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Abstract

The first chapter studies the dynamics of information acquisition and uncertainty

in a noisy rational expectations model. Investors choose to acquire most information

at times when uncertainty and risk premia are high; this choice feeds back and

endogenously reduces subsequent uncertainty. Within the model, uncertainty can

be measured directly from risk-neutral variance—analogous to the VIX index—so

this translates into the concrete prediction that risk-neutral variance mean-reverts

rapidly following spikes in volatility, as is observed empirically. The cyclicality of

information acquisition depends on the skewness of the underlying asset: if the

market is negatively skewed, market-level information acquisition is countercyclical.

Conversely, information acquisition and risk premia are high following good news

for positively skewed assets such as individual stocks, which gives rise to momentum

in the stock market.

In the second chapter, my co-author and I consider an economy populated by

investors with heterogeneous preferences and beliefs who receive non-pledgeable la-

bor incomes. We study the effects of collateral constraints that require investors to

maintain sufficient pledgeable capital to cover their liabilities. We show that these

constraints inflate stock prices, give rise to clusters of stock return volatilities, and

produce spikes and crashes in price-dividend ratios and volatilities. Furthermore,

the mere possibility of a crisis significantly decreases interest rates and increases

Sharpe ratios. The stock price has a large collateral premium over non-pledgeable

incomes. Asset prices are in closed form, and investors survive in the long run.

The third chapter studies information acquisition with a long-lived risky asset

that generates dividends in each period. The investors can either be informed or

uninformed, and the informed investors actively acquire information on the time-

varying dividend growth rate. Informed investors take short positions in the variance

swap to realize their informational advantage; the uninformed investor takes a long

position to hedge his risks. Serial correlation of returns is decreasing in informa-

tion acquisition of informed investors. Low uncertainty induces investors to acquire

less information and decreases the cross-sectional dispersion of beliefs in expected

returns.

2



Contents

1 Dynamic Information Acquisition and Asset Prices 6

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Portfolio and Attention Choice . . . . . . . . . . . . . . . . . 14

1.3.2 Market Clearing and State Variables . . . . . . . . . . . . . . 18

1.3.3 Equations for Price and Risk-neutral Variance . . . . . . . . . 20

1.4 Asset Pricing Implications . . . . . . . . . . . . . . . . . . . . . . . . 23

1.4.1 Endogenous Uncertainty Dynamics . . . . . . . . . . . . . . . 23

1.4.2 Expected Return and Attention . . . . . . . . . . . . . . . . . 26

1.4.3 Cyclicality of Information Acquisition . . . . . . . . . . . . . . 28

1.5 Extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1.5.2 Analysis of Equilibrium . . . . . . . . . . . . . . . . . . . . . 31

1.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2 Collateral Requirements and Asset Prices 55

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.2 Economic setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.2.1 Output, financial markets, and investor heterogeneity . . . . . 63

2.2.2 Investor heterogeneity and optimization problems . . . . . . . 65

2.2.3 Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

2.3 Characterization of equilibrium . . . . . . . . . . . . . . . . . . . . . 68

2.3.1 Closed-form solution in a continuous-time limit . . . . . . . . 72

2.3.2 Stationary distribution of consumption share . . . . . . . . . . 77

3



2.4 Analysis of Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.4.1 Equilibrium processes . . . . . . . . . . . . . . . . . . . . . . . 80

2.4.2 Collateral liquidity premium . . . . . . . . . . . . . . . . . . . 86

2.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

3 Information Acquisition with Long Lived Assets 124

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

3.2 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

3.3 Characterization of Equilibrium . . . . . . . . . . . . . . . . . . . . . 130

3.3.1 Asset Price and Evolution of Beliefs . . . . . . . . . . . . . . . 130

3.3.2 Portfolio and Signal Precision Choices . . . . . . . . . . . . . 132

3.3.3 Market Clearing . . . . . . . . . . . . . . . . . . . . . . . . . . 138

3.4 Analysis of Equilibrium . . . . . . . . . . . . . . . . . . . . . . . . . . 139

3.4.1 Serial Correlation of Returns . . . . . . . . . . . . . . . . . . . 140

3.4.2 Cross-sectional Dispersion of Beliefs . . . . . . . . . . . . . . . 142

3.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4



List of Figures

1.1 Sample Paths of the Risk-Neutral Variance . . . . . . . . . . . . 25

1.2 Uncertainty and Expected Return of the Asset . . . . . . . . . . 35

1.3 Risk-Neutral Distributions of Stock Payoff . . . . . . . . . . . . . 36

1.4 Risk-Neutral Variance and Expected Payoff . . . . . . . . . . . . 37

1.5 attention and Excess Return . . . . . . . . . . . . . . . . . . . . . 38

1.6 Serial Correlation of Excess Return . . . . . . . . . . . . . . . . . 39

2.1 States of the Economy . . . . . . . . . . . . . . . . . . . . . . . . . 63

2.2 Convergence to stationary distribution of consumption share

st = c∗A,t/Dt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

2.3 Leverage and stock holdings of optimistic and less risk averse

investor B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

2.4 Equilibrium processes . . . . . . . . . . . . . . . . . . . . . . . . . 82

2.5 Simulated P/D ratio Ψ and stock return volatility σ over time . 85

2.6 Collateral liquidity premia from the view of investors A and B . 87

5



Chapter 1

Dynamic Information Acquisition

and Asset Prices

This paper studies the dynamics of information acquisition and uncertainty in a

noisy rational expectations model. Investors choose to acquire most information

at times when uncertainty and risk premia are high; this choice feeds back and

endogenously reduces subsequent uncertainty. Within the model, uncertainty can

be measured directly from risk-neutral variance—analogous to the VIX index—so

this translates into the concrete prediction that risk-neutral variance mean-reverts

rapidly following spikes in volatility, as is observed empirically. The cyclicality of

information acquisition depends on the skewness of the underlying asset: if the

market is negatively skewed, market-level information acquisition is countercyclical.

Conversely, information acquisition and risk premia are high following good news

for positively skewed assets such as individual stocks, which gives rise to momentum

in the stock market.

Keywords: Dynamic information acquisition, Uncertainty, Investor attention,

Risk-neutral variance
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1.1. Introduction

Investors acquire information on asset fundamentals when they trade in financial

markets. Information acquisition determines portfolio choices and thus affects asset

prices and the uncertainty that investors face. Conversely, uncertainty about asset

payoffs changes investors’ incentives to acquire information. This interplay between

information acquisition and uncertainty is central to understanding how asset prices

dynamically evolve. The literature on information acquisition and asset prices typi-

cally treats information acquisition as a one-off decision. This paper investigates the

endogenous dynamics of information acquisition and uncertainty in a noisy rational

expectations model.

Within this model, uncertainty can be measured directly from the risk-neutral

variance of the asset payoff, analogous to the volatility index VIX. In periods of

high uncertainty, investors acquire more information. This choice feeds back and

endogenously reduces subsequent uncertainty. As a result, the risk-neutral variance

mean reverts rapidly following spikes in volatility, in line with empirical evidence.

The cyclicality of information acquisition depends on the skewness of the asset pay-

off: market-level information acquisition is countercyclical because aggregate stock

market displays negative skewness; in contrast, firm-level information acquisition is

procyclical because individual stocks are positively skewed. Following good news

for individual stocks, information acquisition and risk premia are high, which gives

rise to momentum in the stock market.

I start by analyzing an economy with a single risky asset. Most findings and

predictions extend to a multiple-asset setup that I later consider. The economy is

populated by a continuum of ex-ante identical investors. Exogenous noisy supply

of the asset prevents the price from fully revealing the asset’s final payoff. Knowl-

edge about the payoff is gradually acquired over multiple time periods and comes to

investors in the form of a stream of private signals. The sources of private informa-

tion are different across investors, as in Hellwig (1980). I use investor attention to

represent the precision of the private signal. Information is costly to investors and

the cost is increasing and convex in attention.

In this paper, attention represents both the effort in gathering information and
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the amount of information acquired by investors in a given period.1 This study

focuses on the variation in investors’ attention levels over time rather than the static

allocation of attention across assets. Investors acquire less information in aggregate

when the market is devoid of profitable investment opportunities.

In this economy, investor attention is endogenously determined by the level of

uncertainty. I show that uncertainty is represented by the risk-neutral variance of

the asset’s terminal payoff, which quantifies the value (in utility terms) of a marginal

piece of information. It can therefore be directly measured, in principle, from option

prices, on similar lines to the construction of the volatility index, VIX.

Investors also learn from past prices. This generates rich dynamics as the public

information set, which consists of the entire history of asset prices, grows over time.

I show that four state variables summarize the public information and that these

state variables have a natural economic interpretation (discussed further in Section

3.2). The four state variables jointly define a system of PDEs, which characterize

equilibrium and can be solved numerically.

I allow the payoff of the risky asset to have an arbitrary distribution. Non-

normality is more plausible empirically. It gives rise to endogenously fluctuating

uncertainty and to comovement between asset prices and information acquisition. If

the payoff is normally distributed, uncertainty no longer varies across states because

the risk-neutral variance becomes a deterministic function of time.

A simple illustration of the dynamic interactions between information acquisi-

tion and asset prices is as follows. Suppose that the economy enters a period of

high uncertainty about asset payoffs. If the level of information acquisition does not

change, then the volatility of asset returns increases, and remains uniformly high

during the high-uncertainty period. Agents, however, respond to the high uncer-

tainty by acquiring more information. This causes asset returns to be even more

volatile in the early stages of the high-uncertainty period, as agents learn more in-

formation. Returns become less volatile in the later stages, as learning gradually

reduces payoff uncertainty. Thus, dynamic information acquisition causes return

volatility to vary more over time and to be less persistent.
1Attention in this paper represents information acquisition. I use attention and information

acquisition interchangeably throughout the paper.
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The model generates a rich set of implications supported by empirical observa-

tions. First, uncertainty is mean-reverting. High uncertainty induces investors to

devote more attention to the asset, in turn creating downward pressure on uncer-

tainty itself. As a result, the model explains why peaks in VIX are usually followed

by a rapid decline.2

Second, the expected return of an asset is increasing in investor attention. When

attention is high today, investors gather information at a rapid pace, leading to a

rapid reduction in uncertainty and the amount of risk that this asset entails. Then,

the asset becomes less risky tomorrow and enjoys a lower risk premium tomorrow

and beyond. This quick reduction in tomorrow’s risk premium compared to today’s

implies a high expected return for the asset.

A growing list of empirical evidence supports this prediction. Da, Engelberg and

Gao (2011) find that an increase in Google Search Volume Index predicts higher

stock prices in the next two weeks. Lou (2014) documents that increased advertis-

ing spending is associated with more attention and a rise in abnormal stock returns.

Lee and So (2017) show that abnormal analyst coverage predicts improvements in

firms’ fundamental performance. Because attention is determined by uncertainty,

the expected return of the asset is also positively associated with uncertainty. Mar-

tin (2017) find that the risk-neutral variance predicts the return of the market at

horizons from one month to one year.

Third, the cyclicality of information acquisition depends on the skewness of the

underlying asset. When the distribution of the payoff is right-skewed, investors are

more excited about potential upside gains. Therefore they devote more attention to

the asset when the price is high. Conversely, when the distribution is left-skewed,

investors are more worried about potential losses in the downside and acquire more

information when the price is low. Aggregate stock market displays negative skew-

ness and individual stocks display positive skewness (e.g., Bakshi, Kapadia and

Madan (2003); Albuquerque(2012)). Therefore, attention is procyclical for firm-

specific information and countercyclical for market-wide information. Hong, Lim

and Stein (2000) find that negative firm-specific news travels more slowly compared
2Martin (2017) find that the leading models including Campbell and Cochrane (1999), Bansal

and Yaron (2004), Bollerslev, Tauchen, and Zhou (2009), and Wachter (2013) cannot explain the

relatively low autocorrelation of VIX.
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to positive news. In contrast, Garcia (2013) documents that investors react more

strongly to business cycle news at times of recession.

I extend the model to multiple assets to explain momentum in the stock mar-

ket. Investors trade several individual stocks. Each stock’s payoff consists of a

common market component and a stock-specific (idiosyncratic) component. Infor-

mation acquisition on this idiosyncratic component determines the dynamics of the

stock’s excess return. Stocks that performed well relative to the market in the past

are likely to attract more attention and thus continue to generate higher expected

excess returns in the future.

Related Literature

This paper relates to an extensive literature on information acquisition in fi-

nancial markets, initiated by Grossman and Stiglitz (1980) and Verrecchia (1982)

and developed by Holden and Subrahmanyam (2002), Mendelson and Tunca (2004),

Veldkamp(2006), Huang and Liu (2007), and Andrei and Hasler (2014), among oth-

ers. The model is in the spirit of Verrecchia (1982). It allows for a group of ex-ante

identical investors to learn from both prices and diverse private information.

Kacperczyk, Van Nieuwerburgh, and Veldkamp (2016) study how mutual fund

managers allocate attention across different assets and used the state of the busi-

ness cycle to predict information choices. Banerjee and Breon-Drish(2017) consider

a strategic trader who optimizes the time to acquire costly information about an

asset’s payoff in a Kyle(1985) framework. They show that equilibrium with smooth

trading and a pure acquisition strategy cannot exist when the market maker cannot

observe acquisition. In contrast to the above papers, where the incentive to ac-

quire information is affected by exogenous business cycle variations or public news,

investor attention in this model is determined by the endogenously generated risk-

neutral variances.

The explanation of momentum also differs from existing behavioral and rational

models. Hong and Stein (1999) explain underreaction and overreaction in asset mar-

kets through two groups of bounded rational investors and the assumption that in-

formation diffuses gradually across the population. Andrei and Cujean (2017) build

a rational-expectations model where investors use word-of-mouth communication

to acquire information and show that price exhibits momentum when information
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flows at an increasing rate. In both cases, momentum arises because signals first

observed by a small group of investors are subsequently released to a larger group.

This paper’s explanation relies on no such channel and is based on the interaction

between attention and risk premium.

This study also contributes to the analysis of rational expectations equilibrium

with general payoff distributions. Breon-Drish (2015) relax the normality assump-

tion and proved the existence of and characterized the equilibrium for a class of

models that nests the standard Grossman and Stiglitz (1980) and Hellwig (1980)

setups. Chabakauri, Yuan and Zachariadis (2017) analyze asset prices in both com-

plete and incomplete markets for realistic multi-asset economies with non-normal

payoff distributions. Previous studies employed static setups but this paper works

with a dynamic one.

The paper is organized as follows. Section 2 introduces the model setup. Sec-

tion 3 solves investors’ portfolio and attention choice problems and characterizes

the equilibrium. Section 4 illustrates model predictions and empirical implications.

Section 5 extends the model to a multi-asset setup. Section 6 concludes.

1.2. Model

The economy features a single risky asset and a risk-free asset. It is populated by

a continuum of ex-ante identical investors who actively acquire private information

on the asset’s final payoff. To facilitate the exposition, I start with a discrete-time

economy with dates t = 0,∆t, 2∆t, . . . , T, and later take a continuous-time limit

when I characterize the equilibrium in Section 3.3 .

The main differences with a standard rational expectations model (e.g. Hell-

wig(1980)) are that information acquisition is endogenous and that the payoff of the

risky asset is not necessarily normally distributed.

Assets

The risk-free asset is the numéraire in this economy, and its price is normalized to

1 for all dates. The interest rate is equal to 0 for all periods. The risky asset realizes

a liquidating payoff y at the final date T and pays no dividend between 0 and T−∆t.

The distribution of the terminal payoff G(y) is not restricted to normal distribution.
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I assume that the moment generating function of this distribution My(θ) exists

for any θ. This technical assumption guarantees the existence of investors’ asset

demands in equilibrium.

My(θ) = E[eθy] =
∫ ∞
−∞

eθydG(y) <∞, θ ∈ R. (1.1)

Assets are traded at dates t = 0,∆t, 2∆t, . . . , T −∆t. Let pt represent the price

of the risky asset at date t. For the period between date t and t + ∆t, the return

on the risky asset is pt+∆t − pt. Noisy supply of the risky asset prevents the price

from fully revealing the final payoff. I assume that this supply zt follows a random

walk and its increment zt+∆t − zt is normally distributed with a mean of zero and

variance of σ2
z∆t:

zt+∆t − zt
i.i.d.∼ N (0, σ2

z∆t). (1.2)

Information Acquisition

Investors start with no information about the payoff of the risky asset and grad-

ually acquire a stream of private signals about this payoff. Investor attention deter-

mines the precision of these signals.

Suppose investor i ∈ [0, 1] devotes attention ait to payoff y for the period between

date t and date t + ∆t. New private information for this investor in this period is

represented by a signal st+∆t, which communicates y perturbed by a normal noise

with precision ait∆t. Investors acquire different pieces of information and their

sources of private information are independent, as in Hellwig (1980) and Verrecchia

(1982). In this setup, the noises in signals are independent both across time and

across investors:

st+∆t = y + εt+∆t, εt+∆t ∼ N (0, (ait∆t)−1). (1.3)

New information comes at a cost that is increasing and convex in attention. This

cost takes the form of C(ait)∆t, where C(ait) is a function with continuous first and

second order derivatives. Marginal cost of attention C ′(ait) is increasing in ait.

Investors also learn from past prices. The price history up to the current date p0,

p∆t, . . . , pt represents all available public information. Investor i’s information set

at date t consists of her private signals s∆t, s2∆t, . . . sit and the public information

set. Investors are rational and use all available private and public information to

update their beliefs about the asset payoff and future investment opportunities.
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Preference and Investor Optimization

Investor i is endowed with initial wealth Wi0 at date 0. At date t, she allocates

her wealth Wit to θit units of risky asset and Wit− θitpt−C(ait)∆t units of the risk-

free asset. She also decides at this date how much attention ait to devote to payoff

y for the period between t and t + ∆t. It is worth noting that the corresponding

private signal si,t+∆t arrives at date t+∆t and could only be incorporated in investor

i’s portfolio choice from that date onwards.

All investors have constant absolute risk aversion (CARA) preference with the

risk aversion parameter A. They make portfolio and attention choices (θit, ait) to

maximize expected utility over the terminal wealth:

max
θit,ait

Eit [U(WiT )] , U(WiT ) = −e−AWiT , (1.4)

subject to the self-financing budget constraint, given by:

Wi,t+∆t = Wit + θit(pt+∆t − pt)− C(ait)∆t. (1.5)

Price and Market Clearing

Equilibrium price pt is determined by market clearing:∫ 1

i=0
θitdi = zt. (1.6)

where the left-hand side represents the aggregate demand of the risky asset and

the right-hand side, its supply.

Definition of Equilibrium

The definition of equilibrium is standard. Investors make the optimal portfolio

and attention choices and the market clears.

Definition 1. The equilibrium is a set of risky asset prices pt and portfolio and

attention policies (θit, ait) that solve the optimization problem (1.4) for each investor

and satisfies market clearing condition (1.6).

1.3. Equilibrium

In this model, the asset payoff y and the noisy supply of the risky asset z0, z∆t, . . . , zT−∆t

are exogenously given. Price pt, attention ait and uncertainty (measured by the risk-

neutral variance of the asset payoff) are endogenously determined.
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I characterize the equilibrium in a three-step process. First, I solve investors’

portfolio and attention choices. Second, I use the market clearing condition to

express the asset demand in terms of the exogenous variables noisy supply and

asset payoff. The time series of asset demands is informationally equivalent to the

time series of past asset prices. I further define state variables that summarize the

information content of these time series. Third, I derive a system of equations for

the price and the risk-neutral variance.

1.3.1 Portfolio and Attention Choice

Let us first consider a suggestive three-period example. Suppose that the payoff

is realized at the final date T = 2 and assets are traded at dates t = 0, 1 with a

time interval of ∆t = 1. I solve investors’ optimization problems through backward

induction, starting from date 1 and then moving on to date 0.

Date 1 is the last trading opportunity before the realization of payoff. Any

information arriving after date 1 is worthless to investors because they could no

longer change their portfolios. As a result, investors will not devote any attention

to the payoff for the period between date 1 and date 2.

At date 1, from investor i’s perspective, y follows distribution G(y|p0, p1, si1).

She chooses θi1 to maximize expected utility:

max
θi1

∫
− exp (−Aθi1(y − p1)) dG(y|p0, p1, si1). (1.7)

Since investors are infinitely small and their sources of private information are

independent, the asset price does not depend on one particular investor’s signal.

This implies that conditional on payoff y, past prices p0, p1 are independent from

signal si1. To put it another way, the private signal is a source of information

independent of the price history. Applying Bayes theorem and noting that si1 is

normally distributed with mean y and precision ai0, the optimization problem (1.7)

is equivalent to:

max
θi1

∫
− exp (−Aθi1(y − p1)) · 1√

2π(ai0)−1
exp

(
−ai02 (si1 − y)2

)
dG(y|p0, p1).

(1.8)

The coefficient of y in the above expression is −Aθi1+ai0si1, a linear combination

of asset demand and private signal. Investors’ utility maximization problems are
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similar despite the differences in the private signals. Taking the first-order condition,

I find that −Aθi1 +ai0si1 is identical across investors. As a result, the asset demand

θi1 is additively separable in the signal, as in Breon-Drish (2015). It also contains

a common component θ1 that only depends on the price history. Lemma 1 reports

this asset demand. Proofs of all lemmas and propositions are given in the appendix.

Lemma 1. Asset demand θi1 is the sum of the attention weighted private signal and

a component θ1 that is common across investors and only depends on the prices p0

and p1:

θi1 = θ1(p0, p1) + A−1ai0si1. (1.9)

At date 0, investors do not possess any private signals and have identical asset

demands θi0 = θ0(p0) that only depend on price p0. They also decide on this date

how much information to acquire for each asset for the period between date 0 and

date 1. A higher level of attention improves portfolio choices at date 1 and increases

investors’ expected utility. Substituting in θi0 and θi1 and integrating over signal

si1, I find that:

Ei0[U(Wi2)] =Ei0 [− exp (−AWi0 − Aθi0(p1 − p0)− Aθi1(y − p1) + A · C(ai0))]

=Ei0

[ ∫
− exp

(
− AWi0 − Aθi0(p1 − p0)− A

(
θi1 − A−1ai0si1

)
(y − p1)

− ai0
2 (y2 − p2

1) + A · C(ai0)
)
· 1√

2π(ai0)−1
exp

(
−ai02 (si1 − p1)2

)
dsi1

]

=Ei0

[
− exp

(
− AWi0 − Aθi0(p1 − p0)− Aθ1(y − p1)

− ai0
2 (y2 − p2

1)︸ ︷︷ ︸
Value of Information

+ A · C(ai0)︸ ︷︷ ︸
Cost of Information

)]
. (1.10)

In the above expression, A ·C(ai0) represents the cost of information and ai0/2 ·

(y2 − p2
1) measures the expected gain in utility from a precision ai0 signal. Let

E∗(X) represent the risk-neutral expectation of a random variable X, defined by

E [U ′(Wi2)/E[U ′(Wi2)] ·X], where U ′(Wi2) is investor i’s marginal utility.

Differentiate date 0 expected utility Ei0[U(Wi2)] with respect to attention level
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ai0:

C ′(ai0) = 1
2A
−1 E

i
0 [U ′(Wi2)(y2 − p2

1)]
Ei0 [U ′(Wi2)]

= 1
2A
−1 E∗0

[
y2 − p2

1

]
= 1

2A
−1 E∗0 [Var∗1(y)] . (1.11)

Marginal cost C ′(ai0) is an increasing function of attention ai0. It is proportional

to the expectation of y2 − p2
1 under the risk-neutral measure. Since the interest

rate is zero, p1 is equal to E∗1[y], and thus E1[y2 − p2
1] is equal to the risk-neutral

variance of the payoff Var∗1(y). This risk-neutral variance measures the marginal

value of information for signal si1 and represents the uncertainty in payoff y from

the investors’ perspective. The precision of this signal needs to be decided one

period ahead, at date 0. As a result, attention ai0 is determined by the risk-neutral

expectation of next-period risk-neutral variance E∗0 [Var∗1(y)].

Investors are ex-ante identical and have the same prior belief and cost of infor-

mation. In equilibrium, they choose the same level of attention ai0. The risk-neutral

expectations and variances of the payoff computed from different investors’ marginal

utilities are identical.

The risk-neutral variance Var∗1(y) can be directly measured from option prices

on similar lines to the construction of the volatility index VIX3, thereby relating the

unobservable information acquisition to an empirically observable measure. Allow-

ing options to be traded will not change the equilibrium allocation. If there are no

exogenous supply, investors’ demand for options will also be identical at a level of

zero.

Equations (1.9) and (1.11) report investors’ portfolio and attention choices for

this particular example where T = 2 and ∆t = 1. Proposition 1 generalizes these

findings to arbitrary T and ∆t.

Proposition 1. Let vt represent the risk-neutral variance of the payoff at date t:

vt ≡ Var∗t [y] (1.12)

Attention ait is identical across investors and independent of private signals. Let at
3The risk-neutral variance in this paper more closely resembles volatility index SVIX introduced

by Martin(2017). SVIX differs from VIX if the setting is not conditionally log-normal.
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represent this identical level of attention. It is determined by the price history and

satisfies:

C ′(at) = 1
2A
−1 E∗t [vt+∆t] . (1.13)

Asset demand θit is the sum of attention weighted private signals and a component

θt that is common across investors and only depends on the price history up to the

current date p0, p∆t, . . . , pt:

θit = θt(p0, p∆t, . . . , pt) + A−1
t−∆t∑
u=0

ausi,u+∆t∆t, (1.14)

Additive separability of signals in asset demand functions is a feature of CARA

utility assumption and the normal noise signal structure given in equation (1.3).

Substituting the asset demands into the utility function and simplify, I find that

investors face the same attention optimization problem since they have the same risk-

aversion and cost of information. Therefore, attention and the risk-neutral variance

in equilibrium are identical across investors and independent of the realization of

private signals.

Equation (1.13) establishes a link between investor attention and the risk-neutral

variance of the payoff. The right-hand side of this equation represents the marginal

value of an additional piece of information to investors. The left-hand side is the

marginal cost of information, which is increasing in attention because of the con-

vexity of the cost function C(at). When the risk-neutral variance vt+∆t is expected

to be high, investors are willing to devote more attention to the asset payoff. Intu-

itively, people acquire more information when they are uncertain about the state of

the world.

This risk-neutral variance vt resembles the volatility index VIX in that they both

measure investors’ perceptions of uncertainty in the asset. However, here investors

are interested in the variation of the final payoff, as opposed to that of a one-period

return defined by the ratio of next period price pt+∆t to the current price pt. Falling

asset price is usually accompanied by an upward spike in the VIX index because of

the leverage effect. This is not necessarily true for the risk-neutral variance of the

terminal payoff. Its correlation with the asset price changes with the skewness and

support of the payoff distribution and will be further analyzed in Section 4.3.
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1.3.2 Market Clearing and State Variables

From market clearing, the aggregate demand for the asset is equal to its supply.

Integrate θit in (1.14) over investors. By the law of large numbers, noises in private

signals are canceled out and the average of siu is exactly equal to y
∫ 1

0

θt + A−1
t−∆t∑
u=0

ausi,u+∆t∆t
 di = θt + A−1

t−∆t∑
u=0

au∆t
 y = zt. (1.15)

Investors are infinitely small and the impact of their private signals on the prices

is canceled out by the law of large numbers. It is sufficient to characterize the

equilibrium using the information publicly available to all investors, which is the

history of prices up to the current date p0, p∆t, . . . , pt.

The demand curve is downward sloping in this model: the common component

of asset demand θt, implicitly defined in (1.14), is strictly decreasing in the current

price pt. The mapping from (p0, p∆t, . . . , pt) to (θ0, θ∆t, . . . , θt) is one-to-one.4 In

other words, the time series θ0, θ∆t,. . . , θt is informationally equivalent to the price

history.

At date t + ∆t, the sequence θ0, θ∆t,. . . , θt+∆t represents all publicly available

information. Let us consider A(at∆t)−1(θt+∆t − θt)

A(at∆t)−1(θt+∆t − θt) = y + A(at∆t)−1(zt+∆t − zt). (1.16)

It is a public signal that communicates payoff perturbed by a normal noise with

precision A−2σ−2
z a2

t∆t. This signal represents new public information that arrives

at date t + ∆t. The noise in this signal is proportional to the increment in asset

supply zt+∆t−zt and is independent of all previous public signals because the supply

follows a random walk.

State Variables

One difficulty involved in solving this model is that the dimension of state space

grows as time increases. θt itself is not Markovian. Both p0, p∆t, . . . , pt and θ0,

θ∆t,. . . , θt have dimensions equal to the number of trading dates. Fortunately, the
4I prove this result by mathematical induction. At the starting date, p0 → θ0 is injective because

θ0(p0) is strictly decreasing. Suppose that for date t−∆t, each set of asset prices (p0, p∆t, . . . , pt−∆t)

correspond to only one set of demands (θ0, θ∆t, . . . , θt−∆t). Fixing p0, p∆t, . . . , pt−∆t, each pt

corresponds to only one θt because θt(. . . , pt) is strictly decreasing in pt. This completes the

mathematical induction.
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information content of these sequences can be summarized into 4 state variables,

including the common component of asset demand θt and other 3 state variables

that I define below.

Definition 2. Expected payoff mt, public information precision χt and private

information precision τt are defined by:

mt ≡ E [y|p0, p∆t, . . . , pt] . (1.17)

χt ≡
t−∆t∑
u=0

A−2σ−2
z a2

u∆t. (1.18)

τt ≡
t−∆t∑
u=0

au∆t. (1.19)

Investors use the public signals from (1.16) to update their beliefs about the final

payoff. Public information is represented by two state variables, expected payoff mt

and public information precision χt. Expected payoff is the expected value of y

using only public signals, ignoring all private signals. Public information precision

is defined by the aggregate precision of all public signals from date 0 to date t. It

represents the aggregate amount of information that is publicly available to investors.

Analogously, I use τt to denote the aggregate precision of private signals. It

measures the amount of information privately acquired by investors from date 0 to

date t. By substituting the definition of τt (1.19) into the market clearing equation

(1.15), I show that the common component of asset demand θt can be expressed as

a linear combination of the terminal payoff and the noisy supply:

θt = zt − A−1τty. (1.20)

The price of and the risk-neutral variance of the terminal payoff can be expressed

as functions of these 4 state variables. Price is decreasing in asset demand θt and

increasing in mt, which represents investors’ expectation of the terminal payoff from

public information. The risk-neutral variance vt is decreasing in information preci-

sions χt and τt, because investors feel less uncertain about the asset payoff if they

are more informed.

State Variable Dynamics

Information about the final payoff is gradually incorporated into private and

public signals. The amount of public and private information increases and investors
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update their beliefs about the expected payoff. Lemma 2 summarizes how these state

variables evolve from date t to t+ ∆t.

Lemma 2. The dynamics of state variables θt, mt, χt and τt are given by:

θt+∆t = θt − A−1aty∆t+ zt+∆t − zt, (1.21)

mt+∆t = mt + A−2σ−2
z a2

tht(y −mt)∆t− A−1σ−2
z atht(zt+∆t − zt) + o(∆t), (1.22)

χt+∆t = χt + A−2σ2
za

2
t∆t, (1.23)

τt+∆t = τt + at∆t. (1.24)

where

ht = Var [y|p0, p∆t, . . . , pt] (1.25)

is a deterministic function of mt and χt and represents the variance of y in the

objective physical measure after observing public information p0, p∆t, . . . , pt.

The aggregate amount of private information is increasing at a speed of attention,

as expressed in the equation (1.24). The amount of public information is growing at

a speed proportional to the square of attention, which is also the rate at which the

expected payoff mt drifts towards the direction of its true value y. A higher level of

attention indicates that information is both acquired and disseminated at a quicker

pace.

1.3.3 Equations for Price and Risk-neutral Variance

In the following section, I derive a system of recursive equations for price pt and the

risk-neutral variance vt. Because the interest rate is zero, the price is a martingale

under the risk-neutral measure:

pt = E∗t (pt+∆t). (1.26)

Using the law of total variance, I decompose vt as the sum of expected next-

period variance and variance of next-period expectation:

vt = Var∗t (y) = E∗t [Var∗t+∆t(y)] + Var∗t [E∗t+∆t(y)]

= E∗t [vt+∆t] + Var∗t (pt+∆t). (1.27)

The stochastic discount factor from date t to date T is required to change the

probability measure from the risk-neutral one to the objective one. Lemma 3 spec-

ifies this stochastic discount factor ξt,T .
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Lemma 3. Let ξit,T denote the ratio of investor i’s marginal utility U ′(WiT ) and its

date t conditional expectation Eit[U ′(WiT )]:

ξit,T =
U ′(WiT )

Eit[U ′(WiT )] (1.28)

Let ξt,T represent the average of ξit,T across investors. It is a valid SDF and is given

by:

ξt,T = E
[
ξit,T |p0, p∆t, . . . , pT−∆t, y

]
(1.29)

= exp
− T−∆t∑

u=t

[
Aθu(pu+∆t − pu) + 1

2τu(p
2
u+∆t − p2

u)− A · C(au)∆t
]
− ft

 ,
(1.30)

where ft is a normalizing variable defined by:

ft = lnEt

exp
− T−∆t∑

u=t

[
Aθu(pu+∆t − pu) + 1

2τu(p
2
u+∆t − p2

u)− A · C(au)∆t
] .
(1.31)

such that Et[ξt,T ] = 1.

ft is an auxiliary variable that helps form a system of equations involving the

price and the risk-neutral variance. Substituting (1.29) into (1.27) and (1.26), use

law of iterated expectations, and simplify, I arrive at the following recurrence equa-

tions for pt and vt:

pt = Et
[
exp

(
−Aθt(pt+∆t − pt)−

1
2τt(p

2
t+∆t − p2

t ) + A · C(at)∆t− ft + ft+∆t

)
pt+∆t

]
,

vt = Et
[
exp

(
−Aθt(pt+∆t − pt)−

1
2τt(p

2
t+∆t − p2

t ) + A · C(at)∆t− ft + ft+∆t

)
vt+∆t

]
+ Var∗t (pt+∆t). (1.32)

Definition (1.31) can also be rewritten recursively:

exp(ft) = Et
[
exp

(
−Aθt(pt+∆t − pt)−

1
2τt(p

2
t+∆t − p2

t ) + A · C(at)∆t+ ft+∆t

)]
.

(1.33)

Equilibrium in the Continuous-time Limit

A continuous-time limit approach confers several advantages over approaching

(1.32) and (1.33) directly in the discrete-time setup. It is challenging to express

E∗t [vt+∆t] in (1.13) as a function of date t state variables. This issue is sidestepped

by taking the limit ∆t→ 0, in which case E∗t [vt+∆t]→ vt.
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In addition, these integral equations simplify to partial differential equations in

continuous time. Let µpt and σpt denote the instantaneous drift and volatility of

price pt in the continuous-time limit:

µpt = lim
∆t→0

Et[pt+∆t − pt]
∆t , σ2

pt = lim
∆t→0

Et[(pt+∆t − pt)2]
∆t . (1.34)

Applying the Taylor series expansion to p(t, θt,mt, χt, τt) and substituting in the

state variable dynamics from Lemma 1, drift µpt and volatility σpt are given by:

µpt =∂p
∂t
− ∂p

∂θ
A−1atmt + ∂p

∂χ
A−2σ−2

z a2
t + ∂p

∂τ
at + 1

2
∂2p

∂θ2σ
2
z ,

+ 1
2
∂2p

∂m2

(
A−1σ−1

z atht
)2
− ∂2p

∂θ∂m
A−1atht (1.35)

σpt = ∂p

∂m
A−1σ−1

z atht −
∂p

∂θ
σz. (1.36)

µvt, σvt, µft and σft, the drifts and volatilities of variables vt and ft, are similarly

defined by replacing p with v or f in (1.34) and (1.36).

Proposition 2 describes this system of partial differential equations. The terminal

conditions are reported in the appendix.

Proposition 2. Price, risk-neutral variance, and the normalizing variable in stochas-

tic discount factor, as functions of time and state variables θt, mt, χt and τt satisfy:

µpt + σptσft − (Aθt + τtpt)σ2
pt = 0, (1.37)

µvt + σvtσft − (Aθt + τtpt)σvtσpt + σ2
pt = 0, (1.38)

µft + 1
2(σft)2 − 1

2(Aθt + τtpt)2σ2
pt + A · C(at) = 0. (1.39)

where attention is implicitly determined by:

C ′(at) = 1
2A
−1vt. (1.40)

This system of equations is solved numerically by the finite-difference method

on a five-dimensional grid of time t and four state variables θt, mt, χt, and τt. A

noteworthy by-product of this analysis is the drift in price dynamics µpt, which

also represents the instantaneous expected return Et[dpt]/dt. The solution to price,

risk-neutral variance, attention, and expected return facilitates the analysis of this

equilibrium.
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1.4. Asset Pricing Implications

Different realizations of the exogenous noisy supply of the asset leads to different

endogenous dynamics of price, uncertainty and information acquisition. The price

is decreasing in the noisy supply of the asset. When the payoff distribution is not

normal, uncertainty measured by the risk-neutral variance also varies with the noisy

supply. If uncertainty is high (compared to other realizations of exogenous shocks),

investors acquire more information.

In this section, I investigate how uncertainty, expected return, and past prices

are endogenously related through investor attention. Section 4.1 studies the inter-

play between information acquisition and uncertainty. In Section 4.2, I explore the

link between information acquisition and the future expected return. Section 4.3

relates cyclicality of attention to skewness in the payoff distribution. Findings and

predictions in this section are also valid if multiple assets are traded.

1.4.1 Endogenous Uncertainty Dynamics

Suppose that the economy enters a period of high uncertainty about the asset payoff.

High uncertainty induces investors to acquire more information. This causes asset

returns to be even more volatile in the early stages of the high-uncertainty period,

as agents learn more information. Returns become less volatile in the later stages,

as learning gradually reduces payoff uncertainty.

Proposition 1 establishes the link between uncertainty and information acqui-

sition. The risk-neutral variance of the final payoff vt measures uncertainty and

represents the marginal value of an additional piece of information to investors.

With a high level of uncertainty, information becomes valuable, and investors accu-

mulate it at a quicker pace through a higher level of attention at. The instantaneous

volatility of the asset return σpt also rises as a result.

∂σpt
∂at

= ∂p

∂m
A−1σ−1

z > 0 (1.41)

When investors acquire more precise private signals, they also make the asset

demand and thus the asset price more informative with regard to the final payoff,

which increases the amount of public information available to investors. The dy-

namics of private and public information precisions in the continuous-time limit are
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as follows:

τ ′t = at, χ′t = A−2σ2
za

2
t . (1.42)

Private information accumulates at the speed of attention, and public informa-

tion accumulates at a speed proportional to the square of attention. Information

reduces investors’ perception of uncertainty in the asset. A higher level of attention

indicates that this reduction of uncertainty happens more quickly. Let µ∗vt denote

the instantaneous drift of vt in the risk-neutral measure:

µ∗vt = lim
∆t→0

E∗t [vt+∆t − vt]
∆t︸ ︷︷ ︸

Expected reduction of uncertainty

. (1.43)

Proposition 3 reports the expression of this expected change in risk-neutral vari-

ance.

Proposition 3. The risk-neutral drift of risk-neutral variance vt is given by:

µ∗vt = −
(
∂p

∂θ

)2

σ2
z + 2∂p

∂θ

∂p

∂m
A−1atht −

(
∂p

∂m

)2

A−2σ2
za

2
th

2
t , (1.44)

It is decreasing in investor attention:

∂µ∗vt
∂at

< 0. (1.45)

The last term in equation (1.44) represents the contribution of public information

to the reduction of uncertainty. It is decreasing in attention and contains A−2σ2
za

2
t ,

the speed at which public information disseminates. This effect is prominent at high

levels of uncertainty because it is proportional to attention squared. The arrival of

public information updates investors’ belief and makes the distribution of the final

payoff more concentrated around its mean, which contributes to the decline of the

risk-neutral variance vt.

The second term in (1.44) is also a decreasing function of attention. A higher

expected payoff mt shifts the risk-neutral distribution of the final payoff to the right.

As a result, the current price pt is increasing in mt. Similarly, the price is decreasing

in the common component of asset demand θt:

∂p

∂m
> 0, ∂p

∂θ
< 0. (1.46)

The drift of uncertainty in the objective physical measure µvt differs from µ∗vt by

the variance risk premium. Depending on the shape and skewness of the risk-neutral
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Figure 1.1: Sample Paths of the Risk-Neutral Variance

The figure demonstrates 2 sample paths of the risk-neutral variance vt simulated from the

model. The parameters are set as follows: T = 3, y ∼ Lognormal(0, σ2
y) where σy = 0.702,

z0 = 5, σz = 0.15, A = 0.2, and C(ait) = 5(ait)2.

distribution, it either reinforces or diminishes the positive correlation between atten-

tion and the reduction in uncertainty. However, for a realistic choice of parameters

this channel is unlikely to overtake the direct effect of information dissemination

analyzed above.

When uncertainty is high, investor attention increases and reduction in uncer-

tainty happens more quickly. An upward spike of the risk-neutral variance is usually

followed by a rapid reduction. As uncertainty decreases, the return of the asset also

becomes less volatile. This is consistent with the empirical observation that peaks in

VIX are usually followed by a rapid decline.5 Figure 1 illustrates 2 sample paths of

the risk-neutral variance. The risk-neutral variance in the solid line initially shoots

up but soon falls below the dashed line because of intensive information acquisition.

The model is not stationary and the risk-neutral variance always have a tendency

to decline.

The dynamics of uncertainty and risk-neutral variance also have a profound
5Harvey and Whaley (1992) demonstrate that changes in implied volatilities are negatively

predicted by the lagged changes and that the explanatory power is higher in the sample that

includes the crash. Mencia and Sentana (2013) suggest that during the 2008-2009 crisis volatility

exhibits more mean reversion than that in the past.
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impact on the dynamics of information acquisition. Each piece of information di-

minishes the value of the following piece. High attention levels make subsequent

information acquisition less profitable and are therefore unlikely to be sustained.

1.4.2 Expected Return and Attention

The expected return of an asset is positively associated with investor attention.

When attention is high today, investors acquire information at a rapid pace, leading

to a rapid reduction in uncertainty. Then, the asset becomes less risky tomorrow

and enjoys a lower risk premium tomorrow and beyond. This quick reduction in

tomorrow’s risk premium compared to today’s corresponds to a high expected return

for the asset.

The asset’s expected payoff is mt. The expectation of payoff in the risk-neutral

measure is the price pt. Their difference mt − pt is this asset’s risk premium. In-

vestors’ acquisition and dissemination of information make the asset less risky and

shrink its risk premium towards zero.

Let us move back to the discrete-time setup for a moment. The risk premium

at date t + ∆t is mt+∆t − pt+∆t. Because the expected payoff is a martingale mt =

Et[mt+∆t], the expected return from date t to t+∆t is equal to the expected reduction

of risk premium in the same period:

Et[pt+∆t − pt] = Et
[

(mt − pt)︸ ︷︷ ︸
date t risk premium

− (mt+∆t − pt+∆t)︸ ︷︷ ︸
date t+ ∆t risk premium

]
. (1.47)

When the asset is trading at a price pt below the expected payoff mt, its risk

premium is positive and shrinks towards zero from above. High attention implies a

quick reduction in risk premium and hence a high expected return. Proposition 4

reports the expected return in the continuous-time limit and relates it to attention

and risk premium.

Proposition 4. The instantaneous expected return of the asset µpt is given by:

µpt =
 (mt − pt)︸ ︷︷ ︸

risk premium

A−1σ−1
z at + σz E∗t

[∫ T

t

∂2pu
∂θ2

u

Aσ2
zdu

]
+ A−1σ−1

z htat E∗t

[∫ T

t

χu
χt

∂2pu
∂m2

u

auhu

] 
·
(
∂pt
∂mt

A−1σ−1
z htat + (−∂pt

∂θt
σz)

)
︸ ︷︷ ︸

>0

. (1.48)
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If the risk premium mt− pt is greater than the second-order derivatives terms in the

above expression, the expected return µpt is increasing in attention at.

The expected return is positively associated with investor attention as long as

the risk premium is not exceptionally low, or the curvature of asset demand is

not exceptionally negative. The second-order derivatives ∂2pu/∂θ
2
u and ∂2pu/∂m

2
u

appear because of the non-normality in the payoff distribution.

This prediction provides an alternative explanation to a list of well-documented

empirical regularities. Da, Engelberg and Gao (2011) use Google Search Volume

Index to measure investor attention directly. They find that an increase in search

frequency predicts higher stock prices in the following two weeks. Lou (2014) docu-

ments that advertising can attract investor attention and impact stock returns in the

short run: an increase in advertising spending is accompanied by a contemporaneous

rise in retail buying and higher abnormal stock returns. Lee and So (2017) show that

analyst coverage predicts stock return: firms with abnormally high analyst coverage

subsequently outperform firms with abnormally low coverage by approximately 80

basis points per month.

The above analysis suggests that investor attention predicts the asset return.

Because attention is determined by uncertainty, the model also implies that the

risk-neutral variance vt positively forecasts the expected return at the same date. vt
is also useful at predicting µp,t+u, the expected return at a future date t+ u, which

changes with attention and uncertainty at that date. Since information is acquired

and diffused only gradually through the investing public, date t + u risk-neutral

variance vt+u is positively correlated to the date t measure. This translates into a

correlation between vt and µp,t+u, illustrated in the right panel of Figure 2. This

prediction is also supported by empirical evidence. Martin (2017) find that the risk-

neutral variance predicts the return of the market at horizons from one month to

one year.

However, this correlation becomes weaker as the time interval u increases, be-

cause the autocorrelation of the risk-neutral variance decreases over time. High

uncertainty implies increased attention and information acquisition, which in turn

drives down uncertainty. Consequently, the correlation between vt and vt+u de-

creases as the time interval u increases from 1 month to 24 months, as is shown in
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the left panel of Figure 2.

1.4.3 Cyclicality of Information Acquisition

The cyclicality of investor attention depends on the skewness of the payoff distribu-

tion. When the distribution is positively skewed and bounded from below, investors

are more excited about potential upside gains. Therefore they acquire more in-

formation when the price is high. Conversely, when the distribution is negatively

skewed, investors are more worried about potential losses in the downside. They

devote more attention to the asset when the price is low.

First, let us consider an individual stock where the payoff distribution G(y)

has a lower bound and a fat right tail. At date t, investors observe the entire

price history up to this date and use this information to update their beliefs about

the risk-neutral distribution of payoff. Figure 3 demonstrates how the risk-neutral

distribution depends on price in this example.

A low price implies that this probability distribution is concentrated near the

lower bound. Conversely, a high price indicates that the payoff is more likely to be

in a region with high variation and, thus, more uncertain from the investors’ per-

spective. This establishes a positive correlation between price and the risk-neutral

variance. Therefore, attention is procyclical, suggesting that more information is

acquired and disseminated in good times than in bad times.

Now, consider a second example where the asset is a bond that pays 0 if it defaults

and 1 if not. The risk-neutral distribution of payoff is completely characterized by

the bond price pt, which represents the risk-neutral probability that it does not

default. The risk-neutral variance is:

vt = E∗t [(y − pt)2] = pt(1− pt). (1.49)

If the risk-neutral probability of default does not exceed 1/2, pt is greater than

1/2 and in this region, the risk-neutral variance is decreasing in price. When the

bond is trading at a price near its face value 1, investors do not acquire much

information because the value of an additional signal is close to zero. Any negative

news that leads to a decline in price increases the value of information and attracts

more attention. Thus information acquisition is countercyclical when pt ∈ (1/2, 1).
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For general payoff distributions, the cyclicality of information acquisition is de-

termined by ∂v/∂m, the sensitivity of the risk-neutral variance to the expected

payoff. Attention is determined by uncertainty and the price is increasing in the

expected payoff mt. Therefore, attention is procyclical if ∂v/∂m is positive and

countercyclical if it is negative. Proposition 5 discusses how uncertainty moves in

line with the price at date T −∆t, the last trading date before the asset realizes its

payoff.

Proposition 5. At date T−∆t, uncertainty is increasing in price if the risk-neutral

distribution is positively skewed. The sensitivity of the risk-neutral variance vt to

the expected payoff mt is given by:

∂v

∂m
= 1
hT−∆t

E∗T−∆t

[
(y − pT−∆t)3

]
. (1.50)

∂v/∂m has the same sign as the risk-neutral skewness of the payoff. If the

distribution is right-skewed, uncertainty is increasing in the expected payoff and so

is the price. The converse is true if the distribution is left-skewed. Unfortunately,

∂v/∂m does not admit a simple expression at dates other than T−∆t. It is not only

influenced by the risk-neutral skewness but also relies on the interaction between

distribution and other state variables.

The model predicts that information acquisition is procyclical for firm-specific

information and countercyclical for market-wide information, consistent with em-

pirical evidence. Idiosyncratic components of stock returns and payoffs tend to

be right-skewed6, implying that stock-specific information is more valuable in good

times. Hong, Lim and Stein (2000) find that negative firm-specific information dif-

fuses more slowly compared to positive news. The market return, on the contrary,

is left-skewed. Garcia (2013) finds that in times of hardship investors react strongly

to business cycle news, while in good times the predictability of media content on

Dow Jones Industrial Average is much weaker.
6Kothari and Warner(1997) document that abnormal returns estimated using four models (mar-

ket model, market-adjusted model, capital asset pricing model, and Fama French three-factor

model) are all positively skewed.
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1.5. Extension

I consider a simple multi-asset extension of the model that explains momentum in

the stock market. In this economy, a risk-free asset, several individual stocks, and

the market are traded. Each individual stock’s final payoff is the sum of a stock-

specific idiosyncratic component and a market component identical for all stocks.

The focus of analysis in this section is information acquisition with respect to this

idiosyncratic component of the payoff. It determines the return of a stock in excess

of the market and explains why it is positively autocorrelated.

1.5.1 Setup

Investors trade 1 risk-free asset, n individual stocks, and 1 asset representing the

market. Stock j ∈ {1, 2, . . . , n} has final payoff y0 + yj, which consists of a market

component y0 and a stock-specific idiosyncratic component yj that is independent

of the market and across stocks. The market payoff itself is also traded and there is

a market asset that pays y0 at the final date.

Payoffs y0 and yj are unobservable to investors at the start and they are dis-

tributed with cumulative distribution functions G0(y0) and Gi(yj). The distribution

of stock-specific component yj, Gj(yj), is bounded from below and positively skewed.

A number of factors contribute to this asymmetry in the stock payoff. Limited li-

ability for equity holders indicates that the investments in stocks have bounded

downside risk but some potential for a large upside gain. Besides, the firm may

possess a real option to expand the business when it is doing well which further

boosts the upside potential.

Let p0t denote the date t price of the market asset and pjt denote the price of

a claim that pays yj at the final date. The price of individual stock j which pays

y0 + yj is p0t + pjt. pjt represents the price of the idiosyncratic payoff component,

and it is equal to the difference in price between stock j and the market asset. For

the period between date t and t+ ∆t, the return of the market asset is p0,t+∆t − p0t

and the return of stock j in excess of the market is:

[(p0,t+∆t + pj,t+∆t)− (p0t + pjt)]− [p0,t+∆t − p0t] = pj,t+∆t − pjt. (1.51)

Let zjt represent the supply of stock j and z0t represent the aggregate supply of all
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risky assets, including the market asset and all n individual stocks. Since the payoff

of any risky asset contains a market payoff component, z0t also represents the supply

of this component y0 in the economy. Similar to Kacperczyk, Van Nieuwerburgh

and Veldkamp (2016), increments in the supplies of payoff components z0,t+∆t − z0t

and zj,t+∆t − zjt are assumed to be independent. As in the baseline model, they

both follow random walks and have variances σ2
z0∆t and σ2

zj∆t respectively:

z0,t+∆t − z0t
i.i.d.∼ N (0, σ2

z0∆t),

zj,t+∆t − zjt
i.i.d.∼ N (0, σ2

zj∆t), j = 1, 2, . . . , n. (1.52)

The cost of information acquisition is additive across different payoffs. Let ajit
represent investor i’s attention towards payoff yj. The aggregate cost of informa-

tion for investor j from date t to date t + ∆t is the sum of that for each payoff∑n
j=0C(ajit)∆t. Contrary to standard rational inattention models (e.g., Sims (2003)),

which impose a fixed capacity upper bound for the aggregate attention on all assets,

I assume that information acquisition is independent across payoffs and different

assets do not compete for investor attention. Increased attention on one payoff does

not raise the cost of information for other payoffs. Investors acquire less information

in aggregate when the market is devoid of profitable investment opportunities.

The above assumptions about asset supply and information acquisition simplify

the analysis of equilibrium. The portfolio choice for different payoffs can be solved

separately because payoffs y0, y1, . . . , yn are independent and investors have CARA

preference. Since the cost of information is additive across assets, attention choice

can also be solved separately. The characterization of equilibrium is therefore iden-

tical to the single asset baseline model, with θjt, mjt, χjt and τjt replacing θt, mt,

χt and τt as state variables.

1.5.2 Analysis of Equilibrium

I consider a numerical example with parameters provided in Table 1.7 The final

payoff is realized in T = 3 years. For simplicity, I assume the idiosyncratic payoff

components for different stocks have the same distribution yj ∼ Lognormal(0, σ2
y),

7The analysis here focuses on idiosyncratic payoffs of individual stocks and does not extend to

the market. In section 5.2, j to refers one of 1, 2, . . . , n and does not include 0.
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Table 1.1: Parameter Values

The table lists values assigned to the length of investment T ; the distribu-

tion of idiosyncratic payoff Gj(yj) and parameter σy; the starting supply

of individual stock zj0; the volatility of stock supply σzj ; the absolute risk

aversion parameter A; and the cost of information C(ajit).

T Gj(yj) σy zj0 σzj A C(ajit)

3 Lognormal(0, σ2
y) 0.702 5 0.15 0.2 5(ajit)2

where σy is set at 0.702 to match the skewness of 36-month buy-and-hold CAPM

abnormal return at a level of 2.90. 8

The starting supply of individual stock is zj0 = 5, and the volatility of stock

supply is set at σzj = 0.15, such that daily trading volume is approximately 0.2

percent of the outstanding shares. The absolute risk aversion is A = 0.2, which

corresponds to relative risk aversion around 10 at the initial date for an investor with

wealth equal to 10 times its investment in one stock. Last, the cost of information

is assumed to be a quadratic function of attention C(ajit) = 5(ajit)2.

Attention and Past Excess Return

For the period between date 0 and date t, the return of stock j in excess of the

market is pjt − pj0. In equilibrium this return is determined by state variables θjt,

mjt, χjt and τjt. In particular, it is increasing in the expected payoff mjt, which

summarizes public information about this stock’s idiosyncratic payoff. Attention to

this stock-specific payoff tends to be procyclical because its distribution is bounded

from below and skewed to the right.

In this numerical example, the risk-neutral variance of idiosyncratic payoff vjt is

indeed increasing in its expected value. Figure 4 illustrates the relationship between

vjt and mjt at date t = 1, one year after the starting date. The other 3 state variables

θjt, χjt and τjt are fixed at the median of their distributions.

Excess return and risk-neutral variance are both increasing in the expected pay-

off. This contributes to a positive correlation between a stock’s past performance
8Kothari and Warner (1997) find that 36-month buy-and-hold abnormal return with respect to

CAPM has a skewness of 2.90. Other moments including kurtosis and quartiles are also similar to

those implied by a log-normal distribution.
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in excess of the market and investors’ current attention to its idiosyncratic payoff.

High excess return in the past indicates that this payoff is likely to be in a range

with high variation, and thus it is more valuable for investors to focus on this piece

of information. Consider a group of stocks with similar payoff distributions. This

model predicts that stocks that performed well relative to the cross-sectional average

are likely to attract more attention. The left panel of Figure 5 shows a scatter plot

for excess return in the first year pj1 − pj0 and attention at the end of the first year

for 20, 000 simulated time-series.

Expected Excess Return and Attention

In the baseline model, Section 4.2 establishes that the expected return is increas-

ing in attention if the asset enjoys a positive risk premium. Similar results hold true

for the multi-asset case. High attention to the stock’s idiosyncratic payoff implies a

quick reduction in the risk-premium concerning this payoff, which in turn contributes

to high excess return for the stock. The right panel of Figure 5 demonstrates the

end of the first year attention at and instantaneous expected excess return µjpt for

simulated data.

Serial Correlation of Excess Return

Investor attention to a stock is positively correlated with its past excess return.

The expected excess return of this stock in the future increases with attention.

Combining these two results, I find that excess return of a stock exhibits positive

autocorrelation because of endogenous information acquisition.

The average return of a sufficiently large group of individual stocks approximates

that of the market. Therefore, a stock’s excess return is high if and only if it

performed well relative to others. Past winners in this group tend to attract more

attention and thus continue to generate higher excess returns. This time-series result

explains the cross-sectional momentum.

This model also predicts that this momentum effect weakens over time. The

autocorrelation of excess return decreases with the horizon. Past excess return

pjt− pj0 affects its future expectation through the risk-neutral variance vjt. As time

interval u increases, the connection between vjt and vj,t+u weakens and the serial

correlation of excess return decreases. Let βjt+u denote the regression coefficient of

instantaneous expected return µjpt on pjt − pj0. Figure 6 reports the estimated βjt+u
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for u from 1 to 24 month using simulated time-series. β̂jt+u exhibits a decreasing

pattern.

1.6. Concluding Remarks

In this paper, I developed a noisy rational expectations model with endogenous in-

formation acquisition and used it to analyze the joint dynamics of attention, price,

and uncertainty. The starting point of this analysis is equation (1.13), which shows

that investor attention is determined by the uncertainty measure risk-neutral vari-

ance. It is empirically measurable from option prices and resembles the volatility

index VIX. Conversely, attention determines investment choices and thus affects the

dynamics of asset prices and of uncertainty. This interaction between attention and

uncertainty creates rich asset pricing dynamics.

This model generates predictions that are qualitatively different from those in

static and normal distribution models. First, high uncertainty attracts more at-

tention, which in turn reduces both uncertainty and attention. Episodes of high

uncertainty and attention are therefore unlikely to be sustained. Second, informa-

tion acquisition drives down both uncertainty and risk premium. The expected

return, which is identical to the expected reduction of risk premium, increases with

investor attention. Third, the correlation between price and the risk-neutral vari-

ance depends on the skewness and support of the payoff distribution. Information

acquisition tends to be procyclical for right-skewed payoffs and countercyclical for

left-skewed ones. These predictions are consistent with empirical observations.

In the extension, I applied the above results to a multi-asset setup and illustrated

that past winners tend to continue to perform well relative to the market. The

idiosyncratic component of stock payoff is right-skewed because of limited liability

and real option to expand. Stocks that performed well relative to the market have

high uncertainty and attract more attention and, hence, are expected to continue to

generate high excess returns. Because the dynamics of uncertainty contain a mean-

reverting component, the serial correlation of excess return weakens as the horizon

increases.
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(a) Autocorrelation of vt

(b) vt predicts µp,t+u

Figure 1.2: Uncertainty and Expected Return of the Asset

The figure shows the autocorrelation between the risk-neutral variance in panel (a) and

the correlation between present risk-neutral variance vt and future expected return µp,t+u

in panel (b). The current date is t = 1. Other parameters are set as follows: T = 3,

y ∼ Lognormal(0, σ2
y) where σy = 0.702, z0 = 5, σz = 0.15, A = 0.2, and C(ait) = 5(ait)2.
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(a) price pt is low

(b) price pt is high

Figure 1.3: Risk-Neutral Distributions of Stock Payoff

The figure demonstrates how asset price changes the shape of the payoff’s risk-neutral

distribution. The solid line represents the probability density, and the dashed line corre-

spond to the asset price, which is identical to the mean of this distribution. The prior

distribution of the payoff is y ∼ Lognormal(0, σ2
y) where σy = 0.702.
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Figure 1.4: Risk-Neutral Variance and Expected Payoff

The figure plots the risk-neutral variance vjt as a function of the expected payoff mjt

for the idiosyncratic payoff component of a stock. Other state variables are fixed at the

middle of their distribution. The parameters are set in Table 1.
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(a) attention and Past Return

(b) Expected Return and attention

Figure 1.5: attention and Excess Return

The figure plots past excess return pjt− pj0, attention ajt and the instantaneous expected

excess return µjpt at year t = 1 for 20, 000 simulated time-series. Panel (a) shows that

attention is increasing in past excess return, and Panel (b) illustrates that expected excess

return is increasing in attention. The parameters are set in Table 1.
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Figure 1.6: Serial Correlation of Excess Return

The figure shows the estimated value of the regression coefficient βjt+u for the equation

µjpt = αjt+u + βjt+u(pjt− pj0) + ejt+u from simulated data. The parameters are set in Table

1.
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Appendix

Proof of Lemma 1.

Optimization (1.8) is equivalent to:

max
θi1

∫
− exp

(
−A

(
θi1 − A−1ai0si1

)
(y − p1)− ai0

2 (y2 − p2
1) + A · C(ai0)

)
· 1√

2π(ai0)−1
exp

(
−ai02 (si1 − p1)2

)
dG(y|p0, p1). (A1)

A ·C(ai0) and exp (−ai0/2 · (si1 − p1)2) only contain known information at date

1 and could be taken out of the expression. Choosing optimal θi1 is equivalent to

choosing optimal θi1 − A−1ai0si1:

max
θi1−A−1ai0si1

∫
− exp

(
−A

(
θi1 − A−1ai0si1

)
(y − p1)− ai0

2 (y2 − p2
1)
)
dG(y|p0, p1).

(A2)

This optimization problem is identical for different investors and concave in θi1−

A−1ai0si1. Take the first-order condition and simplify:∫
− exp

(
−A

(
θi1 − A−1ai0si1

)
(y − p1)− ai0

2 (y2 − p2
1)
)
· (y − p1) dG(y|p0, p1) = 0.

(A3)

Because the moment generating function always exists, G(y) has exponentially

bounded tails. For price p1 that belongs to the support of G(y), the solution to (A3)

exists and is unique. As a result, θi1 −A−1ai0si1 must be the same across investors.

Define

θ1 = θi1 − A−1ai0si1. (A4)

θ1 represents a component of asset demand that is identical across investors. θ1 is

a function of prices p0 and p1 because (A2) relies on dG(y|p0, p1). Identity (A4) is

equivalent to (1.9).

Proof of Proposition 1.

I prove this proposition by backward induction. Suppose asset demand equation

(1.14) holds for dates t = t0 + ∆t, . . . , T − ∆t and attention equation (1.13) holds

for dates t = t0, . . . , T −∆t.

First I prove that (1.14) is valid for date t = t0.

Let pt0 denote future prices pt0+∆t, . . . , pT−∆t, and st0 denote investor i’s fu-

ture signals si,t0+∆t, . . . , si,T−∆t. The joint distribution of future prices and signals
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conditional on all public and private information possessed by investor i at date

t0 is represented by G(y, pt0 , st0|p0, . . . , pt0 , si,∆t, . . . , si,t0). I use π(si,∆t, . . . , si,t0) to

denote the probability density function of the signals.

At date t0, investor i’s utility is:

Eit0 [− exp(−AWiT )]

=
∫
− exp(−AWiT ) dG(y, pt0 , st0 |p0, . . . , pt0 , si,∆t, . . . , si,t0)

=
∫
− exp(−AWiT )

π(si,∆t, . . . , si,t0|y)
π(si,∆t, . . . , si,t0|p0, . . . , pt0) dG(y, pt0 , st0|p0, . . . , pt0)

=
∫
− exp

−AWi,t0 − A
T−∆t∑
t=t0

θit(pi,t+∆t − pit) + A
T−∆t∑
t=t0

C(ait)∆t


·
t0−∆t∏
t=0

1√
2π(ait∆t)−1

exp(−ait∆t2 (si,t+∆t − y)2)
dG(y, pt0 , st0|p0, . . . , pt0)
π(si,∆t, . . . , si,t0|p0, . . . , pt0) .

(A5)

In the second equality, I applied the conditional Bayes theorem on the prob-

ability density function and used the fact that signals si,∆t,. . . ,si,t0 as a group is

conditionally independent with prices p0, . . . , pt0 . In the third inequality, I further

used the fact that the signals themselves are conditionally independent.

Substitute in the expressions of θit for t = t0 + ∆t, . . . , T −∆t and simplify,

Eit0 [− exp(−AWiT )]

=
∫
− exp

−AWi,t0 −

Aθi,t0 − t0−∆t∑
u=0

aiusi,u+∆t∆t
 (pt0+∆t − pt0) + A

T−∆t∑
t=t0

C(ait)∆t

−
T−∆t∑
t=t0+∆t

Aθit − t0−∆t∑
u=0

aiusi,u+∆t∆t
 (pt+∆t − pt)−

t0−∆t∑
t=0

ait∆t
2 (y2 − p2

t0)


·
t0−∆t∏
t=0

1√
2π(ait∆t)−1

exp(−ait∆t2 (si,t+∆t − pt0)2)
dG(y, pt0 , st0|p0, . . . , pt0)
π(si,∆t, . . . , si,t0 |p0, . . . , pt0)

=
∫
− exp

−AWi,t0 −

Aθi,t0 − t0−∆t∑
u=0

aiusi,u+∆t∆t
 (pt0+∆t − pt0) + A

T−∆t∑
t=t0

C(ait)∆t

−
T−∆t∑
t=t0+∆t

Aθt +
t−∆t∑
u=t0

aiusi,u+∆t∆t
 (pt+∆t − pt)−

t0−∆t∑
t=0

ait∆t
2 (y2 − p2

t0)


·
t0−∆t∏
t=0

1√
2π(ait∆t)−1

exp(−ait∆t2 (si,t+∆t − pt0)2)
dG(y, pt0 , st0|p0, . . . , pt0)
π(si,∆t, . . . , si,t0 |p0, . . . , pt0).

(A6)
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Investors’ utility maximization problems are similar despite the differences in

private signals received. In the above integral, si,∆t,. . . ,si,t0 only appears as coeffi-

cients of pt0+∆t − pt0 . Taking the first order condition, Aθi,t0 −
∑t0−∆t
u=0 aiusi,u+∆t∆t

must be identical across investors. Define

θt0 = 1
A

Aθi,t0 − t0−∆t∑
u=0

aiusi,u+∆t∆t
 . (A7)

θt0 represents the common component of asset demand and only relies on the

price history p0,. . . ,pt0 . This completes the backward induction for the asset demand

equation.

Next, I prove that (1.13) is correct for date t = t0 − ∆t. Attention at this

date is decided without the knowledge of date t0 information. Substitute in (A6)

and differentiate date t0 −∆t expected utility Eit0−∆t

[
Eit0 [U(WiT )]

]
with respect to

ai,t0−∆t:

E
[
U ′(WiT )

(
A · C ′(ai,ut0−∆t)∆t−

∆t
2 (y2 − p2

t0)
)∣∣∣∣∣ p0, . . . , pt0−∆t

]
= 0. (A8)

Apply the law of iterated expectations and use the fact that pt0 = E∗t0 [y],

C ′(ai,ut0−∆t) = 1
A

E∗t0−∆t

[
E∗t0(y2 − p2

t0)
]

= 1
A

E∗t0−∆t[vt]. (A9)

This completes the backward induction for the attention equation.

Proof of Lemma 2.

I arrive at (1.21), (1.23), and (1.24) by taking first difference of θt, χt and τt from

equations (1.18)-(1.20).

Let Gt(y) denote the posterior distribution of y after observing all public infor-

mation up to date t. mt and ht respectively represent the mean and variance of this

distribution:

mt = E[y|p0, p1, · · · , pt] =
∫
y dGt(y),

ht = Var[y|p0, p1, · · · , pt] =
∫

(y −mt)2 dGt(y). (A10)

The signal A(at∆t)−1(θt+∆t − θt) communicates payoff y perturbed by a normal

noise with precision A−2σ−2
z a2

t∆t. It represents new public information arrived at
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date t+∆t and is independent of all previous public signals. Applying Bayes formula,

mt+∆t = E[y|p0, p1, · · · , pt+∆t]

=

∫
exp

(
−1

2A
−2σ−2

z a2
t∆t (y − A(at∆t)−1(θt+∆t − θt))2

)
y dGt(y)∫

exp
(
−1

2A
−2σ−2

z a2
t∆t (y − A(at∆t)−1(θt+∆t − θt))2

)
dGt(y)

=
(
1− A−2σ−2

z a2
tht∆t

)
mt + A−2σ−2

z a2
tht∆t · A(at∆t)−1(θt+∆t − θt) + o(∆t).

(A11)

Substituting in the expression of A(at∆t)−1(θt+∆t − θt) from (1.16), I obtain

(1.22).

Proof of Lemma 3.

First I prove that ξt,T defined in (1.29) is a valid stochastic discount factor.

At date t, investor i makes portfolio choice θit to maximize her expected utility

Et[U(WiT )], where

WiT = Wit +
T−∆t∑
u=t

θiu(pu+∆t − pt) + A
T−∆t∑
u=t

C(aiu)∆t. (A12)

The first-order condition with respect to θiu suggests that

Eiu[U ′(WiT )(pu+∆t − pu)] = 0. (A13)

Apply the law of iterated expectations:

Eit[U ′(WiT )(pu+∆t − pu)] = Eit
[
Eiu[U ′(WiT )(pu+∆t − pu)]

]
= 0, (A14)

Eit[U ′(WiT )(y − pt)] =
T−∆t∑
u=t

Eit[U ′(WiT )(pu+∆t − pu)] = 0, (A15)

Substitute in the definition of ξit,T ,

Eit[ξit,T (y − pt)] = 0. (A16)

Eit represents the conditional expectation using investor i’s private information

set at time t. Et represents the conditional expectation using the public information

set (the price history). The private information set contains the public one. Apply

law of iterated expectations:

Et[ξit,T (y − pt)] = Et[Eit[ξit,T (y − pt)]] = 0. (A17)
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Now consider ξt,T = E
[
ξit,T |p0, p∆t, . . . , pT−∆t, y

]
.

Et[ξt,T (y − pt)] = Et
[
E
[
ξit,T |p0, p∆t, . . . , pT−∆t, y

]
(y − pt)

]
= Et

[
E
[
ξit,T (y − pt)|p0, p∆t, . . . , pT−∆t, y

]]
= Et[ξit,T (y − pt)] = 0. (A18)

In the second equality, I used the fact that both pt and y are measurable with re-

spect to p0, p∆t, . . . , pT−∆t, y. In the third equality I applied the law of iterated expec-

tations. As a result, ξt,T prices the risky asset correctly. Furthermore, Et[ξt,T ] = 1.

This completes the proof that ξt,T is a valid SDF.

Next, I prove that ξt,T has the expression given in (1.30). From the definition of

ξit,T ,

ξit,T =
U ′(WiT )

Eit[U ′(WiT )] =
− AU(WiT )

Eit[−AU(WiT )] =
U(WiT )

Eit[U(WiT )]. (A19)

U(WiT ) is given by:

U(WiT ) = − exp
− T−∆t∑

u=t

Aθt +
u−∆t∑
u0=0

ai,u0si,u0+∆t(pu+∆t − pu)
+ A

T−∆t∑
u=t

C(aiu)∆t
 .

(A20)

The derivation of Eit[U(WiT )] is similar to (A6):

Eit[U(WiT )]

=
∫
− exp

− T−∆t∑
u=t

Aθt +
u−∆t∑
u0=t

ai,u0si,u0+∆t(pu+∆t − pu)
+ A

T−∆t∑
u=t

C(aiu)∆t−
τt
2 (y2 − p2

t )


·
t−∆t∏
u=0

1√
2π(aiu∆t)−1

exp(−aiu∆t2 (si,u+∆t − pt)2) ·
dG(y, pt, st|p0, . . . , pt)

π(si,∆t, . . . , sit|p0, . . . , pt)

=
∫
− exp

− T−∆t∑
u=t

[
Aθu(pu+∆t − pu) + 1

2τu(p
2
u+∆t − p2

u)− A · C(au)∆t
]

·
t−∆t∏
u=0

1√
2π(aiu∆t)−1

exp(−aiu∆t2 (si,u+∆t − pt)2) ·
dG(y, pt, st|p0, . . . , pt)

π(si,∆t, . . . , sit|p0, . . . , pt)

= − exp(ft) ·
t−∆t∏
u=0

1√
2π(aiu∆t)−1

exp(−aiu∆t2 (si,u+∆t − pt)2) ·
1

π(si,∆t, . . . , sit|p0, . . . , pt)
.

(A21)

In the second equality, I applied the conditional Bayes theorem and then inte-

grated over the signals si,t+∆t, . . . , si,T−∆t, similar to (A5) and (A6). In the third
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equality, I used the definition of ft (1.31). Therefore,

ξt,T = E

 U(WiT )
Eit[U(WiT )]

∣∣∣∣∣∣∣ p0, p∆t, . . . , pT−∆t, y

 (A22)

= E

exp
− T−∆t∑

u=t

Aθt +
u−∆t∑
u0=0

ai,u0si,u0+∆t(pu+∆t − pu)
+ A

T−∆t∑
u=t

C(aiu)∆t− ft



· π(si,∆t, . . . , sit|p0, . . . , pt) ·
t−∆t∏
u=0

 1√
2π(aiu∆t)−1

exp(−aiu∆t2 (si,u+∆t − pt)2)


−1 ∣∣∣∣∣ p0,

p∆t, . . . , pT−∆t, y

]
. (A23)

Applying conditional Bayes theorem and integrating over the signals once again, I

arrive at (1.30).

Proof of Proposition 2.

First, I prove the expression of µpt and σpt given in (1.36). Apply Taylor series

expansion to p(t+ ∆t, θt+∆t,mt+∆t, χt+∆t, τt+∆t) around (t, θt,mt, χt, τt),

p(t+ ∆t, θt+∆t,mt+∆t, χt+∆t, τt+∆t)

=p(t, θt,mt, χt, τt) + ∂p

∂t
∆t+ ∂p

∂θ
(θt+∆t − θt) + ∂p

∂m
(mt+∆t −mt) + ∂p

∂χ
(χt+∆t − χt)

+ ∂p

∂τ
(τt+∆t − τt) + 1

2
∂2p

∂θ2 (θt+∆t − θt) + 1
2
∂2m

∂θ2 (mt+∆t −mt)

+ ∂2p

∂θ∂m
(θt+∆t − θt)(mt+∆t −mt) + o(∆t). (A24)

Substituting in (1.21)-(1.24) and use the fact the expectation of payoff Et[y] is

mt, the conditional expectations of state variable increments are given by:

Et[θt+∆t − θt] = Et[−A−1aty∆t+ zt+∆t − zt] = −A−1atmt∆t,

Et[mt+∆t −mt] = Et[A−2σ−2
z a2

tht(y −mt)∆t− A−1σ−1
z atht(zt+∆t − zt) + o(∆t)]

= A−2σ−2
z a2

tht∆t Et[y −mt] + o(∆t) = o(∆t),

Et[χt+∆t − χt] = A−2σ2
za

2
t∆t,

Et[τt+∆t − τt] = at∆t. (A25)

The conditional variance of θt+∆t − θt is:

Vart[θt+∆t − θt] = Vart[−A−1aty∆t+ zt+∆t − zt]

= Vart[−A−1aty∆t] + Vart[zt+∆t − zt]

= A−2a2
t Vart[y] · (∆t)2 + σ2

z∆t = σ2
z∆t+ o(∆t). (A26)

49



Similarly,

Vart[mt+∆t −mt] = A−2σ−4a2
th

2
t Vart[zt+∆t − zt] = A−2σ−2a2

th
2
t∆t,

Covt[θt+∆t − θt,mt+∆t −mt] = A−1σ−2atht Vart[zt+∆t − zt] = A−1atht∆t. (A27)

Substituting (A24) and (A25)-(A27) into (1.34) and simplify, I arrive at the

expression of drift µpt and volatility σpt.

Next, I derive the system of partial differential equations (1.37)-(1.39). Let ξt,t+∆t

denote the stochastic discount factor from date t to t+ ∆t:

ξt,t+∆t = ξt,T
ξt+∆t,T

= exp
(
−Aθt(pt+∆t − pt)−

1
2τt(p

2
t+∆t − p2

t ) + A · C(at)∆t− ft + ft+∆t

)
.

(A28)

Because the interest rate is zero, Et[ξt,t+∆t] is equal to 1. From (1.26),

pt = Et[ξt,t+∆tpt+∆t] = Et[ξt,t+∆t] Et[pt+∆t] + Covt[ξt,t+∆t, pt+∆t]

= pt + µpt∆t+ Covt
[
−Aθtpt+∆t −

1
2τtp

2
t+∆t + ft+∆t, pt+∆t

]
+ o(∆t)

= pt +
(
µpt + σptσft − (Aθt + τtpt)σ2

pt

)
∆t+ o(∆t). (A29)

The first equation (1.37) in the system of PDEs is obtained by taking the limit

∆t→ 0. Similarly, the second equation (1.38) comes from

vt = Et[ξt,t+∆tvt+∆t] + Var∗t [pt+∆t]

= Et[ξt,t+∆tvt+∆t] + Vart[pt+∆t] + o(∆t)

= vt +
(
µvt + σvtσft − (Aθt + τtpt)σ2

pt + σ2
pt

)
∆t+ o(∆t). (A30)

Apply Taylor expansion to ξt,t+∆t = exp(ln ξt,t+∆t) around ln ξt,t+∆t = 0:

ξt,t+∆t = 1 + ln ξt,t+∆t + 1
2(ln ξt,t+∆t)2 + o(∆t)

Et[ξt,t+∆t] = 1 + Et
[
−Aθt(pt+∆t − pt)−

1
2τt(p

2
t+∆t − p2

t ) + A · C(at)∆t− ft + ft+∆t

]
+ 1

2 Et
[(
−Aθt(pt+∆t − pt)−

1
2τt(p

2
t+∆t − p2

t ) + A · C(at)∆t− ft + ft+∆t

)2]
+ o(∆t)

= 1 +
[
−(Aθt + τtpt)µpt + A · C(at) + µft + 1

2 (−(Aθt + τtpt)σpt + σft)2
]

∆t+ o(∆t).

(A31)

Taking the limit ∆t → 0 and substitute in (1.37) to eliminate µpt, I arrive at

(1.39). The equation that relates attention to risk-neutral variance (1.13) converges

to equation (1.40) in the continuous-time limit.
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The terminal conditions for this system of equations come from the continuous-

time limit of pT−∆t, vT−∆t and fT−∆t:

pT−∆t = ET−∆t

[
exp

(
−AθT−∆t(y − pT−∆t)−

1
2τT−∆t(y2 − p2

T−∆t))∆t− fT−∆t

)
· y
]
,

vT−∆t = ET−∆t

[
exp

(
−AθT−∆t(y − pT−∆t)−

1
2τT−∆t(y2 − p2

T−∆t))∆t− fT−∆t

)
· (y − pT−∆t)2

]
,

fT−∆t = log
(
ET−∆t

[
exp

(
−AθT−∆t(y − pT−∆t)−

1
2τT−∆t(y2 − p2

T−∆t)
)])

. (A32)

Proof of Proposition 3.

Risk-neutral variance at date t and t+ ∆t is related by equation (1.27):

E∗t [vt+∆t − vt] = −Var∗t [pt+∆t] = −
(
Et[ξt,t+∆t p

2
t+∆t]− p2

t

)
= −(Et[p2

t+∆t]− p2
t )− Covt[ξt,t+∆t, p

2
t+∆t]

= −σ2
pt∆t+ o(∆t), (A33)

As a result, the instantaneous drift of vt in the risk-neutral measure is given by:

µ∗vt = lim
∆t→0

E∗t [vt+∆t − vt]
∆t = −σ2

pt

= −
(
∂p

∂m
A−1σ−1

z atht −
∂p

∂θ
σz

)2

. (A34)

Since price is increasing in mt and decreasing in θt, µ∗vt is decreasing in attention:

∂µ∗vt
∂at

= 2∂p
∂θ

∂p

∂m
A−1ht − 2

(
∂p

∂m

)2

A−2σ2
zath

2
t < 0. (A35)

I introduce Lemma A1 and Lemma A2 to prove Proposition 4.

Lemma A1. ∂ft/∂θt is given by:

∂ft
∂θt

= (Aθt + τtpt)
∂pt
∂θt

+ E∗t

[∫ T

t

∂2pu
∂θ2

u

Aσ2
zdu

]
, (A36)

Proof Lemma A1.

I start from the definition of ft in discrete time (1.31):

ft = lnEt

exp
− T−∆t∑

u=t

[
Aθu(pu+∆t − pu) + 1

2τu(p
2
u+∆t − p2

u)− A · C(au)∆t
] .
(A37)

Differentiate ft in (1.31) with respect to pt,

∂ft
∂pt

= (Aθt + τtpt).
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An increase in θt implies the same change in θu for u = t+∆t, . . . , T −∆t. From

the dynamics of state variables (1.21),

∂θu
∂θt

= 1, u = t+ ∆t, . . . , T −∆t. (A38)

Now differentiate ft in (1.31) with respect to θu

∂ft
∂θu

= 1
ft

Et

exp
− T−∆t∑

u=t

[
Aθu(pu+∆t − pu) + 1

2τu(p
2
u+∆t − p2

u)− A · C(au)∆t
]

(
−A(pu+∆t − pt) + (Aθu − Aθu−∆t + au−∆t∆tpu)

∂pu
∂θu

).
=E∗t

[
−A(pu+∆t − pt) + (Aθu − Aθu−∆t + au−∆t∆tpu)

∂pu
∂θu

]

=0 + Cov∗t
[
(Aθu − Aθu−∆t + au−∆t∆tpu),

∂pu
∂θu

]

=Cov∗t
[
(Aθu − Aθu−∆t + au−∆t∆tpu),

∂2pu
∂θ2

u

(θu − θu−∆t)
]

+ o(∆t)

=∂
2pu
∂θ2

u

Aσ2
z∆t+ o(∆t). (A39)

The third equality in the above expression follows from the fact that price is a

martingale under the risk-neutral measure and that E∗t [Aθu−Aθu−∆t+au−∆t∆tpu] =

0. From (A38) and (A39), I obtain (A36).

Lemma A2. ∂ft/∂mt is given by:

∂ft
∂mt

= (pt −mt)h−1
t + (Aθt + τtpt)

∂pt
∂mt

− E∗t

[∫ T

t

χu
χt

∂2pu
∂m2

u

auhu

]
. (A40)

Proof Lemma A2.

From equation (1.16), A(at∆t)−1(θt+∆t−θt) is a public signal of y with precision

A−2σ−2
z a2

t∆t. χt represents the aggregate precision of all public signals. Let ηt
denote the average of public signals using precisions A−2σ−2

z a2
t∆t as weights:

χt =
t−∆t∑
u=0

A−2σ−2
z a2

u∆t, (A41)

ηt =
t−∆t∑
u=0

A−2σ−2
z a2

u∆t
χT−∆t

· A(at∆t)−1(θt+∆t − θt). (A42)

Because public signals in different periods are independent, they are informa-

tionally equivalent to a signal ηt with precision χt. Applying Bayes formula, the

expected payoff mt could be expressed as:

52



mt =

∫ [
exp

(
−χt2 (y − ηt)2

)
· y dG(y)

]
∫ [

exp
(
−χt2 (y − ηt)2

)
dG(y)

] . (A43)

Differentiate mt with respect to ηt:

dmt

dηt
=

∫ [
exp

(
−χt2 (y − ηt)2

)
· y · χt(y − ηt) dG(y)

]
∫ [

exp
(
−χt2 (y − ηt)2

)
dG(y)

]

−mt ·

∫ [
exp

(
−χt2 (y − ηt)2

)
· χt(y − ηt) dG(y)

]
∫ [

exp
(
−χt2 (y − ηt)2

)
dG(y)

]
= Et[y · χt(y − ηt)]−mt Et[χt(y − ηt)]

= χt
[
Et[y2]−mt Et[y]

]
= χtht. (A44)

Similarly, ft could be expressed as:

ft = ln
∫ exp

− T−∆t∑
u=t

[
Aθu(pu+∆t − pu) + 1

2τu(p
2
u+∆t − p2

u)− A · C(au)∆t
]
− χt

2 (y − ηt)2

 dG(y)


− ln
(∫

exp
(
−χt2 (y − ηt)2

)
dG(y)

)
(A45)

Differentiate ft with respect to ηt:

dft
dηt

= χt E∗t [y − ηt]− χt Et[y − ηt] = χt(pt −mt). (A46)

(A44) and (A46) give rise to the first term in (A40). The second term is similar

to Lemma 1.

An increase in mt implies less than one-to-one change in mu for u = t +

∆t, . . . , T −∆t. From the dynamics of state variables (1.22),

dmu

dmt

= χu
χt

+ o(∆t), u = t+ ∆t, . . . , T −∆t. (A47)

Similar to (A39),
∂ft
∂mu

= −∂
2pu
∂m2

u

auhu + o(∆t). (A48)

The above expression gives the third term in (A40).

Proof of Proposition 4.
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Using (1.37) and (1.36), the instantaneous expected return µpt is given by:

µpt = σpt(−σft + (Aθt + τtpt)σpt)

=
(
∂pt
∂mt

A−1σ−1
z htat −

∂pt
∂θt

σz

)
(−σft + (Aθt + τtpt)σpt)

=
(
∂pt
∂mt

A−1σ−1
z htat −

∂pt
∂θt

σz

)
(∂ft
∂θt

σz −
∂ft
∂mt

A−1σ−1
z htat + (Aθt + τtpt)σpt).

(A49)

Combine (A49) with the results from Lemma A1 and Lemma A2, I arrive at

(1.48).

Proof of Proposition 5.

Define ηT−∆t similar to ηt in (A42). Public signals from date 0 to date T −∆t

are informationally equivalent to a signal ηT−∆t with precision χT−∆t. Similar to

(A44),

dmT−∆t

dηT−∆t
= χT−∆t

[
ET−∆t[y2]−mT−∆t ET−∆t[y]

]
= χT−∆thT−∆t. (A50)

Applying the Bayes formula, the risk-neutral variance vT−∆t can be expressed as

follows:

vT−∆t =

∫ [
ξT−∆t,T · exp

(
−χT−∆t

2 (y − ηT−∆t)2
)
· (y − p2

T−∆t) dG(y)
]

∫ [
ξT−∆t,T · exp

(
−χT−∆t

2 (y − ηT−∆t)2
)
dG(y)

] . (A51)

And the partial derivative of vT−∆t to ηT−∆t is:

∂vT−∆t

∂ηT−∆t
= χT−∆t E∗T−∆t[(y − p3

T−∆t)].

Combine (A50) and (A52), I arrive at (1.50).
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Chapter 2

Collateral Requirements and Asset

Prices

We consider an economy populated by investors with heterogeneous preferences and

beliefs who receive non-pledgeable labor incomes. We study the effects of collateral

constraints that require investors to maintain sufficient pledgeable capital to cover

their liabilities. We show that these constraints inflate stock prices, give rise to clus-

ters of stock return volatilities, and produce spikes and crashes in price-dividend ra-

tios and volatilities. Furthermore, mere possibility of a crisis significantly decreases

interest rates and increases Sharpe ratios. The stock price has large collateral pre-

mium over non-pledgeable incomes. Asset prices are in closed form, and investors

survive in the long run.

Journal of Economic Literature Classification Numbers: D52, G12.

Keywords: collateral, non-pledgeable labor income, heterogeneous preferences, dis-

agreement, asset prices, stationary equilibrium.
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2.1. Introduction

Financial markets play a key role in facilitating risk sharing and efficient allocation

of assets among investors. However, trading in financial assets often entails moral

hazard due to investors’ incentives to default on their risky positions. The moral

hazard can be alleviated by collateralized trades whereby risky positions are backed

by financial capital that can be seized in the event of default. The latter arrangement

restores the functionality of financial markets at a cost of restricting risk sharing

among investors. In this paper, we develop a parsimonious model which sheds light

on the economic effects of such restrictions and show that they give rise to rich

dynamics of asset prices. In particular, we show how collateralization inflates asset

prices, generates repeated booms and busts in the stock market, and leads to spikes,

crashes, and clustering of stock return volatilities, as well as cycles of high and low

leverage. Our analysis is facilitated by closed-form solutions and the stationarity of

equilibrium processes.

We consider a pure exchange economy with one consumption good produced

by a tree with i.i.d. shocks, similar to Lucas (1978). The economy is populated

by two representative investors with heterogeneous constant relative risk aversion

(CRRA) preferences over consumption and heterogeneous beliefs about the output

growth rate. Each investor receives a fraction of the tree’s output as labor income

and invests total wealth in financial assets such as bonds and stocks. The investors

have limited liability and can re-enter the financial market following defaults on

risky positions in financial assets. In the event of default the financial assets can be

seized by counterparties but labor income cannot be expropriated. The arising moral

hazard problem is resolved by requiring risky positions to be backed by collateral in

such a way that each investor’s total financial wealth stays positive at all times, and

hence, investors can always pay back to counterparties. We also allow the aggregate

consumption to experience rare large negative shocks, which help us explore how

mere anxiety about the possibility of a production crisis affects the economy by

tightening collateral requirements. Our closed form solutions allow us to prove some

of the results for general model parameters rather than for particular calibrations.

First, we show that collateral requirements increase the prices of all tradable

assets with positive cash flows relative to a frictionless economy. Moreover, these
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increases in prices are larger when investors are closer to their default boundaries.

In particular, the stock price-dividend ratio is a U-shaped function of one of the

investor’s share of the aggregate consumption. Consequently, it spikes upwards in

response to small economic shocks near default boundaries giving rise to repeated

periods of high and low stock prices.

The intuition for the latter results is as follows. Absent any frictions, the in-

vestors’ consumption shares gradually approach zero or one, and hence the eco-

nomic impact of one of the investors vanishes in the long-run (e.g., Blume and

Easley, 2006; Yan, 2008; Chabakauri, 2015). The collateral requirements restrict

financial losses and protect investors from losing their consumption shares. The re-

sult is that the consumption shares are bounded away from zero and one. Moreover,

the constraints never bind simultaneously for both investors, and at each moment

one of the investors is unconstrained. The unconstrained investor’s marginal util-

ity of consumption is proportional to the prices of Arrow-Debreu securities. This

marginal utility is expected to be higher in the economy with constraints because

the unconstrained investor’s consumption is expected to be lower than in the un-

constrained economy due to the upper bound on the consumption share, discussed

above. Consequently, the prices of Arrow-Debreu securities, and hence, the prices

of all assets with positive cash flows, are higher in the constrained economy.

The dynamics of the price-dividend ratio determines the effect of constraints on

volatilities. We show that collateral requirements dampen volatilities in bad times,

when aggregate consumption is low, and amplify them in good times, when aggregate

consumption is high. The latter effect makes collateral requirements a useful tool

for curbing excessive volatility in bad times. The explanation is that the U-shaped

price-dividend ratio is procyclical in good and countercyclical in bad times. As a

result, the price-dividend ratio and the dividend move in the same direction in good

times and in opposite directions in bad times. Because the stock price is the product

of the price-dividend ratio and the dividend, the stock return volatility increases in

good times and decreases in bad times. The volatility experiences spikes and crashes

due to the sensitivity of price-dividend ratios to small shocks when investors are

close to hitting their constraints. Moreover, the periods of high and low volatility

are persistent because of the persistence of periods when constraints are likely to
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bind, as discussed below, which gives rise to the clustering of volatilities.

We also derive the distributions of investors’ consumption shares in analytic form

and show that they are stationary and non-degenerate (i.e., their support is a closed

interval rather than a single point). The analysis of these distributions yields three

economic insights. First, there is non-trivial time-variation of asset prices in the long

run. Second, periods of binding collateral requirements are persistent. That is, the

economy stays close to default boundaries for some time because hitting a constraint

makes likely hitting it again in the near future due to slow accumulation of wealth

over time. Third, we show that all investors, including those with incorrect beliefs,

survive in the long run and can have large economic impact in equilibrium because

the constraints prevent investors from losing their consumption shares, similar to

the related literature (e.g., Blume and Easley, 2006; Cao, 2018). We note that

the non-degeneracy of consumption share distributions and the persistence of the

periods of binding constraints are more difficult to demonstrate than survival, and,

to our best knowledge, these results are new to the literature.

Next, we show that mere possibility of a large (albeit unpredictable) drop in the

aggregate output next period decreases interest rates and increases Sharpe ratios

in the current period when the irrational optimist is close to hitting the collateral

constraint. The latter effect only occurs when production crises and collateral re-

quirements are jointly present in the economy. Hence, the collateral requirements

amplify the spillover of the production crisis to the financial market. The am-

plification effect arises because investors “fly to quality” by buying riskless bonds

when there is a possibility of hitting the collateral constraint next period. We note

that lower interest rates and higher Sharpe ratios can be generated by alternative

mechanisms and constraints, discussed in the literature review below. However, the

amplification mechanism, to our best knowledge, has not been studied before. We

also show that investor heterogeneity and the stationarity of equilibrium give rise

to cycles of high and low leverage. In particular, the leverage is high when investors

are far away from their default boundaries, and drops to zero when investors hit

their constraints.

Finally, we measure the collateral liquidity premium of the stock versus labor

income. This premium arises because dividends and labor incomes are collinear but
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incomes are non-pledgeable. First, we derive shadow prices of claims to labor in-

comes such that exchanging marginal units of these claims for the consumption good

at shadow prices does not affect investors’ welfare. Then, we construct portfolios of

stocks that replicate labor incomes. We define the collateral liquidity premium as the

percentage difference in the value of the replicating portfolio and the shadow price.

The premium from the view of a particular investor widens close to that investor’s

default boundary and ranges from 0% to 35% in our calibration, which demonstrates

the economic importance of collateralization. We also show that the non-tradability

of labor income does not contribute to this premium. This is because in economies

with pledgeable labor income investors circumvent non-tradability by taking short

positions in the stock, and hence, the liquidity premium is such economies is zero.

The paper develops new methodology for studying the effects of collateral re-

quirements. This new methodology allows us to obtain closed-form equilibrium

processes and prove their properties which previously could only be studied numer-

ically. For example, we prove that collateral requirements always increase price-

dividend ratios and generate spikes in asset prices, and lead to non-degeneracy and

stationarity of consumption share distributions. Hence, collateralization emerges as

a tractable way of inducing the stationary of equilibrium. Finally, the paper intro-

duces a tractable discrete-time framework that makes exposition less technical and

permits taking continuous-time limits. The tractability and stationarity make our

model a convenient benchmark for asset pricing research that can be extended in

various directions.

Related Literature. Closest to us are papers that study economies where investors

have limited liability and face solvency constraints. Deaton (1990) considers a par-

tial equilibrium model in which investors trade in a riskless asset with an exogenous

interest rate and face a non-negativity constraint on their financial wealth. De-

temple and Serrat (2003) also study the non-negative wealth constraint in a model

where investors have heterogeneous beliefs and identical risk aversions. They show

that this constraint introduces a singularity component into interest rates when the

constraint binds while stock risk premia have the same structure as in unconstrained

economies. They do not compute price-dividend ratios, volatilities, and consumption

share distributions as we do in this paper, which are more difficult to characterize
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than interest rates and risk premia. Moreover, in our paper the constraint has an

effect on interest rates and risk premia in the internal area of the state-space when

there are rare production crises in the economy.

Chien and Lustig (2010) study a similar constraint in an economy with a con-

tinuum of ex ante identical investors that receive non-pledgeable labor incomes af-

fected by idiosyncratic shocks. Lustig and Van Nieuwerburgh (2005) study the role

of housing collateral when labor income is non-pledgeable. The main difference of

our paper from the latter two papers is that our investors are ex ante heterogeneous

and are not affected by idiosyncratic shocks to labor income. The economic effects of

heterogeneity in preferences and beliefs are different from the effects of ex-post het-

erogeneity in realized idiosyncratic labor income shocks in the above literature. For

example, Krueger and Lustig (2010) show the irrelevance of market incompleteness

induced by these income shocks for the risk premia. Kubler and Schmedders (2013)

show the existence of stationary equilibria in economies with collateral constraints.

Cao (2018) proves that investors with incorrect beliefs have strictly positive

shares of consumption in the long run (i.e., survive in the long-run) in economies

with general collateral constraints and stationary endowment processes bounded

away from zero. Similar results are also shown numerically in an example with

non-stationary endowments. Blume et al (2015) explore potential benefits from

imposing trading restrictions, such as natural borrowing constraints, in economies

with bounded endowments and investors with heterogeneous beliefs. In contrast to

these works, our results do not rely on bounded endowments. Moreover, in addition

to showing the survival of investors, we derive consumption share distributions in

closed form, and establish their bimodality, stationarity, and non-degeneracy (i.e.,

their support is a closed interval rather than a single point), and derive new equi-

librium effects. Rampini and Viswanathan (2018) study household insurance in

an economy with collateral constraints with limited enforcement and deep-pocket

risk-neutral lenders, who provide state-contingent claims to households at zero risk

premium. In contrast to their model, all investors in our economy are risk averse,

and risk-premia are non-zero and time-varying.

Geanakoplos (2003, 2009), Fostel and Geanakoplos (2008, 2014), and Geanako-

plos and Zame (2014) develop the theory of collateral constraints in two- and three-
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period multinomial general equilibrium economies. Similar to the baseline analysis

in Geanakoplos (2003, 2009), our constraint also prevents investors from default-

ing in the worst-case scenario. Simsek (2013) studies a two-period economy with

a continuum of states and shows that collateral constraints have asymmetric disci-

plining effects, depending on investor’s beliefs, and also shows how defaultable debt

endogenously emerges in equilibrium. Biais, Hombert, and Weill (2018) study a

two-period economy with multiple trees and imperfect collateral pledgeability. In

contrast to this literature, we focus on the non-pledgeability of labor income rather

than imperfect pledgeability of assets. Hence, our model generates a different set

of predictions. Our constraint is also more tractable and allows us to study mul-

tiperiod economies where investors have different preferences and beliefs and the

output follows a geometric Brownian motion with jumps.

Kehoe and Levine (1993), Kocherlakota (1996), Tsyrennikov (2012), and Osam-

bela (2015) study economies where investors are weakly better off not defaulting

and are permanently excluded from securities markets if they default. Alvarez and

Jermann (2000) show that such constraints can be implemented by imposing cer-

tain “not too tight” solvency portfolio constraints. Alvarez and Jermann (2001) find

that such constraints help explain equity premia in the U.S. economy. They solve a

simple example in closed form and develop a numerical method for the general case.

In contrast to this literature, our investors have limited liability and can re-enter

the market after a default.

Our constraint restricts borrowing and short-selling in equilibrium. Consequently,

the paper is related to the literature on economic effects of borrowing, margin, short-

sale and position limit constraints (e.g., Harrison and Kreps, 1978; Detemple and

Murthy, 1997; Basak and Cuoco, 1998; Basak and Croitoru, 2000, 2006; Gromb

and Vayanos, 2002, 2010; Pavlova and Rigobon, 2008; Brunnermeier and Peder-

sen, 2009; Gârleanu and Pedersen, 2011; Chabakauri, 2013, 2015; Rytchkov, 2014;

Brumm et al, 2015; Buss et al, 2016), portfolio insurance (e.g., Basak, 1995) and

VaR constraints (e.g., Basak and Shapiro, 2001). Our economic results are different

from the results in this literature. First, the latter constraints can increase or de-

crease stock prices depending on whether the investors’ risk aversions are greater or

less than one (e.g., Chabakauri, 2015), whereas our collateral requirements always
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increase stock prices irrespective of risk aversions and beliefs. Second, these con-

straints typically dampen stock return volatility whereas our collateral requirements

amplify them in some states of the economy. We also uncover new effects such as

spikes and crashes of volatilities and stock prices, and clusters of volatility.

We also note that our collateral requirements are conceptually different from the

margin and borrowing constraints in some of the related models discussed above

(e.g., Gârleanu and Pedersen, 2011; Chabakauri, 2013, 2015; Rytchkov, 2014). The

latter models focus on partial non-pledgeability of stocks and do not incorporate

labor incomes. The economic effects of constrains in these models are driven by

reduced risk-sharing. In contrast to these works, we explore the non-pledgeability of

labor incomes in a setting with fully pledgeable financial assets serving as collateral.

The effects of constraints in our model are driven by increased marginal utilities of

investors and collateral premia, which inflate asset prices.

Our methodology is also different from the approaches in the related literature.

The equilibrium in models with constraints is often constructed using fictitious com-

plete market economies (Cvitanić and Karatzas, 1992; Cuoco, 1997; Detemple and

Murthy, 1997; Basak and Cuoco, 1998; Basak and Croitoru, 2000, 2006; Pavlova

and Rigobon, 2008; Gârleanu and Pedersen, 2011; Chabakauri, 2013, 2015). More-

over, when investors have non-logarithmic utilities the equilibrium is characterized

in terms of non-linear differential equations that can only be solved numerically (e.g.,

Chabakauri, 2013, 2015; Rytchkov, 2014). In contrast to these works, we do not

employ fictitious markets and derive the equilibrium using the envelope theorem.

To our best knowledge this paper is the first to derive analytical prices, distributions

of consumption shares, and conditions for the constraints to be binding.

The paper is also related to macro-finance, financial intermediation, and banking

literatures that study economies with frictions (Kiyotaki and Moore, 1997; Brunner-

meier and Sannikov, 2014; Klimenko, Pfeil, Rochet, and De Nicolo, 2016; Kondor

and Vayanos, 2018) and to the literature on frictionless economies with heteroge-

neous investors (e.g., Chan and Kogan, 2002; Basak, 2005; Yan, 2008; Bhamra

and Uppal, 2014; Atmaz and Basak, 2018; Borovička, 2018; Massari, 2018, among

others).
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Figure 2.1

States of the Economy

After time t the economy moves to a normal state with probability 1−λ∆t and to a crisis

state with probability λ∆t. Conditional on being in a normal state the economy moves to

either ω1 or ω2 with equal probabilities.

2.2. Economic setup

We consider a pure-exchange infinite-horizon economy with one consumption good

produced by an exogenous Lucas (1978) tree. The economy is populated by two

representative heterogeneous investors A and B that hold shares in the tree and

receive labor income each period. To facilitate the exposition, we start with a

discrete-time economy with dates t = 0,∆t, 2∆t, . . . , and later take a continuous-

time limit.

At each point of time t = 0,∆t, 2∆t, . . . the economy is in one of the three states:

ω1, ω2, and ω3. With probability 1− λ∆t the economy is either in state ω1 or state

ω2, which we call normal states, and with probability λ∆t in state ω3, which we

call the crisis state. Parameter λ > 0 is the crisis intensity. States ω1 and ω2 have

probabilities 1/2 conditional on the economy being in a normal state. Figure 2.1

depicts the structure of uncertainty.

2.2.1 Output, financial markets, and investor heterogeneity

At date t the tree produces Dt∆t units of aggregate output, where Dt follows a

process

∆Dt = Dt[µD∆t+ σD∆wt + JD∆jt], (2.1)

where µD ≥ 0, σD > 0, and JD ≤ 0 are output growth mean, volatility, and drop

during a crisis, respectively, and ∆Dt = Dt+∆t −Dt is the change in output. Pro-
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cesses wt and jt are discrete-time analogues of a Brownian motion and Poisson

processes, respectively.1 These processes follow dynamics wt+∆t = wt + ∆wt and

jt+∆t = jt + ∆jt, where increments ∆wt and ∆jt are i.i.d. random variables given

by:

∆wt =



+
√

∆t, in state ω1,

−
√

∆t, in state ω2,

0, in state ω3,

∆jt =



0, in state ω1,

0, in state ω2,

1, in state ω3.

(2.2)

It can be easily verified that Et[∆wt|normal] = 0 and vart[∆wt|normal] = ∆t, similar

to a Brownian motion, where Et[·] and vart[·] are expectation and variance condi-

tional on time-t information. Parameters µD, σD, and JD are such that Dt > 0 for

all t.

The economy is populated by two representative price-taking investors A and B.

Each investor stands for a continuum of identical investors of unit mass. Fractions

lA and lB of the aggregate output Dt∆t are paid to investors A and B as their labor

incomes, respectively. Labor incomes are non-tradable. Fractions lA and lB can be

also interpreted as non-tradable shares in the aggregate output such as holdings

of illiquid assets. The remaining fraction 1 − lA − lB is paid as a dividend to the

shareholders.

The investors can trade three securities at each date t: 1) a riskless bond in zero

net supply, which pays one unit of consumption at date t+ ∆t; 2) one stock in net

supply of one unit, which is a claim to the stream of dividends (1−lA−lB)Dt∆t; 3) a

one-period insurance contract in zero net supply, which pays one unit of consumption

in the crisis state ω3 and zero otherwise. Absent any frictions the market is complete.

Market completeness and the absence of idiosyncratic shocks to labor income are

required for tractability, and allow us to solve the model in closed form. Bond, stock,

and insurance prices Bt, St, and Pt, respectively, are determined in equilibrium.
1Chabakauri (2014) shows that process (2.1) converges to a continuous-time Lévy process as

∆t→ 0.
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2.2.2 Investor heterogeneity and optimization problems

The investors have heterogeneous CRRA preferences over consumption, given by

ui(c) =


c1−γi

1− γi
, if γi 6= 1,

ln(c), if γi = 1,

(2.3)

where i = A,B. The investors agree on time-t asset prices and the aggregate output

but disagree on the probabilities of states. Investor A is rational and has correct

probabilities

πA(ω1) =
1− λ∆t

2 , πA(ω2) =
1− λ∆t

2 , πA(ω3) = λ∆t, (2.4)

where λ is such that probabilities (2.4) are positive. Investor B has biased proba-

bilities

πB(ω1) =
1− λB∆t

2 (1 + δ
√

∆t), πB(ω2) =
1− λB∆t

2 (1− δ
√

∆t), πB(ω3) = λB∆t,

(2.5)

where crisis intensity λB and disagreement parameter δ are such that probabilities

(2.5) are positive. It is immediate to verify that πB(ω1) + πB(ω2) + πB(ω3) = 1, and

hence, πB(ω) is a probability measure. Throughout the paper, by Eit[·] and varit[·]

we denote conditional expectations and variances under the probability measure of

investor i.

It can be easily verified that time-t conditional expected output growth rate in

normal times under the beliefs of investor B is given by:

EB

t

∆Dt

Dt

∣∣∣∣normal

 = (µD + δσD)∆t, (2.6)

Therefore, parameter δ measures the extent of the investor disagreement about the

expected output growth during normal times. For tractability, we assume that

investor B does not update probabilities over time. We also assume that investor

B is weakly less risk averse and more optimistic than investor A: γA ≥ γB, λ ≥ λB

and δ ≥ 0. The assumption that the less risk averse investor is also more optimistic

is imposed to simplify the exposition and does not affect the qualitative results in
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the paper.2 We allow for the heterogeneity in both risk aversions and beliefs for

generality. Main qualitative results do not change if we keep only one source of

heterogeneity.

At date 0 the investors have certain endowments of financial assets. The total

time-t disposable wealth of investor i is given by Wit + liDt∆t, where Wit is the

financial wealth, defined as the time-t value of all positions in financial assets ac-

quired at the previous date, and liDt∆t is the labor income. At date t, investor i

allocates wealth to cit∆t units of consumption, bit units of bond, and a portfolio of

risky assets nit = (ni,St, ni,P t), where ni,St and ni,P t are units of stock and insurance,

respectively. The bond and the risky assets are pledgeable, i.e., can be used as

collateral, but the labor income is not.

In a frictionless economy, the financial wealth Wit can become negative when

investors take risky positions backed by their future labor income. However, we

assume that labor income is not pledgeable, and the investors can default when

their financial wealth becomes negative. The investors also have limited liability and

can re-enter the market after default, which gives rise to a moral hazard problem,

similar to the related literature (e.g., Chien and Lustig, 2010; Geanakoplos, 2009).

This problem is addressed here by requiring the investors to keep their next-period

financial wealth Wi,t+∆t positive at all times, so that their pledgeable capital is

sufficient to cover all liabilities such as debt and short positions.

Investor i = A,B maximizes expected discounted utility with time discount ρ

max
cit,bit,nit

Eit

[
∞∑
τ=t

e−ρτui(ciτ )∆t
]
, (2.7)

subject to the self-financing budget constraints, given by

Wit + liDt∆t = cit∆t+ bitBt + nit(St, Pt)>, (2.8)

Wi,t+∆t = bit + nit

(
St+∆t + (1− lA − lB)Dt+∆t∆t, 1{ωt+∆t=ω3}

)>
, (2.9)

and the collateral constraint:

Wi,t+∆t ≥ 0, (2.10)
2Assuming that the less risk averse investor is more optimistic makes our main state variable

st = c∗
At/Dt (introduced in Section 2.3 below) countercyclical, which facilitates the analysis of

the results. If this assumption is relaxed, the qualitative results remain the same, but additional

analysis is required to determine whether the state variable s is counter- or pro-cyclical.
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where Wi,t+∆t is the financial wealth at date t + ∆t given by equation (2.9). Con-

straint (2.10) requires investors to cross-collateralize their positions in such a way

that losses on one position are always offset by gains on the other positions. As a

result, default is prevented even in the worst-case scenario, similar to Geanakoplos

(2003, 2009).

Remark 1 (Partially pledgeable labor income). Our model can be easily

extended to economies where fraction ki ∈ [0, 1] of investor i’s labor income can be

pledged. The requirement to keep next-period pledgeable wealth is then given by:

Wi,t+∆t + kili
1− lA − lB

(
St+∆t + (1− lA − lB)Dt+∆t∆t

)
︸ ︷︷ ︸

measure of pledgeable labor income

≥ 0. (2.11)

The second term in constraint (2.11) measures the value of the pledgeable income.

Let kiliDt∆t be the pledgeable income of investor i. This income is proportional to

stock dividends (1 − lA − lB)Dt∆t, and hence, can be replicated by a portfolio of

n̂i = kili/(1−lA−lB) units of stock with cum-dividend value n̂i(St+(1−lA−lB)Dt∆t).

The investors can circumvent the non-tradability of pledgeable income by shorting

stocks against this income. Hence, the claims to pledgeable income are, effectively,

tradable and have the same value as the replicating portfolio. The requirement

to have positive pledgeable wealth then becomes Wi,t+∆t + n̂i

(
St+∆t + (1 − lA −

lB)Dt+∆t∆t
)
≥ 0, which is equivalent to constraint (2.11). Lemma A.1 in the

Appendix shows that models with ki 6= 0 reduce to models with ki = 0 by a change

of variable. Hence, the economic implications of our baseline model with constraint

(2.10) and the model with a more general constraint (2.11) are the same.

2.2.3 Equilibrium

Definition. An equilibrium is a set of asset prices {Bt, St, Pt} and of consumption

and portfolio policies {c∗it, b∗it, n∗it}i∈{A,B} that solve optimization problem (2.7) for

each investor, given processes {Bt, St, Pt}, and consumption and securities markets

clear:

c∗At + c∗Bt = Dt, b∗At + b∗Bt = 0, n∗A,St + n∗B,St = 1, n∗A,P t + n∗B,P t = 0. (2.12)

In addition to asset prices, we derive price-dividend and wealth-output ratios

Ψ = S/
(

(1 − lA − lB)D
)

and Φi = W ∗
i /D, respectively. We also derive annualized
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∆t-period riskless interest rates rt, stock mean-returns µt and volatilities σt in normal

times, and the percentage change of the stock price in the crisis state, denoted by

Jt.

We derive the equilibrium in terms of state variable vt given by the log-ratio of

marginal utilities of investors evaluated at their shares of the aggregate consumption

c∗it/Dt:

vt = ln

 (c∗At/Dt)−γA

(c∗Bt/Dt)−γB

 . (2.13)

Substituting consumption shares of investors A and B, denoted by st = c∗At/Dt and

1− st = c∗Bt/Dt, into equation (2.13), we express vt as a function of st:

vt = γB ln(1− st)− γA ln(st). (2.14)

Variable vt is a decreasing function st, and hence, st is an alternative state variable.

We assume that the exogenous model parameters are such that

Ei

e−ρ∆t

Dt+∆t

Dt


1−γi < 1, i = A,B. (2.15)

Condition (2.15) is necessary and sufficient for the existence of equilibrium in homogeneous-

agent economies populated only by investor A or investor B.

2.3. Characterization of equilibrium

First, we derive the investors’ state price densities (SPD) ξAt and ξBt defined as

processes such that asset prices can be expressed as follows (e.g., Duffie (2001,

p.23)):

Bt = Eit
[ξi,t+∆t

ξit

]
, (2.16)

St = Eit
[ξi,t+∆t

ξit

(
St+∆t + (1− lA − lB)Dt+∆t∆t

)]
, (2.17)

Pt = Eit
[ξi,t+∆t

ξit
1{ωt+∆t=ω3}

]
, (2.18)
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where i = A,B. The state price density ξit exists for each investor i due to the

absence of arbitrage opportunities in our economy.3 The investors can eliminate ar-

bitrage because strategies with zero investment and non-negative payoffs are feasible

given constraints (2.8)–(2.10). The SPDs ξAt and ξBt differ due to heterogeneity in

beliefs and are linked by the change of measure equation4

ξB,t+∆t

ξBt
=
ξA,t+∆t

ξAt

πA(ωt+∆t)
πB(ωt+∆t)

. (2.19)

We find the SPDs from the first order conditions in terms of investors’ marginal

utilities of consumption and Lagrange multipliers for collateral requirements (2.10).

First, we rewrite the budget equations (2.8)–(2.9) in a static form that expresses

the current wealth in terms of current consumption and the expected discounted

future wealth (e.g., Cox and Huang, 1989). Then, we solve investor optimizations

by dynamic programming and the method of Lagrange multipliers. Lemma 1 below

reports the results.

Lemma 1 (Dynamic programming and the first order condition).

1) Let Vi(Wit, vt; li) denote the value function of investor i, where vt is the state

variable. Then, the value function solves the following equation of dynamic pro-

gramminng:

Vi(Wit, vt; li) = max
cit

{
ui(cit)∆t+ e−ρ∆tEit[Vi(Wi,t+∆t, vt+∆t; li)]

}
, (2.20)

subject to the static budget and collateral constraints:

Wit + liDt∆t = cit∆t+ Eit

ξi,t+∆t

ξit
Wi,t+∆t

 , (2.21)

Wi,t+∆t ≥ 0. (2.22)

2) Value function Vi(Wit, vt; li) is a concave function of wealth Wit.

3) The SPDs ξit and optimal consumptions c∗it satisfy the first order conditions

ξi,t+∆t

ξit
= e−ρ∆t

(c∗i,t+∆t)−γi + `i,t+∆t

(c∗it)−γi
, (2.23)

3The proof of existence of the SPD in arbitrage-free economies can be found in Duffie (2001,

p.4).
4Three equations (2.16)–(2.18) can be rewritten as equations for three unknowns

πi(ωk)ξi,t+∆t(ωk)/ξit, where k = 1, 2, 3 and i is set to either A or B. The solution of these equa-

tions is unique when the matrix of asset payoffs is invertible, and hence, πB(ωt+∆t)ξB,t+∆t/ξBt =

πA(ωt+∆t)ξA,t+∆t/ξAt for all states.
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where `i,t+∆t ≥ 0 is the Lagrange multiplier for collateral requirement (2.22) satisfy-

ing the complementary slackness condition `i,t+∆tW
∗
i,t+∆t = 0.

We use Lemma 1 to derive the dynamics of state variable vt. First, suppose

constraints do not bind. In this case, Lagrange multipliers `i,t+∆t vanish and the

first order conditions (2.23) are the same as in the unconstrained economy. The

dynamics of the state variable vt in the unconstrained region of the state-space

is then the same as in the unconstrained economy, and is found in closed form

below. Next, let v and v be the values of the state variable vt when constraints

(2.10) of investors A and B bind, respectively. We show that state variable vt stays

within boundaries v ≤ vt ≤ v. Intuitively, binding collateral constraints restrict

the investors’ losses of wealth and consumption, which traps the state variable in

the interval [v, v]. The boundaries v and v are found from the condition that the

constraints bind: Wi,t+∆t = 0. Dividing these constraints by Dt+∆t, we obtain

equations

ΦA(v) = 0, ΦB(v) = 0, (2.24)

where Φi(vt) are wealth-output ratios given by equations (A18) and (A19) in the

Appendix. Proposition 1 below reports the dynamics of vt.

Proposition 1 (Closed-form dynamics of state variable vt).

Given the boundaries v and v, the equilibrium dynamics of state variable vt is given

by:

vt+∆t = max
{
v; min{ v; vt + µv∆t+ σv∆wt + Jv∆jt}

}
, (2.25)

where drift µv, volatility σv, and jump Jv are given in closed form by:

µv =
1

2∆t

(γA − γB) ln[(1 + µD∆t)2 − σ2
D∆t] + ln

1− λB∆t
1− λ∆t


2

+ ln(1− δ2∆t)

 ,(2.26)

σv =
1

2
√

∆t

(γA − γB) ln

1 + µD∆t+ σD
√

∆t
1 + µD∆t− σD

√
∆t

+ ln

1 + δ
√

∆t
1− δ

√
∆t


 , (2.27)

Jv = (γA − γB) ln(1 + µD∆t+ JD) + ln

λB
λ

− µv∆t. (2.28)

Boundaries v and v are reflecting when ∆t is sufficiently small; that is, vt does not

stay at the boundaries forever: Prob(v > vt+∆t|vt = v) > 0 and Prob(vt+∆t > v|vt =

v) > 0.
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Equation (2.25) reveals the exact structure of the state variable and sheds light

on the equilibrium effects of the collateral requirement. The equation demonstrates

that the constraint does not alter the dynamics of the state variable when the

constraint does not bind, and all its effects are due to imposing bounds on process vt.

This property of state variable vt plays important role in establishing the clustering

of volatilities and other results in Section 4 below, and it is difficult to see using

numerical methods instead of a closed-form dynamics.

Proposition B.1 in technical appendix B proves the existence of time-independent

bounds v and v satisfying equations (2.24). The intuition for the existence of these

bounds is as follows. Suppose, for example, that bound v does not exist. Then,

equation (2.14) for the consumption share s(vt) of investor A implies that s(vt) ≈ 0

when vt is sufficiently large, and hence, investor A’s consumption net of labor income

(s(vt) − lA)Dt can be negative for a long period. As a result, investor A’s wealth

is negative for a sufficiently large vt because this wealth equals the present value of

net consumption. However, negative wealth contradicts the constraint WA,t+∆t ≥ 0,

and hence v exists.

The closed-form dynamics (2.25) helps us build a theory of collateral constraints.

In particular, we use this dynamics to prove the existence of equilibrium and sta-

tionarity of equilibrium processes, derive asset prices, and to study the effects of

collateralization on asset prices. Proposition 2 below reports the SPD and the stock

price.

Proposition 2 (State price density and the effects on asset prices).

1) The state price density under the beliefs of investor A is given by:

ξA,t+∆t

ξAt
= e−ρ∆t

s(vt+∆t)
s(vt)

Dt+∆t

Dt


−γA

exp
(

max{0; vt +µv∆t+σv∆wt +Jv∆jt− v}
)
,

(2.29)

where investor A’s time-t consumption share s(vt) solves equation (2.14).

2) The price-dividend ratio Ψ(vt) is uniformly bounded, and the stock price St is

given by

St = (1− lA − lB)DtEA

t

[ +∞∑
τ=t+∆t

ξAτ

ξAt

Dτ

Dt

]
, (2.30)

the prices of the bond and the insurance contract are given by Bt = EA
t [ξA,t+∆t]/ξAt

and Pt = EA
t [ξA,t+∆t1{ωt+∆t=ω3}]/ξAt, respectively.
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3) The prices of bond, stock, and insurance contract are higher in the economy with

collateral constraints than in the frictionless economy, conditional on two economies

having the same current output Dt and the state variable vt.

Equation (2.29) captures the effect of collateralization on the SPD in our econ-

omy. It shows that the change in the SPD, ξt+∆t/ξt, can be decomposed into two

terms. The first term, e−ρ∆t(s(vt+∆t)Dt+∆t)−γA/(s(vt)Dt)−γA , given by the ratio of

marginal utilities of investor A at times t + ∆t and t, is the change in SPD in the

frictionless economy. The second term captures the effect of the friction on the SPD,

and is only activated when the constraint of investor A is binding. An equivalent

representation of SPD can be obtained in terms of the marginal utilities of investor

B.

Proposition 2 demonstrates that imposing collateral requirements inflates asset

prices. This is because the SPD in the constrained economy exceeds its counterpart

in the frictionless economy due to the positive Lagrange multiplier `i,t+∆t in the first

order condition (2.23). This result is in contrast to the effects of borrowing, margin,

and restricted participation constraints in the related literature (e.g., Chabakauri,

2013, 2015; Rytchkov, 2014), which increase or decrease the stock prices depending

on the investors’ elasticities of intertemporal substitution. Moreover, this literature

evaluates the effects of frictions numerically, whereas we provide rigorous proofs

aided by the closed-form dynamics of the state variable (2.25) and the SPD (2.29).

We discuss the intuition and further economic differences between our constraint

and the constraints in the literature in Section 4.1.

Proposition B.2 in the technical Appendix B provides the verification theorem for

the optimality of investors’ optimal strategies, and is not reported here for brevity.

In particular, this proposition shows that in the economy where the state price

density is given by equation (2.29) the dynamic programming problem (2.20)–(2.22)

has a unique solution Vit and this solution is the indirect utility function of investor

i.

2.3.1 Closed-form solution in a continuous-time limit

Next, we take continuous-time limit ∆t → 0 and derive the equilibrium in closed

form. Taking the limit allows rewriting equations (A30) and (A31) for the price-
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dividend and wealth-consumption ratios, Ψt and Φit, as differential-difference equa-

tions. For tractability, we derive ratios Ψt and Φit in terms of a transformed ratio

Ψ̂(v; θ), which satisfies a simpler equation reported in Lemma 2 below.

Lemma 2 (Differential-difference equation). In the limit ∆t → 0, the price-

dividend ratio Ψ and wealth-output ratios Φi are given by:

Ψ(v) = Ψ̂(v;−γA)s(v)γA , (2.31)

Φi(v) =
(
(1{i=A} − 1{i=B})Ψ̂(v; 1− γA) + (1{i=B} − li)Ψ̂(v;−γA)

)
s(v)γA ,(2.32)

where s(v) solves equation (2.14) and Ψ̂(v; θ) satisfies a differential-difference equa-

tion

σ̂2
v

2 Ψ̂′′(v; θ) +
(
µ̂v + (1− γA)σDσ̂v

)
Ψ̂′(v; θ)

−

λ+ ρ− (1− γA)µD +
(1− γA)γA

2 σ2
D

 Ψ̂(v; θ)

+ λ(1 + JD)1−γAΨ̂
(

max{v; v + Ĵv}; θ
)

+ s(v)θ = 0,

(2.33)

subject to the reflecting boundary conditions

Ψ̂′(v; θ) = 0, Ψ̂′(v; θ)− Ψ̂(v; θ) = 0, (2.34)

where µ̂v, σ̂v ≥ 0, and Ĵv ≤ 0 are constants given by:

µ̂v = (γA − γB)

µD − σ2
D

2

+ λ− λB −
δ2

2 , (2.35)

σ̂v = (γA − γB)σD + δ, (2.36)

Ĵv = (γA − γB) ln(1 + JD) + ln

λB
λ

 . (2.37)

The boundaries v and v solve the following equations:

Ψ̂(v; 1− γA)
Ψ̂(v;−γA)

= lA,
Ψ̂(v; 1− γA)
Ψ̂(v;−γA)

= 1− lB. (2.38)

We observe that equation (2.33) is linear, in contrast to economies with con-

straints directly imposed on trading strategies of investors (e.g., Gârleanu and Peder-

sen, 2012; Chabakauri, 2013, 2015; Rytchkov, 2014). This equation is a differential-

difference equation with a “delayed” argument in the fourth term on the left-hand
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side of the equation because Ĵv ≤ 0. This term is further complicated by the fact that

the delayed argument is restricted to stay above the lower boundary v, which gives

rise to the dependence of the fourth term on a peculiar argument max{v; v + Ĵv}.

This term captures investors’ decisions in anticipation of hitting their collateral

constraint.

Before deriving the equilibrium in the general case, in Corollary 1 below, we

provide analytical price-dividend ratios when there is no crisis and investors have

log preferences.

Corollary 1 (Analytical asset prices in a special case). Suppose, investors

A and B have logarithmic preferences and there is no production crisis, that is,

λ = λB = 0. Then, price-dividend ratio Ψ(v) is given by:

Ψ(v) =
1
ρ

+
C1e

ϕ+v + C2e
ϕ−v

1 + ev
, (2.39)

where ϕ± = 0.5(1 ±
√

1 + 8ρ/δ2), and constants C1 and C2 are given by equations

(A44) and (A45) in the Appendix, respectively.

In Section 4 below, we argue that the analytical price-dividend ratio (2.39) cap-

tures some important properties of price-dividend ratio that hold in the general

case with arbitrary risk aversions and crises. Hence, this special case can be used

as a tractable benchmark in asset pricing research. Nevertheless, we undertake a

comprehensive investigation of equilibrium in the general case.

Proposition B.3 in Appendix B presents the closed-form price-dividend ratio for

general CRRA risk aversions and beliefs. These solutions are in terms of exogenous

model parameters and do not require solving equation (2.33). Although the closed-

form solution in Proposition B.3 is complex, it provides a constructive proof for the

existence of price-dividend ratios and helps avoid numerical methods based on value

function iterations (e.g., Krusell and Smith, 1998), widely used in the literature with

market frictions, for which the convergence results, in general, are not available. We

double-checked the solution reported in Proposition B.3 by solving problem (2.33)–

(2.34) using the method of finite differences.

We call the interval v ∈ [v, v−Ĵv] in the state-space a period of anxious economy,

similar to Fostel and Geanakoplos (2008).5 When the economy falls into this state,
5However, in contrast to Fostel and Geanakoplos (2008), the disagreement about the consump-
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even a small possibility of a crisis renders the collateral requirement binding and

leads to deleveraging in the economy. To explore the economic effects of the anxious

economy, we provide closed-form expressions for the interest rates rt and risk premia

in normal times µt − rt, which can be easily obtained using previously derived

equations for asset prices and the state price density. Proposition 3 below reports

the results.

Proposition 3 (Interest rates and risk premia in the limit). For a sufficiently

small interval ∆t, the interest rate rt and the risk premium µt − rt in normal times

are given by:

rt =



r̃t − λ(1 + JD)−γA

s
(

max{v; vt + Ĵv}
)

st


−γA

+O(∆t), for v < vt < v,

(1− st)Γt
(
1{v=v} − 1{v=v}

)
− γB

2γB
√

∆t
σ̂v +O(1), for v = v or v = v,

(2.40)

µt − rt =

γAσD − (1− st)Γtσ̂v
γB

+
(1− st)Γtσ̂v(1{v=v} + 1{v=v})− γBσ̂v1{v=v}

2γB

σt

− λ(1 + JD)−γAJt

s
(

max{v; vt + Ĵv}
)

st


−γA

+O(
√

∆t), (2.41)

where r̃t is the interest rate in the unconstrained economy without crisis risk, given

by:

r̃t = λ + ρ+ γAµD −
γA(1 + γA)

2 σ2
D +

γAσDσ̂v − µ̂v
γB

 (1− st)Γt

− σ̂2
v

 1
2γ2

B

(1− st)2Γ2
t +

1
2γ2

Aγ
2
B

st(1− st)Γ3
t

 ,
(2.42)

drift µ̂v, volatility σ̂v, and Ĵv of the state variable v are given by equations (2.35)–

(2.37), volatility σt and jump size Jt are given by equations (B27)–(B28), respectively,

and Γt ≡ γAγB/
(
γA(1− st) + γBst

)
is the risk aversion of a representative investor.

tion growth dynamics in our economy does not increase during these periods.
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The effects of collateral requirements on interest rates and risk premia arise due to

the investors’ concern that a potential crisis may render the constraint binding next

period when the economy is close to boundary v. The last term in the first equation

in (2.40) for the interest rate quantifies the impact of collateral requirements on

precautionary savings due to a downward jump in the aggregate consumption, which

we further discuss in Section 4.

Equations (2.40) and (2.41) also feature terms with indicator functions 1{v=v}

and 1{v=v}, which are non-zero only at the boundaries v and v. For the interest

rate rt these terms have the order of magnitude proportional to 1/
√

∆t, and hence,

the interest rate has singularities at the boundaries v and v when ∆t→ 0. Similar

singularities arise in a continuous-time model of Detemple and Serrat (2003). Our

discrete-time analysis sheds new light on these singularities by uncovering their order

of magnitude 1/
√

∆t. Consequently, the per-period rate rt∆t is finite and has an

order of magnitude O(
√

∆t).

The intuition for the singularity is that near the boundaries v and v even a small

shock ∆wt may lead to a default. Consequently, when the collateral requirement of

an investor binds at time t, the investor allocates a larger fraction of labor income

to bond than in the interior region v < vt < v and requires a higher risk premium.

Therefore, the interest rate decreases and Sharpe ratio increases at the boundaries.

The interest rates and Sharpe ratios in a similar model have been studied in

Detemple and Serrat (2003). However, our model is more general in that it incorpo-

rates jumps and heterogeneity of preferences. Moreover, their paper does not study

price-dividend ratios and stock return volatilities, which are significantly more dif-

ficult to obtain, as can be seen from the price-dividend ratios reported in Lemma 2

above and Proposition 3.B in the technical Appendix B. We also note that the inter-

est rate (2.40) and the risk-premium (2.41) are significantly different from those in

the related literature on borrowing and margin constraints (e.g., Chabakauri, 2013,

2015; Rytchkov, 2014). The main difference is that these quantities in the related

literature feature additional Lagrange multipliers for the constraints that bind in an

interval of a state space and do not have singularities.
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2.3.2 Stationary distribution of consumption share

Absent any frictions, state variable v follows an arithmetic Brownian motion with

a jump. This process is non-stationary and induces non-stationarity of the uncon-

strained equilibrium where one of the investor’s share of consumption gradually

converges to zero. Hence, with the exception of some knife-edge parameter com-

binations, only one of the investors has a significant impact on asset prices in the

frictionless economy in the long run (e.g., Blume and Easley, 2001; Yan, 2008;

Chabakauri, 2015).

It is intuitive that imposing collateral requirements (2.10) helps both investors

survive and have an impact on equilibrium in the long-run because these constraints

protect investors against losing their shares of aggregate consumption beyond cer-

tain limits. This intuition for the survival of of investors in economies with market

imperfections has also been discussed in the previous literature (e.g., Blume and

Easley, 2001; Cao, 2018, among others). However, this intuition does not reveal

the shape of the distribution of consumption share s, whether this distribution is

well-defined or degenerate (e.g., fully concentrated at boundaries s or s), and which

parameters determine the relative dominance of investors in the economy. Our main

contribution in this section is that armed with the closed-form dynamics of the state

variable vt in (2.25), we derive the probability density function (PDF) of consump-

tion share s in closed form, show that this PDF is stationary and non-degenerate,

and find parameters that determine its shape. The latter result is important because

it implies non-trivial time-variation of asset prices in the long run. For simplicity,

we assume that there is no crisis risk so that λ = λB = 0. Proposition 4 reports the

results.

Proposition 4 (Stationary distribution of consumption share). Suppose,

λ = λB = 0. Then, the PDF f(s, τ ; st; τ) of consumption share s at time τ condi-

tional on observing share st at time t is given in closed form by expression (A65) in

the Appendix. Furthermore, the stationary PDF of consumption share s is given by:

f(s) =
2µ̂v
σ̂2
v

γA
s

+
γB

1− s


(

(1− s)γB/sγA
)2µ̂v/σ̂2

v

(
(1− s)γB/sγA

)2µ̂v/σ̂2
v

−
(

(1− s)γB/sγA
)2µ̂v/σ̂2

v

1{s≤s≤s},

(2.43)
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where µ̂v = (γA − γB)(µD − σ2
D/2) − δ2/2, σ̂v = (γA − γB)σD + δ, 1{s≤s≤s} is an

indicator function and s and s are the bounds on the consumption share s, which

solve equation (2.24) for v and v, respectively.

Proposition 4 confirms that both investors survive in the long run, and that

consumption share s has well-defined stationary distribution. The beliefs enter PDF

(2.43) via the ratio of the drift and variance of process vt, given by µ̂v/σ̂2
v . This ratio

determines the relative dominance of investors in the economy. In particular, for

bounds s and s that are symmetric around 0.5 the PDF is concentrated around s if

µ̂v > 0 and around s if µ̂v < 0.

Figure 2.2 plots the stationary PDF (2.43) and transition densities f(s, t; s0, 0),

for parameters described in the legend and explained in Section 4 below. The

stationary PDF has a larger mass around s = 0.1 because the labor share lB = 0.14

of investor B exceeds the labor share lA = 0.123 of investor A in this example in

order to get boundary values s = 0.1 and s = 0.9 symmetric around 0.5. From

Figure 2.2 we observe that both rational and irrational investors can occasionally

have large consumption shares.

Another notable feature of PDF (2.43) is that it is bimodal, with a large mass of

the distribution concentrated around boundaries s and s. The economic implication

of this bimodality is that the periods of binding constraints are likely to be persistent.

The closed-form dynamics (2.25) for the state variable v helps explain the bimodality

of the PDF. From this dynamics, we observe that after hitting a boundary the

process vt remains in its vicinity for some time. Hence, because variable v follows

an arithmetic Brownian motion in the interval (v, v), the probability of hitting the

same boundary again is high.

Proposition 4 implies that the PDF of consumption share s is always stationary

when investors have positive labor incomes lB > 0 and lA > 0 because in this case

1 > s > s > 0, and hence, the PDF (2.43) is well-defined. The PDF of s is also

stationary when lA = 0, lB > 0, and µ̂v < 0, or lA > 0, lB = 0, and µ̂v > 0. In the

latter cases, s = 0 or s = 1, respectively. Then, we observe that the PDF (2.43)

is well-defined when s = 0 and µ̂v < 0, and when s = 1 and µ̂v > 0, and hence is

stationary. The PDF of s is non-stationary when lA = 0 and lB = 0, and is derived

in closed form in Chabakauri (2015). In the latter case only investor A survives if
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Figure 2.2

Convergence to stationary distribution of consumption share st = c∗A,t/Dt

The Figure shows transition densities f(s, t; s0, 0) for the starting point s0 = 0.2 and the

stationary distribution f(s) (i.e., density for t =∞). We set γA = 2, γB = 1.5, µD = 0.018,

σD = 0.032, λ = λB = 0, ρ = 0.02, δ = 0.1125, s = 0.1, s = 0.9, lA = 0.123, and lB = 0.14.

µ̂v < 0, and only investor B survives when µ̂v > 0.

2.4. Analysis of Equilibrium

In this section, we demonstrate the economic implications of our model. In Section

4.1, we show that capital requirements amplify the effect of rare crises on generating

lower interest rates and higher Sharpe ratios, lead to spikes and crashes of stock

prices and stock return volatilities, amplify volatility in good times and decrease it

in bad times, and generate volatility clusters. Section 4.2 measures the economic

significance of collateralization by quantifying the collateral premium of the stock.

We study the equilibrium for calibrated parameters. We set the parameters of

the aggregate consumption process to µD = 0.018, σD = 0.032, JD = −0.2, and the

crisis intensities of investors A and B to λ = 0.017 and λB = 0.01, respectively.6

The risk aversions are γA = 2 and γB = 1.5, and the time discount is ρ = 0.02.

The disagreement parameter is δ = 0.1125, which corresponds to the mean growth

rate (2.6) under investor B’s beliefs equal to 1.2µD. The shares of labor income
6Drift µD and volatility σD are within the ranges considered in the literature (e.g., Basak and

Cuoco, 1998; Chan and Kogan, 2002; Rytchkov, 2014), intensity λ = 0.017 is from Barro (2009).

79



lA = 0.123 and lB = 0.14 are chosen to generate symmetric bounds on investor A’s

consumption share: s = 0.1 and s = 0.9.7

We plot the equilibrium distributions and processes as functions of consumption

share st = c∗At/Dt because s lies in the interval [0, 1] and is more intuitive than

variable v. We observe that consumption share s is countercyclical in the sense

that corrt(dst, dDt) < 0. Intuitively, the aggregate wealth and consumption shift

to (away from) investor A following negative (positive) shocks to output because

this investor is more risk averse and pessimistic than investor B. We call a process

procyclical (countercyclical) if that process is a decreasing (increasing) function of

s. We interpret periods of low (high) st as good (bad) times in the economy, because

during these periods the output Dt is high (low).

2.4.1 Equilibrium processes

Figure 2.3 depicts investor B’s leverage/market ratio Lt/St and stock holdings nBt
in the constrained (solid line) and unconstrained (dashed line) economies. Panel (a)

demonstrates the cyclicality of leverage. The leverage is lowest when either investor

A or investor B bind on their constraints. Intuitively, when s = s, investor B’s

financial wealth is zero, and hence, B lacks collateral and cannot borrow. When s =

s, investor A’s financial wealth is zero and the labor income lADt∆t is infinitesimally

small in the continuous-time limit. The liquidity dries up because investor A cannot

supply credit. The leverage cycles are present only in the constrained economy.

They do not occur in the unconstrained economy where the state variable s is non-

stationary and gradually converges to 0 or 1.

Panel (b) presents the number of stocks held by investor B. Consider first the

unconstrained economy where the labor income is pledgeable. From panel (b) we

observe that in this economy investor B shorts stocks despite being more optimistic

than investor A when consumption share s is close to 1. The intuition is that in

bad times, following a sequence of negative shocks to output, investor B shorts
7To avoid finding bounds s and s numerically, we set them exogenously to s = 0.1 and s = 0.9

and then recover the shares of labor incomes lA = 0.123 and lB = 0.14 that imply these bounds

in equilibrium. First, we find v and v from equation (2.14) for v, and then find lA and lB from

equations (2.38).
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Figure 2.3

Leverage and stock holdings of optimistic and less risk averse investor B

Panels (a) and (b) depict optimistic and less risk averse investor B’s leverage/market price

ratio Lt/St and the number of shares nSt, respectively, as functions of consumption share

st = c∗At/Dt. The solid and dashed lines correspond to constrained and unconstrained

economies, respectively.

stocks to finance consumption and backs short positions by the pledgeable labor

income. The stream of labor income lBDt∆t is equivalent to dividends from holding

n̂B = lB/(1 − lA − lB) units of non-tradable shares in the Lucas tree. Short-selling

allows the investor to circumvent the non-tradability of labor income and freely

adjust the effective share n̂B+nB,St in the Lucas tree. Overcoming the non-tradability

of labor incomes makes this economy similar to the non-stationary unconstrained

economy where investors can freely trade shares in the Lucas tree. The financial

wealth can then become negative. The collateral requirement imposes non-negative

wealth constraint, which precludes investor B from shorting. The trading strategy

of investor A equals 1− n∗Bt in equilibrium and can be analyzed similarly. Investor

A also has an additional motive to short stocks due to being more pessimistic than

investor B.

Figure 2.4 depicts the interest rate rt, Sharpe ratio (µt − rt)/σt, price-dividend

ratio Ψ, and excess stock return volatility (σt−σD)/σD in the constrained (solid line)

and unconstrained (dashed line) economies. Panel (a) shows the interest rates rt.8

The interest rate declines sharply when the economy enters into an anxious state

close to the boundary s where even a small possibility of a crisis next period makes
8We exclude the singularities in the dynamics of rt and focus on the dynamics in the uncon-

strained region because the economy spends an infinitesimal amount of time at the boundaries.

81



s

0 0.2 0.4 0.6 0.8 1

r
,
%

4.2

4.25

4.3

4.35

4.4

4.45

4.5

4.55

4.6

4.65

4.7
(a) Interest Rate

s
0 0.2 0.4 0.6 0.8 1

(µ
−

r)
/σ

,
%

0

5

10

15

20

25

30

35

40
(b) Sharpe Ratios

s

0 0.2 0.4 0.6 0.8 1

Ψ

30

31

32

33

34

35

36
(c) P/D Ratio

s
0 0.2 0.4 0.6 0.8 1

(σ
−

σ
D
)/
σ
D
,%

-60

-50

-40

-30

-20

-10

0

10

20

30

40
(d) Excess Volatility

Figure 2.4

Equilibrium processes

Panels (a)–(d) show interest rate rt, Sharpe ratio (µt−rt)/σt, price-dividend ratio Ψt, and

excess volatility (σt − σD)/σD as functions of st = c∗At/Dt for the constrained (solid lines)

and unconstrained (dashed lines) economies.

the constraint of investorB binding. The intuition is as follows. In the unconstrained

economy, a crisis around state s generates wealth transfer to the pessimistic and

more risk averse investor A and increases her consumption share s above s. In the

constrained economy, consumption share s is capped by s. Consequently, following

a crisis, investor A’s marginal utility (c∗A)−γA is higher in the constrained than in

the unconstrained economy. As a result, investor A is more willing to smooth

consumption in the constrained economy, and hence, the interest rate declines due

to the precautionary savings motive. In particular, the investor buys more bonds,

which drives interest rates down. Panel (b) of Figure 2.4 shows that the Sharpe

ratio increases to compensate investor A for buying risky assets from investor B.

Our results on interest rates and Sharpe ratios indicate that the rare crises and

collateral requirements reinforce the effects of each other. In particular, the decreases

in interest rates and increases in Sharpe ratios during anxious times arise only when
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both the crises and the constraints (2.10) are simultaneously present. Removing the

constraint but keeping the crisis risk increases the interest rate and decreases the

Sharpe ratio. Equation (2.40) for the interest rate and equation (2.41) for the risk

premium show that removing the crisis risk (i.e., setting λ = λB=0) but keeping the

constraint leads to rt and µt − rt which are the same as in the frictionless economy

when v < vt < v, consistent with findings in Detemple and Serrat (2003). Absent

any crises, the constraints affect rt and µt − rt only at the boundaries of the state-

space, as shown in Section 3.1.

From panel (c), we observe that the collateral requirements give rise to higher

price-dividend ratio Ψ than in the unconstrained economy, Ψconstr
t − Ψunc

t > 0, as

proven in Proposition 2. The increases in ratio Ψ are larger around the boundaries

s and s, which makes ratio Ψ a U-shaped function of s sensitive to small shocks

close to boundaries. The U-shape is a robust phenomenon that does not require

rare crises or investors that differ both in risk aversions and beliefs. When both

investors have identical risk aversions γA = γB = 1 but different beliefs and there

is no crisis risk (i.e., λA = λB = 0), the U-shape is an analytical result that follows

from the closed-form expression (2.39) for ratio Ψ. This ratio remains U-shaped

when investors have different risk aversions but identical beliefs.

The intuition for the U-shape is as follows. Suppose, consumption share s is close

to the boundary s, where investor B’s constraint is likely to bind but investor A is

unconstrained. Because investor A’s constraint is loose the state price density ξAt is

proportional to investor A’s marginal utility (c∗At)−γA . In the constrained economy

the consumption share of investor A is capped by s < 1 whereas in the unconstrained

economy it can increase above s. Therefore, the marginal utility of investor A and,

hence, the state price density are expected to be higher in the constrained than in the

unconstrained economy. Consequently, stocks are more valuable in the constrained

economy around the boundary s. The intuition around s can be analyzed in a

similar way. An additional economic force contributing to higher stock price is that

the stock can be used as collateral that helps relax the constraint, which gives rise

to a premium. This force is explored in Section 4.2.

The results on panel (d) demonstrate that the constraint makes volatility more

procyclical, reduces volatility in bad times (around s) and increases it in good times
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(around s). This is because U-shaped price-dividend ratio in the constrained econ-

omy is more procyclical in good times (i.e., around s) and more countercyclical in

bad times (i.e., around s) than in the unconstrained economy. Stock price St = ΨtDt

is more volatile in good times (around s) because both Ψ and Dt change in the same

direction, and is less volatile in bad times (around s) because Ψ and Dt change in

opposite directions and partially offset the effects of each other. Lower volatility

in bad times is in line with the previous literature on the effects of portfolio con-

straints on asset prices (e.g., Chabakauri, 2013, 2015; Brunnermeier and Sannikov,

2014, among others). The empirical literature finds that the volatility tends to be

higher in bad times (e.g., Schwert, 1989). However, high volatility can be explained

by high uncertainty about the economic growth and learning effects in bad times

(e.g., Veronesi, 1999), which we do not study in this paper to focus on the effects of

collateral constraints which are not confounded by other effects.

Boundary conditions (2.34) allow us to explore volatility σt near the boundaries

s and s using closed form expressions in Corollary 2 below.

Corollary 2 (Stock return volatility at the boundaries). Stock return volatil-

ity in normal times σt satisfies the following boundary conditions:

σ(s) = σD +
γBsσ̂v

γA(1− s) + γBs
> σD, σ(s) = σD −

γA(1− s)σ̂v
γA(1− s) + γBs

< σD. (2.44)

By continuity, inequalities (2.44) also hold in a vicinity of the boundaries. Panel

(d) shows that volatility σt is very steep at the boundaries: it spikes close to s and

crashes close to s, consistent with Corollary 2. It also evolves in three regimes of

low, medium, and high volatility, which resembles volatility clustering documented

in the empirical literature (e.g., Bollerslev, 1987). The distribution of consumption

share s on Figure 2.2 implies that the economy persists in these clusters for some

time.

Figure 2.5 plots the simulated dynamics of P/D ratio and stock return volatility

over a period of 50 years. Consistent with our discussion above, the dynamics of

P/D ratio on panel (a) exhibits intervals of booms and busts around the times when

the collateral requirements become binding. These intervals resemble periods of

inflating and deflating bubbles in the economy. The volatility σ on panel (b) evolves
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Simulated P/D ratio Ψ and stock return volatility σ over time

Panels (a) and (b) show the spikes and crashes of simulated P/D ratio and volatility σ,

and clustering of volatility σ over the period of 50 years.

in clusters of high and low volatility, as explained above.

The economic effects of collateral requirements are different from the effects of

margin and borrowing constraints in the related literature discussed in the intro-

duction. In particular, those constraints increase or decrease price-dividend ratios

and make them pro- or counter-cyclical depending on investors’ risk aversions (e.g.,

Chabakauri, 2015). They also shrink volatility towards the output volatility σD by

reducing the risk-sharing. The main mechanism in our paper is different, and is

driven by the increased marginal utilities due to endogenously arising bounds on

the consumption share s. As a result, in our model price-dividend ratios increase

irrespective of the beliefs and risk aversions of investors, and the volatility deviates

further away from the output volatility (Figure 2.4). Other new effects relative to

this literature include the cyclicality of leverage, mutual amplification of effects of
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rare crises and collateral constraints, and spikes in price-dividend ratios and volatil-

ities.

2.4.2 Collateral liquidity premium

In this section, we measure the liquidity premium of stocks over labor income arising

because stocks can be used as collateral. We consider a marginal representative

investor i that does not affect asset prices and characterize this investor’s shadow

indifference price Ŝit of labor income. We define Ŝit as the price such that exchanging

marginal ∆li units of labor income for Ŝit∆li units of wealth leaves the investor’s

utility unchanged. Consider the investor’s value function Vi(Wit, vt; li) satisfying

the dynamic programming equation (2.20) subject to constraints (2.21) and (2.22).

Price Ŝit is the solution of equation Vi(W ∗
it, vt; li) = Vi(W ∗

it+ Ŝit∆li, vt; li−∆li) when

∆li → 0. In the limit, we find:

Ŝit =
∂Vi(W ∗

it, vt; li)/∂li
∂Vi(W ∗

it, vt; li)/∂Wit

. (2.45)

The definition of shadow indifference price Ŝit comes from the literature on the

valuation of derivative securities in incomplete markets (e.g., Davis, 1997).

The labor incomes liDt∆t are proportional to dividends (1−lA−lB)Dt∆t. There-

fore, if claims on labor incomes were tradable and pledgeable, shadow price Ŝit would

have been equal to St/(1 − lA − lB). However, labor incomes are non-tradable and

non-pledgeable. Hence, from the view of investor i, the stock enjoys liquidity pre-

mium, which we define as

Λit =
St/(1− lA − lB)− Ŝit
St/(1− lA − lB) . (2.46)

We find derivatives in equation (2.45) using the envelope theorem. Then, we

derive prices Ŝit and show that premia (2.46) are positive and large. Proposition 5

reports our results.

Proposition 5 (Shadow prices and the liquidity premium). In the limit

∆t→ 0, investor i′s shadow price of a unit of labor income is given by:

Ŝit = Ψ̂i(v;−γA)s(v)γADt, i = A,B, (2.47)
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Collateral liquidity premia from the view of investors A and B

The Figure shows the collateral liquidity premia (2.46) of stocks over non-pledgeable labor

incomes from the view of investors A and B.

where Ψ̂i(v; θ) satisfies differential-difference equation (2.33) subject to the following

boundary conditions for investors A and B

Ψ̂′A(v; θ) = 0, Ψ̂′A(v; θ) = 0, (2.48)

Ψ̂′B(v; θ) = Ψ̂B(v; θ), Ψ̂′B(v; θ) = Ψ̂B(v; θ). (2.49)

The investors’ liquidity premia for stocks ΛA and ΛB are positive, and hence,

St/(1− lA − lB) > ŜAt, St/(1− lA − lB) > ŜBt. (2.50)

The premium Λit > 0 arises because the stock can be used as a collateral whereas

the labor income cannot. We note that this premium is zero in the unconstrained

economy, and hence the non-tradability of labor income and the possibility of short-

ing stocks do not contribute to the premium. This is because, as discussed in Section

4.1, in an unconstrained economy with fully pledgeable labor income the investors

can circumvent the non-tradability of labor income by shorting stocks. We further

remark that the shadow prices and liquidity premia can be found in closed form,

similar to stock prices in Section 3, but we do not present them for brevity.

Figure 2.6 plots the liquidity premia (2.46) for the same calibrated parameters as

in Section 4.1. We observe that investors A and B have different valuations of their

labor incomes due to differences in preferences and beliefs. Their premia Λi are close

to zero when the investors are far away from the boundaries where their respective
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collateral requirements become binding. The premia increase up to 35% close to

the boundaries where the stock is more valuable for the purposes of relaxing the

constraints. Large premia Λit imply the economic significance of stock pledgeability.

2.5. Conclusion

We develop a parsimonious and tractable theory of asset pricing under collateral

requirements. We show that requiring investors to collateralize their trades has

significant effects on asset prices and their moments. The constraints decrease in-

terest rates and increase Sharpe ratios when optimistic investors are close to default

boundaries. They also increase price-dividend ratios, amplify volatilities in good

states and dampen them in bad states. Hence, collateral requirements emerge as vi-

able instruments for stabilizing markets in bad times. The tractability of our model

allows us to obtain asset prices and the distributions of consumption shares in closed

form.
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Gârleanu, N., and L. H. Pedersen, 2011, “Margin Based Asset Pricing and the

Deviations from the Law of One Price,” Review of Financial Studies 24, 1980-

2022.

Geanakoplos, J., 2003, “Liquidity, Default, and Crashes: Endogenous Contracts

in General Equilibrium,” Advances in Economics and Econometrics: Theory

and Applications 2, 170-205. Econometric Society Monographs. New York:

Cambridge University Press.

Geanakoplos, J., 2009, “The Leverage Cycle,” NBER Macroeconomic Annual 24,

1-65.

91



Geanakoplos, J., and W. R. Zame, 2014, “Collateral Equilibrium, I: a Basic Fame-

work,” Economic Theory 56, 443-492.

Gradshteyn, I.S., and I.M. Ryzhik, 2007, Table of Integrals, Series, and Products

(6th ed.), New York: Academic Press.

Gromb, D., and D. Vayanos, 2002, “Equilibrium and Welfare in Markets with

Financially Constrained Arbitrageurs,” Journal of Financial Economics 66,

361-407.

Gromb, D., and D. Vayanos, 2010, “Limits of Arbitrage: The State of the Theory,”

Annual Review of Financial Economics 2, 251-275.

Harrison, J. M., and D. M. Kreps, 1978, “Speculative Investor Behavior in a Stock

Market with Heterogeneous Expectations,” Quarterly Journal of Economics

92, 323-336.

Kehoe, T. J., and D. K. Levine, 1993, “Debt-Constrained Asset Markets,” Review

of Economic Studies 60, 865-888.

Kiyotaki, N., and J. Moore, 1997, “Credit Cycles,” Journal of Political Economy

105, 211-248.

Klimenko, N., S. Pfeil, J.-C. Rochet, and G. De Nicolo, 2016, “Aggregate Bank

Capital and Credit Dynamics,” Working Paper.

Kocherlakota, N. R., 1996, “Implications of Efficient Risk Sharing Without Com-

mitment,” Review of Economic Studies 63, 595-609.

Kondor, P., and D. Vayanos, 2018, “Liquidity Risk and the Dynamics of Arbitrage

Capital,” Journal of Finance, forthcoming.

Krueger, D., and H. Lustig, 2010, “When is market incompleteness irrelevant for

the price of aggregate risk (and when is it not)?” Journal of Economic Theory

145, 1-41.

Krusell, P., and A. A. Smith, 1998, “Income and Wealth Heterogeneity in the

Macroeconomy,” Journal of Political Economy 106, 867-896.

Kubler, F., and K. Schmedders, 2003, “Stationary Equilibria in Asset-Pricing Mod-

els with Incomplete Markets and Collateral,” Econometrica 71, 1767-1793.

92



Lucas, R. E., 1978, “Asset Prices in an Exchange Economy,” Econometrica 46,

1429-1445.

Lustig, H. N., and S. Van Nieuwerburgh, 2005, “Housing Collateral, Consumption

Insurance, and Risk Premia: An Empirical Perspective,” Journal of Finance

60, 1167-1219.

Massari, F., 2018, “Market Selection in Large Economies: A Matter of Luck,”

Theoretical Economics, forthcoming.

Osambela, E., 2015, “Differences of Opinion, Endogenous Liquidity, and Asset

Prices,” Review of Financial Studies 28, 1914-1959.

Pavlova, A., and R. Rigobon, 2008, “The Role of Portfolio Constraints in the

International Propagation of Shocks,” Review of Economic Studies 75, 1215-

1256.

Rampini, A. A., and S. Viswanathan, 2018, “Financing Insurance,” Working Paper.

Rytchkov, O., 2014, “Asset Pricing with Dynamic Margin Constraints,” Journal of

Finance 69, 405-452.

Schwert, W., 1989, “Why Does Stock Market Volatility Change Over Time?” Jour-

nal of Finance 44, 1115-1153.

Simsek, A., 2013, “Belief Disagreements and Collateral Constraints,” Econometrica

81, 1-53.

Stokey, N. L., and R. E. Lucas, 1989, Recursive Methods in Economic Dynamics,

Harvard University Press.

Tsyrennikov, V., 2012, “Heterogeneous Beliefs, Wealth Distribution, and Asset

Markets with Risk of Default,” American Economic Review 102, 156-160.

Veestraeten, D., 2004, “The Conditional Probability Density Function for a Re-

flected Brownian Motion,” Computational Economics 24, 185-207.

Veronesi, P., 1999, “Stock Market Overreaction to bad News in Good Times: A

Rational Expectations Equilibrium Model,” Review of Financial Studies 12,

975-1007.

Yan, H., 2008, “Natural Selection in Financial Markets: Does it Work?” Manage-

ment Science 54, 1935-1950.

93



Appendix A: Proofs

Lemma A.1 (Change of variable). Let n̂i = kili/(1 − lA − lB). Maximization

of expected discounted utility (2.7) subject to budget constraints (2.8) and (2.9), and

constraint (2.11) is equivalent to maximizing (2.7) with respect to cit, bit and ñit

subject to the following set of constraints:

W̃it + liDt∆t = cit∆t+ bitBt + ñit(St, Pt)>, (A1)

W̃i,t+∆t = bit + ñit

(
St+∆t + (1− lA − lB)Dt+∆t∆t, 1{ωt+∆t=ω3}

)>
, (A2)

W̃i,t+∆t ≥ 0, (A3)

where W̃it = Wit + n̂iSt and W̃i,t+∆t = Wi,t+∆t + n̂i(St+∆t + (1− lA − lB)Dt+∆t).

Proof of Lemma A.1. Substituting nit = ñit − (n̂i, 0) into (2.8) and (2.9), we

obtain constraints (A1) and (A2). Rewriting constraint (2.11) in terms of variable

W̃i,t+∆t, we obtain (A3). Finally, we note that W̃it = Wit + n̂iSt is worth W̃i,t+∆t

next period. Hence, (A1) and (A2) can be seen as self-financing budget constraints.

�

Proof of Lemma 1.

1) We start by demonstrating the equivalence of the dynamic (2.8)–(2.9) and static

budget constraints (2.21). Multiplying equation (2.9) by ξi,t+∆t/ξit, taking expecta-

tion operator Eit[·] on both sides, and using equations (2.16)–(2.18) for asset prices,

we obtain:

Eit

ξi,t+∆t

ξit
Wi,t+∆t

 = bitBt + nit(St, Pt)>. (A4)

From the budget constraint equation (2.8), we observe that the right-hand side of

(A4) equals Wit + liDt∆t, and hence, we obtain the static budget constraint (2.21).

Conversely, if there exists Wi,t+∆t satisfying constraints (2.21) and (2.22) there exist

trading strategies bit and nit that replicate Wi,t+∆t because the underlying market

is effectively complete (i.e., the payoff matrix is invertible). Then, rewriting the

optimization problem (2.7) in a recursive form, we obtain the dynamic programming

equation (2.20) for the value function.

2) Consider wealth levels Wit and Ŵit. Let {c∗it, b∗it, n∗it} and {ĉ∗it, b̂∗it, n̂∗it} be optimal

consumptions and portfolios that correspond toWit and Ŵit, respectively, and satisfy
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constraints (2.8)–(2.10). For any α ∈ [0, 1], policies {αĉ∗it + (1 − α)c∗it, αb̂∗it + (1 −

α)b∗it, αn̂∗it + (1− α)n∗it} are admissible for wealth αWit + (1− α)Ŵit. By concavity

of CRRA utilities:

Vi(αWit + (1− α)Ŵit, vt; li) ≥
∞∑
τ=t

ui(αĉ∗it + (1− α)c∗it)

≥
∞∑
τ=t

(αui(ĉ∗it) + (1− α)ui(c∗it))

= αVi(Wit, vt; li) + (1− α)Vi(Ŵit, vt; li).

(A5)

Therefore, Vi(Wit, vt; li) is a concave function of wealth.

3) Consider the following Lagrangian:

L = ui(cit)∆t+ e−ρ∆tEit
[
Vi(Wi,t+∆t, vt+∆t; li)

]

+ ηit

Wit + liDt∆t− cit∆t− Eit
[ξi,t+∆t

ξit
Wi,t+∆t

]+ Eit
[
e−ρ∆t`i,t+∆tWi,t+∆t

)]
,(A6)

where multiplier `i,t+∆t satisfies the complementary slackness condition `i,t+∆tWi,t+∆t =

0. Differentiating the Lagrangian (A6) with respect to cit and Wi,t+∆t, we obtain:

u′i(c∗it) = ηit, (A7)

e−ρ∆t

∂Vi(Wt+∆t, vt+∆t; li)
∂W

+ `i,t+∆t

 = ηit
ξi,t+∆t

ξit
. (A8)

By the envelope theorem (e.g, Back (2010, p.162)):

∂Vi(Wi,t+∆t, vt+∆t; li)
∂W

= u′i(c∗i,t+∆t). (A9)

Substituting the partial derivative of the value function (A9) and the marginal utility

(A7) into equation (A8), and then dividing both sides of the equation by u′i(c∗it), we

obtain the expression for the SPD (2.23). �

Proof of Proposition 1.

Step 1. Consider the case when constraints do not bind, and hence, `i,t+∆t = 0.

Then, using equation (2.13) for the state variable vt and the first order conditions

(2.23), we obtain:

vt+∆t−vt = ln

 (c∗A,t+∆t/c
∗
At)−γA

(c∗
B,t+∆t/c

∗
Bt)−γB

Dt+∆t

Dt


γA−γB = ln

ξA,t+∆t/ξAt

ξB,t+∆t/ξBt

Dt+∆t

Dt


γA−γB .
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From the above equation and the change of measure equation (2.19), which relates

SPDs ξA,t+∆t and ξB,t+∆t, we obtain the dynamics of vt when constraints do not

bind:

vt+∆t − vt = ln

πB(ωt+∆t)
πA(ωt+∆t)

Dt+∆t

Dt


γA−γB . (A10)

Let v and v be the boundaries satisfying Equations (2.24), at which the con-

straints of investors A and B bind, respectively. Let investor A’s constraint be

binding so that vt+∆t = v, and hence, `A,t+∆t ≥ 0. Using Equation (2.13) for vt, first

order conditions (2.23), and `A,t+∆t ≥ 0, we obtain:

v − vt ≤ ln

((c∗A,t+∆t)−γA + `A,t+∆t)/(c∗At)−γA

(c∗
B,t+∆t/c

∗
Bt)−γB

Dt+∆t

Dt


γA−γB

= ln

ξA,t+∆t/ξAt

ξB,t+∆t/ξBt

Dt+∆t

Dt


γA−γB = ln

πB(ωt+∆t)
πA(ωt+∆t)

Dt+∆t

Dt


γA−γB .

(A11)

Similarly, for vt+∆t = v we obtain that v−vt ≥ ln
(
πB(ωt+∆t)/πA(ωt+∆t)

(
Dt+∆t/Dt

)γA−γB)
.

The latter two inequalities imply that when the constraint binds vt+∆t is given by:

vt+∆t = max

v; min

v; vt + ln

πB(ωt+∆t)
πA(ωt+∆t)

Dt+∆t

Dt


γA−γB


 . (A12)

We observe that (A12) is also satisfied in the unconstrained case where v < vt+∆t <

v. It remains to prove that vt does not escape [v, v] interval. Consider a marginal

investor of type A. We guess that vt follows dynamics (A12) and verify that the

consumption choice of investor A indeed implies this dynamics. The analysis for

investor B is similar.

We have shown above that vt satisfies inequality (A11) when investor A is con-

strained. Now, we show the opposite: investor A is constrained when vt satisfies

(A11). Hence, vt+∆t cannot exceed v. Consider vt such that vt+ln
(
πB(ωt+∆t)/πA(ωt+∆t) (Dt+∆t/Dt)γA−γB

)
>

v for some ωt+∆t and vt ∈ (v, v). Because v < vt < v, investor A consumes

c∗At = s(vt)Dt, as shown above. We show that the constraint of investor A binds and

c∗A,t+∆t = s(v)Dt+∆t. This consumption level confirms that vt+∆t = v is indeed an

equilibrium outcome.
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Consider the constraint of investor A at date t in the state ωt+∆t where vt+∆t = v:

WA,t+∆t ≥ 0 ≡ ΦA(v)Dt+∆t, (A13)

where the last equality holds by the definition of v. Using the concavity of the value

function, proven in Lemma 1, and condition (A9) from the envelope theorem, we

obtain:

u′A(c∗A,t+∆t) =
∂VA(WA,t+∆t, v; lA)

∂W
≤
∂VA(ΦA(v)Dt+∆t, v; lA)

∂W
= u′A(s(v)Dt+∆t).

(A14)

Because u′i(c) is a decreasing function, we find that c∗A,t+∆t/Dt+∆t ≥ s(v).

Investor B is unconstrained when vt+∆t = v, and hence, has SPD

ξB,t+∆t

ξBt
= e−ρ∆t

c∗B,t+∆t

c∗Bt


−γB

= e−ρ∆t

(1− s(v))Dt+∆t

(1− s(vt))Dt


−γB

. (A15)

From the change of measure equation (2.19) and the FOC (2.23), the SPD of investor

A is

ξA,t+∆t

ξAt
=

ξB,t+∆t

ξBt

πB(ωt+∆t)
πA(ωt+∆t)

= e−ρ∆t
(c∗A,t+∆t)−γA + `A,t+∆t

(c∗At)−γA
. (A16)

From (A16) and (A15), we find the Lagrange multiplier:

lA,t+∆t

(c∗
A,t+∆t)−γA

=

c∗A,t+∆t

c∗At


γ
A
(1− s(v))Dt+∆t

(1− s(vt))Dt


−γB

πB(ωt+∆t)
πA(ωt+∆t)

− 1

≥

s(v)Dt+∆t

s(vt)Dt


γ
A
(1− s(v))Dt+∆t

(1− s(vt))Dt


−γB

πB(ωt+∆t)
πA(ωt+∆t)

− 1

=

πB(ωt+∆t)
πA(ωt+∆t)

Dt+∆t

Dt


γA−γB evt−v − 1 > 0.

The first inequality follows from the fact that c∗A,t+∆t ≥ s(v)Dt+∆t we proved above.

The second equality holds by the definition of state variable (2.13). The second in-

equality comes from the assumption that vt+ln
(
πB(ωt+∆t)/πA(ωt+∆t) (Dt+∆t/Dt)γA−γB

)
>
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v. Hence, the Lagrange multiplier lA,t+∆t is strictly positive. From the complemen-

tary slackness condition, the constraint (A13) must be binding. Therefore, inequality

(A14) becomes an equality, and hence, c∗A,t+∆t = s(v)Dt+∆t.

Step 2. We now look for coefficients µv, σv and Jv such that:

µv∆t + σv∆wt + Jv∆jt = ln

πB(ωt+∆t)
πA(ωt+∆t)

Dt+∆t

Dt


γA−γB

= ln

πB(ωt+∆t)
πA(ωt+∆t)

+ (γA − γB) ln(1 + µD∆t+ σD∆wt + Jv∆jt).

(A17)

We write identity (A17) in each of the states ωt+∆t ∈ {ω1, ω2, ω3} and obtain the

following system of three linear equations with three unknowns µv, σv and Jv:

µv∆t + σv
√

∆t = ln

(1− λB∆t)(1 + δ∆t)
1− λ∆t

+ (γA − γB) ln(1 + µD∆t+ σD
√

∆t),

µv∆t − σv
√

∆t = ln

(1− λB∆t)(1− δ∆t)
1− λ∆t

+ (γA − γB) ln(1 + µD∆t− σD
√

∆t),

µv∆t + Jv = ln

λB
λ

+ (γA − γB) ln(1 + µD∆t+ JD).

Solving the above system, we obtain µv, σv and Jv reported in Proposition 1.

Step 3. Finally, we show that the boundaries are reflecting for a sufficiently small

∆t. Suppose, two conditions are satisfied: µv∆t−σv
√

∆t < 0 and µv∆t+σv
√

∆t > 0.

Then, the boundaries are reflecting: 1) if vt = v, then vt+∆t = v+µv∆t−σv
√

∆t < v

with positive probability; 2) if vt = v, then vt+∆t = v + µv∆t + σv
√

∆t > v with

positive probability. It can be easily verified that as ∆t→ 0, µv → µ̂v and σv → σ̂v,

where µ̂v and σ̂v are constants given by equations (2.35) and (2.36), respectively.

Because σv > 0 and
√

∆t-terms dominate ∆t-terms for small ∆t, we find that

µv∆t− σv
√

∆t < 0 and µv∆t+ σv
√

∆t > 0 for all sufficiently small ∆t. Hence, the

boundaries are reflecting. �

Lemma A.2 (Wealth-output ratios). The investors’ wealth-output ratios Φi are
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uniformly bounded and given by:

ΦA(vt) = EA

t

+∞∑
τ=t

e−ρ(τ−t)

Dτ

Dt


1−γA s(vτ )

s(vt)


−γA

(s(vτ )− lA)∆t

 , (A18)

ΦB(vt) = EB

t

+∞∑
τ=t

e−ρ(τ−t)

Dτ

Dt


1−γB 1− s(vτ )

1− s(vt)


−γB

(lB − s(vτ ))∆t

 .(A19)

Proof of Lemma A.2. Substituting FOC (2.23) into the budget constraint (2.21)

and using the complementary slackness condition `i,t+∆tW
∗
i,t+∆t = 0, we obtain:

W ∗
At = EA

t

e−ρ∆t

c∗A,t+∆t

c∗At


−γA

W ∗
A,t+∆t

+ (c∗At − lADt)∆t. (A20)

Substituting W ∗
At = ΦAtDt and c∗At = s(vt)Dt into equation (A20) and iterating, we

obtain equation (A18). Let s = s(v) s = s(v), where s(v) is given by equation

(2.14). Then, s ≥ s ≥ s > 0. Using the bounds on st, we obtain the following

uniform bound on ΦA:

ΦA(vt) ≤ Const× EA

t

+∞∑
τ=t

e−ρ(τ−t)

Dτ

Dt


1−γA

∆t

 .
The series on the right-hand side of the latter inequality is convergent due to condi-

tion (2.15) on model parameters. Equation (A19) is obtained along the same lines.

�

Proof of Proposition 2. 1) First, we derive the SPD ξAt under the correct beliefs of

investor A. When investor A’s constraint does not bind, substituting c∗At = s(vt)Dt

into the first order condition (2.23) we find that

ξA,t+∆t

ξAt
= e−ρ∆t

s(vt+∆t)
s(vt)


−γA Dt+∆t

Dt


−γA

. (A21)

Equation (A21) is consistent with SPD (2.29) because when the constraint does not

bind vt+∆t = vt + µv∆t + σv∆wt + Jv∆jt < v, and hence the exponential term in

(2.29) vanishes.

When the constraint of investor A binds, the constraint of investor B is loose:

the constraints cannot bind simultaneously because stock market would not clear
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otherwise. Therefore, the ratio ξB,t+∆t/ξBt is given by FOC (2.23) for investor B

with `B = 0. Using equation (2.19), we rewrite the latter SPD under the correct

beliefs of investor A:

ξA,t+∆t

ξAt
= e−ρ∆t

1− s(vt+∆t)
1− s(vt)


−γB Dt+∆t

Dt


−γB

πB(ωt+∆t)
πA(ωt+∆t)

. (A22)

Next, from equation (2.14) for consumption share s we find that (1 − st)−γB =

e−vts−γAt . Substituting the latter equality into equation (A22), and also using equa-

tion (A17) for the increment vt+∆t − vt, we obtain:

ξA,t+∆t

ξAt
= e−ρ∆t

s(vt+∆t)
s(vt)


−γA Dt+∆t

Dt


−γA

evt−vt+∆t
πB(ωt+∆t)
πA(ωt+∆t)

Dt+∆t

Dt


γA−γB

= e−ρ∆t

s(vt+∆t)
s(vt)


−γA Dt+∆t

Dt


−γA

exp{vt − vt+∆t + µv∆t+ σv∆wt + Jv∆jt}.

(A23)

The fact that the constraint of investor A is binding means that vt+∆t = v and vt +

µv∆t+σv∆wt+Jv ≥ v (because otherwise vt+∆t < v, and hence, the constraint does

not bind). Therefore, the exponential term exp(vt − vt+∆t) in equation (A23) can

be replaced with exp(max{0, vt+µv∆t+σv∆wt+Jv∆jt−v}). When the constraint

of investor A does not bind the latter term vanishes and we obtain equation (A21).

Therefore, both equations (A21) and (A23) are summarized by equation (2.29) for

ξA,t+∆t/ξAt.

2) Lemma A.2 derives the wealth-output ratios Φi(vt) and shows that they are

uniformly bounded. From the market clearing condition St = WAt +WBt. Dividing

by Dt, we obtain that Ψ(vt) = ΦA(vt) + ΦB(vt). Hence, Ψ(vt) is uniformly bounded.

The fact that stock price St is given by (2.30) can be verified by substituting St into

the recursive equation (2.17).

3) In the unconstrained economy, the state variable vunct follows dynamics:

vunct = µv∆t+ σv∆wt + Jv∆jt. (A24)

Define processes Ut+∆t = Ut + ∆Ut and Vt+∆t = Vt + ∆Vt, where increments are

given by:

∆Ut = max{0; vt+µv∆t+σv∆wt+Jv∆jt−v}, ∆Vt = max{0; v−vt−µv∆t−σv∆wt−Jv∆jt}.

(A25)
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The process for the state variable in the constrained economy can be rewritten as

vt+∆t = vt + µv∆t+ σv∆wt + Jv∆jt + ∆Vt −∆Ut. (A26)

If the state variables have the same value at time 0, i.e., v0 = vunc0 , we obtain:

vt = vunct + Vt − Ut (A27)

Next, we prove that the SPD is higher in the constrained economy.

ξA,t+∆t

ξAt
= e−ρ∆t

s(vt+∆t)
s(vt)

Dt+∆t

Dt


−γA

exp(∆Ut), (A28)

ξuncA,t+∆t

ξuncAt

= e−ρ∆t

s(vunct+∆t)
s(vunct )

Dt+∆t

Dt


−γA

. (A29)

Iterating the above equations, we obtain:

ξAt

ξA0
= e−ρt

 s(vt)
s(v0)

Dt

D0


−γA

exp(Ut),

ξuncAt

ξuncA0
= e−ρt

s(vunct )
s(v0)

Dt

D0


−γA

.

By the definition of s(v) in equation (2.14), we have ev = (1 − s(v))γB · s(v)−γA .

Hence,

ξAt/ξA0

ξuncAt /ξ
unc
A0

=

 s(vt)
s(vunct )


−γA

exp(Ut) =

s(vunct + Vt − Ut)
s(vunct )


−γA

ev
unc
t e−(vunct −Ut)

≥ s(vunct − Ut)−γAe−(vunct −Ut) · s(vunct )γAevunct

= (1− s(vunct − Ut))−γB · (1− s(vunc))γB ≥ 1.

Therefore, we conclude that ξAt/ξA0 ≥ ξuncAt /ξ
unc
A0 . The latter inequality and the equa-

tions for asset prices (2.16)–(2.18) imply that prices are higher in the constrained

economy. �

Proof of Lemma 2. The price-dividend ratio Ψ and wealth-aggregate consumption

ratios Φi are functions of the state variable v, and satisfy equations:

Ψ(vt) = EA

t

ξA,t+∆t

ξAt

Dt+∆t

Dt

(
Ψ(vt+∆t) + ∆t

) , (A30)

Φi(vt) = EA

t

ξA,t+∆t

ξAt

Dt+∆t

Dt

Φi(vt+∆t)

+
(
1{i=A}s(vt) + 1{i=B}(1− s(vt))− li

)
∆t.(A31)
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These equations are obtained by substituting St = (1− lA− lB)DtΨ(vt) into equation

(2.17) for the stock price, and Ψi = DtWit into static budget constraints (2.21).

Define the following function in discrete time:

Ψ̂(vt; θ) = EA

t

e−ρ∆t+∆Ut

Dt+∆t

Dt


1−γA

Ψ̂(vt+∆t; θ)

+ s(vt)θ∆t, (A32)

where ∆Ut is given by equation

∆Ut = max{0; vt + µv∆t+ σv∆wt + Jv∆jt − v}. (A33)

Comparing equation (A32) with equations (A30) and (A31) for Ψ and Φi and using

the linearity of equation (A32), it easy to observe that Ψ(vt) and Φi(vt) are given

by the following equations in terms of Ψ̂(vt; θ):

Ψ(vt) = Ψ̂(vt,−γA)s(vt)γA −∆t,

Φ(vt) =
(
(1{i=A} − 1{i=B})Ψ̂(v; 1− γA) + (1{i=B} − li)Ψ̂(v;−γA)

)
s(v)γA .

Taking limit ∆t→ 0, we obtain equations (2.31) and (2.32) for Ψ(vt) and Φi(vt).

First, we derive the equation for Ψ̂(vt; θ) when vt belongs to the interior (v, v).

For a sufficiently small ∆t we have ∆Ut = 0, where ∆Ut is given by (A33). Then,

we rewrite the expectation of (Dt+∆t)/Dt)1−γAΨ̂(vt; θ) as follows:

EA
t


Dt+∆t

Dt


1−γA

Ψ̂(vt+∆t; θ)

 = (1− λ∆t)EA
t


Dt+∆t

Dt


1−γA

Ψ̂(vt+∆t; θ)
∣∣∣∣normal



+λ∆tEA
t


Dt+∆t

Dt


1−γA

Ψ̂(vt+∆t; θ)
∣∣∣∣crisis

 .
(A34)

Noting that in the crisis Dt+∆t/Dt = 1 + µv∆t + JD and vt+∆t = max{v; vt +

µv∆t + Jv} and in the normal state Dt+∆t/Dt = 1 + µD∆t + σD∆wt and vt+∆t =

vt +µv∆t+σv∆wt, using Taylor expansions for (Dt+∆t/Dt)1−γA and Ψ̂(vt+∆t; θ), we
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find:

EA

t


Dt+∆t

Dt


1−γA

Ψ̂(vt+∆t; θ)|crisis

 = (1 + JD)1−γAΨ̂
(

max{v; vt + Jv}; θ
)
. (A35)

EA

t


Dt+∆t

Dt


1−γA

Ψ̂(vt+∆t; θ)|normal

 =

1 +

(1− γA)µD +
(1− γA)γAσ2

D

2

∆t

 Ψ̂(vt; θ)

+
(
µv + (1− γA)σDσv

)
Ψ̂′(vt; θ)∆t +

σ2
v

2 Ψ̂′′(vt; θ)∆t+ o(∆t). (A36)

Substituting (A35)-(A36) into (A32), we obtain:

Ψ̂(vt; θ) =

1−

λ+ ρ− (1− γA)µD +
(1− γA)γA

2 σ2
D

∆t

 Ψ̂(vt; θ)

+
(
µv + (1− γA)σDσv

)
Ψ̂′(v; θ)∆t+

σ2
v

2 Ψ̂′′(v; θ)∆t

+ λ(1 + JD)1−γAΨ̂
(

max{v; vt + Jv}; θ
)

∆t+ s(v)θ∆t+ o(∆t).

(A37)

Canceling similar terms, diving by ∆t, taking limit ∆t→ 0, and noting that µv, σv
and Jv converge to µ̂v, σ̂v and Ĵv given by (2.35)-(2.37), we obtain equation (2.33)

for Ψ̂(vt; θ).

Next, we derive the boundary conditions for Ψ̂(vt; θ). From equation (2.25), the

state variable dynamics at lower bound is vt+∆t = v+max{0, µv∆t+σv∆wt+Jv∆jt}.

We use ∆vt to denote the difference of vt+∆t and vt. In this case,

∆vt = max{0, µv∆t+ σv∆wt + Jv∆jt}. (A38)

For sufficiently small ∆t increment ∆vt is positive only in state ω1 and is zero

otherwise. In state ω1, ∆vt = µv∆t + σv
√

∆t. Therefore, the order of EA
t [∆vt] is

√
∆t, but second order terms involving ∆vt have lower order:

lim
∆t→0

EA
t [∆vt]
√

∆t
=

σ̂v

2 ,

lim
∆t→0

EA
t

[
(∆vt)2

]
√

∆t
= lim∆t→0

EA
t [∆vt∆t]
√

∆t
= lim

∆t→0

EA
t [∆vt∆wt]
√

∆t
= lim∆t→0

EA
t [∆vt∆jt]
√

∆t
= 0.

(A39)
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Taylor expansion of Ψ̂(vt+∆t; θ) at vt = v is given by

Ψ̂(vt+∆t; θ) = Ψ̂(v; θ) + Ψ̂′(v; θ)∆vt +
1
2Ψ̂′′(v; θ)∆v2

t + o(
√

∆t). (A40)

In subsequent calculations we keep terms with order of
√

∆t. Using the above

results, we obtain the following expansion:

EA
t


Dt+∆t

Dt


1−γA

Ψ̂(vt+∆t; θ)



= EA
t

(1 + µD∆t+ σD∆wt + Jv∆jt)1−γA

Ψ̂(v; θ) + Ψ̂′(v; θ)∆vt +
1
2Ψ̂′′(v; θ)∆v2

t




= Ψ̂(v; θ) + Ψ̂′(v; θ)EA
t [∆vt] + o(

√
∆t).

(A41)

Substituting (A41) into (A32), taking into account that ∆Ut = 0 at vt = v, and

canceling Ψ̂(v; θ) on both sides, we obtain the first boundary condition Ψ̂′(v; θ) = 0.

At the upper bound vt = v investor A is constrained, and hence, ∆Ut in (A33)

is positive. From (2.25) the state variable at the upper bound is

vt+∆t = min{v, vt + µv∆t+ σv∆wt + Jv∆jt} = vt + µv∆t+ σv∆wt + Jv∆jt −∆Ut.

(A42)

The order of EA
t [∆Ut] is

√
∆t, but second order terms involving ∆Ut have order

o(
√

∆t).

Proceeding in the same way as (A39)-(A41), we arrive at

Ψ̂(v; θ) = Ψ̂(v; θ) +
[
Ψ̂(v; θ)− Ψ̂′(v; θ)

]
EA

t [∆Ut] + o(
√

∆t).

Canceling similar terms, taking limit ∆t→ 0, we obtain condition Ψ̂(v; θ)−Ψ̂′(v; θ) =

0.

Finally, we derive the equations for v and v. Taking limit ∆t → 0 in equations

(2.24), we find that these equations become: ΦA(v) = 0, ΦB(v) = 0. Substituting

Φi(v) and Ψ(v) in terms of Ψ̂(v; θ) from equations (2.32) into the latter equations

for the boundaries, after some algebra, we obtain equations (2.38). �

Proof of Corollary 1. Consider the case λ = λB = 0 and γA = γB = 1. Then,

s(v) solving equation (2.25) is given by s(v) = 1/(1 + ev), Ψ(v) = Ψ̂(v)s(v), where
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Ψ̂(v) solves a special case of equation (2.33) given by:

δ2

2 Ψ̂′′(v)−
δ2

2 Ψ̂′(v)− ρΨ̂(v) + 1 + ev = 0, (A43)

subject to boundary conditions (2.34). It can be easily verified that Ψ̂(v) = C1e
ϕ−v+

C2e
ϕ+v + (1 + ev)/ρ satisfies (A43). Substituting Ψ̂(v) into boundary conditions

(2.34), we obtain the following system for coefficients C1 and C2:

C1ϕ−e
ϕ−v + C2ϕ+e

ϕ+v + ev/ρ = 0; C1(ϕ− − 1)eϕ−v + C2(ϕ+ − 1)eϕ+v − 1/ρ = 0.

Solving these equations, we obtain:

C1 =
1
ρ

(ϕ+ − 1)ev+ϕ+v + ϕ+e
ϕ+v

ϕ+(ϕ− − 1)eϕ−v+ϕ+v − ϕ−(ϕ+ − 1)eϕ+v+ϕ−v
, (A44)

C2 = −
1
ρ

(ϕ− − 1)ev+ϕ−v + ϕ−e
ϕ−v

ϕ+(ϕ− − 1)eϕ+v+ϕ−v − ϕ−(ϕ+ − 1)eϕ+v+ϕ−v
. � (A45)

Proof of Proposition 3. From equation (2.16) for the bond price and the fact

that 1 = Bt(1 + rt∆t) we find that the riskless interest rate rt is given by:

rt =
1− Et[ξA,t+∆t/ξAt]
Et[ξA,t+∆t/ξAt]∆t

=
1− (1− λ∆t)Et[ξA,t+∆t/ξAt|normal]− λ∆tEt[ξA,t+∆t/ξAt|crisis]

Et[ξA,t+∆t/ξAt]∆t
,

(A46)

where ξA,t+∆t/ξAt is given by equation (2.29). We separately calculate Et[ξA,t+∆t/ξAt|normal]

and Et[ξA,t+∆t/ξAt|crisis], and then take the limit ∆t→ 0.

We start with the derivation of Et[ξA,t+∆t/ξAt|normal] when v < vt < v, and hence,

by continuity, for a sufficiently small ∆t the economy is unconstrained next period,

so that v < vt+∆t < v. In the unconstrained region ∆vt = µ̂v∆t + σ̂v∆wt and the

SPD is given by (A21). From the expression for the SPD, using expansions (A55)

and (A57), we obtain:

Et

ξA,t+∆t

ξAt

∣∣∣∣normal

 = Et
[(

(1 + at∆vt + bt(∆vt)2
)(

1− rA∆t− κA∆wt
)
|normal

]
+ o(∆t)

= Et
[
1 + at∆vt + bt(∆vt)2 − rA∆t− κA∆wt − κAat∆vt∆wt

∣∣∣∣normal
]

+ o(∆t)

= 1 + atµ̂v∆t+ btσ̂
2
v∆t− rA∆t− κAatσ̂v∆t+ o(∆t).

(A47)
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Conditioning on the crisis state, we have:

Et

ξA,t+∆t

ξAt

∣∣∣∣crisis

 = (1− ρ∆t)(1 + µD∆t+ JD)−γA
s(max{v, vt + µv∆t+ Jv})

s(vt)


−γA

= (1 + JD)−γA
s(max{v, vt + Ĵv})

s(vt)


−γA

+ o(∆t).

(A48)

Substituting at and bt from (A56) into equation (A47), and then substituting (A47)

and (A48) into equation (A46), after simple algebra, we obtain rt in (2.40) for the

case v < vt < v.

Now, we derive rt at the boundaries v and v. The SPD is given by (2.29). Using

expansions (A55) and (A57), we obtain the following expansion:

Et

ξA,t+∆t

ξAt

∣∣∣∣normal

 = Et
[(

(1 + at∆vt + bt(∆vt)2
)(

1− rA∆t− κA∆wt
)

×(1 + ∆Ut + 0.5(∆Ut)2)|normal
]

+ o(∆t)

= Et
[
1 + at∆vt + bt(∆vt)2 − rA∆t− κA∆wt − κAat∆vt∆wt

+ ∆Ut − κA∆wt∆Ut + at∆Ut∆vt + 0.5(∆Ut)2
∣∣∣∣normal

]
+O(∆t),

(A49)

where ∆Ut is given by equation (A33). Using equation (2.25) for the process vt and

equation (A33) for ∆Ut, for a fixed vt and sufficiently small ∆t, we find that ∆vt
and ∆Ut at the boundaries are given by:

∆vt =


min(0, µv∆t+ σv∆wt), if vt = v,

max(0, µv∆t+ σv∆wt), if vt = v,

(A50)

∆Ut =


0, if vt < v,

max(0, µv∆t+ σv∆wt), if vt = v,

(A51)

We note that for a sufficiently small ∆t the sign of µv∆t+σv∆wt is solely determined

by the second term σv∆wt because it has the order of magnitude
√

∆t. Volatility σv
is positive because under our assumptions investor A is more risk averse and more

pessimistic. Using the latter observation, substituting equations (A50) and (A51)
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into equation (A49) and computing the expectation, we obtain:

Et

ξA,t+∆t

ξAt

∣∣∣∣normal

 = 1+



at(µv − κAσv)2 +
btσ

2
v

2 +
µv + κAσv + σ2

v

2 − rA

∆t

+
σv(1− at)

2
√

∆t+O(∆t), if vt = v,atµv − atκAσv + btσ
2
v

2

∆t+
atσv

2
√

∆t+O(∆t), if vt = v.

(A52)

Substituting (A52) and (A48) into equation (A46) for the interest rate rt, we obtain

rt in (2.40) for the case when vt is at the boundary.

To obtain the risk premium, we first decompose stock returns as follows:

∆St + (1− lA − lB)Dt+∆t∆t
St

= µt∆t+ σt∆wt + Jt∆jt. (A53)

Multiplying both sides of (A53) by ξA,t+∆t/ξAt and taking expectations, we obtain:

Et

ξA,t+∆t

ξAt

∆St + (1− lA − lB)Dt+∆t∆t
St

 = µt∆tEt

ξA,t+∆t

ξAt

+σtEt

ξA,t+∆t

ξAt
∆wt

+JtEt

ξA,t+∆t

ξAt
∆jt

 .
On the other hand, from the equation for stock price (2.17) we find that:

Et

ξA,t+∆t

ξAt

∆St + (1− lA − lB)Dt+∆t∆t
St

 = 1− Et

ξA,t+∆t

ξAt

 .
Combining the last two equations and the equation (A46) for the interest rate, we

obtain:

µt − rt = −

σtEt
ξA,t+∆t

ξAt
∆wt

+ JtEt

ξA,t+∆t

ξAt
∆jt


 1 + rt∆t

∆t . (A54)

Then, proceeding in the same way as with the calculation of interest rates and using

similar expansions, we obtain equation (2.41) for the risk premium. �

Lemma A.3 (Useful expansions).

1) For small increment ∆vt = vt+∆t−vt the ratio
(
s(vt+∆t)/s(vt)

)−γA
has expansion:

s(vt+∆t)
s(vt)


−γA

= 1 + at∆vt + bt(∆vt)2 + o(∆t), (A55)
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where coefficients at and bt are given by:

at =
(1− st)Γt

γB
, bt =

1
2γ2

B

(1− st)2Γ2
t +

1
2γ2

Aγ
2
B

st(1− st)Γ3
t , (A56)

Γt = γAγB/(γA(1 − s) + γBs) is the risk aversion of the representative investor and

st is consumption share of investor A that solves equation (2.14).

2) For the case JD = 0, the SPD in a one-investor economy can be expanded as

follows:

e−ρ∆t

Dt+∆t

Dt


−γA

= 1− rA∆t− κA∆wt + o(∆t), (A57)

where rA and κA are the riskless rate and the Sharpe ratio in an economy populated

only by investor A, given by:

rA = ρ+ γAµD −
γA(1 + γA)

2 σ2
D, κA = γAσD. (A58)

Proof of Lemma A.3. 1) We expand the ratio on the left-hand side of (A55) using

Taylor’s formula, and observe that at = (s(vt)−γA)′/s(vt)−γA and bt = 0.5(s(vt)−γA)′′/s(vt)−γA .

Differentiating, we obtain the following expressions for at and bt:

at = −γA
s′(vt)
s(vt)

, bt =
γA(1 + γA)

2

s′(vt)
s(vt)


2

−
γA

2
s′′(v)
s(v) . (A59)

To find derivatives s′(v) and s′′(v), we differentiate equation (2.14) twice with respect

to v, and obtain two equations for the derivatives:

1 = −

γA
st

+
γB

1− st

 s′(vt), (A60)

0 =

γA
s2
t

−
γB

(1− st)2

 (s′(vt))2 −

γA
st

+
γB

1− st

 s′′(vt). (A61)

Finding s′(v) and s′′(v) from the system (A60)–(A61) and substituting them into

expressions (A59) for coefficients at and bt, after some algebra, we obtain expressions

(A56).

2) Substituting Dt+∆t/Dt from (2.1) into equation (A57), after some algebra, we
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obtain:

e−ρ∆t

Dt+∆t

Dt

 = e−ρ∆t (1 + µD∆t+ σD∆wt)−γA

= (1− ρ∆t)

1−

γAµD − γA(1 + γA)
2 σ2

D

∆t− γAσD

+ o(∆t)

= 1− rA∆t− κA∆wt + o(∆t). �

(A62)

Proof of Proposition 4. Consider a reflected arithmetic Brownian motion with

boundaries v and v and dynamics dvt = µ̂vdt + σ̂vdwt when v < vt < v, where

wt is a Brownian motion. The transition density for this process is given by (see

Veestraeten, 2004):

fv(v, τ ; vt, t) =
1√

2πσ̂2
v(τ − t)

∑+∞
n=−∞

exp

−2µ̂v
σ̂2
v
n(v − v)−

(
v−vt−µ̂v(τ−t)+2n(v−v)

)2

2σ̂2
v(τ−t)



+ exp

−2µ̂v
σ̂2
v

(
vt − v + n(v − v)

)
−

(
v − vt − µ̂v(τ − t) + 2(vt − v + n[v − v])

)2

2σ̂2
v(τ − t)




+
2µ̂v
σ̂2
v

∑+∞
n=0

exp
(
−2µ̂v

σ̂2
v

(
v − v + n[v − v]

))
N

vt + µ̂v(τ − t)− v − 2(v − v + n[v − v])
σ̂v
√
τ − t



− exp
(

2µ̂v
σ̂2
v

(
v − v + n[v − v]

))1−N

vt + µ̂v(τ − t)− v + 2(v − v + n[v − v])
σ̂v
√
τ − t



 ,

(A63)

where N (·) is the cumulative distribution of a standard normal distribution. By

Fv(v, τ ; vt, t) = Prob{vτ ≤ v|vt} we denote the corresponding cumulative distribu-

tion function of v conditional on observing vt at time t. We observe that st = s(vt)

is a decreasing function of vt implicitly defined by equation (2.14). From the latter

equation we also find that s−1(x) = γB ln(1−s)−γA ln(s). The cumulative distribu-

tion function of consumption share sτ at time τ conditional on observing st at time

109



t can then be found as follows:

F (x, τ ; st, t) = Prob{sτ ≤ x|st} ≡ Prob{s(vτ ) ≤ x|st}

= 1− Prob{vτ ≤ s−1(x)|vt}

= 1− Prob{vτ ≤ γB ln(1− x)− γA ln(x)|vt}

= 1− Fv(γB ln(1− x)− γA ln(x), τ ; vt, t).

(A64)

Substituting vt = γB ln(1−st)−γA ln(st) into (A64), differentiating CDF F (x, τ ; st, t)

with respect to x and setting x = s, we find that the transition PDF for s is given

by:

f(s, τ ; st, t) =

γA
s

+
γB

1− s

 fv(γB ln(1−s)−γA ln(s), τ ; γB ln(1−st)−γA ln(st), t
)
,

(A65)

where transition density fv(v, τ ; vt, t) is given by equation (A63).

The stationary distribution of variable v, calculated in Veestraeten (2004), is

given by:

fv(v) =
2µ̂v
σ̂2
v

exp
(

(2µ̂v/σ̂2
v)v

)
exp

(
(2µ̂v/σ̂2

v)v
)
− exp

(
(2µ̂v/σ̂2

v)v
). (A66)

Proceeding in the same way as for the derivation of transition PDF (A65), we obtain

stationary PDF (2.43) for consumption share s. �

Proof of Corollary 2. The proof easily follows by substituting boundary condi-

tions (2.34) into the equation (B27) for volatility σt at the boundary values v and

v. �

Proof of Proposition 5. Consider Lagrangian (A6) for the dynamic optimization

of investor i. Differentiating this Lagrangian with respect to li and cit, we obtain:

∂Vi(W ∗
it, vt; li)
∂li

= ηitDt∆t+ e−ρ∆tEit

[
∂Vi(W ∗

i,t+∆t, vt+∆t; li)
∂li

]
, (A67)

u′(c∗it) = ηit. (A68)

By the envelope theorem (e.g., Back (2010, p.162)):

∂Vi(Wit, vt; li)
∂W

= u′i(c∗it), (A69)

∂Vi(Wi,t+∆t, vt+∆t; li)
∂W

= u′i(c∗i,t+∆t). (A70)
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Substituting (2.45), (A68), (A69), and (A70) into equation (A67), and simplifying,

we find:

Ŝit = Dt∆t+ Eit

e−ρ∆t
u′i(c∗i,t+∆t)
u′i(c∗it)

Ŝi,t+∆t

 . (A71)

From equation (2.29), we recall that the SPD of investor A is given by

ξA,t+∆t

ξAt
= e−ρ∆t+∆Ut

(c∗A,t+∆t)−γA

(c∗At)−γA
Dt+∆t

Dt

, (A72)

where ∆Ut = max{0; vt + µv∆t + σv∆wt + Jv∆jt − v}. Rewriting equation (A71)

for investor A in terms of SPD (A72), we obtain:

ŜAt = Dt∆t+ EA

t

e−∆Ut
ξA,t+∆t

ξAt
ŜA,t+∆t

 . (A73)

Following the same steps as in the proof of Lemma 2, we find that ŜAt = Ψ̂i(vt;−γA)s(vt)γADt,

where Ψ̂i(v; θ) satisfies differential-difference equation (2.33) with boundary condi-

tions (2.48).

Iterating equation (2.17) for stock and equation (A73) for shadow prices, we

obtain:

St + (1− lA − lB)Dt∆t =
1
ξt
EA

t

[
∞∑
τ=t

ξτ (1− lA − lB)Dτ∆t
]
, (A74)

ŜAt =
1
ξt
EA

t

[
∞∑
τ=t

e−(Uτ−Ut)ξτDτ∆t
]
. (A75)

Inequality (St + (1 − lA − lB)Dt∆t)/(1 − lA − lB) > ŜAt follows from the fact that

Ut = ∑t
τ=0 ∆Uτ is a non-decreasing processes. In the continuous-time limit, we

obtain that St/(1 − lA − lB) > ŜAt. Hence, the liquidity premium ΛAt is positive.

The derivation of the shadow price of investor B is analogous and available upon

request. �
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Appendix B: Technical results.

Proposition B.1 (Existence of boundaries v and v). There exist constant

boundaries v and v for the state variable vt process (2.25) that solve equations (2.24).

Proof of Proposition B.1. We here show the existence of v that solves ΦA(v) = 0,

where ΦA(v) is given by equation (A18) in Appendix A. The proof for v is analogous.

We note that ΦA(vt) ≥ 0 because of the constraint WAt ≥ 0. Suppose, v does

not exist, and hence ΦA(vt) > 0 for all vt. From equation (2.14) for consumption

share s we observe that s(vt)→ 0 when vt → +∞. For arbitrary ε ∈ (0, lA) choose

vt sufficiently large, so that s(vt)− lA < −ε. Let T (vt) be the stopping time, defined

as

T (vt) = inf{τ : s(vτ )− lA ≥ −ε}. (B1)

From equation (A18) for ΦA(vt) we obtain the following inequality:

ΦA(vt)s(vt)−γA ≤ −εEA

t

T (vt)∑
τ=t

e−ρ(τ−t)

Dτ

Dt


1−γA

s(vτ )−γA∆t



+ EA

t

 +∞∑
τ=T (vt)+∆t

e−ρ(τ−t)

Dτ

Dt


1−γA

s(vτ )−γA(s(vτ )− ε)1{s(vτ )≥ε}∆t



≤ −ε(lA − ε)−γAEA

t

T (vt)∑
τ=t

e−ρ(τ−t)

Dτ

Dt


1−γA

∆t



+ max(1; ε1−γA)EA

t

 +∞∑
τ=T (vt)+∆t

e−ρ(τ−t)

Dτ

Dt


1−γA

∆t

 .
(B2)

Next, we show that T (vt)→ +∞ as vt → +∞. Let v̂ be such that s(v̂) = lA− ε.

Then, because s(vt) is a decreasing function, vt ≥ v̂ and the stopping time (B1) can

be rewritten as T (vt) = inf{τ : vτ ≤ v̂}. We note that T (vt) ≥ T̂ , where T̂ is the

minimal time required to get from vt to v̂, which is the time when ∆wt = −
√

∆t and

∆jt = 1 along the path. Time T̂ is found from the condition vt + (T̂ /∆t)(µv∆t −

σv
√

∆t+Jv) = v̂, where Jv < 0. We observe that T̂ → +∞ as vt → +∞, and hence

T (vt) → +∞. We also note that Et[
∑∞
τ=t e

−r(τ−t)D1−γA
τ ∆t] < +∞ by condition

(2.15). Therefore, for a sufficiently large vt we obtain from inequality (B2) that
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ΦA(vt) < 0, which contradicts initial assumption that ΦA(vt) > 0 for all vt. Hence,

there exists v such that ΦA(v) = 0. �

Lemma B.1 (Unconstrained optimization). Consider an infinitesimal uncon-

strained investor with risk aversion γi and labor income liDt, i = A,B, who lives in

the economy where the state price density is given by (2.29). The investor’s value

function is given by

V unc
i (Wt, vt) =

(Wt + li/(1− lA − lB)St)1−γi

1− γi
hi(vt)γi , (B3)

where h(vt) is a uniformly bounded wealth-consumption ratio, given by:

hi(vt) = Eit
[+∞∑
τ=t

(
ξiτ
ξit

)1−1/γi
e−ρ(τ−t)/γi∆t

]
. (B4)

The investor’s optimal consumption is given by c∗iτ = `(ξiτeρ(τ−t))−1/γi, where ` is

a constant. Moreover, for all feasible consumptions ct the following inequalities are

satisfied:
+∞∑
τ=t

e−ρ(τ−t)ui(cτ )∆t ≤
+∞∑
τ=t

e−ρ(τ−t)ui(c∗τ )∆t = V unc
i (Wt, vt), (B5)

lim
T→∞

sup e−ρTEt
[
V unc
i (WT , vT )

]
≤ 0. (B6)

Proof of Lemma B.1. We solve the problem using the martingale method. The

static budget constraint is given by:

Eit
[+∞∑
τ=t

ξiτ

ξit
c∗τ

]
= Wt +

liSt

1− lA − lB
, (B7)

where the last term is the value of the labor income. Because the dividends and

labor incomes are collinear, the value of the labor income is given by:

Eit
[+∞∑
τ=t

ξiτ

ξit
(liDτ )

]
=

liSt

1− lA − lB
.

The first order condition gives the optimal consumption c∗τ = `(ξiτ/ξiteρ(τ−t))−1/γi ,

where ` is the Lagrange multiplier that can be found by substituting c∗τ into (B7).

Finding the multiplier ` and substituting c∗τ into the objective function, we obtain

the value function (B3), where h(vt) is given by (B4).
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Next, we show that h(vt) is uniformly bounded. First, we consider the case

γi ≥ 1. Using equation (B4) and Hölder’s inequality, we obtain:

hi(vt) = Eit
[ ∞∑
τ=t

(ξiτ
ξit

)1−1/γi
e−ρ(τ−t)/γi

]
≤
(
Eit
[ ∞∑
τ=t

ξiτDτ

ξitDt

])1−1/γi(
Eit
[ ∞∑
τ=t

e−ρ(τ−t)
(Dτ

Dt

)1−γi])1/γi
.

We note that both multipliers on the right-hand side of the latter inequality are

bounded. The first multiplier equals the price-dividend ratio and is bounded by

Proposition 2. The second multiplier is bounded due to condition (2.15) on the

model parameters. Consider now the case γi ≤ 1. From the FOCs (2.23) and the

fact that s ≤ s ≤ s, we obtain:

ξiT

ξit
≥ e−ρ(T−t)

(c∗T
c∗t

)−γi
≥ e−ρ(T−t)

(DT

Dt

)−γi(s
s

)−γi
.

From the latter inequality it follows that

Eit
[(
ξiτ
ξit

)1−1/γi
e−ρ(τ−t)/γi

]
≤
(s
s

)1−γi
Eit
[
e−ρ(τ−t)

(Dτ

Dt

)1−γi]
. (B8)

The inequality (B8) and condition (2.15) imply that the infinite series in (B4) con-

verges and function hi(v) is uniformly bounded. We also observe that hi(v) ≥ ∆t >

0.

Now, we prove inequality (B5). We consider feasible consumption streams sat-

isfying condition Wt + li/(1 − lA − lB)St ≥ 0 for all t, which means that investor’s

aggregate wealth is non-negative at all times so that investor does not go bankrupt.

From the investor’s budget constraint and the latter inequality for all feasible con-

sumptions we obtain:

Wt +
liSt

1− lA − lB
≥ Eit

[ T∑
τ=t

ξiτ

ξit
cτ∆t

]
+Eit

[ξiT
ξit

(
WT +

liST

1− lA − lB

)]
≥ Eit

[ T∑
τ=t

ξiτ

ξit
cτ∆t

]
.

(B9)

Consider the weighting function wt given by

wτ =

(
ξiτ
ξit

)1−1/γi
e−ρ(τ−t)/γi

ĥiT (vt)
, where ĥiT (vt) = Eit

[ T∑
τ=t

(
ξiτ
ξit

)1−1/γi
e−ρ(τ−t)/γi∆t

]
.

(B10)

We note that Eit[
∑T
τ=twτ∆t] = 1. Using Jensen’s inequality and inequality (B9), we

114



obtain:

Eit
[
T∑
τ=t

e−ρ(τ−t)c1−γi
τ

1− γi
∆t
]

= Eit
[
T∑
τ=t

(
(ξiτ/ξit)1/γieρ(τ−t)/γicτ

)1−γi
wτ∆t

1− γi

]
ĥiT (vt)

≤

(
Eit
[
T∑
τ=t

(ξiτ/ξit)1/γieρ(τ−t)/γicτwτ∆t
])1−γi

1− γi
ĥiT (vt)

=

(
Eit
[
T∑
τ=t

(ξiτ/ξit)cτ∆t
])1−γi

1− γi
ĥiT (vt)γi

≤

(
Wt + liSt

1−lA−lB

)1−γi

1− γi
ĥiT (vt)γi .

(B11)

Taking limit T →∞ in (B11), and noting that ĥiT (vt)→ hi(vt), we obtain (B5).

Finally, we prove inequality (B6). Because cτ ≥ 0, from inequality (B9), we

obtain:

Eit
[ξiT
ξit

(
WT +

liST

1− lA − lB

)]
≤ Wt +

liSt

1− lA − lB
. (B12)

Using Jensen’s inequality following the same steps as in inequality (B11), we obtain:

Eit
[(
WT + liST

1−lA−lB

)1−γi]
1− γi

≤

(
Eit
[
ξiT
ξit

(
WT + liST

1−lA−lB

)])1−γi

1− γi

(
Eit
[(ξiT

ξit

)− 1−γi
γi

])γi

≤

(
Wt + liSt

1−lA−lB

)1−γi

1− γi

(
Eit
[(ξiT

ξit

)− 1−γi
γi

])γi
.

The above inequality and the boundedness of hi(vt) then imply the following in-

equality:

e−ρ(τ−t)Eit[V unc
iT ] ≤ Const× V unc

it

(
Eit
[(ξiT

ξit

)− 1−γi
γi
e−ρ(τ−t)/γi

])γi
. (B13)

Inequality (B13) also holds for γi = 1 if CRRA preferences are replaced with log-

arithmic preferences. Suppose, γi > 1. Then, inequality (B6) is satisfied because

V unc
i < 0. Suppose, γi ≤ 1. Then, using inequalities (B8), (B13), and condition

(2.15), we obtain:

e−ρ(τ−t)Eit[V unc
iT ] ≤ Const×

(
Eit
[
e−ρ(τ−t)

(Dτ

Dt

)1−γi])γi
→ 0, as T →∞. �
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Lemma B.2. Let P(V ) be a point-wise monotone operator such that for all point-

wise bounded functions V1 and V2 such that V1 ≤ V2 ⇒ P(V1) ≤ P(V2). Suppose

further there exist point-wise bounded functions V and V such that V ≤ V , P(V ) ≥

V , and P(V ) ≤ V . Then, there exists a point-wise bounded function V ∗ such that:

1) V ≤ V ∗ ≤ V ; 2) V ∗ ≤ P(V ∗); 3) Pn(V )→ V ∗ point-wise as n→∞.

Proof of Lemma B.2. From the monotonicity of the operator P(V ) and the

definitions of V and V , we obtain:

V ≤ P(V ) ≤ P(V ) ≤ V . (B14)

Applying operator P to inequalities (B14), and then using the definitions of V and

V , we obtain: V ≤ P(V ) ≤ P2(V ) ≤ V . Proceeding in the same way n times

we obtain V ≤ P(V ) ≤ P2(V ) ≤ · · · ≤ Pn(V ) ≤ V . Consequently, Pn(V ) is

point-wise increasing and bounded, and hence converges to some function V ∗ such

that V ≤ V ∗ ≤ V and Pn(V ) ≤ V ∗. Applying operator to both sides of the latter

inequality, we find that Pn+1(V ) ≤ P(V ∗). Taking limit, we find that V ∗ ≤ P(V ∗).

�

Proposition B.2 (Verification of optimality). Consider an infinitesimal in-

vestor i who lives in an economy where the state price density is given by equation

(2.29). Suppose, this investor maximizes expected discounted utility (2.7) subject to a

self-financing budget constraint and the collateral constraint (2.10). Then, there ex-

ists unique bounded value function V ∗i satisfying the dynamic programming equation

(2.20) and the transversality condition, such that for all feasible consumptions

V ∗it ≥ Eit
[+∞∑
τ=t

u(ciτ )∆t
]
, (B15)

and, moreover,

V ∗it = Eit
[+∞∑
τ=t

u(c∗iτ )∆t
]
, (B16)

for the optimal consumptions given by FOCs (2.23).

Proof of Proposition B.2. Consider the following operator:

Pi(V ) = max
ct

{
ui(ct)∆t+ e−ρ∆tEit[Vi,t+∆t)]

}
, i = A,B (B17)

where maximization is subject to budget constraint (2.21) and collateral constraint
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(2.22). Consider the following functions:

V it =


0, γi < 1,

Eit
[+∞∑
τ=t

e−ρ(τ−t)ui(liDτ )∆t
]
, γi ≥ 1,

V it =


V unc
it , γi ≤ 1,

0, γi > 1,
(B18)

where V unc
t is given by (B3).

We observe that for γi ≥ 1 function V i is bounded due to condition (2.15)

imposed on model parameters. Because ct = liDt is feasible, we obtain that

P(V i) ≥ ui(liDt) + e−ρ∆tEit
[ +∞∑
τ=t+∆t

e−ρ(τ−t)ui(liDt)∆t
]

= V i.

For γi < 1 it is easy to see that P(V i) ≥ V i because ui(c) > 0. Next, we prove

that Pi(V i) ≤ V i. The latter inequality is straightforward for γi > 1 because

Pi(0) ≤ 0. Suppose now, γi ≤ 1. Consider operator P̃i(Vi) given by equation (B17),

where the maximization is subject to the budget constraint (2.21), but without the

collateral constraint (2.22). Hence, Pi(Vi) ≤ P̃i(Vi). By Lemma B.1, V unc

i is the

solution of the unconstrained optimization, and hence V i = P̃i(V i). Therefore,

Pi(V i) ≤ P̃i(V i) = V i.

We drop subscript and superscript i for convenience. Consider the sequence

Vn+1 = P(Vn), with V0 = V , where V is given in (B18). Then, by Lemma B.2,

Vn → V ∗ point-wise as n → ∞. Next, we show that V ∗ is the value function and

P(V ∗) = V ∗. By the definition operator P(V ) in (B17), for all feasible consumption

streams
Vn+1 ≥ u(ct)∆t+ e−ρ∆tEt [Vn(Wt+∆t; vt+∆t)]

≥ Et
[
n∆t∑
τ=t

e−ρ(τ−t)u(cτ )∆t
]

+ e−ρn∆tEt[V ].
(B19)

Taking point-wise limit n → ∞ in (B19) and taking into account that Et[V ] is

point-wise bounded, we obtain inequality (B15).

By Lemma B.2, V ∗ ≤ P(V ∗) and V ∗ ≤ V , where V is given in (B18), and hence

V ∗(Wt, vt) ≤ u(c∗t )∆t+ e−ρ∆tEt [V ∗(Wt+∆t; vt+∆t)]

≤ Et
[
T∑
τ=t

u(c∗τ )∆t
]

+ e−ρTEt[V ∗(WT , vT )]

≤ Et
[
T∑
τ=t

u(c∗τ )∆t
]

+ e−ρTEt[V (WT , vT )],

(B20)

where c∗ is the optimal consumption that solves optmization in equation (B17).
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We note that V = 0 for γ > 1 and lim sup e−ρTEt[V (WT , vT )] ≤ 0 as T →∞

for γ ≤ 1, by Lemma B.1. Taking limit T → ∞ in (B20) we find that V ∗ ≤

Et
[∑+∞

τ=t u(c∗τ )∆t
]
, which along with inequality (B15) yields (B16). Equation (B16)

along with inequality (B20) also imply that V ∗ = P(V ∗). Moreover, V ∗ is point-wise

bounded because V ≤ V ∗ ≤ V . Then, given the existence of the value function,

the optimal consumptions are given by (2.23). Finally, we show that V ∗ satis-

fies the transversality condition. We note that e−ρ(T−t)Et[V T ] ≤ e−ρ(T−t)Et[V ∗T ] ≤

e−ρ(T−t)Et[V T ]. Taking limit T → 0 we find that the upper and lower bound in the

latter equation converge to 0, and hence the transversality condition is satisfied for

V ∗. �

Proposition B.3 (Closed-form solutions).

1) In the limit ∆t→ 0 the price-dividend ratio Ψ and wealth-consumption ratios Φi

are given by equations (2.31) and (2.32), where function Ψ̂(v; θ) is given by:

Ψ̂(v; θ) =
∫ v

v
s(y)θψ̂(v−y)dy+

∫ v

v
s(y)θ

[
ψ̂′(v − y)− ψ̂(v − y)

]
dy

1 +H

(
ψ̂(v − v)−

∫ v−v

0
ψ̂(y)dy

) (
1−H

∫ v−v

0
ψ̂(y)dy

)
,

(B21)

where s(y) solves equation9 (2.14), and ψ̂(x), H and some auxiliary variables are

given by:

ψ̂(x) =
2
σ̂2
v

∞∑
n=0


2λ(1 + JD)1−γA

σ̂2
v


n

exp
(
(ζ+ + ζ−)(x+ nĴv)/2

)
(ζ+ − ζ−)2n+1n! (B22)

× Qn

(ζ+ − ζ−)(x+ nĴv)
2

1{x+nĴv≥0}

 , (B23)

Qn(x) = exp(−x)
n∑

m=0
(2x)n−m

(n+m)!
m!(n−m)!− exp(x)

n∑
m=0

(−2x)n−m
(n+m)!
m!(n−m)!, (B24)

H = λ+ ρ− (1− γA)µD +
(1− γA)γA

2 σ2
D − λ(1 + JD)1−γA , (B25)

9Although s(y) is not in closed form, we observe from equation (2.14) that its inverse is given

by s−1(x) = γB ln(x)− γA ln(1−x). The change of variable x = s(y) eliminates implicit functions,

similar to Chabakauri (2015). We keep all integrals in terms of s(y) because s(y) is intuitive and

easily computable from (2.14).
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ζ± = −
µ̂v + (1− γA)σ̂vσD ∓

√
(µ̂v + (1− γA)σ̂vσD)2 + 2σ̂2

v

(
λ+ ρ− (1− γA)µD + (1−γA)γA

2 σ2
D

)
σ̂2
v

.

(B26)

2) Stock return volatility in normal times and the jump size Jt are given by:

σt = σD +

Ψ̂′(vt;−γA)
Ψ̂(vt;−γA)

−
γA(1− s(vt))

γA(1− s(vt)) + γBs(vt)

 σ̂v, (B27)

Jt =
(1 + JD)Ψ̂

(
max{v; vt + Ĵv};−γA

)
s
(

max{v; vt + Ĵv}
)γA

Ψ̂(vt;−γA)s(vt)γA
− 1. (B28)

Numbers of shares n∗i,St and leverage Lit = −bitBit to market price St ratio are given

by:

n∗i,St =
Φi(vt)σD + Φ′i(vt)σ̂v

Ψ(vt)σt
,

Lit

St
= ni,St −

Φi(vt)
Ψ(vt)(1− lA − lB). (B29)

Proof of Proposition B.3. 1) First, we solve the differential-difference equation

in Lemma 2. We denote g(x) = Ψ̂(x + v; θ) and apply the following changes of

variables:

x = v − v, σ̃ = σ̂v, µ̃ = µ̂v + (1− γA)σDσ̂v, J̃ = −Ĵv, λ̃ = λ(1 + JD)1−γA ,

ρ̃ = λ+ ρ− (1− γA)µD +
(1− γA)γA

2 σ2
D.

(B30)

Equations (2.33) and (2.34) with new variables now become:

σ̃2

2 g
′′(x) + µ̃g′(x)− ρ̃g(x) + λ̃g(max{x− J̃ , 0}) + s(x+ v)θ = 0, (B31)

g′(0) = 0, g(v − v)− g′(v − v) = 0. (B32)

Let L [g(x)] =
∫∞

0 e−zxg(x)dx be the Laplace transform of g(x), and similarly for

other functions. The Laplace transforms of g′(x), g′′(x) and g(max{x − J̃ , 0}) are
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given by:

L [g′(x)] = zL [g(x)]− g(0),

L [g′′(x)] = z2L [g(x)]− zg(0)− g′(0),

L
[
g(max{x− J̃ , 0})

]
=

∫ ∞
0

e−zxg(max{x− J̃ , 0})dx

=
∫ J̃

0
e−zxg(0)dx+

∫ ∞
J̃

e−zxg(x− J̃)dx

=
1
z
(1− e−J̃z)g(0) + e−J̃zL [g(x)] .

(B33)

Applying the transform to equation (B31), we arrive at the following equation:

σ̃2

2 (z2L [g(x)]− zg(0)− g′(0)) + µ̃ (zL [g(x)]− g(0))− ρ̃L [g(x)]

+ λ̃

e−J̃zL [g(x)] +
1
z
(1− e−J̃z)g(0)

+ L
[
s(x+ v)θ

]
= 0.

(B34)

Applying boundary condition g′(0) = 0 and solving for L [g(x)], we obtain:

L [g(x)] =
L
[
s(x+ v)θ

]
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

+ g(0)

1
z
−

ρ̃− λ̃
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

·
1
z

 . (B35)

Now define a new function ψ̂(x) through inverse Laplace transform

ψ̂(x) = L−1

 1
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

 . (B36)

Next, we apply inverse transform to each term in (B35). Noting that L−1[1/z] = 1

and using the theorem which states that Laplace transform of a convolution is the

product of Laplace transforms, we derive the following inverse transforms:

L−1

 L
[
s(x+ v)θ

]
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

 =
∫ x

0
s(y + v)θ · ψ̂(x− y)dy,

L−1

 1
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

·
1
z

 =
∫ x

0
1{y≥0} · ψ̂(x− y)dy =

∫ x

0
ψ̂(y)dy.

(B37)

The linearity of the Laplace transform gives the following equation:

g(x) = L−1 [L [g(x)]] =
∫ x

0
s(y + v)θ · ψ̂(x− y)dy + g(0)

[
1−

(
ρ̃− λ̃

) ∫ x

0
ψ̂(y)dy

]
.

(B38)
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We calculate g(0) below, and then after changing the variable back from x to v =

x+ v, substituting in expressions for ρ̃ and λ̃ from (B30), we obtain (B21).

Next, we solve for ψ̂(x) in closed form. We expand L
[
ψ̂(x)

]
as series, and sum up

the inverse transforms of each term in the summation to get ψ̂(x).

L
[
ψ̂(x)

]
=

1
ρ̃− µ̃z − σ̃2

2 z
2 − λ̃e−J̃z

= (ρ̃− µ̃z − σ̃2

2 z
2)−1 · (1−

λ̃e−J̃z

ρ̃− µ̃z − σ̃2

2 z
2
)−1

=
∞∑
n=0

λ̃ne−nJ̃z

(ρ̃− µ̃z − σ̃2

2 z
2)n+1

.

(B39)

The above series converges for z such that |ρ̃− µ̃z− (σ̃2/2)z2| > |λ̃ exp(−J̃z)|. This

holds if the real part of z is sufficiently large, e.g., <(z) > 4|µ̃|/σ̃2 + (2/σ̃)
√
ρ̃+ λ̃.

The inverse Laplace transform can then be calculated along the line (z−i∞, z+i∞)

in the complex domain where z > 4|µ̃|/σ̃2 + (2/σ̃)
√
ρ̃+ λ̃, and hence, the inequality

for <(z) is satisfied.

Let ζ− < ζ+ be roots of ρ̃ − µ̃z − σ̃2z2/2 = 0, given by (B26). We use the

following inversion formula for 1/[(z− ζ+)(z− ζ−)]n+1 from Gradshteyn and Ryzhik

(2007, p. 1117):

L−1
[

1
[(z − ζ+)(z − ζ−)]n+1

]
=

√
π

Γ(n+ 1)
xn+ 1

2

(ζ+ − ζ−)n+ 1
2
e
ζ++ζ−

2 xIn+ 1
2

(
ζ+ − ζ−

2 x

)
.

(B40)

Function e−nJ̃z in the complex domain corresponds to a shift from x to x − nJ̃ .

Therefore,

L−1


λ̃ne−nJ̃z

(ρ̃− µ̃z −
σ̃2

2 z
2)n+1

 = λ̃n

− σ̃2

2


−n−1

1x≥nJ̃

×
√
π

Γ(n+ 1)
(x−nJ̃)n+ 1

2

(ζ+−ζ−)n+ 1
2
e
ζ++ζ−

2 (x−nJ̃)In+ 1
2

(
(ζ+−ζ−)(x−nJ̃)

2

)
.

(B41)

Consequently, the explicit expression for ψ̂(x) is given by:

ψ̂(x) =
∞∑
n=0

λ̃n
(
− σ̃

2

2

)−n−1 1{x≥nJ̃}
√
π

Γ(n+ 1)
(x− nJ̃)n+ 1

2

(ζ+ − ζ−)n+ 1
2
e
ζ++ζ−

2 (x−nJ̃)In+ 1
2

(
(ζ+ − ζ−)(x− nJ̃)

2

)
,

(B42)
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where function In+ 1
2
(·) is a modified Bessel function of the first kind, ζ− < ζ+ are

given by (B26) and ρ̃, µ̃, σ̃, λ̃, and J̃ are defined in (B30). Bessel function In+ 1
2
(·)

is given by (see equation 8.467 in Gradshteyn and Ryzhik (2007)):

In+ 1
2
(z) =

1
√

2πz

ez n∑
m=0

(−1)m(n+m)!
m!(n−m)!(2z)m + (−1)n+1e−z

n∑
m=0

(n+m)!
m!(n−m)!(2z)m

 .
(B43)

Substituting (B43) into (B42), after minor algebra, we obtain expression (B23) for

ψ̂(x). The infinite series (B42) has only finite number of non-zero terms because

for a fixed x indicators 1{x≥nJ̃} vanish for sufficiently large n, and hence, (B42) is

well-defined.

To find g(0) in equation (B38), we first evaluate ψ̂(0). From the above formula

(B42), because 1{0≥nJ̃} = 0 for all n > 0, we obtain

ψ̂(0) = − 2
σ̃2 ·

eζ+·0 − eζ−·0

ζ+ − ζ−
= 0. (B44)

Differentiating (B38) and using ψ̂(0) = 0, we find:

g′(x) =
∫ x

0
s(y + v)θ · ψ̂′(x− y)dy − g(0) ·

(
ρ̃− λ̃

)
ψ̂(x), (B45)

We solve for g(0) from the boundary condition g(v− v)− g′(v− v) = 0 and obtain:

g(0) =

∫ v−v

0
s(y + v)θ ·

[
ψ̂′(v − v − y)− ψ̂(v − v − y)

]
dy

1−
(
ρ̃− λ̃

) ∫ v−v

0
ψ̂(y)dy +

(
ρ̃− λ̃

)
ψ̂(v − v)

. (B46)

Substituting (B46) into (B38), we derive equation (B21) for Ψ̂(v; θ).

2) Next we solve for stock volatility and jump size. In the unconstrained region

v < vt < v, stock price St, dividend Dt and state variable vt follow processes:

dSt = St[µtdt + σtdwt + Jtdjt],

dDt = Dt[µDdt + σDdwt + JDdjt],

dvt = µ̂vdt+ σ̂vdwt +
(
max{v; vt + Ĵv} − vt

)
djt.

(B47)

Applying Ito’s lemma to St = (1 − lA − lB)Ψ̂(vt;−γA)s(vt)γADt, and matching dwt
and djt terms, after some algebra, we obtain σt and Jt in Proposition B.3.
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Equation equation (2.9) for Wi,t+∆t, implies the following expressions for n∗i,St
and b∗it:

n∗i,St =

√√√√√ vart[Wi,t+∆t −Wit|normal]
vart[∆St + (1− lA − lB)Dt∆t|normal],

b∗it = Et[Wi,t+∆t|normal]− nitEt[St+∆t + (1− lA − lB)Dt+∆t∆t|normal].

Taking limit ∆t→ 0 in the above expressions and using expansions similar to those

in the proof of Lemma 2, we obtain the number of stocks and the leverage per the

market value of stocks in equation (B29).
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Chapter 3

Information Acquisition with Long

Lived Assets

This paper studies information acquisition with a long-lived risky asset that gener-

ates dividends in each period. The investors can either be informed or uninformed,

and the informed investors actively acquire information on the time-varying dividend

growth rate. Informed investors take short positions in the variance swap to real-

ize their informational advantage; the uninformed investor takes a long position to

hedge his risks. Serial correlation of returns is decreasing in information acquisition

of informed investors. Low uncertainty induces investors to acquire less information

and decreases the cross-sectional dispersion of beliefs in expected returns.

Keywords: Information acquisition, Dividend growth, Variance swap, Rational

expectations equilibrium
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3.1. Introduction

Investors in financial markets acquire private signals on asset fundamentals and em-

ploy this information in their trading strategies. This fundamental value changes

over time and the value of old signals decays as time progresses. Therefore infor-

mation acquisition on this time-varying fundamental affects how asset returns are

correlated in time-series and cross-sectional dimensions. In this paper, I develop a

rational expectations model where investors endogenously acquire information and

trade a long-lived dividend-paying asset as well as a volatility derivative.

The economy is populated by a continuum of informed investors and a repre-

sentative uninformed investor. They trade a long-lived risky asset that generates

dividends in each period, and the growth rate of dividends consists of a time-varying

fundamental component and a noise component. The informed investors could ac-

quire private signals about the fundamental at a cost that is quadratic in signal

precision. Exogenous noisy supply of the asset prevents the price from fully reveal-

ing the fundamental. A variance swap that pays the difference between the realized

variance of the excess return and a fixed strike is also traded in this economy.

The uninformed investor learns from the realized dividend growth and changes

in prices. The informed investors have access to private signals in addition to the

information that is available to the uninformed investor. An informed investor’s

expected excess return is increasing in the difference between his estimate of the

dividend growth and that of the uninformed. Information acquisition leads to more

accurate estimates of the excess return and reduces asset volatility from the informed

investors’ perspective.

The informed investors possess an information advantage over the uninformed

investor and are willing to take short positions in the variance swap to profit from

this advantage. The uninformed investor takes a long position because the variance

swap insures his wealth against extreme movements of asset prices. In equilibrium,

both investors take up positions such that their marginal utility weighted risk-neutral

variances of returns are equal to the price of variance, measured by the strike of the

variance swap.

The informed investors choose a level of signal precision that equates the marginal

cost of information to the marginal value of information. The cost of information is
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quadratic and this limits the amount of information the investor is willing to acquire

in a single period. The value of information is increasing in uncertainty about the

fundamental dividend growth rate and noise trader demands. When uncertainty is

high, investors face better investment opportunities and acquire more precise private

signals as a result.

An investor’s unexpected return and future expected returns are both increas-

ing in the difference between the true value of the fundamental and this investor’s

estimate. This estimation error component contributes to positive serial correlation

in asset returns. Information acquisition reduces the magnitude of this component

and therefore decreases the autocorrelation of returns for the informed investors.

Highest cross-sectional dispersion of beliefs in asset returns is realized when in-

formation acquisition is at an intermediate level. When private signals are imprecise,

all informed investors’ estimates of both the return and the dividend growth are all

close to those of the uninformed investor. When investors acquire highly precise

private signals, all investors’ estimates of the dividend growth are close to its true

value. In both cases dispersion of beliefs is small. Lower uncertainty about the

fundamental decreases the value of information, induces investors to acquire less

information, and reduces the cross-sectional dispersion of beliefs.

This paper is related to an extensive literature on information acquisition in

financial markets, initiated by Grossman and Stiglitz (1980) and Verrecchia (1982).

The model builds upon the dynamic asymmetric information asset pricing framework

developed by Wang (1993). That paper works with the assumption that informed

investors are endowed with perfect information about the fundamental component of

dividend growth. Wang (1993) solves the rational expectations equilibrium in closed

form, and demonstrates that information asymmetry among investors increases the

risk premium, price volatility, and negative autocorrelation in returns.

This paper instead allows investors to endogenously choose their signal preci-

sion. In equilibrium, no investor chooses to acquire perfectly informative signals

because the fundamental is time-varying and the value of old signals decays as time

progresses. Investors acquire different pieces of information and their sources of

private information are assumed to be independent, as in Hellwig (1980). This as-

sumption introduces cross-sectional dispersion of beliefs on expected returns among
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informed investors. In addition, the equilibrium is symmetric within the group of

informed investors if the cost of information acquisition is the same across investors.

This assumption facilitates the analytical solution of the model. If instead investors

are competing for the same stream of information, no equilibrium where informed

investors acquire the same precision of information can exist.

I further analyze the impact of information acquisition on the serial correlation of

returns and investors’ trading strategies. Both Wang (1993) and Brennan and Cao

(1996) find that uninformed investors behave as rational trend-followers, while more

informed investors follow a contrarian strategy. I establish a link between investors’

trading strategies and the amount of information they privately acquired. Because

information acquisition is affected by uncertainty, this analysis opens up a channel

between uncertainty and differences in trading strategies.

This paper introduces a volatility derivative market which facilitates risk-sharing

between informed and uninformed investors. The informed investors possess an

information advantage on asset returns and sell insurance-like variance swaps to

the uninformed investor. Brennan and Cao (1996) consider a model with one risky

asset realizing a terminal payoff and a quadratic derivative is written on it. They

found that the derivative does not reveal any additional information and effectively

completes the market. Chabakarui, Yuan and Zachariadis (2016) further extend

this result to economies without payoff normality. These papers assume that the

fundamental value stays the same over time, whereas in this model the fundamental

that investors acquire private signals on is time-varying. The market is not effectively

complete because dividend strips are not traded and a noise component of dividend

growth cannot be learned.

This paper is organized as follows. Section 2 introduces the model setup. Section

3 characterizes the equilibrium, solves the signal precision choice for the informed in-

vestor, and solves the portfolio demands for both informed and uninformed investors.

Section 4 analyzes the impact of information acquisition on return autocorrelation

and cross-sectional dispersion of beliefs. Section 5 concludes.
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3.2. Model

I consider an infinite-horizon discrete time economy that features a single long-lived

risky asset. The asset generates dividend dt at date t and its ex-dividend price is

denoted by pt. The dividend growth consists of two components, one fundamental

component ft and one “noise” component εdt+1 ∼ N (0, τ−1
d ), where τd is a constant

precision parameter.

dt+1 − dt = ft + εdt+1. (3.1)

The fundamental component of dividend growth is persistent. It follows an

AR(1) process and reverts to its long-run mean f . The speed of mean reversion is

represented by parameter λ.

ft+1 − ft = −λ(ft − f) + εft+1, εft+1 ∼ N (0, τ−1
f ). (3.2)

Investors and Information Acquisition

The investors in the economy can be either informed or uninformed about the

fundamental component of dividend growth ft. There is a continuum of informed

investors indexed by i ∈ [0, 1] and a representative uninformed investor with a mass

of unity. Both types of investors learn from the time series of prices and dividends.

The informed investors have access to the public information and also have an

opportunity to acquire private signals. The signal at date t for investor i is repre-

sented by sit. The signal is acquired before trading starts and the investor could

employ this signal in his portfolio choice at date t. The precision of the private

signal ait is endogenously determined by the investor.

sit = ft + εsit, εsit ∼ N (0, a−1
it ). (3.3)

New information comes at a cost that is quadratic in the signal precision. This

cost takes a quadratic form ka2
it/2. The marginal cost of information kait is propor-

tional to the signal precision.

For simplicity, I assume that investors acquire different pieces of information and

their sources of private information are independent. The noises in private signals

εsit are independent both over time and across investors.

Assets
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All investors have access to a risk-free storage technology with a constant rate

of return r. They can borrow and lend at this interest rate with no additional cost.

The excess return of the risky asset is (pt+1 − pt + dt+1) − rpt, which we denote as

ret+1.

Demand from the noise traders prevents the price from fully revealing the fun-

damental. Let zt denote the difference between the total supply of the risky asset

and its noisy demand. The residual supply zt has a long-run stationary level z:

zt+1 − zt = −λ(zt − z) + εzt+1, εzt+1 ∼ N (0, σ2
z). (3.4)

There is a volatility derivative market in this economy, and the underlying asset

is the risky asset. At date t, investors could trade a one-period variance swap

exchanges the realized variance of the excess return (ret+1)2 for some fixed “strike”

vt at date t+ 1. vt is typically set to make the value of the payoff (ret+1)2−vt zero at

the initiation of the trade. The net supply of this one-period variance swap is zero.

Preferences and Investor Optimization

At date t, the representative uninformed investor allocates his wealth Wut to

cut units of consumption, θut units of the risky asset, and ψut units of one-period

variance swap. He invests the remaining Wut − cut − θutpt in the risk-free storage

technology. Let Wit represent the wealth of informed investor i before trading starts

but after the acquisition of information at date t. Similarly, his consumption and

portfolio choices are denoted by cit and (θit, ψit).

All investors have constant absolute risk aversion (CARA) preference with time

preference parameter ρ and risk aversion parameter A. They maximize their ex-

pected utilities:

Eut

[ ∞∑
s=t
− exp (−ρ(s− t)− Acus)

]
, (3.5)

Eit

[ ∞∑
s=t
− exp (−ρ(s− t)− Acis)

]
. (3.6)

subject to their self-financing budget constraints:

Wu,t+1 = (1 + r)(Wut − cut) + θutr
e
t+1 + ψut

[
(ret+1)2 − vt

]
, (3.7)

Wi,t+1 = (1 + r)(Wit − cit) + θitr
e
t+1 + ψit

[
(ret+1)2 − vt

]
− k

2a
2
i,t+1. (3.8)

Definition of Equilibrium
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The definition of equilibrium is standard. Investors make the optimal portfolio

and signal precision choices and the market clears.

Definition 1. The equilibrium is a set of risky asset prices pt, variance swap strikes

vt, portfolio policies (θut, ψut) and (θit, ψit), and signal precision policies ait that solve

the optimization problem (3.5) and (3.6) for uninformed and informed investors and

clear the asset markets:

θut +
∫ 1

0
θitdi = zt, (3.9)

ψut +
∫ 1

0
ψitdi = 0. (3.10)

3.3. Characterization of Equilibrium

I characterize a stationary equilibrium in a three-step process similar to that of Wang

(1993). I first conjecture an equilibrium price function and derive investors’ belief

processes. Next, I solve the signal precision choices for the informed investors and

the portfolio choices for both informed and uninformed investors. Market clearing

is then imposed to pin down the coefficients in the conjectured price function.

3.3.1 Asset Price and Evolution of Beliefs

The uninformed investor learn from the entire history of prices and dividends. Let

f̂ut = Eut [ft] denote the expectation of the fundamental dividend growth rate by the

uninformed investor and τut = (Varut [ft])−1 denote the precision of this belief. In

contrast to Wang(1993), the informed investors do not directly observe the funda-

mental ft. They have access to private signals in addition to the information that is

available to the uninformed investor. I use τit = (Varit[ft])−1 to represent the belief

precision of investor i after information acquisition at date t, and f̂it = Eit[ft] to

represent the conditional expectation after incorporating the private signal sit.

The uninformed investor’s expectation of the present value of future dividends

is given by:

Eut

[ ∞∑
s=t+1

e−r(s−t)ds

]
= 1
r
dt + 1 + r

r(r + λ) f̂u + (1 + r)λ
r2(r + λ)f (3.11)

The equilibrium price differs in two aspects from the above expression. Informed

investors also incorporate private signals in their trading strategies. Investor i’s asset
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demand is increasing in f̂it− f̂ut, the difference between his estimate of the dividend

growth rate and that of the uninformed. Because noises in informed investors’

private signals are independent, the average difference in beliefs between informed

and uninformed investors is equal to ft− f̂ut. As a result, the asset price is increasing

in the average difference in beliefs. The investors also demand a risk premium for

the risk involved in uncertain cash flows. This risk premium is larger when the

supply of the risky asset zt is higher.

Because investors have CARA preferences and all state variables are jointly nor-

mally distributed, we look for the equilibrium price in a form that is linear in the

average difference in beliefs ft − f̂ut and the asset supply zt:

pt = 1
r
dt + 1 + r

r(r + λ) f̂ut + (1 + r)λ
r2(r + λ)f − b0 + bf (ft − f̂ut)− bz(zt − z). (3.12)

Coefficients bf and bz are both positive and respectively measure the sensitivity

of price to ft− f̂ut and zt. b0 represents the average discount of the asset price when

the average difference is zero and the asset supply is equal to its long-run stationary

level. Because f̂ut belongs to the information set of both informed and uninformed

investors, price pt is informationally equivalent to its sufficient statistic bfft − bzzt.

This sufficient statistic also belongs to both investors’ information set. This implies

that the uninformed investor’s expectation of this sufficient statistic Eut [bfft−bzzt] is

equal to its true value bfft−bzzt. As a result, the uninformed investor’s expectation

of the asset supply ẑut = Eut [zt] is given by:

ẑut = zt + bf
bz

(f̂ut − ft). (3.13)

The uninformed investor updates his belief from both changes in prices and the

realized dividend growth. This belief is therefore affected by the shocks to asset

supply and the noise component of dividend growth. Lemma 1 reports how their

expectation and belief precision evolve. Proofs of all lemmas and propositions are

given in the appendix.

Lemma 1. The law of motion of the uninformed investor’s belief precision τut,

expectation of the dividend growth rate f̂ut, and expectation of asset supply ẑut are
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given by:

τu,t+1 =
[
(1− λ)2(τut + τd)−1 +

b2
zτ
−1
f τ−1

z

b2
fτ
−1
f + b2

zτ
−1
z

]−1

, (3.14)

f̂u,t+1 = λf + (1− λ) τut
τut + τd

f̂ut + (1− λ) τd
τut + τd

ft

+ (1− λ) τd
τut + τd

εdt+1 +
bfτ
−1
f

b2
fτ
−1
f + b2

zτ
−1
z

(
bfε

f
t+1 − bzεzt+1

)
, (3.15)

ẑu,t+1 = λz + (1− λ) τut
τut + τd

ẑut + (1− λ) τd
τut + τd

zt

+ bf
bz

(1− λ) τd
τut + τd

εdt+1 −
bzτ
−1
z

b2
fτ
−1
f + b2

zτ
−1
z

(
bfε

f
t+1 − bzεzt+1

)
. (3.16)

The uninformed investor’s belief precision is constant over time in a station-

ary equilibrium and I use τu to represent this constant level. The dynamics of

the informed investors’ expectations and belief precision are similar to that of the

uninformed investor and are provided in Lemma 2.

Lemma 2. The law of motion of the informed investors i’s belief precision τit and

expectation f̂it are given by:

τi,t+1 =
[
(1− λ)2(τit + τd)−1 +

b2
zτ
−1
f τ−1

z

b2
fτ
−1
f + b2

zτ
−1
z

]−1

+ ai,t+1, (3.17)

f̂i,t+1 =
(

1− ai,t+1

τi,t+1

) [
λf + (1− λ) τit

τit + τd
f̂it + (1− λ) τd

τit + τd
ft

+(1− λ) τd
τu + τd

εdt+1 +
bfτ
−1
f

b2
fτ
−1
f + b2

zτ
−1
z

(
bfε

f
t+1 − bzεzt+1

)]

+ ai,t+1

τi,t+1

(
ft+1 + εsi,t+1

)
. (3.18)

3.3.2 Portfolio and Signal Precision Choices

I start this section with analysis on investor’s investment opportunities, with focus

on the excess return of the asset ret+1 = pt+1 + dt+1 − (1 + r)pt. Because the asset

price depends on the uninformed investor’s estimate of the fundamental f̂ut, the

return also relies on the belief dynamics of the uninformed investors. Let bfu =

(1 + r)/r(r + λ) − bf denote the coefficient of f̂ut in the equilibrium price function

(3.12). From equations (3.12) and (3.15)-(3.18) I arrive at the excess return of the

asset and investors’ conditional expectations. Lemma 3 reports these results.
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Lemma 3. The excess return of the risky asset ret+1 is given by:

ret+1 = rb0 +
[
r + λ+ (1− λ) τd

τu + τd

]
bfu(ft − f̂ut) + (r + λ)bz(zt − z)

+
(1 + r

r
+ (1− λ) τd

τu + τd
bfu

)
εdt+1 +

(
1 +

bfτ
−1
f

b2
fτ
−1
f + b2

zτ
−1
z

bfu

)(
bfε

f
t+1 − bzεzt+1

)
.

(3.19)

The expected excess return from the uninformed investor’s perspective is:

Eut [ret+1] = rb0 + (r + λ)bz(ẑut − z). (3.20)

For informed investor i, the expected excess return is:

Eit[ret+1] = rb0 +
[1 + r

r
+ (1− λ) τd

τu + τd
bfu

]
(f̂it − f̂ut) + (r + λ)bz(ẑut − z).

(3.21)

Similar to the asset price, the excess return ret+1 is increasing in the asset supply

zt and the average difference in beliefs between informed and uninformed investors

f − f̂ut. Both investors’ expected returns depend on their estimation of the asset

supply. From informed investor i’s perspective, the expected return is linear in the

difference between his estimate of the fundamental f̂it and that of the uninformed

investor f̂ut. The private signals acquired by the informed investors provide them a

more precise estimate of the time series of asset returns.

Let σ2
ut = Varut [ret+1] denote the conditional variance of the excess return for the

uninformed investor and σ2
it = Varit[ret+1] denote that for the informed investor. The

informed investors face less uncertainty compared to the uninformed investor, and

this difference is increasing in the amount of information they privately acquired.

Different beliefs about uncertainty provide the informed investors an incentive to

take short positions in the variance swap and the uninformed investor an incentive

to take a long position.

Consider the situation where I weight each outcome of the excess return by

one investor’s marginal utility. The resulting measure is this investor’s risk-neutral

distribution of ret+1, and I refer to the variance of this distribution as the risk-neutral

variance. In the absence of the variance swap market, the risk-neutral variances of

the excess return differ across investors. The introduction of the variance swap

market equalizes this difference.
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When the uninformed investor takes zero position in the variance swap market,

his risk-neutral variance is higher than the strike of variance swap vt. Therefore it is

profitable for him to take a long position to hedge extreme risks. Long positions in

the variance swap increase the utility when price movements are large and therefore

decreases the risk-neutral variance. The uninformed investor will continue to take

long positions until his risk-neutral variance is equal to the strike of the variance

swap. Similarly, the informed investors start with a risk-neutral variance lower than

the strike of variance swap and will continue to take short positions until their risk-

neutral variances reach vt. Thus vt represents the variance of the excess return for

all investors in their risk-neutral measures.

Now I investigate the optimization problem of the uninformed investor. The

only state variable that plays a role in this investor’s next period expected return is

his estimate of the asset supply ẑut. Furthermore, this state variable is Markovian

from the uninformed investor’s perspective. From equation (3.16), the conditional

expectation of ẑu,t+1 only relies on ẑut:

Eut [ẑu,t+1] = λz + (1− λ)ẑut. (3.22)

Therefore all information about future investment opportunities at date t is

summarized by ẑut. As a result, the value function of the uninformed investor only

depends on ẑut and not f̂ut.

With the above analysis in mind, I proceed to solve the uninformed investor’s

optimization problem. Proposition 1 reports the portfolio choice of the uninformed

investor.

Proposition 1. Let σ2
uz = Varut [ẑu,t+1] denote the conditional variance of ẑu,t+1 and

ρurz = Corrut [ret+1, ẑu,t+1] denote the conditional correlation of ẑu,t+1 and ret+1. The

value function of the uninformed investor has the following form:

V (Wut, ẑut) = − exp
(
−rAWu,t −

αuz
2 (ẑut − z)2 − βuz(ẑut − z)− γuz

)
. (3.23)

The uninformed investor’s demand for the risky asset is:

θut = (1 + α∗uzρ
2
urzσ

2
uz)

Eut [ret+1]
rAσ2

ut

− [α∗uz(1− λ)(ẑut − z) + β∗uz]
ρurzσuz
rAσut

. (3.24)

where α∗uz and β∗uz are functions of αuz, βuz, ρiuz and σuz
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His position in the variance swap is given by:

ψut = 1
2rAvt

− (1 + α∗uzρ
2
urzσ

2
uz)

1
2rAσ2

ut

. (3.25)

The myopic demand for the risky asset is determined by Eut [ret+1], which is linear

in the uninformed investor’s estimate of the supply ẑut. ẑut also naturally appears

in the investor’s hedging demand. Therefore the uninformed investor’s demand for

the risky asset is linear in ẑut.

If the variance swap is not traded, the risk-neutral variance of excess return for

the uninformed investor is equal to σ2
ut/(1 + α∗uzρ

2
rzσ

2
z). ẑu,t+1 measures the next

period expected return of this asset and is correlated with the current period unex-

pected return ret+1 − Eut [ret+1]. The investor benefits from better future investment

opportunities when price movements are large. This increase in utility in these states

reduces the risk-neutral variance to a level below that in the objective physical mea-

sure σ2
ut. The investor takes positions in the variance swap if σ2

ut/(1 + α∗uzρ
2
rzσ

2
z) is

different from the strike vt and the demand is given by equation (3.25).

Next I look at the portfolio choice of the informed investors. Different from that

of the uninformed investor, the expected excess return of the informed investors

consists of two components: difference in belief f̂it−f̂ut and the uninformed investor’s

estimate of asset supply ẑut. A high precision of belief provides an accurate estimate

of the current period excess return. It also translates into precise predictions about

future investment opportunities. The dynamics of both f̂it − f̂ut and ẑut rely on

investor i’s estimate of ft:

Eit[f̂i,t+1 − f̂u,t+1] = (1− λ) τu
τu + τd

(f̂it − f̂ut), (3.26)

Eit[ẑu,t+1] = z + (1− λ)(ẑut − z) + (1− λ) τd
τu + τd

bf
bz

(f̂it − f̂ut). (3.27)

All information about future investment opportunities at date t is summarized

by f̂it − f̂ut and ẑut , and both state variables enter the informed investors value

function. In this model, Wit represents the date t wealth before trading but after

the acquisition of information. I similarly define the value function as the investor’s

expected utility after the incorporation of the private signal into his belief. The

value function and the portfolio choice of the informed investors are provided in

Proposition 2.
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Proposition 2. Let σ2
iz = Varit[ẑu,t+1] and σ2

if = Varit[f̂it − f̂ut] denote informed in-

vestor i’s conditional variances. Let ρirz = Corrit[ret+1, ẑu,t+1] and ρirf = Corrit[ret+1, f̂i,t+1−

f̂u,t+1] denote the conditional correlations. The value function of the informed in-

vestor i has the following form:

V (Wut, ẑut, f̂it − f̂ut, τit) = − exp
(
−rAWit −

αz
2 (ẑut − z)2 − αfτit

2 (f̂it − f̂ut)2

−αzf (ẑut − z)(f̂it − f̂ut)− βz(ẑut − z)− βf (f̂it − f̂ut)− γ(τit)
)
.

(3.28)

The uninformed investor’s demand for the risky asset is:

θit =
(
1 + α∗zρ

2
irzσ

2
iz + α∗fτi,t+1ρ

2
irfσ

2
if + 2α∗zfρirzρirfσizσif

) Eut [ret+1]
rAσ2

ut

,

−
[
α∗z Eit[ẑu,t+1 − z] + α∗zf Eit[f̂i,t+1 − f̂u,t+1] + β∗z

] ρirzσiz
rAσit

−
[
α∗zf Eit[ẑu,t+1 − z] + α∗fτi,t+1 Eit[f̂i,t+1 − f̂u,t+1] + β∗f

] ρirfσif
rAσit

. (3.29)

His position in the variance swap is given by:

ψit = 1
2rAvt

−
(
1 + α∗zρ

2
irzσ

2
iz + α∗fτi,t+1ρ

2
irfσ

2
if + 2α∗zfρirzρirfσizσif

) 1
2rAσ2

it

. (3.30)

Informed investor i’s demand for the risky asset is linear in the two state variables

ẑut and f̂it − f̂ut. The investor’s position on the variance swap ψit depends on both

the strike vt and his risk-neutral variance in the absence of the variance market.

Last I come to the informed investors’ information acquisition choices. Because

of normal distribution and CARA preference, the signal precision choices do not

depend on the level of wealth or previous estimates of the asset supply ẑu,t−1 or

the fundamental f̂i,t−1− f̂u,t−1. The value function V (Wut, ẑut, f̂it− f̂ut, τit) given in

Proposition 2 represents investor i’s expected utility after the acquisition of infor-

mation. At the beginning of date t, investor i chooses the precision of his private

signal ait to maximize this objective. Investor i’s belief precision τit follows the law

of motion given in Lemma 2 and maps one-to-one to ait:

τit =
[
(1− λ)2(τi,t−1 + τd)−1 +

b2
zτ
−1
f τ−1

z

b2
fτ
−1
f + b2

zτ
−1
z

]−1

+ ait (3.31)

Therefore the problem could be reformulated a choice of the optimal τit. This

belief precision choice determines the distribution of the state variable f̂it − f̂ut.
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Substituting the expression of f̂it − f̂ut into the value function (3.28), integrating

over the realization of the private signal sit, and differentiating with respect to τit:

∂

∂τit
V (Wut, ẑut, f̂it − f̂ut, τit) = V (Wut, ẑut, f̂it − f̂ut, τit)

[
αf
2 + βf

2τit
+ γ′(τit)

]
.

(3.32)

The above expression gives the marginal value of information in terms of util-

ity. The cost of information in terms of wealth is ka2
it/2 and the marginal cost of

information is kait. In equilibrium, the investor selects a signal precision level that

equalizes the value of information with the cost of information:

ait = 1
k

[
αf
2 + βf

2τit
+ γ′(τit)

]
. (3.33)

There is a limit to how much information the investor is willing to acquire. The

cost of information is quadratic in this setup, and it is prohibitively expensive to

acquire a large amount of information in a short time. In addition, the marginal

value of information is decreasing in the investor’s belief precision τit. Even if the

investor pushes this precision to infinity, his utility is still finite and bounded from

above. Two factors contribute to this result. First, the noise component in dividend

growth εdt+1 is assumed to be unlearnable. An investor endowed with complete

information about the fundamental component of dividend growth would still face

investment risks. Second, the value of a signal on the fundamental at a given date

decreases as time progresses. The fundamental ft also evolves over time and signals

on past values could not by itself contribute to an accurate estimate of the current

value.

The analysis focuses on a stationary equilibrium where belief and signal precision

are all constant over time. It is still helpful to intuitively think about what will

happen if the informed investors’ belief precision start at a level different from that

in the stationary equilibrium. If the informed investors are endowed with more

information, the marginal value of information will be smaller and investors will

acquire less information compared to the stationary level. Conversely, investors will

acquire more information if they start with less precise beliefs. As time progresses,

investors’ belief and signal precision will converge to the stationary level.
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3.3.3 Market Clearing

First I analyze equilibrium in the variance swap market. The equilibrium is sym-

metric within the group of informed investors: belief precision τit, signal precision

ait, and all conditional correlations and variances ρirz, ρirf , σ2
iz and σ2

if are constant

across investors. The reason is that the cost of information is the same and that

realizations of belief and private signals do not affect precision in a normal distri-

bution setup. As a result, the risk-neutral variance in the absence of the variance

swap is the same for all informed investors. Their positions in the variance swap are

also the same from equation (3.30).

The informed and uninformed investors have equal mass and take opposite po-

sitions in the variance swap. Substituting (3.30) and (3.25) into (3.10):

ψut = 1
2

[
(1 + α∗uzρ

2
urzσ

2
uz)

1
2σ2

ut

−
(
1 + α∗zρ

2
irzσ

2
iz + α∗fτi,t+1ρ

2
irfσ

2
if + 2α∗zfρirzρirfσizσif

) 1
2σ2

it

]
,

(3.34)

ψit = −ψut, (3.35)

vt =
[
(1 + α∗uzρ

2
urzσ

2
uz)

1
2σ2

ut

+
(
1 + α∗zρ

2
irzσ

2
iz + α∗fτi,t+1ρ

2
irfσ

2
if + 2α∗zfρirzρirfσizσif

) 1
2σ2

it

]−1

(3.36)

The strike of the variance swap vt is equal to the harmonic mean of two groups of

investors’ risk-neutral variances without variance swaps. The uninformed investor

takes a long position in the variance swap market and the informed investors take

short positions. Long positions decrease investors’ risk-neutral variances and the

converse happens for short positions. In equilibrium, the risk-neutral variances for

both informed and uninformed are equal to vt.

Next, I impose market clearing for the risky asset itself. Because the equilibrium

is symmetric within the group of informed investors, their asset demands (3.29) can

be simplified to the following expression:

θit = h0 + hf (f̂it − f̂ut) + hz(ẑut − z). (3.37)

where h0, hf , and hz are constants and do not depend on the index of the investor.

Similarly for the uninformed investor:

θit = hu0 + huz(ẑut − z). (3.38)
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The average of difference in beliefs f̂it − f̂ut is equal to f − f̂ut. From (3.13),

f − f̂ut = bz(zt − ẑut)/bf . Substituting (3.37) and (3.38) into (3.9):

zt =
∫ 1

0
θitdi+ θut

= h0 + hu0 + hf (ft − f̂ut) + (hz + huz)(ẑut − z)

= h0 + hu0 + hf ·
bz
bf

(zt − ẑut) + (hz + huz)(ẑut − z) (3.39)

Comparing both sides of the equation:

hz + huz = 1, (3.40)
bz
bf
· hf = 1, (3.41)

h0 + hu0 = z. (3.42)

The above system of equations allows me to numerically pin down the coefficients

in the conjectured equilibrium price function (3.12). I start from an initial guess of

bf and bz and proceed to solve the uninformed investor’s value function and portfolio

demands. The uninformed investor’s belief precision is solved by setting τu,t+1 equal

to τut in equation (3.14).

The informed investors’ belief precision and signal precision satisfy two equa-

tions: the law of motion of beliefs (3.17) and the information acquisition decision

(3.33). In the former equation, the stationary level of belief precision is increasing in

the amount of information acquired. In the latter equation, higher belief precision

reduces the value of information and thus the signal precision. This system of equa-

tions for τit and ait thus have a unique solution given bf and bz. The asset demand

equations (3.40) and (3.41) then determine bf and bz and then (3.42) determines the

average discount of the asset price b0.

3.4. Analysis of Equilibrium

I investigate how information acquisition influences return autocorrelation and cross-

sectional dispersion of beliefs in this section. I first analyze how uncertainty affects

information acquisition. In section 4.1, I study the serial correlation of returns

for both informed and uninformed investors. In section 4.2, I study the cross-

sectional dispersion of beliefs among the informed investors. All results come from
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comparative statics analysis and do not involve the motion towards a new stationary

equilibrium. A fully dynamic model where information acquisition endogenously

reacts to exogenous news shocks would be a good direction for future research.

The fundamental that investors acquire private signals on is time-varying in this

model. In a setup where the fundamental value stays the same over time, information

acquisition is determined by uncertainty about the fundamental which is measured

by its risk-neutral variance. No such simple relationship exists in this setup, because

not all components of asset returns can be learned and information acquired today

also plays a role in future portfolio decisions.

However, uncertainty about the fundamental dividend growth and supply shocks

is still the primary driving force behind investors’ information acquisition. The

value of information is increasing in the innovation variance of the fundamental τ−1
f .

When the noise trader demands are more volatile, investors face better investment

opportunities and they could expect to realize higher profits from the same piece of

information.

Investors acquire more information in response to higher uncertainty and this

mitigates the initial impact of uncertainty on asset volatility. Compared to the

case where private signals with fixed precision are received, the informed investors

in this high uncertainty situation have a more precise belief and thus trade more

aggressively in the asset market. As a result, asset prices become more informative

about the fundamental and future expected return. This is reflected in the variance

swap market with a lower level of risk-neutral variance or strike vt.

3.4.1 Serial Correlation of Returns

The uninformed investor’s unexpected return in the current period consists of 3

components: the difference between the true value of fundamental and his estimate

ft − f̂ut, the noise component of dividend growth εdt+1, and innovations in dividend

growth and asset supply bfεft+1 − bzεzt+1:

ret+1 − Eut [ret+1] =
(1 + r

r
+ (1− λ) τd

τu + τd
bfu

)
(ft − f̂ut)

+
(1 + r

r
+ (1− λ) τd

τu + τd
bfu

)
εdt+1 +

(
1 +

bfτ
−1
f

b2
fτ
−1
f + b2

zτ
−1
z

bfu

)(
bfε

f
t+1 − bzεzt+1

)
.

(3.43)
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The next period expected return Eut+1[ret+2] also consists of its date t expectation

Eut [ret+2] and these three components:

Eut+1[ret+2] = Eut [ret+2] + (r + λ)(1− λ) τd
τu + τd

(ft − f̂ut)

+ (r + λ)(1− λ) τu
τu + τd

bfε
d
t+1 − (r + λ) b2

zτ
−1
z

b2
fτ
−1
f + b2

zτ
−1
z

(
bfε

f
t+1 − bzεzt+1

)
.

(3.44)

Both ft − f̂ut and εdt+1 components contribute to positive autocorrelation in re-

turns. When price and dividend news indicate that dividend growth is likely to be

above his current expectation, the investor revises his beliefs upwards and this leads

to persistence. The bfεft+1− bzεzt+1 term on the contrary contributes to negative au-

tocorrelation in returns. Supply shocks that lead to a positive return in the current

period are expected to reverse itself in future periods.

Positive serial correlation from the estimation error in the fundamental ft − f̂ut
decays more quickly compared to the negative serial correlation from supply shocks.

From equation (3.4), the asset supply zt reverts to its mean at a speed of 1−λ. The

estimation error ft − f̂ut, however, reverts at a faster speed (1− λ)τu/(τu + τd):

ft+1 − f̂u,t+1 = (1− λ) τu
τu + τd

(ft − f̂ut)

+ εft+1 − (1− λ) τd
τut + τd

εdt+1 −
bfτ
−1
f

b2
fτ
−1
f + b2

zτ
−1
z

(
bfε

f
t+1 − bzεzt+1

)
(3.45)

As the horizon increases, positive autocorrelation from the estimation error be-

comes weaker in comparison with negative autocorrelation from supply shocks.

Therefore returns are more likely to exhibit reversal at long horizons.

The informed investor i’s unexpected return is given by:

ret+1 − Eit[ret+1] =
(1 + r

r
+ (1− λ) τd

τu + τd
bfu

)
(ft − f̂it)

+
(1 + r

r
+ (1− λ) τd

τu + τd
bfu

)
εdt+1 +

(
1 +

bfτ
−1
f

b2
fτ
−1
f + b2

zτ
−1
z

bfu

)(
bfε

f
t+1 − bzεzt+1

)
.

(3.46)

This investor’s next period expected return also has the form:

Eit+1[ret+2] = Eit[ret+2] + ei(ft − f̂it) + esε
s
t+1 + edε

d
t+1 + efε

f
t+1 + ezε

z
t+1.

where ei, es, ed, ef , and es are constant coefficients and ei is positive.
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Both the unexpected return and next period expected return are increasing in

estimation error of the informed investor ft − f̂it. The variance of this component

τ−1
it is smaller than that of the uninformed investor τ−1

ut . Therefore this component

contributes less to positive serial correlation for the informed investors compared to

the uninformed. Information acquisition increases the discrepancy of return auto-

correlation between the beliefs of informed and uninformed investors.

Within the group of informed investors, the autocorrelation of returns is decreas-

ing in information acquisition. The variance of ft − f̂it is decreasing in the amount

of information acquired. In addition, the incentive to learn from prices and divi-

dends is smaller when investors have accurate private signals. In the limit where

informed investors have complete knowledge about the fundamental, the estimation

error ft − f̂it becomes zero, and this component ceases to exist.

Information acquisition also has an impact on informed investors’ trading be-

havior. Consider an informed investor who has infinitesimal mass and no impact on

the equilibrium asset prices. When this investor acquires imprecise private signals,

his trading strategies is similar to that of the uninformed investor. An unexpected

price increase corresponds to an upward revision of belief and leads to increased de-

mand for risky assets. On the contrary, if this investor’s private signals are precise,

high return today correspond to lower expected returns in the future and therefore

decreases his asset demand. Investors with more information adopt a contrarian

strategy while those with less information behave like trend followers.

3.4.2 Cross-sectional Dispersion of Beliefs

Cross-sectional dispersion measures the extent to which individual investor’s ex-

pected return diverge from the market average. The expected return of investor i

given by equation (3.21) is linear in f̂it− f̂ut, the difference in beliefs between herself

and the uninformed investor. The variance of the expected return across different

investors is equal to:

Var(Eit[ret+1]) =
(1 + r

r
+ (1− λ) τd

τu + τd
bfu

)2
· Var(f̂it) (3.47)

where the cross-section variance of belief f̂it is

Var(f̂it) = τit − τu
τ 2
it

(3.48)
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Var(f̂it) is an inverted-U shaped function of the informed investors’ precision τit.

Highest dispersion is realized when information acquisition is at an intermediate

level. When there is no learning from private signals, the informed investors have

the same information set as the uninformed investor and all investors’ estimates of

the dividend growth rate are equal to f̂ut. When the private signals are infinitely

precise, all informed investors’ estimates are equal to ft. In both cases there is no

dispersion of beliefs.

Low uncertainty about the fundamental almost always decreases the cross-sectional

dispersion of beliefs. All investors form their belief using the information that is

publicly available. In this situation, the time series of prices and dividends already

provide relatively accurate information about the dividend growth rate. Lower un-

certainty also decreases the value of information and induces investors to acquire

less accurate private signals. The difference of precision between informed and un-

informed investors τit − τut is small relative to τut in this case, and all informed

investors’ estimates will be close to that of the uninformed.

3.5. Concluding Remarks

In this paper, I develop a rational expectations model with endogenous information

acquisition where investors trade a long-lived dividend-paying asset and a volatility

derivative. The analysis starts with the conjectured price function (3.12) from which

I derive the evolution of beliefs for both informed and uninformed investors. The

expected excess return of informed investors is linear in the difference between his

estimate of the dividend growth and that of the uninformed. Information acquisition

increases the precision of belief about asset returns and reduces volatility.

The uninformed investor possesses less information and feels that investment in

the asset is riskier. He takes a long position in the variance swap to insure against

extreme price movements. This long position drives up the price of the variance,

measured by the strike of the variance swap. The informed investors believe that

the variance of asset returns is smaller and find it profitable to take short positions

in the variance swap.

Uncertainty about the fundamental increases the value of information and in-
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duces more information acquisition. The serial correlation of returns for more in-

formed investors is smaller and they adopt a contrarian trading strategy. Low un-

certainty about the fundamental, on the other hand, induces investors to acquire

less information and reduces the cross-sectional dispersion of beliefs in asset returns.

This paper opens up interesting directions for future research. A non-normal

setup would allow the level of expectation to affect the conditional variances and cor-

relations in investors’ beliefs, which create cross-sectional dispersion in the value of

information and amount of information investors acquire. Alternatively, a fully dy-

namic model where information acquisition endogenously reacts to exogenous news

shocks would be a good setup to study the impact of FOMC and other macroeco-

nomic announcements on VIX and the risk premium.
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Appendix

Proof of Lemma 1.

The dynamics of fundamental ft could be rewritten as:

ft+1 = λf + (1− λ)ft + εft+1. (A1)

The expectations of ft and εft+1 conditional on the date t+ 1 information set of

the uninformed investor are given by:

Eut+1[ft] = τut
τut + τd

f̂ut + τd
τut + τd

(
ft + εdt+1

)
, (A2)

Eut+1[εft+1] =
bfτ
−1
f

b2
fτ
−1
f + b2

zτ
−1
z

(
bfε

f
t+1 − bzεzt+1

)
. (A3)

Substituting (A2) and (A3) into (A1), I obtain (3.15).

From equation (3.13),

ẑu,t+1 = zt + bf
bz

(f̂u,t+1 − ft+1). (A4)

Substituting (A1) and (3.15) into (A4), I obtain (3.16).

Proof of Lemma 2.

If we limit the information set to investor i’s date t information and date t + 1

price and dividend, the conditional expectation of ft+1 is given by:

Ei[ft+1|f̂it, pt+1, dt+1] = λf + (1− λ) τit
τit + τd

f̂it + (1− λ) τd
τit + τd

ft

+ (1− λ) τd
τu + τd

εdt+1 +
bfτ
−1
f

b2
fτ
−1
f + b2

zτ
−1
z

(
bfε

f
t+1 − bzεzt+1

)
.

(A5)

The noise εsi,t+1 in signal si,t+1 is independent from f̂it, pt+1, and dt+1. Investor

i’s estimate of ft+1 given his full information set at date t+1 is the weighted average

of Ei[ft+1|f̂it, pt+1, dt+1] and signal si,t+1:

Eit+1[ft+1] = τi,t+1 − ai,t+1

τi,t+1
Ei[ft+1|f̂it, pt+1, dt+1] + ai,t+1

τi,t+1
si,t+1. (A6)

Substituting (A5) into (A6), I obtain (3.18).

Proof of Lemma 3.
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Substituting (3.12) and (3.15) into ret+1 = pt+1 + dt+1− (1 + r)pt, I obtain (3.19).

Eut [ret+1] = rb0 +
[
r + λ+ (1− λ) τd

τu + τd

]
bfu(Eut [ft]− f̂ut) + (r + λ)bz(Eut [zt]− z)

(A7)

From definition Eut [ft]− f̂ut = 0, Eut [zt] = ẑut. The above equation is equivalent

to (3.20).

For informed investor i:

Eit[ret+1] = rb0 +
[
r + λ+ (1− λ) τd

τu + τd

]
bfu(Eit[ft]− f̂ut) + (r + λ)bz(Eit[zt]− z)

= rb0 +
[
r + λ+ (1− λ) τd

τu + τd

]
bfu(f̂it − f̂ut) + (r + λ)bz(ẑit − ẑut) + (r + λ)bz(ẑut − z)

= rb0 +
[
r + λ+ (1− λ) τd

τu + τd

]
bfu(f̂it − f̂ut) + (r + λ)bz

bf
bz

(f̂it − f̂ut) + (r + λ)bz(ẑut − z)

= rb0 +
[1 + r

r
+ (1− λ) τd

τu + τd
bfu

]
(f̂it − f̂ut) + (r + λ)bz(ẑut − z). (A8)

This is equation (3.21). The third equality comes from the fact that the sufficient

statistic bfft− bzzt belongs to both informed and uninformed investors’ information

set.

Eit[bfft − bzzt] = bfft − bzzt = Eut [bfft − bzzt] (A9)

Proof of Proposition 1.

The value function at date t+ 1 is given by:

V (Wu,t+1, ẑu,t+1) = − exp
(
−rAWut + rAcut − rAθutret+1 − rAψut

(
(ret+1)2 − vt

)
−αuz2 (ẑu,t+1 − z)2 − βuz(ẑu,t+1 − z)− γuz

)
. (A10)

I decompose ẑu,t+1 − z into 3 components:

ẑu,t+1 − z = (1− λ)(ẑut − z) + ρurzσuz
σut

(ret+1 − Eut (ret+1)) + ε̂u,t+1. (A11)

The first component is the conditional expectation of ẑu,t+1. The second component

is linear in the unexpected component of excess return. The third component ε̂u,t+1

is orthogonal to the second component and its mean is equal to zero.

Substituting (A11) into (A10) and integrating over ε̂u,t+1, I arrive at the condi-

tional expectation of value function given ret+1. Solving this optimization problem,

I obtain (3.24) and (3.25).

The proof of Proposition 2 is similar to that of Proposition 1.
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