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Abstract

This dissertation consists of three chapters examining three different dimensions of

foreign exchange risk. In chapter one, I deal with currency redenomination risk in

the Eurozone, that is, the risk that euros held in a particular Eurozone country

are converted into a new national currency once the country leaves the currency

union. This conversion exposes holders of euro-denominated assets in that country

to foreign exchange risk. I extract empirical measures of redenomination risk from

asset prices and show that redenomination risk in France and Italy spikes around

plebiscites in 2017 and 2018. French redenomination risk is associated with re-

denomination risk in other Eurozone countries, while Italian redenomination risk

does not co-move with similar risks in other countries. These results are consistent

with the interpretation that a French—unlike an Italian—exit from the Eurozone is

associated with a Eurozone break-up.

Chapter two is conjoint work with Ian Martin. We present a new identity that re-

lates expected exchange rate appreciation to the currency’s (risk-neutral) covariance

with equity markets, and use it to motivate a currency forecasting variable based on

the prices of quanto index contracts. We show via panel regressions that the quanto

forecast variable is an economically and statistically significant predictor of currency

appreciation and of excess returns on currency trades. Out of sample, the quanto

variable outperforms predictions based on uncovered interest parity, on purchasing

power parity, and on a random walk as a forecaster of differential (dollar-neutral)

currency appreciation.

In the third chapter, as in chapter two, I examine the exposures of different

currencies to equity market risk. In contrast to the second chapter, chapter three

analyses the link between risk exposures and speculative trading patterns, rather

than measuring conditional risk exposures to forecast returns. I find, in a post-crisis

sample, that currencies are more positively correlated with equity market returns,

when hedge funds are long the currency future and vice versa for short positions.
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1. Currency Redenomination Risk

Lukas Kremens1

How stable is the Eurozone? The debate about its composition is older than

the currency union itself. However, while this debate has focused on potential new

members for most of its history, more recent controversy has evolved around poten-

tial exits by current members. Current members could, in principle, re-introduce

their own currencies to restore monetary sovereignty. This option exposes holders of

outstanding sovereign bonds to currency redenomination risk: the risk of receiving

the fixed payments of interest and principal in a different currency from the original

numéraire. In this chapter, I present a quantitative measure of this redenomination

risk in French, Italian, and German government bonds, which is forward-looking,

based solely on asset prices, and observable in real time.

Greece came close to exiting the Eurozone in the summer of 2015, when the

Greek government imposed severe capital controls and bank closures for almost

20 days, during negotiations with its public international creditors regarding ex-

tended loan facilities. Three years earlier, Greece had restructured a large portion

of its outstanding bonds, but remained a member of the currency union. The two

episodes highlight the distinction between redenomination and ‘conventional’ credit

risk. While bondholders face losses in either scenario, other stakeholders through-

out the Eurozone (e.g., depositors or banks) experience vastly different shocks. In

addressing the empirical question of spillovers from a Eurozone exit, it is therefore

crucial to distinguish exit risk from other forms of default.

1I am grateful to Martin Oehmke, Christian Julliard, Ian Martin, Daniel Ferreira, Gianluca
Rinaldi, Lorena Keller, Patrick Augustin, Victor Lyonnet, Matteo Benetton, Andrea Vedolin,
Francesco Nicolai, Pete Zimmerman, Bernard Dumas, and seminar participants at LSE, Dauphine,
EFA-DT, HEC, Collegio Carlo Alberto (LTI), Chicago, LBS, HBS, BC, UT Austin, UW, UIUC,
Bocconi, and UNC for helpful comments. I thank the Systemic Risk Centre at the LSE for their
support, and for providing access to data sourced from Markit under license.
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CHAPTER 1. CURRENCY REDENOMINATION RISK 12

A key determinant of spillovers from redenomination risk is whether or not an

initial single exit from the Eurozone is contagious in the sense that it is followed

by a Eurozone break-up. The fear of such contagion spreading from a ‘Grexit’ (or

‘Graccident’) was undoubtedly an important factor in the decision taken by Greece’s

public creditors to restructure and extend their loans in 2015.

An empirical approach to assessing the risk of such contagion requires a clean,

observable measure of redenomination risk for different Eurozone countries. I con-

struct a measure of redenomination risk for three large Eurozone members (France,

Italy, and Germany), using a change in the standardized terms of sovereign credit

default swaps (CDS). CDS contracts issued before September 2014 effectively allow

for a redenomination into a new national currency for any G7 country without trig-

gering payouts from the CDS, irrespective of any exchange rate losses incurred by

bondholders in the process. Contracts signed under the new terms, implemented

in September 2014, are triggered by a redenomination out of euros into a new and

depreciating national currency.

To illustrate the different economics of the two CDS contract types, suppose

that France and Spain both decide to leave the Eurozone and change the currency

of payments on outstanding bonds into new francs and new pesetas, respectively,

each with a conversion rate of 1-to-1. Suppose further that once the new currencies

are traded, the first freely determined market exchange rate is 0.8e per franc and

0.75e per peseta, and, that French and Spanish bonds trade at par in the new

currencies following redenomination. This last assumption ensures that the only

loss to bondholders stems from the initial depreciation of the new currency. In this

simple example, redenomination triggers payouts for French CDS contracts issued

under the 2014 definitions, and these pay out 20% of the notional value, that is,

the loss to bondholders from redenomination (= 1 − 0.8). However, French CDS

based on the previous definitions, are not triggered and therefore make no payout at

all, since the new currency of denomination (the new franc) is that of a G7 country

(France) and the redenomination itself, therefore, does not constitute a credit event.

In contrast, both contract types are triggered in a CDS written on Spain, and CDS

holders receive 25% (= 1− 0.75) of the notional value.

The pricing difference between French contracts under the two definitions re-

flects how market participants asses the likelihood of a redenomination and the

contingent losses incurred by bondholders. I account for other contractual changes

and potential liquidity differences by subtracting the same difference measure for

a matched synthetic control country constructed from non-G7 Eurozone countries.
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The resulting time-series measure is analogous to other commonly used difference-

in-difference approaches, with the important feature that it uses contemporaneous

differences rather than before-after relations. I will refer to this measure as the

redenomination spread. This daily time series reflects the cost of insurance against

losses from currency redenomination and is directly observable from sovereign CDS

spreads.

Armed with the measure, I establish various empirical facts. French redenom-

ination risk is economically small for most of the sample period, but spikes to 25

basis points per year in the run-up to the first round of the French presidential elec-

tions in April 2017. At its peak, redenomination risk accounts for 40% of the total

French CDS spread. With the first-round victory of pro-EU candidate Emmanuel

Macron, redenomination risk drops sharply. In the case of Italy, redenomination risk

spikes sharply to around 80 basis points following the formation of a Eurosceptic

government in May 2018, accounting for almost one third of the total Italian CDS

spread. In both cases, redenomination risk is driven by political shocks: as such,

the measure reveals shocks to a country’s political willingness to remain a Eurozone

member. German redenomination risk is close to zero throughout the sample period,

consistent with the interpretation that a redenomination into a new German cur-

rency is not expected to cause losses for bondholders and/or such a redenomination

is highly unlikely.

If such a measure were available for all members of the currency union, the covari-

ance matrix of these time series would directly reveal contagion of redenomination

risk. In the absence of a broader cross-section of redenomination risk measures, I will

document signs of contagion in other asset prices. Prior to an exit, the prospect of

initial depreciation for some of the new national currencies induces capital flight out

of weaker and into stronger countries.2 The distinctive feature of a currency union

is that exchange rates cannot adjust to such flows. Instead, the adjustment works

through the yields of the assets targeted by such flows, such as sovereign bonds. In-

vestors demand higher nominal yields on assets that are likely to be redenominated

into a depreciating new currency, and yields in other Eurozone countries fall if their

bonds remain denominated in euros or repay in a new, stronger currency.3

A Eurozone exit by, say, France can either be isolated or contagious. The signa-

2The dissolution of Czechoslovakia in February 1993 provides a historical example of such capital
movements from the subsequently weaker currency area (Slovakia) into the stronger one.

3Brunnermeier et al. (2016b, p. 226) make a similar point, arguing that “as [...] redenomination
risk does not exist for ‘German euros’, a Greek euro will necessarily be worth less than a German
euro. As long as Greek euros can be converted one-to-one into German euros, Greeks may thus
decide to withdraw their deposits [...] and buy German Bunds...”.
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ture of the latter type is that pricing spillovers to other Eurozone bonds are hetero-

geneous: if each country’s bonds are ultimately repaid in a new national currency,

bond prices reflect the expected gains or losses that the currency redenomination

imposes on bondholders. In contrast, an isolated exit implies no such consequences

for the remaining Eurozone bonds. All other bonds repay in euros, and function as

potential substitutes to French debt for euro-investors tilting their portfolios away

from redenominatable French bonds. I model the two cases formally in Section 1.4.1.

I find that sovereign yields drop significantly with increases in Italian redenomi-

nation risk for all Eurozone countries other than Italy. In contrast, Eurozone yields

co-move heterogeneously with French redenomination risk. German and Austrian

yields fall as French redenomination risk rises. However, yields in Italy, Portugal,

and—naturally—France rise with French redenomination risk. Corporate credit

spreads paint a similar picture: spreads tend to drop with increases in Italian re-

denomination risk for financial and non-financial firms outside Italy. Similarly to

German Bund yields, US Treasury yields fall with rising French redenomination

risk, but the effect is weaker in magnitude than for Bunds. In relation to Italian

redenomination risk, however, Treasury yields do not fall like Eurozone yields. The

euro-dollar exchange rate tends to depreciate with French, but not with Italian re-

denomination risk. This set of findings is consistent with the interpretation that a

French exit from the monetary union is contagious and expected to be associated

with further redenominations and a broader break-up of the Eurozone, while an

Italian exit is expected to remain isolated. The heterogeneity in responses to French

(i.e., contagious) redenomination risk corresponds to heterogeneity in the countries’

fiscal positions, labor productivities, and current account balances, consistent with

the interpretation that these responses reflect expected post-Eurozone appreciation

and depreciation of national shadow currencies.

Literature.—On the surface, my empirical measure of redenomination risk is

related to the measure of De Santis (forthcoming), who uses quanto CDS, that is, the

difference between dollar-denominated CDS and contracts denominated in euros. As

Mano (2013) shows, this difference measures the (risk-neutral) expected depreciation

of the euro against the dollar in the event that CDS payouts for a given country are

triggered. Similarly, Augustin et al. (2018) disentangle expected depreciation from

the default event risk in a structural model, using the term structure of quanto CDS.

While this provides an important measure of euro currency risk and its connection to

sovereign default risk, it does not distinguish between credit risk and redenomination

risk. Instead, my measure isolates the currency redenomination event as a particular
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form of default and relates directly to the depreciation of the new national currency

versus the euro, as opposed to the euro versus the US dollar. The wide-spread view

that a sovereign default by a Eurozone member is likely to lead to a euro depreciation

has also led to the gradual disappearance of euro-denominated CDS contracts for

Eurozone sovereigns. My redenomination risk measure uses only the more liquid

dollar-denominated contracts.

My empirical analysis of sovereign CDS spreads adds to a wide literature, includ-

ing Pan and Singleton (2008), Augustin (2014), and Fontana and Scheicher (2016).

Augustin et al. (2014) provide a broad survey of sovereign CDS markets. Longstaff

et al. (2011) show strong co-movement in sovereign CDS. Beyond the study of CDS,

this chapter links to the extensive literature on sovereign risk and contagion (e.g.

Reinhart and Rogoff, 2011). Arellano et al. (2018) look at the financial linkages

responsible for such spillovers of sovereign risk in the Eurozone. Aguiar et al. (2015)

show how debt crises in one member country impact other members through cen-

tralized monetary policy. The distinction between credit risk and redenomination

risk in a currency union is analogous to the question of local currency sovereign risk,

studied by Du and Schreger (2016). In addressing the impact of political risk on

asset prices, my approach also relates to the work of Pastor and Veronesi (2013) and

Kelly et al. (2016). Neuberg et al. (2018) exploit other differences relating to govern-

ment intervention and bail-in events between CR14 and CR restructuring clauses in

CDS contracts written on financial institutions. In analogy to my approach, Berndt

et al. (2007) distinguish between restructuring events and default events and esti-

mate restructuring risk premia in US corporate debt by comparing CDS contracts

with, and without, restructuring clauses.

Redenomination risk has also been identified by the ECB as a risk to the trans-

mission of monetary policy and an explicit target of policy measures.4 Krishna-

murthy et al. (2018) assess the effect of three specific ECB policy measures launched

in 2011-2012 on bond yields and redenomination risk. They quantify redenomina-

tion risk in sovereign bonds by decomposing a panel of sovereign and corporate

yields. The key identifying assumptions are that (i) default affects bonds under

foreign law and bonds under domestic law in the same way; and (ii) corporate and

sovereign bonds are affected in the same way by redenomination. Bayer et al. (2018)

construct a term structure of redenomination risk. Importantly, my measure does

not rely on combinations of bonds CDS and is therefore robust to variation in the

4See, for instance, Benôıt Cœuré’s speech on the objectives of the OMT program (03/09/2013):
ecb.europa.eu/press/key/date/2013/html/sp130902.en.html. See also Leombroni et al. (2017).

http://www.ecb.europa.eu/press/key/date/2013/html/sp130902.en.html
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so-called CDS-bond basis (see, e.g., Bai and Collin-Dufresne (forthcoming)). Re-

denomination risk affects, through deposit redenomination, the portfolio choice of

banks holding euro-denominated sovereign debt. The well-documented home bias

of banks in euro sovereign bonds has sparked a large literature on sovereign-bank

feedback loops.5 The simple model I present in Section 1.4.1 features home bias as

a natural equilibrium outcome of redenomination risk.

1.1 Redenomination and credit default swaps

A credit default swap is a bilateral financial contract wherein one party (the pro-

tection seller) provides insurance to the other party (the protection buyer) against

losses to the holders of bonds issued by a particular entity (the reference entity or

issuer). In the event (referred to as a credit event) that the reference entity fails

to honor its contractual obligations as the issuer of its outstanding bonds, the pro-

tection buyer receives from the protection seller a payment of a prespecified face

value (notional) minus the recovery on this face value. This recovery is typically

set at the market value of defaulted bonds, which is determined in an auction of

such defaulted bonds arranged by the International Swaps and Derivatives Associa-

tion (ISDA). In exchange, the protection buyer pays the protection seller a periodic

(typically quarterly) insurance premium: the so-called CDS spread.

Denote the spread today for a swap with maturity T by S0,T . Swaps are quoted

such that the market value of the swap is zero and no money is exchanged at

initiation, i.e., the expected discounted value of payments to the protection seller

equals that of payments to the protection buyer. For expositional purposes, consider

the simplified case of a hypothetical single-period CDS:

S0,T =e−rT EQ
0 (1T (1−RT ))

=e−rT qT EQ
0 (1−RT | 1T = 1), (1.1)

where the indicator denotes the occurrence of a credit event between 0 and T , qT the

probability of said credit event, and RT denotes the contingent recovery rate. While I

will not, without further assumptions, be able to disentangle the probability qT from

the conditional loss (1−RT ), the CDS spread is economically meaningful in itself, as

it reflects the economic cost of insurance against losses (net of recovery) to creditors

of a certain entity from a range of credit events. To facilitate the trading of CDS, the

5See, for instance, Acharya et al. (2014), Farhi and Tirole (forthcoming), and Brunnermeier
et al. (2016a).
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contract terms typically follow a standardized set of definitions, governed by ISDA,

including the precise circumstances, which constitute a credit event and trigger the

insurance payout. Currency redenomination may be one of these circumstances, but

the insurance premium will also reflect other risks, such as the bankruptcy filing of

the issuer, the failure to make a contractual interest or principal payment, or the

restructuring of the bonds to the detriment of bondholders.

For the purposes of this chapter, the reference entities of the CDS will predomi-

nantly be sovereign countries, and—for lack of established bankruptcy procedures for

such borrowers—‘defaults’ typically occur in the form of a restructuring. However,

a restructuring itself may take many different forms and is not limited to currency

redenomination: for instance, Greece restructured a large part of its outstanding

debt in 2012 by exchanging existing bonds for a package of new securities with

longer maturity, lower face value, and lower coupon rate, while, at the same time,

keeping the euro as the currency of denomination. The CDS spread reflects the risk

of all of these credit events, rather than isolate the risk of currency redenomination.

For the remainder of this chapter, and in a slight abuse of terminology, I will use

‘default’ to refer to any credit event that does not involve a change in the currency

of denomination. In contrast, I will use ‘redenomination’ to refer to a restructuring

involving only this change of currency.

1.1.1 Credit event definitions – 2003 versus 2014

ISDA periodically updates the standardized definitions. The most recent update was

implemented in September 2014. Many of the revisions from the earlier definitions

(released in 2003) address problems in CDS on corporate issuers, some responding

directly to events unfolding over the Eurozone sovereign debt crisis (particularly

relating to financial institutions and government interventions such as bail-outs or

bail-ins). However, a few changes relate specifically to sovereign reference entities.

One of the new terms refers to the set of events that constitute a restructuring,

defined in Section 4.7 of the ISDA definitions. Subsection (a)(v) specifies a number

of “permitted currencies” into which an obligation may be redenominated without

triggering the CDS payout. Under the 2003 definitions,

“Permitted Currency” means (1) the legal tender of any Group of 7 country (or

any country that becomes a member of the Group of 7 if such Group of 7 expands

its membership) or (2) the legal tender of any country which, as of the date of such

change, is a member of the Organization for Economic Cooperation and Development
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and has a local currency long-term debt rating of AAA or higher [...].6

The Group of 7 (G7) consists of Canada, France, Germany, Italy, Japan, the

UK, and the US. The three current Eurozone members France, Germany, and Italy

would therefore—without triggering CDS payouts—be able to leave the Eurozone,

issue a national currency, and redenominate any existing debt into this new currency,

regardless of any market value losses that such a redenomination may imply for

bondholders. During the Eurozone sovereign debt crisis, the potential consequences

for CDS contracts of a member country exiting the currency union, as well as the

distinction between G7 countries and other Eurozone members, became a widely

debated topic among market participants.7 In response to the unwanted special

status of French, German, and Italian debt, ISDA amended Section 4.7(a) (v) in its

2014 definitions to define the relevant redenomination event as

... any change in the currency of any payment of interest, principal or premium

to any currency other than the lawful currency of Canada, Japan, Switzerland, the

United Kingdom and the United States of America and the euro and any successor

currency to any of the aforementioned currencies (which in the case of the euro,

shall mean the currency which succeeds to and replaces the euro in whole).8

Therefore, redenomination into a new French, German, or Italian currency trig-

gers CDS contracts under the 2014 definitions (if such a redenomination leads to

market value losses for bondholders), but not for contracts under the 2003 defini-

tions. Accordingly, the two contracts are quoted separately in financial markets,

specifying the applicable restructuring clause as either ‘CR14’ for 2014 definitions

or ‘CR’ for 2003.

For an illustrative example of the pricing consequences, we revisit the case of

the potential exits of France and Spain from the Eurozone, as well as the simplified

pricing equation (1.1). Consider at time t the pricing of single-period CDS contracts

with maturity t+ 1. Suppose that the net risk-free interest rate, r, is equal to zero,

and that the risk-neutral probability of either exit at time t + 1 is qRi,t+1 = 0.1 for

i = {FRA,ESP}. As previously, the expected depreciations of the new national

currencies against the euro, are EQ
t R

R
FRA,t+1 = 0.8 and EQ

t R
R
ESP,t+1 = 0.75. The

loss from redenomination, 1 − RR, may stem from a number of sources: in the

absence of further amendments to the debt contract, depreciation of the new cur-

6ISDA (2003, p. 32-33) Credit Derivatives Definitions

7See, e.g., ftalphaville.ft.com/2010/02/12/148481/euro-breakup-not-necessarily-a-credit-
event/.

8ISDA (2014) Credit Derivatives Definitions, p. 42

https://ftalphaville.ft.com/2010/02/12/148481/euro-breakup-not-necessarily-a-credit-event/
https://ftalphaville.ft.com/2010/02/12/148481/euro-breakup-not-necessarily-a-credit-event/
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rency is likely to be responsible for a large part of the losses suffered by bondholders.

Upon introduction, the leaving country chooses an initial ‘conversion rate’ of its new

national currency against the euro, for the purposes of redenominating various con-

tracts within the economy, such as sovereign debt. In the above example of France

and Spain, both conversion rates are 1-to-1. However, this rate does not represent

a market exchange rate. With the split from the euro and the re-nationalization

of monetary policy, the new currency obtains its own risk characteristics and risk

premium as well as its own future interest rate path. If the new currency differs

from the euro in either of these two dimensions, the new market exchange rate has

to deviate from the initially chosen conversion rate. This is an incarnation of the

Mundell-Fleming trilemma: keeping the exchange rate at the level of the conversion

rate amounts to fixing the exchange rate against the euro, while the monetary policy

path is allowed to deviate from that of the currency union, both of which are not

jointly attainable in the absence of capital controls.

In addition, the prices of the redenominated bonds may also reflect changes in

credit risk, if the country’s fiscal position changes following the Eurozone exit. At the

same time, suppose that the risk-neutral probability of either country restructuring

its debt without a change of currency, i.e., ‘defaulting’ at t+1 is qDi,t+1 = 0.1, with an

expected recovery of EQ
t R

D
i,t+1 = 0.5. Also suppose that the events of redenomination

and default are independent. This assumption may not seem innocuous, but is in line

with the contractual differences between CR and CR14 clauses: a default occurring

simultaneously with redenomination would constitute a credit event under either

contract. As such, my approach of looking at the difference between CR and CR14

spreads neglects such an event of simultaneous redenomination and default. To the

extent that redenomination is likely to be accompanied by simultaneous default, my

measure of redenomination risk in isolation from default provides a lower bound on

the true magnitude of redenomination risk.

Returning to the illustrative example, denote by SCR14
i and SCRi country i’s

single-period CDS spread under CR14 and CR restructuring clauses, respectively.

For France, only CR14 contracts recognize redenomination into new francs as a

credit event, so

SCR14
FRA = qDFRA,t+1 E

Q
t (1−RD

FRA,t+1) + qRFRA,t+1 E
Q
t (1−RR

FRA,t+1) = 0.07

SCRFRA = qDFRA,t+1 E
Q
t (1−RD

FRA,t+1) = 0.05.

The spread-difference between CR14 and CR contracts is sometimes referred to as

the ‘ISDA basis’. If there are no other pricing differences between CR and CR14
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contracts, the ISDA basis directly measures the insurance premium due to redenom-

ination risk.

However, the clause on permitted currencies is not the only difference between

the two contract types relevant to sovereign issuers. A clause referred to as ‘Asset

Package Delivery’ (APD) affects the calculation of the recovery value and may,

therefore, lead to differential pricing of the two contracts. The clause is described

in more detail in Subsection 1.5.2. Unlike the clause on permitted currencies, APD

does not distinguish issuers based on G7 membership. Similarly, liquidity may differ

between the newer CR14 CDS and the superseded CR contracts. Therefore, a diff-

in-diff approach is well-suited to isolate the pricing impact of redenomination risk.

Suppose that all potential pricing differences between the two contract types, which

are unrelated to redenomination risk (notably APD or liquidity), are captured by

an extra spread λt = 0.02. The pricing equation (1.1) for French contracts under

2003 definitions becomes SCRFRA = e−rqi,t+1 EQ
t (1 − Ri,t+1) − λt = 0.03. For Spain,

both restructuring clauses are triggered by redenomination into new pesetas, and

therefore

SCR14
ESP = qDESP,t+1 E

Q
t (1−RD

ESP,t+1) + qRESP,t+1 E
Q
t (1−RR

ESP,t+1) = 0.075

SCRESP = SCR14
ESP − λt = 0.055.

While simply taking the difference between SCR14
FRA and SCRFRA jointly reveals redenom-

ination risk and liquidity- or APD-driven components of the spread, the diff-in-diff

measure isolates the component of the spread that is due to redenomination risk:

(
SCR14
FRA − SCRFRA

)
−
(
SCR14
ESP − SCRESP

)
= qRFRA,t+1 E

Q
t (1−RR

FRA,t+1) = 0.02.

Of course, λt may itself be a function of other variables and therefore differ across

countries. For the diff-in-diff measure, I construct a synthetic control country to

match the time-variation in several characteristics of French and Italian CDS and

bond markets, such as yield levels and bid-ask spreads.

1.2 The redenomination spread

I collect daily CDS spreads for dollar-denominated contracts with a maturity of

five years for the Eurozone member countries Austria, Belgium, France, Germany,

Ireland, Italy, the Netherlands, Portugal, and Spain. The CDS time series range

from September 2014 when the CR14 contracts were launched, to June 2018. I
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focus on the five-year maturity, because these CDS contracts tend to be the most

liquid. Since CDS are traded over-the-counter, transaction prices are difficult to

observe.9 However, Markit collects quotes from a range of market makers and fi-

nancial intermediaries and reports consensus measures obtained from these quotes.

These consensus measures are then widely used by derivatives market participants

as an external valuation of their accounting positions as well as to fulfil regulatory

requirements. I assess the liquidity and reliability of the quotes provided to Markit

in Subsection 1.5.1.

Figure A.1 reports the time series of outstanding notionals by country. Net no-

tionals are shown in Panel A and gross notionals in Panel B. Unfortunately, volumes

are only available on an aggregated basis rather than by contract type (CR14 and

CR).10 The Italian CDS market is by far the largest in the Eurozone with over $12bn

outstanding net notional as of February 2018, followed by the French, German, and

Spanish CDS markets with over $6bn, $5bn, and $4bn aggregate net notional, re-

spectively. Among the sampled Eurozone economies, CDS markets are smallest

for Austria ($1.6bn), the Netherlands ($1.6bn), and Belgium ($2.5bn). Outstand-

ing notionals have been trending downwards across all countries since the height

of the European sovereign debt crisis in 2012. Overall CDS market volumes have

been declining since 2008 (Oehmke and Zawadowski, 2017) reflecting a reduction in

inter-dealer volumes; relative to corporate single-name CDS, the share of sovereign

reference entities has risen steadily and quadrupled to 16% in June 2015, from 4%

in December 2008 (BIS, 2015). Total outstanding volumes rose slightly in late 2014

to early 2015 for French and Italian CDS, consistent with the introduction of the

new CR14 contracts.

Table A.1 reports summary statistics on the different CDS spreads. Spreads

on CR and CR14 contracts are strongly positively correlated for all countries in

the sample. However, since the contracts differ in their treatment of currency re-

denomination for France and Italy, the correlation is much weaker (ρFRA = 0.86

and ρITA = 0.75, respectively) than for non-G7 countries, where correlation coeffi-

cients are in excess of 0.97. Similarly, the difference between CR and CR14 spreads

(i.e., the ISDA basis) is more volatile relative to its mean for France and Italy than

for other countries. Based on summary statistics, Germany resembles the control

group countries: the difference between CR14 and CR spreads is close to zero, as

is its volatility, and the correlation of the two CDS spreads is close to perfect at

9See Oehmke and Zawadowski (2017) for an overview of trading in (corporate) CDS markets.

10Outstanding notional data are obtained from swapsinfo.org.

https://www.swapsinfo.org
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ρGER = 0.97.

The CDS spread does not measure the probability of a redenomination event,

but rather the cost of insurance against losses from the event. For any restructuring

event to trigger the CDS payout, the restructuring must be to the detriment of

bondholders. For a currency redenomination, this means that the exchange rate

must depreciate from its conversion rate at redenomination. In the case of a newly

issued national currency, there is no established market exchange rate. Broadly

speaking, the new exchange rate will depreciate from the conversion rate fixed for

redenomination if (i) market participants expect monetary policy at the national

level to be more inflationary than the previously centralized policy in the currency

union, and/or (ii) the risk characteristics of the newly issued currency are such

that investors demand a higher risk premium to hold the new currency than the

euro.11 If market participants expect, say, a new German mark to appreciate upon

introduction, a potential redenomination would not cause losses for bondholders

and therefore not trigger CDS payouts. Consequently, the ISDA basis for Germany

would be (close to) zero in this case.

Figure A.2 plots CDS spreads for Austria, Belgium Spain, Ireland, the Nether-

lands, and Portugal. Despite not being affected by the change to permitted re-

denomination currencies, the ISDA basis is positive for all control group members

and widens slightly over the last year of the sample. Figure A.3 plots the different

spreads for France, Italy, and Germany. Buying protection via a CR14 contract

(solid) is consistently more expensive than via a CR contract (dashed). The dif-

ference is indeed close to zero, but positive, for Germany throughout the sample

period. The sign of the basis in the control group suggests that the liquidity- or

APD-driven component of the off-the-run CDS spread is positive, i.e., λt > 0. Con-

sequently, the ISDA basis itself is not a clean measure of redenomination risk since

it compares older and newer CDS contracts which are subject to different levels of

liquidity and different calculations of recovery values.

To isolate redenomination risk, I construct—in the spirit of Abadie and Gardeaz-

abal (2003)—synthetic controls from the different control group countries, which

match the treated countries as closely as possible on relevant dimensions. Since

treatment (i.e., being a G7 country) affects the economics of the (old) CR contract,

the goal of the synthetic control is to construct a counterfactual CR CDS spread

for France, Italy, and Germany without their respective G7-membership. For each

11Hassan et al. (2016) discuss to what extent these risk characteristics are chosen by policy
makers.
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trading day of the sample period, the synthetic control for each treated country is

a convex combination of control group countries, matched on variables, which are

successful contemporaneous predictors of the counterfactual CR spread. The four

variables I choose for this matching are: (i) the CR14 CDS spread (which does not

distinguish between issuers based on G7-membership); (ii) the bid-ask spread for

the CR14 CDS spread; (iii) the five-year sovereign bond yield; and (iv) the bid-ask

spread of the five-year sovereign bond yield. Daily time series for the three latter

variables are obtained from Bloomberg.

For days, where no observations are available for a particular control group

country on one or more of the matching variables, that country is excluded from

the control group for that day, and the synthetic control is formed as a convex

combination of the remaining control group countries. Similarly, if on any given

day, observations are missing on any particular matching variable for more than one

control group country, that variable is omitted from the matching process for that

day.

Similarly to Abadie et al. (2010), I pick the weights of the matching variables

by optimizing the fit of the synthetically constructed CR spread for a control group

country to the observed CR spread of that country. Figure A.4 plots the observed

(solid) and synthetic (dashed) CR spreads for Belgium, Spain, and Ireland over the

sample period, showing that the synthetic control procedure generates a close fit in

these ‘placebo’ countries. Across the three different placebo countries, the optimal

weights are similar, and I will use the median set of optimal weights (Spain) to

generate the synthetic controls for the three G7 countries. The resulting optimal

matching procedure places the largest weight on the two CDS variables: the CR14

spread plays the dominant role (with a weight of 0.8626), followed by its bid-ask

spread (0.1332). The two bond market variables do not contribute sizeably to the

matching, with the optimal weight on the five-year sovereign yield and bond market

bid-ask spread close to zero at 0.0013 and 0.0029, respectively. These matching

weights are constant over the sample period.

The time-varying weights of each control group country in the synthetic con-

trol are then chosen each day to minimize the weighted sum of squared devia-

tions of the matching variables for the synthetic control from the observed match-

ing variables for, respectively, France, Italy, and Germany for that day. Using

these time-varying country-weights, I then compute the time series of credit spreads

CR14s(i),t and CRs(i),t for the synthetic control country as convex combinations of

the control group observations for the respective CDS spread. The final diff-in-diff
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measure is then computed as RSi,t = CR14i,t − CRi,t −
(
CR14s(i),t − CRs(i),t

)
for

i = {FRA, ITA,GER}. The diff-in-diff measure is designed to eliminate the con-

founding factors contained in the raw difference between CR14 and CR spreads, such

as differential liquidity between older and newer contracts. I discuss in Section 1.5

two empirical concerns and outline why my diff-in-diff methodology is appropriate

in this particular setting.

Table A.2 reports summary statistics by country for the diff-in-diff measure.

The redenomination spread measures are distinct from conventional credit risk: the

correlation coefficients between the redenomination spreads and CR CDS spreads

are −0.03 for France, −0.01 for Italy, and 0.08 for Germany. Figure A.5 plots the

diff-in-diff measure for France and Germany. As discussed above, the new currency

must be expected to depreciate for redenomination to render sovereign bonds risky

(with respect to redenomination) and for this risk to show up in CDS spreads.

The lower plot shows the German redenomination spread against RSFRA: German

redenomination risk is close to zero throughout the sample period, consistent with

the interpretation that either (i) the probability of redenomination is close to zero,

or (ii) conditional on redenomination, the new currency is not expected to depreciate

against the euro.

The French redenomination spread hovers around zero for most of the sample,

but spikes dramatically to 25 basis points in the run-up to the presidential elections

in spring 2017: the two red asterisks indicate the Fridays before each of the two

election rounds (Sunday, April 23rd, and Sunday, May 7th, 2017). In the two-round

system, a president is elected by absolute majority in the first round. If—as is

commonly the case—no candidate receives an absolute majority, the two candidates

with the highest vote move to the second round, in which one candidate will attain

more than 50% of the votes. In 2017, pre-election polls saw four candidates as

potential contenders in the decisive second round, including far-left candidate Jean-

Luc Mélenchon and far-right candidate Marine Le Pen, both vocal critics of the

European Union and widely considered potential supporters of a French exit from the

Eurozone. Figure A.6 shows the combined vote share of Mélenchon and Le Pen from

February through April against RSFRA.12 On Sunday, April 23rd, the results of the

first round eliminated the possibility of a run-off between these two candidates, since

pro-European candidate Emmanuel Macron placed first. The following Monday,

the redenomination spread drops sharply to 7 from 21 basis points. According to

12Polling results are obtained from various sources. A convenient summary is available at
en.wikipedia.org/wiki/Opinion polling for the French presidential election, 2017.

https://en.wikipedia.org/wiki/Opinion_polling_for_the_French_presidential_election,_2017
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polls, first-round runner-up Le Pen was expected to lose the run-off to Macron and

the remaining uncertainty ahead of Macron’s eventual second-round win only raises

redenomination risk by 2 basis points to 5 basis points over the second-round election

weekend in May.

At its peak, the redenomination spread accounts for approximately 40% of the

French CR14 CDS spread. Suppose, for illustrative purposes, that the (risk-neutral)

expected recovery of bondholders in a redenomination scenario is 90% of face value

(implying a 10% depreciation against the euro) and that the risk-free rate is 1%. Un-

der these two assumptions, the simplified pricing equation (1.1) for qT translates the

redenomination spread into a back-of-the-envelope estimate of the redenomination

probability. On April 21st, 2017, just before the first presidential election round, the

redenomination spread of 0.21% translates into a risk-neutral probability of 2.21%

that France will change the currency-denomination of its outstanding bonds within

the following five years.

Figure A.7 plots the redenomination spread for Italy. The possibility of an Italian

exit from the Eurozone (termed ‘Italexit’, ‘Italeave’, or—domestically—‘Euroscita’)

has received a lot of attention during the formation of the coalition government

supported by the populist Five Star Movement and the right-wing League. Ahead

of the March 2018 elections, both parties had been strictly opposed to any form

of cooperation, resulting in a hung parliament post-election. The election period

itself is associated with mildly elevated levels of the redenomination spread, consis-

tent with all relevant parties confirming Italy’s Eurozone membership during their

campaigns. However, during coalition negotiations in May, the question was raised,

and a draft coalition agreement was leaked to the media, citing as objectives the

“introduction of specific technical procedures for single states to leave the Eurozone

and regain monetary sovereignty”, along with a request for e250bn debt relief from

the ECB, and a radical reform of the Stability and Growth Pact.13 While both par-

ties immediately claimed the document was “outdated”, the redenomination spread

rises from 13 to 18bps on the day the draft leaked, and rises further over the follow-

ing week of negotiations. The spread then jumps to 85 basis points at the end of

May, amid further uncertainty surrounding the government formation, including the

possibility of repeat elections within a few months. It stays above 60 basis points

following the appointment and inauguration of the cabinet under Prime Minister

Giuseppe Conte.14 For both France and Italy, the difference-in-difference measure

13The draft document was published by HuffingtonPost.it on May15th, and is available here.

14Figure A.16 in Appendix A.4 plots the French and Italian RS against the respective Economic

https://www.huffingtonpost.it/2018/05/15/un-comitato-di-conciliazione-parallelo-al-consiglio-dei-ministri_a_23435353/
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evidently identifies redenomination-relevant political events. Figure A.8 plots the

ratio of redenomination spread and the total CR14 CDS spread for France and Italy.

While low on average, redenomination risk is at times economically large in mag-

nitude, contributing up to 40% of the total CDS spread for France, and up to 32%

for Italy. Having established an observable quantitative measure of redenomination

risk, I now examine its association with yields and asset prices both in the country

at risk of redenomination and elsewhere.

1.3 Redenomination risk and asset prices

This section documents a set of empirical results about the co-movement of different

asset prices with the redenomination risk measure identified in the previous Section.

Eurozone sovereign debt.—To examine the relationship between redenomination

risk and the cross-section of Eurozone yields, I collect yields for Austria (AUT),

Belgium (BEL), Spain (ESP), France (FRA), Germany (GER), Ireland (IRE), Italy

(ITA), the Netherlands (NED), Portugal (POR), and Denmark (DEN). I restrict

attention to Eurozone countries, for which I have daily yield and CDS data (in-

cluding bid-ask spreads), adding Denmark as a country with a fixed exchange rate

against the euro throughout the sample period. I subtract the maturity-matched

euro overnight swap rate (OIS) and then regress these yield spreads on the French

and Italian redenomination spreads. Country j’s yield with maturity T , yj,T,t is

observed daily and the sample period ranges from September 2014 to June 2018:

yj,T,t −OISe,T,t = αj,T + βFRA,j,TRSFRA,t + βITA,j,TRSITA,t + εj,T,t, (1.2)

for j = {AUT, BEL, ESP, FRA, GER, IRE, ITA, NED, POR, DEN} and T = 5

years. Table A.3 reports the results and Figure A.9 plots the β-coefficients with

their 95% confidence intervals for the Eurozone countries.

The left panels show large cross-sectional variation in yield responses to French

redenomination risk: the estimates are negative for German and Austrian govern-

ment bond yields. Dutch, Irish, and Belgian responses are close to zero. Spanish

yields rise, but not significantly at 5%. Portuguese and French yields rise sharply,

with the French coefficient statistically indistinguishable from 1. The near-zero

coefficient for Italian yields is misleading, since Regression (1.2) directly controls

for Italian redenomination risk. Dropping RSITA from the regressors produces a

strongly significant βFRA-estimate of 1.698. Similarly, the coefficient is positive and

Policy Uncertainty index created by Baker et al. (2016), available at policyuncertainty.com.
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strongly significant at 1.099 regressing the observable RSITA directly on French

redenomination risk.

In comparison, the coefficients on the Italian redenomination spread—shown

in the right panels—are significantly negative for all countries other than Italy.

Further, the responses of other countries’ sovereign yields to Italian redenomination

risk, unlike for French risk, are also similar in magnitude. The Italian coefficient

on Italian redenomination risk is indistinguishable from 1, just like in the case of

France.

Another interesting place to look for responses to Eurozone redenomination risk

is Denmark. Denmark has the right to opt-out of the eventual adoption of the

euro under the Maastricht Treaty, and in 2000, the introduction of the euro was re-

jected in a public referendum (with 53.2% of votes in favor of retaining the krone).

Nonetheless, the Danish krone (DKK) has been pegged to the euro under the Eu-

ropean Exchange Rate Mechanism (ERM II) since 1999, which requires it to trade

within 2.25% of 7.46038 kroner per euro. ERM II membership is one of criteria for

a country to join the Eurozone, and, hence, the peg allows Denmark to keep the

option of euro membership despite the opt-out. The tight peg de facto makes Den-

mark a Eurozone member as far as the risk and return characteristics of its sovereign

bonds are concerned, with the crucial distinction that an ‘exit’ (i.e., abandoning the

peg) is substantially simpler to implement for Denmark than for de jure Eurozone

members. As a quasi-Eurozone member, Danish yields behave similarly to Austrian

yields, with significantly negative coefficients on French and Italian redenomination

risk.

Exchange rates.—Regarding the patterns of responses to French and Italian risk,

a similar discrepancy exists in the response of the euro in currency markets. Denote

by e$/e the natural logarithm of the euro-dollar exchange rate defined as the $-price

of 1e. Consequently, an increase in this variable reflects an appreciation of the euro

against the dollar. Similarly, ee and e$ denote, respectively, the logarithms of the

euro index constructed by Bloomberg and the ICE US dollar index, each measuring

the respective currency’s value against a trade- and liquidity-weighted basket of

global currencies. I obtain daily exchange rates from September 2014 to June 2018

and run the following time-series regressions:

ee,t = α + βFRARSFRA,t + βITARSITA,t + γeOISe,t + εt, (1.3)

e$/e,t = α + βFRARSFRA,t + βITARSITA,t + γeOISe,t + γ$OIS$,t + εt, (1.4)

e$,t = α + βFRARSFRA,t + βITARSITA,t + γ$OIS$,t + εt. (1.5)
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I report the results in Table A.4. The euro depreciates significantly against the

dollar and a broader currency basket in response to higher French redenomination

risk. The magnitudes of the coefficients indicate that a 1 basis point increase in

the French redenomination spread is associated with a 0.3% lower euro exchange

rate against the currency basket (0.5% against the dollar directly). In contrast, the

euro exchange rate appreciates slightly but significantly by 0.1% on average against

the currency basket for one basis point higher Italian redenomination risk. The US

dollar appreciates significantly against the currency basket in response to French

redenomination risk. The dollar index is not significantly correlated with Italian

redenomination risk.

US Treasuries.—Next, I compare the sensitivity of German yields to redenom-

ination risk to that of yields outside of the universe of e-denominated assets (or

pegged, as in the case of Denmark), specifically US Treasury yields. I obtain daily

Bund yields for maturities of 1, 2, 3, 5, and 10 years from Bloomberg, matching the

sample period of the redenomination spread from September 2014 until June 2018,

and run Regression (1.2) for Bund yields for maturities T = {1, 2, 3, 5, 10}. The

coefficient estimates are reported in Panel A of Table A.5. The estimates for β are

significantly negative for all but the 10-year maturity for the French redenomination

spread, and for all maturities for the Italian redenomination spread. I then run

the same time-series regression with US Treasury yields as the dependent variable,

replacing euro swap rates with US dollar swap rates:

yUS,T,t = αT + βFRA,TRSFRA,t + βITA,TRSITA,t + γTOIS$,T,t + εi,T,t. (1.6)

Panel B of Table A.5 reports the results for US Treasuries. Figure A.10 visualizes

the comparison between Bunds and Treasuries from Table (A.5) by plotting the

regression coefficients and their 95% confidence intervals across the term structure.

The response of US Treasuries to French redenomination risk is similar to that of

German Bunds. The coefficients for German yields are more negative than those for

US yields, but the 95% confidence intervals overlap slightly across most of the term

structure, so the distinction in magnitudes resides in the margins of statistical signif-

icance. Focusing next on the estimates for βITA,T in the right panel of Figure A.10,

dollar-denominated US Treasuries behave differently from euro-denominated Bunds.

Much like most other euro-denominated sovereign yields, Bund yields tend to fall

significantly in times of high Italian redenomination risk. This is not true for US

Treasuries of any maturity.

Corporate credit spreads.—I now extend the above examination of redenomi-
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nation risk to corporate credit spreads across Europe. To this end, I collect five-

year CDS spreads (denominated in euros, and with CR14 restructuring clauses)

for the 125 European companies included in the iTraxx Europe Index—a tradable

CDS-index of the most liquid European corporates with an investment-grade rating.

These credit spreads refer to senior unsecured bonds issued by these 125 corporates.

In addition, I collect five-year subordinated credit spreads for 30 financial corporates

(banks and insurance companies included in the 125 sampled companies, for which

these subordinated CDS are traded separately). I repeat Regression (1.2), substitut-

ing as the dependent variable (i) the portfolio of 125 senior corporate CDS (iTraxx

Europe), (ii) the portfolio of 30 senior financial CDS (iTraxx Financials Senior), (iii)

the portfolio of 30 subordinated financial CDS, and (iv) 10 portfolios of corporate

CDS spreads sorted by country and split into financial and non-financial compa-

nies. These country portfolios span five Eurozone countries (GER, NED, ITA, ESP,

and FRA), with at least one financial company within the original set of 125. These

countries cover 71 of the original 125 individual companies. All portfolios are equally

weighted. The results are reported in Table A.6 and illustrated in Figure A.11.

Broadly speaking, the results are weaker than those for sovereign yields in Ta-

ble A.3: corporate credit spreads across Europe are positively associated with French

redenomination risk, but this association lacks statistical significance for Spain and

non-financial companies in Italy. The point estimate for German non-financial cor-

porates is negative and insignificant. Among non-financial companies, the response

to French risk is strongest for French corporates.

Just like sovereign yields, corporate credit spreads are negatively associated with

Italian redenomination risk, and the results are significant for the non-financial

companies in Germany, the Netherlands, Spain, and France. However, in contrast to

Italian sovereign yields, non-financial Italian corporate spreads react only marginally,

and insignificantly positively to Italian redenomination risk.

The coefficients are generally more positive for the CDS spreads of financial

companies, and even more so for their subordinated CDS spreads. Credit spreads

of Italian financial companies are significantly positively associated with French re-

denomination risk, unlike their non-financial counterparts. With respect to Italian

redenomination risk, only Dutch and French banks have significant negative coeffi-

cients.
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1.3.1 Redenomination risk vs. credit risk

Ultimately, I consider the co-movement of Eurozone sovereign yields and the two

redenomination risk measures to document signs of redenomination risks in sovereign

debt beyond France and Italy. In regressing sovereign yields on redenomination risk,

the idea is to think of the yield as the sum of different components:

yj,T,t ≈ risk-free ratee,T,t + credit riskj,T,t + redenomination riskj,T,t, (1.7)

where credit risk is meant to capture all default risk unrelated to redenomination.

The risk-free rate is meant to include all euro-wide return components (e.g., a term

premium). I account for the latter using maturity-matched swap rates on the right-

hand side of the yield regressions. For the three G7-Eurozone members, the rede-

nomination spread presented in Section 1.2 measures [redenomination risk]+, that

is, the positive part of redenomination risk. The asymmetry stems from the fact

that CDS contracts cover only losses from credit events. A redenomination to the

benefit of bondholders would therefore not trigger CDS payouts.

However, regarding the credit risk component, finding a suitable measure is

more difficult: for all non-G7 Eurozone members, CDS spreads measure the sum

of credit risk and [redenomination risk]+, irrespective of which contract type I con-

sider. An isolated observable measure of credit risk only exists for the three G7-

countries. Since the CR contracts do not cover redenomination into a G7-currency,

these spreads are a suitable measure for conventional credit risk, excluding rede-

nomination. As a sense-check for this decomposition, I regress French and Italian

five-year yields on the five-year swap rate, each country’s respective redenomination

spread, and its CR spread:

yj,T,t = αj,T + βj,TRSj,t + ψj,TCRj,t + γj,TOISe,T,t + εj,T,t, (1.8)

for j = {FRA, ITA}. The results are reported in Table A.8. For both countries,

the ψ-coefficients are indistinguishable from one and R2 are high at 0.93 and 0.85,

respectively. Since RSITA > 0 for the vast majority of the sample period, the

limitation that the CDS-based measure only captures positive redenomination risk

has little bearing. Accordingly, the coefficient βITA is indistinguishable from one.

For France, this coefficient is statistically below one over the full sample, but becomes

indistinguishable from one once I drop the earlier part of the sample (pre-February

2017), when RSFRA hovers around zero but appears to be noisy.

The only other country, for which credit and redenomination risk are directly
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observable in isolation is Germany. For Germany, however, the limitation that

RSGER = [redenomination riskGER]+ becomes more problematic, as RSGER is es-

sentially zero throughout the sample. This raises the concern that the CDS-based

measure fails to capture a negative redenomination risk component in Bund yields

arising from expected currency gains conditional on redenomination. Table A.8 re-

ports the results for a variant of Regression (1.2), now including a direct control

for German credit risk (the CR spread). The coefficients on French and Italian

redenomination risk remain significantly negative, and increase in magnitude rela-

tive to those reported in Table A.3. Adding credit risk raises the R2 of the yield

regression by 15 percentage points to 0.59. For all other Eurozone members, credit

spreads or other observable variables do not control for credit risk in isolation from

redenomination risk.

Taking a different approach, I compare the response coefficients of yields to

redenomination risk to those of credit risk, each measured in isolation for France

and Italy. To this end, I add to the redenomination risk measures in Regression (1.2)

the French and Italian CR credit spreads and run an analogous set of time-series

regressions.

yj,T,t −OISe,T,t = αj,T + βFRA,j,TRSFRA,t + βITA,j,TRSITA,t+

+ ψFRA,j,TCRFRA,t + ψITA,j,TCRITA,t + εj,T,t, (1.9)

Table A.7 and the middle and lower panels of Figure A.9 report the results. The pat-

tern in the β-coefficients remains. Unlike for redenomination risk, sovereign yields

are positively and significantly associated with French credit risk. The exceptions

to this are Danish and Portuguese yields, which both have insignificant coefficients.

In stark contrast to the results from Regression (1.2), German Bund yields show the

largest positive response among five-year yields. Similarly, the coefficients on Italian

credit risk differ from those on Italian redenomination risk. While the responses to

redenomination risk are significantly negative for all countries other than Italy, the

credit-risk correlations are close to zero, with the exceptions of Italy and Portugal.

The latter yields rise significantly with the reaction even larger in magnitude than

that of Italian yields. These results confirm the notion that redenomination risk—

as measured by the approach introduced in this chapter—is genuinely distinct from

non-redenomination credit risk.

Since CR spreads and redenomination spreads are close to uncorrelated within-

country for France and Italy, the β-estimates for Regressions (1.2) and (1.9) do not

differ substantially.
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As a further robustness check, I limit the sample to the years 2017 and 2018,

where the most substantial variation in redenomination risk occurs. The subsample

results in Table A.9 confirm the findings from the headline regressions: loadings

on French redenomination risk vary widely across countries. The βFRA estimates

are significantly negative for Germany and Austria, and significantly positive for

France and Portugal. Again, the Italian estimate for βFRA is misleadingly low, since

the regression controls for RSITA directly. Once the Italian regressors are dropped

from the regressors, the coefficient jumps to 0.71. In comparison, the estimates for

βITA are close together, ranging from −0.51 (ESP) to 0.46 (BEL); the Portuguese

coefficient is more negative at −1.65. Crucially, the βITA-estimates do not share the

cross-sectional dispersion seen for βFRA.

1.3.2 Negative redenomination risk

I return to the previous observation that—for all countries—CR14 credit spreads

measure the sum of credit risk and the positive part of redenomination risk, i.e.,

CR14j,T,t = credit riskj,T,t + [redenomination riskj,T,t]
+

To examine the asymmetry in redenomination risk more closely, I repeat Regres-

sion (1.2) with each country’s five-year CR14 spread as the dependent variable,

instead of its yield:

CR14j,t = αj + βFRA,jRSFRA,t + βITA,jRSITA,t + εj,t, (1.10)

for j = {AUT, BEL, ESP, GER, IRE, NED, POR}. I drop the observations for

France and Italy from the dependent variables, as both variables are mechanically

included in the construction of the redenomination spreads on the right-hand side.

If the negative yield responses in other Eurozone government bonds reflect negative

redenomination risk, these responses will be absent from the CDS spreads and the

resulting coefficients are bounded below by zero. I report the results in Table A.10

and Figure A.12 illustrates the comparison of the point estimates for credit spreads

with those for yields. As shown in the left panel, the point estimates for βFRA,j are

indeed non-negative. While bond yields for Germany, Austria, and the Netherlands

have negative point estimates for their respective correlations with French redenom-

ination risk, the coefficients for their respective CDS spreads are all significantly

positive. In stark contrast, just like the coefficients for yields, all coefficients on the

Italian redenomination spread are significantly negative, albeit generally smaller in
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magnitude than the yield coefficients.15 This result suggests that the negative βITA

coefficients in Regression (A.3) do not reflect negative redenomination risk across

other Eurozone bonds, but instead stem from changes in credit risk premia. The

comparison between the two panels points once more to the systematic distinction

between French and Italian redenomination risk and their associations with asset

prices. In the next section, I provide an economic rationale for the joint set of the

above results.

1.4 Contagion, safety, and substitution

When measuring redenomination risk and its co-movement with asset prices, the

imminent question is whether a hypothetical Eurozone exit of any given country is

likely to be associated with a break-up of the currency union, or whether such an

exit would remain isolated. To make this question more empirically tangible, this

section lays out a simple model to sketch possible spillover effects across a range of

asset prices in response to the risk of each type of exit—contagious or isolated. The

redenomination risk measure presented in Subsection 1.2 of this chapter quantifies

exit risk for France and Italy and I interpret the empirical results presented in

Section 1.3 as symptoms of spillovers from this exit risk to other asset prices.

The prospect of a Eurozone break-up and re-introduction of national currencies

sparks capital flight out of countries with expected weaker national currencies and

into those with stronger ones. As outlined at the start of Section 1.2, the rede-

nomination risk measure presented in this chapter only captures the downside of

redenomination, that is, if the national shadow currency of, say, France is expected

to depreciate against the euro. As a consequence of the repricing of redenominatable

bonds at risk of such depreciation, the nominal yields on such bonds rise. As a first

consistency check, a positive redenomination spread for France should therefore be

associated with higher yields for French sovereign bonds. The results reported in

Table A.3 and Figure A.9 show that this is true for both France and Italy (with

yields rising close to 1-for-1 with redenomination risk).

Looking beyond France or Italy and towards spillover effects, the question of

contagion versus isolation becomes crucial: if an exit of, say, Italy becomes more

likely, but this event is not expected to lead to a redenomination of bonds issued

by, say, Spain, this may lead investors in Eurozone government bonds to shift their

investments out of Italian bonds and into Spanish ones, regardless of how the Spanish

15The findings in Table A.10 are robust to estimating regression (1.10) as a Tobit model.
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national shadow currency would fare, because that currency remains hypothetical

in the absence of break-up risk. To illustrate this channel more formally, consider

the simple model presented in the following subsection.

1.4.1 A simple model

There are two dates, today and tomorrow, and the model describes the bond market

in a currency union of three countries, A, B, and H. On the supply side of the bond

market, the asset universe consists of four zero-coupon bonds: a risk-free bond with

a net supply of σS in nominal face value, and three redenominatable government

bonds issued by countries A, B, and H in nominal net supplies σA, σB, and σH ,

respectively. Today, all bonds are denominated in the common numéraire (let’s call

it ‘euro’) and their prices are determined by market clearing. Prices are expressed

in terms of gross yield denoted by yJ for bond J , such that its price per unit of

face value is PJ = 1/yJ . Countries A and B are individually at risk of exiting the

currency union and redenominating their bonds into a national currency. Country

H, however, only redenominates its bonds if both A and B jointly exit, that is, if

the currency union ceases to exist. Consequently, there are four possible states of

the world tomorrow, denoted by s ∈ {1, 2, 3, 4}:

(1) Stability: no exit, no bond is redenominated,

(2) Isolated exit A: only A is redenominated,

(3) Isolated exit B: only B is redenominated,

(4) Break-up: all bonds, A, B, and H, are redenominated.

In case of redenomination, the face value is repaid in the new currency worth a

euro-equivalent of (1− δJ) per unit, such that the gross return on bond J in case of

redenomination is yJ(1− δJ). δA > 0 and δB > 0, meaning that currencies A and B

depreciate against the euro-numéraire once they are introduced. In contrast, the new

currency of country H (for haven) appreciates, δH < 0, resulting in exchange rate

gains from redenomination for bondholders. The risk-free bond denoted by subscript

S repays one unit of the numéraire per unit of face value in all states of the world.

This bond can be thought of as a privately issued euro-denominated security with

sufficient collateral to be default-free and remote from redenomination. With four

linearly independent assets and four states of the world, markets are complete.

The demand side of the asset market consists of two risk-averse banks, a and

b operating in countries A and B, respectively. Adding a third bank operating in
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country H does not change any of the model results in a meaningful way. For clarity

of notation, I use lower case superscripts to refer to banks, and upper case subscripts

to refer to countries/bonds. Today, the right-hand side of each bank’s balance sheet

consists of deposits, d raised from households in the respective country, and bank

equity, e, such that the total endowment of each bank amounts to one unit of the

common numéraire as shown below. Households are passive, and their decisions are

not modelled.

Crucially, redenomination also extends to bank deposits: the euro-equivalent of

deposits taken by bank a falls to da(1− δA) after redenomination by country A, and

equivalently for bank b and country B.

Today, banks choose a portfolio of the four assets in order to maximize expected

log utility over their respective equity tomorrow. Let wiJ be the euro-investment

of bank i in bond J , and by eis the value of bank i’s equity in state s. State-

probabilities are denoted by ps. I assume that deposits, d, and redenomination

losses, δ, are sufficiently small, such that bank equity is strictly positive in all states

and utility is well-defined:

max{wi
A,w

i
B ,w

i
H ,w

i
S}

∑
s

pslog
(
eis
)

s. t. wiA + wiB + wiH + wiS = 1

Rather than to generate contagion in redenominations, the purpose of the model is

to formally examine the relationships of the different asset prices given contagion

or the lack thereof. Starting with the latter case, isolation, suppose that exits by

A and B are independent, and the redenomination probabilities are ρA and ρB,

respectively. The probabilities of the four possible states in the isolation case are:

(1) Stability: p1 = (1− ρA)(1− ρB),

(2) Isolated exit A: p2 = ρA(1− ρB),

(3) Isolated exit B: p3 = (1− ρA)ρB, and

(4) Break-up: p4 = ρA · ρB.

Next, I consider the other extreme case: the contagion case with perfect correlation

in redenominations. To this end, suppose that B exits and redenominates if and
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only if A does, such that the state probabilities in the contagion case are:

(1) Stability: p1 = (1− ρA),

(2) Isolated exit A: p2 = 0,

(3) Isolated exit B: p3 = 0, and

(4) Break-up: p4 = ρA.

In this configuration of the contagion case, country A drives the disintegration of

the currency union and the model therefore studies spillover effects from A to B, but

not vice versa. The equilibrium in this model exhibits the following relationships

between redenomination risk (ρA) and bond yields.

(i) Spillover effects.—In the isolation case (with independent redenominations),

an increase in A’s redenomination probability, ρA, lowers the yield on country B’s

bonds. This result is illustrated in terms of comparative statics of equilibrium yields

with respect to ρA in Panel A of Figure A.13. It is an indirect spillover effect through

portfolio substitution: rising risk in country A lowers yields in country B, because

absent a change in yields, both banks shift portfolio weight from countryA’s bonds to

those of country B (and those of country H, and the risk-free bond). Yields on bond

B therefore need to fall to restore market clearing. In the contagion case, however,

the sign and magnitude of spillover effects on another country’s bond yield from

an increase in ρA are dictated by, respectively, the sign and magnitude of the other

country’s δ: since δB > 0, country B’s bond yield increases with redenomination

risk in country A, while the yield on the bonds of country H falls (δH < 0). Panel

B of Figure A.13 illustrates the yield spillovers in the contagion case. Aside from

the spillover effects, the model delivers two additional results, which are notable in

the empirical context of the Eurozone.

(ii) Home bias.—Sovereign bonds are predominantly held by domestic banks.

Battistini et al. (2014) note that the redenomination of liabilities gives domestic

banks a “comparative advantage” in holding domestic sovereign debt.16 This is

precisely the mechanism behind this model result, which is a direct consequence of

deposit redenomination: the losses from a redenomination of domestic government

bonds on the bank’s asset side are partially offset by the redenomination of its

deposits. Accordingly, domestic bonds are less risky to domestic banks than to

16Alongside redenomination risk, they note two primary motives for home bias in Eurozone
banks: (i) “moral suasion” by authorities in order to raise demand for domestic sovereign debt;
and (ii) “carry trade” investments into particularly high-yield euro-denominated sovereign debt,
funded with low-yield euro borrowing (see also Acharya and Steffen (2015)).
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foreign banks, resulting in home bias in bank bond holdings. The proof is left to

Appendix A.3. I document home bias in Table A.11 using data as of year-end

2015, provided by the EBA: banks domiciled in most European countries hold a

larger fraction of their liquid sovereign debt holdings in domestic government debt,

in which most of their deposit-taking activity occurs. For non-Eurozone countries,

such as Poland (98.8% of net sovereign bond exposure of Polish banks is to the

Polish government) or Norway (63.2%), this likely represents a straight-forward

currency matching between assets and liabilities. For Eurozone-domiciled banks,

for instance in Italy (65.8%), Ireland (67.6%), Spain (50.5%), or Germany (44.4%),

redenomination risk makes this currency matching more subtle and currency bias

implies home bias even in a currency union.17

(iii) Sub-zero lower bound.—The nominal yield on bond H is below that of the

risk-free asset. This effect is straight-forward if redenomination leads to exchange

rate gains. Bonds from a country whose currency is expected to appreciate in

the break-up scenario carry a yield below the risk-free rate. Even if the risk-free

rate is bounded below (say, by zero), ‘haven’ bond yields are not. This intuitive

notion is important for the assessment of monetary policy and its transmission in

the presence of redenomination risk and negative bond yields. Again, the proof is

left to Appendix A.3.

1.4.2 Interpreting the empirical results

I now compare the model results to the empirical results in Section 1.3. The

spillovers through portfolio substitution described above apply to all other assets

in the model (all sharing the common numéraire). The right-hand side panels of

Figure A.9 show that the statistical relationship of the Italian redenomination spread

with Eurozone government yields outside Italy is indeed significantly negative and

homogeneous in the cross-section. As shown in Table A.6, the same is true for

corporate credit spreads in Germany, the Netherlands, Spain, and France. Dollar-

denominated US Treasuries do not exhibit the same behavior as Eurozone yields

and remain flat across most of the term structure with respect to increases in Ital-

ian redenomination risk (Figure A.10). Furthermore, the euro-dollar exchange rate

is uncorrelated with Italian redenomination risk. Against a broad currency basket,

the euro appreciates slightly with Italian redenomination risk. The results for Trea-

17Among Eurozone-domiciled banks, home bias is relatively low for the two Austrian banks
included in the EBA stress tests. Both have relatively large exposures to central and eastern
European sovereigns, consistent with their prominent consumer banking presence and deposit base
in that region.
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suries and exchange rates speak against the notion that Italian redenomination risk

is associated with a broader flight-to-safety phenomenon.

In contrast, spillovers from contagious redenomination risk separate the remain-

ing Eurozone members—observably, through the reaction of their sovereign bonds—

into those with expected strong currencies and those with expected weak national

currencies. Bonds that are redenominated into a stronger national currency (or

stronger miniature-currency unions) are more desirable, and these bonds appre-

ciate. If, say, the new German currency is expected to appreciate against other

national euro-successor currencies, then ‘German euros’, which are converted in the

event of a Eurozone break-up, provide an effective hedge against the break-up event

and exhibit ‘safe haven’ properties. In a similar way, safe haven candidate assets

denominated in other currencies, such as US Treasuries, might benefit similarly, if

the future of the euro is at risk. Instead, countries, for which national currencies are

expected to be weaker exhibit rising yields. The implied cross-sectional heterogene-

ity in bond yield responses is evident in the left panels of Figure A.9, which plots

the yield-coefficients with respect to the French redenomination spread. Similarly

to German Bunds, US Treasury yields—a plausible safe-haven asset in the case of a

Eurozone break-up—drop with rising French redenomination risk, as shown in Fig-

ure A.10. The interpretation that the negative response of German and Austrian

yields to the French RS-measure reflects negative redenomination risk in these coun-

tries is corroborated by the absence of this response in German and Austrian CDS

spreads: since CDS contracts only cover losses from credit events, their prices reflect

redenomination risk asymmetrically, unlike bond yields which reflect both expected

losses and gains from redenomination.18 Table A.4 further points to the negative

association of bilateral euro exchange rates with the French redenomination spread:

the euro depreciates significantly, consistent with the interpretation that a French

redenomination would put the existence of the euro at risk.

The results for corporate credit spreads in Table A.6 are weaker in magnitude

and significance than those for sovereign yields. Credit spreads of Italian companies

(financial as well as non-financial) are not significantly correlated with Italian re-

denomination risk with coefficients close to zero, while their sovereign counterparts

show significantly positive coefficients close to one. This result suggests that an

isolated Eurozone exit would not necessarily imply currency redenomination for the

18An important caveat in the comparison between yields and CDS spreads is the large literature
on the CDS-bond basis (Bai and Collin-Dufresne, forthcoming, e.g.) and the potential disconnect
between sovereign yields and CDS spreads due to financial regulation and the price impact of
financial institutions in CDS markets (Antón et al., 2017; Klingler and Lando, 2018).
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debt of large domestic corporate borrowers. Therefore, the ability of the diff-in-diff

measure to identify sovereign redenomination risk without assumptions on corporate

redenomination marks an important contribution of this chapter relative to Krish-

namurthy et al. (2018) and Bayer et al. (2018). Redenomination of corporate debt

is more likely in a break-up scenario, where the common currency ceases to exist. In

line with this interpretation, French corporate credit spreads rise significantly with

French redenomination risk. Cross-sectional patterns in the coefficients on credit

spreads outside France or Italy are difficult to interpret, due to the differing size

and industry composition of the country portfolios. With this caveat, I note that

the βFRA-coefficients are smallest for German corporates (financial as well as non-

financial), mirroring some of the cross-sectional pattern observed for sovereign debt.

Overall, a within-country comparison of the βFRA and βITA coefficients suggests

once more that the risk of a French exit from the Eurozone is priced more severely

than that of an Italian exit in European corporate CDS markets.

As an additional test, the risk of a contagious redenomination in one coun-

try should—by virtue of being contagious—also be correlated with redenomination

risk in other countries, and, therefore, with the observable redenomination spread.

Throughout the sample period over which I can observe redenomination spreads,

the Italian measure is high whenever the French redenomination spread is high, but

not vice versa, consistent with contagious French risk and isolated Italian risk (af-

ter accounting for the French component in Italian risk). The German spread is

essentially zero throughout, and this exception is consistent with the inability of the

measure to capture negative redenomination risk, that is an expected appreciation

of a country’s national currency following the euro break-up. The hypothesis that

this applies to a new German mark is further consistent with the behavior shown by

German sovereign yields and CDS spreads with respect to French redenomination

risk.

All of the empirical results presented in this chapter are, therefore, consistent

with the interpretation that the redenomination risk in French CDS around the

presidential elections in 2017 was deemed contagious by market participants, while

the risk measured from Italian CDS immediately after the French election, ahead of

the Italian elections in March 2018, and particularly following the formation of the

coalition government in May 2018, was not expected to spill over into other Eurozone

countries. Interpreting the exposures of sovereign yields to French redenomination

risk as indicators of the strength of each national shadow currency, I next relate

these coefficients to fundamental country-level variables.
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1.4.3 National shadow currencies

Which factors explain the cross-section of sovereign yield reactions to contagious

redenomination risk? In the simple model set-up, this reaction is pinned down by

paramenter δJ , the new national currency’s depreciation relative to the euro (or rel-

ative to the new national currencies of other currency union members). To be more

precise, the change in bond prices reflects the change in expected losses or gains

from currency redenomination. This expectation is the product of the probability

of redenomination in country B, conditional on redenomination in country A (= 1

in the contagion case of the model), and the expected depreciation of country B’s

national currency after redenomination (= δB). It is natural to ask which factors

determine the heterogeneity in δ, that is heterogeneity in national exchange rates

immediately following the break-up of the currency union.19 In line with the evi-

dence and interpretation presented above, suppose that the time series for French

redenomination risk reflects the risk of a Eurozone break-up. This simplifying as-

sumption echoes the contagion case of the model, such that for all countries the

probability of redenomination conditional on redenomination in France is equal to

1, and the cross-sectional heterogeneity in yield responses to French redenomina-

tion risk is driven by heterogeneity in δJ across countries, that is, heterogeneity

in the performance of the different national currencies immediately following the

dissolution of the currency union.

Consider the βFRA-estimates in Table A.7 (from Regression (1.9), which controls

directly for credit risk): German and Austrian yields have the most negative coef-

ficients, followed by Danish and Dutch yields. As in the baseline Regression (1.2),

Portuguese and French yields have significantly positive βFRA-estimates. Dropping

the Italian regressors, the βFRA-estimate for Italy jumps to 0.71. If these coefficients

reflect an expected appreciation of, say, a new German currency or of a de-pegged

Danish krone relative to a new Italian or Portuguese currency, then what is it about

Germany or Denmark (Italy or Portugal) that promises a strong (weak) national

currency after the break-down of the peg enforced by the currency union?

To relate the regression coefficients to country-fundamentals, I run univariate

cross-sectional regressions of the βFRA coefficients from Regression (1.9) on the (i)

debt-to-GDP ratio, (ii) budget surplus/deficit, (iii) labor productivity, and (iv) cur-

19As outlined in Subsection 1.1.1, losses from redenomination may stem from an increase in credit
risk premia for the respective country outside of the Eurozone, alongside the depreciation of the
new numéraire. Without imposing strong further assumptions on these only indirectly observable
quantities, it is impossible to disentangle the different sources of redenomination losses.
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rent account balance. Data on all four variables are obtained from the OECD.

Debt-to-GDP ratios and labor productivity data (GDP per hour worked) are as of

2016, due to incomplete data for 2017. All other data are for 2017. Budget surplus,

and current account balance are expressed as a percentage of GDP.

For each country, Figure A.14 plots the point estimates for βFRA,j from Regres-

sion (1.9) against each of the five fundamental variables, along with the univariate

R2 of the respective cross-sectional regression. Sovereign debt and the 2017 budget

surplus (both scaled by GDP) each linearly account for large shares of the cross-

country variation in βFRA: 0.66, and 0.72, respectively. (These two fundamental

variables are also strongly correlated across countries.) Labor productivity and the

current account balance deliver univariate R2 of 0.25 and 0.32, respectively. Since

a negative βFRA suggests a strong national currency, it is not surprising that the

only variable that is positively related to the coefficient is the debt-to-GDP ratio.

A strong link between a country’s fiscal position and the value of its currency is

in line with the long literature on the fiscal theory of the price level (e.g., Sargent

and Wallace (1984) and Sims (1994), or—in more recent applications—Jiang (2018)

and Bolton and Huang (2017)), and the high univariate R2 are consistent with the

interpretation of βFRA as a weakness-gauge for the national shadow currencies of

Eurozone members. In contrast, the limited variation in the coefficients on Italian

redenomination risk, βITA,j, does not relate to variation in macro fundamentals.

Sovereign debt yields a modest R2 of 0.10; the R2 for the three other fundamental

variables are essentially zero.

Taking the interpretations from Subsection 1.4.2 at face value, I now proceed to

a back-of-the-envelope calculation of the fiscal costs to different national treasuries

that are attributable to the periods of heightened redenomination risk in France and

Italy.

1.4.4 Fiscal contagion or ‘exorbitant’ privilege?

The quantitative measure of redenomination risk can be used to estimate the overall

fiscal cost of French and Italian redenomination risk on these two countries as well

as the cost of spillovers on other Eurozone members. As discussed above, the sign

of yield spillovers varies by country, such that German taxpayers benefit from the

risk of redenomination in France, while sovereign yields for most other Eurozone

member countries rise. As the de facto provider of safe assets for the Eurozone, the

German treasury collects insurance premia in the form of interest savings on newly

issued debt. The role of Germany as an insurance provider against redenomination
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risk can be viewed in analogy to the role of the United States as a provider of safe

assets and the US dollar as the reserve currency within the global financial system,

which has been described as an “exorbitant privilege” by French then-Minister of

Finance, Valéry Giscard d’Estaing in the 1960s, and is interpreted as that of an

insurance provider by Gourinchas et al. (2010).

To quantify the impact of positive and negative spillovers on yields, I compute

counterfactual yield curves for each sample country on each day from 2017 until the

end of the sample period in June 2018 as if redenomination spreads of France and

Italy were zero throughout. I restrict attention to the sample period with most of

the time-variation in redenomination risk. Specifically, I compute the counterfac-

tual yield ỹj,T,t = α̂j,T,t + γ̂j,T,tOISe,T,t + ε̂j,T,t using estimates from rolling-window

regression analogous to Regression (1.2) for maturities T = {1, 2, 3, 5, 10, 30} years.

Estimating rolling coefficients allows for time-variation in the sensitivity of bond

yields to redenomination risk. I choose a window-length of 250 daily observations up

to and including observation t. I then compute the estimated spillover costs (or cost

savings, if negative) as cj,T,t = yj,T,t − ỹj,T,t = β̂FRA,j,T,tRSFRA,t + β̂ITA,j,T,tRSITA,t,

which reflects an estimate of the yield component that is due to French and Italian

redenomination risk. For each bond issuance, I then multiply cj,T,t by the issuance

volume, vj,T,t and capitalize the differential interest costs over the maturity of the

bond with an annuity factor to obtain Cj,T,t = cj,T,t · vj,T,t · a(T, yj,T,t). Since the co-

efficients are estimated for nominal yields, I exclude inflation-linked bond issuances.

Crucially, this exercise assumes that the (plausibly endogenous) choice of is-

suance volume and maturity is fixed. If national treasuries adjust issuance volume

and/or maturity to changes in yields, my back-of-the-envelope cost estimate will

be biased downwards, since the unobservable counterfactual issuance choice would

have resulted in higher interest costs than the observable optimized issuance. Given

the high frequency of changes in redenomination risk, which is characterized by sud-

den jumps and few periods of sustained elevated levels over the sample period, an

adjustment of issuance by national treasuries would have to occur rather quickly.

The idea that issuance volumes are chosen in response to changes in redenomina-

tion risk is also at odds with the overall low amount of issuance by the German

treasury, which benefits most from redenomination risk in this sample. Figure A.15

plots these costs for each bond auction of France (Panel A), Italy (B), Spain (C),

and Germany (D). To visualize the time-variation in the intensity of redenomination

risk, I include the two redenomination spreads in each plot. The aggregate measure

can be decomposed into a French and an Italian component, Cj = CFRA
j + CITA

j .
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The result of this back-of-the-envelope calculation is that, from 2017 until June

2018, French taxpayers incur a substantial fiscal cost from redenomination risk: the

risk surrounding the presidential election in 2017 resulted in substantially increased

interest costs of around e400m. However, these costs to taxpayers are more than

offset by the benefits newly issued French bonds have subsequently reaped as a

substitute to Italian bonds during periods of Italian redenomination risk. The net

benefit estimate to French taxpayers from redenomination risk in 2017-2018 amounts

to e858m.

With the exception of a few very short-term issuances, Italian debt issues carried

higher interest rates over the period, both during the tumultuous run-up to the

French election in March/April 2017, but particularly following the Italian elections

in March 2018 that led to the formation of the coalition between the far-left Five

Star Movement and the far-right League in late May 2018. The estimated interest

cost from redenomination risk to Italian taxpayers totals e3.5bn.

Spain is a net beneficiary over the period, despite negative spillovers and higher

yields ahead of the French election (with costs totaling around e40m). Following

the Italian elections, Spanish yields were negatively correlated with rising Italian

redenomination risk, leading to “cheap” debt issuances and an estimated net fiscal

benefit of e499m over the entire period.

As a provider of ‘safe’ assets, the German treasury benefitted sizeably from the

risks surrounding the French election, with interest savings of around e280m in

early 2017. The total estimated net benefit to German taxpayers over the period

from January 2017 through June 2018 amounts to e565m. To put this number

into perspective, I note that nominal bond issuance by the German treasury over

those 18 months totaled e205bn. It is important to note that the direct fiscal costs,

which may appear minuscule in relation to the trillions of euros of outstanding

sovereign debt, are computed on the basis of newly issued debt only. At the same

time, the risks measured over the sample period suggest event probabilities of a

few (single-digit) percentage points under the risk-neutral measure (i.e., an upper

bound on the true, physical probability). The fact that such small probabilities

have consequences of economically meaningful magnitude highlights the need for

investors, policy makers, and electorates alike to understand the full ramifications a

Eurozone exit, not to mention a break-up of the currency union.

Next, I discuss potential empirical concerns with the difference-in-difference ap-

proach used to quantify redenomination risk.
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1.5 Concerns in measuring redenomination risk

The difference-in-difference measure of redenomination risk is obtained from the

relative behavior of CDS contracts based on differing definitions of credit events.

The most pressing concern when comparing new contracts to old ones is one of

liquidity differences: similar to on-the-run/off-the-run premia in the US Treasury

market, the potential lack of liquidity for off-the-run CDS contracts may result in

different CDS spreads, and the consistently positive difference between CDS spreads

for the largely unaffected issuers in the control group suggests that such a liquidity

component exists. I also describe the other important contract change that applies

to sovereign CDS and why my approach deals with it appropriately.

1.5.1 Liquidity

The diff-in-diff will account for liquidity-driven differences between old and new

contracts, as long as such differences are common across treatment and control

groups. Liquidity differences are likely to be more severe in smaller markets. Since

both France and especially Italy are among the largest European CDS markets, the

control group is more likely to overstate the correction due to market-size driven

liquidity.

However, the additional distinction between the two types in treated issuers

may create clientele effects that generate price differences between CR and CR14

contracts as some investors shift holdings from CR to CR14 contracts and the market

for CR adjusts to the new clientele. Such adjustments in market clientele are not

purely driven by an on-the-run versus off-the-run phenomenon, and would, therefore,

be systematically different between treatment and control groups. However, such

adjustments are also likely to be temporary, if the launch of CR14 contracts was

widely anticipated. Transitory price effects driven by the adjustment of market

clientele to the newly bifurcated market may be responsible for the elevated Italian

redenomination spread in October to November 2014 following the introduction of

CR14 contracts. The spread then goes back to hover around zero.

Anticipation plays a problematic role in the interpretation of many difference-

in-difference measures. In this case, however, anticipation does not threaten the

validity of the diff-in-diff, since both treated and untreated variables are observed

simultaneously (i.e., the diff-in-diff is not across time). On the contrary, for my diff-

in-diff measure to reveal redenomination risk, it is necessary that market participants

are immediately and fully aware of the differences between the two contract types
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and price them accordingly. To show that this was likely the case, I briefly summarize

the timeline of the revision process.

ISDA began the revision of its CDS definitions in May 2012, following the re-

structuring credit event in Greece. In November 2013, ISDA published a draft of the

revised definitions to review comments from market participants ahead of the final

release of the new definitions on February 21st, 2014. Trading in the new contracts

began 7 months later on September 22nd.20 The release of the new definitions in

February also announced the implementation process for the new set of definitions.

For the vast majority of reference entities, the changes were retroactively applied

to existing contracts on October 6th, but due to the expected pricing impact of the

sovereign-specific changes (see also Subsection 1.5.2), most sovereign issuers were

excluded from this adjustment such that CR contracts remained widely outstanding

alongside the newly issued CR14 contracts. Among sovereign issuers, existing con-

tracts were only migrated to the new 2014 definitions for emerging market sovereign

issuers because ISDA was concerned that the resulting lack of liquidity in legacy

CR contracts would be insufficient to support efficient trading in a bifurcated mar-

ket (Simmons & Simmons, 2016). At the same time, there were no such liquidity

concerns for developed-market sovereign issuers, including all Eurozone countries

studied in this chapter. Due to the broad consultation of market participants in

the revision process and the long lead time between the release of the final new

definitions and the beginning of trading, it is reasonable to assume that, at the time

the CR14 contracts were launched, market participants were immediately and fully

aware of the differences, and prices reflect these differences throughout my sample

period. ISDA’s decision to exclude most sovereign reference entities from a retroac-

tive activation of the new definitions suggests that market liquidity in the remaining

CR contracts was viewed as sufficient for price discovery in both markets.

This view is consistent with the market depth of available quotes for both con-

tract types: Table A.12 reports the market ‘depth’ as the number of quote submis-

sions from dealers used in Markit’s computation of the consensus quote. Differences

in market depth between the two contracts are small for all countries: for the av-

erage country, 4.90 CR14 quotes are reported on the average day, versus 5.05 for

the older CR contracts—the older contract type receives slightly more quotes on

average. Excluding Portugal, for which this difference is the largest in favor of the

older CR contracts, the remaining average difference is zero. Similarly, the volatility,

maxima, and minima of market depth are comparable across both contract types for

20see ISDA release dated February 21st, 2014 and June 30th, 2014, respectively, here and here.

https://www.isda.org/a/24DDE/2014-credit-definitions-release-final.pdf
https://www.isda.org/a/eXEDE/isda-2014-credit-definitions-faq-v12-clean.pdf
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all countries. The absolute market depth of around five intermediary submissions is

consistent with the large concentration of these OTC markets among a few dealers

(Giglio, 2014; Siriwardane, forthcoming).

1.5.2 Asset package delivery

A second change in the CR14 restructuring clause relative to the CR clause that

relates particularly to sovereign issuers is the introduction of ‘asset package delivery’

(APD). This reform in the calculation of the recovery value is a direct response to

the Greek debt restructuring of 2012. When Greece restructured its debt in 2012,

existing bonds with 1e in face value were exchanged into a package of new securities:

(i) 15 cents of face value in short-term notes to be repaid by the European Financial

Stability Facility (EFSF), (ii) 46.5 cents of face value in new Greek bonds with 30

years to maturity and a coupon rate of 2%, and (iii) detachable GDP-warrants which

pay a capped amount if Greek GDP growth exceeds certain projections. Greek CDS

payouts were triggered, but since old bonds were exchanged, the recovery had to be

determined in an auction of the new 30 year bonds, which traded at approximately

30% of par value. As Duffie and Thukral (2012) outline, the true recovery is derived

from the value (relative to the face value of the original bond) of the total asset

package that is received in exchange for the original bonds rather than the value of

just the single security, which is determined to be the ‘deliverable obligation’ and

auctioned by ISDA. The APD clause addresses this flaw in the original CDS terms

and specifies that recovery be based on the market value of the full asset package.

Since the APD clause may impact the recovery offset against the CDS payout,

the change in this clause potentially introduces another difference between CR and

CR14 CDS spreads. As seen in equation (1.1), the recovery value interacts with the

default probability in determining the fair insurance premium. If the APD term

is responsible for differences between CR and CR14 spreads, this difference should

therefore scale with the level of the spread. Table A.1 shows that, in the control

group, this is true in the cross-section: countries with higher average CR14 spreads

show a larger difference between CR14 and CR spreads. However, this correlation

does not show up within-country. The correlation is negative and/or close to zero

for all sampled countries, indicating that the ISDA basis is unlikely to stem from

the presence of the APD clause in CR14 contracts. Nonetheless, while necessary,

the difference-in-difference method is well-suited to eliminate APD-driven pricing

effects, since the introduction of APD in the CR14 relative to the CR restructuring

clause applies to all sovereign issuers regardless of G-7 membership.
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1.6 Conclusion

This chapter presents a directly observable quantitative measure of redenomination

risk in French, Italian, and German government bonds. The measure uses CDS

spreads on contracts, which, respectively, do and do not cover bondholders’ losses

from a redenomination into a newly issued French, Italian, or German national

currency. I construct a difference-in-difference measure to account for potential

liquidity differences and other contractual discrepancies between the two CDS types.

French redenomination risk is economically large before the 2017 presidential

elections, when it accounts for 40% of the total French CDS spread. Italian rede-

nomination risk is elevated around and immediately following the French presidential

election, and spikes to 80 basis points (close to one third of the total CDS spread)

during coalition negotiations in late May 2018. German redenomination risk is close

to zero throughout the sample period, consistent with the interpretation that a re-

denomination into a new German currency (i) does not cause losses for bondholders,

and/or (ii) is very unlikely.

French redenomination risk is associated with a statistically and economically

significant drop in yields on German and Austrian government bonds, while many

other sovereign Eurozone yields rise—particularly those on Portuguese debt. The

German Bund response to French risk is similar to that of US Treasuries. In contrast,

all Eurozone sovereign yields other than Italian yields are negatively correlated with

Italian redenomination risk: higher redenomination risk in Italy is associated with

lower sovereign yields elsewhere. I do not find a similar association with Italian

redenomination risk for dollar-denominated US Treasuries.

Sovereign yields for most European countries, European corporate credit spreads,

US Treasury yields, and the euro exchange rate react differently to French and Italian

redenomination risk changes. French redenomination risk appears to have hetero-

geneous spillover effects on Eurozone assets, while Italian redenomination risk is

associated with homogeneously lower yields on most other euro-denominated assets.

This discrepancy is consistent with the interpretation that a French exit from the

Eurozone is expected to lead to further redenominations in other European coun-

tries. In contrast, an Italian exit is expected to remain isolated, and benefits other

euro-denominated sovereign and corporate debt, which serve as substitutes to Italian

bonds.

I relate the co-movement of Eurozone yields with the presumably contagious

French risk to fundamental variables. I find that the heterogeneity lines up with

cross-sectional variation in the countries’ fiscal positions, trade balances, and labor
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productivities.

I do not address the question why a French exit is associated with a Eurozone

break-up, while an Italian exit is not. I leave it to further research to uncover the

political, macroeconomic, and/or financial channels, which may or may not generate

a ‘contagious’ cross-country correlation in withdrawals from the Eurozone.



2. The Quanto Theory of Exchange Rates

Lukas Kremens and Ian Martin1

It is notoriously hard to forecast movements in exchange rates. A large part of the

literature is organized around the principle of uncovered interest parity (UIP), which

predicts that expected exchange rate movements offset interest rate differentials and

therefore equalise expected returns across currencies. Unfortunately many authors,

starting from Hansen and Hodrick (1980) and Fama (1984), have shown that this

prediction fails: returns have historically been larger on high interest rate currencies

than on low interest rate currencies.2

Given its empirical failings, it is worth reflecting on why UIP represents such

an enduring benchmark in the FX literature. The UIP forecast has three appealing

properties. First, it is determined by asset prices alone rather than by, say, infre-

quently updated and imperfectly measured macroeconomic data. Second, it has

no free parameters: with no coefficients to be estimated in-sample or “calibrated,”

it is perfectly suited to out-of-sample forecasting. Third, it has a straightforward

interpretation as the expected exchange rate movement perceived by a risk-neutral

investor. Put differently, UIP holds if and only if the risk-neutral expected appreci-

1We thank the Systemic Risk Centre and the Paul Woolley Centre at the LSE for their support,
and for providing access to data sourced from Markit under license. We are grateful to Chris-
tian Wagner, Tarek Hassan, John Campbell, Mike Chernov, Gino Cenedese, Anthony Neuberger,
Dagfinn Rime, Urban Jermann, Bryn Thompson-Clarke, Adrien Verdelhan, Bernard Dumas, Pier-
paolo Benigno, Alan Taylor, Daniel Ferreira, Ulf Axelson, Scott Robertson, and to participants in
seminars at the LSE, Imperial College, Cass Business School, LUISS, BI Business School, Boston
University, and Queen Mary University of London, for their comments; and to Lerby Ergun for
research assistance. Ian Martin is also grateful for support from the ERC under Starting Grant
639744.

2Some studies (e.g. Sarno et al., 2012) find that currencies with high interest rates appreciate on
average, exacerbating the failure of UIP; this has become known as the forward premium puzzle.
Others, such as Hassan and Mano (forthcoming), find that exchange rates move in the direction
predicted by UIP, though not by enough to offset interest rate differentials.
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ation of a currency is equal to its real-world expected appreciation, the latter being

the quantity relevant for forecasting exchange rate movements.

There is, however, no reason to expect that the real-world and risk-neutral ex-

pectations should be similar. On the contrary, the modern literature in financial

economics has documented that large and time-varying risk premia are pervasive

across asset classes, so that risk-neutral and real-world distributions are very differ-

ent from one another: in other words, the perspective of a risk-neutral investor is

not useful from the point of view of forecasting. Thus, while UIP has been a use-

ful organizing principle for the empirical literature on exchange rates, its predictive

failure is no surprise.3

In this chapter we propose a new predictor variable that also possesses the three

appealing properties mentioned above, but which does not require that one takes the

perspective of a risk-neutral investor. This alternative benchmark can be interpreted

as the expected exchange rate movement that must be perceived by a risk-averse

investor with log utility whose wealth is invested in the stock market. (To streamline

the discussion, this description is an oversimplification and strengthening of the

condition we actually need to hold for our approach to work, which is based on a

general identity presented in Result 1.) This approach has been shown by Martin

(2017) and Martin and Wagner (forthcoming) to be successful in forecasting returns

on the stock market and on individual stocks, respectively.

It turns out that such an investor’s expectations about currency returns can be

inferred directly from the prices of so-called quanto contracts. For our purposes,

the important feature of such contracts is that their prices are sensitive to the

correlation between a given currency and some other asset price. Consider, for

example, a quanto contract whose payoff equals the level of the S&P 500 index at

time T , denominated in euros (that is, the exchange rate is fixed—in this example, at

1 euro per dollar—at initiation of the trade). The value of this contract is sensitive

to the correlation between the S&P 500 index and the dollar/euro exchange rate.

If the euro appreciates against the dollar at times when the index is high, and

depreciates when the index is low, then this quanto contract is more valuable than

a conventional, dollar-denominated, claim on the index.4

3Various authors have fleshed out this point in the context of equilibrium models: see for
example Verdelhan (2010), Hassan (2013), and Martin (2013a). On the empirical side, authors
including Menkhoff et al. (2012), Barroso and Santa-Clara (2015) and Della Corte et al. (2016a)
have argued that it is necessary to look beyond interest rate differentials to explain the variation
in currency returns.

4A different type of quanto contract—specifically, quanto CDS contracts—is used by Mano
(2013) and Augustin et al. (2018) to study the relationship between currency depreciation and
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We show that the relationship between currency-i quanto forward prices and

conventional forward prices on the S&P 500 index reveals the risk-neutral covari-

ance between currency i and the index. Quantos therefore signal which currencies

are risky—in that they tend to depreciate in bad times, i.e., when the S&P 500

declines—and which are hedges; it is possible, of course, that a currency is risky at

one point in time and a hedge at another. Intuitively, one expects that a currency

that is (currently) risky should, as compensation, have higher expected appreciation

than predicted by UIP, and that hedge currencies should have lower expected ap-

preciation. Our framework formalizes this intuition. It also allows us to distinguish

between variation in risk premia across currencies and variation over time.

It is worth emphasizing various assumptions that we do not make. We do not

require that markets are complete (though our approach remains valid if they are).

We do not assume the existence of a representative agent, nor do we assume that

all economic actors are rational: the forecast in which we are interested reflects

the beliefs of a rational investor, but this investor may coexist with investors with

other, potentially irrational, beliefs. We do not assume lognormality, nor do we

make any other distributional assumptions: our approach allows for skewness and

jumps in exchange rates. This is an important strength of our framework, given that

currencies often experience crashes or jumps (as emphasized by Brunnermeier et al.

(2008), Jurek (2014), Della Corte et al. (2016c), Chernov et al. (2018) and Farhi and

Gabaix (2016), among others), and are prone to structural breaks more generally.

The approach could even be used, in principle, to compute expected returns for

currencies that are currently pegged but that have some probability of jumping off

the peg. To the extent that skewness and jumps are empirically relevant, this fact

will be embedded in the asset prices we use as forecasting variables.

Our approach is therefore well adapted to the view of the world put forward

by Burnside et al. (2011), who argue that the attractive properties of carry trade

strategies in currency markets may reflect the possibility of peso events in which

the stochastic discount factor takes extremely large values. Investor concerns about

such events, if present, should be reflected in the forward-looking asset prices that

we exploit, and thus our quanto predictor variable should forecast high appreciation

for currencies vulnerable to peso events even if no such events turn out to happen

in sample.

We derive these and other theoretical results in Section 2.1, and test them in Sec-

tion 2.2 by running panel currency-forecasting regressions. The estimated coefficient

sovereign default.
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on the quanto predictor variable is economically large and statistically significant:

in our headline regression (2.20), we find t-statistics of 3.2 and 2.3 respectively

with and without currency fixed effects. (Here, as throughout the chapter, we com-

pute standard errors—and more generally the entire covariance matrix of coefficient

estimates—using a nonparametric block bootstrap to account for heteroskedasticity,

cross-sectional correlation across currencies, and autocorrelation in errors induced

by overlapping observations.) The quanto predictor outperforms forecasting vari-

ables such as the interest rate differential, average forward discount, and the real

exchange rate as a univariate forecaster of currency excess returns. On the other

hand, we find that some of these variables—notably the real exchange rate and aver-

age forward discount—interact well with our quanto predictor variable, in the sense

that they substantially raise R2 above what the quanto variable achieves on its own.

We interpret this fact, through the lens of the identity (2.6) of Result 1, as showing

that these variables help to measure deviations from the log investor benchmark. We

also show that the quanto predictor variable—that is, forward-looking risk-neutral

covariance—predicts future realized covariance and substantially outperforms lagged

realized covariance as a forecaster of exchange rates.

An important challenge is that our dataset spans a relatively short time period.

If we assess the significance of joint hypothesis tests by using p-values based on the

asymptotic distributions of test statistics (with bootstrapped covariance matrices,

as always), we find, in our pooled regressions, that the estimated coefficients on

the quanto predictor variable and interest rate differential are consistent with the

predictions of the log investor benchmark, but we can reject the hypothesis that,

in addition, the intercept is zero. This rejection can be attributed to US dollar

appreciation, during our sample, that was not anticipated by our model. But us-

ing asymptotic distributions of test statistics to assess p-values risks giving a false

impression of precision, in view of our short sample period. In Section 2.2.6, we boot-

strap the small-sample distributions of the relevant test statistics to account for this

issue. When we use the associated, more conservative, small-sample p-values, we do

not reject even the most optimistic hypothesis in any of the specifications, though

the individual significance of the quanto predictor becomes more marginal, with

p-values ranging from 5.1% to 9.7%.

In Section 2.3 we show that the quanto variable performs well out of sample. We

focus on forecasting differential returns on currencies in order to isolate the cross-

sectional forecasting power of the quanto variable in a dollar-neutral way, in the spirit

of Lustig et al. (2011), and independent of what Hassan and Mano (forthcoming)
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refer to as the dollar trade anomaly. (As noted in the preceding paragraph, the dollar

strengthened against almost all other currencies over our relatively short sample, so

quantos are not successful in forecasting the average performance of the dollar itself.

Our findings are therefore complementary to Gourinchas and Rey (2007), who use

a measure of external imbalances to forecast the appreciation of the dollar against

a trade- or FDI-weighted basket of currencies.)

In a recent survey of the literature, Rossi (2013) emphasizes that the exchange-

rate forecasting literature has struggled to overturn the frustrating fact, originally

documented by Meese and Rogoff (1983), that it is hard even to outperform a ran-

dom walk forecast out of sample. Our out-of-sample forecasts exploit the fact that

our theory makes an a priori prediction for the coefficient on the quanto predic-

tor variable. When the coefficient is fixed at the level implied by the theory, we

end up with a forecast of currency appreciation that has no free parameters, and

which is therefore—like the UIP and random walk forecasts—perfectly suited for

out-of-sample forecasting. Following Meese and Rogoff (1983) and Goyal and Welch

(2008), we compute mean squared errors for the differential currency forecasts made

by the quanto theory and by three competitor models: UIP, which predicts currency

appreciation through the interest rate differential; PPP, which uses past inflation

differentials (as a proxy for expected inflation differentials) to forecast currency ap-

preciation; and the random walk forecast. The quanto theory outperforms all three

competitors. We also show that it outperforms on an alternative performance bench-

mark, the correct classification frontier, that has been proposed by Jordà and Taylor

(2012).

2.1 Theory

We start with the fundamental equation of asset pricing,

Et
(
Mt+1R̃t+1

)
= 1, (2.1)

since this will allow us to introduce some notation. Today is time t; we are interested

in assets with payoffs at time t + 1. We write Et for the (real-world) expectation

operator, conditional on all information available at time t, and Mt+1 for a stochas-

tic discount factor (SDF) that prices assets denominated in dollars. (We do not

assume complete markets, so there may well be other SDFs that also price assets

denominated in dollars. But all such SDFs must agree with Mt+1 on the prices of

the payoffs in which we are interested, since they are all tradable.) In equation
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(2.1), R̃t+1 is the gross return on some arbitrary dollar-denominated asset or trad-

ing strategy. If we write R$
f,t for the gross one-period dollar interest rate, then the

equation implies that EtMt+1 = 1/R$
f,t, as can be seen by setting R̃t+1 = R$

f,t; thus

(2.1) can be rearranged as

Et R̃t+1 −R$
f,t = −R$

f,t covt

(
Mt+1, R̃t+1

)
. (2.2)

Consider a simple currency trade: take a dollar, convert it to foreign currency i,

invest at the (gross) currency-i riskless rate, Ri
f,t, for one period, and then convert

back to dollars. We write ei,t for the price in dollars at time t of a unit of currency

i, so that the gross return on the currency trade is Ri
f,tei,t+1/ei,t; setting R̃t+1 =

Ri
f,tei,t+1/ei,t in (2.2) and rearranging,5 we find that

Et
ei,t+1

ei,t
=

R$
f,t

Ri
f,t︸︷︷︸

UIP forecast

−R$
f,t covt

(
Mt+1,

ei,t+1

ei,t

)
︸ ︷︷ ︸

residual

. (2.3)

This (well known) identity can also be expressed using the risk-neutral expecta-

tion E∗t , in terms of which the time t price of any payoff, Xt+1, received at time t+ 1

is

time t price of a claim to Xt+1 =
1

R$
f,t

E∗t Xt+1 = Et (Mt+1Xt+1) . (2.4)

The first equality is the defining property of the risk-neutral probability distribution.

The second equality (which can be thought of as a dictionary for translating between

risk-neutral and SDF notation) can be used to rewrite (2.3) as

E∗t
(
ei,t+1

ei,t

)
=
R$
f,t

Ri
f,t

. (2.5)

From an empirical point of view, the challenging aspect of the identity (2.3) is

the presence of the unobservable SDF Mt+1. If Mt+1 were constant conditional on

time t information then the covariance term would drop out and we would recover

the UIP prediction that Et ei,t+1/ei,t = R$
f,t/R

i
f,t, according to which high-interest-

rate currencies are expected to depreciate. Thus, if the UIP forecast is used to

predict exchange rate appreciation, the implicit assumption being made is that the

covariance term can indeed be neglected.

5Unlike most authors in this literature, we prefer to work with true returns, R̃t+1, rather than

with log returns, log R̃t+1, as the latter are only “an approximate measure of the rate of return to
speculation,” in the words of Hansen and Hodrick (1980).
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Unfortunately, as is well known, the UIP forecast performs poorly in practice:

the assumption that the covariance term is negligible in (2.3) (or, equivalently, that

the risk-neutral expectation in (2.5) is close to the corresponding real-world expec-

tation) is not valid. This is hardly surprising, given the existence of a vast literature

in financial economics that emphasizes the importance of risk premia, and hence

shows that the SDF Mt+1 is highly volatile (Hansen and Jagannathan, 1991). The

risk adjustment term in (2.3) therefore cannot be neglected: expected currency

appreciation depends not only on the interest rate differential, but also on the co-

variance between currency movements and the SDF. Moreover, it is plausible that

this covariance varies both over time and across currencies. We therefore take a

different approach that exploits the following observation:

Result 1. Let Rt+1 be an arbitrary gross return. We have the identity

Et
ei,t+1

ei,t
=

R$
f,t

Ri
f,t︸︷︷︸

UIP forecast

+
1

R$
f,t

cov∗t

(
ei,t+1

ei,t
, Rt+1

)
︸ ︷︷ ︸

quanto-implied risk premium

− covt

(
Mt+1Rt+1,

ei,t+1

ei,t

)
︸ ︷︷ ︸

residual

. (2.6)

The asterisk on the first covariance term in (2.6) indicates that it is computed using

the risk-neutral probability distribution.

Proof. Setting R̃t+1 = Ri
f,tei,t+1/ei,t in (2.1) and rearranging, we have

Et
(
Mt+1

ei,t+1

ei,t

)
=

1

Ri
f,t

. (2.7)

We can use (2.4) and (2.7) to expand the risk-neutral covariance term that appears

in the identity (2.6) and express it in terms of the SDF:

1

R$
f,t

cov∗t

(
ei,t+1

ei,t
, Rt+1

)
(2.4)
= Et

(
Mt+1

ei,t+1

ei,t
Rt+1

)
−R$

f,t Et
(
Mt+1

ei,t+1

ei,t

)
(2.7)
= Et

(
Mt+1

ei,t+1

ei,t
Rt+1

)
−
R$
f,t

Ri
f,t

. (2.8)

Note also that

covt

(
Mt+1Rt+1,

ei,t+1

ei,t

)
= Et

(
Mt+1Rt+1

ei,t+1

ei,t

)
− Et

(
ei,t+1

ei,t

)
. (2.9)

Subtracting (2.9) from (2.8) and rearranging, we have the result.

As (2.3) and (2.6) are identities, each must hold for all currencies i in any econ-

omy that does not exhibit riskless arbitrage opportunities. Nor do they make any
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assumptions about the exchange rate regime. If currency i is perfectly pegged then

the covariance terms in (2.6) are zero, and we recover the familiar fact that countries

with pegged currencies must either lose control of their monetary policy (that is,

set Ri
f,t = R$

f,t) or restrict capital flows to prevent arbitrageurs from trading on the

interest rate differential. More generally, the covariance terms should be small if a

currency has a low probability of jumping off its peg.

The identity (2.6) generalizes (2.3), however, by allowing Rt+1 to be an arbitrary

return. To make the identity useful for empirical work, we want to choose a return

Rt+1 with two aims in mind. First, the residual term should be small. Second, the

middle term should be easy to compute.

These two goals are in tension. If we set Rt+1 = R$
f,t, for example, then (2.6)

reduces to (2.3), which achieves the second of the goals but not the first. Conversely,

one might imagine setting Rt+1 equal to the return on an elaborate portfolio exposed

to multiple risk factors and constructed in such a way as to minimise the volatility

of Mt+1Rt+1: this would achieve the first but not necessarily the second, as will

become clear in the next section.

To achieve both goals simultaneously, we want to pick a return that offsets a

substantial fraction of the variation6 in Mt+1; but we must do so in such a way

that the risk-neutral covariance term can be measured empirically. For much of this

chapter, we will take Rt+1 to be the return on the S&P 500 index. (We find similar—

and internally consistent—results if Rt+1 is set equal to the return on other stock

indexes, such as the Nikkei, Euro Stoxx 50, or SMI: see Sections 2.1.2 and 2.2.1.)

It is highly plausible that this return is negatively correlated with Mt+1, consistent

with the first goal; in fact we provide conditions below under which the residual

is exactly zero. We will now show that the second goal is also achieved with this

choice of Rt+1 because we can calculate the quanto-implied risk premium directly

from asset prices without any further assumptions—specifically, from quanto forward

prices (hence the name).

2.1.1 Quantos

An investor who is bullish about the S&P 500 index might choose to go long a

forward contract at time t, for settlement at time t + 1. If so, he commits to pay

Ft at time t + 1 in exchange for the level of the index, Pt+1. The dollar payoff on

6More precisely, all we need is to pick a return that offsets the component of the variation in
Mt+1 that is correlated with currency movements. But as this component will in general vary
according to the currency in question, it is sensible simply to choose Rt+1 to offset variation in
Mt+1 itself.
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the investor’s long forward contract is therefore Pt+1 − Ft at time t + 1. Market

convention is to choose Ft to make the market value of the contract equal to zero,

so that no money needs to change hands initially. This requirement implies that

Ft = E∗t Pt+1. (2.10)

A quanto forward contract is closely related. The key difference is that the

quanto forward commits the investor to pay Qi,t units of currency i at time t + 1,

in exchange for Pt+1 units of currency i. (At each time t, there are N different

quanto prices indexed by i = 1, . . . , N , one for each of the N currencies in our data

set. Other than in Section 2.1.2, the underlying asset is always the S&P 500 index,

whatever the currency.) The payoff on a long position in a quanto forward contract

is therefore Pt+1 −Qi,t units of currency i at time t+ 1; this is equivalent to a time

t+1 dollar payoff of ei,t+1(Pt+1−Qi,t). As with a conventional forward contract, the

market convention is to choose the quanto forward price, Qi,t, in such a way that

the contract has zero value at initiation. It must therefore satisfy

Qi,t =
E∗t ei,t+1Pt+1

E∗t ei,t+1

. (2.11)

(We converted to dollars because E∗t is the risk-neutral expectations operator that

prices dollar payoffs.) Combining equations (2.5) and (2.11), the quanto forward

price can be written

Qi,t =
Ri
f,t

R$
f,t

E∗t
ei,t+1Pt+1

ei,t
,

which implies, using (2.5) and (2.10), that the gap between the quanto and conven-

tional forward prices captures the conditional risk-neutral covariance between the

exchange rate and stock index,

Qi,t − Ft =
Ri
f,t

R$
f,t

cov∗t

(
ei,t+1

ei,t
, Pt+1

)
. (2.12)

We will make the simplifying assumption that dividends earned on the index

between time t and time t + 1 are known at time t and paid at time t + 1. It then

follows from (2.12) that

Qi,t − Ft
Ri
f,tPt

=
1

R$
f,t

cov∗t

(
ei,t+1

ei,t
, Rt+1

)
, (2.13)

so the quanto forward and conventional forward prices are equal if and only if cur-
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rency i is uncorrelated with the stock index under the risk-neutral measure. This

allows us to measure the risk-neutral covariance term that appears in (2.6) directly

from the gap between quanto and conventional index forward prices (which, as noted,

we will refer to as the quanto-implied risk premium).

We still have to deal with the final covariance term in the identity (2.6). The

next result exhibits a case in which this covariance term is exactly zero.

Result 2 (The log investor). If we take the perspective of an investor with log

utility whose wealth is fully invested in the stock index then Mt+1 = 1/Rt+1, so that

covt(Mt+1Rt+1, ei,t+1/ei,t) is identically zero. The expected appreciation of currency i

is then given by

Et
ei,t+1

ei,t
− 1 =

R$
f,t

Ri
f,t

− 1︸ ︷︷ ︸
IRDi,t

+
Qi,t − Ft
Ri
f,tPt︸ ︷︷ ︸

QRPi,t

, (2.14)

and the expected excess return7 on currency i equals the quanto-implied risk premium:

Et
ei,t+1

ei,t
−
R$
f,t

Ri
f,t

=
Qi,t − Ft
Ri
f,tPt

.

Equation (2.14) splits expected currency appreciation into two terms. The first

is the UIP prediction which, as we have seen in equation (2.5), equals risk-neutral

expected currency appreciation. We will often refer to this term as the interest rate

differential (IRD); and as above we will generally convert to net rather than gross

terms by subtracting 1. (We choose to refer to a high-interest-rate currency as having

a negative interest rate differential because such a currency is forecast to depreciate

by UIP.) The second is a risk adjustment term: by taking the perspective of the log

investor, we have converted the general form of the residual that appears in (2.3)

into a quantity that can be directly observed using the gap between a quanto forward

and a conventional forward.8 Since it captures the risk premium perceived by the log

investor, we refer to this term as the quanto-implied risk premium (QRP). Lastly,

we refer to the sum of the two terms as expected currency appreciation (ECA =

IRD + QRP).

7Formally, ei,t+1/ei,t −R$
f,t/R

i
f,t is an excess return because it is a tradable payoff whose price

is zero, by (2.5).

8More generally, we can allow for the case in which the log investor chooses a portfolio Rp,t+1 =
wRt+1 + (1−w)R$

f,t. (The case in the text corresponds to w = 1.) The identity (2.6) then reduces
to

Et
ei,t+1

ei,t
=
R$

f,t

Ri
f,t

+
w

R$
f,t

cov∗t

(
ei,t+1

ei,t
, Rt+1

)
.

We thank Scott Robertson for pointing this out to us. See footnote 13 for more discussion.
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Results 1 and 2 link expected currency returns to risk-neutral covariances, so

deviate from the standard CAPM intuition (that risk premia are related to true

covariances) in that they put more weight on comovement in bad states of the world.

This distinction matters, given the observation of Lettau et al. (2014) that the carry

trade is more correlated with the market when the market experiences negative

returns. Even more important, risk-neutral covariance is directly measurable, as

we have shown.9 In contrast, forward-looking true covariances are not directly

observed so must be proxied somehow, typically by historical realized covariance.

In Section 2.2.3, we show that risk-neutral covariance drives out historical realized

covariance as a predictor variable.

Lastly, we emphasize that while Result 2 represents a useful benchmark and is

the jumping-off point for our empirical work, in our analysis below we will also allow

for the presence of the final covariance term in the identity (2.6). Throughout the

chapter, we do so in a simple way by reporting regression results with (and without)

currency fixed effects, to account for any currency-dependent but time-independent

component of the covariance term. In Section 2.2.5, we consider further proxies that

depend both on currency and time.

2.1.2 Alternative benchmarks

Our choice to think from the perspective of an investor who holds the US stock

market is a pragmatic one. From a purist point of view, it might seem more natural

to adopt the perspective of an investor whose wealth is invested in a globally diver-

sified portfolio;10 unfortunately global-wealth quantos are not traded, whereas S&P

500 quantos are. Our approach implicitly relies on an assumption that the US stock

market is a tolerable proxy for global wealth. We think this assumption makes sense;

it is broadly consistent with the ‘global financial cycle’ view of Miranda-Agrippino

and Rey (2019).

Nonetheless, one might wonder whether the results are similar if one uses other

countries’ stock markets as proxies for global wealth.11 For, just as the forward price

9While it is well known from the work of Ross (1976) and Breeden and Litzenberger (1978)
that risk-neutral expectations of functions of a single asset price can typically be inferred from the
price of options on that asset, Martin (2018) shows that it is in general considerably harder to infer
risk-neutral expectations of functions of multiple asset prices. It is something of a coincidence that
precisely the assets whose prices reveal these risk-neutral covariances are traded.

10This perspective is suggested by the analysis of Solnik (1974) and Adler and Dumas (1983),
for example.

11In practice, many investors do choose to hold home-biased portfolios (French and Poterba
(1991), Tesar and Werner (1995), and Warnock (2002); and see Lewis (1999) and Coeurdacier and
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of the US stock index quantoed into currency i reveals the expected appreciation of

currency i versus the dollar, as perceived by a log investor whose portfolio is fully

invested in the US stock market, so the forward price of the currency-i stock index

quantoed into dollars reveals the expected appreciation of the dollar versus currency

i, as perceived by a log investor whose portfolio is fully invested in the currency-i

market.

Recall Result 2 for the expected appreciation of currency i versus the dollar,

Et
ei,t+1

ei,t
− 1 = IRDi,t + QRPi,t︸ ︷︷ ︸

ECAi,t

. (2.15)

(To reiterate, a positive value indicates that currency i is expected to strengthen

against the dollar.) The corresponding expression for the expected appreciation of

the dollar versus currency i, from the perspective of a log investor whose wealth is

fully invested in the currency-i stock market, is

Eit
1/ei,t+1

1/ei,t
− 1 = IRD1/i,t + QRP1/i,t︸ ︷︷ ︸

ECA1/i,t

, (2.16)

where we write IRD1/i,t = Ri
f,t/R

$
f,t − 1, and where QRP1/i,t is obtained from con-

ventional forwards and dollar -denominated quanto forwards on the currency-i stock

market. When the left-hand side of the above equation is positive, the dollar is

expected to appreciate against currency i.

In Section 2.2.1 below, we show that the two perspectives captured by (2.15) and

(2.16) are broadly consistent with one another (for those currencies for which we

observe the appropriate quanto forward prices). If, say, the forward price of the S&P

500 quantoed into euros implies that the euro is expected to appreciate against the

dollar by 2% (using equation (2.15)), then the forward price of the Euro Stoxx 50

index quantoed into dollars typically implies that the dollar is expected to depreciate

against the euro by about 2% (using equation (2.16)). To be more precise, we need

to take into account Siegel’s “paradox” (Siegel, 1972) that, by Jensen’s inequality,

Et
ei,t+1

ei,t
≥
(
Et

1/ei,t+1

1/ei,t

)−1

. (2.17)

(The corresponding inequality with Et replaced by any other expectation operator

also holds.) If the US and currency-i investors have the same expectations about

Rey (2013) for surveys).
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currency appreciation then (2.15)–(2.17) imply that

log (1 + ECAi,t) ≥ − log
(
1 + ECA1/i,t

)
. (2.18)

In practice log(1 + ECA) ≈ ECA, so the above inequality is essentially equivalent

to ECAi,t ≥ −ECA1/i,t: thus (continuing the example) if the euro is expected to

appreciate by 2% against the dollar, then the dollar should be expected to depreciate

against the euro by at most 2%.

The difference between the two sides of (2.18) reflects a convexity correction

whose size is determined by the amount of conditional variation in ei,t+1:

log (1 + ECAi,t)−
(
− log

(
1 + ECA1/i,t

))
= logEt

ei,t+1

ei,t
− log

[(
Et

1/ei,t+1

1/ei,t

)−1
]

= ct(1) + ct(−1)

= 2
∑
n even

κn,t
n!

,

where ct(·) and κn,t denote, respectively, the conditional cumulant-generating func-

tion and the nth conditional cumulant of log exchange rate appreciation at time t.

In particular, κ2,t = σ2
t is the conditional variance and κ4,t/σ

4
t the excess kurtosis of

log ei,t+1. (For more on cumulants, see Backus et al. (2001) and Martin (2013b).)

To get a sense of the size of the convexity correction, note that if the exchange

rate is lognormal then all higher cumulants are zero: κn,t = 0 for n > 2. Thus

if exchange rate volatility, σt, is on the order of 10%, the two perspectives should

disagree by about 1% (so in the example above, expected euro appreciation of 2%

would be consistent with expected dollar depreciation of 1%). In Section 2.2.1, we

show that the convexity gap observed in our data is consistent with this calculation.

2.2 Empirics

We obtained forward prices and quanto forward prices on the S&P 500, together

with domestic and foreign interest rates, from Markit; the maturity in each case is

24 months. The data is monthly and runs from December 2009 to October 2015 for

the Australian dollar (AUD), Canadian dollar (CAD), Swiss franc (CHF), Danish

krone (DKK), Euro (EUR), British pound (GBP), Japanese yen (JPY), Korean won

(KRW), Norwegian krone (NOK), Polish zloty (PLN), and Swedish krona (SEK).

As these quantos are used to forecast exchange rates over a 24-month horizon, our

forecasting sample runs from December 2009 to October 2017. Markit reports con-
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sensus prices based on quotes received from a wide range of financial intermediaries.

These prices are used by major OTC derivatives market makers as a means of in-

dependently verifying their book valuations and to fulfil regulatory requirements;

they do not necessarily reflect transaction prices. Accounting for missing entries in

our panel, we have 656 currency-month observations. (Where we do not observe a

price, we treat the observation as missing. Larger periods of consecutive missing

observations occur only for DKK, KRW, and PLN and are shown as gaps in Figure

B.12.)

Since the financial crisis of 2007-2009, a growing literature (including Du et al.

(2018)) has discussed the failure of covered interest parity (CIP)—the no-arbitrage

relation between forward exchange rates, spot exchange rates and interest rate

differentials—and established that since the financial crisis, CIP frequently does

not hold if interest rates are obtained from money markets. For each maturity, we

observe currency-specific discount factors directly from our Markit data set. The

implied interest rates are consistent with the observed forward prices and the ab-

sence of arbitrage. Our measure of the interest rate differentials therefore does not

violate the no-arbitrage condition we require for identity (2.6) to hold.

The two building blocks of our empirical analysis are the currencies’ quanto-

implied risk premia (QRP, which measure the risk-neutral covariances between each

currency and the S&P 500 index, as shown in equation (2.13)), and their interest

rate differentials vis-à-vis the US dollar (IRD, which would equal expected exchange

rate appreciation if UIP held). Our measure of expected currency appreciation (the

quanto forecast, or ECA) is equal to the sum of IRD and QRP, as in equation (2.14).

Figure B.1 plots each currency’s QRP over time; for clarity, the figure drops

two currencies for which we have highly incomplete time series (PLN and DKK).

The QRP is negative for JPY and positive for all other currencies (with the partial

exception of EUR, for which we observe a sign change in QRP near the end of our

time period).

Figure B.12 shows the evolution over time of ECA (solid) and of the UIP forecast

(dashed) for each of the currencies in our panel. The gap between the two lines for

a given currency is that currency’s QRP. Table B.1 reports summary statistics of

ECA. The penultimate line of the table averages the summary statistics across

currencies; the last line reports summary statistics for the pooled data. Table B.2

reports the same statistics for IRD and QRP.

The volatility of QRP is similar to that of interest rate differentials, both currency-

by-currency and in the panel. There is considerably more variability in IRD and
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QRP when we pool the data than there is in the time series of a typical currency: this

reflects substantial dispersion in IRD and QRP across currencies that is captured in

the pooled measure but not in the average time series.

Table B.3 reports volatilities and correlations for the time series of individual

currencies’ ECA, IRD, and QRP. The table also shows three aggregated measures

of volatilities and correlations. The row labelled “Time series” reports time-series

volatilities and correlations for a typical currency, calculated by averaging time-series

volatilities and correlations across currencies. Conversely, the row labelled “Cross

section” reports cross-currency volatilities and correlations of time-averaged ECA,

IRD, and QRP. Lastly, the row labelled “Pooled” averages on both dimensions: it

reports volatilities and correlations for the pooled data.

All three variables (ECA, IRD, and QRP) are more volatile in the cross section

than in the time series. This is particularly true of interest rate differentials, which

exhibit far more dispersion across currencies than over time.

The correlation between IRD and QRP is negative when we pool our data (ρ =

−0.696). Given the sign convention on IRD, this indicates that currencies with

high interest rates (relative to the dollar) tend to have high risk premia; thus the

predictions of the quanto theory are consistent with the carry trade literature and

the findings of Lustig et al. (2011). The average time-series (i.e., within-currency)

correlation between IRD and QRP is more modestly negative (ρ = −0.331): a

typical currency’s risk premium tends to be higher, or less negative, at times when

its interest rate is high relative to the dollar, but this tendency is fairly weak. The

disparity between these two facts is accounted for by the strongly negative cross-

sectional correlation between IRD and QRP (ρ = −0.798). If we interpret the data

through the lens of Result 2, these findings suggest that the returns to the carry

trade are more the result of persistent cross-sectional differences between currencies

than of a time-series relationship between interest rates and risk premia. This

prediction is consistent with the empirical results documented by Hassan and Mano

(forthcoming).

We see a corresponding pattern in the time-series, cross-sectional, and pooled

correlations of ECA and QRP. The time-series (within-currency) correlation of

the two is substantially positive (ρ = 0.393), while the cross-sectional correlation is

negative (ρ = −0.305). In the time series, therefore, a rise in a given currency’s QRP

is associated with a rise in its expected appreciation; whereas in the cross-section,

currencies with relatively high QRP on average have relatively low expected currency

appreciation on average (reflecting relatively high interest rates on average). Putting
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the two together, the pooled correlation is close to zero (ρ = −0.026). That is, Result

2 predicts that there should be no clear relationship between currency risk premia

and expected currency appreciation; again, this is consistent with the findings of

Hassan and Mano (forthcoming).

These properties are illustrated graphically in Figure B.2. We plot confidence

ellipses centred on the means of QRP and IRD in panel (a), and of QRP and ECA

in panel (b), for each currency. The sizes of the ellipses reflect the volatilities of

IRD and QRP (or ECA): under joint normality, each ellipse would contain 50% of

its currency’s observations in population. (Our interest is in the relative sizes of the

ellipses: the choice of 50% is arbitrary.) The orientation of each ellipse illustrates the

within-currency time series correlation, while the positions of the different ellipses

reveal correlations across currencies. The figures refine the discussion above. QRP

and IRD are negatively correlated within currency (with the exceptions of CAD,

CHF, and KRW) and in the cross-section. QRP and ECA are positively correlated in

the time series for every currency, but exhibit negative correlation across currencies;

overall, the pooled correlation between the two is close to zero.

Our empirical analysis focuses on contracts with a maturity of 24 months because

these have the best data availability. But in one case—the S&P 500 index quantoed

into euros—we observe a range of maturities, so can explore the term structure of

QRP. Figure B.13 plots the time series of annualized euro-dollar QRP for horizons

of 6, 12, 24, and 60 months. On average, the term structure of QRP is flat over

the sample period, but QRP is slightly more volatile at shorter horizons, so that

the term structure is downward-sloping when QRP spikes and upward-sloping when

QRP is low.

2.2.1 A consistency check

Our data also includes quanto forward prices of certain other stock indexes, notably

the Nikkei, Euro Stoxx 50, and SMI. We can use this data to explore the predictions

of Section 2.1.2, which provides a consistency check on our empirical strategy.

Figure B.3 implements (2.15) and (2.16) for the EUR/USD, JPY/USD, EUR/JPY,

and EUR/CHF currency pairs. In each of the top-left, bottom-left and bottom-right

panels, the solid line depicts the expected appreciation of the euro against the US

dollar, yen, and Swiss franc, respectively, while the dashed line shows the expected

depreciation of the three currencies against the euro (that is, we flip the sign on

the “inverted” series for readability). In the top-right panel, the solid and dashed

lines show the expected appreciation of the yen against the US dollar and expected



CHAPTER 2. THE QUANTO THEORY OF EXCHANGE RATES 65

depreciation of the US dollar against the yen, respectively. In every case, the two

measures are strongly correlated over time and the solid line is above the dashed

line, as they should be according to (2.18). The gaps between the measures are

therefore consistent with the Jensen’s inequality correction one would expect to see

if our currency forecasts measured expected currency appreciation perfectly. More-

over, given that annual exchange rate volatilities are on the order of 10%, the sizes

of the gaps between the measures are quantitatively consistent with the Jensen’s

inequality correction derived at the end of Section 2.1.2.

The EUR/CHF pair in the bottom-right panel represents a particularly inter-

esting case study. The Swiss national bank instituted a floor on the EUR/CHF

exchange rate at CHF1.20/e in September 2011 and consequently also reduced the

conditional volatility of the exchange rate. Following this, the two lines converge

and the gap remains narrow, at around 0.2%, until January 2015 when the sudden

removal of the floor prompted a spike in the volatility of the currency pair, visible

in the figure as the point at which the two lines diverge.

2.2.2 Return forecasting

We run two sets of panel regressions in which we attempt to forecast, respectively,

currency excess returns and currency appreciation. The literature on exchange rate

forecasting has found it substantially more difficult to forecast pure currency ap-

preciation than currency excess returns, so the second set of regressions should be

considered more empirically challenging. In each case, we test the prediction of Re-

sult 2 via pooled panel regressions. We also report the results of panel regressions

with currency fixed effects; by doing so, we allow for the more general possibil-

ity that there is a currency-dependent—but time-independent—component in the

second covariance term that appears in the identity (2.6).

To provide a sense of the data before turning to our regression results, Figures B.4

and B.5 represent our baseline univariate regressions graphically in the same manner

as in Figure B.2. Figure B.4 plots realized currency excess returns (RXR) against

QRP and against IRD.12 Excess returns are strongly positively correlated with QRP

both within currency and in the cross-section, suggesting strong predictability with

a positive sign. The correlation of RXR with IRD is negative in the cross-section

but close to zero, on average, within currency.

12As noted in Section 2.1, we work with true returns as opposed to log returns. Engel (2016)
points out that it may not be appropriate to view log returns as approximating true returns, as
the gap between the two is a similar order of magnitude as the risk premium itself.
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Figure B.5 shows the corresponding results for realized currency appreciation

(RCA). Panel (a) suggests that the within-currency correlation with the quanto

predictor ECA is predominantly positive (with the exceptions of AUD and CHF),

as is the cross-sectional correlation. In contrast, panel (b) suggests that the correla-

tion between realized currency appreciation and interest rate differentials is close to

zero both within and across currencies, consistent with the view that interest rate

differentials do not help to forecast currency appreciation.

We first run a horse race between the quanto-implied risk premium and interest

rate differential as predictors of currency excess returns:

ei,t+1

ei,t
−
R$
f,t

Ri
f,t

= α + βQRPi,t + γ IRDi,t + εi,t+1. (2.19)

Here (and from now on) the length of the period from t to t+ 1 over which we mea-

sure our return realizations is 24 months, corresponding to the forecasting horizon

dictated by the maturity of the quanto contracts we observe in our data.

We also run two univariate regressions. The first of these,

ei,t+1

ei,t
−
R$
f,t

Ri
f,t

= α + βQRPi,t + εi,t+1, (2.20)

is suggested by Result 2. The second uses interest rate differentials to forecast

currency excess returns, as a benchmark:

ei,t+1

ei,t
−
R$
f,t

Ri
f,t

= α + γ IRDi,t + εi,t+1. (2.21)

We also run all three regressions with currency fixed effects αi in place of the shared

intercept α.

Table B.4 reports the results. We report coefficient estimates and R2 for each

regression, with and without currency fixed effects; standard errors are shown in

parentheses. These standard errors are computed via a nonparametric bootstrap

to account for heteroskedasticity, cross-sectional and serial correlation in our data.

(The serial correlation arises due to overlapping observations: we make forecasts of

24-month excess returns at monthly intervals.) For comparison, these nonparametric

standard errors exceed those obtained from a parametric residual bootstrap by up

to a factor of 2, and Hansen–Hodrick standard errors by a factor of around 1.3.

We provide a detailed description of our bootstrap procedure and address potential

small-sample concerns in Section 2.2.6.
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The estimated coefficient on the quanto-implied risk premium is positive and

economically large in every specification in which it occurs. Moreover, the R2 values

are substantially higher in the two regressions (2.19) and (2.20) that feature the

quanto-implied risk premium than in the regression (2.21) in which it does not

occur. The estimate for β in our headline regression (2.20) is 2.604 (standard error

1.127) in the pooled regression and 4.995 (standard error 1.565) in the regression

with fixed effects. The fact that these estimates are above 1 raises the possibility

that beyond its direct importance in (2.6), the quanto-implied risk premium may

also proxy for the second covariance term.13 We explore this issue in Section 2.2.5.

Another noteworthy qualitative feature of our results is the consistently negative

intercept, which reflects an unexpectedly strong dollar over our sample period; we

discuss the statistical interpretation of this fact in Section 2.2.6.

Following Fama (1984), we can also test how the theory fares at predicting

currency appreciation (ei,t+1/ei,t − 1). To do so, we run the regression

ei,t+1

ei,t
− 1 = α + βQRPi,t + γ IRDi,t + εi,t+1. (2.22)

We do so not because we are interested in the coefficient estimates, which are me-

chanically related to those of regression (2.19), but because we are interested in

the R2.

To explore the relative importance of the quanto-implied risk premium and in-

terest rate differentials for forecasting currency appreciation, we run univariate re-

gressions of currency appreciation onto the quanto-implied risk premium,

ei,t+1

ei,t
− 1 = α + βQRPi,t + εi,t+1, (2.23)

and onto interest rate differentials,

ei,t+1

ei,t
− 1 = α + γ IRDi,t + εi,t+1. (2.24)

As previously, we also run the three regressions (2.22)–(2.24) with fixed effects.

The regression results are shown in Table B.5, which is structured similarly to

13Another possibility is that it is more reasonable to think of a log investor as wishing to hold
a levered position in the market (so w > 1 in the notation of footnote 8). If so, we should
find a coefficient on QRP that is larger than one. We are cautious about suggesting this as an
explanation, however, because a log investor would never risk bankruptcy. To match the point
estimate for specification (2.20), we would need w = 2.604 or w = 4.995 (respectively without and
with fixed effects). In the latter case, the investor would go bankrupt if the market dropped by
20% over the two year horizon.
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Table B.4. There is little evidence that the interest rate differential helps to forecast

currency appreciation on its own; this is consistent with the previous set of results

and with the large literature that documents the failure of UIP. In the pooled panel,

the estimated γ in regression (2.24) is close to 0, and the R2 is essentially zero. With

fixed effects, the estimate of γ is marginally negative, providing weak evidence that

currencies tend to appreciate against the dollar when their interest rate relative to

the dollar is higher than its time-series mean.

More strikingly, the quanto-implied risk premium makes a very large difference

in terms of R2, which increases by two orders of magnitude when moving from

specification (2.24) to (2.22) in both the pooled regressions (0.16% to 16.01%) and

the fixed-effects regressions (0.20% to 20.56%). It is also interesting that when QRP

is included in the regressions (with or without fixed effects) the coefficient estimate

on IRD, γ, increases toward the value of 1 predicted by Result 2.

For completeness, Table B.14 reports the results of running regressions (2.20),

(2.21), (2.22), and (2.24) separately for each currency at the 24-month horizon, and

at 6- and 12-month horizons for the euro. Consistent with the previous literature

(for example Fama (1984) and Hassan and Mano (forthcoming)), the coefficient

estimates are extremely noisy. A further appealing feature of Result 2 is that it

provides a justification for constraining all the coefficient on the quanto-implied risk

premium to be equal across currencies, as we have done above.

2.2.3 Risk-neutral covariance vs. true covariance

We have emphasized the importance of risk-neutral covariances of currencies with

stock returns, as captured by quanto-implied risk premia, and below we will show

that risk-neutral covariance performs well empirically. But it is natural to wonder

whether this empirical success merely reflects the fact that currency returns line up

with true covariances, as studied by Lustig and Verdelhan (2007), Campbell et al.

(2010), Burnside (2011) and Cenedese et al. (2016), among others. More formally,

from the perspective of the log investor we can conclude, from (2.3), that

Et
ei,t+1

ei,t
−
R$
f,t

Ri
f,t

= R$
f,t covt

(
ei,t+1

ei,t
,− 1

Rt+1

)
. (2.25)

Note that it is the true, not the risk-neutral, covariance that appears in this equation.

The fundamental challenge for a test of this prediction is that forward-looking

true covariance is not directly observed. This is the major advantage of our approach:

risk-neutral covariance is directly observed via the quanto-implied risk premium.
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That said, we attempt to test (2.25) by using lagged realized covariance, RPCL, as

a proxy for true forward-looking covariance.

The results are shown in Table B.6 of the Appendix. RPCL is positively related

to subsequently realized currency excess returns, as suggested by (2.25), but it is not

statistically significant in our sample, and is driven out as a predictor by risk-neutral

covariance (QRP), consistent with Result 2.

In principle, this might simply indicate that lagged realized covariance is an

imperfect proxy for true forward-looking covariance: perhaps the success of QRP

simply reflects its superiority as a forecaster of realized covariance? Table B.6 shows

that risk-neutral covariance is, individually, a statistically significant forecaster of

future realized covariance. But it is driven out when lagged realized covariance

and the interest-rate differential are included in the multivariate regression (B.4).

Moreover, the optimal covariance forecast generated by this multivariate regression

is driven out by QRP in the excess-return-forecasting regression (B.5).

The relationship between risk-neutral covariance and true covariance is interest-

ing in its own right. Figure B.6 illustrates the empirical relationship between the

covariance forecast obtained from regression (B.4) (our proxy for forward-looking

true covariance) and forward-looking risk-neutral covariance (obtained from quanto

contracts). The two are positively correlated in the cross-section and in the time-

series, but risk-neutral covariance is generally larger (smaller) than future realized

covariance for currencies with positive (negative) risk-neutral covariances. This is

consistent with the observation of Lettau et al. (2014) that carry trade returns are

more correlated with the market at times of negative market returns. As we will

now see, it is problematic for lognormal models.

2.2.4 Lognormal models

Lognormal models impose a tight connection between the covariance risk premium

and the market and currency risk premium. Define the equity premium ERPt =

logEt Rt+1

R$
f,t

and currency risk premium CRPi,t = logEt R̃i,t+1

R$
f,t

where R̃i,t+1 = Ri
f,tei,t+1/ei,t

is the return on the currency trade defined earlier.

Result 3 (The covariance risk premium in lognormal models). Suppose that the

market return, exchange rate, and SDF are conditionally jointly lognormal. Then

we have

log
covt(Rt+1, ei,t+1/ei,t)

cov∗t (Rt+1, ei,t+1/ei,t)
= ERPt + CRPi,t (2.26)
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or equivalently

covt(rt+1,∆ei,t+1) = cov∗t (rt+1,∆ei,t+1), (2.27)

where rt+1 = logRt+1 and ∆ei,t+1 = log(ei,t+1/ei,t).

Proof. See Appendix B.2.

Empirically, it is plausible that the right-hand side of (2.26) is positive for most

currencies (the yen being a possible exception). But we find that the left-hand side

is typically negative in our data. No lognormal model can match these patterns.

It is nonetheless an interesting exercise to see how the quanto risk premium (and

the residual covariance term, which would be zero from the perspective of the log

investor) behaves inside an equilibrium model. As QRP has a simple characteri-

zation in terms of risk-neutral covariance, this is an easy exercise to carry out in

any equilibrium model; we suggest that it makes an interesting diagnostic for fu-

ture generations of international finance models. In that spirit, we have calculated

the currency risk premium, QRP, IRD and the residual covariance term within the

model of Colacito and Croce (2011).

The results are shown in Appendix B.4. We deviate from the symmetric base-

line calibration of Colacito and Croce in order to generate a non-trivial currency

risk premium. The comparative statics of their long-run risk model are such that

our calibrations which yield a positive asymmetric currency risk premium generate

positive risk-neutral covariance (QRP) and a positive residual. In this model, the

residual covariance term therefore adds to the prediction of the quanto forecast, as

opposed to offsetting it. This positive relationship between risk-neutral covariance

and the residual is consistent with our finding that the slope coefficients on QRP in

the predictive regressions in Section 2.2.2 are generally larger than 1.

2.2.5 Beyond the log investor

The identity (2.6) expresses expected currency appreciation as the sum of IRD,

QRP, and a covariance term, − covt(Mt+1Rt+1, ei,t+1/ei,t). Thus far, we have either

assumed that this term is constant across currencies and over time (so is captured

by the constant in our pooled regressions) or that it has a currency-dependent but

time-independent component (so is captured by fixed effects).

To get a sense of what these assumptions may leave out, we conduct a prin-

cipal components analysis on unexpected currency excess returns: that is, on the

difference between realized currency excess returns and the corresponding ex ante
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expected returns. We calculate these unexpected excess returns in two ways. Re-

gression residuals are defined as the estimated residuals εi,t+1 in the specification of

regression (2.20) that includes currency fixed effects. Theory residuals are defined

similarly, except that we impose α = 0, β = 1 in (2.20).

These residuals reflect both the ex ante residual from the identity (2.6) and

the ex post realizations of unexpected currency returns. The identity implies that

the predictable component of the realized residuals—if there is one—reveals the

covariance term, − covt(Mt+1Rt+1, ei,t+1/ei,t).

We decompose the theory and regression residuals into their respective principal

components (dropping DKK, KRW, and PLN from the panel to minimize the impact

of missing observations). Table B.11 shows the principal component loadings. The

first principal component, which explains just under two thirds of the variation in

residuals, can be interpreted as a level, or ‘dollar,’ factor since it loads positively on

all currencies (with the exception of GBP, in the case of the regression residuals).

Motivated by this fact, we now include an additional predictor variable, IRDt,

which is calculated as the cross-sectional average of the interest rate differentials in

our balanced panel of eight currencies (i.e., excluding DKK, KRW, and PLN); Lustig

et al. (2014) interpret this average interest rate differential (which they refer to as

the ‘average forward discount’) as a dollar factor and show that it helps to forecast

currency returns. We also include the logarithm of the real exchange rate, which

Dahlquist and Penasse (2017) have shown to be a successful forecaster of currency

returns.

Table B.7 reports the results of regressions of currency excess returns onto cur-

rency fixed effects and subsets of four forecasting variables: the quanto-implied risk

premium (QRP), the interest rate differential (IRD), the real exchange rate (RER),

and the average interest rate differential (IRD). The table reports the univariate,

bivariate, 3-variate, and 4-variate specifications with the highest R2. (Table B.12

reports the R2 for all 24 − 1 = 15 subsets of the four explanatory variables, though

not—for lack of space—the estimated coefficients.) The quanto-implied risk pre-

mium features in all R2-maximizing regressions. The estimates of β are larger than

1 in every specification, suggesting that, over and above its relevance as a direct mea-

sure of risk-neutral covariance, the quanto-implied risk premium helps to capture

the physical covariance term in (2.6). As we increase from one to two to three ex-

planatory variables, R2 increases from 22.03% (using QRP alone) to 35.40% (adding

the real exchange rate) to 43.56% (adding the dollar factor IRD). The interest rate

differential itself, IRD, contributes almost no further explanatory power when it is
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then added as a fourth variable.

As the real exchange rate performs well, we report further results relating to it

in Table B.13 of the Appendix.

2.2.6 Joint hypothesis tests and finite-sample issues

We now consider the joint hypothesis tests that are suggested by Result 2. In

our three main specifications (2.19), (2.20), and (2.22), equation (2.14) predicts an

intercept α = 0, and a slope coefficient on QRP β = 1. For the excess return

forecast in regression (2.19), it predicts that the interest rate differential should

have no predictive power, i.e. γ = 0; whereas it predicts that γ = 1 in the currency-

appreciation regression (2.22).

Here, as elsewhere, we use a nonparametric bootstrap procedure to compute the

covariance matrix of coefficient estimates. A detailed exposition of the bootstrap

methodology is provided in Politis and White (2004) and Patton et al. (2009). In

the bootstrap procedure, we resample the data by drawing with replacement blocks

of 24 time-series observations from the panel while ensuring that this time-series

resampling is synchronized in the cross-section. The length of the time-series blocks

is chosen to equal the forecasting horizon of 24 months. The resulting panel is then

resampled with replacement in the cross-sectional dimension by drawing blocks of

uniformly distributed width (between 2 and 11, the latter being the width of the

full cross-section). Since currencies which are adjacent in the panel are more likely

to be included together in any given one of these cross-sectional blocks, we permute

the cross-section of our panel randomly before each resampling. We then compute

the point estimates of the coefficients from the two-dimensionally resampled panel

and repeat this procedure 100,000 times. The standard errors are then computed as

the standard deviations of the respective coefficients across the 100,000 bootstrap

repetitions.

Table B.8 reports p-values for tests of various hypotheses about our baseline

regressions. In addition to conventional p-values calculated using the asymptotic

(chi-squared) distribution of the Wald test statistic, the table also reports more

conservative small-sample p-values obtained from a bootstrapped test statistic dis-

tribution. We compute these small-sample p-values by constructing a small-sample

distribution of the Wald test-statistic for each regression: We simulate 5,000 sets of

monthly data for the LHS variable under the null hypothesis of no predictability,

such that the simulated data matches the monthly autocorrelation and covariance

matrix of the realized, observed LHS data. We then aggregate the simulated monthly
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data into 24-month horizon data, like the LHS data used in our regressions (e.g. ex-

cess returns over 24 months). As we aim to measure the small-sample performance

of our bootstrap routine, the simulated data sets each have the same number of data

points as the observed LHS data. For each specification, we then regress the 5,000

simulated LHS data on the respective observed RHS variable(s). Where we run the

regression with currency fixed effects, we use the demeaned RHS variable(s). We

obtain the point estimates of the coefficients and their covariance matrix from the

bootstrap routine outlined above and use the test statistics from these 5,000 regres-

sions to construct the empirical small-sample distribution of the respective Wald

statistic under the respective null hypothesis. This procedure also accounts for the

potential small-sample Stambaugh bias in the p-values.

Figure B.14 illustrates by plotting the histograms of the bootstrapped distribu-

tion of test statistics for various hypotheses on regression (2.22). Panels a and b

show the finite-sample bootstrapped distributions of the test statistic for the hy-

pothesis that Result 2 holds, respectively in the pooled and fixed-effects regressions.

The value of the test statistic in the data is indicated with an asterisk in each

panel. The finite-sample and asymptotic (shown with a solid line) distributions are

strikingly different: the asymptotic distribution suggests that we can reject the hy-

pothesis that Result 2 holds, but this conclusion is overturned by the finite-sample

distribution. (In the pooled case, the discrepancy is largely due to the intercept, as

becomes clear on comparing the asymptotic p-values for tests of hypotheses H1
0 and

H2
0 in Table B.8: the asymptotic distribution penalizes the fact that the US dollar

was strong over our sample period, whereas the finite-sample distribution does not.)

In contrast, the asymptotic and finite-sample distributions tell more or less the

same story in panels c and d, which show the corresponding results for tests (without

and with fixed effects) of the hypothesis H3
0 that β = 0, i.e., that QRP is not useful in

forecasting currency appreciation. While the small-sample distributions of the test

statistics exhibit fatter tails than the asymptotic χ2 distribution, the discrepancy

between the two is small by comparison with panels a and b, and even using the

finite-sample distribution we can reject the hypothesis with some confidence (with

p-values of 0.082 and 0.051 in the pooled and fixed-effects cases, respectively).

We reach similar conclusions for regressions (2.19) and (2.20): we do not reject

the predictions of Result 2 in the joint Wald tests for any of the three baseline re-

gressions using the small-sample distribution of the test statistic; and QRP remains

individually significant as a predictor at the 10% level in all three specifications,

with and without currency fixed effects, even if we take the most conservative ap-
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proach to computing p-values that relies on the empirical small-sample test statistic

distribution.

2.3 Out-of-sample prediction

We now test the quanto theory out of sample. Since the dollar strengthened strongly

over the relatively short time period spanned by our data (as reflected in the negative

intercept in our pooled panel regression (2.22)), we focus on forecasting differential

currency appreciation: that is, we seek to predict, for example, the relative perfor-

mance of dollar-yen versus dollar-euro.

In the previous section, we estimated the loadings on the quanto-implied risk

premium, QRP, and interest rate differential, IRD, via panel regressions. These

deliver the best in-sample coefficient estimates in a least-squares sense. But for

an out-of-sample test we must pick the loadings a priori. Here we can exploit the

distinctive feature of Result 2 that it makes specific quantitative predictions for the

loadings: each should equal 1, as in the formula (2.14). We therefore compute out-

of-sample forecasts by fixing the coefficients that appear in (2.22) at their theoretical

values: α = 0, β = 1, γ = 1.

We compare these predictions to those of three competitor models: UIP (which

predicts that currency appreciation should offset the interest rate differential, on

average), a random walk without drift (which makes the constant forecast of zero

currency appreciation, and which is described in the survey of Rossi (2013) as “the

toughest benchmark to beat”), and relative purchasing power parity (which pre-

dicts that currency appreciation should offset the inflation differential, on average).

These models are natural competitors because, like our approach, they make a priori

predictions without requiring estimation of parameters, and so avoid in-sample/out-

of-sample issues.

To compare the forecast accuracy of the model to those of the benchmarks, we

define a dollar-neutral R2-measure similar to that of Goyal and Welch (2008):

R2
OS = 1−

∑
i

∑
j

∑
t(ε

Q
i,t+1 − ε

Q
j,t+1)2∑

i

∑
j

∑
t(ε

B
i,t+1 − εBj,t+1)2

,

where εQi,t+1 and εBi,t+1 denote forecast errors (for currency i against the dollar) of

the quanto theory and the benchmark, respectively, so our measure compares the

accuracy of differential forecasts of currencies i and j against the dollar. We hope to

find that the quanto theory has lower mean squared error than each of the competitor
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models, that is, we hope to find positive R2
OS versus each of the benchmarks.

The results of this exercise are reported in Table B.9. The quanto theory out-

performs each of the three competitors: when the competitor model is UIP, we find

that R2
OS = 10.91%; and when it is relative PPP, we find R2

OS = 26.05%. In our

sample, the toughest benchmark is the random walk forecast, consistent with the

findings of Rossi (2013). Nonetheless, the quanto theory easily outperforms it, with

R2
OS = 9.57%.

To get a sense for whether our positive results are driven by a small subset of the

currencies, Table B.9 also reports the results of splitting the R2 measure currency-

by-currency: for each currency i, we define

R2
OS,i = 1−

∑
j

∑
t(ε

Q
i,t+1 − ε

Q
j,t+1)2∑

j

∑
t(ε

B
i,t+1 − εBj,t+1)2

.

This quantity is positive for all i and all competitor benchmarks B, indicating that

the quanto theory outperforms all three benchmarks for all 11 currencies. We run

Diebold–Mariano tests (Diebold and Mariano, 1995) of the null hypothesis that the

quanto theory and competitor models perform equally well for all currencies, using

a small-sample adjustment proposed by Harvey et al. (1997), and find that the

outperformance is strongly significant.

Jordà and Taylor (2012) have argued that assessments of forecast performance

based solely on mean squared errors may not fully reflect the economic benefits of

a forecasting model. In Appendix B.3, we use the approach they suggest, which

essentially asks whether a predictor variable is more or less successful at predicting

whether a currency will appreciate or depreciate than competitor predictors. (This

is an oversimplification; full details are in Appendix B.3.) Our approach also outper-

forms on their metric, both in forecasting currency excess returns and in forecasting

currency appreciation.

2.4 Conclusion

UIP forecasts that high interest rate currencies should depreciate on average: it

reflects the expected currency appreciation that a genuinely risk-neutral investor

would perceive in equilibrium. Unsurprisingly—given that the financial economics

literature has repeatedly documented the importance of risk premia—the UIP fore-

cast performs extremely poorly in practice.

We have proposed an alternative forecast, the quanto-implied risk premium,
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that can be interpreted as the expected excess return on a currency perceived by

an investor with log utility whose wealth is fully invested in the stock market. Like

the UIP forecast, the quanto forecast has no free parameters and can be computed

directly from asset prices. Unlike the UIP forecast, the quanto forecast performs well

empirically both in and out of sample. Its main deficiency is its failure to predict

the strength of the dollar itself on average against other currencies over our sample

period: time will tell if this is a small-sample issue or something more fundamental.

We find that currencies tend to have high quanto-implied risk premia if they have

high interest rates on average, relative to other currencies (a cross-sectional state-

ment), or if they currently have unusually high interest rates (a time-series state-

ment); and that there is more cross-sectional than time-series variation in quanto-

implied risk premia. These facts explain both the existence of the carry trade and

the empirical importance of persistent cross-currency asymmetries, as documented

by Hassan and Mano (forthcoming).

The interpretation of the quanto-implied risk premium as revealing the log in-

vestor’s expectation of currency excess returns is a special case of the identity (2.6),

which decomposes expected currency appreciation into the interest rate differential

(the UIP term), risk-neutral covariance (the quanto-implied risk premium), and a

real-world covariance term that, we argue, is likely to be small—and in particular,

smaller than the corresponding covariance term in the well-known identity (2.3). In

the log investor case, this real-world covariance term is exactly zero, a fact we use

to provide intuition and to motivate our out-of-sample analysis. But we also allow

for deviations from the log investor benchmark—that is, for a nontrivial real-world

covariance term—by running regressions including currency fixed effects, realized

covariance, interest rate differentials, the average forward discount of Lustig et al.

(2014), and the real exchange rate, as in Dahlquist and Penasse (2017), in addi-

tion to the quanto-implied risk premium itself. The quanto-implied risk premium

is the best performing univariate predictor, and features in every R2-maximizing

multivariate specification.

Although we have argued that quanto-implied risk premia should (in theory)

and do (in practice) predict currency excess returns, we have said nothing about

why a particular currency should have a high or low quanto-implied risk premium

at a given time. Analogously, the CAPM predicts that assets’ betas should forecast

their returns but has nothing to say about why a given asset has a high or low

beta. Connecting quanto-implied risk premia to macroeconomic fundamentals is an

interesting topic for future research.



3. Bets and Betas: Market Risk in Foreign Exchange

Lukas Kremens1

Market participants often identify market environments with large price move-

ments as “risk-off” or “risk-on”. In a risk-off market, global equity markets, high

yield bonds, and emerging market currencies lose value, while so-called safe-haven

assets like US Treasuries, gold, or typically the Japanese yen gain, along with im-

plied volatilities across asset classes. A recent literature has linked the co-movement

across asset classes to the role of financial intermediaries as marginal investors in

different markets.2 In this chapter, I look at currency futures markets to examine a

slightly different transmission channel of cross-asset co-movement in risk-off market

environments.

Hedge funds and other typically highly leveraged market participants place di-

rectional bets in asset markets. In currency futures markets, the counterparty to

these positions is typically a large intermediary, which hedges the currency exposure

from these futures positions in other markets. I find that, since the financial crisis,

hedge funds reduce the scale of their directional currency positions when the S&P

500 falls and the VIX rises, that is, when markets are hit by a risk-off shock. On

the other side of the market, intermediaries scale down their hedges as they unwind

the futures positions vis-à-vis the hedge funds.

At times when a given bet is particularly popular amongst hedge funds, the

unwinding of this bet in a risk-off scenario will unleash substantial capital flows in

the opposite direction of the original bet. In the short run, the liquidity required

to accommodate the large scale of capital flows out of these assets may transcend

1I thank Daniel Ferreira, Ian Martin, Andrea Vedolin, Philippe Mueller, Christopher Polk,
Dong Lou, Thummim Cho, Jonathan Berk and seminar participants at LSE and HEC for helpful
comments.

2See, for instance, He et al. (2017) and Miranda-Agrippino and Rey (2019).
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even the depth of the most liquid foreign exchange spot markets. An asset that is

held long as part of the bet experiences selling pressure and depreciates as a result,

and vice versa for assets previously held short. As a result, assets held long become

positively correlated with equity markets and other risky assets.

An anecdotal example of such an asset is the US dollar vis-à-vis the euro in

2014-2015, when many macro hedge funds were involved in a particular form of the

carry trade, commonly referred to as the “divergence trade”. This bet on diverging

monetary policies between the Federal Reserve and the ECB involved a long position

in the dollar against a short position in the euro. Over the course of 2015, the euro-

value of the US dollar—historically a typical safe haven asset which would rise during

times of market stress—became positively correlated with equity markets. This is

to say that the euro started to behave like a “safe-haven” currency relative to the

US dollar, which was commonly attributed to the flows of speculative capital out of

the dollar and into the euro during particularly bad times for equity markets:

“Is the euro the new safe haven?”

(CNBC, August 2015)3

“The euro is looking like the yen – where money tends to come home when the

world is a scary place”

(Société Générale, September 2015)4

“The euro isn’t a haven, but is acting like one because of its role in the carry trade.

The distinction is important because it means the link will diminish as these

positions, or shorts, are unwound.”

(Pioneer Investments, September 2015)5

Currency futures are a particularly interesting setting to study the dynamics of

speculative positions, because these markets are dominated by hedge funds on one

side of the market and broker-dealers on the other, intermediating the hedge funds’

demand and hedging their position in other markets, including the spot market.6

The net positions of the two groups are strongly negatively correlated and account

for the vast majority of open interest in most USD FX futures. I document that

in the period following the financial crisis—i.e., since 2010—times of negative S&P

3cnbc.com/2015/08/24/is-the-euro-the-new-safe-haven.html

4http://www.independent.ie/business/world/euro-is-gaining-safehaven-status-among-traders-
at-worst-time-for-draghi-31559999.html

5ibid.

6See Figure C.1. I provide a more detailed description of the data in Section 3.1

https://www.cnbc.com/2015/08/24/is-the-euro-the-new-safe-haven.html
independent.ie/business/world/euro-is-gaining-safehaven-status-among-traders-at-worst-time-for-draghi-31559999.html
independent.ie/business/world/euro-is-gaining-safehaven-status-among-traders-at-worst-time-for-draghi-31559999.html
http://www.independent.ie/business/world/euro-is-gaining-safehaven-status-among-traders-at-worst-time-for-draghi-31559999.html
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returns and increases in the VIX are associated with unwinding positions held by

hedge funds and intermediaries in the FX futures market. To illustrate the logic

of price impact in the spot market from changes in futures (or forward) positions,

Figure 3.1 depicts the possible chain of flows across the two different markets. In

Figure 3.1: Trading flows across FX markets

the example, an investor enters into an unhedged position in the futures market

(long e, short $). Since futures are in zero net-supply, the investor requires a

counterparty, and if no other investor wants to take the opposite unhedged position,

an intermediary will step in. The intermediary can then hedge its futures position

(long $, short e) with the opposite position in the spot market, thereby passing the

futures market flow from the hedge fund position directly on to the spot market,

where this flow may have an impact on the spot exchange rate.

Across a sample of 9 currencies in the post-crisis period, currencies exhibit higher

equity betas when they are subject to long positioning from hedge funds. Long po-

sitioning by hedge funds predicts stronger covariation with the S&P (more positive

correlations) and the VIX (more negative) at weekly horizons. The interpretation

that this relationship is driven by the price impact from unwinding hedge fund posi-

tions is consistent with the finding that the positions of hedge funds contract in size

over weeks when S&P returns are negative and the VIX rises. A similar effect does

not exist for the positions of institutional investors. The conjectured link between

these two sets of results is further consistent with their synchronicity: both occur

exclusively in the post-crisis period since 2010, but not in the years 2006 through

2009. The predictive power of hedge fund positioning for subsequently realized betas

is independent from interest rates, which are often used to proxy for unobservable

risk premia and could therefore potentially drive both hedge fund positions and re-

alized betas. I test the economic significance of the effect by designing a trading

strategy that takes positions in the opposite direction of unwinding hedge fund po-

sitions following a negative S&P return, and find that this trading strategy is highly

profitable with an annualized Sharpe ratio of up to 2. A strategy that provides
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liquidity to accommodate large flows out of popular hedge fund strategies in times

of low equity market returns is compensated with high returns as the temporary

price dislocations from those flows tend to correct within the next week of trading.

I outline this trading strategy in more detail in Subsection 3.2.3.

Related literature.—The price impact of intermediated cross-currency flows is

consistent with the model proposed by Gabaix and Maggiori (2015): capital-constrained

intermediaries are counterparty to a net cross-currency flow from investors and there-

fore bear exchange rate risk. In equilibrium, they are compensated for providing

scarce risk-bearing capacity through an expected appreciation in the currency in

which they are long, and in which the currency investors are short. To achieve the

expected appreciation, the currency must first depreciate when the intermediary en-

ters into the position, that is, net cross-currency flows that require intermediation,

as they are “imbalanced”, have price impact. Their model speaks to two strands of

literature which address “global imbalances” in exchange rate determination: the

early literature on portfolio balance models (see Branson and Henderson (1985)),

and the more recent work on the valuation channel to external adjustment (see e.g.

Gourinchas and Rey (2007)). Della Corte et al. (2016b) confirm empirically the

theoretical prediction of Gabaix and Maggiori (2015) that, in equilibrium, curren-

cies of net debtor countries (i.e., currencies that are held by foreigners or foreign

intermediaries) perform poorly in bad times when global risk aversion is high, and

therefore carry a positive risk premium. This chapter addresses this literature by

holding a microscope to the relationship between “imbalances” and exposures to

global risk by studying a setting where the imbalances—i.e., cross-currency flows

originating from the directional bets of speculators—are highly time-varying and

can be measured at higher frequencies (weekly) than macro-variables.

The vast literature on endogenous risks from the unwinding of positions by

capital-constrained traders goes back to the limits-of-arbitrage models of Shleifer

and Vishny (1997) and Gromb and Vayanos (2002). The two papers, which are

closest in spirit to mine are Brunnermeier et al. (2008) and Cho (2018). The latter

explores a limits-of-arbitrage argument of endogenous risk in the context of cross-

sectional equity strategies and finds that the strategies which are likely to be subject

to heavy hedge fund trading are exposed to shocks to the leverage of the broker-

dealers financing the hedge funds. I use a setting in currency markets with observable

futures positions to explore the link of hedge fund positioning and the economically

broader notion of equity market risk in contrast to broker-dealer funding risk, which

is not observable at higher than quarterly frequencies.
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Brunnermeier et al. (2008) link the profitability of the carry trade to crash risk in

high-interest currencies and find—using CFTC futures data similar to mine—that

futures positions predict realized skewness and that positioning in high-interest cur-

rencies is reduced following increases in the VIX. I separate the impact of unwinding

positions from the interest-rate-based carry trade risk premium—as well as any other

information contained in interest rates—and explore how the unwinding of positions

exposes currencies to spillovers from negative shocks to other markets. In contrast

to potentially idiosyncratic skewness, I explore the implications of unwinding on the

joint distribution of currency returns and equity markets.

As an example for the importance of equity market risk in other asset classes,

particularly in relation to hedge fund strategies, Duarte et al. (2007) show that the

returns to swap spread arbitrage predominantly constitute compensation for equity

market risk. The relevance of “market” risk for currency risk premia is the subject of

a long literature covering consumption risk (Lustig and Verdelhan, 2007; Verdelhan,

2010; Burnside, 2011) as well as equity market risk (Campbell et al., 2010; Lettau

et al., 2014; Kremens and Martin, 2019) and equity market volatility (Lustig et al.,

2011).

I find that the transmission of contracting positions following “risk-off” shocks

into currency betas emerges particularly in more recent data since 2010. A rapidly

growing literature on the deviations from covered interest parity, which have emerged

in currency markets since the financial crisis, discusses the effects of post-crisis

financial regulation on the risk-bearing capacity of financial intermediaries.7

3.1 Data

I obtain data on futures positions in foreign exchange markets from the U.S. Com-

modity Futures Trading Commission (CFTC) which reports weekly commitments

of traders in financial futures traded on the Chicago Mercantile Exchange. The

data span observations from June 2006 to June 2017 for USD futures and exchange

rates versus 9 currencies: Australian dollar (AUD), Brazilian real (BRL), Canadian

dollar (CAD), Swiss franc (CHF), euro (EUR), pound Sterling (GBP), Japanese

yen (JPY), Mexican peso (MXN), and New Zealand dollar (NZD). Each exchange

rate is expressed in terms of USD per unit of foreign currency, such that a positive

net return reflects an appreciation of the respective currency against the US dollar.

Traders are categorized by the CFTC into four categories:

7See Du et al. (2018) as an example, and Levich (2017) for a more representative overview of
this active literature documenting and discussing CIP deviations.
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1. “Dealer/Intermediary” (I will refer to these as intermediaries),

2. “Asset Manager/Institutional” (institutional investors),

3. “Leveraged Funds” (hedge funds),

4. “Other reportables” (others).

Group 1 (intermediaries) includes large banks (the so-called “sell-side”), which “typ-

ically [...] are dealers and intermediaries that earn commissions on selling financial

products, capturing bid/offer spreads and otherwise accommodating clients.”8 The

remaining three groups form the “buy-side”. The second group (institutional in-

vestors) comprises “institutional investors, including pension funds, endowments,

insurance companies, mutual funds and those portfolio/investment managers whose

clients are predominantly institutional.” Group 3 includes hedge funds, and their

strategies “involve taking outright positions”. These traders “may be engaged in [...]

conducting proprietary futures trading and trading on behalf of speculative clients.”

The final group (others), naturally, contains any remaining types of traders, which

mostly use markets “to hedge business risk, whether that risk is related to foreign ex-

change, equities or interest rates, including [...] corporate treasuries, central banks,

smaller banks, mortgage [and] credit unions”.

I denote by nlfi,t the net exposure—long positions minus short positions—of

Leveraged Funds (who I will refer to as hedge funds) to currency i versus the US

dollar at time t. The net exposures of institutional investors and intermediaries are

analogously denoted by nami,t and ndii,t, respectively. I will also use a scaled version

of this variable, denoted by ñlf i,t = nlfi,t/oii,t (and again analogously for nam and

ndi), where oii,t denotes the open interest in currency i reported by the CFTC.

Table C.1 reports all cross-correlations between the four groups. The positions

of hedge funds and intermediaries are strongly negatively correlated (ρ = −0.88

and ρ = −0.87, respectively, for absolute and relative positions), suggesting that

the intermediaries act as counterparties for the directional bets of hedge funds. In

contrast, institutional asset managers appear to account for a substantially smaller

part of intermediaries’ positions with a correlation of −0.43.

Table C.2 reports the average net position of all four groups by currency, along

with the respective standard deviations and autocorrelations. Group 4 (“Others”)

is by far the one with the smallest and least volatile positions for most currencies.

8The full CFTC explanatory notes are available at
cftc.gov/idc/groups/public/@commitmentsoftraders/documents/file/tfmexplanatorynotes.pdf.

http://www.cftc.gov/idc/groups/public/@commitmentsoftraders/documents/file/tfmexplanatorynotes.pdf
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Hedge funds and intermediaries account for the majority of trading in most cur-

rencies, but institutional investors hold average positions of notable size in some

currencies, such as GBP, JPY, and MXN. While the positioning of all four groups

is reasonably strongly autocorrelated from week to week, they all exhibit a consid-

erable amount of within-currency variation. The bottom three rows of each panel

in Table C.2 show that this time-series variation far outweighs the cross-sectional

variation in the composition of the total panel variation. Figure C.1 shows the

scale and time-variation of each group (omitting group 4 to make the graph more

readable). The graphs show the considerable time-variation in the direction of spec-

ulative trade: hedge funds change from being net long to net short several times

over the sample period for all currencies.

3.2 Currency betas

Does the positioning of hedge funds in a given currency help describe time-series

variations in currency betas? I run time-series regressions of daily currency re-

turns on S&P returns and an interaction of S&P returns and the ñlf variable,

that is, the positioning of hedge funds scaled by open interest. Denote by rS&P
t =

S&Pt/S&Pt−1−1 the return on the index from day t−1 to day t. As ñlf is only ob-

served weekly, I use the last available observation prior to day t to interact with the

daily return. Introducing some further notation, I will denote by ri,t = ei,t/ei,t−1−1,

the net currency return i versus the US dollar from time t− 1 to t. I then run the

regressions

ri,t = αi + βir
S&P
t + β∗i r

S&P
t · ñlf i,t + εi,t, (3.1)

ri,t = αi + βir
S&P
t + β∗rS&P

t · ñlf i,t + εi,t. (3.2)

While the conventional beta is estimated as a time-invariant characteristic of each

currency, the coefficient on the interaction term, β∗i , reflects time variation in the

beta that is related to the positioning of hedge funds in the currency. Since ñlf

captures the sign of the positioning, the coefficient on the interaction term, β∗i picks

up the component of currency betas that is related to hedge fund positioning. If

such a component is caused by hedge fund positioning, the effect on equity market

exposure goes in the same direction for all currencies, and regression (3.2), estimates

a joint coefficient β∗ for the entire cross section of currencies.

Results are reported in Table C.3: Over the full sample, β∗i is positive for 6

out of 9 currencies and significantly so for 4 (CAD, CHF, JPY, NZD). While the
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pooled coefficient is positive, the null of β∗0 = 0 is not rejected at conventional

levels with a p-value of 0.12. However, the effect predominantly occurs in the years

following the financial crisis (2010-2017). In this post-crisis sample, β̂∗i is positive

for all currencies except GBP, and statistically significant for AUD, CAD, CHF,

JPY, and NZD. (Incidentally, these are the currencies most commonly associated

with speculative trading strategies.) The joint estimate β̂∗ is positive at 0.186 and

statistically significant at the 5% level. In each sample period, the standard market

betas take signs consistent with conventional wisdom and previous literature on

currency risk: all currencies are “risky” relative to the US dollar in terms of their

positive covariance with equity markets, with the exception of the Japanese yen—

commonly seen as a “safe haven”—with a significantly negative beta, and the Swiss

franc (zero market beta), which is on-par with the US dollar in terms of its equity

market risk exposure.

These regressions split the conventionally estimated univariate beta into a base-

line exposure and an exposure that can be (statistically) explained by hedge fund

positioning. For instance, βe may be positive, but nonetheless, the euro may corre-

late negatively with equity markets in times when ñlfe is particularly negative—i.e.,

leveraged market participants are substantially short the euro, as in 2015—as long

as β∗e is sufficiently large. It is worth noting that the association of currency-equity

co-movement with hedge fund positioning emerges particularly in the post-crisis

sample from 2010 onwards.

3.2.1 Futures positions and equity market shocks

The direct link from hedge fund positions to betas requires that positions are un-

wound in response to negative shocks. I divide realizations of market risk into “risk-

off” (bad) and “risk-on” (good) shocks: Other than the S&P 500 as a headline equity

market gauge, the VIX is a natural proxy for “risk-on” and “risk-off” movements in

financial markets, so let ∆V IXt = V IXt−V IXt−1. The two market risk measures,

rS&P
t and ∆V IXt, are strongly negatively correlated with ρ(rS&P ,∆V IX) = −0.80

over the full sample period.

To capture the asymmetric effects of positive and negative shocks, I define

two truncated weekly S&P-return variables, rS&P+

t = max(0, rS&P
t ) and rS&P−

t =

min(0, rS&P
t ). Similarly, let ∆V IX+

t = max(0,∆V IXt) and ∆V IX−t = min(0,∆V IXt)

denote the weekly changes in the VIX, truncated at 0. Note that rS&P− and ∆V IX+

represent the proxies for “risk-off ” shocks. To measure the unwinding of futures

positions—both long and short—, I consider the weekly change in the absolute net
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exposure of the different trader groups, i.e., ∆|ndi|, ∆|nlf |, and for comparison

∆|nam|. I then run the following regressions:

∆|ndi|i,t = αi + ηrS&P−

t + γrS&P+

t + δ ri,t−1 + εi,t (3.3)

∆|ndi|i,t = αi + η∆V IX+
t + γ∆V IX−t + δ ri,t−1 + εi,t (3.4)

∆|nlf |i,t = αi + ηrS&P−

t + γrS&P+

t + δ ri,t−1 + εi,t (3.5)

∆|nlf |i,t = αi + η∆V IX+
t + γ∆V IX−t + δ ri,t−1 + εi,t (3.6)

∆|nam|i,t = αi + ηrS&P−

t + γrS&P+

t + δ ri,t−1 + εi,t (3.7)

∆|nam|i,t = αi + η∆V IX+
t + γ∆V IX−t + δ ri,t−1 + εi,t (3.8)

I report the results in Table C.4 separately for the 2006-2009 period and for the

post-crisis period (2010-2017). In the 2006-2009 period, hedge fund and interme-

diary positions are not significantly exposed to the “risk-off” shocks, rS&P− and

∆V IX+. The coefficient for negative S&P returns is negative (but lacks signifi-

cance), indicating that positions expand over weeks with negative S&P returns.

For the post-crisis period, however, the positions of intermediaries and hedge

funds contract with risk-off shocks, that is, with negative S&P returns and spikes

in the VIX, and do so with statistical significance at conventional levels. The mag-

nitudes of the effects are several times larger than during the earlier sample period.

The discrepancies between the two periods line up with the above results for cur-

rency betas: unwinding is associated with risk-off shocks in the post-crisis period,

when—as shown in Table C.3—hedge fund positions help explain the time-variation

in the equity market risk exposures of currencies.9 This sensitivity to risk-off shocks

is not present for institutional investors. The results in Table C.4 support the in-

terpretation that the relationship in Table C.3 between currency betas and hedge

fund positions in the post-crisis period is driven by the unwinding of hedge fund

positions in response to risk-off shocks.

3.2.2 Realized betas are predictable

If the relationship between positioning and betas is the result of a direct mechanism,

a simple test is to use the hedge fund positions as a predictor of subsequently realized

currency exposures to the S&P and to the VIX.

I define the following variables measuring the co-movement of currency i with

9Futures positions are not available for BRL in the 2006-2009 sample. The results for the
2010-2017 period do not change materially once BRL is dropped from the sample.
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equity markets over the week following the observed positioning at date t: ρSPXi,t→t+1,

the correlation of daily exchange rate movements with daily S&P 500 returns;

βMKT
i,t→t+1 =

ρSPX
i,t→t+1σi,t→t+1

σSPX
t→t+1

, the beta of daily exchange rate movements with respect to

the S&P 500; and ρV IXi,t→t+1, the correlation of daily exchange rate movements with

daily VIX changes between t and t + 1. Table C.5 reports the averages, standard

deviations, and autocorrelations of these variables by currency. At the weekly hori-

zon, the average autocorrelations are low at 0.24, 0.11, and 0.19, respectively.10 To

test the predictive power of futures positions for these beta measures of a currency’s

equity market risk exposure, I run the following forecasting regressions:

yi,t→t+1 = αi + η ñlf i,t + δ ri,t + φ fdwi,t + εi,t+1 (3.9)

yi,t→t+1 = α + η ñlf i,t + δ ri,t + φ fdwi,t + λ yi,t−1 + εi,t+1 (3.10)

The results for regressions (3.9) and (3.10) for yi,t→t+1 = {ρSPXi,t→t+1, β
MKT
i,t→t+1, ρ

V IX
i,t→t+1}

are reported in Table C.6 for the two subsamples 2006-2009 and 2010-2017 (right

panels). The relative positioning of hedge funds is a strongly significant and pos-

itive predictor of equity market risk as captured by all three measures: currencies

that are heavily bought by hedge funds in the futures market, have higher corre-

lations and betas with the S&P 500 over the subsequent week, and more negative

correlations with the VIX. Neither of these relationships is present in the earlier

sample period, when—recalling Table C.4—hedge fund and intermediary positions

are largely invariant to equity market shocks. The result holds within-currency (i.e.,

with currency fixed effects, Panel A) and across currencies (Panel B).

In the pre-crisis period, the forward discount predicts risk exposures in the cross

section, in the sense that high-interest currencies are more positively (negatively)

correlated with the S&P (VIX), but this relationship vanishes after 2009. Cross-

sectionally, hedge fund positions are also significant predictors of βMKT in the early

sample, but the economic magnitude of the coefficient (0.069) is much smaller than

in the later sample, and does not hold within-currency. Table C.7 reports a ro-

bustness check to the above results, running regressions (3.9) and (3.10) in weekly

changes. The different η-coefficients remain statistically significant with the excep-

tion of predictions for ρV IXi,t→t+1, where the p-values rise to 0.127. The point estimates

rise slightly in comparison to the estimates in levels, but the order of economic mag-

10Computing the beta variables over a time horizon as short as one week with daily data in-
evitably renders these measures noisy. I choose the weekly horizon in order to avoid overlapping
observations and make better use of the weekly futures data, rather than, for instance, forecasting
monthly correlations.
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nitude is unchanged. On average, a unit change in ñlf—which amounts to around

three standard deviations—in a given currency is associated with an increase in the

currency’s risk exposure—as measured by its correlation/beta with the S&P—of

around 0.3. To put this number into perspective, the unconditional average risk

exposures (shown in Table C.5) are between roughly −0.3 (JPY) and 0.5 (MXN).

These economic magnitudes are similar for the VIX-correlations (with the opposite

sign).

3.2.3 A profitable contrarian trading strategy

Following the above regressions and statistical results, I now construct a trading

strategy, which performs a test of the economic significance of the link between

equity market returns and the unwinding of futures positions by hedge funds. The

strategy is implementable in real time, rebalanced weekly, and designed to exploit

the temporary price dislocations that result from such unwinding of hedge fund

positions. To this end, it takes a position following weeks of bad equity returns, in

the opposite direction of changes in hedge fund positioning during that past week.

Specifically, the strategy takes positions at time t if rS&P
t < x, i.e., the S&P

return over the week between t − 1 and t is below a certain threshold x. It then

takes a position in currency i against the dollar if two conditions are jointly satisfied:

(i) hedge funds have reduced their positions in currency i—i.e., |nlfi,t|< |nlfi,t−1|—
, and (ii) currency i has moved in the direction of the change in the net hedge

fund position—i.e., sign(ri,t) = sign(∆nlfi,t)—to separate plausibly flow-induced

currency movements from, say, fundamental exchange rate movements.

I formulate two versions of this strategy. In the contract-weighted version of this

strategy, the positions taken in different currencies in any given week are scaled to

be proportional in size to the change in hedge fund positions: Let ΩCW
i,t denote the

number of futures contracts in currency i against the dollar, included in the strategy

at time t:

ΩCW
i,t =

ωCWi,t∑
j|ωCWj,t |ej,tsj

, and ωCWi,t = −∆nlfi,t 1{rS&P
t <x} 1{∆|nlf |i,t<0} 1{sign(∆nlfi,t)=sign(ri,t)}

where 1{·} is the indicator function which takes value 1 if · is true, and 0 otherwise.

Given the exchange rate ei,t and contract size si in units of foreign currency, ei,tsi

expresses the dollar notional of each contract and the term in the denominator

therefore scales the positions to ensure that the gross notional of the total position

is constant through time at $1.
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The equal-weighted version of the strategy fixes the dollar notional of each in-

dividual position, such that all non-zero positions taken at any point in time have

the same absolute dollar exposure. Denote by ΩEW
i,t the dollar notional amount in

futures contracts of currency i against the dollar, then

ΩEW
i,t =

ωEWi,t∑
j|ωEWj,t |

, and ωEWi,t = −sign(∆nlfi,t) 1{rS&P
t <x} 1{∆|nlf |i,t<0} 1{sign(∆nlfi,t)=sign(ri,t)}.

Table C.8 reports the key return characteristics of this strategy for the threshold

levels x = 0, x = −3%, and no threshold at all. Since the strategy relies on a

previous deterioration in the market environment (that is, a negative S&P return),

it is only active in a subset of the weeks in the sample from January 2010 until

June 2017. For the zero-threshold, this subset includes 138 out of 389 weeks in

the sample. The strategy enters positions based on 1-week forward exchange rates

(obtained from Bloomberg), and accounts for transaction costs by implementing

long (short) positions at the ask (bid) price. Measuring performance over the active

weeks, both versions of the strategy are economically profitable, with unlevered

mean returns of 12bps (contract-weighted) and 15bps (equal-weighted) per week

and annualized Sharpe ratios of 0.74 and 0.97, respectively. Over those 138 weeks,

the strategy achieves a cumulative unlevered return of 17.22% (contract-weighted)

and 22.29% (equal-weighted).

Under a stricter conditioning rule, where the strategy only becomes active if the

previous week’s S&P return was below −3%, the strategy only trades in 18 weeks,

average returns rise to, respectively, 38bps and 35bps per week, and the annualized

Sharpe ratios rise to 2.06 and 1.97, respectively.11 For comparison, the unconditional

strategy—which takes positions regardless of S&P returns—yields weekly excess

returns close to 0, with Sharpe ratios of only 0.23 and 0.04, respectively. This

comparison suggests, that hedge fund flows are only associated with temporary

price dislocations (which revert within the next week), when these flows occur during

times, when risky assets sell off.

3.2.4 Joint bets and currency co-movement

Next, I take a look at the impact of hedge fund positioning on exchange rate variation

at even higher frequencies than the daily data used in the previous subsections.

In the spirit of Antón and Polk (2014) and Lou and Polk (2013), I examine the

correlations of currencies that are similarly exposed to trading by hedge funds, in

11Accounting for inactive periods in the annualization, Sharpe ratios range from 0.42 to 0.58.
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intraday data. I ask whether currencies, which are traded in the same direction

(long or short) by hedge funds, share common variation at intraday frequencies.

Let ρi,j,t be the correlation in the exchange rate movements of currencies i and

j over the week following date t. To capture a richer picture of variation over the

course of one week, I obtain intraday data on exchange rates for AUD, CAD, CHF,

EUR, GBP, JPY, MXN, and NZD spanning the period from July 2010 to January

2017. Correlations are computed over 15-minute intervals on the 7 days following

the observation of hedge fund positions. To capture whether two currencies are

traded in the same direction by hedge funds, I consider the differential in the scaled

positioning variable ñlf . For currencies which are either both bought or both sold

by hedge funds, and where hedge fund trading accounts for a similar share of overall

trading activity, the ñlf variable will take similar values and the differential will be

small. If currencies are “connected” through hedge fund trading even at intraday

frequencies, the observed correlation will be decreasing in the ñlf -differential.

In order to absorb other (time-invariant) sources of correlation, I include currency-

pair fixed effects. For comparison, I can compute the same positioning-differential for

the positions of institutional investors. To account for other time-varying currency

characteristics that may lead to high-frequency correlation, I add the differential

forward discount against the dollar, fdw, as a competing predictor and estimate the

following regressions:

ρi,j,t = αi,j + β | ñlf i,t − ñlf j,t | +γ | ñami,t − ñamj,t | +φ | fdwi,t − fdwj,t | +εi,j,t
(3.11)

ρi,j,t = αi,j + β | ñlf i,t − ñlf j,t | +εi,j,t (3.12)

ρi,j,t = αi,j + γ | ñami,t − ñamj,t | +εi,j,t (3.13)

ρi,j,t = αi,j + φ | fdwi,t − fdwj,t | +εi,j,t. (3.14)

Table C.9 reports the results. Out of ñlf , ñam, and fdw, the only variable that

predicts intraday correlation—with a p-value of 0.1 at the margins of conventional

significance—is ñlf : two currencies are more strongly correlated, when they are both

included on the same side of hedge fund positioning, be it long or short. The same is

not true for the positions of institutional investors. Brunnermeier et al. (2008) run

a regression similar to (3.14) and show that currencies with similar interest rates

have higher pairwise correlations in daily data over the next quarter. I find that this

does not hold for shorter horizons and higher frequencies, while the direct statistical

relationship between hedge fund positioning and correlation is discernible even at
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intraday frequencies.

3.3 Alternative explanations and empirical concerns

Is this strong relationship between hedge fund positioning and market risk exposures

driven by the price impact of unwinding positions in “risk-off” states, when equity

markets are down and the VIX is up? For instance, one might expect hedge fund

positions to reflect unobservable signals about conditional risk premia. If these risk

premia are related to market risk, positions would predict betas, not because one

is driving the other but because both are driven by underlying fundamental risk

profiles. Given the size of the futures market relative to total FX trading, another

important question is whether futures positions are a relevant measure of the overall

positioning of different groups of market participants. This section tries to address

these questions in turn, starting with the latter.

3.3.1 Flows and returns

For hedge fund positions to be the driver of time-varying currency betas, the un-

winding of these positions must have price impact. An important concern when

looking at futures data is that the futures market covers only a small fraction of

currency trading—most trades are done over-the-counter in the forward market and

will therefore not be reported to the CFTC. Nonetheless, the futures data are the

best publicly available indication of the overall positioning of market participants

and I see no reason to expect the lack of complete coverage to bias the empirical

results in a particular direction.

As empirical support for the relevance of the futures data, I can test whether ex-

change rates move with the hedge fund positions in the futures market. Price impact

implies a systematic contemporaneous association between changes in the positions

of traders (i.e., portfolio flows of hedge funds) and exchange rate movements. I

regress net currency movements, ri,t = ei,t/ei,t−1 − 1, on the changes in nlf and

ñlf . This first set of regressions merely serves as a simple test of whether or not the

futures data are consistent with this prediction and a potential lack of contempora-

neous association between flows and returns would cast doubt on the interpretation

of the link between currency betas and futures positions. The contemporaneous
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regressions take the form

ri,t = αi + ηi∆nlfi,t + γi∆nami,t + εi,t (3.15)

ri,t = αi + ηi∆ñlf i,t + γi∆ñami,t + εi,t, (3.16)

where ∆nlfi,t = nlfi,t− nlfi,t−1 is the week-on-week change in the net long position

of “Leveraged Funds” in currency i versus the US dollar (similarly for the scaled

variable ñlf). The results are reported in Table C.10: for both regressions the es-

timates for ηi are positive and significant at 1% for all currencies. The statistical

significance of this result is less pervasive for institutional investors, where most esti-

mates, γ̂i, are positive, but only significant for 5 out of 9 currencies, at conventional

confidence levels. The observable futures data are therefore consistent with price

impact from hedge fund portfolio flows.12

3.3.2 Anticipation of risk premia

The key empirical concern in this setting is reverse causality. Do positions predict

betas because unwinding has price impact, or do the anticipated betas lead hedge

funds to position themselves in the way they do? The question boils down to

whether or not the weekly variations in fundamental currency correlations with

equity markets and the VIX are predictable.

Hedge fund positions are not driven by interest rate differentials.—Prompted by

the profitability of the carry trade, the variable that is most traditionally associated

with currency risk premia is the interest rate differential (Verdelhan, 2010; Lustig

et al., 2011). Consider the one-week forward discount of currency i versus the

dollar, denoted by fdwi,t: Figure C.2 plots the means of ñlf against fdw by currency.

The confidence ellipses represent the joint distribution of the two variables under

normality, and are scaled to contain 20% of the observations in population to make

the figure readable. The relative sizes of the ellipses visualize the relative volatilities

of the variables, and their orientation captures the time-series correlation of ñlf and

fdw for the given currency. The cross-sectional correlation is negative, suggesting

that hedge funds tend to be long in high interest currencies on average, but the

within-currency correlations span a wide range from -0.61 (JPY) to 0.48 (NZD) and

12The results from these contemporaneous regressions are equally consistent with the reverse
interpretation that hedge fund portfolio flows “chase” returns rather than “driving” them. The
result does not present evidence of causality but is meant to provide a sense-check of the futures
data as these are used as a proxy for the unobservable OTC positions, which make up the majority
of total FX trading.
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the slope coefficient for the within-currency regression is not significantly different

from zero. Another way of looking for carry trade activity is to consider the time-

series correlation in the ñlf variable for currency pairs that are conventionally on

opposite sides of the carry trade: The yen and the Swiss franc are among the most

NZD AUD CAD

JPY 0.029 0.184 0.170

CHF 0.208 0.089 -0.136

commonly used funding currencies of the carry trade, while NZD, AUD, and CAD

have been commonly used as investment currencies, so carry trade activity would

suggest a negative correlation between the net hedge fund exposures in the funding

and investment currencies.13 However, 5 out of 6 of these pairwise correlations are

positive (and sizeable in some cases), with CAD-CHF the only negative correlation.

Beta predictability is not driven by scheduled FOMC announcements.—One par-

ticular example of a setting in which risk premia (and potentially also currency

betas) may reasonably be predictable even at a weekly horizon is the exposure to

scheduled FOMC announcements. Savor and Wilson (2014) and Mueller et al. (2017)

find that these announcements are accompanied by substantial excess returns of for-

eign currencies against the US dollar, and interpret these returns as compensation

for monetary policy uncertainty. To test whether the results reported so far are

driven by a strong relationship between hedge fund positioning and subsequently

realized currency betas around a scheduled FOMC announcement, I consider those

weeks separately from non-announcement weeks. Table C.11 shows the results for

regression (3.10) splitting the sample into FOMC announcement weeks and non-

announcement weeks. The results are larger in magnitude and more significant

over non-announcement weeks, indicating that the headline results presented in this

chapter are not driven by reverse causality stemming from anticipated risk exposures

ahead of FOMC announcements.

13As CAD interest rates have been low in historical comparison after the financial crisis, the
currency may have lost much of its previous status as a common investment currency in the carry
trade.
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3.4 Conclusion

This chapter documents a close link between the positioning of leveraged market

participants and currency betas since the financial crisis. A currency is more exposed

to movements in the S&P or the VIX when hedge funds hold long positions in that

currency. Hedge fund positions in the futures market, which are observable at weekly

frequencies, predict realized exposures over the subsequent week, both in the cross

section and within-currency. At the same time, the size of open positions held by

hedge funds and intermediaries, decreases following a negative shock to the S&P

or an increase in the VIX. A similar exposure of futures positions to these adverse

shocks is not present in the years 2006-2009, and at the same time, the strong link

between hedge fund positions and currency betas does not exist in this earlier period.

My findings are consistent with the interpretation that (i) the balance sheets of

hedge funds have become more responsive to market risk, and hedge fund positions

in the futures market are unwound in response to adverse equity market shocks, (ii)

hedged intermediaries as the counterparties to hedge funds’ futures positions pass

on the resulting flows to the spot market, as they unwind hedges to their futures

positions, and (iii) the price impact from these unwinding flows in the spot market

endogenously exposes the respective currency to equity market risk.

I design a trading strategy to exploit the temporary price dislocations in currency

markets caused by unwinding hedge fund positions in response to an adverse shock

to the market environment. The strategy is highly economically attractive with an

annualized Sharpe ratio of up to 2. I find no evidence for alternative explanations for

the link between hedge fund positions and currency betas: the association of futures

positions and currency betas is not driven by a common correlation with expected

returns compensating investors for monetary policy uncertainty around scheduled

FOMC announcements.
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A. Appendix to Currency Redenomination Risk

A.1 Tables

Table A.1: Summary statistics – CDS spreads

This table reports the summary statistics of CDS spreads collected from Markit for a cross-section
of Eurozone countries. The maturity in each case is five years, which is typically the most liquid
maturity in CDS markets. CDS spreads for contracts under, respectively, 2003 and 2014 ISDA
definitions are denoted by CR and CR14. The daily data run from September 22nd, 2014 to June
19th, 2018. CDS spreads are annualized and reported in basis points. Rows with µ(·), σ(·), and
ρ(·, ·) report, respectively, the mean, standard deviation, and correlation.

Country FRA ITA GER AUT BEL ESP IRE NED POR

µ(CR14) 32.69 132.26 15.95 23.79 34.52 81.03 48.60 20.17 195.36

σ(CR14) 11.38 26.95 3.79 5.80 12.54 19.08 14.66 5.28 70.39

µ(CR) 27.57 106.91 14.21 21.61 30.89 68.25 42.83 18.55 172.90

σ(CR) 10.53 23.52 3.94 6.28 12.73 22.07 16.05 5.51 71.37

ρ(CR14, CR) 0.88 0.74 0.97 0.99 0.99 0.97 0.99 0.98 0.99

µ(CR14− CR) 5.10 26.30 1.81 2.27 3.65 13.04 5.86 1.67 22.71

σ(CR14− CR) 5.41 18.43 0.92 1.01 1.28 6.34 2.60 1.03 9.14

ρ(CR14− CR,CR14) 0.39 0.52 -0.05 -0.41 -0.09 -0.36 -0.47 -0.13 -0.04
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Table A.2: Summary statistics – Redenomination spreads (RS)

This table reports the summary statistics of the French, Italian, and German redenomination
spreads (RS) constructed as a difference-in-difference measure: RSi,t = CR14i,t − CRi,t −
(CR14s(i),t − CRs(i),t), where s(i) denotes variables relating to a synthetic control country con-
structed to match country i. The daily data run from September 22nd, 2014 to June 19th, 2018.
Redenomination spreads are annualized and reported in basis points. Rows denoted by µ(·), σ(·),
ρ(·, ·), and Max(·) report, respectively, mean, standard deviation, correlation and maximum.

Country FRA ITA GER

ρ(RS,CR) −0.03 −0.01 0.08

µ(RS) 1.46 8.23 0.10

σ(RS) 3.99 10.81 0.99

µ(RS/CR14) 0.04 0.06 0.00

Max(RS/CR14) 0.40 0.32 0.42

Table A.3: Regression of Eurozone sovereign yields on RS

This table reports the results for time-series regressions of Eurozone (plus Denmark) government
bond yields on French and Italian redenomination spreads, controlling for e-denominated overnight
swap rates (OIS).

yj,T,t −OISe,T,t = αj,T + βFRA,j,TRSFRA,t + βITA,j,TRSITA,t + εj,T,t, (1.2)

for maturity T = 5 years. Newey–West standard errors are reported in parentheses. The daily
data run from September 2014 to June 2018. Yields, swap rates, and redenomination spreads are
measured in %-points.

Country GER AUT DEN† NED IRE BEL ESP ITA FRA POR

RSFRA -0.965 -0.939 -0.613 -0.210 0.514 0.042 0.805 0.365 1.230 5.410

(0.434) (0.221) (0.249) (0.335) (0.364) (0.216) (0.520) (0.522) (0.210) (0.757)

RSITA -1.316 -0.441 -0.590 -0.770 -1.109 -0.433 -1.357 1.213 -0.678 -1.898

(0.356) (0.165) (0.181) (0.268) (0.294) (0.169) (0.389) (0.331) (0.152) (0.414)

Intercept -0.390 -0.058 -0.033 -0.094 0.205 -0.021 0.612 0.615 0.045 1.479

(0.028) (0.013) (0.024) (0.020) (0.025) (0.015) (0.031) (0.026) (0.012) (0.077)

R2 0.386 0.370 0.173 0.267 0.351 0.149 0.263 0.319 0.359 0.116

Obs. 967 965 967 965 818 967 966 967 967 967

†: included as a quasi-Eurozone member.
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Table A.4: Regression of e and $ FX rates on French and Italian RS

This table reports the results for time-series regressions of exchange rate variables on
French and Italian redenomination spreads, controlling for overnight swap rates.

ee,t = α+ βFRARSFRA,t + βITARSITA,t + γeOISe,t + εt, (A.1)

e$/e,t = α+ βFRARSFRA,t + βITARSITA,t + γeOISe,t + γ$OIS$,t + εt, (A.2)

e$,t = α+ βFRARSFRA,t + βITARSITA,t + γ$OIS$,t + εt. (A.3)

where ee,t, e$/e,t, and e$,t denote, respectively, the natural logarithms of the Bloomberg
euro spot index, the euro-dollar exchange rate, and the ICE US-dollar spot index. The
euro-dollar exchange rate is defined such that an increase reflects an appreciation of the
euro against the dollar. For the two indices, an increase in e reflects an appreciation of
the respective currency against a trade- and liquidity-weighted basket of other currencies.
Newey–West standard errors (max. 10 lags) are reported in parentheses. The daily data
run from September 2014 to June 2018. Redenomination spreads are measured in basis
points.

Currency EUR index EURUSD USD index

RSFRA −0.003 −0.005 0.004

(0.000) (0.000) (0.000)

RSITA 0.001 0.000 0.000

(0.000) (0.000) (0.000)

OISe 0.069 0.053

(0.015) (0.044)

OIS$ 0.036 −0.036

(0.019) (0.006)

Intercept 6.770 0.081 4.601

(0.005) (0.027) (0.008)

R2 0.307 0.347 0.255

Obs. 969 969 972
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Table A.5: Regression of German and US government bond yields on RS

This table reports the results for time-series regressions of German (Panel A) and US (Panel B)
government bond yields on French and Italian redenomination spreads, controlling for both e- and
$-denominated overnight swap rates.

yGER,T,t = α+ βFRA,TRSFRA,t + βITA,TRSITA,t + γTOISe,T,t + εi,T,t, (1.2)

yUS,T,t = α+ βFRA,TRSFRA,t + βITA,TRSITA,t + γTOIS$,T,t + εi,T,t, (1.6)

for maturities T = {1, 2, 3, 5, 10} years. Newey–West standard errors (max. 10 lags) are reported
in parentheses. The daily data run from September 2014 to June 2018. Yields, swap rates, and
redenomination spreads are measured in percentage points.

Maturity 1y 2y 3y 5y 10y

Panel A: Bund yield, FRA

RSFRA −1.266 −1.321 −1.087 −1.234 −0.186

(0.182) (0.251) (0.269) (0.401) (0.154)

RSITA −0.369 −0.612 −0.725 −1.101 −0.507

(0.142) (0.190) (0.195) (0.329) (0.099)

OIS EUR 1.535 1.355 1.181 0.467 1.024

(0.070) (0.083) (0.069) (0.076) (0.028)

Intercept −0.013 −0.065 −0.124 −0.410 −0.115

(0.012) (0.018) (0.020) (0.027) (0.011)

R2 0.853 0.789 0.753 0.445 0.897

Obs 970 970 969 967 970

Panel B: US Treasury yield, FRA

RSFRA −0.723 −0.616 −0.490 -0.146 0.183

(0.126) (0.122) (0.116) (0.104) (0.146)

RSITA −0.073 −0.002 0.117 0.283 0.487

(0.096) (0.090) (0.083) (0.089) (0.120)

OIS USD 1.070 1.007 0.959 0.892 0.768

(0.011) (0.017) (0.021) (0.025) (0.026)

Intercept −0.038 0.056 0.158 0.374 0.735

(0.010) (0.022) (0.027) (0.034) (0.041)

R2 0.989 0.975 0.966 0.952 0.913

Obs 970 970 970 970 970
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Table A.6: Regression of corporate CDS spreads on French and Italian RS

This table reports the results for time-series regressions of corporate CDS spreads on French and
Italian redenomination spreads, controlling for overnight swap rates.

St = α+ βFRARSFRA,t + βITARSITA,t + γOISe,t + εt. (A.4)

where St denotes the spread of different equally weighted portfolios of corporate CDS contracts:
The first portfolio contains CDS written on the senior debt of the 125 investment grade corporates
included in the iTraxx Europe CDS Index. The second and third portfolios contain, respectively,
senior and subordinated CDS contracts for 30 investment grade financial companies (i.e., banks
and insurance companies). The next ten portfolios split the original set of 125 CDS by industry
into financial and non-financial companies, and by country into the five Eurozone countries
with at least one financial company (Germany, the Netherlands, Italy, Spain, and France).
Newey–West standard errors (max. 10 lags) are reported in parentheses. The row entitled
µ(St) reports the time-series averages of the credit spreads in the respective portfolio. The
daily data run from September 2014 to June 2018. All variables are measured in percentage points.

All Financials GER NED ITA ESP FRA

Senior Senior Subord. Fin. Non-F. Fin. Non-F. Fin. Non-F. Fin. Non-F. Fin. Non-F.

RSFRA 0.357 0.705 1.640 0.300 −0.012 1.229 0.297 1.510 0.179 0.794 0.017 1.475 0.460

(0.183) (0.266) (0.465) (0.209) (0.254) (0.217) (0.119) (0.358) (0.192) (0.588) (0.484) (0.357) (0.166)

RSITA −0.157 −0.157 −0.138 −0.071 −0.431 −0.514 −0.192 0.337 0.112 −0.750 −0.720 −0.705 −0.208

(0.144) (0.222) (0.365) (0.166) (0.198) (0.182) (0.091) (0.298) (0.141) (0.455) (0.355) (0.300) (0.123)

OISe −0.310 −0.638 −1.621 −0.724 −0.336 −0.505 −0.103 −1.421 −0.557 −1.177 −0.873 −0.428 −0.317

(0.058) (0.068) (0.140) (0.058) (0.074) (0.069) (0.040) (0.119) (0.072) (0.121) (0.146) (0.079) (0.051)

Interc. 0.669 0.749 1.625 0.648 0.712 0.637 0.536 1.128 0.740 0.995 0.989 0.655 0.609

0.0157 (0.020) (0.038) (0.017) (0.020) (0.019) (0.010) (0.034) (0.016) (0.040) (0.039) (0.023) (0.014)

R2 0.255 0.469 0.557 0.569 0.273 0.473 0.146 0.575 0.427 0.479 0.336 0.379 0.312

µ(St) 0.664 0.753 1.656 0.655 0.679 0.618 0.525 1.193 0.758 0.957 0.939 0.622 0.602

Comp. 125 30 30 5 16 3 8 4 3 2 4 4 22

Obs.. 967 967 967 967 967 967 967 967 967 967 967 967 967



APPENDIX A. APPENDIX TO CURRENCY REDENOMINATION RISK 107

Table A.7: Regression of Eurozone sovereign yields on RS and CR CDS spreads

This table reports the results for time-series regressions of Eurozone (plus Denmark) net govern-
ment bond yields on French and Italian redenomination risk, controlling for credit risk through
CR CDS spreads.

yj,T,t −OISe,T,t = αj,T + βFRA,j,TRSFRA,t + βITA,j,TRSITA,t+

+ ψFRA,j,TCRFRA,t + ψITA,j,TCRITA,t + εj,T,t, (1.9)

for maturity T = 5 years. Newey–West standard errors are reported in parentheses. The daily
data run from September 2014 to June 2018. Yields, swap rates, and CDS spreads are measured
in %-points.

Country GER AUT DEN† NED IRE BEL ESP ITA FRA POR

RSFRA -1.650 -1.103 -0.916 -0.773 -0.243 -0.087 -0.024 -0.710 0.874 1.399

(0.325) (0.166) (0.223) (0.201) (0.192) (0.157) (0.332) (0.406) (0.086) (0.853)

RSITA -0.596 -0.103 -0.413 -0.187 -0.478 0.009 -0.541 1.735 -0.284 -1.397

(0.178) (0.104) (0.142) (0.116) (0.108) (0.101) (0.170) (0.155) (0.055) (0.513)

CRFRA 1.579 0.805 0.333 1.273 1.363 1.090 1.768 0.909 0.870 -0.350

(0.176) (0.088) (0.248) (0.107) (0.120) (0.094) (0.144) (0.152) (0.085) (0.452)

CRITA -0.001 -0.108 0.092 0.007 0.069 -0.201 0.036 0.397 -0.013 2.428

(0.114) (0.046) (0.092) (0.005) (0.070) (0.047) (0.099) (0.065) (0.035) (0.194)

Intercept -0.875 -0.190 -0.234 -0.492 -0.277 -0.143 0.030 -0.088 -0.209 -1.004

(0.088) (0.042) (0.069) (0.046) (0.047) (0.047) (0.089) (0.051) (0.020) (0.151)

R2 0.718 0.637 0.243 0.792 0.871 0.563 0.690 0.771 0.840 0.723

Obs. 967 965 967 965 818 967 966 967 967 967

†: included as a quasi-Eurozone member.
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Table A.8: Decomposition of Eurozone-G7 sovereign yields

This table reports the results for time-series regressions of five-year Eurozone sovereign yields on
redenomination risk, credit risk (CR CDS spread), and five-year swap rates.

yj,t = αj + βjRSj,t + ψjCRj,t + γjOISe,t + εj,t, (1.8)

for j = {FRA, ITA,GER}. The right panel uses the redenomination spreads of France and Italy
as regressors, instead of the German redenomination spread. Newey–West standard errors are
reported in parentheses. The daily data run from September 2014 to June 2018. Yields, swap
rates, and CDS spreads are measured in %-points. The bottom panel reports t-statistics for the
null hypothesis that the two β-coefficients are equal to one.

Country FRA ITA GER

Subsample full 02/17-06/18 full full

RSFRA 0.552 0.856 −1.827

(0.091) (0.128) (0.412)

RSITA 1.128 −0.797

(0.155) (0.285)

CRj 0.976 0.952 0.852 3.041

(0.046) (0.122) (0.068) (0.682)

OISe 1.021 1.110 1.447 0.803

(0.029) (0.062) (0.067) (0.080)

Intercept −0.270 −0.302 −0.279 −0.855

(0.013) (0.023) (0.071) (0.097)

R2 0.930 0.867 0.855 0.592

Obs. 967 351 969 966

t-stat: βRS = 1 -4.92 -1.13 0.82

t-stat: βCR = 1 -0.53 -0.39 -2.19 2.99
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Table A.9: Subsample regression of Eurozone sovereign yields

This table reports the results for time-series regressions of Eurozone (plus Denmark) sovereign
bond yields on French and Italian redenomination risk, for the subsample January 2017 to June
2018 (controlling for French and Italian credit risk, regression (1.9)). Newey–West standard errors
are reported in parentheses. The daily data run from January 2017 to June 2018. Yields, swap
rates, and CDS spreads are measured in %-points.

Country GER AUT DEN† NED IRE BEL ESP ITA FRA POR

RSFRA -0.742 -0.558 -0.089 -0.271 0.370 0.243 1.165 -0.444 0.870 2.822

(0.175) (0.076) (0.188) (0.080) (0.077) (0.187) (0.177) (0.287) (0.075) (0.722)

RSITA -0.339 0.357 0.387 0.044 -0.218 0.459 -0.507 1.141 -0.265 -1.650

(0.090) (0.071) (0.131) (0.047) (0.054) (0.106) (0.106) (0.131) (0.052) (0.535)

CRFRA -0.696 0.934 1.920 0.249 0.708 1.583 -1.674 -2.533 0.802 -2.139

(0.280) (0.295) (0.529) (0.193) (0.183) (0.375) (0.284) (0.486) (0.166) (1.466)

CRITA 0.520 -0.337 -0.639 0.220 0.103 -0.459 0.902 1.468 0.046 2.729

(0.099) (0.104) (0.159) (0.057) (0.062) (0.137) (0.100) (0.157) (0.060) (0.459)

Intercept -1.090 -0.121 -0.039 -0.602 -0.286 -0.098 -0.270 -0.391 -0.262 -1.017

(0.047) (0.046) (0.055) (0.022) (0.018) (0.067) (0.051) (0.064) (0.023) (0.193)

R2 0.566 0.409 0.262 0.780 0.887 0.330 0.798 0.932 0.913 0.813

Obs. 373 373 373 373 364 373 373 373 373 373

†: included as a quasi-Eurozone member.
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Table A.10: Regression of Eurozone sovereign CDS spreads on RS

This table reports the results for time-series regressions of Eurozone sovereign CDS spreads on
French and Italian redenomination risk.

CR14j,t = αj + βFRA,jRSFRA,t + βITA,jRSITA,t + εj,t, (1.10)

Newey–West standard errors are reported in parentheses. The daily data run from September 2014
to June 2018. CDS spreads are measured in basis points.

5-year CR14 CDS spreads

Country GER AUT NED IRE BEL ESP POR

RSFRA 0.317 0.285 0.491 1.043 0.151 0.296 5.619

(0.058) (0.090) (0.068) (0.249) (0.246) (0.368) (0.760)

RSITA −0.103 −0.278 −0.145 −0.615 −0.601 −0.835 −2.002

(0.022) (0.062) (0.026) (0.158) (0.188) (0.297) (0.423)

Intercept 16.35 25.68 33.39 52.18 39.31 87.53 203.74

(0.403) (0.600) (1.214) (1.627) (1.508) (2.267) (7.975)

R2 0.118 0.223 0.136 0.181 0.249 0.202 0.116

Obs. 970 970 970 970 970 970 970
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Table A.11: Bank-sovereign home bias

This table reports the relative exposures of banks to different sovereign issuers within liquid asset
holdings. I consider net direct exposures in assets held as available-for-sale (AFS), held-for-trading
(HFT), and held-to-maturity (HTM). The data refer to balance sheet exposures as of December
31st, 2015, and are obtained from the European Banking Authority (EBA) and its reports on the
stress tests conducted in 2016.

Bank Country

Sovereign AUT BEL DEN ESP FRA GER IRE ITA NED NOR POL SWE UK

AUT 20.1 0.9 4.3 0.0 2.1 2.1 0.1 3.5 4.0 0.0 0.0 1.2 0.5

BEL 0.4 40.9 5.5 0.1 8.0 2.4 2.1 0.5 8.8 0.0 0.0 3.7 0.9

DEN 0.0 0.0 12.2 0.0 0.0 0.0 0.0 0.0 0.2 0.0 0.0 5.6 0.5

ESP 0.3 5.2 6.3 50.5 3.8 3.2 7.5 7.8 2.5 0.0 0.0 0.0 0.5

FRA 1.3 9.0 12.8 0.7 38.8 4.5 6.1 3.7 11.3 0.0 0.0 8.3 4.0

GER 1.8 0.3 10.2 0.0 5.3 44.4 1.0 3.9 14.6 5.5 0.0 19.1 6.7

IRE 0.0 1.8 3.1 0.0 0.5 0.8 67.6 0.1 0.0 0.0 0.0 0.1 0.2

ITA 1.3 10.2 4.8 9.0 8.3 4.6 7.4 65.8 3.0 0.0 0.0 0.3 1.3

NED 1.1 0.5 6.3 0.2 2.6 4.2 2.0 0.4 29.4 0.0 0.0 3.9 1.6

NOR 0.0 0.0 0.4 0.1 0.0 0.0 0.0 0.1 0.0 63.2 0.0 4.9 0.1

POL 5.5 1.8 0.0 2.0 0.9 3.8 0.6 2.6 3.9 0.0 98.8 0.0 0.2

SWE 0.2 0.0 7.9 0.0 0.1 0.3 0.0 0.2 0.6 7.0 0.0 18.0 0.4

UK 0.0 0.0 13.1 2.4 1.7 1.4 4.0 0.1 0.2 0.0 0.0 0.0 26.8

POR† 0.0 0.5 1.0 3.7 0.7 0.5 0.7 0.1 0.0 0.0 0.0 0.0 0.1

US 2.7 1.0 0.0 5.4 10.9 12.5 0.0 1.0 5.8 1.6 0.0 20.8 24.8

CH 0.0 0.0 0.0 0.0 0.2 0.7 0.0 0.0 0.0 0.0 0.0 0.0 0.5

CAN 0.0 0.5 0.0 0.0 1.3 0.7 0.0 0.3 0.7 20.7 0.0 0.9 2.5

Others 65.2 27.5 12.1 25.9 14.6 13.8 0.8 10.0 15.0 2.1 1.2 13.1 28.4

†: No Portuguese banks were included in the 2016 EBA stress test, due to a size threshold.
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Table A.12: Summary statistics – Market depth

This table reports the market depth by contract type as the number of quote submissions from
financial intermediaries to Markit. Rows denoted by µ(·), σ(·), ρ(·, ·), Max(·), and Min(·) report,
respectively, the mean, standard deviation, correlation, maximum, and minimum of the respective
variables.

Country FRA ITA GER AUT BEL ESP IRE NED POR

µ(Depth CR14) 4.74 6.32 4.29 4.48 4.50 5.93 4.44 3.77 5.63

µ(Depth CR) 4.60 5.62 4.16 5.04 4.30 5.84 4.91 4.11 6.90

Min(Depth CR14) 2.00 2.00 2.00 2.00 2.00 3.00 2.00 2.00 2.00

Min(Depth CR) 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00

Max(Depth CR14) 10.00 12.00 9.00 9.00 8.00 11.00 10.00 11.00 11.00

Max(Depth CR) 10.00 12.00 9.00 9.00 8.00 11.00 10.00 11.00 11.00

σ(Depth CR14) 1.48 1.62 1.23 1.24 1.15 1.90 1.28 1.33 2.03

σ(Depth CR) 1.46 2.21 1.33 1.24 1.23 1.97 1.14 1.29 1.54

ρ(Depth CR14, Depth CR) 0.86 0.79 0.87 0.62 0.76 0.94 0.77 0.86 0.63
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A.2 Figures

Figure A.1: Aggregate outstanding notionals by country

Panel A: Net Panel B: Gross

Outstanding notionals in $bn from swapsinfo.org.

https://www.swapsinfo.org
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Figure A.2: CDS spreads (in bps) under 2003- and 2014 ISDA definitions (control group)



APPENDIX A. APPENDIX TO CURRENCY REDENOMINATION RISK 115

Figure A.3: CDS spreads (in bps) under 2003- and 2014 ISDA definitions (treatment
group)
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Figure A.4: Synthetic control

Observed (solid, blue) versus synthetically constructed (dashed, red) CR spread for
Belgium (top), Spain (middle), and Ireland (bottom).
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Figure A.5: Redenomination spreads for France and Germany (bottom)

Asterisks denote major plebiscites: 1st and 2nd round of the French presidential
elections on April 23rd and May 7th, 2017. In each case, the asterisk marks the
observation for the Friday preceding the Sunday plebiscite.
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Figure A.6: RSFRA (LHS) and polls (RHS)

Combined polling share for J.-L. Mélenchon & M. Le Pen.

Figure A.7: Redenomination spread for Italy

Asterisks denote major plebiscites: the constitutional referendum in Italy, held on
December 4th, 2016, as well as the general elections on March 4th, 2018.
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Figure A.8: Redenomination spreads for France and Italy (fraction of the CR14
spread)
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Figure A.9: Slope coefficients from Regression (1.2)

(1.2), βFRA (1.2), βITA

(1.9), βFRA (1.9), βITA

(1.9), ψFRA (1.9), ψITA

Coefficients for the regression of five-year sovereign yields on French (left) and Italian
(right) redenomination spreads and 95% confidence bars (Newey–West). Middle panels:
coefficients from Regression (1.9), which controls for French and Italian credit risk. Lower
panels: coefficients on credit risk. The triangular marker in the left-hand side panels
indicates the βFRA estimate for Italian yields, once RSITA is dropped from the regressors.
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Figure A.10: Slope coefficients of German and US government bond yields on RS

Panel A: βFRA Panel B: βITA

Slope coefficients from Table A.5.
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Figure A.11: Slope coefficients from Regression (A.4)

Panel A: βFRA, all / non-financial Panel B: βITA, all / non-financial

Panel A: βFRA, financial Panel B: βITA, financial

Coefficients from regression of Corporate five-year CDS spreads on French (left) and
Italian (right) redenomination spreads with 95% confidence bars (Newey–West).
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Figure A.12: Slope coefficients from Regressions (1.2) and (1.10)

5yr yields/CDS spreads, βFRA 5yr yields/CDS spreads, βITA

Coefficients from regression of, respectively, five-year Eurozone sovereign bond yields
and 5-year CR14 CDS spreads on French (left) and Italian (right) redenomination
risk. I omit confidence bars in the interest of readability.

Figure A.13: Comparative statics

Panel A: Isolation Panel B: Contagion

Parameters: da = db = 0.02, ρB = 0.05, δA = 0.1, δB = 0.08, σA = σB = σH = σS = 0.51.

Comparative statics of risky bond investments by banks a and b, and (net) bond
yields with respect to redenomination probability in country A.
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Figure A.14: Redenomination risk and macro fundamentals

Panel A: Debt (% of GDP) Panel B: Budget surplus (% of GDP)

Panel C: Productivity (GDP / hr worked) Panel D: Current account balance (% of GDP)

Regression coefficients βFRA,j from regression (1.9) (horizontal axis) versus funda-
mental variables (vertical axis, from OECD) by country, and univariate R2.
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Figure A.15: Cost of redenomination risk

Panel A: France Panel B: Italy

Panel C: Spain Panel D: Germany

Additional funding cost attributable to French and Italian redenomination risk on
debt issued between January 2017 and June 2018. Differential interest rates on the
issuance by country j on date t are computed as cj,t = β̂FRAj,t RSFRA,t+ β̂ITAj,t RSITA,t,
using 250-trading-day rolling windows up to date t. Differential interest rates are
then multiplied by the observed issuance volume, vj,t, capitalized with annuity factor
a(T, yj,t,T ) as Cj,t = cj,t · vj,t · a(T, yj,t,T ), and plotted on the RHS axes, in em.
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A.3 Proofs

In the interest of parsimony, I omit bulky closed-form expressions for equilibrium

yields and comparative statics w.r.t. ρA. Instead, Figure A.13 provides a visual

exposition of the different spillover effects in the isolation and contagion cases. The

equilibrium objects, i.e., four bond yields and six portfolio weights, are determined

by the four market clearing conditions and six first-order conditions w.r.t. bond

investments:

σJ =(waJ + wbJ) · yJ for J = {A,B, S,H}

0 =

(
p1

ei1
+
p3

ei3

)
(yA − yS) +

(
p2

ei2
+
p4

ei4

)
(yA(1− δA)− yS) for i = {a, b}

0 =

(
p1

ei1
+
p2

ei2

)
(yB − yS) +

(
p3

ei3
+
p4

ei4

)
(yB(1− δB)− yS) for i = {a, b}

0 =

(
p1

ei1
+
p2

ei2
+
p3

ei3

)
(yH − yS) +

p4

ei4
(yH(1− δH)− yS) for i = {a, b}

Due to market completeness, the equilibrium can be determined alternatively based

on the prices for the four Arrow-Debreu securities. I go on to prove the two remaining

effects, namely home bias in redenominatable sovereign bond holdings and the sub-

zero lower bound of redenominatable haven bond yields.

Home bias: waA > wbA and waB < wbB.

Proof. With four linearly independent assets, and four states of the world, markets

are complete. Due to market completeness, marginal utilities (and hence equity

values) are equalized state-by-state across agents in equilibrium: u′(eas) = u′(ebs) ⇔
eas = ebs ∀ s.

ea1 = eb1 ⇔ waAyA + waByB + waSyS + waHyH − da

=wbAyA + wbByB + wbSyS + wbHyH − db (A.5)

ea2 = eb2 ⇔ waAyA(1− δA) + waByB + waSyS + waHyH − da(1− δA)

=wbAyA(1− δA) + wbByB + wbSyS + wbHyH − db (A.6)

ea3 = eb3 ⇔ waAyA + waByB(1− δB) + waSyS + waHyH − da

=wbAyA + wbByB(1− δB) + wbSyS + wbHyH − db(1− δB) (A.7)

ea4 = eb4 ⇔ waAyA(1− δA) + waByB(1− δB) + waSyS + waHyH(1− δH)− da(1− δA)

=wbAyA(1− δA) + wbByB(1− δB) + wbSyS + wbHyH(1− δH)− db(1− δB)

(A.8)
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Combining (A.5)–(A.7) yields waA − wbA = da/yA > 0 and wbB − waB = db/yB > 0.

Home bias, i.e., the difference between risky bond holdings by the domestic and the

foreign bank, is positive and proportional to the domestic bank’s redenominatable

deposits.

Note that this proof does not cover the extreme case of perfectly correlated redenom-

inations, where states 2 and 3 have probability 0. In this case, bond payoffs A, B,

and H are no longer linearly independent and the bond holdings are indeterminate.

Assigning ε > 0 probability to states 2 and 3 restores the proof.

Sub-zero lower-bound: yH − yS < 0.

Proof. By each bank’s Euler equation, the price of an asset with payoff X is given

by E(y−1
S u′(ei)X). The Arrow-Debreu security that pays off in state (4) consists of

−δ−1
H units of bond H, and δ−1

H units of bond S. Bond prices are y−1
H and y−1

S ,

respectively, and therefore

δ−1
H (y−1

S − y
−1
H ) =

1

yS
· p4

ei4

⇒ δ−1
H (1− yS/yH) =

p4

ei4
(A.9)

Equity is strictly positive by assumption and p4 ∈ (0, 1). The RHS of (A.9) is

therefore strictly positive, which, together with δH < 0, implies that yH < yS.
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A.4 Supplementary Tables and Figures

Figure A.16: Redenomination risk and Economic Policy Uncertainty

Panel A: France

Panel B: Italy

Economic policy uncertainty (RHS) obtained from (Baker et al., 2016).



B. Appendix to The Quanto Theory
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Figure B.1: The time series of QRP
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The figure drops two currencies (PLN and DKK) for which we have highly incom-
plete time series.
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Table B.1: Summary statistics of ECA

This table reports annualized summary statistics (in %) of quanto-based expected currency
appreciation (ECA).

Mean Std Dev. Skew Kurtosis Min Max Autocorr.

Expected currency appreciation, ECA

AUD −1.231 0.723 −0.114 −0.577 −2.550 0.450 0.864

CAD 0.327 0.526 0.909 0.494 −0.526 1.835 0.845

CHF 1.064 0.472 1.147 0.210 0.422 2.176 0.934

DKK 0.331 0.487 −0.097 −0.606 −0.587 1.172 0.762

EUR 0.587 0.398 −0.725 0.799 −0.493 1.300 0.877

GBP 0.326 0.350 −0.103 −0.517 −0.444 1.077 0.894

JPY −0.337 0.412 0.484 −0.989 −0.978 0.555 0.953

KRW 0.706 0.724 1.455 2.922 −0.182 3.387 0.770

NOK −0.398 0.622 0.624 0.040 −1.474 0.991 0.877

PLN −1.340 0.892 0.759 −0.479 −2.554 0.436 0.881

SEK 0.574 0.656 −0.143 −0.340 −0.907 1.885 0.885

Average 0.056 0.569 0.382 0.087 −0.934 1.388 0.867

Pooled 0.056 0.908 −0.500 0.630 −2.554 3.387
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Table B.2: Summary statistics of IRD and QRP

This table reports annualized summary statistics (in %) of UIP forecasts (IRD, top panel),
and quanto-implied risk premia (QRP, bottom).

Mean Std Dev. Skew Kurtosis Min Max Autocorr.

Interest rate differential, IRD

AUD −2.815 1.007 −0.104 −1.081 −4.533 −1.168 0.979

CAD −0.712 0.353 1.121 0.204 −1.133 0.195 0.890

CHF 0.560 0.441 1.501 1.137 0.013 1.690 0.953

DKK −0.821 0.470 0.298 −0.794 −1.596 0.005 0.915

EUR −0.056 0.622 −0.282 −0.509 −1.377 0.983 0.977

GBP −0.352 0.223 −0.098 −0.745 −0.865 0.082 0.925

JPY 0.410 0.206 0.476 −1.229 0.133 0.809 0.909

KRW −0.973 0.443 0.587 −1.017 −1.614 −0.116 0.877

NOK −1.596 0.690 0.587 −0.286 −2.798 −0.107 0.955

PLN −3.422 1.030 2.010 2.733 −4.215 −0.806 0.967

SEK −0.715 0.905 0.430 −0.421 −2.354 1.105 0.981

Average −0.954 0.581 0.593 −0.183 −1.849 0.243 0.939

Pooled −0.954 1.265 −0.952 0.657 −4.533 1.690

Quanto-implied risk premium, QRP

AUD 1.584 0.692 0.546 −0.454 0.666 3.306 0.941

CAD 1.039 0.441 0.509 −0.572 0.309 2.090 0.926

CHF 0.504 0.171 0.663 1.405 0.131 1.023 0.900

DKK 1.153 0.275 0.400 0.336 0.643 1.768 0.788

EUR 0.643 0.556 −0.104 −1.274 −0.315 1.708 0.978

GBP 0.678 0.389 0.270 −1.318 0.207 1.472 0.959

JPY −0.746 0.295 −0.033 −1.287 −1.287 −0.255 0.945

KRW 1.679 0.589 1.605 2.582 0.944 3.752 0.859

NOK 1.198 0.359 0.876 0.462 0.665 2.194 0.890

PLN 2.083 0.650 0.814 0.026 1.194 3.509 0.868

SEK 1.289 0.616 0.801 0.620 0.371 3.004 0.938

Average 1.009 0.457 0.577 0.048 0.321 2.143 0.908

Pooled 1.009 0.857 −0.107 0.658 −1.287 3.752
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Table B.3: Volatilities and correlations of ECA, IRD, and QRP

This table presents the standard deviations (in %) of, and correlations between, the interest
rate differential (IRD), the quanto-implied risk premium (QRP), and expected currency
appreciation (ECA), calculated from (2.14) for each currency i:

IRDi,t =
R$
f,t

Rif,t
− 1

QRPi,t =
Qi,t − Ft
Rif,tPt

ECAi,t = QRPi,t + IRDi,t.

The row labelled “Time series” reports means of the currencies’ time-series standard devi-
ations and correlations. The row labelled “Cross section” reports cross-sectional standard
deviations and correlations of time-averaged ECA, IRD, and QRP. The row labelled
“Pooled” reports standard deviations and correlations of the pooled data. All quantities
are expressed in annualized terms.

σ(ECA) σ(IRD) σ(QRP ) ρ(ECA, IRD) ρ(ECA,QRP ) ρ(IRD,QRP )

AUD 0.723 1.007 0.692 0.727 −0.013 −0.696

CAD 0.526 0.353 0.441 0.558 0.748 −0.134

CHF 0.472 0.441 0.171 0.932 0.355 −0.007

DKK 0.487 0.470 0.275 0.835 0.342 −0.231

EUR 0.398 0.622 0.556 0.476 0.183 −0.777

GBP 0.350 0.223 0.389 0.137 0.822 −0.451

JPY 0.412 0.206 0.295 0.738 0.882 0.333

KRW 0.724 0.443 0.589 0.582 0.792 −0.036

NOK 0.622 0.690 0.359 0.855 0.090 −0.439

PLN 0.892 1.030 0.650 0.780 0.135 −0.514

SEK 0.656 0.905 0.616 0.733 −0.013 −0.690

Time-series 0.569 0.581 0.457 0.669 0.393 −0.331

Cross-section 0.786 1.242 0.751 0.817 −0.305 −0.798

Pooled 0.908 1.265 0.857 0.736 −0.026 −0.696
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Figure B.2: QRP, IRD, and ECA

(a) The relationship between QRP and IRD
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(b) The relationship between QRP and ECA
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For each currency, the figures plot mean QRP and IRD (or ECA) surrounded by a confi-
dence ellipse whose orientation reflects the time-series correlation between QRP and IRD
(or ECA), and whose size reflects their volatilities. The location and orientation of the el-
lipses in panel (a) indicate that high interest rates are associated with high quanto-implied
risk premia in the cross section and in the time series.
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Figure B.3: Expected currency appreciation over a 24-month horizon (annualized)
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Expected currency appreciation as measured by ECA from equation (2.14), for the
EUR/USD, JPY/USD, EUR/JPY, and EUR/CHF currency pairs. Each panel plots
ECA for the respective currency pair from the two national perspectives, using
quanto contracts on the respective domestic index denominated in the respective
foreign currency. The solid line plots ECA as perceived by a log investor fully
invested in the S&P 500 (top two panels), Nikkei 225 (bottom left panel), and SMI
(bottom right panel), respectively. The dashed line plots the negative of ECA for
the same currency pair (inverting the exchange rate) from the perspective of a log
investor fully invested in the respective foreign equity index.
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Figure B.4: Realized and expected currency excess return

(a) Realized currency excess return against QRP, computed from (2.14)
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(b) Realized currency excess return against IRD
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Expected currency excess return according to (a) the quanto theory and (b) UIP.
The centre of each confidence ellipse represents a currency’s mean expected and
realized currency excess return. In population, each ellipse would contain 20% of
its currency’s data points under normality. The orientation of each ellipse reflects
the time-series correlation between realized and forecast appreciation for the given
currency, while the ellipse’s size reflects their volatilities. Panel (a) shows a dotted
45◦ line for comparison.
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Figure B.5: Realized and expected currency appreciation

(a) Realized currency appreciation against ECA, computed from (2.14)
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(b) Realized currency appreciation against IRD
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Expected currency appreciation according to (a) the quanto theory and (b) UIP.
The centre of each confidence ellipse represents a currency’s mean expected and
realized currency appreciation. In population, each ellipse would contain 20% of
its currency’s data points under normality. The orientation of each ellipse reflects
the time-series correlation between realized and forecast appreciation for the given
currency, while the ellipse’s size reflects their volatilities. Panel (a) shows a dotted
45◦ line for comparison.
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Table B.4: Currency excess return forecasting regressions

This table presents results from three currency excess return forecasting regressions:

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α+ βQRPi,t + γ IRDi,t + εi,t+1 (2.19)

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α+ βQRPi,t + εi,t+1 (2.20)

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α+ γ IRDi,t + εi,t+1 (2.21)

Return realizations correspond to the forecasting horizon of 24 months. The two panels
report coefficient estimates for each pooled and fixed effects regression, respectively, with stan-
dard errors (computed using a nonparametric block bootstrap) in parentheses, as well as R2 (in %).

Panel A: Pooled panel regressions

Regression (2.19) (2.20) (2.21)

α (p.a.) −0.048 −0.047 −0.030

(0.020) (0.019) (0.014)

β 3.394 2.604

(1.734) (1.127)

γ 0.769 −0.832

(1.040) (0.651)

R2 19.13 17.43 3.88

Panel B: Panel regressions with currency fixed effects

β 5.456 4.995

(2.046) (1.565)

γ 0.717 −1.363

(1.411) (1.001)

R2 22.60 22.03 2.77
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Table B.5: Currency forecasting regressions

This table presents results from three currency forecasting regressions:

ei,t+1

ei,t
− 1 = α+ βQRPi,t + γ IRDi,t + εi,t+1 (2.22)

ei,t+1

ei,t
− 1 = α+ βQRPi,t + εi,t+1 (2.23)

ei,t+1

ei,t
− 1 = α+ γ IRDi,t + εi,t+1 (2.24)

Return realizations correspond to the forecasting horizon of 24 months. The two panels
report coefficient estimates for each pooled and fixed effects regression, respectively, with stan-
dard errors (computed using a nonparametric block bootstrap) in parentheses, as well as R2 (in %).

Panel A: Pooled panel regressions

Regression (2.22) (2.23) (2.24)

α (p.a.) −0.048 −0.045 −0.030

(0.020) (0.019) (0.014)

β 3.394 1.576

(1.726) (1.172)

γ 1.769 0.168

(1.045) (0.651)

R2 16.01 6.63 0.16

Panel B: Panel regressions with currency fixed effects

β 5.456 4.352

(2.047) (1.682)

γ 1.717 −0.363

(1.414) (1.007)

R2 20.56 17.16 0.20
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Table B.6: Realized covariance regressions

This table presents results of regressions using the lagged realized covariance of exchange rate movements with the
negative reciprocal of the S&P 500 return (RPCL) as a proxy for the currency beta:

RPCLi,t = R$
f,t

 t∑
t−h

[
ei,s

ei,s−1

(
−

1

Rs

)]
−

1

h

t∑
t−h

(
−

1

Rs

) t∑
t−h

ei,s

ei,s−1

 ,

where the summation is over daily returns on trading days s preceding t over a time-frame corresponding to our
forecasting horizon, h, so that RPCLi,t is observable at time t. We also define a realized covariance measure
RPCi,t that is analogous to the above definition except that the summation is over trading days following t over
the appropriate time-frame (so that it is not observable until time t+ h). We test whether risk-neutral covariance
forecasts realized covariance, in a univariate regression as well as in the presence of lagged realized covariance and

IRD as competing predictors. Lastly, we denote by R̂PCi,t the optimal forecast of RPCi,t from regression (B.4)
and test whether it forecasts excess returns.

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α+ γ RPCLi,t + εi,t+1 (B.1)

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α+ βQRPi,t + γ RPCLi,t + εi,t+1 (B.2)

RPCi,t = α+ βQRPi,t + εi,t+1 (B.3)

RPCi,t = α+ βQRPi,t + γ RPCLi,t + δ IRDi,t + εi,t+1 (B.4)

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α+ βQRPi,t + γ R̂PCi,t + εi,t+1 (B.5)

Return realizations correspond to the forecasting horizon of 24 months. We report coefficient estimates for each
regression, with standard errors (computed using a nonparametric block bootstrap) in brackets. See Section 2.2.6
for more details.

Panel A: Pooled panel regression

Regression (B.1) (B.2) (B.3) (B.4) (B.5)

α (p.a.) -0.034 -0.047 -0.000 0.000 -0.047

(0.017) (0.018) (0.001) (0.001) (0.018)

β 2.798 0.447 -0.026 3.096

(1.366) (0.158) (0.126) (1.639)

γ 1.307 -0.213 0.370 -1.103

(1.111) (1.193) (0.123) (3.206)

δ -0.131

(0.061)

R2 7.37 17.52 36.56 66.44 17.94

Panel B: Panel regression with currency fixed effects

β 4.643 0.330 -0.107 4.988

(2.006) (0.168) (0.017) (2.073)

γ 1.967 0.387 0.313 0.023

(1.474) (1.384) (0.125) (3.300)

δ -0.237

(0.138)

R2 9.14 22.27 9.43 45.69 22.03
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Figure B.6: Risk-neutral and predicted covariances of exchange rates and S&P returns
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The centre of each confidence ellipse represents a currency’s average risk-neutral and
realized covariance. In population, each ellipse would contain 20% of its currency’s
data points under normality. The orientation of each ellipse reflects the time-series
correlation between realized and risk-neutral covariance for the given currency, while
the ellipse’s size reflects their volatilities. We plot a dotted 45◦ line for comparison.
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Table B.7: Beyond the log investor

This table reports the R2-maximizing univariate, bivariate, 3-variate, and 4-variate specifications
in regressions of 24-month realized currency excess returns onto combinations of QRP, IRD, the
average forward discount IRD, and the real exchange rate, q. The table reports standard errors
(computed using a nonparametric block bootstrap) in brackets. See Section 2.2.5 for more detail.
The last line reports R2 in %.

Panel regressions with currency fixed effects

Regressor univariate bivariate 3-variate 4-variate

QRP, β 4.995 5.654 3.799 3.541

(1.565) (1.402) (1.657) (1.836)

IRD, γ -1.059

(1.573)

IRD, δ -5.060 -4.266

(1.605) (1.538)

RER, ζ -0.413 -0.780 -0.804

(0.136) (0.159) (0.188)

R2 22.03 35.40 43.56 44.09
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Table B.8: Joint tests of statistical significance

This table presents results from three currency forecasting regressions:

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α+ βQRPi,t + γ IRDi,t + εi,t+1 (2.19)

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= α+ βQRPi,t + εi,t+1 (2.20)

ei,t+1

ei,t
− 1 = α+ βQRPi,t + γ IRDi,t + εi,t+1 (2.22)

Realizations for excess returns and currency appreciation correspond to the forecasting horizon
of 24 months. The Table reports p-values of Wald tests of various hypotheses on the regression
coefficients. H1

0 is the hypothesis suggested by Result 2: α = γ = 0 and β = 1 in regression
(2.19), α = 0 and β = 1 in regression (2.20), and α = 0 and β = γ = 1 in regression (2.22).
Hypothesis H2

0 drops the constraint that α = 0, and therefore tests our model’s ability to predict
differences in currency returns but not its ability to predict the absolute level of (dollar) returns.
Hypothesis H3

0 is that QRP is not useful for forecasting. For each Wald test, we report both
the asymptotic p-values obtained from the χ2 distribution and p-values from a bootstrapped
small-sample distribution (in the format asymptotic p-value / small-sample p-value).

Panel A: Pooled panel regression

Regression (2.19) (2.20) (2.22)

H1
0 : α = γ = 0, β = 1 0.029 / 0.357

H1
0 : α = 0, β = 1 0.039 / 0.342

H1
0 : α = 0, β = γ = 1 0.030 / 0.340

H2
0 : β = 1, γ = 0 0.342 / 0.546

H2
0 : β = 1 0.155 / 0.299

H2
0 : β = 1, γ = 1 0.339 / 0.493

H3
0 : β = 0 0.050 / 0.088 0.021 / 0.097 0.049 / 0.082

Panel B: Panel regression with currency fixed effects

H2
0 : β = 1, γ = 0 0.029 / 0.256

H2
0 : β = 1 0.011 / 0.163

H2
0 : β = 1, γ = 1 0.029 / 0.238

H3
0 : β = 0 0.008 / 0.051 0.001 / 0.089 0.008 / 0.051
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B.2 Lognormal models

Suppose that the SDF, Xt+1 and Yt+1 are conditionally jointly lognormal, and write

lower-case variables for logs of the corresponding upper-case variables. Assume

further that Xt+1 and Yt+1 are tradable. Then we have the following three facts:

covt(Xt+1, Yt+1) = EtXt+1 Et Yt+1

(
ecovt(xt+1,yt+1) − 1

)
cov∗t (Xt+1, Yt+1) = covt(Xt+1, Yt+1)ecovt(mt+1,xt+1+yt+1)

cov∗t (Xt+1, Yt+1) = E∗t Xt+1 E∗t Yt+1

(
ecov∗t (xt+1,yt+1) − 1

)
.

These follow by direct calculation because logEt Zt+1 = Et logZt+1 + 1
2

vart logZt+1

for any conditionally lognormal random variable Zt+1 (and using the definition (2.4)

of the risk-neutral measure to derive the second and third facts).

The first fact implies that equation (2.2) can be rewritten (in the lognormal case)

as

logEt
R̃t+1

R$
f,t

= − covt(mt+1, r̃t+1),

and in particular that ERPt = − covt(mt+1, rt+1) and CRPi,t = − covt(mt+1,∆ei,t+1),

where ERPt and CRPi,t are defined in the main text and we write rt+1 = logRt+1

and ∆ei,t+1 = log(ei,t+1/ei,t). Combined with the second fact, this gives (in the

lognormal case) equation (2.26) in the main text:

log
covt(Rt+1, ei,t+1/ei,t)

cov∗t (Rt+1, ei,t+1/ei,t)
= ERPt + CRPi,t .

To see that this is equivalent to (2.27), exponentiate both sides and use the

definitions of ERPt and CRPi,t, together with the first and third facts above, to

conclude that

EtRt+1 Et ei,t+1/ei,t
{
ecovt(rt+1,∆ei,t+1) − 1

}
E∗t Rt+1 E∗t ei,t+1/ei,t

{
ecov∗t (rt+1,∆ei,t+1) − 1

} = Et
Rt+1

R$
f,t

Et
Ri
f,tei,t+1

R$
f,tei,t

.

By the definition (2.4) of the risk-neutral measure, we have E∗t Rt+1 = R$
f,t; and

similarly we have E∗t ei,t+1/ei,t = R$
f,t/R

i
f,t by equation (2.5). Equation (2.27) follows.
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Table B.9: Out-of-sample forecast performance

We define a dollar-neutral out-of-sample R2 similar to Goyal and Welch (2008):

R2
OS = 1−

∑
i

∑
j

∑
t(ε

Q
i,t+1 − ε

Q
j,t+1)2∑

i

∑
j

∑
t(ε

B
i,t+1 − εBj,t+1)2

,

where εQi,t+1 and εBi,t+1 denote forecast errors (for currency i against the dollar) of the quanto theory
and the benchmark, respectively. We use the quanto theory and three competitor benchmarks to
forecast currency appreciation as follows:

Theory: EQ
t

ei,t+1

ei,t
− 1 = QRPi,t + IRDi,t

UIP: EU
t

ei,t+1

ei,t
− 1 = IRDi,t

Constant: EC
t

ei,t+1

ei,t
− 1 = 0

PPP: EP
t

ei,t+1

ei,t
− 1 =

(
π$
t

πi
t

)2

− 1

We also report results for the following decomposition of R2
OS , which focusses on dollar-neutral

forecast performance for currency i:

R2
OS,i = 1−

∑
j

∑
t(ε

Q
i,t+1 − ε

Q
j,t+1)2∑

j

∑
t(ε

B
i,t+1 − εBj,t+1)2

.

The second panel reports R2
OS measures by currency. (All R2

OS measures are reported in %.) The
last line of the table reports p-values for a small-sample Diebold–Mariano test of the null hypothesis
that the quanto theory and competitor model perform equally well for all currencies.

Benchmark IRD Constant PPP

R2
OS 10.91 9.57 26.05

R2
OS,AUD 9.71 0.93 11.42

R2
OS,CAD 6.24 6.55 21.31

R2
OS,CHF 1.40 16.37 11.43

R2
OS,DKK 10.22 7.71 23.36

R2
OS,EUR 7.65 5.36 24.56

R2
OS,GBP 2.98 9.74 32.35

R2
OS,JPY 19.21 9.59 33.74

R2
OS,KRW 21.98 17.09 34.71

R2
OS,NOK 3.43 12.86 18.97

R2
OS,PLN 13.25 8.32 19.62

R2
OS,SEK 7.68 5.88 28.22

DM p-value 0.039 0.000 0.000
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B.3 Binary forecast accuracy

In this section, we follow the approach of Jordà and Taylor (2012) by computing a

correct classification frontier (CCF) to assess the forecast performance of the quanto

theory.

Denote by fQi,j,t = QRPi,t −QRPj,t and fBi,j,t the forecasts obtained, respectively,

from the quanto variable and a competitor benchmark for currency pair (i, j) at

time t. Similarly, ri,t = ei,t+1/ei,t − R$
t /R

i
t denotes the realized excess return of

currency i against the dollar, and ri,j,t = ri,t − rj,t represents the dollar-neutral

return in currency pair (i, j). We calculate the true positive (TP) and true negative

(TN) rates for each forecasting model as a function of a threshold, c. For the quanto

forecast, for instance,

TP(c) =

∑
i,j : fmi,j,t>c and ri,j,t>0 1∑

i,j : ri,j,t>0 1
and TN(c) =

∑
i,j : fQi,j,t<c and ri,j,t<0 1∑

i,j : ri,j,t<0 1
.

These represent, respectively, the fractions of ex post positive long and short returns

that were correctly identified ex ante as profitable by the forecasting model. For

the same 55 dollar-neutral currency pairs used above, we find that TP(0) = 0.50,

TN(0) = 0.64, with a weighted average correct classification of 0.57 for the quanto

forecast.

As binary accuracy does not reflect the magnitudes of returns from the signal,

we follow Jordà and Taylor (2012) and compute the corresponding return-weighted

true positive (TP∗) and true negative (TN∗) rates as

TP∗(c) =

∑
i,j : fQi,j,t>c and ri,j,t>0 ri,j,t∑

i,j : ri,j,t>0 ri,j,t
and TN∗(c) =

∑
i,j : fQi,j,t<c and ri,j,t<0 ri,j,t∑

i,j : ri,j,t<0 ri,j,t
.

We find TP∗(0) = 0.58, TN∗(0) = 0.67, with a weighted average of 0.63. Both

rates increase relative to the equally-weighted classifications, which implies that the

direction of excess return realizations is more likely to have been predicted by the

quanto variable when these realizations are large.

The CCF (and analogously CCF∗) is defined as the set of pairs {TP(c),TN(c)}
for all possible values of c between −∞ and∞. Varying the threshold level, c, trades

off true positives against true negatives by shifting the direction of the forecast. For

instance, for c = ∞, the true negative rate is maximized at TN = 1, at the cost

of TP = 0. Since TN(c) and TP(c) must lie between 0 and 1, we can plot the

resulting CCF in the unit square, and compute the area under the CCF (AUC).
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Intuitively, the AUC can be interpreted as the probability that the forecast for a

randomly chosen positive return realization will be higher than that for a randomly

chosen negative return realization. Under the UIP forecast the excess return on any

currency is 0, so the CCF is the diagonal with slope −1 in the unit square and,

accordingly, AUC = 0.5.

Figure B.7: Correct classification frontier (CCF) and AUC statistics

CCF and AUC statistics for the quanto excess return forecast, and a competitor excess
return forecast under which exchange rates follow a random walk.

We benchmark the quanto forecast against the driftless random walk model con-

sidered above (which forecasts the currency excess return as being equal to the

interest rate differential). Figure B.7 shows the resulting CCFs. The quanto fore-

cast outperforms the random walk model for equally-weighted and return-weighted

classifications. For the quanto forecast, AUCQ = 0.60 and AUCQ∗ = 0.70, while the

random walk model achieves AUCRW = 0.55 and AUCRW∗ = 0.60. Both forecasts

correctly identify large returns more often than small returns, as the CCF∗ (red)

lies above the CCF (blue) in both cases.

We also reverse the conditioning in the true positive and true negative rates, to

calculate how likely a forecast is to signal the correct direction of trade, and denote

these by PT(c) and NT(c), respectively. In the case of the quanto theory,

PT(c) =

∑
i,j : fQi,j,t>0 and ri,j,t>c

1∑
i,j : fQi,j,t>0 1

and NT(c) =

∑
i,j : fQi,j,t<0 and ri,j,t<c

1∑
i,j : fQi,j,t<0 1

.
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Figure B.8: Reverse-conditioned CCF and AUC statistics

CCF and AUC statistics for the quanto excess return forecast, and a competitor excess
return forecast under which exchange rates follow a random walk.

Figure B.9: CCF and AUC statistics for currency appreciation forecasts
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Figure B.10: Reverse-conditioned CCF and AUC statistics for currency appreciation
forecasts

We find PT(0) = 0.60, NT(0) = 0.54, PT∗(0) = 0.65, and NT∗(0) = 0.63. Plotting

the resulting CCFs, Figure B.8 shows that the quanto variable outperforms the

random walk forecast with AUC measures of AUCQ = 0.60 and AUCQ∗ = 0.71, as

against the random walk model with AUCRW = 0.55 and AUCRW∗ = 0.60.

Figures B.9 and B.10 repeat this exercise, but now the goal is to forecast currency

appreciation, as opposed to currency excess returns. In this case, the random walk

forecast is represented by the diagonal with slope −1 in the unit square, and AUC =

0.5. As the figures show, the quanto forecast outperforms the random walk model,

with AUCQ = 0.63 and AUCQ∗ = 0.75. The outperformance persists under reverse

conditioning, with AUCQ = 0.69 and AUCQ∗ = 0.71.

B.4 Quantos in Colacito and Croce (2011)

This section studies the relationship between the currency risk premium, QRP, and

the residual covariance term in the two-country long-run risk model of Colacito

and Croce (2011). Log consumption growth, log dividend growth, the long-run risk

variable, the log SDF, the log market return, and the log risk-free rate follow these
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processes:

∆ct = µc + xt−1 + εc,t,

∆dt = µd + λxt−1 + εd,t,

xt = ρxt−1 + εx,t,

mt+1 = logδ − ψ−1xt + κc
1− γψ

ψ(1− ρκc)
εx,t+1 − γεc,t+1,

rd,t+1 = rd + ψ−1xt + κd
λ− 1/ψ

1− ρκd
εx,t+1 + εd,t+1,

rf = rf + ψ−1xt.

The representative agent has Epstein–Zin preferences with risk aversion γ and elas-

ticity of intertemporal substitution ψ. Shocks are i.i.d. Normal over time, with

mean zero and (diagonal) covariance matrix Σ, with diagonal [σ2, ϕ2
dσ

2, ϕ2
xσ

2]. Thus

returns and the SDF are jointly lognormal and subject to the issues described in

Subsection 2.2.4. Between-country correlations of shocks are ρhfc , ρhfd , and ρhfx , re-

spectively. The exchange rate satisfies et+1/et = M f
t+1/Mt+1, where M f denotes the

foreign SDF (which is uniquely determined, as markets are complete).

The baseline calibration is symmetric, so both currencies are equally “risky.”

To generate a currency risk premium, we vary—one-by-one—the parameter values

for (i) the volatility of the foreign long-run risk shock, governed by ϕfx, (ii) its

persistence, ρf , (iii) the cross-country correlation of long-run risk shocks, ρhfx , and

(iv) the cross-country correlation of consumption shocks, ρhfc . We plot the resulting

comparative statics in Figure B.11 below. We use the baseline calibration of Colacito

and Croce (2011) for all other model parameters. With the exception of ρhfx , which

is equal to 1 in the baseline calibration, we vary the parameters of interest in a

symmetric window around their baseline values.

Through the lens of this model, we now consider the identity (2.6), which de-

composes the currency risk premium into risk-neutral covariance (QRP) and the

residual covariance term:

Et
ei,t+1

ei,t
−
R$
f,t

Ri
f,t

= QRPi,t − covt

(
Mt+1Rt+1,

ei,t+1

ei,t

)
︸ ︷︷ ︸

residual covariance term

.

As shown in panel (a), a lower long-run risk volatility generates a positive risk

premium on the foreign currency, positive QRP, a positive residual, and a negative

interest rate differential. (The calibration is monthly, but we annualize by multiply-
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Figure B.11: Comparative statics

(a) Long-run risk volatility, ϕf
xσ

f (b) Long-run risk persistence, ρf

(c) Long-run risk cross-country correlation, ρhfx (d) Consumption risk cross-country correl., ρhfc

Each panel plots the comparative statics of the risk premium, risk-neutral covariance
(QRP), the residual covariance, and the interest rate differential (IRD) with respect
to a single model parameter (varied on the horizontal axis). In panel (d), QRP and
IRD are both zero so the risk premium coincides with the residual.

ing all quantities by 12, so the y-axis is in annual terms in all four panels.) As the

residual scales with QRP, we would expect to find that the coefficient on QRP in a

forecasting regression is larger than 1. Qualitatively, the same holds for a lower per-

sistence of the foreign long-run risk process in panel (b). The risk premia in panels

(c) and (d) are symmetric, in the sense that they increase the expected appreciation

of both currencies in another manifestation of Siegel’s paradox (see Section 2.1.2).

In the case of a less-than-perfect cross-country correlation of long-run risk shocks,



APPENDIX B. APPENDIX TO THE QUANTO THEORY 151

the resulting risk premium is captured proportionately by QRP and the residual,

and would lead to a β coefficient larger than 1 in our forecasting regressions.

B.5 Evidence from other quanto contracts

Due to the limited availability of time-series data on quanto forwards, we look at

USD-denominated futures on the Nikkei 225 index, which have started trading on

the CME prior to the beginning of our OTC sample. We collect prices for USD-

denominated Nikkei 225 futures traded on CME, and JPY-denominated Nikkei 225

futures traded on JPX (Osaka) for a sample period from 2004 through 2017. (JPY-

denominated futures are also traded on CME, but at much lower volumes than the

JPX-traded contracts.) Contracts expire each quarter, in March, June, September,

and December, and we use contracts with the latest available expiration, which have

a maturity ranging from 9-12 months. To calculate the QRP and IRD measures,

we use dollar- and yen-denominated LIBOR rates matched to the maturity of the

respective pair of futures. Table B.10 below reports the results for our baseline

regressions.

Table B.10: Forecasting regressions with exchange traded quanto-futures

This table reports the results of running regressions (2.20), (2.21), (2.22), and (2.24) for the
USD/JPY currency pair at the 12-month horizon, based on dollar-denominated quanto futures on
the Nikkei 225 (traded on CME). Since this setting essentially takes the perspective of a log investor
who holds the Nikkei, the exchange rate is defined as U1 = $e. We report the OLS estimates along
with Hansen–Hodrick standard errors. R2 are reported in %.

Regression (2.20) (2.21) (2.22) (2.24)

α (p.a.) 0.018 0.026 0.022 0.026

(0.027) (0.036) (0.036) (0.036)

β 0.339 0.366 0.274 1.366

(0.720) (1.917) (0.587) (1.917)

γ 1.293 1.366

(1.912) (1.917)

R2 0.26 0.26 3.60 3.44

We also calculate the out-of-sample R2 based on mean-squared forecast errors

as in Section 2.3. The quanto-based forecast outperforms the random walk and the

UIP forecast by 1.96% and 3.25%, respectively, over the given period.

There are two important caveats. First, the available futures only provide infor-

mation about a single currency-pair, dollar-yen. One of the strengths of the quanto
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data used in this chapter lies in the cross-sectional dimension, which allows us to

compute dollar-neutral forecasts in isolation from any base-currency effects. Table

B.14 suggests that the yen is not representative of the remaining panel. (USD-

denominated futures on the FTSE 100 are also traded on the CME, which would

provide information about dollar-sterling, but these contracts have only been traded

since late 2015.) Second, the theory calls for quanto forward prices rather than

quanto futures prices. If interest-rate movements are correlated with the underlying

assets (as is plausibly true both of exchange rates and of the Nikkei 225) the two will

differ. It is not clear how the pricing discrepancies between futures and forwards

would affect the predictive power of our theory when applied to futures contracts.
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B.6 Supplementary Tables and Figures

Table B.11: Principal components analysis of residuals

This table reports the loadings on the principal components of realized residuals obtained from the
quanto theory (top panel) and the fixed-effects specification of regression (2.20) (bottom panel). In
order to limit the impact of missing observations, the residuals are only obtained for the balanced
panel of currencies (excluding DKK, KRW, and PLN).

PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8

Theory residuals

AUD 0.520 0.160 0.108 −0.443 −0.273 0.235 0.578 −0.183

CAD 0.311 −0.015 −0.107 −0.257 −0.090 0.458 −0.490 0.606

CHF 0.194 −0.124 0.644 0.344 −0.534 −0.270 −0.067 0.228

EUR 0.243 −0.265 −0.308 0.688 −0.119 0.490 0.127 −0.179

GBP 0.083 −0.471 0.579 −0.104 0.552 0.296 −0.046 −0.176

JPY 0.353 0.741 0.200 0.325 0.397 0.009 −0.145 −0.055

NOK 0.472 −0.194 −0.190 −0.147 −0.099 −0.334 −0.527 −0.532

SEK 0.427 −0.283 −0.238 0.093 0.382 −0.472 0.324 0.446

Explained 61.26% 26.49% 7.26% 2.80% 0.93% 0.53% 0.39% 0.34%

Regression residuals

AUD 0.532 0.138 0.019 −0.261 0.665 −0.025 −0.368 −0.227

CAD 0.276 −0.057 −0.175 −0.271 0.248 0.057 0.657 0.566

CHF 0.177 −0.243 0.662 0.273 0.070 −0.594 0.052 0.193

EUR 0.178 −0.291 −0.430 0.732 0.248 −0.004 0.205 −0.244

GBP −0.086 −0.440 0.489 0.024 0.195 0.714 0.073 −0.082

JPY 0.558 0.539 0.243 0.289 −0.372 0.303 0.154 −0.050

NOK 0.369 −0.451 −0.060 −0.399 −0.409 −0.148 0.229 −0.506

SEK 0.351 −0.384 −0.209 0.068 −0.295 0.144 −0.555 0.516

Explained 65.70% 16.33% 10.65% 3.10% 2.12% 1.20% 0.54% 0.34%
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Table B.12: R2 of different variable combinations

This table reports the R2 (in %) from currency excess return forecasting regressions (with currency
fixed effects) using all possible univariate, bivariate, 3-variate and 4-variate combinations of the
quanto-implied risk premium (QRP), the interest rate differential (IRD), the average interest rate
differential (IRD), and the real exchange rate (RER).

univariate bivariate 3-variate 4-variate

QRP 22.03

RER 7.97

IRD 2.77

IRD 2.06

QRP, RER 35.40

IRD, RER 34.47

IRD, RER 28.22

QRP, IRD 22.77

QRP, IRD 22.60

IRD, IRD 2.79

QRP, IRD, RER 43.56

QRP, IRD, RER 39.89

IRD, IRD, RER 36.77

QRP, IRD, IRD 22.80

QRP, IRD, IRD, RER 44.09
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Table B.13: Quantos and the real exchange rate

This table presents results from currency excess return forecasting regressions that extend the
baseline results in Table B.4 by adding the log real exchange rate to the regressors on the right-
hand side. Following Dahlquist and Penasse (2017), we compute the log real exchange rate as

RERi,t = log
(
ei,t

Pi,t

P$,t

)
, where Pi,t and P$,t are consumer price indices for country i and the US,

respectively, obtained from the OECD.

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= αi + βQRPi,t + γ IRDi,t + ζ RERi,t + εi,t+1 (B.6)

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= αi + βQRPi,t + ζ RERi,t + εi,t+1 (B.7)

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= αi + γ IRDi,t + ζ RERi,t + εi,t+1 (B.8)

ei,t+1

ei,t
−
R$

f,t

Ri
f,t

= αi + ζ RERi,t + εi,t+1 (B.9)

The two panels report coefficient estimates for each pooled and fixed effects regression, respec-
tively, with standard errors (computed using a nonparametric block bootstrap) in parentheses,
see Section 2.2.6 for more detail.

Panel regressions with currency fixed effects

Regression (B.6) (B.7) (B.8) (B.9)

QRP, β 4.292 5.654

(1.843) (1.402)

IRD, γ -2.624 -4.791

(1.547) (1.242)

RER, ζ -0.616 -0.413 -0.729 -0.314

(0.205) (0.136) (0.201) (0.162)

R2 39.89 35.40 28.22 7.97
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Table B.14: Separate return forecasting regressions using QRP and IRD predictors

This table reports the results of running regressions (2.20), (2.21), (2.22), and (2.24) separately for
each currency at the 24-month horizon, and at 6- and 12-month horizons for the euro. We report
the OLS estimates along with Hansen–Hodrick standard errors. R2 are reported in %.

Currency AUD CAD CHF DKK EUR EUR EUR GBP JPY KRW NOK PLN SEK

Horizon 24m 24m 24m 24m 6m 12m 24m 24m 24m 24m 24m 24m 24m

Panel A: Regression (2.20): ei,t+1/ei,t −R$
f,t/R

i
f,t = α+ βQRPi,t + εi,t+1

α (p.a.) −0.062 −0.085 −0.003 −0.052 −0.040 −0.071 −0.060 −0.086 −0.012 −0.068 −0.180 −0.065 −0.106

(0.071) (0.042) (0.038) (0.022) (0.056) (0.052) (0.030) (0.031) (0.090) (0.034) (0.061) (0.026) (0.048)

β 3.258 4.754 −1.657 4.125 3.702 6.361 4.148 9.217 4.750 4.227 11.860 3.580 5.930

(3.991) (3.546) (6.903) (1.723) (6.263) (5.527) (3.367) (3.791) (10.959) (1.757) (4.698) (0.956) (3.316)

R2 12.15 25.39 0.60 17.42 3.17 17.98 25.93 57.48 4.06 46.59 49.96 33.01 38.00

Panel B: Regression (2.21): ei,t+1/ei,t −R$
f,t/R

i
f,t = α+ γ IRDi,t + εi,t+1

α (p.a.) −0.091 −0.006 0.001 0.014 −0.015 −0.019 −0.034 −0.043 −0.152 0.007 −0.091 0.005 −0.042

(0.084) (0.030) (0.027) (0.023) (0.083) (0.040) (0.025) (0.034) (0.046) (0.034) (0.065) (0.045) (0.035)

γ −2.859 4.135 −2.246 2.147 2.626 1.869 −1.439 −5.564 25.539 0.312 −3.310 −0.118 −1.765

(2.743) (3.543) (3.067) (2.036) (7.375) (6.349) (3.255) (6.779) (8.318) (3.011) (3.698) (1.211) (2.730)

R2 19.82 12.30 7.33 13.77 1.23 1.31 3.90 6.93 57.26 0.14 14.39 0.09 7.28

Panel C: Regression (2.22): ei,t+1/ei,t − 1 = α+ βQRPi,t + γ IRDi,t + εi,t+1

α (p.a.) −0.093 −0.055 0.010 −0.041 −0.055 −0.092 −0.078 −0.082 −0.165 −0.063 −0.185 −0.041 −0.117

(0.087) (0.044) (0.035) (0.021) (0.053) (0.043) (0.027) (0.033) (0.079) (0.046) (0.070) (0.032) (0.043)

β 0.698 5.291 −1.698 5.252 10.008 12.916 7.321 9.760 −1.348 4.241 11.230 4.736 7.895

(3.130) (2.984) (6.621) (1.260) (7.198) (4.771) (2.895) (3.519) (7.485) (1.719) (3.491) (0.848) (2.552)

γ −1.525 6.019 −1.250 3.857 11.447 11.992 4.651 3.094 27.182 1.514 0.253 2.419 2.938

(2.429) (2.637) (3.050) (1.671) (8.450) (4.880) (2.175) (3.124) (8.344) (2.149) (2.402) (1.003) (1.683)

R2 9.79 46.74 3.04 48.62 14.42 45.19 33.51 57.29 59.41 48.22 46.61 45.28 39.00

Panel D: Regression (2.24): ei,t+1/ei,t − 1 = α+ γ IRDi,t + εi,t+1

α (p.a.) −0.091 −0.006 0.001 0.014 −0.007 −0.019 −0.034 −0.043 −0.152 0.007 −0.091 0.005 −0.042

(0.084) (0.030) (0.027) (0.023) (0.041) (0.040) (0.025) (0.034) (0.046) (0.034) (0.065) (0.045) (0.035)

γ −1.859 5.135 −1.246 3.147 3.626 2.869 −0.439 −4.564 26.539 1.312 −2.310 0.882 −0.765

(2.743) (3.543) (3.067) (2.036) (7.375) (6.349) (3.255) (6.779) (8.318) (3.011) (3.698) (1.211) (2.730)

R2 9.47 17.78 2.38 25.54 2.32 3.03 0.38 4.77 59.13 2.48 7.57 4.79 1.45
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Figure B.12: Time series of annualized expected currency appreciation
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Figure B.12: Time series of annualized expected currency appreciation
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Figure B.13: Term structure of the euro-dollar risk premium
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Term structure as measured by QRP, in the time series for horizons of 6, 12, 24,
and 60 months.
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Figure B.14: Histogram of the small-sample distributions

(a) Pooled, H1
0 (b) Fixed effects, H2

0

(c) Pooled, H3
0 (d) Fixed effects, H3

0

Small-sample distributions of the test statistics for various hypotheses on regression
(2.22). The asymptotic distribution is shown as a solid line. Asterisks indicate the
test statistics for the original sample.



C. Appendix to Bets and Betas

C.1 Tables

Table C.1: Correlations of futures positions

This table reports the correlations of net positions of different trader groups, measured in
contracts (shown in the left panel), and percentage of open interest (right panel).

Correlations of net positions (in contracts and shares of open interest)

ndi nlf nam no ñdi ñlf ñam ño

ndi 1 1 ñdi

nlf -0.881 1 -0.872 1 ñlf

nam -0.427 0.042 1 -0.377 0.032 1 ñam

no 0.137 -0.325 -0.113 1 -0.108 -0.156 -0.059 1 ño

161
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Table C.2: Summary statistics of futures positions

This table reports the means, standard deviations, and autocorrelations of net positions, in thou-
sands of contracts (unscaled, Panel A) and shares of open interest (Panel B), of intermediaries (ndi
/ ndis), hedge funds (nlf / nlfs), institutional investors (nam / nams), and others (no / nos). The
bottom three rows of each panel report, respectively, the average time-series standard deviation
(averaged across currencies), the cross-sectional standard-deviation of the within-currency means,
and the total standard deviation across the panel.

Panel A µ(ndi) µ(nlf) µ(nam) µ(no) σ(ndi) σ(nlf) σ(nam) σ(no) ρ(ndi) ρ(nlf) ρ(nam) ρ(no)

AUD -16.32 24.17 -7.29 -4.27 62.29 36.81 19.31 9.30 0.98 0.96 0.99 0.96

BRL -7.64 5.00 2.44 0.02 13.91 7.32 2.79 11.15 0.96 0.94 0.98 0.96

CAD -11.94 -2.95 2.58 6.17 48.37 35.72 12.97 6.80 0.97 0.97 0.98 0.91

CHF 5.74 -4.08 -0.63 0.47 22.91 15.50 1.10 2.86 0.94 0.91 0.87 0.91

EUR 27.16 -27.61 -2.25 9.48 82.10 62.41 25.45 17.69 0.98 0.98 0.98 0.93

GBP 25.93 8.42 -24.52 -7.08 72.64 48.09 25.48 10.50 0.98 0.97 0.99 0.94

JPY 19.44 -20.98 10.29 3.14 63.90 52.32 23.39 18.13 0.96 0.96 0.99 0.95

MXN -32.75 14.71 18.78 -2.39 44.68 47.76 17.06 5.39 0.96 0.96 0.90 0.92

NZD -5.93 7.93 -2.32 -0.30 11.75 9.37 5.90 1.35 0.97 0.96 0.99 0.89

Time-series 0.41 0.51 -0.32 0.58 46.95 35.03 14.83 9.24 0.97 0.96 0.96 0.93

Cross section 20.60 16.52 11.92 5.11

Pooled 57.93 43.97 21.31 12.00

Panel B µ(ñdi) µ(ñlf) µ(ñam) µ(ño) σ(ñdi) σ(ñlf) σ(ñam) σ(ño) ρ(ñdi) ρ(ñlf) ρ(ñam) ρ(ño)

AUD -0.18 0.21 -0.05 -0.03 0.49 0.29 0.14 0.08 0.98 0.96 0.97 0.94

BRL -0.19 0.16 0.09 -0.07 0.44 0.25 0.11 0.29 0.96 0.94 0.96 0.96

CAD -0.12 -0.02 0.03 0.05 0.36 0.26 0.11 0.06 0.97 0.96 0.97 0.91

CHF 0.08 -0.05 -0.01 0.01 0.38 0.24 0.02 0.07 0.94 0.91 0.86 0.93

EUR 0.04 -0.06 -0.01 0.03 0.30 0.21 0.08 0.05 0.97 0.96 0.97 0.91

GBP 0.14 0.07 -0.14 -0.05 0.40 0.27 0.13 0.07 0.97 0.96 0.97 0.94

JPY 0.04 -0.06 0.08 0.01 0.35 0.26 0.15 0.10 0.96 0.96 0.98 0.94

MXN -0.26 0.12 0.14 -0.02 0.34 0.37 0.11 0.05 0.95 0.95 0.88 0.91

NZD -0.22 0.26 -0.06 -0.01 0.41 0.30 0.15 0.05 0.97 0.96 0.97 0.87

Time-series -0.07 0.07 0.01 -0.01 0.38 0.27 0.11 0.09 0.97 0.95 0.95 0.92

Cross section 0.15 0.13 0.09 0.04

Pooled 0.41 0.30 0.14 0.10
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Table C.3: The interaction of futures bets and currency betas

This table reports the results for time-series regressions of daily currency returns on S&P 500

returns and its interaction with the relative positioning of hedge funds (ñlf).

ri,t = αi + βir
S&P
t + β∗i r

S&P
t · ñlf i,t + εi,t, (3.1)

where ri,t and rS&P
t denote the currency return of currency i and the return on the S&P 500 from

day t − 1 to day t, respectively. The column on the far right shows the estimate of β∗ obtained
from the pooled panel regression.

ri,t = αi + βir
S&P
t + β∗rS&P

t · ñlf i,t + εi,t, (3.2)

I report t-statistics based on robust standard errors in parentheses. The standard errors for the
pooled regression (3.2) are clustered at the currency level.

AUD BRL CAD CHF EUR GBP JPY MXN NZD pooled

Panel A: Full sample: 2006 - 2017

αi -0.013 -0.056 -0.015 0.009 -0.007 -0.017 0.013 -0.028 -0.008

(-0.98) (-2.18) (-1.58) (0.64) (-0.64) (-1.50) (1.14) (-2.31) (-0.60)

βi 0.421 0.388 0.302 0.017 0.129 0.142 -0.244 0.389 0.371

(1.51) (11.60) (25.55) (0.91) (10.22) (10.56) (-16.86) (20.36) (23.50)

β∗i 0.028 0.009 0.268 0.211 -0.068 -0.074 0.300 -0.067 0.132 0.082

(0.35) (0.06) (6.25) (2.74) (-0.96) (-1.64) (5.31) (-1.74) (3.31) (1.73)

R2 in % 35.76 11.21 33.56 0.61 7.23 8.83 18.34 35.56 29.27 21.50

Obs. 2,864 1,334 2,864 2,864 2,864 2,864 2,864 2,864 2,864 24,232

Panel B: Pre-Crisis / Crisis: 2006 - 2009

αi 0.025 0.005 0.020 0.017 -0.012 0.028 -0.013 0.015

(0.83) (0.23) (0.84) (0.78) (-0.53) (1.30) (-0.60) (0.51)

βi 0.430 0.270 0.001 0.108 0.125 -0.255 0.338 0.383

(11.56) (15.45) (0.03) (6.21) (7.03) (-12.05) (11.33) (19.18)

β∗i -0.140 0.190 0.143 -0.050 -0.047 0.125 -0.110 0.111 0.012

(-1.18) (2.84) (1.87) (-0.39) (-0.70) (1.41) (-2.20) (1.99) (0.22)

R2 in % 39.64 31.32 0.78 7.79 9.59 28.30 41.70 35.11 28.47

Obs. 923 923 923 923 923 923 923 923 7,370

Panel C: Post-Crisis: 2010 - 2017

αi -0.029 -0.056 -0.026 0.005 -0.021 -0.020 0.003 -0.039 -0.017

(-2.18) (-2.17) (-2.73) (0.24) (-1.57) (-1.64) (0.21) (-2.75) (-1.16)

βi 0.378 0.388 0.347 0.027 0.194 0.172 -0.195 0.473 0.317

(17.75) (11.60) (28.09) (0.89) (8.40) (8.37) (-10.48) (25.18) (10.23)

β∗i 0.274 0.009 0.319 0.266 0.123 -0.123 0.462 0.013 0.251 0.186

(4.59) (0.06) (6.58) (1.85) (1.18) (-2.23) (6.35) (0.27) (3.54) (2.79)

R2 in % 32.41 11.21 37.09 0.63 7.66 8.74 12.39 33.85 23.83 17.72

Obs. 1,940 1,334 1,940 1,940 1,940 1,940 1,940 1,940 1,940 16,854
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Table C.4: Futures positions and market risk

This table reports the results for pooled panel regressions of changes in the absolute size of fu-

tures positions by each trader group on contemporaneous shocks to “risk-on” and “risk-off” shocks,

represented by the S&P 500 and the VIX. Negative (positive) changes in the size of futures po-

sitions (∆|ndi|, ∆|nlf |, and ∆|nam|) reflect contractions (expansions) of the outstanding bets

of each trader group. To measure asymmetric shocks to the market risk-taking environment, I

define rS&P+

t = [rS&P
t ]+, rS&P−

t = [rS&P
t ]−, ∆V IX+ = [∆V IXt]

+, and ∆V IX− = [∆V IXt]
−

(note that rS&P−
and ∆V IX+ represent the “risk-off” shock proxies). I then run the following

contemporaneous regressions.

∆|ndi|i,t = αi + ηrS&P−

t + γrS&P+

t + δ ri,t−1 + εi,t (3.3)

∆|ndi|i,t = αi + η∆V IX+
t + γ∆V IX−t + δ ri,t−1 + εi,t (3.4)

∆|nlf |i,t = αi + ηrS&P−

t + γrS&P+

t + δ ri,t−1 + εi,t (3.5)

∆|nlf |i,t = αi + η∆V IX+
t + γ∆V IX−t + δ ri,t−1 + εi,t (3.6)

∆|nam|i,t = αi + ηrS&P−

t + γrS&P+

t + δ ri,t−1 + εi,t (3.7)

∆|nam|i,t = αi + η∆V IX+
t + γ∆V IX−t + δ ri,t−1 + εi,t (3.8)

Again, ri,t denotes the currency return of currency i from week t − 1 to week t. Standard errors

are clustered at the currency level and t-statistics reported in parentheses.

Pre-Crisis / Crisis: 2006 - 2009 Post-Crisis: 2010 - 2017

Intermediaries Hedge Funds Asset Managers Intermediaries Hedge Funds Asset Managers

Regression (3.3) (3.4) (3.5) (3.6) (3.7) (3.8) (3.3) (3.4) (3.5) (3.6) (3.7) (3.8)

rS&P−
-13.67 -8.25 2.67 70.91 35.30 -16.57

(-0.81) (-0.60) (1.01) (2.31) (1.99) (-1.33)

rS&P+
1.63 11.07 -12.15 38.02 15.84 1.60

(0.12) (0.83) (-1.45) (2.24) (0.85) (0.13)

∆V IX+ -4.86 -10.88 5.40 -56.41 -23.10 12.95

(-0.38) (-0.90) (1.88) (-2.28) (-1.96) (1.13)

∆V IX− 33.86 22.57 0.42 -4.13 11.08 -1.80

(3.83) (2.29) (0.12) (-0.30) (1.01) (-0.23)

ri,t−1 111.60 117.55 73.07 76.88 -8.00 -7.92 -45.67 -39.23 -8.25 -0.47 -8.00 -8.17

(2.53) (2.49) (1.69) (1.75) (-3.38) (-3.01) (-1.09) (-0.92) (-0.23) (-0.01) (-0.72) (-0.75)

R2 in (%) 2.27 2.59 1.42 1.63 0.94 0.78 0.94 0.94 0.28 0.20 0.36 0.46

Currencies 8 8 8 8 8 8 9 9 9 9 9 9

Obs. 1,476 1,476 1,476 1,476 1,476 1,476 3,354 3,354 3,354 3,354 3,354 3,354



APPENDIX C. APPENDIX TO BETS AND BETAS 165

Table C.5: Summary statistics of short-run currency-equity co-movement

This table reports the mean, standard deviation, and autocorrelation of currency betas, βMKT
i,t→t+1,

and correlations with the S&P 500 and the VIX, ρSPX
i,t→t+1 and ρV IX

i,t→t+1, respectively. The
correlations and betas are computed using closing prices for the 5 trading days following date t to
result in weekly observations over the full sample from January 2006 to June 2017.

ρSPX βSPX ρV IX

Mean St. dev. Autocorr. Mean St. dev. Autocorr. Mean St. dev. Autocorr.

AUD 0.39 0.57 0.32 0.33 0.67 0.17 -0.32 0.55 0.29

BRL 0.39 0.48 0.12 0.38 0.75 0.03 -0.34 0.48 0.10

CAD 0.42 0.49 0.32 0.28 0.45 0.14 -0.34 0.50 0.19

CHF 0.01 0.56 0.23 -0.01 0.66 0.10 0.01 0.54 0.19

EUR 0.17 0.56 0.25 0.11 0.52 0.18 -0.14 0.55 0.18

GBP 0.19 0.52 0.16 0.13 0.53 0.08 -0.16 0.51 0.19

JPY -0.32 0.52 0.21 -0.24 0.58 0.11 0.26 0.53 0.15

MXN 0.51 0.45 0.20 0.40 0.55 0.05 -0.46 0.46 0.14

NZD 0.33 0.52 0.34 0.28 0.69 0.19 -0.28 0.53 0.26

Mean 0.23 0.52 0.24 0.18 0.60 0.11 -0.20 0.52 0.19
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Table C.6: Predicting betas using net futures positions

This table reports the results for pooled panel regressions of the realized correlations and betas
of exchange rates with the S&P and the VIX on the scaled level of net positions of hedge funds

(”Leveraged Funds”, denoted by ñlf). The realized betas and correlations are computed using
closing prices for the 5 trading days following date t. The data form an unbalanced panel for the
two subsample periods 2006-2009 and 2010-2017. I run the following predictive regressions for
yi,t→t+1 = {ρSPX

i,t→t+1, β
MKT
i,t→t+1, ρ

V IX
i,t→t+1}:

yi,t→t+1 = αi + η ñlf i,t + δ ri,t + φ fdwi,t + εi,t+1 (3.9)

yi,t→t+1 = α+ η ñlf i,t + δ ri,t + φ fdwi,t + λ yi,t−1 + εi,t+1. (3.10)

fdwi,t denotes the 1-week forward discount of currency i versus the dollar and ri,t denotes the
currency return of currency i from week t − 1 to week t. Standard errors are clustered at the
currency level and t-statistics reported in parentheses.

Panel A: with currency fixed effects

2006-2009 2010-2017

ρSPX βSPX ρV IX ρSPX βSPX ρV IX

ñlf -0.141 -0.025 0.155 0.315 0.215 -0.256

(-1.32) (-0.44) (1.97) (4.40) (2.85) (-4.21)

fdw 0.838 0.540 -0.716 0.017 0.058 -0.085

(1.52) (1.59) (-1.34) (0.18) (0.63) (-0.92)

ri,t−1 -1.235 -0.821 1.088 -1.053 0.503 1.890

(-1.43) (-1.34) (1.97) (-1.88) (0.79) (2.79)

R2 in (%) 1.11 0.31 1.13 2.61 0.76 1.92

Obs. 1485 1485 1485 3371 3371 3371

Panel B: without currency fixed effects

ñlf 0.023 0.069 -0.009 0.267 0.263 -0.243

(0.58) (2.43) (-0.20) (4.75) (3.72) (-4.57)

fdw -2.147 -1.539 2.327 -0.132 -0.272 0.076

(-4.80) (-3.93) (5.47) (-0.57) (-0.93) (0.34)

ri,t−1 -0.641 -0.535 0.291 -0.951 0.753 1.844

(-0.67) (-0.73) (0.55) (-1.70) (1.59) (2.73)

lag(dep. var.) 0.360 0.226 0.279 0.325 0.158 0.260

(7.63) (13.71) (8.43) (7.03) (4.42) (8.63)

R2 in (%) 22.17 11.60 16.80 14.62 4.71 9.82

Obs. 1477 1477 1477 3371 3371 3371
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Table C.7: Predicting betas using net futures positions

This table reports the results for pooled panel regressions of the realized correlations and betas
of exchange rates with the S&P and the VIX on the scaled level of net positions of hedge funds

(”Leveraged Funds”, denoted by ñlf). The realized betas and correlations are computed using
closing prices for the 5 trading days following date t. The data form an unbalanced panel for the
two subsample periods 2006-2009 and 2010-2017. I run the following predictive regressions for
yi,t→t+1 = {ρSPX

i,t→t+1, β
MKT
i,t→t+1, ρ

V IX
i,t→t+1}:

∆yi,t→t+1 = αi + η∆ñlf i,t + δ ri,t + φ∆fdwi,t + εi,t+1 (C.1)

∆yi,t→t+1 = α+ η∆ñlf i,t + δ ri,t + φ∆fdwi,t + εi,t+1 (C.2)

fdwi,t denotes the 1-week forward discount of currency i versus the dollar and ri,t denotes the
currency return of currency i from week t − 1 to week t. Standard errors are clustered at the
currency level and t-statistics reported in parentheses.

Panel A: with currency fixed effects

2006-2009 2010-2017

ρSPX βSPX ρV IX ρSPX βSPX ρV IX

∆ñlf -0.006 -0.045 -0.004 0.369 0.333 -0.352

(-0.06) (-0.39) (-0.03) (2.63) (2.72) (-1.70)

∆fdw -0.718 -1.172 1.031 0.077 0.084 -0.165

(-0.79) (-2.14) (1.30) (9.75) (8.22) (-18.99)

ri,t−1 0.381 0.503 -1.687 -0.828 2.582 1.699

(0.35) (0.53) (-2.45) (-1.07) (1.73) (1.89)

R2 in (%) 0.03 0.07 0.25 0.23 0.35 0.36

Panel B: without currency fixed effects

∆ñlf -0.006 -0.044 -0.005 0.369 0.333 -0.352

(-0.06) (-0.39) (-0.03) (2.63) (2.72) (-1.70)

∆fdw -0.718 -1.172 1.030 0.077 0.084 -0.165

(-0.79) (-2.14) (1.30) (9.74) (8.25) (-18.99)

ri,t−1 0.383 0.503 -1.686 -0.829 2.582 1.698

(0.35) (0.53) (-2.45) (-1.07) (1.73) (1.89)

R2 in (%) 0.03 0.07 0.25 0.23 0.35 0.36

Obs. 1476 1476 1476 3354 3354 3354



APPENDIX C. APPENDIX TO BETS AND BETAS 168

Table C.8: A contrarian trading strategy

This table reports the returns to the trading strategy described in subsection 3.2.3 for
different conditioning thresholds of the S&P return. The strategy is designed to exploit
temporary dislocations in FX markets following the unwinding of futures positions by
hedge funds. Let ΩCW

i,t denote the number of futures contracts in currency i against the
dollar, included in the strategy at time t:

ΩCW
i,t =

ωCWi,t∑
j |ωCWj,t |ei,tsi

, where ωCWi,t = −∆nlfi,t 1{rS&P
t <x} 1{∆|nlf |i,t<0} 1{sign(∆nlfi,t)=sign(ri,t)}

where 1{·} is the indicator function which takes value 1 if · is true, and 0 otherwise, ei,t
denotes the exchange rate, and si the contract size in units of foreign currency, such that
ei,tsi expresses the dollar notional of each contract. Denote by ΩEW

i,t the dollar notional
amount in futures contracts of currency i against the dollar at time t

ΩEW
i,t =

ωEWi,t∑
j |ωEWj,t |

, where ωEWi,t = −sign(∆nlfi,t) 1{rS&P
t <x} 1{∆|nlf |i,t<0} 1{sign(∆nlfi,t)=sign(ri,t)}.

The contract-weighted (CW) strategy is described by ΩCW
i,t and takes positions, which are

proportional in the cross section to the amount of positions unwound by hedge funds over
the previous week. The equal-weighted (EW) strategy is described by ΩEW

i,t and fixes the
dollar notional of each individual position, such that all non-zero positions taken at any
point in time have the same absolute dollar exposure. Both strategies have a gross dollar
notional of $1 in each week, where the strategy is active. The below returns are based
on 1-week forward exchange rates, with long (short) positions transacted at the ask (bid)
price. Returns are unlevered and refer to positions formed weekly between January 5,
2010 and June 6, 2017. The strategy is inactive in week t, if Ωi,t = 0∀ i.

Threshold (x) rS&P < 0 rS&P < −3% None

CW EW CW EW CW EW

Mean return p.w. (in %) 0.12 0.15 0.38 0.35 0.04 0.01

Std. deviation p.w. (in %) 1.19 1.14 1.33 1.27 1.16 1.07

Sharpe ratio p.a. 0.74 0.97 2.06 1.97 0.23 0.04

Total compound return (in %) 17.22 22.29 6.94 6.29 11.41 -0.02

Weeks total 389 389 389

Weeks active 138 18 362

Weeks active (in %) 35.48 4.63 93.06
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Table C.9: Predicting pairwise correlations using net futures positions

This table reports the results for within-currency pair regressions of pairwise currency cor-
relations on differences in net positions of ”Leveraged Funds” (ñlf) and ”Asset Managers”
(ñam), each scaled by open interest, and on interest differentials.

ρi,j,t = αi,j + η | ñlf i,t − ñlf j,t | +γ | ñami,t − ñamj,t | +φ | fdwi,t − fdwj,t | +εi,j,t (3.11)

ρi,j,t = αi,j + η | ñlf i,t − ñlf j,t | +εi,j,t (3.12)

ρi,j,t = αi,j + γ | ñami,t − ñamj,t | +εi,j,t (3.13)

ρi,j,t = αi,j + φ | fdwi,t − fdwj,t | +εi,j,t (3.14)

Correlations ρi,j,t are computed using intraday exchange rates at 15-minute intervals
during week t (i.e., the week following the observation of forward discounts and
futures positions). Intraday data span the period from July 2010 to June 2017. Stan-
dard errors are clustered at the currency-pair level and t-statistics reported in parentheses.

Regression (3.11) (3.12) (3.13) (3.14)

ñlf differential -0.06 -0.05

(-1.70) (-1.73)

ñam differential -0.04 -0.04

(-0.69) (-0.65)

fdw differential 32.08 30.12

(0.58) (0.54)

Average intercept 0.40 0.40 0.39 0.37

(13.97) (44.54) (37.81) (17.69)

Currency pair FE Yes Yes Yes Yes

Currency pairs 28 28 28 28

Observations 9,044 9,044 9,044 9,044

R2 0.45% 0.33% 0.07% 0.04%
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Table C.10: Regression of currency movements on contemporaneous net futures
flows

This table reports the results for a contemporaneous regression of exchange rate movements on
weekly net flows in futures positions. I regress weekly returns on the contemporaneous change in
the net long position of “Leveraged Funds” (nlf) and “Asset Managers” (nam), first in absolute

terms and then scaled by open interest (ñlf , ñam).

ri,t = αi + ηi∆nlfi,t + γi∆nami,t + εi,t (3.15)

ri,t = αi + ηi∆ñlf i,t + γi∆ñami,t + εi,t (3.16)

where ri,t = ei,t/ei,t−1 − 1 denotes the currency return on currency i versus the US dollar from
week t− 1 to week t. ∆nlfi,t and ∆nami,t, respectively, denote the change in the net positions of
hedge funds and institutional investors in currency i versus the US dollar from week t− 1 to week

t, while ∆ñlf i,t and ∆ñami,t refer analogously to the positions scaled by open interest. All futures
positions are expressed in thousands of contracts. The estimated coefficients for regressions (3.15)
and (3.16) are reported below with their respective robust t-statistics in parentheses. The weekly
exchange rate movements and forward discounts are expressed in %.

(3.15) AUD BRL CAD CHF EUR GBP JPY MXN NZD

∆nlf 0.07 0.15 0.05 0.07 0.04 0.04 0.04 0.03 0.26

(11.96) (3.00) (8.10) (5.63) (11.22) (9.35) (12.38) (6.53) (8.61)

∆nam 0.01 0.29 0.07 0.65 0.05 0.01 0.08 0.00 0.36

(0.21) (1.53) (1.88) (2.37) (3.97) (0.55) (4.97) (0.36) (4.39)

intercept 0.03 -0.19 -0.01 0.06 -0.01 -0.05 0.03 -0.07 0.06

(0.40) (-1.46) (-0.20) (0.94) (-0.22) (-0.85) (0.57) (-1.01) (0.79)

Obs. 573 250 573 573 573 573 573 573 569

R2 in % 19.08 4.05 11.05 11.42 19.17 13.14 25.36 6.60 15.61

(3.16) AUD BRL CAD CHF EUR GBP JPY MXN NZD

∆ñlf 9.27 3.68 5.17 3.58 8.84 6.01 7.70 4.01 6.03

(9.76) (2.43) (6.61) (4.39) (9.34) (9.99) (11.61) (6.17) (5.64)

∆ñam -1.03 0.42 7.49 28.75 9.71 -2.56 7.38 0.67 10.91

(-0.29) (0.09) (1.94) (2.21) (2.81) (-0.86) (3.27) (0.35) (4.45)

intercept 0.03 -0.19 -0.02 0.06 -0.01 -0.05 0.02 -0.07 0.06

(0.41) (-1.43) (-0.27) (0.91) (-0.12) (-0.88) (0.46) (-0.99) (0.76)

Obs. 573 250 573 573 573 573 573 573 569

R2 in % 16.19 2.72 8.17 7.33 14.02 12.51 19.53 6.82 11.53
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Table C.11: Predicting betas using net futures positions – FOMC announcement
weeks

This table reports the results for pooled panel regressions of the realized correlations and betas
of exchange rates with the S&P and the VIX on the scaled level of net positions of hedge funds

(”Leveraged Funds”, denoted by ñlf). The realized betas and correlations are computed using
closing prices for the 5 trading days following date t. The data form an unbalanced panel for the
post-crisis 2010-2017. 58 of the 388 weeks in that period include a scheduled FOMC announcement,
and the “Announcement” subsample contains 504 currency-week observations.I run the following
predictive regressions for yi,t→t+1 = {ρSPX

i,t→t+1, β
MKT
i,t→t+1, ρ

V IX
i,t→t+1}:

yi,t→t+1 = αi + η ñlf i,t + δ ri,t + φ fdwi,t + εi,t+1 (3.9)

fdwi,t denotes the 1-week forward discount of currency i versus the dollar and ri,t denotes the
currency return of currency i from week t − 1 to week t. Standard errors are clustered at the
currency level and t-statistics reported in parentheses. The panel entitled “Announcement” reports
the results over all 58 weeks from 2010-2017 that contained a scheduled FOMC announcement,
while the “Non-Announcement” panel reports the results for the remaining 330 weeks.

Non-Announcement Announcement

ρSPX βSPX ρV IX ρSPX βSPX ρV IX

ñlf 0.334 0.247 -0.257 0.208 0.029 -0.247

(4.50) (3.28) (-4.18) (2.25) (0.22) (-2.31)

fdw 0.029 0.090 -0.098 -0.247 -0.348 0.169

(0.32) (1.00) (-1.08) (-1.64) (-2.33) (1.40)

ri,t−1 -1.153 0.710 1.965 -0.155 -0.577 1.737

(-1.90) (1.02) (2.91) (-0.09) (-0.30) (0.93)

R2 in (%) 2.95 0.98 1.93 1.23 0.25 2.06

Currencies 9 9 9 9 9 9

Obs. 2867 2867 2867 504 504 504
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C.2 Additional Figures

Figure C.1: Futures positions (in 000’s of contracts) by currency

Hedge funds (nlf, solid, blue), intermediaries (ndi, dotted, black), and institutional
investors (nam, dashed, red).
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Figure C.2: Hedge fund positions and forward discounts
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The centre of each confidence ellipse represents a currency’s average forward discount and
net hedge fund position. In population, each ellipse would contain 20% of its currency’s
data points under Normality. The orientation of each ellipse reflects the within-currency
correlation between forward discount versus the US dollar and hedge fund positions, while
the ellipse’s size reflects their volatilities. BRL is omitted from the plot for readability,
due to its large average forward discount of -25bps. The lines are derived from a univariate
OLS regression of ñlf on fdw, including BRL (solid blue line) and excluding BRL (dashed
black line), respectively.


	Currency Redenomination Risk
	Redenomination and credit default swaps
	Credit event definitions – 2003 versus 2014

	The redenomination spread
	Redenomination risk and asset prices
	Redenomination risk vs. credit risk
	Negative redenomination risk

	Contagion, safety, and substitution
	A simple model
	Interpreting the empirical results
	National shadow currencies
	Fiscal contagion or `exorbitant' privilege?

	Concerns in measuring redenomination risk
	Liquidity
	Asset package delivery

	Conclusion

	The Quanto Theory of Exchange Rates
	Theory
	Quantos 
	Alternative benchmarks 

	Empirics
	A consistency check 
	Return forecasting
	Risk-neutral covariance vs. true covariance 
	Lognormal models 
	Beyond the log investor
	Joint hypothesis tests and finite-sample issues

	Out-of-sample prediction
	Conclusion

	Bets and Betas
	Data
	Currency betas
	Futures positions and equity market shocks
	Realized betas are predictable
	A profitable contrarian trading strategy
	Joint bets and currency co-movement

	Alternative explanations and empirical concerns
	Flows and returns
	Anticipation of risk premia

	Conclusion

	Appendix to Currency Redenomination Risk
	Tables
	Figures
	Proofs
	Supplementary Tables and Figures

	Appendix to The Quanto Theory
	Tables and Figures
	Lognormal models
	Binary forecast accuracy
	Quantos in CC11 
	Evidence from other quanto contracts
	Supplementary Tables and Figures 

	Appendix to Bets and Betas
	Tables
	Additional Figures


