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ABSTRACT

Nonparametric methods of estimation of conditional density functions when the dimen-

sion of the explanatory variable is large are known to su¤er from slow convergence rates due

to the �curse of dimensionality�. When estimating the conditional density of a random vari-

able Y given random d-vector X, a signi�cant reduction in dimensionality can be achieved,

for example, by approximating the conditional density by that of a Y given �TX, where the

unit-vector � is chosen to optimise the approximation under the Kullback-Leibler criterion.

As a �rst step, this thesis pursues this �single-index� approximation by standard kernel

methods. Under strong-mixing conditions, we derive a general asymptotic representation

for the orientation estimator, and as a result, the approximated conditional density is shown

to enjoy the same �rst-order asymptotic properties as it would have if the optimal � was

known. We then proceed and generalise this result to a �multi-index�approximation using

a Projection Pursuit (PP) type approximation. We propose a multiplicative PP approx-

imation of the conditional density that has the form f (yjx) = f0 (y)
QM
m=1 hm

�
y; �Tmx

�
,

where the projection directions �m and the multiplicative elements, hm, m = 1; :::;M , are

chosen to minimise a weighted version of the Kullback-Leibler relative entropy between the

true and the estimated conditional densities. We �rst establish the validity of the approx-

imation by proving some probabilistic properties, and in particular we show that the PP

approximation converges weakly to the true conditional density as M approaches in�nity.

An iterative procedure for estimation is outlined, and in order to terminate the iterative

estimation procedure, a variant of the bootstrap information criterion is suggested. Finally,

the theory established for the single-index model serve as a building block in deriving the

asymptotic properties of the PP estimator under strong-mixing conditions. All methods

are illustrated in simulations with nonlinear time-series models, and some applications to

prediction of daily exchange-rate data are demonstrated.
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Chapter 1

Introduction

1.1 Motivation and Objectives

Conditional probability density functions (c.p.d.f.) provide complete information on the

relationship between independent and dependent random variables. As such, they play a

pivotal role in applied statistical analysis. Applications include regression analysis (Yin

and Cook 2002), interval predictions (Hyndman 1995, Fan and Yao 2003), sensitivity to

initial conditions in nonlinear stochastic dynamic systems (Yao and Tong 1994, Fan, Yao

and Tong 1996), quantiles estimation and measuring Value-at-Risk (Engle and Manganelli

2004, Wu, Yu and Mitra 2008), and asset pricing (Aït-Sahalia 1999, Engle 2001), among

others.

If the conditional density has a known parametric form, then the estimation of the

c.p.d.f. reduces to estimation of a �nite number of parameters. In particular, if the

c.p.d.f. is assumed to be Gaussian then it can be fully characterised by a model for the

conditional mean and the variance, e.g. ARMA and GARCH time-series models. However,

it is often the case that probability densities are characterised by asymmetry, heavy-tails,

multimodality, and possibly other a priorily unknown features. Furthermore, even for

known parametric models, c.p.d.f. of nonlinear systems may be hard to derive analytically

(see Fan and Yao 2003). In such cases when the form of the c.p.d.f. is unknown or hard

to derive, adopting a nonparametric approach can be bene�cial.

In this thesis we consider a nonparametric estimation of the c.p.d.f. fY jX (yjx) of a

random scalar Y given a random d-vector X = x. Even for a small dimension of X, d � 2;
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a purely nonparametric approach may su¤er from poor performance due to the �curse of

dimensionality�and the �empty space phenomenon�(see Silverman 1986, Section 4.5).

In order to overcome this �curse�, a vast number of techniques have emerged in the liter-

ature for reducing the dimensionality of the problem, without losing too many of the main

characteristics of the data. These include Principal Component Analysis (see Jolli¤e 2002),

Factor Analysis (see Gorsuch 1983), Independent Component Analysis (Comon 1994) addi-

tive and generalised-additive models (Hastie and Tibshirani 1990, Linton and Nielsen 1995,

Horowitz and Mammen 2007), single index models (Powell, stock and Stoker 1989, Härdle

and Stoker1989, Ichimura 1993, Delecroix, Härdle and Hristache 2003), inverse regression

estimation methods (Li 1991, Cook and Weisberg 1991), MAVE and OPG methods (Xia et

al 2002, see also Xia 2007, 2008), and successive direction estimation (Yin and Cook 2005,

Yin, Li and Cook 2008), among many others. Dimension reduction techniques aimed di-

rectly at estimation of conditional densities were studied by Hall, Racine and Li (2004) and

Efromovich (2010), where dimensionality reduction is achieved by attenuation of irrelevant

covariates. Hall and Yao (2005) and Fan et al (2009) o¤ered a single-index approximation.

This aim of this thesis is to contribute to this line of research by suggesting two related

approximation techniques of the c.p.d.f., based on the information gained by univariate

projections of the X-data. In addition, by allowing the data to be stationary strong-

mixing, the suggested approximations are shown to be applicable for dependent data, and

in particular to the estimation of predictive densities in time-series.

De�nition: A stationary process fZt; t = 0;�1;�2; :::g is said to be strong-mixing or

alpha-mixing if

�k = sup
A2F 0�1; B2F1k

jP (A)P (B)� P (AB)j ! 0 as k !1;

where F ji denotes the �-algebra generated by fZt; i � t � jg. We call f�kgk2N the mixing

coe¢ cients.

As an example, ARMA, GARCH and stochastic volatility processes were proved to be
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strong-mixing under some mild conditions (cf. Pham and Tran 1985, Carrasco and Chen

2002, Davis and Mikosch 2009), and our method can be applied to these series when the

assumption of Gaussianity is not applicable. For a general univariate strong-mixing series

fztgn+d+k�1t=1 ; let

yt = Zt+d+k�1; xt = (Zt+d�1; :::; Zt)
T ; t = 1; :::; n:

Then fY jXt (ytjxt) provides a k-steps ahead conditional density based on the d-lagged vec-

tor xt, which allows generalising standard time-series models to possibly nonlinear or non-

gaussian processes.

1.2 Thesis Outline and Research Contributions

In the second chapter of the thesis, we suggest approximating the conditional density f (yjx)

by f
�
yj�Tx

�
, the conditional density of Y given �TX = �Tx, where the orientation � is a

scalar-valued d-vector that minimises the Kullback-Leibler (K-L) relative entropy,

E log f (yjx)� E log f
�
yj�Tx

�
:

The approximated conditional density f
�
yj�Tx

�
is estimated nonparametrically by a kernel

estimator. In doing so, our approach provides a low dimensional approximation of the

conditional density which is optimal under the Kullback-Leibler criterion.

The approach of using the K-L relative entropy for estimation of orientation has been

utilised by Delecroix, Härdle and Hristache (2003) in single-index regression, Yin and Cook

(2005) for dimension reduction subspace estimation, and by Fan et al (2009), who similar

to us, dealt with conditional densities. Yin and Cook (2005) discuss several equivalent

presentations of the K-L relative entropy and they show relations to inverse regression,

maximum likelihood and other ideas from information theory.

Our work extends the approaches taken by the above papers in two main aspects; First,
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by allowing the data to be stationary strong-mixing, as discussed in the previous section.

As a second contribution, we derive a general asymptotic representation for the di¤erence

between the orientation estimator b� and the unknown optimal orientation �0 that is equal
to a sum of zero-mean asymptotic Gaussian components with

p
n-rate of convergence and

two other, stochastic and deterministic, components. The representation holds for kernels

of any order, while the asymptotically dominant terms are determined by the order of

kernels in use and the choice of kernel bandwidths.

Kernels of high-order bene�t from reduced asymptotic bias in the estimation, yet they

take negative values and thus often produce negative density estimates. An investigation

by Marron and Wand (1992) of higher order kernels for density estimation concluded that

the practical gain from higher order kernels is often absent or insigni�cant for realistic

sample sizes (see also Marron 1992 for graphical insight into the e¤ectiveness of high-order

kernels). Our proposed procedure allows estimating �0 with high-order kernels, while then

estimating the conditional density with non-negative second-order kernels.

The method is illustrated in simulations with nonlinear time-series models, and an

application to prediction of daily exchange-rate volatility is demonstrated.

In Chapter 3 of the thesis, we proceed and generalise the result of Chapter 2 to a �multi-

index�approximation using a Projection Pursuit type approximation. More precisely, mo-

tivated by the Projection Pursuit Density Estimation (PPDE) of Friedman, Stuetzle and

Schroeder (1984), we propose a multiplicative projection pursuit approximation of the con-

ditional density that has the form f (yjx) = f0 (y)
QM
m=1 hm

�
y; �Tmx

�
, where the projection

directions �m and the multiplicative elements, hm, m = 1; :::;M , are chosen to minimise

a weighted version of the Kullback-Leibler relative entropy between the true and the es-

timated conditional densities. In particular, the single-index approximation of Chapter 2

can be seen as a private case of the projection pursuit approximation whenM = 1. Indeed,

in Chapter 3, the single-index approximation serves as a theoretical building block for the

projection pursuit approximation, which allows us to derive the asymptotic properties of

the projection pursuit estimator under similar settings.
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Other �multi-index� extensions of the single-index c.p.d.f. approximation have been

proposed in the literature by Xia (2007) and by Yin, Li and Cook (2008). Both these

papers aim to estimate the central dimension reduction subspace spanned by the column

of d � q orthogonal matrix B; q � d; such that f (yjx) = f
�
yjBTx

�
(see Cook 1998).

However, while these papers o¤er a method to estimate the central dimension reduction

subspace, estimation of the c.p.d.f. can still be cumbersome to implement, even in the

reduced subspace, which may still be of high-dimension. The projection pursuit method

o¤ers a di¤erent generalisation of the single-index c.p.d.f. approximation, in that it at-

tempts to approximate the c.p.d.f. directly by a multi-index approximation, while it does

not necessarily produce an e¤ective estimate of the dimension reduction subspace. Un-

fortunately, the �exibility of the Projection Pursuit approximation comes at the cost of

interpretability, as the obtained estimates for M , �m�s and hm�s can be hard to interpret

in practice.

In the third chapter, we �rst establish the validity of the projection pursuit approxima-

tion by proving some probabilistic properties, and in particular we show that the projection

pursuit approximation converges weakly to the true conditional density as M approaches

in�nity. Similar properties have been proved to hold for the PPDE by Friedman, Stuetzle

and Schroeder (1984) and Huber (1985). However, some adaptations of their arguments

are required to account for the di¤erent nature of the problem discussed in this thesis and

the modi�ed Kullback-Leibler criterion for c.p.d.f�s, which is in use.

After establishing the theoretical approximation, an iterative procedure for estimation is

outlined, based on similar principles as for the projection pursuit density estimation. How-

ever, due to the nature of the problem, there is no need to incorporate cumbersome Monte

Carlo samplings as in the projection pursuit density estimation, rendering our method sim-

ple and computationally undemanding even for very large datasets. In order to terminate

the iterative estimation procedure, a variant of the bootstrap information criterion is sug-

gested that has the advantage of avoiding the need to solve an optimisation problem for

each bootstrap sample. The asymptotic results derived in Chapter 2 are used to derive the
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asymptotic properties of the proposed projection pursuit estimator under strong similar

mixing conditions.

Finally, the projection pursuit method is illustrated in simulations with nonlinear time-

series models, and an application to prediction of daily exchange-rate data is demonstrated.

Chapter 4 brie�y concludes and summarises the achieved results and possible directions

for future research which arise directly out of the thesis.
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Chapter 2

Semiparametric Estimation of Single-Index

Conditional Densities for Dependent Data

2.1 Introduction

In this chapter, we consider an approximation of the conditional density fY jX (yjx) by

fY j�TX
�
yj�Tx

�
, the conditional density of Y given �TX = �Tx, where the orientation � is

a scalar-valued d-vector that minimises the Kullback-Leibler (K-L) relative entropy,

E log fY jX (yjx)� E log fY j�TX
�
yj�Tx

�
: (2.1)

The approximated conditional density fY j�TX
�
yj�Tx

�
is estimated nonparametrically by

a kernel estimator. In doing so, our approach provides a low dimensional �single-index�

approximation of the conditional density which is optimal under the Kullback-Leibler cri-

terion.

In the single-index regression model (see Ichimura 1993) it is typically assumed that

Y = g
�
�TX

�
+", where g is some link function and " is a noise term such that E ("jX) = 0.

Our methodology di¤ers from this regression model by aiming for the most informative

projection �TX of X to explain the conditional density of Y given X, rather than just

the conditional mean. However, that is not to say that the true conditional distribution

of Y jX is assumed to be the same as that of Y j�TX. The method aims to provide the

optimal single-index conditional density approximation possible for a general fY jX (yjx).

The asymptotic theory developed throughout the chapter is justi�ed by appealing to
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a result by Gao and King (2004), who established a moment inequality for degenerate

U-statistics of strongly dependent processes, given in Lemma 2.6.4.

De�nition 2.1.1 A U-statistic of general order m � 2 is a random variable of the form

Un =
X

1�i1<:::<im�n
H (Zi1 ; :::; Zim) ; (2.2)

where H is a real-valued function, symmetric in its m arguments, and X1; :::; Xn are sta-

tionary random variables (or vectors). If for any �xed zi2 ; :::; zim we have

E (H (Zi1 ; zi2 ; :::; zim)) = 0;

then the U-statistic is said to be degenerate.

U-statistics play a key role in the literature in deriving the asymptotic properties of

semiparametric index-models for independent observations (e.g. Powell, Stock, and Stoker

1989, Delecroix, Härdle and Hristache 2003 and Delecroix, Hristache and Patilea 2006),

and in order to extend this theory to dependent observations we rely heavily on Gao and

King�s (2004) result.

The outline for the rest of the Chapter is as follows. Section 2.2 states the model�s

general setting and estimation methodology; Section 2.3 contains the assumptions and

main theoretical results; and Section 2.4 presents a numerical study with three simulated

time-series examples and exchange-rate volatility series. The proofs of the main theorems

are given in Section 2.5, while some other technical lemmas are outlined in Section 2.6.

2.2 Model and Estimation

Let fyj ; xjgnj=1 be strictly stationary strong-mixing observations with the same distribution

as (Y;X), where Y is a random scalar and X is a random d-vector. Our aim is to estimate

the conditional density fY j�TX
�
yj�Tx

�
of Y given a random d-vector �TX=�Tx; where � is

a vector in Rd that minimises the K-L relative entropy (2.1). Since the �rst term of the K-L
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relative entropy does not depend on �, minimising K-L relative entropy is equivalent to

maximising the expected log-likelihood E log fY j�TX
�
yj�Tx

�
. Clearly, the orientation � is

identi�able only with regards to its direction and sign inversion, and we therefore consider

unit-vectors that belong to the compact parameter space

� =
n
� 2 Rd : �T � = 1; �1 � c > 0

o
;

where �1 is the �rst element of the orientation and c > 0 is arbitrarily small. For example,

if Yt is the k-step ahead observation of a time-series and Xt consists of d lagged values

of the series, then the constraint that �1 6= 0 represents the belief that the k-step ahead

observation depends on the most recent observed value.

In order to ensure the uniform convergence of our estimator, we need to restrict ourselves

to a compact subset of the support of Z = (Y;X) such that for any � 2 � the probability

density fY j�TX
�
yj�Tx

�
is well de�ned and bounded away from 0. Denote such a subspace

by S, and let also SX =
�
x 2 Rd : 9y s.t. (y; x) 2 S

	
. Let �0 be the maximiser of expected

log-likelihood conditional on Z 2 S, that is,

�0 = argmax
�2�

ES

�
log fY j�TX

�
Y j�TX

��
; (2.3)

where ES is the conditional expectation given Z 2 S. Note that the condition Z 2 S

should not have any signi�cant e¤ect on �0 if the subset S is large enough. For ease of

presentation, we shall assume that all observations fyj ; xjgnj=1 belong to S.

To estimate �0 one can maximise a sample version of (2.3). De�ne the orientation

estimator by b� = argmax�2� L(�), where L(�) is the likelihood function
L(�) = 1

n

nP
i=1
log bf�i

Y j�TX
�
yij�Txi

�b��i : (2.4)

Here, b��i is a trimming term, which is discussed below, and with probability 1 it is even-
tually equals to 1 for large enough n. The unknown conditional density is estimated by a
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nonparametric kernel estimator

bf�i
Y j�TX

�
yij�Txi

�
=

bf�i
Y;�TX

�
yi; �

Txi
�

bf�i
�TX

�
�Txi

� :

where bfY;�TX �y; �Tx� and bf�TX ��Tx� denote the standard kernel probability density es-
timates, whereas the superscript ��i�indicates exclusion of the i0th observation from the

calculation, that is,

bf�i
Y;�TX

�
yi; �

Txi
�
= f(n� 1)hyhxg�1

P
j 6=i

K

�
yj � yi
hy

�
K

 
�T (xj � xi)

hx

!
;

bf�i
�TX

�
�Txi

�
= f(n� 1)hxg�1

P
j 6=i

K

 
�T (xj � xi)

hx

!
;

where hy; hx are bandwidths and K is a �xed, bounded-support, kernel function.

The exclusion of a single observation from the calculation should not have asymp-

totic e¤ect, but is mainly used for theoretical convenience, as it removes any extraneous

bias terms that may arise from reusability of data. While this �leave-one-out�formulation

becomes necessary when smoothing parameters are estimated along with the orientation

parameter (see Härdle, Hall, and Ichimura 1993), it has been widely used in the literature

for single-index modelling even when no estimation of smoothing parameter is involved (cf.

Powell, Stok, Stoker 1993, Ichimura 1993, Hall 1989). Note that adding the i0th observa-

tion, i.e. the j = i case, contributes a deterministic term of the form nh�1K (0) to each

density estimate, and therefore it may stabilise the �nite-sample performances as it ensures

that all density estimates are positive. On the other hand, adding the term nh�1K (0) to

each density estimate seems heuristic, and in general one may consider adding any non-

stochastic decaying term "n ! 0 to the density estimates with the purpose of ensuring

positivity. However, as this method can be very sensitive to the choice of "n, here we

applied a trimming operator for this purpose.

The trimming term b��i that appears in (2.4) is introduced to stabilise the �nite-sample
performances of the algorithm. To appreciate the role of this term, observe that even
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if observation (yi; xi) belongs to S it may still be the case that the kernel estimatesbf�i
Y;�TX

�
yi; �

Txi
�
, bf�i

�TX

�
�Txi

�
rely on very few neighbouring observations, or even none,

and as a result these estimates may be close to zero and even non-positive when high-order

kernels are used. Including log bf�i
Y j�TX

�
yij�Txi

�
in the computation of the likelihood func-

tion in such cases may have a drastic adverse e¤ect on the accuracy of the likelihood surface

estimates, and it is therefore preferable to trim such terms. Here, we adopted the following

simple data-driven trimming scheme, which works very well in practice (For alternative

trimming schemes, cf. Härdle and Stoker 1989, Ichimura 1993, Delecroix, Hristache and

Patilea 2006, Ichimura and Todd 2006 and Xia Härdle and Linton 2012). For a given

observation (yi; xi) and � 2 �, let

Iin;� =

8><>: 1; if min
n bf�i

Y;�TX

�
yi; �

Txi
�
; bf�i
�TX

�
�Txi

�o
> a0n

�c;

0; otherwise,

for some small constants a0; c > 0. As Iin;� depends on � it needs to be normalised to

account for the actual number of observations considered in the computation of L(�), and

hence we take

b��i = Iin;�
� 1
n

Pn
i=1 I

i
n;�: (2.5)

Thus, the trimming term b��i is completely data-driven in the sense that it depends on
the set of observations, and in addition, it also depends on the value of the parameter �,

evaluated by the likelihood. However, it does not assume any prior knowledge or applying

a pilot estimation of �0. We show in appendix B that if c is su¢ ciently small, then b��i
eventually equals to 1 for any large enough n with probability 1. Therefore, b��i has no
asymptotic e¤ect on the method performance.

It is common in single-index regression models, that the optimal kernel�s bandwidths for

orientation estimation undersmooth the nonparametric estimator of the link function, in

the sense that these bandwidths have a faster rate of decay than the optimal rate for purely

nonparametric estimation (cf. Hall 1989, p. 583). Our theory, presented in the next section,
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indicates that a similar property arises in single-index conditional density estimation. It

is therefore the reason that a second stage of estimation is utilised when fY j�TX
�
yj�Tx

�
is

estimated with the orientation estimate b� and with optimal-rate bandwidths Hy and Hx
for nonparametric estimation. Moreover, the �two stages�procedure allows estimating �0

with high-order kernels, while then estimating the conditional density with non-negative

second-order kernels.

Notice that although �0 is de�ned with respect to the true conditional density, it is

possible that the orientation estimator, b�, will be more suitable to use at the second-stage
with the same bandwidths and kernel functions as in the �rst-stage. However, this is likely

to happen only in very small sample sizes as the increase in accuracy achieved by using

optimal-rate bandwidths and non-negative kernels is likely to take e¤ect very quickly. For

further discussion, see also Hall (1989, pp. 583-4)

Our �nal c.p.d.f. approximation is obtained by using all observations in the calculation,

non-negative symmetric kernels eK (�) ; and with bandwidths Hy and Hx in place of hy and
hx, that is

ef
Y jb�TX

�
yjb�Tx� = 1

nHyHx

Pn
j=1

eK �yj�yHy

� eK �b�T (xj�x)Hx

�
1

nHx

Pn
j=1

eK �b�T (xj�x)Hx

� :

The following section presents the asymptotic properties of b� and ef
Y jb�TX

�
yjb�Tx�.

2.3 Asymptotic Results

We introduce some new notations that will be used throughout the section and in the

proofs. For a function g (�) of � 2 � and possibly of other variables, let rg (�) and r2g (�)

be the vector and matrix of partial derivatives of g (�) with respect to �, i.e.,

frg (�)gk =
@g (�)

@�k
and

�
r2g (�)

	
k;l
=
@2g (�)

@�k@�l
; k; l 2 f1; :::; dg :
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Denote now Z = (X;Y ) and

	(�) = ES

h
r log fY j�TX

�
Y j�TX

�
r log fY j�TX

�
Y j�TX

�T i
;


 (�) = ES

h
�r2 log fY j�TX

�
Y j�TX

�i
:

where ES is the conditional expectation given Z 2 S. For some small � > 0, de�ne also the

set S� distant no further than � > 0 from some
�
y; �Tx

�
such that (y; x) 2 S and � 2 �.

The following assumptions are required to obtain the asymptotic results for the orien-

tation estimator b�.
(A1) The sequence fyj ; xjgnj=1 is strictly stationary strong-mixing series with mixing

coe¢ cients that satisfy �t � A�t with 0 < A <1 and 0 < � < 1:

(A2) K (�) is a symmetric, compactly supported, boundedly di¤erentiable kernel.

(A3) The bandwidths satisfy hy; hx = o(1) and n1��hyhx !1 for some � > 0.

(A4) For all � 2 �;
�
Y; �TX

�
has probability density fY;�TX (y; t) with respect to

Lebesgue measure on S� and inf(y;t)2S� fY;�TX (y; t) > 0. fY;�TX (y; t), E
�
XjY = y; �TX = t

�
and E

�
XXT jY = y; �TX = t

�
are twice continuously di¤erentiable with respect to (y; t) 2

S�. Moreover, there is some j� such that for all j > j� and
�
y1; �

Tx1
�
;
�
yj ; �

Txj
�
2 S� the

joint probability density of
�
y1; �

Tx1; yj ; �
Txj
�
is bounded.

(A5) For the trimming operator, we require that a0; c > 0 and nc
�
h2y + h

2
x

�
= o (1)

and n1�2c��hyhx !1 for some � > 0.

(A6) For all � 2 �; ES
�
log fY j�TX

�
is �nite and it has a unique global maximum �0

that lies in the interior of �.

We further require that K (�) is a p�th-order kernel function, such that

Z
ujK (u) du = 0 for j = 1; :::; p� 1; and

Z
upK (u) du 6= 0;

for p � 2. We then make the following assumptions.

(A7)K (�) is p�th-order kernel with p � 2, and it is three times boundedly di¤erentiable.

(A8) The bandwidths hy; hx satisfy n2��hyh5x !1 for some � > 0.
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(A9) fY;�TX (y; t) and E
�
XjY = y; �TX = t

�
and E

�
XXT jY = y; �TX = t

�
are (2 + p)-

times continuously di¤erentiable with respect to (y; t) 2 S�:

Conditions (A1)-(A6) are needed for uniform consistency of the log-likelihood function

on �� S, and therefore for consistency of b�. In particular, condition (A1) allows the data
to come from a strong-mixing process. As an example, ARMA, GARCH and stochastic

volatility processes satisfy condition (A1) (cf. Pham and Tran 1985, Carrasco and Chen

2002, Davis and Mikosch 2009). Condition (A2) requires that K (�) is symmetric and

therefore it is of second-order at the least. Condition (A3) on the bandwidths is needed to

obtain uniform convergence of the kernel density estimators. In condition (A4), the bound

on the joint probability density of
�
�TX1; Y1; �

TXj ; Yj
�
may not hold for j � j�, which

allows components of X1 and Xj to overlap for some small j�s, as in the case where Xt

consists of multiple lags of Yt. For example, if xt = (yt�1; :::; yt�d)
T for d � 2 then the joint

probability density of
�
Y0; �

TX0; Yj ; �
TXj

�
is unbounded for j < d because the components

of X0 and Xj overlap. Condition (A5) for the trimming operator terms is derived from

Lemma 2.6.5 in the appendix. (A6) is an identi�ability requirement for �0. In the case

where ES
�
log fY j�TX

�
has more than a single global maximum, �0 can be any one within

the set of maxima points, and our asymptotic results will still apply as long as this �0 is a

local maximum in a small neighbourhood. Note that in that case, the choice of �0 within

the set of optimum points is not crucial as long as the approximation of fY jX (Y jX) is

concerned. Conditions (A7)-(A9) are stronger versions of (A2)-(A4) and are needed for

the derivation of the rate of consistency of b�. In these conditions, the order of the kernel
function K (�) is set to p � 2, which has to be an even number if K (�) is a symmetric

by (A2). Kernels of high-order may take negative values, and thus they often produce

negative density estimates. However, the trimming scheme, introduced in Section 2.2, is

designed to trim non-positive estimates from the log-likelihood calculation, and therefore

any potential problems caused by non-positive density estimates are avoided. Condition

(A8) discusses rate of decay for the bandwidths. For example, if both bandwidths hy; hx

are taken to be proportional to n�
 ; 
 > 0; then 
 must satisfy 0 < 
 < 1
3 :
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The following theorem, proved in Section 2.5. shows the consistency of b�:
Theorem 2.3.1 Let (A1)-(A6) hold. Then as n!1

b� !p �0:

As an implication of Theorem 2.3.1 and the fact that both �0 and b� are unit-vectors, it
follows from a simple geometric argument that the di¤erence b� � �0 can be approximated
up to �rst-order asymptotics by b�?, the projection of b� into the plane orthogonal to �0,
i.e., b� � �0 = b�? + op �


b� � �0


� .
Since fY j�TX

�
Y j�TX

�
depends only on the direction of �, then for any vector � 2 Rd we

get that both vector r log fY j�TX
�
Y j�TX

�
and the column (row) space spanned by matrix

r2 log fY j�TX
�
yj�Tx

�
are perpendicular to �. Indeed, this can also be seen directly from

Lemma 2.6.1 in appendix B. Note, however, that by conditions (A6) and (A9) there is

a generalised inverse of 
 (�0), denoted 
 (�0)
�, that is well de�ned in the perpendicular

space to �0 (cf. Theorem 3.1 of White 1982). Let now

V (�0) = 
 (�0)
�	(�0) 
 (�0)

� :

The next theorem gives a general second-order asymptotic representation for b� � �0.
Theorem 2.3.2 Let (A1)-(A10) hold. Then

b� � �0 = n�1=2V (�0)
1=2 Z +Op

�
n2��hyh

3
x

��1=2
+O(hpy + h

p
x);

where Z is asymptotically normal N (0; I) random d-vector and � > 0 arbitrarily small.

Similar results to Theorems 2.3.1 and 2.3.2 were derived by Delecroix, Härdle and Hris-

tache (2003) in the context of single-index regression. However, they assumed independent
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observations and fourth-order kernels, and they obtained

p
n
�b� � �0�! N(0; V (�0)):

Yin and Cook (2005) also dealt with a similar model for the purpose dimension reduction

subspace estimation, and they derived consistency of b� under independence.
Fan et al (2009) were the �rst to suggest applying the Kullback-Leibler criterion to

a single-index approximation of the conditional density. They also assumed independent

observations and obtained

b� � �0 = Op

�
n2��hyh

3
x

��1=2
:

Thus, Theorems 2.3.1 and 2.3.2 extends these papers by allowing the data to be stationary

strong-mixing, and by o¤ering a general second-order asymptotic representation for b� that
is holds for kernels of any order.

The proofs of Theorems 2.3.1 and 2.3.2 are given in Appendix A of the Chapter. The

idea of the proofs of is to look �rst at

L (�) = n�1
nP
i=1
log fY j�TX

�
yij�Txi

�
;

which is a version of the likelihood L (�) when conditional density estimates are replaced by

the true conditional densities. Deriving the asymptotic properties of L (�) is straightforward

by the ergodic theorem and CLT for strong-mixing processes (see Fan and Yao 2003,

Proposition 2.8 and Theorem 2.21).

At a second step in the proofs, we look at the di¤erence L(�)�L (�). By Lemma 2.6.5,

all trimming-terms, b��i , i = 1; :::; n, de�ned in (2.5), are eventually equal to 1 for any large
enough n with probability 1. Therefore, we can consider n to be large enough so b��i � 1
and

L(�)� L (�) = n�1
nP
i=1
log
� bf�i

Y j�TX
�
yij�Txi

�.
fY j�TX

�
yij�Txi

��
:
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For Theorem 2.3.1, it is then su¢ cient to prove that

sup
�2�
jL (�)� L (�)j = op (1) :

In the proof of Theorem 2.3.1, the main e¤ort is in the establishment of an asymptotic

bound for the di¤erence

rL
�b���rL�b�� : (2.6)

We write this di¤erence as a sum of few U-statistic terms. The main idea in the derivation

is to perform the Hoe¤ding�s decomposition on the U-statistic terms (Lemma A, pp. 178

in Ser�ing 1980), and then apply the result for degenerate U-statistics of strong-mixing

processes by Gao and King (2004, Lemma C.2). We then manage to establish a uniform

bound for (2.6) over a shrinking neighbourhood of �0, in the sense that � !p �0 implies

that

rL (�)�rL (�) = Op

�
n2��hyh

3
x

��1=2
+O(hpy + h

p
x) + op (� � �0) : (2.7)

Nolan and Pollard (1987) and Sherman (1994) developed a general uniform convergence

theory for U-statistics, and some applications include Ichimura (1995), Zheng (1998) and

Wang (2006). However, these results were obtained under assumption of independence,

while as far as we are aware, there is no general theory for uniform convergence of U-

statistics under mixing conditions. In the proof of Theorem 2.3.1, the property (2.7) is

achieved using a Lipschitz continuity property of the kernel functions in a similar manner

to Theorem 2 of Hansen (2008), see also the proof of Lemma 2.6.3 in Appendix B.

Theorem 2.3.2 implies that the choice of bandwidth hx has a greater impact on the

rate of convergence of b� than that of the bandwidth hy. This is due to the fact the

orientation vector, which appears within the kernel density estimates, is related to the X

variable through the function K
�
�T (xj�xi)

hx

�
. In particular, the symmetry between hx and

hy breaks when considering the score function rL(�), as one gets an additional factor of

hx from the inner derivative w.r.t. �.
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It is clear from this theorem that for b� to be pn-consistent estimator of �0, one needs
�
n2��hyh

3
x

��1=2
� n�1=2 and hpy + h

p
x � n�1=2: (2.8)

However, it is easy to see that both conditions cannot be satis�ed if p = 2, and hence the
p
n-convergence rate is not achieved in that case (cf. Remark 2 of Fan et al 2009), although

the convergence rate can still become arbitrarily close to
p
n. By increasing the order of the

kernel to p = 4, the condition (2.8) can be ful�lled under hy; hx � n�1=2p and hyh3x � n��1,

and if the two last inequalities are strict, then the Theorem implies asymptotic normality

of the estimate.

The asymptotic expression given by Theorem 2.3.2 at the limit � ! 0 suggests that

the optimal bandwidths hy and hx have both the asymptotic rate n�1=(p+2), where p is the

kernel�s order. Taking p = 2, for example, we have that the optimal bandwidths are of

asymptotic order n�1=4. This optimal rate re�ects undersmoothing of the kernel estimator,

which is a typical requirement in many single-index models.

As an immediate consequence of Theorems 2.3.1 and 2.3.2, we get that under appropri-

ate choice of bandwidths, b� can converge fast enough to �0 so that ef
Y jb�TX

�
yjb�Tx� estimates

fY j�T0 X
�
yj�T0 x

�
with the same �rst-order asymptotic properties as if �0 was known. The

Theorem below formalises this idea.

Theorem 2.3.3 Let (A1)-(A10) hold and HyHx=hyh3x = o
�
n1��

�
for some � > 0 and

HyHx

�
h2py + h

2p
x

�
= o

�
n�1

�
. In addition let eK be a symmetric, compactly supported,

boundedly di¤erentiable kernel, and Hy;Hx = O
�
n�1=6

�
and lnn

nHyHx
= o (1) : Then for any

� > 0;

sup
(y;x)2S

��� ef
Y jb�TX

�
yjb�Tx�� fY j�T0 X �yj�T0 x���� = Op

 �
lnn

nHyHx

�1=2!
: (2.9)

Notice that the exact rate of consistency for conditional density kernel estimator is

(nHyHx)
�1=2 (Robinson 1983). The lnn term in the RHS of (2.9) is needed to get a

uniform rate of convergence by Lemma 2.6.2. This upper bound for the uniform rate of

convergence was proved to be accurate for i.i.d. case by Bickel and Rosenblatt (1973, see
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also Fan and Yao 2003, Theorem 5.4). As far as we are aware, Bickel and Rosenblatt�s

result was not generalised to the dependent case. Nevertheless, we would expect this to be

the case for general stationary process under certain mixing conditions.

Theorem 2.3.3 is proved in Appendix A of the Chapter.

2.4 Implementation and Simulations

In this section, we discuss implementation of the proposed method and we examine its

�nite-sample properties over few simulated time-series models.

In all of the simulations we used the three-time di¤erentiable and IMSE optimal kernels

with support (�1; 1), derived by Müller (1984) and speci�ed below. The second-order

Müller�s kernel, also known as the Triweight kernel, is given for u 2 (�1; 1) by

K(u) = 35=32 �
�
1� 3u2 + 3u4 � u6

�
; (2.10)

and the fourth-order Müller�s kernel is given for u 2 (�1; 1) by

K(u) = 315=512 �
�
3� 20u2 + 42u4 � 36u6 + 11u8

�
:

For the estimation of the conditional density ef
Y jb�TX

�
yjb�Tx� we use only the non-negative

Triweight kernel.

In order to facilitate the implementation, we standardised xj = (xj1; :::; xjd) by set-

ting xj  S�1x (xj � x) and we standardised yj by setting yj  (yj � y) =sy, where x

and y are the vector and scalar sample means of fxjgnj=1 and fyjg
n
j=1 ; and S

2
x and s

2
y

are the d � d-matrix and the scalar sample variances. This procedure allows us to dis-

regard scaling parameters and to apply the same smoothing parameter for each direction

of � 2 �, in accordance with Scott�s (1992) normal reference rule. Once the two-stage

estimation procedure was complete, the estimates of the orientation and the conditional

density were transformed back to the original coordinates by setting b�  S�1x b�= 


S�1x b�
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and ef
Y jb�TX

�
yjb�Tx� ef

Y jb�TX
�
yjb�Tx� =sy.

We now provide a brief discussion on the topic of bandwidths selection. Typical band-

widths selection methods proposed in the literature of single-index models usually su¤er

from heavy computational burden. Härdle, Hall, and Ichimura (1993) proposed to op-

timise the least squares criterion function over the orientation coe¢ cients as well as the

bandwidth. A related iterative procedure of alternately estimating the orientation and the

bandwidth was suggested by Xia, Tong, Li (1999). Fan and Gijbels (1995a,b) combined

goodness of �t and plug-in steps to achieve variable bandwidth. Fan and Yim (2004) and

Hall, Racine and Li (2004) discussed cross-validation techniques for bandwidth selection.

Hall and Yao (2005) utilised a bootstrap approach based on the linear model to choose a

bandwidth. Moreover, most of the mentioned methods require applying the algorithm to

any � 2 �, or at least to some pilot estimator of �0. The computational burden in such

methods may be particularly noticeable in models like ours, where the estimation requires

solving a numerical multivariate optimisation problem. In practice, however, various prior

numerical studies that we carried out with di¤erent selection rules for hy and hx demon-

strated that the orientation estimator is very robust to the choice of bandwidths as long as

the bandwidths are not too small. Motivated by the single-index regression algorithm of

Xia, Härdle, Linton (2012), we propose the following iterative procedure that successfully

reconciles e¤ective bandwidth selection with fast and robust numerical optimisation.

Step 0. Let b�0 2 � be any initial guess for �0, for example b�0 = (1; 0; :::; 0). Set also
a �nite sequences of decreasing bandwidths hiy = hix = ain�1=(p+2); i = 1; :::; I, where p

is the kernel-order and
�
ai
	
> 0 is a decreasing sequence such that the �rst bandwidths

notably oversmooth the unconditional density and the last one is chosen, e.g., by Scott�s

(1992) normal reference rule. In our simulations, we used
�
a1; a2; :::; aI

�
= (9; 8; :::; 3),

which yields good results. Set the iteration number i = 1.

Step 1. Apply a multivariate variant of the Newton-Raphson method with start-

ing point b�i�1 to �nd a maximum log-likelihood estimate b�i numerically based on band-
widths hiy and h

i
x. In our simulations, we use the Broyden-Fletcher-Goldfarb-Shanno BFGS
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method� (see Nocedal and Wright 2006, Chapter 6).

Step 2. Stop the procedure and use the estimate b� = b�i either if i = I or if a certain

convergence criterion is met, i.e. if
�b�i�T b�i�1 > 1 � " for some small " > 0. Otherwise,

set i i+ 1 and hiy = hix = ain�1=(p+2), and return to Step 1.

Note that since h1y = h1x = 9n�1=(p+2) are chosen to oversmooth the conditional den-

sity in the �rst iteration of estimation, the corresponding likelihood surface is thus over-

smoothed as well, and the optimisation algorithm is insensitive to the choice of b�0. On the
other hand, if we simply use one step of maximization with only hy = hx = 3n�1=(p+2),

then the algorithm is very likely to converge to some local maximum, depending on the

starting point b�0 provided. Having said that, one needs to be aware that if the expected
likelihood surface is truly multimodal, oversmoothing the likelihood surface may lead to

convergence of the procedure to a locally optimal parameter, rather than to a globally

optimal one.

For the second stage estimator of the conditional density, ef
Y jb�TX

�
yjb�Tx�, Theorem

2.3.3 assumes the bandwidths Hy and Hx do not change when the �t is carried out on the

data. However, in practice, if the variables Y and b�TX have a nonuniform distribution,

a constant bandwidths may lead to problems caused by undersmoothing in some sparse

neighborhoods. In order to overcome this problem, the nearest neighbour bandwidth es-

timator chooses the bandwidths to ensure that su¢ cient amount data is contained in the

calculation. More speci�cally, the nearest neighbor bandwidth for a density estimate at

point z, given stationary observations z1; :::; zn, is computed as the distance from z to its

k0th nearest neighbour among z1; :::; zn (cf. Silverman 1986, Section 2.5, Loader 1999, Sec-

tion 2.2.1, Scot 1999, Section 6.6). Thus, for example, in the tails of the distribution, the

nearest neighbour bandwidth will be larger than in the centre of the distribution, and so

the sparsity problems in the tails are reduced. However, nearest neighbour estimates are

generally not probability densities as they do not necessarily integrate to one as the tails

of the estimate may approach zero very slowly (see Silverman 1986, Section 2.5).

�The code for the BFGS algorithm was published by Daniel F. Heitjan



22

Other alternative methods for adaptive bandwidth are typically more complicated,

such as the locally adaptive two-stage kernel estimator of Breiman, Meisel and Purcell

(1977), and the supersmoother algorithm of Friedman and Stuetzle (1982), which chooses

bandwidths based on a local cross validation method. Few other local goodness of �t

approaches for bandwidth selection are discussed in Chapter 11 of Loader (1999). However,

according to Loader (1999), these locally adaptive procedures work very well on problems

with plenty of data, obvious structure and low noise, while when the data structure is

not obvious, simpler methods of bandwidth selection are generally preferable. Moreover,

locally adaptive procedures are charachterised by tuning parameters, or penalties, and the

estimates can be quite sensitive to the choice of these parameters.

In our simulation study, we have considered at �rst an application of the nearest neigh-

bour procedure for the second stage of estimation by using the R statistical package �loc�t�

of Clive Loader. This package allows combining a �xed bandwidth with a nearest neighbor

bandwidth, such that the �nal bandwidth is determined as the maximum amongst both

components. An asymptotic analysis by Moore and Yackel (1977) suggest that the para-

meter k in the nearest neighbour estimator is linked to the bandwidth h in a nonparametric

kernel estimation by k = nhd. Hence, for our study, Scott�s (1992) normal reference rule for

bandwidth selection suggests using bandwidths that are taken as the maximum between

an�1=6 and the k0th nearest neighbour with parameter k = an5=6, where for Triweight

kernel (2.10) a � 3. Nevertheless, after gaining some experience with the method, we

came to conclude that while the nearest neighbour method is more demanding in terms

of computational time, it o¤ered no signi�cant bene�t relatively to the �xed bandwidth

in terms of minimising RMSPE in our Monte Carlo study or prediction of out-of-sample

conditional tail quantiles in a real-data example. In all of our simulations reported below,

we have therefore used �xed bandwidths according to Scott�s (1992) normal reference rule,

which suggests using bandwidths given by Hy = Hx = 3n
�1=6.

As with most other trimming schemes proposed in the literature (cf. Härdle and Stoker

1989, Ichimura 1993, Delecroix, Hristache and Patilea 2006, Ichimura and Todd 2006 and
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Xia, Härdle and Linton 2012), our trimming method requires setting values for the trim-

ming parameters; these are a0 and c. Since the trimming factor (2.5) serves also as a

normalising factor, our method is expected to be relatively robust to the trimming para-

meters as long as a0n�c is not too small such that any single observation may have a strong

e¤ect on the likelihood function value. At the same time, a good choice of values for a0 and

c should aim to trim only as few observations as possible, in the sense that the probability

that min
n
fY;�TX

�
yi; �

Txi
�
; f�TX

�
�Txi

�o
is smaller than a0n�c is very low. In practice,

in all of our simulations, we used all observations in both stages of the estimation, and we

set b��i to trim down only observations whose density estimates were lower than 0:001.

The complexity of the proposed algorithm is calculated as follows. Computing the

likelihood has a computational complexity of O
�
n2d
�
, since it is calculated as a sum of

n (n� 1) terms, j 6= i, where each term requires calculating the inner product of � with

(xj � xi). Note that each term also requires applying the kernel function which may take

some expensive computational time, and therefore it is generally recommended to choose

kernels of simple form (i.e., polynomials). The BFGS optimisation method is a hill-climbing

optimisation technique, and it requires O
�
d2F (n; d)

�
time per step of the optimisation

algorithm to optimise a system with d parameters, where F (n; d) is the cost of calculating

the objective function (Nocedal and Wright 2006, Chapter 6). Thus, in our case, assuming

the number of steps of the BFGS optimisation algorithm is limited to a �nite number,

the computational complexity of �nding the MLE, b�, using the the BFGS method is of
order O

�
n2d3

�
. Similar considerations show that the computational complexity of the

second step of the estimation, i.e., calculating ef
Y jb�TX

�
yjb�Tx�, is of order O (nd), which is

relatively insigni�cant.

In the simulations we used R 2.14.1 programme on a computer with 3.4ghz intel core i7-

2600 processor. In all of the examples considered below, the dimensionality of the problem

was d = 4. The average computational times of the method (for a single estimation based

on Example 1 below) with dimension d = 4 and sample sizes n = 100; 200; 400 and 800

were 1:5 sec; 3:5 sec; 11 sec and 31 sec, respectively.
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An R code PPCDE.txt for the calculations below is available at

http://personal.lse.ac.uk/rosemari/

For comparison, we also tested the dOPG method of Xia (2007)y. The dOPG method

performs estimation the central dimension reduction subspace, and when it is exercised

with a one-dimensional central dimension reduction subspace, it can be applied for the

the �rst-stage estimation of the orientation vector. For the dOPG method the average

computational times of the method (for a single estimation based on Example 1 below)

with dimension d = 4 and sample sizes n = 100; 200; 400 and 800 were 1 sec; 1 sec; 2 sec and

5 sec, respectively.

The performances of the proposed methods are demonstrated in the following three

examples of simulated time-series models.

Example 1. As a �rst example, we consider the linear AR(4) model

yt = 0:5 �
X4

j=1
�0;jyt�j + 0:5 � "t;

where �T0 � (�0;1; ::; �0;4) = (3; 2; 0;�1) =
p
14 and "t are i.i.d. N (0; 1).

Example 2. In the next example we consider the nonlinear AR(4) model

yt = g
�X4

j=1
�0;jyt�j

�
+ 0:5 � "t;

where g (u) = exp
��
0:4� 2u2

�
u
�
, �T0 � (�0;1; ::; �0;4) = (1; 2;�1; 0) =

p
6, and the "t are as

in Example 1.

Example 3. Finally we would like to examine how the method works where the optimal

projection �T0X is related to higher moments of X. For the third example, we consider the

nonlinear ARCH(4) model

yt = g
�X4

j=1
�0;jyt�j

�
� "t;

yI thank Professor Yingcun Xia for providing a code for dOPG at http://www.stat.nus.edu.sg/~staxyc/
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Table 2.1: Mean and Standard error (in brackets) of the inner product b�T �0.
n = 100 n = 200 n = 400 n = 800

Example 1
p = 2 0.9241 (0.0776) 0.9630 (0.0312) 0.9758 (0.0258) 0.9864 (0.0182)
p = 4 0.8670 (0.1344) 0.8828 (0.1277) 0.9034 (0.0615) 0.9113 (0.0529)
dOPG 0.8943 (0.0793) 0.9458 (0.0309) 0.9617 (0.0267) 0.9749 (0.0155)

Example 2
p = 2 0.8867 (0.2193) 0.9632 (0.1325) 0.9809 (0.1043) 0.9936 (0.0654)
p = 4 0.6865 (0.3063) 0.6903 (0.2917) 0.7074 (0.3164) 0.7439 (0.3154)
dOPG 0.8900 (0.0770) 0.9336 (0.0575) 0.9612 (0.0292) 0.9757 (0.0177)

Example 3
p = 2 0.6412 (0.2864) 0.7374 (0.2636) 0.8703 (0.1689) 0.9301 (0.0961)
p = 4 0.6858 (0.2757) 0.8131 (0.2201) 0.8914 (0.1534) 0.9195 (0.0975 )
dOPG 0.4881 (0.2613) 0.4792 (0.2892) 0.5085 (0.2755) 0.4734 (0.2770)

where g (u) = 1
2

p
1 + u2

:
. Here, �0;j = exp (�j) =

qP4
k=1 exp (�2k), j = 1; :::; 4; and

the "t are as in the previous examples.All the three models can easily be veri�ed to be

geometrically ergodic by either Theorem 3.1 or Theorem 3.2 of An and Huang (1996),

and hence they are strictly stationary and strong-mixing with exponential decaying rates

(see Fan and Yao 2003, p. 70). In all examples, our goal was to estimate the optimal

orientation �0 and the single-index predictive density fY j�T x
�
ytj�Txt

�
of yt given the lagged

observations xt = (yt�1; yt�2; yt�3; yt�4). For each model 200 replications were generated

with sample sizes n = 100; 200; 400 and 800, and we implemented the method to produce

the corresponding estimates b� and ef
Y jb�TX

�
yjb�Tx�.

In practice, of-course, one does not know a priorily the optimal number of lagged

observations to be considered in the model, and the lag should be chosen according to

some preliminary analysis or model selection criterion. Cross-validatory techniques were

shown to have successful applications to model selection in semiparametric settings (Gao

and Tong 2004, Kong and Xia 2007), and they can be used to produce a stopping rule to

the single-index c.p.d.f. model. However, these computationally intensive techniques are

less desirable as b� has to found by numerical optimisation. The topic of model selection is
thus left open for some further research, and a relevant discussion is given in the concluding

Chapter 4 of the thesis.
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Table 2.1 presents the average and standard error (over 200 replications) of the inner

products
���b�T �0��� obtained for the three models with di¤erent sample sizes, and where the

estimation was performed using a kernels of order p = 2, p = 4 or by the dOPG method of

Xia (2007). Since b� and �0 are both unit vectors, ���b�T �0��� is simply jcos�j, where � is the
angle between b� and �0, and it is 1 if and only if b� = �0. Note also that this inner product

is directly related to the sum of square error measure




b� � �0


2 = 


b�


2 + k�0k2 � 2 ���b�T �0��� = 2�1� ���b�T �0���� :
As a general conclusion from Table 2.1, we can see that the orientation estimates become

more accurate as the sample size increases, although the rate of improvement is not as fast

as suggested by the theoretical asymptotic results. Comparing between the accuracy of the

orientation estimates across the three di¤erent models, one can see that the method seems

to be less accurate for the nonlinear models, and in particular for the nonlinear ARCH

model with relatively small sample sizes (n = 100 or 200). However, when the number

of observations is increased to 800, the average of the inner product
���b�T �0��� is consistently

higher than 0:9 for all of the models with second-order kernels, and two out of the three

models with fourth-order kernels.

The generally better performances of the second-order kernels compared with the

fourth-order kernels in terms of the accuracy of the corresponding orientation estimates are

particularly striking in Examples 1 and 2. In Example 3, on the other hand, the fourth-

order kernel yields some more accurate estimates for �0 with sample sizes n = 100; 200 or

400. However, when the sample size is increased to n = 800 the accuracy of the second-

order kernels �catches up�with that of the fourth-order kernels. An extensive investigation

performed by Marron and Wand (1992) of the e¤ectiveness of high-order kernels in non-

parametric density estimation provides an explanation for this discrepancy between theory

and practice as it shows that it may take extremely large sample sizes (with a typical order

of magnitude of few thousands and up to hundreds of thousands) for the asymptotic domi-
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Table 2.2: Mean and standard error (in brackets) of the sample RMSPE.
n = 100 n = 200 n = 400 n = 800

Example 1
p = 2 0.0460 (0.0201) 0.0327 (0.0117) 0.0245 (0.0097) 0.0167 (0.0055)
p = 4 0.0524 (0.0218) 0.0420 (0.0156) 0.0343 (0.0130) 0.0289 (0.0102)
dOPG 0.0491 (0.0280) 0.0279 (0.0131) 0.0115 (0.0070) 0.0154 (0.0050)

Example 2
p = 2 0.0756 (0.0333) 0.0511 (0.0205) 0.0370 (0.0167) 0.0272 (0.0086)
p = 4 0.1080 (0.0348) 0.0952 (0.0381) 0.0845 (0.0413) 0.0722 (0.0453)
dOPG 0.0963 (0.0275) 0.0706 (0.0230) 0.0499 (0.0154) 0.0382 (0.0108)

Example 3
p = 2 0.0712 (0.0271) 0.0500 (0.0172) 0.0374 (0.0148) 0.0276 (0.0100)
p = 4 0.0626 (0.0241) 0.0455 (0.0165) 0.0347 (0.0135) 0.0256 (0.0093)
dOPG 0.0483 (0.0284) 0.0387 (0.0155) 0.0371 (0.0109) 0.0302 (0.0083)

nant e¤ect to begin to be realised, and for the high-order kernels to produce more accurate

estimates. In particular, Marron and Wand (1992) conclude that high-order kernels are

not recommended in practice for kernels density estimation with realistic sample sizes.

The dOPG method seems to perform very well in Examples 1 and 2, although its

performance is inferior to that achieved with the second-order kernels. However, the dOPG

performs very poorly in Example 3, even for sample size n = 800, which suggests that

dOPG have di¢ culties in estimation of the optimal orientation where it is related to higher

moments of X.

Notice that at the second-stage of estimation, ef
Y jb�TX

�
yjb�Tx� is estimated using the

same second-order kernel. Thus, for the purpose of comparison between the approach

obtained with di¤erent implementation of the �rst-stage of estimation of the orientation

estimator, b�, it is su¢ cient to examine directly the performance of b�. Nevertheless, for the
sake of completeness and to illustrate the �nite-sample properties of the procedure, we now

continue and assess the accuracy of the conditional density estimator, ef
Y jb�TX

�
yjb�Tx�. To

this end; we used the sample Root Mean Square Percentage Error (RMSPE),

RMSPE =
nP
i=1

h ef
Y jb�TX

�
yijb�Txi�� fY jX (yijxi)i2� nP

i=1
fY jX (yijxi)2 ;
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Figure 2.1. Example 4: Daily exchange rate squared returns
of the USD-GDP between 04/01/2010 and 30/12/2011.

where fY jX (yijxi) is the real conditional density. The average and standard error (over 200

replications) of the sample RMSPE are given in Table 2.2 for orientation estimates that

were obtained at the �rst stage of estimation using a kernels of order p = 2, p = 4 or by

the dOPG method of Xia (2007).

Here, we see that the estimation error given by the sample RMSPE consistently de-

creases as the sample size increases for all the simulation settings. Observe that although

the average accuracy of the orientation estimates did not improve in Examples 1 and 2

between n = 200 and n = 400, the approximated conditional density obtained at the sec-

ond stage is more accurate on average for the larger sample size n = 400. Finally, as a

consequence of the orientation estimation performances, we see that in Examples 1 and 2

the conditional density estimates obtained by using second-order kernels (at the �rst-stage

of the estimation) outperforms the ones obtained with fourth-order kernels or with dOPG.

In Example 3, however, the estimates corresponding to fourth-order kernels are slightly

more accurate on average.

Example 4: Finally, we demonstrate a real-data application of the proposed method.

In the standard ARCH(p) model, it is assumed that

yt = �t � "t;
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where

�t = �0 +
Xp

j=1
�jy

2
t�j :

Here, "t is a white noise process, �0 > 0 and �j � 0; j = 1; :::; p. The ARCH(p) model

can be written as an AR(p) model in y2t , by the relation

y2t = �2t + �
2
t

�
"2t � 1

�
= �0 +

Xp

j=1
�jy

2
t�j + "

�
t ;

where "�t = �2t
�
"2t � 1

�
is an heteroscedastic white noise process. This last formulation mo-

tivates us to consider an application of the proposed method to prediction of the volatility

process in terms of the squared returns (cf. Andersen and Bollerslev 1988). We use a

time-series of the daily exchange-rates�squared returns between the US Dollar (USD) and

the British Pound (GBP) between 4 January 2010 and 30 December 2011. The data

consists of 501 data points, out of which we allocate the last 100 points for prediction.

Figure 2.1 presents the time-series data over the full period. We implement the approx-

imation to estimate the predictive density fY 2j�T x
�
y2t jxt

�
of yt given the 4-lagged data

xt =
�
y2t�1; y

2
t�2; y

2
t�3; y

2
t�4
�
. Using only the �rst 401 data points, we estimate �rst the

orientation vector, and the obtained estimate is b� = (0:921; 0:082; 0:250;�0:288). This es-
timate suggests that the most recent lag has the strongest e¤ect on the predictive density

of y2t , although the third and fourth lag also have some signi�cant e¤ect. Next, for any

observation yt that belongs to the last 100 observations, we iteratively construct a predic-

tive density model using the estimated orientation, b�; where all nonparametric functional
estimators rely on past information y21; :::; y

2
t�1 (that may include some past observations

from the last 100 data points). In order to examine the predictive capability of the models,

we construct the corresponding one-sided (1� �)�prediction con�dence intervals, based

on the right tail of the density function, for the squared returns in the last 100 observations.

The reason we considered one-sided prediction intervals, rather than standard two-sided

ones, is that the density function of the squared returns is supported on [0;1), while

fY 2
�
y2t = 0

�
seems to be non-zero and perhaps in�nite, while the kernel estimates cannot
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Model
� = 1%

Cover. Length
� = 5%

Cover. Length
� = 10%

Cover. Length
� = 25%

Cover. Length
Uncond. 0.99 24.54 0.94 13.50 0.91 9.98 0.78 5.64
One lag 0.99 22.99 0.94 12.96 0.90 9.50 0.79 5.23
Sing. Ind. 0.99 22.66 0.94 12.85 0.89 9.46 0.77 5.24
Kernel 0.96 18.23 0.93 12.33 0.90 9.67 0.80 5.95
Table 2.3: Results for Example 4 : Prediction coverage (%) and avg. length (�105) of
(1� �)�prediction intervals.

completely capture the probability mass in the left tail of the volatility density. On the

other hand, the right tail of the volatility distribution is very heavy, and for practical pur-

poses, such as for risk management, the right tail of the volatility distribution seems to be

of much more interest than the left tail (see, for example, Windsor and Thyagaraja 2001).

Table 2.3 gives the prediction coverage (% of observations y2t that fall inside the prediction

interval) and the average length of the prediction interval over the last 100 observations for

all obtained models with � = 1%; 5%; 10% and 25%. For comparison, this table presents

the result obtained with the unconditional kernel density of y2t (Uncond.), the conditional

density based only on the most recent lag (One lag), the single-index approximation (Sing.

Ind.) and the standard multivariate kernel estimator (Kernel). Also, for visual illustra-

tion, Figure 2.1 shows plots of the last 100 observations and the corresponding right tail

90%�prediction interval obtained by each model.

For all of the con�dence level values examined, the unconditional density estimator pro-

duced the widest prediction-intervals on average, while the standard unconditional density

estimator produced relatively narrow con�dence intervals. In terms of prediction coverage,

both the unconditional density estimator and the PPCDE provide relatively accurate es-

timates, while the standard conditional density kernel estimator has much less similar to

reality. We thus see that the PPCDE manages to provide increased accuracy and predictive

power relative to standard kernel methods.
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Figure 2.1. Example 4 : 90%�prediction intervals for the daily USD-GDP exchange-
rate squared returns between 19/10/2010 and 30/12/2011 based on (a) Unconditional kernel
density estimator; (b) Conditional kernel density estimator based on the most recent lag;
(c) The single-index approximation; (d) Multivariate conditional density kernel estimator.
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2.5 Appendix A - Proofs of the Theorems

Proof of Theorem 2.3.1. By assumptions (A4), (A6) it is su¢ cient (Amemiya 1985,

Theorem 4.1.1) to prove that

sup
�2�

����L (�)� ES �log fY j�TX �yj�Tx������ = op (1) : (2.11)

Denote L (�) as the version of L (�) when conditional density estimates are replaced by

the true conditional densities, that is,

L (�) = n�1
nP
i=1
log fY j�TX

�
yij�Txi

�
:

By smoothness condition (A4) we have that for any " > 0 there exists a positive constant

� > 0 such that for any (�1; y; x) 2 �� S and � 2 U� (�1), a �-ball with centre at �1,

���log fY j�TX �yj�Tx�� log fY j�TX �yj�T1 x���� < ":

As a result, we have

sup
�2U�(�1)

����L (�)� ES �log fY j�TX �yj�Tx������
= 2"+

����L (�1)� ES �log fY j�TX �yj�T1 x������ : (2.12)

Note also that since is � compact, it is possible to construct a �nite open covering of � by

�-balls, U� (�k) , k = 1; :::;K. Thus, using (2.12) we have that for any " > 0

P

�
sup
�2�

���L (�)� ES �log fY j�TX �yj�Tx����� > 3"�
� K max

k=1;:::;K
P

 
sup

�2U�(�k)

���L (�)� ES �log fY j�TX �yj�Tx����� > 3"
!

� K max
k=1;:::;K

P
����L (�k)� ES �log fY j�TX �yj�Tk x����� > "

�
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The series log fY j�TX
�
yij�Txi

�
is itself strong-mixing (see, for instance, White 1984), and

by the ergodic theorem for strong-mixing processes (see Fan and Yao 2003, Proposition

2.8) we get for any � 2 �

����L (�)� ES �log fY j�TX �yj�Tx������! 0 a:s:

We thus established that

sup
�2�

���L (�)� ES �log fY j�TX �yj�Tx����� = op (1) : (2.13)

Next, by Lemma 2.6.5, all trimming-terms, b��i , i = 1; :::; n, de�ned in (2.5), are eventu-
ally equal to 1 for any large enough n with probability 1. Therefore, we can consider

n to be large enough so we can ignore the trimming-terms, i.e. set b��i � 1. Since

fY;�TX
�
y; �Tx

�
; f�TX

�
�Tx

�
are bounded from below by " > 0 on � � S and � � SX ,

by the uniform consistency result of Lemma 2.6.2 and the continuous mapping theorem

(Amemiya 1985, Theorem 3.2.6) applied to the log-function we get with zj = (yj ; xj),

sup
�2�;z2S

���log bfY;�TX �y; �Tx�� log fY;�TX �y; �Tx���� = op (1) ;

sup
�2�;x2SX

���log bf�TX ��Tx�� log f�TX ��Tx���� = op (1) :

Therefore, we have

sup
�2�
jL (�)� L (�)j

� max
1�i�n

sup
�2�

���log bf�i
Y;�TX

�
yi; �

Txi
�
� log fY;�TX

�
yi; �

Txi
����

+ max
1�i�n

sup
�2�

���log bf�i
�TX

�
�Txi

�
� log f�TX

�
�Txi

����
� sup

�2�;z2S

���log bfY;�TX �y; �Tx�� log fY;�TX �y; �Tx����
+ sup
�2�;x2SX

���log bf�TX ��Tx�� log f�TX ��Tx����+ o (1)
= op (1) : (2.14)
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Results (2.13) and (2.14) imply (2.11), and therefore the Theorem is proved. �

Proof of Theorem 2.3.2. As in the proof of Theorem 2.3.1, let L (�) be a version of

the likelihood L (�) when conditional density estimates are replaced by the true conditional

densities,

L (�) = n�1
nP
i=1
log fY j�TX

�
yij�Txi

�
:

Furthermore, let e� = argmax�2� L (�). Note that by (2.13) in the proof of Theorem 2.3.1

and Theorem 4.1.1 of Amemiya (1985) e� is a consistent estimator to �0.
Due to smoothness condition (A9), the mean value theorem, applied to the function

rL (�) with mean-value � such that
��� � �0�� � ���e� � �0��� ; yields

rL
�e���rL (�0) = r2L ��� �e� � �0� : (2.15)

Since �0 lies in the interior of �, the consistency of e� implies that for all " > 0,
�p

nrL
�e�� > "

�
!p 0: (2.16)

Moreover, By the central limit theorem (CLT) for �-mixing processes (cf. Fan and Yao

2003, Theorem 2.21),

n1=2rL (�0)!d N (0;	(�0)) : (2.17)

By smoothness condition (A9) and the ergodic theorem for strong-mixing processes (see

Fan and Yao 2003, Proposition 2.8), one can show by a similar way to (2.13), that

sup
�2�

��r2L (�) + 
 (�)�� = op (1) : (2.18)

Note that by conditions (A6) and (A9) there is a generalised inverse of 
 (�0), denoted


 (�0)
�, that is well de�ned in the perpendicular space to �0 (cf. Theorem 3.1 of White
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1982). Results (2.15)-(2.18) imply

e� � �0 = n�1=2V (�0)
1=2 Z; (2.19)

where Z is asymptotically normal N (0; I) random d-vector.

Next, by the mean value theorem, applied to the function rL (�) again, with mean-

value � such that
���� � b���� � ���e� � b���� ;

rL
�e���rL�b�� = r2L ��� �e� � b�� : (2.20)

By using results (2.16), (2.18) again, the consistency of e� and b�, and
�p

nrL
�b�� > "

�
!p 0;

we can write (2.20) as

� 
 (�0)
�e� � b�� = rL�b���rL�b��+ op �n�1=2� : (2.21)

Thus, by (2.19) and (2.21) and the triangle inequality, Theorem 2.3.2 will be established

if we show that for some � > 0,

rL
�b���rL�b�� = Op

�
n2��hyh

3
x

��1=2
+O(hpy + h

p
x) + op

�b� � �0� : (2.22)

Since by Lemma 2.6.5, all trimming-terms, b��i are eventually equal to 1 for any large
enough n with probability 1, we may set b��i � 1 for large enough n. We then have

rL (�) = n�1
nP
i=1

0@r bf�iY;�TX �yi; �Txi�bf�i
Y;�TX

�
yi; �

Txi
� � r bf�i�TX ��Txi�bf�i

�TX

�
�Txi

�
1A :

Assertion (2.22) will follow if we prove that the following two assertions hold. For some
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arbitrarily small � > 0, � !p �0 implies that

n�1
nP
i=1

 
r bf�i

�TX

�
�Txi

�
bf�i
�TX

�
�Txi

� � rf�TX ��Txi�
f�TX

�
�Txi

� ! = Op

�
n2��h3x

��1=2
(2.23)

+O(hpx) + op (� � �0) ;

and

n�1
nP
i=1

0@r bf�iY;�TX �yi; �Txi�bf�i
Y;�TX

�
yi; �

Txi
� � rfY;�TX �yi; �Txi�

fY;�TX
�
yi; �

Txi
�
1A = Op

�
n2��hyh

3
x

��1=2
(2.24)

+O(hpy + h
p
x) + op (� � �0) :

The proof of (2.23)-(2.24) is long and tedious. However, both assertions are established

similarly with Gao and King�s (2004) result for degenerate U-statistics of strongly depen-

dent processes (see De�nition 2.1.1) given in Lemma 2.6.4. For the sake of brevity, we shall

focus here on proving (2.23), while (2.24) follows similarly.

In the following, whenever confusion does not occur we denote f�TX � f�TX
�
�Txi

�
and bf�i

�TX
� bf�i

Y;�TX

�
�Txi

�
for some � 2 � and xi 2 SX . We now have by the Taylor�s

theorem applied to the function � (x) = 1
x for x � " > 0, with mean value f�T x such that��f�T x � f�T x�� < ��� bf�i�TX � f�T x���,

1bf�i
�TX

� 1

f�TX
= � 1�

f�TX
�2 � bf�i�TX � f�TX�+ 2�

f�TX
�3 � bf�i�TX � f�TX�2 : (2.25)
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We then obtain

1

n

nP
i=1

r bf�i
�TXbf�i
�TX

=
1

n

nP
i=1

r bf�i
�TX

f�TX
+
1

n

nP
i=1

"
1bf�i
�TX

� 1

f�TX

# h
rfY;�TX +

�
r bf�i

�TX
�rfY;�TX

�i

=
1

n

nP
i=1

rf�TX
f�TX

+
1

n

nP
i=1

 
r bf�i

�TX

f�TX
�
bf�i
�TX
rfY;�TX�
f�TX

�2
!

| {z }
U
(A)
�

� 1
n

nP
i=1

� bf�i
�TX
� f�TX

��
r bf�i

�TX
�rf�TX

�
�
fY;�TX

�2
| {z }

U
(B)
� +R�;1

+
1

n

nP
i=1

2rf�TX
� bf�i
�TX
� f�TX

�2
�
f�TX

�3| {z }
R�;2

+
1

n

nP
i=1

2
�
r bf�i

�TX
�rf�TX

�� bf�i
�TX
� f�TX

�2
�
f�TX

�3| {z }
R�;3

:

Thus,

1

n

nP
i=1

r bf�i
�TXbf�i
�TX

=
1

n

nP
i=1

rf�TX
f�TX

+ U
(A)
� � U (B)� �R�;1 +R�;2 +R�;3; (2.26)

where

U
(A)
� =

1

n (n� 1)
nP
i=1

P
j 6=i

�
(A)
� (xi; xj) ; U

(B)
� =

1

n (n� 1)
nP
i=1

P
j 6=i

&
(B)
� (xi; xj) ;

are second order Rd-vector U-statistics with arguments

&
(A)
� (xi; xj) (2.27)

=
1

h2x

1

f�TX
�
�Txi

� (xj � xi)K 0

 
�T (xj � xi)

hx

!
� 1

hx

rf�TX
�
�Txi

�
f2
�TX

�
�Txi

� K  �T (xj � xi)
hx

!
;
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and

&
(B)
� (xi; xj) (2.28)

=
1

h3x

Z �
xj � E

�
Xj�TX = t

��
K

�
�Txi � t
hx

�
K 0

 
�Txj � t
hx

!
f (t)�1 dt

�E
�
r log f�TX

�
�TX

�
j�TX = �Txi

�
� E

�
r log f�TX

�
�TX

�
j�TX = �Txj

�
+E

�
r log f�TX

�
�TX

��
:

Note that the term U
(B)
� was added to (2.26) simply to make R�;1 a degenerate U-

statistic (see De�nition 2.1.1), which will be proved later in the proof. Now, R�;1; R�;2; R�;3

are the high-order remainder terms,

R�;1 =
1

n

nP
i=1

� bf�i
�TX
� f�TX

��
r bf�i

�TX
�rf�TX

�
�
f�TX

�2 � U (B)� ;

R�;2 =
1

n

nP
i=1

2rf�TX
� bf�i
�TX
� f�TX

�2
�
f�TX

�3 ;

R�;3 =
1

n

nP
i=1

2
�
r bf�i

�TX
�rf�TX

�� bf�i
�TX
� f�TX

�2
�
f�TX

�3 :

We proceed to handle the terms in the expansion (2.26) and we prove for an arbitrarily

small � > 0 that � !p �0 implies that

U
(A)
� ; U

(B)
� = Op

�
n2��h3x

��1=2
+O (hpx) + op (� � �0) ; (2.29)

and

R�;1; R�;2; R�;3 = op

��
n2��h3x

��1=2�
+O (hpx) + op (� � �0) : (2.30)
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Write U (A)� as a symmetrical function by

U
(A)
� =

2

n (n� 1)
P

1�i<j�n

1

2

�
&
(A)
� (xi; xj) + &

(A)
� (xj ; xi)

�
� 2

n (n� 1)
P

1�i<j�n
�
(A)
� (xi; xj) : (2.31)

We show now that U (A)� is a degenerate U-statistic up to a O(hpx) term that does not depend

on � 2 �. Denote

�
(A)
� (�) � E

�
�
(A)
� (X; �)

�
and �(A)� = E

�
�
(A)
� (X)

�
; (2.32)

and by the Hoe¤ding�s decomposition of U-processes (Lemma A, pp. 178 in Ser�ing 1980),

U
(A)
� = U

�(A)
� +

1

n

X
1�i�n

�
�
(A)
� (xi)� �(A)�

�
+ �

(A)
� ; (2.33)

where U�(A)� is the degenerate U-statistic,

U
�(A)
� =

2

n (n� 1)
X

1�i<j�n
�
�(A)
� (xi; xj) ; (2.34)

with elements

�
�(A)
� (xi; xj) = �

(A)
� (xi; xj)� �(A)� (xi)� �(A)� (xj) + �

(A)
� : (2.35)

Let

Z
(1)
� (xi; xj) =

1

hx
f�TX

�
�Txi

��1
K

 
�T (xj � xi)

hx

!
;

Z
(2)
� (xi; xj) =

1

h2x
f�TX

�
�Txi

��1
(xj � xi)K 0

 
�T (xj � xi)

hx

!
; (2.36)
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so that �(A)� (xi; xj) =
1
2

�
&
(A)
� (xi; xj) + &

(A)
� (xj ; xi)

�
and

&
(A)
� (xi; xj) = Z

(2)
� (xi; xj)�

rf�TX
�
�Txi

�
f2
�TX

�
�Txi

� Z(1)� (xi; xj) : (2.37)

For a �xed xi 2 SX we obtain with a change of variables that

E

 
rf�TX

�
�Txi

�
f2
�TX

�
�Txi

� Z(1)� (xi; X)

!

=
rf�TX

�
�Txi

�
f2
�TX

�
�Txi

� 1

hx

Z
K

�
t� �Txi
hx

�
dt

=
rf�TX

�
�Txi

�
f2
�TX

�
�Txi

� Z K (u) du

=
rf�TX

�
�Txi

�
f�TX

�
�Txi

� :
Since by Lemma 2.6.1

rf�TX
�
�Tx

�
=

d

dt

����
t=�T x

n
E
�
x�Xj�TX = t

�
fY;�TX (t)

o
;

we also get with integration by parts, a change of variables, Taylor expansion around u = 0,

and utilising the order of the kernel,

E
�
Z
(2)
� (xi; X)

�
=

1

h2x
f�TX

�
�Txi

��1 Z
E
�
X � xij�TX = t

�
K 0
�
t� �Txi
hx

�
f(t)dt

= f�TX
�
�Txi

��1 Z rf�TX ��Tx� hxu�K (u) dt
= f�TX

�
�Txi

��1 Z 8<:
p�1X
j=1

�
dj

dtj

����
t=�T x

rf�TX
�
�Tx

�
(�hxu)j

�
+O (hpx)

9=;K (u) dt

=
rf�TX

�
�Txi

�
f�TX

�
�Txi

� +O (hpx) :

Thus, we established that both E
�
rf

�TX(�
TX)

f
�TX(�

TX)
Z(1) (xi; X)

�
and E

�
Z(2) (xi; X)

�
are equal



41

to
rf�TX

�
�Txi

�
f�TX

�
�Txi

� +O(hpx); (2.38)

where the constants in the O (�) terms are independent of � 2 �. Similarly, for a �xed

xj 2 SX , using the same line of arguments yields that both E
�
rf

�TX(�
T xj)

f
�TX(�

T xj)
Z
(1)
� (X;xj)

�
and E

�
Z
(2)
� (X;xj)

�
are equal to

� d

dt

����
t=�T x

E
�
Xj�TX = t

�
+O(hpx) (2.39)

= E
�
r log f�TX

�
�TX

�
j�TX = �Tx

�
+O(hpx):

Thus, it follows from de�nitions (2.32), (2.37), and results(2.38), (2.39), that

�
(A)
� (�) = O(hpx) and �

(A)
� = O(hpx);

where the constants in the O (�) terms are independent of � 2 �. Hence, by (2.33)

U
(A)
� = U

�(A)
� +O(hpx); (2.40)

uniformly on �.

Next, we proceed to handle the degenerate U-statistic U�(A)� . We �rst apply a uniformity

argument based on a stochastic equicontinuity property (see de�nition in Andrews 1992).

If � !p �0, then assumption (A7) and compactness of � and SX imply that�����K
 
�T (xj � xi)

hx

!
�K

 
�T0 (xj � xi)

hx

!����� � k� � �0khx
eK1

 
�T0 (xj � xi)

hx

!
;

and �����K 0

 
�T (xj � xi)

hx

!
�K 0

 
�T0 (xj � xi)

hx

!����� � k� � �0khx
eK2

 
�T0 (xj � xi)

hx

!

for some non-negative, compactly supported and bounded functions eK1 and eK2.
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Correspondingly to Z(1)� (xi; xj) and Z
(2)
� (xi; xj), de�ne

eZ(1)� (xi; xj) =
1

hx
f�TX

�
�Txi

��1 eK1

 
�T (xj � xi)

hx

!
;

eZ(2)� (xi; xj) =
1

h2x
f�TX

�
�Txi

��1
(xj � xi) eK2

 
�T (xj � xi)

hx

!
:

Hence, by smoothness condition (A9),

������rf�TX
�
�Txi

�
f2
�TX

�
�Txi

� Z(1)� (xi; xj)�
rf�T0 X

�
�T0 xi

�
f2
�T0 X

�
�T0 xi

� Z(1)�0 (xi; xj)
������

� k� � �0k
hx

24rf�T0 X ��T0 xi�
f2
�T0 X

�
�T0 xi

� + o (1)

35 eZ(1)�0 (xi; xj) ;
and ���Z(2)� (xi; xj)� Z(2)�0 (xi; xj)

��� � k� � �0k
hx

eZ(2)� (xi; xj)

According to de�nitions (2.27), (2.31), (2.34), (2.35) and (2.37), the last inequalities yield

���U�(A)�

��� � ���U�(A)�0

���+ ���U�(A)� � U�(A)�0

���
�

���U�(A)�0

���+ k� � �0k
hx

��� eU�(A)�0

��� ; (2.41)

where eU�(A)�0
is a version of U�(A)�0

at � = �0 and with K (�) and K 0 (�) replaced by eK1 (�) andeK2 (�) respectively. The right term in the RHS of (2.41) represents a stochastic equiconti-

nuity term for U�(A)� , since showing that 1
hx
eU�(A)�0

= Op(1) implies that eU�(A)� is stochastic

equicontinuous at �0 by a a Lipschitz condition (see Andrews 1992, Lemma 1(a)). We

now bound in probability the terms in the RHS of (2.41) using the same argument. We

therefore prove the bound only for the term
���U�(A)�0

���.
Since by an applications of Chebyshev�s inequality (Gut 2005, Chapter 3, Theorem
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1.4), X = Op
�
[E(X2)]1=2

�
, for any random variable X, we then have by Lemma 2.6.4,

U
�(A)
�0

= Op

 
2

n (n� 1) [E(
P

1�i<j�n
�
�(A)
�0

(xi; xj))
2]1=2

!
(2.42)

= Op

�
n�1

�
M
(A)
�0

�1=(2+�)�
;

where

M
(A)
�0

= max
1�i<j�T

max

�
E
�����(A)�0

(xi; xj)
���2+� ;Z �����(A)�0

(xi; xj)
���2+� dP (xi) dP (xj)�

� C max
1�i<j�T

max

�
E
����(A)�0

(xi; xj)
���2+� ;Z ����(A)�0

(xi; xj)
���2+� dP (xi) dP (xj)�

Here, P (X) denotes the probability measure of r.v. X and 0 < � < 1, and C > 0 is a

constant obtained by the Cr inequality (Gut 2005, Chapter 3, Theorem 2.2).

Using the bound of the kernels function and the probability density functions, and the

compactness of S, an integration with a change of variables leads to

M
(A)
�0

= O
�
h�2(2+�)+1x

�
= O

�
h�3�2�x

�
: (2.43)

Hence, we obtain with results (2.42) and (2.43) that U (A)�0
= Op

�
n2��h3x

��1=2
+O (hpx), and

by (2.41) we have that � !p �0 implies

U
�(A)
� = Op

�
n2��h3x

��1=2
+O (hpx) +Op

�
k� � �0k
hx

��
Op

�
n2��h3x

��1=2
+O (hpx)

�
= Op

�
n2��h3x

��1=2
+O (hpx) +Op (� � �0)

�
Op

�
n2��h5x

��1=2
+O

�
hp�1x

��
= Op

�
n2��h3x

��1=2
+O (hpx) + op (� � �0) .

where the last step results from assumption (A8). Finally, by (2.40),

U
(A)
� = Op

�
n2��h3x

��1=2
+O (hpx) + op (� � �0) :
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We now turn to deal with U
(B)
� in a similar way. Note that in the de�nition of

&
(B)
� (xi; xj) (see (2.28)), the �rst term, say &

(B;1)
� (xi; xj), is

&
(B;1)
� (xi; xj) �

1

h3x

Z �
xj � E

�
Xj�TX = t

��
K

�
�Txi � t
hx

�
K 0

 
�Txj � t
hx

!
f (t)�1 dt:

(2.44)

Since by assumptions (A2) and (A4) &(B;1)� (xi; xj) is bounded, an application of Fubini�s

theorem (Gut 2005, Chapter 2,Theorem 9.1) and similar arguments as the ones that led to

(2.38) and (2.39), yield that for a �xed x 2 SX both E
�
&
(B;1)
� (X;x)

�
and E

�
&
(B;1)
� (x;X)

�
are equal to

� d

dt

����
t=�T x

E
�
Xj�TX = t

�
+O(hpx) (2.45)

= E
�
r log f�TX

�
�TX

�
j�TX = �Tx

�
+O(hpx);

Thus,

E
�
&
(B)
� (X;x)

�
= O(hpx) and E

�
&
(B)
� (x;X)

�
= O(hpx);

and similarly to U (A)� , we have that U (B)� is a degenerate U-statistic up to a O(hpx) term,

where the constants in the O (�) terms are independent of � 2 �. Applying Chebyshev�s

inequality (Gut 2005, Chapter 3, Theorem 1.4) and Lemma 2.6.4 to the U-statistic U (B)�0

in a similar manner as to U (A)�0
(see (2.42)) we get that

U
(B)
�0

= Op

�
n2��h3x

��1=2
+O (hpx) :

A similar uniformity argument as the one that led to (2.41) �nally completes the proof of

(2.29).

We continue to prove the asymptotic bounds in probability for the remainder terms

R�;1; R�;2 and R�;3.



45

We start with

R�;1 =
1

n

nX
i=1

� bf�i
�TX
� f�TX

��
r bf�i

�TX
�rf�TX

�
�
fY;�TX

�2 � U (B)� :

Put

�1;� (xi; xj ; xk) � Z
(1)
� (xi; xj)Z

(2)
� (xi; xk)� Z(1)� (xi; xj)

rf�TX
�
�Txi

�
f�TX

�
�Txi

�
�Z(2)� (xi; xk) +

rf�TX
�
�Txi

�
f�TX

�
�Txi

� ; (2.46)

where Z(1) (�; �) and Z(2) (�; �) are de�ned in (2.36). Note that R�;1 can be rede�ned as a

sum of third and second order Rd-vector U-statistics in the following way

R�;1 =
1

n (n� 1)2
P
i

P
j 6=i

P
k 6=i

�
(1)
� (xi; xj ; xk)� U (B)�

=
n� 2
n� 1 �

1

n (n� 1) (n� 2)
P

1�i6=j 6=k�n

�
�1;� (xi; xj ; xk)� &

(B)
� (xj ; xk)

�
| {z }

U(1;A)

+
1

n� 1 �
1

n (n� 1)
P

1�i6=j�n
�1;� (xi; xj ; xj)| {z }

U(1;B)

: (2.47)

We have by construction for �xed xj ; xk 2 SX ,

E
�
Z
(1)
� (X;xj)Z

(2)
� (X;xk)

�
= &

(B;1)
� (xj ; xk) ; (2.48)

with &(B;1)� (xi; xj) as in (2.44), and a tedious but straightforward calculation with results

(2.38), (2.39), (2.45) and (2.48) implies that U (1;A) is a degenerate U-statistic up to a O(hpx)

term, in the sense that for any �xed xi; xj ; xk 2 SX ;

E
�
�1;� (X;xj ; xk)� &

(B)
� (xj ; xk)

�
= O(hpx);

E
�
�1;� (xi; X; xk)� &

(B)
� (X;xk)

�
= O(hpx);
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and

E
�
�
(1)
� (xi; xj ; X)� &(B)� (xj ; X)

�
= O(hpx):

As an Applications of Chebyshev�s inequality (Gut 2005, Chapter 3, Theorem 1.4) and

Lemma 2.6.4 (see (2.42)) we now obtain

U (1;A) = Op

�
n3��h5x

��1=2
+O (hpx) : (2.49)

For the term U (1;B), de�ned by (2.47), it is enough to note that by Lemma 2.6.2, uniformly

on xi 2 SX ,

1

n� 1
P
j 6=i

Z
(1)
� (xi; xj) = 1 +Op

 �
lnn

nhx

�1=2!
+O (hpx) ;

1

n� 1
P
j 6=i

Z
(2)
� (xi; xj) =

rf�TX
�
�Txi

�
f�TX

�
�Txi

� +Op

 �
lnn

nh3x

�1=2!
+O (hpx) ;

and thus, by the de�nition (2.46) and the continuous mapping theorem (Amemiya 1985,

Theorem 3.2.6) applied to a product function, we have

1

n� 1
P
j 6=i

�1;� (xi; xj ; xj) = Op

�
lnn

nh2x

�
+O

�
h2px
�
:

Hence,

U (1;B) = Op

�
lnn

nh2x

�
+O

�
h2px
�
: (2.50)

Thus, we get from (2.47), (2.49) and (2.50) that

R�;1 = op

��
n2��h3x

��1=2�
+O (hpx) :

A similar uniformity argument as the one that led to (2.41) and assumption (A8)then

shows that � !p �0 implies
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jR�;1j � jR�0;1j+
k� � �0k
hx

jR�0;1j

= op

��
n2��h3x

��1=2�
+O (hpx) + op (� � �0) :

Next, we show a stochastic bound for

jR�;2j =

�������2
1

n

nX
i=1

rf�TX
� bf�i
�TX
� f�TX

�2
�
f�TX

�3
������� (2.51)

� 2 sup
x2SX

�����rf�TXf2�TX�
f�TX

�3
����� � 1n

nX
i=1

 bf�i
�TX

f�TX
� 1
!2

:

Note as that as the �rst term in the RHS is bounded, it is enough to bound the second

term, 1n
Pn
i=1(

bf�i
�T X
f
�TX
� 1)2, in probability. Let now

�2;� (xi; xj ; xk) = Z(1) (xi; xj)Z
(1) (xi; xk)� Z(1) (xi; xj)� Z(1) (xi; xk) + 1;

where Z(1) (�; �) is de�ned in (2.36), and let

&
(C)
� (xi; xj) �

1

h2x

Z
K

 
�Txj � t
hx

!
K

�
�Txi � t
hx

�
f (t)�1 dt� 1:
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We have

1

n

nX
i=1

 bf�i
�TX

f�TX
� 1
!2

=
1

n (n� 1)2
P
i

P
j 6=i

P
k 6=i

�2;� (xi; xj ; xk)

=
n� 2
n� 1 �

1

n (n� 1) (n� 2)
P

1�i6=j 6=k�n

�
�2;� (xi; xj ; xk)� &

(C)
� (xj ; xk)

�
| {z }

U(2;A)

+
1

n� 1 �
1

n (n� 1)
P

1�i6=j�n
�2;� (xi; xj ; xj)| {z }

U(2;B)

+
1

n (n� 1)
P

1�i6=j�n
&
(C)
� (xi; xj)| {z }

U(2;C)

:

Here, U (2;A) is a third order Rd-vector U-statistic, and U (2;B) and U (2;C) are second order

Rd-vector U-statistics. Following a similar treatment as above, these three U-statistics are

shown to be degenerate up to a O(hpx) term, and by Lemma 2.6.4 we have

U (2;A) = Op

�
n3��h3x

��1=2
+O (hpx) ; U (2;B) = Op

�
lnn

nhx

�
+O

�
h2px
�
;

and U (2;C) = Op

�
n2��hx

��1=2
+O (hpx) :

The last arguments imply that

R�;2 = op

��
n2��h3x

��1=2�
+O (hpx) :

A similar uniformity argument as in (2.41) yields that � !p �0 implies

jR�;2j = op

��
n2��h3x

��1=2�
+O (hpx) + op (� � �0) :

Finally, bounding R�;3 is straightforward by the uniform consistency result of Lemma

2.6.2 and the continuous mapping theorem (Amemiya 1985, Theorem 3.2.6) applied to the

product function. We have therefore established now (2.30).

Retracing through established results (2.26), (2.29) and (2.30), we have completed the
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proof of assertion (2.23) and therefore of Theorem 2.3.1. �

Proof of Theorem 2.3.3. By smoothness condition (A4) and the mean-value theorem

applied to the function efY j�TX �yj�Tx� with mean value � 2 � such that ��� � �0�� � ���b� � �0���
and Theorems 2.6.2 and 2.3.2,

sup
(y;x)2S

��� ef
Y jb�TX

�
yjb�Tx�� efY j�T0 X �yj�T0 x����

�



b� � �0









 sup(y;x)2S
r ef

Y jb�TX
�
yj�Tx

�





=




b� � �0








 sup(y;x)2S

rf
Y j�TX

�
yj�Tx

�
+ op (1)







= op

 �
1

nHyHx

�1=2!
: �

2.6 Appendix B - Technical Lemmas

This section gives some useful technical results that are needed in the proofs of the main

theorems.

Recall that for a function g (�) that depends on � 2 � and possibly also on other

variables we denote rg (�) and r2g (�) as the vector and matrix of partial derivatives of

g (�) with respect to �. As a convention, we also use r0g (�) = g (�).

The following Lemma gives the forms of the partial derivatives of fY;�TX
�
y; �Tx

�
and

f�TX
�
�Tx

�
with respect to �. One has to remember that � a¤ects the value of the proba-

bility densities fY;�TX
�
y; �Tx

�
and f�TX

�
�Tx

�
not only through the variable �Tx, but it

also de�nes the density functions fY;�TX (�; �) and f�TX (�) themselves.

Lemma 2.6.1 Let E
�
XjY = y; �TX = t

�
; E

�
XXT jY = y; �TX = t

�
; E

�
Xj�TX = t

�
;

E
�
XXT j�TX = t

�
and fY;�TX (y; t) and f�TX (t) exist and they are twice di¤erentiable
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with respect to y; t 2 R. Then

rfY;�TX
�
y; �Tx

�
=

d

dt

����
t=�T x

n
E
�
x�XjY = y; �TX = t

�
fY;�TX (y; t)

o
;

r2fY;�TX
�
y; �Tx

�
=

d2

dt2

����
t=�T x

n
E
�
(x�X) (x�X)T jY = y; �TX = t

�
fY;�TX (y; t)

o
;

and similarly,

rf�TX
�
�Tx

�
=

d

dt

����
t=�T x

�
E
�
x�Xj�TX = t

�
f�TX (t)

	
;

r2f�TX
�
�Tx

�
=

d2

dt2

����
t=�T x

n
E
�
(x�X) (x�X)T j�TX = t

�
f�TX (t)

o
:

Proof. We prove here only the last two identities of the Lemma as the �rst two follow

similarly. Assume �d 6=0 since otherwise we may reduce the dimension to d � 1. Denote

�d�11 =
�
�1; :::; �d�1

�
and let fX

�
�d�11 ; �d

�
= fX (�1; :::; �d) be the probability density of X

at (�1; :::; �d). We now have with

f�TX (t) = ��1d

Z
fX

0@�d�11 ; ��1d (t�
d�1X
j=1

�j�j)

1A d�d�11 ;

where ��1d is the determinant of the Jacobian matrix. Thus, for t = �Tx,

f�TX
�
�Tx

�
= ��1d

Z
fX(�

d�1
1 ; xd + �

�1
d

d�1X
j=1

�j
�
xj � �j

�
)d�d�11 :
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Note also that for k; l 2 f1; 2; :::; d� 1g we have

E
�
Xkj�TX = t

�
f�TX (t) = ��1d

Z
�kfX(�

d�1
1 ; ��1d (t�

d�1X
j=1

�j�j))d�
d�1
1 ;

E
�
Xdj�TX = t

�
f�TX (t) = ��2d

Z
(t�

d�1X
j=1

�j�j)fX(�
d�1
1 ; ��1d (t�

d�1X
j=1

�j�j))d�
d�1
1 ;

E
�
XkXlj�TX = t

�
f�TX (t) = ��1d

Z
�k�lfX(�

d�1
1 ; ��1d (t�

d�1X
j=1

�j�j))d�
d�1
1 ;

E
�
XkXdj�TX = t

�
f�TX (t) = ��2d

Z
�k(t�

d�1X
j=1

�j�j)fX(�
d�1
1 ; ��1d (t�

d�1X
j=1

�j�j))d�
d�1
1 ;

E
�
X2
d j�TX = t

�
f� (t) = ��3d

Z
(t�

d�1X
j=1

�j�j)
2fX(�

d�1
1 ; ��1d (t�

d�1X
j=1

�j�j))d�
d�1
1 :

Using the above expressions one can use direct di¤erentiation to verify the last two identities

of the Lemma. �

The proofs of Theorems 2.3.1 and 2.3.2 rely heavily on the uniform consistency of the

kernel density estimators�derivatives with respect to �. The next two Lemmas are direct

modi�cations of the results of Hansen (2008), but unlike Hansen�s (2008) theory, they

concern with partial derivatives of the kernel estimates with respect to �, rather than with

derivatives with respect to the density variables themselves.

Lemma 2.6.2 Let (A1)-(A4) hold. Then

sup
�2�;z2S

��� bfY;�TX �y; �Tx�� fY;�TX �y; �Tx���� = Op

 �
lnn

nhyhx

�1=2
+ h2y + h

2
x

!
;

sup
�2�;x2SX

��� bf�TX ��Tx�� f�TX ��Tx���� = Op

 �
lnn

nhx

�1=2
+ h2x

!
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If, in addition, also (A7) and (A9) hold. Then for k = 0; 1; 2,

sup
�2�;z2S

���rk bfY;�TX �y; �Tx��rkfY;�TX �y; �Tx���� = Op

0@ lnn

nhyh
1+2k
x

!1=2
+ hpy + h

p
x

1A ;

sup
�2�;x2SX

���rk bf�TX ��Tx��rkf�TX ��Tx���� = Op

 �
lnn

nh1+2kx

�1=2
+ hpx

!
:

Proof of Lemma 2.6.2. We prove here only that under conditions (A1)-(A4) and

(A7) and (A9),

sup
�2�;x2SX

���r bf�TX ��Tx��rf�TX ��Tx���� = Op

 �
lnn

nh1+2kx

�1=2
+ hpx

!
:

The proofs for the rest of the arguments are very similar. By Lemma 2.6.3, it is su¢ cient to

prove that sup��SX

���E �r bf�TX ��Tx���rf�TX ��Tx���� = O(hpx). A change of variables,

integration by parts, and a Taylor expansion around hx = 0 yield with (A7) and (A9) that

uniformly in x 2 SX ;

E
�
rk bf�TX ��Tx��

=
1

h2x

Z �
x� E

�
Xj�TX = t

��
K 0
�
�Tx� t
hx

�
f�TX (t) dt

=
1

hx

Z �
x� E

�
Xj�TX = �Tx� hxu

��
K 0 (u) f�TX

�
�Tx� hxu

�
du

=

Z
d

dt

����
t=�T x�hxu

��
x� E

�
Xj�TX = t

��
f�TX (t)

�
K (u) du

=

Z 8<:
p�1X
j=1

�
d1+j

dt1+j

����
t=�T x

�
x� E

�
Xj�TX = t

��
f�TX (t) (�hxu)

j

�
+O (hpx)

9=;K (u) du

=
d

dt

����
t=�T x

��
x� E

�
Xj�TX = t

��
f�TX (t)

�
+O(hpx):

By Lemma 2.6.1, the last expression is just rf�TX
�
�Tx

�
+O(hp). �
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Lemma 2.6.3 Let (A1)-(A4) hold. Then

sup
�2�;z2S

��� bfY;�TX �y; �Tx�� E bfY;�TX �y; �Tx���� = Op

 �
lnn

nhyhx

�1=2!
;

sup
�2�;x2SX

��� bf�TX ��Tx�� E bf�TX ��Tx���� = Op

 �
lnn

nhx

�1=2!
;

If, in addition, also (A7) holds. Then for k = 0; 1; 2,

sup
�2�;z2S

���rk bfY;�TX �y; �Tx�� Erk bfY;�TX �y; �Tx���� = Op

0@ lnn

nhyh
1+2k
x

!1=21A ;

sup
�2�;x2SX

���rk bf�TX ��Tx�� Erk bf�TX ��Tx���� = Op

 �
lnn

nh1+2kx

�1=2!
:

Proof. We prove here only that under conditions (A1)-(A4) and (A7),

sup
��SX

���r bf�TX ��Tx�� Er bf�TX ��Tx���� = Op

 �
lnn

nh3x

�1=2!
:

The proofs for the rest of the arguments in the Theorem are very similar. Let �1 2 �,

x1 2 SX and de�ne

A1 =

(
�; x :



���1

 � �hx lnn
n

�1=2
; kx� x1k �

�
hx lnn

n

�1=2)
: (2.52)

Since ��SX 2 Rd�Rd is compact, then it can be covered by J (n) = O

��
n

hx lnn

�d�
such

subspaces A1; :::; AJ around centres
��
�k; xk

�	J
j=1
. Since

P

 
sup
��SX

���r bf�TX ��Tx�� Erk bf�TX ��Tx���� > � lnnnh3x

�1=2!

� J (n) max
j=1;:::;J

P

 
sup

(�;x)2Aj

���r bf�TX ��Tx�� Er bf�TX ��Tx���� > � lnnnh3x

�1=2!
;

it is therefore su¢ ce to prove that for any
�
�1; x1

�
2 � � SX and A1 as in (2.52), the
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following holds

P

 
sup

(�;x)2A1

���r bf�TX ��Tx�� Er bf�TX ��Tx���� > � lnnnh3x

�1=2!
= o

 �
hx lnn

n

�d!
; (2.53)

where the constant in the o (�) term is independent of
�
�1; x1

�
and n.

De�ne the functions eKj ; j = 1; 2; 3; on

T =

�
t 2 R : t = �Tx

hx
for some � 2 � and x1 � x 2 SX

�

by eK1 (t) = sup
H(t)

�
kxk

����K 00
�
�Tx

hx

�
x

����� ; eK2 (t) = sup
H(t)

�
k�k

����K 00
�
�Tx

hx

�
x

����� ;
and eK3 (t) = sup

H(t)

���� K 0
�
�Tx

hx

����� :
where all the sups are taken over � 2 � and x 2 SX such that �

TX
hx

is not too far from t in

the sense that

H (t) �
(
(�; x) : k����k �

�
hx lnn

n

�1=2
; kx� x�k �

�
hx lnn

n

�1=2
and

�T� x�
hx

= t

)

Note that eKj ; j = 1; 2; 3; are well-de�ned, compactly supported and bounded for any t 2 T

by assumption (A7) and compactness of � and SX . Let xi denote the i0th X-observation,

and for any (�; x) 2 A1 we have with mean-values ��, x� such that


�1 � ��

 � 

�1 � �

 �
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�
hx lnn
n

�1=2
and kx1 � x�k � kx1 � xk �

�
hx lnn
n

�1=2
that

�����rK
 
�
T
1 (x1 � xi)

hx

!
�rK

�
�T (x� xi)

hx

������
� 1

hx

�����
"
K 0

 
�
T
1 (x1 � xi)

hx

!
�K 0

�
�T (x� xi)

hx

�#
(x1 � xi)

�����
+
1

hx

����K 0
�
�T (x� xi)

hx

�
(x1 � x)

����
� 1

h2x

������1 � ��T (x1 � xi)K 00
�
�T� (x� � xi)

hx

�
(x1 � xi)

����
+
1

h2x

�����T (x1 � x)K 00
�
�T� (x� � xi)

hx

�
(x1 � xi)

����+ 1

hx

����K 0
�
�T (x� xi)

hx

�
(x1 � x)

����
�



�1 � �


h2x

����� eK1

 
�
T
1 (x1 � xi)

hx

!�����+ kx1 � xkh2x

����� eK2

 
�
T
1 (x1 � xi)

hx

!�����
+
kx1 � xk

hx

����� eK3

 
�
T
1 (x1 � xi)

hx

!�����
�

�
lnn

nh3x

�1=2
�

0@ 3X
j=1

����� eKj

 
�
T
1 (x1 � xi)

hx

!�����
1A (2.54)

Note that the last term is independent of (�; x) 2 A1. We now de�ne for any (�; x) 2 A1

and j = 1; 2; 3; ef�TX;j ��Tx� = 1

nhx

Xn

i=1
eKj

�
�T (x� xi)

hx

�
:

We have

E
��� ef�TX;j ��Tx���� � sup

(�;x)2��SX

��f�T x ��Tx��� Z ��� eKj (u)
��� du <1; (2.55)

Also, inequality (2.54) implies

sup
(�;x)2A1

���r bf�TX ��T1 x��r bf�TX ��Tx���� � � lnnnh3x

�1=2
�

0@ 3X
j=1

��� ef�j ��T1 x1����
1A : (2.56)

Thus, the last three inequalities yield for any (�; x) 2 A1, for some large enough M ,
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independent on �1, x1 and n;

sup
(�;x)2A1

���E nr bf�TX ��T1 x��r bf�TX ��Tx�o��� �M �
lnn

nh3x

�1=2
: (2.57)

Next, results (2.55), (2.56), (2.57) and the condition that lnn
nhx

= o(1) give

sup
(�;x)2A1

���r bf�TX ��Tx�� Er bf�TX ��Tx����
� sup

(�;x)2A1

���r bf�TX ��T1 x��r bf�TX ��Tx����+ ���r bf�TX ��T1 x�� Er bf�TX ��T1 x����
+ sup
(�;x)2A1

���E nr bf�TX ��T1 x��r bf�TX ��Tx�o���
�

�
lnn

nh3x

�1=2 3X
j=1

n��� ef�TX;j ��T1 x1�� E ef�TX;j ��T1 x1����+ E ��� ef�TX;j ��T1 x1����o
+
���r bf�TX ��T1 x1�� Er bf�TX ��T1 x1����+M �

lnn

nh3x

�1=2
� 1

hx

3X
j=1

��� ef�TX;j ��T1 x1�� E ef�TX;j ��T1 x1����+ ���r bf�TX ��T1 x1�� Er bf�TX ��T1 x1����
+2M

�
lnn

nh3x

�1=2
:

As a result we get

P

 
sup

(�;x)2Ak

���r bf�TX ��Tx�� Er bf�TX ��Tx���� > 5M �
lnn

nh3x

�1=2!
(2.58)

� P

 ���r bf�TX ��T1 x1�� Er bf�TX ��T1 x1���� > M

�
lnn

nh3x

�1=2!
+

+
3X
j=1

P

 ��� ef�TX;j ��T1 x1�� E ef�TX;j ��T1 x1���� > M

�
lnn

nh3x

�1=2!
:

We now bound the four terms in the RHS of (2.58) using the same argument, as all

kernels used in the construction of ef�TX;j and bf�TX all bounded and compactly sup-

ported. We therefore prove the bound only for the term
���r bf�TX ��Tx�� Er bf�TX ��Tx����.

Set m =
�
nhx
lnn

�1=2
, and note that for n su¢ ciently large, m < max

�
n; "4b

�
where b =
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2 sup��SX
��kxk @

@uK (u)
�� <1, and " =M (nhx lnn)

1=2. De�ne for (�; x) 2 A1;

Zi = (x� xi)
(
@

@t

����
t=

�T (x�xi)
hx

K (t)� E
 
@

@t

����
t=

�T (x�xi)
hx

K (t)

!)
; i = 1; :::;m:

Now, notice that jZij � b, and by Theorem 1 of Hansen (2008),

�2 (m) � sup
(�;x)2A1

E

������
bmcX
i=1

Zi

������
2

� Cmhx

for some large enough C > 0. By Theorem 2.1 of Liebscher (1996) and condition (A1) we

obtain

P

 ���r bf�TX ��T1 x1�� Er bf�TX ��T1 x1���� > M

�
lnn

nh3x

�1=2!

= P

 �����
nX
i=1

Zi

����� > "

!

� 4 exp

 
� "2

64 nm�
2 (m) + 8

3"mb

!
+ 4

n

m
�m

� 4 exp

�
� M2 (nhx lnn)

64Cnhx + 3Mnhxb

�
+ 4A

�
n lnn

hx

�1=2
�
p
nhx= lnn

� 4 exp

�
� M2 lnn

64C + 3Mb

�
+ 4A

�
n lnn

hx

�1=2
�
p
nhx= lnn

� 4n�M=(64+3b) + 4A

�
n lnn

hx

�1=2
�
p
nhx= lnn; (2.59)

where 0 < � < 1 and the last inequality is justi�ed by taking M � C. Now, we have

for the �rst term of (2.59), n�M=(64+3b) = o
��

hx lnn
n

�d�
for su¢ ciently large M . Also, by
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condition (A3), we get for the the second term of (2.59) with some arbitrarily small � > 0;

4A

�
n lnn

hx

�1=2
�
p
nhx= lnn

= O

 �
n lnn

hx

�1=2
�n

�=2

!

= o

 �
hx lnn

n

�d!
:

This completes the proof of Lemma 2.6.3. �

The next Lemma is Lemma C.2 of Gao and King (2004) that gives a bound for the sto-

chastic order of second- and third-order degenerate U-statistics of strong-mixing stochastic

process.

Lemma 2.6.4 (Gao and King, 2004) (i) Let  (�; �; �) be a symmetric Borel function

de�ned on Rr � Rr � Rr, and let the process �i be an r-dimensional strictly stationary

and strong-mixing stochastic process with mixing coe¢ cients that satisfy �t � A�t with

0 < A <1 and 0 < � < 1. Assume that for any �xed x; y 2 Rr, E [ (�1; x; y)] = 0. Then

E

( P
1�i<j<k�T

 
�
�i; �j ; �k

�)2
� CT 3M1=(1+�);

where 0 < � < 1 is a small constant, C > 0 is a constant independent of T and the function

 , M = max fM1;M2;M3g, and

M1 = max
1�i<j�T

max

�
E
�� ��1; �i; �j���2+� ;Z �� ��1; �i; �j���2+� dP (�1) dP ��i; �j�� ;

M2 = max
1�i<j�T

max

�Z �� ��1; �j ; �k���2+� dP (�i) dP ��1; �j�� ;
M3 = max

1�i<j�T
max

�Z �� ��1; �j ; �k���2+� dP (�1) dP (�i) dP ��j�� :
(ii) Let � (�; �) be a symmetric Borel function de�ned on Rr �Rr, and let the process �i



59

be de�ned as in part (i). Assume that for any �xed x 2 Rr, E [� (�1; x)] = 0. Then

E

( P
1�i<j<k�T

�
�
�i; �j

�)2
� CT 2M1=(1+�)

4 ;

where 0 < � < 1 is a small constant, C > 0 is a constant independent of T and the function

�, and

M4 = max
1�i�T

max

�
E j� (�1; �i)j2+� ;

Z
j� (�1; �i)j2+� dP (�1) dP (�i)

�
:

We conclude the appendix by proving that the trimming term b��i , de�ned in (2.5), is
eventually equals to 1 for any su¢ ciently large n with probability 1.

Lemma 2.6.5 Let (A1)-(A4) hold and

Iin;� =

8><>: 1; if min
n bf�i

Y;�TX

�
yi; �

Txi
�
; bf�i
�TX

�
�Txi

�o
> a0n

�c;

0; otherwise,

for some small constants a0; c > 0 such that nc
�
h2y + h

2
x

�
= o (1) and n1�2c��hyhx ! 1

for arbitrarily small � > 0. Then eventually for any su¢ ciently large n

max
1�i�n

sup
�2�

��Iin;� � 1�� = 0
with probability 1.

Proof. De�ne

T� =
n
(y; x) 2 R1+d : min

n
fY;�TX

�
y; �Tx

�
; f�TX

�
�Tx

�o
> 2a0n

�c
o
:

It is trivial now to show that

sup
�2�

��Iin;� � 1�� � sup
�2�

If(yi;xi)=2T�g + IfZin>a0n�cg;
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where

Zin = sup
�2�

max
n��� bf�i

Y;�TX

�
yi; �

Txi
�
� fY;�TX

�
yi; �

Txi
���� ; ��� bf�i

�TX

�
�Txi

�
� f�TX

�
�Txi

����o :
By de�nition of S there exists some large N such that for any n � N; we have that

S �
T
�2�

T�, and as (yi; xi) 2 S, we get sup�2� If(yi;xi)=2T�g = 0 for any 1 � i � n. We now

show that

P

�
lim sup
n!1

�
nS
i=1

�
Zn > a0n

�c	�� = 0: (2.60)

For sake of brevity, we prove here only that

1X
n=1

P

�
nS
i=1

�
sup
�2�

��� bf�i
Y;�TX

�
yi; �

Txi
�
� fY;�TX

�
yi; �

Txi
���� > a0n

�c
��

<1; (2.61)

from which (2.60) follows by the Borel-Cantelli lemma (Gut 2005, Chapter 2, Theorem

18.1). The second term of Zin can be handled in the same way.

For some C1; C2 > 0 independent of n, we have

sup
�2�

��� bf�i
Y;�TX

�
yi; �

Txi
�
� bfY;�TX �yi; �Txi���� � C1

nhyhx
;

and from the proof of Lemma 2.6.2,

sup
�2�;z2S

���E bfY;�TX �yi; �Txi�� fY;�TX �y; �Tx���� � C2 �h2y + h2x� :
where z = (y; x). The last two results imply that for n large enough,

1X
n=1

P

�
nS
i=1

�
sup
�2�

��� bf�i
Y;�TX

�
yi; �

Txi
�
� fY;�TX

�
yi; �

Txi
���� > a0n

�c
��

�
1X
n=1

P

�
sup
z2S

sup
�2�

��� bfY;�TX �y; �Tx�� E bfY;�TX �y; �Tx���� > an�c
�
; (2.62)

for some 0 < a < a0. We can continue to bound the last term as in the proof of Lemma



61

2.6.3. Let fAkgJk=1 form a cover of subspace �� S, with J (n) = O
�
h�1y h�1x n2c

�
, and

Ak =
n
�; x; y :



���k

 � �hxn�c�1=2 ; kx� xkk � �hxn�c�1=2 ; ky � ykk � hxn�co ;
De�ne for

�
�k; yk; xk

�
;

Zi = K

 
�
T
k (xk � xi)

hx

!
K

 
�
T
k (yk � yi)

hy

!
� E

 
K

 
�
T
k (xk � xi)

hx

!
K

 
�
T
k (yk � yi)

hy

!!
:

Now, notice that jZij � b � 2 sup��SX jK (u)j <1, and by Theorem 1 of Hansen (2008),

for any 1 � m � n;

�2 (m) � sup
(�;x)

E

������
bmcX
i=1

Zi

������
2

� Cmhyhx

for some large enough C > 0. Set m = Cn1�2chyhx=a1 and " = a1n
1�chyhx, and note that

4bm < " for any su¢ ciently large n. By Theorem 2.1 of Liebscher (1996) and (A1),

P
���� bfY;�TX �yk; �Tk xk�� E bfY;�TX �yk; �Tk xk���� > a1n

�c
�

= P (Zi > ")

� 4 exp

 
� "2

64 nm�
2 (m) + 8

3"mb

!
+ 4

n

m
�m

� 4 exp

 
�

a21n
2�2ch2yh

2
x

64Cn1hyhx +
8
3Cn

2�3ch2yh
2
xb

!
+4A�Cn

1�2chyhx=a1h�1y h�1x n2c

� 4 exp

�
� a21n

c

C (64 + 3b)

�
+ 4AJ (n)�C=a1n

�
;

where 0 < � < 1 and J (n) = h�1y h�1x n2c. Thus, we have

1X
n=1

J (n)

�
sup
z2S

sup
�2�

��� bfY;�TX �y; �Tx�� E bfY;�TX �y; �Tx���� > a1n
�c
�
<1; (2.63)

and (2.61) is established with (2.62), (2.63), and the same arguments as in the proof of

Lemma 2.6.3. �



62

Chapter 3

Projection Pursuit Conditional Density

Estimation

3.1 Introduction

Consider the c.p.d.f. fY jX (yjx) of a random scalar Y given a random d-vector X = x.

Even for a small dimension of X, d � 2; a purely nonparametric approach may su¤er from

poor performance due to the �curse of dimensionality�(see Silverman 1986, Section 4.5).

In order to overcome this, a vast number of techniques have emerged in the literature for

reducing the dimensionality of the problem, without losing too much of the main charac-

teristics of the data. In this chapter, we suggest a projection pursuit approximation of the

c.p.d.f. attained by a series of univariate projections of the X-data into a �nite number

of univariate directions. More precisely, we propose a multiplicative PP approximation of

the conditional density that has the form f (yjx) = f0 (y)
QM
m=1 hm

�
y; �Tmx

�
; where the

projection directions �m and the multiplicative elements, hm, m = 1; :::;M , are chosen

to minimise a weighted version of the Kullback-Leibler relative entropy between the true

and the estimated conditional densities. In particular, the single-index approximation of

Chapter 2 can be seen as a private case of the PP approximation where M = 1.

The idea of projection pursuit goes back to Kruskal (1969, 1972), Switzer (1970),

Switzer and Wright (1971). It was only a few of years later that Friedman and Tukey

(1974) successfully implemented the method. Their work led the way to multiple appli-

cations, such as projection pursuit classi�cation (Friedman and Stuetzle 1980), projection

pursuit regression (Friedman and Stuetzle 1981), and projection pursuit density estimation



63

(henceforth PPDE, by Friedman, Stuetzle and Schroeder 1984). A comprehensive review

of the projection pursuit methodology can be found in Huber (1985). The asymptotic

properties of the projection pursuit regression method were developed by Hall (1989) for

independent data, and by Xia and An (1999) for dependent data, while as far as we are

aware, only Touboul (2011) has derived asymptotic properties for the PPDE, although

Huber (1985) has already discussed consistency. To the best of our knowledge, no similar

projection pursuit approximation has been suggested in the literature to c.p.d.f. estimation.

The main goal of Chapter 3 of the thesis is to develop the projection pursuit methodol-

ogy and the corresponding asymptotic theory for c.p.d.f. estimation. The method, which

we call projection pursuit conditional density estimation (PPCDE), is developed through-

out the chapter and both its theoretical and empirical properties are presented.

The PPCDE method also has some links with the work on multiplicative nonparametric

correction to an initial density estimator, and the PPCDE can also be applied to achieve

a similar goal (see Hjort and Glad 1995, Jones, Linton and Nielsen 1995, Glad, Hjort and

Ushakrov 2003 and Buch-Kromann et al 2006). However, the PPCDE di¤ers from the

aforementioned approaches in two main aspects. Firstly, it is designed to work in high-

dimensional spaces of r.v. X, and as such the method looks for corrections only along

some optimal univariate projections of data X. Secondly, the PPCDE is able to continue

correcting itself iteratively until a certain optimality criterion is met.

The outline for the rest of the chapter is as follows. Section 3.2 introduces the theoretical

approximation, while Section 3.3 states some desired properties to motivate it. In Section

3.4 we move to discuss estimation and the PPCDE algorithm is described. Section 3.5

states asymptotic results for the PPCDE under strong-mixing conditions. Section 3.6

suggests a bootstrap Information Criterion to terminate the estimation algorithm. Section

3.7 illustrates the method using both simulated data and exchange-rate series, and Section

4 concludes. All proofs of the chapter are collected in Section 3.8.
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3.2 The Projection Pursuit Approximation

Let Y be a random scalar and X be a random d-vector. Denote the support of Y by

SY � R and that of X by SX � Rd, and make S = SY�SX . Throughout Chapter

3, we index the probability densities, which are assumed to exist with respect to the

underlying Lebesgue measure, with corresponding subscripts to the r.v. they represent, so

for example, fY;X ; fY;�TX ; fY jX and fY j�TX denote the probability densities of, respectively,

(Y;X) ;
�
Y; �TX

�
; Y jX and Y j�TX for some �2 Rd, etc.

The common ideology of all of the projection pursuit methods is to approximate mul-

tivariate functions by a sequence of univariate functions of linear combinations of the

variable. We propose to approximate the c.p.d.f. fY jX (yjx) by the form

fY jX (yjx) � gY jX;M (yjx) � gY ;0 (y)h1
�
y; �T1 x

�
� � � hM

�
y; �TMx

�
; (3.1)

whereM is some positive integer, h1; :::; hM; are unknown bivariate functions, and �1; :::; �M

are unit d-vectors that belong to a parameter space �, and which are called the projection

pursuit directions. gY ;0 (y) is an initial approximation of the unconditional density of Y ,

and it can be taken as any naive approximation that is positive on SY , i.e. a normal density

or a histogram. In principle, one can also take an initial approximation that depends on

data x to re�ect some a prior beliefs about the conditional density.

It is �rst essential to gain some understanding of the strengths and limitations of the

product form approximation. The Projection Pursuit approximation is much more �exible

than the single-index model. In particular, it has been shown by Diaconis and Shahshahani

(1984) that any smooth function can be approximated to arbitrary precision by a function of

the form (3.1). Nonetheless, the projection pursuit representation need not be unique. For

example, when d = M = 2 note that gY jX;M (yjx1; x2) = gY jX;M (yjx1 � x2) has in�nitely

many equivalent projection pursuit representations since

x1x2 = (1=4ab)[(ax1 + bx2)
2 � (ax1 � bx2)2] (3.2)
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for any real numbers a1; a2; b1; b2. Diaconis and Shahshahani (1984) provided a necessary

condition for non-uniqueness of the product representation (3.1). Therefore, the �exibility

of the approximation comes at the cost of interpretability since (3.1) is not necessarily

identi�able if M , the �m�s and the hm�s are left unrestricted. A paper by Yuan (2010)

provides an interesting discussion of general conditions under which the closely related

additive index model,

E (Y jX) � �+
PM
m=1 hm

�
�Tmx

�
;

is identi�able. However, as for the PPCDE, it is still an open question whether there are

identifying restrictions that yield useful forms of (3.1).

An even more acute issue is that there are well-behaved (say, smooth) functions that

cannot be written in the product form (3.1) for any �niteM (see Diaconis and Shahshahani

1984). Furthermore, in the nontrivial cases, where M � 2 and �1; :::; �M 2 Rd are linearly

independent, it is not even clear to us whether there are any real c.p.d.f. that follow the

form (3.1) without requiring an additional normalisation factor, which is a general function

of x 2 Rd. This is left as an open question for further research, and it is discussed again

in Chapter 4 of the thesis. By the end of this section, we will also allow the inclusion

of a normalising factor to (3.1). As a simple example for a real c.p.d.f. that follows the

normalised form with M = 2, we can consider any parametric family of p.d.f.�s with two

parameters. For example, take the Beta distribution with parameters � = �
�
�T1 x

�
and

� = �
�
�T2 x

�
. Then

fY jX (yjx) � y��(�
T
1 x) (1� y)��(�

T
2 x)
.
Beta

�
�
�
�T1 x

�
; �
�
�T2 x

��
,

follows a product form with gY ;0 (y) = 1, h1
�
y; �T1 x

�
= y��(�

T
1 x), h2

�
y; �T1 x

�
= (1� y)��(�

T
2 x)

and the Beta function Beta
�
�
�
�T1 x

�
; �
�
�T2 x

��
is an additional normalising factor.

It may seem tempting to tackle the proposed approximation with one of the exist-

ing projection pursuit techniques. For instance, consider applying the projection pursuit
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regression approach of Friedman and Stuetzle (1981) to the log-density,

log fY jX (yjx) � log gY ;0 (y) +
PM
m=1 log hm

�
y; �Tmx

�
:

The application of regression techniques to conditional density estimation is possible due

to the double-kernel approach of Fan, Yao and Tong (1996). In the double-kernel approach,

however, the dependent variable is taken as fY jX (yjx) rather than log fY jX (yjx), while by

reducing the original problem of density estimation to a regression problem, it becomes

hard to restrict the estimator to be non-negative and to integrate to 1 (see Hyndman and

Yao 2002). Obviously, one can choose to approximate directly the density function by the

form

fY jX (yjx) � exp
�
log gY ;0 (y) +

PM
m=1 log hm

�
y; �Tmx

��
:

This approximation was implemented by Hyndman and Yao (2002) using a local parametric

regression model. However, it is not clear whether the projection pursuit regression can be

applied to this model, and for our purposes, it does not seem to o¤er any advantage.

An alternative approximation that maintains the multiplicative nature of the approxi-

mation is the PPDE of Friedman, Stuetzle and Schroeder (1984). Consider now an appli-

cation of this approximation to the joint p.d.f. of Y and X, i.e. approximate

fY;X (y; x) �
QM
m=1 fm

�
y; �Tmx

�
;

and then take

fY jX (yjx) �
QM
m=1 fm

�
y; �Tmx

�R
y2R

nQM
m=1 fm

�
y; �Tmx

�o
dy
.

In this formulation, however, the projections �T1 x; :::; �
T
Mx are intended to approximate the

p.d.f. fY;X (y; x) e¢ ciently, but they do not necessarily provide e¤ective information with

regards to Y . When one is interested in inference about Y given data X, e.g. for making

predictions, a dedicated approximation for the c.p.d.f. fY jX (yjx) is much more preferable.
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The projection directions �1; :::; �M and the corresponding functions h1; :::; hM pursued

are ought to be chosen such that gY jX;M (yjx) achieves a reasonably good approximation of

fY jX (yjx). At the same time, it is intended to keep the number of projective directions to a

minimum so as not to make the PPCDE unwieldy for approximation and computation. To

this end, we next de�ne a suitable optimality criterion, by which a general approximation

of the c.p.d.f. may be examined.

For the sake of generality, we discard in the rest of the section the subscriptM , and for

any x 2 SX let gY jX (yjx) denote a general measurable and non-negative approximation of

the c.p.d.f. of Y given X = x such that

gY jX (yjx) � 0 a.e. for any (y; x) 2 R� SX :

Preferably, of-course, gY jX (yjx) is itself a c.p.d.f., i.e.,

Z
gY jX (yjx) dy = 1 a.e. for any x 2 SX . (3.3)

A common divergence measure of the di¤erence between g (yjx) and the real c.p.d.f.

fY jX (yjx) is the Kullback-Leibler�s relative entropy,

D[gY jX ] =

Z
log

�
fY jX (yjx)
gY jX (yjx)

�
fY;X (y; x) dydx:

The Kullback-Leibler�s relative entropy has some known desired properties for estimation

of probability densities (cf. Huber 1985, section 12), and it has been successfully utilised

in several papers for estimation of c.p.d.f. (e.g., Yin and Cook 2005 and Fan et al 2009).

The integrability condition (3.3) is distinctly hard to impose when one is interested

in estimating global parameters �1; :::; �M . However, if this condition is relaxed, then

the relative entropy measure should not be an adequate measure anymore. For example,

D[gY jX ] can always get smaller by replacing gY jX (yjx) by cgY jX (yjx), c > 1, and it tends

to �1 in the limit c ! 1. We therefore de�ne the constrained relative entropy between
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gY jX and fY jX as

DC [gY jX ] =

Z
log

�
fY jX (yjx)
gY jX (yjx)

�
fY;X (y; x) dydx+

�Z
gY jX (yjx) fX (x) dydx� 1

�
: (3.4)

Here and in the rest of the chapter we understand

log (0) = �1; a

0
=1; 0 � (�1) = 0=0 = 0;

for any a > 0. The �rst term in the RHS of (3.4) is the standard relative entropy D[gY jX ],

while we show below that the second term in the RHS represents the integrability constraint

Z
gY jX (yjx) fX (x) dydx = 1: (3.5)

Although this condition is clearly weaker than the desired condition (3.3), it o¤ers a prac-

tical and uni�ed measure that can be applied independently of x 2 SX . Another useful

interpretation of DC [gY jX ] is as a standard constrained relative entropy between the ap-

proximation of the p.d.f. of (Y;X), gY;X (y; x), and the true p.d.f., fY;X (y; x), where both

are obtained, respectively, by fX (x)-weighting of the approximated and the true c.p.d.f.,

gY;X (y; x) = gY jX (yjx) fX (x) ;

fY;X (y; x) = fY jX (yjx) fX (x) :

Indeed, this viewpoint is expressed by the equality

DC [gY jX ] =

Z
log

�
fY;X (y; x)

gY;X (y; x)

�
fY;X (y; x) dydx+

Z
gY;X (y; x) dydx� 1:

By this last representation, it is clear that gY jX (yjx) indeed seeks to approximate fY jX (yjx)

in the sense that gY jX (yjx) fX (x) approximates fY jX (yjx) fX (x).

This constrained version of the relative entropy for unconditional p.d.f.�s has already

been used by Friedman, Stuetzle and Schroeder (1984) in their PPDE, but it appears



69

more explicitly in a likelihood form in the papers of Loader (1996) and of Cule, Samworth

and Stewart (2010) for nonparametric p.d.f. estimation. It is therefore not surprising that

DC [gY jX ] enjoys similar properties to those of the standard relative entropy between p.d.f.�s

(cf. section 12 of Huber 1985).

In the rest of the chapter we therefore refer to an approximation goptY jX (yjx) of the

c.p.d.f. fY jX (yjx) as an optimal approximation if DC [gY jX ] is minimised by goptY jX (yjx) in

the relevant function space.

In many cases, it may still be useful to directly impose the integrability condition (3.3)

on approximation gY jX (yjx). This can be done in a straightforward way. Let goptY jX (yjx) be

an optimal approximation of the c.p.d.f. fY jX (yjx). Now, instead of goptY jX (yjx), consider

the normalised form

goptY jX (yjx)
.Z

goptY jX (yjx) dy (3.6)

as the �nal approximation. However, it bears a signi�cant additional computational cost.

While directions �1; :::; �M are global parameters, and functions h1; :::; hM can be calcu-

lated very quickly, the calculation of the factor
R
goptY jX (yjx) dy may require some heavy

computational e¤ort, particularly when one needs to compute the c.p.d.f. instantaneously

for numerous values of x. Hence, the normalisation (3.6) should in practice only be applied

to problems where the computational burden is not heavy.

The following proposition proves some of the properties satis�ed by DC [gY jX ] that are

similar to the properties proved by Huber (1985) for the standard relative entropy. The

�rst part proves that, similarly to the standard relative entropy, the measure is a �pre-

metric�between gY jX and fY jX , in the sense that DC [gY jX ] � 0 with equality i¤ g = fY jX

a.e.. The second part asserts that normalising any non-normalised approximation g (yjx)

to make the integrability condition (3.5) hold will always decrease DC [gY jX ]. In particular,

an approximation gY jX that minimises DC [gY jX ] must satisfy that integrability constraint.

The third part proves that both the L1 and the Hellinger distance metrics between gY jX

and fY jX are dominated by DC [gY jX ]1=2. Finally, the fourth part of the proposition shows
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that the normalisation procedure can only further improve the quality of the estimator in

terms of minimising DC [gY jX ].

Proposition 3.2.1 Let fY jX and fX be the true densities of Y jX and of X respectively,

and let gY jX (yjx) be a non-negative function and integrable w.r.t. y 2 R. Then:

a. DC [gY jX ] � 0 with equality i¤ g = fY jX a.e. for any (y; x) 2 R� SX .

b. DC [gY jX ] � DC [g
�
Y jX ] for g

�
Y jX (yjx) = gY jX (yjx) =

R
gY jX (yjx) fX (x) dydx with

equality i¤
R
gY jX (yjx) fX (x) dydx = 1.

c. Let c =
R
gY jX (yjx) fX (x) dydx. Then

Z �q
fY jX (yjx)�

q
gY jX (yjx)

�2
fX (x) dydx

�
Z ��fY jX (yjx)� gY jX (yjx)�� fX (x) dydx

�
�
2

3
c(1 + 2c)DC [gY jX ]

�1=2
:

d. If DC [gY jX ] is minimised by g
opt
Y jX (yjx). Then DC [g

opt
Y jX (yjx)] � DC [g

�opt
Y jX (yjx)] for

g�optY jX (yjx) = goptY jX (yjx) =
R
goptY jX (yjx) dy for any x 2 SX with equality i¤

R
goptY jX (yjx) dy =

1 a.e. for any x 2 SX .

3.3 Properties of the Optimal Projections

Approximation (3.1) can be seen as a sequence of modi�cations to the naive gY ;0 (y) such

that each modi�cation depends on one linear combination of the coordinates of X. This

suggests a recursive stepwise construction of the estimator by

gY jX;m (yjx) = gY jX;m�1 (yjx)hm
�
y; �Tmx

�
; m = 1; :::;M: (3.7)

Thus, at any iteration m = 1; :::;M , given a current model gY jX;m�1 (yjx), we seek an

optimal new projection and a corresponding optimal modi�cation function, denoted re-

spectively by �0;m and h0;m
�
y; �T0;mX

�
, such that model gY jX;m (yjx) provides an improved
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approximation to fY jX (yjx) in the sense of minimising the constrained relative entropy

DC [gY jX;m (yjx)],

�
�0;m; h0;m

�
y; �T0;mX

��
= arg min

�m2�;hm(y;�Tmx)
DC [gY jX;m�1 (yjx)hm

�
y; �Tmx

�
]:

For now, let us assume �rst that a projection direction �m is given, and that the problem

is reduced to �nding only the corresponding optimal h0;m
�
y; �Tmx

�
,

h0;m
�
y; �TmX

�
= arg min

hm(y;�Tmx)
DC [gY jX;m�1 (yjx)hm

�
y; �Tmx

�
]:

Without loss of generality, let direction �m be the �rst coordinate axis, that is, x1 =

�Tmx. The density functions of �
T
mX and

�
Y; �TmX

�
are given by

f�TmX
�
�Tmx

�
=

Z
fX (x) dx2 � � � dxd;

fY;�TmX
�
y; �Tmx

�
=

Z
fY jX (yjx) fX (x) dx2 � � � dxd; (3.8)

and the c.p.d.f. of Y given �TmX is

fY j�TmX
�
yj�Tmx

�
= fY;�TmX

�
y; �Tmx

�
=f�TmX

�
�Tmx

�
:

At the m�th step of the procedure, we can de�ne analogously the gY jX;m�1 (yjx)-based

estimators of the density of
�
Y; �TmX

�
and of the c.p.d.f. of Y given �TmX, respectively, as

gY;�TmX;m�1
�
y; �Tmx

�
=

Z
gY jX;m�1 (yjx) fX (x) dx2 � � � dxd; (3.9)

and

gY j�TmX;m�1
�
yj�Tmx

�
= gY;�TmX;m�1

�
y; �Tmx

�
=f�TmX

�
�Tmx

�
:

The next Proposition states that an explicit solution for the optimal hm
�
y; �Tmx

�
, given

the current model gY jX;m�1 (yjx) and a new direction �m (and the real density fY;X), is
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obtained uniquely by the following expression,

h0;m
�
y; �Tmx

�
=

fY;�TmX
�
y; �Tmx

�
gY;�TmX;m�1

�
y; �Tmx

� = fY j�TmX
�
yj�Tmx

�
gY j�TmX;m�1

�
yj�Tmx

� , (3.10)

so that the m�th step optimal approximation is given by

goptY jX;m (yjx) = gY jX;m�1 (yjx)h0;m
�
y; �Tmx

�
:

The Proposition further proves some useful expressions for the optimal modi�cation and

for the marginal decrease in the constrained relative entropy,

D�[gY j�TmX;m�1] � DC [gY jX;m�1]�DC [g
opt
Y jX;m (yjx)]: (3.11)

Sections (a) and (c) of the Proposition are generalisations of the arguments used by Fried-

man, Stuetzle and Schroeder (1984) and Huber (1985, section 13) in their PPDE, while

Sections (b) provides an identity that is unique to the PPCDE approximation.

Proposition 3.3.1 Let gY jX;m�1 (yjx) be a non-negative approximation of the conditional

density of Y given X; and consider a new c.p.d.f. approximation gY jX;m (yjx) of the form

gY jX;m (yjx) = gY jX;m�1 (yjx)hm
�
y; �Tmx

�
, where �m is a given direction in Rd; and hm (�; �)

non-negative bivariate function. Then:

a. The new approximation gY jX;m (yjx) is optimal i¤

hm
�
y; �Tmx

�
= h0;m

�
y; �Tmx

�
a.e.

for any (y; x) 2 R� SX such that gY jX;m�1 (yjx) > 0.

b. h0;m
�
y; �Tmx

�
satis�es the following equality,

h0;m
�
y; �Tmx

�
=

fY;�TmX
�
y; �Tmx

�
E
�
gY jX;m�1 (yjX) j�TmX = �Tmx

�
f�TmX

�
�Tmx

� :
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c. If gY jX;m�1 (yjx) ful�ls
R
gY jX;m�1 (yjx) fX (x) dydx = 1, then the marginal decrease

in the constrained relative entropy is equal to the relative entropy between the c.p.d.f.�s

fY j�TmX and gY j�TmX;m. That is,

D�[gY j�TmX;m�1] =

Z
log
�
h0;m

�
y; �Tmx

��
fY;�TmX (y; x1) dydx1

=

Z
log

 
fY j�TmX (yjx1)

gY j�TmX;m�1 (yjx1)

!
fY;�TmX (y; x1) dydx1:

According to the last section of Proposition 3.3.1, D�[gY j�TmX;m�1] is the relative en-

tropy, and therefore it is necessarily non-negative. Thus, the constrained relative entropy

DC [gY jX;m] between gY jX;m (yjx) and the real c.p.d.f. fY jX (yjx) is non-increasing with the

number of iterations m for any choice of projections �m�s.

While the last Proposition provides the optimal m0th modi�cation h0;m
�
y; �Tmx

�
for a

given direction �m, it remains now to �nd the optimal m0th direction �0;m. Clearly, by

that Proposition, we may now simply replace gY jX;m (yjx) by goptY jX;m (yjx) and obtain �0;m

as the minimiser of DC [g
opt
Y jX;m (yjx)]. Moreover, since by de�nition g

opt
Y jX;m (yjx) depends

on �Tm only through the m0th modi�cation function hm
�
y; �Tmx

�
, then �0;m can be equiv-

alently characterised as the maximiser of the marginal decrease in the relative entropy,

D�[gY j�TmX;m�1].

For ease of presentation, we assume here and below that for each m = 1; 2; :::; �0;m 2 �

is the unique maximiser of D�[gY j�TmX;m�1]. In practice, �0;m can be any one in the set of

solutions to

D�[gY j�T0;mX;m�1
] = max

�m2�

n
D�[gY j�TmX;m�1]

o
:

In particular, our asymptotic results, presented in Section 3.5, will still apply as long as

this �0;m is a local maximiser of D�[gY j�TmX;m�1] in a small neighbourhood. Note that in

that case, the choice of �0;m within the set of optimum points is not crucial as long as

it is �nding a modi�cation for the previous approximation gY j�TmX;m�1 (yjx1) that we are

concerned about. Moreover, the stepwise nature of the approximation allows the procedure
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to recover other informative projective directions as the procedure keeps on to the next

steps.

In summary, the Projection Pursuit approximation procedure is constructed through a

recursive formula

gY jX;m (yjx) = gY jX;m�1 (yjx)h0;m
�
y; �T0;mX

�
; m = 1; 2; :::; (3.12)

where gY jX;0 (yjx) = gY ;0 (y) is a non-negative, and strictly positive on S, initial approxi-

mation of the unconditional density of Y ,

h0;m
�
y; �Tmx

�
=

fY;�TmX
�
y; �Tmx

�
gY;�TmX;m�1

�
y; �Tmx

�
=

fY;�TmX
�
y; �Tmx

�
E
�
gY jX;m�1 (yjX) j�TmX = �Tmx

�
f�TmX

�
�Tmx

� , (3.13)

and

�0;m = arg max
�m2�

n
D�[gY j�TmX;m�1

o
= arg max

�m2�

�Z
log
�
h0;m

�
y; �Tmx

��
fY;�TmX (y; x1) dydx1

�
= arg max

�m2�

�
E log

�
h0;m

�
y; �Tmx

��	
: (3.14)

In the proposition stated below we show that D�[gY j�T0;mX;m�1
] ! 0 as m ! 1. Note

that by Propositions 3.2.1(c) and 3.3.1(c), D�[gY j�T0;mX;m�1
] dominates the weighted L1-

norm between fY j�T0;mX and gY j�T0;mX;m�1. Therefore, since �0;m is selected to maximise

D�[gY j�TmX;m�1], the asymptotic decay of D
�[gY j�T0;mX;m�1

] to zero guarantees that the

projective (marginal) conditional density approximation gY j�TX converges to fY j�TX in the

weak sense for any choice of � 2 �, since

sup
�m2�

Z ���fY j�TmX �yj�Tmx�� gY j�TmX;m�1 �yj�Tmx���� fX (x) dydx! 0 as m!1.
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We further prove that this must imply a convergence of gY jX;m (yjx) to fY jX (yjx) in the

weak sense as m ! 1. For the PPDE, a similar implication was obtained using the

Cramér-Wold device (Huber 1985). To prove the weak convergence result in our case,

however, we need a conditional version of the Cramér-Wold device where the projections

are taken in the space of the r.v. X given in the condition. The next lemma, proved in the

appendix, establishes that result. This Lemma states su¢ cient and necessary conditions

for converges in distribution of a random variable Y given random vector X, which hold

almost surely for any X. As far as we know, no similar result exists in the literature.

Lemma 3.3.1 (Conditional Cramér-Wold Device) Let Y1; Y2::: be a sequence of scalar

r.v., Y is a scalar r.v., and X a r.v. in Rd. Then YmjX !d Y jX a.s. with respect to the

probability measure induced by r.v. X as m ! 1 i¤ for any � 2 Rd Ymj�TX !d Y j�TX

a.s. with respect to the probability measure induced by r.v. �TX as m!1.

With the Conditional Cramér-Wold Device, we can now obtain the next proposition,

which is a generalisation of Proposition 14.2 of Huber (1985).

Proposition 3.3.2 Let the projection pursuit approximation be de�ned recursively by (3.12)-

(3.14). Then as m!1:

(a) D�[gY j�T0;mX;m�1
]! 0.

(b) gY jX;m (yjx)! fY jX (yjx) in the weak sense.

Note that although �0;m is selected to maximise D�[gY j�TmX;m�1] at the m�th step, the

decay of D�[gY j�T0;mX;m�1
] to zero is not necessarily monotonic. In particular, it may be

that for some �1; �2 2 �

D�[gY j�T1 X;m�1
] > D�[gY j�T2 X;m�1

];

and hence direction �1 will be preferable to direction �2 in the sense of maximising the

(m�1)�th marginal decrease in the constrained relative entropy, D�[gY j�TmX;m�1]. However,
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after modifying gY jX;m�1along direction �1, a new model gY jX;m is obtained, for which it

is possible that

D�[gY j�T2 X;m
] > D�[gY j�T1 X;m�1

]:

Thus, the m�th marginal decrease in the constrained relative entropy, D�[gY j�T2 X;m
], along

direction �2 can be larger than the (m�1)�th marginal decrease in the constrained relative

entropy, D�[gY j�T1 X;m�1
], along direction �1.

Example 1: For illustration of the proposed approximation procedure, consider the

following simple example. Let X = (X1; X2) where X1 and X2 are independent N (0; 1)

random variables, and

Y jX � N
�q

X2
1 +X

2
2 ; 1

�
:

Since here X 2 R2, the information entailed by X can be fully speci�ed by any two

orthogonal projections, say �TX and �T?X, of X. However, fY jX
�
yj�Tx

�
cannot be written

as a product h1
�
y; �T1 x

�
h2
�
y; �T1 x

�
. This fact follows from the argument of Diaconis and

Shahshahani (1984, p.176), who established a necessary condition for a representation of

a nonlinear function as a sum of nonlinear functions of linear combinations. The following

Lemma states their argument.

Lemma 3.3.2 (Diaconis and Shahshahani 1984) Suppose that f 2 C2
�
R2
�
has the

form

f (x1; x2) = g1 (a1x1 + b1x2) + g2 (a2x1 + b2x2) ; (3.15)

for some real numbers a1; a2; b1; b2. Then the di¤erential operator

2Q
i=1

�
bi

@

@x1
� ai

@

@x2

�
= b1b2

@2

@x21
� (a1b2 + a2b1)

@2

@x1@x2
+ a1a2

@2

@x22

applied to f is identically zero.

In our case, it is easy to check that for any real numbers c1; c2; c3 and �xed y 2 R, the
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di¤erential operator

c1
@2

@x21
� c2

@2

@x1@x2
+ c3

@2

@x22

applied to

ln fY jX
�
yj�Tx

�
/
�
y �

q
X2
1 +X

2
2

�2
cannot be identically zero, and therefore ln fY jX

�
yj�Tx

�
does not have the additive form

3.15. Nevertheless, in the following we show that the projection pursuit conditional density

approximation still achieves a relative high level of accuracy for the model of Example 1 by

using two steps of projective corrections to an initial naive approximation. For simplicity

of presentation, we choose the projections�directions to be �1 = (1; 0) and �2 = (0; 1).

Figures 3.1(a)-(j) track the progress of the approximation as it attempts to restore the

form of the true conditional density. To begin with, Figure 3.1(a) shows the true conditional

density fY jX (yjX) plotted against y and �T1 x (�T2 x = 0). Note that, by symmetry of the

model, the conditional density has the same form as fY jX
�
yj�TX = x; �T?X = 0

�
for any

� 2 �. Figure 3.1(b) presents the unconditional density fY (y), which is taken as the initial

model gY jX;0 (yjx) ; and is plotted against y and �T1 x (�T2 x = 0). Again, gY jX;0 (yjx) has

the same form when plotted against any other direction of x. We now use the projection

pursuit procedure to modify the current model, gY jX;0 (yjx), along direction x1 = �T1 x, by

using the formula

gY jX;m (yjx)

= gY jX;m�1 (yjx)h0;m (y; x1) = gY jX;m�1 (yjx)
fY;�TmX (y; x1)

gY;�TmX;m�1 (y; x1)

= gY jX;m�1 (yjx)
R
fY jX (yjx) fX (x) dx2R

gY jX;m�1 (y; x1) fX (x) dx2

= gY jX;m�1 (yjx)
R
fY jX (yjx) fX2 (x2) dx2R

gY jX;m�1 (yjx) fX2 (x2) dx2
;

where in the last step above we used fX (x) = fX1 (x1) fX2 (x2). By de�nition of h0;m (y; x1),

it may behave erratically in regions where both gY;�T1 X;m�1 (y; x1) and fY;�TmX (y; x1) are
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(a) (b)

(c) (d)

Figure 3.1. (continued on next page) Example 1 : (a) The true conditional density plotted
against y and �T1 x (�

T
2 x = 0); (b) Model gY jX;0 (yjx) plotted against y and �T1 x (�T2 x = 0);

(c) Model gY jX;1 (yjx) plotted against y and �T1 x (�T2 x = 0); (d) Model gY jX;1 (yjx) plotted
against y and �T2 x (�

T
1 x = 0).
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(e) (f)

(g) (h)

Figure 3.1. (continued on next page) Example 1: (e) Model gY jX;2 (yjx) plotted against y
and �T1 x (�

T
2 x = 0); (f) Model gY jX;2 (yjx) plotted against y and �T2 x (�T1 x = 0);

(g)
R
gY jX;2 (yjx) dy (�) and

R
gY jX;2 (yjx) fX (x) dydx (...) plotted against �T1 x (�T2 x = 0);

(h)
R
gY jX;2 (yjx) dy (�) and

R
gY jX;2 (yjx) fX (x) dydx (...) plotted against �T2 x (�T1 x = 0).
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(i) (j)

Figure 3.1. Example 1 : (i) Final model gY jX;2 (yjx) =
R
gY jX;2 (yjx) dy plotted against y and

�T1 x (�
T
2 x = 0); (j) Final model gY jX;2 (yjx) =

R
gY jX;2 (yjx) dy plotted against y and �T2 x

(�T1 x = 0).

very low. However, the resulting approximation gY jX;1 (yjx) is not a¤ected by it. In Figures

3.1(c) and 3.1(d) gY jX;1 (yjx) is plotted against y and �T1 x (�T2 x = 0) or, respectively, y and

�T2 x (�
T
1 x = 0). One can see in Figure 3.1(c) that gY jX;1 (yjx) successfully captures the frac-

tured shape of the true conditional density along direction �1; albeit smoothing it slightly,

while by construction, the shape of gY jX;1 (yjx) along direction �2 is still invariable (Figure

3.1(d)). Next, Figures 3.1(e) and 3.1(f) show the new model, gY jX;2 (yjx), obtained after

applying the second projective correction along direction �2, and plotted, as usual, against

y and �T1 x (�
T
2 x = 0) or y and �T2 x (�

T
1 x = 0). These �gures indicate that gY jX;2 (yjx)

now restores the general shape of the true conditional density along both directions �1

and �2. Figures 3.1(g) and 3.1(h) show the results of the integrals
R
gY jX;2 (yjx) dy andR

gY jX;2 (yjx) fX (x) dydx plotted against �T1 x (�T2 x = 0) and against �T2 x (�
T
1 x = 0). By

that it means, for example, that Figure 3.1(g) shows plots of
R
gY jX;2 (yjX = (t; 0)) dy and

of
R1
�1 dy

R1
�1 dx2

R t
�1 dx1gY jX;2 (yjx) fX (x) dx against t. One can see that gY jX;2 (yjx) is

not a �proper�conditional density in the sense that
R
gY jX;2 (yjx) dy is not 1 for any x 2 SX ,

and it is particularly small in the regions where fX (x) is very low. Notwithstanding, one
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can also see that the condition
R
gY jX;2 (yjx) fX (x) dx = 1 is kept, and therefore, in prac-

tice, the unnormalised gY jX;2 (yjx) may still serve as an useful �improper�approximation.

Finally, Figures 3.1(i) and 3.1(j) show the normalised model gY jX;2 (yjx) =
R
gY jX;2 (yjx) dy,

which has now a very close form to that of fY jX
�
yj�Tx

�
, apart from some apparent over-

smoothness.

3.4 Estimation Methodology and Algorithm

In practice, of course, the true densities of Y jX and of X are unknown and need to be

estimated from the data. The researcher is only given a set of observations f(xt; yt)gnt=1,

which are assumed to be strictly stationary with the same distribution as (Y;X). Similarly

to the theoretical approximation, the estimation procedure is recursive, so that at the m�th

iteration, m = 1; :::;M; we assume that the estimate bgY jX;m�1 (yjx) for the conditional den-
sity fY jX (yjx) is given. The goal is to �nd an approximation for the optimal multiplicative

function h0;m
�
y; �T0;mX

�
in order to produce an improved approximation bgY jX;m (yjx). If

m = 1, one may use any naive density estimator bgY ;0 (y) that depends only on y, and which
needs to be positive on SY .

In order to ensure the stability of the estimation procedure, we need to restrict atten-

tion to a compact subset of the support of Z = (Y;X) such that the probability density

fY;�TX
�
y; �Tx

�
is bounded away from 0 for any � 2 �. By abuse of notations, we hence-

forth denote this subspace by the symbol S, which was used in previous sections to denote

the whole support of Z. Accordingly, we rede�ne �0;m, the target for our estimation, to be

the maximiser of expected log-likelihood conditional on Z 2 S, that is,

�0;m = arg max
�m2�

ES
�
log
�
h0;m

�
Y; �TmX

���
;

where ES is the conditional expectation given Z 2 S, and h0;m
�
y; �Tmx

�
is the optimal
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projection given the estimate bgY jX;m�1 (yjx),
h0;m

�
y; �Tmx

�
=

fY;�TmX
�
y; �Tmx

�
E
�bgY jX;m�1 (yjX) j�TmX = �Tmx

�
f�TmX

�
�Tmx

� . (3.16)

Notice that the condition Z 2 S should not have any signi�cant e¤ect if the subset S is

chosen to be large enough.

For a given �m, (3.16) suggest that an estimator of the optimal correction function

h0;m
�
y; �Tmx

�
for gY jX;m�1 (yjx) can be obtained by

bhm �y; �Tmx� = bfY;�TmX �y; �Tmx�bgY;�TmX;m�1 �y; �Tmx� ;
where bfY;�TmX �y; �Tmx� and bgY;�TmX;m�1 �y; �Tmx� are the kernel estimators

bfY;�TmX �y; �Tmx� =
1

nhyhx

nX
j=1

K

�
yj � y
hy

�
K

 
�Tm (xj � x)

hx

!
;

bgY;�TmX;m�1 �y; �Tmx� =
1

nhx

nX
j=1

bgY jX;m�1 (yjxj)K
 
�Tm (xj � x)

hx

!
:

Here K is a non-negative, boundedly supported and symmetric density function and hy; hx

are the bandwidths. Notice that bgY;�TmX;m�1 �y; �Tmx� is evaluated straightforwardly from
the observations fxtgnt=1, and there is no need to incorporate cumbersome Monte Carlo

sampling as in the PPDE (Friedman, Stuetzle and Schroeder 1984). For the intuition

behind this di¤erence, note that according to Proposition 3.3.1(b), gY;�TmX;m�1
�
y; �Tmx

�
can be obtained from gY jX;m�1 (yjx) by the relation

gY;�TmX;m�1
�
y; �Tmx

�
= EfX

�
gY jX;m�1 (yjX) j�TmX = �Tmx

�
f�TmX

�
�Tmx

�
,

where the expectation is taken with respect to the real distribution of random vector X,

and f�TmX
�
�Tmx

�
is the real p.d.f. of �TmX. This can be seen as a demonstration of the fact

that gY jX (yjx) approximates fY jX (yjx) in the sense that gY jX (yjx) fX (x) approximates
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fY jX (yjx) fX (x), where fX (x) is the real distribution of random vector X (see Section

3.2). In the PPDE of Friedman, Stuetzle and Schroeder (1984), for a given �m given a

current approximation gX;m�1 (x) for the p.d.f. fX (x) of random vector X, their goal was

to approximate

g�TmX;m�1
�
�Tmx

�
= EgX;m�1

�
1
�
�TmX = �Tmx

	�
:

Here, the the expectation is taken with respect to the approximated distribution gX;m�1 (x).

Therefore, the implementation of the PPDE requires drawing a Monte Carlo sample from

the current approximated model gX;m�1
�
�Tmx

�
at each step of the algorithm.

For the same reasons discussed in Section 2.2, we use �leave-one-out�estimates in our

calculations. Let bh�im �y; �Tmx� denote the �leave-one-out�estimate of h0;m �y; �Tmx� based
on all observations other than the i�th, that is,

bh�im �y; �Tmx� =

bf�i
Y;�TX

�
y; �Tmx

�
bg�i
Y;�TmX;m�1

�
y; �Tmx

� (3.17)

=
h�1y

X
j 6=i

K
�
yj�y
hy

�
K
�
�Tm(xj�x)

hx

�
X

j 6=i
bgY jX;m�1 (yjxj)K � �Tm(xj�x)hx

� :
Given the results of the last section, we can obtain an estimate, b�m; for the m�th step

optimal direction �0;m by maximising an approximation of D�[gY j�TmX;m�1] with respect to

�m 2 �. We de�ne b�m = arg max
�m2�

L (�m)

where L (�m) is the empirical m�th step log-likelihood function, obtained by replacing

the expectation of expression (3.14) by a sample mean, and plugging-in the appropriate

estimator for h0;m
�
yi; �

T
mxi

�
;

L (�m) =
1

n

nX
i=1

log
�bh�im �yi; �Tmxi��b��i : (3.18)

Here, we use an additional trimming term b��i as we would like to consider the average
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over only the observations (yi; xi) 2 S, and in addition such that bh�im �yi; �Tmxi� is bounded
away from zero and in�nity. The later restriction is needed to stabilise the �nite-sample

performance of the algorithm, but has no asymptotic e¤ect on the method provided thatbh�im �yi; �Tmxi� converges at a su¢ cient rate to h0;m �yi; �Tmxi�. For a given observation
(yi; xi) and � 2 � let If(yi;xi)2Sg be the indicator for the event f(yi; xi) 2 Sg, while IfAin;�g
is the indicator for the event

Ain;� =
n
Both bf�i

Y;�TX

�
yi; �

Txi
�
and bg�i

Y;�TmX;m�1
�
yi; �

Txi
�
lie in

�
a0n

�
 ; a�10 n

�o

for some small constants a0; 
 > 0. The trimming term b��i is then taken as
b��i = If(yi;xi)2Sg � IfAin;�g

1
n

Pn
i=1 If(yi;xi)2Sg � IfAin;�g

:

As in Chapter 2, the trimming term b��i is completely data-driven and it depends on the
value of the parameter �, evaluated by the likelihood. However, it does not assume any

prior knowledge or applying a pilot estimation of �0.

Once b�m is obtained, an estimator of h0;m
�
y; �T0;mX

�
can be produced with b�m sub-

stituting �0;m. Because the optimal kernel�s bandwidths for e¢ cient estimation of �m is

known to undersmooth the nonparametric estimator of h0;m (�; �), a second stage of esti-

mation is carried out with new bandwidths Hy;Hx. The second stage estimator can now

include all observations, and is given by

ehm �y;b�Tmx� = H�1
y

Xn

j=1
K
�
yj�y
Hy

�
K

�b�Tm(xj�x)
Hx

�
Xn

j=1
bgY jX;m�1 (yjxj)K �b�Tm(xj�x)Hx

� : (3.19)

We then take (3.19) as an estimate of the optimal multiplicative correction h0;m
�
y; �T0;mX

�
.

A summary of the algorithm for the proposed projection pursuit approximation of the

c.p.d.f. fY jX (yjx) is given as follows.

(1) Set m = 0. Initialise the approximation with a naive density estimator bgY ;0 (y) that
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depends only on y and that is positive on SY . As an example, one can take the kernel

density estimator

bgY ;0 (y) = n�11 h�1y
Xn

j=1
K

�
yj � y
hy

�
:

(2) Set m! m+ 1.

(3) For any direction �m 2 � and every observation (xk; yk) ; k = 1; :::; n; let bh�im �y; �Tmx�
be given by formula (3.17).

(4) Maximise the likelihood function (3.18) with respect to �m 2 �, and set

b�m = arg max
�m2�

L (�m)

(5) Obtain ehm �y;b�Tmx� given by formula (3.19).
(6) Let the m�th estimate be

bgY jX;m (yjx) = bgY jX;m�1 (yjx)ehm �y;b�Tmx� :
(7) Repeat steps (2)-(6) for m = 1; :::;M until estimate bgY jX;M (yjx) is obtained.
(8) Finally, use bgY jX;M (yjx) to approximate the c.p.d.f. fY jX (yjx). If the computa-

tional load is not too heavy, it may be bene�cial to normalise the estimator for any x-value

of interest by taking bgY jX;M (yjx)� R bgY jX;M (yjx) dy as the �nal approximation.
It can be seen that at the �rst iteration, m = 1, bgY jX;1 (yjx) is simply the standard

single-index kernel c.p.d.f. estimator of Y given �TX = b�T1 x considered by Fan et al (2009)
irrespectively of the choice of bgY ;0 (y) (unless the 0�th approximation re�ects dependency
in X).

The PPCDE acts as a greedy algorithm in that at every iteration of the algorithm, m =

1; :::;M , it looks for the optimal orientation �0;m and their corresponding multiplicative

function h0;m
�
y; �T0;mX

�
, given the current estimate bgY jX;m�1 (yjx). At every iteration, m,

the algorithm utilises the most recent estimate bgY jX;m�1 (yjx) in order to �nd the optimal
multiplicative modi�cation function. In particular, at every iteration of the algorithm,
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the previously estimated orientations �0;1; :::; �0;m�1 and their corresponding multiplicative

function

h0;1
�
y; �T0;1X

�
; :::; h0;m�1

�
y; �T0;m�1X

�
need to be known. The greediness of the algorithm implies that the optimal modi�cation

function is de�ned with respect to current estimate bgY jX;m�1 (yjx), and therefore there is no
�accumulation�of estimation errors as m goes up in the estimates of the optimal orientation

�0;m and its corresponding multiplicative function h0;m
�
y; �T0;mX

�
. Nevertheless, we would

expect the variance of the �nal c.p.d.f. estimator to increase as m goes up due to the

increased �exibility of the approximation when exploiting an increased number of projection

directions (see also the numerical results of Section 3.7).

Example 1 (cont.): We apply the PPCDE algorithm to a sample of observations

generated from the model of Example 1, introduced in the previous section. The number

of observations was selected to n = 1000 in order to enable a clear visual illustration of

the method performance. Using a smaller number of observations typically leads to ap-

pearance of erratic features in the density estimates that make it harder to visualise the

progress of the algorithm. In Section 3.7 we consider this model again and we present

the results of a Monte Carlo numerical study of the performance of the PPCDE algorithm

for a smaller number of observations generated from this model. Figures 3.2(a)-(l) track

the progress of the PPCDE, which is compared with the performance of the standard

multivariate conditional density kernel estimator. For better comparison with the theoret-

ical approximation, the graphs are plotted again against the previously used x-directions,

�1 = (1; 0) and �2 = (0; 1). Figure 3.2(a) is a reminder of the shape of the true conditional

density fY jX (yjX) plotted against y and �T1 x (�T2 x = 0). Figure 3.2(b) presents the initial

naive estimate bgY jX;0 (yjx), which is taken as the kernel unconditional density estimator of
Y . We also compute the Root Mean Square Percentage Error (RMSPE) of the estimate
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bgY jX;0 (yjx), given by
RMSPE

�bgY jX;m� = nP
i=1

�bgY jX;m (yijxi)� fY jX (yijxi)�2� nP
i=1

fY jX (yijxi)2 ; (3.20)

and we get RMSPE
�bgY jX;0� = 0:104. Next, maximising the �rst step empirical log-

likelihood function along direction �1 yields the estimator b�1 = (0:801;�0:598). Figures

3.2(c) and 3.2(d) present the corrected approximation,

bgY jX;1 (yjx) = bgY jX;0 (yjx)bh0;m �y;b�T1 x� :
As mentioned above, bgY jX;1 (yjx) is simply a single-index conditional density approxima-
tion. As usual, the new estimate is plotted against y and �T1 x (�

T
2 x = 0) or, respectively, y

and �T2 x (�
T
1 x = 0). One can see in these �gures that the shape of bgY jX;1 (yjx) provides a

closer approximation to fY jX (yjX) relative to the naive one, and apart from a slight jittery

e¤ect at the regions where the density of X is very low fjXj > 3g, it provides a relatively

smooth estimate. Indeed, we obtain now RMSPE
�bgY jX;1� = 0:060. We continue to esti-

mate a second projective correction. The empirical second step log-likelihood function is

maximised now at b�2 = (0:610; 0:792). This provides a reasonable estimate, as b�2 is almost
orthogonal to b�1, b�T1 b�2 = 0:015. Note, however, that generally, the orientation estimates

obtained in the di¤erent iterations of the algorithm do not need to be orthogonal. Figures

3.2(e) and 3.2(f) show the obtained new estimate, bgY jX;2 (yjx). These �gures indicate thatbgY jX;2 (yjx) captures the general curvy form of the true conditional density along both di-

rections �1 and �2. However, it is immediately apparent that the jittery e¤ect at the regions

of very low density of X is much magni�ed. Nevertheless, because the number of observa-

tions that fall inside these regions is very low, bgY jX;2 (yjx) provides a better approximation
than bgY jX;1 with RMSPE

�bgY jX;2� = 0:0436. Figures 3.2(g) and 3.2(h) show the results of
the integrals

R bgY jX;2 (yjx) dy and R bgY jX;2 (yjx) fX (x) dydx (computed with the true den-
sity fX (x) of X). Similarly to the theoretical approximation, we see that bgY jX;2 (yjx) is not
a �proper�conditional density in the sense that

R
gY jX;2 (yjx) dy is not 1 for any x 2 SX ,
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and in particular in the regions where fX (x) is very low. Nevertheless, it is clear from

the �gures that the condition
R bgY jX;2 (yjx) fX (x) dx = 1 is kept with high accuracy. In

Figures 3.2(i) and 3.2(j), we show the normalised estimate bgY jX;2 (yjx) = R bgY jX;2 (yjx) dy.
The jittery e¤ect is now softened and the normalised estimate has a smooth shape, which

generally captures the true structure of fY jX (yjX). The RMSPE of the normalised es-

timate is indeed lower than that of the unnormalised version with a value of 0:030. As

a benchmark for the performance of the PPCDE, we �nally compare the PPCDE with

the standard multivariate conditional density kernel estimator. Figures 3.2(k) and 3.2(l)

present the estimate obtained with the conditional density kernel estimator applied to the

same observations. It can be seen that the standard conditional density kernel estima-

tor is more inclined to su¤er from a decreased level of accuracy and erratic features, and

especially at the low-density regions. Generally, this is a known feature that many non-

parametric estimators tend to su¤er from as they attempt to approximate the true model

in regions with a very few numbers of observations. This e¤ect is even more magni�ed in

high-dimensions as a result of the �empty space phenomenon�(see Silverman 1986, Section

4.5). Indeed, one can see that also for low dimensions, d = 2, the standard kernel estimator

is characterised by some spurious features. The PPCDE, however, recti�es this phenom-

enon by working on lower-dimensional projections. In this example, the RMSPE of the

standard kernel estimator is 0:065, which is even less accurate than that of the single-index

model.

3.5 Asymptotic Theory

This section outlines some asymptotic results for the PPCDE under strong-mixing con-

ditions. All the results of this section are straightforward generalisations of the asymp-

totic properties derived for the single-index model in Section 2.3. We shall con�ne our

attention to a single stage of projection pursuit estimation algorithm, estimating the

m�th projective approximation, for m = 1; :::;M , as all of the projective approxima-

tions are estimated similarly and with similar asymptotic properties. Given the initial
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(a) (b)

(c) (d)

Figure 3.2. (continued on next page) Example 1: (a) The true conditional density plotted
against y and �T1 x (�

T
2 x = 0); (b) Model bgY jX;0 (yjx) plotted against y and �T1 x (�T2 x = 0);

(c) Model bgY jX;1 (yjx) plotted against y and �T1 x (�T2 x = 0); (d) Model bgY jX;1 (yjx) plotted
against y and �T2 x (�

T
1 x = 0).
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(e) (f)

(g) (h)

Figure 3.2. (continued on next page) Example 1 : (e) Model bgY jX;2 (yjx) plotted against y
and �T1 x (�

T
2 x = 0); (f) Model gY jX;2 (yjx) plotted against y and �T2 x (�T1 x = 0);

(g)
R bgY jX;2 (yjx) dy (�) and R bgY jX;2 (yjx) fX (x) dydx (...) plotted against �T1 x (�T2 x = 0);

(h)
R bgY jX;2 (yjx) dy (�) and R bgY jX;2 (yjx) fX (x) dydx (...) plotted against �T2 x (�T1 x = 0).
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(i) (j)

(k) (l)

Figure 3.2. Example 1 : (i) Final model bgY jX;2 (yjx) = R bgY jX;2 (yjx) dy plotted against y
and �T1 x (�

T
2 x = 0); (j) Final Model bgY jX;2 (yjx) = R bgY jX;2 (yjx) dy plotted against y

and �T2 x (�
T
1 x = 0); (k) Standard bivariate kernel estimator plotted against y and �

T
1 x

(�T2 x = 0); (l) Standard bivariate kernel estimator plotted against y and �
T
2 x (�

T
1 x = 0).
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estimate bgY jX;m�1 (yjx) obtained in the (m� 1)�th iteration, our goal now is to estimate
h0;m

�
y; �T0;mx

�
by ehm �y;b�Tmx�, according to the procedure described in the previous sec-

tion, which then may be used to obtain the m�th estimate,

bgY jX;m (yjx) = bgY jX;m�1 (yjx)ehm �y;b�Tmx� :
De�ne the set S� distant no further than some small � > 0 from some

�
y; �Tx

�
such that

(y; x) 2 S and � 2 �. We derive our asymptotic results under the following assumptions.

Assumption 1: (A1) The sequence fyj ; xjgnj=1 is strictly stationary strong-mixing

series with mixing coe¢ cients that satisfy �t � A�t with 0 < A <1 and 0 < � < 1:

Assumption 2: K (�) is a symmetric, non-negative, compactly supported, three-times

boundedly di¤erentiable kernel.

Assumption 3: The bandwidths satisfy hy; hx = o(1), n1��hyhx !1 and n2��hyh5x !

1 for some � > 0.

Assumption 4: For all � 2 �;
�
Y; �TX

�
has probability density fY;�TX (y; t) with

respect to Lebesgue measure on S� and

inf
(y;t)2S�

fY;�TX (y; t) > 0 and sup
(y;t)2S�

fY;�TX (y; t) <1:

In addition, fY;�TX (y; t) and E
�
XjY = y; �TX = t

�
and E

�
XXT jY = y; �TX = t

�
are

four-times continuously di¤erentiable with respect to (y; t) 2 S�. Moreover, there is some

j� such that for all j > j� and
�
y1; �

Tx1
�
;
�
yj ; �

Txj
�
2 S� the joint probability density of�

y1; �
Tx1; yj ; �

Txj
�
is bounded.

Assumption 5: The initial estimate for the current iteration is non-negative and

strictly positive on S, and it satis�es

inf
(y;t)2S�

E
�bgY jX;m�1 (yjX) j�TX = t

�
> 0 and sup

(y;t)2S�
E
�bgY jX;m�1 (yjX) j�TX = t

�
<1:

Additionally, @
@ybgY jX;m�1 (yjx) exists and is bounded, and E �bgY jX;m�1 (yjX) j�TX = t

�
is
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four-times continuously di¤erentiable with respect to t, for any (y; t) 2 S�.

Assumption 6: For the trimming operator, we require that a0; 
 > 0 and n

�
h2y + h

2
x

�
=

o (1) and n1�2
��hyhx !1 for some � > 0.

Assumption 7: �0;m is the unique global maximum of ES
�
log
�
h0;m

�
Y; �TX

���
; and

it lies in the interior of �.

Assumption 8: Hy andHx satisfyHyHx=hyh3x = o
�
n1��

�
,HyHx

�
h2y + h

2
x

�
= o

�
n�1

�
,

Hy;Hx = O
�
n�1=6

�
and n1��HyHx !1 for some � > 0.

All assumptions (apart from Assumption 5) are due to Chapter 2. The assumptions

regarding the bandwidths can be satis�ed for bandwidths with optimal asymptotic rate

hy; hx � n�1=4 and Hy;Hx � n�1=6. Assumption 5 is needed to obtain uniform con-

sistency of bgY;�TmX;m�1 �y; �Tx� and its derivatives with respect to �. The uniqueness of
�0;m is assumed merely for theoretical convenience (see the discussion following condition

(A6) in Section 2.3). In practice, �0;m can be any one from the set of maxima points of

ES
�
log
�
h0;m

�
Y; �TX

���
. Assumption 8 is based on the conditions of Theorem 2.3.3 for

the kernel�s bandwidths in the second stage of the estimation. It is required in order to

keep the orientation estimator�s rate of consistency fast enough so that ehm �y;b�Tmx� is a
consistent estimator of h0;m

�
y; �T0;mx

�
and it has the same �rst-order asymptotic properties

as if the optimal �0;m was known.

The following preliminary Lemma is an adaptation of the results of Hansen (2008), and

it shows uniform consistency of the kernel estimators and their derivatives with respect to

�.

Lemma 3.5.1 Let Assumptions 1-5 hold. Then for k = 0; 1; 2;

sup
�2�;z2S

���� @k@�k bfY;�TmX �y; �Tx�� @k

@�k
fY;�TmX

�
y; �Tx

����� = Op

0@ lnn

nhyh
1+2k
x

!1=2
+ h2y + h

2
x

1A ;
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and

sup
�2�;z2S

���� @k@�k bgY;�TmX;m�1 �y; �Tx�� @k

@�k
gY;�TX;m�1

�
y; �Tx

����� = Op

 �
lnn

nh1+2kx

�1=2
+ h2x

!
;

where gY;�TX;m�1 (y; t) = E
�bgY jX;m�1 (yjX) j�TX = t

�
f�TX (t).

As a consequence of Lemma 3.5.1 it can be shown that for any large enough n, the

trimming term b��i is responsible for averaging exactly over those observations that belong
to subset S.

Lemma 3.5.2 . Let Assumptions 1-6 hold. Then for any large enough n,

max
1�i�n

sup
�2�

�����b��i � If(yi;xi)2Sg
1
n

Pn
i=1 If(yi;xi)2Sg

����� = 0
with probability 1.

With the last two lemmas it is straightforward to establish the uniform consistency of

the empirical log-likelihood function.

Lemma 3.5.3 . Let Assumptions 1-6 hold, and let L (�m) be the empirical m�th step

log-likelihood function (3.18). Then

sup
�m2�

��L (�m)� ES �log �h0;m �Y; �TmX����� = op (1) :

The consistency of b� now follows easily.
Proposition 3.5.1 Let Assumptions 1-7 hold. Then as n!1

b�m !p �0;m:

By Assumption 4, an application of the mean value theorem applied to @
@�L (�m) yields

@

@�
L
�b�m�� @

@�
L (�0;m) =

@2

@�2
LN

�
�m
� �b�m � �0;m� ; (3.21)
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where the mean value �m satis�es
���m � �0;m�� � ���b�m � �0;m���. Using the above results with

the asymptotic theory for U-statistics of strong-mixing observations (Gao and King 2004)

we can establish the next Lemma.

Lemma 3.5.4 Let Assumptions 1-7 hold, and


 (�0;m) = ES

�
� @2

@�2
log
�
h0;m

�
Y; �T0;mX

���
:

Then

(i) L (�m) = ES
�
log
�
h0;m

�
Y; �TmX

���
+Op

�
n�1=2

�
+O(h2y + h

2
x);

(ii) @
@�L (�0;m) = Op

�
n2��hyh3x

��1=2
+O(h2y + h

2
x) for any � > 0, and

(iii) @2

@�2
L
�
�m
�
= �
 (�0;m)+Op

�
n2��hyh5x

��1=2
+O(h2y+h

2
x) for any �m !p �0;m.

The asymptotic expressions given in Lemma 3.5.4 imply the rate of convergence of b�m.
We obtain the next result.

Proposition 3.5.2 Let Assumptions 1-7 hold. Then

b�m � �0;m = Op

�
n2��hyh

3
x

��1=2
+O(h2y + h

2
x);

for any � > 0 arbitrarily small.

The last proposition suggests that the optimal rate of convergence rate of b�m is obtained
when bandwidths hy and hx both have the asymptotic rate n�1=4. This rate is clearly a

slower rate than the
p
n-rate achieved for many parametric and semiparametric estimators,

and in particular for many single-index regression models where only a univariate density

needs to be estimated. Nevertheless, it is arbitrarily close to that parametric rate.

The last result of the section shows that given an appropriate choice of bandwidths,ehm �y;b�Tmx� can estimate h0;m �y; �T0;mx� with the same �rst-order asymptotic properties
as if the optimal �0;m was known.
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Proposition 3.5.3 Let Assumptions 1-8 hold: Then

sup
(y;x)2S

���ehm �y;b�Tmx�� h0;m �y; �T0;mx���� = Op

 �
lnn

nHyHx

�1=2!
:

When the optimal asymptotic rate for the bandwidths is chosen, i.e. Hy;Hx � n�1=6,

we then get that ehm �y;b�Tmx� is a uniformly consistent estimator of h0;m �y; �T0;mx� with a
convergence rate of n��1=3 for � > 0 arbitrarily small.

3.6 Information Criterion Stopping Rule

As with any iterative method, the PPCDE needs a criterion for terminating the algorithm

after some �nite M�th iteration. Stopping the algorithm too early can increase the bias of

the c.p.d.f. estimator, and stopping it too late can increase its variance.

When one has a large amount of data, and it is possible to allocate a suitable validation

set, it may be most bene�cial to terminate the algorithm based on the out-of-sample perfor-

mance on the validation set. However, in cases when one does not have a su¢ ciently large

amount of data or when a suitable validation set is hard to de�ne, a di¤erent criterion to

terminate the algorithm needs to be employed. Friedman, Stuetzle and Schroeder (1984)

discussed some alternative heuristic criteria for their iterative PPDE, which are based

on comparisons between models obtained in consecutive iterations or simply on graphical

inspection. Nevertheless, they did not provide any formal procedure or statistical justi�-

cation. Cross-validatory techniques were shown to have successful applications to model

selection in semiparametric settings (Gao and Tong 2004, Kong and Xia 2007), and they

can be used to produce a stopping rule to the PPCDE procedure. However, these compu-

tationally intensive techniques are less desirable as at each iteration b�m has to found by

numerical optimisation. In the following we propose an Information Criterion (IC) stop-

ping rule that is based on bias correction for the estimator of the marginal decrease in the

relative entropy.

To motivate our proposal, recall that by the results of Section 3.3 we have that the
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marginal decrease in the relative entropy satis�es

D�[gY j�T0;mX;m�1
] = E log

�
h0;m

�
y; �T0;mx

��
! 0 as m!1;

and as a result, the projection pursuit approximation gY jX;m (yjx) is ensured to converge

weakly to the true c.p.d.f. fY jX (yjx). This suggests that one can terminate the approxima-

tion procedure once E log
�
h0;m

�
y; �T0;mx

��
� 0. In practice, at the m�th iteration h0;m (�; �)

and �T0;m are replaced by the suboptimal estimates ehm (�; �) and b�m, and the relative entropy
may not improve beyond a certain number of iterations. In that case, one would like then

to use the approximation obtained at the last iteration before the marginal decrease in the

relative entropy becomes non-positive,

L(ehm;b�m) � ES
�
log
�
hm
�
Y; �TX

�����
hm=ehm, �=b�m � 0:

Note that here, again, we restrict ourselves to a conditional expectation given that (Y;X) 2

S for the same reasons mentioned in Section 3.4.

An obvious estimator for L(ehm;b�m) is the empirical m�th step log-likelihood function,
evaluated with ehm �yi;b�mxi�,

L(ehm;b�m) = 1

ns

nX
i=1

log
�ehm �yi;b�mxi�� If(yi;xi)2Sg;

where ns =
Pn
i=1 If(yi;xi)2Sg. Although L(ehm;b�m) is a consistent estimator, it has the

tendency to overestimate L(ehm;b�m), since both terms ehm (�; �) and b�m are estimated using
the same observations, used again to approximate the mean in L(ehm;b�m). Let the bias of
this estimator be

bm = ES

h
L(ehm;b�m)� L(ehm;b�m)i :

Following Akaike (1973), we de�ne an Information Criterion for the m�th step as the bias-
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corrected log-likelihood function,

ICm = L(ehm;b�m)�bbm; (3.22)

where bbm is an estimator of bm. This two terms appearing in the Information Criterion

ICm play a similar role as in the standard AIC, with the exception that ICm captures the

marginal decrease in the relative entropy, rather the relative entropy itself. On the RHS of

the expression above, the �rst term L(ehm;b�m) estimates the relative entropy between the
c.p.d.f.�s fY j�TmX and gY j�TmX;m (see Proposition 3.3.1(c)), and it re�ects the marginal model

complexity; increasing the number of iterations of the PPCDE procedure from (m� 1) to

m is likely to yield a positive value L(ehm;b�m). However, the model�s marginal complexity
is penalised by the second term, which re�ects the model stability. The optimum model,

obtained when ICm � 0, is a trade-o¤ between the two terms.

We use ICm; m = 1; 2; :::, as a �goodness of model�evaluation tool, in the sense that

we can terminate the stepwise algorithm at the �rst instant that

ICm � 0;

and we use the approximation obtained at the last iteration before this condition began to

hold.

Akaike�s Information Criterion (AIC) is derived under somewhat strict parametric set-

tings, and in particular under the assumption that the speci�ed parametric model contains

the true distribution. Under these settings, Akaike showed that the bias correction term,

bm; is asymptotically the number of free parameters contained in the model over n. Stone

(1977) further showed asymptotic equivalence between the AIC criterion and the leave-one-

out cross-validation. Takeuchi (1976) relaxed the later assumption of Akaike (1973), and

he allowed the true distribution to lie outside the parameterised family of distributions.

Yet, Takeuchi�s Information Criterion (TIC) relies on the Fisher e¢ ciency of the paramet-

ric MLE, which does not hold in our case (Proposition 3.5.2). An alternative Information
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Criterion that works under very weak assumptions is the bootstrap Extended Information

Criterion (EIC), proposed by Ishiguro, Sakamoto and Kitagawa (1997), and it can be ap-

plied to estimate bm in our model. Similar to the cross-validation, a substantial drawback

of the EIC is that it requires computation of many bootstrap versions of b�m. Thus, one
needs to solve many numerical maximisation problems in Rd repeatedly for each bootstrap

sample.

We therefore propose a semi-analytic bootstrap approach that combines di¤erent ele-

ments of both the TIC and the EIC. Through expansion of the bias term, we show that the

asymptotically dominant terms depend on �0 and not on b�, which allows the application
of the bootstrap method without producing numerous bootstrap estimates of b�. To that
end, let


 (�0;m) =
@2

@�2
L(�0;m);

and

H
�ehm; �0;m� = ES

h
L
�ehm; �0;m�� L(ehm; �0;m)i ;

J
�ehm; �0;m� = ES

�
@

@�

n
L(ehm; �0;m)� L(ehm; �0;m)o @

@�
L(bhm; �0;m)T� ;

where ehm (�; �) and bhm (�; �) correspond to the estimates (3.17) and (3.19), used for the �rst
and second stage of estimation in the m�th iteration, with the appropriate bandwidths.

In the next proposition we derive an asymptotic bias correction for bm. The basic

argument used in the derivation of the TIC is generalised to the semiparametric case (see

Konishi and Kitagawa 1996, Konishi and Kitagawa 2008). As such, this proposition is of

interest in its own right. For the sake of simplicity, the error rates derived in the second

part of the proposition are presented with the optimal choice of bandwidths, in accordance

with the previous section.
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Proposition 3.6.1 Let Assumptions 1-8 hold. Then

bm = bm + op
�
bm
�
;

where

bm = trace
h
J
�ehm; �0;m�
� (�0;m)i+H �ehm; �0;m� :

In particular, if hy; hx � n�1=4 and Hy;Hx � n�1=6, then for any � > 0

bm = Op

�
n�5=6+�

�
+O

�
n�1=3

�
:

This result clearly suggests that bm should provide a good approximation for the exact

bias bm. The advantage of bm over bm is that it does not depend on the parameter estimateb�m, and it can therefore be bootstrapped in reasonable time.
We therefore de�ne the estimator of bm to be

bbm = trace hJ� �eh�m;b�m� b
� �b�m�i+H�
�eh�m;b�m� : (3.23)

Here, b
� �b�m� is a simple sample version of 
� (�0;m) and J� �eh�m;b�m� and H�
�eh�m;b�m�

are the bootstrap versions of J
�ehm; �0;m� and H �ehm; �0;m�.

To this end, let the estimator of 
 (�0;m) be

b
�b�m� = � 1
n

nX
i=1

@2

@�2
log
�bhm �Y; �T0;mX�� : (3.24)

The reason for using bhm here, instead of ehm; is that it is clear from the proof of Proposition
3.6.1 that the 
 (�0;m) term is obtained from taking the limit in probability of the term

ES

h
� @2

@�2
log
�bhm �Y; �T0;mX��i.

In order to obtain J�
�eh�m;b�m� and H�

�eh�m;b�m�, we produce B bootstrap samples

of size n;
nn

y
�(i)
t ; x

�(i)
t

on
t=1

; i = 1; :::; B
o
. Let the bootstrap versions of bhm �y; �T0;mx� andehm �y; �T0;mx� based on the bootstrap pseudo sample i be, respectively, bh�(i)m

�
y;b�Tmx� and



101

eh�(i)m

�
y;b�Tmx�. Use also ehm �y;b�Tmx� as the bootstrap version of h0;m �y; �T0;mx�. We then

have

H�
�eh�m;b�m� = 1

B

BX
i=1

8<: 1n
nX
j=1

log

0@eh�(i)m

�
y
�(i)
j ;b�Tx�(i)j

�
eh�(i)m

�
yj ;b�Txj�

1A9=; ; (3.25)

and

J�
�eh�m;b�m� =

1

B

BX
i=1

248<: 1n
nX
j=1

r log

0@eh�(i)m

�
y
�(i)
j ;b�Tx�(i)j

�
eh�(i)m

�
yj ;b�Txj�

1A9=; (3.26)

�
(
1

n

nX
k=1

r log
�bh�(i)m

�
y
�(i)
k ;b�Tmx�(i)k

��)T35 :
Equations (3.22)-(3.26) together de�ne a feasible Information Criterion that is relatively

easy to implement. Di¤erentiation of b
�b�m� and J� �eh�m;b�m� can be performed numeri-
cally.

The validity of the bootstrap method was proved for a wide range of statistical non-

parametric applications that are close to ours (cf. Hall, Marron and Park 1992, Paparoditis

and Politis 2000). However, their theory does not generalise easily to our case. At the same

time, as far as we are aware, the asymptotic properties of the AIC (and AIC variants) were

theoretically investigated for some particular parametric regression models (see a review

by Rao and Wu 2001), but less so in semiparametric and nonparametric situations. Some

exceptions include Hurvich, Simono¤ and Tsai (1988) and Naik and Tsai (2001), who

developed improved versions of the AIC criterion for nonparametric and semiparametric

regression models and demonstrated numerically the e¤ectiveness of their criteria. We

thus very much regret that we could not show the asymptotic properties of the proposed

ICm-stopping rule, and we leave the theoretical properties of the proposed Information

Criterion open for further research. The simulation results reported in the next section

demonstrate that the ICm-criterion performs very well in practice.
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3.7 Numerical study

Some reported empirical studies have demonstrated that the PPDE generally outperforms

standard kernel estimates (see Hwang, Lay and Lippman 1994). In this section we explore

the �nite-sample performance of our method using both simulated and real-data examples.

In all of the experiments we used the Triweight kernel,

K(u) = max
�
35=32 �

�
1� 3u2 + 3u4 � u6

�
; 0
	
:

In order to facilitate the algorithm, we standardised the data by setting xj  S�1x (xj � x)

and yj  (yj � y) =sy, where x and y are the vector and scalar sample means of fxjgnj=1
and fyjgnj=1 ; and S2x and s2y are the d-matrix and scalar sample variances. Once the

PPCDE algorithm is completed, the �nal estimates of the projective directions and of the

conditional density approximation, say bfY jX (yjx) = bgY jX;M (yjx), can be transformed back
to the original coordinates by setting b�m  S�1x b�m=


S�1x b�m


 for any m = 1; :::;M , and

bfY jX (yjx) bfY jX (yjx) =sy = bgY ;0 (y)eh1 �y;b�T1 x� � � � ehM �y;b�TMx� =sy:
For relatively fast and robust numerical optimisation, we implemented the iterative proce-

dure used in Chapter 2, which in practice also performs automatic bandwidth adjustments.

Step 0. Let b�0m 2 � be any initial guess for �0;m, for example b�0m = (1; 0; :::; 0). Set

also a �nite sequence of decreasing bandwidths hiy = hix = ain�1=(p+2); i = 1; :::; I, where

p is the kernel-order and ai > 0 is a decreasing sequence such that the �rst bandwidths

notably oversmooth the conditional density. Our experience suggests that
�
a1; a2; :::; aI

�
=

(9; 8; :::; 3) yield good results. Set the iteration number i = 1.

Step 1. Apply a multivariate variant of the Newton-Raphson method with starting

point b�i�1m to �nd a maximum log-likelihood estimate b�im numerically based on bandwidths
hiy and h

i
x. As in Section 2.4, in our simulations we use the Broyden-Fletcher-Goldfarb-
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Shanno BFGS method� (see Nocedal and Wright 2006, Chapter 6).

Step 2. Stop the procedure and use the estimate b�m = b�im either if i = I or if a certain

convergence criterion is met, i.e. if
�b�im�T b�i�1m > 1 � " for some small " > 0. Otherwise,

set i i+ 1 and hiy = hix = ain�1=(p+2), and return to Step 1.

Because a1 is chosen to oversmooth the conditional density, the corresponding likelihood

surface is oversmoothed as well, and the algorithm is insensitive to the choice of the b�0m.
For the second-stage estimation during each iteration, when estimating ehm �y;b�Tmx�,

we adopted Scott�s (1992) normal reference rule or bandwidth selection, which suggests

Hy = Hx = 3n
�1=6 for the Triweight kernel (see discussion in Section 2.4).

The computational complexity of each iteration of the PPCDE algorithm, m = 1; :::;M

is of order O
�
n2d3

�
by the same considerations discussed in Section 2.4. However here,

we also need to consider the computational complexity of the ICm-stopping rule. Since

computing the likelihood is of computational complexity of O
�
n2d
�
, the computation ofb
�b�m�, which involves a second derivative matrix of the likelihood w.r. to � 2 Rd; re-

quires O
�
n2d3

�
computational time. Similar considerations show that the computational

complexity of the bootstrap estimates H�
�eh�m;b�m� and J�

�eh�m;b�m� is O �Bn2d� and
O
�
Bn2d2

�
, where B is the number of bootstrap samples. Ignoring asymptotically insignif-

icant terms, we thus get that the total complexity of the PPCDE algorithm is of order

O
�
Mn2d2 (d+B)

�
.

As in Chapter 2, in the simulations we used R 2.14.1 programme on a computer with

3.4ghz intel core i7-2600 processor. For example, the average computational times of the

method (for a single estimation based on Example 3 below) with dimension d = 4; number

of projection M = 6; B = 50 number of bootstrap samples and sample sizes n = 100; 200

and 400 were 28:4 sec; 67:4 sec and 238:5 sec, respectively.

An R code PPCDE.txt for the calculations below is available at

http://personal.lse.ac.uk/rosemari/

�The code for the algorithm was published by Daniel F. Heitjan
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In the three �rst numerical examples listed below, we investigate the performance of the

PPCDE for simulated multidimensional data. For each of these examples, 100 replications

were generated with sample sizes n = 100; 200 and 400. In order to reduce the computa-

tional burden, we only produced results for the non-normalised PPCDE. As demonstrated

in the previous sections, normalising the �nal estimates is expected to improve the perfor-

mance of the PPCDE. The fourth example demonstrates an application of the method to

interval predictors for the daily exchange-rate returns between the US Dollar (USD) and

the British Pound (GBP). In all four examples, we tested the IC stopping rule with the

number of bootstrap samples B = 50. In order to evaluate the quality of the performance

of the PPCDE, the standard multivariate conditional density kernel estimator, referred to

here simply as the kernel estimator, is set as a benchmark.

Example 1 (continued): Consider �rst the model of Example 1, already employed

in previous sections. This model can be written as

yt =
q
x21t + x

2
2t + "t; t = 1; :::; n;

where x1, x2 and "t are independent N (0; 1). This model was selected for our �rst example

as it is relatively simple, and because the information entailed by X can be fully speci�ed

by no more than two orthogonal projections, say �TX and �T?X, of X. As mentioned

throughout the Chapter, one needs to bear in mind that there is no �true�number of pro-

jective directions that we expect to be produced by the model. However still, for this simple

model, the number of two projective directions can serve as a benchmark for the number

of projective directions that should be selected by an e¢ cient approximation. We applied

the PPCDE procedure up to a maximum of m = 5 iterations. In addition, the Information

Criterion (IC) stopping rule was used to select the number of iterations m = 1; 2; :::, for

each di¤erent realisation of the data, where as usual, the m�th iteration number refers to

the m�th estimate bgY jX;m (yjx) obtained by modi�cation of estimate bgY jX;m�1 (yjx). Table
3.1 reports the frequency of the selected number of iterations chosen by this criterion out
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M = 0 M = 1 M = 2 M = 3 M = 4 M = 5

n = 100 0 27 66 7 0 0
n = 200 0 7 81 12 0 0
n = 400 0 0 55 39 6 0

Table 3.1: Stopping rule in Example 1 : Frequency of number of iterations (M)
selected by the Information Criterion stopping rule (out of 100 Repetitions).

of the 100 Repetitions. For all simulated sample sizes, the most frequently chosen number

of iterations is indeed M = 2. This may con�rm suitability of the PPCDE algorithm and

the IC stopping rule. Yet, we also note that the average selected number of iterations by

IC is generally higher the more observations are given. At the next stage, we look at the

RMSPE of the model, given by

RMSPE =
nP
i=1

h ef
Y jb�TX

�
yijb�Txi�� fY jX (yijxi)i2� nP

i=1
fY jX (yijxi)2 :

Thus, the RMSPE is a measure of the �tted error with respect to the real conditional

density of the model.

Figure 3.3 displays a box-plot of the RMSPE (see (3.20)) of the PPCDE with the

number of iterations ranging from m = 0 (unconditional density kernel estimator of Y ) to

m = 5. It also shows box-plots of the RMSPE corresponding to the PPCDE obtained

with a varying number of iterations selected by the IC stopping rule for each realisation of

the data; to the standard kernel estimator; and to an �Oracle�PPCDE with exactly two

projective iterations at the �xed orthogonal directions �1 = (1; 0)
T and �2 = (0; 1)

T . We

see that for n = 100 the optimal number of iterations seems to be m = 1, while for n = 200

and 400 the optimal number is m = 2. As stated in Section 3.2, it is hard to interpret

the estimates of of M , �m�s and hm�s with respect to their �true�values, as any such true

values are not necessarily unique. Generally speaking, we see from the empirical results

that for a small number of observations, using a low number of iterations is preferable in

terms of performance to using a high number of iterations. Nonetheless, while increasing

the number of observations can gradually decrease the variance of the estimators, the

performance of the PPCDE based on too small a number of projective iterations is limited
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Figure 3.3. Simulation results for Example 1: Box-plots of the RMSPE obtained by PPCDE
with �xed numbers of iterations (m = 0; :::; 5); Number of iterations determined by the
Information Criterion stopping rule (I.C.); Multivariate conditional density kernel estimator

(Kernel); �Oracle�PPCDE with two iterations with �1 = (1; 0)
T and �2 = (0; 1)

T (Oracle).
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by the model bias. On the other hand, the performance of those estimators based on a

relative high number of iterations keeps improving with the number of observations, and

such estimators would be preferable for large sample sizes. The results of Figure 3.3 also

provide some empirical support for the e¤ectiveness of the IC stopping rule. Indeed, when

applying the IC stopping rule, the PPCDE generally achieves relatively low levels RMSPE.

In agreement with our illustrative demonstration for Example 1 in Section 3.4, we see that

the standard kernel estimator behaves badly both in terms of the high median and the high

variability of the RMSPE. The �Oracle�estimator is clearly the most accurate among all

the estimators examined, since it is based on orthogonal projective directions rather than

on estimated ones. However, compared to the PPCDE obtained with the same number of

iterations, m = 2, the increase in accuracy owing to the utilisation of orthogonal projective

directions, rather than estimated ones, is relatively small.

Example 2: We next examine how the PPCDE performs in a more complicated

situation. Take xt = (x1t; x2t; x3t) 2 R3 i.i.d. where x1t; x2t and x3t are independent,

x1t � U (0; 1) and x2t; x3t � N (0; 1). We generate data yt; t = 1; :::; n; according to the

model

yt =

8<: 2 sin
�
�T2 xt

�
+ 0:7"t; with probability x1t;

2 sin
�
�T3 xt

�
+ 0:7"t; with probability 1� x1t;

where �2 = (0; 2; 1)T =
p
5, �3 = (0; 1;�1)T =

p
2 and "t � N (0; 1) i.i.d. In this example,

clearly the distribution of yt is fully speci�ed given the three projections �T1 xt = x1t and

�T2 xt, �
T
3 xt. Figure 3.4 shows scatter-plots of yt against �

T
1 xt; �

T
2 xt and �

T
3 xt with n = 200.

We now implement the PPCDE algorithm to a maximum of m = 6 iterations. Table

3.1 describes the frequency of the selected number of iterations chosen by the IC stopping

rule out of the 100 Repetitions. Here, the number of iterations selected for each sample

size is spread over a larger range than in Example 1, but as above, the average number of

iterations selected generally shifts upwards the more observations are given.

Figure 3.5 gives box-plots for the RMSPE of the PPCDE with number of iterations
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(a) (b)

(c)

Figure 3.4. Scatter plots for Example 2 : (a) yt plotted against �T1 xt; (b) yt plotted
against �T2 xt; (c) yt plotted against �

T
3 xt.
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M = 0 M = 1 M = 2 M = 3 M = 4 M = 5 M = 6

n = 100 0 38 47 13 2 0 0
n = 200 0 21 43 24 11 1 0
n = 400 0 3 12 27 33 21 4
Table 3.1: Stopping rule in Example 2 : Frequency of number of iterations (M)
selected by the Information Criterion stopping rule (out of 100 Repetitions).

M = 0 M = 1 M = 2 M = 3 M = 4 M = 5 M = 6

n = 100 0 55 42 3 0 0 0
n = 200 0 16 71 11 2 0 0
n = 400 0 8 61 25 6 0 0
Table 3.3: Stopping rule in Example 3 : Frequency of number of iterations (M)
selected by the Information Criterion stopping rule (out of 100 Repetitions).

m = 0; :::; 6; the PPCDE based on the IC stopping rule; and for the standard kernel

estimator. Here again, the results support the IC stopping rule, and the optimal number

of iterations shifts from m = 2 for n = 100 to m = 3 for n = 400, while the di¤erences

are very small. The PPCDE based on the IC stopping rule performs comparatively well,

while the standard kernel estimator�s general performance is the second worst after the

unconditional kernel estimator.

Example 3: We apply the PPCDE to a time-series model. Consider now the nonlinear

AR-ARCH model

yt = g
�X4

j=1
�1;jyt�j

�
+ h

�X4

j=1
�2;jyt�j

�
"t;

where g (u) = 0:3
�
0:8� u2

�
=
�
0:2 + u2

�
, h (u) =

p
0:2 + 0:3u2, �T1 = (1;�2; 1; 0) =

p
6,

�2;j = exp (�j) = k�2k for j = 1; :::; 4, and "t � N (0; 1) i.i.d. Our goal here is to estimate

the predictive density fY j�T x (ytjxt) of yt given the 4-dimensional lagged observations xt =

(yt�1; yt�2; yt�3; yt�4). This model can be veri�ed to be geometrically ergodic by, e.g.,

Theorem 3.2 of An and Huang (1996). Figure 3.6 shows a plot of one realisation of the

time-series model, and the corresponding scatter-plots of yt against �T1 xt and �
T
2 xt:

We implement the PPCDE procedure up to m = 6 iterations. Table 3.3 describes

the frequency of the selected number of iterations chosen by the IC stopping rule. For
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Figure 3.5. Simulation results for Example 2. Box-plots of the RMSPE obtained by PPCDE
with �xed numbers of iterations (m = 0; :::; 6); Number of iterations determined by the
Information Criterion stopping rule (I.C.); Multivariate Conditional density kernel estimator
(Kernel);
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(a) (b)

(c)

Figure 3.6. Plots for Example 3: (a) yt plotted against t; (b) Scatter plot of yt
against �T1 xt; (c) Scatter plot of yt against �

T
2 xt.
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Figure 3.7. Simulation results for Example 3. Box-plots of the RMSPE obtained by PPCDE
with �xed numbers of iterations (m = 0; :::; 5); Number of iterations determined by the
Information Criterion stopping rule (I.C.).

n = 100 the chosen number of iterations is distributed almost equally between m = 1 and

m = 2, where the frequency for m = 1 is somewhat higher, while for n = 200 and 400 the

most frequently chosen number of iterations is m = 2. Figure 3.7 gives box-plots for the

RMSPE of the PPCDE with number of iterations m = 0; :::; 6; and of the PPCDE based

on the IC stopping rule. We do not provide here a box-plot for the RMSPE of standard

kernel estimator since it is signi�cantly higher than the rest. The pattern here is similar to

the last two examples. However, the optimal number of iterations seems to be m = 2 for

all numbers of observations examined, while the IC stopping rule seemed to favour m = 1

for the small number of observations n = 100. Notwithstanding, the distribution of the
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Figure 3.8. Example 4: Daily exchange rate returns of
the USD-GDP between 04/01/2010 and 30/12/2011.

PPCDE based on the IC stopping rule is very close to the optimal one, i.e. when m = 2.

Example 4: Finally, we apply the PPCDE to real data. We use a time-series of the

daily exchange-rate returns between the US Dollar (USD) and the British Pound (GBP)

between 4 January 2010 and 30 December 2011. The data consists of 501 data points, out

of which we allocate the last 100 points for prediction. Figure 3.8 presents the time-series

data over the full period. As in the time-series Example 3, we implement the PPCDE

approach to estimate the predictive density fY j�T x (ytjxt) of yt given the 4-lagged data

(yt�1; yt�2; yt�3; yt�4). Using only the �rst 401 data points, we estimate �rst the projective

directions, while the IC stopping rule is applied to determine the number of projections.

Two projections are selected, and the estimated projective directions are, in order of se-

lection, b�1 = (0:426; 0:779;�0:325; 0:324), b�2 = (0:453; 0:260; 0:852;�0:025). For the sake
of comparison with the standard multivariate kernel estimator, we continue and also pro-

duce the next two estimated projective directions, b�3 = (0:548;�0:456;�0:610;�0:341)

and b�4 = (0:363; 0:148;�0:623;�0:677). Here again, it is hard to interpret the resulted

estimates of of �m�s (see Section 3.2). Next, for any observation yt that belongs to the last

100 observations, we iteratively construct a predictive density model using the estimated

optimal projections b�Tj xt, j = 1; :::; 4, where all nonparametric functional estimators rely
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Model
� = 1%

Cover. Length
� = 5%

Cover. Length
� = 10%

Cover. Length
� = 25%

Cover. Length
Uncond. 0.99 32.1 0.96 24.43 0.91 20.61 0.78 14.79
m = 1 0.97 31.21 0.94 24.25 0.90 20.48 0.76 14.73
m = 2 0.98 30.31 0.93 24.1 0.90 20.21 0.75 14.46
m = 3 0.97 29.1 0.93 23.26 0.89 19.67 0.76 14.15
m = 4 0.97 29.0 0.93 23.38 0.90 19.88 0.75 14.16
Kernel 0.95 26.89 0.87 19.88 0.81 17.23 0.57 12.74
Table 3.4: Results for Example 4 : Prediction coverage (%) and avg. length (�103) of
(1� �)�prediction intervals.

on past information y1; :::; yt�1 (that may include some past observations from the last

100 data points). Finally, we also normalise all of our predictive density models such thatR bgY jX (yjx) dy = 1.
In order to examine the predictive capability of the models, we construct the correspond-

ing (1� �)�prediction intervals for any yt in the last 100 observations. For comparison, we

also construct (1� �)�prediction intervals for the standard multivariate kernel estimator.

Table 3.4 gives the prediction coverage (% of observations yt that fall inside the prediction

interval) and the average length of the prediction interval over the last 100 observations for

all obtained models with � = 1%; 5%; 10% and 25%. Also, for visual illustration, Figure

3.9 shows plots of the last 100 observations and the corresponding 90%�prediction interval

obtained by each model.

For all of the con�dence level values examined, the unconditional density estimator

produced the widest prediction-intervals on average. In terms of prediction coverage, both

the unconditional density estimator, the conditional density based on the most recent lag

and the single-index conditional density based on the orientation estimate provide relatively

accurate estimates, while the standard conditional density kernel estimator has much less

similar to reality. At the same time, the single-index conditional density generally produced

narrow prediction-intervals on average. We thus conclude that the single-index approach

for c.p.d.f approximation manages to provide increased accuracy and predictive power

relative to other standard kernel methods.
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(a) (b)

(c)

Figure 3.9. Example 4 : 90%�prediction intervals for the daily USD-GDP exchange-
rate returns between 19/10/2010 and 30/12/2011 based on (a) Unconditional kernel density
estimator; (b) PPCDE with two projections; (c) Multivariate conditional density
kernel estimator.
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3.8 Appendix

Proof of Proposition 3.2.1. The proofs for parts (a) and (b) are straightforward by

applying the inequality

log x � x� 1 for every x � 0; (3.27)

with equality only for x = 1. Using fY;X (y; x) =fY jX (yjx) = fX (x) and
R
fY;X (y; x) dydx =

1; this shows that

�DC [gY jX ]

�
Z
S

gY jX (yjx)
fY jX (yjx)

fY;X (y; x) dydx�
Z
S

fY;X (y; x) dydx

+

0B@1� Z
R�SX

gY jX (yjx) fX (x) dydx

1CA
� 0;

with equalities in both lines i¤ gY jX = fY jX a.e. for any (y; x) 2 R� SX . For (b), we have

DC [g
�
Y jX ]�DC [gY jX ] (3.28)

=

Z
S

log

 
gY jX (yjx)
g�Y jX (yjx)

!
fY;X (y; x) dydx

+

0B@ Z
R�SX

n
g�Y jX (yjx)� gY jX (yjx)

o
fX (x) dydx

1CA
�

Z
S

gY jX (yjx)
g�Y jX (yjx)

fY;X (y; x) dydx�
Z
S

fY;X (y; x) dydx

+

0B@ Z
R�SX

n
g�Y jX (yjx)� gY jX (yjx)

o
fX (x) dydx

1CA :
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Using now the properties that

gY jX (yjx)
g�Y jX (yjx)

=

Z
R�SX

gY jX (yjx) fX (x) dydx;

and

Z
S

fY;X (y; x) dydx = 1;

Z
R�SX

g�Y jX (yjx) fX (x) dydx = 1;

and it is easy to see that (3.28) is non-positive, and is zero i¤ gY jX = g�Y jX a.e. for any

(y; x) 2 S, that is, i¤
R
gY jX (yjx) fX (x) dydx = 1.

For assertion (c), denote f = fY jX (yjx), g = gY jX (yjx). The left inequality of the

assertion is trivial as

�p
f �pg

�2
�
����pf �pg��pf +pg���� = jf � gj :

For the right inequality of the assertion, denote G (x) �
R
R dGx (y) =

R
R g (yjx) dy and

k � k (y; x) = f (yjx) =g (yjx) : We now have, with FX (x) the distribution function of r.v.

X, �Z
dGx (y) dFX (x)

�
=

Z
gY jX (yjx) fX (x) dydx = c: (3.29)

Following Kemperman (1969, Theorem 6.1), we note that for any k � 0;

(k � 1)2 � 2
3
(k + 2) [k log k + (1� k)] ; (3.30)

with equality i¤ k = 1. This last inequality holds since if � (k) is equal to the RHS minus

the LHS, we have by straightforward calculations,

� (k) =
2

3
(k + 2) [k log k + (1� k)]� (k � 1)2 ;
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�0 (k) =
4

3
(k + 1) log k � 8

3
(k � 1) ; and �00 (k) =

4

3

�
log k +

1

k
� 1
�
:

Now, it is easy to see that � (1) = 0, �0 (1) = 0; and by (3.27) that �00 (k) � 0 for any

k > 0. Applying the Cauchy-Schwarz inequality in the L2
�
R2; dGx (y) dFX (x)

�
space and

using (3.29), (3.30), yields, for any (y; x) 2 R� SX ,

�Z
jf � gj fXdydx

�2
�

�Z
jk � 1j dGx (y) dFX (x)

�2
� 2

3

Z
(fY jX + 2gY jX)dydFX (x)

Z �
fY jX log

�
fY jX=gY jX

�
+
�
gY jX � fY jX

��
dydFX (x)

=
2

3
(1 + 2c)DC [gY jX ]:

Finally, we prove (d). Since DC [gY jX ] is minimised by g
opt
Y jX (yjx), we have by assertion

(b) of the Proposition that

Z
goptY jX (yjx) fX (x) dydx = 1;

and clearly also Z
g�optY jX (yjx) fX (x) dydx =

Z
fX (x) dx = 1:
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Then, with (3.27),

DC [g
�opt
Y jX (yjx)]�DC [g

opt
Y jX (yjx)]

=

Z
S

log

�Z
goptY jX (yjx) dy

�
fY;X (y; x) dydx

=

Z
SX

log

�Z
goptY jX (yjx) dy

�
fX (x) dx

�
Z
SX

�Z
goptY jX (yjx) dy � 1

�
fX (x) dx

=

Z
R�SX

goptY jX (yjx) fX (x) dydx� 1

= 0;

with equality i¤
R
goptY jX (yjx) dy = 1 a.e. for any x 2 SX . �

Proof of Proposition 3.3.1. Let

gY jX;m (yjx) = gY jX;m�1 (yjx)hm
�
y; �Tmx

�
;

where hm
�
y; �Tmx

�
is a non-negative bivariate function, and

goptY jX;m (yjx) = gY jX;m�1 (yjx)h0;m
�
y; �Tmx

�
= gY;X;m�1 (y; x) fY;�TmX

�
y; �Tmx

�
=gY;�TmX;m�1

�
y; �Tmx

�
:

Applying inequality (3.27), Fubini�s theorem (Gut 2005, Chapter 2,Theorem 9.1) and (3.8)-

(3.9) (and keeping the convention that x1 = �Tmx), we have

DC [g
opt
Y jX;m]�DC [gY jX;m]

=
R
S log

n
hm
�
y; �Tmx

�
gY;�TmX;m�1

�
y; �Tmx

�
=fY;�TmX

�
y; �Tmx

�o
fY;X (y; x) dydx

+
R
R�SX gY;X;m�1 (y; x)

h
fY;�TmX

�
y; �Tmx

�
=gY;�TmX;m�1

�
y; �Tmx

�
� hm

�
y; �Tmx

�i
fX (x) dydx

�
R
SY �SX1

hm
�
y; �Tmx

�
gY;�TmX;m�1

�
y; �Tmx

�
dydx1 �

R
SY �SX1

fY;�TmX
�
y; �Tmx

�
dydx

+
R
R�SX1

fY;�TmX
�
y; �Tmx

�
dydx1 �

R
R�SX1

hm
�
y; �Tmx

�
gY;�TmX;m�1

�
y; �Tmx

�
dydx1
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� 0;

with equalities i¤ hm
�
y; �Tmx

�
= h0;m

�
y; �Tmx

�
a.e. for any (y; x) 2 R � SX such that

gY;�TmX;m�1
�
y; �Tmx

�
> 0. This proves part (a) of the Proposition.

For part (b), we have

E
�
gY jX;m�1 (yjX) j�TmX = �Tmx

�
=

Z
gY jX;m�1 (yjx) fX

�
x2; :::; xdjx1 = �Tmx

�
dx2 � � � dxd;

where x =
�
�Tmx; x2; :::; xd

�
. Writing now

fX
�
x2; :::; xdjx1 = �Tmx

�
= fX

�
�Tmx; x2; :::; xd

��
f�TmX

�
�Tmx

�
= fX (x)/ f�TmX

�
�Tmx

�
;

yields

E
�
gY jX;m�1 (yjX) j�TmX = �Tmx

�
=

Z
gY jX;m�1 (yjx) fX (x) dx2 � � � dxd

�
f�TmX

�
�Tmx

�
= gY j�TmX;m�1

�
yj�Tmx

�
;

which implies the equality given in part (b).

Continue with part (c). By Proposition 3.2.1, the optimality of goptY jX;m implies that it

must satisfy the integrability condition

Z
goptY jX;m (yjx) fX (x) dydx = 1:

Since gY jX;m�1 (yjx) is assumed to ful�l a similar integrability condition, then we derive
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by a direct calculation

D�[gY j�TmX;m�1] =

Z
log

 
goptY jX;m (yjx)
gY jX;m�1 (yjx)

!
fY;X (y; x) dydx

=

Z
log
�
h0;m

�
y; �Tmx

��
fY;X (y; x) dydx

=

Z
log

 
fY;�TmX

�
y; �Tmx

�
gY;�TmX;m�1

�
y; �Tmx

�! fY;X (y; x) dydx
=

Z
log

 
fY;�TmX (y; x1)

gY;�TmX;m�1 (y; x1)

!
fY;�TmX (y; x1) dydx1

=

Z
log

 
fY j�TmX (yjx1)

gY j�TmX;m�1 (yjx1)

!
fY;�TmX (y; x1) dydx1: �

Proof of Lemma 3.3.1. The �only if� direction is trivial, since with the standard

convention that �Tmx = x1, we have for x 2 SX ;

FY j�TX
�
yj�Tx

�
=

R
FY jX (yjx) fX (x) dx2 � � � dxdR

fX (x) dx2 � � � dxd
;

where x =
�
�Tmx; x2; :::; xd

�
. Thus, if FYmjX (y; x) ! FY jX (y; x) a.s. with respect to the

probability measure of r.v. X, then

Z ���FYmj�TX �yj�Tx�� FY j�TX �yj�Tx���� fX (x) dx1 � � � dxd
�

R ��FYmjX (yjx)� FYmjX (yjx)�� fX (x) dx1 � � � dxdR
fX (x) dx2 � � � dxd

! 0;

as m!1, which implies that FYmj�TX
�
yj�Tx

�
! FY j�TX

�
yj�Tx

�
a.s. with respect to the

probability measure of r.v. �TX.

We now turn to prove the �if� direction. Let  U (�) denote a generic characteristic

function (ch.f.), or conditional characteristic function (c.ch.f.), of r.v. U . For example the

ch.f. of (Y;X) is

 Y;X (s; v) = E
h
eisY+iv

TX
i
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with s 2 R, v 2 Rd, and for x 2 SX the c.ch.f. of Y given X = x is

 Y jX (s) = E
�
eisY jX = x

�
;

etc. Assume now that Ymj�TX !d Y j�TX a.s. for any � 2 Rd. By the Levy-Cramér

continuity theorem (cf. Shao 2003, Theorem 1.9) we have for any � 2 Rd,

P�TX

�
 Ymj�TX (s)�  Y j�TX (s)! 0 for all s 2 R

�
= 1;

as m!1, where the probability P�TX (�) denotes here the marginal probability measure

induced by r.v. �TX. Since eis�
TX is bounded, we obtain for any � 2 Rd and s; t 2 R;

 Ym;�TX (s; t)�  Y;�TX (s; t)

= E
h
eisYm+it�

TX � eisY+it�TX
i

= E
h�
 YmjX (s)�  Y jX (s)

�
eit�

TX
i
! 0:

Using the last result with the identity  Y;X (s; v) =  Y;vTX (s; 1) ; we obtain for any s 2 R

and v 2 Rd,

 Ym;X (s; v)�  Y;X (s; v)

= E
h�
 YmjX (s)�  Y jX (s)

�
eiv

T x
i

= E
h
	m (s) e

ivT x
i
! 0: (3.31)

where 	m (s) �  YmjX (s)�  Y jX (s). Now, the proof of the Lemma will be completed by

the Levy-Cramér continuity theorem if we establish that (3.31) implies

PX (	m (s)! 0 for all s 2 R) = 1; (3.32)

where PX (�) is the marginal probability measure induced by r.v. X. The rest of the proof
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is dedicated to establishing (3.32), which can be seen as a limit version of Lemma 2.1 of

Su and White (2007).

Let 	m;1 (s) = max (Re (	m (s)) ; 0) ; 	m;2 (s) = max (�Re (	m (s)) ; 0) ; 	m;3 (s) =

max (Im (	m (s)) ; 0) and 	m;4 (s) = max (� Im (	m (s)) ; 0). Clearly, 	m;j (s) ; j = 1; :::; 4;

are non-negative, Borel measurable, real functions on R such that

Re (	m) = 	m;1 �	m;2; Im (	m) = 	m;3 �	m;4: (3.33)

Set cm;j (s) = EX [	m;j (s)], and assume for now that cm;j (s) > 0, j = 1; :::; 4. Thus, for

any s 2 R, we can de�ne the four conditional probability measures (given X = x),

�m;j (B; s) =

Z
B

	m;j (s) dFX (x)

,
cm;j (s) ; j = 1; :::; 4; (3.34)

where B is an arbitrary Borel set in Rd. We get for any s 2 R, v 2 Rd;

EX

h
	m (s) e

ivT x
i

=

Z
(	m;1 (s)�	m;2 (s)) eiv

T xdFX (x) + i

Z
(	m;3 (s)�	m;4 (s)) eiv

T xdFX (x)

= cm;1 (s)

Z
eiv

T xd�m;1 (B; s)� cm;2 (s)
Z
eiv

T xd�m;2 (B; s)

+i

�
cm;3 (s)

Z
eiv

T xd�m;3 (B; s)� cm;4 (s)
Z
eiv

T xd�m;4 (B; s)

�
� cm;1 (s)�m;1 (v; s)� cm;2 (s)�m;2 (v; s)

+i
�
cm;3 (s)�m;3 (v; s)� cm;4 (s)�m;4 (v; s)

�
;

where �m;j (v; s) =
R
eiv

T xd�m;j (B; s), j = 1; :::; 4; are the c.ch.f.�s generated by the con-

ditional probability measures �m;j (B; s), respectively. Then it follows from (3.31) that as

m!1

cm;1 (s)�m;1 (v; s)� cm;2 (s)�m;2 (v; s) ! 0;

cm;3 (s)�m;3 (v; s)� cm;4 (s)�m;4 (v; s) ! 0:
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Substituting v = 0 2 Rd, we obtain for any s 2 R;

cm;1 (s)� cm;2 (s)! 0; and cm;3 (s)� cm;4 (s)! 0, (3.35)

and since
���m;j (v; s)�� � 1 for all s 2 R, v 2 Rd, j = 1; :::; 4,

Z
eiv

T xd�m;1 (B; s)�
Z
eiv

T xd�m;2 (B; s) ! 0;Z
eiv

T xd�m;3 (B; s)�
Z
eiv

T xd�m;4 (B; s) ! 0;

as m!1. As a result of Levy-Cramér continuity theorem we get for any s 2 R and Borel

set B 2 Rd;

�m;1 (B; s)� �m;2 (B; s)! 0; and �m;3 (B; s)� �m;4 (B; s)! 0: (3.36)

From (3.33)-(3.36) we have for all s 2 R;

Z
B

Re (	m (s)) dFX (x)! 0;

Z
B

Im (	m (s)) dFX (x)! 0:

Applying the left limit result with Borel sets

B1 = fs 2 R : Re (	m (s)) > 0g ; B2 = fs 2 R : Re (	m (s)) < 0g ;

and the right limit result with Borel sets

B2 = fs 2 R : Im (	m (s)) > 0g ; B4 = fs 2 R : Im (	m (s)) < 0g ;

it is clear that as m!1;

PX (Re (	m (s))! 0 for all s 2 R) = 1; (3.37)

PX (Im (	m (s))! 0 for all s 2 R) = 1: (3.38)
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Finally, if cm;j (s) = EX [	m;j (s)] = 0 for somem 2 N, j = 1; :::; 4, and s 2 R; then because

	m;j (s) ; j = 1; :::; 4; are non-negative, the relevant real or imaginary part of 	m (s) must

be equal to zero with probability 1. Thus, results (3.37)-(3.38) hold anyway and limit

(3.32) is established. �

Proof of Proposition 3.3.2. Start with part (a). Let gY jX;0 (yjx) = gY ;0 (y) be

the initial approximation of the unconditional density of Y , and positive on SY . Clearly,

DC [gY jX;0] 2 [0;1). By (3.11)

DC [gY jX;0]�
mX
j=1

D�[gY j�T0;jX;j
]

= DC [gY jX;0]�
mX
j=1

�
DC [gY jX;m�1]�DC [gY jX;m (yjx)]

	
= DC [gY jX;m] � 0:

Hence
Pm
j=1D

�[gY j�T0;jX
] � DC [gY jX;0]. Since, by Proposition 3.3.1(c), D�[gY j�T0;jX

] � 0 for

any j = 1; :::;m then we get D�[gY j�T0;mX;m�1
]! 0, which completes part (a).

Part (b) follows directly from Lemma 3.3.1 and the discussion that preceded it. �

Proof of Lemma 3.5.1. The proof follows from Theorems 6 and 8 of Hansen (2008).

The uniform consistency of the kernel estimators�partial derivatives with respect to � can

be obtained with a straightforward modi�cation of Hansen�s Theorem 2 (see the proof of

Lemma 2.6.2). �

Proof of Lemma 3.5.2. See the proof of Lemma 2.6.5.

Proof of Proposition 3.5.1. See the proof of Theorem 2.3.1.

Proof of Lemma 3.5.4. Parts (ii) and (iii) of the Lemma are contained in the proof

of Theorem 2.3.2. Part (i) is also proved in a similar way. Write

L (�m) =
1

n

nX
i=1

log

0@ bf�i
Y;�TX

�
yi; �

T
mxi

�
bg�i
Y;�TmX;m�1

�
yi; �

T
mxi

�
1Ab��i :

Let gY;�TX;m�1 (y; t) = E
�bgY jX;m�1 (yjX) j�TX = t

�
f�TX (t). By a Taylor expansion of
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log (x) and Lemma 3.5.1,

1

n

nX
i=1

log

0@ bf�i
Y;�TX

�
yi; �

T
mxi

�
bg�i
Y;�TmX;m�1

�
yi; �

T
mxi

�
1Ab��i � 1n

nX
i=1

log

 
fY;�TX

�
yi; �

T
mxi

�
gY;�TX;m�1

�
yi; �

T
mxi

�!b��i
=

1

n

nX
i=1

0@ bf�iY;�TX �yi; �Tmxi�
fY;�TX

�
yi; �

T
mxi

� � 1
1Ab��i � 1n

nX
i=1

0@bg�iY;�TmX;m�1 �yi; �Tmxi�
gY;�TX;m�1

�
yi; �

T
mxi

� � 1
1Ab��i

+op

�
n�1=2 + h2y + h

2
x

�
= U1 (Zi; Zj) + U2 (Zi; Zj) + op

�
n�1=2 + h2y + h

2
x

�
;

where

U1 (Zi; Zj) =
1

n (n� 1)
nP
i6=j

1

hyhx

1

fY;�TX
�
yi; �

T
mxi

�K �yj � yi
hy

�

�K
 
�Tm (xj � xi)

hx

!b��i � 1;
U2 (Zi; Zj) =

1

n (n� 1)
nP
i6=j

1

hx

bgY jX;m�1 (yijxj)
gY;�TX;m�1

�
yi; �

T
mxi

�K  �Tm (xj � xi)
hx

!b��i � 1:
Moreover, a standard calculation shows that E [Uj (Zi; Zj) jZi] and E [Uj (Zi; Zj) jZj ], j =

1; 2, are of order O
�
h2y + h

2
x

�
. Hence, up to an error term of the order of O

�
h2y + h

2
x

�
,

the terms U1, U2 can be expressed as symmetric second-order degenerate U-statistics. An

application of Chebyshev�s inequality (Gut 2005, Chapter 3, Theorem 1.4) and Lemma C.2

of Gao and King (2004) then yields (see the proof of Theorem 2.3.2)

U1; U2 = Op

�
n2��hyhx

��1=2
+O

�
h2y + h

2
x

�
;

for any � > 0. Thus, we have showed

L (�m) =
1

n

nX
i=1

log

 
fY;�TX

�
yi; �

T
mxi

�
gY;�TX;m�1

�
yi; �

T
mxi

�!b��i + op �n�1=2�+O �h2y + h2x� :
Part (i) is then proved as a result of the central limit theorem (CLT) for strong-mixing
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processes (cf. Fan and Yao 2003, Theorem 2.21). �

Proof of Proposition 3.5.2. Immediate from Lemma 3.5.4. �

Proof of Proposition 3.5.3. See the proof of Theorem 2.3.3. �

Proof of Proposition 3.6.1. Decompose L(ehm;b�m)�L(ehm;b�m) into the three terms
L(ehm;b�m)� L(ehm;b�m) = fL(ehm;b�m)� L(ehm; �0;m)g| {z }

D1

+fL(ehm; �0;m)� L(ehm; �0;m)g| {z }
D2

+ fL(ehm; �0;m)� L(ehm;b�m)g| {z }
D3

:

Starting with the term D2; we have by de�nition

ES [D2] = H
�ehm; �0;m� ;

which, by the same arguments as in the proof of Lemma 3.5.4, is of orderOp
�
n2��HyHx

��1=2
+

O
�
H2
y +H

2
x

�
for any � > 0. In particular, if Hy;Hx � n�1=6, then

H
�ehm; �0;m� = Op

�
n�5=6+�

�
+O

�
n�1=3

�
:

Continuing with D1, we obtain with a mean value �m such that
���b�m � �0;m��� < ���m � �0;m��,

L(ehm;b�m) = L(ehm; �0;m) + @

@�
L(ehm; �0;m)T �b�m � �0;m�

+
1

2

�b�m � �0;m�T @2

@�2
L(ehm; �0;m)�b�m � �0;m� :

An application of (3.21) and Lemma 3.5.4 yields

b�m � �0;m = 
� (�0;m) @
@�
L(bhm; �0;m) + op �b�m � �0;m� ;
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where 
� (�0;m) is the generalised inverse of 
 (�0). The last results imply

D1 =
@

@�
L(ehm; �0;m)T
� (�0;m) @

@�
L(bhm; �0;m)

�1
2
L(bhm; �0;m)T
� (�0;m) @

@�
L(bhm; �0;m)

+(terms of smaller order in probability):

A similar argument also applies for termD3. Now, expanding L(ehm;b�m) around L(ehm; �0;m);
we get with a mean value �m,

D3 = �
n
L(ehm;b�m)� L(ehm; �0;m)o

= �
�
@

@�
L(ehm; �0;m)T �b�m � �0;m�+ 1

2

�b�m � �0;m�T @2

@�2
L
�ehm; �m��b�m � �0;m��

= � @

@�
L(ehm; �0;m)T
� (�0;m) @

@�
L(bhm; �0;m)

+
1

2
L
�bhm; �0;m�T 
� (�0;m) @

@�
L
�bhm; �0;m�

+(terms of smaller order in probability):

We thus have

ES [D1 +D3] = ES

�
@

@�

n
L(ehm; �0;m)� L(ehm; �0;m)oT 
� (�0;m) @

@�
L(bhm; �0;m)�

+(terms of smaller order in probability)

= trace
h
J
�ehm; �0;m�
� (�0;m)i

+(terms of smaller order in probability).

From Lemma 3.5.4 it is clear that for any � > 0,

w trace
�
J (�0;m) 


� (�0;m)
�

=

�
Op

�
n2��hyh

3
x

��1=2
+O(h2y + h

2
x)

��
Op

�
n2��HyH

3
x

��1=2
+O(H2

y +H
2
x)

�
;

and if hy; hx � n�1=4 and Hy;Hx � n�1=6, then trace [I (�0;m) 
� (�0;m)] = Op
�
n�5=6+�

�
:
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Hence, the proposition is established. �
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Chapter 4

Discussion

In recent decades, the advances in computational power and the accumulation of vast

amounts of data led to much interest in statistical methods that perform well in high

dimensions. Amongst these methods, the single-index and the projection pursuit method-

ologies work by projecting high-dimensional data into lower dimensions that retain the

most useful information. In this work we extended the applicability of these methodologies

to estimation of the c.p.d.f. fY jX (yjx) of a random scalar Y given a random d-vector

X = x, where d � 2.

In Chapter 2 of the thesis, we suggested a �single-index�approximation of the condi-

tional density fY jX (yjx) by fY j�TX
�
yj�Tx

�
. We showed that similar asymptotic properties

of the method, as were established for the i.i.d. case by Delecroix, Härdle and Hristache

(2003), Yin and Cook (2005) and Fan et al (2009), still hold under strong-mixing con-

ditions. In so doing, the suggested method was shown to be applicable for dependent

data, and in particular to the estimation of predictive densities in time-series. As a second

contribution, we derived a general second-order asymptotic representation for the orien-

tation estimator b� that holds for kernels of any order, while the asymptotically dominant
terms are determined by the order of kernels in use and the choice of kernel bandwidths.

These two theoretical contributions were justi�ed by appealing to a result by Gao and King

(2004), who established a moment inequality for degenerate U-statistics of strong-mixing

processes.

The performance single-index model was illustrated in simulations with nonlinear time-

series models. Our simulation results demonstrated that the method generally works very
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well in various di¤erent settings. Our results also indicate that despite having better

asymptotic properties, orientation estimators obtained with fourth-order kernels perform

poorly relative to those obtained with only second-order non-negative kernels.

In Chapter 3 of the thesis, we generalised the result of Chapter 2 to a �multi-index�

approximation using a Projection Pursuit type approximation. More precisely, motivated

by Projection Pursuit Density Estimation (PPDE) of Friedman, Stuetzle and Schroeder

(1984), we proposed a multiplicative projection pursuit approximation of the conditional

density that has the form f (yjx) = f0 (y)
QM
m=1 hm

�
y; �Tmx

�
. The proposed PPCDE was

shown to share many of the properties of the previous projection pursuit models, and in

particular those of the PPDE of Friedman, Stuetzle and Schroeder (1984). The implemen-

tation of the algorithm is relatively straightforward, and due to the nature of the problem,

there is no need to incorporate cumbersome Monte Carlo samplings (as in the PPDE),

which renders our method simple and computationally undemanding even for very large

datasets. In addition, we provided asymptotic justi�cation for the proposed procedure un-

der general stationary conditions that include dependent data, and we o¤ered a bootstrap

Information Criterion to terminate the algorithm.

Our simulation results demonstrated that the PPCDE out-performs the unconditional

kernel density estimator as well as the single-index and the multivariate conditional density

kernel estimators in various di¤erent settings.

Of course, the e¤ectiveness of the PPCDE depends on the correctness of the approxima-

tion, that is, on the ability to achieve a parsimonious representation of the true conditional

density using only relatively few projections. Additionally, the amount of data provided

should be relatively large in order for the method to achieve accuracy in high-dimensions.

A theoretical discussion by Huber (1985) generally suggests taking n=d in the range of

several hundreds to a few thousand. Indeed, Hwang, Lay and Lippman�s (1994) simulation

study of problems with 2-5 dimensions concludes that although projection pursuit is more

robust to the curse of dimensionality relative to other existing methods, it may require a

minimum number of several hundreds before it can perform reasonably. In our simulations
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of the PPCDE, we used n in the range of several hundreds and the dimension d in the

range of 2 � 5, which generally produces a relatively low ratio of n=d. However, we still

conclude that even for lower ratios of n=d the PPCDE algorithm performs better than

the multivariate kernel estimator. Nevertheless, when moving to higher dimensions or to

a higher complexity of data generating processes, the performance of the PPCDE may

deteriorate and produce many undesired spurious features (see Section 3.4). In such cases,

it is therefore sensible to apply �rst the methods for estimation of dimension reduction

subspace at the �rst step (for example, the dMAVE or dOPG methods of Xia 2007), and

then at the second step apply the PPCDE in the reduced dimension reduction subspace

such that n=d is in the appropriate range.

There is much room for future research on the theory and applications of the methods

discussed in this thesis. Below we highlight some open questions, as well as some interesting

possible extensions, for left for further research in the area:

1. The single-index model is expected to work particularly well when the approximated

conditional density indeed depends mainly on a single projective direction of the

X-data. However, in many cases we expect that the single-index model will be

oversimplistic and lead to model bias. As demonstrated in this thesis, the PPCDE

approach discussed in Chapter 3 generalises the single-index model, and for example

it can provide some evidence for or against the validity of the single-index approxi-

mation, depending whether the PPCDE algorithm is stopped after a single-iteration

by applying the bootstrap Information Criterion. Nevertheless, in a broader view,

developing appropriate goodness-of-�t tests for the c.p.d.f. single-index model is an

important and relevant problem. Related goodness-of-�t tests have been already de-

veloped for the single-index regression model by Xia et al (2004) and by Stute and

Zhu (2005), and generalisations of these methods to a single-index c.p.d.f. estimation

seem desirable.

2. Related to the last topic, in some cases we may expect that a nonlinear transforma-
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tion of the X-data to a lower dimensional space would be more adequate than using

simple linear projections in the form of �TX. This is again especially true for the

single-index model, when the approximated conditional density depends only on a

single and �xed projective direction of the X-data. However, this is also relevant for

the PPCDE. As demonstrated in Proposition 3.3.2, even in highly nonlinear situa-

tions, the projection pursuit approximation converges weakly to the true conditional

density as the number of projections approaches in�nity. However, in practice, using a

large number of projective directions can make the PPCDE unwieldy for approxima-

tion and computation. In recent years, many new methods for nonlinear dimension

reduction have been developed. These methods are usually ad-hoc in nature, and

aimed mainly for visualision of high-dimensional data rather than for inference (see

Lee and Verleysen 2007). Notwithstanding, many of these methods are based on

principles that can likely be generalised to problems of inference like ours. Some

of these methods are based on Local-Linear Embedding (LLE) of the highly dimen-

sional variable. As a simple example where a local-linear modelling can be desired,

we may envisage situations where di¤erent projective directions are needed in order

to approximate a c.p.d.f in its tails or in the centre of the distribution�. A possible

starting point toward achieving a nonlinear local-linear model for dimension reduc-

tion might be considering a local modelling of the orientation vector, that is having

� = � (x) (see Loader 1999). Where c.p.d.f. estimation is concerned, as in our thesis,

this requires developing a �localised�version of the proposed method (see research

direction 4 below). As an alternative approach towards nonlinear dimensionality re-

duction for statistical inference, one may consider applying a linear projection of the

data after being transformed �rst. This approach requires identifying an e¢ cient way

of transforming the X-data in order to allow the gain of more information on the

c.p.d.f. of Y given the linear projections of the transformed X. Some results of Huber

(1985, Section 13) imply that the PPDE aims to �nd the least normal projections of

�I thank Professor Piotr Fryzlewicz for the example.
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the probability density of interest. For our PPCDE, we currently do not have any

equivalent result. However, identifying a similar result may assist in developing a

constructive criterion for the optimal transformation of the X-data prior to applying

the PPCDE algorithm.

3. In the thesis we suggested two methods for approximation of a c.p.d.f. However,

once an approximation is obtained it is not clear to what extent we can trust the

approximation obtained. While the theory provides uniform convergence rates along

the univariate projective direction, it does not provide any con�dence intervals for

the c.p.d.f. estimates obtained for various values of y 2 R and x 2 Rd. In particular,

the theory can provide asymptotic con�dence intervals for the univariate c.p.d.f. in

the ingle-index model, or for the univariate multiplicative modi�cation function in

the PPCDE method, by appealing to the CLT result for kernel c.p.d.f. estimation

(see Robinson 1983, Theorem 6.1, and Chen, Linton and Robinson 2001, Theorem 3).

However, it is not clear how one can construct con�dence intervals for the obtained

multivariate approximation, as it requires some inference in high-dimensions, which

is what the suggested approximation methods are meant to avoid.

4. As discussed in detail in Section 3.2, our understanding of the strengths and limita-

tions of the projection pursuit product representation suggested in this thesis is still

lacking. The works of Diaconis and Shahshahani (1984) and Yuan (2010) provides

some necessary and su¢ cient conditions for the projection pursuit regression model

to hold and to have a unique representation. However, as far as the PPCDE ap-

proximation is concerned, there are still some open questions, particularly whether

there are identifying restrictions that yield identi�able unique representations of the

optimal projection pursuit product approximation, and whether there are any real

c.p.d.f.�s that follow the projection pursuit product representation without requiring

an additional normalisation factor.

5. As demonstrated in Section 3.4, even for low dimensions, the standard kernel es-
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timator is characterised by some spurious features. The single-index model and

the PPCDE recti�es this phenomenon by working on lower-dimensional projections.

However, it is interesting to examine possible implementations of these methods with

semiparametric or even fully parametric estimation in high-dimensions attained by

lower-dimensional projections. For example, copula models may provide a convenient

and �exible framework, as they allow separate modelling of the marginal distributions

and dependence structure in the multivariate distribution.

6. The applicability of the proposed constrained relative entropy, DC [gY jX ] may extend

beyond the PPCDE methodology to other problems that involve the estimation of

conditional densities. For example, local parametric modelling o¤ers a general form of

nonparametric model. Local likelihood models have been examined in the literature,

for instance, by Tibshirani and Hastie (1987), Hjort and Jones (1996), Loader (1996)

and Fan, Farmen and Gijbels (1998). In a similar manner, the proposed constrained

relative entropy may be �localised�in order to produce locally parametric conditional

densities in a natural way.

7. Many lines of similarity exist between the PPDE of Friedman, Stuetzle and Schroeder

(1984) and the PPCDE approach o¤ered in this thesis. Developing a unifying pro-

cedure for the PPDE and PPCDE may enable the achievement of a useful approx-

imation of the c.p.d.f. fY jX (yjx) where both Y and X are random vectors of high

dimension.

8. For both approximation methods presented in the thesis, it may happen that not

all explanatory variables in X contain useful information to predict Y . If irrelevant

variables are included, which is very likely in high-dimensional environments, the

precision of parameter estimation as well as the accuracy of forecasting will su¤er

(Altham, 1984). Therefore, it makes sense to exclude irrelevant variables from the

approximations. In particular, in a time-series setting, the researcher has to choose

optimal number of lagged observations to be included in the model by considering
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xt = (yt�1; :::; yt�d). In the literature on single-index regression, some variable se-

lection methods have been considered. Naik and Tsai (2001) developed a variant

of the AIC criterion for single-index regression models. Their criterion, however, is

adequate for regression problems, and can not be generalised easily to probability

density estimation. Kong and Xia (2007) proposed a cross-validatory model selection

method for the single-index regression model. Nevertheless, cross-validatory methods

are usually computationally intensive techniques, and therefore they are less desir-

able in our case, as b� is obtained by numerical optimisation. We believe that the
Bootstrap Information Criterion, proposed in Section 3.6, may o¤er a general ap-

plicable model selection criterion in semiparametric setting, and in particular for the

purpose of variable selection in the single-index and the PPCDE approximations.

However, in order to con�rm the validity of the Bootstrap Information Criterion, its

performance should be examined in various di¤erent settings and models, and its

theoretical properties should be further explored.
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