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Abstract

High dimension modelling is an important area in modern statistics. For

example, a large number of problems that arise in finance are also in-

spired by more and more available high dimensional data. The main

objective of this thesis is to investigate three methodologies in high di-

mension statistics with the application in finance. The subsequent chap-

ters are organized as follow. The first two chapters are about spatial

modeling and its inference respectively. The third chapter tackles a dif-

ferent problem about the estimation of large integrated volatility matrix

of high frequency data.

In the first chapter, a dynamic spatial model with different weight matri-

ces for different time-lagged spatial effects is proposed. Unlike assuming

a known spatial weight matrix, the proposed method estimates each spa-

tial weight matrix for corresponding spatial effect by a linear combination

of a set of specified spatial weight matrices to avoid misspecification. To

estimate the coefficients for linear combinations and covariates, the pro-

filed least square estimation is used with instrumental-like variables. A

further selection on spatial weight matrices is introduced by adding an

adaptive LASSO penalty on the coefficients of linear combination. All

theoretical results are built on the scenario when the sample size T and

panel dimension N go to infinity. The functional dependence in time se-

ries proposed by Wu (2005) is applied for the asymptotic normality of the

estimated parameters. The oracle properties for model selection are de-

veloped including the asymptotic normality and sign consistency. Apart

from a simulated data used to illustrate the performance of the proposed

model, we also apply the proposed model to 32 important stocks from

the Euro Stoxx 50 and S&P 500 in 2015 to invest the spatial interaction

of them.

The second chapter discusses the inference for the spatial dynamic model.To

estimate the spatial weight matrices for contemporaneous and time-

lagged spatial effects, two linear combinations of a set of the specified

spatial weight matrices are adopted respectively. We extend the quasi-

maximum likelihood estimation for the linear combination coefficients



in our model and their consistency and asymptotic normality are estab-

lished when both N and T are large. Using the asymptotic normality

of the quasi-maximum likelihood estimators, a Wald test can be em-

ployed on the coefficients of the linear combination. Then, a diagnostic

test proposed in Chang et al. (2017) is applied to test whether the fit-

ted residuals perform like a white noise vector in our large N and large

T setting. Simulated and real data are used to demonstrate the per-

formance of the proposed quasi-maximum likelihood estimation and all

above tests.

The third chapter is about the estimation of large integrated volatility

matrix for high frequency data. Besides the microstructure noises and

non-synchronous trading times for high frequency data analysis should

be fixed, the bias in the extreme eigenvalues coming from the high di-

mensionality are also not negligible. A nonparametric eigenvalue regu-

larization proposed in Lam (2016) is applied on three existing volatility

matrix estimators, such as multi-scale, kernel and pre-averaging realized

volatility matrix estimators. One advantage for the proposed estimators

is no need for implicit assumptions on the structure of the true integrated

volatility matrix. It can be proved that the bias in the extreme eigenval-

ues can be shrunk and the regularized volatility estimators are positive

definite in probability. Incidentally, the bias-corrected versions of kernel

and pre-averaging estimators, which have faster rate of convergence at

n−1/4 but are not guaranteed to be positive definite in Barndorff-Nielsen

et al. (2011) and Christensen et al. (2010) respectively, are now regu-

larized to be positive definite in probability, and we prove their rates of

convergence to an “ideal” estimator under the spectral norm are also at

n−1/4 under p/n → c > 0. Jump and its removal by wavelet method

in Fan and Wang (2007) are also included and all theoretical results are

still hold. All proposed methods are applied on the simulated data. We

also test the performance of the proposed methods on the stocks from

the list ”Fifty Most Active Stocks on NYSE” and ”Fifty Most Active

Stocks by Dollar Volume on NYSE”.
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Chapter 1

Spatial Lag Model with

Time-lagged Effects and spatial

weight Matrix Estimation

1.1 Introduction

There are always complicated correlation over cross section and time in the real data.

In econometrics, spatial econometrics develop the models to investigate the cross-

sectional interactions. For example, spatial autoregressive model proposed in Cliff

and Ord (1973) is very powerful. Among these models, Anselin et al. (2008) divides

them into four groups. The first type is “pure space recursive” if only a spatial time

lag is included. The second type is “time-space recursive” if both an individual time

lag and a spatial time lag are included. The third type is “time-space simultaneous”

if an individual time lag and a contemporaneous spatial lag are specified. And finally,

the last type is “time-space dynamic” if all forms of lags are included. Besides the

spatial autoregressive model, spatial disturbance autoregressive model is considered

in Elhorst (2005). All these models have been frequently used well in many fields

like regional markets in Keller and Shiue (2007), labour economics in Foote (2007)

or public economics in Franzese and Hays (2007), to name but a few areas.

It is obvious that spatial autoregressive model becomes one of the most active fields

in econometrics and also receives considerable attention from a number of other

fields. However, the correct usage of spatial autoregressive model depends on the
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correct choice of spatial weight matrix whose elements reflect the strength of inter-

action among units in the panel. In plenty of applications of spatial autoregressive

model, the spatial weight matrix is assumed as a prior knowledge. Physical distance

between two units in the panel is often regarded as the inverse measurement of the

interaction between them, so people use d−1 as the entry of the spatial weight matrix

where d is the corresponding distance. Naturally, physical distance is not the only

choice for the cross sectional interaction measurement. For example, in economics,

two countries from a same economic organization may have a strong relation in spite

of far distance between them. Even if only considering the physical distance, d−2

or d−3 can also be the candidates. Therefore, it is limited to only use one spatial

weight matrix into the model. Corrado and Fingleton (2012) also criticizes the spa-

tial econometrics due to this misspecification of spatial weight matrix. In Lam and

Souza (2015b), an error upper bound is given for the estimation of spatial regres-

sion parameters, which shows that misspecification of the spatial weight matrix can

introduce large bias in the final estimates.

To avoid the misspecification of the spatial weight matrix in spatial model, non-

parametric models are applied in past researches, see Tran and Yakowitz (1993)

and Hallin et al. (2004) for instance. The Nadaraya-Watson kernel estimator is fre-

quently used for nonparametric regression in econometrics. For example, Robinson

(2011) establishes its consistency and asymptotic distribution theory in a framework

designed for various kinds of spatial data. Koroglu and Sun (2016a) improves the es-

timation accuracy by applying a nonparametric two-stage least squares estimation.

More specifically, the second-step estimators of the unknown functional coefficients

are estimated by local linear regression. However, Kostov (2013) shows that it can

lead to reduced efficiency of the estimators when the sample size is small. On the

other hand, there are also some works assuming the structure of spatial weight ma-

trix. For example, Bhattacharjee and Jensen-Butler (2013) proposes to estimate

such a spatial weight matrix with a symmetric assumption, while Lam and Souza

(2016a) proposes to estimate the block pattern in such a matrix. With the develop-

ment of high dimensional statistics, Ahrens and Bhattacharjee (2015a) considers a

two-step LASSO estimation, which is based on the sparsity assumption of the spatial

weight matrix. Meanwhile, adaptive LASSO is used in Lam and Souza (2015a) to

estimate the spatial weight matrix together with fixed effects in the spatial model.

All methods mentioned above only include contemporaneous spatial effect but no

time-lagged spatial effect to avoid the complexity of the modelling, as one more

time-lagged spatial effect means one more spatial weight matrix should be esti-

mated. However, from the evidence in our real data example, including time-lagged

spatial effect is necessary. In our proposed dynamic spatial model, each spatial
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weight matrix involved is estimated by a linear combination of user-specified spatial

weight matrices. A similar model in Lee and Liu (2010b) is named as high order

spatial autoregressive model. The inclusion of more than one spatial weight matri-

ces can allow spatial dependence from different interaction characteristics such as

geographical contignity and economic interaction. Therefore, it helps to avoid the

risk of misspecification of the spatial weight matrices, while maintaining the overall

parsimony of the model.

As for the high order spatial autoregressive model, Lee and Liu (2010b) and Lee

and Yu (2014a) propose the generalized method of moments estimation. However,

as discussed in Li (2017), when we have a large or moderately large sample size T,

the generalized method of moments gets into trouble of “many moments bias” as the

number of moment conditions also increases dramatically. This point is also men-

tioned in Lee and Yu (2014a) that generalized method of moments requires careful

analysis when T → ∞. Another solution for the high order spatial autoregressive

model is quasi-maximum likelihood estimation introduced in Yu et al. (2008) and

Li (2017). But it is well known that quasi-maximum likelihood estimation is not

practical and computationally infeasible because of the complex parameter space

and the difficulty in Jacobian determinant evaluation, especially for the proposed

model in this chapter that includes p time-lagged spatial effects.

Therefore, it is prefered to find an efficient estimation but no complicated parameter

space is involved. Therefore, the profiled least square estimation is applied for the

coefficients of linear combinations and covariates. Meanwhile, the innate endogene-

ity in our time-lagged spatial model causing least square type estimation inconsistent

can not be ignored. To overcome this difficulty, we introduce instrument-like vari-

ables. In the particular case when the covariates are exogenous, they themselves can

act as these instrument-like variables. We estimate the “best” linear combination

for each required spatial weight matrix, then an adaptive LASSO can be applied

for highlighting the relative contributions of each specified one. The convergence

and asymptotic normality of all estimators are presented under the functional de-

pendence measurement of time series variables in Wu (2005) or Wu (2011), allowing

both the sample size T and the panel size N to grow to infinity together. As shown

in our real data analysis, with the input of different specified spatial weight matrices,

the scope of applications of our model is expanded since there are numerous ways

to specify a spatial weight matrix.

The rest of the chapter is organized as follows. Section 1.2 introduces our methodol-

ogy, including the model and the estimation method. Properties of our estimators,

including asymptotic normality are presented in Section 1.3. Simulation results and

real data analysis are reported, respectively, in Section 1.5 and 1.6. The conclusion
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and some relative further studies are listed in Section 1.7. All the technical proofs

are relegated to the Section 1.8.

1.2 Methodology

1.2.1 The Model

Consider the following dynamic spatial lag model

yt = µ+W 0yt +W 1yt−1 + · · ·+W pyt−p +X tβ + εt, t = 1, . . . , T, (1.1)

where yt = (yt1, yt2, ..., ytN)T is an N × 1 vector of observed time series variables

and µ is an N × 1 constant vector. The data starts from y1−p, and hence the true

sample size is T + p. It does not affect our asymptotic analysis since p is finite in

this paper. Hereafter when we talk about the sample size, we use T instead of T +p

for simplicity. For j = 0, 1, . . . , p, W j is an N ×N spatial weight matrix with 0 on

the main diagonal, which model the simultaneous and dynamic interaction between

different unit in the panel. To capture the dynamic interaction between same unit,

the N ×K matrix of covariates X t can contain yt−j for j = 1, . . . , p in its columns

on top of other covariates, while β is the K × 1 vector of regression coefficients.

The series {εt} is an innovation process with mean 0 and covariance matrix Σε. For

more detailed assumptions, see Section 1.8.1.

In many applied spatial econometrics applications, W 0 is assumed known and there

are no lagged terms W jyt−j for j = 1, . . . , p. Instead of assuming all the spatial

weight matrices are known, in this paper we assume that there are M specified

spatial weight matrices W 0i, i = 1, . . . ,M , such that each spatial weight matrix is

a linear combination of the M specified ones. This is motivated by the fact that

there are often more than one measures of spatial interactions. For instance, for the

geographical distance r alone between two specific locations, we can specify three

different entries r−1, r−2 and r−3, creating three specified spatial weight matrices.

These are indeed our distance specifications included in our data application in

Section 1.6. Spatial contiguity is also another popular choice in spatial econometrics.

The linear combination for each W j is written as

W j =
M∑
i=1

δjiW 0i,

15



where δji for i = 1, . . . ,M , j = 0, . . . , p are unknown coefficients in the proposed

model.

Apart from allowing for estimating the spatial weight matrices from pre-specified

ones, our model also includes time-lagged spatial effects. In a differently specified

spatial lag model, Dou et al. (2016) includes one lag to reflect such effects. We

generalize this to p time-lagged effects, with p to be determined by data driven

methods as described in Section 1.4. The pure dynamic effects are captured by

the term X tβ, since we can allocate {yt−1, . . . , yt−p} to be the columns in X t, so

that then K ≥ p, and K = p if no other covariates are present. Not counting the

parameters in µ, there are K +M(p+ 1) parameters to be estimated in total.

With µ, the spatial fixed effects of the model is then (IN −W 0)−1µ. For iden-

tifiability of such, we assume without loss of generality that E(Xt) = 0. As the

instrumental variable deducts its mean in our methodology, the non-zero µ can be

removed. Therefore, our assumption E(Xt) = 0 is same as E(yt) = 0. If we do not

have E(Xt) = 0, we can write

X tβ + µ = (X t − E(X t))β + (µ+ E(X t)β)

so that the spatial fixed effects are now captured by µ+ E(X t)β rather than µ.

1.2.2 Profiled least square estimation with endogeneity

The first important problem needed to be concerned is the endogeneity in model

(1.1). To estimate β and δ more efficiently, we assume that there are variables Bt

of size N ×K such that they are correlated with X t but independent of εt for each

t = 1, . . . , T . In particular, if X t is exogenous, we can set Bt = X t. To apply the

instrument-like variable Bt in the vectorized model, we first define

B = T−1/2N−a/2(Bζ−Bζ) = T−1/2N−a/2IN⊗{(IT ⊗ζT )(B1−B̄, . . . ,BT −B̄)T},

where B̄ = T−1
∑T

t=1Bt, ζ = K−11K and 1K is K × 1 vector of ones. We set a = 1

in our algorithms. In theory, it is there only to adjust the order of eigenvalues of

some constructs involving B. See the technical assumptions in Section 1.8 for more

details. The value of ζ is also not the only choice, and we will introduce a way to

choose a data driven one in Section 1.4.3.
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UsingB to avoid the inconsistency from endogeneity, we first rewrite (1.1) to present

our model more neatly as

y = µ⊗ 1T +Z0V 0δ0 +Z1V 0δ1 + · · ·+ZpV 0δp +Xβvec(IN) + ε,

where y = vec(y1, . . . , yT )T , ε = vec(ε1, . . . , εT )T , Zj = IN ⊗ (y1−j, . . . , yT−j)
T and

δj = (δj1, δj2, . . . , δjM)T for j = 0, 1, . . . , p, Xβ = IN ⊗ (IT ⊗ βT )(X1, . . . ,XT )T ,

and V 0 = (vec(W T
01), . . . , vec(W T

0M)). The notation ⊗ is the Kronecker product,

and 1T defines a vector of ones with size T . Simplifying, we have

y = µ⊗ 1T +ZV δ +Xβvec(IN) + ε, (1.2)

where Z = (Z0, . . . ,Zp), δ = (δT0 , . . . , δ
T
p )T , and V = Ip+1⊗V 0. Then, multiplying

BT on both sides of (1.2), we arrive at the augmented model

BTy = BTZV δ +BTXβvec(IN) +BTε. (1.3)

The constant term disappears since BT(µ⊗ 1T ) = 0. Removing the N -dimensional

constant term makes estimation much easier, while the error term BTε is now

weaker in correlations with the design matrixBTZV , so that least square estimation

becomes viable again.

After introducing B serving as instrumental variable, same as Lam and Souza

(2018), we can apply profiled least square estimation on the augmented model to

avoid the nonlinearity and to reduce variance if we estimate β and δ simultaneously.

More specifically, to profile out β and estimate δ, we rewrite the augmented model

as

BvTyv0 = BvT (
M∑
i=1

δ0iW
⊗
0i)y

v
0 +BvT

p∑
j=1

(
M∑
i=1

δjiW
⊗
0i)y

v
j +BvTXβ +BvTεv,

where yvj = (yT1−j, . . . , y
T
T−j)

T for j = 0, 1, . . . , p, εv = (εT1 , . . . , ε
T
T )T , Bv = ((B1 −

B̄)T , . . . , (BT−B̄)T )T , X = (XT
1 , . . . ,X

T
T )T andW⊗

0i = IT⊗W 0i for i = 1, . . . ,M .

Assuming δ is known, we can estimate β by the least squared method, resulting in

β(δ) = (XTBvBvTX)−1XTBvBvT
{

(ITN −
M∑
i=1

δ0iW
⊗
0i)y

v
0 −

p∑
j=1

(
M∑
i=1

δjiW
⊗
0i)y

v
j

}
.

(1.4)
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This formula provides a basis for a profile least square estimator for δ. We can show

that by substituting the above into the augmented model (1.3), the profile least

square estimator for δ is

δ̂ = {(H −BTZV )T (H −BTZV )}−1(H −BTZV )T (Kyv0 −BTy), (1.5)

where

K = T−1/2N−a/2(
T∑
t=1

X t ⊗ (Bt − B̄)ζ)(XTBvBvTX)−1XTBvBvT ,

H = K
[
W⊗

01, . . . ,W
⊗
0M

]
(IM ⊗ yv0, IM ⊗ yv1, . . . , IM ⊗ yvp).

Therefore, with δ̂, the profile least square estimator of β is given by

β̂ = β(δ̂) = (XTBvBvTX)−1XTBvBvT
{

(ITN−
M∑
i=1

δ̂0iW
⊗
i )yv0−

p∑
j=1

(
M∑
i=1

δ̂jiW
⊗
i )yvj

}
.

(1.6)

Finally, to estimate µ, we can use

µ̂ =
(
IN −

p∑
j=0

Ŵ j

)
ȳ− X̄β̂, where Ŵ j =

M∑
i=1

δ̂jiW 0i.

The corresponding spatial fixed effects estimator is then given by (IN − Ŵ 0)−1µ̂.

1.2.3 Selection of specified spatial weight matrices

As the specified spatial weight matricesW 0i are arbitrary, it is not necessary that all

of them should be included. Since δ̂ is a least square-type estimator, each element

in it is not estimated to be exactly 0 in general. This hinders the selection of the

specified spatial weight matrices, which is important for us to see which one truely

contributes to the overall spatial weight matrix and which one does not. Especially,

the different time-lagged spatial effects shown by the corresponding spatial weight

matrix W j can have the different selection on the specified spatial weight matrices.

It is true that some spatial characteristics can have the delayed impact, which is

also reflected by our real data example in Section 1.6.

As a classical model selection method, LASSO needs irrepresentable condition to

make the estimator sparse and have sign consistency. As discussed in Lam and
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Souza (2018), the tuning parameter used in LASSO is same for all element, which

causing excessive penalization by larger tuning parameter or insufficient penaliza-

tion by smaller tuning parameter. To resolve this, Zou (2006) propose a method

named adaptive LASSO. On the other hand, compared with SCAD penalty pro-

posed in Fan and Li (2001), adaptive LASSO still enjoys convexity. Therefore, it

has computational efficiency and can apply the same algorithm as standard LASSO.

To handle the selection of specified spatial weight matrices, we apply the penalized

profiled least square estimator δ̃ for δ same as the way used in Lam and Souza

(2018), with

δ̃ = argmin
δ

1

2T
‖BTy−BTZV δ −BTXβ(δ)vec(IN)‖2 + γTu

T |δ|, (1.7)

where u = (|δ̂0,1|−1, . . . , |δ̂0,M |, . . . , |δ̂p,1|−1, . . . , |δ̂p,M |−1)T , and |δ| represents the

same vector δ with all its entries taken absolute value. The penalty term in (1.7) is

similar to the adaptive LASSO proposed in Zou (2006), which shows a better per-

formance in model selection than standard LASSO. A more direct penalized least

square formulation is given by

δ̃ = argmin
δ

1

2T
‖BTy− (BTZV −H)δ − g‖2 + γTu

T |δ|, where

g = T−1/2N−a/2(
T∑
t=1

X t ⊗ (Bt − B̄)ζ)(XTBvBvTX)−1XTBvBvTyv.

The tuning parameter γT can be found in Assumption R6 in Section 1.8. For

choosing an appropriate γT in practice, see Section 1.4.2.

1.3 Theoretical Properties

We define some notations first before we present the time dependence measurement

from Wu (2005) and our theoretical properties of all estimators. Compared with

classic mixing condition, Wu (2005) discusses that, for stationary causal processes,

the calculation of probabilistic dependence measures is generally not easy because

it involves the complicated manipulation of taking the supremum over two sigma

algebras. Additionally, many well-known processes are not strong mixing.

Let {bt} = {vec(Bt)} and {xt} = {vec(X t)} be the vectorized processes for {Bt}
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and {X t} respectively, both with length NK. For t = 1, . . . , T , we assume that

xt = {fj(Ft)}1≤j≤NK , bt = {gj(Gt)}1≤j≤NK , εt = {hl(Ht)}1≤l≤N ,

where the fj(·), gj(·) and hl(·) are measurable functions defined on the real line, and

let the shift process Ft = (..., ex,t−1, ex,t), Gt = (..., eb,t−1, eb,t) andHt = (..., eε,t−1, eε,t)

are defined by independent and identically distributed processes {ex,t}, {eb,t} and

{eε,t} respectively, with {eb,t} independent of {eε,t} but correlated with {ex,t}.

To build the asymptotic normality results for the estimators, we apply the functional

dependence measure introduced in Wu (2005) for gauging the serial dependence of

a process. For d > 0, define

θxt,d,j = ‖xtj − x′tj‖d = (E|xtj − x′tj|d)1/d,

θbt,d,j = ‖btj − b′tj‖d = (E|btj − b′tj|d)1/d,

θεt,d,l = ‖εtl − ε′tl‖d = (E|εtl − ε′tl|d)1/d,

where j = 1, ..., NK, l = 1, ..., N and x′tj = fj(F ′t), F ′t = (..., ex,−1, e
′
x,0, ex,1, ..., ex,t),

with e′x,0 independent of all other ex,j’s. Hence x′tj is a coupled version of xtj with

ex,0 replaced by an independent and identically distributed copy e′x,0. Intuitively, a

large θxt,d,j means that serial correlation is strong at least for variables at most time

t apart. Finally, we have similar definitions for b′tj and ε′tl.

1.3.1 Main assumptions

We introduce some assumptions for our theorems to hold. First, we denote the L1

norm ‖v‖1 =
∑N

i=1 |vi| for a N × 1 vector v whose ith element is vi. More technical

assumptions are moved to Section 1.8 to help the flow of this chapter.

M1. The elements in all W i’s can be negative and W i itself can be asymmetric.

Moreover, defining S = {s = 1, . . . , K|The sth column of X t contains yt−l, l =

1, . . . , p}, we assume
∑M

i=1 |δ0i| < 1 and
∑p

j=1

∑M
i=1 |δji|+

∑
s∈S |βs| < 1.

M2. The processes {Bt}, {X t} and {εt} are second-order stationary, with {X t}
and {εt} having zero means, and {Bt} independent of {εt}. The tail condition

P (|Z| > v) ≤ D1 exp(−D2v
q) is satisfied for the variables Bt,jk, Xt,jk and εt,j

by the same constants D1, D2 and q.
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M3. Define

Θx
m,a =

∞∑
t=m

max
1≤j≤NK

θxt,a,j, Θb
m,a =

∞∑
t=m

max
1≤j≤NK

θbt,a,j, Θε
m,a =

∞∑
t=m

max
1≤j≤N

θεt,a,j.

Then we assume that for some w > 2, Θx
m,2w,Θ

b
m,2w,Θ

ε
m,2w ≤ Cm−α with

α,C > 0 being constants that can depend on w.

M4. (Identification condition) Assume that the two sets of parameters (δ∗,β∗) and

(δo,βo) both satisfy the proposed model (1.2). Write δ = (δ`)1≤`≤M(p+1), and

define the set H to be

H = {` : δ∗` 6= 0 or δo` 6= 0}.

Then the identification condition is that the matrixOTO has all its eigenvalues

uniformly bounded away from 0, where

O = (T−1/2E(BTZV H), T−1/2E(BTX̃)), and

X̃ = (x1,1, . . . ,xT,1, . . . ,x1,N , . . . ,xT,N)T .

The notation AH means that the matrix A has columns restricted to the set

H, while xTt,j is the jth row of X t.

Assumption M1 ensures that our model has a reduced form

yt = Πµ+ΠW 1yt−1+· · ·+ΠW pyt−p+ΠX tβ+Πεt, Π = (IN−W )−1, t = 1, . . . , T.

The matrix Π exists with the assumption
∑M

i=1 |δ0i| < 1. Since row-standardization

means
∥∥W 0i

∥∥
∞ = 1, the condition

∑p
j=1

∑M
i=1 |δji|+

∑
s∈S |βs| < 1 implies that each∥∥W j

∥∥
∞ <

∑M
i=1 |δji|

∥∥W 0i

∥∥
∞ < 1. At the same time, without loss of generality

assuming S = φ and writing the model as

Φ(L)yt = Πµ+ ΠX tβ + Πεt, Φ(L) = (IN −ΠW 1L− · · · −ΠW pL
p),

where L is the lag operator, then stationarity is ensured if det(Φ(z)) = 0 has all

roots lying outside the unit circle. This is ensured by the condition
∑p

j=1

∑M
i=1 |δji|+∑

s∈S |βs| < 1, which is thus a sufficient condition for stationarity. In practice, we

implement these restrictions when finding δ̃ in Section 1.2.3.
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The Assumption M2 and M3 are also used in Lam and Souza (2018). The indepen-

dence between {Bt} and {εt} in M2 ensures that {Bt} serves a function similar to

an instrument for model (1.2). More details about the dependence between {Bt}
and {X t} are shown in Assumption R3 and R4 in Section 1.8.1.

The tail condition in M2 implies that all the random variables involved are with sub-

exponential tails, which is a relaxation to strict normality. The different constants

for {Bt}, {X t} and {εt} process are finally dominated by the maximum one among

them. Therefore, to simplify, we assume they are same in our proof.

Similar to Definition 3 in Wu (2005) for stability measurement, Θx
m,2w ≤ Cm−α

in M3 essentially means that the strongest serial dependence for the xtj’s with at

least m time units apart is decaying polynomially as m increases. It allows for the

application of a Nagaev-type inequality in Lemma 1 in the Section 1.8 for our results

to hold.

1.3.2 Identification of the model

To explain condition M4 about identification of the model more specifically, we

assume that we have two sets of parameters (β∗, δ∗) and (βo, δo) that satisfy model

(1.2). Then we have

0 = BTZV H(δ∗H − δoH) +BTXβ∗−βovec(IN),

and we can write

T−1/2BTXβ∗−βovec(IN) = N−a/2


T−1

∑T
t=1(Bt − B̄)ζxTt,1(β∗ − βo)

...

T−1
∑T

t=1(Bt − B̄)ζxTt,N(β∗ − βo)


= T−1/2BTX̃(β∗ − βo),

so that

[T−1/2BTZV H T−1/2BTX̃]

 δ∗H − δoH

β∗ − βo

 = 0.

Hence taking expectation and multiplying OT on both sides and then (OTO)−1,

with condition M4, we can show that δ∗H = δoH and β∗ = βo. Since |H| ≤M(p+ 1)
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and K are finite and N2 is much larger than |H| + K, assuming O whose size is

N2 × (|H|+K) has full rank is reasonable.

1.3.3 Main results

To show the main theorem, we define λT = cT−1/2log1/2(T ∨ N), where c > 0 is

a constant. In all theorems presented here, we assume that α ≥ 1/2 − 1/w in

Assumption M3, which is part of the further assumptions listed in the Section 1.8.

Theorem 1. Let the assumptions in Section 1.3.1 and in Theorem 5 hold. The

estimators δ̂ in (1.5) and β̂ in (1.6) satisfy

‖δ̂ − δ‖1 = OP (λTN
−1/2+1/2w) and

‖β̂ − β‖1 = OP (λTN
−1/2+1/2w).

Same as Lam and Souza (2018), w > 2 is assumed in M3, the above immediately

implies ‖β̂ − β‖1, ‖δ̂ − δ‖1 → 0 in probability. First, it makes sense as T →∞, as

T is the sample size in our setting. It also makes perfect sense as N →∞ since we

are accumulating more information cross-sectionally for the finite-sized parameters

δ and β as N goes to infinity. Second, δ̂ and β̂ converge to the corresponding true

values at the same rate which matches the fact shown in (1.6) that β̂ is expressed

by δ̂. Then we present the asymptotic normality of β̂ and δ̂ in the following two

theorems.

Theorem 2. Let the assumptions in Section 1.3.1 and in Theorem 5 hold. Moreover,

use the predictive dependence measures defined in Wu (2005) as

P b
0(Bt,qk) = E(Bt,qk|G0)− E(Bt,qk|G−1), P ε

0(εt,qk) = E(εt,qk|H0)− E(εt,qk|H−1),

where Gt and Ht are defined in Section 1.3. Assume

∑
t≥0

max
1≤q≤N

max
1≤k≤K

‖P b
0(Bt,qk)‖ ≤ ∞,

∑
t≥0

max
1≤j≤N

‖P ε
0(εtj)‖ ≤ ∞.

Then we have

T 1/2Σ
−1/2
1 (β̂ − β)

D−→N (0, IK),

where

Σ1 = M 1

∑
τ∈Z E(BT

t εtε
T
t+τBt+τ )M

T
1 andM 1 = (E(XT

t Bt)E(BT
t X t))

−1E(XT
t Bt).
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Theorem 3. Let the assumptions in Section 1.3.1 and in Theorem 5 hold. Assume

that the predictive dependence measures P b
0(Bt,qk) and P ε

0(εt,qk) are as defined in

Theorem 2 with the same assumptions applied. Then

T 1/2Σ
−1/2
2 (δ̂ − δ)

D−→N (0, IM(p+1)),

where Σ2 = M 2(S1 + S2 − S3 − ST3 )MT
2 , and

S1 =
∑
τ∈Z

E(MBT
t+τεt+τε

T
t B

T
tM

T ),

S2 =
∑
τ∈Z

[
E(εtε

T
t+τ )⊗ E(Btζζ

TBT
t+τ )

T
]
,

S3 =
∑
τ∈Z

E(MBT
t+τεt+τ (vec(Btζε

T
t ))T ),

M 2 = {(H20 −H10)T (H20 −H10)}−1(H20 −H10)T , with

H10 = [IN ⊗ E((Bt − B̄)ζyTt ), . . . , IN ⊗ E((Bt − B̄)ζyTt−p)]V ,

H20 = M [E((Bt − B̄)TW 01yt), . . . ,E((Bt − B̄)TW 0Myt), . . . ,

E((Bt − B̄)TW 01yt−p), . . . ,E((Bt − B̄)TW 0Myt−p)],

where M = E(X t ⊗ (Bt − B̄)ζ)
[
E(XT

t Bt)E(BT
t X t)

]−1 E(XT
t Bt).

Similar to the convergence property found in Theorem 1, these two theorems are also

important, since they provide the tools for practical data analysis such as hypothesis

testing and confidence intervals construction.

In practice, we need to consider the infinite summation over τ and the high dimension

matrix calculation when the above asymptotic normality results are applied. More

specifically, when calculating Σ1 and Σ2, we calculate sample means to replace the

corresponding expectations. For the infinite summations in τ in S1 to S3, we check if

the matrix at a particular τ has very small elements overall by calculating Frobenius

norm. If so, we discard the whole matrix and all the matrices beyond this particular

τ . In the real data analysis in Section 1.6, we find that we always discard those with

τ ≥ 5. See Section 1.4.1 for further treatments regarding the estimation of the high

dimensional matrices S1 to S3.

Theorem 4. (Oracle property for δ̃) Let the assumptions in Section 1.3.1 and in
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Theorem 5 hold. Then as T,N →∞, with probability approaching 1,

sign(δ̃H) = sign(δH), δ̃Hc = 0,

where H = {` : δ` 6= 0} and ` = 1, . . . ,M(p + 1). Moreover, let the predictive

dependence measures P b
0(Bt,qk) and P ε

0(εt,qk) be as defined in Theorem 2 with the

same assumptions applied. Then

T 1/2Σ
−1/2
3 (δ̃H − δH)

D−→N (0, I |H|),

where Σ3 = M 3(S1 + S2 − S3 − ST3 )MT
3 , and M 3 = {(H20 − H10)TH(H20 −

H10)H}−1(H20 −H10)TH

As the usage of adaptive LASSO, we can build the oracle property for δ̃ to carry out

the selection of the specified spatial weight matrices by the penalized estimator δ̃,

and the usual inferences on the non-zero elements in δ̃. The practical performances

of these estimators and the asymptotic normality results are presented in Section

1.5.

1.4 Practical Implementation

1.4.1 Regularized matrix estimation of Σ2 and Σ3

As discussed in Theorem 3 and 4, the definitions of S1 to S3 involve some high

dimensional matrices to be estimated. Since S1 to S3 are in fact all N2 × N2, in

this paper we regularize S1 and S3 by banding them directly (see Bickel and Levina

(2008) for more details). As for the banding width used in our simulation and real

data analysis, we apply the 5-fold cross-validation procedure suggested in Bickel and

Levina (2008). It is found that that retaining only two off-diagonals (two upper and

two lower, while setting 0 in all other off-diagonals) when τ = 0, and retaining only

one when |τ | ≥ 1 in the infinite summations in S1, S2 and S3 achieves good results

when N is moderate to large. Again similar to the discussion after Theorem 3, when

|τ | ≥ 5, we set the matrices inside the summations in the definitions of S1 to S3 to

exactly zero. For S2, there are two N ×N matrices E(εtε
T
t+τ ) and E(Btζζ

TBT
t+τ ).

We band them separately, again retaining only two off-diagonals each when τ = 0,

and only one when |τ | ≥ 1. It is also suggested for users to apply this idea in

practice, as our method performs very well on both the simulated and real data as

shown in Section (1.5) and (1.6).
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1.4.2 Choice of the number of time lags p, and γT

In our analysis, we assume that p in model (1.1) is prescribed and finite. Same as

Lam and Souza (2018), for practical data analysis, we choose p by minimizing the

following BIC criterion:

BIC(p) = log
(
N−1‖BTy−BTZV δ̂ −BTX β̂vec(IN)‖2

)
+ p

logT

T
log(logT ), (1.8)

which follows the one in Wang et al. (2009). Wang et al. (2009) shows that this

modified BIC is consistent in model selection, which is correct regardless of whether

the dimension of the true model is finite or diverging. Section 1.5 also shows the

desirable performance in practice. Note that in the definition of B, there is a rate a

which is unknown. However, because of the logarithmic operation in the first term

in BIC(p), the value of a does not change where the minimum of BIC(p) is achieved.

For the choice of γT , we use the BIC criterion above, but with δ̂ replaced by δ̃, so

that we are effectively choosing p and γT together. Cross validation can also work

for the choice of the number of time lags p and γT , but we apply the above BIC

criterion for the computational efficiency.

1.4.3 Choice of ζ in B

We have set ζ = K−11K as fixed in the definition of B in Section 1.2.2. In fact

this can be estimated to provide maximal correlation between B and the response

variable yt through two-stage least squares. Consider the model

yt = α+Btζ + vt,

where α is an N × 1 vector of unknown coefficients, and ζ is the K × 1 vector of

coefficients we want to estimate. To get ζ̂, we can consider the problem

min
α,ζ

T∑
t=1

‖yt −α−Btζ‖2,

with solution

ζ̂ =
( T∑
t=1

(Bt − B̄)T (Bt − B̄)
)−1

T∑
t=1

(Bt − B̄)T (yt − ȳ).
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Implementing this does not change our proofs, since it is easy to show that
∥∥ζ̂∥∥

1
=

OP (1), which substitutes
∥∥ζ̂∥∥

1
= 1 in all of our proofs. We have tried this in our

simulations and real data analysis, and the practical differences between using this

and ζ = K−11K is negligible.

1.5 Simulation Experiments

1.5.1 Setting and results

To generate yt through model (1.1), we generate X t by using vec(X t) = 0.2 · 1K ⊗
εt + εXt with K = 3, where εt ∼ N(0, IN) is the innovation series for model (1.1),

with the εt’s being independent of each other. The εXt ’s are independent of each

other and of other variables, with εXt ∼ N(0,ΣX), and

ΣX =


2IN 0.5IN 0.5IN

0.5IN 2IN 0.5IN

0.5IN 0.5IN 2IN

 .

Since X t depends on εt, we set Bt to be such that vec(Bt) = 0.7εXt + εBt , where

the εBt ’s are drawn independently from the same distribution as εXT , and they are

independent of all other variables.

We set M = 3 and p = 2 for the model. Each element of β and δ is generated inde-

pendently from the uniform distribution U (0, 1). Elements in δ are then randomly

chosen to be 0 while maintaining p = 2. To make sure the stationarity of {yt}, every

element in β and δ is then divided by 1.1 times the absolute sum of all elements in

β and δ respectively.

For the M = 3 specified spatial weight matrices, to facilitate stationarity of the

model, we construct each W i such that only the first three off-diagonals (upper and

lower) have non-zero elements. This way, as N increases, we can still control the

eigenvalues of W i to be less than 1 in magnitude. In another setting, we generate

an orthogonal matrix V i and a diagonal matrix Di with all values in Di to be less

than 1 in magnitude, such that W i = V iDiV
T
i . Ultimately, both settings achieves

very similar results, and hence we only show the results of the former setting.

We repeat our simulations for 500 times, and report the averaged L1-error for β̂

and δ̂ (i.e., respectively,
∥∥β̂ − β∥∥

1
/3 =

∑3
i=1 |β̂i − βi|/3 and

∥∥δ̂ − δ∥∥
1
/9) in Figure
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Figure 1.1: Boxplots of averaged L1 errors. Upper row:
∑3

i=1 |β̂i − βi|/3. Bottom

row:
∥∥δ̂ − δ∥∥

1
/9. Left column (from left to right): N = 40, 80, 120, T = 60. Right

column (from left to right): T = 40, 80, 120, N = 60.
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Figure 1.2: Histograms and normal probability plots for standardized β̂1 (upper
row) and δ̂1,3 (lower row) with N = T = 80. Standardization used respectively the
asymptotic results from Theorem 2 and 3.

28



1.1, which illustrates the convergence of β̂ and δ̂ respectively as N, T or both gets

larger.

Next we consider the asymptotic normality of β̂ and δ̂. We choose β̂1 and δ̂1,3 with

(N, T ) = (80, 80) as examples for illustration. For each simulation, we construct β̂1

and δ̂1,3, and standardize them according to the asymptotic results in Theorem 2

and Theorem 3 respectively. Figure 1.2 shows histograms and normal probability

plots of the standardized estimators. They both show good fit for a standard normal

distribution. It means that the asymptotic variance formulae in Theorem 2 and 3 are

reliable for inference, and the way that we estimate any high dimensional covariance

matrices mentioned in Section 1.4.1 helps in achieving an accurate estimation of the

covariance matrices for β̂ and δ̂. We actually get very similar good fits for the non-

zero components of δ̃, showing the asymptotic normality in Theorem 4 is reliable as

well. The results are omitted here to save space.

On top of asymptotic normality, δ̃ also enjoys sign consistency as shown in Theorem

4. We illustrate the selection consistency of δ̃ in practice by calculating the specificity

(i.e., proportion of correctly identified zeros) and the sensitivity (i.e., proportion of

correctly identified non-zeros) of δ̃. Table 1.1 shows that at various combinations of

(N, T ), the sensitivity and specificity are all 100%, showing perfect identifications

of zeros and non-zeros. The table also shows the decreasing error for β̂ and δ̃ as N

or T increases.

T = 40 T = 80 T = 120

‖β̂ − β‖1 9.06(3.58) 6.26(1.04) 3.16(0.58)

N = 60 ‖δ̃ − δ‖1 0.13(0.05) 0.05(0.04) 0.02(0.02)

δ̃ Specificity 100%(0) 100%(0) 100%(0)

δ̃ Sensitivity 100%(0) 100%(0) 100%(0)

N = 40 N = 80 N = 120

‖β̂ − β‖1 7.60(0.89) 6.24(0.77) 3.51(0.65)

T = 60 ‖δ̃ − δ‖1 0.02(0.01) 0.01(0.00) 0.00(0.00)

δ̃ Specificity 100%(0) 100%(0) 100%(0)

δ̃ Sensitivity 100%(0) 100%(0) 100%(0)

Table 1.1: Mean L1 error for β̂ and δ̃. Standard deviations are shown in brackets.
Sensitivity and specificity of δ̃ are also shown for various combinations of T,N . The
values of

∥∥β̂ − β∥∥
1

are multiplied by 104.

1.5.2 Cross-sectional dependence in the innovation

Same as the simulation setting used in Section 1.5.1, a strong cross-sectional depen-

dent error is also considered in our simulation, where its i,jth element covariance
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matrix Σε
i,j = α|i−j| and α = 0.8. The results about the proposed estimators are

shown in Table 1.2 when different combinations of sample size T and panel dimen-

sion are used. First, the spatial weight matrix selection results are still perfect, as

all values of δ̃ Specificity and Sensitivity are 100% for different T and N. Secondly,

the mean L1 errors for β̂ and δ̃ become significantly large than the simulation where

there is no cross=sectional dependence in the innovation process generation. How-

ever, with the increase of sample size T or panel dimension N, the mean L1 errors

for β̂ and δ̃ decrease.

T = 40 T = 80 T = 120

‖β̂ − β‖1 45.3(11.9) 34.6(12.4) 26.66(10.5)

N = 80 ‖δ̃ − δ‖1 2.02(0.70) 1.67(0.42) 1.51(0.54)

δ̃ Specificity 100%(0) 100%(0) 100%(0)

δ̃ Sensitivity 100%(0) 100%(0) 100%(0)

N = 40 N = 80 N = 120

‖β̂ − β‖1 47.7(22.7) 34.6(12.4) 28.0(10.8)

T = 80 ‖δ̃ − δ‖1 1.88(0.61) 1.67(0.42) 1.63(0.45)

δ̃ Specificity 100%(0) 100%(0) 100%(0)

δ̃ Sensitivity 100%(0) 100%(0) 100%(0)

Table 1.2: Mean L1 error for β̂ and δ̃ when innovation process contains cross-
sectional dependence. Standard deviations are shown in brackets. Sensitivity and
specificity of δ̃ are also shown for various combinations of T,N . The values of∥∥β̂ − β∥∥

1
are multiplied by 104.

1.5.3 Performance of BIC for choosing p

To examiner the performance of the BIC defined in (1.8), we run our simulations

100 times for each particular (N, T ) combination using the same setting as before,

except that each time p is randomly generated from 1 to 7. With each simulation,

we construct the positive selection rate (PSR) and the false discovery rate (FDR),

defined as

PSR =

∑100
j=1 |s∗j ∩ s0,j|∑100

j=1 |s0,j|
, FDR =

∑100
j=1 |s∗j ∩ sc0,j|∑100

j=1 |s∗j |
,

where s0,j represents the index set for all δir that should be included in the model

at the jth repetition. Since we do not set δir to be exactly 0 in this experiment,

we have |s0,j| = pM = 3p, where p is in fact different for different j. The set s∗j

is the index set for all δ̂ir estimated when p is estimated as p∗. Clearly, if p∗ ≤ p,

then |s∗j ∩ s0,j| = |s∗j | and |s∗j ∩ sc0,j| = 0, meaning we may not be having the whole

true set s0,j but we do not falsely “discover” something that is not in s0,j. On the
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other hand, if p∗ > p, then |s∗j ∩ s0,j| = |s0,j| and |s∗j ∩ sc0,j| > 0, meaning we have

included all that are in s0,j, but we have falsely “discovered” something outside of

s0,j. Hence in a sense, PSR measures an average number of times where we do not

underestimate p, while FDR measures an average number of times we overestimate

p. Ideally, we want PSR=100% while FDR = 0%. These two measures are also used

in Chen and Chen (2008) and Chen and Chen (2012) in different contexts.

T = 40 T = 50 T = 60
N = 50 PSR 100.00% 100.00% 98.00%

FDR 2.00% 0.00% 0.00%

N = 40 N = 50 N = 60
T = 50 PSR 98.00% 100.00% 100.00%

FDR 0.00% 0.00% 2.00%

Table 1.3: Positive selection rate (PSR) and false discovery rate (FDR) for the choice
of p using BIC defined in (1.8).

Table 1.3 shows the results. Our BIC definitely performs very well with PSR almost

always equal 100% and FDR 0% in various (N, T ) combinations.

1.6 Analysis of Stock Return Data

Spatial lag model has been widely applied to economic or geographic data, yet

financial data is rarely analyzed using spatial econometrics tools. We illustrate the

performance of our model using the daily log-returns of 32 important stocks shown in

the following table in the Euro Stoxx 50 and S&P 500 in 2015. Our aim is to analyze

the spatial interactions of these stocks and to see how different macroeconomic and

financial indicators affect the dynamics of the returns.

Arnold et al. (2013a) illustrates, with the help of a spatial lag model, that the stocks

belonging to the same country or the same industry are more related to each other, in

the sense that spatial interactions of the log-returns are stronger. They analyze the

Euro Stoxx 50 stock returns using a combination of three adjacency matrices as an

estimator for the spatial weight matrix in their model. The first one being the weight

of the stocks in Euro Stoxx 50, and the second and third ones being the adjacency

matrices corresponding to the same industry and to the same country, respectively.

They found that all these matrices contribute to the final spatial weight matrix in

their model, and improves risk estimation in a portfolio allocation exercise. However,

no selection and inferences on the estimated parameters are performed due to the

lack of regularization and asymptotic results for the estimators.
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France Alstom, Total, BNP, Scociete,
Sanofi, Carrefour, LVMH, Vivendi

Germany Daimler, Allianz, Deutsche Bank
Italy ENEL, ENI, Intesa, Unicredit, Tele Italy
Spain Repsol, Banco, Telefonica

US GM, PG, Nextera, American Express,
Citi, Wells Frago, Amgen, Gilead,

Johnson, Costco, Home, Centurylink, Verizon
Energy Alstom, Total, ENEL, ENI, Repsol, PG, Nextera
Finance BNP, Scociete, Allianz, Deutsche Bank,

Intesa, Unicredit, Banco, American Express,
Citi, Wells Fargo

Pharmacy Sanofi, Amgen, Gilead, Johnson
Retails Carrefour, LVMH, Costco, Home

Telecom Vivendi, Tele Italy, Telefonica, Centurylink, Verizon
Auto Daimler, GM

To fill in this gap and generalize on their model, we include four types of spa-

tial weight matrix specifications instead of only three matrices as in Arnold et al.

(2013a). The first type is on the physical distance dij between city i and j where

the headquarters of the stocks’ associated companies are built. As stock market is

significantly affected by the local economy and, in spatial economy research, physi-

cal distance is commonly used. In our case, three specified spatial weight matrices

with elements 1/dij, 1/d
2
ij and 1/d3

ij are included for selection. The second to fourth

types coincide with the three matrices specified in Arnold et al. (2013a). Namely,

one contains the weight of stocks in Euro Stoxx 50 or S&P 500, and the remaining

two having (i, j)th element equal to 1 if the corresponding stocks belong to the same

industry or country respectively. This way, we have M = 6 specified spatial weight

matrices for selection in our model. We have done row standardization on all of

these six matrices.

As for the covariates X t, we use the Fama-French three factors (excess return =

market return - risk free rate, SMB = Small (market capitalization) Minus Big,

HML = High (book-to-market ratio) Minus Low), national stock index (S&P 500,

CAC40, DAX, IBEX or MIB) and the corresponding European or US industry index

for each stock. Hence K = 5, and we are treating these as exogenous covariates, so

we set Bt = X t, the same as the covariates. Minimizing the BIC defined in (1.8)

results in p = 1.

Table 1.4 shows the values of δ̃. Clearly, stock weight in their respective market

indices do not contribute to the two spatial weight matrices W 0 and W 1. However,

the adjacency matrices for country and industry do contribute to both of the spatial

weight matrices. For physical distance, clearly, a traditional approach where one
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1/d 1/d2 1/d3 Stock weight Country Industry

δ̃0i -0.0052 0.0811 -0.3880 0 0.0001 0.3122
(0.0015) (0.0036) (0.0497) (—) (10−5) (0.0346)

δ̃1i 0 0 -0.0612 0 2.22× 10−5 0.0610
(—) (—) (0.0062) (—) (6.1× 10−6) (0.0051)

Market excess return SMB HML

β̂ 1.516(0.616) −4.884(2.662) 1.869(0.841)

National Index Industry Index

β̂ 14.788(5.563) 19.746(10.274)

Table 1.4: The values of δ̃ and β̂, where p = 1 and γT = 1.6438 are chosen by
minimizing the BIC defined in (1.8). Estimated standard deviations are in brackets.

All values associate with β̂ are multiplied by 106.

chooses a distance 1/d, 1/d2 or 1/d3 for the spatial weight matrix would fail, since

it is clear that all three specified spatial weight matrices are significant and cannot

be omitted for W 0. Only the one for 1/d3 is significant to W 1 though. In the

same table, we can see that all factors in X t are at least marginally significant,

with national and industry indices play a more important role practically than the

Fama-French three factors.

Figure 1.3 shows the heat map of the spatial weight matricesW 0 andW 1. It is clear

that there are some block patterns in these matrices, which mainly represent stocks

in the same country or industry. Meanwhile, they are related strongly with each

other in general if they are all from Europe or US, with France and Italy showing

strong connections. It is interesting to note that the ninth stock Daimler, and the

twentieth stock GM, are related to each other (two bright yellow dots on both W 0

and W 1), although they belong to Germany and US auto-industry respectively.

Since Daimler owns part of GM by spin-offs, the relation itself is not surprising.

However, it means that our method of taking linear combination of different specified

spatial weight matrices can indeed reflect a general pattern of spatial interactions.

In W 1, we can also find some blocks for stocks in Germany and Spain.

1.7 Conclusion

In this chapter, we derive the properties of profiled least square estimation of the

time-space dynamic model that can contain contemporaneous spatial effect, individ-

ual time-lagged effects and spatial time-lagged effects. The convergence properties
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Figure 1.3: Upper: The estimate of W 0. Lower: The estimate of W 1. From 1 to
32, the stocks are Alstom, Total, BNP, Scociete, Sanofi, Carrefour, LVMH, Vivendi,
Daimler, Allianz, Deutsche Bank, ENEL, ENI, Intesa, Unicredit, Tele Italy,Repsol,
Banco, Telefonica, GM, PG, Nextera, American Express, Citi, Wells Frago, Amgen,
Gilead, Johnson, Costco, Home, Centurylink and Verizon respectively.
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and the asymptotic normality results are built in the case when both the sample

size T and panel dimension N go to infinity. Using instrument-like variables, the

inconsistency from innate endogeneity in least square estimators can be fixed.

Our model uses different linear combination of a set of specified spatial weight

matrices for different spatial effects to avoid the misspecification. However, it is

highly likely that some irrelevant spatial weight matrices are considered into the

model, which may cause a new bias for the spatial weight matrix estimation. A

further selection on spatial weight matrices included into our model is applied by

adaptive LASSO proposed in Zou (2006), which can reflect which spatial weight

matrices truly contribute which ones do not.

As for the prediction ability of our model, it is easy to have the predictive value by:

ŷt = (I − Ŵ 0)−1(µ̂+ Ŵ 1yt−1 + · · ·+ Ŵ pyt−p +X tβ̂).

Same as the most of VAR (Vector AutoRegression) model, our model dose not have

a good predictive ability when the panel dimension N is large. The estimated inverse

matrix in the above predictive model do not perform well, which causes the predictive

values inaccurate. However, the main goal of this Chapter is to construct the spatial

weight matrix by high order spatial autoregression model and do a selection on the

candidates of specified spatial weight matrices. We can leave the forecasting problem

as a future work.

For the future study, first of all, the fixed M assumed in the proposed method can be

extended to infinite M to reflect the practical reality that richness of a parametric

model often deepens with sample size. Furthermore, it may be of interest to increase

the efficiency of spatial weight matrix estimation. As known, adaptive LASSO is

good in spatial weight matrices selection, however, it introduces some bias into the

spatial weight matrix estimation as the sacrifice of sparseness. In Lam and Souza

(2015c), adding a potentially sparse adjustment matrix for contemporaneous spatial

effect is discussed, which can be extended to dynamic spatial model we proposed

in this chapter. In the case of p is not large, quasi-maximum likelihood estimation

can also be applied, especially when the instrument-like variable is not available.

The last but not the least, we can still apply the proposed method but replace the

L1 penalty by ridge regularization, which performs better in estimation but not in

selection. We will investigate these approaches in a future work.
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1.8 Proof

1.8.1 Technical assumptions

Before the proof is provided, we present and explain more technical assumptions of

the paper in this section. Most of these assumptions are extended from Lam and

Souza (2015a).

R1. The column vectors vec(W T
0i) in V 0 are linearly independent to each other,

such that there exists a constant u > 0 with σ2
M(V 0) ≥ u > 0 uniformly as

N →∞, where σi(A) is the ith largest singular value of a matrix A. Moreover,

max1≤i≤M ‖W 0i‖1 ≤ c < 1 uniformly as N →∞ for some constant c > 0.

R2. Write εt = Σ1/2
ε ε∗t , where Σε is the covariance matrix for εt. Then the elements

in Σε are all less than σ2
max uniformly as N →∞. Same for the variance of the

elements in Bt. We also assume ‖Σ1/2
ε ‖∞ ≤ Sε < ∞ uniformly as N → ∞,

with {ε∗t,j}1≤j≤N being a martingale difference with respect to the filtration

generated by σ(ε∗t,1, ..., ε
∗
t,j). The tail condition P (|Z| > v) ≤ D1 exp(−D2v

q)

is also satisfied by ε∗t,j.

R3. All singular values of E(XT
t Bt) are uniformly larger thanNu for some constant

u > 0, while the maximum singular value is also of order N . Individual entries

in the matrix E(xtb
T
t ) are uniformly bounded away from infinity.

R4. For the same constant a, we have for each N

max
1≤i≤N

N∑
j=1

∥∥∥E(
∑
q≥0

bt,ix
T
t−q,j)

∥∥∥
max

, max
1≤j≤N

N∑
i=1

∥∥∥E(
∑
q≥0

bt,ix
T
t−q,j)

∥∥∥
max
≤ CbxN

a

where Cbx > 0 is a constant and bt,i, xt,j are the column vectors for the ith

row of Bt and jth row of X t respectively. At the same time, assume also that

E(X t ⊗Btζ) has all singular values of order N1+a.

R5. Assume 0 < b < 1. For fixed = 1, . . . , K, the eigenvalues of N−bvar(Bt,k)

and var(εT ) are uniformly bounded away from 0 and infinity, and respectively

dominates the singular values of the sum of N−bcov(Bt+τ,k,Bt,k) over τ 6= 0

and the sum of E(εtε
T
t+τ ) over τ 6= 0. Also, for each i = 1, . . . , N , we assume

that

∑
τ

σi
(
N−bcov(Bt+τ,k,Bt,k)

)
<∞,

∑
τ

σi
(
E(εtεt+τ )

)
<∞.
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R6. Define λT = cT−1/2log1/2(T ∨N) for some constant c > 0. The tuning param-

eter γT is such that γT = CλT for some constant C > 0.

R7. In all the assumptions above, we assume that as N, T → ∞, λTN
1−a = o(1),

N−a+b−1/wlog−1(T ∨N) = o(1), log(T ∨N)N1/w−b = o(1) and N b−a = o(TλT ).

Assumption R1 essentially requires that each specification W 0i is different from one

another to a certain extent. This is intuitive, since if W 0i and W 0l are too similar

to each other, the coefficients δji and δjl are not well defined, and this will have a

negative impact on the performance of our estimators.

The assumptions on Σε in R2 is mainly for the convenience of proofs, while the

martingale difference assumption for εt is a relaxation to independence.

Assumptions R3 and R4 are closely related. They paint a picture of how the ex-

ogenous variables in Bt are correlated with X t−q. Assumption R3 essentially says

that the covariance between a variable in Bt and one in X t is finite uniformly as

N → ∞. Then for k = 1, . . . , K, considering the kth diagonal entry of E(XT
t Bt)

is
∑N

j=1 E(Xt,jkBt,jk) with each E(Xt,jkBt,jk) being finite, it is indeed reasonable to

assume that each diagonal entry in the matrix is of order N . This assumption is

needed for the estimator β = β(δ) to be well-defined.

Assumption R4 essentially describes how each row of variables in Bt are correlated

with different rows of variables in X t. With this, we can actually derive easily that

‖E(X t ⊗Btζ)‖1 has order at most N1+a. Hence the assumption of having all the

singular values of E(X t ⊗Btζ) of order N1+a is reasonable.

Assumption R5 assumes a rate for the singular values of var(Bt,k) essentially, which

is important in certain asymptotic normality results. The rate N b, possibly differing

from Na, is reasonable as well since the way that Bt and X t are correlated do not

directly indicate how the variables in Bt itself are correlated, unless of course when

Bt = X t where X t itself is exogenous, in which case a = b. The variance-covariance

matrix being dominating the lag τ auto-covariances is for the ease of presentation

of rates of convergence in the asymptotic normality results in this chapter.

1.8.2 Proof of theorems

The followings are Lemma 1 and 2 of Lam and Souza (2015a) respectively.

Lemma 1. For a zero mean time series process xt = f(F) with dependence measure

θxt,d,j defined in Section 1.3, assume Θx
m,a ≤ Cm−α as in Assumption M3. Then there

exists constants C1, C2 and C3 independent of v, T and the index j such that
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P (|1/T
T∑
t=1

xt,j| > v) ≤ C1T
w(1/2−α̃)

(Tv)w
+ C2 exp(−C3T

β̃v2),

where α̃ = α ∧ (1/2− 1/w), and β̃ = (3 + 2α̃w)/(1 + w).

Furthermore, assume another zero mean time series process zt (can be the same

process xt) with both Θx
m,2w, Θz

m,2w ≤ Cm−α, as in Assumption M3. Then provided

maxj ‖xtj‖2w, maxj ‖ztj‖2w ≤ c0 ≤ ∞ where c0 is a constant, the above Nagaev-type

inequality holds for the product process {xtjztl − E(xtjztl)}.

Lemma 2. For any N ×N matrix H = (h1, . . . , hN)T and any N ×K matrix M ,

define

V H =


IK ⊗ h1

...

IK ⊗ hN

 .

Then we have

HM = (IN ⊗ vecT (M ))V H .

We first present an Theorem 5 which states that a set M is such that P (M) → 1

as T,N → ∞, and our estimators enjoy nice properties on M. This theorem is in

fact exactly the same as Theorem S.1 of Lam and Souza (2015a).

Denote Bt,ij and Xt,ij the (i, j) entry of Bt and X t respectively, and define M =

∩7
i=1Ai, where

A1 =

{
max

1≤i,k≤N
max

1≤j,l≤K
|T−1

T∑
t=1

[Bt,ijXt,kl − E(Bt,ijXt,kl)]| < λT

}
,

A2 =

{
max

1≤i,k≤N
max

1≤j≤K
|T−1

T∑
t=1

Bt,ijεt,k| < λT

}
,

A3 =

{
max

1≤k≤K
|T−1

T∑
t=1

N∑
s=1

Bt,skεt,s| < λTN
1/2+1/2w

}
,

A4 =

{
max

1≤i≤N
max

1≤j≤K
|B̄.,ij − E(Bt,ij)| < λT

}
,

A5 =

{
max

1≤j≤N
|ε̄.,j| < λT

}
,

A6 =

{
max

1≤i≤N
max

1≤j≤K
|X̄.,ij| < λT

}
,

A7 =

{
max

1≤k≤K
|
N∑
s=1

B̄·,sk ε̄.,s| < 21/2λTN
1/2log1/2(T ∨N)Sε(max

i.j
|E(Bt,ij)|+ λT )

}
.
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Theorem 5. Let Assumptions M1-M4 in Section 1.3.1 and R1-R7 in Section 1.8.1

hold. Suppose α ≥ 1/2 − 1/w in Assumption M3, and for the application of the

Nagaev-type inequality in Lemma 1 for the processes defined in A1 to A7, suppose

the constants C1, C2 and C3 are the same. Then with c ≥
√

3/C3 where c is the

constant defined in λT = cT−1/2log1/2(T ∨N), we have

P (M) ≥ 1− 8C1K
2(C3/3)w/2

N2

Tw/2−1logw/2(T ∨N)
− 8C2K

2N2

T 3 ∨N3
− 2K

T ∨N
.

It approaches 1 if we assume further that N = o(Tw/4−1/2logw/4(T )).

Proof of Theorem 1

From (1.4) and that

yv0 =
M∑
i=1

δ0iW
⊗
0iy

v
0 +

p∑
j=1

( M∑
i=1

δjiW
⊗
0i

)
yvj +Xβ + εv + 1T ⊗ µ

=
(
ITN −

M∑
i=1

δ0iW
⊗
0i

)−1
( p∑

j=1

( M∑
i=1

δjiW
⊗
0i

)
yvj +Xβ + εv + 1T ⊗ µ

)
,

it is easy to get, since BvT (1T ⊗ µ) = 0, that

β(δ)− β = (XTBvBvTX)−1XTBvBvTεv.

Moreover,

β̂ = β(δ̂)

= (XTBvBvTX)−1XTBvBvT
[(
ITN −

M∑
i=1

δ̂0iW
⊗
0i

)
yv0 −

p∑
j=1

( M∑
i=1

δ̂jiW
⊗
0i

)
yvj

]
= (XTBvBvTX)−1XTBvBvT

[(
ITN −

M∑
i=1

δ0iW
⊗
0i

)
yv0 −

p∑
j=1

( M∑
i=1

δjiW
⊗
0i

)
yvj

+
M∑
i=1

(δ0i − δ̂0i)W
⊗
0iy

v
0 +

p∑
j=1

( M∑
i=1

(δji − δ̂ji)W⊗
0i

)
yvj

]
= β(δ) + (XTBvBvTX)−1XTBvBvT

·
[ M∑
i=1

(δ0i − δ̂0i)W
⊗
0iy

v
0 +

p∑
j=1

( M∑
i=1

(δji − δ̂ji)W⊗
0i

)
yvj

]
.
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Using the above, we can decompose

β̂ − β = I0 + I1 + I2 + I3 + I4 + I5, where

I0 = (E(XT
t Bt)E(BT

t X t))
−1(E(XT

t Bt)E(BT
t X t)− T−2XTBvBvTX)(β̂ − β),

I1 = (E(XT
t Bt)E(BT

t X t))
−1T−2XTBvBvTεv,

I2 = (E(XT
t Bt)E(BT

t X t))
−1T−2XTBvBvT (

M∑
i=1

(δ0i − δ̂0i)W
⊗
0i)Π

⊗Xβ,

I3 = (E(XT
t Bt)E(BT

t X t))
−1T−2XTBvBvT (

M∑
i=1

(δ0i − δ̂0i)W
⊗
0i)Π

⊗εv,

I4 = (E(XT
t Bt)E(BT

t X t))
−1T−2XTBvBvT (

M∑
i=1

(δ0i − δ̂0i)W
⊗
0i)Π

⊗(

p∑
j=1

(
M∑
i=1

δjiW
⊗
0i)y

v
j ),

I5 = (E(XT
t Bt)E(BT

t X t))
−1T−2XTBvBvT (

p∑
j=1

(
M∑
i=1

(δji − δ̂ji)W⊗
0iy

v
j )),

with Π⊗ = (ITN −
∑M

i=1 δ0iW
⊗
0i)
−1. We need to find the rate of convergence of I0

I1, I2, I3, I4 and I5.

To this end, using Assumption R3 in Section 1.8.1,

‖E(XT
t Bt)E(BT

t X t)
−1‖1 ≤

K1/2

λmin(E(XT
t Bt)E(BT

t X t))
≤ K1/2

N2u2
.

Define U = IN ⊗ T−1
∑T

t=1 vec(Bt − B̄)vecT (X t) and U 0 = IN ⊗ E(btx
T
t ), then

we can write T−1XTBv = V T
IN
UV IN and E(XT

t Bt) = V T
IN
U 0V IN . Also, denote

W c
j,Bt,j and X t,j the jth column of W , Bt and X t respectively, and let πTj be the
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jth row of Π. Then on M,

‖I0‖1

≤ ‖(E(XT
t Bt)E(BT

t X t))
−1‖1‖((E(XT

t Bt)E(BT
t X t))− T−2XTBvBvTX)(β̂ − β)‖1

≤ K1/2

N2u2

[
‖V T

IN
(U 0 −U)TV INV

T
IN
U 0‖1

+ ‖V T
IN
UTV INV

T
IN

(U 0 −U)‖1

]
‖V IN (β̂ − β)‖1

≤ K1/2

N2u2

[
K‖U 0 −U‖max ·N ·K‖U 0‖max

+ (K‖V T
IN

(U −U 0)TV IN‖max +K‖V T
IN
UT

0V IN‖max) ·K‖U 0 −U‖max

]
·N‖β̂ − β‖1

≤ K1/2(2λTσbx(1 + µb,max + λT ) + λ2
T (1 + µb,max + λT )2)‖β̂ − β‖1

= O(λT‖β̂ − β‖1),

where µb,max =
∥∥E(bt)

∥∥
max

. At the same time, on M,

‖I1‖1 ≤
K1/2

N2u2
‖T−1XTBv‖1‖T−1BvTεv‖1

≤ K1/2

N2u2
‖V T

IN
(U −U 0)V IN + V T

IN
UT

0V IN‖1

· (KλTN1/2+1/2w +
√

2KλTN
1/2log(T ∨N)Sε(µb,max + λT ))

≤ K1/2

N2u2
N(λT (1 + µb,max + λT ) + σbx)

· (KλTN1/2+1/2w +
√

2KλTN
1/2log(T ∨N)Sε(µb,max + λT ))

= O(λTN
−1/2+1/2w).

Recall thatW j =
∑M

i=1 δjiW 0i, and denoting Ŵ j =
∑M

i=1 δ̂jiW 0i for j = 0, 1, . . . , p,
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then on M,

‖I2‖1 ≤
K1/2

N2u2
‖T−1XTBv‖1‖T−1

T∑
t=1

(Bt − B̄)T (W 0 − Ŵ 0)ΠX t‖1‖β‖1

≤ K1/2

N2u2
O(N)

(
K · max

1≤r≤K

∣∣∣ N∑
j=1

(W c
0,j − Ŵ

c

0,j)
TT−1

T∑
t=1

(Bt,r − B̄.,r)X
T
t,rπj

∣∣∣)
≤ O(N−1)(

N∑
j=1

(λT (1 + µb,max + λT ) + σbx)‖W c
0,j − Ŵ

c

0,j‖1‖πj‖1)

≤ O(N−1)(N‖δ0 − δ̂0‖1) = O(‖δ0 − δ̂0‖1).

Similarly, on M,

‖I3‖1 ≤
K1/2

N2u2
‖T−1XTBv‖1‖T−1

T∑
t=1

(Bt − B̄)T (W 0 − Ŵ 0)Πεt‖1

≤ K1/2

N2u2
O(N)

(
K max

1≤r≤K

∣∣∣∣ N∑
j=1

(W c
0,j − Ŵ

c

0,j)
T
(
T−1

T∑
t=1

(Bt,r − B̄.,r)ε
T
t

)
πj

∣∣∣∣)
≤ O(N−1) ·O(NλT max

1≤j≤N

∥∥πj∥∥1
max

1≤j≤N

∥∥W c
0,j − Ŵ

c

0,j

∥∥
1
) = O(λT

∥∥δ0 − δ̂0

∥∥
1
).

For bounding
∥∥I4

∥∥
1

and
∥∥I5

∥∥
1
, recall that from Section 1.3.1, we can express yt as

yt = Φ−1(L)Π(µ+X tβ + εt) =
∑
q≥0

ΨqΠ(µ+X t−qβ + εt−q), (1.9)

where Ψq is N ×N such that
∑

q≥0

∥∥Ψq

∥∥
∞ < ∞ because of stationarity. Then we

can decompose

‖I4‖1 ≤
K1/2

N2u2
‖T−1XTBv‖1

·
∥∥∥T−1

T∑
t=1

(Bt − B̄)T (W 0 − Ŵ 0)Π

p∑
j=1

W jΦ
−1(L)Π(X t−jβ + εt−j)

∥∥∥
1

= O(N−1(‖I41‖1 + ‖I42‖1)), where

‖I41‖1 =
∥∥∥T−1

T∑
t=1

(Bt − B̄)T (W 0 − Ŵ 0)Π

p∑
j=1

W jΦ
−1(L)ΠX t−jβ

∥∥∥
1
,

∥∥I42

∥∥
1

=
∥∥∥T−1

T∑
t=1

(Bt − B̄)T (W 0 − Ŵ 0)Π

p∑
j=1

W jΦ
−1(L)Πεt−j

∥∥∥
1
.
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On M, we have

∥∥I41

∥∥
1
≤ max

1≤j≤p
max

1≤r,k≤K
pK2

∥∥β∥∥
1

·
∣∣∣∣∑
q≥0

{
T−1

T∑
t=1

(Bt,r − B̄·,r)T (W 0 − Ŵ 0)ΠW jΨqΠX t−q−j,k

}∣∣∣∣
= O(Nσbx

∥∥W 0 − Ŵ 0

∥∥
∞

∥∥W j

∥∥
∞

∥∥Π∥∥2

∞

∑
q≥0

∥∥Ψq

∥∥
∞)

= O(N
∥∥δ0 − δ̂0

∥∥
1
),

where the second line is by Assumption R4. At the same time on M,

∥∥I42

∥∥
1

≤ max
1≤j≤p

max
1≤r≤K

pK

∣∣∣∣∑
q≥0

{
T−1

T∑
t=1

(Bt,r − B̄·,r)T (W 0 − Ŵ 0)ΠW jΨqΠεt−q−j

}∣∣∣∣
= O(NλT

∥∥W 0 − Ŵ 0

∥∥
∞

∥∥W j

∥∥
∞

∥∥Π∥∥2

∞

∑
q≥0

∥∥Ψq

∥∥
∞)

= O(NλT
∥∥δ0 − δ̂0

∥∥
1
),

where the second line follows from the rate on A2. These imply that on M,

∥∥I4

∥∥
1

= O(
∥∥δ0 − δ̂0

∥∥
1
).

To bound
∥∥I5

∥∥
1
, we can decompose

‖I5‖1

≤ K1/2

N2u2
‖T−1XTBv‖1

∥∥∥T−1

T∑
t=1

(Bt − B̄)T
p∑
j=1

(W j − Ŵ j)Φ
−1(L)Π(X t−jβ + εt−j)

∥∥∥
1

= O(N−1(‖I51‖1 + ‖I52‖1)),

43



where

‖I51‖1 =
∥∥∥T−1

T∑
t=1

(Bt − B̄)T
p∑
j=1

(W j − Ŵ j)Φ
−1(L)ΠX t−jβ

∥∥∥
1
,

‖I52‖1 =
∥∥∥T−1

T∑
t=1

(Bt − B̄)T
p∑
j=1

(W j − Ŵ j)Φ
−1(L)Πεt−j

∥∥∥
1
.

To bound
∥∥I51

∥∥
1
, similar to the treatment on

∥∥I41

∥∥
1
, on M,

∥∥I51

∥∥
1
≤ max

1≤r,k≤K
K2
∥∥β∥∥

1

∣∣∣∣T−1

T∑
t=1

(Bt,r − B̄·,r)T
p∑
j=1

(W j − Ŵ j)
∑
q≥0

ΨqΠX t−q−j,k

∣∣∣∣
= O(Nσbx

p∑
j=1

∥∥W j − Ŵ j

∥∥
∞

∥∥Π∥∥∞∑
q≥0

∥∥Ψq

∥∥
∞)

= O(N
∥∥δ − δ̂∥∥

1
).

Finally, on M,

∥∥I52

∥∥
1
≤ max

1≤r≤K
K

∣∣∣∣T−1

T∑
t=1

(Bt,r − B̄·,r)T
p∑
j=1

(W j − Ŵ j)
∑
q≥0

ΨqΠεt−q−j

∣∣∣∣
= O(NλT

p∑
j=1

∥∥W j − Ŵ j

∥∥
∞

∥∥Π∥∥∞∑
q≥0

∥∥Ψq

∥∥
∞)

= O(NλT
∥∥δ − δ̂∥∥

1
).

Hence on M, we have ∥∥I5

∥∥
1

= O(
∥∥δ − δ̂∥∥

1
).

Combining the rates for
∥∥I0

∥∥
1

to
∥∥I5

∥∥
1
, we can conclude that on M,

∥∥β̂ − β∥∥
1

= O(λTN
−1/2+1/2w +

∥∥δ − δ̂∥∥
1
). (1.10)

We need to find the order of ‖δ̂− δ‖1. From (1.3) and (1.5), it is easy to show that

Kyv0 −BTy = Kyv0 − (BTε+BTZV δ +BTXβvec(IN)),
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where

Kyv0 = Hδ +KXβ +Kεv

= Hδ + T−1/2N−a/2
T∑
t=1

X t ⊗ (Bt − B̄)ζβ +Kεv

= Hδ +BTXβvec(IN) +Kεv.

Hence,

Kyv0 −BTy = −BTε+ (H −BTZV )δ +Kεv.

Substituting the above back to (1.5), we can decompose

δ̂ − δ =
[
(H −BTZV )T (H −BTZV )

]−1
(H −BTZV )T

[
Kεv −BTε

]
= D1 +D2, where

D1 =
[
(H −BTZV )T (H −BTZV )

]−1
(H −BTZV )TKεv,

D2 = −
[
(H −BTZV )T (H −BTZV )

]−1
(H −BTZV )TBTε.

To bound
∥∥D1

∥∥
1

and
∥∥D2

∥∥
1
, we introduce some notations and find their L1 norm

bounds first. For i = 1, . . . ,M , define

U q = IN ⊗ T−1

T∑
t=1

vec(Bt − B̄)vecT (X t−q), U 0q = IN ⊗ E(btx
T
t−q).
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Also, define for i = 1, . . . ,M and j = 1, . . . , p,

A1 = T−1

T∑
t=1

X t ⊗ (Bt − B̄)ζ, A0
1 = E(X t ⊗Btζ),

A2 = (V T
IN
UTV INV

T
IN
UV IN )−1, A0

2 = (V T
IN
UT

0V INV
T
IN
U 0V IN )−1,

A3 = V T
IN
UTV IN , A0

3 = V T
IN
UT

0V IN , (1.11)

A4ij =
∞∑
q=0

V T
W T

0i
U q+jV Π̃q

β, A0
4ij =

∞∑
q=0

V T
W T

0i
U 0,q+jV Π̃q

β,

A5ij =
∞∑
q=0

V T
W T

0i

(
IN ⊗ T−1

T∑
t=1

vec(Bt − B̄)εTt−q−j

)
vec(Π̃

T

q ).

where Π̃q = ΨqΠ. It is straightforward to see that, on M,

‖A1 −A0
1‖max = O(λT ) (1.12)

Meanwhile, by Assumptions R4 and R7, on M,

‖A1‖1 ≤ ‖A0
1‖1 + ‖A1 −A0

1‖1 = O(N1+a + λTN
2) = O(N1+a). (1.13)

Similarly, on M,

‖A0
3‖1 ≤ K‖V T

IN
UT

0V IN‖max = O(N), ‖A3−A0
3‖1 = O(λTN), ‖A3‖1 = O(N).

(1.14)

As A0
2 = (A0

3A
0T
3 )−1,

‖A0
2‖1 ≤

K1/2

λmin(A0
3A

0T
3 )
≤ K1/2

N2u2
= O(N−2). (1.15)

Moreover, we know that A2 −A0
2 = (A2 −A0

2)((A0
2)−1 −A−1

2 )A0
2 +A0

2((A0
2)−1 −

A−1
2 )A0

2, and on M,

‖(A0
2)−1 −A−1

2 ‖1

= ‖A0
3A

0T
3 −A3A

T
3 ‖1 ≤ ‖A0

3 −A3‖1‖A0T
3 ‖1 + ‖A3‖1‖A0T

3 −AT
3 ‖1 = O(λTN

2).
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Therefore, on M,

‖A2−A0
2‖1 ≤

‖(A0
2)−1 −A−1

2 ‖1‖A0
2‖2

1

1−O(λTN2N−2)
= O

( λTN
2N−4

1− λTN2N−2

)
= O(λTN

−2). (1.16)

As for ‖A4ij‖1, by Assumptions M1 and R4, defining π̃Tq,r to be the rth row of Π̃q,

we have on M,

‖A0
4ij‖1 ≤

∞∑
q=0

K‖β‖1‖V T
W T

0i
U 0,q+jV Π̃q

‖max (1.17)

=
∞∑
q=0

K‖β‖1 max
1≤k,m≤K

∣∣∣ N∑
r=1

W cT
0i,rE(X t−q−j,kB

T
t,m)π̃q,r

∣∣∣
= O(‖W 0i‖1

∑
q≥0

‖Π̃q‖∞ ·N) ≤ O(‖W 0i‖1

∑
q≥0

(‖Π‖∞‖Ψq‖∞) ·N) = O(N).

(1.18)

Similarly, we can easily show on M that

‖A4ij −A0
4ij‖1 = O(λTN).

Hence we have

‖A4ij‖1 = O(N). (1.19)

To bound ‖A5ij‖1, an element in A5ij is bounded on M by

∣∣∣ N∑
r=1

∞∑
q=0

W cT
0i,rT

−1

T∑
t=1

(Bt,k − B̄k)ε
T
t−q−jπ̃q,r

∣∣∣ = O(λTN), so ‖A5ij‖1 = O(λTN).

(1.20)
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We now decompose D1 = F1 + F2 + F3, where

F1 =
[
(H20 −H10)T (H20 −H10)

]−1

·
[
(H20 −H10)T (H20 −H10)− T−1Na(H −BTZV )T (H −BTZV )

]
D1,

F2 =
[
(H20 −H10)T (H20 −H10)

]−1

· (T−1/2Na/2H −H20 − T−1/2Na/2BTZV +H10)T · T−1/2Na/2Kεv,

F3 =
[
(H20 −H10)T (H20 −H10)

]−1
(H20 −H10)T · T−1/2Na/2Kεv.

Both H20 and H10 are N2×M(p+ 1) matrices defined in Theorem 3. By Assump-

tions R3 and R4, it is easy to show that

σM(H20) ≥ σK(A0
1)σK(A0

2)σK(A0
3)σmin(A0

410, . . . ,A
0
4M0, . . . ,A

0
41p, . . . ,A

0
4Mp)

≥ CN1+a ·N ·N
λmax(E(XT

t Bt)E(BT
t X t))

≥ CN1+a,

σ2
M(H10) ≥ σ2

M(V 0)σ2
N

(
(IN ⊗ ζT )

∞∑
q=0

E(vec(BT
t )vec(XT

t )T )(IN ⊗ β)Π̃q

)
≥ CN1+a.

Hence the smallest singular value of H20 dominates that of H10, and so for some

constant u > 0,

σ2
M(p+1)(H20 −H10) ≥ uN1+a. (1.21)

With this, we have

‖[(H20−H10)T (H20−H10)]−1‖1 ≤
M1/2(p+ 1)1/2

λmin[(H20 −H10)T (H20 −H10)]
≤ M1/2(p+ 1)1/2

uN1+a

(1.22)
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To bound ‖D1‖1, using (1.22), we have

‖F1‖1 ≤
M3/2(p+ 1)1/2

N1+au

[
‖H20 −H10‖1 (1.23)

·
(
‖T−1/2Na/2H −H20‖max + ‖T−1/2Na/2BTZV −H10‖max

)
+ ‖T−1/2Na/2(H −BTZV )‖max

·
(
‖T−1/2Na/2H −H20‖1 + ‖T−1/2Na/2BTZV −H10‖1

)]
‖D1‖1, (1.24)

‖F2‖1 ≤
M3/2(p+ 1)1/2

N1+aµ

(
‖T−1/2Na/2H −H20‖max + ‖T−1/2Na/2BTZV −H10‖max

)
· ‖T−1/2Na/2Kεv‖1, (1.25)

‖F3‖1 ≤
M3/2(p+ 1)1/2

N1+aµ
‖H20 −H10‖max · ‖T−1/2Na/2Kεv‖1. (1.26)

Now, to bound ‖F1‖1, ‖F2‖1 and ‖F3‖1, we consider

‖T−1/2Na/2H −H20‖max = max
1≤i≤M

max
1≤j≤p

‖A1A2A3(A4ij +A5ij)−A0
1A

0
2A

0
3A

0
4ij‖max

≤ max
1≤i≤M

max
1≤j≤p

‖A1‖max‖A2‖1‖A3‖1‖A5ij‖1+

max
1≤i≤M

max
1≤j≤p

[
‖A1‖max‖A2A3A4ij −A0

2A
0
3A

0
4ij‖1 + ‖A1 −A0

1‖max‖A0
2A

0
3A

0
4ij‖1

]
,

(1.27)

with

‖A2A3A4ij −A0
2A

0
3A

0
4ij‖1 ≤ max

1≤j≤p

[
‖A2‖1‖A3 −A0

3‖1‖A4ij‖1+

‖A2‖1‖A0
3‖1‖A4ij −A0

4ij‖1 + ‖A2 −A0
2‖1‖A0

3‖1‖A0
4ij‖1

]
.

Therefore, base on the rates found in (1.12) to (1.20), and (1.27), we have on M
that

‖T−1/2Na/2H −H20‖max = O(λT ), and ‖T−1/2Na/2H −H20‖1 = O(λTN
2).

(1.28)

Define Lq = T−1
∑T

t=1 vec((Bt− B̄)T )vecT (X t−q) and Lq
0 = E(vec(BT

t )vecT (XT
t−q).

49



Then, by Assumption R4 and on M, we have

‖T−1/2Na/2BTZ‖1

= max
0≤l≤p

‖T−1

T∑
t=1

(Bt − B̄)ζyt−l‖1 = ‖T−1

T∑
t=1

(Bt − B̄)ζyTt ‖1

≤ ‖T−1

T∑
t=1

∞∑
q=0

(Bt − B̄)ζ(ΨqΠ(X t−qβ + εt−q))
T‖1

≤ O(λTN +Na + λTN) = O(Na), and (1.29)

‖T−1/2Na/2BTZV −H10‖max

= max
0≤l≤p

max
1≤i≤M,1≤j≤N

‖
(
T−1

T∑
t=1

(Bt − B̄)ζyTt−l − E((Bt − B̄)ζyTt−l)
)
W c

0i,j‖max

= max
1≤i≤M,1≤j≤N

‖
(
T−1

T∑
t=1

(Bt − B̄)ζyTt − E((Bt − B̄)ζyTt )
)
W c

0i,j‖max

≤ max
1≤i≤M,1≤j≤N

[
‖IN ⊗ ζT‖∞

∑
q≥0

‖Lq − Lq
0‖max‖Π̃

T

q ‖1‖IN ⊗ β‖1‖W c
0i,j‖1

+ ‖IN ⊗ ζT‖∞
∑
q≥0

‖T−1

T∑
t=1

vec((Bt − B̄)T )εTt−q‖max‖Π̃
T

q ‖1‖W c
0i,j‖1

]
= O(λT ). (1.30)

Hence on M,

‖T−1/2Na/2BTZV −H10‖1 = O(λTN
2). (1.31)

Using the rates found in (1.12) to (1.20), onM (in particular using the rate on A3),

‖T−1/2Na/2Kεv‖1 =
∥∥∥A1A2A3(T−1

T∑
t=1

(Bt − B̄)T εt)
∥∥∥

1
= O(λTN

1/2+1/2w+a).

(1.32)
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Therefore, using results from (1.22) to (1.32), we know that

‖D1‖1 ≤
M3/2

N1+au

(
o(λTN

2) + o(1)o(λTN
2 + λTN

2)
)
‖D1‖1

+
M3/2

N1+au

(
O(λT )O(λTN

1/2+1/2w+a)
)

+
M3/2

N1+au
O(λTN

1/2+1/2w+a)

= O(λTN
−1/2+1/2w).

For the rate of
∥∥D2

∥∥
1
, we refer to the proof of asymptotic normality of δ̂ − δ in

Theorem 3 for the proof of the asymptotic normality of D2 (along the exact same

lines of proofs as in Theorem 3). Therefore, we state here the result that

T 1/2(M 2S2M
T
2 )−1/2D2

D−→ N(0, Im),

where S2 is defined in Theorem 3, andM 2 =
[
(H20 −H10)T (H20 −H10)

]−1
(H20−

H10)T . By Assumption R5, we conclude that all the eigenvalues of S2 are of order

N b. Hence by (1.21),

λmax(M 2S2M
T
2 ) ≤ λmax(S2)λmax(

[
(H20 −H10)T (H20 −H10)

]−1
)

≤ λmax(S2)

σ2
M(p+1)(H20 −H10)

= O(N−1−a+b),

which can also be derived as the order for the lower bound of λmin(M 2S2M
T
2 ).

Hence we have ‖D2‖1 = Op(T
−1/2N−(1+a−b)/2).

Finally, by Assumption R7 and the result of Theorem 5,

‖δ̂ − δ‖1 = OP (
∥∥D1

∥∥
1

+
∥∥D2

∥∥
1
) = OP (λT ·N1/2+a+1/2w) +OP (T−1/2N−(1+a−b)/2)

= OP (λT ·N−1/2+1/2w).

At the same time, using the result above,

‖β̂ − β‖1 = Op(λTN
−1/2+1/2w + ‖δ − δ̂‖1) = Op(λTN

−1/2+1/2w). �

Proof of Theorem 2.

It has been shown that β̂ − β =
∑5

i=0 Ii in the proof of Theorem 1. From the rate
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of ‖δ̂ − δ‖1 and Assumption R7, it is clear that

‖δ̂ − δ‖1 = OP (λTN
−1/2+1/2w) = oP (T−1/2N−(1−b)/2).

Therefore, if we can prove that I1 is T 1/2N (1−b)/2-convergent, then I1 dominates I2

to I5, while
∥∥I0

∥∥
1

= OP (λT
∥∥β̂ − β∥∥

1
) = oP (

∥∥β̂ − β∥∥
1
).

We now prove that for α ∈ RK such that
∥∥α∥∥ = 1, αT I1 is T 1/2N (1−b)/2-convergent

by proving its asymptotic normality. Recall that

I1 = (E(XT
t Bt)E(BT

t X t))
−1T−2XTBvBvTεv

= (E(XT
t Bt)E(BT

t X t))
−1(T−1XTBv − E(XT

t Bt))T
−1BvTεv

+ (E(XT
t Bt)E(BT

t X t))
−1E(XT

t Bt)T
−1BvTεv.

It is easy to show that the second term above dominates the first. Therefore, if we

can prove that ∑
t≥0

‖P 0(αTM 1B
T
t εt)‖ <∞, (1.33)

where M 1 = (E(XT
t Bt)E(BT

t X t))
−1E(XT

t Bt), by Theorem 3(ii) of Wu (2011), we

then have

T 1/2(αTΣ1α)−1/2αT I1
D−→N (0, 1),

where Σ1 = M 1

∑
τ∈Z E(BT

t εtε
T
t+τBt+τ )M

T
1 .

To determine the rate of the eigenvalues in Σ1, consider the (k, k) element of∑
τ E(BT

t εtε
T
t+τBt+τ ),

∑
τ

E(BT
t,kεtε

T
t+τBt+τ,k) =

∑
τ

tr(E(Bt+τ,kB
T
t,k)E(εt+τε

T
t ))

=
∑
τ

tr(cov(Bt+τ,kBt,k)cov(εt+τεt)) +
∑
τ

tr(µb,kµ
T
b,kcov(εt+τεt)).

By Assumptions R5, the first term is N1+b-convergent exactly and the second term’s

rate is

∑
τ

µTb,kcov(εt+τεt)µb,k ≤ λmax(
∑
τ

cov(εt+τεt))‖µb,k‖2 = O(‖µb,k‖2) = O(N).

Since K is finite, the order of the eigenvalues of
∑

τ E(BT
t εtε

T
t+τBt+τ ) is exactly
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N1+b. Also, for i = 1, . . . , K,

λmin(M 1M
T
1 )λmin(

∑
τ

E(BT
t εtε

T
t+τBt+τ ))

≤ λi(Σ1) ≤ λmax(M 1M
T
1 )λmax(

∑
τ

E(BT
t εtε

T
t+τBt+τ )).

Since the order of the eigenvalues ofM 1M
T
1 isN−2, the order of all the eigenvalues of

Σ1 is exactly N−1+b. It means also that αT I1 is indeed T 1/2N (1−b)/2-convergent, and

so I1 is T 1/2N (1−b)/2-convergent in particular since K is finite. With the asymptotic

normality for αT I1, we can then use the multivariate version of Theorem 3(ii) of

Wu (2011) to conclude that

T 1/2Σ
−1/2
1 I1

D−→N (0, IK),

where we replaced α by IK .

It remains to prove (1.33). We decompose

P 0(αTM 1B
T
t εt) = αTM 1P 0(BT

t )E0(εt) +αTM 1E−1(BT
t )P 0(εt),

so that we have ‖P 0(αTM 1B
T
t εt)‖ ≤ C1,t + C2,t, where

C2
1,t = E(αTM 1P 0(BT

t )E0(εt)E0(εTt )P 0(Bt)M
T
1α)

≤ αTM 1E(P 0(BT
t )P 0(Bt))M 1αE(λmax(E0(εt)E0(εTt )))

≤
∥∥αTM 1

∥∥2
λmax(E(P 0(BT

t )P 0(Bt)))E(E0(εTt )E0(εt))

= O(N−1 max
1≤k≤K

E(P 0(BT
t,k)P 0(Bt,k))E(N−1E0(εTt )E0(εt)))

= O( max
1≤k≤K

max
1≤s≤N

‖P 0(Bt,sk)‖2 max
1≤j≤N

E(E2
0(εt,j)))

= O( max
1≤k≤K

max
1≤s≤N

‖P 0(Bt,sk)‖2σ2
max), (1.34)

so that
∑

t≥0C1,t <∞ by our assumption
∑

t≥0 max1≤k≤K max1≤s≤N ‖P b
0(Bt,sk)‖ <

∞.
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Similarly, we have

C2
2,t = E(αTM 1E−1(BT

t )P 0(εt)P 0(εTt )E−1(Bt)M
T
1α)

≤ αTM 1E(E−1(BT
t )E−1(Bt))M

T
1αE(λmax(P 0(εt)P 0(εTt )))

≤
∥∥αTM 1

∥∥2
λmax(E(E−1(BT

t )E−1(Bt)))E(P 0(εTt )P 0(εt))

= O( max
1≤k≤K

max
1≤s≤N

E(E2
−1(Bt,sk)) max

1≤j≤N
‖P 0(εt,j)‖2)

= O((σ2
max + max

s,k
µ2
b,sk) max

1≤j≤N
‖P 0(εt,j)‖2)

= O( max
1≤j≤N

‖P ε
0(εt,j)‖2), (1.35)

so that
∑

t≥0C2,t <∞ by our assumption of
∑

t≥0 max1≤j≤N ‖P ε
0(εt,j)‖ <∞. Hence

(1.33) is established, and the proof of the theorem is completed. �

Proof of Theorem 3.

To prove the asymptotic normality of δ̂, we need to apply the same method we used

for the proof of Theorem 2. Recall that from the proof of Theorem 1,

δ̂ − δ =
[
(H −BTZV )T (H −BTZV )

]−1
(H −BTZV )T

[
Kεv −BTε

]
,

δ̂ − δ = D1 +D2, where

D1 =
[
(H −BTZV )T (H −BTZV )

]−1
(H −BTZV )TKεv,

D2 = −
[
(H −BTZV )T (H −BTZV )

]−1
(H −BTZV )TBTε.

Moreover, we further decompose D1 as in the proof of Theorem 1 such that D1 =

F1 + F2 + F3, where

F1 =
[
(H20 −H10)T (H20 −H10)

]−1

·
[
(H20 −H10)T (H20 −H10)− T−1Na(H −BTZV )T (H −BTZV )

]
D1,

F2 =
[
(H20 −H10)T (H20 −H10)

]−1

· (T−1/2Na/2H −H20 − T−1/2Na/2BTZV +H10)T · T−1/2Na/2Kεv,

F3 =
[
(H20 −H10)T (H20 −H10)

]−1
(H20 −H10)T · T−1/2Na/2Kεv. (1.36)

From the proof of Theorem 1, it is clear that F3 dominates all other terms in the
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decomposition of D1. As for D2, we can apply similar decomposition, and the term

F4 = −
[
(H20 −H10)T (H20 −H10)

]−1
(H20 −H10)TT−1/2Na/2BTε (1.37)

dominates in the decomposition of D2. Hence to show the asymptotic normality of

δ̂ − δ, we only consider

F3 + F4 = T−1/2Na/2M 2(Kεv −BTε)

= T−1

T∑
t=1

M 2(MBT
t εt − vec(Btζε

T
t ))(1 + oP (1)),

where M 2 =
[
(H20 −H10)T (H20 −H10)

]−1
(H20 −H10)T . In view of the above

and Theorem 3(ii) of Wu (2011), to prove the asymptotic normality of αT (δ̂ − δ)

where α ∈ RM(p+1), if we can show that

∑
t≥0

∥∥P 0(αTM 2(MBT
t εt − vec(Btζε

T
t )))

∥∥ <∞, (1.38)

then we can conclude by Theorem 3(ii) of Wu (2011) that

T 1/2(αTΣ2α)−1/2αT (δ̂ − δ)
D−→N (0, 1), (1.39)

where

Σ2 =
∑
τ∈Z

M 2cov(MBT
t εt − vec(Btζε

T
t ),MBT

t+τεt+τ − vec(Bt+τζε
T
t+τ ))M

T
2

= M 2(S1 + S2 − S3 − ST3 )MT
2 ,

with S1, S2 and S3 as defined in the statement of the theorem. A generalization

to Theorem 3(ii) of Wu (2011) then gives us the asymptotic normality result after

replacing α by IM(p+1).
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It remains to show (1.38). Consider

∥∥αTM 2M
∥∥2

≤ λmax(M 2M
T
2 )λmax(MMT )

= O(N−1−a) ·O(N−2) · λmax(E(X t ⊗Btζ)E(XT
t ⊗ ζTBT

t ))

= O(N−3−a) ·
∥∥E(X t ⊗Btζ)

∥∥
1

∥∥E(XT
t ⊗ ζTBT

t )
∥∥

1

= O(N−3−a) ·O(N1+a) ·O(1) = O(N−2),

where the last line follows from Assumption R4. Then similar to showing (1.34), by

the above, we have

∥∥P 0(αTM 2MBT
t εt)

∥∥ = O( max
1≤k≤K

max
1≤s≤N

∥∥P 0(Bt,sk)
∥∥), (1.40)

so that
∑

t≥0

∥∥P0(αTM 2MBT
t εt)

∥∥ < ∞ by the assumptions of the theorem. At

the same time,

P 0(αTM 2vec(Btζε
T
t )) = P 0(αTM 2(εt ⊗Btζ))

= αTM 2

(
E0(εt)⊗ E0(Btζ)− E−1(εt)⊗ E−1(Btζ)

)
= αTM 2P 0(εt)⊗ E0(Btγ) +αTM 2E−1(εt)⊗ P 0(Btγ).
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Hence denote by bTt,j the jth row of Bt,

∥∥P 0(αTM 2εt ⊗Btζ)
∥∥

≤
{

2αTM 2E(P 0(εt)P 0(εt)
T)⊗ E

(
E0(Btζ)E0(ζTBT

t )
)
MT

2α
}1/2

+
{

2αTM 2E(E−1(εt)E−1(εt)
T)⊗ E

(
P 0(Btζ)P 0(ζTBT

t )
)
MT

2α
}1/2

≤ 21/2
∥∥α∥∥

1

∥∥M 2

∥∥
∞ max

1≤j≤N

∥∥P 0(εtj)
∥∥ · max

1≤j≤N
var1/2(bT

t,jζ)

+ 21/2
∥∥α∥∥

1

∥∥M 2

∥∥
∞ · σmax · max

1≤j≤N

∥∥P 0(bT
t,jζ)

∥∥
≤ 21/2

∥∥α∥∥
1

∥∥M 2

∥∥
∞ max

1≤j≤N

∥∥P 0(εtj)
∥∥ · σmax

∥∥ζ∥∥
1

+ 21/2
∥∥α∥∥

1

∥∥M 2

∥∥
∞ · σmax · max

1≤j≤N
1≤k≤K

∥∥P 0(Bt,jk)
∥∥∥∥ζ∥∥

1

= O( max
1≤j≤N

∥∥P 0(εtj)
∥∥+ max

1≤j≤N
1≤k≤K

∥∥P 0(Bt,jk)
∥∥),

where the second inequality used the decomposition

var(·) = var(Ei(·)) + E(vari(·)) ≥ var(Ei(·)),

and the third inequality used Assumption R2, while the last equality used
∥∥ζ∥∥

1
= 1

and
∥∥M 2

∥∥
∞ = O(1). Hence

∑
t≥0

∥∥P 0(αTM 2vec(Btζε
T
t )
∥∥ < ∞, and together

with (1.40), (1.38) is established. This completes the proof of the theorem. �

Proof of Theorem 4.

By the KKT condition, there exists a solution δ̃ to (1.7) if and only if there exists

a subgradient

h = ∂(uT|δ̃|) =

{
h ∈ RM(p+1) :

 hi = uisign(δ̃i), δ̃i 6= 0;

|hi| ≤ ui, otherwise.

}
,

such that differentiating the expression on the right hand side of (1.7) with respect

to δ, we get

T−1(H −BTZV )T (H −BTZV )δ̃ − T−1(BTZV −H)T (BTy− g) = −γTh.

We use a single index i = 1, . . . ,M(p + 1) to denote an element of δ for easier
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notation in this proof. Since we have BTy = BTZV δ+BTXβvec(IN) +BTε, the

above equation can be rewritten as

T−1(H −BTZV )T (H −BTZV )(δ̃ − δ)

+ T−1(H −BTZV )T (BTXβvec(IN) +Hδ − g)

+ T−1(H −BTZV )TBTε = −γTh.

We can show easily that −BTXβ(δ)vec(IN) = Hδ − g, and hence there exists a

sign consistent solution δ̃ if and only if



T−1(HH −BTZV H)T (HH −BTZV H)(δ̃H − δH)

+T−1(HH −BTZV H)T (BTXβ−β(δ)vec(IN))

+T−1(HH −BTZV H)TBTε = −γThH ,

|T−1(HHc −BTZV Hc)TBTXβ−β(δ)vec(IN)

+T−1(HHc −BTZV Hc)TBTε| ≤ −γThHc ,

(1.41)

where H = {j : δj 6= 0}.

From the first equation in (1.41), we decompose δ̃H − δH = I0 + I1 + I2 + I3, where

I0 = −(N−a(H20 −H10)TH(H20 −H10)H)−1(T−1(HH −BTZV H)T (HH −BTZV H)

−N−a(H20 −H10)TH(H20 −H10)H)(δ̃H − δH),

I1 = (N−a(H20 −H10)TH(H20 −H10)H)−1T−1(HH −BTZV H)TKεv,

I2 = −(N−a(H20 −H10)TH(H20 −H10)H)−1γTh,

I3 = −(N−a(H20 −H10)TH(H20 −H10)H)−1T−1(HH −BTZV H)TBTε.

The term I1 has its form because of the identityBTXβ(δ)−βvec(IN) = Kεv. Similar

to bounding
∥∥F1

∥∥
1

to
∥∥F3

∥∥
1

in (1.24) to (1.26) in the proof of Theorem 1, we can

show that

‖I0‖max = op(λTN
1−a‖δ̃H − δH‖max), ‖I2‖max = O(λTN

−1).
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We can show easily that

I1 = [(H20 −H10)TH(H20 −H10)H ]−1
(
T−1/2Na/2(HH −BTZV H)T

)
(T−1/2Na/2Kεv)

= [(H20 −H10)TH(H20 −H10)H ]−1(H20 −H10)TH(T−1/2Na/2Kεv)(1 + oP (1)),

I3 = −[(H20 −H10)TH(H20 −H10)H ]−1
(
T−1/2Na/2(HH −BTZV H)T

)
(T−1/2Na/2BTε)

= −[(H20 −H10)TH(H20 −H10)H ]−1(H20 −H10)TH(T−1/2Na/2BTε)(1 + oP (1)).

Hence I1 is similar to F3 in (1.36) and I3 is similar to F4 in (1.37) in the proof of

Theorem 3, except that H20 −H10 is now restricted to those columns with indices

in H only. Using exactly the same lines of proof as in Theorem 3, we can conclude

that

T 1/2Σ
−1/2
3 (I1 + I3)

D−→N (0, I |H|), (1.42)

where Σ3 = M 3(S1 + S2 − S3 − ST3 )MT
3 , with M 3 = [(H20 − H10)TH(H20 −

H10)H ]−1(H20−H10)TH . By Assumptions R4 and R5, we can show that then I1 +I3

is exactly T 1/2N (1+a−b)/2-convergent. Since 0 < a, b < 1, it is not difficult to see

that I2 is dominated by I1 + I3 then. Also, Assumption R7 ensures
∥∥I0

∥∥
max

=

oP (
∥∥δ̃ − δ∥∥

max
). All these imply that

T 1/2Σ
−1/2
3 (δ̃H − δH)

D−→N (0, I |H|),

which is the asymptotic normality result we need, if we can also show that the second

inequality in (1.41) is true.

From the above, since
∥∥I0

∥∥
max

,
∥∥I1

∥∥
max

,
∥∥I2

∥∥
max

and
∥∥I3

∥∥
max

are all oP (1), we have

sign(δ̃H) = sign(δH). It remains to show the second inequality in (1.41).

To this end, we can show from previous results that

‖T−1(HHc −BTZV Hc)
TBTXβ−β(δ)vec(IN) + T−1(HHc −BTZV Hc)

TBTε‖max

= Op(T
−1/2N (1+b−a)/2),

while the right hand side of the second inequality has a minimum value of

γT

‖δ̃Hc‖max

≥ γT

‖δ̃Hc − δHc‖max

.
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Hence, it is sufficient to prove

(T−1/2N (1+b−a)/2)(‖δ̃ − δ‖max) = op(λT ).

But the left hand side above has rate T−1N b−a = o(λT ) by Assumption R7. This

completes the proof of the theorem. �
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Chapter 2

Inference for Spatial Dynamic

Panel Model with different Spatial

Dependence Characterizations

2.1 Introduction

Cross-sectional correlation attracts considerable attentions in both modelling and

statistical inference. Spatial autoregressive model first proposed in Cliff and Ord

(1973) has been used widely in many applications. The spatial effect in spatial model

is measured by spatial weight matrix whose (i,j)th element reflects the strength of

cross-sectional relationship between unit i and j. Regularly, the inverse of geographic

or economic distance is used as the measurement and sometimes the spatial weight

matrix element can also be binary, being 1 if two units are contiguous and 0 other-

wise.

It is clear that spatial weight matrix is the key in spatial autoregressive model and

is usually assumed as a known prior. Applied researchers often base on their sub-

ject knowledge in pre-setting such a matrix, which can be inaccurate and arbitrary

at times. Recognizing the importance of correct specification of a spatial weight

matrix in the accuracy of estimated model parameters, a surge of papers have fo-

cused on estimating a spatial weight matrix using data. These include the use

of Lasso or the adaptive Lasso to perform sparse estimation of the spatial weight

matrix in a spatial lag model like Ahrens and Bhattacharjee (2015b), Lam and

Souza (2014, 2015b), the use of models with several spatial weight matrices like
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Arnold et al. (2013b), Badinger and Egger (2011), Lee and Liu (2010a), LeSage and

Pace (2008), or both Lam and Souza (2016b). Koroglu and Sun (2016b) proposes

a nonparametric generalized method of moments to estimate a smooth function of

known distance-type variables encompassing an unknown spatial weight matrix. Yet

there can be more than one type of spatial weight matrices, and some may not be

characterized by smooth functions of distance-type variables (e.g., negative spatial

autocorrelations among some, but not all close neighbours, like policy competitions),

and interpretability of spatial effects using an estimated nonparametric function can

be reduced.

As some works briefly introduced above, an important tool applied recently to avoid

the misspecification of spatial weight matrix in spatial model and to remain the

model efficiency at the same time is the inclusion of high order spatial model where

the spatial weight matrix is a linear combination of pre-specified spatial weight ma-

trices. The multiple spatial weight matrices can capture contiguity of units in var-

ious dimensions. For instance, Tao (2005) introduces a strategic interaction model

to local school expenditure using two specified spatial weight matrices based on the

geographical contiguity and the economic similarity. Another perspective for using

high order models is stated in Ullah (1998) that it is alternatives of a poorly specified

weight matrix rather than a realistic data generating process. Therefore, a combi-

nation of pre-specified spatial weight matrices makes the model flexible to capture

the complicated temporal correlations in the real data and provides the chance to

identify interesting economic phenomena from the data, which is also shown in our

real data analysis in Section 2.7.4.

Based on the high order spatial model above, we consider a spatial dynamic panel

model allowing for both contemporaneous and time-lagged spatial correlations. The

two types of spatial correlations are estimated through two different linear combi-

nations of pre-specified spatial weight matrices. The similar study has seen a lot

of theoretical advancements in recent years. The instrumental variables estimation

in Gupta and Robinson (2015), Lam and Qian (2017), the generalized method of

moments in Kapoor et al. (2007), Lee and Yu (2014b) and the quasi-maximum like-

lihood estimation in Lee and Yu (2010), Yu et al. (2008) are three approaches that

are extensively developed. Obviously, instrumental variable estimation has compu-

tational simplicity but works only with the existence of instrumental variables. As

for the general method of moments, as stated in Li (2017), the number of the mo-

ment conditions increases dramatically when T is large or moderately large, making

itself suffer from the so-called “many moments bias”.

We extend the quasi-maximum likelihood estimation technique in estimating a spa-

tial dynamic panel data model which allows for different spatial weight matrices

62



representing the contemporaneous and time-lagged spatial dependence. Individ-

ual fixed effects are absorbed into our covariates (see Section 2.2). Some similar

works for quasi-maximum likelihood estimation are Lee (2004), Yu et al. (2008) and

Li (2017), to name but a few. To improve the computational feasibility of quasi-

maximum likelihood estimation, the instrumental-like variable estimation proposed

in Lam and Qian (2017) is applied as the initial value in the optimization of quasi-

maximum likelihood estimation. In Lam and Qian (2017), the exogenous variables

are needed to be instrumental variables. We use the regressors in the proposed

model as instrumental variables even they are not perfectly exogenous. It is shown

in Section 2.7 that this initial value performs well in practice.

Our main contributions are not only the extension of quasi-maximum likelihood

estimation but also the inference for spatial autoregressive model, which is rarely

discussed in literature. Firstly, we provide a unified spatial test statistic for testing

the presence of either contemporaneous or time-lagged spatial correlation, or both.

Although asymptotic normality results are given for quasi-maximum likelihood es-

timation in Yu et al. (2008), for general method of moments estimation in Lee and

Liu (2010a) and for instrumental variable estimation in Gupta and Robinson (2015),

the following tests based on the asymptotic normality results are not mentioned in

the above researches. Baltagi et al. (2007) derives several Lagrange multiplier tests

for the panel data regresssion model only containing contemporaneous spatial effect

on disturbance, while our work also contains the dynamic spatial effects. More im-

portantly, as the proposed model is high order spatial model, which applies a linear

combination of specified spatial weight matrices for spatial effect, this unified test

can be used to test whether all of them are necessary.

Another important inference is a diagnostic test for testing if the fitted residuals

are white noise. Chang et al. (2017) proposes this test by approximating the distri-

bution of the maximum absolute auto-/cross-correlations of the component series.

This diagnostic test allows for the dimension N of the fitted residual vector to be

growing with the sample size T , same as the setting of our spatial model. To the best

of our knowledge, in spatial econometrics context, it is the first time that this high

dimensional diagnostic test is applied for model fitness checking, which is very fun-

damental in real data analysis. Therefore, our test does not only test the whiteness

of the fitted residuals themselves, but can also improve the trust on the estimated

contemporaneous and time-lagged spatial effect.

The rest of this chapter is organized as follows. Section 2.2 presents our model

and a sufficient condition for stationarity. Section 2.3 describes several areas where

our model can be useful and how it is a generalization of commonly used mod-

els. The quasi-maximum likelihood estimation, together with necessary assumptions
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and asymptotic results for our estimators are presented in Section 2.4. Section 2.5

presents the Wald statistic and the corresponding asymptotic theory for testing dif-

ferent spatial correlations, while Section 2.6 provides the test statistic and presents

the asymptotic theory for the high dimensional diagnostic test for white noise in our

model. Section 2.7 presents our simulation results as well as a stock return analysis.

All technical proofs are relegated to Section 2.10, with Appendix A detailing how

we find the derivatives our the log-likelihood function of our model.

2.2 The model

For t = 1, . . . , T , we consider the model

yt =
( M∑
i=1

α0iW0i

)
yt +

( M∑
i=1

γ0iW0i

)
yt−1 + φ0yt−1 + Xtβ0 + εt, (2.1)

where yt = (y1t, . . . , yNt)
T and εt = (e1t, . . . , eNt)

T are N dimensional vectors, eit

is an innovation series with zero mean and variance σ2
0, {W0i, i = 1, . . . ,M} are

N × N predetermined spatial weight matrices. Finally, Xt is an N × κx matrix of

non-stochastic regressors. The proposed model here is a special case of model (1.1)

in Chapter 1 when we set p = 1. As the main purpose of this Chapter is for inference

in spatial modelling, we set p = 1 for simplicity.

Same as discussed in Section (1.2.1), the zero diagonal elements in all W0i make

the dynamic and contemporaneous effect between different units in panel capture

by α0i and γ0i and the dynamic interaction for same unit is shown in φ0.

Model (2.1) is different from a traditional spatial dynamic panel model in the fol-

lowing two aspects. First, we consider a general spatial dependence, which can be

decomposed as a linear combination of pre-specified “spatial dependence”, called

spatial weight matrices. We then estimate this linear combination through data, so

that information from traditional expert knowledge on spatial relationship can be

merged with microstructure of data to enhance the accuracy of the resulting spatial

dependence structure.

In Li (2017), a more specific explanation of the need for high order spatial models

is given by a showcase example. If there are M groups in N spatial units and

the spillover effects only exist within groups, a small matrix W̃m, m = 1, . . . ,M

is denoted as the spatial interaction within group m. In classical model, a block

diagonal matrix W = diag(W̃1, . . . ,W̃M) is applied, which makes the spillover

effects same across groups. However, if we apply a high order spatial model using a
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linear combination of Wm = diag(0, . . . ,W̃m, . . . , 0) to fit the data, we can capture

the group-dependent strengths of spatial spillover effects. The examples for this

model can also be found in Lacombe (2004), McMillen et al. (2007) among others.

Secondly, to reduce the parameter dimension, we model the fixed effects µ0i by

µ0i = µ0 + Z ′iη, where µ0 is the intercept shared by all the components and Zi is a

p−dimensional component specific covariate vector, where p is a fixed integer. We

then embed this into the covariate matrix Xt, so that model (2.1) does include the

fixed effects for all the components in yt. As for this elimination of individual effect,

Section 2.8 introduces some other ideas to avoid the incidental parameter problem,

which can also easily to be applied into our proposed model.

Denote α = (α1, · · · , αM)′ ∈ Λ, with true value α0 = (α10, · · · , αM0)′, and γ =

(γ1, · · · , γM)′ ∈ Γ, with true value γ0 = (γ10, · · · , γM0)′. For convenience of our

presentation, we also define ϕ = (γ′, φ)′, δ = (γ′, φ, β′)′, ξ = (α′, δ′)′ and θ = (ξ′, σ2)′,

with similar definitions for their respective true values. θ is the parameters to be

estimated in this chapter. Define

HN(α) = IN −
M∑
i=1

αiW0i, ΥN(ϕ) =
M∑
i=1

γiW0i + φIN , AN(α, ϕ) = H−1
N (α)ΥN(ϕ).

Then, yt can be rewritten as

yt = ANyt−1 +H−1
N Xtβ0 +H−1

N εt, (2.2)

where HN = HN(α0) and AN = AN(α0, ϕ0).

From (2.2), model (2.1) can be embedded into the framework of a vector autore-

gressive (VAR) model. By Corollary (5.6.16) of Horn and Johnson (2012), a suffi-

cient condition for the stationarity of model (2.1) is ‖AN‖ < 1, where the matrix

norm can be either the L1 or L∞ norm, defined by ‖M‖1 = maxj
∑

i |mij| and

‖M‖∞ = maxi
∑

j |mij| respectively. If all W0i are row-standardized, in the sense

that the sum of the absolute value of the elements in each row of W0i equals to 1

(see for example, LeSage and Pace (2009) for the use of such row-standardization),

then we have ‖
∑M

i=1 α0iW0i‖∞ ≤
∑M

i=1 α0i. By Lemma 2.3.3 of Golub and van Loan

(1996), we obtain that

‖H−1
N ‖∞ ≤

1

1−
∑M

i=1 α0i

.
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Note that

‖AN‖∞ ≤ ‖H−1
N ‖∞‖ΥN‖∞ ≤

∑M
i=1 |γ0i|+ |φ0|

1−
∑M

i=1 |α0i|
.

Therefore,
∑M

i=1 |α0i|+
∑M

i=1 |γ0i|+ |φ0| < 1 is a sufficient condition for ‖AN‖∞ < 1,

and hence stationarity of model (2.2), which is assumed throughout the chapter.

2.3 Some application examples

As known, the dynamic spatial model is important in many fields. Therefore, the

proposed model can be very useful in a variety of economic and social setups. In

the following, we give three examples.

1. Economics. Economic activities are often concentrated geographically. The

development of policies for strengthening economic growth, for example, is

therefore dependent on the understanding of the clustering of such activities

spatially. Spatial econometric models, through the specification of a spatial

weight matrix, is designed to account for spatial interactions among observed

units, allowing for the effects of exogenous variables.

An example in studying the growth of different European regions is Baumont

et al. (2003). In it, different distance-based spatial weight matrices W are

explored, and plots of log per-capital GDP for different European countries

(Y ) against the spatial-lagged ones (WY ) consistently reveal two clusters of

regions in Europe, at the same time showing a consistent positive slope, called

the spatial correlation. In essence, it suggests the use of a model of the form

Y = ρWY +Xβ + ε,

where ρ is the spatial correlation, and X is a matrix of exogenous covariates,

can be useful. Such a spatial lag model is discussed in details in Anselin (2010).

While the model can be useful, it is generally agreed that the specification of W

has to be given extreme care, since different W can give substantially different

results. Abreu et al. (2005) suggests that no matter a contiguity matrix (where

neighboring regions are coded 1 and others as 0) or distance-based matrices

are used, they should arise from underlying theoretical considerations, on top

of being exogenous from the variables that are being studied. This creates
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difficulties in practice since even for distance based matrices, using d−1 or d−2

can be potentially different. Indeed, Baumont et al. (2003) explores different

distance-based spatial weight matrices before coming to their conclusion of

regional polarization.

The model (2.1) we proposed can handle this situation nicely by considering

a linear combination of some sensible spatial weight matrices, and let the

“best” spatial weight matrix to be estimated from the data as the “best”

linear combination. Lee and Liu (2010a) also considers a model with a linear

combination of spatial weight matrices, and call this higher order spatial lags,

with generalized method of moments proposed to estimate the model. Our

model can be considered a generalization of theirs since we also include a time

and spatial-lagged term (φ0 +
∑M

i=1 γ0iW0i)yt−1. In the case of regional growth

by country for instance, a time-lagged shock from neighboring regions of a

country can still carry an effect to the current GDP growth of the particular

country. Such a shock can be well estimated by our model with such a time

and spatial-lagged term.

2. Social Network. Social network represents general relationships among indi-

vidual units. A prominent example is the Twitter or Facebook network, where

an individual is linked to another person if he or she is “following” or “friend”

of another. In Bramoullé et al. (2009), the level of a student’s recreational

activity yi is modeled as

yi = α + β

∑
j∈Pi

yj

Ni

+ γxi + δ

∑
j∈Pi

xj

Ni

+ εi, E(εi|x) = 0,

where Pi is the set of friends for individual i with Ni = |Pi|, and xj is the

parents’ income for the jth individual. The model clearly includes the mean of

the friends’ level as an endogenous factor for the recreational level of individual

i, which can be considered a peer effect. His or her parents’ income, as well as

the mean parents’ income of all friends, are also intuitively important factors

that are included in the model above. This particular social network model

can actually be captured by our model with T = r = 1, α01 = β, γ01 = φ0 = 0,

WN1 = (1/Ni · 1{j∈Pi}) and

XN1 =


1 x1 x1/N1 · 1{1∈P1} · · · xN/N1 · 1{N∈P1}

...
...

...
...

...

1 xN x1/NN · 1{1∈PN} · · · xN/NN · 1{N∈PN}

 , β0 = (α, γ, δ1′N)′,
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where 1N is a column vector of N ones, and 1A is 1 under the event A and 0

otherwise. If Ni <∞, each non-zero entry in the ith row of XN1 (apart from

the constant 1) can be the entries in the covariate vector Zi in our model (with

some entries possibly 0 if the Ni’s are not all equal), with p = max(Ni)+1 and

η = (γ, δ1′max(Ni)
)′. Clearly, our model is more general than that introduced in

Bramoullé et al. (2009), with the possibility of adding time-lagged peer effects.

Our model is also a generalization of the network vector autoregression pro-

posed by Zhu et al. (2017). Compared to the model (2.1) in their paper, we

have the spatial interaction term
∑M

i=1 α0iW0i, which can be important to

capture the endogenous peer effects in a social network. At the same time,

setting WN1 = (aij/Ni), γ01 = β1 and φ0 = β2 in our model, we have the

autoregressive term in model (2.1) of Zhu et al. (2017). The analysis of our

paper is also significantly different from that in Zhu et al. (2017) because of

the endogenous peer effects term.

3. Finance. Spatial dependence can be used in different areas of finance for

interpretation/forecasting purposes. One important interest lies in the spatial

dependence among different financial markets. This is closely related to the

contagion of financial markets, and hence how world market shocks are prop-

agated to one another. In Fernandez (2011), a spatial Capital Asset Pricing

Model is used for modeling asset returns in several emerging markets, where

such a model is in parallel to the spatial lag model, giving an extra risk term

coming from a weighted average of neighboring firms on top of the usual risk

premium from the market portfolio. In doing so, four different spatial weight

matrices are calculated based on four different financial indicators. They are

market capitalization (relative to firm size), the market-to-book, the dividend

yield and the debt maturity ratios. Subsequent analyses use these spatial

weight matrices separately for drawing their conclusions. Our model, how-

ever, can accommodate these different spatial weight matrix specifications by

finding a linear combination of them that is more adapted to the data. This

can also enhance any conclusions that can be drawn only separately from using

different spatial weight matrices individually.

Indeed, Arnold et al. (2013b) has used a linear combination of spatial weight

matrices when using a spatial lag model without exogenous covariates to model

stock returns. In their notations, they model the vector of stock returns yt by

yt = ρgWgyt + ρbWbyt + ρlWlyt + εt,
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where Wg, Wb and Wl are spatial weight matrices such that Wgyt represents the

weighted market return of the same day, Wbyt the weighted market return of

the respective industrial branches, and finally Wlyt the weighted local market

return of the respective countries. This simple model already gives very good

Value-at-Risk forecasts. The model we proposed certainly generalizes theirs

with the possibility of adding important exogenous covariates, as well as time-

lagged spatial dependence.

2.4 The quasi-maximum likelihood estimators

Different from the Chapter 1, quasi-maximum likelihood estimators are applied in

this Chapter. As discussed in Introduction, instrumental variable used in profiled

least square estimation is hard to find in real data analysis and the model (2.1) sets

p = 1 to improve the computational feasibility of the quasi-maximum likelihood

estimators.

The total number of parameters of model (2.1) is 2M + κx + 2 including α, γ, φ, β

and σ. The log-likelihood function of model (2.1) is

logLNT (θ) = −NT
2

log2π − NT

2
logσ2 + T log|HN(α)| − 1

2σ2

T∑
t=1

ε′t(ξ)εt(ξ), (2.3)

where

εt(ξ) = HN(α)yt −ΥN(ϕ)yt−1 −Xtβ. (2.4)

The quasi-maximum likelihood estimator (QMLE) θ̂NT is defined as

θ̂NT = arg min
θ∈Θ

lNT (θ),

where Θ is the parameter space and

lNT (θ) = − 1

NT
logLNT (θ). (2.5)

To obtain the asymptotic results of QMLE θ̂NT , we need the following assumptions.

First, we introduce some notations. Let

LNt = (W01yt,W02yt, · · · ,W0Myt) and ONt = (LN,t−1, yt−1,Xt) (2.6)
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and we denote BNi = W0iH
−1
N and define

ÕNt = (BN1ONtδ0, · · · , BNMONtδ0) and t̃r(BN) = (tr(BN1), · · · , tr(BNM))′. (2.7)

A1. The spatial weight matrix W0i is a constant, with zero diagonal elements for

each i = 1, . . . ,M .

A2. The error series {eit} are independent across i and are martingale differences

across t, with Eeit = Ee3
it = 0 and Ee2

it = σ2
0 . Furthermore,

(i) there exists a constant τ > 0 such that E|eit|4+τ <∞;

(ii) the quantity
∑∞

h=0 Γ(h) is finite, with Γ(h) = cov(e2
it, e

2
i,t+h).

A3. The matrix HN(α) is invertible for all α ∈ Λ, where Λ is compact and α0 is in

the interior of Λ.

A4. The elements of Xt are non-stochastic and bounded uniformly in N and T .

Furthermore, limT→∞
1
NT

∑T
t=1 X′tXt exists and is nonsingular.

A5. The quantities ‖W0i‖1 and ‖W0i‖∞ are both bounded uniformly in N for

i = 1, . . . ,M . The same goes for ‖H−1
N (α)‖1, ‖H−1

N (α)‖∞.

A6. The quantities ‖
∑∞

h=1 abs(AHN)‖1 or ‖
∑∞

h=1 abs(AHN)‖∞ are bounded, where

abs(A) is the matrix of absolute values of the entries in A.

A7. The dimension N is a nondecreasing function of T as T goes to infinity.

A8. The matrix limT→∞EJNT is nonsingular, where JNT = 1
NT

∑T
t=1(ÕNt, ONt)

′(ÕNt, ONt).

Remark 1 Assumption A1 is standard for spatial econometric models. Assumption

A2 allows for dependence of the eit’s at different time points, which relaxes the

usual independence and identical distribution assumptions for consistency. The

requirement Ee3
it = 0 is a technical condition for a more explicit expression for

the global identification of the parameters. Assumption A3 and A6 ensure that

model (2.1) has a moving average representation, and compactness is a technical

condition. Assumption A4 is for the convenience of proof and can be relaxed to Xt

being stochastic with some moments restrictions. Assumption A5 limits the spatial

correlation to a manageable degree. Assumption A6 limits the dependence of yt

across time and space, and together with Assumption A2, A3 and A5 imply that

model (2.1) has the moving average representation

yt =
∞∑
h=0

AhNH
−1
N (εt−h + Xt−hβ0) = ENt + XNt, (2.8)
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where ENt =
∑∞

h=0A
h
NH

−1
N εt−h and XNt =

∑∞
h=0A

h
NH

−1
N Xt−h. Assumption A7

includes the fixed N and N →∞ scenarios. Finally, Assumption A8 is an identifi-

cation condition for the parameters of model (2.1).

As the first step for the inference in our spatial model, we straightly give the following

Theorems 1 to 3 based on Yu et al. (2008). As we discussed in Introduction, it is

interesting to use these inference ideas to test the spatial modelling fitness. As for

Theorem 4, we can have a diagnostic testing for the fitted residuals in our model

being white noise.

Theorem 1. Suppose Assumption A1-A8 hold, then θ0 is globally identified and

θ̂NT
P−→ θ0 with increasing N and T.

Theorem 2. Suppose the conditions of Theorem 1 hold. If furthermore e2
it are

uncorrelated across t, we have

√
NT (θ̂NT − θ0)

d−→ N(0,Σ−1ΩΣ−1),

where

Ω = lim
T,N→∞

NT · E
(∂lNT (θ0)

∂θ

∂lNT (θ0)

∂θ′

)
, Σ = lim

T,N→∞
E
(∂2LNT (θ0)

∂θ∂θ′

)
.

Theorem 2 means that the QMLE is asymptotic normal with standard rate
√
NT

even if N is much larger than T . This is because we model the fix effects by some

specific variables to reduce the dimension of the parameter to a fixed number.

2.5 The tests for spatial autocorrelation

It is very important to access whether each specification of the spatial weight ma-

trices used in the model is appropriate for the data. Also, testing whether the data

has contemporaneous or time-lagged spatial interaction is significant in spatial mod-

elling. This section considers a unified framework for testing the linear relationship

of the coefficients:

H0 : a′θ0 = c against H1 : a′θ0 6= c, (2.9)

where a is a known (2M + 2 + κx) × d-dimensional constant matrix and c is a

d-dimensional known constant vector. With different values of a, (2.9) includes
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different tests for spatial effects in the data. We can list the following hypothesis as

examples,

(i) H1
0 : α0i = 0, i = 1, . . . ,M . Under the null hypothesis, there is no contempora-

neous spatial correlation.

(ii) H2
0 : γ0i = 0, i = 1, . . . ,M . Under the null hypothesis, there is no lag-1 spatial

correlation.

(iii) H3
0 : α0i = 0, γ0i = 0, i = 1, . . . ,M . Under the null hypothesis, there is no

spatial correlation at all.

Denote

Σ̂NT =
∂2lNT (θ̂NT )

∂θ∂θ′
, Ω̂NT = NT

∂lNT (θ̂NT )

∂θ

∂lNT (θ̂NT )

∂θ
.

We use a Wald test statistic for testing H0 against H1 in (2.9), which is defined as

W = NT (a′θ̂NT − c)′
(
aΣ̂−1

NT Ω̂NT Σ̂−1
NTa

′)−1
(a′θ̂NT − c).

Based on the asymptotic results in the last section, we have the following theorem.

Theorem 3. Suppose the conditions of Theorem 2 hold. Then W d→ χ2(d) under

H0 as T,N →∞.

2.6 Diagnostic testing for the model

Another more important test is a diagnostic testing for the fitted residuals in model

(2.1) being white noise, as

H0 : {εt} is white noise v.s. H1 : {εt} is not white noise.

Ignoring the testing on the residuals results in consistent but inefficient estimates of

the regression coefficients and biased standards errors, see Baltagi (2008). Baltagi

et al. (2007) adds the correlation in the error structure, which is similar to spatial

disturbance autoregressive model, and derives the tests based on this specified model.

We adopt the test based on the maximum cross-correlations proposed in Chang et al.

(2017) to test whether the fitted residuals are white noise vector.
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We introduce some notations first before giving the test statistic. Denote the auto-

covariance and autocorrelation matrix of εt at lag k by Λ(k) and ρ(k) respectively,

where

Λ(k) = Cov(εt+k, εt), ρ(k) = diag(Λ(0))−1/2Λ(k)diag(Λ(0))−1/2,

with diag(A) representing the diagonal matrix with diagonal elements of A. Let

ρ̂(k) = (ρ̂ij(k)) = diag(Λ̂(0))−1/2Λ̂(k)diag(Λ̂(0))−1/2

be the sample lag-k autocorrelation matrix for the estimated errors ε̂t = εt(ξ̂NT )

(recall that ξ̂NT is a component vector of θ̂NT defined in Section 2.4), where

Λ̂(k) =
1

T

T−k∑
t=1

ε̂t+kε̂
′
t. (2.10)

The test statistic is then defined as

TNT = max
1≤k≤K

TN,k,

where TN,k = max1≤i,j≤N
√
T |ρ̂ij(k)| and K is a prescribed positive integer. We

reject H0 if TNT > cη, where cη is determined by

Pr(TNT > cη|H0) = η.

Unfortunately, we do not know the asymptotic distribution of TNT , which yields the

critical value cη. Following the lines of Chang et al. (2017), we use the distribution

of ‖G‖∞ to approximate the distribution of TNT , where G is a multivariate normal

random vector with mean 0 and covariance matrix whose estimator is Ψ̂NT . The

matrix Ψ̂NT is defined by

Ψ̂NT = (IK ⊗ Ẑ)QNT (IK ⊗ Ẑ),

where Ẑ =
[
diag(Λ̂(0))

]−1/2 ⊗
[
diag(Λ̂(0))

]−1/2
, and QNT is defined by

QNT =
T−K−1∑

j=−T+K+1

K(
j

bT
)Ĥ(j),
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where

ft =
(
vec(ε̂t+1ε̂

′
t), · · · , vec(ε̂t+K ε̂

′
t)
)′
,

Ĥ(j) =


1

T−K
∑T−K

t=j ftf
′
t−j, j ≥ 0

1
T−K

∑T−K
t=−j+1 ft+jf

′
t , j < 0,

K(x) =
25

12π2x2

[sin(6πx/5)

6πx/5
− cos(6πx/5)

]
,

with bT a bandwidth diverging with T (see Section 2.7.2 for more details about the

data-driven bandwidth). Then we define ĉη by

Pr(‖Ĝ‖∞ > ĉη|ε̂1, . . . , ε̂T ) = η,

where Ĝ ∼ N(0, Ψ̂NT ). The value ĉη can serve as the critical value for TNT due to

the following theorem, which needs the additional assumptions as below,

A9. There exist constants c1, c2 > 0 and r̃1 ∈ (0, 2] such that Pr(|e11| > x) ≤
c1 exp(−c2x

r̃1).

A10. The error εt in model (2.1) is β-mixing with mixing coefficients satisfying

β̃k ≤ exp(−c3k
r̃2) for some constants c3 > 0 and r̃2 ∈ (0, 1].

A11. There exists a constant c4 > 0 and ζ > 0 such that

1
c4

lim infq→∞ infm≤0E
(
| 1√

q

∑m+q
t=m+1 ei,t+kejt|2+ζ

)
≤ lim supq→∞ supm≤0E

(
| 1√

q

∑m+q
t=m+1 ei,t+kejt|2+ζ

)
≤ c4.

Theorem 4. Suppose Assumption A9-A11 and the conditions of Theorem 2 hold.

If BN ∼ T ρ for 0 < ρ < min{1/6, r̃2/(1 + r̃2)} and log(p) ≤ CT ρ̃ for some constants

C and ρ̃, then as T →∞,

Pr(TNT > ĉη|H0)→ η.

It is easy to find that the estimated errors should be a white noise vector if the

model is adequate, which dose not only leave more belief on the consistency of esti-

mated coefficients and also makes the spatial effects and the spatial weight matrices

included into our model more trustable .
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2.7 Numerical Study

2.7.1 Performance of QMLE

We generate Xt and εt in model (2.1) as follows. Set κx = 3 (so 3 columns in Xt)

and we generate Xt using vec(Xt) ∼ N(0,ΣX), where

ΣX =


2IN 0.5IN 0.5IN

0.5IN 2IN 0.5IN

0.5IN 0.5IN 2IN

 .

The εt’s are independent of each other, each follows a multivariate normal distri-

bution N(0, IN). Unlike the corresponding simulation setting in Chapter 1, the

simulation for quasi-maximum likelihood estimation needs a error covariance ma-

trix as σ2IN to achieve the log-likelihood function 2.3. Therefore, we use IN as

covariance matrix for error term εt, which is commonly used like Lam and Souza

(2018) and Yu et al. (2008).

We set M = 3 for model (2.1). All elements in the parameters φ, α, γ and β are

independently generated from the uniform distribution U(0, 1) in each simulation

run. To satisfy the sufficient condition for stationarity, every element in φ0, α0, γ0

is divided by 1.2 times the absolute sum of all of them.

As M = 3, we need 3 specified spatial weight matrices W01,W02 and W03. To

simplify the simulation procedure so that each W0i still has eigenvalues less than

1 in magnitude, which is a part of the stationarity conditions for model (2.1), we

generate each W0i with only the first three off-diagonals (both lower and upper)

being non-zero. Another procedure where we produce sparse W0i has very similar

results and is not presented in this chapter.

We use the MATLAB function fmincon to evaluate the quasi-maximum likelihood

estimation θ̂NT constrained for stationarity. Since the likelihood function is in gen-

eral not convex, it is necessary to find a good initial value for the procedure. We

apply the method in Lam and Qian (2017), which can provide an accurate least

square type estimator if suitable instrumental-type variables exist. In our simula-

tions, the Xt’s are exogenous and can be the “instrumental variables”. We also

simulate Xt to be correlated with εt in general while still using the Xt’s as the

“instruments” needed in Lam and Qian (2017). It turns out that the initial values

obtained are still good enough for quasi-maximum likelihood estimation θ̂NT to con-

verge to reasonable values as long as the correlations between the elements in Xt
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and εt are not too strong, and hence the simulation results are very similar in the

end.

We repeat our simulation 500 times. Figure 2.1 shows the boxplots of the averaged

L1-error for θ̂NT , which is ‖θ̂NT − θ0‖1/11, under different combinations of (N, T ).

It is clear that θ̂ is convergent to the true value as N or T becomes large.
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Figure 2.1: Boxplots of ‖θ̂NT − θ0‖1/11. Left panel, from left to right: N =
50, 100, 150, T = 100. Right panel, left to right: T = 50, 100, 150, N = 100.

To examine the asymptotic normality of θ̂NT in Theorem 2, we use the previous

settings for 500 simulation runs. Using the results in Theorem 2, we calculate

Σ̂ = E(∂2lNt(θ̂NT )/∂θ∂θ′) as an estimator for Σ. We choose σ̂2 from θ̂NT and

standardize it using the true value σ2
0 and the corresponding entry in the estimated

covariance matrix Σ̂ when (N, T ) = (100, 100). The histogram and normal proba-

bility plots in Figure 2.2 show that our standardized estimator follows a standard

normal distribution. Other combinations of (N, T ) produces similar results and are

not shown here.
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Figure 2.2: Histograms (left) and normal probability plot (right) for standardized
σ̂2. Standardization used the estimated asymptotic covariance matrix derived in
Theorem 2.
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2.7.2 Performance of spatial and diagnostic tests

We use the settings in the previous section except for the values of α0 and γ0, which

are set according to three different scenarios:

1. Both contemporaneous and lag-1 spatial correlations are present, α0 6= 0, γ0 6= 0;

2. Only lag-1 spatial correlation presents, α0 = 0, γ0 6= 0;

3. Only contemporaneous spatial correlation presents, α0 6= 0, γ0 = 0.

Under scenario 1, all null hypotheses in Section 2.5 should be rejected, while only

H2
0 and H3

0 should be rejected under scenario 2. Under scenario 3, only H1
0 and

H3
0 should be rejected. Table 2.1 shows the proportion of times H1

0 , H2
0 and H3

0 are

rejected in 500 simulation runs under the three different scenarios above. Significance

level of the tests are set at 5%. It is clear that in many combinations of (N, T ), our

spatial test is doing very well, rejecting the hypothesis that should not be rejected

below 5% of times, and at the same time rejecting those hypotheses that should be

rejected usually at or above 95% of times.

For the diagnostic test in Section 2.6, since we generate our data using white noise as

errors, ideally we should not reject our null hypothesis of ε̂t being a white noise. To

apply the diagnostic test, we use the data-driven bandwidth bT = 1.3221{â(2)T}1/5

suggested in Section 6 of Andrews (1991) and in Section 4 of Chang et al. (2017),

where â(2) = {
∑N2K

l=1 4ρ̂2
l φ̂

4
l (1− ρ̂l)−8}{

∑N2K
l=1 φ̂4

l (1− ρ̂l)−4}−1 with ρ̂l and φ̂2
l being,

respectively, the estimated autoregressive coefficient and innovation variance from

fitting an AR(1) model to the time series {fl,t}Tt=1, where {fl,t} is the l-th component

of ft.

With significance level set at 5% and K = 10 lags considered in the test, Table 2.2

shows the results. As N or T gets larger, the proportion of not rejecting the null

hypothesis is getting closer to 95%.

2.7.3 Power of the diagnostic test

To see the power of our proposed diagnostic test in Section 2.6, we consider generat-

ing εt using a vector autoregressive process of order one, defined by εt = aINεt−1+zt,

where the zt’s are independent of each other and all elements in zt are generated

from the t8 distribution. All other settings are the same as in Section 2.7.1. When

a = 0, εt is a white noise, and so the rejection rate of our diagnostic test should

ideally be at the nominal level. As a increases, rejection rate should increase for our

test, and eventually approach one.
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α 6= 0 and γ 6= 0
H1

0 H2
0 H3

0
T = 50 T = 100 T = 150 T = 50 T = 100 T = 150 T = 50 T = 100 T = 150

N = 25 93% 96% 97% 90% 92% 99% 93% 95% 99%
N = 50 91% 92% 99% 95% 98% 99% 90% 95% 99%
N = 75 95% 99% 99% 91% 99% 99% 95% 98% 99%

α = 0 and γ 6= 0
H1

0 H2
0 H3

0
T = 50 T = 100 T = 150 T = 50 T = 100 T = 150 T = 50 T = 100 T = 150

N = 25 1% 5% 1% 90% 93% 98% 90% 93% 98%
N = 50 1% 2% 4% 95% 96% 98% 97% 96% 98%
N = 75 2% 7% 0% 98% 97% 98% 99% 98% 98%

α 6= 0 and γ = 0
H1

0 H2
0 H3

0
T = 50 T = 100 T = 150 T = 50 T = 100 T = 150 T = 50 T = 100 T = 150

N = 25 92% 99% 99% 1% 3% 4% 94% 95% 99%
N = 50 92% 94% 99% 1% 1% 1% 92% 99% 99%
N = 75 97% 99% 99% 1% 3% 1% 97% 99% 99%

Table 2.1: Percentage of times when different spatial hypotheses in Section 2.5 are
rejected using our proposed spatial test under different scenarios. Significance level
is set at 5% in all cases.

α 6= 0 and γ 6= 0 α = 0 and γ 6= 0 α 6= 0 and γ = 0
T = 50 T = 100 T = 150 T = 50 T = 100 T = 150 T = 50 T = 100 T = 150

N = 50 87% 93% 93% 92% 91% 94% 89% 92% 93%
N = 100 89% 94% 94% 92% 94% 95% 89% 94% 94%
N = 150 92% 95% 95% 93% 94% 97% 94% 96% 96%

Table 2.2: Percentage of diagnostic tests in Section 2.6 that cannot be rejected under
different scenarios, when underlying errors are white noise. Significance level is set
at 5% in all cases, with K = 10 lags considered.
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Figure 2.3 shows the power curves for different combinations of N and T . As T

increases with N fixed, the power of the diagnostic test generally increases, while

it decreases in general when N increases with T fixed. The test performs well in

general for different combinations of (N, T ), with power quickly approaches 1 as a

increases from 0 to 0.5.
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Figure 2.3: Power curves for the diagnostic test in Section 2.6 with 0 ≤ a ≤ 0.5
for different (N, T ) combinations. Significance level is set at 5% in all cases, with
K = 10 lags considered.

2.7.4 Stock returns analysis

Although spatial lag models have been used extensively in analyzing economic and

geographic data, financial data is rarely analyzed using such models. In fact, stock

returns can be envisaged to be heavily influenced by the sector and country to which

its parent company belongs. Indeed, through the use of a spatial lag model with

different spatial weight matrix characterizations, Arnold et al. (2013b) shows that
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stock returns belonging to the same country or same industry are spatially related

to each other, with inferences on the three spatial correlation parameters in their

model. Lam and Qian (2017) introduce a spatial lag model with time-lagged effects

on a financial data including 32 stock prices. Their model shows the dynamic and

contemporaneous spatial effects by the estimated spatial weight matrix.

In this section, we apply the quasi-maximum likelihood estimation on the same data

used in Lam and Qian (2017). Based on the finding from Lam and Qian (2017),

only one-lag dynamic spatial effect exists, which confirms our setting in model (2.1).

However, there are some differences from Lam and Qian (2017) in this section. First,

we include individual time lag effect. Then Fama-French factors mainly serving as

”instrumental variables” in Lam and Qian (2017) are removed from the model. The

results shown in Figure 2.4 that is similar to Figure 1.3 in Chapter 1 prove that

quasi-maximum likelihood estimation when instrumental variable is not available

can perform equally as least square estimation with instrumental variable. The last

but not the least, inference results on these financial data are firstly introduced in

this Chapter. More details can be found at the end of this section.

We aim to use our proposed model to analyze the daily log-returns of some stocks in

the Euro Stoxx 50 and S&P500, providing inferences to the model parameters, and

test if contemporaneous or lag-1 spatial correlations are present, while justifying our

final model using our proposed diagnostic test. The stocks we used are listed below.

France Alstom, Total, BNP, Scociete,
Sanofi, Carrefour, LVMH, Vivendi

Germany Daimler, Allianz, Deutsche Bank
Italy ENEL, ENI, Intesa, Unicredit, Tele Italy
Spain Repsol, Banco, Telefonica

US GM, PG, Nextera, American Express,
Citi, Wells Frago, Amgen, Gilead,

Johnson, Costco, Home, CeNTurylink, Verizon
Energy Alstom, Total, ENEL, ENI, Repsol, PG, Nextera
Finance BNP, Scociete, Allianz, Deutsche Bank,

Intesa, Unicredit, Banco, American Express,
Citi, Wells Fargo

Pharmacy Sanofi, Amgen, Gilead, Johnson
Retails Carrefour, LVMH, Costco, Home

Telecom Vivendi, Tele Italy, Telefonica, CeNTurylink, Verizon
Auto Daimler, GM

We use the three types of spatial weight matrices used in Arnold et al. (2013b) for

modeling the contemporaneous as well as the lag-1 spatial correlations in our model

setting. The first spatial weight matrix W1 used has, for i 6= j, the (i, j)th entry
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being the weight in either the Euro Stoxx 50 or the S&P500 index for the jth stock.

The second spatial weight matrix W2 has, for i 6= j, the (i, j)th entry being 1 if

the two stocks’ parent company are in the same country. Finally, the third spatial

weight matrix W3 is similar to W2, except that it is measuring stocks within the

same industry branch instead of country. We perform row normalization on all of

these three matrices.

We set two covariates, one is the national index, where we use the daily log-return

of one of the five national indices S&P500, CAC40, DAX, IBEX or MIB that corre-

sponds to where the parent company of the concerning stock belongs. The other one

is the Industry index, where we use the daily log-return of the stock’s corresponding

industry index in Europe or US. Table 2.3 shows that all the three spatial weight

α̂1 α̂2 α̂3

Value 9.36× 10−4 2.2× 10−3 1.4× 10−3

S.D. 2.9× 10−7 4.9× 10−5 1.4× 10−6

γ̂1 γ̂2 γ̂3

Value −1.8× 10−3 7.55× 10−4 1.8× 10−3

S.D. 4.5× 10−7 8.1× 10−7 5.7× 10−5

φ̂ β̂1 (National Index) β̂2 (Industry Index)
Value 1.2× 10−3 1.8× 10−1 6.9× 10−1

S.D. 9.4× 10−7 5.4× 10−7 4.7× 10−6

Table 2.3: The values of α̂, γ̂, φ̂ and β̂, with estimated standard deviations (S.D).

matrices should be included in our model for both contemporaneous and lag-1 spa-

tial correlations. The contemporaneous spatial correlation is most affected by where

the parent company belongs, followed by industry branch, but the reverse is true for

the lag-1 spatial correlation. The two covariates are very important too. Figure 2.4

shows the heatmaps of the two constructed spatial weight matrices
∑3

i=1 α̂iWi and∑3
i=1 γ̂iWi. For the former, it is obvious that there are some block patterns. These

blocks represent the stocks in the same country or in the same industry. Meanwhile,

the stocks are related strongly with each other if they are either all from Europe or

from US. It is interesting that the ninth stock and twentieth stock are related with

each other, although they belong to Germany and US auto industry respectively.

The ninth stock is Daimler, while the twentieth stock is GM. But Daimler owns part

of GM by spin-offs. This fact means that our linear combination of different spatial

weight matrices can reflect a more general pattern and let us learn from it.

Another important feature shown in the first matrix is that there are three bars

with larger values comparing with all other areas in this matrix. They represent
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Figure 2.4: Upper: The matrix
∑3

i=1 α̂iWi. Lower: The matrix
∑3

i=1 γ̂iWi. From
1 to 32, the stocks are Alstom, Total, BNP, Scociete, Sanofi, Carrefour, LVMH,
Vivendi, Daimler, Allianz, Deutsche Bank, ENEL, ENI, Intesa, Unicredit, Tele
Italy,Repsol, Banco, Telefonica, GM, PG, Nextera, American Express, Citi, Wells
Frago, Amgen, Gilead, Johnson, Costco, Home, CeNTurylink and Verizon respec-
tively.
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Sanofi (France Pharmacy), Vivendi (France Telecom) and Allianz (Germany Fi-

nance). Therefore, these three stocks have a significant influence on the whole of

Europe stock market. The second matrix in Figure 2.4 also shows a similar pattern.

Finally, we test for spatial correlations in the model and perform our diagnostic test.

We reject all null hypotheses H1
0 to H3

0 in Section 2.5 due to the approximately zero

p-values (4.5× 10−8,2.3× 10−8 and 1.0× 10−4 respectively). Therefore, we conclude

that these stock returns are under both contemporaneous spatial effects and lag-1

spatial effects. Meanwhile, using the proposed vector white noise test, we cannot

reject the null hypothesis that our model residuals are white noise when we consider

all lags from 1 to 10.

2.8 Conclusion

This chapter is mainly to discuss the inference for the spatial dynamic model includ-

ing a Wald test on the coefficients of the linear combination of the specified spatial

weight matrices and a diagnostic test whether the fitted residuals perform like a

white noise vector. All theoretical results and inference are built upon the scenario

when both sample size T and panel dimension N go to infinity.

The spatial dynamic model used in this chapter is a dynamic high order spatial

model that the contemporaneous and time-lagged spatial effects are estimated by

two linear combinations of a set of specified spatial weight matrices. Using a linear

combination of spatial weight matrices not only one specific spatial weight matrix

is for the avoidance of misspecification. This high order spatial model is good to

avoid misspecification but more likely to include irrelevant spatial weight matrices,

which makes the Wald test on the coefficients of linear combination followed more

necessary. At the same time, time-lagged spatial effect is also included to figure out

the delayed spatial effect. This can also be checked by the Wald test by setting a

specified null hypothesis as shown in our simulation. The last but not the least,

the diagnostic test on the estimated residuals is also important for the fitness of our

proposed spatial dynamic model, as the fitted residuals performing like the white

noise vector can prove the well fitness and correct choice on the specified spatial

weight matrices of our model.

The estimation used in this chapter is quasi-maximum likelihood estimation. As

shown in Theorem 2, the convergence rate
√
NT comes from the fact that the

fixed effects are embeded into the covariates in model (2.1). It helps to reduce the

dimension of the parameter to a fixed number. Apart from this idea, we can also

apply the same method used in Yu et al. (2008) and Li (2017). It is convenient to
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concentrate fixed effects out by doing forward orthogonal difference or deducting

the means. As the main goal here is inference not the fixed effect estimation, the

proposed method makes sense here. For the future studies, there are already many

existing asymptotic normality results including fixed effects such as quasi-maximum

likelihood estimator in Li (2017) and generalized method of moment in Lee and Yu

(2014a). We can extend our inference to these spatial dynamic model with fixed

effects.

Talking about the forecasting power of the proposed model, it is same as the discus-

sion in Chapter 1 Conclusion Section that it is hard to use our model to forecast yt

due to the large N. As the main concerns for this chapter are finding spatial weight

matrix by quasi-maximum likelihood estimation and inference about the estimated

coefficients of the high order spatial model and the whiteness of fitted residuals, we

can leave the prediction of the proposed vector autoregression model in the future

work.

2.9 Discussion for Methodologies in Chapter 1

and Chapter 2

Both model (1.1) in Chapter 1 and model (2.1) in Chapter 2 belong to the high

order spatial autoregression model. It means that spatial effects are included into

the model by a linear combination of pre-specified spatial weight matrices. The

parameters for estimation are the coefficients in the linear combination. The main

difference here is that a least square type estimation is used in Chapter 1 and

the quasi-maximum likelihood estimation is applied in Chapter 2. Although the

advantages and disadvantages for these two methods and relevant references have

been introduced in Introduction of both Chapters, I conclude here based on the

results in Chapter 1 and Chapter 2.

First, as the innate endogeneity in the spatial autoregression model, least square

type estimation ,like the profiled least square estimation, only works with the ex-

istence of instrumental variables. In reality, instrumental variables are not always

available. Therefore, we propose the quasi-maximum likelihood estimation in sec-

ond Chapter without the usage of instrumental variable. The real data results of

first two Chapters are similar, especially the estimated spatial weight matrices have

an identical structure. As discussed in Section 2.7.4, the quasi-maximum likelihood

estimation performs as well as the least square estimator with instrumental variable.
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Second, quasi-maximum likelihood estimation is also challenged by some references

due to the flat likelihood in high order spatial autoregression model. In our simula-

tion and real data analysis, quasi-maximum likelihood estimation is computationally

infeasible when M (the order) or p (the length of lag) are slightly large. To improve

the performance, we find that using least square type estimator even without ap-

propriate instrumental variables as initial value in algorithm of maximum likelihood

estimation can significantly improve the validation of quasi-maximum likelihood es-

timation.

In conclude, both least square estimation and maximum likelihood estimation in

spatial autoregression model have their pros and cons. Especially, in reality, only by

using one of them can not provide a convincing result due to the lack of working-

well instrumental variables and complex parameter space respectively. So it is wise

to combine two methods through using maximum likelihood estimation with initial

values from least square estimation when the instrumental variables are not perfectly

exogenous.

2.10 Technical Proofs

To prove the asymptotic results of the quasi-maximum likelihood estimation θ̂NT ,

we need to deal with the log likelihood function and it’s derivatives. Note that the

only stochastic part of the log likelihood function (2.3) is a function of εt(ξ).

According to (2.1) and (2.4), we have

εt(ξ) = yt −
M∑
i=1

αiW0iyt −
M∑
i=1

γiW0iyt−1 − φyt−1 −Xtβ

= εt − LNt(α− α0)−ONt(δ − δ0). (2.11)

Due to (2.8), the stochastic part of yt has a moving average representation and we

define the following two general series to deal with it. Denote

UNt =
∞∑
h=1

PNhεt+1−h, VNt =
∞∑
h=1

QNhεt+1−h, (2.12)

where PNh and QNh are sequences of N ×N non-stochastic square matrices. Before

giving the proof of Theorem 1, we introduce some useful Lemmas first.

Lemma 1. For N ×N matrices G1N = (G1,ij) and G2N = (G2,ij),

denote Cov
(
ε′tG1Nεs, ε

′
gG2Nεh

)
by ∆(t, s, g, h). Suppose Assumption A2 holds and
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we have

∆(t, s, g, h) = (Ee4
11 − 3σ4

0)
N∑
i=1

G1,iiG2,ii + σ4
0[tr(G1NG

′
2N) + tr(G1NG2N)],

for t = s = g = h,

∆(t, s, g, h) = Γ(t− g)
N∑
i=1

G1,iiG2,ii, for t = s 6= g = h,

∆(t, s, g, h) = Γ(t− s)
N∑
i=1

G1,iiG2,ii + σ4
0tr(G1NG

′
2N), for t = g 6= s = h,

∆(t, s, g, h) = Γ(t− s)
N∑
i=1

G1,iiG2,ii + σ4
0tr(G1NG2N), for t = h 6= s = g,

and 0 otherwise.

Proof of Lemma 1.

Under Assumption A2, {eit} are uncorrelated across i and t. Thus,

E(ε′tG1Nεs) = σ2
0tr(G1N)I(t = s), (2.13)

where I(t = s) = 1 for t = s and I(t = s) = 0 otherwise.

Note that {eit} and {ejt} are independent for i 6= j under Assumption A2, and we

obtain E(eitejsepgeqh) 6= 0 only if i = j and p = q, or i = p and j = q, or i = q and

j = p. Therefore,

E
[∑
i,j

eitG1,ijejs
∑
p,q

epgG1,pqeqh
]

=
N∑
i=1

G1,iiG2,iiE(eiteiseigeih) +
N∑
i=1

N∑
p=1,p 6=i

G1,iiG2,ppE(eiteis)E(epgeph)

+
N∑
i=1

N∑
j=1,j 6=i

G1,ijG2,ijE(eiteig)E(ejsejh) +
N∑
i=1

N∑
j=1,j 6=i

G1,ijG2,jiE(eiteih)E(ejsejg)

=
[
E(eiteiseigeih)− E(eiteis)E(epgeph)− E(eiteig)E(ejsejh)− E(eiteih)E(ejsejg)

]
·

N∑
i=1

G1,iiG2,ii + E(eiteis)E(epgeph)tr(G1N)tr(G2N)

+E(eiteig)E(ejsejh)tr(G1NG
′
2N) + E(eiteih)E(ejsejg)tr(G1NG

′
2N).
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Combining (2.13), we get for t = s = g = h

∆(t, s, g, h) = E
[
(ε′tG1Nεs)(ε

′
gG2Nεh)

]
− E(ε′tG1Nεs)E(ε′gG2Nεh)

= (Ee4
11 − 3σ4

0)
N∑
i=1

G1,iiG2,ii + σ4
0[tr(G1NG

′
2N) + tr(G1NG2N)].

Thus the first equality holds. Noting E(eiteis) = 0 for any t 6= s, we can similarly

prove that the other equalities of Lemma 1 hold.

Lemma 2. Under Assumptions A2, we have for t ≥ s

E(U ′NtVNs) = σ2
0tr(

∞∑
h=1

P ′N,t−s+hQNh) and

Cov(U ′NtVNt,U ′NsVNs) =
t−s∑
h=1

∞∑
g=1

Γ(t− s+ g − h)
N∑
i=1

(P ′NhQNh)ii(P
′
NgQNg)ii

+
∞∑
h=1

∞∑
r=1

Γ(h− r)
N∑
i=1

(P ′N,t−s+hQN,t−s+h)ii(P
′
NrQNr)ii

+
∞∑
h=1

∞∑
g=1

{
Γ(h− g)

N∑
i=1

(P ′N,t−s+hQN,t−s+g)ii(P
′
NhQNg)ii

+σ4
0tr(P

′
N,t−s+hQN,t−s+gQ

′
NgPNh)

}
+
∞∑
h=1

∞∑
g=1

{
Γ(h− g)

N∑
i=1

(P ′N,t−s+hQN,t−s+g)ii(P
′
NgQNh)ii

+σ4
0tr(P

′
N,t−s+hQN,t−s+gQ

′
NgPNh)

}
−2Ee4

11

∞∑
h=1

N∑
i=1

(P ′N,t−s+hQN,t−s+h)ii(P
′
NhQNh)ii

Proof of Lemma 2.

(i) By (2.13), we have

E(U ′NtVNs) =
∞∑
h=1

∞∑
r=1

E(ε′t+1−hP
′
NhQNrεs+1−r) = σ2

0tr(
∞∑
h=1

P ′N,t−s+hQNh).
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(ii) For t ≥ s, UNt and VNt can be rewritten as

UNt =
t−s∑
h=1

PNhεt+1−h +
∞∑
g=1

PN,t−s+gεs+1−g,

VNt =
t−s∑
h=1

QNhεt+1−h +
∞∑
g=1

QN,t−s+gεs+1−g.

Under Assumption A2, we have

Cov
( t−s∑
h=1

PNhεt+1−h

∞∑
g=1

Qt−s+gεs+1−g,U ′NsVNs
)

= 0,

Cov
( ∞∑
g=1

PN,t−s+gεN,s+1−g

t−s∑
h=1

QNhεN,t+1−h,U ′NsVNs
)

= 0.

Thus,

Cov(U ′NtVNt,U ′NsVNs) = ∆1 + ∆2,

where

∆1 = Cov
( t−s∑
h=1

ε′t+1−hP
′
Nh

t−s∑
h=1

QNhεt+1−h,
∞∑
g=1

ε′n,s+1−gP
′
Ng

∞∑
g=1

QNgεn,s+1−g
)
,

∆2 = Cov
( ∞∑
g=1

ε′s+1−gP
′
N,t−s+g

∞∑
g=1

QN,t−s+gεs+1−g,
∞∑
g=1

ε′s+1−gP
′
Ng

∞∑
g=1

QNgεs+1−g
)
.

Using Lemma 1, we obtain

∆1 =
t−s∑
h=1

∞∑
g=1

Cov
(
ε′t+1−hP

′
NhQNhεt+1−h, ε

′
s+1−gP

′
NgQNgεs+1−g

)
=

t−s∑
h=1

∞∑
g=1

Γ(t− s+ g − h)
N∑
i=1

(P ′NhQNh)ii(P
′
NgQNg)ii,

where and in the following, (M)ii denotes the (i, i)th element for any matrix M .
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Let’s turn to ∆2 then. By Lemma 1, we have

∆2 =
∞∑
h=1

∞∑
g=1

∞∑
r=1

∞∑
k=1

Cov
(
ε′s+1−hP

′
N,t−s+hQN,t−s+gεs+1−g, ε

′
s+1−rP

′
NrQNkεs+1−k

)
=

∞∑
h=1

Cov
(
ε′s+1−hP

′
N,t−s+hQN,t−s+hεs+1−h, ε

′
s+1−hP

′
NhQNhεs+1−h

)
+
∞∑
h=1

∞∑
r=1,r 6=h

Cov
(
ε′s+1−hP

′
N,t−s+hQN,t−s+hεs+1−h, ε

′
s+1−rP

′
NrQNrεs+1−r

)
+
∞∑
h=1

∞∑
g=1,g 6=h

Cov
(
ε′s+1−hP

′
N,t−s+hQN,t−s+gεs+1−g, ε

′
s+1−hP

′
NhQNgεs+1−g

)
+
∞∑
h=1

∞∑
g=1,r 6=h

Cov
(
ε′s+1−hP

′
N,t−s+hQN,t−s+gεs+1−g, ε

′
s+1−gP

′
NgQNhεs+1−h

)
=: ∆21 + ∆22 + ∆23 + ∆24,

where

∆21 = (Ee4
11 − 3σ4

0)
∞∑
h=1

N∑
i=1

(P ′N,t−s+hQN,t−s+h)ii(P
′
NhQNh)ii

+σ4
0

∞∑
h=1

[
tr(P ′N,t−s+hQN,t−s+hQ

′
NhPNh) + tr(P ′N,t−s+hQN,t−s+hP

′
NhQNh)

]
,

∆22 =
∞∑
h=1

∞∑
r=1

Γ(h− r)
N∑
i=1

(P ′N,t−s+hQN,t−s+h)ii(P
′
NrQNr)ii

−Γ(0)
∞∑
h=1

N∑
i=1

(P ′N,t−s+hQN,t−s+h)ii(P
′
NhQNh)ii,

∆23 =
∞∑
h=1

∞∑
g=1

{
Γ(h− g)

N∑
i=1

(P ′N,t−s+hQN,t−s+g)ii(P
′
NhQNg)ii

+σ4
0tr(P

′
N,t−s+hQN,t−s+gQ

′
NgPNh)

}
−
∞∑
h=1

{
Γ(0)

N∑
i=1

(P ′N,t−s+hQN,t−s+h)ii(P
′
NhQNh)ii

+σ4
0tr(P

′
N,t−s+hQN,t−s+hQ

′
NhPNh)

}

89



∆24 =
∞∑
h=1

∞∑
g=1

{
Γ(h− g)

N∑
i=1

(P ′N,t−s+hQN,t−s+g)ii(P
′
NgQNh)ii

+σ4
0tr(P

′
N,t−s+hQN,t−s+gQ

′
NgPNh)

}
−
∞∑
h=1

{
Γ(0)

N∑
i=1

(P ′N,t−s+hQN,t−s+h)ii(P
′
NhQNh)ii

+σ4
0tr(P

′
n,t−s+hQn,t−s+hP

′
NhQNh)

}
.

Therefore, we obtain the results of Lemma 2.

Lemma 3. Suppose assumptions A1-A7 hold. Then for any N ×N non-stochastic

matrix GN = (Gij) with finite L1 norm and L∞ norm, it follows that

(i)
1

NT

T∑
t=1

ε′tGNεt − E
1

NT

T∑
t=1

ε′tGNεt = Op(
1√
NT

)

and E
1

NT

T∑
t=1

ε′tGNεt = O(1)

(ii)
1

NT

T∑
t=1

L′NtGNLNt − E
1

NT

T∑
t=1

L′NtGNLNt = Op(
1√
NT

)

and E
1

NT

T∑
t=1

L′NtGNLNt = O(1)

(iii)
1

NT

T∑
t=1

O′NtGNONt − E
1

NT

T∑
t=1

O′NtGNONt = Op(
1√
NT

)

and E
1

NT

T∑
t=1

O′NtGNONt = O(1)

(iv)
1

NT

T∑
t=1

L′NtGNεt − E
1

NT

T∑
t=1

L′NtGNεt = Op(
1√
NT

)

and E
1

NT

T∑
t=1

L′NtGNεt = O(1)

(v)
1

NT

T∑
t=1

O′NtGNεt = Op(
1√
NT

)

and E
1

NT

T∑
t=1

O′NtGNεt = 0.

Proof of Lemma 3.
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(i) By Lemma 1, we have

∆̄1 =
1

NT

T∑
t=1

V ar
(
ε′tGNεt

)
= (Ee4

11 − 3σ4
0)

1

N

N∑
i=1

G2
ii +

σ4
0

N
[tr(GNG

′
N) + tr(G2

N)]

= O(1)

due to the finity of ‖GN‖1 and ‖GN‖∞. By Assumption A2(ii) and Lemma 1, we

have

∆̄2 =
2

NT

∑
s<t

Cov(ε′tGNεt, ε
′
sGNεs)

=
2

NT

∑
s<t

Γ(t− s)
N∑
i=1

G2
ii

= O(1).

Hence,

E
( 1√

NT

T∑
t=1

ε′tGNεt − E
1√
NT

T∑
t=1

ε′tGNεt

)2

= ∆̄1 + ∆̄2 = O(1),

which implies the first part of (i) in Lemma 3. Since ‖GN‖1 and ‖GN‖∞ are both

finite, we have

E
1

NT

T∑
t=1

ε′tGNεt = E
σ2

0

N
tr(GN) = O(1).

(ii) Note that the (i, j) element of L′NtGNLNt is y′tW
′
0iGNW0jyt. By (2.8), we get

y′tW
′
0iGNW0jyt = E ′NtW′

0iGNW0jENt + X ′Nt(W′
0iGNW0j + W′

njGNW0i)ENt
+X ′NtW′

0iGNW0jXNt
=: H1,Nt +H2,Nt +H3,Nt.

To prove the first part of Lemma 3, we only need to prove for i = 1, 2, 3,

1

NT

T∑
t=1

Hi,NT − E
1

NT

T∑
t=1

Hi,NT = O(
1√
NT

), (2.14)
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Since {X ′Nt} are non-stochastic, it is obvious that the left side of (2.14) is zero for

i = 3. Using lemma 8 of Yu et al. (2008), we can obtain (2.14) holds for i = 2.

Next, we deal with the case i = 1. By (2.8) and (2.12), we have H1,Nt = U ′NtVNt
with PNh = W0iA

h
NH

−1
N and QNh = GNW0jA

h
NH

−1
N . Therefore, we only need to

prove that

E
{ 1√

NT

T∑
t=1

H1,Nt − E
1√
NT

T∑
t=1

H1,Nt

}2

=
1

NT
V ar(

T∑
t=1

U ′NtVNt) = O(1). (2.15)

On the other hand, by Lemma 2,

1

NT
V ar(

T∑
t=1

U ′NtVNt) =
1

NT

T∑
t=1

T∑
s=1

Cov(U ′NtVNt, U ′NsVNs)

=:
1

NT

T∑
t=1

T∑
s=1

(
D1(t− s) +D2(t− s) +D3(t− s) +D4(t− s) +D5(t− s)

)
,

where Di(t − s) is the corresponding part of Cov(U ′NtVNt, U ′NsVNs) in Lemma 2.

Since Γ(h) is summable, under the Assumptions A2-A7, the same proof of Lemma

6 of Yu et al. (2008) yields that

1

NT

T∑
t=1

T∑
s=1

(
D2(t− s) +D3(t− s) +D4(t− s) +D5(t− s)

)
= O(1). (2.16)

From Lemma 2, we have

∣∣∣ 1

NT

T∑
t=1

T∑
s=1

D1(t− s)
∣∣∣

=
∣∣∣ 1

NT

T∑
t=1

T∑
s=1

t−s∑
h=1

∞∑
g=1

Γ(t− s+ g − h)
N∑
i=1

(P ′NhQNh)ii(P
′
NgQNg)ii

∣∣∣
≤ 1

N

∞∑
h=1

∞∑
g=1

N∑
i=1

abs(P ′NhQNh)iiabs(P
′
NgQNg)ii

1

T

T∑
t=1

T∑
s=1

|Γ(t− s+ g − h)|

≤ 1

N

∞∑
h=1

∞∑
g=1

N∑
i=1

abs(P ′NhQNh)iiabs(P
′
NgQNg)ii

1

T

T∑
t=1

∞∑
j=1

|Γ(j)|

=
∞∑
j=1

|Γ(j)| 1
N

∞∑
h=1

∞∑
g=1

N∑
i=1

abs(P ′NhQNh)iiabs(P
′
NgQNg)ii

= O(1),
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due to Assumption A2 and the same proof of Lemma 6 of Yu et al. (2008). Combin-

ing with (2.16), we have showed that (2.14) holds for i = 1 and thus the first part

of (ii) of Lemma 3. By Lemma 2 and similar method, we can easily show that the

second part of (ii) of Lemma 3 holds.

(iii) Note that Xt is non-stochastic and the same method as (ii) can yield the results.

(iv) By (2.1), we have

εt = yt −
( M∑
i=1

α0iW0i

)
yt −

( M∑
i=1

γ0iW0i

)
yt−1 − φ0yt−1 + Xtβ0.

Using the same method as (ii), we can get the results.

(v) By Assumption A2 and the definition of ONt, we can easily verify

E
1

NT

T∑
t=1

O′NtGNεt = 0.

Using the same method as (ii), we can obtain the results.

Lemma 4. Suppose Ui = (ui,ks) are N ×N matrices, i = 1, . . . ,M . It follows that

U =



tr(U1U
′
1) tr(U1U

′
2) · · · tr(U1U

′
M)

tr(U2U
′
1) tr(U2U

′
2) · · · tr(U2U

′
M)

...
...

...
...

tr(UMU
′
1) tr(UMU

′
2) · · · tr(UMU

′
M)


is non-negative.

Proof of Lemma 4.

We only need to prove x′Ux ≥ 0 for any M dimensional vector x = (x1, . . . , xM)′.

Note that

x′Ux =
∑
i,j

xitr(UiU
′
j)xj =

∑
i,j

xi
∑
k,s

ui,ksuj,ksxj =
∑
k,s

∑
i,j

ui,ksxixjuj,ks

=
∑
k,s

(
∑
i

xiui,ks)
2 ≥ 0.

Thus, we complete the proof of Lemma 4.
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Lemma 5. Let Θ be any compact parameter space. Then under assumptions A1-A7,

it follows that

(i) lNT (θ)− ElNT (θ)
P−→ 0 uniformly in Θ,

(ii) ElNT (θ) is uniformly equicontinuous for θ ∈ Θ.

Proof of Lemma 5.

(i) By (2.5), we have

ElNT (θ) =
1

2
log2π +

1

2
logσ2 − 1

N
log|HN(α)|+ 1

2σ2NT
E

T∑
t=1

ε′t(ξ)εt(ξ). (2.17)

From (2.5) and (2.17), we get

lNT (θ)− ElNT (θ) = − 1

2σ2

[ 1

NT

T∑
t=1

ε′t(ξ)εt(ξ)−
1

NT
E

T∑
t=1

ε′t(ξ)εt(ξ)
]
.

The compactness of Θ implies all parameters are bounded, therefore we only need

to prove

1

NT

T∑
t=1

ε′t(ξ)εt(ξ)−
1

NT
E

T∑
t=1

ε′t(ξ)εt(ξ)
P−→ 0. (2.18)

From (2.1) and (2.4), we have

εt(ξ) = yt −
( M∑
i=1

αiW0i

)
yt −

M∑
i=1

γiW0iyt−1 − φyt−1 −Xtβ

= LNtα0 +ONtδ0 + εt − LNtα−ONtδ

= εt − LNt(α− α0)−ONt(δ − δ0).

Therefore,

ε′t(ξ)εt(ξ) = ε′tεt + (α− α0)′L′NtLNt(α− α0) + (δ − δ0)′O′NtONt(δ − δ0)

+2(α− α0)′L′NtONt(δ − δ0)− 2(α− α0)′L′Ntεt − 2(δ − δ0)′O′Ntεt. (2.19)

By Lemma 3, (2.18) holds.

(ii) Since Θ is compact, we have 1
2
logσ2 is equicontinuous. According to (2.17), we
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only need to prove

1

N
log|HN(α)| is equicontinuous (2.20)

and

1

2σ2NT
E

T∑
t=1

ε′t(ξ)εt(ξ) is equicontinuous. (2.21)

For any α(1) and α(2), there exists α∗ between α(1) and α(2) such that

1

N
log|HN(α(1))| − 1

N
log|HN(α(2))|

=
1

N

(
tr
(
W01H

−1
N (α∗)

)
, · · · , tr

(
W0MH

−1
N (α∗)

))
(α(2) − α(1)).

By Assumption A5, 1
N
tr
(
W0iH

−1
N (α∗)

)
is bounded for i = 1, · · · r, which means

(2.20) holds. From (2.19), Lemma 3 and the compactness of Θ, using the same

method as proving (2.20), we can obtain (2.21) holds.

Lemma 6. Suppose Assumption A1-A7 hold. If furthermore e2
it are uncorrelated

across t, then it follows that

√
NT

∂lNT (θ0)

∂θ

d−→ N(0,Ω),

where Ω = limT→∞ΩNT with ΩNT defined by (2.36).

Proof of Lemma 6.

By (2.36), we know

V ar(
√
NT

∂lNT (θ0)

∂θ
) = ΩNT .

Thus, to prove Lemma 6, it suffices to show that for any nonzero 2M + κx + 2

dimensional vector a = ((a1)′, (a2)′, (a3)′)′, where a1, a2 and a3 are M , M + κx + 1

and 1 dimensional vectors,

a′∂lNT (θ0)/∂θ√
V ar

(
a′∂lNT (θ0)/∂θ

) d−→ N(0, 1). (2.22)
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Let B̄N = a1B
′
N1 + · · ·+ aMB

′
NM , we have

a′NT
∂lNT (θ0)

∂θ
= − 1

σ2
0

T∑
t=1

δ′0O
′
NtB̄

′
Nεt −

1

σ2
0

T∑
t=1

[
ε′tB

′
Nεt − σ2

0tr(B̄N)
]

− 1

σ2
0

T∑
t=1

(a2)′O′Ntεt −
1

2σ2
0

T∑
t=1

a3
[
ε′tεt −Nσ2

0

]
=:

T∑
t=1

(
U ′N,t−1εt +D′Ntεt + ε′tMNεt − tr(MN)

)
=

T∑
t=1

N∑
i=1

xNt,i,

where DNt = B̄Xtβ0 + Xt(a2M+2, · · · , a2M+κx+1), MN = B̄ + a2M+κx+2IN , and U ′Nt
is defined in (2.12) with PNh =

[
B̄Υ(ϕ0) + Υ((aM+1, · · · , a2M+κx+1)′)

]
AhNH

−1
N , and

xNt,i = (ui,t−1 + dNti)eit +mN,ii(e
2
it − σ2

0) + 2(
i−1∑
j=1

m̃N,ijejt)eit, (2.23)

with m̃N,ij being the (i, j)th element of M̃N = (MN + M ′
N)/2. mN,ii’s are the

diagonal elements of MN Since e2
it are uncorrelated across t, by Assumption A2 and

Lemma 1, we obtain that

ΠNT =: V ar
(
a′NT

∂lNT (θ0)

∂θ

)
= Tσ4

0tr(
∞∑
h=1

P ′NhPNh) + σ2
0

T∑
t=1

D′NtDNt + T (Ee4
11 − 3σ4

0)
N∑
i=1

m2
N,ii

+Tσ4
0

(
tr(MNM

′
N) + tr(M2

N)
)

+ 2Ee3
11

T∑
t=1

N∑
i=1

dNtimN,ii,

where mN,ii’s are the diagonal elements of MN and dNti is the ith element of DNt.

Under Assumption A2-A7 , using the same method as in Lemma 3, we can verify

that

ΠNT = O(NT ). (2.24)

Define the σ− field

FN,t,i = σ
(
e11, e21, · · · , eN1, · · · , e1,t−1, · · · , eN,t−1, e1,t, · · · , eN,t

)
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with FN,t,0 = FN,t−1,N . Let j = N(t − 1) + i for t = 1, · · · , T and i = 1, · · · , N .

Assumption A2 means that {xj}Ntj=1 form a martingale difference array with respect

to {Fj−1}. According to the CLT for martingale difference in Pänsler and Prucha

(1997, p.235), it is sufficient to prove that for some

1

Π
1+τ/4
NT

T∑
t=1

N∑
i=1

E|xNt,i|2+τ/2 −→ 0 and
1

ΠNT

T∑
t=1

N∑
i=1

E(x2
Nt,i|Fn,t,i−1) −→ 1 (2.25)

From (2.23), Cr inequality and Holder inequality together with Assumption A2

imply that

E|xNt,i|2+τ/2

≤ C
[
E|(ui,t−1 + dNti)eit|2+τ/2 + |mN,ii|2+τ/2E|(e2

it − σ2
0)|2+τ/2 + 2E|(

i−1∑
j=1

m̃N,ijejt)eit|2+τ/2
]

≤ C
[
(E|ui,t−1|4+τ + |dNti|4+τ )E|eit|4+τ

]1/2
+ C + 2

[
E|

i−1∑
j=1

mN,ijejt|4+τE|eit|4+τ
]1/2

≤ C + C(E|ui,t−1|4+τ )1/2 + C(
i−1∑
j=1

|̃̃mN,ij|)1/2.

Since Assumption A3-A6 ensure the L1 norm and L∞ norm of
∑∞

h=1 PNh and MN

are bounded, we have
∑i−1

j=1 |mN,ij| ≤ C and E|ui,t−1|4+τ ≤ C due to Assumption

A2. Therefore, E|xNt,i|2+τ/2, which means

T∑
t=1

N∑
i=1

E|xNt,i|2+τ/2 = O(NT ). (2.26)

(2.24) and (2.26) yield

1

Π
1+τ/4
NT

T∑
t=1

N∑
i=1

E|xNt,i|2+τ/2 = (NT )−τ/4 −→ 0.

Namely, the first part of (2.25) holds.
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On the other hand, by (2.23) we obtain

E(x2
Nt,i|FN,t,i−1) = σ2

0

(
uN,t−1,i + dNti + 2

i−1∑
j=1

m̃N,ijejt
)2

+ (Ee4
11 − σ4

0)m2
N,ii

+2Ee3
11mN,ii

(
uN,t−1,i + dNti + 2

i−1∑
j=1

m̃N,ijejt
)
.

Denote M̃−
N be the lower diagonal matrix of M̃N and M̃ o

N be the diagonal matrix

with the same diagonal elements as M̃N , we have

N∑
i=1

E(x2
Nt,i|FN,t,i−1) = σ2

0

(
UN,t−1 +DNt + M̃−

Nεt
)′(
UN,t−1 +DNt + M̃−

Nεt
)

+(Ee4
11 − σ4

0)
N∑
i=1

m2
N,ii + 2Ee3

11M̃
o
N

(
UN,t−1 +DNt + M̃−

Nεt
)
.

Lemma 3 means the second part of (2.25) holds. Thus, we complete the proof of

this lemma.

Lemma 7. Under Assumptions A2-A8, Σ = limT→∞ΣNT is nonsingular, where

ΣNT is defined in (2.37).

Proof of Lemma 7.

Denote

Jαα = E
T∑
t=1

Õ′NtÕNt, Jαδ = E
T∑
t=1

Õ′NtONt, Jδδ = E
T∑
t=1

O′NTONt.

We have

EJNT =

 Jαα Jαδ
J ′αδ Jδδ

 .

Assumption A8 means that

Jαα − JαδJ −1
δδ J

′
αδ is positive definite. (2.27)

Let a = ((a1)′, (a2)′, (a3)′)′ be a 2M +κx+2 dimensional vector, where a1, a2 and a3

are M , M + κx + 1 and 1 dimensional vectors. We only need to prove that Σa = 0
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implies a = 0. By the definition of JNT and (2.37), we obtain

Σ =
1

σ2
0

·
Jαα + limT→∞

1
N

(
tr(B′NiBNj) + tr(BNjBNi)

)
M×M Jαδ limT→∞

1
N
t̃r(BN)

J ′αδ Jδδ 0

limT→∞
1
N
t̃r(BN)′ 0 1

2σ2
0

 .

Therefore, Σa = 0 implies

[
Jαα + lim

T→∞

1

N

(
tr(B′NiBNj) + tr(BNjBNi)

)
M×M

]
a1 + Jαδa2 + lim

T→∞

1

N
t̃r(BN)a3 = 0,

a2 = −J −1
δδ J

′
αδa

1

a3 = − lim
T→∞

2σ2
0

n
t̃r
′
(BN)a1.

By eliminating a2 and a3, the above first equation becomes

{
Jαα − JαδJ −1

δδ J
′
αδ

+ lim
T→∞

1

N

[(
tr(B′NiBNj) + tr(BNjBNi)

)
M×M −

2

N
t̃r(BN)t̃r

′
(BN)

]}
a1 = 0.

Denote CN = (CN1, · · · , CNr)′ with CNi = BNi − tr(BNi)IN/N and we can verify

that

tr(B′NiBNj) + tr(BNjBNi)−
2

N
t̃r(BNi)t̃r(BNj) =

1

2
tr
[
(CNi + C ′Ni)(Cnj + C ′Nj)

′].
By Lemma 4 and (2.27), we know that

Jαα − JαδJ −1
δδ J

′
αδ + lim

T→∞

1

N

[(
tr(B′NiBNj) + tr(BNjBNi)

)
M×M −

2

N
t̃r(BN)t̃r

′
(BN)

]
is positive definite, which implies that a1 = 0 and hence a = 0. Now, we complete

the proof of Lemma 7.

Lemma 8. Suppose Assumptions A2-A8 hold. Then, for any θ∗
P→ θ0, we have

∂2lNT (θ∗)

∂θ∂θ′
P→ Σ and

√
NT

∂lNT (θ∗)

∂θ

√
NT

∂lNT (θ∗)

∂θ′
P→ Ω.

Proof of Lemma 8.
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We only prove the first part of this lemma since the second part can be obtained

using the same method. Note that

∂2lNT (θ∗)

∂θ∂θ′
− Σ =

∂2lNT (θ∗)

∂θ∂θ′
− ∂2lNT (θ0)

∂θ∂θ′
+
∂2lNT (θ0)

∂θ∂θ′
− ΣNT + ΣNT − Σ.

Since Σ = limT→∞ΣNT , it suffices to prove that

∂2lNT (θ∗)

∂θ∂θ′
− ∂2lNT (θ0)

∂θ∂θ′
→ 0 and

∂2lNT (θ0)

∂θ∂θ′
− ΣNT → 0. (2.28)

From appendix A.2, we have

∂2lNT (θ∗)

∂αi∂αj
− ∂2lNT (θ0)

∂αi∂αj
=

( 1

σ2
∗
− 1

σ2
0

) 1

NT

T∑
t=1

(W0iyt)
′W0jyt

+
[ 1

Nσ2
∗
tr(BNi(α∗)BNj(α∗))−

1

Nσ2
0

tr(BNiBNj)
]

=: E1 + E2.

Since σ2
∗ → σ2

0, Lemma 3 implies E1
P→ 0. By Assumption A3 and A5, the L1 and

L∞ norm of BNi(α∗)BNj(α∗) are bounded, which implies that 1
N
tr(BNi(α∗)BNj(α∗))

is bounded. On the other hand,

1

Nσ2
0

[
tr(BNi(α∗)BNj(α∗))− tr(BNiBNj)

]
=

1

Nσ2
0

tr
[
(BNi(α∗)−BNi)BNj(α∗) +BNi(BNj(α∗)−BNj)

]
=

1

Nσ2
0

tr
[ M∑
k=1

BNi(α̃)Bnk(α̃)(α∗k − α0k)BNj(α∗)

+BNi(α∗)
M∑
k=1

BNj(ᾱ)Bnk(ᾱ)(α∗k − α0k)
]

= op(1),

where α̃ and ᾱ lie between α∗ and α0, and α∗k and α0k are the kth element of α∗

and α0 . Thus,

E2 =
( 1

σ2
∗
− 1

σ2
0

) 1

N
tr(BNi(α∗)BNj(α∗)) +

1

Nσ2
0

[
tr(BNi(α∗)BNj(α∗))− tr(BNiBNj)

]
= op(1)
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Now we have showed that

∂2lNT (θ∗)

∂α∂α′
− ∂2lNT (θ0)

∂α∂α′
→ 0.

Using the same method, we can show the first part of (2.28) holds. Lemma 3 and

the expression of ∂2lNT (θ0)
∂α∂α′

in appendix imply that the second part of (2.28) holds.

Then we complete the proof.

Proof of Theorem 1: By (2.2) and (2.4), εt(ξ) can be rewritten as

εt(ξ) = HN(α)H−1
N ONtδ0 −ONtδ +HN(α)H−1

N εt.

Due to Lemma 3, we have

Eε′t(ξ)εt(ξ) = E
(
HN(α)H−1

N ONtδ0 −ONtδ
)′(
HN(α)H−1

N ONtδ0 −ONtδ
)

+ σ2
0HN(α),

where HN(α) = tr
(
H−1′

N H ′N(α)HN(α)H−1
N

)
.

Therefore, denote QNt(ξ) = HN(α)H−1
N ONtδ0 −ONtδ and (2.17) yields

ElNT (θ) = 1
2
log2π + 1

2
logσ2 − 1

N
log|HN(α)|+ σ2

0

2nσ2HN(α)

+ 1
2σ2NT

∑T
t=1 EQ

′
Nt(ξ)QNt(ξ).

Hence,

ElNT (θ)− ElNT (θ0) = S1N +
1

2σ2NT

T∑
t=1

EQ′Nt(ξ)QNt(ξ), (2.29)

where S1N = 1
2
(logσ2 − logσ2

0) − 1
N

(
log|HN(α)| − log|HN(α0)|

)
+

σ2
0

2nσ2HN(α) − 1
2
.

Let p(α, x) be the density function of Ỹ (α, σ) = H−1
N (α)ηN(σ), where ηN(σ) is

a multivariate normal variable with mean 0 and covariance σ2IN . we can easily

verify that the Kullback-leibler divergence of p(α, σ) from p(α0, σ0) is S1N , which

means S1N ≥ 0 and the equality holds if and only if α = α0 and σ = σ0 by

the definition of Kullback-leibler divergence. On the other hand, HN(α)H−1
N =

IN +
∑M

i=1(α0i − αi)W0iH
−1
N means that

QNt(ξ) = ONt(δ0 − δ) +
M∑
i=1

(α0i − αi)W0iH
−1
N ONtδ0.
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Since EJNT is nonsingular, we have 1
2σ2NT

∑T
t=1 EQ

′
Nt(ξ)QNt(ξ) ≥ 0 and the equal-

ity holds if and only if ξ = ξ0. Thus, we have showed that ElNT (θ) has the unique

minimum at θ = θ0.

Combined with Lemma 5, the consistency of θ̂NT follows.

Proof of Theorem 2: According to the Taylor expansion, we have

√
NT (θ̂NT − θ0) = −

( 1

NT

∂2lNT (θ̄NT )

∂θ∂θ′

)−1( 1√
NT

∂lNT (θ0)

∂θ

)
.

By Lemma 6 and Lemma 8, we obtain the result.

Proof of Theorem 3: Lemma 8 implies that

Σ̂NT
p→ Σ and Ω̂NT

p→ Ω.

By Theorem 2, we get the result.

Proof of Theorem 4:According to the proof of Theorem 3 of Chang et al. (2017),

we only need to prove

1

T

T∑
t=1

(
ε̂t − εt

)′(
ε̂t − εt

)
= op(1).

By (2.19), Lemma 3 and Theorem 2, we have

1

T

T∑
t=1

(
ε̂t − εt

)′(
ε̂t − εt

)
= (α̂NT − α0)′

1

T

T∑
t=1

L′NtLNt(α̂NT − α0) + (δ̂NT − δ0)′
1

T

T∑
t=1

O′NtONt(δ̂NT − δ0)

−2(α̂NT − α0)′
1

T

T∑
t=1

L′NtONt(δ̂NT − δ0)

= Op(
1

NT
)Op(N)

= op(1).

Thus, we complete the proof of Theorem 4.
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2.11 Appendix

To deal with the asymptotic distribution of θ̂NT , we give the first-order and second-

order derivatives.

2.11.1 The first order derivatives

From (2.5), we obtain the first order derivatives of LNt(θ) are

∂lNT (θ)

∂α
= − 1

NTσ2

T∑
t=1

[
L′Ntεt(ξ)− t̃r(BN(α))

]
, (2.30)

∂lNT (θ)

∂δ
= − 1

NTσ2

T∑
t=1

O′Ntεt(ξ), (2.31)

∂lNT (θ)

∂σ2
= − 1

2NTσ4

T∑
t=1

[
ε′t(ξ)εt(ξ)−Nσ2

]
. (2.32)

where t̃r(BN(α)) = (tr(BN1(α)), · · · , tr(BNM(α)))′ and BNi(α) = W0iH
−1
N (α), i =

1, · · · ,M .

Note that yt = H−1
N ONtδ0 +H−1

N εt, (2.30)-(2.7) yield

√
NT

∂lNT (θ0)

∂α

= − 1√
NTσ2

0

T∑
t=1

{
Õ′Ntεt −

[
(BN1εt, · · · , BNMεt)

′εt − σ2
0 t̃r(BN)

]}
, (2.33)

√
NT

∂lNT (θ0)

∂δ
= − 1√

NTσ2
0

T∑
t=1

O′Ntεt, (2.34)

√
NT

∂lNT (θ0)

∂σ2
= − 1

2
√
NTσ2

0

T∑
t=1

[
ε′tεt −Nσ2

0

]
. (2.35)

Next, we compute the covariance matrix of
√
NT ∂lNt(θ0)

∂α
. From (2.33)- (2.35)and
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Assumption A2, we have

ΩNT,αα =: E
√
NT

∂lNT (θ0)

∂α
·
√
NT

∂lNT (θ0)

∂α′

=
1

σ2
0NT

E
N∑
t=1

Õ′NtÕNt +
1

N

(
tr(B′NiBNj) + tr(B′NiB

′
Nj)
)
M×M

+
Ee4

11 − σ4
0

Nσ4
0

( N∑
k=1

BNi,kkBNj,kk

)
M×M ,

ΩNT,αδ =: E
√
NT

∂lNT (θ0)

∂α
·
√
NT

∂lNT (θ0)

∂δ′
=

1

σ2
0NT

E

N∑
i=1

Õ′NtONt,

ΩNT,ασ =: E
√
NT

∂lNT (θ0)

∂αi
·
√
NT

∂lNT (θ0)

∂σ2
=
t̃r(BN)

N
+
Ee4

11 − σ4
0

2Nσ4
0

t̃r(BN),

ΩNT,δδ =: E
√
NT

∂lNT (θ0)

∂δ
·
√
NT

∂lNT (θ0)

∂δ′
=

1

σ2
0NT

E

N∑
t=1

O′NtONt,

ΩNT,δσ =: E
√
NT

∂lNT (θ0)

∂δ
·
√
NT

∂lNT (θ0)

∂σ2
= 0,

ΩNT,σσ =: E
√
NT

∂lNT (θ0)

∂σ2
·
√
NT

∂lNT (θ0)

∂σ2
=

1

2σ4
0

+
Ee4

11 − σ4
0

4σ8
0

.

Note E
√
NT ∂lNT (θ0)

∂α
= 0, we have

ΩNT =: V ar
(√

NT
∂lNT (θ0)

∂α

)
=


ΩNT,αα ΩNT,αδ ΩNT,ασ

Ω′NT,αδ ΩNT,δδ ΩNT,δσ

Ω′NT,ασ Ω′NT,δσ ΩNT,σσ

 , (2.36)
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2.11.2 The second order derivatives

From (2.30)-(2.32), we have

∂2lNT (θ)

∂α∂α′
=

1

NTσ2

T∑
t=1

[
L′NtlNT +

(
Tr(BNi(α)BNj(α))

)
M×M

]
∂2lNT (θ)

∂α∂δ′
=

1

NTσ2

T∑
t=1

L′NtONt

∂2lNT (θ)

∂α∂σ2
=

1

NTσ4

T∑
t=1

L′Ntεt(ξ)

∂2lNT (θ)

∂δ∂δ′
=

1

NTσ2

T∑
t=1

O′NtONt

∂2lNT (θ)

∂δ∂σ2
=

1

NTσ4

T∑
t=1

O′Ntεt(ξ)

∂2lNT (θ)

(∂σ2)2
=

1

NTσ6

T∑
t=1

ε′t(ξ)εt(ξ)−
1

2σ4

Note that yt = H−1
N ONtδ0 +H−1

N εt, by Assumption A2 we have

ΣNT,αα =: E
∂2lNT (θ0)

∂α∂α′
=

1

TNσ2

T∑
t=1

Õ′NtÕNt +
1

Nσ2

(
tr(B′NiBNj) + tr(BNjBNi)

)
M×M ,

ΣNT,αδ =: E
∂2lNT (θ0)

∂α∂δ′
=

1

NTσ2
E

T∑
t=1

Õ′NtONt

ΣNT,ασ =: E
∂2lNT (θ0)

∂α∂σ2
=

1

N
tr(B′Ni),

ΣNT,δδ =: E
∂2lNT (θ0)

∂δ∂δ′
=

1

NTσ2
E

T∑
t=1

O′NtONt,

ΣNT,δσ =: E
∂2lNT (θ0)

∂δ∂σ2
= 0,

ΣNT,σσ =: E
∂2lNT (θ0)

(∂σ2)2
=

1

2σ4
0

− 1

Tσ4
0

.

Denote the information matrix by ΣNT and we have

ΣNT =: V ar
(√

NT
∂lNT (θ0)

∂α

)
=


ΣNT,αα ΣNT,αδ ΣNT,ασ

Σ′NT,αδ ΣNT,δδ ΣNT,δσ

Σ′NT,ασ Σ′NT,δσ ΣNT,σσ

 . (2.37)
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Furthermore, comparing with (2.36), we have

ΩNT = ΣNT + ΞNT +O(
1

T
), (2.38)

where

ΞNT =
Ee4

11 − 3σ2
0

σ4
0


(∑N

k=1BNi,kkBNj,kk

)
M×M 0M×(M+κx+1)

1
2Nσ2

0
t̃r(BN)

0′M×(M+κx+1) 0(M+κx+1)×(M+κx+1) 0(M+κx+1)×1

1
2Nσ2

0
t̃r(BN)′ 0′(M+κx+1)×1

1
4σ4

0

 .
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Chapter 3

Integrated Volatility Matrix

Estimation with Nonparametric

Eigenvalue Regularization

3.1 Introduction

For multivariate high frequency data analysis, a major problem concerned is the

volatility matrix estimation on non-synchronized prices, allowing for the presence of

microstructure noise. The problem can become more challenging when the matrix

dimension p diverges with sample size n in the multivariate high frequency data.

This chapter mainly proposes three estimators for large integrated volatility matrix

by applying a nonparametric eigenvalue regularization on three existing multivariate

realized volatility matrix estimators, which already perform well in fixed p setting.

It is commonly known that high frequency data has two main problems: microstruc-

ture noise and non-synchoronous trading times. Microstructure noise can come from

many reasons, such as price discreteness and bid-ask spread bounce, which cause

spurious variation in asset price. And the non-synchoronous problem refers to the

situation that the different assets are traded at distinct times or their prices are

observed at mismatched time points. Without these two problems, the realized

volatility estimator that simply sums up all squared returns in a specified duration

works efficiently. However, even only contamination from microstructure noise can

make the realized volatility estimator undesirable due to inconsistency. As the dis-

cussion in Zhang (2006), the bias and variance of realized volatility estimator are
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of same order as the sample size n under the discrete observation. As for the non-

synchoronous trading times, Epps (1979) introduces Epps effects that asynchronicity

causes high frequency covariance estimates to be biased towards zero, as sampling

frequency increases.

Regardless of the high dimensional problem, there are some existing works for high

frequency volatility estimation considering microstructure noise and non-synchoronous

trading time for fixed dimension p. See for instance Aı̈t-Sahalia et al. (2010) and

Xiu (2010) for using maximum likelihood approaches, Griffin and Oomen (2011) for

studying various existing estimators at the time assuming independent and iden-

tically distributed microstructure noise, while Zhang et al. (2005) uses a two-scale

estimator to remove the bias and its multivariate extension can be easily applied by

using the all-refresh time scheme with previous-tick times to overcome the problem

of non-synchronous trading times. All-refresh times are defined as the time points

where all assets are traded at least once starting from a previous all-refresh time

point, while a previous-tick time for an asset is the last trading time before an

all-refresh time. For other refresh-time schemes, see for example Fan et al. (2012).

Using the all-refresh times and previous-tick times, some more efficient nonpara-

metric volatility matrix estimators are proposed in the recent literatures including

a multi-scale realized volatility matrix (MSRVM) (Zhang, 2011), a kernel realized

volatility matrix (KRVM) (Barndorff-Nielsen et al., 2011) and a pre-averaging re-

alized volatility matrix (PRVM) (Christensen et al., 2010). These three different

estimators are all consistent at different elementwise rates of convergence, but the

number of assets p is assumed fixed in all cases. When p is growing with the sample

size n, in particular when p/n→ c > 0, it is inevitable that their performances will

be poorer since all three estimators are still basically a realized volatility matrix,

albeit modified to remove the bias from microstructure noise. Kim et al. (2016)

points out that all three estimators are inconsistent when p/n → c > 0. Under

the assumption of sparseness of the true integrated volatility matrix, the paper pro-

poses to threshold the estimators and proves that a proper thresholding scheme

results back in consistent estimators for all three methods. At the same time, Dai

et al. (2017) improves on a pre-averaging volatility matrix estimator by assuming an

underlying factor structure in the log-price processes, resulting in a low-rank plus

sparse estimator, and proves consistency with rates of convergence spelt out under

a number of scenarios. They perform well but the sparseness or factor structure is

indispensable, which limits their application in practice.

In Lam and Feng (2018), a nonparametric eigenvalue regularized method is proposed

to remove the severe bias in its extrem eigenvalues of the large sample covariance

matrix under the framework p/n→ c > 0. This method needs no matrix structure
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assumption and is built upon the two-scaled volatility matrix estimator whose rate

of convergence is only at n−1/6 shown in Zhang et al. (2005) for univariate case and

in Lam and Feng (2018) for high dimensional scenario.

In this chapter, we propose the same nonparametric eigenvalue regularized MSRVM,

KRVM and PRVM, abbreviated as NER-MSRVM, NER-KRVM and NER-PRVM re-

spectively, as all of MSRVM, KRVM and PRVM can all obtain the best achieved rate

on elementwise, which is n−1/4 and same as that in parametric estimator for volatil-

ity, when the true process is Marcov. The multi-scaled estimator NER-MSRVM in

particular is a generalization of the two-scaled estimator proposed in Lam and Feng

(2018). Our contributions are three-fold. First of all, our estimators are more flexi-

ble to use since they do not need any structural assumptions on the true integrated

volatility matrix or the log-price processes as opposed to those in Kim et al. (2016)

and Dai et al. (2017). See Section 3.6 also where we have demonstrated empirically

that our estimators outperform other state-of-the-art competitors in many scenarios.

Secondly, although without any structural assumptions we are not able to prove

consistency, we can prove that all regularized estimators are positive definite in

probability with the Corollary 4 in Lam (2016), and provide rate of convergence in

spectral norm of each estimator to a rotation-equivariant “ideal” estimator, to be

defined in Section 3.3.4, all under the framework p/n→ c > 0. For NER-MSRVM,

it turns out that without sparsity assumption, the spectral norm rate of convergence

is independent of p and is at n−1/6 only when we modify the largest scales of the

estimator from n1/2 used in Kim et al. (2016), to n2/3. With NER-KRVM and NER-

PRVM, when using the positive definite versions as in Barndorff-Nielsen et al. (2011)

and Christensen et al. (2010) respectively, their rates of convergence to the ideal

estimator are both n−1/5, while it is n−1/4 when using their bias-corrected versions.

These rates of convergence are the same as in the respective papers, but we are

working in the framework p/n→ c > 0. More importantly, while the bias-corrected

versions of KRVM and PRVM which converge at a rate of n−1/4 are not guaranteed

to be positive semi-definite, we prove in Theorem 2 and 3 that their corresponding

regularized versions, NER-KRVM and NER-PRVM, are both positive definite in

probability. See Section 3.4 for more details.

Finally, we show that with wavelet jumps-removal proposed in Fan and Wang (2007),

all rates of convergence remain the same. We also prove that all estimators remain

the convergence if the log-price processes are from a factor model with random or

non-random drift. These results support that pre-averaging and kernel methods are

better method among the three, since the rate of convergence is the fastest and is

adaptive to our regularization method with jumps removal, without any extra mod-

ifications. It is also found that the pre-averaging estimator’s practical performance
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is the best (the regularized bias-corrected version) as seen in the empirical results

in Section 3.6.

The rest of the chapter is organized as follows. Section 3.2 presents all necessary

notations and the model used for a log-price process. Challenges for analyzing high

frequency data are also explained. Section 3.3 introduces MSRVM, KRVM and

PRVM. How nonlinear shrinkage works on these three estimators are detailed in

Section 3.3.4. Asymptotic theories and detailed assumptions, including those with

jumps-removal in the case of jump-diffusion log-price processes, can be found in

Section 3.4. Practical concerns and implementation can be found in Section 3.5,

while all simulations and a thorough empirical study are presented in Section 3.6.

All proofs of theorems in the paper are presented in Section 3.7.

3.2 Model and Notations

3.2.1 Price model

We use Xt = (X
(1)
t , X

(2)
t , . . . , X

(p)
t )T to denote a vector of log prices of p assets at

time t. It follows a continuous-time diffusion model as

dXt = µtdt+ σtdWt, t ∈ [0, 1], (3.1)

with {Wt} being a p-dimensional standard Brownian motion and µt a càdlàg (ele-

mentwise) process, which can be random and correlated with {Wt} in general. The

volatility σt ∈ Rp×p is also càdlàg.

The goal of this chapter is to propose the nonparametric efficient estimator for the

integrated volatility matrix defined as

Σ(a, b) =

∫ b

a

σuσ
T
udu

for a period [a, b] where 0 ≤ a ≤ b ≤ 1,. As known, the covariance structure of assets

plays a key role to the solution of fundamental economic problems, such as optimal

asset allocation and risk management. For instance, if we have a portfolio w which

stays constant over the period [a, b], then the accumulated risk of the portfolio over

the period is

R1/2(w) = (wTΣ(a, b)w)1/2 =
(∫ b

a

wTσtσ
T
t wdt

)1/2

,
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where the term wTσtσ
T
t w can be considered an instantaneous square-risk at time

t. We take the large integrated volatility matrix as the target, allowing the presence

of microstructure noise and asynchronicity under the framework of p/n→ c > 0.

3.2.2 Data Splitting

On the top, for the flow of this chapter and the notation consistency, we introduce

the data splitting first, which is used in the proposed nonparametric eigenvalue

regularization. Similar to Lam and Feng (2018), our regularized estimators are

defined over a partition of the normalized time period [0, 1]. Let L be the total

number of partitions, and

0 = τ0 < τ1 < · · · < τL = 1,

where (τ`−1, τ`] denotes the `th partition. In brief, we estimate integrated volatility

matrix for each partition with the help from the outside of this partition, then sum

these L partition estimators together as the final estimator. More details are shown

in Section 3.3.

3.2.3 Asynchronicity and microstructure noise

As shown in the Section 3.1, the first two challenges in our problem are asynchroncity

and microstructure noise in multivariate high frequency data. To construct the

integrated volatility matrix based on the non-synchronized high frequency data, we

should apply a specific time scheme to synchronize the observation time points.

There are mainly three synchronization schemes in the current literature including

previous stick, all-refresh time and generalized sampling time. We use the all-refresh

time scheme, which is also applied in Zhang (2011) and Lam and Feng (2018).

An all-refresh time is the time until all assets are traded at least once from the

past all-refresh time point. Let n(`) be the number of all-refresh time points in the

partition (τ`−1, τ`], ` = 1, . . . , L, so that the total number of all-refresh time points

is nL, where n = L−1
∑L

`=1 n(`) is the average number of all-refresh time points in

each partition. In this paper, we assume n is the same order as n(`) for all `, and is

also the same order as nL since L is assumed finite throughout the chapter.

Let {vs}{s=1,...,nL} be the set of all-refresh times in [0, 1] for Xt. Then all estimators

in this paper are calculated based on the previous-tick times tjs ∈ (vs−1, vs], s =
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1, . . . , nL, j = 1, . . . , p, which is the last trading time for the jth asset before time

vs. Note that tj1s 6= tj2s for j1 6= j2 in general.

In light of the contamination of microstructure noise, using the above notations, we

assume the observed high frequency data Y(s) obeys the model as

Y(s) = X(s) + ε(s), s = 1, . . . , nL, (3.2)

where {εt} is the process of microstructure noise, with X(s) = (X
(1)

t1s
, . . . , X

(p)

tps
)T and

ε(s) = (ε
(1)

t1s
, . . . , ε

(p)

tps
)T. Note that ε(·) can be dependent on X(·) in general.

3.3 Integrated Volatility Matrix Estimators

We known that the realized volatility matrix, which simply sums up all squared

returns, performs poorly even only microstructure noise is considered. In practice,

a popular method in Finance is to sparsely selected sample to ease the negative

impact from microstructure noise. However, it is still inconsistent and too arbitrary.

Zhang et al. (2005) first proposes two-scaled estimator whose multivariate extension

is used in Lam and Feng (2018). This two-scaled estimator has three advantages:

asymptotic unbiasedness, consistency and asymptotic normality. But its rate is not

satisfactory.

Therefore, more efficient integrated volatility matrix estimators are proposed in

recent studies. We first introduce three existing integrated volatility matrix es-

timators before presenting their regularized versions. They are the multi-scale

realized volatility matrix estimator (MSRVM) (extended from the univariate ver-

sion of Zhang (2006)), the kernel realized volatility matrix estimator (KRVM) by

Barndorff-Nielsen et al. (2011) and the pre-averaging realized volatility matrix esti-

mator (PRVM) by Christensen et al. (2010). They all have an elementwise rate of

convergence of n−1/4, which is faster then the rate n−1/6 for the two-scale realized

volatility matrix estimator (TSRVM) analyzed in Zhang (2011). Kim et al. (2016)

shows that the positive-definite versions of KRVM and PRVM can still achieve an

elementwise rate n−1/5, which is still faster than n−1/6.

Lam and Feng (2018) introduces the nonparametric eigenvalue regularized inte-

grated volatility matrix estimator (NERIVE) which is based on a modification of

the TSRVM. As their spectral norm rate of convergence to an “ideal” estimator (see

Section 3.3.4 for more details) is only n−1/6, the same as the elementwise rate for

TSRVM, we analyze in Section 3.4 if our eigenvalue regularization can be applied on
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MSRVM, KRVM and PRVM to achieve better rates of convergence and improved

in practical performance. Before that, let us review MSRVM, KRVM and PRVM

first.

3.3.1 Multi-scale realized volatility matrix

It is observed that combining the square returns from two time scales is better

than the realized volatility estimator, which is the one-scale estimator. A natural

question arises as to combine more than two time scales for a further improvement

in estimator’s efficiency. Zhang (2006) proposes a multi-scale approach in stochastic

volatility estimation to eliminate the bias from microstructure noise. Our method

bases on the multi-scale realized volatility matrix (MSRVM) analyzed in Tao et al.

(2013). For ` = 1, . . . , L, define the MSRVM on each partition (τ`−1, τ`] to be

MS(Y)` =
M∑
m=1

am[Y,YT]
(m)
` + ζ

(
[Y,YT]

(1)
` − [Y,YT]

(M)
`

)
, where

[Y,YT]
(m)
` =

1

Km

∑
s∈S`(m)

(Y(s)−Y(s−Km))(Y(s)−Y(s−Km))T,

S`(m) = {s : tis, t
i
s−Km

∈ (τ`−1, τ`] for all i}, |S`(m)|m =
|S`(m)| −Km + 1

Km

,

Km = N +m, am =
12(m+N)(m−M/2− 1/2)

M(M2 − 1)
, ζ =

(M +N)(N + 1)

(n+ 1)(M − 1)
,

(3.3)

with N � n2/3 and M � n1/2, where a � b means that a = O(b) and b = O(a). For

the ease of presentation of our regularized estimators in Section 3.3.4, we also use

the notation

Σ̃(τ`−1, τ`)
M = MS(Y)`. (3.4)

The above estimator is different from the one considered in Tao et al. (2013) in that

we have set N � n2/3 rather than n1/2 which is used in Tao et al. (2013) and Kim

et al. (2016). The parameter N controls the magnitude of the scales used in the esti-

mator. The reason that we use a different magnitude of scale is that unlike Tao et al.

(2013) and Kim et al. (2016), we do not assume sparsity of the underlying integrated

volatility matrix. Without this assumption, a diverging p can significantly increase

the bias contributed from microstructure noise and asynchronous transactions. In

the end, our proofs reveal that only a scale of magnitude N � n2/3 can remove the

bias effects from a diverging p of the same order as n, even with our eigenvalue
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regularization to be presented in Section 3.3.4. The final rate of convergence then

goes from n−1/4, the best univariate rate, to n−1/6. See Theorem 1 in Section 3.4

for more details. Incidentally, this scale magnitude is what is used in Lam and

Feng (2018), leading to the same rate of convergence n−1/6 for the nonparametric

eigenvalue regularized two-scale realized volatility matrix estimator.

In Section 3.6, the performance of the corresponding regularized estimator using

N � n2/3 is also compared to that using N � n1/2, and it is clear that the one using

N � n2/3 has a better practical performance.

Remark 6. Two important conditions to be satisfied for the MSRVM are that∑M
m=1(am/Km) = 0 and

∑M
m=1 am = 1 (Tao et al., 2013, Zhang, 2006). These

conditions ensure the estimator has bias contributed from the microstructure noise

removed, and is unbiased, respectively, resulting at an elementwise rate of conver-

gence n−1/4. Zhang (2006) also shows that efficiency can be improved by combining

more than two time scales. This is also the reason why our regularized estimator

based on MSRVM should perform better than the corresponding two-scale version,

which is supported by our simulations in Section 3.6. However, there is no choice of

am such that a positive semi-definite estimator is guaranteed. With our nonparamet-

ric eigenvalue regularization though, we can prove positive definiteness in probability

for our regularized estimator under p/n→ c > 0. See Theorem 1 in Section 3.4 for

more details.

3.3.2 Kernel realized volatility matrix

Barndorff-Nielsen et al. (2011) proposes a multivariate realized kernel estimator that

dose not smooth the covariance but the autocovariance operators. The estimator

is robust to microstructure noise and can handle asynchronous trading. It also

has a positive semi-definite version with a slightly different definition but a slower

convergence rate.

Barndorff-Nielsen et al. (2011) indicates that averaging J prices at the very beginning

and end of the period for a consistent estimator when kernel is applied. They name

it as jittering, and with J going to infinity at an appropriate rate, the error at the

beginning and the end of the day is averaged away. We adopt this scheme and denote

the jittered log-price vector as Y
(J)
` (s), s = 0, 1, . . . , n(`) − 2J + 1, ` = 1, . . . , L.
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Define

K(Y)` = γ
(0)
` (Y

(J)
` ) +

n(`)−2J∑
h=1

k

(
h− 1

H

)[
γ

(h)
` (Y

(J)
` ) + γ

(−h)
` (Y

(J)
` )
]
, where

γ
(h)
` (Y

(J)
` ) =

n(`)−2J+1∑
s=h+1

(
Y

(J)
` (s)−Y

(J)
` (s− 1)

)(
Y

(J)
` (s− h)−Y

(J)
` (s− h− 1)

)T
,

(3.5)

with h ≥ 0, k(·) a kernel function and H a bandwidth parameter. We also define

γ
(h)
` (Y

(J)
` ) = γ

(−h)
` (Y

(J)
` ) for h < 0, and assume that (i) k(0) = 1 and k′(0) = 0; (ii)

k(·) is twice differentiable with continuous derivatives; (iii)
∫∞

0
k(x)2dx,

∫∞
0
k′(x)2dx

and
∫∞

0
k′′(x)2dx are finite. We also use the notation

Σ̃(τ`−1, τ`)
K = K(Y)`. (3.6)

For the positive semi-definite version, assume further (iv)
∫∞
−∞ k(x)exp(ixλ)dx ≥ 0

for all λ ∈ R. Then the positive semi-definite KRVM for the partition (τ`−1, τ`] is

defined as

Σ̃(τ`−1, τ`)
KP = γ

(0)
` (Y

(J)
` ) +

n(`)−2J∑
h=1

k

(
h

H

)[
γ

(h)
` (Y

(J)
` ) + γ

(−h)
` (Y

(J)
` )
]
. (3.7)

3.3.3 Pre-avaraging realized volatility matrix

The idea of pre-averaging is to smooth the high frequency data first. The KRVM in

(3.6) is also a kind of smoothing mechanism, but it only smooths the autocovariance

operators instead of the data. It is intuitive that the form of smoothing of the

observed log price should tend to diminish the impact of noise. The data smoothing

idea is first presented in Hayashi et al. (2005), and Christensen et al. (2010) extends

it to the case with microstructure noise by using pre-averaging and shows that the

resulting estimator is consistent. This estimator has the property that it can be

implemented directly on irregular, asynchronous and noisy observations without

any form of imputation. Christensen et al. (2010) also discusses that apart from

border terms, the pre-averaging estimator coincides with kernel-based estimator

using the flat-top kernel function. However, kernel needs to apply some averaging

to edge terms, while the pre-averaging estimator is asymptotically mixed normal by

construction.
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We adopt a different bias-correction term than Christensen et al. (2010) used, which

is needed for our regularization to be introduced in Section 3.3.4 to work. Let Y`(j)

be the jth all-refresh log-price vector within the `th partition, j = 1, . . . , n(`). Then

define

P(Y)` =
1

ψQ

n(`)−Q+1∑
j=1

[
Ȳ

(`)
j Ȳ

(`)T
j − ςη̂(`)

]
, where

η̂(`) =
1

2n(`)

n(`)∑
s=2

(Y`(s)−Y`(s− 1))(Y`(s)−Y`(s− 1))T,

Ȳ
(`)
j =

Q−1∑
l=1

g

(
l

Q

)
[Y`(j + l)−Y`(j + l − 1)],

ς =

Q−1∑
l=0

[
g
( l
Q

)
− g
( l + 1

Q

)]2

, ψ =

∫ 1

0

g(t)2dt,

(3.8)

with Q a bandwidth parameter of order n1/2. The function g(·) is continuous and

piecewise continuously differentiable with a piecewise Lipschitz derivative g′, satis-

fying g(0) = g(1) = 0 and
∫ 1

0
g(t)2dt > 0. We also use the notation

Σ̃(τ`−1, τ`)
P = P(Y)`. (3.9)

The diagonal elements in η̂(`) can certainly be replaced by those defined in Chris-

tensen et al. (2010) which will then be more accurate since it used up all available

tick-by-tick data, but we do need off-diagonal elements to be non-zero as well, and

η̂(`) defined above is sufficient to give us the best rate for our regularized estimator.

For the positive semi-definite version, with Q of order n3/5, define

Σ̃(τ`−1, τ`)
PP =

1

ψQ

n(`)−Q+1∑
j=1

Ȳ
(`)
j Ȳ

(`)T
j . (3.10)

3.3.4 Nonparametric eigenvalue regularization

Multi-scale, kernel and pre-averaging realized volatility matrix estimators perform

well in terms of removing the bias contributed from microstructure noise. Yet under

the setting p/n → c > 0, a typical realized volatility matrix suffers from bias in

its extreme eigenvalues. Also, the spread of the eigenvalues of the estimator is

typically much larger than its population counterpart. This creates instability in

applications. Since we do not have any structural assumptions like sparsity of the
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underlying matrix, regularization with sparsity such as those introduced in Kim

et al. (2016) cannot be used.

The above methods all assume some form of independence for the data in proving

asymptotic results. For high frequency data with contamination from microstruc-

ture noise, we cannot assume independence of the log-returns. A breakthrough

comes from Lam and Feng (2018) which utilizes a data splitting scheme the same

as in Section 3.2.2 to perform eigenvalue regularization for the TSRVM. They do

not assume serial independence of microstructure noise, which can also be cross-

sectionally correlated in general. All log-prices can also be correlated with the

microstructure noise too. Their estimator is positive definite in probability under

the setting p/n→ c > 0, and the spread of eigenvalues is shrunk within the spread

of the population integrated volatility matrix. With these advantages, below we

introduce a similar regularization scheme for the MSRVM, KRVM and PRVM. As

discussed in the Introduction, we hope to achieve a rate of convergence faster than

n−1/6, the rate proved in Lam and Feng (2018).

First, using the data splitting scheme in Section 3.2.2, we introduce a rotation-

equivariant estimator Σ(D) = P−jDPT
−j, where D is a diagonal matrix, and P−j is

orthogonal such that

Σ̃−j = P−jD−jP
T
−j, j = 1, . . . , L, with Σ̃−j =

∑
`6=j

Σ̃(τ`−1, τ`). (3.11)

Here, Σ̃(τ`−1, τ`) can be Σ̃(τ`−1, τ`)
M , Σ̃(τ`−1, τ`)

K or Σ̃(τ`−1, τ`)
P in (3.4), (3.6) and

(3.9) respectively, or Σ̃(τ`−1, τ`)
KP , Σ̃(τ`−1, τ`)

PP in (3.7) and (3.10) for the positive

semi-definite versions of KRVM and PRVM respectively. This class of estimators is

used in Ledoit and Wolf (2012), Lam (2016) and Lam and Feng (2018) as a starting

point for the construction of their regularized estimators. First introduced in James

and Stein (1961) for estimating a covariance matrix under the Stein’s loss function,

this class is invariant under rotation, and serves as a good starting point with no a

priori information of the eigenvectors of the population covariance matrix.

Next, we want to bring Σ̃−j to be as close to Σ(τj−1, τj) as possible by fixing its

eigenvectors but varying its eigenvalues. This essentially makes it a p-dimensional

problem. To do this, we consider the following optimization problem:

min
D diagonal

∥∥P−jDPT
−j −Σ(τj−1, τj)

∥∥
F
, (3.12)

where
∥∥ · ∥∥

F
denotes the Frobenius norm. The same problem is also considered in

Lam and Feng (2018). The reason to use P−j for the rotation-equivariant class is
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that we can condition all information outside partition j (P−j is then fixed), so that

then the correlation between {Xt} and {εt}, and the serial correlation in {εt} within

partition j can be weakened. See Assumption (E3) in Section 3.4. If each partition

is “small”, then each P−j is “close” to each other intuitively since each P−j uses up

all information except those within the partition.

The solution for (3.12) is D = diag(PT
−jΣ(τj−1, τj)P−j), where diag(A) is a diagonal

matrix with the diagonal elements of A. See Proposition 1 in Lam and Feng (2018)

and the proof therein. It is not difficult to see that the spread of eigenvalues of such D

is constrained within that of Σ(τj−1, τj). In Section 3.4, we present in Theorem 1, 2

and 3 that in spectral norm, diag(PT
−jΣ̃(τj−1, τj)

MP−j), diag(PT
−jΣ̃(τj−1, τj)

KP−j),

diag(PT
−jΣ̃(τj−1, τj)

PP−j), diag(PT
−jΣ̃(τj−1, τj)

KPP−j) and diag(PT
−jΣ̃(τj−1, τj)

PPP−j)

are converging to D = diag(PT
−jΣ(τj−1, τj)P−j) in probability. Therefore, our regu-

larized volatility matrix estimators of MSRVM, KRVM and PRVM for the partition

(τj−1, τj] are respectively

Σ̂(τj−1, τj)
M = P−jdiag(PT

−jΣ̃(τj−1, τj)
MP−j)P

T
−j, (3.13)

Σ̂(τj−1, τj)
K = P−jdiag(PT

−jΣ̃(τj−1, τj)
KP−j)P

T
−j, (3.14)

Σ̂(τj−1, τj)
P = P−jdiag(PT

−jΣ̃(τj−1, τj)
PP−j)P

T
−j. (3.15)

We also denote Σ̂(τj−1, τj)
KP and Σ̂(τj−1, τj)

PP the corresponding estimators us-

ing Σ̃(τj−1, τj)
KP and Σ̃(τj−1, τj)

PP respectively. The corresponding nonparametric

eigenvalue regularized integrated volatility matrix estimators for the period [0, 1] are

then defined to be

Σ̂(0, 1)M =
L∑
j=1

Σ̂(τj−1, τj)
M =

L∑
j=1

P−jdiag(PT
−jΣ̃(τj−1, τj)

MP−j)P
T
−j, (3.16)

Σ̂(0, 1)K =
L∑
j=1

Σ̂(τj−1, τj)
K =

L∑
j=1

P−jdiag(PT
−jΣ̃(τj−1, τj)

KP−j)P
T
−j, (3.17)

Σ̂(0, 1)P =
L∑
j=1

Σ̂(τj−1, τj)
P =

L∑
j=1

P−jdiag(PT
−jΣ̃(τj−1, τj)

PP−j)P
T
−j. (3.18)

We also denote Σ̂(0, 1)KP and Σ̂(0, 1)PP the corresponding estimators using Σ̃(τj−1, τj)
KP

and Σ̃(τj−1, τj)
PP respectively. An ideal estimator relative to Σ̂(0, 1) is an estimator

with Σ̃(τj−1, τj)
M , Σ̃(τj−1, τj)

K (or Σ̃(τj−1, τj)
KP ) and Σ̃(τj−1, τj)

P (or Σ̃(τj−1, τj)
PP )
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replaced by the population counterpart Σ(τj−1, τj),

ΣIdeal(0, 1) =
L∑
j=1

P−jdiag(PT
−jΣ(τj−1, τj)P−j)P

T
−j. (3.19)

As discussed in the paragraph after (3.12), if each partition is small, then say each

P−j is close to P which is the orthogonal matrix from the eigen-decomposition of∑
` Σ̃(τ`−1, τ`), then the above becomes

ΣIdeal(0, 1) ≈ Pdiag(PTΣ(0, 1)P)PT,

which resembles an ideal estimator for Σ(0, 1) that utilizes all data information for

constructing the eigenmatrix P. Indeed such an ideal estimator is defined in Ledoit

and Wolf (2012) and Lam (2016), and is treated as a benchmark for evaluating

performances of different estimators. Note that if P is close to the eigenmatrix of

Σ(0, 1) (say, when p/n→ 0), then ΣIdeal(0, 1) ≈ Σ(0, 1). As p/n→ c > 0 and P is

getting further away from the true eigenmatrix of Σ(0, 1), ΣIdeal(0, 1) in (3.19) is still

close to Pdiag(PTΣ(0, 1)P)PT, the ideal rotation-equivariant estimator utilizing all

information for the construction of P.

In practice, this is the reason why we want each partition to be as small as possible,

but with enough data points (we suggest at least over a hundred) such that the

results in our theorems are reasonable. In all simulations and real data analysis in

Section 3.6, the period [0, 1] represents a 5-day interval, and we use 1 day as the

length of a partition (with typically hundreds of data points in each day), with very

good results. From our experience, reducing the length of each partition (provided

it still has enough data points, say over a hundred) usually improve the overall

performance of the estimator. See Section 3.5 for more details on how to choose

tuning parameters. In the following section, important assumptions in our paper

are discussed before we present and explain the main theoretical results.

3.4 Asymptotic Theory

We introduce some notations first. Let the log-price series {Xt} be adapted to the

filtered probability space
(

Ω,F ,
{
Ft
}

0≤t≤1
,P
)

. We use λmin(·) and λmax(·) to denote

the minimum and maximum eigenvalue of a square matrix respectively. Also, if no

ambiguity arise, for j = 1, . . . , L we denote vs = vjs which is the sth all-refresh time
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within partition j, and define

F−j = Fτj−1
∪ F/Fτj , F js = Fvs/Fτj−1

,

with F js = φ for s ≤ 0. They represent the σ-algebra outside of partition j, and

that up to time vs within partition j, respectively. We also define, for j = 1, . . . , L,

ΣIdeal(τj−1, τj) = P−jdiag(PT
−jΣ(τj−1, τj)P−j)P

T
−j, (3.1)

so that ΣIdeal(0, 1) =
∑

j ΣIdeal(τj−1, τj). We first introduce the assumptions for our

theorems to hold, followed by some explanations. They are essentially the same

as the main assumptions in Lam and Feng (2018). We present here for the sake

of completeness and ease of reading for those readers who are interested in these

assumptions.

In all assumptions below, we have

K =


Km = N +m, m = 1, . . . ,M , for the multi-scale method;

1, for the kernel method;

1, for the pre-averaging method.

Assumptions on the drift µt:

(D1) The drift µt has càdlàg components , such that for s = K,K + 1, . . . , n(j),

∫ vs

vs−K

µtdt = A(vs−K , vs)Z
j
d,s,

where A(vs−K , vs) 6= 0 is a non-random p × p matrix, has
∥∥A(vs−K , vs)

∥∥ =

O(p
1/2
f K1/2|vs − vs−1|) and can be asymmetric and singular, where pf = 1

if there are no pervasive factors, and pf = p if there are pervasive factors.

Also, E(Zj
d,s|F−j) = 0 and var(Zj

d,s|F−j) = Ip almost surely. The random

vector Zj
d,s ∈ F js has components conditionally independent of each other

given F−j, with eighth moments exist. The drift µt can also be non-random

when Zj
d,s = (1, 0, . . . , 0)T for all s.

(D2) Write P−j = (p1j, . . . ,ppj). We assume for each i = 1, . . . , p, and s = rK + q

for r = 1, . . . , |Sj(K)|K and q = 0, 1, . . . , K − 1, there exists ρjd,K,q ∈ F−j such
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that 0 ≤ ρjd,K,q ≤ ξ < 1 with ξ a constant, and for ` = K+q, 2K+q, . . . , rK+q,

E
(
(pT

ijA(vs−K , vs)Z
j
d,`)

2|F−j ∪ F j`−K
)

= ρjd,K,q(p
T
ijA(vs−K , vs)Z

j
d,`−K)2

+ (1− ρjd,K,q)p
T
ijA(vs−K , vs)A(vs−K , vs)

Tpij + eijd,`−K ,

where we define Zj
d,`Z

jT
d,` = Ip and eijd,` = 0 for ` ≤ 0. The process {eijd,`} with

eijd,` ∈ F
j
` has E(eijd,`|F−j ∪ F

j
`−K) = 0 almost surely, and eijd,`|F−j ∪ F

j
`−K =

OP (
∥∥A(vs−K , vs)

∥∥2
).

(D3) Let ϕ(x) = ex
2 − 1. We assume that for ` = 0, 1, . . . , s,

E

{
ϕ

( |(pT
ijA(vs−K , vs)Z

j
d,`)

2 − pT
ijA(vs−K , vs)A(vs−K , vs)

Tpij|
(pT

ijA(vs−K , vs)Z
j
d,`−K)2

)∣∣∣F−j ∪ F j`−K} <∞,

E

{
ϕ

( |eijd,`|
(pT

ijA(vs−K , vs)Z
j
d,`−K)2

)∣∣∣F−j ∪ F j`−K} <∞.

Assumptions on the volatility σt and Brownian motion Wt:

(V1) The volatility σt has càdlàg components, and the Brownian motion {Wt} can

be correlated with {µt} in general. Write

∫ vs

vs−K

σtdWt = Σ(vs−K , vs)
1/2Zj

v,s,

where Σ(vs−K , vs) is a symmetric positive definite p× p matrix which can be

random, with

λmin(Σ(τj−1, τj)) ≥ C(τj−1 − τj)−1,

λmax(Σ(vs−K , vs)) �
∥∥A(vs−K , vs)

∥∥2
/|vs − vs−K |,

where C > 0 is a constant. The process {σt} is independent of all other

processes.

Also, E(Zj
v,s|F−j) = 0 and var(Zj

v,s|F−j) = Ip almost surely. The random

vector Zj
v,s ∈ F js has components conditionally independent of each other

given F−j, with eighth moments exist. The Zj
v,s’s are independent of each

other for a fixed j.
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(V2) Parallel to (D2), but expectations are taken conditional on F−j ∪F j`−K ∪Fσvs ,
where Fσt is the σ-algebra generated by the process {σt} up to time t.

Also, ρjd,K,q is replaced by 0, A(vs−K , vs) by Σ(vs−K , vs)
1/2, and eijd,` by 0.

(V3) Parallel to (D3), replacements the same as in (V2).

Assumptions on the microstructure noise εt:

(E1) Within the jth partition, E(ε(s)ε(s)T|F−j) = Σj
ε,s, which is random and

independent of all other processes given F−j. Also, E(Σj
ε,s) = Σj

ε, and∥∥Σj
ε,s

∥∥ ≤ λε < ∞ uniformly as n, p → ∞ where λε is a constant. The se-

ries {Σj
ε,s}s also satisfies a smoothness condition that

∥∥Σj
ε,s+l −Σj

ε,s

∥∥ ≤ |l|/n
for each j = 1, . . . , L.

(E2) Within the jth partition, we can write ε(s) = (Σj
ε,s)

1/2Zj
ε,s, with Zj

ε,s ∈ F js
having conditionally independent components given F−j. Also E(Zj

ε,s|F−j) =

0 almost surely and eighth order moments exist for the components of Zj
ε,s.

(E3) Let FXt be the σ-algebra generated by the log-price process up to time t,

and F εt the one by the microstructure noise process up to time t, so that

Ft =
⋂
s>tFXs ⊗F εs . Then for s1, s2 time points within partition j, given F−j,

we assume the ϕ-mixing coefficient between two σ-algebras satisfies

ϕ(FXs1 ,F
ε
s2
|F−j) = O(n−1) = ϕ(F εs2 ,F

X
s1
|F−j).

Also, for s2 > s1 time points within partition j, we assume

ϕ(F εs1 ,F
ε
s2
/F εs1|F−j) = O(n−1) = ϕ(F εs2/F

ε
s1
,F εs1|F−j).

Other assumptions:

(A1) The observation times are independent of X(·) and ε(·), and the partition

boundaries τ`, ` = 0, 1, . . . , L, satisfy 0 < C1 ≤ min`=1,...,L L(τ` − τ`−1) ≤
max`=1,...,L L(τ` − τ`−1) ≤ C2 < ∞, where C1, C2 are generic constants. Also,

the all-refresh times vs, s = 1, . . . , nL satisfy maxs=1,...,nL nL(vs − vs−1) ≤ C3

for a generic constant C3 > 0. Moreover, max`=1,...,L nL(τ`−vn(`)) = o(1). The

sample size in the jth partition has n(j)/n→ 1.

(A2) The pervasive factors, if any, persist within an interval (vs−1, vs] for s =

1, . . . , nL.
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There are three more assumptions (A3), (A4) and (A5). They involve the drift

and volatility in between the all-refresh and previous-tick times, and are in many

ways parallel to assumptions (D1) to (D3) and (V1) to (V3). We present them in

Section 3.7 to aid the flow of the paper. Assumptions (D1) to (D3) and (V1) to (V3)

are mainly for the application of a version of Hoeffding’s inequality on the sums of

martingale differences in Theorem 2.2 of van de Geer (2002), and are also used in

Lam and Feng (2018).

The matrix A(vs−K , vs) in assumptions (D1) to (D3) can be treated as a factor

loading matrix in a factor model when µt is random. The loading matrix A(vs−K , vs)

is diagonal when the contribution of drift among all assets over vs−K to vs are

conditionally independent given F−j. If there exists a factor structure with r factors

where r � p, the loading matrix A(vs−K , vs) becomes a singular matrix whose rank

is r. The first r singular values of A(vs−K , vs) are then of order p1/2K1/2|vs − vs−1|,
with K1/2|vs − vs−1| accounting for the length of the time interval considered.

Also as introduced in Lam and Feng (2018), Assumption (D2) is about the serial drift

dependence quantified by ρjd,K,q < 1 given F−j. Assumption (D3) says that quadratic

forms not too far in time apart can be very different but with sub-Gaussian-tailed

probability. When µt is non-random, the matrix A(vs−K , vs) can be set as zero

except for a non-zero known vector in its first column. For more details please see

the corresponding explanations in Lam and Feng (2018).

The assumptions for volatility from (V1) to (V3) have similar forms and meaning,

and are parallel to the drift assumptions. One major difference from Assumption

(V1) to (V3) in Lam and Feng (2018) is that we use the fact that the {Zj
v,s}’s are

conditionally independent given F−j, which is in fact a consequence of independent

increment in the Brownian motion {Bt}. With this, Assumption (V2) certainly

becomes

E
(
(pT

ijΣ(vs−K , vs)
1/2Zj

v,`)
2|F−j ∪ F j`−K

)
= pT

ijΣ(vs−K , vs)pij,

meaning that ρjd,K,q is replaced by 0, eijd,` by 0 and A(·, ·) replaced by Σ(·, ·)1/2.

Also, note that Assumption (V1) actually ties the rate of the maximum eigenvalue

of Σ(vs−K , vs) to
∥∥A(vs−K , vs)

∥∥, meaning that if there are pervasive factors such

that it spikes the singular value of A(·, ·) by a factor of p1/2, then the same factors

also spikes the maximum eigenvalues of Σ(·, ·). It makes sense since pervasive factors

should have effects on both the drift and the volatility.

Assumption (E1) allows for time-varying covariance matrix for the microstructure

noise. A smoothness condition for the time-varying covariance matrix is needed for
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the bias-corrected pre-averaging method to successfully remove the residual covari-

ance effects from the microstructure noise. Assumption (E3) particularly assumes a

weak dependence between the log-price process and the microstructure noise process

within partition j, as well as a weak serial dependence among the microstructure

noise vectors, when F−j is given. This assumption is inspired by Chen and Mykland

(2017), where they assumed that given the entire information of the log-price pro-

cess, the microstructure noise at different time points are independent. In our case,

we are not given the entire picture of the log-price process, but not far from that

either since with F−j we are given nL−n(j) data points from the total of nL. Then

instead of assuming the microstructure noise vectors are independent, we assume

that they are weakly dependent, and with n larger (i.e., more information at more

time points is available outside partition j), the dependence is weaker.

The first part of Assumption (A1) is automatically satisfied if the boundary set

{τ`}0≤`≤L is pre-set, for instance, to be the daily opening or closing time of the L

days of data, or a quarter of it. See also Section 2.7 on a criterion in choosing these

tuning parameters. Assumption (A2) means that the pervasive factors are either

present between two all-refresh times, or they are absent.

Theorem 1. Let Assumptions (D1) to (D3), (V1) to (V3), (E1) to (E3) and (A1)

to (A5) hold. Then as n, p→∞ such that p/n→ c ≥ 0,

max
j=1,...,L

∥∥Σ̂(τj−1, τj)
MΣIdeal(τj−1, τj)

−1 − Ip
∥∥ = ‖Σ̂(0, 1)MΣIdeal(0, 1)−1 − Ip‖

= OP (n−1/6 + p
1/2
f n−1/2),

where
∥∥ ·∥∥ denotes the spectral norm of a matrix, and pf = 1 if there are no factors,

while pf = p if there are pervasive factors in the log-price processes.

The proof of the theorem is in Section 3.7. It is known that the rate of convergence

for univariate realized volatility estimator in Zhang (2006) or the rate for multi-scale

volatility matrix estimator under sparse assumption in Kim et al. (2016) is n−1/4,

the best achievable one. For our NER-MSRVM estimator, we have the slower rate

n−1/6 when there are no pervasive factors because we are not assuming sparsity

of Σ(τj−1, τj), although we still have the same rate as NERIVE in Lam and Feng

(2018). In (3.4), the scales we use are Km = m + N , m = 1, . . . ,M . While Zhang

(2006) and Kim et al. (2016) use N � n1/2 with M � n1/2, we use N � n2/3 and

M � n1/2, so that Km � n2/3, the same magnitude as the scale used in Zhang (2011)

and Lam and Feng (2018) in their two-scale estimator. We find that this larger scale

is needed to remove the adverse effects of large p without sparsity while removing

the bias from microstructure noise.
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When there are pervasive factors, pf = p, and the rate tell us that we need p =

o(n) in order to still have guaranteed convergence as n, p → ∞. What happens is

that some drift terms can somehow dominates the volatility terms when there are

pervasive factors which spike up the maximum singular value of A(·, ·) and Σ(·, ·)1/2

simultaneously by an order of p1/2. Ultimately, when pf = p which has the same

order as n2/3, then we still have n−1/6 as the rate of convergence, which coincides with

the results for NERIVE in Lam and Feng (2018). If the factors are not pervasive,

then pf = p1−δ for some 0 < δ < 1 which represents the strength of the factors (Lam

and Yao, 2012, Lam et al., 2011). Clearly we can still have p/n → c > 0 in such a

case, and can retain the rate n−1/6 if δ ≥ 1/3.

In practice, a larger M means we are using more scales, which can improve the

estimation in general. This aligns with our simulation results which show that

NER-MSRVM performs better than NERIVE in Lam and Feng (2018) which uses

only two scales.

Theorem 2. With the same conditions as in Theorem 1, as n, p → ∞ such that

p/n→ c ≥ 0, we have

max
j=1,...,L

∥∥Σ̂(τj−1, τj)
KΣIdeal(τj−1, τj)

−1 − Ip
∥∥ = ‖Σ̂(0, 1)KΣIdeal(0, 1)−1 − Ip‖

= OP (p
1/2
f n−1/4),

with H � n1/2 and J � p
−1/2
f n1/4, where pf = 1 if there are no factors, and pf = p

if there are pervasive factors. For the positive semi-definite version, we have

max
j=1,...,L

∥∥Σ̂(τj−1, τj)
KPΣIdeal(τj−1, τj)

−1 − Ip
∥∥ = ‖Σ̂(0, 1)KPΣIdeal(0, 1)−1 − Ip‖

= OP (p
2/5
f n−1/5),

with H � p
−1/5
f n3/5 and J � p

−2/5
f n1/5 respectively.

The proof of this theorem is in Section 3.7. Kim et al. (2016) introduces KRVM

which has a faster rate of convergence at n−1/4, and KRPVM, which has rate only at

n−1/5 but is guaranteed to be positive semi-definite. The above theorem shows that

NER-KRVM is approaching ΣIdeal(0, 1) in spectral norm at a rate of n−1/4 when

there are no factors, and hence it is positive definite in probability. The same goes

for NER-KRPVM, but the rate is slower at n−1/5. When there are pervasive factors

in the log-price processes, all rates of convergence to the ideal estimator are slower.

As explained after Theorem 1, this happens since some terms related to the drift can
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dominate when there are pervasive factors. This theorem suggests that for our reg-

ularized estimator for the kernel method, the bias-corrected version NER-KRVM is

always better than NER-KRPVM since they are both positive definite in probability

anyway, while the former converges faster to the ideal estimator ΣIdeal(0, 1). This is

true as long as p = o(n1/2), when p2/5n−1/5 is going to 0 slower than p1/2n−1/4.

Theorem 3. With the same conditions as in Theorem 1, and n, p → ∞ such that

p/n→ c ≥ 0,

max
j=1,...,L

∥∥Σ̂(τj−1, τj)
PΣIdeal(τj−1, τj)

−1 − Ip
∥∥ = ‖Σ̂(0, 1)PΣIdeal(0, 1)−1 − Ip‖

= OP (p
3/8
f n−1/4),

with Q � p
−1/4
f n1/2, where pf = 1 if there are no factors, and pf = p if there are

pervasive factors. We also have

max
j=1,...,L

∥∥Σ̂(τj−1, τj)
PPΣIdeal(τj−1, τj)

−1 − Ip
∥∥ = ‖Σ̂(0, 1)PPΣIdeal(0, 1)−1 − Ip‖

= OP (p
2/5
f n−1/5),

with Q � p
−1/5
f n3/5.

The proof of this theorem can be found in Section 3.7. Same as kernel estimators,

Kim et al. (2016) also gives two versions of pre-averaging estimators: the bias-

corrected version PRVM, which is not guaranteed to be positive semi-definite but is

converging at a rate of n−1/4, and the positive semi-definite version PRPVM, which

has a slower rate of convergence at n−1/5. Our results show that the regularized

estimators are all positive definite in probability, and when there are no factors, the

rate of convergence to the ideal estimator ΣIdeal(0, 1) for NER-PRVM is n−1/4. For

NER-PRPVM, it is n−1/5 under p/n → c ≥ 0. These rates are the same as those

for the non-regularized estimators with finite p. Same as Theorem 1 and 2, some

terms related to the drift can dominate as p→∞, and hence ultimately all rates of

convergence are slower. However, NER-PRVM still has a faster rate of convergence

to the ideal estimator at p3/8n−1/4 when compared to that for NER-PRPVM at

p2/5n−1/5. Note also that p = o(n2/3) is needed for NER-PPVM while p = o(n1/2)

is needed for NER-PRPVM for guaranteed convergence when there are pervasive

factors.

Comparing the rate p
3/8
f n−1/4 for NER-PRVM to p

1/2
f n−1/4 for NER-KRVM, it is

clear that when there are pervasive factors, the pre-averaging estimator can converge
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a bit faster to the ideal estimator. It also allows p = o(n2/3) compared to only

p = o(n1/2) allowed for NER-KRVM. The practical performance for NER-PRVM is

also better than NER-KRVM in many scenarios as demonstrated in Section 3.6.1.

The simulation results also highlight that NER-PRVM is better than NER-PRPVM

in general. All our regularized estimators constructed during simulations and real

data analysis are also positive definite, showing that the convergence is in fact

pretty quick. In the following section, we also show that our regularized estimators

are adaptive to jumps removal.

3.4.1 Jumps Remove

In Section 3.2.1, a continuous-diffusion price model 3.1 is used as our framework.

Although microstructure noise has been included in our method, jump should also

be considered. Compared with most of existing methods developed for either noisy

data from a continuous-diffusion price model or data from a jump diffusion price

model without noise, Fan and Wang (2007) proposed methods to cope with both

jumps in the price and market microstructure noise in the observed data. The idea

is to remove jumps from the data first and apply noise-resistant methods to do

estimation. We use a same idea but under a high dimensional scenario.

Considering jumps, we suppose a the underlying log-price process as follow

dXt = µtdt+ σtdWt + dJt, t ∈ [0, 1], (3.2)

where µt and σt are same as the pure diffusion model (3.1), and Jt = (J
(1)
t , . . . , J

(p)
t )T

is a p-dimensional right-continuous pure jump process. For jth asset,

J
(j)
t =

N
(j)
t∑
`=1

B
(j)
` , t ∈ [0, 1],

where each count process N
(j)
t can be correlated with each other. The same holds

true for each jump size B
(j)
` .

We assume that the number of jumps in each X
(j)
t over the time period we consider

is finite. Then the quadratic covariation over [0, 1] for log process is denoted as

QV =

∫ 1

0

σtσ
T
t dt+

∑
0≤t≤1

∆Jt∆JT
t , (3.3)
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where ∆Jt = Jt − Jt−. When two log price processes have at least one cojumps

simutaneously, the corresponding element in ∆Jt∆JT
t will be non-zero. This can

happen when a shock news affects some stocks at same time.

Same as Lam and Feng (2018), we use the wavelet method introduced in Fan and

Wang (2007) to remove the jumps in the log price process and then build the volatil-

ity matrix estimator as 3.16, 3.17 and 3.18 by jump-removed data. To apply this

wavelet method successfully, more assumptions are need:

(W1) The wavelets used in jump estimation are differentiable.

(W2) For the jump part of X
(j)
t in [0, 1] for j = 1, . . . , p, its jump locations η

(j)
` and

jump sizes B
(j)
` satisfy

N
(j)
1 <∞, η(j)

1 < . . . < η
(j)
` < . . . , 0 < |B(j)

` | <∞ almost surely.

(W3) The number of stocks involved in a cojump is finite.

Assumptions (W1) and (W2) are technical assumptions adapted from Fan and Wang

(2007). Assumption (W2) means that we are dealing with finite number of jumps for

each log-price process, and the sizes of the jumps are bounded from 0 almost surely.

If Assumption (W3) is not satisfied, then the rate of convergence of Σ̂(τj−1, τj) in

Theorem 1 and 3 using the jumps-removed data will be dependent on how many

stocks is involved in a cojump in general. Our assumptions allow the jump process to

be dependent on the drift, volatility and the microstructure noise process in general.

Theorem 4. Let all the assumptions in Theorem 1 hold, as well as (W1) to (W3)

for the jump-diffusion model (3.2). Using the jumps-removed all-refresh log-price

data Y∗(s) = Y(s) − Ĵvs, s = 1, . . . , nL in constructing the integrated covariance

matrix estimator in (3.13), (3.14) or (3.15), the same conclusions in Theorem 1,

Theorem 3 and their semi-positive definiteness hold. Moreover, we have

∥∥ ∑
0≤t≤1

(∆Jt∆JT
t −∆Ĵt∆ĴT

t )
∥∥ = OP (n−1/4).

3.5 Practical Implementation

There are two parameters that can be tuned for potentially better performance,

namely the partition (τj−1, τj] of the period [0, 1] (thus also determining L itself

which represents the number of partitions), the scale parameter M and N used in
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the MSCV in (3.4), the window length H and jittering length J in the KRCV in

(3.6) and the averaging range K in the PRCV in (3.9).

As for the number of partitions, different number of partitions corresponds to dif-

ferent length of each individual partition. Therefore, same as Lam and Feng (2018),

we propose a criterion as follow:

g(τ ) =

∥∥∥∥ L∑
j=1

(
Σ̂(τj−1, τj)− Σ̃(τj−1, τj)

)∥∥∥∥2

F

, (3.1)

where Σ̃(τj−1, τj)
M , Σ̃(τj−1, τj)

K and Σ̃(τj−1, τj)
P defined in (3.4), (3.6) and (3.9).

Similarly, Σ̂(τj−1, τj)
M , Σ̂(τj−1, τj)

K and Σ̂(τj−1, τj)
P are shown in (3.13), (3.14)

and (3.15) respectively. Bickel and Levina (2008) proposed this function firstly

to choose the banding number in large covariance matrix estimator with banding

structure assumption. Lam and Feng (2018) suggested to divide the time interval

into equal length partitions, checking that each one has enough data points and then

choose L by minimizing the criterion (3.1) above.

With respect to other tuning parameters, the scale parameter M and N , the win-

dow length H, jittering length J and the averaging range K, we already find the

theoretical magnitude of all of them related to sample size n showing in 3.4, 3.6 and

3.9. To final decide the value of these tuning parameters, constant part for all of

them are set as 1, as in our simulation and real data analysis show that the results

are not very sensitive to the choice of the constant.

3.6 Empirical Results

3.6.1 Simulations

To generate simulated data for high frequency problem, the prices and the asyn-

chronous transaction times should be generated separately. We apply Heston-like

multivariate factor model with stochastic volatilities used in Lam and Feng (2018)

as follow:

dX
(i)
t = µ(i)dt+

√
1− (ρ(i))2σ

(i)
t dB

(i)
t +ρ(i)σ

(i)
t dWt+Cν

(i)dZt, i = 1, . . . , 100, (3.2)

where {Wt}, {Zt} and the {B(i)
t }’s are independent standard Brownian motions. The

processes {Wt} and {Zt} imitate factors in the market. The constant C = 1{model 2}
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is 0 for the first model we consider. We set ρ(i) = −0.7C, so that it is 0 in the first

model, and hence there are no factors. For the second model, C = 1, so that it

contains two factors. The spot volatility σ
(i)
t =

√
%

(i)
t follows the Cox-Ingersoll-Ross

(CIR) process

d%
(i)
t = κ(i)(θ(i) − %(i)

t )dt+ ξ(i)dU
(i)
t ,

where the {U (i)
t }’s are independent standard Brownian motions. Other parameters

of X
(i)
t are set at (µ(i), κ(i), ξ(i), θ(i)) = (0.03x

(i)
1 , 1.1x

(i)
2 , 0.5x

(i)
3 , 0.25x

(i)
4 ) and ν(i) =√

θ(i), where the x
(i)
j ’s are independent uniform random variables on the interval

[0.7, 1.3]. The initial value of each log-price X
(i)
0 is set randomly on the interval

[0.5, 1.5] and the starting spot volatility %
(i)
0 on the interval [0.5θ(i), 1.5θ(i)].

To consider the microstructure noise, as shown in (3.2), the simulated observed

log-price is X
o(i)
t = X

(i)
t + ε

(i)
t , where X

(i)
t represents the latent log-price, and the

microstructure noise has ε
(i)
t

iid∼ N(0, 0.00052). For the transaction times, we generate

100 different Poisson processes with intensities λ1, . . . , λ100 respectively. To exam

the finite sample performance for our proposed methods, we assume that one day is

23400 seconds, λi is set to be 0.01i× 23400, where i = 1, . . . , 100.

We have three estimators NER-MSRVM in (3.16), NER-KRVM in (3.17) and NER-

PRVM in (3.18). As shown in Theorem 1, the largest scale M becomes n2/3 from

the original n1/2. To exam the necessity of this change in high dimensional setting,

a modified NER-MSRVM, as NER-mMSRVM, with a smaller M � n1/2 is also

considered as a competitor. In Theorem 1, the convergence rate for NER-MSRVM is

same as the corresponding rate shown in Lam and Feng (2018) for NER-TSRVM. In

order to see the difference in the finite sample example, the NER-TSRVM introduced

in Lam and Feng (2018) is also included into our simulation.

The nonparametric eigenvalue regularization introduced in (3.3.4) is applied to re-

duce the negative effect from high dimensional setting. Therefore, the corresponding

estimators without the nonparametric eigenvalue regularization are also included

here and denoted as TSRVM, MSRVM, mMSRVM, KRVM and PRVM for NER-

TSRVM, NER-MSRVM, NER-mMSRVM, NER-KRVM and NER-PRVM respec-

tively.

Besides the methods above, Dai et al. (2017) proposed a POET method based on

pre-averaging data to capture the factor structure and handle the microstructure

noise. We apply this method on our simulated data and denote it as PR-POET.

Furthermore, a pure POET method without pre-averaging step is also included in

our simulation.

Section 3.4.1 introduces the jump-diffusion process and the jump removal process

for our proposed methods. Our simulation generate two set of data. The first
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scenario is for no jump process, which follows Heston-like multivariate factor model

as (3.2). The other is about jump included process obtained by adding one or three

jumps on each price and each time interval in the first scenario process. The jump

location uniformly distributed on the time interval, which is 5-days interval in our

simulation. Then the jump size follows iid normal distribution with mean 0 and

standard deviation 1/30. This jump adding procedure is proposed in Fan and Wang

(2007) and the standard deviation 1/30 is used in their paper.

As for the measurement in our simulation, we use Frobenius error defined by tr(Σ̂(0, 1)−
Σ(0, 1))2. The integrated covariance matrix Σ(0, 1) is evaluated using the simulated

latent log-prices at the finest grid (1 per second). We divide the 100 trading days

into disjoint 5-day intervals, and calculate the Frobenius error for different estima-

tors over each 5-day interval.

Figure 3.1 to Figure 3.4 are simulation results for no factor model where C = 0. In

Figure 3.1, firstly, the proposed nonparametric eigenvalue regularization performs

well in terms of removing the incluence from high dimension, as all regularized es-

timators, NER-TSRVM, NER-MSRVM, NER-KRVM and NER-PRVM outperform

the conrresponding non-regularized ones. Secondly, our proposed methods, NER-

MSRVM, NER-KRVM and NER-PRVM have smaller Frobenius errors in general,

and especially NER-PRVM performs best. Thirdly, there is no significant influ-

ence when we include jumps and jump removal method proposed in Fan and Wang

(2007).
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Figure 3.1: Boxplots of Frobenius errors of NER-TSRVM, TSRVM, NER-MSRVM,
MSRVM, NER-KRVM, KRVM, NER-PRVM and PRVM for C = 0. The upper plot
is for no jump scenario, while the bottom one is for jumps model (sd=1/30) result.

Both NER-MSVRM and NER-mMSVRM are considered in our simulation. Figure

3.2 reflects that, unlike the magnitude of parameter N in Zhang (2006), a larger

magnitude 2/3 is needed in high dimensional volatility matrix estimation. It is easy

to find that NER-MSRVM is significantly better than NER-mMSRVM no matter

whether there is no jump or jumps in the model. As the simulation with jumps has

same results, we omit it here to save space.

NER-MSRVM NER-mMSRVM
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Figure 3.2: Boxplots of Frobenius errors of MSRVM and mMSRVM with nonpara-
metric regularization for C = 0.

In Kim et al. (2016), besided the bias corrected estimators KRVM and PRVM,

KRPVM and PRPVM are also discussed as they are positive semi-definite but have
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slower convergent rate in theory. We also consider both bias corrected estimators and

positive definite estimators as shown in Section 3.3.4. When there is no jump in the

model, NER-KRVM and NER-PRVM outperform NER-KRPVM and NER-PRPVM

respectively, which matches our theory. However, if the jumps are included, after

jump removal procedure proposed in Fan and Wang (2007), the results are similar

as Figure 3.3.
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Figure 3.3: Boxplots of Frobenius errors of positive semi-definite estimators (NER-
pKRVM and NER-pPRVM) and bias-corrected estimators (NER-KRVM and NER-
PRVM) for C = 0.

To compare with POET and PR-POET introduced in Dai et al. (2017), by Figure

3.4, we can find that NER-PRVM are much better than PR-POET and POET.

As both NER-PRVM and PR-POET apply pre-averaging method, the difference

between NER-PRVM and PR-POET show us that the nonparametric eigenvalue

regularizaion proposed in this paper can fix bias caused by high dimension better.
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Figure 3.4: Boxplots of Frobenius errors of NER-PRVM, PR-POET and POET for
C = 0.

Figure 3.5 to 3.8 provide the results for factor model where C = 1. All results are

same as the conclusion made in Figure 3.1 to 3.4.
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Figure 3.5: Boxplots of Frobenius errors of TSRVM, MSRVM, KRVM, PRVM and
their nonparametric regularization estimators for C = 1. The upper plot is for no
jump scenario, while the bottom one is for jumps model (sd=1/30) result.
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Figure 3.6: Boxplots of Frobenius errors of MSRVM and mMSRVM (scale is 1/2)
with nonparametric regularization for C = 1.
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Figure 3.7: Boxplots of Frobenius errors of positive semi-definite estimators (NER-
pKRVM and NER-pPRVM) and bias-corrected estimators (NER-KRVM and NER-
PRVM) for C = 1.
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Figure 3.8: Boxplots of Frobenius errors of NER-PRVM, PR-POET and POET for
C = 1.

As we know that one of challenges in the problem we want to solve are microstructure

noise, Figure 3.9 indicates the results for the proposed methods and the competi-

tors when the microstructure noise variance is changing from small to large value.

For both factor model or the model without factor structure, when a small mi-

crostructure noise is included, NER-PRVM and NER-KRVM perform better than

NER-MSRVM and NER-TSRVM. Then, with the increase of noise, NER-MSRVM

can still obtain a good results as it dose when a small noise is used, while the

Frobenius errors for NER-PRVM and NER-TSRVM diverge hugely.
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Figure 3.9: Simulation results about microstructure noise effect by Frobenius errors
for model 3.2 without factors (C = 0) and with factors (C = 1) from the upper to
the bottom but no jumps.

Another question we concern is about high dimensionality. Figure 3.10 provides

the simulation results when p increase from 10 to 100. With increasing p, as the

larger matrix makes question more challenging, all methods included become worse

obviously in Figure 3.10. But we can find that NER-PRVM performs better.
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Figure 3.10: Simulation results about dimension p effect by Frobenius errors for
model 3.2 without factors (C = 0) and with factors (C = 1) from left to right with
no jump and with jumps from upper to the bottom.

3.6.2 Real Data

3.6.2.1 Minimum variance portfolio allocation

We first present a Theorem on minimum variance portfolio using our integrated

volatility matrix estimators. Define 1p a column vector of p ones, the theoretical

minimum variance portfolio has weights defined by

wtheo =
Σ(0, 1)−11p

1T
p Σ(0, 1)−11p

.

An estimated minimum variance portfolio weight vector is then

ŵ =
Σ̂(0, 1)−11p

1T
p Σ̂(0, 1)−11p

.
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We also define the maximum exposure of a portfolio w as ‖w‖max = maxi |wi|.

Theorem 5. Let all assumptions in Theorem 3 hold. If there are no pervasive

factors with p/n → c > 0, or there are pervasive factors but p3/2/n → c > 0, the

maximum exposures of wtheo and ŵ, with Σ̂(0, 1) being equal to Σ̂(0, 1)M , Σ̂(0, 1)K,

Σ̂(0, 1)KP , Σ̂(0, 1)P or Σ̂(0, 1)PP , will satisfy in probability

p1/2‖ŵ‖max, p
1/2‖wtheo‖max ≤

max1≤j≤L λmax(Σ(τj−1, τj))

min1≤j≤L λmin(Σ(τj−1, τj))
.

If there are no pervasive factors and p/n→ c > 0, the actual risk of ŵ (the same as

above) and wtheo, with an actual risk of w defined by R1/2(w) = (wTΣ(0, 1)w)1/2,

satisfy in probability

p1/2R1/2(ŵ) ≤ max1≤j≤L λmax(Σ(τj−1, τj))

min1≤j≤L λmin(Σ(τj−1, τj))
· λ1/2

max(Σ(0, 1)),

p1/2R1/2(wtheo) ≤ λ1/2
max(Σ(0, 1)).

If there are pervasive factors and p3/2/n → c > 0, then R(ŵ) = OP (λ(Σ(0, 1))) =

OP (p), and the bound for R(wtheo) remains the same as above.

If Assumptions (W1) to (W3) hold also under the jump-diffusion model (3.2), then

the same conclusions as above hold, as long as we are using the jumps removal

procedure described in Section 3.4.1.

Theorem 5 is exactly the same as Theorem 5 in Lam and Feng (2018), and the proof

is also the same and hence interested readers are encouraged to read the proof of

Theorem 5 there. The maximum exposure bound is important since it is clear that

the theoretical minimum variance portfolio also satisfies this bound. In practice,

unless we are using other methods and building towards a concentrated portfolio,

as far as minimum portfolio is concerned, we do not want to invest in a single asset

too much in any single period of time, especially when the theoretical portfolio is

not doing so.

3.6.2.2 NYSE data analysis

In this study, we choose the stocks based on two lists, the “Fifty Most Active Stocks

on NYSE, Round Lots (mils. of shares), 2013” and “Fifty Most Active Stocks by

Dollar Volume on NYSE ($ in mils.), 2013”, from the New York Stock Exchange

Data official website http://www.nyxdata.com/. There are 26 stocks appearing in
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both of the lists above, and 74 stocks in either of them. We downloaded all the

trading transactions of these 74 stocks in Year 2013 from the Wharton Research

Data Services (WRDS, https://wrds-web.wharton.upenn.edu/). We omit the

stock Sprint Corporation due to missing price data. We first clean all the data by

the R-package “highfrequency”, which follows the high frequency data cleaning steps

presented in Barndorff-Nielsen et al. (2009). We conduct our portfolio allocation

study on two portfolios, one with the p = 26 stocks appearing in both lists, and the

other with p = 73 stocks appearing in either of the lists.

The quantities to be compared for different portfolios are as follows. For daily

rebalancing with a k-day training window (k = 1 or 5), we calculate the annualized

portfolio return and annualized out-of-sample standard deviation, given respectively

by

µ̂ = 250× 1

250− k

250∑
i=k+1

wTri, σ̂ =
(

250× 1

250− k

250∑
i=k+1

(wTri −
µ̂

250
)2
)1/2

.

The out-of-sample standard deviation is a good indicator of how much risk is as-

sociated with a portfolio Demiguel and Nogales (2009), and is our main quantity

for performance comparisons, whereas portfolio return is of secondary importance.

We also calculate the Sharpe ratio µ̂/σ̂. The average maximum exposure and the

maximum of the maximum exposure over the whole investment horizon are two

important measures for comparisons too. Since this is a simulation experiment, we

can calculate the actual risk of a portfolio w, R1/2(w) = (wTΣw)1/2, over a trad-

ing day. We compare the averaged actual risks of different methods over the whole

investment horizon. Finally we compare the error norm compared to wtheo, defined

as Norm =
∥∥w −wtheo

∥∥, and also the portfolio turnover for different methods.

Before applying the proposed methods, we remove the jumps as shown in Section

3.4.1. It is clear to see that our nonparametric eigenvalue threshold methods perform

well to reduce the side effect from high dimensionality, especially also better than

POET method. In terms of averaged maximum absolute weight, maximum of max-

imum absolute weight, annualized portfolio return and Sharpe ratio, kernel method

and pre-averaging method are better than two-scale and multi-scale estimators in

general.
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5-day Out-of-Sample Aver Max Abs Max Max Abs Portfolio Sharpe
Methods SD (%) Weight(%) Weight(%) Return(%) Ratio

p=26
NER-TSRVM 4.7 20(6) 44 17.1 3.63

TSRVM 5.7 41(14) 94 16.3 2.85
NER-MSRVM 4.6 20(6) 42 17.8 3.86

MSRVM 5.7 42(14) 98 17.4 3.05
NER-mMSRVM 4.9 21(7) 49 17.7 3.61

mMSRVM 5.7 42(16) 108 17.4 4.39
NER-KRPVM 4.6 19(5) 39 20.2 4.39

KRPVM 5.3 27(7) 92 16.2 3.06
NER-KRVM 4.6 17(6) 36 21.6 4.69

KRVM 5.2 26(7) 89 15.3 2.94
NER-PRPVM 4.6 18(4) 33 20.2 4.39

PRPVM 5.4 24(6) 86 17.3 3.20
NER-PRVM 4.5 17(4) 31 22.0 4.89

PRVM 5.3 25(7) 82 14.3 2.70
POET 7.0 33(37) 75 16.2 2.31

PR-POET 4.7 26(6) 50 16.8 3.57
p=72

NER-TSRVM 4.0 11(3) 22 14.9 3.72
TSRVM 141.7 238(508) 4708 −456.5 −3.22

NER-MSRVM 4.0 11(4) 23 14.4 3.6
MSRVM 137.5 260(514) 4215 −474.5 −3.45

NER-mMSRVM 4.2 12(4) 24 14.3 3.40
mMSRVM 157.8 251(507) 4917 −460.9 −2.92

NER-KRPVM 4.0 10(3) 21 14.9 3.72
KRPVM 137.5 236(469) 4352 −413.5 −3.01

NER-KRVM 3.9 11(5) 21 14.8 3.79
KRVM 140.6 229(431) 4623 −398.7 −2.83

NER-PRPVM 3.9 10(2) 22 15.9 4.08
PRPVM 125.2 224(453) 4145 −416.7 −3.32

NER-PRVM 3.8 9(2) 21 16.7 4.39
PRVM 128.1 216(448) 4007 −398.5 −3.11
POET 62.7 188(232) 3116 −235.4 −3.75

PR-POET 4.1 16(6) 33 14.5 3.53

Table 3.1: Empirical results (jumps removed) for the 26 and 72 most actively traded
stocks in NYSE: annualized out-of-sample standard deviation, averaged maximum
absolute weight, maximum of maximum absolute weight, annualized portfolio return
and Sharpe ratio.
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3.7 Proof of Theorems

Before presenting any proofs, we present the last set of assumptions which are re-

quired for Theorem 1,2,3 and 4 to hold. We first need to decompose Xvs − X(s).

Consider the previous-tick time tis ∈ (vs−1, vs] for the ith asset, which should satisfy

vs−1 < ti1s ≤ ti2s ≤ · · · ≤ tips = vs,

where {i1, . . . , ip} is some permutation of 1, . . . , p. Letting bs (assumed o(p)) denote

the number of tides, we can write the above as

vs−1 < tj1s < tj2s < · · · < t
jp−bs
s = vs,

where j1, . . . , jp−bs ∈ {1, . . . , p}.

Then we can write, for s = 1, . . . , nL,

Xvs−X(s) =

p−bs−1∑
m=1

Ds
mA(tjms , tjm+1

s )Zj
d,s(m+1)+

p−bs−1∑
m=1

Ds
mΣ(tjms , tjm+1

s )1/2Zj
v,s(m+1),

(3.1)

where Ds
m is a diagonal matrix with either 0 or 1 as elements. The jth diagonal

element is 1 if the jth asset is already traded at time tjms , and 0 otherwise. The

matrices A(·, ·) and Σ(·, ·) are as defined in Assumption (D1) and (V1) respectively.

(A3) If the drift µt is random, the components of Zj
d,s(m + 1), Zj

v,s(m + 1) ∈
F j
t
jm+1
s

are conditionally independent given F−j, E(Zj
d,s(m + 1)|F−j) = 0 =

E(Zj
v,s(m+ 1)|F−j), var(Zj

d,s(m+ 1)|F−j) = Ip = var(Zj
v,s(m+ 1)|F−j) almost

surely. Eighth moments exist for their components as well. If the drift µt is

non-random, then Zj
d,s(m+ 1) = (1, 0, . . . , 0)T .

(A4) (Only for random drift and volatility). Using notations in Assumption (D2),

we assume that for some cd,j,s ∈ F−j ∪F js greater than 0, and for ` = 1, . . . ,m,

E
(
pT
ijD

s
mA(tjms , tjm+1

s )Zj
d,s(`+ 1)

∣∣F−j ∪ F j
t
j`
s

)
=

(
1− cd,j,s

(p− bs − 1)α

)
pT
ijD

s
mA(tjms , tjm+1

s )Zj
d,s(`) + eijd,s(`),

where 0 ≤ α ≤ 1/2, and we define Zj
d,s(`)Z

j
d,s(`)

T = Ip and eijd,s(`) = 0 for

` ≤ 0. The process {eijd,s(`)} with eijd,s(`) ∈ F
j

t
j`
s

has E(eijd,s(`)|F−j ∪F
j

t
j`−1
s

) = 0
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almost surely, and eijd,s(`)|F−j ∪ F
j

t
j`−1
s

= OP (
∥∥A(t

j`−1
s , tj`s )

∥∥) = OP (p
1/2
f · (p −

bs − 1)−1n−1L−1).

We also have E
(
pT
ijD

s
mΣ(tjms , tjm+1

s )1/2Zj
v,s(`+ 1)

∣∣F−j ∪F j
t
j`
s

∪Fσvs
)

= 0, since

{Zj
v,s(`)}s,` for s = 1, . . . , nL, ` = 1, . . . , p − bs − 1 is a double array of inde-

pendent random vectors.

(A5) (Only for random drift and volatility). Let ϕ(x) = ex
2 − 1. We assume that

for ` = 1, . . . ,m,

E

{
ϕ

( |pT
ijD

s
mA(tjms , tjm+1

s )Zj
d,s(`)|

|pT
ijD

s
mA(tjms , t

jm+1
s )Zj

d,s(`− 1)|

)∣∣∣F−j ∪ F j
t
j`−1
s

}
<∞,

E

{
ϕ

( |eijd,s(`)|
|pT
ijD

s
mA(tjms , t

jm+1
s )Zj

d,s(`− 1)|

)∣∣∣F−j ∪ F j
t
j`−1
s

}
<∞.

The assumption for the volatility runs parallel to the above, with the expec-

tations now conditional on F−j ∪F j
t
j`−1
s

∪Fσvs , Σ(·, ·)1/2 replaces A(·, ·), Zj
v,s(·)

replaces Zj
d,s(·) and 0 replaces eijd,s(·).

Assumptions (A3), (A4) and (A5) are parallel to (D1), (D2) and (D3) respectively.

The major difference is that the coefficients ρjd,K,q < 1 is now replaced by coefficients

that are going to 1 as n, p → ∞, which are controlled by an exponent α > 0. A

larger α means that the correlations among variables between tick-by-tick trading

times are higher. We assume this since the time length between ticks is usually

very small. Note that if the drift is non-random, we only need Assumption (A3)

that Zj
d,s(m + 1) = (1, 0, . . . , 0)T , which is just a matter of notation rather than an

assumption.

If we assume the jump-diffusion model (3.2) for the log-price process Xt, and all

estimators are constructed using the jumps-removed data

Ỹt = Yt − Ĵt = (Xt − Ĵt) + εt = X̃t + εt, (3.2)

where {Ĵt} is the estimated jump process using the wavelet method in Fan and Wang

(2007), then {X̃t} represents the jumps-removed log-price process. For j = 1, . . . , L

and vs = vjs for s = 0, . . . , n(j), we then have

Ỹ(s) = X̃(s) + ε(s) = X̃vs + E(s),
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where we define

E(s) = ε(s) + X̃(s)− X̃vs = ε(s) + (X(s)− Ĵ(s))− (Xvs − Ĵvs).

Replacing X(s) and Xvs by X(s) + J(s) and Xvs + Jvs respectively where Xt is the

vector of pure jump log-price process, we then have

E(s) = ε(s) + X̃(s)− X̃vs = ε(s) + (X(s)−Xvs) + (e(J(s))− e(Jvs)),

where e(Jt) = Jt − Ĵt. Hereafter, we denote E(s) by the above expansion, and

X̃t = Xt + e(Jt).

Before we present the proofs of our theorems, we introduce five important lemmas

first. The first two lemmas come from Lam and Feng (2018) and are used for

proving Theorem 1, 2 and 3. The remaining three lemmas are developed for proving

Theorem 2 and 3.

For any integer m ≥ 1, define

[X̃v, X̃
T
v ]

(m)
j =

1

m

∑
s,s+m∈Sj(m)

(X̃vs+m − X̃vs)(X̃vs+m − X̃vs)
T,

[X̃v,E
T]

(m)
j =

1

m

∑
s,s+m∈Sj(m)

(X̃vs+m − X̃vs)(E(s+m)− E(s))T,

[E,ET]
(m)
j =

1

m

∑
s,s+m∈Sj(m)

(E(s+m)− E(s))(E(s+m)− E(s))T.

(3.3)

Lemma 3. Let all the assumptions in Theorem 4 hold. Then with p/n→ c ≥ 0, we

have

max
i=1,...,p
j=1,...,L

∣∣∣∣pT
ij[X̃v, X̃

T
v ]

(Km)
j pij

pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣ = OP (K1/2
m n−1/2 + p

1/2
f n−1/2).

The proof for Lemma 3 can be found in the intermediate results in the proof of

Lemma 1 in Lam and Feng (2018). We do not repeat their calculations here.

Lemma 4. Let all the assumptions in Theorem 4 hold. Then with p/n→ c ≥ 0, we

have

max
i=1,...,p
j=1,...,L

max
s=1,...,n(j)

∣∣∣∣ pT
ij(Xvs −X(s))

(pT
ijΣ(τj−1, τj)pij)1/2

∣∣∣∣ = OP (n−1/2).
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This Lemma is in fact the same as Lemma 2 in Lam and Feng (2018) where α = 1/6

there. The different result stems from Assumption (V2) where we treat the Zj
v,s(m)

as an independent sequence of random vectors in both the indices m and s. We

omit the proof here, since it is the same proof as Lemma 2 of Lam and Feng (2018),

but with α = 0 on the volatility side of the proof.

In all the proofs below, if no ambiguity arises, we use n in a summation instead of

n(j) within a partition j to simplify notations since we assumed n � n(j) for each

j anyway.

Lemma 5. Let all the assumptions in Theorem 4 hold. Then with p/n→ c ≥ 0, we

have for a bandwidth Q defined in (3.8),

max
i=1,...,p, j=1,...,L

l=1,...,Q−1, l′=1,...,Q−1
l 6=l′

∣∣∣∣ n−Q+1∑
s=1

pT
ij(X̃vs+l

− X̃vs+l−1
)(X̃vs+l′

− X̃vs+l′−1
)Tpij

pT
ijΣ(τj−1, τj)pij

∣∣∣∣ = OP (p
1/2
f n−1/2).

Proof of Lemma 5. We use the decomposition

n−Q+1∑
s=1

pT
ij(X̃vs+l

− X̃vs+l−1
)(X̃vs+l′

− X̃vs+l′−1
)Tpij

pT
ijΣ(τj−1, τj)pij

=
P

(1)
l,l′ + 2P

(2)
l,l′ + P

(3)
l,l′

pT
ijΣ(τj−1, τj)pij

,

where

P
(1)
l,l′ =

n−Q+1∑
s=1

(pT
ijA(vs+l−1, vs+l)Z

j
d,s+l + pT

ijΣ(vs+l−1, vs+l)
1/2Zj

v,s+l)

· (pT
ijA(vs+l′−1, vs+l′)Z

j
d,s+l′ + pT

ijΣ(vs+l′−1, vs+l′)
1/2Zj

v,s+l′)
T,

P
(2)
l,l′ =

n−Q+1∑
s=1

(pT
ijA(vs+l−1, vs+l)Z

j
d,s+l + pT

ijΣ(vs+l−1, vs+l)
1/2Zj

v,s+l)(e(Jvs+l′
)− e(Jvs+l′−1

))Tpij,

P
(3)
l,l′ =

n−Q+1∑
s=1

pT
ij(e(Jvs+l

)− e(Jvs+l−1
))(e(Jvs+l′

)− e(Jvs+l′−1
))Tpij.

144



Let us consider P
(1)
l,l′ first. We know that

P
(1)
l,l′ =

n−Q+1∑
s=1

(pT
ijA(vs+l−1, vs+l)Z

j
d,s+lZ

jT
d,s+l′A(vs+l′−1, vs+l′)

Tpij)

+

n−Q+1∑
s=1

(pT
ijA(vs+l−1, vs+l)Z

j
d,s+lZ

jT
v,s+l′Σ(vs+l′−1, vs+l′)

T/2pij)

+

n−Q+1∑
s=1

(pT
ijΣ(vs+l−1, vs+l)

1/2Zj
v,s+lZ

jT
d,s+l′A(vs+l′−1, vs+l′)

Tpij)

+

n−Q+1∑
s=1

(pT
ijΣ(vs+l−1, vs+l)

1/2Zj
v,s+lZ

jT
v,s+l′Σ(vs+l′−1, vs+l′)

T/2pij)

=P
(1,1)
l,l′ + P

(1,2)
l,l′ + P

(1,3)
l,l′ + P

(1,4)
l,l′ .

Consider P
(1,1)
l,l′ . The proof is the same with non-random drift where then pf = p

since A(·, ·) contains just one non-zero column of vector. So here we only focus on

proof with random drift. We have

Ej|P l,l′

l,l′ | ≤
n−Q+1∑
s=1

E
1/2
j (pT

ijA(vs+l−1, vs+l)Z
j
d,s+l)

2E
1/2
j (pT

ijA(vs+l′−1, vs+l′)Z
j
d,s+l′)

2

= O(
∥∥A(vs+l−1, vs+l)

∥∥∥∥A(vs+l′−1, vs+l′)
∥∥) = O(pfn

−1).

Also, using Lemma 2.7 of Bai and Silverstein (1998),

Ej|P l,l′

l,l′ |
2 ≤

n−Q+1∑
s=1

E
1/2
j (pT

ijA(vs+l−1, vs+l)Z
j
d,s+l)

4E
1/2
j (pT

ijA(vs+l′−1, vs+l′)Z
j
d,s+l′)

4

+
∑
s1 6=s2

Ej((p
T
ijA(vs1+l−1, vs1+l)Z

j
d,s1+lp

T
ijA(vs2+l−1, vs2+l)Z

j
d,s2+l)

· (pT
ijA(vs1+l′−1, vs1+l′)Z

j
d,s1+l′p

T
ijA(vs2+l′−1, vs2+l′)Z

j
d,s2+l′))

= O(n2 ·
∥∥A(vs+l−1, vs+l)

∥∥4
) = O(p2

fn
−2).

Hence we have

P
(1,1)
l,l′ = OP (pfn

−1).

Same technique shows that

P
(1,2)
l,l′ , P

(1,3)
l,l′ = OP (pfn

−1/2).
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Now consider P
(1,4)
l,l′ . By Assumption (V1), for `′ < `, defining

R`,`′ = pT
ijΣ(v`−1, v`)

1/2Zj
v,`Z

jT
v,`′Σ(v`′−1, v`)

T/2pij,

we can use the independence of the Zj
v,s’s to see that E(R`,`′|F−j∪F j`−1) = 0. Hence

using the Burkholder’s inequality, we have

Ej(P
(1,4)
l,l′ )2 ≤ C

n−Q+1∑
s=1

Ej(R
2
s+l,s+l′).

where C is a generic constant. Using Lemma 2.7 of Bai and Silverstein (1998),

E(R2
`,`′) ≤ 2E

(
R2
`,` +R2

`′,`′

)
, with

Ej(R
2
`,`) = O(

∥∥Σ(v`−1, v`)
∥∥2

) = O(p2
fn
−2).

Hence we can conclude that P
(1,4)
l,l′ = OP (pfn

−1/2), and hence

P
(1)
l,l′ /p

T
ijΣ(τj−1, τj)pij = (P

(1,1)
l,l′ + P

(1,2)
l,l′ + P

(1,3)
l,l′ + P

(1,4)
l,l′ )/pT

ijΣ(τj−1, τj)pij

= OP (p
1/2
f n−1/2).

Using the jumps removal rate in Fan and Wang (2007), and Assumption (W2) and

(W3) that there are only finite number of jumps for each stock and cojumps at each

time point, we have

P
(3)
l,l′ /p

T
ijΣ(τj−1, τj)pij = OP (n−1/2).

For P
(2)
l,l′ , similar to the treatment above,

P
(2)
l,l′ = OP (p

1/2
f n−5/4 + p

1/2
f n−3/4),

which is dominated by P
(1)
l,l′ . Hence we have

max
i=1,...,p, j=1,...,L

l=1,...,Q−1, l′=1,...,Q−1
l 6=l′

∣∣∣∣ n−Q+1∑
s=1

pT
ij(X̃vs+l

− X̃vs+l−1
)(X̃vs+l′

− X̃vs+l′−1
)Tpij

pT
ijΣ(τj−1, τj)pij

∣∣∣∣ = OP (p
1/2
f n−1/2). �
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Lemma 6. Let all the assumptions in Theorem 4 hold. Then with p/n→ c ≥ 0,

max
i=1,...,p
j=1,...,L

∣∣∣∣ n∑
s=1

pT
ij(E(s)E(s)T)pij

pT
ijΣ(τj−1, τj)pij

∣∣∣∣ = OP (n).

Proof of Lemma 6. By the definition of E(s), we have

n∑
s=1

pT
ij(E(s)E(s)T)pij

pT
ijΣ(τj−1, τj)pij

=
3∑
`=1

E` + 2
6∑
`=4

E`, where

E1 =
n∑
s=1

(pT
ij(ε(s)))

2

pT
ijΣ(τj−1, τj)pij

,

E2 =
n∑
s=1

(pT
ij(X(s)−Xvs))

2

pT
ijΣ(τj−1, τj)pij

,

E3 =
n∑
s=1

(pT
ij(e(J(s))− e(Jvs))2

pT
ijΣ(τj−1, τj)pij

,

E4 =
n∑
s=1

pT
ij(ε(s))(X(s)−Xvs)

Tpij

pT
ijΣ(τj−1, τj)pij

,

E5 =
n∑
s=1

pT
ij(ε(s))(e(J(s))− e(Jvs))Tpij

pT
ijΣ(τj−1, τj)pij

,

E6 =
n∑
s=1

pT
ij(X(s)−Xvs)(e(J(s))− e(Jvs))Tpij

pT
ijΣ(τj−1, τj)pij

.

By Lemma 4, and Assumption (W2) and (W3) together with the rate of jumps

removal in Fan and Wang (2007), we have

E2 = OP (1), E3 = OP (n−1/2).

For E1, consider E1 = E1,1 + E1,2, where

E1,1 =

∑n
s=1((pT

ijε(s))
2 − pT

ijΣ
j
ε,spij)

pT
ijΣ(τj−1, τj)pij

,

E1,2 =

∑n
s=1 pT

ijΣ
j
ε,spij

pT
ijΣ(τj−1, τj)pij

. (3.4)

For E1,2, Assumption (E1) implies that

E1,2 = OP (n).
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For E1,1, let gijs = (pT
ijε(s))

2 − pT
ijΣ

j
ε,spij. Using Lemma 2.7 of Bai and Silverstein

(1998) under Assumption (E1) to (E3), we have

E(E2
1,1|F−j ∪ {Σε,u, u ∈ [0, 1]})

= (pT
ijΣ(τj−1, τj)pij)

−2
{ n∑

s=1

E((gijs )2|F−j ∪ {Σε,u, u ∈ [0, 1]})

+
∑
s1 6=s2

E(gijs1g
ij
s2
|F−j ∪ {Σε,u, u ∈ [0, 1]})

}
= O(n · 1 + n2 · n−1 · 1) = O(n).

Hence E1,1 = OP (n1/2), and so

E1 = OP (n).

Finally, a simple C-r inequality shows that either E1, E2 or E3 dominates the order

of E4 to E6, and hence

n∑
s=1

pT
ij(E(s)E(s)T)pij

pT
ijΣ(τj−1, τj)pij

= OP (n). �

Lemma 7. Let all the assumptions in Theorem 4 hold. Then with p/n → c ≥ 0,

for 0 < l < n,

l−1∑
l′=0

n−l∑
s=1

pT
ijE(s+ l)E(s+ l′)Tpij

pT
ijΣ(τj−1, τj)pij

= OP (l1/2n1/2).

Proof of Lemma 7. We can decompose
∑l−1

l′=0

∑n−l
s=1

pT
ijE(s+l)E(s+l′)Tpij

pT
ijΣ(τj−1,τj)pij

=
∑9

j=1 Lj,
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where

L1 =
n−l∑
s=1

pT
ijε(s+ l)

∑l−1
l′=0 ε(s+ l′)Tpij

pT
ijΣ(τj−1, τj)pij

,

L2 =
n−l∑
s=1

pT
ij(X(s+ l)−Xvs+l

)
∑l−1

l′=0(X(s+ l′)−Xvs+l′
)Tpij

pT
ijΣ(τj−1, τj)pij

,

L3 =
n−l∑
s=1

pT
ij(e(J(s+ l))− e(Jvs+l

))
∑l−1

l′=0(e(J(s+ l′))− e(Jvs+l′
))Tpij

pT
ijΣ(τj−1, τj)pij

,

L4 =
n−l∑
s=1

pT
ijε(s+ l)

∑l−1
l′=0(X(s+ l′)−Xvs+l′

)Tpij

pT
ijΣ(τj−1, τj)pij

,

L5 =
n−l∑
s=1

pT
ijε(s+ l)

∑l−1
l′=0(e(J(s+ l′))− e(Jvs+l′

))Tpij

pT
ijΣ(τj−1, τj)pij

,

L6 =
n−l∑
s=1

pT
ij(X(s+ l)−Xvs+l

)
∑l−1

l′=0(e(J(s+ l′))− e(Jvs+l′
))Tpij

pT
ijΣ(τj−1, τj)pij

,

L7 =
n−l∑
s=1

pT
ij

∑l−1
l′=0 ε(s+ l′)(X(s+ l)−Xvs+l

)Tpij

pT
ijΣ(τj−1, τj)pij

,

L8 =
n−l∑
s=1

pT
ij

∑l−1
l′=0 ε(s+ l′)(e(J(s+ l))− e(Jvs+l

))Tpij

pT
ijΣ(τj−1, τj)pij

,

L9 =
n−l∑
s=1

pT
ij

∑l−1
l′=0(X(s+ l′)−Xvs+l′

)(e(J(s+ l))− e(Jvs+l
))Tpij

pT
ijΣ(τj−1, τj)pij

.

Consider L1 first. Denoting Ej(·) = E(·|F−j), and covj(·, ·) the corresponding co-

variance operator given F−j, we have

Ej(L1) =
n−l∑
s=1

O(1) · covj

(
pT
ijε(s+ l),pT

ij

l−1∑
l′=0

ε(s+ l′)

)

≤
n−l∑
s=1

O(1) ·O(n−1)(pT
ijΣ

j
ε,s+lpij)

1/2O(l + l2n−1)1/2 = O(l1/2),

where we used Assumption (E3) on the weak correlation (at order n−1) between

functions of ε(s1) and ε(s2) when s1 6= s2, and the boundedness of
∥∥Σj

ε,s

∥∥ in As-

sumption (E1). Also,

Ej(L
2
1) =

n−l∑
s1,s2=1

O(1) · Ej

(
pT
ijε(s1 + l)pT

ij

l−1∑
l′=0

ε(s1 + l′)pT
ijε(s2 + l)pT

ij

l−1∑
l′=0

ε(s2 + l′)

)

= O(1) ·O(nl + n2 · n−1 · l) = O(nl),
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so that

L1 = OP (n1/2l1/2).

To find the rate of L2, define

Aijd (s) =

p−bs−1∑
m=1

pT
ijD

s
mA(tjms , tjm+1

s )Zj
d,s(m)

(pT
ijΣ(τj−1, τj)pij)1/2

,

Aijv (s) =

p−bs−1∑
m=1

pT
ijD

s
mΣ(tjms , tjm+1

s )1/2Zj
v,s(m)

(pT
ijΣ(τj−1, τj)pij)1/2

.

(3.5)

Then we can decompose L2 = Ld,d + Ld,v + Lv,d + Lv,v, where

Ld,v =
n−l∑
s=1

Aijd (s+ l)
l−1∑
l′=0

Aijv (s+ l′), Lv,d =
n−l∑
s=1

Aijv (s+ l)
l−1∑
l′=0

Aijd (s+ l′),

and the two other terms are defined similarly. Going through the proof of Lemma

2 in Lam and Feng (2018), we have

Aijv (s) = Op(n
−1/2), Aijd (s) =

 OP (p
1/2
f n−1), non-random drift;

OP (p
1/2
f pα−1/2n−1), random drift.

Hence for non-random drift, using Burkholder’s inequality on all except Ld,d,

Ld,d = OP (pf ln
−1), Ld,v, Lv,d = OP (p

1/2
f ln1/2 · n−1/2 · n−1) = OP (p

1/2
f ln−1),

Lv,v = OP (l1/2n−1/2),

implying that

L2 = OP (pf ln
−1 + l1/2n−1/2),

which in fact is true for the case of random drift as well.

Using Assumption (W1) to (W3), we have

L3 = Op(ln
−1/2), L5, L8 = OP (ln−1/4),

L6, L9 = OP (p
1/2
f · ln

−1/2 · n−1/4) = OP (p
1/2
f ln−3/4).

Finally, using Assumption (E3) and the fact that {Aijv (s)} is a sequence of indepen-
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dent variables in the index s,

L4, L7 = OP (n1/2 · (p1/2
f ln−1 + l1/2n−1/2)) = OP (p

1/2
f ln−1/2 + l1/2).

Hence we have the result as stated, since l1/2n1/2 dominate all other term no matter

pf = 1 or pf = p � n. �

3.7.1 Proof of Theorem 1

For NER-MSRVM in (3.3), i = 1, . . . , p, j = 1, . . . , L with P−j = (p1j, . . . ,ppj), we

can decompose

pT
ijΣ̃(τj−1, τj)

Mpij = pT
ij

M∑
m=1

am[Ỹ, ỸT]
(Km)
j pij + pT

ijζ
(

[Ỹ, ỸT]
(K1)
j − [Ỹ, ỸT]

(KM )
j

)
pij

= I1 + 2I2 + I3,

where Σ̃(τj−1, τj)
M is the MSRVM in (3.4) constructed using jumps-removed data,

and

I1 = pT
ij

M∑
m=1

am[X̃v, X̃
T
v ]

(Km)
j pij + pTijζ

(
[X̃v, X̃

T
v ]

(K1)
j − [X̃v, X̃

T
v ]

(KM )
j

)
pij

=
M∑
m=1

ampT
ij[X̃v, X̃

T
v ]

(Km)
j pij + ζpT

ij[X̃v, X̃
T
v ]

(K1)
j pij − ζpT

ij[X̃v, X̃
T
v ]

(KM )
j pij,

I2 =
M∑
m=1

ampT
ij[X̃v,E

T]
(Km)
j pij + ζpT

ij[X̃v,E
T]

(K1)
j pij − ζpT

ij[X̃v,E
T]

(KM )
j pij,

I3 =
M∑
m=1

ampT
ij[E,E

T]
(Km)
j pij + ζpT

ij[E,E
T]

(K1)
j pij − ζpT

ij[E,E
T]

(KM )
j pij.

Going through the proof of Lemma 3 in Lam and Feng (2018), we have

max
i=1,...,p
j=1,...,L

∣∣∣∣pT
ij[X̃v,E

T]
(Km)
j pij

pT
ijΣ(τj−1, τj)pij

∣∣∣∣ = OP (K−1/2
m + n−1/4). (3.6)

By definition, Km = N + m, with N � n2/3 and M � n1/2. Hence it is easy to see

that all Km has the same order at n2/3 for m = 1, . . . ,M . Also, since
∑M

m=1 am = 1
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and ζ � n−1/6, it is easy to show that

∣∣∣∣ M∑
m=1

am
pT
ij[X̃v, X̃

T
v ]

(Km)
j pij

pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣ = OP (K1/2
m n−1/2 + p

1/2
f n−1/2)

= OP (n−1/6 + p
1/2
f n−1/2),

ζ ·

(∣∣∣∣pT
ij[X̃v, X̃

T
v ]

(K1)
j pij

pT
ijΣ(τj−1, τj)pij

∣∣∣∣+

∣∣∣∣pT
ij[X̃v, X̃

T
v ]

(KM )
j pij

pT
ijΣ(τj−1, τj)pij

∣∣∣∣
)

= Op(n
−1/6 · (K1/2

m n−1/2 + p
1/2
f n−1/2 + 1))

= OP (n−1/6).

where both results above used Lemma 3. Since the above bounds are independent

of the indices i and j, we have established that

max
i=1,...,p
j=1,...,L

∣∣∣∣ I1

pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣ = OP (n−1/6 + p
1/2
f n−1/2). (3.7)

Similarly, to find the rate of I2, using (3.6),

M∑
m=1

am
pT
ij[X̃v,E

T]
(Km)
j pij

pT
ijΣ(τj−1, τj)pij

= OP (K−1/2
m + n−1/4) = OP (n−1/4),

ζ

(
pT
ij[X̃v,E

T]
(K1)
j pij

pT
ijΣ(τj−1, τj)pij

−
pT
ij[X̃v,E

T]
(KM )
j pij

pT
ijΣ(τj−1, τj)pij

)
= OP (n−1/6 · (K−1/2

m + n−1/4)) = OP (n−5/12).

Since the above two results are free of all indices i and j,

max
i=1,...,p
j=1,...,L

∣∣∣∣ I2

pT
ijΣ(τj−1, τj)pij

∣∣∣∣ = OP (n−1/4). (3.8)
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To find the rate for I3, consider the decomposition

pT
ij[E,E

T]
(Km)
j pij

pT
ijΣ(τj−1, τj)pij

=
3∑
`=1

I3,` + 2
3∑
`=1

I3,`, where

I3,1(m) =
1

Km

∑
s,s−Km∈Sj(Km)

(pT
ij(ε(s)− ε(s−Km)))2

pT
ijΣ(τj−1, τj)pij

,

I3,2 =
1

Km

∑
s,s−Km∈Sj(Km)

(pT
ij(X(s)−Xvs + Xvs−Km

−X(s−Km)))2

pT
ijΣ(τj−1, τj)pij

,

I3,3 =
1

Km

∑
s,s−Km∈Sj(Km)

(pT
ij(e(J(s))− e(Jvs)− e(J(s−Km)) + e(Jvs−Km

)))2

pT
ijΣ(τj−1, τj)pij

,

I3,4 =
1

Km

∑
s,s−Km∈Sj(Km)

pT
ij(ε(s)− ε(s−Km))(X(s)−Xvs + Xvs−Km

−X(s−Km))Tpij

pT
ijΣ(τj−1, τj)pij

,

I3,5 =
1

Km

·∑
s,s−Km∈Sj(Km)

pT
ij(ε(s)− ε(s−Km))(e(J(s))− e(Jvs)− e(J(s−Km)) + e(Jvs−Km

))Tpij

pT
ijΣ(τj−1, τj)pij

,

I3,6 =
1

Km

∑
s,s−Km∈Sj(Km)

pT
ij(X(s)−Xvs + Xvs−Km

−X(s−Km))

pT
ijΣ(τj−1, τj)pij

· (e(J(s))− e(Jvs)− e(J(s−Km)) + e(Jvs−Km
))Tpij.

We consider I3,2 first, which by Lemma 4 has

I3,2 = OP (nK−1
m · n−1) = OP (K−1

m ) = OP (n−2/3).

Using Assumption (W1) to (W3) and the rate n−1/4 of jumps removal in Fan and

Wang (2007), we have

I3,3 = OP (n−1/2), I3,5 = OP (n−1/4),

I3,6 = OP (n−1/2n−1/4) = OP (n−3/4).

Using Assumption (E3), we have

I3,4 = OP (K−2
m · n · n−1) = OP (n−2/3).
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Instead of considering the rate of I3,1(m), we consdier

pTijΣ(τj−1, τj)pij(
M∑
m=1

amI3,1(Km) + ζ(I3,1(K1)− I3,1(KM)))

=
M∑
m=1

am
1

Km

∑
s,s−Km∈Sj(Km)

(pTij(ε(s)− ε(s−Km)))2

+ ζ(
1

K1

∑
s,s−K1∈Sj(K1)

(pTij(ε(s)− ε(s−K1)))2 (3.9)

− 1

KM

∑
s,s−KM∈Sj(KM )

(pTij(ε(s)− ε(s−KM)))2)

=J1 − 2J2 + J3, (3.10)

where

J1 =
M∑
m=1

am
1

Km

∑
s,s−Km∈Sj(Km)

(pT
ijε(s))

2

+ ζ
( 1

K1

∑
s,s−K1∈Sj(K1)

(pT
ijε(s))

2 − 1

KM

∑
s,s−KM∈Sj(KM )

(pT
ijε(s))

2
)
,

J2 =
M∑
m=1

am
1

Km

∑
s,s−Km∈Sj(Km)

(pT
ijε(s)ε(s−Km)Tpij)

+ ζ
( 1

K1

∑
s,s−K1∈Sj(K1)

(pT
ijε(s)ε(s−K1)Tpij)

− 1

KM

∑
s,s−KM∈Sj(KM )

(pT
ijε(s)ε(s−KM)Tpij)

)
,

J3 =
M∑
m=1

am
1

Km

∑
s,s−Km∈Sj(Km)

(pT
ijε(s−Km))2

+ ζ
( 1

K1

∑
s,s−K1∈Sj(K1)

(pT
ijε(s−K1))2 − 1

KM

∑
s,s−KM∈Sj(KM )

(pT
ijε(s−KM))2

)
.

Writing gijm,s = pT
ijε(s)ε(s−Km)Tpij, by Lemma 2.7 of Bai and Silverstein (1998),

E

{( 1

Km

∑
s,s−Km∈Sj(m)

gijm,s

)2∣∣∣Fij} = O(K−2
m n · 1 + n−1 ·K−2

m n2 · 1) = O(K−2
m n), hence

1

Km

∑
s,s−Km∈Sj(m)

gijm,s = OP (K−1
m n1/2) = OP (n−1/6),
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which implies that

J2 = OP (n−1/6 + n−1/3) = OP (n−1/6).

We can further decompose J1 = J11 + J12 + J13, where

J11 =
M∑
m=1

am
1

Km

∑
s,s−Km∈Sj(Km)

(
(pT

ijε(s))
2 − pT

ijΣ
j
ε,spij

)
,

J12 = ζ

(
1

K1

∑
s,s−K1∈Sj(K1)

(
(pT

ijε(s))
2 − pT

ijΣ
j
ε,spij

)
− 1

KM

∑
s,s−KM∈Sj(KM )

(
(pT

ijε(s))
2 − pT

ijΣ
j
ε,spij

))
,

J13 =
M∑
m=1

am
1

Km

∑
s,s−Km∈Sj(Km)

pT
ijΣ

j
ε,spij

+ ζ
( 1

K1

∑
s,s−K1∈Sj(K1)

pT
ijΣ

j
ε,spij −

1

KM

∑
s,s−KM∈Sj(KM )

pT
ijΣ

j
ε,spij

)
.

Now define gijs = pT
ijε(s)−pT

ijΣ
j
ε,spij. Using Lemma 2.7 of Bai and Silverstein (1998)

under Assumption (E1) to (E3), we have

Ej((
1

Km

∑
s,s−Km∈Sj(Km)

gijs )2|{Σε,u, u ∈ [0, 1]})

= K−2
m

∑
s,s−Km∈Sj(K)

Ej((g
ij
s )2|{Σε,u, u ∈ [0, 1]})

+K−2
m

∑
s1 6=s2

Ej(g
ij
s1
gijs2|{Σε,u, u ∈ [0, 1]})

= O(K−2
m n · 1 +K−2

m n2 · n−1 · 1) = OP (n−1/3).

The above implies that

J11 = OP (n−1/6) = J12.

As for the rate of J13, we can do a further decomposition J13 = J
(1)
13 + J

(2)
13 + J

(3)
13 ,
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where cm = n−Km+1
Km

and

J
(1)
13 =

M∑
m=1

am
( 1

Km

∑
s,s−Km∈Sj(Km)

pT
ijΣ

j
ε,spij − cmpT

ijE(Σj
ε,s)pij

)
,

J
(2)
13 =ζ

(( 1

K1

∑
s,s−K1∈Sj(K1)

pT
ijΣ

j
ε,spij − c1p

T
ijE(Σj

ε,s)pij
)

−
( 1

KM

∑
s,s−KM∈Sj(KM )

pT
ijΣ

j
ε,spij − cMpT

ijE(Σj
ε,s)pij

))
,

J
(3)
13 =

( M∑
m=1

amcm + ζ
(
c1 − cM

))
pT
ijE(Σj

ε,s)pij.

Parallel to the argument used for J11, under Assumption (E3), we have

J
(1)
13 = OP (K−2

m n+K−2
m n2 · n−1)1/2 = OP (n−1/6).

Similarly,

J
(2)
13 = OP (n−1/6 · n−1/6) = OP (n−1/3).

By the same technique used in the proof of Theorem 1 in Tao et al. (2013), and the

definition of am, ζ in 3.3 and cm shown above, we have J
(3)
13 = 0. Hence

J13 = OP (n−1/6).

This implies that

J1 = OP (n−1/6) = J3.

Combining these rates, we have

M∑
m=1

amI3,1(Km) + ζ(I3,1(K1)− I3,1(KM)) = OP (n−1/6).

Hence this, together with the rates for I3,2 to I3,6, allow us to conclude that

max
i=1,...,p
j=1,...,L

∣∣∣∣ I3

pT
ijΣ(τj−1, τj)pij

∣∣∣∣ = OP (n−1/6). (3.11)
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Combining (3.7), (3.8) and (3.11), we thus have

max
i=1,...,p
j=1,...,L

∣∣∣∣pT
ijΣ̃(τj−1, τj)

Mpij

pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣ = OP (n−1/6 + p
1/2
f n−1/2).

For Σ̂(0, 1)M , we have

∥∥Σ̂(0, 1)MΣIdeal(0, 1)−1 − Ip
∥∥

=

∥∥∥∥ L∑
j=1

(Σ̂(τj−1, τj)
MΣIdeal(τj−1, τj)

−1 − Ip)ΣIdeal(τj−1, τj)ΣIdeal(0, 1)−1

∥∥∥∥
≤

L∑
j=1

∥∥Σ̂(τj−1, τj)
MΣIdeal(τj−1, τj)

−1 − Ip
∥∥

·
∥∥∥∥diag(PT

−jΣ(τj−1, τj)P−j) ·
(

diag(PT
−jΣ(τj−1, τj)P−j) +

∑
i 6=j

PT
−jΣIdeal(τi−1, τi)P−j

)−1∥∥∥∥
= OP

(
(n−1/6 + p

1/2
f n−1/2)

· max
j=1,...,L

∥∥∥∥(Ip +
∑
i 6=j

PT
−jΣIdeal(τi−1, τi)P−jdiag−1(PT

−jΣ(τj−1, τj)P−j)

)−1∥∥∥∥)
= OP (n−1/6 + p

1/2
f n−1/2). �

3.7.2 Proof of the Theorem 2

In this proof we drop the subscripts j in γ
(h)
j (Ỹ

(J)
j ) since we are working within

partition j already. Define, for a time series of vectors Y(·),

Y(J)(1) = J−1

J−1∑
l=0

Y(l), Y(J)(n− 2J + 1) = J−1

n∑
l=n−J+1

Y(l),

Y(J)(s) = Ỹ(s+ J − 1), s = 2, . . . , n− 2J.

To extract the jittering effects for analysis, define

Ỹ∗(J)(1) = X̃(J), Ỹ∗(J)(n− 2J + 1) = X̃(n− J),

Ỹ∗(J)(s) = Ỹ(J)(s) = Ỹ(s+ J − 1), s = 2, . . . , n− 2J.
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Then we have

pT
ijK(Ỹ(J))pij − pT

ijK(Ỹ∗(J))pij = pT
ijE

(0)
J pij + 2

n−2J∑
h=1

kH(h)pT
ijE

(h)
J pij,

where kH(h) = k((h− 1)/H) or k(h/H), and E
(h)
J = E

(h)
J,1 + E

(h)
J,2, where for h > 0,

E
(h)
J,1 = (Ỹ(J)(h+ 2)− Ỹ(J)(h+ 1))(X̃(J)− Ỹ(J)(1))T,

E
(h)
J,2 = (Ỹ(J)(n− 2J + 1)− X̃(n− J))(Ỹ(J)(n− 2J + 1− h)− Ỹ(J)(n− 2J − h))T,

pT
ijE

(0)
J,1pij = (pT

ij(Ỹ
(J)(2)− Ỹ(J)(1)))2 − (pT

ij(Ỹ
(J)(2)− X̃(J)))2,

pT
ijE

(0)
J,2pij = (pT

ij(Ỹ
(J)(n− 2J + 1)− Ỹ(J)(n− 2J)))2 − (pT

ij(X̃(n− J)− Ỹ(J)(n− 2J)))2.

We now present a proposition on the rate of jittering effects from NER-KRVM or

NER-KRPVM.

Proposition 1. Let all the assumptions in Theorem 4 hold. Then with p/n→ c ≥ 0,

pT
ijE

(0)
J pij + 2

∑n−2J
h=1 kH(h)pT

ijE
(h)
J pij

pT
ijΣ(τj−1, τj)pij

= OP (J−1 + Jn−1 + (J−1/2 + J1/2n−1/2)(H1/2n−1/2 + p
1/2
f Hn−1 + n−1/4)),

where pf = 1 when there are no factors, or pf = p when there are pervasive factors

in the log-price processes.

Proof of Proposition 1. We shall only consider E
(h)
J,1 for h ≥ 0 in this proof since E

(h)
J,2

can be treated exactly the same with the same rate. Consider

pT
ij(Ỹ

(J)(1)− X̃(J))

(pT
ijΣ(τj−1, τj)pij)1/2

= I1 + I2 + I3, where

I1 = J−1

J−1∑
s=0

pT
ij(X(s)−X(J))

(pT
ijΣ(τj−1, τj)pij)1/2

, I2 = J−1

J−1∑
s=0

pT
ij(e(J(s))− e(J(J)))

(pT
ijΣ(τj−1, τj)pij)1/2

,

I3 = J−1

J−1∑
s=0

pT
ijε(s)

(pT
ijΣ(τj−1, τj)pij)1/2

.

Under Assumption (W1) to (W3) and the rate of jumps removal at n−1/4 from Fan

and Wang (2007),

I2 = OP (n−1/4).
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Also, with Assumption (E3),

Ej(I3)2 = O(J−2 · J + J−2 · J2 · n−1) = O(J−1),

so that

I3 = OP (J−1/2).

For I1, using the result of Lemma 4 and Assumptions (D1) and (V1),

I1 = J−1

J−1∑
s=0

pT
ij(X(s)−Xvs)

(pT
ijΣ(τj−1, τj)pij)1/2

+ J−1

J−1∑
s=0

pT
ij(Xvs −XvJ )

(pT
ijΣ(τj−1, τj)pij)1/2

+ J−1

J−1∑
s=0

pT
ij(XvJ −X(J))

(pT
ijΣ(τj−1, τj)pij)1/2

= OP (n−1/2) +OP (J−1

J−1∑
s=0

(p
1/2
f (J − s)1/2n−1 + (J − s)1/2n−1/2)) +OP (n−1/2)

= OP (p
1/2
f J1/2n−1 + J1/2n−1/2) = OP (J1/2n−1/2).

Hence we have

pT
ij(Ỹ

(J)(1)− X̃(J))

(pT
ijΣ(τj−1, τj)pij)1/2

= OP (J−1/2 + J1/2n−1/2 + n−1/4). (3.12)

Now consider

JE = pT
ijE

(h)
J,1pij + 2

n−2J∑
h=1

kH(h)pT
ijE

(h)
J,1pij

= [pT
ij(Ỹ

(J)(1)− X̃(J))]2 + 2pT
ij(Ỹ

(J)(1)− X̃(J)) ·R(J), where

R(J) = pT
ij(X̃(J)− Ỹ(J + 1)) +

n−2J∑
h=1

kH(h)pT
ij(Ỹ(h+ J)− Ỹ(h+ J + 1)).
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If kH(h) = k((h− 1)/H), then

R(J)

= pT
ijX̃(J) +

n−2J∑
h=2

(kH(h)− kH(h− 1))pT
ijỸ(h+ J) + kH(n− 2J)pT

ijỸ(n− J + 1)

=
n−2J∑
h=2

(kH(h)− kH(h− 1))pT
ij(Ỹ(h+ J)− X̃(J)) + kH(n− 2J)pT

ij(X̃(J) + Ỹ(n− J + 1))

=
n−2J∑
h=2

k′(ξh−1)H−1(Ỹ(h+ J)− X̃(J)) +OP (n−1),

where (h − 2)/H ≤ ξh−1 ≤ (h − 1)/H. If kH(h) = k(h/H), following the above

steps, we can show

R(J) =
n−2J∑
h=1

k′(ξh)H
−1(Ỹ(h+ J)− X̃(J)) +OP (n−1)

= D1 +D2 +D3 +OP (1), where

D1 =
n−2J∑
h=1

k′(ξh)H
−1pT

ij(X(h+ J)−X(J)),

D2 =
n−2J∑
h=1

k′(ξh)H
−1pT

ij(e(J(h+ J))− e(J(J))),

D3 =
n−2J∑
h=1

k′(ξh)H
−1pT

ijε(h+ J).

Using Assumption (W1) to (W3) and the rate of jump removal in Fan and Wang

(2007),

D2/(p
T
ijΣ(τj−1, τj)pij)

1/2 = OP (n−1/4).

With Assumption (E3),

D3/(p
T
ijΣ(τj−1, τj)pij)

1/2 = OP (H−1/2 + n−1/2) = OP (n−1/2).
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We further decompose D1 = D11 +D12 +D13, where

D11 =
n−2J∑
h=1

k′(ξh)H
−1pT

ij(X(h+ J)−Xvh+J
),

D12 =
n−2J∑
h=1

k′(ξh)H
−1pT

ij(Xvh+J
−XvJ ),

D13 =
n−2J∑
h=1

k′(ξh)H
−1pT

ij(XvJ −X(J)).

Using (3.5) and Assumption (A4), we have

D11

(pT
ijΣ(τj−1, τj)pij)1/2

=
n−2J∑
h=1

k′(ξh)H
−1(Aijd (h+ J) + Aijv (h+ J))

= OP (H−1/2n−1/2 + p
1/2
f n−1).

Using Lemma 4, we also have

D13

(pT
ijΣ(τj−1, τj)pij)1/2

= OP (n−1/2).

To find the rate of D12, We decompose D12 = D12,d +D12,v, where

D12,d

(pT
ijΣ(τj−1, τj)pij)1/2

=
n−2J∑
h=1

k′(eh)H
−1

h∑
s=1

pT
ijA(vs+j−1, vs+J)Zj

d,s

(pT
ijΣ(τj−1, τj)pij)1/2

= OP (p
1/2
f Hn−1),

D12,v

(pT
ijΣ(τj−1, τj)pij)1/2

=
n−2J∑
h=1

k′(eh)H
−1

h∑
s=1

pT
ijΣ(vs+j−1, vs+J)1/2Zj

v,s

(pT
ijΣ(τj−1, τj)pij)1/2

=
n−2J∑
h=1

k′(eh)H
−1OP (h1/2n−1/2) = OP (H1/2n−1/2).

Hence combining the rates obtained,

R(J)

(pT
ijΣ(τj−1, τj)pij)1/2

= OP (H1/2n−1/2 + p
1/2
f Hn−1 + n−1/4). (3.13)

With (3.12) and (3.13), and the fact that the terms involving E
(h)
J,2 give exactly the

161



same rates as those involving E
(h)
J,1, the jittering effect has

pT
ijE

(h)
J pij + 2

∑n−2J
h=1 kH(h)pT

ijE
(h)
J pij

pT
ijΣ(τj−1, τj)pij

= OP (J−1 + Jn−1 + n−1/4 + (J−1/2 + J1/2n−1/2)(H1/2n−1/2 + p
1/2
f Hn−1 + n−1/4)). �

To finish the proof of Theorem 2, using the notation in the proof of Proposition 1,

we decompose

pT
ijK(Ỹ∗(J))pij

pT
ijΣ(τj−1, τj)pij

− 1 = K1 +K21 +K22 +K3, with

K1 =
pT
ijγ

(0)(X̃
∗(J)
v )pij + 2

∑n−2J
h=1 kH(h)pT

ijγ
(h)(X̃

∗(J)
v )pij

pT
ijΣ(τj−1, τj)pij

− 1,

K21 =
pT
ijγ

(0)(X̃
∗(J)
v ,E∗(J))pij + 2

∑n−2J
h=1 kH(h)pT

ijγ
(h)(X̃

∗(J)
v ,E∗(J))pij

pT
ijΣ(τj−1, τj)pij

,

K22 =
pT
ijγ

(0)(E∗(J), X̃
∗(J)
v )pij + 2

∑n−2J
h=1 kH(h)pT

ijγ
(h)(E∗(J), X̃

∗(J)
v )pij

pT
ijΣ(τj−1, τj)pij

,

K3 =
pT
ijγ

(0)(E∗(J))pij + 2
∑n−2J

h=1 kH(h)pT
ijγ

(h)(E∗(J))pij

pT
ijΣ(τj−1, τj)pij

,

where we define

X̃∗(J)
vs = Xvs+J−1

+ e(J(s+ J − 1)),

E∗(J)(s) =

 0, s = 1, n− 2J + 1;

(X(s+ J − 1)−Xvs+J−1
) + ε(s+ J − 1), otherwise.

,

and

γ(h)(X̃∗(J)
v ,E∗(J)) =

n−2J+1∑
s=h+2

(X̃∗(J)
vs − X̃∗(J)

vs−1
)(E∗(J)(s− h)− E∗(J)(s− h− 1))T,

with similar definition for γ(h)(E∗(J), X̃
∗(J)
v ).

Proposition 2. Let all the assumptions in Theorem 4 hold. Then with p/n→ c ≥ 0,

K1 = OP (p
1/2
f H1/2n−1/2 + p

1/2
f n−1/4),
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where pf = 1 when there are no factors, or pf = p when there are pervasive factors

in the log-price processes.

Proof of Proposition 2. Firstly, by Lemma 3, since J = o(n), we immediately have

∣∣∣∣∣pT
ijγ

(0)(X̃
∗(J)
v )pij

pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣∣ = OP (1 · n−1/2 + p
1/2
f n−1/2) = OP (p

1/2
f n−1/2).

Also, defining

zijd,s =
pT
ijA(vs+J−2, vs+J−1)Zj

d,s+J−1

(pT
ijΣ(τj−1, τj)pij)1/2

, zijv,s =
pT
ijΣ(vs+J−2, vs+J−1)1/2Zj

v,s+J−1

(pT
ijΣ(τj−1, τj)pij)1/2

,

eijs =
pT
ij(e(J(s+ J − 1))− e(J(s+ J − 2)))

(pT
ijΣ(τj−1, τj)pij)1/2

,

we can decompose (we omit any superscripts ij if no ambiguity arises)

∑n−2J
h=1 kH(h)pT

ijγ
(h)(X̃

∗(J)
v )pij

(pT
ijΣ(τj−1, τj)pij)1/2

=
7∑
r=1

Mr, where

M1 =
n−2J+1∑
s=3

zd,s

s−2∑
h=1

kH(h)zd,s−h, M2 =
n−2J+1∑
s=3

zd,s

s−2∑
h=1

kH(h)zv,s−h,

M3 =
n−2J+1∑
s=3

zv,s

s−2∑
h=1

kH(h)zd,s−h, M4 =
n−2J+1∑
s=3

zv,s

s−2∑
h=1

kH(h)zv,s−h,

M5 =
n−2J+1∑
s=3

es

s−2∑
h=1

kH(h)(zd,s−h + zv,s−h),

M6 =
n−2J+1∑
s=3

(zd,s + zv,s)
s−2∑
h=1

kH(h)es−h, M7 =
n−2J+1∑
s=3

es

s−2∑
h=1

kH(h)es−h.

Using Assumption (D1), we have

M1 = OP (pfHn
−1).

Using Assumption (D1) and (V1),

M2 = OP (p
1/2
f H1/2n−1/2).
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Using the Burkholder’s inequality,

M3 = OP (n · n−1 · pfH2n−2)1/2 = OP (p
1/2
f Hn−1).

Using the Burkholder’s inequality again,

M4 = OP (n · n−1 ·Hn−1)1/2 = OP (H1/2n−1/2).

Finally, with Assumption (W1) to (W3), using the jump removal rate n−1/4 from

Fan and Wang (2007),

M5 = OP (n−1/4·(p1/2
f Hn−1+H1/2n−1/2)), M6 = OP (p

1/2
f n−1/4+n−1/4), M7 = OP (n−1/2).

Combining all the rates calculated, we can conclude that

K1 = OP (p
1/2
f H1/2n−1/2 + p

1/2
f n−1/4). �

Proposition 3. Let all the assumptions in Theorem 4 hold. Then with p/n→ c ≥ 0,

K3 =

 OP (H−3/2n1/2), kH(h) = k((h− 1)/H);

OP (H−2n), kH(h) = k(h/H).

Proof of Proposition 3. Firstly, define

rijs =
pT
ijE
∗(J)(s)

(pT
ijΣ(τj−1, τj)pij)1/2

,

so that by the definition of E∗(J)(s), rij1 = rijn−2J+1 = 0.

If no ambiguity arises, we drop the superscript in rijs for easier presentation. Consider
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the decomposition

pT
ijγ

(0)(E∗(J))pij + 2
∑n−2J+1

h=1 kH(h)pT
ijγ

(h)(E∗(J))pij

pT
ijΣ(τj−1, τj)pij

=
n−2J+1∑
s=2

(rs − rs−1)2 + 2
n−2J∑
h=1

kH(h)
n−2J+1∑
s=h+2

(rs − rs−1)(rs−h − rs−h−1)

=
n−2J+1∑
s=2

(rs − rs−1)2 + 2
n−2J+1∑
s=2

(rs − rs−1)
s−2∑
h=1

kH(h)(rs−h − rs−h−1)

=
n−2J+1∑
s=2

(rs − rs−1)

(
rs − rs−1 + 2

s−2∑
h=1

kH(h)(rs−h − rs−h−1)

)

= r2
2 +

n−2J+1∑
s=3

(rs − rs−1)

(
(rs + rs−1) + (2kH(1)rs−1 − 2rs−1)

+ 2
s−2∑
h=2

(
kH(h)− kH(h− 1)

)
rs−h

)
= IE1 + IE2 + IE3, where

IE1 =
n−2J+1∑
s=2

(r2
s − r2

s−1), IE2 = 2(kH(1)− 1)
n−2J+1∑
s=3

(rs − rs−1)rs−1,

IE3 = 2
n−2J+1∑
s=4

(rs − rs−1)
s−2∑
h=2

k′(ξh)H
−1rs−h,

where (h− 2)/H ≤ ξh ≤ (h− 1)/H if kH(h) = k((h− 1)/H), and (h− 1)/H ≤ ξh ≤
h/H if kH(h) = k(h/H).

Firstly, since r1 = rn−2J+1 = 0, we have

IE1 = 0.

Secondly, IE2 = 0 if kH(h) = k((h− 1)/H) since then kH(1) = k(0) = 1.

For kH(h) = k(h/H), using the fact that k′(0) = 0,

IE2 = 2k′(ξ1)H−1

n−2J+1∑
s=3

(rs − rs−1)rs−1

= 2k′′(ξ′1)ξ1H
−1

n−2J+1∑
s=3

(rs − rs−1)rs−1, 0 ≤ ξ′1 ≤ ξ1 ≤ H−1.
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Decompose further rs = rx,s + rε,s, where

rx,s =
pT
ij(X(s)−Xvs)

(pT
ijΣ(τj−1, τj)pij)1/2

, rε,s =
pT
ijε(s)

(pT
ijΣ(τj−1, τj)pij)1/2

.

Then by Lemma 4 and Assumption (E1), we have

IE2 ≤ 8H−2k′′(ξ′1)
n−2J+1∑
s=3

(r2
x,s−1 + r2

ε,s−1) = OP (H−2(1 + n)) = OP (H−2n).

Hence we have

IE2 =

 0, kH(h) = k((h− 1)/H);

OP (H−2n), kH(h) = k(h/H).

We decompose

IE3 = 2
n−2J+1∑
s=4

rs

s−2∑
h=2

k′(ξh)H
−1rs−h − 2

n−2J∑
s=3

rs

s−1∑
h=2

k′(ξh)H
−1rs−h+1

= 2
n−2J∑
s=3

rs

s−1∑
h=2

k′(ξh)H
−1(rs−h − rs−h+1)

= 2
n−2J∑
s=3

rs

(
s−1∑
h=2

k′(ξh)H
−1rs−h −

s−2∑
h=1

k′(ξh+1)H−1rs−h

)

= 2
n−2J∑
s=3

rs

(
s−2∑
h=1

k′′(ξ′h)(ξh − ξh+1)H−1rs−h − k′(ξ1)H−1rs−1

)
, ξh ≤ ξ′h ≤ ξh+1

= IE3,1 + IE3,2, where

IE3,1 = −2
n−2J∑
s=3

k′(ξ1)H−1rsrs−1, IE3,2 = 2
n−2J∑
s=3

rs

s−2∑
h=1

k′′(ξ′h)(ξh − ξh+1)H−1rs−h.

For kH(h) = k((h−1)/H), ξ1 = 0 with k′(ξ1) = kH(1)−1 = 0, and hence IE3,1 = 0.

For kH(h) = k(h/H), using Lemma 4 and Assumption (E3),

IE3,1 = −2
n−2J∑
s=3

k′′(ξ′1)ξ1H
−1rsrs−1

= OP (H−1n−1 + (H−3n−1 +H−2n−1n−1)1/2 + (H−3 +H−2n−1)1/2) = OP (H−3/2).
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For IE3,2, we have

IE3,2 = Op(pfH
−1n−1 + (n · n−1H−3n−1)1/2 + (nH−3)1/2) = OP (pfH

−1n−1 +H−3/2n1/2)

= OP (H−3/2n1/2),

which gives IE3 = OP (H−3/2n1/2). Hence combining the rates for IE1 to IE3, we

have

K3 =

 OP (0 + 0 +H−3/2n1/2) = OP (H−3/2n1/2), kH(h) = k((h− 1)/H);

OP (0 +H−2n+H−3/2n1/2) = OP (H−2n), kH(h) = k(h/H).
�

Proposition 4. Let all the assumptions in Theorem 4 hold. Then with p/n→ c ≥ 0,

K21 +K22 = OP (H−1/2 + n−1/4 + p
1/2
f n−1/2 +H−1n1/4 + J1/2n−1/2),

where pf = 1 when there are no factors, or pf = p when there are pervasive factors

in the log-price processes.

Proof of Proposition 4. Using the notations used in the proof of Proposition 3,

dropping superscripts ij in rijs , we can decompose

K21 =
n−2J+1∑
s=2

pT
ij(X̃

∗(J)
vs − X̃∗(J)

vs−1
)

(
rs − rs−1 + 2

s−2∑
h=1

kH(h)(rs−h − rs−h−1)

)

=
n−2J+1∑
s=2

pT
ij(X̃

∗(J)
vs − X̃∗(J)

vs−1
)

(
(rs + rs−1) + 2(kH(1)− 1)rs−1

+ 2
s−2∑
h=2

(
kH(h)− kH(h− 1)

)
rs−h

)
.

Similarly,

K22 =
n−2J+1∑
s=2

(rs − rs−1)

(
pT
ij(X̃

∗(J)
vs − X̃∗(J)

vs−1
) + 2

s−2∑
h=1

kH(h)pT
ij(X̃

∗(J)
vs−h
− X̃∗(J)

vs−h−1
)

)

=
n−2J+1∑
s=2

(rs − rs−1)

(
pT
ij(X̃

∗(J)
vs + X̃∗(J)

vs−1
) + 2(kH(1)− 1)pT

ijX̃vs−1

+

{
2
s−2∑
h=2

(
kH(h)− kH(h− 1)

)
pT
ijX̃

∗(J)
vs−h
− 2kH(s− 2)pT

ijX̃
∗(J)
v1

})
.
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Hence we have K21 +K22 =
∑6

i=1CEi, where

CE1 = 2
n−2J+1∑
s=2

pT
ij(X̃

∗(J)
vs rs − X̃∗(J)

vs−1
rs−1),

CE2 = 2(kH(1)− 1)
n−2J+1∑
s=3

pT
ij(X̃

∗(J)
vs − X̃∗(J)

vs−1
)rs−1,

CE3 = 2(kH(1)− 1)
n−2J+1∑
s=3

pT
ijX̃

∗(J)
vs−1

(rs − rs−1),

CE4 = 2
n−2J+1∑
s=4

pT
ij(X̃

∗(J)
vs − X̃∗(J)

vs−1
)
s−2∑
h=2

k′(ξh)H
−1rs−h,

CE5 = 2
n−2J+1∑
s=4

(rs − rs−1)
s−2∑
h=2

k′(ξh)H
−1pT

ijX̃
∗(J)
vs−h

,

CE6 = −2
n−2J+1∑
s=3

(rs − rs−1)kH(s− 2)pT
ijX̃

∗(J)
v1

.

Using r1 = rn−2J+1 = 0, we have

CE1 = 0.

For kH(h) = k((h− 1)/H), CE2 = CE3 = 0. Otherwise, using the notations in the

proof of Proposition 2 and dropping the superscripts ij in zijd,s, z
ij
v,s and eijs when no

ambiguity arises,

CE2 = 2k′′(ξ′1)ξ1H
−1

n−2J+1∑
s=3

(zd,s + zv,s + es)rs−1, 0 ≤ ξ′1 ≤ ξ1 ≤ H−1

= OP (H−2 · (p1/2
f n−1/2 + n1/2 · n−1/2 + n−1/4)) = Op(H

−2).

where we used Assumption (D1), (V1), (E3) and Lemma 4. Similarly,

CE3 = 2k′′(ξ′1)ξ1H
−1

(
n−2J+1∑
s=3

pT
ij(X̃

∗(J)
vs−1
− X̃∗(J)

vs )rs − pT
ijX̃

∗(J)
v2

r2

)

= OP (H−2 +H−2(J1/2n−1/2 + n−1/4)) = OP (H−2).
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We also have

CE4 = 2
n−2J+1∑
s=4

(zd,s + zv,s + es)
s−2∑
h=2

k′(ξh)H
−1rs−h = CE4,d + CE4,v + CE4,e,

where

CE4,d = OP (pfn
−1 + p

1/2
f H−1/2n−1/2 + p

1/2
f H−1/2) = OP (p

1/2
f H−1/2),

CE4,v = OP (n · n−1 · (H−3 +H−2n−1 +H−2 +H−1n−1 + n−1)1/2)1/2

= OP (H−1/2 + n−1/4),

CE4,e = OP (H−1/2n−1/4).

Hence

CE4 = OP (H−1/2 + n−1/4).

For CE5, we have

CE5 = 2
n−2J+1∑
s=4

rs

s−2∑
h=2

k′(ξh)H
−1pT

ijX̃
∗(J)
vs−h
− 2

n−2J∑
s=3

rs

s−1∑
h=2

k′(ξh)H
−1pT

ijX̃
∗(J)
vs−h+1

= −2r3k
′(ξ2)H−1pT

ijX̃
∗(J)
v2

+ 2
n−2J∑
s=4

rs

( s−2∑
h=2

k′(ξh)H
−1pT

ij(X̃
∗(J)
vs−h
− X̃∗(J)

vs−h+1
)− k′(ξs−1)H−1pT

ijX̃
∗(J)
v2

)
= OP (H−1(J1/2n−1/2 + n−1/4) + (n · pfn−2 + n ·H−1n−1 + n ·H−2n−1/2)1/2

+H−1/2(J1/2n−1/2 + n−1/4))

= OP (p
1/2
f n−1/2 +H−1/2 +H−1n1/4).

Finally,

CE6 =

(
−2

n−2J∑
s=3

rskH(s− 2) + 2
n−2J∑
s=2

rskH(s− 1)

)
pT
ijX̃

∗(J)
v1

= 2pT
ijX̃

∗(J)
v1

(
n−2J∑
s=3

rsk
′(ξs−1)H−1 + r2kH(1)

)

= OP ((J1/2n−1/2 + n−1/4)(H−1/2 + 1)) = OP (J1/2n−1/2 + n−1/4).
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Hence

K21 +K22 = OP (H−1/2 + n−1/4 + p
1/2
f n−1/2 +H−1n1/4 + J1/2n−1/2). �

To finish the proof of Theorem 2, we can combine the rates from Proposition 1 to 4

to arrive at

max
i=1,...,p
j=1,...,L

∣∣∣∣pT
ijΣ̃(τj−1, τj)

Kpij

pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣
= OP (J−1 + J1/2n−1/2 + p

1/2
f n−1/4 + p

1/2
f H1/2n−1/2 +H−3/2n1/2 +H−1/2 +H−1n1/4).

The optimized rate is achieved using H � n1/2, with the smallest order of J being

J � p
−1/2
f n1/4, and rate of convergence at p

1/2
f n−1/4. Hence when there are pervasive

factors, we need p = o(n1/2) for guaranteed convergence. Also, we have

max
i=1,...,p
j=1,...,L

∣∣∣∣pT
ijΣ̃(τj−1, τj)

KPpij

pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣
= OP (J−1 + J1/2n−1/2 + p

1/2
f n−1/4 + p

1/2
f H1/2n−1/2 +H−2n+H−1/2 +H−1n1/4).

The optimized rate is achieved using H � p
−1/5
f n3/5, with the smallest order of J

being J � p
−2/5
f n1/5, and rate of convergence at p

2/5
f n−1/5. Hence when there are

pervasive factors, we need p = o(n1/2) for guaranteed convergence.

For Σ̂(0, 1), we use the same argument at the end of the proof of Theorem 1 to

arrive at

∥∥Σ̂(0, 1)KΣIdeal(0, 1)− Ip
∥∥ = OP (p

1/2
f n−1/4),

where H � n1/2 and J � p
−1/2
f n1/4. Same treatment apply for Σ̂(0, 1)KP . This

completes the proof of the theorem. �

3.7.3 Proof of the Theorem 3

We first present the proof for Σ̃(τj−1, τj)
PP = P(Ỹ)j. Let

P(Ỹ)j =
1

ψQ

n−Q+1∑
s=1

¯̃
Ys

¯̃
Y

T

s , where
¯̃
Ys =

Q−1∑
l=1

g

(
l

Q

)
(Ỹs+l − Ỹs+l−1).
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Then we have

P(Ỹ)j =P(X̃)j + P(X̃,E)j + P(E, X̃)j + P(E)j, where

P(X̃)j =
1

ψQ

n−Q+1∑
s=1

¯̃
Xvs

¯̃
X

T

vs , with
¯̃
Xs =

Q−1∑
l=1

g

(
l

Q

)
(X̃vs+l

− X̃vs+l−1
),

P(E)j =
1

ψQ

n−Q+1∑
s=1

Ē(s)Ē(s)T, with Ēs =

Q−1∑
l=1

g

(
l

Q

)
(E(s+ l)− E(s+ l − 1)),

P(X̃,E)j =
1

ψQ

n−Q+1∑
s=1

¯̃
XvsĒ(s)T, P(E, X̃) = P(X̃,E)T.

Hence

pT
ijP(Ỹ)jpij = pT

ijP(X̃)jpij + 2pT
ijP(X̃,E)jpij + pT

ijP(E)jpij

= IPP1 + 2IPP2 + IPP3 . (3.14)

By the definition of ψ, as Q→∞, standard rate of convergence of Riemann integral

implies that ∣∣∣∣ 1

ψQ

Q−1∑
l=1

g

(
l

Q

)2

− 1

∣∣∣∣ = O(Q−1). (3.15)

We further decompose

IPP1 =pT
ijP(X̃)jpij

=pT
ij

( 1

ψQ

n−Q+1∑
s=1

(Q−1∑
l=0

g

(
l

Q

)
(X̃vs+l

− X̃vs+l−1
)

Q−1∑
l′=0

g

(
l′

Q

)
(X̃vs+l′

− X̃vs+l′−1
)T
))

pij

=
1

ψQ

Q−1∑
l=1

g2

(
l

Q

)
pT
ij

n−Q+1∑
s=1

(X̃vs+l
− X̃vs+l−1

)(X̃vs+l
− X̃vs+l−1

)Tpij

+
1

ψQ

∑
l 6=l′

g

(
l

Q

)
g

(
l′

Q

)
pT
ij

n−Q+1∑
s=1

(X̃vs+l
− X̃vs+l−1

)(X̃vs+l′
− X̃vs+l′−1

)Tpij,

=IPP1,1 + IPP1,2 .

Then by Lemma 3 and (3.15),

∣∣∣∣ IPP1,1

pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣ = OP (p
1/2
f n−1/2 +Q−1). (3.16)

171



For IPP1,2 ,

IPP1,2 = 2(ψQ)−1

n−Q+1∑
s=1

Q−1∑
l=2

g

(
l

Q

)
pT
ij(X̃vs+l

− X̃vs+l−1
)
l−1∑
l′=1

g

(
l′

Q

)
pT
ij(X̃vs+l′

− X̃vs+l′−1
)

= 2(ψQ)−1

n−Q+1∑
s=1

Q−1∑
l=2

g

(
l

Q

)
pT
ij(Xvs+l

−Xvs+l−1
+ e(Jvs+l

)− e(Jvs+l−1
))

·
l−1∑
l′=1

g

(
l′

Q

)
pT
ij(Xvs+l′

−Xvs+l′−1
+ e(Jvs+l′

)− e(Jvs+l′−1
))

= 2(ψQ)−1(P1 + P2 + P3 + P4),

where

P1 =

n−Q+1∑
s=1

Q−1∑
l=2

g

(
l

Q

)
pT
ij(Xvs+l

−Xvs+l−1
)
l−1∑
l′=1

g

(
l′

Q

)
pT
ij(Xvs+l′

−Xvs+l′−1
),

P2 =

n−Q+1∑
s=1

Q−1∑
l=2

g

(
l

Q

)
pT
ij(Xvs+l

−Xvs+l−1
)
l−1∑
l′=1

g

(
l′

Q

)
pT
ij(e(Jvs+l′

)− e(Jvs+l′−1
)),

P3 =

n−Q+1∑
s=1

Q−1∑
l=2

g

(
l

Q

)
pT
ij(e(Jvs+l

)− e(Jvs+l−1
))

l−1∑
l′=1

g

(
l′

Q

)
pT
ij(Xvs+l′

−Xvs+l′−1
),

P4 =

n−Q+1∑
s=1

Q−1∑
l=2

g

(
l

Q

)
pT
ij(e(Jvs+l

)− e(Jvs+l−1
))

l−1∑
l′=1

g

(
l′

Q

)
pT
ij(e(Jvs+l′

)− e(Jvs+l′−1
)).

We focus on P1 first. Defining

As(l) = g

(
l

Q

)
pT
ijA(vs+l−1, vs+l)Z

j
d,s+l, Vs(l) = g

(
l

Q

)
pT
ijΣ(vs+l−1, vs+l)

1/2Zj
v,s+l,

we can decompose P1 = Pa,a + Pa,v + Pv,a + Pv,v, where

Pa,v =

n−Q+1∑
s=1

Q−1∑
l=2

As(l)
l−1∑
l′=1

Vs(l
′), Pv,a =

n−Q+1∑
s=1

Q−1∑
l=2

Vs(l)
l−1∑
l′=1

As(l
′),
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and the other two terms are defined similarly. Since Ej(As(l)) = 0, and

Ej

(Q−1∑
l=2

As(l)

)2

=

Q−1∑
l=2

g2

(
l

Q

)
pT
ijA(vs+l−1, vs+l)A(vs+l−1, vs+l)

Tpij

+
∑
l 6=l′

g

(
l

Q

)
g

(
l′

Q

)
Ej(p

T
ijA(vs+l−1, vs+l)Z

j
d,s+lZ

j
d,s+l′A(vs+l′−1, vs+l′)

Tpij)

= O(Qpfn
−2 +Q2pfn

−2) = O(Q2pfn
−2),

we have

Pa,a = OP (n · (p1/2
f Qn−1)2) = OP (pfQ

2n−1).

Also, Burkholder’s inequality can be applied so that for a generic constant C which

can change values from line to line,

Ej

(Q−1∑
l=2

Vs(l)

)2

≤ C

Q−1∑
l=2

g2

(
l

Q

)
pT
ijΣ(vs+l−1, vs+l)pij = O(Qpfn

−1),

so that

Pa,v = OP (n · p1/2
f Qn−1 · p1/2

f Q1/2n−1/2) = OP (pfQ
3/2n−1/2).

Since E(Vs(l)
∑l−1

l′=1 As(l
′)|F−j ∪F jvs+l−1

) = 0, we can use Burkholder’s inequality so

that

Ej

( n−Q+1∑
s=1

Vs(l)
l−1∑
l′=1

As(l
′)

)2

≤ C

n−Q+1∑
s=1

E
1/2
j (Vs(l)

4)E
1/2
j

(
l−1∑
l′=1

As(l
′)

)4

= O(n · pfn−1 ·Q2pfn
−2) = O(p2

fQ
2n−2).

where the second inequality used Lemma 2.7 of Bai and Silverstein (1998). It means

that

Pv,a = OP (Q · pfQn−1) = OP (pfQ
2n−1).

Also, similar to the arguments above,

Ej

( n−Q+1∑
s=1

Vs(l)
l−1∑
l′=1

Vs(l
′)

)2

= O(n · pfn−1 ·Qpfn−1) = O(p2
fQn

−1).

Hence

Pv,v = OP (pfQ
3/2n−1/2).
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With these results, we have

P1/p
T
ijΣ(τj−1, τj)pij = OP (pfQ

2n−1 + p
1/2
f Q3/2n−1/2).

Using Assumption (W1) to (W3) and the rate of jump removal at n−1/4 from Fan

and Wang (2007), we have

P2

pT
ijΣ(τj−1, τj)pij

,
P3

pT
ijΣ(τj−1, τj)pij

= OP (p
1/2
f Q2n−5/4 +Q3/2n−3/4),

P4

pT
ijΣ(τj−1, τj)pij

= OP (Qn−1/2).

Hence using the rates for P1 to P4 found above, together with (3.16), we have

∣∣∣∣ IPP1

pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣ = OP (p
1/2
f Q1/2n−1/2 + pfQn

−1 +Q−1). (3.17)

We find the rate of IPP3 now. Using g(0) = g(1) = 0, we have

Ē(s) =

Q−1∑
l=1

g

(
l

Q

)
(E(s+ l)− E(s+ l − 1))

=

Q−1∑
l=0

[
g

(
l

Q

)
− g
(
l + 1

Q

)]
E(s+ l) = −Q−1

Q−1∑
l=0

g′el+1
E(s+ l),

where l/Q ≤ el+1 ≤ (l + 1)/Q. Hence

pT
ijĒ(s)Ē(s)Tpij = pT

ij

(
Q−1

Q−1∑
l=0

g′el+1
E(s+ l)

)(
Q−1

Q−1∑
l=0

g′el+1
E(s+ l)T

)
pij

= Q−2
(Q−1∑
l=0

g′2el+1
pT
ijE(s+ l)E(s+ l)Tpij +

∑
l 6=l′

g′el+1
g′el′+1

pT
ijE(s+ l)E(s+ l′)Tpij

)
.

(3.18)
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By Lemma 6 and Lemma 7, we then have

∣∣∣∣ IPP3

pT
ijΣ(τj−1, τj)pij

∣∣∣∣
=OP

(
Q−1Q−2

(Q−1∑
l=0

n−Q+1∑
s=1

pT
ij(E(s+ l)E(s+ l)T)pij

pT
ijΣ(τj−1, τj)pij

+ (3.19)

2
∑
l′<l

n−Q+1∑
s=1

pT
ij(E(s+ l)E(s+ l′)T)pij

pT
ijΣ(τj−1, τj)pij

))
=OP

(
Q−2(n) +Q−3/2(n1/2)

)
= OP

(
Q−2n). (3.20)

For IPP2 /pT
ijΣ(τj−1, τj)pij, it can be decomposed as

∑6
i=1 Li/p

T
ijΣ(τj−1, τj)pij, where

L1 =
1

ψQ

n−Q+1∑
s=1

Q−1∑
l=0

g

(
l

Q

)
pT
ij(Xvs+l

−Xvs+l−1
)

Q−1∑
l′=0

(−ge′
l′+1

)Q−1pT
ijε(s+ l′),

L2 =
1

ψQ

n−Q+1∑
s=1

Q−1∑
l=0

g

(
l

Q

)
pT
ij(Xvs+l

−Xvs+l−1
)

Q−1∑
l′=0

(−ge′
l′+1

)Q−1pT
ij(X(s+ l′)−Xvs+l′

),

L3 =
1

ψQ

n−Q+1∑
s=1

Q−1∑
l=0

g

(
l

Q

)
pT
ij(Xvs+l

−Xvs+l−1
)

·
Q−1∑
l′=0

(−ge′
l′+1

)Q−1pT
ij(e(J(s+ l′))− e(Jvs+l′

)),

L4 =
1

ψQ

n−Q+1∑
s=1

Q−1∑
l=0

g

(
l

Q

)
pT
ij(e(Jvs+l

)− e(Jvs+l−1
))

Q−1∑
l′=0

(−gel′+1
)Q−1pT

ijε(s+ l′),

L5 =
1

ψQ

n−Q+1∑
s=1

Q−1∑
l=0

g

(
l

Q

)
pT
ij(e(Jvs+l

)− e(Jvs+l−1
))

·
Q−1∑
l′=0

(−gel′+1
)Q−1pT

ij(X(s+ l′)−Xvs+l′
),

L6 =
1

ψQ

n−Q+1∑
s=1

Q−1∑
l=0

g

(
l

Q

)
pT
ij(e(Jvs+l

)− e(Jvs+l−1
))

·
Q−1∑
l′=0

(−gel′+1
)Q−1pT

ij(e(J(s+ l′))− e(Jvs+l′
)).
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Using notations as before, we have

Q−1∑
l=0

g

(
l

Q

)
pT
ij(Xvs+l

−Xvs+l−1
)

(pT
ijΣ(τj−1, τj)pij)1/2

=

Q−1∑
l=0

As(l) + Vs(l)

(pT
ijΣ(τj−1, τj)pij)1/2

= OP (p
1/2
f Qn−1 +Q1/2n−1/2),

Q−1∑
l=0

(−gel+1
)Q−1pT

ijε(s+ l)

(pT
ijΣ(τj−1, τj)pij)1/2

= OP (Q ·Q−2 +Q2 ·Q−2n−1)1/2 = OP (Q−1/2),

Q−1∑
l=0

(−gel+1
)Q−1

pT
ij(X(s+ l)−Xvs+l

)

(pT
ijΣ(τj−1, τj)pij)1/2

= OP (pfn
−1 +Q−1Q1/2n−1/2)

= OP (p
1/2
f n−1 +Q−1/2n−1/2).

With these, together with Assumption (W1) to (W3) and the rate of n−1/4 in Fan

and Wang (2007) for jump removal , we have

L3/p
T
ijΣ(τj−1, τj)pij = OP ((p

1/2
f Qn+Q1/2n−1/2) ·Q−1n−1/4)

= OP (p
1/2
f n−5/4 +Q−1/2n−3/4),

L4/p
T
ijΣ(τj−1, τj)pij = OP (Q−1 ·Q−1/2 ·Qn−1/4) = OP (Q−1/2n−1/4),

L5/p
T
ijΣ(τj−1, τj)pij = OP (Q−1Qn−1/4(p

1/2
f n−1 +Q−1/2n−1/2))

= OP (p
1/2
f n−5/4 +Q−1/2n−3/4),

L6/p
T
ijΣ(τj−1, τj)pij = OP (Q−1 ·Qn−1/4 · n−1/4) = OP (n−1/2).

For L1, consider L1 =
∑Q−1

l=0 L1,l′ , where

L1,l′ =
1

ψQ

n−Q+1∑
s=1

Q−1∑
l=0

g

(
l

Q

)
pT
ij(Xvs+l

−Xvs+l−1
)(−ge′

l′+1
)Q−1pT

ijε(s+ l′).

Then using Assumption (E3),

Ej(L
2
1,l′/(p

T
ijΣ(τj−1, τj)pij)

2) = O(Q−2 · n · (p1/2
f Qn−1 +Q1/2n−1/2)2Q−2)

= O(pfQ
−2n−1 +Q−3).

Hence

L1/p
T
ijΣ(τj−1, τj)pij = OP (p

1/2
f n−1/2 +Q−1/2).
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We also have

L2/p
T
ijΣ(τj−1, τj)pij = OP (Q−1n(pfQn

−1 +Q1/2n−1/2)(p
1/2
f n−1 +Q−1/2n−1/2))

= OP (pfn
−1 +Q−1).

Hence we have ∣∣∣∣ IPP2

pT
ijΣ(τj−1, τj)pij

∣∣∣∣ = OP (p
1/2
f n−1/2 +Q−1/2). (3.21)

The above results imply that

∣∣∣∣∣ pT
ijP(Ỹ)jpij

pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣∣ = OP (Q−1/2 +Q−2n+ p
1/2
f Q1/2n−1/2 + pfQn

−1).

When there are no factors, pf = 1, and so the best rate is to balance Q−2n and

Q1/2n−1/2, resulting in Q � n3/5 and a rate of convergence at n−1/5. When there

are pervasive factors such that pf = p, then we need Q � n3/5p−1/5, and rate of

convergence at n−1/5p2/5. Hence we need p = o(n1/2) for guaranteed convergence in

this case.

This completes the proof for the positive semi-definite version, since the above rate

does not depend on both the indices i and j.

Consider now NER-PRVM which is Σ̃(τj−1, τj)
P . Using the same decomposition as

P(Ỹ)j, we have

pT
ijΣ̃(τj−1, τj)

Ppij = pT
ijP(Ỹ)jpij − ς(ψQ)−1

n−Q+1∑
s=1

pT
ijη̂

(j)pij,

= IP1 + 2IP2 + IP3 ,

where IP1 , and IP2 are exactly the same as IPP1 and IPP2 from the decomposition of

pT
ijP(Ỹ)pij at the beginning of the proof, and

IP3 =
1

ψQ

n−Q+1∑
s=1

[
pT
ijĒ(s)Ē(s)Tpij − ς · pT

ijη̂
(j)pij

]
.
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From (3.17) and (3.21), we have

∣∣∣∣ IP1
pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣ = OP (p
1/2
f Q1/2n−1/2 + pfQn

−1 +Q−1),∣∣∣∣ IP2
pT
ijΣ(τj−1, τj)pij

∣∣∣∣ = OP (p
1/2
f n−1/2 +Q−1/2).

We can decompose IP3 = J1 + J2, where

J1 =
1

ψQ

n−Q+1∑
s=1

[
pT
ijĒ(s)Ē(s)Tpij − ςpT

ijΣ
j
ε,spij

]
,

J2 =
ς

ψQ

n−Q+1∑
s=1

(pT
ijΣ

j
ε,spij − pT

ijη̂
(j)pij).

Since Ē(s) =
∑Q−1

l=1 [g(l/Q)− g((l+ 1)/Q)]E(s+ l) = Q−1
∑Q−1

l=1 (−g′el+1
)E(s+ l), we

have

J1 = J1,1 + J1,2, where

J1,1 =
1

ψQ

Q−1∑
l=1

[
g

(
l

Q

)
− g
(
l + 1

Q

)]2 n−Q+1∑
s=1

(pT
ijE(s+ l)E(s+ l)Tpij − pT

ijΣ
j
ε,spij),

J1,2 = ψ−1Q−3
∑
l 6=l′

g′el+1
g′el′+1

n−Q+1∑
s=1

pT
ijE(s+ l)E(s+ l′)Tpij.

From (3.19), we know that

J1,2/p
T
ijΣ(τj−1, τj)pij = OP (Q−3/2n1/2). (3.22)

To find the rate of J1,1, for l < Q, it suffice to consider the rate of

n−Q+1∑
s=1

pT
ijE(s+ l)E(s+ l)Tpij − pT

ijΣ
j
ε,spij

pT
ijΣ(τj−1, τj)pij

= E ′1,1 + E ′1,2 + E2 + E3 + 2
6∑

k=4

Ek,

where E2 to E6 are essentially the same as those defined in the proof of Lemma 6
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(only with s replaced by s+ l and n by n−Q+ 1), and

E ′1,1 =

n−Q+1∑
s=1

pT
ijε(s+ l)ε(s+ l)Tpij − pT

ijΣ
j
ε,s+lpij

pT
ijΣ(τj−1, τj)pij

,

E ′1,2 =

n−Q+1∑
s=1

pT
ijΣ

j
ε,s+lpij − pT

ijΣ
j
ε,spij

pT
ijΣ(τj−1, τj)pij

.

Under Assumption (E3), using Lemma 2.7 of Bai and Silverstein (1998), we have

Ej(E
′
1,1) = 0, and

Ej
(
(E ′1,1)2|Σε,u, u ∈ [0, 1]

)
= O(n+ n2 · n−1) = O(n).

Hence

E ′1,1 = OP (n1/2).

Also, by Assumption (E1) on the smoothness of {Σε,s}s, we have

E ′1,2 = OP (|l|).

From the proof of Lemma 6, we have

E2 = OP (1), E3 = OP (n−1/2).

Using Assumption (W1) to (W3) and the jump removal rate of n−1/4 from Fan and

Wang (2007),

E5 = OP (n−1/4), E6 = OP (n−3/4).

For E4, using Assumption (E3),

E4 = OP (n · (n−1/2)2 + n2 · n−1 · (n−1/2)2) = OP (1).

From these rates, we have

J1,1

pT
ijΣ(τj−1, τj)pij

= OP

(
1

ψQ

Q−1∑
l=1

(g′el+1
)2Q−2(n1/2 + l)

)
= OP (Q−1 +Q−2n1/2).
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Hence

J1/p
T
ijΣ(τj−1, τj)pij = OP (Q−1 +Q−3/2n1/2) = OP (Q−3/2n1/2).

For J2, consider

pT
ijη̂

(j)pij − pT
ijΣ

j
ε,spij

pT
ijΣ(τj−1, τj)pij

=
5∑
i=1

Ri, where

R1 =
1

2n

n∑
s=2

pT
ijE(s)E(s)Tpij − pT

ijΣ
j
ε,spij

pT
ijΣ(τj−1, τj)pij

−
pT
ijΣ

j
ε,spij

2npT
ijΣ(τj−1, τj)pij

,

R2 =
1

2n

n∑
s=2

pT
ijE(s− 1)E(s− 1)Tpij − pT

ijΣ
j
ε,spij

pT
ijΣ(τj−1, τj)pij

−
pT
ijΣ

j
ε,spij

2npT
ijΣ(τj−1, τj)pij

,

R3 =
−1

n

n∑
s=2

pT
ijE(s)E(s− 1)Tpij

pT
ijΣ(τj−1, τj)pij

,

R4 =
1

2n

n∑
s=2

pT
ij(X̃vs − X̃vs−1)(X̃vs − X̃vs−1)

Tpij

pT
ijΣ(τj−1, τj)pij

,

R5 =
1

n

n∑
s=2

pT
ij(X̃vs − X̃vs−1)(E(s)− E(s− 1))Tpij

pT
ijΣ(τj−1, τj)pij

.

From the proof of the rate for J1 before, and Assumption (E1), we get

R1, R2 = OP (n−1 · n1/2 + n−1) = OP (n−1/2).

From Lemma 7, we have

R3 = OP (n−1 · n1/2) = OP (n−1/2).

From the result of Lemma 3, we immediately have

R4 = OP (n−1(n−1/2 + p
1/2
f n−1/2) + n−1) = OP (n−1).

Substituting Km = 1 in (3.6) and incorporating Assumption (A4), we have

R5 = OP (n−1 · 1) = OP (n−1).
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These rates imply that, with ς = O(Q−1),

J2 = OP (Q−2 · n · n−1/2) = OP (Q−2n1/2).

Finally we have

∣∣∣∣ IP3
pT
ijΣ(τj−1, τj)pij

∣∣∣∣ = OP (Q−3/2n1/2 +Q−2n1/2) = OP (Q−3/2n1/2).

Hence

max
i=1,...,p
j=1,...,L

∣∣∣∣pT
ijΣ̃(τj−1, τj)

Ppij

pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣
≤ max

i=1,...,p
j=1,...,L

∣∣∣∣ IP1
pT
ijΣ(τj−1, τj)pij

− 1

∣∣∣∣+ 2 max
i=1,...,p
j=1,...,L

∣∣∣∣ IP2
pT
ijΣ(τj−1, τj)pij

∣∣∣∣
+ max

i=1,...,p
j=1,...,L

∣∣∣∣ IP3
pT
ijΣ(τj−1, τj)pij

∣∣∣∣
= OP (p

1/2
f Q1/2n−1/2 +Q−1/2 +Q−3/2n1/2).

When there are no factors such that pf = 1, the above rates imply that Q � n1/2,

with a rate of convergence at n−1/4. When there are pervasive factors such that

pf = p, the best rate can be achieved with Q � n1/2p−1/4, with rate of convergence

at p3/8n−1/4. So we need p = o(n2/3) for guaranteed convergence. This completes

the proof for the bias-corrected version.

Finally, using similar arguments at the end of the proof of Theorem 1 in Section

3.7.1, we have

∥∥Σ̂(0, 1)PΣIdeal(0, 1)−1 − Ip
∥∥ = OP (p

1/2
f Q1/2n−1/2 +Q−1/2 +Q−3/2n1/2),

the same as for Σ̂(τj−1, τj)
P . Similar treatments apply for Σ̂(0, 1)PP . This completes

the proof of the theorem. �
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3.7.4 Proof of the Theorem 4

We have shown in the proofs of Theorem 1 to 3 for the results using jumps-removed

data. To complete the proof, note that

∥∥ ∑
0≤t≤1

(∆Jt∆JT
t −∆Ĵt∆ĴT

t )
∥∥ ≤ C max

0≤t≤1

∥∥∆Jt∆JT
t −∆Ĵt∆ĴT

t )
∥∥

≤ 2C max
0≤t≤1

∥∥∆Jt −∆Ĵt
∥∥ · ∥∥∆Jt

∥∥+ C max
0≤t≤1

∥∥∆Jt −∆Ĵt
∥∥2

= OP (n−1/4L−1/4).

Since L is finite, this completes the proof of the theorem. �
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