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Abstract

This thesis consists of three essays in financial economics. In the first chapter,

I present an asymmetric information model of financial markets that features

rational, but uninformed, hedge fund managers who trade against informed

and noise traders. Managers are uncertain not only about fundamentals, but

also about the proportion of informed to noise traders in the market and use

prices to update their beliefs about these uncertainties. Extreme news leads to

an increase in both types of uncertainty, while it decreases price informative-

ness. Prices react asymmetrically to positive and negative news, with higher

expected returns at times of increased uncertainty about market composition.

The model generates a price-volume relationship that is consistent with es-

tablished stylized facts. I then extend to a three-period model and study the

dynamics of expected returns and volatility.

In the second chapter, we study a dynamic model featuring risk-averse

investors with heterogeneous beliefs. Individual investors have stable beliefs

and risk aversion, but agents who were correct in hindsight become relatively

wealthy; their beliefs are overrepresented in market sentiment, so “the mar-

ket” is bullish following good news and bearish following bad news. Extreme

states are far more important than in a homogeneous economy. Investors un-

derstand that sentiment drives volatility up, and demand high risk premia in

compensation. Moderate investors supply liquidity: they trade against mar-

ket sentiment in the hope of capturing a variance risk premium created by the

presence of extremists.

In the final chapter, we consider a continuum of potential investors al-

locating funds in two consecutive periods between a manager and a market

index. The manager’s alpha, defined as her ability to generate idiosyncratic

returns, is her private information and is either high or low. In each period,

the manager receives a private signal on the potential performance of her al-

pha, and she also obtains some public news on the market’s condition. The

investors observe her decision to either follow a market neutral strategy, or an

index tracking one. It is shown that the latter always results in a loss of rep-
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utation, which is also reflected on the fund’s flows. This loss is smaller in bull

markets, when investors expect more managers to use high beta strategies. As

a result, a manager’s performance in bull markets is less informative about her

ability than in bear markets, because a high beta strategy does not rely on

it. We empirically verify that flows of funds that follow high beta strategies

are less responsive to the fund’s performance than those that follow market

neutral strategies.
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Chapter 1

Trading under Uncertainty

about other Market Participants

1.1 Introduction

Throughout the history of financial markets there have been numerous occa-

sions where investors were taken by surprise by an extreme price movement.

In many of these cases, these large price shocks were described as puzzling and

could not be rationalized by many professional investors. The Black Monday,

the Flash Crash of 2010, or the more recent Bitcoin boom are a few such exam-

ples. At the same time, many hedge funds have been paying closer attention

to such events by expending more and more resources to track the fluctuation

in market sentiment and learn whether trades represent information or noise.

Why is it usually more difficult to interpret extreme shocks? What type of

information do they convey? And why is uncertainty increasing during these

times?

Most theoretical models in finance literature assume that traders know

the degree of rationality of other investors in the market. In this paper, in-

stead, I take the perspective of sophisticated investors (“hedge funds”) who

are uncertain about the proportion of informed - compared to noise - traders
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in the market. By studying their investment behaviour and the subsequent

learning under this assumption, I contribute to financial research in a number

of ways. First, I find that uncertainty about the market composition increases

when there is an extreme market outcome (for example, a crash). Second,

this increased uncertainty leads to higher uncertainty about fundamentals and

higher risk premia. As a result, there is an asymmetry in the price reaction to

positive and negative shocks. Third, I establish that the variation in market

composition constitutes a type of risk, unrelated to fundamentals, for which

investors demand higher expected returns. Moreover, I show that during a

crash, traders rely less on cashflow news to update their expectations about

future payoffs. Finally, the model generates a price-volume relationship that

fits well with the relevant stylized facts established in empirical literature and

summarized in Karpoff (1987).

The model consists of three types of agents; there are Hedge Fund man-

agers, Informed investors, and Noise traders. Hedge Funds act as rational

uninformed investors who are using the information in prices to make their

portfolio choices. Informed traders can be thought of as insiders who hold

information about payoffs and trade based on it, and Noise traders are the ir-

rational investors in the market, who trade either because of wrong information

or because of sentiment shocks. Importantly, managers are uncertain, not only

about the fundamentals, but also about the proportion, of informed (to noise)

traders that exist in the market. This makes their inference problem much

more challenging since they have to use the signal they are getting through

price to learn both about the fundamentals and about the composition of the

rest of the traders. The main intuition behind this model is that hedge funds

learn whether the rest of the traders are (more likely to be) homogeneous or

not, by observing the size of the price signal. When the size is high, then

the probability that the rest of the traders are of the same type is also high,

and thus their uncertainty regarding the number of informed traders increases.

One of the greatest challenges of any model with additional uncertainties is

to keep it tractable. This is achieved by assuming that investors have a mean

variance utility and by considering noise traders who receive signals that are

independent, but identically distributed, to those of informed traders, so that
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their demand functions have the same functional form.

The first main result of this model is that market crashes (and booms)

make hedge funds more uncertain about both the market composition and

the fundamentals. This is because such extreme outcomes are actually very

informative about the belief dispersion of investors in the market; in the limit,

they can only occur when all investors behave in the same way. That is, it is

much more likely to observe a crash when investors are either all informed or

all noise. However, these two cases lead to very different interpretations of the

price movement; in the first case, its informativeness is the highest possible,

while in the latter it should be completely ignored. Thus, fund managers

become less confident about how to interpret the price and their uncertainty

about fundamentals increases. Therefore, we find that during a crash (or a

boom) the risk premium part of the price increases.

Another important result is that expected returns are increasing in the

uncertainty about the proportion of informed traders. For example, a market

with fewer sources of information is naturally perceived to have a lower degree

of belief dispersion and is associated with a higher variation in the ratio of

informed-to-noise traders. As described above, managers who try to interpret

the information that is contained in prices are less confident about their in-

terpretation. This constitutes a type of risk, which they anticipate and hence,

when the market is dominated by hedge funds, this uncertainty is translated

into a higher expected return on the asset. Furthermore, I analyze the ef-

fect of this uncertainty on the sensitivity of price to signal. We find there

is an asymmetry in the sensitivity of prices to positive and negative shocks,

which becomes more pronounced when the uncertainty about the proportion

of informed traders becomes the largest. This is because prices consist of an

expectation part that moves prices in the direction of the news, and a risk

premium part that is affected by the uncertainty about the dividend. Since

this last part is increasing in the size of the news, the price reacts more with

negative news than it does with positive news. Moreover, the expected risk

premium is larger during these times, therefore leading to a higher expected

asymmetry. In a similar way, I show that price instability, defined as the

3



expected price’s reaction to a sentiment shock, is higher during a crash.

I run numerical simulations of the model to study the behavior of trading

volume. The patterns of volume and price very closely fit established stylized

facts. In particular, volume increases when the absolute price increases, be-

cause, during that time, the disagreement between fund managers and the rest

of the traders is the largest. For example, when there is a crash, managers are

reluctant to significantly change their expectation about fundamentals. At

the same time, the group of informed and noise traders is very likely to be

homogeneous during that period, dominated either by informed or by noise

traders; in either case, these traders will then hold a very different opinion,

compared to Hedge Funds, about the expected payoff. Thus, there will be a

large trading volume. More interestingly, simulations also show that there is

a positive correlation between volume and price. This naturally arises in the

model because of the abovementioned asymmetry between positive and nega-

tive news: that is, a large positive price is associated with an even larger signal

than the corresponding negative price. Both of the above effects are amplified

when the uncertainty about the proportion of informed traders increases.

Finally, I extend the model to a dynamic setting to discuss resulting im-

plications for the expectation and volatility of returns. Under our assumption,

trading in consecutive periods is connected via the updating of beliefs about

the mass of informed traders. We then find that a crash (or boom) in period

one is associated with higher expected returns, and lower volatility, in period

two. This is because sophisticated investors conclude that the rest of the mar-

ket is dominated either by informed or by noise traders, and so they expect to

be less confident about the interpretation of any signal they observe.

Since the work of Radner (1968), it has been understood that uncertainty

about payoffs acts in a very different way than uncertainty about other in-

vestors’ behavior; more recently, there have been attempts by various authors

to create such rational expectations models to study the effect of uncertainty

about some market parameters. It is on this strand of literature that I build

up by extending these ideas, recognizing the relevant uncertainties and intro-

ducing general distributional assumptions about the mass of informed traders,
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that will help us analyze, in a more realistic setting, the corresponding impli-

cations. For instance, Romer (1992) and Avery and Zemsky (1998) provide

two such models, which can generate price crashes and herding, respectively,

caused by uncertainty regarding other traders. Easley et al. (2013) study how

expected returns are affected in an economy in which ambiguity-averse traders

are uncertain about each other’s risk aversion. Finally, some other papers that

analyze higher dimensions of uncertainty are those of Yuan (2005), Cao and

Ye (2016) and Cao et al. (2002). The abovementioned papers use different

models to analyse how non-payoff uncertainties affect prices, while a common

characteristic in this literature is that models are often non-tractable. Instead,

our focus is on a type of uncertainty that increases during market crashes and

can help us explain return dynamics during these times.

The most similar model to ours is that of Banerjee and Green (2015) (BG

henceforth), where investors are uncertain whether informed or noise traders

are present in the market (but not both). The key novelty of our paper,

compared to BG, is that we allow both of these traders to co-exist in the

market. This generalization creates the following fundamental difference: the

equilibrium price conveys information both about fundamentals and about the

composition of traders in the market. In particular, an extreme price move-

ment, in our model, makes Hedge Funds believe that they are trading against

either all Informed or all Noise traders, while a more moderate price will shift

their beliefs towards thinking that they face a mixed population of traders.

However, in BG there can be no such updating. This allows us to get many

results about the way uncertainty about market composition affects expected

returns, price informativeness and the slope of the price-volume relationship.

Overall, while BG study the role of the first moment of the distribution of the

proportion of Informed traders, I study the effect of the second moment and I

show how learning about it affects equilibrium results.

Another important relevant paper is that of Gao et al. (2013). The au-

thors consider a Grossman-Stiglitz model, in which the proportion of informed

to uninformed traders is unknown; they focus on jumps that may appear due

to the multiple equilibria that arise, and they find that there can be comple-
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mentarity in information acquisition. In contrast, we study the uncertainty in

the proportion of informed to noise traders. This type of uncertainty generates

very different predictions about return dynamics and our modeling assump-

tions lead to a unique equilibrium, which is also more tractable.

Methodologically, this paper contributes to the growing literature on non-

linear equilibria, in a CARA-normal setting. Building on the Grossman and

Stiglitz (1980) paper of asymmetric information, many recent papers, such as

Breon-Drish (2015), have shown that by relaxing assumptions about the dis-

tribution of dividends such equilibria may exist. In our paper, however, as in

Banerjee and Green (2015) this non-linearity arises because of the assumption

of uncertainty about a market parameter, while the payoffs remain normally

distributed.Moreover, our modeling assumptions resemble that of Mendel and

Shleifer (2012). In their paper, they use the same three types of agents and

information structure to study the effect of noise traders in the market, even

when their mass is negligible. They find that the Outsiders (rational unin-

formed agents) can rationally amplify the impact of a sentiment shock, lead-

ing to prices that significantly diverge from fundamental values. Importantly,

their focus is on the price stability and specifically on its behavior as the mass

of noise or informed traders changes. In this paper, while we also emphasize

the importance of noise trading, our focus is on the behavior of sophisticated

investors when they are uncertain about these masses.

Finally, regarding the empirical literature it is worth noting two relevant

papers. First, Easley et al. (2002) provides an empirical measure of the prob-

ability of information-based trading (PIN) in a market. By estimating PIN

through their microstructure model, the authors conclude that informed trad-

ing positively predicts returns. In my model, I emphasize that uncertainty

about this probability also matters; this issue is discussed in more detail in

Section 6. Second, Sadka (2006) provides evidence that the variable component

of liquidity risk can explain the momentum and PEAD returns. He further

interprets this variable component as representing the “unexpected variation

in the ratio of informed to noise traders”. My paper presents a theoretical

model in which there is uncertainty about this ratio and suggests that this
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uncertainty is important for the return dynamics and, more specifically, can

indeed lead to higher expected returns.

The rest of this paper is organized as follows. In the following section

I present the model and its main assumptions. In Section 3 I analyze the

resulting equilibrium quantities in the static model. In Section 4, I explore

the implications of assuming various distributions for the prior belief about

the proportion of informed traders and I analyze some numerical simulations.

Section 5 describes a dynamic extension of the model, under some simplifying

assumptions. Finally, Section 6 contains a discussion of the paper, while, in

Section 7 a conclusion is given.
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1.2 The Fundamentals of the Model

1.2.1 Agents

There are three types of agents in the economy, each endowed with an initial

wealth W . There is a mass 1 of rational uninformed agents (H) who are trying

to learn from prices, and there is also a mass m ∈ [0, 1] of informed (I) agents

who observe an informative signal about fundamentals at each period, and a

mass of 1 − m of noise traders (N) who think they are informed and trade

in signals that are actually uncorrelated with the fundamentals.1 The fact

that the mass of H is the same as the mass of I and N combined, is just for

simplicity and does not drive any results; later, we consider the general case

where the mass of hedge funds is Q and the total mass of I and N is 2−Q and

we talk about the cases Q→ 0 and Q→ 2. Our most important assumption is

that m is not a known parameter, but instead it is a random variable in [0, 1].

1.2.2 Timing

The benchmark model is a static model with two periods. During Period 1,

trading takes place, while in Period 2, dividends are paid and uncertainty

is resolved. In Section 5, we extend this model to a dynamic version with

multiple periods.

1.2.3 Assets

There are two assets in the market, a risk-free asset, with a return normalized

to 1, and a risky asset that pays a dividend d ∼ N(0, σ2) and is found in

supply Z, which is a known constant.

1In Appendix B, we discuss some slight alterations of the model, in which we have
different types of agents, and which lead to some alternative results and interpretations.
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1.2.4 Utilities

All agents have mean variance utilities2 and are price-takers. Traders maximize

the utility of their terminal wealth. More specifically, each trader solves the

following maximization problem:

max
x

E[W + x(d− p)]− α

2
Var[W + x(d− p)]

where α represents the degree of risk-aversion.

1.2.5 Information Structure

Informed and Noise traders behave similarly. They both receive a signal,

which they both think is the only source of (payoff-relevant) information in

the market. I’s signal is:

sI = d+ εI

where εI is Normally distributed with mean 0 and volatility σε. The informa-

tiveness of I’s signal is given by the signal-to-noise ratio: λ =
σ2

σ2 + σ2
ε

.

On the other hand, the signal of Noise traders is:

sN = u+ εN ,

where u ∼ N(0, σ2) is independent and identically distributed to d, and εN is

independent and identically distributed to εI . Thus, the perceived informa-

tiveness of the noise traders is also equal to λ. Hedge fund managers are not

aware of informed-to-noise traders in the market and have, at t = 0, a prior

distribution f(m) about m. Our model nests the Banerjee and Green model

in the case where f(m) is such that f(1) = π0 and f(0) = 1− π0.

Our specification for Noise traders is different to that in Grossman and

Stiglitz (1980) or De Long et al. (1990), where N have a random inelastic de-

2Note that this is not equivalent to using CARA utility, as p will be non-linear in the
signal and hence will not be normal in equilibrium.
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mand. In contrast, our approach to modeling noise traders can be also found

in Black (1986) or - in a very similar form - in Mendel and Shleifer (2012).

The main advantage of this approach is that it delivers a much more tractable

model, which better serves the intuition behind this the paper. Uncertainty

about m matters, because it alters the perceived homogeneity in the market,

even if the demand functions of the two groups of traders are indistinguishable

(from H’s point of view). In particular, this assumption, makes all the equi-

librium quantities just a function of msI + (1 −m)sN , and, as we will see in

the next section, allow us to find an equilibrium that is mixed-signal revealing.

It is for the same reason that we assume that the total mass of I and N is

known. Otherwise, it would be much more difficult to find an equilibrium.

In this model, we can see that proportion uncertainty is closely related to

the belief dispersion in the market. Indeed, Informed and Noise traders form

heterogeneous beliefs about the asset’s payoff once they receive their signals.

From the perspective of the fund managers, who do not know m, this belief

dispersion between I and N traders can be measured by the inverse of the cor-

relation of two random signals in the market. When this correlation is high,

this means that it is very likely for all traders to hold the same information

and thus the belief dispersion is low, and vice versa. More formally, if i, j are

i.i.d. Bernoulli random variables that take the values I and N with probabil-

ities m, (1 − m) respectively, then belief dispersion is
1

corr(si, sj)
. This is a

function of the second moment of m, since it depends on the probability that

both i and j are of the same type, which is equal to m2 + (1−m)2. Therefore

we get the following corollary:

Corollary 1. Belief dispersion in the market3 is decreasing in the variance of

m, var[m], as long as E[m] is a constant.

Hence, we can see how the uncertainty about the mass m of I traders is

related to the belief dispersion between I and N traders. Thereafter, we will

3We only consider the belief dispersion between two random traders who are either I or
N, because those traders obtain their own signals.
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use var[m]−1 as a measure of this asymmetry in the market.4

In the following section, I solve for the equilibrium price in the static

model.

4We will be able to do that, as we will only focus on the case where E[m] = 1
2 .
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1.3 The Equilibrium

1.3.1 Two-period model

Solving the maximization problem for θ = I,N we get:

xθ =
Eθ[d]− p
αVarθ[d]

=
λsθ − p

ασ2(1− λ)

That is, informed and noise traders behave in the same way (but receive

different signals) and do not try to use the price to learn any further infor-

mation about d. On the other hand, H try to learn about d by observing the

price and residual demand (i.e. Z − xH). When updating their belief about

the fundamental, the above two quantities give them a “mixed” signal that

has some information because of sI , but is also contaminated by noise (sN).

Using the market clearing condition, we have xH + mxI + (1 − m)xN = Z.

Therefore:

xH +
λ

s̃︷ ︸︸ ︷
(msI + (1−m)sN)−p

ασ2(1− λ)
= Z

I write s̃ = msI +(1−m)sN . Note that the price and the residual demand

can reveal to H the mixed signal s̃. This would not be true if the demand of

noise traders was simply a random variable z (instead of being a function of

price) and, therefore, we would not be in a position to find the equilibrium.

In order to find hedge funds’ demand, xH , we need to find the expectation

and variance of d from their perspective after they observe the abovementioned

mixed signal. Henceforth, I may write EH [·], V arH [·] for E[·|s̃], V ar[·|s̃] re-

spectively, and I use these notations interchangeably. Using the law of iterated

expectations, as well as the formula for the conditional expectation of normally

distributed variables, we get:
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E[d|s̃] = E

[
m

m2 + (1−m)2
|s̃
]
λs̃, (1.3.1)

To simplify notation, I set L(m) := m
m2+(1−m)2

. The term that multiplies

s̃ in (1.3.1) is the expected cov(d,s̃)
var(s̃)

, which we interpret as the informativeness

of the signal.

We can now observe that the expectation of d as perceived by the Hedge

Funds depends on the conditional probability density function of m given

the mixed signal, fm|s̃(m|s̃). In the next section, I use a prior three-point

distribution, f(m), to give the intuition of the results, but I also prove the

validity of main results under any symmetric distribution.

Similarly, we can find the perceived variance of d from the perspective of

H. For that, we will need to use the law of total variance. We have:

V ar[d|s̃] = E [Var[d|s̃, m]|s̃]︸ ︷︷ ︸
E[σ2(1−λmL(m))|s̃]

+ Var [E[d|s̃, m]|s̃]︸ ︷︷ ︸
Var[λL(m)|s̃](s̃)2

To simplify further, we will set c(s̃) := λ2Var[L(m)|s̃] and we will examine

the function c(·) later on. Moreover, in the Appendix I prove that for any

symmetric f(m), we have E[mL(m)|s̃] = 1
2
. Therefore:

VarH [d] = σ2(1− λ

2
) + c(s̃)s̃2

So we observe that both the expectation and variance depend on m, sN and

sI , only through the mixed signal, s̃.

By using the market clearing condition, we can thus get the following

proposition:

Proposition 1. In the two-period model, there exists a mixed signal (s̃) re-
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vealing equilibrium. The price in this equilibrium is given by:

P = λs̃κ(s̃) + λs̃E [L(m)|s̃] (1− κ(s̃))︸ ︷︷ ︸
Expectation component

− ακ(s̃)σ2(1− λ)Z︸ ︷︷ ︸
Risk premium component

,

where

κ(s̃) =
V ar[d|s̃]

σ2(1− λ) + V ar[d|s̃]

Proof. A more general proof, for when the mass of H traders is Q ∈ (0, 2) and

the mass of I and N together is 2−Q, can be found in the Appendix (baseline

model corresponds to Q = 1).

In the case where Q → 2, in which Hedge Funds dominate the market,

the price takes the simple form:

p ≈ E[d|s̃]− 1

2
αZV ar[d|s̃].

What we can see from the above proposition is that the equilibrium price is not

linear in the mixed signal, and, consequently, non-linear in sI . The expectation

component is a weighted average of the expectations of each group of agents,

and the weight is given by κ(s̃). This weight is increasing in V arH [d], and

hence, as I will prove in Section 4, it is also increasing in |s̃| , whereas in

standard models, the posterior variance of fundamentals is independent of the

signal, because of the properties of the conditional normal distributions.5 As

in BG, this makes the expectation and risk premium components of the price

to not behave in the same way with positive and negative realizations of sI

(or of sN). This creates an asymmetry that makes the derivative of price to

s̃ greater for negative realizations of the mixed signal than for positive ones,

which I will discuss further in the next section.

5That is, if A,B are jointly normal random variables, var[A|B] is not a function of B.
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1.4 Results

To explore the equilibrium implications of this model we need to make an

assumption about the distribution of m. In BG (2015), this is assumed to

be a Bernoulli distribution that takes the value 1 with π0 and 0 with 1 − π0,

but, in such a model, the belief dispersion is always constant and there is

no uncertainty or learning about it. In contrast, we will assume that this

dispersion is unknown, and we will study how Hedge Funds learn about it

and how it affects their demand functions. The simplest way to provide the

intuition is to use a simple, three-point distribution, which allows us to talk

of different levels of belief dispersion between I and N traders in the market.

Then, in Section 4.2, we will generalize the main results to any symmetric

distribution in [0, 1].

1.4.1 Three-point distribution

Assume that m ∈ {0, 1
2
, 1} with πi = P (m = i) for i ∈ {0, 1/2, 1}. As I

explain later, augmenting the support of m to include values in (0, 1) leads

to learning about m, by observing s̃. Importantly, what we will see is that

the posterior belief π̂i = P (m = i|s̃) is in general not equal to πi. This seems

to be self-evident; however, it is not true under the simple assumption of the

BG model, and this is what drives many of the interesting results that are

different. Using Bayes’ rule we find that the posterior distribution satisfies

fm,s̃(i, s̃) = P(m = i)fs̃|m(s̃|m = i), where the conditional distribution of the

right hand side is normal, with mean 0 and variance (i2+(1−i)2)(σ2+σ2
ε). Note

that s̃|(m = 1) = sI and s̃|(m = 0) = sN , which are identically distributed.

Thus, we can define h1(x) to be the pdf of s̃ under m = 1 or m = 0 and h2(x)

to be the pdf underm = 1
2
. We have:

π̂0 = P(m = 0|s̃) =
π0h1(s̃)

(π0 + π1)h1(s̃) + π1/2h2(s̃)
(1.4.1)

and similarly for π1/2 and π1. We see, therefore, that the posterior probabili-
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ties depend on s through h2(s̃)
h1(s̃)

, which is decreasing in |s̃|. Let us now see what

is the implication of this fact, in the symmetric case where π0 = π1 = π (and

π1/2 = 1− 2π). We have the following corollary:

Corollary 2. Uncertainty about the proportion of Informed traders, m, in-

creases as (mixed) news becomes more extreme, i.e., |s̃| becomes large.

Extreme news is naturally associated with extreme prices. Hence, this

corollary tells us that, during crashes or booms, uncertainty about market

composition spikes. This uncertainty has plenty of implications as we see in

the results that follow. Technically, the fact that a mixed signal distribution,

corresponding to m = 1
2
, is less fat-tailed than a normal distribution, is what

causes π̂ to increase as |s̃| increases. In other words, a more extreme signal

makes H believe that the other group of traders is (more likely) either all

Informed or all Noise. Hence, Hedge Funds believe that extreme market out-

comes occur when the rest of the traders are more homogeneous, or, in other

words, they believe that the belief dispersion in the market is low.6 In fact,

although H becomes more uncertain about m, he does become more certain

about the deviation of m from its mean, |m − 1
2
|. Especially when |s̃| → ∞,

we know that P (|m − 1
2
| = 1

2
) → 1; that is, Hedge Funds learn that all the

agents (between I and N) in the market are of the same type.

The first implication that we will examine is the effect on the informative-

ness of the signal in extreme times; managers becomes almost certain that the

signal is either very informative or not at all. We get the following corollary:

Corollary 3. The Hedge Funds’ informativeness of the price signal is decreas-

ing in the size (|s̃|) of the signal.

Proof. As defined in equation (1.3.1), informativeness is λE[L(m)|s̃]. Now

note that given the formulas we provided for π̂i, we can easily see that when

6We cannot use Corollary 1 to directly claim that belief dispersion as defined in that
lemma decreases, since the conditional covariance cov(si, sj |s̃) = 0. However, we abuse the
term belief dispersion here to refer to the the probability that two traders (randomly drawn)
are not the same (which has now decreased).

16



π0 = π1 then π̂0 = π̂1 = π̂ (more generally, if the prior distribution is symmetric

with respect to 1/2 then the posterior distribution will also be symmetric).

Therefore:Informativeness = λ(1 − π̂). But since π̂ is increasing in s̃2, the

expected informativeness must be decreasing in s̃2.

The main idea that can be conveyed, even with a three-point distribution,

is that an extreme signal (either very positive or very negative) shifts the

posterior beliefs about the proportion in such a way that it is now much

more likely that the other group of traders is either all Noise or all informed

(m = 0 or 1). In turn, this causes the informativeness of the price to be

decreasing on |s̃|, since managers are now more reluctant to interpret any

signal as representing information. More interestingly, simulations show that

for very small values of the prior π, the expectation of fundamentals, EH [d]

is non monotonic on |s̃|; that is, a very high s̃ may even lead a hedge fund

manager to lower his expectation about d, since the effect of the reduced

informativeness may outweigh the effect of the increased s̃.

In addition to the effect on informativeness, when the news is extreme, the

perceived variance of informativeness increases. This is because hedge funds

understand that it is more likely that either all other traders are informed or

all noise, and hence they are most uncertain about the weight they should put

on the signal they observe (in one case, this is very informative, and, in the

other, they should completely ignore it).

This, in turn, affects the uncertainty of managers about the fundamentals

of the assets and leads us to the following proposition.

Proposition 2. Hedge Funds become more uncertain about the fundamentals

when they observe more extreme news.

Proof. As detailed in the Appendix, we can get that c(s̃) = λ2π̂(1− π̂) which

is increasing in s̃2.

That is, varH [d] and hence the risk premium (and κ(·)) are increasing in
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|s̃|. When the magnitude of the mixed signal increases, the posterior variance

of m increases; this makes the investors more uncertain about the composition

of the market and, hence, about the informativeness of the signal. In turn,

this leads to an increase in the uncertainty about fundamentals.7 Having es-

tablished the above results, we now have that κ, and hence the risk premium

component of the price, is also increasing in the magnitude of the mixed sig-

nal. This means that a very high signal (seemingly positive news) could yield

a lower price than an averagely good signal in two ways; first, by implying

a lower expectation of fundamentals (from H’s perspective), and second, by

increasing the uncertainty of fundamentals. Moreover, as we see in the proof

of proposition 2 in the Appendix, hedge funds’ perceived variance of funda-

mentals, V arH [d], is increasing in the posterior belief p̂i; therefore, we can

conclude that it is also increasing in their perceived variance of the proportion

m of informed traders. This then leads us to the following important lemma:

Lemma 1. Hedge funds’ expected uncertainty about fundamentals, E[V arH [d]],

is increasing in the prior variance of m.

This lemma is based on Proposition 2 together with the fact that if

var[m1] > var[m2], then the corresponding signal s̃2
m1

stochastically domi-

nates s̃2
m2

. As shown in the Appendix, this stochastic dominance leads us

to conclude that the expected risk premium part of the price is increasing in

var[m]. Therefore, we obtain the following proposition:

Proposition 3. When the market is dominated by Hedge Funds, the expected

return of the asset, E[d − p], is increasing in the uncertainty about the pro-

portion of informed traders, var[m] and hence in the perceived homogeneity of

the market.

From Corollary 1, we have seen that the variance of m can be interpreted

as the inverse of the level of (perceived) heterogeneity in the market. Therefore,

7This result is also true in BG model. However, in our setting it is amplified by the
uncertainty about m, and it then naturally leads to Proposition 3. Moreover, the fact that
uncertainty about informativeness, measured by c(s̃), is increasing in |s̃| is a novel result.
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one can deduce that the higher this heterogeneity, the lower the expected

return of the risky asset. In other words, managers who trade in a homogeneous

market want to be compensated for the additional risk that they are taking,

given that they do not know whether the price contains any information at

all. In the next subsection, I use the propositions and corollaries found above,

to discuss the sensitivity of prices to changes in the signals.

Price to signal sensitivity

A measure that is extensively studied in the work of Mendel and Shleifer (2012)

is that of price instability, defined as the derivative of price to a sentiment shock

(corresponding to s̃N here). The higher the price instability, the more fragile

the price and the more likely it will lead to an abrupt jump (big change) in

the price. We will use the results of the previous section, to study a similar

measure in the context of this model in which there is a higher degree of

uncertainty.

First of all, we have the following corollary, that is a generalization of a

corresponding proposition in Banerjee and Green (2015), which indicates an

important asymmetry between positive and negative news:

Corollary 4. For any s̃0 > 0, the derivative of price to the mixed signal is

smaller for s̃0 than it is for −s̃0. That is:

dP

ds̃

∣∣∣
s̃=s̃0

<
dP

ds̃

∣∣∣
s̃=−s̃0

(1.4.2)

Moreover, the expected size of this asymmetry is larger when the variance of

m is larger.

When the mixed signal is positive the expectation component of price

is (generally) increasing, while the risk premium component makes the price

lower than it would be, making the derivative smaller. On the other hand,

when s̃ is negative, under a more extreme signal, both the expectation part
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and the risk premium part move the price to the same direction (making it

more negative), thus increasing the sensitivity of the price movement to the

change of s̃. Mathematically, we have that:

P (s̃) + P (−s̃) = −2αZκ(s̃)σ2(1− λ) (1.4.3)

which is decreasing for s̃ > 0, and hence gives us first part of corollary 4. This

result is important, because it shows that, in this setting, negative news can

lead to a more extreme drop in price than the corresponding positive news.

Finally, by taking expectations in equation (1.4.3) and then differentiating with

respect to s̃, we also get the second part of the corollary, since by Proposition

3 we get that E[κ(s̃)] is increasing in var(m).

Moreover, we can study the expected sensitivity of price to a sentiment

shock (or to a shock in a Noise trader’s signal in our model) and see how it

varies for different values of s̃. Mendel and Shleifer (2012) relate this measure

to the Hedge Funds’ demand, and, more particularly, to whether these traders

end up chasing noise or not. In this model, the sign of the sensitivity of H’s

demand to mixed news changes for different values of s̃, and it turns out that

H traders may be chasing noise when |s̃| gets large, and act in the opposite

way when s̃ is close to 0.

Corollary 5. Price instability is higher when |s̃| goes to infinity than when s̃

goes to 0.

The proof of the above result can be found in the Appendix. Because of

the uncertainty about market composition, when the size of the signal is large,

Hedge Funds prefer to stay away from the market and do not trade aggressively.

Thus, during these times, the effect of noise trading is amplified, and the price

becomes more sensitive to any sentiment shock.
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1.4.2 Any Symmetric Distribution

Having described the main intuition using a simple three-point distribution,

we will now work with a continuous distribution for m to make our model

more rich and realistic. In fact, we will prove the main propositions using

any continuous distribution that is symmetric in [0, 1] (w.r.t 1/2). This makes

the results of the model robust to a variety of distributional assumptions and

corresponds a more realistic setting where m can take any value in [0, 1]. First

of all, when the pdf of m is symmetrically distributed around 1
2
, we can easily

get the following corollary:

Corollary 6. When the prior distribution of the proportion m of Informed

traders is symmetric w.r.t 1
2
, the posterior distribution from the perspective of

H (conditioning on s̃) is also symmetric. Hence:

EH [m] =
1

2

This means that the expectation about the proportion of informed traders

remains unchanged, independently of the observation of s̃. However, that

does not mean, that the distribution of m, and hence the informativeness

of the signal, does not change. In Appendix, I explain how we can com-

pute the joint density of (d, u,m, s̃), from which we can find the conditional

distribution of d|s̃ or of m|s̃. In short, we can use Bayes’ rule to find the pos-

terior distribution fm|s̃(m|s̃). We first find the joint distribution g(m, s̃), as:

g(m, s̃) = g(s̃|m)fm(m). But s̃|m is a linear combination of normals, hence it

is a normal itself, with mean 0 and variance C(m) = (m2 +(1−m)2)(σ2 +σ2
ε).

Hence, we get:

g(m, s̃) =
1√

2πC(m)
exp (− s̃2

2C(m)
)fm(m)

Finally, this means that fm|s̃(m|s̃) =
g(m, s̃)

gs̃(s̃)
, where gs̃(s̃) is the density func-
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tion of s̃. Therefore, we see that

f(m) = f(1−m) =⇒ g(m, s̃) = g(1−m, s̃) =⇒ fm|s̃(m|s̃) = fm|s̃(1−m|s̃),

i.e., the posterior is symmetric, as required. Using the above, we can now

prove the following, proposition.

Corollary 7. For any symmetric prior distribution of m, the expected infor-

mativeness of the signal is decreasing in the size of the signal.

Proof. Proof can be found in the Appendix and is based on the use of Cauchy-

Schwarz inequality.

How can we interpret this result? As also described in the previous sec-

tion, when fund managers observe a large realization of s̃ they know this is a

good sign for the fundamentals (assuming s̃ > 0), but also need to estimate

how accurate this sign is. The larger the s̃ gets, the more likely it is that

m has an extreme value (closer to 0 or 1). However, since (as I prove in the

Appendix) the informativeness decreases more as m→ 0 than it increases for

m→ 1, its expected value ends up decreasing in |s̃| and this is a key result.8.

As the mixed signal gets larger the signal-to-noise ratio becomes smaller and

smaller, which can even lead H’s expectation of fundamentals to be decreas-

ing in |s̃| (in particular when π0 is small, simulations show that EH [d] can be

non-monotonic on |s̃|). All in all, Corollary 7 shows us how the uncertainty

about other traders affects the expectation part of the price.

We can also prove the following result, which generalizes Proposition 2,

and is one of the main results of this paper.

Proposition 4. For any symmetric prior distribution of m, Hedge Funds’

perceived variance of fundamentals is increasing in |s̃|. Therefore, the infor-

mativeness of the signal, measured by var[d|s̃]−1 is decreasing in |s̃|.

8The case s̃ < 0 is totally symmetric, since E[d|s̃] = −E[d| − s̃].
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The importance of this proposition lies in establishing the fact that the

risk premium part of the price is increasing in |s̃|, for any prior symmetric

distribution (thus covering most of the known uninformative priors that are

assumed in cases of parameters for which we have no information).

Finally, one more corollary we can obtain concerning EH [d], is the following:

Corollary 8. For any symmetric prior distribution of m, H’s perceived ex-

pectation of dividends satisfies the following inequality:

1

2
λ|s̃| ≤ |E[d|s̃]| ≤ λ|s̃|

This corollary helps us to get a grasp of the magnitude of the posterior

expectation of the fundamentals from the perspective of Hedge Funds. For

example, we can easily see that the left hand side of the inequality implies

that the expectation is strictly smaller in size than λ|s̃|. This means that,

even when sI = sN , the expectation of the Hedge Funds will be different than

the expectation of the other agents.

1.4.3 Simulations

One very general distribution in [0, 1] that we can select in order to run sim-

ulations and show our results graphically, is the Beta distribution with pa-

rameters, a, b.9 Note that the uniform distribution U [0, 1], is just a special

case of Beta with parameters a = 1, b = 1, while the so called “uninforma-

tive” Jeffrey’s prior is also a Beta distribution with a = 1/2, b = 1/2. The

parameters a, b determine the shape of the distribution: the mean is equal to

µ = a
a+b

(= E[m]), and the distribution is positively skewed iff a < b. Using

the Beta(a,b) distribution, we can now make various plots, which can help us

in the interpretation of the model.

9The density function of Beta(a,b) is fm(m) =
ma−1(1−m)b−1

B(a, b)
. Throughout this

section, we focus on the case where a = 1, unless otherwise stated.
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Figure 1.4.1: Hedge Funds’ perceived expectation and variance of dividends, as
a function of the mixed signal s̃ and of the prior expectation of m (µ = E[m]).

In particular, Figures 1.4.1a and 1.4.1b show H’s perceived expectation

and variance of d, as a function of the mixed signal, as µ varies (keeping a = 1).

The parameters we have used are: Q = 1, σ = 0.06, σε = 0.04, as well as α = 1

and Z = 10.

When µ is large, the expectation is increasing in the signal s̃, and in

the limit as µ → 1, then EH [d] → λs̃. On the other hand, when µ small is

enough (i.e., small expected number of informed agents) the expectation of

d stays almost constant at 0, since hedge fund managers do not think that

s̃ can be very useful in updating their prior knowledge about payoffs. It is

also interesting to note that for µ ≤ 1
2

it is not necessarily true that the

expectation is increasing in the signal. This is because a higher signal can lead

H to update their belief about m (downwards), leading them to believe that

the mixed signal they observe is uninformative, thus tilting their expectation

about dividends closer to their prior expectation, i.e. 0.

To understand this further, we need to examine the two forces acting

against each other in the case where s̃ is increasing. On the one hand, this

increase causes the expectation to directly increase, as managers know that the

mixed signal can be, at least partially, attributed to good news from informed

agents. On the other hand, as s̃ increases it becomes more probable that m
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is closer to either 0 or 1. A heuristic way to see this is to note that u or d

(corresponding to m = 0 or m = 1 respectively) have a larger variance than,

for example, 1
2
d + 1

2
u (corresponding to m = 1/2). Thus, when the prior is

that there will be more noise traders, i.e., small m , the additional information

that s̃ is large makes H update their information about m so that they believe

that m is closer to 0, or equivalently, that the mixed signal is driven by noise

traders and is less informative than H previously thought. So, this effect leads

H to trust the signal less, and leads to this non-monotonicity of EH [d], with

respect to s̃. The above observation leads us to a main difference between this

model and the BG model; in the present model, price can be non-monotonic in

the signal, even in the case of risk-neutral uninformed agents, while in BG this

non-monotonicity, could only happen in case of large risk aversion or supply

(αZ) due to the effect of the risk premium component.

As far as the variance is concerned, we can see in Figure 1.4.1b that it

is increasing in the size of the signal as well as symmetric with respect to 0;

in combination with the fact that E[d|s̃] = −E[d| − s̃], this means that the

price will behave asymmetrically to positive and negative news (Corollary 4).

Finally, we note that VarH [d] is almost constant for µ small enough. This

is because, in that case, fund managers expect very few Informed traders to

be in the market and, thus, do not use the signal too much to update their

beliefs about d; hence, their posterior variance of d is close to the prior one,

independently of the observed mixed signal.

Moreover, Figure 4.3 shows the equilibrium price10 with respect to s̃ for

two different values of E[m] (corresponding to Beta(1, 1) and Beta(1, 3) prior

distributions). We verify that price is non-linear and that it exhibits the

aforementioned asymmetric reaction to positive/negative news. Finally, we

see that these effects are largest when µ = 0.5. Instead, a small µ means that

more agents are probably noise, making the signal less important. In that

case, we can see more clearly that the price can even decrease with a higher

signal (in the neighborhood around s̃ = 0), both because of the effect of risk

premium and because of the decreased informativeness of the signal.

10Prices are negative, because of the parameter values that have been chosen but could
be shifted up by a constant d, simply by assuming that prior mean of d (and u) is d.
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Volume-price relationship

We will see from the simulations that follow, the volume-price relationship

that arises from simulated data of our model fits very well with the empirical

facts found in many studies about volume. This is in spite of the fact that

our model was not constructed with the intention of matching these specific

empirical results. In particular, the survey of Karpoff (1987) establishes the

following stylized facts. The first, that can be consistently found in many

empirical papers, is that volume and the absolute change in price (|∆p|) are

positively related. The second is that there is a positive correlation between

volume and price change per se; that is, volume is higher when there is a

positive price changes, than when there is a negative one. I verify that this

model provides suggestive evidence in favor of both of these predictions,11 I

study how results are affected by the composition uncertainty and I explain

the intuition behind them.

I use the baseline model, with m ∼ U [0, 1], to simulate a dataset of price

and trading volume12 and I run two main regressions on this data. Table 1.4.1

11We will think of price, in the context of our static model, as corresponding to the price
change in empirical studies.

12Trading volume is computed using the equation: Volume = 1
2 (|xH | + m|xI | + (1 −

m)|xN |+ |Z|).
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Table 1.4.1: Estimation results : Volume on squared price.

Baseline model: Volume ∼ (price)2 + price + constant.

Variable Coefficient (Std. Err.)

(Price)2 510.65∗∗ (52.108)

Price 15.197∗∗ (2.979)

Intercept 15.87∗∗ (0.12837)

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

shows the results of a regression of trading volume on a quadratic function

of price.13 What we observe is that the coefficient on the quadratic term,

(price)2, is positive and significant. In other words, higher volume arises when

the absolute price is larger. This means that if we fit a quadratic polynomial

of price into the simulated data, the relationship between price and volume

is U-shaped, as shown in Figure 1.4.3. This is a result arising in many “Dif-

ferences of Opinion” (DO) models, such as Harris and Raviv (1993), because

disagreement increases in periods where signals are larger (simply because an

informed traders’ signal is more informative than that of the uninformed).

Although this result in our model has a similar flavour with abovemen-

tioned models, we also offer a new insight. More specifically, when price is

large in absolute value, the uncertainty of Hedge Funds increases (since |s̃|
is large) and H’s expectation about payoffs becomes less sensitive to cashflow

news, as proved in Corollary 3. At the same time, it becomes highly likely that

the group of I and N is very homogeneous (Corollary 2), and they all hold

beliefs in which they have greatly updated their expectation about d. This

leads to high disagreement between H and the (average of the) rest of the

agents, which we can measure using the difference in their expected payoffs;

13The regression of volume on absolute price gives qualitatively similar results, but we
prefer this specification to emphasize that the coefficient of the linear term is also positive.
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Figure 1.4.3: Volume-price relationship

that is

|E[d|s̃]− λs̃| = λ|s̃| (1− E[L(m)|s̃]) , (1.4.4)

which is increasing in |s̃|.14 This is, in turn, translated into high trading

volume, which is, in fact, even greater when the prior uncertainty about m

is higher. Indeed, when the composition uncertainty is higher the expected

disagreement increases since |s̃| is likely to be higher and E[L(m)|s̃] is lower;

as a result, the expected volume is higher during these times. As we discuss

in Section 5, this could have implications for predicting the magnitude of the

regression coefficients; in particular, a crash today would make var[m] increase

and hence would predict a higher trading volume tomorrow as well as a greater

slope of volume on (price)2 because of the E[d|s̃] term in equation (1.4.4).

To study the effect of var[m], I have also run the same simulations for

different distributions of m, including the case where m = 1
2

(no composition

uncertainty). The coefficients of the squared price term in these regressions

are smaller and in the extreme case, in which Hedge Funds are certain that

m = 1/2, this coefficient is non-significant. This is presented in Figure 1.4.3(b),

where we see that the quadratic curve fitting simulated data for m = 1
2
, almost

becomes a line. Indeed, in that case, the difference in beliefs of H with the

14Note that xH = E[d|s]−λs̃
α(σ2(1−λ)+var[d|s̃]) + Z(1 − κ(s̃)). As s̃ � 0 this is likely to be very

negative, while when s̃ � 0 this is likely to be much larger than Z; this is because the
increase in |E[d|s̃]− λs̃| dominates the increase in var[d|s].
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(average of the) rest of the traders is 0 since E[d|s̃, m = 1
2
] = λs̃, thus dis-

agreement in that case does not depend on |s̃|. That is, we get the prediction

that the coefficient on the price-squared term is increasing on the uncertainty

about m. Finally, further simulations show that the expected volume is also

increasing in var[m], as explained in the end of the last paragraph.

Table 1.4.2: Estimation results : Volume on price.

Baseline model: Volume ∼ price + constant.

Variable Coefficient (Std. Err.)

Price 6.5247∗ (2.8715)

Intercept 16.546∗∗ (0.10931)

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

Moreover, an econometrician might want to test the effect of price per

se on trading volume. For this reason, I run a simple linear regression on

the simulated data. What we can clearly see from table 1.4.2 is that there

is a positive and significant (on the 2% level) relationship between volume

and price. This is directly related to the asymmetry in positive and negative

shocks, established in Corollary 4. Indeed, a large positive price is associated

with an even larger positive signal. Hence, the intuition described above leads

(on average) to an even higher volume for p > 0 than for −p, since, in this case,

the uncertainty about m and the corresponding disagreement is larger. Given

that the -expected- asymmetry in positive/negative news is higher in times

of greater composition uncertainty (Corollary 4), the model predicts that the

slope of this regression is also higher during these times.

Therefore, we can see that composition uncertainty can even generate

patterns of volume and price that arise in data and for which theoretical jus-

tifications are still not very concrete.

29



1.5 Extension: Dynamic Model

We will now extend our model to a dynamic version to study some of its

predictions when there are more than two periods. In this case, learning about

m from each period, will yield the future returns partially predictable. We will

assume that the market is dominated by Hedge Funds; that is their mass Q is

close to 2 (see proof of Proposition 1). As far as the prior distribution of m

is concerned, we will keep the simple assumption of a three-point symmetric

distribution, as in Section 4.1.

Due to the non-normality of the equilibrium price p, it would be very

difficult to solve the problem of long-term maximization, where agents max-

imize consumption over their terminal wealth. Instead, we will assume that

agents trade two independent short-dated assets maturing at dates 2 and 3,

respectively, with the corresponding dividends denoted by d2 and d3.15 We also

assume that they only observe the realized dividends after they have traded,

so they cannot use them for updating their beliefs. The only thing connecting

the trading of the two periods is the updating on m, because of the observed

mixed signals. Moreover, all agents are myopic. First, we have the following

characterization of the equilibrium price in each period, as in Proposition 1.

Corollary 9. When the market is dominated by Hedge Funds, the equilibrium

price, pi in each period i is equal to16

p→ E[di+1|s̃(i)]− 1

2
αZvar[di+1|s̃(i)] (1.5.1)

where di is the cash-flow news for the risky asset in the i-Period, s̃i is the

realization of the mixed signal at Period i and s̃(i) = {s̃1, s̃2, ..., s̃i}, i.e. it is

15Alternatively, we could assume di, i = 2, 3 are independent and identically distributed
cash-flow news that arrive in the market at period i, such that the final dividend of the
asset is d = d2 + d3. Traders in Period i would choose their investment to maximize their
utility as if di+1 was actually their next Period’s dividend. This interpretation is preferred
when we think of the implications in the stock market.

16Note that we have made the simplifying assumption that at the beginning of the 2nd
period, agents optimize by assuming they will just get d3 in the future. Hence when forming
their expectations and variances at t = 2, they do not take d2 into account.
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the history of mixed signal realizations up to time i.

This gives us a very simple characterization of the price, similar to that

obtained in our baseline model. Let us now write Ei[·], vari[·] to denote

E[·|s̃(i)], var[·|s̃(i)], respectively, as perceived by Hedge Funds. Thus, for in-

stance, E1[d3 − p2] denotes the expectation from the perspective of Hedge

Funds of the return they will receive from Period 2 to Period 3, conditioning

on the information they have at period 1, s̃1. Under the above assumptions,

we can now establish the following interesting result:

Proposition 5. Assume that market is dominated by Hedge Funds. Then,

the expectation of the future return of the asset, as of Period 1, E1[d3 − p2],

is increasing in the uncertainty about the proportion of informed traders, and

hence also in the size of the mixed signal of the first Period, |s̃1|.

Proof. First of all note that from equation 1.5.1 we have that:

E1[d3 − p2] = E1[d3]− E1

[
E[d3|s̃(2)]

]
+
αZ

2
E1

[
var[d3|s̃(2)]

]
(1.5.2)

=
αZ

2
E1

[
var[d3|s̃(2)]

]
(1.5.3)

because of the law of iterated expectations (note that we take the expectation

at the end of Period 1 when H has already observed s̃1). But, using Corollary

2, we know that E1

[
var[d3|s̃(2)]

]
is increasing on the perceived variance of m

(that is, var[m|s̃1]). Since var[m|s̃1] is increasing on |s̃1|, the above proposition

follows.

It is worth discussing the above proposition further. It states that the

more extreme the price in the first period is (e.g. during a crash) the higher

H’s expected return about the next period, as agents want to be compensated

for the risk they are taking; this additional risk comes from their uncertainty

about whether they are trading against signal or noise (increasing variance of

m). Note that the signal of the first period gives no information at all about

the dividends of the next period (d3). Instead, it is the learning about m that

31



happens in the first period, through s̃1, that carries information about the

return of the next period and makes it (partially) predictable.17 Empirically,

this observation implies that during periods that are extreme in terms of the

mixed news that arrives in the market (including real and fake news, or market

sentiment), we should see that the future expected return of the risky asset

becomes higher.

Finally, we would like to examine what happens to the volatility of prices

in the second period, in terms of the first period’s mixed signal. We can see

that this relation will depend on our parameters. In particular, we have the

following Corollary:

Corollary 10. For risk considerations (αZ) close to 0, we have:

1. If the market is dominated by Hedge Funds, then var1[p2] is decreasing

in var1[m] and hence in |s̃1|.

2. If the market is dominated by I and N agents, then var1[p2] is increasing

in var1[m] and hence in |s̃1|.

Note that the first case corresponds to Q→ 2, while the second to Q→ 0.

If there are only I and N agents in the market, a high mixed signal in the first

period implies that it is more likely that m = 0 or m = 1. This, in turn, makes

the variance of s̃2 higher, and thus leads to higher variance of p2. On the other

hand, if H traders are setting the price in this market, when they observe a

higher signal in the first period, they understand that they should expect a

high conditional variance in the next period (see Lemma 1), and adjust their

future expectation of dividends, E[d|s̃(2)], so that their perceived variance of

the price becomes decreasing in |s̃1|.

It would also be interesting to see what the limiting behavior (and learn-

ing) would be in this economy after many Periods. Note that Hedge Funds

would then be able to condition on a history of realizations s̃(n) = {s̃1, s̃2, ..., s̃n}.
17Importantly in a model, such as that of BG(2015), where H cannot update their per-

ceived distribution of m through the mixed signals, this channel cannot exist.
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We are interested in finding the posterior distribution fm|s̃(n)(m|s̃(n)). Note

that, as shown in Corollary 7, if the prior distribution f(m) is symmetric then

the posterior distribution would remain symmetric, after any number of peri-

ods. However, as n→∞, we can get the following proposition.

Proposition 6. As the number of periods tends to infinity, Hedge Funds learn

|m− 1
2
|. Thus, the posterior distribution of m converges to a symmetric two-

point distribution.

Proof. Can be found in the Appendix. The main idea is that by the Law of

Large numbers we can find the empirical variance of s̃ and then equate it with

the actual variance of s̃ (conditional on m).

The above proposition implies that, in the long-run, managers can learn

the true distance of m from 1
2
, but since the posterior distribution is always

symmetric they can never distinguish between m or 1−m. If we call var[m|s̃(n)]

the long-run uncertainty about m, then this uncertainty is higher when |m− 1
2
|

is larger. This is because, as n→∞, var[m|s̃(n)]→ 1
2
((m∗)2 + (1−m∗)2− 1

2
),

where m∗ is the realization of the random variable m. As in Lemma 1, we

can thus show (see Appendix) that the expected returns are higher when

this long run uncertainty, or equivalently, |m∗ − 1
2
| is higher. Finally, using

(corr(si, sj))
−1, which is decreasing in m2 + (1−m)2, as the measure of belief

dispersion in the market (see Corollary 1 ), we conclude that higher belief

dispersion leads, in the long run, to lower expected returns.
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1.6 Discussion

There are two key main points that the model in this paper makes. The first

is that a mixed signal that traders observe can change their perceived variance

about the proportion of informed traders in the market. In particular, the

higher the size of this signal, the higher the uncertainty about this proportion.

The second major point is that this variance is a measure of the (perceived)

belief dispersion in the market and affects the informativeness of the prices,

it creates an asymmetric reaction to positive and negative news, and leads to

predictability about future expected returns. We would thus like to interpret

the var[m] as a measure of the asymmetric information in the market. By

doing so, we could have a way of empirically testing some of the predictions

of this model. In particular, there have been empirical studies that use the

probability of informed trading (PIN), constructed by Easley et al. (2002), as

a measure of the asymmetric information. This paper claims that, controlling

for the expectation of PIN, what should also matter is the variance of PIN, or

the uncertainty about its value.

In particular, according to our model, one should empirically expect to

find that a higher variance of PIN leads to higher expected returns. Moreover,

to study the effect of this variance on informativeness one could look into

the sensitivity of investment decisions to stock prices (which is a proxy of

informativeness used in papers such as Bond et al. (2012)), to see whether times

with more uncertain PIN, are associated with lower such informativeness.

A main empirical challenge would be to try find a good proxy for the mixed

signal (s̃) used in this paper. I believe that some indices of market sentiment

can be used as a proxy for s̃; indeed, a survey-based market sentiment index

can contain both information and noise, and hence it could be an appropriate

proxy for s̃. Similarly, another proxy we could use for the mixed signal would

be the mutual fund flows. Both these proxies have been used as proxies for

pure noise (investor sentiment), but have been criticized exactly because they

are subject to confounding variables (related to fundamental information).
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1.7 Conclusion

In this paper I describe a model of asymmetric information in which the pro-

portion of Informed traders to Noise traders is unknown to the Hedge Fund

managers who trade in the market. I study how traders learn about this addi-

tional uncertainty and I examine the resulting equilibrium quantities. More-

over, I relate this uncertainty to the perceived heterogeneity of beliefs in the

market. More specifically, it is shown that Hedge Funds become more uncer-

tain about fundamentals when they observe extreme news (for example, during

a market crash), as they becomes less confident in inferring information from

the prices. In addition, in this setting, the expected returns are decreasing in

the perceived heterogeneity in the market, and there is an asymmetric price

reaction in positive and negative news.

I illustrate the intuition of the key findings by assuming at first a three-

point prior distribution for the proportion of informed traders, and I extend

the results to the case of any symmetric continuous distribution. Furthermore,

I find that this model is consistent with the empirical stylized facts concerning

the volume-price relationship and I thus offer a possible theoretical explana-

tion for these findings. Overall, the focus of this paper lies on understanding

how traders learn about fundamentals, while also learning about their market

environment given the signal that equilibrium quantities convey. As shown

in the dynamic extension of the model, this setting carries many implications

about the information quality of prices and the resulting volatility in the mar-

ket. Finally, the fact that the equilibrium price does not fully reveal the signal

of informed agents, provides a very useful model to work on and makes a dy-

namic version of the model, in which agents learn from dividends or from stale

information, very interesting to investigate further.
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1.8 Appendix A

Proof of Proposition 1:

Proof. We will write down a proof for the general case where the mass of Hedge

funds is Q, while the total mass of agents remains 2 (for the baseline model

Q=1) and the proportion of I to N is still m : (1−m). The first step for this

proof is to write down the equilibrium demand function of H. We can easily

show that under mean variance utility this is:

xH =
EH [d]− p
αVarH [d]

,

where as we have described throughout section 2, H ′s expectation and variance

is conditional on the mixed signal s̃ (which in equilibrium is revealed if he

observes the price and the residual demand). Therefore, using the market

clearing condition, we have:

QxH + (2−Q)(mxI + (1−m)xN) = Q
EH [d]− p
αVarH [d]

+ (2−Q)
λs̃− p

ασ2(1− λ)
= Z

Equivalently

p·
[
(2−Q)VarH [d] +Qσ2(1− λ)

]
= Qσ2(1−λ)EH [d]+(2−Q)VarH [d]λs̃−αZVarH [d]σ2(1−λ)

.

Finally, defining

κ(s̃) =
(2−Q)var[d|s̃]

Qσ2(1− λ) + (2−Q)var[d|s̃]
,

gives us the equilibrium price:

P = λs̃κ(s̃) + E [d|s̃] (1− κ(s̃))− 1

2−Q
ακ(s̃)σ2(1− λ)Z,
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Proof of Corollary 1:

Proof. First of all, note that E[si|m] = mE[sI ] + (1−m)E[sN ] = 0, hence, by

the Law of Total covariance, and since cov(E[si|m], E[sj|m]) = 0, we have

cov(si, sj) = E[cov(si, sj|m)] = E[E[sisj|m]]

= E[m2E[s2
I ] + 2m(1−m)E[sIsN ] + (1−m)2E[sN ]2]

= E[m2 + (1−m)2](σ2 + σ2
ε)

= (2(var[m] + E[m]2 − E[m]) + 1)(σ2 + σ2
ε)

Moreover, var[si] = E[E[s2
i |m]] = E[mE[s2

I ] + (1 −m)E[s2
N ]] = σ2 + σ2

ε .

Therefore, we get:

corr(si, sj) =
cov(si, sj)√
var[si]var[sj]

= 2(var[m] + E[m]2 − E[m]) + 1

Hence, if E[m] is constant (which is the case when the distribution of be-

liefs about m is symmetric), then a higher var[m] implies a higher covariance

between two random signals si, sj and thus also a lower degree of belief dis-

persion.

Proof of Corollary 2:

Proof. We need to show how the posterior beliefs about m depend on s̃2. We

have:
h2(s̃)

h1(s̃)
=
√

2 exp (−s̃2 · 1

2(σ2 + σ2
ε)

)

Therefore
h2(s̃)

h1(s̃)
is decreasing in s̃2. But from equation (4.1) we can see

that π̂0 (and similarly π̂1) is decreasing in
h2(s̃)

h1(s̃)
. Therefore we get that π̂0 and

π̂1 are increasing in s̃2. In contrast π̂1/2 = 1− π̂0− π̂1 and hence it is decreasing

in s̃2. That is to say, a more extreme signal means that is more probable that
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the other group of traders is either all informed or all noise, while a signal

closer to 0 means it is more probable there is a mixture of both.

Proof of Proposition 2:

Proof. First of all we have:

c(s̃) = λ2Var[L(m)|s̃] =

= λ2
(
E[(L(m))2|s̃]− (E[L(m)|s̃])2

)
=

= λ2

[
((1− 2π̂) · 1/2

1/2
+ π̂ · 1)− (1− π̂)2

]
=

= λ2π̂(1− π̂)

which is increasing in s̃2 since dπ̂
ds̃2

> 0 (by Corollary 2) and π̂ < 1/2, as

P (m ∈ 0, 1) = 2π̂.

Moreover, with a few algebraic manipulations we can get:

E[mL(m)|s̃] = λ

[
(1− 2π̂) · 1/4

1/2
+ π̂ · 1

]
=

1

2

Therefore H’s perceived variance of d must be increasing in s̃2.

Proof of Lemma 1:

Proof. First of all, note that:

Var[m] = π + (1− 2π) · 1

4
− 1

4
=
π

2
.

Thus, it is sufficient to prove that E[var[d|s̃]] is increasing in π = P (m = 0),

as var[m] is increasing in π = P (m = 0) (for symmetric 3-point distribution

of m). Moreover, we know that var[d|s̃] is increasing in s̃2. Hence it would

be sufficient to prove that s̃2(π1) first order stochastically dominates s̃2(π2) if
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π1 > π2. Indeed we have, for any x > 0:

P (s̃2 ≤ x) =P (−
√
x ≤ s̃ ≤

√
x) =

=1− 2P (s̃ ≤ −
√
x) =

=1− 2[2πP (sI ≤ −
√
x) + (1− 2π)P (

sI + sN
2

≤ −
√
x)] =

=1− 2

[
P (
sI + sN

2
≤ −
√
x) + 2π

[
P (sI ≤ −

√
x)− P (

sI + sN
2

≤ −
√
x)

]]
But now note that:

P (sI ≤ −
√
x)− P (

sI + sN
2

≤ −
√
x) =P

(
sI
σ
≤ −
√
x

σ

)
− P

(
sI + sN

σ
√

2
≤ −
√
x)

σ/
√

2

)
=Φ(
−
√
x

σ
)− Φ(

−
√
x

σ/
√

2
) >

>0

since
−
√
x

σ
>
−
√
x

σ/
√

2
.

Thus, P (s̃2 ≤ x) is decreasing in π and hence this shows that s̃2(π1)

first order stochastically dominates s̃2(π2) when π1 > π2, and the proof is

completed.

Proof of Proposition 3:

Proof. Combining the fact that κ(s̃) is increasing in s̃2 together with the

stochastic dominance established in the proof of Lemma 1, we get that κ(s̃),

and hence the risk premium is increasing in var[m].

Moreover, when the market is dominated by Hedge Funds, Q → 2 and

p = E[d|s̃]− 1
2
αZvar[d|s̃]. Therefore, by using the law of iterated expectations

we get

E[d− p] =
1

2
αZE[var[d|s̃]]

which is increasing in var[m] by the abovementioned lemma.
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Proof of Corollary 5:

Proof. Because of the symmetry of f(m) with respect to 1/2, we can get:

E[
dp

dsN
] = E[(1−m)

dp

ds̃
] =

1

2
E[
dp

ds̃
]

where the first equality is because of chain rule, while the second uses the

abovementioned symmetry. Taking the derivative of price with respect to the

mixed signal and setting I(s) := E[L(m)|s̃], we get:

dp

ds̃
= λ(κ(s̃)+s̃κ

′
(s̃)+I(s̃)(1−κ(s̃))+s̃I

′
(s̃)(1−κ(s̃))−s̃I(s̃)κ

′
(s̃))−ακ′(s̃)σ2(1−λ)Z

When |s̃| → ∞, we get:

κ(s̃)→ 1

κ′(s̃)→ 0

s̃κ′(s)→ 0

I(s̃)→ 1

2

I ′(s̃)→ 0

s̃I ′(s̃)→ 0

where the 3rd and the 6th lines hold because κ′(s̃) is of order18 s̃−2 and

I ′(s̃) is exponentially decreasing. Therefore we have
dp

ds̃
→ λ, as |s̃| → ∞.

On the other hand we can see how this derivative behaves close to s̃ = 0

and because of continuity, it is sufficient to just calculate the derivative at 0.

18In particular, note that κ′(s̃) = (varH [d])′

(σ2(1−λ)+varH [d])2 . As |s̃| → ∞, the denominator is of

order s̃4 while the numerator is equal to (λ2π̂(1 − π̂)s̃2)′ which is of order smaller than s̃2

since the derivative of π̂(1 − π̂) at infinity, is definitely bounded, since it is an increasing
bounded function of s̃2.
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Indeed, we have:

dp

ds̃

∣∣∣
s̃=0

= λ (κ(s̃) + I(s̃)(1− κ(s̃)))− ακ′(s̃)σ2(1− λ)Z < λ

since I(s̃) < 1, and 1 > κ(s̃) > 0 (even in the limit as s̃ → 0) and κ′(s) → 0

as s̃ → 0, since κ(s̃) is increasing in s̃2 (see Proposition 2), which implies

κ′(s̃), is positive for s̃ positive, and negative for s̃ negative (and therefore that

κ′(0) = 0 from Darboux theorem).

Joint distribution of d, s̃:

Given a beta prior distribution for m, we can use a change of variables trans-

formation to calculate the conditional densities d|s̃ and m|s̃. Using the map

d, u,m, ε 7→ d, u,m, d+ u+ ε︸ ︷︷ ︸
s̃

we get the joint distribution of d, u,m, s̃:

g(d, u,m, s̃) = fd,u,m,ε(d, u,m, s̃−md− (1−m)u) · |det(J)|,

where the J is the Jacobian of the inverse map, and it can be easily computed

to be an upper triangular matrix with 1’s in the main diagonal.

Combining the above with the fact that d, u,m, ε are independent we get

g(d, u,m, s̃) = fd(d)fu(u)fm(m)fε(s̃ − md − (1 − m)u), where fu, fd, fε are

normal pdfs and fm(m) is the pdf of a Beta distribution. Integrating out u

and m, by completing the square where necessary (to get rid of the integral

w.r.t. u), we get:

g(d, s̃) =

∫ 1

0

∫ ∞
−∞

g(d, u,m, s̃)dudm

= ... =

=
e−

d2

2σ2

√
2πσ2

∫ 1

0

ma−1(1−m)b−1

B(a, b)

1√
2πV (m)

e−
(s̃−md)2
2V (m) dm.

In the same way we can derive the joint distribution of m, s̃ and hence

get the conditional density m|s̃ that we need, in order to make simulations for
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m ∼ Beta(a, b). For the latter, we can write alternatively, using Bayes’ rule:

g(m, s̃) = g(s̃|m)fm(m)

But s̃|m is a linear combination of normals, hence it is a normal itself, with

mean 0 and variance C(m) = (m2 +(1−m)2)(σ2 +σ2
ε). Hence, we get equation

(1.4.2).

Proof of Corollary 7:

Proof. Let V (m) := m2 + (1−m)2. We will show that the informativeness of

the signal, EH [ mλ
V (m)

], is decreasing in s̃2. We will use the notation: gs̃2(m, s)

to refer to partial derivative: ∂g(m,s̃)
∂s̃2

. Using the formula for g(m, s̃), described

in equation (1.4.2), we get: gs̃2(m, s̃) = − g(m,s̃)
2V (m)(σ2+σ2

ε)
. We will now use the

following auxiliary result:

EH [
mλ

V (m)
] =

1

2
EH [

λ

V (m)
]

This is because V (m) and fm|s̃(m|s̃) is unchanged under the change of variables

m 7→ 1−m (as long as m has symmetric distribution).

Using the above, together with the Leibniz integral rule, which allows us

to interchange an integral with a partial derivative, as long as the integrand

is a continuous function, we get:

∂

∂s̃2
EH [

mλ

V (m)
] =

1

2

∫ 1

0

λ

V (m)

[
gs̃2(m, s̃)g(s̃)− g(m, s̃)gs̃2(s̃)

g(s̃)2

]
dm

=
λ

2g(s̃)2

∫ 1

0

g(m, s)

V (m)

[
− g(s̃)

2V (m)(σ2 + σ2
ε)
− gs̃2(s̃)

]
dm

Now noting that g(s̃) =
∫ 1

0
g(m, s)dm and using that to obtain gs̃2(s̃) =

−
∫ 1

0
g(m,s)

2V (m)(σ2+σ2
ε)
dm we get, that the sign of the derivative we want, depends

on the sign of:
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−
∫ 1

0

g(m, s)dm

∫ 1

0

g(m, s)

V 2(m)
dm+

∫ 1

0

g(m, s)

V (m)
dm

∫ 1

0

g(m, s)

V (m)
dm

But using the Cauchy-Schwarz inequality19 for integrals we know that:(∫ 1

0

g(m, s)

V (m)
dm

)2

<

∫ 1

0

g(m, s)dm

∫ 1

0

g(m, s)

V 2(m)
dm

Therefore the sign of the derivative we want is strictly negative. In other

words EH [ mλ
V (m)

] is decreasing in s̃2, thus completing the proof.

Proof of Proposition 4

Proof. We want to prove that the perceived variance of d is decreasing in s̃2.

Firstly, since the posterior of m is symmetric, as we showed before, we will

have:

EH [
m2

V (m)
] = EH [

(1−m)2

V (m)
]

But since V (m) = m2 + (1−m)2 we get the the above expectations are equal

to 1/2 (since their sum is equal to 1). Therefore:

E[mL(m)|s̃] =
1

2
,

consistent with what we showed before for the case of the three-point distribu-

tion (note: mL(m) = m2

V (m)
). As a result, it would be sufficient to prove that

19Equality would only hold if g(m, s) and g(m,s)
V 2(m) were proportional, which of course it is

not the case.
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c(s̃) is increasing in s̃2. Indeed, we have

∂

∂s̃2
[VarH [

m

V (m)
]] ∝

∫ 1

0

m2g(m, s̃)

V 2(m)

[
− g(s̃)

C(m)
− gs̃2(s̃)

]
dm−

− 2

∫ 1

0

m

V (m)
fm|s̃(m|s̃)dm

∫ 1

0

m · g(m, s̃)

V (m)

[
− g(s̃)

C(m)
− gs̃2(s̃)

]
dm

where the proportionality is with respect to a positive integer.

Now if we let A(m, s̃) = g(m,s̃)
V (m)

, and simplify gs̃2(s̃), as in the proof of

corollary 7, we need to prove that the following is positive:

−g(s̃)

∫ 1

0

m2

V 2(m)
A(m, s̃)dm+

∫ 1

0

A(m, s̃)dm

∫ 1

0

m2

V 2(m)
g(m, s̃)dm−

−
2
∫ 1

0
mA(m, s̃)dm

g(s̃)

[
−g(s̃)m

∫ 1

0

mA(m, s̃)

V (m)
dm+

∫ 1

0

A(m, s̃)dm

∫ 1

0

mg(m, s̃)

V (m)
dm

]
Now we will use our usual transformation of m −→ 1−m to get the following

results: ∫ 1

0

m

V (m)
A(m, s̃)dm =

1

2

∫ 1

0

A(m, s̃)

V (m)
dm∫ 1

0

m2

V 2(m)
A(m, s̃)dm =

1

2

∫ 1

0

A(m, s̃)

V (m)
dm∫ 1

0

m2

V 2(m)
g(m, s̃)dm =

1

2

∫ 1

0

A(m, s̃)dm∫ 1

0

mA(m, s̃)dm =
1

2

∫ 1

0

A(m, s̃)dm

Plugging in the above, and multiplying the result by 2, we see that it is suffi-

cient to prove that the following expression is positive:

−g(s̃)

∫ 1

0

A(m, s̃)

V (m)
dm+(

∫ 1

0

A(m, s̃)dm)2+

∫ 1

0

A(m, s̃)dm

∫ 1

0

A(m, s̃)

V (m)
dm−

(
∫ 1

0
A(m, s̃)dm)3

g(s̃)
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But the above expression is equal to[
(
∫ 1

0
A(m, s̃)dm)2

g(s̃)
−
∫ 1

0

A(m, s̃)

V (m)
dm

]
·
[
g(s̃)−

∫ 1

0

A(m, s̃)dm

]
Finally note that both of the above brackets are less than 0. The first one is

less than 0 since by Cauchy-Schwarz inequality:

(

∫ 1

0

A(m, s̃)dm)2 < (

∫ 1

0

A(m, s̃)V (m)dm)

∫ 1

0

A(m, s̃)

V (m)
dm

while, the second one is negative because A(m, s̃) = g(m,s̃)
V (m)

≥ g(m, s̃), because

V (m) ≤ 1.

Therefore the overall expression is positive, making c(s̃) increasing in s̃

and thus concluding the proof that VarH [d] is increasing in s̃2.

Proof of Corollary 8:

Proof. We firstly observe that: V (m) ∈ [1
2
, 1], as the function m2 + (1 −m)2

defined on the interval [0, 1] takes its minimum at m = 1/2 and its maximum

at m = 0, 1. Moreover for fm(m) symmetric with respect to 0.5, we can easily

see that: fm|s̃(m|s̃) = fm|s̃(1−m|s̃) and V (m) = V (1−m). Therefore, using

the change of variables m′ = 1−m we get, as before:∫ 1

0

mλ

V (m)
fm|s̃(m|s̃)dm =

1

2

∫ 1

0

λ

V (m)
fm|s̃(m|s̃)dm

To prove the inequalities, we now just need to note that:

|EH [d]| = | s̃λ
2

∫ 1

0

1

V (m)
fm|s̃(m|s̃)dm|

Hence, combined with the abovementioned bounds on V (m) we get the re-

quired result.
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Proof of Corollary 10:

Proof. We write Ei[·], vari[·] to denote E[·|s̃(i)], var[·|s̃(i)] respectively. For the

first case, Q → 2 and p2 → E[d3|s̃(2)]. Therefore, using the law of total

variance, we get:

var1[p] ≈ var1[E[d3|s̃(2)]] = var1[d3]− E1[var[d3|s̃(2)]]

which is decreasing in |s̃1|, since var1[d3] = var[d3] and E1[var[d3|s̃(2)]] is

increasing in |s̃1| as shown in Proposition 3, because conditioning on s̃1 can

only affect the distribution of s̃2 through m (and higher |s̃1| implies higher

var1[m]).

For the second case, Q → 0 and p2 → λs̃2. Therefore var1[p] ≈ λ2var1[s2],

which is increasing in |s̃1|, since a higher |s1| leads to a higher var[m] which

then leads to higher var1[s̃2] (remember, the intuition, that the variance of sI

or sN is higher than the variance of sI+sN
2

).

Proof of Proposition 6:

Proof. We have that

s̃2
j = (msI,j + (1−m)sN,j)

2 = m2s2
I,j + (1−m)2sN,j + 2m(1−m)sI,jsN,j

Since sI,j, sN,j for j = 1, . . . , n can be seen as realizations of a (2× 1) random

variable, with covariance matrix
(
σ2+σ2

ε 0

0 σ2+σ2
ε

)
by the Law of Large numbers,

as n→∞ we get:

n∑
j=1

s̃2
j

n
→ E[s̃2

j ] = (m2 + (1−m)2)(σ2 + σ2
ε)

That is, Hedge Funds learn the value of m2 + (1 − m)2. By solving this

quadratic one can see that there are always 2 solutions of the form m∗, (1 −
m∗) and the managers have no way of distinguishing between the two, as the

posterior distribution needs to remain symmetric.
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Further to the above, we want to show that in the long run, the expected

returns are higher when the long run uncertainty (which is proportional to

m2 + (1−m)2) is higher. For that, we will first show that if m2
1 + (1−m1)2 >

m2
2 + (1−m2)2 then s̃2(m1) first order stochastically dominates s̃2(m2).

Indeed P (s̃2 ≤ x) = 1− 2P (s̃ ≤ −
√
x). Now since s̃ has a symmetric dis-

tribution (when m can take only 2 values, m∗ or 1−m∗ with equal probability,

which happens in the long run), we get:

P (s̃ ≤ −
√
x) =

1

2
P (m∗sI + (1−m∗)sN ≤ −

√
x) +

1

2
P (m∗sN + (1−m∗)sI ≤ −

√
x)

=P (m∗sI + (1−m∗)sN ≤ −
√
x)

=Φ

(
−
√
x

((m∗)2 + (1−m∗)2)(σ2 + σ2
ε)

)
which is increasing in (m∗)2+(1−m∗)2. This concludes the proof that s̃2(m1) �
s̃2(m2). Therefore as in Proposition 3, we get that in the long run, the expected

returns are increasing in (m∗)2 + (1−m∗)2 and hence in |m∗ − 1
2
|.
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1.9 Appendix B

In this section of the Appendix we would like to briefly discuss some alternative

specifications (or interpretations) of the model, that can lead to results similar

to these in the main body of the paper.

1.9.1 Two groups of Informed Traders

Here, we will discuss the case where instead of the Noise traders, the market

is comprised of Hedge Funds, and two distinct groups of Informed traders, say

A and B, who obtain signals on d and are cursed, in the sense that they do not

use the price to update their beliefs further. A traders interpret their signal

correctly, but are dogmatic so that they do not take into account B’s signal.

B on the other hand, are dogmatic but also overconfident about their signal;

that is they behave as if ψ = 1. Their signals are:

sA = d+ εA

sB = ψd+
√

1− ψ2u+ εB

where ψ ∈ [0, 1], εA, εB i.i.d variables ∼ N(0, σε) and u is distributed

identically to d, but B think that their signal is the same as the signal of

informed traders. As before, hedge fund managers are uncertain about the

ratio of A to B traders. When ψ = 0, then B are Noise traders, and we get

back to our original model (as A do not even need to be dogmatic; they know

they hold all relevant information). An alternative special case is when ψ = 1;

in that case, A and B are completely symmetric, and can be interpreted as

groups of analysts who obtain their own signal through their research and are

dogmatic about their signals.

Under this specification, we still have the same price equation, as in

Proposition 1. Moreover, the informativeness of the equilibrium quantities

is decreasing on the size of the mixed news. This is because the main concept

of this paper that extreme outcomes are more likely to occur when traders are
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more homogeneous still holds. However, Hedge Fund’s uncertainty about fun-

damentals is not monotonically increasing as news get more extreme, contrary

to Proposition 2. Indeed, when for instance there is a crash, hedge funds un-

certainty about price informativeness is decreasing because they deduce that

market consists (with high likelihood) of either all A or all B traders, and

in both cases, the informativeness of their signal is the same. In contrast,

when there are either all informed or all noise traders, informativeness takes

two extreme values (0 and λ). Therefore all implications that are based on

Proposition 2, are no longer true under this specification.

1.9.2 Only I and N in the market

Another specification we could think of, would be to have a market in which

only I and N trade with each other. Then instead of hedge funds, we can have

some managers (M) who (do not trade20 but) use the price to infer informa-

tion about the quality of their firms so that they can make better investment

decisions, and we can then view the implications from the perspective of M .

As before, the managers do not know the proportion m of I to N traders.

In this model, market clearing is simply:

m
λsI − p

ασ2(1− λ)
+ (1−m)

λsN − p
ασ2(1− λ)

= Z (1.9.1)

and hence price would simply take the form

p = λ (msI + (1−m)sN)︸ ︷︷ ︸
s̃

−ασ2(1− λ)Z

Then when the manager wants to get information about the firm using

the price, he is faced with the same problem as that of the Hedge Funds of our

baseline model. In particular, a larger price is associated with a larger |s̃| and

hence leads to a reduced price informativeness. That is an explanation of why

20Managers may not trade, for instance, due to regulatory restrictions.
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extreme circumstances with very large (or very small) prices can be bad for

real efficiency. In addition, this model has an extra advantage; since, prices

are a strictly increasing function of s̃, there is no need for the assumption that

agents condition on both the price and the residual demand to get an equilib-

rium. Starting from this very simple model, we can see how informativeness

changes, when noise traders have sentiment shocks as in Mendel and Shleifer

(2012), or when noise traders are just usual liquidity traders (with normal

inelastic demand). Also, we could analyse whether the informativeness can

be computed analytically, in the more general case where both the mass of

I, mI , and mass of N, mN , are independent and unknown (in contrast with

the original model where mI + mN = 1). To sum up, under this interpreta-

tion we could have a simpler and more tractable way to think of the effect of

composition uncertainty on real economic decisions.
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Chapter 2

Sentiment and speculation in a

market

with heterogeneous beliefs

In the short run, the market is a voting machine but in the long

run it is a weighing machine.

—Attributed to Benjamin Graham by Warren Buffett.

In this paper, we study the effect of heterogeneity in beliefs on asset prices.

We work with a frictionless dynamically complete market in which uncertainty

evolves along a binomial tree. The model is populated by a continuum of risk-

averse agents who differ in their beliefs about the probability of good news

(i.e., of an “up move” in the binomial tree).

As a result, agents position themselves differently in the market. Opti-

mistic investors make leveraged bets on the market; pessimists go short. If the

market rallies, the wealth distribution shifts in favor of the optimists, whose

beliefs become overrepresented in prices. If there is bad news, money flows

to pessimists and prices more strongly reflect their pessimism going forward.

At any point in time, one can define a representative agent who chooses to
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invest fully in the risky asset, with no borrowing or lending—our analog of

Benjamin Graham’s “Mr. Market”—but the identity (that is, the level of opti-

mism) of the representative agent changes every period, with his or her beliefs

becoming more optimistic following good news and more pessimistic following

bad news. Thus market sentiment shifts constantly despite the stability of

individual beliefs.

As all agents understand the importance of sentiment and take it into

account in pricing, even moderate agents demand higher risk premia than

they would in a homogeneous economy: they correctly foresee that either

good or bad news will be amplified by a shift in sentiment. The presence

of sentiment induces speculation: agents take temporary positions, at prices

they believe to be fundamentally incorrect, in anticipation of adjusting their

positions in the future. In our model, speculation can act in either direction,

driving prices up in some states and down in others. (In fact we show that for

a broad class of assets, including the “lognormal” case in which asset payoffs

are geometric in the number of up-moves, heterogeneity drives prices down and

risk premia up.) This feature is emphasized by Keynes (1936, Chapter 12); in

Harrison and Kreps (1978b), by contrast, speculation only drives prices above

their fundamental value. In our setting it can also happen that an agent—

even the representative agent—trades in one direction this period, in certain

anticipation of reversing his or her position next period.

Extreme states are much more important than they are in a homogeneous-

belief economy. Consider a stylized example. The riskless rate is 0%. A risky

bond matures in 50 days, and will default (paying $30 rather than the par value

of $100) only in the “bottom” state of the world, that is, only if there are 50

consecutive pieces of bad news. Investors’ beliefs about the probability, h, of

an up-move are uniformly distributed between 0 and 1. Optimists therefore

think default is almost impossible; a pessimistic agent with h = 0.25 thinks

the default probability is less than 10−6. Even an agent in the 95th percentile

of pessimism, h = 0.05, thinks the default probability is less than 8%. Initially,

the representative investor is the median agent, h = 0.5, who thinks the default

probability is less than 10−15. And yet we show that the bond trades at what
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might seem a remarkably low price: $95.63. Moreover, almost half the agents—

all agents with beliefs h below 0.478—initially go short at this price, though

most will reverse their position within two periods.1 The low price arises

because all agents understand that if there is bad news next period, pessimists’

trades will have been profitable: their views will become overrepresented in

the market, so the bond’s price will decline sharply in the short run. Only

agents with h < 0.006 plan to stay short to the bitter end.

It is interesting to contemplate how an econometrician who experiences

multiple repetitions of this economy would think about pricing. Suppose for

the sake of argument that the median agent is right, so that the true probability

of an up-move is 50%. Econometric tests of short-run return behavior would

make pricing look reasonable. Half the time the bond’s price increases to

$100 and half the time the price declines to $91.62, and these facts justify the

initial price of $95.63. But at some point the econometrician might notice a

puzzle: measures of long-run value would seem to suggest that a “riskless”

bond that “always” pays off nonetheless trades at a substantial discount to

par value. With an objective default probability below 10−15, this conundrum

would outlast several econometric careers.

We start by solving the model in discrete time. Terminal payoffs are

exogenously specified, and can be arbitrary, subject to being positive at every

node so that expected utility is finite. We find the wealth distribution, prices,

all agents’ investment decisions, and gross leverage at every node. We also

characterize the cross-section of subjective perceptions of expected returns,

volatilities, and Sharpe ratios. In general we do not take a stance on what the

objectively correct beliefs are, nor even on whether there are objectively correct

beliefs. But we can relate the equity premium perceived by the representative

agent to an objectively measurable quantity, risk-neutral variance, that was

proposed as a measure of the equity premium by Martin (2017).

After providing a formula for pricing in the general discrete-time case, we

solve the model in a natural continuous-time limit in which the risky asset’s

1Assuming there are two periods of bad news; if at any stage there is good news, the
bond becomes riskless and disagreement vanishes.
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terminal payoffs are lognormally distributed. In this limit, the underlying

asset price agrees with the corresponding price in the continuous-time model

of Atmaz and Basak (2018). As our framework is more tractable, we are able

to study various issues that they do not (though, unlike us, they also price

the underlying asset in the more general power utility case). We solve for

agents’ subjective beliefs about expected returns and true (“P”) volatility at

all horizons; and for option prices at all maturities. Implied (“Q”) volatility

is higher at short horizons, due to the effect of sentiment; and lower at long

horizons, due to the moderating influence of the terminal date at which pricing

is dictated entirely by fundamentals. “In the short run, the market is a voting

machine but in the long run it is a weighing machine.”

High implied volatility in the short run is also reflected in high physi-

cal measures of volatility (on which, in this continuous-time limit, all agents

agree): there is no short-run variance risk premium. But physical measures

of volatility decline more rapidly with horizon, so that there is a long-run

variance risk premium.

As different investors have different beliefs but agree on asset prices, they

have different stochastic discount factors (SDFs) whose properties help to re-

veal the interplay of beliefs, expected returns, and volatility. The volatility

of any investor’s SDF equals the maximum Sharpe ratio that the investor

perceives as achievable by trading dynamically in the market (Hansen and

Jagannathan, 1991). By comparing this to the Sharpe ratio the investor per-

ceives on the asset if it is statically held—or shorted—to maturity, we can

measure the perceived benefit of dynamic trade (i.e., of speculation, as in our

setting the only reason to trade dynamically is to exploit differences in beliefs:

without belief heterogeneity, agents would hold a static position). We also

solve for the entropies of investors’ SDFs (Alvarez and Jermann, 2005), which

in our setting reveal the dollar value that different agents attach to being able

to speculate.

All agents in our economy, particularly those with extreme beliefs, find

speculation attractive. Extremists undertake conditional strategies that are

increasingly aggressive as the market moves in their direction; in this sense,
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they are “long volatility.” We show that each investor can be thought of as

having an investor-specific target price—the ideal outcome for the investor,

given his or her beliefs and hence trading strategy—that can usefully be com-

pared to what the investor expects to happen. The best possible outcome for

an extremist is that the market moves by even more than he or she expected.

Conversely, investors with more moderate beliefs are short volatility. Among

moderates, there is a particularly interesting gloomy investor, whose percep-

tion about the maximum attainable Sharpe ratio is most pessimistic among

all investors. The gloomy investor is slightly more pessimistic than the median

investor, so does not even perceive the market itself as earning a positive risk

premium. Among all agents in our economy, the gloomy investor attaches the

lowest dollar value to being able to participate in the market, relative to in-

vesting at the riskless rate; the (small) maximal Sharpe ratio he perceives can

be attained either via a short volatility position or, equivalently, via a con-

trarian market-timing strategy that exploits what he perceives as irrational

exuberance on the up side and irrational pessimism on the down side. The

gloomy investor can therefore be thought of as supplying liquidity to the ex-

tremists. He hopes to be proved right: in a sense that we make precise, the

best outcome for him is the one that he expects.

We make four key modelling choices. The first three are adopted from

the model of Geanakoplos (2010) which inspired this paper. First, we assume

that agents are dogmatic in their beliefs so that individuals do not experience

changes in sentiment as time passes. If we allowed investors to learn over

time, we believe that our mechanism would be amplified: that following good

news, for example, optimistic agents would become relatively wealthier, as

in our model, but all agents would also update their beliefs in an optimistic

direction.

Second, we model uncertainty as evolving on a binomial tree so that the

market is complete and agents can fully express their disagreement through

trading. With an incomplete market, by contrast, agents may have strong

differences in beliefs that are not revealed in prices. Market completeness also

permits a clean interpretation of some of our results, as it generates a per-
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fect correspondence between the cross-section and the time series. We exploit

this fact to interpret our investors’ trading behavior both in terms of condi-

tional market-timing strategies and in terms of static positions in derivative

securities.

Third, we allow for a continuum of beliefs, unlike papers including Harri-

son and Kreps (1978b), Scheinkman and Xiong (2003), Basak (2005), Banerjee

and Kremer (2010), and Bhamra and Uppal (2014). Aside from being realis-

tic, this implies that the identities of the representative investor, and of the

investor who chooses to sit out of the market entirely, are smoothly vary-

ing equilibrium objects that are determined endogenously in an intuitive and

tractable way.

Fourth, and finally, our agents are risk-averse. In this respect we depart

from several papers in the heterogeneous beliefs literature—including Harrison

and Kreps (1978b), Scheinkman and Xiong (2003) and Geanakoplos (2010)—

that assume that agents are risk-neutral. Risk-neutrality simplifies matters

in some respects, but complicates it in others. For example, short sales must

be ruled out for equilibrium to exist. This is natural in some settings, but

not if one thinks of the risky asset as representing, say, a broad stock market

index. Moreover, the aggressive behavior of risk-neutral investors leads to

extreme predictions: every time there is a down-move in the Geanakoplos

model, all agents who are invested in the risky asset go bankrupt. From a

technical point of view, short-sales constraints and risk-neutrality combine to

give agents kinked indirect utility functions. Our agents have smooth indirect

utility functions, and ultimately this is responsible for the tractability of our

model and for our ability to study the dynamics described above.

2.1 Setup

We work in discrete time, with periods running from 0 to time T . Uncertainty

evolves on a binomial tree, so that whatever the current state of the world,

there are two possible successor states next period: “up” and “down.” There
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is a risky asset, whose payoffs at the terminal date T are specified exogenously.

We normalize the net interest rate to 0%.

There is a unit mass of agents indexed by h ∈ (0, 1). All agents have

log utility and zero time-preference rate, and are initially endowed with one

unit of the risky asset, which we will think of as representing “the market.”

Agent h believes that the probability of an up-move is h; we often refer to h

as the agent’s belief, for short. By working with the open interval (0, 1), as

opposed to the closed interval [0, 1], we ensure that the investors’ beliefs are

all absolutely continuous with respect to each other: that is, they all agree

on what events can possibly happen. This means in particular that no investor

will allow his wealth to go to zero in any state of the world.

The mass of agents with belief h follows a beta distribution governed by

two parameters, α and β, such that the PDF is2

f(h) =
hα−1(1− h)β−1

B(α, β)
.

The parameters α and β must be positive, but can otherwise be set arbitrarily.

If α = β then the distribution of beliefs is symmetric with mean 1/2. If

α = β = 1 then f(h) = 1, so that beliefs are uniformly distributed over (0, 1);

this is a useful case to keep in mind as one works through the algebra. The case

α 6= β allows for asymmetric distributions with mean α/(α+ β) and variance

2The beta function B(·, ·) is defined by

B(x, y) =

∫ 1

h=0

hx−1(1− h)y−1 dh .

If x and y are integers, then

B(x, y) =
(x− 1)!(y − 1)!

(x+ y − 1)!
,

and more generally the beta function is related to the gamma function as follows:

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)
.

We will repeatedly use basic facts about the beta function, such as that B(x, y) = B(y, x),
and that B(x+ 1, y) = B(x, y) · x

x+y .
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Figure 2.1.1: The distribution of beliefs for various choices of α and β.

αβ/[(α + β)2(α + β + 1)]. Thus the distribution shifts toward 1 if α > β and

toward 0 if α < β, and beliefs are highly concentrated around the mean when

α and β are large: if, say, α = 90 and β = 10 then beliefs are concentrated

around a mean of 0.9, with standard deviation 0.030. Figure 2.1.1 plots the

distribution of beliefs, h, for a range of choices of α and β.

2.2 Equilibrium

Suppose that the price of the risky asset at the current node is p, and that

it will be either pd or pu next period, where we assume that pd 6= pu so that

the pricing problem is nontrivial. Suppose also that agent h has wealth wh at

the current node. If he chooses to hold xh units of the asset, then his wealth

next period is wh − xhp + xhpu in the up-state and wh − xhp + xhpd in the

down-state. So the portfolio problem is to solve

max
xh

h log [wh − xhp+ xhpu] + (1− h) log [wh − xhp+ xhpd] .

The agent’s first-order condition is therefore

xh = wh

(
h

p− pd
− 1− h
pu − p

)
. (2.2.1)
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The sign of xh is that of p − pu for h = 0 and that of p − pd for h = 1.

These must have opposite signs to avoid an arbitrage opportunity, so there

will always be some agents who are short and others who are long. The most

optimistic agent3 levers up as much as possible without risking default, and

correspondingly the most pessimistic agent takes on the largest short position

possible that does not risk default if the good state occurs. For, the first-

order condition (2.2.1) implies that as h→ 1, agent h holds wh/(p− pd) units

of stock. This is the largest possible position that does not risk default: to

acquire it, the agent must borrow whp/(p − pd) − wh = whpd/(p − pd). If

the unthinkable (to this most optimistic agent!) occurs and the down state

materialises, the agent’s holdings are worth whpd/(p − pd), which is precisely

what the agent owes to his creditors.

It will often be convenient to think in terms of the risk-neutral probability

of an up-move, p∗, defined by the property that the price can be interpreted as

a risk-neutral expected payoff, p = p∗pu+(1−p∗)pd. (There is no discounting,

as the riskless rate is zero.) Hence

p∗ =
p− pd
pu − pd

.

In these terms, the first-order condition (2.2.1) becomes

xh =
wh

pu − pd
h− p∗

p∗(1− p∗)
,

for example. An agent whose h equals p∗ will have zero position in the risky

asset: by the defining property of the risk-neutral probability, such an agent

perceives that the risky asset has zero expected excess return.

3This is an abuse of terminology: there is no ‘most optimistic agent’ since h lies in the
open set (0, 1). More formally, this discussion relates to the behavior of agents in the limit
as h → 1. An agent for whom h = 1 would want to take arbitrarily large levered positions
in the risky asset, so there is a behavioral discontinuity at h = 1 (and similarly at h = 0).
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Agent h’s wealth next period is therefore

wh + xh(pu − p) = wh(pu − pd)
h

p− pd
= wh

h

p∗
(2.2.2)

in the up-state, and

wh − xh(p− pd) = wh(pu − pd)
1− h
pu − p

= wh
1− h
1− p∗

(2.2.3)

in the down-state. In either case, all agents’ returns on wealth are linear in

their beliefs. Moreover, this relationship (which is critical for the tractability

of our model) applies at every node. It follows that person h’s wealth at the

current node must equal

λpathh
m(1− h)n

where λpath is a constant that is independent of h but which can depend on

the path travelled to get to the current node, which we have assumed has m

up and n down steps.

As aggregate wealth is equal to the value of the risky asset—which is in

unit supply—we must have∫ 1

0

λpathh
m(1− h)nf(h) dh = p.

This enables us to solve for the value of λpath:

λpath =
B(α, β)

B(α +m,β + n)
p.

(This expression can be written in terms of factorials if α and β are integers:

for example, if α = β = 1 then λpath = (m+n+1)!
m!n!

p. See footnote 2.)

Substituting back, agent h’s wealth equals

wh =
B(α, β)

B(α +m,β + n)
hm(1− h)np. (2.2.4)

This is maximized by h ≡ m/(m + n): the agent whose beliefs turned out to
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be most accurate ex post ends up richest.

The wealth distribution—that is, the fraction of aggregate wealth held by

type-h agents—is a probability distribution over h. Specifically, it is the beta

distribution with parameters α +m and β + n,

whf(h)

p
=
hα+m−1(1− h)β+n−1

B(α +m,β + n)
. (2.2.5)

We can now revisit Figure 2.1.1 in light of this fact. For the sake of argument,

suppose that α = β = 1 so that wealth is initially distributed uniformly across

investors of all types h ∈ (0, 1). If, by time 4, there have been m = 1 up-

and n = 3 down-moves, then equation (2.2.5) implies that the new wealth

distribution follows the line denoted α = 2, β = 4. (Investors with h close

to 0 or to 1 have been almost wiped out by their aggressive trades; the best

performers are moderate pessimists with h = 1/4, whose beliefs happen to

have been vindicated ex post.) At time 8, following three more up-moves

and one down-move, the new wealth distribution is marked by α = β = 5.

And if by time 12 there have been a further four up-moves then the wealth

distribution is marked by α = 9, β = 5. The changing wealth distribution

in this example illustrates a key feature of our model: at any point in time,

wealth is concentrated in the hands of investors whose beliefs appear correct

in hindsight.

Now we solve for the equilibrium price using the first-order condition

xh =
B(α, β)

B(α +m,β + n)
hm(1− h)np︸ ︷︷ ︸

wh

(
h

p− pd
− 1− h
pu − p

)
.

The price p adjusts to clear the market, so that in aggregate the agents hold

one unit of the asset:∫ 1

0

xhf(h) dh =
p [(m+ α)(pu − p)− (n+ β)(p− pd)]

(m+ n+ α + β)(pu − p)(p− pd)
= 1.

61



It follows that

p =
(m+ α)pdpu + (n+ β)pupd

(m+ α)pd + (n+ β)pu
. (2.2.6)

Equivalently, the risk-neutral probability of an up-move must satisfy

p∗ =
(m+ α)pd

(m+ α)pd + (n+ β)pu

in equilibrium.

These results can usefully be interpreted in terms of wealth-weighted be-

liefs. For example, at time t, after m up-moves and n = t −m down-moves,

the wealth-weighted cross-sectional average belief, Hm,t, can be computed with

reference to the wealth distribution (2.2.5):

Hm,t =

∫ 1

0

h
whf(h)

p
dh =

m+ α

t+ α + β
. (2.2.7)

In these terms we can write

p∗ =
Hm,tpd

Hm,tpd + (1−Hm,t)pu
. (2.2.8)

It follows that
pu
p

=
Hm,t

p∗
and

pd
p

=
1−Hm,t

1− p∗
. (2.2.9)

Hence p∗ is smaller than Hm,t if pu > pd and larger than Hm,t if pu < pd: in

either case, risk-neutral beliefs are more pessimistic than the wealth-weighted

average belief.

The share of wealth an agent of type h invests in the risky asset is

xhp

wh
= p

(
h

p− pd
− 1− h
pu − p

)
=

h

1− pd
p

− 1− h
pu
p
− 1

.

62



h=1h=0 h=Hm,th=p*

shorts balanced levered optimists

representative agentall cash

Figure 2.2.1: The range of beliefs in the investor population.

This can be rewritten in a more compact form using (2.2.9):

xhp

wh

(2.2.9)
=

h

1− 1−Hm,t
1−p∗

− 1− h
Hm,t
p∗
− 1

=
h− p∗

Hm,t − p∗
. (2.2.10)

So the agent with h = Hm,t can be thought of as the representative agent : by

equation (2.2.10), this is the agent who chooses to invest her wealth fully in

the market, with no borrowing or lending.

The identity of the representative investor therefore moves around over

time, as does the identity of the investor with h = p∗ who chooses to hold his

or her wealth fully in the bond. Figure 2.2.1 illustrates in the case pu > pd,

so that p∗ < Hm,t. Pessimistic investors with h < p∗ choose to short the risky

asset; moderate investors with p∗ < h < Hm,t hold a balanced portfolio with

long positions in both the bond and the risky asset; and optimistic investors

with h > Hm,t take on leverage, shorting the bond to go long the risky asset.

In a homogeneous economy in which all agents agree on the up-probability,

h = H, it is easy to check that

p∗ =
Hpd

Hpd + (1−H)pu
. (2.2.11)

Comparing equations (2.2.8) and (2.2.11), we see that for short-run pricing

purposes our heterogeneous economy looks the same as a homogeneous econ-
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omy featuring a representative agent with belief Hm,t. But as the identity of

the representative agent changes over time, the similarity will disappear when

we study the pricing of multi-period claims.

For future reference, the risk-neutral variance of the asset is

p∗
(
pu
p

)2

+ (1− p∗)
(
pd
p

)2

− 1 =
(Hm,t − p∗)2

p∗ (1− p∗)
. (2.2.12)

Below, we will compare this quantity with subjective expected returns, moti-

vated by the results of Martin (2017).

We can also use equation (2.2.10) to calculate the leverage ratio of investor

h, which we define as the ratio of funds borrowed, xhp− wh, to wealth, wh:

xhp− wh
wh

=
h−Hm,t

Hm,t − p∗
. (2.2.13)

If pu > pd then p∗ < Hm,t, by (2.2.9); in this case equation (2.2.13) shows

that people who are optimistic relative to the representative investor borrow

from pessimists. We can define gross leverage as the total dollar amount these

optimists borrow,4 scaled by aggregate wealth:∫ 1

Hm,t
(xhp− wh) f(h) dh

p
=

∫ 1

Hm,t

whf(h)

p

xhp− wh
wh

dh

=

∫ 1

Hm,t

whf(h)

p

h−Hm,t

Hm,t − p∗
dh

=
Hm+α
m,t (1−Hm,t)

n+β

(m+ α + n+ β)B(α +m,β + n)(Hm,t − p∗)
.

Conversely, if pu < pd then optimists are lenders and pessimists borrowers. In

either case, we can define gross leverage as the absolute value of the above

expression,
Hm+α
m,t (1−Hm,t)

n+β

(m+ α + n+ β)B(α +m,β + n) |Hm,t − p∗|
. (2.2.14)

4The total dollar amount borrowed by all investors is zero, as the riskless asset is in
zero net supply.
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p = 0.96
p = 1.00
H0,0 = 0.50
p* = 0.29

p = 0.68
p = 0.75
H0,1 = 0.33
p* = 0.20

p = 1.69
p = 1.50
H1,1 = 0.67
p* = 0.50

p = 0.56

p = 1.13

p = 2.25

Figure 2.2.2: At each node, p denotes the price in a homogeneous economy
with H = 1/2; p is the price in a heterogeneous economy with α = β = 1;
and p∗ and Hm,t indicate the risk-neutral probability of an up-move and the
identity of the representative agent in the heterogeneous economy. In the
homogeneous economy, the risk-neutral probability of an up-move is 1/3 at
every node.

Alternatively, scaling by the wealth of the borrowers and assuming that pu > pd

for simplicity, we define borrower fragility∫ 1

Hm,t
(xhp− wh) f(h) dh∫ 1

Hm,t
whf(h) dh

=

∫ 1

Hm,t

whf(h)
p

xhp−wh
wh

dh∫ 1

Hm,t

whf(h)
p

dh
, (2.2.15)

which equals gross leverage divided by the fraction of wealth held by borrowers.

Figure 2.2.2 gives a numerical example with uniformly distributed beliefs

(i.e., α = β = 1) and T = 2. Terminal payoffs are chosen so that (i) pu/pd = 2

at the penultimate nodes and (ii) the asset would initially trade at a price

of 1 in a homogeneous economy with H = 1/2. Initially, sentiment in the

heterogeneous belief economy is the same—H0,0 = 1/2—but the price is lower,

at 0.96, because of the anticipated effect of future sentiment. If bad news

arrives, money flows to pessimists, the identity of the representative agent and

risk-neutral beliefs become more pessimistic, and the price declines. Figure

2.2.3 shows the evolution of gross leverage and borrower fragility in the same

65



GL: 0.58
BF: 1.17

GL: 0.74
BF: 1.67

GL: 0.59
BF: 1.07

Figure 2.2.3: Gross leverage (GL) and borrower fragility (BF) at each node of
the numerical example shown in Figure 2.2.2.

numerical example.

2.2.1 Subjective beliefs

Investors disagree on the properties of the asset. Consider first moments.

Agent h’s subjectively perceived expected excess return on the market is

hpu + (1− h)pd
p

− 1 =
(h− p∗)(pu − pd)

p
=

(h− p∗)(Hm,t − p∗)
p∗(1− p∗)

. (2.2.16)

Hence the share of wealth invested by agent h in the market (2.2.10) equals

the ratio of the subjectively perceived expected excess return on the market

(2.2.16) to (objectively defined) risk-neutral variance (2.2.12). In particular,

risk-neutral variance reveals the expected excess return perceived by the rep-

resentative agent, which is given by equation (2.2.16) with h = Hm,t.
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mean: 22.5%
rep. agent: 22.5%
st. dev.: 30.3%

mean: 25.0%
rep. agent: 11.1%
st. dev.: 24.1%

mean: 0.0%
rep. agent: 11.1%
st. dev.: 19.2%

Figure 2.2.4: Mean subjective expected excess returns (2.2.17), the ex-
pected excess return perceived by the representative agent (2.2.18), and cross-
sectional standard deviation of subjective expected excess returns (2.2.19) in
the example shown in Figure 2.2.2. In a homogeneous economy with H = 1/2,
all agents perceive an expected excess return of 12.5% at every node.

The cross-sectional average expected excess return is(
α

α+β
− p∗

)
(Hm,t − p∗)

p∗(1− p∗)
, (2.2.17)

which may be positive or negative. But the wealth-weighted cross-sectional

average expected excess return must be positive: by (2.2.7), it equals∫ 1

0

wh
p

(h− p∗)(Hm,t − p∗)
p∗(1− p∗)

f(h) dh =
(Hm,t − p∗)2

p∗ (1− p∗)
. (2.2.18)

Note that this quantity can also be interpreted as the expected excess return

perceived by the representative agent h = Hm,t. The cross-sectional standard

deviation of return expectations is√
αβ

(α + β)2 (α + β + 1)

|Hm,t − p∗|
p∗(1− p∗)

, (2.2.19)
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using the formula for the standard deviation of the beta distributed random

variable h in equation (2.2.16). Figure 2.2.4 shows the evolution of these

quantities in the example of Figure 2.2.2.

Next we consider second moments. Person h’s subjectively perceived vari-

ance of the asset’s return is

h

(
pu
p

)2

+ (1− h)

(
pd
p

)2

−
(
hpu + (1− h)pd

p

)2

=
h(1− h) (Hm,t − p∗)2

p∗2(1− p∗)2
,

and person h’s perceived Sharpe ratio is therefore

h− p∗√
h(1− h)

,

which is increasing in h for all p∗.

The variance risk premium perceived by investor h (that is, subjective

minus risk-neutral variance) is equal to

(Hm,t − p∗)2

p∗(1− p∗)

[
h(1− h)

p∗(1− p∗)
− 1

]
.

This is maximized (and weakly positive) for investor h = 1/2, and negative

for agents with beliefs h that are further from 1/2 than p∗ is.

The wealth return for agent h is h/p∗ in the up state and (1−h)/(1− p∗)
in the down state, as shown in equations (2.2.2) and (2.2.3). So agent h’s

subjective expected excess return on own wealth is

h2

p∗
+

(1− h)2

1− p∗
− 1 =

(h− p∗)2

p∗(1− p∗)
.

All agents expect to earn a nonnegative excess return on wealth, though they

have very different positions. Only agent h = p∗ chooses to take no risk, fully

invests in the bond, and so correctly anticipates zero excess return.
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2.2.2 A risky bond

The dynamic that drives our model is particularly stark in the “risky bond”

example outlined in the introduction. Suppose that the terminal payoff is 1 in

all states apart from the very bottom one, in which the payoff is ε; the price of

the asset is therefore 1 as soon as an up-move occurs. Writing pt for the price

at time t following t consecutive down-moves we have, from equation (2.2.6),

pt =
αpt+1 + (t+ β)pt+1

αpt+1 + t+ β
.

Defining yt ≡ 1/pt − 1, this can be rearranged as

yt =
β + t

α + β + t
yt+1. (2.2.20)

We can interpret yt as the inducement to invest in the risky asset at time t,

following t consecutive down-moves: it is the realized excess return on the

asset if there is an up-move from t to t+ 1. Equation (2.2.20) determines the

rate at which this inducement must rise in equilibrium.

Solving equation (2.2.20) forward,

yt =
(β + t)(β + t+ 1) · · · (β + T − 1)

(α + β + t)(α + β + t+ 1) · · · (α + β + T − 1)
yT ,

and the terminal condition dictates that yT = (1− ε)/ε. Thus, finally,

pt =
1

1 + Γ(β+T )Γ(α+β+t)
Γ(β+t)Γ(α+β+T )

1−ε
ε

.

If α = β = 1, we can simplify further, to

pt =
1

1 + 1+t
1+T

1−ε
ε

. (2.2.21)

We can calculate the risk-neutral probability of an up-move at time t,

which we (temporarily) denote by p∗t , by applying (2.2.9) with p = pt, pu = 1,
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Figure 2.2.5: Left: The risky bond’s price over time in the heterogeneous
and homogeneous economies following consistently bad news. Right: H0,t

reveals the identity of the representative agent at time t following consistently
bad news. Investors who are more optimistic, h > H0,t, have leveraged long
positions in the risky bond. The risk-neutral probability reveals the identity
of the investor who is fully invested in the riskless bond at time t, with zero
position in the risky bond. Investors who are more pessimistic, h < p∗t , are
short the risky bond. Investors with p∗t < h < H0,t (shaded) are long both the
risky and the riskless bond.

and pd = pt+1 to find that

p∗t = H0,tpt =
αpt

α + β + t
. (2.2.22)

Figure 2.2.5 illustrates these calculations in the example described in the

introduction, with T = 50 periods to go, and a recovery value of ε = 0.30.

The panels show how the price and risk-neutral probability evolve if bad news

arrives each period. Initially, the bond trades at what might seem a remarkably

low price of 0.9563.

By contrast, in a homogeneous economy with H = 1/2 the price, pt, and

risk-neutral probability, p∗t , following t down-moves would be

pt =
1

1 + 1−ε
ε

0.5T−t
and p∗t =

pt
2
,

respectively. Thus with homogeneous beliefs the bond price is approximately

1, and the risk-neutral probability of an up-move is approximately 1/2, until
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shortly before the bond’s maturity.

From the perspective of time 0, the risk-neutral probability of default—

call it δ∗—satisfies

p0 = 1− δ∗ + δ∗ε, so δ∗ =
1− p0

1− ε
.

In the homogeneous case, therefore,

δ∗ =
1

1 + ε (2T − 1)
= O(2−T ) ;

and in the heterogeneous case with α = 1,

δ∗ =
1

1 + εT
= O(1/T ).

There is a qualitative difference between the homogeneous economy, in which

default is exponentially unlikely, and the heterogeneous economy, in which

default is only polynomially unlikely.5

To understand pricing in the heterogeneous economy, it is helpful to think

through the portfolio choices of individual investors. We use equations (2.2.5),

(2.2.7), and (2.2.10), together with the prices and risk-neutral probabilities

given in (2.2.21) and (2.2.22) above, to find investors’ holdings of the risky

asset at each node.

The median investor, h = 0.5, thinks the probability that the bond will

default—i.e., that the price will follow the path shown in Figure 2.2.5 all the

way to the end—is 2−50 < 10−15. Even so, he believes the price is right at time

zero (in the sense that he is the representative agent) because of the short-run

impact of sentiment. Meanwhile, a modestly pessimistic agent with h = 0.25

will choose to short the bond at the price of 0.9563—and will remain short at

time t = 1 before reversing her position at t = 2—despite believing that the

5This holds more generally for any α = β > 1: it is easy to show that δ∗ = O (T−α)
by Stirling’s formula. It is also true if ε > 1, i.e. in the ‘lottery ticket’ case. Then, δ∗ is
interpreted as the probability of the lottery ticket paying off, which is exponentially small in
the homogeneous economy but only polynomially small in the heterogeneous belief economy.
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Figure 2.2.6: Left: The number of units of the risky bond held by different
agents, xh,t, plotted against time. Right: The evolution of leverage for the
median investor under the optimal dynamic and static strategies. Both panels
assume bad news arrives each period.

bond’s default probability is less than 10−6. (Recall from equation (2.2.10)

that p∗t is the belief of the agent who is neither long nor short the asset. More

optimistic agents, h > p∗, are long, and more pessimistic agents, h < p∗, are

short.) Following a few periods of bad news, almost all investors are long, but

the most pessimistic investors have become extraordinarily wealthy.

The left panel of Figure 2.2.6 shows the holdings of the risky asset for

a range of investors with different beliefs, along the trajectory in which bad

news keeps on coming. The optimistic investor h = 0.75 starts out highly

leveraged so rapidly loses almost all his money. The median investor, h = 0.5,

initially invests fully in the risky bond without taking on leverage. If bad

news arrives, this investor takes on leverage in order to be able to increase the

size of her position despite her losses; after about 10 periods, the investor is

almost completely wiped out. Moderately bearish investors start out short.

For example, investor h = 0.25 starts out short about 10 units of the bond,

despite believing that the probability it defaults is less than one in a million,

but reverses her position after two down-moves. Investor h = 0.01, who thinks

that there is more than a 60% chance of default, is initially extremely short but

eventually reverses position as still more bearish investors come to dominate

the market.

The right panel of Figure 2.2.6 shows how the median investor’s lever-
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age changes over time if he follows the optimal dynamic and static strategies.

If forced to trade statically, his leverage ratio is initially 0.457. This seem-

ingly modest number is dictated by the requirement that the investor avoid

bankruptcy at the bottom node (and in fact the leverage of all investors with

h ≥ 0.2 is visually indistinguishable at the scale of the figure). If the median

investor can trade dynamically, by contrast, the optimal strategy is, initially,

to invest fully in the risky bond without leverage. Subsequently, however, op-

timal leverage rises fast. Thus the dynamic investor keeps his powder dry by

investing cautiously at first but then aggressively exploiting further selloffs.

All investors perceive themselves as better off if able to trade dynami-

cally, of course. In Appendix 2.6 we analytically characterize the perceived

advantage of dynamic versus static trade as a function of each investor’s belief

h.

The volume of trade (in terms of the number of units of the risky asset

transacted) in the transition from time t to time t+ 1 is6

1

2

∫ 1

0

∣∣∣∣∣(1− h)t

1
1+t

h− p∗t
H0,t − p∗t

− (1− h)t+1

1
2+t

h− p∗t+1

H0,t+1 − p∗t+1

∣∣∣∣∣ dh =
4(1 + t)1+t

(3 + t)3+t

(
1 + t+

1 + εT

1− ε

)
,

while gross leverage and borrower fragility, calculated from (2.2.14) and (2.2.15),

equal(
1 + t

2 + t

)2+t(
1 +

1 + T

1 + t

ε

1− ε

)
and

(
1 + t

2 + t

)(
1 +

1 + T

1 + t

ε

1− ε

)
respectively.

The left panel of Figure 2.2.7 shows the time series of volume, gross lever-

age, and borrower fragility. In this stylized example there is a burst of trade

at first: volume substantially exceeds the total supply of the asset initially,

as agents with extreme views undertake highly leveraged trades, but declines

rapidly over time as wealth becomes concentrated in the hands of investors

with similar beliefs. The right panel shows the corresponding series if ε = 0.9.

6We include the factor of 1/2 to avoid double-counting.
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Figure 2.2.7: Volume (solid), gross leverage (dashed), and borrower fragility
(dotted) over time, with ε = 0.3 (left) or ε = 0.9 (right). Heterogeneous case
only: volume is zero in the homogeneous economy.

In this case disagreement generates more aggressive trading, and more volume,

because the relative safety of the asset permits agents to take on more lever-

age: extremists on both sides of the market are “picking up nickels in front of

a steamroller.”

2.2.3 An example with late resolution of uncertainty

Consider an example with an odd number of periods, T , and α = β = 1; and

let 0 < ε < 1. If there have been an even number of up-moves at time T , the

asset pays off 1
1+ε

; if there have been an odd number of up-moves, the asset

pays 1
1−ε .

In the homogeneous economy with H = 1/2, the asset trades at a price of

1 in every node, and at every period, until the terminal payoff: it is therefore

riskless until the final period.

In the heterogeneous economy it follows immediately from Result 1, below,

that the asset also trades at 1 initially. But the asset is now volatile: although

the payoff of the asset is up in the air until the very last period, the effect of

sentiment ripples back so that the asset is volatile throughout its lifetime, and

its price therefore embeds a risk premium.7

7There is also an equilibrium in which the asset’s price is 1 until time T − 1, as in the
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Figure 2.2.8: An example with late resolution of uncertainty. Heterogeneous-
economy price (p), homogeneous-economy price (p), and the cross-sectional
average perceived excess return in the heterogeneous economy (ER).

Figure 2.2.8 shows an example with T = 3 and ε = 1/2. In a homogeneous

economy, the asset’s price is completely stable until immediately before the

terminal date. In the heterogeneous economy, the asset’s price is volatile, and

it embeds a time-varying risk premium.

2.2.4 The general case

Write zm,t = 1/pm,t, where m is the number of up moves that have taken place

by time t. Equation (2.2.6) implies that the following recurrence relation holds

at each node:

zm,t = Hm,tzm+1,t+1 + (1−Hm,t)zm,t+1. (2.2.23)

That is, the price at each node is the weighted average harmonic mean of the

next-period prices, with weights given by the beliefs of the representative agent

at the relevant node. By backward induction, z0,0 is a linear combination of

homogeneous economy. Then the market is incomplete, and agents have no means of betting
against one another. But this equilibrium is not robust to vanishingly small perturbations
of the terminal payoffs, which would restore market completeness.
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zi,T , for i = 0, 1, . . . T :

z0,0 =
T∑

m=0

cmzm,T . (2.2.24)

Pricing is not path-dependent in our economy. Indeed, we have

m+ α

t+ α + β︸ ︷︷ ︸
Hm,t

t−m+ β

t+ 1 + α + β︸ ︷︷ ︸
1−Hm+1,t+1

=
t−m+ β

t+ α + β︸ ︷︷ ︸
1−Hm,t

m+ α

t+ 1 + α + β︸ ︷︷ ︸
Hm,t+1

.

Equivalently, given (2.2.9), the risk-neutral probability of going up and then

down (from any starting node) equals the risk-neutral probability of going

down and then up. That is,

p∗m,t(1− p∗m+1,t+1) = (1− p∗m,t)p∗m,t+1.

These observations allow us to find a general pricing formula that applies

for arbitrary terminal payoffs pm,T . (The payoffs must be positive so that the

expected utility of any agent is well defined.) The proof of the result, and all

subsequent results, is in the Appendix.

Result 1. If the risky asset has terminal payoffs pm,T at time T (for m =

0, . . . , T ), then its initial price is

p0 =
1

T∑
m=0

cm
pm,T

, (2.2.25)

where

cm =

(
T

m

)
B(α +m,β + T −m)

B(α, β)
. (2.2.26)

The time 0 price of the Arrow–Debreu security that pays off if there have

been m up-moves by time T is

q∗m = cm
p0

pm,T
.
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The coefficients cm have a so-called beta-binomial distribution, BB(T, α, β).

This is a binomial distribution with a random probability of success in each

trial given by a Beta(α, β) distribution.8 In the Appendix, we generalize equa-

tion (2.2.24) and Result 1 to price the risky asset at any node.

As a corollary of Result 1, we can find the effect of belief heterogeneity

on prices for a broad class of assets.

Result 2. If beliefs are symmetric, and the risky asset has terminal payoffs

such that 1
pm,T

is convex if viewed as a function of m, then the asset’s time

0 price is decreasing in the degree of belief heterogeneity. In particular, it is

sufficient (though not necessary) that log pm,T be concave for the asset’s price

to be decreasing in the degree of belief heterogeneity.

Result 2 applies if the terminal payoff is concave in m. But it also applies

for some convex payoffs. If, for example, the asset’s payoffs increase or decrease

geometrically in m, then the log payoffs are linear in m, so that the concavity

condition (just) holds. We provide a more extensive analysis of this case in

the next section.

2.3 A diffusion limit

We consider a natural continuous time limit by allowing the number of periods

to tend to infinity and specifying geometrically increasing terminal payoffs.

This is the setting of Cox et al. (1979), in which the Black–Scholes formula

emerges in the corresponding limit with homogeneous beliefs. We are able to

solve for the asset price, risk-neutral probabilities, the volatility term structure,

individuals’ trading strategies, and other quantities of interest.

Denote by 2N the total number of periods (corresponding to time T ).9

8In fact, cm can be interpreted as the cross-sectional average (among investors) perceived
probability of reaching node (m,T ).

9The choice of an even number of periods is unimportant, but it simplifies the notation
in some of our proofs.
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We assume that

pm,T = e2σ
√

T
2N

(m−N). (2.3.1)

As we will see, σ can be interpreted as the volatility of terminal payoffs (on

which all agents will turn out to agree). If we set λ = eσ
√

T
2N , then we see

that pm,2N = λm( 1
λ
)2N−m, where λ = u = d−1 and u, d are the up and down

percentage movements of the stock price in the Cox–Ross–Rubinstein model.

If we now set ψ = m−N√
N

then pm,T = eσ
√

2Tψ. From the perspective of each

agent, m has a binomial distribution; we show, in the Appendix, that in the

limit as N →∞, ψ has an asymptotic normal distribution from the perspective

of each investor.

We use Result 1 to price the asset at each node of the tree, then take the

limit as N tends to infinity. As the number of up/down steps increases with N ,

the extent of disagreement over any individual step must decline to generate

sensible limiting results—that is, we allow the parameters α, β, which control

the belief dispersion in the market, to tend to infinity with N . In particular we

will write α = θN + η
√
N and β = θN − η

√
N . Small values of θ correspond

to a high belief heterogeneity, while the limit θ → ∞ corresponds to the

homogeneous case; we will refer to 1
θ

as capturing the degree of heterogeneity

in the market. The level of optimism in the market is captured by η.

To be more precise, we will introduce a cross-sectional expectation opera-

tor Ẽ[·]. So, for example, the cross-sectional mean of h satisfies Ẽ[h] = α
α+β

=
1
2

+ η

2θ
√
N

and ṽar[h] = αβ
(α+β)2(α+β+1)

= 1
8θN+1

+ O( 1
N2 ). As Ẽ

[
E(h)[ψ]

]
= η

θ
,

we can interpret η as controlling the cross-sectional mean expected terminal

payoff.

In the work of Cox, Ross, and Rubinstein, the central limit theorem is

used to approximate a binomial distribution with a normal random variable.

A similar, though slightly more convoluted, situation arises in our setting. The

argument starts by rewriting equation (2.2.24) as10

p−1
0 = Em

[
e
−σ
√

2T m−N√
N

]
= Mψ

(
−σ
√

2Tψ
)
.

10From now on we suppress the explicit dependence of price on state in our notation and
write, for example, p0 rather than p0,0.
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where we write Em to indicate that that the expectation is taken over m which,

by Result 1, can be viewed as a random variable following the beta-binomial

distribution with parameters 2N , α, and β; and Mψ(·) denotes the moment

generating function (MGF) of ψ = m−N√
N

. As ψ is asymptotically normal by a

result of Paul and Plackett (1978), Mψ(·) converges to the MGF of a Normal

distribution—a known, and simple, function. We provide full details in the

Appendix.

Result 3. The price of the asset at time 0 is given by:

p0 = exp

(
η

θ
σ
√

2T − θ + 1

2θ
σ2T

)
. (2.3.2)

If η = 0, so that the cross-sectional distribution of beliefs is symmetric

around h = 1/2, then the price at time 0 is decreasing in the degree of hetero-

geneity, θ−1, consistent with Result 2. But if the cross-sectional average belief

is sufficiently optimistic—that is, if η is sufficiently positive—then the price

may be increasing in the heterogeneity of beliefs.

We now study what this price implies for different agents’ expectations

about returns. We parametrize an agent by the number of standard deviations,

z, by which his or her belief deviates from the mean: h = Ẽ[h] + z
√

ṽar[h] ≈
1
2

+ η

2θ
√
N

+ z√
8θN

.11 Thus an agent with z = 2 is two standard deviations more

optimistic than the mean agent. When we use this parametrization, we write

superscripts z rather than h (for example, E(z) rather than E(h)).

Result 4. The return of the asset from time 0 to time t, from the perspective

of agent h = Ẽ[h] + z
√

ṽar[h] has a lognormal distribution with

E(z) logR0→t =
θ + 1

θ + t
T

(
zσ√
θT

+
θ + 1

2θ
σ2

)
t

var(z) logR0→t =

(
θ + 1

θ + t
T

)2

σ2t .

11Note that Ẽ[h] = α
α+β = 1

2 + η

2θ
√
N

and ṽar[h] = αβ
(α+β)2(α+β+1) = 1

8θN+1 +O( 1
N2 ). The

lower order terms, O(1/N2), will not play any role as N approaches infinity.
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The expected return on the asset follows immediately:

Result 5. The (annualized) expected return of the asset from 0 to t is

1

t
log E(z)R0→t =

θ + 1

θ + t
T

[
zσ√
θT

+
θ + 1

2θ

2θ + t
T

θ + t
T

σ2

]
.

In particular, the instantaneous expected return is

lim
t→0

1

t
log E(z)R0→t =

θ + 1

θ

zσ√
θT

+

(
θ + 1

θ

)2

σ2

and the expected return to maturity is

1

T
log E(z)R0→T =

zσ√
θT

+
2θ + 1

2θ
σ2. (2.3.3)

Results 4 and 5 show that although different agents perceive different

expected returns, all agents agree on the (true) volatility of returns.

Result 6. Recall that Ẽ is the cross-sectional expectation operator. The cross-

sectional mean (or median) expected return is12

Ẽ

[
1

t
log E(z)R0→t

]
=

(θ + 1)2
(
θ + t

2T

)
θ
(
θ + t

T

)2 σ2.

Disagreement is the standard deviation of expected returns 1
t

log E(z)R0→t:√
ṽar

[
1

t
log E(z)R0→t

]
=
θ + 1

θ + t
T

σ√
θT

.

12One could also measure the cross-sectional average expected return as

1

t
log ẼE(z)R0→t =

(θ + 1)2

θ
(
θ + t

T

)σ2 = σ̃2 .

It follows from this that ẼE(z)R0→t − 1 = SVIX2
t . However, if t = 10 years, as in Cam

Harvey’s data set, it is somewhat implausible that investors are directly reporting E(z)R0→t.
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Figure 2.3.1: The term structures of implied volatility and of annualized phys-
ical volatility.

Our next result characterizes option prices at all maturities t ≤ T and

all strikes K. As always, options can be quoted in terms of the Black–Scholes

formula. What is more unusual is that in our setting, implied volatilities can

be expressed in a simple but non-trivial closed form.

Result 7. The time 0 price of an option with maturity t and strike price K is

C(t,K) = p0Φ(d1)−KΦ(d1 − σ̃
√
t) , (2.3.4)

where

d1 =
log (p0/K) + 1

2
σ̃2t

σ̃
√
t

and σ̃ =
θ + 1√
θ(θ + t

T
)
σ .

In particular, short-dated options (with t/T → 0) have σ̃ = θ+1
θ
σ, and long-

dated options (with t = T ) have σ̃ =
√

θ+1
θ
σ.

Implied volatility is increasing in the degree of heterogeneity θ−1; as the

degree of heterogeneity θ−1 goes to 0, we recover the conventional Black–

Scholes formula with an implied volatility of σ. Assuming θ−1 > 0, the term

structure of implied volatility is downward-sloping. For comparison, recall

from Result 4 that all agents agree on physical volatility, which is

1√
t
σ(z) (logR0→t) =

θ + 1

θ + t
T

σ =

√
θ

θ + t
T

σ̃.
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Model Data

1mo implied vol 18.6% 18.6%

1yr implied vol 18.2% 18.1%

2yr implied vol 17.7% 17.9%

1yr disagreement 4.4% 4.8%

10yr disagreement 2.9% 2.9%

1yr mean risk premium 3.3% 3.8%

10yr mean risk premium 1.9% 3.6%

Table 2.3.1: Moments implied by the model’s baseline calibration and in the
data.

In a homogeneous belief economy, both implied and physical volatilities would

be constant, at σ, at all maturities. The sentiment and speculation induced

by heterogeneous beliefs boosts both implied and physical volatility at short

horizons, and generates a variance risk premium at long horizons, as shown in

Figure 2.3.1.

Two illustrative calibrations.—In the figures below, we set the horizon

over which disagreement plays out to T = 10 years, and we set σ, which

equals the volatility of log fundamentals (i.e. payoffs), to 12%. The belief

heterogeneity parameter θ dictates the amount of disagreement, the level of

short-run volatility, and the size of the long-run variance risk premium. In our

baseline calibration, we set θ = 1.8, which implies that one-month, one-year,

and two-year implied volatilities are 18.6%, 18.2%, and 17.7%, respectively, as

shown in Table 2.3.1. These numbers are close to their empirically observed

counterparts, which are indicated with solid dots in Figure 2.3.2a.

With this value of θ, the model-implied cross-sectional standard devia-

tions of expected returns (“disagreement”) are 4.4% and 2.9% at the one- and

10-year horizons. For comparison, in data from the Graham–Harvey Chief Fi-

nancial Officer surveys, the mean levels of one-year and 10-year disagreement

are 4.8% and 2.8%, respectively (indicated with red dots in Figure 2.3.2a).

We also consider a calibration in which θ = 0.2 to explore the behavior
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Figure 2.3.2: Term structures of implied and physical volatility, mean expected
returns and disagreement in the baseline (left) and crisis (right) calibrations.

of asset prices under conditions with substantial disagreement, and to dis-

cuss some interesting qualitative features of equilibrium that arise once θ is

less than one. The resulting term structures of physical implied volatility,

and of average perceived risk premia and disagreement, are shown in Figure

2.3.2b. Heightened belief heterogeneity generates steeply downward-sloping

term structures of physical and implied volatility and of risk premia.

2.3.1 The perceived value of speculation

An agent’s stochastic discount factor (SDF) links his or her perceived true

probabilities of events to the associated risk-neutral probabilities. As indi-

viduals disagree on true probabilities but agree on risk-neutral probabilities—

equivalently, on asset prices, which are directly observable—they have differ-

ent stochastic discount factors. We now analyze the properties of individuals’

SDFs, and hence explore agents’ attitudes to speculation.

Result 8. The variance of the SDF of investor z is finite for θ > 1 and is

equal to

var(z) M
(z)
0→t =

θ√
θ2 − ( t

T
)2

exp


[
z
√

θt
T

+ (θ + 1)σ
√
t
]2

θ
(
θ − t

T

)
− 1 . (2.3.5)
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By the Hansen and Jagannathan (1991) bound, this result supplies the

maximum Sharpe ratio as perceived by agent z, MSR
(z)
0→t. Writing Re

0→t for

the excess return on an asset or trading strategy, we have

MSR
(z)
0→t = max

Re0→t

E(z)Re
0→t

σ(z) (Re
0→t)

=
σ(z)

(
M

(z)
0→t

)
E(z)M

(z)
0→t

= σ(z)
(
M

(z)
0→t

)
,

where we write σ(z) (·) =
√

var(z) (·) for the standard deviation perceived by

investor z (and the final equality follows because we have normalized the inter-

est rate to zero, so E(z)M
(z)
0→t = 1

Rf,0→t
= 1 for all z). As the market is complete,

there is a strategy that attains the maximal Sharpe ratio (MSR) implied by

the Hansen–Jagannathan bound for any agent—and of course different agents

will perceive different maximal Sharpe ratios, and different associated trading

strategies.

Minimizing (2.3.5) with respect to z, we find that the investor who per-

ceives the smallest MSR (at all horizons t) has z = z0, where

z0

√
θ + (θ + 1)σ

√
T = 0. (2.3.6)

Definition 1. We refer to investor z = z0, where

z0 = −θ + 1√
θ
σ
√
T ,

as the gloomy investor. The gloomy investor perceives that the instantaneous

risk premium on the risky asset is exactly zero, by Result 5.

There are, of course, more pessimistic investors (z < z0), but we think

of them as being less gloomy in the sense they perceive attractive trading

opportunities associated with shorting the risky asset. The MSR perceived by

the gloomy investor satisfies

MSR
(z0)
0→t =

√√√√ θ√
θ2 −

(
t
T

)2
− 1 .
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The dashed lines in the panels of Figure 2.3.3 plot the subjective Sharpe

ratio of a static position in the risky asset (calculated from Results 4 and 5)

against investor type, z. The solid lines plot the maximum attainable Sharpe

ratio against investor type, z. The top panels use the baseline calibration,

θ = 1.8, and the bottom panels use the high-disagreement calibration, θ = 0.2.

The left panels show perceived Sharpe ratios over the next year; the right

panels show annualized Sharpe ratios over the entire 10-year horizon. (We

annualize by scaling Sharpe ratios by the square root of horizon; if returns

were i.i.d., this would result in a constant Sharpe ratio at all horizons.)

The solid lines lie strictly above the dashed lines, indicating that all in-

vestors must trade dynamically to achieve their perceived MSR. In the baseline

calibration, the annualized MSR perceived by the gloomy investor z0, is 0.04

at the one-year horizon and 0.14 at the 10-year horizon. All investors per-

ceive attainable Sharpe ratios at least as large as this. Recall that the gloomy

investor believes that the risky asset is priced to earn precisely zero risk pre-

mium. Loosely speaking, the gloomy investor’s maximal-Sharpe-ratio strategy

is to go long if the market sells off, and short if the market rallies, thereby

exploiting what he views as irrational exuberance on the upside and irrational

pessimism on the downside. This is a contrarian, “short vol” strategy. We will

expand on this interpretation shortly.

If there is substantial disagreement—as in our calibration with θ = 0.2—

agents perceive substantially higher attainable Sharpe ratios. At the one-year

horizon depicted in Figure 2.3.3c, even the gloomy investor perceives an MSR

of 0.39, while the median investor perceives an MSR of 1.50. Sharpe ratios

increase very rapidly for investors with extreme beliefs, and especially so for

optimists with extreme beliefs: an investor who is only moderately optimistic,

with beliefs one standard deviation above the mean (z = 1), perceives an MSR

of 8.2. At the 10-year horizon shown in Figure 2.3.3d, all investors perceive

that arbitrarily high Sharpe ratios are attainable.

At first sight, this might seem obviously unreasonable. Surely very high

Sharpe ratios should not be possible in equilibrium? But our investors are

not mean-variance optimizers, so Sharpe ratios do not adequately summarize
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(b) 10-year horizon, annualized,
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(c) One-year horizon, θ = 0.2.
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θ = 0.2.

Figure 2.3.3: Maximal Sharpe ratios attainable through dynamic (solid) or
static (dashed) trading, as perceived by investor z. All investors perceive that
arbitrarily high Sharpe ratios are attainable dynamically in panel d.

investment opportunities. (And indeed, Sharpe ratios are not considered suffi-

cient measures of the attractiveness of a trading strategy in practice: investors

appear to monitor performance measures such as max drawdowns, value at

risk, and Sortino ratios, among other things.) In order to measure the attrac-

tiveness of dynamic trading strategies in a theoretically motivated way, we

calculate the maximum fraction of wealth, ξ(z), that investor z would be pre-

pared to sacrifice in order to avoid being shut out of the market. We assume

that when the investor is shut out, he is forced to hold his original position in

the risky asset, earning the return R0→t up to time t. Thus ξ(z) satisfies

max
R

(z)
0→t

E(z) log
[(

1− ξ(z)
)
W

(z)
0 R

(z)
0→t

]
= E(z) log

[
W

(z)
0 R0→t

]
. (2.3.7)
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The Alvarez and Jermann (2005) bound states that

max
R

(z)
0→t

E(z) logR
(z)
0→t = L(z)

[
M

(z)
0→t

]
, (2.3.8)

where the entropy of the SDF, as perceived by investor z, is L(z)
[
M

(z)
0→t

]
=

log E(z)M
(z)
0→t − E(z) logM

(z)
0→t. The bound is attained because the market is

complete; we are using the fact that logRf,0→t = 0 in equation (2.3.8). Com-

bined with equation (2.3.7), this implies that

log
(
1− ξ(z)

)
= E(z) logR0→t − L(z)

[
M

(z)
0→t

]
. (2.3.9)

Result 9. The subjective entropy of the SDF is

L(z)
[
M

(z)
0→t

]
=

[
z
√

θt
T

+ (θ + 1)σ
√
t
]2

2θ
(
θ + t

T

) +
1

2

(
log

θ + t
T

θ
−

t
T

θ + t
T

)
,

so that the gloomy investor perceives the minimal SDF entropy.

We can also write

L(z)
[
M

(z)
0→t

]
=
θ + 1

θ + t
T

(
zσ√
θT

+
θ + 1

2θ
σ2

)
t︸ ︷︷ ︸

E(h) logR0→t

+
z2 t

T

2
(
θ + t

T

)+
1

2

(
log

θ + t
T

θ
−

t
T

θ + t
T

)
︸ ︷︷ ︸

>0

.

It follows that

ξ(z) = 1− exp

{
−

z2 t
T

2
(
θ + t

T

) − 1

2

(
log

θ + t
T

θ
−

t
T

θ + t
T

)}
.

The median investor perceives the minimal ξ(z).

Figure 2.3.4 plots ξ(z) against z with parameters σ = 0.12, T = 10, and

t = 1 or t = 10. The left panel shows the baseline calibration with θ = 1.8;

the right panel shows the high disagreement calibration with θ = 0.2.
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Figure 2.3.4: The proportion of wealth investor z would sacrifice to avoid being
prevented from trading dynamically for one or 10 years.

2.3.2 Investor behavior and the wealth distribution

We now study how the distribution of terminal wealth varies across agents as

a function of the terminal payoff of the risky asset. To do so, it is convenient

to introduce the notion of an investor-specific target price K(z) defined via13

logK(z) = E(z) log pT + (z − z0)σ
√
θT . (2.3.10)

For example, the median and gloomy investors’ target prices can be written

in terms of the fundamental parameters as

logK(0) =
η

θ
σ
√

2T + (θ + 1)σ2T and logK(z0) =
η

θ
σ
√

2T − θ + 1

θ
σ2T .

For comparison, log p0 = η
θ
σ
√

2T − 1
2
θ+1
θ
σ2T , so the median and gloomy in-

vestors’ target prices are, respectively, above and below the spot price.

As our next result shows, the target price represents the ideal outcome

for investor z: the value of pT that maximizes wealth, and hence utility, ex

post.

Result 10. The time T wealth of agent z can be expressed as a function of

13If desired, the expected log price, E(z) log pT = log p0 + E(z) logR0→T , can be written
in terms of the fundamental parameters of the model using Results 3 and 4.
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pT :

W (z)(pT ) = p0

√
θ + 1

θ
exp

{
1

2
(z − z0)2 − 1

2(1 + θ)σ2T

[
log
(
pT/K

(z)
)]2}

.

(2.3.11)

Thus W (z)(pT ) is maximized when pT = K(z).

This can also be written as a quadratic relationship between an investor’s

log wealth return, r
(z)
0→T = log

(
W (z)(pT )/p0

)
, and the log return on the risky

asset, r0→T = logR0→T :

r
(z)
0→T =

1

2
log

θ + 1

θ
+

1

2
(z − z0)2− 1

2(1 + θ)

[
r0→T − E(z)r0→T

σ
√
T

−
√
θ (z − z0)

]2

.

It follows that the expected elasticity of an investor’s wealth return with respect

to the risky asset return, E(z)(∂r
(z)
0→T/∂r0→T ), satisfies

E(z)∂r
(z)
0→T

∂r0→T
= 1 +

z

|z0|
.

In particular, the median investor has an expected elasticity of one and the

gloomy investor has an expected elasticity of zero.

In our model, there is a useful distinction between what investors expect

to happen and what they would like to happen. (The distinction also exists,

but is uninteresting, in models in which a representative agent statically holds

the market, as the target price is infinity in such models.) The gloomy investor

would like to be proved right: his log target price equals his expected log price.

But targets and expectations differ for all other investors. More optimistic in-

vestors have a (log) target price that exceeds their expectations—i.e., they

are best off if the risky asset modestly outperforms their expectations—while

more pessimistic investors are best off if the risky asset modestly underper-

forms their expectations. Any investor does very poorly if the asset performs

far better or worse than anticipated.
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Differentiating the expression (2.3.11) twice with respect to pT , we find

W (z)′′(pT ) =
W (z)(pT )

p2
T


(

log
(
pT/K

(z)
)

(1 + θ)σ2T
+

1

2

)2

− 1

4
− 1

(1 + θ)σ2T

 .

(2.3.12)

It immediately follows that any investor’s wealth is concave in pT near their

target price, and convex far from their target price. A moderate investor’s

wealth is also concave near their expected log price. But an extreme investor’s

wealth is convex near their expected log price. These facts follow because if

log pT = E(z) log pT then we have, after some algebra,

sign
[
W (z)′′(pT )

]
= sign

[
z2 − z0z −

θ + 1

θ

]
,

which is positive if |z| is sufficiently large.

Figure 2.3.5 shows how different investors’ outcomes depend on the risky

asset outcome for z = −2,−1, . . . , 2. The only difference between the two

panels is that the left has logarithmic scales and the right linear scales. Dots

in each panel indicate the expected gross return on the risky asset perceived by

each of the investors. The median (z = 0) investor’s wealth is a concave func-

tion of the risky asset return in the neighbourhood of the investor’s expected

outcome (indicated in the figure by a dot), while more extreme (z = ±2)

investors have wealth that is convex in the risky asset return in the neighbour-

hood of their expected outcome.

Equation (2.3.11) can be rewritten as

W (z)(pT ) = p0

√
θ + 1

θ
exp

{
− 1

2

[
log pT − E(z) log pT√

var(z) log pT

]2

+

+
1

2(1 + θ)

[
√
θ

log pT − E(z) log pT√
var(z) log pT

+ z − z0

]2}
.

This characterization shows that you get richer if you are an extremist (large

|z|) whose expectations are realized than you do if you have conventional beliefs
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Figure 2.3.5: Gross return on wealth against the gross return on the risky
asset, for a range of investors z = −2,−1, . . . , 2 and θ = 1.8, T = 10, and
σ = 0.12. The expected return on the risky asset perceived by each investor
is indicated with a dot.

(z close to zero) that are realized: it is cheap to purchase claims to states of

the world that extremists consider likely because relatively few people are

extremists. As a result, there is substantially more wealth inequality in states

in which the asset has an extreme positive or negative realized return.

Informally, extreme investors are “long volatility” near the outcome that

they expect, while moderate investors are “short volatility” in their corre-

sponding region. To formalize this intuition, we introduce a general result

that holds in any frictionless arbitrage-free model in which options are traded.

It is in the spirit of the famous result of Breeden and Litzenberger (1978), but

the logic operates at the level of payoffs rather than of prices.

Result 11. Let W (·) be such that W (0) = 0. Then choosing terminal wealth

W (pT ) is equivalent to holding the following portfolio:

1. Long W ′(K0) units of the underlying asset (whose price is pT at time T )

2. Long bonds with face value W (K0)−K0W
′(K0)

3. Long W ′′(K) dK put options with strike K, for every K < K0

4. Long W ′′(K) dK call options with strike K, for every K > K0

The constant K0 > 0 can be chosen arbitrarily.
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Proof. Start from W (pT ) =
∫ pT

0
W ′(K) dK =

∫∞
0
W ′(K)1{pT>K} dK and inte-

grate by parts.

We now specialize Result 11 to our setting to identify a static portfo-

lio whose payoffs replicate the investment strategy followed by an arbitrary

investor h.

Result 12. Investor z’s investment strategy is equivalent to the following:

• a long position in bonds with face value W (z)(K(z)) = p0,0

√
θ+1
θ
e

1
2

(z−z0)2;

• short positions in options with strikes at and near her target level K(z);

• long positions in options with strikes far from K(z).

More precisely, the investor holds W (z)′′(K) dK put options with strike K

for all K < K(z), and W (z)′′(K) dK call options with strike K, for all K ≥
K(z), where W (z)′′(K) is as defined in (2.3.12). (Note that W (z)′′(K(z)) < 0,

and that W (z)′′(K) > 0 if K is sufficiently far from K(z).)

The best possible payoff is W (z)(K(z)). This occurs if the asset hits its

target price, pT = K(z), in which case all the options expire worthless. Con-

versely, the investor’s wealth approaches zero as pT → 0 or pT →∞.

Proof. It follows from the definition (2.3.10) of K(z), and a direct calculation,

that W (z)′(K(z)) = 0. The claims in the first paragraph then follow on setting

K0 = K(z) in Result 11. The fact that the best possible payoff is W (z)(K(z))

follows from equation (2.3.11). The payoff on the option portfolio must there-

fore be nonpositive.

2.4 Conclusions

We have presented a frictionless model in which individuals have stable beliefs

and risk aversion. All investors are risk-averse; short sales are allowed; all
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agents avoid bankruptcy; and all agents are on their first-order conditions at

all times.

Even so, the model generates a rich set of predictions. Heterogeneity in

beliefs gives rise to sentiment, which induces speculation and drives up real-

ized and implied volatility, particularly in the short run. All agents understand

these facts, so expected returns are higher than in an otherwise identical homo-

geneous economy, and securities with payoffs in extreme states of the world are

far more highly valued than in otherwise similar economies with homogeneous

beliefs. Moderate investors are suppliers of liquidity: they trade in a con-

trarian manner—they are “short vol”—and capture a variance risk premium

created by the presence of extremists.
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2.5 Appendix: Proofs

Proof of Result 1:

Proof. Observe from the recurrence relation (2.2.23) that a pricing formula in

the form (2.2.24) holds. Each constant cm is a sum of products of terms of the

form Hj,s and 1 − Hj,s over appropriate j and s. We noted in the text that

Hm,t(1−Hm+1,t+1) = (1−Hm,t)Hm,t+1: that is, pricing is path-independent.

Fix m between 0 and T . By path independence, all the possible ways of

getting from the initial node to node m at time T make an equal contribution

to cm. By considering the path that travels down for T −m periods and then

up for m periods, and then multiplying by the number of paths,
(
T
m

)
, we find

that

cm =

(
T

m

)
(1−H0,0) · · · (1−H0,T−m−1)H0,T−mH1,T−m+1 · · ·Hm−1,T−1

=

(
T

m

)
β

α + β
· β + 1

α + β + 1
· · · β + T −m− 1

α + β + T −m− 1
· α

α + β + T −m
· · · α +m− 1

α + β + T − 1

=

(
T

m

)
B(α +m,β + T −m)

B(α, β)
.

The risk-neutral probability q∗m can be determined using the facts that

p∗m,t = Hm,tpm,t/pm+1,t+1 and 1−p∗m,t = (1−Hm,t)pm,t/pm,t+1. (We are restating

(2.2.9) with subscripts to keep track of the current node.) Thus—using again

path-independence in the first line—

q∗m =

(
T

m

)
(1− p∗0,0) · · · (1− p∗0,T−m−1) · p∗0,T−mp∗1,T−m+1 · · · p∗m−1,T−1

=

(
T

m

)
(1−H0,0)

p0,0

p0,1

· · · (1−H0,T−m−1)
p0,T−m−1

p0,T−m
·H0,T−m

p0,T−m

p1,T−m+1

· · ·Hm−1,T−1
pm−1,T−1

pm,T

= cm
p0,0

pm,T
.

We also have the following generalization of Result 1. We omit the proof,
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which is essentially identical to the above.

Lemma 2. For any node m, t:

zm,t =
T−t∑
j=0

cm,t,jzm+j,T

where j represents the number of further up-moves after time t, and

cm,t,j =

(
T − t
j

)
B(m+ α + j, T −m+ β − j)

B(m+ α, t−m+ β)
.

Moreover, the risk neutral probability of ending up at j, T starting from

node m, t is given by

q∗m,t,j = cm,t,j
pm,t
pm+j,T

.

Proof of Result 2:

Proof. We will start by proving the following Lemma.

Lemma 3. If Y1 ∼ BB(α, α, T ) and Y2 ∼ BB(α, α, T ), for α > α then Y1

second order stochastically dominates Y2.

Proof. A sufficient condition for second order stochastic dominance, for vari-

ables with the same expectation, is the single crossing dominance. That is, it

is sufficient to prove that:

Fα(s) ≥ Fα(s)⇐⇒ s ≤ c∗ (2.5.1)

for some c∗, where Fα(s), Fα(s) are the cdfs of Y1, Y2 respectively.14 Because of

symmetry c∗ will be just T/2. To prove the above it is sufficient to prove that

fα(k)−fα(k) is decreasing in [0, T/2], where f(·) denotes the probability mass

function. Then Fα(s) − Fα(s) would be decreasing (as a sum of decreasing

14See, for instance, Osband & Roy (2018) “Gaussian-Dirichlet Posterior Dominance in
Sequential Learning”.
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functions) and the proof of the lemma would be completed, since this would

imply equation 2.5.1. Hence, we need to show that:

(
T

k

)[
B(k + α, T − k + α)

B(α, α)
− B(k + α, T − k + α)

B(α, α)

]
is decreasing in k (in the interval [0, T/2]). Equivalently:

Γ(k+α)Γ(T−k+α)

[
1

Γ(T + 2α)B(α, α)
− Γ(k + α)Γ(T − k + α)

Γ(k + α)Γ(T − k + α)

1

Γ(T + 2α)B(α, α)

]
is decreasing.

But the above holds because of the following 2 facts:

First, h(k) = Γ(k + α)Γ(T − k + α) is decreasing because

[log(h(k))]′ = ψ(k + α)− ψ(T − k + α) < 0

where ψ(·) is the digamma function, which is an increasing function since Γ(·)
is log-convex (and k < T − k).

Second, Γ(k+α)Γ(T−k+α)
Γ(k+α)Γ(T−k+α)

is increasing. Indeed, assume k1 > k2. Then, we

want:
Γ(k1 + α)Γ(T − k1 + α)

Γ(k1 + α)Γ(T − k1 + α)
>

Γ(k2 + α)Γ(T − k2 + α)

Γ(k2 + α)Γ(T − k2 + α)

Equivalently:

Γ(k1 + α)Γ(T − k1 + α)

Γ(k2 + α)Γ(T − k2 + α)
>

Γ(k1 + α)Γ(T − k1 + α)

Γ(k2 + α)Γ(T − k2 + α)

Now using the property that Γ(z + 1) = zΓ(z) for any z and that k1, k2 ∈ Z,

we get:

(α + k2)(α + k2 + 1) . . . (α + k1 − 1)

(α + T − k1)(α + T − k1 + 1) . . . (α + T − k2 − 1)
>

(α + k2) . . . (α + k1 − 1)

(α + T − k1) . . . (α + T − k2 − 1)

which is true since for example (α+k2)
(α+T−k1+1)

> (α+k2)
(α+T−k1+1)

Therefore this proves that Y1 single-crossing dominates Y2 and hence it
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also second order stochastically dominates Y2 and the lemma has been proved.

Having established the above Lemma, we can now go back to proving

Result 2. It is well known that if Y1 second order stochastically dominates Y2

then for any concave function u(·):

EY1 [u(m)] ≥ EY2 [u(m)].

Pick u(m) = − 1
pm,T

. Then we get: EY1 [
1

pm,T
] ≤ EY2 [

1
pm,T

] and therefore:

1

EY1 [
1

pm,T
]
≥ 1

EY2 [
1

pm,T
]

That is if p1, p2 are the corresponding prices (where p1 corresponds to the case

with less heterogeneity, as α > α), we have that p1 > p2.

To show that log-concavity of p implies that 1/p is convex, note that

log-concavity is equivalent to (p′)2 ≥ pp′′.

Proof of Result 3:

Proof. As shown in equation (2.2.24),

p−1
0,0 =

2N∑
j=1

cjzj,T

From Result 1, cj equals the probability that a BB(2N,α, β) random

variable takes the value j. Therefore we can equivalently write

p−1
0,0 = Ej [zj,T ] = Ej

[
e
−σ
√

2T j−N√
N

]
(2.5.2)

where the random variable j has a beta-binomial distribution, BB(2N,α, β) ≡
BB(2N, θN + η

√
N, θN − η

√
N).
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The Paul and Plackett theorem (see Appendix for more details) states that

j, appropriately shifted and scaled, converges in distribution and in moment

generating function to a Normal distribution. More specifically,

ΨN ≡
j −N − η

θ

√
N√

1+θ
2θ
N

−→ N(0, 1)

where E[j] = N + η
θ

√
N and var[j] = 1+θ

2θ
N . As

j −N√
N

= ΨN

√
1 + θ

2θ
+
η

θ
,

we have

p−1
0,0 = E

[
e
−σ
√

2T
(

ΨN
√

1+θ
2θ

+ η
θ

)]
→ E

[
e
−σ
√

2T
(
Z
√

1+θ
2θ

+ η
θ

)]
= exp

(
−η
θ
σ
√

2T +
θ + 1

2θ
σ2T

)
.

From the first to the second line, convergence of expectations follows from

the fact that the beta-binomial converges to Normal in moment generating

functions.

Proof of Result 4:

Proof. We want to find the perceived expectation and variance of returns from

0 to t. In order to achieve that, we need to first compute pm,t, following the

lines of the proof of Result 3, and then find the limiting distribution that it

has from the perspective of any investor h. We outline the main steps here,

and present further details in the Appendix.

Define φ = t
T

and set m = φN + ψt
√
φN , so that ψt is a convenient

parametrization of m. Given that zm+j,2N = λ−2(m+j−N), we have, similarly to
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equation (2.5.2)

p−1
m,t = Ej[e

−σ
√

2T m+j−N√
N ] (2.5.3)

where we view j as a random variable with beta-binomial distribution

BB
(

2(1− φ)N, (φ+ θ)N + (ψt
√
φ+ η)

√
N, (φ+ θ)N − (ψt

√
φ+ η)

√
N
)
.

By the Paul and Plackett theorem, the standardized version of j converges

in distribution and in moment generating function to a standard Normal ran-

dom variable. Therefore we can find the (limiting) expectation on the right

hand side of (2.5.3), by just considering the expectation under a Normal distri-

bution, with the corresponding mean and variance. As N tends to infinity, we

will write pψt :≡ pm,t (where, ψt = m−φN√
φN

), to emphasize that we are consider-

ing the continuous time limit, in which ψt becomes the relevant state variable.

We get:

pψt = bt · e
θ+1
φ+θσ

√
2φTψt (2.5.4)

where bt = e−
1−φ
2

θ+1
φ+θ

σ2T+ 1−φ
φ+θ

ησ
√

2T .

We then view pψt as a function of ψt, for which we care about each limiting

distribution. We know that m(= φN + ψt
√
φN) has a binomial distribution

with mean 2φNh and variance 2φNh(1 − h) from the perspective of agent

h. Indeed by the Central Limit Theorem (or by De Moivre’s theorem), a

standardized version of m converges to a standard Normal distribution:

m− 2φNh√
2φNh(1− h)

→ N(0, 1). (2.5.5)

Equivalently, we have:

ψt − (2h− 1)
√
φN√

2h(1− h)
→ N(0, 1), (2.5.6)

where (2h − 1)
√
N = η

θ
+ z√

2θ
and h(1 − h) = 1

4
+ O( 1

N
). Therefore, the
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expectation and variance of log(pt) are

E(z) log pt =
t(θ + 1) z√

θ
σ
√
T − 1

2
(T − t)(θ + 1)σ2T

θT + t
+
η

θ
σ
√

2T

var(z) log pt = σ2t

(
θ + 1

θ + t
T

)2

.

Proof of Result 5:

Proof. We are interested in finding

E(z) [R0→t] = E(z)

[
pψt
p0,0

]
,

where as in the proof of Result 4 we use the notation pψt :≡ pm,t, which we

have already computed in equation (2.5.4)

p−1
0,0 · bt · E(z)

[
e
θ+1
φ+θ

σ
√
T
√

2φψt
]

;

and we have established, in equation (2.5.6), that ψt converges in distribu-

tion and in moment generating function to a Normal (as m does too). Hence

asymptotically, the above is the expectation of a log-normal variable. In par-

ticular, after some algebra,

E(z) [R0→t] = e
φ(θ+1)
θ+φ

[
z√
θ
σ
√
T+ θ+1

2
( 1
θ

+ 1
θ+φ

)σ2T
]
. (2.5.7)

Setting φ = t
T

, the proof is complete. Finally, note that by substituting φ = 1

and h = 1
2

+ η

2θ
√
N

+ z√
8θN

we obtain equation (2.3.3).

Proof of Result 7:

Proof. Note that 2φN is the number of periods corresponding to t = φT .

Writing qm,t for the risk neutral probability of going from node (0, 0) to node
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(m, t), we have (as in Lemma 2) qm,t = p0,0
pm,t

cm,t, where

cm,t =

(
2φN

m

)
B(α +m,β + 2φN −m)

B(α, β)
.

As the risk-free rate is 0, it follows that the time zero price of a call option

with strike K, maturing at time t, is

C(0, t;K) =

2φN∑
m=0

qm,t(pm,t −K)+

= p0,0

2φN∑
m=0

cm,t

(
1− K

pm,t

)+

= p0,0E

[(
1− K

bt
e−

θ+1
φ+θ

σ
√

2φTψt

)+
]

where the expectation is taken with respect to the random variable m which

follows a BB(2Nφ, α, β) distribution and in the last line we have substituted

pm,t with its (continuous time limit) value computed at equation (2.5.4) (re-

member, ψt = m−φN√
φN

) . By the result of Paul and Plackett, the asymptotic

distribution of m satisfies

m− φN − η
θ
φ
√
N√

φ+θ
2θ
φN

→ Ψ ∼ N(0, 1)

as N →∞. Equivalently:

1√
φ+θ
2θ

(
ψt −

η

θ

√
φ
)
→ Ψ ∼ N(0, 1)

Thus

C(0, t;K) = p0,0 · E

[(
1− K

bt
e−

θ+1
θ+φ

σ
√

2φT (Ψ
√

φ+θ
2θ

+ η
√
φ
θ

)

)+
]
.

(Note that convergence in distribution implies convergence of the expectation
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by the Helly-Bray theorem, since the function of Ψ inside the expectation is

bounded and continuous.) This expectation is now standard, and we have

C(0, t;K) = p0,0

[
Φ

(
− log(X)

σ̃
√
t

)
− e

σ̃2t
2
K

bt
e−

θ+1
θ+φ

σ
√

2T ηφ
θ Φ

(
− log(X) + σ̃2t

σ̃
√
t

)]

where X = K
bt
e−

θ+1
θ+φ

σ
√

2T ηφ
θ and

σ̃2t =
(θ + 1)2

θ(θ + φ)
σ2t = var

[
log

(
K

bt
e−

θ+1
θ+φ

σ
√

2T (Ψ
√

φ+θ
2θ

φ+ ηφ
θ

)

)]

Finally, noting that p0,0 = e
σ̃2t
2
K
bt
e−

θ+1
θ+φ

σ
√

2T ηφ
θ , we arrive at the Black–Scholes

formula

C(0, t;K) = p0,0Φ(d1)−KΦ(d1 − σ̃
√
t)

where

d1 =
log
(p0,0
K

)
+ 1

2
σ̃2t

σ̃
√
t

and volatility is determined endogenously via

σ̃ =
θ + 1√
θ(θ + t

T
)
σ.

Proof of Result 8:

Proof. An agent’s SDF links his or her perceived true probabilities to the

objectively observed risk-neutral probabilities. Thus

M
(h)
t (m) =

p0,0

pm,t

cm,t

π
(h)
t (m)

where π
(h)
t (m) is the probability that we will end up at node (m, t), as perceived

by agent h. As cm,t has a beta-binomial distribution and π
(h)
t (m) has a binomial
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distribution, they are each asymptotically Normal15 and we have the following

characterization for the SDF MT :

M
(h)
t (m) ∼

√
4h(1− h)θ

φ+ θ
p0,0b

−1
t e−

θ+1
θ+φ

σ
√

2φTψt−
θ(m−φN− η

θ
φ
√
N)2

(φ+θ)φN
+

(m−2φNh)2

4h(1−h)φN

(2.5.8)

where ψt = m−φN√
φN

is asymptotically Normal from the perspective of any agent

h by the De Moivre–Laplace theorem.16 Parametrizing further h with z such

that h = 1
2

+ η

2θ
√
N

+ z√
8θN

, the right hand side can be rewritten

M
(z)
t (ψt) ∼

√
θ

φ+ θ
p0,0b

−1
t e
− θ+1
θ+φ

σ
√

2φTψt− θ
(φ+θ)

(ψt− ηθ
√
φ)2+(ψt−

√
φ( η
θ

+ z√
8θ

))2
.

(2.5.9)

Thus M
(z)
t (ψt) is asymptotically equivalent to a function of the random

variable ψt, and hence of the variable Ψ(z) =
√

2(ψt −
√
φ(η

θ
+ z√

8θ
)) which

converges in distribution to a standard normal (as Ψ(z) = m−2φNh√
2φNh(1−h)

). By the

continuous mapping theorem, since this function is continuous, it converges in

distribution to f(Z) (where f(·) is the corresponding function).

In order to be able to take expectations of M2
t (for the rest of the proof,

we suppress the dependence on z in our notation) we need one additional

condition. In particular we will prove that the above sequence of random

variables is uniformly integrable.

For that, rewrite equation (2.5.9) as (M2
t )(N) := DeA(ψ

(N)
t )2+Bψ

(N)
t +C to

denote a sequence of random variables whose limiting expectation we want to

find (we write ψ
(N)
t , (M2

t )(N) instead of ψt, M
2
t , to emphasize the dependence

on N). We want to prove that there exists an ε > 0 such that

sup
N

E[(eA(ψ
(N)
t )2+Bψ

(N)
t +C)1+ε] <∞.

15Note that the price at 0, is given by Result 3. Moreover the asymptotic distributions
of cm and π(h)(m) are given in the proof of Result 4.

16The notation A ∼ B is used to denote A being asymptotically equivalent to B, or in
other words: limN→∞

A
B = 1.
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As Lp convergence for p > 1 implies uniform integrability, this will give us the

result we want.

By Hoeffding’s inequality,17

P(|m− φN√
φN

| ≥ k) ≤ 2e−k
2

(2.5.10)

for any k > 0. As the coefficient, A, on ψ2
t in M2

t satisfies A = 2φ
φ+θ

< 1, we

can set ε > 0 such that A = 1− ε. Then inequality (2.5.10) implies that

P
(
e

1
1+ε2

(mt−φN)2

φN ≥ x

)
≤ 2

1

x1+ε2
(2.5.11)

for x > 0, γ > 0.

Using this inequality together with the fact that e
1

1+ε2
(m−φN)2

φN ≥ 1 we have

E[e
1

1+ε2ψ2
t ] = E[e

1
1+ε2

(mt−φN)2

φN ] ≤
∫ ∞

0

P
(
e

1
1+ε2

(mt−φN)2

φN ≥ x

)
dx

≤ 1 +

∫ ∞
1

P
(
e

1
1+ε2

(mt−φN)2

φN ≥ x

)
dx

≤ 1 + 2

∫ ∞
1

1

x1+ε2
dx

= 1 +
2

ε2
<∞.

Finally note that (1 + ε)A = 1 − ε2 < 1
1+ε2

. Hence there exists a con-

stant, K, such that (1 + ε)(Aψ2
t + Bψt + C) < 1

1+ε2
ψ2
t + K, and therefore

E[eAψ
(N)
t +Bψ

(N)
t +C ] < E[e

1
1+ε2

ψ2
t+K

] < ∞. Thus our sequence is uniformly inte-

grable, and hence there is convergence of expectations.18

17Hoeffding’s inequality states that if Z1, Z2, . . . , Zn are i.i.d. random variables, with

Zi ∈ [a, b], and X = 1
n

∑n
i=1 Zi, then E[|X − E[X]| ≥ k] ≤ 2e

− 2nk2

(b−a)2 . In our case, mt is the
sum of 2φN i.i.d. Bernoulli variables, so the theorem can be applied.

18From equation (2.5.11) one could deduce that our sequence of random variables is
dominated by the tail of a Pareto distribution, which has a finite expectation, and then use
the dominated convergence theorem to reach the conclusion that there is convergence of
expectations.
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We can now work towards finding the variance of Mt from the perspective

of agent h. The results above imply that this problem reduces, in the limit

as N → ∞, to finding the expectation of a chi-squared random variable. By

computing this expectation we find that

E[M2
t ] =

θ√
θ2 − φ2

exp

{[
z
√
θφ+ (θ + 1)σ

√
φT
]2

θ (θ − φ)

}
.

Proof of Result 9:

Proof. We follow the logic of the proof of Result 8. Note, from equation (2.5.9),

that logMt is a quadratic function of ψt. Let us assume this quadratic has

the form Fψ2
t + Gψt + H for some constants F,G,H. Then this sequence

of random variables converges in distribution to the corresponding quadratic

of a Normal variable. By the Hoeffding inequality (2.5.10), P(2Fψ2
t ≥ x) =

P(|ψt| ≥
√
x/2F ) ≤ 2e−x/2F . Thus E[2Fψ2

t ] ≤ 2
∫∞

0
e−x/2Fdx = 4F <∞, and

hence E [Fψ2
t +Gψt +H] < E [2Fψ2

t + c] < ∞ for some constant c, which

implies that the sequence is uniformly integrable. We can thus take the expec-

tation under the corresponding normal distribution. In particular, m−2φNh√
2φNh(1−h)

converges to a standard Normal. We can then write ψt in terms of this random

variable (as in the proof of the previous result) to find

E log(Mt) =

[
z
√
θφ+ (θ + 1)σ

√
t
]2

2θ (θ + φ)
+

1

2

(
log

θ + φ

θ
− φ

θ + φ

)
.

Proof of Result 10:

Proof. Note that W
(z)
T = W0 ·R(z)

0→T , where R
(z)
0→T is the growth optimal return

from 0 to T as perceived by investor z, and W0 is the initial endowment which

equals p0,0. As N →∞,

W
(h)
T = (M

(h)
T )−1p0,0 ∼ pT

√
θ + 1

θ
e
θ(m−N− η

θ

√
N)2

(1+θ)N
− (m−2Nh)2

4h(1−h)N .
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Substituting ψ = m−N√
N

and parametrizing
√
N(2h− 1) = η

θ
+ z√

2θ
, we have

W
(z)
T =

√
θ + 1

θ
exp(− ψ2

θ + 1
+ψ(

2η

θ(θ + 1)
+

2z√
2θ

+σ
√

2T )− z
2

2θ
− 2zη√

2θθ
− η2

θ2(θ + 1)
.

Finally, substituting log(pT ) = σ
√

2Tψ, we obtain Result 10.

2.6 Appendix: Static and dynamic trade in

the risky bond example

This section contains some further calculations in the risky bond example of

Section 2.2.2. Specifically, we ask what happens if agents are not allowed to

trade dynamically. Agent h perceives a probability 1− (1−h)T that the bond

pays 1, and (1− h)T that the bond pays ε, so solves

max
xh

(
1− (1− h)T

)
log (wh − xhp+ xh) + (1− h)T log (wh − xhp+ xhε) .

The first-order condition (after setting wh = p to account for the fact that all

agents are initially endowed with a unit of the risky asset) is

xh = p

(
1− (1− h)T

p− ε
− (1− h)T

1− p

)
.

If T is reasonably large, most agents will have (1−h)T ≈ 0, and so will choose

xh ≈ p
p−ε ; their wealth in the bad state of the world is then approximately

zero. Thus, if forced to trade statically most agents will lever up (almost) as

much as possible without risking bankruptcy.

For the market to clear, we require
∫ 1

0
xh dh = 1, which implies that

p = (1+T )ε
1+Tε

. This is the same as the time-0 price in the case with dynamic

trade. It follows that agent h’s demand for the asset is

xh = 1 +
(
1− (1 + T )(1− h)T

) 1 + Tε

T (1− ε)
.
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If an individual investor is forced to trade statically (while everyone else is

trading dynamically, so that the price at time t is observed) then the investor’s

leverage at time t, defined as debt-to-wealth ratio, is

leveraget =
p0(xh − 1)

xhpt + p0 − p0xh,0
=

1− (1 + T )(1− h)T

T − t(1− (1 + T )(1− h)T )

1 + t− tε+ Tε

1− ε
.

For comparison, in the dynamic case investor h’s time-t demand will be

xh,t = (1− h)t +
(1− h)t

1− ε
[h(2 + t)(1 + t(1− ε) + Tε)− 1− Tε)]

and the investor’s leverage at time t, defined as in equation (2.2.13), is

leveraget =
xh,tpt − wh,t

wh,t
=

(h(2 + t)− 1)(1 + t(1− ε) + Tε)

(1 + t)(1− ε)
.

This strategy delivers the dynamic investor higher expected utility. An

investor who follows the static strategy has wealth

p0

(
1− (1− h)T

)
1− (1− p∗0) · · ·

(
1− p∗T−1

)
if the bond does not default—which, in the investor’s opinion, occurs with

probability 1− (1− h)T . If the bond does default, the investor ends up with

p0(1− h)T

(1− p∗0) · · ·
(
1− p∗T−1

) =
p0(1− h)T (1− ε)

1− p0

.

This occurs with probability (1 − h)T . The static investor therefore has ex-

pected utility

EUstatic =
[
1− (1− h)T

]
log

(
p0

(
1− (1− h)T

)
1− (1− p∗0) · · ·

(
1− p∗T−1

))+(1−h)T log

(
p0(1− h)T (1− ε)

1− p0

)
.
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Conversely, a dynamic investor ends up with wealth

p0(1− h)th

(1− p∗0) · · ·
(
1− p∗t−1

)
p∗t

if the first up move occurs after t successive down-moves, where t ∈ {0, . . . , T − 1}.
This outcome has probability (1 − h)th. If the bond defaults, his terminal

wealth is
p0(1− h)T

(1− p∗0) · · ·
(
1− p∗T−1

) =
p0(1− h)T (1− ε)

1− p0

.

Thus his expected utility is

EUdynamic =
T−1∑
t=0

(1−h)th log

(
p0(1− h)th

(1− p∗0) · · ·
(
1− p∗t−1

)
p∗t

)
+(1−h)T log

(
p0(1− h)T (1− ε)

1− p0

)
.

It follows that

EUdynamic − EUstatic =
T−1∑
t=0

(1− h)th log

 h(1− h)t
[
1− (1− p∗0) · · ·

(
1− p∗T−1

)][
1− (1− h)T

]
(1− p∗0) · · ·

(
1− p∗t−1

)
p∗t


=

T−1∑
t=0

(1− h)th log

(
(1− h)th(1 + t)(2 + t)T

(1− (1− h)T ) (1 + T )

)
,

which is independent of ε.

To convert this logic into dollar terms, suppose an investor is indiffer-

ent between wealth of ωhwh and being constrained to invest statically, and

wealth of wh and being allowed to invest dynamically. Then ωh must sat-

isfy Estatic log (ωhwhR) = Edynamic log (whR) which implies that ωh − 1 =

exp {EUdynamic − EUstatic} − 1. Figure 2.6.1 plots this quantity for ε = 0.3

and T = 50, as in the example in the main text.
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Figure 2.6.1: The attractiveness of dynamic strategies relative to static strate-
gies, for investors of differing levels of optimism h.

2.7 Appendix: De-Moivre Laplace and Paul

and Plackett theorems

First of all, let us write down a version of the De-Moivre Laplace theorem,

that refers to the asymptotic approximation of a binomial distribution to the

Normal distribution. Note that this theorem is essentially a special case of

the Central limit theorem and first appeared in 1716 in De Moivre’s “The

Doctrine of Chances“. We will write here the version shown and proved in the

book of Kai Lai Chung, Elementary probability theory with stochastic processes,

modified in a very slight way such as the proof presented in the book remains

unchanged.

Theorem 1. Suppose 0 < pn < 1, pn + qn = 1, pn → p and

xk =
k − npn√
npnqn

, 0 ≤ k ≤ n

Let A be an arbitrary, fixed positive number. Then in the range of k such that

|xk| ≤ A we get (
n

k

)
pknq

n−k
n ∼ 1√

2πnpnqn
e−

x2k
2

where the convergence is uniform and the notation ∼ means that the ratio of
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the right hand side to the left hand side tends to 1 as n → ∞.19 Moreover

if Sn has the Binomial(n, pn) distribution then, for any 2 constants a < b we

have:

lim
n→∞

P

(
a ≤ Sn − npn√

npnqn
≤ b

)
=

1√
2π

∫ b

−a
e−x

2/2dx

The proof uses the Stirling’s formula, and then uses a Taylor expansion

of log(·) carefully taking care of the errors. It then uses the definition of

a Riemann integral to reach the final statement, which also shows that the

standardized binomial distribution converges (in distribution) to a standard

normal distribution. One important thing one can notice, relevant to the use

of this result in our paper, is that if k takes the form npn + c
√
npnqn then the

approximation holds. Moreover, we have introduced the modification pn → p

since we will often use this approximation for hn = 1
2

+O(1/
√
N). This small

change does not alter the proof, since we still have that k ∼ npn. 20

Since we want to be able to take expectations with respect to the standard

normal, as n → ∞ we will use one final stronger version of the De-Moivre

theorem. This stronger version implies that there is convergence of the moment

generating function of a standardized binomial to the standardized normal

(there is convergence of infinite exponential order), and includes the case where

pn are functions of n as in our case.

Moreover, we introduce here a theorem that appears in Paul and Plackett

(1978), that shows that a beta-binomial distribution tends asymptotically to a

Normal, but we slightly generalize it to accommodate our needs for our model.

In particular, we allow α, β to have a
√
N term as well. The asymptotic

normality of the Beta-Binomial distribution has been studied many times in

the literature, but many times it has been proved using tools and techniques

19The notation ∼ for asymptotic equivalence, is first defined by De Bruijn, in his book
Asymptotic Methods in Analysis. In fact f(x) ∼ g(x), as x → ∞ is equivalent to f(x) =
g(x)(1 + o(1)).

20One can also use one of the alternative proofs of this theorem, to see that this extension
holds. For example defining Binomial(n, pn) as the sum of Bernoulli(pn) variables one can
use the standardized versions of the Bernoulli variables and then use the Central Limit
Theorem to show that their sum converges to a standard normal, by showing that the
corresponding moment generating functions converge.
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that are beyond the scope of this paper; our purpose here is to present an

understandable sketch proof of this result. The theorem can be stated as

follows:21

Theorem 2. If Y ∼ BB(λN, α, β), where λ > 0, α = θN + η
√
N, β =

θN − η
√
N ,22 and we let N →∞, then:

Y − 1
2
λN − η

2θ
λ
√
N√

(λ+2θ)
8θ

λN
→ N(0, 1)

Proof. We begin by writing the probability density function of theBB(λN, θ1N+

η
√
N, θ2N − η

√
N), as:

(
λN

m

)
B(θN + η

√
N +m, θN − η

√
N + λN −m)

B(θN + η
√
N, θN − η

√
N)

(2.7.1)

which can be rewritten as:(
λN

m

) (
2θN

θN+η
√
N

)
( N(λ+2θ)

θN+η
√
N+m

) (θN+η
√
N)(θN−η

√
N)

2θN

(θN+η
√
N+m)(θN−η

√
N+λN−m)

N(λ+2θ)

∼ ỸN
2θ

2θ + λ
(2.7.2)

In fact, writing the distribution in this way, we can now use the De-Moivre

Laplace approximation to show that the density of the Beta-Binomial con-

verges to the the density of the normal distribution for all m = λ
2
N +O(

√
N).

This is because all binomial coefficients are of the form
(

M
M
2

+O(
√
M)

)
for an M

that goes to ∞. We have denoted by ỸN , just the term that includes the

binomial coefficients; in fact, one sees that ỸN is just the density of a hy-

pergeometric distribution (which is the conjugate prior of a Beta-Binomial

21The limiting distribution of a Polya urn’s model has been studied extensively. However,
it is often the case that N → ∞ is considered, while the rest of the parameters remain
constant. It is known that when only N →∞ (and α, β are fixed) the distribution tends to
a Beta distribution. For a general result about the asymptotic normality of a generalized
Polya-Eggenberger urn model one may also see Bagchi and Pal (1985).

22In fact the theorem holds in the more general case where α = θ1N + η
√
N, β = θ2N −

η
√
N .
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distribution) and which we know it converges asymptotically to a normal dis-

tribution.In particular, we can complete the proof, as follows. We can use

the asymptotic convergence (ratio tends to 1) of all 3 binomial coefficients, to

show that ỸN converges to:√
2θ + λ

πθλN
exp

(
−

2(m− λN
2

)2

λN
− (η
√
N)2

θN
+

2(m+ η
√
N − λN

2
)2

(2θ + λ)N

)

From that, we can collect them2,m, and constant terms in the exponential

and re-introduce the terms from equation (2.7.2) which we had left out, to

conclude that the BetaBinomial converges asymptotically23 to

2

√
θ

(2θ + λ)πN
e
− 4θm2

(2θ+λ)λN
+ 4(θN+η

√
N)m

(2θ+λ)N
−λθ (

η
θ
+
√
N)2

(2θ+λ)

Finally, this can be rewritten as:

√
4θ

(2θ + λ)πN
e
−

4θ(m−λ2 (N+
η
θ

√
N))

2

(2θ+λ)λN

and our proof that the Beta-Binomial pdf tends to the Normal has been com-

pleted. Finally, Scheffe’s theorem gives us that convergence in density func-

tions, implies convergence in distribution and hence we get the desired result.

Finally note that in may also want to use that the convergence of moment

generating function of Beta-Binomial distribution to the Normal one. In or-

der to do so, we need two extra results. One is that all the moments of the

BB distribution converge to that of the Normal, as shown in Bagchi and Pal

(1985).24 Then proof is concluded by noting that if there is convergence in

distribution and in all the moments, then there is convergence of the moment

generating functions.

23Remember, that asymptotic equivalence means that the ratio tends to 1 as N →∞.
24Also, using the Moment Continuity Theorem, we see that convergence in distribution

of subgaussian variables is the same as convergence of moments.

112

https://terrytao.wordpress.com/2010/01/05/254a-notes-2-the-central-limit-theorem/


Chapter 3

The Effect of Market

Conditions and Career

Concerns in the Fund Industry

3.1 Introduction

In recent years, there has been growing concern in the financial markets about

the role of various financial intermediaries such as mutual funds and hedge

funds, as the proportion of the institutional ownership of equities has sharply

increased and the Global Assets under Management are estimated to exceed

$100 trillion by 2020.1 The managers of these funds are competing with each

other, but also with alternative investment vehicles such as market index funds

or ETFs, to attract new investors. One of the ways in which they differentiate

themselves is through their investment strategy. In particular, managers often

signal their confidence by choosing strategies that are highly idiosyncratic,2

and more importantly their incentive to pick these strategies fluctuates with

the general market conditions.

1This is according to a research by PWC.
2For example, a recent article in Financial Times explains how institutional investors

are turning to alternative investments in recent years.
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Our first contribution is to build a model in which a manager’s investment

decision provides an imperfect signal on her ability to generate idiosyncratic

returns. To be more precise, the manager will skew her investment choice

towards a strategy with low exposure to the market in order to signal her

confidence. A highly skilled manager is more likely to invest in her idiosyn-

cratic project, since this will deliver on average superior returns. The investors

cannot observe directly the manager’s ability, but because of the above they

will associate an idiosyncratic strategy with a competent manager; in turn,

this will endow such a strategy with a reputational benefit. This asymmetry

of information between the manager and her potential investors is the main

driving force behind the results of this paper.

Our second contribution is to demonstrate that the signalling value of

investing in a low beta strategy depends on the market conditions. Managers

have a dual objective; they want to maximise their contemporaneous returns

but also their perceived reputation. The better the market (bull) is, the more

the managers face a trade-off between these two objectives, and the less the

investors penalise managers for choosing a high beta strategy. Consequently,

there is an interaction between managers’ career concerns and market condi-

tions.

To analyse the above interactions we consider a two period model in which

there is a continuum of investors and a single fund manager. Each investor

chooses between investing his wealth through the manager, or directly in the

market index, and this choice is affected by an investor’s specific stochastic

preference shock. The manager’s utility is a function of the fees she collects,

which are an exogenous proportion of her fund’s assets under management

(AUM) at the end of each period. After the investors have allocated their

funds, the manager publicly chooses between a high or low beta investment

strategy. We model the manager’s ability as the ex ante expected return

of her idiosyncratic strategy, which is either high or low. In each of the two

periods, and before picking an investment strategy, the manager also receives a

private signal on the contemporaneous profitability of her idiosyncratic project.

Both her ability and this signal are her private information, and she uses
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them to form her final estimate of the profitability of her contemporaneous

idiosyncratic strategy. As a result, a high type manager is more likely to form

a high estimate, but this is not always the case.

To model market conditions, we assume that the manager also receives

a signal on the market’s contemporaneous return. This signal is eventually

revealed to the investors, but only after they have made their own investment

choice. In some sense, we allow for them to eventually understand the market

conditions under which the manager acted. However, at this point it will be

too late for them to use this information to trade on their own.3 In section

3.3.4, we extend our setting by allowing two managers to coexist in the market,

in order to study how the competition is affected by market conditions. We

focus mainly on the first period, since in the second the manager’s investment

choice is not affected by her reputational concerns. In fact, the second period

is introduced in order to create those concerns.

For our first result, we analyse a refinement of the perfect Bayesian Equi-

librium, which we call monotonic equilibrium and we prove that this always

exists. The only additional restriction that this refinement is imposing is that

the manager’s reputation is non-decreasing on her performance. In addition,

under mild parametric restrictions we demonstrate that the monotonic equi-

librium is unique.

In our second result we demonstrate that investing in an idiosyncratic

strategy carries a reputational benefit. This is because, the cut-off of the high

manager type is smaller than that of the low. In other words the high type

is more receptive to the idea of adopting a low beta strategy. Intuitively, the

manager’s choice is affected by two incentives. On the one hand, she wants

to increase her reputation, which skews her preferences towards idiosyncratic

investments. On the other hand, she cares about the realised return of her

strategy, since her fees depend on it. Hence, for a relatively low private signal

even a high type may opt to forfeit the reputational benefit, because investing

in the market will generate higher returns, and as a result more fees. Therefore,

the investment strategy is informative but it does not fully reveal the manager’s

3In other words, manager has a superior market-timing ability compared to an investor.
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ability, which is a realistic representation of the fund industry.

Our third and most important result is to show that the reputational

benefit of investing in the idiosyncratic project is decreasing in the market

conditions. In particular, we prove that the expected sensitivity of reputation

to performance is higher in bear markets than in bull markets. This is be-

cause investors understand the dual objective of managers and the fact that

a manager is more likely to invest in the market when the market conditions

are good, and thus update their beliefs less aggressively when this is the case;

instead, in bad times any change in a fund’s performance is much more likely

to be attributed to the ability of the manager.

We use the above results to discuss the competition between funds, in

terms of their sizes, and its fluctuation depending on market conditions. We

predict that the likelihood of changes in the ranking of the funds, measured by

assets under management, is hump shaped on the market return, but is also

higher during bear markets than during bull markets, due to the higher infor-

mativeness of performance; we also find some empirical evidence supporting

this prediction. This is in line with the common perception that the industry

only rearranges its interaction with its investors during crises.

Finally, as an extension to our model, we study the case where investors

cannot observe the managers’ investment decision. In this scenario, we assume

that the investors cannot observe if the manager had invested on the market

or their idiosyncratic portfolio, and we conclude that, under this assumption,

the conditions for the existence of a monotonic equilibrium cannot be satisfied.

Academic research in financial intermediaries has so far mainly focused

on establishing various empirical results about their structure, returns, flows,

managers’ skill and many other characteristics; there have been far fewer theo-

retical papers. One of the seminal papers about mutual funds is from Berk and

Green (2004); they construct a benchmark rational model in which the lack

of persistence of outperformance, is not due to lack of superior skill by active

managers, but is explained by the competition between funds and reallocation

of investors’ capital between them.
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Our paper aims to contribute to various strands of literature that we

outline below. First, it relates to many papers that study how managers’ con-

cerns about their reputation affect their investment behaviour. Chen (2015)

examines the risk taking behaviour of a manager who privately knows his abil-

ity and shows that in this model investing in the risky project always makes

a manager’s reputation higher, thus leading to overinvestment in such risky

projects. Dasgupta and Prat (2008) study the reputational concerns of man-

agers, and show how they may lead to herding and can explain some market

anomalies; their focus though is mainly on the asset pricing implications of

this behaviour. Similarly, Guerrieri and Kondor (2012) build a general equi-

librium model of delegated portfolio management to study the asset pricing

implications of career concerns; they find that as investors update their beliefs

about managers, these concerns lead to a reputational premium, which can

change signs depending on the economic conditions. Moreover, Malliaris and

Yan (2015) show that career concerns induce a preference over the skewness

of their strategy returns, while Hu et al. (2011) present a model of fund in-

dustry in which managers alter their risk-taking behaviour based on their past

performance and show that this relationship is U-shaped. Huang et al. (2012)

on the other hand, build a theoretical framework to show how investors are

rationally learning about the managers’ skills, and test their predictions about

the fund flow-performance relationship empirically; however, they do not take

into account any strategic behaviour by the fund managers.

The paper most relevant to our work is that by Franzoni and Schmalz

(2017). In their work, they study the relationship between the fund to per-

formance sensitivity and an aggregate risk factor and they find that this is

hump shaped. They also build a theoretical model in which investors update

their beliefs about the managers’ skills while they also learn about the fund’s

exposure to the market. The second inference in extreme markets is noisier

for two reasons. The first is idiosyncratic risk and the second is that investors

who are uncertain about risk loadings cannot perfectly adjust fund returns for

the contribution of aggregate risk realisations. As a result it becomes harder

for investors to judge the managers and update their beliefs, and this is what

drives the documented result. The theory we propose differs from that of
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Franzoni and Schmalz (2017) because their model describes the fund’s loading

on aggregate risk (β) as a preset fund specific exposure, whereas our model

gives the ability for managers to strategically choose their investment deci-

sion. Also we further investigate how this investment decision will affect the

managers’ decision if it is observable by the investors or not. Moreover the

data source considered for their paper is the CPRSP Mutual Fund Database

which is different from the Morningstar CISDM which we use for the empirical

part, making it difficult to compare our results. Although the implementation

and the structure of their model is completely different to ours and does not

imply the same predictions we are making, we conclude that the aggregate

risk realisations matter for mutual fund investors and managers.

Another strand of literature in which we contribute to, is the empirical

research on the fund flows and characteristics. It is well documented that

mutual fund investors chase past returns, Ippolito (1992) and Warther (1995)

present empirical evidence supporting our predictions. Sirri and Tufano (1998)

show that the flow-performance relationship is convex, and asymmetrically so

on the positive side of returns. Furthermore, Chevalier and Ellison (1997),

show that managers engage in window dressing their portfolios. More recently,

Wahal and Wang (2011) study the competition between funds, by looking at

the effect of the entry of new mutual funds on fees, flows and equilibrium prices.

Finally, Ma (2013) provides a very comprehensive survey of empirical findings

concerning the relationship between mutual fund flows and performance.

The rest of the paper is organised as follows. In section 3.2, we introduce

our theoretical framework and our equilibrium. Section 3.3 proves its existence,

identifies a condition under which this is unique, and presents our theoretical

predictions. In particular, section 3.3.4 discusses the implications of adding

a second manager. Subsequently, section 3.4 presents our empirical results.

Section 3.5 considers an alternative model where the investment decision is

unobservable. Finally, section 3.6 concludes.
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3.2 The Model

3.2.1 Setup

This is a two period model t ∈ {1, 2}. There is one fund manager (she) and a

continuum of investors (he) of measure one, who collectively form the market.

The manager discounts the future with δ ∈ (0, 1].

At the beginning of period t, each investor decides how to invest a unit of

wealth. At the end of period t, he consumes all the wealth that this investment

generated. The investor is restricted to a binary decision. He can either opt to

allocate all his wealth in an index tracking strategy. This has the same returns

as the market portfolio, which is given by

mt ∼ N (µ , σ2
m) (3.2.1)

Or, he can choose to invest all his wealth in the manager’s fund.4 For each

unit of wealth invested with the manager let Rt = exp(rt) denote its value at

the end of this period, where

rt = (1− βt) · at + βt ·mt (3.2.2)

is the fund’s return. This has two components, one of which is the market

return mt. The second is given by

at ∼ N (α, σ2 ) (3.2.3)

which represents the market neutral component of the manager’s investment

strategy.5 Adhering to the fund industry’s convention, the manager’s ability

4Our underlining intuition is that most of the market participants follow a rule of thumb
to their investment through intermediaries. For example, they set apart 5% of their wealth
and then they decide if they should invest this amount to a fund.

5For example think of a long/short equity fund that invests (1 − βt) of its assets on a
market neutral portfolio and βt on the S&P 500 index. For the most part we refrain from
giving a specific interpretation of the components of the fund’s return rt, or which part of
its investment strategy they represent. Our framework relies on the simple intuition that
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to create idiosyncratic profits is called alpha, and is represented by α ∈ {L,H}
where L < H. The manager’s ability is her private information. The investors

share the public prior π = P(α = H).

Finally, βt represents the fund’s exposure to the market. This is publicly

chosen by the manager after the investors have allocated their wealth. For

simplicity we assume that βt ∈ {0, 1}. Note that the model’s beta βt despite its

relevance to the corresponding variable of the CAPM model, is not the same

variable. Rather the former represents a deterministic investment decision,

whereas the latter its estimate.

In addition, before making her investment decision βt, but after the in-

vestors have allocated their wealth, the manager receives two signals

st = at + ηt and smt = mt + ηmt . (3.2.4)

where ηt ∼ N (0 , ν2 ) and ηmt ∼ N (0, ν2
m). On the one hand, st is private and it

is associated with the manager’s contemporaneous confidence on her alpha.On

the other hand, smt is public but it only becomes available after the investors

have committed their capital to the manager’s fund. This market signal is

considered to be the standard piece of information that most institutional

participants receive on the market’s condition.

To simplify matters, we assume that the manager’s fees are exogenously

set to a given percentage ft ∈ [0, 1] of her asset under management (AUM)

at the end of t.6 Even though we do not allow for incentive fees, the plain

managerial fees ft we consider suffice to create direct incentives for the manager

to perform in t, as her period income per dollar invested is ftRt.

Two more important assumptions have been made. First, that the man-

some of the return generated by the manager stems from her own ability and some from
factor loading. In fact mt could represent any such factor, and for some funds other choices
would be more sensible. For example, a macro fund is more related to the risk-free interest
rate than to the equity markets.

6Endogenising the choice of fees is left for future research. The complexity of allowing an
endogenous choice is that the fees would then serve as a signalling device for the managers’
ability, thus making the equilibrium much harder to find.
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ager’s investment decision is binary. In particular, it allows for either investing

all of the fund’s assets in the manager’s idiosyncratic strategy at, or all in the

market mt. Second, that this decision is observable by the rest of the market

participants. The former assumption is imposed mainly to make the model

more tractable. We speculate that altering it to allow for βt ∈ {b, b}, where

b < b, would not affect our results qualitatively.7 Regarding the latter assump-

tion, it appears to be reasonable for long investment horizons. This is because

the fund’s exposure to the market can be ex-ante approximately inferred, ei-

ther by estimating a multi-factor regression, or by looking at its past portfolio

composition, which in many cases is public.

3.2.2 Payoffs

Investors are risk-neutral, however each one’s decision is influenced by an ex-

ogenous preference shock which follows an exponential distribution.

zjt ∼ exp(λ) , where j ∈
[
0, 1
]

(3.2.5)

stands for the shock on investor’s j preferences at period t. Hence, his payoff

from investing in i ∈ {1,m} is

v(i, zjt ) =


exp(zjt − z̄) · (1− ft) ·Rt , i = 1

exp(mt) , i = m

(3.2.6)

where z̄ > 0 is a constant that we introduce to ensure that under the lowest

preference shock zjt = 0 the investor would opt for the market instead.

There is a plethora of ways to interpret this shock, a valid one being

7A possibility that we exclude and is worth mentioning is that of a manager that bets
against the market. In particular, in strong bear markets most funds would prefer to short
the market portfolio, instead of adopting a strategy that is neutral to it. This would have a
significant impact on our analysis. Despite that, it is ignored both to facilitate the exposition
and because funds that systematically hold big negative positions are not that common.
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that each investor values specific fund characteristics, for example the fund’s

classification with regards to its investment strategy, its portfolio composition,

leverage, etc. An alternative one would be that he is influenced by interper-

sonal relationships, network effects, word of mouth, or other forms of private

information. Our analysis will be silent as to what generates this shock.

Furthermore, note that because Rt comes from a log-normal distribution,

we could adopt a CRRA utility function for the investor without altering his

decision significantly. However, we opt not to do so in order to maintain our

expressions as compact as possible. On the other hand, it will be assumed that

the manager has log preferences. In particular, if At stands for the AUM the

fund in the beginning of t, then manager’s payoff at t is log
(
AtftRt

)
. Again

we speculate that most of our results would not be significantly different if a

generic CRRA was used instead of log, however it turns out that this is the

most convenient functional form to work with.

3.2.3 Timing

To sum up, the timing in our model is as follows. In each period t ∈ {1, 2},
first the preference shock zjt , j ∈ [0, 1], is realised and then the investors decide

how to allocate their wealth. Second, the manager receives the private and

public signals st and smt , respectively. Third, the investment decision βt is

made by the manager, Rt is realised, and both become public. Fourth, the

fund’s AUM is divided between the manager and her investors, according to

the fee ft, and is consumed immediately. Finally, we assume that the investors

that are active in the second period observe the public variables of the first

period before allocating their wealth. Importantly, they know (R1, β1, s
m
1 ) and

use them to update their beliefs on the manager’s ability α. Signal s1 can

not be used since it is private information of the manager and it will never be

known to the investors.

122



3.2.4 Monotonic equilibrium

We call an equilibrium of our model perfect Bayesian (PBE), if all market

participants use Bayes’ rule to update their beliefs on α, whenever possible,

and choose their actions in order to maximise their expected discounted payoff

at each point they are taking an action. There is a possibility of there being

multiple equilibria, which is a common setback for these types of models.

For this reason we will further refine the set of equilibria using the following

definition, however, the study of these equilibria is beyond the scope of this

paper.

Definition. Call a PBE a monotonic equilibrium if the manager’s rep-

utation, for a given choice of investment strategy, is non-decreasing on her

performance.

In other words a monotonic equilibrium satisfies P(α = H | r, sm, β) is

increasing in r. Therefore, the only requirement that our refinement imposes

is that the manager’s reputation is not penalised by the fact that she delivers

good returns for her investors. The above definition implies that there exists

ϕ0 and ϕ1 such that the public posterior on the manager’s ability is given by

ϕ0 = P(α = H | r1, s
m
1 , β1), for β1 = 0

ϕ1 = P(α = H | r1, s
m
1 , β1), for β1 = 1

(3.2.7)

We separate the posteriors that follow each choice of β1 because those will

turn out to have different functional forms.

3.3 Analysis

We begin our analysis by first discussing the manager’s optimal investment

strategy in the second period and how this affects her career concerns in the

first period. Second, we characterise the monotonic equilibrium and prove

its existence and uniqueness. Third, we present our results on the baseline

model with the single manager. Fourth, we discuss the implications of adding
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a second manager.

3.3.1 Investment and AUM in the second period

Here we provide a description of how we solve for the manager’s investment

decision in the second period and the corresponding AUM that this implies.

The interested reader can find a more detailed analysis in Appendix 3.8.

In the second period the manager faces no career concerns. Hence, the ob-

jective of her investment decision is to maximise the expected fees she collects

at the end of this period. Because those fees are proportional to her fund’s

AUM at the end of the second period, and we have assumed log preferences,

the manager’s payoff maximisation problem simplifies to

max
β2∈{0,1}

E
[

log(A2, f2, R2)
∣∣ β2, α, s2, s

m
2

]
When opting for her idiosyncratic strategy β2 = 0 the above expectation

uses the manager’s ability α and private signal s2, whereas the index tracking

strategy β2 = 1 depends only on the market signal sm2 . Since we have assumed

that the returns and the corresponding signals are log-normally distributed

we can calculate the above expectation for each choice in closed form. This

suggests that the manager’s optimal second period strategy is to invest in her

idiosyncratic project if and only if s2 ≥ c(α, sm2 ) where

c(α, sm2 ) =
ψm
ψ
· sm2 +

1− ψm
ψ

· µ− 1− ψ
ψ
· α (3.3.1)

The constants ψ and ψm are the weights that the Bayesian updating gives

to the signals s2 and sm2 , respectively, and more specifically: ψ = σ2

σ2+ν2
and

ψm = σ2
m

σ2
m+ν2m

. Given the above cut-off strategy we can calculate the expected

terminal value of one unit of wealth that is invested by the manager. For a

high and low type we will denote those by uH2 and uL2 , respectively. Therefore,

for given posterior reputation ϕ, and while ignoring the preference shock z,
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the expected payoff of an investor that opts for the manager is given by

[1− f2] · [ϕ · uH2 + (1− ϕ)uL2 ]

This together with the assumed preference shock allows us to calculate

the assets of the second period in closed-form.

From (4.6) we have the expected payoff of an investor who chooses to

invest in a fund or in the market. He chooses the former if his expected payoff

is higher. Since there is a continuum of investors with one unit of wealth, the

probability of this event occurring is equal to the assets of fund one. Hence

A2(ϕ) =
(
e−(µ+z̄+σ2

m/2) · [1− f2] · [ϕ · uH2 + (1− ϕ) · uL2 ]
)λ

(3.3.2)

which is an increasing function of the manager’s reputation ϕ. One thing we

can note is that as long as λ > 1, the assets under management are a convex

function of the reputation ϕ. This is a result that has been widely documented

in the relevant empirical literature, in slightly different forms.

3.3.2 Existence and uniqueness of the monotonic equi-

librium

In this section we demonstrate that the monotonic equilibrium exists and is

unique under mild conditions. First, we want to understand the manager’s

incentives in the first period. Her expected discounted payoff at this point is

ER
[

log [R1f1A1(π)] + δ · log [R2f2A2(ϕβ)]
∣∣∣ sm, s, β , α ]

where the expectation taken with respect to the returns of both periods. A1(π)

is the equilibrium allocation of AUM in the first period, which has a functional

form similar to that of A2(ϕβ) and β is β1.

125



Hereafter, the focus of the paper shifts to the interactions of the first

period. As a result, in order to make our formulas more compact, the time

subscript t is dropped, whenever this does not create an ambiguity. Using the

properties of the natural logarithm we simplify the manager’s payoff maximi-

sation problem in period 1 to

max
β∈{0,1}

Er
[
r + δ · λ · log[ϕβ(r, sm) · (uH − uL) + uL ]

∣∣∣ sm, s, β , α ] (3.3.3)

Therefore, the manager cares both about her returns in the first period r, but

also on how those affect her posterior reputation ϕβ(r, sm). This reputation

is important because it affects the amount of AUM that the manager will

manage to gather in the beginning of the second period.

First, we want to offer a characterisation of the monotonic equilibrium.

Lemma 4. In any monotonic equilibrium the high and low type invest in their

idiosyncratic strategy if and only if

s ≥ h(sm) and s ≥ l(sm) , (3.3.4)

respectively, where

l(sm)− h(sm) =
1− ψ
ψ
· (H − L) (3.3.5)

Proof. In Appendix 3.7.

Hence the more confident the manager becomes on her alpha, the more

likely she is to use her idiosyncratic strategy, instead of the index tracking one.

In addition, the fact that the high type’s cutoff is lower captures the fact that a

competent manager uses her idiosyncratic investment strategy relatively more

often.

Second, we want to calculate the manager’s posterior reputation after

each investment decision as a fuction of her performance.
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Lemma 5 (Posteriors). In any monotonic equilibrium the manager’s posterior

reputation in the beginning of the second period, if she invested on her alpha

β1 = 0 in the first, is

ϕ0(r, sm) =

1 +
1− π
π
· ρ(r) ·

Φ
(
r−l(sm)(1+ψ)+Lψ

ν
√

1+ψ

)
Φ
(
r−h(sm)(1+ψ)+Hψ

ν
√

1+ψ

)
−1

, (3.3.6)

where

ρ(r) = exp

(
−2(H − L) r +H2 − L2

2ν2ψ(1 + ψ)

)
.

On the other hand, if she invested in the market β = 1 then this becomes

ϕ1(sm) =

1 +
1− π
π
·

Φ
(
l(sm)−L)

ν

)
Φ
(
h(sm)−H

ν

)
−1

(3.3.7)

We recall that r depends on the investment decision β.

Proof. In Appendix 3.7.

The investors form their posterior belief on the manager’s ability by ob-

serving her investment decision β and the realised return r. Note that when

using her idiosyncratic investment strategy the manager’s performance r is

generated by her alpha. Hence, in this case the realisation r carries additional

information on the manager’s ability. On the other hand, when using the in-

dex tracking strategy r is equal to the market’s return m, which carries no

additional information on the manager’s ability. This is why ϕ0 is a function

of r, but ϕ1 is not.

Using the above two lemmas, we prove the main result of this part.

Proposition 7. A monotonic equilibrium always exists. Moreover, a sufficient

condition for it to be unique is that

δ · λ · (H − L) ≤ ψ2 · ν2 (3.3.8)
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Proof. In Appendix 3.7.

We believe that (3.3.8) is satisfied for a wide range of parametric specifi-

cations that we would consider natural given the economic setting we study.

This translates into two requirements. First, that the difference between the

ability of the two types is not too big. Second, that the precision of the signal

s is neither so small that it becomes irrelevant, nor so big that the manager’s

ex-ante ability α becomes irrelevant instead.

3.3.3 Results

Here, we present some important properties of the unique monotonic equilib-

rium. We assume throughout that (3.3.8) holds. To maintain the notation as

light as possible keep using ϕ0(r, sm) and ϕ1(sm) to refer to the equilibrium

reputations, which are obtained after substituting the corresponding values for

h(sm) and l(sm).

Proposition 8 (Point-wise dominance). There is a strict reputational benefit

for the manager from investing in her alpha, that is

ϕ0(r, sm) > ϕ1(sm), for all r, sm ∈ R. (3.3.9)

Proof. In Appendix 3.7.

We already know that in every monotonic equilibrium ϕ0(r, sm) is in-

creasing in r, in other words high performance is beneficial for the manager’s

reputation. The proof demonstrates the result by considering the worst case

scenario for the manager β = 0. In the extreme scenario where return ap-

proaches minus infinity her reputation is still greater than choose β = 1.

Hence the equilibrium difference between the cutoffs used by the high and low

type is such that the investors’ inference on the manager’s type relies rela-

tively more on her choice of strategy than on the subsequent performance of

her fund.
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This may seem counterintuitive at first, but it has a very simple expla-

nation. In the appendix we show that for a monotonic equilibrium to also be

rational the difference between the equilibrium cutoffs l(sm) and h(sm) can-

not be too large. If that was the case, then a low type would have to be so

confident in order to invest in her alpha that a very bad performance, under

the low beta strategy, would be associated with a high type. An immediate

consequence of which would be that the manager’s reputation would be non-

monotonic on her performance. But those are exactly the type of equilibria

that appear to be the less realistic.

The above claim is the most challenging one to verify in the data. This

is because for each fund we never observe the counter-factual, that is how the

fund’s flow would look like if it had chosen a lower, or higher beta strategy.

Moreover, the simplifying assumption β ∈ {0, 1} makes this result stronger

than what an alternative model, where the two betas are closer to each other,

would give. Despite that, we can verify empirically that to a certain extent a

low beta strategy creates enough signalling value to counter the effect of a low

subsequent performance.

As a direct consequence of point-wise dominance, we can now get the fol-

lowing interesting proposition, which characterises the effect of the manager’s

career concerns on her investment behaviour.

Proposition 9 (Investment Behaviour). The equilibrium cutoffs h(sm) and

l(sm) are decreasing in the discount factor δ. Moreover, there is overinvestment

in the manager’s idiosyncratic project, that is

h(sm) ≤ c(H, sm) and l(sm) ≤ c(L, sm). (3.3.10)

Proof. In Appendix 3.7.

The proof is a simple application of the implicit function theorem on

equation (3.7.17), the solution of which is shown in the proof of Proposition 7

to be h(sm). The corresponding result for l(sm) is obtained by invoking the fact

that in every monotonic equilibrium those two cutoffs are connected through

a linear relationship, which was again demonstrated in the above proof.
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We use the term over-investment to describe the fact that the manager

invests in her idiosyncratic strategy more often than in the absence of career

concerns. In other words, over-investment exists when the manager lowers her

standards with regards to her private signal, i.e. she lowers the confidence

level required for her to choose the idiosyncratic investment. Note that the

manager’s optimal cutoff, in the absence of career concerns, corresponds to

that already derived from for the second period in (3.3.1). This is because it

is generated by the inefficiency in the investment decision that the manager’s

career concerns create, which is connected to the underlying parameter δ.

The above proposition demonstrates that there is a bias towards active

management in the financial intermediation industry, which is due to its inher-

ent informational asymmetries. To be more precise, we expect managers to get

on average less exposure to the market than what would maximise the fund’s

expected return. Moreover, this action is associated with competence and it

is rewarded with an increase in the fund’s AUM. Hence, our model provides a

theoretical justification for this well documented fact.

Next, we want to see how this bias depends on the unobserved, to the

econometricians, market signal sm and the manager’s prior reputation π.

Proposition 10. The cutoffs h(sm) and l(sm) are increasing in the market

signal sm. In addition, there exist lower bounds s̄m and π̄ such that for ev-

ery (sm, π) such that sm ≥ s̄m and π ≥ π̄ both cutoffs h(sm) and l(sm) are

increasing functions of the manager’s prior reputation π.

Proof. The proof of the first statement is similar to that of Proposition 9. The

proof of the second follows from Lemma 10, which can be found in Appendix

3.7.

The first statement is a very intuitive result. The better the manager

expects the market portfolio to perform, the more eager she becomes to invest

in it, which translates into higher equilibrium cutoffs.

The crucial implication of the proposition’s second statement is that the

bias created from the signalling value, of investing in the idiosyncratic strategy,
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is decreasing in the manager’s prior reputation. This is because the equilibrium

cutoffs are bounded above by the expected return maximising cutoff c(α, sm),

hence the more π increases the closer they get to it.

A caveat of this result is that it only holds for a manager that is already

relatively recognised in the market, in particular it is shown in the appendix

that we need at least π > 1/2. Intuitively, the closer the prior is to either

zero or one, the less it is affected by the actions of the manager. To make this

more concrete, think of the extreme case where π → 1, in which case it is very

difficult for the investors to change their opinion about her ability, as they

already know it with almost total certainty. Hence, there is a corresponding

result that can be stated for managers of very low reputation. Even though

in our model we allow for funds of small size to stay active, in reality most of

them would either shut down, or would not even be reported in most datasets,

hence we focus just on funds with reputation greater than a 1/2. 8.

Another interesting feature of the presented specification is that it pro-

vides a better understanding on how the sensitivity of the fund’s asset flows

to its performance depend on the market conditions. Let ϕi(ri, sm, βi) stand

for the manager’s reputation in either of the two cases and call dϕi/dri its

sensitivity with respect to her performance.

Proposition 11. The conditional probability that a manager has invested in

the market portfolio P(βit = 1 |mt) is increasing in its contemporaneous per-

formance mt.

In addition, for a sufficiently reputable manager the conditional expected

sensitivity of the manager’s reputation with respect to her performance, i.e.

Esm [dϕi/dri |mt], is decreasing in mt.

Proof. In Appendix 3.7.

When markets are expected to perform well, the manager’s direct incen-

tives outweigh those of career concerns. Hence we know from Proposition 10

8Despite that we hope to test empirically if we can obtain a corresponding result for the
flows of small funds.
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that she is more likely to give up the reputational benefit of following a low

beta strategy. But high beta strategies carry no information with respect to

the manager’s ability. Hence, even though as noted in Proposition 8 investing

in low beta always has a reputational benefit, this benefit is less pronounced in

good markets. Therefore investors are expected to rely more on a manager’s

performance to update their belief about the ability of the manager, when

markets are bear than when markets are bull. This result is also supported by

the empirical evidence we provide in section 3.4.

3.3.4 Discussion on the competition between funds

It follows from the previous discussion that managers will be judged much

more strictly on their performance in bear markets than in bull markets. This

in turn has some implications for the relative ranking of the various funds with

respect to their reputation, or equivalently their AUM.

To study this we extend our model by allowing a second manager to

operate in the market. We formally define the investor’s preference shock in

this case and derive the corresponding AUMs of the two funds in Appendix 3.8.

In fact, the whole analysis of this paper and all our results remain unchanged

with the addition of a second manager. The reason is that the manager’s

utility is such that it is only a function ϕβ(r, sm) · (uH − uL) + uL and is

independent of the number of managers that exist in the model.9

Our main aim is to study the likelihood of a change in the rank of man-

agers, in terms of investors’ beliefs about their ability and relate that to the

market conditions. In what follows, we explain why this effect is not monotonic

in mt.
10Indeed, let P(i, j | sm) = P(βfund 1 = i, βfund 2 = j | sm), for i, j ∈ {0, 1}.

9In particular, equation (39) and thus the determination of the cutoffs l and h will
remain the same.

10Note, we always condition on sm as we know that all investors observe this market
signal.
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In the Appendix it is shown that:

P(ϕ1 > ϕ2 | sm) = P(ϕ1
0 > ϕ2

1 | sm)P(0, 1 | sm) + P(ϕ1
0 > ϕ2

0 | sm)P(0, 0 | sm),

(3.3.11)

What this equation suggests is that the ranks of managers can change

through two possible scenarios. In the first scenario, with probability P(0, 1 | sm),

one of the two managers invests in his idiosyncratic portfolio and the other

follows the market. This probability approaches zero for both very large and

very small sm, as then both managers invest in the market or both invest in

their own project. In turn, this makes the first term of the right hand side

of the equation (4.18) hump-shaped in sm. Under this scenario, manager 1

has a reputational benefit from choosing β = 0 (see Proposition 2) which then

makes it possible for his ex-post reputation to be higher than that of manager

2 (despite his initial disadvantage, in terms of the priors π1, π2); clearly the

smaller the distance between their prior reputations, π2 − π1, the larger this

likelihood will be.

In the second scenario, with probability P(0, 0 | sm) both managers invest

in their own project and manager one receives a much higher return than the

other, thus overcoming the effect of the initial prior reputations; in other words,

since π1 < π2, in order for the posterior reputations to have the opposite order,

what needs to happen is that the realised return of manager 1 is much higher

than that of 2. This is clearly not possible if they both invest in the market.

However, when they both invest in their idiosyncratic project this can happen

either because one is luckier than the other, or simply because manager one

has high skill and manager two has low skill. This scenario is less likely to

occur as the market conditions get better since P(0, 0 | sm) is decreasing in sm,

as we can see from Proposition 5. Moreover, we can get the following remark:

Remark 1. The likelihood of a change in the ranks of managers is higher in

a very bad market, than in a very good market. That is:

lim
sm→−∞

P(ϕ1 > ϕ2 | sm) > lim
sm→+∞

P(ϕ1 > ϕ2 | sm) (3.3.12)
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The proof of this remark is quite simple. As the market becomes really

good, the probability of a manager investing in his own project goes to zero,

and hence from (4.20) we see that the probability of a rank change will tend to

zero. In contrast, for a very negative market signal, this probability is strictly

positive, since P(0, 0|sm) = 1 and P(ϕ1
0 > ϕ2

0 | sm) > 0.11

From the above analysis, it is clear that the overall effect does not have to

be monotonic in sm. Hence we use simulations to illustrate the properties of

the probability of interest as a function of the market signal, confirming also

the observation in the aforementioned remark.12

On the y-axis we have the probability of change in rank, and on the x-

axis the corresponding market signal. As it can been seen from the graph

the total effect is hump-shaped in sm, it is decreasing as the market signal

becomes relatively large and also it is smaller when market conditions are

good compared to when they are bad.

In the next section, we find empirical evidence supporting our results.

This is done by constructing divisions in which each fund is allocated in accor-

11Intuitively the return of manager 1 may be much larger than that of manager 2 when
they both invest in their own projects (either because one has high skill and the other has
low or because one is just luckier than the other) and hence there is a positive probability
there will be a change of ranks.

12For this simulation we set the parameters as: π1 = 0.6,π2 = 0.601, αH = 0.16, αL =
0.1,σ = ν = 0.35, f1 = f2 = 0.01, σmνm = 0.25, λ1 = λ2 = 0.8 and δ = 0.5.

134



dance with their AUM. Subsequently, we calculate the proportion of funds that

changed division from the beginning of each period to its end. Approximately,

this measures the probability to which the above proposition refers.
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3.4 Empirics

3.4.1 Data

The data used in this study comes from the Morningstar CISDM database.

The time span of our sample is from January 1994 to December 2015. To

mitigate survivorship bias we include defunct funds in the sample. We have

created a larger group of strategies to accumulate the Morningstar’s categories.

All fund returns have been converted to USD (U.S dollars) using the exchange

rates of each period separately. Observations of performance or assets under

management, with more than 30 missing values, have been deleted. All ob-

servations are monthly. Our main variable of interest is flows, which gives

the proportional in and out flows of the fund with respect to its assets under

management. For the market return we consider the S&P 500 and as fund

excess returns, the difference of the fund’s return with the market. In partic-

ular, we use the corresponding Fama-French market factor obtained from the

WRDS (or from Kenneth French’s website at Darmouth). We also examine

the relationship of alpha and beta of a fund as well as their relationship to the

flows.

3.4.2 Empirical Evidence

The purpose of this section is to empirically test some of the assumptions as

well as the results of our model and show that our model can be empirically

supported by data. For simplicity we will use CAPM alpha and beta through-

out this section, calculated using a 32 month period (which we will define in

this section as one period).13 Moreover we will refer to the log of the assets

of a fund lagged by one period, simply as the fund’s assets. First of all, our

model assumes that investors get a signal about the market (sm) before ev-

eryone else does. This would imply some form of market-timing. We first run

13We have also performed a robustness check using the 4-factor alphas and betas.
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the following panel regression, with fixed effects:

Betat = λ0 + λ1rm,t + λ2Assetst−1 + λ3Aget + di + εt

where rm,t is the period market return (described above) and di corresponds

to the fixed effects dummy (although the subscript i for the fund has been

suppressed in the rest of the variables). The results are shown below:

Table 3.4.1: Estimation results : Beta on Market Return.

The baseline model we run is summarised by beta ∼ rm + assets + controls.

Variable Coefficient (Std. Err.)

rm 0.03256∗ (0.01372)

assets 0.01467∗∗ (0.00508)

age 0.00502∗∗ (0.00144)

Intercept 0.02430 (0.08400)

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

The positive and significant coefficient in front of the market return sup-

ports our model assumption (as well as with the prediction of Proposition

9 about over-investment), in the sense that it indicates that when markets

are bull, it is more likely that managers choose to get higher exposure to

the market. This is consistent with what we would observe if managers had

market-timing abilities.

Another result of our model is that in equilibrium l > h. Given the

definition of the cutoff equilibrium strategies described in (5), this leads to:

P (β = 1|L) > P (β = 1|H). If this is the case, we would expect to see in the

data that funds with higher alpha, have on average lower betas, i.e they choose

to invest on their idiosyncratic project since they benefit both from potential

higher returns thanks to their superior alpha as well as from signalling their

skill. Indeed this is the case. We are using the following cross-sectional baseline
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model, for the last date in our data, December 2015:14

Alphat = λ0 + λ1Betat + λ2Assetst−1 + Λ3Controls + εt,

where controls include the age and the strategy of the fund. As shown in Table

2 the coefficient of interest is negative, suggesting that more skilled managers

pick a high beta less often.

Table 3.4.2: Cross-sectional Regression of Alphas on Betas and controls, t =
12/2015.The baseline model we run is summarised by alpha ∼ beta + assets +
controls.

Variable Coefficient (Std. Err.)

beta -0.00958∗∗ (0.00085)

assets 0.00006 (0.00016)

age 0.00001 (0.00005)

strategy 0.00003 (0.00009)

Intercept 0.00130 (0.00284)

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

Even more importantly, we want to test the second implication of Proposi-

tion 11. That is, we want to test whether the data suggest that the sensitivity

of flows to performance is higher when beta is 0, or consequently is higher

when markets are bear than when they are bull. We will measure the fund

flows, as in Sirri and Tufano (1998):

Flowst =
TNAt − (1 +Rt)TNAt−1

TNAt−1

where TNA is the total net assets and R is the return of the fund. We will

14We only include funds that report US dollars as their base currency.
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use the simple return of the fund, ri, as the measure of performance, as in

Clifford et al. (2013). We think that this is the most appropriate measure of

performance to test the predictions of our model. The following two tables15

verify the above finding, and support our predictions16. First regression is a

cross-sectional one for December 2015.

AvFlowst = λ1ri,t · Bigbetat + λ2Assetst−1 + Λ3Controls + εt

where AvFlows is the average flows of the previous period, Bigbeta = 1{β≥0.3},

ri,t is the fund’s period return and controls include the age, the strategy and

the bigbeta dummy of the fund (the intercept λ0 is just suppressed in the

above equation).

Table 3.4.3: Flows on Performance and Beta, t = 12/2015

Variable Coefficient (Std. Err.)

ri·Bigbeta -0.12510∗∗ (0.03433)

Bigbeta 0.01204 (0.01522)

assets -0.01437∗∗ (0.00389)

strategy 0.00352 (0.00231)

age -0.00133 (0.00120)

Intercept 0.25846∗∗ (0.06906)

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

The second table we are presenting is a panel regression with fixed effects,

where we regress flows on the interaction of annual fund’s performance and

15Since the funds selected in our model, are only between β = {0, 1}, thus making
the implicit assumption that there is no short-selling of the market, we will exclude all
observation with negative β, which are less than 15% of our sample.

16This result was only recently documented empirically in a paper by Franzoni and
Schmalz (2013).
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market return, including the usual controls. That is, our baseline model is:

AvFlowst = λ1ri,t · rm,t + λ2Assetst−1 + Λ3Controls + di + εt

where controls include the fund’s beta and the period return of the market

and of the fund itself.

Table 3.4.4: Flows on the interaction of Fund Performance and Market Return

Variable Coefficient (Std. Err.)

ri · rm -0.15297∗∗ (0.03697)

beta 0.00423 (0.00648)

ri 0.07538∗∗ (0.02036)

rm 0.02828∗∗ (0.00955)

assets -0.02718∗∗ (0.00224)

Intercept 0.47264∗∗ (0.03964)

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%

In both cases we can see that the coefficient of interest is significantly

negative. The interpretation of these two regressions is the following: the first

one shows that funds with higher beta are not judged so much on their per-

formance; that is the higher the beta, the less important the flow performance

relationship. On the other hand, the second table supports the statement that

the sensitivity of fund flows to performance depends on the state of the market

and more specifically it is decreasing on the market return. Under the predic-

tions of our model, these two results are almost equivalent, and we indeed get

that the coefficient in both cases is negative and significant, thus supporting

one of our main results as well.
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Finally, we want to provide some empirical evidence relevant to the dis-

cussion on the competition of funds. Namely, we find support for Remark 1,

by demonstrating that the probability of changes in the ranking of funds, with

respect to their AUM, is higher under adverse market conditions. To achieve

this a new variable is constructed. First, the sample is separated in periods of

eight months, so that we have thirty periods in total. For each one, seventy

divisions (clusters of funds) are created. Funds are allocated in those divisions

according to the size of their AUM at the end of each period.17 Then we define

divjumpassetUSD t as the percentage of funds that changed division from the

beginning to the end of period t. We are careful to only compare funds that

were active during the whole duration of each period. Also, we only consider

the US universe of funds to avoid introducing noise created from fluctuations

in the exchange rates.

On the y-axis we have our constructed measure of changes between divi-

sions divjumpassetUSD t, and on the x-axis the corresponding total return of

the market portfolio during the same period. As it can been seen from the

17Our methodology closely follows previous work done by Marathe and Shawky (1999)
and Nguyen-Thi-Thanh (2010).
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graph there appears to be a negative relationship between the two, which is

also statistically significant. Note that this is just an indication of the rela-

tionship between the rank of funds and the market conditions, under a simple

linear regression, and thus it does not capture any second order effects (or a

hump-shaped relationship). Hence, our prediction in Remark 1 is only sup-

ported by weak evidence, but we believe that there is much more to explore

in this direction in the future.

3.5 Extension: Unobservable Investment De-

cision

In this section, we want to extend our model, and investigate the equilibrium

where the investment decision of the fund managers cannot be observed by

the investors. In this case, investors use the return of the fund managers’ to

both update their beliefs about managers skill and to also understand whether

or not they invested in their own project. In reality, it is indeed the case that

investors do not know exactly the exposure of a fund manager to the systematic

risk. Instead they use a history of data of the fund return’s comovement with

the market return to infer the fund’s statistical beta. Since the model we are

examining here is static, the assumption in this section is that this inference is

only made based on the proximity of the market return to the fund’s return.

The model considers only one period and it remains the same as before,

apart from a few changes outlined below. Firstly, an additional error ε has

been introduced in order to make the manager’s choice of investment unobserv-

able by the investors. (Note, that without this tracking error, investors could

perfectly observe the decision of managers based on whether or not r = m.)
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Hence our model becomes:

r = (1− β) a+ β (m+ ε)

a ∼ N (α, σ2 )

m ∼ N (µ , σ2
m)

ε ∼ N (0 , σ2
ε)

(3.5.1)

As before we study only the simple binary case where β ∈ {0, 1}. The

rest of the notation and ideas remain unchanged.

The posterior distribution of r, conditional on (α, β, s, sm) is given by

r |α, β, s, sm ∼ N
(
r̄(α, β, s, sm), σ̄2(β)

)
r̄(α, β, s, sm) ≡ (1− β)[(1− ψ)α + ψs]

+ β[(1− ψm)µ+ ψms
m]

σ̄2(β) ≡ (1− β)2ψν2 + β2(ψmν
2
m + σ2

ε)

(3.5.2)

Our goal is to study whether a monotonic cutoff equilibrium (introduced in

the previous sections) exists under this alternative assumption. We believe

that only such an equilibrium would be interesting and realistic to serve for

further study. We move on to find a closed-form expression for the ex-post

reputation ϕ, which is given by the following lemma.

Lemma 6. The manager’s posterior reputation is given by

ϕ(r,m, sm) =

(
1 +

1− π
π

ρ
(
r, L, l(sm)

)
ρ
(
r,H, h(sm)

))−1

, (3.5.3)

where

ρ(r, α, c) = Φ

(
r − c(1 + ψ) + αψ

ν
√

1 + ψ

)
×
φ

(
r−α

ν
√
ψ(1+ψ)

)
ν
√
ψ(1 + ψ)

+Φ

(
c− α
ν

) φ
(
r−m
σε

)
σε

,

(3.5.4)
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Proof. In Appendix 3.9.

Using the above lemma, we can now see whether this model can provide

us with an equilibrium where the reputation ϕ(r,m, sm) is increasing in r. In

fact, we get the following proposition:

Proposition 12. A monotonic equilibrium under unobservable beta does not

exist.

Proof. In Appendix 3.9.

What this proposition shows is that the reputation ϕ(r,m, sm) cannot al-

ways be increasing in r under the assumption that investors do not observe the

investment choices. The reason, as illustrated in the proof in the Appendix,

is that in a very bull market, the good performance of a manager may make

investors believe that it is more likely that he was following the market, and

thus may lead to a loss of reputation. That is to say that the assumption of

unobservable investment choice under a static setting can lead us to counter-

intuitive equilibrium properties. We believe that in future research it could be

interesting to study this realistic case under a dynamic setting where the in-

ference of beta will be indeed based on the co-movement of the market return

with the fund’s return.

3.6 Conclusions

The role of financial intermediaries and their characteristics has been greatly

explored in the recent empirical literature. In this article, we have developed

a theoretical model that describes how the strategic investment decisions of

fund managers is influenced by their career concerns. To sum up our argument,

these managers will tend to over-invest in market neutral strategies as a way

to signal their ability. Moreover, we have described how managers’ reputation

depends on the market conditions; in particular, we find that the sensitivity

of flows to performance is higher in bear markets than in bull markets and
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we discuss the competition between funds, measured by the changes in their

rankings, as a function of the market conditions. Our model entails predictions

about some directly observable fund characteristics such as their size and fees,

as well as some indirectly observable quantities such as their reputation or

their investment behavior depending on their signals. In our empirical section,

we have managed to find support for many of the assumptions as well as

predictions of our model. Moreover, we have extended our model to include

the case when the manager’s investment decision is not observable by the

investors.

There are many ways forward with this research. The results of this

model do not depend on the specific factor which funds use when they are

tracking an index; one, may try to apply the same logic in funds that use

factors other than the market return and test the corresponding empirical

predictions. Also, using a slightly different interpretation of the investor’s

decision between allocating funds to a manager or to the market, one could

think of an investor choosing between an active and a passive fund and use

the closed form solution for the fund’s size, to see how the relative (total) size

of the passive and active funds, depends on the market conditions.

3.7 Appendix: Omitted Proofs

Proof of Lemma 4. Using (3.3.3) it is ease to argue that both idiosyncratic

and index tracking strategies have to be played with positive probability. This

is because the effect of the reputation ϕβ(·) on the manager’s payoff is bounded,

whereas that of current return r is not. But this implies that ϕ0(·) is calculated

using Bayesian updating, and as a result it cannot be a function of r, since in

this case r provides no information on the manager’s ability α.

Fix sm, then the manager’s expected payoff while investing in an index

tracking strategy β = 1 is not a function of s. On the other hand, her payoff

under the idiosyncratic strategy is a function of r. In particular, it follows

from the definition of monotonic equilibria that this is increasing in s, which
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proves that the manager’s equilibrium strategy is a cut-off one, as presented

in (3.3.4).

In addition, the indifference condition that defines h(sm) is

Er
[
a + δ · λ · log[ϕ0(r, sm) · (uH − uL) + uL ]

∣∣∣ s = h(sm), α = H
]

= Er
[
m + δ · λ · log[ϕ0(sm) · (uH − uL) + uL ]

∣∣∣ sm ]
while the one that defines l(sm) is

Er
[
a + δ · λ · log[ϕ0(r, sm) · (uH − uL) + uL ]

∣∣∣ s = l(sm), α = L
]

= Er
[
m + δ · λ · log[ϕ0(sm) · (uH − uL) + uL ]

∣∣∣ sm ]
But the right hand sides of the above two equations are the same, hence the

two expressions on the left hand sides are equal. Therefore, the two conditional

normals that are used in the two left hand sides have to be the same,18 which

implies that

(1− ψ) ·H + ψ · h(sm) = (1− ψ) · L + ψ · l(sm)

from which (3.3.5) follows.

Proof of Lemma 5. The time subscripts is suppressed, when no ambiguity

is created. The same is true for the signal sm in the cutoffs h(sm) and l(sm).

To find the posterior ϕ0(r) calculate

P
(
r, β = 0

∣∣ sm, H) = P
(
r
∣∣ β = 0, sm, H

)
× P

(
β = 0

∣∣ sm, H) ,
where

P
(
β = 0

∣∣ sm, H) = P(s ≥ h | sm, H) = Φ

(
−h−H

ν

)
, (3.7.1)

18Otherwise, one random variable would stochastically dominate the other, since they
have the same variance. But then the expectations in the 2 left hand sides could not be the
same, since ϕ0(r, sm) is increasing in r.
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and

P (r | β = 0, sm, H) =

∫ ∞
h

φ

(
r − (1− ψ)H − ψs√

ψ ν

)
× 1√

ψ ν
φ

(
s−H
ν

)
1/ν

Φ
(
−h−H

ν

) ds

Hence, substituting gives that

P (r, β = 0 | sm, H) =

∫ ∞
h

φ

(
r − (1− ψ)H − ψsi√

ψ ν

)
φ
(
s−H
ν

)
√
ψ ν2

ds. (3.7.2)

Let s̃ = (s−H)/ν, then the above becomes∫ ∞
h−H
ν

φ

(
r −H√
ψ ν
−
√
ψ s̃

)
φ(s̃)√
ψ ν

ds̃

=

φ

(
r−H

ν
√
ψ(1+ψ)

)
ν
√
ψ(1 + ψ)

∫ ∞
h−H
ν

φ

(
s̃− r−H

ν(1+ψ)

1/
√

1 + ψ

)√
1 + ψ ds̃

=

φ

(
r−H

ν
√
ψ(1+ψ)

)
ν
√
ψ(1 + ψ)

Φ

(
r − h(1 + ψ) +Hψ

ν
√

1 + ψ

)
.

(3.7.3)

Repeat the same process to find P (r | β = 0, sm, L) and observe that it follows

from Bayes’ rule that

ϕ0(r) =

(
1 +

1− π
π

P (r, β = 0 | sm, L)

P (r, β = 0 | sm, H)

)−1

, (3.7.4)

from which the provided formula follows. To derive ϕ1 use Bayes’ rule to get

that

ϕ1 =

(
1 +

1− π
π

P (β = 1 | sm, L)

P (β = 1 | sm, H)

)−1

, (3.7.5)

where P (β = 1 | sm, α) = 1− P (β = 0 | sm, α), which has been derived above.

To prove our existence theorem we need to following three lemmas.
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Lemma 7. If M(·) is the normal hazard function, then for a ≥ b we have,

M(a)−M(b) ≤ a− b (3.7.6)

Proof. Since the hazard function is a continuous function, we can use the

Mean Value Theorem, which says that for any a > b there exists a ξ ∈ (a, b)

such that M(a) −M(b) = M ′(ξ)(a − b). Therefore, it is sufficient to prove

that M ′(ξ) < 1 for any ξ. To prove that, note that M(·) is convex, and hence

M ′(·) is increasing, so it would be sufficient to prove that limx→∞M
′(x) = 1.

Now we use the following inequality for the normal hazard function. We know

that for x > 0,

x < M(x) < x+
1

x
(3.7.7)

But this easily implies that M(x) has x as its asymptote as x → ∞ (that

is limx→∞M(x) − x = 0). Finally this implies that limx→∞M
′(x) = 1 and

this completes the proof (note the limit exists because M ′(·) is increasing and

bounded, as M ′(x) = M(x)(M(x)− x) < 1 + 1
x2
< 2).

Lemma 8. The time subscripted is suppressed. A sufficient condition for

ϕ0(r, sm) to be increasing in the manager’s performance r is that

(H − L) · 1− ψ
ψ

≥ l(sm1 )− h(sm1 ). (3.7.8)

Proof. Suppress inputs (r, sm), and super/sub-scripts. Differentiating gives

dϕ

dr
= −ϕ(1− ϕ)

ν
√

1 + ψ

[
− H − L
νψ
√

1 + ψ
+M

(
−r − l(1 + ψ) + Lψ

ν
√

1 + ψ

)
−M

(
−r − h(1 + ψ) +Hψ

ν
√

1 + ψ

)]
(3.7.9)

Let

δL = l(1 + ψ)− Lψ
δH = h(1 + ψ)−Hψ,

(3.7.10)
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then the above is positive if and only if

H − L
νψ
√

1 + ψ
≥M

(
δL − r
ν
√

1 + ψ

)
−M

(
δH − r
ν
√

1 + ψ

)
(3.7.11)

But using Lemma 7 we see that the right hand side is bounded above by

δL − δH

ν
√

1 + ψ
=

(l − h)(1 + ψ) + (H − L)ψ

ν
√

1 + ψ
. (3.7.12)

Hence, a sufficient condition for the inequality to hold is that

H − L
ψ

≥ (l − h)(1 + ψ) + (H − L)ψ ⇔ (H − L)
1− ψ
ψ
≥ l − h. (3.7.13)

Lemma 9. For c > 0, let

µ(x) =

(
1 + c

Φ(a0 + b x)

Φ(a1 + b x)

)−1

. (3.7.14)

Suppose b > 0, then µ′(x) > 0 ⇔ a1 < a0, whereas b < 0 implies that

µ′(x) > 0⇔ a1 > a0.

Proof. Differentiating gives

µ′(x) = −bµ(x)[1− µ(x)]× [M(−a0 − b x)−M(−a1 − b x)] .

Then the statement follows simple from the fact that M(·) is increasing .

Proof of Proposition 7. Suppress time subscript t. Also suppress the sig-

nal sm in the cutoffs h(sm) and l(sm), and in the reputations ϕ0(·) and ϕ1(·).

We start by proving existence. As we have argued in Lemma 4, in any

monotonic equilibrium the optimal strategy of a high and low type manager is

to pick β = 0 whenever her signal s is above the cutoffs h and l, respectively.

In addition, another necessary implication is that h and l satisfy (3.3.5).
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But then Lemma 8 together with (3.3.5) give that ϕ0(r) is indeed increas-

ing in r. Hence, the manager’s best response to the functional forms of ϕ0(·)
and ϕ1 as given Lemma 5 is to indeed use the cutoff strategies that Lemma 4

describes.

All that remains to prove existence is to shown that those cutoffs always

exists. To do this note that the manager’s payoff maximisation problem when

picking the first period’s beta is as given in (3.3.3). Let her expected payoff

when picking β = 0 be denoted by

v0(s, α) = (1− ψ) · α + ψ · s + δ · λ · Er
[
log
(
ϕ0(r)(uH − uL) + uL

) ∣∣ s, α] ,
whereas for β = 1 this becomes

v1 = (1− ψm) · µ + ψm · sm + δ · λ · log
(
ϕ1(uH − uL) + uL

)
.

But then v1 is bounded, while v(s, α) goes from minus to plus infinity. Hence

the manager uses both the low and high beta strategy depending on s. Next,

we provide the equation that defines those cutoffs. Rewrite l as a function of

h according to

l(h)− L = h−H +
H − L
ψ

,

and substitute this equality in ϕ0(r) and ϕ1 to obtain the following two func-

tions, in which only h appears out of the two equilibrium cutoffs. Substituting

in ϕ0(r) gives

ϕ̃0(r, h) =

(
1 +

1− π
π
· ρ(r) ·

Φ
(
r−h·(1+ψ)+Hψ−(H−L)/ψ

ν
√

1+ψ

)
Φ
(
r−h·(1+ψ)+Hψ

ν
√

1+ψ

) )−1

, (3.7.15)

where h is introduced as an input of the function. Similarly, substituting in

ϕ1 gives

ϕ̃1(h) =

1 +
1− π
π
·

Φ
(
h−H+(H−L)/ψ

ν

)
Φ
(
h−H
ν

)
−1

(3.7.16)

Then the cutoff h is given by the high types indifference condition v0(h,H) =
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v1, which using the above notation becomes

δ · λ ·
∫

log
[
ϕ̃0(r, h)(uH − uL) + uL

]
· φ
(
r − (1− ψ)H − ψh√

ψν

)
1√
ψν

dr

= δ ·λ · log
[
ϕ̃1(h)(uH−uL)+uL

]
+(1−ψm) ·µ+ψm ·sm− (1−ψ) ·H−ψ ·h

(3.7.17)

where φ(·) is the density of the standard normal distribution. To prove ex-

istence we demonstrate that (3.7.17) equation has at least one solution. Let

LHS(h) denote the left hand side of (3.7.17), RHS(h) its right hand side, and

∆(h) = LHS(h)−RHS(h) their difference. Observe that all the parts of the

above equation apart from the last line are bounded. As a result,

lim
h→−∞

∆(h) = −∞

lim
h→+∞

∆(h) = +∞.
(3.7.18)

Then it follows from the continuity of this function that there exists at least

one point where ∆(h) = 0. Hence we have proven existence.

Next we show that (3.3.8) is indeed a sufficient condition for uniqueness.

In particular, we will argue that (3.3.8) implies that ∆(h) is increasing in h.

First, note that LHS(h) is increasing in h, because ϕ̃0(r, h) is increasing in

both r and h. We have already argued why this is true for r. For h the claim

is a direct implication of Lemma 9.

Hence it suffices to identify a condition for RHS(h) to be decreasing.

Lemma 9 implies that ϕ̃1(h) is increasing in h. This is the opposite monotonic-

ity, however we can use the fact that the following expression has a relatively
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simple upper bound

d

dh
log
[
ϕ̃1(h)(uH−uL)+uL

]
=
ϕ̃1(h)[1− ϕ̃1(h)]/ν

ϕ̃1(h) + uL

uH−uL
×
[
M

(
−h−H

ν

)
−M

(
− l(h)− L

ν

)]
≤ 1

ν

[
M

(
−h−H

ν

)
−M

(
− l(h)− L

ν

)]
=

1

v

∫ H

L−(1−ψ)H
ψ

M ′
(
x− h
ν

)
dx ≤ H − L

ψν2

(3.7.19)

Hence, a sufficient condition for the right hand side to be decreasing, which

will imply uniqueness, is that

δλi
H − L
ψν2

≤ ψ ,

which equivalently gives (3.3.8).

Proof of Proposition 8. We know that ϕ0(r, sm) is increasing in r. Hence,

it suffices to prove the conjectured result for r → −∞. The dependence on sm

is suppressed. Let k = −h(1 +ψ) +Hψ. To find the limit lim
r→−∞

ϕ0(r) we first

need to calculate.

lim
r→−∞

Φ
(
r+k−(H−L)/ψ

ν
√

1+ψ

)
Φ
(

r+k
ν
√

1+ψ

)
exp

(
2(H−L)r−(H2−L2)

2ν2ψ(1+ψ)

) . (3.7.20)

Because both the numerator and the denominator go to zero as r goes to minus

infinity this limit becomes

e
H2−L2

2ν2ψ(1+ψ) lim
r→−∞

φ
(
r+k−(H−L)/ψ

ν
√

1+ψ

)
ν
√

1+ψ

e
(H−L)r

ν2ψ(1+ψ) ×
[
Φ
(

r+k
ν
√

1+ψ

)
H−L

ν2ψ(1+ψ)
+

φ
(

r+k
ν
√
1+ψ

)
ν
√

1+ψ

] .
In addition, algebra implies the following simplification

φ
(
r+k−(H−L)/ψ

ν
√

1+ψ

)
φ
(

r+k
ν
√

1+ψ

) = exp

(
2(r + k)− H−L

ψ

2ν2(1 + ψ)ψ/(H − L)

)
. (3.7.21)
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This in turn gives

e
− (H−L)r

ν2ψ(1+ψ)

φ
(
r+k−(H−L)/ψ

ν
√

1+ψ

)
φ
(

r+k
ν
√

1+ψ

) = exp

(
2k − H−L

ψ

2ν2(1 + ψ)ψ/(H − L)

)
.

Hence the limit becomes

exp

(
2k +H + L− H−L

ψ

2ν2(1 + ψ)ψ/(H − L)

)
× lim

r→−∞

Φ
(

r+k
ν
√

1+ψ

)
φ
(

r+k
ν
√

1+ψ

) H − L
νψ
√

1 + ψ
+ 1

−1

,

where

lim
r→−∞

Φ
(

r+k
ν
√

1+ψ

)
φ
(

r+k
ν
√

1+ψ

) = lim
x→∞

1− Φ(x)

φ(x)
= 0 (3.7.22)

Hence, substituting k we obtain that

lim
r→−∞

ϕ0(r) =

(
1 +

1− π
π

exp

[(
H − H − L

2ψ
− h
)
H − L
ψν2

])−1

.

Next, we want to show that the above is greater than ϕ1(r) for every h.

This holds if and only if

exp

[(
H − H − L

2ψ
− h
)
H − L
ψν2

]
<

Φ
(
h−H+(H−L)/ψ

ν

)
Φ
(
h−H
ν

) (3.7.23)

which can equivalently be rewritten as

(
H − H − L

2ψ
− h
)
H − L
ψν2

< log
Φ
(
h−H+(H−L)/ψ

ν

)
Φ
(
h−H
ν

) . (3.7.24)
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Differentiating the left hand side minus the right hand side we get

−H − L
ψν2

+
1

ν
M

(
H − h
ν

)
−1

ν
M

(
H − h
ν
− H − L

νψ

)
≤ −H − L

ψν2
+
H − L
ψν2

= 0

(3.7.25)

Hence it suffices to check that

lim
h→−∞

Φ
(
h−H
ν

)
exp

(
(H−L)h
ψν2

)
Φ
(
h−H+(H−L)/ψ

ν

) ≤ exp

[(
H − L

2ψ
−H

)
H − L
ψν2

]
.

Similar argumentation with above gives that the limit on the left hand side

becomes

lim
h→−∞

φ
(
h−H
ν

)
exp

(
(H−L)h
ψν2

)
φ
(
h−H+(H−L)/ψ

ν

)
= lim

h→−∞
exp

(
2(h−H) + H−L

ψ

2ν2

H − L
ψ

− (H − L)h

ψν2

)

= exp

[(
H − L

2ψ
−H

)
H − L
ν2ψ

]
. (3.7.26)

Hence, the above inequality holds.

Proof of Proposition 9. The Input sm is suppressed. First, note that h is

the solution of (3.7.17), that is the solution of ∆(h) = 0, where ∆(h) is defined

under the equation as the difference of its left hand side from its right hand

side. Second, the optimal cutoff under no career concerns for the high type

c(H) is the one that corresponds to the solution of this equation for δ = 0,

as this corresponds to the case when the next period is irrelevant. Let h(δ)

denote the solution of (3.7.17) as a function of δ. Then it follows from the

implicit function theorem that

dh(δ)

dδ
= −∂∆(h)/∂δ

∂∆(h)/∂h

∣∣∣∣
h=h(δ)

. (3.7.27)
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But it follows from the limits calculated in (3.7.18) that the unique monotonic

equilibrium needs to have ∂∆(h)/∂h > 0. Moreover, calculating the derivative

on the numerator for some generic h gives

∂∆(h)

∂ δ
= λEr

[
log
[
ϕ̃0(r, h)(uH−uL)+uL

]
−log

[
ϕ̃1(h)(uH−uL)+uL

] ∣∣∣∣ s = h,H

]
,

but it follows from Proposition 8 that this is positive, because the difference

inside the expectation is positive for every h. As a result, for every δ ≥ 0 we

get that dh(δ)/dδ < 0, which through (3.3.5) implies the same for the cutoff

used by the low type.

Finally, note that λ and δ enter (3.7.17) in exactly the same way, hence

the same result can be stated for λ.

Lemma 10. In the unique monotonic equilibrium, for every prior reputa-

tion π > 1/2 there exists a lower bound s̄m(π), defined as the solution of

ϕ1(sm) = 1/2, such that for every sm > s̄m we have ϕ1(sm) > 1/2, and s̄m(πi)

is increasing in π.

In addition, for every sm ≥ s̄m(π) the cutoffs h(sm) and l(sm) are in-

creasing in π, and the same is true for the posterior reputations ϕ
(
0r, s

m) and

ϕ1(sm) .

Proof. In the proof of Proposition 7 is has been shown that in the unique

monotonic equilibrium there exists ϕ̃1 such that ϕ1(sm) = ϕ̃1[h(sm)], and its

functional form is given in (3.7.16). Moreover, it is an immediate implication

of Lemma 9 that this is increasing in h, and it is ease to verify that

lim
h→+∞

ϕ̃1(h) = π. (3.7.28)

In addition, it follows from (3.7.17), which defines h(sm), that

(1 + ψ)H + ψh(sm) + δλ log

(
uH

uL

)
≥ (1− ψm)µ+ ψms

m.

This provides a lower bound for h(sm), which is in an increasing function of
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sm, and shows that

lim
sm→+∞

h(sm) = +∞, (3.7.29)

from which the existence of the cutoffs follows. It monotonicity follows from

using the implicit function theorem on the equation that defines it

ϕ̃1

[
π, h

(
s̄(π)

)]
= 1/2, (3.7.30)

where note that ϕ̃1 is increasing in both π and h, and it has been argued in

Proposition 10 that h(·) is also an increasing function.

For the second statement, it follows from (3.3.5) that is suffices to prove

it for h(sm). Using the implicit function theorem on (3.7.17) we get that

dh

dπ
= −∂∆/∂π

∂∆/∂h
, (3.7.31)

where direct differentiation gives ∂∆/∂h = ψ > 0 and that

∂∆

∂π
=

δ λ

π(1− π)
Er
[
ϕ̃0(1− ϕ̃0)

ϕ̃0 + uL

uH−uL
− ϕ̃1(1− ϕ̃1)

ϕ̃1 + uL

uH−uL

∣∣∣∣ s = h,H

]
, (3.7.32)

where the inputs r and sm have been suppressed. Some basic calculus shows

that for every ϕ̃ ∈ [1/2, 1] the ratio

ϕ̃(1− ϕ̃)

ϕ̃+ uL

uH−uL
(3.7.33)

is decreasing in ϕ̃. Moreover, we have from Proposition 8 that ϕ̃0(r, h) > ϕ̃1(h)

for every r ∈ R. But we already showed that ϕ̃1(h) > 1/2 for every sm ≥
s̄m(π). Hence, we get that ∂∆/∂π < 0, which implies the second statement.

Finally, the third statement follows trivially from noting that the direct

derivative of both the posteriors with respect to π is positive, and the fact that

both are increasing in h(sm), implied by Lemma 9, for which it has already

being argued that it is increasing in π.

Proof of Proposition 11. First, consider the investment decision of a high
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type manager, for which the probability of choosing the low beta strategy,

conditional on the market signal sm, is

P
(
β = 0

∣∣ sm) = P
(
s ≥ h(sm)

∣∣ sm) = P
(
h−1(s) ≥ sm

∣∣ sm), (3.7.34)

since it was shown in Proposition 10 that h(·) is increasing. Moreover, for

given sm the distribution of m is normal and is given by

m | sm ∼ N
(

(1− ψm)µ+ ψms
m , ψmν

2
m

)
. (3.7.35)

Let m̃ = [m− (1− ψm)µ]/ψm. Then

m̃ | sm ∼ N
(
sm , ν2

m/ψm

)
, (3.7.36)

while the ex-ante distribution of sm is

sm ∼ N
(
µ , σ2

m + ν2
m

)
, (3.7.37)

As a result using again the properties of Bayesian updating with normal dis-

tributions we get that

sm | m̃ ∼ N

(
ψ̃µ+ (1− ψ̃)m̃ ,

ψ̃ν2
m

ψm

)
, (3.7.38)

where ψ̃m = (σ2
m+ν2

m)/(σ2
m+ν2

m+v2
m/ψm). Hence for for every m̂, m such that

m̂ > m, the distribution of corresponding normal that generates sm conditional

on m̂ first order stochastically dominates the one of m. This immediately

implies that

P
(
β = 0

∣∣ m̂) < P
(
β = 0

∣∣m). (3.7.39)

Hence under better observed market conditions the manager is less likely to

have chosen to invest in her idiosyncratic strategy. The second statement of

the proposition follows from noting that

dϕ0(r, sm)

dr
≥ 0 =

dϕ1(sm)

dr
, (3.7.40)
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To calculate the left derivative it is more convenient to use the equivalent

ϕ̃0 function from the proof of proposition 7. The derivative of this can be

calculated in a manner similar to that used in the proof of Lemma 8 to be

dϕ̃0(r, h)

dr
=

ϕ̃0(1− ϕ̃0)

ν
√

1 + ψ

[
H − L

νψ
√

1 + ψ
−
∫ x

x

M ′
(
x+ h

√
1 + ψ/ν

)
dx

]
,

where M(·) is the hazard rate of the standard normal distribution,

x = − r +Hψ

ν
√

1 + ψ
and x = x+

(H − L)/ψ

ν
√

1 + ψ
. (3.7.41)

Next we want to show that this derivative is decreasing in sm. This appears in

ϕ̃0 only indirectly through the cutoff h(sm), which it has already being shown

to be an increasing function. Hence calculate

d2ϕ̃0(r, h)

drdh
=

1− 2ϕ̃0

ϕ̃0(1− ϕ̃0)

(
dϕ̃0(r, h)

dr

)2

− ϕ̃0(1− ϕ̃0)

ν2

∫ x

x

M ′′
(
x+ h

√
1 + ψ/ν

)
dx ,

the second line of which is always negative, as M(·) is a convex function. The

first line is negative as long as ϕ̃0(r, h) > 1/2. But we have already argued

in Proposition 8 that ϕ̃0(r, h) > ϕ̃1(h), and in Lemma 10 that there exists

lower bound s̄m(π) such that for all sm ≥ s̄m(π) it has to be that ϕ̃1(h) > 1/2.

Moreover, the same Lemma gives that s̄m(π) is an increasing function and it

is ease to verify that for bounded m

lim
π→1

P(φ1(sm) < 1/2 |m) = 0. (3.7.42)

Hence, indeed
dϕ0(r, sm)

dr
is decreasing in sm, from which the second statement

of the proposition also follows.
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Proof of equation 3.3.11. We have:

P(ϕ1 > ϕ2 | sm) = P(ϕ1
1 > ϕ2

1 | sm)P(1, 1 | sm)

+ P(ϕ1
1 > ϕ2

0 | sm)P(1, 0 | sm) + P(ϕ1
0 > ϕ2

1 | sm)P(0, 1 | sm)

+ P(ϕ1
0 > ϕ2

0 | sm)P(0, 0 | sm), (3.7.43)

It follows immediately from Lemma 10 that ϕ2
1 > ϕ1

1. Moreover, Propo-

sition 8 gives that ϕ2
0 > ϕ2

1, hence we also have that ϕ2
0 > ϕ1

1. As a result the

above becomes

P(ϕ1 > ϕ2 | sm) = P(ϕ1
0 > ϕ2

1 | sm)P(0, 1 | sm) + P(ϕ1
0 > ϕ2

0 | sm)P(0, 0 | sm),

(3.7.44)

we can only be certain about the monotonicity of the probability of both

managers invest in their idiosyncratic portfolio which is deceasing given large

sm. The rest of the terms can not be monotonic as we have observed through

simulations.

3.8 Appendix: Investment and AUM in the

Second Period

Here, first we derive the optimal investment decision of a manager in the

second period. Second, we use this to calculate her AUM as a function of her

posterior reputation, which we later use in order to derive her continuation

payoff from period 2. To avoid repetition we consider the extended model in

which there are two fund managers. In this the investor’s preferences are given

by

v(i, zijt ) =


exp(zi1t − z̄) · (1− f it ) ·Ri

t , i = 1, 2

exp(mt) , i = m
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Hence, in this case there are two independent preference shocks , one for each

fund. The results of the baseline more can be obtained by setting the fees of

the second manager equal to one, which will ensure that no investor will invest

in her fund.

We solve the second period backwards by first considering the manager’s

investment decision when the funds have already been allocated. The man-

ager’s expected payoff is

E
[
log
(
Ai2f

i
2R

i
2

)
| si2, sm2 , βi2, α

]
= log

(
Ai2f

i
2

)
+ E

[
ri2 | si2, sm2 , βi2, α

]
As a result the manager’s objective when choosing her investment strategy βi2
in the second period is to simply maximise the expected return ri2. Thus, she

invests in her alpha only if

E
[
ri2 | si2, sm2 , βi2 = 0, α

]
≥ E

[
ri2 | si2, sm2 , βi2 = 1, α

]
(3.8.1)

It is known that the posterior distributions of ai2 and m2, after conditioning

on si2 and sm2 , are also normal distributions with known expected values. Let

ψ = σ2/(σ2 + ν2) and ψm = σ2
m/(σ

2
m + ν2

m). Then (3.8.1) becomes

(1− ψ) · α + ψ · si2 ≥ (1− ψm) · µ + ψm · sm2 ,

which allows us to derive the manager’s optimal investment strategy in the

second period. This is a cutoff rule such that she invests in her alpha only if

si2 ≥ c(α, sm2 ), where

c(α, sm2 ) =
ψm
ψ
· sm2 +

1− ψm
ψ

· µ − 1− ψ
ψ
· α (3.8.2)

Thus, for the same market conditions a high type manager invests rel-

atively more frequently on her alpha in the second period, as c(H, sm2 ) <

c(L, sm2 ) implies

P[si2 ≥ c(H, sm2 )] > P[si2 ≥ c(L, sm2 )] ⇒ P(βi2 = 0 |m2, α = H) > P(βi2 = 1 |m2, α = L),
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where the second line required to infer sm2 from the realised m2. We will

frequently need to condition expectations with respect to mt instead of smt ,

because we do not have in our data some measure of the latter in our data.

An important point that needs to be made is that the cutoffs c(α, sm2 ) are

not the optimal ones for the investors. This is because those are risk-neutral,

while the managers are risk-averse. Following the same argumentation as

above we can show that the optimal cutoff for the investors is

c∗(α, sm2 ) = c(α, sm2 ) +
ψmσ

2
m − ψσ2

2ψ
. (3.8.3)

Thus the investor’s optimal cutoff is adjusted by a ”risk-loving“ factor. For

example, suppose that ψmσ
2
m > ψσ2, that is investing in the market is rela-

tively more risky conditional on the information that the manager has at her

disposal when making the decision. Then an investor would require a higher

level of confidence on her alpha si2 in order to also agree that relying on it is

preferable to ’gambling’ with rm2 .

Let uα2 denote the equilibrium payoff of an investor in the second period,

conditional on investing with a manager of type α, but net of his preference

shock zijt and fees f i2. Then this is given by

uα2 = P[si2 ≥ cα(sm2 )]E[Ri
2 | si2 ≥ cα(sm2 )] + P[si2 ≤ cα(sm2 )]E[Ri

2 | si2 ≤ cα(sm2 )],

(3.8.4)

which has a closed form representation that can be derived using the formulas

of the moment generating function of the truncated normal distribution. We

avoid providing this here as it does not facilitate the understanding of the

model in any meaningful way. However, it is important to point out that

when the market’s posterior variance ψmσ
2
m is much bigger than that of the

alpha-based strategy ψσ2 then the misalignment between the manager’s and

the investors’ preferences could be so substantial that a low type manager

would be preferable simply because she is more reluctant to use her alpha.

We exclude that by assuming that uH2 > uL2 , because if the parameters of the

model were such that investing in an index tracking strategy was so attractive,

then there would be little need for professional investors.
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Let ϕi denote the public posterior belief on manager i’s ability αi at the

beginning of period two. Then the investor’s expected payoff, net of fees and

the preferences shock, from opting for fund i is

ui2 = ϕi(uH2 − uL2 ) + uL2 ,

and the corresponding actual payoff is ez
ij
t (1 − f it )u

i
2. In addition, each in-

vestor has an outside option, which is to ignore the financial intermediaries

and instead invest directly on m2, which gives expected payoff

um = E[exp(mt)] = eµ+σ2
m/2.

To avoid repetition note that in a manner similar to the one above we can

define

ui1 = πi(uH1 − uL1 ) + uL1 ,

as the expected net payoff of an investor active in the first period. However,

in this case the functional form of uα1 will be completely different, as the

cutoffs used by the managers in the first period will be influenced by their

career concerns. We will derive those under a market equilibrium in the next

subsection.

To ensure that when the lowest preference shocks are realised the investor

would rather invest directly in the market we will assume that

(1− f i2) · uH2 < um · ez̄ (3.8.5)

We are now ready to derive the AUM of fund i in the beginning of period t,

as only a function of net expected payoffs and announced fees.

Lemma 11. In any market equilibrium the AUM of fund i, competing against

fund k, in period t is

(
(1− f it )uit

um

)λi (
1− λi

λi + λk

(
(1− fkt )ukt

um

)λk)
. (3.8.6)
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Proof. To simplify the algebra drop the investor superscript and time sub-

scripts. Also let ξi = log(1 − f i)ui, i = 1, 2 and ξm = log um + z̄. For an

investor to prefer fund 1 to both directly investing in the market and to fund

2, it has to be that

exp(z1 − z̄) · (1− f 1) · u1 ≥ um ⇔ z1 ≥ ξm − ξ1

and

exp(z1)(1− f 1)u1 ≥ exp(z2)(1− f 2)u2 ⇔ z1 + ξ1 − ξ2 ≥ z2,

respectively. Hence the proportion of the market that fund 1 captures is

P
(
z1 ≥ ξm − ξ1 ∩ z1 + ξ1 − ξ2 ≥ z2

)
=

∫ ∞
ξm−ξ1

P
(
z1 + ξ1 − ξ2 ≥ z2

∣∣ z1
)

dP(z1)

=

∫ ∞
ξm−ξ1

(
1− e−λ2(z1+ξ1−ξ2)

)
λ1e−λ

1z1dz1

= e−λ1(ξm−ξ1) − e−λ2(ξ1−ξ2) λ1

λ1 + λ2
e−(λ1+λ2)(ξm−ξ1)

=

(
(1− f 1)u1

um · ez̄

)λ1
·

(
1− λ1

λ1 + λ2

(
(1− f 2)u2

um · ez̄

)λ2)

The proof for fund 2 is equivalent.

The proof calculates (3.8.6) as the probability of the intersection of two

events. The first is that investor j prefers fund i to fund k. The second is that

fund i is preferred to direct investment in the market.

To obtain the assets for the case where there is only one manager set

f 2 = 1 to get: (
(1− f it ) · uit
um · ez̄

)λi
(3.8.7)
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3.9 Appendix: Unobservable Investment De-

cision

Proof of Lemma 6. First of all, we will simplify notation by omitting the

dependence on sm both on cutoffs and on expectations. We will follow the proof

of Lemma 2 to find the posterior reputation of the manager. In particular, for

β = 1, we have that r = m+ ε, hence

Pr
(
r, β = 1 |H,m

)
= φ

(
r −m
σε

)
1

σε
Φ

(
h−H
ν

)
(3.9.1)

Moreover, we have

Pr (r, β = 0 |H,m) =

φ

(
r−H

ν
√
ψ(1+ψ)

)
ν
√
ψ(1 + ψ)

Φ

(
r − h(1 + ψ) +Hψ

ν
√

1 + ψ

)
. (3.9.2)

Hence, we obtain an expression for

Pr(r |H) = Pr

(
r̃ =

r − β0m

1− β0

, β0

∣∣∣∣H)+ Pr
(
r, β1 |H

)
(3.9.3)

The expressions for the low type are identical, therefore it is now trivial

to use Bayesian updating to derive the posterior reputation of the manager,

and complete the proof of this Lemma.

Proof of Proposition 12. We want to investigate if φ(r,m, sm) can be al-

ways increasing in r. From Lemma 3 it is sufficient to see if ρ can always be

decreasing in r, where, ρ = ρL
ρH

. From the previous Lemma we get:

ρ =
Φ
(
r−l(1+ψ)+Lψ

ν
√

1+ψ

) φ

(
r−L

ν
√
ψ(1+ψ)

)
ν
√
ψ(1+ψ)

+ Φ
(
l−L
ν

) φ( r−µσε )
σε

Φ
(
r−h(1+ψ)+Hψ

ν
√

1+ψ

) φ

(
r−H

ν
√
ψ(1+ψ)

)
ν
√
ψ(1+ψ)

+ Φ
(
h−H
ν

) φ( r−µσε )
σε

(3.9.4)
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Firstly, a necessary condition for ρ to be decreasing is: ν
√
ψ(1 + ψ) = σε.

After substituting into equation 3.9.4, we get:

ρ =
εA1r−C1Φ

(
r−b1
ν
√

1+ψ

)
+ d1

εA2r−C2Φ
(

r−b2
ν
√

1+ψ

)
+ d2

(3.9.5)

where A1 = L−m
σ2
ε
, C1 = L2−m2

2σ2
ε
, b1 = l(1 + ψ)− Lψ, d1 = Φ

(
l−L
ν

)
and similarly

for A2, C2, b2, d2.

Note that A1 < A2. Then we can take the derivative with respect to r,

and get the following proportionality:

ρ′ ∝ eA1r−C1eA2r−C2Φ

(
r − b1

ν
√

1 + ψ

)
Φ

(
r − b2

ν
√

1 + ψ

)
(A1 − A2)

+eA1r−C1eA2r−C2Φ

(
r − b1

ν
√

1 + ψ

)
Φ

(
r − b2

ν
√

1 + ψ

)
1

ν
√

1 + ψ

(
M

(
b1 − r
ν
√

1 + ψ

)
−M

(
b2 − r
ν
√

1 + ψ

))
+ d2

[
εA1r−C1A1Φ

(
r − b1

ν
√

1 + ψ

)
+ εA1r−C1

1

ν
√

1 + ψ
φ

(
r − b1

ν
√

1 + ψ

)]
− d1[εA2r−C2A2Φ

(
r − b2

ν
√

1 + ψ

)
+ εA2r−C2

1

ν
√

1 + ψ
φ

(
r − b2

ν
√

1 + ψ

)
] (3.9.6)

Now let P ∗ denote the first 2 terms of (3.9.6). Then we would want to

check whether the derivative of ρ is negative for every r,m. We have:

ρ′

εA1r−C1εA2r−C2
∝ P ∗

εA1r−C1εA2r−C2
+ d2

A1

Φ
(

r−b1
ν
√

1+ψ

)
eA2r−C2

+
1

ν
√

1 + ψ

φ
(

r−b1
ν
√

1+ψ

)
eA2r−C2


− d1

A2

Φ
(

r−b2
ν
√

1+ψ

)
eA1−C1

1

ν
√

1 + ψ

φ
(

r−b2
ν
√

1+ψ

)
eA1−C1


We take any m such that A1, A2 < 0. Intuitively, we consider the case

165



of a good realized market. Then P ∗

εA1r−C1εA2r−C2
is finite (as r → ∞) because

Φ(.) ∈ [0, 1] and M(a)−M(b) ≤ a− b for a > b (Lemma 4).

We will now show that as r → ∞, the derivative cannot be negative.

Indeed, we have that as limr→∞
φ(.)

eA2r−C = 0. In addition it is easily shown

that, as r → +∞:

d2A1Φ
(

r−b1
ν
√

1+ψ

)
eA2r−C2

−
d1A2Φ

(
r−b2
ν
√

1+ψ

)
eA1r−C1

∼ d2A1e
C2er(A1−A2) − d1A2e

C1

erA1
(3.9.7)

where ∼ denotes the asymptotic equivalence of the 2 terms.

We know that A1 − A2 < 0 so limr→∞ e
r(A1−A2) = 0, hence in the limit

the above expression is asymptotically equivalent to

0− d1A2e
C1

erA1

(3.9.8)

Finally, we know that A1 < 0 so erA1 → 0 and therefore the whole

expression tends to +∞, since is also A2 < 0.

So we can finally conclude that ρ′ cannot always be negative, or in other

words, a monotonic equilibrium cannot exist.
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