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Abstract 

Robots and autonomous systems play an increasingly important role in modern 
societies. This role is expected to increase as the computational methods and 
capabilities advance. Robots and autonomous systems produce goal-directed 
and context-dependent behaviour with an aim to loosen the coupling between 
the machines and their operators. These systems are a domain of complex 
digital innovation that intertwines the physical and digital worlds with 
computer-controlled behaviour as robots and autonomous systems render their 
behaviour from the interaction with the surrounding environment. Complex 
product and system innovation literature maintains that designers are expected 
to have detailed knowledge of different components and their interactions. To 
the contrary, digital innovation literature holds that end-product agnostic 
components can be generatively combined from heterogeneous sources utilising 
standardised interfaces. An in-depth case study into the Robot Operating 
System (ROS) was conducted to explore the conceptual tension between the 
specificity of designs and distributedness of knowledge and control in the 
context of complex digital innovation. The thematic analysis of documentary 
evidence, field notes and interviews produced three contributions. First, the 
case description presents how ROS has evolved over the past ten years to a 
global open-source community that is widely used in the development of robots 
and autonomous systems. Second, a model that conceptualises robots and 
autonomous as contextually bound and embodied chains of transformation is 
proposed to describe the structural and functional dynamics of complex digital 
innovation. Third, the generative-integrative mode of development is proposed 
to characterise the process of innovation that begins from a generative 
combination of components and subsequently proceeds to the integration phase 
during which the system behaviour is experimented, observed and adjusted. As 
the initial combination builds upon underspecification and constructive 
ambiguity, the generative combination is gradually crafted into a more 
dependable composition through the iterative removal of semantic 
incongruences. 
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Glossary of key terms  
 

This glossary outlines central concepts and key terminology used in this thesis.  
 
Robots and autonomous systems refer to machines and systems that 
produce goal-directed and context-dependent behaviour to operate 
autonomously with limited human intervention. They have sensors and 
actuators and they render their behaviour from the direct interaction with the 
surrounding environment. For the most part, their behaviour is controlled by 
computers. 
 
Artificial intelligence refers to software. In particular to computational 
processes that transform between qualitatively different inputs to outputs in a 
way that can be viewed as advanced and sophisticated.  
 
A robot system refers to some particular instance of robots and autonomous 
systems. A self-driving car or an industrial robot can be considered as a robot 
system.  
 
Product architecture refers to a scheme by which the functionality of a 
product is allocated to its components. Can be characterised for example in 
terms of modularity and integrality. With modularity, functional 
interdependencies among components are low so that they can be separated 
and combined to produce product variety. With integrality, functional 
interdependencies among components are high so that a change in a component 
triggers changes in the components it interacts with. 
 
Modularisation refers to a top-down process that partitions a product design 
into modules that can be separated and combined as per the design rules. 
Assumes centralised design agency from the part of the architect that performs 
the partitioning into a hierarchy of parts. Characterises coordinated product 
innovation. 
 
Generativity refers to a bottom-up approach where new assemblages of 
digital products can be generatively created from end-produce agnostic 
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components and systems that adhere to common standards and open interfaces. 
Assumes distributed design agency as the knowledge and control of digital 
objects and artefacts is distributed across a heterogeneous group of actors. 
Characterises uncoordinated digital innovation. 
 
Specificity of complex systems refers to a dual-view of product architectures 
that entails the hierarchies of inclusion and control. The hierarchy of inclusion 
refers to a hierarchy of parts that forms the physical embodiment, and the 
hierarchy of control refers to the parts and systems that control the behaviour of 
that embodiment. As the two hierarchies are interdependent, detailed 
knowledge of components and their interactions is needed to produce desired 
functionalities. 
 
Organising logic of innovation refers to the dynamics of combination in 
the context of product architectures. Modularity (modularisation), generativity 
and specificity (complexity) manifest different logics of combination.  
 
Complex digital innovation is a form of digital innovation that intertwines 
the physical and digital worlds with computer-controlled behaviour. The 
organising logic of complex digital innovation is the focal point of this research. 
 
A system is a complex of interacting elements. Systems can be differentiated 
between each other by the number and type of their constituent elements and 
their respective interactions. 
 
Simon’s theory of hierarchy postulates the structure of complex systems as 
nested and recursive hierarchies that are nearly decomposable. The hierarchies 
consist of sets of subsystems that in combination form some higher-level 
system. A subsystem is a frame-dependent concept and what is considered as a 
sub or super system depends on the observer’s frame of reference. In general, an 
element, component, part or subassembly can be considered as a subsystem. A 
combination is an instance of two or more subsystem interacting with each 
other to produce some higher-level system. In a way, a subsystem and 
combination are the two sides of the same coin.  
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The Robot Operating System (ROS) is an open-source robot software 
development framework. The ROS communication system, development tools 
and software distribution infrastructure facilitate the development of robots and 
autonomous systems as distributed computation, and the ROS community 
brings together a heterogeneous group of roboticists from academia and 
industry.  
 
Thematic analysis is an iterative and interrogative method of data analysis 
that seeks to identify recurring patterns that warrant categorisation, abstraction 
and conceptualisation of phenomena. This method of analysis consists of five 
phases, which are familiarisation, open coding, categorisation, thematisation 
and conceptualisation.  
 

Proposed concepts 

 
Contextually bound and embodied chains of transformation is a 
notion that conceptualises the structural-functional characteristics of robots 
and autonomous systems that explain the organising logic of innovation in the 
context of complex digital innovation. This seeks to highlight that the 
appropriateness of behaviour is context-dependent, the behaviour and 
computation are embodied, and that computation is composed of the processes 
of communication and transformation. All these factors play part in the 
dynamics of combination. 
 
Generative-integrative mode of development is an approach to systems 
development. It characterises the process of complex digital innovation that 
begins from a generative combination of components and subsequently 
proceeds to the phase of integration during which the system behaviour is 
experimented, observed and adjusted. As the initial combination builds upon 
underspecification and constructive ambiguity, the generative combination is 
crafted gradually into a more dependable composition through the iterative 
removal of semantic incongruences. 
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1 Introduction 

The field of robots and autonomous systems is a prominent but understudied 
domain of digital innovation. Much of the innovation in the field derives from 
the rapid progress of the digital computing technologies, such as pervasive 
connectivity and increasingly sophisticated computing methods and techniques, 
which are often referred to as artificial intelligence and machine learning. These 
advances enable the design and production of robots and autonomous systems 
that can be deployed to carry out tasks on their own with limited human 
intervention. Although digital innovation researchers have examined a range of 
matters, such as digital infrastructures (Tilson et al. 2010), digital platforms in 
their different forms (de Reuver et al. 2017), digitised and connected products 
(Yoo et al. 2010; Henfridsson et al. 2014), social media (Alaimo & Kallinikos 
2017), mobility and digital service (Barrett et al. 2015), the innovation in the 
field of robots and autonomous (robotics) has attracted little attention to date.  
 
To begin to bridge this gap, this research sets out to study the organising logic 
of digital innovation in the context of robots and autonomous systems to 
explore to what the extent the current conceptualisations of organising logics 
apply in the field of robotics. Considering that different domains and 
phenomena of digital innovation are related and complementary to each other, 
the introduction begins by placing this research against the broader backdrop of 
digital innovation. Then, the notion of organising logic is discussed before 
outlining the motivation, research question, empirical context and objectives of 
this research.  
 
The emergence of digital information and communication infrastructures have 
transformed economic, organisational and social arrangements (Varian 2010), 
and digital technologies are expected to play a significant role in the future as 
well. A report by McKinsey Global Institute (Manyika et al. 2013) outlines 
twelve disruptive technologies of the future and provides a forecast of their 
economic impact. Out of the twelve technologies listed in the report, the six top 
places were occupied by digital or digitally driven technologies: mobile internet, 
automation of knowledge work, the Internet of Things, cloud computing, 
advanced robotics and autonomous and near-autonomous vehicles. The report 
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forecasts their total economic impact to be somewhere between 15.2 and 36.3 
trillion by 2025. Although future-looking reports are prone to be wrong in 
details, timelines and sometimes in fundamentals, it would be surprising if the 
advances in digital technologies and automation would not play a significant 
part in/on future economic arrangements.  
 
Technologies, in general, are created to serve some human purpose (Arthur 
2009), and digital technologies are no different in this sense. Since the 
introduction of the digital computer in the 1950s, Information and 
Communication Technologies (ICTs) have been studied, designed, developed 
and deployed to augment human capabilities and to replace human labour in 
different work organisations (Avgerou 2000). Information and communication 
technologies are deeply embedded in modern organisations, and it would be 
difficult to imagine them without bringing digital technologies into service. 
However, digital technologies can be used to serve a variety of purposes which 
go beyond the traditional management and coordination of organisations’ 
workflows, assets and labour through the processes of transmitting, storing and 
processing transactional data and information resources.  
 
Digital and data-driven business organisations seek to transform the underlying 
business models (Bharadwaj et al. 2013) by developing novel ways for delivering 
goods and services in digitised forms and over digital networks (Tilson et al. 
2010). While doing so, they also often seek to gather large data sets from diverse 
sources and analyse them using computational methods and tools in the hope of 
obtaining competitive advantage. The analysis of large data sets may provide 
useful insights for decision-makers, and certain knowledge-based tasks and jobs 
tasks that entail well-definable process of analysis and decision-making can be 
fully delegated to algorithms. This way, the use of computational methods can 
be used to support and automate knowledge work in organisations. 
 
The impact of digitalisation extends also to products (Henfridsson et al. 2014), 
cyber-physical environments (Broy et al. 2012). They are becoming more 
digitised and connected to the communication networks and digital service 
infrastructures. For example, much of the functionality of modern cars is 
produced and controlled through digital means (Lyyra & Koskinen 2016), either 
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by the computer and software built into the car itself or by the cloud-based 
services that render services remotely (Svahn et al. 2017). In addition to 
products which can be considered as having clearly observable boundaries, such 
as cars, the Internet of Things combines the physical and digital aspects of 
products and services while blending into the physical infrastructures and 
environments in a ubiquitous manner (Conti et al. 2012). Broadly speaking, the 
Internet of Things can be described to consist of physical devices and products 
that can be connected to the Internet, such as thermometers, fridges and cars 
among many others, and of the communication networks and digital 
infrastructures, which facilitate and coordinate the exchange of data between 
different devices, products and cloud-based services (Broy et al. 2012).  
 
The domain of robots and autonomous systems differs from other domains of 
digital innovation by its emphasis on the development of machines that perform 
goal-directed tasks in relation to the surrounding environment with limited 
human intervention (Siciliano & Khatib 2008; Bekey 2005). In order to loosen 
the coupling between the machines and their human operators, machines need 
to be equipped with mechanisms that are capable of producing and controlling 
machine behaviour in a way that is congruent with their tasks and task 
environments (Bissell 2009). To this end, researchers and developers of robots 
and autonomous systems integrate a range of digital technologies and methods 
and develop them further with the aim of developing computational models of 
behaviours that are robust and reliable (Bonsignorio & del Pobil 2015). This 
behavioural aspect of computation renders this domain of digital innovation 
extremely heterogeneous (Russell & Norvig 2010). The types and uses of robots 
and autonomous systems range from advanced manufacturing in production 
facilities and self-driving cars in public roads to Mars rovers and space 
exploration, to provide a few examples. The heavy reliance on digital 
technologies brings robots and autonomous systems into the purview of digital 
innovation (Nambisan et al. 2017).  
 
Technological progress expands gradually the scope of tasks and jobs that can 
be transferred from humans to machines. As has happened throughout the 
history of technological and economic development (Arthur 2009), this 
expansion has kept the multifaceted set of boundaries of work, revenue and 
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control among machines, workers, developers and owners in the flux for the 
foreseeable future.  
 
To succeed in competitive markets, firms and organisations from different 
industries are working towards increasing levels of autonomy by amalgamating 
digital technologies, methods and services with physical products (Nambisan et 
al. 2017; Fichman et al. 2014), and they appear to approach the amalgamation 
from different starting points and focus on different industries and market 
segments. Technology companies with a background on Internet and digital 
business models are inclined to integrate general and scalable computational 
methods into consumer-facing products, whereas organisations with a 
background on products, manufacturing and industrial services tend to focus on 
improving their products and service portfolios by making a better use of digital 
technologies and automation. To exemplify, Internet and consumer-oriented 
technology companies are racing to introduce voice-controlled user interfaces 
and digital assistants. They are being made available by Google (Google 
Assistant), Amazon (Alexa), Apple (Siri), Microsoft (Cortana) and Baidu (Duer), 
whereas the IBM Watson unit focuses on natural language processing services 
and automation of knowledge work in organisational settings. Google, an 
Alphabet business unit which focuses on search and advertising, announced a 
strategic focus from the mobile devices first to the artificial intelligence first to 
emphasise its efforts to leverage sophisticated computing methods, while 
another Alphabet business unit, DeepMind, focuses on the development and 
application of more general machine-learning and artificial intelligence 
methods and techniques which are capable of handling a wider variety of tasks 
and contexts. In the domain of products and services, self-driving cars have 
recently gained much momentum and attention. Traditional car makers, such as 
Volvo, Nissan and Audi, and their long-standing components suppliers compete 
with new entrants, such as Tesla, Über, Alphabet’s Waymo, Mobileye, Oxbotica 
and Baidu, to develop technologies that could generate revenue from the 
automated act of driving (Thrun et al. 2006). For farming, companies such as 
Deere & Company and Bosch’s Deepfield Robotics seek to automate fieldwork, 
whereas companies known for industrial automation, robots and services, such 
as Siemens, Atlas Copco, Metso Automation, ABB and Kuka among many 
others, are equipping their industrial and factory solutions with advanced 
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sensors, software and cloud-based technologies, and thereby expanding their 
product and service portfolios to increasingly autonomous cyber-physical 
systems and smart environments.  
 
This cursory illustration shows how the boundaries between the digital, physical 
and autonomous technologies are becoming increasingly fuzzy and intertwined. 
Moreover, the number of firms and organisations investing in these 
technologies, in the hope of generating revenues from the work carried out by 
robots and autonomous systems, indicates the relevance of two underlying 
streams of this research. The first one of them is the amalgamation of the digital 
and the physical, and the second is the effort to develop products and services 
that exhibit increasing capabilities of goal-directed, task and context-dependent 
behaviour. 

1.1 Motivation and scope of research 

To date, the development of robots and autonomous systems has remained to a 
large part in the realm of well-resourced corporate and government entities that 
focus on specific products. However, the emergence of open-source 
communities that focus on robotics and artificial intelligence is challenging this 
by making more state-of-the-art software freely available. The ability to reuse, 
combine and build upon others’ work lowers the bar of participation and opens 
up new possibilities, thereby allowing a broader spectrum of innovative and 
entrepreneurial firms and organisations, large and small, to innovate on robots 
and autonomous systems. However, while all this opens up appealing 
opportunities, it also simultaneously raises a question on how to coordinate and 
organise these novel and multifaceted avenues of innovation.  
 
Organising logics of innovation can be conceptualised in various ways. In the 
context of this work, following Yoo et al. (2010), the notion of organising logic 
refers to the dynamics of combination in the context of product architectures. 
To present the motivation and scope of this research, the subsequent sections 
introduce the concept product architecture, describe it in terms of modularity 
and modularisation and then show how the applicability of modularisation has 
been questioned in two streams of innovation literature, of which one focuses 
on digital innovation and the other on complex products and systems.  
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1.1.1 Product architectures and organising logic of innovation 

Products and systems are typically composed of different components, and 
product architecture defines the arrangement, functionality and interactions of 
components which in combination produce the overall functioning of a product 
(Ulrich 1995). Although product architectures may differ greatly from one to 
another, they can be characterised based on certain commonalities. Perhaps one 
of the most widely used characterisation of product architectures is presented 
along the spectrum between modularity and integrality (Ulrich 1995). This 
indicates the level of synergistic specificity among components and the extent to 
which they can be separated and recombined to produce a variety of products 
(Salvador 2007; Schilling 2000). A desired degree of modularity can be pursued 
through the centralised top-down process of modularisation (Baldwin & Clark 
2000), which allocates the functionality of a product to its constituent 
components and specifies the design rules which govern the interconnections 
and interactions among components. Moreover, modular structures can be 
described to consist of platforms and platform complements (Baldwin & 
Woodard 2008); the platform consists of central and relatively stable 
components, whereas the complements that adhere to design rules and attach to 
the central components through well-specified interfaces exhibit a greater 
degree of variety (Salvador 2007). This way, modularisation and the 
specification of design rules provide the methods of partition and coordination 
that facilitate the distribution of design and manufacturing activities across 
organisational units and industrial ecosystems (Sanchez & Mahoney 1996). 
Subsequently, modular product architectures have come to bear significant 
implications in the division and organisation of innovative and productive 
labour in different organisations and industries (Baldwin & Clark 2000). 

1.1.2 Distributedness of knowledge and control 

Digital innovation literature questions the extent to which the notions of 
modularisation and modular product architectures apply to digital innovation. 
The main discontent is that the process of modularisation assumes a centralised 
design agency (Nambisan et al. 2017) that partitions the overall design of a 
product to components that can be designed and manufactured in a distributed 
manner before final assembly (Yoo 2012b). Therefore, the literature on digital 
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innovation approaches the process of design from a different direction and 
argues that digitised products emerge partly as generative combinations (Yoo et 
al. 2010) in the absence of centralised design agency (Nambisan et al. 2017). 
This is theorised to follow from the commodifying and generative characteristics 
of operating systems and communication protocols (Zittrain 2008; Zittrain 
2006), which make it possible for broader audiences to take part in digital 
innovation. In this view, digitised products are seen as layeredly-modular (Yoo 
et al. 2010). This notion combines the concepts of products architectures as 
modular arrangements and as layered stacks. In the computer and software 
industry, system architectures are commonly presented as layered and 
hierarchical stacks. The stacks are collections of computer programs 
(components), where each of the components carries out a specific set of 
functions and in combination they produce the overall functioning of a 
computer. The combination of components that carry out different functions 
and reside at different levels of hierarchy relies on well-specified interfaces, 
standards and protocols (Yoo et al. 2010) which facilitate the communication 
between the components. This allows the separation of concerns by hiding of 
the internal functioning and complexity of components (Parnas 1972), which in 
turn facilities the divisions of innovative work as software designers can focus 
on their particular area of work. An operating system provides a prime example 
of hiding complexity; it hides the intricate details and complexity of computing 
hardware while making it accessible to software developers and applications 
(Tanenbaum & Bos 2014). This way, as long as different components adhere to 
specifications and produce their intended functionality, it is possible to combine 
ensembles of software components even if they originate from different sources 
(Yoo et al. 2010). While the reliance on pre-specified interfaces and layers of 
abstraction facilitates the division of labour and combination of components 
that originate from different sources, it also leads to a situation where 
knowledge and control of digital components and their internal functioning is 
distributed over a number actors and organisations (Yoo et al. 2010) while 
remaining open-ended and subject to frequent modifications (Kallinikos, 
Aaltonen, et al. 2013; Garud et al. 2008). Therefore, the digitalisation of 
products (Yoo et al. 2010), platforms (de Reuver et al. 2017) and infrastructures 
(Tilson et al. 2010) not only opens up new ways to divide and participate in the 



 

21 

innovative work, but it also challenges the established theories and practices of 
organisation and coordination. 

1.1.3 Specificity of designs 

Whereas the emergent and generative characteristics of digital innovation 
challenge the organising logic that builds on the notions of centralised design 
agency and modularisation, the literature on complex products and systems also 
challenges these notions but from a different direction. The complex products 
and systems literature questions the applicability of modular product 
architectures on the grounds of specificity of product and system designs (Miller 
et al. 1995), the prominent role of architectural innovation (Henderson & Clark 
1990; Hobday 1998) and interdependencies among different design hierarchies 
(Murmann & Frenken 2006). Under competitive mass-market conditions, 
products tend to evolve in conjunction with customers’ conceptions towards 
modular design hierarchies and dominant design (Utterback & Abernathy 1975; 
Clark 1985), yet such dominant designs remain largely absent in the complex 
products and systems engineering industries (Miller et al. 1995), which produce 
complex and highly-specific products and systems in low volumes. The projects 
which engage in complex products and systems innovation often require 
expertise at the levels of components and product architectures (Henderson & 
Clark 1990; Hobday 1998) in order to manage the interdependencies among 
design hierarchies of inclusion and control (Murmann & Frenken 2006). The 
hierarchy of inclusion refers to the hierarchical and nested organisation of parts 
which constitute the physical embodiment of a product, whereas the hierarchy 
of control refers to the parts and functional logic which controls the operation 
and behaviour of that embodiment. The multifaceted interdependencies among 
of the hierarchies of inclusion and control constrain the combinability of 
components and call for detailed knowledge of the system architectures as well 
as the functioning of different components (Prencipe 2000; Lee & Berente 
2012). Against this backdrop, complex products and systems literature 
questions to what extent innovative work can be partitioned and coordinated 
through the processes of modularisation and modular product architectures.  
 
As discussed above, although modularisation and modular product 
architectures are widely used in industrial settings and studied by academic 
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researchers, the extent to which these notions reflect the organising logic of 
digital innovation and complex products and systems innovation has been 
questioned, albeit on different grounds. Digital innovation literature does away 
with centralised design agency by turning into emergent and generative 
combinations, whereas complex products and systems innovation literature 
challenges the extent to which any modularisation or separation of concerns is 
feasible at all due to functional interdependencies that require detailed 
knowledge of product specific components and architectures. 
 
This leaves organisations and researchers with a conceptual conundrum: which 
theoretical or conceptual logic or framework should they follow or use when 
thinking of and working on robots and autonomous systems? Should they draw 
the lessons from the domain of digital, or should the lessons learned from the 
domain of complex products offer a better starting point? This is not an easy 
question to answer since robots and autonomous systems can be viewed at the 
same time through the lenses of digital and complex innovation and be labelled 
as complex digital innovation. First, they are complex compositions of diverse 
sets of components which in combination are expected produce context-
dependent and purposeful behaviour (Siciliano & Khatib 2008) and second, 
their behaviour is to a large extent controlled through the digital means, the 
computers and algorithms (Russell & Norvig 2010; Bekey 2005).  
 
The purpose of robots and autonomous systems is to perform tasks with limited 
human intervention. To loosen the coupling between the machines and their 
human operators, the machines are equipped with a set of technologies that 
allow them to steer and control their own behaviour. These sets of technologies 
consist of sensors that gather inputs from the surrounding environment, control 
systems that convert environmental inputs into plans actions and actuation 
mechanisms which then exert actions back to the environment (Bekey 2005). 
Therefore, such machines, once set in motion, are expected to operate towards 
given goals by responding to and absorbing a variety of contingencies that 
materialise in the surrounding environment and are within the bounds of their 
control systems (Wiener 1965; Ashby 1958). In this light, the notion of 
autonomy should not be considered as an essentialist character that could be 
attributed to a particular machine. Instead, in the context of robots and 
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autonomous systems, the notion of autonomy is better understood as non-
voluntarist situated actions, as a contingent behaviour which emerges from a 
machine’s interaction with its surrounding environment. In this view, the 
degree of autonomy a machine possesses can only be evaluated in relation to the 
degree of contextual variety the machine is able to handle while pursuing a 
given goal in a specific environment.  
 
Much of the progress in the field of robots and autonomous systems derives 
from the development and application of a variety of computing technologies 
and methods and across different domains of digital innovation. Large and 
small companies alike are confronted with the task of making sense of 
multidimensional and changing technological environment and considering 
how to conceptualise and arrange their innovative practices that revolve around 
digital, physical and autonomous technologies.  
 
But therein lies the problem. The development of robust and reliable 
behavioural models leaves little room for uncertainty, requiring orderly and 
knowledgeable integration of multiple technologies, yet, as per the organising 
logic of digital innovation, knowledge and control can be highly distributed 
among the actors and organisations that participate in the development of 
digital artefacts. Therefore, the organising logic of complex digital innovation 
appears to reside uncomfortably between the two somewhat contradicting logics 
of combination, thereby prompting empirical investigations to get a better grasp 
of the problem.  

1.1.4 Empirical observations 

Over the past decade, digital innovation research has studied structural 
arrangements, organising logic (Yoo et al. 2010) and competition dynamics 
(Karhu et al. 2014) in the context of digital infrastructures (Tilson et al. 2010), 
platforms (de Reuver et al. 2017) and associated boundary resources (Eaton et 
al. 2015; Ghazawneh & Henfridsson 2012). This body of literature documents 
the convergence towards generative platforms and ecosystems that centre on 
certain operating systems and digital services.  
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Whereas platformisation and convergence characterise digital innovation in the 
context of desktop computing, mobile devices and digital business models in 
general, the prevailing state of affairs appears more diverse in the domain of 
complex digital innovation, namely, robots and autonomous systems. A cursory 
search reveals a few dozen proprietary and open-source platforms, software 
development environments and framework, which are aimed to support the 
development of robots and autonomous systems. Regardless of the apparent 
similarities in the architectural principles and functionalities they offer, they 
differ in implementation details and are not compatible with each other 
(Kramer & Scheutz 2006; Iñigo-Blasco et al. 2012). The naming of YARP, Yet 
Another Robot Development Platform, is presumably symptomatic of the 
situation. In general, endeavours such as YARP aim at improving the 
combinability and reusability of robotics-specific software to leverage previous 
efforts, yet the fragmentation and lack of interoperability among different 
components and sets of software are common. In addition, the manufacturers of 
industrial robots use proprietary software development environments and 
programming languages (Rossano et al. 2013; Pot et al. 2009). Moreover, 
advanced control systems are often embedded integrally to specific end-
products, such as aeroplanes (Prencipe 2000) or self-driving cars (Thrun et al. 
2006).  
 
With various references to the benefits of platformisation, open standards and 
lessons from software engineering, there have been numerous attempts to make 
robot software more transferable in order to avoid reinventing the wheel. 
Regardless of the recent hype, it is worth noting that the first digitally controlled 
robotic arms were developed in the 1950s and put into industrial use in the early 
1960s (Mason 2012). While many of the open-source efforts have emerged from 
the needs of developer communities, there have been corporation-driven efforts 
as well. For example, Microsoft launched Microsoft Robotics Developer Studio 
(MRDS) at the end of 2006 (Olsen 2006). The launch was accompanied by the 
article A robot in every home by Bill Gates (2007) in the Scientific American. 
The article pointed out the lack of common standards and platforms likening 
the state of robotics to that of computers in the mid-1970s. MRDS was then 
proposed as a way for consolidating contributions from the wider community. 
This would speed up the development of the industry by providing a common 
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set of standards and tools that cater the needs of the developers of robots and 
autonomous systems. Despite the good intentions, business opportunities did 
not materialise and Microsoft shut down the robotics group in autumn 2014 
(Guizzo 2014). The generative promise of well-defined interfaces and 
standardised protocols remained elusive even for a well-resourced corporation. 
 
Regardless of the apparent difficulty in establishing common standards, the 
Robot Operating System (ROS) (Quigley et al. 2009) has gained traction among 
researchers and developers in academia and industry. ROS is designed to 
support collaborative and distributed robot software development, and ROS and 
the related open-source community make a range of robotics-specific software 
freely available while bringing together roboticists and developers from 
different parts of the world. This distributedness renders the boundaries of 
knowledge and control diffuse uncertain and porous, which is something that 
could be considered as anathema in the view of design and engineering efforts 
that seek to produce reliable, predictable and robust systems whose behaviour is 
well-understood. 
 
Therefore, the interesting part here is what makes ROS successful and how it 
manages to resolve the tensions between the contradicting organising logics that 
emerge from the specificity of designs and the distributedness of knowledge and 
control in complex digital innovation. Thereby, this tension provides the 
motivation and scope for this research.  

1.2 Problem statement and research questions 

The previous discussion presents an understanding of the tension emerging 
from the specificity of designs and the distributedness of knowledge and control 
in innovation literature. So far, this tension has received relatively little 
attention, and different bodies of literature offer contradicting views. This 
tension is restated below as a problematisation so as to inform the research 
question this work seeks to answer. The principal research question and two 
operative research questions are presented after the problematisation. 
 
Robots and autonomous systems can be considered as complex digital 
innovation since they consist of a variety of physical and digital components, 
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and the development of goal-oriented, context-dependent and contingent 
behavioural models make extensive use of digital technologies. The literature on 
digital innovation theorise that novel products can be generatively combined 
from the components that originate from heterogeneous and distributed 
sources; by adhering to open standards, common interfaces and protocols, 
software developers can focus on their own areas of work with little regard to 
that what is hidden on the other side the interface. On the other hand, according 
to innovation literature on complex products and systems, designers and 
developers are expected to possess a detailed knowledge not only of the 
interfaces and particular components but the overall system architecture as 
well, due to multifaceted functional interdependencies among the hierarchies of 
inclusion and control. This brings up the tension between the specificity of 
designs and to the distributedness of knowledge and control of digital 
components. Furthermore, while the cursory evidence indicates the difficulty of 
establishing common standards in the field of robots and autonomous systems, 
the uptake of ROS shows that this is not entirely out of the question. These 
contradictions are problematic and raise a question on how complex digitised 
products should be conceptualised to make sense of their organising logic on 
innovation.  
 
The motive of the principal research question rests on two pillars. The first one 
is the conceptual tension that emerges from the innovation literature, and the 
second is the existence and uptake of ROS, which gives a reason to assume the 
tension between the specificity of designs and the distributedness of knowledge 
and control can be resolved. However, how this is exactly done remains unclear. 
To this end, the following principal research question establishes the main 
objective of the inquiry:  
 
How can the tension between the specificity of designs and the distributedness 
of knowledge and control be resolved in the development of complex and 
digitised products? 
 
Next, the principal research question is restated as operative research questions 
to make the process of data collection and analysis more focused and tractable. 
Considering the exploratory character of this research, the operative research 
questions are left open-ended in order to retain the interpretative flexibility 
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while simultaneously directing the researcher’s attention towards the potential 
areas of interest. The operative research questions are constructed upon 
tentative a priori concepts, which operate as sensitising devices and while 
remaining open in terms of what exactly should be observed.  
 
The conceptualisation draws on Simon’s (Simon 1962; Simon 1996) theory of 
hierarchies, which defines complex systems as nested, recursive and nearly-
decomposable structures. Drawing on the central elements of this theory, the 
efforts of data collection and analysis are directed to the identification of 
subsystems and combination and their respective characteristics. They are 
expected to provide a well-rounded view on the organising logic of complex 
digital innovation in the context of ROS. 
 
Starting from what is there to be combined, efforts are first geared towards the 
identification of the typical instances of subsystems at different levels of 
hierarchies of inclusion and control. Therefore, the first operative research 
question is formulated as follows: 
 
What are the typical instances and characteristics of subsystems, if any? 
 
Once the typical instances of subsystems are identified, the focus is shifted to 
the combination of subsystems with an emphasis to explore how they are 
combined across and at different levels of hierarchies. Therefore, the second 
operative research question is formulated as follows: 
 
What are the typical instances and characteristics of combinations, if any? 
 
The examination of the subsystems and their respective combinations is 
expected to provide a way to answer the principal research question and 
increase our understanding on how tensions between the specificity of designs 
and the distributedness of knowledge and control can be resolved in complex 
digital innovation. 
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1.3 Research objective and approach 

As established in the principal research question, the objective is to study the 
tensions between the specificity of designs and the distributedness of knowledge 
and control. This is done with reference to ROS, which is widely used in the 
research and development of robots and autonomous systems. The research is 
exploratory aiming to provide a foundation for further studies. With reference 
to Gregor’s (2006) categorisation of information systems theories, the aimed 
contribution can be characterised as type I theory, which seeks to describe and 
analyse the phenomenon. Such theories are described as follows: 
 
“Says what it is. The theory does not extend beyond analysis and description. 
No causal relationships among phenomena are specified and no predictions 
are made” (Gregor 2006, p.620) 
 
Theoretical contributions are presented in the form of proposed concepts 
(Eisenhardt 1989b), and whereas they may have a potential to shed light on 
where the future studies could be directed, no causal claims nor future 
predictions are made within the scope of this research.  
 
Research design follows the framework presented by Eisenhardt (1989b). Data 
collection and analysis are guided by tentative a priori concepts, which direct 
the researcher’s attention towards particular areas of interest. Furthermore, 
given the exploratory character of this research, data analysis and collection are 
partially overlapping so as to provide flexibility to pursue emerging avenues of 
research if and when data so suggests. The analysis of data is followed by the 
formulation of proposed concepts, which are then enfolded and discussed with 
reference to the literature on digital and complex systems and products 
innovation.  
 
The emergence, organisation and use of ROS provide the empirical backdrop for 
this research, and a research database for ROS related data is constructed to 
serve two purposes. First, it provides a chronological trail of events based on 
which the case description is constructed. Second, to offer a rich body of 
evidence that enables an in-depth investigation for answering the primary 
research question. The research database consists primarily of documentary 
evidence, including ROS related blog entries, ROSCon conference presentations, 
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scientific papers and magazine articles and email archives. Together they cover 
a period from 2005 to 2016. The documentary evidence is supplemented with 
selected interviews and field notes.  
 
The analysis of data proceeds in two stages. The first stage concerns with getting 
familiar with the context of research and case study. This stage produces the 
case description of ROS and develops an understanding of the language used in 
the field, and therefore serves as a preparatory stage before the second stage. 
The second stage focuses on a more detailed analysis of documentary evidence, 
using the method of thematic analysis to identify the themes and categories of 
subsystems and their respective characteristics of combination. This is done to 
describe and conceptualise the unfolding of the tension between the specificity 
of designs and distributedness of knowledge and control.  
 
Subsequently, the proposed concepts are presented and discussed in the light of 
existing literature to evaluate their validity and the extent to which they are able 
to contribute to the literature on digital innovation.  
 
The proposed concepts build upon the empirical evidence collected from ROS. 
Therefore, there are limitations to what extent the resulting conceptualisation 
applies to different robot software development environments. In addition, 
considering the complexity and open-endedness of ROS and the surrounding 
community, this research does not claim to be exhaustive. Therefore, there are 
presumably elements, which may contribute to the phenomenon but have not 
been considered in the analysis. 

1.4 Targets for contributions 

Should the objectives of this research be achieved, the following contributions to 
the innovation literature could be made. 
 
The first area of contribution is the description and illustration of the empirical 
domain of robots and autonomous systems. This domain nor the software 
development environments or infrastructure that support it have not received 
much attention in the literature on digital innovation. Therefore, this work has 
an opportunity to contribute to the literature by introducing ROS, a widely used 
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software development framework for robotics and explicate its origins and 
organising principles.  
 
The second area of potential contributions concerns conceptualisations which 
are expected to emerge from the thematic analysis. The thematic analysis is 
expected to reveal salient themes and properties that characterise the 
constitutive elements and organising logic of digital innovation in the context of 
ROS and in the development of robots and autonomous systems in general. This 
would contribute to the literature by providing conceptual tools that could 
potentially be of use when developing more targeted and fine-grained research 
designs to establish prevailing states of affairs at a greater level of detail and 
precision. 
 
The third area of potential contributions is related to the innovation dynamics 
at the boundary of generative combinations and systems integration efforts. 
This is becoming increasingly relevant considering the broader uptake of 
technologies that are becoming more sophisticated, complex and autonomous. 
Therefore, developing a greater degree of understanding of the dynamics of 
complex digital innovation would presumably be also of practical interest for 
businesses and innovation and technology managers who are tasked to manage 
and increase the level of automation in different work environments.  
 
Therefore, to aim at these contributions, this work proceeds to explore and 
examine how software development around ROS is organised, how it supports 
the innovation on robots and autonomous systems and what are the salient 
characteristics of the organising logic of innovation. The contributions of this 
research are discussed with reference to these objectives in the concluding 
chapter.  

1.5 Structure for the dissertation 

Moving forward, the next chapter, Chapter 2, reviews the related innovation 
literature in more detail. To this end, the focus of the review is on the body of 
research that deals with product architectures, modularisation, digital 
innovation as well as the characteristics of robots and autonomous systems and 
the innovation on complex systems and products. The problematisation and 
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principal research questions are presented after the literature review. The 
literature review is followed by Chapter 3 that introduces the theoretical 
framing that underpins the development of the tentative a priori 
conceptualisations and operative research questions. This is based on Herbert 
Simon’s (1996; Simon 1962) theory of hierarchies which is concerned with the 
structural properties of complex systems. Chapter 4 describes the theoretical 
foundation of the research methods adopted in this research. Considering the 
exploratory character of this research, the methods applied seek to identify and 
explicate prominent themes that could be used to propose conceptualisations 
capable of informing the future research efforts. Chapter 5 presents the case 
description. The case description outlines the history and evolution of ROS and 
presents it as a framework and community that brings together a number of 
robotics researchers and developers from academia and industry. Then, Chapter 
6 presents the results of the empirical study and brings forward the themes 
which emerged from the documentary evidence. Subsequently, building upon 
these themes, proposed conceptualisations regarding the complex digital 
innovation and the development of robots and autonomous systems are 
introduced. Subsequently, Chapter 7 discusses these proposed concepts in the 
light of existing literature on digital innovation and complex systems and 
products. The chapter begins by summarising the concepts and then proceeds to 
discuss the unfolding of the tensions between the integrality of designs and 
distributedness of knowledge and control in the context of complex digital 
innovation. Finally, Chapter 8 presents concluding remarks, which summarise 
this research by bringing forward potential contributions, outlining the various 
failings and limitations and suggesting avenues for future research. 
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2 Literature review 

This research explores the organising logic of complex digital innovation. Given 
the range of dimensions along which organisations can innovate or support 
innovative practices, research on innovation ranges from human creativity, 
technological inventions, business and management practices to economic 
analysis and national strategies focusing on different levels and units of analysis 
(Ahmed & Shepherd 2010). In this work, the organising logic of complex digital 
innovation is studied in the context of robots and autonomous system.  
 
Since the 1950s, the innovation that leverages digital technologies has played an 
increasingly important role in the process and product development (Nambisan 
et al. 2017). Information systems are widely used in organisational settings 
(Avgerou 2000), and digital technologies have come to constitute pervasive 
information and communication infrastructures (Tilson et al. 2010). 
Furthermore, physical and digital technologies are becoming increasingly 
intertwined and digital technologies manifest themselves in cars (Henfridsson 
et al. 2014), sensor networks (Sanfeliu et al. 2008), the Internet of Things and 
other cyber-physical systems (Broy et al. 2012; Conti et al. 2012; Wolf 2009).  
 
Robots and autonomous systems represent the complex end of digital 
innovation. Typically, robots and autonomous systems are composed of a 
variety of physical and digital components in an attempt to create machines that 
are able to operate on their own by interacting with the surrounding 
environment (Bekey 2005). This is to a large extent facilitated by digital 
computing and artificial intelligence technologies (Russell & Norvig 2010).  
 
This chapter reviews the related literature to establish the backdrop and 
boundaries for this research. Broadly speaking, the chapter unfolds along the 
five elements as illustrated in Figure 1. To begin, different types and definitions 
of innovation are outlined to locate this work in the wider body of innovation 
literature, and in the scope of this work, innovation is viewed through the lens 
of technological combination (Arthur 2009; Schumpeter 1983 first published in 
1934). Then, the review directs its attention to the organising logics of 
innovation, which are viewed as the dynamics of combination in the context  
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Figure 1: The structure of the literature review (own figure) 
 
of product architectures. To this end, the concepts of product architectures 
(Ulrich 1995), modularisation (Baldwin & Clark 2000) and the modularity of 
product systems (Salvador 2007) are reviewed. After that, the two branches of 
innovation literature that challenge the modularity view are introduced and 
discussed. The branch on the generativity of digital innovation reviews the 
emerging body of digital innovation literature (Nambisan et al. 2017) with 
reference to software system architectures (Parnas 1972) and digital innovation 
as generative combination (Zittrain 2008; Zittrain 2006), looking also into 
digitised products in the view of layered modular architectures (Yoo et al. 2010) 
and complementary architectural frames (Henfridsson et al. 2014). After that, 
the branch on the specificity of complex innovation reviews the literature on 
complex systems and products innovation with reference to the inclusionary 
and control hierarchies (Murmann & Frenken 2006) and related implications to 
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the organising logic of innovation (Prencipe 2000; Lee & Berente 2012). At the 
end of the chapter, the reviewed literature is brought together to present the 
contradicting logics of combination, which leads to the problematisation and 
principal research question.  

2.1 Innovation and novelty in technology 

Innovation literature is varied and multifaceted, yet much of it derives from the 
economist Joseph Schumpeter’s (1983) work published originally in 1934, 
which postulates that economic development emerges from novel combinations 
of existing resources. 
 
The purpose of economic activity is to satisfy human wants and needs by 
producing goods. In turn, production is viewed as a combination of things and 
forces within our reach (Schumpeter 1983). Produces are then exchanged for 
money, and the flows of material and money circulate in opposite directions 
according to some established patterns of circulatory flows. Under normal 
conditions, these established patterns stay the same over economic periods as 
economic actors react routinely to changes in their outside environment. In 
contrast to the repeated cycles, innovation is an active attempt to alter some 
established pattern of material and monetary flows from-within the economy by 
combining existing resources in some novel way that is deemed advantageous 
by the markets (Schumpeter 1983). While the structural alteration of the 
material and respective monetary flows may prove highly beneficial to the 
innovators who seek to alter the flows to their advantage, these structural 
changes may spell a creative destruction for those who are not able to respond 
adequately.  
 
The unfolding of innovation, the carrying out of novel combinations, can take 
place in a variety of ways and be analysed from a variety of viewpoints. In 
general, innovation is often characterised in terms of an idea or invention and 
its successful commercialisation (Ahmed & Shepherd 2010). It may result from 
a stepwise progress from an invention (technological novelty) to innovation 
(commercial adoption) and subsequent diffusion (wider uptake) which marks 
broader technological changes and shifts in business cycles (Ruttan 1959), yet 
inventing some technological novelty is not a necessary precondition for 
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innovation. Following Schumpeter (1983), innovation may unfold for example 
through the introduction of new goods or methods of production, the opening of 
a new market, the conquest of a new source of supply, or the carrying out a new 
organisation of an industry. This way, innovation also includes the transfer and 
application of existing technologies and knowledge to new product and 
application domains (Nambisan et al. 2017). 
 
While Schumpeter’s (1983) theory conceptualises innovation in terms of 
entrepreneurial effort to cause structural alterations in material and monetary 
flows, it remains silent on broader social and organisational processes and 
mechanisms that influence the unfolding of innovation (see e.g Ruttan 1959). To 
fill the void, a sizeable body of literature has emerged to examine different 
aspects of innovation at different levels and units of analysis (Crossan & 
Apaydin 2009), such as new product development (Garcia & Calantone 2002), 
process innovation (Davenport 1993) and service innovation (Vargo & Lusch 
2004), or a variety of relationships among them (Utterback & Abernathy 1975; 
Crossan & Apaydin 2009), to provide a few examples.  
 
Acknowledging the variety of definitions and research streams in the innovation 
literature, in this research, innovation is approached from the point of view that 
characterises innovation as a novelty in technology that is produced through the 
combination of existing technologies. This view builds upon W. Brian Arthur’s 
(2009) work on technological innovation.  
 
Whereas Schumpeter (1983) focuses on the entrepreneurial effort in carrying 
out novel combinations to alter the existing material and monetary flows, 
Arthur (2009) seeks to explain the role of technologies and technological 
evolution in this process. Furthermore, Arthur (2009) portrays economies as 
expressions of their technologies (of factors of production), and postulates that 
economies emerge and change in conjunction with the combinatorial evolution 
of technologies that produce them. In this view, innovation is seen as a novelty 
in technology and the process of technological innovation as combinatorial 
evolution in which new technologies arise through the combination of existing 
technologies.  
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Arthur (2009) describes technologies with reference to three fundamental 
principles. The first two of them focus on the logical structure, presenting 
technologies as a combination and as recursion. The combination principle, as 
illustrated in Figure 2, means that “[a] technology is a combination of 
components to some purpose” (Arthur 2009 Chapter 2), that is, technologies as 
systems are combined of components, such as subsystems, components and 
parts, which in combination produce some overall higher-level functionality. 
The principle of recursion, in turn, states that the components are technologies 
themselves. Defined this way, technologies are made of technologies, and can, 
therefore, be examined and evaluated as technologies across different 
technological domains, levels and units of analysis – and what is deemed to 
count as an overall system, subsystem or component is relative to the observer’s 
objectives. These principles of combination and recursive organisation resonate 
with Herbert Simon’s (1962; 1996) theory of hierarchy which presents complex 
systems as nearly decomposable and nested hierarchies. 
 

 
 

Figure 2: An illustration of a four-level nested hierarchy  
(Murmann & Frenken 2006)1 

 
 

                                                
1 Reprinted from Research Policy, 35(7), Johann Peter Murmann and Koen Frenken, Toward a 
systematic framework for research on dominant designs, technological innovations, and 
industrial change, Page 938, Copyright (2006), with permission from Elsevier. 
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The third principle turns attention from the structural to the functional logic, 
forwarding that all technologies harness and use some effect or phenomenon, or 
usually several (Arthur 2009). In order to perform desired functions, 
technologies incorporate some conceptual basic operational principle, a method 
or process that outlines steps and transformations that are needed to harness 
some natural, social or psychological effect or phenomena to serve some human 
purpose. More succinctly, technologies are purposed systems and the 
conceptual basic principle is “the idea of an effect in action” (Arthur 2007, 
p.274). For example, a digital camera captures patterns of light and turns them 
into digitally-encoded images (Yoo, Lyytinen, et al. 2010) that can be sent as bit-
strings over digital infrastructures (Tilson et al. 2010) for people to share them 
on social media (Alaimo & Kallinikos 2017). The modern microprocessors and 
image sensors which make all this possible harness the semiconductivity of 
silicon in digital computation (Mack 2011). 
 
Building on these definitions, novelty in technology is said to emerge from two 
primary sources, from the novel combinations of existing technologies and from 
the harnessing of effects or phenomena (which is a process that relies on 
existing technologies) (Arthur 2009). Depending on human and social goals, the 
processes of combination can vary from relatively trivial and gradual 
improvements to highly complex and experimental endeavours where newly 
harnessed effects and phenomena are put to use on a large scale. 
 
Depending on the phenomena a technology harnesses, the principles of 
harnessing and the purposes they serve, technologies evolve and accumulate 
into different bodies and domains of technology. In turn, these reservoirs of 
technology can be drawn upon and combined to develop novel technologies, 
which in turn can be combined to create other novel technologies ad infinitum 
— changing constantly the backdrop against which new technologies and 
economic activities are performed. The gradual development and diffusion of 
new technologies, such as digital computation (Copeland 2014), may cause 
drastic shifts on how social (Kallinikos, Hasselbladh, et al. 2013), organisational 
(Tilson et al. 2010) and economic activities are arranged (Varian 2010).  
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To examine how logics of combination differ among different types and 
categories of innovation, the subsequent sections take a closer look into product 
architectures and review the related literature in the view of modularity, 
generativity and complexity. 

2.2 Modularity and product architectures 

This section reviews the literature on product architectures and modularity. 
First, the use of modularity in management literature is briefly outlined, after 
which product architectures and modularity are further discussed in the view of 
modularisation and centralised design agency. 
 
Modularity is a general and widely used concept in organisation and 
management literature. It has come to carry a multiple of interpretations 
depending on the scale, context and phenomenon it is summoned to explain 
(Campagnolo & Camuffo 2009; Salvador 2007; Iman 2016). Although the 
notion of modularity can be conceptualised along different lines, it is commonly 
viewed as something that contains complexity and provides organisations with 
flexibility and agility through the separation and combination of concerns. 
Modularity allows organisations to respond more readily to varying market 
demands, competitive situations and technological change. 
 
Campagnolo and Camuffo (2009) reviewed the use of the concept of modularity 
in management literature. Their findings reveal that management researchers 
interests in modularity revolve around the three areas of product design, 
production systems and organisation design. Product design, the first one of the 
three, had attracted the largest share of attention, and in this context, the 
concept of modularity deals with the allocation of functionality over 
components in product architectures and the implications of modularity on 
product lifecycles. The perspective of functional allocation draws upon Ulrich’s 
(1995) conceptualisation of modularity as correspondence between functional 
elements and physical components. In turn, the life cycle perspective widens the 
view by taking into account different phases of a product life cycle, starting from 
design, production and use and ending with decommissioning. Second, in the 
context of product systems, research interests centre on the relationships 
among product modularity and outsourcing arrangements and their 
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implications on the formation of boundaries among firms and organisations 
(Schilling & Steensma 2001). Third, research into modularity in the context of 
organisation design seeks to explain the formation and adaptivity of 
organisational structures. The formation of organisational structures focuses on 
the existence of structural isomorphism between product architectures and 
development and manufacturing organisations (Brusoni & Prencipe 2006; 
Sanchez & Mahoney 1996; Baldwin & Clark 2000), whereas the adaptive view 
discusses how modularity of organisational structures provides flexibility that 
allows for agile responding to changes in market conditions (Ciborra 1996). This 
variation in definitions, measurements and contextual applications introduces 
ambiguity to the concept of modularity. Therefore, regardless of the apparent 
similarity of the underlying conceptualisation, reconciliation among different 
streams of modularity research remains challenging (Campagnolo & Camuffo 
2009).  
 
This diversity of views on modularity is also echoed also in literature reviews 
that focus on more narrow domains of research, such as service systems (Iman 
2016) and product systems (Salvador 2007). The divergence of mechanisms 
which drive modularisation and subsequent combination in different socio-
technical and technological contexts, scales and time frames appear to pose 
challenges to generalisation, regardless of the frequent calls for unified 
conceptual frameworks. The subsequent section discusses the concept of 
modularity in the light of product architectures. 

2.2.1 Product architectures 

Product structures are often discussed in terms of product architectures, and 
they can be characterised along the lines of integrality and modularity. A 
product architecture, following Ulrich’s (1995) definition, refers to the “scheme 
by which the functionality of a product is allocated to its physical components” 
(ibid p. 419) – or, more precisely, can be seen a combination of “the 
arrangement of functional elements, the mapping of functional elements to 
physical components and the specification of the interfaces among interacting 
physical components” (ibid p. 420). In this view, functional elements are 
abstract and conceptual responses to functional requirements, which express 
the expected functioning of a product under some constraints and in a given 
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context. A mixture of functional elements and their interconnections are 
combined to produce a function structure which describes the overall 
functioning of a product; the function structure specifies the capabilities, 
constraints and behavioural logic of a product. Then, functional elements are 
allocated to physical components which provide the material substrate and 
produce specified functionalities as illustrated in Figure 3 (Ulrich 1995). 
Physical components can be viewed as separable parts which in combination 
produce the overall functioning of a product (Ulrich 1995).  
 

 
 

Figure 3: An illustration of functional allocation of a product architecture 
(Ulrich 1995)2 

 
There are no definitive rules or guidelines on how functional elements should be 
allocated over physical components (Salvador 2007). Often, there are many 
different allocation schemes that could produce the same end result, that is, an 
equally functional end-product, and the eventual architecture result from design 
choices that are contingent on a variety of factors, ranging from the functional 
requirements to production systems and corporate strategies (Campagnolo & 
Camuffo 2009).  
 
As the overall function structure is distributed over the components that 
constitute the end-product, individual components may come to perform a 
single function, be part of a composition of components which produces some 
single functionality or perform multiple functions simultaneously on their own 
(Ulrich 1995). A product architecture is called modular if there is a one-to-one 

                                                
2 Reprinted from Research Policy, 24(3), Karl Ulrich, The role of product architecture in the 
manufacturing firm, Page 421, Copyright (1995), with permission from Elsevier. 
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relationship between the functional elements and components and they are 
decoupled so that a change in one component does not require any change in 
the component(s) it connects to. On the other hand, product architectures are 
said to be integral if components implement multiple functional elements, and 
if components are coupled so that a change in one component requires changes 
in others. The detailed functional specifications of components depend on the 
allocation of functionality during the architectural design (Ulrich & Eppinger 
2012). 
 
When functional elements are distributed over a number of components, it is 
essential that the components are connected in a way that they produce the 
expected behaviour in combination. For this to happen, interfaces need to be 
located and specified in an appropriate manner. Otherwise components cannot 
connect to and interact with each other. To this end, interface specifications 
detail the necessary modalities of connection and interaction, such as protocols 
and physical coupling, depending on the types of connection and interaction 
(Ulrich 1995).  
 
By allocating functional elements over components and establishing necessary 
interfaces, architectural design sets out the structural composition which 
produces the overall functionality of the product. As architectural design often 
resides at a higher level, it is complemented by more detailed specifications 
which provide lower-level details of different components and their respective 
interactions. These architectural schemes, blueprints and design documents 
allow for the communication of the overall vision among project teams (Hobday 
1998) and facilitate the partitioning of work (Hippel 1990).  
 
Product architectures, as any systemic arrangements, can be evaluated based on 
their structural patterns and respective properties (Bertalanffy 1968). The 
relationships among functional elements and physical components can be 
defined in terms of integrality and modularity (Ulrich 1995). However, product 
architectures are rarely fully modular or integral, and any attempt at 
categorisation depends on how and at what level of abstraction functional 
elements and physical components are defined and analysed (Salvador 2007). 
In this light, the matter of modularity and integrality should be considered 



 

42 

rather as a frame-dependent continuum between modularity and integrality 
than any general binary condition (Ulrich 1995; Yoo et al. 2010). While 
definitions vary, the notion of modularity is often used to refer to a degree to 
which components can be separated and subsequently combined (Schilling 
2000). 

2.2.2 Modularisation and task partitioning 

As discussed above, product architectures vary along the spectrum of 
modularity and integrality (Ulrich 1995). At one end, a modular product 
architecture renders one-to-one mappings between functional elements and 
components, while, at the other end, an integral architecture produces 
intertwined and more interdependent relationships among different functional 
elements and components.  
 
Modularisation is a design principle and process which seeks to decompose the 
overall design requirements and function structure in a manner which results in 
a modular product architecture (Baldwin & Clark 2000). The purpose of 
modularisation is to produce an overall structure, a product architecture, where 
modules have strong structural connections and interdependencies within the 
boundaries of a module, but the connections and interdependencies across the 
modules remain relatively weak. Subsequently, the modules which emerge from 
this directed and purposeful problem-solving process are often described as 
loosely-coupled (Schilling 2000; Parnas 1972). The loose coupling among 
modules brings several benefits, such as the commonality and combinability of 
components (Salvador 2007). The commonality allows modules to be used in 
different products, whereas the combinability of modules provides companies 
and customers with a larger variety of product variants in a cost-efficient 
manner since a large variety of products can be produced by arranging 
components in different configurations (Langlois & Robertson 1992; Schilling 
2000). Moreover, companies can react to market changes in a more agile 
manner when they rely on modular and configurable product structure (Garud 
& Kumaraswamy 1995).  
 
In addition, when design problems grow in size and complexity, it becomes 
increasingly challenging for any single individual or organisation to manage all 
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aspects of technological and design knowledge (Garud & Kumaraswamy 1995; 
Langlois & Robertson 1992). By modularising an overall design into partitions, 
work can be distributed over a larger group of people. This way, work can 
proceed in a parallel and directed fashion individually; partitioning a problem 
into a series of subproblems and distributing it over the specialised teams of 
designers and engineers, organisations can benefit from the division of labour 
as they can draw upon knowledge and skills of specialised workforce, increasing 
the speed of development and modular and architectural learning (Sanchez & 
Mahoney 1996). However, modularisation may not always lead to optimal 
product architectures, for example when the overall performance requirements 
are particularly high (Yoo et al. 2010; Ulrich 1995) or the synergistic specificity 
among modules bears influence to what extent the separability and subsequent 
combinability of modules is feasible (Schilling 2000).  
 
Carrying out partitioning is costly and requires expertise and centralised 
planning (Baldwin & Clark 2000). To ensure that different parts work together 
once completed and combined, coordination among different stakeholders prior 
to partitioning is required (Ernst 2005; Danese & Filippini 2010). Ideally, task 
partitioning should follow the structure of the underlying design problem, yet it 
is not always straightforward to establish the relationship between the two 
(Alexander 1964), this especially being the case when problems are complex and 
multifaceted (Ethiraj & Levinthal 2004) or deviate from what went before (Sosa 
et al. 2004; Hippel 1990).  
 
To coordinate work and manage complexity, Baldwin and Clark (2000) propose 
that connectivity among different modules is predicated on well-defined design 
rules. These design rules define the overall architecture of a product, interfaces 
and interconnections among modules along with the relevant integration 
protocols and testing standards. Clearly defined design rules enable the 
distribution of design and manufacturing tasks within and across organisations. 
This way, modularisation helps create embedded coordination mechanisms and 
information structures for organising and distributing work (Sanchez & 
Mahoney 1996). 
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2.2.3 Modularity as a property of product systems 

Product modularity, that is, the separability and combinability of a range of 
components (Schilling & Steensma 2001), tends to occur under relatively well-
defined circumstances. These circumstances often revolve around central 
platforms (Baldwin & Woodard 2008) and design rules that derive from the 
process of modularisation (Baldwin & Clark 2000) that seeks to achieve 
particular objectives through the modularity of a product, such as the cost-
effective production of a variety of products or their serviceability and 
recyclability. To these ends, modularisation partitions the overall design in a 
centralised top-down manner. 
 
Considering that modularity often seeks to produce product variety through the 
combination of different but compatible components, modularity can be better 
understood as a property of some particular product system than as a property 
of an individual product or any general combinability (Salvador 2007). A 
modular product architecture describes the relationships, the degree of 
variation and the combinability of components within the boundaries of a 
product system where modules represent units of variation (Salvador 2007).  
 
In addition, Salvador (2007) posits that combinability and product variety occur 
when the following conditions are fulfilled. First, a module that produces 
variation is internally cohesive so as to produce the required variation 
independent of other components. Second, the interface design parameters that 
define connection and interaction between components are tightly coupled, as 
otherwise modules could not be connected. Third, to produce variation, a 
certain degree of freedom is allowed for component designers in terms of non-
interface design parameters. However, coming up with specifications for all 
three is often challenging given the ambiguity and differing objectives of the 
schemes that are used to capture and allocate different functional aspects to 
modules. Moreover, while modular function allocation and specification can be 
designed within the bounds of a product system architecture whose overall 
requirements are known in advance, designing such bindings is a precarious 
effort when functional requirements are not fully known.  
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The overall architectural design of a product system is expected to specify 
design parameters that outline opportunities and limitations for modularisation 
in different scenarios. While this kind of arrangement is able to produce variety, 
it does so along the lines of well-defined design hierarchies and corresponding 
market concepts (Clark 1985) that leave little room for serendipitous emergence 
of technological novelty. Indeed, much of the literature on modularity draws its 
lessons from the industrial manufacturing of mass-market products, such as 
cars (Clark 1985), consumer electronics (Langlois & Robertson 1992) or 
semiconductors (Baldwin & Clark 2000), where the capability to produce cost-
effective product variation and change are considered as of strategic importance 
(Garud & Kumaraswamy 1995).  
 
Occasionally, as products and markets mature, the focus of innovation shifts 
from product innovation to process innovation (Abernathy & Utterback 1978). 
This crystallisation of product and market concepts and how they are best 
achieved give rise to dominant designs and design hierarchies (Clark 1985), 
which come to dominate the industry-wide organisation of firms and markets 
(Suarez 2004; Murmann & Frenken 2006). This brings fixity and commodified 
competition to technological arrangements which provide a backdrop against 
which technological development and economic activities unfold (Arthur 2009).  
 
As a final note, it is also worth noting that the modularity of a product system is 
not invariably the same as the partitioning of design or production (Salvador 
2007). Design work can be partitioned and distributed across multiple 
designers even if the structure of the end-product would be highly integral. On a 
similar note, the production of large structures, such as cruise ships, can be 
performed in a piecemeal manner, yet this does not indicate that the end-
product would be modular in the view of the separability and combinability of 
components in the context of a product system.  
 
To summarise, the concept of modularity in the contexts of product 
architectures builds upon the underlying assumption of a centralised design 
agency that carries out the partition of the overall design in a top-down manner. 
The literature on digital innovation challenges this assumption and argues that 
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digital products and services emerge as generative combinations through 
decentralised design agency. This is discussed in the subsequent section.  

2.3 Generativity and digital innovation 

The research into digital innovation maintains that the pervasive and increasing 
use of digital computers and advanced information processing technologies 
enables novel product architectures and organisational arrangements 
(Nambisan et al. 2017), which in turn are prone to generate profound changes in 
firms’ organising logic and innovation management practices (Yoo et al. 2010; 
Tilson et al. 2010; Henfridsson et al. 2014; Barrett et al. 2015). Traditionally, 
information systems research has focused its efforts on communication, 
transaction and decision-support systems in organisational contexts (Avgerou 
2000), yet the increasing digitalisation across application domains and social 
contexts suggest that a broader lens should be adopted (Grover & Lyytinen 
2015; Nambisan et al. 2017). To this end, Fichman, Dos Santos and Zheng 
(2014, p.329) forward “digital innovation as a fundamental and powerful 
concept in the information systems curriculum” while others argue that digital 
innovation and information systems research could serve as a reference 
discipline to product and service innovation management fields (Yoo 2012b).  
 
Digital innovation revolves around the processes of digitisation and 
digitalisation (Tilson et al. 2010). Digitisation as a technical process refers to the 
development and application of techniques and technologies that render and 
manipulate objects and artefacts in the format of binary digits. Digitalisation, on 
the other hand, refers to the dynamic interplay of social and technical matters, 
which are related to the wider adoption and deployment of digitisation 
techniques in social and institutional contexts. Out of these two, the main focus 
of digital innovation research is on the socio-technical matters of digitalisation, 
whereas the socio-technical and organisational outcomes of digital innovation 
are often explained fully or partly in terms of digitisation.  
 
Considering that digitisation and the application of digital technologies are 
often regarded as factors that explain the unfolding and outcomes of socio-
technical innovation, the following subsection takes first a closer look into the 
fundamental characteristics of digital computation, after which the notion of 
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modularity in the context of computer systems and the generative properties of 
digital technologies are discussed further.  

2.3.1 Digital computation 

In the 19th century, people as human computers created tables of precomputed 
values for many mathematical problems (Grier 2005). As the tables often 
contained errors, in the 1820s Charles Babbage started developing mechanical 
computers that would supersede their human competition in terms of accuracy 
and speed (Swade 2002). While Babbage’s creations, difference and analytical 
engines, never really took off, they are often regarded as early ancestors of 
modern computers as they rely on mechanical switches that carry out 
calculations and store intermediate results. About a hundred years later, in 
1936, Alan Turing introduced a theoretical device to conceptualise the 
functioning logic of a universal computing machine (Copeland 2014). The 
Universal Turing Machine conceptualises the process of computing as a series of 
arranged and stepwise instructions that operate on and manipulate symbolic 
representations, which are read from and stored in memory (tape) one step at a 
time. A few years later, in 1945, John von Neumann, forwarded the concept of 
stored program computers (Copeland 2014). With programs (instructions) 
represented and stored in memory along with data, the functioning of a 
computer could be changed by equipping it with a new set of instructions, 
thereby leaving the fixity of earlier computer designs behind and making them 
readily applicable to different purposes. As both data and instructions are 
commonly encoded and stored in the format of binary digits (bits), they can be 
transferred across and processed on different computers as long as they follow 
the same logic of functioning, at least in principle if not always in practice. The 
progress from mechanical switches to ever smaller, cheaper and ever more 
powerful microprocessors (integrated circuits) (Mack 2011) has paved the way 
to increasingly pervasive and ubiquitous application of computers in various 
tasks and domains (Yoo et al. 2010). 
 
Although the first computers were intended to carry out numerical calculations, 
the principles of logical symbol manipulation can be applied to a variety of 
information processing purposes (Copeland 2014). Modern digital 
microprocessors (or more generally, digital computers) are programmable 
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general-purpose machines; in principle, they are able to process any set of data 
as long as both the data and the stepwise instructions to process it are 
represented in an unambiguous format, are congruent and effectively 
computable (Tilson et al. 2010). If an object or artefact can be encoded and 
represented in an unambiguous format of binary digits, and a set of logical 
operations (stepwise instructions/algorithms) can be produced to carry out 
necessary operations upon it, any matter may become computable. No matter if 
it deals with fake news, differential equations, numbers and letters on the 
screen, maps, long-winded decision trees, missile trajectories or data 
transmission protocols and procedures. However, the intractability of some 
computational problems and limits in memory and processing capabilities 
render some classes of computations and tasks practically infeasible (np-hard), 
although advances in processor and memory technologies (Mack 2011) and 
computing techniques (Russell & Norvig 2010) are pushing the boundaries of 
computability and thereby opening up constantly new opportunities for 
digitalisation. Moreover, as both data and instructions are stored in a 
computer’s memory, from which they are transferred to the processor a 
computing cycle at a time, both data and instructions are volatile and can be 
changed with relative ease and minimal material resistance using other digital 
means without modifying the material substrate that carries out the 
computation (Kallinikos 2012; Kallinikos, Aaltonen, et al. 2013).  
 
The purpose of a processor is therefore contingent upon the task and 
instructions it carries (out) at any particular moment, or, as Arthur (2009) puts 
it, microprocessors are minuscule information processing factories, factors of 
production, that can be furnished and arranged for a variety of more or less 
productive purposes. Therefore, the digital computer provides a universal 
method to carry out the manipulation of symbols (bits). Moreover, as both the 
symbols and the instructions to manipulate them can represent a variety of 
social and natural objects, artefacts and processes, the computer can be 
considered as a general-purpose technology. However, as the computation of a 
particular computer has to be well-defined, the instantiation of a general-
purpose machine turns it to a special-purpose machine, albeit a fickle one. 
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This way, the underlying characteristics of digital innovation can be traced back 
to bitwise representations of data and instructions and the stored program (von 
Neumann) architecture of modern computers. In this view, Yoo et al. (2012) 
conceptualise the fundamental properties of digital technology as 
homogenisation of data, reprogrammability, which drive distributed and 
combinatorial innovation. On a similar note, Kallinikos et al. (2013) define 
digital artefacts as editable, interactive, reprogrammable and distributable 
objects, which undergo constant change and transfiguration as multiple 
stakeholders in broader digital ecosystems strive to use and modify them so that 
they serve their particular purposes. Also, given their reprogrammability, digital 
artefacts are described as incomplete, open-ended and continually in the 
making (Garud et al. 2008), and a source for generative combinations and 
procrastinated binding (Yoo 2012a). This malleable and mutable character of 
digital artefacts questions the assumptions of stability, provenance and control 
frequently associated with physical items and devices (Yoo et al. 2010; Garud et 
al. 2008; Kallinikos, Aaltonen, et al. 2013; Lyyra & Koskinen 2016). These 
malleable and mutable characteristics of digital objects and artefacts are 
occasionally referred to as digital materiality (Barrett et al. 2012; Yoo et al. 
2012) to differentiate from the more tangible and inertial qualities of physical 
materiality.  
 
These foundational characteristics of digital computation and computers are 
often cited as a partial explanation of technical, social organisational outcomes 
and arrangements in digital innovation at different levels, while simultaneously 
fully acknowledging the role of social and institutional factors as well. Research 
into digital infrastructures (Tilson et al. 2010), platforms (de Reuver et al. 
2017), digitised and connected products (Henfridsson et al. 2014), automation 
and virtualisation of work (Bailey et al. 2012) have brought forward different 
aspects of digitalisation in various socio-technical settings. 

2.3.2 Modularity in computer systems  

Digital computation provides a general method for performing symbol 
manipulations in a highly flexible and malleable manner (Copeland 2014). 
However, the designing and developing of computing systems require 
coordination and organisation of human efforts (Baldwin & Clark 2000). 
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Similarly to other products, digital products can also be subjected to 
modularisation at various levels in order to subdivide design and development 
tasks and to manage complexity.  
 
At the level of physical products and computing machinery, for example, the 
desktop computer can be considered to follow a modular product architecture 
(Garud & Kumaraswamy 1995; Langlois & Robertson 1992). A desktop setup 
normally consists of a central processing unit, display, keyboard and mouse, 
and perhaps a printer and some other peripheral devices, and these modules 
operate in combination and interact with each other through well-defined 
interfaces. As long as connections and modalities of interaction conform to 
particular interface specifications, manufacturers and users are able to assemble 
different product configurations from a diverse range of modules to have a 
configuration that best serves their needs.  
 
Modularisation is a common approach in software development as well. A 
variety of approaches can be used to carry out the partitioning of design 
problems, yet some of them are considered to be more beneficial than others. 
Parnas (1972) forwards an idea of approaching the partitioning in terms of 
responsibility assignment. In other words, a software component, a module, 
should not simply correspond to some process step in the program flow, but to 
the functionality it provides. This way, by allocating a module with some well-
defined function and selecting an appropriate level of abstraction and interface 
definition, the knowledge of underlying design decisions which produce the 
functionality of the module can remain hidden. This is commonly known as the 
principle of information hiding, and it facilitates separation of concerns while 
providing a scheme based on which work can be distributed among software 
developers; large software projects are routinely partitioned into smaller chunks 
in order to reduce complexity to manageable levels. Typically, such effort begins 
by detailing the expected functionality of a product, after which the overall 
architecture is designed. Subsequently, the architecture details the structure of 
the resulting software in terms of its components, their expected functionality 
and respective interconnections, thereby providing an overall scheme based on 
which design and development work can be distributed among software 
developers (Baldwin & Clark 2000). This decomposition through the separation 
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of concerns allows for a more piecemeal and parallel approach in development, 
testing and maintenance, while also enabling the reuse of software components. 
This way, modular architectures facilitate separation of concerns and enable 
parallel and distributed development, which leverages specialised knowledge 
(Sanchez & Mahoney 1996). For example, mobile device application developers 
need not be aware of the fine details on wireless message routing when 
developing software for consumers. Also, changes in the system functionality 
are easier to implement when the interdependencies between components are 
lower, containing code changes to a smaller number of components (Parnas 
1972). 
 
Furthermore, separation of concerns is also applicable to large-scale 
information and communication infrastructures and systems that operate 
across organisational boundaries. For example, Open Systems Interconnection 
(OSI) model3 conceptualises the architecture of computerised communication 
systems as a layered stack. The OSI stack is an abstract conceptualisation, a 
reference model, which describes the expected functionality of components that 
reside at different layers of functional hierarchy, detailing characteristics and 
expectations at the levels of physical connections, data linking, network routing, 
data package transport, session management, data presentation and services to 
applications. As a reference model, its goal is to facilitate comparability between 
different communication protocols by characterising the essential qualities and 
features of different layers and their respective functioning. At the same time, it 
provides a paradigmatic example of the layered architecture of digital 
technologies. In practice, there are several implementations and variations of 
the OSI model. Using well-received protocols and standards which adhere to a 
layered structure, such as TCP/IP, a variety of communication systems can be 
constructed generatively from different components.  

2.3.3 Generative combinations 

The layered aspect of digital product architectures is postulated to provide the 
foundation for the generative properties of digital ecosystems (Yoo et al. 2010) 
and infrastructures (Tilson et al. 2010). The concept of generativity has its roots 

                                                
3 wikipedia.org/wiki/OSI_model 
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in Jonathan Zittrain’s (2008; 2006) work, which seeks to explain the 
proliferation and evolution of the Internet.  
 
The notion of generativity builds on the observation that digital networks and 
artefacts are arranged as layered stacks (Zittrain 2008), such as communication 
networks and operating systems, which can be connected with each other 
through open standards and interfaces that serve as gateways between different 
layers. This layered structure, which can also be referred to as an hourglass 
architecture (Zittrain 2008) allows for task partitioning, separation of concerns 
and information hiding (Parnas 1972), thereby enabling the participation of 
wider audiences by lowering the threshold of participation (Zittrain 2008). For 
example, digital content and data can be transmitted across the Internet using 
the Internet Protocol without needing to know how to route messages between 
senders and receivers. In a similar fashion, application software can be created 
and shared over the Internet while common operating systems provide a 
foundation upon which developers and users can build and run their 
applications. Against this backdrop, Zittrain (2008) conceptualises this open 
and layered quality of the Internet as generativity and summarises it as follows: 
“Generativity is a system’s capacity to produce unanticipated change through 
unfiltered contributions from broad and varied audiences” (Zittrain 2008, 
p.70).  
 
To elaborate further, Zittrain (2008) outlines five characteristics of technologies 
that empower audiences and enable their contributions. These characteristics 
are leverage, adaptability, ease of mastery, accessibility and transferability. To 
begin, leverage helps achieve results with lesser efforts. Adaptability, in turn, 
indicates the level of effort needed to build upon a technology, or to modify and 
broaden its range of uses. Ease of mastery indicates the steepness of the 
learning curve before one becomes knowledgeable and skilled enough to master 
the technology in question. Accessibility means simply whether potential users 
have access to technology, tools and documentation, whereas transferability 
indicates how readily users’ contributions can be conveyed and shared with 
others, possibly less-skilled users. These five characteristics constitute 
generativity: “The more that the five qualities are maximized, the easier it is for 
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a system or platform to welcome contributions from outsiders as well as 
insiders” (Zittrain 2008, p.74).  
 
Technologies differ in terms of their above-mentioned characteristics, and the 
absence of any of these characteristics may render a particular technology less 
generative (Zittrain 2008). For example, the Linux kernel is generative in terms 
that it provides leverage, adaptability, accessibility and transferability, yet the 
difficulty of mastery tends to keep contributions from broad and varied 
audiences rather limited, at least when compared to the creation of static web-
pages with simple hypertext mark-up language. In addition, generativity may 
manifest itself at different technological layers. For example, the generative 
pattern of Wikipedia content creation does not necessarily mean that the 
underlying technological layers which facilitate the generative creation of 
content are generative themselves, although they often are (Zittrain 2008). 
Zittrain (2008) also differentiates between generative tools and generative 
systems. Generative tools are useful on their own and in individual terms. In 
turn, the notion of a generative system refers to larger technological 
arrangements and can be viewed as “a set of tools and practices developed 
among larger groups of people” (Zittrain 2008, p.74).  
 
The generative characteristics of systems lay out foundations and conditions 
which allow for innovation and novelty to emerge from the grassroots through 
the contributions from wider audiences (Zittrain 2008), standing thereby in 
contrast to the centralised top-down planning and coordination which 
characterises modularisation through decomposition (Yoo 2012b). This way, the 
process in which components are created and consumed changes its direction. 
Whereas the process of modularisation allocates modules with specific 
functionalities when an overall design is subdivided over different modules, 
with generativity components originate from different sources and without a 
centralised design agency. This way, a component remains agnostic in relation 
to an end-product at the time when it is designed and created, as it receives its 
final purpose and meaning with respect to a particular end product at the time it 
is included into a combination that constitutes the end-product. The situation in 
which the allocation of functionality to a component takes place after the 
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completion of the design of the component can be referred to as procrastinated 
binding (Yoo 2012a).  
 
End-product agnostic design, procrastinated binding, recombination and the 
associated generative and emergent characteristics of innovation result in 
dynamic complexity (Hanseth & Lyytinen 2010) and paradoxes of change and 
control (Tilson et al. 2010). For example, while the technology and internet 
companies may provide and open up some particular boundary resources, such 
as system development toolkits, interfaces and provide access to computation in 
order to attract wider participation, they also seek to guide the trajectories of 
development to their benefit by controlling the pathways through which the 
audiences are allowed to participate (Ghazawneh & Henfridsson 2012; Eaton et 
al. 2015).  

2.4 Digitised products 

The increasing digitisation of tangible products has inspired researchers to re-
examine the current conceptualisations of product architectures. To address the 
interplay among the digital and physical aspects of products, recent research 
(Yoo et al. 2010; Henfridsson et al. 2014) has developed conceptualisations to 
take into account the differing levels of resistance and readiness for change 
among the physical and digital components, and demonstrated the subsequent 
implications on product design practices, product architectures and lifecycles.  
 
This stream of research highlights the differing levels of material inertia and 
resistance to change among the digital and physical components that constitute 
digitised products (Barrett et al. 2012) and characterises this in terms of digital 
and physical materiality (Yoo et al. 2012). The differing levels of material 
resistance can be traced back to the reprogrammable character of the digital 
computer (Tilson et al. 2010; Henfridsson et al. 2014). In the end, the digital 
computer is a general-purpose machine (Copeland 2014), which can be 
repurposed by supplying it with a new set of instructions. While it may take 
significant time and effort to develop the first set of instructions, however, once 
the set has been created, the marginal cost of its distribution and installation on 
multiple computers is negligible. On the contrary, physical components lack the 
mechanism of cost-efficient change en masse, and each repurposing of a 
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physical component requires resources, such as raw materials, tools and labour, 
to carry out the required changes. Given the higher marginal cost associated to 
the repurposing of physical components and products, product manufacturers 
seek to specify product features and verify the correctness of product designs 
with a great care before transferring products from design to manufacturing 
(Henfridsson et al. 2014). Therefore, the physical components of a product 
rarely undergo change once they have been manufactured, whereas the product 
functionality which is implemented and controlled using digital means may 
undergo frequent change throughout the lifecycle of a product (Lyyra & 
Koskinen 2016).  
 
This challenges the prevalent views on product and software design and 
engineering. Conceptual challenges revolve around the extent to which the 
traditional views and practices are able to capture the intertwined character of 
differing levels of material resistance and readiness for change during the 
design and manufacturing processes (Henfridsson et al. 2014) and throughout 
the product lifetime (Lyyra & Koskinen 2016).  
 
To conceptualise the combination of the digital and physical components, the 
layered modular architecture (Yoo et al. 2010) shows how adding digital 
components into traditionally fixed and single-purpose products can transform 
them into platforms which are open for modification and repurposing long after 
the physical embodiment of a product has received its final form. To prepare for 
this, Henfridsson et al. (2014) forward that product designers and architects 
should adopt the notion of complementary design frames to conceptualise 
product architectures which consist of overlapping digital and physical 
components and that are developed and evolve at different speeds.  

2.4.1 Layered modularity architecture 

With the notion of layered modular architecture, Yoo et al. (2010) separate 
product innovation from process innovation and maintain that the digitisation 
of products is altering product architectures, and by extension the organising 
logic and innovation practices of organisations (Sambamurthy & Zmud 2000). 
To conceptualise the incorporation of digital technologies into physical 
products, Yoo et al. (2010) bring together two architectural schemes, the layered 
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architecture of computer systems and the modularised architecture of product 
systems. This amalgamation is then referred to as the layered modular 
architecture. 
 
The layered modular architecture “extends the modular architecture of physical 
products by incorporating four loosely coupled layers of devices, networks, 
services, and contents created by digital technology” (Yoo et al. 2010, p.724). 
The layered architecture forms a hybrid architecture where the “degree by 
which the layered architecture adds the generativity to the modular 
architecture forms a continuum” (ibid p. 728). To exemplify, “[t]raditional 
industrial-age, single-purpose products manifest one end of the spectrum 
while conventional digital products with general computer hardware form 
another end. Many digitized products will fall somewhere in the middle” (ibid 
p. 729). In this light, the architecture and lifecycle of a product consist of two 
elements. First, the design and manufacturing process during which the 
physical embodiment of a product receives its final shape and, second, the more 
open-ended and generative phase as the product and its functionality can be 
changed throughout its lifecycle through software changes. The layered modular 
architecture conceptualises digitised products as generative platforms by 
showing how layered and modular architectural schemes unfold during the 
product lifecycle (Yoo et al. 2010).  
 
Traditionally, the notion of modularity, which stands at one end of the 
spectrum, is tightly linked with the idea of modularisation (Baldwin & Clark 
2000) in the view of the product architectures (Ulrich 1995), product systems 
(Salvador 2007) and design hierarchies (Clark 1985). Modularisation starts by 
forming a complete plan of a product or a product system, after which the 
complete plan is partitioned into smaller modules according to certain 
objectives and rules (Baldwin & Clark 2000), for example with an aim to 
produce a variety of product configurations while minimising costs (Schilling 
2000) or to leverage division of labour in design and manufacturing (Sanchez & 
Mahoney 1996). Such products are not expected to change once they are 
manufactured. However, the incorporation of digital components adds a more 
open-ended logic into physical machinery.  
 



 

57 

The concept of the layered modular architecture adds the layered stack 
architecture of software on the top of the modular architecture that forms the 
device layer (Yoo et al. 2010). This is illustrated in Figure 4. At the bottom of the 
stack resides the device layer, which consists of physical hardware and 
computing machinery as well as an operating system which provides the logical 
layer of abstraction and modulates the interaction between the computing 
machinery and upper layers of the stack. On the top of the device layer is the 
network layer. The network layer consists of a physical transport media (e.g. 
antenna, cable) and logical transmission protocols (e.g. TCP/IP) and it is used 
to connect to other computers and digitised products. Then, on the top of the 
network layer is the service layer where different applications and their 
respective functionality reside, above which, at the top of the stack, is the 
contents layer which holds data.  
 

 
 

Figure 4: The layered architecture of digital technology 
 (Yoo et al. 2010) 4 

                                                
4 Republished with permission of Information Systems Research, from The New Organizing 
Logic of Digital Innovation: An Agenda for Information Systems Research, Youngjin Yoo, Ola 
Henfridsson and Kalle Lyytinen, 21/4, 2010; permission conveyed through Copyright Clearance 
Center, Inc. 
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This way, the underlying hardware and operating system come to provide a 
stable platform upon which novel digital functionalities and services can be 
developed in a generative manner (Zittrain 2008), within the bounds of the 
physical characteristics of the product (Yoo et al. 2010). Therefore, whereas 
hardware goes through the processes of modularisation and production 
similarly to other manufactured products at the beginning of a product lifecycle, 
the digital part of the product remains open-ended and can be improved 
throughout the lifecycle.  
 
Platforms and open interfaces allow for wider audiences to take part in 
innovation as they can develop and provision applications, services and content 
that can be used and consumed on different platforms, such as on iOS devices 
(Eaton et al. 2015). Users can select and install applications from application 
stores and use services that best serve their needs, rendering the devices that 
adhere to the layered modularity as enacted ensembles (Yoo et al. 2010) which 
undergo a continuous change as new applications, services and content are 
made available and taken into use. Furthermore, it is worth to note that digital 
platforms are not necessarily directly linked to some specific hardware and 
devices but can also operate as independent cloud-based services (de Reuver et 
al. 2017) – Google Maps provides a paradigmatic example of this (Yoo et al. 
2010).  
 
Whereas modular product systems produce a degree of variety within the 
confines of premeditated product designs (Salvador 2007) and design 
hierarchies (Clark 1985) which are nested and fixed, the layered modularity 
facilitates the combination of end-product agnostic components, applications, 
contents and services from different design hierarchies as long as they adhere to 
certain technical standards and boundary resources (Eaton et al. 2015). In this 
light, the digitisation of products tends to render design agency more 
distributed (Nambisan et al. 2017). While this generative character provides a 
broader repertoire of applications and services, it also indicates that no single 
party is able to fully control digitised products and their configuration (Yoo et 
al. 2010).  
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The organising logic of the layered modular architecture can be viewed as 
doubly-distributed since the control and knowledge of components and 
combinations are distributed across heterogeneous groups of actors and 
organisations (Yoo et al. 2010). Learning and mastering the ways to cultivate 
and harness distributed innovation among heterogenous audiences is vital to 
the success of organisations that pursue platform-based product strategies.  

2.4.2 Materiality and product architectures 

The differing levels of the material resistance to change between the digital and 
physical components bear implications across different phases of a product 
lifecycle, ranging from product design and manufacturing to the phases of use 
and retirement. This dissociation of physical and digital materialities shapes 
product design practices and dominant designs (Hylving & Schultze 2013).  
 
As discussed in the previous section, incorporating digital components into 
traditional physical single-purpose products and opening them up for broader 
audiences to take part in innovation may turn them into generative platforms 
that evolve throughout the lifecycle of a product (Yoo et al. 2010). However, the 
digitisation of a product does not automatically imply that the manufacturer 
opens it up as a platform to attract third-party developers. For example, Tesla 
frequently updates the functionality of Tesla cars by delivering software updates 
which add new functionality or improve the existing ones (Lyyra & Koskinen 
2016), without providing access to third-party developers. 
 
In either case, product designers and manufacturers are advised to take the 
differing levels of material inertia into account during the architectural design. 
Based on the empirical observations from the design and implementation of 
information and entertainment systems in the car industry, Henfridsson et al. 
(2014) propose that product designers and developers could make use of 
complementary architectural frames in order to conceptualise digital and 
physical design hierarchies as their design and iteration cycles unfold at 
different speeds; product architectures should not simply be seen as physical 
hierarchies-of-parts as per the traditional views of product modularisation, but 
as something that coexists with the network-of-patterns. Whereas the former 
needs to be fully designed and specified before a product can be transferred to 
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manufacturing, the latter is a set of abstract patterns which represents the 
digitally implemented and controlled functionality which remains open-ended 
and may undergo frequent design iterations. This way, the patterns can be seen 
as placeholders which can be further developed at a later time. Subsequently, 
the use of the two complementary frames accommodates the differing levels of 
material inertia and facilitates asynchronous design cycles during the design 
and development of products that comprise both the physical and digital 
elements (Henfridsson et al. 2014). 
 
Moreover, as the affordances and limitations of different components, such as 
computing capabilities and physical constraints, set the ultimate boundaries on 
what can be achieved through the digital means, the architecture of a product 
should be designed in a way which accommodates the changes in and 
functioning of digital components and computer-controlled functionality. The 
subsequent section takes a closer look into the intertwined character of design 
hierarchies in the context of complex product and systems. 

2.5 Complex and digitised products 

This section takes a look into the definition of robots and autonomous systems 
and reviews innovation literature in the view of product architectures and 
organising logic of complex systems and products (Hobday 1998; Prencipe 
2000). To this end, the first subsection discusses the purpose and functional 
principles of robots and autonomous systems in the light of cybernetics, 
behaviour and the capacity to act. Then, the second subsection looks into the 
complexity of product architectures and the intertwined design hierarchies of 
inclusion and control (Murmann & Frenken 2006). In the light of behavioural 
and technological complexity, robots and autonomous systems can be viewed as 
complex and digitised products.  

2.5.1 Robots and autonomous systems 

Robots and autonomous systems can be defined as computer-controlled 
machines that are designed and built to perform tasks with limited human 
intervention, with an aim to loosen the coupling between machines and their 
human operators. Once set in motion, they are expected to produce behaviour 
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that allows them to operate towards a given goal whilst navigating through the 
environmental contingencies; they carry out goal-directed plans and actions in 
response to sensory data they gather from their surroundings (Bekey 2005). 
However, coupling a machine directly with the surrounding environment does 
not mean the elimination of human involvement (Mindell 2015). Instead, the 
type and configuration of human involvement changes (Mindell 2015; Barrett et 
al. 2012) – while the human operators might be pushed further away from the 
control of situated action, the role of designers and engineers increases as they 
produce the means and rules according to which machines operate once they 
are set in motion. Moreover, leaving machines to their own devices also shifts 
the locus of (inter)action from the human-machine interface to that between the 
machine and its broader environment.  
 
Against this backdrop, robots and autonomous systems can be conceptualised 
as cybernetic systems. Cybernetics is a branch of systems theories (Bertalanffy 
1968), which studies the structures, properties and behaviour of control systems 
through the lenses of communication (information) and feedback mechanisms 
(Wiener 1965). The central idea of cybernetics is the stability of the system with 
respect to the given goal (Glanville 1997). The system seeks to approach or 
maintain its goal by regulating its behaviour in response to environmental 
contingencies. The paradigmatic example of a cybernetic system is the 
thermostat that regulates room temperature by adjusting the heating so that the 
measured temperature (a system state) would correspond to the pre-set target 
temperature (goal) (Meadows 2009). Ideally, the state of the system should 
stay, or become, the same as the goal. Whereas the goal and the behaviour of the 
thermostat tend to be relatively static, the movement of a system or its goal 
renders the notion of stability to that of dynamic stability (Glanville 1997). For 
example, the functioning of a self-driving car can be viewed as dynamic stability 
as the car navigates through the road network and responds to (or absorbs) a 
variety of contingent events while aiming towards the stable state in terms of a 
given destination (goal). Moreover, sometimes the goal or target itself may be in 
the move. Such is the case for example with air defence missiles when they aim 
at the targets flying in the sky (Glanville 1997).  
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While the early cybernetics provides concepts and theories that explain control 
systems and mechanisms, it also brings forward the fundamental limitations of 
control systems. The law of requisite variety (Ashby 1958) postulates that the 
control system must be able to absorb and respond to the variety that emerges 
from the environment, meaning that the mechanism that controls the system 
should deliver for every input (disturbance) an output (response) that is 
considered acceptable to avoid a system failure. Furthermore, the second-order 
cyberneticians make a note that the criteria of acceptability are relative to the 
observers’ preferences (Hayles 1999), highlighting the context-dependence of 
control systems and regulatory mechanisms. In this light, the context and 
situation form the mould into which an autonomously operating system must fit 
in. If the internal structure of a system is not able to capture and operate 
according to the laws, conventions and meaningful features which characterise 
its context and environment, it may fail to serve its intended purpose (Simon 
1996). Therefore, the apparent complexities of a system’s behaviour are largely a 
reflection of the complexities which emerge from the surrounding environment 
(Simon 1996). Correspondingly, Maturana and Varela (1992) conceptualise 
(living) autonomous systems as autopoietic, self-producing and functionally 
closed, entities, which respond to the environmental inputs according to their 
internal structure while simultaneously trying to preserve the integrity of their 
internal organisation. As the cybernetic control systems rely on context-
dependent and distributed computation, they are a form of interactive 
computation (Goldin et al. 2006; Wegner 1997). The notion of interactive 
computation presents complex and context-dependent computations as long-
term relationships, in which the course of computation is contingent upon the 
information from and interaction with the surrounding environment.  
 
Considering that robots and autonomous systems are expected to perform tasks 
with limited human intervention, they can also be viewed through the lens of 
the technological agency as the responsibility of carrying out actions is 
delegated to machines and computers. In this view, the machines that exhibit 
some contingent behaviour on their users’ behalf are often referred to as agents 
or complete agents (see e.g. Maes et al. 1999; Shneiderman & Maes 1997; 
Wooldridge & Jennings 1995; Bryson 2010), yet agency of software or other 
technological artefacts should not be confused with that possessed by humans 
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(Kallinikos 2002; Kallinikos 2005). Therefore, the notion of the delegation of 
agency describes the overall situation in which machines are bestowed with the 
capacity to act on someone else’s behalf, bearing a strong resemblance to the 
theories that deal with outcome uncertainty, incentives and risk in different 
principal-agent relationships (Eisenhardt 1989a).  
 
Delegating agency to robots and autonomous systems leads to the 
reconfiguration of boundary relations among social actors and locales of action 
and control. For example, Barrett et al. (2012) show how the introduction of a 
robotic medicine dispenser in a pharmacy setting changes the boundary 
relations among occupational groups due to the power imbalance over the 
decisions and priorities which direct the development of the dispenser’s 
behaviour. In addition to organisational power relations, the delegation of 
agency can be viewed also as a more situated phenomenon. To exemplify, with 
self-driving cars, control can be dynamically reallocated between the car and the 
driver throughout the journey (Wray et al. 2016), depending on the road and 
traffic conditions. Drones used in wars efforts offer another example of the 
shifting locales of action and control. While drones are able to fly, navigate and 
track objects as per given targets on their own, a range of choices are still made 
in remotely located and distant centres where strategic and lethal decisions are 
made (Gregory 2011). Therefore, the actions and behaviour of robots and 
autonomous systems emerge from some combination of human action and 
technological responses to environmental contingencies (Mindell 2015). 
Moreover, in this light, while machines may possess some situated capacity to 
act, they to do so within the framework of human purposes and goals – robots 
and autonomous systems are human creations and would not exist or operate 
independently of human actions. 
 
To summarise, robots and autonomous systems are defined as cybernetic 
systems that carry out some particular goal-directed behaviour in a particular 
context. However, as the behaviour they produce is designed, built, taken into 
use and controlled by people, they are autonomous only in the weak and limited 
sense of the word. 
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2.5.2 Complex digitised products 

The behavioural and technological complexity of robots and autonomous 
systems makes the conceptualisation of the organising logic of such systems 
challenging. Whereas the literature on modularity holds that modularisation 
and design rules (Baldwin & Clark 2000) provide a way to distribute and 
coordinate design and manufacturing activities among different actors (Sanchez 
& Mahoney 1996), the literature on complex products and systems challenges 
the applicability of modularisation and modularity (Prencipe 2000). This rests 
on the observations which revolve around two factors, the lack of mass-market 
conditions and dominant designs and the intertwined characteristics of design 
hierarchies in product architectures.  
 
Complex products and systems innovation occurs often in the absence of market 
conditions and dominant designs of mass-market products (Miller et al. 1995). 
Complex high-cost systems, such as flight simulators, fighter jets, intelligent 
buildings, manufacturing systems and nuclear power plants are heavily 
customised large-scale products which are bought and sold under coordinated 
and institutionalised market conditions (Miller et al. 1995; Hobday 1998). The 
specification, development and production may involve suppliers, users, 
regulators and professional bodies and the end product may lack a dominant 
design in the sense of mass-market products and industrial process innovation 
(Utterback & Abernathy 1975; Abernathy & Utterback 1978). The evolution of 
product architectures and design hierarchies appear to reflect more the progress 
of underlying technologies (Miller et al. 1995) than the co-evolution of mass-
market concepts and corresponding product designs (Clark 1985). For example, 
from research into the history of flight simulators, Miller et al. (1995) locate the 
dominant design of flight simulator to its functional principles, to the six 
degrees of freedom of flight dynamics, and show the long-term stability among 
suppliers while the underlying technologies that produce the required 
functionality undergo significant evolution. Since complex products and 
systems are often relatively unique and project-based, they require a significant 
amount of architectural knowledge and innovation (Hobday 1998; Henderson & 
Clark 1990). Therefore, one of the main tasks of a complex system project (or a 
systems integrator) is to coordinate communication among different 
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stakeholders and integrate architectural and component knowledge and designs 
in order to produce specified outcomes (Hobday 1998). 
 
Another observation brings forward the intertwined character of overlapping 
design hierarchies within product architectures. Autonomous machines 
comprise sensors and actuators that facilitate the interaction with the 
surrounding environment. Between the sensors and actuators is located the 
computational logic and software that transforms the data received from 
sensors into digital commands that drive actuators. Bekey (2005) defines the 
software architecture in the context of autonomous systems and advanced 
machinery as:  
 
“The structure of software, the way in which the robot processes sensory 
inputs, performs cognitive functions, and provides signals to output actuators” 
(Bekey 2005, Chapter 5) 
 
Therefore, in the context of robots and autonomous systems, the term software 
architecture is often used as a synonym for the control architecture, and 
software architectures typically consist of a spectrum of software that ranges 
from the low-level hardware control software to the high-level software that 
performs tasks such as perception, planning, decision-making, reasoning and 
motion control. Given the variety of software and control architectures in the 
field of robotics and artificial intelligence (Russell & Norvig 2010), which range 
from the hierarchical and parallel processing to distributed and multi-agent 
systems to name a few, we refrain from detailing them here. However, we do 
make a note that the overall goal of the control software is to transform sensory 
inputs to action commands and they are of central importance in the view of 
product and systems architectures.  
 
Murmann and Frenken (2006) highlight the importance of paying attention to 
both hierarchies of inclusion and control in order to understand the roles and 
relationships of different parts of some particular artefact. 
 

“We think one additional distinction is absolutely essential to understanding 
the technological characteristics of an artifact. Complex technological artifacts 
such as an airplane can be described in terms of two kinds of hierarchies: a 
hierarchy of inclusion and a hierarchy of control.” (Murmann & Frenken 
2006, p. 938 cite Wilson 1969) 
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The hierarchy of inclusion refers to the hierarchical and nested organisation of 
parts which constitute the physical embodiment of a product. In turn, the 
hierarchy of control refers to the parts and functional logic which control the 
operation and behaviour of the embodiment (Murmann & Frenken 2006). To 
exemplify, the hierarchy of inclusion of an aeroplane consists of sensors, 
fuselage, wings, engines and landing gear, each of them being composed of their 
own hierarchy of parts. The hierarchy of control, on the other hand, refers to the 
mechanisms that control the embodiment; an auto-landing system operates 
wings flaps, tail fin and engine power based on sensory inputs in order to land 
the plane safely on the runway (Mindell 2015). This way, the hierarchy of 
control which produces goal-oriented behaviour operates upon the mechanical 
and physical substrate that is defined by the structure and features of the 
inclusionary hierarchy of parts. The intertwined and crosslinked character 
between the hierarchies of inclusion and control is illustrated in Figure 5. 
 
 

 
 

Figure 5: Illustration of the dual-product hierarchy view of complex systems 
(Lee & Berente 2012)5 

 
 

                                                
5 Republished with permission of Organization Science, from Digital Innovation and the 
Division of Innovative Labor: Digital Controls in the Automotive Industry, Jaegul Lee and 
Nicholas Berente, 23/5, 2012; permission conveyed through Copyright Clearance Center, Inc. 
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Therefore, the hierarchy of control must conform to the underlying dynamics 
and material properties of the controlled system as well as other environmental 
contingencies. This dynamic interaction among embodiments, control systems 
and the surrounding environment can be viewed as a nexus of research interests 
in the field of robots and autonomous systems (Bekey 2005). Considering that 
control systems are often implemented using digital means, Lee and Berente 
(2012) refer to them as digital control systems. 
 
While the hierarchies of inclusion and control describe and analyse the 
composition of a complex system from two different viewpoints, these two are 
often deeply intertwined in operational terms. The structural and functional 
interdependence among inclusionary and control hierarchies often require deep 
and detailed knowledge of the overall system architecture as well as the 
functioning of individual components (Prencipe 2000). For example, aircraft 
engine manufacturers maintain a range of technological capabilities concerning 
both control system and component technologies in order to maintain their 
systems integration capabilities (Prencipe 2000). Therefore, organisations 
which engage in complex innovation that entails multiple technologies often 
know more than they make as they need to be able to manage and coordinate 
product development and manufacturing activities (Brusoni et al. 2001). In 
addition, given the context specificity and variety of functional requirements, 
dominant designs and design hierarchies are not always readily observable and 
can occur at different levels of design hierarchies and in different forms, either 
as stable components or as stable interfaces (Murmann & Frenken 2006). Based 
on these observations, complex products and systems innovation is postulated 
to require a breadth and depth of knowledge (Prencipe 2000), a significant 
amount of mental efforts (Arthur 2009) and occasionally cooperation at an 
industrial scale (Miller et al. 1995).  
 
Complex products and systems innovation appear to escape straightforward 
modularisation (Prencipe 2000). The increasing degree of interdependencies 
among the hierarchies of inclusion and control can reduce the divisibility of 
innovative labour among product manufacturers and components suppliers 
even in mature mass-manufacturing industries (Lee & Berente 2012; 
Henfridsson et al. 2014). While the notion of modularisation rests upon the idea 
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of separation of concerns by hiding the internal design and implementation of 
components (Salvador 2007; Baldwin & Clark 2000), Lee and Berente (2012) 
show that a car manufacturer may take part in component innovation in the 
development of digital control systems. On a similar note, Henfridsson et al. 
(2014) show how the intertwined and distributed character of various 
components of a vehicle information and entertainment system necessitates 
organisational and technological capabilities that facilitate the integration of 
various components into complete infotainment solutions. As product 
manufacturers’ role expands, component manufacturers’ control over 
innovation trajectories may become more constrained (Henfridsson et al. 2014). 
 
To conclude, robots and autonomous systems are composed of physical and 
digital components. Understanding the interdependencies between the 
hierarchies of inclusions and control are of central concern as the relationship 
between the two is often highly integral and purpose-specific. Considering the 
depth and breadth of architectural and component level knowledge required in 
complex products and systems innovation (Prencipe 2000), modularisation 
attempts appear elusive in this domain of innovation.  

2.6 Problematisation and research question 

The review presented above shows that the logic of combination differs among 
different types of technological innovation. Researchers have developed 
conceptual frameworks that revolve around modularity, generativity and 
complexity to conceptualise and highlight particular characteristics of 
innovation. Much of this literature builds on Simon’s (1996) theory of hierarchy 
and Alexander’s (1964) work on the architectural design, which converge on the 
combination of elements and on the partitioning of a problem space to contain 
complexity, although they approach the topics from slightly different angles.  
 
Product architectures are often viewed through the lens of modularity (Ulrich 
1995; Campagnolo & Camuffo 2009; Salvador 2007). Modularity results from 
modularisation (Baldwin & Clark 2000), which is a process that decomposes the 
overall design of a product or product system into modules in a top-down 
manner so that interactions and interdependencies are greater within the 
modules than across the modules. Subsequently, interface definitions, 
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integration protocols and testing standards are specified as design rules, which 
govern the detailed design and subsequent assembly of modules into complete 
products (Baldwin & Clark 2000). Modularisation is argued to give rise not only 
to a product architecture but also to corresponding design and task structures, 
activities and economic systems that mirror the architecture of a product 
(Baldwin & Clark 2000).  
 
The applicability of top-down modularisation and isomorphism between 
product architectures and organisational arrangements have been challenged in 
the literature on digital innovation (Yoo et al. 2010; Henfridsson et al. 2014) 
and complex products and systems (Brusoni & Prencipe 2006; Prencipe 2000).  
 
The literature on digital innovation challenges modularisation by presenting a 
world where products and services do not necessarily result from centralised 
top-down design and well-crafted design rules (Yoo et al. 2010). Instead, digital 
innovation is conceptualised to emerge as generative bottom-up combinations 
of product agnostic components, as assemblages of platforms, applications and 
services that were not initially designed to be part of some particular product 
(Zittrain 2008; Yoo et al. 2010; Yoo 2012b). Therefore, the design agency in 
digital innovation can be described as distributed (Nambisan et al. 2017), 
transcending the organisational boundaries of knowledge and control (Yoo et al. 
2010).  
 
The literature on complex products and systems innovation also challenges the 
view of modularisation but on different grounds. Considering that the 
boundaries among product architectures and design and task structures overlap 
as complex systems incorporate the intertwined and interdependent design 
hierarchies of inclusion and control (Prencipe 2000; Lee & Berente 2012; 
Murmann & Frenken 2006), they defy the attempts of modularisation and the 
subdivision of design and innovative work. Instead, the ability to design and 
build a well-functioning product requires intimate knowledge of the intertwined 
design hierarchies at the component and product architecture levels (Prencipe 
2000; Brusoni et al. 2001). Considering the level of knowledge and capabilities 
that are required at different levels, the notion of generativity and the associated 
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distributedness of knowledge and control seems particularly ill-suited approach 
in the context of complex products and systems.  
 
Therefore, a contradiction emerges in the view of robots and autonomous 
systems innovation, as they can be described at the same time as complex and 
digital. They are complex systems with context-specific requirements and 
consist of the intertwined hierarchies of inclusion and control. At the same time, 
control systems are implemented using the methods and techniques of digital 
computation, which are seen as generative and to transcend well-defined 
boundaries of knowledge and control.  
 
Problematisation can be phrased as follows: In the context of robots and 
autonomous systems, would the logic of combination be better understood 
through the lens of digital or complex innovation? Yet, there is no obvious 
answer to this question. On one hand, industries such as automotive and 
aviation acquire and consolidate technologies and knowledge to design and 
develop proprietary and purpose-specific digital control systems. On the other 
hand, this approach is unattainable for organisations that cannot afford the 
consolidation or are not able to commit to some particular product design or 
technology for periods of time long enough that would warrant the investment. 
This group includes start-ups, small-medium sized companies, research 
institutes and universities. These organisations design and develop robot 
systems by combining technologies and knowledge that are spread across 
technological domains and communities, bringing the tension between 
complexity and purpose-specificity of intertwined product architectures and the 
distributedness of knowledge and skills to the spotlight.  
 
Based on this problematisation, the principal research question is presented as 
follows:  
 
How can the tension between the specificity of designs and the distributedness 
of knowledge and control be resolved in the development of complex and 
digitised products? 
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2.7 Summary 

This chapter reviewed the literature on the organising logic of innovation in the 
view of product architectures and combination and presented robots and 
autonomous systems as complex digital innovation. The chapter presented 
definitions and types of product architectures in the view of the modularity of 
product systems, the generativity of digital innovation and the specificity of 
complex innovation. Subsequently, the reviewed literature was summarised to 
outline problematisation before presenting the principal research question. The 
subsequent chapter presents the theoretical framework and operative research 
questions that guide data collection and analysis.  
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3 Theoretical framework 

Building on the problematisation presented in the previous chapter, this chapter 
presents a theoretical framework that directs the course of this research. This 
framework provides the foundation upon which tentative a priori concepts are 
constructed and, in turn, translated into operative research questions, which 
operate as sensitising devices that inform data collection and analysis. Given the 
exploratory character of this research, the objective is placed on the 
identification and description of salient themes and patterns but not to explicate 
their interactional processes in any detailed manner (Gregor 2006).  
 
The reviewed literature on the organising logics and combination in the view of 
product architectures builds upon the theories of hierarchy and design (Simon 
1996; Simon 1962; Alexander 1964), although different lessons have been drawn 
from different empirical domains. Much of this research builds on Herbert 
Simons (Simon 1962; Simon 1996) and Christopher Alexander’s (Alexander 
1964) theorising on the structural arrangements and characteristics of the 
category of systems that can be described as complex. Whereas Simon’s (1996) 
work centres on the theory of hierarchy, presenting the architectures of complex 
systems as nested and recursive hierarchies, Alexander’s (1964) main interests 
are in the synthesis of the form and function and in the partitioning of design 
problems for containing complexity. While these works differ in certain aspects, 
they overlap significantly as they both deal with the need and strategies to 
contain systemic complexity. They show how systemic complexity is reduced 
through subdivision, by subdividing an overall system into smaller and more 
manageable constituent elements, subsystems, components and parts. Against 
this backdrop, complex systems are frequently viewed as nested hierarchies in 
the innovation and technology management literature (Murmann & Frenken 
2006; Arthur 2009).  
 
The following sections describe and develop theoretical framing. First, the early 
beginnings of systems theoretical thinking are outlined. After that, theories of 
complex systems are introduced and discussed to provide a foundation for 
tentative a priori concepts, which are then translated to operative research 
questions before the concluding remarks. 
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3.1 Thinking in systems 

In general, systems theories are used to study sets of elements in interaction 
(Bertalanffy 1968). Given the generality of this notion, systems theories are 
frequently used to describe, explain and occasionally predict a variety of 
phenomena that revolve around social, natural and artificial circumstances 
(Merali & Allen 2011). The wide applicability of this general concept has 
produced a large variety of systems theories and conceptualisations. This variety 
reflects the variety of empirical phenomena as well as researchers’ 
considerations regarding what kind of systemic theorisation would 
appropriately capture essential elements, interactions, properties and 
behavioural dynamics of some empirical phenomenon that is studied as a 
system. In this view, systems theories and systems thinking provide a wide body 
of conceptual and abstract knowledge against which different empirical 
phenomena can be reflected upon. However, regardless of the wide conceptual 
body of systems theoretic knowledge, research challenges often revolve around 
the identification and description of an empirical system (Checkland 2000), 
which is a precondition for mapping it against an analogous conceptual system. 
Systems theories in their broad variety are widely used in organisation 
(Boulding 1956; Ackoff 1971), information systems (A. S. Lee 2010; Matook & 
Brown 2016) and digital innovation research (Hanseth & Lyytinen 2010).  
 
The barebones definition of a system defines a system as a complex of 
interacting elements (Bertalanffy 1950). While this high-level abstraction tells 
very little about any particular instantiation of a system or its properties. What 
differentiates different systems from each other is the number and type of their 
constituent elements and their respective interactions. These three basic 
elements are postulated to establish the structure of any instantiation of a 
system and give rise to its particular properties and behaviour (Bertalanffy 
1968). Overall, the systemic view argues for a holistic approach to research. 
 
This is called systems thinking (Checkland 2000), and it seeks to counter the 
reductionist research approaches which examine and explain phenomena by 
reducing them gradually into ever smaller entities and relationships. In the 
reductionist view, the fundamental explanation would eventually be found 
somewhere at the subatomic level, and the wholes would equal to the sums of 
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the elements that constitute them. The kind of reductionism that seeks for 
explanation in terms of ever more fundamental parts (e.g. it’s all physics) is 
referred to as ontological reductionism (Honderich 2005). To challenge the 
reductionist view, systemic thinking advocates a more holistic approach that 
appreciates entities as wholes which possess some properties and characteristics 
that exist only at some given level of analysis. Such properties and 
characteristics are lost when the wholes are sliced down to smaller and more 
isolated but more researchable entities because the interconnections and 
thereby the effects of interactions and interdependencies at some particular 
level are not considered in the analysis. Consciousness and human life are well-
cited examples of the holistic and higher-level systemic behaviours and 
properties that cannot be fully understood by examining their constitutive 
elements, such as brain cells, heads, arms or legs, in isolation. Thereby, 
incorporating the interactions and interdependencies among different elements 
of a system into data collection and analysis is seen to offer a more holistic view.  
 
Furthermore, although different scientific fields focus on different phenomena, 
observing different matters, interactional patterns and forces, von Bertalanffy 
(Bertalanffy 1950) postulates that some of the phenomena studied in different 
scientific fields and domains may exhibit isomorphic properties when they are 
examined as conceptual systems and in abstract terms. On these grounds, he 
advocates the idea of a general systems theory, a general body of knowledge 
which provides a layer of conceptual abstraction upon which the isomorphism 
of systemic phenomena across different scientific fields could be studied, and 
with reference to which abstract methodological tools and theories could be 
developed (Bertalanffy 1950).  
 
However, when the barebones definition of a system is fitted against some 
empirical social, natural or artificial phenomena, it becomes soon evident that 
elements and their respective interactions manifest themselves in multiple 
patterns, flows, levels, hierarchies and contexts which all can overlap each other 
in multiple ways. To connect empirical observations with abstract 
conceptualisations, the phenomenon under investigation needs to be described 
so that its observed and abstracted features can be considered to form an 
isomorphic relation to its conceptualisation. In addition, as systems are often 
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affected by the environment in which they are embedded, it is also essential to 
include relevant parts of the surrounding environment in the description as well 
to describe the boundary that is seen to separate a system from its environment. 
Furthermore, while different system theories offer conceptual and 
methodological lenses to study and locate a variety of phenomena, the extent to 
which different phenomena can be systematised is contingent upon their type 
and origin. For example, simple technologies and closed experimental settings 
can readily be subjected to systematic analysis, whereas complex and embedded 
social systems, such as large-scale social and organisational phenomena, may 
prove too wicked and amorphous for any straightforward analysis or 
systemisation (Camillus 2008; Rittel & Webber 1973; Buchanan 1992). In this 
light, the definition of a system and by extension its properties derive from the 
choices according to which a particular system under investigation is carved out 
from its natural context and placed into an abstract conceptual framing.  
 
Moreover, ontological holism and reductionism should not be confused with 
methodological reductionism (Honderich 2005). Indeed, much of the so-called 
holistic research is reductionist in methodological terms as it seeks to reduce 
explanations to the smallest feasible number of concepts or variables using the 
principle known as Occam’s razor (Wimsatt 1994). Research projects are often 
formulated and presented in the form that covers a small collection of concepts 
that are seen to be related to each other in a way or another so that in 
conjunction they constitute the phenomenon that is being studied (Gregor 
2006).  

3.1.1 Complex systems 

The intractability of systemic problems increases with the degree of complexity, 
and the degree of complexity indicates the extent to which a system is amenable 
to systematic analysis (Bertalanffy 1950). The amenability is contingent on the 
characteristics of a system, such as the number and type of elements that 
constitute a system, the extent to which the behaviour of an individual element 
depends on the behaviour of the other elements of the system, the extent to 
which a system exchanges energy, matter or information with the environment 
it is embedded in and its ability to change its behaviour through learning and 
evolutionary processes (Mitchell 2009). The degree and type of complexity are 
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contingent on the empirical system under investigation, and a high-level 
classification of systems according to their complexity is outlined below.  
 
Overall, systems can be divided into different classes along the lines of 
simplicity, complicatedness and complexity (Mitchell 2009). Systems can be 
viewed as simple when they are composed of a small number of similar and 
weakly interdependent elements and are closed from the influence of the 
outside environment. When the number, type and interdependence among 
elements increase, and a system becomes more open to external influences, it 
starts becoming more complicated and/or complex. The difference between 
complicated and complex can be described along the lines of the linearity and 
predictability of a system’s behaviour (Perrow 1984; Nolte 2015). Designed and 
engineered complicated systems, such as jet engines and aeroplanes, are 
expected to operate in a predictable and reliable manner within the bounds of 
specified conditions and constraints, whereas, for example, the weather system 
is a paradigmatic example of a complex system due to its unpredictable and 
emergent character. The notion of emergence holds that the behaviour of a 
system and its higher-level properties emerge from lower-level interactions as 
elements interact with each other according to some particular rules without 
central coordination (Nolte 2015). These unpredictable and emergent 
characteristics are often defined along the lines of an ability to create a new 
order, structures or ways of working, or to move a system continually from some 
state, structure or equilibrium to another, with a more or less predictable 
manner (Mitchell 2009). Among other criteria, the types of emergence can be 
also differentiated along the lines of synchronic and diachronic (Bedau & 
Humphreys 2008). The synchronic refers to some temporal higher-level of 
systemic phenomena such as human consciousness, whereas the diachronic 
refers to the events that unfold over longer periods of time, such as history and 
the evolutionary development of the Internet (Tilson et al. 2010; Zittrain 2008; 
Hanseth & Lyytinen 2010).  
 
The emergent unfolding of a phenomenon does not necessarily imply that it 
could not be explained in reductionist terms in principle (Simon 1996; Wimsatt 
1972). While it might be impossible to foresee how different development 
trajectories of a system may unfold and emerge in the future, explanation after 
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the fact is not totally out of reach if the trails of events can be established. Also, 
while some systems might, in essence, be just entirely deterministic and 
predictable, the lack of knowledge of their dynamic properties and initial states 
may render them emergent and unpredictable for all practical purposes (Simon 
1996; Mitchell 2009).  

3.1.2 Structures of complexity 

When the number of interactions and interdependencies among the elements of 
a system increases, complexity soon reaches unmanageable levels. This is 
elaborated by Alexander (1964) and Simon (1996) who also show that systemic 
complexity can be contained and managed through the process of subdivision 
and stable subassemblies.  
 
Simon (1996, pp.183-184) defines a complex system as “one made up of a large 
number of parts that may have interactions”. Based on the observations of 
natural and social phenomena and technological artefacts, Simon (1962; 1996) 
theorises that complexity reduces when a larger system is subdivided into sets of 
interacting elements. This is based on the observation that the patterns of 
interaction and interdependencies among elements are not always uniform. In 
other words, some elements of a system form clusters (subsystems) within 
which they are more connected with each other than to the elements which 
reside outside those clusters. In turn, those subsystems, when combined, form 
an overall higher-level system and its behaviour. Furthermore, the subsystems 
themselves are compositions of other subsystems. This recursive hierarchy 
indicates that higher-level systems are composed of interrelated subsystems, 
which are themselves composed of some other subsystems until some 
fundamental level is reached. While the overall complexity of a system can be 
contained through subdivision, complex systems are not fully decomposable as 
the overall behaviour of a system is produced through the interaction of 
interrelated subsystems, thereby rendering complex systems as nearly 
decomposable.  
 
This nested and recursive hierarchic structure contains interactional complexity 
and enables gradual development through stable intermediate subsystems (also 
known as subassemblies that serve as reservoirs of accumulated work and 
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knowledge). Simon (1996, pp.188-189) demonstrates the stabilising effect of a 
hierarchic structure in the development of complex systems with a parable of 
watchmakers. The parable shows how subsystems facilitate gradual and 
resilient progress towards more complex and higher-level systemic structures. 
Without stable subassemblies (ready-made subsystems), when a watchmaker is 
interrupted, the process of assembling a watch would always have to restart 
from the very beginning. The longer the time that is required to arrive at the 
completion, the higher is the likelihood of interruption and the subsequent 
return to the square one. On the other hand, when building upon subsystems, 
the gradual progression towards a higher-level system is more robust and 
resilient to interruptions and external disturbances as the process of assembly 
restarts from the subsystems that have already been completed. This way, stable 
subsystems are intermediate states that store work and knowledge and building 
on the previous progress speeds up the development effort.  
 
Alexander (1964) observes that subdividing a design problem into smaller sub-
problems is an effective way to contain complexity. Containing complexity is 
essential when design problems grow in size and complexity, as “[n]o complex 
adaptive system will succeed in adapting in a reasonable amount of time 
unless the adaptation can proceed subsystem by subsystem, each subsystem 
relatively independent of the others” (Alexander 1964, p.41).  
 
This is demonstrated with reference to a process of design that is viewed as 
directed problem solving; the ultimate objective is to create a form that fits into 
its target context (environment) so that they together form a harmonious 
ensemble: “Every design problem begins with an effort to achieve fitness 
between two entities; the form in question and its context. The form is the 
solution to the problem. In other words, when we speak of design, the real 
object of discussion is not the form alone, but the ensemble comprising the 
form and its context“ (Alexander 1964, p.15). The context refers to the 
environment in its totality, including natural, social and artificial matters as well 
as human needs and wants, and it is this contextual totality from which problem 
descriptions and requirements emerge.  
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Descriptions and requirements can be considered as design variables based on 
which the fitness between a form and context is evaluated. Should the 
interaction among design variables be low, finding a solution to a given problem 
can be done simply by adjusting variables one by one until the harmony 
between the form and context is reached. However, when the size and 
complexity of a design problem grows, that is, when the number of design 
variables increases, and the variables are heavily dependent on each other so 
that a change in one variable alters others in a way that is not exactly known, 
finding a solution becomes increasingly difficult or even impossible. By dividing 
larger problem spaces into smaller subproblems, spaces from which solutions 
are searched become smaller and thereby making the challenge of finding an 
appropriate solution more manageable (Alexander 1964). Design problems 
become easier to tackle when efforts can be focused on the gradual 
improvement of subsystems instead of trying to solve the overall problem for all 
of its interdependent variables at once. 
 
Whereas Alexander (1964) approaches this topic through the lens of 
architectural design and Simon (1996) in more general terms taking natural and 
social phenomena and design of technological artefacts into account, they 
converge on the importance of the subdivision as a method for containing and 
managing complexity. Subdivision speeds up the search by limiting the problem 
space solutions are searched from and designed for. The resulting subdivions 
and subsystems can be seen as essential intermediaries as they provide building 
blocks that enable the emergence and development of complex and nearly 
decomposable systems from weakly connected subsystems. 
 
While subdivision into intermediate subsystems shows how the behaviour of a 
clock can be decomposed into smaller parts (Simon 1996), it also suggests that 
all parts must be carefully arranged to make a clock work, posing limits to the 
extent to which a system can be decomposed without losing its particular 
properties. The near decomposability simply holds that the degree of interaction 
among the elements within a subsystem is higher than between the subsystems. 
Therefore, while a system can be decomposed into nearly independent 
subsystems, a higher-level system behaviour is contingent upon the interaction 
among subsystems which in combination produce the overall system. 
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3.1.3 Considerations on the identification of structures 

Reducing complexity by subdividing systems into nested hierarchies is by no 
means straightforward (Alexander 1964). In science, the challenge resides on 
how to localise and identify relevant subsystems and their respective 
relationships which are considered to constitute the phenomenon of interest 
(Kauffman 1970). On the other hand, with the sciences of artificial such as 
design and engineering, the challenge resides on how to partition a design 
problem in a way that corresponds to the underlying structure and features of 
the goals and context of the design problem (Alexander 1964).  
 
Hierarchical structuring is also an essential sense-making device from the 
human point of view. It allows for us to observe, explain and theorise systemic 
behaviours in terms of subsystems and their interconnections (Simon 1996) – 
seeing the world as hierarchies allows for simplified descriptions and 
explanations as redundancies and superfluous details can be removed. 
Moreover, Simon (1996) argues that as subsystems interact with each other in 
an aggregative manner, the details of their internal functioning and interactions 
can be ignored, and that often relatively little information would be lost by 
representing complex phenomena as hierarchies. In addition, the definition of 
the complexity or simplicity of a structure depends on the way and level of 
description — successful simplification means that “we must find the right 
representation” (ibid p. 215). However, Simon (1996) also points out that if 
some phenomena do not exhibit hierarchic structure, “[complex systems] may 
to a considerable extent escape our observation and understanding” (ibid p. 
207), and thereby transcend our efforts of theorising. 
 
Drawing from the studies of biological organisms, Kaufmann (1970) shows that 
complex systems can be decomposed and described in multiple ways. As 
biological systems, such as human bodies, can be seen doing many different 
things at the same time, there are equally many ways to divide them into 
subsystems and interactions of interest, depending on what systemic behaviour 
or feature is under examination and explanation. While attention is focused on 
certain subsystems and their respective causal relationships, those which are 
considered irrelevant are ignored. Furthermore, even if multiple studies concern 
the same system, the subdivision may occur across multiple boundaries at 
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different levels, yielding non-isomorphic and partially overlapping 
decompositions (Wimsatt 1972). While this allows for detailed knowledge of 
some particular aspects of different systems and subsystems, it also produces a 
multitude of conceptual and theoretical accounts at different levels. Although 
these accounts may not be readily translatable to each other, Kaufmann (1970) 
argues that different views are expected to be compatible and non-contradictory 
as they seek to explain different aspects of the same system. However, 
reconciling different views may require significant efforts.  
 
The difficulty of localising functionality may explain why “in-principle 
reductionist may be at the same time a pragmatic holist” (Wimsatt 1972, p.67 
quotes Simon (1962 p.86)). Wimsatt (1972) explains this difficulty of bringing 
different views together through the concepts of descriptive and interactional 
complexity. Descriptive complexity results from the uneven and intertwined 
spatial distribution of functionality among the different parts of biological and 
social systems (Kauffman 1970). Different sets of subsystems produce different 
functionalities, and as some subsystems may take part in the production of 
multiple functionalities, different theoretical descriptions of the system may 
become overlap each other in a way that their boundaries do not coincide 
(Wimsatt 1972). Overlapping theoretical descriptions lead to descriptive 
complexity, which may require significant work if they are to be reconciled. The 
interactional complexity, in turn, refers to variety and interdependence of 
different theoretical descriptions involved in the production of some higher-
level systemic behaviour or functionality (Simon 1996). Moreover, Wimsatt 
(1972) argues that the decomposability of a system should be viewed differently 
depending on whether we are considering decomposability before or after 
design or aggregation, and highlights that the hierarchical arrangements that 
are developed and become more intertwined through evolutionary co-
dependent development processes are not readily decomposable whereas some 
newly engineered systems and subsystems might be. Therefore, a functional 
organisation that has developed through evolutionary processes does not 
necessarily correspond neatly to the most readily observable physical 
organisation. The localisation of functionality and the analysis of a systemic 
behaviour become increasingly difficult when descriptive and interactional 
complexity increase (Wimsatt 1972). 
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The challenge of making sense of complex systems renders requirements 
specification and engineering equally challenging, in particular when the 
number of contextual elements and associated requirements is large and they 
are tightly interdependent (Rittel & Webber 1973; Buchanan 1992). Often, it is 
easier to point out what appears to be wrong and incorrect than to explain and 
specify exhaustively why some combination of a form and context would be in 
the state of complete harmony; incorrectness sends signals, but correctness 
remains silent (Alexander 1964). However, logically speaking, the absence and 
presence of misfits are no different. They can be considered as binary conditions 
for given criteria of fitness, and as long the criteria are listed, it is possible to 
evaluate for each criterion whether the state of fitness has been achieved or not.  
 
 
In practice, it is often difficult to specify contexts and criteria down to a level 
that would leave no room for disagreement or interpretation. This leads to 
situations where a great deal of information is embedded in task statements and 
taken for granted assumptions. Based on this reasoning, Alexander forwards 
that “the process of achieving good fit between the two entities should be seen 
as negative process of neutralising incongruities, or irritants, or forces, which 
cause misfit” (Ibid p. 24). Therefore, design processes, and therefore by 
extension engineering, are seen as problem solving which proceeds towards 
fitness and congruence between a form and its context.  

3.2 Operative research questions 

The theorisation of the structural arrangements and characteristics of complex 
systems presented above brings forward the intertwined and multifaceted 
relationships of separation and combination. Complex natural, social and 
artificial systems can be viewed as compositions of subsystems, and they are 
made sense of and more manageable through the processes of decomposition 
(Simon 1996; Alexander 1964), through the processes of partitioning that seek 
to subdivide higher-level systems into the lower-level systems and components 
that in combination compose them. Yet, at the same time, the notion of near 
decomposability forwards that certain systemic properties and characteristics 
can only be observed or exist when particular subsystems are brought together 
and interact with each other. Thereby, the sense-making and operation of 



 

83 

complex systems invariably involve tensions that revolve around separation and 
combination of different subsystems and elements at different levels. 
 
This tension between separation and combination is manifestly present in the 
principal research question which brings forward the tension that revolves 
around the specificity of designs and the distributedness of knowledge and 
control in the current innovation literature. While this abstract high-level 
question sets out to explore and make sense of this tension, it is not directly 
applicable to empirical investigation. As Boulding (1956, p. 197) states, highly 
abstract notions tend to be almost without content “… for we always pay for 
generality by sacrificing content, and all we can say about practically 
everything is almost nothing“. Therefore, it is necessary to bring the abstract 
and high-level theories slightly closer to the empirical domain of research.  
 
Therefore, the abstract theoretical framing is translated to tentative a priori 
conceptualisation, and the primary research question is translated to the 
operative questions which can be answered through empirical observation and 
analysis. The primary research question, as it begins with “How can…”, hints 
that there are potentially ways to circumvent and manage such tensions 
emerging from the separation and combination. This is based on the initial 
observation that various organisations with limited resources take part in 
complex digital innovation. However, what is not exactly known is how this 
occurs and what are the characteristics associated with such affairs.  
 
Robot Operating System (ROS) provides the empirical context in which the 
dynamics of separation and combination are explored and examined. ROS is a 
software development framework and an open-source community that supports 
the development of robots and autonomous systems. It brings together a 
heterogeneous group of roboticists that share and build upon each other’s work. 
ROS is described in more detail in Chapters 5 and 6, entitled Case description 
and Results of Analysis respectively.  

3.2.1 Subsystems and combinations 

Operative questions define the type of information that needs to be collected to 
answer the principal research question (Hintikka 1999). Based on the 
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theorisation presented above, ROS is studied through the lens of complex 
systems and by focusing on different subsystems and their respective 
combinations (Alexander 1964; Simon 1996).  
 
Given the exploratory character of this research, the effort is first directed to the 
identification of different subsystems and their characteristics irrespective of 
their level in systemic hierarchies. Therefore, the first operative research 
question is formulated as follows: 
 
What are the typical instances and characteristics of subsystems, if any? 
 
The identification of typical instances of subsystems occurs against the 
conceptual background of nested and recursive structures of technologies as 
illustrated in Figure 2 in the previous chapter (Arthur 2009; Murmann & 
Frenken 2006). Being in line with Simon’s (1996) theory of hierarchy, it shows 
how complex technological systems are composed of subsystems, which are in 
turn composed of some lower level subsystems and so forth until some more 
fundamental or foundational level of constitutive components is reached.  
 
While Figure 2 presents a four-level nested hierarchy with the system level at 
the top and the component level at the bottom, it is worth to reiterate that there 
can be more than four levels hierarchical levels and that technologies can be 
analysed as technologies at different levels of hierarchy (Arthur 2009). This 
way, the notion of a subsystem is a frame-dependent concept, and it is used to 
refer to entities which may reside at different hierarchical levels. Furthermore, 
the notion of a subsystem is agnostic with respect to the design hierarchies of 
inclusion and control (see Figure 5 in the previous chapter) (Murmann & 
Frenken 2006), and it is used to indicate subsystems that can belong either to 
the hierarchies of inclusion and/or control. Subsystems from the hierarchies of 
inclusion and control residing at different hierarchical levels and structures are 
included in the scope of examination.  
 
Following the identification of subsystems, characteristics of subsystems are 
reflected upon different factors, such as their place among different design 
hierarchies, operational principles and their role in relation to other subsystems 
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and higher-level combinations (Arthur 2009; Murmann & Frenken 2006). This 
is carried out to assign them into distinct categories of subsystems. However, it 
is worth to note that as these characteristics serve only as sensitising devices 
(Klein & Myers 1999) and guideposts during data collection and analysis; they 
are not taken as unconditional criteria of analysis but are expected to evolve and 
develop as the research unfolds. 
 
Once the instances of subsystems have been established, the focus of research 
shifts from subsystems on their combinations, with an emphasis to explore how 
different subsystems combine at and across different levels of design 
hierarchies. To this end, the second operative research question is as follows: 
 
What are the typical instances and characteristics of combinations, if any? 
 
The purpose of this is to identify and locate instances of combination and 
examine different characteristics of combination. Different combinations and 
combinatorial patterns are searched for and subjected for more detailed 
examination. The guiding signposts are erected along the lines of the reviewed 
literature, and combinatorial patterns will be reflected in the light of the 
modularity of product systems (Baldwin & Clark 2000; Salvador 2007), the 
generativity of digital innovation (Zittrain 2008; Yoo et al. 2010; de Reuver et 
al. 2017) and the specificity of complex products and systems (Prencipe 2000; 
Lee & Berente 2012) to ensure that different logics of combination will be 
considered (Henderson & Clark 1990). Again, these organising logics serve as 
sensitising devices that guide the researcher to pay attention to particular 
characteristics of combinations during data collection and analysis, and to 
reflect the extent to which these notions apply to complex digital innovation.  
 
In more empirical terms, the instances of subsystems and combination in ROS 
are expected to be found around different digital and physical systems and 
platforms (de Reuver et al. 2017; Baldwin & Woodard 2008), software and 
hardware components, system development toolkits and frameworks, 
standardised interfaces or other boundary resources (Yoo et al. 2010; Eaton et 
al. 2015). In other words, subsystems are expected be found where previous 
work has accumulated so as to allow the reuse of existing technologies as well as 
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the collaboration and interaction among distributed and heterogeneous groups 
of users and contributors.  
 
The operative research questions and conceptual sensitising devices are derived 
from the literature and are necessary to make data collection and analysis 
tractable, yet they are formulated in an open-ended manner to retain 
interpretive flexibility in the light of emerging evidence. Considering the 
exploratory character of this work, these tentative conceptualisations 
(Eisenhardt 1989b) are best understood as initial sensitising devices (Klein & 
Myers 1999) and are expected to evolve during the course of research (Hintikka 
1999). The description and examination of subsystems and their respective 
combinations within the context of ROS presumable help understand how the 
tensions between the specificity of designs and distributedness of knowledge 
and control in complex digital innovation are resolved.  

3.3 Summary  

This chapter presented the theoretical framing that underpins this research and 
introduced the operative research questions. The framing builds upon Simon’s 
(Simon 1996) and Alexander’s (Alexander 1964) work, which theorises the 
structure of complex systems as nested and recursive hierarchies, where 
complexity is contained by subdividing complex systems into subsystems that 
interact with each other. In this light, tentative a priori conceptualisation and 
operative research questions build upon the notions of separation and 
combination in the view of subsystems and their respective combinations. 
Therefore, research efforts are directed towards the identification and analysis 
of different subsystems and their respective combinatorial patterns across and 
at different levels of system hierarchies. The examination of separation and 
combination are expected to offer insights into how tensions between the 
specificity of designs and distributedness of knowledge and control are resolved. 
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4 Research design 

This chapter presents the methodological approach and design of this research. 
This research can be characterised as exploratory and interpretative and is 
designed as an embedded case study (Yin 2009), which makes use of tentative a 
priori concepts (Eisenhardt 1989b) as sensitising devices (Klein & Myers 1999) 
and follows the process of thematic analysis (Boyatzis 1998; Silverman 2015). 
 
Research design, methodological choices and the unfolding of the research 
process are presented and discussed in the subsequent sections. Section 1 (4.1) 
discusses the characteristics of case study research to establish its suitability for 
this research. After that, Section 2 (4.2) outlines the process of thematic 
analysis, whereas the role and use of tentative concepts are presented in Section 
3 (4.3). Section 4 (4.4) that describes the research design, and, subsequently, 
Section 5 (4.5) presents the rationale and process of case selection to establish 
the boundaries of research and knowledge claims. Subsequently, data collection 
and research database construction are described in Section 6 (4.6). The 
research database contains primarily documentary evidence, such as blog 
entries, conference presentations, scientific and magazine articles and email 
archives, which are complemented with the field notes from nonparticipating 
observation and interviews. Section 7 (4.7) presents the process of data analysis 
that produced two main outcomes. The first one of them is a case description, 
which is presented in Chapter 5, whereas the second one, which answers the 
principal research question using thematic analysis and proposes novel 
concepts for conceptualising complex digital innovation, is presented in Chapter 
6. Before moving on to the case description and other findings, this chapter 
presents the methodological foundations of this research. 

4.1 A case study as an evolving inquiry 

Case studies are widely used in organisation and management research 
(Eisenhardt 1989b). According to Yin (2009), case studies are suitable for 
answering the how and why types of research questions under conditions where 
a researcher holds no control over the unfolding of events, and the phenomenon 
under investigation is contemporary, occurring in its natural environment. The 
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outcomes of case studies can be concepts, a conceptual framework or a mid-
range theory (Eisenhardt 1989b).  
 
Comparing case studies to experiments, surveys and historical analysis 
highlights the particular characteristics of case study research (Yin 2009). To 
exemplify, experiments typically live in artificial habitats and can be 
constrained, controlled and repeated varying one factor at the time, providing a 
way for establishing theoretical regularities under well-defined circumstances. 
While this approach has produced remarkable results in some domains, 
capturing social and organisational phenomena into laboratory settings remains 
challenging and ethically questionable (Zimbardo et al. 2000). Surveys are a 
step closer to the wild, and they can be used to collect information concerning 
some states of affairs from wider populations. They rely on premeditated sets of 
questions, often collecting frequencies or respondent’s perceptions and 
reporting, in turn, some statistical descriptions and regularities. However, the 
emphasis and adherence to premeditated and formalised research designs and 
protocols tend to introduce rigidity into research processes, making surveys less 
amenable to projects with exploratory elements and where data is compiled 
iteratively from different sources and in different forms. More open-ended 
approaches such as historical analysis and case studies provide research designs 
that overcome the limitations of experiments and survey-based research designs 
(Yin 2009) as they accommodate the iterative collection and analysis of multiple 
types and sources of data. Historical analysis, while being similar to case study 
research, differs from case studies in that it focuses on the past instead of the 
contemporary events (Yin 2009). Therefore, the open-endedness of research 
design, the lack of control from the researcher’s part as well as the contextual 
and contemporary embeddedness of a phenomenon under investigation 
separate case study research from other modes of social research.  
 
The open-endedness of case study research rests on the analytical choices made 
by a researcher over the course of research (Bauer et al. 2000). The dependence 
on researchers’ interpretations (Klein & Myers 1999) is prone to subject this 
type of research to criticism, questioning the generalisability and observer 
independence of research outcomes.  
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In the end, ideally, scientific research should be an objective endeavour where 
outcomes do not depend on the interpretations made by some particular 
researcher. The positivist research paradigms seek to obtain objectivity through 
the premeditated research designs and mechanistic methods. However, choices 
made during research design, such as the formulation of a research question, 
questionnaires and methods of analysis as well as the decisions on whom to ask 
from among others, bring interpretative elements into positivist research, even 
if this is not always fully acknowledged (Bauer et al. 2000). In turn, in so-called 
interpretative modes of research, objectivity cannot be claimed by hiding behind 
the facade of methodological formalism. The open-ended research design 
exposes researchers’ role and decisions in data collection and analysis. 
 
The open-endedness, however, does not mean that a researcher should do away 
with methodological theories and tools altogether. Instead, researchers should 
use methodological tools to build procedural rigour into research activities and 
to reflect on which particular research methods and avenues should or could be 
pursued or discarded (Eisenhardt et al. 2016). Methodological rigour along with 
necessary justifications allows a reader to examine the reasoning behind and 
credibility of research outcomes. However, although methodological handrails 
can help a researcher over the narrow stretches, they provide very little in the 
way of definitive guidance regarding the paths a researcher should take or what 
to make of them. 
 
The relationships between a researcher’s choices and interpretations can be 
viewed in the light of definitory and strategic rules. Like games, scientific 
inquiry can be considered in terms of definitory and strategic rules (Hintikka 
1999). Definitory rules define a game and describe the moves which are possible 
and admissible. However, while definitory rules define a set of possible moves, 
they are not informative regarding the utility of any particular move, as the 
utility of a move depends on the overall situation where it is taken. The rules 
which take utility into account are called strategic rules. While strategic rules 
have to conform to definitory rules, as otherwise such moves would not be 
permitted, their utility derives from the goals and environment in which they 
are taken and the overall context of strategies they are members of. In this light, 
if the overall context of an inquiry is not fully known in advance, the successful 
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formulation of most profitable sequences of moves remains a precarious effort. 
Therefore, the upfront research design of an exploratory research is expected to 
change as the knowledge of the overall context is limited at the beginning and 
increases as the research project unfolds.  
 
To formalise this logic of scientific inquiry, Hintikka (1999) develops what he 
calls the method of interrogative inquiry. While the formal logical presentation 
of the method is not of interest here, the formalisation however neatly presents 
the iterative and interrogative unfolding of exploratory research. Interrogative 
inquiry entails two participants, an inquirer and nature. The inquirer is looking 
for an explanation that answers the principal question. At any given moment, 
the inquirer may decide to either proceed a step further using logical deduction 
on the basis of existing facts or, alternatively, present an operative question to 
nature6 in the hope of obtaining some new facts. With the newly acquired facts 
(if nature answers), the inquirer may again proceed further either by performing 
a new deductive step on the basis of the present facts to refine the working 
hypotheses or pose another question in the hope of obtaining new facts that are 
able to confirm or reject the working hypothesis based on which the operative 
question was constructed. The interplay of logical deduction and interrogation 
continues until all necessary facts are in place so that the initial principal 
question can be answered.  
 
Hintikka (1999) separates purely deductive and interrogative reasoning 
respectively as trivial and non-trivial, associating them with Charles S. Peirce’s 
corollarial and theorematic reasoning respectively, forwarding that:  
 
“[T]heorematic inferences are the ones which introduce a new individual 
(variables) into the argument, whereas corollarial merely traffic in the 
individuals which have already been considered in their premises” (Hintikka 
1999, pp.7-8).  
 
Non-trivial inference implies the imagination of possible worlds and subsequent 
systematic probing of the validity of those worlds (Weick 1989). This may open 

                                                
6 Nature is broadly defined. It can be either nature as natural nature, or it can be a computerised 
database, or any of many other things that may provide an answer, and they may differ wildly in 
their structure and information they hold. 
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up new lines of argumentation by bringing in new evidence, which in turn may 
trigger a change in beliefs and working hypotheses, although not necessarily 
doing so if questions are poorly formulated or nature does not answer. 
Moreover, Hintikka (1999) notes that deduction and interrogation are the two 
sides of the same coin; the difference should be considered rather as a matter 
degree than a difference in kind, as a sort of sliding scale between the two 
opposite ends of the spectrum where the position of a pointer depends on the 
number of new variables being introduced into inquiry.  
 
Although Hintikka (1999) formalises the logic of interrogative inquiry, outlining 
its definitory rules, we are none the wiser when it comes to defining the strategic 
utility of any particular move. What are the presuppositions to uphold and in 
which way what is known should be transformed into new sequences of 
questions and answers? How could a researcher establish the validity of any 
chosen course of events and outcomes in a convincing manner, as it remains 
that the formulation of strategic rules resists formalisation because the 
efficiency of moves depends on the environment (e.g. what can be learned from 
data) and ultimate goal (e.g. the aimed contribution) in which the moves are 
taken, both of which are not fully known when an open-ended research project 
begins.  
 
The iterative and interrogative process builds upon reasoning, questioning and 
interpretation and requires readiness to adjust for emerging avenues of research 
throughout the course of research. This corresponds closely to the underlying 
assumptions and open-endedness of interpretative case study research. The in-
depth investigation based on rich data and readiness to accommodate a variety 
of data from different sources render case study design as an appropriate 
approach for the research projects that seek to explore and develop a deeper 
understanding of the phenomenon under investigation, building upon prior and 
newly acquired facts in an opportunistic but goal-directed manner.  
 
Whereas the exploratory approach can be described as disciplined imagination 
(Weick 1989), the process and evidence that give rise to the final conclusions 
should be made explicit to a reader to allow her to evaluate the reliability of 
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conclusions. The subsequent section discusses the criteria of reliability in more 
detail.  

4.1.1 Quality criteria 

The quality of research can be evaluated in terms of construct validity, internal 
validity, external validity and reliability (Gibbert et al. 2008; Yin 2009), each of 
them evaluating a particular aspect of research design. A research project 
should be designed and executed in a manner that reaches high quality in all 
four above-mentioned areas. Therefore, before presenting the design of this 
research project, it is beneficial to revisit the quality criteria to set the goalposts 
against which the design can be evaluated. 
 
Construct validity concerns with data collection and deals with the 
operationalisation of the concepts that guide data collection. To minimise 
subjective and observational biases, a researcher should provide clear 
conceptual definitions and describe the features based on which the concepts 
can be located in the empirical evidence (Yin 2009). Construct validity can be 
increased using empirical triangulation, that is, using multiple sources of 
evidence as well as establishing a coherent “chain of evidence” (Yin 2009, p.42), 
which details the path from research questions to conclusions, allowing a reader 
to reconstruct the collection and processing of data (Gibbert et al. 2008).  
 
Internal validity can be understood as “logical” validity, meaning that a 
researcher is expected to demonstrate sound and logical treatment of data 
during analysis (Yin 2009), crafting a plausible line of argument which is 
sufficiently compelling to warrant the conclusions of research (Gibbert et al. 
2008). However, facts that constitute evidence and their respective relations 
may not always be readily observable, necessitating interpretation and inference 
from researchers’ part. If the researcher fails to include some crucial facts in the 
analysis, the resulting findings may rest on spurious evidence and treatment. 
Depending on the type of evidence and goals of research, a variety of analytic 
strategies and techniques can be employed to mitigate the risks concerning the 
internal validity, such as systematic explanation building and evaluation of 
explanations against predicted patterns and other theoretical propositions (Yin 
2009; Gibbert et al. 2008). In addition, evidence should be presented separately 
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from its interpretation in order to expose the link between the data and its 
interpretation as it facilitates the examination of alternative interpretations.  
 
External validity indicates to what extent final conclusions are expected to be 
generalisable or applicable outside the empirical research setting (Yin 2009; 
Gibbert et al. 2008). Broadly speaking, there are two main strategies towards 
generalisability. Statistical (positivist) research methods pursue this goal 
through representative sampling and the subsequent generalisation to 
corresponding populations. In contrast, interpretive studies with a single or 
small number of cases seek to construct analytical generalisations with an aim 
“to generalise a particular set of results to some broader theory” (Yin 2009, 
p.43), which can then be generalised across analogous settings. The 
generalisation across analogous organisational settings is often a primary goal 
of information systems research (Seddon & Scheepers 2015).  
 
There are alternative viewpoints to generalisation, such as the generalisation 
from data to descriptions or from descriptions to theory (A. S. Lee & Baskerville 
2003). Seddon and Scheepers (2015; 2012) take a processual view on 
generalisation, presenting it as a logical argument that spans across different 
phases and settings of research. 
 
“A research generalization is the researcher’s act of arguing, by induction, that 
there is a reasonable expectation that a knowledge claim already believed to 
be true in one or more settings is also true in other clearly defined settings.“ 
(Seddon & Scheepers 2015, p.38; Seddon & Scheepers 2012) 
 
As parsimony and generalisability are hallmarks of theoretical contributions 
(Eisenhardt & Graebner 2007), research projects can be viewed as a series of 
abstractions. Step by step, selected features present in data are preserved while 
others are either discarded or established as qualifying conditions, moving 
gradually from data towards theoretical generalisations, which can be 
transferred across different settings according to some logical of comparability. 
 
Finally, the overall reliability of research refers to the absence of errors and 
minimisation of biases (Gibbert et al. 2008; Yin 2009). In principle, should 
another researcher wish to carry out the same research again, she should arrive 
at the same results. For this to be possible, the research process and outcomes 



 

94 

must be described clearly and transparently. To this end, the researcher is 
advised to develop a case study database (Yin 2009) and document data 
collection and analysis to establish an audit trail that allows the replication of 
research. To ensure quality and generalisability of research outcomes, a 
researcher should make use of techniques, which increase construct, internal 
and external validity and lead to overall reliability and transparency. The 
subsequent section presents the analytical method adopted in this research. 

4.2 Thematic analysis as iterative abstraction of patterns 

Thematic analysis is a widely used research approach in qualitative social and 
organisation research. Regardless of the objectives of research, the search for 
patterns, themes, concepts and categories and their relationships is a common 
research procedure (Boyatzis 1998; Bryman 2015). This search plays an 
important role for example in the grounded generation of theory, narrative 
analysis and qualitative content analysis, and different theoretical and 
methodological traditions have developed a variety of methods, techniques and 
heuristics of search that serve particular analytic and theoretical objectives 
(Bryman 2015).  
 
A theme is a central construct in thematic analysis and thereby requires a 
further elaboration, especially considering that as an abstract concept it is prone 
to attract multiple interpretations. Bryman (2015) defines a theme as a 
“category identified by the analyst through his/her data” (ibid p. 584). 
Moreover, themes are expected to be related to the focus of research, derive 
from the patterns identified in the transcripts and field notes, and to “provide 
the researcher with the basis for a theoretical understanding of his or her data 
that can make a theoretical contribution to the literature relating to the 
research focus” (ibid p. 584).  
 
In this light, the thematic analysis appears similar to grounded theory (Glaser & 
Strauss 1967). While thematic analysis and grounded theory resemble each 
other, they differ in their aims. The method of grounded theory is concerned 
with theory generation through iterative and parallel data collection and 
analysis until theoretical saturation is reached (Glaser & Strauss 1967; Corbin & 
Strauss 2008). During this process, the method of grounded theory seeks to 
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extract concepts from raw data by coding and labelling them into conceptual 
categories first through the process of open coding, and subsequently by 
building linkages among categories through the processes of axial coding 
(Corbin & Strauss 2008). On the other hand, while thematic analysis also aims 
at uncovering thematic patterns and linkages (Bryman 2015), it does not 
necessarily aim at developing a new theory (Urquhart 2013). However, this 
distinction hinges upon where a boundary between a new theory and any 
theoretical contribution is drawn. According to Eisenhardt (1989b), a range of 
theorising efforts, such as conceptual development, theoretical propositions and 
mid-range theories can be viewed as theoretical contributions.  
 
Thematic analysis is not intrinsically linked to any particular theoretical or 
conceptual framework. While different frameworks, such as narrative analysis 
or critical discourse analysis, often carry a number of assumptions concerning 
the nature of data and what particular features of data represent (Bryman 2015; 
Braun & Clarke 2006), the method of thematic analysis is tasked simply with 
finding repeated patterns of meaning thereby separating the underlying 
theoretical assumptions from the process of analysis. The meaningfulness of 
identified patterns is contingent upon the theoretical framing and objectives of a 
research project (Braun & Clarke 2006). Thematic analysis is a processual 
framework for data analysis, which describes the main phases of data analysis 
process at a level that is abstract and generic (Bryman 2015). The aim of 
explicating the process steps is to make the process more transparent and 
replicable and highlight the importance of following coherent and consistent 
approach during data analysis (Braun & Clarke 2006).  
 
The process of thematic analysis unfolds as follows (Bryman 2015). To begin, 
the researcher makes herself familiar with the contents of the research database 
to establish a general overview and understanding of the data being analysed. 
After this, the process of initial and open coding begins, and this may lead to a 
large number of scattered and incoherent codes and categories. Then, the 
researcher iterates and rearranges the initial codes into higher-level categories, 
and this is followed by a round of iteration during which the higher-level 
categories are further examined and arranged into themes. Throughout data 
analysis, a researcher can review and adjust categorisation depending on the 
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evidence and desired level of abstraction. Once a set of themes has been 
established, they are described and explained. As a final step, the linkages 
among different themes can be examined and conceptualised before the 
production of a final report that describes the resulting themes and their 
interrelations. The outcome can be presented in the form of a summary table 
that outlines and describes the prominent themes and categories with examples 
and descriptions, which illustrate their salient characteristics.  
 
As the purpose of the thematic analysis is to identify and report themes in data 
(Braun & Clarke 2006; Bryman 2015), what counts as a theme needs to 
established. According to Bryman (2015), one of the most common criteria that 
warrants a theme is repetition. The recurrence of a particular pattern may occur 
within the boundaries of one type of evidence or alternately across various types 
and sources evidence. However, not all repetitions are equally important with 
respect to research objectives. Some patterns may frequently repeat themselves 
in data, yet if they are not relevant in the light of research objectives, they 
should not be included in the analysis (Bryman 2015). Other common heuristics 
revolve around the identification of similarities and differences among different 
patterns. Moreover, themes can be identified at the level of manifestation or 
interpreted as latent and underlying themes (Boyatzis 1998). At the level of 
manifestation, patterns are readily observable, whereas latent patterns can be 
considered as hidden and underlying causes of phenomena.  
 
The observation of manifest patterns tends to offer descriptive accounts, 
whereas the identification of latent themes require interpretation from 
researchers’ part (Boyatzis 1998). As the exposition of latent patterns cannot 
rely solely on description, it necessarily includes elements of conceptual and 
processual sense-making and theorising (Braun & Clarke 2006).  
 
Furthermore, the coding process can be either data-driven or theory-driven 
(Urquhart 2013; Boyatzis 1998). In the case of data-driven analysis, a researcher 
approaches data without analytic framework and discovers and derives 
categories and themes inductively from data. In turn, a theory-driven approach 
adopts existing theories as a starting point and analyses and evaluates data with 
reference to a theoretically-driven conceptual framework. In practice, research 



 

97 

projects often fall somewhere between the two and combine both data-driven 
and theory-driven approaches.  
 
To conclude, thematic analysis is an iterative process for identifying categories 
and themes in empirical evidence. Categories and themes can be viewed as 
recurring patterns that represent a concept or idea that is relevant in the light of 
research objectives.  

4.3 Role of tentative a priori concepts 

The development of tentative conceptualisation and operative research 
questions is described in Chapter 3, and their methodological role in this work 
is elaborated in this section. This is necessary in order to establish the boundary 
between theory-driven and more exploratory data-driven phases of this 
research. As discussed in the previous section, thematic analysis can be theory-
driven or data-driven (Urquhart 2013; Boyatzis 1998), and that research 
projects often combine these two approaches. This is also the case here. The 
process of analysis begins as theory-driven, but as the analysis proceeds further, 
the approach shifts from the theory-driven to data-driven as patterns are 
abstracted from data in order to developed novel high-level categories and 
themes. The role and function of a conceptual framing are discussed below.  
 
The role and function of conceptual framing vary depending on the type and 
purpose of research. In general, a conceptual framework tends to correspond 
tightly to its theoretical premises in research projects that test theories, as this 
allows for unambiguous testing and reporting of the validity of a theory (Yin 
2009). To contrast, in the context of more open-ended and exploratory research 
projects which may target at theory generation, conceptual framing is better 
understood as a sensitising device (Klein & Myers 1999); it directs attention 
during the data collection and analysis but is not guaranteed to secure its place 
in the final results, concepts or conclusions (Eisenhardt 1989b). Tentative a 
priori conceptualisation serves as a scaffolding which can be discarded when it 
is no longer needed.  
 
In this research, the conceptual framing and tentative a priori concepts are used 
as sensitising devices (Klein & Myers 1999; Eisenhardt 1989b); they direct 
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attention to the matters which are considered relevant with respect to the 
objectives of this work. While the existing literature and theories provide a 
starting point and guide through the course of research, they are not held onto 
rigidly and not taken as an ultimate arbiter on what the researcher should see or 
report as this may lead to a suppression of conflicting evidence and potentially 
revealing observations (Walsham 1995). Instead, the aim here is to remain 
sensitive to any emerging themes and be prepared to shift the focus of research 
if the evidence at hand so warrants. While the readiness to modify initial 
assumptions in the light of new evidence may shift the focus, it also enables the 
introduction of new concepts, constructs or theories (Eisenhardt 1989b).  
 
To summarise, while theoretical framing and conceptualisation help focus 
attention to the matters and aspects that are seen relevant in the view of the 
research objectives, in the context of this work such framing is better 
understood as a flexible sensitising device (Klein & Myers 1999) instead of a 
rigid frame that must be adhered to at all cost.  

4.4 Research design framework 

This section introduces the research design framework followed in this research. 
According to Yin (2009), every empirical research project has a plan which 
resides somewhere between the implicit and explicit ends of a spectrum. In the 
light of construct validity, internal validity, external validity and overall 
reliability and transparency, research design should be articulated in a way that 
is closer to the explicit than the implicit end.  
 
To this end, Eisenhardt (1989b) offers a stepwise framework for designing and 
conducting case study research. The framework combines elements from the 
case study design, qualitative methods and grounded theory and presents a 
series of steps which describe main research activities along with their 
respective rationale. The framework is presented in Table 1, and it serves as a 
template with reference to which this research is designed. The steps listed in 
Table 1 are described in the subsequent sections to present the methods and 
procedures that lead to the final conclusions of this work.  
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Nr. Step Activity Reason 

1  Getting 
started 
 

Definition of research 
question  
Possibly a priori 
constructs 
Neither theory nor 
hypotheses  

Focuses efforts 
Provides better grounding of 
construct measures 
Retains theoretical flexibility 

2 Selecting 
cases 

Specified population 
Theoretical, not random, 
sampling 

Constrains extraneous variation 
and sharpens external validity 
Focuses efforts on theoretically 
useful cases-i.e., those that 
replicate or extend theory by 
filling conceptual categories 

3 Crafting 
instrume
nts and 
protocols 
 

Multiple data collection 
methods 
Qualitative and 
quantitative data 
combined 
 

Strengthens grounding of theory 
by triangulation of evidence 
Synergistic view of evidence 

4  Entering 
the field  

Overlap data collection 
and analysis, including 
field notes 
Flexible and 
opportunistic data 
collection methods 

Speeds analyses and reveals 
helpful adjustments to data 
collection 
Allows investigators to take 
advantage of emergent themes 
and unique case features 

5 Analysing 
data 

Within-case analysis  
 

Gains familiarity with data and 
preliminary theory generation 
 

6 Shaping 
hypothes
es 

Iterative tabulation of 
evidence for each 
construct 
Replication, not 
sampling, logic across 
cases 
Search evidence for 
"why" behind 
relationships 

Sharpens construct definition, 
validity, and measurability 
Confirms, extends, and sharpens 
theory 
Builds internal validity 

7 Enfolding 
literature 

Comparison with 
conflicting literature 
Comparison with similar 
literature 

Builds internal validity, raises 
theoretical level, and sharpens 
construct definitions 
Sharpens generalisability, 
improves construct definition, 
and raises theoretical level 

8 Reaching 
closure 

Theoretical saturation 
when possible 

Ends process when marginal 
improvement becomes small 

 
Table 1: Research design framework after Eisenhardt (1989b) 
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In this framework, Step 1 focuses on the formulation of research questions and 
tentative a priori concepts that guide the process of research. To this end, a 
principal research question was derived from the reviewed literature in Chapter 
3, and a priori concepts and operative research questions were developed in 
Chapter 3. To answer these questions, this research is designed as a case study 
that follows the process of thematic analysis. The underlying principles of case 
studies and thematic analysis were presented above in Sections 1 and 2 (4.1, 
4.2), and the role and use of tentative concepts were discussed on Section 3 
(4.3).  
 
After having established the foundations and research questions, Step 2 deals 
with case selection. The selection of ROS as an embedded case study is 
presented in Section 5 (4.5). While ROS can be considered as an extreme and 
revelatory case study in the light of previous research into digital innovation, it 
can also be viewed as a typical example of complex digital innovation in the field 
of robots and autonomous systems. Steps 3 and 4 concern with crafting 
instruments and protocols and entering the field. To this end, the process of 
data collection and the construction of a research database are described in 
Section 6 (4.6). The research database contains primarily publicly available 
documentary evidence, which is complemented with the field notes from 
nonparticipant observation and interviews. The contents of the database are 
detailed in appendices. Steps 5 and 6 focus on the processes of analysing data 
and shaping of the findings into potentially new concepts, constructs or theories 
Section 7 (4.7) describes how the content of the research database is processed 
thematically to analyse subsystems, combinations and their salient 
characteristics with an aim to establish a rich and detailed understanding that 
leads to novel conceptual propositions. Steps 7 and 8, the enfolding literature 
and reaching closure, are presented in Chapter 7 where conceptual findings are 
discussed in the light of the literature reviewed in Chapter 2. 

4.5 ROS as an embedded case study 

Case selection is one of the most important phases in case study research. As 
case studies build upon the detailed examination of a single or small number of 
cases, case selection defines what can be learnt and to what extent learnings can 
be generalised and transferred over to different but similar settings. Ideally, the 
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selected cases(s) should be informative, realistic and be able to offer novel 
insights (Yin 2009). This section outlines the selection and definition of ROS as 
an embedded case study.  
 
Considering that the selection of a case sets boundaries to the extent of 
knowledge claims, in Flyvbjerg’s (2013) terms, carrying out a case study is more 
of a choice of the units of study and the definition of its boundaries than 
adhering to any particular method of data collection or analysis:  
 
“The decisive factor in defining a study as a case study is the choice of the 
individual unit of study and the setting of its boundaries, its ‘casing’ to use 
Charles Ragin’s (1992, p. 217) felicitous term.” (Flyvbjerg 2013, p.169) 
 
In this view, casing means carving a particular case out of some wider context, 
potentially along with its embedded units of analysis (Flyvbjerg 2013). Wider 
context represents the environment in which a case is embedded, and it 
provides a backdrop against which some particular case study can be considered 
as a separable unit of analysis. Furthermore, case studies can be designed to 
draw their lessons from a single case or multiple cases, which can be either 
holistic or embedded. The word holistic indicates the equivalence between a 
case and unit of analysis, whereas the word embedded signals the presence of 
more than one units of analysis within a particular case (Yin 2009). The use of 
embedded units of analysis is beneficial in situations where a more focused and 
detailed view of some particular aspects of the case is required. However, when 
relying on multiple embedded units of analysis, the units of analysis and 
respective unitary findings must be brought together to establish final 
conclusions at the level of an overall case (Yin 2009). In this view, embedded 
case studies can be defined as hierarchical structures that consist of three nested 
levels: the wider context that provides the environment within which the case 
resides, the case itself and the units of analysis that are embedded in the case. 
While there is no right way to draw boundaries between the context, case and 
units of analysis, the way these boundaries are drawn must be explicated as it 
defines the boundaries of knowledge claims (Flyvbjerg 2013).  
 
Moreover, research projects are typically designed to serve to particular 
theoretical objectives. Depending on the objectives, case studies can be viewed 
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as critical, extreme, typical, revelatory or longitudinal (Yin 2009). Critical cases 
are used to establish validity of theoretical propositions, while extreme cases 
report about matters which can be considered somewhat deviant or unusual, 
and potentially calling for novel conceptualisation and theorising in order to 
explain observed variations (Flyvbjerg 2013). In turn, typical cases are seen as 
representative and paradigmatic, informing about some common and prevalent 
state of affairs. Revelatory cases, on the other hand, observe and analyse 
situations that have been previously inaccessible to researchers, thereby 
providing opportunities for novel insights and theorising. Longitudinal case 
studies focus on phenomena which unfold over longer periods of time. As this 
categorising is relative to the goals of a research project, prior knowledge, and 
research environment, any particular research design may belong 
simultaneously to more than one category (Flyvbjerg 2013).  

4.5.1 The Robot Operating System 

The Robot Operating System (ROS) (Quigley et al. 2009) was selected as a case 
to study in this research. ROS is a software development framework, and the 
wider context of ROS can be described as software development for robots and 
autonomous systems. During the pilot study phase, several case candidates were 
considered. The candidates ranged from individual robot development projects 
to different proprietary and open-source software development frameworks. In 
the end, ROS was considered to provide a solid foundation in the view of the 
generalisability of research results. The reasoning behind the case selection is 
outlined below.  
 
Individual robot development projects were considered and discarded first. 
While the history of information systems research has shown that much can be 
learnt from detailed examination of individual projects in different socio-
technical settings, it was however thought that concentrating on an individual 
project might steer the findings towards some project-specific aspects, posing a 
risk to generalisability. After that, proprietary and commercial software 
development frameworks were considered and discarded. This was done on the 
basis that they are often tightly-coupled to some specific-purpose hardware or 
domain of application, thereby potentially steering findings towards some 
domain-specific aspects. After deciding against individual projects and 
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commercial applications, the focus shifted on widely used open-source 
frameworks. From open-source frameworks, the Orocos project (Bruyninckx 
2001) was considered first. While it is being actively developed and used, has a 
long history and is well received in the robotics community, it was set aside as it 
is geared more towards industrial applications and hard real-time control 
systems. Also, as some of its core components have been integrated with ROS 
and it can be used alongside ROS, it was concluded that ROS could provide a 
more generalisable view on complex digital innovation. In addition, as other 
reviewed open-source frameworks (Kramer & Scheutz 2006; Iñigo-Blasco et al. 
2012) appeared to be less vibrant or geared towards some specific purposes and 
applications, they were not considered further. 
 
During the pilot study phase, it become apparent that ROS has attracted much 
attention over the past ten years. It is a vibrant community that attracts 
roboticists globally and across different application domains. The source code is 
publicly available and licensed under the conditions which allow it to be used, 
modified and distributed freely for research purposes and in commercial 
applications. Although the development of the core functionalities and elements 
of ROS is driven and coordinated by the Open Source Robotics Foundation 
(OSRF), design and development efforts are not confined inside the boundaries 
of a single organisation. Instead, ROS brings together a large and increasing 
number of users and contributors from academia and industry as well as 
corporate and government funding. Therefore, it is not surprising that ROS 
emerged frequently in discussion during the pilot study phase. It was debated in 
various robotics events and many people appeared to have an opinion of it, 
either positive or negative. This warranted interest and further examination. 
 
ROS is seen to provide a good foundation for generalisable findings. Although 
robot software development frameworks are still looking for their shape, ROS 
offers a relatively representative view of the current state of affairs. It is gaining 
increasing traction and is also used in commercial applications, although 
currently it is primarily used for research and development purposes. Moreover, 
although other software development frameworks are also available, ROS is one 
of the more popular ones, and it is occasionally referred to as a de facto 
standard in the robot software development (Sterling 2013). Since it is widely 
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used, it offers a broad view that enables the examination and evaluation of 
common problems and solutions as they manifest themselves at the level of a 
software development framework that caters a broad community. As the ROS 
website states, ROS supports collaborative software development for robots and 
autonomous systems, providing technological tools, capabilities and a vibrant 
community that bring together roboticists and software developers globally. The 
wide adoption of ROS is seen to provide a foundation for the generalisability 
across different organisational settings since the organisations that use ROS 
and, more broadly, develop control software for robots and autonomous 
systems, are subjected to similar organising logics of combination in the view of 
product architectures. 
 
Moreover, as ROS provides a framework for the robot software developers 
engaged in complex digital innovation, drawing lessons from it and reflecting 
them in the light of the current theories of digital innovation presumably 
provides a fruitful opportunity to contribute to the literature on digital 
innovation. Although ROS can be considered as a typical case of digital 
innovation in the field robotics, especially in the context of research and new 
product development (Fichman et al. 2014), it can also be seen as a revelatory 
case in the view of digital innovation research, which has so far focused on the 
processes of digitalisation in the contexts of digital infrastructures (Tilson et al. 
2010), platforms (de Reuver et al. 2017), mobile devices (Eaton et al. 2015) and 
digitised products (Yoo et al. 2010; Henfridsson et al. 2014). 

4.5.2 Embedded units of analysis 

Following the design principles of embedded case studies, embedded units of 
analysis are used to structure the process of data collection and analysis (Yin 
2009). In this research, the embedded units of analysis derive from the tentative 
a priori concepts and operative research questions which were developed in 
Chapter 3.  
 
With reference to the first operative research question, the first embedded unit 
of analysis focuses on subsystems (Simon 1996) at different levels of design 
hierarchies of inclusion and control (Arthur 2009; Murmann & Frenken 2006). 
However, it is worth to note that the concept of a subsystem as a unit analysis 



 

105 

remains somewhat generic and abstract; while it is not a carefully detailed and 
specified instance or pattern, it is expected to direct attention towards potential 
instances of interest (Klein & Myers 1999), although much of this process rests 
on the researcher’s interpretation. Subsystems can manifest themselves in 
multiple forms, places and hierarchical levels and serve a variety of functions 
(Murmann & Frenken 2006). For example, in terms of digital computation, 
software libraries, modules, packages, databases, platforms, software 
development toolkits, frameworks as well as computing hardware could be 
viewed as instances of subsystems. Similarly, in terms of hardware, different 
components, embodiments, parts, machines and motors can be viewed as 
instances of subsystems. Many more examples can be easily found in different 
areas of socio-technical systems and social organisations (Simon 1996). 
 
In this light, the concept of subsystem as an embedded but generic unit of 
analysis can be viewed as a dragnet that trawls through data in the search of 
objects and artefacts that may prove informative. Yet, it remains as the 
researcher’s task to discriminate which ones of them warrant further analysis 
and examination. While this loose formulation directs focus on specific matters 
during data collection and analysis, it also retains a high degree of interpretive 
flexibility that is necessary in exploratory research. 
 
With a reference to the second operative research question, the second 
embedded unit of analysis centres on combination (Arthur 2009; Murmann & 
Frenken 2006), that is, how different subsystems (Simon 1996) are bought 
together to create robot systems that produce autonomous behaviour. Again, 
the concept of combination remains abstract serving the purpose of directing 
attention to the matters that deal with combinations, that is, how different 
subsystems related to each other and are joined together – yet it leaves it to the 
researcher to decide and explain why some particular combination and its 
respective characteristics are included in the analysis. To provide an example, in 
the context of software engineering and digital innovation, boundary resources 
(Eaton et al. 2015) in their variety of forms such as interfaces, standards and 
documentation can be seen as instances and manifestations of combination.  
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The characteristic of combination can be further reflected in the light of the 
patterns of combination that were discussed in the literature review. For 
example, with the lens of modularisation the extent to which complex digital 
innovation can be subjected to centralised top-down design to produce stable 
core elements and well-defined interfaces (Baldwin & Clark 2000; Salvador 
2007) can be evaluated. In turn, the lens of generativity (Zittrain 2008) can be 
used to probe the extent to which complex digital innovation can be subjected to 
distributed design agency, knowledge and control, and to what extent end-
product agnostic subsystems are amenable to generative combinations. The 
layered modular architecture provides a lens (Yoo et al. 2010) for evaluating the 
dynamic interplay of physical and digital components within the context of 
digitised products that combine the modular and generative product 
hierarchies. Furthermore, the notion of specificity (Prencipe 2000; Lee & 
Berente 2012) probes the extent to which generative combinations can be said 
to produce highly integral and purpose-specific behaviour. In addition, the 
notion of architectural innovation (Henderson & Clark 1990) can be evoked to 
provide a lens against which the reconfigurations of relationships among the 
core concepts and components can be identified.  
 
To conclude, the boundaries of this embedded case study are drawn as follows. 
The wider context is the software development for robots and autonomous 
systems and ROS serves as a case study that is carved out of this context. ROS 
can be seen as an extreme or revelatory case in the view of digital innovation 
research, even if it could be viewed as a typical and representative in the domain 
of robotics. Within ROS, the collection and analysis of data centres around two 
embedded units of analysis, subsystems and combinations. They are used to 
identify and locate the empirical objects that could warrant further examination 
and provide themes and patterns to answer first the operative and then finally 
the principal research questions. While these embedded units of analysis help 
get data collection and analysis started, they remain tentative and subject to 
interpretation throughout this research. The next section describes the process 
of data collection. 
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4.6 Data collection 

Data collection was carried out to serve two different but related purposes. The 
first of them is to develop a case description in order to become familiar with 
ROS and its evolution over time. This provides a well-grounded view on ROS 
and the surrounding community, thereby providing a foundation for more 
detailed analysis. The second is to compile a rich body of evidence that enables 
an in-depth investigation into the organising logic of complex digital innovation. 
The collected data was stored into a research database, and the collection and 
development of the contents of the database are described and discussed below. 
 
To explore and answer the how and why types of research questions typical to 
case study research, a well-rounded and comprehensive view of the 
phenomenon is needed (Eisenhardt 1989b; Flyvbjerg 2013). According to 
Eisenhardt's (1989b) research design framework, the use of multiple data 
collection methods and triangulation strengthen the grounding of theoretical 
findings. In addition, carrying out data collection and analysis in parallel 
provides an opportunity to adjust data collection processes and strategies if and 
when needed. Therefore, while the initial research design provides a necessary 
starting point, the application of tools and protocols remains flexible and open 
for new avenues of research to emerge as the understanding of the research 
problem increases (Eisenhardt 1989b). To this end, case studies make use of a 
variety of data collection methods and sources (Yin 2009), such as interviews, 
observations, documents, physical artefacts and archival sources. The use of 
multiple sources facilitates the verification of evidence, which increases 
increasing the validity of resulting constructs and conceptualisation (Gibbert et 
al. 2008). Therefore, striving for the breadth and depth of evidence is necessary 
for research to be successful. 
 
The method of corpus construction provides guidance on how to approach the 
construction of a research database. The process of construction is a cyclical and 
iterative method of data collection (Bauer & Gaskell 2000), and it resembles the 
open-ended data collection approaches advocated by Eisenhardt (1989b) and 
Yin (2009). The notion of corpus construction is borrowed into social science 
from linguistics, and the word corpus translates to “body” in English. While 
some linguistic corpora can be constructed to serve general purposes, the social 
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and organisation research typically rely on topic-based corpora which are 
constructed to serve specific purposes. This means that they are often 
thematically unified and narrow in scope while exposing a particular viewpoint 
or topic in a holistic manner. Bauer and Gaskell (2000) describe a simple 
stepwise procedure to characterise corpus construction. The iterative and 
cyclical approach includes phases such as preliminary selection of data, the 
examination of the variety in data and the subsequent extension of the database 
if and when this is needed. This process is repeated iteratively until the point of 
theoretical saturation is reached (Glaser & Strauss 1967).  
 
In this research, data collection and analysis were carried out in parallel as 
cyclical, iterative and overlapping processes. Starting with data analysis before 
finishing with data collection allowed the researcher to respond to emerging 
themes and incorporate new sources of evidence into the analysis (Eisenhardt 
1989b). 

4.6.1 Documents as research data 

The research database consists primarily of documentary evidence that is 
collected from public sources. The salient characteristics of documentary 
evidence and its use in qualitative and interpretative research are discussed 
below. 
 
Qualitative research and theorising often builds upon data which is brought 
about by a researcher (Yin 2009). To elicit data, researchers rely on some of the 
various methods of fieldwork, such as interviews, focus groups or observation. 
In the field of information systems, these methods form an inseparable part of 
the research tradition. This is not surprising since the phenomena of interest 
(Avgerou 2000) are typically deeply embedded in organisational work settings 
and practices, which reside inside organisational boundaries. Data on such 
matters is rarely floating around freely in the public domain. Instead, it requires 
effort from researchers’ part to collect and bring necessary facts to daylight.  
 
Documentary evidence provides an alternative source of data. Silverman (2015) 
defines documentary evidence as “naturally” occurring information “which have 
become recorded without the intervention of a researcher” (p. 276). This 
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includes printed and electronic documents, blog posts, emails and other forms 
of digital traces that can serve as documentary evidence. These sources should 
not be overlooked as they may provide a researcher with rich and informative 
sets of data, which are readily available for analysis. In particular, harvesting 
data on digital ecosystems, platforms and open-source software projects appear 
to provide fruitful research avenues, and there are several examples of 
successful use of digital traces and documentary evidence. For example, Eaton 
et al. (2015) analyse a series of web blog entries to study the evolution of 
boundary resources on the iOS ecosystem. Similarly, digital traces and 
documentary evidence have been used to study Wikipedia editing patterns 
(Aaltonen & Lanzara 2015) and the coordination processes of the Linux kernel 
development (Shaikh & Henfridsson 2017). As these contexts of research 
transcend traditional organisational boundaries, much of related documents 
and data can be found form the sources that are publicly available.  
 
While both elicitation and harvesting approaches to data collection can produce 
good results, there are some important differences. Starting from the origin of 
evidence, in the researcher led process of elicitation, a researcher typically 
defines the aims and scope of data collection based on their research interests 
(Yin 2009). Depending on the degree of open-endedness of data elicitation 
protocols, researchers are predisposed to impose a particular framing which 
serves as a filter during the process of data collection. On the other hand, with 
documentary evidence, a researcher has no control over the data generation 
process. Instead, the process through which evidence is generated, shared and 
put to use depends on the social and organisational arrangements against which 
the generation of evidence unfolds (Bowen 2009). This indicates that the filter 
which frames empirical evidence resides within the arrangements that give rise 
to data, meaning that documentary evidence cannot be considered as unfiltered 
and intrinsically true set of facts. Documents do not speak for themselves 
(Silverman 2015), and to mitigate against biases, a researcher must be cognisant 
of the social arrangements and processes through which the data that is used as 
evidence was created. 
 
As digital environments record digital traces and abound with documents, it is 
often relatively easy to collect a large body of data. However, not all of them 
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carry equal importance in the light of research goals (Bauer & Gaskell 2000), 
and when a body of evidence increases in size and detail, it becomes 
increasingly challenging to find the proverbial needle in a haystack. To ensure 
that a body of documentary evidence is representative but manageable, a 
researcher must decide what to include and what to leave out of a research 
database. The next sections describe the data collection process and choices 
made during the data collection. 

4.6.2 Construction of the research database 

The research database consists primarily of the documents that have been 
collected from public sources. The database includes ROS related documents, 
blog entries, conference recordings, magazine and academic publications and 
emails from the ROS community mailing lists and discussion threads from 
online forums. These are complemented by the field notes from non-
participatory observation and four semiformal interviews. The process and 
rationale of data collection are presented below, and the sources and 
categorisation of documentary evidence are listed in Appendices A to H.  
 
The construction of the research database started during the pilot study phase 
before settling with ROS as a case study. Given the multidimensional and 
multidisciplinary character of the field of robotics, establishing clear boundaries 
between data collection and analysis proved challenging. Much of the pilot 
study phase focused on becoming familiar with the typical activities and 
language used in the field, as without an understanding of the language, 
concepts and research challenges, it was difficult to make sense of any empirical 
evidence. The pilot study phase involved attending robotics and artificial 
intelligence conferences, visiting research laboratories, interviews and a week-
long summer school on field robotics with approximately 40 PhD students and 
academics. The events attended are documented in Appendix H. Subsequently, 
the resulting field notes and interviews were analysed, and the focus of research 
was placed on ROS as it was considered to offer a representative overview of the 
state of affairs as well as a rich body of empirical evidence.  
 
A more detailed examination of ROS began by participating in a two-days ROS 
workshop and programming and running a virtual robot turtle in a simulated 
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environment (O'Kane 2014). In addition, attending the ROS conference in 2015 
and robot software specific workshops in the European Robotics Conferences 
offered valuable insights into systems engineering and software development 
practices. These insights were documented in the field notes, and while this 
body of evidence was interesting and rich in detail, much of the evidence was 
too scattered to provide a coherent picture of the state of affairs.  
 
To obtain a structure, representative and transparent body of evidence to 
increase reliability and generalisability, the focus of data collection and analysis 
was shifted on the publicly available documents. ROS is a vibrant open-source 
community, and there is a sizeable body of data publicly available. At the 
beginning, the collection and analysis of documentary evidence revolved around 
ROS as a technical artefact. However, the analysis soon revealed a rich historical 
and organisational dimension, which came to expand the scope of data 
collection. The early origins of ROS were traced back to the Stanford Artificial 
Intelligence Robot (STAIR) and Personal Robotics (PR) projects at Stanford 
University in 2005, and from there to Willow Garage where ROS was created 
along the PR2 hardware platform and made freely available as open-source 
software. Right from the beginning, ROS gained traction in the field. The 
stewardship of ROS was transferred to the Open Source Robotics Foundation 
(OSRF) in 2012 as Willow Garage ceased its active operations. Around that 
time, the ROS-Industrial (ROS-I) consortium was also founded to take ROS into 
industrial environments and the yearly ROSCon, a ROS developer conference, 
series was started. As an open-source framework and community, ROS is far 
from a monolith, sprawling developing branches to various directions, and 
various other events and trails of evidence could have been followed further.  
 
Much of data was gathered from the communication channels and archives of 
the ROS community. The latest news, software releases, upcoming events and 
other matters of importance were communicated through the community 
channels and discussed in conferences and online forums. The documentary 
evidence stored in the research database came to include blog posts, conference 
recordings, emails and discussion threads as well as magazine and academic 
publications. These sources of evidence were considered as informative and 
well-consolidated sources, which could offer a representative view of the 



 

112 

organising logic of complex digital innovation. Table 2 summarises the contents 
of the research database in terms of their sources, types and description, and 
Appendix A provides a more detailed listing of data sources. 
 

Source  Document types Description 
Stanford Artificial 
Intelligence Robot 
Project (STAIR) at 
Stanford University  

conference papers 
(3), news articles 
(2), website (1), 
video recordings 
(3), grant 
application (1) 

The STAIR project started at 
Stanford in 2005 and the origins of 
ROS can be found in the Switchyard 
software.  
The documentary evidence from the 
period 2005 to 2009 includes 
conference papers, web articles, the 
project website, a grant application 
and video recordings.  

Personal Robotics 
Programme (PR) at 
Stanford University 

conference papers 
(1), website (1),  
video recordings (4) 

The PR project started at Stanford in 
2005 to develop a hardware platform 
for mobile manipulation purposes. 
The documentary evidence contains 
a conference paper, website and 
video recordings.  

Willow Garage 
blog entries (407), 
news articles (8), 
website (1), video 
recordings (5) 

Willow Garage’s personal robotics 
programme continued the work 
started in the Switchyard and PR 
projects by developing hardware 
(PR2) and software platforms (ROS). 
The documentary evidence covers 
years 2007 to 2014 and includes blog 
entries by Willow Garage, news 
articles, website and video 
recordings.  

Robot Operating 
System  
(ROS) 

blog entries (1053), 
conferences papers 
(3), website, ROS 
wiki, news articles 
(18), email archives 
(2), ROS discussion 
forums (2) 

ROS is one of the main outcomes of 
Willow Garage’s personal robotics 
programme. It was moved to its own 
domain at ros.org in 2009. The 
documentary evidence covers years 
2009 to 2017, including blog posts, 
conference papers, different ROS 
related websites, news articles, 
emails and messages from discussion 
forums.  

Open Sources 
Robotics 
Foundation (OSRF) 

blog entries (176) 

As Willow Garage ceased its active 
operations, the stewardship of ROS 
was moved to OSRF. The 
documentary evidence includes blog 
entries and covers years 2012 to 
2017.  

 
Table 2: Summary of research database (continues next page) 
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Source  Document types Description 

ROS-Industrial  
(ROS-I) 

blog entries (154) ROS-Industrial consortia develop 
and promotes ROS for industrial 
purposes. The documentary evidence 
includes blog entries and covers 
years 2012 to 2017.  

ROSCon developer 
conferences 

recorded 
conference 
presentations (122, 
approximately 50 
hours) 

ROSCon is a yearly two-day 
conference for ROS developers. The 
documentary evidence in the form of 
conference presentations covers 
years 2012 to 2016, and includes a 
variety of ROS, OSRF, ROS-I and 
ROS2 related topics. 

Robot Operating 
System – 2nd 
generation ROS 
(ROS2) 

messages on design 
discussion (1155), 
ROS 2 design 
website (1) 

The discussion concerning the 
second-generation ROS started in 
2012. The messages regarding the 
future design requirements cover 
years 2012 to 2017 and the outcomes 
are document in the design website.  

Observation and 
field notes 

field notes and 
observation from 
ROS and robotics 
related events (12) 

This section covers observations and 
discussions from different events 
that are documented in field notes. 
Includes ROS training, workshops 
and ROSCon participation among 
others. See Appendix H. 

Interviews semiformal and 
open-ended 
interviews (4) 

Four semiformal interviews were 
carried out with robotics researchers 
on the general matters of robotics 
research and robot system 
development.  

 
Table 2: Summary of research database  

 
In the view of the saturation principle (Glaser & Strauss 1967), including 
additional sources of evidence to the research database would have produced 
only marginal benefits in the view of the research goals. Also, given the time and 
resource limitations, it would not have been feasible to include them into the 
analysis in any detailed manner. However, given the open-ended procedure of 
data collection, occasionally data from other sources was opportunistically 
incorporated into the research database when it was considered necessary and 
feasible, this being the case in particular with academic and magazine 
publications. This way, while the open-ended approach expanded the scope of 
data collection and analysis, it also resulted in a richer set of data that provided 
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important insights and enabled the triangulation of empirical findings. Tracing 
the contours of the history of ROS from 2005 onwards provided a 
comprehensive picture of the aims, developments and outcomes under different 
organisational auspices, contributing to the grounded understanding of the 
organisational and technological factors that underlie the organising logic of 
complex digital innovation. 
 
As an administrative note, the research database was managed and analysed 
using Atlas.ti, which is a software package that is designed to support qualitative 
data analysis. It supports a variety of document formats, such as audio and 
video recordings and pdf documents. It also provides fucntionality to keep track 
of the progress and results of the analysis.  

4.6.3 Evaluation of evidence 

Data collection produced a sizeable amount of documentary evidence. 
Considering that the documentary evidence had been created without the 
researcher’s intervention and for the purposes other than this research (Bryman 
2015), its reliability and validity will be examined in the light of authenticity, 
credibility, representativeness and meaning (Scott 2014). 
 
Authenticity refers to the authorship and provenance of documents to ensure 
they do not originate from dubious and misleading sources, whereas credibility 
refers to reliability and a degree to which documents are free from error and 
distortion. Representativeness, in turn, concerns to what extent any particular 
document is a typical representative of the phenomenon being investigated. 
Finally, the meaning of documents deals with whether the evidence contained in 
documents is clear and understandable to the researcher.  
 
The documents collected int0 the research database are considered as authentic 
and credible. They originate from an open-source community and academic 
sources, and there is no apparent reason for the misattribution of the origin of a 
document. Similarly, there is no apparent reason to assume that the documents 
would not be credible. It is well possible that they may contain some errors but 
considering the constant scrutiny from the wider open-source community, 
reliability is expected to be relatively high. Concerning the representativeness of 
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the documents, things are more diffuse. While the body of documentary 
evidence can be viewed to represent well the case in general, individual 
documents on their own cannot be viewed as fully representative. The reason 
for this is that each document presents a particular piece of information 
providing a narrow and focused view onto some specific matter or event at a 
given point in time. As a final point, efforts were made to obtain a sufficient 
understanding of the state of affairs for ensuring the meaningfulness of 
documentary evidence. 
 
The representativeness of documents can be reflected further in the view of 
their original purpose by asking questions such as why a document was created, 
whom it is targeted for or who authored it (Bowen 2009). Starting from the blog 
entries, they were collected from the Willow Garage, ROS, ROS-Industrial and 
OSRF websites. The entries were mostly created to communicate technical 
updates, latest news and organisational events to the members of the 
community, thereby providing a one-way communication channel. While each 
of the blog entries provides a piecemeal, selective and incomplete picture of the 
overall state of affairs, together they form a body of evidence based on which a 
representative picture of the overall course and timeline of events can be 
constructed.  
 
In addition, the ROSCon conference presentations offer in-depth insights into 
topics that are relevant to the community. The presentations cover a variety of 
topics, such as the basics of ROS, key components and functionalities as well as 
their applications in different domains, contexts and task-specific use cases. In 
addition, the presentations are screened, peer-reviewed and selected by the 
organising committee and presented in front of a critical audience. The 
acceptance rate is around 30%. Therefore, the conference presentations are seen 
to offer a reliable and representative picture of the topics that are pertinent to 
the community. On the grounds of reliability and representativeness, they were 
given a prominent role in the data analysis and reporting of the results.  
 
Given the amount of evidence and limited resources to analyse it, not all 
documents in the research database were given an equal priority. Instead, 
different types of documents were used to serve different research objectives. 
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The case description was constructed primarily from blog entries and journal 
and magazine publications, whereas the principal and the operative research 
questions were approached for the most part through the ROSCon 
presentations. Other material in the research database, the field notes, academic 
and magazine publications and other documentation, provided supporting 
evidence for triangulation and detailed queries throughout the research project. 
Detailed keyword-based queries were carried out when further clarifications 
were needed in some particular matters.  
 
The simultaneous use of different types of documentary evidence from several 
sources established a well-rounded and triangulated view providing a solid and 
reliable foundation for the empirical and conceptual findings. The process and 
phases of data analysis are described next in more detail. 

4.7 Data analysis 

The process of thematic data analysis proceeded iteratively and in parallel with 
data collection to retain interpretative flexibility and ability to adjust to 
unforeseen avenues of research (Eisenhardt 1989b; Yin 2009; Walsham 1995). 
As per the process of thematic analysis outlined in Section 2 (4.2) (Bryman 
2015), five different phases followed and overlapped each other as the project 
gradually unfolded from the familiarisation with topic and evidence towards 
empirical and conceptual findings. These phases are summarised in Table 3.  
 

Phase Description 
Familiarisation Learning the field and language. 
Open coding Label data into a list of embedded units of analysis as 

per the operative research questions. 
Categorisation Analyse embedded units of analysis and arrange them 

into categories as per recurring themes. 
Thematisation Analyse and abstract categories into themes. 
Conceptualisation Develop and conceptualise the links and connections 

between different themes. 
 

Table 3: The five phases of thematic analysis after Bryman (2015) 
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The first phase focused on getting familiar with ROS and learning the language 
and  central concepts used in the ROS community and in the field of robots and 
autonomous systems in general. This was followed by the second phase that 
entailed the first round of close reading and open coding of the documentary 
evidence. The first two phases provided an overall picture and understanding of 
ROS and related organisational arrangements and innovation dynamics. The 
main outcome of these two phases of analysis is the case description which is 
presented in Chapter 5.  
 
Subsequently, the third phase rearranged and categorised the highly descriptive 
codes developed in the first round of open coding into more abstract higher-
level categories in the view of subsystems, combinations and their 
characteristics. These categories were then further described and examined to 
elucidate their salient characteristics. In the fourth phase, these high-level 
categories were grouped into corresponding high-level themes. Finally, in the 
fifth phase, the relationships among different themes were further elaborated 
and incorporated into conceptual models that describe structural and functional 
characteristics of robot systems and shed light on the organising logic of 
complex digital innovation. The outcomes of these two phases are presented in 
Chapter 6.  
 
The sections below describe the process of data analysis in more detail. The 
process and motivation to construct the case description are briefly described, 
before presenting the process of thematic analysis in more detail. 

4.7.1 Case description 

The first two phases of the analysis, the familiarisation with the topic and the 
first round of coding, produced the case description and provided the 
groundwork for further analysis. The case description provides an overview of 
ROS, its origins and evolution under different organisational settings. To date, 
while ROS is well-known among roboticists, it has escaped the attention of 
digital innovation, management and organisation researchers. Although there 
are papers and magazine articles written about ROS, they are often written from 
a technological point of view of software engineering (Quigley et al. 2009) or 
focus on the legacy of Willow Garage (e.g. Cousins 2014). Therefore, the 
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purpose of the case description presented here is to provide a broader view on 
the organisational and socio-technical aspects of ROS. To this end, ROS is 
presented as a communication system, open-source community and software 
development framework while also documenting its origins, evolution and 
expansion over time.  
 
The case description proceeds in a chronological order and reflects the 
unfolding of the most central organisational events. The description was 
constructed by analysing and weaving together evidence from multiple sources, 
such as different websites, blog posts, conference presentations and journal and 
magazine articles, each of them providing a small piece of evidence that reflects 
some state of affairs or event at a given point in time. As some of the events are 
overlapping, the chronological order is occasionally sidestepped in order to keep 
the narrative coherent.  
 
The starting point of the history of ROS is set here in 2005. There are two 
prominent options when deciding on what counts as an appropriate starting 
point. The options are the PR and STAIR projects at Stanford University in 
2005 and the release of the first version of ROS by Willow Garage in January 
2010. The starting point was set in 2005 because some of the foundational 
design decisions regarding the underlying ROS architecture originate from the 
research projects at Stanford. Since 2005, ROS as an open-source software 
development framework and community has undergone phases of development 
and expanded under the auspices of different organisations. Summarising the 
ten years of efforts from numerous organisations and thousands of contributors 
necessarily leaves out many rich details and phenomena that would warrant 
further research. However, an attempt has been made to capture and present 
the most salient and central organisational events and arrangements with a 
sufficient level of detail. 
 
Therefore, the case description is expected to provide a reader with an overall 
view of the wider context, the case and the backdrop against which the thematic 
analysis can be reflected upon. The case description is presented in Chapter 5.  
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4.7.2 Thematic analysis 

The phases three, four and five of thematic analysis, that is, categorisation, 
thematisation and elaboration respectively, produced the findings that are 
reported as main outcomes of this work in Chapter 6.  
 
The first two phases, familiarisation and first round of coding, produced the 
ground-work for the subsequent phases of analysis. The close reading and open 
coding were carried out using the operative research questions as sensitising 
devices in order to identify the instances of subsystems and combinations that 
would serve as embedded units of analysis. This resulted as hundreds of 
individual units of analysis, each of them representing some particular 
subsystem or combination. As the process of open coding was not very selective, 
the codes labelled a variety of subsystems, components, parts, combinations and 
related characteristics and other phenomena. They were close to data, highly 
descriptive and occasionally, although very interesting, not very relevant in the 
view of the overall objectives of this research. However, the open coding 
provided the necessary raw material and insights for further analysis.  
 
Subsequently, as per the process of thematic analysis, categorisation began. To 
rearrange the initial codes into appropriate categories, the focus was placed on 
the salient characteristics of subsystems and combinations with an aim to 
identify recurrent patterns, similarities and differences among the embedded 
units of analysis. While the initial listing was comprehensive, it was not very 
tractable. The list was long and relationships among embedded different units 
of analysis unclear; it seemed that each of the units rendered a set of patterns 
that would have warranted various alternative categorisations. This was made 
more difficult by the fact it was sometimes challenging to separate an instance 
of a subsystem from an instance of a combination as they often represent the 
two sides of the same coin, especially when the purpose of a subsystem is to 
facilitate combination.  
 
Initially, the boundary objects that are usually discussed in the context of digital 
innovation, such as standardised application programming interfaces, systems 
development toolkits, boundary resources (Eaton et al. 2015) or platforms in 
their different guises (de Reuver et al. 2017), were searched for. However, the 
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ROS framework proved highly heterogeneous, defying straightforward 
categorisation along the lines of usual boundary objects. Several alternative 
conceptual lenses were tried in the spirit of interrogative inquiry, yet none of 
them seemed to describe what was being observed.  
 
Subsequently, a more grounded and data-driven approach was adopted. Instead 
of looking for specific organisational characteristics and combinatorial 
relationships in and among the listed objects and artefacts, the focus was placed 
on examining the purposes they serve and functionalities they produce. This 
was done by keeping an eye on Arthur’s (2009) general conceptualisation of 
technologies as purposed systems that harness some effect or phenomenon, a 
conceptual basic principle. This provided a more fruitful avenue for categorising 
efforts, although it required the researcher to get familiar with a broad range of 
technologies with sufficient level of scientific, logical and engineering details. 
This was a convoluted and iterative process that overlapped with data collection, 
involving a non-trivial amount of exploration, additional clarifications and 
boundary-making to ensure that findings were reliable and relevant in the view 
of research objectives and current literature on digital innovation. In the end, 
the resulting functionally-oriented categorisation scheme reduced the number 
of categories to 15 and provided an adequate foundation for thematisation. 
 
Even if the instances of subsystems and combinations served well as initial 
sensitising devices, their role changed over the course of research. As the 
iterative process gave rise to new conceptual categories, those new categories 
came to assume the role of the unit of analysis. At the same time, the initially 
listed subsystems, objects and artefacts of different sorts turned into 
representative instances of those categories.  In a way, the initial embedded 
units of analysis were turned into units of explanation as they came to provide 
the facts and evidence to justify the proposed categorisation. 
 
The fourth phase, thematisation, proved more straightforward. The 15 
categories were abstracted further and recast as six abstract themes that 
represent domains of technologies that carry out different functionalities, have 
particular characteristics of combination and to an extent reside at different 
technological and architectural levels.  
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Then, the fifth phase, conceptualisation, examined relationships among 
different themes and categories and conceptualised them into models that 
characterise the structuring of complex digital innovation. Conceptualisation 
produced two outcomes. First, it produced a model that provides a structural-
functional conceptualisation of complex digital innovation, which, in turn, was 
used as a lens to analyse data so that the primary research question could be 
approached and answered. This process produced a model that conceptualises a 
mode of systems development in the view of complex digital innovation.  
 
The process of thematic analysis unfolded as an iterative and interrogative 
process (Hintikka 1999); it gradually proceeded towards the answering of the 
principal research question, relying on the initial operative research questions 
while continuously evolving working hypotheses until a satisfactory answer had 
been reached. This way, codes, categories, themes and conceptualisations 
emerged from data, albeit in a partially theory-driven way that constantly 
deliberated tentative findings in the light of current literature and theoretical 
framing presented in Chapters 2 and 3. The reporting of the findings is 
described in the next section. 

4.7.3 Reporting of themes and categories 

The purpose of describing the research design and methods is typically to 
provide a reader with a detailed exposition on how research findings were 
arrived at. However, it is not always feasible or practical to expose a full set of 
details, paths tried and discarded during the analytical process, especially when 
the process has been highly iterative and cyclical. Yet, even if the process of 
analysis could not be exposed in a detailed manner, a comprehensive 
presentation of research outcomes and supporting evidence can be provided to 
demonstrate and justify the resulting empirical and conceptual findings. With 
reference to Simon (1996, p.132), “[s]olving a problem simply means 
representing it so as to make the solution transparent.”  
 
Considering the iterative and exploratory character of this research, it is not 
feasible to expose the full details on how the categories and themes were arrived 
at beyond the general description of the main phases of the process. Therefore, 
efforts have been made to present the research outcomes along with the 
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supporting evidence so that the proposed answers to the research questions are 
transparent and empirical and conceptual findings are replicable and refutable.   
 
The process of thematic analysis produced six themes and 15 categories. These 
themes were labelled as (1) robot systems, (2) physical embodiments, (3) 
communication systems, (4) transformation systems and (5) visualisation and 
testing systems, and (6) the ROS community and software development, and 
they are presented later in this order so as to construct a coherent narrative that 
gradually unfolds and explains a variety of subsystems and their relationships. 
These themes and findings provide the foundation for the conceptual 
development. 
 
To link categories and themes explicitly back to evidence (Yin 2009), the 
ROSCon presentations were revisited in the light of the established themes and 
categories. Each presentation was re-examined and the subsystem that formed a 
focal point of the presentation was identified, according to which the 
presentation was then assigned to the theme it was considered to be a 
representative of. The results of this process are documented in Appendices B to 
G. Each of the appendices lists the presentations that belong to that particular 
theme. The listing includes an identification code, year, presentation title, 
duration and a subsystem that forms the focal point of a presentation and 
respective categorisation. When the themes and categories are presented and 
discussed in Chapter 6, the ROSCon presentations are cited as sources of 
evidence in the format (Appendix: Code).  
 
Moreover, efforts have been made to expose data so as to provide a reader with 
clear illustration of the themes and categories discussed in particular sections. 
Links to additional sources of evidence are also provided in footnotes when 
necessary. The purpose of this is to make evidence and reasoning as accessible 
and transparent as possible to increase the validity of findings.  
 
Table 4 summarises the distribution of themes over the ROSCon presentations. 
For each cell, the first number indicates the number of presentations by the year 
and theme. The second number inside the brackets sums duration in minutes. 
The rows are ordered by the total length in minutes devoted to each theme. 
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Measured this way, of the six themes, the theme of communication systems has 
gathered the largest share of attention. This is not surprising since the 
communication system forms a central part of the functionality of ROS. The 
theme of the ROS community and software development came second, whereas 
the theme of robot systems holds the third place. The fourth place goes to the 
theme of transformation systems, and the theme of visualisation and testing 
systems are on the fifth place.  
 

Theme/Year 2012 2013 2014 2015 2016 Total  
Communication 
system (B) 

7 (231 
mins.) 

9 
(142) 

4 
(109) 

4 
(123) 

6 
(142) 

30  
(747) 

ROS community 
and software 
development (C) 

5  
(74) 

8 
(164) 

4  
(64) 

7 
(153) 

6 
 (131) 

30  
(586) 

Robot systems (D) 4  
(118) 

4  
(76) 

6 
(165) 

4 
(115) 

3  
(79) 

21  
(553) 

Transformation 
systems (E) 

4  
(170) 

5 
(129) 

3 
(117) 

4 
(101) 

1  
(19) 

17  
(536) 

Visualisation and 
testing systems (F) 

1 ( 
46) 

6 
(120) 

2  
(51) 

2  
(32) 

5 
(123) 

16  
(372) 

Physical 
embodiments (G) 

- (-) 2 ( 
24) 

- (-) 2  
(30) 

4  
(86) 

8  
(140) 

Total  21  
(639) 

34 
(655) 

19 
(506) 

23 
(553) 

25 
(580) 

122 
(2934) 

 
Table 4: The distribution of themes across conference presentations 

 
The last but not least is the theme of physical embodiments. In the end, while 
very few presentations focus primarily on the embodiments, they are implicitly 
present in nearly all presentations. Also, while the presentations were assigned 
to different themes according to their primary focus, they frequently include 
elements from different thematic categories as different themes are highly 
interrelated. Occasionally an argument for an alternative assignment could have 
been made.  
 
These themes, categories and their relationships are presented in Chapter 6. 
They are first summarised in Table 5 at the beginning of the chapter and then 
described and discussed in more detail throughout the rest of chapter  
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4.8 Summary 

This chapter described the design and methodology of this research to identify 
and locate prominent subsystems and their characteristics of combination in 
order to examine how the tensions between the specificity of designs and 
distributedness of knowledge and control unfold in the ROS ecosystem. To that 
end, this research was designed as an embedded case study that follows the 
process of thematic analysis that is guided by theoretically-driven and tentative 
a priori concepts.  
 
At the beginning of the chapter, case study research was described and 
discussed as an evolving inquiry, after which the method and process of 
thematic analysis and the role and function of tentative a priori 
conceptualisations in this research were described. Subsequently, the design of 
this research was presented to establish the overall structure of the work. Then, 
the process and rationale of case selection were described to draw boundaries 
around the scope of research and potential knowledge claims. After that, the 
construction of the research database along with the characteristics of 
documentary evidence were described. Finally, the chapter closed by describing 
the process of thematic analysis which produced the case description and the 
themes and categories for conceptualising the unfolding of the tensions between 
the integrality of designs and distributedness of knowledge and control.  
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5 Case description 

This chapter introduces ROS and describes its history and salient characteristics 
in order to provide a general overview of the case and the wider context it is 
embedded in. As mentioned earlier, ROS stands for the Robot Operating System 
(Quigley et al. 2009). ROS is a widely used software development framework in 
the field of robotics and, as an open-source community, it brings together a 
variety of robot software developers, users and contributors, from academia and 
industry.  
 
Over the last ten years, ROS has undergone a significant expansion and 
transformed from a simple communication library to a widely adopted software 
development framework and open-source ecosystem. To present ROS and its 
development paths to date, this chapter, as described in the previous chapter, 
arranges the collected documentary evidence into a narrative which outlines the 
central events from organisational and technical viewpoints to illustrate the 
stated objectives and (un)planned outcomes of ROS development. In other 
words, it is a narrative that outlines how two university-based research projects 
combined with an ambitious and well-financed vision initiated a chain of events 
that turned out as a global open-source community.  
 
This chapter unfolds as follows. The prominent characteristics of ROS are 
presented first to provide an overview of ROS as a software development 
framework that was created to support collaborative development of software 
for robots and autonomous systems. After that, central organisational events are 
presented. The ten years history of ROS is divided into three phases and 
presented over three sections. The first phase centres on the Stanford Artificial 
Intelligence Robot (STAIR) and Personal Robotics (PR) projects at Stanford 
University between 2005 and 2009. The second phase covers years from 2007 
to 2014 under the auspices of Willow Garage, a well-funded research-oriented 
start-up, and how the technologies conceived in the STAIR and PR projects 
were developed further and made publicly available as ROS and PR2. The third 
phase begins in 2012 when the Open Source Robotics Foundation (OSRF) was 
founded, ROS-Industrial consortia set up and the yearly ROS software 
developer conference (ROSCon) launched, marking the wider uptake and 
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institutional support for ROS. After the presentation and discussion of the 
central organisational events, the penultimate section focuses more on the 
technical side of ROS and discusses the ongoing development of ROS2. After 
that, the concluding section summarises the main points.  

5.1 Three viewpoints on ROS 

This section presents ROS from three different points of view to outline its basic 
characteristics. Regardless of the name, ROS is not an operating system in the 
traditional sense of the word. Whereas Linux, Windows and macOS which serve 
as a centralised layer of abstraction, control and scheduling between the 
computer hardware and applications that run on it (Tanenbaum & Bos 2014), 
ROS is better understood as a communication system, open-source community 
and software development framework.  
 
To begin with the communication aspect, perhaps the best place to start 
unpacking ROS is to appreciate that software architectures that control robot 
systems are typically highly-distributed. To exemplify, Figure 6 illustrates the 
distributed computational arrangement that was used in the “fetch-a-stapler” 
demonstration created by the STAIR project (Quigley et al. 2007). Much of what 
follows is related to this arrangement in a way or another. In the language of 
ROS, this network of computations is known as the ROS graph, and it consists 
of two kinds of elements, computational processes and their interconnections. 
The graph conceptualises the software of a robot system as a set of distributed 
computational processes, and the core functionality of ROS as a technological 
artefact is to establish and manage the interconnections among computational 
processes. In addition, it is worth to the note that the overall architecture of 
other robot software development frameworks, such as Orocos (Bruyninckx 
2001) and YARP (Metta et al. 2006), also similarly adhere to this type of 
distributed scheme of computation.  
 
As an open-source community, ROS brings together a broad range of roboticists 
from academia and industry. In this community, users and contributors share 
robotics-related knowledge and software with each other, and while ROS is to a 
large extent a community effort, OSRF has a central role in the coordination and 
facilitation of ROS development.
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Figure 6: The computational graph used in the “fetch a stapler“ demonstration (Quigley et al. 2007)7 

                                                
7 Reprinted from STAIR: Hardware and Software Architecture, by Morgan Quigley, Eric Berger and Andrew Y. Ng, AAAI 2007 Robotics Workshop,  

with permission. 
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OSRF develops and maintains the core functionality, central components and 
development tools of ROS and coordinates and manages the yearly releases, 
which distribute a stable set of the core functionality and central components. 
In addition, OSRF coordinates and supports collaboration within the ROS 
community and develops links to wider industrial ecosystems. To make all this 
possible, OSRF employs a core development team, maintains a build system and 
communication channels to distribute software and related knowledge within 
the community. The centralised build system provides the ROS community with 
infrastructure and methods for centralised software distribution, whereas 
different communication channels, such as the websites ros.org, wiki.ros.org 
and answers.ros.org, discussion forums and mailing lists, facilitate knowledge 
sharing and discussion on various ROS related matters. The combination of the 
ROS communication system, software components, libraries and development 
tools that are shared and created by the community renders ROS as a 
framework that supports collaborative software development.  
 
While OSRF develops the ROS communication system, selected core 
functionalities and tools and methods for software developers to establish 
interconnections between distributed computational processes, a variety of 
software packages that produce different computational processes originate 
from the members of community, such as universities, research institutions and 
hardware vendors and other organisations. In the context of ROS, the concept of 
a software package refers to a unit of code sharing, and it can contain either a 
small and simple piece of software or large and complex functional module. 
Although OSRF maintains the centralised software build infrastructure that 
facilitates the distribution and reuse of software packages, this infrastructure, 
however, is not used to host the package-specific source code. Instead, it 
retrieves source code from different organisational code repositories if 
organisations package their software in a ROS compatible manner and wish to 
have it shared through the ROS infrastructure. This way, the organisations that 
originate code can retain the control over it even if they are willing to share as 
open-source. As a software development framework, ROS provides developers 
with a collection of open-source software libraries, tools, infrastructure and 
shared practices which are designed to support collaborative development of 
organisationally and computationally distributed software development. 
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Therefore, ROS can be approached and analysed from different viewpoints. 
First, it can be seen as a digital communications system which is used to develop 
robot software as sets of interconnected computational processes. Second, it can 
be seen as a community which brings together a variety of user and contributors 
from academia and industry that share the interest in the development of robot 
systems and related functionality. Third, it can be seen as a framework, as a 
collection of software that facilitates the construction of systems which are 
composed of a wide array of advanced computing technologies.  
 
While each of these viewpoints offers a different picture, they point towards the 
same object. They form an intricate web of technological and organisational 
relationships, which intertwine at different technological and organisational 
levels. In this light, ROS could be seen as a clan innovation network (Lyytinen et 
al. 2015). In clan innovation networks, actors share an interest in a specific 
product type and concept, have access to a common set of tools and have 
complementary and overlapping knowledge while also sharing a common 
vocabulary, yet they are not bound by any centralised and hierarchical control. 
The next section presents the early origins of ROS and how it emerged from the 
two research projects at Stanford University. 

5.2 PR and Switchyard at Stanford 

The early origins of ROS can be traced back to the Personal Robotics (PR) and 
Stanford Artificial Intelligence Robot (STAIR) research projects at Stanford 
University around 2005. The two projects focused on different areas of robotics 
technologies but shared an overall goal of advancing mobile manipulation in 
human environments, such as homes and offices. Whereas the PR project 
sought to develop a safe and robust physical robot platform that could move 
around and manipulate objects, the STAIR project aimed at bringing different 
artificial intelligence technologies together in order to develop software that is 
capable of carrying out tasks autonomously in human environments. Therefore, 
the PR project focused primarily on physical embodiments and robustness while 
the main interest of the STAIR project was in computable matters. Together 
they represented the physical and digital aspects of the development of robots 
and autonomous systems.  
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The PR project developed the PR1 prototype hardware platform for mobile 
manipulation tasks (see Figure 7), and it is a predecessor of the PR2 platform, 
which came to provide the first reference hardware platform for ROS. In 2005, 
the hardware platforms capable of carrying out mobile manipulation tasks were 
in short supply. As a response, the PR project set out to develop a platform that 
would be capable of moving around and manipulating objects in human 
environments in a safe and reliable manner (Wyrobek et al. 2008). The 
objective was to provide software developers with a robust robot platform upon 
which more sophisticated functionalities could be built. The development of a 
robust hardware platform was seen as analogous to the development of 
computer hardware. It would provide software developers with a stable 
foundation to build on; software developers could leverage underlying hardware 
capabilities and proceed with application development without needing to 
worry about the underlying hardware or the associated low-level software that 
controls and protects the hardware. 
 
The PR1 hardware was designed together with the low-level control software. 
The purpose of this was to create a layer of abstraction for separating the 
hardware from higher-level operational commands. This abstraction would 
make software development easier as developers could control the hardware 
through the higher-level operational commands that would be converted to 
specific actuations and movements by the lower-level control software. A 
developer could simply command a mobile base to drive to a certain direction at 
a certain speed without needing to know about the implementation details of 
the wheels, such as their locations, geometry, steerability or drivability. In 
addition to providing a layer of abstraction, the low-level control software would 
also protect the robot hardware by preventing the execution of harmful 
commands, the commands that would not conform to the physical properties of 
the robot or were potentially caused by bugs or faulty computational models.  
 
Overall, the introduction of a hardware platform with the associated low-level 
control software was seen as a way to shift the focus of development from the 
mechanical and electrical engineering to software engineering and application 
development. Leveraging common hardware, useful applications could be 
developed faster to serve a variety of use cases and market needs.  



 

131 

 

 
 

Figure 7: Personal robot PR1 prototype  
(Wyrobek et al. 2008)8 

 
Whereas the PR project focused on hardware and low-level control software, the 
STAIR project focused on higher-level control software. The STAIR project set 
out to develop computational models, to bring together and developed further 
knowledge and technologies of different domains of artificial intelligence (Ng et 
al. 2008; Ng & Khatib 2006). The plan was to integrate and implement different 
artificial intelligence technologies into physical robot platforms for research and 
teaching purposes, and thereby pave the way towards practical applications and 
advancement of personal robotics. The project would provide a framework 
within which different artificial intelligence technologies could be improved 

                                                
8 Reprinted from 2008 IEEE International Conference on Robotics and Automation, Towards a 
Personal Robotics Development Platform: Rationale and Design of an Intrinsically Safe 
Personal Robot, by Keenan A. Wyrobek, Eric H. Berger, H.F. Machiel Van der Loos and J. 
Kenneth Salisbury, copyright (2008) IEEE. 
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while also simultaneously bringing them together to compose more 
sophisticated and capable models of autonomous behaviour.  
 
The request “fetch a stapler” was used to demonstrate the need to combine 
computational processes from different domains of artificial intelligence 
(Quigley et al. 2007). To fulfil the request, a robot needs to be able to record a 
spoken command, recognise the meaning of the command, navigate through 
office rooms, corridors and doors in the search of a set of features that matches 
the representation of a stapler, grasp it, lift it up and bring it back to the location 
where the command was first voiced. This seemingly simple task demonstrates 
the spectrum of technologies and capabilities that need to be mastered and 
integrated in order to produce a complete behaviour; fetching a stapler requires 
technologies and skills on areas such as voice recognition, message parsing, 
image and object recognition, mapping, localisation, navigation, path, motion 
and grasp planning in three-dimensional spaces over time. Given the associated 
intricacies, each of these areas require deep and specialised knowledge on what 
is being computed for and how to compute it, yet the production of behavioural 
models requires an orderly integration of a wide array of advanced 
computational technologies and specialist knowledge, something which is 
scattered across a variety of research domains and organisations. Therefore, 
from the technological and organisational point of view, fetching a stapler is a 
formidable integration challenge. 
 
The STAIR project used two different mobile manipulation platforms as 
research hardware. They differed in terms of their frame, sensors, mobile base, 
arms, grippers, size and geometry, and they underwent constant change 
throughout the project as teams of students and researchers made changes to 
the robot and computing hardware and software applications. The hardware 
platforms are pictured in Figures 8 and 9. 
 
This technological and organisational complexity posed several integration 
challenges. What was needed was a flexible software development framework 
that could handle both parallel and distributed computing and software 
development as well as heterogeneous hardware, computing and software 
environments (Quigley et al. 2007). The framework was expected to facilitate 
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distributed and parallel computing since for example motor commands and 
longer-term planning functions tend to unfold in different time scales and may 
run on different computers to ensure the instant availability of computing 
capability. Also, the framework could not be tied to any particular computer 
operating system as computing environments were heterogeneous. Similarly, it 
could not be tied to any specific robot hardware or components as the project 
had two different and constantly changing robot hardware platforms in use. 
Finally, it was expected that that framework supports the separation and 
combination of functional software components in order to allow multiple 
teams to develop and test their code in parallel.  
 

       
 Figure 8: The STAIR 1 robot  Figure 9: The STAIR 2 robot 
 (Quigley et al. 2007)9   (Quigley et al. 2007)9 
 
After evaluating different design approaches (Quigley et al. 2007), the 
communications framework and library called Switchyard was developed to 
fulfil these requirements. Switchyard offered a method to connect various 
software components so that a robot software could be run as a group of 
interconnected computational processes, that is, as a virtual and distributed 
cluster of processes that operates on top of some underlying group of networked 

                                                
9 Reprinted from STAIR: Hardware and Software Architecture, by Morgan Quigley, Eric Berger 
and Andrew Y. Ng, AAAI 2007 Robotics Workshop, with permission.  
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computers. Figure 6 illustrates this concept by showing the computational 
graph that was used in the “fetch a stapler“ demonstration. The nodes in the 
graph represent individual computational processes whereas the arrows 
represent the interconnections between the processes. The large texts show the 
functional tasks, such as spoken dialogue, navigation, planning, visual object 
recognition and grasping, performed by different regions (Quigley et al. 2007). 
 
This distributed, loosely-coupled and flexible software architecture appeared to 
provide a solution to the technical and organisational challenges faced in the 
distributed development of distributed systems. The lessons learned from 
Switchyard were taken on board at Willow Garage as the company embarked on 
its personal robotics programme.  
 
Willow Garage’s personal robotics programme picked up the work started at 
Stanford in the PR and STAIR projects and set out to develop PR2, a robot 
hardware platform for research purposes, and ROS, the accompanying software 
development framework. This endeavour is discussed in the next section. 

5.3 PR2 and ROS at Willow Garage 

Willow Garage was founded in autumn 2006 in Menlo Park, California. It 
started out as a well-funded private research laboratory that focused on creating 
the next generation of robotic devices. The company stated it had resources to 
maintain a research lab of 60 people indefinitely (Cousins 2014), emphasising 
its willingness to risk-taking and experimentation in order to pursue cross-
disciplinary innovation without committing to any specific timeline. At the 
beginning, the company pursued three different domains of robotics, namely, 
autonomous cars, boats and personal robotics, before directing its efforts to 
personal robotics.  
 
In October 2007, the company announced its plans on personal robotics. The 
mission was to develop a new personal robotics platform that could serve people 
in human environments without a risk of causing serious injury. The endeavour 
was a continuation to the work initiated at Stanford, and the initial target was 
set to build ten robots for research purposes in a year’s time. To this end, the 
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company hired the graduate students from the PR project to lead the effort and 
started the development of PR2 (see Figure 10), an advanced version of PR1.  
 
The development of ROS began at the same time in order to provide a software 
framework upon which advanced higher-level application software could be 
developed. In order to support distributed software development and 
computation, the design principles of ROS adhered to those of Switchyard. The 
development of ROS progressed in close collaboration with the STAIR project, 
and the company supported the STAIR project financially as well. 
 

 
 

Figure 10: The PR2 robot10 

                                                
10 Republished from the press room of Willow Garage at willowgarage.com. Copyright (2008-

2015) Willow Garage. 
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The company presented its vision of robotics platforms in various conferences 
and venues. The vision was demonstrated with a reference to the computer and 
smartphone industries where systems architectures are often characterised as 
layered stacks, hardware sitting on the bottom, an operating system on the top 
of the hardware and applications then on the top of the operating system, and 
these layers interact with each other through well-specified interfaces. Against 
this backdrop, PR2 was presented as a foundational hardware layer with open 
interfaces and standards, whereas ROS was pictured as a layer sitting on the top 
of the robot hardware, as presented in Figure 11 from the Willow Garage’s 
presentation in the International Robot Exhibition (IREX) in 2009. 
 

 
 

Figure 11: PR2, ROS and applications as a layered stack11  
 
ROS was seen as a Linux-like environment for open-source robot software 
development. The company also encouraged other companies to build hardware 
platforms and join the ROS community. The project was occasionally envisaged 

                                                
11 Republished from Willow Garage’s presentation in the International Robot Exhibition (IREX) 
in 2009. Copyright (2009) Willow Garage. 
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as a path towards robot-specific application stores where new functionalities for 
robots could be sold and bought.  
 
To track the progress, the company divided the personal robotics programme 
into four milestones, the final one of them marking the customer delivery of ten 
operational PR2 robots with documented software. The first milestone of 3.14 
km of uninterrupted indoor navigation in two days was achieved in December 
2008. This tested hardware, electronics and software and demonstrated the 
level of integration and robustness across different layers, ranging from the low-
level hardware control upwards to the higher-level software that performs 
mapping and navigation in two-dimensional spaces. The second milestone was 
reached in June 2009. This time the criteria included 42 km of indoor 
navigation and demonstrated PR2’s capabilities in mobility and three-
dimensional manipulation. The robot was required to open doors and go 
through the doorways and plug itself into electric sockets. The third milestone 
was achieved in January 2010. It focused on the stability and documentation of 
software to make the robot and its software usable and accessible to the 
researchers and developers outside Willow Garage. This way, PR2 came to 
provide a well-document reference implementation of ROS and its various 
components and their interactions. 
 
During the period leading up to the third milestone, the ROS documentation 
was moved from the Willow Garage website into its own domain at ros.org in 
August 2009. The site consolidated knowledge and community efforts. 
Technical details and instructions were documented in the wiki, and a web blog 
was set up to communicate ongoing affairs along the mailing lists. This move 
was seen as strategically significant. It established ROS as a community effort 
that was not limited to the purposes and boundaries of Willow Garage 
regardless of the company's influential role in the introduction and 
development of ROS. While ROS was developed with reference to the PR2 
hardware and to support distributed computation for mobile manipulation, it 
started attracting attention from the wider robotics community right from the 
beginning. The flexible and distributed architecture made it applicable to a 
variety of use cases. Also, as the source code of ROS was made publicly available 
and distributed under a permissive open-source license (BSD), it remained 
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freely modifiable and applicable for research and commercial purposes. At the 
time of the introduction of ros.org, eight open repositories containing ROS 
compatible code had already been created by entities external to Willow Garage. 
ROS was being extended and experimented on a variety of hardware platforms. 
The conference paper ROS: an open-source Robot Operating System (Quigley 
et al. 2009) was presented at the International Conference on Robotics and 
Automation (ICRA) in May 2009, and it is the seminal academic paper that 
presents the design principles of ROS. 
 
With the initial one-year schedule stretched to nearly three years, the company 
announced the completion of the third milestone and the release of ROS 1.0, the 
first official version of ROS, in January 2010. At the same time, the company 
also announced a call for proposals to participate in the Beta Program. The 
proposals were expected to demonstrate ambitious and innovative research 
using PR2 as a research platform. Ten proposals would be awarded the PR2 
platform worth of $400 000 for a two-year period free of charge including 
maintenance, technical support and travel support. Out of the 78 proposals 
received from universities and research laboratories, eleven were successful 
(Cousins 2010). In return, the Beta Program participants were required to 
release the software developed on PR2s to the wider community as open-source.  
 
The eleven PR2s were ceremonially awarded to their recipients in the 
Graduation Party in front of the press and 300 guests in May 2010. The Willow 
Garage founder Scott Hassan presented his vision of service robotics as a new 
industrial revolution and emphasised the company’s commitment to the next 
generation of robotics platforms and open source software. With platforms, 
robotics was envisaged to turn from a hardware problem to a software problem 
by facilitating modular, gradual and cumulative innovation and collaboration 
among researchers, developers and industry. Although the PR2 hardware 
platform was the most tangible and visible result of the development and 
engineering efforts, the representatives of Willow Garage were also very excited 
about the rapid uptake of ROS and the growth of the ROS community.  
 
The final project milestone was achieved in June 2010 after all eleven PR2s had 
been shipped out to their recipients. Over time, PR2 proved to be a powerful 
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research platform and, in total, approximately 50 PR2s were delivered for 
research purposes. However, given the relatively high price, there was not much 
demand outside well-funded research laboratories and organisations.  
 
In organisational terms, the personal robotics programme was a highly 
collaborative endeavour. Along the multidisciplinary group of Willow Garage 
researchers and engineers (60 at peak, 100 over time), the company hosted a 
number of visiting scholars and run an extensive internship programme. More 
than 100 interns and visiting scholars from high-profile robotics research 
laboratories worked from two to nine months at Willow Garage (Cousins 2014). 
They brought in the knowledge and technologies from their home institutions 
and contributed to the development of PR2 and ROS. This way, while the 
company contributed much to the open-source software development and 
community building, it also gained much by making use of various software 
components, development tools and algorithms that were first developed and 
made available elsewhere. In turn, when the visiting scholars and interns 
returned to their home institutions, they spread their knowledge on ROS 
expanding the community around ROS. The characteristics of ROS that 
facilitated distributed development were put to use on a global scale and across 
different domains of robotics. 
 
Throughout the personal robotics programme, the company frequently released 
new and updated ROS distributions as it developed the core functionality, 
development tools and infrastructural capabilities. These were documented in 
the wiki.ros.org site and communicated to the wider community through the 
ros.org website, blog posts and video updates.  
 
In 2011, after succeeding in the initial goal of developing a research platform 
capable of mobile manipulation, the company entered a new phase and turned 
its attention to the commercial application of its technologies and experiences. 
Although PR2 was successful as a research platform, its capabilities and 
robustness had not reached the level required to carry out a variety of tasks in 
open-ended and unstructured home and office environments. Consequently, 
different options were evaluated as business opportunities were searched for, 
and efforts were directed into more constrained and repetitive application and 
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task domains which could be fulfilled with special-purpose robots and 
applications. This search for opportunities did not result in a single preferred 
outcome. Instead, it produced a stream of spinouts as the founder and 
employees embarked on a variety of ventures. Redwood Robotics started 
developing cheaper robotic arms and was acquired by Google. Industrial 
Perception set to work on perception pipelines for three-dimensional vision and 
was acquired by Google as well. HiDoF embarked on ROS consulting and was 
also acquired by Google. Suitable Technologies proceeded to cater telepresence 
markets with telepresence robots. Unbounded Robotics (relaunched later as 
Fetch robotics) focused on warehouse logistics developing mobile manipulators 
and freight-carrying robots, whereas Savioke set out to cater to hoteliers by 
focusing on hotel room deliveries. The visions of general-purpose robotics 
platforms had been scaled down to purpose-specific applications.  
 
The spin-offs were not limited to hardware and applications. A series of open-
source software projects were also spun off. OpenCV, an open-source computer 
vision library, initially developed at Intel and later modernised and extended 
under the auspices of Willow Garage, was moved to the OpenCV Foundation. 
The Open Perception Foundation was founded to provide a home for Point 
Cloud Library (PCL), an open-source perception library for depth images, 
whereas the software for controlling robot bases and arms were consolidated 
into the MoveIt! motion planning platform. ROS itself found a new home at the 
Open Source Robotics Foundation (OSRF). The legacy of Willow Garage also 
lives in the TurtleBot hardware (Gerkey & Conley 2011), which is a cheap mobile 
base for educational purposes. It is now in its third edition and also serves as a 
reference implementation of ROS.  
 
After a series of spin-offs, Willow Garage ceased its active operations in January 
2014. In retrospect, Willow Garage’s ambitions to speed up the development of 
the robotics industry can be seen either as a failure or a success story. Willow 
Garage did not succeed in introducing a general PC like hardware platform. 
That remained out of reach. However, the company further developed and 
established a software development framework and open-source community 
that appears to address some of the central technical and organisational 
integration challenges in a manner that the wider community sees beneficial. 
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ROS can be viewed as one of the most important and impactful legacies of 
Willow Garage in the field of robotics. The wider uptake of ROS and the changes 
in ROS stewardship are discussed next. 

5.4 The wider uptake of ROS 

The ROS community has expanded gradually over the years as ROS has made 
its way into a variety of research laboratories, robots and use cases. The wider 
uptake of ROS and Willow Garage’s strategic decisions initiated the transfer of 
ROS stewardship. In 2012, the Open Source Robotics Foundation (OSRF), a 
non-profit, was established with a mission “to support the development, 
distribution, and adoption of open source software for use in robotics 
research, education, and product development”. Around the same time, ROS-
Industrial (ROS-I) was started in order to bring ROS and the skills and 
capabilities of the ROS community into manufacturing environments. The first 
ROSCon, a ROS developer conference, saw daylight also in 2012. These 
developments are described and discussed below before presenting ROS in 
numbers. 
 
While ROS was growing in popularity, much of development and coordination 
remained in the hands of Willow Garage. Although Willow Garage’s effort was 
of central importance in the development of ROS and the surrounding 
community, its central role and perceived control of source code made other 
companies and organisations wary of investing and contributing to ROS 
development. Therefore, Willow Garage started seeking an opportunity and 
funding to establish ROS as a self-standing entity outside Willow Garage.  
 
The Defense Advanced Research Projects Agency’s (DARPA) Robotics Challenge 
(DRC) offered a fitting opportunity. Subsequently, OSRF was founded in 2012, 
and it received a two and half year’s contract from DARPA to provide a 
simulation environment for the Robotics Challenge. The first round of the 
challenge was run in a simulated environment before the field trials and finals, 
which were carried out with actual robots in a physical environment. This way 
the first commission of the foundation did not focus on ROS as such but on the 
simulation using Gazebo, a robot simulator. 
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With the newly established foundation, the gradual move of ROS and Gazebo to 
OSRF began. A team of simulation developers moved to OSRF where they 
further developed Gazebo and made it accessible as a cloud-based service. This 
way, at the beginning, OSRF worked on simulation software while the 
coordination and release management of ROS remained in the hands of Willow 
Garage. However, as Willow Garage was about to cease its active operations, 
OSRF was set to take up the responsibility of ROS as well. To this end, OSRF 
secured funding through National Robotics Initiative (by the National 
Aeronautics and Space Administration (NASA)), which allowed the foundation 
to employ ROS developers from Stanford University and Willow Garage among 
others. With the funding and team in place, the stewardship of ROS and the 
surrounding technical infrastructure, as well as the open-source community, 
was transferred to OSRF in 2013.  
 
Although much of the early funding originated from the government contracts 
and agencies such as DARPA, NASA and the National Science Foundation, the 
wider uptake of ROS in commercial domains has generated increased funding 
from for-profit companies. Considering that a non-profit cannot derive a 
majority of its funding from the for-profit companies according to the financial 
regulations that govern OSRF, a for-profit subsidiary, the Open Source Robotics 
Corporation (OSRC), was established in 2016 to manage the commercial 
funding. To date, the commercial funders include companies such as Google, 
ARM, Qualcomm, Intel, Canonical, Bosch, Toyota and Mathworks as well as a 
variety of other companies which make robot hardware platforms, sensors and 
actuators. At the time of writing, OSRF/OSRC employs some 25 people.  
 
The first steps towards ROS-Industrial (ROS-I) were also taken in 2012. It 
began as a partnership among Yaskawa Motoman Robotics, Southwest 
Research Institute and Willow Garage. The mission of ROS-I was to bring the 
skills and capabilities available in the wider ROS community to the domain of 
industrial manufacturing. The industrial robotics was seen as a stagnant domain 
where hardware had reached a higher level of sophistication than software. The 
industrial grade hardware and lower-level control software were robust and 
reliable, but the use of proprietary software architectures hindered the reuse of 
software and replication of research results. Moreover, the aim was to move the 
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industrial robotics from the era of pre-programmed motion trajectories to the 
perception based and dynamic motion trajectories. This provided the ROS-I 
community with a starting point. In the beginning, the people behind the 
initiative developed hardware drivers and ROS integrations for different robot 
arms to be able to control them through ROS-based software. Gradually, focus 
moved from basic integrations to the development of higher-level capabilities, 
such as perception and motion planning functionalities and calibration tools, as 
they were seen relevant from the perspective of industrial robotics. 
 
Since the early days, ROS-I has grown in size and global coverage. The ROS-I 
Americas consortium was established in 2013 by the Southwest Research 
Institute. This was followed by the consortium in Europe in 2014 by Fraunhofer 
IPA in Stuttgart, Germany, and in the Asia-Pacific in 2016 by the Advanced 
Remanufacturing and Technology Center in Singapore. The global consortia 
bring together a variety of research institutes as well as prominent 
manufacturers and users of industrial robotics, which facilitates the pooling of 
knowledge, needs and financial resources to address problems that are 
pertinent in the field of industrial robotics. Currently, the consortia have some 
60 members, including companies such as Caterpillar, John Deere and 3M. The 
ability to distribute the costs and efforts of software development and 
maintenance makes advanced industrial robotics more accessible for a wider 
group of organisations. Also, along with the development and maintenance of 
domain-specific software, the consortia organise conferences, training and 
tutorials while collaborating with OSRF.  
 
Furthermore, there are also other industry and domain-specific initiatives, for 
example around agriculture and defence applications. Also, several academic 
research programmes build on ROS. Moreover, ROS has made its way to some 
commercial products, such as Baxter, a collaborative manufacturing robot, from 
Rethink Robotics and the warehouse logistics robots from Fetch Robotics 
among others.  
 
The year 2012 also marked the starting point of the yearly ROS developer 
conference ROSCon. ROSCon brings together ROS users and developers from 
academia and industry. To date, they have been held as two-day weekend events 
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in conjunction with some larger robotics and automation related conferences. 
Whereas the focus of the main conference primarily lies on the research of 
particular algorithms and computational methods for the purposes of robotics, 
the focus of ROSCon revolves around software integration and engineering. In 
other words, instead of individual algorithms, focus is on how to bring and join 
a variety of algorithms together to build functioning robots. The ROSCon 
attendance figures have increased over time. Whereas the first ROSCon brought 
together some 200 attendants, the 2016 conference in Seoul had 450 
attendants. The conference is typically run around a single track and consists of 
both short and long presentations. The presentations cover topics from the 
fundamentals of ROS, key components and software libraries to their 
application in different domains, contexts and task-specific use cases. 
Application areas range from warehouse and humanoid robots, cars and drones 
to perception pipelines and navigation, to provide a few examples. The 
acceptance rate of presentations is around 30%. Also, to make conferences 
available to those who are not able to join at the location, the presentations are 
streamed live, and recordings are made available online after the conference. In 
addition, smaller local and regional ROS workshops are also organised as 
community effort. 
 
The ROS wiki and ROS community metrics12 report offer quantitative 
information on the diffusion of ROS. In terms of robot hardware, approximately 
100 different ROS compatible actuators and hardware platforms are listed in 
the ROS wiki. In addition, slightly over 100 different sensors have been made 
compatible with ROS, ranging from range-finders and 3D sensors to cameras, 
motion capture, pose estimation and force sensors to give a few examples. In 
terms of software, the number of software packages exceeds two thousand, 
some of which are large and of central importance whereas others are of lesser 
importance or cater to small niche use cases. The ROS codebase contains 
contributions from some 2000 developers.  
 
In July 2016, 113 000 unique users downloaded ROS packages from the servers 
hosted by OSRF. However, the real numbers might be higher as the number of 
downloads does not include downloads from the eleven mirrored ROS 

                                                
12 wiki.ros.org/Metrics – ROS Community Metrics Reports 
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repositories, of which three are in Europe, three in America and five in Asia. In 
the same period, the ROS wiki, which contains some 17 000 pages, had 
approximately a million unique page views. answers.ros.org, a discussion forum 
for technical problems, had around 334 000 page views and slightly less than 15 
000 registered users. Similarly to software downloads, the numbers do not 
include traffic from the mirrored sites. While these numbers are not definitive 
given the permissive open-source licensing and distributed hosting, they 
indicate the magnitude of adoption and diffusion. In academic circles, the 
seminal ROS paper has been cited about 3600 times, which is a relatively high 
number in comparison to other papers that deal with the robot software 
development.  
 
With reference to the numbers presented above, it can be concluded that the 
diffusion of ROS is not of the same magnitude than the Linux operating system 
or smartphone applications in Apple’s App Store or Google Play Store. For 
them, downloads are counted in billions and the number of developers in 
millions. However, in the field of robots and autonomous systems, ROS plays a 
significant role bringing together a vibrant community of roboticists from 
academia and industry. 

5.5 From ROS 1 to ROS 2 

Regardless of the wide uptake, ROS is not without shortcomings. It is often said 
that ROS is good for prototyping and building proofs of concepts, yet the 
production of a final product could not rely on ROS when reliability and 
performance requirements are high. To address shortcomings, the next-
generation ROS is being developed.  
 
Some of the shortcomings can be derived back to the architectural 
characteristics of the ROS communication system and initial design 
assumptions. The approach for establishing and coordinating connections 
between computational processes contains a single point of failure, meaning 
that a failure in one particular process can render a whole robot system 
unmanageable. Also, the communication system cannot guarantee the service 
levels and verifiability required in mission-critical hard real-time applications. 
Moreover, the security of interprocess communication was not part of the initial 
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design requirements. In addition, as ROS was developed with reference to the 
PR2 hardware, some hardware-specific assumptions are embedded in the 
software architecture, such as the focus on single robots, the reliability of 
network connectivity and the availability of computational resources. However, 
many robotics applications run on smaller processors, operate over unreliable 
network connections or span over multiple robot systems.  
 
Although the community has developed inventive workarounds to address many 
of the shortcomings for example by developing real-time capabilities and 
enhancing service levels, adding redundancy to avoid single points of failure and 
added layers for security, the development of the next generation of ROS was 
seen necessary to rectify the issues that derive from the underlying design 
decisions and implementations.  
 
The discussion on the next generation ROS started gathering pace in 2012 and 
OSRF announced in 2013 its plan to reimplement the communication system 
that underlies ROS. It was decided that the current custom-made 
communications framework would be redesigned and reimplemented using 
existing and tested technologies that support distributed computation. The 
project was named as ROS 2, and the first alpha prototype was expected to be 
available in the first half of 2014. Several existing middleware and 
communication frameworks were evaluated, and the Data Distribution Services 
(DDS) standard maintained by Object Management Group (OMG) was selected 
as the foundation of ROS 2. DDS is a well-received and document standard, 
which is used in commercial and mission-critical applications such as air traffic 
control, self-driving cars and spacecraft. In addition, there are several 
commercial and open-source implementations of the standard.  
 
However, even when building upon an open and tested standard, the design 
challenge remains on how to design and implement appropriate layers of 
abstraction between the underlying DDS-based communication system and the 
ROS-based messaging and coordination systems. Regardless of the optimism, 
dedication and contributions from the wider community, designing and 
implementing a communications system has proved time-consuming. The first 
alpha version was released in September 2015, whereas the eighth iteration of 
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alpha was released a year later. The third beta version was released September 
2017 and the current estimate for the first official release, the version 1.0 of ROS 
2, is expected to be released by the end of 2017. ROS 1 and ROS 2 are expected 
to live side by side for some time since transferring the community and 
numerous software packages and functionalities from ROS 1 to ROS 2 is 
expected to take several years.  
 
The experience from the developing of ROS2 sheds light on the difficulty of 
establishing requirements and implementing systems that facilitate the 
distributed development and management of complex computational processes. 

5.6 Summary 

This case description shows how ROS has evolved, changed and expanded over 
the past ten years. The two university-based research projects which began with 
an intention to bring a variety of technologies from different subfields of 
artificial intelligence together to build robots for mobile manipulation tasks in 
home and office environments turned out as a global open-source community.  
 
Building upon the experiences from the PR and STAIR projects, Willow Garage 
developed the PR2 robot hardware platform and ROS software framework. 
Leveraging the lessons learned from the Switchyard communications library, 
ROS provided an approach for resolving organisational and technological 
challenges which emerge from the distributed development of distributed 
computation and the distributed knowledge and control of complex 
technologies. While the company’s efforts in commercialising general robot 
hardware platforms did not materialise, the effort to establish ROS as an open-
source community produced a favourable outcome.  
 
Since the early days, ROS has attracted attention from the wider robotics 
community, including users and contributors from academia and industry. The 
ROS communication system, development tools and related infrastructure 
provide foundational technologies and tools for constructing robot systems as 
sets of interconnected clusters of computational processes, whereas the ROS 
community and domain-specific initiatives such as ROS-Industrial bring 
together technologies, knowledge and resources that are spread across 
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researchers and developers in different organisations. This provides an overall 
framework that facilitates technological integration even if control and 
knowledge of complex technologies are highly distributed. 
 
The next chapter takes a closer look into ROS to examine in the view of its 
subsystems, combinations and their salient characteristics. This is expected to 
shed light on how the tensions between the specificity of designs and 
distributedness of knowledge and control can be resolved.  
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6 Results of analysis 

This chapter reports empirical and conceptual findings of this research. They 
derive from the thematic analysis that produced six themes and 15 categories as 
described in Chapter 4. These themes and categories are further developed into 
models to present conceptual answers to the operative and principal research 
questions. The chapter unfolds in two parts. Part 1 develops a structural-
functional model that conceptualises robots and autonomous systems as 
contextually bound and embodied chains of transformations. Part 2 develops 
the notion of the generative-integrative mode of development, which outlines 
how a generative combination of subsystems and components is crafted 
iteratively to a composition that produces meaningful context-specific 
behaviour.  
 
Part 1 develops a conceptual answer to the operative research questions. It 
begins by presenting a summary of the themes and categories derived through 
the process of thematic analysis. The themes and categories are first 
summarised in Section 1 (6.1), which is followed by a more detailed exposition 
in Section 2 (6.2). The relationships among the themes and categories are then 
conceptualised as contextually bound and embodied chains of transformation in 
Section 3 (6.3) that concludes Part 1.  
 
Part 2 builds on the conceptualisation proposed in Part 1 and presents the 
answer to the principal research question. To this end, Section 4 (6.4) describes 
and discusses the process and characteristics of software development in the 
context of complex digitised products and presents a conceptualisation that 
characterises the unfolding and dynamics of combination in the development of 
contextually bound and embodied chains of transformation. Subsequently, 
Section 5 (6.5) elaborates on the role of under-specification and constructive 
ambiguity in this process, shedding light on how the tensions between the 
specificity of designs and the distributedness of knowledge and control can and 
cannot be resolved.  
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Part One 
 
 

Robots and autonomous systems as contextually 
bound and embodied chains of transformation 
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6.1 Summary of themes and categories 

Thematic analysis revealed six themes that are comprised of 15 high-level 
categories. During the analysis, the research database was processed in the view 
of the embedded units of analysis with an aim to identify subsystems, 
combinations and their respective characteristics. The analysis brought forward 
a highly heterogeneous and distributed technological and organisational 
arrangement, consisting of thousands of subsystems, components and 
combinations. The variety of contextual and behavioural requirements that 
need to be addressed in the development of robots and autonomous systems 
renders itself as a variety of physical embodiments and computational models 
that constitute and control the embodiments. This variety is visibly present in 
ROS and the surrounding community. 
 
The six themes that emerged from the analysis are (1) robot systems, (2) 
physical embodiments, (3) communication systems, (4) transformation systems 
and (5) visualisation and testing systems, and (6) the ROS community and 
software development. Whereas the first four themes deal with robot systems 
and their constituent elements, the last two focus more on the software 
development practices and processes. As described in the section on research 
design, the findings are presented and reported with reference to the ROSCon 
presentations, which are listed in Appendices B to G and cited as sources of 
evidence to provide clear chain of evidence. The sources are cited in the format 
(Appendix: Code). In addition, they are complemented and supported with 
documentary evidence, field notes and interviews in order to provide a reader 
with necessary details and evidence. The themes and categories are briefly 
introduced below and summarised in Table 5. More detailed exposition follows 
in the subsequent sections.  
 
The theme of robot systems refers to robot systems which are productive 
applications or research robots. Then, as robot systems are composed of a 
variety of subsystems, the subsystems are arranged into three themes that are 
physical embodiments, communication systems and transformation systems. 
The theme of physical embodiments consists of sensors, actuators and hardware 
platforms which couple a robot system with the surrounding environment and 
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establish the physical affordances and limitations that define what a robot 
system is capable of achieving in relation to its environments. Subsequently, the 
themes of communication systems and transformation systems refer to 
computational models and arrangements which produce and control the 
behaviour of a robot system. The theme of communication systems refers to the 
layer of software that coordinates the operation and transfers messages between 
interconnected computational processes, whereas the theme of transformation 
systems refers to software components that perform transformations between 
different types and representations of data, such as transformations between 
geometric coordinate frames or transformations from sensory inputs to actions. 
The two categories of transformations are often highly intertwined. In sum, 
physical embodiments, communications systems and transformation systems in 
combination constitute the architecture of a robot system. 
 
In shifting the focus outside a robot system, two themes emerge. The theme of 
visualisation and testing systems refers to the type of software that is used to 
examine, verify and improve the behaviour of a robot system. This includes 
visualisation, simulation and data management software. Finally, the theme of 
the ROS community and software development deals with the digital 
infrastructures and organisational efforts to facilitate the reuse of software and 
knowledge transfer in the ROS community. 
 
The first five themes are discussed in Section 2 (6.2), whereas the sixth theme, 
the theme of ROS community and software development, is discussed in Section 
4 (6.4).  
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Theme Category Description Examples of subsystems Characteristics of combination  
Robot 
systems 
(Appendix D) 

Productive 
applications 

Robot systems 
developed to perform 
productive tasks. 

Industrial automation, space 
exploration, self-driving 
cars. 

Robots systems as products and 
applications that can be used to perform 
specific tasks and transferred between 
similar task environments.  

Research robots Robot systems 
developed for 
research purposes, 
robot competitions 
and challenges. 

Robots used in research 
laboratories and/or to take 
part in challenges and 
competitions, such as the 
Amazon Picking Challenge 
and DARPA Robotics 
Challenge among others. 

Research robots are not readily applicable 
to different tasks or task environments. 
The purpose of research robots is to 
generate new knowledge and technologies. 

 
Table 5: Summary of themes and categories  

 
(Table 5 is spread over six pages as per the themes and related categories) 
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Theme Category Description Examples of subsystems Characteristics of combination  
Physical 
embodiments  
(Appendix G) 

Sensors Hardware 
components that 
measure the 
conditions of the 
surrounding 
environment. 

Cameras, range-finders, 
force and motion sensors. 

Sensors connect a robot system with the 
surrounding environment. 
Sensors are connected to the 
computational processes through the 
hardware drivers and communication 
channels. Some conventions for data 
formats and the transfer of sensory data 
exist. 

Actuators Hardware 
components that exert 
forces to cause change 
in the surrounding 
environment. 

Robotic arms, mobile bases 
and grippers.  

Actuators connect a robot system with the 
surrounding environment. 
Actuators and their low-level control 
software are connected to the higher-level 
computational processes through the 
hardware drivers and communication 
channels. Some conventions for the data 
formats and movement primitives exist. 

Platforms Hardware which 
encapsulates sensors 
and actuators into a 
single unit. 

Quadcopters, cars, mobile 
devices, teaching platforms, 
manipulation units. 

Connect a robot system with the 
surrounding environment. Hardware 
platforms and their lower-level control 
software are connected with the higher-
level computational processes through the 
hardware drivers and communication 
channels.  
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Theme Category Description Examples of subsystems Characteristics of combination  
Communicati
on systems  
(Appendix B) 
 

Messaging 
system 

Software systems that 
perform run-time 
messaging among 
computational 
processes. 

Messaging methods such as: 
Topics: one-way 
transmission 
Services: request-response 
Actions: goal-directed 
actions  
Some common message type 
and format conventions 
which are open for 
modification. 

The ROS messaging system framework 
provides messaging paradigms for 
arranging connections between 
computational processes. The 
arrangement depends on the composition 
of hardware and computational processes. 
Some conventions exist for message 
formats and data types, but new ones can 
be created when needed. The conventions 
enable the syntactic but does not 
guarantee the semantic interoperability.  

Coordination 
system 

Software systems that 
manage, coordinate 
and monitor the 
messaging system. 

Coordination methods for 
the start-up and runtime 
configuration, hardware 
diagnostics and monitoring 
of software and 
communication patterns.  

The ROS coordination system framework 
provides paradigms for arranging the 
connections to coordinate and support the 
operation of computational processes. 
While some conventions exist, the 
configuration and actual workings depend 
on the physical embodiments and 
computational processes.  

Connectors Software components 
that connect hardware 
and software 
components to ROS. 

Communication libraries, 
hardware drivers and 
bridges to connect to other 
software frameworks and 
web applications and user 
interfaces. 

ROS provide a variety of more or less 
purpose-specific connectors. They are 
used to connect the messaging and 
support systems with hardware 
components and software components 
such as software libraries, web 
applications and user interface 
applications to operate a robotic system.  
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Theme Category Description Examples of subsystems Characteristics of combination  
Transformati
on systems 
(Appendix E) 

Coordinate 
transformations  
 

Software systems that 
perform 
transformations over 
geometric coordinate 
frames. 

Robot model definition, 
geometric coordinate frame 
transformation library, 
robot pose estimation and 
calibration tools. 

ROS provides frameworks for defining and 
implementing transformations over the 
coordinate frames and time. The 
definition and implementation of a 
transformation system depends on the 
composition of the embodiments, sensors 
and actuators and related computational 
processes.  

Representation 
transformations  
  

Software systems and 
components to that 
perform 
transformations over 
representations of the 
formats and types of 
data. (for example, to 
transform perception 
to motion or 
localisation to 
locomotion). 

Common packages fsuch as 
MoveIt! (motion planning), 
OctoMap (3D occupancy 
grid), OpenCV (computer 
vision) and navigation 
(global and local path 
planning), among many 
others.  

The ROS distribution contains software 
packages and/or connections to other 
packages which contain a number of 
implementations of perception, motion 
planning and navigation algorithms 
among others. While they provide an 
extensive collection of building blocks, an 
application specific arrangement of 
algorithms into a set of interconnected 
computational processes depends on the 
surrounding environment, hardware 
embodiment and expected behaviour.  
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Theme Category Description Examples of subsystems Characteristics of combination  
Visualisation 
and testing 
systems 
(Appendix F) 

Visualisation Software for 
visualising a robot’s 
behaviour, physical 
composition and 
sensory inputs. 

Rviz visualisation package 
and Rqt dashboard for 
creating different displays. 

The ROS distribution contains a set of 
tools for the three-dimensional 
visualisation of robot models and sensory 
inputs among others. Rqt framework 
provides a framework for creating plots, 
diagrams and other displays of a variety of 
systems data transferred through the 
communications system. 

Simulation Software that is used 
to test and measure a 
robot’s behaviour in 
virtual worlds that 
model physical 
environments and 
sensory inputs. 

Gazebo and other 
simulators, Morse, 
USARSim, Webots 

Simulations frameworks provide a variety 
of approaches for creating virtual task 
environments which model structures, 
physical features and sensory data of some 
particular environmental context. 
Simulations are used widely in 
development and testing.  

Data 
management 

Software for 
recording, storing, 
processing visualising 
sensory data and 
behavioural data. 

ROS standard functionality 
for recording and playing 
back messages. Test data 
management and analysis 
packages and services. 

Storing and analysing the data gathered 
during the operation of a robot system is 
necessary given the low replicability of the 
situations that unfold in open 
environments. 
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Theme Category Description Examples of subsystems Characteristics of combination  
ROS 
community 
and software 
development 
(Appendix C) 

Infrastructure 
and tools 

Digital infrastructures 
and tools to support 
the reuse and 
development of 
software. 

The public build 
environment and software 
distribution infrastructure.  
Private build and 
integration environments 
created by different 
organisations.  

OSRF provides a central facility to compile 
and distribute software from the 
repositories that are maintained by the 
community members. However, many 
organisations manage their own build 
environments to control the functional 
dependencies and to protect the 
intellectual property. 

Knowledge 
transfer  

Organisational efforts 
and digital 
infrastructures to 
transfer knowledge 
within the 
community. 
 

Collaboration venues and 
efforts such the wiki site, 
discussion forums, the 
ROSCon conferences and 
domain-specific initiatives. 

The ROS community is heterogeneous. 
There are several ongoing initiatives to 
bring people and knowledge from 
different technological areas together and 
to promote the transfer of knowledge and 
the reuse of software. 
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6.2 Robot systems and their constituent elements 

This section expands the description and discussion of the themes and 
categories introduced above. The themes of robot systems, physical 
embodiments, communication systems and transformation system and 
visualisation and testing systems are each presented in their own subsection.  
 
Each subsection has three elements. The first element outlines the purpose and 
functionality represented by the theme and its constituent categories. The 
second element describes the constituent categories in more detail and 
illustrates them with examples where applicable. The third element summarises 
the most prominent observations concerning the characteristics of combination.  
 
The themes are presented in the same order as they are presented in Table 5. 
They are presented in this order to establish a coherent narrative which 
gradually unfolds the categories and their relationships. Section 3 (6.3) develops 
a conceptual model (see Figure 36) that brings different themes and categories 
together and describes how they are related to each other. 

6.2.1 Robot systems 

The theme of robot systems stands for the machines and systems which are 
created to carry out tasks autonomously with limited human intervention; they 
are expected to exhibit autonomous goal-directed behaviour while responding 
to environmental contingencies. Whereas the role of a human operator in the 
control of a robot system is set to be reduced, robot systems will have to be 
equipped with mechanisms that allows robot systems to control their behaviour 
in relation to the surrounding environment. Moreover, as a robot system’s 
behaviour emerges from the direct and ongoing interaction with the 
surrounding environment, the focus of design and development expands from 
the human-machine interface to a broader spectrum of environment-machine 
interactions, to situations where the environment need to be understood 
broadly, including people and physical and digital environments alike. In this 
light, a robot system can be viewed as a subsystem in relation to its 
environment, while, at the same time, a robot system itself is composed of 
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different subsystems that constitute it. Therefore, it is beneficial to discuss the 
characteristics of combination of a robot system in two ways, in relation to the 
surrounding environment and in terms of the constituent subsystems. 
 
The theme robot systems consist of two categories, namely, the categories of 
research robots and productive applications. While the previous paragraph 
outlines the overall functional principle of robot systems, thematic analysis 
revealed that the two categories of robot systems differ from each other in terms 
of the purpose they serve; they play different roles in innovation and differ in 
their characteristics of combination. Research robots are created to advance the 
technology while productive applications are created to serve some particular, 
usually a productive purpose.  
 
Research robots are test beds that are used to learn and study the robotics-
related research problems. These problems often revolve around some specific 
domain of electro-mechanical engineering and artificial intelligence or focus on 
the development of more complete and complex models of behaviour.  
 

 
 

Figure 12: Team Delft robot setup in the Amazon Picking Challenge work cell 
(Hernandez et al. 2017, D: RS19)13 

 

                                                
13 Reprinted by permission from Springer Nature, RoboCup 2016: Robot World Cup XX, Team 
Delft's Robot Winner of the Amazon Picking Challenge 2016, Carlos Hernandez, Mukunda 
Bharatheesha, Wilson Ko et al., copyright 2017 Springer Nature. 
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Problem-specific research projects typically focus on the examination of 
behaviour of specific algorithms, such as mapping in three-dimensional space 
(E: TR6), and research outcomes are usually disseminated through the 
academic journals and software distributions. In contrast, the development of 
more complete task-specific models of behaviour requires careful integration of 
a variety of algorithms and computational processes, and robot competitions 
and challenges provide opportunities to demonstrate skills and technologies in 
the development of task-specific robot systems. The Amazon Picking Challenge 
(D: RS19) and the DARPA Robotics Challenge (D: RS15) among the others listed 
in Appendix D offer examples of such competitions. To illustrate the types of 
robot systems that are used in competitions, Figure 12 presents the Team Delft’s 
robot that won the Amazon Picking Challenge in 2016 (D: RS19, Hernandez et 
al. 2017). Figure 13 (D: RS15, Kohlbrecher et al. 2015) presents Team ViGIR’s 
robot that competed in the DARPA Robotics Challenge.  
 

 
 

Figure 13: Team ViGIR's Approach to the 2013 DARPA Robotics Challenge 
Trials (Kohlbrecher et al. 2015, D: RS15)14 

                                                
14 Reprinted by permission from John Wiley and Sons, Journal of Field Robotics, Human-robot 
Teaming for Rescue Missions: Team ViGIR's Approach to the 2013 DARPA Robotics Challenge 
Trials, Stefan Kohlbrecher, Alberto Romay, Alexander Stumpf et al., copyright 2014 Wiley 
Periodicals, Inc. 
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Primarily, research robots are developed to explore and experiment novel 
techniques and technologies and to demonstrate the state of the art in some 
particular domain of robotics. While some of these projects produce spectacular 
demonstrations, the robot systems they produce often lack reliability and 
robustness (D: RS1) that are of paramount importance in the commercial and 
productive applications. The unpleasant environmental contingencies and the 
teams of engineers and scientists nursing a robot system are often carefully 
framed out of a picture when the progress of research is put on a public display.  
 
Productive applications depict a more mundane but equally challenging view of 
robot systems. Here the success is not defined by demonstrating a novel 
behaviour in an experimental situation. Instead, practical and commercial 
success follows from the proposition that the applications that automate 
operations increase productivity (D: RS21) – and a robot system which needs 
constant guidance, maintenance and repair is unlikely to do so. Moreover, if a 
robot system is not robust and reliable, it may harm people and damage the 
environment it operates in. Therefore, the challenge remains on how to develop 
robot systems that are productive, robust and dependable with respect to a task 
and task environment over longer periods of time.  
 
Oftentimes, turning a technological invention to a commercial innovation is a 
costly and time-consuming process (C: SE16), which requires the exploration of 
market opportunities as well as the development and fine-tuning of service-
propositions and corresponding technological applications. Figures 14 and 15 
present service robots, both of which are Willow Garage offspring, that are 
designed and developed to serve particular market needs. The robot systems 
from Fetch Robotics serve the needs of warehouse logistics (D: RS18), whereas 
Relay from Savioke runs indoor deliveries in hotels. Even if these robots are 
quite similar, performing localisation and navigation on two-dimensional 
surfaces to transport goods, there are several contextual factors that bear 
implications to their design and application.  
 



 

163 

 
 

Figure 14: Warehouse logistics robots from Fetch Robotics15  
 

 

 
 

Figure 15: Relay, a hotel delivery robot from Savioke16  
 

                                                
15 Republished from the website of Fetch Robotics at fetchrobotics.com with permission. 
Copyright (2018) Fetch Robotics. 
16 Republished from the press kit of Savioke at savioke.com with permission. Copyright (2018) 
Savioke. 
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The characteristics of combination differ between the two categories of robot 
systems. Considering that research robot systems are created to serve some 
particular research objectives, they are rarely readily transferable to different 
tasks and contexts as such. Instead, the objective with research robots is to 
study and develop novel technologies that could then be transferred and put to 
use in other robot systems. For example, algorithms that have been developed, 
refined and encapsulated into software libraries and packages can be distributed 
for others to use (E: TR6), something which is one of the underlying objectives 
of ROS and the ROS community. However, even when software packages are 
made publicly available, they may not be readily applicable and transferable to 
other systems and contexts. If a packaged software carries strong assumptions 
(B: C01) which derive from the context where it was first developed, for example 
in terms of tasks, task environment or the physical structure and affordances of 
a physical embodiment, the degree of generality and transferability tends to 
decrease. Even so, research and engineering projects serve as important sources 
of methods, tools and technologies that can potentially be further developed, 
utilised and combined into other robot systems. 
 
The development of productive applications, on the other hand, aims at 
producing robot systems that carry out productive tasks and are transferable 
across similar tasks and task environments. While such robot systems can be 
transferred to an extent, there are physical and behavioural matters which may 
prevent it. Starting with the physical matters, a robot system has a physical 
embodiment, sensors and actuators in order to interact with the surrounding 
environment. For example, the physical embodiment of a pick and place system 
that works in a warehouse may not be suitable for agricultural fieldwork as the 
concrete floor changes to soft soil and rectangular boxes to soft berries. 
Moreover, a behavioural model should produce meaningful actions. To 
exemplify, whereas the physical embodiment of a self-driving race car might be 
suitable for transporting people on paved roads, its model of behavioural may 
not be suitable for normal road transit. Moreover, even if the behaviour of a 
robot system can be modified by changing software, the computational models 
of behaviour are bound by the physical embodiment of a robot. Therefore, the 
characteristics of combination revolve around to what extent a robot system 
readily combines with the different aspects of tasks and working environments.  
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To summarise, robot systems are being developed to serve both the research 
and productive purposes. This differentiation is important in two ways. First, it 
highlights the different characteristics and objectives of combination, that is, the 
combinability with respect to constitutive technologies and the combinability 
with respect to the productive tasks and contexts. Second, it brings forward the 
differing criteria of success, highlighting the difference between novelty and 
productivity.  
 
The subsequent section focuses on physical embodiments, taking a more 
detailed look into their purpose, categories and characteristics of combination.  

6.2.2 Physical embodiments 

The theme of physical embodiments refers to the physical structure and 
composition of a robot system. The purpose of the physical embodiment is to 
enable the interaction by coupling a robot system with its physical 
surroundings. In doing so, a physical embodiment establishes the boundary 
between the physical environment and the computational model of behaviour. 
This theme consists of three categories, which are sensors, actuators and 
platforms. While specialised companies focus on and produce particular 
categories and types of hardware, purpose-specific embodiments and 
components are also often developed, such as a custom-made gripper for the 
Amazon Picking Challenge (Figure 12, D: RS19), depending on the specificity of 
hardware requirements. 
 
The development of a physical embodiment is subject to a variety of trade-offs 
(Wyrobek et al. 2008). The distinctive characteristics of tasks and task 
environments give rise to a number of requirements and constraints, such as 
required dexterity, payload, speed and safety measures. These requirements 
then cascade down to the mechanical and electrical design that specify the 
embodiment of a robot system. During this process, the embodiment becomes 
specified in terms of its frame and size, the number of joints and their geometric 
and kinematic relationships as well as the sensors and their capabilities among 
a number of other factors. These features and properties in conjunction define 
the underlying physical properties, capabilities and limitations of a robot 
system. 
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Sensors measure the environment and supply a robot system with data of the 
surrounding environment. The sensory information is necessary for the 
production of contingent behaviour, and the choice of sensors depends on the 
physical phenomenon and features that are measured to condition and control 
the behaviour of a robot system. Different sensors harness different physical 
phenomena, and behavioural models can be conditioned upon a range of 
measurements, such as the patterns of light and sound, material deformations, 
the reflections of emitted light and radio waves or rotations and voltages. Each 
of the measurements is informative in different ways, having particular 
strengths and weaknesses, modes of failure and idiosyncratic inaccuracies. As 
the properties of sensors and data tend to converge along the lines of the 
physical phenomenon that is measured and harnessed, such as two-dimensional 
images or three-dimensional point clouds (B: CO5), there is a degree of 
commonality in data formats that can be used to transmit sensory readings 
between computational processes. Data from multiple sensors are often 
combined to construct a more comprehensive and reliable representation of the 
surrounding environment (E: TR3, TR4).  
 
A list of ROS compatible sensors is available on the ROS wiki17. Approximately 
100 sensors have been made compatible with ROS either by sensor 
manufacturers or as a community-driven effort (B: CO5). To exemplify, Figure 
16 presents a two-dimensional laser range finder from Sick and Figure 17 
illustrates Intel’s RealSense camera package (G: PE4, PE6). Usually, the details 
of the ROS integration and interface specification are documented in a software 
package summary1819 on the ROS wiki, whereas the technical details of the 
capabilities and features of a sensor can be found at the manufacturer’s website.   
 
Actuators are the physical embodiments that exert forces in order to cause 
change. Similarly to sensors, actuators come in many forms and functions 
depending on their intended use and the phenomena they harness. For 
example, industrial robot arms (see Figure 18) and grippers embody different 
degrees of force, motion, dexterity and grasping. 

                                                
17 wiki.ros.org/Sensors – A list of ROS compatible sensors. 
18 wiki.ros.org/sick_tim – Package summary for the SICK TiM and the SICK MRS 1000 laser 
scanners. 
19 wiki.ros.org/RealSense – Package summary for Intel RealSense cameras with ROS. 
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Figure 18: Motoman industrial robot arms, MH5F, SDA10, SIA20, by Yaskawa22  
 

                                                
20 Republished from the SICK website at sick.com with permission. Copyright (2018) SICK 
Gmbh. 
21 Republished from the Intel website at intel.com with permission. Copyright (2018) Intel 
Corporation. 
22 Republished from Yaskawa’s Media Center at motoman.com. Copyright (2018) Yaskawa 
Americas, Inc. 

  
 

Figure 16: TiM5xx two-dimensional 
laser range finder by SICK20 

 
Figure 17: RealSense™ D435 camera 

package by Intel®21  
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Whereas the heavy-duty robotic arms may exert strong forces to lift and 
manipulate heavy objects, collaborative robots are expected to be light, flexible 
and safe enough to share a work environment with people. The robots that share 
human workspace should be compliant and respond to changes in the external 
forces in a manner that ensures the safety of workers if they are to collide with a 
robot system. Similar to robot arms, mobile bases (see Figure 19) are also 
actuators. They exert forces to make a robot system to move around, and they 
differ in their characteristics, such as size, payload and the method of steer and 
drive. 
 
A variety of actuators have been made ROS compatible23. This is the case for 
example with the robot arms24 in Figure 18 and the mobile base25 in Figure 19. 
Again, as different types of actuators tend to converge around their structural 
characteristics and movement primitives, there is a degree of commonality that 
facilitates the reuse of the software that commands and controls actuators. 
 

 
 

Figure 19: Husky™, a mobile base by Clearpath Robotics26 
 
                                                
23 robots.ros.org – A list of ROS compatible robots, actuators and mobile bases. 
24 wiki.ros.org/Industrial/supported_hardware – A list of industrial robot hardware supported 
by ROS-Industrial (wiki.ros.org/Industrial). 
25 wiki.ros.org/husky_robot – Package summary for Clearpath Husky robot. 
26 Republished from the Clearpath Robotics website at clearpath.com with permission. 
Copyright (2018) Clearpath Robotics Inc. 
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Hardware platforms can be viewed as combinations of sensors, actuators and 
support systems such the body frame and power system, although the boundary 
between an actuator and hardware platform is not always very clear. Hardware 
platforms also come in a variety of forms, such as small humanoids (Figure 20, 
D: RS2, wiki27), quadrotors (Figure 21, G: PE8, wiki28) or warehouse trolleys 
(Figure 14, D: RS18). Furthermore, other products and digital devices, such as 
cars (D: RS16) and mobile devices (B: CO11), can be used as hardware 
platforms. Mobile devices are rich in sensors and the screen and speakers can be 
viewed as actuators. To this end, Android-based devices have been made 
compatible with ROS (B: CO2, CO11, CO24, wiki29). As an increasing number of 
hardware platforms is commercially available, the focus of robot development 
has been shifting from hardware towards software in some domains of robotics. 
Making a hardware platform compatible with ROS requires the specification 
and integration of various physical properties and functional features (G: PE2). 
  

 
 

Figure 20: NAO, a bipedal robot by Softbank Robotics30 

                                                
27 http://wiki.ros.org/nao – Package summary for NAO robot. 
28 wiki.ros.org/dji_sdk – Package summary for DJI onboard SDK. 
29 wiki.ros.org/android, wiki.ros.org/android_ndk – Package summaries for Android 
integration. 
30 Republished from the Softbank Robotics website at softbankrobotics.com with permission. 
Copyright (2018) Softbank Robotics. 
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Figure 21: DJI Matrice 100, a quadrotor for developers by DJI31 
 
The characteristics of combination concerning the physical embodiments that 
couple robot systems with their surrounding environments can be approached 
from the points of view of behaviour and software development. To begin, the 
physical embodiment of a robot system forms a boundary between the physical 
and digital, mediating the interaction between the physical environment and the 
computationally produced behavioural models. The physical world in which a 
robot system behaves is one of matter, motion and continuity, whereas the 
digital that produces the contingent behaviour is symbolic, computational and 
discrete. Combining and aligning the two is not without challenges (C: SE4). 
Sensors should measure the matters that are computationally tractable so that 
the behaviour of a robot system could be conditioned upon them, and, at the 
same time, the forms and functions of actuators and hardware platforms should 
comply with the requirements of tasks and contexts while also being 
controllable through computable means. To fulfil these requirements that 
emerge from environments and operations, a range of different hardware are 
put to use in the field of robotics to provide robot systems with appropriate 
embodiments. 
 

                                                
31 Republished from the DJI website at dji.com. Copyright (2018) DJI. 
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More than 200 hardware components, sensors, actuators and platforms are 
currently compatible with ROS. The members of the ROS community have 
developed hardware drivers for connecting the hardware-specific functionalities 
and firmware with the messaging and support channels of the ROS 
communication system (B: CO5). Using these drivers that are readily available 
and distributed as software packages, a range of hardware components can be 
incorporated into a ROS-based system with relative ease. About a half of ROS 
compatible hardware are sensors while the rest consists of actuators and 
hardware platforms. 
 
However, adding or changing hardware is not a simple plug and play operation. 
As discussed above, different sensors and actuators harness different physical 
phenomena and differ in their capacities with respect to the physical 
environment (C: SE4). Moreover, the types and formats of sensory readings, 
control commands and parameters as well as diagnostics data differ among 
hardware components and are not uniform nor strictly standardised. There are 
some commonalities around the interactional modalities, capabilities and 
physical properties, and this has given rise to some common conventions 
regarding the formats and types of data that are used when messaging with 
certain kinds and types of hardware (B: CO1). However, regardless of the 
conventions that facilitate the integration, developers are expected to remain 
cognizant of the underlying capabilities and limitations of the physical 
embodiments as well as their influence on the computational control of the 
behaviour of a robot system.  
 
The subsequent section focuses on the communication systems and describes 
their purpose, categories and characteristics of combination.  

6.2.3 Communication systems 

The theme communication system forms a foundational layer for setting up a 
robot system as a distributed cluster of computational processes. Whereas the 
physical embodiment couples a robot system with its environment, robot 
software couples sensors with actuators, mediating and transforming sensory 
inputs into meaningful actions. This requires an orderly integration of various 
computational processes, and the communication system plays an essential role 
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in this endeavour. The communication system consists of three categories, 
which are the messaging system, coordination systems and connectors.  
 
ROS is designed to facilitate the distributed development of distributed 
computation for robots and autonomous systems. Its basic architecture can be 
viewed as a network of interconnected computational processes (algorithms), 
where processes are interconnected through communication channels which 
send and receive messages in some agreed format and according to a certain 
communication paradigm. As illustrated in Figure 6 in the previous chapter, the 
basic architecture of the communication system can be conceptualised and 
visualised as a graph (network). The ROS graph defines the composition of a 
robot’s software system in terms of its computational processes (nodes) and 
their interactions (Quigley et al. 2009). While ROS provides a set of tools and 
methods to develop and operate robot software as distributed clusters of 
computational processes, it does not impose any standards on how different 
computational processes should be partitioned, arranged or how they should 
interact with each other (B: CO1, CO10). These are design choices which are 
contingent on the physical embodiment, task and context (as well as to an 
extent on the contents of reusable software packages). Developing ROS-based 
software can be seen simultaneously as a process that separates, distributes and 
combines computational processes (C: SE11).  
 
The messaging system carries out operational run-time messaging among 
distributed computational processes. For this interprocess messaging, ROS 
provides three different methods of communication: topics,32 services33 and 
actions34. First, topics are an asynchronous and unidirectional method of 
communication. A sending node transmits some specific message constantly at 
a certain frequency to all nodes that have subscribed to that particular topic. 
Using topics, sensors can transmit sensory data and measurements as a 
constant stream. Second, services provision a bidirectional and synchronous 

                                                
32 wiki.ros.org/Topics – Topics are named buses over which nodes exchange messages. Topics 
have anonymous publish/subscribe semantics, which decouples the production of information 
from its consumption. In general, nodes are not aware of who they are communicating with. 
33 wiki.ros.org/Services – Request / reply between modes is done via a Service, which is defined 
by a pair of messages: one for the request and one for the reply. 
34 wiki.ros.org/actionlib – The actionlib provides a standardized interface for interfacing with 
preemptable tasks. Examples of this include moving the base to a target location, performing a 
laser scan and returning the resulting point cloud and so forth. 
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method of communication, which is suitable for individual and discrete 
interactions between two nodes. A node sends out a service request to another 
node to perform a service and return a response. Third, actions provide a 
method to handle goal-directed action commands which unfold over longer 
periods of time, such as a command to grasp an object on the table or to move to 
some specific location or position. Actions are formed of a set of unidirectional 
topic streams, and they provide feedback of the status, progress and eventual 
completion of an action while facilitating the dynamic change of goals and 
cancellations of tasks. These three standard methods of communication provide 
software developers with the basic paradigms for setting up interactions among 
computational processes. Figure 22 (Quigley et al. 2009) provides another 
illustration of a network of computational processes.  
 
The methods of communication themselves do not define the format or content 
of transmitted messages. This is done using message35 and service36 types that 
define a format in which messages are transmitted and stored. Depending on 
the purpose of an interaction, message types may deal for example with stereo 
and depth images, maps, path plans, waypoints for a global positioning system, 
coordinates, velocities, commands to actuators or some other intermediate 
representations and so forth (Quigley et al. 2007). Approximately 75 common37 
message types exist for conventional messaging scenarios, such as sending raw 
sensor data or dealing with geometry and navigation. Figure 23 illustrates a 
common and simple message type that expresses a position and orientation on a 
two-dimensional manifold. If none of the existing message types is able to cater 
to the messaging needs, new ones can be created by combining primitive data 
types, such as strings, integers or floating-point numbers of different lengths. 
These primitive data types have no semantic meaning and they referred to as 
standard messages. The sending and receiving processes must conform to the 
same method and message type in order to ensure syntactic interoperability. 
The configuration of a messaging system can take a number of forms depending 
on the desired separation and combination of computational processes.  

                                                
35 wiki.ros.org/msg – Message description language for describing the data values (aka 
messages) that ROS nodes publish. 
36 wiki.ros.org/srv – Builds directly upon the ROS msg format to enable request/response 
communication between nodes. 
37 wiki.ros.org/common_msgs – Common_msgs contains message types that are widely used by 
ROS packages. 
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Figure 22: A ROS graph (Quigley et al. 2009)38 
 

 
 

Figure 23: Pose2D Message that expresses a position and orientation on a two-
dimensional surface39  

                                                
38 Reprinted from ROS: an open-source Robot Operating System by Morgan Quigley, Brian 
Gerkey, Ken Conley, Josh Faust, Tully Foote, Jeremy Leibs, Eric Berger, Rob Wheeler and 
Andrew Ng., ICRA 2009 Workshop on Open Source Software, 3/3.2, with permission. 
39 Republished from the ROS wiki at docs.ros.org. Creative Commons Attribution 3.0. 
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Coordination systems manage, coordinate and monitor the operation of a 
messaging system and computational processes; they handle the meta-data of a 
robot system and are used to manage and adjust system configuration 
parameters as well as to monitor the operational state and health of various 
hardware and software components. To this end, ROS provides a set of basic 
tools and methods. To begin, the start-up files with roslaunch40 and parameter 
server41 define and initiate a cluster of nodes, their interconnections and other 
parameters that constitute the run-time configuration of a robot system.  
 
Figure 24 presents a very simple example of a file that launches two nodes, 
Talker and Listener. The program publisher.py renders the process for the 
Talker node and subscriber.py for the Listener node, and the programs are 
located in the package Tutorials. Unlike this simple example, start-up files are 
often more complex. An advanced robot system may have over hundred nodes 
running in parallel, interacting in an intricate manner and according to various 
process and node specific parameters (that are excluded from this example).  
 
  <launch> 

  <node     
name = "Talker"  - Name under which the node operates in the ROS graph  
pkg = "Tutorials" - Package containing the program that renders the node 
type = "publisher.py" - Exact name of the program within the package 

  /> 
  <node  

name = "Listener"     
pkg = "Tutorials"   
type = "subscriber.py" 

   /> 
  </launch> 
 

Figure 24: A simple example of a ROS launch file42 
 

The names and types of messages nodes send and receive are specified in the 
programs that render them. As both sending and receiving nodes must agree on 
the type and name of a message, ROS enables the dynamic changing of message 
names for remapping connections without changing the underlying programs as 
long as the message types that defines data format and structure are congruent. 

                                                
40 wiki.ros.org/roslaunch – Roslaunch is a tool for launching multiple ROS nodes based on a 
launch file. 
41 wiki.ros.org/Parameter%20Server – Nodes use the parameter server to store and retrieve 
parameters at runtime. As it is not designed for high-performance, it is best used for static, non-
binary data such as configuration parameters. 
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In addition, other coordination systems are used to change system configuration 
parameters at run-time (dynamic reconfigure43) and collect and aggregate 
hardware diagnostics data (diagnostics44) (B: CO5). Similarly to the messaging 
system, there are conventions regarding the diagnostics messages45, yet new 
message types can be created if and when needed. The implementation of 
coordination systems varies from a robot system to another depending on the 
combination of the physical embodiment, computational processes and 
messaging system that constitute a robot system. Figure 25 illustrates data 
elements included in a standard diagnostics message.  
 

 
 

Figure 25: DiagnosticsStatus message for reporting the status of an individual 
component of the robot46 

                                                                                                                                          
42 Adapted from a ROS Python and launch file tutorial examples at wiki.ros.org 
43 wiki.ros.org/dynamic_reconfigure – The parameter server provides a means to change node 
parameters at any time without having to restart the node. 
44 wiki.ros.org/diagnostics – The diagnostics system is designed to collect information from 
hardware drivers and robot hardware to users and operators for analysis, troubleshooting, and 
logging. 
45 wiki.ros.org/diagnostic_msgs – Diagnostic messages which provide the standardized 
interface for the diagnostic and runtime monitoring systems in ROS. 
46 Republished from the ROS wiki at docs.ros.org. Creative Commons Attribution 3.0. 
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Connectors are used to make different hardware and software components and 
subsystems compatible with ROS so that they can be incorporated into the ROS 
messaging and coordination system as nodes. In brief, connectors are software 
libraries47 that can be used to envelop another piece of software so that it can 
establish messaging and coordination channels with other nodes in the ROS 
graph. Therefore, connectors are an indispensable part of the ROS 
communication system. Given the variety of computing hardware and 
programming environments, there are different types of connectors that can be 
used with different programming languages (e.g. Python, C++, Java, Matlab), 
microprocessor and microcontroller architectures (e.g. x86 and ARM) and 
operating systems, such as Linux Ubuntu (C: SE21) and Android (B: CO2, CO3, 
CO20). Different connectors and methods serve different scenarios ranging 
from functional software modules to hardware drivers (B: CO15, CO21), user 
interfaces (B: CO27), application programming interfaces and web-services (B: 
CO6, CO12) to name a few. Figure 26 illustrates the spectrum of connectors in 
terms of computing platforms and integration approaches.  

 
 

Figure 26: A categorisation of connectors in terms of computing platforms and 
integration approaches (B: CO15)48 

                                                
47 wiki.ros.org/Client%20Libraries – A ROS client library is a collection of code that makes 
many of the ROS concepts accessible via code. 
48 Republished from the 2013 ROSCon presentation Bridging ROS to Embedded Systems: A 
Survey by Morgan Quigley with permission. Copyright 2013 Open Source Robotics Foundation.  
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The characteristics of combination in the view of the communication systems 
highlight that computational processes can be distributed and combined in 
multiple ways at different levels of messaging and coordination. To this end, 
ROS provides methods, tools, software packages and libraries for setting up the 
software of a robot system as a distributed cluster of computational processes. 
Yet, while it provides an overall framework, it remains silent on how the 
network of computations, messaging and coordination should be arranged; the 
actual arrangement and integration of computational processes of a particular 
robot system remain contingent upon the requirements and design choices 
made during the development of a robot system. 
 
The subsequent section focuses on the computational processes in the view of 
transformation systems and describes their purpose, categories and 
characteristics of combination.  

6.2.4 Transformation systems 

The theme of transformation systems characterises much of information 
processing that is carried out in a robot system. A robot system continuously 
transforms sensory measurements into goal-directed behaviours in relation to 
the surrounding environment. Also, the physical embodiment of a robot system 
consists of parts which constantly move in relation to each other. The behaviour 
and motion set robot systems in stark contrast when compared to 
communication systems. Whereas the purpose of a communication system is to 
transfer data without distortions or delays, the purpose of a transformation 
system is to convert the inputs of one kind to the outputs of a different kind. In 
robotics, transformations typically deal with spatiality, perception, decision-
making and motion in three-dimensional spaces. This expands the focus on the 
processes that perform transformations on a variety of representations and 
types of data.  
 
The theme of transformation systems consists of two categories, which are 
named here as coordinate and representational transformations. The category 
of coordinate transformations concerns with the transformations between 
geometric coordinate frames, whereas the representational transformations are 
about the transformations between different representations of data in a more 



 

179 

general sense. As the two types of transformations are typically highly 
intertwined, this separation is analytical and not always readily observable.  
 
Coordinate transformations are about the alignment and transformations 
between different intrinsic and extrinsic geometric coordinate frames. Of the 
coordinate frames, the intrinsic refers to the coordinate systems within the 
embodiment of a robot system, whereas the extrinsic refers to the relationship 
between a robot system and its environment (E: TR3, TR8). These are not static 
relationships, and the continuity of motion and behaviour requires frequent 
transformations between a number of intrinsic and extrinsic frames (E: TR2, 
TR5, TR13). For example, for a robot system to compute the position and 
orientation of its gripper in a three-dimensional space in relation to its base at a 
given moment, time-stamped readings from relevant joint state encoders 
(sensors) need to be processed with reference to the structural characteristics of 
the embodiment (E: TR3, TR8). Figure 27 illustrates the kinematic structure of 
the NAO robot by Softbank Robotics. Similarly, the meaning and fusion of 
sensory data are predicated on the frame and time of reference. For example, 
when patterns recognised from camera images are combined and processed to 
condition the behaviour of a robot system, the accurate framing in terms of 
space and time is of paramount importance (E: TR3, TR8). 
 
ROS provides general methods and tools for setting up the systems of 
coordinate transformations. These revolve around the robot model definition 
(urdf49), transformations library (tf50) and some common conventions5152. The 
construction of a coordinate transformation system begins by defining the 
structural elements and characteristics of the physical embodiment of a robot 
system, including the core frame and body, joints and links along with their 
morphologic, geometric, kinematic and visual properties (E: TR1, TR9, TR14). 
These are specified in the Universal Robot Description Format, in an XML-file 
that is called urdf for short. Depending on the scope and level of details, these 
files grow in size and complexity, and the ROS community has developed tools 
to automate the process of model creation (E: TR9, TR14). 

                                                
49 wiki.ros.org/urdf – Package summary for Unified Robot Description Format (URDF), which 
is an XML format for representing a robot model. 
50 Wiki.ros.org/tf2 – Package summary for tf2 transform library. 
51 ros.org/reps/rep-0105.html – REP 105 Coordinate Frames for Mobile Platforms. 
52 ros.org/reps/rep-0120.html –  Coordinate Frames for Humanoid Robots. 
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Figure 27: The kinematic structure of a NAO robot53 
 
For example, a detailed model54 for the NAO robot pictured in Figure 27 may 
include some 2500 lines of definitions. Therefore, urdf is one of the central 
configuration files as it captures the properties of a physical embodiment and its 
articulation making it available for different computational processes. In doing 
so, it provides the parameters of a structural configuration for example to the 
processes that perform coordinate transformations (E: TR1), localisation and 
pose estimation (E: TR1, TR16), motion planning, collision checking (E: TR5), 
robot visualisation and simulation among others.  
 
Building upon the robot model definition, the transform (tf) library (Foote 
2013) provides tools and methods for embedding and performing coordinate 
transformations within computational processes. In addition, some other 
transformation software libraries have also been made compatible with ROS, 
such as the Kinematics and Dynamics Library (KDL55) form the Orocos project 

                                                
53 Republished from the ROS wiki at wiki.ros.org. Creative Commons Attribution 3.0. 
54 wiki.ros.org/nao_description – Description of the Nao robot model that can be used with 
robot_state_publisher to display the robot's state of joint angles. 
github.com/ros-naoqi/nao_robot/blob/master/ 
nao_description/urdf/naoV50_generated_urdf/nao.urdf. Creative Commons Attribution 3.0. 
55 wiki.ros.org/orocos_kdl – Package summary for the Kinematics and Dynamics Library (KDL), 
distributed by the Orocos Project. 
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and the Bullet56 physics library, among others. Furthermore, there are tools and 
methods to carry out intrinsic and extrinsic calibration to ensure the alignment 
of coordinate frames among the different parts of a robot system and in relation 
to its environment (E: TR4, TR12, TR17).  
 
Representational transformations are about the processes which transform 
data from some format or representation to another, and although they are 
highly intertwined with coordinate transformations, they can be viewed from a 
slightly different angle. Broadly speaking, they can be viewed as processes that 
transform sensory inputs into actions. This can be illustrated with a simple 
example of a transformation pipeline (B: CO1) that performs an action based on 
a particular visual input. At the beginning of the pipeline, a digital image is 
captured by a camera. Then, this image is passed on to a pattern and object 
recognition algorithm that tags objects in images based on certain features. 
Subsequently, these tags are passed on and used as an input in the process that 
triggers a particular task when it receives a certain tag. Then, this task is passed 
on as a command to the motion and trajectory planner, which then sends a 
more specific actuation command to the hardware controller that drives motors. 
In other words, a representation of data undergoes a gradual step-by-step 
transformation from a sensory input into a corresponding action.  
 
Individual steps of transformation can be distributed over different 
computational processes in multiple ways, even if the overall mapping between 
the initial sensory inputs and resulting actions would remain invariable. There 
are no hard and fast rules on how the overall behaviour of a system should be 
decomposed among different transformations, nor in which format the data 
should be passed from one transformation to another (C: SE11). However, 
developing chains of transformation every time from scratch would be a 
daunting prospect.  
 
To make software development easier, ROS offers reusable software packages as 
well as reference implementations and conventions on how to combine them. 
Currently, approximately 2000 ROS compatible software packages and 
frameworks are available through the ROS software distribution infrastructure. 

                                                
56 wiki.ros.org/bullet – Package summary for 3D Game Multiphysics Library provides state of 
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These packages offer a number of algorithms and functionality that cater to 
different needs. For example, OpenCV57, a computer vision framework, contains 
some 2500 algorithms for various image processing, machine learning and 
object and pattern recognition purposes (E: TR4), whereas Point Cloud Library 
(PCL58) provides algorithms for processing point clouds and depth images (E: 
TR4). OctoMap59 provides a framework for constructing three-dimensional 
occupancy grids in order to store and query spatial information (E: TR6). In 
turn, MoveIt!60 is a motion planning framework which combines a variety of 
algorithms and functionality for three-dimensional perception, motion 
planning, collision checking and other motion-related purposes (E: TR2, TR5, 
TR13). In addition, there are many other software packages, stacks and meta-
packages that produce different transformation or processing pipelines to cater 
some specific purposes, for example, to pre-process raw image61 or point cloud62 
data into useful inputs for vision algorithms (E: TRO4, TR7). Figure 28 
illustrates the central functionalities and components of the MoveIt! package at 
a high level, and Figure 29 depicts the high-level system architecture63 in terms 
of main processes and their interconnections. 
 
While the above presentation of the variety of representational transformations 
is superficial and cursory at best, and new software packages and libraries are 
constantly being developed, it, however, sheds light on the heterogeneity and 
complexity of robotics software that can be found among those 2000 software 
packages that are available through the ROS infrastructure.  

                                                                                                                                          
the art collision detection, soft body and rigid body dynamic. 
57 opencv.org; wiki.ros.org/opencv3 and wiki.ros.org/vision_opencv – Package summaries for 
interfacing ROS with OpenCV, a library of programming functions for real time computer 
vision. 
58 pointclouds.org; wiki.ros.org/pcl – Package summary for the point cloud processing with the 
Point Cloud Library. 
59 octomap.github.io; wiki.ros.org/octomap_ros – Package summary for octopmap_ros that 
enables a convenient use of the octomap package in ROS. 
60 moveit.ros.org; wiki.ros.org/moveit – Package summary for Meta package that contains all 
essential package of MoveIt! 
61 wiki.ros.org/image_pipeline – Package summary for the image_pipeline stack that preprocess 
raw camera images for vision algorithms: rectified mono/color images, stereo disparity images, 
and stereo point clouds. 
62 wiki.ros.org/laser_pipeline – Package summery for the laser_pipeline stack to preprocess a 
scanning laser rangefinder data. 
63 moveit.ros.org/documentation/concepts/ – MoveIt! motion planning and control 
architecture. 



 

183 

 
 

Figure 28: MoveIt! - Demystifying complexity (E: TR13)64 

 
 

Figure 29: MoveIt! system architecture65 

                                                
64 Republished from the 2015 ROSCon presentation MoveIt! Strengths, Weaknesses, and 
Developer Insight by Dave Coleman with permission. Copyright (2015) Dave Coleman. 
65 Republished from the MoveIt! website at moveit.ros.org. Creative Commons Attribution 4.0. 
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The observation of the characteristics of combination in the context of 
transformation systems brings forward a similar pattern that was observed in 
the context of communication systems. The software packages distributed 
through the ROS infrastructure provide frameworks and building blocks, 
subsystems and components, that can be combined when designing and 
building a robot system. However, these packages are not ready-made 
applications that could just simply be installed. Instead, they can often be 
viewed as end-product agnostic subsystems which can to an extent be combined 
to produce desired behavioural models for robot systems. In this light, it is not 
surprising that the possibilities and challenges of joining together different 
computational processes emerged as a unifying topic and concern.   
 
As transformations grow in size and become more convoluted, they become 
harder to understand. The next section focuses on visualisation and testing 
system, which are used to examine and verify the behaviour of a robot system. 

6.2.5 Visualisation and testing systems 

The theme of visualisation and testing systems concerns with the examination 
and evaluation of robot systems. This is often far from trivial considering the 
interdependent and intertwined nature of environments, tasks, physical 
embodiments, communication and transformation systems and the associated 
interactional complexity that unfolds over time and space. As it is not feasible to 
simply reason how a robot system would function in a spectrum of situations, 
developers use a range of digital methods and tools to examine the internal 
functioning and outward behaviour of a robot system. The theme visualisation 
and testing systems consist of three partially overlapping categories that cover 
the systems for visualisation, simulation and data management. 
 
Visualisation systems provide the methods and tools for rendering system 
configurations, embodiments, sensory data, message contents and motion on 
the computer screen. In general, the development of a robot system is a highly 
visual process. While very few of the analysed conference presentations were 
about visualisation tools as such, they were constantly on display. It appears to 
be challenging to convey or grasp an idea of any embodied behaviour as a series 
of multidimensional and parallel movements and motions without relying on 
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visual renderings. Through visualisation systems, developers can observe the 
functioning and behaviour of a robot system and examine what causes them to 
behave in a certain manner.  
 
For visualising, the ROS distribution provides Robot Visualiser (RViz66) and the 
RQT67 package for connecting ROS with the QT user interface framework. They 
reflect the heterogeneous and distributed structure of ROS-based robot software 
by facilitating flexible construction of visualisations that correspond to the 
structure of a particular robot system.  
 
RQT provides methods and tools to visualise and examine ROS graphs, nodes, 
messages, coordinate transformations and to plot, diagram and display data 
transmitted over messaging and coordination channels (F: VI6). Figure 30 
provides an example of an RQT dashboard that combines and presents run-time 
sensor data and system diagnostics. As visualisation tools take their input 
primarily from communication systems, the resulting visualisations are 
contingent not only on the features and properties that are of interest to the 
developers but mirror the architecture of computational arrangements. 
 

 
 

Figure 30: An example of an RQT visualisation dashboard68 

                                                
66 wiki.ros.org/rviz – Package summary for three-dimensional visualisation tool for ROS. 
67 wiki.ros.org/rqt – Package summary for a Qt-based framework for graphical user interfaces 
development for ROS. 
68 Republished from the ROS wiki at wiki.ros.org. Creative Commons Attribution 3.0. 
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RViz provides tools and methods for constructing three-dimensional 
visualisations by combining robot models (urdf), sensory data, control systems 
and other contextual information. Overlaying different representations on the 
screen can be used, for example, to provide a developer with an overview of the 
embodiment and state of a robot system, its view of the surrounding 
environment as well as the relation to the other objects, among other things. 
Developers can also interact with robot systems through the visualisations. 
Figures 31 and 32 illustrates RViz visualisations of the kinematic structure, 
motion and sensory data processing of robot systems.  

  
 

Figure 31: RViz visualisation of the kinematic structure69 and motion planning 
of robot systems (E: TR13)70 

 

 
 

Figure 32: Sensory data processing that shows data from a laser range finger 
with intensity information and resulting Octomap representation (Kohlbrecher 

et al. 2015, D: RS15)71 
 

Simulation systems are also widely used in the development of robot systems 
(F: VI1, VI8, VI12). Simulations are used to model and visualise physical 

                                                
69 Republished from the ROS news at news.ros.org, Creative Commons Attribution 3.0. 
70 Republished from the 2015 ROSCon presentation MoveIt! Strengths, Weaknesses, and 
Developer Insight by Dave Coleman with permission. Copyright (2015) Dave Coleman. 
71 Reprinted by permission from John Wiley and Sons, Journal of Field Robotics, Human-robot 
Teaming for Rescue Missions: Team ViGIR's Approach to the 2013 DARPA Robotics Challenge 
Trials, Stefan Kohlbrecher, Alberto Romay, Alexander Stumpf et al., copyright 2014 Wiley 
Periodicals, Inc. 
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features of target environments, the sensory inputs they provide, the behaviours 
of robot systems as well as the responses those behaviours may trigger in the 
target environment. This enables the development and cost-efficient testing of 
the software of a robot system against a virtual world before moving the code 
onto a physical robot and actual target environment (see Figure 33). As 
computational models, simulations also facilitate controllability and 
repeatability of experimentation, which is difficult to achieve in open-ended 
physical environments (F: VI14). This way, simulation provides a method to 
test, analyse and benchmark behavioural models and algorithms under different 
conditions and in different types of robots (F: VI14). In addition, simulations 
can be used in continuous integration testing to ensure that a change in some 
part of a robot system does not change the behaviour over a range of situations 
in an unplanned manner (E: TR5).  
 

 
 

Figure 33: Simulation illustrations from Team ViGIR’s approach to Darpa 
Virtual Robotics Challenge (Kohlbrecher et al. 2013)72 

 
OSRF also supports and coordinates the development of the Gazebo73 open-
source simulator (Figure 34, F: VI1, VI8, VI12), and Gazebo is well integrated 
with ROS. In addition, several other simulators have been made compatible 
with ROS (F: VI2, VI3, VI9, VI13, VI14). Some of them focus on specific 
application domains whereas others can be viewed as more general frameworks, 
each of them having their particular strengths and weaknesses. Figures 34 and 
35 illustrate some target environments, use cases and the types of objects and 
basic elements of which simulation environments can be constructed. Although 
object models and simulated worlds can be constructed with editors from the 
ground-up, object libraries facilitate the reuse of simulation objects and models 
making the building of simulation environments easier.  

                                                
72 Reprinted from 2013 IEEE International Symposium on Safety, Security, and Rescue Robotics 
(SSRR), Overview of team ViGIR's approach to the Virtual Robotics Challenge, S. Kohlbrecher, 
D. C. Conner, A. Romay, F. Bacim, D. A. Bowman and O. von Stryk. Copyright 2013 IEEE. 
73 gazebosim.org - The homepage of the Gazebo robot simulator. 
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Figure 34: Use cases and target environments for Gazebo simulations (F: VI1)74 
 

 
 

Figure 35: Simulation environments are constructed with editors from different 
simulation objects (F: VI1)73 

                                                
74 Republished from the 2012 ROSCon presentation The Gazebo Simulator as a Development 
Tool in ROS by John Hsu and Nate Koenig available at gazebosim.org. Copyright 2012 Open 
Source Robotics Foundation. 
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While simulations are beneficial, running a virtual robot in a virtual 
environment cannot replace physically grounded testing (F: VI15). Testing in 
simulation resembles more of a computer game than any real-world scenario.  
 
To reduce the reality gap, robotics companies and research organisations use 
physical simulation environments where they can run experiments in a 
physically grounded manner. Figure 36 illustrates the difference by contrasting 
a simple block model and physical simulation side by side.  
 

 
 

Figure 36: An example that contrasts a simple block model75 and physical 
simulation (F: VI15)76 

 
Data management systems are used to collect and manage test data. The 
systematic collection of sensory data and messages transmitted between 
computing nodes is essential for the purposes of testing and longer-term 
software development (F: VI7, VI15, VI16). Recording and storing the run-time 
data enables the replication of scenarios which could not otherwise be 
reproduced or rerun.  

 
With stored sensory data and messages, developers can rerun scenes and 
scenarios to develop and test software against rich data sets which represent the 
unfolding of previous real-life or test situations. In addition, such data sets can 
further be analysed and annotated so that relevant patterns and features can be 
extracted to develop algorithms and behaviours which are able to cater to a 
wider variety of situations (F: VI7, VI16). For the purposes of data collection and 

                                                
75 An example of a block model where a sonar sensor cone collides with an object instead of 
intersecting. Republished from the Gazebo website at answers.gazebosim.org/question/ 
16242/sonar-sensor-cone-has-a-collision/. Creative Commons Attribution Share Alike 3.0. 
76 Republished from the 2016 ROSCon presentation Physical Continuous Integration — CI on 
Real Robots! by Alex Henning with permission. Copyright (2016) Fetch Robotics. 
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management, the ROS communication system provides rosbag77 functionality 
for recording message streams from different communication channels and to 
store them into bag files (F: VI7, VI16). These streams can then be filtered, 
examined and replayed at a later point of time. 
 
Much of data storage, management, analysis and visualisation takes places in 
digital infrastructures and systems that reside outside a robot system, and there 
are companies that offer related technologies and services (F: VI16). In addition, 
there are public repositories where researchers and developers can store and 
their datasets and make them publicly available. However, the extent to which 
data can be shared is contingent on the structure of a robot system, the 
configuration of its communication system, message types and the distribution 
of computational processes in general. Therefore, while some sensory data 
recorded with common message types might be readily transferable across 
different systems, the interprocess data stored using customised and non-
conventional message types is often much less so. Similarly, changing message 
types and computing architecture during the development of a robot system 
may break the backward compatibility rendering the previously recorded data 
obsolete (D: RS11). 
 
The characteristics of combination concerning the visualisation and testing 
systems reflect the complexity and heterogeneity of robot systems; visualisation 
and testing systems are essential in the probing of multidimensional and 
temporal couplings within a robot system and in relation to its environment. As 
the multi-layered and continuous transformations are often convoluted and 
difficult to follow, the purer forms of reasoning and logic appear to give way to 
observation and experimentation. The characteristics of combination can be 
reflected through behavioural couplings and technological combinations.  
 
Behavioural couplings can be reflected in terms of the internal functioning and 
the outward behaviour of a robot system, yet it is worth to note that the two are 
intrinsically linked as the internal functioning leads to the outward behaviour. 
To observe and examine various behavioural couplings and relationships, 
visualisation systems are used to render internal and external representation of 

                                                
77 wiki.ros.org/rosbag - A set of tools for recording from and playing back to ROS topics. 
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a robot system, its behaviour and environment. In addition, simulation systems 
facilitate the controlled experimentation, whereas data management systems 
enable the recording, analysis and rerunning of different situations and 
outcomes. Visualisation and testing tools need to be able to combine elements of 
a robot system in multiple ways to expose different behavioural couplings. To 
this end, technological frameworks, visualisation and testing systems provide a 
variety of methods, tools, technologies and frameworks for developers to 
combine and construct visual displays and virtual worlds. For example, for 
simulation purposes, mock-worlds can be constructed from reusable building 
blocks that mimic target environments and their physical properties with 
varying degrees of reality. Furthermore, simulation systems offer flexible 
architectures upon which new simulation worlds, objects and dynamics can be 
developed. To absorb the heterogeneity and complexity that characterise not 
only robot systems but also their target environments, visualisation and testing 
systems manifest themselves even more open-ended, heterogeneous and 
complex than the robot systems whose behaviour they have been created to 
observe and evaluate.  
 
The dependence on the visualisation and testing system does not only tell that 
robot systems are difficult to reason about. It also shows how the methods and 
tools of system development reflect the expansion of the focus from human-
machine interactions to environment-machine interactions. As robot systems 
interact directly with the environment they are embedded in, developers cannot 
solely rely on their personal experience through the screen-based interaction as 
criteria in the evaluation of interaction designs. Instead, they will have to model 
and construct an environment against which the fitness of a particular 
behavioural model of a robot system can be examined and evaluated. This 
demonstrates the shift of focus in the design of interaction and the need for 
appropriate instruments for observing and making sense of these interactions.  

6.3 Robot systems as chains of transformation 

This section brings together the themes and categories discussed in the previous 
sub-sections and develops a conceptual model that illustrates how they are 
related to each other. The outcome can be viewed as a structural-functional 
model that conceptualises robots and autonomous systems as contextually 
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bound and embodied chains of transformation. The purpose of this is to make 
the relationships among the themes and categories explicit so that they can be 
analysed and theorised further. 

 
Figure 37: A conceptual model of a robot system (Own figure) 

 
A structural scheme of a robot system can be presented as a composition which 
comprises three thematic groupings, that is, physical embodiments, 
communication systems and transformation systems, as presented in Sections 
6.2.2, 6.2.3 and 6.2.4.  
 
Figure 37 illustrates how these thematic groupings are related to each other. 
Here, the conceptual model is sketched out as a stack-like structure, which 
presents an idealised and simplified composition of a robot system. First, the 
blocks on the bottom and the sides represent the physical embodiments which 
define the boundary of a robot system in relation to its environment. Sensors, 
actuators and hardware platform constitute the embodiment that allows a robot 
system to interact with the surrounding environment. In doing so, these 
embodiments mediate between the physical and digital matters. Second, the 
three blocks on the top of the communication system block represent a variety 
of transformation systems which perform transformations upon geometric 
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coordinates and other representations of data, and these transformations define 
the way in which sensory inputs are transformed into actions. Finally, the 
middlemost block represents the communication systems which connect the 
physical embodiments and different transformation systems to each other while 
also coordinating and monitoring their operations. The communication systems 
can be viewed as a unifying layer through which the distributed physical 
embodiments and transformation systems come to interact with each other.  
 
It is worth note that this illustration is limited in a few important ways. The two-
dimensional layered stack-like illustration does not expose the distributed and 
networked computing architecture of robot systems, as illustrated earlier in 
Figures 6 and 22 when the architectural principles of the ROS communication 
were presented. Also, the number of transformation systems is typically much 
higher than three and they may interact with each other in a highly intricate and 
parallel manner. In addition, sensors, actuators and platforms come in many 
different forms and configurations that transcend the rigidity of this illustration.  
 
However, the presented conceptualisation illustrates the main thematic 
groupings while showing how they are related to each other. The 
communication systems and related methods and tools can be seen as a 
foundational layer, and it also forms the unifying framework that brings the 
ROS community together. In turn, the physical embodiments and 
transformation systems show a greater degree of variety revealing the spectra of 
forms and functions that reflect the variety of contextual and behavioural 
requirements and couplings. These three thematic groupings in combination 
render the structure of a robot system.  
 
To elaborate this conceptualisation further, the structural focus presented above 
can be complemented with a functional one. For this purpose, it is beneficial to 
include the contextual embeddedness in the picture and bring forward the role 
of interactional and behavioural couplings as they play an essential role in the 
animation of robot systems. Thereby, the robot system and its constituent 
elements illustrated in Figure 37 are added with the layers that illustrate the 
contextual embeddedness and interactional characteristics of behavioural 
models. These additions are presented in Figure 38. 
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Figure 38: A contextually embedded model of a robot system (Own figure) 
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In terms of contextual embeddedness, the outermost band in Figure 38 
represents the environmental context within which a robot system is embedded. 
As discussed above with reference to the visualisation and testing systems in 
Section 6.2.5, the surrounding environment provides inputs that condition the 
behaviour of a robot system, and that environment, in turn, either accepts or 
rejects the actions the behavioural model of a robot system produces. Thereby, 
the context in which a robot system is embedded represents the ground truth 
against which its performance has to be evaluated. Even if robot systems are 
expected to operate autonomously on their own, they do not do so as detached 
entities but with respect to given goals and the environment they are embedded 
in. This highlights the importance of the interactional and behavioural 
couplings between the robot system and its surrounding environment.  
 
Interactional coupling refers to the capabilities of a robot system to interact with 
the surrounding environment. Robot systems differ from the ordinary screen-
and-keyboard based computers in that their spectra of modalities for carrying 
out interactions is much broader, and they are more holistically and directly 
coupled with their surroundings. In addition to the physical embodiments 
presented above, robot systems are also equipped with user interfaces (B: CO7, 
CO27) and often connected to digital infrastructures and cloud-based services 
(B: CO6, CO12). Whereas sensors measure selected features and states of the 
surrounding environment, a user interface provides a human operator with 
means to interact with a robot system and monitor task execution. In addition, 
connectivity enables access to other services and sources of information, such as 
to mapping and object recognition data and services and other relevant 
information infrastructures. In turn, whereas actuators carry out physical 
actions by exerting forces, sensory and transactional data can also be fed back to 
different information systems and cloud-based services. Therefore, when 
conceptualising the interactional modalities of a robot system, it is necessary to 
include not only the physical embodiments but also other forms of digital and 
human interaction and information exchange. These different modalities of 
interaction in conjunction form a set of system boundaries in a broader and 
more distributed sense, taking into account different physical and digital 
domains with their respective purposes, affordances and constraints. The 
configuration of interactional modalities can be considered to define a degree of 
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interactional coupling between a robot system and its environment. In doing so, 
it also defines the information space within which the computational processes 
that produce the behaviour of a robot system operate. Therefore, while the 
modalities and degree of interactional couplings define the scope of 
interactions, they also define the informational boundaries and foundation 
upon which computer-controlled behavioural models can be constructed. 
 
A behavioural coupling builds on the interactional coupling and is concerned 
with the capacity of a robot system to produce desired and appropriate 
behaviour. The notion of behavioural coupling refers to the extent to which a 
behavioural model is able to transform particular inputs to meaningful actions 
with respect to a given task and context. As discussed with reference to the 
communication and transformation systems in the earlier sections, behavioural 
models are produced by the interconnected computational processes that 
animate the embodiment of a robot system. As these computational processes 
reside in the middle of an embodied set of interactional couplings which are 
contextually embedded and bound, the degree of a behavioural coupling is not 
only context-dependent but also predicated on the degree of interactional 
couplings that mediate the interaction between the computer-controlled model 
of behaviour and surrounding environment.  
 
The technological combinations that produce the interactional and behavioural 
couplings can be conceptualised as chains of transformation. This concept of 
the chains of transformation highlights the functional and organisational 
properties that characterise complex digital innovation in the context of robots 
and autonomous systems. The notion of transformations brings forward the 
presence of computational processes which transform inputs to outputs that are 
qualitatively different, whereas the notion of chains refers to the communication 
system whose purpose is to replicate data between different processes of 
transformation (nodes) without any distortions or delay. In conjunction, they 
present the structure and functioning of computer-controlled models of 
behaviour as distributed, interconnected and stepwise transformations whose 
purpose is to transform inputs into actions. This analytical difference between 
the processes of replication and transformation brings forwards and explains 
the differences reusability, composability and verifiability among different 
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software packages. Overall, the processes of replication appear more 
generalisable than the processes of transformation. 
 
Furthermore, wrapping the layers of contextual embeddedness and 
embodiment around the chains of transformations shows that robots and 
autonomous system can be viewed as contextually bound and embodied chains 
of transformation. This addition seeks to highlight that the specificity of designs 
emerges from the contextual binding which renders the backdrop against which 
the interactional and behavioural couplings are constructed and evaluated. This 
gives rise to nested and multi-faceted arrangements that bear significant 
implications to the organising logic of complex digital innovation. 
 
To conclude, Part 1 of this chapter has outlined an answer to the operative 
research questions that set out to identify the instances of subsystems and 
combinations and their respective characteristics. The process of thematic 
analysis condensed the documentary evidence to six salient themes. Of the six 
themes, five have now been described and discussed here in terms of their 13 
constituent categories and elaborated to a model that conceptualises the 
structure and functioning of robots and autonomous systems. This structural-
functional conceptualisation is one of the outcomes of this research. The 
subsequent Part 2 of this chapter shifts the focus on the primary research 
question and it is approached in the light of the conceptualisation presented in 
this part.
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Part Two 
 
 

The generative-integrative mode of development: 
From components to compositions 
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6.4 From components to compositions 

This section examines how the tensions between the specificity of designs and 
distributedness of knowledge and control unfold in the development of robot 
systems. The purpose of this is to provide an answer to the principal research 
question, which asks how the tensions between the two can be resolved. The 
examination builds upon the themes and conceptualisation that have been 
developed in the preceding sections and combines them with the observations 
and data from the field notes and interviews.  
 
The subsequent section describes and discusses the theme ROS community and 
software development and related categories. After this, the transferability and 
reusability of software packages are discussed before describing the systems 
development process that is conceptualised as a generative-integrative mode of 
development. The process sheds light on how the tensions between the 
specificity of designs and the distributedness of knowledge and control are 
reconciled. Then, the final section elaborates the role of under-specification and 
constructive ambiguity in this process before the closing of the chapter.  

6.4.1 ROS community and software development 

The theme of the ROS community and software development revolves around 
the software development in the context of robot systems, the reuse of software 
packages in the ROS community and the transfer of technological knowledge. 
One of the founding principles of ROS is to facilitate the reuse of robotics 
software in order to pool resources and share knowledge among the community 
members. As an open-source community, ROS facilitates voluntary 
participation in the absence of a central design agency and strict rules. 
Community members can make use of the ROS communication system and 
other software packages and resources as they see fit. Also, they can share their 
own code with other community members, maintain and fix bugs in existing 
software packages and contribute to the ROS ecosystem or domain-specific 
groups according to their interests (C: SE7, SE10, SE27).  
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This theme consists of two categories, the tools and infrastructure and the 
knowledge transfer. However, considering that the purpose of tools and 
infrastructure is also to transfer knowledge, these two categories are related. 
The analytical difference between the two is made on the grounds that the 
category of tools and infrastructure deals with the technological elements 
related of the software development and community, whereas the category of 
knowledge transfer is related more to the social and organisational elements. 
 
The category of tools and infrastructure refers to the functionality and services 
that facilitate software development and distribution in the ROS community. As 
mentioned earlier, the listing78 in the ROS wiki shows that approximately 2000 
software packages are available through the ROS software distribution 
infrastructure, consisting of the ROS communication system, various 
transformation systems, hardware drivers, development tools and visualisation 
and testing systems. 
 
The source code of different software packages distributed through the ROS 
infrastructure is not hosted in a single repository. While the source code of the 
core ROS and the central components and tools are managed and hosted by 
OSRF, the packages and source code that have been developed and made 
available by the community members are hosted in a distributed manner in the 
code repositories that may belong to commercial organisations, research 
institutes, universities and individual contributors alike. With this arrangement, 
the original developers can retain the control over their packages and source 
code even if they are willing to share and distribute it through the ROS 
infrastructure. 
 
In order to make ROS distributions and packages available to the wider 
community, OSRF manages and runs a centralised build system79 and software 
distribution infrastructure80 (C: SE28). The ROS software distribution 
infrastructure gathers, compiles and distributes software from approximately 
150 different repositories at the time of writing. To this end, the ROS framework 

                                                
78 www.ros.org/browse/list.php – the website that lists publicly available packages, which are 
distributed through the ROS infrastructure. 
79 wiki.ros.org/catkin – Build system and infrastructure for ROS. 
80 wiki.ros.org/build.ros.org – The public build farm is used to build binaries of the core ROS 
packages and any open source packages released by the community. 
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includes a custom-made build system that facilitates the compilation, packaging 
and distribution of code that resides in different code repositories and is written 
in different programming languages (C: SE13).  
 
While the distributed hosting of source code shows how the knowledge and 
control of different technologies and software are distributed across the ROS 
community, it also shows that different software packages do not adhere to any 
single versioning system, particular release cycles or a project plan (C: SE16, 
SE29). ROS software is created and developed in a decentralised manner, yet, 
regardless of this distributedness of knowledge and control, the centralised 
build system brings together the code from different repositories making it 
available to the wider community in a centralised manner.  
 
This has implications on the characteristics of combination. The decentralised 
development and asynchronous release cycles may affect negatively to the 
stability of software releases (C: SE29). OSRF develops and maintains the core 
components and functionality of ROS, including the communication and 
coordinate transformation frameworks and some development tools, and it 
avoids doing changes to the core components within the bounds of yearly 
releases81 to ensure their stability and interoperability. However, the packages 
which are not the part of the core distribution tend to be subject to more or less 
frequent or unannounced changes. Their developers and maintainers (C: SE10) 
control the source code and carry out changes to their code according to their 
needs and plans (E: TR13). As changes to the code are picked up, compiled and 
shared by the centralised build and distribution infrastructure in a piecemeal 
manner, the software distributed through the ROS infrastructure can be said to 
follow a rolling strategy of release, which produces small and sporadic changes 
(C: SE29). Although this allows parallel and uncoordinated development, the 
lack of coordination may lead to instability and incompatibility if and when the 
packages which depend on each other are changed asynchronously. This rolling 
release of software packages that unfolds according to the needs and schedules 
of individual developers is not ideal from the point of view of robot system 
developers (C: SE29). In the end, the elements that constitute a particular 
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instance of chains of transformation should be compatible with each other for a 
robot system to function, and any unplanned and unannounced changes to any 
of the elements in the chain may prove detrimental.  
 
To protect against inappropriate changes that remain outside the control of the 
developers of a robot system, the developers typically run and control their own 
robot-specific source code repositories, build systems and software distribution 
channels (C: SE13, SE16, SE22, SE23, SE28, SE29) for managing and compiling 
the code that is being developed and tested for a particular robot system. 
Separating a robot-specific codebase from that of the general ROS distribution 
allows the developers to evolve particular parts and stacks of robot-specific code 
gradually and according to their particular needs without it having any direct 
implications to the main distribution, unless the changes are incorporated into 
the source code the main branch. Furthermore, the organisations that develop 
productive applications on the commercial grounds may not want to share their 
core assets and intellectual property freely as open-source with their customers 
and competition (C: SE16, SE23). 
 
Therefore, whereas robot system developers can make use and build upon the 
software packages distributed in the ROS community, they also must protect 
their codebase against untoward outside influences and guard their intellectual 
property to maintain the competitive advantage. This way, the public and 
private spheres of software coexist and evolve asynchronously. The publicly 
available software packages and source code are combined and integrated into 
compositions that are specific to a particular robot system, and every now and 
then selected changes can be pushed and incorporated to the main branch of the 
source code of a software package.  
 
The category of knowledge transfer refers to the social and organisational 
efforts and initiatives to transfer knowledge concerning software packages, their 
underlying technologies and potential scenarios of use. To consolidate 
knowledge on software packages and robot software development, the websites 
wiki.ros.org, answers.ros.org and the ROS-related discussion forums provide 

                                                                                                                                          
81 wiki.ros.org/Distributions – A ROS distribution is a versioned set of ROS packages. The 
purpose of the ROS distribution is to allow developers work with a relatively stable codebase. 
Therefore, once a distribution is released, OSRF tries t o limit changes to bug fixes and non-
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the venues for documentation, peer support and general discussion. 
Wiki.ros.org provides a place for the general documentation of ROS, software 
packages, tools and methods in terms of their functionalities and installation, 
and answers.ros.org is a discussion forum that provides peer-support 
concerning the technical implementation challenges. In addition, some of the 
common conventions used within the ROS framework are documented in the 
form of ROS Enhancement Proposals82. In turn, general discussion regarding 
the ROS community takes place on discussion forums and email lists, whereas 
the ROSCon conferences bring people together on a yearly basis.  
 
In addition to the community-wide venues of knowledge transfer, several local 
events and more targeted activities are also organised. Local events and training 
serve regional and more targeted needs, and there are also multiple subdomains 
and interest groups (C: SE26, SE27). They seek to pool their resources and 
knowledge around particular areas of interest, for example around specific 
application domains such as industrial manufacturing, agriculture and military, 
or around particular technologies such as quadrotors, hardware drivers, ROS2 
or running ROS on embedded devices. This way, the category of knowledge 
transfers represents the social and organisational side of the ROS community as 
the community seeks to make ROS more readily usable and accessible to the 
wider audience.  

6.4.2 Transferability of software and knowledge 

The observed diversity of the ROS community raises a question to what extent 
different software packages are readily transferable across different robot 
system or domains of productive applications. In the end, as discussed earlier, 
roboticists work on a rainbow of use cases and environmental contexts. This 
renders the community highly heterogeneous while the knowledge and control 
of different technologies are distributed among the community members 
without any centralised design agency. This section sheds light on this matter by 
drawing on the observations and discussions in the events and interviews as 
listed in Appendices H and I.  

                                                                                                                                          
breaking improvements for the core packages (everything under ros-desktop-full). 
82 www.ros.org/reps/rep-0000.html - Index of ROS Enhancement Proposals (REPs). 
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The extent to which software packages are transferable across different robot 
systems and domains of productive applications vary significantly. This matter 
was often discussed along the lines of the dependency on physical 
embodiments, the contextuality of behaviour and the partitioning of chains of 
transformation as well as the underlying objectives of robot software research 
and development.  
 
The dependence on the physical embodiments was one of the commonly 
mentioned aspects in relation to transferability. The physical groundedness of 
data and computation is condensed in the quotation from an interview below.  
 

“[G]athering experience means that you need to have an embodied system for 
your data to be somehow meaningful.” (I: IN1) 
 
The data a robot system processes and operates upon represents its 
embodiment, environment and behaviour in terms of a variety affordances, 
capabilities and constraints. Thereby the experimental and observational data a 
robot system produces for the purposes of research and development is highly 
embodied and context-dependent. This has implications to the transferability of 
research results, as expressed in the quotation below: 

 
“I think the big challenge that robotics has at the moment is reproducibility. 
Because, a lot of the time people developing their own systems, their own 
hardware as well as their own software independently of each other, and it 
makes total sense to do that because you have the expertise and you are 
looking at the particular effect, but it makes it very hard to share things 
between different labs. So, to be able to create a larger and more integrated 
system that is able to solve more than the particular problem that you are 
trying to solve, that's where the challenge is, how to integrate, how to share 
results.” (I: IN1) 
 
However, chains of transformation are developed not only with reference to 
physical embodiments of a robot system but also with reference to tasks and 
task environments. They implement behaviour and functions that are derived 
from the characteristics of a task and from the environment in which the task is 
going to be performed, and the fitness of any particular behaviour is defined by 
the overall context in which the performance takes place.  
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In order to make software transferable, the question remains on how and 
according to which logic should contextually bound and embodied chains of 
transformation be partitioned to generalise different pieces of the behavioural 
logic so that they could be transferred and recombined in order to produce other 
robot systems? When the overall behavioural model developed with reference to 
a particular robot system is partitioned into separate algorithms and software 
packages, the resulting packages tend to come to carry the embedded 
underlying design criteria and implicit system-wide assumptions. This way, 
software packages that originate from different sources do not necessarily share 
the same underlying design assumptions or quality criteria (B: CO1, C: SE03, 
SE9, SE11, SE12). The assumptions may differ for example in terms of the 
affordances and limitations of physical embodiments, the semantic meaning 
and use of message types in the context of the ROS messaging system, expected 
service levels for real-time operations, error handling, the level of testing or 
documentation among others. All this may hinder the reuse of packages when 
they are collected and distributed in a piecemeal manner from heterogeneous 
sources. Against this backdrop, it is not a surprise that the challenges on the 
replication and reproducibility of research results and the reusability of code 
have recently become under scrutiny in the field of robotics (Antonelli 2015). 
Researchers have started calling for greater transparency on testing methods to 
ensure the reproducibility of research results (Bonsignorio & del Pobil 2015).  
 
The objectives of robot software research and development may also hinder the 
production of transferable software. When the distributed software derives from 
an academic research project, the authors of the code may not exert excessive 
efforts to abstract and generalise the code to maximise its transferability and 
reusability (B: CO1, SE9, SE11, SE12). In the end, the objective of a research 
project is often to produce some novel technology, algorithm or a proof of 
concept which can be published in an academic journal. Researchers are rarely 
incentivised to deliver and maintain readily transferable, robust and reliable 
code. Furthermore, it is important to note that the development of algorithms 
and the engineering of software are different problems. When probed by the 
author in a robotics conference reasons for this, the answer was “you cannot 
create software if you do not have an algorithm first”. This was also echoed in 
one of the conference presentations (B: SE9) which highlighted that while 
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graduate students may generate a lot of code, they are not software engineers 
and often do not maintain the code after graduation. However, others may pick 
up the previous work if they find it useful and develop it further according to 
their needs. Regardless of this, it must also be noted that some research 
laboratories and institutes seek to develop and package their software in a way 
that makes their contributions more readily transferable and reusable, this 
being especially the case with domain and function specific software packages 
(E: TR2, TR5, TR13) where the overall structuring of tasks and task 
environment is somewhat known (C: SE26, SE27).  
 
In this light, it is not surprising that robotics researchers are often more focused 
on the development of algorithms than software engineering, and that the scope 
and quality of the distributed software packages may vary to a great extent. 
Whereas research robots are created to produce novel technologies and proofs 
of concepts, turning them into productive applications and commercial 
innovations often requires further development to increase reliability, 
robustness and transferability (SE8).  
 
Regardless of the challenges surrounding the transferability of research 
outcomes and software packages, ROS clearly demonstrates that to a certain 
extent software can be transferred across robot systems and use cases. To 
explore this further, it is beneficial to take a look into the stability and centrality 
of software packages in terms of the themes and categories presented in Part 1. 
 
According to the Community Metrics Report83, ROS software packages related 
to the communication system and development tools are most downloaded. 
This is not surprising since the ROS communication system provides the 
common methods and tools for constructing a robot system as a distributed 
computer, and this is where the many of the needs and requirements from 
different domains of robotics converge. Thereby, the packages that constitute 
the communication system show a great degree of transferability and 
reusability. This seems to apply also to the software development tools and 
methods that are used in the visualisation and testing of robot systems. 
 

                                                
83 wiki.ros.org/Metrics – ROS Community Metrics Reports. 
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Whereas the communication systems are used to establish interconnections 
between computational processes, the coordinate transformation systems are 
used to define and compute the structure and articulation of the physical 
embodiment. The needs and requirements in this area also converge to an 
extent, and these central packages are also developed and maintained by OSRF.  
The robot model (urdf) and the library for performing coordinate 
transformations (tf) provide the methods and tools to define the structural 
elements, relationships and properties of the physical embodiment that 
compose a robot system and carry out coordinate transformations. While these 
packages are transferable and reusable (E: TR1, TR3, TR8) to a large extent, 
they are not applicable to all scenarios. Therefore, alternative models and 
methods have been developed and made compatible with ROS (E: TR9, TR14, 
TR15) to overcome the limitation of the core packages. This way, whereas the 
coordinate transformation systems are also transferable and reusable, they 
show a greater degree of variety than the communication systems and 
development tools. 
 
In contrast to the messaging and coordination transformation systems, the 
physical embodiments and systems of representational transformations show 
much greater variety. As discussed in Part 1 with reference to the physical 
embodiments, hardware makers produce a variety of sensors, actuators and 
hardware platforms that offer different modalities of interaction in response to 
the variety of tasks and task environments. Similarly, there is also a plethora of 
algorithms and software packages available to produce a variety of 
representational transformations that might be needed when developing a 
particular model of behaviour for a robot system.  
 
Based on these observations, the needs and requirements tend to converge in 
relation to the communication systems, development tools and coordinate 
transformation systems while they diverge on the physical embodiments and 
representational transformation systems. This indicates that the reusability and 
transferability of software packages are not simply a binary matter, but vary 
according to the purpose, functional characteristics and origins of a package.  



 

208 

6.4.3 Generative-integrative mode of development 

Based on the conceptualisations, themes, categories and characteristics of 
combination presented in the previous sections, this section presents and 
outlines the concept of generative-integrative mode development to 
characterise the process of robot system development.   
 
Although ROS facilitates the interconnection, distribution and reusability of 
software packages, it does not enforce any particular methods or standards on 
how distributed computational processes should be partitioned, arranged or 
interact with each other (B: CO1). While there are some common conventions, 
ROS provides the developers with flexibility to proceed in a way that best suits 
their particular needs. To an extent, packages can be combined in different ways 
and the open source code allows developers to modify the code when that what 
is already available does not serve their needs. While this flexibility is often 
brought forward as one of the main benefits of ROS (H: EO4), the lack of 
standards is also seen to hinder the efforts of reuse (H: EO3, EO9, EO10).  
 
Moreover, while ROS and other robot software development frameworks are 
frequently referred to as and discussed in terms of platforms, they typically lack 
the essential characteristics of a platform. In particular, they are not platforms 
when a platform is understood as a singular stable core component that 
provides clear boundary resources, interfaces and rules upon which applications 
could be built and components connected (Eaton et al. 2015; Baldwin & 
Woodard 2008). ROS is not an operating system in the traditional sense of the 
word but a framework for developing robots and autonomous systems as 
distributed computation.  
 
In this context, software development can be seen to unfold as a process that 
can be labelled as a generative-integrative mode of development. As discussed 
in Section 3 (6.3), the design and development of a robot system begins from 
the evaluation of the context. To equip a robot with sufficient interactional 
modalities, an appropriate physical embodiment has to be selected or 
constructed. After that, the development of a behavioural model as chains of 
transformation can proceed. To construct these chains of transformation, the 
developers often seek to reuse and combine existing software since it provides 
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access to a wide body of technological knowledge while decreasing the 
development time and the need for development resources.  
 
The development of meaningful and reliable behavioural models requires 
careful combination and integration of the physical embodiments, 
communication systems and transformation systems. A common approach to 
begin the development work is to combine the first version of a robot system 
from the software packages that are already available and readily interoperable 
(RS18). In this approach, the developers first carry out the initial design and 
functional (de-)composition based on the task and task environment specific 
requirements, and then identify the functions and packages which in 
combination are seen to provide an appropriate starting point for further 
development. Subsequently, the developers combine these different packages to 
create the first working version of a robot system. While this generative 
combination produces the first version, it cannot be considered as a finished 
product. Instead, it serves as a starting point providing the embodied system for 
experimentation and data collection that is necessary for further development.  
 
With the first version in place, the developers can start working on the 
integration of the behavioural model and focus primarily on the areas that are 
seen most beneficial in terms of the objectives of their project. These integration 
efforts can be viewed in terms of internal composition and outward behaviour 
since the developers attempts to integrate the behaviour of a robot system better 
with its task and task environment are reflected in the internal composition and 
interactions within the chains of transformation. Although the integration 
occurring after the generative combination seeks to produce a well-functioning 
and integrated whole, it is not always a straightforward process and may require 
significant modifications to the initial combination. Figure 39 illustrates 
figuratively how Team Delft combined and integrated the components from the 
MoveIt! motion planning and controlling package with their custom-made 
components to come up with the chains of transformation that served their 
particular purposes in the Amazon Picking Challenge. 
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Figure 39: Team Delft’s implementation of MoveIt! for Amazon Picking 
Challenge (D: RS19)84 

 
Moreover, while ROS provides a number of reusable and transferable packages, 
the cost of search and verification increases as packages become more purpose-
specific (H: EO4). Finding and testing software packages requires time and 
resources even if the packages would be nominally free of charge. They may not 
always be well documented and might be of low quality, requiring further 
debugging, development and testing or even complete reimplementation of the 
underlying idea (EO3, EO4). Furthermore, as different software components 
and packages do not necessarily share the same underlying system-wide design 
assumptions their integration might be challenging or even impossible in some 
occasions, even if they appear to be compatible at a first glance. Of course, much 
of this can be overcome by rewriting a package or modifying selected parts of 
the code if the source code is publicly available, but this should not be 
overlooked as it may require significant time and effort.  
 

                                                
84 Republished from the 2016 ROSCon presentation Plan to Win with MoveIt! - Lessons learnt 
from the Amazon Picking Challenge 2016, copyright (2016) Mukunda Bharatheesha, with 
permission. Images on the slide are from dx.com and northerntools.com.  
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The role of underlying assumptions was also brought forward by the Team Delft 
as they summarised the lessons they learned when preparing for the Amazon 
Picking Challenge. They condensed the challenges of the contextual binding and 
implied assumption as follows: “Gravity is a heartless entity!”, and 
“Assumptions bear the roots of all disasters!” (D: RS19).  
 
In a similar manner, the integration challenges related to the generative 
combination were highlighted by a robotics researcher in one of the interviews: 
 
“If you build an integrated system, then [you] tend to know what all the 
different kinds of components are doing. Some people think that you can plug 
things just together and get some emergent behaviour come out. Maybe it's 
true and maybe it's not. It depends very much if you are lucky or not.” (I: IN1) 
 
However, another interviewed researcher (I: IN2) told that she used ROS-based 
software and components as black-boxes concentrating only on the behaviour of 
the algorithms that were of her primary research interest. Although the rest of 
the robot system offered her with an embodiment against which to carry out her 
research, she emphasised of not being in the business of developing robots but 
studying the behaviour of particular machine learning algorithms.  
 
The reusability and compatibility of different software packages emerged 
frequently throughout the research. In the end, the both version of ROS have 
been designed to facilitate the reuse of robot software, yet it does not enforce 
any particular standards (B: CO1). As long as the computational processes agree 
on the message type, paradigm and name of the connection, they are able 
exchange messages, yet the ability of any two nodes to exchange messages does 
not imply that they share the semantic meaning of the message or that a 
syntactically valid and successful interaction would produce meaningful 
behaviour at the system level. The difference between the syntactic and 
semantic compatibility and the system level functionality is manifested by the 
prominence of the visualisation and testing systems. Even if a robot system 
would be functional and working in a purely syntactic and technical sense, its 
behaviour with respect to its task and task environment can be lacking. In 
addition to the syntactic compatibility, the semantic compatibility among the 
interconnected transformations needs to be increased so that the 
transformations in combination would produce the desired behaviour.  
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Robot system developers evaluate the level of behavioural coupling and 
semantic compatibility using simulations and physical robots. With the 
simulation systems, developers are able to run controlled experiments in a cost-
efficient manner before beginning the testing with the physical robots. As the 
simulated worlds are compositions of computational simulation objects and 
models, their usefulness and reliability are predicated on how closely they have 
been crafted to resemble and model a particular task and task environment. 
Regardless of the inevitable reality gap, they provide the methods and tools to 
evaluate and examine different models of behavioural and to work towards the 
higher levels of semantic compatibility. Once the appropriate levels of 
behavioural coupling and semantic compatibility have been reached in 
simulation, testing and development can proceed with the physical robots in the 
actual task environment. As the actual physical environments are more open-
ended than their simulated counterparts, it is not uncommon for a robot system 
to perform better in simulation than in the actual environment. However, while 
the open-endedness of the physical environment provides the environmental 
and operational variety necessary for well-grounded testing, it is also 
challenging to reproduce (F: VI15). To ensure the reliability and robustness of 
behavioural models over a range of situations, testing and development in both 
simulated and physical environments are often needed.  
 
Based on these observations, the generative-integrative mode of development 
can be conceptualised as a process that begins with the initial generative 
combination of the physical embodiments and software packages and then 
continues with the subsequent iterative and cyclical process of gradual 
integration with an aim to compose a robot system that produces meaningful 
behaviour. Once the first working version of a robot system is functioning, it can 
be used to gather experiences and observations that are necessary for 
composing a well-crafted and dependable model of behaviour.  

6.5 Under specification and constructive ambiguity 

The generative-integrative mode of development illustrates the challenges that 
revolve around transferability and reusability of software packages, yet the wide 
uptake of ROS demonstrates that this does not prevent from making use of what 
is already available. As discussed above, ROS does not enforce any particular 
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standards. The software packages that originate from the community may not 
be fully compatible with each other, even if they would be able to exchange 
messages with each other through the ROS communication system. Therefore, 
the question remains on what grounds software is then transferred and reused? 
The tentative answer to this question is the under-specification of 
interconnections which can be viewed as constructive ambiguity, even if this 
may seem as a questionable practice.  
 
The interconnections and operational run-time messaging between the ROS 
nodes are performed through the messaging system. For this to happen, the 
coordination system starts nodes, making them to establish interconnections 
according to a system configuration that is specified in a start-up file. The 
composite behaviour that is produced through the distributed computation 
materialise only at the run-time when the system is operational and the 
interactions between the nodes occur. In turn, when the system is stopped, and 
no interactions between the nodes occur, its systemness disintegrates to a set of 
unconnected software components until the interconnections are reanimated.  
 
The interconnections between the nodes are based on data exchange according 
to a particular message type and method of communication. The specification of 
these inter-node connections can be viewed as under-specified and partial 
considering that the syntactic specification of a message type and method of 
communication does not extend to the semantic, contextual and behavioural 
aspects of a composition at the level of a robot system. Even if there are some 
common conventions85 and practices that inform how robot systems can be 
designed and developed to ensure broader compatibility and interoperability 
among software packages, in general, the lack of the explicit specification of 
various non-interface design parameters does not expose the system-wide and 
contextual assumptions that may underlie the design of a particular component. 
As the interconnection-level specification often does not capture all design 
variables and assumptions, the compatibility over the interconnection can be 
viewed as under-specified.  
 

                                                
85 www.ros.org/reps/rep-0000.html – Index of ROS Enhancement Proposals (REPs). 
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The under-specification enables constructive ambiguity as it allows developers 
to overlook certain non-interface design parameters. While this facilitates the 
production of generative combinations, it does not necessarily produce well-
behaving systems. The under-specification often necessitates additional design, 
development and testing in order to craft and integrate components into a 
composition that satisfies specific requirements of behaviour and robustness, 
yet these multi-faceted engineering and adjustment efforts tend to be 
convoluted and may still not result in the desired outcome (H: EO11). Whereas 
this flexibility can be leveraged and managed in the context of research and 
development, it poses challenges in the view of mission-critical and commercial 
applications. The lack of precise specifications rarely renders the level of 
reliability and verifiability that is required in mission-critical and other high-
performance applications. 
 
The benefits and drawbacks of under-specification emerged in various occasions 
and guises during the course of the research. It was entirely possible to hear 
completely contradictory commentaries concerning the profitability of the 
under-specified approach. While others highlighted that the reuse and 
transferability had reduced significantly the costs of software development (I: 
IN4), others pointed out that simply circulating and amending pieces of 
software around does not create a solid foundation for software reuse nor does 
it encourage the use of systematic software development practices as developers 
tend to gravitate to start from what is already available regardless of its quality 
and usefulness (H: EO4). This was summarised by a robotics professor (H: 
EO8) along the following lines: 
 

“ROS is standard, and everybody uses it. It’s a pragmatic approach for 
research as everybody knows it and it provides the basic architecture. 
However, if you ask 4 people about ROS, you get 4 opinions. But there is not 
really anything else widely available at the moment.” 
 
While the developers of robot software frequently refer to the practices of 
general software engineering and highlight the benefits of information hiding, 
abstraction, platforms, interfaces, application stores and software reuse, at the 
same time, they are cognizant of the distinct requirements that characterise the 
contextually bound and embodied chains of transformation. Even if the need for 
reuse and commercialisation of applications and software components are well-
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recognised, the application stores were not seen as an appropriate analogy for 
several reasons (H: EO4). For example, whereas ordinary desktop and mobile 
applications operate individually on the top of a platform (i.e. an operating 
system), the various components of robot control software interact with each 
other in a distributed manner, thereby complicating the incorporation of any 
new or altered components into existing compositions. Other obstacles were 
brought up as well, such as the lack of standard interfaces, the lack of detailed 
knowledge regarding what some particular component actually does, the 
absence of appropriate test cases and occasionally poor documentation (H: 
EO4, EO5). Against this backdrop, some rejected the idea of software as black-
boxes. They preferred grey-boxes with the access to open source code and the 
internal representations and intermediate states of data to be able to evaluate 
and examine the functionality and performance of software components at a 
necessary level of detail. 
 
Moreover, discussions frequently returned to the core problem of how to 
identify and define suitable levels of abstractions; finding the “right” primitives 
and levels of abstraction were often seen as the main obstacle (H: EO11). 
Regardless of multiple efforts, the semantic modelling of various aspects of 
behaviour and environmental contexts remain challenging. In principle, for 
modelling efforts to succeed, a priori agreement should be reached on how to 
partition and define elementary motions, movements and behaviours across 
different levels of abstractions, ranging from low-level control software to 
higher levels of perception and control as well as to the descriptors of 
characteristics and behaviour of the surrounding environment. The partitioning 
of chains of transformation and the detaching of the physical embodiments 
from the surrounding environment were seen problematic without well-defined 
abstractions and meta-models which would define pertinent system-wide 
aspects of contextual and embodied behaviour and interaction. 
 
The importance of well-rounded interface specifications was brought up in a 
robotics summer school (H: EO6) where the following statement was made: 
“abstraction is key but [information] hiding is dangerous”. While software 
standardisation remains challenging, there are initiatives whose objective is to 
develop meta-models that describe skills and behaviours as compositions of 
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tasks, object affordances, robot capabilities, environmental contexts and other 
relevant constraints that need to be solved (H: EO6). In a way, computer-
controlled behaviour can be described as a constrained optimisation problem, 
and this brings forward the importance of defining the constraints and 
boundaries at different levels of abstraction within which the computation of 
behaviour takes place. However, categorising and subdividing the world and its 
motions and behaviours in their various intricacies into computable pieces is far 
from unambiguous, especially if the domain to be modelled is not well-defined 
in advance. Some are sceptical concerning the attempts of modelling and 
standardisation, and they would prefer a more pragmatic approach where 
beneficial conventions and standards would emerge through the practice.  
 
To overcome some of these challenges, different domain and technology-specific 
sub-communities seek to pool their resources and focus their efforts on more 
narrow problems and domains, such as industrial, aerial or agricultural 
robotics, to make progress towards their particular goals and needs (C: SE27) as 
this allows for the implicit specification and agreement of underlying 
assumptions. Although the broader robotics community remains divided on to 
what extent generic methods of modelling are feasible, ROS with its under-
specified interconnections has nevertheless gained traction, portraying that the 
process of the development of a robot system can unfold as a generative-
integrative manner. 
 
In the light of the empirical findings and conceptualisations presented in this 
chapter, it appears that there is no straightforward answer or process according 
to which the tensions between the specificity of designs and the distributedness 
of knowledge and control across the community can be resolved. The observed 
approach depicts itself as a multi-layered generative-integrative process. The 
developers a robot system construct the first version of the system from a 
diverse set of software packages and components, after which this initial 
combination is further developed and integrated into a desired composition in a 
way that is most feasible in given circumstances. Overall, the production of a 
dependable and robust composition requires careful integration, yet all-
encompassing a priori attempts of exhaustive specification appear to remain 
elusive. The domain-oriented design and development approaches seem to 
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overcome this problem partially as they share similar underlying assumptions 
regarding the contextual and behavioural requirements.  

6.6 Summary 

This chapter consists of two parts and describes how the tensions among the 
specificity of designs and the distributedness of knowledge and control are 
reconciled in the context of ROS.  
 
Part 1 describes and discusses the themes and categories that emerged from the 
thematic analysis and develops a model that conceptualises robots and 
autonomous systems as contextually bound and embodied chains of 
transformation. This conceptualisation brings forward the functional and 
structural characteristics which underpin the organising logic of complex digital 
innovation in the view of product architectures and characteristics of 
combination.  
 
Part 2 takes a closer look into the organising logic and explores how the tensions 
between the specificity and distributedness unfold and are resolved during the 
development of robots and autonomous systems. Against this background, the 
observed process of development was conceptualised as the generative-
integrative mode of development. It describes a process where the first version 
of a robot system is generatively combined by bringing together different 
physical and digital components. This generative combination is then followed 
by the phase of integration. During the integration phase, the behaviour of a 
robot system is experimented, observed and adjusted, and the combination of 
components is gradually crafted into a composition that produces the desired 
behaviour with respect to a given task and context. 
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7 Discussion 

The purpose of this chapter is to discuss and establish the conceptual findings 
presented in the previous chapter. Based on the empirical findings, the previous 
chapter developed two novel conceptualisations to characterise the organising 
logic of complex digital innovation. In order to establish their validity, 
boundaries and applicability, they are evaluated in the light of the extant 
literature that conceptualises the organising logic of innovation in the view of 
product architectures and combination.  
 
The first section of the chapter restates the conceptual findings to summarise 
their salient characteristics. Subsequently, the second section enfolds them in 
the literature by discussing the proposed concepts with reference to the related 
literature that was reviewed in Chapter 2. After the novelty of the proposed 
concepts has been established, the third section elaborates how they contribute 
to the literature on digital innovation and discusses briefly their wider 
applicability and relation to the literature on simulations. Potential avenues for 
further research are discussed before the concluding remarks.  

7.1 Summary of conceptual findings 

Chapter 6 brought about two novel conceptualisations. The first one of them 
presents a structural-functional model that conceptualises robots and 
autonomous systems as contextually bound and embodied chains of 
transformation. The second one characterises the process of system 
development as a generative-integrative process where generative combinations 
of components are crafted into compositions. These conceptualisations are 
restated below before proceeding to the enfolding literature.  

7.1.1 Contextually bound and embodied chains of transformation 

The structural-functional model conceptualises robots and autonomous systems 
as contextually bound and embodied chains of transformation. This captures 
the underlying logic of complex digital innovation as it intertwines the physical, 
digital and behavioural aspects that characterise complex digital systems and 



 

219 

innovation. This conceptualisation seeks to differentiate complex digital 
innovation from other domains of digital innovation which cater to different 
purposes and adhere to different operational principles and organising logic. 
The purpose of this is to provide a conceptual lens and clarity for discriminating 
between the empirical findings that emerge from different empirical contexts. 
 
A good starting point to begin unpacking this conceptualisation is the overall 
purpose and functioning of robots and autonomous systems. In short, they are 
expected to produce goal-directed and context-dependent behaviour in order to 
be able to operate autonomously with limited human intervention. Once set in 
motion, robot systems transform sensory inputs into actions according to their 
physical structures and computer-controlled models of behaviour. Therefore, it 
follows that a defining characteristic of robots and autonomous systems is that 
their behaviour emerges from the direct interaction with the surrounding 
environment. This way, a robot system is operated by the environment in which 
it is embedded as the environmental inputs condition its behaviour, whereas, at 
the same time, the human operator becomes moved further away from the 
control of situated action. The environment that renders inputs also provides 
the ground-truth that either accepts or rejects behavioural outputs, rendering 
the criteria against which the fitness of the interactional and behavioural 
couplings will be evaluated (Alexander 1964). To reach a sufficient degree of 
fitness, the developers of a robot system are expected to join the physical 
embodiments and communication and transformation systems in a way that 
produces appropriate interactional and behavioural couplings that are 
congruent with tasks and tasks environments.  
 
In functional terms, the notion of contextually bound and embodied chains of 
transformations bears significant importance, as it highlights that the inputs 
and outputs of a robot system differ in qualitative terms. To produce purposeful 
real-time behaviour, a robot system measures constantly certain features of the 
surrounding environment and transforms them into actions and actuations 
which exert forces onto environment to cause a change in some state of affairs. 
This is radically different when compared to the information and 
communication systems, which are predominantly used to mediate human 
communication and replicate digital objects across time and place – such 
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systems could be viewed as chains of replication. However, the distinction 
between the replication and transformation as the opposite ends of a spectrum 
should be seen as analytical. In practice, many systems are located somewhere 
between the two ends of the spectrum. For example, an accounting information 
system may transform individual financial transactions into consolidated 
summaries that report the overall loss and profit (Klaus et al. 2000). However, 
while they do so, they do not act based on the reports they produce, keeping the 
interpretation and subsequent actions based on the reported results in human 
hands. Leaving a robot system to its own devices shifts the focus from 
replication to transformation, from the mediation of information and 
communication to situated action and behaviour. 
 
This bears significant implications on the design, reliability and verifiability of 
systems, among other things. The detailed specification of a system's behaviour 
remains challenging considering the variety of environmental and behavioural 
variables that would need to be formalised and modelled to make them 
computationally tractable. Occasionally, controlled environments are 
constructed around robot systems to make them more manageable by 
containing the variety and contingency that abound in open-ended 
environments. While this is the case with the production lines in factories, there 
are numerous application domains where this is not feasible. For example, the 
infrastructure and system of road transit with all its roads, cars and drivers 
among other things cannot be encased for self-driving cars to be able to operate. 
In these cases, robot systems must be developed with an aim to ensure that their 
physical capabilities and behavioural models can handle the variety of 
environmental and operational conditions. This has also implications for the 
verification of robot systems. In the end, whereas the correctness of a 
replication system can be established by evaluating the degree of similarity 
between the inputs and outputs of a system, it is much harder to establish and 
evaluate if large sets of transformations produce acceptable behavioural 
outcomes with respect to a goal and context in a range of situations. 
Establishing the correctness of the relationships among a range of input and 
output transformations is much less straightforward given the variety and 
intricacy of the relationships among environmental conditions and meaningful 
transformations (Bonsignorio & del Pobil 2015). Often, an excessive amount of 
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testing is required in simulated and physical environments to verify the 
behaviour of the chains of transformation under different conditions, especially 
when a task environment is open-ended and unstructured.  
 
In structural terms, this conceptualisation seeks to describe what constitutes the 
embodied chains of transformation and how this affects to the organising logic 
of innovation in the view of combination and product architectures. As shown in 
the previous chapter, such artefacts are made of physical embodiments and the 
systems of communication and transformation which in combination render the 
interactional and behavioural couplings that produce the overall behaviour. This 
brings forward the distributed character of computation highlighting that the 
overall system-level model of behaviour is composed of individual 
transformations that interact with each other. These embodied chains of 
transformation can be (de-)composed in multiple ways and they grow in 
complexity as the number of interconnected components, sensors, actuators 
and processes of transformation, increases, and they are can be viewed and 
implemented as sets of distributed computational processes. These sets can take 
multiple forms and the ROS communication system facilitates the setting up of 
such sets in a flexible manner. Therefore, one of the defining characteristics of 
ROS is that there is no one particular central platform (Baldwin & Woodard 
2008). Instead, a robot system usually consists of a variety of bespoke and 
distributed computational arrangements, which carry out the stepwise 
transformations in different ways depending on the goal, context and 
composition of a robot system. This shifts the focus of conceptualisation of 
robot systems from central platforms and stable interfaces to distributed 
computation and multidimensional connectivity.  
 
This complex and distributed character of computation bears implications on 
the practices of digital innovation. Stable platforms, interfaces and application 
stores are often referred to as an ideal target state regarding the reusability and 
distribution of software. However, while software packages are shared and 
reused among roboticists, the application stores remain absent. Some question 
the appropriateness of this analogy in the context of robots and autonomous 
systems given the fundamental architectural differences between the typical 
platform-like computer operating systems and the systems that produce their 
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behaviour through distributed computation. With traditional operating systems, 
applications run on the top of the operating system as relatively independent 
entities. In turn, in the case of distributed computation, various processes and 
components that may run on different computers produce the overall behaviour 
in combination. This means that changing the behaviour of a single component 
often influences the overall behaviour of the whole system. The distributedness 
challenges the notion of stable platforms and interfaces.  
 
The notion of the chains of transformation also brings forward the implications 
in the view of the transferability and reusability of software. While the ROS 
communication system demonstrates that the systems that interconnect 
different processes of transformations can be generalised in a way that they 
cater the needs of the broader robotics community, the transferability and 
reusability of particular transformations is more limited, being contingent on 
system architectures, tasks and contexts which set boundaries to their 
generalisability.  
 
The notion of contextually bound and embodied chains of transformation 
captures the salient characteristics of complex digital innovation by showing 
how the intertwined characteristics of the physical, digital and autonomous 
aspects that have implication to the organising logic of innovation in the view of 
product architectures and combination.  

7.1.2 Generative-integrative mode of development 

Roboticists seek to build upon each other’s work by reusing existing 
components, yet the empirical observations demonstrate that this is not always 
a straightforward process. The analysis of the empirical observations produced a 
model that conceptualises the process of robot system development as the 
generative-integrative mode of development that involves under-specification 
and constructive ambiguity. This model offers an answer to that principal 
research question that asks how the tensions between the specificity of designs 
and the distributedness of knowledge and control can be resolved. The 
generative-integrative mode of development can be described as an approach in 
which an initial generative combination of components comes to provide a 
starting point for further systems integration efforts. This way, the integration 
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follows the combination, and during the integration phase the behaviour of 
particular chains of transformation is experimented, observed and adjusted. 
The combination of components is thereby gradually crafted into an integrated 
composition that is expected to produce the desired behaviour with respect to a 
task and context. This process is elaborated below. 
 
A developer begins the work by carrying out a functional decomposition, 
looking into the physical embodiments and sets of transformations that would 
produce the desired model of behavioural. A set of components is then selected 
and combined using the resources that are readily available, such as hardware 
components, software packages and frameworks. If suitable components and 
functionalities are not available, the developer must create them. Subsequently, 
components are combined into a robot system. This initial combination can be 
characterised as generative as it draws from the end-product agnostic 
components that originate from distributed and heterogeneous sources. While 
this combination produces the first working version, this first version rarely 
fulfils the requirements. Instead, it provides a starting point for further 
integration efforts. With a functioning system in place, the developers can 
experiment, observe and gather data that is essential in the further 
improvement of performance, reliability and robustness of the system. 
 
Whereas generative combination speeds up the early phases of development, 
the subsequent integration phase requires further efforts. The degree of efforts 
depends on the extent to which the resulting combination of components fulfils 
the initial requirements, for example in terms of behaviour, reliability and 
robustness. Depending on the requirements and shortcomings, additional 
development can take place along various lines, such as by altering the 
configuration of hardware, improving the system level integration and error 
handling or by developing new transformation systems altogether that facilitate 
the production of specific behaviours.  
 
The complexity and amount of details and variables associated with the 
contextually bound and embodied chains of transformation limits the feasibility 
of exhaustive a priori specification. Often, much experimentation, adjusting and 
testing are needed to establish not only the appropriate behaviour of a system, 
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but also to identify and establish the reliability of the environmental features 
upon which the functioning of a behavioural model can be conditioned. To this 
end, the post-combination integration efforts make extensive use of virtual 
simulations environments and physical experiments. They provide data on the 
behaviour of a system in various environmental conditions to examine and 
evaluate robustness and dependability. Often, extensive integration and testing 
are needed to bring behavioural models to a level that produces required 
behavioural coupling and congruence. This way, with the generative-integrative 
mode of development, the work begins from a generative combination, which is 
then crafted into a composition. This shows that simply bringing existing 
components together is not likely to produce the desired behaviour.  
 
Moreover, components which originate from different sources and serve 
different functions vary in terms of their transferability, reusability and quality. 
Whereas the components that cater to common needs and use cases are more 
readily transferable, such as the ROS communication and coordinate 
transformation systems, others might be significantly less so. This is, for 
example, a case with the components that produce specific representational 
transformations for narrow use cases. Furthermore, considering that 
components often emerge from different origins in the absence of centralised 
design agency, they do not necessarily adhere to the same underlying 
assumptions and design principles. While this does not automatically prevent 
from bringing them together, the absence of the overall systems level design 
principles may cause problems when the components taking part in distributed 
computation react to some system events in an unspecified or uncoordinated 
manner. The existence of a syntactic interconnection does not imply the 
existence of a semantic integration in the view of the overall system 
architecture. These things are such as what should be a default behaviour in 
case of a sensor failure or in the malfunctioning of some of the computational 
processes, among many others. Leaving the underlying assumptions, such as 
the affordances or constraints of the surrounding environment and physical 
embodiments, underspecified may lead to decreased levels of dependability. In 
this light, the under-specification that allows for the generative combination can 
be seen as constructive ambiguity.  
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The high degree of systemic interdependencies combined with the lack of 
centralised coordination and uncoordinated design practices leads to a situation 
where components and frameworks cannot be viewed as black-boxes from the 
point of view of systems integration. Considering that all parts of a distributed 
system are expected to work together in an integral manner, the developer of a 
robot system is left with the task of establishing the overall system level design 
goals and principles, which were not present when the end-product agnostic 
components were designed and created (Yoo et al. 2010; Yoo 2012b). In this 
view, the process of integration refers to the efforts and actions that are taken in 
order to raise the level of integration among the components of a robot system 
(Tolk et al. 2007) by removing the gaps and incongruences caused by the under-
specification.  
 
The generative-integrative mode of development expands the focus of digital 
innovation from generative combinations (Yoo et al. 2010; Yoo 2012b) by 
incorporating the iterative process of integration during which the initial 
combination is elaborated into a composition. Different components are evolved 
in conjunction to develop contextually bound and embodied chains of 
transformation that produce desired and dependable behavioural models. This 
process requires architectural knowledge which is absent when components are 
developed without a centralised design agency (Nambisan et al. 2017). 
 
This conceptualisation provides an answer to the principal research question on 
how the tensions between the specificity of designs and the distributedness of 
knowledge and control across the software ecosystem can be resolved. The 
process of the generative-integrative mode of development outlines a scenario 
where under-specification and constructive ambiguity enable the initial 
generative combination, yet the post-combination integration efforts are needed 
to remove the incongruences which emerge from the absence of system-level 
design principles and the specificity of designs.  

7.2 Enfolding literature 

This section enfolds the conceptual findings in the light of previous literature 
(Eisenhardt 1989b). The purpose of this is to sharpen the findings, establish the 
boundaries of generalisability and examine and evaluate the ways in which the 
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findings contribute to the literature on digital innovation. This enfolding is 
presented with reference to the literature reviewed in Chapter 2. This body of 
literature theorises the dynamics of combination in the context of product 
architectures, providing thereby an appropriate backdrop for the enfolding.  
 
The theories presented in the previous literature do not fully capture the 
organising logic of complex digital innovation as established in the empirical 
and conceptual findings of this research. These differences are discussed in the 
following order. First, the conceptual findings are discussed with reference to 
modularity and the modularisation of product systems. This is then followed by 
the generativity of digital innovation and digitised products in the view of 
layered modular architectures and complementary architectural frames. Finally, 
the differences are discussed with reference to complex products and systems 
literature before concluding with the validity of conceptual findings.  

7.2.1 Integrality and modularity 

One of the fundamental conceptualisations in the literature on product 
architectures revolves around integrality and modularity (Ulrich 1995). As 
discussed in Chapter 2, product architectures are called modular when the 
functional elements of a product correspond to the components that constitute 
it, and the interdependencies between components are such that a change in 
one component would not require corresponding changes in other components. 
In turn, product architectures are called integral when multiple components in 
conjunction produce a particular functional element, and a change in one 
component is likely to trigger changes in others. Most product architectures 
reside somewhere between the modularity and integrality (Salvador 2007).  
 
In terms of integrality and modularity, contextually bound and embodied chains 
of transformation are much closer to the integral than the modular end of the 
spectrum. While it is possible to identify a component that performs a particular 
transformation, for example, an object recognition component that identifies 
particular patterns from a stream of images, the behaviour of that particular 
transformation constitutes an integral part of the overall chain of 
transformations that produces the behaviour of a system with respect to its 
environment. While it would be technically possible to replace a pattern 
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recognition component with relative ease as long as the necessary syntactic 
interfaces are specified and adhered to, a change in the behaviour of that 
particular component in terms of its input-output mappings between the images 
and their respective classifications would alter the behaviour of the whole 
system. In addition, although under-specification and constructive ambiguity 
may facilitate the generative combination, implicit but misaligned assumptions 
may prove detrimental86 to the reliability and robustness of the system. This 
integral character is also evident in the generative-integrative mode of 
development where efforts are made to craft generative combinations into 
purposeful and dependable compositions. This way, the context-dependent and 
embodied chains of transformation can be viewed as highly integral.  
 
This leads to the question to what extent the chains of transformation can be 
modularised? In the end, following Baldwin and Clark (2000), modularisation 
is a process where the overall functionality of a product is allocated to its 
constituent components according to specific rules so that the design and 
manufacturing tasks can be distributed across different teams and organisations 
(Sanchez & Mahoney 1996). This relies on the assumption that the architect 
who modularises the functionality over different components is aware of the 
overall requirements sufficiently well to be able to specify how different 
components interact with and depend on each other (Baldwin & Clark 2000). 
Subsequently, designers of particular components would have a limited degree 
of freedom to carry out the design and implementation in a most feasible way as 
long as the specifications and design parameters of the overall design are met. 
By designing degrees of freedom into the parameters of module design, modules 
can be seen as units of variation (Salvador 2007), which can be then be 
combined in different ways to produce variety in products (Schilling 2000).  
 
When modularising chains of transformation, probably the first questions to ask 
would be in which way and according to which logic should a behavioural model 
produced by a chain of transformations be varied within a particular scheme of 
modularisation. The approach to modularisation would presumably vary 

                                                
86 To provide an example, NASA lost a Mars orbiter in 1999 due to a units of measurement 
mismatch that prevented the transfer of navigation information between the Mars Climate 
Orbiter spacecraft team at Lockheed Martin in Denver and the flight team at NASA's Jet 
Propulsion Laboratory in Pasadena. Lloyd, R. and Writer, C.I.S., 1999. Metric mishap caused 
loss of NASA orbiter. CNN Interactive. 
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according to the expected behaviours and scope of required variation (Salvador 
2007). Furthermore, the modularisation of a pattern recognition system would 
probably differ from the modularisation of physical embodiments and 
associated motion planners. Establishing an overall framework of design that 
would enable the replacement of components to adapt the behavioural model 
for new tasks and task environments module by module would presumably 
require careful information engineering to ensure that the patterns of 
interaction among the computational processes would produce desired 
behaviour.  
 
Considering that the observed generative-integrative mode of development does 
not rely on exhaustive a priori specification, modularisation or centralised 
coordination mechanisms, the top-down approach to the modularisation of 
behavioural models cannot be elaborated here further. Instead, it is observed 
that through the generative-integrative mode of development it is possible to 
develop integral systems from components that originate from heterogeneous 
sources. Therefore, whereas contextually bound and embodied chains of 
transformation can be viewed as integral, they cannot be fully understood 
through the lens of integrality (Ulrich & Eppinger 2012), centralised design 
agency or modularisation (Baldwin & Clark 2000).  

7.2.2 Generative combinations 

In the literature on digital innovation, the notion of generativity (a form of 
diachronic emergence) is used to explain the growth and evolutionary dynamics 
of the Internet (2008; 2006), digital platform ecosystems (Yoo et al. 2010) and 
digital infrastructures (Tilson et al. 2010). Whereas the notion of 
modularisation builds on the assumption of the centralised and coordinated 
design and decomposition of product architectures (Baldwin & Clark 2000), 
generativity describes digital innovation as a combinatorial process where novel 
digital products and assemblages of digital objects and artefacts are created by 
generating new combinations of existing objects and artefacts (Yoo et al. 2010) 
which originate from heterogeneous sources in the absence of central 
coordination (Yoo 2012b).  
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The notion of generativity upends the assumption of the top-down centralised 
design and portrays digital innovation through the lenses of emergence and 
assemblages that emerge from distributed actions of heterogeneous groups of 
actors in a bottom-up fashion (Yoo 2012b). For this to occur, the digital objects 
and artefacts to be combined only need to conform to certain common 
foundations, such as open interfaces and communication protocols as they 
facilitate the interoperability and combinability of digital objects and artefacts 
even if they belong to different design hierarchies (Yoo et al. 2010; Clark 1985). 
In Zittrain’s (2008; 2006) work, these common foundations are located at the 
operating system of a computer and the internet standards and protocols. The 
former provides a layer of abstraction between the computer hardware and 
application software, whereas the latter allows for application software and all 
sorts of digital objects to be transferred over the digital communication 
networks and infrastructures (Tilson et al. 2010). More broadly, the generativity 
of digital innovation is postulated to follow from the layered characteristics of 
digital architectures (Yoo et al. 2010) given that different components can 
interact with each other through well-specified interfaces, which hide the 
internal workings and implementation details (Parnas 1972). In this view, as 
long as interfaces are well-specified, and components produce specified 
functions, developers can focus on their own areas of work without needing to 
know much about the internal functioning of other components. Therefore, the 
generative properties are founded upon the uncoordinated division of labour 
which is facilitated by the standardised and open platforms and interfaces and 
common communication protocols, which enable the combination of end-
product agnostic components originating from heterogeneous sources. The 
generative characteristics of digital innovation render knowledge and control 
highly distributed among different actors and organisations (Yoo et al. 2010). 
 
Based on the empirical findings, the mode of system development was 
conceptualised as generative-integrative. This characterisation highlights the 
fact that developers may choose from the components which originate from 
heterogeneous sources and then combine them using the ROS communication 
system as it provides common message types and methods of communication 
for establishing the interconnections between various components. In this view, 
the empirical findings give a clear demonstration of the generativity that rests 
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upon the common communication methods and protocols. However, 
considering that the ROS-based software is a cluster of distributed 
computational processes, ROS is not generative in the sense of the traditional 
computer operating system with its central platform and stable interfaces. There 
is no central and stable abstraction layer in the form of a single operating 
system that would provide a set of interfaces upon which further functionality 
could be developed.  
 
Furthermore, as discussed earlier, simply joining components together rarely 
produces desired behaviour. Contextually bound and embodied chains of 
transformation are integral and distributed, and efforts are needed to integrate 
the combinations of components into dependable compositions. This requires 
knowledge not only of the components but also of their interactions and 
interdependencies.  
 
Whereas the empirical findings observed in the context of ROS could be 
partially characterised as generative, it can also be concluded that the notion of 
generativity (Yoo et al. 2010) on its own would not be sufficient to explain the 
empirical findings.  

7.2.3 Layered modular architecture 

The notion of the layered modular architecture is a combination of the modular 
architecture of products (Ulrich & Eppinger 2012) and the layered architecture 
of digital technologies (Yoo et al. 2010). The purpose of this combination is to 
bring forward the way in which the architectures of modern digitised products 
incorporate the characteristics of both the top-down driven modularisation and 
the bottom-up driven generative combination (Yoo et al. 2010). The layered 
modular architecture conceptualises the architecture of digitised products as a 
layered stack. The device layer resides at the bottom of the stack. It consists of 
the physical hardware and computing machinery and includes also the 
operating system that provides a logical layer of abstraction that modulates 
interaction between the hardware, computing machinery and upper layers of 
the software stack. On the top of the device layer resides the network layer. The 
network layer consists of the physical transport media (e.g. antenna, cable) and 
the logical transmission protocol (e.g. TCP/IP), and it is used to establish 
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interconnections with other computers and digitised products. On the top of the 
network layer is the service layer where application software and their 
respective functionality are located. Above the service layer, on the top of the 
stack, is the contents layer that holds the data contents. The device layer can 
take many forms along the spectrum from a traditional manufactured product 
to a desktop computer (Yoo et al. 2010). Depending on where a digitised 
product is located along this spectrum, the extent to which it is open to ongoing 
change and generative combinations varies. Whereas the hardware and 
computing machinery residing on the device layer usually receive their final 
configuration and form during the manufacturing process, the layered stack of 
software that resides on the top of it is more amenable to change throughout the 
lifecycle of a product (Yoo et al. 2010). The device layer provides also a layer of 
abstraction in the form of an operating system and application programming 
interfaces, making it possible to alter the functionality and purpose of a product 
later by modifying the software at the higher levels of the stack. If a product 
manufacturer engages in open innovation by opening up interfaces (Eaton et al. 
2015), a digitised product can become a platform that stimulates generative 
innovation by allowing broader audiences to take part in the development of 
new functionalities and services. 
 
With reference to embodied chains of transformation, the notion of layered 
modular architecture can be viewed in two different ways, depending at which 
level of a design hierarchy the notion is applied. In the view of the constituent 
elements of robot systems, the physical embodiments are divided into three 
categories: sensors, actuators and hardware platforms. On one hand, sensors 
and actuators can be viewed as components having the layered modular 
architecture at the level of individual components. On the other hand, also a 
hardware platform that encapsulates sensors, actuators and other hardware 
components into one unified product can be seen as a platform of the layered 
modular architecture, as long as there is a clear layer of abstraction that 
provides a set of application programming interfaces for dealing with sensory 
data, action commands, hardware parameters as well as for monitoring and 
diagnostics.  
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Some hardware platforms offer well-specified functionality and interfaces, 
which have been made compatible with ROS. Commercially manufactured 
quadrotors provide a good example of this type of hardware. The manufacturer 
designs and produces a quadrotor that is a fully functional product on its own 
but at the same time serves as a platform with open interfaces. This allows for 
broader audiences to take part in innovation. The use of smartphones as 
hardware platforms provides a similar example. Smartphone manufacturers 
provide open interfaces to access various sensory readings and to control screen 
and speakers among other functions. While these types of hardware platforms 
with open interfaces can be viewed as stable and central core components, the 
chains of transformation which produce the models of behavioural can also be 
viewed as applications. If a decision is made to draw boundaries around a 
particular distributed cluster of computation and to refer to it as an application 
which resides at the service layer, then it would be possible conclude that a 
combination of a hardware platform (device layer) and chains of transformation 
(service layer) are compatible with the notion of the layered modular 
architecture.  
 
On the other hand, when embodied chains of transformation are constructed by 
bringing together a distributed set of sensors, actuators and processes of 
transformation, there is no particular platform that could be considered on its 
own to serve as a stable foundation upon which the upper layers facilitating the 
generative innovation reside. Instead, the embodied chains of transformation 
comprise a heterogeneous and intertwined group of physical embodiments, 
brought together and controlled by the systems of communication and 
transformation. In this case, the absence of foundational and stable platforms 
and associated layers of abstraction is not compatible with the underlying 
assumptions of the layered modular architecture.  
 
Therefore, the notion of layered modularity (Yoo et al. 2010) cannot be 
considered as generally applicable in the context of embodied of chains of 
transformation and the generative-integrative mode of development. Instead, 
the applicability of the notion is contingent on the level of platformisation and 
encapsulation at different layers of the device and software stack and the 
associated stability of interfaces. 
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7.2.4 Complementary architectural frames 

Another conceptualisation of digitised products introduces the notion of 
complementary architectural frames (Henfridsson et al. 2014). This 
conceptualisation proposes that the architectures of digitised products can 
simultaneously be seen as hierarchies of parts and networks of patterns. The 
hierarchy of parts view refers to the physical architecture of a product, which is 
expected to be fully designed and specified before it can be transferred to 
manufacturing. The network of patterns, in contrast, refers to a set of 
interconnected functionalities that can be implemented and changed later using 
digital means. However, while the patterns serve as placeholders that facilitate 
change at a later point in time, the product architect who performs the 
functional decomposition and allocation of functionalities over both the parts 
and patterns is expected to have an overview of the overall functionality and its 
expected development paths as well as the limits of variation in a given product 
system (Salvador 2007). Therefore, the use of the complementary frames shares 
the assumptions of top-down design and well-specified interfaces with the 
notion of modularisation (Baldwin & Clark 2000). The interdependency among 
the complementary architectural frames resonates also with the intertwined 
design hierarchies of inclusion and control (Murmann & Frenken 2006). 
 
This conceptualisation has similarities to the notion of embodied chains of 
transformation. To begin, the prominent role of physical embodiments in 
product design and architectures is acknowledged as the material substrate 
upon which the digital functionalities are implemented. Also, the emphasis on 
networks highlights the distributed character of computation as functionalities 
are distributed across a number of digital components. However, the notion of 
patterns, as it is used and illustrated in the context of complementary frames 
(Henfridsson et al. 2014), is not entirely applicable in the view of chains of 
transformation as it is primarily used to signal the differing speeds of design 
cycles between the physical components and digitally implemented 
functionalities. While the notion indicates the procrastinated binding of the 
digital part (Yoo 2012a), it puts little emphasis on the specificity of designs and 
the physical groundedness of computation that characterise embodied chains of 
transformation. In addition, the assumption of top-down design is not entirely 
compatible with the generative-integrative mode of development, which 
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proceeds from the generative combination towards the increasing levels of 
integration. 

7.2.5 Complex products and systems 

The innovation literature on complex products and systems argues that the 
development of complex systems requires detailed knowledge of different 
components and their interactions (Prencipe 2000). In this view, complex 
products and systems are conceptualised as compositions of two design 
hierarchies that are intertwined and interdependent (Lee & Berente 2012; 
Murmann & Frenken 2006). These two hierarchies are the hierarchy of 
inclusion and the hierarchy of control. The hierarchy of inclusion refers to the 
hierarchical and nested organisation of parts which constitute the physical 
embodiment of a product or system. In turn, the hierarchy of control refers to 
the parts and functional logic that control the operation and behaviour of that 
embodiment. The architects that design control systems are expected possess 
detailed knowledge not only of different components but also of their various 
interactions, interdependencies and behavioural dynamics (Prencipe 2000). 
Building a control system is predicated on knowing what is being controlled, for 
what purpose and under what boundary conditions. Therefore, building a 
complex system requires often a significant amount of contextual knowledge as 
well as modular and architectural innovation (Henderson & Clark 1990).  
 
In addition, complex products and systems are also occasionally differentiated 
on the grounds of the market conditions that separate them from the industrial 
mass-market products and associated innovation dynamics (Miller et al. 1995; 
Hobday 1998), this being particularly the case when various stakeholders 
collaborate to produce unique architectural designs and technological 
compositions that transcend industry-wide dominant designs (Abernathy & 
Utterback 1978) and design hierarchies (Clark 1985). Flight simulators and 
nuclear power plants (Miller et al. 1995; Hobday 1998) provide a case in point. 
 
The conceptual findings of this research align to an extent with the literature on 
complex systems and products. The concept of contextually bound and 
embodied chains of transformation indicates the presence of the hierarchies of 
inclusion (embodiments) and control (transformation). It also emphasises that 
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chains of transformation are conditioned not only by the embodiments but also 
by the contextual bindings, showing that the development of chains of 
transformation entangles knowledge around the operational environment, 
physical embodiments as well as various digital methods and technologies. This 
brings forward the specificity and integrality of designs that spread throughout 
the chains of transformation, indicating the need for both component and 
architecture level knowledge and innovation (Henderson & Clark 1990). 
However, while this chains of transformation view is compatible with the dual-
view of the design hierarchies of inclusion and control, the chains of 
transformation view does not assume a hierarchical control system but 
accommodates parallel and multi-agent control architectures as well. 
 
In addition to the emphasis on the specificity of designs, the complex systems 
literature also highlights the need for coordinated collaboration. While this is 
present in the integrative part of the generative-integrative mode of 
development, the generative part is not entirely compatible with the underlying 
assumptions concerning the depth and breadth of knowledge and control 
(Prencipe 2000). This assumption maintains that the organisations which 
engage in complex innovation are expected to possess detailed knowledge at the 
level of product architectures and constituent components. However, the 
empirical findings of this research show that knowledge and control can be 
highly distributed across a heterogeneous body of users and contributors that 
operate in an uncoordinated manner.  
 
While the innovation literature on complex systems and products captures 
much of the underlying dynamics of complex digital innovation, it is not 
particularly well-suited to explain the distributedness of knowledge and control 
or the unfolding of the generative-integrative mode of development.  

7.2.6 Summary 

The evaluation of the conceptual findings in the light of the reviewed literature 
demonstrates that the current conceptualisations do not fully capture the 
organising logic of complex digital innovation as observed in the context of 
robots and autonomous systems. Some of the existing conceptualisations are 
able to explain some aspects of the empirical findings, but, overall, they do not 
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provide a conceptualisation that would provide a sufficient explanation of the 
observed dynamics and practices of innovation in the context of complex digital 
innovation.  
 
Therefore, it can be concluded that the proposed concepts bring forward salient 
characteristics of complex digital innovation in a holistic manner and offer 
useful additions to the conceptual toolbox of digital innovation research. The 
structural-functional conceptualisation presents the structural and functional 
factors that underlie complex digital innovation, whereas the generative-
integrative mode of systems development that builds on underspecification and 
constructive ambiguity sheds light on how the tensions between the specificity 
of designs and the distributedness of knowledge and control are resolved.  

7.3 Application of the proposed concepts 

This section discusses the applicability of the proposed concepts outside the 
empirical setting where they were first developed while also discussing briefly 
how they could be developed further. The concept of chains of transformation is 
first discussed and forwarded as a more tractable conceptualisation not only to 
analyse robots and autonomous systems but also other artificial intelligent and 
cybernetic systems that can be considered as complex digital innovation. The 
view provides a highly generalisable lens to examine functional and 
organisational characteristics of complex digital innovation providing a pathway 
towards a more fine-grained examination of digital and computational “value 
chains” that produce value through the processes of transformation. Second, the 
generative-integrative mode of development is further elaborated in the view of 
simulation studies and the levels of conceptual interoperability model. This 
provides a conceptual explanation of the observed unfolding of the generative-
integrative mode of development and outlines fruitful avenues for further 
research.  

7.3.1 Chains of transformation 

The concept of contextually bound and embodied chains of transformation can 
be extended and applied to the adjacent areas of complex digital innovation 
such as the systems of artificial intelligence and cybernetics. Viewing these 
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domains of innovation through the structural-functional lens could provide a 
way to construct research questions in a way that would take different 
organisational and functional characteristics into account in a more holistic 
manner. Viewing such systems as contextually bound and embodied chains of 
transformation would bring forward the distributed and transformative 
character of computation while highlighting the context-dependence of 
purposeful transformations and the physical groundedness of computation. 
 
Many sophisticated special-purpose computing systems and computational 
processes that carry out transformations fall into a category which is often 
defined as artificial intelligence (Russell & Norvig 2010). While the labelling of 
sophisticated computation as artificial intelligence might be appropriate in 
some occasions, its meaning is not particularly precise. Furthermore, there are 
multiple fields of advanced computation which can be considered as subfields of 
artificial intelligence. These subfields tend to focus on different aspects of 
computation, developing and working on algorithms, techniques, methods and 
computational strategies that are capable of carrying out computations that 
solve some particular types of problems, for example to recognise pertinent 
patterns in sensory readings, to fuse a variety of recognised patterns or to 
control motion over time and in real-time to provide few examples. In this light, 
the common aspect is that they are all created and designed to perform some 
particular transformations and tp serve specific purposes or functions. 
 
The application of the notion of chains of transformation would help pose more 
detailed questions concerning the functional, structural and organisational 
aspects of robots and autonomous systems and artificial intelligence in their 
various guises. This would allow us to ask questions such as what is being 
transformed and on what basis? More detailed questions could revolve around 
why something is being transformed, are different transformations compatible 
with each other, or what constitutes a computational “value chain” and who 
captures the value from transformations and how? Questions could also be 
asked on who controls transformations and on what grounds some 
transformation is better than others. Focusing on the computation and 
transformations as well as the purposes they serve instead of robotness, 
autonomy and artificial intelligence would remove the unnecessary mysticism of 
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the debate and could help direct attention and research questions to the matters 
that are more grounded and empirically tractable.  
 
Moreover, as robots and autonomous systems as chains of transformation are 
expected to operate with limited human intervention towards a given goal based 
on the environmental inputs and related control and feedback mechanisms, 
chains of transformation can be viewed as constitutive elements of cybernetic 
systems. While cybernetics focuses the role and dynamics of information and 
feedback in the control of systemic behaviour, it does not tell much about the 
internal arrangements or organisation of such systems or how this may 
influence innovation practices. The notion of chains of transformation can be 
viewed as more descriptive in this view while being simultaneously consistent 
with the idea of cybernetic. In the end, the cybernetic systems and feedback 
loops are contextually bound and composed of embodied and interconnected 
transformations, which in conjunction transform sensory inputs into systemic 
actions and behaviour. 
 
Finally, the notion of chains of transformation directs attention to the 
importance of systems integration. To achieve a desired systemic behaviour, 
various computational processes must be carefully arranged and integrated. 
Simply joining components generatively together does not necessarily lead to a 
desired system-level behaviour; the interoperability of components does not 
imply that the transformations in conjunction are semantically meaningful. 
Chains of transformations are like production lines in factories where stages of 
manufacturing have to be carefully arranged and integrated in order to 
transform raw materials into high-quality end products (Arthur 2009).  

7.3.2 Generative-integrative mode of development 

The proposed concept of the generative-integrative mode of development offers 
an insight on how the tensions between the specificity of designs and the 
distributedness of knowledge and control can and cannot be resolved. As this 
concept seems to be not fully compatible in the view of the reviewed theories 
that seek to explain the organising logic of innovation from the perspective of 
product architectures and combination, it requires further elaboration. To this 
end, this section refers to the lessons from simulation studies and elaborates on 
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the role of semantic compatibility in the development of chains of 
transformation. 
 
The generative-integrative mode of development blends the uncoordinated and 
distributed innovation practices with the specific and integral design 
requirements. The initial combination is facilitated by the under-specification of 
interconnections and constructive ambiguity, and the subsequent iteration 
cycles seek to increase the level of integration among different components and 
with respect to the task and task environment.  
 
The development of chains of transformation means of joining a series of 
transformations (computations) over the connection that transfers symbolic 
representations (data). This is a brittle and context-dependent endeavour. Each 
symbolic representation is an abstraction that captures some aspects of the state 
of affairs while ignoring others, and each transformation receives its meaning by 
converting the abstraction that serves as an input into some subsequent abstract 
output, a representation that again serves as an input for the next process of 
transformation (Floridi 2013; Floridi 2008; Bekey 2005). In principle and in 
practice, a single inappropriate transformation somewhere along chains of 
transformation, such as a misclassification of an object in the image, may result 
as a wrong or outright harmful outcome.  
 
The difficulty of combining a variety of abstractions and transformations is well 
known in simulation studies (Tolk et al. 2007). Simulations, which are also used 
as tools in the development of robots and autonomous systems, are often used 
to model and evaluate the behaviour and dynamics of complex systems and 
processes over time, especially scenarios that are not necessarily analysable 
using linear or analytical methods. While the components used in simulations 
are in principle transferable and reusable due to their digital characteristics, 
they often are much less so in practice. The spectrum of implicit assumptions 
and context specificity that are embedded in architectural arrangements, 
abstractions and transformations often act as a barrier for composability and 
reuse (Spiegel et al. 2005; Tolk et al. 2007).  
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An efficient reuse and combination of simulation components would require a 
comprehensive method for identifying and validating critical constraints, 
although the identification and conservation of such constraints is challenging 
and may remain beyond human capabilities (Spiegel et al. 2005). While both 
the component-based software engineering and the composition of simulation 
models require syntactic and semantic interoperability (Bartholet et al. 2004), 
the composition of simulation models can be viewed more challenging 
considering that the simulation models are often of large-scale and expected to 
command a high degree of realism and semantic validity. Simulations, as any 
models, are bound and constrained by their design and underlying assumptions, 
and a failure to appreciate the difference between an abstract computational 
model of simulation and the underlying phenomenon it seeks to represent may 
lead to misjudged decisions and unwanted organisational outcomes (Bailey et 
al. 2012).  
 
As previously discussed, software components that originate from distributed 
and heterogeneous sources can be interconnected to each other as long as they 
adhere to the same syntactic structure that consists of a message type and 
method of connection, yet the ability to exchange a message does not guarantee 
that the established interconnection and resulting systemic behaviour would be 
meaningful. This tension between the syntactic interconnectedness and 
semantic interoperability is captured by Tolk, Diallo and Turnitsa (2007) who 
argue that the meaningful interoperability in simulations requires much more 
than technical layers of interoperability: 
 
“The challenge is not to exchange data between the system: the technical side is 
sufficiently dealt with by interoperability standards. The problem is that the 
concepts of the underlying models – or the implemented world view captured 
in the model – need to be aligned as well” (Tolk et al. 2007) 
 
To conceptualise the different levels of interoperability, Tolk, Diallo and 
Turnitsa (2007) present the Levels of Conceptual Interoperability Model 
(LCIM) that describes six different levels of interoperability. These levels, the 
technical, syntactic, pragmatic, dynamic and conceptual layers of interoperation 
are presented in Figure 40. The technical level indicates the existence of 
communication protocols for exchanging data. The syntactic level refers to a 
common data format to exchange data, whereas the semantic level refers to the 
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shared meaning of exchanged data. The pragmatic refers to the level of 
interoperability where components or systems operating in conjunction are 
aware of the methods and procedures that each other are employing and are 
aware of the overall context of their application. Furthermore, the level of 
dynamic interoperability is reached when the system, as it operates over time, 
can change its state and adapt to new assumptions and constraints that have 
implications on the exchange of data among the different parts of the system. 
Finally, the highest level of interoperability is reached when “the assumptions 
and constraints of the meaningful abstraction of reality – are aligned” (Tolk et 
al. 2007 p. 67).  
 

 
 
Figure 40: The Levels of Conceptual Interoperability Model (LCIM) (Tolk et al. 

2007)87 
 

A successful description of different levels of interoperability requires well-
specified ontological schemes, yet it is uncertain to what extent the construction 
of any general and overarching schemes is achievable or feasible without losing 
the fine print of contextual reality. Many researchers of complex systems, such 

                                                
87 Republished from the Journal of Systemics, Cybernetics and Informatics, Applying the Levels 
of Conceptual Interoperability Model in Support of Integratability, Interoperability, and 
Composability for System-of-Systems Engineering, by Andreas Tolk, Saikou Y. Diallo, Charles 
D. Turnitsa, 2007, 5(5), page 66, with permission. 
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as social organisations, are aware that their conceptualisations can capture only 
a fraction of reality at any given moment and often lack predictive capacities.  
 
Against this backdrop, the generative-integrative mode of development appears 
entirely plausible. In the light of the LCIM model, the lower levels of 
interoperability provide a possibility for generative combination, whereas 
climbing up to the higher levels of interoperability requires additional 
integration efforts. In the context of the ROS communication system, the 
interoperability occurs at the technical level (interconnection) and the syntactic 
level (message type), whereas the level of semantic interoperability tends to take 
place at the realm of common conventions that revolve around shared 
understandings of the conventional use and purpose of specific message types 
and methods of communication. While this makes it possible to connect 
different components and frameworks together, a developer is left with a task of 
constructing the higher levels of pragmatic, dynamic and conceptual 
interoperability between transformations in order to achieve an appropriate 
level of behavioural couplings that is congruent with the physical embodiment, 
task and task environment.  
 
The LCIM model and traversing upwards along the layers of interoperability 
and abstraction appear as a potential conceptual explanation concerning the 
under-specification of interconnections and constructive ambiguity. In this 
light, the differing opinions and interpretations of ROS and the perceived 
transferability of software packages could possibly be explained in terms of 
expectations regarding the levels of interoperability. While the LCIM model 
offers a path to explanation, additional research and conceptualisation are 
needed to establish in a more detailed manner how these different levels of 
semantic interpretability unfold in complex digital innovation. As digital 
representations and chains of transformation become more convoluted, growing 
in size and complexity, the interoperability can be expected to affect the 
distribution of software and other digital objects and artefacts as well as have 
implications to the practices of systems development. This line of inquiry may 
provide a fruitful avenue of research for those who are interested in explaining 
and theorising the logic of combination in the context of complex digital 
innovation. 
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7.4 Summary 

This chapter restated and discussed the conceptual findings of this research. 
These findings conceptualise the structural-functional characteristics and 
organising logic of complex digital innovation in the view of product 
architectures and combination.  
 
To begin, robots and autonomous systems were conceptualised as contextually 
bound and embodied chains of transformation. This is to highlight that these 
systems render their behaviour through the interaction with the surrounding 
environment, are physically embodied and comprise interconnected 
computational processes which transform sensory inputs into situated actions. 
The direct coupling with the surrounding environment and the qualitative 
difference between the inputs and outputs differentiates robot systems from the 
traditional information and communication systems that mediate messages and 
digital objects that are created and consumed by people. This shift marks the 
expansion of the focus of digital innovation research from the information 
systems to transformation systems. This conceptualisation provides a 
foundation for further research towards a more fine-grained examination of 
computational “value chains” by bringing forward simple questions such as 
what is being transformed, how are transformations joined together or who 
controls transformations and related abstractions. Moreover, perhaps, more 
importantly, it would also possible to ask who decides which of ones the 
transformations among the infinite variety of possible transformations are the 
ones that will be deemed fit, just and appropriate and on what grounds that is to 
take place. 
 
Then, the generative-integrative mode of systems development was presented as 
an approach that iteratively resolves the tensions between the specificity of 
designs and the distributedness of knowledge and control. This can be viewed as 
a mode of development that gradually seeks to increase the level of conceptual 
interoperability among the components that constitute a system. The 
generative-integrative mode can be described as an approach where an initial 
generative combination of existing components provides the starting point for 
further systems integration efforts. While the first combination may build upon 
the under-specification of interfaces and constructive ambiguity, the subsequent 
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integration efforts seek to establish a higher degree of interoperability among 
the components as the initial combination of components is gradually coevolved 
and crafted into a composition that is expected to produce meaningful, robust 
and dependable computer-controlled behaviour. 
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8 Conclusions 

This is the final chapter that concludes this thesis. The chapter begins by 
presenting an overview of the work and then provides a summary of key 
findings. Subsequently, the findings are discussed to bring forward the 
conceptual contributions developed in the previous chapters. This is followed by 
the examination of the validity and limitations of this work, after which 
potential avenues for future research are briefly presented.  

8.1 Overview of the thesis and summary of the findings 

The research presented in this thesis focuses on the organising logic of complex 
digital innovation in the context of robots and autonomous systems from the 
point of view of product architectures and combination. To date, this area of 
research has received relatively little attention among digital innovation, 
information systems and management researchers. Considering that robots and 
autonomous systems in their different forms and functions are expected to play 
an increasing role in the future organisational, social and economic 
arrangements, the findings presented in this research are expected to be of 
interest to both academia and industry as they describe and conceptualise the 
organising logic of the systems that intertwine the physical, digital and 
autonomous aspects of technology. 

8.1.1 Background and research questions 

Robots and autonomous systems can be viewed as a type of innovation that is 
both complex and digital – they can be viewed either through the lens of digital 
innovation or through the lens of complex products and systems innovation. 
However, these two streams of innovation research draw their lessons from 
different empirical settings and present incompatible logic and principles of 
combination in the view of product architectures as presented and discussed in 
the literature review in Chapter 2. 
 
Product architectures are often discussed in terms of integrality or modularity 
depending on the way in which functional elements are assigned to physical 
components (Ulrich 1995). In modular architectures, the functional elements of 
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a product correspond to the components that constitute it, so that by changing a 
component, the corresponding functionality changes. Integrality, in turn, refers 
to the situation where components produce a particular functionality in 
conjunction so that functionalities cannot be changed in a piecemeal manner by 
changing some particular components in isolation. Modular product 
architectures are produced through the process of modularisation during which 
the overall design of a product is decomposed into its constituent components 
in a top-down manner (Salvador 2007; Baldwin & Clark 2000). Thereby, the 
knowledge of the overall architecture is a precondition for successful 
modularisation if it is to facilitate the separability and combinability of different 
components and modules (Schilling 2000).  
 
The modularity of digital components and assemblages is said to differ from 
that of physical products and components. Digital product architectures are 
often represented as layered stacks (Yoo et al. 2010), which are modularised so 
that different layers and components perform specific functions and services 
which are accessed through well-specified interfaces and communication 
protocols. What happens inside a component can be hidden and abstracted 
away from its users (Parnas 1972). Therefore, as long as the functioning of a 
component is well-specified and the interface for accessing the component 
remains stable, it can be reused and its internal workings can be changed. By 
adhering to specifications, open standards and common protocols, software 
developers can focus on their particular areas of work with little regard to what 
is abstracted away and hidden from them. This encapsulation enables 
generativity as new ensembles can be created by combining components from 
heterogeneous sources in a bottom-up manner (Yoo 2012b; Zittrain 2008; 
Zittrain 2006). This way, whereas modularity assumes the knowledge and 
control of an overall product architecture for modularisation efforts to succeed, 
the generativity of digital innovation does away with the centralised design 
agency rendering the knowledge and control over technologies and innovation 
trajectories highly distributed (Yoo et al. 2010).  
 
The literature on complex systems and products also casts doubt to what extent 
straightforward modularisation is feasible, but it does so on very different 
grounds (Prencipe 2000). The architectures of complex systems are 
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conceptualised as consisting of the hierarchies of inclusion and control 
(Murmann & Frenken 2006; Lee & Berente 2012). The hierarchy of inclusion 
refers to the physical components and parts that form the embodiment, and the 
hierarchy of control refers to the systems that control the embodiment. The 
elements that comprise these two analytically separate hierarchies are highly 
intertwined and interdependent, rendering such architectures with a high 
degree of specificity, integrality and complexity. It is argued that the companies 
which engage in the complex products and systems innovation are expected to 
possess detailed knowledge not only of the interdependent design hierarchies 
and also of the functioning of the components that constitute them (Prencipe 
2000). The high degree of interdependence among components makes the 
efforts of modularisation challenging. Furthermore, as the components that 
comprise the hierarchy of control often rely on digital computation, they can be 
referred to as digital control systems (Lee & Berente 2012). 
 
To problematise, in the context of complex digital innovation, should the 
organising logic of innovation be viewed through the lens of generative 
combinations or perhaps through the lens of complex systems and specificity? 
 
With reference to this problematisation, the principal research question and two 
operative research questions were formulated to guide the empirical 
investigation. The principal research question is stated as follows:  
 
How can the tension between the specificity of designs and the distributedness 
of knowledge and control be resolved in the development of complex and 
digitised products? 
 
The principal question needs to be restated in operative terms to make the 
process of data collection and analysis more tractable (Hintikka 1999). To this 
end, operative research questions were constructed upon tentative a priori 
concepts based on Herbert Simon’s (1996; 1962) theory of hierarchy that 
conceptualises the structures of complex systems as nested and recursive 
structures that are nearly-decomposable. 
 
From this starting point, the efforts were first concentrated on the identification 
of the instances of subsystems irrespective if they belonged to the hierarchies of 
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inclusion or control or at which hierarchical level they resided. The first 
operative research question is expressed as follows: 
 
What are the typical instances and characteristics of subsystems, if any? 
 
Once the instances of subsystems were established, the focus of research shifted 
from the subsystems to their combinations, with an emphasis to explore how 
subsystems are connected at and across different levels of design hierarchies. 
This is expressed through the second operative research question as follows: 
 
What are the typical instances and characteristics of combinations, if any? 
 
Examining the subsystems and their respective combinations was expected to 
increase the understanding on how tensions between the specificity of designs 
and distributedness of knowledge and control are resolved in the development 
of complex and digitised products. 

8.1.2 Approach to research 

The Robot Operating System (ROS) (Quigley et al. 2009) was a selected as a 
case to study after the pilot study phase, and the research was designed as an 
embedded case study (Yin 2009). ROS was chosen as it was considered to 
provide a holistic and representative view of the development of robots and 
autonomous systems. An extensive research database was constructed primarily 
from the publicly available documentary evidence that covered ROS and the 
ROS community. This was complemented by the field notes and observations 
that were gathered during different workshops and events.  
 
The research database was processed to serve two different purposes, to develop 
a case description and to carry out the thematic analysis that would provide an 
answer to the principal research question. The analysis (Silverman 2015) 
unfolded over five different although partially overlapping phases, 
familiarisation, open coding, categorisation, thematisation and 
conceptualisation. The first phase focused on getting familiar with the field of 
robotics. The second phase (open coding) labelled data using the operative 
research questions and their conceptual underpinnings as sensitising devices 
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(Klein & Myers 1999). The main outcome of these two phases is the case 
description presented in Chapter 5 which is one of the empirical findings of this 
research. 
 
Subsequently, the third phase (categorisation) examined the labelled data in 
more detail to locate recurring themes that would warrant the categorisation in 
the view of research objectives. This iterative and interrogative process 
(Hintikka 1999) produced 15 categories, which were further abstracted to six 
themes during the fourth phase (thematisation). Then, finally, the fifth phase 
(conceptualisation) evaluated and established the relationships among the 
themes and categories. The conceptual propositions that were developed based 
on the themes and categories constitute the theoretical contribution of this 
research. Finally, the primary research question was answered with reference to 
the theoretical propositions. 
 
The contributions of this research can be divided along the lines of empirical 
findings and conceptual propositions. The case description, themes and 
categories constitute the empirical findings, whereas the theoretical 
contributions comprise the two proposed conceptualisations. The empirical 
findings and conceptual propositions are briefly presented in the subsequent 
sections. 

8.1.3 Empirical findings 

The case description, themes and categories that were developed during the 
process of thematic analysis form the main empirical findings of this research.  
 
The case description presents ROS as a software development framework and 
open-source community. ROS brings roboticists together and provides them 
with building blocks, methods and tools that are needed to develop robots and 
autonomous systems as distributed computers. The case description describes 
how the two research projects started at Stanford University around 2005 
evolved under the auspices of different organisations into a vibrant open-source 
community while outlining the plans and (un)planned outcomes. This provides 
unique insight into the domain of complex digital innovation that has so far 
received little scholarly attention.  



 

250 

After developing the case description, the research database was analysed 
further to identify recurring patterns, categories and themes. The analysis of 
resulted in 15 categories, which were further abstracted to six themes: robot 
systems (1), physical embodiments (2), communication systems (3), 
transformation systems (4), visualisation and testing systems (5) and the ROS 
community and software development (6). These themes and their respective 
categories are outlined below. 
 
To begin, the theme of robot systems (1) consists of two categories that are 
research robots and productive applications, indicating the overall purposes of 
robot systems. As a composition, a robot system comprises three different 
themes, which are physical embodiments and communication and 
transformation systems. These three themes are further divided into categories. 
The theme of physical embodiments (2) consists of three categories that are 
sensors, actuators and hardware platforms. They provide a robot system with 
the means to interact with its surrounding environment. The theme of 
communication systems (3) deals with messaging and coordination systems and 
connectors, and their primary purpose is to facilitate the setting up of a robot 
system as distributed computation. Whereas the messaging system handles the 
run-time messaging among distributed computational processes, the 
coordination systems provide the functionality for managing, coordinating and 
monitoring the operation of distributed computation. The theme of 
transformation systems (4) consists of the systems that carry out 
transformations over coordinate frames and other representations of data. The 
coordinate transformations perform transformations between different 
geometric coordinate frames over time, whereas the representational 
transformations, in general, perform qualitative, gradual and stepwise 
transformations which convert the inputs of one kind to the outputs of another 
kind, such as the measured patterns of light to action commands to motors. The 
theme of visualisation and testing systems (5) consists of systems for 
visualisation, simulation and test data management. The developers of robot 
systems rely heavily on visualisation and simulation tools in the development of 
behavioural models. Moreover, as physically embodied processes of distributed 
computation are often convoluted and difficult to reason, the examination and 
evaluation of behavioural models tend to be experimental while relying heavily 
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on the tools of visualisation and simulation. The theme of the ROS community 
and software development (6) brings forward knowledge transfer efforts and the 
supporting infrastructure and tools that are designed to facilitate software and 
technology transfer and reuse in the community.  
 
This categorisation and thematisation revealed the heterogeneity of software 
packages, subsystems and components that are made available through the ROS 
infrastructure. The analysis also revealed the absence of platforms, especially if 
the concept of a platform is understood to refer to a stable core onto which 
peripherals are connected via interfaces that are specific to a certain design 
hierarchy (Baldwin & Clark 2000; Baldwin & Woodard 2008). Instead, what is 
available is a multitude of frameworks and components that are distributed as 
software packages that serve as building blocks from which robot systems can 
be constructed. Therefore, while ROS provides the communication system and 
common conventions around which the community revolves, it is not a platform 
in the sense as an ordinary operating system would be. In addition, whereas 
certain central frameworks, such as the ROS communication system and the 
coordinate transformation systems cater to the needs that are common across 
different robot systems, the systems and components that perform 
representational transformations show a great degree of variety. This suggests 
that the communication systems that perform replication of messages and the 
coordinate transformation systems that perform transformations across 
geometric frames of reference are more generalisable than the systems which 
perform the representational transformations between the qualitatively 
different inputs and outputs and produce the behaviour of a robot system.   

8.1.4 Contributions to literature 

This section presents the contributions with reference to the three target areas 
of contribution as outlined in the introductory chapter. The three areas of 
contributions are the description and illustration of the empirical domain of 
robots and autonomous systems, the characterisation of the constitutive 
elements and organising logic of complex digital innovation and the exposition 
of the dynamics of innovation at the boundary of generative combination and 
systems integration.  
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The case description presented in Chapter 5 provides the first contribution. It 
provides an overview of ROS, which is a widely used software development 
framework in the development of robots and autonomous systems. The chapter 
describes the empirical domain and sheds light on the challenges related to the 
development of robots and autonomous systems. To date, this framework and 
community have escaped the innovation and management researchers’ 
attention, and to the author’s knowledge, no overall account of the history of 
ROS has been documented elsewhere. However, ROS is widely used in the field 
of robotics and it is expected to play a prominent role also in the future. 
Therefore, the case description opens the door to the emerging domain of 
complex digital innovation and further investigations.   
 
Second, the conceptualisation of robots and autonomous systems as 
contextually bound and embodied chains of transformation contributes to the 
literature by conceptualising the salient characteristics that influence the 
dynamics of combination in the view of product architectures and combination. 
The purpose of this conceptualisation is to bring forward the structural and 
functional characteristics that differentiate complex digital innovation from 
other forms of digital innovation. To differentiate, robots and autonomous 
systems interact directly with their surrounding environment, are physically 
embodied and consist of interconnected computational processes which 
transform between the qualitative different sensory inputs to situated actions. 
The direct interactional and behavioural coupling between a machine and its 
environment shifts the locale of interaction and associated sense and decision 
making processes when compared to the information and communication 
technologies, which replicate human communications over time and place.  
 
This behavioural, interactive and distributed character of computation bears 
implications to innovation practices. The shift of focus from transferring 
information between human actors to the distributed computation which 
produces goal-directed and context-dependent behaviour poses novel 
challenges. These challenges are not only related to the reusability and 
transferability of software, but also to the system design and development 
practices as well as to the verification of their functionality. Conceptualising the 
structural and functional aspects of complex digital innovation as contextually 
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bound and embodied chains of transformation allows us to pose a range of 
questions regarding the computational “value chains”, for example by bringing 
forward simple questions such as what is being transformed, how to control 
transformations and related abstractions, how they are brought together and 
who controls transformations and computer-controlled behaviour in general, 
among many others.  
 
Third, conceptualising the process of development of chains of transformation 
as the generative-integrative mode of development contributes to the literature 
on digital innovation by exposing a way how the tensions between the specificity 
of designs and the distributedness of knowledge and control are resolved. This 
mode of development can be characterised as a process that begins by 
combining the first version of a system from components that originate from 
heterogeneous sources. While this generative combination produces the first 
version, it cannot be considered as a complete and finished product. Instead, the 
first version provides a starting point for further systems development and 
integration efforts, with reference to which the necessary contextual and 
embodied experimentation and adjustment of behavioural models can proceed. 
Moreover, as the generative combination builds upon the under-specification of 
interconnections and constructive ambiguity, additional integration efforts are 
then carried out to remove the incongruences that emerge from the tension 
between the specificity of designs and under-specification that is bound to occur 
in the absence of central design agency and agreed design principles. During the 
integration phase, the initial combination is gradually crafted into a well-
functioning composition that produces the desired behaviour with respect to a 
task and task environment. 
 
The two proposed conceptualisations in conjunction depict complex digital 
innovation as a multidimensional and convoluted endeavour and shed light on 
the organising logic of complex digital innovation. Based on these findings, it 
also appears that the commonly used references of traditional software 
engineering, platforms and application stores may not be entirely representative 
and analogues lenses for studying and explaining complex digital innovation. In 
addition, the proposed concepts could be complemented and further developed 
by incorporating and testing the theories that have been developed in the field 
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of simulation studies. Simulation modellers have studied challenges related to 
distributed computation and conceptualised different levels of specification, 
semantic information and interoperability that are needed in the development 
of computational models of systemic behaviour. 
 
During the course of research, alternative conceptualisations of product 
architectures and different logics of combination were reflected in the view of 
empirical findings. The examination revealed that the existing 
conceptualisations were not able to fully capture the dynamics of innovation 
observed in the ROS ecosystem. For example, while contextually bound and 
embodied chains of transformation can be characterised as highly integral 
(Ulrich 1995) and complex as they consist of the interdependent and 
intertwined hierarchies of inclusion and control (Murmann & Frenken 2006), 
these conceptualisations are not entirely applicable as they assume centralised 
design agency and do not expose the interlinked and stepwise transformations 
that produce the behavioural models of a robot system. Similarly, while the 
generative-integrative mode of development aligns partially with the notion of 
generativity (Zittrain 2008; Zittrain 2006), generativity does not take into 
account the subsequent phases of development, which iteratively seek to 
increase the level of integration among the components of a system and with 
respect to tasks and task environments. Furthermore, while the concept of 
layered modular architecture (Yoo et al. 2010) is able to explain some of the 
observations, it does not capture the overall organising logic of complex digital 
innovation in this empirical context. The layered modularity assumes the 
presence of a foundational platform and stable interfaces, whereas the 
development of embodied and distributed chains of transformation is 
characterised by the absence of platforms. 
 
It can be concluded that the proposed concepts provide a novel contribution to 
the literature on digital innovation that focuses on product architectures and the 
related organising logic and principles of combination. 

8.2 Validity and research limitations 

Efforts were made to ensure the reliability of the empirical findings and 
conceptual propositions. As with any research project, this one also comes with 
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its limitations. The limitations are discussed with reference to the quality 
criteria of case study research as presented by Yin (2009) and include construct 
validity, internal validity, external validity and the general reliability of research. 
 
Construct validity concerns with the collection of data, concepts and their 
operationalisation (Yin 2009). Data collection and the initial identification of 
the instances that were selected for further analysis were guided by the tentative 
a priori concepts (Eisenhardt 1989b) that were used as sensitising devices (Klein 
& Myers 1999). The subsequent process of thematic analysis that unfolded in a 
highly iterative and interrogative fashion gradually arrived at 15 categories and 
six themes. Although it is not possible to expose in full detail all intricacies of 
this process, the resulting themes and categories have been introduced 
presented with sufficient detail so as to provide a chain of evidence that allows 
for other researchers to identify comparable clusters of themes and categories. 
The data collection relied on multiple sources of evidence and frequent 
triangulation for establishing the validity of proposed themes and categories.  
 
Internal validity concerns with the logical validity of data analysis and the 
construction of an argument that warrants the conclusions presented by the 
research (Yin 2009). Several analytic strategies can be employed to this end, 
such as systematic building of explanation and explanation against predicted 
patterns (Gibbert et al. 2008). As mentioned above, the unfolding of the process 
of thematic analysis cannot be explicated here in full detail: it is not feasible to 
establish exposition in full detail on how the cycles of iterations unfolded. 
However, the methodology chapter describes the overall unfolding of the 
process that distilled the large body of empirical evidence from heterogeneous 
sources into a handful of categories and concepts. Furthermore, the empirical 
findings and conceptual contributions are presented in way that should allow a 
reader to retrace the evidence and reconstruct the proposed line of argument. 
Therefore, the validity of the proposed concepts can be subjected to verification. 
In addition, the outcomes have been discussed in the light of existing literature 
to sharpen the boundaries and definitions of the proposed conceptualisations 
and to demonstrate the ways in which they differ from the current 
conceptualisations and thereby provide novel and original contribution to the 
literature on digital innovation.  



 

256 

External validity concerns to what extent the final conclusions of research are 
expected to be generalisable to the settings that can be considered similar but 
reside outside the empirical context of this research (Yin 2009; Gibbert et al. 
2008). The two conceptual propositions differ in terms of their generalisability. 
The notion of chains of transformations can be considered as highly 
generalisable across a range of systems that carry out transformations in a 
distributed manner. Broadly speaking, it marks the shift form information 
systems to transformation systems while highlighting the differing underlying 
logics of transferability, generalisability and verifiability of computational 
process that serve different purposes. In turn, the generative-integrative mode 
of development is more constrained and confined to the settings that unfold 
under particular assumptions concerning the coordination, control and access 
to knowledge at the level of overall system architectures and their constitutive 
components.  
 
Finally, the overall reliability of research refers to the absence of errors and 
minimisation of biases (Gibbert et al. 2008; Yin 2009). In principle, other 
researchers should be able to reproduce the findings if they would replicate the 
research project. Considering the efforts that have been made to describe the 
purpose, process and findings of this research with explicit references to the 
documentary evidence that is publicly available, in principle, it should be 
possible for other researchers to replicate the research and reach similar 
empirical findings and conceptual conclusions.  

8.3 Future research 

As this research sheds light on the organising logic of complex digital innovation 
in the context of robot and autonomous systems, it also brings forward a range 
of topics and phenomena that would warrant further examination to develop a 
better understanding of the dynamics of innovation revolving around the chains 
of transformation in their different forms and functions. 
 
Considering that the proposed concepts were developed based on the empirical 
evidence that represent a single open-source community, the applicability of 
conceptualisations could be further examined in other empirical contexts. 
Evaluating the proposed concepts in other settings could validate, refute or 
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extend these conceptualisations. In the context of robots and autonomous 
systems, for example, Orocos (Bruyninckx 2001) could be expected to be similar 
to the distributed architecture of ROS in certain aspects,  whereas Jibo,88 an 
interactive desktop robot with its encapsulated hardware, application 
programming interfaces and system development toolkit, presumably resembles 
more a hardware-device platform that follows the logic of layered modular 
architecture in the same way as mobile devices do.  
 
Moreover, as this research focuses on the overall characteristics of the 
organising logic of complex digital innovation at the level of ROS and the related 
community, a more nuanced view could be obtained by examining some 
particular instances of complex digital innovation from a close distance. For 
example, an in-depth case study into a systems development project could help 
understand and theorise how developers and organisations experience and 
approach in their day to day practices and processes the challenges that revolve 
around the specificity of requirements and the distributedness of knowledge 
and control.  
 
Furthermore, while the complexity of technological systems leads to several 
technical and engineering challenges, developing understanding of the variety of 
environmental contingences plays also a significant role. In the end, designing 
and developing a machine that responds and absorbs environmental 
contingencies require a deep understanding of the underlying characteristics 
and dynamics of tasks and task environments. As robots and autonomous 
systems are deployed into more open-ended and dynamic environments, the 
methods and approaches for modelling environments in terms of their 
dynamics and interactional affordances are expected to grow in importance. The 
extensive use of visualisation and simulation tools demonstrates the need for 
this, yet more research is needed on establish which ways the knowledge and 
codification of tasks and task environments intersperses the technological 
knowledge that dominates the discourse of robots and autonomous systems. To 
exemplify, whereas an implementation of a management information system 
often involves the rearrangement of administrative practices to make them 
compatible with the workflows that are supported by the information system, 

                                                
88 www.jibo.com 
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many physical large-scale environments such the system of road transit cannot 
be changed but must be learned and adapted into. In this light, the data and 
models that document the variety of environmental and operational contexts 
that condition and accept or reject the behaviour of robots and autonomous 
systems is presumably highly valuable for the developers of robot systems.  
 
Overall, the further research into the computer-controlled behaviour and the 
chains of transformation in their different forms and functions is necessary to 
develop better understanding of the machines to which the powers of sense and 
decision making are increasingly delegated and attributed; it is of paramount 
importance to develop the methods and tools that provide us with a holistic 
understanding of the structural and functional aspects of the modern computing 
technologies. Examining and categorising different kinds of chains of 
transformation and associated control points could provide better grounding for 
explaining the social and organisation phenomena that revolves around 
complex digital innovation. To this end, Floridi’s (2008, 2013) method of the 
levels of abstraction could provide an appropriate high-level framing to begin 
developing a more detailed framework to captures the dynamics of abstractions, 
transformations at and across different levels. This would help replace the terms 
such as artificial intelligence and algorithmic powers with more grounded and 
operationalisable terms, thereby allow us to pose more tractable questions such 
as what is being transformed, on what grounds and who controls 
transformations.  
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10 Appendix A 

Links to the sources of documentary evidence. 
 
Source Link 

Stanford Artificial Intelligence 
Robot Project  

http://stair.stanford.edu 

Personal Robotics Programme 
at Stanford 

http://personalrobotics.stanford.edu 

Willow Garage website http://www.willowgarage.com 

ROS website http://www.ros.org 

ROS wiki  http://wiki.ros.org 

ROS answers  http://answers.ros.org 

ROS discussion forum  http://discourse.ros.org 

ROS users mailing lists http://lists.ros.org/pipermail/ros-users/ 

ROS release mailing lists http://lists.ros.org/pipermail/ros-release/ 

ROSCon 2012 http://roscon.ros.org/2012/ 

ROSCon 2013 http://roscon.ros.org/2013/ 

ROSCon 2014 http://roscon.ros.org/2014/ 

ROSCon 2015 http://roscon.ros.org/2015/ 

ROScon 2016 http://roscon.ros.org/2016/ 

ROS 2 design website  http://design.ros2.org 

ROS 2 design discussion  http://groups.google.com/forum/?fromgroups#!forum/r
os-sig-ng-ros 

ROS-Industrial  http://rosindustrial.org 

Open Source Robotics 
Foundation 

https://www.osrfoundation.org 

STAIR boldly steps into the 
future of robotics 

https://engineering.stanford.edu/news/stair-boldly-
steps-future-robotics 

Interview: Scott Hassan on 
Willow Garage and the Future 
of Suitable Technologies 

https://spectrum.ieee.org/automaton/robotics/home-
robots/interview-scott-hassan-on-willow-garage-and-
the-future-of-suitable-tech 

Willow Garage's Last Days 
 

https://www.bloomberg.com/news/articles/2014-02-
20/robotics-research-lab-willow-garage-shuts-down 

Willow Garage changing 
 

http://robohub.org/willow-garage-changing/ 
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This woman makes robots. 
And no one is going to stop 
her 

https://www.wired.com/2015/05/this-woman-makes-
robots-and-no-one-is-going-to-stop-her/#.4axl7ttds 
 

How a billionaire who wrote 
Google’s original code created 
a robot revolution 

http://uk.businessinsider.com/a-look-back-at-willow-
garage-2016-2 

Willow Garage Retrospective http://ieeexplore.ieee.org/abstract/document/6763186/ 
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11 Appendix B 

The appendices B to G lists the ROSCon conference presentations by theme. Links to 

the websites that lead to the links of individual presentations can be found in Appendix 

A.  

 
Theme: Communication system 
Code Year Title of presentation Duration Subsystem Categories 
CO1 2012 Keynote: ROS: Past, 

present, and future 
65 mins. ROS Messaging; 

Coordination; 
Connectors 

CO2 2012 Introduction to rosjava 38 rosjava Connectors; 
Infrastructure 
and tools 

CO3 2012 ROS on Windows 19 catkin, 
Windows 

Connectors; 
Infrastructure 
and tools 

CO4 2012 The current state and 
future of multi-master, 
multi-robot systems 
using ROS 

34 roscore(s) Coordination 

CO5 2012 Writing Hardware 
Drivers 

40 Hardware 
drivers 

Connectors 

CO6 2012 Robot Web 
Applications 

22 rosbridge Connectors; 
Infrastructure 
and tools 

CO7 2012 Using Open Sound 
Control Hardware and 
Software with ROS 

13 touchOSC,  
iOS 

Connectors 

CO8 2013 ROS Extrospection – 
Multimaster and 
Beyond 

14 roscore(s) Coordination 

CO9 2013 Reliable Robotics – 
ROS Diagnostics++ 

16 ros_comm Messaging; 
Coordination 

CO10 2013 Networking for ROS 
Users 

12 ros_comm Messaging; 
Coordination 

CO11 2013 Android sensors driver 12 Android Connectors 
CO12 2013 Creating web-enabled 

robots with Robot Web 
Tools 

20 rosbridge2 Connectors 
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Theme: Communication system 
Code Year Title of presentation Duration Subsystem Categories 
CO13 2013 The next (big) step for 

the ROS middleware 
19 mins. ROS2 Messaging; 

Coordination 
CO14 2013 uROSnode – running 

ROS on 
microcontrollers 

17 uROSnode Connectors 

CO15 2013 Bridging ROS to 
Embedded Systems: A 
Survey 

16 connections 
to hardware 

Connectors 

CO16 2013 Introducing rosc 16 rosc Connectors 
CO17 2014 Next-generation ROS: 

Building on DDS 
23 ROS2 Messaging; 

Coordination 
CO18 2014 Serious rosserial 14 rosserial Connectors 
CO19 2014 ROS 2.0: Developer 

preview 
44 ROS2 Messaging; 

Coordination 
CO20 2014 ROS support from 

MATLAB 
28 Matlab Connectors; 

Infrastructure 
and tools 

CO21 2015 ROS 2 on “small” 
embedded systems 

23 ROS2 Messaging; 
Coordination; 
Connectors 

CO22 2015 State of ROS 2 - demos 
and the technology 
behind 

50 ROS2 Messaging; 
Supporting 

CO23 2015 Real-time Performance 
in ROS 2 

40 ROS2 Messaging; 
Coordination 

CO24 2015 ROS android_ndk: 
What? Why? How? 

10 Android 
NDK 

Connectors; 
Infrastructure 
and tools 

CO25 2016 ROS 2 Update 45 ROS2 Messaging; 
Coordination 

CO26 2016 Adaptive Fault 
Tolerance on ROS: A 
Component-Based 
Approach 

20 roscore, 
ros_comms 

Messaging; 
Coordination 
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Theme: Communication system 
Code Year Title of presentation Duration Subsystem Categories 
CO27 2016 The Intuitive ROS UI: 

FlexGui 4.0 – introduction 
and industrial applications 

16 mins. Flex Gui, a 
user 
interface 

Connectors; 
Infrastructure 
and tools 

CO28 2016 {,S}ROS: Securing ROS 
over the wire, in the 
graph, and through the 
kernel 

20 {,S}ROS Messaging; 
Supporting 

CO29 2016 Evaluating the resilience 
of ROS2 communication 
layer 

20 DDS, 
ROS2 

Messaging; 
Supporting 

CO30 2016 RTROS – A real-time 
extension to the Robot 
Operating System 

21 RTROS Messaging; 
Supporting 
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12 Appendix C 

Theme: ROS community and software development 
Code Year Title of presentation Duration Subsystem Categories 
SE1 2012 Opening Remarks 10 mins. ROSCon Knowledge 

transfer 
SE2 2012 The ROS wiki how to 

make the best use of it 
18 ROS wiki Knowledge 

transfer 
SE3 2012 Measuring and Tracking 

Code Quality in ROS 
22 ROS 

Ecosystem 
Knowledge 
transfer 

SE4 2012 Teaching Robotics with 
ROS: Experiences, 
Suggestions, and Tales 
of Woe 

20 ROS 
Ecosystem 

Knowledge 
transfer 

SE5 2012 Closing remarks 4 ROSCon Knowledge 
transfer 

SE6 2013 Opening remarks 17 ROSCon Knowledge 
transfer 

SE7 2013 ROS-Industrial, An 
Open Source Case Study 

19 ROS-
Industrial 

Knowledge 
transfer 

SE8 2013 Why Industrial Robot 
Manufacturers Should 
Care About ROS 

21 Yaskawa 
robots 

Knowledge 
transfer 

SE9 2013 The ROS Ecosystem: 
How are We Doing? 

19 ROS 
Ecosystem 

Knowledge 
transfer 

SE10 2013 Roles and 
Responsibilities of a 
Package Maintainer 

10 ROS 
Ecosystem 

Infrastructure 
and tools 

SE11 2013 ROS and Rock: mixing 
Orocos components and 
ROS nodes into model-
driven toolchain 

18 Rock-
Orocos, a 
development 
toolchain 

Knowledge 
transfer; 
Infrastructure 
and tools 

SE12 2013 Improve your ROS code 
with Model-Driven-
Engineering and save 
development time while 
doing it 

19 BRIDE, a 
development 
toolchain 

Knowledge 
transfer; 
Infrastructure 
and tools 
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Theme: ROS community and software development 
Code Year Title of presentation Duration Subsystem Categories 
SE13 2013 Understanding and 

using Catkin 
41 mins. catkin, a 

build system 
Infrastructure 
and tools 

SE14 2014 Opening remarks 14 ROSCon Knowledge 
transfer 

SE15 2014 The ROS ecosystem: 
Impact, insights, and 
improvements 

25 ROS 
community 

Knowledge 
transfer 

SE16 2014 Continuous integration 
for ROS in commercial 
environments 

20 buildbot-ros,  
a private 
build system 

Infrastructure 
and tools 

SE17 2014 Closing remarks 5 ROSCon Knowledge 
transfer 

SE18 2015 Opening Remarks 11 ROSCon Knowledge 
transfer 

SE19 2015 ROS for education and 
applied research: 
practical experiences 

16 ROS Knowledge 
transfer 

SE20 2015 Bringing ROS to the 
factory floor: a status 
report on the ROS-
Industrial initiative 

37 ROS-
Industrial 

Knowledge 
transfer 

SE21 2015 Commercial models for 
the robot generation 

45 Ubuntu 
Snappy, 
dependency 
management 

Infrastructure 
and tools 

SE22 2015 ROS + Docker: 
Enabling Repeatable, 
Reproducible, and 
Deployable robotic 
software via Linux 
Containers 

20 Docker, 
dependency 
management 

Infrastructure 
and tools 

SE23 2015 Docker-based ROS 
Build Farm 

19 private build 
system 
(Bosch) 

Infrastructure 
and tools 

SE24 2015 Closing remarks 5 ROSCon Knowledge 
transfer 
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Theme: ROS community and software development 
Code Year Title of presentation Duration Subsystem Categories 
SE25 2016 Opening Remarks 10 mins. ROSCon Knowledge 

transfer 
SE26 2016 ROS-Industrial turns 

four and expands 
worldwide 

20 ROS-
Industrial 

Knowledge 
transfer 

SE27 2016 ROS-‘X’ – Focused 
Initiatives 

24 ROS-'X', 
domain-
specific 
initiatives 

Knowledge 
transfer 

SE28 2016 The ROS build farm - 
what it can do for me 

41 Public ROS 
build system 
by OSRF 

Infrastructure 
and tools 

SE29 2016 Robust Deployment 
with ROS Bundles 

25 private build 
system 
(Clearpath) 

Infrastructure 
and tools 

SE30 2016 Closing remarks 11 ROSCon Knowledge 
transfer 
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13 Appendix D 

Theme: Robot systems 
Code Year Title of presentation Duration Subsystem Categories 
RS1 2012 Using ROS on Field 

Robotic Experiments in 
Remote Locations 

20 mins. Field 
robotics 

Research 
Robots 

RS2 2012 ROS for Humanoid 
Robots 

23 NAO, a 
humanoid 
robot 

Research 
Robots 

RS3 2012 “Moe” The Autonomous 
Lawnmower 

18 Moe, a 
lawnmovign 
robot 

Research 
Robots 

RS4 2012 Keynote: Architecting 
Real-time Control of 
Robonaut 2 using ROS 
and Orocos 

57 Robonaut2, a 
humanoid 
robot 

Research 
Robots 

RS5 2013 Project AUTOMATE at 
MIT Lincoln 
Laboratories 

20 A multi-
robot system 

Research 
Robots 

RS6 2013 Real world indoor & 
outdoor navigation 
experiences with ROS 

15 Robotnik, 
mobile base 

Research 
Robots 

RS7 2013 Hi Richard – Personalize 
your Robot with the 
cob_people_perception 
stack 

16 Care-O-bot, 
research 
platform 

Research 
Robots 

RS8 2013 Understanding the 
RoboEarth Cloud 

25 RoboEarth 
project 

Research 
Robots 

RS9 2014 Development of dual arm 
mobile manipulation 
systems for small part 
assembly tasks 

45 PRACE 
project at 
IPA 

Research 
Robots 

RS10 2014 EuRoC – The European 
Robotic Challenges 

17 EuRoC 
competitions 

Research 
Robots 

RS11 2014 How ROS works together 
with the mining industry 
in i2Mine project 

21 i2mine 
project 

Research 
Robots 
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Theme: Robot systems 
Code Year Title of presentation Duration Subsystem Categories 
RS12 2014 Practical experiences 

using ROS to build a 
three axis pick and place 
assembly robot 

25 mins. A proto-
board maker 

Productive 
applications  

RS13 2014 ROS in space 40 Robonaut2, a 
humanoid 
robot 

Research 
Robots 

RS14 2014 Control and perception 
architecture for the tele-
operation of the 
humanoid robot COMAN 

17 Coman, a 
humanoid 
robot 

Research 
Robots 

RS15 2015 An Introduction to Team 
ViGIR’s Open Source 
Software and DRC Post 
Mortem 

47 Team 
ViGir's DRC 
robot 

Research 
Robots 

RS16 2015 Automated Driving with 
ROS at BMW 

29 Cars, 
Automated 
driving 

Research 
Robots 

RS17 2015 Maru and Toru: Item-
specific logistics 
solutions based on ROS 

19 Magazino, 
warehouse 
robots 

Productive 
applications  

RS18 2015 Accelerating Your 
Robotics Startup with 
ROS 

20 Fetch, 
warehouse 
robots 

Productive 
applications  

RS19 2016 Plan to Win with MoveIt! 
- Lessons learnt from the 
Amazon Picking 
Challenge 2016 

20  A pick and 
place robot 
for 
warehouses 

Research 
Robots 

RS20 2016 ANYmal at the ARGOS 
Challenge: Tools and 
Experiences from the 
Autonomous Inspection 
of Oil & Gas Sites with a 
Legged Robot 

36 ANYmal, 
Oil and Gas 
production 
site 

Research 
Robots 

RS21 2016 Agricultural Robotics 
with ROS at Bosch: From 
the internet of fields to 
the internet of plants 

23 Deepfield 
Robotics 
(Bosch), 

Productive 
applications  
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14 Appendix E 

Theme: Transformation systems 
Code Year Title of presentation Duration Subsystem Categories 
TR1 2012 URDF and You 45 mins. URDF  Coordinate 

transformation 
TR2 2012 Motion Planning in 

ROS 
43 MoveIt!  Coordinate 

transformation; 
Representationa
l transformation 

TR3 2012 Understanding tf 40 tf Coordinate 
transformation 

TR4 2012 Understanding the 
Kinect 

42 Kinect, 
OpenCV, 
OpenNI 

Representationa
l transformation 

TR5 2013 Keynote: MoveIt!  39 Moveit!  Coordinate 
transformation; 
Representationa
l transformation 

TR6 2013 3D Mapping with 
OctoMap 

40 OctoMap Coordinate 
transformation; 
Representationa
l transformation 

TR7 2013 Object Recognition 
Kitchen 

23 Ecto Representationa
l transformation 

TR8 2013 Taking advantage of 
tf2 in single and 
multi-robot cases 

13 tf Coordinate 
transformation 

TR9 2013 Converting 
SolidWorks Parts and 
Assemblies to ROS 
Friendly Files 

14 URDF; 
sw2urdf 

Coordinate 
transformation 

TR10 2014 ros_control: An 
overview 

45 ros_control Representationa
l transformation 

TR11 2014 Navigation 
illumination: 
Shedding light on the 
ROS navstack 

45 navigation Representationa
l transformation 
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Theme: Transformation systems 
Code Year Title of presentation Duration Subsystem Categories 
TR12 2014 ROS-Industrial 

calibration 
27 mins. Calibration Coordinate 

transformation 
TR13 2015 MoveIt! Strengths, 

Weaknesses, and 
Developer Insight 

45 MoveIt!  Coordinate 
transformation; 
Representationa
l transformation 

TR14 2015 Phobos - Robot 
Model Development 
on Steroids 

15 URDF; 
Phobos 

Coordinate 
transformation 

TR15 2015 The Descartes 
Planning Library for 
Semi-Constrained 
Cartesian Trajectories 

21 Descartes  Coordinate 
transformation 

TR16 2015 Working with the 
robot_localization 
Package 

20 robot_locali
sation 

Coordinate 
transformation; 
Representationa
l transformation 

TR17 2016 Robot calibration 19 robot_calibr
ation 

Coordinate 
transformation 
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15 Appendix F 

Theme: Visualisation and testing systems 
Code Year Title of presentation Duration Subsystem Categories 
VI1 2012 The Gazebo Simulator 

as a Development Tool 
in ROS 

46 mins. Gazebo Simulation  

VI2 2013 Introducing the 
MORSE simulator 

22 Morse Simulation  

VI3 2013 From simulation to real 
robots 

9 USARSim Simulation  

VI4 2013 Using ROS with 
Webots 

12 Webots Simulation; 
Development 
infrastructure 
and tools 

VI5 2013 CloudSim: your own 
ROS robot army in the 
cloud 

20 Cloudsim, 
Gazebo 

Simulation  

VI6 2013 RQT Framework and 
Best Practices  

25 Qt, rqt Visualisation 

VI7 2013 Robot Performance 
Analysis from 
Automatically 
Recorded Data 

32 MongoDB, 
ROS 

Data 
management; 
Visualisation 

VI8 2014 Comparison of rigid 
body dynamic 
simulators for robotic 
simulation in Gazebo 

26 Gazebo Simulation  

VI9 2014 Cognitive Robotics 
Architecture for 
Tightly-coupled 
Experiments and 
Simulation (CRATES) 

25 QRSIM, a 
drone 
platform 

Simulation; 
Transformation 

VI10 2015 Mapviz: An Extensible 
2D Visualization Tool 
for Automated Vehicle 

15 mapviz Visualisation 

VI11 2015 ROS-driven user 
applications in 
idempotent 
environments 

17 Liquid 
Galaxy 

Visualisation 

VI12 2016 What’s new in 
Gazebo? Upgrading 
your simulation user 
experience! 

39 Gazebo Simulation 

VI13 2016 Cloudy with a Chance 
of Simulation 

21 Gazebo. 
CloudSim 

Simulation 
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Theme: Visualisation and testing systems 
Code Year Title of presentation Duration Subsystem Categories 
VI14 2016 Robotics 

Benchmarking with 
ROS 

20 mins. ConstructSim Simulation 

VI15 2016 Physical Continuous 
Integration — CI on 
Real Robots! 

20 Fetch, a 
warehouse 
mock-up 

Simulation 

VI16 2016 Bagbunker - Tool for 
Large Data Storage, 
Analysis, Viewing and 
Testing 

23 MARV, 
rosbag 

Data 
management; 
Visualisation 
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16 Appendix G 

Theme: Physical embodiments 

Code Year Title of presentation Duration Subsystem Categories 

PE1 2013 Turtlebot 2 – the new 
standard hardware 
reference platform 

14 mins. TurtleBot, a 
teaching 
platform 

Platform; 
Actuators: 
Sensors 

PE2 2013 ROSifying Robots: Tips, 
Tricks, and Lesson 
Learned 

10 Any robot 
hardware 

Platform; 
Actuators: 
Sensors  

PE3 2015 ROS on DroneCode 
Systems 

15 PX4, drone 
platform 

Platform; 
Actuators: 
Sensors  

PE4 2015 Introducing ROS-
RealSense: 3D 
empowered Robotics 
Innovation Platform 

15 Intel 
RealSense 
sensors 

Sensors 

PE5 2016 Introducing the 
Turtlebot3 

20 TurtleBot a 
teaching 
platform 

Platform; 
Actuators: 
Sensors  

PE6 2016 Introducing Intel 
RealSense Robotics All-
in-one Perception Device 

22 Intel 
RealSense 
sensors 

Sensors 

PE7 2016 Introducing H-ROS, the 
Hardware Robot 
Operating System 

22 H-ROS, 
ROS 
hardware 
components 

Sensors; 
Actuators 

PE8 2016 A robust flying platform 
for ROS developers 

22 DJI, drone 
platform 

Platform; 
Actuators: 
Sensors  
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17 Appendix H 

Events and non-participant observation documented in field notes. 
 
Code Year Description Event and location 
EO1 2015 Workshop: Research and innovation 

camps 
European Robotics Forum 
2015 in Vienna, Austria 
 EO2 2015 Workshop: Hardware and software 

modularity and interoperability in 
Service Robotics: Towards 
standardisation 

EO3 2015 Workshop: Towards new Robotics 
Software 

EO4 2015 Workshop: ROS Community 
Workshop 

EO5 2015 Two days ROS training workshops 
for robot software developers 

Workshop on Robot 
Operating System in 
Glasgow, UK 

EO6 2015 A week summers school that entailed 
lectures in robot software and 
hardware and development 

euRathlon/Sherpa summer 
school in field robotics in 
Oulu, Finland 

EO7 2015 Two days conference on ROS 
software and robot software 
development (included in ROSCon 
recordings) 

ROScon 2015 in Hamburg, 
Germany 

EO8 2015 Partnering day for research projects 
funded by the European Union 

euRobotics brokerage day in 
Brussels, Belgium  

EO9 2016 Workshop: Robot Ontologies 
Workshop to discuss the modelling 
of robot structures 

European Robotics Forum 
2016 in Ljubljana, Slovenia 

EO10 2016 Workshop: How Do We Surpass 
Current Barriers to Efficient 
Deployment of New Robotics in 
Industry? 

EO11 2017 Workshop: AI & Robotics: 
Delivering Platform and Integration 
Tools 

European Robotics Forum 
2017 in Edinburgh, Scotland 

EO12 2017 Workshop: System Engineering - 
RobMoSys: the next level of a 
Model Driven Robotic Software 
Ecosystem 
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18 Appendix I 

Semi-structured interviews, each one of approximately 1 hour of duration. 
 
Code Year Interviewee 
IN1 2015 A researcher in a robotics laboratory  
IN2 2015 A researcher in a robotics laboratory 
IN3 2015 A business development manager in a robotics incubator 
IN4 2016 The CEO of a small-medium sized robotics company 
 
 

 

 


