

The London School of Economics and Political Science

From Components to Compositions: (De-)construction of
computer-controlled behaviour with the Robot Operating System

Antti Kalervo Lyyra

A thesis submitted to the Department of Management, Information Systems
and Innovation Group, of the London School of Economics for the degree
of Doctor of Philosophy.

London, June 2018

2

Declaration

I certify that the thesis I have presented for examination for the MPhil/PhD
degree of the London School of Economics and Political Science is solely my
own work other than where I have clearly indicated that it is the work of others
(in which case the extent of any work carried out jointly by me and any other
person is clearly identified in it).

The copyright of this thesis rests with the author. Quotation from it is
permitted, provided that full acknowledgement is made. This thesis may not be
reproduced without my prior written consent.

I warrant that this authorisation does not, to the best of my belief, infringe the
rights of any third party.

I declare that my thesis consists of 71549 words.

3

Abstract

Robots and autonomous systems play an increasingly important role in modern
societies. This role is expected to increase as the computational methods and
capabilities advance. Robots and autonomous systems produce goal-directed
and context-dependent behaviour with an aim to loosen the coupling between
the machines and their operators. These systems are a domain of complex
digital innovation that intertwines the physical and digital worlds with
computer-controlled behaviour as robots and autonomous systems render their
behaviour from the interaction with the surrounding environment. Complex
product and system innovation literature maintains that designers are expected
to have detailed knowledge of different components and their interactions. To
the contrary, digital innovation literature holds that end-product agnostic
components can be generatively combined from heterogeneous sources utilising
standardised interfaces. An in-depth case study into the Robot Operating
System (ROS) was conducted to explore the conceptual tension between the
specificity of designs and distributedness of knowledge and control in the
context of complex digital innovation. The thematic analysis of documentary
evidence, field notes and interviews produced three contributions. First, the
case description presents how ROS has evolved over the past ten years to a
global open-source community that is widely used in the development of robots
and autonomous systems. Second, a model that conceptualises robots and
autonomous as contextually bound and embodied chains of transformation is
proposed to describe the structural and functional dynamics of complex digital
innovation. Third, the generative-integrative mode of development is proposed
to characterise the process of innovation that begins from a generative
combination of components and subsequently proceeds to the integration phase
during which the system behaviour is experimented, observed and adjusted. As
the initial combination builds upon underspecification and constructive
ambiguity, the generative combination is gradually crafted into a more
dependable composition through the iterative removal of semantic
incongruences.

4

Acknowledgements

I would like to express my profound gratitude to my supervisor Dr Carsten
Sørensen for his continuous support, patience and motivation throughout this
research. His knowledge and guidance have been of paramount importance
throughout my PhD.

In addition to Carsten, I am in gratitude to the Information Systems and
Innovation Group and its excellent faculty. Professor Jannis Kallinikos, Dr Will
Venters and Dr Maha Shaikh have provided their valuable advice and support,
and through various discussions and research seminars, I have learned to
broaden my approach to research and to question many of my previous
assumptions. I also thank my joyous community of PhD fellows, Kanchana
Ambagahawita, Kari Koskinen, Emilio Lastra Gil, Kyung Ryul Park, Atta Addo,
Florian Allwein, Gizdem Akdur, Zeynep Kaparoglu, Cody Dodd, Dana Lunberry,
Rohit Nair, Andrea Paletti, Marta Stelmaszak, Erika Valderrama Venegas, Laura
Zimmerman, Ceren Erdem, Rebecca Campbell, Boyi Li, Niccolò Tempini, Aleksi
Aaltonen and Enrico Rossi, for stimulating discussions, friendship and support.

This PhD was funded by Liikesivistysrahasto, Emil Aaltosen Säätiö and LSE’s
Research Studentship Scheme, for which I am profoundly grateful.

Last but not least, there are no words to express the gratitude for the enduring
support and kind encouragement I have received from my lovely wife Jane who
always looks on the bright side. A few days after the viva, our son Leo Lyyra was
born.

5

Table of contents

1 Introduction 14

The opening paragraph 14
Domains of digital innovation 14
Blending of digital, physical and autonomous technologies 16
1.1 Motivation and scope of research 18

1.1.1 Product architectures and organising logic of innovation 19
1.1.2 Distributedness of knowledge and control 19
1.1.3 Specificity of designs 21
1.1.4 Empirical observations 23

1.2 Problem statement and research questions 25
1.3 Research objective and approach 28
1.4 Targets for contributions 29
1.5 Structure for the dissertation 30

2 Literature review 32
2.1 Innovation and novelty in technology 34
2.2 Modularity and product architectures 38

2.2.1 Product architectures 39
2.2.2 Modularisation and task partitioning 42
2.2.3 Modularity as a property of product systems 44

2.3 Generativity and digital innovation 46
2.3.1 Digital computation 47
2.3.2 Modularity in computer systems 49
2.3.3 Generative combinations 51

2.4 Digitised products 54
2.4.1 Layered modularity architecture 55
2.4.2 Materiality and product architectures 59

2.5 Complex and digitised products 60
2.5.1 Robots and autonomous systems 60
2.5.2 Complex digitised products 64

2.6 Problematisation and research question 68
2.7 Summary 71

3 Theoretical framework 72
3.1 Thinking in systems 73

3.1.1 Complex systems 75
3.1.2 Structures of complexity 77
3.1.3 Considerations on the identification of structures 80

3.2 Operative research questions 82
3.2.1 Subsystems and combinations 83

3.3 Summary 86
4 Research design 87

4.1 A case study as an evolving inquiry 87
4.1.1 Quality criteria 92

6

4.2 Thematic analysis as iteratitive abstraction of patterns 94
4.3 Role of tentative a priori concepts 97
4.4 Research design framework 98
4.5 ROS as an embedded case study 100

4.5.1 The Robot Operating System 102
4.5.2 Embedded units of analysis 104

4.6 Data collection 107
4.6.1 Documents as research data 108
4.6.2 Construction of the research database 110

4.7 Data analysis 116
4.7.1 Case description 117
4.7.2 Thematic analysis 119
4.7.3 Reporting of themes and categories 121
4.7.4 Evaluation of evidence 114

4.8 Summary 124
5 Case description 125

5.1 Three viewpoints on ROS 126
5.2 PR and Switchyard at Stanford 129
5.3 PR2 and ROS at Willow Garage 134
5.4 The wider uptake of ROS 141
5.5 From ROS 1 to ROS 2 145
5.6 Summary 147

6 Results of analysis 149
Part one 150
6.1 Summary of themes and categories 151
6.2 Robot systems and their constituent elements 159

6.2.1 Robot systems 159
6.2.2 Physical embodiments 165
6.2.3 Communication systems 171
6.2.4 Transformation systems 178
6.2.5 Visualisation and testing systems 184

6.3 Robot systems as chains of transformation 191
Part two 198
6.4 From components to compositions 199

6.4.1 ROS community and software development 199
6.4.2 Transferability of software and knowledge 203
6.4.3 Generative-integrative mode of development 208

6.5 Under specification and constructive ambiguity 212
6.6 Summary 217

7 Discussion 218
7.1 Summary of conceptual findings 218

7.1.1 Contextually bound and embodied chains of transformation
 218
7.1.2 Generative-integrative mode of development 222

7

7.2 Enfolding literature 225
7.2.1 Integrality and modularity 226
7.2.2 Generative combinations 228
7.2.3 Layered modular architecture 230
7.2.4 Complementary architectural frames 233
7.2.5 Complex products and systems 234
7.2.6 Summary 235

7.3 Application of the proposed concepts 236
7.3.1 Chains of transformation 236
7.3.2 Generative-integrative mode of development 238

7.4 Summary 243
8 Conclusions 245

8.1 Overview of the thesis and summary of the findings 245
8.1.1 Background and research questions 245
8.1.2 Approach to research 248
8.1.3 Empirical findings 249
8.1.4 Contributions to literature 251

8.2 Validity and research limitations 254
8.3 Future research 256

9 References 259
10 Appendix A 271
11 Appendix B 273
12 Appendix C 276
13 Appendix D 279
14 Appendix E 281
15 Appendix F 283
16 Appendix G 285
17 Appendix H 286
18 Appendix I 287

8

List of abbreviations

BSD – Berkeley Software Distribution
DARPA – Defence Advanced Research Project Agency
DDS – Data Distributions Services standard
DRC – DARPA Robotics Challenge
ERF – European Robotics Forum
ICRA – IEEE International Conference on Robotics and Automation
IREX – International Robot Exhibition
LCIM – Levels of Conceptual Interoperability Model
MRDS – Microsoft Robotics Developer Studio
NAO – A bipedal robot from Softbank Robotics
NASA – National Aeronautics and Space Administration
NRI – National Robotics Initiative
OMG – Object Management Group
Orocos – Open Robot Control Software
OSI – Open Systems Interconnection model
OSRF – Open Source Robotics Foundation
PR – Personal Robot (Stanford)
PR2 – Personal Robot 2 (Willow Garage)
ROS – Robot Operating System
ROSCon – ROS developer conference
ROS-I – ROS-Industrial consortia
Rqt – ROS QT user interface
RViz – Robot visualiser
STAIR – Stanford Artificial Intelligent Robot
TCP/IP – Transmission Control Protocol/Internet Protocol

List of tables

Table 1: Research design framework
Table 2: Summary of research database
Table 3: The five phases of thematic analysis
Table 4: The distribution of themes across conference presentations
Table 5: Summary of themes and categories

9

List of figures

Figure 1: The structure of the literature review
Figure 2: An illustration of a four-level nested hierarchy
Figure 3: An illustration of functional allocation of a product architecture
Figure 4: The layered architecture of digital technology
Figure 5: Illustration of the dual-product hierarchy view of complex systems
Figure 6: The computational graph used in the “fetch a stapler“ demonstration
Figure 7: Personal robot PR1 prototype
Figure 8: The STAIR 1 robot
Figure 9: The STAIR 2 robot
Figure 10: The PR2 robot
Figure 11: PR2, ROS and applications as a layered stack
Figure 12: Team Delft robot setup in the Amazon Picking Challenge work cell
Figure 13: Team ViGIR's Approach to the 2013 DARPA Robotics Challenge
Trials
Figure 14: Warehouse logistics robots from Fetch Robotics
Figure 15: Relay, a hotel delivery robot from Savioke
Figure 16: TiM5xx two-dimensional laser range finder by SICK
Figure 17: RealSense™ D435 camera package by Intel®
Figure 18: Motoman industrial robot arms, MH5F, SDA10, SIA20, by Yaskawa
Figure 19: Husky, a mobile base by Clearpath Robotics
Figure 20: NAO, a bipedal robot by Softbank Robotics
Figure 21: DJI Matrice 100, a quadrotor for developers by DJI
Figure 22: A ROS graph
Figure 23: Pose2D Message that expresses a position and orientation on a two-
dimensional surface
Figure 24: A simple example of a ROS launch file
Figure 25: DiagnosticsStatus message for reporting the status of an individual
component of the robot
Figure 26: A categorisation of connectors in terms of computing platforms and
integration approaches
Figure 27: The kinematic structure of a NAO robot
Figure 28: MoveIt! - Demystifying complexity
Figure 29: MoveIt! system architecture

10

Figure 30: An example of an RQT visualisation dashboard
Figure 31: RViz visualisation of the kinematic structure and motion planning of
robot systems
Figure 32: Sensory data processing that shows data from a laser range finger
with intensity information and resulting Octomap representation
Figure 33: Simulation illustrations from Team ViGIR’s approach to Darpa
Virtual Robotics Challenge
Figure 34: Use cases and target environments for Gazebo simulations
Figure 35: Simulation environments are constructed with editors from different
simulation objects
Figure 36: An example that contrasts a simple block model and physical
simulation
Figure 37: A conceptual model of a robot system
Figure 38: A contextually embedded model of a robot system
Figure 39: Team Delft’s implementation of MoveIt! for Amazon Picking
Challenge
Figure 40: The Levels of Conceptual Interoperability Model

11

Glossary of key terms

This glossary outlines central concepts and key terminology used in this thesis.

Robots and autonomous systems refer to machines and systems that
produce goal-directed and context-dependent behaviour to operate
autonomously with limited human intervention. They have sensors and
actuators and they render their behaviour from the direct interaction with the
surrounding environment. For the most part, their behaviour is controlled by
computers.

Artificial intelligence refers to software. In particular to computational
processes that transform between qualitatively different inputs to outputs in a
way that can be viewed as advanced and sophisticated.

A robot system refers to some particular instance of robots and autonomous
systems. A self-driving car or an industrial robot can be considered as a robot
system.

Product architecture refers to a scheme by which the functionality of a
product is allocated to its components. Can be characterised for example in
terms of modularity and integrality. With modularity, functional
interdependencies among components are low so that they can be separated
and combined to produce product variety. With integrality, functional
interdependencies among components are high so that a change in a component
triggers changes in the components it interacts with.

Modularisation refers to a top-down process that partitions a product design
into modules that can be separated and combined as per the design rules.
Assumes centralised design agency from the part of the architect that performs
the partitioning into a hierarchy of parts. Characterises coordinated product
innovation.

Generativity refers to a bottom-up approach where new assemblages of
digital products can be generatively created from end-produce agnostic

12

components and systems that adhere to common standards and open interfaces.
Assumes distributed design agency as the knowledge and control of digital
objects and artefacts is distributed across a heterogeneous group of actors.
Characterises uncoordinated digital innovation.

Specificity of complex systems refers to a dual-view of product architectures
that entails the hierarchies of inclusion and control. The hierarchy of inclusion
refers to a hierarchy of parts that forms the physical embodiment, and the
hierarchy of control refers to the parts and systems that control the behaviour of
that embodiment. As the two hierarchies are interdependent, detailed
knowledge of components and their interactions is needed to produce desired
functionalities.

Organising logic of innovation refers to the dynamics of combination in
the context of product architectures. Modularity (modularisation), generativity
and specificity (complexity) manifest different logics of combination.

Complex digital innovation is a form of digital innovation that intertwines
the physical and digital worlds with computer-controlled behaviour. The
organising logic of complex digital innovation is the focal point of this research.

A system is a complex of interacting elements. Systems can be differentiated
between each other by the number and type of their constituent elements and
their respective interactions.

Simon’s theory of hierarchy postulates the structure of complex systems as
nested and recursive hierarchies that are nearly decomposable. The hierarchies
consist of sets of subsystems that in combination form some higher-level
system. A subsystem is a frame-dependent concept and what is considered as a
sub or super system depends on the observer’s frame of reference. In general, an
element, component, part or subassembly can be considered as a subsystem. A
combination is an instance of two or more subsystem interacting with each
other to produce some higher-level system. In a way, a subsystem and
combination are the two sides of the same coin.

13

The Robot Operating System (ROS) is an open-source robot software
development framework. The ROS communication system, development tools
and software distribution infrastructure facilitate the development of robots and
autonomous systems as distributed computation, and the ROS community
brings together a heterogeneous group of roboticists from academia and
industry.

Thematic analysis is an iterative and interrogative method of data analysis
that seeks to identify recurring patterns that warrant categorisation, abstraction
and conceptualisation of phenomena. This method of analysis consists of five
phases, which are familiarisation, open coding, categorisation, thematisation
and conceptualisation.

Proposed concepts

Contextually bound and embodied chains of transformation is a
notion that conceptualises the structural-functional characteristics of robots
and autonomous systems that explain the organising logic of innovation in the
context of complex digital innovation. This seeks to highlight that the
appropriateness of behaviour is context-dependent, the behaviour and
computation are embodied, and that computation is composed of the processes
of communication and transformation. All these factors play part in the
dynamics of combination.

Generative-integrative mode of development is an approach to systems
development. It characterises the process of complex digital innovation that
begins from a generative combination of components and subsequently
proceeds to the phase of integration during which the system behaviour is
experimented, observed and adjusted. As the initial combination builds upon
underspecification and constructive ambiguity, the generative combination is
crafted gradually into a more dependable composition through the iterative
removal of semantic incongruences.

14

1 Introduction

The field of robots and autonomous systems is a prominent but understudied
domain of digital innovation. Much of the innovation in the field derives from
the rapid progress of the digital computing technologies, such as pervasive
connectivity and increasingly sophisticated computing methods and techniques,
which are often referred to as artificial intelligence and machine learning. These
advances enable the design and production of robots and autonomous systems
that can be deployed to carry out tasks on their own with limited human
intervention. Although digital innovation researchers have examined a range of
matters, such as digital infrastructures (Tilson et al. 2010), digital platforms in
their different forms (de Reuver et al. 2017), digitised and connected products
(Yoo et al. 2010; Henfridsson et al. 2014), social media (Alaimo & Kallinikos
2017), mobility and digital service (Barrett et al. 2015), the innovation in the
field of robots and autonomous (robotics) has attracted little attention to date.

To begin to bridge this gap, this research sets out to study the organising logic
of digital innovation in the context of robots and autonomous systems to
explore to what the extent the current conceptualisations of organising logics
apply in the field of robotics. Considering that different domains and
phenomena of digital innovation are related and complementary to each other,
the introduction begins by placing this research against the broader backdrop of
digital innovation. Then, the notion of organising logic is discussed before
outlining the motivation, research question, empirical context and objectives of
this research.

The emergence of digital information and communication infrastructures have
transformed economic, organisational and social arrangements (Varian 2010),
and digital technologies are expected to play a significant role in the future as
well. A report by McKinsey Global Institute (Manyika et al. 2013) outlines
twelve disruptive technologies of the future and provides a forecast of their
economic impact. Out of the twelve technologies listed in the report, the six top
places were occupied by digital or digitally driven technologies: mobile internet,
automation of knowledge work, the Internet of Things, cloud computing,
advanced robotics and autonomous and near-autonomous vehicles. The report

15

forecasts their total economic impact to be somewhere between 15.2 and 36.3
trillion by 2025. Although future-looking reports are prone to be wrong in
details, timelines and sometimes in fundamentals, it would be surprising if the
advances in digital technologies and automation would not play a significant
part in/on future economic arrangements.

Technologies, in general, are created to serve some human purpose (Arthur
2009), and digital technologies are no different in this sense. Since the
introduction of the digital computer in the 1950s, Information and
Communication Technologies (ICTs) have been studied, designed, developed
and deployed to augment human capabilities and to replace human labour in
different work organisations (Avgerou 2000). Information and communication
technologies are deeply embedded in modern organisations, and it would be
difficult to imagine them without bringing digital technologies into service.
However, digital technologies can be used to serve a variety of purposes which
go beyond the traditional management and coordination of organisations’
workflows, assets and labour through the processes of transmitting, storing and
processing transactional data and information resources.

Digital and data-driven business organisations seek to transform the underlying
business models (Bharadwaj et al. 2013) by developing novel ways for delivering
goods and services in digitised forms and over digital networks (Tilson et al.
2010). While doing so, they also often seek to gather large data sets from diverse
sources and analyse them using computational methods and tools in the hope of
obtaining competitive advantage. The analysis of large data sets may provide
useful insights for decision-makers, and certain knowledge-based tasks and jobs
tasks that entail well-definable process of analysis and decision-making can be
fully delegated to algorithms. This way, the use of computational methods can
be used to support and automate knowledge work in organisations.

The impact of digitalisation extends also to products (Henfridsson et al. 2014),
cyber-physical environments (Broy et al. 2012). They are becoming more
digitised and connected to the communication networks and digital service
infrastructures. For example, much of the functionality of modern cars is
produced and controlled through digital means (Lyyra & Koskinen 2016), either

16

by the computer and software built into the car itself or by the cloud-based
services that render services remotely (Svahn et al. 2017). In addition to
products which can be considered as having clearly observable boundaries, such
as cars, the Internet of Things combines the physical and digital aspects of
products and services while blending into the physical infrastructures and
environments in a ubiquitous manner (Conti et al. 2012). Broadly speaking, the
Internet of Things can be described to consist of physical devices and products
that can be connected to the Internet, such as thermometers, fridges and cars
among many others, and of the communication networks and digital
infrastructures, which facilitate and coordinate the exchange of data between
different devices, products and cloud-based services (Broy et al. 2012).

The domain of robots and autonomous systems differs from other domains of
digital innovation by its emphasis on the development of machines that perform
goal-directed tasks in relation to the surrounding environment with limited
human intervention (Siciliano & Khatib 2008; Bekey 2005). In order to loosen
the coupling between the machines and their human operators, machines need
to be equipped with mechanisms that are capable of producing and controlling
machine behaviour in a way that is congruent with their tasks and task
environments (Bissell 2009). To this end, researchers and developers of robots
and autonomous systems integrate a range of digital technologies and methods
and develop them further with the aim of developing computational models of
behaviours that are robust and reliable (Bonsignorio & del Pobil 2015). This
behavioural aspect of computation renders this domain of digital innovation
extremely heterogeneous (Russell & Norvig 2010). The types and uses of robots
and autonomous systems range from advanced manufacturing in production
facilities and self-driving cars in public roads to Mars rovers and space
exploration, to provide a few examples. The heavy reliance on digital
technologies brings robots and autonomous systems into the purview of digital
innovation (Nambisan et al. 2017).

Technological progress expands gradually the scope of tasks and jobs that can
be transferred from humans to machines. As has happened throughout the
history of technological and economic development (Arthur 2009), this
expansion has kept the multifaceted set of boundaries of work, revenue and

17

control among machines, workers, developers and owners in the flux for the
foreseeable future.

To succeed in competitive markets, firms and organisations from different
industries are working towards increasing levels of autonomy by amalgamating
digital technologies, methods and services with physical products (Nambisan et
al. 2017; Fichman et al. 2014), and they appear to approach the amalgamation
from different starting points and focus on different industries and market
segments. Technology companies with a background on Internet and digital
business models are inclined to integrate general and scalable computational
methods into consumer-facing products, whereas organisations with a
background on products, manufacturing and industrial services tend to focus on
improving their products and service portfolios by making a better use of digital
technologies and automation. To exemplify, Internet and consumer-oriented
technology companies are racing to introduce voice-controlled user interfaces
and digital assistants. They are being made available by Google (Google
Assistant), Amazon (Alexa), Apple (Siri), Microsoft (Cortana) and Baidu (Duer),
whereas the IBM Watson unit focuses on natural language processing services
and automation of knowledge work in organisational settings. Google, an
Alphabet business unit which focuses on search and advertising, announced a
strategic focus from the mobile devices first to the artificial intelligence first to
emphasise its efforts to leverage sophisticated computing methods, while
another Alphabet business unit, DeepMind, focuses on the development and
application of more general machine-learning and artificial intelligence
methods and techniques which are capable of handling a wider variety of tasks
and contexts. In the domain of products and services, self-driving cars have
recently gained much momentum and attention. Traditional car makers, such as
Volvo, Nissan and Audi, and their long-standing components suppliers compete
with new entrants, such as Tesla, Über, Alphabet’s Waymo, Mobileye, Oxbotica
and Baidu, to develop technologies that could generate revenue from the
automated act of driving (Thrun et al. 2006). For farming, companies such as
Deere & Company and Bosch’s Deepfield Robotics seek to automate fieldwork,
whereas companies known for industrial automation, robots and services, such
as Siemens, Atlas Copco, Metso Automation, ABB and Kuka among many
others, are equipping their industrial and factory solutions with advanced

18

sensors, software and cloud-based technologies, and thereby expanding their
product and service portfolios to increasingly autonomous cyber-physical
systems and smart environments.

This cursory illustration shows how the boundaries between the digital, physical
and autonomous technologies are becoming increasingly fuzzy and intertwined.
Moreover, the number of firms and organisations investing in these
technologies, in the hope of generating revenues from the work carried out by
robots and autonomous systems, indicates the relevance of two underlying
streams of this research. The first one of them is the amalgamation of the digital
and the physical, and the second is the effort to develop products and services
that exhibit increasing capabilities of goal-directed, task and context-dependent
behaviour.

1.1 Motivation and scope of research

To date, the development of robots and autonomous systems has remained to a
large part in the realm of well-resourced corporate and government entities that
focus on specific products. However, the emergence of open-source
communities that focus on robotics and artificial intelligence is challenging this
by making more state-of-the-art software freely available. The ability to reuse,
combine and build upon others’ work lowers the bar of participation and opens
up new possibilities, thereby allowing a broader spectrum of innovative and
entrepreneurial firms and organisations, large and small, to innovate on robots
and autonomous systems. However, while all this opens up appealing
opportunities, it also simultaneously raises a question on how to coordinate and
organise these novel and multifaceted avenues of innovation.

Organising logics of innovation can be conceptualised in various ways. In the
context of this work, following Yoo et al. (2010), the notion of organising logic
refers to the dynamics of combination in the context of product architectures.
To present the motivation and scope of this research, the subsequent sections
introduce the concept product architecture, describe it in terms of modularity
and modularisation and then show how the applicability of modularisation has
been questioned in two streams of innovation literature, of which one focuses
on digital innovation and the other on complex products and systems.

19

1.1.1 Product architectures and organising logic of innovation

Products and systems are typically composed of different components, and
product architecture defines the arrangement, functionality and interactions of
components which in combination produce the overall functioning of a product
(Ulrich 1995). Although product architectures may differ greatly from one to
another, they can be characterised based on certain commonalities. Perhaps one
of the most widely used characterisation of product architectures is presented
along the spectrum between modularity and integrality (Ulrich 1995). This
indicates the level of synergistic specificity among components and the extent to
which they can be separated and recombined to produce a variety of products
(Salvador 2007; Schilling 2000). A desired degree of modularity can be pursued
through the centralised top-down process of modularisation (Baldwin & Clark
2000), which allocates the functionality of a product to its constituent
components and specifies the design rules which govern the interconnections
and interactions among components. Moreover, modular structures can be
described to consist of platforms and platform complements (Baldwin &
Woodard 2008); the platform consists of central and relatively stable
components, whereas the complements that adhere to design rules and attach to
the central components through well-specified interfaces exhibit a greater
degree of variety (Salvador 2007). This way, modularisation and the
specification of design rules provide the methods of partition and coordination
that facilitate the distribution of design and manufacturing activities across
organisational units and industrial ecosystems (Sanchez & Mahoney 1996).
Subsequently, modular product architectures have come to bear significant
implications in the division and organisation of innovative and productive
labour in different organisations and industries (Baldwin & Clark 2000).

1.1.2 Distributedness of knowledge and control

Digital innovation literature questions the extent to which the notions of
modularisation and modular product architectures apply to digital innovation.
The main discontent is that the process of modularisation assumes a centralised
design agency (Nambisan et al. 2017) that partitions the overall design of a
product to components that can be designed and manufactured in a distributed
manner before final assembly (Yoo 2012b). Therefore, the literature on digital

20

innovation approaches the process of design from a different direction and
argues that digitised products emerge partly as generative combinations (Yoo et
al. 2010) in the absence of centralised design agency (Nambisan et al. 2017).
This is theorised to follow from the commodifying and generative characteristics
of operating systems and communication protocols (Zittrain 2008; Zittrain
2006), which make it possible for broader audiences to take part in digital
innovation. In this view, digitised products are seen as layeredly-modular (Yoo
et al. 2010). This notion combines the concepts of products architectures as
modular arrangements and as layered stacks. In the computer and software
industry, system architectures are commonly presented as layered and
hierarchical stacks. The stacks are collections of computer programs
(components), where each of the components carries out a specific set of
functions and in combination they produce the overall functioning of a
computer. The combination of components that carry out different functions
and reside at different levels of hierarchy relies on well-specified interfaces,
standards and protocols (Yoo et al. 2010) which facilitate the communication
between the components. This allows the separation of concerns by hiding of
the internal functioning and complexity of components (Parnas 1972), which in
turn facilities the divisions of innovative work as software designers can focus
on their particular area of work. An operating system provides a prime example
of hiding complexity; it hides the intricate details and complexity of computing
hardware while making it accessible to software developers and applications
(Tanenbaum & Bos 2014). This way, as long as different components adhere to
specifications and produce their intended functionality, it is possible to combine
ensembles of software components even if they originate from different sources
(Yoo et al. 2010). While the reliance on pre-specified interfaces and layers of
abstraction facilitates the division of labour and combination of components
that originate from different sources, it also leads to a situation where
knowledge and control of digital components and their internal functioning is
distributed over a number actors and organisations (Yoo et al. 2010) while
remaining open-ended and subject to frequent modifications (Kallinikos,
Aaltonen, et al. 2013; Garud et al. 2008). Therefore, the digitalisation of
products (Yoo et al. 2010), platforms (de Reuver et al. 2017) and infrastructures
(Tilson et al. 2010) not only opens up new ways to divide and participate in the

21

innovative work, but it also challenges the established theories and practices of
organisation and coordination.

1.1.3 Specificity of designs

Whereas the emergent and generative characteristics of digital innovation
challenge the organising logic that builds on the notions of centralised design
agency and modularisation, the literature on complex products and systems also
challenges these notions but from a different direction. The complex products
and systems literature questions the applicability of modular product
architectures on the grounds of specificity of product and system designs (Miller
et al. 1995), the prominent role of architectural innovation (Henderson & Clark
1990; Hobday 1998) and interdependencies among different design hierarchies
(Murmann & Frenken 2006). Under competitive mass-market conditions,
products tend to evolve in conjunction with customers’ conceptions towards
modular design hierarchies and dominant design (Utterback & Abernathy 1975;
Clark 1985), yet such dominant designs remain largely absent in the complex
products and systems engineering industries (Miller et al. 1995), which produce
complex and highly-specific products and systems in low volumes. The projects
which engage in complex products and systems innovation often require
expertise at the levels of components and product architectures (Henderson &
Clark 1990; Hobday 1998) in order to manage the interdependencies among
design hierarchies of inclusion and control (Murmann & Frenken 2006). The
hierarchy of inclusion refers to the hierarchical and nested organisation of parts
which constitute the physical embodiment of a product, whereas the hierarchy
of control refers to the parts and functional logic which controls the operation
and behaviour of that embodiment. The multifaceted interdependencies among
of the hierarchies of inclusion and control constrain the combinability of
components and call for detailed knowledge of the system architectures as well
as the functioning of different components (Prencipe 2000; Lee & Berente
2012). Against this backdrop, complex products and systems literature
questions to what extent innovative work can be partitioned and coordinated
through the processes of modularisation and modular product architectures.

As discussed above, although modularisation and modular product
architectures are widely used in industrial settings and studied by academic

22

researchers, the extent to which these notions reflect the organising logic of
digital innovation and complex products and systems innovation has been
questioned, albeit on different grounds. Digital innovation literature does away
with centralised design agency by turning into emergent and generative
combinations, whereas complex products and systems innovation literature
challenges the extent to which any modularisation or separation of concerns is
feasible at all due to functional interdependencies that require detailed
knowledge of product specific components and architectures.

This leaves organisations and researchers with a conceptual conundrum: which
theoretical or conceptual logic or framework should they follow or use when
thinking of and working on robots and autonomous systems? Should they draw
the lessons from the domain of digital, or should the lessons learned from the
domain of complex products offer a better starting point? This is not an easy
question to answer since robots and autonomous systems can be viewed at the
same time through the lenses of digital and complex innovation and be labelled
as complex digital innovation. First, they are complex compositions of diverse
sets of components which in combination are expected produce context-
dependent and purposeful behaviour (Siciliano & Khatib 2008) and second,
their behaviour is to a large extent controlled through the digital means, the
computers and algorithms (Russell & Norvig 2010; Bekey 2005).

The purpose of robots and autonomous systems is to perform tasks with limited
human intervention. To loosen the coupling between the machines and their
human operators, the machines are equipped with a set of technologies that
allow them to steer and control their own behaviour. These sets of technologies
consist of sensors that gather inputs from the surrounding environment, control
systems that convert environmental inputs into plans actions and actuation
mechanisms which then exert actions back to the environment (Bekey 2005).
Therefore, such machines, once set in motion, are expected to operate towards
given goals by responding to and absorbing a variety of contingencies that
materialise in the surrounding environment and are within the bounds of their
control systems (Wiener 1965; Ashby 1958). In this light, the notion of
autonomy should not be considered as an essentialist character that could be
attributed to a particular machine. Instead, in the context of robots and

23

autonomous systems, the notion of autonomy is better understood as non-
voluntarist situated actions, as a contingent behaviour which emerges from a
machine’s interaction with its surrounding environment. In this view, the
degree of autonomy a machine possesses can only be evaluated in relation to the
degree of contextual variety the machine is able to handle while pursuing a
given goal in a specific environment.

Much of the progress in the field of robots and autonomous systems derives
from the development and application of a variety of computing technologies
and methods and across different domains of digital innovation. Large and
small companies alike are confronted with the task of making sense of
multidimensional and changing technological environment and considering
how to conceptualise and arrange their innovative practices that revolve around
digital, physical and autonomous technologies.

But therein lies the problem. The development of robust and reliable
behavioural models leaves little room for uncertainty, requiring orderly and
knowledgeable integration of multiple technologies, yet, as per the organising
logic of digital innovation, knowledge and control can be highly distributed
among the actors and organisations that participate in the development of
digital artefacts. Therefore, the organising logic of complex digital innovation
appears to reside uncomfortably between the two somewhat contradicting logics
of combination, thereby prompting empirical investigations to get a better grasp
of the problem.

1.1.4 Empirical observations

Over the past decade, digital innovation research has studied structural
arrangements, organising logic (Yoo et al. 2010) and competition dynamics
(Karhu et al. 2014) in the context of digital infrastructures (Tilson et al. 2010),
platforms (de Reuver et al. 2017) and associated boundary resources (Eaton et
al. 2015; Ghazawneh & Henfridsson 2012). This body of literature documents
the convergence towards generative platforms and ecosystems that centre on
certain operating systems and digital services.

24

Whereas platformisation and convergence characterise digital innovation in the
context of desktop computing, mobile devices and digital business models in
general, the prevailing state of affairs appears more diverse in the domain of
complex digital innovation, namely, robots and autonomous systems. A cursory
search reveals a few dozen proprietary and open-source platforms, software
development environments and framework, which are aimed to support the
development of robots and autonomous systems. Regardless of the apparent
similarities in the architectural principles and functionalities they offer, they
differ in implementation details and are not compatible with each other
(Kramer & Scheutz 2006; Iñigo-Blasco et al. 2012). The naming of YARP, Yet
Another Robot Development Platform, is presumably symptomatic of the
situation. In general, endeavours such as YARP aim at improving the
combinability and reusability of robotics-specific software to leverage previous
efforts, yet the fragmentation and lack of interoperability among different
components and sets of software are common. In addition, the manufacturers of
industrial robots use proprietary software development environments and
programming languages (Rossano et al. 2013; Pot et al. 2009). Moreover,
advanced control systems are often embedded integrally to specific end-
products, such as aeroplanes (Prencipe 2000) or self-driving cars (Thrun et al.
2006).

With various references to the benefits of platformisation, open standards and
lessons from software engineering, there have been numerous attempts to make
robot software more transferable in order to avoid reinventing the wheel.
Regardless of the recent hype, it is worth noting that the first digitally controlled
robotic arms were developed in the 1950s and put into industrial use in the early
1960s (Mason 2012). While many of the open-source efforts have emerged from
the needs of developer communities, there have been corporation-driven efforts
as well. For example, Microsoft launched Microsoft Robotics Developer Studio
(MRDS) at the end of 2006 (Olsen 2006). The launch was accompanied by the
article A robot in every home by Bill Gates (2007) in the Scientific American.
The article pointed out the lack of common standards and platforms likening
the state of robotics to that of computers in the mid-1970s. MRDS was then
proposed as a way for consolidating contributions from the wider community.
This would speed up the development of the industry by providing a common

25

set of standards and tools that cater the needs of the developers of robots and
autonomous systems. Despite the good intentions, business opportunities did
not materialise and Microsoft shut down the robotics group in autumn 2014
(Guizzo 2014). The generative promise of well-defined interfaces and
standardised protocols remained elusive even for a well-resourced corporation.

Regardless of the apparent difficulty in establishing common standards, the
Robot Operating System (ROS) (Quigley et al. 2009) has gained traction among
researchers and developers in academia and industry. ROS is designed to
support collaborative and distributed robot software development, and ROS and
the related open-source community make a range of robotics-specific software
freely available while bringing together roboticists and developers from
different parts of the world. This distributedness renders the boundaries of
knowledge and control diffuse uncertain and porous, which is something that
could be considered as anathema in the view of design and engineering efforts
that seek to produce reliable, predictable and robust systems whose behaviour is
well-understood.

Therefore, the interesting part here is what makes ROS successful and how it
manages to resolve the tensions between the contradicting organising logics that
emerge from the specificity of designs and the distributedness of knowledge and
control in complex digital innovation. Thereby, this tension provides the
motivation and scope for this research.

1.2 Problem statement and research questions

The previous discussion presents an understanding of the tension emerging
from the specificity of designs and the distributedness of knowledge and control
in innovation literature. So far, this tension has received relatively little
attention, and different bodies of literature offer contradicting views. This
tension is restated below as a problematisation so as to inform the research
question this work seeks to answer. The principal research question and two
operative research questions are presented after the problematisation.

Robots and autonomous systems can be considered as complex digital
innovation since they consist of a variety of physical and digital components,

26

and the development of goal-oriented, context-dependent and contingent
behavioural models make extensive use of digital technologies. The literature on
digital innovation theorise that novel products can be generatively combined
from the components that originate from heterogeneous and distributed
sources; by adhering to open standards, common interfaces and protocols,
software developers can focus on their own areas of work with little regard to
that what is hidden on the other side the interface. On the other hand, according
to innovation literature on complex products and systems, designers and
developers are expected to possess a detailed knowledge not only of the
interfaces and particular components but the overall system architecture as
well, due to multifaceted functional interdependencies among the hierarchies of
inclusion and control. This brings up the tension between the specificity of
designs and to the distributedness of knowledge and control of digital
components. Furthermore, while the cursory evidence indicates the difficulty of
establishing common standards in the field of robots and autonomous systems,
the uptake of ROS shows that this is not entirely out of the question. These
contradictions are problematic and raise a question on how complex digitised
products should be conceptualised to make sense of their organising logic on
innovation.

The motive of the principal research question rests on two pillars. The first one
is the conceptual tension that emerges from the innovation literature, and the
second is the existence and uptake of ROS, which gives a reason to assume the
tension between the specificity of designs and the distributedness of knowledge
and control can be resolved. However, how this is exactly done remains unclear.
To this end, the following principal research question establishes the main
objective of the inquiry:

How can the tension between the specificity of designs and the distributedness
of knowledge and control be resolved in the development of complex and
digitised products?

Next, the principal research question is restated as operative research questions
to make the process of data collection and analysis more focused and tractable.
Considering the exploratory character of this research, the operative research
questions are left open-ended in order to retain the interpretative flexibility

27

while simultaneously directing the researcher’s attention towards the potential
areas of interest. The operative research questions are constructed upon
tentative a priori concepts, which operate as sensitising devices and while
remaining open in terms of what exactly should be observed.

The conceptualisation draws on Simon’s (Simon 1962; Simon 1996) theory of
hierarchies, which defines complex systems as nested, recursive and nearly-
decomposable structures. Drawing on the central elements of this theory, the
efforts of data collection and analysis are directed to the identification of
subsystems and combination and their respective characteristics. They are
expected to provide a well-rounded view on the organising logic of complex
digital innovation in the context of ROS.

Starting from what is there to be combined, efforts are first geared towards the
identification of the typical instances of subsystems at different levels of
hierarchies of inclusion and control. Therefore, the first operative research
question is formulated as follows:

What are the typical instances and characteristics of subsystems, if any?

Once the typical instances of subsystems are identified, the focus is shifted to
the combination of subsystems with an emphasis to explore how they are
combined across and at different levels of hierarchies. Therefore, the second
operative research question is formulated as follows:

What are the typical instances and characteristics of combinations, if any?

The examination of the subsystems and their respective combinations is
expected to provide a way to answer the principal research question and
increase our understanding on how tensions between the specificity of designs
and the distributedness of knowledge and control can be resolved in complex
digital innovation.

28

1.3 Research objective and approach

As established in the principal research question, the objective is to study the
tensions between the specificity of designs and the distributedness of knowledge
and control. This is done with reference to ROS, which is widely used in the
research and development of robots and autonomous systems. The research is
exploratory aiming to provide a foundation for further studies. With reference
to Gregor’s (2006) categorisation of information systems theories, the aimed
contribution can be characterised as type I theory, which seeks to describe and
analyse the phenomenon. Such theories are described as follows:

“Says what it is. The theory does not extend beyond analysis and description.
No causal relationships among phenomena are specified and no predictions
are made” (Gregor 2006, p.620)

Theoretical contributions are presented in the form of proposed concepts
(Eisenhardt 1989b), and whereas they may have a potential to shed light on
where the future studies could be directed, no causal claims nor future
predictions are made within the scope of this research.

Research design follows the framework presented by Eisenhardt (1989b). Data
collection and analysis are guided by tentative a priori concepts, which direct
the researcher’s attention towards particular areas of interest. Furthermore,
given the exploratory character of this research, data analysis and collection are
partially overlapping so as to provide flexibility to pursue emerging avenues of
research if and when data so suggests. The analysis of data is followed by the
formulation of proposed concepts, which are then enfolded and discussed with
reference to the literature on digital and complex systems and products
innovation.

The emergence, organisation and use of ROS provide the empirical backdrop for
this research, and a research database for ROS related data is constructed to
serve two purposes. First, it provides a chronological trail of events based on
which the case description is constructed. Second, to offer a rich body of
evidence that enables an in-depth investigation for answering the primary
research question. The research database consists primarily of documentary
evidence, including ROS related blog entries, ROSCon conference presentations,

29

scientific papers and magazine articles and email archives. Together they cover
a period from 2005 to 2016. The documentary evidence is supplemented with
selected interviews and field notes.

The analysis of data proceeds in two stages. The first stage concerns with getting
familiar with the context of research and case study. This stage produces the
case description of ROS and develops an understanding of the language used in
the field, and therefore serves as a preparatory stage before the second stage.
The second stage focuses on a more detailed analysis of documentary evidence,
using the method of thematic analysis to identify the themes and categories of
subsystems and their respective characteristics of combination. This is done to
describe and conceptualise the unfolding of the tension between the specificity
of designs and distributedness of knowledge and control.

Subsequently, the proposed concepts are presented and discussed in the light of
existing literature to evaluate their validity and the extent to which they are able
to contribute to the literature on digital innovation.

The proposed concepts build upon the empirical evidence collected from ROS.
Therefore, there are limitations to what extent the resulting conceptualisation
applies to different robot software development environments. In addition,
considering the complexity and open-endedness of ROS and the surrounding
community, this research does not claim to be exhaustive. Therefore, there are
presumably elements, which may contribute to the phenomenon but have not
been considered in the analysis.

1.4 Targets for contributions

Should the objectives of this research be achieved, the following contributions to
the innovation literature could be made.

The first area of contribution is the description and illustration of the empirical
domain of robots and autonomous systems. This domain nor the software
development environments or infrastructure that support it have not received
much attention in the literature on digital innovation. Therefore, this work has
an opportunity to contribute to the literature by introducing ROS, a widely used

30

software development framework for robotics and explicate its origins and
organising principles.

The second area of potential contributions concerns conceptualisations which
are expected to emerge from the thematic analysis. The thematic analysis is
expected to reveal salient themes and properties that characterise the
constitutive elements and organising logic of digital innovation in the context of
ROS and in the development of robots and autonomous systems in general. This
would contribute to the literature by providing conceptual tools that could
potentially be of use when developing more targeted and fine-grained research
designs to establish prevailing states of affairs at a greater level of detail and
precision.

The third area of potential contributions is related to the innovation dynamics
at the boundary of generative combinations and systems integration efforts.
This is becoming increasingly relevant considering the broader uptake of
technologies that are becoming more sophisticated, complex and autonomous.
Therefore, developing a greater degree of understanding of the dynamics of
complex digital innovation would presumably be also of practical interest for
businesses and innovation and technology managers who are tasked to manage
and increase the level of automation in different work environments.

Therefore, to aim at these contributions, this work proceeds to explore and
examine how software development around ROS is organised, how it supports
the innovation on robots and autonomous systems and what are the salient
characteristics of the organising logic of innovation. The contributions of this
research are discussed with reference to these objectives in the concluding
chapter.

1.5 Structure for the dissertation

Moving forward, the next chapter, Chapter 2, reviews the related innovation
literature in more detail. To this end, the focus of the review is on the body of
research that deals with product architectures, modularisation, digital
innovation as well as the characteristics of robots and autonomous systems and
the innovation on complex systems and products. The problematisation and

31

principal research questions are presented after the literature review. The
literature review is followed by Chapter 3 that introduces the theoretical
framing that underpins the development of the tentative a priori
conceptualisations and operative research questions. This is based on Herbert
Simon’s (1996; Simon 1962) theory of hierarchies which is concerned with the
structural properties of complex systems. Chapter 4 describes the theoretical
foundation of the research methods adopted in this research. Considering the
exploratory character of this research, the methods applied seek to identify and
explicate prominent themes that could be used to propose conceptualisations
capable of informing the future research efforts. Chapter 5 presents the case
description. The case description outlines the history and evolution of ROS and
presents it as a framework and community that brings together a number of
robotics researchers and developers from academia and industry. Then, Chapter
6 presents the results of the empirical study and brings forward the themes
which emerged from the documentary evidence. Subsequently, building upon
these themes, proposed conceptualisations regarding the complex digital
innovation and the development of robots and autonomous systems are
introduced. Subsequently, Chapter 7 discusses these proposed concepts in the
light of existing literature on digital innovation and complex systems and
products. The chapter begins by summarising the concepts and then proceeds to
discuss the unfolding of the tensions between the integrality of designs and
distributedness of knowledge and control in the context of complex digital
innovation. Finally, Chapter 8 presents concluding remarks, which summarise
this research by bringing forward potential contributions, outlining the various
failings and limitations and suggesting avenues for future research.

32

2 Literature review

This research explores the organising logic of complex digital innovation. Given
the range of dimensions along which organisations can innovate or support
innovative practices, research on innovation ranges from human creativity,
technological inventions, business and management practices to economic
analysis and national strategies focusing on different levels and units of analysis
(Ahmed & Shepherd 2010). In this work, the organising logic of complex digital
innovation is studied in the context of robots and autonomous system.

Since the 1950s, the innovation that leverages digital technologies has played an
increasingly important role in the process and product development (Nambisan
et al. 2017). Information systems are widely used in organisational settings
(Avgerou 2000), and digital technologies have come to constitute pervasive
information and communication infrastructures (Tilson et al. 2010).
Furthermore, physical and digital technologies are becoming increasingly
intertwined and digital technologies manifest themselves in cars (Henfridsson
et al. 2014), sensor networks (Sanfeliu et al. 2008), the Internet of Things and
other cyber-physical systems (Broy et al. 2012; Conti et al. 2012; Wolf 2009).

Robots and autonomous systems represent the complex end of digital
innovation. Typically, robots and autonomous systems are composed of a
variety of physical and digital components in an attempt to create machines that
are able to operate on their own by interacting with the surrounding
environment (Bekey 2005). This is to a large extent facilitated by digital
computing and artificial intelligence technologies (Russell & Norvig 2010).

This chapter reviews the related literature to establish the backdrop and
boundaries for this research. Broadly speaking, the chapter unfolds along the
five elements as illustrated in Figure 1. To begin, different types and definitions
of innovation are outlined to locate this work in the wider body of innovation
literature, and in the scope of this work, innovation is viewed through the lens
of technological combination (Arthur 2009; Schumpeter 1983 first published in
1934). Then, the review directs its attention to the organising logics of
innovation, which are viewed as the dynamics of combination in the context

33

Figure 1: The structure of the literature review (own figure)

of product architectures. To this end, the concepts of product architectures
(Ulrich 1995), modularisation (Baldwin & Clark 2000) and the modularity of
product systems (Salvador 2007) are reviewed. After that, the two branches of
innovation literature that challenge the modularity view are introduced and
discussed. The branch on the generativity of digital innovation reviews the
emerging body of digital innovation literature (Nambisan et al. 2017) with
reference to software system architectures (Parnas 1972) and digital innovation
as generative combination (Zittrain 2008; Zittrain 2006), looking also into
digitised products in the view of layered modular architectures (Yoo et al. 2010)
and complementary architectural frames (Henfridsson et al. 2014). After that,
the branch on the specificity of complex innovation reviews the literature on
complex systems and products innovation with reference to the inclusionary
and control hierarchies (Murmann & Frenken 2006) and related implications to

34

the organising logic of innovation (Prencipe 2000; Lee & Berente 2012). At the
end of the chapter, the reviewed literature is brought together to present the
contradicting logics of combination, which leads to the problematisation and
principal research question.

2.1 Innovation and novelty in technology

Innovation literature is varied and multifaceted, yet much of it derives from the
economist Joseph Schumpeter’s (1983) work published originally in 1934,
which postulates that economic development emerges from novel combinations
of existing resources.

The purpose of economic activity is to satisfy human wants and needs by
producing goods. In turn, production is viewed as a combination of things and
forces within our reach (Schumpeter 1983). Produces are then exchanged for
money, and the flows of material and money circulate in opposite directions
according to some established patterns of circulatory flows. Under normal
conditions, these established patterns stay the same over economic periods as
economic actors react routinely to changes in their outside environment. In
contrast to the repeated cycles, innovation is an active attempt to alter some
established pattern of material and monetary flows from-within the economy by
combining existing resources in some novel way that is deemed advantageous
by the markets (Schumpeter 1983). While the structural alteration of the
material and respective monetary flows may prove highly beneficial to the
innovators who seek to alter the flows to their advantage, these structural
changes may spell a creative destruction for those who are not able to respond
adequately.

The unfolding of innovation, the carrying out of novel combinations, can take
place in a variety of ways and be analysed from a variety of viewpoints. In
general, innovation is often characterised in terms of an idea or invention and
its successful commercialisation (Ahmed & Shepherd 2010). It may result from
a stepwise progress from an invention (technological novelty) to innovation
(commercial adoption) and subsequent diffusion (wider uptake) which marks
broader technological changes and shifts in business cycles (Ruttan 1959), yet
inventing some technological novelty is not a necessary precondition for

35

innovation. Following Schumpeter (1983), innovation may unfold for example
through the introduction of new goods or methods of production, the opening of
a new market, the conquest of a new source of supply, or the carrying out a new
organisation of an industry. This way, innovation also includes the transfer and
application of existing technologies and knowledge to new product and
application domains (Nambisan et al. 2017).

While Schumpeter’s (1983) theory conceptualises innovation in terms of
entrepreneurial effort to cause structural alterations in material and monetary
flows, it remains silent on broader social and organisational processes and
mechanisms that influence the unfolding of innovation (see e.g Ruttan 1959). To
fill the void, a sizeable body of literature has emerged to examine different
aspects of innovation at different levels and units of analysis (Crossan &
Apaydin 2009), such as new product development (Garcia & Calantone 2002),
process innovation (Davenport 1993) and service innovation (Vargo & Lusch
2004), or a variety of relationships among them (Utterback & Abernathy 1975;
Crossan & Apaydin 2009), to provide a few examples.

Acknowledging the variety of definitions and research streams in the innovation
literature, in this research, innovation is approached from the point of view that
characterises innovation as a novelty in technology that is produced through the
combination of existing technologies. This view builds upon W. Brian Arthur’s
(2009) work on technological innovation.

Whereas Schumpeter (1983) focuses on the entrepreneurial effort in carrying
out novel combinations to alter the existing material and monetary flows,
Arthur (2009) seeks to explain the role of technologies and technological
evolution in this process. Furthermore, Arthur (2009) portrays economies as
expressions of their technologies (of factors of production), and postulates that
economies emerge and change in conjunction with the combinatorial evolution
of technologies that produce them. In this view, innovation is seen as a novelty
in technology and the process of technological innovation as combinatorial
evolution in which new technologies arise through the combination of existing
technologies.

36

Arthur (2009) describes technologies with reference to three fundamental
principles. The first two of them focus on the logical structure, presenting
technologies as a combination and as recursion. The combination principle, as
illustrated in Figure 2, means that “[a] technology is a combination of
components to some purpose” (Arthur 2009 Chapter 2), that is, technologies as
systems are combined of components, such as subsystems, components and
parts, which in combination produce some overall higher-level functionality.
The principle of recursion, in turn, states that the components are technologies
themselves. Defined this way, technologies are made of technologies, and can,
therefore, be examined and evaluated as technologies across different
technological domains, levels and units of analysis – and what is deemed to
count as an overall system, subsystem or component is relative to the observer’s
objectives. These principles of combination and recursive organisation resonate
with Herbert Simon’s (1962; 1996) theory of hierarchy which presents complex
systems as nearly decomposable and nested hierarchies.

Figure 2: An illustration of a four-level nested hierarchy
(Murmann & Frenken 2006)1

1 Reprinted from Research Policy, 35(7), Johann Peter Murmann and Koen Frenken, Toward a
systematic framework for research on dominant designs, technological innovations, and
industrial change, Page 938, Copyright (2006), with permission from Elsevier.

37

The third principle turns attention from the structural to the functional logic,
forwarding that all technologies harness and use some effect or phenomenon, or
usually several (Arthur 2009). In order to perform desired functions,
technologies incorporate some conceptual basic operational principle, a method
or process that outlines steps and transformations that are needed to harness
some natural, social or psychological effect or phenomena to serve some human
purpose. More succinctly, technologies are purposed systems and the
conceptual basic principle is “the idea of an effect in action” (Arthur 2007,
p.274). For example, a digital camera captures patterns of light and turns them
into digitally-encoded images (Yoo, Lyytinen, et al. 2010) that can be sent as bit-
strings over digital infrastructures (Tilson et al. 2010) for people to share them
on social media (Alaimo & Kallinikos 2017). The modern microprocessors and
image sensors which make all this possible harness the semiconductivity of
silicon in digital computation (Mack 2011).

Building on these definitions, novelty in technology is said to emerge from two
primary sources, from the novel combinations of existing technologies and from
the harnessing of effects or phenomena (which is a process that relies on
existing technologies) (Arthur 2009). Depending on human and social goals, the
processes of combination can vary from relatively trivial and gradual
improvements to highly complex and experimental endeavours where newly
harnessed effects and phenomena are put to use on a large scale.

Depending on the phenomena a technology harnesses, the principles of
harnessing and the purposes they serve, technologies evolve and accumulate
into different bodies and domains of technology. In turn, these reservoirs of
technology can be drawn upon and combined to develop novel technologies,
which in turn can be combined to create other novel technologies ad infinitum
— changing constantly the backdrop against which new technologies and
economic activities are performed. The gradual development and diffusion of
new technologies, such as digital computation (Copeland 2014), may cause
drastic shifts on how social (Kallinikos, Hasselbladh, et al. 2013), organisational
(Tilson et al. 2010) and economic activities are arranged (Varian 2010).

38

To examine how logics of combination differ among different types and
categories of innovation, the subsequent sections take a closer look into product
architectures and review the related literature in the view of modularity,
generativity and complexity.

2.2 Modularity and product architectures

This section reviews the literature on product architectures and modularity.
First, the use of modularity in management literature is briefly outlined, after
which product architectures and modularity are further discussed in the view of
modularisation and centralised design agency.

Modularity is a general and widely used concept in organisation and
management literature. It has come to carry a multiple of interpretations
depending on the scale, context and phenomenon it is summoned to explain
(Campagnolo & Camuffo 2009; Salvador 2007; Iman 2016). Although the
notion of modularity can be conceptualised along different lines, it is commonly
viewed as something that contains complexity and provides organisations with
flexibility and agility through the separation and combination of concerns.
Modularity allows organisations to respond more readily to varying market
demands, competitive situations and technological change.

Campagnolo and Camuffo (2009) reviewed the use of the concept of modularity
in management literature. Their findings reveal that management researchers
interests in modularity revolve around the three areas of product design,
production systems and organisation design. Product design, the first one of the
three, had attracted the largest share of attention, and in this context, the
concept of modularity deals with the allocation of functionality over
components in product architectures and the implications of modularity on
product lifecycles. The perspective of functional allocation draws upon Ulrich’s
(1995) conceptualisation of modularity as correspondence between functional
elements and physical components. In turn, the life cycle perspective widens the
view by taking into account different phases of a product life cycle, starting from
design, production and use and ending with decommissioning. Second, in the
context of product systems, research interests centre on the relationships
among product modularity and outsourcing arrangements and their

39

implications on the formation of boundaries among firms and organisations
(Schilling & Steensma 2001). Third, research into modularity in the context of
organisation design seeks to explain the formation and adaptivity of
organisational structures. The formation of organisational structures focuses on
the existence of structural isomorphism between product architectures and
development and manufacturing organisations (Brusoni & Prencipe 2006;
Sanchez & Mahoney 1996; Baldwin & Clark 2000), whereas the adaptive view
discusses how modularity of organisational structures provides flexibility that
allows for agile responding to changes in market conditions (Ciborra 1996). This
variation in definitions, measurements and contextual applications introduces
ambiguity to the concept of modularity. Therefore, regardless of the apparent
similarity of the underlying conceptualisation, reconciliation among different
streams of modularity research remains challenging (Campagnolo & Camuffo
2009).

This diversity of views on modularity is also echoed also in literature reviews
that focus on more narrow domains of research, such as service systems (Iman
2016) and product systems (Salvador 2007). The divergence of mechanisms
which drive modularisation and subsequent combination in different socio-
technical and technological contexts, scales and time frames appear to pose
challenges to generalisation, regardless of the frequent calls for unified
conceptual frameworks. The subsequent section discusses the concept of
modularity in the light of product architectures.

2.2.1 Product architectures

Product structures are often discussed in terms of product architectures, and
they can be characterised along the lines of integrality and modularity. A
product architecture, following Ulrich’s (1995) definition, refers to the “scheme
by which the functionality of a product is allocated to its physical components”
(ibid p. 419) – or, more precisely, can be seen a combination of “the
arrangement of functional elements, the mapping of functional elements to
physical components and the specification of the interfaces among interacting
physical components” (ibid p. 420). In this view, functional elements are
abstract and conceptual responses to functional requirements, which express
the expected functioning of a product under some constraints and in a given

40

context. A mixture of functional elements and their interconnections are
combined to produce a function structure which describes the overall
functioning of a product; the function structure specifies the capabilities,
constraints and behavioural logic of a product. Then, functional elements are
allocated to physical components which provide the material substrate and
produce specified functionalities as illustrated in Figure 3 (Ulrich 1995).
Physical components can be viewed as separable parts which in combination
produce the overall functioning of a product (Ulrich 1995).

Figure 3: An illustration of functional allocation of a product architecture
(Ulrich 1995)2

There are no definitive rules or guidelines on how functional elements should be
allocated over physical components (Salvador 2007). Often, there are many
different allocation schemes that could produce the same end result, that is, an
equally functional end-product, and the eventual architecture result from design
choices that are contingent on a variety of factors, ranging from the functional
requirements to production systems and corporate strategies (Campagnolo &
Camuffo 2009).

As the overall function structure is distributed over the components that
constitute the end-product, individual components may come to perform a
single function, be part of a composition of components which produces some
single functionality or perform multiple functions simultaneously on their own
(Ulrich 1995). A product architecture is called modular if there is a one-to-one

2 Reprinted from Research Policy, 24(3), Karl Ulrich, The role of product architecture in the
manufacturing firm, Page 421, Copyright (1995), with permission from Elsevier.

41

relationship between the functional elements and components and they are
decoupled so that a change in one component does not require any change in
the component(s) it connects to. On the other hand, product architectures are
said to be integral if components implement multiple functional elements, and
if components are coupled so that a change in one component requires changes
in others. The detailed functional specifications of components depend on the
allocation of functionality during the architectural design (Ulrich & Eppinger
2012).

When functional elements are distributed over a number of components, it is
essential that the components are connected in a way that they produce the
expected behaviour in combination. For this to happen, interfaces need to be
located and specified in an appropriate manner. Otherwise components cannot
connect to and interact with each other. To this end, interface specifications
detail the necessary modalities of connection and interaction, such as protocols
and physical coupling, depending on the types of connection and interaction
(Ulrich 1995).

By allocating functional elements over components and establishing necessary
interfaces, architectural design sets out the structural composition which
produces the overall functionality of the product. As architectural design often
resides at a higher level, it is complemented by more detailed specifications
which provide lower-level details of different components and their respective
interactions. These architectural schemes, blueprints and design documents
allow for the communication of the overall vision among project teams (Hobday
1998) and facilitate the partitioning of work (Hippel 1990).

Product architectures, as any systemic arrangements, can be evaluated based on
their structural patterns and respective properties (Bertalanffy 1968). The
relationships among functional elements and physical components can be
defined in terms of integrality and modularity (Ulrich 1995). However, product
architectures are rarely fully modular or integral, and any attempt at
categorisation depends on how and at what level of abstraction functional
elements and physical components are defined and analysed (Salvador 2007).
In this light, the matter of modularity and integrality should be considered

42

rather as a frame-dependent continuum between modularity and integrality
than any general binary condition (Ulrich 1995; Yoo et al. 2010). While
definitions vary, the notion of modularity is often used to refer to a degree to
which components can be separated and subsequently combined (Schilling
2000).

2.2.2 Modularisation and task partitioning

As discussed above, product architectures vary along the spectrum of
modularity and integrality (Ulrich 1995). At one end, a modular product
architecture renders one-to-one mappings between functional elements and
components, while, at the other end, an integral architecture produces
intertwined and more interdependent relationships among different functional
elements and components.

Modularisation is a design principle and process which seeks to decompose the
overall design requirements and function structure in a manner which results in
a modular product architecture (Baldwin & Clark 2000). The purpose of
modularisation is to produce an overall structure, a product architecture, where
modules have strong structural connections and interdependencies within the
boundaries of a module, but the connections and interdependencies across the
modules remain relatively weak. Subsequently, the modules which emerge from
this directed and purposeful problem-solving process are often described as
loosely-coupled (Schilling 2000; Parnas 1972). The loose coupling among
modules brings several benefits, such as the commonality and combinability of
components (Salvador 2007). The commonality allows modules to be used in
different products, whereas the combinability of modules provides companies
and customers with a larger variety of product variants in a cost-efficient
manner since a large variety of products can be produced by arranging
components in different configurations (Langlois & Robertson 1992; Schilling
2000). Moreover, companies can react to market changes in a more agile
manner when they rely on modular and configurable product structure (Garud
& Kumaraswamy 1995).

In addition, when design problems grow in size and complexity, it becomes
increasingly challenging for any single individual or organisation to manage all

43

aspects of technological and design knowledge (Garud & Kumaraswamy 1995;
Langlois & Robertson 1992). By modularising an overall design into partitions,
work can be distributed over a larger group of people. This way, work can
proceed in a parallel and directed fashion individually; partitioning a problem
into a series of subproblems and distributing it over the specialised teams of
designers and engineers, organisations can benefit from the division of labour
as they can draw upon knowledge and skills of specialised workforce, increasing
the speed of development and modular and architectural learning (Sanchez &
Mahoney 1996). However, modularisation may not always lead to optimal
product architectures, for example when the overall performance requirements
are particularly high (Yoo et al. 2010; Ulrich 1995) or the synergistic specificity
among modules bears influence to what extent the separability and subsequent
combinability of modules is feasible (Schilling 2000).

Carrying out partitioning is costly and requires expertise and centralised
planning (Baldwin & Clark 2000). To ensure that different parts work together
once completed and combined, coordination among different stakeholders prior
to partitioning is required (Ernst 2005; Danese & Filippini 2010). Ideally, task
partitioning should follow the structure of the underlying design problem, yet it
is not always straightforward to establish the relationship between the two
(Alexander 1964), this especially being the case when problems are complex and
multifaceted (Ethiraj & Levinthal 2004) or deviate from what went before (Sosa
et al. 2004; Hippel 1990).

To coordinate work and manage complexity, Baldwin and Clark (2000) propose
that connectivity among different modules is predicated on well-defined design
rules. These design rules define the overall architecture of a product, interfaces
and interconnections among modules along with the relevant integration
protocols and testing standards. Clearly defined design rules enable the
distribution of design and manufacturing tasks within and across organisations.
This way, modularisation helps create embedded coordination mechanisms and
information structures for organising and distributing work (Sanchez &
Mahoney 1996).

44

2.2.3 Modularity as a property of product systems

Product modularity, that is, the separability and combinability of a range of
components (Schilling & Steensma 2001), tends to occur under relatively well-
defined circumstances. These circumstances often revolve around central
platforms (Baldwin & Woodard 2008) and design rules that derive from the
process of modularisation (Baldwin & Clark 2000) that seeks to achieve
particular objectives through the modularity of a product, such as the cost-
effective production of a variety of products or their serviceability and
recyclability. To these ends, modularisation partitions the overall design in a
centralised top-down manner.

Considering that modularity often seeks to produce product variety through the
combination of different but compatible components, modularity can be better
understood as a property of some particular product system than as a property
of an individual product or any general combinability (Salvador 2007). A
modular product architecture describes the relationships, the degree of
variation and the combinability of components within the boundaries of a
product system where modules represent units of variation (Salvador 2007).

In addition, Salvador (2007) posits that combinability and product variety occur
when the following conditions are fulfilled. First, a module that produces
variation is internally cohesive so as to produce the required variation
independent of other components. Second, the interface design parameters that
define connection and interaction between components are tightly coupled, as
otherwise modules could not be connected. Third, to produce variation, a
certain degree of freedom is allowed for component designers in terms of non-
interface design parameters. However, coming up with specifications for all
three is often challenging given the ambiguity and differing objectives of the
schemes that are used to capture and allocate different functional aspects to
modules. Moreover, while modular function allocation and specification can be
designed within the bounds of a product system architecture whose overall
requirements are known in advance, designing such bindings is a precarious
effort when functional requirements are not fully known.

45

The overall architectural design of a product system is expected to specify
design parameters that outline opportunities and limitations for modularisation
in different scenarios. While this kind of arrangement is able to produce variety,
it does so along the lines of well-defined design hierarchies and corresponding
market concepts (Clark 1985) that leave little room for serendipitous emergence
of technological novelty. Indeed, much of the literature on modularity draws its
lessons from the industrial manufacturing of mass-market products, such as
cars (Clark 1985), consumer electronics (Langlois & Robertson 1992) or
semiconductors (Baldwin & Clark 2000), where the capability to produce cost-
effective product variation and change are considered as of strategic importance
(Garud & Kumaraswamy 1995).

Occasionally, as products and markets mature, the focus of innovation shifts
from product innovation to process innovation (Abernathy & Utterback 1978).
This crystallisation of product and market concepts and how they are best
achieved give rise to dominant designs and design hierarchies (Clark 1985),
which come to dominate the industry-wide organisation of firms and markets
(Suarez 2004; Murmann & Frenken 2006). This brings fixity and commodified
competition to technological arrangements which provide a backdrop against
which technological development and economic activities unfold (Arthur 2009).

As a final note, it is also worth noting that the modularity of a product system is
not invariably the same as the partitioning of design or production (Salvador
2007). Design work can be partitioned and distributed across multiple
designers even if the structure of the end-product would be highly integral. On a
similar note, the production of large structures, such as cruise ships, can be
performed in a piecemeal manner, yet this does not indicate that the end-
product would be modular in the view of the separability and combinability of
components in the context of a product system.

To summarise, the concept of modularity in the contexts of product
architectures builds upon the underlying assumption of a centralised design
agency that carries out the partition of the overall design in a top-down manner.
The literature on digital innovation challenges this assumption and argues that

46

digital products and services emerge as generative combinations through
decentralised design agency. This is discussed in the subsequent section.

2.3 Generativity and digital innovation

The research into digital innovation maintains that the pervasive and increasing
use of digital computers and advanced information processing technologies
enables novel product architectures and organisational arrangements
(Nambisan et al. 2017), which in turn are prone to generate profound changes in
firms’ organising logic and innovation management practices (Yoo et al. 2010;
Tilson et al. 2010; Henfridsson et al. 2014; Barrett et al. 2015). Traditionally,
information systems research has focused its efforts on communication,
transaction and decision-support systems in organisational contexts (Avgerou
2000), yet the increasing digitalisation across application domains and social
contexts suggest that a broader lens should be adopted (Grover & Lyytinen
2015; Nambisan et al. 2017). To this end, Fichman, Dos Santos and Zheng
(2014, p.329) forward “digital innovation as a fundamental and powerful
concept in the information systems curriculum” while others argue that digital
innovation and information systems research could serve as a reference
discipline to product and service innovation management fields (Yoo 2012b).

Digital innovation revolves around the processes of digitisation and
digitalisation (Tilson et al. 2010). Digitisation as a technical process refers to the
development and application of techniques and technologies that render and
manipulate objects and artefacts in the format of binary digits. Digitalisation, on
the other hand, refers to the dynamic interplay of social and technical matters,
which are related to the wider adoption and deployment of digitisation
techniques in social and institutional contexts. Out of these two, the main focus
of digital innovation research is on the socio-technical matters of digitalisation,
whereas the socio-technical and organisational outcomes of digital innovation
are often explained fully or partly in terms of digitisation.

Considering that digitisation and the application of digital technologies are
often regarded as factors that explain the unfolding and outcomes of socio-
technical innovation, the following subsection takes first a closer look into the
fundamental characteristics of digital computation, after which the notion of

47

modularity in the context of computer systems and the generative properties of
digital technologies are discussed further.

2.3.1 Digital computation

In the 19th century, people as human computers created tables of precomputed
values for many mathematical problems (Grier 2005). As the tables often
contained errors, in the 1820s Charles Babbage started developing mechanical
computers that would supersede their human competition in terms of accuracy
and speed (Swade 2002). While Babbage’s creations, difference and analytical
engines, never really took off, they are often regarded as early ancestors of
modern computers as they rely on mechanical switches that carry out
calculations and store intermediate results. About a hundred years later, in
1936, Alan Turing introduced a theoretical device to conceptualise the
functioning logic of a universal computing machine (Copeland 2014). The
Universal Turing Machine conceptualises the process of computing as a series of
arranged and stepwise instructions that operate on and manipulate symbolic
representations, which are read from and stored in memory (tape) one step at a
time. A few years later, in 1945, John von Neumann, forwarded the concept of
stored program computers (Copeland 2014). With programs (instructions)
represented and stored in memory along with data, the functioning of a
computer could be changed by equipping it with a new set of instructions,
thereby leaving the fixity of earlier computer designs behind and making them
readily applicable to different purposes. As both data and instructions are
commonly encoded and stored in the format of binary digits (bits), they can be
transferred across and processed on different computers as long as they follow
the same logic of functioning, at least in principle if not always in practice. The
progress from mechanical switches to ever smaller, cheaper and ever more
powerful microprocessors (integrated circuits) (Mack 2011) has paved the way
to increasingly pervasive and ubiquitous application of computers in various
tasks and domains (Yoo et al. 2010).

Although the first computers were intended to carry out numerical calculations,
the principles of logical symbol manipulation can be applied to a variety of
information processing purposes (Copeland 2014). Modern digital
microprocessors (or more generally, digital computers) are programmable

48

general-purpose machines; in principle, they are able to process any set of data
as long as both the data and the stepwise instructions to process it are
represented in an unambiguous format, are congruent and effectively
computable (Tilson et al. 2010). If an object or artefact can be encoded and
represented in an unambiguous format of binary digits, and a set of logical
operations (stepwise instructions/algorithms) can be produced to carry out
necessary operations upon it, any matter may become computable. No matter if
it deals with fake news, differential equations, numbers and letters on the
screen, maps, long-winded decision trees, missile trajectories or data
transmission protocols and procedures. However, the intractability of some
computational problems and limits in memory and processing capabilities
render some classes of computations and tasks practically infeasible (np-hard),
although advances in processor and memory technologies (Mack 2011) and
computing techniques (Russell & Norvig 2010) are pushing the boundaries of
computability and thereby opening up constantly new opportunities for
digitalisation. Moreover, as both data and instructions are stored in a
computer’s memory, from which they are transferred to the processor a
computing cycle at a time, both data and instructions are volatile and can be
changed with relative ease and minimal material resistance using other digital
means without modifying the material substrate that carries out the
computation (Kallinikos 2012; Kallinikos, Aaltonen, et al. 2013).

The purpose of a processor is therefore contingent upon the task and
instructions it carries (out) at any particular moment, or, as Arthur (2009) puts
it, microprocessors are minuscule information processing factories, factors of
production, that can be furnished and arranged for a variety of more or less
productive purposes. Therefore, the digital computer provides a universal
method to carry out the manipulation of symbols (bits). Moreover, as both the
symbols and the instructions to manipulate them can represent a variety of
social and natural objects, artefacts and processes, the computer can be
considered as a general-purpose technology. However, as the computation of a
particular computer has to be well-defined, the instantiation of a general-
purpose machine turns it to a special-purpose machine, albeit a fickle one.

49

This way, the underlying characteristics of digital innovation can be traced back
to bitwise representations of data and instructions and the stored program (von
Neumann) architecture of modern computers. In this view, Yoo et al. (2012)
conceptualise the fundamental properties of digital technology as
homogenisation of data, reprogrammability, which drive distributed and
combinatorial innovation. On a similar note, Kallinikos et al. (2013) define
digital artefacts as editable, interactive, reprogrammable and distributable
objects, which undergo constant change and transfiguration as multiple
stakeholders in broader digital ecosystems strive to use and modify them so that
they serve their particular purposes. Also, given their reprogrammability, digital
artefacts are described as incomplete, open-ended and continually in the
making (Garud et al. 2008), and a source for generative combinations and
procrastinated binding (Yoo 2012a). This malleable and mutable character of
digital artefacts questions the assumptions of stability, provenance and control
frequently associated with physical items and devices (Yoo et al. 2010; Garud et
al. 2008; Kallinikos, Aaltonen, et al. 2013; Lyyra & Koskinen 2016). These
malleable and mutable characteristics of digital objects and artefacts are
occasionally referred to as digital materiality (Barrett et al. 2012; Yoo et al.
2012) to differentiate from the more tangible and inertial qualities of physical
materiality.

These foundational characteristics of digital computation and computers are
often cited as a partial explanation of technical, social organisational outcomes
and arrangements in digital innovation at different levels, while simultaneously
fully acknowledging the role of social and institutional factors as well. Research
into digital infrastructures (Tilson et al. 2010), platforms (de Reuver et al.
2017), digitised and connected products (Henfridsson et al. 2014), automation
and virtualisation of work (Bailey et al. 2012) have brought forward different
aspects of digitalisation in various socio-technical settings.

2.3.2 Modularity in computer systems

Digital computation provides a general method for performing symbol
manipulations in a highly flexible and malleable manner (Copeland 2014).
However, the designing and developing of computing systems require
coordination and organisation of human efforts (Baldwin & Clark 2000).

50

Similarly to other products, digital products can also be subjected to
modularisation at various levels in order to subdivide design and development
tasks and to manage complexity.

At the level of physical products and computing machinery, for example, the
desktop computer can be considered to follow a modular product architecture
(Garud & Kumaraswamy 1995; Langlois & Robertson 1992). A desktop setup
normally consists of a central processing unit, display, keyboard and mouse,
and perhaps a printer and some other peripheral devices, and these modules
operate in combination and interact with each other through well-defined
interfaces. As long as connections and modalities of interaction conform to
particular interface specifications, manufacturers and users are able to assemble
different product configurations from a diverse range of modules to have a
configuration that best serves their needs.

Modularisation is a common approach in software development as well. A
variety of approaches can be used to carry out the partitioning of design
problems, yet some of them are considered to be more beneficial than others.
Parnas (1972) forwards an idea of approaching the partitioning in terms of
responsibility assignment. In other words, a software component, a module,
should not simply correspond to some process step in the program flow, but to
the functionality it provides. This way, by allocating a module with some well-
defined function and selecting an appropriate level of abstraction and interface
definition, the knowledge of underlying design decisions which produce the
functionality of the module can remain hidden. This is commonly known as the
principle of information hiding, and it facilitates separation of concerns while
providing a scheme based on which work can be distributed among software
developers; large software projects are routinely partitioned into smaller chunks
in order to reduce complexity to manageable levels. Typically, such effort begins
by detailing the expected functionality of a product, after which the overall
architecture is designed. Subsequently, the architecture details the structure of
the resulting software in terms of its components, their expected functionality
and respective interconnections, thereby providing an overall scheme based on
which design and development work can be distributed among software
developers (Baldwin & Clark 2000). This decomposition through the separation

51

of concerns allows for a more piecemeal and parallel approach in development,
testing and maintenance, while also enabling the reuse of software components.
This way, modular architectures facilitate separation of concerns and enable
parallel and distributed development, which leverages specialised knowledge
(Sanchez & Mahoney 1996). For example, mobile device application developers
need not be aware of the fine details on wireless message routing when
developing software for consumers. Also, changes in the system functionality
are easier to implement when the interdependencies between components are
lower, containing code changes to a smaller number of components (Parnas
1972).

Furthermore, separation of concerns is also applicable to large-scale
information and communication infrastructures and systems that operate
across organisational boundaries. For example, Open Systems Interconnection
(OSI) model3 conceptualises the architecture of computerised communication
systems as a layered stack. The OSI stack is an abstract conceptualisation, a
reference model, which describes the expected functionality of components that
reside at different layers of functional hierarchy, detailing characteristics and
expectations at the levels of physical connections, data linking, network routing,
data package transport, session management, data presentation and services to
applications. As a reference model, its goal is to facilitate comparability between
different communication protocols by characterising the essential qualities and
features of different layers and their respective functioning. At the same time, it
provides a paradigmatic example of the layered architecture of digital
technologies. In practice, there are several implementations and variations of
the OSI model. Using well-received protocols and standards which adhere to a
layered structure, such as TCP/IP, a variety of communication systems can be
constructed generatively from different components.

2.3.3 Generative combinations

The layered aspect of digital product architectures is postulated to provide the
foundation for the generative properties of digital ecosystems (Yoo et al. 2010)
and infrastructures (Tilson et al. 2010). The concept of generativity has its roots

3 wikipedia.org/wiki/OSI_model

52

in Jonathan Zittrain’s (2008; 2006) work, which seeks to explain the
proliferation and evolution of the Internet.

The notion of generativity builds on the observation that digital networks and
artefacts are arranged as layered stacks (Zittrain 2008), such as communication
networks and operating systems, which can be connected with each other
through open standards and interfaces that serve as gateways between different
layers. This layered structure, which can also be referred to as an hourglass
architecture (Zittrain 2008) allows for task partitioning, separation of concerns
and information hiding (Parnas 1972), thereby enabling the participation of
wider audiences by lowering the threshold of participation (Zittrain 2008). For
example, digital content and data can be transmitted across the Internet using
the Internet Protocol without needing to know how to route messages between
senders and receivers. In a similar fashion, application software can be created
and shared over the Internet while common operating systems provide a
foundation upon which developers and users can build and run their
applications. Against this backdrop, Zittrain (2008) conceptualises this open
and layered quality of the Internet as generativity and summarises it as follows:
“Generativity is a system’s capacity to produce unanticipated change through
unfiltered contributions from broad and varied audiences” (Zittrain 2008,
p.70).

To elaborate further, Zittrain (2008) outlines five characteristics of technologies
that empower audiences and enable their contributions. These characteristics
are leverage, adaptability, ease of mastery, accessibility and transferability. To
begin, leverage helps achieve results with lesser efforts. Adaptability, in turn,
indicates the level of effort needed to build upon a technology, or to modify and
broaden its range of uses. Ease of mastery indicates the steepness of the
learning curve before one becomes knowledgeable and skilled enough to master
the technology in question. Accessibility means simply whether potential users
have access to technology, tools and documentation, whereas transferability
indicates how readily users’ contributions can be conveyed and shared with
others, possibly less-skilled users. These five characteristics constitute
generativity: “The more that the five qualities are maximized, the easier it is for

53

a system or platform to welcome contributions from outsiders as well as
insiders” (Zittrain 2008, p.74).

Technologies differ in terms of their above-mentioned characteristics, and the
absence of any of these characteristics may render a particular technology less
generative (Zittrain 2008). For example, the Linux kernel is generative in terms
that it provides leverage, adaptability, accessibility and transferability, yet the
difficulty of mastery tends to keep contributions from broad and varied
audiences rather limited, at least when compared to the creation of static web-
pages with simple hypertext mark-up language. In addition, generativity may
manifest itself at different technological layers. For example, the generative
pattern of Wikipedia content creation does not necessarily mean that the
underlying technological layers which facilitate the generative creation of
content are generative themselves, although they often are (Zittrain 2008).
Zittrain (2008) also differentiates between generative tools and generative
systems. Generative tools are useful on their own and in individual terms. In
turn, the notion of a generative system refers to larger technological
arrangements and can be viewed as “a set of tools and practices developed
among larger groups of people” (Zittrain 2008, p.74).

The generative characteristics of systems lay out foundations and conditions
which allow for innovation and novelty to emerge from the grassroots through
the contributions from wider audiences (Zittrain 2008), standing thereby in
contrast to the centralised top-down planning and coordination which
characterises modularisation through decomposition (Yoo 2012b). This way, the
process in which components are created and consumed changes its direction.
Whereas the process of modularisation allocates modules with specific
functionalities when an overall design is subdivided over different modules,
with generativity components originate from different sources and without a
centralised design agency. This way, a component remains agnostic in relation
to an end-product at the time when it is designed and created, as it receives its
final purpose and meaning with respect to a particular end product at the time it
is included into a combination that constitutes the end-product. The situation in
which the allocation of functionality to a component takes place after the

54

completion of the design of the component can be referred to as procrastinated
binding (Yoo 2012a).

End-product agnostic design, procrastinated binding, recombination and the
associated generative and emergent characteristics of innovation result in
dynamic complexity (Hanseth & Lyytinen 2010) and paradoxes of change and
control (Tilson et al. 2010). For example, while the technology and internet
companies may provide and open up some particular boundary resources, such
as system development toolkits, interfaces and provide access to computation in
order to attract wider participation, they also seek to guide the trajectories of
development to their benefit by controlling the pathways through which the
audiences are allowed to participate (Ghazawneh & Henfridsson 2012; Eaton et
al. 2015).

2.4 Digitised products

The increasing digitisation of tangible products has inspired researchers to re-
examine the current conceptualisations of product architectures. To address the
interplay among the digital and physical aspects of products, recent research
(Yoo et al. 2010; Henfridsson et al. 2014) has developed conceptualisations to
take into account the differing levels of resistance and readiness for change
among the physical and digital components, and demonstrated the subsequent
implications on product design practices, product architectures and lifecycles.

This stream of research highlights the differing levels of material inertia and
resistance to change among the digital and physical components that constitute
digitised products (Barrett et al. 2012) and characterises this in terms of digital
and physical materiality (Yoo et al. 2012). The differing levels of material
resistance can be traced back to the reprogrammable character of the digital
computer (Tilson et al. 2010; Henfridsson et al. 2014). In the end, the digital
computer is a general-purpose machine (Copeland 2014), which can be
repurposed by supplying it with a new set of instructions. While it may take
significant time and effort to develop the first set of instructions, however, once
the set has been created, the marginal cost of its distribution and installation on
multiple computers is negligible. On the contrary, physical components lack the
mechanism of cost-efficient change en masse, and each repurposing of a

55

physical component requires resources, such as raw materials, tools and labour,
to carry out the required changes. Given the higher marginal cost associated to
the repurposing of physical components and products, product manufacturers
seek to specify product features and verify the correctness of product designs
with a great care before transferring products from design to manufacturing
(Henfridsson et al. 2014). Therefore, the physical components of a product
rarely undergo change once they have been manufactured, whereas the product
functionality which is implemented and controlled using digital means may
undergo frequent change throughout the lifecycle of a product (Lyyra &
Koskinen 2016).

This challenges the prevalent views on product and software design and
engineering. Conceptual challenges revolve around the extent to which the
traditional views and practices are able to capture the intertwined character of
differing levels of material resistance and readiness for change during the
design and manufacturing processes (Henfridsson et al. 2014) and throughout
the product lifetime (Lyyra & Koskinen 2016).

To conceptualise the combination of the digital and physical components, the
layered modular architecture (Yoo et al. 2010) shows how adding digital
components into traditionally fixed and single-purpose products can transform
them into platforms which are open for modification and repurposing long after
the physical embodiment of a product has received its final form. To prepare for
this, Henfridsson et al. (2014) forward that product designers and architects
should adopt the notion of complementary design frames to conceptualise
product architectures which consist of overlapping digital and physical
components and that are developed and evolve at different speeds.

2.4.1 Layered modularity architecture

With the notion of layered modular architecture, Yoo et al. (2010) separate
product innovation from process innovation and maintain that the digitisation
of products is altering product architectures, and by extension the organising
logic and innovation practices of organisations (Sambamurthy & Zmud 2000).
To conceptualise the incorporation of digital technologies into physical
products, Yoo et al. (2010) bring together two architectural schemes, the layered

56

architecture of computer systems and the modularised architecture of product
systems. This amalgamation is then referred to as the layered modular
architecture.

The layered modular architecture “extends the modular architecture of physical
products by incorporating four loosely coupled layers of devices, networks,
services, and contents created by digital technology” (Yoo et al. 2010, p.724).
The layered architecture forms a hybrid architecture where the “degree by
which the layered architecture adds the generativity to the modular
architecture forms a continuum” (ibid p. 728). To exemplify, “[t]raditional
industrial-age, single-purpose products manifest one end of the spectrum
while conventional digital products with general computer hardware form
another end. Many digitized products will fall somewhere in the middle” (ibid
p. 729). In this light, the architecture and lifecycle of a product consist of two
elements. First, the design and manufacturing process during which the
physical embodiment of a product receives its final shape and, second, the more
open-ended and generative phase as the product and its functionality can be
changed throughout its lifecycle through software changes. The layered modular
architecture conceptualises digitised products as generative platforms by
showing how layered and modular architectural schemes unfold during the
product lifecycle (Yoo et al. 2010).

Traditionally, the notion of modularity, which stands at one end of the
spectrum, is tightly linked with the idea of modularisation (Baldwin & Clark
2000) in the view of the product architectures (Ulrich 1995), product systems
(Salvador 2007) and design hierarchies (Clark 1985). Modularisation starts by
forming a complete plan of a product or a product system, after which the
complete plan is partitioned into smaller modules according to certain
objectives and rules (Baldwin & Clark 2000), for example with an aim to
produce a variety of product configurations while minimising costs (Schilling
2000) or to leverage division of labour in design and manufacturing (Sanchez &
Mahoney 1996). Such products are not expected to change once they are
manufactured. However, the incorporation of digital components adds a more
open-ended logic into physical machinery.

57

The concept of the layered modular architecture adds the layered stack
architecture of software on the top of the modular architecture that forms the
device layer (Yoo et al. 2010). This is illustrated in Figure 4. At the bottom of the
stack resides the device layer, which consists of physical hardware and
computing machinery as well as an operating system which provides the logical
layer of abstraction and modulates the interaction between the computing
machinery and upper layers of the stack. On the top of the device layer is the
network layer. The network layer consists of a physical transport media (e.g.
antenna, cable) and logical transmission protocols (e.g. TCP/IP) and it is used
to connect to other computers and digitised products. Then, on the top of the
network layer is the service layer where different applications and their
respective functionality reside, above which, at the top of the stack, is the
contents layer which holds data.

Figure 4: The layered architecture of digital technology
 (Yoo et al. 2010) 4

4 Republished with permission of Information Systems Research, from The New Organizing
Logic of Digital Innovation: An Agenda for Information Systems Research, Youngjin Yoo, Ola
Henfridsson and Kalle Lyytinen, 21/4, 2010; permission conveyed through Copyright Clearance
Center, Inc.

58

This way, the underlying hardware and operating system come to provide a
stable platform upon which novel digital functionalities and services can be
developed in a generative manner (Zittrain 2008), within the bounds of the
physical characteristics of the product (Yoo et al. 2010). Therefore, whereas
hardware goes through the processes of modularisation and production
similarly to other manufactured products at the beginning of a product lifecycle,
the digital part of the product remains open-ended and can be improved
throughout the lifecycle.

Platforms and open interfaces allow for wider audiences to take part in
innovation as they can develop and provision applications, services and content
that can be used and consumed on different platforms, such as on iOS devices
(Eaton et al. 2015). Users can select and install applications from application
stores and use services that best serve their needs, rendering the devices that
adhere to the layered modularity as enacted ensembles (Yoo et al. 2010) which
undergo a continuous change as new applications, services and content are
made available and taken into use. Furthermore, it is worth to note that digital
platforms are not necessarily directly linked to some specific hardware and
devices but can also operate as independent cloud-based services (de Reuver et
al. 2017) – Google Maps provides a paradigmatic example of this (Yoo et al.
2010).

Whereas modular product systems produce a degree of variety within the
confines of premeditated product designs (Salvador 2007) and design
hierarchies (Clark 1985) which are nested and fixed, the layered modularity
facilitates the combination of end-product agnostic components, applications,
contents and services from different design hierarchies as long as they adhere to
certain technical standards and boundary resources (Eaton et al. 2015). In this
light, the digitisation of products tends to render design agency more
distributed (Nambisan et al. 2017). While this generative character provides a
broader repertoire of applications and services, it also indicates that no single
party is able to fully control digitised products and their configuration (Yoo et
al. 2010).

59

The organising logic of the layered modular architecture can be viewed as
doubly-distributed since the control and knowledge of components and
combinations are distributed across heterogeneous groups of actors and
organisations (Yoo et al. 2010). Learning and mastering the ways to cultivate
and harness distributed innovation among heterogenous audiences is vital to
the success of organisations that pursue platform-based product strategies.

2.4.2 Materiality and product architectures

The differing levels of the material resistance to change between the digital and
physical components bear implications across different phases of a product
lifecycle, ranging from product design and manufacturing to the phases of use
and retirement. This dissociation of physical and digital materialities shapes
product design practices and dominant designs (Hylving & Schultze 2013).

As discussed in the previous section, incorporating digital components into
traditional physical single-purpose products and opening them up for broader
audiences to take part in innovation may turn them into generative platforms
that evolve throughout the lifecycle of a product (Yoo et al. 2010). However, the
digitisation of a product does not automatically imply that the manufacturer
opens it up as a platform to attract third-party developers. For example, Tesla
frequently updates the functionality of Tesla cars by delivering software updates
which add new functionality or improve the existing ones (Lyyra & Koskinen
2016), without providing access to third-party developers.

In either case, product designers and manufacturers are advised to take the
differing levels of material inertia into account during the architectural design.
Based on the empirical observations from the design and implementation of
information and entertainment systems in the car industry, Henfridsson et al.
(2014) propose that product designers and developers could make use of
complementary architectural frames in order to conceptualise digital and
physical design hierarchies as their design and iteration cycles unfold at
different speeds; product architectures should not simply be seen as physical
hierarchies-of-parts as per the traditional views of product modularisation, but
as something that coexists with the network-of-patterns. Whereas the former
needs to be fully designed and specified before a product can be transferred to

60

manufacturing, the latter is a set of abstract patterns which represents the
digitally implemented and controlled functionality which remains open-ended
and may undergo frequent design iterations. This way, the patterns can be seen
as placeholders which can be further developed at a later time. Subsequently,
the use of the two complementary frames accommodates the differing levels of
material inertia and facilitates asynchronous design cycles during the design
and development of products that comprise both the physical and digital
elements (Henfridsson et al. 2014).

Moreover, as the affordances and limitations of different components, such as
computing capabilities and physical constraints, set the ultimate boundaries on
what can be achieved through the digital means, the architecture of a product
should be designed in a way which accommodates the changes in and
functioning of digital components and computer-controlled functionality. The
subsequent section takes a closer look into the intertwined character of design
hierarchies in the context of complex product and systems.

2.5 Complex and digitised products

This section takes a look into the definition of robots and autonomous systems
and reviews innovation literature in the view of product architectures and
organising logic of complex systems and products (Hobday 1998; Prencipe
2000). To this end, the first subsection discusses the purpose and functional
principles of robots and autonomous systems in the light of cybernetics,
behaviour and the capacity to act. Then, the second subsection looks into the
complexity of product architectures and the intertwined design hierarchies of
inclusion and control (Murmann & Frenken 2006). In the light of behavioural
and technological complexity, robots and autonomous systems can be viewed as
complex and digitised products.

2.5.1 Robots and autonomous systems

Robots and autonomous systems can be defined as computer-controlled
machines that are designed and built to perform tasks with limited human
intervention, with an aim to loosen the coupling between machines and their
human operators. Once set in motion, they are expected to produce behaviour

61

that allows them to operate towards a given goal whilst navigating through the
environmental contingencies; they carry out goal-directed plans and actions in
response to sensory data they gather from their surroundings (Bekey 2005).
However, coupling a machine directly with the surrounding environment does
not mean the elimination of human involvement (Mindell 2015). Instead, the
type and configuration of human involvement changes (Mindell 2015; Barrett et
al. 2012) – while the human operators might be pushed further away from the
control of situated action, the role of designers and engineers increases as they
produce the means and rules according to which machines operate once they
are set in motion. Moreover, leaving machines to their own devices also shifts
the locus of (inter)action from the human-machine interface to that between the
machine and its broader environment.

Against this backdrop, robots and autonomous systems can be conceptualised
as cybernetic systems. Cybernetics is a branch of systems theories (Bertalanffy
1968), which studies the structures, properties and behaviour of control systems
through the lenses of communication (information) and feedback mechanisms
(Wiener 1965). The central idea of cybernetics is the stability of the system with
respect to the given goal (Glanville 1997). The system seeks to approach or
maintain its goal by regulating its behaviour in response to environmental
contingencies. The paradigmatic example of a cybernetic system is the
thermostat that regulates room temperature by adjusting the heating so that the
measured temperature (a system state) would correspond to the pre-set target
temperature (goal) (Meadows 2009). Ideally, the state of the system should
stay, or become, the same as the goal. Whereas the goal and the behaviour of the
thermostat tend to be relatively static, the movement of a system or its goal
renders the notion of stability to that of dynamic stability (Glanville 1997). For
example, the functioning of a self-driving car can be viewed as dynamic stability
as the car navigates through the road network and responds to (or absorbs) a
variety of contingent events while aiming towards the stable state in terms of a
given destination (goal). Moreover, sometimes the goal or target itself may be in
the move. Such is the case for example with air defence missiles when they aim
at the targets flying in the sky (Glanville 1997).

62

While the early cybernetics provides concepts and theories that explain control
systems and mechanisms, it also brings forward the fundamental limitations of
control systems. The law of requisite variety (Ashby 1958) postulates that the
control system must be able to absorb and respond to the variety that emerges
from the environment, meaning that the mechanism that controls the system
should deliver for every input (disturbance) an output (response) that is
considered acceptable to avoid a system failure. Furthermore, the second-order
cyberneticians make a note that the criteria of acceptability are relative to the
observers’ preferences (Hayles 1999), highlighting the context-dependence of
control systems and regulatory mechanisms. In this light, the context and
situation form the mould into which an autonomously operating system must fit
in. If the internal structure of a system is not able to capture and operate
according to the laws, conventions and meaningful features which characterise
its context and environment, it may fail to serve its intended purpose (Simon
1996). Therefore, the apparent complexities of a system’s behaviour are largely a
reflection of the complexities which emerge from the surrounding environment
(Simon 1996). Correspondingly, Maturana and Varela (1992) conceptualise
(living) autonomous systems as autopoietic, self-producing and functionally
closed, entities, which respond to the environmental inputs according to their
internal structure while simultaneously trying to preserve the integrity of their
internal organisation. As the cybernetic control systems rely on context-
dependent and distributed computation, they are a form of interactive
computation (Goldin et al. 2006; Wegner 1997). The notion of interactive
computation presents complex and context-dependent computations as long-
term relationships, in which the course of computation is contingent upon the
information from and interaction with the surrounding environment.

Considering that robots and autonomous systems are expected to perform tasks
with limited human intervention, they can also be viewed through the lens of
the technological agency as the responsibility of carrying out actions is
delegated to machines and computers. In this view, the machines that exhibit
some contingent behaviour on their users’ behalf are often referred to as agents
or complete agents (see e.g. Maes et al. 1999; Shneiderman & Maes 1997;
Wooldridge & Jennings 1995; Bryson 2010), yet agency of software or other
technological artefacts should not be confused with that possessed by humans

63

(Kallinikos 2002; Kallinikos 2005). Therefore, the notion of the delegation of
agency describes the overall situation in which machines are bestowed with the
capacity to act on someone else’s behalf, bearing a strong resemblance to the
theories that deal with outcome uncertainty, incentives and risk in different
principal-agent relationships (Eisenhardt 1989a).

Delegating agency to robots and autonomous systems leads to the
reconfiguration of boundary relations among social actors and locales of action
and control. For example, Barrett et al. (2012) show how the introduction of a
robotic medicine dispenser in a pharmacy setting changes the boundary
relations among occupational groups due to the power imbalance over the
decisions and priorities which direct the development of the dispenser’s
behaviour. In addition to organisational power relations, the delegation of
agency can be viewed also as a more situated phenomenon. To exemplify, with
self-driving cars, control can be dynamically reallocated between the car and the
driver throughout the journey (Wray et al. 2016), depending on the road and
traffic conditions. Drones used in wars efforts offer another example of the
shifting locales of action and control. While drones are able to fly, navigate and
track objects as per given targets on their own, a range of choices are still made
in remotely located and distant centres where strategic and lethal decisions are
made (Gregory 2011). Therefore, the actions and behaviour of robots and
autonomous systems emerge from some combination of human action and
technological responses to environmental contingencies (Mindell 2015).
Moreover, in this light, while machines may possess some situated capacity to
act, they to do so within the framework of human purposes and goals – robots
and autonomous systems are human creations and would not exist or operate
independently of human actions.

To summarise, robots and autonomous systems are defined as cybernetic
systems that carry out some particular goal-directed behaviour in a particular
context. However, as the behaviour they produce is designed, built, taken into
use and controlled by people, they are autonomous only in the weak and limited
sense of the word.

64

2.5.2 Complex digitised products

The behavioural and technological complexity of robots and autonomous
systems makes the conceptualisation of the organising logic of such systems
challenging. Whereas the literature on modularity holds that modularisation
and design rules (Baldwin & Clark 2000) provide a way to distribute and
coordinate design and manufacturing activities among different actors (Sanchez
& Mahoney 1996), the literature on complex products and systems challenges
the applicability of modularisation and modularity (Prencipe 2000). This rests
on the observations which revolve around two factors, the lack of mass-market
conditions and dominant designs and the intertwined characteristics of design
hierarchies in product architectures.

Complex products and systems innovation occurs often in the absence of market
conditions and dominant designs of mass-market products (Miller et al. 1995).
Complex high-cost systems, such as flight simulators, fighter jets, intelligent
buildings, manufacturing systems and nuclear power plants are heavily
customised large-scale products which are bought and sold under coordinated
and institutionalised market conditions (Miller et al. 1995; Hobday 1998). The
specification, development and production may involve suppliers, users,
regulators and professional bodies and the end product may lack a dominant
design in the sense of mass-market products and industrial process innovation
(Utterback & Abernathy 1975; Abernathy & Utterback 1978). The evolution of
product architectures and design hierarchies appear to reflect more the progress
of underlying technologies (Miller et al. 1995) than the co-evolution of mass-
market concepts and corresponding product designs (Clark 1985). For example,
from research into the history of flight simulators, Miller et al. (1995) locate the
dominant design of flight simulator to its functional principles, to the six
degrees of freedom of flight dynamics, and show the long-term stability among
suppliers while the underlying technologies that produce the required
functionality undergo significant evolution. Since complex products and
systems are often relatively unique and project-based, they require a significant
amount of architectural knowledge and innovation (Hobday 1998; Henderson &
Clark 1990). Therefore, one of the main tasks of a complex system project (or a
systems integrator) is to coordinate communication among different

65

stakeholders and integrate architectural and component knowledge and designs
in order to produce specified outcomes (Hobday 1998).

Another observation brings forward the intertwined character of overlapping
design hierarchies within product architectures. Autonomous machines
comprise sensors and actuators that facilitate the interaction with the
surrounding environment. Between the sensors and actuators is located the
computational logic and software that transforms the data received from
sensors into digital commands that drive actuators. Bekey (2005) defines the
software architecture in the context of autonomous systems and advanced
machinery as:

“The structure of software, the way in which the robot processes sensory
inputs, performs cognitive functions, and provides signals to output actuators”
(Bekey 2005, Chapter 5)

Therefore, in the context of robots and autonomous systems, the term software
architecture is often used as a synonym for the control architecture, and
software architectures typically consist of a spectrum of software that ranges
from the low-level hardware control software to the high-level software that
performs tasks such as perception, planning, decision-making, reasoning and
motion control. Given the variety of software and control architectures in the
field of robotics and artificial intelligence (Russell & Norvig 2010), which range
from the hierarchical and parallel processing to distributed and multi-agent
systems to name a few, we refrain from detailing them here. However, we do
make a note that the overall goal of the control software is to transform sensory
inputs to action commands and they are of central importance in the view of
product and systems architectures.

Murmann and Frenken (2006) highlight the importance of paying attention to
both hierarchies of inclusion and control in order to understand the roles and
relationships of different parts of some particular artefact.

“We think one additional distinction is absolutely essential to understanding
the technological characteristics of an artifact. Complex technological artifacts
such as an airplane can be described in terms of two kinds of hierarchies: a
hierarchy of inclusion and a hierarchy of control.” (Murmann & Frenken
2006, p. 938 cite Wilson 1969)

66

The hierarchy of inclusion refers to the hierarchical and nested organisation of
parts which constitute the physical embodiment of a product. In turn, the
hierarchy of control refers to the parts and functional logic which control the
operation and behaviour of the embodiment (Murmann & Frenken 2006). To
exemplify, the hierarchy of inclusion of an aeroplane consists of sensors,
fuselage, wings, engines and landing gear, each of them being composed of their
own hierarchy of parts. The hierarchy of control, on the other hand, refers to the
mechanisms that control the embodiment; an auto-landing system operates
wings flaps, tail fin and engine power based on sensory inputs in order to land
the plane safely on the runway (Mindell 2015). This way, the hierarchy of
control which produces goal-oriented behaviour operates upon the mechanical
and physical substrate that is defined by the structure and features of the
inclusionary hierarchy of parts. The intertwined and crosslinked character
between the hierarchies of inclusion and control is illustrated in Figure 5.

Figure 5: Illustration of the dual-product hierarchy view of complex systems
(Lee & Berente 2012)5

5 Republished with permission of Organization Science, from Digital Innovation and the
Division of Innovative Labor: Digital Controls in the Automotive Industry, Jaegul Lee and
Nicholas Berente, 23/5, 2012; permission conveyed through Copyright Clearance Center, Inc.

67

Therefore, the hierarchy of control must conform to the underlying dynamics
and material properties of the controlled system as well as other environmental
contingencies. This dynamic interaction among embodiments, control systems
and the surrounding environment can be viewed as a nexus of research interests
in the field of robots and autonomous systems (Bekey 2005). Considering that
control systems are often implemented using digital means, Lee and Berente
(2012) refer to them as digital control systems.

While the hierarchies of inclusion and control describe and analyse the
composition of a complex system from two different viewpoints, these two are
often deeply intertwined in operational terms. The structural and functional
interdependence among inclusionary and control hierarchies often require deep
and detailed knowledge of the overall system architecture as well as the
functioning of individual components (Prencipe 2000). For example, aircraft
engine manufacturers maintain a range of technological capabilities concerning
both control system and component technologies in order to maintain their
systems integration capabilities (Prencipe 2000). Therefore, organisations
which engage in complex innovation that entails multiple technologies often
know more than they make as they need to be able to manage and coordinate
product development and manufacturing activities (Brusoni et al. 2001). In
addition, given the context specificity and variety of functional requirements,
dominant designs and design hierarchies are not always readily observable and
can occur at different levels of design hierarchies and in different forms, either
as stable components or as stable interfaces (Murmann & Frenken 2006). Based
on these observations, complex products and systems innovation is postulated
to require a breadth and depth of knowledge (Prencipe 2000), a significant
amount of mental efforts (Arthur 2009) and occasionally cooperation at an
industrial scale (Miller et al. 1995).

Complex products and systems innovation appear to escape straightforward
modularisation (Prencipe 2000). The increasing degree of interdependencies
among the hierarchies of inclusion and control can reduce the divisibility of
innovative labour among product manufacturers and components suppliers
even in mature mass-manufacturing industries (Lee & Berente 2012;
Henfridsson et al. 2014). While the notion of modularisation rests upon the idea

68

of separation of concerns by hiding the internal design and implementation of
components (Salvador 2007; Baldwin & Clark 2000), Lee and Berente (2012)
show that a car manufacturer may take part in component innovation in the
development of digital control systems. On a similar note, Henfridsson et al.
(2014) show how the intertwined and distributed character of various
components of a vehicle information and entertainment system necessitates
organisational and technological capabilities that facilitate the integration of
various components into complete infotainment solutions. As product
manufacturers’ role expands, component manufacturers’ control over
innovation trajectories may become more constrained (Henfridsson et al. 2014).

To conclude, robots and autonomous systems are composed of physical and
digital components. Understanding the interdependencies between the
hierarchies of inclusions and control are of central concern as the relationship
between the two is often highly integral and purpose-specific. Considering the
depth and breadth of architectural and component level knowledge required in
complex products and systems innovation (Prencipe 2000), modularisation
attempts appear elusive in this domain of innovation.

2.6 Problematisation and research question

The review presented above shows that the logic of combination differs among
different types of technological innovation. Researchers have developed
conceptual frameworks that revolve around modularity, generativity and
complexity to conceptualise and highlight particular characteristics of
innovation. Much of this literature builds on Simon’s (1996) theory of hierarchy
and Alexander’s (1964) work on the architectural design, which converge on the
combination of elements and on the partitioning of a problem space to contain
complexity, although they approach the topics from slightly different angles.

Product architectures are often viewed through the lens of modularity (Ulrich
1995; Campagnolo & Camuffo 2009; Salvador 2007). Modularity results from
modularisation (Baldwin & Clark 2000), which is a process that decomposes the
overall design of a product or product system into modules in a top-down
manner so that interactions and interdependencies are greater within the
modules than across the modules. Subsequently, interface definitions,

69

integration protocols and testing standards are specified as design rules, which
govern the detailed design and subsequent assembly of modules into complete
products (Baldwin & Clark 2000). Modularisation is argued to give rise not only
to a product architecture but also to corresponding design and task structures,
activities and economic systems that mirror the architecture of a product
(Baldwin & Clark 2000).

The applicability of top-down modularisation and isomorphism between
product architectures and organisational arrangements have been challenged in
the literature on digital innovation (Yoo et al. 2010; Henfridsson et al. 2014)
and complex products and systems (Brusoni & Prencipe 2006; Prencipe 2000).

The literature on digital innovation challenges modularisation by presenting a
world where products and services do not necessarily result from centralised
top-down design and well-crafted design rules (Yoo et al. 2010). Instead, digital
innovation is conceptualised to emerge as generative bottom-up combinations
of product agnostic components, as assemblages of platforms, applications and
services that were not initially designed to be part of some particular product
(Zittrain 2008; Yoo et al. 2010; Yoo 2012b). Therefore, the design agency in
digital innovation can be described as distributed (Nambisan et al. 2017),
transcending the organisational boundaries of knowledge and control (Yoo et al.
2010).

The literature on complex products and systems innovation also challenges the
view of modularisation but on different grounds. Considering that the
boundaries among product architectures and design and task structures overlap
as complex systems incorporate the intertwined and interdependent design
hierarchies of inclusion and control (Prencipe 2000; Lee & Berente 2012;
Murmann & Frenken 2006), they defy the attempts of modularisation and the
subdivision of design and innovative work. Instead, the ability to design and
build a well-functioning product requires intimate knowledge of the intertwined
design hierarchies at the component and product architecture levels (Prencipe
2000; Brusoni et al. 2001). Considering the level of knowledge and capabilities
that are required at different levels, the notion of generativity and the associated

70

distributedness of knowledge and control seems particularly ill-suited approach
in the context of complex products and systems.

Therefore, a contradiction emerges in the view of robots and autonomous
systems innovation, as they can be described at the same time as complex and
digital. They are complex systems with context-specific requirements and
consist of the intertwined hierarchies of inclusion and control. At the same time,
control systems are implemented using the methods and techniques of digital
computation, which are seen as generative and to transcend well-defined
boundaries of knowledge and control.

Problematisation can be phrased as follows: In the context of robots and
autonomous systems, would the logic of combination be better understood
through the lens of digital or complex innovation? Yet, there is no obvious
answer to this question. On one hand, industries such as automotive and
aviation acquire and consolidate technologies and knowledge to design and
develop proprietary and purpose-specific digital control systems. On the other
hand, this approach is unattainable for organisations that cannot afford the
consolidation or are not able to commit to some particular product design or
technology for periods of time long enough that would warrant the investment.
This group includes start-ups, small-medium sized companies, research
institutes and universities. These organisations design and develop robot
systems by combining technologies and knowledge that are spread across
technological domains and communities, bringing the tension between
complexity and purpose-specificity of intertwined product architectures and the
distributedness of knowledge and skills to the spotlight.

Based on this problematisation, the principal research question is presented as
follows:

How can the tension between the specificity of designs and the distributedness
of knowledge and control be resolved in the development of complex and
digitised products?

71

2.7 Summary

This chapter reviewed the literature on the organising logic of innovation in the
view of product architectures and combination and presented robots and
autonomous systems as complex digital innovation. The chapter presented
definitions and types of product architectures in the view of the modularity of
product systems, the generativity of digital innovation and the specificity of
complex innovation. Subsequently, the reviewed literature was summarised to
outline problematisation before presenting the principal research question. The
subsequent chapter presents the theoretical framework and operative research
questions that guide data collection and analysis.

72

3 Theoretical framework

Building on the problematisation presented in the previous chapter, this chapter
presents a theoretical framework that directs the course of this research. This
framework provides the foundation upon which tentative a priori concepts are
constructed and, in turn, translated into operative research questions, which
operate as sensitising devices that inform data collection and analysis. Given the
exploratory character of this research, the objective is placed on the
identification and description of salient themes and patterns but not to explicate
their interactional processes in any detailed manner (Gregor 2006).

The reviewed literature on the organising logics and combination in the view of
product architectures builds upon the theories of hierarchy and design (Simon
1996; Simon 1962; Alexander 1964), although different lessons have been drawn
from different empirical domains. Much of this research builds on Herbert
Simons (Simon 1962; Simon 1996) and Christopher Alexander’s (Alexander
1964) theorising on the structural arrangements and characteristics of the
category of systems that can be described as complex. Whereas Simon’s (1996)
work centres on the theory of hierarchy, presenting the architectures of complex
systems as nested and recursive hierarchies, Alexander’s (1964) main interests
are in the synthesis of the form and function and in the partitioning of design
problems for containing complexity. While these works differ in certain aspects,
they overlap significantly as they both deal with the need and strategies to
contain systemic complexity. They show how systemic complexity is reduced
through subdivision, by subdividing an overall system into smaller and more
manageable constituent elements, subsystems, components and parts. Against
this backdrop, complex systems are frequently viewed as nested hierarchies in
the innovation and technology management literature (Murmann & Frenken
2006; Arthur 2009).

The following sections describe and develop theoretical framing. First, the early
beginnings of systems theoretical thinking are outlined. After that, theories of
complex systems are introduced and discussed to provide a foundation for
tentative a priori concepts, which are then translated to operative research
questions before the concluding remarks.

73

3.1 Thinking in systems

In general, systems theories are used to study sets of elements in interaction
(Bertalanffy 1968). Given the generality of this notion, systems theories are
frequently used to describe, explain and occasionally predict a variety of
phenomena that revolve around social, natural and artificial circumstances
(Merali & Allen 2011). The wide applicability of this general concept has
produced a large variety of systems theories and conceptualisations. This variety
reflects the variety of empirical phenomena as well as researchers’
considerations regarding what kind of systemic theorisation would
appropriately capture essential elements, interactions, properties and
behavioural dynamics of some empirical phenomenon that is studied as a
system. In this view, systems theories and systems thinking provide a wide body
of conceptual and abstract knowledge against which different empirical
phenomena can be reflected upon. However, regardless of the wide conceptual
body of systems theoretic knowledge, research challenges often revolve around
the identification and description of an empirical system (Checkland 2000),
which is a precondition for mapping it against an analogous conceptual system.
Systems theories in their broad variety are widely used in organisation
(Boulding 1956; Ackoff 1971), information systems (A. S. Lee 2010; Matook &
Brown 2016) and digital innovation research (Hanseth & Lyytinen 2010).

The barebones definition of a system defines a system as a complex of
interacting elements (Bertalanffy 1950). While this high-level abstraction tells
very little about any particular instantiation of a system or its properties. What
differentiates different systems from each other is the number and type of their
constituent elements and their respective interactions. These three basic
elements are postulated to establish the structure of any instantiation of a
system and give rise to its particular properties and behaviour (Bertalanffy
1968). Overall, the systemic view argues for a holistic approach to research.

This is called systems thinking (Checkland 2000), and it seeks to counter the
reductionist research approaches which examine and explain phenomena by
reducing them gradually into ever smaller entities and relationships. In the
reductionist view, the fundamental explanation would eventually be found
somewhere at the subatomic level, and the wholes would equal to the sums of

74

the elements that constitute them. The kind of reductionism that seeks for
explanation in terms of ever more fundamental parts (e.g. it’s all physics) is
referred to as ontological reductionism (Honderich 2005). To challenge the
reductionist view, systemic thinking advocates a more holistic approach that
appreciates entities as wholes which possess some properties and characteristics
that exist only at some given level of analysis. Such properties and
characteristics are lost when the wholes are sliced down to smaller and more
isolated but more researchable entities because the interconnections and
thereby the effects of interactions and interdependencies at some particular
level are not considered in the analysis. Consciousness and human life are well-
cited examples of the holistic and higher-level systemic behaviours and
properties that cannot be fully understood by examining their constitutive
elements, such as brain cells, heads, arms or legs, in isolation. Thereby,
incorporating the interactions and interdependencies among different elements
of a system into data collection and analysis is seen to offer a more holistic view.

Furthermore, although different scientific fields focus on different phenomena,
observing different matters, interactional patterns and forces, von Bertalanffy
(Bertalanffy 1950) postulates that some of the phenomena studied in different
scientific fields and domains may exhibit isomorphic properties when they are
examined as conceptual systems and in abstract terms. On these grounds, he
advocates the idea of a general systems theory, a general body of knowledge
which provides a layer of conceptual abstraction upon which the isomorphism
of systemic phenomena across different scientific fields could be studied, and
with reference to which abstract methodological tools and theories could be
developed (Bertalanffy 1950).

However, when the barebones definition of a system is fitted against some
empirical social, natural or artificial phenomena, it becomes soon evident that
elements and their respective interactions manifest themselves in multiple
patterns, flows, levels, hierarchies and contexts which all can overlap each other
in multiple ways. To connect empirical observations with abstract
conceptualisations, the phenomenon under investigation needs to be described
so that its observed and abstracted features can be considered to form an
isomorphic relation to its conceptualisation. In addition, as systems are often

75

affected by the environment in which they are embedded, it is also essential to
include relevant parts of the surrounding environment in the description as well
to describe the boundary that is seen to separate a system from its environment.
Furthermore, while different system theories offer conceptual and
methodological lenses to study and locate a variety of phenomena, the extent to
which different phenomena can be systematised is contingent upon their type
and origin. For example, simple technologies and closed experimental settings
can readily be subjected to systematic analysis, whereas complex and embedded
social systems, such as large-scale social and organisational phenomena, may
prove too wicked and amorphous for any straightforward analysis or
systemisation (Camillus 2008; Rittel & Webber 1973; Buchanan 1992). In this
light, the definition of a system and by extension its properties derive from the
choices according to which a particular system under investigation is carved out
from its natural context and placed into an abstract conceptual framing.

Moreover, ontological holism and reductionism should not be confused with
methodological reductionism (Honderich 2005). Indeed, much of the so-called
holistic research is reductionist in methodological terms as it seeks to reduce
explanations to the smallest feasible number of concepts or variables using the
principle known as Occam’s razor (Wimsatt 1994). Research projects are often
formulated and presented in the form that covers a small collection of concepts
that are seen to be related to each other in a way or another so that in
conjunction they constitute the phenomenon that is being studied (Gregor
2006).

3.1.1 Complex systems

The intractability of systemic problems increases with the degree of complexity,
and the degree of complexity indicates the extent to which a system is amenable
to systematic analysis (Bertalanffy 1950). The amenability is contingent on the
characteristics of a system, such as the number and type of elements that
constitute a system, the extent to which the behaviour of an individual element
depends on the behaviour of the other elements of the system, the extent to
which a system exchanges energy, matter or information with the environment
it is embedded in and its ability to change its behaviour through learning and
evolutionary processes (Mitchell 2009). The degree and type of complexity are

76

contingent on the empirical system under investigation, and a high-level
classification of systems according to their complexity is outlined below.

Overall, systems can be divided into different classes along the lines of
simplicity, complicatedness and complexity (Mitchell 2009). Systems can be
viewed as simple when they are composed of a small number of similar and
weakly interdependent elements and are closed from the influence of the
outside environment. When the number, type and interdependence among
elements increase, and a system becomes more open to external influences, it
starts becoming more complicated and/or complex. The difference between
complicated and complex can be described along the lines of the linearity and
predictability of a system’s behaviour (Perrow 1984; Nolte 2015). Designed and
engineered complicated systems, such as jet engines and aeroplanes, are
expected to operate in a predictable and reliable manner within the bounds of
specified conditions and constraints, whereas, for example, the weather system
is a paradigmatic example of a complex system due to its unpredictable and
emergent character. The notion of emergence holds that the behaviour of a
system and its higher-level properties emerge from lower-level interactions as
elements interact with each other according to some particular rules without
central coordination (Nolte 2015). These unpredictable and emergent
characteristics are often defined along the lines of an ability to create a new
order, structures or ways of working, or to move a system continually from some
state, structure or equilibrium to another, with a more or less predictable
manner (Mitchell 2009). Among other criteria, the types of emergence can be
also differentiated along the lines of synchronic and diachronic (Bedau &
Humphreys 2008). The synchronic refers to some temporal higher-level of
systemic phenomena such as human consciousness, whereas the diachronic
refers to the events that unfold over longer periods of time, such as history and
the evolutionary development of the Internet (Tilson et al. 2010; Zittrain 2008;
Hanseth & Lyytinen 2010).

The emergent unfolding of a phenomenon does not necessarily imply that it
could not be explained in reductionist terms in principle (Simon 1996; Wimsatt
1972). While it might be impossible to foresee how different development
trajectories of a system may unfold and emerge in the future, explanation after

77

the fact is not totally out of reach if the trails of events can be established. Also,
while some systems might, in essence, be just entirely deterministic and
predictable, the lack of knowledge of their dynamic properties and initial states
may render them emergent and unpredictable for all practical purposes (Simon
1996; Mitchell 2009).

3.1.2 Structures of complexity

When the number of interactions and interdependencies among the elements of
a system increases, complexity soon reaches unmanageable levels. This is
elaborated by Alexander (1964) and Simon (1996) who also show that systemic
complexity can be contained and managed through the process of subdivision
and stable subassemblies.

Simon (1996, pp.183-184) defines a complex system as “one made up of a large
number of parts that may have interactions”. Based on the observations of
natural and social phenomena and technological artefacts, Simon (1962; 1996)
theorises that complexity reduces when a larger system is subdivided into sets of
interacting elements. This is based on the observation that the patterns of
interaction and interdependencies among elements are not always uniform. In
other words, some elements of a system form clusters (subsystems) within
which they are more connected with each other than to the elements which
reside outside those clusters. In turn, those subsystems, when combined, form
an overall higher-level system and its behaviour. Furthermore, the subsystems
themselves are compositions of other subsystems. This recursive hierarchy
indicates that higher-level systems are composed of interrelated subsystems,
which are themselves composed of some other subsystems until some
fundamental level is reached. While the overall complexity of a system can be
contained through subdivision, complex systems are not fully decomposable as
the overall behaviour of a system is produced through the interaction of
interrelated subsystems, thereby rendering complex systems as nearly
decomposable.

This nested and recursive hierarchic structure contains interactional complexity
and enables gradual development through stable intermediate subsystems (also
known as subassemblies that serve as reservoirs of accumulated work and

78

knowledge). Simon (1996, pp.188-189) demonstrates the stabilising effect of a
hierarchic structure in the development of complex systems with a parable of
watchmakers. The parable shows how subsystems facilitate gradual and
resilient progress towards more complex and higher-level systemic structures.
Without stable subassemblies (ready-made subsystems), when a watchmaker is
interrupted, the process of assembling a watch would always have to restart
from the very beginning. The longer the time that is required to arrive at the
completion, the higher is the likelihood of interruption and the subsequent
return to the square one. On the other hand, when building upon subsystems,
the gradual progression towards a higher-level system is more robust and
resilient to interruptions and external disturbances as the process of assembly
restarts from the subsystems that have already been completed. This way, stable
subsystems are intermediate states that store work and knowledge and building
on the previous progress speeds up the development effort.

Alexander (1964) observes that subdividing a design problem into smaller sub-
problems is an effective way to contain complexity. Containing complexity is
essential when design problems grow in size and complexity, as “[n]o complex
adaptive system will succeed in adapting in a reasonable amount of time
unless the adaptation can proceed subsystem by subsystem, each subsystem
relatively independent of the others” (Alexander 1964, p.41).

This is demonstrated with reference to a process of design that is viewed as
directed problem solving; the ultimate objective is to create a form that fits into
its target context (environment) so that they together form a harmonious
ensemble: “Every design problem begins with an effort to achieve fitness
between two entities; the form in question and its context. The form is the
solution to the problem. In other words, when we speak of design, the real
object of discussion is not the form alone, but the ensemble comprising the
form and its context“ (Alexander 1964, p.15). The context refers to the
environment in its totality, including natural, social and artificial matters as well
as human needs and wants, and it is this contextual totality from which problem
descriptions and requirements emerge.

79

Descriptions and requirements can be considered as design variables based on
which the fitness between a form and context is evaluated. Should the
interaction among design variables be low, finding a solution to a given problem
can be done simply by adjusting variables one by one until the harmony
between the form and context is reached. However, when the size and
complexity of a design problem grows, that is, when the number of design
variables increases, and the variables are heavily dependent on each other so
that a change in one variable alters others in a way that is not exactly known,
finding a solution becomes increasingly difficult or even impossible. By dividing
larger problem spaces into smaller subproblems, spaces from which solutions
are searched become smaller and thereby making the challenge of finding an
appropriate solution more manageable (Alexander 1964). Design problems
become easier to tackle when efforts can be focused on the gradual
improvement of subsystems instead of trying to solve the overall problem for all
of its interdependent variables at once.

Whereas Alexander (1964) approaches this topic through the lens of
architectural design and Simon (1996) in more general terms taking natural and
social phenomena and design of technological artefacts into account, they
converge on the importance of the subdivision as a method for containing and
managing complexity. Subdivision speeds up the search by limiting the problem
space solutions are searched from and designed for. The resulting subdivions
and subsystems can be seen as essential intermediaries as they provide building
blocks that enable the emergence and development of complex and nearly
decomposable systems from weakly connected subsystems.

While subdivision into intermediate subsystems shows how the behaviour of a
clock can be decomposed into smaller parts (Simon 1996), it also suggests that
all parts must be carefully arranged to make a clock work, posing limits to the
extent to which a system can be decomposed without losing its particular
properties. The near decomposability simply holds that the degree of interaction
among the elements within a subsystem is higher than between the subsystems.
Therefore, while a system can be decomposed into nearly independent
subsystems, a higher-level system behaviour is contingent upon the interaction
among subsystems which in combination produce the overall system.

80

3.1.3 Considerations on the identification of structures

Reducing complexity by subdividing systems into nested hierarchies is by no
means straightforward (Alexander 1964). In science, the challenge resides on
how to localise and identify relevant subsystems and their respective
relationships which are considered to constitute the phenomenon of interest
(Kauffman 1970). On the other hand, with the sciences of artificial such as
design and engineering, the challenge resides on how to partition a design
problem in a way that corresponds to the underlying structure and features of
the goals and context of the design problem (Alexander 1964).

Hierarchical structuring is also an essential sense-making device from the
human point of view. It allows for us to observe, explain and theorise systemic
behaviours in terms of subsystems and their interconnections (Simon 1996) –
seeing the world as hierarchies allows for simplified descriptions and
explanations as redundancies and superfluous details can be removed.
Moreover, Simon (1996) argues that as subsystems interact with each other in
an aggregative manner, the details of their internal functioning and interactions
can be ignored, and that often relatively little information would be lost by
representing complex phenomena as hierarchies. In addition, the definition of
the complexity or simplicity of a structure depends on the way and level of
description — successful simplification means that “we must find the right
representation” (ibid p. 215). However, Simon (1996) also points out that if
some phenomena do not exhibit hierarchic structure, “[complex systems] may
to a considerable extent escape our observation and understanding” (ibid p.
207), and thereby transcend our efforts of theorising.

Drawing from the studies of biological organisms, Kaufmann (1970) shows that
complex systems can be decomposed and described in multiple ways. As
biological systems, such as human bodies, can be seen doing many different
things at the same time, there are equally many ways to divide them into
subsystems and interactions of interest, depending on what systemic behaviour
or feature is under examination and explanation. While attention is focused on
certain subsystems and their respective causal relationships, those which are
considered irrelevant are ignored. Furthermore, even if multiple studies concern
the same system, the subdivision may occur across multiple boundaries at

81

different levels, yielding non-isomorphic and partially overlapping
decompositions (Wimsatt 1972). While this allows for detailed knowledge of
some particular aspects of different systems and subsystems, it also produces a
multitude of conceptual and theoretical accounts at different levels. Although
these accounts may not be readily translatable to each other, Kaufmann (1970)
argues that different views are expected to be compatible and non-contradictory
as they seek to explain different aspects of the same system. However,
reconciling different views may require significant efforts.

The difficulty of localising functionality may explain why “in-principle
reductionist may be at the same time a pragmatic holist” (Wimsatt 1972, p.67
quotes Simon (1962 p.86)). Wimsatt (1972) explains this difficulty of bringing
different views together through the concepts of descriptive and interactional
complexity. Descriptive complexity results from the uneven and intertwined
spatial distribution of functionality among the different parts of biological and
social systems (Kauffman 1970). Different sets of subsystems produce different
functionalities, and as some subsystems may take part in the production of
multiple functionalities, different theoretical descriptions of the system may
become overlap each other in a way that their boundaries do not coincide
(Wimsatt 1972). Overlapping theoretical descriptions lead to descriptive
complexity, which may require significant work if they are to be reconciled. The
interactional complexity, in turn, refers to variety and interdependence of
different theoretical descriptions involved in the production of some higher-
level systemic behaviour or functionality (Simon 1996). Moreover, Wimsatt
(1972) argues that the decomposability of a system should be viewed differently
depending on whether we are considering decomposability before or after
design or aggregation, and highlights that the hierarchical arrangements that
are developed and become more intertwined through evolutionary co-
dependent development processes are not readily decomposable whereas some
newly engineered systems and subsystems might be. Therefore, a functional
organisation that has developed through evolutionary processes does not
necessarily correspond neatly to the most readily observable physical
organisation. The localisation of functionality and the analysis of a systemic
behaviour become increasingly difficult when descriptive and interactional
complexity increase (Wimsatt 1972).

82

The challenge of making sense of complex systems renders requirements
specification and engineering equally challenging, in particular when the
number of contextual elements and associated requirements is large and they
are tightly interdependent (Rittel & Webber 1973; Buchanan 1992). Often, it is
easier to point out what appears to be wrong and incorrect than to explain and
specify exhaustively why some combination of a form and context would be in
the state of complete harmony; incorrectness sends signals, but correctness
remains silent (Alexander 1964). However, logically speaking, the absence and
presence of misfits are no different. They can be considered as binary conditions
for given criteria of fitness, and as long the criteria are listed, it is possible to
evaluate for each criterion whether the state of fitness has been achieved or not.

In practice, it is often difficult to specify contexts and criteria down to a level
that would leave no room for disagreement or interpretation. This leads to
situations where a great deal of information is embedded in task statements and
taken for granted assumptions. Based on this reasoning, Alexander forwards
that “the process of achieving good fit between the two entities should be seen
as negative process of neutralising incongruities, or irritants, or forces, which
cause misfit” (Ibid p. 24). Therefore, design processes, and therefore by
extension engineering, are seen as problem solving which proceeds towards
fitness and congruence between a form and its context.

3.2 Operative research questions

The theorisation of the structural arrangements and characteristics of complex
systems presented above brings forward the intertwined and multifaceted
relationships of separation and combination. Complex natural, social and
artificial systems can be viewed as compositions of subsystems, and they are
made sense of and more manageable through the processes of decomposition
(Simon 1996; Alexander 1964), through the processes of partitioning that seek
to subdivide higher-level systems into the lower-level systems and components
that in combination compose them. Yet, at the same time, the notion of near
decomposability forwards that certain systemic properties and characteristics
can only be observed or exist when particular subsystems are brought together
and interact with each other. Thereby, the sense-making and operation of

83

complex systems invariably involve tensions that revolve around separation and
combination of different subsystems and elements at different levels.

This tension between separation and combination is manifestly present in the
principal research question which brings forward the tension that revolves
around the specificity of designs and the distributedness of knowledge and
control in the current innovation literature. While this abstract high-level
question sets out to explore and make sense of this tension, it is not directly
applicable to empirical investigation. As Boulding (1956, p. 197) states, highly
abstract notions tend to be almost without content “… for we always pay for
generality by sacrificing content, and all we can say about practically
everything is almost nothing“. Therefore, it is necessary to bring the abstract
and high-level theories slightly closer to the empirical domain of research.

Therefore, the abstract theoretical framing is translated to tentative a priori
conceptualisation, and the primary research question is translated to the
operative questions which can be answered through empirical observation and
analysis. The primary research question, as it begins with “How can…”, hints
that there are potentially ways to circumvent and manage such tensions
emerging from the separation and combination. This is based on the initial
observation that various organisations with limited resources take part in
complex digital innovation. However, what is not exactly known is how this
occurs and what are the characteristics associated with such affairs.

Robot Operating System (ROS) provides the empirical context in which the
dynamics of separation and combination are explored and examined. ROS is a
software development framework and an open-source community that supports
the development of robots and autonomous systems. It brings together a
heterogeneous group of roboticists that share and build upon each other’s work.
ROS is described in more detail in Chapters 5 and 6, entitled Case description
and Results of Analysis respectively.

3.2.1 Subsystems and combinations

Operative questions define the type of information that needs to be collected to
answer the principal research question (Hintikka 1999). Based on the

84

theorisation presented above, ROS is studied through the lens of complex
systems and by focusing on different subsystems and their respective
combinations (Alexander 1964; Simon 1996).

Given the exploratory character of this research, the effort is first directed to the
identification of different subsystems and their characteristics irrespective of
their level in systemic hierarchies. Therefore, the first operative research
question is formulated as follows:

What are the typical instances and characteristics of subsystems, if any?

The identification of typical instances of subsystems occurs against the
conceptual background of nested and recursive structures of technologies as
illustrated in Figure 2 in the previous chapter (Arthur 2009; Murmann &
Frenken 2006). Being in line with Simon’s (1996) theory of hierarchy, it shows
how complex technological systems are composed of subsystems, which are in
turn composed of some lower level subsystems and so forth until some more
fundamental or foundational level of constitutive components is reached.

While Figure 2 presents a four-level nested hierarchy with the system level at
the top and the component level at the bottom, it is worth to reiterate that there
can be more than four levels hierarchical levels and that technologies can be
analysed as technologies at different levels of hierarchy (Arthur 2009). This
way, the notion of a subsystem is a frame-dependent concept, and it is used to
refer to entities which may reside at different hierarchical levels. Furthermore,
the notion of a subsystem is agnostic with respect to the design hierarchies of
inclusion and control (see Figure 5 in the previous chapter) (Murmann &
Frenken 2006), and it is used to indicate subsystems that can belong either to
the hierarchies of inclusion and/or control. Subsystems from the hierarchies of
inclusion and control residing at different hierarchical levels and structures are
included in the scope of examination.

Following the identification of subsystems, characteristics of subsystems are
reflected upon different factors, such as their place among different design
hierarchies, operational principles and their role in relation to other subsystems

85

and higher-level combinations (Arthur 2009; Murmann & Frenken 2006). This
is carried out to assign them into distinct categories of subsystems. However, it
is worth to note that as these characteristics serve only as sensitising devices
(Klein & Myers 1999) and guideposts during data collection and analysis; they
are not taken as unconditional criteria of analysis but are expected to evolve and
develop as the research unfolds.

Once the instances of subsystems have been established, the focus of research
shifts from subsystems on their combinations, with an emphasis to explore how
different subsystems combine at and across different levels of design
hierarchies. To this end, the second operative research question is as follows:

What are the typical instances and characteristics of combinations, if any?

The purpose of this is to identify and locate instances of combination and
examine different characteristics of combination. Different combinations and
combinatorial patterns are searched for and subjected for more detailed
examination. The guiding signposts are erected along the lines of the reviewed
literature, and combinatorial patterns will be reflected in the light of the
modularity of product systems (Baldwin & Clark 2000; Salvador 2007), the
generativity of digital innovation (Zittrain 2008; Yoo et al. 2010; de Reuver et
al. 2017) and the specificity of complex products and systems (Prencipe 2000;
Lee & Berente 2012) to ensure that different logics of combination will be
considered (Henderson & Clark 1990). Again, these organising logics serve as
sensitising devices that guide the researcher to pay attention to particular
characteristics of combinations during data collection and analysis, and to
reflect the extent to which these notions apply to complex digital innovation.

In more empirical terms, the instances of subsystems and combination in ROS
are expected to be found around different digital and physical systems and
platforms (de Reuver et al. 2017; Baldwin & Woodard 2008), software and
hardware components, system development toolkits and frameworks,
standardised interfaces or other boundary resources (Yoo et al. 2010; Eaton et
al. 2015). In other words, subsystems are expected be found where previous
work has accumulated so as to allow the reuse of existing technologies as well as

86

the collaboration and interaction among distributed and heterogeneous groups
of users and contributors.

The operative research questions and conceptual sensitising devices are derived
from the literature and are necessary to make data collection and analysis
tractable, yet they are formulated in an open-ended manner to retain
interpretive flexibility in the light of emerging evidence. Considering the
exploratory character of this work, these tentative conceptualisations
(Eisenhardt 1989b) are best understood as initial sensitising devices (Klein &
Myers 1999) and are expected to evolve during the course of research (Hintikka
1999). The description and examination of subsystems and their respective
combinations within the context of ROS presumable help understand how the
tensions between the specificity of designs and distributedness of knowledge
and control in complex digital innovation are resolved.

3.3 Summary

This chapter presented the theoretical framing that underpins this research and
introduced the operative research questions. The framing builds upon Simon’s
(Simon 1996) and Alexander’s (Alexander 1964) work, which theorises the
structure of complex systems as nested and recursive hierarchies, where
complexity is contained by subdividing complex systems into subsystems that
interact with each other. In this light, tentative a priori conceptualisation and
operative research questions build upon the notions of separation and
combination in the view of subsystems and their respective combinations.
Therefore, research efforts are directed towards the identification and analysis
of different subsystems and their respective combinatorial patterns across and
at different levels of system hierarchies. The examination of separation and
combination are expected to offer insights into how tensions between the
specificity of designs and distributedness of knowledge and control are resolved.

87

4 Research design

This chapter presents the methodological approach and design of this research.
This research can be characterised as exploratory and interpretative and is
designed as an embedded case study (Yin 2009), which makes use of tentative a
priori concepts (Eisenhardt 1989b) as sensitising devices (Klein & Myers 1999)
and follows the process of thematic analysis (Boyatzis 1998; Silverman 2015).

Research design, methodological choices and the unfolding of the research
process are presented and discussed in the subsequent sections. Section 1 (4.1)
discusses the characteristics of case study research to establish its suitability for
this research. After that, Section 2 (4.2) outlines the process of thematic
analysis, whereas the role and use of tentative concepts are presented in Section
3 (4.3). Section 4 (4.4) that describes the research design, and, subsequently,
Section 5 (4.5) presents the rationale and process of case selection to establish
the boundaries of research and knowledge claims. Subsequently, data collection
and research database construction are described in Section 6 (4.6). The
research database contains primarily documentary evidence, such as blog
entries, conference presentations, scientific and magazine articles and email
archives, which are complemented with the field notes from nonparticipating
observation and interviews. Section 7 (4.7) presents the process of data analysis
that produced two main outcomes. The first one of them is a case description,
which is presented in Chapter 5, whereas the second one, which answers the
principal research question using thematic analysis and proposes novel
concepts for conceptualising complex digital innovation, is presented in Chapter
6. Before moving on to the case description and other findings, this chapter
presents the methodological foundations of this research.

4.1 A case study as an evolving inquiry

Case studies are widely used in organisation and management research
(Eisenhardt 1989b). According to Yin (2009), case studies are suitable for
answering the how and why types of research questions under conditions where
a researcher holds no control over the unfolding of events, and the phenomenon
under investigation is contemporary, occurring in its natural environment. The

88

outcomes of case studies can be concepts, a conceptual framework or a mid-
range theory (Eisenhardt 1989b).

Comparing case studies to experiments, surveys and historical analysis
highlights the particular characteristics of case study research (Yin 2009). To
exemplify, experiments typically live in artificial habitats and can be
constrained, controlled and repeated varying one factor at the time, providing a
way for establishing theoretical regularities under well-defined circumstances.
While this approach has produced remarkable results in some domains,
capturing social and organisational phenomena into laboratory settings remains
challenging and ethically questionable (Zimbardo et al. 2000). Surveys are a
step closer to the wild, and they can be used to collect information concerning
some states of affairs from wider populations. They rely on premeditated sets of
questions, often collecting frequencies or respondent’s perceptions and
reporting, in turn, some statistical descriptions and regularities. However, the
emphasis and adherence to premeditated and formalised research designs and
protocols tend to introduce rigidity into research processes, making surveys less
amenable to projects with exploratory elements and where data is compiled
iteratively from different sources and in different forms. More open-ended
approaches such as historical analysis and case studies provide research designs
that overcome the limitations of experiments and survey-based research designs
(Yin 2009) as they accommodate the iterative collection and analysis of multiple
types and sources of data. Historical analysis, while being similar to case study
research, differs from case studies in that it focuses on the past instead of the
contemporary events (Yin 2009). Therefore, the open-endedness of research
design, the lack of control from the researcher’s part as well as the contextual
and contemporary embeddedness of a phenomenon under investigation
separate case study research from other modes of social research.

The open-endedness of case study research rests on the analytical choices made
by a researcher over the course of research (Bauer et al. 2000). The dependence
on researchers’ interpretations (Klein & Myers 1999) is prone to subject this
type of research to criticism, questioning the generalisability and observer
independence of research outcomes.

89

In the end, ideally, scientific research should be an objective endeavour where
outcomes do not depend on the interpretations made by some particular
researcher. The positivist research paradigms seek to obtain objectivity through
the premeditated research designs and mechanistic methods. However, choices
made during research design, such as the formulation of a research question,
questionnaires and methods of analysis as well as the decisions on whom to ask
from among others, bring interpretative elements into positivist research, even
if this is not always fully acknowledged (Bauer et al. 2000). In turn, in so-called
interpretative modes of research, objectivity cannot be claimed by hiding behind
the facade of methodological formalism. The open-ended research design
exposes researchers’ role and decisions in data collection and analysis.

The open-endedness, however, does not mean that a researcher should do away
with methodological theories and tools altogether. Instead, researchers should
use methodological tools to build procedural rigour into research activities and
to reflect on which particular research methods and avenues should or could be
pursued or discarded (Eisenhardt et al. 2016). Methodological rigour along with
necessary justifications allows a reader to examine the reasoning behind and
credibility of research outcomes. However, although methodological handrails
can help a researcher over the narrow stretches, they provide very little in the
way of definitive guidance regarding the paths a researcher should take or what
to make of them.

The relationships between a researcher’s choices and interpretations can be
viewed in the light of definitory and strategic rules. Like games, scientific
inquiry can be considered in terms of definitory and strategic rules (Hintikka
1999). Definitory rules define a game and describe the moves which are possible
and admissible. However, while definitory rules define a set of possible moves,
they are not informative regarding the utility of any particular move, as the
utility of a move depends on the overall situation where it is taken. The rules
which take utility into account are called strategic rules. While strategic rules
have to conform to definitory rules, as otherwise such moves would not be
permitted, their utility derives from the goals and environment in which they
are taken and the overall context of strategies they are members of. In this light,
if the overall context of an inquiry is not fully known in advance, the successful

90

formulation of most profitable sequences of moves remains a precarious effort.
Therefore, the upfront research design of an exploratory research is expected to
change as the knowledge of the overall context is limited at the beginning and
increases as the research project unfolds.

To formalise this logic of scientific inquiry, Hintikka (1999) develops what he
calls the method of interrogative inquiry. While the formal logical presentation
of the method is not of interest here, the formalisation however neatly presents
the iterative and interrogative unfolding of exploratory research. Interrogative
inquiry entails two participants, an inquirer and nature. The inquirer is looking
for an explanation that answers the principal question. At any given moment,
the inquirer may decide to either proceed a step further using logical deduction
on the basis of existing facts or, alternatively, present an operative question to
nature6 in the hope of obtaining some new facts. With the newly acquired facts
(if nature answers), the inquirer may again proceed further either by performing
a new deductive step on the basis of the present facts to refine the working
hypotheses or pose another question in the hope of obtaining new facts that are
able to confirm or reject the working hypothesis based on which the operative
question was constructed. The interplay of logical deduction and interrogation
continues until all necessary facts are in place so that the initial principal
question can be answered.

Hintikka (1999) separates purely deductive and interrogative reasoning
respectively as trivial and non-trivial, associating them with Charles S. Peirce’s
corollarial and theorematic reasoning respectively, forwarding that:

“[T]heorematic inferences are the ones which introduce a new individual
(variables) into the argument, whereas corollarial merely traffic in the
individuals which have already been considered in their premises” (Hintikka
1999, pp.7-8).

Non-trivial inference implies the imagination of possible worlds and subsequent
systematic probing of the validity of those worlds (Weick 1989). This may open

6 Nature is broadly defined. It can be either nature as natural nature, or it can be a computerised
database, or any of many other things that may provide an answer, and they may differ wildly in
their structure and information they hold.

91

up new lines of argumentation by bringing in new evidence, which in turn may
trigger a change in beliefs and working hypotheses, although not necessarily
doing so if questions are poorly formulated or nature does not answer.
Moreover, Hintikka (1999) notes that deduction and interrogation are the two
sides of the same coin; the difference should be considered rather as a matter
degree than a difference in kind, as a sort of sliding scale between the two
opposite ends of the spectrum where the position of a pointer depends on the
number of new variables being introduced into inquiry.

Although Hintikka (1999) formalises the logic of interrogative inquiry, outlining
its definitory rules, we are none the wiser when it comes to defining the strategic
utility of any particular move. What are the presuppositions to uphold and in
which way what is known should be transformed into new sequences of
questions and answers? How could a researcher establish the validity of any
chosen course of events and outcomes in a convincing manner, as it remains
that the formulation of strategic rules resists formalisation because the
efficiency of moves depends on the environment (e.g. what can be learned from
data) and ultimate goal (e.g. the aimed contribution) in which the moves are
taken, both of which are not fully known when an open-ended research project
begins.

The iterative and interrogative process builds upon reasoning, questioning and
interpretation and requires readiness to adjust for emerging avenues of research
throughout the course of research. This corresponds closely to the underlying
assumptions and open-endedness of interpretative case study research. The in-
depth investigation based on rich data and readiness to accommodate a variety
of data from different sources render case study design as an appropriate
approach for the research projects that seek to explore and develop a deeper
understanding of the phenomenon under investigation, building upon prior and
newly acquired facts in an opportunistic but goal-directed manner.

Whereas the exploratory approach can be described as disciplined imagination
(Weick 1989), the process and evidence that give rise to the final conclusions
should be made explicit to a reader to allow her to evaluate the reliability of

92

conclusions. The subsequent section discusses the criteria of reliability in more
detail.

4.1.1 Quality criteria

The quality of research can be evaluated in terms of construct validity, internal
validity, external validity and reliability (Gibbert et al. 2008; Yin 2009), each of
them evaluating a particular aspect of research design. A research project
should be designed and executed in a manner that reaches high quality in all
four above-mentioned areas. Therefore, before presenting the design of this
research project, it is beneficial to revisit the quality criteria to set the goalposts
against which the design can be evaluated.

Construct validity concerns with data collection and deals with the
operationalisation of the concepts that guide data collection. To minimise
subjective and observational biases, a researcher should provide clear
conceptual definitions and describe the features based on which the concepts
can be located in the empirical evidence (Yin 2009). Construct validity can be
increased using empirical triangulation, that is, using multiple sources of
evidence as well as establishing a coherent “chain of evidence” (Yin 2009, p.42),
which details the path from research questions to conclusions, allowing a reader
to reconstruct the collection and processing of data (Gibbert et al. 2008).

Internal validity can be understood as “logical” validity, meaning that a
researcher is expected to demonstrate sound and logical treatment of data
during analysis (Yin 2009), crafting a plausible line of argument which is
sufficiently compelling to warrant the conclusions of research (Gibbert et al.
2008). However, facts that constitute evidence and their respective relations
may not always be readily observable, necessitating interpretation and inference
from researchers’ part. If the researcher fails to include some crucial facts in the
analysis, the resulting findings may rest on spurious evidence and treatment.
Depending on the type of evidence and goals of research, a variety of analytic
strategies and techniques can be employed to mitigate the risks concerning the
internal validity, such as systematic explanation building and evaluation of
explanations against predicted patterns and other theoretical propositions (Yin
2009; Gibbert et al. 2008). In addition, evidence should be presented separately

93

from its interpretation in order to expose the link between the data and its
interpretation as it facilitates the examination of alternative interpretations.

External validity indicates to what extent final conclusions are expected to be
generalisable or applicable outside the empirical research setting (Yin 2009;
Gibbert et al. 2008). Broadly speaking, there are two main strategies towards
generalisability. Statistical (positivist) research methods pursue this goal
through representative sampling and the subsequent generalisation to
corresponding populations. In contrast, interpretive studies with a single or
small number of cases seek to construct analytical generalisations with an aim
“to generalise a particular set of results to some broader theory” (Yin 2009,
p.43), which can then be generalised across analogous settings. The
generalisation across analogous organisational settings is often a primary goal
of information systems research (Seddon & Scheepers 2015).

There are alternative viewpoints to generalisation, such as the generalisation
from data to descriptions or from descriptions to theory (A. S. Lee & Baskerville
2003). Seddon and Scheepers (2015; 2012) take a processual view on
generalisation, presenting it as a logical argument that spans across different
phases and settings of research.

“A research generalization is the researcher’s act of arguing, by induction, that
there is a reasonable expectation that a knowledge claim already believed to
be true in one or more settings is also true in other clearly defined settings.“
(Seddon & Scheepers 2015, p.38; Seddon & Scheepers 2012)

As parsimony and generalisability are hallmarks of theoretical contributions
(Eisenhardt & Graebner 2007), research projects can be viewed as a series of
abstractions. Step by step, selected features present in data are preserved while
others are either discarded or established as qualifying conditions, moving
gradually from data towards theoretical generalisations, which can be
transferred across different settings according to some logical of comparability.

Finally, the overall reliability of research refers to the absence of errors and
minimisation of biases (Gibbert et al. 2008; Yin 2009). In principle, should
another researcher wish to carry out the same research again, she should arrive
at the same results. For this to be possible, the research process and outcomes

94

must be described clearly and transparently. To this end, the researcher is
advised to develop a case study database (Yin 2009) and document data
collection and analysis to establish an audit trail that allows the replication of
research. To ensure quality and generalisability of research outcomes, a
researcher should make use of techniques, which increase construct, internal
and external validity and lead to overall reliability and transparency. The
subsequent section presents the analytical method adopted in this research.

4.2 Thematic analysis as iterative abstraction of patterns

Thematic analysis is a widely used research approach in qualitative social and
organisation research. Regardless of the objectives of research, the search for
patterns, themes, concepts and categories and their relationships is a common
research procedure (Boyatzis 1998; Bryman 2015). This search plays an
important role for example in the grounded generation of theory, narrative
analysis and qualitative content analysis, and different theoretical and
methodological traditions have developed a variety of methods, techniques and
heuristics of search that serve particular analytic and theoretical objectives
(Bryman 2015).

A theme is a central construct in thematic analysis and thereby requires a
further elaboration, especially considering that as an abstract concept it is prone
to attract multiple interpretations. Bryman (2015) defines a theme as a
“category identified by the analyst through his/her data” (ibid p. 584).
Moreover, themes are expected to be related to the focus of research, derive
from the patterns identified in the transcripts and field notes, and to “provide
the researcher with the basis for a theoretical understanding of his or her data
that can make a theoretical contribution to the literature relating to the
research focus” (ibid p. 584).

In this light, the thematic analysis appears similar to grounded theory (Glaser &
Strauss 1967). While thematic analysis and grounded theory resemble each
other, they differ in their aims. The method of grounded theory is concerned
with theory generation through iterative and parallel data collection and
analysis until theoretical saturation is reached (Glaser & Strauss 1967; Corbin &
Strauss 2008). During this process, the method of grounded theory seeks to

95

extract concepts from raw data by coding and labelling them into conceptual
categories first through the process of open coding, and subsequently by
building linkages among categories through the processes of axial coding
(Corbin & Strauss 2008). On the other hand, while thematic analysis also aims
at uncovering thematic patterns and linkages (Bryman 2015), it does not
necessarily aim at developing a new theory (Urquhart 2013). However, this
distinction hinges upon where a boundary between a new theory and any
theoretical contribution is drawn. According to Eisenhardt (1989b), a range of
theorising efforts, such as conceptual development, theoretical propositions and
mid-range theories can be viewed as theoretical contributions.

Thematic analysis is not intrinsically linked to any particular theoretical or
conceptual framework. While different frameworks, such as narrative analysis
or critical discourse analysis, often carry a number of assumptions concerning
the nature of data and what particular features of data represent (Bryman 2015;
Braun & Clarke 2006), the method of thematic analysis is tasked simply with
finding repeated patterns of meaning thereby separating the underlying
theoretical assumptions from the process of analysis. The meaningfulness of
identified patterns is contingent upon the theoretical framing and objectives of a
research project (Braun & Clarke 2006). Thematic analysis is a processual
framework for data analysis, which describes the main phases of data analysis
process at a level that is abstract and generic (Bryman 2015). The aim of
explicating the process steps is to make the process more transparent and
replicable and highlight the importance of following coherent and consistent
approach during data analysis (Braun & Clarke 2006).

The process of thematic analysis unfolds as follows (Bryman 2015). To begin,
the researcher makes herself familiar with the contents of the research database
to establish a general overview and understanding of the data being analysed.
After this, the process of initial and open coding begins, and this may lead to a
large number of scattered and incoherent codes and categories. Then, the
researcher iterates and rearranges the initial codes into higher-level categories,
and this is followed by a round of iteration during which the higher-level
categories are further examined and arranged into themes. Throughout data
analysis, a researcher can review and adjust categorisation depending on the

96

evidence and desired level of abstraction. Once a set of themes has been
established, they are described and explained. As a final step, the linkages
among different themes can be examined and conceptualised before the
production of a final report that describes the resulting themes and their
interrelations. The outcome can be presented in the form of a summary table
that outlines and describes the prominent themes and categories with examples
and descriptions, which illustrate their salient characteristics.

As the purpose of the thematic analysis is to identify and report themes in data
(Braun & Clarke 2006; Bryman 2015), what counts as a theme needs to
established. According to Bryman (2015), one of the most common criteria that
warrants a theme is repetition. The recurrence of a particular pattern may occur
within the boundaries of one type of evidence or alternately across various types
and sources evidence. However, not all repetitions are equally important with
respect to research objectives. Some patterns may frequently repeat themselves
in data, yet if they are not relevant in the light of research objectives, they
should not be included in the analysis (Bryman 2015). Other common heuristics
revolve around the identification of similarities and differences among different
patterns. Moreover, themes can be identified at the level of manifestation or
interpreted as latent and underlying themes (Boyatzis 1998). At the level of
manifestation, patterns are readily observable, whereas latent patterns can be
considered as hidden and underlying causes of phenomena.

The observation of manifest patterns tends to offer descriptive accounts,
whereas the identification of latent themes require interpretation from
researchers’ part (Boyatzis 1998). As the exposition of latent patterns cannot
rely solely on description, it necessarily includes elements of conceptual and
processual sense-making and theorising (Braun & Clarke 2006).

Furthermore, the coding process can be either data-driven or theory-driven
(Urquhart 2013; Boyatzis 1998). In the case of data-driven analysis, a researcher
approaches data without analytic framework and discovers and derives
categories and themes inductively from data. In turn, a theory-driven approach
adopts existing theories as a starting point and analyses and evaluates data with
reference to a theoretically-driven conceptual framework. In practice, research

97

projects often fall somewhere between the two and combine both data-driven
and theory-driven approaches.

To conclude, thematic analysis is an iterative process for identifying categories
and themes in empirical evidence. Categories and themes can be viewed as
recurring patterns that represent a concept or idea that is relevant in the light of
research objectives.

4.3 Role of tentative a priori concepts

The development of tentative conceptualisation and operative research
questions is described in Chapter 3, and their methodological role in this work
is elaborated in this section. This is necessary in order to establish the boundary
between theory-driven and more exploratory data-driven phases of this
research. As discussed in the previous section, thematic analysis can be theory-
driven or data-driven (Urquhart 2013; Boyatzis 1998), and that research
projects often combine these two approaches. This is also the case here. The
process of analysis begins as theory-driven, but as the analysis proceeds further,
the approach shifts from the theory-driven to data-driven as patterns are
abstracted from data in order to developed novel high-level categories and
themes. The role and function of a conceptual framing are discussed below.

The role and function of conceptual framing vary depending on the type and
purpose of research. In general, a conceptual framework tends to correspond
tightly to its theoretical premises in research projects that test theories, as this
allows for unambiguous testing and reporting of the validity of a theory (Yin
2009). To contrast, in the context of more open-ended and exploratory research
projects which may target at theory generation, conceptual framing is better
understood as a sensitising device (Klein & Myers 1999); it directs attention
during the data collection and analysis but is not guaranteed to secure its place
in the final results, concepts or conclusions (Eisenhardt 1989b). Tentative a
priori conceptualisation serves as a scaffolding which can be discarded when it
is no longer needed.

In this research, the conceptual framing and tentative a priori concepts are used
as sensitising devices (Klein & Myers 1999; Eisenhardt 1989b); they direct

98

attention to the matters which are considered relevant with respect to the
objectives of this work. While the existing literature and theories provide a
starting point and guide through the course of research, they are not held onto
rigidly and not taken as an ultimate arbiter on what the researcher should see or
report as this may lead to a suppression of conflicting evidence and potentially
revealing observations (Walsham 1995). Instead, the aim here is to remain
sensitive to any emerging themes and be prepared to shift the focus of research
if the evidence at hand so warrants. While the readiness to modify initial
assumptions in the light of new evidence may shift the focus, it also enables the
introduction of new concepts, constructs or theories (Eisenhardt 1989b).

To summarise, while theoretical framing and conceptualisation help focus
attention to the matters and aspects that are seen relevant in the view of the
research objectives, in the context of this work such framing is better
understood as a flexible sensitising device (Klein & Myers 1999) instead of a
rigid frame that must be adhered to at all cost.

4.4 Research design framework

This section introduces the research design framework followed in this research.
According to Yin (2009), every empirical research project has a plan which
resides somewhere between the implicit and explicit ends of a spectrum. In the
light of construct validity, internal validity, external validity and overall
reliability and transparency, research design should be articulated in a way that
is closer to the explicit than the implicit end.

To this end, Eisenhardt (1989b) offers a stepwise framework for designing and
conducting case study research. The framework combines elements from the
case study design, qualitative methods and grounded theory and presents a
series of steps which describe main research activities along with their
respective rationale. The framework is presented in Table 1, and it serves as a
template with reference to which this research is designed. The steps listed in
Table 1 are described in the subsequent sections to present the methods and
procedures that lead to the final conclusions of this work.

99

Nr. Step Activity Reason

1 Getting
started

Definition of research
question
Possibly a priori
constructs
Neither theory nor
hypotheses

Focuses efforts
Provides better grounding of
construct measures
Retains theoretical flexibility

2 Selecting
cases

Specified population
Theoretical, not random,
sampling

Constrains extraneous variation
and sharpens external validity
Focuses efforts on theoretically
useful cases-i.e., those that
replicate or extend theory by
filling conceptual categories

3 Crafting
instrume
nts and
protocols

Multiple data collection
methods
Qualitative and
quantitative data
combined

Strengthens grounding of theory
by triangulation of evidence
Synergistic view of evidence

4 Entering
the field

Overlap data collection
and analysis, including
field notes
Flexible and
opportunistic data
collection methods

Speeds analyses and reveals
helpful adjustments to data
collection
Allows investigators to take
advantage of emergent themes
and unique case features

5 Analysing
data

Within-case analysis

Gains familiarity with data and
preliminary theory generation

6 Shaping
hypothes
es

Iterative tabulation of
evidence for each
construct
Replication, not
sampling, logic across
cases
Search evidence for
"why" behind
relationships

Sharpens construct definition,
validity, and measurability
Confirms, extends, and sharpens
theory
Builds internal validity

7 Enfolding
literature

Comparison with
conflicting literature
Comparison with similar
literature

Builds internal validity, raises
theoretical level, and sharpens
construct definitions
Sharpens generalisability,
improves construct definition,
and raises theoretical level

8 Reaching
closure

Theoretical saturation
when possible

Ends process when marginal
improvement becomes small

Table 1: Research design framework after Eisenhardt (1989b)

100

In this framework, Step 1 focuses on the formulation of research questions and
tentative a priori concepts that guide the process of research. To this end, a
principal research question was derived from the reviewed literature in Chapter
3, and a priori concepts and operative research questions were developed in
Chapter 3. To answer these questions, this research is designed as a case study
that follows the process of thematic analysis. The underlying principles of case
studies and thematic analysis were presented above in Sections 1 and 2 (4.1,
4.2), and the role and use of tentative concepts were discussed on Section 3
(4.3).

After having established the foundations and research questions, Step 2 deals
with case selection. The selection of ROS as an embedded case study is
presented in Section 5 (4.5). While ROS can be considered as an extreme and
revelatory case study in the light of previous research into digital innovation, it
can also be viewed as a typical example of complex digital innovation in the field
of robots and autonomous systems. Steps 3 and 4 concern with crafting
instruments and protocols and entering the field. To this end, the process of
data collection and the construction of a research database are described in
Section 6 (4.6). The research database contains primarily publicly available
documentary evidence, which is complemented with the field notes from
nonparticipant observation and interviews. The contents of the database are
detailed in appendices. Steps 5 and 6 focus on the processes of analysing data
and shaping of the findings into potentially new concepts, constructs or theories
Section 7 (4.7) describes how the content of the research database is processed
thematically to analyse subsystems, combinations and their salient
characteristics with an aim to establish a rich and detailed understanding that
leads to novel conceptual propositions. Steps 7 and 8, the enfolding literature
and reaching closure, are presented in Chapter 7 where conceptual findings are
discussed in the light of the literature reviewed in Chapter 2.

4.5 ROS as an embedded case study

Case selection is one of the most important phases in case study research. As
case studies build upon the detailed examination of a single or small number of
cases, case selection defines what can be learnt and to what extent learnings can
be generalised and transferred over to different but similar settings. Ideally, the

101

selected cases(s) should be informative, realistic and be able to offer novel
insights (Yin 2009). This section outlines the selection and definition of ROS as
an embedded case study.

Considering that the selection of a case sets boundaries to the extent of
knowledge claims, in Flyvbjerg’s (2013) terms, carrying out a case study is more
of a choice of the units of study and the definition of its boundaries than
adhering to any particular method of data collection or analysis:

“The decisive factor in defining a study as a case study is the choice of the
individual unit of study and the setting of its boundaries, its ‘casing’ to use
Charles Ragin’s (1992, p. 217) felicitous term.” (Flyvbjerg 2013, p.169)

In this view, casing means carving a particular case out of some wider context,
potentially along with its embedded units of analysis (Flyvbjerg 2013). Wider
context represents the environment in which a case is embedded, and it
provides a backdrop against which some particular case study can be considered
as a separable unit of analysis. Furthermore, case studies can be designed to
draw their lessons from a single case or multiple cases, which can be either
holistic or embedded. The word holistic indicates the equivalence between a
case and unit of analysis, whereas the word embedded signals the presence of
more than one units of analysis within a particular case (Yin 2009). The use of
embedded units of analysis is beneficial in situations where a more focused and
detailed view of some particular aspects of the case is required. However, when
relying on multiple embedded units of analysis, the units of analysis and
respective unitary findings must be brought together to establish final
conclusions at the level of an overall case (Yin 2009). In this view, embedded
case studies can be defined as hierarchical structures that consist of three nested
levels: the wider context that provides the environment within which the case
resides, the case itself and the units of analysis that are embedded in the case.
While there is no right way to draw boundaries between the context, case and
units of analysis, the way these boundaries are drawn must be explicated as it
defines the boundaries of knowledge claims (Flyvbjerg 2013).

Moreover, research projects are typically designed to serve to particular
theoretical objectives. Depending on the objectives, case studies can be viewed

102

as critical, extreme, typical, revelatory or longitudinal (Yin 2009). Critical cases
are used to establish validity of theoretical propositions, while extreme cases
report about matters which can be considered somewhat deviant or unusual,
and potentially calling for novel conceptualisation and theorising in order to
explain observed variations (Flyvbjerg 2013). In turn, typical cases are seen as
representative and paradigmatic, informing about some common and prevalent
state of affairs. Revelatory cases, on the other hand, observe and analyse
situations that have been previously inaccessible to researchers, thereby
providing opportunities for novel insights and theorising. Longitudinal case
studies focus on phenomena which unfold over longer periods of time. As this
categorising is relative to the goals of a research project, prior knowledge, and
research environment, any particular research design may belong
simultaneously to more than one category (Flyvbjerg 2013).

4.5.1 The Robot Operating System

The Robot Operating System (ROS) (Quigley et al. 2009) was selected as a case
to study in this research. ROS is a software development framework, and the
wider context of ROS can be described as software development for robots and
autonomous systems. During the pilot study phase, several case candidates were
considered. The candidates ranged from individual robot development projects
to different proprietary and open-source software development frameworks. In
the end, ROS was considered to provide a solid foundation in the view of the
generalisability of research results. The reasoning behind the case selection is
outlined below.

Individual robot development projects were considered and discarded first.
While the history of information systems research has shown that much can be
learnt from detailed examination of individual projects in different socio-
technical settings, it was however thought that concentrating on an individual
project might steer the findings towards some project-specific aspects, posing a
risk to generalisability. After that, proprietary and commercial software
development frameworks were considered and discarded. This was done on the
basis that they are often tightly-coupled to some specific-purpose hardware or
domain of application, thereby potentially steering findings towards some
domain-specific aspects. After deciding against individual projects and

103

commercial applications, the focus shifted on widely used open-source
frameworks. From open-source frameworks, the Orocos project (Bruyninckx
2001) was considered first. While it is being actively developed and used, has a
long history and is well received in the robotics community, it was set aside as it
is geared more towards industrial applications and hard real-time control
systems. Also, as some of its core components have been integrated with ROS
and it can be used alongside ROS, it was concluded that ROS could provide a
more generalisable view on complex digital innovation. In addition, as other
reviewed open-source frameworks (Kramer & Scheutz 2006; Iñigo-Blasco et al.
2012) appeared to be less vibrant or geared towards some specific purposes and
applications, they were not considered further.

During the pilot study phase, it become apparent that ROS has attracted much
attention over the past ten years. It is a vibrant community that attracts
roboticists globally and across different application domains. The source code is
publicly available and licensed under the conditions which allow it to be used,
modified and distributed freely for research purposes and in commercial
applications. Although the development of the core functionalities and elements
of ROS is driven and coordinated by the Open Source Robotics Foundation
(OSRF), design and development efforts are not confined inside the boundaries
of a single organisation. Instead, ROS brings together a large and increasing
number of users and contributors from academia and industry as well as
corporate and government funding. Therefore, it is not surprising that ROS
emerged frequently in discussion during the pilot study phase. It was debated in
various robotics events and many people appeared to have an opinion of it,
either positive or negative. This warranted interest and further examination.

ROS is seen to provide a good foundation for generalisable findings. Although
robot software development frameworks are still looking for their shape, ROS
offers a relatively representative view of the current state of affairs. It is gaining
increasing traction and is also used in commercial applications, although
currently it is primarily used for research and development purposes. Moreover,
although other software development frameworks are also available, ROS is one
of the more popular ones, and it is occasionally referred to as a de facto
standard in the robot software development (Sterling 2013). Since it is widely

104

used, it offers a broad view that enables the examination and evaluation of
common problems and solutions as they manifest themselves at the level of a
software development framework that caters a broad community. As the ROS
website states, ROS supports collaborative software development for robots and
autonomous systems, providing technological tools, capabilities and a vibrant
community that bring together roboticists and software developers globally. The
wide adoption of ROS is seen to provide a foundation for the generalisability
across different organisational settings since the organisations that use ROS
and, more broadly, develop control software for robots and autonomous
systems, are subjected to similar organising logics of combination in the view of
product architectures.

Moreover, as ROS provides a framework for the robot software developers
engaged in complex digital innovation, drawing lessons from it and reflecting
them in the light of the current theories of digital innovation presumably
provides a fruitful opportunity to contribute to the literature on digital
innovation. Although ROS can be considered as a typical case of digital
innovation in the field robotics, especially in the context of research and new
product development (Fichman et al. 2014), it can also be seen as a revelatory
case in the view of digital innovation research, which has so far focused on the
processes of digitalisation in the contexts of digital infrastructures (Tilson et al.
2010), platforms (de Reuver et al. 2017), mobile devices (Eaton et al. 2015) and
digitised products (Yoo et al. 2010; Henfridsson et al. 2014).

4.5.2 Embedded units of analysis

Following the design principles of embedded case studies, embedded units of
analysis are used to structure the process of data collection and analysis (Yin
2009). In this research, the embedded units of analysis derive from the tentative
a priori concepts and operative research questions which were developed in
Chapter 3.

With reference to the first operative research question, the first embedded unit
of analysis focuses on subsystems (Simon 1996) at different levels of design
hierarchies of inclusion and control (Arthur 2009; Murmann & Frenken 2006).
However, it is worth to note that the concept of a subsystem as a unit analysis

105

remains somewhat generic and abstract; while it is not a carefully detailed and
specified instance or pattern, it is expected to direct attention towards potential
instances of interest (Klein & Myers 1999), although much of this process rests
on the researcher’s interpretation. Subsystems can manifest themselves in
multiple forms, places and hierarchical levels and serve a variety of functions
(Murmann & Frenken 2006). For example, in terms of digital computation,
software libraries, modules, packages, databases, platforms, software
development toolkits, frameworks as well as computing hardware could be
viewed as instances of subsystems. Similarly, in terms of hardware, different
components, embodiments, parts, machines and motors can be viewed as
instances of subsystems. Many more examples can be easily found in different
areas of socio-technical systems and social organisations (Simon 1996).

In this light, the concept of subsystem as an embedded but generic unit of
analysis can be viewed as a dragnet that trawls through data in the search of
objects and artefacts that may prove informative. Yet, it remains as the
researcher’s task to discriminate which ones of them warrant further analysis
and examination. While this loose formulation directs focus on specific matters
during data collection and analysis, it also retains a high degree of interpretive
flexibility that is necessary in exploratory research.

With a reference to the second operative research question, the second
embedded unit of analysis centres on combination (Arthur 2009; Murmann &
Frenken 2006), that is, how different subsystems (Simon 1996) are bought
together to create robot systems that produce autonomous behaviour. Again,
the concept of combination remains abstract serving the purpose of directing
attention to the matters that deal with combinations, that is, how different
subsystems related to each other and are joined together – yet it leaves it to the
researcher to decide and explain why some particular combination and its
respective characteristics are included in the analysis. To provide an example, in
the context of software engineering and digital innovation, boundary resources
(Eaton et al. 2015) in their variety of forms such as interfaces, standards and
documentation can be seen as instances and manifestations of combination.

106

The characteristic of combination can be further reflected in the light of the
patterns of combination that were discussed in the literature review. For
example, with the lens of modularisation the extent to which complex digital
innovation can be subjected to centralised top-down design to produce stable
core elements and well-defined interfaces (Baldwin & Clark 2000; Salvador
2007) can be evaluated. In turn, the lens of generativity (Zittrain 2008) can be
used to probe the extent to which complex digital innovation can be subjected to
distributed design agency, knowledge and control, and to what extent end-
product agnostic subsystems are amenable to generative combinations. The
layered modular architecture provides a lens (Yoo et al. 2010) for evaluating the
dynamic interplay of physical and digital components within the context of
digitised products that combine the modular and generative product
hierarchies. Furthermore, the notion of specificity (Prencipe 2000; Lee &
Berente 2012) probes the extent to which generative combinations can be said
to produce highly integral and purpose-specific behaviour. In addition, the
notion of architectural innovation (Henderson & Clark 1990) can be evoked to
provide a lens against which the reconfigurations of relationships among the
core concepts and components can be identified.

To conclude, the boundaries of this embedded case study are drawn as follows.
The wider context is the software development for robots and autonomous
systems and ROS serves as a case study that is carved out of this context. ROS
can be seen as an extreme or revelatory case in the view of digital innovation
research, even if it could be viewed as a typical and representative in the domain
of robotics. Within ROS, the collection and analysis of data centres around two
embedded units of analysis, subsystems and combinations. They are used to
identify and locate the empirical objects that could warrant further examination
and provide themes and patterns to answer first the operative and then finally
the principal research questions. While these embedded units of analysis help
get data collection and analysis started, they remain tentative and subject to
interpretation throughout this research. The next section describes the process
of data collection.

107

4.6 Data collection

Data collection was carried out to serve two different but related purposes. The
first of them is to develop a case description in order to become familiar with
ROS and its evolution over time. This provides a well-grounded view on ROS
and the surrounding community, thereby providing a foundation for more
detailed analysis. The second is to compile a rich body of evidence that enables
an in-depth investigation into the organising logic of complex digital innovation.
The collected data was stored into a research database, and the collection and
development of the contents of the database are described and discussed below.

To explore and answer the how and why types of research questions typical to
case study research, a well-rounded and comprehensive view of the
phenomenon is needed (Eisenhardt 1989b; Flyvbjerg 2013). According to
Eisenhardt's (1989b) research design framework, the use of multiple data
collection methods and triangulation strengthen the grounding of theoretical
findings. In addition, carrying out data collection and analysis in parallel
provides an opportunity to adjust data collection processes and strategies if and
when needed. Therefore, while the initial research design provides a necessary
starting point, the application of tools and protocols remains flexible and open
for new avenues of research to emerge as the understanding of the research
problem increases (Eisenhardt 1989b). To this end, case studies make use of a
variety of data collection methods and sources (Yin 2009), such as interviews,
observations, documents, physical artefacts and archival sources. The use of
multiple sources facilitates the verification of evidence, which increases
increasing the validity of resulting constructs and conceptualisation (Gibbert et
al. 2008). Therefore, striving for the breadth and depth of evidence is necessary
for research to be successful.

The method of corpus construction provides guidance on how to approach the
construction of a research database. The process of construction is a cyclical and
iterative method of data collection (Bauer & Gaskell 2000), and it resembles the
open-ended data collection approaches advocated by Eisenhardt (1989b) and
Yin (2009). The notion of corpus construction is borrowed into social science
from linguistics, and the word corpus translates to “body” in English. While
some linguistic corpora can be constructed to serve general purposes, the social

108

and organisation research typically rely on topic-based corpora which are
constructed to serve specific purposes. This means that they are often
thematically unified and narrow in scope while exposing a particular viewpoint
or topic in a holistic manner. Bauer and Gaskell (2000) describe a simple
stepwise procedure to characterise corpus construction. The iterative and
cyclical approach includes phases such as preliminary selection of data, the
examination of the variety in data and the subsequent extension of the database
if and when this is needed. This process is repeated iteratively until the point of
theoretical saturation is reached (Glaser & Strauss 1967).

In this research, data collection and analysis were carried out in parallel as
cyclical, iterative and overlapping processes. Starting with data analysis before
finishing with data collection allowed the researcher to respond to emerging
themes and incorporate new sources of evidence into the analysis (Eisenhardt
1989b).

4.6.1 Documents as research data

The research database consists primarily of documentary evidence that is
collected from public sources. The salient characteristics of documentary
evidence and its use in qualitative and interpretative research are discussed
below.

Qualitative research and theorising often builds upon data which is brought
about by a researcher (Yin 2009). To elicit data, researchers rely on some of the
various methods of fieldwork, such as interviews, focus groups or observation.
In the field of information systems, these methods form an inseparable part of
the research tradition. This is not surprising since the phenomena of interest
(Avgerou 2000) are typically deeply embedded in organisational work settings
and practices, which reside inside organisational boundaries. Data on such
matters is rarely floating around freely in the public domain. Instead, it requires
effort from researchers’ part to collect and bring necessary facts to daylight.

Documentary evidence provides an alternative source of data. Silverman (2015)
defines documentary evidence as “naturally” occurring information “which have
become recorded without the intervention of a researcher” (p. 276). This

109

includes printed and electronic documents, blog posts, emails and other forms
of digital traces that can serve as documentary evidence. These sources should
not be overlooked as they may provide a researcher with rich and informative
sets of data, which are readily available for analysis. In particular, harvesting
data on digital ecosystems, platforms and open-source software projects appear
to provide fruitful research avenues, and there are several examples of
successful use of digital traces and documentary evidence. For example, Eaton
et al. (2015) analyse a series of web blog entries to study the evolution of
boundary resources on the iOS ecosystem. Similarly, digital traces and
documentary evidence have been used to study Wikipedia editing patterns
(Aaltonen & Lanzara 2015) and the coordination processes of the Linux kernel
development (Shaikh & Henfridsson 2017). As these contexts of research
transcend traditional organisational boundaries, much of related documents
and data can be found form the sources that are publicly available.

While both elicitation and harvesting approaches to data collection can produce
good results, there are some important differences. Starting from the origin of
evidence, in the researcher led process of elicitation, a researcher typically
defines the aims and scope of data collection based on their research interests
(Yin 2009). Depending on the degree of open-endedness of data elicitation
protocols, researchers are predisposed to impose a particular framing which
serves as a filter during the process of data collection. On the other hand, with
documentary evidence, a researcher has no control over the data generation
process. Instead, the process through which evidence is generated, shared and
put to use depends on the social and organisational arrangements against which
the generation of evidence unfolds (Bowen 2009). This indicates that the filter
which frames empirical evidence resides within the arrangements that give rise
to data, meaning that documentary evidence cannot be considered as unfiltered
and intrinsically true set of facts. Documents do not speak for themselves
(Silverman 2015), and to mitigate against biases, a researcher must be cognisant
of the social arrangements and processes through which the data that is used as
evidence was created.

As digital environments record digital traces and abound with documents, it is
often relatively easy to collect a large body of data. However, not all of them

110

carry equal importance in the light of research goals (Bauer & Gaskell 2000),
and when a body of evidence increases in size and detail, it becomes
increasingly challenging to find the proverbial needle in a haystack. To ensure
that a body of documentary evidence is representative but manageable, a
researcher must decide what to include and what to leave out of a research
database. The next sections describe the data collection process and choices
made during the data collection.

4.6.2 Construction of the research database

The research database consists primarily of the documents that have been
collected from public sources. The database includes ROS related documents,
blog entries, conference recordings, magazine and academic publications and
emails from the ROS community mailing lists and discussion threads from
online forums. These are complemented by the field notes from non-
participatory observation and four semiformal interviews. The process and
rationale of data collection are presented below, and the sources and
categorisation of documentary evidence are listed in Appendices A to H.

The construction of the research database started during the pilot study phase
before settling with ROS as a case study. Given the multidimensional and
multidisciplinary character of the field of robotics, establishing clear boundaries
between data collection and analysis proved challenging. Much of the pilot
study phase focused on becoming familiar with the typical activities and
language used in the field, as without an understanding of the language,
concepts and research challenges, it was difficult to make sense of any empirical
evidence. The pilot study phase involved attending robotics and artificial
intelligence conferences, visiting research laboratories, interviews and a week-
long summer school on field robotics with approximately 40 PhD students and
academics. The events attended are documented in Appendix H. Subsequently,
the resulting field notes and interviews were analysed, and the focus of research
was placed on ROS as it was considered to offer a representative overview of the
state of affairs as well as a rich body of empirical evidence.

A more detailed examination of ROS began by participating in a two-days ROS
workshop and programming and running a virtual robot turtle in a simulated

111

environment (O'Kane 2014). In addition, attending the ROS conference in 2015
and robot software specific workshops in the European Robotics Conferences
offered valuable insights into systems engineering and software development
practices. These insights were documented in the field notes, and while this
body of evidence was interesting and rich in detail, much of the evidence was
too scattered to provide a coherent picture of the state of affairs.

To obtain a structure, representative and transparent body of evidence to
increase reliability and generalisability, the focus of data collection and analysis
was shifted on the publicly available documents. ROS is a vibrant open-source
community, and there is a sizeable body of data publicly available. At the
beginning, the collection and analysis of documentary evidence revolved around
ROS as a technical artefact. However, the analysis soon revealed a rich historical
and organisational dimension, which came to expand the scope of data
collection. The early origins of ROS were traced back to the Stanford Artificial
Intelligence Robot (STAIR) and Personal Robotics (PR) projects at Stanford
University in 2005, and from there to Willow Garage where ROS was created
along the PR2 hardware platform and made freely available as open-source
software. Right from the beginning, ROS gained traction in the field. The
stewardship of ROS was transferred to the Open Source Robotics Foundation
(OSRF) in 2012 as Willow Garage ceased its active operations. Around that
time, the ROS-Industrial (ROS-I) consortium was also founded to take ROS into
industrial environments and the yearly ROSCon, a ROS developer conference,
series was started. As an open-source framework and community, ROS is far
from a monolith, sprawling developing branches to various directions, and
various other events and trails of evidence could have been followed further.

Much of data was gathered from the communication channels and archives of
the ROS community. The latest news, software releases, upcoming events and
other matters of importance were communicated through the community
channels and discussed in conferences and online forums. The documentary
evidence stored in the research database came to include blog posts, conference
recordings, emails and discussion threads as well as magazine and academic
publications. These sources of evidence were considered as informative and
well-consolidated sources, which could offer a representative view of the

112

organising logic of complex digital innovation. Table 2 summarises the contents
of the research database in terms of their sources, types and description, and
Appendix A provides a more detailed listing of data sources.

Source Document types Description
Stanford Artificial
Intelligence Robot
Project (STAIR) at
Stanford University

conference papers
(3), news articles
(2), website (1),
video recordings
(3), grant
application (1)

The STAIR project started at
Stanford in 2005 and the origins of
ROS can be found in the Switchyard
software.
The documentary evidence from the
period 2005 to 2009 includes
conference papers, web articles, the
project website, a grant application
and video recordings.

Personal Robotics
Programme (PR) at
Stanford University

conference papers
(1), website (1),
video recordings (4)

The PR project started at Stanford in
2005 to develop a hardware platform
for mobile manipulation purposes.
The documentary evidence contains
a conference paper, website and
video recordings.

Willow Garage
blog entries (407),
news articles (8),
website (1), video
recordings (5)

Willow Garage’s personal robotics
programme continued the work
started in the Switchyard and PR
projects by developing hardware
(PR2) and software platforms (ROS).
The documentary evidence covers
years 2007 to 2014 and includes blog
entries by Willow Garage, news
articles, website and video
recordings.

Robot Operating
System
(ROS)

blog entries (1053),
conferences papers
(3), website, ROS
wiki, news articles
(18), email archives
(2), ROS discussion
forums (2)

ROS is one of the main outcomes of
Willow Garage’s personal robotics
programme. It was moved to its own
domain at ros.org in 2009. The
documentary evidence covers years
2009 to 2017, including blog posts,
conference papers, different ROS
related websites, news articles,
emails and messages from discussion
forums.

Open Sources
Robotics
Foundation (OSRF)

blog entries (176)

As Willow Garage ceased its active
operations, the stewardship of ROS
was moved to OSRF. The
documentary evidence includes blog
entries and covers years 2012 to
2017.

Table 2: Summary of research database (continues next page)

113

Source Document types Description

ROS-Industrial
(ROS-I)

blog entries (154) ROS-Industrial consortia develop
and promotes ROS for industrial
purposes. The documentary evidence
includes blog entries and covers
years 2012 to 2017.

ROSCon developer
conferences

recorded
conference
presentations (122,
approximately 50
hours)

ROSCon is a yearly two-day
conference for ROS developers. The
documentary evidence in the form of
conference presentations covers
years 2012 to 2016, and includes a
variety of ROS, OSRF, ROS-I and
ROS2 related topics.

Robot Operating
System – 2nd
generation ROS
(ROS2)

messages on design
discussion (1155),
ROS 2 design
website (1)

The discussion concerning the
second-generation ROS started in
2012. The messages regarding the
future design requirements cover
years 2012 to 2017 and the outcomes
are document in the design website.

Observation and
field notes

field notes and
observation from
ROS and robotics
related events (12)

This section covers observations and
discussions from different events
that are documented in field notes.
Includes ROS training, workshops
and ROSCon participation among
others. See Appendix H.

Interviews semiformal and
open-ended
interviews (4)

Four semiformal interviews were
carried out with robotics researchers
on the general matters of robotics
research and robot system
development.

Table 2: Summary of research database

In the view of the saturation principle (Glaser & Strauss 1967), including
additional sources of evidence to the research database would have produced
only marginal benefits in the view of the research goals. Also, given the time and
resource limitations, it would not have been feasible to include them into the
analysis in any detailed manner. However, given the open-ended procedure of
data collection, occasionally data from other sources was opportunistically
incorporated into the research database when it was considered necessary and
feasible, this being the case in particular with academic and magazine
publications. This way, while the open-ended approach expanded the scope of
data collection and analysis, it also resulted in a richer set of data that provided

114

important insights and enabled the triangulation of empirical findings. Tracing
the contours of the history of ROS from 2005 onwards provided a
comprehensive picture of the aims, developments and outcomes under different
organisational auspices, contributing to the grounded understanding of the
organisational and technological factors that underlie the organising logic of
complex digital innovation.

As an administrative note, the research database was managed and analysed
using Atlas.ti, which is a software package that is designed to support qualitative
data analysis. It supports a variety of document formats, such as audio and
video recordings and pdf documents. It also provides fucntionality to keep track
of the progress and results of the analysis.

4.6.3 Evaluation of evidence

Data collection produced a sizeable amount of documentary evidence.
Considering that the documentary evidence had been created without the
researcher’s intervention and for the purposes other than this research (Bryman
2015), its reliability and validity will be examined in the light of authenticity,
credibility, representativeness and meaning (Scott 2014).

Authenticity refers to the authorship and provenance of documents to ensure
they do not originate from dubious and misleading sources, whereas credibility
refers to reliability and a degree to which documents are free from error and
distortion. Representativeness, in turn, concerns to what extent any particular
document is a typical representative of the phenomenon being investigated.
Finally, the meaning of documents deals with whether the evidence contained in
documents is clear and understandable to the researcher.

The documents collected int0 the research database are considered as authentic
and credible. They originate from an open-source community and academic
sources, and there is no apparent reason for the misattribution of the origin of a
document. Similarly, there is no apparent reason to assume that the documents
would not be credible. It is well possible that they may contain some errors but
considering the constant scrutiny from the wider open-source community,
reliability is expected to be relatively high. Concerning the representativeness of

115

the documents, things are more diffuse. While the body of documentary
evidence can be viewed to represent well the case in general, individual
documents on their own cannot be viewed as fully representative. The reason
for this is that each document presents a particular piece of information
providing a narrow and focused view onto some specific matter or event at a
given point in time. As a final point, efforts were made to obtain a sufficient
understanding of the state of affairs for ensuring the meaningfulness of
documentary evidence.

The representativeness of documents can be reflected further in the view of
their original purpose by asking questions such as why a document was created,
whom it is targeted for or who authored it (Bowen 2009). Starting from the blog
entries, they were collected from the Willow Garage, ROS, ROS-Industrial and
OSRF websites. The entries were mostly created to communicate technical
updates, latest news and organisational events to the members of the
community, thereby providing a one-way communication channel. While each
of the blog entries provides a piecemeal, selective and incomplete picture of the
overall state of affairs, together they form a body of evidence based on which a
representative picture of the overall course and timeline of events can be
constructed.

In addition, the ROSCon conference presentations offer in-depth insights into
topics that are relevant to the community. The presentations cover a variety of
topics, such as the basics of ROS, key components and functionalities as well as
their applications in different domains, contexts and task-specific use cases. In
addition, the presentations are screened, peer-reviewed and selected by the
organising committee and presented in front of a critical audience. The
acceptance rate is around 30%. Therefore, the conference presentations are seen
to offer a reliable and representative picture of the topics that are pertinent to
the community. On the grounds of reliability and representativeness, they were
given a prominent role in the data analysis and reporting of the results.

Given the amount of evidence and limited resources to analyse it, not all
documents in the research database were given an equal priority. Instead,
different types of documents were used to serve different research objectives.

116

The case description was constructed primarily from blog entries and journal
and magazine publications, whereas the principal and the operative research
questions were approached for the most part through the ROSCon
presentations. Other material in the research database, the field notes, academic
and magazine publications and other documentation, provided supporting
evidence for triangulation and detailed queries throughout the research project.
Detailed keyword-based queries were carried out when further clarifications
were needed in some particular matters.

The simultaneous use of different types of documentary evidence from several
sources established a well-rounded and triangulated view providing a solid and
reliable foundation for the empirical and conceptual findings. The process and
phases of data analysis are described next in more detail.

4.7 Data analysis

The process of thematic data analysis proceeded iteratively and in parallel with
data collection to retain interpretative flexibility and ability to adjust to
unforeseen avenues of research (Eisenhardt 1989b; Yin 2009; Walsham 1995).
As per the process of thematic analysis outlined in Section 2 (4.2) (Bryman
2015), five different phases followed and overlapped each other as the project
gradually unfolded from the familiarisation with topic and evidence towards
empirical and conceptual findings. These phases are summarised in Table 3.

Phase Description
Familiarisation Learning the field and language.
Open coding Label data into a list of embedded units of analysis as

per the operative research questions.
Categorisation Analyse embedded units of analysis and arrange them

into categories as per recurring themes.
Thematisation Analyse and abstract categories into themes.
Conceptualisation Develop and conceptualise the links and connections

between different themes.

Table 3: The five phases of thematic analysis after Bryman (2015)

117

The first phase focused on getting familiar with ROS and learning the language
and central concepts used in the ROS community and in the field of robots and
autonomous systems in general. This was followed by the second phase that
entailed the first round of close reading and open coding of the documentary
evidence. The first two phases provided an overall picture and understanding of
ROS and related organisational arrangements and innovation dynamics. The
main outcome of these two phases of analysis is the case description which is
presented in Chapter 5.

Subsequently, the third phase rearranged and categorised the highly descriptive
codes developed in the first round of open coding into more abstract higher-
level categories in the view of subsystems, combinations and their
characteristics. These categories were then further described and examined to
elucidate their salient characteristics. In the fourth phase, these high-level
categories were grouped into corresponding high-level themes. Finally, in the
fifth phase, the relationships among different themes were further elaborated
and incorporated into conceptual models that describe structural and functional
characteristics of robot systems and shed light on the organising logic of
complex digital innovation. The outcomes of these two phases are presented in
Chapter 6.

The sections below describe the process of data analysis in more detail. The
process and motivation to construct the case description are briefly described,
before presenting the process of thematic analysis in more detail.

4.7.1 Case description

The first two phases of the analysis, the familiarisation with the topic and the
first round of coding, produced the case description and provided the
groundwork for further analysis. The case description provides an overview of
ROS, its origins and evolution under different organisational settings. To date,
while ROS is well-known among roboticists, it has escaped the attention of
digital innovation, management and organisation researchers. Although there
are papers and magazine articles written about ROS, they are often written from
a technological point of view of software engineering (Quigley et al. 2009) or
focus on the legacy of Willow Garage (e.g. Cousins 2014). Therefore, the

118

purpose of the case description presented here is to provide a broader view on
the organisational and socio-technical aspects of ROS. To this end, ROS is
presented as a communication system, open-source community and software
development framework while also documenting its origins, evolution and
expansion over time.

The case description proceeds in a chronological order and reflects the
unfolding of the most central organisational events. The description was
constructed by analysing and weaving together evidence from multiple sources,
such as different websites, blog posts, conference presentations and journal and
magazine articles, each of them providing a small piece of evidence that reflects
some state of affairs or event at a given point in time. As some of the events are
overlapping, the chronological order is occasionally sidestepped in order to keep
the narrative coherent.

The starting point of the history of ROS is set here in 2005. There are two
prominent options when deciding on what counts as an appropriate starting
point. The options are the PR and STAIR projects at Stanford University in
2005 and the release of the first version of ROS by Willow Garage in January
2010. The starting point was set in 2005 because some of the foundational
design decisions regarding the underlying ROS architecture originate from the
research projects at Stanford. Since 2005, ROS as an open-source software
development framework and community has undergone phases of development
and expanded under the auspices of different organisations. Summarising the
ten years of efforts from numerous organisations and thousands of contributors
necessarily leaves out many rich details and phenomena that would warrant
further research. However, an attempt has been made to capture and present
the most salient and central organisational events and arrangements with a
sufficient level of detail.

Therefore, the case description is expected to provide a reader with an overall
view of the wider context, the case and the backdrop against which the thematic
analysis can be reflected upon. The case description is presented in Chapter 5.

119

4.7.2 Thematic analysis

The phases three, four and five of thematic analysis, that is, categorisation,
thematisation and elaboration respectively, produced the findings that are
reported as main outcomes of this work in Chapter 6.

The first two phases, familiarisation and first round of coding, produced the
ground-work for the subsequent phases of analysis. The close reading and open
coding were carried out using the operative research questions as sensitising
devices in order to identify the instances of subsystems and combinations that
would serve as embedded units of analysis. This resulted as hundreds of
individual units of analysis, each of them representing some particular
subsystem or combination. As the process of open coding was not very selective,
the codes labelled a variety of subsystems, components, parts, combinations and
related characteristics and other phenomena. They were close to data, highly
descriptive and occasionally, although very interesting, not very relevant in the
view of the overall objectives of this research. However, the open coding
provided the necessary raw material and insights for further analysis.

Subsequently, as per the process of thematic analysis, categorisation began. To
rearrange the initial codes into appropriate categories, the focus was placed on
the salient characteristics of subsystems and combinations with an aim to
identify recurrent patterns, similarities and differences among the embedded
units of analysis. While the initial listing was comprehensive, it was not very
tractable. The list was long and relationships among embedded different units
of analysis unclear; it seemed that each of the units rendered a set of patterns
that would have warranted various alternative categorisations. This was made
more difficult by the fact it was sometimes challenging to separate an instance
of a subsystem from an instance of a combination as they often represent the
two sides of the same coin, especially when the purpose of a subsystem is to
facilitate combination.

Initially, the boundary objects that are usually discussed in the context of digital
innovation, such as standardised application programming interfaces, systems
development toolkits, boundary resources (Eaton et al. 2015) or platforms in
their different guises (de Reuver et al. 2017), were searched for. However, the

120

ROS framework proved highly heterogeneous, defying straightforward
categorisation along the lines of usual boundary objects. Several alternative
conceptual lenses were tried in the spirit of interrogative inquiry, yet none of
them seemed to describe what was being observed.

Subsequently, a more grounded and data-driven approach was adopted. Instead
of looking for specific organisational characteristics and combinatorial
relationships in and among the listed objects and artefacts, the focus was placed
on examining the purposes they serve and functionalities they produce. This
was done by keeping an eye on Arthur’s (2009) general conceptualisation of
technologies as purposed systems that harness some effect or phenomenon, a
conceptual basic principle. This provided a more fruitful avenue for categorising
efforts, although it required the researcher to get familiar with a broad range of
technologies with sufficient level of scientific, logical and engineering details.
This was a convoluted and iterative process that overlapped with data collection,
involving a non-trivial amount of exploration, additional clarifications and
boundary-making to ensure that findings were reliable and relevant in the view
of research objectives and current literature on digital innovation. In the end,
the resulting functionally-oriented categorisation scheme reduced the number
of categories to 15 and provided an adequate foundation for thematisation.

Even if the instances of subsystems and combinations served well as initial
sensitising devices, their role changed over the course of research. As the
iterative process gave rise to new conceptual categories, those new categories
came to assume the role of the unit of analysis. At the same time, the initially
listed subsystems, objects and artefacts of different sorts turned into
representative instances of those categories. In a way, the initial embedded
units of analysis were turned into units of explanation as they came to provide
the facts and evidence to justify the proposed categorisation.

The fourth phase, thematisation, proved more straightforward. The 15
categories were abstracted further and recast as six abstract themes that
represent domains of technologies that carry out different functionalities, have
particular characteristics of combination and to an extent reside at different
technological and architectural levels.

121

Then, the fifth phase, conceptualisation, examined relationships among
different themes and categories and conceptualised them into models that
characterise the structuring of complex digital innovation. Conceptualisation
produced two outcomes. First, it produced a model that provides a structural-
functional conceptualisation of complex digital innovation, which, in turn, was
used as a lens to analyse data so that the primary research question could be
approached and answered. This process produced a model that conceptualises a
mode of systems development in the view of complex digital innovation.

The process of thematic analysis unfolded as an iterative and interrogative
process (Hintikka 1999); it gradually proceeded towards the answering of the
principal research question, relying on the initial operative research questions
while continuously evolving working hypotheses until a satisfactory answer had
been reached. This way, codes, categories, themes and conceptualisations
emerged from data, albeit in a partially theory-driven way that constantly
deliberated tentative findings in the light of current literature and theoretical
framing presented in Chapters 2 and 3. The reporting of the findings is
described in the next section.

4.7.3 Reporting of themes and categories

The purpose of describing the research design and methods is typically to
provide a reader with a detailed exposition on how research findings were
arrived at. However, it is not always feasible or practical to expose a full set of
details, paths tried and discarded during the analytical process, especially when
the process has been highly iterative and cyclical. Yet, even if the process of
analysis could not be exposed in a detailed manner, a comprehensive
presentation of research outcomes and supporting evidence can be provided to
demonstrate and justify the resulting empirical and conceptual findings. With
reference to Simon (1996, p.132), “[s]olving a problem simply means
representing it so as to make the solution transparent.”

Considering the iterative and exploratory character of this research, it is not
feasible to expose the full details on how the categories and themes were arrived
at beyond the general description of the main phases of the process. Therefore,
efforts have been made to present the research outcomes along with the

122

supporting evidence so that the proposed answers to the research questions are
transparent and empirical and conceptual findings are replicable and refutable.

The process of thematic analysis produced six themes and 15 categories. These
themes were labelled as (1) robot systems, (2) physical embodiments, (3)
communication systems, (4) transformation systems and (5) visualisation and
testing systems, and (6) the ROS community and software development, and
they are presented later in this order so as to construct a coherent narrative that
gradually unfolds and explains a variety of subsystems and their relationships.
These themes and findings provide the foundation for the conceptual
development.

To link categories and themes explicitly back to evidence (Yin 2009), the
ROSCon presentations were revisited in the light of the established themes and
categories. Each presentation was re-examined and the subsystem that formed a
focal point of the presentation was identified, according to which the
presentation was then assigned to the theme it was considered to be a
representative of. The results of this process are documented in Appendices B to
G. Each of the appendices lists the presentations that belong to that particular
theme. The listing includes an identification code, year, presentation title,
duration and a subsystem that forms the focal point of a presentation and
respective categorisation. When the themes and categories are presented and
discussed in Chapter 6, the ROSCon presentations are cited as sources of
evidence in the format (Appendix: Code).

Moreover, efforts have been made to expose data so as to provide a reader with
clear illustration of the themes and categories discussed in particular sections.
Links to additional sources of evidence are also provided in footnotes when
necessary. The purpose of this is to make evidence and reasoning as accessible
and transparent as possible to increase the validity of findings.

Table 4 summarises the distribution of themes over the ROSCon presentations.
For each cell, the first number indicates the number of presentations by the year
and theme. The second number inside the brackets sums duration in minutes.
The rows are ordered by the total length in minutes devoted to each theme.

123

Measured this way, of the six themes, the theme of communication systems has
gathered the largest share of attention. This is not surprising since the
communication system forms a central part of the functionality of ROS. The
theme of the ROS community and software development came second, whereas
the theme of robot systems holds the third place. The fourth place goes to the
theme of transformation systems, and the theme of visualisation and testing
systems are on the fifth place.

Theme/Year 2012 2013 2014 2015 2016 Total
Communication
system (B)

7 (231
mins.)

9
(142)

4
(109)

4
(123)

6
(142)

30
(747)

ROS community
and software
development (C)

5
(74)

8
(164)

4
(64)

7
(153)

6
 (131)

30
(586)

Robot systems (D) 4
(118)

4
(76)

6
(165)

4
(115)

3
(79)

21
(553)

Transformation
systems (E)

4
(170)

5
(129)

3
(117)

4
(101)

1
(19)

17
(536)

Visualisation and
testing systems (F)

1 (
46)

6
(120)

2
(51)

2
(32)

5
(123)

16
(372)

Physical
embodiments (G)

- (-) 2 (
24)

- (-) 2
(30)

4
(86)

8
(140)

Total 21
(639)

34
(655)

19
(506)

23
(553)

25
(580)

122
(2934)

Table 4: The distribution of themes across conference presentations

The last but not least is the theme of physical embodiments. In the end, while
very few presentations focus primarily on the embodiments, they are implicitly
present in nearly all presentations. Also, while the presentations were assigned
to different themes according to their primary focus, they frequently include
elements from different thematic categories as different themes are highly
interrelated. Occasionally an argument for an alternative assignment could have
been made.

These themes, categories and their relationships are presented in Chapter 6.
They are first summarised in Table 5 at the beginning of the chapter and then
described and discussed in more detail throughout the rest of chapter

124

4.8 Summary

This chapter described the design and methodology of this research to identify
and locate prominent subsystems and their characteristics of combination in
order to examine how the tensions between the specificity of designs and
distributedness of knowledge and control unfold in the ROS ecosystem. To that
end, this research was designed as an embedded case study that follows the
process of thematic analysis that is guided by theoretically-driven and tentative
a priori concepts.

At the beginning of the chapter, case study research was described and
discussed as an evolving inquiry, after which the method and process of
thematic analysis and the role and function of tentative a priori
conceptualisations in this research were described. Subsequently, the design of
this research was presented to establish the overall structure of the work. Then,
the process and rationale of case selection were described to draw boundaries
around the scope of research and potential knowledge claims. After that, the
construction of the research database along with the characteristics of
documentary evidence were described. Finally, the chapter closed by describing
the process of thematic analysis which produced the case description and the
themes and categories for conceptualising the unfolding of the tensions between
the integrality of designs and distributedness of knowledge and control.

125

5 Case description

This chapter introduces ROS and describes its history and salient characteristics
in order to provide a general overview of the case and the wider context it is
embedded in. As mentioned earlier, ROS stands for the Robot Operating System
(Quigley et al. 2009). ROS is a widely used software development framework in
the field of robotics and, as an open-source community, it brings together a
variety of robot software developers, users and contributors, from academia and
industry.

Over the last ten years, ROS has undergone a significant expansion and
transformed from a simple communication library to a widely adopted software
development framework and open-source ecosystem. To present ROS and its
development paths to date, this chapter, as described in the previous chapter,
arranges the collected documentary evidence into a narrative which outlines the
central events from organisational and technical viewpoints to illustrate the
stated objectives and (un)planned outcomes of ROS development. In other
words, it is a narrative that outlines how two university-based research projects
combined with an ambitious and well-financed vision initiated a chain of events
that turned out as a global open-source community.

This chapter unfolds as follows. The prominent characteristics of ROS are
presented first to provide an overview of ROS as a software development
framework that was created to support collaborative development of software
for robots and autonomous systems. After that, central organisational events are
presented. The ten years history of ROS is divided into three phases and
presented over three sections. The first phase centres on the Stanford Artificial
Intelligence Robot (STAIR) and Personal Robotics (PR) projects at Stanford
University between 2005 and 2009. The second phase covers years from 2007
to 2014 under the auspices of Willow Garage, a well-funded research-oriented
start-up, and how the technologies conceived in the STAIR and PR projects
were developed further and made publicly available as ROS and PR2. The third
phase begins in 2012 when the Open Source Robotics Foundation (OSRF) was
founded, ROS-Industrial consortia set up and the yearly ROS software
developer conference (ROSCon) launched, marking the wider uptake and

126

institutional support for ROS. After the presentation and discussion of the
central organisational events, the penultimate section focuses more on the
technical side of ROS and discusses the ongoing development of ROS2. After
that, the concluding section summarises the main points.

5.1 Three viewpoints on ROS

This section presents ROS from three different points of view to outline its basic
characteristics. Regardless of the name, ROS is not an operating system in the
traditional sense of the word. Whereas Linux, Windows and macOS which serve
as a centralised layer of abstraction, control and scheduling between the
computer hardware and applications that run on it (Tanenbaum & Bos 2014),
ROS is better understood as a communication system, open-source community
and software development framework.

To begin with the communication aspect, perhaps the best place to start
unpacking ROS is to appreciate that software architectures that control robot
systems are typically highly-distributed. To exemplify, Figure 6 illustrates the
distributed computational arrangement that was used in the “fetch-a-stapler”
demonstration created by the STAIR project (Quigley et al. 2007). Much of what
follows is related to this arrangement in a way or another. In the language of
ROS, this network of computations is known as the ROS graph, and it consists
of two kinds of elements, computational processes and their interconnections.
The graph conceptualises the software of a robot system as a set of distributed
computational processes, and the core functionality of ROS as a technological
artefact is to establish and manage the interconnections among computational
processes. In addition, it is worth to the note that the overall architecture of
other robot software development frameworks, such as Orocos (Bruyninckx
2001) and YARP (Metta et al. 2006), also similarly adhere to this type of
distributed scheme of computation.

As an open-source community, ROS brings together a broad range of roboticists
from academia and industry. In this community, users and contributors share
robotics-related knowledge and software with each other, and while ROS is to a
large extent a community effort, OSRF has a central role in the coordination and
facilitation of ROS development.

127

Figure 6: The computational graph used in the “fetch a stapler“ demonstration (Quigley et al. 2007)7

7 Reprinted from STAIR: Hardware and Software Architecture, by Morgan Quigley, Eric Berger and Andrew Y. Ng, AAAI 2007 Robotics Workshop,

with permission.

128

OSRF develops and maintains the core functionality, central components and
development tools of ROS and coordinates and manages the yearly releases,
which distribute a stable set of the core functionality and central components.
In addition, OSRF coordinates and supports collaboration within the ROS
community and develops links to wider industrial ecosystems. To make all this
possible, OSRF employs a core development team, maintains a build system and
communication channels to distribute software and related knowledge within
the community. The centralised build system provides the ROS community with
infrastructure and methods for centralised software distribution, whereas
different communication channels, such as the websites ros.org, wiki.ros.org
and answers.ros.org, discussion forums and mailing lists, facilitate knowledge
sharing and discussion on various ROS related matters. The combination of the
ROS communication system, software components, libraries and development
tools that are shared and created by the community renders ROS as a
framework that supports collaborative software development.

While OSRF develops the ROS communication system, selected core
functionalities and tools and methods for software developers to establish
interconnections between distributed computational processes, a variety of
software packages that produce different computational processes originate
from the members of community, such as universities, research institutions and
hardware vendors and other organisations. In the context of ROS, the concept of
a software package refers to a unit of code sharing, and it can contain either a
small and simple piece of software or large and complex functional module.
Although OSRF maintains the centralised software build infrastructure that
facilitates the distribution and reuse of software packages, this infrastructure,
however, is not used to host the package-specific source code. Instead, it
retrieves source code from different organisational code repositories if
organisations package their software in a ROS compatible manner and wish to
have it shared through the ROS infrastructure. This way, the organisations that
originate code can retain the control over it even if they are willing to share as
open-source. As a software development framework, ROS provides developers
with a collection of open-source software libraries, tools, infrastructure and
shared practices which are designed to support collaborative development of
organisationally and computationally distributed software development.

129

Therefore, ROS can be approached and analysed from different viewpoints.
First, it can be seen as a digital communications system which is used to develop
robot software as sets of interconnected computational processes. Second, it can
be seen as a community which brings together a variety of user and contributors
from academia and industry that share the interest in the development of robot
systems and related functionality. Third, it can be seen as a framework, as a
collection of software that facilitates the construction of systems which are
composed of a wide array of advanced computing technologies.

While each of these viewpoints offers a different picture, they point towards the
same object. They form an intricate web of technological and organisational
relationships, which intertwine at different technological and organisational
levels. In this light, ROS could be seen as a clan innovation network (Lyytinen et
al. 2015). In clan innovation networks, actors share an interest in a specific
product type and concept, have access to a common set of tools and have
complementary and overlapping knowledge while also sharing a common
vocabulary, yet they are not bound by any centralised and hierarchical control.
The next section presents the early origins of ROS and how it emerged from the
two research projects at Stanford University.

5.2 PR and Switchyard at Stanford

The early origins of ROS can be traced back to the Personal Robotics (PR) and
Stanford Artificial Intelligence Robot (STAIR) research projects at Stanford
University around 2005. The two projects focused on different areas of robotics
technologies but shared an overall goal of advancing mobile manipulation in
human environments, such as homes and offices. Whereas the PR project
sought to develop a safe and robust physical robot platform that could move
around and manipulate objects, the STAIR project aimed at bringing different
artificial intelligence technologies together in order to develop software that is
capable of carrying out tasks autonomously in human environments. Therefore,
the PR project focused primarily on physical embodiments and robustness while
the main interest of the STAIR project was in computable matters. Together
they represented the physical and digital aspects of the development of robots
and autonomous systems.

130

The PR project developed the PR1 prototype hardware platform for mobile
manipulation tasks (see Figure 7), and it is a predecessor of the PR2 platform,
which came to provide the first reference hardware platform for ROS. In 2005,
the hardware platforms capable of carrying out mobile manipulation tasks were
in short supply. As a response, the PR project set out to develop a platform that
would be capable of moving around and manipulating objects in human
environments in a safe and reliable manner (Wyrobek et al. 2008). The
objective was to provide software developers with a robust robot platform upon
which more sophisticated functionalities could be built. The development of a
robust hardware platform was seen as analogous to the development of
computer hardware. It would provide software developers with a stable
foundation to build on; software developers could leverage underlying hardware
capabilities and proceed with application development without needing to
worry about the underlying hardware or the associated low-level software that
controls and protects the hardware.

The PR1 hardware was designed together with the low-level control software.
The purpose of this was to create a layer of abstraction for separating the
hardware from higher-level operational commands. This abstraction would
make software development easier as developers could control the hardware
through the higher-level operational commands that would be converted to
specific actuations and movements by the lower-level control software. A
developer could simply command a mobile base to drive to a certain direction at
a certain speed without needing to know about the implementation details of
the wheels, such as their locations, geometry, steerability or drivability. In
addition to providing a layer of abstraction, the low-level control software would
also protect the robot hardware by preventing the execution of harmful
commands, the commands that would not conform to the physical properties of
the robot or were potentially caused by bugs or faulty computational models.

Overall, the introduction of a hardware platform with the associated low-level
control software was seen as a way to shift the focus of development from the
mechanical and electrical engineering to software engineering and application
development. Leveraging common hardware, useful applications could be
developed faster to serve a variety of use cases and market needs.

131

Figure 7: Personal robot PR1 prototype
(Wyrobek et al. 2008)8

Whereas the PR project focused on hardware and low-level control software, the
STAIR project focused on higher-level control software. The STAIR project set
out to develop computational models, to bring together and developed further
knowledge and technologies of different domains of artificial intelligence (Ng et
al. 2008; Ng & Khatib 2006). The plan was to integrate and implement different
artificial intelligence technologies into physical robot platforms for research and
teaching purposes, and thereby pave the way towards practical applications and
advancement of personal robotics. The project would provide a framework
within which different artificial intelligence technologies could be improved

8 Reprinted from 2008 IEEE International Conference on Robotics and Automation, Towards a
Personal Robotics Development Platform: Rationale and Design of an Intrinsically Safe
Personal Robot, by Keenan A. Wyrobek, Eric H. Berger, H.F. Machiel Van der Loos and J.
Kenneth Salisbury, copyright (2008) IEEE.

132

while also simultaneously bringing them together to compose more
sophisticated and capable models of autonomous behaviour.

The request “fetch a stapler” was used to demonstrate the need to combine
computational processes from different domains of artificial intelligence
(Quigley et al. 2007). To fulfil the request, a robot needs to be able to record a
spoken command, recognise the meaning of the command, navigate through
office rooms, corridors and doors in the search of a set of features that matches
the representation of a stapler, grasp it, lift it up and bring it back to the location
where the command was first voiced. This seemingly simple task demonstrates
the spectrum of technologies and capabilities that need to be mastered and
integrated in order to produce a complete behaviour; fetching a stapler requires
technologies and skills on areas such as voice recognition, message parsing,
image and object recognition, mapping, localisation, navigation, path, motion
and grasp planning in three-dimensional spaces over time. Given the associated
intricacies, each of these areas require deep and specialised knowledge on what
is being computed for and how to compute it, yet the production of behavioural
models requires an orderly integration of a wide array of advanced
computational technologies and specialist knowledge, something which is
scattered across a variety of research domains and organisations. Therefore,
from the technological and organisational point of view, fetching a stapler is a
formidable integration challenge.

The STAIR project used two different mobile manipulation platforms as
research hardware. They differed in terms of their frame, sensors, mobile base,
arms, grippers, size and geometry, and they underwent constant change
throughout the project as teams of students and researchers made changes to
the robot and computing hardware and software applications. The hardware
platforms are pictured in Figures 8 and 9.

This technological and organisational complexity posed several integration
challenges. What was needed was a flexible software development framework
that could handle both parallel and distributed computing and software
development as well as heterogeneous hardware, computing and software
environments (Quigley et al. 2007). The framework was expected to facilitate

133

distributed and parallel computing since for example motor commands and
longer-term planning functions tend to unfold in different time scales and may
run on different computers to ensure the instant availability of computing
capability. Also, the framework could not be tied to any particular computer
operating system as computing environments were heterogeneous. Similarly, it
could not be tied to any specific robot hardware or components as the project
had two different and constantly changing robot hardware platforms in use.
Finally, it was expected that that framework supports the separation and
combination of functional software components in order to allow multiple
teams to develop and test their code in parallel.

 Figure 8: The STAIR 1 robot Figure 9: The STAIR 2 robot
 (Quigley et al. 2007)9 (Quigley et al. 2007)9

After evaluating different design approaches (Quigley et al. 2007), the
communications framework and library called Switchyard was developed to
fulfil these requirements. Switchyard offered a method to connect various
software components so that a robot software could be run as a group of
interconnected computational processes, that is, as a virtual and distributed
cluster of processes that operates on top of some underlying group of networked

9 Reprinted from STAIR: Hardware and Software Architecture, by Morgan Quigley, Eric Berger
and Andrew Y. Ng, AAAI 2007 Robotics Workshop, with permission.

134

computers. Figure 6 illustrates this concept by showing the computational
graph that was used in the “fetch a stapler“ demonstration. The nodes in the
graph represent individual computational processes whereas the arrows
represent the interconnections between the processes. The large texts show the
functional tasks, such as spoken dialogue, navigation, planning, visual object
recognition and grasping, performed by different regions (Quigley et al. 2007).

This distributed, loosely-coupled and flexible software architecture appeared to
provide a solution to the technical and organisational challenges faced in the
distributed development of distributed systems. The lessons learned from
Switchyard were taken on board at Willow Garage as the company embarked on
its personal robotics programme.

Willow Garage’s personal robotics programme picked up the work started at
Stanford in the PR and STAIR projects and set out to develop PR2, a robot
hardware platform for research purposes, and ROS, the accompanying software
development framework. This endeavour is discussed in the next section.

5.3 PR2 and ROS at Willow Garage

Willow Garage was founded in autumn 2006 in Menlo Park, California. It
started out as a well-funded private research laboratory that focused on creating
the next generation of robotic devices. The company stated it had resources to
maintain a research lab of 60 people indefinitely (Cousins 2014), emphasising
its willingness to risk-taking and experimentation in order to pursue cross-
disciplinary innovation without committing to any specific timeline. At the
beginning, the company pursued three different domains of robotics, namely,
autonomous cars, boats and personal robotics, before directing its efforts to
personal robotics.

In October 2007, the company announced its plans on personal robotics. The
mission was to develop a new personal robotics platform that could serve people
in human environments without a risk of causing serious injury. The endeavour
was a continuation to the work initiated at Stanford, and the initial target was
set to build ten robots for research purposes in a year’s time. To this end, the

135

company hired the graduate students from the PR project to lead the effort and
started the development of PR2 (see Figure 10), an advanced version of PR1.

The development of ROS began at the same time in order to provide a software
framework upon which advanced higher-level application software could be
developed. In order to support distributed software development and
computation, the design principles of ROS adhered to those of Switchyard. The
development of ROS progressed in close collaboration with the STAIR project,
and the company supported the STAIR project financially as well.

Figure 10: The PR2 robot10

10 Republished from the press room of Willow Garage at willowgarage.com. Copyright (2008-

2015) Willow Garage.

136

The company presented its vision of robotics platforms in various conferences
and venues. The vision was demonstrated with a reference to the computer and
smartphone industries where systems architectures are often characterised as
layered stacks, hardware sitting on the bottom, an operating system on the top
of the hardware and applications then on the top of the operating system, and
these layers interact with each other through well-specified interfaces. Against
this backdrop, PR2 was presented as a foundational hardware layer with open
interfaces and standards, whereas ROS was pictured as a layer sitting on the top
of the robot hardware, as presented in Figure 11 from the Willow Garage’s
presentation in the International Robot Exhibition (IREX) in 2009.

Figure 11: PR2, ROS and applications as a layered stack11

ROS was seen as a Linux-like environment for open-source robot software
development. The company also encouraged other companies to build hardware
platforms and join the ROS community. The project was occasionally envisaged

11 Republished from Willow Garage’s presentation in the International Robot Exhibition (IREX)
in 2009. Copyright (2009) Willow Garage.

137

as a path towards robot-specific application stores where new functionalities for
robots could be sold and bought.

To track the progress, the company divided the personal robotics programme
into four milestones, the final one of them marking the customer delivery of ten
operational PR2 robots with documented software. The first milestone of 3.14
km of uninterrupted indoor navigation in two days was achieved in December
2008. This tested hardware, electronics and software and demonstrated the
level of integration and robustness across different layers, ranging from the low-
level hardware control upwards to the higher-level software that performs
mapping and navigation in two-dimensional spaces. The second milestone was
reached in June 2009. This time the criteria included 42 km of indoor
navigation and demonstrated PR2’s capabilities in mobility and three-
dimensional manipulation. The robot was required to open doors and go
through the doorways and plug itself into electric sockets. The third milestone
was achieved in January 2010. It focused on the stability and documentation of
software to make the robot and its software usable and accessible to the
researchers and developers outside Willow Garage. This way, PR2 came to
provide a well-document reference implementation of ROS and its various
components and their interactions.

During the period leading up to the third milestone, the ROS documentation
was moved from the Willow Garage website into its own domain at ros.org in
August 2009. The site consolidated knowledge and community efforts.
Technical details and instructions were documented in the wiki, and a web blog
was set up to communicate ongoing affairs along the mailing lists. This move
was seen as strategically significant. It established ROS as a community effort
that was not limited to the purposes and boundaries of Willow Garage
regardless of the company's influential role in the introduction and
development of ROS. While ROS was developed with reference to the PR2
hardware and to support distributed computation for mobile manipulation, it
started attracting attention from the wider robotics community right from the
beginning. The flexible and distributed architecture made it applicable to a
variety of use cases. Also, as the source code of ROS was made publicly available
and distributed under a permissive open-source license (BSD), it remained

138

freely modifiable and applicable for research and commercial purposes. At the
time of the introduction of ros.org, eight open repositories containing ROS
compatible code had already been created by entities external to Willow Garage.
ROS was being extended and experimented on a variety of hardware platforms.
The conference paper ROS: an open-source Robot Operating System (Quigley
et al. 2009) was presented at the International Conference on Robotics and
Automation (ICRA) in May 2009, and it is the seminal academic paper that
presents the design principles of ROS.

With the initial one-year schedule stretched to nearly three years, the company
announced the completion of the third milestone and the release of ROS 1.0, the
first official version of ROS, in January 2010. At the same time, the company
also announced a call for proposals to participate in the Beta Program. The
proposals were expected to demonstrate ambitious and innovative research
using PR2 as a research platform. Ten proposals would be awarded the PR2
platform worth of $400 000 for a two-year period free of charge including
maintenance, technical support and travel support. Out of the 78 proposals
received from universities and research laboratories, eleven were successful
(Cousins 2010). In return, the Beta Program participants were required to
release the software developed on PR2s to the wider community as open-source.

The eleven PR2s were ceremonially awarded to their recipients in the
Graduation Party in front of the press and 300 guests in May 2010. The Willow
Garage founder Scott Hassan presented his vision of service robotics as a new
industrial revolution and emphasised the company’s commitment to the next
generation of robotics platforms and open source software. With platforms,
robotics was envisaged to turn from a hardware problem to a software problem
by facilitating modular, gradual and cumulative innovation and collaboration
among researchers, developers and industry. Although the PR2 hardware
platform was the most tangible and visible result of the development and
engineering efforts, the representatives of Willow Garage were also very excited
about the rapid uptake of ROS and the growth of the ROS community.

The final project milestone was achieved in June 2010 after all eleven PR2s had
been shipped out to their recipients. Over time, PR2 proved to be a powerful

139

research platform and, in total, approximately 50 PR2s were delivered for
research purposes. However, given the relatively high price, there was not much
demand outside well-funded research laboratories and organisations.

In organisational terms, the personal robotics programme was a highly
collaborative endeavour. Along the multidisciplinary group of Willow Garage
researchers and engineers (60 at peak, 100 over time), the company hosted a
number of visiting scholars and run an extensive internship programme. More
than 100 interns and visiting scholars from high-profile robotics research
laboratories worked from two to nine months at Willow Garage (Cousins 2014).
They brought in the knowledge and technologies from their home institutions
and contributed to the development of PR2 and ROS. This way, while the
company contributed much to the open-source software development and
community building, it also gained much by making use of various software
components, development tools and algorithms that were first developed and
made available elsewhere. In turn, when the visiting scholars and interns
returned to their home institutions, they spread their knowledge on ROS
expanding the community around ROS. The characteristics of ROS that
facilitated distributed development were put to use on a global scale and across
different domains of robotics.

Throughout the personal robotics programme, the company frequently released
new and updated ROS distributions as it developed the core functionality,
development tools and infrastructural capabilities. These were documented in
the wiki.ros.org site and communicated to the wider community through the
ros.org website, blog posts and video updates.

In 2011, after succeeding in the initial goal of developing a research platform
capable of mobile manipulation, the company entered a new phase and turned
its attention to the commercial application of its technologies and experiences.
Although PR2 was successful as a research platform, its capabilities and
robustness had not reached the level required to carry out a variety of tasks in
open-ended and unstructured home and office environments. Consequently,
different options were evaluated as business opportunities were searched for,
and efforts were directed into more constrained and repetitive application and

140

task domains which could be fulfilled with special-purpose robots and
applications. This search for opportunities did not result in a single preferred
outcome. Instead, it produced a stream of spinouts as the founder and
employees embarked on a variety of ventures. Redwood Robotics started
developing cheaper robotic arms and was acquired by Google. Industrial
Perception set to work on perception pipelines for three-dimensional vision and
was acquired by Google as well. HiDoF embarked on ROS consulting and was
also acquired by Google. Suitable Technologies proceeded to cater telepresence
markets with telepresence robots. Unbounded Robotics (relaunched later as
Fetch robotics) focused on warehouse logistics developing mobile manipulators
and freight-carrying robots, whereas Savioke set out to cater to hoteliers by
focusing on hotel room deliveries. The visions of general-purpose robotics
platforms had been scaled down to purpose-specific applications.

The spin-offs were not limited to hardware and applications. A series of open-
source software projects were also spun off. OpenCV, an open-source computer
vision library, initially developed at Intel and later modernised and extended
under the auspices of Willow Garage, was moved to the OpenCV Foundation.
The Open Perception Foundation was founded to provide a home for Point
Cloud Library (PCL), an open-source perception library for depth images,
whereas the software for controlling robot bases and arms were consolidated
into the MoveIt! motion planning platform. ROS itself found a new home at the
Open Source Robotics Foundation (OSRF). The legacy of Willow Garage also
lives in the TurtleBot hardware (Gerkey & Conley 2011), which is a cheap mobile
base for educational purposes. It is now in its third edition and also serves as a
reference implementation of ROS.

After a series of spin-offs, Willow Garage ceased its active operations in January
2014. In retrospect, Willow Garage’s ambitions to speed up the development of
the robotics industry can be seen either as a failure or a success story. Willow
Garage did not succeed in introducing a general PC like hardware platform.
That remained out of reach. However, the company further developed and
established a software development framework and open-source community
that appears to address some of the central technical and organisational
integration challenges in a manner that the wider community sees beneficial.

141

ROS can be viewed as one of the most important and impactful legacies of
Willow Garage in the field of robotics. The wider uptake of ROS and the changes
in ROS stewardship are discussed next.

5.4 The wider uptake of ROS

The ROS community has expanded gradually over the years as ROS has made
its way into a variety of research laboratories, robots and use cases. The wider
uptake of ROS and Willow Garage’s strategic decisions initiated the transfer of
ROS stewardship. In 2012, the Open Source Robotics Foundation (OSRF), a
non-profit, was established with a mission “to support the development,
distribution, and adoption of open source software for use in robotics
research, education, and product development”. Around the same time, ROS-
Industrial (ROS-I) was started in order to bring ROS and the skills and
capabilities of the ROS community into manufacturing environments. The first
ROSCon, a ROS developer conference, saw daylight also in 2012. These
developments are described and discussed below before presenting ROS in
numbers.

While ROS was growing in popularity, much of development and coordination
remained in the hands of Willow Garage. Although Willow Garage’s effort was
of central importance in the development of ROS and the surrounding
community, its central role and perceived control of source code made other
companies and organisations wary of investing and contributing to ROS
development. Therefore, Willow Garage started seeking an opportunity and
funding to establish ROS as a self-standing entity outside Willow Garage.

The Defense Advanced Research Projects Agency’s (DARPA) Robotics Challenge
(DRC) offered a fitting opportunity. Subsequently, OSRF was founded in 2012,
and it received a two and half year’s contract from DARPA to provide a
simulation environment for the Robotics Challenge. The first round of the
challenge was run in a simulated environment before the field trials and finals,
which were carried out with actual robots in a physical environment. This way
the first commission of the foundation did not focus on ROS as such but on the
simulation using Gazebo, a robot simulator.

142

With the newly established foundation, the gradual move of ROS and Gazebo to
OSRF began. A team of simulation developers moved to OSRF where they
further developed Gazebo and made it accessible as a cloud-based service. This
way, at the beginning, OSRF worked on simulation software while the
coordination and release management of ROS remained in the hands of Willow
Garage. However, as Willow Garage was about to cease its active operations,
OSRF was set to take up the responsibility of ROS as well. To this end, OSRF
secured funding through National Robotics Initiative (by the National
Aeronautics and Space Administration (NASA)), which allowed the foundation
to employ ROS developers from Stanford University and Willow Garage among
others. With the funding and team in place, the stewardship of ROS and the
surrounding technical infrastructure, as well as the open-source community,
was transferred to OSRF in 2013.

Although much of the early funding originated from the government contracts
and agencies such as DARPA, NASA and the National Science Foundation, the
wider uptake of ROS in commercial domains has generated increased funding
from for-profit companies. Considering that a non-profit cannot derive a
majority of its funding from the for-profit companies according to the financial
regulations that govern OSRF, a for-profit subsidiary, the Open Source Robotics
Corporation (OSRC), was established in 2016 to manage the commercial
funding. To date, the commercial funders include companies such as Google,
ARM, Qualcomm, Intel, Canonical, Bosch, Toyota and Mathworks as well as a
variety of other companies which make robot hardware platforms, sensors and
actuators. At the time of writing, OSRF/OSRC employs some 25 people.

The first steps towards ROS-Industrial (ROS-I) were also taken in 2012. It
began as a partnership among Yaskawa Motoman Robotics, Southwest
Research Institute and Willow Garage. The mission of ROS-I was to bring the
skills and capabilities available in the wider ROS community to the domain of
industrial manufacturing. The industrial robotics was seen as a stagnant domain
where hardware had reached a higher level of sophistication than software. The
industrial grade hardware and lower-level control software were robust and
reliable, but the use of proprietary software architectures hindered the reuse of
software and replication of research results. Moreover, the aim was to move the

143

industrial robotics from the era of pre-programmed motion trajectories to the
perception based and dynamic motion trajectories. This provided the ROS-I
community with a starting point. In the beginning, the people behind the
initiative developed hardware drivers and ROS integrations for different robot
arms to be able to control them through ROS-based software. Gradually, focus
moved from basic integrations to the development of higher-level capabilities,
such as perception and motion planning functionalities and calibration tools, as
they were seen relevant from the perspective of industrial robotics.

Since the early days, ROS-I has grown in size and global coverage. The ROS-I
Americas consortium was established in 2013 by the Southwest Research
Institute. This was followed by the consortium in Europe in 2014 by Fraunhofer
IPA in Stuttgart, Germany, and in the Asia-Pacific in 2016 by the Advanced
Remanufacturing and Technology Center in Singapore. The global consortia
bring together a variety of research institutes as well as prominent
manufacturers and users of industrial robotics, which facilitates the pooling of
knowledge, needs and financial resources to address problems that are
pertinent in the field of industrial robotics. Currently, the consortia have some
60 members, including companies such as Caterpillar, John Deere and 3M. The
ability to distribute the costs and efforts of software development and
maintenance makes advanced industrial robotics more accessible for a wider
group of organisations. Also, along with the development and maintenance of
domain-specific software, the consortia organise conferences, training and
tutorials while collaborating with OSRF.

Furthermore, there are also other industry and domain-specific initiatives, for
example around agriculture and defence applications. Also, several academic
research programmes build on ROS. Moreover, ROS has made its way to some
commercial products, such as Baxter, a collaborative manufacturing robot, from
Rethink Robotics and the warehouse logistics robots from Fetch Robotics
among others.

The year 2012 also marked the starting point of the yearly ROS developer
conference ROSCon. ROSCon brings together ROS users and developers from
academia and industry. To date, they have been held as two-day weekend events

144

in conjunction with some larger robotics and automation related conferences.
Whereas the focus of the main conference primarily lies on the research of
particular algorithms and computational methods for the purposes of robotics,
the focus of ROSCon revolves around software integration and engineering. In
other words, instead of individual algorithms, focus is on how to bring and join
a variety of algorithms together to build functioning robots. The ROSCon
attendance figures have increased over time. Whereas the first ROSCon brought
together some 200 attendants, the 2016 conference in Seoul had 450
attendants. The conference is typically run around a single track and consists of
both short and long presentations. The presentations cover topics from the
fundamentals of ROS, key components and software libraries to their
application in different domains, contexts and task-specific use cases.
Application areas range from warehouse and humanoid robots, cars and drones
to perception pipelines and navigation, to provide a few examples. The
acceptance rate of presentations is around 30%. Also, to make conferences
available to those who are not able to join at the location, the presentations are
streamed live, and recordings are made available online after the conference. In
addition, smaller local and regional ROS workshops are also organised as
community effort.

The ROS wiki and ROS community metrics12 report offer quantitative
information on the diffusion of ROS. In terms of robot hardware, approximately
100 different ROS compatible actuators and hardware platforms are listed in
the ROS wiki. In addition, slightly over 100 different sensors have been made
compatible with ROS, ranging from range-finders and 3D sensors to cameras,
motion capture, pose estimation and force sensors to give a few examples. In
terms of software, the number of software packages exceeds two thousand,
some of which are large and of central importance whereas others are of lesser
importance or cater to small niche use cases. The ROS codebase contains
contributions from some 2000 developers.

In July 2016, 113 000 unique users downloaded ROS packages from the servers
hosted by OSRF. However, the real numbers might be higher as the number of
downloads does not include downloads from the eleven mirrored ROS

12 wiki.ros.org/Metrics – ROS Community Metrics Reports

145

repositories, of which three are in Europe, three in America and five in Asia. In
the same period, the ROS wiki, which contains some 17 000 pages, had
approximately a million unique page views. answers.ros.org, a discussion forum
for technical problems, had around 334 000 page views and slightly less than 15
000 registered users. Similarly to software downloads, the numbers do not
include traffic from the mirrored sites. While these numbers are not definitive
given the permissive open-source licensing and distributed hosting, they
indicate the magnitude of adoption and diffusion. In academic circles, the
seminal ROS paper has been cited about 3600 times, which is a relatively high
number in comparison to other papers that deal with the robot software
development.

With reference to the numbers presented above, it can be concluded that the
diffusion of ROS is not of the same magnitude than the Linux operating system
or smartphone applications in Apple’s App Store or Google Play Store. For
them, downloads are counted in billions and the number of developers in
millions. However, in the field of robots and autonomous systems, ROS plays a
significant role bringing together a vibrant community of roboticists from
academia and industry.

5.5 From ROS 1 to ROS 2

Regardless of the wide uptake, ROS is not without shortcomings. It is often said
that ROS is good for prototyping and building proofs of concepts, yet the
production of a final product could not rely on ROS when reliability and
performance requirements are high. To address shortcomings, the next-
generation ROS is being developed.

Some of the shortcomings can be derived back to the architectural
characteristics of the ROS communication system and initial design
assumptions. The approach for establishing and coordinating connections
between computational processes contains a single point of failure, meaning
that a failure in one particular process can render a whole robot system
unmanageable. Also, the communication system cannot guarantee the service
levels and verifiability required in mission-critical hard real-time applications.
Moreover, the security of interprocess communication was not part of the initial

146

design requirements. In addition, as ROS was developed with reference to the
PR2 hardware, some hardware-specific assumptions are embedded in the
software architecture, such as the focus on single robots, the reliability of
network connectivity and the availability of computational resources. However,
many robotics applications run on smaller processors, operate over unreliable
network connections or span over multiple robot systems.

Although the community has developed inventive workarounds to address many
of the shortcomings for example by developing real-time capabilities and
enhancing service levels, adding redundancy to avoid single points of failure and
added layers for security, the development of the next generation of ROS was
seen necessary to rectify the issues that derive from the underlying design
decisions and implementations.

The discussion on the next generation ROS started gathering pace in 2012 and
OSRF announced in 2013 its plan to reimplement the communication system
that underlies ROS. It was decided that the current custom-made
communications framework would be redesigned and reimplemented using
existing and tested technologies that support distributed computation. The
project was named as ROS 2, and the first alpha prototype was expected to be
available in the first half of 2014. Several existing middleware and
communication frameworks were evaluated, and the Data Distribution Services
(DDS) standard maintained by Object Management Group (OMG) was selected
as the foundation of ROS 2. DDS is a well-received and document standard,
which is used in commercial and mission-critical applications such as air traffic
control, self-driving cars and spacecraft. In addition, there are several
commercial and open-source implementations of the standard.

However, even when building upon an open and tested standard, the design
challenge remains on how to design and implement appropriate layers of
abstraction between the underlying DDS-based communication system and the
ROS-based messaging and coordination systems. Regardless of the optimism,
dedication and contributions from the wider community, designing and
implementing a communications system has proved time-consuming. The first
alpha version was released in September 2015, whereas the eighth iteration of

147

alpha was released a year later. The third beta version was released September
2017 and the current estimate for the first official release, the version 1.0 of ROS
2, is expected to be released by the end of 2017. ROS 1 and ROS 2 are expected
to live side by side for some time since transferring the community and
numerous software packages and functionalities from ROS 1 to ROS 2 is
expected to take several years.

The experience from the developing of ROS2 sheds light on the difficulty of
establishing requirements and implementing systems that facilitate the
distributed development and management of complex computational processes.

5.6 Summary

This case description shows how ROS has evolved, changed and expanded over
the past ten years. The two university-based research projects which began with
an intention to bring a variety of technologies from different subfields of
artificial intelligence together to build robots for mobile manipulation tasks in
home and office environments turned out as a global open-source community.

Building upon the experiences from the PR and STAIR projects, Willow Garage
developed the PR2 robot hardware platform and ROS software framework.
Leveraging the lessons learned from the Switchyard communications library,
ROS provided an approach for resolving organisational and technological
challenges which emerge from the distributed development of distributed
computation and the distributed knowledge and control of complex
technologies. While the company’s efforts in commercialising general robot
hardware platforms did not materialise, the effort to establish ROS as an open-
source community produced a favourable outcome.

Since the early days, ROS has attracted attention from the wider robotics
community, including users and contributors from academia and industry. The
ROS communication system, development tools and related infrastructure
provide foundational technologies and tools for constructing robot systems as
sets of interconnected clusters of computational processes, whereas the ROS
community and domain-specific initiatives such as ROS-Industrial bring
together technologies, knowledge and resources that are spread across

148

researchers and developers in different organisations. This provides an overall
framework that facilitates technological integration even if control and
knowledge of complex technologies are highly distributed.

The next chapter takes a closer look into ROS to examine in the view of its
subsystems, combinations and their salient characteristics. This is expected to
shed light on how the tensions between the specificity of designs and
distributedness of knowledge and control can be resolved.

149

6 Results of analysis

This chapter reports empirical and conceptual findings of this research. They
derive from the thematic analysis that produced six themes and 15 categories as
described in Chapter 4. These themes and categories are further developed into
models to present conceptual answers to the operative and principal research
questions. The chapter unfolds in two parts. Part 1 develops a structural-
functional model that conceptualises robots and autonomous systems as
contextually bound and embodied chains of transformations. Part 2 develops
the notion of the generative-integrative mode of development, which outlines
how a generative combination of subsystems and components is crafted
iteratively to a composition that produces meaningful context-specific
behaviour.

Part 1 develops a conceptual answer to the operative research questions. It
begins by presenting a summary of the themes and categories derived through
the process of thematic analysis. The themes and categories are first
summarised in Section 1 (6.1), which is followed by a more detailed exposition
in Section 2 (6.2). The relationships among the themes and categories are then
conceptualised as contextually bound and embodied chains of transformation in
Section 3 (6.3) that concludes Part 1.

Part 2 builds on the conceptualisation proposed in Part 1 and presents the
answer to the principal research question. To this end, Section 4 (6.4) describes
and discusses the process and characteristics of software development in the
context of complex digitised products and presents a conceptualisation that
characterises the unfolding and dynamics of combination in the development of
contextually bound and embodied chains of transformation. Subsequently,
Section 5 (6.5) elaborates on the role of under-specification and constructive
ambiguity in this process, shedding light on how the tensions between the
specificity of designs and the distributedness of knowledge and control can and
cannot be resolved.

150

Part One

Robots and autonomous systems as contextually
bound and embodied chains of transformation

151

6.1 Summary of themes and categories

Thematic analysis revealed six themes that are comprised of 15 high-level
categories. During the analysis, the research database was processed in the view
of the embedded units of analysis with an aim to identify subsystems,
combinations and their respective characteristics. The analysis brought forward
a highly heterogeneous and distributed technological and organisational
arrangement, consisting of thousands of subsystems, components and
combinations. The variety of contextual and behavioural requirements that
need to be addressed in the development of robots and autonomous systems
renders itself as a variety of physical embodiments and computational models
that constitute and control the embodiments. This variety is visibly present in
ROS and the surrounding community.

The six themes that emerged from the analysis are (1) robot systems, (2)
physical embodiments, (3) communication systems, (4) transformation systems
and (5) visualisation and testing systems, and (6) the ROS community and
software development. Whereas the first four themes deal with robot systems
and their constituent elements, the last two focus more on the software
development practices and processes. As described in the section on research
design, the findings are presented and reported with reference to the ROSCon
presentations, which are listed in Appendices B to G and cited as sources of
evidence to provide clear chain of evidence. The sources are cited in the format
(Appendix: Code). In addition, they are complemented and supported with
documentary evidence, field notes and interviews in order to provide a reader
with necessary details and evidence. The themes and categories are briefly
introduced below and summarised in Table 5. More detailed exposition follows
in the subsequent sections.

The theme of robot systems refers to robot systems which are productive
applications or research robots. Then, as robot systems are composed of a
variety of subsystems, the subsystems are arranged into three themes that are
physical embodiments, communication systems and transformation systems.
The theme of physical embodiments consists of sensors, actuators and hardware
platforms which couple a robot system with the surrounding environment and

152

establish the physical affordances and limitations that define what a robot
system is capable of achieving in relation to its environments. Subsequently, the
themes of communication systems and transformation systems refer to
computational models and arrangements which produce and control the
behaviour of a robot system. The theme of communication systems refers to the
layer of software that coordinates the operation and transfers messages between
interconnected computational processes, whereas the theme of transformation
systems refers to software components that perform transformations between
different types and representations of data, such as transformations between
geometric coordinate frames or transformations from sensory inputs to actions.
The two categories of transformations are often highly intertwined. In sum,
physical embodiments, communications systems and transformation systems in
combination constitute the architecture of a robot system.

In shifting the focus outside a robot system, two themes emerge. The theme of
visualisation and testing systems refers to the type of software that is used to
examine, verify and improve the behaviour of a robot system. This includes
visualisation, simulation and data management software. Finally, the theme of
the ROS community and software development deals with the digital
infrastructures and organisational efforts to facilitate the reuse of software and
knowledge transfer in the ROS community.

The first five themes are discussed in Section 2 (6.2), whereas the sixth theme,
the theme of ROS community and software development, is discussed in Section
4 (6.4).

153

Theme Category Description Examples of subsystems Characteristics of combination
Robot
systems
(Appendix D)

Productive
applications

Robot systems
developed to perform
productive tasks.

Industrial automation, space
exploration, self-driving
cars.

Robots systems as products and
applications that can be used to perform
specific tasks and transferred between
similar task environments.

Research robots Robot systems
developed for
research purposes,
robot competitions
and challenges.

Robots used in research
laboratories and/or to take
part in challenges and
competitions, such as the
Amazon Picking Challenge
and DARPA Robotics
Challenge among others.

Research robots are not readily applicable
to different tasks or task environments.
The purpose of research robots is to
generate new knowledge and technologies.

Table 5: Summary of themes and categories

(Table 5 is spread over six pages as per the themes and related categories)

154

Theme Category Description Examples of subsystems Characteristics of combination
Physical
embodiments
(Appendix G)

Sensors Hardware
components that
measure the
conditions of the
surrounding
environment.

Cameras, range-finders,
force and motion sensors.

Sensors connect a robot system with the
surrounding environment.
Sensors are connected to the
computational processes through the
hardware drivers and communication
channels. Some conventions for data
formats and the transfer of sensory data
exist.

Actuators Hardware
components that exert
forces to cause change
in the surrounding
environment.

Robotic arms, mobile bases
and grippers.

Actuators connect a robot system with the
surrounding environment.
Actuators and their low-level control
software are connected to the higher-level
computational processes through the
hardware drivers and communication
channels. Some conventions for the data
formats and movement primitives exist.

Platforms Hardware which
encapsulates sensors
and actuators into a
single unit.

Quadcopters, cars, mobile
devices, teaching platforms,
manipulation units.

Connect a robot system with the
surrounding environment. Hardware
platforms and their lower-level control
software are connected with the higher-
level computational processes through the
hardware drivers and communication
channels.

155

Theme Category Description Examples of subsystems Characteristics of combination
Communicati
on systems
(Appendix B)

Messaging
system

Software systems that
perform run-time
messaging among
computational
processes.

Messaging methods such as:
Topics: one-way
transmission
Services: request-response
Actions: goal-directed
actions
Some common message type
and format conventions
which are open for
modification.

The ROS messaging system framework
provides messaging paradigms for
arranging connections between
computational processes. The
arrangement depends on the composition
of hardware and computational processes.
Some conventions exist for message
formats and data types, but new ones can
be created when needed. The conventions
enable the syntactic but does not
guarantee the semantic interoperability.

Coordination
system

Software systems that
manage, coordinate
and monitor the
messaging system.

Coordination methods for
the start-up and runtime
configuration, hardware
diagnostics and monitoring
of software and
communication patterns.

The ROS coordination system framework
provides paradigms for arranging the
connections to coordinate and support the
operation of computational processes.
While some conventions exist, the
configuration and actual workings depend
on the physical embodiments and
computational processes.

Connectors Software components
that connect hardware
and software
components to ROS.

Communication libraries,
hardware drivers and
bridges to connect to other
software frameworks and
web applications and user
interfaces.

ROS provide a variety of more or less
purpose-specific connectors. They are
used to connect the messaging and
support systems with hardware
components and software components
such as software libraries, web
applications and user interface
applications to operate a robotic system.

156

Theme Category Description Examples of subsystems Characteristics of combination
Transformati
on systems
(Appendix E)

Coordinate
transformations

Software systems that
perform
transformations over
geometric coordinate
frames.

Robot model definition,
geometric coordinate frame
transformation library,
robot pose estimation and
calibration tools.

ROS provides frameworks for defining and
implementing transformations over the
coordinate frames and time. The
definition and implementation of a
transformation system depends on the
composition of the embodiments, sensors
and actuators and related computational
processes.

Representation
transformations

Software systems and
components to that
perform
transformations over
representations of the
formats and types of
data. (for example, to
transform perception
to motion or
localisation to
locomotion).

Common packages fsuch as
MoveIt! (motion planning),
OctoMap (3D occupancy
grid), OpenCV (computer
vision) and navigation
(global and local path
planning), among many
others.

The ROS distribution contains software
packages and/or connections to other
packages which contain a number of
implementations of perception, motion
planning and navigation algorithms
among others. While they provide an
extensive collection of building blocks, an
application specific arrangement of
algorithms into a set of interconnected
computational processes depends on the
surrounding environment, hardware
embodiment and expected behaviour.

157

Theme Category Description Examples of subsystems Characteristics of combination
Visualisation
and testing
systems
(Appendix F)

Visualisation Software for
visualising a robot’s
behaviour, physical
composition and
sensory inputs.

Rviz visualisation package
and Rqt dashboard for
creating different displays.

The ROS distribution contains a set of
tools for the three-dimensional
visualisation of robot models and sensory
inputs among others. Rqt framework
provides a framework for creating plots,
diagrams and other displays of a variety of
systems data transferred through the
communications system.

Simulation Software that is used
to test and measure a
robot’s behaviour in
virtual worlds that
model physical
environments and
sensory inputs.

Gazebo and other
simulators, Morse,
USARSim, Webots

Simulations frameworks provide a variety
of approaches for creating virtual task
environments which model structures,
physical features and sensory data of some
particular environmental context.
Simulations are used widely in
development and testing.

Data
management

Software for
recording, storing,
processing visualising
sensory data and
behavioural data.

ROS standard functionality
for recording and playing
back messages. Test data
management and analysis
packages and services.

Storing and analysing the data gathered
during the operation of a robot system is
necessary given the low replicability of the
situations that unfold in open
environments.

158

Theme Category Description Examples of subsystems Characteristics of combination
ROS
community
and software
development
(Appendix C)

Infrastructure
and tools

Digital infrastructures
and tools to support
the reuse and
development of
software.

The public build
environment and software
distribution infrastructure.
Private build and
integration environments
created by different
organisations.

OSRF provides a central facility to compile
and distribute software from the
repositories that are maintained by the
community members. However, many
organisations manage their own build
environments to control the functional
dependencies and to protect the
intellectual property.

Knowledge
transfer

Organisational efforts
and digital
infrastructures to
transfer knowledge
within the
community.

Collaboration venues and
efforts such the wiki site,
discussion forums, the
ROSCon conferences and
domain-specific initiatives.

The ROS community is heterogeneous.
There are several ongoing initiatives to
bring people and knowledge from
different technological areas together and
to promote the transfer of knowledge and
the reuse of software.

159

6.2 Robot systems and their constituent elements

This section expands the description and discussion of the themes and
categories introduced above. The themes of robot systems, physical
embodiments, communication systems and transformation system and
visualisation and testing systems are each presented in their own subsection.

Each subsection has three elements. The first element outlines the purpose and
functionality represented by the theme and its constituent categories. The
second element describes the constituent categories in more detail and
illustrates them with examples where applicable. The third element summarises
the most prominent observations concerning the characteristics of combination.

The themes are presented in the same order as they are presented in Table 5.
They are presented in this order to establish a coherent narrative which
gradually unfolds the categories and their relationships. Section 3 (6.3) develops
a conceptual model (see Figure 36) that brings different themes and categories
together and describes how they are related to each other.

6.2.1 Robot systems

The theme of robot systems stands for the machines and systems which are
created to carry out tasks autonomously with limited human intervention; they
are expected to exhibit autonomous goal-directed behaviour while responding
to environmental contingencies. Whereas the role of a human operator in the
control of a robot system is set to be reduced, robot systems will have to be
equipped with mechanisms that allows robot systems to control their behaviour
in relation to the surrounding environment. Moreover, as a robot system’s
behaviour emerges from the direct and ongoing interaction with the
surrounding environment, the focus of design and development expands from
the human-machine interface to a broader spectrum of environment-machine
interactions, to situations where the environment need to be understood
broadly, including people and physical and digital environments alike. In this
light, a robot system can be viewed as a subsystem in relation to its
environment, while, at the same time, a robot system itself is composed of

160

different subsystems that constitute it. Therefore, it is beneficial to discuss the
characteristics of combination of a robot system in two ways, in relation to the
surrounding environment and in terms of the constituent subsystems.

The theme robot systems consist of two categories, namely, the categories of
research robots and productive applications. While the previous paragraph
outlines the overall functional principle of robot systems, thematic analysis
revealed that the two categories of robot systems differ from each other in terms
of the purpose they serve; they play different roles in innovation and differ in
their characteristics of combination. Research robots are created to advance the
technology while productive applications are created to serve some particular,
usually a productive purpose.

Research robots are test beds that are used to learn and study the robotics-
related research problems. These problems often revolve around some specific
domain of electro-mechanical engineering and artificial intelligence or focus on
the development of more complete and complex models of behaviour.

Figure 12: Team Delft robot setup in the Amazon Picking Challenge work cell
(Hernandez et al. 2017, D: RS19)13

13 Reprinted by permission from Springer Nature, RoboCup 2016: Robot World Cup XX, Team
Delft's Robot Winner of the Amazon Picking Challenge 2016, Carlos Hernandez, Mukunda
Bharatheesha, Wilson Ko et al., copyright 2017 Springer Nature.

161

Problem-specific research projects typically focus on the examination of
behaviour of specific algorithms, such as mapping in three-dimensional space
(E: TR6), and research outcomes are usually disseminated through the
academic journals and software distributions. In contrast, the development of
more complete task-specific models of behaviour requires careful integration of
a variety of algorithms and computational processes, and robot competitions
and challenges provide opportunities to demonstrate skills and technologies in
the development of task-specific robot systems. The Amazon Picking Challenge
(D: RS19) and the DARPA Robotics Challenge (D: RS15) among the others listed
in Appendix D offer examples of such competitions. To illustrate the types of
robot systems that are used in competitions, Figure 12 presents the Team Delft’s
robot that won the Amazon Picking Challenge in 2016 (D: RS19, Hernandez et
al. 2017). Figure 13 (D: RS15, Kohlbrecher et al. 2015) presents Team ViGIR’s
robot that competed in the DARPA Robotics Challenge.

Figure 13: Team ViGIR's Approach to the 2013 DARPA Robotics Challenge
Trials (Kohlbrecher et al. 2015, D: RS15)14

14 Reprinted by permission from John Wiley and Sons, Journal of Field Robotics, Human-robot
Teaming for Rescue Missions: Team ViGIR's Approach to the 2013 DARPA Robotics Challenge
Trials, Stefan Kohlbrecher, Alberto Romay, Alexander Stumpf et al., copyright 2014 Wiley
Periodicals, Inc.

162

Primarily, research robots are developed to explore and experiment novel
techniques and technologies and to demonstrate the state of the art in some
particular domain of robotics. While some of these projects produce spectacular
demonstrations, the robot systems they produce often lack reliability and
robustness (D: RS1) that are of paramount importance in the commercial and
productive applications. The unpleasant environmental contingencies and the
teams of engineers and scientists nursing a robot system are often carefully
framed out of a picture when the progress of research is put on a public display.

Productive applications depict a more mundane but equally challenging view of
robot systems. Here the success is not defined by demonstrating a novel
behaviour in an experimental situation. Instead, practical and commercial
success follows from the proposition that the applications that automate
operations increase productivity (D: RS21) – and a robot system which needs
constant guidance, maintenance and repair is unlikely to do so. Moreover, if a
robot system is not robust and reliable, it may harm people and damage the
environment it operates in. Therefore, the challenge remains on how to develop
robot systems that are productive, robust and dependable with respect to a task
and task environment over longer periods of time.

Oftentimes, turning a technological invention to a commercial innovation is a
costly and time-consuming process (C: SE16), which requires the exploration of
market opportunities as well as the development and fine-tuning of service-
propositions and corresponding technological applications. Figures 14 and 15
present service robots, both of which are Willow Garage offspring, that are
designed and developed to serve particular market needs. The robot systems
from Fetch Robotics serve the needs of warehouse logistics (D: RS18), whereas
Relay from Savioke runs indoor deliveries in hotels. Even if these robots are
quite similar, performing localisation and navigation on two-dimensional
surfaces to transport goods, there are several contextual factors that bear
implications to their design and application.

163

Figure 14: Warehouse logistics robots from Fetch Robotics15

Figure 15: Relay, a hotel delivery robot from Savioke16

15 Republished from the website of Fetch Robotics at fetchrobotics.com with permission.
Copyright (2018) Fetch Robotics.
16 Republished from the press kit of Savioke at savioke.com with permission. Copyright (2018)
Savioke.

164

The characteristics of combination differ between the two categories of robot
systems. Considering that research robot systems are created to serve some
particular research objectives, they are rarely readily transferable to different
tasks and contexts as such. Instead, the objective with research robots is to
study and develop novel technologies that could then be transferred and put to
use in other robot systems. For example, algorithms that have been developed,
refined and encapsulated into software libraries and packages can be distributed
for others to use (E: TR6), something which is one of the underlying objectives
of ROS and the ROS community. However, even when software packages are
made publicly available, they may not be readily applicable and transferable to
other systems and contexts. If a packaged software carries strong assumptions
(B: C01) which derive from the context where it was first developed, for example
in terms of tasks, task environment or the physical structure and affordances of
a physical embodiment, the degree of generality and transferability tends to
decrease. Even so, research and engineering projects serve as important sources
of methods, tools and technologies that can potentially be further developed,
utilised and combined into other robot systems.

The development of productive applications, on the other hand, aims at
producing robot systems that carry out productive tasks and are transferable
across similar tasks and task environments. While such robot systems can be
transferred to an extent, there are physical and behavioural matters which may
prevent it. Starting with the physical matters, a robot system has a physical
embodiment, sensors and actuators in order to interact with the surrounding
environment. For example, the physical embodiment of a pick and place system
that works in a warehouse may not be suitable for agricultural fieldwork as the
concrete floor changes to soft soil and rectangular boxes to soft berries.
Moreover, a behavioural model should produce meaningful actions. To
exemplify, whereas the physical embodiment of a self-driving race car might be
suitable for transporting people on paved roads, its model of behavioural may
not be suitable for normal road transit. Moreover, even if the behaviour of a
robot system can be modified by changing software, the computational models
of behaviour are bound by the physical embodiment of a robot. Therefore, the
characteristics of combination revolve around to what extent a robot system
readily combines with the different aspects of tasks and working environments.

165

To summarise, robot systems are being developed to serve both the research
and productive purposes. This differentiation is important in two ways. First, it
highlights the different characteristics and objectives of combination, that is, the
combinability with respect to constitutive technologies and the combinability
with respect to the productive tasks and contexts. Second, it brings forward the
differing criteria of success, highlighting the difference between novelty and
productivity.

The subsequent section focuses on physical embodiments, taking a more
detailed look into their purpose, categories and characteristics of combination.

6.2.2 Physical embodiments

The theme of physical embodiments refers to the physical structure and
composition of a robot system. The purpose of the physical embodiment is to
enable the interaction by coupling a robot system with its physical
surroundings. In doing so, a physical embodiment establishes the boundary
between the physical environment and the computational model of behaviour.
This theme consists of three categories, which are sensors, actuators and
platforms. While specialised companies focus on and produce particular
categories and types of hardware, purpose-specific embodiments and
components are also often developed, such as a custom-made gripper for the
Amazon Picking Challenge (Figure 12, D: RS19), depending on the specificity of
hardware requirements.

The development of a physical embodiment is subject to a variety of trade-offs
(Wyrobek et al. 2008). The distinctive characteristics of tasks and task
environments give rise to a number of requirements and constraints, such as
required dexterity, payload, speed and safety measures. These requirements
then cascade down to the mechanical and electrical design that specify the
embodiment of a robot system. During this process, the embodiment becomes
specified in terms of its frame and size, the number of joints and their geometric
and kinematic relationships as well as the sensors and their capabilities among
a number of other factors. These features and properties in conjunction define
the underlying physical properties, capabilities and limitations of a robot
system.

166

Sensors measure the environment and supply a robot system with data of the
surrounding environment. The sensory information is necessary for the
production of contingent behaviour, and the choice of sensors depends on the
physical phenomenon and features that are measured to condition and control
the behaviour of a robot system. Different sensors harness different physical
phenomena, and behavioural models can be conditioned upon a range of
measurements, such as the patterns of light and sound, material deformations,
the reflections of emitted light and radio waves or rotations and voltages. Each
of the measurements is informative in different ways, having particular
strengths and weaknesses, modes of failure and idiosyncratic inaccuracies. As
the properties of sensors and data tend to converge along the lines of the
physical phenomenon that is measured and harnessed, such as two-dimensional
images or three-dimensional point clouds (B: CO5), there is a degree of
commonality in data formats that can be used to transmit sensory readings
between computational processes. Data from multiple sensors are often
combined to construct a more comprehensive and reliable representation of the
surrounding environment (E: TR3, TR4).

A list of ROS compatible sensors is available on the ROS wiki17. Approximately
100 sensors have been made compatible with ROS either by sensor
manufacturers or as a community-driven effort (B: CO5). To exemplify, Figure
16 presents a two-dimensional laser range finder from Sick and Figure 17
illustrates Intel’s RealSense camera package (G: PE4, PE6). Usually, the details
of the ROS integration and interface specification are documented in a software
package summary1819 on the ROS wiki, whereas the technical details of the
capabilities and features of a sensor can be found at the manufacturer’s website.

Actuators are the physical embodiments that exert forces in order to cause
change. Similarly to sensors, actuators come in many forms and functions
depending on their intended use and the phenomena they harness. For
example, industrial robot arms (see Figure 18) and grippers embody different
degrees of force, motion, dexterity and grasping.

17 wiki.ros.org/Sensors – A list of ROS compatible sensors.
18 wiki.ros.org/sick_tim – Package summary for the SICK TiM and the SICK MRS 1000 laser
scanners.
19 wiki.ros.org/RealSense – Package summary for Intel RealSense cameras with ROS.

167

Figure 18: Motoman industrial robot arms, MH5F, SDA10, SIA20, by Yaskawa22

20 Republished from the SICK website at sick.com with permission. Copyright (2018) SICK
Gmbh.
21 Republished from the Intel website at intel.com with permission. Copyright (2018) Intel
Corporation.
22 Republished from Yaskawa’s Media Center at motoman.com. Copyright (2018) Yaskawa
Americas, Inc.

Figure 16: TiM5xx two-dimensional
laser range finder by SICK20

Figure 17: RealSense™ D435 camera

package by Intel®21

168

Whereas the heavy-duty robotic arms may exert strong forces to lift and
manipulate heavy objects, collaborative robots are expected to be light, flexible
and safe enough to share a work environment with people. The robots that share
human workspace should be compliant and respond to changes in the external
forces in a manner that ensures the safety of workers if they are to collide with a
robot system. Similar to robot arms, mobile bases (see Figure 19) are also
actuators. They exert forces to make a robot system to move around, and they
differ in their characteristics, such as size, payload and the method of steer and
drive.

A variety of actuators have been made ROS compatible23. This is the case for
example with the robot arms24 in Figure 18 and the mobile base25 in Figure 19.
Again, as different types of actuators tend to converge around their structural
characteristics and movement primitives, there is a degree of commonality that
facilitates the reuse of the software that commands and controls actuators.

Figure 19: Husky™, a mobile base by Clearpath Robotics26

23 robots.ros.org – A list of ROS compatible robots, actuators and mobile bases.
24 wiki.ros.org/Industrial/supported_hardware – A list of industrial robot hardware supported
by ROS-Industrial (wiki.ros.org/Industrial).
25 wiki.ros.org/husky_robot – Package summary for Clearpath Husky robot.
26 Republished from the Clearpath Robotics website at clearpath.com with permission.
Copyright (2018) Clearpath Robotics Inc.

169

Hardware platforms can be viewed as combinations of sensors, actuators and
support systems such the body frame and power system, although the boundary
between an actuator and hardware platform is not always very clear. Hardware
platforms also come in a variety of forms, such as small humanoids (Figure 20,
D: RS2, wiki27), quadrotors (Figure 21, G: PE8, wiki28) or warehouse trolleys
(Figure 14, D: RS18). Furthermore, other products and digital devices, such as
cars (D: RS16) and mobile devices (B: CO11), can be used as hardware
platforms. Mobile devices are rich in sensors and the screen and speakers can be
viewed as actuators. To this end, Android-based devices have been made
compatible with ROS (B: CO2, CO11, CO24, wiki29). As an increasing number of
hardware platforms is commercially available, the focus of robot development
has been shifting from hardware towards software in some domains of robotics.
Making a hardware platform compatible with ROS requires the specification
and integration of various physical properties and functional features (G: PE2).

Figure 20: NAO, a bipedal robot by Softbank Robotics30

27 http://wiki.ros.org/nao – Package summary for NAO robot.
28 wiki.ros.org/dji_sdk – Package summary for DJI onboard SDK.
29 wiki.ros.org/android, wiki.ros.org/android_ndk – Package summaries for Android
integration.
30 Republished from the Softbank Robotics website at softbankrobotics.com with permission.
Copyright (2018) Softbank Robotics.

170

Figure 21: DJI Matrice 100, a quadrotor for developers by DJI31

The characteristics of combination concerning the physical embodiments that
couple robot systems with their surrounding environments can be approached
from the points of view of behaviour and software development. To begin, the
physical embodiment of a robot system forms a boundary between the physical
and digital, mediating the interaction between the physical environment and the
computationally produced behavioural models. The physical world in which a
robot system behaves is one of matter, motion and continuity, whereas the
digital that produces the contingent behaviour is symbolic, computational and
discrete. Combining and aligning the two is not without challenges (C: SE4).
Sensors should measure the matters that are computationally tractable so that
the behaviour of a robot system could be conditioned upon them, and, at the
same time, the forms and functions of actuators and hardware platforms should
comply with the requirements of tasks and contexts while also being
controllable through computable means. To fulfil these requirements that
emerge from environments and operations, a range of different hardware are
put to use in the field of robotics to provide robot systems with appropriate
embodiments.

31 Republished from the DJI website at dji.com. Copyright (2018) DJI.

171

More than 200 hardware components, sensors, actuators and platforms are
currently compatible with ROS. The members of the ROS community have
developed hardware drivers for connecting the hardware-specific functionalities
and firmware with the messaging and support channels of the ROS
communication system (B: CO5). Using these drivers that are readily available
and distributed as software packages, a range of hardware components can be
incorporated into a ROS-based system with relative ease. About a half of ROS
compatible hardware are sensors while the rest consists of actuators and
hardware platforms.

However, adding or changing hardware is not a simple plug and play operation.
As discussed above, different sensors and actuators harness different physical
phenomena and differ in their capacities with respect to the physical
environment (C: SE4). Moreover, the types and formats of sensory readings,
control commands and parameters as well as diagnostics data differ among
hardware components and are not uniform nor strictly standardised. There are
some commonalities around the interactional modalities, capabilities and
physical properties, and this has given rise to some common conventions
regarding the formats and types of data that are used when messaging with
certain kinds and types of hardware (B: CO1). However, regardless of the
conventions that facilitate the integration, developers are expected to remain
cognizant of the underlying capabilities and limitations of the physical
embodiments as well as their influence on the computational control of the
behaviour of a robot system.

The subsequent section focuses on the communication systems and describes
their purpose, categories and characteristics of combination.

6.2.3 Communication systems

The theme communication system forms a foundational layer for setting up a
robot system as a distributed cluster of computational processes. Whereas the
physical embodiment couples a robot system with its environment, robot
software couples sensors with actuators, mediating and transforming sensory
inputs into meaningful actions. This requires an orderly integration of various
computational processes, and the communication system plays an essential role

172

in this endeavour. The communication system consists of three categories,
which are the messaging system, coordination systems and connectors.

ROS is designed to facilitate the distributed development of distributed
computation for robots and autonomous systems. Its basic architecture can be
viewed as a network of interconnected computational processes (algorithms),
where processes are interconnected through communication channels which
send and receive messages in some agreed format and according to a certain
communication paradigm. As illustrated in Figure 6 in the previous chapter, the
basic architecture of the communication system can be conceptualised and
visualised as a graph (network). The ROS graph defines the composition of a
robot’s software system in terms of its computational processes (nodes) and
their interactions (Quigley et al. 2009). While ROS provides a set of tools and
methods to develop and operate robot software as distributed clusters of
computational processes, it does not impose any standards on how different
computational processes should be partitioned, arranged or how they should
interact with each other (B: CO1, CO10). These are design choices which are
contingent on the physical embodiment, task and context (as well as to an
extent on the contents of reusable software packages). Developing ROS-based
software can be seen simultaneously as a process that separates, distributes and
combines computational processes (C: SE11).

The messaging system carries out operational run-time messaging among
distributed computational processes. For this interprocess messaging, ROS
provides three different methods of communication: topics,32 services33 and
actions34. First, topics are an asynchronous and unidirectional method of
communication. A sending node transmits some specific message constantly at
a certain frequency to all nodes that have subscribed to that particular topic.
Using topics, sensors can transmit sensory data and measurements as a
constant stream. Second, services provision a bidirectional and synchronous

32 wiki.ros.org/Topics – Topics are named buses over which nodes exchange messages. Topics
have anonymous publish/subscribe semantics, which decouples the production of information
from its consumption. In general, nodes are not aware of who they are communicating with.
33 wiki.ros.org/Services – Request / reply between modes is done via a Service, which is defined
by a pair of messages: one for the request and one for the reply.
34 wiki.ros.org/actionlib – The actionlib provides a standardized interface for interfacing with
preemptable tasks. Examples of this include moving the base to a target location, performing a
laser scan and returning the resulting point cloud and so forth.

173

method of communication, which is suitable for individual and discrete
interactions between two nodes. A node sends out a service request to another
node to perform a service and return a response. Third, actions provide a
method to handle goal-directed action commands which unfold over longer
periods of time, such as a command to grasp an object on the table or to move to
some specific location or position. Actions are formed of a set of unidirectional
topic streams, and they provide feedback of the status, progress and eventual
completion of an action while facilitating the dynamic change of goals and
cancellations of tasks. These three standard methods of communication provide
software developers with the basic paradigms for setting up interactions among
computational processes. Figure 22 (Quigley et al. 2009) provides another
illustration of a network of computational processes.

The methods of communication themselves do not define the format or content
of transmitted messages. This is done using message35 and service36 types that
define a format in which messages are transmitted and stored. Depending on
the purpose of an interaction, message types may deal for example with stereo
and depth images, maps, path plans, waypoints for a global positioning system,
coordinates, velocities, commands to actuators or some other intermediate
representations and so forth (Quigley et al. 2007). Approximately 75 common37
message types exist for conventional messaging scenarios, such as sending raw
sensor data or dealing with geometry and navigation. Figure 23 illustrates a
common and simple message type that expresses a position and orientation on a
two-dimensional manifold. If none of the existing message types is able to cater
to the messaging needs, new ones can be created by combining primitive data
types, such as strings, integers or floating-point numbers of different lengths.
These primitive data types have no semantic meaning and they referred to as
standard messages. The sending and receiving processes must conform to the
same method and message type in order to ensure syntactic interoperability.
The configuration of a messaging system can take a number of forms depending
on the desired separation and combination of computational processes.

35 wiki.ros.org/msg – Message description language for describing the data values (aka
messages) that ROS nodes publish.
36 wiki.ros.org/srv – Builds directly upon the ROS msg format to enable request/response
communication between nodes.
37 wiki.ros.org/common_msgs – Common_msgs contains message types that are widely used by
ROS packages.

174

Figure 22: A ROS graph (Quigley et al. 2009)38

Figure 23: Pose2D Message that expresses a position and orientation on a two-
dimensional surface39

38 Reprinted from ROS: an open-source Robot Operating System by Morgan Quigley, Brian
Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs, Eric Berger, Rob Wheeler and
Andrew Ng., ICRA 2009 Workshop on Open Source Software, 3/3.2, with permission.
39 Republished from the ROS wiki at docs.ros.org. Creative Commons Attribution 3.0.

175

Coordination systems manage, coordinate and monitor the operation of a
messaging system and computational processes; they handle the meta-data of a
robot system and are used to manage and adjust system configuration
parameters as well as to monitor the operational state and health of various
hardware and software components. To this end, ROS provides a set of basic
tools and methods. To begin, the start-up files with roslaunch40 and parameter
server41 define and initiate a cluster of nodes, their interconnections and other
parameters that constitute the run-time configuration of a robot system.

Figure 24 presents a very simple example of a file that launches two nodes,
Talker and Listener. The program publisher.py renders the process for the
Talker node and subscriber.py for the Listener node, and the programs are
located in the package Tutorials. Unlike this simple example, start-up files are
often more complex. An advanced robot system may have over hundred nodes
running in parallel, interacting in an intricate manner and according to various
process and node specific parameters (that are excluded from this example).

 <launch>

 <node
name = "Talker" - Name under which the node operates in the ROS graph
pkg = "Tutorials" - Package containing the program that renders the node
type = "publisher.py" - Exact name of the program within the package

 />
 <node

name = "Listener"
pkg = "Tutorials"
type = "subscriber.py"

 />
 </launch>

Figure 24: A simple example of a ROS launch file42

The names and types of messages nodes send and receive are specified in the
programs that render them. As both sending and receiving nodes must agree on
the type and name of a message, ROS enables the dynamic changing of message
names for remapping connections without changing the underlying programs as
long as the message types that defines data format and structure are congruent.

40 wiki.ros.org/roslaunch – Roslaunch is a tool for launching multiple ROS nodes based on a
launch file.
41 wiki.ros.org/Parameter%20Server – Nodes use the parameter server to store and retrieve
parameters at runtime. As it is not designed for high-performance, it is best used for static, non-
binary data such as configuration parameters.

176

In addition, other coordination systems are used to change system configuration
parameters at run-time (dynamic reconfigure43) and collect and aggregate
hardware diagnostics data (diagnostics44) (B: CO5). Similarly to the messaging
system, there are conventions regarding the diagnostics messages45, yet new
message types can be created if and when needed. The implementation of
coordination systems varies from a robot system to another depending on the
combination of the physical embodiment, computational processes and
messaging system that constitute a robot system. Figure 25 illustrates data
elements included in a standard diagnostics message.

Figure 25: DiagnosticsStatus message for reporting the status of an individual
component of the robot46

42 Adapted from a ROS Python and launch file tutorial examples at wiki.ros.org
43 wiki.ros.org/dynamic_reconfigure – The parameter server provides a means to change node
parameters at any time without having to restart the node.
44 wiki.ros.org/diagnostics – The diagnostics system is designed to collect information from
hardware drivers and robot hardware to users and operators for analysis, troubleshooting, and
logging.
45 wiki.ros.org/diagnostic_msgs – Diagnostic messages which provide the standardized
interface for the diagnostic and runtime monitoring systems in ROS.
46 Republished from the ROS wiki at docs.ros.org. Creative Commons Attribution 3.0.

177

Connectors are used to make different hardware and software components and
subsystems compatible with ROS so that they can be incorporated into the ROS
messaging and coordination system as nodes. In brief, connectors are software
libraries47 that can be used to envelop another piece of software so that it can
establish messaging and coordination channels with other nodes in the ROS
graph. Therefore, connectors are an indispensable part of the ROS
communication system. Given the variety of computing hardware and
programming environments, there are different types of connectors that can be
used with different programming languages (e.g. Python, C++, Java, Matlab),
microprocessor and microcontroller architectures (e.g. x86 and ARM) and
operating systems, such as Linux Ubuntu (C: SE21) and Android (B: CO2, CO3,
CO20). Different connectors and methods serve different scenarios ranging
from functional software modules to hardware drivers (B: CO15, CO21), user
interfaces (B: CO27), application programming interfaces and web-services (B:
CO6, CO12) to name a few. Figure 26 illustrates the spectrum of connectors in
terms of computing platforms and integration approaches.

Figure 26: A categorisation of connectors in terms of computing platforms and
integration approaches (B: CO15)48

47 wiki.ros.org/Client%20Libraries – A ROS client library is a collection of code that makes
many of the ROS concepts accessible via code.
48 Republished from the 2013 ROSCon presentation Bridging ROS to Embedded Systems: A
Survey by Morgan Quigley with permission. Copyright 2013 Open Source Robotics Foundation.

178

The characteristics of combination in the view of the communication systems
highlight that computational processes can be distributed and combined in
multiple ways at different levels of messaging and coordination. To this end,
ROS provides methods, tools, software packages and libraries for setting up the
software of a robot system as a distributed cluster of computational processes.
Yet, while it provides an overall framework, it remains silent on how the
network of computations, messaging and coordination should be arranged; the
actual arrangement and integration of computational processes of a particular
robot system remain contingent upon the requirements and design choices
made during the development of a robot system.

The subsequent section focuses on the computational processes in the view of
transformation systems and describes their purpose, categories and
characteristics of combination.

6.2.4 Transformation systems

The theme of transformation systems characterises much of information
processing that is carried out in a robot system. A robot system continuously
transforms sensory measurements into goal-directed behaviours in relation to
the surrounding environment. Also, the physical embodiment of a robot system
consists of parts which constantly move in relation to each other. The behaviour
and motion set robot systems in stark contrast when compared to
communication systems. Whereas the purpose of a communication system is to
transfer data without distortions or delays, the purpose of a transformation
system is to convert the inputs of one kind to the outputs of a different kind. In
robotics, transformations typically deal with spatiality, perception, decision-
making and motion in three-dimensional spaces. This expands the focus on the
processes that perform transformations on a variety of representations and
types of data.

The theme of transformation systems consists of two categories, which are
named here as coordinate and representational transformations. The category
of coordinate transformations concerns with the transformations between
geometric coordinate frames, whereas the representational transformations are
about the transformations between different representations of data in a more

179

general sense. As the two types of transformations are typically highly
intertwined, this separation is analytical and not always readily observable.

Coordinate transformations are about the alignment and transformations
between different intrinsic and extrinsic geometric coordinate frames. Of the
coordinate frames, the intrinsic refers to the coordinate systems within the
embodiment of a robot system, whereas the extrinsic refers to the relationship
between a robot system and its environment (E: TR3, TR8). These are not static
relationships, and the continuity of motion and behaviour requires frequent
transformations between a number of intrinsic and extrinsic frames (E: TR2,
TR5, TR13). For example, for a robot system to compute the position and
orientation of its gripper in a three-dimensional space in relation to its base at a
given moment, time-stamped readings from relevant joint state encoders
(sensors) need to be processed with reference to the structural characteristics of
the embodiment (E: TR3, TR8). Figure 27 illustrates the kinematic structure of
the NAO robot by Softbank Robotics. Similarly, the meaning and fusion of
sensory data are predicated on the frame and time of reference. For example,
when patterns recognised from camera images are combined and processed to
condition the behaviour of a robot system, the accurate framing in terms of
space and time is of paramount importance (E: TR3, TR8).

ROS provides general methods and tools for setting up the systems of
coordinate transformations. These revolve around the robot model definition
(urdf49), transformations library (tf50) and some common conventions5152. The
construction of a coordinate transformation system begins by defining the
structural elements and characteristics of the physical embodiment of a robot
system, including the core frame and body, joints and links along with their
morphologic, geometric, kinematic and visual properties (E: TR1, TR9, TR14).
These are specified in the Universal Robot Description Format, in an XML-file
that is called urdf for short. Depending on the scope and level of details, these
files grow in size and complexity, and the ROS community has developed tools
to automate the process of model creation (E: TR9, TR14).

49 wiki.ros.org/urdf – Package summary for Unified Robot Description Format (URDF), which
is an XML format for representing a robot model.
50 Wiki.ros.org/tf2 – Package summary for tf2 transform library.
51 ros.org/reps/rep-0105.html – REP 105 Coordinate Frames for Mobile Platforms.
52 ros.org/reps/rep-0120.html – Coordinate Frames for Humanoid Robots.

180

Figure 27: The kinematic structure of a NAO robot53

For example, a detailed model54 for the NAO robot pictured in Figure 27 may
include some 2500 lines of definitions. Therefore, urdf is one of the central
configuration files as it captures the properties of a physical embodiment and its
articulation making it available for different computational processes. In doing
so, it provides the parameters of a structural configuration for example to the
processes that perform coordinate transformations (E: TR1), localisation and
pose estimation (E: TR1, TR16), motion planning, collision checking (E: TR5),
robot visualisation and simulation among others.

Building upon the robot model definition, the transform (tf) library (Foote
2013) provides tools and methods for embedding and performing coordinate
transformations within computational processes. In addition, some other
transformation software libraries have also been made compatible with ROS,
such as the Kinematics and Dynamics Library (KDL55) form the Orocos project

53 Republished from the ROS wiki at wiki.ros.org. Creative Commons Attribution 3.0.
54 wiki.ros.org/nao_description – Description of the Nao robot model that can be used with
robot_state_publisher to display the robot's state of joint angles.
github.com/ros-naoqi/nao_robot/blob/master/
nao_description/urdf/naoV50_generated_urdf/nao.urdf. Creative Commons Attribution 3.0.
55 wiki.ros.org/orocos_kdl – Package summary for the Kinematics and Dynamics Library (KDL),
distributed by the Orocos Project.

181

and the Bullet56 physics library, among others. Furthermore, there are tools and
methods to carry out intrinsic and extrinsic calibration to ensure the alignment
of coordinate frames among the different parts of a robot system and in relation
to its environment (E: TR4, TR12, TR17).

Representational transformations are about the processes which transform
data from some format or representation to another, and although they are
highly intertwined with coordinate transformations, they can be viewed from a
slightly different angle. Broadly speaking, they can be viewed as processes that
transform sensory inputs into actions. This can be illustrated with a simple
example of a transformation pipeline (B: CO1) that performs an action based on
a particular visual input. At the beginning of the pipeline, a digital image is
captured by a camera. Then, this image is passed on to a pattern and object
recognition algorithm that tags objects in images based on certain features.
Subsequently, these tags are passed on and used as an input in the process that
triggers a particular task when it receives a certain tag. Then, this task is passed
on as a command to the motion and trajectory planner, which then sends a
more specific actuation command to the hardware controller that drives motors.
In other words, a representation of data undergoes a gradual step-by-step
transformation from a sensory input into a corresponding action.

Individual steps of transformation can be distributed over different
computational processes in multiple ways, even if the overall mapping between
the initial sensory inputs and resulting actions would remain invariable. There
are no hard and fast rules on how the overall behaviour of a system should be
decomposed among different transformations, nor in which format the data
should be passed from one transformation to another (C: SE11). However,
developing chains of transformation every time from scratch would be a
daunting prospect.

To make software development easier, ROS offers reusable software packages as
well as reference implementations and conventions on how to combine them.
Currently, approximately 2000 ROS compatible software packages and
frameworks are available through the ROS software distribution infrastructure.

56 wiki.ros.org/bullet – Package summary for 3D Game Multiphysics Library provides state of

182

These packages offer a number of algorithms and functionality that cater to
different needs. For example, OpenCV57, a computer vision framework, contains
some 2500 algorithms for various image processing, machine learning and
object and pattern recognition purposes (E: TR4), whereas Point Cloud Library
(PCL58) provides algorithms for processing point clouds and depth images (E:
TR4). OctoMap59 provides a framework for constructing three-dimensional
occupancy grids in order to store and query spatial information (E: TR6). In
turn, MoveIt!60 is a motion planning framework which combines a variety of
algorithms and functionality for three-dimensional perception, motion
planning, collision checking and other motion-related purposes (E: TR2, TR5,
TR13). In addition, there are many other software packages, stacks and meta-
packages that produce different transformation or processing pipelines to cater
some specific purposes, for example, to pre-process raw image61 or point cloud62
data into useful inputs for vision algorithms (E: TRO4, TR7). Figure 28
illustrates the central functionalities and components of the MoveIt! package at
a high level, and Figure 29 depicts the high-level system architecture63 in terms
of main processes and their interconnections.

While the above presentation of the variety of representational transformations
is superficial and cursory at best, and new software packages and libraries are
constantly being developed, it, however, sheds light on the heterogeneity and
complexity of robotics software that can be found among those 2000 software
packages that are available through the ROS infrastructure.

the art collision detection, soft body and rigid body dynamic.
57 opencv.org; wiki.ros.org/opencv3 and wiki.ros.org/vision_opencv – Package summaries for
interfacing ROS with OpenCV, a library of programming functions for real time computer
vision.
58 pointclouds.org; wiki.ros.org/pcl – Package summary for the point cloud processing with the
Point Cloud Library.
59 octomap.github.io; wiki.ros.org/octomap_ros – Package summary for octopmap_ros that
enables a convenient use of the octomap package in ROS.
60 moveit.ros.org; wiki.ros.org/moveit – Package summary for Meta package that contains all
essential package of MoveIt!
61 wiki.ros.org/image_pipeline – Package summary for the image_pipeline stack that preprocess
raw camera images for vision algorithms: rectified mono/color images, stereo disparity images,
and stereo point clouds.
62 wiki.ros.org/laser_pipeline – Package summery for the laser_pipeline stack to preprocess a
scanning laser rangefinder data.
63 moveit.ros.org/documentation/concepts/ – MoveIt! motion planning and control
architecture.

183

Figure 28: MoveIt! - Demystifying complexity (E: TR13)64

Figure 29: MoveIt! system architecture65

64 Republished from the 2015 ROSCon presentation MoveIt! Strengths, Weaknesses, and
Developer Insight by Dave Coleman with permission. Copyright (2015) Dave Coleman.
65 Republished from the MoveIt! website at moveit.ros.org. Creative Commons Attribution 4.0.

184

The observation of the characteristics of combination in the context of
transformation systems brings forward a similar pattern that was observed in
the context of communication systems. The software packages distributed
through the ROS infrastructure provide frameworks and building blocks,
subsystems and components, that can be combined when designing and
building a robot system. However, these packages are not ready-made
applications that could just simply be installed. Instead, they can often be
viewed as end-product agnostic subsystems which can to an extent be combined
to produce desired behavioural models for robot systems. In this light, it is not
surprising that the possibilities and challenges of joining together different
computational processes emerged as a unifying topic and concern.

As transformations grow in size and become more convoluted, they become
harder to understand. The next section focuses on visualisation and testing
system, which are used to examine and verify the behaviour of a robot system.

6.2.5 Visualisation and testing systems

The theme of visualisation and testing systems concerns with the examination
and evaluation of robot systems. This is often far from trivial considering the
interdependent and intertwined nature of environments, tasks, physical
embodiments, communication and transformation systems and the associated
interactional complexity that unfolds over time and space. As it is not feasible to
simply reason how a robot system would function in a spectrum of situations,
developers use a range of digital methods and tools to examine the internal
functioning and outward behaviour of a robot system. The theme visualisation
and testing systems consist of three partially overlapping categories that cover
the systems for visualisation, simulation and data management.

Visualisation systems provide the methods and tools for rendering system
configurations, embodiments, sensory data, message contents and motion on
the computer screen. In general, the development of a robot system is a highly
visual process. While very few of the analysed conference presentations were
about visualisation tools as such, they were constantly on display. It appears to
be challenging to convey or grasp an idea of any embodied behaviour as a series
of multidimensional and parallel movements and motions without relying on

185

visual renderings. Through visualisation systems, developers can observe the
functioning and behaviour of a robot system and examine what causes them to
behave in a certain manner.

For visualising, the ROS distribution provides Robot Visualiser (RViz66) and the
RQT67 package for connecting ROS with the QT user interface framework. They
reflect the heterogeneous and distributed structure of ROS-based robot software
by facilitating flexible construction of visualisations that correspond to the
structure of a particular robot system.

RQT provides methods and tools to visualise and examine ROS graphs, nodes,
messages, coordinate transformations and to plot, diagram and display data
transmitted over messaging and coordination channels (F: VI6). Figure 30
provides an example of an RQT dashboard that combines and presents run-time
sensor data and system diagnostics. As visualisation tools take their input
primarily from communication systems, the resulting visualisations are
contingent not only on the features and properties that are of interest to the
developers but mirror the architecture of computational arrangements.

Figure 30: An example of an RQT visualisation dashboard68

66 wiki.ros.org/rviz – Package summary for three-dimensional visualisation tool for ROS.
67 wiki.ros.org/rqt – Package summary for a Qt-based framework for graphical user interfaces
development for ROS.
68 Republished from the ROS wiki at wiki.ros.org. Creative Commons Attribution 3.0.

186

RViz provides tools and methods for constructing three-dimensional
visualisations by combining robot models (urdf), sensory data, control systems
and other contextual information. Overlaying different representations on the
screen can be used, for example, to provide a developer with an overview of the
embodiment and state of a robot system, its view of the surrounding
environment as well as the relation to the other objects, among other things.
Developers can also interact with robot systems through the visualisations.
Figures 31 and 32 illustrates RViz visualisations of the kinematic structure,
motion and sensory data processing of robot systems.

Figure 31: RViz visualisation of the kinematic structure69 and motion planning
of robot systems (E: TR13)70

Figure 32: Sensory data processing that shows data from a laser range finger
with intensity information and resulting Octomap representation (Kohlbrecher

et al. 2015, D: RS15)71

Simulation systems are also widely used in the development of robot systems
(F: VI1, VI8, VI12). Simulations are used to model and visualise physical

69 Republished from the ROS news at news.ros.org, Creative Commons Attribution 3.0.
70 Republished from the 2015 ROSCon presentation MoveIt! Strengths, Weaknesses, and
Developer Insight by Dave Coleman with permission. Copyright (2015) Dave Coleman.
71 Reprinted by permission from John Wiley and Sons, Journal of Field Robotics, Human-robot
Teaming for Rescue Missions: Team ViGIR's Approach to the 2013 DARPA Robotics Challenge
Trials, Stefan Kohlbrecher, Alberto Romay, Alexander Stumpf et al., copyright 2014 Wiley
Periodicals, Inc.

187

features of target environments, the sensory inputs they provide, the behaviours
of robot systems as well as the responses those behaviours may trigger in the
target environment. This enables the development and cost-efficient testing of
the software of a robot system against a virtual world before moving the code
onto a physical robot and actual target environment (see Figure 33). As
computational models, simulations also facilitate controllability and
repeatability of experimentation, which is difficult to achieve in open-ended
physical environments (F: VI14). This way, simulation provides a method to
test, analyse and benchmark behavioural models and algorithms under different
conditions and in different types of robots (F: VI14). In addition, simulations
can be used in continuous integration testing to ensure that a change in some
part of a robot system does not change the behaviour over a range of situations
in an unplanned manner (E: TR5).

Figure 33: Simulation illustrations from Team ViGIR’s approach to Darpa
Virtual Robotics Challenge (Kohlbrecher et al. 2013)72

OSRF also supports and coordinates the development of the Gazebo73 open-
source simulator (Figure 34, F: VI1, VI8, VI12), and Gazebo is well integrated
with ROS. In addition, several other simulators have been made compatible
with ROS (F: VI2, VI3, VI9, VI13, VI14). Some of them focus on specific
application domains whereas others can be viewed as more general frameworks,
each of them having their particular strengths and weaknesses. Figures 34 and
35 illustrate some target environments, use cases and the types of objects and
basic elements of which simulation environments can be constructed. Although
object models and simulated worlds can be constructed with editors from the
ground-up, object libraries facilitate the reuse of simulation objects and models
making the building of simulation environments easier.

72 Reprinted from 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics
(SSRR), Overview of team ViGIR's approach to the Virtual Robotics Challenge, S. Kohlbrecher,
D. C. Conner, A. Romay, F. Bacim, D. A. Bowman and O. von Stryk. Copyright 2013 IEEE.
73 gazebosim.org - The homepage of the Gazebo robot simulator.

188

Figure 34: Use cases and target environments for Gazebo simulations (F: VI1)74

Figure 35: Simulation environments are constructed with editors from different
simulation objects (F: VI1)73

74 Republished from the 2012 ROSCon presentation The Gazebo Simulator as a Development
Tool in ROS by John Hsu and Nate Koenig available at gazebosim.org. Copyright 2012 Open
Source Robotics Foundation.

189

While simulations are beneficial, running a virtual robot in a virtual
environment cannot replace physically grounded testing (F: VI15). Testing in
simulation resembles more of a computer game than any real-world scenario.

To reduce the reality gap, robotics companies and research organisations use
physical simulation environments where they can run experiments in a
physically grounded manner. Figure 36 illustrates the difference by contrasting
a simple block model and physical simulation side by side.

Figure 36: An example that contrasts a simple block model75 and physical
simulation (F: VI15)76

Data management systems are used to collect and manage test data. The
systematic collection of sensory data and messages transmitted between
computing nodes is essential for the purposes of testing and longer-term
software development (F: VI7, VI15, VI16). Recording and storing the run-time
data enables the replication of scenarios which could not otherwise be
reproduced or rerun.

With stored sensory data and messages, developers can rerun scenes and
scenarios to develop and test software against rich data sets which represent the
unfolding of previous real-life or test situations. In addition, such data sets can
further be analysed and annotated so that relevant patterns and features can be
extracted to develop algorithms and behaviours which are able to cater to a
wider variety of situations (F: VI7, VI16). For the purposes of data collection and

75 An example of a block model where a sonar sensor cone collides with an object instead of
intersecting. Republished from the Gazebo website at answers.gazebosim.org/question/
16242/sonar-sensor-cone-has-a-collision/. Creative Commons Attribution Share Alike 3.0.
76 Republished from the 2016 ROSCon presentation Physical Continuous Integration — CI on
Real Robots! by Alex Henning with permission. Copyright (2016) Fetch Robotics.

190

management, the ROS communication system provides rosbag77 functionality
for recording message streams from different communication channels and to
store them into bag files (F: VI7, VI16). These streams can then be filtered,
examined and replayed at a later point of time.

Much of data storage, management, analysis and visualisation takes places in
digital infrastructures and systems that reside outside a robot system, and there
are companies that offer related technologies and services (F: VI16). In addition,
there are public repositories where researchers and developers can store and
their datasets and make them publicly available. However, the extent to which
data can be shared is contingent on the structure of a robot system, the
configuration of its communication system, message types and the distribution
of computational processes in general. Therefore, while some sensory data
recorded with common message types might be readily transferable across
different systems, the interprocess data stored using customised and non-
conventional message types is often much less so. Similarly, changing message
types and computing architecture during the development of a robot system
may break the backward compatibility rendering the previously recorded data
obsolete (D: RS11).

The characteristics of combination concerning the visualisation and testing
systems reflect the complexity and heterogeneity of robot systems; visualisation
and testing systems are essential in the probing of multidimensional and
temporal couplings within a robot system and in relation to its environment. As
the multi-layered and continuous transformations are often convoluted and
difficult to follow, the purer forms of reasoning and logic appear to give way to
observation and experimentation. The characteristics of combination can be
reflected through behavioural couplings and technological combinations.

Behavioural couplings can be reflected in terms of the internal functioning and
the outward behaviour of a robot system, yet it is worth to note that the two are
intrinsically linked as the internal functioning leads to the outward behaviour.
To observe and examine various behavioural couplings and relationships,
visualisation systems are used to render internal and external representation of

77 wiki.ros.org/rosbag - A set of tools for recording from and playing back to ROS topics.

191

a robot system, its behaviour and environment. In addition, simulation systems
facilitate the controlled experimentation, whereas data management systems
enable the recording, analysis and rerunning of different situations and
outcomes. Visualisation and testing tools need to be able to combine elements of
a robot system in multiple ways to expose different behavioural couplings. To
this end, technological frameworks, visualisation and testing systems provide a
variety of methods, tools, technologies and frameworks for developers to
combine and construct visual displays and virtual worlds. For example, for
simulation purposes, mock-worlds can be constructed from reusable building
blocks that mimic target environments and their physical properties with
varying degrees of reality. Furthermore, simulation systems offer flexible
architectures upon which new simulation worlds, objects and dynamics can be
developed. To absorb the heterogeneity and complexity that characterise not
only robot systems but also their target environments, visualisation and testing
systems manifest themselves even more open-ended, heterogeneous and
complex than the robot systems whose behaviour they have been created to
observe and evaluate.

The dependence on the visualisation and testing system does not only tell that
robot systems are difficult to reason about. It also shows how the methods and
tools of system development reflect the expansion of the focus from human-
machine interactions to environment-machine interactions. As robot systems
interact directly with the environment they are embedded in, developers cannot
solely rely on their personal experience through the screen-based interaction as
criteria in the evaluation of interaction designs. Instead, they will have to model
and construct an environment against which the fitness of a particular
behavioural model of a robot system can be examined and evaluated. This
demonstrates the shift of focus in the design of interaction and the need for
appropriate instruments for observing and making sense of these interactions.

6.3 Robot systems as chains of transformation

This section brings together the themes and categories discussed in the previous
sub-sections and develops a conceptual model that illustrates how they are
related to each other. The outcome can be viewed as a structural-functional
model that conceptualises robots and autonomous systems as contextually

192

bound and embodied chains of transformation. The purpose of this is to make
the relationships among the themes and categories explicit so that they can be
analysed and theorised further.

Figure 37: A conceptual model of a robot system (Own figure)

A structural scheme of a robot system can be presented as a composition which
comprises three thematic groupings, that is, physical embodiments,
communication systems and transformation systems, as presented in Sections
6.2.2, 6.2.3 and 6.2.4.

Figure 37 illustrates how these thematic groupings are related to each other.
Here, the conceptual model is sketched out as a stack-like structure, which
presents an idealised and simplified composition of a robot system. First, the
blocks on the bottom and the sides represent the physical embodiments which
define the boundary of a robot system in relation to its environment. Sensors,
actuators and hardware platform constitute the embodiment that allows a robot
system to interact with the surrounding environment. In doing so, these
embodiments mediate between the physical and digital matters. Second, the
three blocks on the top of the communication system block represent a variety
of transformation systems which perform transformations upon geometric

193

coordinates and other representations of data, and these transformations define
the way in which sensory inputs are transformed into actions. Finally, the
middlemost block represents the communication systems which connect the
physical embodiments and different transformation systems to each other while
also coordinating and monitoring their operations. The communication systems
can be viewed as a unifying layer through which the distributed physical
embodiments and transformation systems come to interact with each other.

It is worth note that this illustration is limited in a few important ways. The two-
dimensional layered stack-like illustration does not expose the distributed and
networked computing architecture of robot systems, as illustrated earlier in
Figures 6 and 22 when the architectural principles of the ROS communication
were presented. Also, the number of transformation systems is typically much
higher than three and they may interact with each other in a highly intricate and
parallel manner. In addition, sensors, actuators and platforms come in many
different forms and configurations that transcend the rigidity of this illustration.

However, the presented conceptualisation illustrates the main thematic
groupings while showing how they are related to each other. The
communication systems and related methods and tools can be seen as a
foundational layer, and it also forms the unifying framework that brings the
ROS community together. In turn, the physical embodiments and
transformation systems show a greater degree of variety revealing the spectra of
forms and functions that reflect the variety of contextual and behavioural
requirements and couplings. These three thematic groupings in combination
render the structure of a robot system.

To elaborate this conceptualisation further, the structural focus presented above
can be complemented with a functional one. For this purpose, it is beneficial to
include the contextual embeddedness in the picture and bring forward the role
of interactional and behavioural couplings as they play an essential role in the
animation of robot systems. Thereby, the robot system and its constituent
elements illustrated in Figure 37 are added with the layers that illustrate the
contextual embeddedness and interactional characteristics of behavioural
models. These additions are presented in Figure 38.

194

Figure 38: A contextually embedded model of a robot system (Own figure)

195

In terms of contextual embeddedness, the outermost band in Figure 38
represents the environmental context within which a robot system is embedded.
As discussed above with reference to the visualisation and testing systems in
Section 6.2.5, the surrounding environment provides inputs that condition the
behaviour of a robot system, and that environment, in turn, either accepts or
rejects the actions the behavioural model of a robot system produces. Thereby,
the context in which a robot system is embedded represents the ground truth
against which its performance has to be evaluated. Even if robot systems are
expected to operate autonomously on their own, they do not do so as detached
entities but with respect to given goals and the environment they are embedded
in. This highlights the importance of the interactional and behavioural
couplings between the robot system and its surrounding environment.

Interactional coupling refers to the capabilities of a robot system to interact with
the surrounding environment. Robot systems differ from the ordinary screen-
and-keyboard based computers in that their spectra of modalities for carrying
out interactions is much broader, and they are more holistically and directly
coupled with their surroundings. In addition to the physical embodiments
presented above, robot systems are also equipped with user interfaces (B: CO7,
CO27) and often connected to digital infrastructures and cloud-based services
(B: CO6, CO12). Whereas sensors measure selected features and states of the
surrounding environment, a user interface provides a human operator with
means to interact with a robot system and monitor task execution. In addition,
connectivity enables access to other services and sources of information, such as
to mapping and object recognition data and services and other relevant
information infrastructures. In turn, whereas actuators carry out physical
actions by exerting forces, sensory and transactional data can also be fed back to
different information systems and cloud-based services. Therefore, when
conceptualising the interactional modalities of a robot system, it is necessary to
include not only the physical embodiments but also other forms of digital and
human interaction and information exchange. These different modalities of
interaction in conjunction form a set of system boundaries in a broader and
more distributed sense, taking into account different physical and digital
domains with their respective purposes, affordances and constraints. The
configuration of interactional modalities can be considered to define a degree of

196

interactional coupling between a robot system and its environment. In doing so,
it also defines the information space within which the computational processes
that produce the behaviour of a robot system operate. Therefore, while the
modalities and degree of interactional couplings define the scope of
interactions, they also define the informational boundaries and foundation
upon which computer-controlled behavioural models can be constructed.

A behavioural coupling builds on the interactional coupling and is concerned
with the capacity of a robot system to produce desired and appropriate
behaviour. The notion of behavioural coupling refers to the extent to which a
behavioural model is able to transform particular inputs to meaningful actions
with respect to a given task and context. As discussed with reference to the
communication and transformation systems in the earlier sections, behavioural
models are produced by the interconnected computational processes that
animate the embodiment of a robot system. As these computational processes
reside in the middle of an embodied set of interactional couplings which are
contextually embedded and bound, the degree of a behavioural coupling is not
only context-dependent but also predicated on the degree of interactional
couplings that mediate the interaction between the computer-controlled model
of behaviour and surrounding environment.

The technological combinations that produce the interactional and behavioural
couplings can be conceptualised as chains of transformation. This concept of
the chains of transformation highlights the functional and organisational
properties that characterise complex digital innovation in the context of robots
and autonomous systems. The notion of transformations brings forward the
presence of computational processes which transform inputs to outputs that are
qualitatively different, whereas the notion of chains refers to the communication
system whose purpose is to replicate data between different processes of
transformation (nodes) without any distortions or delay. In conjunction, they
present the structure and functioning of computer-controlled models of
behaviour as distributed, interconnected and stepwise transformations whose
purpose is to transform inputs into actions. This analytical difference between
the processes of replication and transformation brings forwards and explains
the differences reusability, composability and verifiability among different

197

software packages. Overall, the processes of replication appear more
generalisable than the processes of transformation.

Furthermore, wrapping the layers of contextual embeddedness and
embodiment around the chains of transformations shows that robots and
autonomous system can be viewed as contextually bound and embodied chains
of transformation. This addition seeks to highlight that the specificity of designs
emerges from the contextual binding which renders the backdrop against which
the interactional and behavioural couplings are constructed and evaluated. This
gives rise to nested and multi-faceted arrangements that bear significant
implications to the organising logic of complex digital innovation.

To conclude, Part 1 of this chapter has outlined an answer to the operative
research questions that set out to identify the instances of subsystems and
combinations and their respective characteristics. The process of thematic
analysis condensed the documentary evidence to six salient themes. Of the six
themes, five have now been described and discussed here in terms of their 13
constituent categories and elaborated to a model that conceptualises the
structure and functioning of robots and autonomous systems. This structural-
functional conceptualisation is one of the outcomes of this research. The
subsequent Part 2 of this chapter shifts the focus on the primary research
question and it is approached in the light of the conceptualisation presented in
this part.

198

Part Two

The generative-integrative mode of development:
From components to compositions

199

6.4 From components to compositions

This section examines how the tensions between the specificity of designs and
distributedness of knowledge and control unfold in the development of robot
systems. The purpose of this is to provide an answer to the principal research
question, which asks how the tensions between the two can be resolved. The
examination builds upon the themes and conceptualisation that have been
developed in the preceding sections and combines them with the observations
and data from the field notes and interviews.

The subsequent section describes and discusses the theme ROS community and
software development and related categories. After this, the transferability and
reusability of software packages are discussed before describing the systems
development process that is conceptualised as a generative-integrative mode of
development. The process sheds light on how the tensions between the
specificity of designs and the distributedness of knowledge and control are
reconciled. Then, the final section elaborates the role of under-specification and
constructive ambiguity in this process before the closing of the chapter.

6.4.1 ROS community and software development

The theme of the ROS community and software development revolves around
the software development in the context of robot systems, the reuse of software
packages in the ROS community and the transfer of technological knowledge.
One of the founding principles of ROS is to facilitate the reuse of robotics
software in order to pool resources and share knowledge among the community
members. As an open-source community, ROS facilitates voluntary
participation in the absence of a central design agency and strict rules.
Community members can make use of the ROS communication system and
other software packages and resources as they see fit. Also, they can share their
own code with other community members, maintain and fix bugs in existing
software packages and contribute to the ROS ecosystem or domain-specific
groups according to their interests (C: SE7, SE10, SE27).

200

This theme consists of two categories, the tools and infrastructure and the
knowledge transfer. However, considering that the purpose of tools and
infrastructure is also to transfer knowledge, these two categories are related.
The analytical difference between the two is made on the grounds that the
category of tools and infrastructure deals with the technological elements
related of the software development and community, whereas the category of
knowledge transfer is related more to the social and organisational elements.

The category of tools and infrastructure refers to the functionality and services
that facilitate software development and distribution in the ROS community. As
mentioned earlier, the listing78 in the ROS wiki shows that approximately 2000
software packages are available through the ROS software distribution
infrastructure, consisting of the ROS communication system, various
transformation systems, hardware drivers, development tools and visualisation
and testing systems.

The source code of different software packages distributed through the ROS
infrastructure is not hosted in a single repository. While the source code of the
core ROS and the central components and tools are managed and hosted by
OSRF, the packages and source code that have been developed and made
available by the community members are hosted in a distributed manner in the
code repositories that may belong to commercial organisations, research
institutes, universities and individual contributors alike. With this arrangement,
the original developers can retain the control over their packages and source
code even if they are willing to share and distribute it through the ROS
infrastructure.

In order to make ROS distributions and packages available to the wider
community, OSRF manages and runs a centralised build system79 and software
distribution infrastructure80 (C: SE28). The ROS software distribution
infrastructure gathers, compiles and distributes software from approximately
150 different repositories at the time of writing. To this end, the ROS framework

78 www.ros.org/browse/list.php – the website that lists publicly available packages, which are
distributed through the ROS infrastructure.
79 wiki.ros.org/catkin – Build system and infrastructure for ROS.
80 wiki.ros.org/build.ros.org – The public build farm is used to build binaries of the core ROS
packages and any open source packages released by the community.

201

includes a custom-made build system that facilitates the compilation, packaging
and distribution of code that resides in different code repositories and is written
in different programming languages (C: SE13).

While the distributed hosting of source code shows how the knowledge and
control of different technologies and software are distributed across the ROS
community, it also shows that different software packages do not adhere to any
single versioning system, particular release cycles or a project plan (C: SE16,
SE29). ROS software is created and developed in a decentralised manner, yet,
regardless of this distributedness of knowledge and control, the centralised
build system brings together the code from different repositories making it
available to the wider community in a centralised manner.

This has implications on the characteristics of combination. The decentralised
development and asynchronous release cycles may affect negatively to the
stability of software releases (C: SE29). OSRF develops and maintains the core
components and functionality of ROS, including the communication and
coordinate transformation frameworks and some development tools, and it
avoids doing changes to the core components within the bounds of yearly
releases81 to ensure their stability and interoperability. However, the packages
which are not the part of the core distribution tend to be subject to more or less
frequent or unannounced changes. Their developers and maintainers (C: SE10)
control the source code and carry out changes to their code according to their
needs and plans (E: TR13). As changes to the code are picked up, compiled and
shared by the centralised build and distribution infrastructure in a piecemeal
manner, the software distributed through the ROS infrastructure can be said to
follow a rolling strategy of release, which produces small and sporadic changes
(C: SE29). Although this allows parallel and uncoordinated development, the
lack of coordination may lead to instability and incompatibility if and when the
packages which depend on each other are changed asynchronously. This rolling
release of software packages that unfolds according to the needs and schedules
of individual developers is not ideal from the point of view of robot system
developers (C: SE29). In the end, the elements that constitute a particular

202

instance of chains of transformation should be compatible with each other for a
robot system to function, and any unplanned and unannounced changes to any
of the elements in the chain may prove detrimental.

To protect against inappropriate changes that remain outside the control of the
developers of a robot system, the developers typically run and control their own
robot-specific source code repositories, build systems and software distribution
channels (C: SE13, SE16, SE22, SE23, SE28, SE29) for managing and compiling
the code that is being developed and tested for a particular robot system.
Separating a robot-specific codebase from that of the general ROS distribution
allows the developers to evolve particular parts and stacks of robot-specific code
gradually and according to their particular needs without it having any direct
implications to the main distribution, unless the changes are incorporated into
the source code the main branch. Furthermore, the organisations that develop
productive applications on the commercial grounds may not want to share their
core assets and intellectual property freely as open-source with their customers
and competition (C: SE16, SE23).

Therefore, whereas robot system developers can make use and build upon the
software packages distributed in the ROS community, they also must protect
their codebase against untoward outside influences and guard their intellectual
property to maintain the competitive advantage. This way, the public and
private spheres of software coexist and evolve asynchronously. The publicly
available software packages and source code are combined and integrated into
compositions that are specific to a particular robot system, and every now and
then selected changes can be pushed and incorporated to the main branch of the
source code of a software package.

The category of knowledge transfer refers to the social and organisational
efforts and initiatives to transfer knowledge concerning software packages, their
underlying technologies and potential scenarios of use. To consolidate
knowledge on software packages and robot software development, the websites
wiki.ros.org, answers.ros.org and the ROS-related discussion forums provide

81 wiki.ros.org/Distributions – A ROS distribution is a versioned set of ROS packages. The
purpose of the ROS distribution is to allow developers work with a relatively stable codebase.
Therefore, once a distribution is released, OSRF tries t o limit changes to bug fixes and non-

203

the venues for documentation, peer support and general discussion.
Wiki.ros.org provides a place for the general documentation of ROS, software
packages, tools and methods in terms of their functionalities and installation,
and answers.ros.org is a discussion forum that provides peer-support
concerning the technical implementation challenges. In addition, some of the
common conventions used within the ROS framework are documented in the
form of ROS Enhancement Proposals82. In turn, general discussion regarding
the ROS community takes place on discussion forums and email lists, whereas
the ROSCon conferences bring people together on a yearly basis.

In addition to the community-wide venues of knowledge transfer, several local
events and more targeted activities are also organised. Local events and training
serve regional and more targeted needs, and there are also multiple subdomains
and interest groups (C: SE26, SE27). They seek to pool their resources and
knowledge around particular areas of interest, for example around specific
application domains such as industrial manufacturing, agriculture and military,
or around particular technologies such as quadrotors, hardware drivers, ROS2
or running ROS on embedded devices. This way, the category of knowledge
transfers represents the social and organisational side of the ROS community as
the community seeks to make ROS more readily usable and accessible to the
wider audience.

6.4.2 Transferability of software and knowledge

The observed diversity of the ROS community raises a question to what extent
different software packages are readily transferable across different robot
system or domains of productive applications. In the end, as discussed earlier,
roboticists work on a rainbow of use cases and environmental contexts. This
renders the community highly heterogeneous while the knowledge and control
of different technologies are distributed among the community members
without any centralised design agency. This section sheds light on this matter by
drawing on the observations and discussions in the events and interviews as
listed in Appendices H and I.

breaking improvements for the core packages (everything under ros-desktop-full).
82 www.ros.org/reps/rep-0000.html - Index of ROS Enhancement Proposals (REPs).

204

The extent to which software packages are transferable across different robot
systems and domains of productive applications vary significantly. This matter
was often discussed along the lines of the dependency on physical
embodiments, the contextuality of behaviour and the partitioning of chains of
transformation as well as the underlying objectives of robot software research
and development.

The dependence on the physical embodiments was one of the commonly
mentioned aspects in relation to transferability. The physical groundedness of
data and computation is condensed in the quotation from an interview below.

“[G]athering experience means that you need to have an embodied system for
your data to be somehow meaningful.” (I: IN1)

The data a robot system processes and operates upon represents its
embodiment, environment and behaviour in terms of a variety affordances,
capabilities and constraints. Thereby the experimental and observational data a
robot system produces for the purposes of research and development is highly
embodied and context-dependent. This has implications to the transferability of
research results, as expressed in the quotation below:

“I think the big challenge that robotics has at the moment is reproducibility.
Because, a lot of the time people developing their own systems, their own
hardware as well as their own software independently of each other, and it
makes total sense to do that because you have the expertise and you are
looking at the particular effect, but it makes it very hard to share things
between different labs. So, to be able to create a larger and more integrated
system that is able to solve more than the particular problem that you are
trying to solve, that's where the challenge is, how to integrate, how to share
results.” (I: IN1)

However, chains of transformation are developed not only with reference to
physical embodiments of a robot system but also with reference to tasks and
task environments. They implement behaviour and functions that are derived
from the characteristics of a task and from the environment in which the task is
going to be performed, and the fitness of any particular behaviour is defined by
the overall context in which the performance takes place.

205

In order to make software transferable, the question remains on how and
according to which logic should contextually bound and embodied chains of
transformation be partitioned to generalise different pieces of the behavioural
logic so that they could be transferred and recombined in order to produce other
robot systems? When the overall behavioural model developed with reference to
a particular robot system is partitioned into separate algorithms and software
packages, the resulting packages tend to come to carry the embedded
underlying design criteria and implicit system-wide assumptions. This way,
software packages that originate from different sources do not necessarily share
the same underlying design assumptions or quality criteria (B: CO1, C: SE03,
SE9, SE11, SE12). The assumptions may differ for example in terms of the
affordances and limitations of physical embodiments, the semantic meaning
and use of message types in the context of the ROS messaging system, expected
service levels for real-time operations, error handling, the level of testing or
documentation among others. All this may hinder the reuse of packages when
they are collected and distributed in a piecemeal manner from heterogeneous
sources. Against this backdrop, it is not a surprise that the challenges on the
replication and reproducibility of research results and the reusability of code
have recently become under scrutiny in the field of robotics (Antonelli 2015).
Researchers have started calling for greater transparency on testing methods to
ensure the reproducibility of research results (Bonsignorio & del Pobil 2015).

The objectives of robot software research and development may also hinder the
production of transferable software. When the distributed software derives from
an academic research project, the authors of the code may not exert excessive
efforts to abstract and generalise the code to maximise its transferability and
reusability (B: CO1, SE9, SE11, SE12). In the end, the objective of a research
project is often to produce some novel technology, algorithm or a proof of
concept which can be published in an academic journal. Researchers are rarely
incentivised to deliver and maintain readily transferable, robust and reliable
code. Furthermore, it is important to note that the development of algorithms
and the engineering of software are different problems. When probed by the
author in a robotics conference reasons for this, the answer was “you cannot
create software if you do not have an algorithm first”. This was also echoed in
one of the conference presentations (B: SE9) which highlighted that while

206

graduate students may generate a lot of code, they are not software engineers
and often do not maintain the code after graduation. However, others may pick
up the previous work if they find it useful and develop it further according to
their needs. Regardless of this, it must also be noted that some research
laboratories and institutes seek to develop and package their software in a way
that makes their contributions more readily transferable and reusable, this
being especially the case with domain and function specific software packages
(E: TR2, TR5, TR13) where the overall structuring of tasks and task
environment is somewhat known (C: SE26, SE27).

In this light, it is not surprising that robotics researchers are often more focused
on the development of algorithms than software engineering, and that the scope
and quality of the distributed software packages may vary to a great extent.
Whereas research robots are created to produce novel technologies and proofs
of concepts, turning them into productive applications and commercial
innovations often requires further development to increase reliability,
robustness and transferability (SE8).

Regardless of the challenges surrounding the transferability of research
outcomes and software packages, ROS clearly demonstrates that to a certain
extent software can be transferred across robot systems and use cases. To
explore this further, it is beneficial to take a look into the stability and centrality
of software packages in terms of the themes and categories presented in Part 1.

According to the Community Metrics Report83, ROS software packages related
to the communication system and development tools are most downloaded.
This is not surprising since the ROS communication system provides the
common methods and tools for constructing a robot system as a distributed
computer, and this is where the many of the needs and requirements from
different domains of robotics converge. Thereby, the packages that constitute
the communication system show a great degree of transferability and
reusability. This seems to apply also to the software development tools and
methods that are used in the visualisation and testing of robot systems.

83 wiki.ros.org/Metrics – ROS Community Metrics Reports.

207

Whereas the communication systems are used to establish interconnections
between computational processes, the coordinate transformation systems are
used to define and compute the structure and articulation of the physical
embodiment. The needs and requirements in this area also converge to an
extent, and these central packages are also developed and maintained by OSRF.
The robot model (urdf) and the library for performing coordinate
transformations (tf) provide the methods and tools to define the structural
elements, relationships and properties of the physical embodiment that
compose a robot system and carry out coordinate transformations. While these
packages are transferable and reusable (E: TR1, TR3, TR8) to a large extent,
they are not applicable to all scenarios. Therefore, alternative models and
methods have been developed and made compatible with ROS (E: TR9, TR14,
TR15) to overcome the limitation of the core packages. This way, whereas the
coordinate transformation systems are also transferable and reusable, they
show a greater degree of variety than the communication systems and
development tools.

In contrast to the messaging and coordination transformation systems, the
physical embodiments and systems of representational transformations show
much greater variety. As discussed in Part 1 with reference to the physical
embodiments, hardware makers produce a variety of sensors, actuators and
hardware platforms that offer different modalities of interaction in response to
the variety of tasks and task environments. Similarly, there is also a plethora of
algorithms and software packages available to produce a variety of
representational transformations that might be needed when developing a
particular model of behaviour for a robot system.

Based on these observations, the needs and requirements tend to converge in
relation to the communication systems, development tools and coordinate
transformation systems while they diverge on the physical embodiments and
representational transformation systems. This indicates that the reusability and
transferability of software packages are not simply a binary matter, but vary
according to the purpose, functional characteristics and origins of a package.

208

6.4.3 Generative-integrative mode of development

Based on the conceptualisations, themes, categories and characteristics of
combination presented in the previous sections, this section presents and
outlines the concept of generative-integrative mode development to
characterise the process of robot system development.

Although ROS facilitates the interconnection, distribution and reusability of
software packages, it does not enforce any particular methods or standards on
how distributed computational processes should be partitioned, arranged or
interact with each other (B: CO1). While there are some common conventions,
ROS provides the developers with flexibility to proceed in a way that best suits
their particular needs. To an extent, packages can be combined in different ways
and the open source code allows developers to modify the code when that what
is already available does not serve their needs. While this flexibility is often
brought forward as one of the main benefits of ROS (H: EO4), the lack of
standards is also seen to hinder the efforts of reuse (H: EO3, EO9, EO10).

Moreover, while ROS and other robot software development frameworks are
frequently referred to as and discussed in terms of platforms, they typically lack
the essential characteristics of a platform. In particular, they are not platforms
when a platform is understood as a singular stable core component that
provides clear boundary resources, interfaces and rules upon which applications
could be built and components connected (Eaton et al. 2015; Baldwin &
Woodard 2008). ROS is not an operating system in the traditional sense of the
word but a framework for developing robots and autonomous systems as
distributed computation.

In this context, software development can be seen to unfold as a process that
can be labelled as a generative-integrative mode of development. As discussed
in Section 3 (6.3), the design and development of a robot system begins from
the evaluation of the context. To equip a robot with sufficient interactional
modalities, an appropriate physical embodiment has to be selected or
constructed. After that, the development of a behavioural model as chains of
transformation can proceed. To construct these chains of transformation, the
developers often seek to reuse and combine existing software since it provides

209

access to a wide body of technological knowledge while decreasing the
development time and the need for development resources.

The development of meaningful and reliable behavioural models requires
careful combination and integration of the physical embodiments,
communication systems and transformation systems. A common approach to
begin the development work is to combine the first version of a robot system
from the software packages that are already available and readily interoperable
(RS18). In this approach, the developers first carry out the initial design and
functional (de-)composition based on the task and task environment specific
requirements, and then identify the functions and packages which in
combination are seen to provide an appropriate starting point for further
development. Subsequently, the developers combine these different packages to
create the first working version of a robot system. While this generative
combination produces the first version, it cannot be considered as a finished
product. Instead, it serves as a starting point providing the embodied system for
experimentation and data collection that is necessary for further development.

With the first version in place, the developers can start working on the
integration of the behavioural model and focus primarily on the areas that are
seen most beneficial in terms of the objectives of their project. These integration
efforts can be viewed in terms of internal composition and outward behaviour
since the developers attempts to integrate the behaviour of a robot system better
with its task and task environment are reflected in the internal composition and
interactions within the chains of transformation. Although the integration
occurring after the generative combination seeks to produce a well-functioning
and integrated whole, it is not always a straightforward process and may require
significant modifications to the initial combination. Figure 39 illustrates
figuratively how Team Delft combined and integrated the components from the
MoveIt! motion planning and controlling package with their custom-made
components to come up with the chains of transformation that served their
particular purposes in the Amazon Picking Challenge.

210

Figure 39: Team Delft’s implementation of MoveIt! for Amazon Picking
Challenge (D: RS19)84

Moreover, while ROS provides a number of reusable and transferable packages,
the cost of search and verification increases as packages become more purpose-
specific (H: EO4). Finding and testing software packages requires time and
resources even if the packages would be nominally free of charge. They may not
always be well documented and might be of low quality, requiring further
debugging, development and testing or even complete reimplementation of the
underlying idea (EO3, EO4). Furthermore, as different software components
and packages do not necessarily share the same underlying system-wide design
assumptions their integration might be challenging or even impossible in some
occasions, even if they appear to be compatible at a first glance. Of course, much
of this can be overcome by rewriting a package or modifying selected parts of
the code if the source code is publicly available, but this should not be
overlooked as it may require significant time and effort.

84 Republished from the 2016 ROSCon presentation Plan to Win with MoveIt! - Lessons learnt
from the Amazon Picking Challenge 2016, copyright (2016) Mukunda Bharatheesha, with
permission. Images on the slide are from dx.com and northerntools.com.

211

The role of underlying assumptions was also brought forward by the Team Delft
as they summarised the lessons they learned when preparing for the Amazon
Picking Challenge. They condensed the challenges of the contextual binding and
implied assumption as follows: “Gravity is a heartless entity!”, and
“Assumptions bear the roots of all disasters!” (D: RS19).

In a similar manner, the integration challenges related to the generative
combination were highlighted by a robotics researcher in one of the interviews:

“If you build an integrated system, then [you] tend to know what all the
different kinds of components are doing. Some people think that you can plug
things just together and get some emergent behaviour come out. Maybe it's
true and maybe it's not. It depends very much if you are lucky or not.” (I: IN1)

However, another interviewed researcher (I: IN2) told that she used ROS-based
software and components as black-boxes concentrating only on the behaviour of
the algorithms that were of her primary research interest. Although the rest of
the robot system offered her with an embodiment against which to carry out her
research, she emphasised of not being in the business of developing robots but
studying the behaviour of particular machine learning algorithms.

The reusability and compatibility of different software packages emerged
frequently throughout the research. In the end, the both version of ROS have
been designed to facilitate the reuse of robot software, yet it does not enforce
any particular standards (B: CO1). As long as the computational processes agree
on the message type, paradigm and name of the connection, they are able
exchange messages, yet the ability of any two nodes to exchange messages does
not imply that they share the semantic meaning of the message or that a
syntactically valid and successful interaction would produce meaningful
behaviour at the system level. The difference between the syntactic and
semantic compatibility and the system level functionality is manifested by the
prominence of the visualisation and testing systems. Even if a robot system
would be functional and working in a purely syntactic and technical sense, its
behaviour with respect to its task and task environment can be lacking. In
addition to the syntactic compatibility, the semantic compatibility among the
interconnected transformations needs to be increased so that the
transformations in combination would produce the desired behaviour.

212

Robot system developers evaluate the level of behavioural coupling and
semantic compatibility using simulations and physical robots. With the
simulation systems, developers are able to run controlled experiments in a cost-
efficient manner before beginning the testing with the physical robots. As the
simulated worlds are compositions of computational simulation objects and
models, their usefulness and reliability are predicated on how closely they have
been crafted to resemble and model a particular task and task environment.
Regardless of the inevitable reality gap, they provide the methods and tools to
evaluate and examine different models of behavioural and to work towards the
higher levels of semantic compatibility. Once the appropriate levels of
behavioural coupling and semantic compatibility have been reached in
simulation, testing and development can proceed with the physical robots in the
actual task environment. As the actual physical environments are more open-
ended than their simulated counterparts, it is not uncommon for a robot system
to perform better in simulation than in the actual environment. However, while
the open-endedness of the physical environment provides the environmental
and operational variety necessary for well-grounded testing, it is also
challenging to reproduce (F: VI15). To ensure the reliability and robustness of
behavioural models over a range of situations, testing and development in both
simulated and physical environments are often needed.

Based on these observations, the generative-integrative mode of development
can be conceptualised as a process that begins with the initial generative
combination of the physical embodiments and software packages and then
continues with the subsequent iterative and cyclical process of gradual
integration with an aim to compose a robot system that produces meaningful
behaviour. Once the first working version of a robot system is functioning, it can
be used to gather experiences and observations that are necessary for
composing a well-crafted and dependable model of behaviour.

6.5 Under specification and constructive ambiguity

The generative-integrative mode of development illustrates the challenges that
revolve around transferability and reusability of software packages, yet the wide
uptake of ROS demonstrates that this does not prevent from making use of what
is already available. As discussed above, ROS does not enforce any particular

213

standards. The software packages that originate from the community may not
be fully compatible with each other, even if they would be able to exchange
messages with each other through the ROS communication system. Therefore,
the question remains on what grounds software is then transferred and reused?
The tentative answer to this question is the under-specification of
interconnections which can be viewed as constructive ambiguity, even if this
may seem as a questionable practice.

The interconnections and operational run-time messaging between the ROS
nodes are performed through the messaging system. For this to happen, the
coordination system starts nodes, making them to establish interconnections
according to a system configuration that is specified in a start-up file. The
composite behaviour that is produced through the distributed computation
materialise only at the run-time when the system is operational and the
interactions between the nodes occur. In turn, when the system is stopped, and
no interactions between the nodes occur, its systemness disintegrates to a set of
unconnected software components until the interconnections are reanimated.

The interconnections between the nodes are based on data exchange according
to a particular message type and method of communication. The specification of
these inter-node connections can be viewed as under-specified and partial
considering that the syntactic specification of a message type and method of
communication does not extend to the semantic, contextual and behavioural
aspects of a composition at the level of a robot system. Even if there are some
common conventions85 and practices that inform how robot systems can be
designed and developed to ensure broader compatibility and interoperability
among software packages, in general, the lack of the explicit specification of
various non-interface design parameters does not expose the system-wide and
contextual assumptions that may underlie the design of a particular component.
As the interconnection-level specification often does not capture all design
variables and assumptions, the compatibility over the interconnection can be
viewed as under-specified.

85 www.ros.org/reps/rep-0000.html – Index of ROS Enhancement Proposals (REPs).

214

The under-specification enables constructive ambiguity as it allows developers
to overlook certain non-interface design parameters. While this facilitates the
production of generative combinations, it does not necessarily produce well-
behaving systems. The under-specification often necessitates additional design,
development and testing in order to craft and integrate components into a
composition that satisfies specific requirements of behaviour and robustness,
yet these multi-faceted engineering and adjustment efforts tend to be
convoluted and may still not result in the desired outcome (H: EO11). Whereas
this flexibility can be leveraged and managed in the context of research and
development, it poses challenges in the view of mission-critical and commercial
applications. The lack of precise specifications rarely renders the level of
reliability and verifiability that is required in mission-critical and other high-
performance applications.

The benefits and drawbacks of under-specification emerged in various occasions
and guises during the course of the research. It was entirely possible to hear
completely contradictory commentaries concerning the profitability of the
under-specified approach. While others highlighted that the reuse and
transferability had reduced significantly the costs of software development (I:
IN4), others pointed out that simply circulating and amending pieces of
software around does not create a solid foundation for software reuse nor does
it encourage the use of systematic software development practices as developers
tend to gravitate to start from what is already available regardless of its quality
and usefulness (H: EO4). This was summarised by a robotics professor (H:
EO8) along the following lines:

“ROS is standard, and everybody uses it. It’s a pragmatic approach for
research as everybody knows it and it provides the basic architecture.
However, if you ask 4 people about ROS, you get 4 opinions. But there is not
really anything else widely available at the moment.”

While the developers of robot software frequently refer to the practices of
general software engineering and highlight the benefits of information hiding,
abstraction, platforms, interfaces, application stores and software reuse, at the
same time, they are cognizant of the distinct requirements that characterise the
contextually bound and embodied chains of transformation. Even if the need for
reuse and commercialisation of applications and software components are well-

215

recognised, the application stores were not seen as an appropriate analogy for
several reasons (H: EO4). For example, whereas ordinary desktop and mobile
applications operate individually on the top of a platform (i.e. an operating
system), the various components of robot control software interact with each
other in a distributed manner, thereby complicating the incorporation of any
new or altered components into existing compositions. Other obstacles were
brought up as well, such as the lack of standard interfaces, the lack of detailed
knowledge regarding what some particular component actually does, the
absence of appropriate test cases and occasionally poor documentation (H:
EO4, EO5). Against this backdrop, some rejected the idea of software as black-
boxes. They preferred grey-boxes with the access to open source code and the
internal representations and intermediate states of data to be able to evaluate
and examine the functionality and performance of software components at a
necessary level of detail.

Moreover, discussions frequently returned to the core problem of how to
identify and define suitable levels of abstractions; finding the “right” primitives
and levels of abstraction were often seen as the main obstacle (H: EO11).
Regardless of multiple efforts, the semantic modelling of various aspects of
behaviour and environmental contexts remain challenging. In principle, for
modelling efforts to succeed, a priori agreement should be reached on how to
partition and define elementary motions, movements and behaviours across
different levels of abstractions, ranging from low-level control software to
higher levels of perception and control as well as to the descriptors of
characteristics and behaviour of the surrounding environment. The partitioning
of chains of transformation and the detaching of the physical embodiments
from the surrounding environment were seen problematic without well-defined
abstractions and meta-models which would define pertinent system-wide
aspects of contextual and embodied behaviour and interaction.

The importance of well-rounded interface specifications was brought up in a
robotics summer school (H: EO6) where the following statement was made:
“abstraction is key but [information] hiding is dangerous”. While software
standardisation remains challenging, there are initiatives whose objective is to
develop meta-models that describe skills and behaviours as compositions of

216

tasks, object affordances, robot capabilities, environmental contexts and other
relevant constraints that need to be solved (H: EO6). In a way, computer-
controlled behaviour can be described as a constrained optimisation problem,
and this brings forward the importance of defining the constraints and
boundaries at different levels of abstraction within which the computation of
behaviour takes place. However, categorising and subdividing the world and its
motions and behaviours in their various intricacies into computable pieces is far
from unambiguous, especially if the domain to be modelled is not well-defined
in advance. Some are sceptical concerning the attempts of modelling and
standardisation, and they would prefer a more pragmatic approach where
beneficial conventions and standards would emerge through the practice.

To overcome some of these challenges, different domain and technology-specific
sub-communities seek to pool their resources and focus their efforts on more
narrow problems and domains, such as industrial, aerial or agricultural
robotics, to make progress towards their particular goals and needs (C: SE27) as
this allows for the implicit specification and agreement of underlying
assumptions. Although the broader robotics community remains divided on to
what extent generic methods of modelling are feasible, ROS with its under-
specified interconnections has nevertheless gained traction, portraying that the
process of the development of a robot system can unfold as a generative-
integrative manner.

In the light of the empirical findings and conceptualisations presented in this
chapter, it appears that there is no straightforward answer or process according
to which the tensions between the specificity of designs and the distributedness
of knowledge and control across the community can be resolved. The observed
approach depicts itself as a multi-layered generative-integrative process. The
developers a robot system construct the first version of the system from a
diverse set of software packages and components, after which this initial
combination is further developed and integrated into a desired composition in a
way that is most feasible in given circumstances. Overall, the production of a
dependable and robust composition requires careful integration, yet all-
encompassing a priori attempts of exhaustive specification appear to remain
elusive. The domain-oriented design and development approaches seem to

217

overcome this problem partially as they share similar underlying assumptions
regarding the contextual and behavioural requirements.

6.6 Summary

This chapter consists of two parts and describes how the tensions among the
specificity of designs and the distributedness of knowledge and control are
reconciled in the context of ROS.

Part 1 describes and discusses the themes and categories that emerged from the
thematic analysis and develops a model that conceptualises robots and
autonomous systems as contextually bound and embodied chains of
transformation. This conceptualisation brings forward the functional and
structural characteristics which underpin the organising logic of complex digital
innovation in the view of product architectures and characteristics of
combination.

Part 2 takes a closer look into the organising logic and explores how the tensions
between the specificity and distributedness unfold and are resolved during the
development of robots and autonomous systems. Against this background, the
observed process of development was conceptualised as the generative-
integrative mode of development. It describes a process where the first version
of a robot system is generatively combined by bringing together different
physical and digital components. This generative combination is then followed
by the phase of integration. During the integration phase, the behaviour of a
robot system is experimented, observed and adjusted, and the combination of
components is gradually crafted into a composition that produces the desired
behaviour with respect to a given task and context.

218

7 Discussion

The purpose of this chapter is to discuss and establish the conceptual findings
presented in the previous chapter. Based on the empirical findings, the previous
chapter developed two novel conceptualisations to characterise the organising
logic of complex digital innovation. In order to establish their validity,
boundaries and applicability, they are evaluated in the light of the extant
literature that conceptualises the organising logic of innovation in the view of
product architectures and combination.

The first section of the chapter restates the conceptual findings to summarise
their salient characteristics. Subsequently, the second section enfolds them in
the literature by discussing the proposed concepts with reference to the related
literature that was reviewed in Chapter 2. After the novelty of the proposed
concepts has been established, the third section elaborates how they contribute
to the literature on digital innovation and discusses briefly their wider
applicability and relation to the literature on simulations. Potential avenues for
further research are discussed before the concluding remarks.

7.1 Summary of conceptual findings

Chapter 6 brought about two novel conceptualisations. The first one of them
presents a structural-functional model that conceptualises robots and
autonomous systems as contextually bound and embodied chains of
transformation. The second one characterises the process of system
development as a generative-integrative process where generative combinations
of components are crafted into compositions. These conceptualisations are
restated below before proceeding to the enfolding literature.

7.1.1 Contextually bound and embodied chains of transformation

The structural-functional model conceptualises robots and autonomous systems
as contextually bound and embodied chains of transformation. This captures
the underlying logic of complex digital innovation as it intertwines the physical,
digital and behavioural aspects that characterise complex digital systems and

219

innovation. This conceptualisation seeks to differentiate complex digital
innovation from other domains of digital innovation which cater to different
purposes and adhere to different operational principles and organising logic.
The purpose of this is to provide a conceptual lens and clarity for discriminating
between the empirical findings that emerge from different empirical contexts.

A good starting point to begin unpacking this conceptualisation is the overall
purpose and functioning of robots and autonomous systems. In short, they are
expected to produce goal-directed and context-dependent behaviour in order to
be able to operate autonomously with limited human intervention. Once set in
motion, robot systems transform sensory inputs into actions according to their
physical structures and computer-controlled models of behaviour. Therefore, it
follows that a defining characteristic of robots and autonomous systems is that
their behaviour emerges from the direct interaction with the surrounding
environment. This way, a robot system is operated by the environment in which
it is embedded as the environmental inputs condition its behaviour, whereas, at
the same time, the human operator becomes moved further away from the
control of situated action. The environment that renders inputs also provides
the ground-truth that either accepts or rejects behavioural outputs, rendering
the criteria against which the fitness of the interactional and behavioural
couplings will be evaluated (Alexander 1964). To reach a sufficient degree of
fitness, the developers of a robot system are expected to join the physical
embodiments and communication and transformation systems in a way that
produces appropriate interactional and behavioural couplings that are
congruent with tasks and tasks environments.

In functional terms, the notion of contextually bound and embodied chains of
transformations bears significant importance, as it highlights that the inputs
and outputs of a robot system differ in qualitative terms. To produce purposeful
real-time behaviour, a robot system measures constantly certain features of the
surrounding environment and transforms them into actions and actuations
which exert forces onto environment to cause a change in some state of affairs.
This is radically different when compared to the information and
communication systems, which are predominantly used to mediate human
communication and replicate digital objects across time and place – such

220

systems could be viewed as chains of replication. However, the distinction
between the replication and transformation as the opposite ends of a spectrum
should be seen as analytical. In practice, many systems are located somewhere
between the two ends of the spectrum. For example, an accounting information
system may transform individual financial transactions into consolidated
summaries that report the overall loss and profit (Klaus et al. 2000). However,
while they do so, they do not act based on the reports they produce, keeping the
interpretation and subsequent actions based on the reported results in human
hands. Leaving a robot system to its own devices shifts the focus from
replication to transformation, from the mediation of information and
communication to situated action and behaviour.

This bears significant implications on the design, reliability and verifiability of
systems, among other things. The detailed specification of a system's behaviour
remains challenging considering the variety of environmental and behavioural
variables that would need to be formalised and modelled to make them
computationally tractable. Occasionally, controlled environments are
constructed around robot systems to make them more manageable by
containing the variety and contingency that abound in open-ended
environments. While this is the case with the production lines in factories, there
are numerous application domains where this is not feasible. For example, the
infrastructure and system of road transit with all its roads, cars and drivers
among other things cannot be encased for self-driving cars to be able to operate.
In these cases, robot systems must be developed with an aim to ensure that their
physical capabilities and behavioural models can handle the variety of
environmental and operational conditions. This has also implications for the
verification of robot systems. In the end, whereas the correctness of a
replication system can be established by evaluating the degree of similarity
between the inputs and outputs of a system, it is much harder to establish and
evaluate if large sets of transformations produce acceptable behavioural
outcomes with respect to a goal and context in a range of situations.
Establishing the correctness of the relationships among a range of input and
output transformations is much less straightforward given the variety and
intricacy of the relationships among environmental conditions and meaningful
transformations (Bonsignorio & del Pobil 2015). Often, an excessive amount of

221

testing is required in simulated and physical environments to verify the
behaviour of the chains of transformation under different conditions, especially
when a task environment is open-ended and unstructured.

In structural terms, this conceptualisation seeks to describe what constitutes the
embodied chains of transformation and how this affects to the organising logic
of innovation in the view of combination and product architectures. As shown in
the previous chapter, such artefacts are made of physical embodiments and the
systems of communication and transformation which in combination render the
interactional and behavioural couplings that produce the overall behaviour. This
brings forward the distributed character of computation highlighting that the
overall system-level model of behaviour is composed of individual
transformations that interact with each other. These embodied chains of
transformation can be (de-)composed in multiple ways and they grow in
complexity as the number of interconnected components, sensors, actuators
and processes of transformation, increases, and they are can be viewed and
implemented as sets of distributed computational processes. These sets can take
multiple forms and the ROS communication system facilitates the setting up of
such sets in a flexible manner. Therefore, one of the defining characteristics of
ROS is that there is no one particular central platform (Baldwin & Woodard
2008). Instead, a robot system usually consists of a variety of bespoke and
distributed computational arrangements, which carry out the stepwise
transformations in different ways depending on the goal, context and
composition of a robot system. This shifts the focus of conceptualisation of
robot systems from central platforms and stable interfaces to distributed
computation and multidimensional connectivity.

This complex and distributed character of computation bears implications on
the practices of digital innovation. Stable platforms, interfaces and application
stores are often referred to as an ideal target state regarding the reusability and
distribution of software. However, while software packages are shared and
reused among roboticists, the application stores remain absent. Some question
the appropriateness of this analogy in the context of robots and autonomous
systems given the fundamental architectural differences between the typical
platform-like computer operating systems and the systems that produce their

222

behaviour through distributed computation. With traditional operating systems,
applications run on the top of the operating system as relatively independent
entities. In turn, in the case of distributed computation, various processes and
components that may run on different computers produce the overall behaviour
in combination. This means that changing the behaviour of a single component
often influences the overall behaviour of the whole system. The distributedness
challenges the notion of stable platforms and interfaces.

The notion of the chains of transformation also brings forward the implications
in the view of the transferability and reusability of software. While the ROS
communication system demonstrates that the systems that interconnect
different processes of transformations can be generalised in a way that they
cater the needs of the broader robotics community, the transferability and
reusability of particular transformations is more limited, being contingent on
system architectures, tasks and contexts which set boundaries to their
generalisability.

The notion of contextually bound and embodied chains of transformation
captures the salient characteristics of complex digital innovation by showing
how the intertwined characteristics of the physical, digital and autonomous
aspects that have implication to the organising logic of innovation in the view of
product architectures and combination.

7.1.2 Generative-integrative mode of development

Roboticists seek to build upon each other’s work by reusing existing
components, yet the empirical observations demonstrate that this is not always
a straightforward process. The analysis of the empirical observations produced a
model that conceptualises the process of robot system development as the
generative-integrative mode of development that involves under-specification
and constructive ambiguity. This model offers an answer to that principal
research question that asks how the tensions between the specificity of designs
and the distributedness of knowledge and control can be resolved. The
generative-integrative mode of development can be described as an approach in
which an initial generative combination of components comes to provide a
starting point for further systems integration efforts. This way, the integration

223

follows the combination, and during the integration phase the behaviour of
particular chains of transformation is experimented, observed and adjusted.
The combination of components is thereby gradually crafted into an integrated
composition that is expected to produce the desired behaviour with respect to a
task and context. This process is elaborated below.

A developer begins the work by carrying out a functional decomposition,
looking into the physical embodiments and sets of transformations that would
produce the desired model of behavioural. A set of components is then selected
and combined using the resources that are readily available, such as hardware
components, software packages and frameworks. If suitable components and
functionalities are not available, the developer must create them. Subsequently,
components are combined into a robot system. This initial combination can be
characterised as generative as it draws from the end-product agnostic
components that originate from distributed and heterogeneous sources. While
this combination produces the first working version, this first version rarely
fulfils the requirements. Instead, it provides a starting point for further
integration efforts. With a functioning system in place, the developers can
experiment, observe and gather data that is essential in the further
improvement of performance, reliability and robustness of the system.

Whereas generative combination speeds up the early phases of development,
the subsequent integration phase requires further efforts. The degree of efforts
depends on the extent to which the resulting combination of components fulfils
the initial requirements, for example in terms of behaviour, reliability and
robustness. Depending on the requirements and shortcomings, additional
development can take place along various lines, such as by altering the
configuration of hardware, improving the system level integration and error
handling or by developing new transformation systems altogether that facilitate
the production of specific behaviours.

The complexity and amount of details and variables associated with the
contextually bound and embodied chains of transformation limits the feasibility
of exhaustive a priori specification. Often, much experimentation, adjusting and
testing are needed to establish not only the appropriate behaviour of a system,

224

but also to identify and establish the reliability of the environmental features
upon which the functioning of a behavioural model can be conditioned. To this
end, the post-combination integration efforts make extensive use of virtual
simulations environments and physical experiments. They provide data on the
behaviour of a system in various environmental conditions to examine and
evaluate robustness and dependability. Often, extensive integration and testing
are needed to bring behavioural models to a level that produces required
behavioural coupling and congruence. This way, with the generative-integrative
mode of development, the work begins from a generative combination, which is
then crafted into a composition. This shows that simply bringing existing
components together is not likely to produce the desired behaviour.

Moreover, components which originate from different sources and serve
different functions vary in terms of their transferability, reusability and quality.
Whereas the components that cater to common needs and use cases are more
readily transferable, such as the ROS communication and coordinate
transformation systems, others might be significantly less so. This is, for
example, a case with the components that produce specific representational
transformations for narrow use cases. Furthermore, considering that
components often emerge from different origins in the absence of centralised
design agency, they do not necessarily adhere to the same underlying
assumptions and design principles. While this does not automatically prevent
from bringing them together, the absence of the overall systems level design
principles may cause problems when the components taking part in distributed
computation react to some system events in an unspecified or uncoordinated
manner. The existence of a syntactic interconnection does not imply the
existence of a semantic integration in the view of the overall system
architecture. These things are such as what should be a default behaviour in
case of a sensor failure or in the malfunctioning of some of the computational
processes, among many others. Leaving the underlying assumptions, such as
the affordances or constraints of the surrounding environment and physical
embodiments, underspecified may lead to decreased levels of dependability. In
this light, the under-specification that allows for the generative combination can
be seen as constructive ambiguity.

225

The high degree of systemic interdependencies combined with the lack of
centralised coordination and uncoordinated design practices leads to a situation
where components and frameworks cannot be viewed as black-boxes from the
point of view of systems integration. Considering that all parts of a distributed
system are expected to work together in an integral manner, the developer of a
robot system is left with the task of establishing the overall system level design
goals and principles, which were not present when the end-product agnostic
components were designed and created (Yoo et al. 2010; Yoo 2012b). In this
view, the process of integration refers to the efforts and actions that are taken in
order to raise the level of integration among the components of a robot system
(Tolk et al. 2007) by removing the gaps and incongruences caused by the under-
specification.

The generative-integrative mode of development expands the focus of digital
innovation from generative combinations (Yoo et al. 2010; Yoo 2012b) by
incorporating the iterative process of integration during which the initial
combination is elaborated into a composition. Different components are evolved
in conjunction to develop contextually bound and embodied chains of
transformation that produce desired and dependable behavioural models. This
process requires architectural knowledge which is absent when components are
developed without a centralised design agency (Nambisan et al. 2017).

This conceptualisation provides an answer to the principal research question on
how the tensions between the specificity of designs and the distributedness of
knowledge and control across the software ecosystem can be resolved. The
process of the generative-integrative mode of development outlines a scenario
where under-specification and constructive ambiguity enable the initial
generative combination, yet the post-combination integration efforts are needed
to remove the incongruences which emerge from the absence of system-level
design principles and the specificity of designs.

7.2 Enfolding literature

This section enfolds the conceptual findings in the light of previous literature
(Eisenhardt 1989b). The purpose of this is to sharpen the findings, establish the
boundaries of generalisability and examine and evaluate the ways in which the

226

findings contribute to the literature on digital innovation. This enfolding is
presented with reference to the literature reviewed in Chapter 2. This body of
literature theorises the dynamics of combination in the context of product
architectures, providing thereby an appropriate backdrop for the enfolding.

The theories presented in the previous literature do not fully capture the
organising logic of complex digital innovation as established in the empirical
and conceptual findings of this research. These differences are discussed in the
following order. First, the conceptual findings are discussed with reference to
modularity and the modularisation of product systems. This is then followed by
the generativity of digital innovation and digitised products in the view of
layered modular architectures and complementary architectural frames. Finally,
the differences are discussed with reference to complex products and systems
literature before concluding with the validity of conceptual findings.

7.2.1 Integrality and modularity

One of the fundamental conceptualisations in the literature on product
architectures revolves around integrality and modularity (Ulrich 1995). As
discussed in Chapter 2, product architectures are called modular when the
functional elements of a product correspond to the components that constitute
it, and the interdependencies between components are such that a change in
one component would not require corresponding changes in other components.
In turn, product architectures are called integral when multiple components in
conjunction produce a particular functional element, and a change in one
component is likely to trigger changes in others. Most product architectures
reside somewhere between the modularity and integrality (Salvador 2007).

In terms of integrality and modularity, contextually bound and embodied chains
of transformation are much closer to the integral than the modular end of the
spectrum. While it is possible to identify a component that performs a particular
transformation, for example, an object recognition component that identifies
particular patterns from a stream of images, the behaviour of that particular
transformation constitutes an integral part of the overall chain of
transformations that produces the behaviour of a system with respect to its
environment. While it would be technically possible to replace a pattern

227

recognition component with relative ease as long as the necessary syntactic
interfaces are specified and adhered to, a change in the behaviour of that
particular component in terms of its input-output mappings between the images
and their respective classifications would alter the behaviour of the whole
system. In addition, although under-specification and constructive ambiguity
may facilitate the generative combination, implicit but misaligned assumptions
may prove detrimental86 to the reliability and robustness of the system. This
integral character is also evident in the generative-integrative mode of
development where efforts are made to craft generative combinations into
purposeful and dependable compositions. This way, the context-dependent and
embodied chains of transformation can be viewed as highly integral.

This leads to the question to what extent the chains of transformation can be
modularised? In the end, following Baldwin and Clark (2000), modularisation
is a process where the overall functionality of a product is allocated to its
constituent components according to specific rules so that the design and
manufacturing tasks can be distributed across different teams and organisations
(Sanchez & Mahoney 1996). This relies on the assumption that the architect
who modularises the functionality over different components is aware of the
overall requirements sufficiently well to be able to specify how different
components interact with and depend on each other (Baldwin & Clark 2000).
Subsequently, designers of particular components would have a limited degree
of freedom to carry out the design and implementation in a most feasible way as
long as the specifications and design parameters of the overall design are met.
By designing degrees of freedom into the parameters of module design, modules
can be seen as units of variation (Salvador 2007), which can be then be
combined in different ways to produce variety in products (Schilling 2000).

When modularising chains of transformation, probably the first questions to ask
would be in which way and according to which logic should a behavioural model
produced by a chain of transformations be varied within a particular scheme of
modularisation. The approach to modularisation would presumably vary

86 To provide an example, NASA lost a Mars orbiter in 1999 due to a units of measurement
mismatch that prevented the transfer of navigation information between the Mars Climate
Orbiter spacecraft team at Lockheed Martin in Denver and the flight team at NASA's Jet
Propulsion Laboratory in Pasadena. Lloyd, R. and Writer, C.I.S., 1999. Metric mishap caused
loss of NASA orbiter. CNN Interactive.

228

according to the expected behaviours and scope of required variation (Salvador
2007). Furthermore, the modularisation of a pattern recognition system would
probably differ from the modularisation of physical embodiments and
associated motion planners. Establishing an overall framework of design that
would enable the replacement of components to adapt the behavioural model
for new tasks and task environments module by module would presumably
require careful information engineering to ensure that the patterns of
interaction among the computational processes would produce desired
behaviour.

Considering that the observed generative-integrative mode of development does
not rely on exhaustive a priori specification, modularisation or centralised
coordination mechanisms, the top-down approach to the modularisation of
behavioural models cannot be elaborated here further. Instead, it is observed
that through the generative-integrative mode of development it is possible to
develop integral systems from components that originate from heterogeneous
sources. Therefore, whereas contextually bound and embodied chains of
transformation can be viewed as integral, they cannot be fully understood
through the lens of integrality (Ulrich & Eppinger 2012), centralised design
agency or modularisation (Baldwin & Clark 2000).

7.2.2 Generative combinations

In the literature on digital innovation, the notion of generativity (a form of
diachronic emergence) is used to explain the growth and evolutionary dynamics
of the Internet (2008; 2006), digital platform ecosystems (Yoo et al. 2010) and
digital infrastructures (Tilson et al. 2010). Whereas the notion of
modularisation builds on the assumption of the centralised and coordinated
design and decomposition of product architectures (Baldwin & Clark 2000),
generativity describes digital innovation as a combinatorial process where novel
digital products and assemblages of digital objects and artefacts are created by
generating new combinations of existing objects and artefacts (Yoo et al. 2010)
which originate from heterogeneous sources in the absence of central
coordination (Yoo 2012b).

229

The notion of generativity upends the assumption of the top-down centralised
design and portrays digital innovation through the lenses of emergence and
assemblages that emerge from distributed actions of heterogeneous groups of
actors in a bottom-up fashion (Yoo 2012b). For this to occur, the digital objects
and artefacts to be combined only need to conform to certain common
foundations, such as open interfaces and communication protocols as they
facilitate the interoperability and combinability of digital objects and artefacts
even if they belong to different design hierarchies (Yoo et al. 2010; Clark 1985).
In Zittrain’s (2008; 2006) work, these common foundations are located at the
operating system of a computer and the internet standards and protocols. The
former provides a layer of abstraction between the computer hardware and
application software, whereas the latter allows for application software and all
sorts of digital objects to be transferred over the digital communication
networks and infrastructures (Tilson et al. 2010). More broadly, the generativity
of digital innovation is postulated to follow from the layered characteristics of
digital architectures (Yoo et al. 2010) given that different components can
interact with each other through well-specified interfaces, which hide the
internal workings and implementation details (Parnas 1972). In this view, as
long as interfaces are well-specified, and components produce specified
functions, developers can focus on their own areas of work without needing to
know much about the internal functioning of other components. Therefore, the
generative properties are founded upon the uncoordinated division of labour
which is facilitated by the standardised and open platforms and interfaces and
common communication protocols, which enable the combination of end-
product agnostic components originating from heterogeneous sources. The
generative characteristics of digital innovation render knowledge and control
highly distributed among different actors and organisations (Yoo et al. 2010).

Based on the empirical findings, the mode of system development was
conceptualised as generative-integrative. This characterisation highlights the
fact that developers may choose from the components which originate from
heterogeneous sources and then combine them using the ROS communication
system as it provides common message types and methods of communication
for establishing the interconnections between various components. In this view,
the empirical findings give a clear demonstration of the generativity that rests

230

upon the common communication methods and protocols. However,
considering that the ROS-based software is a cluster of distributed
computational processes, ROS is not generative in the sense of the traditional
computer operating system with its central platform and stable interfaces. There
is no central and stable abstraction layer in the form of a single operating
system that would provide a set of interfaces upon which further functionality
could be developed.

Furthermore, as discussed earlier, simply joining components together rarely
produces desired behaviour. Contextually bound and embodied chains of
transformation are integral and distributed, and efforts are needed to integrate
the combinations of components into dependable compositions. This requires
knowledge not only of the components but also of their interactions and
interdependencies.

Whereas the empirical findings observed in the context of ROS could be
partially characterised as generative, it can also be concluded that the notion of
generativity (Yoo et al. 2010) on its own would not be sufficient to explain the
empirical findings.

7.2.3 Layered modular architecture

The notion of the layered modular architecture is a combination of the modular
architecture of products (Ulrich & Eppinger 2012) and the layered architecture
of digital technologies (Yoo et al. 2010). The purpose of this combination is to
bring forward the way in which the architectures of modern digitised products
incorporate the characteristics of both the top-down driven modularisation and
the bottom-up driven generative combination (Yoo et al. 2010). The layered
modular architecture conceptualises the architecture of digitised products as a
layered stack. The device layer resides at the bottom of the stack. It consists of
the physical hardware and computing machinery and includes also the
operating system that provides a logical layer of abstraction that modulates
interaction between the hardware, computing machinery and upper layers of
the software stack. On the top of the device layer resides the network layer. The
network layer consists of the physical transport media (e.g. antenna, cable) and
the logical transmission protocol (e.g. TCP/IP), and it is used to establish

231

interconnections with other computers and digitised products. On the top of the
network layer is the service layer where application software and their
respective functionality are located. Above the service layer, on the top of the
stack, is the contents layer that holds the data contents. The device layer can
take many forms along the spectrum from a traditional manufactured product
to a desktop computer (Yoo et al. 2010). Depending on where a digitised
product is located along this spectrum, the extent to which it is open to ongoing
change and generative combinations varies. Whereas the hardware and
computing machinery residing on the device layer usually receive their final
configuration and form during the manufacturing process, the layered stack of
software that resides on the top of it is more amenable to change throughout the
lifecycle of a product (Yoo et al. 2010). The device layer provides also a layer of
abstraction in the form of an operating system and application programming
interfaces, making it possible to alter the functionality and purpose of a product
later by modifying the software at the higher levels of the stack. If a product
manufacturer engages in open innovation by opening up interfaces (Eaton et al.
2015), a digitised product can become a platform that stimulates generative
innovation by allowing broader audiences to take part in the development of
new functionalities and services.

With reference to embodied chains of transformation, the notion of layered
modular architecture can be viewed in two different ways, depending at which
level of a design hierarchy the notion is applied. In the view of the constituent
elements of robot systems, the physical embodiments are divided into three
categories: sensors, actuators and hardware platforms. On one hand, sensors
and actuators can be viewed as components having the layered modular
architecture at the level of individual components. On the other hand, also a
hardware platform that encapsulates sensors, actuators and other hardware
components into one unified product can be seen as a platform of the layered
modular architecture, as long as there is a clear layer of abstraction that
provides a set of application programming interfaces for dealing with sensory
data, action commands, hardware parameters as well as for monitoring and
diagnostics.

232

Some hardware platforms offer well-specified functionality and interfaces,
which have been made compatible with ROS. Commercially manufactured
quadrotors provide a good example of this type of hardware. The manufacturer
designs and produces a quadrotor that is a fully functional product on its own
but at the same time serves as a platform with open interfaces. This allows for
broader audiences to take part in innovation. The use of smartphones as
hardware platforms provides a similar example. Smartphone manufacturers
provide open interfaces to access various sensory readings and to control screen
and speakers among other functions. While these types of hardware platforms
with open interfaces can be viewed as stable and central core components, the
chains of transformation which produce the models of behavioural can also be
viewed as applications. If a decision is made to draw boundaries around a
particular distributed cluster of computation and to refer to it as an application
which resides at the service layer, then it would be possible conclude that a
combination of a hardware platform (device layer) and chains of transformation
(service layer) are compatible with the notion of the layered modular
architecture.

On the other hand, when embodied chains of transformation are constructed by
bringing together a distributed set of sensors, actuators and processes of
transformation, there is no particular platform that could be considered on its
own to serve as a stable foundation upon which the upper layers facilitating the
generative innovation reside. Instead, the embodied chains of transformation
comprise a heterogeneous and intertwined group of physical embodiments,
brought together and controlled by the systems of communication and
transformation. In this case, the absence of foundational and stable platforms
and associated layers of abstraction is not compatible with the underlying
assumptions of the layered modular architecture.

Therefore, the notion of layered modularity (Yoo et al. 2010) cannot be
considered as generally applicable in the context of embodied of chains of
transformation and the generative-integrative mode of development. Instead,
the applicability of the notion is contingent on the level of platformisation and
encapsulation at different layers of the device and software stack and the
associated stability of interfaces.

233

7.2.4 Complementary architectural frames

Another conceptualisation of digitised products introduces the notion of
complementary architectural frames (Henfridsson et al. 2014). This
conceptualisation proposes that the architectures of digitised products can
simultaneously be seen as hierarchies of parts and networks of patterns. The
hierarchy of parts view refers to the physical architecture of a product, which is
expected to be fully designed and specified before it can be transferred to
manufacturing. The network of patterns, in contrast, refers to a set of
interconnected functionalities that can be implemented and changed later using
digital means. However, while the patterns serve as placeholders that facilitate
change at a later point in time, the product architect who performs the
functional decomposition and allocation of functionalities over both the parts
and patterns is expected to have an overview of the overall functionality and its
expected development paths as well as the limits of variation in a given product
system (Salvador 2007). Therefore, the use of the complementary frames shares
the assumptions of top-down design and well-specified interfaces with the
notion of modularisation (Baldwin & Clark 2000). The interdependency among
the complementary architectural frames resonates also with the intertwined
design hierarchies of inclusion and control (Murmann & Frenken 2006).

This conceptualisation has similarities to the notion of embodied chains of
transformation. To begin, the prominent role of physical embodiments in
product design and architectures is acknowledged as the material substrate
upon which the digital functionalities are implemented. Also, the emphasis on
networks highlights the distributed character of computation as functionalities
are distributed across a number of digital components. However, the notion of
patterns, as it is used and illustrated in the context of complementary frames
(Henfridsson et al. 2014), is not entirely applicable in the view of chains of
transformation as it is primarily used to signal the differing speeds of design
cycles between the physical components and digitally implemented
functionalities. While the notion indicates the procrastinated binding of the
digital part (Yoo 2012a), it puts little emphasis on the specificity of designs and
the physical groundedness of computation that characterise embodied chains of
transformation. In addition, the assumption of top-down design is not entirely
compatible with the generative-integrative mode of development, which

234

proceeds from the generative combination towards the increasing levels of
integration.

7.2.5 Complex products and systems

The innovation literature on complex products and systems argues that the
development of complex systems requires detailed knowledge of different
components and their interactions (Prencipe 2000). In this view, complex
products and systems are conceptualised as compositions of two design
hierarchies that are intertwined and interdependent (Lee & Berente 2012;
Murmann & Frenken 2006). These two hierarchies are the hierarchy of
inclusion and the hierarchy of control. The hierarchy of inclusion refers to the
hierarchical and nested organisation of parts which constitute the physical
embodiment of a product or system. In turn, the hierarchy of control refers to
the parts and functional logic that control the operation and behaviour of that
embodiment. The architects that design control systems are expected possess
detailed knowledge not only of different components but also of their various
interactions, interdependencies and behavioural dynamics (Prencipe 2000).
Building a control system is predicated on knowing what is being controlled, for
what purpose and under what boundary conditions. Therefore, building a
complex system requires often a significant amount of contextual knowledge as
well as modular and architectural innovation (Henderson & Clark 1990).

In addition, complex products and systems are also occasionally differentiated
on the grounds of the market conditions that separate them from the industrial
mass-market products and associated innovation dynamics (Miller et al. 1995;
Hobday 1998), this being particularly the case when various stakeholders
collaborate to produce unique architectural designs and technological
compositions that transcend industry-wide dominant designs (Abernathy &
Utterback 1978) and design hierarchies (Clark 1985). Flight simulators and
nuclear power plants (Miller et al. 1995; Hobday 1998) provide a case in point.

The conceptual findings of this research align to an extent with the literature on
complex systems and products. The concept of contextually bound and
embodied chains of transformation indicates the presence of the hierarchies of
inclusion (embodiments) and control (transformation). It also emphasises that

235

chains of transformation are conditioned not only by the embodiments but also
by the contextual bindings, showing that the development of chains of
transformation entangles knowledge around the operational environment,
physical embodiments as well as various digital methods and technologies. This
brings forward the specificity and integrality of designs that spread throughout
the chains of transformation, indicating the need for both component and
architecture level knowledge and innovation (Henderson & Clark 1990).
However, while this chains of transformation view is compatible with the dual-
view of the design hierarchies of inclusion and control, the chains of
transformation view does not assume a hierarchical control system but
accommodates parallel and multi-agent control architectures as well.

In addition to the emphasis on the specificity of designs, the complex systems
literature also highlights the need for coordinated collaboration. While this is
present in the integrative part of the generative-integrative mode of
development, the generative part is not entirely compatible with the underlying
assumptions concerning the depth and breadth of knowledge and control
(Prencipe 2000). This assumption maintains that the organisations which
engage in complex innovation are expected to possess detailed knowledge at the
level of product architectures and constituent components. However, the
empirical findings of this research show that knowledge and control can be
highly distributed across a heterogeneous body of users and contributors that
operate in an uncoordinated manner.

While the innovation literature on complex systems and products captures
much of the underlying dynamics of complex digital innovation, it is not
particularly well-suited to explain the distributedness of knowledge and control
or the unfolding of the generative-integrative mode of development.

7.2.6 Summary

The evaluation of the conceptual findings in the light of the reviewed literature
demonstrates that the current conceptualisations do not fully capture the
organising logic of complex digital innovation as observed in the context of
robots and autonomous systems. Some of the existing conceptualisations are
able to explain some aspects of the empirical findings, but, overall, they do not

236

provide a conceptualisation that would provide a sufficient explanation of the
observed dynamics and practices of innovation in the context of complex digital
innovation.

Therefore, it can be concluded that the proposed concepts bring forward salient
characteristics of complex digital innovation in a holistic manner and offer
useful additions to the conceptual toolbox of digital innovation research. The
structural-functional conceptualisation presents the structural and functional
factors that underlie complex digital innovation, whereas the generative-
integrative mode of systems development that builds on underspecification and
constructive ambiguity sheds light on how the tensions between the specificity
of designs and the distributedness of knowledge and control are resolved.

7.3 Application of the proposed concepts

This section discusses the applicability of the proposed concepts outside the
empirical setting where they were first developed while also discussing briefly
how they could be developed further. The concept of chains of transformation is
first discussed and forwarded as a more tractable conceptualisation not only to
analyse robots and autonomous systems but also other artificial intelligent and
cybernetic systems that can be considered as complex digital innovation. The
view provides a highly generalisable lens to examine functional and
organisational characteristics of complex digital innovation providing a pathway
towards a more fine-grained examination of digital and computational “value
chains” that produce value through the processes of transformation. Second, the
generative-integrative mode of development is further elaborated in the view of
simulation studies and the levels of conceptual interoperability model. This
provides a conceptual explanation of the observed unfolding of the generative-
integrative mode of development and outlines fruitful avenues for further
research.

7.3.1 Chains of transformation

The concept of contextually bound and embodied chains of transformation can
be extended and applied to the adjacent areas of complex digital innovation
such as the systems of artificial intelligence and cybernetics. Viewing these

237

domains of innovation through the structural-functional lens could provide a
way to construct research questions in a way that would take different
organisational and functional characteristics into account in a more holistic
manner. Viewing such systems as contextually bound and embodied chains of
transformation would bring forward the distributed and transformative
character of computation while highlighting the context-dependence of
purposeful transformations and the physical groundedness of computation.

Many sophisticated special-purpose computing systems and computational
processes that carry out transformations fall into a category which is often
defined as artificial intelligence (Russell & Norvig 2010). While the labelling of
sophisticated computation as artificial intelligence might be appropriate in
some occasions, its meaning is not particularly precise. Furthermore, there are
multiple fields of advanced computation which can be considered as subfields of
artificial intelligence. These subfields tend to focus on different aspects of
computation, developing and working on algorithms, techniques, methods and
computational strategies that are capable of carrying out computations that
solve some particular types of problems, for example to recognise pertinent
patterns in sensory readings, to fuse a variety of recognised patterns or to
control motion over time and in real-time to provide few examples. In this light,
the common aspect is that they are all created and designed to perform some
particular transformations and tp serve specific purposes or functions.

The application of the notion of chains of transformation would help pose more
detailed questions concerning the functional, structural and organisational
aspects of robots and autonomous systems and artificial intelligence in their
various guises. This would allow us to ask questions such as what is being
transformed and on what basis? More detailed questions could revolve around
why something is being transformed, are different transformations compatible
with each other, or what constitutes a computational “value chain” and who
captures the value from transformations and how? Questions could also be
asked on who controls transformations and on what grounds some
transformation is better than others. Focusing on the computation and
transformations as well as the purposes they serve instead of robotness,
autonomy and artificial intelligence would remove the unnecessary mysticism of

238

the debate and could help direct attention and research questions to the matters
that are more grounded and empirically tractable.

Moreover, as robots and autonomous systems as chains of transformation are
expected to operate with limited human intervention towards a given goal based
on the environmental inputs and related control and feedback mechanisms,
chains of transformation can be viewed as constitutive elements of cybernetic
systems. While cybernetics focuses the role and dynamics of information and
feedback in the control of systemic behaviour, it does not tell much about the
internal arrangements or organisation of such systems or how this may
influence innovation practices. The notion of chains of transformation can be
viewed as more descriptive in this view while being simultaneously consistent
with the idea of cybernetic. In the end, the cybernetic systems and feedback
loops are contextually bound and composed of embodied and interconnected
transformations, which in conjunction transform sensory inputs into systemic
actions and behaviour.

Finally, the notion of chains of transformation directs attention to the
importance of systems integration. To achieve a desired systemic behaviour,
various computational processes must be carefully arranged and integrated.
Simply joining components generatively together does not necessarily lead to a
desired system-level behaviour; the interoperability of components does not
imply that the transformations in conjunction are semantically meaningful.
Chains of transformations are like production lines in factories where stages of
manufacturing have to be carefully arranged and integrated in order to
transform raw materials into high-quality end products (Arthur 2009).

7.3.2 Generative-integrative mode of development

The proposed concept of the generative-integrative mode of development offers
an insight on how the tensions between the specificity of designs and the
distributedness of knowledge and control can and cannot be resolved. As this
concept seems to be not fully compatible in the view of the reviewed theories
that seek to explain the organising logic of innovation from the perspective of
product architectures and combination, it requires further elaboration. To this
end, this section refers to the lessons from simulation studies and elaborates on

239

the role of semantic compatibility in the development of chains of
transformation.

The generative-integrative mode of development blends the uncoordinated and
distributed innovation practices with the specific and integral design
requirements. The initial combination is facilitated by the under-specification of
interconnections and constructive ambiguity, and the subsequent iteration
cycles seek to increase the level of integration among different components and
with respect to the task and task environment.

The development of chains of transformation means of joining a series of
transformations (computations) over the connection that transfers symbolic
representations (data). This is a brittle and context-dependent endeavour. Each
symbolic representation is an abstraction that captures some aspects of the state
of affairs while ignoring others, and each transformation receives its meaning by
converting the abstraction that serves as an input into some subsequent abstract
output, a representation that again serves as an input for the next process of
transformation (Floridi 2013; Floridi 2008; Bekey 2005). In principle and in
practice, a single inappropriate transformation somewhere along chains of
transformation, such as a misclassification of an object in the image, may result
as a wrong or outright harmful outcome.

The difficulty of combining a variety of abstractions and transformations is well
known in simulation studies (Tolk et al. 2007). Simulations, which are also used
as tools in the development of robots and autonomous systems, are often used
to model and evaluate the behaviour and dynamics of complex systems and
processes over time, especially scenarios that are not necessarily analysable
using linear or analytical methods. While the components used in simulations
are in principle transferable and reusable due to their digital characteristics,
they often are much less so in practice. The spectrum of implicit assumptions
and context specificity that are embedded in architectural arrangements,
abstractions and transformations often act as a barrier for composability and
reuse (Spiegel et al. 2005; Tolk et al. 2007).

240

An efficient reuse and combination of simulation components would require a
comprehensive method for identifying and validating critical constraints,
although the identification and conservation of such constraints is challenging
and may remain beyond human capabilities (Spiegel et al. 2005). While both
the component-based software engineering and the composition of simulation
models require syntactic and semantic interoperability (Bartholet et al. 2004),
the composition of simulation models can be viewed more challenging
considering that the simulation models are often of large-scale and expected to
command a high degree of realism and semantic validity. Simulations, as any
models, are bound and constrained by their design and underlying assumptions,
and a failure to appreciate the difference between an abstract computational
model of simulation and the underlying phenomenon it seeks to represent may
lead to misjudged decisions and unwanted organisational outcomes (Bailey et
al. 2012).

As previously discussed, software components that originate from distributed
and heterogeneous sources can be interconnected to each other as long as they
adhere to the same syntactic structure that consists of a message type and
method of connection, yet the ability to exchange a message does not guarantee
that the established interconnection and resulting systemic behaviour would be
meaningful. This tension between the syntactic interconnectedness and
semantic interoperability is captured by Tolk, Diallo and Turnitsa (2007) who
argue that the meaningful interoperability in simulations requires much more
than technical layers of interoperability:

“The challenge is not to exchange data between the system: the technical side is
sufficiently dealt with by interoperability standards. The problem is that the
concepts of the underlying models – or the implemented world view captured
in the model – need to be aligned as well” (Tolk et al. 2007)

To conceptualise the different levels of interoperability, Tolk, Diallo and
Turnitsa (2007) present the Levels of Conceptual Interoperability Model
(LCIM) that describes six different levels of interoperability. These levels, the
technical, syntactic, pragmatic, dynamic and conceptual layers of interoperation
are presented in Figure 40. The technical level indicates the existence of
communication protocols for exchanging data. The syntactic level refers to a
common data format to exchange data, whereas the semantic level refers to the

241

shared meaning of exchanged data. The pragmatic refers to the level of
interoperability where components or systems operating in conjunction are
aware of the methods and procedures that each other are employing and are
aware of the overall context of their application. Furthermore, the level of
dynamic interoperability is reached when the system, as it operates over time,
can change its state and adapt to new assumptions and constraints that have
implications on the exchange of data among the different parts of the system.
Finally, the highest level of interoperability is reached when “the assumptions
and constraints of the meaningful abstraction of reality – are aligned” (Tolk et
al. 2007 p. 67).

Figure 40: The Levels of Conceptual Interoperability Model (LCIM) (Tolk et al.

2007)87

A successful description of different levels of interoperability requires well-
specified ontological schemes, yet it is uncertain to what extent the construction
of any general and overarching schemes is achievable or feasible without losing
the fine print of contextual reality. Many researchers of complex systems, such

87 Republished from the Journal of Systemics, Cybernetics and Informatics, Applying the Levels
of Conceptual Interoperability Model in Support of Integratability, Interoperability, and
Composability for System-of-Systems Engineering, by Andreas Tolk, Saikou Y. Diallo, Charles
D. Turnitsa, 2007, 5(5), page 66, with permission.

242

as social organisations, are aware that their conceptualisations can capture only
a fraction of reality at any given moment and often lack predictive capacities.

Against this backdrop, the generative-integrative mode of development appears
entirely plausible. In the light of the LCIM model, the lower levels of
interoperability provide a possibility for generative combination, whereas
climbing up to the higher levels of interoperability requires additional
integration efforts. In the context of the ROS communication system, the
interoperability occurs at the technical level (interconnection) and the syntactic
level (message type), whereas the level of semantic interoperability tends to take
place at the realm of common conventions that revolve around shared
understandings of the conventional use and purpose of specific message types
and methods of communication. While this makes it possible to connect
different components and frameworks together, a developer is left with a task of
constructing the higher levels of pragmatic, dynamic and conceptual
interoperability between transformations in order to achieve an appropriate
level of behavioural couplings that is congruent with the physical embodiment,
task and task environment.

The LCIM model and traversing upwards along the layers of interoperability
and abstraction appear as a potential conceptual explanation concerning the
under-specification of interconnections and constructive ambiguity. In this
light, the differing opinions and interpretations of ROS and the perceived
transferability of software packages could possibly be explained in terms of
expectations regarding the levels of interoperability. While the LCIM model
offers a path to explanation, additional research and conceptualisation are
needed to establish in a more detailed manner how these different levels of
semantic interpretability unfold in complex digital innovation. As digital
representations and chains of transformation become more convoluted, growing
in size and complexity, the interoperability can be expected to affect the
distribution of software and other digital objects and artefacts as well as have
implications to the practices of systems development. This line of inquiry may
provide a fruitful avenue of research for those who are interested in explaining
and theorising the logic of combination in the context of complex digital
innovation.

243

7.4 Summary

This chapter restated and discussed the conceptual findings of this research.
These findings conceptualise the structural-functional characteristics and
organising logic of complex digital innovation in the view of product
architectures and combination.

To begin, robots and autonomous systems were conceptualised as contextually
bound and embodied chains of transformation. This is to highlight that these
systems render their behaviour through the interaction with the surrounding
environment, are physically embodied and comprise interconnected
computational processes which transform sensory inputs into situated actions.
The direct coupling with the surrounding environment and the qualitative
difference between the inputs and outputs differentiates robot systems from the
traditional information and communication systems that mediate messages and
digital objects that are created and consumed by people. This shift marks the
expansion of the focus of digital innovation research from the information
systems to transformation systems. This conceptualisation provides a
foundation for further research towards a more fine-grained examination of
computational “value chains” by bringing forward simple questions such as
what is being transformed, how are transformations joined together or who
controls transformations and related abstractions. Moreover, perhaps, more
importantly, it would also possible to ask who decides which of ones the
transformations among the infinite variety of possible transformations are the
ones that will be deemed fit, just and appropriate and on what grounds that is to
take place.

Then, the generative-integrative mode of systems development was presented as
an approach that iteratively resolves the tensions between the specificity of
designs and the distributedness of knowledge and control. This can be viewed as
a mode of development that gradually seeks to increase the level of conceptual
interoperability among the components that constitute a system. The
generative-integrative mode can be described as an approach where an initial
generative combination of existing components provides the starting point for
further systems integration efforts. While the first combination may build upon
the under-specification of interfaces and constructive ambiguity, the subsequent

244

integration efforts seek to establish a higher degree of interoperability among
the components as the initial combination of components is gradually coevolved
and crafted into a composition that is expected to produce meaningful, robust
and dependable computer-controlled behaviour.

245

8 Conclusions

This is the final chapter that concludes this thesis. The chapter begins by
presenting an overview of the work and then provides a summary of key
findings. Subsequently, the findings are discussed to bring forward the
conceptual contributions developed in the previous chapters. This is followed by
the examination of the validity and limitations of this work, after which
potential avenues for future research are briefly presented.

8.1 Overview of the thesis and summary of the findings

The research presented in this thesis focuses on the organising logic of complex
digital innovation in the context of robots and autonomous systems from the
point of view of product architectures and combination. To date, this area of
research has received relatively little attention among digital innovation,
information systems and management researchers. Considering that robots and
autonomous systems in their different forms and functions are expected to play
an increasing role in the future organisational, social and economic
arrangements, the findings presented in this research are expected to be of
interest to both academia and industry as they describe and conceptualise the
organising logic of the systems that intertwine the physical, digital and
autonomous aspects of technology.

8.1.1 Background and research questions

Robots and autonomous systems can be viewed as a type of innovation that is
both complex and digital – they can be viewed either through the lens of digital
innovation or through the lens of complex products and systems innovation.
However, these two streams of innovation research draw their lessons from
different empirical settings and present incompatible logic and principles of
combination in the view of product architectures as presented and discussed in
the literature review in Chapter 2.

Product architectures are often discussed in terms of integrality or modularity
depending on the way in which functional elements are assigned to physical
components (Ulrich 1995). In modular architectures, the functional elements of

246

a product correspond to the components that constitute it, so that by changing a
component, the corresponding functionality changes. Integrality, in turn, refers
to the situation where components produce a particular functionality in
conjunction so that functionalities cannot be changed in a piecemeal manner by
changing some particular components in isolation. Modular product
architectures are produced through the process of modularisation during which
the overall design of a product is decomposed into its constituent components
in a top-down manner (Salvador 2007; Baldwin & Clark 2000). Thereby, the
knowledge of the overall architecture is a precondition for successful
modularisation if it is to facilitate the separability and combinability of different
components and modules (Schilling 2000).

The modularity of digital components and assemblages is said to differ from
that of physical products and components. Digital product architectures are
often represented as layered stacks (Yoo et al. 2010), which are modularised so
that different layers and components perform specific functions and services
which are accessed through well-specified interfaces and communication
protocols. What happens inside a component can be hidden and abstracted
away from its users (Parnas 1972). Therefore, as long as the functioning of a
component is well-specified and the interface for accessing the component
remains stable, it can be reused and its internal workings can be changed. By
adhering to specifications, open standards and common protocols, software
developers can focus on their particular areas of work with little regard to what
is abstracted away and hidden from them. This encapsulation enables
generativity as new ensembles can be created by combining components from
heterogeneous sources in a bottom-up manner (Yoo 2012b; Zittrain 2008;
Zittrain 2006). This way, whereas modularity assumes the knowledge and
control of an overall product architecture for modularisation efforts to succeed,
the generativity of digital innovation does away with the centralised design
agency rendering the knowledge and control over technologies and innovation
trajectories highly distributed (Yoo et al. 2010).

The literature on complex systems and products also casts doubt to what extent
straightforward modularisation is feasible, but it does so on very different
grounds (Prencipe 2000). The architectures of complex systems are

247

conceptualised as consisting of the hierarchies of inclusion and control
(Murmann & Frenken 2006; Lee & Berente 2012). The hierarchy of inclusion
refers to the physical components and parts that form the embodiment, and the
hierarchy of control refers to the systems that control the embodiment. The
elements that comprise these two analytically separate hierarchies are highly
intertwined and interdependent, rendering such architectures with a high
degree of specificity, integrality and complexity. It is argued that the companies
which engage in the complex products and systems innovation are expected to
possess detailed knowledge not only of the interdependent design hierarchies
and also of the functioning of the components that constitute them (Prencipe
2000). The high degree of interdependence among components makes the
efforts of modularisation challenging. Furthermore, as the components that
comprise the hierarchy of control often rely on digital computation, they can be
referred to as digital control systems (Lee & Berente 2012).

To problematise, in the context of complex digital innovation, should the
organising logic of innovation be viewed through the lens of generative
combinations or perhaps through the lens of complex systems and specificity?

With reference to this problematisation, the principal research question and two
operative research questions were formulated to guide the empirical
investigation. The principal research question is stated as follows:

How can the tension between the specificity of designs and the distributedness
of knowledge and control be resolved in the development of complex and
digitised products?

The principal question needs to be restated in operative terms to make the
process of data collection and analysis more tractable (Hintikka 1999). To this
end, operative research questions were constructed upon tentative a priori
concepts based on Herbert Simon’s (1996; 1962) theory of hierarchy that
conceptualises the structures of complex systems as nested and recursive
structures that are nearly-decomposable.

From this starting point, the efforts were first concentrated on the identification
of the instances of subsystems irrespective if they belonged to the hierarchies of

248

inclusion or control or at which hierarchical level they resided. The first
operative research question is expressed as follows:

What are the typical instances and characteristics of subsystems, if any?

Once the instances of subsystems were established, the focus of research shifted
from the subsystems to their combinations, with an emphasis to explore how
subsystems are connected at and across different levels of design hierarchies.
This is expressed through the second operative research question as follows:

What are the typical instances and characteristics of combinations, if any?

Examining the subsystems and their respective combinations was expected to
increase the understanding on how tensions between the specificity of designs
and distributedness of knowledge and control are resolved in the development
of complex and digitised products.

8.1.2 Approach to research

The Robot Operating System (ROS) (Quigley et al. 2009) was a selected as a
case to study after the pilot study phase, and the research was designed as an
embedded case study (Yin 2009). ROS was chosen as it was considered to
provide a holistic and representative view of the development of robots and
autonomous systems. An extensive research database was constructed primarily
from the publicly available documentary evidence that covered ROS and the
ROS community. This was complemented by the field notes and observations
that were gathered during different workshops and events.

The research database was processed to serve two different purposes, to develop
a case description and to carry out the thematic analysis that would provide an
answer to the principal research question. The analysis (Silverman 2015)
unfolded over five different although partially overlapping phases,
familiarisation, open coding, categorisation, thematisation and
conceptualisation. The first phase focused on getting familiar with the field of
robotics. The second phase (open coding) labelled data using the operative
research questions and their conceptual underpinnings as sensitising devices

249

(Klein & Myers 1999). The main outcome of these two phases is the case
description presented in Chapter 5 which is one of the empirical findings of this
research.

Subsequently, the third phase (categorisation) examined the labelled data in
more detail to locate recurring themes that would warrant the categorisation in
the view of research objectives. This iterative and interrogative process
(Hintikka 1999) produced 15 categories, which were further abstracted to six
themes during the fourth phase (thematisation). Then, finally, the fifth phase
(conceptualisation) evaluated and established the relationships among the
themes and categories. The conceptual propositions that were developed based
on the themes and categories constitute the theoretical contribution of this
research. Finally, the primary research question was answered with reference to
the theoretical propositions.

The contributions of this research can be divided along the lines of empirical
findings and conceptual propositions. The case description, themes and
categories constitute the empirical findings, whereas the theoretical
contributions comprise the two proposed conceptualisations. The empirical
findings and conceptual propositions are briefly presented in the subsequent
sections.

8.1.3 Empirical findings

The case description, themes and categories that were developed during the
process of thematic analysis form the main empirical findings of this research.

The case description presents ROS as a software development framework and
open-source community. ROS brings roboticists together and provides them
with building blocks, methods and tools that are needed to develop robots and
autonomous systems as distributed computers. The case description describes
how the two research projects started at Stanford University around 2005
evolved under the auspices of different organisations into a vibrant open-source
community while outlining the plans and (un)planned outcomes. This provides
unique insight into the domain of complex digital innovation that has so far
received little scholarly attention.

250

After developing the case description, the research database was analysed
further to identify recurring patterns, categories and themes. The analysis of
resulted in 15 categories, which were further abstracted to six themes: robot
systems (1), physical embodiments (2), communication systems (3),
transformation systems (4), visualisation and testing systems (5) and the ROS
community and software development (6). These themes and their respective
categories are outlined below.

To begin, the theme of robot systems (1) consists of two categories that are
research robots and productive applications, indicating the overall purposes of
robot systems. As a composition, a robot system comprises three different
themes, which are physical embodiments and communication and
transformation systems. These three themes are further divided into categories.
The theme of physical embodiments (2) consists of three categories that are
sensors, actuators and hardware platforms. They provide a robot system with
the means to interact with its surrounding environment. The theme of
communication systems (3) deals with messaging and coordination systems and
connectors, and their primary purpose is to facilitate the setting up of a robot
system as distributed computation. Whereas the messaging system handles the
run-time messaging among distributed computational processes, the
coordination systems provide the functionality for managing, coordinating and
monitoring the operation of distributed computation. The theme of
transformation systems (4) consists of the systems that carry out
transformations over coordinate frames and other representations of data. The
coordinate transformations perform transformations between different
geometric coordinate frames over time, whereas the representational
transformations, in general, perform qualitative, gradual and stepwise
transformations which convert the inputs of one kind to the outputs of another
kind, such as the measured patterns of light to action commands to motors. The
theme of visualisation and testing systems (5) consists of systems for
visualisation, simulation and test data management. The developers of robot
systems rely heavily on visualisation and simulation tools in the development of
behavioural models. Moreover, as physically embodied processes of distributed
computation are often convoluted and difficult to reason, the examination and
evaluation of behavioural models tend to be experimental while relying heavily

251

on the tools of visualisation and simulation. The theme of the ROS community
and software development (6) brings forward knowledge transfer efforts and the
supporting infrastructure and tools that are designed to facilitate software and
technology transfer and reuse in the community.

This categorisation and thematisation revealed the heterogeneity of software
packages, subsystems and components that are made available through the ROS
infrastructure. The analysis also revealed the absence of platforms, especially if
the concept of a platform is understood to refer to a stable core onto which
peripherals are connected via interfaces that are specific to a certain design
hierarchy (Baldwin & Clark 2000; Baldwin & Woodard 2008). Instead, what is
available is a multitude of frameworks and components that are distributed as
software packages that serve as building blocks from which robot systems can
be constructed. Therefore, while ROS provides the communication system and
common conventions around which the community revolves, it is not a platform
in the sense as an ordinary operating system would be. In addition, whereas
certain central frameworks, such as the ROS communication system and the
coordinate transformation systems cater to the needs that are common across
different robot systems, the systems and components that perform
representational transformations show a great degree of variety. This suggests
that the communication systems that perform replication of messages and the
coordinate transformation systems that perform transformations across
geometric frames of reference are more generalisable than the systems which
perform the representational transformations between the qualitatively
different inputs and outputs and produce the behaviour of a robot system.

8.1.4 Contributions to literature

This section presents the contributions with reference to the three target areas
of contribution as outlined in the introductory chapter. The three areas of
contributions are the description and illustration of the empirical domain of
robots and autonomous systems, the characterisation of the constitutive
elements and organising logic of complex digital innovation and the exposition
of the dynamics of innovation at the boundary of generative combination and
systems integration.

252

The case description presented in Chapter 5 provides the first contribution. It
provides an overview of ROS, which is a widely used software development
framework in the development of robots and autonomous systems. The chapter
describes the empirical domain and sheds light on the challenges related to the
development of robots and autonomous systems. To date, this framework and
community have escaped the innovation and management researchers’
attention, and to the author’s knowledge, no overall account of the history of
ROS has been documented elsewhere. However, ROS is widely used in the field
of robotics and it is expected to play a prominent role also in the future.
Therefore, the case description opens the door to the emerging domain of
complex digital innovation and further investigations.

Second, the conceptualisation of robots and autonomous systems as
contextually bound and embodied chains of transformation contributes to the
literature by conceptualising the salient characteristics that influence the
dynamics of combination in the view of product architectures and combination.
The purpose of this conceptualisation is to bring forward the structural and
functional characteristics that differentiate complex digital innovation from
other forms of digital innovation. To differentiate, robots and autonomous
systems interact directly with their surrounding environment, are physically
embodied and consist of interconnected computational processes which
transform between the qualitative different sensory inputs to situated actions.
The direct interactional and behavioural coupling between a machine and its
environment shifts the locale of interaction and associated sense and decision
making processes when compared to the information and communication
technologies, which replicate human communications over time and place.

This behavioural, interactive and distributed character of computation bears
implications to innovation practices. The shift of focus from transferring
information between human actors to the distributed computation which
produces goal-directed and context-dependent behaviour poses novel
challenges. These challenges are not only related to the reusability and
transferability of software, but also to the system design and development
practices as well as to the verification of their functionality. Conceptualising the
structural and functional aspects of complex digital innovation as contextually

253

bound and embodied chains of transformation allows us to pose a range of
questions regarding the computational “value chains”, for example by bringing
forward simple questions such as what is being transformed, how to control
transformations and related abstractions, how they are brought together and
who controls transformations and computer-controlled behaviour in general,
among many others.

Third, conceptualising the process of development of chains of transformation
as the generative-integrative mode of development contributes to the literature
on digital innovation by exposing a way how the tensions between the specificity
of designs and the distributedness of knowledge and control are resolved. This
mode of development can be characterised as a process that begins by
combining the first version of a system from components that originate from
heterogeneous sources. While this generative combination produces the first
version, it cannot be considered as a complete and finished product. Instead, the
first version provides a starting point for further systems development and
integration efforts, with reference to which the necessary contextual and
embodied experimentation and adjustment of behavioural models can proceed.
Moreover, as the generative combination builds upon the under-specification of
interconnections and constructive ambiguity, additional integration efforts are
then carried out to remove the incongruences that emerge from the tension
between the specificity of designs and under-specification that is bound to occur
in the absence of central design agency and agreed design principles. During the
integration phase, the initial combination is gradually crafted into a well-
functioning composition that produces the desired behaviour with respect to a
task and task environment.

The two proposed conceptualisations in conjunction depict complex digital
innovation as a multidimensional and convoluted endeavour and shed light on
the organising logic of complex digital innovation. Based on these findings, it
also appears that the commonly used references of traditional software
engineering, platforms and application stores may not be entirely representative
and analogues lenses for studying and explaining complex digital innovation. In
addition, the proposed concepts could be complemented and further developed
by incorporating and testing the theories that have been developed in the field

254

of simulation studies. Simulation modellers have studied challenges related to
distributed computation and conceptualised different levels of specification,
semantic information and interoperability that are needed in the development
of computational models of systemic behaviour.

During the course of research, alternative conceptualisations of product
architectures and different logics of combination were reflected in the view of
empirical findings. The examination revealed that the existing
conceptualisations were not able to fully capture the dynamics of innovation
observed in the ROS ecosystem. For example, while contextually bound and
embodied chains of transformation can be characterised as highly integral
(Ulrich 1995) and complex as they consist of the interdependent and
intertwined hierarchies of inclusion and control (Murmann & Frenken 2006),
these conceptualisations are not entirely applicable as they assume centralised
design agency and do not expose the interlinked and stepwise transformations
that produce the behavioural models of a robot system. Similarly, while the
generative-integrative mode of development aligns partially with the notion of
generativity (Zittrain 2008; Zittrain 2006), generativity does not take into
account the subsequent phases of development, which iteratively seek to
increase the level of integration among the components of a system and with
respect to tasks and task environments. Furthermore, while the concept of
layered modular architecture (Yoo et al. 2010) is able to explain some of the
observations, it does not capture the overall organising logic of complex digital
innovation in this empirical context. The layered modularity assumes the
presence of a foundational platform and stable interfaces, whereas the
development of embodied and distributed chains of transformation is
characterised by the absence of platforms.

It can be concluded that the proposed concepts provide a novel contribution to
the literature on digital innovation that focuses on product architectures and the
related organising logic and principles of combination.

8.2 Validity and research limitations

Efforts were made to ensure the reliability of the empirical findings and
conceptual propositions. As with any research project, this one also comes with

255

its limitations. The limitations are discussed with reference to the quality
criteria of case study research as presented by Yin (2009) and include construct
validity, internal validity, external validity and the general reliability of research.

Construct validity concerns with the collection of data, concepts and their
operationalisation (Yin 2009). Data collection and the initial identification of
the instances that were selected for further analysis were guided by the tentative
a priori concepts (Eisenhardt 1989b) that were used as sensitising devices (Klein
& Myers 1999). The subsequent process of thematic analysis that unfolded in a
highly iterative and interrogative fashion gradually arrived at 15 categories and
six themes. Although it is not possible to expose in full detail all intricacies of
this process, the resulting themes and categories have been introduced
presented with sufficient detail so as to provide a chain of evidence that allows
for other researchers to identify comparable clusters of themes and categories.
The data collection relied on multiple sources of evidence and frequent
triangulation for establishing the validity of proposed themes and categories.

Internal validity concerns with the logical validity of data analysis and the
construction of an argument that warrants the conclusions presented by the
research (Yin 2009). Several analytic strategies can be employed to this end,
such as systematic building of explanation and explanation against predicted
patterns (Gibbert et al. 2008). As mentioned above, the unfolding of the process
of thematic analysis cannot be explicated here in full detail: it is not feasible to
establish exposition in full detail on how the cycles of iterations unfolded.
However, the methodology chapter describes the overall unfolding of the
process that distilled the large body of empirical evidence from heterogeneous
sources into a handful of categories and concepts. Furthermore, the empirical
findings and conceptual contributions are presented in way that should allow a
reader to retrace the evidence and reconstruct the proposed line of argument.
Therefore, the validity of the proposed concepts can be subjected to verification.
In addition, the outcomes have been discussed in the light of existing literature
to sharpen the boundaries and definitions of the proposed conceptualisations
and to demonstrate the ways in which they differ from the current
conceptualisations and thereby provide novel and original contribution to the
literature on digital innovation.

256

External validity concerns to what extent the final conclusions of research are
expected to be generalisable to the settings that can be considered similar but
reside outside the empirical context of this research (Yin 2009; Gibbert et al.
2008). The two conceptual propositions differ in terms of their generalisability.
The notion of chains of transformations can be considered as highly
generalisable across a range of systems that carry out transformations in a
distributed manner. Broadly speaking, it marks the shift form information
systems to transformation systems while highlighting the differing underlying
logics of transferability, generalisability and verifiability of computational
process that serve different purposes. In turn, the generative-integrative mode
of development is more constrained and confined to the settings that unfold
under particular assumptions concerning the coordination, control and access
to knowledge at the level of overall system architectures and their constitutive
components.

Finally, the overall reliability of research refers to the absence of errors and
minimisation of biases (Gibbert et al. 2008; Yin 2009). In principle, other
researchers should be able to reproduce the findings if they would replicate the
research project. Considering the efforts that have been made to describe the
purpose, process and findings of this research with explicit references to the
documentary evidence that is publicly available, in principle, it should be
possible for other researchers to replicate the research and reach similar
empirical findings and conceptual conclusions.

8.3 Future research

As this research sheds light on the organising logic of complex digital innovation
in the context of robot and autonomous systems, it also brings forward a range
of topics and phenomena that would warrant further examination to develop a
better understanding of the dynamics of innovation revolving around the chains
of transformation in their different forms and functions.

Considering that the proposed concepts were developed based on the empirical
evidence that represent a single open-source community, the applicability of
conceptualisations could be further examined in other empirical contexts.
Evaluating the proposed concepts in other settings could validate, refute or

257

extend these conceptualisations. In the context of robots and autonomous
systems, for example, Orocos (Bruyninckx 2001) could be expected to be similar
to the distributed architecture of ROS in certain aspects, whereas Jibo,88 an
interactive desktop robot with its encapsulated hardware, application
programming interfaces and system development toolkit, presumably resembles
more a hardware-device platform that follows the logic of layered modular
architecture in the same way as mobile devices do.

Moreover, as this research focuses on the overall characteristics of the
organising logic of complex digital innovation at the level of ROS and the related
community, a more nuanced view could be obtained by examining some
particular instances of complex digital innovation from a close distance. For
example, an in-depth case study into a systems development project could help
understand and theorise how developers and organisations experience and
approach in their day to day practices and processes the challenges that revolve
around the specificity of requirements and the distributedness of knowledge
and control.

Furthermore, while the complexity of technological systems leads to several
technical and engineering challenges, developing understanding of the variety of
environmental contingences plays also a significant role. In the end, designing
and developing a machine that responds and absorbs environmental
contingencies require a deep understanding of the underlying characteristics
and dynamics of tasks and task environments. As robots and autonomous
systems are deployed into more open-ended and dynamic environments, the
methods and approaches for modelling environments in terms of their
dynamics and interactional affordances are expected to grow in importance. The
extensive use of visualisation and simulation tools demonstrates the need for
this, yet more research is needed on establish which ways the knowledge and
codification of tasks and task environments intersperses the technological
knowledge that dominates the discourse of robots and autonomous systems. To
exemplify, whereas an implementation of a management information system
often involves the rearrangement of administrative practices to make them
compatible with the workflows that are supported by the information system,

88 www.jibo.com

258

many physical large-scale environments such the system of road transit cannot
be changed but must be learned and adapted into. In this light, the data and
models that document the variety of environmental and operational contexts
that condition and accept or reject the behaviour of robots and autonomous
systems is presumably highly valuable for the developers of robot systems.

Overall, the further research into the computer-controlled behaviour and the
chains of transformation in their different forms and functions is necessary to
develop better understanding of the machines to which the powers of sense and
decision making are increasingly delegated and attributed; it is of paramount
importance to develop the methods and tools that provide us with a holistic
understanding of the structural and functional aspects of the modern computing
technologies. Examining and categorising different kinds of chains of
transformation and associated control points could provide better grounding for
explaining the social and organisation phenomena that revolves around
complex digital innovation. To this end, Floridi’s (2008, 2013) method of the
levels of abstraction could provide an appropriate high-level framing to begin
developing a more detailed framework to captures the dynamics of abstractions,
transformations at and across different levels. This would help replace the terms
such as artificial intelligence and algorithmic powers with more grounded and
operationalisable terms, thereby allow us to pose more tractable questions such
as what is being transformed, on what grounds and who controls
transformations.

259

9 References

Aaltonen, A. & Lanzara, G.F., 2015. Building Governance Capability in Online
Social Production: Insights from Wikipedia. Organization Studies, 36(12),
pp.1649–1673.

Abernathy, W.J. & Utterback, J.M., 1978. Patterns of industrial innovation.
Technology Review, 80(7), pp.2–9.

Ackoff, R.L., 1971. Towards a System of Systems Concepts. Management
Science, 17(11), pp.661–671.

Ahmed, P.K. & Shepherd, C., 2010. Innovation Management, Prentice Hall.

Alaimo, C. & Kallinikos, J., 2017. Computing the everyday: Social media as data
platforms. The Information Society, 33(4), pp.175–191.

Alexander, C., 1964. Notes on the Synthesis of Form, Harvard University Press.

Antonelli, G., 2015. Robotic Research: Are We Applying the Scientific Method?
Frontiers in Robotics and AI, 2(13), p.28.

Arthur, W.B., 2009. The Nature of Technology, Simon and Schuster.

Arthur, W.B., 2007. The structure of invention. Research Policy, 36(2), pp.274–
287.

Ashby, W.R., 1958. Requisite variety and its implications for the control of
complex systems. Cybernetica, 1(2), pp.83–89.

Avgerou, C., 2000. Information systems: what sort of science is it? Omega,
28(5), pp.567–579.

Bailey, D.E., Leonardi, P.M. & Barley, S.R., 2012. The Lure of the Virtual.
Organization Science, 23(5).

Baldwin, C.Y. & Clark, K.B., 2000. Design Rules: The power of modularity,
London: MIT Press.

Baldwin, C.Y. & Woodard, C.J., 2008. The architecture of platforms: A unified
view. Harvard Business School Finance Working Paper.

Barrett, M. et al., 2012. Reconfiguring Boundary Relations: Robotic Innovations
in Pharmacy Work. Organization Science, 23(5), pp.1448–1466.

Barrett, M. et al., 2015. Service innovation in the digital age: key contributions
and future directions. MIS Quarterly, 39(1), pp.135–154.

Bartholet, R.G., Brogan, D.C. & Reynolds, P.F., Jr, 2004. In search of the
philosopher's stone: Simulation composability versus component-based
software design. In Proceedings of the Fall Simulation Interoperability
Workshop.

260

Bauer, M. & Gaskell, G., 2000. Corpus Construction: a Principle for Qualitative
Data Collection. In Qualitative Researching with Text, Image and Sound.
London: SAGE Publications Ltd, pp. 20–37. Available at:
http://methods.sagepub.com/book/qualitative-researching-with-text-
image-and-sound.

Bauer, M.W., Gaskell, G. & Allum, N.C., 2000. Quality, Quantity and Knowledge
Interests: Avoiding Confusions. In Qualitative Researching with Text,
Image and Sound. London: SAGE Publications Ltd, pp. 3–17.

Bedau, M.A. & Humphreys, P., 2008. Introduction to Philosophical Perspectives
on Emergence. In Emergence. Contemporary Readings in Philosophy and
Science. The MIT Press, pp. 9–17.

Bekey, G.A., 2005. Autonomous Robots, London: MIT Press.

Bertalanffy, von, L., 1950. An outline of general system theory. The British
Journal for the Philosophy of Science, 1(2), pp.134–165.

Bertalanffy, von, L., 1968. General System Theory, New York: George Braziller.

Bharadwaj, A. et al., 2013. Digital Business Strategy: Toward a Next Generation
of Insights. MIS Quarterly, 37(2), pp.471–482.

Bissell, C., 2009. A History of Automatic Control. In S. Y. Nof, ed. Springer
Handbook of Automation. Heidelberg: Springer, pp. 53–69.

Bonsignorio, F. & del Pobil, A.P., 2015. Toward Replicable and Measurable
Robotics Research [From the Guest Editors]. IEEE Robotics & Automation
Magazine, 22(3), pp.32–35.

Boulding, K.E., 1956. General Systems Theory-The Skeleton of Science.
Management Science, 2(3), pp.197–208.

Bowen, G.A., 2009. Document Analysis as a Qualitative Research Method.
Qualitative Research Journal, 9(2), pp.27–40.

Boyatzis, R.E., 1998. Transforming qualitative information, Sage Publications,
Inc.

Braun, V. & Clarke, V., 2006. Using thematic analysis in psychology. Qualitative
Research in Psychology, 3(2), pp.77–101.

Broy, M., Cengarle, M.V. & Geisberger, E., 2012. Cyber-Physical Systems:
Imminent Challenges. In Lecture Notes in Computer Science. Springer,
Berlin, Heidelberg, pp. 1–28.

Brusoni, S. & Prencipe, A., 2006. Making Design Rules: A Multidomain
Perspective. Organization Science, 17(2), pp.179–189.

Brusoni, S., Prencipe, A. & Pavitt, K., 2001. Knowledge specialization,
organizational coupling, and the boundaries of the firm: why do firms know
more than they make? Administrative Science Quarterly, 46(4), pp.597–
621.

261

Bruyninckx, H., 2001. Open robot control software: the OROCOS project. In
IEEE International Conference on Robotics and Automation. pp. 2523–
2528.

Bryman, A., 2015. Social Research Methods, Oxford University Press.

Bryson, J., 2010. Cross-paradigm analysis of autonomous agent architecture.
Journal of Experimental & Theoretical Artificial Intelligence, 12(2),
pp.165–189.

Buchanan, R., 1992. Wicked Problems in Design Thinking. Design Issues, 8(2),
pp.5–21.

Camillus, J.C., 2008. Strategy as a wicked problem. Harvard Business Review,
86(5), pp.99–106.

Campagnolo, D. & Camuffo, A., 2009. The concept of modularity in
management studies: A literature review. International Journal of
Management Reviews, 12(3), pp.259–283.

Checkland, P., 2000. Soft systems methodology: a thirty year retrospective.
Systems Research and Behavioral Science, 16, pp.11–58.

Ciborra, C.U., 1996. The Platform Organization: Recombining Strategies,
Structures, and Surprises. Organization Science, 7(2), pp.103–118.

Clark, K.B., 1985. The interaction of design hierarchies and market concepts in
technological evolution. Research Policy, 14(5), pp.235–251.

Conti, M. et al., 2012. Looking ahead in pervasive computing: Challenges and
opportunities in the era of cyber–physical convergence. Pervasive and
Mobile Computing, 8(1), pp.2–21.

Copeland, B.J., 2014. Turing: Pioneer of the Information Age, Oxford
University Press.

Corbin, J. & Strauss, A., 2008. Basics of Qualitative Research, London: SAGE
Publications, Inc.

Cousins, S., 2010. ROS on the PR2. IEEE Robotics & Automation Magazine,
17(3), pp.23–25.

Cousins, S., 2014. Willow Garage Retrospective [ROS Topics]. IEEE Robotics &
Automation Magazine, 21(1), pp.16–20.

Crossan, M.M. & Apaydin, M., 2009. A Multi-Dimensional Framework of
Organizational Innovation: A Systematic Review of the Literature. Journal
of Management Studies, 47(6), pp.1154–1191.

Danese, P. & Filippini, R., 2010. Modularity and the impact on new product
development time performance. International Journal of Operations &
Production Management, 30(11), pp.1191–1209.

Davenport, T.H., 1993. Process Innovation, Boston: Harvard Business Shool
Press.

262

de Reuver, M., Sørensen, C. & Basole, R.C., 2017. The digital platform: a
research agenda. Journal of Information Technology, pp.1–12.

Eaton, B. et al., 2015. Distributed Tuning of Boundary Resources: The Case of
Apple's iOS Service System. MIS Quarterly, 39(1), pp.217–243.

Eisenhardt, K.M., 1989a. Agency Theory: An Assessment and Review. The
Academy of Management Review, 14(1), p.57.

Eisenhardt, K.M., 1989b. Building Theories from Case Study Research. The
Academy of Management Review, 14(4), pp.532–550.

Eisenhardt, K.M. & Graebner, M.E., 2007. Theory Building From Cases:
Opportunities And Challenges. Academy of Management Journal, 50(1),
pp.25–32.

Eisenhardt, K.M., Graebner, M.E. & Sonenshein, S., 2016. Grand Challenges
and Inductive Methods: Rigor without Rigor Mortis. Academy of
Management Journal, 59(4), pp.1113–1123.

Ernst, D., 2005. Limits to Modularity: Reflections on Recent Developments in
Chip Design. Industry & Innovation, 12(3), pp.303–335.

Ethiraj, S.K. & Levinthal, D., 2004. Modularity and Innovation in Complex
Systems. Management Science, 50(2), pp.159–173.

Fichman, R.G., Santos, Dos, B.L. & Zheng, Z., 2014. Digital innovation as a
fundamental and powerful concept in the information systems curriculum.
MIS Quarterly, 38(2), pp.329–353.

Floridi, L., 2008. The Method of Levels of Abstraction. Minds and Machines,
18(3), pp.303–329.

Floridi, L., 2013. The Philosophy of Information, OUP Oxford.

Flyvbjerg, B., 2013. Case Study. In N. K. Denzin & Y. S. Lincoln, eds. Strategies
of qualitative inquiry. Thousand Oaks, CA: SAGE, pp. 169–205.

Foote, T., 2013. Tf: The transform library. In 2013 IEEE Conference on
Technologies for Practical Robot Applications, TePRA 2013. Woburn, MA.

Garcia, R. & Calantone, R., 2002. A Critical Look at Technological Innovation
Typology and Innovativeness Terminology. The Journal of Product
Innovation Management, (19), pp.110–132.

Garud, R. & Kumaraswamy, A., 1995. Technological and organisational designs
for realizing economies of substitution. Strategic Management Journal, 16,
pp.93–109.

Garud, R., Jain, S. & Tuertscher, P., 2008. Incomplete by Design and Designing
for Incompleteness. Organization Studies, 29(3), pp.351–371.

Gates, B., 2007. A Robot in Every Home. Scientific American, 296(1), pp.58–65.

263

Gerkey, B. & Conley, K., 2011. Robot Developer Kits [ROS Topics]. IEEE
Robotics & Automation Magazine, 18(3), pp.16–16.

Ghazawneh, A. & Henfridsson, O., 2012. Balancing platform control and
external contribution in third-party development: the boundary resources
model. Information Systems Journal, 23(2), pp.173–192.

Gibbert, M., Ruigrok, W. & Wicki, B., 2008. What passes as a rigorous case
study? Strategic Management Journal, 29(13), pp.1465–1474.

Glanville, R., 1997. A Ship without a Rudder. Problems of Excavating
Cybernetics and Systems, pp.1–10.

Glaser, B.G. & Strauss, A.L., 1967. The Discovery of Grounded Theory,
Transaction Publishers.

Goldin, D., Smolka, S.A. & Wegner, P., 2006. Interactive Computation,
Springer.

Gregor, S., 2006. The Nature of Theory in Information Systems. MIS Quarterly,
30(3), pp.611–642.

Gregory, D., 2011. From a View to a Kill. Theory, Culture & Society, 28(7-8),
pp.188–215.

Grier, D.A., 2005. When Computers Were Human, Woodstock: Princeton
University Press.

Grover, V. & Lyytinen, K., 2015. New State of Play in Information Systems
Research: The Push to the Edges. MIS Quarterly, 39(2), pp.271–296.

Guizzo, E., 2014. Microsoft Shuts Down Its Robotics Group. IEEE Spectrum.
Available at: http://spectrum.ieee.org/automaton/robotics/robotics-
software/microsoft-shuts-down-its-robotics-group [Accessed April 11,
2016].

Hanseth, O. & Lyytinen, K., 2010. Design theory for dynamic complexity in
information infrastructures: the case of building internet. Journal of
Information Technology, 25(1), pp.1–19.

Hayles, N.K., 1999. How We Became Posthuman: Virtual Bodies in
Cybernetics, Literature, and Informatics, Chicago: University of Chicago
Press.

Henderson, R.M. & Clark, K.B., 1990. Architectural innovation: the
reconfiguration of existing product technologies and the failure of
established firms. Administrative Science Quarterly, 35(1), pp.9–30.

Henfridsson, O., Mathiassen, L. & Svahn, F., 2014. Managing technological
change in the digital age: the role of architectural frames. Journal of
Information Technology, 29(1), pp.27–43.

Hernandez, C. et al., 2017. Team Delft's Robot Winner of the Amazon Picking
Challenge 2016. In S. Behnke et al., eds. Lecture Notes in Computer Science.

264

RoboCup 2016: Robot World Cup XX. Cham: Springer International
Publishing, pp. 613–624.

Hintikka, J., 1999. The Role of Logic in Argumentation. In Inquiry as Inquiry:
A Logic of Scientific Discovery. Dordrecht: Springer Netherlands, pp. 25–
46.

Hippel, Von, E., 1990. Task partitioning: An innovation process variable.
Research Policy, 19(5), pp.407–418.

Hobday, M., 1998. Product complexity, innovation and industrial organisation.
Research Policy, 26(6), pp.689–710.

Honderich, T., 2005. The Oxford Companion to Philosophy, Oxford: Oxford
University Press.

Hylving, L. & Schultze, U., 2013. Evolving The Modular Layered Architecture In
Digital Innovation: The Case Of The Car’s Instrument Cluster. Thirty Fourth
International Conference on Information Systems, pp.1–17.

Iman, N., 2016. Modularity matters: a critical review and synthesis of service
modularity. International Journal of Quality and Service Sciences, 8(1),
pp.38–52.

Iñigo-Blasco, P. et al., 2012. Robotics software frameworks for multi-agent
robotic systems development. Robotics and Autonomous Systems, 60(6),
pp.803–821.

Kallinikos, J., 2012. Form, Function, and Matter: Crossing the Border of
Materiality. In P. M. Leonardi, B. A. Nardi, & J. Kallinikos, eds. Materiality
and Organizing. Social Interaction in a Technological World. Oxford
University Press, pp. 67–87.

Kallinikos, J., 2002. Reopening the black box of technology artifacts and human
agency. Twenty-Third International Conference on Information Systems,
pp.287–294.

Kallinikos, J., 2005. The order of technology: Complexity and control in a
connected world. Information and Organization, 15(3), pp.185–202.

Kallinikos, J., Aaltonen, A. & Marton, A., 2013. The ambivalent ontology of
digital artifacts. MIS Quarterly, 37(2), pp.357–370.

Kallinikos, J., Hasselbladh, H. & Marton, A., 2013. Governing social practice.
Theory and Society, 42(4), pp.395–421.

Karhu, K., Tang, T. & Hämäläinen, M., 2014. Analyzing competitive and
collaborative differences among mobile ecosystems using abstracted
strategy networks. Telematics and Informatics, 31(2), pp.319–333.

Kauffman, S.A., 1970. Articulation of Parts Explanation in Biology and the
Rational Search for Them. PSA: Proceedings of the Biennial Meeting of the
Philosophy of Science Association, 1970, pp.257–272.

265

Klaus, H., Rosemann, M. & Gable, G.G., 2000. What is ERP? Information
Systems Frontiers, 2(2), pp.141–162.

Klein, H.K. & Myers, M.D., 1999. A set of principles for conducting and
evaluating interpretive field studies in information systems. MIS Quarterly,
23(1), pp.67–93.

Kohlbrecher, S. et al., 2013. Overview of team ViGIR's approach to the Virtual

Robotics Challenge. In 2013 IEEE International Symposium on Safety,
Security, and Rescue Robotics (SSRR) IS. pp. 1–2.

Kohlbrecher, S. et al., 2015. Human-robot Teaming for Rescue Missions:

Team ViGIR's Approach to the 2013 DARPA Robotics Challenge Trials
Journal of Field Robotics, 32(3), pp.352–377.

Kramer, J. & Scheutz, M., 2006. Development environments for autonomous
mobile robots: A survey. Autonomous Robots, 22(2), pp.101–132.

Langlois, R.N. & Robertson, P.L., 1992. Networks and innovation in a modular
system: Lessons from the microcomputer and stereo component industries.
Research Policy, 21(4), pp.297–313.

Lee, A.S., 2010. Retrospect and prospect: information systems research in the
last and next 25 years. Journal of Information Technology, 25(4), pp.336–
348.

Lee, A.S. & Baskerville, R.L., 2003. Generalizing generalizability in information
systems research. Information Systems Research, 14(3), pp.221–243.

Lee, J. & Berente, N., 2012. Digital Innovation and the Division of Innovative
Labor: Digital Controls in the Automotive Industry. Organization Science,
23(5), pp.1428–1447.

Lyyra, A.K. & Koskinen, K.M., 2016. The Ambivalent Characteristics of
Connected, Digitised Products: Case Tesla Model S. In C. Keller et al., eds.
Nordic Contributions in IS Research. Lecture Notes in Business
Information Processing. Springer International Publishing, pp. 57–69.

Lyytinen, K., Yoo, Y. & Boland, R.J., Jr., 2015. Digital product innovation within
four classes of innovation networks. Information Systems Journal, 26(1),
pp.47–75.

Mack, C.A., 2011. Fifty Years of Moore's Law. IEEE Transactions on
Semiconductor Manufacturing, 24(2), pp.202–207.

Maes, P., Guttman, R.H. & Moukas, A.G., 1999. Agents that buy and sell.
Communications of the ACM, 42(3), pp.81–91.

Manyika, J. et al., 2013. Disruptive technologies: Advances that will transform
life, business, and the global economy, McKinsey Global Institute.

Mason, M., 2012. Creation Myths: The Beginnings of Robotics Research. IEEE
Robotics & Automation Magazine, 19(2), pp.72–77.

266

Matook, S. & Brown, S.A., 2016. Characteristics of IT artifacts: a systems
thinking-based framework for delineating and theorizing IT artifacts.
Information Systems Journal, 17(3), pp.661–38.

Maturana, H.R. & Varela, F.J., 1992. The tree of knowledge, Boston, MA:
Shambhala Publications, Inc.

Meadows, D.H., 2009. Thinking in Systems, Earthscan. Available at:
http://ir.nmu.org.ua/bitstream/handle/123456789/129200/2ee4a14a158e8
24b867e07ad95005643.pdf?sequence=1.

Merali, Y. & Allen, P., 2011. Complexity and Systems Thinking. In The SAGE
Handbook of Complexity and Management. SAGE, pp. 31–52.

Metta, G., Fitzpatrick, P. & Natale, L., 2006. YARP: Yet Another Robot
Platform. International Journal of Advanced Robotic Systems, 3(1), pp.43–
48.

Miller, R., Hobday, M. & Leroux-Demers, T., 1995. Innovation in complex
systems industries: the case of flight simulation. Industrial and corporate
change, 4(2), pp.363–400.

Mindell, D.A., 2015. Our Robots, Ourselves, New York: Penguin.

Mitchell, M., 2009. Complexity: A Guided Tour, Oxford: Oxford University
Press.

Murmann, J.P. & Frenken, K., 2006. Toward a systematic framework for
research on dominant designs, technological innovations, and industrial
change. Research Policy, 35(7), pp.925–952.

Nambisan, S. et al., 2017. Digital innovation management: Reinventing
Management Research in a Digital World. MIS Quarterly, 41(1), pp.223–
238.

Ng, A.Y. & Khatib, O., 2006. CRI: the Stanford AI STAIR Robot Project,

Ng, A.Y. et al., 2008. STAIR: The STanford Artificial Intelligence Robot project.
In Snowbird. pp. 1–2.

Nolte, D.D., 2015. Introduction to Modern Dynamics, Oxford: Oxford
University Press.

O'Kane, J.M., 2014. A gentle introduction to ROS.

Olsen, S., 2006. Microsoft unveils public robotics software. cnet.com. Available
at: https://www.cnet.com/uk/news/microsoft-unveils-public-robotics-
software/ [Accessed April 11, 2016].

Parnas, D.L., 1972. On the criteria to be used in decomposing systems into
modules. Communications of the ACM, 15(12), pp.1053–1058.

Perrow, C., 1984. Normal Accidents, New York: Basic Books.

267

Pot, E. et al., 2009. Choregraphe: a graphical tool for humanoid robot
programming. In RO-MAN 2009 - The 18th IEEE International Symposium
on Robot and Human Interactive Communication IS . IEEE, pp. 46–51.

Prencipe, A., 2000. Breadth and depth of technological capabilities in CoPS: the
case of the aircraft engine control system. Research Policy, 29(7-8),
pp.895–911.

Quigley, M. et al., 2009. ROS: an open-source Robot Operating System. In ICRA
workshop on open source software 3(3.2), pp. 1-6.

Quigley, M., Berger, E. & Ng, A.Y., 2007. STAIR: Hardware and Software
Architecture. AAAI Robotics Workshop, pp.1–7.

Rittel, H. & Webber, M.M., 1973. Dilemmas in a general theory of planning.
Policy sciences, 4(2), pp.155–169.

Rossano, G.F. et al., 2013. Easy robot programming concepts: An industrial
perspective. In Automation Science and Engineering (CASE), 2013 IEEE
International Conference on. IEEE, pp. 1119–1126.

Russell, S.J. & Norvig, P., 2010. Artificial Intelligence, New Jersey: Prentice
Hall.

Ruttan, V.W., 1959. Usher and Schumpeter on invention, innovation, and
technological change, The quarterly journal of economics.

Salvador, F., 2007. Toward a Product System Modularity Construct: Literature
Review and Reconceptualization. IEEE Transactions on Engineering
Management, 54(2), pp.219–240.

Sambamurthy, V. & Zmud, R.W., 2000. Research Commentary: The organising
Logic for an Enterprise's IT activities in the Digital Era – A prognosis of
Practice and a call for Research. Information Systems Research, 11(2),
pp.105–114.

Sanchez, R. & Mahoney, J.T., 1996. Modularity, flexibility, and knowledge
management in product and organization design. Strategic Management
Journal, 17(S2), pp.63–76.

Sanfeliu, A., Hagita, N. & Saffiotti, A., 2008. Network robot systems. Robotics
and Autonomous Systems, 56(10), pp.793–797.

Schilling, M.A., 2000. Toward a General Modular Systems Theory and Its
Application to Interfirm Product Modularity. The Academy of Management
Review, 25(2), pp.312–334.

Schilling, M.A. & Steensma, H.K., 2001. The Use of Modular Organizational
Forms: an Industry-Level Analysis. Academy of Management Journal,
44(6), pp.1149–1168.

Schumpeter, J.A., 1983. The Theory of Economic Development, Transaction
Publishers.

268

Scott, J., 2014. A Matter of Record: Documentary Sources in Social Research,
John Wiley & Sons.

Seddon, P.B. & Scheepers, R., 2015. Generalization in IS research: a critique of
the conflicting positions of Lee & Baskerville and Tsang & Williams. Journal
of Information Technology, 30(1), pp.30–43.

Seddon, P.B. & Scheepers, R., 2012. Towards the improved treatment of
generalization of knowledge claims in IS research: drawing general
conclusions from samples. European Journal of Information Systems,
21(1), pp.6–21.

Shaikh, M. & Henfridsson, O., 2017. Governing open source software through
coordination processes. Information and Organization, 27(2), pp.116–135.

Shneiderman, B. & Maes, P., 1997. Direct manipulation vs. interface agents.
interactions, 4(6), pp.42–61.

Siciliano, B. & Khatib, O., 2008. Springer Handbook of Robotics, Stanford, CA:
Springer.

Silverman, D., 2015. Interpreting Qualitative Data, London: SAGE
Publications.

Simon, H.A., 1962. The Architecture of Complexity. Proceedings of the
American Philosophical Society, 106(6), pp.467–482.

Simon, H.A., 1996. The Sciences of the Artificial, MIT Press.

Sosa, M.E., Eppinger, S.D. & Rowles, C.M., 2004. The Misalignment of Product
Architecture and Organizational Structure in Complex Product
Development. Management Science, 50(12), pp.1674–1689.

Spiegel, M., Reynolds, P.F., Jr & Brogan, D.C., 2005. A Case Study of Model
Context for Simulation Composability and Reusability. Winter Simulation
Conference, pp.437–444.

Sterling, B., 2013. Open-source Robot Operating System. wired.com. Available
at: https://www.wired.com/2013/10/open-source-robot-operating-system/
[Accessed July 10, 2017].

Suarez, F.F., 2004. Battles for technological dominance: an integrative
framework. Research Policy, 33(2), pp.271–286.

Svahn, F., Mathiassen, L. & Lindgren, R., 2017. Embracing Digital Innovation in
Incumbent Firms: How Volvo Cars Managed Competing Concerns. MIS
Quarterly, 41(1), pp.239–253.

Swade, D., 2002. The Difference Engine: Charles Babbage and the Quest to
Build the First Computer, Penguin Group USA.

Tanenbaum, A.S. & Bos, H., 2014. Modern Operating Systems, Essex: Pearson.

Thrun, S. et al., 2006. Stanley: The robot that won the DARPA Grand Challenge.
Journal of Field Robotics, 23(9), pp.661–692.

269

Tilson, D., Lyytinen, K. & Sørensen, C., 2010. Research Commentary—Digital
Infrastructures: The Missing IS Research Agenda. Information Systems
Research, 21(4), pp.748–759.

Tolk, A., Diallo, S.Y. & Turnitsa, C.D., 2007. Applying the levels of conceptual
interoperability model in support of integratability, interoperability, and
composability for system-of-systems engineering. Journal of Systemics,
Cybernetics and Informatics, 5(5), pp.65–74.

Ulrich, K.T., 1995. The role of product architecture in the manufacturing firm.
Research Policy, 24(3), pp.419–440.

Ulrich, K.T. & Eppinger, S.D., 2012. Product Design and Development, New
York: McGraw-Hill.

Urquhart, C., 2013. Grounded Theory for Qualitative Research, London: SAGE.

Utterback, J.M. & Abernathy, W.J., 1975. A dynamic model of process and
product innovation. Omega, 3(6), pp.639–656.

Vargo, S.L. & Lusch, R.F., 2004. Evolving to a New Dominant Logic for
Marketing. Journal of Marketing, 68(1), pp.1–17.

Varian, H.R., 2010. Computer Mediated Transactions. The American Economic
Review, 100(2), pp.1–10.

Walsham, G., 1995. Interpretive case studies in IS research: nature and method.
European Journal of Information Systems, 4(2), pp.74–81.

Wegner, P., 1997. Why interaction is more powerful than algorithms.
Communications of the ACM, 40(5), pp.80–91.

Weick, K.E., 1989. Theory Construction as Disciplined Imagination. The
Academy of Management Review, 14(4), pp.516–531.

Wiener, N., 1965. Cybernetics, or control and communication in the animal
and the machine (2nd ed.), Cambridge: MIT Press.

Wilson, D., 1969. Forms of hierarchy: a selected bibliography. General Systems,
14, pp.3–15.

Wimsatt, W.C., 1972. Complexity and Organization. In K. F. Schaffner & R. S.

Cohen, eds. PSA Proceedings of the Biennial Meeting of the Philosophy of
Science Association. Dordrecht, pp. 67–86. Available at:
http://www.jstor.org/stable/3698961.

Wimsatt, W.C., 1994. The ontology of complex systems: levels of organization,
perspectives, and causal thickets. Canadian Journal of Philosophy,
Supplementary Volume, Jan 1, 1994, pp.207–274.

Wolf, W., 2009. Cyber-physical Systems. Computer, 42(3), pp.88–89.

Wooldridge, M. & Jennings, N.R., 1995. Intelligent agents: theory and practice.
The Knowledge Engineering Review, 10(2), pp.115–152.

270

Wray, K.H., Pineda, L. & Zilberstein, S., 2016. Hierarchical Approach to
Transfer of Control in Semi-Autonomous Systems: (Extended Abstract). In
Proceedings of the 2016 International Conference on Autonomous Agents
\&\#38; Multiagent Systems. Richland, SC: International Foundation for
Autonomous Agents and Multiagent Systems, pp. 1285–1286.

Wyrobek, K.A. et al., 2008. Towards a personal robotics development platform:
Rationale and design of an intrinsically safe personal robot. In IEEE
International Conference on Robotics and Automation. IEEE, pp. 2165–
2170.

Yin, R.K., 2009. Case study research: design and methods; 4th ed, London:
Sage.

Yoo, Y., 2012a. Digital Materiality and the Emergence of an Evolutionary
Science of the Artificial. In Materiality and Organizing. Social Interaction
in a Technological World. Oxford University Press, pp. 134–154.

Yoo, Y., 2012b. The Tables Have Turned: How Can the Information Systems
Field Contribute to Technology and Innovation Management Research?
Journal of the Association for Information Systems, 14(5), pp.227–236.

Yoo, Y., Henfridsson, O. & Lyytinen, K., 2010. Research Commentary--The New
Organizing Logic of Digital Innovation: An Agenda for Information Systems
Research. Information Systems Research, 21(4), pp.724–735.

Yoo, Y., Lyytinen, K. & Majchrzak, A., 2012. Organizing for Innovation in the
Digitized World. Organization Science, 23(5), pp.1398–1408.

Yoo, Y., Lyytinen, K., et al., 2010. Unbounded innovation with digitalization: A
case of digital camera. In Annual Meeting of the Academy of Management.
pp. 1–41.

Zimbardo, P.G., Maslach, C. & Haney, C., 2000. Reflections on the Stanford
prison experiment: Genesis, transformations, consequences. In T. Blass, ed.
Obedience to Authority Current Perspectives on the Milgram Paradigm.
Mahwah, N.J.: Erlbaum Mahwah, NJ, pp. 193–237.

Zittrain, J., 2008. The Future of the Internet--And How to Stop It, Yale
University Press.

Zittrain, J.L., 2006. The Generative Internet. Harvard Law Review, 119(7),
pp.1974–2040.

271

10 Appendix A

Links to the sources of documentary evidence.

Source Link

Stanford Artificial Intelligence
Robot Project

http://stair.stanford.edu

Personal Robotics Programme
at Stanford

http://personalrobotics.stanford.edu

Willow Garage website http://www.willowgarage.com

ROS website http://www.ros.org

ROS wiki http://wiki.ros.org

ROS answers http://answers.ros.org

ROS discussion forum http://discourse.ros.org

ROS users mailing lists http://lists.ros.org/pipermail/ros-users/

ROS release mailing lists http://lists.ros.org/pipermail/ros-release/

ROSCon 2012 http://roscon.ros.org/2012/

ROSCon 2013 http://roscon.ros.org/2013/

ROSCon 2014 http://roscon.ros.org/2014/

ROSCon 2015 http://roscon.ros.org/2015/

ROScon 2016 http://roscon.ros.org/2016/

ROS 2 design website http://design.ros2.org

ROS 2 design discussion http://groups.google.com/forum/?fromgroups#!forum/r
os-sig-ng-ros

ROS-Industrial http://rosindustrial.org

Open Source Robotics
Foundation

https://www.osrfoundation.org

STAIR boldly steps into the
future of robotics

https://engineering.stanford.edu/news/stair-boldly-
steps-future-robotics

Interview: Scott Hassan on
Willow Garage and the Future
of Suitable Technologies

https://spectrum.ieee.org/automaton/robotics/home-
robots/interview-scott-hassan-on-willow-garage-and-
the-future-of-suitable-tech

Willow Garage's Last Days

https://www.bloomberg.com/news/articles/2014-02-
20/robotics-research-lab-willow-garage-shuts-down

Willow Garage changing

http://robohub.org/willow-garage-changing/

272

This woman makes robots.
And no one is going to stop
her

https://www.wired.com/2015/05/this-woman-makes-
robots-and-no-one-is-going-to-stop-her/#.4axl7ttds

How a billionaire who wrote
Google’s original code created
a robot revolution

http://uk.businessinsider.com/a-look-back-at-willow-
garage-2016-2

Willow Garage Retrospective http://ieeexplore.ieee.org/abstract/document/6763186/

273

11 Appendix B

The appendices B to G lists the ROSCon conference presentations by theme. Links to

the websites that lead to the links of individual presentations can be found in Appendix

A.

Theme: Communication system
Code Year Title of presentation Duration Subsystem Categories
CO1 2012 Keynote: ROS: Past,

present, and future
65 mins. ROS Messaging;

Coordination;
Connectors

CO2 2012 Introduction to rosjava 38 rosjava Connectors;
Infrastructure
and tools

CO3 2012 ROS on Windows 19 catkin,
Windows

Connectors;
Infrastructure
and tools

CO4 2012 The current state and
future of multi-master,
multi-robot systems
using ROS

34 roscore(s) Coordination

CO5 2012 Writing Hardware
Drivers

40 Hardware
drivers

Connectors

CO6 2012 Robot Web
Applications

22 rosbridge Connectors;
Infrastructure
and tools

CO7 2012 Using Open Sound
Control Hardware and
Software with ROS

13 touchOSC,
iOS

Connectors

CO8 2013 ROS Extrospection –
Multimaster and
Beyond

14 roscore(s) Coordination

CO9 2013 Reliable Robotics –
ROS Diagnostics++

16 ros_comm Messaging;
Coordination

CO10 2013 Networking for ROS
Users

12 ros_comm Messaging;
Coordination

CO11 2013 Android sensors driver 12 Android Connectors
CO12 2013 Creating web-enabled

robots with Robot Web
Tools

20 rosbridge2 Connectors

274

Theme: Communication system
Code Year Title of presentation Duration Subsystem Categories
CO13 2013 The next (big) step for

the ROS middleware
19 mins. ROS2 Messaging;

Coordination
CO14 2013 uROSnode – running

ROS on
microcontrollers

17 uROSnode Connectors

CO15 2013 Bridging ROS to
Embedded Systems: A
Survey

16 connections
to hardware

Connectors

CO16 2013 Introducing rosc 16 rosc Connectors
CO17 2014 Next-generation ROS:

Building on DDS
23 ROS2 Messaging;

Coordination
CO18 2014 Serious rosserial 14 rosserial Connectors
CO19 2014 ROS 2.0: Developer

preview
44 ROS2 Messaging;

Coordination
CO20 2014 ROS support from

MATLAB
28 Matlab Connectors;

Infrastructure
and tools

CO21 2015 ROS 2 on “small”
embedded systems

23 ROS2 Messaging;
Coordination;
Connectors

CO22 2015 State of ROS 2 - demos
and the technology
behind

50 ROS2 Messaging;
Supporting

CO23 2015 Real-time Performance
in ROS 2

40 ROS2 Messaging;
Coordination

CO24 2015 ROS android_ndk:
What? Why? How?

10 Android
NDK

Connectors;
Infrastructure
and tools

CO25 2016 ROS 2 Update 45 ROS2 Messaging;
Coordination

CO26 2016 Adaptive Fault
Tolerance on ROS: A
Component-Based
Approach

20 roscore,
ros_comms

Messaging;
Coordination

275

Theme: Communication system
Code Year Title of presentation Duration Subsystem Categories
CO27 2016 The Intuitive ROS UI:

FlexGui 4.0 – introduction
and industrial applications

16 mins. Flex Gui, a
user
interface

Connectors;
Infrastructure
and tools

CO28 2016 {,S}ROS: Securing ROS
over the wire, in the
graph, and through the
kernel

20 {,S}ROS Messaging;
Supporting

CO29 2016 Evaluating the resilience
of ROS2 communication
layer

20 DDS,
ROS2

Messaging;
Supporting

CO30 2016 RTROS – A real-time
extension to the Robot
Operating System

21 RTROS Messaging;
Supporting

276

12 Appendix C

Theme: ROS community and software development
Code Year Title of presentation Duration Subsystem Categories
SE1 2012 Opening Remarks 10 mins. ROSCon Knowledge

transfer
SE2 2012 The ROS wiki how to

make the best use of it
18 ROS wiki Knowledge

transfer
SE3 2012 Measuring and Tracking

Code Quality in ROS
22 ROS

Ecosystem
Knowledge
transfer

SE4 2012 Teaching Robotics with
ROS: Experiences,
Suggestions, and Tales
of Woe

20 ROS
Ecosystem

Knowledge
transfer

SE5 2012 Closing remarks 4 ROSCon Knowledge
transfer

SE6 2013 Opening remarks 17 ROSCon Knowledge
transfer

SE7 2013 ROS-Industrial, An
Open Source Case Study

19 ROS-
Industrial

Knowledge
transfer

SE8 2013 Why Industrial Robot
Manufacturers Should
Care About ROS

21 Yaskawa
robots

Knowledge
transfer

SE9 2013 The ROS Ecosystem:
How are We Doing?

19 ROS
Ecosystem

Knowledge
transfer

SE10 2013 Roles and
Responsibilities of a
Package Maintainer

10 ROS
Ecosystem

Infrastructure
and tools

SE11 2013 ROS and Rock: mixing
Orocos components and
ROS nodes into model-
driven toolchain

18 Rock-
Orocos, a
development
toolchain

Knowledge
transfer;
Infrastructure
and tools

SE12 2013 Improve your ROS code
with Model-Driven-
Engineering and save
development time while
doing it

19 BRIDE, a
development
toolchain

Knowledge
transfer;
Infrastructure
and tools

277

Theme: ROS community and software development
Code Year Title of presentation Duration Subsystem Categories
SE13 2013 Understanding and

using Catkin
41 mins. catkin, a

build system
Infrastructure
and tools

SE14 2014 Opening remarks 14 ROSCon Knowledge
transfer

SE15 2014 The ROS ecosystem:
Impact, insights, and
improvements

25 ROS
community

Knowledge
transfer

SE16 2014 Continuous integration
for ROS in commercial
environments

20 buildbot-ros,
a private
build system

Infrastructure
and tools

SE17 2014 Closing remarks 5 ROSCon Knowledge
transfer

SE18 2015 Opening Remarks 11 ROSCon Knowledge
transfer

SE19 2015 ROS for education and
applied research:
practical experiences

16 ROS Knowledge
transfer

SE20 2015 Bringing ROS to the
factory floor: a status
report on the ROS-
Industrial initiative

37 ROS-
Industrial

Knowledge
transfer

SE21 2015 Commercial models for
the robot generation

45 Ubuntu
Snappy,
dependency
management

Infrastructure
and tools

SE22 2015 ROS + Docker:
Enabling Repeatable,
Reproducible, and
Deployable robotic
software via Linux
Containers

20 Docker,
dependency
management

Infrastructure
and tools

SE23 2015 Docker-based ROS
Build Farm

19 private build
system
(Bosch)

Infrastructure
and tools

SE24 2015 Closing remarks 5 ROSCon Knowledge
transfer

278

Theme: ROS community and software development
Code Year Title of presentation Duration Subsystem Categories
SE25 2016 Opening Remarks 10 mins. ROSCon Knowledge

transfer
SE26 2016 ROS-Industrial turns

four and expands
worldwide

20 ROS-
Industrial

Knowledge
transfer

SE27 2016 ROS-‘X’ – Focused
Initiatives

24 ROS-'X',
domain-
specific
initiatives

Knowledge
transfer

SE28 2016 The ROS build farm -
what it can do for me

41 Public ROS
build system
by OSRF

Infrastructure
and tools

SE29 2016 Robust Deployment
with ROS Bundles

25 private build
system
(Clearpath)

Infrastructure
and tools

SE30 2016 Closing remarks 11 ROSCon Knowledge
transfer

279

13 Appendix D

Theme: Robot systems
Code Year Title of presentation Duration Subsystem Categories
RS1 2012 Using ROS on Field

Robotic Experiments in
Remote Locations

20 mins. Field
robotics

Research
Robots

RS2 2012 ROS for Humanoid
Robots

23 NAO, a
humanoid
robot

Research
Robots

RS3 2012 “Moe” The Autonomous
Lawnmower

18 Moe, a
lawnmovign
robot

Research
Robots

RS4 2012 Keynote: Architecting
Real-time Control of
Robonaut 2 using ROS
and Orocos

57 Robonaut2, a
humanoid
robot

Research
Robots

RS5 2013 Project AUTOMATE at
MIT Lincoln
Laboratories

20 A multi-
robot system

Research
Robots

RS6 2013 Real world indoor &
outdoor navigation
experiences with ROS

15 Robotnik,
mobile base

Research
Robots

RS7 2013 Hi Richard – Personalize
your Robot with the
cob_people_perception
stack

16 Care-O-bot,
research
platform

Research
Robots

RS8 2013 Understanding the
RoboEarth Cloud

25 RoboEarth
project

Research
Robots

RS9 2014 Development of dual arm
mobile manipulation
systems for small part
assembly tasks

45 PRACE
project at
IPA

Research
Robots

RS10 2014 EuRoC – The European
Robotic Challenges

17 EuRoC
competitions

Research
Robots

RS11 2014 How ROS works together
with the mining industry
in i2Mine project

21 i2mine
project

Research
Robots

280

Theme: Robot systems
Code Year Title of presentation Duration Subsystem Categories
RS12 2014 Practical experiences

using ROS to build a
three axis pick and place
assembly robot

25 mins. A proto-
board maker

Productive
applications

RS13 2014 ROS in space 40 Robonaut2, a
humanoid
robot

Research
Robots

RS14 2014 Control and perception
architecture for the tele-
operation of the
humanoid robot COMAN

17 Coman, a
humanoid
robot

Research
Robots

RS15 2015 An Introduction to Team
ViGIR’s Open Source
Software and DRC Post
Mortem

47 Team
ViGir's DRC
robot

Research
Robots

RS16 2015 Automated Driving with
ROS at BMW

29 Cars,
Automated
driving

Research
Robots

RS17 2015 Maru and Toru: Item-
specific logistics
solutions based on ROS

19 Magazino,
warehouse
robots

Productive
applications

RS18 2015 Accelerating Your
Robotics Startup with
ROS

20 Fetch,
warehouse
robots

Productive
applications

RS19 2016 Plan to Win with MoveIt!
- Lessons learnt from the
Amazon Picking
Challenge 2016

20 A pick and
place robot
for
warehouses

Research
Robots

RS20 2016 ANYmal at the ARGOS
Challenge: Tools and
Experiences from the
Autonomous Inspection
of Oil & Gas Sites with a
Legged Robot

36 ANYmal,
Oil and Gas
production
site

Research
Robots

RS21 2016 Agricultural Robotics
with ROS at Bosch: From
the internet of fields to
the internet of plants

23 Deepfield
Robotics
(Bosch),

Productive
applications

281

14 Appendix E

Theme: Transformation systems
Code Year Title of presentation Duration Subsystem Categories
TR1 2012 URDF and You 45 mins. URDF Coordinate

transformation
TR2 2012 Motion Planning in

ROS
43 MoveIt! Coordinate

transformation;
Representationa
l transformation

TR3 2012 Understanding tf 40 tf Coordinate
transformation

TR4 2012 Understanding the
Kinect

42 Kinect,
OpenCV,
OpenNI

Representationa
l transformation

TR5 2013 Keynote: MoveIt! 39 Moveit! Coordinate
transformation;
Representationa
l transformation

TR6 2013 3D Mapping with
OctoMap

40 OctoMap Coordinate
transformation;
Representationa
l transformation

TR7 2013 Object Recognition
Kitchen

23 Ecto Representationa
l transformation

TR8 2013 Taking advantage of
tf2 in single and
multi-robot cases

13 tf Coordinate
transformation

TR9 2013 Converting
SolidWorks Parts and
Assemblies to ROS
Friendly Files

14 URDF;
sw2urdf

Coordinate
transformation

TR10 2014 ros_control: An
overview

45 ros_control Representationa
l transformation

TR11 2014 Navigation
illumination:
Shedding light on the
ROS navstack

45 navigation Representationa
l transformation

282

Theme: Transformation systems
Code Year Title of presentation Duration Subsystem Categories
TR12 2014 ROS-Industrial

calibration
27 mins. Calibration Coordinate

transformation
TR13 2015 MoveIt! Strengths,

Weaknesses, and
Developer Insight

45 MoveIt! Coordinate
transformation;
Representationa
l transformation

TR14 2015 Phobos - Robot
Model Development
on Steroids

15 URDF;
Phobos

Coordinate
transformation

TR15 2015 The Descartes
Planning Library for
Semi-Constrained
Cartesian Trajectories

21 Descartes Coordinate
transformation

TR16 2015 Working with the
robot_localization
Package

20 robot_locali
sation

Coordinate
transformation;
Representationa
l transformation

TR17 2016 Robot calibration 19 robot_calibr
ation

Coordinate
transformation

283

15 Appendix F

Theme: Visualisation and testing systems
Code Year Title of presentation Duration Subsystem Categories
VI1 2012 The Gazebo Simulator

as a Development Tool
in ROS

46 mins. Gazebo Simulation

VI2 2013 Introducing the
MORSE simulator

22 Morse Simulation

VI3 2013 From simulation to real
robots

9 USARSim Simulation

VI4 2013 Using ROS with
Webots

12 Webots Simulation;
Development
infrastructure
and tools

VI5 2013 CloudSim: your own
ROS robot army in the
cloud

20 Cloudsim,
Gazebo

Simulation

VI6 2013 RQT Framework and
Best Practices

25 Qt, rqt Visualisation

VI7 2013 Robot Performance
Analysis from
Automatically
Recorded Data

32 MongoDB,
ROS

Data
management;
Visualisation

VI8 2014 Comparison of rigid
body dynamic
simulators for robotic
simulation in Gazebo

26 Gazebo Simulation

VI9 2014 Cognitive Robotics
Architecture for
Tightly-coupled
Experiments and
Simulation (CRATES)

25 QRSIM, a
drone
platform

Simulation;
Transformation

VI10 2015 Mapviz: An Extensible
2D Visualization Tool
for Automated Vehicle

15 mapviz Visualisation

VI11 2015 ROS-driven user
applications in
idempotent
environments

17 Liquid
Galaxy

Visualisation

VI12 2016 What’s new in
Gazebo? Upgrading
your simulation user
experience!

39 Gazebo Simulation

VI13 2016 Cloudy with a Chance
of Simulation

21 Gazebo.
CloudSim

Simulation

284

Theme: Visualisation and testing systems
Code Year Title of presentation Duration Subsystem Categories
VI14 2016 Robotics

Benchmarking with
ROS

20 mins. ConstructSim Simulation

VI15 2016 Physical Continuous
Integration — CI on
Real Robots!

20 Fetch, a
warehouse
mock-up

Simulation

VI16 2016 Bagbunker - Tool for
Large Data Storage,
Analysis, Viewing and
Testing

23 MARV,
rosbag

Data
management;
Visualisation

285

16 Appendix G

Theme: Physical embodiments

Code Year Title of presentation Duration Subsystem Categories

PE1 2013 Turtlebot 2 – the new
standard hardware
reference platform

14 mins. TurtleBot, a
teaching
platform

Platform;
Actuators:
Sensors

PE2 2013 ROSifying Robots: Tips,
Tricks, and Lesson
Learned

10 Any robot
hardware

Platform;
Actuators:
Sensors

PE3 2015 ROS on DroneCode
Systems

15 PX4, drone
platform

Platform;
Actuators:
Sensors

PE4 2015 Introducing ROS-
RealSense: 3D
empowered Robotics
Innovation Platform

15 Intel
RealSense
sensors

Sensors

PE5 2016 Introducing the
Turtlebot3

20 TurtleBot a
teaching
platform

Platform;
Actuators:
Sensors

PE6 2016 Introducing Intel
RealSense Robotics All-
in-one Perception Device

22 Intel
RealSense
sensors

Sensors

PE7 2016 Introducing H-ROS, the
Hardware Robot
Operating System

22 H-ROS,
ROS
hardware
components

Sensors;
Actuators

PE8 2016 A robust flying platform
for ROS developers

22 DJI, drone
platform

Platform;
Actuators:
Sensors

286

17 Appendix H

Events and non-participant observation documented in field notes.

Code Year Description Event and location
EO1 2015 Workshop: Research and innovation

camps
European Robotics Forum
2015 in Vienna, Austria
 EO2 2015 Workshop: Hardware and software

modularity and interoperability in
Service Robotics: Towards
standardisation

EO3 2015 Workshop: Towards new Robotics
Software

EO4 2015 Workshop: ROS Community
Workshop

EO5 2015 Two days ROS training workshops
for robot software developers

Workshop on Robot
Operating System in
Glasgow, UK

EO6 2015 A week summers school that entailed
lectures in robot software and
hardware and development

euRathlon/Sherpa summer
school in field robotics in
Oulu, Finland

EO7 2015 Two days conference on ROS
software and robot software
development (included in ROSCon
recordings)

ROScon 2015 in Hamburg,
Germany

EO8 2015 Partnering day for research projects
funded by the European Union

euRobotics brokerage day in
Brussels, Belgium

EO9 2016 Workshop: Robot Ontologies
Workshop to discuss the modelling
of robot structures

European Robotics Forum
2016 in Ljubljana, Slovenia

EO10 2016 Workshop: How Do We Surpass
Current Barriers to Efficient
Deployment of New Robotics in
Industry?

EO11 2017 Workshop: AI & Robotics:
Delivering Platform and Integration
Tools

European Robotics Forum
2017 in Edinburgh, Scotland

EO12 2017 Workshop: System Engineering -
RobMoSys: the next level of a
Model Driven Robotic Software
Ecosystem

287

18 Appendix I

Semi-structured interviews, each one of approximately 1 hour of duration.

Code Year Interviewee
IN1 2015 A researcher in a robotics laboratory
IN2 2015 A researcher in a robotics laboratory
IN3 2015 A business development manager in a robotics incubator
IN4 2016 The CEO of a small-medium sized robotics company

