2):1024–1060.

Ledoit, O. and Wolf, M. (2013). Optimal estimation of a large-dimensional covariance
matrix under stein’s loss.

Marčenko, V. A. and Pastur, L. A. (1967). Distribution of eigenvalues for some sets of
random matrices. Mathematics of the USSR-Sbornik, 1(4):457.

Markowitz, H. (1952). Portfolio selection. The journal of finance, 7(1):77–91.

Meddahi, N. (2002). A theoretical comparison between integrated and realized volatility.
Journal of Applied Econometrics, 17(5):479–508.



References 162

Meinshausen, N. and Bühlmann, P. (2006). High-dimensional graphs and variable
selection with the lasso. The annals of statistics, 34(3):1436–1462.

Rio, E. (2013). Inequalities and limit theorems for weakly dependent sequences.

Rothman, A. J., Bickel, P. J., Levina, E., and Zhu, J. (2008). Sparse permutation
invariant covariance estimation. Electronic Journal of Statistics, 2:494–515.

Rothman, A. J., Levina, E., and Zhu, J. (2009). Generalized thresholding of large
covariance matrices. Journal of the American Statistical Association, 104(485):177–
186.

Schäfer, J. and Strimmer, K. (2005). A shrinkage approach to large-scale covariance
matrix estimation and implications for functional genomics. Statistical applications
in genetics and molecular biology, 4(1).

Stein, C. (1956). Inadmissibility of the usual estimator for the mean of a multivariate
normal distribution. Technical report, Stanford University, United States.

Tao, M., Wang, Y., and Chen, X. (2013). Fast convergence rates in estimating
large volatility matrices using high-frequency financial data. Econometric Theory,
29(4):838–856.

Tao, M., Wang, Y., Yao, Q., and Zou, J. (2011). Large volatility matrix inference via
combining low-frequency and high-frequency approaches. Journal of the American
Statistical Association, 106(495):1025–1040.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society. Series B (Methodological), pages 267–288.

van de Geer, S. A. (2002). On hoeffding’s inequality for dependent random variables.
In Empirical process techniques for dependent data, pages 161–169. Springer.

Wang, Y. and Zou, J. (2010). Vast volatility matrix estimation for high-frequency
financial data. The Annals of Statistics, 38(2):943–978.

Won, J.-H., Lim, J., Kim, S.-J., and Rajaratnam, B. (2013). Condition-number-
regularized covariance estimation. Journal of the Royal Statistical Society: Series B
(Statistical Methodology), 75(3):427–450.

Wu, W. B. and Pourahmadi, M. (2003). Nonparametric estimation of large covariance
matrices of longitudinal data. Biometrika, 90(4):831–844.

Xiu, D. (2010). Quasi-maximum likelihood estimation of volatility with high frequency
data. Journal of Econometrics, 159(1):235–250.

Xue, Y., Gencay, R., and Fagan, S. (2014). Jump detection with wavelets for high-
frequency financial time series. Quantitative Finance, 14(8):1427–1444.

Zhang, L. (2011). Estimating covariation: Epps effect, microstructure noise. Journal
of Econometrics, 160(1):33–47.



References 163

Zhang, L., Mykland, P. A., and Aït-Sahalia, Y. (2005). A tale of two time scales:
Determining integrated volatility with noisy high-frequency data. Journal of the
American Statistical Association, 100(472):1394–1411.

Zheng, X. and Li, Y. (2011). On the estimation of integrated covariance matrices of
high dimensional diffusion processes. The Annals of Statistics, 39(6):3121–3151.

Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the American
statistical association, 101(476):1418–1429.


	Table of contents
	List of figures
	List of tables
	1 Introduction
	2 Review on Covariance Matrix Estimation
	2.1 Estimation of Covariance Matrix through Thresholding
	2.1.1 Simple Thresholding
	2.1.2 Adaptive Thresholding
	2.1.3 Generalized Thresholding Function
	2.1.4 Penalized Likelihood

	2.2 Estimation of Covariance Matrix with Bandable Structure
	2.2.1 Banding
	2.2.2 Tapering
	2.2.3 Block Thresholding

	2.3 Estimation of Covariance Matrix with Factor Analysis
	2.3.1 Factor Model with Observable Factors
	2.3.2 Factor Model with Unobservable Factors

	2.4 Estimation of Covariance Matrix by Shrinkage
	2.4.1 Linear Shrinkage
	2.4.2 Nonlinear Shrinkage on Eigenvalues
	2.4.3 Condition Number Regularized Estimator
	2.4.4 NERCOME
	2.4.5 NOVELIST

	2.5 Estimation of Covariance Matrix in High Frequency Setting
	2.5.1 Integrated Variance
	2.5.2 Integrated Covariance Matrix


	3 Integrating Regularized Covariance Matrix Estimators
	3.1 Introduction
	3.2 Proposed Estimator with a Single Regularized Matrix
	3.2.1 Frobenius Loss Minimization
	3.2.2 Proposed Estimator with Data Splitting
	3.2.3 Theoretical Results with Single Regularized Estimator

	3.3 Extension to Two Regularized Matrices
	3.3.1 Proposed Estimator and Theoretical Results

	3.4 Properties of an Averaged Estimator
	3.4.1 Speed Boosting and Choice of Split Location
	3.4.2 Other Practical Concerns

	3.5 Empirical Results
	3.5.1 Simulation Experiments
	3.5.2 Forecasting the Number of Phone Calls

	3.6 Proof of Theorems

	4 A Nonparametric Eigenvalue-Regularized Integrated Covariance Matrix Estimator for Asset Return Data
	4.1 Introduction
	4.2 Framework and Methodology
	4.2.1 Two-Scale Covariance Estimator
	4.2.2 Our Proposed Integrated Covariance Matrix Estimator

	4.3 Asymptotic Theory
	4.3.1 Extension to Jump-Diffusion Processes
	4.3.2 Application to Portfolio Allocation

	4.4 Practical Implementation
	4.5 Empirical Results
	4.5.1 Simulation
	4.5.2 Comparison of Different Estimators
	4.5.3 Comparison of Portfolio Allocation Performance
	4.5.4 Portfolio Allocation Study

	4.6 Conclusion
	4.7 Proof of Theorems

	5 Nonlinear Shrinkage Estimation of Large Integrated Covariance Matrices
	5.1 Introduction
	5.2 Framework and Methodology
	5.2.1 Integrated and Realized Covariance Matrices
	5.2.2 Time Variation Adjusted Realized Covariance Matrix
	5.2.3 Nonlinear Shrinkage Estimator

	5.3 Asmptotic Theory and Practical Implementation
	5.4 Empirical Results
	5.4.1 Simulations with Varying t
	5.4.2 Portfolio Allocation on NYSE Data

	5.5 Conclusion

	References

