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Abstract

This thesis consists of three submitted papers and one working paper. It begins with the study

of asymptotic solutions for the first passage time densities of various diffusion processes, and

the thesis ends up with an application of such findings in the area of systematic trading. In

between, financial bubbles and the regulatory risk management for the banking industry are

studied additionally. The purpose of this thesis is to, by combining probability theory with

financial practice, provide quantitative tools for investment decision and risk management.

Chapters 3-5 are reorganised from the first passage time paper [31]. Our research method

is mainly based on the potential theory and the perturbation theory. In Chapter 3, a unified

recursive framework for finding first passage time asymptotic densities has been proposed.

Besides, we prove the convergence of our framework and provide an error estimation formula.

Examples related to the Ornstein-Uhlenbeck and the Bessel processes are demonstrated in

Chapters 4 and 5, respectively.

The second paper [30] is documented in Chapter 6. It introduces a new diffusion process

which is relevant to financial bubbles. During the study of the first passage time, we occa-

sionally found that the sample path of the new process coincides with log-price features of

bubble assets. In Chapter 6, we show that the new model is a power-exponential transform

of the Shiryaev process [116, 117]; and we prove that the model itself, indeed, satisfies var-

ious technical requirements for defining a financial bubble [107]. Furthermore, by using our

previous framework, we solve the closed-form asymptotic for the model’s first passage time;

and according to which, we have made predictions to the burst time of BitCoin.

Chapter 7 is a modified version of the third paper [75]. We consider the risk capital allo-

cation issue under the forthcoming regulatory framework, namely the Fundamental Review of

Trading Book. Apart from studying coherent properties of the new risk measure, we propose

two alternative capital allocation schemes within the range of Internal Modelling Approach.

Our analysis shows that, different choices in allocation methods can lead significantly dif-

iv



ferent allocated capitals, therefore, impacting on bank’s performance measure and capital

optimisation.

Our current working paper about systematic trading is demonstrated in Chapter 8. We

propose two mathematical frameworks for, respectively, defining executable trading strate-

gies and identifying the strategy-associated trading signals. Based on our definitions, we

show how the first passage time can be employed in systematic trading. As a summary of

applications to previous chapters, we use simulation analysis to illustrate the trading idea

and the implementation of risk capital allocation. In the end, real data backtest on China

stock market indicates that the first passage time could be an effective tool in recognising

trading opportunities.
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Chapter 1

Introduction

The majority of this thesis is technical discussions about the first passage time. Apart from

its theoretical results which are based on time-homogeneous diffusion processes, this thesis

also considers applications in economic bubble forecasting and trading signal identification.

Simultaneously, a separate topic about the regulatory risk capital allocation is presented.

From the financial practice aspect, this thesis could be regarded a self-contained material

relevant to investment decision and risk management.

This chapter provides an overview of the thesis, where general motivations of the research

and an outline of following chapters are explained. On its whole, this thesis contains 4 different

topics. Later for each topic, the background introduction, motivation, and literature review

are documented separately.

Our research about the first passage time was originally motivated by the pricing and

hedging problems in credit derivatives. According to R.C. Merton’s earlier work [88], and

followed by the extensions from F. Black and C. Cox [15], and many others (cf. [108] for a

brief summary), the stochastic barrier crossing problem has attracted much attention in the

area of the structural modelling approach. On the other hand, point processes are usually used

in the intensity-based modelling approach for credit risk (cf. A. Dassios and H. Zhao [37]).

And those processes would require the information about first passage time distributions.

Therefore, calculations involved in but not limited to credit risk/derivative pricing, would be

benefited from by knowing the closed-form densities of first passage times.

Unfortunately, apart from the Brownian motion, there is a very limited number of dif-

fusion processes which posses closed-form first passage time densities. One of the standard
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methods of studying the first passage time distribution is to employ the killed version po-

tential theory (cf. G. Peskir [101]). By solving ODEs with Dirichlet-type boundaries, such a

theory generates Laplace transforms of first passage times. But the problem comes from the

fact that most those transforms are given by ratios of special functions, and which are rarely

known of having closed-form inverses. In order to simplify the problem, we further adopt the

perturbation theory. The perturbation technique was initially applied in the area of quan-

tum physics [110], while our inspiration for using it is from the works about the stochastic

volatility modelling [45] and the Parisian option pricing [35].

In the first topic of this thesis, we present a recursive framework for solving the first pas-

sage time asymptotics of time-homogeneous diffusion processes. The research began with the

perturbation analysis on the Ornstein-Uhlenbeck and Bessel models. After gaining successes

from these two processes, plus our observations of commonalities in their perturbed ODEs,

we realised that the perturbation mechanism might be effective to a more general class of

diffusion processes. This motivates us to deduce a unified framework for solving the constant

barrier crossing problem in an asymptotic manner. However, the perturbation technique

in general would not provide error estimation results. Though under certain circumstances

our numerical exercises have shown that perturbed densities are accurate, we want to fur-

ther understand the error terms remained in the perturbed ODEs. In the end, by referring

again to the potential theory, we were able to derive an error estimation formula. And as

a by-product of this formula, we have proved that under the L1-boundedness condition, the

perturbed density is o(εN )-accurate, where N is the truncation order in the recursion system

and ε is the perturbation parameter.

The second topic introduces a new financial bubble model. It can be seen as a continu-

ation of the previous topic. During the study of the Ornstein-Uhlenbeck process, we found

that the recursion structure under perturbation produced a series of mathematically neat

functions. Considering that our recursion mainly involves operations of integration and dif-

ferentiation and that the drift of the Ornstein-Uhlenbeck process is a polynomial (which is

closed under integration/differentiation), therefore, we inferred that a stochastic process with

an exponential drift may also yield neat density functions. In view of this, we studied the

new SDE with an exponential drift and proved that such a SDE constitutes a submartingale.

Besides, the sample path of the new process shows a similarity in comparison with log-prices

of bubble assets. Motivated by these observations, we decided to investigate the connection
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between the new model and the financial bubbles. Later by extending the original SDE with

a negative drift parameter, we have demonstrated that our model is a well-defined bubble

process1 [107]. From the investor behaviour point of view, the new model explains the posi-

tive feedback mechanism (pro-cyclicality) as well. At the end of this research, we applied our

previous perturbation framework and made predictions to the BitCoin price collapse time.

The third topic is independent2 to previous discussions about the first passage time. It

focuses on financial regulation and provides two risk capital allocation schemes under the

Fundamental Review of Trading Book. In January 2016, the Basel Committee on Banking

Supervision overhauled the quantitative methodologies for bank’s minimum capital require-

ments [12]; according to which, banks need to reevaluate their capital efficiency and optimise

their capital structures. Within this context, the industry is awaiting a tailored allocation

scheme to the new regulation. And this research responds to such a need. Although there is

no sophisticated mathematics in this topic, two main challenges arise from the conceptual and

computational aspects. In this study, we established a mathematical framework translated

from the original regulation document. Based on this framework, we analysed the coherent

properties of the new regulatory risk metric and deduced two allocation schemes by using the

Euler approach and the constrained Aumann-Shapley approach. Numerical exercise shows

that our new methods could effectively reflect bank’s capital structure, meanwhile, compu-

tationally they are no more complex than the current VaR-based allocation methods. In the

end, evidence from our work indicates that the allocation results could be used in the future

capital optimisation problem.

The last topic of this thesis summarises some of our thinkings about systematic trading.

The motivation for conducting this research comes from two dimensions. On the one hand,

inspired by the Ornstein-Uhlenbeck process and its first passage time in pairs trading [47], we

want to generalise this trading idea to various diffusion processes with clear economic mean-

ings. On the other hand, considering that our third and first two topics are distinct in theory,

in order to maintain the integrity of this thesis, we include Chapter 8 to illustrate how the

theoretical parts of this thesis can be applied in a whole investment life cycle: from decision

making to risk evaluation. In this topic, we discuss the trading signal identification problem.

The ‘identification’ here refers to an extra step prior to the portfolio weight allocation (cf.

1And mathematically, it is closely related to the Shiryaev process [116, 117].
2This research problem was initially proposed by Udit Mahajan and Diane Pham at Deloitte, and Hao

Xing at LSE. And the research combines my part-time working experience at Citigroup.
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the modern portfolio theory [83, 84]). During this step, quantitative criteria associated with

executable strategies should be specified; and such criteria constitute the decision metric for

portfolio investment. Following this thinking, we demonstrate how the probability of the first

passage time can be adopted as a trading signal identification metric. And we use simulated

portfolios to show that the investment performance could be evidently enhanced under the

new strategy3. In addition, as an illustration of the risk capital allocation topic, we report

the risk capital and its allocated numbers in our simulated investments.

We now conclude this chapter by outlining the structure of the thesis. Topic 1 is dis-

tributed in Chapters 3-5. And Topics 2-4 are documented separately through Chapters 6-8.

In general, each topic has its own abstract, introduction, and conclusion. And in each chap-

ter, apart from its main body, we may also include separate appendices to record supporting

materials or less-relevant but interesting findings. Based on these principles, the rest of this

thesis is organised as follows.

In Chapter 2, we introduce notations, concepts, and major theorems, which are used

throughout this thesis. Chapter 3 presents the unified recursive framework, together with

its convergence results, for solving the first passage times of time-homogeneous diffusion pro-

cesses. Chapter 4 demonstrates the application of our framework on the Ornstein-Uhlenbeck

process. In this chapter, we provide the N -th order results of perturbed densities, their tail

asymptotics, and the proof for the first order convergence. Chapter 5 is the same in structure

as Chapter 4, but discussions are based on the first order results of the Bessel process. Note

that, an abstract and an introduction of Topic 1 are given at the beginning of Chapter 3, and

the conclusion is provided at the end of Chapter 5. In Chapter 6, we summarise our findings

in the financial bubble model. This chapter can be read in two parts. The first part conducts

stochastic analysis about the model itself; and the second part calculates its first passage

time. Chapter 7 reports our third topic about the risk capital allocation. And Chapter 8

illustrates our thoughts about systematic trading, which, meantime, can be regarded as an

application summary of the technical parts of this thesis. In the end, Chapter 9 concludes

this thesis and highlights further works.

311 years real data backtest on China stock market is provided in the appendix this chapter.
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Chapter 2

Preliminary Definitions and Results

This chapter reviews major theoretical results that are relevant to the work of this thesis. In

order to accommodate notations and settings in this thesis, theorems in this chapter could

be modified versions from classical conclusions. In general, apart from where it is mentioned,

there is no new material in this chapter.

This chapter is organised into three parts. Sections 2.1, 2.2, and 2.3 form the first part.

In this part, we review classical theorems in stochastic analysis and numerical methods for

the inverse Laplace transform. These results will be referred to later by Chapters 3, 4, 5, and

6. In the second part, Section 2.4, we introduce relevant concepts in portfolio selection, risk

management, and capital allocation. The second part can be seen as a partial literature review

of Chapters 7 and 8. The last section (Section 2.5) of this chapter summarises notations that

will be used throughout this thesis, and it forms the last part of this chapter.

2.1 Stochastic Differential Equation

Consider a filtered probability space
(

Ω,F , {Ft}t≥0 ,P
)

which satisfies the usual condi-

tions (completeness and right-continuity) and is generated by a (standard) Brownian motion

{Wt}t≥0. Let D be an open interval on the real line R, and on which we define two continuous

measurable functions µ(·) and σ(·). Given the settings above, the stochastic process {Xt}t≥0

with the following SDE

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x ∈ D, (2.1)
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is Markovian and has a continuous path. Let C2 be the short for the C2(D)-space1. For

f ∈ C2, denote the infinitesimal generator of {Xt}t≥0 by

Af(x) := lim
t↓0

Exf(Xt)− f(x)

t
, x ∈ D, (2.2)

where Ex· := E [·|F0] = E [·|X0 = x] by the Markov property. If the limit on the right-hand

side of (2.2) exists, we say {Xt}t≥0 is a 1-dimensional time-homogeneous diffusion process.

Correspondingly, the infinitesimal generator of {Xt}t≥0 is explicitly given by

Af(x) = µ(x)∂xf(x) +
1

2
σ2(x)∂xxf(x). (2.3)

Example 2.1.1 (Brownian Motion). Let {Wt}t≥0 defined on R be a Brownian motion, then

its infinitesimal generator is given by

Gf(x) =
1

2
∂xxf(x). (2.4)

The first concept related to our work is the existence and uniqueness of solutions to SDEs.

Intuitively, the existence of a unique solution guarantees that we can depict the sample path

of {Xt}t≥0 by using its specified SDE and a realisation of a Brownian motion path. In Chapter

6 of this thesis, a new stochastic process has been introduced. And the first thing we should

be clear is that whether the process possesses a unique strong solution. The answer is given

by the following theorem.

Theorem 2.1.2 (Existence, Uniqueness, and Square-Integrability). Let K > 0 be a constant,

and assume that µ(·), σ(·) satisfy the conditions

|µ(z)− µ(y)|+ |σ(z)− σ(y)| ≤ K|z − y|, (2.5)

µ(y)2 + σ(y)2 ≤ K2(1 + y2), (2.6)

where y, z ∈ D. If E|X0| < +∞, then there exists a unique, continuous and adapted process

{Xt}t≥0 which is a strong solution of SDE (2.1). Moreover, {Xt}t≥0 is square-integrable,

1A set of continuous functions defined on D that have continuous derivatives at least for the first 2 orders.
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i.e., ∀T > 0 and 0 ≤ t ≤ T , there exists a constant C := C(K,T ), such that

E|Xt|2 ≤ C(1 +X2
0 )eCt.

Proof. Please refer to [68, Theorems 2.5 & 2.9, Section 5.2].

On the other hand, as a part of the study of the Markov process, very often we are inter-

ested in the transition density of {Xt}t≥0. Our main research tool is using the Kolmogorov

Forward equation (Fokker-Planck equation). Define the adjoint operator of A (in Equation

(2.3)) as

A∗g(u) := −∂u(µ(u)g(u)) +
1

2
∂uu(σ2(u)g(u)), g ∈ C2 and u ∈ D. (2.7)

According to classical probability theory, the fixed time transition density, denoted by

px(u, t) :=
Px(Xt ∈ du)

du
, t > 0, where Px(·) := P(·|X0 = x), (2.8)

solves the following Fokker-Planck equation:

A∗px(u, t) = ∂tpx(u, t). (2.9)

The initial condition is specified by px(u, 0) = δx(u), where δx(u) is the Dirac delta function.

In addition, by finding the infinite time distribution, we can further check whether a given

process is stationary. Denote the stationary distribution by (note that such a distribution

should be independent of the initial state x):

p(u) := lim
t↑+∞

px(u, t).

Then substitute ∂tp(u) = 0 into (2.9), p(u) solves

A∗p(u) = 0, (2.10)

given the full-integration condition
∫
D p(u)du = 1 holds.

Later in Chapter 3 of this thesis, we provide a unified framework for finding the first

passage times (FPTs) of diffusion processes. There are two basic requirements in applying

our method. First, the process should be strong Markov; and secondly, the FPT of such a
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process should be finite a.s. For a given diffusion process, the following two theorems can be

used to check if these two technical conditions are satisfied.

Theorem 2.1.3 (Strong Markov Property). If conditions (2.5) and (2.6) are satisfied, then

the solution {Xt}t≥0 to SDE (2.1) is strong Markov.

Proof. Since µ(·) and σ(·) are continuous on D, therefore they are bounded on compact

subsets of D ⊆ R. Combine the Lipschitz continuity and linear growth conditions, {Xt}t≥0

then has a unique strong solution. According to [68, Theorem 4.20, Section 5.4], we conclude

that {Xt}t≥0 is strong Markov.

The finiteness of FPT can be justified by that {Xt}t≥0 is a recurrent process. More

precisely, a recurrent Markov process means, with probability 1 that the process will hit any

predefined crossing level in its domain. Before stating the second theorem, we introduce the

following notations related to the scale function. Define the left and right boundaries of D

by l and r, respectively, i.e.

∂D = {l, r} , with −∞ ≤ l < r ≤ +∞. (2.11)

For the functions µ(·) and σ(·), we introduce the non-degeneracy and local-integrability con-

ditions by:

σ2(y) > 0, ∀y ∈ D; (2.12)∫ y+δ

y−δ

1 + |µ(z)|
σ2(z)

dz < +∞, ∀y, y + δ, y − δ ∈ D with some δ > 0. (2.13)

Consider a fixed number c ∈ D, define

s(y) :=

∫ y

c
exp

{
−2

∫ ξ

c

µ(ζ)dζ

σ2(ζ)

}
dξ, y ∈ D (2.14)

to be the scale function of {Xt}t≥0. Then,

Theorem 2.1.4 (Recurrent Process). Under assumptions (2.12) and (2.13), if

lim
y↓l

s(y) = −∞, and lim
y↑r

s(y) = +∞,

then {Xt}t≥0 is recurrent.
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Proof. Please refer to [68, Proposition 5.22, Section 5.5].

Example 2.1.5 (Ornstein-Uhlenbeck Process). Let {Xt}t≥0 defined on R be the Ornstein-

Uhlenbeck (OU) process with

µ(Xt) = ε(θ −Xt), σ(Xt) = σ, (2.15)

where ε > 0 is the mean-reversion rate, θ ∈ R is the equilibrium level, and σ > 0 is the

instantaneous volatility. The OU process is a strong Markov process which possesses a unique

strong solution. Moreover, {Xt}t≥0 is recurrent and the stationary distribution is Gaussian,

with mean θ and variance σ2

2ε .

Now we introduce the last theorem of this section, known as the time-change technique

for martingales. In practice, for the purpose of simplifying calculations, we usually want to

reduce either µ(·) or σ(·) to known forms. For example, one can use the Girsanov theorem to

remove the drift term; or, as an alternative, the stochastic clock introduced in below enables

us to simplify the diffusion term.

Theorem 2.1.6 (Dambis, Dubins & Schwarz Theorem). Let {Mt}t≥0 be a continuous local-

martingale generated by a completed Brownian filtration FW . If limt↑+∞〈M〉t = +∞ a.s.,

then there exists a Brownian motion {Bt}t≥0 which is adapted to FB, and such that

Mt = B〈M〉t a.s., 0 ≤ t < +∞.

Proof. Please refer to [68, Theorem 4.6, Section 3.4].

In the theorem above, it should be noticed that {Bt}t≥0 and {Mt}t≥0 are from two different

but interconnected filtrations. In fact, for 0 ≤ s < +∞, define the stopping time

T (s) = inf {t ≥ 0 : 〈M〉t > s} ,

then FB is given by the original filtration but which is indexed on the stochastic clock T (s):

FBs := FWT (s), 0 ≤ s < +∞.
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Example 2.1.7 (Cox-Ingersoll-Ross Process). Let {Xt}t≥0 defined on R+ ∪{0} be the Cox-

Ingersoll-Ross (CIR) process with2

µ(Xt) = ε(θ −Xt), σ(Xt) = σ
√
Xt. (2.16)

According to [50], {Xt}t≥0 can be expressed via a squared Bessel process {Yt}t≥0. More

precisely,

Xt = e−εtYσ2
4ε

(eεt−1)
, (2.17)

where

dYt =
4εθ

σ2
dt+ 2

√
YtdWt. (2.18)

If we further consider the transform Zt =
√
Yt, then by definition and the Itô’s lemma,

{Zt}t≥0 is the n-dimensional Bessel process (BES(n)) with SDE

dZt =
n− 1

2Zt
dt+ dWt, (2.19)

where n = 4εθ
σ2 .

2.2 First Passage Time

The FPT, known also as the first hitting time, describes the randomness of time for which

a stochastic process would spend to enter or exit a specific state. Let {Xt}t≥0 defined on

D solve SDE (2.1), and assume that {Xt}t≥0 satisfies various conditions (especially with

continuous path) that we have discussed in Section 2.1. Denote the complement set of D in

R by Dc := R \D. Then,

τ := inf {t ≥ 0 : Xt ∈ Dc} (2.20)

defines a stopping time. We follow the convention that inf ∅ = +∞.

In particular, for some constant a ∈ R and D = (a,+∞), Equation (2.20) defines the

single-side downward FPT of {Xt}t≥0. Similarly, by letting D = (−∞, a), we say τ is the

single-side upward FPT of {Xt}t≥0.

The FPT itself is a random variable. In order to find its probabilistic description, we

2Note that the volatility for the CIR process is only Hölder continuous, hence the existence result in
Theorem 2.1.2 does not apply; nonetheless there exists a unique strong solution to the CIR SDE.
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start with solving the corresponding Laplace Transform (LT) of the FPT density (FPTD).

Roughly speaking, there are two major ways of finding the LT of τ , namely the martingale

approach and the Markov approach. Although derivations are different in these two methods,

in the end, they both link the LT to the Dirichlet-type Boundary Value Problem (BVP). In

this section, we follow [101] and focus on theoretical settings under the Markov approach.

The second step, finding the FPTD by inverting the LT, will be discussed in Section 2.3 and

in other chapters of this thesis.

According to our assumptions, {Xt}t≥0 is adapted to a Brownian filtration and has a

continuous path. Therefore, the FPTs to either an open interval or its closure are equal a.s.

(i.e. the boundary of D is regular). W.l.o.g., we define

P(τ = 0|X0 ∈ Dc) = 1. (2.21)

And as a result of (2.21), we can also show that

P(τ > 0|X0 ∈ D) = 1.

For a single-side level crossing problem, if we consider the extended real set, then the

complement set of D will include {−∞,+∞}. In this case, since {Xt}t≥0 is well-defined and

should not explode, so we can further require

P(τ = +∞|X0 ∈ {−∞,+∞}) = 1. (2.22)

On the other hand, we have also assumed that {Xt}t≥0 is a recurrent process. Therefore, by

definition, for the process starting in D, we have

P(τ < +∞|X0 ∈ D) = 1.

Consider that {Xt}t≥0 is strong Markov. Based on our notations and assumptions above,

we have the following result.

Theorem 2.2.1 (Killed Version Dirichlet-Type BVP). For β ∈ C with Real(β) > 0 (i.e.
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β ∈ C+), let f(x) ∈ C2 be the unique solution to the killed version Dirichlet problem:

Af(x) = βf(x), x ∈ D, (2.23)

with boundary conditions

f(∂D) = V , x ∈ ∂D, (2.24)

where ∂D is defined on the extended real set and V is determined by conditions (2.21) and

(2.22). Then

f(x) = Ex
[
e−βτ

]
. (2.25)

Proof. Please refer to [101, Section 7.1].

There are a few points should be noticed on Theorem 2.2.1. First, even though we write

f(x) as a function of x ∈ D ∪ ∂D, in fact, it also depends on the complex parameter β.

Therefore, in this thesis, we will use either f(x), or

f(x, β), (2.26)

to refer to the LT of τ (Equation (2.25)). And correspondingly, the C2 set in the theorem

above should be understood as the set of functions defined on (D ∪ ∂D) × C+, and which

are twice differentiable on the first argument and first order differentiable on the second

argument, i.e.

C2 := C2,1
(
(D ∪ ∂D)× C+

)
. (2.27)

Secondly, in the theorem above, we do not require the domain D to be bounded (actually

for a single-barrier problem it is not); however, the function f(x) is indeed bounded. To see

this, consider the boundary condition (2.22), it implies f(x) = 0 for x = ±∞ and β ∈ C+.

The conclusion from Theorem 2.2.1 is very similar to that from the Feynman-Kac theorem;

while for the second theorem, when we apply it on the stopping time, extra boundedness

conditions on τ should be taken into account. Therefore, using the Feynman-Kac theorem

would introduce further technical discussions in our work. In fact, by digging into the proof

details3 in [101, Section 7.1], one can find that the connection between ODE (2.23) and

3We refer to [68, Section 4.2] as a simpler example for understanding the link between the harmonic
functions and the Dirichlet problem.
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the probabilistic representation (2.25) is derived from the mean-value property of harmonic

functions. And the idea behind the mean-value property is very akin to the concept of ‘fair

game’ under the martingale settings. As a quick remark, we emphasise that the reason we

choose the Markov version is due to its simplicity in technical treatments.

Example 2.2.2 (Single-Side FPT of Brownian Motion). Let

Xt = x+Wt, t ≥ 0,

be a Brownian motion starting from x ∈ R. Then the LT for the FPT of {Xt}t≥0 hitting a,

is given by [18, Equation 2.0.1, Page 198]:

f0(x, β) = e−
√

2β|x−a|. (2.28)

Moreover, the inverse transform (i.e. the FPTD) is given by

p(0)
τ (t) =

|x− a|√
2πt3

e−
(x−a)2

2t . (2.29)

As an extension to (2.25) and Theorem 2.2.1, in the last part of this section, we introduce

the Dirichlet problem with an extra Lagrange functional.

Theorem 2.2.3 (Killed Version Dirichlet-Type BVP with Lagrange Functional). Let l(x)

defined on D be continuous, and let f(x) ∈ C2 be the unique solution to the killed version

Dirichlet problem with Lagrange functional l(x):

Af(x)− βf(x) = −l(x), x ∈ D, (2.30)

with boundary conditions

f(∂D) = 0, x ∈ ∂D. (2.31)

Then

f(x) = Ex
[∫ τ

0
e−βsl(Xs)ds

]
.
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2.3 Inverse Laplace Transform Algorithm

In this section, we introduce three algorithms for computing the inverse Laplace transform

(ILT). These algorithms later will perform the benchmarking purpose.

Consider a real function p(t) with t ≥ 0 and a complex function f(β) defined on C+. We

say f(β) is the LT of p(t), if the integral exists:

f(β) = L{p(t)} (β) :=

∫ ∞
0

e−βtp(t)dt. (2.32)

In (2.32), by definition L is a linear operator on functions p(t). Conversely, if L has an

inverse, denoted by L−1, then we have

p(t) = L−1 {f(β)} (t). (2.33)

According to classical theory of linear operators, L−1 is also linear. And by the Mellin

inversion formula, L−1 can be explicitly given by

L−1 {f(β)} (t) :=
1

2πi

∫ a+i·∞

a−i·∞
etβf(β)dβ. (2.34)

The real number a in above should be chosen such that the real parts of all singularities

in f(β) are smaller than a. And since etβ is analytic on the positive half-plane, so the

singularities of f(β) are equivalent to those of etβf(β).

One way of solving the inverse transform is to use Jordan’s lemma and Cauchy’s residue

theorem. Denote the set of all singularities of f(β) by

P := {β : |f(β)| = +∞} . (2.35)

Then (2.34) can be further written as:

L−1 {f(β)} (t) =
∑
β̂∈P

Res
(
f(β̂)etβ̂

)
. (2.36)

Nowadays, for most of the LT functions, we can find their inverse transforms from [9,

Chapter V]. For example, using [9, Equation (1), Section 5.6], one can show that the inverse

of (2.28) is indeed given by (2.29). However, there are still many LTs which may not have
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closed-form inverses, or, they have not been found yet. Especially, for most of the FPTD

LTs in this thesis, they are given in terms of ratios of special functions. Those LTs are very

difficult (or even impossible) to be inverted explicitly. Therefore, we may need the help from

numerical schemes.

Before demonstrating the main results in this section, we first recall the initial- and final-

value theorems of LT. These two theorems are important to the algorithms which we will

introduce soon; also, they will be constantly used in many proofs of this thesis.

Fact 2.3.1 (Initial- and Final-Value Theorems of LT). If p(t) is bounded on (0,+∞), and

its limits on t ↓ 0 and t ↑ +∞ exist, then

lim
t↓0

p(t) = lim
β→+∞

βf(β); (2.37)

lim
t↑+∞

p(t) = lim
β→0+

βf(β). (2.38)

We now introduce three numerical schemes for the ILT. The contents below mainly follow

from [1], and the basic idea is to express the inverse transform as a truncated series:

p(t) ≈ 1

t

n∑
k=0

ωkf
(αk
t

)
.

Theorem 2.3.2 (The Gaver-Stehfest (GS) Algorithm). Let M be a positive integer. For

1 ≤ k ≤ 2M , let

ζk = (−1)M+k
k∧M∑

j=b(k+1)/2c

jM+1

M !

(
M

j

)(
2j

j

)(
j

k − j

)
,

where b·c and
(·
·
)

are the floor function and the binomial coefficients, respectively. Then the

GS inverse, denoted by pGS(t), is given by

pGS(t) =
ln(2)

t

2M∑
k=1

ζkf

(
k ln(2)

t

)
.

Theorem 2.3.3 (The Euler Algorithm). Let M be a positive integer. For 0 ≤ k ≤ 2M , let

αk =
M ln(10)

3
+ iπk,
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ψk = (−1)kξk,

where {ξk : 0 ≤ k ≤ 2M} is recursively determined by

ξ0 =
1

2
; ξk = 1, for 1 ≤ k ≤M ; ξ2M =

1

2M
;

and

ξ2M−k = ξ2M−k+1 + 2−M
(
M

k

)
, for 0 < k < M.

Then

pEuler(t) =
10M/3

t

2M∑
k=0

ψkReal
(
f
(αk
t

))
.

Theorem 2.3.4 (The Talbot Algorithm). Let M be a positive integer. For 0 ≤ k ≤M − 1,

let

{δk : 0 ≤ k ≤M − 1} , {γk : 0 ≤ k ≤M − 1}

be determined recursively by

δ0 =
2M

5
; δk =

2kπ

5

(
cot

(
kπ

M

)
+ i

)
, 0 < k < M ;

and

γ0 =
1

2
eδ0 ; γk =

[
1 +

ikπ

M

(
1 + cot2

(
kπ

M

))
− i cot

(
kπ

M

)]
eδk , 0 < K < M.

Then

pTalbot(t) =
2

5t

M−1∑
k=0

Real

(
γkf

(
δk
t

))
.

Proof. For proofs of Theorems 2.3.2, 2.3.3, and 2.3.4, please refer to Sections 4, 5, and 6 of

[1], respectively.

Among those three numerical schemes, only the GS algorithm dose not involve computing

complex numbers. The numerical accuracy of GS algorithm, evaluated in terms of relative

errors, is given by ∣∣∣∣p(t)− pGS(t)

p(t)

∣∣∣∣ ≈ 10−0.9M .

The original paper also provides a metric to measure efficiencies of different algorithms.

16



Consider the ratio between significant digits produced and precision required, the GS algorithm

has an efficiency of 0.4, Euler algorithm provides 0.6, and the Talbot algorithm is 0.6 as well.

In later numerical sections of this thesis, for most of the time we will choose Talbot algorithm

with M = 6.

2.4 Portfolio Selection, Risk Management and Capital Allo-

cation

The investment activity of human beings could be traced back to 1700 BC. As it is known

by people, in the Code of Hammurabi, for the first time the investment in land was protected

by law. When history came to the 20th century and the modern financial market was built,

the mass media gave those security investors a new name, speculators. Although from time

to time, it is difficult to differentiate speculation and investment, however, a wise investor

should always know where his or her investment risk lies on. From this point of view, the

investment and the risk management should always be linked together. In this section, we

review major concepts and classical theorems in portfolio selection and risk management.

The contents below will be referred to later in Chapters 7 and 8 of this thesis.

Roughly speaking, we can split the investment activity into two groups, namely the direct

investment and the portfolio investment. For the first terminology, we refer to the investment

activities that would impact the day-to-day operation of a targeted company. The return of

such an investment will come from the growth in values of the company. Examples of the

direct investment would be venture investment on start-ups, M&A investment, etc. The focus

of this thesis, however, is in the second group, the portfolio investment.

The portfolio investment can be seen as a kind of passive investment. By selecting a pool

of securities and determining the amount of buying or selling on these assets, the investor

earns the return on these securities according to their market price changes. We refer to this

selected pool as a portfolio. In order to specify the profit and loss (PnL) of the portfolio, we

introduce the following notations.

Consider n ∈ N0, where N0 = N ∪ {0}, and consider an integer set

I = {i : 0 ≤ i ≤ n} , (2.39)
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which represents the index of underlying assets. At time t ≥ 0, we denote the market price

(price or log-price) of each asset by

P
(i)
t , i ∈ I. (2.40)

Note that, for each i ∈ I,
{
P

(i)
t

}
t≥0

can be seen as a stochastic process. Their observations

at integer-indexed time, denoted by

P̂
(i)
tj
, i ∈ I, j ∈ N0, (2.41)

then form a time-series.

Now we fix an index i ∈ I and a time t > 0. Let ∆t ≥ 0 also be fixed and which refers to a

time step. The PnL of asset i, at time t, then is defined as the difference between the market

prices at t and t − ∆t. However, there are two ways of calculating the difference, namely

the absolute return and the log-return. The former one is very often used in computing the

returns of interest rates, while the log-return is usually used in equity market. In this thesis,

we assume that the market value of P
(i)
t is already normalised, by which we mean P

(i)
t is the

actual market price, if the absolute return is needed; while on the other hand, if we need to

compute the log-return, then P
(i)
t refers to the log-transform of the market price. According

to our normalisation, the PnL of i at t, is given by

X
(i)
t := P

(i)
t − P

(i)
t−∆t.

The observed PnL is correspondingly given by

X̂
(i)
t := P̂

(i)
t − P̂

(i)
t−∆t.

From now onward, and unless specified, for abbreviation we do not differentiate the theoretical

and observed notations, i.e. we will use P
(i)
t and X

(i)
t as the (observed) market price and the

(observed) PnL.

Consider now we fix the index i ∈ I only, and let T > 0 be a fixed time, then the set{
X

(i)
t : 0 ≤ t ≤ T

}
forms a distribution of PnL for asset i within the time range (0, T ]. We
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denote this PnL distribution by

Xi(T ) := Dist
({
X

(i)
t : 0 < t ≤ T

})
, (2.42)

and for short, by ignoring the argument T , Xi := Xi(T ).

Based on our notations above, the portfolio’s PnL at time t is denoted by

Ψt :=
∑
i∈I

X
(i)
t ,

and the portfolio’s PnL distribution in time range (0, T ] is correspondingly

Ψ := Ψ(T ) =
∑
i∈I

Xi. (2.43)

Another relevant concept to the portfolio’s PnL is the investment strategy. For a fixed

i ∈ I, consider an Ft− (or Ft−∆t) measurable process w
(i)
t to be the holding amount (positive

or negative) of asset i. Note that w
(i)
t is determined at time t− (or t − ∆t). We call the

collection

w(T ) :=
{
w

(i)
t : i ∈ I, 0 < t ≤ T

}
an investment strategy of the portfolio.

In the notations of (2.42) and (2.43), we do not include the strategy symbol explicitly.

In fact, there are two ways of understanding the symbol Xi. On the one hand, as defined in

many literatures of portfolio theory, Xi is the PnL distribution of 1 unit investable asset (e.g.

one share of stock or one bond contract). However, on the other hand, consider Y
(i)
t and w

(i)
t

to be the return of 1 unit investable asset and the strategy of such an asset, respectively, then

X
(i)
t = w

(i)
t Y

(i)
t

defines the PnL of asset i at time t, under the strategy w(T ). Therefore, Xi is the PnL

distribution of asset i by taking the strategy into account. In this thesis, given not causing

confusion, we will use the notation Xi for both of those two scenarios. But if necessary, we

will specify Xi with one clear meaning.

Now we come back to the portfolio investment problem. More precisely, we are dealing
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with the question of how to select the portfolio I and determine the strategy w(T ). In the

work [83, 84] of H. Markowitz, he referred to this problem as portfolio selection. Different

to most of the studies in his time, H. Markowitz did not only consider the return, but also

introduced the risk into his framework. The concept of the efficient portfolio (mean-variance

portfolio theory) was built since then. Until today, there are still many literatures that discuss

the variations of the efficient portfolio under different scenarios, see e.g. [79, 82, 85].

In Chapter 8 of this thesis, we study the possibility of identifying the trading portfolio

I based on our first hitting time works; the mean-variance portfolio theory is regarded as

our investment benchmark. Therefore, we only review the most basic settings of the efficient

portfolio framework in below.

Consider a determined set I and the associated PnL distribution {Yi : i ∈ I}. Let w be a

trading strategy at time T+. Further, let

r := [r1, ..., rn]T ,

where ri := E[Yi] is the expected return of 1 unit asset i; and denote the risk-matrix by

Σ := Cov ({Yi : i ∈ I}) .

The efficient portfolio (without constraint on short-selling) is then the solution to the max-

imisation problem

w∗ = arg max
w

{
wT r − λ

2
wTΣw

}
, (2.44)

subject to

wT I = 1,

where λ is the risk preference parameter. By setting λ = 1 and solving the Lagrange multiplier

of the maximisation problem, we have


w∗ = Σ−1

(
r − ITΣ−1r−1

ITΣ−1I I
)
,

E [Ψ∗] = rTΣ−1r − rTΣ−1 ITΣ−1r−1
ITΣ−1I I,

where I is the vector with all entries to be one and Ψ∗ is the portfolio distribution under the

strategy w∗.
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In the settings above, we treat the covariance matrix as a risk measure to the portfolio.

However, in the area of modern quantitative risk management, more meaningful risk measures

have been proposed. In below we recall relevant concepts in quantitative risk management

and capital allocation. Those results will be referred to in Chapter 7 later.

Definition 2.4.1 (Risk Measure). Let X be defined on the set of all essentially bounded

random variables L∞(Ω,F ,P), then a risk measure ρ is a real map from L∞(Ω,F ,P) to R:

ρ : L∞(Ω,F ,P)→ R ;

X ∈ L∞(Ω,F ,P)→ ρ(X).

The risk measure ρ evaluates the risk from a PnL distribution. A famous example is the

Value-at-Risk (VaR), which was first formally introduced by J.P. Morgan [91] in the 1990s;

and afterwords the Basel Committee on Banking Supervison (BCBS) demanded the main

financial institutions to meet the VaR-based minimum capital requirements [97]. However,

in application, people find that the VaR metric is counterintuitive: the VaR of a diversified

portfolio may not be smaller than the sum of standalone VaRs on each component of the

portfolio. In order to make sure a risk measure is intuitively reasonable, people further

introduced the concept of coherent risk measure.

Definition 2.4.2 (Coherent Risk Measure). For shorthand, denote L∞(Ω,F ,P) by L∞. A

risk measure ρ is coherent if it satisfies the following properties:

1. Subadditivity, for all X, Y ∈ L∞, ρ(X + Y ) ≤ ρ(X) + ρ(Y );

2. Monotonicity, for all X, Y ∈ L∞ with X ≤ Y a.s., ρ(X) ≥ ρ(Y );

3. Positive homogeneity, for all λ ≥ 0 and X ∈ L∞, ρ(λX) = λρ(X);

4. Translation invariance, for all c ∈ R and X ∈ L∞, ρ(X + c) = ρ(X)− c.

Example 2.4.3 (Expected Shortfall). Let Ψ ∈ L∞ be a portfolio’s PnL distribution, the

expected shortfall (ES) of Ψ at the confidence level α is defined as

ESα(Ψ) =
1

1− α

∫ 1

α
V aRu(Ψ)du,
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where

V aRu(Ψ) = qu(−Ψ)

is the VaR of Ψ at level u, and qu(·) is the quantile-function of the distribution. The ES

is a coherent risk measure. Moreover, under proper conditions [122], the ES is equivalently

defined as

ESα(Ψ) = −E [Ψ|Ψ ≤ −V aRα(Ψ)] . (2.45)

In practice, a business needs to know its total risk. But on the other hand, it is even

more important for the business to understand the composition of such a total risk. This

raises the issue of (risk) capital allocation. In this thesis, we define a valid capital allocation

scheme as follows.

Definition 2.4.4 (Capital Allocation). Let ρ be a risk measure from Definition 2.4.1, Ψ ∈ L∞

be a portfolio’s PnL distribution defined by (2.43), and {Xi : i ∈ I} be the PnL distributions

of each component in the portfolio, then a well-defined capital allocation on position i, denoted

by

ρ (Xi|Ψ) ,

should satisfy the following conditions:

1. Full-allocation, ρ(Ψ) =
∑

i∈I ρ (Xi|Ψ);

2. Associativity, for a subset J ⊂ I, ρ
(∑

j∈J Xj |Ψ
)

=
∑

j∈J ρ (Xj |Ψ).

In 1999, D. Tasche [122] looked into the allocation problem from a capital-efficiency

perspective. Define the return on risk adjusted capital (RORAC) of asset i by

RORAC(Xi|Ψ) :=
ri

ρ (Xi|Ψ)
. (2.46)

If the risk allocation is RORAC-compatible (see [122]), then ρ (Xi|Ψ) is uniquely determined

by the Euler’s principle:

ρEuler (Xi|Ψ) = lim
h↓0

ρ(Ψ + hXi)− ρ(Ψ)

h
.

On the other hand, in 2001, M. Denault [38] studied the allocation problem under game-

theoretic settings. He proposed the coherence of allocation principle and shown that the

22



Euler principle is a coherent risk allocation scheme. Moreover, based on the works of [14,

90, 113, 114], M. Denault proposed two allocation frameworks, namely the Shapley and the

Aumann-Shapley allocations; while the latter one, was shown to be consistent with the Euler’s

allocation principle. We will discuss more details of those allocations in Chapter 7.

2.5 Table of Nomenclature

2.5.1 Abbreviation

ODE Ordinary Differential Equation p. 12

PDE Partial Differential Equation p. 39

SDE Stochastic Differential Equation pp. 5, 30

OU Ornstein Uhlenbeck Process pp. 9, 29

CIR Cox-Ingersoll-Ross Process pp. 10, 80

BES(n) Bessel Process with Order n, Equation (2.19) pp. 10, 68

FPT First Passage Time (First Hitting Time) pp. 7, 29

FPTD First Passage Time Density pp. 11, 30

BVP Boundary Value Problem pp. 11, 31

LT Laplace Transform pp. 11, 30

ILT Inverse Laplace Transform pp. 14, 37

PnL Profit and Loss pp. 17, 134

VaR Value-at-Risk pp. 21, 132

ES Expected Shortfall pp. 21, 132

FRTB Fundamental Review of Trading Book pp. 132, 134

RF Risk Factor pp. 134, 148

LH Liquidity Horizon pp. 134, 144

CM Commodity Asset Class pp. 134, 153

to be continued

23



CR Credit Asset Class pp. 134, 154

EQ Equity Asset Class pp. 134, 154

FX Foreign Exchange Asset Class pp. 134, 153

IR Interest Rate Asset Class pp. 134, 154

IMA Internal Modelling Approach pp. 132, 137

IMCC Internal Model Capital Charge pp. 134, 143

for Modellable Risk Factors

F,C Full and Current Set pp. 136, 137

R,C Reduced and Current Set pp. 136, 147

R,S Reduced and Stress Set pp. 137, 136

SE Scenario Extraction pp. 142, 143

RORAC Return on Risk Adjusted Capital pp. 22, 132

CAS Constrained Aumann-Shapley pp. 144, 145

TSI Trading Signal Identification p. 162

w.l.o.g. Without Loss of Generality p. 11

a.s. Almost Surely pp. 8, 31

w.r.t. With Respect to pp. 32, 33

i.i.d. Identically Independent Distribution pp. 100, 139

2.5.2 Set and Space

R Real Space pp. 5, 30

R+ Set of Positive Real Numbers pp. 10, 35

N Set of Natural Numbers pp. 17, 34

N0 N ∪ {0} pp. 17, 115

to be continued
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C Complex Space p. 11

C+ Positive Half Plane on C p. 12

C2 Set of Twice Continuously Differentiable Functions pp. 6, 12

C2,1 Alternative Notation of C2, See e.g. Equation (2.27) p. 12

D Domain of SDE; an Open Interval on R pp. 5, 30

∂D General4 Boundaries of D, See e.g. Equation (2.11) pp. 8, 37

∂Da Single Side Boundaries of D, Equations (3.2), (3.3) p. 31

Dc Complement Set of D on R p. 10

I Set of Consecutive Finite Integers, I ⊂ N0 p. 17

2.5.3 Probability and Stochastic Process

P Probability Measure p. 5

E Expectation p. 6

Cov Covariance Matrix p. 20

FW , FB Filtrations Generated by Brownian Motion pp. 9, 31

(Ω,F ,P) General Probability Space p. 21(
Ω,F , {Ft}t≥0 ,P

)
Probability Space pp. 5, 30

Generated by Brownian Filtration

Px Conditional Probability on X0 = x or F0 pp. 7, 31

Ex Conditional Expectation on X0 = x or F0 p. 6

{Wt}t≥0 Standard Brownian Motion p. 6

{Xt}t≥0 Time-Homogeneous Diffusion Process, p. 5

Equation (2.1)

to be continued

4In later sections we also use this notation as the simplified version of ∂Da, with a = 0.
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〈M〉t Quadratic Variation of {Mt}t≥0 at time t p. 9

τ Single Side Constant Barrier FPT pp. 10, 31{
P

(i)
t , i ∈ I

}
t≥0

Normalised Theoretical Price p. 18{
P̂

(i)
tj
, i ∈ I

}
j∈N0

Observation of P
(i)
t at Integer-Indexed Time p. 18

L∞, L∞(Ω,F ,P) Set of Bounded Random Variables p. 21

Xi, i ∈ I PnL Distribution of Asset i p. 19

Ψ Portfolio PnL Distribution p. 19

2.5.4 Operation and Operator

∪, ∩ Set Union and Set Intersection p. 10

\ Set Subtraction p. 10

⊂, ⊆ Exclusive and Inclusive Subsets pp. 8, 22

∧ Minimum Between Two Quantities p. 35

∼ Asymptotic Equality of Two Functions5 pp. 47, 73

−
∫

Cauchy Principal Value p. 81

o(·) Little-o Notation pp. 34, 75

O(·) Big-O Notation pp. 37, 52

:= Definition Operator pp. 6, 31

′
Differentiation Operator p. 32

∂· Partial Differentiation Operator pp. 6, 35

G Standard Brownian Motion Generator p. 6

A Generator of Time-Homogeneous Diffusion Process p. 6

A∗ Adjoint Operator of A p. 7

to be continued
5The formal definition should be the ratio of two functions with the limit to be 1. However, in this thesis,

as it does not affect our results, we will also use it for the short notation of Big-O: · = O(·).
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L LT Operator p. 14

L−1 ILT Operator p. 14

2.5.5 Function

p(u) Stationary Distribution Density p. 7

px(u, t) Transition Density at Fixed Time t p. 7

s(y) Scale Function, Equation (2.14) p. 8

f , f(x), f(β), f(x, β) LT of FPTD for pp. 12, 33

General Diffusion Process

f0, f0(x), f0(β), f0(x, β) LT of Brownian Motion FPTD pp. 13, 37

fi, i ∈ I i-th Order Perturbed Expansion of f pp. 33, 44

f (N) =
∑N

i=0 fi, N ∈ N0 N-th Order LT Approximation of f pp. 35, 46

pτ (t) = L−1 {f(β)} (t) FPTD of General Diffusion Process p. 35

p
(0)
τ (t) FPTD of Brownian Motion p. 13

p
(N)
τ (t) = L−1

{
f (N)(β)

}
(t) N-th Order FPTD Approximation of pp. 35, 46

pτ (t)

qτ (t) = pτ (t)− p(N)
τ (t) Perturbed FPTD Error Function p. 35

η(x, t) = L−1 {∂xfN (x, β)} (t) Error Estimation Function p. 35

ρ(·) Risk Measure p. 21

ρ(·|·) Risk Capital Allocation p. 22

qu(·) Quantile Function at p. 21

Confident Level u p. 21

1{·} Indicator Function p. 36

b·c, d·e Floor/Ceiling Functions p. 15

to be continued
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Real(·) Real Part of a Function p. 12

δx(u) Dirac Delta Function p. 7(·
·
)

Binomial Coefficient p. 15

sinh(·) Hyperbolic Sin Function pp. 56, 98

cosh(·) Hyperbolic Cos Function p. 98

sinc(·) = sin(πx)
πx Sinc Function p. 100

D·(·) Parabolic Cylinder Function pp. 44, 46

Γ(·) Gamma Function pp. 48, 101

IG(x, a, b) Density of Inverse Gamma Distri- p. 51

bution with shape parameter a and

scale parameter b

IG(a, b) Inverse Gamma Distribution p. 103

M(·, ·, ·) = 1F1(·, ·, ·) Kummer’s function (Confluent pp. 48, 105

Hypergeometric Function)

K·(·) Modified Bessel Function p. 69

of the Second Kind

I·(·) Modified Bessel Function p. 80

of the First Kind

E1(·) Exponential Integral Function p. 70

Erfc(·) Complementary Error Function p. 108
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Chapter 3

Explicit Asymptotics on the First

Passage Times of Diffusion

Processes

This chapter presents a unified framework for solving first passage time density asymptotics

of time-homogeneous diffusion processes. According to the killed version potential theory

and the perturbation theory, we are able to deduce closed-form solutions for probability

densities of single-side level crossing problems. The framework is applicable to diffusion

processes with continuous drift functions, and a recursive system in the frequency domain

has been provided. Besides, we derive a probabilistic representation for error estimation.

The representation can be used to evaluate deviations in perturbed density functions. In

Chapters 4 and 5 of this thesis, we apply the framework to the OU and Bessel processes to

find closed-form approximations for their first passage times; another successful application

is given by Chapter 6, where a newly introduced economic bubble model has been discussed.

Numerical results are provided at the end of each separate chapter.

3.1 Introduction, Motivation, and Literature Review

The interest of understanding the FPT could be traced back to the early 20th century [6, 109].

Known also as the first hitting time, the FPT defines a random time that a stochastic process

would visit a predefined state. The phenomenon of uncertainty in time is often observed from
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natural or social science. Therefore, within a century the FPT has been actively studied in

economics, physics, biology, etc. [32, 93, 103, 106].

Depending on various types of underlying processes and hitting boundaries, the FPT

itself consists of a large cluster of different researches. We refer to [4, 16, 94, 118] for a non-

conclusive review. Among those researches, especially in the area of mathematical finance and

insurance, single-side constant-barrier crossing problem is one of the most commonly studied,

e.g. [7, 36]. A general approach of solving such a problem starts with finding the LT of the

FPTD. The LT usually comes from a unique solution to a second order non-homogeneous

ODE with Dirichlet-type boundary values [39, 60]. For many familiar diffusion processes,

the LTs have been solved and are listed in [18]. However, those LTs usually are expressed in

terms of special functions and only a few of them have explicit inverse transforms. Therefore,

many efforts have been made on the numerical inverse side. We refer to [1] for more details.

Alternatively, using spectral theorem on linear operators [62, 70, 71] one can simplify the

original LT. Under certain circumstances, closed-form FPTDs could be acquired through

series representations [3, 77]. But people may find that the spectral decomposition approach

has convergence issues for small t. In this chapter, our object is to apply the perturbation

theory and solve explicit asymptotics of FPTDs for general single-side level crossing problems.

Consider a filtered probability space generated by Brownian motion
(

Ω,F , {Ft}t≥0 ,P
)

.

Let D be an open interval on R and h(·) be a real-valued continuous function defined on D.

Our underlying process is from a class of SDEs in (2.1). We require these SDEs having at

least weak solutions and being strong Markov. More precisely, we assume

dXt = εh(Xt)dt+ dWt, X0 = x ∈ D. (3.1)

Under our settings, ε is a real parameter and it should properly define {Xt}t≥0 on the domain.

For the convenience of deduction, we set the volatility to be a constant. If a time-homogeneous

diffusion coefficient σ(·) is given, one may refer to Theorem 2.1.6 or [105, Theorem 1.6], to

retrieve an SDE in (3.1) by a stochastic clock. Also, consider a hitting level a ∈ R, we specify

two types of boundaries on D:

∂Du
a := {a,+∞} , ∂Dl

a := {−∞, a} , (3.2)
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namely boundaries for the upper- and lower-regions. For shorthand, we use ∂Da to represent

single sided boundaries without labelling directions. By suppressing x and a, we define the

FPT of {Xt}t≥0 from x to a through

τ := inf {t > 0 : Xt ∈ ∂Da} . (3.3)

Note that the Brownian filtration {Ft}t≥0 :=
{
FWt

}
t≥0

is continuous. According to our

discussions in Section 2.2, Chapter 2, τ is regular at the boundary a of the domain. In

addition, for x ∈ D, it is guaranteed that Px (τ > 0) = 1.

For those FPTs which are finite a.s., we are interested in acquiring their explicit distri-

butions. Clearly, when h(x) ≡ 0 (standard Brownian motion), the distribution of τ is given

by inverse Gaussian (or inverse Gamma, equivalently) [18]. However, for most of non-trivial

drifts, there is no closed-form solution. An example is h(x) = x and which corresponds to

the OU process. In this case, the explicit density is only available by restricting a = 0 [49].

In this chapter, we apply perturbation technique [57] to solve Dirichlet-type BVPs. By

inverting the perturbed LTs from the frequency domain, where those LTs usually have much

simpler forms, we then are able to derive closed-form densities in the time domain. The main

contribution of our work is to provide a unified recursive framework for solving the single

barrier hitting problem. And according to the killed version of potential theory [101], we

prove convergence and error estimation results. As illustrations, we show perturbed FPTDs

of OU and Bessel processes in Chapters 4 and 5. An application on the economic bubble

(exponential-Shiryaev) process is discussed in Chapter 6. Theoretical results in this chapter

are confirmed via the following three chapters.

The rest of this chapter1 is organised as follows. Section 3.2 introduces the perturbed

BVP. In Section 3.3, we present the error estimation from the perturbation. Section 3.4

provides a recursive framework for solving the perturbed LTs under the frequency domain.

And in appendices of this chapter, we demonstrate further results from our framework. These

results may not be closely linked to the work in this thesis, but potentially they could be

used in later research.

1A conclusion of Chapters 3, 4, and 5 will be given at the end of Chapter 5.
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3.2 Perturbed Dirichlet Problem

We follow our settings in Chapter 2, and let {Xt}t≥0 be the solution of SDE (3.1). Consider a

function f ∈ C2, we assume the infinitesimal generator Af(x) of {Xt}t≥0 exists for all x ∈ D.

Then A is explicitly given by

Af(x) = εh(x)f
′
(x) + Gf(x),

where G is the infinitesimal generator of a standard Brownian motion (Example 2.1.1). The

notation
′

in above refers to the derivative w.r.t. x, i.e.

f
′

:= ∂xf.

Throughout this thesis, we will use these two notations above interchangeably.

Consider β ∈ C+, and define

f(x, β) := Ex
[
e−βτV (Xτ )

]
, (3.4)

where V (·) is a finite function and τ is given in (3.3). It is clear by our construction that

{Xt}t≥0 is continuous over stopping times. On the other hand, by our assumption in Section

3.1, {Xt}t≥0 is a strong Markov process. According to the killed version potential theory

[101], f(x, β) in (3.4) then is the unique solution to the following Dirichlet problem:

Af(x) = βf(x), x ∈ D; (3.5)

and the corresponding boundary conditions are given by

f(∂Da) = [V (a), V (±∞)]T , (3.6)

where V (±∞) depends on the direction of crossing. Denote by

V := [V (a), V (±∞)]T .

Then refer to (3.4), (2.21), (2.22), and Theorem 2.2.1, by setting V (a) = 1 and V (±∞) = 0,
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we immediately find that the solution to BVP (3.5) and (3.6) is the LT for the density function

of τ :

f(x, β) = Ex
[
e−βτ

]
.

Following this original BVP, in the next step, we apply perturbations on ε and find

the perturbed BVPs accordingly. The perturbation approach is a common technique in

solving asymptotics for complex systems. It has been successfully applied in quantum physics

and mathematical finance [35, 45, 110]. Traditionally, it is required that the perturbation

parameter should be small. However, we will show later, this is not necessary in our case.

For abbreviation, we ignore the function arguments in following contents. By default, all

implicit operations are w.r.t. x.

Consider a sequence of C2-functions {fi}i≥0 such that, f can be expressed as

f =

∞∑
i=0

εifi. (3.7)

Substitute (3.7) into (3.5), and by the linearity of operator A, we have

Af =
∞∑
i=0

εi
(
εhf

′
i + Gfi

)
= βf

=
∞∑
i=0

εiβfi,

i.e.
∞∑
i=0

εi
(
εhf

′
i + Gfi

)
=
∞∑
i=0

εiβfi, ∀x ∈ D. (3.8)

Move the right-hand side of (3.8) to the left-hand side, and rearrange terms, we further get

∞∑
i=0

εi
(
εhf

′
i + Gfi

)
−
∞∑
i=0

εiβfi = Gf0 − βf0 +

∞∑
i=0

εi+1hf
′
i +

∞∑
i=1

εiGfi −
∞∑
i=1

εiβfi

= Gf0 − βf0 +

∞∑
i=1

εihf
′
i−1 +

∞∑
i=1

εiGfi −
∞∑
i=1

εiβfi

= Gf0 − βf0 +

∞∑
i=1

εi
(
hf
′
i−1 + Gfi − βfi

)
.
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And to summarise, (3.8) becomes

Gf0 − βf0 +
∞∑
i=1

εi
(
hf
′
i−1 + Gfi − βfi

)
= 0, ∀x ∈ D.

Note that by extracting the 0-th order term and assigning proper boundary conditions,

we can have the BVP for the standard Brownian motion (where the LT inverse is already

known, see Example 2.2.2). Higher order terms can be solved via a recursive system which

accumulates information from f0 and the drift function h.

Denote the BVP with i = 0 by o(1) term, by assigning same boundary conditions as in

the initial problem, we have

o(1) : Gf0 = βf0, x ∈ D,

f0(∂Da) = [1, 0]T .

For i ≥ 1, we use the notation o(εi) and define

o
(
εi
)

: Gfi = βfi − h · f
′
i−1, x ∈ D,

fi(∂Da) = [0, 0]T .

Based on the fact that the solution to the initial BVP is unique, one can check, by solving

the recursive system to infinite orders (not necessarily for small ε), the sequence {fi}i≥0

reproduces the initial solution f ; i.e. Equation (3.7) always holds true. However, in practice,

it is not realistic of having infinite order solutions. Therefore we need to decide a truncation

order and estimate the corresponding error.

3.3 Truncation Error and Convergence

In this section, we present results about the perturbation convergence and the truncation

error estimation. The error estimation below is given by a probabilistic representation, i.e.

a formula expressed using the expectation of path integrals. Alternatively, one can also

estimate the truncation error via a PDE scheme and which is listed in Appendix 3.A.

Before demonstrating the results, we further introduce some notations. Let N ∈ N be a
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fixed integer, and for i = 1, ..., N , we denote the N -th order truncation of initial LT by

f (N) :=
N∑
i=0

εifi. (3.9)

Assume inverse LTs for f , f (N) and ∂xfN (x, β) exist, and denote by

pτ (t) = L−1 {f(β)} (t),

p(N)
τ (t) =

N∑
i=0

εiL−1 {fi(β)} (t), and

η(x, t) = L−1 {∂xfN (x, β)} (t), (3.10)

respectively. Define the difference between two FPTDs by

qτ (t) := pτ (t)− p(N)
τ (t), (3.11)

then,

Proposition 3.3.1 (Probabilistic Representation for the Truncation Error). For all t ∈ R+

and all β ∈ C+, if

∫ +∞

0
e−βtEx

[∫ τ∧t

0
|h(Xu)η (Xu, t− u)| du

]
dt < +∞, (3.12)

then

qτ (t) = εN+1Ex
[∫ τ∧t

0
h(Xu)η (Xu, t− u) du

]
. (3.13)

Further, if for some constant M < +∞ and

∣∣∣∣Ex [∫ τ∧t

0
h(Xu)η (Xu, t− u) du

]∣∣∣∣ ≤M, (3.14)

then

|qτ (t)| ≤ εN+1M. (3.15)

Proof. Let η (x, t) be defined as in (3.10), and introduce

q̃τ (t) := εN+1Ex
[∫ τ∧t

0
h(Xu)η (Xu, t− u) du

]
.
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We first show that q̃τ (t) is the inverse LT of f − f (N). Then by the uniqueness of (inverse)

LT, q̃τ (t) is the error function in (3.11). Consider the LT of q̃τ (t). By (3.12) and the Fubini’s

theorem, we have

∫ ∞
0

e−βtEx
[∫ τ∧t

0
h(Xu)η (Xu, t− u) du

]
dt

=Ex
[∫ ∞

0

∫ τ∧t

0
h(Xu)e−βtη (Xu, t− u) dudt

]
=Ex

[∫ τ

0
h(Xu)

∫ ∞
0

e−βt1{u≤t}η (Xu, t− u) dtdu

]
=Ex

[∫ τ

0
h(Xu)L

{
1{u≤t}η (Xu, t− u)

}
(β)du

]
.

According to the fact that

L
{
1{u≤t}η(x, t− u)

}
(β) = e−βuL{η(x, t)} (β),

and by the definition of η(x, t) in (3.10), we therefore conclude

L{q̃τ (t)} (β) = εN+1Ex
[∫ τ

0
h(Xu)e−βu∂xfN (Xu, β)du

]
. (3.16)

Following from above, we show the right-hand side of (3.16) indeed is f − f (N). Let

Q(x, β) := f(x, β)− f (N)(x, β).

By the linearity of LT and (3.11), we have

Q(x, β) = L{pτ (t)} (β)− L
{
p(N)
τ (t)

}
(β) = L{qτ (t)} (β).

Since f and f (N) are both in C2, so is Q. Apply the operator A on Q, and consider ODEs

o(1) and o(i), i ≤ N on p. 34, together they yield

AQ− βQ = Af − βf −
(
Af (N) − βf (N)

)
= 0−

[
Gf0 − βf0 +

N∑
i=1

εi
(
Gf0 − βf0 + h · f ′i−1

)
+ εN · εhf ′N

]

= −εN+1h · f ′N .
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Note that f and f (N) share the same boundary conditions, so for Q(x) we have

Q (∂Da) = [0, 0]T .

According to Theorem 2.2.3, the ODE of Q(x) is the killed version of Dirichlet problem and

its solution has the following probabilistic representation:

Q(x, β) = εN+1Ex
[∫ τ

0
e−βuh(Xu)∂xfN (Xu, β)du

]
.

This is indeed the right-hand side of (3.16). By the uniqueness of BVP solution and the

uniqueness of the LT/ILT, we conclude that

qτ (t) = q̃τ (t).

In the end, (3.15) is a direct result from assumption (3.14) and (3.13).

Remark. For small ε and under condition (3.14), by Proposition 3.3.1 we see the N -th order

perturbed FPTD converges to the true density at O(εN+1). This is the main reason why we

use the little-o notation on p. 34. On the other hand, even for large ε, one can always use

(3.13) to check error levels.

3.4 Recursion under Frequency Domain

In this section, we provide a general mechanism for solving recursive BVPs. For simplicity2

we consider the FPT hitting 0 from above, i.e.

τ := inf

{
t ≥ 0 : Xt = 0

∣∣∣∣X0 = x > 0

}
. (3.17)

Under this treatment, the domain is specified by D = (0,+∞). We suppress the notation a

(note that a = 0), and denote the boundaries by ∂D := ∂Da = {0,+∞}.

2For an arbitrary hitting level a we can use the affine transformation to retrieve the 0-hitting case. Although
not always, for the situation of hitting from below (x < 0), we can consider the mirror reflection of {Xt}t≥0

(cf. Section 4.3.1 for the OU process and discussions in Appendices 5.A and 6.D for the Bessel and the Bubble
processes).
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Lemma 3.4.1 (Laplace Transform for the FPTD of Brownian Motion). The unique solution

to the o(1) BVP is given by

f0(x, β) = e−
√

2βx. (3.18)

Proof. The result is directly from Example 2.2.2 by setting a = 0.

Lemma 3.4.2 (Recursive Solution to o
(
εi
)
). For i ≥ 1, let

γ :=
√

2β. (3.19)

The unique solution to the o
(
εi
)

BVP, if exists, is given by

fi(x, β) = f0(x, β)

[∫ x

A1

2e2γy

(∫ y

A2

h(z)ki(z, β)e−2γzdz + C1

)
dy + C2

]
,

where

ki(z, β) := γf−1
0 (z, β)fi−1(z, β)− ∂z

(
f−1

0 (z, β)fi−1(z, β)
)
,

and A1, A2, C1, C2 are determined subject to conditions fi(0, β) = 0, fi(+∞, β) = 0.

Proof. The uniqueness of fi follows from the Dirichlet-type BVP [101]. Consider that fi is

of the following form

fi := f0gi. (3.20)

Then substituting (3.20) into o
(
εi
)
-ODE yields

1

2
g
′′
i − γg

′
i = h

[
γgi−1 − g

′
i−1

]
. (3.21)

Note gi−1 and its derivative are deterministic in the i-th order. We denote by

ki := γgi−1 − g
′
i−1. (3.22)

Then Equation (3.21) can be rewritten as

1

2
g
′′
i − γg

′
i = hki. (3.23)
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Multiply e−2γx and take integrations on both sides of (3.23), we have

∫
1

2
g
′′
i e
−2γxdx−

∫
γg
′
ie
−2γxdx =

∫
hkie

−2γxdx+ C1. (3.24)

Apply integral by parts, for the left-hand side we get

∫
1

2
g
′′
i e
−2γxdx−

∫
γg
′
ie
−2γxdx =

1

2
g
′
ie
−2γx + γ

∫
g
′
ie
−2γxdx−

∫
γg
′
ie
−2γxdx

=
1

2
g
′
ie
−2γx. (3.25)

Use (3.25) and (3.24), further multiply 2e2γx and take integrals on both sides,

gi =

∫ x

A1

2e2γy

[∫ y

A2

hkie
−2γzdz + C1

]
dy + C2. (3.26)

Combine (3.20), this concludes our proof.

Remark. Potentially, using Lemma 3.4.2 we can solve the LT of perturbed FPTD to orders

as many as we wish. With the help of symbolic calculation software (e.g. Maple, Python),

calculations would become even simpler.

Appendix 3.A Alternative Error Estimation

We consider a PDE representation for solving the error function qτ (t) in Proposition 3.3.1.

As a counterpart to the probabilistic representation in the previous proposition, the PDE

approach below constitutes part of the potential study. Recall in the proof, the LT of the

error function, Q(x, β), satisfies the following BVP:

1

2
Q
′′

+ εhQ
′

= βQ− εN+1hf
′
N ; Q(∂D) = 0. (3.27)

Assume its ILT (denoted by qτ (x, t)) is bounded, then

∂xQ(x, β) =

∫ ∞
0

e−βt∂xqτ (x, t)dt, and

∂xxQ(x, β) =

∫ ∞
0

e−βt∂xxqτ (x, t)dt.
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Therefore,

L−1 {∂xQ(x, β)} (t) = ∂xqτ (x, t), and

L−1 {∂xxQ(x, β)} (t) = ∂xxqτ (x, t).

For the left-hand side of Equation (3.27), we then have

L−1

{
1

2
∂xxQ(x, β) + εh(x)∂xQ(x, β)

}
(t) =

1

2
∂xxqτ (x, t) + εh(x)∂xqτ (x, t). (3.28)

For the right-hand side, consider the fact that

L−1 {βQ(x, β)} (t) = ∂tqτ (x, t) + qτ (x, 0),

where for x ∈ D, we have qτ (x, 0) = 0. Then,

L−1
{
βQ(x, β)− εN+1h(x)∂xfN (x, β)

}
(t) = ∂tqτ (x, t)− εN+1h(x)η(x, t). (3.29)

Take the ILT on both sides of (3.27), and consider relations in (3.28) and (3.29), we then get

(
∂t −

1

2
∂xx − εh(x)∂x

)
qτ (x, t) = εN+1h(x)η(x, t).

The boundary and initial conditions are given by

qτ (t, ∂D) = 0, t ∈ R+,

qτ (0, x) = 0, x ∈ D.

Appendix 3.B Probabilistic Representation of p
(N)
τ (t)

From Proposition 3.3.1 and Appendix 3.A, we can see solutions associated with the perturba-

tions can be either interpreted by probabilistic representations or PDEs. On the other hand,

note that solutions in Lemma 3.4.2 are deduced from ODEs. Therefore, for the completeness

of our study, in this appendix we present the corresponding probabilistic versions of solutions
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in Lemma 3.4.2. Let

τW := inf {t > 0 : Wt ∈ ∂Da|W0 = x ∈ D}

be the FPT of Brownian motion starting from W0 = x and hitting the same barrier as

{Xt}t≥0. Then, the solution f0(x, β) of o(1) term, in fact is the LT of τW (Theorem 2.2.1):

f0(x, β) = Ex
[
e−βτW

]
.

Now we consider higher order o
(
εi
)

terms. Define

li(x, β) := h(x)∂xfi−1(x, β).

Note that in recursion i, fi−1(x, β) is a known function. Using again Theorem 2.2.3, ODE

o
(
εi
)

embeds the following representation

fi(x, β) = Ex
[∫ τW

0
e−βsli(Ws, β)ds

]
.

Under L1-integrable conditions (w.r.t. li), similar as in the proof of Proposition 3.3.1, we

then can rewrite the equation above as

fi(x, β) =

∫ +∞

0
e−βsEx

[
li(Ws, β)1{τW>s}

]
ds. (3.30)

Note that, the function li in above also depends on β. Therefore, fi in general cannot be

simply understood as the killed version of the resolvent operator. Equation (3.30) shows fi,

in fact, captures the accumulated effects from the drift function h. And for |ε| < 1, with the

perturbation order i going further, the effects become less weighted by εi.

Although we cannot acquire direct ILT from Equation (3.30), the proof of Proposition

3.3.1 inspires us to derive a probabilistic representation for the inverse transform.

Proposition 3.B.1 (Probabilistic Representation for Perturbed FPTD). For 1 ≤ i ≤ N ,

t ∈ R+, and β ∈ C+, if

∫ +∞

0
e−βsEx

[
|li(Ws, β)|1{τW>s}

]
ds < +∞,
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then

p(N)
τ (t) = pτW (t) +

N∑
i=1

εiEx
[∫ t∧τW

0
h(Wu)ηi(Wu, t− u)du

]
, (3.31)

where ηi is the error estimation function defined for order i in (3.10).

Proof. Please refer to the proof of Proposition 3.3.1.

Proposition 3.B.1 provides us with two ways of evaluating FPTDs. Either, one can use

the Monte Carlo approach to simulate Brownian motion paths and their FPTs, or, as an

alternative, assume the joint distribution of (Wt, τW ) (which can be easily solved by using

the reflection principle) to be:

ξ(y, s|t) :=
Px (Wt ∈ dy, τW ∈ ds)

dyds
;

then the expectation in (3.31) can be further written as

Ex
[∫ t∧τW

0
h(Wu)ηi(Wu, t− u)du

]
=

∫
D

∫
R+

∫ t∧s

0
h(y)ηi(y, t− u)ξ(y, s|u)dudsdy.
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Chapter 4

First Passage Time of

Ornstein-Uhlenbeck Process

The OU process was first introduced to describe the velocity of a particle that follows a

Brownian motion movement [124]. Later the process appears widely in neural science [74, 126]

and mathematical finance [55, 65, 111, 125], etc. According to our previous settings, the h-

function of the OU process is given by

h(Xt) = θ −Xt, Xt ∈ D, (4.1)

where θ is the equilibrium parameter in the OU model. Note that the function above is

a first order polynomial and which is still a polynomial under operations of integration and

differentiation. Since our recursive framework mainly involves those two operations, therefore,

we may expect an elegant result from the perturbation method.

Refer to [124, 127], the OU SDE has a unique strong solution. Moreover, as a strong

Markov process, it is recurrent and continuous a.s. Our framework therefore can be applied.

Let ε > 0 be the mean-reverting rate, the infinitesimal generator is given by

Af(x) =
1

2
f
′′
(x) + ε(θ − x)f

′
(x), x ∈ D.

Consider hitting from above in (3.17). The solution of initial BVP (3.5) and (3.6), is given
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by [18]

f(x, β) = e
εx(x−2θ)

2

D−β
ε

(√
2β(θ − x)

)
D−β

ε

(√
2βθ

) , (4.2)

where β ∈ C+ is the LT parameter, and D·(·) is the parabolic cylinder function (see [2]).

Under a special case that θ = 0, the explicit OU FPTD is given by [3, 49]. However, in

general, the explicit inverse of (4.2) seems not available. Instead of acquiring the closed-form

solution, one can use numerical schemes (see Section 2.3, Chapter 2); or, many attempts

have been made on asymptotic solutions and simulation schemes, see e.g. [59, 71, 77]. In

this chapter, we apply our perturbation framework and give explicit asymptotics for the OU

FPTD.

This chapter is organised as follows. In Section 4.1, we introduce general results from

the N -th order perturbations. Section 4.2 focuses on the error estimation with N = 1.

Model extensions and numerical results are provided in Section 4.3. In the appendices of this

chapter, we summarise supplementary materials.

4.1 N-th Order Perturbed FPTD

Follow Lemma 3.4.2, let

γ =
√

2β.

And for i = 1, consider A1 = 0, A2 = +∞, C1 = 0, and C2 = 0. Then we can immediately

find that,

f1(x, β) = e−γx
(
x2

2
+

(1− 2θγ)x

2γ

)
, (4.3)

which is the solution to the o(ε1) BVP. For general cases, we have the following proposition.

Proposition 4.1.1 (Recursive Polynomial). For i ≥ 2, the solution of o(εi)-BVP for the OU

process is given by

fi(x, β) = f0(x, β)gi(γx),

where

gi(y) :=
2i∑
j=1

p
(i)
j y

j . (4.4)
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The coefficients {p(i)
j : i ≥ 2, 1 ≤ j ≤ 2i} are given by:



j = 2i : p
(i)
2i =

p
(i−1)
2i−2

2iγ2

j = 2i− 1 : p
(i)
2i−1 = 1

(2i−1)γ2
p

(i−1)
2i−3 +

(
1

2γ2
− γθ+(2i−2)

(2i−1)γ2

)
p

(i−1)
2i−2

2 < j < 2i− 1 : p
(i)
j = 1

2(j + 1)p
(i)
j+1 + 1

γ2j
p

(i−1)
j−2 −

j−1+γθ
γ2j

p
(i−1)
j−1 + θ

γ p
(i−1)
j

j = 2 : p
(i)
2 = 3

2p
(i)
3 −

1+γθ
2γ2

p
(i−1)
1 + θ

γ p
(i−1)
2

j = 1 : p
(i)
1 = p

(i)
2 + θ

γ p
(i−1)
1

.

Proof. One can try to solve coefficients from the recursive algorithm in Lemma 3.4.2. Another

approach, which is much simpler, is to directly derive solutions of ODE (3.23). We leave

details of proof in Appendix 4.A.

Proposition 4.1.1 enables us to expand perturbed LT to arbitrary orders. However, our

final aim is to find its closed-form inverse, while, coefficients in the proposition are functions of

the parameter β. In order to avoid unnecessary symbolic calculations, we further decompose

the coefficients
{
p

(i)
j : i ≥ 0, 1 ≤ j ≤ 2i

}
.

Lemma 4.1.2 (Recursive Polynomial Decomposition). For each p
(i)
j in

{
p

(i)
j : i ≥ 1, 1 ≤

j ≤ 2i

}
, there exists a triple-indexed real sequence

{
c

(i,j)
k : i ≥ 1, 1 ≤ j ≤ 2i, 0 ≤ k ≤ (2i− j) ∧ i

}
,

such that

p
(i)
j =

(2i−j)∧i∑
k=0

c
(i,j)
k

(
1

γ

)2i−k
θk. (4.5)

Proof. Please refer to Appendix 4.B.

Remark. Note that
{
c

(i,j)
k

}
is parameter-independent. Therefore we can pre-calculate the
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sequence and save it in memory. Later, this will help in enhancing the FPTD computation

speed.

Proposition 4.1.3 (N -th Order Perturbed FPTD of OU Process). Let N ∈ N, the N -th

order perturbed downward FPTD of OU process is

p(N)
τ (t) =

e−
x2

4t

√
2π

2N−1∑
n=0

hnt
n
2
−1D−n+1

(
x√
t

)
,

where

hn =
∑
i,j,k;

2i−j−k=n

εic
(i,j)
k θkxj ,

and D·(·) is the parabolic cylinder function.

Proof. Express the truncated LT using (3.9) and (3.20). According to Proposition 4.1.1 and

Lemma 4.1.2,

f (N) =
N∑
i=0

εie−γx
2i∑
j=1

(2i−j)∧i∑
k=0

c
(i,j)
k

(
1

γ

)2i−k−j
θk

xj . (4.6)

For 0 ≤ n ≤ 2N − 1, define

ĥn := 2−
n
2 hn.

Then after standard calculations, we can write (4.6) as

f (N) =

2N−1∑
n=0

ĥn · e−
√

2βxβ−
n
2 . (4.7)

Note that ĥn is independent to β. Referring to [9, Equation (9), Section 5.6], we find for

0 ≤ n ≤ 2N − 1,

L−1
{
e−
√

2βxβ−
n
2

}
(t) =

2
n
2 t

n
2
−1

√
2π

e−
x2

4tD−n+1

(
x√
t

)
. (4.8)

This immediately gives us the result.

Remark. According to [18], the initial LT of the OU FPTD is given by the ratio of two

parabolic cylinder functions. In the end, by applying perturbations we find that the FPTD

itself (which is an inverse LT) is expressed as a series of parabolic cylinder functions with the

first argument being integers.
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The integer-valued D-function is closely related to the Hermite polynomials [81, 12.7 (i)].

Based on the fact [81, 12.7.1] that

D0(z) = e−
1
4
z2 , (4.9)

and according to [81, 12.7.2], we have

D1

(
x√
t

)
=

x√
t
e−

x2

4t . (4.10)

Using the expressions above we can further write

p(N)
τ (t) = (h0 +

h1

x
t)p(0)

τ (t) +
e−

x2

4t

√
2π

2N−1∑
n=2

hnt
n
2
−1D−n+1

(
x√
t

)
, (4.11)

where p
(0)
τ (t) is the FPTD of a Brownian motion hitting 0, and which follows the inverse

Gamma distribution (see (2.29) in Example 2.2.2 with a = 0). From this point of view, the

N -th order perturbed OU FPTD is indeed the FPTD of the Brownian motion plus higher

order corrections.

Proposition 4.1.4 (Tail Asymptotics of OU Perturbed FPTD). For N ≥ 1, tail asymptotics

of the N -th order perturbed OU FPTD are given by1

p(N)
τ (t) ∼ p(0)

τ (t), as t ↓ 0, (Left Tail)

p(N)
τ (t) ∼ tN−

3
2 , as t ↑ +∞. (Right Tail)

Proof. We start from the left tail. When t ↓ 0, it is clear from (4.11), that

(h0 +
h1

x
t)p(0)

τ (t) ∼ p(0)
τ (t).

We need to further check the asymptotic for the series of D-functions. Denote by z := x√
t

and a = n− 3
2 (2 ≤ n ≤ 2N − 1). Refer to [2, 19.8.1, p. 689] and [81, 12.9.1], when z ↑ +∞

1Please refer to footnote 5 on p. 26, of Section 2.5, Chapter 2, for more details about the symbol ∼.
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(i.e. t ↓ 0), we have

D−a− 1
2
(z) ∼e−

1
4
z2z−a−

1
2

(
1 +O(

1

z2
)

)
.

Therefore

1√
2π

2N−1∑
n=2

hnt
n
2
−1e−

x2

4tD−n+1

(
x√
t

)
∼

2N−1∑
n=2

tn−
3
2 e−

x2

2t (1 +O(t))

∼p(0)
τ (t)(t2 + o(t2)).

This proves the left tail result.

Now we consider the right tail. Again by (4.11), we immediately have

(
h0 +

h1

x
t

)
p(0)
τ (t) ∼ h1

x
tp(0)
τ (t) ∼ t−

1
2 , for t ↑ +∞. (4.12)

For the series of D-functions, we use [2, 19.12.3]; and

D−a− 1
2
(z) =

√
π2−

1
2
ae−

1
4
z2
(

2−
1
4

Γ
(

3
4 + 1

2a
)M (

1

2
a+

1

4
,
1

2
,
1

2
z2

)
− 2

1
4 z

Γ
(

1
4 + 1

2a
)M (

1

2
a+

3

4
,
3

2
,
1

2
z2

))
,

where M(·, ·, ·) is the Kummer’s function (confluent hypergeometric function 1F1(·, ·, ·)), and

Γ(·) is the Gamma-function. Introduce the notations

ζ(a, s) :=
√
π

2−
1
4
− 1

2
a

Γ
(

3
4 + 1

2a
) (1

2a+ 1
4)s

(1
2)s2ss!

,

and

ξ(a, s) := −
√
π

2
1
4
− 1

2
a

Γ
(

1
4 + 1

2a
) (1

2a+ 3
4)s

(3
2)s2ss!

,

where (·)s := Πs−1
k=0(·+ k). According to [81, 13.2.2], we can reformulate the D-function as

D−n+1

(
x√
t

)
= e−

x
4t

( ∞∑
s=0

ζ(n− 3

2
, s)

x2s

ts
+

∞∑
s=0

ξ(n− 3

2
, s)

x2s+1

ts+
1
2

)
.
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Now let t ↑ +∞, it then yields

t
n
2
−1e−

x2

4tD−n+1 ∼t
n
2
−1

( ∞∑
s=0

ζ(n− 3

2
, s)

x2s

ts
+
∞∑
s=0

ξ(n− 3

2
, s)

x2s+1

ts+
1
2

)
.

Note that for fixed n, the leading term in above is t
n
2
−1. Therefore, by considering the highest

order n = 2N − 1 in the D-function series, we get

1√
2π

2N−1∑
n=2

hnt
n
2
−1e−

x2

4tD−n+1

(
x√
t

)
∼ tN−

3
2 . (4.13)

This concludes our proof.

From the right tail asymptotic we find for N ≥ 2, the perturbed FPTD would diverge

at t = +∞. In the case N = 1, though p
(1)
τ (t) converges to 0, due to the fat-tail effect of

t−
1
2 , we still expect an infinite integral. Therefore the total probability of perturbed FPTD

is infinity for all N ≥ 1. Indeed, the limit value of LT tells, for all N ≥ 1,

∣∣∣∣∫ ∞
0

p(N)
τ (t)dt

∣∣∣∣ = lim
β→0+

∣∣∣f (N)(β)
∣∣∣ =∞.

On the other hand, the left tail asymptotic shows the equivalence between OU and Brow-

nian motion FPTDs. Opposite to the spectral decomposition [3, 77], our analysis indicates

that the perturbation provides smooth densities for small t.

Lemma 4.1.5 (η-Function for OU Process). For N ≥ 1, the η-function is given by

η(x, t) =
e−

x2

4t

√
2π

2N−1∑
n=0

t
n
2
−1

(
(∂xln)D−n+1

(
x√
t

)
− ln√

t
D−n+2

(
x√
t

))
, (4.14)

where

ln =
∑
j,k;

j+k=2N−n

c
(N,j)
k θk · xj . (4.15)

Proof. Recall the definition of the η-function in Equation (3.10) and Proposition 3.3.1. The

partial derivative of fN (x, β) is given by

∂xfN (x, β) = e−
√

2βx
2N−1∑
n=0

(
2−

n
2 ∂x(ln)β−

n
2 − 2−

n−1
2 lnβ

−n−1
2

)
.
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The rest of the proof is concluded by using (4.8) again.

4.2 Error Estimation for N = 1

In this section we provide proofs of error estimation and convergence for the case N = 1. We

begin with the following lemma.

Lemma 4.2.1 (Supplementary Proof of Proposition 4.2.2). For N = 1, let h(x), η(x, t)

be given as in (4.1) and (4.14), respectively. Consider the downward FPT τ of OU process

crossing 0. For a constant K > 1, we have

Ex
[∫ τ∧t

0
1{Xu>K}|h(Xu)η(Xu, t− u)|du

]
≤ C0 + C1

√
t+ C2t,

where C0, C1 and C2 are positive constants.

Proof. According to (4.14), (4.9), (4.10) and [81, 12.7.2], by setting N = 1, we can write

h(x)η(x, t− u) =
θ − x√

2π
e
− x2

2(t−u)

(
x∂xl0

(t− u)
3
2

− l0

(t− u)
3
2

(
x2

t− u
− 1

)
+

∂xl1

(t− u)
1
2

− xl1

(t− u)
3
2

)
.

(4.16)

For r ∈ N and x ≥ 0, we find

∣∣∣∣e− x2

2(t−u)xr
∣∣∣∣ ≤ r r2 · (t− u)

r
2 , (4.17)

and x∗ =
√
r(t− u) is the turning point of e

− x2

2(t−u)xr. Based on (4.16), (4.17) and (4.15),

for (x, t) ∈ D × [0,+∞) and u ∈ [0, t], we get

∣∣h(x)η(x, t− u)1{x>K}
∣∣ ≤ C ′0 + C

′
1

1√
t− u

+

(
C
′
2

x

(t− u)
3
2

+ C
′
3

x3

(t− u)
5
2

)
e
− x2

2(t−u) 1{x>K},

(4.18)

where
{
C
′
i : i = 0, 1, ..., 3

}
are positive constants. Note that, substituting (4.17) into last two

terms in (4.18) gives 1
t−u , which diverges under the integral between 0 and t. Therefore, extra

care is required.

For α > 0, we consider a more general function:

mr,α(x, u, t) :=
xr

(t− u)1+α
e
− x2

2(t−u) . (4.19)
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First note that, when t ≤ K2

r , for all u ∈ [0, t], we have
√
r(t− u) ≤ K < x. By considering

the monotonicity of mr,α(x, u, t) after the turning point, we find

mr,α(x, u, t)1{x>K} ≤
Kr

(t− u)1+α
e
− K2

2(t−u) 1{x>K} (4.20)

= 2αΓ(α)Kr−2αIG(t− u, α, K
2

2
)1{x>K}, (4.21)

where Γ(·) is the Gamma function, and IG(t, α, K
2

2 ) is the density function of the inverse

Gamma distribution with shape parameter α and scale parameter K2

2 . On the other hand,

when t > K2

r , we consider maximums from two separate intervals. If u ∈ [t − K2

r , t], by

noticing
√
r(t− u) < K < x, we find (4.21) is still valid. If, otherwise, u ∈ [0, t− K2

r ), again,

using (4.17) yields

mr,α(x, u, t)1{x>K} ≤
r
r
2

(t− u)1+α− r
2

1{x>K}. (4.22)

Further, if 1 + α− r
2 > 0, then for u ∈ [0, t− K2

r ),

mr,α(x, u, t)1{x>K} ≤
r1+α

K2+2α−r 1{x>K}. (4.23)

Follow (4.21) and (4.23), by taking integral of (4.19) and considering the conditional expec-

tation, we get

Ex
[∫ t

0
mr,α(Xu, u, t)1{Xu>K}du

]
=

(
1{

t≤K2

r

} + 1{
t>K2

r

}) · ∫ t

0
Ex
[
mr,α(Xu, u, t)1{Xu>K}

]
du

≤2αΓ(α)Kr−2α

∫ t

0
IG(t− u, α, K

2

2
)Px(Xu > K)du · 1{

t≤K2

r

}
+ 2αΓ(α)Kr−2α

∫ t

t−K2

r

IG(t− u, α, K
2

2
)Px(Xu > K)du · 1{

t>K2

r

}

+

∫ t−K
2

r

0

r1+α

K2+2α−rPx(Xu > K)du · 1{
t>K2

r

}
≤
(

2αΓ(α)Kr−2α − rα

K2α−r

)
+

r1+α

K2+2α−r · t.

The last inequality is true as IG(t, ·, ·) is a density function and Px(Xu > K) ≤ 1. Now,
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combine the inequality above and (4.18), for the original problem we get

Ex
[∫ τ∧t

0
1{Xu>K}|h(Xu)η(Xu, t− u)|du

]
≤ Ex

[∫ t

0
1{Xu>K}|h(Xu)η(Xu, t− u)|du

]
≤ C0 + C1

√
t+ C2t.

This concludes our proof.

Proposition 4.2.2 (First Order Error Estimation and Convergence of OU Process). For

N = 1 and all t ∈ [0,+∞), the error estimation (3.13) of perturbed OU FPTD is valid.

Moreover, for any T > 0 and t ∈ [0, T ], the perturbation is O(ε2)-accurate.

Proof. Recall the h-function in (4.1) and the η-function in (4.14). In the first part of the

proof, we show (3.12) in Proposition 3.3.1 is satisfied. As a sufficient condition to (3.12), we

need to find a bound

Ex
[∫ τ∧t

0
|h(Xu)η(Xu, t− u)|du

]
≤M(t)

for all t ∈ [0,∞), and such that M(t) grows less fast than exponential.

For all fixed x ∈ D, one can check that h(x)η(x, t)→ 0 as t ↑ +∞. Let K > 1 be a large

and fixed constant. h(x)η(x, t) is continuous, so there exists a constant M1, (*) w.l.o.g., for

all (x, t) ∈ [0,K]× [0,+∞), such that

∣∣h(x)η(x, t)1{x≤K}
∣∣ ≤M11{x≤K}. (4.24)

Note that Px(Xu ≤ K) ≤ 1, therefore (4.24) yields

Ex
[∫ τ∧t

0
|h(Xu)η(Xu, t− u)|1{Xu≤K}du

]
≤
[∫ t

0
M1Ex

[
1{Xu≤K}

]
du

]
(4.25)

≤M1 · t. (4.26)

On the other hand, for x > K, by Lemma 4.2.1, we have

Ex
[∫ τ∧t

0
|h(Xu)η(Xu, t− u)|1{Xu>K}du

]
≤ C0 + C1

√
t+ C2t. (4.27)
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Combine (4.26) and (4.27), we get

Ex
[∫ τ∧t

0
|h(Xu)η(Xu, t− u)|du

]
≤ C0 + C1

√
t+ (C2 +M1)t.

This concludes the first part proof. The second part of the proof is given by showing, for

t ∈ [0, T ], ∣∣∣∣Ex [∫ τ∧t

0
h(Xu)η(Xu, t− u)du

]∣∣∣∣ ≤ C0 + C1

√
T + (C2 +M1)T.

Remark. In the proof above, the ‘(*) w.l.o.g.’ appeared in the second line above the inequality

(4.24) should be explained as follows. h(0)η(0, t) and h(x)η(x, 0) are both well-defined for t

and x on open intervals. The only singularity is generated by (x, t) = (0, 0). However, under

the probability space, Xu = 0 and t − u = 0 only happens with t = τ , while Px(τ = t) = 0.

Therefore, we can define h(0)η(0, 0) = 0. Plus h(x)η(x, t) → 0 as t ↑ +∞, this gives us the

boundedness of h(x)η(x, t) on [0,K]× [0,+∞), i.e. (4.24) holds true.

4.3 Model Application

4.3.1 Extension

In this subsection, we summarise a few extensions to our previous work. Let σ > 0 be a

constant. For σ > 0, we consider the generalised OU model with a constant volatility:

dXt = ε(θ −Xt)dt+ σdWt. (4.28)

The starting point is X0 = x ∈ D, and the hitting level is denoted by l < x, where in this

case, l is the lower boundary of D. Consider an affine transformation Yt = Xt−l
σ , which is

specified by

dYt = ε(θ̂ − Yt)dt+ dWt, Y0 =
x− l
σ

, θ̂ =
θ − l
σ

.

By choosing a new hitting level l̂ = 0, the initial hitting time for {Xt}t≥0 from x to l, becomes

equivalent to the problem for {Yt}t≥0 from Y0 to l̂, i.e., denote by

τ̂↓ := inf {t > 0 : Xt = l|X0 = x > l} and τY := inf

{
t > 0 : Yt = 0|Y0 =

x− l
σ

}
,
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then

P(τ̂↓ = τY ) = 1. (4.29)

Let

p
(N)
τ̂↓

(t, l)

be the N -th order perturbed FPTD of {Xt}t≥0 in (4.28), hitting from x to l with x > l; and

denote the N -th order perturbed FPTD of τY (which is given in Section 4.1) by

p(N)
τ (t|Y0, θ̂),

with the starting and mean-reversion levels being specified. Then according to (4.29), we

have

p
(N)
τ̂↓

(t, l) = p(N)
τ

(
t

∣∣∣∣x− lσ
,
θ − l
σ

)
. (4.30)

Now we consider the hitting from below case, i.e. x < l. Let Zt = −Xt, then

dZt = ε(θ̃ − Zt)dt+ σdBt, Z0 = −x, θ̃ = −θ, Bt = −Wt.

Define

τ̂↑ := inf {t > 0 : Xt = l|X0 = x < l} and τZ := inf {t > 0 : Zt = −l|Z0 = −x} .

Based on our construction, we further get

P(τ̂↑ = τZ) = 1. (4.31)

According to our assumption x < l, after the reflection, we have −x > −l. This transfers the

hitting from below case to the hitting from above problem. And note that, the domain of

{Zt}t≥0 now becomes (−l,+∞). Therefore2, our previous work in Section 4.1 is still valid.

Combine (4.31), and denote the hitting from below density by p
(N)
τ̂↑

(t, l), we then have

p
(N)
τ̂↑

(t, l) = p(N)
τ

(
t

∣∣∣∣ l − xσ ,
θ − x
σ

)
. (4.32)

2We will see in later chapters, this in general is not true, if the process’s behaviour is not symmetric about
the reflection barrier.
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Based on Equations (4.30) and (4.32), we can immediately have the distributions for the

running max- and minimum. Define

MT := max
0≤t≤T

Xt, and, mT := min
0≤t≤T

Xt.

For a fixe time T and a given level l ∈ R, use the facts that

{MT ≥ l} = {τ̂↑ ≤ T} , x < l, and,

{mT ≤ l} = {τ̂↓ ≤ T} , x > l.

The distributions of MT and mT are given by

Px (MT ≤ l) = 1−
∫ T

0
p

(N)
τ̂↑

(u, l)du, and,

Px (mT ≤ l) =

∫ T

0
p

(N)
τ̂↓

(u, l)du.

4.3.2 Alternative Approach for the OU FPTD

We now provide three alternative methods for computing the OU FPTD. These methods will

be used as benchmarks in the following subsection.

The first one is the eigenfunction expansion method, by V. Linetsky [77]. For −∞ < l <

x <∞, let

x̄ :=

√
2ε

σ
(x− θ), l̄ :=

√
2ε

σ
(l − θ), λn := vn · ε;

where {vn, n ≥ 1} with 0 < v1 < ... < vn → +∞ as n → +∞, are the positive roots of the

following Hermite equation:

Hv

(
l̄√
2

)
= 0.

Hv(·) in above is the Hermite polynomial (solution to the Hermite’s differential equation).

Consider another series {cn}n∈N, which is defined by

cn = −
Hvn

(
x̄√
2

)
vn · ∂∂v

{
Hv

(
l̄√
2

)} ∣∣
v=vn

,
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then the downward OU FPTD is given by

pτ (t) =

∞∑
n=1

cnλne
−λnt, for t > 0. (4.33)

This method involves numerical solutions for the zeros of Hermite function and its derivative.

And in practice, we cannot compute the infinite sum. As there is no evidence to show cn

converges uniformly with n ↑ +∞, therefore truncation error is not avoidable for t ≈ 0.

The second method is proposed by C. Kardaras and T. Ichiba [59]. They use 3-dimensional

Brownian bridge simulation to approximate the FPTD of 1-dimensional diffusion. Let {Xt}t≥0

be the OU process starting from x. Consider the hitting level l < x, and define y = x−l
σ to

be the starting point of the affine-transformed process. Also define

ψ(y) :=
ε2( θ−lσ − y)2 − ε

2
,

then under proper conditions [59], the OU FPTD can be expressed as

pτ (t) =
y√
2πt3

e−
y2

2t e−
∫ y
0 ε(

θ−l
σ
−v)dvE

[
e−t

∫ 1
0 ψ(|uye1+

√
tbu|)du

]
for t > 0; (4.34)

where e1 = [1, 0, 0]T , | · | is the Euclidean norm, and {bt : t ≥ 0} is a standard 3-dimensional

Brownian bridge.

The last method is the well-known explicit solution under a special case, θ = l. Its

derivation is based on the time-change method (see Theorem 2.1.6, Chapter 2). For full

details of the derivation, please refer to [3, 49]. Here we only list the result:

pτ (t) =
|x− l|√

2πσ

(
ε

sinh(εt)

) 3
2

e
− ε(x−l)

2e−εt

2σ2 sinh(εt)
+ εt

2 , for t > 0, (4.35)

where sinh(·) is the hyperbolic sin function.

4.3.3 Numerical Example on Downward OU FPTD

In this subsection, we illustrate our results via two sets of exercises. Note that, all discussions

in Section 4.3.1 are based on the results from Sections 4.1 and 4.2. Therefore, in this part,

we only show the downward OU FPTD results.
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We consider a generalised OU process (4.28). Model parameters are selected as follows

ε = 0.1, θ = 0.3, σ = 0.3, x = 0.5.

We conduct two sets of exercises. In the first one, we choose l = θ = 0.3. And in the second

group, we let l = 0.2.

Apart from our perturbation method, there are many other studies in finding the FPTD

of OU process. For benchmarking purpose we list them below.

i). Talbot method of numerical inverse LT [1] (Theorem 2.3.4, Section 2.3, Chapter 2)

ii). FPTD representation by spectral decomposition [3] (Equation (4.33), Section 4.3.2)

iii). 3-dimensional Brownian bridge simulation [59] (Equation (4.34), Section 4.3.2)

iv). closed-form solution in the special case l = θ [49] (Equation (4.35), Section 4.3.2)

Method i) has been introduced in Chapter 2. Methods ii)-iv) are discussed in the previous

subsection. Among these 4 methods, the closed-form density in iv) does not involve any

numerical approximation. But it is only valid for θ = l. Therefore in the first group of test,

we treat it as the ‘true’ density. In general cases where l 6= θ, there is no closed-form solution

found yet. As an alternative, we use the Talbot approach to be our benchmark.

Benchmark Comparison for l = θ

In this part, we only compare the Talbot method and our first order perturbation with the

closed-form solution. Figures 4.1 and 4.2 show densities and their relative errors (w.r.t.

approach iv)) in 5 years time.

Green dots in Figure 4.1 indicate ‘true’ densities. The blue line and orange segment curves

plot Talbot inverse and first order perturbation, respectively. By visual observations we find

those three densities coincide with each other. This confirms that our method is valid.

In order to check the accurateness and verify our error estimation formulae, we demon-

strate relative errors in Figure 4.2. Blue and orange dots depict realised errors, which are

calculated from the Talbot inverse and the perturbation density, by benchmarking them

on the closed-form solution. Red dots are numerical evaluations from Proposition 3.3.1 and

Lemma 4.1.5. We refer them to be theoretical errors. In the computation of qτ (t), we simulate
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Figure 4.1: FPTD of OU process Figure 4.2: Relative errors to iv)

1000 paths with dt = t
1000 . And the theoretical error is calculated by

err =

∣∣∣∣∣ qτ (t)

p
(1)
τ (t) + qτ (t)

∣∣∣∣∣ .
From Figure 4.2 we see, in general, the Talbot inverse is very accurate, apart from that

there is a peak for small t. In fact, by checking Figure 4.6 in Appendix 4.C, we find the

perturbation approach outperforms the Talbot inverse on the left tail. Considering the fact

that the perturbation provides smooth asymptotic on the left tail (Proposition 4.1.4), this

result is not surprising. On the other hand, the error function of perturbation diverges when

t becomes large. Although this is not very encouraging, it confirms our analysis for the right

tail asymptotic.

In Figure 4.2, by further comparing theoretical and realised errors, we find they increase

at the same rate. This verifies that Proposition 3.3.1 provides reasonable estimate to the

level of error. The spread of them could be explained by limitations from Euler’s simulation

scheme. By reducing dt to 0, theoretically, we should be able to match red and orange curves.

However, in practice we are more interested in the error range rather than exact error values;

otherwise, the problem becomes equivalent to solve the FPTD via Monte Carlo simulations.

In terms of the computation speed, we provide the time of evaluating 100 density points.

Without considering the initialisation of
{
c

(i,j)
k

}
sequence3, the perturbation has the same

speed as the explicit density. Both of them spend about 0.001 seconds. The Talbot inverse

3The sequence does not involve any parameter in the OU model. Therefore it is only initialised once and
pre-saved in memory.
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spends about 1.371 seconds - approximately 1371 times slower than other two methods.

General Case Comparison for l 6= θ

In the second exercise, we consider l 6= θ and illustrate results in the same way as before.

Note that for l 6= θ, we do not have any knowledge on the ‘true’ density. Considering in last

section the Talbot inverse is almost the same as the closed-form solution, we therefore use it

for benchmarking.

Figure 4.3: FPTD of OU process for general
case

Figure 4.4: Relative error to i) for general
case

An immediate observation from Figure 4.3 is that the spectral decomposition does not

provide a good estimate on the left tail. By checking [3] one can find this is due to the

divergence of spectral series at t = 0. Apart from the green curve, the rest three methods

provide almost identical results. This confirms that the perturbation method works for

general cases.

Results in Figure 4.4 are similar to what we have seen in Figure 4.2. We focus on

explaining the spectral approach and the Brownian bridge simulation. Observed from error

plots, for large t, those two methods can provide very accurate estimates. However, we

have to mention that, their accuracy is based on the cost of requiring extra computational

resources. In terms of the perturbation approach, although it is not as accurate as other

methods (with a relative error bounded by 2.5%), it maintains an overwhelming advantage

in the computation speed (0.001s v.s. 2.19s of the Talbot inverse, 3227.06s of the spectral

decomposition, and 1162.11s of the 3-dimensional Brownian bridge simulation).
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Appendix 4.A Proof of Proposition 4.1.1

Proof. We write gi(y) in (4.4) in terms of the generating function, i.e.

gi(y) =
2i∑
j=1

p
(2i)
j yj ↔

〈
0, p

(i)
1 , ...p

(i)
j , ..., p

(i)
2i

〉2i
,

where the locations of
{
p

(i)
j : 0 ≤ j ≤ 2i

}
in the brackets correspond to their orders in the

polynomial from 0 to the highest order 2i, and the superscript represents the highest order.

Then

g
′
i(y)↔

〈
p

(i)
1 , 2p

(i)
2 , ..., jp

(i)
j , ..., 2ip

(i)
2i , 0

〉2i
,

and

g
′′
i (y)↔

〈
2p

(i)
2 , 6p

(i)
3 , ..., j(j − 1)p

(i)
j , ..., 2i(2i− 1)p

(i)
2i , 0, 0

〉2i
.

Similarly we have the expressions for gi−1(y) and g
′
i−1(y).

Note that, under our notations, g
′
i is the derivative w.r.t. y, while in the initial ODE

(3.23), the derivative is w.r.t. x. For this reason, according to the chain-rules,

1

2
∂xxgi(x)− γ∂xgi(x) = (θ − x)(γgi−1(x)− ∂xgi−1(x))

can be rewritten as
1

2
γ2g

′′
i − γ2g

′
i = (y − γθ)

(
g
′
i−1 − gi−1

)
, (4.36)

where y = γx.

Substitute the generating function expressions into ODE (4.36), we get

1

2
γ2
〈

2p
(i)
2 , 6p

(i)
3 , ..., j(j − 1)p

(i)
j , ..., 2i(2i− 1)p

(i)
2i , 0, 0

〉2i

−γ2
〈
p

(i)
1 , 2p

(i)
2 , ..., (j − 1)p

(i)
j−1, ..., 2ip

(i)
2i , 0

〉2i

=
〈

0, p
(i−1)
1 , 2p

(i−1)
2 , ..., (j − 2)p

(i−1)
j−2 , ..., (2i− 2)p

(i−1)
2i−2

〉2i−2

−
〈

0, 0, p
(i−1)
1 , ..., p

(i−1)
j−3 , ..., p

(i−1)
2i−2

〉2i−1

−γθ
〈
p

(i−1)
1 , 2p

(i−1)
2 , ..., (j − 1)p

(i−1)
j−1 , ..., (2i− 2)p

(i−1)
2i−2 , 0

〉2i−2

+γθ
〈

0, p
(i−1)
1 , ..., p

(i−1)
j−2 , ..., p

(i−1)
2i−2

〉2i−2
.
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Re-arrange the right-hand side, we get

γ2 ·
〈
p

(i)
2 − p

(i)
1 , 3p

(i)
3 − 2p

(i)
2 , ...,

1

2
j(j − 1)p

(i)
j − (j − 1)p

(i)
j−1, ...,

i(2i− 1)p
(i)
2i − (2i− 1)p

(i)
2i−1,−2ip

(i)
2i

〉2i−1

=

〈
− γθp(i−1)

1 , p
(i−1)
1 − 2γθp

(i−1)
2 + γθp

(i−1)
1 , ...,

(j − 2)p
(i−1)
j−2 − p

(i−1)
j−3 − γθ(j − 1)p

(i−1)
j−1 + γθp

(i−1)
j−2 , ...,

(2i− 2)p
(i−1)
2i−2 − p

(i−1)
2i−3 + γθp

(i−1)
2i−2 ,−p

(i−1)
2i−2

〉2i−1

.

Finally, by matching each term in the equation above, from right to left (higher order to

lower order), we conclude our proof.

Appendix 4.B Recursive Polynomial Decomposition and Proof

of Lemma 4.1.2

We present the proof of Lemma 4.1.2 at the end of this appendix (cf. p. 66). Before stating

the proof, we need the following two corollaries.

Corollary 4.B.1 (Decomposition Structure I). For i = 1 and i = 2,
{
c

(i,j)
k

}
is explicitly

given by

i = 1 : c
(1,2)
0 = 1

2 ; c
(1,1)
0 = 1

2 ; c
(1,1)
1 = −1;

i = 2 :


c

(2,4)
0 = 1

8 ; c
(2,3)
0 = 1

12 ; c
(2,3)
1 = −1

2 ; c
(2,2)
0 = −1

8 ; c
(2,2)
1 = 0; c

(2,2)
2 = 1

2 ;

c
(2,1)
0 = −1

8 ; c
(2,1)
1 = 1

2 ; c
(2,1)
2 = −1

2 .

Corollary 4.B.2 (Decomposition Structure II). For i ≥ 3,
{
c

(i,j)
k

}
is recursively determined
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by



j = 2i : c
(i,2i)
0 =

c
(i−1,2i−2)
0

2i

j = 2i− 1 :


c

(i,2i−1)
0 = 1

(2i−1)c
(i−1,2i−3)
0 − 2i−3

2(2i−1)c
(i−1,2i−2)
0 ;

c
(i,2i−1)
1 = 1

(2i−1)

(
c

(i−1,2i−3)
1 − c(i−1,2i−2)

0

)

2 < j < 2i− 1 :



k = (2i− j) ∧ i :



c
(i,j)
2i−j = 1

j

(
c

(i−1,j−2)
2i−j − c(i−1,j−1)

2i−j−1

)
, j > i

c
(i,i)
i = −1

i c
(i−1,i−1)
i−1 , j = i

c
(i,j)
i = 1

2(j + 1)c
(i,j+1)
i − 1

j c
(i−1,j−1)
i−1

+c
(i−1,j)
i−1 , j < i

0 < k < (2i− j) ∧ i : c
(i,j)
k = 1

2(j + 1)c
(i,j+1)
k + 1

j c
(i−1,j−2)
k

− j−1
j c

(i−1,j−1)
k − 1

j c
(i−1,j−1)
k−1 + c

(i−1,j)
k−1

k = 0 : c
(i,j)
0 = 1

2(j + 1)c
(i,j+1)
0 + 1

j c
(i−1,j−2)
0 − j−1

j c
(i−1,j−1)
0

j = 2 :


k = i : c

(i,2)
i = 3

2c
(i,3)
i − 1

2c
(i−1,1)
i−1 + c

(i−1,2)
i−1

0 < k < i : c
(i,2)
k = 3

2c
(i,3)
k − 1

2c
(i−1,1)
k − 1

2c
(i−1,1)
k−1 + c

(i−1,2)
k−1

k = 0 : c
(i,2)
0 = 3

2c
(i,3)
0 − 1

2c
(i−1,1)
0

j = 1 :


k = i : c

(i,1)
i = c

(i,2)
i + c

(i−1,1)
i−1

0 < k < i : c
(i,1)
k = c

(i,2)
k + c

(i−1,1)
k−1

k = 0 : c
(i,1)
0 = c

(i,2)
0

.

Proof of Corollaries 4.B.1, 4.B.2. First, consider Corollary 4.B.1. The i = 1 case is con-

firmed by comparing the results with (4.3). Similarly, for i = 2, set A1 = 0, A2 = +∞,
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C1 = 0, and C2 = 0. Then by Lemma 3.4.2, we have

f2(x) =e−γx
(

1

8γ4
(γx)4 + (

1

12γ4
− θ

2γ3
)(γx)3 + (− 1

8γ4
+

θ2

2γ2
)(γx)2

+ (− 1

8γ4
+

θ

2γ3
− θ2

2γ2
)(γx)

)
.

The i = 2 case in Corollary 4.B.1, is then verified accordingly.

Now we prove Corollary 4.B.2. Note that, j = i is a special case for 0 ≤ k ≤ (2i− j) ∧ i,

therefore we need to treat it with an extra care. Denote and split the 2 < j < 2i− 1 case by,
i < j < 2i− 1 : G(I)

ck

j = i : G(II)
ck

2 < j < i : G(III)
ck

.

Also write the j = 2 and j = 1 cases as

j = 2 : Sck , and j = 1 : Fck ,

respectively. Recall Proposition 4.1.1 and Lemma 4.1.2. For i ≥ 3, first consider j = 2i. We

have 2i− j ∧ i = 0. Therefore,

p
(i)
2i = c

(i,2i)
0

(
1

γ

)2i

=
p

(i−1)
2i−2

2iγ2
=

1

2iγ2
· c(i−1,2i−2)

0

(
1

γ

)2i−2

.

Solving c
(i,2i)
0 from above, yields

c
(i,2i)
0 =

c
(i−1,2i−2)
0

2i
.

Then for j = 2i − 1, we have 2i − j ∧ i = 1. Substitute
{
c

(i,j)
k

}
in Lemma 4.1.2 into

Proposition 4.1.1, we get

p
(i)
2i−1 = c

(i,2i−1)
0

(
1

γ

)2i

+ c
(i,2i−1)
1

(
1

γ

)2i−1

θ. (4.37)

And similarly,

p
(i−1)
2i−3 = c

(i−1,2i−3)
0

(
1

γ

)2i−2

+ c
(i−1,2i−3)
1

(
1

γ

)2i−3

θ. (4.38)
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Substitute (4.37) and (4.38) into the recursion formula in Proposition 4.1.1, we further have

c
(i,2i−1)
0

(
1

γ

)2i

+ c
(i,2i−1)
1

(
1

γ

)2i−1

θ = 1
(2i−1)γ2

[
c

(i−1,2i−3)
0

(
1
γ

)2i−2
+ c

(i−1,2i−3)
1

(
1
γ

)2i−3
θ

]
+
(

1
2γ2
− γθ+(2i−2)

(2i−1)γ2

)
c

(i−1,2i−2)
0

(
1
γ

)2i−2
.

Rearranging the terms in the right-hand side (RHS ) gives

RHS =

[
1

2i− 1
c

(i−1,2i−3)
0 − 2i− 3

2(2i− 1)
c

(i−1,2i−2)
0

](
1

γ

)2i

+
1

2i− 1

[
c

(i−1,2i−3)
1 − c(i−1,2i−2)

0

](1

γ

)2i−1

θ;

by matching the coefficients of θ and γ, we get the results for j = 2i− 1 in Lemma 4.1.2.

Now we consider the cases for general j. The calculation involves p
(i)
j , p

(i)
j+1, p

(i−1)
j−2 , p

(i−1)
j−1

and p
(i−1)
j . First consider when i < j < 2i− 1, in this case we have



2i− j ∧ i = 2i− j

2i− j − 1 ∧ i = 2i− j − 1

2i− j ∧ i− 1 = 2i− j

2i− j − 1 ∧ i− 1 = 2i− j − 1

2i− j − 2 ∧ i− 1 = 2i− j − 2

.

The recursion formula in Proposition 4.1.1 can be written as

2i−j∑
k=0

c
(i,j)
k

(
1

γ

)2i−k
θk =

1

2
(j + 1)

2i−j−1∑
k=0

c
(i,j+1)
k

(
1

γ

)2i−k
θk

+
1

γ2j

2i−j∑
k=0

c
(i−1,j−2)
k

(
1

γ

)2i−k−2

θk +
θ

γ

2i−j−2∑
k=0

c
(i−1,j)
k

(
1

γ

)2i−k−2

θk

− j − 1 + γθ

γ2j

2i−j−1∑
k=0

c
(i−1,j−1)
k

(
1

γ

)2i−k−2

θk.

Rearrange the terms, and use the expression of generating function (w.r.t.
(

1
γ

)2i−k
θk) again,
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we have the following equation

〈
c

(i,j)
0 , ..., c

(i,j)
k , ..., c

(i,j)
2i−j

〉2i−j
=

1

2
(j + 1)

〈
c

(i,j+1)
0 , ..., c

(i,j+1)
k , ..., 0

〉2i−j

+
1

j

〈
c

(i−1,j−2)
0 , ..., c

(i−1,j−2)
k , ..., c

(i−1,j−2)
2i−j

〉2i−j

− j − 1

j

〈
c

(i−1,j−1)
0 , ..., c

(i−1,j−1)
k , ..., 0

〉2i−j

− 1

j

〈
0, ..., c

(i−1,j−1)
k−1 , ..., c

(i−1,j−1)
2i−j−1

〉2i−j

+
〈

0, ..., c
(i−1,j)
k−1 , ..., 0

〉2i−j
.

By matching the coefficients, we get the expression of G(I)
ck .

For G(II)
ck , consider i = j, we have



2i− j ∧ i = i

2i− j − 1 ∧ i = i− 1

2i− j ∧ i− 1 = i− 1

2i− j − 1 ∧ i− 1 = i− 1

2i− j − 2 ∧ i− 1 = i− 2

.

By using the same method as in solving G(I)
ck , we find G(II)

ck . Similarly, G(III)
ck is acquired by

repeating again the calculations.

Now for j = 2, different recursion equation is considered. The calculation requires
p

(i)
2 =

∑i
k=0 c

(i,2)
k

(
1
γ

)2i−k
θk

p
(i)
3 =

∑i
k=0 c

(i,3)
k

(
1
γ

)2i−k
θk

p
(i−1)
2 =

∑i−1
k=0 c

(i−1,2)
k

(
1
γ

)2i−k−2
θk

.

Write in terms of generating coefficients, we get

〈
c

(i,2)
0 , ..., c

(i,2)
k , ..., c

(i,2)
i

〉i
=

3

2

〈
c

(i,3)
0 , ..., c

(i,3)
k , ..., c

(i,3)
i

〉i
− 1

2

〈
c

(i−1,1)
0 , ..., c

(i−1,1)
k , ..., 0

〉i
− 1

2

〈
0, ..., c

(i−1,1)
k−1 , ..., c

(i−1,1)
i−1

〉i
+
〈

0, ..., c
(i−1,2)
k−1 , ..., c

(i−1,2)
i−1

〉i
.
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Again, by comparing orders, we have the expression of Sck .

In the end, consider j = 1, we need
p

(i)
1 =

∑i
k=0 c

(i,1)
k

(
1
γ

)2i−k
θk

p
(i)
2 =

∑i
k=0 c

(i,2)
k

(
1
γ

)2i−k
θk

p
(i−1)
1 =

∑i−1
k=0 c

(i−1,1)
k

(
1
γ

)2i−k−2
θk

.

The equation of generating coefficients is given by

〈
c

(i,1)
0 , ..., c

(i,1)
k , ..., c

(i,1)
i

〉i
=

〈
c

(i,2)
0 , ..., c

(i,2)
k , ..., c

(i,2)
i

〉i
+
〈

0, ..., c
(i−1,1)
k−1 , ..., c

(i−1,1)
i−1

〉i
.

This solves Fck , and concludes the proof.

Proof of Lemma 4.1.2. The existence and structures of
{
c

(i,j)
k

}
, which satisfies Equation

(4.5), are proved by Corollaries 4.B.1 and 4.B.2 above.

Appendix 4.C Further Numerical Result

In this appendix, we provide the left tail zoom-in of FPTDs/errors shown in Section 4.3.3.

Figures 4.5 and 4.6 correspond to the density/error plots in Figures 4.1 and 4.2. Similarly,

Figures 4.7 and 4.8 are the left tails of FPTDs/errors in Figures 4.3 and 4.4. The purpose of

this appendix is to show the accurateness of the perturbation for the left tails.

Figure 4.5: OU left tail density for l = θ Figure 4.6: OU left tail error for l = θ
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Figure 4.7: OU left tail density for l 6= θ Figure 4.8: OU left tail error for l 6= θ
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Chapter 5

First Passage Time of Bessel

Process

The Bessel process was introduced in [87] as the norm of an n-dimensional Brownian motion.

Denote by BES(n) (sometimes by BES(ν) with ν = n−2
2 ), the Bessel process has been studied

extensively in [105, Chapter XI]. In mathematical finance, the family of Bessel processes is

closely1 related to models in short rates and stochastic volatilities [22, 24, 27, 34, 55].

In this chapter, we consider the class of Bessel processes with orders n = 1 + ε, where

−1 < ε < 1. The SDE of BES(n) is specified in (2.19), Chapter 2. Based on our previous

notations, for BES(1 + ε), the h-function is given by

h(Xt) =
1

2Xt
, Xt ∈ D, (5.1)

where D = (0,+∞). According to [62, 69], {∞} is a natural boundary for all ε ∈ R; for

−1 < ε < 1 (0 < n < 2), {0} is a regular boundary with both types of exit and entrance.

We assume the process makes instantaneous reflection at 0. Refer to [69], the infinitesimal

generator then is well defined for all C2-functions on D. Denote it by

Af(x) =
1

2
f
′′
(x) +

ε

2x
f
′
(x), x ∈ D.

We consider a general hitting level 0 < a < X0 = x rather than a = 0. The domain D

1Squared Bessel process appears in the Constant Elasticity of Variance (CEV) model and the Cox-Ingersoll-
Ross (CIR) process (or Heston model), see also Example 2.1.7, Chapter 2.
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then is reduced to D = (a,+∞). Follow our definition in (3.3), by suppressing a, we denote

the downward FPT of {Xt}t≥0 by

τ = inf {t > 0 : Xt = a} , X0 = x > a.

According to [105], BES(1 + ε) is recurrent on D for all ε ∈ (−1, 1). This guarantees that τ is

finite a.s. Therefore the corresponding BVP exists. The BVP boundary in (3.6) is specified

by f(a) = 1. And refer to [18, 69], the initial LT is given by the ratio of modified Bessel

functions of the second kind :

f(x, β) =
(a
x

) ε−1
2
K ε−1

2
(
√

2βx)

K ε−1
2

(
√

2βa)
. (5.2)

Similar as in the OU process, the ILT can be computed numerically via [1] (Section 2.3,

Chapter 2) or using spectral decompositions [71]. In this chapter, we apply our previous work

and solve the downward FPTD via perturbation. Note that, the h-function for BES(1 + ε)

is no more closed under integration. Similar recursion formulae (as what we have seen in

Chapter 4) may not be found easily for the FPTD of {Xt}t≥0. Therefore, in this chapter, we

focus on the analysis of the first order perturbation.

The rest of this chapter is organised as follows. In Section 5.1, we solve the first order

FPTD. Section 5.2 provides further technical discussions on tail asymptotics and the error

estimation. Numerical results are demonstrated in Section 5.3. Section 5.4 is a short conclu-

sion for the work from Chapters 3, 4, and 5. In the appendices of this chapter, we summarise

a few extensions of our model. Those results will be referred to later in Chapter 8.

5.1 First Order Perturbed FPTD

Throughout this chapter, again we use the notation γ =
√

2β. For x > a, let f0 be defined

as in (2.28), Example 2.2.2:

f0(x, β) = e−γ(x−a).

And as we did before, we use f0, f0(x), f0(x, β) (the same for f1, g1) interchangeably.
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Lemma 5.1.1 (First Order BVP Solution). The first order perturbed LT is given by

f1(x, β) = f0(x, β)
ln(ax) + e2γaE1(2γa)− e2γxE1(2γx)

2
,

where E1(·) is the exponential integral function.

Proof. Follow Lemma 3.4.2, the h-function and k1 are specified by (5.1) and k1 = γ, respec-

tively. According to (3.26), by assigning A0 = 0, A2 = +∞, we get

g1 =

∫ x

0
2e2γy

[
γ

∫ y

+∞

1

2z
e−2γzdz + C1

]
dy + C2. (5.3)

After standard calculations, the inner integral yields

γ

2

∫ y

+∞

1

z
e−2γzdz = −γ

2
E1(2γy).

Simplify (5.3) using the equation above, we have

g1 =

∫ x

0
−γe2γyE1(2γy)dy + C1

e2γx − 1

γ
+ C2. (5.4)

Refer to [48, Equation (5), 4.2.], for the integral in (5.4), we further have

∫ x

0
−γe2γyE1(2γy)dy = − ln(x) + e2γxE1(2γx)

2
+ C3.

Combine C3 and C2, based on (5.4), (5.3) then becomes

g1 = − ln(x) + e2γxE1(2γx)

2
+ C1

e2γx − 1

γ
+ C2. (5.5)

C1 and C2 are determined through boundary conditions in the o(ε1)-problem. We start

with the upper boundary {+∞}. By L’Hôpital’s rule, f0(x) ln(x)→ 0 as x ↑ +∞. And refer

to [48, Equation (5), 3.3], for the E1-term, we find

lim
x↑+∞

f0(x)e2γxE1(2γx) = 0.

Therefore,

lim
x↑+∞

f1 = lim
x↑+∞

f0g1 = lim
x↑+∞

C1
e2γx − 1

γ
;
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and the only C1 which satisfies the condition f1(+∞) = 0 is 0. Similarly, substitute C1 = 0

into (5.5) and solve f1(a) = 0, we get

C2 =
ln(a) + e2γaE1(2γa)

2
.

The rest of the proof is then concluded by Lemma 3.4.2.

Corollary 5.1.2 (Full Integrability). The first order perturbed FPTD of BES(1 + ε) is fully

integrable, i.e. ∫ +∞

0
L−1

{
f (1)(β)

}
(t)dt = 1.

Proof. The corollary is proved by showing

lim
β→0+

f (1)(x, β) = 1.

Since limβ→0+ f0(x, β) = 1, therefore it is sufficient to only justify

lim
β→0+

g1(x, β) = 0.

Indeed, by considering [48, Equation (1), 3.3] that

E1(x) = −cγ − ln(x) +

∫ x

0

1− e−u

u
du,

where cγ = 0.5772 is the Euler’s constant; and note that

lim
x↓0

∫ x

0

1− e−u

u
du = 0,

we immediately prove the result.

Proposition 5.1.3 (First Order Perturbed FPTD of BES(1 + ε)). The first order perturbed

downward FPTD of BES(1 + ε) is given by

p(1)
τ (t) =

(
1 +

ε

2
ln(

a

x
)
)
p(0)
τ,x,a(t) +

ε(x− a)√
2πt

∫ ∞
(x−a)2

pΓ(y, 1, 1
2t)dy

(
√
y − x+ 3a)(

√
y + x+ a)

dy, (5.6)
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where

p(0)
τ,x,a(t) :=

x− a√
2π

t−
3
2 e−

(x−a)2
2t , (5.7)

and

pΓ(y, 1,
1

2t
) :=

1

2t
e−

y
2t (5.8)

are density functions of inverse Gamma and Gamma distributions, respectively.

Proof. Rearrange terms in the first order LT,

f (1)(x, β) = f0(x, β)
(

1 +
ε

2
ln(

a

x
)
)

+ εf0(x, β)
e2γaE1(2γa)− e2γxE1(2γx)

2
. (5.9)

The inverse of the first term in (5.9) is given by (2.29), Example 2.2.2. Now consider the

second term. Recall the definition of E1(z):

E1(z) :=

∫ +∞

z

e−u

u
du.

By multiplying ez we have

ezE1(z) =

∫ ∞
0

e−uz

u+ 1
du. (5.10)

Assume we can change the order of integrals, then substituting (5.10) into the second term

of (5.9) yields

L−1
{
e−
√

2β(x−a)ez
√

2βE1(z
√

2β)
}

(t) =

∫ ∞
0

L−1
{
e−
√

2β(x−a+uz)
}

(t)

u+ 1
du (5.11)

=

∫ ∞
0

p
(0)
τ,x−a+uz,0(t)

u+ 1
du, (5.12)

where p
(0)
τ,x−a+uz,0(t) is defined by (5.7); more specifically, let

y := (x− a+ uz)2, (5.13)
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(5.12) further gives

∫ ∞
0

p
(0)
τ,x−a+uz,0(t)

u+ 1
du =

1
√

2πt
3
2

∫ ∞
0

(x− a+ uz)e−
(x−a+uz)2

2t

u+ 1
du

=
1√
2πt

∫ ∞
(x−a)2

1
2te
− y

2t

√
y + a− x+ z

dy.

According to the definition in (5.8), we then get

L−1
{
e−
√

2β(x−a)ez
√

2βE1(z
√

2β)
}

(t) =
1√
2πt

∫ ∞
(x−a)2

pΓ(y, 1, 1
2t)√

y − (x− a) + z
dy, (5.14)

where pΓ(y, 1, 1
2t) is the density function of Gamma distribution with shape parameter 1 and

rate parameter 1
2t . The rest of the proof is concluded by substituting z = 2a and z = 2x into

(5.14), respectively.

Remark. The perturbed density for BES(1 + ε) is continuous on (0,+∞). As a sufficient but

not necessary condition, as long as2

1 +
ε

2
ln(

a

x
) ≥ 0,

the function p
(1)
τ (t) then is guaranteed to be positive. Therefore, combine Corollary 5.1.2, the

first order perturbed FPTD is a valid probability density function. On the other hand, by

using properties of integer Bessel functions in [128, Chapter III], potentially one can derive

FPTDs of BES(n+ ε) with n ∈ N.

5.2 Tail Asymptotic and Error Estimation

Proposition 5.2.1 (Tail Asymptotics of BES(1 + ε) Perturbed FPTD). Tail asymptotics of

the first order perturbed BES(1 + ε) FPTD are given by3

p(1)
τ (t) ∼ p(0)

τ,x,a(t), as t ↓ 0, (Left Tail)

p(1)
τ (t) ∼ t−1−α, as t ↑ +∞, (Right Tail)

2In fact, in the case ε < 0 (this gives a Bessel process of an order between 0 and 1), the inequality holds
true for any a ≤ x.

3Please refer to footnote 5 on p. 26, of Section 2.5, Chapter 2, for more details of the symbol ∼.
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where 0 < α < 1
2 .

Proof. We start from the left tail. The first term in p
(1)
τ (t) has the same order as the FPTD

of Brownian motion. We only need to check the second term, which involves the expectation

of functionals on a Gamma variable.

We rewrite the integral term in (5.6) as a convolution. From (5.11), by applying the

convolution rule on L−1
{
e−
√

2β(x−a)e−
√

2βuz)
}

(t), we can write

1√
2πt

∫ ∞
(x−a)2

pΓ(y, 1, 1
2t)dy

(
√
y − x+ 3a)(

√
y + x+ a)

dy

=

∫ t

0
p(0)
τ,x,a(v)

∫ ∞
0

p
(0)
τ,2ua,0(t− v)− p(0)

τ,2ux,0(t− v)

2(u+ 1)
dudv. (5.15)

Denote by

λ(t) := t−
3
2 e−

(x−a)2
2t , (5.16)

and

µ(t) :=

∫ t

0
λ(v)

∫ ∞
0

p
(0)
τ,2ua,0(t− v)− p(0)

τ,2ux,0(t− v)

2(u+ 1)
dudv, (5.17)

to be the asymptotics of the inverse Gamma density and the convolution, respectively. Let

t ↓ 0, then (5.17) yields

µ(t) ∼
∫ t

0
λ(v)

∫ ∞
0

p
(0)
τ,2ua,0(v)− p(0)

τ,2ux,0(v)

2(u+ 1)
dudv. (5.18)

Define

r(t) :=
µ(t)

λ(t)
.

An immediate observation is that the limit of r(t) at 0 is a 0
0 -type. To see this, consider the

LT of µ(t). Based on the initial value theorem (Equation (2.37), Fact 2.3.1, Section 2.3), we

have

lim
t↓0

µ(t) = lim
β→+∞

(
βe−

√
2β(x−a)

(
e2a
√

2βE1(2a
√

2β)− e2x
√

2βE1(2x
√

2β)
))

.

According to [81, 6.12.1], we further have

lim
t↓0

µ(t) = lim
β→+∞

(
βe−

√
2β(x−a)

(
1

2a
√

2β
− 1

2x
√

2β

))
= 0. (5.19)
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Now apply L’Hôpital’s rule on r(t). Follow the asymptotic in (5.18), the limit of r(t) is given

by

lim
t↓0

µ(t)

λ(t)
= lim

t↓0

λ(t)
∫∞

0

p
(0)
τ,2ua,0(t)−p(0)τ,2ux,0(t)

2(u+1) du

λ′(t)

= lim
t↓0

t−
6
2

∫∞
0

(
ua
u+1e

− 2u2a2

t − ux
u+1e

− 2x2a2

t

)
du

t−
7
2

=0.

Therefore µ(t) = o(λ(t)), and the left tail asymptotic is then given by

(
1 +

ε

2
ln(

a

x
)
)
p(0)
τ,x,a(t).

For the right tail, consider (5.15). Let w := 2ua√
t−v and w := 2ux√

t−v , respectively. Then the

inner integral can be further written as

∫ ∞
0

p
(0)
τ,2ua,0(t− v)− p(0)

τ,2ux,0(t− v)

2(u+ 1)
du =

∫ ∞
0

2ua
√

2π(t−v)
3
2
e
− (2ua)2

2(t−v) − 2ux
√

2π(t−v)
3
2
e
− (2ux)2

2(t−v)

2(u+ 1)
du

=
x− a

(t− v)
3
2

∫ ∞
0

wφ(w)

(w + 2a√
t−v )(w + 2x√

t−v )
dw, (5.20)

where φ(w) is the density of a standard normal distribution. Since x > a, therefore,

λ(v)

∫ ∞
0

p
(0)
τ,2ua,0(t− v)− p(0)

τ,2ux,0(t− v)

2(u+ 1)
du ≥ 0, ∀v ∈ (0, t).

Let K << t be a fixed constant, then

µ(t) ≥
∫ K

0
λ(v)

∫ ∞
0

p
(0)
τ,2ua,0(t− v)− p(0)

τ,2ux,0(t− v)

2(u+ 1)
dudv. (5.21)

Denote the right-hand side of (5.21) by µK(t). For 0 ≤ v ≤ K << t, combine (5.20), we

further have

µK(t) ∼
∫ K

0
λ(v)dv ·

∫ ∞
0

p
(0)
τ,2ua,0(t)− p(0)

τ,2ux,0(t)

2(u+ 1)
du ∼ t−

3
2

∫ ∞
0

wφ(w)

(w + 1√
t
)2
dw. (5.22)
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Since t−
3
2 is the asymptotic of λ(t) for large t, and

lim
t↑+∞

µK(t)

t−
3
2

≥
∫ 1

0

φ(w)

w
dw = +∞,

so according to (5.21), we find

lim
t↑+∞

µ(t)

λ(t)
≥ lim

t↑+∞

µK(t)

λ(t)
≥ +∞. (5.23)

This yields

p(1)
τ (t) ∼ µ(t).

The next step is to confirm that µ(t) is a valid asymptotic, i.e. itself does not diverge.

Indeed, apply the final value theorem (Equation (2.38), Fact 2.3.1, Section 2.3), one imme-

diately has

lim
t↑+∞

µ(t) = 0.

In addition, note that previously in Corollary 5.1.2, we have shown

lim
β→0+

f1(x, β) = lim
β→0+

f0(x, β)g1(x, β) = 0,

which further yields ∫ ∞
0
L−1 {f1(x, β)} (t)dt = 0. (5.24)

Since the inverse in (5.24) is given by

L−1 {f1(x, β)} (t) = ε

(
1

2
ln(

a

x
)p(0)
τ,x,a(t) +

(x− a)2

√
2π

µ(t)

)
, (5.25)

therefore, substitute (5.25) into (5.24), we further get

∫ ∞
0

µ(t)dt =

√
2π

2(x− a)2
ln(

x

a
)

∫ ∞
0

p(0)
τ,x,a(t)dt (5.26)

=

√
2π

2(x− a)2
ln(

x

a
). (5.27)

The equality in (5.27) comes from the fact that p
(0)
τ,x,a(t) is the p.d.f. of the inverse Gamma

distribution. As a necessary condition for (5.26), (5.27) to hold true, the convergence rate of
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µ(t) must be

µ(t) = O(t−1−α),

for some α > 0. Combine (5.23), we further require 0 < α < 1
2 . This concludes our proof.

Proposition 5.2.2 (Error Estimation and Convergence of BES(1 + ε)). The η-function for

the error estimation is given by

η(x, t) =
1

2
ln(

x

a
)ρ(x, a, t)− 1

4t

∫ ∞
(x−a)2

(
pΓ(y, 3

2 ,
1
2t)− pΓ(y, 1

2 ,
1
2t)√

y − x+ 3a

+
pΓ(y, 3

2 ,
1
2t)− pΓ(y, 1

2 ,
1
2t)√

y + x+ a

)
dy, (5.28)

where

ρ(x, a, t) :=
1√
2π
t−

5
2
(
(x− a)2 − t

)
e−

(x−a)2
2t ;

and pΓ(y, α, s) is the density of Gamma distribution with the shape parameter α and the rate

parameter s (see Equation (5.8)).

Besides, for all t ∈ [0,+∞), the probabilistic representation in Equation (3.13), Proposi-

tion 3.3.1, is valid. And for t ∈ [0, T ] with fixed T > 0, the first order perturbed FPTD of

BES(1 + ε) converges at rate O(ε2).

Proof. Taking the partial derivative on x from f1(x, β) (Lemma 5.1.1) yields

∂xf1(x, β) =∂x

(
f0(x, β)

ln(ax) + e2γaE1(2γa)− e2γxE1(2γx)

2

)
=f0(x, β)

(
−γ

ln(ax) + e2γaE1(2γa)− e2γxE1(2γx)

2
+
− 1
x + 1

x − 2γe2γxE1(2γx)

2

)

=− γf0(x, β)
ln(xa ) + e2γaE1(2γa) + e2γxE1(2γx)

2
.

According to [9], for some positive z, we have

L−1
{√

2βe−
√

2βz
}

(t) =
1√
2π
t−

5
2
(
z2 − t

)
e−

z2

2t . (5.29)

Then by repeating the same trick as in between (5.12) and (5.14), we prove the result for the

η-function.

Now we verify conditions of Proposition 3.3.1. The idea of the proof is similar to that
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in Proposition 4.2.2. Let the η-function be given in (5.1). For the first part proof, when

x ∈ [a,K] for some large K, please refer to the proof of Proposition 4.2.2.

Here we show the second part. When x > K and K is large enough, we have ln(xa ) ≤

(x− a). Therefore,

∣∣∣∣ 1

2x
· 1

2
ln(

x

a
)ρ(x, a, t)

∣∣∣∣ ≤ 1

4K

1√
2π
t−

5
2
(
(x− a)3 + t(x− a)

)
e−

(x−a)2
2t . (5.30)

And the boundedness of (5.30) is given in the proof of Lemma 4.2.1. The only thing left

then, is to show the Gamma-density part in (5.28) satisfies (3.12) and (3.14). First note that,

y ≥ (x− a)2 > 0, and x > a;

therefore,

max

{
1

√
y − x+ 3a

,
1

√
y + x+ a

}
≤ 1

2a
.

For the rest of the integral, consider a shape parameter α > 0. Then for x > K and such

that x− a > 1, given y > (x− a)2 > 1, we have

1

4t

∫ ∞
(x−a)2

pΓ(y, α,
1

2t
)dy =

1

2Γ(α)

∫ ∞
(x−a)2

1

(2t)α+1
yα−1e−

y
2αdy

≤ Γ(α+ 1)

2Γ(α)

∫ ∞
(x−a)2

yα

Γ(α+ 1)(2t)α+1
e−

y
2αdy

≤ Γ(α+ 1)

2Γ(α)
.

The last inequality is due to the fact that the integral is the cumulative distribution function

of the Gamma distribution. In the end, substitute α = 3
2 and α = 1

2 into the inequality

above, we then conclude the proof.

5.3 Numerical Example on Downward BES(1 + ε) FPTD

In this section we demonstrate numerical results similarly to which in Section 4.3.3. The

comparison is between the first order perturbed FPTD and the Talbot numerical inverse.

Both the density curve and the relative error plots are provided (additionally with their
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left-tail zoom-in plots). W.l.o.g., we choose model parameters as follows:

ε = 0.1, x = 0.7, l = 0.1.

Figure 5.1: Bessel density with ε = 0.1, x =
0.7, l = 0.1

Figure 5.2: Bessel density error with ε =
0.1, x = 0.7, l = 0.1

Figure 5.3: Bessel left tail density Figure 5.4: Bessel left tail relative error

Results in Figures 5.1 to 5.4 are similar to what we have seen in Chapter 4. From the

density plot (Figure 5.1), we find the first order perturbation provides a good estimate on the

FPTD. Figure 5.2 shows the consistency between theoretical and realised errors, and which

verifies our convergence conclusions (Propositions 5.2.2 and 3.3.1). In general, this example

indicates that the perturbation works well for the Bessel process.
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5.4 Conclusion

Chapters 3 to 5 are splits from one of our working paper [31]. In this paper, we provide

a systematic approach to solve closed-form asymptotics on diffusion FPTDs; besides, we

demonstrate the convergence of perturbation and derive a probabilistic representation for

the error estimate (see Chapter 3).

The perturbation resulted closed-form solution does not only increase the computational

efficiency; but also provides an analytical tractability in understanding FPTs at extreme times

(see e.g. Propositions 4.1.4 and 5.2.1). Using the framework we find valid approximations

for the OU (Chapter 4) and the Bessel (Chapter 5) FPTDs. The theoretical work in these

three chapters has also been verified by numerical exercises in Chapters 4 and 5.

Additionally, by taking the stochastic clock into account, results in this chapter could

also be extended to the CIR process (see Appendix 5.C). Another example of applying our

framework is given in Chapter 6. In practice, potential applications of the perturbed FPTD

could be found in survival analysis, bond option pricing, etc. Later, in Chapter 8, we will

study the possibility of identifying trading signals via level crossing probabilities.

Appendix 5.A Upward FPTD of BES(1 + ε)

According to [18], the LT for the upcrossing (0 < x < a) density of BES(1 + ε) is given by

f(x, β) =
(a
x

) ε−1
2
I ε−1

2
(
√

2βx)

I ε−1
2

(
√

2βa)
,

where I·(·) is the modified Bessel function of the first kind. Note that, in the case of hitting

from below, we are dealing with a reflecting boundary {0}. And according to [62, page 108],

the boundary value of the Dirichlet problem is the limit of functionals of f(x), k(x) and

m(x) at 0, where k(x) and m(x) are the killing and speed measure functions of BES(1 + ε),

respectively. In fact, by checking [81, 10.30 (i)], we find

f(0) =

(√
2βa

2

) ε−1
2

· 1

Γ( ε+1
2 )I ε−1

2
(
√

2βa)
. (5.31)

Similar to Section 4.3.1, we solve the upward asymptotic FPTD using the reflected process.

However, different to the OU process, after reflection, the new domain of BES(1+ε) becomes
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D = {−a, 0}. And in this case, the boundary {0} is ill-posed. If we force the perturbed

ODEs to match (5.31), in the end we could possibly get a solution in terms of modified

Bessel functions again. This does not simplify the solution at all. On the other hand, the

perturbation is based on the philosophy that the process locally behaves like the Brownian

motion; while, at {0}, the reflected process has an negatively infinite instantaneous drift.

Therefore, by forcing to match the boundary condition at {0} we may not even find a solution

from the perturbation. We then decide to match the boundary condition at −a only, and

assign the condition on {0} according to our need. In practice, this causes no harm if we

start from 0 << x and which is close to the hitting level a.

Repeat the calculations in Lemma 5.1.1 and Proposition 5.1.3, we find that the results for

the upward FPT are the same as in the downward case, apart from by replacing x̂ = −x and

â = −a. However, the exponential integral function, as mentioned in Lemma 5.1.1, should

be redefined via the Cauchy principal value4:

E1(z) = −
∫ +∞

z

e−y

y
dy.

To summarise, we list the LT and the FPTD of the upward BES(1 + ε) in below:

f1(x, β) = f0(−x, β)
ln(ax) + e−2γaE1(−2γa)− e−2γxE1(−2γx)

2
,

and

p(1)
τ (t) =

(
1 +

ε

2
ln(

a

x
)
)
p

(0)
τ,−x,−a(t)−

ε(x− a)√
2πt

−
∫ ∞

(x−a)2

pΓ(y, 1, 1
2t)dy

(
√
y + x− 3a)(

√
y − x− a)

dy. (5.32)

Note that, for x < a, two singularity points are involved in the denominator of the integrand;

that is why the Cauchy principal value is used again. For more details of derivations, please

refer to the proofs of Lemma 5.1.1 and Proposition 5.1.3.

As a quick numerical test, we demonstrate 4 figures on the next page. From the results

we can see, the perturbation works well if x is close to a. And our framework provides much

better estimate of the left tail than the right tail. This could be explained by the Cauchy

principal values in both the LT and the FPTD.

4This is due to the fact that Real(2γâ) ≤ 0 and Real(2γx̂) ≤ 0.
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Figure 5.5: Upcrossing FPTD of BES(1.5). ε = 0.5, x = 1.8. Left figure, 20% upcrossing
(a = 2.16); right figure, 100% upcrossing (a = 3.6)

Figure 5.6: Upcrossing FPTD of BES(0.5). ε = −0.5, x = 1.8. Left figure, 20% upcrossing
(a = 2.16); right figure, 100% upcrossing (a = 3.6)

Appendix 5.B Extension to BES(n)

We already mentioned in Chapter 3, that the perturbation parameter ε is not necessary to

be small. In this appendix, we illustrate this point.

Consider a general n ≥ 0, a natural way of thinking, on finding the FPTD of BES(n), is

to perturb those integer orders which have explicit densities. We call these orders the ‘anchor

points’. For example, when n = 3 (which corresponds to ν = 1
2), refer to [18], we know the
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LT of hitting from below5 is given by

f(x, β) =
a sinh(

√
2βx)

x sinh(
√

2βa)
.

And according to [9], its inverse is given by the derivative of θ-function:

L−1 {f(x, β)} (t) =
1√
2x
∂xθ4

(
x

2a

∣∣∣∣ iπt2a2

)
.

Unfortunately, if we take n = 3 as an anchor point, after tedious calculations, we find the

first order perturbed LT consists of Shi - and Chi -functions:

Shi(z) =

∫ z

0

sinh(y)

y
dy,

and

Chi(z) = cγ + ln(z) +

∫ z

0

cosh(y)− 1

y
dy,

where as it is mentioned in Corollary 5.1.2, cγ is the Euler’s constant. Based on our research,

we find it is very difficult to find the explicit inverse of f1. As an alternative, we therefore

consider to use the anchor point n = 1 and a large ε > 1, to approximate the FPTD of

BES(n).

Figure 5.7: Upcrossing probability of BES(3). ε = 2, x = 1.8. Left figure, 20% upcrossing
(a = 2.16); right figure, 100% upcrossing (a = 3.6)

5In this case, hitting from above is not guaranteed to be finite.
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Figure 5.8: Upcrossing probability of BES(6.5). ε = 5.5, x = 1.8. Left figure, 10% upcrossing
(a = 1.98); right figure, 20% upcrossing (a = 2.16)

From these examples, we find that the perturbation still works well for ε > 1, as long as

t is not large, and x is close to a (e.g., below 20%).

Appendix 5.C Lower Boundary of CIR FPTD

In the last appendix of this chapter, we provide a lower boundary of the FPT probability for

the CIR process6. Consider a CIR process as introduced in Example 2.1.7, Chapter 2:

dXt = ε(θ −Xt)dt+ σ
√
XtdWt, X0 = x > 0. (5.33)

And let {Yt}t≥0, {Zs}s≥0 be the time-changed squared Bessel process, and the Bessel process,

as defined in (2.18) and (2.19), respectively.

For x > a, define

τ∗ = inf {t ≥ 0 : Xt = a|X0 = x > a} .

Then according to (2.17), we have

τ∗ = inf

{
t ≥ 0 : Yσ2

4ε
(eεt−1)

= aeεt
∣∣∣∣Y0 = x > a

}
.

6Note that the exactly perturbed FPTD of the CIR process can be solved by considering the radial OU
process.
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Note that, since ε > 0, so for t > 0, aeεt > a. If we define

τ∗∗ = inf

{
t ≥ 0 : Yσ2

4ε
(eεt−1)

= a

∣∣∣∣Y0 = x > a

}
,

then τ∗ < τ∗∗, and which further gives

Px (τ∗∗ ≤ t) ≤ Px (τ∗ ≤ t) . (5.34)

On the other hand, define

τ = inf

{
s ≥ 0 : Zs =

√
a

∣∣∣∣Z0 =
√
x >
√
a

}
;

then according to the stochastic clock,

τ∗∗ =
1

ε
ln(

4ε

σ2
τ + 1).

This leads to

Px (τ∗∗ ≤ t) = Px
(
τ ≤ σ2

4ε
(eεt − 1)

)
.

Therefore, the lower boundary for the initial τ∗ is given by

Px (τ∗ ≤ t) ≥
∫ σ2

4ε
(eεt−1)

0
p(1)
τ (u)du, (5.35)

where p
(1)
τ (u) is introduced in (5.6). For the hitting from below case, the problem may not

be well defined (it depends on the choice of ε). But in general, consider a fixed time t > 0,

then for 0 ≤ u ≤ t, redefine

τ∗∗ = inf

{
0 ≤ u ≤ t : Yσ2

4ε
(eεu−1)

= aeεt
∣∣∣∣Y0 = x < aeεt

}
,

then by (5.34) again, the lower boundary is given by τ∗∗. And define

τt = inf

{
0 ≤ s ≤ σ2

4ε
(eεt − 1) : Zs =

√
ae

ε
2
t

∣∣∣∣Z0 =
√
x >
√
ae

ε
2
t

}
, (5.36)
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in the end, we find

Px (τ∗ ≤ t) ≥
∫ σ2

4ε
(eεt−1)

0
p(1)
τt (u)du, (5.37)

where p
(1)
τt (u) is given by (5.32).

Figure 5.9: Downcrossing probability of CIR. ε = 0.1, θ = 0.5, σ = 0.3, x = 0.8. Left figure,
10% downcrossing (a = 0.72); right figure, 20% downcrossing (a = 0.64)

Figure 5.10: Upcrossing probability of CIR. ε = 0.1, θ = 0.5, σ = 0.3, x = 0.8. Left figure,
10% upcrossing (a = 0.88); right figure, 20% upcrossing (a = 0.96)

In Figures 5.9 and 5.10, we plot numerical examples for the CIR FPT probabilities. The

benchmark curve (red) is given by Monte Carlo simulation. From these figures, we see the

upcrossing boundary is less sharp than that from the downcrossing. In fact, refer to (5.36),

for simplicity, in this example we choose the final value T as the terminal point rather than

evaluating the integral with the actual t at each point.
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Chapter 6

An Economic Bubble Model and Its

First Passage Time

In this chapter, we introduce a new diffusion process to describe economic bubble dynamics.

The process can be treated as a scaled version of log-transform on the Shiryaev process [117];

our study shows that the new scaling parameter is crucial for modelling economic bubbles.

We conduct fundamental analysis and prove that the process and its first passage time are

well-defined. Besides, a series of closed-form solutions on the process and its distribution

functions are given. Especially, by solving the Fokker-Planck equation we show that the

process follows an exponential-Gamma distribution at infinity time. Moreover, by employing

the perturbation technique, we deduce the closed-form asymptotic for the downward first

passage time density. Therefore, based on the model, the burst time of an economic bubble

can be estimated accordingly. The object of this study is to understand asset price dynamics

when a financial bubble is believed to form, and correspondingly provide estimates of the

bubble’s crash time. Calibration examples on the US dot-com bubble and the 2007 Chinese

stock market crash verify the effectiveness of the new model. The example on BitCoin

prediction confirms that we can provide meaningful estimate of the downward probability of

asset prices.

Contents in this chapter can be split into two parts. In the first part, we demonstrate

various properties of the model itself. And the second part can be seen as an application to

our perturbation framework in Chapter 3.
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6.1 Introduction, Motivation, and Literature Review

An economic bubble usually refers to the economic phenomenon that asset prices extremely

deviate from their fundamental values [115]. One of the most famous bubbles in history,

known as the Dutch Tulip Bubble [29, 46], could be traced back to the 1630s. According

to P.M. Garber [46], from November 1636 to February 1637, the price of tulip bulbs had

increased about 20 times. At the peak of the bubble, by selling a few bulbs people could

even buy a luxury house in Amsterdam. However, only three months later, the bulbs became

worthless. The rapid rise and sudden drop in asset prices form to be a common feature

reflected by a bubble cycle. More modern examples can be found in [23, 58, 129].

The burst of an economic bubble sometimes follows with financial crisis, or even economic

depression. In modern history, the most devastating crisis would be the 2007-2009 Financial

Crisis [104], where people believe the crash of the US real estate market is one of the causes.

And the crash itself, is usually referred to as the burst of the US Housing Bubble [58].

Although it is believed that a bubble cannot be predicted before it is formed, by knowing

the burst time in advance, governments and market participants can manage the potential

risk accordingly. Therefore, an effective estimate before the crash will help in preventing

the systematic risk. The object of this study is to understand asset price dynamics for an

economic bubble and provide estimates to the probability distribution of the collapse time.

The financial bubbles have been studied extensively in econometrics and statistics. As a

non-conclusive review, we refer to [102] and the literatures it mentioned for the econometric

approach; agent-based models in statistics can be found in [44, 51, 52]. In financial math-

ematics, local martingale models have been considered in option pricing problems, see R.A.

Jarrow and P. Protter et al. [63, 64, 98]. A. Cox and D.G. Hobson [26] included a wide branch

of stochastic diffusions in their work. S. Heston et al. [56] enriched the discussions by intro-

ducing the CIR process and the Heston stochastic volatility model. Apart from above, most

recently, in the work by M. Schatz and D. Sornette [107], they propose a unified framework to

mathematically describe economic bubbles. In terms of the burst time prediction, C. Brooks

and A. Katsaris [19, 20] forecasted the collapse of speculative bubbles in S&P 500 index using

a three-regime model. To the best of our knowledge, there is limited research in modelling

economic bubble dynamics via a pure time-homogeneous diffusion process. The research on

finding the explicit probability density of bubble crash time is even less. One paper related
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to our work is contributed by A. Kiselev and L. Ryzhik [73], where a mean-reversion process

with an exogenous functional drift has been considered.

In this chapter, we introduce a new time-homogeneous diffusion model. Within the frame-

work of [107], the new process can be seen as a continuous-time bubble model which takes

market failures into account. Our motivation is to provide an alternative approach, with the

mathematical form to be as simple and tractable as possible, to probabilistically describe

asset price dynamics within an economic bubble cycle. The new model is closely linked to

the Shiryaev process [116, 117], which is derived by A.N. Shiryaev in the context of sequential

analysis. Our model involves three independent parameters, where two of them provide mean-

reversion effects as in the OU process. As the crucial part of our model, the third parameter

controls the speed of exponential decay in the drift function. Consequently, the dependence

structure among the return, asset price, equilibrium level, and the mean-reversion rate, has

been mitigated. Without introducing extra functionals, our model provides sufficient degree

of freedom for calibrations, while on the other hand, avoids over-fitting. Due to the simple

structure of the model, we are able to find the closed-form asymptotic density of the bubble

crash time1.

The main contribution in this chapter is that we provide a self-contained material for

modelling bubble dynamic and predicting its burst time. On the theoretical side, we prove

that the new model is a well-defined diffusion process. To be more specific, the process

is a semimartingale with a unique strong solution. As a recurrent strong Markov process,

the model embeds an a.s. finite FPT; moreover, its stationary distribution is shown as

an exponential-Gamma or exponential-Inverse Gamma distribution. On the practical side,

a calibration algorithm based on economic features has been considered. We give explicit

distribution of the process at fixed time. And the LT of the FPTD is found. Since in

practice, we are more interested in the burst time rather than predicting how record-high the

bubble would visit, so based on the perturbation technique, we solve the closed-form density

for the downward FPT. In the end, the effectiveness of the model and its FPTD is verified

by three numerical examples.

The rest of this chapter is organised as follows. Section 6.2 introduces the SDE of our

new model and its connection with economic bubbles. Section 6.3 discusses the theoretical

result from the new process itself. The closed-form FPTD is given by Section 6.4. In Section

1In the current work, the crash time is defined as the first passage time.
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6.5, we demonstrate the calibration algorithm and illustrate the model application via three

examples, among which, a prediction on the BitCoin burst time has been given. Section 6.6

concludes. In the end, extra relevant materials are provided in appendices of this chapter.

6.2 Stochastic Dynamic, Economic Bubble, and Burst Time

Consider a filtered Brownian probability space
(

Ω,F , {Ft}t≥0 ,P
)

. We introduce the follow-

ing three-parameter SDE

dXt = ε
(
e−2αXt − c

)
dt+ dWt, X0 = x ∈ R, (6.1)

where ε ∈ R, α ∈ R, and 0 ≤ c ≤ 1. The dynamic describes a process with an exponentially

decayed mean-reversion drift. It can be used in modelling log-prices or short rates. By

considering the level where the drift is 0, in a long run, the process {Xt}t≥0 oscillates around

its equilibrium XR = − ln(c)
2α .

In terms of the link between SDE (6.1) and a financial bubble, we refer to the discussions

in [107]. Based on the Financial Instability Hypothesis (FIH) of H.P. Minsky [89] and ob-

servations from [21, 72], M. Schatz and D. Sornette [107] propose three minimal criteria for

a well-defined bubble process. By summarising [107, Definitions 2.1, 2.2, 2.3, and 2.4], we

define a bubble as follows:

Definition 6.2.1 (Economic Bubble). Let {Pt}t≥0,
{
S̃t

}
t≥0

, {Zt}t≥0 be adapted to the fil-

tered Brownian probability space
(

Ω,F , {Ft}t≥0 ,P
)

, and where
{
S̃t

}
t≥0

is a semimartingale.

Consider a finite stopping time τJ , given which we have

Pt = S̃t1{t≤τJ} + Zt1{t>τJ}. (6.2)

If

1. E
[
Pt1{t≥τJ}

]
< E

[
S̃t1{t≥τJ}

]
, t ≥ 0,

2. there does not exist a local-martingale measure Q for
{
S̃t

}
t≥0

,

3. there exists a local-martingale measure Q for {Pt}t≥0,
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then we say {Pt}t≥0 is a well-defined bubble process. And
{
S̃t

}
t≥0

, {Zt}t≥0 are referred to

as the pre-drawdown and the drawdown processes, respectively.

The definition above intuitively explains a bubble’s behaviour and its components from

a mathematical standpoint. From condition 3, it firstly says, in terms of the lifetime of an

asset, the efficient market hypothesis should be valid for all tradable assets. But on the

other hand, within a specific time period, a bubble may form due to the failure of market

efficiency (conditions 1 & 2). In the original work [107], the pre-drawdown process is allowed

(but not necessary) to be an explosive process. It explains the price dynamic which reflects

the ‘fundamental instability of a capitalist economy’; according to H.P. Minsky [89], such an

‘instability’ indeed refers to the ‘tendency of explosion’. On the other hand, after the boom

stage of a bubble, due to market capital limits or aversions of risk, the market expectations

become negative. Therefore, the asset price drops towards its fundamental value. This is

then captured by the drawdown process, {Zt}t≥0. For more details on the bubble definition

and its financial justifications, please refer to [107].

Proposition 6.2.2 (An Economic Bubble Model). Let {Xt}t≥0 in SDE (6.1) be the log-price

of {Pt}t≥0, i.e.,

Pt = eXt , P0 = eX0 .

Then under Definition 6.2.1, {Pt}t≥0 is a valid bubble process.

Proof. The crucial part of the proof is to find a proper stopping time τJ . Later in Proposition

6.3.6, we will show that {Xt}t≥0 is a recurrent process on R. Therefore, for any 0 < a < +∞,

define

τJ = inf {t ≥ 0 : Pt = a|P0 < a} ,

and τJ < +∞ a.s. By considering an explosion after τJ , the pre-drawdown process can be

given as

S̃t = Pt1{t≤τJ} +∞1{t>τJ}. (6.3)

And define

Zt = Pt1{t>τJ},

then by our construction, Pt embeds the decomposition as in (6.2).

The next step is to show those three conditions in Definition 6.2.1 are fulfilled. Indeed,
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according to (6.3), and combine our discussions in Section 6.3 that {Xt}t≥0 is continuous and

does not explode, we immediately see condition 1 is satisfied. Also from (6.3), since
{
S̃t

}
t≥0

is an explosive process, so the equivalent measure under the Girsanov theorem does not exist.

Hence, condition 2 is satisfied. In the end, consider the SDE of Pt, that

dPt = Pt

[
ε

(
1

P 2α
t

− c+
1

2ε

)
dt+ dWt

]
,

the Radon-Nikodym derivative is given by

dQ
dP

∣∣∣∣
Ft

= exp

{
−
∫ t

0
ε

(
1

P 2α
s

− c+
1

2ε

)
dWs −

1

2

∫ t

0
ε2
(

1

P 2α
s

− c+
1

2ε

)2

ds

}
.

Under mild conditions (e.g. the Novikov’s condition for −ε
(

1
P 2α
t
− c+ 1

2ε

)
), the martingale-

measure exists for {Pt}t≥0. This proves condition 3, and we therefore conclude that {Pt}t≥0

is a well-defined bubble process.

Based on Definition 6.2.1 and Proposition 6.2.2, we define the burst time of an economic

bubble via the first passage time:

Definition 6.2.3 (Burst Time and Imminent Risk). Let {Pt}t≥0 be a bubble process. For a

fixed observation time t0 ≥ 0, consider a real parameter 0 ≤ b ≤ 1. Define

τ(t0, b) = inf

{
t ≥ t0 : Pt ≤ (1− b) max

0≤s≤t0
Ps

}
.

If τ(t0, b) < +∞ a.s., then we say τ(t0, b) is the burst time of an economic bubble at the level

of b%-drop. Moreover, for T > t0, we refer to the probability

P (τ(t0, b) ≤ T )

as the imminent risk of the burst.

Remark. In the definition above, the burst time is associated with the percentage drop of

the asset price from its peak. For example, in our later numerical exercises, we find that

when the bubbles began to burst in the NASDAQ and China Shanghai Stock indices, within

a month, they suffered more than 30% drops from their historical peaks.
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Further Discussion

To illustrate our new process and its connection with a financial bubble, we plot the simulated

asset price in Figure 6.2, together with the drift function explanation in Figure 6.1.

Figure 6.1: Function plots of e−2αXt with
α = 0.1, 0.5, 1, 2. Green zone: positive drift;
red zone: negative drift

Figure 6.2: Sample path of eXt in 1 year
time. Parameters are chosen as α = 2,
ε = 0.1, c = 0.5, X0 = 0 and dt = 1

260

[Skewed Drift Function] As the most important parameter in our model, α controls

the skewness (speed, curvature, and higher order information) of the drift term. From Figure

6.1, we observe that small α produces mildly linear decays in the drift, and this extends the

range of the process where positive return is maintained; on the other hand, large α generates

evident exponential decays, in this case, the drift sign is sensitive to the values of Xt, and

the range of positive drift is compressed.

[Three Regimes] We plot the simulated sample path of Pt = eXt in Figure 6.2, with α =

2 and which corresponds to the red curve in Figure 6.1. From SDE (6.1), we can roughly split

the sample path of Pt into three regimes: I) whenXt is negative or near 0, the diffusion process

embeds a strongly positive trend; II) when the log-price oscillates around its equilibrium

level, i.e. Xt ≈ XR, the price has an unstable trend (could be positive or negative), and it is

dominated by the Brownian motion; III) when Xt >> XR, the process is forced to drop back

due to the strongly negative trend. Those three regimes are correspondingly described by the

areas below the dash line of Lower Uncertainty Threshold, between the Lower Uncertainty

Threshold and the Upper Uncertainty Threshold, and above the Upper Uncertainty Threshold,

respectively.

[Asymmetricity and Pro-cyclicality] The lower and upper uncertainty thresholds are
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chosen such that the bubble Pt has a +30% and a −30% log-returns (drift value of dXt),

respectively. From the relative positions between those two thresholds and the equilibrium

level (the grey line between the red and green zones), we find that given the same amount

of return changes, the distance (on the y-axis) of the price drop is much smaller than that

of the price increase. This asymmetric feature is indeed a reflection of the skewness in the

exponential drift function (see Figure 6.1). From the agent behaviour point of view, during

the boom stage of a bubble, investors are confident in a persistent increase of the asset price.

As such, a slight drop in the asset price will be regarded as a timing of investment, and

the investor would have a higher expectation of returns than which are embedded in the

pre-drop price. Moreover, different to a rational market2, within a euphoria, the market

may not immediately react to the deviations in asset prices. Therefore, only after a period,

where the market price attains a higher position3, the asset then accumulates a significant

amount of negatively expected returns. This mechanism above is similar to the concept of

pro-cyclicality, and which is often observed in a bubble cycle (cf. [17, 120]). Mathematically,

such an asymmetric behaviour essentially differentiates our new model from the OU type

mean-reversion processes.

[Realisation under Definition 6.2.1] Additionally, we also accommodate our model

to the settings in Definition 6.2.1. In the example of Figure 6.2, we choose τJ to be the FPT

to a level P ∗t , where the log-return at P ∗t is −30%. The pre-drawdown process
{
S̃t

}
t≥0

and

the drawdown process {Zt}t≥0 can be identified from the graph accordingly.

[Parameter Dependency] In the end, from the calibration point of view, α mitigates

the dependence structure among the instantaneous return, the (log-) price, the equilibrium

level, and the mean-reversion rate. Consider the drift function where α is suppressed:

µ(Xt) := ε
(
e−Xt − c

)
.

In this model, once c is determined, the equilibrium level Xt = − ln(c) becomes a fixed

number. If a large rate of c is calibrated, then we simultaneously have a small equilibrium

level − ln(c). Therefore when Xt is small, where e−Xt − c is close to 0, in order to fit a large

2Hereby we assume, investors are exposed to complete information and market is efficient in correcting
prices. More precisely, we assume that the magnitude of returns is purely determined by the relative positions
between the current price and the fundamental value (equilibrium level).

3The ‘higher position’ is in comparison with the position below the equilibrium level and where the asset
embeds the same magnitude but positive returns.
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instantaneous return4, the mean-reversion rate ε should be adjusted highly as well. But we

know that usually a bubble spends years to finish its whole cycle; so large reversion rate is

not desired for a bubble model. This simple analysis shows that the α-suppressed model

is not capable for calibrating a bubble dynamic. As a complement, extra functional term is

required (cf. [73]). However, without introducing extra functions, our three-parameter model

extends the freedom in model calibration.

6.3 Theoretical Result

6.3.1 Existence, Uniqueness and the Strong Markov Property

Proposition 6.3.1 (Solution of SDE (6.1)). There exists a unique strong solution {Xt}t≥0

to SDE (6.1) and which has the following explicit form

Xt = x+Wt − cεt+
1

2α
ln

(
1 + 2εαe−2αx

∫ t

0
e−2α(Ws−cεs)ds

)
; (6.4)

moreover, {Xt}t≥0 is a strong Markov process.

Proof. We consider the exponential transform of Xt. Define

Yt = e2αXt with Y0 = e2αx.

By the Itô’s lemma, we show Yt satisfies the global Lipschitz continuity and the linear growth

conditions:

dYt = 2α [ε+ (α− cε)Yt] dt+ 2αYtdWt. (6.5)

According to Theorem 2.1.2, we conclude that {Yt}t≥0 is the unique strong solution to SDE

(6.5). Therefore, {Xt}t≥0 is the unique strong solution to SDE (6.1). The strong Markov

property is then proved by Theorem 2.1.3. On the other hand, refer to [121, Section 4.4],

{Yt}t≥0 has the following explicit form:

Yt = e2α(Wt−cεt)
[
Y0 + 2αε

∫ t

0
e−2α(Ws−cεs)ds

]
.

4Otherwise the process will take a long period to visit regime III), where e−Xt ≈ 0 and −c becomes
dominating.
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Replace Yt by e2αXt , and solve Xt, we get the explicit solution of {Xt}t≥0. This concludes

the proof.

Remark. The proof depicts {Xt}t≥0 from another aspect. SDE (6.5) shows {Yt}t≥0 is a

geometric Brownian motion with a mean-reversion drift. Refer to [117, Equation (9)], this is

indeed a Shiryaev process. Therefore, {Xt}t≥0 is the logarithm of the Shiryaev process. We

denote it by the exponential-Shiryaev process.

From (6.4) we clearly see {Xt}t≥0 is a semimartingale, where the bounded variation (BV)

part consists of a strictly decreasing function and a strictly increasing function. Depending

on the Brownian motion path in the exponential integral, for different t > 0, the BV part

could be either positive or negative. However, if c = 0, then only the increasing function is

retained. This indicates that under special circumstance, {Xt}t≥0 could be a submartingale.

Corollary 6.3.2 (Submartingale). If c = 0, then {Xt}t≥0 is a strict submartingale.

Proof. When c is suppressed, the solution of {Xt}t≥0 becomes

Xt = x+Wt +
1

2α
ln

(
1 + 2εαe−2αx

∫ t

0
e−2αWsds

)
. (6.6)

The adaptability is clear from definition. We consider the L1-integrability of Xt. Note that,

by applying the Jensen’s inequality for a concave function ln(·), we have

E
[
ln

(
1 + 2εαe−2αx

∫ t

0
e−2αWsds

)]
≤ ln

(
E
[
1 + 2εαe−2αx

∫ t

0
e−2αWsds

])
. (6.7)

Change the order of integral and expectation,

E
[∫ t

0
e−2αWsds

]
=

1

2α2

(
e2α2t − 1

)
. (6.8)

On the other hand, when α, ε ∈ R+,

1 + 2εαe−2αx

∫ t

0
e−2αWsds ≥ 1, ∀t ≥ 0. (6.9)

Therefore

∣∣∣∣ln(1 + 2εαe−2αx

∫ t

0
e−2αWsds

)∣∣∣∣ = ln

(
1 + 2εαe−2αx

∫ t

0
e−2αWsds

)
. (6.10)
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Combine (6.8), (6.10), and (6.7), we further have

1

2α
E
[∣∣∣∣ln(1 + 2εαe−2αx

∫ t

0
e−2αWsds

)∣∣∣∣] ≤ 1

2α
ln
(

1 +
ε

α
e−2αx

(
e2α2t − 1

))
. (6.11)

Note that,

E [|Wt|] =

√
2t

π
. (6.12)

According to the triangle inequality, combine (6.11) and (6.12), we then show the L1-

integrability of Xt:

E [|Xt|] ≤ x+

√
2t

π
+

1

2α
ln
(

1 +
ε

α
e−2αx

(
e2α2t − 1

))
< +∞.

In the end, the non-decreasing conditional expectation of E
[
Xt

∣∣∣∣Fs], for 0 ≤ s < t < +∞, is

given by again using (6.9), that

ln

(
1 + 2εαe−2αx

∫ t

0
e−2αWsds

)
> 0.

This concludes our proof.

6.3.2 Probability Distribution of {Xt}t≥0

In this subsection, we consider the distributions of {Xt}t≥0 at fixed and infinite times, respec-

tively. From Proposition 6.3.1, we find that the solution of Xt involves a Brownian motion

and its exponential integral. Similar problem has been studied by A. Dassios and J. Nagarad-

jasarma [33] for the square-root process. G. Peskir [100] deduced the fixed time distribution

of the Shiryaev process in a special case; but for general cases, only the LT has been given.

Here we refer to the results about the Brownian motion and its exponential integral by H.

Matsumoto and M. Yor [86, 131]. And we first show the following proposition.

Proposition 6.3.3 (Transition Density at Fixed Time). For fixed t > 0 and u ∈ R, the

probability density of Xt is given by

Px (Xt ∈ du) = αdu ·
[∫ ∞

0
ζ(u;

cε

α
, y)θ

(
ζ(u; 1, y), α2t

)
e−

c2ε2t+1/y+ζ(u;2,y)
2 dy

]
, (6.13)
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where

θ(r, s) =
r√

2π3s
e
π2

2s

∫ ∞
0

e−
v2

2s
−r cosh(v) sinh(v) sin

(πv
s

)
dv, (6.14)

and

ζ(u;µ, y) =

(
1 + 2 εαe

−2αxy
)µ

2 e−µα(u−x)

y
. (6.15)

Proof. Let s = α2t, then for another standard Brownian motion Bs, with probability 1 the

following equation holds true

Bs +
cε

α
s = −α (Wt − cεt) .

Denote by

µ :=
cε

α
, B(µ)

s := Bs + µs, A(µ)
s :=

∫ s

0
e2B

(µ)
v dv. (6.16)

Refer to [86, 131], we have

P
(
A(µ)
s ∈ dy,B(µ)

s ∈ dz
)

=
1

y
θ

(
ez

y
, s

)
exp

{
µz − µ2s

2
− 1 + e2z

2y

}
dydz, (6.17)

where θ(·, ·) is defined by (6.14).

Next, we reexpress Xt using B
(µ)
s and A

(µ)
s . Note that,

A(µ)
s =

∫ α2t

0
exp

{
−2α

(
W v

α2
− cε v

α2

)}
dv.

Let w = v
α2 , we further have

A(µ)
s = α2

∫ t

0
e−2α(Ww−cεw)dw. (6.18)

Rewrite {Xt}t≥0 in (6.6) using (6.16) and (6.18), we get

Xt = x− B
(µ)
s

α
+

1

2α
ln
(

1 + 2
ε

α
e−2αxA(µ)

s

)
. (6.19)

Now we consider the density function of Xt. For a fixed u ∈ R, (6.19) and Xt ≤ u together

yield

α(x− u) +
1

2
ln
(

1 + 2
ε

α
e−2αxA(µ)

s

)
≤ B(µ)

s .
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Denote by

g
(
u,A(µ)

s

)
:= α(x− u) +

1

2
ln
(

1 + 2
ε

α
e−2αxA(µ)

s

)
.

Then according to (6.17), we can write5

Px (Xt ≤ u) =

∫
y∈(0,∞)

∫
z≥g(u,y)

P
(
A(µ)
s ∈ dy,B(µ)

s ∈ dz
)
. (6.20)

Take the partial derivative on u, we further get

Px (Xt ∈ du) = −
∫
y∈(0,∞)

1

y
θ

(
eg(u,y)

y
, s

)
e
µg(u,y)−µ

2s
2
− 1+e2g(u,y)

2y dy · ∂ug(u, y)du (6.21)

= αdu ·
∫
y∈(0,∞)

1

y
θ

(
eg(u,y)

y
, s

)
e
µg(u,y)−µ

2s
2
− 1+e2g(u,y)

2y dy. (6.22)

Introduce the function ζ(u;µ, y) as in (6.15). We can show

ζ(u;µ, y) =
eµg(u,y)

y
.

Substitute the equation above into (6.22), and rearrange the terms, we get

1

y
θ

(
eg(u,y)

y
, s

)
e
µg(u,y)−µ

2s
2
− 1+e2g(u,y)

2y = ζ(u;µ, y)θ (ζ(u; 1, y), s) e−
µ2s
2
− 1/y+ζ(u;2,y)

2 .

In the end, the proof is concluded by substituting µ = cε
α and s = α2t into the equation

above.

Remark. The function θ(r, s) is closely related to the study of the Hartman-Watson distribu-

tion [54]. As it is noticed by H. Matsumoto, M. Yor [86], and many others [8, 61], θ(r, s) is

highly oscillating, especially for small s. Therefore it is not easy to calculate accurate values

of the density. Although, this is not the objective of the present chapter.

In practice, it is more meaningful to provide the probability distribution function instead

of the density function. This requires an extra integral on P(Xt ∈ du). Consider one integral

involved in θ(r, s), one integral in the density itself, and plus the one taken on the density

function; in total we need to calculate three integrals for the distribution function P(Xt ≤ du).

5Note that, the right-hand side of (6.20) depends on X0 = x, where x is implicitly embedded in the g(·, ·)
function.
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A direct finite-difference scheme would therefore have computational efficiency issue. Instead,

we consider calculating the probability via the Monte Carlo simulation.

Refer to (6.20) and (6.13), respectively, we have two choices in developing the simulation

algorithm. According to (6.20), we could follow the acceptance-rejection approach by consid-

ering the relative positions between z and g(u, y). But in this chapter, we follow (6.13) and

concentrate on the direct sampling scheme.

Proposition 6.3.4 (Probability Distribution at Fixed Time). For fixed t > 0 and z ∈ R,

define

m(z, y) := αζ(z;
cε

α
, y)θ̂

(
ζ(z; 1, y), α2t

)
exp

{
−c

2ε2t+ 1/y + ζ(z; 2, y)

2

}
, (6.23)

where

θ̂(r, s) :=
r

2s
e
π2

2s E
[
V e−r cosh(V ) sinh(V ) sinc

(
V

s

)]
with sinc(w) := sin(wπ)

wπ and V ∼ N(0,
√
s) (normal distribution with mean 0 and standard

deviation
√
s). Then for u ∈ R and for two i.i.d. uniformly distributed random variables U

and Y , the probability distribution of Xt is given by

Px (Xt ≤ u) = E

[
m
(
− 1
U + u+ 1, 1

Y − 1
)

U2Y 2

]
.

Proof. First we show the identity between θ̂(r, s) and θ(r, s). Recall in Proposition 6.3.3 that

θ(r, s) =
r√

2π3s
e
π2

2s

∫ ∞
0

e−
v2

2s
−r cosh(v) sinh(v) sin

(πv
s

)
dv.

Reorganise the function, we get

θ(r, s) =
r

s
e
π2

2s

∫ ∞
0

ve−r cosh(v) sinh(v) sinc
(v
s

)
· 1√

2πs
e−

v2

2s dv

=
r

2s
e
π2

2s E
[
V e−r cosh(V ) sinh(V ) sinc

(
V

s

)]
=: θ̂(r, s).
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The second equation in above holds true is due to the fact that,

(v sinh(v)) · e−r cosh(v) · sinc
(v
s

)
is an even function.

Now let m(z, y) be defined in (6.23). Based on the identity between θ(r, s) and θ̂(r, s),

and refer to Proposition 6.3.3, we can write the probability distribution of Xt as

Px (Xt ≤ u) =

∫ u

−∞

∫ ∞
0

m(z, y)dydz. (6.24)

Consider the following changes of variables,

U = − 1

z − u− 1
, Y =

1

1 + y
.

Solve z, y in terms of U, Y , and substitute them into (6.24), we get

Px (Xt ≤ u) = −
∫ 1

0

∫ 0

1
m

(
− 1

U
+ u+ 1,

1

Y
− 1

)
dUdY

U2Y 2
.

In the end, by noticing the fact that the uniform distribution has constant probability density

(dU = dY = 1), we then conclude the proof.

Remark. The main consideration of involving sinc(·) is to reduce the oscillation effects from

the function sin(·). From the numerical point of view, the sinc-function, though cannot totally

solve the oscillating issue, could mitigate the chaos to some extent.

Proposition 6.3.5 (Stationary Distribution). Let t ↑ +∞, the stationary distribution of

X∞ := limt↑+∞Xt is given by

P(X∞ ∈ dx) =
2α
(
ν
c

)ν
Γ (ν)

· exp
{
−ν
c
e−2αx − 2ανx

}
dx,

where ν := εc
α and Γ(·) is the Gamma function.

Proof. Consider the Fokker-Planck equation at t = +∞ (see (2.10)). From (6.1), the station-

ary density p(x) solves

1

2
p
′′
(x)− ε(e−2αx − c)p′(x) + 2αεe−2αxp(x) = 0. (6.25)
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Define

w(x) := exp
{ν
c
e−2αx + 2ναx

}
, (6.26)

where ν := εc
α . Then ODE (6.25) has the following general solution:

p(x) =
C1

∫ x
−∞w(y)dy + C2

w(x)
. (6.27)

When y ↓ −∞, note that w(y) ↑ +∞, and it is dominated by a double-exponential function.

Since w(y) ≥ 0, so for ∀y ∈ R and x 6= −∞,

∫ x

−∞
w(y)dy = +∞.

Therefore, in order to get a valid density function, we set C1 = 0. On the other hand, the

full integrability condition yields

C2 =

[∫
R
w−1(x)dx

]−1

. (6.28)

Consider the substitution that

u :=
ν

c
e−2αx,

then combine (6.26), (6.28) can be rewritten as

C2 =

[∫ ∞
0

exp
{
−u+ ν ln

(
cu
ν

)}
2αu

du

]−1

=
2α
(
ν
c

)ν∫∞
0 e−uuν−1du

.

Note that, by our definition, ε, c, and α are all bigger than 0. Therefore ν > 0, and the

denominator of C2 is indeed Γ(ν). This concludes our proof.

Remark. The stationary distribution of X∞ is right-skewed and closely related to the Gamma

distribution family. In fact, consider the exponential transform

Zt := e−2αXt ,
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it is easy to show that

Z∞ ∼ Γ
(
ν,
ν

c

)
,

where Γ(a, b) is the Gamma distribution with density function

p(z) =
ba

Γ(a)
za−1e−bz.

Therefore, the Shiryaev process, as mentioned in the remark under Proposition 6.3.1, that

Yt = e2αXt =
1

Zt
,

has the corresponding inverse Gamma distribution IG
(
ν, νc

)
. This coincides with the analysis

from [100].

6.3.3 Finiteness of the First Passage Time

In the later section we will deduce the FPTD of {Xt}t≥0. Before conducting the calculations,

we first show the existence of the FPT for any constant level a ∈ R.

Proposition 6.3.6. (Recurrence) {Xt}t≥0 is a recurrent process on R.

Proof. Let

Zt := e−2αXt , Z0 = e−2αx. (6.29)

Then,

dZt = 2αZt(−εZt + cε+ α)dt− 2αZtdWt. (6.30)

According to Proposition 6.3.1, we know {Zt}t≥0 is a diffusion process with the unique strong

solution; moreover the strong Markov property holds as well6. Therefore, if we can show

{Zt}t≥0 satisfies the non-degeneracy and the local-integrability conditions in (2.12) and (2.13),

respectively, further if we show that the conditions for the scale function in Theorem 2.1.4

hold, then we prove {Zt}t≥0 is recurrent. Correspondingly, the recurrence of {Xt}t≥0 is given

by the 1-1 mapping in (6.29).

From our construction, we see {Zt}t≥0 only takes values on the positive half-plane. Be-

6In fact one can even find the explicit solution of Zt by referring to the stochastic Verhulst equation in
[121].
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sides, by checking (6.30), we find Zt = 0 is an absorbing bound. Consider

I = (0,+∞)

to be the domain of {Zt}t≥0. Refer to SDE (6.30), for any z ∈ I, the non-degeneracy condition

for {Zt}t≥0

4α2z2 > 0

holds. In addition, consider δ > 0 and which is small enough, such that z − δ ∈ I. Then the

local-integrability condition is satisfied by demonstrating

∫ z+δ

z−δ

1 + 2αζ |(−εζ + cε+ α)|
4α2ζ2

dζ ≤ δ

2α2 (z2 − δ2)
+
ε

α
δ +

cε+ α

2α
ln

(
z + δ

z − δ

)
< +∞.

Therefore, for any fixed parameter A ∈ I, refer to SDE (6.30) and Equation (2.14), the scale

function of {Zt}t≥0,

s(z) :=

∫ z

A
exp

{
−
∫ ξ

A

(−εζ + cε+ α)

αζ
dζ

}
dξ, z ∈ I, (6.31)

is well-defined.

We now check the limit conditions in Theorem 2.1.4. After standard calculations, (6.31)

further yields

s(z) = A1+ cε
α e−

Aε
α

∫ z

A

e
ε
α
ξ

ξ1+ cε
α

dξ. (6.32)

Substitute the boundary values into (6.32), we have

s(0+) = −A1+ cε
α e−

Aε
α

∫ A

0+

e
ε
α
ξ

ξ1+ cε
α

dξ = −∞,

and

s(+∞) = A1+ cε
α e−

Aε
α

∫ +∞

A

e
ε
α
ξ

ξ1+ cε
α

dξ = +∞.

The rest of the proof is then concluded by Theorem 2.1.4.

Corollary 6.3.7 (Finiteness of the FPT). For any a ∈ R and X0 = x ∈ R, the first hitting

time of {Xt}t≥0 from x to a is finite a.s.

Proof. This directly follows from Proposition 6.3.6.
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6.4 First Passage Time of {Xt}t≥0

Here we prove the main results of this chapter. Our previous analysis in Section 6.3 shows

that {Xt}t≥0 is a well-defined diffusion process. More precisely, various technical assumptions

in Section 2.2 are satisfied. Therefore, we can solve the FPTD via the BVP in Section 2.2

and our perturbation framework in Chapter 3.

6.4.1 Solution of the Initial Dirichlet Problem

Let f ∈ C2, the infinitesimal generator of {Xt}t≥0 is given by7

Af(x) =
1

2
f
′′
(x) + ε(e−2αx − c)f ′(x), x ∈ R. (6.33)

In addition, consider a constant barrier a ∈ R, we further restrict D = (a,+∞) or

D = (−∞, a), depending on whether x > a or x < a, respectively. Then we define the single

side FPT (τ) of {Xt}t≥0 through Equation (3.3). The LT of τ , denoted by f(x, β), is given

by solving the initial BVP in Equations (3.5) and (3.6). Let

m :=

√
c2ε2+2β−εc

2α

n :=

√
c2ε2+2β+α

α

ψ := εe−2αx

α

λ := x(εc−
√
c2ε2 + 2β)

. (6.34)

Then refer to [2], the general solution of (3.5) is

f(x, β) = C1e
λM (m,n, ψ) + C2e

λU (m,n, ψ) , (6.35)

where M(m,n, ψ) and U(m,n, ψ) are solutions to the following Kummer’s equation [28]

ψu
′′
(ψ) + (n− ψ)u

′
(ψ) = mu(ψ).

Now we need to determine the constants C1 and C2. Start with the hitting from above

7The domain in below is R is due to the fact from Proposition 6.3.6 that {Xt}t≥0 is recurrent on R.
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case, i.e. x > a. Substitute x = +∞ into (6.34), we get

ψ = 0 and Real(λ) = −∞.

Refer to [81, Section 13.2 (iii)], we find that depending on the choices of β, the limit of

U (m,n, ψ) at ψ = 0+ has various versions. In order to guarantee the uniqueness of the

solution8, we set C2 = 0. And for the limit of M (m,n, ψ), [81] gives

M (m,n, ψ) = 1 +O(ψ), ψ ↓ 0.

So C1 is retained, and (6.35) becomes

f(x, β) = C1e
λM (m,n, ψ) . (6.36)

Further let 
ψ̂ := εe−2αa

α

λ̂ := a(εc−
√
c2ε2 + 2β)

. (6.37)

Then substitute (6.36) into f(a, β) = 1, we solve the LT of τ :

f(x, β) =
eλM (m,n, ψ)

eλ̂M
(
m,n, ψ̂

) , x > a. (6.38)

Next, consider hitting from below with x < a. In this case, the boundary {−∞} should be

taken extra cares. From SDE (6.1), we can see Xt = −∞ generates an infinite instantaneous

drift. In fact, according to [100], {−∞} is an entry but not exit boundary. Further refer to

[62, page 108], f(−∞, β) exists but is not necessarily to be 0. Let x = −∞, from (6.34), we

find

ψ = +∞, and, Real(λ) = +∞.

Refer to [81], the asymptotics of U (m,n, ψ) and M (m,n, ψ), for large ψ, are given by

U (m,n, ψ) ∼ ψ−m, ψ ↑ +∞, (6.39)

8The parameter β is involved in the LT. We want a function of solution f(x) that is unique in functional
forms to all β ∈ C+.
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and

M (m,n, ψ) ∼ eψψm−n

Γ(m)
, ψ ↑ +∞, (6.40)

respectively. An immediate observation from (6.40) is that,

lim
x↓−∞

eλM (m,n, ψ) = +∞.

Therefore, we set C1 = 0. And for the U -function part, substitute (6.39) into the limit of

(6.35), we find

lim
x↓−∞

eλU (m,n, ψ) = lim
x↓−∞

eλψ−m

=
( ε
α

)−m
lim
x↓−∞

exp

{
x(εc−

√
c2ε2 + 2β) + 2αx(

√
c2ε2 + 2β − εc

2α
)

}
=
( ε
α

)−m
.

So in the hitting from below case, C2 is retained. In the end, use again notations in (6.37),

and by solving f(a, β) = 1, we have

f(x, β) =
eλU(m,n, φ)

eλ̂U(m,n, φ̂)
, x < a. (6.41)

The boundary condition at x = −∞ is correspondingly given by

f(−∞, β) =
(ε/α)−m

eλ̂U(m,n, φ̂)
. (6.42)

Equation (6.38) shows the LT for the downward FPT. Due to the special function, it

is difficult to find the explicit inverse transform. In the following subsection, by employing

the perturbation technique, we provide a closed-form asymptotic for the downward FPTD.

And based on Definition 6.2.3, the asymptotic density function can be used in evaluating the

imminent risk of a bubble burst.

6.4.2 Perturbed Downward FPTD

As we have seen in previous chapters, the LTs of τ for {Xt}t≥0 are given again by the ratios

of special functions. We may infer that the direct inverse is not easy to be found. Numerical

107



methods in Section 2.3 therefore can be applied. Besides, in this subsection, we follow our

perturbation framework and give the first order asymptotic FPTD of {Xt}t≥0.

The h-function of the bubble process is specified by

h(Xt) = e−2αXt − c, Xt ∈ D. (6.43)

In the following content, we solve the recursive system up to i = 1 for the downward FPT.

W.l.o.g., we further let a = 0, and consider the τ defined by (3.17). Follow Lemma 3.4.2,

set A1 = 0, A2 = +∞, C1 = 0, and C2 = 0, we find

f1(x, β) = f0(x, β)

(
γ
(
e−2αx − 1

)
2α (γ + α)

+ cx

)
, (6.44)

where γ =
√

2β and f0(x, β) is given by (3.18). Based on (6.44), we have the following

proposition.

Proposition 6.4.1 (First Order Perturbed FPTD of the Bubble Process). The first order

perturbed downward FPTD of {Xt}t≥0 is given by

p(1)
τ (t) =

(
1 + ε

(
cx+

(
1− e−2αx

)
(αt− x)

2αx

))
p(0)
τ (t)

− εα
4

(
1− e−2αx

)
eαx(

αt
2x

+1)Erfc

(
x√
2t

+ α

√
t

2

)
, (6.45)

where p
(0)
τ (t) is the downward FPTD for Brownian motion with a = 0 (Equation (2.29)), and

Erfc(·) is the complementary error function.

Proof. Combine (3.9), (3.18), and (6.44), the first order perturbed LT of τ is given by

f (1)(x, β) = f0(x, β) (1 + εcx) + εf0(x, β)
γ
(
e−2αx − 1

)
2α(α+ γ)

. (6.46)

According to Example 2.2.2, the inverse of f0(x, β) is given by p
(0)
τ (t).

Now we consider the ILT of the second term in (6.46). Define

l̃1(β) :=

√
βe−

√
β

αx+
√
β
. (6.47)
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Then the second term can be rewritten as

εf0(x, β)
γ
(
e−2αx − 1

)
2α(α+ γ)

= ε
e−2αx − 1

2α
· l̃1(2x2β). (6.48)

Refer to [9], the inverse of (6.47) is given by

L−1
{
l̃1(β)

}
(t) = α2x2eαx(αxt+1)Erfc

(
1

2
√
t

+ αx
√
t

)
− 2αxt− 1

2
√
π

t−
3
2 e−

1
4t . (6.49)

Also consider the fact [95] that, for a constant b,

L−1

{
1

b
l̃1

(
β

b

)}
(t) = L−1

{
l̃1(β)

}
(bt).

So let b = 1
2x2

, and by the linearity of ILT, we further have

L−1
{
l̃1(2x2β)

}
(t) =

1

2x2
L−1

{
l̃1(β)

}( t

2x2

)
. (6.50)

Summarise (6.48), (6.49), (6.50), and substitute the results into L−1
{
f (1)(x, β)

}
(t), where

f (1)(x, β) is given in (6.46), we then conclude the proof.

Remark. As an approximation, the first order perturbation provides a continuous function,

but which is not necessarily a valid probability density function. In fact, one can check,

∫ +∞

0
p(1)
τ (t)dt = lim

β→0+
f (1)(x, β) = 1 + εcx.

In the case c > 0, the first order perturbation provides an extra tiny probability of εcx. We

will discuss the accuracy issue in a later proposition.

Proposition 6.4.2 (Tail Asymptotics). For i = 1, the tail asymptotics of p
(1)
τ are given by

p(1)
τ ∼

(
1 + ε

(
cx− 1− e−2αx

2α

))
p(0)
τ (t), t ↓ 0, (Left Tail)

and

p(1)
τ ∼

(
1 + ε

(
cx+

(1− αx)
(
1− e−2αx

)
2α2x

))
p(0)
τ (t), t ↑ +∞. (Right Tail)
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Proof. The left tail asymptotic is given, by considering the fact [25] that

Erfc

(
x√
2t

+ α

√
t

2

)
∼ exp

−
(

x√
2t

+ α

√
t

2

)2
 , t ↓ 0. (6.51)

Now we consider the right tail. Note that, if we repeat using (6.51), the second term

of p
(1)
τ will remain as a constant while the first term vanishes. This leads to a constant tail

asymptotic for t ↑ +∞. But p
(1)
τ ↓ 0 indeed. Refer to another fact [96], that

Erfc(y) ∼ e−y
2

y
√
π

(
1− 1

2y2

)
, y ↑ +∞. (6.52)

And rewrite the first term of p
(1)
τ as(

1 + ε

(
cx+

(
1− e−2αx

)
(αt− x)

2αx

))
p(0)
τ (t)

=

(
1 + ε

(
cx−

(
1− e−2αx

)
2α

))
p(0)
τ (t) + ε

(
1− e−2αx

)
t

2x
p(0)
τ (t). (6.53)

Then substitute (6.52) and (6.53) into (6.45), we find as t ↑ +∞,

p(1)
τ (t) ∼

(
1 + ε

(
cx−

(
1− e−2αx

)
2α

))
p(0)
τ (t) + ε

(
1− e−2αx

)
e−

x2

2t

2
√

2πt

− ε
α
(
1− e−2αx

)
4

·
√

2e−
x2

2t

√
πtα

+ ε
α
(
1− e−2αx

)
4

· 2
√

2e−
x2

2t

2
√
πα3t

3
2

=

(
1 + ε

(
cx−

(
1− e−2αx

)
2α

))
p(0)
τ (t) + 0 + ε

1− e−2αx

2xα2
p(0)
τ (t).

This completes our proof.

Remark. Proposition 6.4.2 indicates that the asymptotic FPTD of {Xt}t≥0 has the same

right tail as the one for the Brownian motion. Since we know the Brownian motion is a

null-recurrent Markov process, therefore we may infer Ex [τ ] = +∞. Indeed, according to the

first moment rule, and by (6.46), we can show

Ex [τ ] ≈ −∂βf (1)(x, 0+) = +∞.

110



Proposition 6.4.3 (Error Estimation and Convergence). The η-function for the perturbation

error of p
(1)
τ (t) is given by

η(x, t) = −α
2 cosh(αx)

2
M1(x, t) +

1− e−2αx

2
√

2πα
M2(x, t) +

e−2αx

√
2π

M3(x, t) + c

(
2− x2

t

)
p(0)
τ (t),

(6.54)

where 
M1(x, t) = Erfc

(
x√
2t

+ α
√

t
2

)
e
α2

2
t

M2(x, t) = e−
x2

2t

[
α2t2 − (αx+ 1)t+ x2

]
t−

5
2

M3(x, t) = e−
x2

2t (αt− x) t−
3
2

. (6.55)

Moreover, the error estimation and the convergence results in Proposition 3.3.1 hold true for

the perturbed FPTD of the bubble process.

Proof. Let η(x, t) = L−1 {∂xf1(x, β)} (t) be defined as in (3.10). The partial derivative of f1

on x is given by

∂xf1(x, β) =− γe−γx
(
γ
(
e−2αx − 1

)
2α (γ + α)

+ cx

)
+ e−γx

(
−γe

−2αx

γ + α
+ c

)
=ce−γx − cxγe−γx − e−2αxγe

−γx

γ + α
−
(
e−2αx − 1

) γ2e−γx

2α (γ + α)
.

The inverse of the first term is cp
(0)
τ (t); the second term is given by (5.29); the ILT of the third

term can be found in the proof of Proposition 6.4.1; and the last term is given by another

fact in [9], that

L−1

{
γ2e−γx

2α (γ + α)

}
(t) =L−1

{
βe−

√
β
√

2x

√
2α
(√
β + α/

√
2
)} (t)

=
t−

5
2 (x2 − t− xαt+ α2t2)e−

x2

2t

2
√

2πα
− α2

4
exαe

α2

2
tErfc

(
x√
2t

+ α

√
t

2

)
.

Then consider the substitutions in (6.55), and after standard calculations, one can get (6.54).

Now we prove that the conclusion from Proposition 3.3.1 is valid for our bubble process.

Note that, apart from the first term of the η-function, −α2 cosh(αx)
2 M1(x, t), the boundedness

of the rest terms can be shown by repeating the proofs in Lemma 4.2.1 and Proposition 4.2.2.

Let

z = αx+
α2t

2
.
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Then for the first term, we have

∣∣∣∣−α2 cosh(αx)

2
M1(x, t)

∣∣∣∣ =
α2(e−αx + eαx)

4
Erfc

(
x√
2t

+ α

√
t

2

)
e
α2

2
t

=
α2(e−2αx+z + ez)

4
Erfc

(√
z +

x2

2t

)
. (6.56)

Note that, both e−2αx and Erfc

(√
z + x2

2t

)
are positive and are decreasing functions of x.

Therefore, for x > 0 and t > 0, from (6.56), we further have

∣∣∣∣−α2 cosh(αx)

2
M1(x, t)

∣∣∣∣ ≤ α2ez

2
Erfc

(√
z
)
.

In the end, let z ↑ +∞, by considering the asymptotic in (6.51), we show the first term in

(6.54) is bounded by α2

2 . And this boundedness is uniform on t and x. Therefore, combine

our previous discussions on the rest three terms, we show that the η-function satisfies the

conditions in Proposition 3.3.1, and we conclude the proof by here.

6.5 Model Implementation

In this section, we consider the SDE with a constant volatility σ > 0:

dXt = ε(e−2αXt − c)dt+ σdWt, X0 = x ∈ R. (6.57)

Similar as in Section 4.3.1, by taking the affine transformation into account, one can have the

corresponding FPTD for {Xt}t≥0. More precisely, denote the perturbed FPTD in Section

6.4.2 by

p(1)
τ (t|ε, α, c, x).

Then for a hitting level a 6= 0 and a < x, define

τ∗ := inf {t > 0 : Xt = a|X0 = x} , (6.58)

the first order perturbed FPTD of τ∗ is given by (please see Appendix 6.B).

p
(1)
τ∗ (t) = p(1)

τ

(
t

∣∣∣∣ εσ e−2αa, ασ, ce2αa,
x− a
σ

)
. (6.59)
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6.5.1 Model Calibration

In this subsection, we provide a calibration scheme for the extended SDE (6.57). Recall the

notations in Section 2.4, we denote the observed asset prices {Pt}t=0,1,...,N by

Pt = P0e
X̂t , t = 0, 1, ..., N. (6.60)

Therefore,
{
X̂t

}
t=0,...,N

represents the normalised log-price with X̂0 = 0. Let {r̂t}t=1,...,N be

the log-return of {Pt}t=0,1,...,N . By definition,

r̂t = X̂t − X̂t−1, t = 1, ..., N. (6.61)

We consider the calibration based on {r̂t}t=1,...,N . Mathematically, there are 4 parameters

to be decided, so at least 4 different statistical quantities should be provided. A natural

candidate is the first four moments of {r̂t}t=1,...,N . However, on the one hand, as we have

shown in Section 6.2, the bubble dynamic in different regimes could have different statistical

behaviours; so global moments on the whole time-series may not be representative. On

the other hand, from Proposition 6.3.3, {Xt}t≥0 has a very complicated probability density.

Follow the proposition, even for the first moment, we cannot easily get the explicit expression.

Therefore, instead of using the moment calibration, we provide an alternative scheme by

splitting the time-series according to different bubble regimes.

Recall those three regimes of {Xt}t≥0 as we have discussed in Section 6.2 (Figure 6.2),

and by which, we make the following assumptions:

� Regime I) During this period, we assume Xt ≈ 0. SDE (6.57) then can be simplified as

dXt ≈ ε(1− c)dt+ σdWt. (6.62)

� Regime II) In this stage, the dynamic follows SDE (6.57) but will visit the equilibrium

level. Denote the level by XR, we have

e−2αXR
= c. (6.63)

� Regime III) Within this regime, Xt hits the record-high level. Assume e−2αXt ≈ 0, then
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SDE (6.57) degenerates to

dXt ≈ −cεdt+ σdWt. (6.64)

Moreover, we assume that each regime could be recognised from the data. Let {0, 1, ..., t1},

{t1, ..., t2}, {t2, ..., t3} be the time periods for regimes I, II, and III. Denote the normalised

log-price and log-return in each regime, by

X̂I :=
{
X̂t

}
t=0,...,t1

, X̂II :=
{
X̂t

}
t=t1,...,t2

, X̂III :=
{
X̂t

}
t=t2,...,t3

, and,

r̂I := {r̂t}t=1,...,t1
, r̂II := {r̂t}t=t1+1,...,t2

, r̂III := {r̂t}t=t2+1,...,t3
,

respectively. Also we assume that the equilibrium level is observable, and which is given by

X̂R.

Now we consider the model calibration. Start with ε̂ and ĉ. The general idea is to take

log-returns from regimes I and III in to account. Let

r̄I := Mean
(
r̂I
)
, and, r̄III := Mean

(
r̂III

)
be annualised sample means of returns. Then by matching r̄I and r̄III with their theoretical

expectations from (6.62) and (6.64), we have


ε̂(1− ĉ) = r̄I

−ε̂ĉ = r̄III
.

Solve ε̂ and ĉ, we get 
ε̂ = r̄I − r̄III

ĉ = − r̄III

r̄I−r̄III

. (6.65)

Remark. Note that, according to our assumptions, regime I should provide positive trend

(r̄I ≥ 0) while regime III generates negative moves (r̄III ≤ 0). Therefore ε̂ and ĉ are

guaranteed to be positive. Moreover, since

0 ≤ −r̄III ≤ r̄I − r̄III ,
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so 0 ≤ ĉ ≤ 1.

Remark. In order to have a more effective calibration, we can (*) calculate the average of

positive returns from regime I and the average of negative returns from regime III. Also,

we are more interested in the longer term trend rather than the daily trend. So (**) using

monthly rolling returns would help in enhancing the estimation stability. We add (*) and

(**) as special data cleaning treatments in our algorithm.

Consider σ̂. Observe from (6.62) and (6.64), we see volatilities of r̂I and r̂III are provided

by the Brownian motion part only. Let r̂I&III := r̂I ∪ r̂III . Then we can calculate σ̂ by

σ̂ = StdDev
(
r̂I&III

)
.

As an alternative plan, note that usually the time-series in regime III is more volatile, there-

fore, in order to have a more significant volatility, we can use r̂III only:

σ̂ = StdDev
(
r̂III

)
. (6.66)

Given ĉ as shown in (6.65), the last parameter α̂ is easy to be determined. From (6.63),

we immediately have

α̂ = − ln (ĉ)

2X̂R
. (6.67)

We summarise our calibration algorithm on the next page.

Remark. Algorithm 1 relies on two judgmental decisions: 1) time ranges for different regimes,

and 2) the equilibrium level. For the first item, during an asset price increasing period, from

the economical point of view, it is not difficult to differentiate each regime. Even though

there is no clear economical signal, we can still split the time-series equally into three pieces.

However, for X̂R, without a significant price drop, mathematically it is very challenging to

decide the equilibrium level. Therefore fundamental analysis from economics may be required.

The enhancement of Algorithm 1 will be remained in the future work.

6.5.2 Numerical Example

We provide three numerical exercises. The first two are similar in nature, where based on

historical data, we verify the effectiveness of {Xt}t≥0 in capturing bubble dynamics. In the

third exercise, we provide drop-down probabilities (imminent risk) of the BitCoin.
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Algorithm 1 {Xt}t≥0 Model Calibration

1. Determine the time ranges for regimes I-III, and correspondingly compute the nor-
malised log-price X̂I , X̂II , X̂III by (6.60). Identify the equilibrium level X̂R.

2. Compute monthly rolling log-returns r̂Im and r̂IIIm from X̂I and X̂III , respectively. Find
r̄I and r̄III via 

r̄I = Mean

(
r̂Im

∣∣∣∣r̂Im ≥ 0

)
× 12

r̄III = Mean

(
r̂IIIm

∣∣∣∣r̂IIIm ≤ 0

)
× 12

.

Then use Equation (6.65) to calibrate ε̂, ĉ.

3. Compute the daily log-return r̂IIId from X̂III . Then compute the annualised return
r̂III via

r̂III = r̂IIId ×
√

260,

and calibrate σ̂ using (6.66).

4. Substitute X̂R from Step 1 and ĉ from Step 2 into (6.67) to calibrate α̂.

1997-01-02 to 2003-12-30 NASDAQ Composite Index

The US dot-com bubble [23] could be observed from the technology-dominated NASDAQ

Composite Index (US ticker symbol ˆIXIC). From the mid-90’s, ˆIXIC grew exponentially

from below 1,000 USD to about 5,000 USD. The index hit its historical maximum in 2000-

03-10, and at which date the total trading amount exceeded 10 Trillion USD (according to

Yahoo Finance). After then, the market collapsed rapidly and dropped back to about 1,000

USD in 2002.

In this exercise, we use the adjusted daily closing price of ˆIXIC from 1997-01-02 to 2003-

12-30. The data is from Yahoo Finance. Note that, for the purpose of burst time prediction,

there is no sense to calibrate the model using the full-cycle data. Therefore, only a truncated

time-series is used in this model calibration. To be more specific, we choose calibration

regimes as follows
X̂I : 1997-01-02 (P0 = 1, 280) to 1997-06-26 (Pt1 = 1, 436)

X̂II : 1997-06-26 (Pt1 = 1, 436) to 1999-02-10 (Pt2 = 2, 309)

X̂III : 1999-02-10 (Pt2 = 2, 309) to 2000-10-18 (Pt3 = 3, 171)

. (6.68)
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The red curve in Figure 6.3 plots the full series of
{
X̂t

}
t=0,1,...,N

. By observation, we set the

equilibrium level to be X̂R = 0.67 (PR = 2, 502).

In order to compare our new model with existing models, we include the OU process

and the drifted Brownian motion (DBM) as well. The time-series used for calibrating these

two models are the same as in the {Xt}t≥0 calibration, i.e. from 1997-01-02 to 2000-10-18.

For the OU calibration algorithm, we refer to [119]. And we directly estimate the mean and

volatility in the DBM. 1,000 paths between 1997-01-02 and 2003-12-30 are simulated using

those three models. In Figure 6.3, apart from the historical price of ˆIXIC, we demonstrate

the best path among 1,000 simulations for each model. It is clear by the graph that our new

model provides better fit than existing models. In order to measure the closeness of different

paths to the historical dynamic, the correlations for each model are calculated:

{Xt}t≥0 : 91.20%, OU : 81.01%, DBM : 72.03%.

As expected, {Xt}t≥0 provides the highest correlation while DBM is the worst among three

models.

To further explain our calibration algorithm, we plot three regimes in Figure 6.4. We also

show 10,000 onward simulation paths for {Xt}t≥0 with X0 = X̂t3 . From the figure, we see

that the historical prices are fully covered by the simulated paths. This indicates that our

model is effective.
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Figure 6.3: Model calibration comparisons for NASDAQ index (US ticker symbol ˆIXIC)
from 1997-01-02 to 2003-12-30. Red curve: historical adjusted log-price; blue curve: the
best of 1,000 simulations from {Xt}t≥0; orange curve: the best of 1,000 simulations from
OU process; green curve: the best of 1,000 simulations from DBM. Calibration parameters,
{Xt}t≥0 : (ε̂, α̂, σ̂, ĉ) = (0.39, 0.23, 0.43, 0.73); OU : (κ̂, µ̂, σ̂) = (0.47, 1.09, 0.31); BM :
(µ̂, σ̂) = (0.25, 0.31). The data source is from Yahoo Finance

Figure 6.4: Algorithm 1 illustration based on ˆIXIC and 10,000 paths simulation starting
from X0 = X̂t3 . Green zone indicates regime I, the displacement stage; yellow zone indicates
regime II, the boom stage; red zone indicates regime III, the euphoria & profit taking stages.
Blue curve shows the historical data used for calibration. Red curve, covered by shadowed
region, shows the historical data after t3. The shadowed region plots 10,000 simulation paths
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2006-01-04 to 2008-12-31 Shanghai Stock Exchange Composite Index

We use a second example to confirm our observations from the last exercise. The 2007 Chinese

stock market crash [67] just happened before the 2008 global financial crisis. Started in early

2006, the Shanghai Stock Exchange Composite Index (US ticker symbol SSEC, China ticker

symbol 000001.SS) increased from about 1,000 CNY to 6,092 CNY (mid-October, 2007). And

within one year’s time, from October 2007 to October 2008, the price dropped below 1,800

CNY. Similar to the pattern in ˆIXIC, the historical log-price of SSEC dropped rapidly after

the sudden peak, and before which there was a sharp increase.

Settings are the same as in the previous one. We only mention the regime choices and

make comments wherever necessary.

X̂I : 2006-01-04 (P0 = 1, 180) to 2006-03-06 (Pt1 = 1, 288)

X̂II : 2006-03-06 (Pt1 = 1, 288) to 2007-05-30 (Pt2 = 4, 053)

X̂III : 2007-05-30 (Pt2 = 4, 053) to 2008-04-21 (Pt3 = 3, 116)

equilibrium level : X̂R = 1.23 (PR = 4, 040)

. (6.69)

Figure 6.5 demonstrates comparisons between the best simulated path and the historical

log-price. We can immediately see that the OU process provides a much faster mean-reversion

rate than which is reflected from the price dynamic. This shows the OU process cannot

provide enough degree of freedom in calibrating bubble dynamics.

Correlations for different models to the actual data are given by:

{Xt}t≥0 : 96.11%, OU : 88.00%, DBM : 84.42%.

Similar plot for the calibration illustration is given in Figure 6.6. Through this exercise, we

can further confirm that our new model is a good candidate for describing economic bubbles.
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Figure 6.5: Model calibration comparisons for Shanghai Stock Exchange Composite in-
dex (US ticker symbol SSEC, China ticker symbol 000001.SS) from 2006-01-04 to 2008-
12-31. Red curve: historical adjusted log-price; blue curve: the best of 1,000 simulations
from {Xt}t≥0; orange curve: the best of 1,000 simulations from OU process; green curve:
the best of 1,000 simulations from DBM. Calibration parameters, {Xt}t≥0 : (ε̂, α̂, σ̂, ĉ) =
(0.32, 0.14, 0.56, 0.70); OU : (κ̂, µ̂, σ̂) = (3.30, 0.97, 1.20); BM : (µ̂, σ̂) = (0.44, 0.33). The
data source is from Yahoo Finance

Figure 6.6: Algorithm 1 illustration based on 000001.SS and 10,000 paths simulation starting
from X0 = X̂t3 . Green zone indicates regime I, the displacement stage; yellow zone indi-
cates regime II, the boom stage; red zone indicates regime III, the euphoria & profit taking
stages. Blue curve shows the historical data used for calibration. Red curve, covered by
shadowed region, shows the following historical data after t3. The shadowed region plots
10,000 simulation paths
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BitCoin Downward Probability Estimation

2017 is a year of BitCoin. At the first trading day of 2017, the price of 1 BitCoin was 995.44

USD. Although at then spending 1,000 dollars to buy one cryptocurrency was unbelievable to

people, within 1 year’s time, the price hit 19,345.49 USD. Figure 6.7 illustrates patterns for

the price and trading volume between 2016-01-01 and 2017-12-10. There are many potential

reasons that drive the nearly 20 times increase, for example, the increasing investments from

institutional investors, more open mind from lawmakers, etc. In this exercise, we are inter-

ested in knowing whether the price would drop significantly in the near future. We conduct

analysis in predicting the minimum of BitCoin price in the following month, effectively from

2017-12-10 to 2018-01-12.

Figure 6.7: Bitcoin daily price and trading volume from 2016-01-01 to 2017-12-10. The data
source is from Yahoo Finance

The model calibration is based on the time-series between 2016-01-01 and 2017-12-10:

X̂I : 2016-01-01 (P0 = 433) to 2016-05-30 (Pt1 = 528)

X̂II : 2016-05-30 (Pt1 = 528) to 2017-08-13 (Pt2 = 4, 327)

X̂III : 2017-08-13 (Pt2 = 4, 327) to 2017-12-10 (Pt3 = 14, 371)

equilibrium level : X̂R = 2.30 (PR = 4, 327)

. (6.70)
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Without mentioning too much detail, we summarise outputs from algorithm 1 in below:

ε̂ = 0.51; α̂ = 0.08; σ̂ = 0.91; ĉ = 0.69. (6.71)

The prediction was made on 2017-12-10 with the price at Pt3 = 14, 3719. We consider 0%

to 60% drops from Pt3 . We compute the dropdown probabilities within a month via (6.79),

i.e. the imminent risk10

P (τ(t3, b) ≤ 1/12) , 0 ≤ b ≤ 0.6.

Furthermore, in order to evaluate the perturbation error, we refer to Proposition 6.4.3

and provide the relative error of density functions. Using the probabilistic representation in

Proposition 3.3.1, we estimate qτ (t) via 10,000 paths simulation. It should be noticed that,

the relative error generally is high at tails as densities converge to 0. Therefore, it is not

necessary to compute the relative error at each point. In fact, we are more concerned that

whether the peak of the distribution would be changed by perturbations; so only relative

errors on the density peak are computed. Table 6.1 summarises the results.

Percentage of Drop Price Pl (USD) Probability P (P ∗t ≤ Pl) Peak Relative Error

0% 14,371.62 100.00% 0.00%

5% 13,653.05 84.85% 4.97%

10% 12,934.47 69.38% 1.48%

20% 11,497.30 40.19% 0.04%

30% 10,060.14 17.87% 0.86%

40% 8,622.98 5.35% 0.68%

50% 7,185.81 0.86% 1.45%

60% 5,748.65 0.05% 1.78%

Table 6.1: BitCoin imminent risk prediction between 2017-12-10 and 2018-01-12. Columns
1-4 correspond to the percentage of price drop, dropped price Pl, probability of the lowest
price P ∗t (min0≤s≤tPs), and the relative error in density peaks

First by checking the last column (relative errors), we see in general the perturbation

9Note that, the data in our record does not correspond to the closing price of 2017-12-10. In fact, the data
was downloaded when the market was still under trading.

10In our case, Pt3 ≈ max0≤s≤t3 Ps, therefore there is no harm to use Pt3 as the benchmark of the pre-drop
price.
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model is accurate. The largest error was in the 5% drop. In this case the hitting level is

very close to the initial price Pt3 . As a result, the density curve will shrink to the y-axis.

Therefore a larger error is expected. Analogously, large errors might also exist in the case

that hitting levels are far to the initial price. For more details of the error analysis, please

refer to Appendix 6.D.

We now consider the possibility of market collapse. Refer to the scenarios in ˆIXIC and

000001.SS, we find their largest drops in a month were about 30%, and which happened in

the spring of 2000 and the autumn of 2008, respectively. Then check the probability of 30%

drop for BitCoin, from Table 6.1, we only see about 17.87%. In fact, even for a 20% drop,

the probability is about 40.19%. This means there is more than half chance that the price

would remain above 11,497.30. Therefore, we conclude that the market is unlikely to collapse

in the next month (2017-12-10 to 2018-01-12).

As a kind of backtest, we collect the one month data from 2017-12-10 to 2018-01-12

and plot the time-series in Figure 6.8. From the graph we see the lowest closing price was

12,531.52 on 2017-12-30. This verifies our conclusion that the market would not collapse

immediately. On the other hand, compare the probabilities in Table 6.1 with the thresholds

in Figure 6.8. The price on 2017-12-30 broke the 10% drop threshold, where the probability

given by our prediction was 69.38%. This further confirms that our model is effective.

Figure 6.8: BitCoin closing price between 2017-12-10 and 2018-01-12. The probabilities of
different thresholds are reported in Table 6.1
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6.6 Conclusion

In this chapter, we provide a new diffusion process which can be used in modelling economic

bubbles. The simple form of the model enables us to deduce its downward FPTD explicitly.

Therefore, the new process can be seen as a good candidate in estimating the burst time of

an economic bubble. Numerical examples in Section 6.5 consistently confirm that the model

and its prediction are effective. Results in Section 6.3 show that the process has desirable

properties, and which potentially can be employed in the future option pricing work. One

remaining issue is the exact simulation of the process. This requires further understandings on

the θ (r, s) function in (6.14), and itself is closely linked to the Hartman-Watson distribution.

We leave this for the future work.

Appendix 6.A Recursive Solution for c = 0

Under c = 0, the h-function of the bubble process becomes a purely exponential function,

i.e. h(y) = e−2αy. Similar as in the OU case, the exponential function is also closed under

operations of integration and differentiation. Therefore, recursive solutions of arbitrary order

N should exist. In this appendix, we summarise conclusions for f (N) and its inverse.

Consider the hitting level a = 0, and let τ be the downward FPT in (3.17). Then,

Proposition 6.A.1 (Recursive Structure of fi(x, β)). Let i ∈ N, β ∈ C+, and γ =
√

2β, the

solution of the o
(
εi
)

BVP is given by

fi(x, β) = f0(x, β)
i∑

k=0

pi,k(β)e−2kαx,

where pi,k(β) is given by


pi,k(β) = 2

γ
α γ/α

2
√
παkΓ(k+1)

· Γ( 1
2

+ 1
2
γ
α)Γ(k+ 1

2
γ
α)

Γ(k+1+ γ
α)

· pi−k,0(β), 0 < k ≤ i,

pi,0(β) = −
∑i

k=1 pi,k(β), k = 0,

with p0,0(β) = 1.
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Proof. For i ≥ 0, we assume the gi in (3.20) has the following structure:

gi =

i∑
k=0

pi,ke
−2kαx,

where pi,k is independent of x and to be determined. To verify the assumption, for i = 0, we

find

1 = g0 = p0,0 · e−0,

and which implies p0,0 = 1. Then for i ≥ 1, substitute gi into the left-hand side of Equation

(3.21), we have

1

2
g
′′
i − γg

′
i = 2

i∑
k=0

pi,kk
2α2e−2kαx + 2γ

i∑
k=0

pi,kkαe
−2kαx

= 2
i∑

k=0

pi,kkα(kα+ γ)e−2kαx. (6.72)

For the right-hand side, by substituting gi−1 into (3.21), we get

h
(
γgi−1 − g

′
i−1

)
= e−2αx

(
γ

i−1∑
k=0

pi−1,ke
−2kαx + 2

i−1∑
k=0

pi−1,kkαe
−2kαx

)

=
i∑

k=1

pi−1,k−1 [γ + 2(k − 1)α] e−2kαx. (6.73)

Match the coefficients between (6.72) and (6.73), we have

pi,k =
γ + 2(k − 1)α

2kα(kα+ γ)
pi−1,k−1. (6.74)

Further simplify (6.74) by multiplying up-to pi−k,0, we get

pi,k = pi−k,0 ·
k∏

m=1

[
γ + 2α(m− 1)

2mα (mα+ γ)

]
, i > 0, 0 < k ≤ i.

Consider definition and properties of Gamma functions, we can rewrite pi,k as

pi,k =
2
γ
αγ/α

2
√
παkΓ (k + 1)

·
Γ
(

1
2 + 1

2
γ
α

)
Γ
(
k + 1

2
γ
α

)
Γ
(
k + 1 + γ

α

) · pi−k,0. (6.75)
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Note that, the pi,0 term is not included in (6.75) above, but according to the condition that

gi(0) = 0 for i > 1, we can find

pi,0 = −
i∑

k=1

pi,k. (6.76)

This concludes our proof.

Proposition 6.A.2 (Existence, Continuity and Full Integrability of p
(N)
τ ). For any N ∈ N0,

the ILT of f (N)(β) exists:

p(N)
τ (t) = L−1

{
f (N)(β)

}
(t).

Moreover, p
(N)
τ (t) is continuous on t > 0, and

∫ ∞
0

p(N)
τ (t)dt = 1.

Proof. Before stating the proof, it is worthy to be mentioned that not all functions can

be inverted; and for those which can be inverted, even though the frequency function is

continuous, it is not necessarily true that the time-domain function is also continuous.

In the following proof, we first show the existence of the inverse transform for f (N). For

β ∈ C+, we assume that fN (β) does not contain any pools on the right of K, for some real

number K to be large enough. Later we will show this condition is satisfied by f (N).

Let 0 ≤ i ≤ N , recall Equation (6.74) in the proof of Proposition 6.A.1. Since pi,k is a

function with at most polynomial growth on β, so for β ∈ C+, we have

lim
β→+∞

e−
√

2βxpi,k(β)e−2kαx = 0.

According to the recursion structure in Proposition 6.A.1, this leads to

lim
β→+∞

fi(β) = 0.

For i ≥ 1, based on the Jordan’s lemma and (2.36), we can rewrite the inverse of fi as

L−1 {fi(β)} (t) :=
∑
β̂∈Pi

Res
(
fi(β̂)eβ̂t

)
, (6.77)

where Pi is the collection of all pools of fi (see (2.35)). Note that, by checking with (6.75),
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we find that the pools of fi(β) are the same as pools of Γ
(

1
2 + 1

2
γ
α

)
Γ
(
k + 1

2
γ
α

)
. Consider the

fact that, the Γ-function has only pools at N0. We then have

Pi =
{
β :
√

2β = −α(2m+ 1), m ∈ N0

}
∪
{
β :
√

2β = −2α(n+ k), n ∈ N0, 1 ≤ k ≤ i
}
.

(6.78)

On the other hand, recall the De Moivre’s formula:

√
z = ±

√
r

(
cos

(
θ

2

)
+ i sin

(
θ

2

))
, z ∈ C+, r ∈ R+, θ ∈ R.

Then by choosing θ ∈ {0, 2π}, we immediately see that the β in (6.78) has two real solutions

on the positive and the negative planes, respectively. As we require that fi(β) does not have

any pool when |β| ↑ +∞, so the only possible pools are on the negative plane. This concludes

the first part proof, that for any N ∈ N0, the inverse of f (N)(β) exists.

Now we consider the continuity and the full-integrability. Substitute negative-pools into

(6.77), and based on Proposition 6.A.1, we have

L−1 {fi(β)} (t) =
i∑

k=0

∑
β̂∈Pi

pi,k

(
β̂
)
e−2kαx−

√
2β̂x+β̂t.

From the equation above, for t > 0 and i ∈ N0, we can see the inverse is continuous on t, and

therefore is

p(N)
τ (t) =

xt−
3
2

√
2π

e−
x2

2t +
N∑
i=1

εiL−1 {fi(β)} (t).

For the probability integral, recall (6.76); we find limβ→0+ pi,k(β) = 0 for all i ≥ 1 and

0 ≤ k ≤ i. Combine the fact that limβ→0+ f0(x, β) = 1, we can show

lim
β→0+

f (N)(x, β) = lim
β→0+

f0(x, β) +
N∑
i=1

εN lim
β→0+

fi(x, β) = 1 + 0 = 1.

So according to the moment rule, we further have

∫ +∞

0
p(N)
τ (t)dt = 1.

And this concludes our proof.
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Appendix 6.B Generalised FPTD with σ > 0 and a 6= 0

Consider a generalised SDE (6.57), and a hitting level a 6= 0 with a < x. Define the affine

transformation of {Xt}t≥0 by {Yt}t≥0, where

Yt =
Xt − a
σ

, Y0 =
x− a
σ

.

Then Yt embeds the following SDE

dYt =
ε

σ

(
e−2αXt − c

)
dt+ dWt

=
εe−2α

σ

(
e−2ασYt − ce2α

)
dt+ dWt

=: ε̃
(
e−2α̃Yt − c̃

)
dt+ dWt, Y0 = y,

with

ε̃ =
εe−2α

σ
, α̃ = ασ, c̃ = ce2α, y =

x− a
σ

.

Let τ be the downward FPT of hitting 0, as it has been discussed in Section 6.4. Further

define τ∗ to be the downward FPT of {Xt}t≥0 (see (6.58)). Based on the equivalence between

{Xt}t≥0 and {Yt}t≥0 (which also implies τ∗ = τ a.s.), we then can express the perturbed

density of τ∗ as given in (6.59).

Further consider the relation between the running minimum and the downward FPT (cf.

4.3.1). Define

X∗t := min
0≤s≤t

Xs.

Then for a fixed t > 0 and a < x, the perturbed distribution of X∗t is given by

Px (X∗t ≤ a) =

∫ t

0
p(1)
τ (s|ε̃, α̃, c̃, y) ds. (6.79)

Appendix 6.C Further Numerical Analysis for {Xt}t≥0

We repeat the analysis that we have done in Section 4.3.3 and Section 5.3. We benchmark

the first order downward FPTD with the Talbot inverse. Full density curve and its error are

provided in Figures 6.9 and 6.10. Figures 6.11 and 6.12 focus on the left tail.
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Figure 6.9: Density plot with ε = 0.1, α =
0.5, c = 0.2, σ = 0.5, x = 0.7, l = 0.2

Figure 6.10: Error plot with ε = 0.1, α =
0.5, c = 0.2, σ = 0.5, x = 0.7, l = 0.2

Figure 6.11: Left tail density Figure 6.12: Left tail density error

Appendix 6.D First Order Perturbed Upward FPTD

In this appendix, we provide the analysis of the upward FPTD. First recall Section 6.4.1,

when x < a, we have mentioned that the lower boundary {−∞} is ill-posed. The boundary

value for the original BVP is given in (6.42). Similar as in the case of BES(n), if we force

the perturbed ODEs to match (6.42), in the end we could possibly get a solution in terms of

confluent hypergeometric functions, or, we may even not get a valid solution. Therefore, we

repeat the technique that we used in Appendix 5.A, where we simply solve the upward FPT

by reflecting the process with Yt = −Xt.

129



Denote the downward perturbed FPTD of {Xt}t≥0 by

p(1)
τ↓

= p(1)
τ (t|ε, α, c, x) , x > 0.

Then by considering the reflection, the upward FPTD of {Xt}t≥0 is given by

p(1)
τ↑

= p(1)
τ (t| − ε,−α, c,−x) , x < 0. (6.80)

We emphasise again, as we have highlighted in Appendix 5.A, (6.80) is only valid if x is not

too far from 0. Besides, by repeating the calculations in Proposition 6.4.2, we find the left-tail

has the same asymptotic as in the downward FPTD. But the right-tail asymptotic of (6.80)

is given by11 e
α2

2
t. Therefore, from the time dimension, (6.80) only works for small t.

Figure 6.13: Upcrossing FPTD of the bubble process. ε = 0.1, α = 0.5, c = 0.3, σ = 0.4, x =
1.5. Left figure, 20% upcrossing (a = 1.8); right figure, 100% upcrossing (a = 3).

11This is due to limt↑+∞ Erfc(−α
√

t
2
) = 2. And from the LT, for the upward case, the f1-function exists

only if β ≥ α2

2
.
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Chapter 7

Capital Allocation under the

Fundamental Review of Trading

Book

In January 20161, the Basel Committee on Banking Supervision finalised the next stage reg-

ulatory framework for market risk. Formally known as the Fundamental Review of Trading

Book (FRTB), the new document overhauls minimum capital requirements in both the stan-

dardised approach and the internal model approach (IMA). Under the FRTB IMA, banks need

to report aggregated expected shortfalls (ES) as capital charges. Besides, the predefined Liq-

uidity Horizons (LH) and Risk Factor Categories (RF) restrict capital reduction effects from

cross-hedging. Facing the tightened regulation, in order to reevaluate the capital efficiency

under their strategies, banks need to develop corresponding capital allocation methodologies.

In this chapter, we provide two allocation schemes under the FRTB IMA, which could effec-

tively reflect the capital structure that is required by the new regulation. Meanwhile, both

schemes are guaranteed to be no more computationally complex than allocations under the

current VaR-based regulatory framework. At the end of this chapter, numerical results show

that our allocation schemes are more stable than allocations under the traditional ES.

For a table of acronyms appeared in this chapter, please refer to Section 2.5.1 on p. 23.

1The newest version of the FRTB is released on 14th-January-2019 by the Basel Committee on Banking
Supervision. It does not affect our results in this chapter.
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7.1 Introduction, Motivation, and Literature Review

FRTB [12] is the newest version of the regulatory guidance for the global banking industry.

It aims to address the shortcomings of the Basel II and its current amendments [10]. Firstly

published in 2016, the new document specifies calculations of minimum capital requirements

for market risk. Later in March 2018, a consultative document of FRTB [13] has been

released and which modifies requirements in the standardised approach and the profit and

loss analysis for IMA. But in general, the IMA calculation in the original FRTB document

does not change. On 7th December 2017, the Basel Committee oversight body, Group of

Central Bank Governors and Heads of Supervision, announced that the implementation date

of the FRTB will be extended to January 2022.

In the FRTB IMA, the risk reporting metric shifts from VaR to an aggregation of tradi-

tional ES measure. Besides, the new regulation also takes the liquidity risk into account and

the capital-reducing effect of cross-hedging is constrained. As a result, bank’s cost is facing

significant increases2, although, this was not the intention from the Basel Committee. Facing

the new regulation, banks may need to reevaluate their capital efficiency and reposition their

resources strategically to business units with high RORAC (see Equation (2.46)), where the

RORAC itself should be calculated in the manner of allocated capitals under the FRTB.

These bring forward the needs of finding new allocation schemes; especially, such allocations

should be able to reflect the capital structure that is required by the FRTB IMA. On the

other hand, the aggregated ES based capital charge is computationally more demanding than

which under the current practice. Thus, in order to meet various risk management needs,

new allocation methodologies should also be developed in a computationally efficient way.

In this chapter, we propose two allocation methods for the capital charge under the FRTB

IMA, namely the Euler approach and the constrained Aumann-Shapley (CAS) allocation.

Both allocations consist of two stages. In the first stage, the FRTB capital charge is allocated

to each predefined RF and LH bucket. In the second stage, allocations in different buckets

are decomposed, realigned, and then aggregated. These allocation schemes can be applied

when one treats the stress scaling factor [12, Paragraph 181 (d)] as a constant. Alternatively,

in Section 7.3.4 of this chapter, we also extend our methods to the situation where the impact

2In the 2014 industry Quantitative Impact Study (QIS) [11], 44 banks have reported an average of 54%
increase on capital charges under the new IMA. And the increased cost margin from the standardised approach
is even more significant.
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of risk factors from the stress scenarios is incorporated.

The Euler allocation principle has been studied extensively. Tasche [122] has shown

that it can be employed in optimising the firm’s RORAC. While later in 2001, Denault [38]

established axiomatic characterisations for the Euler allocation. When the Euler allocation

principle is applied under the FRTB IMA, we show that the allocation to each RF and LH

bucket is a scaled version of the Euler allocation to the standard ES. And the scaling factor

reflects the relative weight of the standalone ES for the bucket to the total FRTB-ES [12,

Paragraph 181 (c)] from the same RF category. Our second allocation method is motivated

by the CAS allocation by Li et al. [76]. Similar to the Euler allocation, we find the CAS

allocation is also a scaled version of the traditional ES allocation. In this case, the scaling

factor becomes the average of incremental FRTB-ES ratios under different LH permutations.

Reducing the new allocation methods to the traditional ES allocation ensures computational

efficiency. In the end, the scenario extraction technique [41] for the traditional ES allocation

can be used accordingly. This avoids any revaluation on the capital charge.

At the end of this chapter, we illustrate the FRTB allocations via three groups of sim-

ulation analysis. Results show that, for risk factors with longer liquidity horizons, they are

correspondingly allocated larger portions of the total capital. Meanwhile, negative alloca-

tions, resulting from either independent risk factors or hedged positions among different RF

and LH buckets, are disappeared from the FRTB allocations. These observations, on the one

hand, confirm that our allocations are more stable than that in the regular ES (VaR); on the

other hand, the FRTB features, including the LH scaling and the constraint on the cross-

hedging, are correctly reflected by our schemes. In addition, the example in Section 7.4.2

indicates that, if the hedging is within the same RF and LH bucket, then negative allocations

can still happen under FRTB. But their magnitudes are significantly smaller than traditional

allocations. This further confirms the stability of the FRTB allocations. More importantly,

in the third simulation analysis, we find that the allocation under the FRTB is sensitive to

the choice of the reduced set [12, Paragraph 181 (d)]. Inspired by this test, we realise that

by comparing the allocations with/without decomposing the stress scaling factor, banks can

identify those risk positions which have fewer risk contributions in the current calibration

period but embed significant loss during the stress period. As a result, as long as the 75%

rule [12, Paragraph 181 (d)] is satisfied, banks could decrease their total capital charges by

simply removing those identified positions from the reduced set.
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The rest of this chapter is organised as follows. Section 7.2 introduces the internal model

capital charge under the FRTB and investigates its homogeneity and sub-additivity proper-

ties. Allocation methods and their extensions are introduced in Section 7.3, followed by the

simulation analysis in Section 7.4. Section 7.5 concludes. All proofs are provided separately

in the appendices of this chapter.

7.2 Internal Model Capital Charge under FRTB

The original document [12] of FRTB includes 3 major chapters. In each of them, the definition

of the trading book, the standardised approach, and the IMA are respectively discussed.

And within [12, Chapter C], the final capital charge of IMA is further split into default risk

charge, internal model capital charge for modellable risk factors (IMCC), and non-modellable

risk factor add-ons. Among those three parts, the default risk charge and non-modellable

risk factor add-ons are calculated either using the traditional VaR-model or according to a

sensitivity-based approach. Mathematically, the only fundamental change is from the IMCC

calculation. Therefore, more precisely, our allocation methods in this chapter refer to the

IMCC allocation. In this section, we review [12, Sections C.2, C.7, C.9] and introduce

corresponding mathematical notations for major concepts. Those notations later will be

used in Section 7.3.

7.2.1 Risk Factor and Liquidity Horizon Bucketing

According to the FRTB IMA, the PnL of a risk position is attributed to risk factors of five

different categories

{RFi : 1 ≤ i ≤ 5} := {CM,CR,EQ,FX, IR}.

Further, within each RF category, the risk factor is assigned with a liquidity horizon with

lengths (in terms of days)

{LHj : 1 ≤ j ≤ 5} := {10, 20, 40, 60, 120}. (7.1)

For more details of definitions on each RFi and LHj , one can refer to [12, Paragraphs 185,

181 (k), 188].

For the convenience of mathematical derivations, throughout this chapter, we refer the

134



negative value of the PnL to the loss of a risk position; i.e., recall (2.42), the loss of position

n is given by −Xn(T ).

Consider a portfolio with N ∈ N risk positions. For each risk position n, 1 ≤ n ≤ N ,

its loss is further classified into RFi and LHj bucket. Denote the loss3 of position n in

RFi-and-LHj-bucket by

X̃n(i, j), 1 ≤ n ≤ N, 1 ≤ i, j ≤ 5.

Then
∑

i,j X̃n(i, j) is the loss from the original risk position n. For each position n, there

are in total 5× 5 RF and LH buckets. By considering each bucket, we write the loss of each

position as a 5× 5 matrix, and denote it by

X̃n := {X̃n(i, j)}1≤i,j≤5, 1 ≤ n ≤ N.

In order to align with the ES definition in [12, Paragraph 181 (c)], now we define the liquidity-

horizon-adjusted loss as

Xn(i, j) :=

√
LHj − LHj−1

10

5∑
k=j

X̃n(i, k), 1 ≤ n ≤ N, 1 ≤ i, j ≤ 5, (7.2)

where LH0 = 0. By our definition, for a fixed n and i, Xn(i, j) is the the sum of scaled losses

with liquidity horizons at least as long as LHj , and the scaling factors are the square-roots

of the differences between two LHs (adjusted by 10 days).

Similarly, we record the liquidity-horizon-adjusted loss of risk position n by a 5×5 matrix

Xn := {Xn(i, j)}1≤i,j≤5, 1 ≤ n ≤ N.

And we refer to the matrix Xn as the risk-profile of the position n. Then consider a

component-wise sum across 1 ≤ i, j ≤ 5 on 1 ≤ n ≤ N , we denote the risk-profile of the

portfolio by

X :=
∑
n

Xn, 1 ≤ n ≤ N, (7.3)

where note that, X = {X(i, j)}1≤i,j≤5 is also a 5× 5 matrix.

Based on our notations above, we follow [12, Paragraph 181 (c)] and define the FRTB-ES

3According to FRTB IMA, the sample loss is defined by 10-day observations.

135



of RFi as

ES(X(i)) :=

√√√√ 5∑
j=1

ES(X(i, j))2, 1 ≤ i ≤ 5, (7.4)

where each ES(X(i, j)) is the regular expected shortfall (see Example 2.4.3) of X(i, j) (the

(i, j)-th element in the matrix X) calculated at the 97.5% quantile.

Remark. It is not explicitly required in [12, Paragraph 181] to ceiling each ES(i, j) at zero.

This means that profit in X(i, j) (i.e., negative X(i, j)) would lead to increase in the risk mea-

sure ES(X(i)). To avoid this counter intuitive behavior, we suggest to ceiling each ES(X(i, j))

at zero, and introduce

ES+(X(i)) :=

√√√√ 5∑
j=1

ES+(X(i, j))2, (7.5)

where ES+(X(i, j)) = max{ES(X(i, j)), 0}. This modification introduces better properties

to the FRTB-ES (see Section 7.2.3 later), but still retains its positive homogeneity property.

Hence the allocation methods that we introduce later can be applied to both ES(X(i)) and

ES+(X(i)).

7.2.2 Stress Period Scaling and IMCC

In [12, Paragraph 181 (d)], FRTB also requires banks to calibrate their risk models to a

stress period. For each RFi, the ES(X(i)) in (7.4) should be calculated under three different

scenarios:

� the current (most recent) 12-month observation period with a full set of risk factors

which are relevant to all modellable risk positions; we denote the corresponding FRTB-

ES as ESF,C(X(i))

� banks should identify a reduced set of risk factors, and calculate its associated ES(X(i))

over the same current period; we denote such a FRTB-ES by ESR,C(X(i)); besides,

it is required that the reduced set of risk factors should be large enough so that

ESR,C(X(i)) ≥ 75% of ESF,C(X(i))

� subsequently, banks also need to identify a 12-month stress period in which the portfolio

experiences the largest loss, and then calculate ES(X(i)) with the reduced set of risk

factors based on the stress scenarios; we denote this risk measure as ESR,S(X(i))
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Then follow [12, Paragraph 181 (d)], we introduce the following expected-shortfall-capital-

charge for RFi:

IMCC(X(i)) :=
ESR,S(X(i))

ESR,C(X(i))
ESF,C(X(i)), 1 ≤ i ≤ 5. (7.6)

Before we define the final IMCC of the portfolio X, there is one last concept to be

considered: the constrained and the unconstrained portfolios. According to [12, Paragraph

188], banks need to calculate IMCC(X(i)) for 1 ≤ i ≤ 5, and these are referred to as the

expected-shortfall-capital-charge for the constrained portfolios. On the other hand, we extend

the risk-profile for each position by adding another row:

Xn(6, j) :=
5∑
i=1

Xn(i, j), 1 ≤ j ≤ 5,

which records the loss aggregated across all RFs but in the same LHj . We denote by Xn(6, ·)

the unconstrained risk-profile of the risk position n, and correspondingly extend the risk-

profile of the portfolio by adding this row. Then IMCC(X(6)) can be calculated via (7.6),

and it is referred to as the expected-shortfall-capital-charge for the unconstrained portfolio.

Now follow [12, Paragraph 189], the IMCC of modellable risk factors under the FRTB

IMA is defined by:

Definition 7.2.1 (Internal Model Capital Charge for Modellable Risk Factors (IMCC)). The

aggregated capital charge for modellable risk factors is a weighted sum of the constrained

and unconstrained expected-shortfall-capital-charges:

IMCC(X) := ρ IMCC(X(6)) + (1− ρ)
5∑
i=1

IMCC(X(i)), (7.7)

where the relative weight ρ is set to be 0.5.

Remark. From the massive discussions above (starting from Section 7.2.1 up until Equation

(7.7)), we can see that the complexity of calculating the IMCC arises from both the conceptual

and the technical aspects. In general, banks first need to follow (7.2) and organise risk profiles

into 3 different sets (cf. Section 7.2.2); then within each set, the risk profiles should be further

classified into 6 different RFs (constrained and unconstrained) and 5 different LHs. Under

each of these classifications, the 97.5% ES is calculated. In total, banks therefore need to
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compute 3 (sets) × 6 (RFs) × 5 (LHs) = 90 (ESs). And this is only the first step; after

which, banks should then follow (7.4), (7.6), and (7.7) to aggregate those 90 ESs gradually

to acquire the final IMCC.

7.2.3 Property of IMCC

Lemma 7.2.2 (Homogeneity and Sub-additivity). For any constant a ≥ 0 and risk profiles

X and Y , the following statements hold:

(i) (Positive homogeneity) IMCC(aX) = a IMCC(X).

(ii) (Sub-additivity of FRTB-ES) For i = 1, . . . , 6, if ES((X + Y )(i, j)) ≥ 0 for any j, then

ES((X + Y )(i)) ≤ ES(X(i)) + ES(Y (i)). (7.8)

(iii) (Sub-additivity of expected-shortfall-capital-charge) For any i = 1, . . . , 6, if

ESR,S((X + Y )(i))

ESR,C((X + Y )(i))
≤ min

{ESR,S(X(i))

ESR,C(X(i))
,

ESR,S(Y (i))

ESR,C(Y (i))

}
, (7.9)

and ESF,C((X + Y )(i, j)) ≥ 0 for any j, then

IMCC((X + Y )(i)) ≤ IMCC(X(i)) + IMCC(Y (i)). (7.10)

The previous lemma shows the sub-additivity properties for the FRTB-ES and the expected-

shortfall-capital-charge do not hold naturally. In fact, without conditions ES((X+Y )(i, j)) ≥

0 and (7.9), the following examples show that the sub-additivity may fail.

Example 7.2.3 (Counter Example of Item (ii)). For fixed RFi and LHj , consider two

risk positions. Assume that X(i, j) has a Bernoulli distribution with P(X(i, j) = −1) =

P(X(i, j) = 0) = 0.5, and let Y (i, j) = −1−X(i, j). Hence P((X + Y )(i, j) = −1) = 1. And

by definition,

ES((X + Y )(i)) =
∣∣ES((X + Y )(i, j))

∣∣ = | − 1| = 1 > ES(X(i)) + ES(Y (i)) = 0 + 0.

However, if the expected shortfall is ceiling at zero as in our previous remark, then the

sub-additivity for FRTB-ES and IMCC holds without the positivity assumption ES((X +
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Y )(i, j)) ≥ 0 for all j.

Example 7.2.4 (Counter Example of Item (iii)). Fix RFi and LHj , assume that X(i, j) and

Y (i, j) are i.i.d. standard normal. Moreover, for their reduced sets, we assume

ESR,C(X(i)) = 0.75ESF,C(X(i)), ESR,C(Y (i)) = ESF,C(Y (i)).

Under stress scenarios, we consider that X(i, j) and Y (i, j) have independent normal distri-

butions, but their standard deviations are scaled up by 1.2 and 9 times, respectively, of their

standard deviations under the current period. Then

min
{ESR,S(X(i))

ESR,C(X(i))
,

ESR,S(Y (i))

ESR,C(Y (i))

}
= min

{
1.2, 9

}
= 1.2.

Now consider the aggregated portfolio, the standard deviation of X(i, j) + Y (i, j) in the full

current set is
√

2. And for the reduced current set, StdDev(X(i, j)+Y (i, j)) =
√

0.752 + 1 =

1.25. Under the stress scenario, the standard deviation of the portfolio in the reduced set

becomes
√

(0.75× 1.2)2 + 92 ≈ 9.04. Hence

ESR,S((X + Y )(i))

ESR,C((X + Y )(i))
=

9.04

1.25
= 7.23 > 1.2.

Therefore, the condition (7.9) is violated. Now we have

IMCC((X + Y )(i)) =
ESR,S((X + Y )(i))

ESR,C((X + Y )(i))
ESF,C((X + Y )(i))

= 7.23×
√

2ES(N(0, 1)).

On the other hand, compare the number above with the sum of two expected-shortfall-capital-

charges:

IMCC(X(i)) + IMCC(Y (i)) =
ESR,S(X(i))

ESR,C(X(i))
ESF,C(X(i)) +

ESR,S(Y (i))

ESR,C(Y (i))
ESF,C(Y (i))

= (1.2 + 9)ES(N(0, 1)),

we find

7.23×
√

2 = 10.22 > 10.20.
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Hence (7.10) fails.

Remark. Combine the discussions above with Definition 2.4.2 on p. 21, we show that the

IMCC is not a coherent risk measure4. Note that, in practice, any break of the coherent

properties could potentially lead to risk capital arbitrage; but this is not our purpose of

demonstrating it here.

7.3 Capital Allocation

We introduce in this section two methods of allocating the IMCC (see Definition 7.2.1). All

allocations have two steps. Consider a risk-profile X of a portfolio (including the 6th row) and

a risk measure ρ. In the first step, we allocate the capital to the liquidity-horizon-adjusted

loss, {Xn(i, j)}1≤n≤N,1≤i≤6,1≤j≤5. We denote the first step allocation by

ρ(Xn(i, j)|X).

On the other hand, recall from (7.2) that Xn(i, j) is aggregated from X̃n(i, k) with k ≥ j.

Therefore, in the second step, we further allocate ρ(Xn(i, j)|X) to X̃n(i, k). Consider a

further allocation on Xn(i, j):

ρ(X̃n(i, k)|Xn(i, j)), k ≥ j.

Then in order to obtain the allocation of X̃n(i, k) from X, we sum up all their contributions

from Xn(i, j) with j ≤ k:

ρ(X̃n(i, k)|X) =

k∑
j=1

ρ(Xn(i, k)|Xn(i, j)).

The second step is independent to the choices of allocation methods, so we focus on the first

step allocation in what follows.

4Even though we did not mention, it is very easy for the reader to find counterexamples to disprove the
monotonicity and the translation invariance properties of the IMCC.
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7.3.1 Euler Allocation

The Euler allocation has been studied extensively; see [38, 78, 122, 123], and many others.

We introduce in this subsection a computationally efficient scheme for the Euler allocation

of the IMCC.

For each RFi, we first allocate ES(X(i)) in (7.4) to Xn(i, j) with 1 ≤ j ≤ 5. To this

end, we further introduce some notations. Let v = (vn)1≤n≤N be a sequence of real numbers.

Given a collection of risk-profiles {Xn}1≤n≤N , we denote by

Xv,j(i) :=
∑
n

Xvn,j
n (i), (7.11)

where the sum is computed component-wise and

Xvn,j
n (i) :=

(
Xn(i, 1), · · · , Xn(i, j − 1), vnXn(i, j), Xn(i, j + 1), · · · , Xn(i, 5)

)
.

We define the allocation to each Xn(i, j) as follows.

Definition 7.3.1 (Euler Allocation of FRTB-ES). For 1 ≤ n ≤ N, 1 ≤ i ≤ 6, 1 ≤ j ≤ 5, let

ES(Xn(i, j) |X(i)) := ∂vnES(Xv,j(i))
∣∣∣
v=1

, (7.12)

where ES(Xv,j(i)) is the FRTB-ES of the row Xv,j(i), and v = 1 represents vn = 1 for all n.

We call ES(Xn(i, j) |X(i)) the Euler allocation of the FRTB-ES.

The chain rule in differentiation yields the following representation.

Lemma 7.3.2 (Representation for Euler Allocation). For 1 ≤ n ≤ N, 1 ≤ i ≤ 6, 1 ≤ j ≤ 5,

ES(Xn(i, j) |X(i)) =
ES(X(i, j))

ES(X(i))
∂vnES

(
Xv(i, j)

)∣∣∣
v=1

, (7.13)

where Xv(i, j) =
∑

n vnXn(i, j).

Remark. Note that, ∂vnES(Xv(i, j))
∣∣
v=1

on the right-hand side of (7.13) is the standard Euler

allocation of ES(X(i, j)). Therefore, the Euler allocation under FRTB-ES is the weighted

version of the standard Euler allocation. The scaling factor ES(X(i, j))/ES(X(i)) reflects the

ratio between the standalone ES of X(i, j) and the FRTB-ES of X(i). This scaling factor is

applied to all risk positions with the same liquidity horizon.
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When the distribution of X(i, j) satisfies certain regularity conditions (cf. [122, Assump-

tion (S)]), the standard Euler allocation can be written as a conditional expectation (cf.

[122]):

∂vnES
(
Xv(i, j)

)∣∣∣
v=1

= E
[
Xn(i, j) |X(i, j) ≥ VaR(X(i, j))

]
=: SE

(
Xn(i, j) |X(i, j)

)
, (7.14)

where VaR(X(i, j)) is the Value-at-Risk of X(i, j) calculated at the 97.5% quantile. The

conditional expectation above can be calculated by the scenario-extraction method and hence

is denoted by SE
(
Xn(i, j) |X(i, j)

)
.

After applying the Euler allocation to the FRTB-ES under the full set of risk factors, and

by treating the scaling factor as a constant, we have the following allocation to the IMCC.

Definition 7.3.3 (Euler Allocation of IMCC). For 1 ≤ n ≤ N, 1 ≤ i ≤ 6, 1 ≤ j ≤ 5, let

IMCCE(Xn(i, j) |X(i)) := 0.5
ESR,S(X(i))

ESR,C(X(i))
ESF,C

(
Xn(i, j) |X(i)

)
. (7.15)

We call IMCCE(Xn(i, j) |X(i)) the Euler allocation of the expected-shortfall-capital-charge.

For the risk-profile Xn, we define its Euler allocation of the IMCC as

IMCCE(Xn |X) =
∑
i,j

IMCCE
(
Xn(i, j) |X(i)

)
.

Remark. In the definition above, IMCCE(Xn |X) should be differentiated with Xn, where

the former one is a real number and which refers to the capital allocation to risk position n

in the sense of liquidity-horizon-adjusted loss, while the latter one refers to a 6× 5 matrix.

Proposition 7.3.4 (Full Allocation of the Euler Scheme). The Euler allocation of IMCC is

a full allocation, i.e.,

∑
n

IMCCE(Xn |X) =
∑
n,i,j

IMCCE
(
Xn(i, j) |X(i)

)
= IMCC(X).
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Remark. If the expected shortfall of Xv(i, j) is ceiling at zero, then (7.13) can be replaced by

ES+(Xn(i, j) |X(i)) =


ES+(X(i,j))

ES+(X(i))
SE
(
Xn(i, j) |X(i, j)

)
if ES(X(i, j)) > 0

0 otherwise

. (7.16)

The resulting Euler allocation of IMCC is still a full allocation, since ES+ is still homogeneous

of degree 1.

When a portfolio contains hedging positions, the Euler allocation on regular ES could pro-

duce negative allocations. However, since the FRTB-ES discourages hedging across different

RF-and-LH-buckets, negative allocations could be reduced or disappeared under FRTB. The

following example illustrates this point.

Example 7.3.5 (Mitigated Negative Allocations in the FRTB Euler Scheme). Consider a

portfolio with two risk positions whose risk-profiles are denoted by Y and Z respectively.

We assume that Y concentrates on RFi and LHj , and Z concentrates on RFk and LHj , with

1 ≤ i 6= k ≤ 5. Therefore, Y = Y (i, j) and Z = Z(k, j). We assume that Y = −Z and both of

them follow standard normal distributions. Then the net loss of the portfolio X = Y +Z = 0,

and the standard Euler allocation of regular ES would be negative for either Y or Z, say

SE(Y |X) < 0.

However, under FRTB framework, X(i) = Y (i, j) = Y . Then

IMCCE
(
Y (i, j) |X(i)

)
= 0.5

ESR,S(Y )

ESR,C(Y )
ESF,C(Y |X(i)) = 0.5

ESR,S(Y )

ESR,C(Y )
ESF,C(Y ) > 0.

Therefore, this positive allocation could compensate the negative allocation from

IMCCE
(
Y (6, j) |X(6)

)
.

In the end, IMCCE(Y |X) could be less negative, or even positive, comparing to SE(Y |X).

7.3.2 Constrained Aumann-Shapley Allocation

The Shapley and Aumann-Shapley allocations were introduced in [38], where the results of

[112] and [5] on coalitional games were applied to capital allocation problems. The concepts

in those two allocations were combined in [76] to introduce the constrained Aumann-Shapley
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allocation, where permutations of different risk positions are restricted to each business unit.

In the FRTB IMA framework, the risk factor bucketing rule produces a natural constraint

on risk profile organisations. Therefore, motivated by [76], we constrain the Shapley-type

permutations by different LHs.

We introduce the following full liquidity horizon permutation matrix :

L :=



10 20 40 60 120

10 20 40 120 60

...
...

. . .
...

...

120 60 40 20 10


5!×5

.

Each row of L records a permutation of liquidity horizons {10, 20, 40, 60, 120}. There are

5! = 120 permutations in total. For a given row r and a liquidity horizon LHj , we denote by

L−1(r, j) the column of L in which LHj locates. For example, L−1(2, 5) = 4, or equivalently,

L(2, 4) = LH5 = 120.

Given a risk-profile Xn, a risk factor category RFi, a liquidity horizon LHj , and a per-

mutation of liquidity horizons (say r-th row in L). We want to first allocate ES(X(i)) to

Xn(i, j). We call this allocation the CAS allocation of the FRTB-ES, and denote it by

CAS(r,Xn(i, j)).

To introduce the value of CAS(r,Xn(i, j)), let v = (vn)1≤n≤N be a sequence of real numbers,

q ∈ [0, 1], and

Xv,r,j(i) =
∑
n

Xv,r,j
n (i), (7.17)

where Xv,r,j
n (i) is a row with entries Xn(i, `) at the `-th column if L−1(i, `) < L−1(i, j) (i.e.,

LH` appears before LHj in the permutation r); the entry vnXn(i, j) at the j-th column; and

zero in all other columns. Take the second row in matrix L as an example, for j = 5, we have

Xv,2,5
n (i) =

(
Xn(i, 1), Xn(i, 2), Xn(i, 3), 0, vnXn(i, 5)).
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Then the CAS value of the FRTB-ES is given by

CAS(r,Xn(i, j)) :=

∫ 1

0
∂vnES(Xv,r,j(i))

∣∣∣
v=q

dq,

where v = q means vn = q for all n. Intuitively, ∂vnES(Xv,r,j(i))|v=q is the marginal contribu-

tion, in the direction of Xn(i, j), of the FRTB-ES given the portfolio’s risk-profile consisting

of qX(i, j) and all X(i, `), if LH` appears before LHj in the permutation r.

Lemma 7.3.6 (CAS Value under FRTB-ES). For 1 ≤ n ≤ N , 1 ≤ i ≤ 6, 1 ≤ j ≤ 5, and

1 ≤ r ≤ 5!,

CAS(r,Xn(i, j)) = η(r, i, j) ∂vnES
(
Xv(i, j)

)∣∣∣
v=1

, (7.18)

where

η(r, i, j) =

√∑
1≤s≤L−1(r,j) ES

(
X(i,L(r, s))

)2 −√∑1≤s<L−1(r,j) ES
(
X(i,L(r, s))

)2
ES
(
X(i, j)

) . (7.19)

When the distribution of X(i, j) satisfies [122, Assumption (S)], the derivative on the right-

hand side of (7.18) can be replaced by SE
(
Xn(i, j) |X(i, j)

)
.

Remark. Similar to the Euler allocation under the FRTB-ES, the CAS allocation is also a

weighted version of the standard Euler allocation. The scaling factor η(r, i, j) is the ratio

between the X(i, j) induced increment of FRTB-ES in the permutation r and the standalone

ES of X(i, j).

After averaging over all permutations, we introduce the final version of the CAS allocation

to the IMCC.

Definition 7.3.7 (CAS Allocation of IMCC). For 1 ≤ n ≤ N , 1 ≤ i ≤ 6, 1 ≤ j ≤ 5,

IMCCC(Xn(i, j) |X(i)) := 0.5
ESR,S(X(i))

ESR,C(X(i))

1

5!

5!∑
r=1

CASF,C(r,Xn(i, j)),

where CASF,C is the CAS value of FRTB-ESF,C. We call IMCCC(Xn(i, j) |X(i)) the CAS

allocation of the IMCC.

Proposition 7.3.8 (Full Allocation of the CAS Scheme). The CAS allocation of IMCC is a

full allocation.
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If the ES for Xv(i, j) is ceiling at zero, then the CAS allocation can be adjusted similarly

as in (7.16). The adjusted CAS allocation is still a full allocation.

Remark. An important concept for capital allocation is the associativity property (see Def-

inition 2.4.4). Consider a subportfolio Y in X, where Y is aggregated from risk-profiles

{Ym}1≤m≤M . We want to know whether the allocation to the portfolio Y equals to the sum

of allocations to all {Ym}, i.e. whether ρ (Y |X) =
∑

m ρ (Ym|X) is true. The answer to this

question is positive for both Euler and CAS allocations. This is due to the fact that both of

them are scaled versions of the Euler allocation for the regular ES, which is associative itself.

7.3.3 The Second Step Allocation

After the first step of both allocation methods, capital is allocated to each liquidity-horizon-

adjusted loss Xn(i, j). For the unconstrained part i = 6, we consider Xn(6, j) =
∑5

i=1Xn(i, j)

and use the standard Euler allocation to find IMCC(Xn(i, j) |X(6)).

Now for each 1 ≤ i ≤ 6, since Xn(i, j) is aggregated from X̃n(i, k) with k ≥ j (see

(7.2)), it therefore becomes natural to extract the capital associated to each X̃(i, k) from

the capital allocated to X(i, j). Recall from (7.2). We can treat Xn(i, j) as a portfolio of√
LHj−LHj−1

10 X̃n(i, k) with k ≥ j. Hence we use the Euler method to allocate capital from

Xn(i, j) further down to each
√

LHj−LHj−1

10 X̃n(i, k). We denote the resulting allocations by

IMCC

(√
LHj − LHj−1

10
X̃n(i, k)

∣∣∣∣Xn(i, j)

)
, k ≥ j.

Now use the associativity property in Definition 2.4.4, we can sum all capital from Xn(i, j)

with j ≤ k to get the contribution of X̃n(i, k):

IMCC
(
X̃n(i, k)|X(i)

)
=
∑
j≤k

IMCC

(√
LHj − LHj−1

10
X̃n(i, k)

∣∣∣∣Xn(i, j)

)
. (7.20)

In the end, combine the constrained and the unconstrained allocations, the allocation for the

natural position X̃n(i, j), with 1 ≤ n ≤ N , 1 ≤ i ≤ 5 and 1 ≤ j ≤ 5, is given by

IMCCTotal
(
X̃n(i, k)|X(i)

)
:= IMCC

(
X̃n(i, k)|X(i)

)
+ IMCC

(
X̃n(i, k)|X(6)

)
. (7.21)
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7.3.4 Extension

In the previous two subsections, the Euler and the CAS allocations of the IMCC are ap-

plied to FRTB-ES for the full set under regular scenarios; and the stress scaling factor

ESR,S(X(i))/ESR,C(X(i)) is treated as a constant for each RFi. In this subsection, we con-

sider the impact of Xn(i, j) from the stress scaling factors and introduce the associated

modifications to the Euler and the CAS allocations. The second step allocation is the same

as in Section 7.3.3.

Definition 7.3.9 (Euler Allocation of IMCC with Stress Scaling Adjustment). For 1 ≤ n ≤

N , 1 ≤ i ≤ 6, 1 ≤ j ≤ 5, we define

IMCCE,S
(
Xn(i, j) |X(i)

)
:= 0.5 · ∂vn

[ESR,S
(
Xv,j(i)

)
ESR,C

(
Xv,j(i)

)ESF,C
(
Xv,j(i)

)]∣∣∣
v=1

.

Taking differentiations to each FRTB-ESs, we obtain

Proposition 7.3.10 (Euler Allocation of IMCC with Stress Scaling Adjustment, Continued).

For 1 ≤ n ≤ N , 1 ≤ i ≤ 6, 1 ≤ j ≤ 5,

IMCCE,S
(
Xn(i, j) |X(i)

)
= 0.5

[ESR,S(X(i))

ESR,C(X(i))
ESF,C

(
Xn(i, j) |X(i)

)
+

ESF,C(X(i))

ESR,C(X(i))
ESR,S

(
Xn(i, j) |X(i)

)
−ESR,S(X(i))ESF,C(X(i))

ESR,C(X(i))2
ESR,C

(
Xn(i, j) |X(i)

)]
.

(7.22)

The previous expression for IMCCE,S motivates us to define the following CAS allocation

with the scaling adjustment.

Definition 7.3.11 (CAS Allocation of IMCC with Stress Scaling Adjustment). For 1 ≤ n ≤

N , 1 ≤ i ≤ 6, 1 ≤ j ≤ 5, we define

IMCCC,S
(
Xn(i, j) |X(i)

)
:=

0.5

5!

5!∑
r=1

[ESR,S(X(i))

ESR,C(X(i))
CASF,C

(
r,Xn(i, j)

)
+

ESF,C(X(i))

ESR,C(X(i))
CASR,S

(
r,Xn(i, j)

)
−ESR,S(X(i))ESF,C(X(i))

ESR,C(X(i))2
CASR,C

(
r,Xn(i, j)

)]
.
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Proposition 7.3.12 (Full Allocation and Associativity under Stress Scaling Adjustment).

Both Euler and CAS allocations of IMCC with scaling adjustment are full allocations and

satisfy the additivity property.

7.4 Simulation Analysis

7.4.1 Positive Correlation

This simulation exercise illustrates the difference of allocations among different RF-and-LH-

buckets. We assume that there is only one risk position, and all X̃(i, j) have identical normal

distributions with zero mean and 30% annual volatility. We consider the following four

scenarios of correlation structures:

(i) Independence: all X̃(i, j) are mutually independent;

(ii) Uniform positive correlation: each pair of X̃(i, j) and X̃(k, l) have correlation 0.99;

(iii) Positive correlation among RFs and zero correlation among LHs: corr(X̃(i, j), X̃(k, j)) =

0.99 and corr(X̃(i, j), X̃(i, k)) = 0 for any i 6= k;

(iv) Positive correlation among LHs and zero correlation among RFs: corr(X̃(i, j), X̃(k, j)) =

0 and corr(X̃(i, j), X̃(i, k)) = 0.99 for any i 6= k.

We simulate risk-profiles for 250 days, risk-profiles are independent across different days,

and risk-profiles in the same day follow the correlation scenarios above. The stress period

scalings are assumed to be 1 for all RFs. First, we report and compare the IMCC and the

regular 97.5% ES values in the following table.

Scenario IMCC Regular ES

(i) Independent 12.48 3.28

(ii) Uniform Positive Corr 28.57 16.70

(iii) Zero-LH-Corr 18.28 7.81

(iv) Zero-RF-Corr 21.00 7.59

Table 7.1: FRTB IMCC v.s. regular ES

We can see from Table 7.1 that the IMCC values are between 1.7 and 3.8 times of the

regular ES. Moreover, strong positive correlations among different liquidity horizons (scenario
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(iv)) increase the capital more than the scenario with strong positive correlations among dif-

ferent risk factor categories (scenario (iii)). This reflects the FRTB liquidity horizon bucketing

rule.

Figure 7.1 illustrates the Euler allocation of IMCC, the CAS allocation of IMCC, and the

Euler allocation of regular ES, respectively. It reports allocations to different X̃(i, j), after

combining the constrained and the unconstrained allocations (see Equation (7.21)).

Figure 7.1: Euler allocation of IMCC (Euler FRTB ES), CAS allocation of IMCC (CAS
FRTB ES), and Euler allocation of regular ES (Euler Reg ES). Upper-left panel: scenario
(i); upper-right panel: scenario (ii); bottom-left panel: scenario (iii); bottom-right panel:
scenario (iv). Each panel presents the percentage of allocation to different X̃(i, j). The total
capital charges are reported in Table 7.1

Figure 7.1 shows that both FRTB allocations typically allocate more capital to risk fac-

tors with longer liquidity horizons. This feature is due to the facts that 1) longer liquidity

horizon has bigger scalings (see Equation (7.2)); and 2) longer liquidity horizon has more

allocation contributions from shorter liquidity horizon allocations (see Equation (7.20)). On

the other hand, due to allocations from the unconstrained part, when there is no strong
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positive correlation among RFs, allocations to each LH vary within the same RF category.

The upper-left panel of Figure 7.1 shows that the Euler allocation for regular ES present

large variations and negative allocations, even when there is no negative correlation. These

features are due to the instability of the Euler allocation for regular ES or VaR, which has been

documented in [130]. The kernel smoothing technique (see [41]) can improve the stability of

the Euler allocation. Figure 7.2 presents the allocations when the kernel smoothing technique

is applied to each method. Compare Figures 7.1 and 7.2, we find that the kernel smoothing

significantly improves the stability of the Euler allocation for the regular ES, but it is less

effective on FRTB allocations.

Figure 7.2: Kernel smoothed allocations

7.4.2 Hedging

In the second simulation exercise, we analyse three scenarios of hedging relations: hedging

between 2 RFs; hedging between 2 LHs; and hedging between two risk positions within the

same bucket. We treat different buckets as different risk positions. In this way, Xn(i, j) =
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√
LHj−LHj−1

10 X̃n(i, j), and the correlations between different X̃n(i, j) are the same as the

correlations between different Xn(i, j). This allows us to focus on the impact of FRTB

allocations with hedging positions.

We consider the following three correlation structures:

(i) Strong hedging between EQ and IR: corr(X̃(3, j), X̃(5, j)) = −0.99 for any j and zero

correlation between all other pairs;

(ii) Strong hedging between LH1 and LH2: corr(X̃(i, 1), X̃(i, 2)) = −0.99 for all i and zero

correlation between all other pairs;

(iii) Strong hedging between 2 risk positions within the same bucket: corr(X̃1(i, j), X̃2(i, j)) =

−0.99 for all i, j, and zero correlation between all other pairs.

Simulation settings remain the same as in the previous exercise. The IMCC and the

regular ES are reported in Table 7.2 below. Because FRTB restricts hedging among different

buckets, so the ratios between IMCC and ES in scenario (i) and (ii) are larger than the ratio

in scenario (iii), where hedging within the same bucket is not restricted by FRTB.

Scenario IMCC Regular ES

(i) RF Hedging 7.90 2.17

(ii) LH Hedging 8.43 2.55

(iii) Position Hedging 0.84 0.33

Table 7.2: FRTB IMCC v.s. Regular ES

Figure 7.3 illustrates allocations of the IMCC and the regular ES. The left and middle

panels show that, even though there are negative correlations between different RF or LH

buckets, the Euler and CAS allocations of IMCC are still positive. This confirms our analysis

in Example 7.3.5.

When hedging appears in the same bucket, the right panel in Figure 7.3 shows that there

could be negative allocations for both Euler and CAS allocations of the IMCC. But their

magnitudes are smaller than the Euler allocations to the regular ES. Consider the facts that,

for the Euler allocation of the regular ES, one scenario extraction is applied to each loss

simulation of 250 days; however, in both Euler and CAS allocations of IMCC, one scenario

extraction is applied to each bucket, therefore, there are in total 30 = 6×5 scenario extractions
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Figure 7.3: Allocations of IMCC and regular ES for portfolios with hedging components.
Left panel: hedging structure (i); middle panel: hedging structure (ii); right panel: hedging
structure (iii). Each panel presents the percentage of allocation to different X̃(i, j). The total
capital charges are reported in Table 7.2

applied to each loss simulation of 250 days. Since the final allocation of a risk position is

a weighted sum of 30 scenario extraction results, hence the FRTB allocations produce more

stable results comparing to regular ES allocations.

In order to further analyse negativity and stability of different allocations, we extend the

hedging scenario (iii) from 2 risk positions to 20 risk positions. Each pair of risk positions

follows the hedging scenario (iii). Figure 7.4 illustrates histograms and kernel densities of

different allocations. Even without aggregations among different RF and LH classes, Figure

7.4 shows that the Euler and CAS allocations of IMCC still produce tighter histograms

comparing to the Euler allocation of regular ES. Moreover, comparing to the Euler allocation

of IMCC, we observe that the CAS allocation produces slightly more stable results with less

extreme allocations. This is due to the fact that the CAS allocation is an average of 5!

permutations.

7.4.3 Allocation with Scaling Adjustment

In the third simulation exercise, we illustrate the impact of the choice of reduced sets on the

IMCC allocations, by taking the scaling adjustment in Section 7.3.4 into account. Consider

the situation where the reduced factor set is chosen so that all Xn(i, j) have similar distri-

butions in both the stressed period and the current period, then ESR,S(X(i)) is similar to

ESR,C(X(i)), and the allocations ESR,S
(
Xn(i, j) |X(i)

)
and ESR,C

(
Xn(i, j) |X(i)

)
are simi-
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Figure 7.4: Histograms and kernel densities for FRTB allocations and regular ES allocation.
Extreme allocations: i) Euler FRTB ES: left end, -5.50%; right end: 6.32%; ii) CAS FRTB
ES: left end, -4.69%; right end: 5.39%; iii) Euler Regular ES: left end, -11.19%; right end:
11.83%

lar as well. Therefore, the second and the third terms on the right-hand side of (7.22) are

similar, so

IMCCE,S
(
Xn(i, j) |X(i)

)
≈ 0.5

ESR,S
(
X(i)

)
ESR,C

(
X(i)

)ESF,C
(
Xn(i, j) |X(i)

)
. (7.23)

This allocation will be significantly different from the case where risk factors have distinct

distributions in the stress period and the current period.

We follow the convention of the previous exercise where different buckets are treated as

different risk positions. We consider a portfolio with two risk positions. During the current

period, all X̃n(i, j) are independent and have the same distribution. During the stress period,

the correlations between any pairs of X̃n(i, j) become 0.7. The standard deviations of X̃1(3, 3)

and X̃2(1, 4) during the stress period become 9 times of the standard deviations during the

current period. Distributions of all other X̃n(i, j) in the stress period are assumed to be the

same as in the current period.

We consider two reduced sets:

� Set A: all risk factors except 60-days EQ and 120-days CM

� Set B: all risk factors except 40-days EQ and 60-days CM
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Note that, Set B excludes risk factors which have distinct distributions in the stress pe-

riod. Table 7.3 shows that both reduced sets satisfy the requirement that ESR,C(X(i)) ≥

75%ESF,C(X(i)) for all RFs.

CM CR EQ FX IR Unconstrained

Set A 80% 100% 97% 100% 100% 95%

Set B 97% 100% 94% 100% 100% 98%

Table 7.3: Ratios between the FRTB-ES using the reduced set and the full set

Table 7.4 shows different allocations with/without stress-scaling adjustment using differ-

ent reduced sets. We can see from results associated to the Set A that, when distributions

of risk factors in the reduced set are different between the stress and current periods, al-

locations with stress-scaling adjustment increases the percentages of allocations on stress

positions. However, when distributions of risk factors in the reduced set are similar between

the stress and current periods, results associated to Set B indicate that allocations are the

same with/without stress-scaling adjustment. Moreover the total IMCC is much lower using

Set B than Set A.

Set A Set A Set B Set B

(Adjustment) (Without adj) (Adjustment) (Without adj)

CM.60 days.Position 2 4.00% 2.24% 1.43% 1.43%

EQ.40 days.Position 1 5.04% 3.26% 2.11% 2.11%

Table 7.4: Percentages of allocations with and without stress-scaling adjustment using differ-
ent reduced factor sets. Columns labeled adjustment report allocations using (7.22), columns
labeled without adj report allocation using (7.15). The total IMCC are the same in both
methods: IMCC(Set A)=11.55; IMCC(Set B)=3.14

7.5 Conclusion

The FRTB IMA introduces higher standards on the calculations of bank’s regulatory capital.

As a result, corresponding capital allocation methods should be considered to reflect the new

capital structure feature, meanwhile, new methods should also be efficient for implementation.

Our main contribution in this chapter is to solve the issues above. Theoretical analy-
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sis and numerical results show, compared to the traditional ES allocation, the Euler and

CAS allocations for FRTB could correctly reflect the non-cross hedging requirements among

different RF-and-LH-buckets. The extended case in Section 7.3.4 takes the stress scenario

allocation into account as well. In terms of the computational complexity, given the close

connection between our new methods and traditional ES allocations, apart from organising

the components from the FRTB IMA calculation, there is no extra complex computation

required. Therefore, the computational efficiency of our methods should be the same as in

the traditional ES and VaR allocations.

One future work is to apply and analyse our models in real-life trading book portfolios;

besides, the portfolio optimisation problem (RORAC optimisation) under the FRTB forms

another branch of potential research.

Appendix 7.A Proof of Lemma 7.2.2

The expected shortfall is positive homogeneous, then ES(aX(i, j)) = aES(X(i, j)). All oper-

ations in (7.4), (7.6), and (7.7) are positive homogeneous. Hence the statement in (i) holds.

For (ii), recall that the expected shortfall is sub-additive, i.e.,

ES((X + Y )(i, j)) ≤ ES(X(i, j)) + ES(Y (i, j)).

When ES((X + Y )(i, j)) ≥ 0 for all j, then

ES((X + Y )(i)) =

√√√√ 5∑
j=1

ES((X + Y )(i, j))2 ≤

√√√√ 5∑
j=1

[
ES(X(i, j)) + ES(Y (i, j))

]2
≤

√√√√ 5∑
j=1

ES(X(i, j))2 +

√√√√ 5∑
j=1

ES(Y (i, j))2 = ES(X(i)) + ES(Y (i)),

where the second inequality follows from the Minkowski inequality.

For (iii), it follows from the sub-additivity for ESF,C that

ESF,C((X + Y )(i)) ≤ ESF,C(X(i)) + ESF,C(Y (i)).
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Then, when (7.9) is satisfied, we have

IMCC((X + Y )(i)) =ESF,C((X + Y )(i))
ESR,S((X + Y )(i))

ESR,C((X + Y )(i))

≤ESR,S((X + Y )(i))

ESR,C((X + Y )(i))

[
ESF,C(X(i)) + ESF,C(Y (i))

]
≤ESR,S(X(i))

ESR,C(X(i))
ESF,C(X(i)) +

ESR,S(Y (i))

ESR,C(Y (i))
ESF,C(Y (i))

=IMCC(X(i)) + IMCC(Y (i)).

Appendix 7.B Proof of Proposition 7.3.4

Since the FRTB-ES, defined in (7.4), is a risk measure homogeneous of degree 1. It then

follows from Euler’s theorem on homogeneous functions (see [123, Theorem A.1]) that the

Euler allocation on FRTB-ES is a full allocation, i.e.,

∑
n,j

ESF,C
(
Xn(i, j) |X(i)

)
= ESF,C(X(i)).

This identity, combined with (7.6) and (7.7), yields

∑
n,i,j

IMCC
(
Xn(i, j) |X(i)

)
=0.5

6∑
i=1

ESR,S(X(i))

ESR,C(X(i))

(∑
n,j

ESF,C
(
Xn(i, j) |X(i)

))

=0.5
6∑
i=1

ESR,S(X(i))

ESR,C(X(i))
ESF,C(X(i)) = IMCC(X).

Appendix 7.C Proof of Lemma 7.3.6

When LHj is in the first column of the permutation r, i.e., L−1(r, j) = 1, the row Xv,r,j(i)

has only one nonzero entry
∑

n vnXn(i, j) at the j-th column. Then

ES
(
Xv,r,j(i)

)
=
∣∣ES
(∑

n

vnXn(i, j)
)∣∣.
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Since the expected shortfall is homogeneous of degree 1, then

∂vnES
(
Xv,r,j(i)

)∣∣∣
v=q

=sign
(
ES(qX(i, j))

)
∂vnES

(∑
n

vnXn(i, j)
)∣∣∣
v=q

=sign
(
ES(X(i, j))

)
∂vnES

(∑
n

vnXn(i, j)
)∣∣∣
v=1

.

As a result,

CAS(r,Xn(i, j)) =

∫ 1

0
∂vnES

(
Xv,r,j(i)

)∣∣
v=q

dq =

∫ 1

0
∂vnES

(
Xv(i, j)

)∣∣
v=1

dq

= ∂vnES
(
Xv(i, j)

)∣∣
v=1

.

Note that η(r, i, j) = sign
(
ES(qX(i, j))

)
in this case. Therefore the previous expression of

CAS(r,Xn(i, j)) agrees with (7.18).

When LHj is not in the first column, i.e., L−1(r, j) > 1,

ES
(
Xv,r,j(i)

)
=

√
ES
(∑

n

vnXn(i, j)
)2

+
∑

1≤s<L−1(r,j)

ES
(
i,L(r, s)

)2
.

Denote

ES
(
Xq,r,j(i)

)
=

√
ES
(
qX(i, j)

)2
+

∑
1≤s<L−1(r,j)

ES
(
i,L(r, s)

)2
.

It follows from the homogeneous property of the expected shortfall that

∂vnES
(
Xv,r,j(i)

)∣∣∣
v=q

=
ES
(
qX(i, j)

)
∂vnES

(∑
n vnXn(i, j)

)∣∣
v=q

ES
(
Xq,r,j(i)

)
=
qES

(
X(i, j)

)
∂vnES

(∑
n vnXn(i, j)

)∣∣
v=1

ES
(
Xq,r,j(i)

) .
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Integrate the derivative with respect to q, we obtain

∫ 1

0
∂vnES

(
Xv,r,j(i)

)∣∣∣
v=q

dq = ∂vnES
(
Xv(i, j)

)∣∣
v=1

∫ 1

0

qES
(
X(i, j)

)
ES
(
Xq,r,j(i)

)dq
=
∂vnES

(
Xv,r,j(i)

)∣∣∣
v=1

ES
(
X(i, j)

) ∫ 1

0

qES
(
X(i, j)

)2
ES
(
Xq,r,j(i)

) dq
=
∂vnES

(
Xv,r,j(i)

)∣∣∣
v=1

2 ES
(
X(i, j)

) ∫ 1

0

d
(
q2ES

(
X(i, j)

)2)
ES
(
Xq,r,j(i)

) dq

= η(r, i, j) ∂vnES
(
Xv,r,j(i)

)∣∣∣
v=1

.

Appendix 7.D Proof of Proposition 7.3.8

From Lemma 7.3.6 and the fact that the standard Euler allocation is a full allocation, we

have

∑
n

CAS(r,Xn(i, j)) = η(r, i, j)
∑
n

∂vnES
(
Xv(i, j)

)∣∣
v=1

= η(r, i, j)ES
(
X(i, j)

)
=

√ ∑
1≤s≤L−1(r,j)

ES
(
X(i,L(r, s))

)2 −√ ∑
1≤s<L−1(r,j)

ES
(
X(i,L(r, s))

)2
.

Therefore ∑
n,j

CAS(r,Xn(i, j)) = ES(X(i)).

The rest proof is similar to the proof of Proposition 7.3.4.

Appendix 7.E Proof of Proposition 7.3.12

Recall that ∑
n,j

ES
(
Xn(i, j) |X(i)

)
= ES

(
X(i)

)
.
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Then by applying the previous identity to the Euler allocation for ESF,C,ESR,S, and ESR,C,

respectively, we obtain

∑
n,j

IMCCE,S
(
Xn(i, j) |X(i)

)
= 0.5

[ESR,S(X(i))

ESR,C(X(i))
ESF,C

(
X(i)

)
+

ESF,C(X(i))

ESR,C(X(i))
ESR,S

(
X(i)

)
−ESR,S(X(i))ESF,C(X(i))

ESR,C(X(i))2
ESR,C

(
X(i)

)]
= 0.5

ESR,S(X(i))

ESR,C(X(i))
ESF,C

(
X(i)

)
= IMCC

(
X(i)

)
.

The proof for IMCCC,S is similar.
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Chapter 8

Application in Systematic Trading

In this chapter, we study the application of FPTs in systematic trading. Under certain

market environments, and for a universe set of underlying assets, not all of them might

generate desirable returns within a specified period; therefore, by effectively identifying and

ruling out those assets with less returns, an investor could have a better performance in the

market. In view of this, we propose a new trading strategy which selects investment assets

according to their probabilities of attaining a predefined trading target. Before illustrating the

FPT-based trading strategy, in this chapter we first introduce a mathematical framework for

defining trading signal identification strategies and demonstrate how existing strategies can

be accommodated to our definition; followed by which, the FPT trading signal identification

strategy is discussed. By considering various diffusion models, the new strategy enables us

to select underlying assets across different markets and taking different price patterns into

account. At the end of this chapter, we use simulated portfolios to examine our strategy.

Numerical analysis shows, in comparison with the Markowitz optimal portfolio on the universe

set, the FPT strategy could evidently enhance the investment performance. Additionally,

as an illustration to Chapter 7, we calculate and allocate the FRTB capital charges of the

simulated portfolios. In the appendices of this chapter, real data backtest of the FPT strategy

on the China stock market is provided.

8.1 Introduction, Motivation, and Literature Review

Broadly speaking, systematic trading refers to trading activities which are fully or partially

automated by employing computers. Usually, it is not easy to precisely define what spe-
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cific activities are within or without the range of systematic trading. However, as long as

an executable algorithm is properly defined and which is implemented by the computer to

participate in daily trading, we can treat such a system as a systematic trading machine.

The idea of systematic trading has been widely brought into practice since the 1990s.

One of the most famous examples would be the story of the Long-Term Capital Management

(LTCM) [40]. Founded in 1994 by the star trader at the Wall Street, J. Meriwether, and

with the help of two future Nobel Prize winners, M.S. Scholes and R.C. Merton, the fund

had nearly tripled its investors’ money in the first 3 years. However, in the summer of 1998,

due to the wrong-direction bet on the Russian Ruble and followed by the margin call caused

liquidity crisis, the fund suffered severe losses in its 5th year, and in the end, accepted the

rescue package from the Federal Reserve. Even though this is not a story with a happy

ending, still, the LTCM has initiated a revolution in the financial industry - both from the

way of trading and the attention on risk management.

One major trading strategy employed by the LTCM is the long-short strategy based on

arbitrage (convergence trade). Believing in the efficient market hypothesis, and by figuring

out the assets which are mispriced1, the LTCM would buy or sell those assets to attain higher

excess returns. Such a strategy relies highly on computers and introduces the new concept

of systematic trading. When time passed through the new millennial, computers are playing

more and more important roles in trading. While on the other hand, the development in

technology facilitates experiments in new trading strategies. Nowadays, no matter in high-

or low-frequency tradings, it is difficult to imagine banks or other investment institutions who

do not use automated processes in their trading decisions. And even for individual investors,

it becomes very common to use algorithms to identify trading opportunities. Against this

context, we want to verify the feasibility of applying the FPT to the area of systematic

trading.

In general, a systematic trading platform is a complex system, which, roughly speaking,

involves data processing, signal generation, trade execution, and risk control, etc. In this

chapter, we focus on the signal generation part. This is sometimes also referred to as the

portfolio selection problem. We believe that such a selection problem should contain two

stages. In the first stage, an investor selects desired components of a portfolio and determines

1The mispricing is not necessarily to be the arbitrage price on financial derivatives. It can also refer to
cash products whose prices deviating from their fundamental values.
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their long-short positions; and in the next step, he or she allocates the weights for each of

the components. The second step has been answered by the modern portfolio theory (MPT)

from H. Markowitz [83, 84], which we have introduced in Section 2.4. The first stage then, of

how to choose a proper portfolio according to certain criteria, forms the major consideration

of this chapter. Throughout this chapter, we denote the first stage by the trading signal

identification (TSI).

Within the range of the TSI, there are many well-explored strategies. For example,

the simplest momentum strategy [80] selects portfolios based on historical returns of each

component. As an extension to the momentum strategy, statistical indicators [92] like the

moving average convergence/divergence (MACD), the exponentially weighted moving average

(EWMA), etc., are widely used in price forecasting. Today, with the fast development in data

science and machine learning, more strategies based on data mining [99] and factor analysis

[53] have been studied. Apart from the statistical analysis, another branch of strategies

is built on by practicing financial or economic theories. The Capital Asset Pricing Model

(CAPM) [66] is one of such. And later, the Fama-French Three Factor Model [42, 43] has

extended the CAPM framework by introducing market caps and book values into.

In this chapter, we introduce a new concept of the executable TSI strategy and discuss

desired properties such a strategy should hold. Based on the new definition, we demonstrate

how the FPT, together with other well-developed strategies, could be mathematically de-

scribed in the TSI problem. A major part of this chapter is to illustrate and test the trading

system built from our FPT studies. The present research is motivated by the pairs trading

strategy [47] (known also as the statistical arbitrage). Traditionally, by selecting strongly

correlated pairs of assets, people assume that their spreads follow the OU process. Given

this model assumption, and by ranking the FPT probabilities of each asset, investors then

can select desired portfolio. We generalise this mechanism to different diffusion models. The

fundamental assumption of our approach is that, within a specific period, due to different

economic or financial reasons, each asset price has a unique and recognisable stochastic dy-

namic. According to our extension, the implementation of the statistical arbitrage is no more

constrained on constructing trading pairs. Instead, even for a single underlying asset, as long

as a proper SDE can be identified, we can calculate its FPT probability and correspondingly

provide a trading decision metric.

The main contribution of this chapter comes from two aspects. On the one hand, we
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propose that the portfolio selection problem should consist of two steps and we provide a

mathematical framework for defining valid strategies of the first step, i.e. the executable

TSI strategy. On the other hand, we propose the so-called FPT-TSI strategy. The new

strategy extends the application of the traditional pairs trading strategy; and with the help

of our closed-form FPTD work, the FPT-TSI enables investors to efficiently select underlyings

from a large set global portfolio. Additionally, our new strategy also takes the liquidity risk

into account, which to some extent, could help in preventing the investment failure due to

liquidity crisis (cf. the example of the LTCM). We will address more about this point in

Section 8.2.3 later. At the end of this chapter, numerical examples show that the TSI is

crucial to the investment optimisation and our FPT-TSI is a successful strategy in enhancing

the investment performance.

One special remark is that, this chapter only provides a prototype for the concept verifica-

tion. The numerical analysis is based on simulations rather than the real data. For the latter

one, an extra statistical module is required. And the strategy performance is sensitive to

the choices of statistical parameters (e.g. calibration window, p-value, etc.). While without

digging too much into the statistical side, at least, the analysis in this chapter confirms that

the concepts of TSI/FPT-TSI are reasonable. And in turn, the conclusion from this study

further proves that our previous FPT asymptotics are effective.

The rest of this chapter is organised as follows. In Section 8.2, we first define a valid TSI

strategy and then illustrate how the FPT framework accommodates under the definition.

Section 8.3 is the numerical verification based on simulation; risk management and capital

allocation are included as well. Section 8.4 concludes. 11 years China stock market backtest

is provided in the appendices of this chapter.

8.2 Trading Signal Identification via the First Passage Time

We follow the notations introduced in Section 2.4. Let I defined in (2.39) be the index

set of all tradable assets. Such assets could be stocks, bonds, or even sub-portfolios (e.g.

ETF index). Assume2 there is no transaction cost and assets in the market are fractionally

tradable. Consider a Brownian filtration
(

Ω,F , {Ft}t≥0 ,P
)

and denote a portfolio value

2These two assumptions do not restrict the application of our framework. It is only for the convenience of
mathematical derivations.
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process (self-financing) by

Vt = Ct + Pt, t ≥ 0, (8.1)

where {Ct}t≥0 is Ft-adapted and represents the cash amount. In addition,

Pt :=
∑
i∈I

w
(i)
t P

(i)
t , P

(i)
t ∈ Ft, ∀i ∈ I, (8.2)

is the total price of tradable assets under a strategy w := w(∞), where

w(∞) =
{
w

(i)
t ∈ Ft− : i ∈ I, t > 0

}
. (8.3)

In the following contents, we first define a TSI strategy. Based on the definition, we then

demonstrate the application of FPT in the TSI.

8.2.1 Executable Strategy and the TSI

In general, a TSI can be regarded as a map from the full set I to its subset S, where S ∈ P(I)

and P(I) is the power set of I. However, following this definition, there could be infinitely

many strategies. For example, we can always choose the i-th asset, i.e. S = {i}, to be the

candidate portfolio. But apparently, such a selection does not have any economic explanation

nor quantitative criteria. In view of this, we therefore propose that a meaningful TSI in the

systematic trading should, at least, consist of two components: a valid trading strategy, and

quantitative criteria which can be used to evaluate the output from the strategy.

We first define an executable strategy by the following.

Definition 8.2.1 (Executable Strategy). Let {Vt}t≥0, {Ct}t≥0, {Pt}t≥0, and w := w(∞) be

defined as in (8.1), (8.2), and (8.3). We say w is an executable strategy, if for all t ≥ 0, the

following conditions are satisfied:

1. given any fixed 0 ≤ b, there exists a finite stopping time τb > t, such that


Cτb − Cτ−b = −bCτ−b
Pτb − Pτ−b = bCτ−b

,
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2. given any fixed 0 ≤ s, there also exists a finite stopping time τs > t, such that


Cτs − Cτ−s = sPτ−s

Pτs − Pτ−s = −sPτ−s

.

Remark. Though the definition reads slightly mathematical, it speaks that an executable

strategy should be able to achieve all targeting buying and selling (in terms of proportion of

b and s) within a finite time. Moreover, by summing up two equations in conditions 1 and

2, respectively, the definition further requires that the executable strategy should not break

the self-financing condition, i.e. Vτb − Vτ−b = 0 and Vτs − Vτ−s = 0.

Remark. Besides, note that we do not restrict b ≤ 1 and s ≤ 1. This enables the definition to

be applicable under short positions. More precisely, b > 1 means borrowing assets and s > 1

refers to short selling.

Example 8.2.2 (Periodically Rebalanced MPT is Executable). The periodically rebalanced

MPT weights form an executable strategy. To see this, consider t1 < t2, and correspondingly

let the optimal weights be given by wt1 :=
{
w

(i)
t1

: i ∈ I
}

and wt2 :=
{
w

(i)
t2

: i ∈ I
}

. Assume

τs = τb = t2 and there is no interest rate, then

s =
∑
i∈I

(
w

(i)
t1
− w(i)

t2

)+
P

(i)
t2
/Pt2 , and b =

∑
i∈I

(
w

(i)
t2
− w(i)

t1

)+
P

(i)
t2
/(Ct1 + sPt2).

Example 8.2.3 (Non-Executable Strategies). Obviously, not all strategies are executable.

According to Definition 8.2.1, a non-executable strategy could come from one or combinations

of the following scenarios:

1. The trading decision is not a well-defined stopping time. For example, the selling point

is the time that the current asset price attains its maximum in comparison with prices

in the near future, i.e.

τs = inf

{
u ≥ t : P (i)

u ≥ max
u≤v≤u+∆T

P (i)
v

}
.

2. The trading decision induced stopping time could be infinite. An example would be,

considering

τs = inf
{
u ≥ t : P (i)

u ≥ 100|P (i)
t = 90

}
;
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if {i} is the stock of Lehman Brothers Holdings Inc (former NYSE code LEH) and t is

the time just before the 2008 crisis, then such a strategy would never be executed.

3. The stopping time is properly defined and finite, but the self-financing condition is

broken. For instance, when selling sPτ−s amount of assets, an extra c amount of cash is

added to the cash account. In this case, if there is no PnL adjustment, the investor would

lose the tracking on the performance of the strategy. Moreover, if it is an institutional

investor and the cash c is raised from public investors, then it cannot be guaranteed

that every time the financing would be successful.

Based on the previous definition, we now introduce the concept of trading signal identi-

fication (TSI).

Definition 8.2.4 (Trading Signal Identification). Let I, W, and M be the sets of asset

index collections, executable strategies, and metric spaces, respectively. Then a trading signal

identification, denoted by T , is a map from I ×W×M to P(I), such that for I ∈ I, w ∈ W,

and m ∈M,

T (I, w,m) =: S ∈ P(I).

And the triple, (I, w,m), is referred to as the characteristic of the TSI.

A new element introduced by the definition is the set of metric spaces,M. A metric vector

m ∈M, could be either qualitative (e.g. investors’ belief of asset price rises) or quantitative

(e.g. measures of asset returns). But in general, we want the metric m to be quantified. As

such, the whole system, T (I, w,m), can be implemented by assigning proper algorithms. We

provide two TSI examples below.

Example 8.2.5 (MPT-TSI). Again, we use Markowitz’s MPT as an example. The index

set is I (with n + 1 assets), and the strategy is chosen as the optimal weights (denoted by

w∗). At time t > 0, consider the following vector of metrics:

m(∗) := [m(∗)(0), ...,m(∗)(n)]T =
[
|w∗,(0)
t |, ..., |w∗,(n)

t |
]T
,

which represents absolute values of the optimal MPT weights for each asset. Then for a
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critical value3 0 ≤ p ≤ 1, the MPT-TSI can be specified as

T MPT (I, w∗,m(∗)) =
{
i ∈ I : m(∗)(i) ≥ p

}
.

This TSI strategy selects those assets which have significant representatives (weights larger

than p) from the global basket.

Example 8.2.6 (Momentum-TSI). In the second example, we consider a simple momentum

strategy based on the asset returns. For the same global portfolio set I with n+ 1 elements,

we let

w(∗∗) =

[
1

n+ 1
, ...,

1

n+ 1

]T
,

i.e. each asset is assigned with equal weights. The stopping times of buying and selling are

chosen to be at discrete time, e.g., for t ≥ 0, τs = τb = t+ ∆T , and ∆T could be 1 month or

1 week, etc. Then by properly determining b and s, one can check that w(∗∗) is an executable

strategy. Now consider a metric vector which calculates the weighted historical returns of

each asset:

m(∗∗) := [m(∗∗)(0), ...,m(∗∗)(n)]T =

[
r0

n+ 1
, ...,

rn
n+ 1

]T
.

Then either by setting a constant threshold or by selecting the ranked returns, we can corre-

spondingly define the Momentum-TSI as

T Threshold(I, w∗∗,m(∗∗)) =
{
i ∈ I : m(∗∗)(i) ≥ p

}
, p ∈ R, or

T Rank(I, w∗∗,m(∗∗)) =
{
i ∈ I : m(∗∗)(i) ≥ m(l),(∗∗)

}
, l ∈ I,

where m(l),(∗∗) is the ordered statistic from large to small.

From Example 8.2.6, we find that by having different weights in w∗∗, the outputs of the

TSI may be totally different. This reveals the fact that some TSI problems depend on the

choices of executable strategies. While on the other hand, given a strategy and an output

of TSI, say S; by optimising the strategy (e.g. applying MPT) on the sub-portfolio S, we

may end up with different weights in comparison with the original strategy. And those new

weights in turn can be applied again in determining a new TSI. Therefore, under certain

circumstances, there is a conjugate relationship between the strategy and the TSI.

3W.l.o.g., assuming there is no short-selling allowed.
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8.2.2 Long-Short Strategy by FPT

Following the discussion at the end of the previous subsection, we introduce in this subsection

a new TSI strategy. Our TSI is based on the FPT of asset price dynamics and we will show

that it is independent of the strategy weights.

Proposition 8.2.7 (FPT Executable Strategy). Consider a discrete time vector T∆ =

{t0, t1, ..., tJ} , J ∈ N0. For constants u ≥ 0 and l ≥ 0, and for each i ∈ I, define the

take-profit and the stop-loss times as

τ (i)
u = inf

{
t ≥ tj : P

(i)
t ≥ (1 + u)P

(i)
tj

}
, tj ∈ T∆, and

τ
(i)
l = inf

{
t ≥ tj : P

(i)
t ≤ (1− l)P (i)

tj

}
, tj ∈ T∆.

Further, for each tj < t ≤ tj+1 where j ∈ {0, ..., J − 1}, and for each i ∈ I, define the buying

and the selling times as

τb = tj , and , τs = τ (i)
u ∧ τ

(i)
l ∧ tj+1,

respectively; and let w be a trading strategy as defined in (8.3) such that

w
(i)
t = w(i)

τb
1{t≤τs}. (8.4)

Then such a strategy w, together with its associated stopping times τb and τs, form an exe-

cutable strategy.

Proof. The crucial part of the proof is to show that w is a well-defined trading strategy;

especially, it is Ft−-measurable. Indeed, by our construction, the filtration generated by

1{t≤τs} is left continuous with right limits. And plus that t > τb = tj , therefore, w
(i)
t is

predictable. The rest of the proof then is concluded by checking that the conditions in

Definition 8.2.1 are satisfied.

The philosophy behind Proposition 8.2.7 is very straightforward. At the beginning of a

trading cycle, we decide and fix (during the whole cycle) the weight of each position. Then

between tj and tj+1, if either the take-profit or the stop-loss threshold is touched by the asset

price, we close such a position at the given threshold; however, if neither of them is attained,

we hold the asset until the end of the period and close the position at the current market
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price. We will explain later, that the reason of not rebalancing (reinvesting) the portfolio

within the trading cycle, is to avoid risk concentrations.

Proposition 8.2.8 (FPT-TSI). Let I be the index set of n+ 1 tradable assets and w be the

FPT executable strategy. For all j ∈ {1, ..., J} , J ∈ N, denote the total length of each trading

cycle by ∆tj := tj − tj−1, and let

mu := [mu(0), ...,mu(n)]T =
[
P(τ (0)

u ≤ ∆tj), ...,P(τ (n)
u ≤ ∆tj)

]T
, and,

ml := [ml(0), ...,ml(n)]T =
[
P(τ

(0)
l ≤ ∆tj), ...,P(τ

(n)
l ≤ ∆tj)

]T
be vectors of probabilities for the upward- and the downward-crossings, respectively. Introduce

the notation

m =
{
mu,ml

}
.

Then (I, w,m) consists of a FPT-TSI characteristic. Further consider two critical values in

evaluating the upward- and the downward-probabilities, 0 ≤ αu ≤ 1 and 0 ≤ αl ≤ 1, then the

FPT-TSI for long-only positions is given by

T (I, w,m) =
{
i ∈ I : mu(i) ≥ αu and ml(i) ≤ αl

}
. (8.5)

Proof. The proof directly follows from Definition 8.2.4.

The selection in Proposition 8.2.8 is based on the possibilities of each asset price that

would attain a predefined level. Note that, since we are choosing long positions, we want the

upper critical value to be as large as possible, while the lower critical value to be as small

as possible, i.e. αu >> αl. This ensures that asset prices in our TSI portfolio will have

much more significant probabilities of increasing during the period ∆tj , rather than which of

decreasing.

Follow Proposition 8.2.8, the FPT-TSI for short-only and long-short portfolios can be

introduced accordingly. For the former one, we can define

T Short(I, w,m) =
{
i ∈ I : ml(i) ≥ αl and mu(i) ≤ αu

}
, with αu << αl.
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And for the latter one, denote (8.5) by T Long(I, w,m) with αu >> αl, then

T Long−Short(I, w,m) = T Long(I, w,m) ∪ T Short(I, w,m).

Corollary 8.2.9 (Weight Independence of FPT-TSI). For all FPT executable strategies and

i ∈ I, as long as the initial weights w
(i)
τb in (8.4) are not zero (null), then the FPT-TSI does

not dependent on the weight selections.

Proof. For all non-null weights, the FPT-TSI only relies on the crossing probabilities of each

underlying asset. And such probabilities are invariant under weight-scalings (see Proposition

8.2.7). Therefore we conclude the proof.

8.2.3 Discussion

Feature of FPT-TSI

Different from most TSI strategies, where the selection of portfolios is based on either the

return or the risk, the FPT-TSI focuses on the level-crossing probability. In practice, the

key parameters which determine whether a strategy is successful, are the win-loss ratio and

the win-loss probabilities. Consider a simple scenario, that the portfolio has a 70% chance

of achieving a 20% increase in the following year; and a 40% chance that will lose 20% of its

current value. Then without too much thinking4, the expected return of the portfolio would

be

70%× 20%− 40%× 20% = 6%.

In this case, the win-loss ratio is given by 20%
20% = 1, and the win-loss probabilities are given

by 70% and 40%, respectively. In order to have a higher return, we want the win-loss ratio

to be as high as possible, while on the other hand, we want a higher probability in the win

and a lower in the loss. And those quantities are indeed reflected by our FPT-TSI strategy.

More precisely, the win-loss ratio in our strategy is controlled by u
l (or l

u for short positions),

and the probabilities are controlled by the thresholds αu and αl.

Apart from those two quantities, the length of a trading cycle also affects the portfolio’s

performance. Using the example above, if the win-loss ratio and the probabilities are valid

4Of course, the actual return should also take the scenarios where the complementary happened into
account, but the number below gives a quick indication of the portfolio’s performance.
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for a bi-monthly cycle, then the annualised return becomes

(1 + 6%)6 ≈ 142%.

Besides, recall the example of the LTCM. If the investor believes that the market environment

is getting deteriorated, then he or she can choose a smaller trading cycle to reduce his or her

exposures to the potential liquidity crisis. In our FPT-TSI, the trading cycle parameter is

controlled by ∆tj .

In short, the FPT-TSI enables the investor to choose portfolios according to his or her

anticipations, where these anticipations are translated into the crucial parameters discussed

above.

Absence of Weight Rebalancing

Recall the comment under Proposition 8.2.7, where we have mentioned that during one

trading cycle, there is no rebalancing on the portfolio’s weights. The reason comes from two

major considerations.

First, in contrast to the traditional MPT portfolios (in which an investor seeks for absolute

returns by hedging risk out in a diversified portfolio), the output from the FPT-TSI would

be a portfolio with a relatively small size. With time passing, where assets under our FPT

strategy are gradually sold out, the number of remaining assets becomes even less. While,

according to the modern financial theory, the reduction in asset numbers, itself, indicates

that the portfolio has become more and more risky.

Secondly, even though the asset prices in the FPT-TSI portfolio are of significant proba-

bilities in increasing (assuming in a long-only scenario), those probabilities cannot be 100%.

The risk in our portfolio, indeed, comes from the failures in the probability. After τ
(i)
u or

τ
(i)
l , where the targeted assets have been sold, if we reinvest (rebalance weights) into the

unattained underlyings, then the 1−αu or the 1−αl scenarios may happen to them; and this

will cause a risk concentration because we have more money in the positions which condition-

ally have a larger failure probability. Therefore, it would rather be better of not reinvesting

into the remaining assets.
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Metric m in the FPT-TSI

In practice, a technical difficulty from the FPT-TSI strategy is to effectively evaluate the

FPT probabilities, i.e. the metric m. Here we discuss three potential methods, together with

their pros and cons.

[Model-Independent Approach] In this approach, we do not make any assumption on

the price dynamics. The estimates of the FPT probabilities are from historical scenarios. For

example, by fixing a 5 years observation window and counting the proportions of successful

hittings within a 2 months window, one can have an estimate to the probability of each asset.

This method does not require any model assumption and can be easily implemented. How-

ever, similar as in the momentum strategy, this approach relies on the historical information

and can mislead investors, if, say, a procyclicality feature is embedded in the asset price.

[Model-Dependent Approach] Alternatively, we can assume a few asset (log-) price

dynamics which could be observed from the market, e.g. the OU process, our bubble process,

the CIR process, drifted Brownian motion, etc. Based on these candidate processes, we can

calibrate the market data into a proper model, and by our FPTD results, we are able to

calculate the m-metric. In comparison with the model-independent approach, this approach

has a more meaningful economic explanation for asset prices. And the situation in the

previous procyclicality example can be avoided to some extent. But a practical challenge of

this method is to accurately identify different SDEs and calibrate model parameters. The

discussions of this approach form the main content in the next section.

[Hybrid Approach] The third approach is a potential research topic and it combines

the pros from the previous two methods. The basic idea is to find a proper functional basis,

e.g. sin(·) and cos(·) functions; and using our FPT framework from Chapter 3, we can try

to deduce closed-form FPTDs for the functional basis. Then by employing the functional

regression, we can construct featured price dynamics for each asset and calculate their m-

metric. But in practice, a special care should be taken to avoid the overfitting issue.

8.3 Numerical Verification

In this section, we check the feasibility of the FPT-TSI in trading decisions. The m-metric

is calculated by the model-dependent approach and the results in this section are based on

simulations. Real data backtest is provided separately in Appendix 8.A.
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Before continuing the following contents, we highlight a few assumptions where we have

made to conduct the analysis.

1. There is no transaction cost nor interest rate, the market assets are fractionally tradable.

2. Each asset has a unique price dynamic and which can be exactly identified.

3. Model parameters for each asset can be accurately calibrated.

Note that, the first assumption is not critical as the test settings can be modified to

accommodate those requirements. It is only for the convenience of coding and presentation.

But the rest two assumptions are very restrictive. They require that the model identification

and calibration are 100% accurate. Apparently this is not realistic in practice. However, we

have mentioned at the beginning that the purpose of this chapter is to verify the concept of

the FPT-TSI, and we want to avoid any contamination from bad data quality or inefficiency

of statistical modules, therefore, the second and the third items still constitute the main

assumptions of this section.

8.3.1 Setting

We assume 4 types of SDEs to form our candidate model pool, namely the OU process (cf.

(4.28)), the bubble process (cf. (6.57)), the CIR process (cf. (5.33)), and the drifted Brownian

motion (DBM) with mean µ ∈ R and volatility σ ∈ R+. These 4 stochastic models represent

log-price dynamics of different assets.

For the reasons of choosing those 4 models, first, they are the most commonly observed

dynamics from market: in the commodity and the foreign exchange markets, the seasonality

and the application of pairs trading usually lead to an OU pattern in the log-prices; while in

the credit market, our bubble process can be employed in modelling the credit spreads5; and

for the CIR process, it is used for the short rates of the fixed income market; in the end, the

log-prices of equities are often described by the DBM. Secondly, apart from the DBM (where

the closed-form FPTD is known), the closed-form FPTDs of other processes have been given

in Chapters 4 - 6 of this thesis. Therefore, by choosing those SDEs, we can further verify the

5We have not conducted the empirical study on this point, however, considering that a financial bubble
usually comes with the increase in credit spreads (e.g. the rise of CDS rates during the 2008 crisis), it causes
no harm to assume that our bubble model can be adapted.
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effectiveness of our perturbation framework. And conversely, those perturbation results help

us to compute the m-metric in a fast manner.

A further note to be added is that, even though we will assign each asset class with a

unique SDE, it does not mean that each class can only have one stochastic pattern. For

example, in Chapter 6, we have shown that the bubble model can be applied in the equity

market; and the CIR process is also used in modelling the credit spreads, etc. The point

here we want to make is that, in practice, the candidate model pool is generic across different

asset classes; and within one asset class, there might be different SDEs applicable to different

assets. But in this section, for the convenience of illustration, we give each asset class a unique

stochastic model. And these asset classes later will be referred to in the capital allocation

part (cf. Section 8.3.4).

After understanding the candidate models, the next step is to choose proper model pa-

rameters. Based on our analysis on the China stock market (cf. Figure 8.9, Appendix 8.A),

in general, there are at least 20% of stocks (out of about 3000) which could attain a 20%

increase during a bi-monthly moving window. Therefore, we consider one regime of the model

parameters that could generate significant probabilities in the upward moving. For the DBM,

this could be achieved by choosing higher values in µ and σ; and for the OU model, we can

adjust a higher mean-reversion rate, a higher volatility, a lower starting level, and a higher

equilibrium level, etc. Parallel to the real market data, we set 20% amount of model param-

eters that are in the upward moving regime. And symmetrically, we choose 20% amount of

parameters in the downward moving regime. The rest 60% parameters are set in a neutral

regime, i.e. no significant upward or downward trends. For the illustration of regime settings,

visualised by hitting probabilities, please refer to Appendix 8.A.

We summarise the simulation information into Table 8.1 below.

Stochastic Process Upward Regime Neutral Regime Downward Regime

CM OU 20 60 20

CR Bubble 20 60 20

FX OU 20 60 20

IR CIR 20 60 20

EQ DBM 20 60 20

Table 8.1: Model choices and numbers of simulated paths in different regimes
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Our testing data is simulated as follows. There are in total 1,000 simulated portfolios.

In each portfolio, there are 500 assets equally distributed across those 5 asset classes above.

Each asset price is simulated for 2 years time. And in each simulation, not only the sample

path, but also the model parameters are randomly generated. The model parameters follow

uniform distributions with the intervals being specified in different regimes6. Figure 8.1 below

presents the normalised values of three simulated portfolios with equal weights between year

1 and year 2.

Figure 8.1: Simulated portfolio paths (normalised) with equal weights across different assets

8.3.2 Trading Strategy Illustration

In this part, we use portfolio #542 (red curve in Figure 8.1) to illustrate crucial steps and

main statistics involved in the FPT-TSI strategy. Note that, our simulation starts from time

t = 0. In order to have relatively stable (stationary) paths, we apply the FPT-TSI between

t = 1 and t = 2. Also, in the following exercises, we do not allow short-selling in our model7.

Recall Propositions 8.2.7 and 8.2.8, the basic parameters in our strategy are chosen as

w
(i)
t = 1/500, ∆tj = 2/12, u = 0.2, l = 0.2,

i.e. we consider an equally weighted strategy on a portfolio consisting of 500 assets; the

6Since among those 4 models, plus by considering 3 regimes in each model, we have 60 different intervals.
So for the convenience of presentation, we do not list them in this chapter. But the test code, where parameter
settings are included, can be provided upon request.

7This avoids the complexity of choosing proper limits in the leverage ratio.
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win-loss ratio is given by 20%/20% = 1 and the trading cycle is set to be 2 months. For the

critical values of hitting probabilities, we let8



αu = 0.7, αl = 0.4, if
{

ln(P
(i)
t )
}
t≥0

is an OU process or a DBM

αu = 0.8, αl = 0.4, if
{

ln(P
(i)
t )
}
t≥0

is a Bubble process

αu = 0.65, αl = 0.35, if
{

ln(P
(i)
t )
}
t≥0

is a CIR process

. (8.6)

And the formulae of perturbed FPTDs for each model are summarised in Table 8.2 below.

Stochastic Process Upward Hitting (pτu(t)) Downward Hitting (pτl(t))

OU cf. Equation (4.32) on p. 54 cf. Equation (4.30) on p. 54

CIR cf. Equation (5.37) on p. 86 cf. Equation (5.35) on p. 85

Bubble cf. Equation (6.80) on p. 130 cf. Equation (6.59) on p. 112

DBM cf. [18, Equation (2.0.2), p. 295] cf. [18, Equation (2.0.2), p. 295]

Table 8.2: Formulae of perturbed FPTDs for each model

Figure 8.2: First stage signal illustration of portfolio #542. Blue and orange curves refer to
the upcrossing probability and the difference between upcrossing and downcrossing probabil-
ities. Red solid line indicates αu and red dashed line plots αu − αl

With parameters in (8.6) and FPTDs in Table 8.2 being specified, we apply the long-only

FPT-TSI (cf. (8.5)). As an illustration, we consider the trading opportunities between t = 1

8The choices below are based on the effectiveness of the perturbed FPTDs. For more details please refer
to Chapters 4 - 6.
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and t = 1+2/12. The original signals under (8.5) for the first trading cycle is given in Figure

8.13 of Appendix 8.B. However, those signals are a bit messy for presenting. In view of this,

instead of showing ml and αl, we plot mu −ml (orange curve) and αu −αl (red dashed line)

in Figure 8.2 above.

According to Figure 8.2, though not strictly equivalent, those assets where both the blue

and the orange curves are above the solid and the dashed red curves, respectively, are selected

to form our portfolio. In this scenario, there are in total 9 assets being chosen, with asset

index numbers

T Longt=1 (I, w,m) := {0, 3, 9, 10, 205, 209, 210, 217, 219} . (8.7)

Now, given the selected portfolio in (8.7), we conduct a one stage backtest. More specifi-

cally, we apply the FPT executable strategy as introduced in Proposition 8.2.7 and demon-

strate its realisation between t = 1 and t = 1 + 2/12.

Figure 8.3: One stage backtest of portfolio #542 between t = 1 and t = 1+2/12. Green curves
marked by star symbols demonstrate the selected paths that attain the 20% target increase;
green curves with no marks show the selected paths but which are held until t=1+2/12. Grey
paths are for unchosen assets

In Figure 8.3, we plot the paths of log-returns (w.r.t. t = 1) for each asset. The selected

assets in (8.7) are highlighted by green while those unselected ones are marked by grey. In

addition, we make extra star marks on those assets where the 20% target are achieved within

the 2 months period, i.e. for those i ∈ T Longt=1 (I, w,m) and τ
(i)
u < 1 + 2/12. Another point to

mention is that, in the strategy implementation, we set the 2-month 99% VaR as the stop-loss

177



threshold instead of the 20% drop of the price; although, the portfolio is selected based on

the 20% loss in the FPT-TSI9.

From Figure 8.3, we can see that there are 6 assets which attain 20% returns, accounting

6/9 ≈ 66% of the total number of selected assets. And three assets are held until the end

of 2 months. In this example, there is no asset touching the 2-month 99% VaR barrier. As

a simple statistic, the success rate (accuracy) of our strategy is 66%. And if we compare

this number with our critical value settings in (8.6), we can conclude that our FPT-TSI

could effectively select the assets according to the investor’s need. Besides, if we assign equal

weights to those 9 assets, then at the end of the 2 months time, the return of our portfolio is

6/9× 0.2 + (0.0048− 0.2590− 0.0414)/9 ≈ 10.05%.

In order to further confirm the effectiveness of our FPT-TSI strategy, we repeat such a

one stage backtest on 1,000 simulated portfolios and calculate the success rate, the hold-to-

maturity rate, and the failure rate (attains the stop-loss threshold) in each run. The data

from each simulation is shown in Figure 8.14 of Appendix 8.B. And here, we report major

statistics from those 1,000 simulations. Results in Table 8.3 below support that the FPT-TSI

strategy is effective and reasonable.

Mean StdDev

Success Rate 69.71% 14.29%

Hold-to-Maturity Rate 30.19% 14.25%

Failure Rate 0.09% 1.00%

Table 8.3: Statistics of one step backtest through 1,000 simulations

8.3.3 Backtest on Simulated Portfolio

In this subsection, we provide the full 1-year backtest of our strategy. Similar as before, we

will first use portfolio #542 as an illustration. Then, a statistical summary of 1,000 simulated

portfolios will be provided.

9About the stop-loss selection, itself is another topic to be discussed: a stricter value would be easily
triggered and leads to the cumulative loss in the portfolio; while a looser threshold would introduce extreme
event risk into the portfolio. Here, we will not dig into too many details of it and we will use the 99% VaR
metric throughout this chapter.
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Note that, the FPT-TSI is a weight-independent strategy. After acquiring the sub-

portfolios (see e.g. (8.7)), we also need to decide the weight of each asset, i.e. to finish

the second step of the portfolio selection problem. In this part, we consider two schemes

of weight allocations, namely the equally weighted scheme and the Markowitz variance-

minimised weights with a constraint on short selling10. On the other hand, we choose the

global portfolio (with a total number of 500 assets) as our benchmarks: for the equally

weighted scheme, we assign equal weights across assets in the global portfolio; and for the

Markowitz scheme, we apply the same optimisation to the global portfolio.

Figure 8.4: One-year backtest of portfolio #542 between t = 1 and t = 2. Green and blue
curves refer to two schemes of the FPT-TSI; red and purple curves plot the performances of
global portfolios

Figure 8.4 shows the backtest results based on portfolio #542. There are a few interesting

observations. First, there is a big difference between those two benchmark portfolios. The

Markowitz global portfolio is more stable than the equally weighted one (this is expected

as our target is to minimise the portfolio variance), but its end-of-year return is negative;

while in contrast, the equally weighted benchmark has a nearly 80% increase. Secondly,

consider the FPT-TSI portfolios, the picture shows that they outperform the benchmarks

in either scheme (this is not surprising, especially by noticing that we have an outstanding

success rate as shown by Table 8.3). And there is a weak pattern that the FPT-TSI under

the Markowitz optimisation is more stable than the equally weighted FPT-TSI. This test,

10Recall (2.44), the scheme mentioned here refers to the settings that λ = 1 and r = 0, plus the short selling
constraint. The covariance matrix is estimated by a 1-year rolling window.
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from the numerical point of view, confirms our argument in the preamble that by effectively

identifying and ruling out those assets with less desirable returns, the investor would have a

better performance in the market.

In Table 8.4 below, based on the daily log-returns, we provide major statistics associated

with each portfolio and their annualised Sharpe Ratios (SRs)/Information Ratios (IRs). In

general, by comparing the mean and the standard deviation, we can conclude that the daily

performances of two FPT-TSI portfolios dominate that of the benchmarks. And this obser-

vation is further verified by checking the Sharpe ratios. Besides, the skewness indicates two

FPT-TSI portfolios have more positive returns than those of negative, while the returns of

global portfolios are skewed to the loss side. Combine that all those four portfolios have evi-

dent kurtosis, we can say that the tails of FPT-TSI portfolios are driven by positively extreme

returns, while the opposite happens to benchmark portfolios. In the end, the information

ratio helps us to understand the relative performances between each FPT-TSI portfolio and

their benchmarks. Both the IRs are positive, this again, confirms that the FPT-TSI out-

performs the global portfolio. However, we need to emphasise that the situation where the

Markowitz FPT-TSI has a much higher IR than that of the equally weighted FPT-TSI, does

not mean that the former is better, as these two portfolios have different benchmarks.

Mean StdDev Skewness Kurtoris

Equally FPT-TSI 0.0049 0.0260 0.2447 3.5367

Equally Global (Benchmark) 0.0024 0.0445 -0.1195 3.5460

Markowitz FPT-TSI 0.0049 0.0249 0.2706 3.7786

Markowitz Global (Benchmark) -0.0003 0.0293 -0.2383 3.5522

SR IR

Equally FPT-TSI 3.0503 0.7570

Equally Global (Benchmark) 0.8742 NA

Markowitz FPT-TSI 3.1663 2.0690

Markowitz Global (Benchmark) -0.1387 NA

Table 8.4: Statistics of one-year backtest on portfolio #542

Further, in Figure 8.5 below, we provide the histograms of annualised SRs for each simu-

lated portfolio. The mean and the standard deviation from those 1,000 SRs are reported in
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Table 8.5. By summarising the information from those 1,000 simulations, we can conclude

that our FPT-TSI strategy can significantly enhance investment performances.

Figure 8.5: Sharpe ratio histograms for one-year backtests of 1,000 simulated portfolios

Equally Weighted Equally Weighted Markowitz Markowitz

FPT-TSI Global Portfolio FPT-TSI Global Portfolio

Mean 2.8018 0.0530 2.7675 0.1993

StdDev 0.7784 0.7740 0.5502 0.6745

Table 8.5: Sharpe ratio statistics for one-year backtests of 1,000 simulated portfolios

8.3.4 Risk Management and Capital Allocation

In the last part of this section, we calculate the regulatory risk requirement and its capital

allocation. We will not provide full details of 1,000 simulations; instead, our calculations

are again based on portfolio #542. Also, in order to avoid repeated presentations, we only

consider the Markowitz portfolios of the FPT-TSI and the global set.

Before calculating the FRTB IMCC, we need first assign proper liquidity horizons for

each of the assets. In the following exercise, we assume those assets with larger volatilities

will then have longer LHs. And different LHs in (7.1) are equally distributed to risk factors

within the same RF bucket; for example, in the EQ class, 20 assets have 10-day LH, 20 then

have 20-day LH, etc. In addition, for simplicity, we assume the stress scaling (cf. Section

7.2.2) under the FRTB IMA is 1.
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Figure 8.6: Portfolio value and different risk metrics of portfolio #542 between year 1 and
year 2. The left panel presents the FPT-TSI portfolio and the right panel shows the global
portfolio. Both portfolios are of Markowitz types. And in both graphs, blue curve indicates
the normalised portfolio values, green curve plots the FRTB IMCCs; red and purple curves
represent the VaR and the ES metrics, respectively

Figure 8.6 above demonstrates the investment and the risk performances of the FPT-TSI

and the global portfolios. From these graphs, we find that the FRTB IMCC introduces higher

standards in risk capital requirements. This coincides with our discussions from Chapter

7. Secondly, by a fast glance, we may find that the FPT-TSI portfolio is riskier than the

diversified one (global portfolio). However, note that the risk capital is calculated based on

the total investment. As the portfolio value under the FPT-TSI increases much faster than

the benchmark, therefore, the numbers in Figure 8.6 do not really refer to that the FPT-TSI

portfolio has more risk.

Figure 8.7: Risk metric proportions to the total portfolio value. Left panel: FPT-TSI port-
folio; right panel: global portfolio

In fact, instead of using the absolute risk numbers, in Figure 8.7, we plot the risk pro-
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portion to the total portfolio value; and by which we find that, based on traditional metrics

(VaR/ES), the FPT-TSI strategy does not generate evidently extra risk. In addition, by

comparing two green curves, we see that under the FRTB IMCC, a more diversified portfolio

(right panel) even has bigger proportions of risk. If one recalls in Chapter 7 that the FRTB

IMA restricts cross-hedging, then the observation here is no more surprising. This exercise

indicates us that, facing the new regulation, choosing the ‘correct’ underlying assets becomes

crucial to banks. In view of this, though our FPT-TSI strategy may not be applicable to

banks, we do hope that the idea and the framework in this chapter would be helpful.

Now we conclude this part by showing the allocated capitals in each portfolio. Since we

have 260 trading days, it is not realistic to present all the allocations of every day. As a brief

summary, we calculate the averaged allocations of each RF-LH bucket through the 260 days

and the results of which are demonstrated in Figure 8.8 below.

Figure 8.8: Annually averaged risk contributions of each RF-LH bucket for the FPT-TSI and
the global portfolios

The allocations are implemented by the Euler method with a kernel smoothing. And the

numbers reported are in an absolute sense. From Figure 8.8, we immediately see that the

120-day IR makes the highest contribution in the global portfolio. Therefore, for the purpose

of capital optimisation, one should consider removing some risk factors in such a bucket. On

the other hand, risk in the FPT-TSI portfolio is mainly from assets with longer LHs. Recall

that, by our construction, those assets with longer LHs also have larger volatilities. So the

allocations in Figure 8.8 also tell us that, the selected assets by the FPT-TSI usually have

more significant volatilities.
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8.4 Conclusion

In this chapter, we provide a general mathematical framework for defining the TSI problem.

And given the definition, by combing our previous studies, we propose the FPT-TSI strategy.

The numerical section of this chapter verifies the effectiveness of using the model-dependent

approach to implement the FPT-TSI. However, in the real data test (cf. Appendix 8.A),

though to some extent the investment performance is acceptable, the success rate, especially

in comparison with simulated results from Table 8.3, cannot achieve the desired level.

In practice, the limitation of the model-dependent approach is mainly from the low-

accuracy of SDE identifications. Also, the instability and the regime-switchings of price

dynamics affect the strategy’s performance. But these two are the issues commonly observed

from most trading strategies. In the future, the potential research would be focusing on

increasing the accuracy of model identifications; or, recall the end of Section 8.2, apart from

the model-dependent approach, we may also consider applying the hybrid scheme.

Appendix 8.A China Stock Market Exercise

In this appendix, we provide an analysis on the China stock market. Figures below summarise

the historical information of stocks which posses 20% increase within a 2 months trading cycle.

Observations from which inspire us to set corresponding simulation parameters in Section 8.3

and choose 20% and 2-month as crucial parameters in the FPT-TSI strategy.

Figure 8.9: China stock market statistics (historical time-series) for stocks which have more
than 20% increase within 2 months time. Left panel: in terms of absolute stock numbers;
right panel: in terms of ratios in the total stock amounts. Yellow region: accounting for the
Shanghai market only; blue region: total numbers of Shanghai and Shenzhen markets
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We further examine the FPT-TSI in the real market. Candidate model pools and the

FPTD functions are listed in Table 8.2. An extra statistical module is included in the real

data backtest and details of which can be provided upon request. The backtest period is

chosen between 2007-01-01 and 2018-07-31, accounting for more than 11 years time. We use

the daily adjusted closing price to conduct our analysis and the data source is extracted from

the Wind database. In total, there are 2,765 single name stocks being considered and the

benchmark is chosen as the Shanghai Stock Exchange Composite Index (000001.SS).

Figure 8.10: Backtest of China stock market between 2007-2018. Left panel: normalised
values of the FPT-TSI (green) and the benchmark (blue); right panel: normalised benchmark
values and the densities of TSI signals (red shadow region)

Figure 8.10 above shows the backtest result and its further details. In the left panel, we

plot the normalised values of the FPT-TSI and the market index (00001.SS); from which

we find the FPT-TSI generates 7.53 times growth during the 127 months. This roughly

corresponds to 21% and 71% annual returns under accumulative and average senses. However,

for the market index, the 127 months accumulated value is about 1.06. On the other hand,

the right panel plots the additional information from the FPT-TSI. The red shadow region

shows the proportion of the number of selected stocks over the total amount of single stocks

in the market. Since we are applying a long-only strategy, a higher proportion should in

principle indicate a better market environment. This is indeed observed in 2007, 2010, and

2015, which are three major bull market periods.

In the end, using a fixed 1-year and monthly rolling window, we calculate the annual

relative returns of the FPT-TSI and the market index. Major statistics are reported in Table
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8.6 (note: we assume 0% interest rate in the Sharpe ratio) and the histogram of returns is

provided in Figure 8.11.

Mean StdDev Skewness Kurtoris SR IR α β

SSE100 0.0262 0.3405 1.1719 5.3372 0.0771 NA NA NA

FPT-TSI 0.1859 0.4177 1.7676 9.7805 0.4450 0.5527 0.1625 0.8926

Table 8.6: Annual return statistics for the FPT-TSI and the market index

Figure 8.11: Annual return histogram

Appendix 8.B Further Illustration on the Simulation Exercise

and the FPT-TSI

This appendix provides further explanations to the previous simulation exercise and the FPT-

TSI. Figure 8.12 below first demonstrates asset parameter choices used in Section 8.3. By

taking the portfolio #542 as an example, we plot its 2-month FPT probabilities at the initial

state. The left panel shows the upward probabilities and from which we find about 20%

assets in each asset class have a significant upward trend (probabilities > 75%). Similarly,

the right panel shows the downward probabilities and 20% of assets are set in a downward

regime. The rest 60% assets are set in neutral regime. This explains settings in Table 8.1.
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Figure 8.12: Initial state probabilities for portfolio #542 of upward- and downward-hittings
in 2 months time (between t0 = 0 and t1 = 2/12). Left panel: upward hitting; right panel:
downward hitting. The underlying processes for each asset class are specified as: commodity
- OU, credit - Bubble; foreign exchange - OU; interest rate - CIR; equity - DBM. The y-axis
refers to the hitting probability and the x-axis represents the number of asset. There are 100
assets under each class and in total 500 assets

Again, use the portfolio #542 as an illustration, Figure 8.13 plots the actual signal gen-

erated by Equation (8.5). Note that, the signals in Figure 8.13 are actually used in the

backtests for both the simulation exercise and the real data test. The plot in Figure 8.2 is

only for the convenience of presentation.

Figure 8.13: First stage signal illustration (Equation (8.5)) of portfolio #542. Blue and orange
curves refer to the upcrossing- and the downcrossing-probabilities (mu and ml, respectively).
Red solid line indicates αu and red dashed line plots αl
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The last graph below corresponds to the statistics in Table 8.3. It shows the success or

failure of attaining the bi-monthly 20% increase in each of those 1,000 simulated portfolios.

Figure 8.14: Blue curve: success rate of attaining 20% increase target; green curve: propor-
tions of assets which are held until the end of 2 months; red curve: failure rate of touching
the 2-month 99% VaR threshold
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Chapter 9

Conclusion

The core theme of this thesis is using the perturbation technique to solve closed-form asymp-

totics of FPTDs; given the success of which, we also investigated the FPT applications in

various aspects of finance. In this chapter, we provide a comprehensive summary of the the-

sis. Separate conclusions of each topic have been documented on pp. 80, 124, 154, and 184,

respectively.

This chapter has two parts, where suggestions about future works are listed in the second.

In the first part, instead of repeating the conclusions of each topic, we highlight our major

findings and contributions of this research from three different angles, which are as follows.

Mathematically, we have tackled the issues of finding closed-form FPTD asymptotics and

providing their error estimates (Chapter 3). As we mentioned at the beginning of this thesis,

most FPTDs of diffusion processes seem like not possessing closed-form solutions. Therefore,

by providing closed-form asymptotics, we are at least able to understand the FPT distribu-

tions in a more analytically tractable way. On the other hand, the mathematical derivations

and proofs in this thesis, themselves are of great interest for studying. As one example, in

Chapter 4, we found a triple-indexed recursion series which is deduced originally from the

Hermite series. The recursion structure of the new series has been established, but whether

there exists a general solution formula is still waiting to be answered. Another example is

given by the proofs of the perturbation convergence analysis. Lemma 4.2.1 creatively proves

the L1-boundedness by splitting the domain of the OU process according to its functional

turning point. And the lemma itself, together with its proof idea, are used later in Propo-

sitions 4.2.2, 5.2.2, and 6.4.3, to show the convergence of the perturbations in the OU, the
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Bessel, and the bubble models.

Computationally, our closed-form FPTDs (Chapters 4-6) and two capital allocation schemes

(Chapter 7) would facilitate the model implementations in related areas. In Section 4.3.3,

we have provided the number that our perturbed FPTD of the OU process is 1,371 times

computationally faster than the Talbot numerical inverse. To understand this number in a

more intuitive way, we consider the following example. Assuming that the Talbot inverse

would spend 1.37 seconds to compute one level-crossing probability for a single stock, and

assuming there are 3,000 stocks in a market. Then the total time for trading signal processing

(Chapter 8) would be 68.5 minutes in this market, which is more than an hour. However, by

applying our asymptotic results, the computation time reduces to less than 3 seconds. The ef-

ficiency enhancement demonstrated above has become another motivation for us to combine

the FPT with systematic trading. Besides, in the capital allocation topic, we successfully

retrieved simple allocation schemes from a sophisticated risk measure (FRTB IMCC). The

computations for FRTB IMA allocations are guaranteed to be no more complex than that

under the current VaR-based regulatory framework. Therefore, banks could use our methods

to manage their risks and optimise their capital charges without paying extra computational

costs.

Conceptually, many new arguments related to economic bubble, regulatory risk manage-

ment, and systematic trading, have been discussed in this thesis. In the economic bubble topic

(Chapter 6), we have demonstrated the feasibility of modelling financial bubbles using our

new diffusion process. Especially, the connection between the positive feedback mechanism

and the asymmetric feature of the model has been well-explained (cf. p. 93, Section 6.2).

In the risk management topic (Chapter 7), one of our most prominent contributions would

be establishing the correct mathematical formulation of the FRTB IMCC. This mathemati-

cal framework enables us to further conduct coherent analysis and derive capital allocation

schemes. Following the framework, we have spotted capital arbitrage opportunities from

either the break of the IMCC coherency or the freedom in choices of the reduced sets (cf.

p. 152, Section 7.4.3). In the end, the systematic trading topic (Chapter 8) introduces the

FPT-TSI. The trading idea from the new strategy is different to the diversification concept

in traditional strategies, and we have documented its core features in detail in the context

(cf. p. 170, Section 8.2.3). Moreover, it is shown on p. 171 that the trading cycle parameter

∆tj in the FPT-TSI can be used to control the liquidity risk, which is an important lesson
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that we learned from the failure of the LTCM.

In below, we propose a few directions of future works which are associated with the

current research. Roughly speaking, the future works can be classified into three categories,

the extensions of the FPT framework, the applications of current results, and the studies of

mathematical puzzles remained in this thesis.

� [Extension] The current FPT framework only considers time-homogeneous diffusion

processes with constant volatilities. One future direction would be taking the stochastic

volatility into account. Alternatively, people may also check the perturbation technique

in Lévy processes, or stochastic crossing barriers, etc.

� [Extension] From the dimension aspect, the current work only involves one-dimension

ODEs. This restricts the applications in financial products with higher dimensions,

e.g. barrier options or contingent claims. The future work from this point would be

applying the perturbation in PDEs.

� [Application] As we mentioned in Chapter 8, one application of the current perturba-

tion framework is to deduce the closed-form FPTDs for processes with drifts of sin(·)

and cos(·) functions. If one can gain a success from which, then combine the functional

regression, people may consider the hybrid scheme in the FPT-TSI (cf. p. 172).

� [Application] In Chapter 6, we have provided a calibration scheme for the bubble

model. But such a scheme still relies on subjective inputs. One potential work on this

topic is to enhance the calibration scheme, where MLE or LSE type would be a good

candidate. Besides, bubble indicators, short rate modelling, etc., would also constitute

future works.

� [Application] There are many potential works arise from the capital allocation topic

(Chapter 8). The first one would be examining the performances of FRTB allocations

in real-life trading books. And the studies of capital optimisation would be another

direction to go with. Additionally, bank’s behaviours under the FRTB, the prevention

of systematic risk, etc., are also interesting areas for studying.

� [Mathematical Puzzle] One remaining math problem is to find the general solution

of the triple-indexed recursion series (cf. Lemma 4.1.2, Corollaries 4.B.1 and 4.B.2),
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if such a solution exists. By knowing the general solution, we could further simplify

the perturbed density in the OU process, and may even find sharp bounds for the

truncation errors. But this problem is out of the range of this thesis. It would require

further knowledge on number theory, abstract algebra, etc.

� [Mathematical Puzzle] Another remaining math problem is related to the exact

simulation of the bubble process. More specifically, this is related to the θ (r, s)-function

(cf. Equation (6.14)) in the Hartman-Watson distribution. In fact, we have conducted

period-cancellation analysis to try to reduce the function’s oscillation; after which the

numerical performance was indeed more stable, but not desirable enough.
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[7] Paolo Baldi, Lucia Caramellino, and Maria Gabriella Iovino. Pricing general barrier

options: a numerical approach using sharp large deviations. Mathematical Finance,

9(4):293–321, 1999.

[8] Pauline Barrieu, A Rouault, and M Yor. A study of the Hartman–Watson distribution

motivated by numerical problems related to the pricing of Asian options. Journal of

Applied Probability, 41(4):1049–1058, 2004.

[9] Harry Bateman. Tables of integral transforms [volumes I & II], volume 1. McGraw-Hill

Book Company, 1954.

193



[10] BCBS. Revisions to the Basel II market risk framework. Basel Committee on Banking

Supervision, 2009.

[11] BCBS. Fundamental review of the trading book - interim impact analysis. Basel Com-

mittee on Banking Supervision, 2015.

[12] BCBS. Minimum capital requirements for market risk. Basel Committee on Banking

Supervision, 2016.

[13] BCBS. Revisions to the minimum capital requirements for market risk. Basel Commit-

tee on Banking Supervision, 2016.

[14] Louis J Billera and David C Heath. Allocation of shared costs: a set of axioms yielding

a unique procedure. Mathematics of Operations Research, 7(1):32–39, 1982.

[15] Fischer Black and John C Cox. Valuing corporate securities: Some effects of bond

indenture provisions. The Journal of Finance, 31(2):351–367, 1976.

[16] Ian Blake and William Lindsey. Level-crossing problems for random processes. IEEE

transactions on information theory, 19(3):295–315, 1973.

[17] Claudio Borio, Craig Furfine, Philip Lowe, et al. Procyclicality of the financial system

and financial stability: issues and policy options. BIS papers, 1(March):1–57, 2001.

[18] Andrei N Borodin and Paavo Salminen. Handbook of Brownian motion-facts and for-

mulae. Birkhäuser, 2012.
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