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Abstract 

Economists typically assume perfect information, but households are not always well 

informed, and face a high degree of uncertainty regarding the quality of goods or value of 

their assets. As a consequence, information from mass media is a main part of our 

everyday lives. Coverage in popular media outlets can catch the attention of millions of 

households and, therefore, news media may influence their decisions in several ways.  

 

This thesis investigates the roles of news media in an urban economy and for housing 

markets. Each of the three empirical essays provides insights into how information from 

the media can shape the economic decisions of households as either homebuyers, 

homeowners, or consumers. While the first and the second chapters estimate the causal 

effects of publicity, in particular positive information, on house prices and non-housing 

consumption, respectively, the last chapter explores how media coverage may affect the 

link between house prices and homeowner spending. This thesis places particular 

emphasis on understanding the mechanisms through which news media may affect 

economic outcomes by empirically identifying potential channels. 
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INTRODUCTION 

The roles of news media, information, and quality uncertainty have become increasingly 

important in recent decades, making the study of media and information interesting both 

to academics and practitioners/policy makers. While economists typically assume perfect 

information, households are not always well informed, and face a high degree of 

uncertainty regarding the quality of goods or value of their assets. As a result, information 

from mass media is a main part of our everyday lives. Coverage in popular media outlets 

can catch the attention of millions of households and, therefore, news media may influence 

their decisions in several ways. News articles often contain rather vague, ambiguous, stale, 

or false information, but many people still base their decisions on such information 

(Barber and Loeffler, 1993; Tetlock, 2011; Oliver and Wood, 2014; Silverman and Singer-

Vine, 2016; Allcott and Gentzkow, 2017). 

By investigating the roles of news media in an urban economy and for housing markets, 

this thesis provides an interesting and interdisciplinary perspective on urban economies, 

and broadens the scope of urban and real estate economics. Each of the three empirical 

essays provides insights into how information from the media can shape the economic 

decisions of households as either homebuyers, homeowners, or consumers. While the first 

and the second chapters estimate the causal effects of publicity, in particular positive 

information, on house prices and non-housing consumption, respectively, the last chapter 

explores how media coverage may affect the link between house prices and homeowner 

spending. This thesis places particular emphasis on understanding the mechanisms 

through which news media may affect economic outcomes by empirically identifying 

potential channels.  

I begin my journey by investigating whether homebuyers are responsive to media 

information in Chapter 1. Media outlets release a variety of best places lists every year. 

Such media opinions about city quality or livability could affect household location choices 

and investment decisions, thereby increasing demand for the listed towns. In this chapter, 

I exploit the Money magazine’s “50 Best places to Live in America” lists to identify the causal 

impact of the quality information on local housing prices. The empirical results 

demonstrate that list inclusion has a statistically significant effect on local home prices: a 

1-3% or approximately $ 3,000-9,000 increase per housing unit over two years. The finding 

indicates that third-party media information can affect homebuyers’ decisions in the U.S. 
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housing markets. To the best of my knowledge, this paper is the first to find the evidence 

that quality information or recommendations on neighborhood quality can affect local 

housing prices. However, this paper leaves an important question unanswered: What 

drives such significant effects? Do homebuyers respond to the magazine’s positive 

opinion? Or simply, does an increasing awareness raise demand for the listed towns?  

To answer this question, Chapter 2 examines the potential channels through which 

publicity can affect consumer demand. As consumers’ expectations of product quality are 

a primary determinant of demand, positive publicity could lead consumers to believe that 

the product is of high quality, thereby increasing demand (vertical sorting). Meanwhile, 

media exposure could increase product awareness, which improves a match between 

heterogeneous consumers and products (horizontal sorting). By exploiting New York 

Times restaurant reviews, I identify the two potential channels. First, using the number of 

very localized taxi drop-offs as a proxy of restaurant demand, I find that consumer 

responses are statistically significant when reviews are positive: a 4.6% increase in taxi 

passengers, or approximately $1,560 weekly sales growth. By inferring diners’ 

characteristics from destinations of post-dining taxi trips, I also show that demographic 

characteristics of locations have a significant effect on restaurant choices even when 

reviews are not positive; in response to non-positive reviews, a 10% larger share of 

Hispanic residents in a restaurant tract attracts 12.0% more Hispanic diners. The results 

imply that publicity could boost urban consumption not only by signalling product quality 

but also by informing consumers about the existence and characteristics of products. 

Overall, my contribution is twofold: 1) I suggest a novel way to measure real-time local 

economic activities and to identify socio-economic interactions between locations by 

utilizing taxi trip records. 2) This chapter makes an important contribution to the 

literature, as empirical evidence on the effect of awareness is scarce. 

Chapter 3 provides further robust evidence on the awareness effect of news media in a 

different empirical setting. Housing wealth can affect a wide range of economic and social 

outcomes. Existing literature typically assumes that households make fully informed 

decisions, but homeowners may not have high level of awareness of their housing wealth. 

By exploiting local newspaper contents in the US, this chapter finds that more newspaper 

articles conveying house price information can make homeowner consumption more 

elastic with respect to regional housing prices. An increase of one standard deviation in 

the number of housing price news articles is associated with a 0.08 increase in 
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homeowners’ consumption elasticity. In contrast with the view that household decisions 

reflect fully informed and rational behaviors, the result suggests that providing relevant 

information can alter households’ economic decisions by helping them to make more 

informed choices or making the information salient to the individuals. Thus, this chapter 

has a potential to dramatically broaden our understanding of the role of news media and 

information disclosure across a large number of settings. 
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Do Homebuyers Pay a Premium for  

“Best Places to Live” Cities? 

 

1.1 Introduction 

In early fall 2005, Cecile Druzba and her husband, Matt, were looking to make a change in their 

lives. They lived outside Woodstock, N.Y., but wanted to move to a community where the schools were 

great, jobs plentiful and their three school-aged kids could hop on their bikes to go to soccer practice, 

the library and a quaint downtown. 

So, they began the search by typing the words "Best Places to Live" into an internet search engine. Up 

came Money magazine's list for 2005 and immediately the couple zeroed in on No. 7 - Middleton. 

They visited once, fell in love with the place and moved to town that winter. 

- Milwaukee Wisconsin Journal Sentinel1  

Every year American media outlets release a variety of “best places” lists such as best places 

to live, best places for young couples, best places for retirees, and so forth. Although there 

is no empirical evidence, a lot of anecdotal stories tell us that the lists influence homebuyers’ 

decisions. Homebuyers could value such lists not only because information about city quality 

or livability is difficult to obtain, but also because the quality of cities or neighborhoods is 

hard to judge before experience or residency. Nelson (1970) terms “experience goods” 

products or services of which quality can be fully evaluated only after consumption or 

purchase. The paper suggests that quality information is crucial particularly for durable and 

high-priced experience goods. Indeed, many consumers base their purchase decisions on 

recommendations from families, friends and consumer magazines/newspapers; in 

particular, when these decisions could affect their everyday lives in subsequent years. Thus 

perception of product quality can have substantial effects on consumer behaviors and 

choices. As Friberg and Grönqvist (2012) point out, lack of information often prompts 

 

1 The source: http://archive.jsonline.com/news/wisconsin/50987652.html 

http://archive.jsonline.com/news/wisconsin/50987652.html
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consumers to choose what others have chosen, potentially leading to herding behavior. In 

contrast, more information could result in efficiency gain by leading to better sorting 

between consumers and products. A wide range of methods have been used to convey such 

quality information to consumers such as ranking/ratings, user reviews, expert opinions or 

reviews, branding and advertising.  

This study identifies an independent effect of neighborhood quality information on housing 

prices, by exploiting the Money magazine’s annual reports, “50 Best places to Live in America”, 

which is one of the most popular and influential lists in the United States. The top 50 towns 

are publicly announced in rank order,2 and the listed towns receive substantial attention 

from social media, local newspapers, city governments and homebuyers.3 The role of the 

quality information has been little studied in the context of housing or neighborhoods, as 

experience goods. Studies on hedonic prices, or urban quality of life, typically assume that 

consumers have perfect information about inter-regional differences in local amenities, so 

differences in rent or land prices are largely explained by the differences in amenity or quality 

of life (Roback, 1982; Blomquist et al., 1988; Greenwood et al., 1991; Gabriel et al., 2003; 

Albouy and Lue, 2015; Albouy, 2016). However, many homebuyers face a high degree of 

uncertainty regarding the quality of neighborhoods and, therefore, such quality information 

could influence household location choices by informing buyers about city quality. People 

may overreact to the magazine lists, as summarized information, since their time and 

cognitive resources are too limited to process full information such as publicly available 

market statistics (Hong and Stein, 1999; Dellavigna and Pollet, 2009; Luca, 2016). It is also 

possible that positive tone of the magazine reports could lead homebuyers to believe that 

the listed towns are of higher quality than the other towns. 

A key empirical challenge in this paper is how to isolate the independent effect of the quality 

indicator from effects of underlying city characteristics used in the listing procedure. Despite 

the theoretical potential of quality information to influence consumer choices, only a 

handful of studies have identified its causal effect on consumer demand for experience 

goods such as wines (Hilger et al., 2010; Friberg and Grönqvist, 2012), books (Berger et al., 

2010), and movies (Eliashberg and Shugan, 1997; Reinstein and Snyder, 2005; Chen et al., 

 

2 The magazine listed 100 towns until 2012  

3 For a few examples, see local governments’ webpages (https://www.mckinneytexas.org/1017/1-Best-Place-to-Live, http://www. 
peachtree-city.org/index.aspx?NID=774) and newspaper articles (http://www.philly.com/philly/blogs/phillylists/Local-town-No-2-
for-Best-Places-to-Be-Rich-and-Single.html,  https://www.bizjournals.com/denver/stories/2010/07/12/daily9.htm)  

https://www.mckinneytexas.org/1017/1-Best-Place-to-Live
http://www.philly.com/philly/blogs/phillylists/Local-town-No-2-for-Best-Places-to-Be-Rich-and-Single.html
http://www.philly.com/philly/blogs/phillylists/Local-town-No-2-for-Best-Places-to-Be-Rich-and-Single.html
https://www.bizjournals.com/denver/stories/2010/07/12/daily9.htm
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2012). The limited empirical evidence is mainly because of a potential endogeneity issue. 

Products that receive positive reviews are likely to experience high sales even in the absence 

of positive information. For instance, Figlio and Lucas (2004) find that school grades 

assigned by the state have an independent effect on house prices and residential locations 

even when school attributes like test scores are controlled for. Kuang (2017) also shows that 

an effect on house prices of the quality of nearby restaurants is more significant when such 

information is made easily accessible from Yelp.com, a social network for user reviews on 

local businesses. 

This paper addresses the empirical concern through two different approaches. By relying on 

difference-in-differences (DiD) estimators combined with propensity score matching, I 

show that list inclusion has a statistically significant effect on house prices: 1-3% over two 

years, which approximately corresponds to $3,000-9,000 per housing unit. However, the 

baseline estimators assume that the magazine lists are not true reflections of city quality. To 

identify an independent effect of the magazine reports without imposing the assumption, 

this paper also exploits local newspaper coverage on the magazine lists, and find that the 

lists have a significant effect on house prices during the one-year post-treatment period only 

when listed towns are introduced in local newspapers. This result identifies an independent 

effect of the magazine lists, as one would not expect such insignificant effects of list 

inclusion if the list inclusion truly reflects the quality of each city and if the underlying city 

characteristics are the only house price driver. However, a limitation is that the effect of 

local media coverage itself may not be causally interpreted due to potential endogeneity of 

newspaper reporting.4  

1.2 Backgrounds 

Since July 2005 when the magazine released 2005’s 100 best places list, house prices in the 

listed towns have substantially outperformed those in the other towns within the same 

county for the following ten years (Figure 1.1). However, house price indices of the treated 

and untreated groups were in nearly parallel trends during the five-year pre-treatment period. 

This is probably because, by spatial sorting, towns within a county are more likely to have 

already been in spatial equilibrium and thus have substantially similar prior price trends. 
 

4 To address the concern, related studies exploit exits/entries of newspapers (Gentzkow et al., 2011; Gao et al., 2018), or reductions in 
media coverage caused by newspaper strikes (Peress, 2014). 
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Figure 1.2 shows us consistent and more convincing results by plotting the pre- and post-

treatment trends from seven lists (2005-2011). People who have read the reports may believe 

that the media’s goal is just to entertain readers so the lists contain no new information 

about local fundamentals. In that case, one would not expect to observe any significant 

association between the list publication and house price growth. However, these analyses 

provide strong visual support for the link.  

 Pre- and post-treatment house price trends of towns listed in 2005 

 
Notes: Figure 1.1 shows normalized average house price indices for three different 
groups of towns over the five-year pre-treatment and the ten-year post-treatment 
periods; each index is equal to 100 when the magazine list of 2005 was published. The 
first group (red solid line) consists of towns included in the 2005’s top 100 list. The 
second group (blue dot line) compiles the other towns within the same county of each 
listed town. The last group (grey dash line) is the other towns within the same state of 
each listed town, including the second group of towns.   

 Pre- and post-treatment house price trends of towns listed in 2005-2011 

 
Notes: Figure 1.2 displays time-series house price trends of the three groups 
described in Figure 1.2, but the first group consists of the towns included in the 
magazine’s seven lists from 2005 to 2011. As a result of using more lists, the post-
treatment period is five years long.   
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Still, one may be concerned that the listed towns are fundamentally different from the others 

so the different price trajectories are purely due to different city quality, despite the fact that 

the two graphs above confirm clearly parallel pre-treatment trends followed by significant 

post-treatment price deviations. Therefore, a central empirical question to identify is 

whether the magazine reports affect homebuyers’ decisions/choices, or simply reflect local 

fundamentals that drive house prices up. On the one hand, the information on city quality 

or livability may facilitate better matches between agents and locations. Informed 

households may migrate toward towns of higher quality (vertical sorting) or to towns of which 

characteristics best meet their idiosyncratic needs (horizontal sorting5). As a result, housing 

markets in listed towns will experience higher demand as displayed in the figures. On the 

other hand, it is perfectly possible that the list inclusion is simply a proxy for positive past 

information. Indeed, it is told that the listed towns are selected based on superior city 

characteristics. If local fundamentals used by the magazine are not yet incorporated into 

local house prices, then one would also observe a positive relationship between the list 

publications and house price returns. To investigate this possibility, I begin with looking 

into the magazine’s selection process as the first step.  

1.2.1 Listing and Ranking Procedure 

Basically, the magazine selects 50 places based on their own editorial constraints and 

statistics on demographic and socioeconomic characteristics. For the ranking of 2015, the 

magazine started with data on 3,625 U.S. towns with populations of 10,000 to 50,000, and 

ranked the towns on factors including job growth, diversity, and ease of living; giving the 

most weight to economic opportunity, housing affordability, education, and safety. They 

factored in more data on health, taxes, real estate, culture, and the economy; and limited the 

results to three places per state, one per county. These places were then sorted to represent 

all regions evenly. Thus they argue that all the listed towns have an above-average median 

income, a highly educated and growing population, low crime, good schools, healthy real 

estate appreciation and a thriving job market.6   

 

5 A seminal paper (Tiebout, 1956) argues that households choose neighborhoods that fit their heterogeneous preferences for public goods. 
While a primary assumption of the paper is that households have perfect information, they may not be well informed about the quality of 
multiple neighborhoods. Therefore, the magazine rankings may trigger the Tiebout sorting.   

6 Money August 2005 issue 
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Yet their ranking process depends on their subjective judgement about qualitative and 

intangible city characteristics. The magazine reporters visit the listed towns, interview 

residents, assess traffic, parks, and gathering places, and consider intangibles like community 

spirit. Eventually, the magazine determines the rank orders of the finalists and selects a 

winner based on reporting and the data collected by their reporters7. 

1.2.2 Nature of the rankings 

In several respects, the magazine rankings are different from typical quality information 

from a third-party media outlet. An oft-cited paper, Dranove and Jin (2010), defines quality 

disclosure as an effort by a certification agency to systematically measure and report product 

quality for a nontrivial percentage of products in a market. Third-party information senders 

act as the intermediary of quality disclosure and are believed to report unbiased and accurate 

information in areas, particularly healthcare, education and finance. However, the magazine 

lists lack those considerations. The media lists only a tiny percentage of towns in the U.S.; 

out of thousands of American towns, only 50 towns are selected. More importantly, the 

rankings are not based on a transparent scoring system, and consequently are not stable over 

the years. The magazine has used slightly different criteria, methodology and data sets in 

their listing and ranking procedure over time; although precise variables, weights and 

functional forms are not disclosed. As Guterbock (1997) points out, indicator variables are 

added, and some dropped, and factors do not appear to be weighted exactly the same each 

year. As a result of this inconsistent criteria, methodologies and various editorial constraints, 

rankings are highly volatile over years.  

 Population limits in 2005-2016 
2005 : >14,000 
2006 : >50,000 
 

2007 : 7,500 - 50,000 
2008 : 50,000 - 300,000 
2009 : 8,500 - 50,000 
2010 : 50,000 - 300,000 
2011 : 8,500 - 50,000 

2012 :  50,000 - 300,000 
2013 :  10,000 – 50,000 
2014 :  50,000 - 300,000 
2015 :  10,000 – 50,000 
2016 :  50,000 - 300,000 

Notes: The magazine’s population limits differ each year. For the first two years, 2005 and 2006, the 
press used only lower limits, but since 2007, they have applied both lower and upper limits to narrow 
down candidate towns.    

First of all, target groups differ each year. Recently, they have focused on very small towns 

in odd-numbered years, and large towns in the other years; a group of towns are listed in 

alternate years due to the different population limits (Table 1.1). Since 2007, population 

limits have been 50,000-300,000 in even-numbered years, and below 50,000 in the other 
 

7 For further details, see the webpage (http://time.com/money/3985631/best-places-2015-methodology/) 

http://time.com/money/3985631/best-places-2015-methodology/
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years. Even when comparing two odd-numbered years, 2013 and 2015, only 21 towns were 

listed in the both years (Table 1.2). Moreover, McKinney, Texas topped the 2014 list, but 

dropped out of the 2016 list. Some places are getting better to live whereas others are getting 

worse, but such changes are very slow at the city level. More than half of the towns included 

in the top 50 list are not likely to significantly decline within only two years. Indeed, most of 

the factors used by the magazine are time invariant or only marginally time varying during 

the short period of time: for example, weather, distance to airport, the number of schools, 

colleges, universities, movie theaters, etc. Perhaps, most volatile are only some of the 

economic indicators. Importantly, this great inter-period volatility cannot be explained even 

by different variables used each year. Any new indicator is likely to covary with others already 

in use, so it would be highly unusual for the addition of one or two indicators to cause great 

fluctuations over years (Guterbock, 1997).  

More importantly, listed and non-listed towns are not directly comparable across counties 

or states as a result of some editorial constraints. For instance, the magazine uses state and 

county quota limits, which slightly change over time. The magazine selects up to only three 

places per state and one per county in 2015 probably because one of their editorial goals is 

that the lists represent all U.S regions evenly. However, a plenty of desirable places might 

be located in a handful of states such as California; it is plausible that the magazine selects 

three from a cluster of good places in a certain year and another three two years later. Thus 

listed towns in Iowa are not necessarily of better quality than non-listed towns in California. 

Editorial reasons play a more crucial role in the listing procedure than local fundamentals 

do, and therefore the lists are more like the magazine’s opinions or recommendations about 

good places to live rather than credible and reliable city rankings. Provoking controversy 

among readers and entertaining them may be more important for the for-profit media 

company than providing more reliable and credible city rankings that are believed to reflect 

true quality of cities. Luckily, discontinuities from the unstable rankings create an 

opportunity to test the effects of list inclusion on housing prices. First of all, cities listed in 

a specific year were not listed in the previous year8. Also, nearly half towns were not listed 

even two years ago. If a group of towns stay listed every year and the rankings stay stable 

over time, then there would be little time-series variation I can exploit for identification. 

More detailed research design is discussed in the following section.  

 

8 By population limits, towns could be listed only in 2005 and 2006 in a row 
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 2013-2016 “50 Best Places to Live” rankings by Money  

Rank 2013 2014 2015 2016 
1 Sharon, MA McKinney, TX Apex, NC Columbia, MD 
2 Louisville, CO Maple Grove City, MN Papillion, NE Eden Prairie, MN 
3 Vienna Town, VA Carmel, IN Sharon, MA Plano, TX 
4 Chanhassen, MN Castle Rock, CO Louisville, CO West Des Moines, IA 
5 Sherwood, OR Kirkland City, WA Snoqualmie, WA Parsippany/Troy Hills, NJ 
6 Berkeley Heights, NJ Columbia/Ellicott, MD Sherwood, OR Highlands Rancho, CO 
7 Mason, OH Clarkstown, NY Chanhassen, MN Clarkstown, NY 
8 Papillion, NE Ames, IA Coppell, TX Weston, FL 
9 Apex, NC Rochester Hills, MI Simsbury, CO Beaverton, OR 
10 West Goshen, PA Reston, VA Solon, OH Naperville, IL 
11 Westford, MA Eagan, MN Acton, MA Woodbury, MN 
12 Parker, CO Woodbury, MN Rosemount, MN Pflugerville, TX 
13 Montville, NJ Centennial, CO Erie, CO Centennial, CO 
14 Farmington, UT Irvine, CA Westborough, MA Sammamish, WA 
15 Shrewsbury, MA Newton, MA Edina, MN West Hartford, CT 
16 Hillsborough, NJ Parsippany/Troy Hills, NJ Johnston, IA Nashua, NH 
17 Apple Valley, MN Mansfiled, TX Mason, OH Eastvale, CA 
18 Westfield, IN South Jordan, UT Draper, UT Euless, TX 
19 Newcastle, WA Cary, NC Woodbury, NY Edison, NJ 
20 The Colony, TX Pflugerville, TX Hewitt, TX Irvine, CA 
21 Savage, MN Brookline, MA Bedford, NH San Ramon, CA 
22 Waukee, IA Gilbert, AZ Twinsburg, OH Ashburn, VA 
23 Merrimack, NH Boulder, CO North Laurel, MD Franklin, NJ 
24 Firestone, CO Rockville, MD West Goshen, PA Appleton, WI 
25 Draper, UT Orem, UT Wylie, TX Broomfield, CO 
26 Brookfield, CT Franklin, NJ Dr. Phillips, FL Cherry Hill, NJ 
27 Farmington, MI Piscataway, NJ Nether Providence, PA Hoffman Estates, IL 
28 Menomonee Falls, WI Bowie, MD Berkley, MI Hunter Mill, VA 
29 Lindon, UT Milpitas, CA Sahuarita, AZ Overland Park, KS 
30 Windham, NH West Chester, OH Hillsborough, NJ Fishers, IN 
31 La Palma, CA Pleasanton, CA Damascus, MD Newton, MA 
32 Coppell, TX Pembroke Pines, FL Menomonee Falls, WI Novi, MI 
33 Suwanee, GA Naperville, IL Maryland Heights, MO Koolaupoko, HI 
34 Horsham, PA Bellevue, NE Tolland, CT Oyster Bay, NY 
35 Leesburg, VA Amherst, NY Urbana, MD Sioux Fall, SD 
36 Mill Creek, WA Chapel Hill, NC Springville, UT Wellington, FL 
37 Ankeny, IA Dale City, VA Germantown, WI Cary, NC 
38 Twinsburg, OH Bolingbrook, IL West Linn, OR Hamden, CT 
39 Cheshire, CT Overland Park, KS Mccandless, PA Huntington NY 
40 Ballwin, MO Johns Creek, GA Colchester, VT Greenwich, CT 
41 Montgomery Village, MD O'Fallon, MO Harrisburg, NC Levittown, PA 
42 Solon, OH Franklin, TN Waukee, IA Matoaca, VA 
43 Evans, GA Ann Arbor, MI La Palma, CA Lee’s Summit, MO 
44 Pflugerville, TX Fairfield, CT Heber, UT Spring, TX 
45 Spring Hill, TN West Hartford, CT Cheshire, CT Central Pasco, FL 
46 Buffalo Grove, IL Bensalem, PA Stallings, NC Fremont, CA 
47 Pelham, AL St. George, UT Mukilteo, WA Ames, IA 
48 Peachtree City, GA White Plains, NY Vienna, VA Edmond, OK 
49 Walnut, CA Meridian, ID Walnut, CA West Chester, OH 
50 Simsbury, CT Casper, WY Woodstock, GA Scottsdale, AZ 

Notes: The magazine listed 100 towns until 2012, and has listed 50 best places since 2013. 2013 and 2015 lists include only small 
towns of population between 10,000 and 50,000, but 2014 and 2016 lists consist of mid-sized cities with 50,000 – 300,000 residents. 
As a result, none of towns were listed for two consecutive years.  
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1.3 Identification Strategy 

In this section, I obtain more robust results by partialling out the effects of some local 

characteristics that might have predictive power on future house prices. Despite the previous 

two graphs (Figures 1.1 and 1.2) providing a solid support for the relation, identifying the 

causation is still challenging as the lists are not completely random. How can we tell whether 

the lists affected the market response, or whether some local fundamentals of listed towns 

simultaneously drove both the list inclusion and market responses? It may be the case that 

some pre-determined city characteristics have lagged or anticipatory effects on future house 

price trends. Most of such fundamentals used in the listing procedures should have already 

been incorporated into house prices before release of the list. But some may be very slowly 

capitalized into local house prices. For example, cities with lower unemployment rates last 

year are more likely to be included in this year’s list attracting more households during this 

year, or even next year, than the other cities. It is also possible that there exists more or less 

autocorrelation of local fundamentals; places that outperformed neighboring places in 

economic growth are likely to do so in subsequent years. Thus simply comparing the mean 

values of outcomes for the listed and non-listed towns without any control variables could 

seriously overestimate the effect of the magazine reports.  

For this reason, this study estimates the effect of list inclusion only. Statistical information 

and the magazine’s various constraints determine which cities are included in a list whereas 

the ranking procedure relies upon the magazine’s self-collected database on qualitative and 

intangible city characteristics, which are unmeasurable and unobservable. By focusing on 

the list inclusion and thus by not considering rankings at all, I can rule out any possibility of 

results being affected by such unmeasurable fundamentals.  

1.3.1 Baseline Specification 

Most of the studies that attempt to examine a causal impact of quality information face an 

empirical concern: omitted variable bias (OVB). In order to isolate the effects of list 

inclusion from those of the underlying statistical data, this study must control for all of the 

variables used in the magazine’s listing procedure. Yet the factors used by the magazine are 

not fully disclosed. To partially address the issue, I control for county fixed effects. The 
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magazine does use not only city-level characteristics but also county-, MSA9- or state-level 

characteristics such as property tax rates. It is probably because only a few of the statistics 

are collected and published at the city level in the US; most of the major statistics are 

compiled at the county or MSA level. Even, a large portion of city-level statistics do not 

cover all small towns which are the primary focus of the magazine. For this reason, the 

county-fixed effects are expected to substantially alleviate the empirical issue by controlling 

for all county-, MSA- and state-level characteristics. Thus city-level pre-treatment 

characteristics will be a main source of the OVB in this research. 

To further overcome the problem, this study employs a difference-in-differences approach, 

which will cancel out most of factors that are time constant or in parallel trends. Indeed, a 

great part of house price fluctuations are explained by common factors such as 

macroeconomic conditions, and federal- or state-level policies, so price trends across towns 

within a county are highly parallel over time. Moreover, many city characteristics are time 

invariant or have little time-series variation during short-term periods. Thus those variables 

are expected to have at most only marginal effects on price differences between treated and 

control groups in DiD regressions. 

 City-level characteristics used in the magazine’s listing procedure 
Time varying factors Factors with no or little time-series variation 

median family income, median home price  
population growth, job growth, unemployment rate 
family purchasing power 
violent crime rates, property crime rates 
 

share of residents completed at least college 
share of students attending public schools 
median commute time  
racial diversity, median age of residents 
share of residents married 
number of schools, colleges, universities 
number of movie theaters, restaurants, bars 
number of libraries, museums 
number of public golf courses, ski resorts  
number of doctors and hospitals, cancer mortality 
rainfall, temperature, air quality 
distance to airport 

Notes: Table 1.3 presents determinants of the magazine rankings that have been explicitly mentioned in the reports. As you may 
note, most of them have no or little time-series variation over the short-term period of two years, but the magazine rankings are 
very unstable. 

 

 

 

9 MSA stands for Metropolitan Statistical Areas MSA, a US geographical core area containing a substantial population nucleus, together 
with adjacent communities having a high degree of economic and social integration with that core (https://www.census.gov/programs-
surveys/metro-micro/about.html). 

https://www.census.gov/programs-surveys/metro-micro/about.html
https://www.census.gov/programs-surveys/metro-micro/about.html
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 Time window for Diff-in-Diff (example of the 2011 list) 

 
Notes: This figure describes the time window for the Difference-in-Differences estimator used in 
this study. The estimator measures the 1-year relative house price growth (from July 2011 to July 
2012 in this example) in response to the list that was determined by statistics of 2010 and published 
in August 2011. Publicly available statistics are published with a lag of several months, which may 
affect the release date of the magazine list.   

A central consideration in DiD approaches is the length of a time window. As seen in Figure 

1.3, for example, the list for 2011 is based on statistical information of 2010, and this study 

measures the house price changes during the one-year period following the list release. 

However, housing markets will not react to such information immediately. Also, the effect 

of list inclusion will be further slowly observed due to time lags between list release and 

transaction closing; since the transaction process of buying a home takes several months, 

which includes searching for a neighborhood, a home, and then a mortgage lender. Thus 

this study takes post-treatment periods up to two years. Since 2006, not a single town has 

been listed for two consecutive years, so the two-year post-treatment period is not likely to 

cause any serious identification issue. 

Now, a central question is whether pre-treatment statistical information has any anticipatory 

effects on post-treatment house price growth. If prior information has predictive power 

then the standard two-period DiD model should be as below; 

(1.1)   𝑙𝑙𝑙𝑙 𝐻𝐻𝐻𝐻𝑖𝑖,𝑡𝑡 = 𝛽𝛽1 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 + 𝛽𝛽2 (𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 × 𝑡𝑡) + 𝑿𝑿′𝒊𝒊 𝜸𝜸𝟏𝟏 + (𝑿𝑿′𝒊𝒊 × 𝑡𝑡 ) 𝜸𝜸𝟐𝟐  +  𝑣𝑣𝑐𝑐 + (𝑣𝑣𝑐𝑐 × 𝑡𝑡) + 𝜉𝜉𝑖𝑖,𝑡𝑡 

where  𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 is the primary focus, an indicator for whether individual city 𝑖𝑖 is included in a 

list, and 𝑡𝑡 is equal to 1 for post-treatment and 0 for pre-treatment. 𝑋𝑋𝑖𝑖 is a vector of city-level 

covariates used in the listing process, and  𝑣𝑣𝑐𝑐 is county fixed effects. Individual city-level 

differencing will derive the following model from the Equation 1.1;  

(1.2)  𝑙𝑙𝑙𝑙 𝐻𝐻𝑃𝑃𝑖𝑖,1 − 𝑙𝑙𝑙𝑙𝐻𝐻𝑃𝑃𝑖𝑖,0 = 𝛽𝛽2 𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖 + 𝑿𝑿′𝒊𝒊 𝜸𝜸𝟐𝟐 + 𝑣𝑣𝑐𝑐 + (𝜉𝜉𝑖𝑖,1 − 𝜉𝜉𝑖𝑖,0) 

ln(HPJUL 2012)-ln(HPJUL 2011)

JUL 2011 JUL 2012

AUG 2011
Treatment (A new list is released)

DEC 2010
Statistics

Statistics of 2010 determines the list of 2011
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By pooling all available cross-sectional data sets (10 lists from 2005 to 2014), I can obtain 

the following baseline specification; 

(1.3)  𝑙𝑙𝑙𝑙 𝐻𝐻𝑃𝑃𝑖𝑖,𝑡𝑡+1 − 𝑙𝑙𝑙𝑙 𝐻𝐻𝑃𝑃𝑖𝑖,𝑡𝑡 = 𝛽𝛽 𝐿𝐿𝐿𝐿𝐿𝐿𝑡𝑡𝑡𝑡𝑡𝑡𝑖𝑖,𝑡𝑡 + 𝑿𝑿′𝒊𝒊,𝒕𝒕−𝟎𝟎.𝟓𝟓 𝜸𝜸 + 𝑣𝑣𝑐𝑐,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 

where  𝑣𝑣𝑐𝑐,𝑡𝑡 denotes County × Year fixed effects and 𝜀𝜀𝑖𝑖,𝑡𝑡 = 𝜉𝜉𝑖𝑖,𝑡𝑡+1 − 𝜉𝜉𝑖𝑖,𝑡𝑡. Simply, the list is 

released in year 𝑡𝑡, and then regressions estimate the capitalization between year 𝑡𝑡 and 𝑡𝑡 + 1. 

The subscript, 𝑡𝑡 − 0.5 in 𝑿𝑿 indicates the 7-8 month time gap between underlying statistics 

and list publications. Therefore, the coefficient 𝛽𝛽 provides a DiD estimate of the causal 

impact of list inclusion conditional on prior city-level covariates. 

To further recover the causal effect, I add two lagged terms, and one lead term on treatment 

(Equation 1.4). Because list inclusion effects may persist, grow or fade as time passes, the 

lag terms simply capture how long the effects can persist, and also control for previous list 

inclusion. The lead term is used both for a placebo test and for a reverse causality test. If the 

treatment causes future outcomes but not vice versa, then the dummy for future treatment 

should not matter in the equation (Angrist and Pischke, 2009). Thus, an insignificant lead 

term will be interpreted as evidence for no anticipatory effect and no reverse causation 

between treatments and outcomes.  

(1.4)   (𝑙𝑙𝑙𝑙 𝐻𝐻𝑃𝑃𝑖𝑖 ,𝑡𝑡+1 − 𝑙𝑙𝑙𝑙𝐻𝐻𝑃𝑃𝑖𝑖,𝑡𝑡) = 𝜇𝜇 (𝑙𝑙𝑙𝑙 𝐻𝐻𝑃𝑃𝑖𝑖 ,𝑡𝑡 − 𝑙𝑙𝑙𝑙 𝐻𝐻𝑃𝑃𝑖𝑖,𝑡𝑡−3) 

                                                     + 𝛽𝛽1 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 ,𝑡𝑡−2 + 𝛽𝛽2 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 ,𝑡𝑡−1 + 𝛽𝛽3 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 ,𝑡𝑡 + 𝛽𝛽4 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝑖𝑖 ,𝑡𝑡+1   

                                                     + 𝑿𝑿′𝒊𝒊,𝒕𝒕−𝟎𝟎.𝟓𝟓 𝜸𝜸 + 𝑣𝑣𝑐𝑐,𝑡𝑡 + 𝜀𝜀𝑖𝑖,𝑡𝑡 

Another concern is serial correlation. House prices are positively autocorrelated over time. 

The degree and persistence of the momentum in house price changes is one of the 

housing market’s greatest puzzles. Case and Shiller (1989a) conclude that people seem to 

form their expectations from past price movements rather than knowledge of 

fundamentals, and the same authors’ other paper (Case and Shiller, 1989b) reports that 

around half of the citywide changes in prices tend to be followed by changes in the same 

direction in the subsequent year. To avoid the empirical concern, I add one lagged 

dependent variable, the price growth of the previous three years, which has been widely 

included across a number of studies particularly in finance literature. It is also because the 

past house price appreciations are a factor used in the listing procedure. Importantly, 
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adding the term could alleviate a concern that the lists may be more appealing to 

homebuyers living in places where house prices went up10.  

1.3.2 Matching 

A main empirical challenge might be still the omitted variable bias arising from city 

characteristics that are used in the listing procedure but are missing in my data set. Even 

after conditioning on observables, there may be systematic differences between treated and 

untreated outcomes due to the unobserved variables. Most city-level aggregated 

characteristics except economic indicators do not change drastically over time, especially in 

the short run of one year or two. Yet the assumption that most omitted variables do not 

critically bias the empirical results may not be plausible, either. However, it is nearly 

impossible to address this issue by controlling for all city characteristics. This analysis 

controls for a range of pre-treatment city characteristics, particularly the most time-varying 

economic indicators, used in the selection process, but some might still be missing because 

the precise variables, weights and formula have not been disclosed and also because the 

magazine’s methodology and criteria differ year by year. Moreover, this study could not have 

secured some data sets provided by commercial database vendors.  

Thus the credibility of this analysis depends on how comparable a counterfactual is in the 

absence of some determinants. Many papers on place-based policies also report that it is 

challenging to find comparison areas. For this reason, a matching estimator is often 

combined with a DiD estimator in some recent papers on such place-based policies. 

Gobillon et al. (2012) take advantage of the French enterprise zone program, which provides 

wage subsidies for firms to hire local workers. In order to measure the direct effect of the 

program on unemployment duration, they estimate propensity scores of being designated as 

a municipality comprising an EZ and then restrict the control group to contain only 

municipalities whose estimated propensity score belongs to the same support as that of 

treated municipalities. Busso et al. (2013) compare census tracts in federal urban 

Empowerment Zones to those in rejected and later round zones with similar characteristics. 

To identify the causal impacts of EZ designation, they construct a set of control zones based 

upon data on the rejected tracts and use a DiD estimator adjusted by implicit propensity 

score weights, Oaxaca-Blinder estimator. More recently, Kline and Moretti (2014) employ 

 

10 A caveat is that most lagged dependent variable models are subject to endogeneity issues due to a common error term.   
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the same estimator to examine the effect of a regional development program, the Tennessee 

Valley Authority (TVA) program. To make treatment and control groups more comparable, 

they use as controls authorities that were proposed but never approved by Congress and 

also drop from their models control counties which appear to be substantially different from 

TVA counties.  

Following this literature, I combine the DiD specifications with the propensity score 

matching (PSM hereafter) to further increase comparability of treated and untreated towns. 

Basically, this matching technique would make the control group as comparable as possible 

by omitting from the models most of the untreated observations which are substantially 

different from listed towns based on their observed city characteristics. It is likely that some 

towns in the same county are as good as the listed towns but are excluded mainly due to the 

county quota or another constraints. In this case, PSM will make the treated and untreated 

groups more similar in the estimated probabilities of list inclusion. More importantly, the 

matching estimator is one potential solution to the omitted variable issue by making use of 

information about observables to infer information about omitted variables. Essentially, 

matching and regressions are identical in terms of the core assumption underlying causal 

inference, so the differences between the two strategies are unlikely to be of major empirical 

importance. But if there is a good reason to believe that conditional on the observed, 

treatment and control groups are similar on unobservables, PSM may help to further isolate 

the treatment effect (Angrist and Pischke, 2009; Baum-Snow and Ferreira, 2015). Since most 

of city characteristics are strongly correlated with each other, towns with more similar 

observed characteristics are likely to feature more similar unobservables. 

1.3.3 Data Sources 

For empirical tests, I rely on two key data sources: (1) the Money magazine’s Best Places to Live 

lists for ten years between 2005 and 2014 and (2) the monthly Zillow Home Value Index at 

the city level from January 2000 to August 2016. The Zillow indices are created from 

estimated sale prices on every home instead of a repeat sales methodology, and behave quite 

similarly to the well-known S&P/Case-Shiller indices for most of the historical period11. 

More importantly, the time-series house price indices are available for more than 10,000 U.S. 

cities or towns, enabling this study to link more than 80% of towns included in the magazine 

 

11 For further details, see the website (http://www.zillow.com/research/zhvi-methodology-6032/) 

http://www.zillow.com/research/zhvi-methodology-6032/
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rankings to monthly indices during the period. As a result, my sample includes 11,035 U.S. 

towns in total, and 461 of them were listed at least once over the period. 

 Descriptive statistics for listed and non-listed towns (2011-2014) 
 Listed towns Non-listed towns 
 Mean S.D. Mean S.D. 
median family income (USD) 98,616 20,198 65,188 28,729 
median house value (USD) 319,381 156,125 196,719 161,455 
population 53,628 42,320 13,562 31,520 
Δln(population) (%) 1.83 5.73 0.84 10.28 
unemployment rate (%) 5.88 1.65 8.93 5.11 
employers 27,646 22,141 6,265 14,733 
Δln(employers) (%) 1.30 5.91 -0.07 12.26 
median commute time (mins) 23.61 5.20 21.64 7.15 
prior-trends of house prices (t-3, t) (%) 1.09 10.15 -0.45 11.85 
share of residents with bachelor or higher (%) 48.71 13.12 24.40 16.05 
share of students attending public schools (%) 88.68 6.11 90.88 10.28 

Notes: This table summarizes descriptive statistics for variables from the American Community Survey (ACS) 
data. It presents differences in the city characteristics between the listed towns and the other towns. The sample 
includes 8,596 towns (Census places) for 2011 to 2014. prior-trends of house prices is the house price growth over 
the 3-year pretreatment period. Median family income, media house value, population, and employers take logs in the 
following regressions.  

To control for pre-treatment statistics that the magazine used, I use Census place-level 

demographic and socioeconomic variables from the American Community Survey (ACS). 

The ACS is a nationwide survey designed to provide communities with reliable and timely 

demographic, social, economic, and housing data every year. The survey data provides, for 

the first time, a continuous stream of updated information for local areas12. In particular, 

ACS 5-year estimates cover all areas in the US including very small populations called the 

Census places. Although the magazine also depends on the data source, the first release was 

the year 2009. As a result, using the data set allows this study to exploit only five years of 

the lists between 2010 and 2014, thereby losing half of the observations. My regression 

models include eight variables from the ACS: median family income, median home price, 

population growth, job (employer) growth, unemployment rate, median commute time, 

share of residents with bachelor or higher degrees, and share of students attending public 

schools13. As presented in Table 1.4, most of the city quality indicators are superior in listed 

towns. To construct a better control group, this paper uses only towns with a population 

below 500,000 and of which the median house price is below $1 million. As discussed earlier, 

the magazine uses both population limits and house price cap to focus on small affordable 

 

12 See the website (https://www.census.gov/content/dam/Census/library/publications/2008/acs/ACSGeneralHandbook.pdf) 

13 Most of them are time-varying, but a couple of variables have little time-series variation in them. Such time-invariant variables might 
have negligible impacts on future house price growth, but will help PSM to pair more comparable control towns to treatment towns. 

https://www.census.gov/content/dam/Census/library/publications/2008/acs/ACSGeneralHandbook.pdf
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towns. By adopting the same house price cap, and slightly looser population limits, this paper 

is able to further increase comparability between treated and untreated towns.  

1.4 Results 

Before including local fundamentals in regressions, I examine which factors affect the 

probability of list inclusion using a logistic probability model, which is also used to compute 

propensity scores; for this analysis, I use the same popuplation limits that the magazine used 

and differ each year (Table 1.1). Model specifications (1) to (4) in Table 1.5 vary by the 

scale of fixed effects. All of the variables are used in the listing procedure, but not every 

characteristic has a significant effect on the probabilty of being listed. As the magazine 

focuses on affordable places, high incomes and low house prices appear to be consistently 

significant factors. Above all, this table reveals that socio-demographic characteristics are 

more crucial determinants than volatile economic characteristics even though the magazine 

has emphasized the importance of economic growth in their selection process. Towns with 

more educated residents or with more students attending public schools have a higher 

probability of being listed, whereas population and employer (or job) growth consistently 

have no effect on list inclusion; after the following analyses, I drop these two growth 

indicators in order to benefit from additional one year observations14.  

  

 

14 The magazine uses levels for most variables, but changes for a few variables, such as population growth and job growth, exploiting the 
ACS data sets of previous two years. Using the change variables allows this study to use only four lists of 2011-2014. Thus I can take 
advantage of five lists by not using such growth indicators. 
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 Probability of being listed using logistic regressions (2011-2014) 
 Dependent Variable: List inclusion dummy 
 (1) (2) (3) (4) 
ln(median family income)  2.886*** 3.658*** 4.921*** 3.979*** 
    (0.666) (0.833) (1.005) (1.248) 

ln(median house price) -1.458*** -1.091** -3.165*** -2.272** 
 (0.259) (0.549) (0.747) (0.906) 

unemployment rate -0.310*** -0.152** -0.181** -0.114 
   (0.0498) (0.0612) (0.0732) (0.0895) 

% bachelor+ 0.0373*** 0.0329*** 0.0483*** 0.0461** 
    (0.00939) (0.0121) (0.0147) (0.0189) 

% public school 0.0613*** 0.0709*** 0.0787*** 0.0972*** 
 (0.0137) (0.0163) (0.0183) (0.0239) 

median commute time 0.0149 0.0348* -0.00648 -0.0217 
 (0.0160) (0.0194) (0.0228) (0.0302) 

∆ ln(population) 5.081 3.188 5.162 2.872 
 (3.589) (3.804) (4.267) (4.626) 

∆ ln(employer)  -5.346 -3.391 -4.616 -2.136 
 (3.473) (3.661) (4.085) (4.480) 

∆ ln(house price) btw. t and t-3  0.0603 1.197 0.879 1.172 
 (0.782) (1.383) (1.684) (2.251) 

Fixed Effects Year Year × State Year × CBSA§ Year × County 
Observations 5,805 4,487 2,612 1,193 

Notes: This table presents results of logistic regressions with four different fixed effects specifications to infer which city 
characteristics the magazine has used in their listing procedure. The dependent variable is an indicator capturing whether the town 
is included in the magazine list of each year, and nine variables from the ACS (American Community Survey) along with the city-
level Zillow Home Value Index are used to explain the probability of being listed. % bachelor+ is the share of residents with a 
bachelor or higher degree. % public school is the share of students attending public schools. ∆ ln(house price) btw. t and t-3 denotes the 
house price growth over the 3-year pretreatment periods. *** p<0.01, ** p<0.05, * p<0.1 

§ CBSA stands for Core-Based Statistical Area, a U.S. geographic area that consists of one or more counties that are socio-
economically tied to an urban center of at least 10,000 people, referring to both metropolitan statistical areas and micropolitan 
areas.  

Table 1.6 shows the regression results using all covariates and lagged terms. Coefficients 

for list inclusion are consistently significant in all specifications during the first year (columns 

1-3) and the second year (columns 4-6). Given the statistical significance of the treatment 

and the lagged treatment (t-1), the list inclusion appears to have a greater contribution to 

the second year house price appreciation. Many of control variables are somewhat predictive 

of the post-treatment house price growth at least for a year. Notably, the median house price 

has negative effects on list inclusion but positive effects on house price changes, so there is 

little likelihood of mean reversion because there is no tendency that places with lower pre-

treatment house prices experience higher increases in post-treatment prices. 
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 Regression results: DiD (2010-2014) 
 (1) (2) (3) (4) (5) (6) 

Dependent Var. ln(HPt+1)-ln(HPt) ln(HPt+2)-ln(HPt+1) 
Listed (t) 0.00720*** 0.00486*** 0.00393* 0.00458*** 0.00439*** 0.00454*** 
 (0.00163) (0.00162) (0.00209) (0.00141) (0.00132) (0.00155) 

Listed (t+1) : Lead   -0.00179   0.00388* 
   (0.00178)   (0.00204) 

Listed (t-1) : Lag 1   0.00738***   0.00140 
   (0.00148)   (0.00177) 

Listed (t-2) : Lag 2   0.00222   0.000132 
   (0.00185)   (0.00148) 

ln(median family income)   0.00423** 0.00419**  -0.00133 -0.00136 
     (0.00187) (0.00187)  (0.00193) (0.00192) 

ln(median house price)  0.00511** 0.00521**  0.00348 0.00356* 
  (0.00207) (0.00207)  (0.00212) (0.00212) 

unemployment rate  -0.000145* -0.000145*  -0.000160* -0.000160* 
    (8.67e-05) (8.67e-05)  (8.42e-05) (8.41e-05) 

% bachelor+  0.000151*** 0.000146***  3.59e-05 3.21e-05 
     (3.73e-05) (3.74e-05)  (3.76e-05) (3.78e-05) 

% public school  3.97e-05 3.74e-05  1.71e-05 1.56e-05 
  (3.08e-05) (3.08e-05)  (3.15e-05) (3.15e-05) 

median commute time  0.000103** 0.000105**  0.000151*** 0.000152*** 
  (4.92e-05) (4.92e-05)  (4.82e-05) (4.82e-05) 

∆ ln(house price)   -0.0474*** -0.0475***  -0.0283*** -0.0284*** 
    between t and t-3  (0.00670) (0.00671)  (0.00613) (0.00613) 

Observations 42,155 40,030 40,030 42,140 39,630 39,630 
Notes: This table shows regression results from Equation 1.4. The outcome variable of interest is the log of house price growth during 
the first posttreatment year (columns 1 to 3) or the second year (columns 4 to 6). Listed (t) is an indicator taking the value of 1 if the 
city is included in the “50 best places to live” list of year t.  Listed (t+1) is a lead term, capturing whether the city is listed in the following 
year (t+1), for a reverse causality test. Listed (t-1) and Listed (t-2) are lagged terms for the two previous years to capture how long the 
list inclusion effects can persist, and also to control for previous list inclusion. As columns 4, 5, and 6 estimate the second-year effect, 
Listed (t-2), Listed (t-1), Listed (t), and Listed (t+1) serve as Listed (t-3), Listed (t-2), Listed (t-1), and Listed (t) in the columns, respectively. 
% bachelor+ is the share of residents with a bachelor or higher degree. % public school is the share of students attending public schools. 
All columns control for Year×County fixed effects. Robust standard errors in parentheses are clustered by Year×County. *** p<0.01, 
** p<0.05, * p<0.1 

Obviously, a picture is worth a thousand words in DiD approaches. As displayed in Figure 

1.4, listed towns outperformed the other towns in the same county by 1-2% over the two-

year pre-treatment period and keep marginally outperforming during the post-treatment 

years. However, Figure 1.5 shows that the PSM successfully replicates the pre-treatment 

house price trends of listed towns15. The pre-treatment trends of the treated and the matched 

control towns are almost parallel, followed by gradual post-treatment price deviations. Thus 

the list inclusion appears to have a causal effect on the outperforming post-treatment house 

returns, but the effect is quite lagged. Market responses to the list inclusion become more 

obvious from around the tenth month perhaps due to the transaction lag. Given these 

graphical evidences, the OVB does not seem critical16. If the treated cities experienced 
 

15 In order to compute propensity scores, this study exploits logistic regression models with aforementioned covariates. After calculating 
propensity scores using observations of each year, I match each of the listed towns to towns with the nearest propensity score within the 
same county. 

16 Nearby towns may be perceived as good as listed towns due to geographical proximity. The listed towns may also have affected nearby 
towns indirectly by causing households to move from the nearby towns to the listed towns. Either of these effects could lead to 
underestimation or overestimation of the treatment effect. 
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fundamenally different pre-treatment conditions in unobservables then the price deviations 

should have begun before or shortly after list publications.  

 Trends before matching  
(2010-2014 Lists) 

 

 Trends after PSM using 6 variables  
(2010-2014 Lists) 

 
 

 Trends after PSM using 2 variables 
(2010-2014 Lists) 

 

 Trends after NNM using past price change  
(2010-2014 Lists) 

 
Notes: Figures 1.4-1.7 show normalized average house price indices for treatment and control groups over the two-year pre-
treatment and post-treatment periods, using the magazine lists of five years from 2010 to 2014; each index is equal to 100 in the 
month when the magazine list was published. The first group (red solid line) consists of towns nominated as one of the best places 
to live by the magazine. The second group (blue dash line) compiles towns in the control group: either the other towns within the 
same county of each listed town (Figure 1.4), the towns selected on the 6-variable propensity score matching (PSM) within the 
same county (Figure 1.5), the towns selected on the 2-variable PSM (Figure 1.6), or the towns selected on the Nearest Neighbor 
Matching (NNM) using only the house price apprecition over the past three years (Figure 1.7).   

To further clarify to which extent omitted variables can bias the matching estimator, I try 

another PSM using only two variables, % bachelor+ and % public school, which are consistently 

and most significant in the previous regressions. Within a county, those two variables might 

be good enough to picture what each town looks like, but absence of all economic features 

can possibly lead to a serious mismatch between treated and untreated towns. Yet the 

control group selected on only the two variables are not substantially different from that 

using six variables (Figure 1.6). It may be the case that, as expected, most of the city 

characteristics are strongly correlated with each other. For example, towns with more 

educated residents might achieve higher median income levels and lower unemployment 
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rates. Table 1.7 confirms that the PSM estimator can substantially reduce unobservable 

imbalance by reducing observable imbalance, and also that the two-variable PSM does not 

make any noticeable distinctions compared to the six- variable model: even in regressions 

(Table 1.8). An alternative interpretation for this is that homebuyers are more interested in 

a town’s socio-demographic features, such as education attainment and school quality, than 

economic indicators (unemployment rate or income levels of a neighborhood). In particular, 

if most inter-town migrations occur within a metropolitan area, then the town-level 

economic features would be less important considerations because both departure and 

destination cities are associated with a common urban core or job center, which mainly 

determine the residents’ economic opportunities. If it is the case, such socio-demographic 

factors could be main house price drivers within a MSA. 

The marginal but distinctive pre-treatment differences in the house price trends motivates 

an estimation strategy that controls for past house price changes only. The past price change 

may be one of the most significant factors in predicting house prices in the near future. Thus 

nearby towns of similar pre-treatment house price trends are more likely to have similar local 

characteristics or to be under influence of common price determinants. To do so, I employ 

Nearest Neighbors Matching (NNM) based on the price growth of past three years, and 

Figure 1.7 and the specification (6) in Table 1.8 suggest that the estimator is as good as the 

PSM.   

 Covariate means for each group (2010-2014) 
 Treatment 

Listed towns 
Control Gr 1. 

The other towns 
in county 

Control 2. 
6-Var. PSM 

 

Control 3. 
2-Var. PSM 

 

Control 4. 
NNM 

(ln HPt/HPt-3 ) 
Panel A - Means      
median family income (USD) 96,863 90,090 99,476 98,016 93,356 
median house value (USD) 322,917 342,319 349,000 345,466 326,537 
unemployment rate (%) 5.71 7.20 5.30 5.68 6.10 
median commute time (mins) 23.52 25.22 24.03 24.08 24.67 
share of residents with bachelor or higher 47.99 37.92 46.75 46.60 40.90 
share of students attending public schools 88.59 87.32 86.80 87.12 87.11 
pre-trends of house prices (t-3, t) (%) -5.06 -7.19 -5.20 -5.19 -5.19 
Panel B - Difference in Means  ( t-tests: *** p<0.01, ** p<0.05, * p<0.1) 
median family income (USD)  -6773*** 2613 1153 -3447 
median house value (USD)  19402 26083* 22549 -2984 
unemployment rate (%)  1.50*** -0.41*** -0.03 0.30 
median commute time (mins)  1.70*** 0.51 0.56 1.04** 
share of residents with bachelor or higher  -10.06*** -1.24 -1.39 -6.95*** 
share of students attending public schools  -1.28** -1.80** -1.47** -1.15 
pre-trends of house prices (t-3, t) (%)  -2.13* -0.13 -0.12 0.14 

Notes: Panel A shows how average characteristics of towns in each control group vary across the matching techniques. In addition, 
Panel B shows how each matching estimator can reduce imbalance in the observed city characteristic with t-test results. Control groups 
1 to 4 are the results displayed in Figures 1.5 to 1.8, respectively. 

 



 

33 
 

 Regression results: Matched DiD (2010-2014) 
 Dependent Variable: ln(HPt+2)-ln(HPt) 
 (1) OLS (2) OLS (3) OLS (4) 6-Var. PSM (5) 2-Var. PSM (6) NNM 
Listed (t) 0.00932*** 0.00714*** 0.00674*** 0.00713*** 0.00693*** 0.01110*** 
 (0.00212) (0.00212) (0.00214) (0.00244) (0.00262) (0.00273) 

ln(median family income)   -0.0111 -0.0151**    
     (0.00726) (0.00683)    

ln(median house price)  0.00836 0.00709    
  (0.00885) (0.00892)    

unemployment rate  -0.00105* -0.000955    
    (0.000571) (0.000585)    

% bachelor+  0.000344*** 0.000349***    
     (0.000112) (0.000117)    

% public school  -2.35e-05 -3.50e-05    
  (0.000144) (0.000145)    

median commute time  -5.52e-05 -3.45e-05    
  (0.000185) (0.000187)    

∆ ln(house price) btw. t and t-3 0.0813**  0.0454    
      (0.0332)  (0.0327)    

Observations 4,750 4,843 4,750 601 599 589 
Notes: This table compares the matched Difference-in-Differences regression results (columns 4 to 6) with the OLS results (columns 1 
to 3). The dependent variable is the log of house price growth during the 2-year posttreatment periods. Listed (t), the variable of interest, 
is an indicator capturing whether the city is included in the “50 best places to live” list of year t.  Model 1 controls for house price growth 
during the past three years, ∆ ln(house price) btw. t and t-3, and Model 2 controls for basic city characteristics only. Model 3 includes both 
the city characteristics and the past house price trend. Models 4, 5, and 6 use as control groups towns paired by the six-variable propensity 
score matching, the two-variable propensity score, and the nearest neighbor matching, respectively.  % bachelor+ is the share of residents 
with a bachelor or higher degree. % public school is the share of students attending public schools. All columns control for Year×County 
fixed effects. Robust standard errors in parentheses are clustered by Year×County. *** p<0.01, ** p<0.05, * p<0.1 

 Trends before matching (2005-2014 lists) 

 
 Trends after PSM using alternative covariates (2005-2014 lists) 
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 Trends after NNM using past price change (2005-2014 lists) 

 
Notes: Each figure shows normalized average house price indices for treatment and control groups over the two-year pre-
treatment and post-treatment periods, using the magazine lists of ten years from 2005 to 2014; each index is equal to 100 in the 
month when the magazine list was published. The first group (red solid line) consists of towns included in the magazine lists. The 
second group (blue dash line) compiles towns in the control group: either the other towns within the same county of each listed 
town (Figure 1.8), the towns selected on the propensity score matching using alternative covariables (Figure 1.9), or the towns 
selected on the Nearest Neighbor Matching using only the house price apprecition over the past three years (Figure 1.10).   

 Covariate means for each group (2005-2014)  

 Treatment 
Listed towns 

Control 1. 
The other towns 

in county 

Control 2. 
PSM 

 

Control 3. 
NNM 

(ln HPt/HPt-3 ) 
Panel A - Means     
Δln(population) (%) 1.87 1.15 1.67 1.78 
unemployment rate (%) 5.07 6.48 5.38 5.63 
Δln(employers) (%) 1.30 0.98 1.41 1.74 
pre-trends of house prices (t-3, t) (%) 3.97 5.36 4.03 3.77 
Panel B - Difference in Means  ( *** p<0.01, ** p<0.05, * p<0.1) 
Δln(population) (%)  -0.72*** -0.20 -0.14 
unemployment rate (%)  1.41*** 0.31** 0.58*** 
Δln(employers) (%)  -0.32 0.11 0.38 
pre-trends of house prices (t-3, t) (%)  1.38 0.06 -0.33 

Notes: This table uses alternative control variables from different sources. Panel A shows how average city characteristics vary 
across the control groups, and Panel B shows whether matching estimators (Control groups 2 and 3) can reduce imbalance in the 
observed city characteristic with t-test results. Control groups 1 to 3 are the results displayed in Figures 1.9 to 1.11, respectively. 

 Regression results: Matched DiD with alternative covariates (2005-2014) 

 Dependent Variable.: ln(HPt+2)-ln(HPt) 
 (1) OLS (2) OLS (3) OLS (4) PSM (5) NNM 
Listed (t) 0.0183*** 0.0121*** 0.0121*** 0.00872*** 0.0132*** 
 (0.00365) (0.00358) (0.00341) (0.00260) (0.00352) 

∆ ln(population)  -0.0635 -0.0602   
  (0.0609) (0.0632)   

unemployment rate  -0.00626** -0.00737**   
  (0.00293) (0.00361)   

∆ ln(employer)  0.0176 -0.00645   
    (0.0432) (0.0340)   

∆ ln(house price) between t and t-3 -0.0534  -0.0959   
      (0.0825)  (0.0905)   

Observations 2,481 2,499 2,481 672 673 
Notes: This table presents how the size and the statistical significance of the key parameters vary across control groups. The dependent 
variable is the log of house price growth during the 2-year post-treatment periods. Listed (t) is an indicator capturing whether the city is 
included in the magazine list of year t. Model 1 controls for house price growth during the past three years, ∆ ln(house price) btw. t and t-3, 
and Model 2 controls for basic city characteristics only. Model 3 includes both the city characteristics and the past house price trend. 
Models 4 and 5 use as control groups towns paired by the propensity score matching and the nearest neighbor matching, respectively.  
All columns control for Year×County fixed effects. Robust standard errors in parentheses are clustered by Year×County. *** p<0.01, 
** p<0.05, * p<0. 
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In order to assess the credibility of the research design, I conduct robustness tests by using 

an alternative set of covariates from different sources. I collected three variables, population 

from the US Census (2004-2013), and unemployment rate and number of employers from 

the US Bureau of Labor Statistics (2004-2013). These covariates allow me to use all of the 

ten lists (2005-2014) but lose nearly 85% observations in my sample because these data sets 

do not cover all of the small towns17. As displayed in Figures 1.8 – 1.10, and Tables 1.9 

and 1.10, the visual illustrations of pre- and post-treatment trends, and regression results are 

highly consistent with the previous results, thereby confirming the robustness of the finding. 

1.5 Role of Local Newspapers 

In the previous section, a key assumption for identification is that the magazine rankings are 

not true reflections of city quality based on the unstable rankings over time. Given the 

assumption, this paper estimates an independent effect by controlling for underlying, 

observable city characteristics or by carefully pairing each treated city to a comparable 

untreated city. However, if the rankings are true reflections of city quality, then none of non-

listed towns can be treated as a comparable counterfactual, and therefore the difference-in-

differences estimators suffer from an omitted variable bias. 

To identify an independent effect of the magazine reports without imposing the assumption, 

this section exploits local newspaper coverage on the magazine lists. It is hard to assume 

that most local residents obtain the information directly from the printed magazines or their 

website. The circulation of the magazine is around two million, which means that only a 

small share of the population would read the reports in the magazine. Instead, local 

newspapers may be the main source of local information to those who live in small towns 

or cities, as the media outlets in both print and electronic versions provide a wide range of 

local news, such as local jobs, opening of new restaurants, and events for kids in the 

neighborhood. After a new list is released, some listed towns receive substantial attention 

from such local media outlets, but the others do not. Thus the magazine effect is likely to 

be greater in the listed places that are introduced in their local newspapers. When the 

magazine reports are covered by a local newspaper, local residents within the media coverage 

 

17 More specifically, the variables cause a loss of more than 80% of non-listed towns but 40% of listed town, so the loss is more critical 
for control groups rather than treatment groups. As a result, the average number of towns per Year × County group reduces approximately 
from 19 to 8. In order to avoid additional observation loss, this analysis does not use the house price cap and population limits. 
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but out of the listed city might more strongly respond to the magazine lists thereby moving 

into the city. For that reason, I compare listed towns with and without attention from local 

newspapers, controlling for their ranks.  

To do so, I examined whether each of the listed towns was introduced in local media outlets. 

From Google News search, I first collected news articles that report a magazine list between 

the list publication day and the last day of the year, using a keyword combination including 

“Money” and “best places to live” in addition to the name of the listed town and the year 

of each publication. Then I identified the publisher of each article, and included in my 

sample only articles that were published by local media outlets headquartered in the state 

where each listed town is located. As displayed in Table 1.11, only from 2010 on, more than 

half of the listed towns were covered by local media outlets. A limitation of this analysis is 

that I simply depend on Google News search results. Recently, almost all local newspapers 

provide news through both printed papers and websites, but some newspapers might have 

had only print formats in the early years of analysis. Other than local newspapers, some 

websites of local real estate or travel agencies also cover the magazine list publication, 

focusing on their home or neighboring towns included in the lists. But I do not take those 

company websites into account because people do not visit the websites on a regular basis; 

in contrast, many people read local newspapers or visit their websites every day18.   

 Local newspaper coverage of listed towns by year 

Year The number of 
non-listed towns 

The number of listed towns 
Total Covered 

by Local Newspaper 
Not covered 

by Local Newspaper 
2005 14,767 13 83 14,863 
2006 14,772 3 88 14,863 
2007 14,766 4 93 14,863 
2008 14,767 8 88 14,863 
2009 14,769 45 49 14,863 
2010 14,762 65 36 14,863 
2011 14,771 50 42 14,863 
2012 14,764 70 29 14,863 
2013 14,814 31 18 14,863 
2014 14,813 39 11 14,863 
Total 147,765 328 537 148,630 

Notes: This table shows variation in local newspaper coverage of the listed towns.  

 

 

 

18 There are more than 1,300 daily newspapers in the United States, and more than a quarter of adults read a newspaper every day 
(https://www.statista.com/statistics/183408/number-of-us-daily-newspapers-since-1975/) 

https://www.statista.com/statistics/183408/number-of-us-daily-newspapers-since-1975/
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 Regression results: The effect of local newspaper (2005-2014) 
 (1) (2) (3) (4) (5) (6) 

Dependent Var. ln(HPt+1/HPt) ln(HPt+2/HPt+1) 
Listed 0.00801*** 0.00293 -0.00504 0.0138*** 0.0112*** -0.00247 
 (0.00307) (0.00383) (0.00416) (0.00273) (0.00325) (0.00381) 

Listed × Local Newspaper Reporting  0.0103*** 0.0158***  0.00531* 0.0122*** 
  (0.00365) (0.00400)  (0.00309) (0.00339) 

Listed × Ranking -0.000110** -8.86e-05 -7.70e-05 -9.60e-05* -8.49e-05* -2.25e-05 
 (5.55e-05) (5.53e-05) (7.05e-05) (4.98e-05) (4.98e-05) (6.26e-05) 

Fixed Effects Year × State Year × State City, Year Year × State Year × State City, Year 
Observations 101,558 101,558 101,558 101,089 101,089 101,089 
Notes: This table shows how local newspaper reporting affects the link between list inclusion and housing prices. The dependent variable 
is the natural logarithm of house price growth during the first posttreatment year (columns 1 to 3) or the second year (columns 4 to 6). 
Listed is an indicator capturing whether the city is included in each year’s list. Local Newspaper Reporting is a dummy variable taking 1 if the 
listed town received attention from local newspapers between the list release day and the last day of the year. Models 1, 2, 4, and 5 include 
Year × State fixed effects, but Models 3 and 6 include year and individual city fixed effects. All columns control for house price growth 
during the past three years. Robust standard errors in parentheses are clustered by Year×County. *** p<0.01, ** p<0.05, * p<0.1 

The regression results indicate that the magazine lists have an independent effect through 

the local newspaper coverage even when the rankings are assumed to truly reflect the order 

of city quality (Table 1.12). Both list inclusion and rank orders have significant effects on 

local housing prices in models (1) and (4). However, Model 2 shows that the lists have a 

significant effect on house prices during the one-year post-treatment period only when listed 

towns are introduced in local newspapers. It is also notable that homebuyers do not pay 

more for higher ranked towns conditional on local media coverage. Perhaps, higher ranked 

towns are more likely to get media attention so could experience higher price increases.  

The primary advantage of this analysis is to identify an independent effect of the magazine 

lists, rather than to identify an effect of local media coverage. If the list inclusion and the 

rank orders truly reflect the quality of each city and if the underlying city characteristics are 

the only house price driver, then one would not expect such insignificant effects of list 

inclusion and rank orders conditional on local newspaper reporting. Thus this finding 

indicates not only that the magazine lists affect homebuyers by affecting coverage decisions 

of local newspapers, but also that the results in the previous section do not suffer a serious 

omitted variable issue.  

However, interpreting the effect of local newspapers is subject to an empirical concern, 

endogeneity of newspaper reporting. Local newspapers could reflect local economic 

conditions or the preferences of local residents, their readers. The local media outlets do not 

affect the magazine reports, but it is possible that local newspapers are more willing to 

deliver such information in MSAs or counties with residents who have a stronger interest in 
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house prices. That is, the local newspapers are likely to reflect local people’s characteristics 

toward investment or asset prices, so the results could be biased by the different 

characteristics across states or towns. For this reason, I include an individual fixed effects 

model. As seen in Table 1.11, some towns did receive local media attention in some years, 

but did not in other years. Exploiting this time-series variation eliminates the typical concern 

about biases arising from different local characteristics across space. The individual fixed 

effects models (3) and (6) in Table 1.12 robustly identify the causal effect of the best place 

lists.  

1.6 Conclusion 

Most homebuyers base their decisions on information from families, friends, agents, and 

internet websites due to quality uncertainty of houses and neighborhoods. It is well 

documented that quality information could facilitate better matches and thus increase 

consumer welfare. In addition, housing accounts for a large part of household expenditures 

or family wealth in the US and many other countries (Flavin and Yamashita, 2002; Campbell 

and Cocco, 2007; Piazzesi et al., 2007; Yamashita, 2007). However, the link between housing 

demand and information on city quality has not yet been studied. By exploiting the Money 

magazine’s annual reports, “Best places to live in America” lists, this paper characterizes the 

relationship. The magazine lists are a potential source that influences local housing markets 

for a couple of reasons. First of all, the magazine has the largest circulation of any monthly 

financial magazines in the United States: nearly two million readers. Also, the annual reports 

are frequently cited by local newspapers and social media, thereby being repeatedly exposed 

to individual homebuyers. In addition, the magazine is published by the Time Inc., one of the 

world's biggest media companies, so has an excellent reputation with individuals.  

However, identifying the link is challenging. Homebuyers may pay a premium both because 

the towns are listed and because the listed towns are of better quality than the other towns. 

To estimate the causal effect, this paper relies on difference-in-differences estimators 

combined with propensity score matching, and finds that the list inclusion predicts a gradual 

increase in house prices. For further causal investigations, this paper also exploits variation 

in local newspaper coverage on the magazine lists, and show that the lists have a significant 

effect only when the listed towns are introduced in local newspapers, thereby identifying an 

independent effect of the magazine lists. To the best of my knowledge, this paper is the first 
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to find the evidence that quality information or recommendations from media outlets can 

affect local housing prices. Despite the fact that the empirical results robustly confirm the 

causal link, however, the mechanism behind the link is still unclear and unidentified. The 

magazine lists could make readers believe that the listed towns are far superior to the others 

and ultimately wish to purchase a home there. People may move to listed towns believing 

that the places would give them better economic opportunities or quality of life. The third-

party information also can increase demand by simply making more people aware of the 

existence and the basic characteristics of the listed cities, which potentially contributes to 

better matches between heterogeneous homebuyers and neighborhoods. This paper leaves 

the question for future research.   
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How Does Media Attention Shape Urban 

Consumption? Evidence from the Restaurant Industry 

in New York City 

 

2.1 Introduction 

Consumers face a high degree of uncertainty regarding the quality of experience goods19, 

so quality information such as critical reviews or user ratings is commonly used in relevant 

industries, and media and experts have played a key role in informing consumers about 

product quality. A wide range of papers highlight the importance of media reviews in 

guiding consumer choices, although only a handful of studies have identified its causal 

effects on consumer demand for experience goods such as wine (Hilger et al., 2010; 

Friberg and Grönqvist, 2012), books (Berger et al., 2010), and movies (Eliashberg and 

Shugan, 1997; Reinstein and Snyder, 2005; Chen et al., 2012).  

Building upon the existing literature, this paper stresses potential channels through which 

publicity can affect consumer demand. Information about product quality could increase 

consumers’ likelihood of purchasing the guided goods in two ways. Above all, positive 

reviews can lead consumers to believe that the product is of high quality,20 thereby 

increasing demand (vertical consumer sorting). Hence this study emphasizes the role of 

positive quality indicators. But it is not the only channel. When no one knows all available 

alternatives, the media attention could increase demand not only by signalling quality of 

products but also by informing consumers about the existence of the reviewed products. 

For instance, Berger et al. (2010) documents that a negative review in the New York Times 

(NYT) increased sales of books by relatively unknown authors. As a marginal effect of 

information is larger when consumers have less prior knowledge or information about 

 

19 Nelson (1970) introduces the term, ‘experience goods’ of which quality can be fully judged only after consumption. 

20 In other words, such information increases consumers’ expected utility from the good. 
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certain products, media attention is expected to be able to boost sales simply by making 

more people aware of the reviewed goods. Yet products or services in many industries are 

both vertically and horizontally differentiated so that goods differ not only by quality and 

price but also by characteristics associated with consumers’ individual preferences. Simply, 

such information can help consumers to find products that best meet their heterogeneous 

needs by reducing search costs (horizontal consumer sorting). In this sense, this paper pays 

particular attention to how publicity can catalyze interactions between characteristics of 

consumers and products.  

For empirical tests, this study relies upon the restaurant industry in New York City (NYC). 

Numerous traditional media outlets and internet blogs publish professional restaurant 

reviews every day, but not a single paper has reported any empirical evidence on the role 

of media reviews in this industry, to the best of my knowledge. First of all, this paper starts 

by identifying a causal effect of the Michelin guide, one of the most popular and iconic 

dining guidebooks in this industry. By using NYC’s yellow taxi trip record data to 

construct a weekly panel of measures for restaurant demand, I find that newly Michelin-

starred restaurants experience a 3.2% increase in the number of taxi passengers dropped 

off within a 100 feet radius from each restaurant, which approximately corresponds to 

weekly sales growth of $936. Yet an empirical limitation with the guidebook is that only 

starred restaurants receive media attention although hundreds of non-starred restaurants 

are included. Thus it is not possible to disentangle the effect of the quality indicator, 

Michelin stars, from the media effect, which increases restaurant awareness. To overcome 

this issue, I utilize another popular and influential information source, NYT restaurant 

reviews. Specifically, all of the restaurant reviews are published in the press but only 60-

70% of them are awarded positive quality indicators by NYT critics. Empirical results 

demonstrate that consumer responses to the reviews are significant when restaurants win 

the media’s positive indicators. Positively reviewed restaurants experience around 4.6% 

more taxi traffic or $1,560 more weekly revenues. This finding is consistent with existing 

literature showing that, controlling for price and quantity, positively reviewed products are 

more demanded.  

Then this paper focuses on locational factors that possibly affect consumers’ restaurant 

choices in order to identify the awareness effect. Since NYT is one of the US’s most 

influential newspapers with a large readership, the reviews could substantially improve 

awareness of the existence and characteristics of each reviewed restaurant. Considering 
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that restaurants differ not only in quality but also in many other characteristics, increasing 

awareness might be able to contribute to better matches between restaurants and 

consumers. Among many characteristics of restaurants, location is one of the most 

important considerations in restaurant choices. A consumer may visit a reviewed 

restaurant regardless of quality indicators if the venue is located in her favorite 

neighborhood. In particular, Davis et al. (Forthcoming) demonstrate that demographic 

similarity between restaurant locations and either home locations or diners’ racial/ethnical 

identity has a large impact on diner decisions. By exploiting each taxi rider’s neighborhood 

characteristics inferred from destinations of post-dining taxi trips during evening peak 

hours, I present two main findings: 1) Black and Hispanic diners have stronger preferences 

for demographic similarity than Asians. In response to NYT reviews, a 10% larger share 

of black or Hispanic residents in a restaurant tract is associated with 6.0% more black or 

5.8% more Hispanic consumers, respectively. 2) Even when the reviews are not positive, 

black and Hispanic diners significantly respond to demographic characteristics of 

restaurant locations: a 6.7% or 12.0% increase in black or Hispanic diners, respectively. 

Thus the findings suggest that demographic characteristics of locations are important 

considerations for urban retailers targeting a specific demographic group of customers. 

Given that around one thousand restaurants open each year and about 80% of them go 

out of business within the next five years in New York City 21, the findings of this paper 

have several implications. First of all, professional critics have played a critical role in 

deciding who survives and who fails in the competitive industry. Thus this research sheds 

light on the roles of food writers and media outlets by answering two questions; how much 

economic value the professional critics provide, and why many of them use star-rating 

systems in addition to informative and detailed reviews. Second, restaurants are both 

vertically and horizontally differentiated, so media information can improve matches 

between heterogeneous consumers and products even in the absence of quality indicators. 

That is, such information can increase demand both through quality indicators and 

through awareness, resulting in both vertical and horizontal consumer sorting. Last, not 

only centrality but also demographic characteristics are important locational forces 

positively affecting urban consumers’ decisions22.  

 

21 Source: a documentary film, Eat This New York (2004) 

22 Davis et al. (2016) report that restaurant consumption in NYC is only half as segregated as residence, but publicity appears to make 
urban consumption more segregated.   
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Section 2.2 further discusses the role of publicity in the restaurant industry, and the 

following section 2.3 details the explanatory and dependent variables of this research, and 

describes how a weekly panel is constructed. After identifying the causal effect of the 

Michelin guide in section 2.4, this paper carefully disentangles the effects of quality 

indicators and awareness in section 2.5, exploiting NYT reviews.  

2.2 Media Attention in the Restaurant Industry 

Considering the size of the restaurant industry, particularly in the U.S.23, the potential 

economic impacts of popular restaurants are not negligible. Increasing consumer flows to 

top restaurants benefit nearby retailers such as cafés, pubs, bars, or alternative restaurants. 

Thus if a restaurant is successful, others tend to follow in nearby locations, and the area 

possibly becomes a popular destination for dining and, sometimes, also for housing. 

Indeed, many successful retail districts are anchored by popular restaurants. The presence 

of such tenants is also a plus in leasing adjacent space, so developers or investors always 

wish to attract popular restaurants to their properties. In the meantime, such popular 

restaurants could trigger urban retail gentrification. Rents in the hot neighborhood will go 

up as a result of increasing consumer flows, so more profitable retailers will displace early 

settlers including even landmark restaurants. That is, the composition of nearby retailers 

keeps changing to convert more traffic into sales or profits. A well-known example is 

Union Square Café in New York City. This iconic restaurant lost its space in 2015 although 

the anchor tenant was believed to have helped to revive its neighborhood since opening 

in 1986. It is simply because more profitable retailers such as international chain stores, 

banks and drugstores are willing to pay higher rents,24 ultimately benefiting landlords and 

real estate investors.  

Publicity has played a crucial role in the early prosperity of such top restaurants. As quality 

of food cannot be fully evaluated before experience, many diners base their choices on 

recommendations from various sources like the Michelin Guide. The French tyre company 

Michelin has awarded Michelin stars to a list of selected restaurants and published their 

 

23 The restaurant industry is the second-largest private sector employer in the U.S., and industry sales are projected to reach at $798.7 
billion with 14.7 million employees in 2017 (National Restaurant Association, http://www.restaurant.org).  

24 The newly proposed rent for the space was $650,000 per year, and a Japanese chain restaurant moved into the location in 2016. For 
more information, see the following articles : New York Times (www.nytimes.com/2014/06/24/dining/ union-square-cafe-joins-other-
victims-of-new-york-citys-rising-rents.html?_r=0), and Urban Land Institute (urbanland.uli.org/ sustainability/food-adds-flavor-value-
real-estate-agrihoods-food-halls-food-based-concepts/). 

http://www.nytimes.com/2014/06/24/dining/%20union-square-cafe-joins-other-victims-of-new-york-citys-rising-rents.html?_r=0
http://www.nytimes.com/2014/06/24/dining/%20union-square-cafe-joins-other-victims-of-new-york-citys-rising-rents.html?_r=0
http://urbanland.uli.org/sustainability/food-adds-flavor-value-real-estate-agrihoods-food-halls-food-based-concepts/
http://urbanland.uli.org/sustainability/food-adds-flavor-value-real-estate-agrihoods-food-halls-food-based-concepts/
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guidebooks across the globe for more than a century, initially, to boost the demand for 

their car tires. There is no empirical evidence, but some anecdotal stories tell us that such 

third-party judgement has strong influences on diners’ choice. For instance, a café in 

France was overwhelmed with phone calls for a table reservation after it won a Michelin 

star by mistake.25  Even, the Michelin star has been alleged to boost nearby house prices,26 

as top restaurants are frequently considered as local amenities or attractions; a recent paper 

(Kuang, 2017) demonstrates that both quantity and quality of restaurants are capitalized 

in the value of nearby housing.  

A wide range of methods have been used to convey such quality information to diners, 

but the internet user reviews on social media are recently becoming important in informing 

consumers about restaurant quality. In response, a couple of papers estimate a causal effect 

of Yelp’s user ratings27. Since users assign a rating from 1 to 5 stars but the social media 

displays the average rating after rounding off to the nearest half star, researchers can take 

advantage of the display system by employing regression discontinuity design. Anderson 

and Magruder (2012) find that an extra half-star rating causes restaurants to sell out their 

prime time tables 19% points more frequently, using restaurant reservation availability as 

an outcome variable, and Luca (2016) reports that a one-star increase in rating leads to a 

5-9 % increase in revenue.  

Yelp might be crucial for established restaurants, and owners certainly pay a lot of 

attention to user ratings on social media. However, many newly opened retailers still 

depend on the traditional mass media to grab attention. When they cannot afford a prime 

location with high foot traffic, the new restaurateurs use various marketing strategies to 

attract traffic to their locations. In particular, quality information from seemingly neutral 

and credible third-party critics has the potential to have a great impact on demand (Nelson, 

1974). Positive publicity by an influential newspaper draws substantial attention from 

potential customers, stimulating their appetites. Therefore, retailers have strong incentives 

to draw attention from news media. For this reason, sponsored reviews have been one of 

the most controversial ethical topics among food journalists. However, the economic 

 

25 For more information, see the Telegraph article (www.telegraph.co.uk/news/2017/02/18/workmens-cafe-overwhelmed-customers-
accidentally-given-michelin/) 

26 See Financial Times  (www.ft.com/content/f72f5962-0522-11e5-8612-00144feabdc0), Telegraph (www.telegraph.co.uk/property/ 
house-prices/how-the-uks-best-restaurants-are-driving-up-property-prices/), and Country & Town House (www.countryandtownhouse 
.co.uk/property/michelin-stars-good-property-prices/). 

27 A user review website for local businesses (www.yelp.com/) 

http://www.telegraph.co.uk/news/2017/02/18/workmens-cafe-overwhelmed-customers-accidentally-given-michelin/
http://www.telegraph.co.uk/news/2017/02/18/workmens-cafe-overwhelmed-customers-accidentally-given-michelin/
http://www.ft.com/content/f72f5962-0522-11e5-8612-00144feabdc0
http://www.telegraph.co.uk/property/%20house-prices/how-the-uks-best-restaurants-are-driving-up-property-prices/
http://www.telegraph.co.uk/property/%20house-prices/how-the-uks-best-restaurants-are-driving-up-property-prices/
http://www.yelp.com/
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impacts or values of such media attention have not been studied yet in this business, to 

my knowledge, despite the fact that professional media critics have existed for a long time 

in the food and beverage market.   

2.3 Data 

For empirical tests, I rely upon 807 restaurants located in New York City. Specifically, 135 

restaurants won a Michelin star or more at least once between 2006 and 2017. The number 

of starred restaurants in NYC has increased from 40 in 2006 to 99 in 2017, and, on average, 

about 10 restaurants were newly starred every year. In the meantime, the New York Times 

reviews two restaurants nearly every week, so the sample includes 755 restaurants reviewed 

by the newspaper from 2008 to 2016. Out of the 807 venues, 78 were both NYT-reviewed 

and Michelin-starred restaurants. 

Notably, this study uses the number of taxi drop-offs or passengers as a proxy of demand 

for each restaurant. One of the key empirical issues in this kind of research is availability 

of individual restaurant-level sales data, so it is not surprising that there exist only a couple 

of empirical papers in the restaurant industry given that micro-data for restaurant revenues 

is rare or very inaccessible to researchers. To overcome the limitation, I utilize NYC’s 

Yellow Taxi Trip Record Data collected and provided to the NYC Taxi and Limousine 

Commission (TLC) through the Taxi Passenger Enhancement Program (TPEP)28. The 

records cover all trips completed in yellow taxis from January 2009 to June 2016, including 

dates, times, locations (longitudes and latitudes) for both pick-ups and drop-offs in 

addition to passenger counts, trip distances, itemized fares, etc. More than 160 million 

yellow taxi trips per year, and around 1.2 billion trips in total occurred during the period. 

To construct a panel of restaurant demand measures, I identified taxi drop-offs within a 

100 feet radius from each restaurant’s centroid29, and then counted each week’s total 

number of drop-offs. By doing so, my data set consists of weekly taxi drop-offs for the 

807 restaurants over 391 weeks; in addition to drop-offs, I also use the total number of 

passengers as a dependent variable. This indirect measure is expected to effectively capture 

consumer attention because taxis are a major mode to travel to restaurants in the crowded 

 

28 For more information on the data, see the website (www.nyc.gov/html/tlc/html/about/trip_record_data.shtml) 

29 More precisely, the radius is based on each restaurant’s coordinates (longitude and latitude) extracted from Google Map, using a Stata 
package, geocode3. 

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml


 

46 
 

city. Consumers visiting a restaurant after release of a review might have visited the same 

venue by another transport mode. But the change of transport mode may be independent 

of the change of consumer choices. Also, increases in taxi riding customers are likely to 

be correlated with increases in ones relying upon other transportation modes. In some 

senses, the number of taxi rides is a more accurate measure for consumer attention because 

revenues reflect only traded services, but taxi rides capture both traded and untraded 

demand; when there is no available table in destination restaurants, people often choose 

nearby alternative restaurants, so realized revenues underestimate actual demand shocks 

under supply constraints of restaurants. Uber, the ride-sharing company, has already taken 

advantage of the link between taxi rides and restaurant demand, releasing multiple types 

of restaurant lists ranked by the total number of drop-offs. For example, its ‘Up-and-coming’ 

restaurants have the greatest increase in drop-offs, and ‘Brunch spots’ list is determined by 

the number of drop-offs during weekend brunch hours30.  

Figure 2.1. Pre-and post-treatment trends of passenger counts at newly Michelin-starred restaurants 

 
Notes: I investigate whether newly Michelin-starred restaurants experience higher taxi traffic 
than before. The Circle area is within a 100 feet radius from the centroid of each restaurant. 
Donut 1 is between two circles of 100 and 200 feet radiuses from the same restaurant. 
Likewise, Donut areas 2, 3, 4, and 5 are 200-300, 300-400, 400-500, and 500-600 feet far 
from each restaurant centroid, respectively. By identifying the taxis arrived at each 
restaurant, this figure shows the normalized average number of taxi passengers dropped off 
inside each of six areas over 8-week pre- and post-treatment periods. Each passenger count 
index is equal to 100 in the week when a new Michelin guide was published (week 0). This 
result is from 77 restaurants that newly won a Michelin star or more between 2009 and 
2015.   

More importantly, this real-time measure enables this study to conduct short-term causal 

investigations. As quality, price and quantity aspects of food are all time-varying but not 

 

30 For further details, visit Uber’s website (www.uber.com/info/restaurant-guide/) 
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very observable, mid- or long-term analysis is subject to serious omitted variable biases. It 

is possible that restaurants raise prices or fail in quality control in response to increasing 

demand since a media review is published. If it is the case, then the treatment effects are 

underestimated. For this reason, this study primarily focuses on short-term analyses, taking 

full advantage of the proxy. To investigate whether and how much the outcome variable 

can capture the treatment effect in the short run, I counted the number of passengers 

dropped off inside areas of one circle and five donuts centered at each newly Michelin-

starred restaurant: 0-100, 100-200, 200-300, 300-400, 400-500, 500-600 feet radiuses, 

respectively. The following visual illustration shows strongly parallel pretreatment trends, 

but distinctive deviations after treatment between the circle and donuts, suggesting that 

the treatment has a significant effect on the number of taxi riders dropped off inside the 

circle area (Figure 2.1).   

An empirical challenge is that each restaurant has a different life span. For instance, many 

restaurants are in operation only for a few years. However, the accurate dates when each 

restaurant began to operate and closed permanently are missing31. To approximate the 

open date of each restaurant, I collected the date of the first user review on Yelp.com, and 

computed the date three months before each treatment (the publication date of a Michelin 

guide or a NYT review), assuming that each restaurant was in operation at least during the 

three-month pretreatment period32. Then I treated an earlier one of the two dates as the 

open date. Likewise, I treated a later one of the last user review date and the date six-

month later as the close date. As a consequence, each restaurant’s operation periods vary 

so the panel data set used in this study is highly unbalanced.  

2.4 Impact of the Michelin Guide 

A variety of quality indicators on restaurants have been favorites of diners, and one of the 

most iconic indicators is the Michelin Guide. In this section, I investigate whether a new star 

in the guidebook can help restaurants attract more customers. The Michelin star, as a 

quality indicator, could have a significant influence on consumer choices and thus on 

demand for the starred restaurants. To identify the link, this study estimates the impact 

 

31 I treat relocated restaurants as permanently closed to construct a consistent panel data. 

32 Compared to NYT reviews, the Michelin guide reportedly takes longer time to award a star, so I assume that newly Michelin-starred 
restaurants were in operation for at least six months before treatment.  
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only on newly Michelin-starred restaurants to exploit time-series variation in treatment. In 

addition, comparing Michelin-starred restaurants to non-starred or non-NYT-reviewed 

restaurants is subject to a potential endogeneity issue because quality of restaurants is 

unobservable. Consumers could visit a restaurant not only because it has won the star but 

also because it serves or is told to serve food of high quality even in the absence of such 

treatment. To alleviate the bias, my data set includes only Michelin-starred or NYT-

reviewed restaurants because ever-treated restaurants are the best counterfactual in terms 

of quality. Thus treatment groups are newly starred restaurants each year, and control 

groups are the restaurants reviewed by NYT or starred by the Michelin guide in earlier or 

later years than the treated.  

As the firm announces a new list of starred restaurants once a year (between September 

and November), I restrict the time window of each year to 17 weeks (8 pre-treatment 

weeks, 1 treatment week, and 8 post-treatment weeks33), thereby involving 117 weeks in 

total (17 weeks × 7 years). As discussed earlier, the main reason for this short-term analysis 

is because information on changes in prices or food quality is missing. Sellers can capitalize 

such information not only through quantity but also through price. That is, supply-inelastic 

restaurants are more likely to accommodate a demand shock by raising prices rather than 

quantities. Other than price changes, quality of food, the single most important omitted 

variable, is also time varying in the long run. Although some restaurants succeed in serving 

higher quality food over time, many fail in quality control as demand increases. In this 

case, the coefficient would badly underestimate the effect of the quality information. 

Therefore, following equation measures the relative demand increase in the posttreatment 

weeks, assuming that prices and food quality stay unchanged during the short-term time 

window. 

(2.1)   𝑌𝑌 𝑖𝑖𝑖𝑖
𝐶𝐶 = 𝛼𝛼𝑖𝑖 + 𝜆𝜆𝑡𝑡 + 𝛽𝛽 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛 𝑖𝑖𝑖𝑖 + 𝛾𝛾1 𝑌𝑌 𝑖𝑖𝑖𝑖

𝐷𝐷 + 𝛾𝛾2 𝑁𝑁𝑁𝑁𝑇𝑇𝑖𝑖𝑖𝑖  + 𝜀𝜀𝑖𝑖𝑖𝑖  

where, 

𝑌𝑌 𝑖𝑖𝑖𝑖
𝐶𝐶  : the natural log of the numbers of taxi drop-offs or passengers dropped off inside a 

circle area within a 100 feet (30.48 m) radius from restaurant 𝑖𝑖 in week 𝑡𝑡. 

 

33 Technically, they are 8-week pre-treatment and 9-week post-treatment periods. 
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𝑌𝑌 𝑖𝑖𝑖𝑖
𝐷𝐷  : the logarithm of drop-off or passenger count inside the donut area between 300 and 

400 feet34 radiuses from restaurant 𝑖𝑖 in week 𝑡𝑡. This spatially lagged dependent variable is 

mainly used to control for regional taxi traffic volumes or trends. Some of the variation in 

taxi trips is due to variation in a measurement error. In addition, some unobservables may 

drive both the treatment and the demand for each restaurant. Thus the treatment is 

possibly correlated with some omitted variables. For example, as the number of taxi trips 

is a measure for consumer flows, restaurants in more intensely developed or popular retail 

areas are more likely to serve high quality food and to have more nearby taxi trips. Also, 

emerging retail districts or neighborhoods could be closely associated with the likelihood 

of getting Michelin-starred or NYT-reviewed, becoming increasingly popular destinations 

for taxi riders. Such spatial omitted variables can be a source of serious endogeneity. Thus 

this control variable is expected to substantially address the concern.  

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑖𝑖𝑖𝑖 : the primary focus of this section taking the value 1 if restaurant 𝑖𝑖 is newly 

Michelin-starred and week 𝑡𝑡 is after restaurant 𝑖𝑖 is treated, and 0 otherwise. 

𝑁𝑁𝑁𝑁𝑁𝑁 𝑖𝑖𝑖𝑖 ∶ an indicator that is equal to 1 if week 𝑡𝑡 is after restaurant 𝑖𝑖 is reviewed by the New 

York Times. I include this term to control for prior awareness or perception of restaurant 

quality. As mentioned earlier, hundreds of restaurants open and other hundreds close 

every year, so it is not possible that people know about many of them. When NYT, an 

influential newspaper, reviewed a restaurant, the restaurant is more likely to get Michelin-

starred because the review makes more people aware of the existence and quality of the 

restaurant, including the Michelin guide inspectors. Thus adding this term could help 

further recover the treatment effect of a Michelin star conditional on prior NYT reviews; 

if a restaurant was NYT reviewed before winning a Michelin star, the marginal effect of a 

Michelin star could be smaller because people are already aware of the existence and 

quality of the restaurant.  

As selection is based on the quality of each restaurant, a main source of OVB (omitted 

variable bias) is at an individual level, but restaurant characteristics reflecting quality of 

food are unmeasurable and unobservable in this analysis. My data set contains some 

restaurant characteristics such as zip code, neighbourhood, price range, and cuisine type. 

They could partially affect consumer flows, but might not be significantly correlated with 
 

34 Most of avenues and streets in New York City are 100 feet and 60 feet wide, respectively. Some exceptional avenues are between 60 
and 150 feet wide, while some streets are either 80 or 100 feet in width. If some taxis drop passengers off across the street or avenue, then 
a donut area between 100 and 300 feet radius could be partially affected by the treatment. For this reason, I use the donut area between 
300 and 400 feet as a spatial covariate.   
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the treatment propensity. Moreover, the number of taxi trips is affected not only by 

restaurant characteristics but also by various location-specific components that are 

potentially associated with the treatment but cannot be explained by restaurant 

characteristics. In this sense, control restaurants may not provide a good measure of 

counterfactual taxi trips in the absence of the treatment even when the quality of each 

restaurant is perfectly observable. 

For these reasons, I control for individual fixed effects (𝛼𝛼𝑖𝑖), which can capture both 

restaurant- and location-specific omitted variables, exploiting temporal variation. In order 

to control for time trends and seasonal variation in restaurant demand, I also include week 

fixed effects (𝜆𝜆𝑡𝑡: week dummies for each of the 391 weeks represented in the sample), thus 

the number of taxi trips or passengers is determined mainly by the sum of a time-invariant 

individual effect and a week effect that is common across restaurants or locations.  

The effect of a new Michelin star by time window 
 (1) (2) (3) (4) 

Pre- and Post-treatment Periods 2 weeks 4 weeks 8 weeks 12 weeks 
Dependent Var. ln (Dropoff) ln (Dropoff) ln (Dropoff) ln (Dropoff) 

Post_Michelin 0.0355** 0.0221* 0.0328** 0.0336*** 
 (0.0156) (0.0133) (0.0131) (0.0123) 

NYT 0.0524*** 0.0515*** 0.0408*** 0.0305** 
 (0.0161) (0.0147) (0.0134) (0.0132) 

ln(DropoffD) 0.319*** 0.360*** 0.394*** 0.412*** 
 (0.0538) (0.0414) (0.0391) (0.0372) 

Observations 16,013 28,347 52,581 75,799 
Adj. R-squared 0.975 0.974 0.973 0.973 

Notes: Based on regression results from Equation 2.1, this table shows how the results vary by time window.  
The dependent variable is the log of the number of taxi drop-offs inside the circle area of each newly 
Michelin-starred restaurant. Post_Michelin is an interaction of two indicators capturing whether the restaurant 
is newly Michelin-starred, and whether the week is a post-treatment period. NYT is a dummy that is equal 
to 1 if the restaurant is reviewed by New York Times before Michelin-starred. This term controls for prior 
awareness or perception of restaurant quality. ln(DropoffD), a spatially lagged dependent variable, is the log of 
the weekly number of taxi drop-offs inside the donut area between a 300 and 400 feet radiuses from each 
restaurant, and controls for local taxi traffic trends. All models include week and restaurant fixed effects. 
Robust and neighborhood-level clustered standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Table 2.1 presents that length of the pre- or post-treatment periods does not make any 

noticeable distinction in estimating the causal effect. The numbers of drop-offs and 

passengers also generate fairly similar results (Table 2.2). In response to the treatment, 

newly Michelin-starred restaurants see more than 3% increases in taxi drop-offs or 

passengers, or an increase of $ 935.735 in weekly revenues during the 8-week posttreatment 

period. Interestingly, NYT reviews, as a control variable, have a larger effect. The 

 

35 For convenient interpretation, I use approximate sales as a dependent variable. On Yelp.com, each restaurant is assigned 1-4 $ sign 
symbols, and the cost per person for a meal is displayed in Table 2.3. To approximate marginal sales in dollar terms, I take the median 
cost, and then restaurant sales are equal to (number of passengers) × (median cost per person). Hence estimated coefficients can be 
interpreted as the approximate marginal revenue of information. As the estimated sales growth is only a portion measured by increases in 
taxi-riding consumers, actual monetary growth could be greater. 
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newspaper has more circulations, so reviewed restaurants may receive more attention. 

Also, Michelin-starred restaurants may have inelastic supply due to their kitchen capacity 

and quality control. That is, they are not likely to strongly respond to demand shocks. 

Although the estimated coefficient is more significant on the trip count, I use the 

passenger count as a base dependent variable in the following regressions as it is a more 

accurate measurement for demand or consumer attention.  

 The effect of a new Michelin star by dependent variable 
 (1) (2) (3) 

Dependent Var. ln(Dropoff) ln(Passenger) Passenger 
Post_Michelin 0.0328** 0.0313** 10.18 
 (0.0131) (0.0142) (9.625) 

NYT 0.0408*** 0.0463*** 24.99*** 
 (0.0134) (0.0151) (9.053) 

ln(DropoffD) 0.394***   
 (0.0391)   

ln(PassengerD)  0.334***  
  (0.0370)  

PassengerD   0.0932*** 
   (0.0116) 

Observations 52,581 52,580 52,581 
Adj. R-squared 0.972 0.964 0.960 

Notes: This table shows regression results from Equation 2.1 using three different 
dependent variables: the log of the number of taxi drop-offs inside the circle area 
of each newly Michelin-starred restaurant in Model 1, the log of the total number 
of taxi passengers (= the number of taxi drop-offs × the number of passengers of 
each taxi trip) in Model 2, and the number of passengers in Model 3. Post_Michelin 
is an interaction of two indicators capturing whether the restaurant is newly 
Michelin-starred, and whether the week is a post-treatment period. NYT is a 
dummy that is equal to 1 if the restaurant is reviewed by the New York Times 
before Michelin-starred. ln(DropoffD), ln(PassengerD), PassengerD are spatially lagged 
dependent variables to controls for local taxi traffic trends. All models include 
week and restaurant fixed effects. Robust and neighborhood-level clustered 
standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Yelp.com price information  

Notes: Based on the cost per person estimated by Yelp.com (Row 1), this study applies the approximate 
median cost per person in Row 2 to calculate approximate increases in restaurant sales (=approximate median 
cost per person × increase in taxi passengers).     

2.5 Impacts of NYT reviews 

The Michelin guide does not enable this study to disentangle effects of quality indicators 

and publicity. This is because only starred restaurants receive substantial media attention 

although the guide book includes hundreds of non-starred restaurants in NYC. To 

overcome this obstacle, I use NYT reviews since all of the reviewed restaurants are 

published in the mass media but not all of them get starred by NYT critics. Yet relying 

upon the media reviews is subject to another empirical challenge arising from the 

Yelp Price Sign $ $$ $$$ $$$$ 
Cost Per Person under $10 $11-30 $31-60 above $61 

Approximate Median Cost Per Person $ 7 $20 $45 $80 
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unbalanced panel. As each reviewed restaurant has a different publication date and a 

different life span, the composition of treated and untreated groups change every week as 

a result of new publications. Thus estimates based on variation across restaurants could 

be inconsistent varying by each weeks’ treatment-control composition. To relieve this 

concern, the baseline equation for NYT reviews depends largely on short-term time-series 

variation by replacing individual fixed effects (𝛼𝛼𝑖𝑖) with restaurant-specific time window 

fixed effects (𝑤𝑤𝑖𝑖). Many of the reviewed restaurants have more post-treatment than pre-

treatment weeks. By using the same 17-week time window36, I can exploit time variation 

within the symmetric time window of each restaurant, estimating the short term response 

to the treatment. Thus only within-window variation over time is used to estimate the 

treatment effect. 

(2.2)   𝑌𝑌 𝑖𝑖𝑖𝑖
𝐶𝐶 = 𝑤𝑤𝑖𝑖 + 𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖𝑖𝑖) + 𝛾𝛾1 𝑌𝑌 𝑖𝑖𝑖𝑖

𝐷𝐷 + 𝛾𝛾2 𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 it + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

where 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖𝑖𝑖, the key variable of this section, is an indicator taking the value 1 if 𝑡𝑡 is a 

post-treatment week for restaurant 𝑖𝑖, whereas 𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 it is a control variable indicating 

whether or not entity 𝑖𝑖 is a Michelin-starred restaurant in week 𝑡𝑡. In addition, I include 

week × zipcode × cuisine × price37 fixed effects (𝜆𝜆 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡) instead of week fixed effects (𝜆𝜆 𝑡𝑡) 

to further recover causal effects by controlling for heterogeneous demand shocks. In the 

previous section, effects of group-specific time-invariant unobservables could average out 

to zero over the weeks because the panel is perfectly balanced. But compositions of 

restaurants vary each week in this specification, so certain shocks are not likely eliminated. 

To avoid any biases associated with the group-specific demand, I exploit variation within 

week-zipcode-cuisine-price groups. It is also to more strongly restrict control groups or 

an alternative set of restaurants to more comparable restaurants that are expected to be 

under the influence of common demand shocks each week. In other words, restaurants in 

each group can be considered as a group of fairly good substitutes in the same market; 

when we decide which restaurants to go to, we comprehensively consider time, locations, 

cuisine types, and price ranges.  Thus this specification could capture whether quality 

indicators significantly affect consumer decisions, controlling for combinations of time, 

location, cuisine, and price level. This is also a more conservative approach as the 

 

36 Again, 8 pre-treatment weeks, 1 treatment week, and 8 post-treatment weeks 

37 This study categorizes cuisine types into six groups (African, American, Asian, European, Spanish/Mexican/Latin American, and the 
others), and prices into four group ($, $$, $$$, and $$$$ in Table 2.3). 
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specification generates a larger robust standard error; Table 2.4 shows that standard errors 

increase by about 64% when moving from column 1 (𝜆𝜆 𝑡𝑡) to column 5 (𝜆𝜆 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡). 

 The effect of New York Times reviews by fixed effects specification 
 (1) (2) (3) (4) (5) 

Dependent Var. ln(Passenger) ln(Passenger) ln(Passenger) ln(Passenger) ln(Passenger) 
PostNYT 0.0467*** 0.0431*** 0.0377*** 0.0431** 0.0416** 
 (0.0103) (0.0121) (0.0110) (0.0168) (0.0169) 

Fixed Effects      
  time window  YES  YES  YES YES YES 
  week  YES     
  week×zipcode    YES    
  week×zipcode×price    YES   
  week×zipcode×cuisine      YES  
  week×zipcode×cuisine×price      YES 

Observations 183,696 183,696 183,696 183,696 183,696 
Adj. R-squared 0.966 0.975 0.977 0.977 0.979 

Notes: This table shows regression results from Equation 2.2 with various fixed effects specifications. In this table, I investigate 
how the standard error and the size of coefficients vary by fixed effects specification. The dependent variable is the log of the 
number of taxi passengers. PostNYT is an interaction term of two indicators capturing whether the restaurant is reviewed by the 
New York Times (NYT), and whether the week is a post-treatment period. All models rely on 17-week time window which 
consists of 8 pre-treatment weeks, 1 treatment week, and 8 post-treatment weeks. By controlling for individual-restaurant-specific 
time window fixed effects, the models exploit within-time-window variation over time. The cuisine fixed effects consists of six 
dummies for African, American, Asian, European, Spanish/Mexican/Latin American, and the others, and the price fixed effects 
employ the four price groups in Table 2.3 ($, $$, $$ or $$$$). All models include two control variables, a Michelin star indicator 
and a spatial lag. Robust and neighborhood-level clustered standard errors are in parentheses.    *** p<0.01, ** p<0.05, * p<0.1 

NYT reviews increase taxi drop-offs or passengers by about 4% (Table 2.5), or weekly 

sales by $1,294, which amounts to more than $10,000 in total for the 8-week post-

treatment period. The marginal revenue also can be interpreted as the monetary value of 

the incentive for restaurants to sponsor the media critics; total marginal sales including all 

transit modes in longer terms could be larger. 

 The effect of New York Times reviews by dependent variable 
 (1) (2) (3) 

Dependent Var. ln (Dropoff) ln(Passenger) Passenger 
PostNYT 0.0362** 0.0416** 30.26** 
 (0.0166) (0.0169) (12.53) 

Observations 183,699 183,696 184,011 
R-squared 0.984 0.979 0.952 

Notes: This table shows regression results from Equation 2.2 with three different 
dependent variables: the log of the number of taxi drop-offs in Model 1, the log of the 
total number of taxi passengers in Model 2, and the number of passengers in Model 3. 
PostNYT is an interaction term of two indicators capturing whether the restaurant is 
reviewed by NYT, and whether the week is a post-treatment period. Relying on a 17-week 
time window, all models include two control variables, a Michelin star indicator and a 
spatial lag, and two fixed effects, individual-restaurant-specific time window and week-
zipcode-cuisine-price. Robust and neighborhood-level clustered standard errors are in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1 

 

2.5.1 Quality Indicators and Consumer Responses 

NYT reviews per se do not ensure that reviewed restaurants are of higher quality than the 

non-reviewed. Just as the Michelin guide uses star-ratings, the newspaper uses two kinds 
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of quality indicators to summarize their opinion: NYT Critics’ Pick (CP) and stars. As 

displayed in Figure 2.2, CP is a binary indicator (Yes or No). In addition to that, the chief 

restaurant critic can assign star ratings from zero to four38.  Out of 755 restaurants 

reviewed from January 2008 to December 2016, 425 won the CP, and 304 obtained at 

least one star (Table 2.6).  

Figure 2.2. NYT restaurant reviews 
Panel A. Positive review 

 
Panel B. Non-positive review 

 
Notes: This figure shows examples of positive and non-positive reviews by the New York Times (NYT). NYT uses 
two types of quality indicators, NYT Critics’ Pick (yes or no) and star ratings (0-4 stars). Panel A displays a positive 
review with both quality indicators, whereas Panel B shows a non-positive review without any of them.    

Frequency distribution of each quality indicator  
Panel A. Individual frequency distribution 

 YES 425   0 451  
Critics’ Pick NO 330  Star 1 124  
 Total 755   2 136  
     3 40  
     4 4  
     Total 755  

Panel B. Joint frequency distribution 
                                     Star 
  0 1 2 3 4 Total 

 YES 196 61 125 39 4 425 
Critics’ Pick NO 255 63 11 1 0 330 
 Total 451 124 136 40 4 755 

Notes: This table shows the frequency distribution of the two quality indicators for 755 
restaurants reviewed by NYT from 2008 to 2016. 

 

 

38 Star ratings range from zero to four stars and reflect the reviewer’s reaction primarily to food, with ambiance, service and price taken 
into consideration zero is poor, fair or satisfactory—One star, good. Two stars, very good. There stars, excellent. Four stars, 
extraordinary—according to the NYT critics (https://archive.nytimes.com/www.nytimes.com/packages/html/dining/info/ratings.html 
and https://dinersjournal.blogs.nytimes.com/2012/03/13/why-our-reviews-have-stars/). Thus reviews without any of their indicators 
can be considered as negative or at most neutral.  

https://archive.nytimes.com/www.nytimes.com/packages/html/dining/info/ratings.html
https://dinersjournal.blogs.nytimes.com/2012/03/13/why-our-reviews-have-stars/
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Heterogeneous effects of New York Times reviews  
Dependent Variable: ln(Passenger) (1) (2) (3) (4) 

PostNYT × Pick (Yes) 0.0581***    
 (0.0212)    

PostNYT × Pick (No) 0.00851    
 (0.0241)    

PostNYT × Star (4)  0.281***   
  (0.0480)   

PostNYT × Star (3)  0.0532   
  (0.0540)   

PostNYT × Star (2)  0.0580*   
  (0.0310)   

PostNYT × Star (1)  -0.0103   
  (0.0262)   

PostNYT × Star (0)  0.0377*   
  (0.0206)   

PostNYT × Pick (Yes) × Star (Yes)    0.0625**  
   (0.0292)  

PostNYT × Pick (Yes) × Star (No)    0.0490**  
   (0.0247)  

PostNYT × Pick (No) × Star (Yes)    -0.0257  
   (0.0352)  

PostNYT × Pick (No) × Star (No)    0.0282  
   (0.0327)  

PostNYT × Positive    0.0452** 
    (0.0191) 

PostNYT × Nonpositive    0.0282 
    (0.0337) 

Observations 183,696 183,696 183,696 183,696 
Adj. R-squared 0.979 0.979 0.979 0.979 

Notes: This table shows heterogeneous effects by quality indicator. The dependent variable is the log of the number of taxi 
passengers. PostNYT, the variable of interest, is an interaction term of two indicators capturing whether the restaurant is reviewed 
by NYT, and whether the week is a post-treatment period. Pick (Yes) and Pick (No) are indicators capturing whether the restaurant 
received NYT Critics’ Pick. Star (0), Star (1), Star (2), Star (3), and Star (4) in Model 2 are dummy variables indicating the number of 
stars that the restaurant received. Star (Yes) and Star (No) in Model 3 are dummies capturing whether the restaurant received any 
stars. Positive and Nonpositive in Model 4 are indicators capturing whether the review is positive or non-positive. In this study, 
positive reviews are with any of the two quality indicators (NYT Critics’ Pick or stars), and negative reviews are without any of 
them. Relying on a 17-week time window, all models include two control variables, a Michelin star indicator and a spatial lag, and 
two fixed effects, individual-restaurant-specific time window and week-zipcode-cuisine-price. Robust and neighborhood-level 
clustered standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

To investigate whether the marginal impact of information varies according to various 

quality groups, the key treatment dummy is interacted with each indicator dummy. 

Relevant literature, particularly in finance, points out that such indicators, as summarized 

information, could play a crucial role in consumer responses; as they have a limited amount 

of time and cognitive resources to process information, people underreact to full 

information (Hong and Stein, 1999; Dellavigna and Pollet, 2009; Luca, 2016). Indeed, 

Table 2.7 tells us that the positive quality indicators have a significantly positive impact 

on restaurant sales. Specifically, restaurants that have won any positive indicator 

significantly outperform the others, generating 4.6%39 more taxi riders (column 4) or 
 

39 exp(0.0452)-1=0.0462 
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approximately $1,560 additional weekly sales. The empirical results indicate that 

consumers selectively respond to the reviewed restaurants, confirming that the indicators 

play a critical role in boosting demand. Positive indicators may strongly influence 

consumers’ expected utility or product evaluations, thereby leading to vertical consumer 

sorting. Importantly, selection or being reviewed itself could be an outcome of gaining 

popularity, but positive indicators are the critics’ subjective judgement, so this result 

robustly confirm the causal link between quality information and restaurant demand. 

As mentioned earlier, even negative reviews could have positive effects. Given that many 

of NYT reviewed restaurants are relatively new and thus few people know about the 

restaurants, it is not surprising that reviewed restaurants experience an increase in sales 

even when reviews are not positive, as seen in column (4). Yet the link between awareness 

and demand appears weak, as the increase is statistically insignificant. To further examine 

the effect of awareness, I conduct a mid-term analysis using the following equation with 

an extended time window of 8-week pretreatment and 52-week posttreatment periods.  

Figure 2.3.  Mid-term estimates of the NYT review effect (8 pre-treatment and 52 post-treatment weeks) 

Notes: The figures display estimated coefficients and 95 percent confidence intervals from Equation 2.3 during two pre-treatment 
and 13 post-treatment periods; each period is 4-week long, and thus the time window is 60 weeks in total. The missing Pre_1 is 
the baseline period. Panels A and B show the effects of a positive review and a non-positive review, respectively, over the periods. 
All models include two control variables, a Michelin star indicator and a spatial lag, and two fixed effects, individual-restaurant-
specific time window and week-zipcode-cuisine-price. Standard errors are robust and neighborhood-level clustered. 

(2.3)   𝑌𝑌 𝑖𝑖𝑖𝑖
𝐶𝐶 = 𝛽𝛽−2 𝑃𝑃𝑃𝑃𝑃𝑃_2𝑖𝑖𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑖𝑖 + ∑ 𝛽𝛽𝑗𝑗13

𝑗𝑗=1 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑗𝑗𝑖𝑖𝑖𝑖 × 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑒𝑒𝑖𝑖 

   + 𝛿𝛿−2 𝑃𝑃𝑃𝑃𝑃𝑃_2𝑖𝑖𝑖𝑖 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑖𝑖 + ∑ 𝛿𝛿𝑗𝑗13
𝑗𝑗=1 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_𝑗𝑗𝑖𝑖𝑖𝑖 × 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑒𝑒𝑖𝑖  

   + 𝑤𝑤𝑖𝑖 + 𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛾𝛾1 𝑌𝑌 𝑖𝑖𝑖𝑖
𝐷𝐷  + 𝛾𝛾2 𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑛𝑛𝑖𝑖𝑖𝑖 +  𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

Panel A. Reviews with Positive Quality Indicators Panel B. Reviews without Positive Quality Indicators 
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where each 𝑃𝑃𝑃𝑃𝑃𝑃 or 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 dummies indicates a 4-week long pre- or post-treatment time 

period40, and the missing dummy, 𝑃𝑃𝑃𝑃𝑃𝑃_1 (a period from the 4th to the 1st pre-treatment 

week), is the reference period. Thus this model estimates each coefficient as the effect of 

NYT reviews during the corresponding period relative to the baseline period. 𝑃𝑃𝑃𝑃𝑃𝑃_2 is 

included not only to illustrate pretreatment trends but also to conduct reverse causality 

and time placebo tests. If the review is simply in response to positive demand shocks or 

if unobserved factors influence both the treatment and demand for the restaurants, then 

this term is expected to be significantly negative. Figure 2.3 visually illustrates the 

regression results, showing that the pattern persists over the period; demand is 

significantly strong only for restaurants with positive reviews, and non-positive reviews 

see mostly positive but statistically insignificant sales growth with much fluctuation.  

2.5.2 Location and Horizontal Consumer Sorting 

There is no doubt that high quality products are more demanded than low quality ones, 

ceteris paribus, as a result of vertical product differentiations. But restaurants compete not 

only through quality differentiation but also in other dimensions41 as individual diners have 

different tastes depending on their backgrounds such as race, ethnicity, income and 

education levels, and home or work locations. In reality, no one has perfect information 

on all available restaurants and their observed characteristics at any given point in time, 

and the media news informs millions of readers about the guided restaurants42. In this 

context, the media reviews could play a critical role in not only signalling restaurant quality 

but also providing consumers with details about each reviewed business. Thus publicity 

might be able to contribute to a better match between heterogeneous diners and 

restaurants even when the review is not positive.  

From the consumers’ viewpoint, one of the most important considerations in restaurant 

choices is location. Indeed, we choose a restaurant not only because of food quality or 

popularity of the venue but also because of its location, in particular where each 

neighborhood features different social and cultural characteristics. Customers may visit a 

reviewed restaurant that has no quality indicator but is located near their home/workplace 

 

40 For example,  𝑃𝑃𝑃𝑃𝑃𝑃_2𝑖𝑖𝑖𝑖 is equal to 1 if restaurant 𝑖𝑖 is reviewed by NYT and week 𝑡𝑡 is between the 8th and the 5th pre-treatment week, 
and 0 otherwise. Likewise,  𝑃𝑃𝑃𝑃𝑠𝑠𝑠𝑠_1𝑖𝑖𝑖𝑖 is a dummy taking the value 1 if week 𝑡𝑡 is between the 1st and the 4th post-treatment week of newly 
reviewed venue 𝑖𝑖, and 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃_13𝑖𝑖𝑖𝑖 is from the 49th to the 52nd post-treatment week of restaurant 𝑖𝑖. 
41 In other words, services are both vertically and horizontally differentiated in the restaurant industry. 

42 The New York Times is one of the top 3 U.S. newspapers in circulation, according to Alliance for Audited Media (auditedmedia.com) 

https://auditedmedia.com/
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or in one of their favorite hangouts. In the meantime, they may be reluctant to visit a 

restaurant located in neighborhoods that they rarely travel to, even if the restaurant has 

got four stars. Consumer perceptions of restaurant quality may be determined not only by 

how many stars the restaurant was awarded, but also by to what extent observed 

characteristics satisfy their idiosyncratic multi-dimensional tastes. Hence it is plausible that 

zero-star restaurants in a popular hangout are more demanded than four-star restaurants 

in another in response to NYT reviews. For this reason, this section investigates whether 

media attention can result in restaurant-diner matches, with a focus on locational forces 

possibly affecting consumer restaurant choices.   

To do so, this study examines roles played by demographic characteristics of restaurant 

locations. As documented in Davis et al. (2018), diners are more likely to choose 

restaurants in neighborhoods that are demographically similar to their own. Hence a 

restaurant’s demand could be driven by demographic similarities between its location and 

diners’ homes or between that location and the ethnic identity of diners. However, it does 

not necessarily mean that diner decisions are directly influenced by interactions between 

restaurant and home locations. It is more likely that individuals’ unobservable preferences 

for particular sociocultural environments determine both their home and preferred 

hangout locations.  

Figure 2.4. Origins of pre-dining taxi trips and destinations of post-dining taxi trips 

  
 
 

Notes: The figures show the geographical distributions of the origins of 14,855,705 taxi trips that arrived at the NYT-
reviewed restaurants between 18:00 and 22:00 (Left panel), and the destinations of 15,224,286 taxi trips that departed from 
the same restaurants between 20:00 and 24:00 (Right panel) from January 2009 to June 2016. 

     Reviewed Restaurant 
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Figure 2.5. Kernel density estimates of pre- and post-dining taxi trips 

 
Notes: This figure shows kernel density estimates of trip distances of the pre- and 
post-dining taxi trips displayed in Figure 2.4, using only taxis of which trip 
distances are within 10 miles. Pre-dining taxi trips (blue dash line) include 
14,855,705 taxis that arrived at the NYT-reviewed restaurants between 18:00 and 
22:00, and Post-dining trips (red solid line) include 15,224,286 taxis that departed 
from the same restaurants between 20:00 and 24:00 from January 2009 to June 
2016.   

Summary statistics of pre- and post-dining taxi trips 
         Pre-dining trips Post-dining trips 
 Mean SD Mean SD 

Trip distance (miles) 2.1222 1.7278 2.4947 1.9588 
Fare (USD) 9.7851 5.4808 10.4339 48.1491 

Notes: This table shows summary statistics of the pre- and post-dining taxi trips 
described in Figures 2.4 and 2.5.   

I investigate locational interactions empirically by exploiting diners’ neighborhood 

characteristics as inferred from the destinations of taxis that departed NYT-reviewed 

restaurants during evening peak hours. The left and right panels of Figure 2.4 display 

origins of pre-dining taxi trips which occurred during the peak hours between 6pm and 

10pm, and destinations of post-dining trips from 8pm to 12am, respectively. The locations 

of origins and destinations may contain useful information on taxi riders. Most of the 

origins are clustered in Manhattan or near reviewed restaurants, but post-dining taxi trips 

are spread out over the larger areas including some parts out of New York City. 

Considering that a lot of consumers visit restaurants after work and take a taxi to get back 

home after dining, the origins and destinations are likely to partially reflect locations of 

work and home, respectively43. Based on this pattern, I match each destination location to 

a census tract in order to infer consumer characteristics from the tract-level demographic 
 

43 It appears that the restaurant choices are more affected by workplaces rather than residential locations. 
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characteristics44, as actual individual-level consumer characteristics are not available in this 

study. Then I relate the inferred information to locational characteristics of the restaurants 

that, presumably, they visited. Although the inferred information would not precisely nor 

fully reflect true interactions between consumers and restaurants, the difference-in-

differences estimates would be valid unless the reviews influence diners’ choice of 

transport mode or post-dining destinations in the short run. 

Summary statistics: Census tracts of Manhattan and New York City 

                        Census Tract level   
             Manhattan   New York City       Manhattan   New York City 
 Mean S.D. Mean S.D.   

Share of white 56.9% 27.0% 43.6% 29.4% 57.4% 44.0% 
Share of Asian 11.9% 13.8% 12.6% 15.5% 11.3% 12.7% 
Share of black 17.1% 21.5% 27.2% 31.0% 15.6% 25.5% 
Share of Hispanic 23.4% 23.1% 26.7% 22.5% 25.4% 28.6% 
Notes: This table shows summary statistics of demographics in New York City. The first four columns are Census-tract-level 
means and standard deviations, and the last two columns are Manhattan and NYC regional statistics. 

 Summary statistics: Census tracts of restaurants and inferred individual homes 

                   Nonpositive Reviews                     Positive Reviews 
   Restaurant tracts       Home tracts Restaurant tracts      Home tracts 
 Mean S.D. Mean S.D. Mean S.D. Mean S.D. 

Share of white 66.7% 21.6% 67.2% 10.7% 67.9% 21.1% 69.0% 9.1% 
Share of Asian 15.1% 15.9% 13.4%   5.4% 15.8% 16.1% 13.8% 4.5% 
Share of black 8.3% 13.9% 10.2%   9.3% 7.2% 12.5% 8.9% 7.8% 
Share of Hispanic 16.2% 15.3% 14.6%   7.4% 14.6% 14.7% 13.4% 6.1% 
price signs ($-$$$$) 1.98 0.79   2.59 0.97   
Notes: This table summarizes Census-tract-level demographic statistics for restaurant locations and diners’ residential 
locations inferred from the destinations of post-dining taxi trips. It presents demographic similarity between restaurant 
locations and diners’ home locations.  

Demographic characteristics of the inferred home tracts are strongly correlated with those 

of restaurant tracts. Table 2.10 summarizes tract-level demographics of the 807 

restaurants included in my sample and those of the inferred home locations. Compared to 

both Manhattan and NYC averages (Table 2.9), the reviewed restaurants are located in 

tracts with substantially more white and Asian but less black and Hispanic residents. The 

tract-level average shares of white residents are 56.9% and 43.6% in Manhattan and New 

York City, respectively. But the white population is overrepresented in the tracts of 

reviewed restaurants. Likewise, Asian residents account for only 12.7% of the NYC 

population, but more than 15% in the restaurant locations. The strong similarity between 

restaurant and home tracts is more obvious when comparing the positive and nonpositive 

review groups. Positively reviewed restaurants are in tracts with marginally more white and 

Asian but less black and Hispanic populations than nonpositively reviewed ones. 

Noticeably, consumers who visited restaurants with a positive review also come from 

 

44 The US Census Bureau provides tract-level demographic information, and this study relies upon the Census 2010 data. 
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tracts with more white and Asian but less black and Hispanic populations than those who 

visited venues with a nonpositive review. While Davis et al. (2018) suggest that 

consumption segregation might be associated with residential segregation, it appears that 

this demographic similarity is a consequence of short trip distances seen in Figure 2.5 and 

Table 2.8, as adjacent two tracts are likely to feature similar demographic characteristics.  

The effect of New York Times reviews by fixed effects specification  
 Dependent Variable: ln(Passenger) 

 (1) (2) (3) (4) 
PostNYT 0.0573*** 0.0780***   
 (0.0200) (0.0147)   

PostNYT × Positive   0.0590*** 0.0673*** 
   (0.0221) (0.0163) 

PostNYT × Nonpositive   0.0504 0.113*** 
   (0.0392) (0.0329) 

Fixed Effects     
  time window YES YES YES YES 
  week × zipcode × cuisine × price YES  YES  
  week × cuisine × price  YES  YES 

Observations 165,536 165,536 165,536 165,536 
Adj. R-squared 0.947 0.930 0.947 0.930 

Notes: This table shows regression results of Model 4 specification in Table 2.7. Columns 1 and 3 control 
for the same week-zipcode-cuisine-price fixed effects of the previous specifications, but columns 2 and 4 
include week-cuisine-price fixed effects to estimate the effects of locational factors. The dependent 
variable is the log of the number of taxi passengers. PostNYT is an interaction term of two indicators 
capturing whether the restaurant is reviewed by NYT, and whether the week is a post-treatment period. 
Positive and Nonpositive are indicators capturing whether the review is positive or non-positive. All models 
rely on a 17-week time window, and control for a spatially lagged dependent variable and individual-
restaurant-specific time window fixed effects. Robust and neighborhood-level clustered standard errors are 
in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

To estimate an effect of locations, this section assumes that diners choose a restaurant 

across zip codes, not within a zip code.  To do so, following models rely on cross-sectional 

variation within week-cuisine-price groups. By using the number of passengers who left 

reviewed restaurants between 20:00 and 24:00, Table 2.11 shows that NYT reviews have 

a larger impact with the week-cuisine-price fixed effects (column 2) than with the week-

zipcode-cuisine-price fixed effects (column 1). Also, the coefficient on nonpositive 

reviews becomes more sizable than that on positive reviews (column 4). These results tell 

us that nonpositively reviewed restaurants are not significantly more demanded than the 

other comparables within the same zip code, but that they are more demanded than similar 

restaurants in another zip codes. Obviously, quality indicators are significant demand 

drivers when control groups are restricted to alternative restaurants within a zip code. 

However, more factors, particularly locational characteristics, are expected to play a key 

role in diners’ restaurant choice problems when across-zip code restaurants are considered 

as control groups. An empirical concern arising from the absence of location (zip code) in 

the week fixed effects might be non-parallel trends as hot or hip neighborhoods are likely 
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to have more restaurants reviewed and also to see increasing taxi trips. But a donut control, 

or a spatially lagged dependent variable, could substantially relieve the concern.  

To identify heterogeneity in consumer tastes for demographics of restaurant locations, as 

observed product characteristics, the usual approach is conditional logit discrete choice 

models which can consider both consumer tastes and product characteristics and also their 

interactions. However, the approach is not computationally feasible given millions of taxi 

trips and hundreds of alternative restaurants in my sample. Instead of the choice models, 

I use segmented aggregate demand to achieve similar results at an aggregate level rather 

than choice data at the individual level. Let  𝑆𝑆𝑖𝑖𝑖𝑖𝑑𝑑  be a fraction of demographic group 𝑑𝑑 in 

the destination tract of taxi trip 𝑗𝑗  that departed from restaurant 𝑖𝑖 during the peak hours. 

Then 𝑁𝑁𝑖𝑖𝑑𝑑, the inferred total number of diners in demographic segment 𝑑𝑑 who choose 

restaurant 𝑖𝑖, is obtained by summing the shares of the racial group: 

(2.4)   𝑁𝑁𝑖𝑖𝑑𝑑 = ∑ 𝑛𝑛𝑖𝑖𝑖𝑖  𝑆𝑆𝑖𝑖𝑖𝑖𝑑𝑑𝑗𝑗  

where 𝑛𝑛𝑖𝑖𝑖𝑖 is the number of passengers of trip 𝑗𝑗 that departed from restaurant 𝑖𝑖. This 

segmented demand would reflect a specific racial/ethnical group’s preference for each 

restaurant. Hence the following equation would capture demographic interactions 

between locations of homes and restaurants.  

(2.5)   𝑙𝑙𝑙𝑙 𝑁𝑁𝑖𝑖𝑖𝑖𝑑𝑑 = 𝑤𝑤𝑖𝑖 + 𝜆𝜆𝑡𝑡𝑡𝑡𝑡𝑡 + 𝛽𝛽1 (𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖𝑖𝑖) + 𝛽𝛽2 �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑇𝑇𝑖𝑖𝑖𝑖 × 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑑𝑑� + 𝒙𝒙′𝒊𝒊,𝒕𝒕 𝜸𝜸  + 𝜀𝜀𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖  

where 𝑆𝑆ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑖𝑖𝑖𝑖𝑑𝑑  is the share of demographic segment 𝑑𝑑 in the census tract of restaurant 𝑖𝑖. 

Notably, Equation 2.5 interprets, for example, 𝑁𝑁𝑖𝑖𝑖𝑖
𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 as the probabilistic total number 

of Hispanic diners who visited restaurant 𝑖𝑖 in week 𝑡𝑡, but a precise interpretation is not 

whether Hispanic diners are more likely to visit a restaurant in a Hispanic neighborhood 

but whether diners residing in a Hispanic area are more likely to visit a restaurant in 

another predominantly Hispanic neighborhood. It is possible that diners choose reviewed 

restaurants not because of demographic similarity between the two locations but because 

the retailers are geographically near their post-dining destinations. Also, the specification 

may capture inter-neighborhood economic interactions rather than demographic 

similarity, as racial wealth divide is reportedly growing. For example, diners in a poor 

neighborhood are more likely to visit a restaurant in another poor neighborhood, and they 

are more likely black diners than white diners. For these reasons, this specification controls 

for a vector of covariates (𝒙𝒙𝒊𝒊,𝒕𝒕) including the log of average trip distance and the log of 
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average income of diners45 in addition to a Michelin-star indicator and a spatially-lagged 

dependent variable. 

The effect of New York Times reviews: Demographic interaction 1 
 (1) (2) (3) (4) (5) (6) 

Dependent Var. ln(Asian) ln(Asian) ln(Black) ln(Black) ln(Hispanic) ln(Hispanic) 
PostNYT 0.0860*** 0.0803*** 0.0990*** 0.0640*** 0.0797*** 0.00711 
 (0.0170) (0.0228) (0.0175) (0.0190) (0.0159) (0.0232) 

PostNYT × %Asian  0.0366     
  (0.0858)     

PostNYT × %Black    0.601***   
    (0.149)   

PostNYT × %Hispanic      0.576*** 
      (0.109) 

Observations 152,795 152,795 152,798 152,798 152,802 152,802 
Adjusted R-squared 0.911 0.911 0.853 0.853 0.894 0.895 

Notes: This table shows regression results of Equation 2.5. The dependent variables are the log of the number of Asian diners 
(columns 1 & 2), Black diners (columns 3 & 4), and Hispanic diners (columns 5 & 6) inferred from destinations of post-dining 
taxi trips; for more details, see text. %Asian, %Black, and %Hispanic are the shares of Asian, Black, and Hispanic residents in the 
restaurant’s census tract, respectively. PostNYT is an interaction of two indicators capturing whether the restaurant is reviewed by 
NYT, and whether the week is a post-treatment period. All models rely on a 17-week time window, and control for a spatially-
lagged dependent variable, the log of average trip distance, the log of average (inferred) income of diners, and two fixed effects, 
restaurant × time window and week × cuisine × price. Robust and neighborhood-level clustered standard errors are in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Table 2.12 uses the natural logarithms of the segmented aggregate demand of three 

groups, Asian, black, and Hispanic, as dependent variables, and interacts the variable of 

interest (PostNYT) with the share of each corresponding demographic group in a 

restaurant tract. When a reviewed restaurant is located in a neighborhood demographically 

more similar to diners’, diners are more likely to visit the venue than another restaurant of 

the same cuisine and price ranges but located in a demographically less similar location. 

Thus estimated coefficients in columns (2), (4), and (6) are expected to capture 

heterogeneous treatment effects caused by demographic similarity of two locations. The 

results indicate that customers’ post-dining destinations are significantly different by 

demographic characteristics of restaurant locations, so the marginal utility of location may 

vary according to demographic groups. Notably, black and Hispanic diners have stronger 

preference for demographic similarity than Asians. Specifically, 10% more shares of black 

or Hispanic population in a restaurant tract attract 6.0% more black or 5.8% more 

Hispanic diners, respectively (columns 4 and 6). This finding is fairly consistent with what 

existing literature on segregation reports; African Americans are the most segregated 

 

45 This study infers the aggregate income of diners by summing the tract-level incomes: 

𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 = �𝑛𝑛𝑖𝑖𝑖𝑖  𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖
𝑗𝑗

 

where 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖 is the aggregate income of diners who visited restaurant 𝑖𝑖. 𝑛𝑛𝑖𝑖𝑖𝑖 is the number of passengers of taxi trip 𝑗𝑗 that departed 
from restaurant 𝑖𝑖 during the peak hours, and 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖 is a median household income of the destination tract of the post-dining trip 𝑗𝑗. 
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minority, and Asians are the least segregated in term of both residence (Ihlanfeldt and 

Scafidi, 2002; Flores and Lobo, 2013) and restaurant choices (Davis et al., Forthcoming); 

Davis et al. (Forthcoming) identify racial and ethnic consumption segregation for the NYC 

residents from user reviews on Yelp.com. As Yelp users very rarely review a restaurant 

twice, the authors’ baseline model, a discrete-choice model of restaurant visits, suffers 

from a selection bias, and therefore assumes that individuals’ unobserved restaurant 

preferences are independent over time. However, this study is not likely to suffer from the 

same bias unless the restaurant review publications alter diners’ transportation mode 

choices or have a more significant effect on diners who depend on taxis.   

The effect of New York Times reviews : Demographic interaction 2 
 (1) (2) (3) (4) (5) (6) 

Dependent Var. ln(Asian) ln(Asian) ln(Black) ln(Black) ln(Hispanic) ln(Hispanic) 
PostNYT × Positive 0.0731*** 0.0486** 0.0860*** 0.0536*** 0.0688*** 0.0493 
 (0.0182) (0.0243) (0.0196) (0.0198) (0.0183) (0.0325) 

PostNYT × Nonpositive 0.126*** 0.169*** 0.139*** 0.0970* 0.113*** -0.0607 
 (0.0365) (0.0583) (0.0417) (0.0491) (0.0342) (0.0768) 

PostNYT × Positive × %Asian  0.158*     
  (0.0929)     

PostNYT × Nonpositive × %Asian  -0.279     
  (0.215)     

PostNYT × Positive × %Black    0.571***   
    (0.130)   

PostNYT × Nonpositive × %Black    0.673*   
    (0.348)   

PostNYT × Positive × %Hispanic      0.155 
      (0.263) 

PostNYT × Nonpositive × %Hispanic      1.198*** 
      (0.447) 

Observations 165,462 165,462 165,465 165,465 165,486 165,486 
Adjusted R-squared 0.911 0.911 0.842 0.842 0.889 0.889 
Notes: Based on Equation 2.5, this table interacts each of the variables of interest with two dummies, Positive and Nonpositive, 
that capture whether the review is positive or non-positive. The dependent variables are the log of the number of Asian 
(columns 1 & 2), Black (columns 3 & 4), and Hispanic diners (columns 5 & 6). %Asian, %Black, and %Hispanic are the shares 
of Asian, Black, and Hispanic residents in the restaurant’s census tract, respectively. PostNYT is an interaction of two indicators 
capturing whether the restaurant is reviewed by NYT, and whether the week is a post-treatment period. All models rely on a 
17-week time window, and control for a spatially-lagged dependent variable, the log of average trip distance, the log of average 
(inferred) income of diners, and two fixed effects, restaurant × time window and week × cuisine × price. Robust and 
neighborhood-level clustered standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Table 2.13 provides further support to the results. Even when a restaurant achieves no 

positive indicator, a 10 percentage point increase in the fraction of black (Hispanic) 

residents in a restaurant tract is significantly associated with a 6.7% (12.0%) increase in 

black (Hispanic) diners, as seen in columns 4 and 6. Interestingly, Hispanic diners do not 

appear to care about the demographical environment of a restaurant when the business is 

positively reviewed. In contrast, Asian consumers consider the locational characteristics 

only when the retailer wins positive indicators.  
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The effect of New York Times reviews by trip distance : Post-dining taxi trips 
Dependent Variable: ln(Passenger) 

 (1) (2) (3) (4) (5) (6) 
Trip Distance (miles) 0 to1 1 to 2 2 to 3 3 to 4 4 to 5 above 5 

PostNYT × Positive 0.0709*** 0.0611*** 0.0548*** 0.0439** 0.0502** 0.0808*** 
 (0.0172) (0.0196) (0.0166) (0.0192) (0.0208) (0.0253) 

PostNYT × Nonpositive 0.123*** 0.0950** 0.0786** 0.119*** 0.103** 0.0523 
 (0.0347) (0.0420) (0.0336) (0.0385) (0.0395) (0.0429) 

Observations 152,949 135,294 140,690 135,354 130,589 122,885 
Adj. R-squared 0.929 0.834 0.879 0.824 0.747 0.677 

Notes: This table shows whether geographical proximity has an effect on the coefficients of interest. The dependent variable is 
the log of the number of taxi passengers, but each model column uses only taxis of which trip distances are within the 
correspondingly specified range; for example, Model 1 counts the number of passengers whose trip distances are between 0 
and 1 mile. PostNYT is an interaction term of two indicators capturing whether the restaurant is reviewed by NYT, and whether 
the week is a post-treatment period. Positive and Nonpositive are indicators capturing whether the review is positive or non-
positive. All models rely on a 17-week time window, and control for a spatially-lagged dependent variable, and two fixed effects, 
restaurant × time window and week × cuisine × price. Robust and neighborhood-level clustered standard errors are in 
parentheses. *** p<0.01, ** p<0.05, * p<0.1 

The effect of New York Times reviews : Income interaction 
 Dependent Variable: ln(Aggregate Income) 
 (1) (2) (3) (4) 
PostNYT 0.0873*** 1.004**   
 (0.0160) (0.474)   

PostNYT × ln(Income)  -0.0801*   
  (0.0409)   

PostNYT × Positive   0.0728*** 0.728 
   (0.0173) (0.470) 

PostNYT × Positive × ln(Income)    -0.0573 
    (0.0410) 

PostNYT × Nonpositive   0.133*** 1.518 
   (0.0377) (1.333) 

PostNYT × Nonpositive × ln(Income)    -0.122 
    (0.116) 

Observations 152,781 145,557 152,781 145,557 
Adjusted R-squared 0.927 0.928 0.927 0.928 

Notes: To capture economic interactions between locations of the restaurant and diners’ homes, this table 
uses the log of the aggregate income of diners as the dependent variable. ln(Income) is the log of median 
household income of the restaurant tract. PostNYT is an interaction of two indicators capturing whether the 
restaurant is reviewed by NYT, and whether the week is a post-treatment period. Positive and Nonpositive are 
indicators capturing whether the review is positive or non-positive. All models rely on a 17-week time 
window, and control for the log of spatially-lagged dependent variable, and the log of average trip distance, 
and include two fixed effects, restaurant × time window and week × cuisine × price. Robust and 
neighborhood-level clustered standard errors are in parentheses. *** p<0.01, ** p<0.05, * p<0.1 

Additionally, Table 2.14 tells us that the geographical proximity also has an effect. Diners 

might be willing to visit nearby restaurants in spite of non-positive reviews. To examine 

the possibility, I break the number of passengers down into six groups by taxi trip distance: 

0-1, 1-2, 2-3, 3-4, 4-5, above 5 miles. If proximity is a main driver, the number of taxi trips 

from nearer origins would increase more significantly in response to publicity. The size 

and statistical significance of coefficients decrease with taxi trip distance from column 1 

to 3 (or from 0 to 3 miles) even when the reviews are not positive. Spatial proximity may 

be an even more important consideration for diners who visit restaurants on foot or by 

public transport. However, the income interaction has no significant effect (Table 2.15); 

each model uses tract-level incomes instead of shares of a demographic group in a 
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restaurant tract, and the dependent variable is (inferred) aggregate income of diners. 

Overall, socio-demographic characteristics of restaurant locations can have a substantial 

impact on urban consumers’ decisions with geographical proximity also having an effect. 

The results suggest that media attention influences not only vertical but also horizontal 

consumer sorting, thereby possibly resulting in more demographically segregated 

consumption. 

2.6 Conclusion 

In this internet era, media information could influence our decisions in several ways. A 

wide range of studies have emphasized its importance in social and economic contexts, 

but only a limited amount of empirical evidence has been documented. To add to existing 

literature, this paper characterizes how media attention could affect consumer choices. 

Before identifying potential channels, I begin with examining whether publicity has a 

causal effect on demand for restaurants, relying upon two information sources, the Michelin 

Guide and NYT restaurant reviews, and also the number of taxi drop-offs as a proxy of 

restaurant demand. The link between quality information and taxi trips is surprisingly 

strong and statistically significant.  

Then what drives such significant effects? Consumers’ expectations of product quality are 

a primary determinant of demand, and thus positive indicators can shape their 

expectations. At the same time, media information has a potential to improve a match 

between heterogeneous consumers and products by increasing product awareness. The 

regression results demonstrate that positive quality indicators, like stars, are strong demand 

drivers. Most of the existing studies have concentrated only on this mechanism mainly due 

to lack of individual-level characteristics. By inferring individual diners’ characteristics 

from destinations of post-dining taxi trips, this study overcomes the empirical obstacle, 

and empirically shows that demographic characteristics of locations play a key role in 

informed consumers’ restaurant choices. Thus this paper concludes from the findings that 

media information could affect economic outcomes of urban retailers not only by signaling 

product quality but also by catalyzing interactions between consumer and product 

characteristics.   
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Housing Prices and Consumption:  

The Role of News Media 

 

3.1 Introduction 

Housing prices can affect a wide range of socio-economic outcomes, particularly 

homeowner non-housing consumption.46 It is commonly assumed that lowering interest 

rates can induce an increase in asset prices including house prices, which can boost 

consumer spending and ultimately the economy. Therefore, a key question in 

macroeconomics and monetary policy is how strong is the link between asset prices and 

aggregate consumption. As a consequence, there exists a large literature on the wealth effect, 

with housing prices reportedly having larger and more important impacts on spending than 

do stock prices (Case et al., 2005; Bostic et al., 2009; Carroll et al., 2011; Calomiris et al., 

2012; Case et al., 2012). However, the existence of and mechanisms for the effects have 

been controversial with somewhat conflicting theoretical predictions.47 Recent research 

provides strong empirical evidence from clean identification (Mian et al., 2013; Aladangady, 

2017), but observed effects are still inconsistent over time. 48 

To provide an explanation to the heterogeneity in observed housing wealth effects, this 

paper examines whether information interventions may alter homeowners’ consumption 

decisions in response to house price fluctuations. The traditional view in the wealth effect 

literature is to assume that homeowners are making fully informed utility-maximizing 

 

46 A few more examples are fertility rates (Lovenheim and Mumford, 2013; Dettling and Kearney, 2014), college entrance (Lovenheim, 
2011), entrepreneurship (Corradin and Popov, 2015), and portfolio choice (Chetty and Szeidl, 2017). 

47 The standard channel relaxes the household lifetime resource constraint. That is, higher home values have a positive endowment effect, 
and thus rational households maximize their utility by consuming more. Another channel is collateralized lending. Rising housing prices 
allow households to borrow more by providing additional collateral. As housing is not only an investment asset but also a consumption 
good, however, rising home values could raise the future cost of living, and this negative effect could offset the positive wealth effect. 
Therefore, aggregate housing wealth effects should be small for aggregate non-housing consumption (Sinai and Souleles, 2005; Buiter, 
2008; Calomiris et al., 2012). 

48 For example, housing prices have already recovered to the pre-crisis level, but economic growth is slowing in the US and many other 
countries; see the newspaper article (https://www.cnbc.com/2016/08/01/debt-is-holding-back-the-global-economic-recovery-say-
central-bankers-dudley-rajan-and-zeti.html). 
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choices, so one would not expect provision of additional information about housing prices 

to change homeowners’ consumption behaviors. However, this paper takes a different view 

motivated by the behavioral economics literature that suggests that any forms of information 

disclosure can have a significant impact on household economic decisions (Choi et al., 2010; 

Bertrand and Morse, 2011; Beshears et al., 2018). If homeowners do not have high level of 

awareness of their home values, a sizable housing wealth effect can hardly be expected, given 

the considerable house price fluctuations that occur over time. In reality, many homeowners 

do not actively seek housing price information in their daily lives. Also, individuals’ cognitive 

resources are very limited, so it is possible that homeowners might be making a cognitive 

lapse. In this sense, media coverage on housing prices may affect homeowners’ consumption 

decisions by increasing homeowners’ awareness about their housing wealth and also by de-

biasing the cognitive lapse; one might expect their consumption decisions to respond to 

how much or how frequently information on housing price growth is being disclosed.  

To allow the size of the housing wealth effect to vary according to local media coverage on 

house prices, I exploit local newspapers, one of the main information sources for 

homeowners.49 People often base their economic, financial, and political decisions on the 

news that they read in newspapers or watch on television. For example, related studies 

suggest that geographic areas with reduced local media coverage see less stock trading 

volumes (Engelberg and Parsons 2011) and lower voter turnouts (Gentzkow, et al. 2011).50 

Therefore, information from local media outlets may increase people’s awareness on the 

given topic, and then the increasing awareness may shape individuals’ behaviors and 

decisions. Literature on the relation between news media and real estate/housing markets is 

particularly scarce, but several recent studies identify the causal effects of local newspapers 

and internet social media on homebuyer decisions. By employing textual analysis on local 

U.S. newspaper articles, Soo (2018) demonstrates that the qualitative tone of local housing 

news can predict future house prices. Bailey et al. (2018) also show that potential 

homebuyers rely on information from Facebook. These findings imply that the information 

channels of both print and online media may play a key role in informing homebuyers and 

shaping their economic decisions. Therefore, media coverage may make homeowners more 

 

49 More than a quarter of all adults in the US read at least one newspaper every day (https://www.statista.com/statistics/183408/number-
of-us-daily-newspapers-since-1975/) 

50 Engelberg and Parsons (2011) exploit the daily newspaper of each major U.S. city, and find that local newspaper coverage of earnings 
announcements significantly increases local trading volumes. Gentzkow et al. (2011) document that reading a newspaper increases the 
probability of voting by 4 percentage points. 
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aware of their housing wealth, and lead them to further learn their home values from 

previous sales or current listings by visiting real estate websites such as Zillow.com. 

This paper relates the local media coverage on housing prices to the housing wealth effects 

by regressing household-level consumption on the MSA-level housing price index interacted 

with the number of newspaper articles conveying house price information.51 First, 

household-level expenditures are from the public-use microdata of the quarterly Consumer 

Expenditure Survey (CEX) across 22 MSAs over 11 years from 2006 to 2016. Second, I use 

the MSA-level house price index provided by the Federal Housing Finance Agency (FHFA). 

I assume that homeowners learn their home values in part from the regional price growth 

covered by local newspapers. Last, I exploit local newspaper contents in the US in order to 

quantify media coverage on housing prices. From three newspaper databases, I collected 

newspaper articles including any of the search queries, “home price,” “house price,” and 

“housing price”, and then I counted the total number of news articles published by major 

local newspapers during each quarter in each city. 

Regression results robustly show that more newspaper articles conveying housing price 

information can make homeowner consumption more elastic with respect to regional 

housing prices. In other words, relative to less informed homeowners, the more informed 

consume more in response to high housing prices and consume less in response to low 

housing prices. By stratifying the analysis for homeowners and renters, I find that the 

regression results are statistically significant only for homeowners; an increase of one 

standard deviation in the number of housing price news articles is associated with a 0.08 

increase in homeowners’ consumption elasticity and only with an insignificant increase in 

renters’ elasticity. Since rising home values do not clearly benefit renters, this result alleviates 

the empirical concern regarding unobservable common factors, in particular, expected 

future income growth.  

For further causal investigations, I also identify the headline effect. Specifically, only housing 

news articles that include housing or real estate terms in their headline—headlined housing 

news—have a significant impact on the wealth effect. However, articles that convey housing 

price information in their body but do not include any housing or real estate terms in their 

 

51 MSA stands for Metropolitan Statistical Area, a U.S. geographical core area containing a substantial population nucleus, together with 
adjacent communities having a high degree of economic and social integration with that core (https://www.census.gov/programs-
surveys/metro-micro/about.html). 

https://www.census.gov/programs-surveys/metro-micro/about.html
https://www.census.gov/programs-surveys/metro-micro/about.html
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headline—non-headlined housing news—have no significant effect, thereby providing 

further support for the causality. It may be random whether or not each housing news article 

includes housing terms in its headline. That is, similar unobservable factors may influence 

supply of both headlined and non-headlined housing news articles, but demand sides, 

homeowner expenditures, respond differently to the exogenous changes in the headlines.  

Still, one may be concerned about omitted macroeconomic factors that may drive all of the 

variables of interest. Also, the effect of media coverage may be asymmetric in response to 

housing booms and busts. To address the concerns, this study employs two regression 

models. The first baseline model exploits both cross-sectional and time-series variation, but 

the second exploits only cross-sectional variation in media coverage by taking 11-year 

averages for each city. Estimates from the two specifications are consistently significant, 

confirming robustness of the baseline specification. 

To the best of my knowledge, this is the first to relate information interventions to the 

housing wealth effect. Arguably, the dependence of the housing wealth effect on media 

reporting has a couple of important implications. First of all, this idea can shed light on 

inconsistent housing wealth effects, given the substantial variation in media reporting across 

cities and over time. Information interventions may make the aggregate consumption or 

economy more responsive to asset prices, impacting the effectiveness of related policies. 

Second, this paper shows that information disclosure has a nontrivial effect on homeowner 

consumption decisions. In contrast with the view that household decisions reflect fully 

informed and rational behaviors, the result suggests that providing relevant information can 

alter household economic decisions by helping them to make more informed choices and/or 

by making the information salient to the individuals. Thus, the finding has a potential to 

dramatically broaden our understanding of the role of news media and information 

disclosure across a large number of settings. 
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3.2 Data 

3.2.1 Data Sources 

For empirical tests, I construct a quarterly dataset for 22 U.S. metropolitan areas by 

exploiting the Bureau of Labor Statistics’ (BLS) Consumer Expenditure Survey (CEX) 

public-use microdata from 2006 to 2016.52 The CEX data provides a good measure of 

household consumption and consists of two surveys: the Diary survey and the Interview 

survey. While the Diary survey is designed to capture small expenditures on frequently 

purchased items such as food over a two-week period, the Interview survey is conducted 

quarterly for major expenses that occur on a regular basis. Although the surveys are 

reportedly subject to an underreporting issue, this paper nevertheless uses the Interview 

survey data53, following two papers (Bostic et al., 2009; Aladangady, 2017) that find 

significant wealth effects using the data. The Interview surveys collect detailed household-

level information on expenditures, incomes, and household characteristics. As each 

household is interviewed for only four consecutive quarters, with new families entering each 

quarter, the dataset is basically repeated cross-sections. 54 A limitation is that detailed 

geographical information has been de-identified. Only about 20 major metropolitan areas 

are identified in the public-use data.  

The household-level datasets enable me to compare different responses between 

homeowners and renters. Table 3.1 reports summary statistics of major economic and 

socio-demographic characteristics for each family or reference person included in the 

controls.55 For example, I control for household-level income levels in my models because 

both expenditures and incomes are noticeably higher for homeowners; all of the variables 

of interest, consumption, homeownership decisions and housing prices may be affected by 

income levels. In addition, the majority of homeowners are married, white, and hold a 
 

52 The CEX data is available from 1986, but the public-use microdata contains MSA-level geographical identifiers from 2006 onward. 

53 This paper assumes that the underreporting is independent of media coverage. 

54 The observation unit in the CEX is called the consumer unit (CU), which consists of any of the following: (1) all members of a particular 
household who are related by blood, marriage, adoption, or other legal arrangements; (2) a person living alone or sharing a household 
with others or living as a roomer in a private home or lodging house or in permanent living quarters in a hotel or motel, but who is 
financially independent; or (3) two or more persons living together who use their incomes to make joint expenditure decisions. However, 
the terms consumer unit, family, and household are used interchangeably. For further details, see the BLS webpage https://www.bls.gov/cex/ 
csxfaqs.htm.  

55 According to the BLS webpage (https://www.bls.gov/cex/csxfaqs.htm#PUMD), the reference person for the consumer unit is the 
first member mentioned by the respondent when asked "What are the names of all the persons living or staying here? Start with the name 
of the person or one of the persons who owns or rents the home." It is with respect to this person that the relationship of the other 
consumer unit members is determined. Thus, the two terms reference person and head of household are used interchangeably in related studies.  

https://www.bls.gov/cex/%20csxfaqs.htm
https://www.bls.gov/cex/%20csxfaqs.htm
https://www.bls.gov/cex/csxfaqs.htm#PUMD
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bachelor’s degree or higher, while renters are more likely to be single and black, with only 

29% holding a bachelor’s degree. 

 Summary statistics of Consumer Expenditure Survey (2006-2016) 
 Home owners (59.5%) Renters (40.5%) 
 Mean S.D Mean S.D. 
Total Expenditure (USD, quarterly) 16,579 14,666 9,814 7,667 
Income (USD, annual) 79,403 90,477 37,775 46,012 
Family size 2.68 1.51 2.34 1.53 
Age 53.55 15.48 43.68 17.24 
Public sector employer  0.42 0.49 0.37 0.48 
Private sector employer 0.49 0.50 0.57 0.49 
Married 0.63 0.48 0.32 0.47 
Never married 0.13 0.34 0.39 0.49 
Separated/divorced/widowed 0.24 0.43 0.28 0.45 
White 0.81 0.39 0.68 0.47 
Black 0.10 0.30 0.20 0.40 
Asian 0.07 0.26 0.09 0.29 
High school or lower 0.29 0.45 0.42 0.49 
Some college or Associate's degree 0.27 0.45 0.29 0.45 
Bachelor or higher 0.44 0.50 0.29 0.45 

Notes: This table summarizes descriptive statistics for variables from the Consumer Expenditure Survey (CEX) data. 
It presents differences in family characteristics between homeowners and renters. As each household is interviewed 
for at most four consecutive quarters, the quarterly dataset is repeated cross-sections, and the sample includes 38,938 
households or 110,677 observations from Q1.2006 to Q4.2016. 

To measure the housing wealth effects, I link the household-level spending data from the 

CEX to the MSA-level house price index provided by the Federal Housing Finance Agency 

(FHFA).56 Many empirical papers rely upon household balance sheet information to test 

whether household spending responds to the self-reported market value of their home. 

Instead of the household-level housing wealth measure, I exploit the local housing price 

index because this is the most common housing price information that homeowners can 

obtain from media outlets, assuming that they learn their home values in part from the 

regional price growth covered by local newspapers. By doing so, this study can identify the 

differential wealth effects on homeowners and renters. 

Lastly, I depend on three newspaper databases—Factiva, Nexis, and Newslibrary.com—to 

quantify the media coverage on housing price. First, I identified the dominant local 

newspapers for 22 cities (Table 3.2). U.S. newspapers have historically been local in nature. 

The number of US cities that can support multiple daily newspapers is fast declining 

(Chandra and Kaiser, 2015), and the median newspaper sells more than 90 percent of its 

copies in the county in which it is headquartered (Gentzkow and Shapiro, 2010). When 

multiple newspapers are presented for one city in Table 3.2, this is mostly due to the 

 

56 The FHFA All Transactions House Price Index is used in this study. 
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geographical boundaries of the metropolitan areas in the CEX data. For example, one 

sampling unit of the CEX consists of San Francisco, Oakland, and San Jose. As a 

consequence, in addition to the San Francisco Chronicle, both the Oakland Tribune and the San 

Jose Mercury News are also included in my sample; importantly, this unique local monopoly 

(or duopoly) characteristic of newspapers enables researchers to exploit discontinuous cross-

sectional variations in media coverage for identification.57  

Then I collected news articles published by each newspaper, mainly from Newslibrary.com, 

and used the other two databases, Factiva and Nexis, to complement the datasets. I detail 

how I construct my measure of media coverage from this collection of newspaper articles 

in the following subsection. 

 List of newspapers in the sample 

Metropolitan Area Newspapers Included Missing Major 
Newspapers 

Atlanta Atlanta Journal-Constitution 
 

Baltimore Baltimore Sun 
 

Boston Boston Globe, Boston Herald 
 

Chicago Chicago Sun-Times, Daily Herald, Courier-News Chicago Tribune 
Cleveland Plain Dealer, Akron Beacon Journal 

 

Dallas Dallas Morning News, Star-Telegram 
 

Denver Denver Post 
 

Detroit Detroit News Detroit Free Press 
Honolulu Honolulu Star-Advertiser 

 

Houston Houston Chronicle 
 

Los Angeles Daily News Of Los Angeles, Orange County Register, Long Beach Press-Telegram Los Angeles Times 
Miami Miami Herald 

 

Minneapolis-St. Paul Star Tribune, Pioneer Press 
 

New York City New York Times, New York Post, Daily News of New York, Star-Ledger 
 

Philadelphia Philadelphia Inquirer, Philadelphia Daily News 
 

Riverside-San Bernardino Press-Enterprise, San Bernardino Sun 
 

San Diego San Diego Union-Tribune 
 

San Francisco San Francisco Chronicle, San Jose Mercury News, Oakland Tribune 
 

Seattle Seattle Times, Seattle Post-Intelligencer, News Tribune 
 

St. Louis St. Louis Post-Dispatch 
 

Tampa Tampa Bay Times (St. Petersburg Times), Tampa Tribune 
 

Washington Washington Post, Washington Times 
 

Notes: Table 3.2 lists 22 metropolitan cities and corresponding local newspapers in my sample covering from January 2006 to 
December 2016. Most US cities have only one daily newspaper with some exceptions for that I include two major local newspapers 
(Boston, Philadelphia, Seattle, Tampa, and Washington) or three (New York City). The other cities with multiple newspapers presented 
in this table are due to the large geographical boundaries of the metropolitan areas in the Consumer Expenditure Survey (CEX) data. In 
addition, three major newspapers (Chicago Tribune, Detroit Free Press, and Los Angeles Times) are missing in my sample.  

 

 

57 For instance, Engelberg and Parsons (2011) take advantage of the fact that local media outlets often differ in their coverage of the same 
underlying information events. As another example, Gentzkow et al. (2011) and Peress (2014) utilize exits and entries of newspapers and 
reductions in media coverage caused by newspaper strikes, respectively. 
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3.2.2 Measuring Media Coverage 

The single most important variable in this study is a measure of local media coverage on 

housing prices. A wide range of literature identifies causal impacts of news media, suggesting 

that information environments influence economic agents’ behaviors and decisions.58 Media 

news conveying house price information can not only help readers form expectations about 

future housing price growth, but they can also inform readers about the realized housing 

price growth. I place particular emphasis on the second role of news media, while most 

related papers focus on the first role. In other words, this paper is mainly interested in how 

media reporting can increase awareness about realized housing wealth gains rather than how 

media can help form future price expectations, as news articles are essentially informative. 

The quantity of news articles about housing prices may be positively correlated with how 

well local homeowners are informed about or aware of the values of their homes. In the 

absence of media reporting, household spending might be less responsive to housing price 

fluctuations, while it may become more responsive when homeowners are more frequently 

informed. 

 An example of newspaper articles in the key independent variable 

The Philadelphia Inquirer 

August 26, 2009 

Region's Home Prices Gain In Second Quarter 

Driven by sales in the city, home prices in the Philadelphia region rose by an average 3.8 percent in the second quarter 
over the previous quarter - the first increase in two years. Data compiled by Kevin Gillen of Econsult Corp. in Philadelphia 
showed that even with sales volume nearly 50 percent below normal in the second quarter, homes that did sell sold for 
more. In the city, prices were 6.8 percent higher, while suburban counties showed an average price increase of 2.7 percent, 
Gillen said...  
Notes: This is an example of housing news articles used to generate the key independent variable (I call it “the number of 
housing news articles”) in my sample. The example article includes “home” in its headline, and “home price” in its body, 
conveying explicit information about local house price growth to readers.   

To quantify the housing price information from local papers, I counted the total number of 

articles including specific keywords by city–quarter, using the articles collected from the 

three newspaper archives. More specifically, each article must include “home price,” “house 

price,” or “housing price” in its headline or body to ensure that it provides readers with 

explicit information on housing prices. In addition, each article also includes “home,” 

“house,” “housing,” “real estate,” or “property” in its headline. The additional queries 

further narrow the search results down to articles supposedly written for homeowners or 

homebuyers. For example, The Philadelphia Inquirer’s article in Table 3.3 includes “home” in 
 

58 Largely in finance (Chan, 2003; Frazzini, 2006; Tetlock, 2007; Tetlock et al., 2008; Fang and Peress, 2009; Tetlock, 2010; Engelberg and 
Parsons, 2011; Tetlock, 2011; Da et al., 2014) and in political science (Gentzkow, 2006; Gerber et al., 2009; Gentzkow et al., 2011). 
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its headline and also “home price” in its body. This report provides readers with information 

on local housing price trends, and more importantly, the headline obviously indicates that 

the following body of the article is about housing markets and should therefore draw the 

attention of existing homeowners or potential homebuyers. Notably, the search query 

restrictions exclude articles that do not include the price keywords even though they discuss 

some aspects of housing markets or appear in the housing/real estate section. For instance, 

some housing news articles report on local building permits or new constructions, an 

important housing price determinant. Such information may help readers form expectations 

regarding their future house price growth but does not directly inform them about the 

realized housing wealth growth.  

An empirical concern is that the search results for these keywords might possibly capture 

not only the trends of local housing markets but also those of national or international 

housing markets that might be less relevant to local housing prices. However, attention to 

readers’ own properties is often triggered by spatially distant markets. A homeowner may 

search for the list prices of nearby similar properties after reading an article about a housing 

boom in another city. Bailey et al. (2018) also find that both local and out-of-state friends’ 

experiences affect housing investments. This finding implies that all news articles containing 

housing price information have the potential to influence households’ economic decisions, 

probably by making readers more and better aware of their housing wealth in any context.  

3.3 Empirical Analysis 

3.3.1 Housing Wealth Effect 

Before including the MSA-level quarterly number of housing articles as a key independent 

variable in the econometric models, I first test a simple wealth effect model. The standard 

empirical functional form to measure the housing wealth effect is given in Equation (3.1): 

(3.1)  𝑦𝑦𝑖𝑖 ,𝑐𝑐,𝑡𝑡 = 𝛽𝛽 𝜌𝜌𝑐𝑐,𝑡𝑡−1 +  𝒙𝒙′𝑖𝑖,𝑐𝑐,𝑡𝑡 𝜸𝜸 +  𝜆𝜆𝑡𝑡 +  𝜙𝜙𝑐𝑐,𝑗𝑗 +  𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡 

where 𝑦𝑦𝑖𝑖 ,𝑐𝑐,𝑡𝑡 = 𝑙𝑙𝑙𝑙 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖, 𝑡𝑡 is the natural logarithm of the total expenditures of 

household 𝑖𝑖 in city 𝑐𝑐  in year-quarter 𝑡𝑡, and 𝜌𝜌𝑐𝑐,𝑡𝑡−1 =  𝑙𝑙𝑙𝑙�𝐻𝐻𝐻𝐻𝐼𝐼𝑐𝑐, 𝑡𝑡−1� is the natural logarithm of 
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the house price index for city 𝑐𝑐  in year-quarter 𝑡𝑡 − 1.58F

59 This model controls for a vector 

of family characteristics (𝒙𝒙𝑖𝑖,𝑐𝑐,𝑡𝑡: income, family size, age of household head), major factors 

affecting both consumption and housing demand. Also, I include year-quarter fixed effects 

(𝜆𝜆𝑡𝑡) and cohort fixed effects determined along seven dimensions (𝜙𝜙𝑐𝑐,𝑗𝑗: city × housing 

tenure × employer × occupation × marital status × education × race).60 As discussed in 

the previous section, the dataset in this study is not a panel, but repeated cross-sections. 

In this context, Campbell and Cocco (2007) use sample cohort means from a time series 

of cross-sections to construct pseudo-panel data, following the methodology suggested by 

Deaton (1985). In doing this, Campbell and Cocco can exploit both time-series and cross-

sectional variation to identify wealth effects. To obtain similar results, this study employs 

the cohort fixed effects that would capture average differences across cohorts in omitted 

variables; in other words, the regression coefficients of interst are driven by the variation 

over time within each cohort. Lastly, standard errors are clustered by city × housing tenure 

to allow for correlation over time within each group in all of the following models. With 

this log-log specification,61 the estimated coefficient 𝛽𝛽 can be directly interpreted as the 

elasticity of consumption with respect to housing wealth.  

Then I split the variable of interest into two groups: owners and renters, as in Equation 

(3.2): 

(3.2)  𝑦𝑦𝑖𝑖 ,𝑐𝑐,𝑡𝑡 = 𝛽𝛽1𝜌𝜌𝑐𝑐,𝑡𝑡−1 × 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑖𝑖 + 𝛽𝛽2𝜌𝜌𝑐𝑐,𝑡𝑡−1 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑖𝑖 + 𝒙𝒙′𝑖𝑖,𝑐𝑐,𝑡𝑡 𝜸𝜸 +  𝜆𝜆𝑡𝑡 +  𝜙𝜙𝑐𝑐,𝑗𝑗 +  𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡 

Renters do not clearly benefit from rising house prices. Thus, if this paper finds 

significantly positive relationship between housing wealth and the spending of renters, the 

estimated coefficients might be suggestive of an omitted variable bias. An empirical 

concern arising from splitting the independent variable is that home ownership decisions 

are endogenous (Campbell and Cocco, 2007). However, the cohort fixed effects can 

 

59 The main assumption of this specification is that consumption responds to home price information conveyed by local newspapers. 
Such information is usually a quarter lagged because home price indices are published with a few months’ lag. Therefore, I let the housing 
price term refer to the previous quarter (t-1) instead of the current quarter (t). 

60 Individuals sharing the following seven characteristics are grouped into cohorts: 1) MSA;  2) Housing Tenure, with six categories: 
Owned with mortgage, Owned without mortgage, Owned mortgage not reported, Rented, Occupied without payment of cash rent, or 
Student housing; 3) Employer, with three categories: Private company, Government, or Self-employed/Family business; 4) Occupation, 
with four categories: Manager/Professional, Admin/Sales/Retail/Technician, Service, or Laborer/Production/Farming/Armed Forces; 
5) Marital status, with five categories: Married, Widowed, Divorced, Separated, or Never married; 6) Education, with four categories: 
Master/Professional/Doctorate degree, Bachelor’s degree, College/Associate degree, or High School/Less; and 7) Race, with three 
categories: White, Black, or Others. 

61 One is added to the relevant variables to avoid logarithms of zero. 
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address this concern by exploiting variations within the homeowners or within the renters 

over time.  

Table 3.4 reports the estimated wealth effects for homeowners and renters. A well-known 

empirical issue in the related literature is that both consumption and housing prices can 

be driven by common factors, in particular, expectations about permanent income growth 

or economic prospects. Another issue of concern is reverse causality: higher consumption 

may increase local employment and thus lead to higher home values (Aladangady, 2017). 

Therefore, running the simple OLS models is likely to result in a biased estimate of the 

housing wealth effects. Indeed, the coefficients for renters are positive and significant 

across models, confirming this concern.62 Overall, the results suggest that while common 

factors may play a role across specifications, there seems to be a causal effect of housing 

wealth on consumption given that the wealth effects are strong for owners and relatively 

weak for renters. 

 Housing wealth effects  
 Dep. Var.: ln(Total Expenditure) (1) (2) (3) 
Owner × ln(HPI) 0.284*** 0.267*** 0.224*** 
 (0.0740) (0.0546) (0.0695) 

Renter × ln(HPI) 0.166* 0.165** 0.113* 
 (0.0967) (0.0639) (0.0621) 

ln(Income)  0.247*** 0.167*** 
  (0.00721) (0.00684) 

Age  -0.00195*** 0.000304 
  (0.000428) (0.000385) 

ln(Family Size)  0.244*** 0.258*** 
  (0.00961) (0.0102) 

Fixed Effects    
Year-Quarter YES YES YES 
MSA × Housing Tenure YES YES  
Cohort   YES 

Observations 110,622 96,776 96,776 
Adjusted R-squared 0.225 0.477 0.617 

Notes: This table presents regression results based on Equation 3.2. The dependent variable is the log of quarterly 
non-housing total expenditures of each individual household, and variables of interest are the logarithms of the 
Federal Housing Finance Agency (FHFA) MSA-level quarterly house price index (HPI) interacted with either a 
homeowner or a renter dummy. As the dataset is not a balanced panel but repeated cross-section survey data, Model 
3 includes the cohort fixed effects defined by City × Housing tenure × Employer × Occupation × Marital status × 
Education × Race. By doing so, Model 3 can exploit within-cohort temporal variation; the other specifications 
control for MSA-housing tenure instead of the cohort FEs. Additionally, all models include year–quarter fixed 
effects. Robust standard errors in parentheses are clustered by MSA-housing tenure. *** p<0.01, ** p<0.05, * p<0.1 

 

 

 

 

 

 
 

62 To address the endogeneity concern, recent empirical work uses the interaction between an exogenous demand shock and housing 
supply elasticity measured by Saiz (2010) as an instrument for house price growth, and popular demand shifters are national average house 
prices (Dettling and Kearney, 2014; Chetty and Szeidl, 2017) and long-term interest rates (Chaney et al., 2012; Aladangady, 2017). 
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Figure 3.1. Correlations between wealth effect elasticities and housing news volumes by MSA and by quarter-year 

Panel A: By MSA 

  
Notes: Each data point reflects estimated elasticity and a housing news quantity measure for each MSA. The MSA-level 
elasticity estimates are based on Model 3 of Table 3.4. By interacting the housing wealth measure with a group of MSA 
dummies in Equation 3.2, the estimated parameter on each interaction term can be interpreted as a MSA-specific 
consumption elasticity with respect to the local housing price index. The quarterly average number of housing news articles (Left) 
and The average share of housing news articles (Right) reflect averages over the period from Q1.2006 to Q4.2016. The share is a 
ratio of the number of housing news articles to the number of all news articles published in the corresponding city.  

Panel B: By quarter-year 

  
Notes: All data points reflect elasticities and housing news quantity measures for each quarter-year period. To calculate 
period-specific elasticities, I interact the housing price variable with a group of quarter-year dummies in Equation 3.2. The 
average number of housing news articles (Left) and The average share of housing news articles (Right) are averages across MSAs during 
the corresponding period.  

Figure 3.1 visually presents the relationship between the housing wealth effect estimates 

and the media coverage measure. First, I regress the household expenditures on the housing 

wealth interacted with a group of MSA dummies. By doing so, I can estimate housing wealth 

elasticity over time for each MSA. Then the estimated elasticity is plotted against the average 

quarterly number of housing price news articles for the corresponding city (the left graph) 

or against the average ratio of housing news articles to the total news articles for each city 

(the right graph) in Panel A. Instead of absolute quantity measures, I also use shares in the 

right graph because some major newspapers are missing in my sample, and thus differences 

in absolute quantities may not be comparable across cities. Likewise, Panel B plots the 

estimated quarterly elasticity against each quarter’s average number of housing reports and 

its share of housing reports in the left and right graphs, respectively.  
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The elasticity appears to be correlated with the housing news volumes both across cities and 

over time. For example, although New York City and Los Angeles are both major American 

metropolitan cities, New York City sees much less housing news and lower elasticity, while 

Los Angeles sees more housing news and higher elasticity (Panel A). The housing wealth 

effects are also larger when more housing reports are published (Panel B). For example, the 

effect was relatively large during the housing market bust period from 2008 to 2010, when 

housing markets received substantial media attention. However, the elasticity estimates 

declined in the recent years 2014–2016, with less housing news published.  

3.3.2 Baseline Specification 

If consumption responses to housing wealth shocks vary systematically with the number 

of housing news articles, Equation (3.3) can provide a valid identification by 

characterizing the link graphically displayed in Figure 3.1:  

(3.3)  𝑦𝑦𝑖𝑖 ,𝑐𝑐,𝑡𝑡 = 𝛽𝛽1 𝜌𝜌𝑐𝑐,𝑡𝑡−1 𝑧𝑧𝑐𝑐,𝑡𝑡 + 𝛽𝛽2 𝑧𝑧𝑐𝑐,𝑡𝑡 + 𝛽𝛽3𝜌𝜌𝑐𝑐,𝑡𝑡−1 + 𝒙𝒙′𝑖𝑖,𝑐𝑐,𝑡𝑡  𝜸𝜸 +  𝜆𝜆𝑡𝑡 +  𝜙𝜙𝑐𝑐,𝑗𝑗 +  𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡 

where 𝜌𝜌𝑐𝑐,𝑡𝑡−1 is the house price index for the previous term (𝑡𝑡 − 1) and is interacted with 

𝑧𝑧𝑐𝑐,𝑡𝑡, the variable of interest in this study, which is the standardized number of housing 

news articles in city 𝑐𝑐  in year-quarter 𝑡𝑡.63 In addition to the same covariates and fixed 

effects that are used in Equation (3.1), this specification also controls for a square term 

of housing prices (𝜌𝜌𝑐𝑐,𝑡𝑡
2 ), which could capture the correlation between the housing prices 

and the number of housing news. Unless publication of housing news (𝑧𝑧) is determined 

by common factors such as expected future income growth,64 the coefficients for housing 

prices and squared housing prices would capture the impacts of the omitted variable, 

thereby recovering an independent effect of media reporting on the elasticity (𝛽𝛽1). 

Just like in the previous subsection, this study interacts the three key independent variables 

with homeowner and renter dummies as in Equation (3.4). By doing so, I can disentangle 

the effects on owners and renters: 

(3.4)  𝑦𝑦𝑖𝑖 ,𝑐𝑐,𝑡𝑡 = 𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑟𝑟𝑖𝑖  [ 𝛽𝛽1𝜌𝜌𝑐𝑐,𝑡𝑡−1 𝑧𝑧𝑐𝑐,𝑡𝑡 + 𝛽𝛽2 𝑧𝑧𝑐𝑐,𝑡𝑡 + 𝛽𝛽3 𝜌𝜌𝑐𝑐,𝑡𝑡−1]  

      + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑟𝑟𝑖𝑖  [ 𝛽𝛽4𝜌𝜌𝑐𝑐,𝑡𝑡−1 𝑧𝑧𝑐𝑐,𝑡𝑡 + 𝛽𝛽5 𝑧𝑧𝑐𝑐,𝑡𝑡 + 𝛽𝛽6𝜌𝜌𝑐𝑐,𝑡𝑡−1] 

                    + 𝒙𝒙′𝑖𝑖,𝑐𝑐,𝑡𝑡  𝜸𝜸 +  𝜆𝜆𝑡𝑡 +  𝜙𝜙𝑐𝑐,𝑗𝑗 +  𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡 

 

63 This study standardized the key variable mainly for easier interpretation. Using the logarithm of the number of articles does not make 
any noticeable differences. 

64 This is not very likely, given the low correlation between housing prices and the news volume. 
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This baseline specification is motivated by Figure 3.2. For simplicity, suppose that the log 

consumption is linear to the log housing wealth. Then dependence of the housing wealth 

effect on newspaper reports could be visually described as in the figure. The dashed line 

represents the optimal consumption set of the fully informed homeowners, characterizing 

an information environment with more housing news, and the solid line represents less 

informed homeowners in an environment with less housing news. The fully informed 

utility-maximizing homeowners should consume more than the less-informed in response 

to high housing prices. But the fully-informed should consume less than the less-informed 

when housing prices are very low. In other words, more news about housing prices has a 

positive impact on spending when house prices are high, but a negative impact when prices 

are low. Therefore, the wealth-spending elasticity should be a function of the volume of 

housing news, and the function (𝛽𝛽1𝑧𝑧𝑐𝑐, 𝑡𝑡 + 𝛽𝛽3) can be obtained by simply reordering terms 

(Equation 3.5).65  

Figure 3.2. Expected effect of increasing newspaper reports on the link between house price index and spending 
When the number of housing reports increase, the relationship between housing wealth and consumption is expected to 
shift from the solid line to the dash line. The slope of the equation should go up with the y-intercept decreasing. 

 

(3.5)  𝑦𝑦𝑖𝑖 ,𝑐𝑐,𝑡𝑡 = 𝛼𝛼 + 𝛽𝛽1𝜌𝜌𝑐𝑐,𝑡𝑡−1 𝑧𝑧𝑐𝑐,𝑡𝑡 + 𝛽𝛽2𝑧𝑧𝑐𝑐,𝑡𝑡 + 𝛽𝛽3 𝜌𝜌𝑐𝑐,𝑡𝑡−1 + 𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡  

                 = �𝛼𝛼 + 𝛽𝛽2 𝑧𝑧𝑐𝑐,𝑡𝑡�+ [𝛽𝛽1𝑧𝑧𝑐𝑐,𝑡𝑡 + 𝛽𝛽3] 𝜌𝜌𝑐𝑐,𝑡𝑡−1 +  𝜀𝜀𝑖𝑖,𝑐𝑐,𝑡𝑡 

Importantly, the validity of this specification depends not only on 𝛽𝛽1, but also on 𝛽𝛽2. In 

Figure 3.2, the slope of  the equation should go up, with the y-intercept decreasing when 

the number of  housing reports increases. Thus,  𝛽𝛽1 and 𝛽𝛽2, respectively, are expected to be 

positive and negative.  

(3.6)  𝑦𝑦 = 𝛼𝛼 +  𝛽𝛽1𝜌𝜌𝜌𝜌 +  𝛽𝛽2𝑧𝑧 + 𝛽𝛽3 𝜌𝜌 + 𝜀𝜀   ⇒  𝜕𝜕𝜕𝜕 =  𝜕𝜕𝜕𝜕 (𝛽𝛽1𝑧𝑧 + 𝛽𝛽3)���������
𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

 +  𝜕𝜕𝜕𝜕 (𝛽𝛽1𝜌𝜌 + 𝛽𝛽2)���������
𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸

 

 

65 This specification assumes that the elasticity of household expenditures with respect to housing wealth is linear to the housing news 
volumes. 
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To see this more clearly, Equation (3.6) disentangles housing wealth effects from media 

effects by partial differentiation.66 Regardless of the volume of housing price news (𝑧𝑧), the 

wealth effect is widely believed to be positive, but more housing reports combined with a 

positive 𝛽𝛽1 could make the consumption response more elastic. That is, an increase of one 

standard deviation in the number of housing price articles is associated with a 𝛽𝛽1 increase 

in the elasticity. In the meantime, the media effect (𝛽𝛽1𝜌𝜌 + 𝛽𝛽2) is negative when housing 

prices (𝜌𝜌) are low enough. Hence, 𝛽𝛽2 is expected to be negative. For example, more media 

reporting about distressed housing markets further discourages household consumption. 

As the housing wealth increases, the media effect becomes positive, and thus 𝛽𝛽1 should be 

positive.  

An empirical concern is unobservable common shocks driving up both housing news 

publications and the wealth-consumption elasticity. Even when the underlying information 

is fixed, a local paper’s reporting decisions may be correlated to unobserved determinants 

of the elasticity. For example, a local media outlet is more likely to report housing price 

dynamics in MSAs where local residents are more interested in the housing market and thus 

their consumption is more responsive to housing wealth. Therefore, the number of housing 

news articles may simply reflect local residents’ interest in or prior knowledge about housing 

prices, so it may be endogenous. Basically, this paper can substantially address this concern 

by including the cohort fixed effects that capture any time-invariant location- or group-

specific heterogeneity. However, it is not impossible that the local citizens’ interest in 

housing prices is time-varying for some reason or other. To further alleviate this concern, I 

include two additional control variables.  

The first control variable is the Google Trends Search Volume Index (GSVI), used as a 

measure of internet users’ attention to certain topics such as housing prices. Google Trends 

allows users to obtain a query index for a specific phrase. Attention to housing prices may 

be correlated with Google search volumes, as Google is the most commonly used online 

information source. Several recent works make use of the search query data to measure 

internet users’ attention. For example, Da et al. (2011) show that an increase in the search 

volume index predicts an increase in stock prices during the next two weeks, and more 

recently, Chauvet et al. (2016) develop a mortgage default risk index using the Google data 

 

66 It is challenging to empirically disentangle the effect of media reporting from the effect of the underlying information reported. Thus, 
this breakdown simply assumes that each article may be informative in several ways, but the MSA-level housing price index is the only 
information related to consumption consequences.   



 

82 
 

and find that their index is also predictive of housing market sentiment and performance. 

In this paper, I use “home price,” “housing price,” and “house price” as search queries on 

the Google Trends website in order to capture local residents’ general interest in housing 

prices by MSA-quarter; Figure 3.3 shows an example for Boston. I then add the indices for 

the three search terms to construct a quarterly panel for the MSA-level search index. Figure 

3.4 shows that local searches for housing prices on Google appear to be somewhat 

predictive of the number of housing news articles published during the U.S. subprime 

mortgage crisis period and the following Great Recession from 2007 to 2011.   

Figure 3.3. An example of Google Trends Search Index for Boston 

 
Notes: This figure shows a screen shot of the monthly Google Trends Search Indices for the search 
queries, “home price” (blue line), “housing price” (red line), and “house price” (yellow line) for the 
metropolitan Boston area. All three indices are normalized so that the period with the maximum 
search volume takes 100, which is assigned to March 2004 of the “home price” index. As a result, 
the other values of indices represent relative search volumes instead of absolute volumes. For 
example, the term “housing price” has relatively zero search volume over the period compared to 
the maximum value (March 2004, “home price”).    

Figure 3.4. Time-series trends of the number of housing articles and the Google search index  

 
Notes: The red solid line denotes the quarterly time-series trend of the MSA-
level average numbers of housing news articles published by all newspapers 
in the sample during each quarter (left axis). The blue dash line presents the 
average Google Trends Search Volume Index across MSAs in the sample 
(right axis). To calculate the Google index, I use three search queries, “home 
price”, “housing price”, and “house price”, for each MSA, and add up the 
indices from the three search terms to construct a quarterly MSA-level index. 
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The other control variable is the share of construction and real estate industries in the local 

GDP. Unobservable industry-specific shocks may exert an influence on media reporting as 

well as the consumption elasticity for the following two reasons.67 In MSAs where 

construction and real estate industries account for a larger fraction of the city economy, 

residents’ consumption may be more responsive to housing prices, not only because their 

current or future incomes are highly correlated with the housing market performance but 

also because they are likely to obtain more and better house price information from their 

workplace or peers. At the same time, the large contribution of related industries to the local 

GDP can possibly affect the number of housing price reports by contributing to the 

advertising revenues of local newspapers. When newspapers sell more advertising to these 

industries, the media outlets are more likely to decide to cover topics that are relevant to 

their clients. To address this issue, I add the share of construction and real estate industries 

in the state-level GDP, using the Gross-Domestic-Product-by-Industry Data provided by 

the Bureau of Economic Analysis (BEA). As MSA-level data is available only on a yearly 

frequency, I instead use the state-level quarterly GDP shares of the industries as a control 

variable.  

Table 3.5 presents the baseline regression results. Model 1 is a standard specification for 

the wealth effect, and Model 3 allows the consumption elasticity to vary according to the 

number of news articles conveying house price information by including the interaction 

term. The number of housing news articles is strongly correlated with the consumption 

elasticity. Specifically, an increase of one standard deviation in the number of housing price 

reports raises homeowners’ consumption elasticity by 0.0813 (Model 3). Importantly, in the 

absence of the interaction term, housing prices have a significant effect on homeowner 

consumption while the housing news effect is insignificant (Model 2). However, adding the 

interaction term makes the housing wealth effect disappear, but the media effect becomes 

significant with a negative sign, as expected (Model 3). The findings indicate that the quantity 

of housing price news reports may be a main driver of the observed housing wealth effects, 

although interpretation of the coefficient for housing prices has strong limitations due to 

the omitted common shocks. A concern is that the effect of the interaction term is also 

 

67 A typical concern in the housing wealth literature is that the fall in housing wealth and consumption simply reflects the decline in the 
recession-prone construction industry (Mian et al., 2013). 
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sizable and significant for renters, implying that common factors may be driving up both 

the news publications and the consumption elasticity.68  

 Results: baseline specifications 

Dep. Var.: ln(Total Expenditure) (1) (2) (3) (4) (5) (6) 
Owner × ln(HPI) 0.224*** 0.220*** -0.299 -1.268 -0.970 -0.134 
 (0.0695) (0.0796) (0.837) (0.920) (1.111) (1.208) 
Owner × z(#Housing News)  0.00576 -0.438***   -0.459*** 
  (0.00937) (0.154)   (0.153) 
Owner × ln(HPI) × z(#Housing News)   0.0813***   0.0852*** 
   (0.0280)   (0.0279) 
Owner × ln(Google Index)    0.293  0.386 
    (0.514)  (0.571) 
Owner × ln(HPI) × ln(Google Index)    -0.0579  -0.0742 
    (0.0964)  (0.107) 
Owner × GDP Share RE-Const.     -1.823 3.980 
     (8.506) (10.64) 
Owner × ln(HPI) × GDP Share RE-Const.     0.478 -0.605 
     (1.551) (1.957) 
Renter × ln(HPI) 0.113* 0.0828 -0.460 -0.285 -1.115 0.549 
 (0.0621) (0.0553) (0.865) (1.049) (1.085) (1.367) 
Renter × z(#Housing News)  0.0179** -0.292*   -0.350** 
  (0.00892) (0.154)   (0.164) 
Renter × ln(HPI) × z(#Housing News)   0.0564**   0.0672** 
   (0.0271)   (0.0290) 
Renter × ln(Google Index)    1.404**  1.276* 
    (0.696)  (0.747) 
Renter × ln(HPI) × ln(Google Index)    -0.265**  -0.240* 
    (0.126)  (0.134) 
Renter × GDP Share RE-Const.     -2.302 2.336 
     (8.667) (8.919) 
Renter × ln(HPI) × GDP Share RE-Const.     0.559 -0.311 
     (1.614) (1.680) 
Observations 96,776 90,052 90,052 96,199 96,776 89,475 
Adjusted R-squared 0.617 0.617 0.617 0.617 0.617 0.618 
Notes: This table presents regression results from Equation 3.4, the baseline specification. The dependent variable is the log of 
quarterly non-housing total expenditures of each individual household. ln(HPI) is the logarithm of the Federal Housing Finance 
Agency (FHFA)’s MSA-level house price index. Owner and Renter are indicators capturing whether the household is a homeowner 
or a renter. z(#Housing News) is the standardized number of housing news articles varying by MSA and quarter-year. Google Index 
denotes Google Trends Search Indices for three search queries, “home price”, “housing price”, and “house price”. GDP Share RE-
Const. is the share of construction and real estate industries in the state-level quarterly GDP; I use the state-level GDP, as the MSA-
level GDP is available only at yearly frequency. As the dataset is repeated cross-sections, all models include the cohort fixed effects 
defined by City × Housing tenure × Employer × Occupation × Marital status × Education × Race in order to exploit within-cohort 
temporal variation for identification. All models also control for time-varying household characteristics and year-quarter fixed effects. 
Robust standard errors in parentheses are clustered by MSA-housing tenure. *** p<0.01, ** p<0.05, * p<0.1 

Interestingly, the Google search index has a significantly negative effect on renters’ elasticity 

and an insignificant but negative effect on that of owners. While the number of newspaper 

articles may be a measure of information that is passively received, the Google search index 

may reflect the attention of active information seekers in housing markets, who are mostly 

renters or potential homebuyers. By googling, they become better informed about housing 

prices than homeowners, and therefore the search index volumes should have a negative 

impact on renters’ consumption responses to rising house prices, as seen in column 4. Some 
 

68 Despite the fact that rising house prices could have negative effects on renters because they are potential homebuyers, the estimated 
coefficients for renters are consistently positive. 
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homeowners may plan to move and therefore probably actively search for housing prices 

on the internet. That might be the reason for the negative coefficient for homeowners.  

3.3.3 Placebo Tests 

The findings of Table 3.5 may be due to random chance as opposed to a true causal effect. 

To relieve the concern, this paper conducts a couple of placebo tests.  

The first placebo treatment is the number of wage news articles. It is plausible that housing 

price news contains information about incomes or wages that can affect consumption. 

When house prices go up, wage expectations may go up concurrently. Wage news is 

identified as newspaper articles that include the keyword “wage” but exclude “home,” 

“housing,” and “house”. The housing terms are excluded to isolate the effect of information 

on wages or future income expectations from that of housing price information. If this study 

finds similar regression results for the wage news conveying no housing market information, 

then the estimated impact of housing news can be considered badly biased. 

Figure 3.5. Time-series trends of the number of housing news, all news, and wage news articles 

  
Notes: These figures show time-series relationships between the variable of interest (the number of housing news article) and 
two control variables (the numbers of all news and wage news articles). The left graph plots the quarterly time-series trends of 
the MSA-level average numbers of housing news articles (red solid line, left axis) and all news articles (yellow dash line, right 
axis) published by all newspapers in the sample during each quarter. In the right graph, the blue solid line denotes the MSA-level 
average number of wage news articles published by all the sample newspapers during each quarter. A wage news includes a 
keyword, “wage”, but excludes all the three queries, “home”, “housing”, and “house”, in its headline and body. 

The second is the number of all news articles. The number of housing price reports may 

simply capture general trends in the media markets. The growth of local media markets or 

advertising revenues is possibly associated with household consumption, not only because 

more advertising sales are affected by a strong local economy but also because more 

advertising may boost consumption. Generally speaking, advertising revenues for U.S. 

newspapers have dropped since 2004, largely due to declining circulation and the growing 
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domination of online advertising options (Chandra and Kaiser, 2015). As a result, the total 

number of newspaper reports have also declined, as shown in Figure 3.5.   

 Results: placebo tests 
Dep. Var.: ln(Total Expenditure) (1) (2) (3) (4) 
Owner × ln(HPI) -0.134 -2.311* -2.576** -1.328 
 (1.208) (1.219) (1.190) (1.203) 
Owner × z(#Housing News) -0.459***   -0.368** 
 (0.153)   (0.151) 
Owner × ln(HPI) × z(#Housing News) 0.0852***   0.0681** 
 (0.0279)   (0.0276) 
Owner × z(#All News)  0.389*  0.0803 
  (0.199)  (0.192) 
Owner × ln(HPI) × z(#All News)  -0.0718*  -0.0123 
  (0.0381)  (0.0365) 
Owner × z(#Wage News)   0.378*** 0.325** 
   (0.144) (0.157) 
Owner × ln(HPI) × z(#Wage News)   -0.0704*** -0.0609** 
   (0.0269) (0.0293) 
Renter × ln(HPI) 0.549 -1.638 -1.765 -0.338 
 (1.367) (1.183) (1.251) (1.478) 
Renter × z(#Housing News) -0.350**   -0.269 
 (0.164)   (0.216) 
Renter × ln(HPI) × z(#Housing News) 0.0672**   0.0524 
 (0.0290)   (0.0385) 
Renter × z(#All News)  0.179  0.0978 
  (0.142)  (0.191) 
Renter × ln(HPI) × z(#All News)  -0.0388  -0.0227 
  (0.0271)  (0.0351) 
Renter × z(#Wage News)   0.132 -0.0136 
   (0.196) (0.216) 
Renter × ln(HPI) × z(#Wage News)   -0.0253 0.00238 
   (0.0368) (0.0402) 
Observations 89,475 91,734 91,734 88,572 
Adjusted R-squared 0.618 0.619 0.619 0.618 

Notes: The dependent variable is the log of quarterly non-housing total expenditures of each individual household. 
ln(HPI) stands for the log of the FHFA’s MSA-level house price index. Owner and Renter are indicators capturing whether 
the household is a homeowner or a renter. z(#Housing News) is the standardized number of housing news articles varying 
by MSA and quarter-year. z(#All News) and z(#Wage News) are the standardized numbers of all news and wage news 
articles, respectively. As the dataset is repeated cross-sections, all models include the cohort fixed effects. All models also 
control for time-varying household characteristics, the Google Trends Search Index, the share of construction and real estate 
industries in the state-level quarterly GDP, and year-quarter fixed effects. Robust standard errors in parentheses are 
clustered by MSA-housing tenure. *** p<0.01, ** p<0.05, * p<0.1 

 

However, both all news and wage news articles present negative impacts (Models 2 and 3 of 

Table 3.6). A plausible reason for the negative effect of all news is that more information 

simply means more divided attention to news about a specific topic such as housing prices, 

considering that people have only limited amounts of time and cognitive resources to 

process information. As a consequence, household consumption may become less 

responsive to housing wealth. Also, it may be a spurious correlation. In recent years, housing 

prices have recovered, whereas the number of newspaper articles has drastically declined. 

Yet there are no causal relationships between the two trends. The negative coefficient for 

wage news might be due to macroeconomic policies. Wage-related policies are strongly 

determined by present economic conditions. During a recession, politicians usually call for 

an increase in the minimum wage to stimulate consumption, but their concern is the negative 

impact of high labor costs during the next phases of a business cycle. Thus, such discussions 
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in newspapers may have a countereffect on the consumption elasticity. Media coverage of 

policy discussions on an increase in the minimum wage could encourage households to 

consume more even during an economic downturn, when housing prices usually plummet. 

Notably, using both placebo news articles as additional control variables helps to further 

recover the causal effect of media coverage (Model 4), implying that the wage information 

may be to some extent correlated with the housing price information. As the effects of the 

interaction and housing price news for renters become insignificant, the endogeneity issue 

is considerably alleviated.  

3.3.4 Headline Effect 

For further causal investigations, this subsection identifies the headline effect. The variable 

of interest in this study is the number of newspaper articles for which the headline includes 

“home,” “house,” “housing,” “property,” or “real estate,” and the headline or the body 

includes “housing price,” “house price,” or “home price.” If an article conveying house price 

information captures local readers’ dynamic interest in housing prices or any other omitted 

variables that can affect local elasticity, then the article should do so even without housing 

terms in its headline. Table 3.7 presents an example. The left panel shows one of the articles 

included in the key variable; it has “home” in its headline and “home price” in its body. The 

article on the right also provides readers with similar information about housing prices, but 

its headline does not include any housing term. Considering the underlined phrases, “the 

first quarter-over-quarter improvement in three years” (left) and “its first quarterly increase 

in three years” (right), a common information source seems to have influenced both of these 

articles published on the same date by two neighboring local papers.69 The article on the left 

is obviously about housing market trends, and the one on the right is more about general 

economic conditions. However, both of the articles appear to reflect local readers’ interest 

in housing prices or similar supply-side factors affecting media reporting.  

 

 

 

 

69 It is possible that housing report volumes simply capture time-varying local residents’ interests in housing markets or prices that 
potentially are influenced by other information channels rather than local newspapers in the sample. Therefore, coverage of other media 
outlets could jointly determine the newspaper reporting and the consumption responses to housing wealth. 
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 Examples: headlined and non-headlined housing news articles 
 Headlined housing news article Non-headlined housing news article 

Newspaper Chicago Sun-Times (Chicago, IL) Daily Herald (Arlington Heights, IL) 
Date Aug 25, 2009 Aug 25, 2009 
Headline Chicago home prices rise in June Consumer sentiment improves more than expected 

Body 

Home prices in the Chicago metropolitan area rose 1.1 
percent in June over May, but were down 16.7 percent 
from a year earlier according to the latest Standard & 
Poor's Case-Shiller home price index. Nationally, prices 
rose 2.9 percent in the second quarter from the first 
quarter, the first quarter-over-quarter improvement in 
three years. But prices were down 14.9 percent from a 
year earlier. "For the second month in a row, we're 
seeing some positive signs," David Blitzer, chairman... 

Consumer sentiment rose more than expected in 
August and expectations hit the highest level since the 
recession began, indications that Americans' pessimism 
about the economy may be lifting. The housing sector 
also showed signs of life as a national measure of home 
prices posted its first quarterly increase in three years. 
The New York-based Conference Board said today its 
Consumer Confidence index rose to 54.1 from an 
upwardly revised 47.4 in July. Economists surveyed... 

Notes: Both the articles were published on the same date by two local newspapers within a metropolitan area. The left article is included 
in the key explanatory variable whereas the right is included in the control variable. In this study, a housing news article includes 
“home”, “house”, “housing”, “property” or “real estate” in its headline, and also includes “housing price”, “house price” or “home 
price” in its headline or body. In contrast, a non-housing-headlined news article includes “housing price”, “house price” or “home 
price” in its body, but does not include any of the five terms, “home”, “house”, “housing”, “property”, and “real estate” in its headline. 
As examples, the left article (a housing news article) includes “home” in its headline, as well as “Home prices” in its body. The right (a 
non-housing-headline news article) includes “home prices” in its body without any housing terms in its headline. Given the underlined 
phrases, both may be influenced by an unobservable common factor, but may have different effects on readers.  

Figure 3.6. Relationships between the numbers of headlined and non-headlined housing artcles  

  
Notes: These figures show relationships between the number of headlined housing news articles and the number of non-
headlined housing news articles by newspaper (left) and over time (right). Each data point in the left panel reflects the total 
number of housing news articles and that of non-headlined news articles published by a local newspaper from 2006 to 2016. 
The right graph plots the quarterly time-series trends of the MSA-level average numbers of housing (red solid line) and non-
housing-headlined news articles (green dash line) published by all newspapers in the sample during each quarter.   

By taking advantage of this pattern, I estimate the effect of the number of articles in which 

the body includes “housing price,” “house price,” or “home price” but whose headline does 

not include any of the five terms “home,” “house,” “housing,” “property,” and “real estate”; 

I call these “non-headlined housing news” or “non-headlined news” hereafter. The non-

headlined news articles largely consist of two groups. Most of them focus on non-housing 

economic issues but more or less relate the main issues to housing prices. Thus, the number 

of such reports could capture the extent to which local readers are interested in housing 

markets. The other group includes reports about the housing market with a less 

straightforward headline. In this case, I assume that whether the headline includes any of 

the housing terms is random, so this group can partially capture the treatment effect but 
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does not bias the estimated treatment effect. Figure 3.6 displays strong correlations between 

the headlined and non-headlined housing news articles across newspapers and over time.  

 Results: headline effect 
Dep. Var.: ln(Total Expenditure) (1) (2) (3) 
Owner × ln(HPI) -1.328 -2.439** -1.537 
 (1.203) (1.202) (1.212) 
Owner × z(#Housing News) -0.368**  -0.418*** 
 (0.151)  (0.156) 
Owner × ln(HPI) × z(#Housing News) 0.0681**  0.0780*** 
 (0.0276)  (0.0286) 
Owner × z(#Non-Headlined)  -0.104 0.0718 
  (0.124) (0.121) 
Owner × ln(HPI) × z(#Non-Headlined)  0.0173 -0.0152 
  (0.0229) (0.0221) 
Renter × ln(HPI) -0.338 -1.546 -0.579 
 (1.478) (1.491) (1.503) 
Renter × z(#Housing News) -0.269  -0.286 
 (0.216)  (0.269) 
Renter × ln(HPI) × z(#Housing News) 0.0524  0.0558 
 (0.0385)  (0.0479) 
Renter × z(#Non-Headlined)  -0.0584 0.0449 
  (0.189) (0.215) 
Renter × ln(HPI) × z(#Non-Headlined)  0.0107 -0.00903 
  (0.0345) (0.0392) 
Observations 88,572 88,572 88,572 
Adjusted R-squared 0.618 0.618 0.618 

Notes: The dependent variable is the log of quarterly non-housing total expenditures of each individual 
household. ln(HPI) stands for the log of the FHFA’s MSA-level house price index. Owner and Renter 
are indicators capturing whether the household is a homeowner or a renter. z(#Housing News) and 
z(#Non-Headlined) are the standardized numbers of respectively headlined and non-headlined 
housing news articles varying by MSA and quarter-year. As the dataset is repeated cross-sections, all 
models include the cohort fixed effects. All models also control for time-varying household 
characteristics, the Google Trends Search Index, the share of construction and real estate industries in 
the state-level quarterly GDP, the standardized numbers of all news and wage news articles, and year-
quarter fixed effects. Robust standard errors in parentheses are clustered by MSA-housing tenure.      
*** p<0.01, ** p<0.05, * p<0.1 

 

However, only headlined housing news has a statistically significant effect on the wealth 
effect elasticity (Table 3.8). If the number of housing news is endogenous, then the non-
headlined news also should have a significant effect, but it does not.70 Thus this result 
substantially alleviates the endogeneity issue. Controlling for the number of non-headlined 
news articles, the treatment effect becomes statistically more significant for homeowners 
(Model 3). Due to the non-headlined news, the treatment effect may largely capture the 
effect of headlining, and this result is consistent with a recent study’s finding that about 60% 
of news articles are shared on Twitter without even being read (Gabielkov et al., 2016). 

3.3.5 Alternative Specification 

There is no doubt that media reporting, housing prices, and consumer spending are all 

strongly influenced by macroeconomic fluctuations. Given what housing and financial 

markets have gone through during the recent decade, unobservable macroeconomic factors 
 

70 I assume that it is random whether or not each housing news article includes housing terms in its headline. 
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are likely to have exerted a large influence on both housing price news and household 

consumption elasticity. After the U.S. subprime mortgage crisis of 2007–2009, the following 

Great Recession saw a collapse in housing prices and household consumption. Such 

economic events strongly impact expectations of permanent income, a common shock 

affecting both housing prices and spending, by drawing substantial media attention to 

housing markets. Thus, time-varying unobservable macro factors may have a great potential 

to bias empirical results by driving up both the wealth-consumption elasticity and media 

reporting over the boom and bust. Figure 3.7 presents relationships among the three key 

variables in this study. The relations between housing prices and consumption are 

consistently positive, both across cities and over time (Panel A). However, the link between 

housing prices and the volume of housing price news appears to be positive across cities but 

negative over time (Panel B). Media outlets tend to publish more articles conveying housing 

price information in the MSAs where house prices are higher, but they seem to provide 

readers with more housing price news when housing prices are lower over time. At the least, 

this conflicting pattern confirms that housing prices and housing price news reporting are 

not systematically correlated. More importantly, the visual depiction may highlight the 

strong influence of time-series macro factors; because it is widely believed that time-series 

correlations are more vulnerable to omitted variables. Homeowners may simply consume 

more during housing booms and less during busts, with both extreme cases endogenously 

seeing more media news about housing prices than usual.  

To address this issue arising from time-varying unobservable factors, this section exploits 

only cross-sectional variation in media reporting by averaging the variable of interest over 

the entire period from 2006 to 2016 for each MSA. In principle, the panel estimation 

employed in the previous section enables a more powerful test by taking full advantage of 

variation across cities and over time. However, the estimates could be biased because the 

media decision to report may heavily depend on the macroeconomic fundamentals. Hence, 

I identify the media effects from the interaction of local housing price swings and 

presumably less correlated time-invariant local housing price news volumes. Exploiting only 

cross-sectional variation in housing news lends additional credibility that the estimates are 

less biased by common factors, as city-level heterogeneity in housing price news volumes 

might be less correlated with the information events being reported over time and therefore, 

more exogenous to time-series fluctuations of the elasticity. 

 



 

91 
 

Figure 3.7. Correlations among median housing prices, consumption, and housing news volumes 
These figures show cross-sectional (left graphs) and time-series (right graphs) correlations among housing prices, household 
consumption, and housing news volumes, the three key variables in this study. 

Panel A: Median housing prices (USD, 2006) – Average quarterly expenditures by MSA (Left) and by quarter (Right) 

  
Notes: Panel A displays the relationships between median housing prices and homeowner expenditures by MSA (left) and 
by quarter-year (right). In the left graph, median housing prices are MSA-level from the National Association of Realtors 
(www.nar.realtor), and homeowners’ quarterly expenditures are MSA-level averages over the period from Q1.2006 to 
Q4.2016. In the right, the x-axis presents the Federal Housing Finance Agency quarterly national house price index (HPI), 
and the y-axis presents the average homeowner expeditures across MSAs in the sample for the corresponding quarter-year.  

Panel B: Median housing prices (USD, 2006) – Share of housing news by MSA (Left) and by quarter (Right) 

  
Notes: Panel B displays the relationships between the median housing prices and the shares of housing news articles, the 
ratios of housing news to all news articles. The share of housing news articles are MSA-level averages over the period in 
the left graph, and averages across MSAs in the sample for the corresponding quarter-year in the right graph.  

Panel C: Average quarterly expenditures(USD) – Share of housing news by MSA (Left) and by quarter (Right) 

  
Notes: Panel C displays the relationships between the homeowner expenditures and the shares of housing news articles. 
See Panels A and B for details on the x- and y-axises. 
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where %𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑐𝑐 denotes the city-level percentage ratio of housing news to all news articles 

published during the period from 2006 to 2016.71  

Table 3.9 robustly confirms the effects of the media coverage on housing prices. Household 

consumption is more responsive to volatile housing prices in cities with a larger share of 

housing price news. Model 1 is the baseline specification and shows a statistically significant 

effect only on homeowners. Models 2 and 3 employ the time-invariant percentage share of 

non-headlined housing news and that of wage news, respectively, as additional control 

variables as well as placebo news. Yet both have no significant impact. Lastly, Model 5 

instruments for the long-term share of housing news with the long-term share of stock news 

over the same period. The stock news articles are identified through the search queries “S&P 

500,” “Dow Jones,” and “Nasdaq,” and a part of the variation in housing news reporting is 

explained by the variation in stock news reporting (Figure 3.8). It is plausible that some 

newspapers publish more pages in the economy and finance sections with a larger team of 

staff members, and these sections are likely to cover more housing price news when stock 

markets are calm than newspapers that are otherwise similar. If this is the case, then the 

share of housing price news should be strongly correlated with the share of stock news in 

the long term. More importantly, the stock market event information reported by 

newspapers rarely reflects local economic conditions, since the search keywords are not 

location-specific. Therefore, the share of stock news is not likely to have a direct impact on 

the local housing wealth elasticity. Unobservable local factors may influence a local media 

outlet’s decisions to report stock market events, but the reporting decisions are not likely to 

vary systematically with households’ consumption responses to local housing prices. In 

other words, the instrument variable is predictive of long-term housing price news volumes 

but uncorrelated to unobservable factors that affect the local consumption elasticities, 

suggesting that the exclusion restriction is not violated. With the IV, the key interaction term 

has a more sizable impact on homeowner spending with an insignificant but negative impact 

on renters. The results provide some evidence that the IV estimator further alleviates the 

concern regarding common factors that are expected to affect the consumption elasticities 

of both homeowners and renters along with housing price news. Overall, a 0.01 percentage 

point increase in the housing price news share raises the elasticity by 0.0447–0.0684. 

However, a limitation is that cross-sectional variation in media reporting comes from only 

 

71 The reason for using the share measure instead of the quantity measure was discussed in section 3.3.2. 
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22 cities, so the first-stage F-test does not exceed the Stock and Yogo (2005) thresholds at 

20 percent level, suggesting that the instrument is weak.  

 Results: alternative specifications 
 Dep. Var.: ln(Total Expenditure) (1) OLS (2) OLS (3) OLS (4) OLS (5) IV 
Owner × ln(HPI) -0.480 -1.051 -0.938 0.206 0.425 
 (0.986) (0.996) (0.895) (1.119) (1.270) 

Owner × ln(HPI) × % Housing News 1.793**   4.471*** 6.842*** 
 (0.719)   (0.935) (2.591) 

Owner × ln(HPI) × % Non-headlined News  1.485  -7.311** -12.27** 
  (2.362)  (3.430) (6.104) 

Owner × ln(HPI) × % Wage News   -0.224 -0.399 -0.460* 
   (0.278) (0.278) (0.270) 

Renter × ln(HPI) -0.550 -1.173 -1.131 -0.0350 -0.00782 
 (1.017) (1.016) (0.952) (1.172) (1.297) 

Renter × ln(HPI) × % Housing News 0.637   1.266 -1.888 
 (0.583)   (1.232) (1.726) 

Renter × ln(HPI) × % Non-headlined News  0.717  -1.260 6.684 
  (1.616)  (3.604) (5.383) 

Renter × ln(HPI) × % Wage News   -0.141 -0.289 -0.271 
   (0.207) (0.242) (0.280) 

Observations 92,311 92,311 92,311 92,311 88,819 
Adjusted R-squared 0.619 0.619 0.619 0.619 0.093 

Notes: The dependent variable is the log of quarterly non-housing total expenditures of each individual household. HPI is 
the MSA-level quarterly house price index. Owner and Renter are indicators capturing whether the household is a homeowner 
or a renter. %Housing News is a MSA-level percentage ratio of housing news to all news articles published during the period 
from 2006 to 2016. %Non-Headlined News and %Wage News are also percentage ratios of non-housing-headlined news and 
wage news, respectively, to all news articles, varying only by MSA. Model 5 instruments for the share of housing news articles 
with the share of stock news articles that include search queries, “S&P 500”, “Dow Jones”, or “Nasdaq”. As the dataset is 
repeated cross-sections, all models include the cohort fixed effects. All models also control for time-varying household 
characteristics and year-quarter fixed effects. Robust standard errors in parentheses are clustered by MSA-housing tenure. 
*** p<0.01, ** p<0.05, * p<0.1 

Figure 3.8. Correlation between the shares of housing news and stock news 

 
Notes: The fitted line excludes two outliers of which the share of housing 
news is greater than 0.15%, the Daily News of Los Angeles and The Orange County 
Register. Without the two LA media outlets, the correlation is statistically 
significant with p<0.01. 
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3.4 Conclusion 

Different economic decisions may come from different information environments. In 

particular, many homeowners do not actively seek housing price information in their 

everyday lives and are therefore unaware of the precise values of their homes, given the 

imperfect information and a high degree of uncertainty in housing markets. To what extent, 

then, might publicity affect the behavior of consumers who are not actively seeking 

information? This paper pays particular attention to the volume and frequency of 

information and tests whether homeowner awareness of housing prices can increase 

consumption responses to house prices. By using the number of articles conveying house 

price information in local newspapers as a proxy for homeowner awareness of their housing 

wealth, I robustly find that information from news media can alter homeowner decisions, 

thereby increasing the elasticity of consumption with respect to housing wealth. The more 

frequently households are informed about house prices, the larger consumption growth we 

can expect in response to similar housing price appreciation.  

The core contribution of this paper is twofold. First, I show that the quantity of information 

is predictive of agents’ economic decisions. Second, understanding the relationship between 

information quantity/frequency and outcomes, and finding a more effective way to inform 

citizens can be very important to practitioners/policymakers for having more accurate 

predictions and making right choices. Disparity in the amount of information available to 

different individuals may function as a friction in the macroeconomic policy process and 

thereby render interventions less effective or less consistent than anticipated.  
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