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Abstract

This thesis examines innovation and culture within the firm. The first chapter provides
evidence on the effect of trust on innovation within firms. I build a new matched CEO-
firm-patent dataset, and exploit variations in (i) generalized trust across the countries
of CEOs’ ancestry, inferred from their last names, and (ii) CEOs’ bilateral trust towards
inventors’ countries ancestry or R&D labs, both yielding an effect of around 6% more
future patents for a standard deviation increase in trust, controlling for stringent fixed
effects. Trust-induced innovation is driven by higher-quality patents, consistent with a
model in which CEO’s trust incentivizes researchers to undertake high-risk explorative
R&D. Finally, CEO’s generalized trust is strongly correlated with broader corporate
culture of trust, measured from online employee reviews. The evidence provides a
micro-foundation for the well-known macro relationship between trust and growth.

The second chapter presents evidence of causal impacts of R&D tax incentives on
innovation and technological spillovers using administrative data. Our Regression
Discontinuity Design exploits a change in the size threshold that determines eligibility
for R&D tax subsidies, and uncovers their large effects on R&D and patenting up to
7 years after the change. R&D tax price elasticities are large (lower bound of 1.1), as
treated firms are smaller, and more likely financially constrained. Neighboring firms in
small technology class with treated firms enjoy positive spillovers.

The third chapter shows strong positive spillovers of privatization on firms’ total
factor productivity through backward linkages in Vietnam. 10% more market share
of privatized firms in downstream industries is associated with 4 percentage points
increase in TFP. The effect is driven by privatization in local markets, is stronger (weaker)
in upstream industries facing more import (export), and in provinces with higher entry
costs. It likely works through elevated pressure from privatized client firms.
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Chapter 1

Trust and Innovation within the
Firm: Evidence from Matched
CEO-Firm Data

This chapter provides evidence on the effect of trust on innovation within firms. I build a new
matched CEO-firm-patent dataset covering 5,753 CEOs in 3,598 large US public firms and
700,000 patents during 2000-2011. To identify the effect of CEO’s trust, I exploit variation in
generalized trust across the countries of CEOs’ ancestry, inferred from their last names using de-
anonymized historical censuses, as well as variation in CEOs’ bilateral trust towards inventors.
First, one standard deviation increase in CEO’s generalized trust following a CEO turnover is
associated with over 6% increase in firm’s future patents. Second, changes in CEO’s bilateral
trust towards inventors in different countries (i.e., different R&D labs within multinational
firms) or from different ethnic origins in the same firm have comparable effects on inventors’
patenting, controlling for CEO and other stringent fixed effects. Trust-induced improvements in
innovation are driven entirely by higher-quality patents, consistent with a model in which CEO’s
trust incentivizes researchers to undertake high-risk explorative R&D. Finally, I show that across
and within firms, CEO’s generalized trust is strongly correlated with a broader corporate culture
of trust, as measured from the text analysis of one million online employee reviews. The evidence
provides a micro-foundation for the well-known macro relationship between trust and growth.
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“Virtually every commercial transaction
has within itself an element of trust.”

—Arrow (1972)

1.1 Introduction

Arrow (1974, c.1, p.23) emphasized trust as “an important lubricant of a social system,”
as it is impossible to fully contract upon all possible states of nature.1 This insight
is especially relevant in the context of research and innovation, in which the inherent
uncertainty of research makes contracts necessarily incomplete (Arrow, 1962). It is thus
essential to understand the relationship between trust and innovation, in order to better
understand how to incentivize innovation, an important driver of growth.

This paper studies the role of trust on innovation within the firm. I develop a
theoretical framework in which the CEO’s trust in good researchers encourages their
risk-taking, thereby increasing innovation.2 To test this effect, I assemble a large matched
CEO-firm dataset covering 5,753 US CEOs in 3,598 US public firms between 2000 and
2011, associated with 700,000 patents and inventors. I infer a CEO’s ethnic origins
from her last names using de-anonymized historical US censuses, then measure CEO’s
inherited generalized trust as ethnic-averaged trust in US samples. Similarly, I compute
CEO’s bilateral trust towards researchers in different ethnic groups within the same firm
based on average bilateral trust between countries (highlighted in Guiso et al., 2009).
First, I exploit CEO turnovers to estimate the effect of CEO’s trust on patent counts
and future citations. Second, I estimate how a CEO’s bilateral trust towards different
ethnic groups affects patents filed by inventors in different overseas R&D labs within
multinational firms, and by inventors of different ethnic origins in the same US firm, in
each case controlling for firm by year, CEO, and inventor country fixed effects. I further
examine trust’s effect on the distribution of patent quality to differentiate risk-taking
from possible alternative mechanisms.

I model the process of research based on Arrow’s (1962) insight that research is
inherently uncertain, and by nature difficult to observe and contract on researchers’
behaviors. In a simple two-period principal-agent model between a CEO and a
researcher, the researcher’s type and actions are private information, and only outcomes

1Arrow’s general view on trust has received ample macroeconomic empirical support on the association
of trust and development and growth, as surveyed by Algan and Cahuc (2013, 2014). Knack and Keefer
(1997), La Porta et al. (1997), Guiso et al. (2004, 2006, 2009), Tabellini (2010), and Algan and Cahuc (2010),
among others, provide evidence that trust is a deep-root determinant of development and growth, through
its channels of influence on the accumulation and allocation of factors of production (such as investments,
loans, allocation of capital). This economic literature has built on seminal work by sociologists and political
scientists on trust and development, including Banfield (1958), Gambetta (1988), Coleman (1990), Putnam
et al. (1993), Putnam (2000), Fukuyama (1995), and others.

2While in principle all relations involving researchers inside the firm may matter to its innovative
activities, it has been suggested that, in practice, the chief executive may wield significant influence on the
firm’s culture (e.g., Guiso et al., 2015; DeBacker et al., 2015; Liu, 2016, among others), therefore their trust
is of first order importance in studying the firm’s trust towards researchers.
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are observable. In each period, a “good” researcher faces the choice between (i)
exploration, a high-risk high-return project that can result in innovation or failure with
probability known only to him, and (ii) exploitation, a risk-free low-return common path
that surely signals a good type from a bad one.3 On the other hand, failure means either
that the researcher’s exploration is unsuccessful, or that he is a bad type.4 Considering
those elements, the CEO, who inherits a pool of existing researchers in period 1, decides
to whether rehire or fire the researcher in period 2 based on his period 1’s outcome.

In this setting, the CEO’s trust in the researcher is modeled as her prior belief about
his type.5 A more trusting CEO is more likely to interpret observed failure as being due
to bad luck rather than bad type, therefore more likely to tolerate failure. In anticipation,
a good researcher will be more likely to undertake exploration, thereby producing more
innovation. The model thus predicts that higher trust induces more innovation through
encouraging exploration (versus exploitation). These results resonate with Manso (2011)
and Aghion et al. (2013), whose models also imply that tolerating failure and reducing
career risk help induce risky innovation. However, while Manso (2011) suggests that
this objective could be achieved with long-term incentives and Aghion et al. (2013)
with monitoring, my model instead emphasizes the enabling role of trust.6 It also
highlights the possible suboptimality of excessive trust due to too much retention of bad
researchers,7 and the role of trust as substitute for the CEO’s commitment capacity.8

I turn to matched CEO-firm and patent data in the US to study the empirical
relationship between CEO’s trust and innovation. Innovation outputs, measured by
patent counts,9 are extracted from PATSTAT, a dataset covering close to the universe of
patents ever filed from 1900 up to 2016 with 70 million patent documents from over 60
major patent offices all over the world, including the US Patent and Trademark Office

3March (1991) first emphasized the trade-off between exploration and exploitation in the context of
research and innovation. I follow Manso (2011) in modelling research as the choice between exploration
and exploitation. Unlike Manso (2011), who studies the implementation of either path, I focus on how the
CEO’s prior belief on the researcher’s type, i.e., trust, affects innovation outcomes.

4In this setting, a bad research is understood as someone who lacks in ability or willingness to
undertake appropriate courses of actions. By normalization, I assume that the bad type always fails.

5My choice to model trust as a belief reflects Gambetta’s (1988) definition of trust as “the subjective
probability with which an agent assesses that another agent or group of agents will perform a particular
action.” Similar approach has been used in Guiso et al. (2008) and Bloom et al. (2012), among others.

6More broadly, this paper relates to the literature on contractual and financial arrangements to
incentivize innovation (surveyed by Ederer and Manso, 2011), which includes for example Lambert’s (1986)
consideration of incentivizing an agent’s risk taking, and Azoulay et al.’s (2011), Ederer and Manso’s (2013),
and González-Uribe and Groen-Xu’s (2017) evidence of the effects of Manso-type contractual incentives (i.e.,
tolerance of failure and long-term incentives) on innovation.

7This result complements Butler et al. (2016) finding on the “right amount of trust,” which suggests that
highly trusting individuals tend to assume too much social risk while individuals with overly pessimistic
beliefs can give up profitable opportunities.

8That is, when commitment to tolerance of failure is not possible, trust helps implement it. This result
formalizes the intuition on the reliance between trust and commitment studied in the literature of sociology
of organization, such as Klein Woolthuis et al. (2005).

9The measure of innovative outputs by patents, correcting for quality or not, is not perfect (Hall et
al., 2014). However, to the extent that the use of patents to protect notable innovations is common within
an industry, my focus on patents is unlikely subject to a serious bias if I only consider within-firm or
within-industry variations. At worst, it likely underestimates the effect of trust on innovation.
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(USPTO) and its counterparts in Europe (EPO) and Japan (JPO).10 In addition to patent
counts, I also refine data on patent citations, technological class, family, and inventors’
names and addresses to further investigate the mechanism at work.

Detailed data on the background of CEOs and top officers of US public firms are
provided by BoardEx. My focus on CEOs is motivated by a growing body of empirical
evidence that individual CEOs matter for firm decisions and performance (e.g., Bertrand
and Schoar, 2003; Bennedsen et al., 2010; Smith et al., 2017, and the Bertrand, 2009
survey). It proposes a new factor, i.e., trust, that fits the description of manager styles
as coined by Bertrand and Schoar (2003) and that contributes to the strand of literature
studying how differences in CEO traits relate to differences in firm performance.11

Building on the literature on transmitted and inherited cultural values that highlights
the role of cultural origin in shaping an individual’s cultural traits,12 I measure a CEO’s
trust based on her ethnic origins as inferred from her last name and measures of
inherited trust among descendants of US immigrants. First, I construct a probabilistic
mapping between CEO’s last names and ethnic origins from four de-anonymized US
censuses.13 Second, I compute an ethnic-specific measure of trust for 36 different ethnic
origins most common in the US using responses to the trust question in the US General
Social Survey (GSS).14 I only select survey answers from GSS respondents in highly
prestigious occupations similar to the CEO sample. Each CEO’s inherited trust measure
is the weighted average of ethnic-specific trust based on her likely ethnic composition.

To assess the role of generalized trust, the first empirical strategy uses firm fixed
effects to exploit changes in CEOs and subsequent changes in patenting within the same
firm over time, controlling for CEO observable characteristics such as age, education,
and tenure in the firm. The identifying condition is supported by the empirical
evidence that both timing of CEO change and the new CEO’s trust are not related
to the firm’s past patenting activities. I find that one standard deviation in CEO’s
inherited generalized trust, equivalent to the shift from Greek to English, is associated
with 6% increase in the number of annual patents filed. This result is robust to a large
set of controls for country of origin characteristics and ethnic of origin socioeconomic

10The PATSTAT dataset is thus much more general and suitable for studies with a cross-country
perspective than the usual USPTO dataset. PATSTAT data have since recently been used in research on
innovation, such as Dechezleprêtre et al. (2018).

11Recent studies have started to explore a broad range of CEO characteristics (Malmendier and Tate,
2005, 2009; Kaplan et al., 2012; Kaplan and Sørensen, 2017; Gow et al., 2016) and practices (Bandiera et al.,
2015, 2017). In particular, this literature has also considered certain aspects of CEO cultural background
such as corruption culture and firms’ misconducts (DeBacker et al., 2015; Liu, 2016).

12E.g., theoretical foundation by Bisin and Verdier (2000), Bisin and Verdier (2001), Tabellini (2008),
Guiso et al. (2016); empirical evidence by Giuliano (2007), Fernández and Fogli (2009), Algan and Cahuc
(2010), among others.

13The four US censuses from 1910 to 1940 contain 80 million individuals with foreign birth places or
ancestry, sharing among them five million unique last names, out of which 75,000 last names appear for at
least 100 times each. 83% of CEO last names are among those 75,000 sufficiently common last names. The
inference of ethnic origin from last names was pioneered by Kerr and Lincoln (2010).

14This approach follows Guiso et al. (2006), Algan and Cahuc (2010), and the related literature. I also
perform a robustness check with data from the World Value Survey (WVS). Those two surveys cover most
of cross-country research on the economics of trust since Knack and Keefer (1997) and La Porta et al. (1997).
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conditions and cultural traits, suggesting that it is not driven by other ethnic-related
characteristics.

To separate the role of trust from other CEO’s unobservable characteristics such as
management style or ability, the second empirical strategy exploits within-CEO variation
in CEO’s bilateral trust towards different ethnic groups and patents by inventors from
those different ethnicities, which allows for a full set of stringent, including CEO, fixed
effects. Bilateral trust measures are calculated between CEO’s inferred ethnic origin
and countries of inventors using Eurobarometer data.15 Patent inventors’ countries of
origin are obtained from either their addresses (for inventors in overseas R&D labs
of multinational firms) or their last names (for US-based inventors). Under the same
CEO, one standard deviation increase in bilateral trust towards an inventor country
of origin is associated with 3-5% more patents by inventors from the corresponding
R&D lab or corresponding ethnicity, controlling for a broad range of time-variant fixed
effects at the firm by year, CEO, and inventor country levels. These results remain stable
even in the presence of firm by inventor country fixed effects (i.e., using variation in
changes in bilateral trust following CEO changes), and after accounting for possible
alternative explanations such as favoritism or better information flows between CEOs
and researchers.

To distinguish the proposed mechanism that trust induces innovation via encour-
aging risk-taking and exploration from other mechanisms in which trust induces more
effort by researchers,16 I develop a formal framework to identify the mechanisms via
their different implications on trust’s effect on the distribution of patent quality. Using
future citation counts and other patent quality measures, I show that, consistent with
the risk-taking mechanism, trust increases only high-quality patents, but not low-quality
ones, thereby increasing average patent quality as measured by citations per patent by
4%. In addition, I find that trust is most effective in inducing innovation in firms with
likely high researcher quality.

These results on the effect of CEO’s trust on firm innovation provide a possible
micro-foundation for the macro relationship between long-term economic outcomes
and trust, as previously evidenced in Guiso et al. (2006), Tabellini (2010), and Algan
and Cahuc (2010), among others.17 As it shows that trust can spur innovations by
solving contractual shortcomings, a high-trust society possesses not only the advantage

15These bilateral trust measures have been exploited by Guiso et al. (2009) in the context of international
trade, Bloom et al. (2012) in delegation to subsidiaries, Giannetti and Yafeh (2012) in syndicated bank loan
interests, Ahern et al. (2015) in mergers and acquisitions, and Bottazzi et al. (2016) in venture capital flows.

16For example, there is a large literature on delegation in organization since Aghion and Tirole (1997),
such as Acemoglu et al. (2007) and Bloom et al. (2012). In the context of innovation, trust, understood as the
preference congruence between the principal and the agent, would lead to more delegation to researchers,
which then induce them to put in more effort, thereby producing more innovation.

17The larger literature on the cultural origins of long-term economic development has discussed the
role of religion (Barro and McCleary, 2003, 2018), work ethic (Becker and Woessmann, 2009), individualism
(Gorodnichenko and Roland, 2017), and others as surveyed by Nunn (2012). The macro correlation between
trust and innovation has been briefly suggested by Hall and Jones (1999) on TFP and Algan and Cahuc
(2014) on R&D and patents.
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of higher investment and accumulation of factors of production (or even better allocative
efficiency), but also the potential to invent more and thus grow productivity faster in the
long run.18 This mechanism thus helps explain the macroeconomic differences not only
in development levels but also in growth rates across countries.19 Separately, this paper
extends the empirical literature of more traditional determinants of R&D and patents,
such as tax credit and grant (e.g., Howell, 2017; Dechezleprêtre et al., 2018), as surveyed
by Cohen (2010).

I further link CEO’s culture to firm’s culture, measured from text analysis of
almost one million employee reviews on Glassdoor.com, one of the largest career
intelligence websites worldwide (from Sull, 2018). The dataset covers many dimensions
of employees’ sentiments based on O’Reilly et al. (1991, 2014) across 500 large US public
firms between 2008 and 2017 (similar to Grennan, 2014). In different specifications with
CEO controls, industry fixed effects, and even firm fixed effects (i.e., using variation
in changes in CEO’s trust following CEO changes), CEO’s inherited trust is associated
with stronger corporate trust culture. In that regard, this paper also provides new
findings supporting the role of corporate culture in determining corporate outcomes.20

Furthermore, it shows a channel through which corporate culture can be influenced: by
an injection of culture from the top (as suggested by Van den Steen, 2010).

Beyond the economics literature, the interplay between management and trust and
other cultural traits has been examined in sociology of organization and management,
e.g., in classic studies by O’Reilly et al. (1991, 2014), and other work on organization
culture such as Schein (1985) or Hofstede et al. (1991).21 My results broaden this
literature with a large-scale sample of firms, and with inherited trust computed
systematically from surveys of opinions.

The rest of the paper is organized as follows. Section 1.2 discusses the model
of trust and innovation. Section 1.3 provides descriptions of the data. Sections
1.4 and 1.5 describe the within-firm and within-CEO empirical strategies and the
corresponding empirical results. Section 1.6 studies the mechanism through risk-taking
and exploration. Section 1.7 provides further discussions and interpretations, and
section 1.8 concludes.

18This statement holds in the large class of endogenous growth model à la Aghion and Howitt (1992) in
which sustained innovation maintains long-term growth.

19From a macro perspective, Doepke and Zilibotti (2014) summarizes theories on the relationship
between cultural traits (such as risk attitude, patience, and trust), entrepreneurship, and growth. Reviews
by Durlauf et al. (2005) and Caselli (2005) provide evaluations of the crucial roles of productivity growth in
explaining cross-country differences in growth and income level, respectively.

20E.g., Guiso et al. (2015), Grennan (2014), Gibbons and Kaplan (2015); Martinez et al. (2015), Graham et
al. (2018).

21Notably, the management literature has considered the culture of trust in firms as crucial to innovation
(Nooteboom and Stam, 2008), and can be substitute for or complement to formal control (Knights et al.,
2001; Klein Woolthuis et al., 2005).
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1.2 Theoretical framework

This section models how CEO’s trust could affect researchers’ choices and consequently
innovation outcomes. As “trust is an important lubricant of a social system” (Arrow,
1974), it is likely to also impact innovation through other different mechanisms.
Therefore, it should be noted that my choice to focus on the CEO’s trust (instead of
the researcher’s trust) and this particular model is guided by the empirical evidence
presented in the latter part of the paper.

1.2.1 A model of trust and innovation

Set up. My starting point is a two-period principal agent game with asymmetric
information in which the principal is the CEO and the agent is the researcher.

Researcher. The researcher could be good type with probability θ or bad type with
probability 1− θ. In this setting, a bad researcher is understood as someone who lacks
ability or willingness to take the appropriate courses of actions. The CEO, who is not
an expert in science, knows neither the researcher’s type nor θ. In each period, a bad
researcher always shirks and produces sL, while a good researcher chooses between
exploitation and exploration. Exploitation is a low-cost, safe R&D project that requires
no effort cost and produces sM with certainty. Exploration is a high-cost, risky R&D
project that requires effort cost c and produces sH (innovation) with probability π

and sL (failure) with probability 1 − π.22 π is independently drawn from the unit
uniform distribution in each period and privately observed by the good researcher
before choosing which project to pursue. The CEO does not know what project is chosen
and only observes the outcome produced by the researcher at the end of each period.23

CEO. The CEO asks the researcher to carry out R&D at the beginning of period
1 without knowing his type. Simultaneously, she decides on an outcome-contingent
contract that maps period 1’s potential outcome si to (bi

1, Di) (i ∈ {L, M, H}) where bi is
a bonus on top of fixed wage w for the researcher and Di ∈ {0, 1} denotes whether the
CEO would fire (Di = 0) or rehire (Di = 1) the researcher after period 1. If the researcher
is rehired, the game continues to period 2, in which the CEO specifies contract (bi

2) and
the researcher chooses from the same action set as described. The game ends after
period 2’s outcome and payment are realized. In the baseline model, I assume that the
CEO can credibly commit to the contracts specified at the beginning of each period.24

22The trade-off between the exploitation of well-known approaches and the exploration of new untested
approaches was first emphasized by March (1991) and has since then been widely studied both theoretically
and empirically (see survey by Ederer and Manso, 2011).

23The values of sL, sM, sH , c and π’s uniform distribution are common knowledge and satisfy sH − c >
sM > 0 > sL. The key results of the model remain under more general assumptions about the distribution
of π.

24Alternatively, the contract can be designed as a mapping (specified at the beginning of period 1)
between each potential outcome of the game (i, j) to (bij, Di) where i, j ∈ {L, M, H} denote the game’s
outcomes in periods 1 and 2 respectively. This set up is equivalent to the baseline under the assumption of
credible commitment. I consider relaxing this assumption in subsection 1.2.2.
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Trust. Although the CEO does not observe θ, she has her own prior subjective belief
that the researcher is good with probability θP, which reflects her trust level towards
the agent. A more trusting CEO would have a higher subjective θP than a less trusting
one.25 This model focuses on studying how this key parameter of CEO’s trust affects
her and the researcher’s strategies in the game and its outcome.26

Payoffs and restrictions. After each period t ∈ {1, 2} with realized outcome i ∈
{L, M, H}, the researcher gets w+ bi

t− c (if he chooses exploration) or w+ bi
t (otherwise)

and the CEO gets si − bi
t.

27 If the researcher is fired at the end of period 1, both players’
payoffs in period 2 is zero.28 The researcher has limited liability and bi

t > 0 ∀ i, t. That is,
the CEO can reward the researcher for good performance but cannot financially punish
him for bad outcome. I also restrict the parameters to satisfy the players’ participation
constraint, which implies that the CEO’s expected payoff from hiring a good researcher
is positive. It then follows that Di = 1 for i ∈ {H, M}, as these outcomes fully reveal
that the research is the good type. However, if period 1’s outcome is L, the CEO cannot
tell if the researcher is bad or if he is good but unlucky. Her choice of whether to tolerate
period 1’s failure DL depends on her assessment of which is more likely to be the case,
and this assessment depends on her prior subjective belief θP.

Solution outline. I first consider two separate cases in which DL = 1 and DL =

0, then compare the CEO’s expected payoffs under these two cases to solve for her
optimal choice of DL. Note that a good researcher’s choice in period 2 (conditional on
its happening) is independent of period 1’s outcome and therefore is the same under
both cases. Thus, let VP

2 denote the CEO’s period-2 expected payoff from hiring a good
researcher and let VA

2 denote a good researcher’s period-2 expected payoff, both are
positive under the participation constraints discussed earlier.29

Researcher’s project choice: explore versus exploit. As a bad researcher always shirks,
the meaningful action to analyze is a good researcher’s choice between exploration and

25This concept of trust resonates with Gambetta’s (1988) definition of trust as “the subjective probability
with which an agent assesses that another agent or group of agents will perform a particular action.”
Similarly, Guiso et al. (2008) also model trust as a subjective belief about being cheated by the counterpart
in a financial transaction.

26As the CEO’s prior belief, or trust, affects R&D outcomes via influencing the researcher’s choice, the
latter’s perception of the former’s belief is as important as the belief itself. This is especially true in real
life settings where CEOs’ influence on firm’s policies takes time to materialize and credible commitment to
such policies is unlikely. In these settings, the researcher’s perception of the CEO’s beliefs and preferences
is likely based on the collective reputation of the group to which the CEO belongs in addition to the CEO’s
own reputation based on her past actions.

27w is a fixed wage that is set exogenously. For notation simplicity, sL, sM, and sH represent R&D
project’s returns after fixed wage payment, so w does not enter the CEO’s payoff. I assume that both
players are risk neutral and do not discount future payoff. Introducing risk aversion or time discounting
does not affect the model’s key insights.

28The assumption is that the CEO and the researcher cannot immediately find new matches in period 2.
29It can be shown that period 2’s subgame has a unique Nash equilibrium in which the CEO chooses

(bH
2 , bM

2 , bL
2 ) = (b∗2 , 0, 0) and the good researcher chooses to explore when π2 > c/b∗2 . VP

2 and VA
2 are

functions of sL, sM, sH , c, w.
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exploitation in period 1 given DL. To reduce notations, I omit the outcome superscript
L from DL and the period subscript 1 from π1, b1

i for the rest of this subsection.
A good researcher chooses exploration over exploitation when it yields higher

expected payoff:

π(w + bH + VA
2 ) + (1− π)(w + bL + DVA

2 )− c > w + bM + VA
2

⇐⇒ π > π̄(D).30 (1.1)

The above condition implies that in both cases (D = 1 and D = 0), the researcher follows
a cutoff strategy and chooses exploration when the realized probability of success π is
above threshold π̄(D).

Given the good researcher’s strategy, the CEO indirectly chooses π̄(D) via setting
the bonuses to maximize her expected payoff from hiring a good researcher. It is
optimal for her to set bL and bM to zero and only vary bH to achieve her desired π̄(D)

threshold.31 For each value of D, the CEO’s maximization problem then has a unique
solution b∗(D) that induces the good researcher to explore when π is above threshold
π̄∗(D) =

c+(1−D)VA
2

b∗(D)+(1−D)VA
2

. This leads us to the following proposition:

Proposition 1. For a given set of parameters, π̄∗(1) < π̄∗(0). That is, tolerance of failure
induces more exploration and innovation.

The proof is detailed in appendix A.1.1. The intuition is that period 1’s exploration
threshold π̄∗(.) is increasing in (1 − D)VA

2 and (1 − D)VP
2 , which represent a good

researcher’s and the CEO’s foregone period-2 payoffs after a bad outcome in period
1.32 When failure is not tolerated and termination implies a large loss in future payoff,
a good researcher requires higher probability of success to undertake exploration.
Similarly, the CEO also prefers a good researcher to take less exploration risk in period
1 for the same fear of losing her future payoff from a relationship with such good
researcher when exploration fails. Put differently, tolerance of failure enables a good
researcher to take more risk and explore more, which then produces more instances
of successful innovation.33 This result resonates with Manso’s (2011) insights that the
optimal incentive scheme to motivate exploration exhibits tolerance for early failure and
reward for long-term success.34

31That is, she chooses bH to maximize:∫ π̄(D)

0

[
sM + VP

2

]
dπ +

∫ 1

π̄(D)

{
π
[
sH − bH + VP

2

]
+ (1− π)

[
sL + DVP

2

]}
dπ,

where π̄(D) =
c+(1−D)VA

2
bH+(1−D)VA

2
is also a function of bH .

32When D = 1, these losses are zero. When D = 0, these losses depend on VA
2 and VP

2 .
33π̄∗(1) < π̄∗(0) =⇒

∫ 1
π̄∗(1) πdπ >

∫ 1
π̄∗(0) πdπ. Furthermore, π̄∗(1) represents the optimal level of

exploration for the CEO in a single-period game.
34Azoulay et al. (2011) and Tian and Wang (2014) among others provide empirical evidence that tolerance

of failure induces more innovation in different settings.
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CEO’s tolerance of failure: rehire versus fire. Let VP
1 (D) denotes the CEO’s period-

1 expected payoff from hiring a good researcher under policy D ∈ {0, 1}. It can be
shown that VP

1 (1) > VP
1 (0) > 0.35 The CEO chooses to tolerate failure (i.e., DL = 1) if it

maximizes her total expected payoff:

θP
[
VP

1 (1) + VP
2

]
+ (1− θP)sL > θP

{
VP

1 (0) +
[

1− (1− π̄∗(0))2

2

]
VP

2

}
⇐⇒ θP > θ̄.36 (1.2)

Proposition 2. The manager chooses DL = 1 iff θP > θ̄. That is, she chooses to tolerate failure
when her trust towards the researcher is high enough.

This is a direct result from inequality 1.2. Intuitively, when observing a bad outcome,
a more trusting CEO ascribes more weight to the researcher’s being unlucky than
him being of the bad type. As the benefits of incentivizing optimal exploration then
outweighs the benefits of screening out bad researchers, she chooses to tolerate failure
to avoid mistakenly screening out good researchers in period 2 and also to induce more
exploration in period 1.

Combining Propositions 1 and 2 yields the prediction that a more trusting CEO
induces more innovation, which is the focus of this paper’s empirical investigation.

1.2.2 Model extensions

First, I relax the assumption that the CEO can credibly commit to being tolerant of
failure. Appendix A.1.2 shows that in this setting tolerance of failure is a unique
equilibrium only when θP > θ̄post > θ̄ where θ̄post is an unique cutoff based on the
game’s parameters.37 Furthermore, for θP ∈ (θ̄, θ̄post) there always exists an equilibrium
in which the CEO does not tolerate period 1’s bad outcome, even though it is ex ante
optimal for her to do so. This equilibrium is even the unique one in some cases. Such
problem can be avoided if the CEO can ex ante credibly commit to the being tolerant of
failure as in the baseline model, or if she is high trusting with θP > θ̄post. In other words,
trust acts as a substitute for commitment.

Next, I allow a bad researcher to also be able to produce exploitation outcome
with some luck (i.e., with probability q). In this setting, as only innovation outcome
(i.e., successful exploration) fully reveals a researcher’s type, would a good researcher
explores more under a less trusting CEO in order to separate himself from the bad ones,
even when it is risky to do so? I find that this is not the case unless q is large, for

35Under DL = 0, the good researcher is less willing to choose exploration than what is optimal for the
CEO. In addition, the CEO also has to provide additional exploration incentive for the good researcher
through bonuses (i.e., bH∗(0) > bH∗(1)). As a result, VP

1 (1) > VP
1 (0). Note that VP

1 (D) is function of sL,
sM, sH , c, w, and D.

37In this setting, the CEO’s decision whether to tolerate failure is based on her updated belief at the end
of period 1 with the aim to maximize her period-2 payoff. As a result, she does not internalize the gain
from optimal exploration in period 1 under tolerance of failure and therefore is less likely to tolerate period
1’s bad outcome (i.e., θ̄post > θ̄).
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exploitation still provides signaling value for a good researcher when a bad researcher
is not too likely to produce the same outcome by luck. Therefore, a less trusting CEO
induces more exploitation and less exploration and vice versa, as in the baseline model.38

Third, I extend the model to three periods to study if a longer horizon strengthens
the CEO’s incentive to screen out bad researchers in earlier periods and induces her to
adopt a different strategy. The key intuitions of the two-period game go through in this
three-period game. A high-trust CEO always rehires the researcher after a bad outcome;
an average-trust CEO tolerates first time failure but not the second time; and a low-trust
CEO fires the researcher after first time failure in period 1. A good researcher chooses
to explore at the optimal level under a high-trust CEO but undertakes less exploration
when the termination threat worsens the downside of failure. As in the baseline model,
higher trust maps into higher tolerance of failure and induces more exploration and
innovation.39 The results from this three-period game suggest that the findings extend
to in longer-horizon settings.

Finally, how does a CEO with subjective prior θP compare to one knowing the
true quality of the researcher pool θ? The model implies higher trust always induces
more innovation, but also more failure. As a result, when the researcher pool is
generally bad but the CEO is too trusting, tolerance of failure leads to costly excessive
innovation. On the other hand, when the researcher pool is generally good but the CEO
is too distrusting, intolerance of failure leads to inefficiently low level of innovation.
Furthermore, when the CEO cannot credibly commit to her policies, a more trusting
CEO still can outperform an objective one, as then trust helps substitute for commitment.
Subsection 1.6.3 provides evidence consistent with these implications that CEO’s trust
effects on both innovation and firm’s performance are larger among firms with likely
better researcher quality.

1.3 Data and measurement

1.3.1 Patents as a measure of innovation

I follow the innovation literature in using patent and citation counts as measures for
innovation (e.g., Trajtenberg, 1990; Bloom and Van Reenen, 2002; Hall et al., 2005).40

My patent data come from PATSTAT, the largest available international patent database
which covers close to the population of all worldwide patents since the 1900s up to
2016. It brings together nearly 70 million patent documents from over 60 patent offices,
including the United States Patent and Trademark office (USPTO) and all other major

38The proof for this is available upon request.
39The proof for this is available upon request.
40As previously mentioned, the measure of innovative outputs by patents, correcting for quality or

not, is not perfect (Hall et al., 2014). However, to the extent that the use of patents to protect notable
innovations is common within an industry, my focus on patents is unlikely subject to a serious bias if I only
consider within-firm or within-industry variations. At worst, it likely underestimates the effect of trust on
innovation.
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offices such as the European Patent Office (EPO) and the Japan Patent Office (JPO). I
assign patents to firms using the matching procedure implemented by the OECD and
made available via Bureau van Dijk’s ORBIS platform.41

The dataset contains comprehensive information from the patent record, including
application and publication dates, backward and forward citations, technology clas-
sification, and patent family. These data allow me to construct various measures of
patent quality besides forward citation counts, such as backward citations to scientific
literature, patent scope, generality index, originality index, etc. (details in appendix
A.2.2). In addition, PATSTAT also provides information on the inventors of each patent,
including their names and addresses, as are available on the patent record. This further
enables me to link patents to their inventors’ countries of residence (based on their
addresses) or countries of origin (based on their last names) to construct patent counts
at the firm by inventor country level (details in subsection 1.5.1).

I consider only patents that are classified as “patent of invention” in PATSTAT
(equivalent to USPTO’s utility patents). To avoid double-counting inventions, I classify
patents in the same patent family (i.e., a set of patents protecting the same invention
across several jurisdictions) as one single patent, and assign the patent to the year of its
earliest application date. Finally, PATSTAT’s patent data are more comprehensive for
the years before 2012, as it takes up to 1.5 years for a patent application to be published
and on average 5 years for a patent to gain 50% of its lifetime citations (Squicciarini et
al., 2013). As a result, I focus only on patents filed before 2012.

1.3.2 CEO’s inherited trust measure

I obtain information on firms’ CEOs, senior executives, and board directors of US
publicly listed firms from BoardEx. The dataset spans from 2000 to 2016, covers
almost all US publicly listed firms in this period, and includes rich information on
the executives’ background, employment history, and compensation. Among these
variables, the executives’ names are essential for the measurement of inherited trust,
as explained below. In addition, I also use information on the timing of their positions,
gender, education, employment history, and compensation (details in appendix A.2.3).

Measuring CEO’s inherited trust. I measure a CEO’s inherited generalized trust based
on her ethnic origins inferred from her last name and measures of inherited trust among
descendants of US immigrants. That is,

trustd = ∑
e

wde × ethtruste (1.3)

41ORBIS also provides information on firm’s ownership structure, which allows one to identify and
include patents filed by a firm’s subsidiaries.
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where ethtruste is the average trust measure among all descendants of US immigrants
from country e and wde is the probability that CEO d is a descendant of US immigrants
from that country.42

I follow the literature on inherited trust (e.g., Guiso et al., 2006; Algan and Cahuc,
2010) in computing ethtruste using individual-level data on trust attitude and ethnic
origins from the US General Social Survey (GSS), a representative survey of social
attitudes among US residents conducted between 1972 and 2014, covering a total
of 60,000 respondents. A respondent’s trust attitude is measured by the standard
generalized trust question “Generally speaking, would you say that most people can be trusted
or that you can’t be too careful in dealing with people?”.43 His ethnic origin is captured by the
question “From what countries or part of the world did your ancestors come?”, which covers
36 most common ethnic origins in the US, including almost all European countries in
addition to Canada, Mexico, China, and India.44 The baseline ethtruste measure is then
the average trust attitude of GSS respondents whose self-reported ethnic origin is e
(see Table A.1). I only consider respondents in highly prestigious occupations (by GSS’
classification), in order to better match the CEO sample.45 In addition, I also construct
an alternative trust measure that takes into account demographic characteristics such as
gender, education, age, and birth cohort.

Next, I construct a probabilistic mapping between a CEO’s last name and different
ethnic origins (i.e., Wd) using historical de-anonymized US censuses from 1910 to 1940
(e.g., Kerr and Lincoln, 2010; Liu, 2016).46 These data contain individual-level data
on birthplace and ancestry of the whole US population during 1910-1940, merged
with information on individual names obtained from the Minnesota Population Center.
Across four censuses there are 80 million individuals with foreign birthplaces or
ancestry, sharing among them five million unique last names. I only consider 75,000 last
names with at least 100 occurrences and allow each of them to be mapped to multiple
ethnic origins with probabilities equal to their shares of occurrences. Separately, I also
compile lists of most common last names in 50 different countries from various sources

42I exclude CEOs who are not US citizens. They comprise only 4.8% of the 54% of CEOs for whom
BoardEx contains nationality information. A quick check reveals that the other 46% represent cases in
which the CEOs are obviously US citizens, so that the firm’s website does not state their nationality. They
are thus counted as US citizens.

43Following the literature, I construct a trust indicator equal to 1 if the answer to is “Most people can
be trusted,” and 0 if the answer is “Can’t be too careful” or “Other, depends.” This grouping makes a
clear separation between high trusting individuals as opposed to moderate or low trusting ones (Algan
and Cahuc, 2010).

4437% of respondents report two or three countries of origin, in which case I select the one to which
they feel the closest to. I also exclude 5 ethnic categories: “American Indian,” “American only,” “Other
European,” “Other Asian,” and “Other,” which together comprise only 9% of total respondents.

45Specifically, I only consider respondents whose GSS occupation prestige score is in the top 25% (i.e.,
50 or above), which cover most respondents in management occupations. The correlation between ethtruste
computed from this sample and that computed from all GSS respondents is 0.85 (0.75).

46The US Census Bureau is allowed to release de-anonymized individual census records after 72 years.
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and use these lists to cross-check and supplement the baseline census-based mapping
(details in appendix A.2.4).47

83% of the CEO sample are mapped to their ethnic origins based on their last names.
Panel A of Table A.3 shows that, there ar no significant differences between these name-
matched 83% and the remaining non-matched 17% across all observable characteristics.
Three most common ethnic origins among CEOs are Irish, German, and English, which
together account for about half of the CEO sample (see Table A.2). The average CEO’s
inherited trust measure is 0.56, considerably higher than the average GSS trust measure
of 0.38 but comparable to the average trust measure of 0.51 among respondents in highly
prestigious occupations. Despite the high total shares of three most common ethnic
origins among CEOs, Figure 1.1 shows that there remains meaningful variation in their
inherited generalized trust measure.

Validity of inherited trust measure. There is a growing literature in economics that
highlights the role of cultural origin in shaping individual trust and other cultural
traits. Studies by Bisin and Verdier (2000, 2001), Tabellini (2008), and Guiso et al. (2016)
provide theoretical mechanisms for cultural transmission of preferences and beliefs from
parents to children. Empirically, a large body of evidence shows that trust attitude
and other values among descendants of US immigrants are strongly correlated with
related traits, behaviors, and outcomes of those in their home countries, consistent
with intergenerational cultural transmission among US immigrants.48 Following this
literature, I verify the existence of trust transmission by comparing the measure of
inherited trust among US immigrants, calculated from the GSS, with an alternative
measure based on average trust attitude among the populations of the countries of
origin, available from the World Value Survey (WVS). The correlation between the GSS-
and WVS-based trust measures is above 0.5 at country level, consistent with the view
that immigrants in the US inherit a large part of their cultural traits from their countries
of origin, such as shown in Giuliano (2007).49

Ideally, one would like to observe each CEO’s individual trust attitude, yet this
latent variable is incredibly challenging to measure. Even if one could administer a
trust survey or a trust game among CEOs, the resulting measure would still be affected
by measurement error.50 The inherited trust measure misses (i) the individual-specific

47One concern is this last name-based mapping only captures an individual’s patrilineage. However,
given the documented high level of ethnic segregation in the US during the 1940s (Eriksson and Ward,
2018) and high intra-ethnic marriage rates during this period, this is unlikely to be a first order concern.
(Note that the majority of the CEOs in my sample were born in the 1940s or 1950s.) Separately, Pan et al.
(2018) employ similar approach to identify CEOs’ ethnic origins and find that the uncertainty avoidance
indices constructed from CEOs’ last names and from their mothers’ maiden names are highly correlated,
which further supports the mentioned observations. Finally, as 98% of my CEO sample are male, name
changing due to marriage is not a concern.

48See, for example, surveys by Algan and Cahuc (2013, 2014) and Fernández (2011).
49That the correlation is not perfect possibly reflects the fact that immigrants to the US (i) have been non-

randomly selected from the original population, and (ii) have somewhat assimilated to the host culture.
50Falk et al. (2016) find that the correlation between trust measures of the same individual elicited

from trust games conducted one week apart is 0.6, suggesting a considerable amount of measurement

25



component of trust but also helps smooth out (ii) these measurement errors. In appendix
A.3.1, I develop a framework to assess the relative sizes of (i) and (ii) using parameters
from the literature (e.g., Glaeser et al., 2000). The results suggest that the baseline
inherited trust measure is better than an individual-level survey-based trust measure
and about 80% as precise as an individual-level game-based measure.51 Furthermore,
using the inherited trust measure does not introduce attenuation bias as in the case of
classical measurement errors but produces unbiased estimates of the true effect (details
in appendix A.3.2).52

Finally, as remarked in subsection 1.2.1, a CEO’s trust attitude likely affects her firm’s
R&D outcome via its influence on firm’s policies and consequently researchers’ choices.
In real life settings, CEOs’ influence on firm’s policies takes time to materialize and
credible commitment to such policies is unlikely. As a result, researchers’ perception of
their CEO’s trust are as important to their choices as the CEO’s actual trust attitude.
In large firms, this perception are most likely based on the collective reputation of
the group to which the CEO belongs (e.g., Tirole, 1996; Macchiavello, 2010; Xu, 2015),
most notably her ethnic group as it is a salient feature of her identity. The inherited
trust measure precisely captures the CEO’s ethnic group’s collective reputation of
trust attitude and therefore is the key explanatory variable on its own under this
interpretation of the mechanism.

Measuring CEO’s bilateral trust. Similar to her inherited generalized trust measure,
CEO d’s bilateral trust towards individuals from country c is calculated as

bitrustdc = ∑
e

we × ethbitrustec (1.4)

where ethbitrustec is a measure for how much a person from country of origin e
trusts a person from country of origin c. This country-level bilateral trust measure
(ethbitrustec) comes from the Eurobarometer, a series of surveys conducted for the
European Commission in which individuals in each country are asked the following
question “I would like to ask you a question about how much trust you have in people from
various countries. For each, please tell me whether you have a lot of trust, some trust, not very
much trust, or no trust at all.”, 53 The relevant Eurobarometer surveys cover respondents
from 16 EU countries and ask about their trust attitude towards 28 countries, including a

errors. Results from other studies on the stability of experimental and survey measures of preferences are
consistent with this finding (see survey by Chuang and Schechter, 2015).

51Of course, if one can administer many trust surveys or games on the same individual, one can average
out much more precisely individual trust. However, this is highly infeasible.

52In essence, using the inherited trust measure is similar to using the cell-average of the right hand side
variable as a new regressor, a very helpful procedure when one only observe cell averages (see Angrist and
Pischke, 2009, c. 2).

53Following the literature, I recode the answers to 1 (no trust at all), 2 (not very much trust), 3 (some
trust), and 4 (a lot of trust) before averaging them by country pair to derive ethbitrustec.
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number of non-EU countries such as Russia, Japan, and China.54 Existing studies using
the same measure have shown that bilateral trust matters to a wide range of economic
activities, from cross-country trade (Guiso et al., 2009) to venture capital investment
(Bottazzi et al., 2016) to within-firm internal organization (Bloom et al., 2012). The CEO’s
bilateral trust measure bitrustdc is available for CEOs whose ethnic origins are among the
16 surveyed countries, which comprise 45% of the CEO name-matched sample (details
in appendix A.2.4).

1.3.3 Baseline sample

To construct the baseline sample, I combine patent data from PATSTAT and CEO data
from BoardEx with US public firms’ performance data from Compustat, excluding firms
in the financial sector and those whose headquarters are outside of the US. For practical
purpose, I only consider firms with at least one name-matched CEO55 and further
restrict the sample to firms and CEOs for which all key variables are non missing.
This results in a final baseline sample of 3,598 US public firms and corresponding 5,753
name-matched CEOs, with 29,384 firm by year by CEO observations during the period
between 2000 and 2011 (see Table A.3). About 60% of these firms are R&D performing
firms and patenting firms, sharing among them 700,000 patent applications between
2001 and 2012. Separately, about two thirds of the firms have more than one CEOs
during this 12-year period, with an average of 1.7 name-matched CEOs each firm. 98%
of the CEOs are male, each CEO has an average tenure of 7 years, and very few CEOs
are the chief executive of more than one Compustat firm.

1.4 Within-firm effect of CEO’s generalized trust

1.4.1 Within-firm empirical strategy

I first consider a difference-in-differences specification with firm fixed effects:

asinh(pat f d,t+1) = β1trust f dt + X f t + Zdt + θ f + ωt + ε f dt. (1.5)

Each observation represents a firm f in a year t with its current CEO d. pat f d,t+1 is firm
f ’s forward patent application counts in year t + 1.56 As patent distribution is skewed,
I use the inverse hyperbolic sine transformation asinh(pat f d,t+1) as the main outcome

54Unlike the GSS, Eurobarometer surveys are conducted among residences of European countries.
However, given the discussed evidence of intergenerational transmission of trust attitude, it seems
reasonable to use the Eurobarometer-based bilateral trust measure as a proxy for the bilateral trust among
descendants of US immigrants.

55These firms comprise 92% of the firm sample and are mechanically larger than the remaining 8%.
However, as my key estimates are within-firm estimates, any firm-level selection only poses threat to the
results’ external validity. This is unlikely to be a first order concern given that selected firms cover a large
share of the firm sample.

56Results are robust to using further-forward patent application counts in year t + 2 or t + 3.
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variable instead of raw patent counts (following Card and DellaVigna, 2017).57, 58 The
main explanatory variable trust f dt is the time-invariant measure of CEO d’s inherited
trust attitude, which also corresponds to researchers’ perception of CEO d’s trust
attitude (details in subsection 1.3.2). To facilitate interpretation, trust f dt is standardized
by its standard deviation at ethnic level.59 The specification includes a full set of firm
fixed effects θ f , which helps control for all firm-level time-invariant characteristics that
are correlated with either firms’ innovation capability or selection of CEO. In addition,
equation 1.5 also includes controls for firm’s time-variant characteristics X f t (i.e., firm’s
age, log(assets), log(sale)), CEO’s time-variant characteristics Zdt (i.e., CEO’s age, gender,
education dummies, tenure in firm), and a set of year fixed effects ωt that accounts for
macro-level cyclicality in innovation. Standard errors are clustered by CEO’s main ethnic
origin in case there are idiosyncratic factors that are specific to an ethnicity.60 Alternative
specifications that (i) further include controls for employment and R&D stocks or flows,
(ii) employ additional industry-by-year fixed effects, or (iii) apply two-way clustering by
CEO’s main ethnic origin and firm all yield quantitatively similar results.

The coefficient of interest β1 estimates the effect of CEO’s trust on firm’s patents.
With the inclusion of firm and year fixed effects, equation 1.5 identifies β1 from changes
in CEOs and subsequent changes in patenting within the same firm over time. The
difference-in-differences identifying assumption requires that the trend in potential
outcomes be mean-independent from changes in CEO’s trust, conditional on covariates.
Under this identifying assumption of common trends, β1 can be interpreted as the causal
effect of CEO d on firm f ’s patents.61 That is, the effect captured by β1 is unlikely to
be the result of reverse causality or confounded by firm f ’s time-variant unobservable
characteristics that affect both the firm’s choice of CEO and its innovation outputs (e.g.,
changes in firm’s strategy driven by the board).

To formally test for common trend, I regress the change in CEO’s trust in each
CEO transition event on firm’s patent application counts in different years before the
transition, controlling for pre-change firm’s and CEO’s characteristics. The resulting
coefficients are all small and not statistically different from zero, indicating that there
is no association between firm’s pre-change patenting and subsequent change in CEO’s

57The inverse hyperbolic sine transformation asinh(x) = ln (x +
√

1 + x2) takes value 0 at x = 0 and
approximates ln x + ln 2 +O( 1

x ln x ) for large x. It has been promoted as a substitute for ln(x + 1) by David
Card, because one can still interpret changes in asinh(x) as close approximates of percentage changes in
x for sufficiently large x thanks to its similarity with ln x, while the function’s behavior around x = 0
approximates ln(1 + x) + O(x2).

58Results are robust to (i) using log(1 + pat f ,t+1), winsorized, or raw pat f ,t+1 as the outcome variable,
(ii) estimating a semi-log Poisson count model with pat f ,t+1 as the outcome variable, instead of OLS.

59Inherited trust’s standard deviation at ethnic level is 0.11. This equals the difference between Greek
and English inherited trust levels.

60CEO d’s main ethnic origin is e∗d = argmaxe(wde). Average weight of the main ethnic origin (i.e.,
average wde∗ ) among CEOs is 71%.

61In a more general setting with asinh(pat) = f (trust, X, Z, η), β1 estimates an average causal effect
E[

∂ f (trust,X,Z,η)
∂trust ].
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trust (Figure 1.2).62 In addition, Figure 1.3 plots the average patent application counts
by the number of years before the transition for the full sample of firms.63 The flat
pre-trend in patents suggests that the timing of the CEO transition is not driven by a
trend in patenting, which implies that reverse causation is unlikely to be a concern in
this setting.

1.4.2 Baseline effect of CEO’s trust on firm’s patents

Figure 1.4 presents the paper’s key empirical finding visually with an event-study plot
of firms’ patent application counts by year with respect to CEO transition year (i.e.,
year 0). The solid blue line groups together all CEO transitions in which the new
CEOs are more trusting than their predecessors (i.e., trust-increasing transitions), and
the dotted red line corresponds to those in which the new CEOs are less trusting (i.e,
trust-decreasing transitions).64 The two lines exhibit similar pre-trends in the years
before CEO transitions, but diverge visibly post-CEO change.65 Firms that experience
an increase in CEO’s trust after the transition also experience increases in patenting
in post-transition years (i.e., the upward-sloping solid line) and vice versa (i.e., the
downward-sloping dotted line). In addition, Table A.5 shows that while the difference in
average pre-transition patents between these trust-increasing and trust-decreasing CEO
transitions is small and not statistically different from zero (by matching), the difference
in their post-transition patents is large, positive, and statistically significant at 5% level.
Figure 1.4 suggests that CEO’s trust does have a considerable effect on firm’s innovation.

Table 1.1 then estimates equation 1.5, which exploits changes in CEOs and sub-
sequent changes in patenting within the same firm over time, using the full baseline
sample described in subsection 1.3.3. Given evidence of common trend (see subsection
1.4.1), the coefficient on CEO’s trust captures its effect on firm’s forward patent count.
I first report two basic specifications without any firm or CEO controls (column 1) or
without firm controls that could also be outcomes of CEO’s trust, such as assets and

62Figure 1.2 plots the coefficients γ̂k for k ∈ [−6,−1] from estimating: ∆trust f dt =

∑−1
k=−7 γk(asinh(pat f dt)× eventt−k) + βtrust f dt + X f t + Zdt + ωt + ε f dt, in which (i) ∆trust f dt is the

difference between CEO d’s and her successor’s trust measures, (ii) eventt−k is an indicator equal to 1
if the transition happens in year t− k, and (iii) X f t additionally includes a full set of firm’s 3-digit industry
dummies.

63Figure 1.3 plots the coefficients γ̂k for k ∈ [−7,−2] relative to γ̂−1 from estimating: asinh(pat f dt) =

∑−1
k=−7 γkeventt−k + X f t + Zdt + θ f + ωt + ε f dt, in which eventt−k is an indicator equal to 1 if the next CEO

transition happens in year t− k.
64To plot Figure 1.4, I first (i) partial out the covariates by regressing patent application counts on

firm’s and CEO’s controls with firm’s industry and year fixed effects, then (ii) average the residuals by
year separately for each group of CEO transitions, and finally (iii) normalize these annual averages to their
respective group’s pre-transition mean. I restrict the sample to CEO transitions in which both predecessor’s
and successor’s tenures are at least 5 years, so that the plotted patent trends are not driven by changes in
firm composition. Furthermore, to address possible mean reversion, each trust-increasing transition is
matched to a trust-decreasing transition based on their average pre-transition residual patent counts.

65Similar event-study plot using all CEO transitions that meet the CEO tenure restriction (Figure A.1)
also exhibits the same pattern. This provides further evidence in support of the common trend identification
assumption discussed in subsection 1.4.1, as the patent pre-trends in this figure are not guaranteed to
coincide by construction.
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sale (column 2). Column 3 then presents the baseline specification that includes the
full set of controls for firm’s age, size and CEO’s age, gender, education, and tenure in
addition to firm and year fixed effects. Finally, column 4 further adds industry-by-year
fixed effects to account for industry-level patenting cyclicality. The resulting CEO’s trust
estimates are almost identical across these four columns and imply that one standard
deviation increase in CEO’s trust is associated with 6.3% increase in firm’s patent filing,
statistically significant at 1% level.66 This equals 1.1 additional patents annually for
the average baseline sample firm with value equal to $3 million in additional R&D,67

suggesting that CEO’s trust also has a substantial impact from an economic perspective.
Figure A.2 plots the CEO’s trust estimates as a function of the change in CEO’s trust

(i.e., difference between trust measures of new and old CEOs) and shows that the effect
is driven by both positive and negative changes in CEO’s trust, similar to the pattern
shown in event study Figure 1.4.68 Additionally, Table A.6 describes and reports results
from further robustness checks, some of which are also mentioned in subsection 1.4.1.

Columns 5 to 7 turn to alternative measures of trust. Column 5 further refines
the trust measure with a machine-learning procedure using all variables commonly
available in both BoardEx and GSS besides ethnic origin, including age, gender,
education, and birth cohort, which demographic characteristics have been shown to
predict individual trust attitude.69 This measure yields a slightly larger CEO’s trust
coefficient, suggesting that the baseline trust measure captures most of the meaningful
variations in individual trust across observable demographic characteristics. Column
6’s trust measure uses the trust answers of all GSS respondents, not just those in highly
prestigious occupations, and column 7’s uses the World Value Survey’s (WVS) trust
answers collected from each ethnicity’s home country, instead of the GSS’s. As the
baseline trust measure is closer to the US CEO population, one would expect smaller
effect using the full-GSS-based measure, and even smaller effect using the WVS-based
measure, as shown in columns 6 and 7.70

Table A.7 focuses on a special subsample of CEO transitions for which the common
trend condition is better warranted: transitions following CEO retirements or deaths
(e.g., Fee et al., 2013; Bennedsen et al., 2010). As the need to replace the existing
CEO arises exogenously, the timing of the subsequent transition is likely exogenous to

66The inclusion of controls does not affect the magnitude of CEO’s trust estimates but helps improve
their precision.

67Dechezleprêtre et al. (2018) estimate that a patent costs 1.8 million in 2007 British pounds.
68The graph represents the effect of trust on patent counts as a function of change in CEO’s trust,

namely ∂asinh(pat f d,t+1)
∂trust f dt

(∆trustE). Each point estimate is obtained from the benchmark regression, weighted
by a kernel function around that value of ∆trustE (see Do et al., 2017’s appendix for details of this method).

69I first fit a LASSO model (Tibshirani, 1996) to predict trust attitude from these demographic
characteristics and their interactions with ethnic origin, using individual-level data from the GSS. I then use
the LASSO-selected model to predict CEOs’ trust attitude. It is worth noting that all ethnic origin dummies
are retained in the selected model.

70The fact that the magnitude and precision of the CEO’s trust coefficient increase with the quality of the
CEO’s inherited trust measure is reassuring, as it is difficult to specify an omitted variable that is always
more precisely measured when trust is better measured.
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firm’s other decisions. Even though the replacement CEO choice is endogenous, under
the assumption that firm’s underlying characteristics do not change in the event of an
exogenous transition, firm fixed effects sufficiently control for firm’s new CEO selection.
I focus on CEO natural retirements around the age of 65 in columns 1 to 3.71 Column
6 further includes CEO deaths within one year of leaving the office; however, there are
only very few such events in my data. The CEO’s trust estimates are large, positive,
and statistically significant across these subsamples.72 Although these results should be
taken with caution (they are estimated from small subsamples of special events), overall,
they suggest that CEO’s trust does have impact on firm’s innovation. This resonates with
findings from existing literature that CEOs matter to firm performance (see survey by
Bertrand, 2009).

However, as the same literature has shown that various CEO’s and firm’s decisions
are influenced by CEO’s other characteristics, one would be concerned that some may
correlate with CEO’s trust and directly affect innovation at the same time. I take two
approaches to address this concern: first, I control for potential confounding factors
related to CEO’s origins, and second, I exploit within-CEO variation to control for all
CEO observable and unobservable characteristics with CEO fixed effects in the next
section (subsection 1.5). Even though the latter provides better identification of the
effect of CEO’s trust, the former sheds some light on other factors by CEO’s origins that
may also have an effect on firm’s innovation.

Given firms’ inclination to trade with, have business in, or hire from their CEOs’
home countries and the possible spillovers from these linkages, Panel A of Table 1.2
controls for a range of macroeconomic variables that measure the CEO’s home countries’
level of development and technological capabilities. These controls include country-by-
year-level (i) GDP, population and GDP growth (column 1), (ii) high school graduation
rate (column 2), (iii) governance quality index, (iv) total trade volume with the US
(column 4), and (v) total patent applications (column 5), all of which have been shown
to be related to country-level trust measure (see surveys by Algan and Cahuc, 2013,
2014).73 Among these factors, only GDP growth and trade volume with the US seem to
have a relationship with firm’s patenting (column 6). More importantly, the magnitude
and statistical significance of the CEO’s trust effect is not affected by the inclusion of
these controls across Panel A.

In Panel B, I turn to examine if the observed effect is driven by other cultural traits
instead of trust attitude. First, a CEO’s ethnic groups’ socioeconomic characteristics
could impact her skill accumulation, both directly via investments in human capital and

7165 is the official Social Security retirement age and the traditional retirement age used in the related
literature (e.g, Fee et al., 2013). In the data, I also observe a spike in CEO’s leaving executive positions for
good around 65.

72The estimates’ magnitude suggests that CEO’s trust is more important to innovation in times of greater
uncertainty.

73For each home-country variable h, the control variable h f dt is calculated as h f dt = ∑e wde × het where
het is the value of h in the home country e in year t and wde is as described in subsection 1.3.2.
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indirectly via exposure (e.g., Bell et al., 2018). As there are strong correlations among
self-perceived class, occupational prestige, earnings, and education, I use an ethnicity’s
share of college graduates as a summary statistics for its socioeconomic characteristics in
column 1.74 The related literatures on culture and on CEOs have also pointed to some
salient cultural values that have economic significance at both macro and individual
levels. These include: (i) Protestant work ethic, which has been discussed since Weber
(1905) and shown to influence individual’s choices of incentive contract and total work
hours (e.g., Liu, 2013; Spenkuch, 2017), and (ii) risk preference, which affects national
saving behaviors at the macro level and firm’s financing decisions at the micro level (e.g.,
Pan et al., 2017). In column 2, I measure the Protestant work ethic, which promotes the
intrinsic value of work, using answers to the GSS question on the relative importance of
work versus luck as the means to get ahead.75 In column 3, risk preference is inferred
from the shares of GSS respondents having stock market or mutual fund investments.76

Finally, column 4 pools together all the cultural trait controls and column 5 adds the
home country controls that are statistically significant in Panel A.77 The inclusions of
these variables does not affect the magnitude and statistical significance of the coefficient
on CEO’s trust very much, implying that this effect is unlikely to be confounded by other
factors related to the CEO’s ethnic origins.

1.5 Within-CEO effect of CEO’s bilateral trust

1.5.1 Within-CEO empirical strategy

Despite the evidence discussed so far, there remain many other CEO personal char-
acteristics that one cannot observe, measure, or directly control for, such as ability,
management style, or preference for innovation. These characteristics can have direct
effects on firm’s innovation and be correlated with her trust attitude at the same time. As
a result, equation 1.5’s β1 captures not only the effect of CEO’s trust but also the effects
of those other characteristics. To address this concern, I exploit within-CEO variation
in bilateral trust towards different groups of inventors and corresponding variation in
patenting among those different inventor groups. Such within-CEO variation allows me

74These variables are derived from corresponding GSS questions similarly to the trust measure (see
subsection 1.3.2).

75The question reads “Some people say that people get ahead by their own hard work; others say that lucky breaks
or help from other people are more important. Which do you think is most important?”. Relatedly, individuals’
answer to the same question has been shown to be correlated with their preference for redistribution
(Alesina and Angeletos, 2005; Giuliano and Spilimbergo, 2013).

76Campbell (2006) shows that risk averse individuals participate less in the stock market.
77Appendix A.8 explores alternative measures for socioeconomic status, work ethic, and risk preference

derived from the GSS. Appendix A.9 presents additional tests using trust and other cultural trait measures
derived from the Global Preference Survey (Falk et al., 2018), including risk preference, time preference,
positive reciprocity, negative reciprocity, and altruism. All results are quantitatively similar to those
reported in Table 1.2.
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to include a full set of CEO fixed effects in the following equation:

asinh(pat f dc,t+1) = β2bitrust f dct + θ f t + κc + ωd + ε f dct. (1.6)

Each observation is a combination of firm f by year t by its CEO d by country c. The
outcome variable pat f dc,t+1 is firm f ’s total patent counts by inventors from country c
in year t + 1 (details below). The main explanatory variable bitrust f dct measures how
much CEO d trusts individuals from country c, which aligns with researchers from
country c’s perception of CEO d’s trust attitude towards them (details in subsection
1.3.2). Besides the crucial CEO fixed effects (ωd), equation 1.6 also controls for
inventor country’s baseline characteristics (e.g., development level, institution quality,
technological comparative advantage, inventor pool quality) with inventor country fixed
effects (κc), and for firms’ time-variant characteristics with firm by year fixed effects
(θ f t). Given these stringent sets of fixed effects, any remaining variations would have
to be at the firm-inventor country pair or CEO-inventor country pair levels. To control
for potential confounding factors by those variations, I additionally include firm-by-
inventor country fixed effects or an array of CEO-inventor country pairwise controls in
the robustness checks. The coefficient β2 then captures the effect of CEO’s bilateral trust
toward individuals in a country on corresponding patent counts by inventors from that
country. Standard errors are clustered by CEO’s main ethnicity-inventor country pair.78

To construct the outcome variable pat f ct, I use information on patent inventors’
addresses or last names to allocate patents to different inventor countries or origins
(similar to Foley and Kerr, 2013, details in appendix A.2.2). In the address-based
approach, a patent is assigned to the country where its inventors reside, which is also
likely to be where the invention is created.79 About 30% of my patent sample are by non-
US R&D labs of US-based multinational firms, most of these labs are in Europe, Japan,
and China. For the remaining US-based patents, I infer their inventors’ ethnic origins
from the inventors’ last names (see subsection 1.3.2), then assign the corresponding
patents to their inventors’ countries of origin accordingly (I refer to this as the last
name-based approach).80 The variable pat f ct is the sum of all patents filed by firm f in
year t that are allocated to country c.

The sample used to estimate equation 1.6 includes all firm f -inventor country c pairs
such that firm f has patents by inventors from country c in at least one year during the
study period.81 If a firm-inventor country pair satisfies this condition, then it is included
in the sample even in the years when the pair has zero patent to avoid biases arising

78Results are robust to two-way clustering by CEO’s main ethnicity-inventor country pair and firm.
79Compared to patent office’s location, inventors’ location is a better proxy for where the invention is

created, as an invention can be filed for protection in many different jurisdictions. In the few cases in which
a patent has multiple inventors living in different countries, I allocate a proportional fraction of the patent
to each of those countries.

80Similar to CEOs, over 80% of all inventors are mapped to their ethnic origins based on their last names.
81That is, pat f ct > 0 for some t ∈ [2000, 2012]. In addition, the corresponding CEO d’s ethnic origins

and country c are among the countries surveyed and/or covered by the Eurobarometer, so that bitrustdc is
non-missing.
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from selection into patenting over time.82 Therefore, β2 captures both the intensive and
the extensive margins of CEO’s bilateral trust effect on inventors’ patenting.83 Using
the address-based approach to identify inventors’ countries results in a sample of 3,481
firm by country dyads, covering 730 firms with R&D labs in 27 countries (outside of
the US) and 960 CEOs. Additionally employing the last name-based approach gives a
larger sample of 8,554 firm by country dyads, covering 1,263 firms with inventors from
27 countries and 1,654 CEOs (see Table A.4). Figure 1.5 shows the distribution of the
CEO’s bilateral trust measure in these subsamples.

1.5.2 Effect of CEO’s bilateral trust on inventors’ patents

Table 1.3 reports the effect of CEO’s bilateral trust towards individuals in a country on
corresponding patent counts by inventors from that country, estimated using equation
1.6. Columns 1 to 3 consider the bilateral trust sample constructed from only non-US-
based inventors and columns 4 to 6 use both non-US- and US-based inventors.84 The
baseline bilateral-trust specification (equation 1.6) is reported in columns 1 and 4. In
addition, I fully interact the sets of firm, CEO, and inventor country dummies with year
dummies in columns 2 and 5. Columns 3 and 6 further include firm-by-inventor country
fixed effects to control for specific characteristics of each R&D lab or group within in
the firm that are not already captured by firm or inventor country fixed effects.85, 86 The
CEO’s trust coefficient in column 1, which estimates the effect of CEO’s bilateral trust on
patents after controlling for firm’s time-variant and CEO’s characteristics, implies that
one standard deviation increase in CEO’s bilateral trust towards a country is associated
with 5% increase in patents by the R&D lab in that country (statistically significant
at 5% level). This effect is similar in magnitude to the baseline CEO’s trust effect of
6% reported in Table 1.1, and is robust to adding even more stringent fixed effects in
columns 2 and 3.

Columns 4 to 6 exhibit similar pattern across the different specifications. One would
expect that the effect of CEO’s bilateral trust is smaller in this subsample (3% compared
to 5% in the other subsample) for a couple of reasons. First, as the differences among
US-based inventors from different home countries are less salient, CEOs’ bilateral trust

82Alternatively, one could estimate equation 1.6 using the full sample of all firm-inventor country pairs.
However, the inclusion of never-patenting firm-inventor country pairs adds considerable computational
burden while offering no additional meaningful within-firm or within-CEO variation in patenting.

83I discuss approaches to separate these two effect margins in subsection 1.5.2.
84Columns 1 and 2 of Table A.11 show that the within-in firm effects of CEO’s generalized trust on

firm’s patents are also positive and statistically significant among these subsamples.
85However, it is difficult to specify what the potential confounding factors at firm-inventor country level

are. An example is that firm f has a large group of inventors in or from country c for firm-country specific
reasons that are not already explained by firm-level and country-level characteristics, and firm f is inclined
to select CEOs with high bilateral trust towards country c for the same reasons.

86This specification mirrors equation 1.5’s within-firm specification, but is at the within-R&D lab/group
level instead. That is, it exploits the change in patenting by the same R&D lab or group following a change
in CEO, relative to that of other R&D labs or groups in the same firm under the same CEO. Figure A.3
reports evidence of the common trend identification condition that pre-change patents at R&D lab or group
level do not predict the change in CEO’s bilateral trust towards the corresponding R&D lab or group.
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towards these inventors and these inventors’ perception of the CEOs’ trust towards them
are less heterogenous. Second, from an organizational perspective, CEOs would be more
likely to implement differentiating policies towards R&D labs in different countries than
towards different groups of US-based. On the other hand, the combined subsample
covers a much larger share of the patent pool, which result in a larger estimation sample
and more precisely-estimated coefficients.87 Together, results from both subsamples are
complement and they both imply that CEO’s trust positively impacts firm’s innovation.

Furthermore, to understand whether this impact comes from existing inventors in
the firm (i.e., the intensive margin), or from new R&D labs or groups that arrive with
the CEO (i.e., the extensive margin), I focus on smaller subsamples of firm f -inventor
country c pairs such that firm f has patents by inventors from country c before the
corresponding CEO assumes position (Table A.11, columns 5 and 6). Even though the
CEO’s trust coefficients are less precisely estimated in these subsamples, they are of
similar magnitude to the combined bilateral trust effects. This implies that CEO’s trust
does work through the intensive margin by improving the innovation outputs of existing
researchers, as suggested by the model in Section 1.2.

Table 1.4 controls for potential confounding factors at CEO-inventor country pair
level. An immediate concern is that CEOs may differentially favor inventors in their
home countries or from the same ethnic groups (e.g., Do et al., 2017). To address this, I
exclude all CEO-inventor country pairs such that the inventor country is the same as the
CEO’s main home country (columns 1 and 5), and control for the geographical distance
between CEO’s and inventor’s home countries to account for potential “favoritism
spillovers” (columns 2 and 6). Next, bilateral trust is correlated with cultural proximity,
which could have a direct impact on R&D outputs thanks to better information flows
between CEOs and researchers (e.g., better screening of researchers, better working
relationship between researchers and CEOs). In columns 3, 4, 7 and 8, I include CEO’s-
inventors’ home countries pairwise linguistic and genetic distances as proxies for their
ease of interaction and cultural proximity (Spolaore and Wacziarg, 2016). The CEO’s
bilateral trust coefficients remain statistically significant across all of these robustness
checks in both bilateral trust subsamples. More importantly, they are similar to Table
1.3’s estimates in magnitude, suggesting that the reported CEO’s bilateral trust effect is
not spuriously driven by favoritism or other confounding factors.

Furthermore, as trust and trustworthiness are correlated, one may concern that
the CEO’s trust effect instead captures the impact of her trustworthiness. I exploit
the differences between (i) the baseline bitrustdc that measures CEO d’s bilateral trust
towards inventors from country c, and (ii) a new variable invbitrustcd that measures

87Consistent with the view that the bilateral trust effect is expectedly weaker towards US-based
inventors, Table A.10, which estimates equation 1.6 using an alternative bilateral trust sample constructed
from only US-based inventors, yields a smaller CEO’s bilateral trust coefficient of 2%, statistically significant
at 10% level.
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inventors from country c’s trust towards CEO’s d,88 and find that in a specification based
on equation 1.6 that includes both directions of bilateral trust as explanatory variables,
the coefficient on bitrustdc is large and statistically significant while the coefficient on
invbitrustcd is zero (Table A.12, column 3). Given the variables’ high correlation, I
further employ specifications in which I partition the sample into deciles of invbitrustcd

(bitrustdc) and compare observations within the same decile by introducing a full set
of decile dummies. That is, I estimate the effect of bitrustdc (invbitrustcd) among
observations with very similar invbitrustcd (bitrustdc). The resulting coefficients show
that bitrustdc is still strongly associated with patent outcome (column 4) while the same
is not true for invbitrustcd (column 5). The evidence suggests that it is the CEO’s trust
toward the inventors that is the main driver of the CEO’s trust effect.

1.6 Evidence of mechanism

1.6.1 Framework for separating different mechanisms

Alternative mechanisms. Section 1.2 presents a model in which a CEO’s trust in a
researcher’s type improves the latter’s incentives to undertake high-risk explorations,
which results in more innovation. Yet there exist other competing mechanisms that
can also explain this relationship between CEO’s trust and firm’s innovation. First,
trust could lead to greater delegation by the CEO, which induces more effort from the
researcher and therefore improves R&D outcomes (Aghion and Tirole, 1997; Acemoglu
et al., 2007; Bloom et al., 2012).89 Second, trust, as catalyst for cooperation (Putnam
et al., 1993; Fukuyama, 1995), could also have an essential role in sustaining informal
relational contracts (Baker et al., 1999, 2002). That is, when the CEO cannot credibly
commit to her policies, the researcher is more likely to cooperate and exert effort if he
trusts that the CEO will honor the promised rewards for success.90, 91 In both of these
frameworks, greater effort by the researcher improves the expected outcome of all R&D
projects and therefore increases all types of innovation. On the other hand, greater risk
taking likely produces more high-quality patents but not necessarily more low-quality

88invbitrustcd = ∑e wde × ethbitrustce where ethbitrustce is the bilateral trust measure for how much a
person from country of origin c trusts a person from country of origin e. Note that invbitrustcd measures
inventors from country c’s perception of CEO d’s trustworthiness, not their perception of CEO d’s trust
towards them. The latter, as discussed in subsection 1.3.2, aligns more closely with bitrustdc instead.

89Aghion and Tirole (1997) and Acemoglu et al. (2007) model higher trust as greater preference
congruence between the principal and the agent, which leads to greater delegation by the principal.
Separately, Bloom et al. (2012) consider trust as the principal’s belief in the agent to behave in the “correct”
way, and find that trust is empirically associated with both greater decentralization and better firm’s
performance.

90Therefore, it is the researcher’s trust towards the CEO, or relatedly the CEO’s trustworthiness, that
matters for cooperation and the game’s outcomes. This is inconsistent with the evidence presented in
subsection 1.5.2 that CEO’s trust towards the researcher, not the other direction of trust, is the main driver
of CEO’s trust effect on innovation.

91Additionally, Aghion et al. (2013) show both theoretically and empirically that greater monitoring
enables more innovation, also through reducing career risks and allowing more risk taking. However,
as trust reduces monitoring incentive, they are more likely substitutes than competing explanation of the
other’s effect on innovation.
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ones. This suggests that it is possible to distinguish between the different mechanisms
by examining the patent quality distribution, as detailed below.

Estimation of mechanism. I develop a formal framework to compare section 1.2’s risk-
taking mechanism that CEO’s trust increases innovation by encouraging able researchers
to choose risky projects (i.e., explore instead of exploit), against alternative mechanisms
of trust inducing more effort by those researchers. The framework identifies the different
mechanisms by exploiting their potentially different predictions regarding the outcome
quality distribution of R&D projects, using patent citation counts and the likes as
measures of quality.

First, I establish that the effect of CEO’s trust does not work through increasing the
scale of R&D, but rather the choice of projects and their eventual outcomes. This is
suggested by the regression of (future) R&D expenditure on CEO’s trust specified as in
equation 1.5, which consistently yields statistically insignificant estimates close to zero
(Table A.15). That is, the number of independent R&D projects (i.e., N) the firm runs is
not influenced by CEO’s trust.

Let us assume that a project’s outcome quality x, measured by a patent’s forward
citation counts, follow a distribution FT(·) indexed by the CEO’s trust T. Note that x is
observable only when the project is patented, that is, when x ≥ 0. It further assume that
better quality patents are always rarer (i.e., F′T(x) is decreasing on [0, ∞) ∀T).92

I parameterize this family of distributions as FT(x) = F0(
x−x̄−b(T)

a(T) + x̄)
de f
≡ F( x−b̃(T)

a(T) ),
in which a(T) represents the change in project’s outcome quality variance and b(T)
the shift in project’s outcome quality mean induced by CEO’s trust.93 The risk-taking
mechanism suggests that CEO’s trust increases patented innovations through a(T) (i.e.,
a′(T) ≥ 0), while alternative mechanisms work through b(T) (i.e., b′(T) ≥ 0). As higher
T implies higher number of observed patent counts N(1− FT(0)) = N(1− F(−b̃(T)

a(T) ))

under both types of mechanisms, it is not possible to distinguish between the two by
just examining the effect of CEO’s trust on total patent count.

The solution to this problem comes from considering patents within a specific low
quality range [c1, c2]. Given the assumptions regarding FT(.), it follows that:

Proposition 3. Higher b(T) increases the count of patents within the low quality range
[c1, c2] ⊂ [0, ∞).

That is, alternative mechanisms that work through b(T) (i.e., mean shifting) increase
not only the total patent counts but also the number of patents within any arbitrary
patent quality range (see appendix A.4.1 for detailed proof). The same prediction does
not hold for the baseline risk-taking mechanism that works through a(T) instead. On
the contrary, under certain mild conditions, it can be shown that higher a(T) decreases

92This is consistent with the empirical patent quality distribution, as measured by forward citations.
93That is, b̃(T)

de f
≡ x̄ + b(T) and F(.)

de f
≡ F0(.). Note that a(0) = 1, b(0) = 0, and x̄ = EF0 (x).
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the count of patents within the quality range [c1, c2] ⊂ [0, c] for small enough c (see
appendix A.4.2 for details).94

These results imply that it is possible to identify the two types of mechanisms by
examining patent counts in low patent quality ranges. Specifically, when one consider
patents in increasing brackets of quality, the effect of CEO’s trust on the corresponding
patent counts increases from negative/zero to positive under the risk-taking mechanism.
In contrast, the alternative mechanisms predict similar effects of CEO’s trust on patent
counts in different quality brackets. This will serve as a simple test of the mechanism.95

1.6.2 Effect on patent quality distribution via exploration

I apply subsection 1.6.1’s methodology to identify between the risk-taking mechanism,
by which CEO’s trust increases innovation through encouraging able researchers to
choose risky instead of safe R&D projects (i.e., exploration instead of exploitation),
versus suggested alternative mechanisms of delegation and/or cooperation. The
method considers trust effects patents in low quality quantiles.

I follow the literature on innovation and patenting in measuring patents’ quality
by their forward citation counts.96 As forward citations take time to accumulate and
vary by technology field, I first compute each patent’s citation decile with respect to the
universe of patents in its same application technology field-by-year cohort, then sum
up the number of patents in each quality decile at the firm by year level. The resulting
variable patq

f t counts the number of patents in quality decile q filed by firm f in year t,
for q ∈ [1, 10].97

Figure 1.7 documents how CEO’s trust effect vary by patent quality decile by plotting
the coefficients estimated from equation 1.5 using asinh(pat1

f t) to asinh(pat10
f t) as the

outcome variables. The upward-sloping pattern indicates that CEO’s trust has larger
positive effect on higher-quality patents. On the other hand, its effect on patents below-
median in quality is not statistically different from zero. As discussed in subsection
1.6.1, these results are consistent with the exploration channel, and reject alternative

94Figure 1.6 illustrates these results by showing a baseline distribution (in dotted red line) with its mean-
preserving spread counterpart (in solid blue line) in the top figure and its mean-shifting counterpart (in
solid green line) in the bottom one. The solid vertical line at zero represents the patent quality threshold
and the dashed vertical line corresponds to a quality threshold c. One can only observe patented projects in
the half-plane to the right of the patent threshold. Proposition 3 implies that the area between [0, c] is always
higher under the higher-mean distribution (see bottom figure) compared to the baseline distribution, while
the same is not necessarily true under the higher-risk distribution (see top figure).

95Furthermore, one can also identify separately a(T) and b(T) from considering the trust effect on
different patent quality quantiles. It is thus possible to structurally estimate the effects of trust via the two
types of mechanisms (e.g., by assuming a(T) = aT, b(T) = bT, and F ∼ N (x̄, σ)). This is a topic that I will
return to in future research.

96Hall et al. (2005) show that one more citation per patent (around the median) is associated with 3%
higher in market value for the firm. Trajtenberg (1990), Harhoff et al. (1999), and Moser et al. (2015) also
find that patent’s forward citation counts is correlated with patent quality.

97The bottom three deciles contain mostly patents with zero forward citations.
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channels such as delegation or cooperation.98 Furthermore, using Table 1.3’s bilateral-
trust specification (equation 1.6) also gives similar result that CEO’s trust effect is the
largest on patents in the top quality quartile, while its effect on the bottom quartile is
either small or zero (see Table A.13).99

Table 1.5 considers various other patent quality measures and estimates equation
1.5 using quality-weighted patent counts as the outcome variable (Squicciarini et al.,
2013). Column 1 uses standard forward citation counts as the quality weights. Column
2 uses the number of backward citations to scientific literature. Columns 3 to 5 use
patent scope, generality index, and originality index, which measure the range of
technology fields covered by the patent, its forward citations, and its backward citations
respectively.100 Column 6 considers only granted patents. Across these different quality-
weighted patent counts, the coefficients on CEO’s trust are positive and statistically
significant, with magnitudes larger than or similar to the baseline effect. The large
effect on citations to scientific literature in column 2 is especially interesting, as it
suggests that CEO’s trust encourages researchers to explore directions that are closer
to scientific frontiers and therefore could result in inventions of significantly higher
quality (Cassiman et al., 2008; Branstetter, 2005). Furthermore, column 7 directly shows
that CEO’s trust improves not only the absolute forward citation counts, but also
the average citation counts per patent, and this effect is of sizable magnitude (4.4%,
statistically significant at 5% level).101 The same results also hold in both bilateral
trust subsamples, which similarly report largest effects on forward citations, citations
to scientific literature, and patent scope (see Table A.14). Together, Tables 1.5 and A.14
provide further evidence that CEO’s trust increases both the quantity and the quality of
innovation, as is expected under more exploration.

1.6.3 Effect increases with researcher quality pool

Section 1.2’s model predicts that CEO’s trust always increases total innovation. However,
as trust induces innovation through encouraging good researchers to explore, its effect
is expected to be larger among firms with better researcher pool quality and vice versa.
As data on the full sample of researchers in each firm are not available, I construct a
proxy for research quality as the residuals from regressing patents on observable firm
and CEO characteristics, controlling for industry and year fixed effects. That is, if there
are two firms in the same industry and time space with similar observable characteristics

98This resonates with Azoulay et al.’s (2011) finding that scientists at Howard Hughes Medical Institute
(HHMI) produce high-impact papers at a higher rate than their NIH-funded peers, as HHMI’s policies are
better at tolerating early failure and rewarding long-term success.

99As patents are already divided into smaller cells of firm by country by year in this specification, I only
further classify them by quality into 4 quartiles instead of 10 deciles. Similar results hold in both bilateral
trust subsamples.

100Trajtenberg et al. (1997) first proposed the generality and originality indices, arguing that a patent
is likely more general purposed if it benefits different fields and more original if it relies on different
knowledge sources.

101The dependent variable in column 7 is the inverses hyperbolic sine of average forward citation counts
of patents filed by firm f in year t + 1, which is set to zero if firm f files zero patents in year t + 1.
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(including R&D expenditure and CEO’s trust), and one firm produces more patents than
the other, then it is likely that the former has better researchers than the latter.

Table 1.6 interacts CEO’s trust measure with firm-level proxy for researcher pool
quality during the pre-transition period and finds that consistent with the model’s
implication, CEO’s trust effect significantly increases with researcher quality. This
finding is robust to averaging the quality proxy over different pre-transition windows
(columns 1 to 3) and using different level of industry fixed effects in computing this
proxy. Column 4 further shows that CEO’s trust effect is sizable and statistically
significant only among firms whose existing researcher pool quality is in the top
two quintiles, consistent with the pattern plotted in Figure A.4. Furthermore, the
same pattern holds for CEO’s trust effect on firm’s R&D efficiency, as measured by
patent output over R&D expenditure (column 6), as well as firm’s future performance,
as measured by future sales, employment, and total factor productivity (TFP) (Table
A.16). These results suggest that trust is effective to not only innovation but also real
performance only when it is not grossly misplaced.

1.6.4 Evidence of effect on “corporate trust culture”

One concern is how a CEO’s personal characteristics could affect a researcher’s choices
in large public firms, given the likely multiple layers between them.102 On one hand,
direct interactions between the CEO and the researcher are not necessary for the
mechanism, as the former’s trust impacts the latter’s choices through her influence
on policies, which are observed and even anticipated by the researcher (based on his
perception of her trust attitude). On the other hand, in reality it is unlikely that the CEO
makes direct decisions regarding a specific researcher, so one would expect her trust to
also have an effect on the beliefs and choices of those in below levels in order for it to
influence the choices of the researcher. In this subsection, I explore whether CEO’s trust
attitude is transmitted within the firm.

To measure “firm’s trust attitude,” I use Sull’s (2018) dataset of employee sentiments
covering over 500 US large public firms. This dataset is constructed from the text
analysis of almost one million online employee reviews on Glassdoor.com, one of the
largest career intelligence sites worldwide, between 2008 and 2017.103 It covers a large
set of topics related to corporate culture and contains the number of instances each topic
appears in a review with positive or negative sentiment.104 I am most interested in the

102Despite this concern, González-Uribe and Groen-Xu (2017) also find that longer CEO employment
contract is associated with more patenting in a sample of US public firms, which result suggests that CEOs
can influence innovation activities even firms where they are hierarchically distant from the inventors.

103Grennan (2014) uses similar approach of text analyzing online employee reviews to measure corporate
culture along the 7 dimensions proposed by O’Reilly et al. (1991, 2014). She finds that changes in corporate
governance lead to changes in corporate culture.

104These topics are also selected based on O’Reilly et al.’s (1991, 2014) 7 dimensions of corporate culture.
For example, “corporate trust culture” is a topic under the integrity dimension. The sentiment count is
positive if the topic is mentioned positively and vice versa, and is zero if the topic is not at all mentioned
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topic that measures the extent to which employees trust one another, which for ease of
exposition I will call “corporate trust culture.”

I extend my firm and CEO data to 2016 and match them with review-level sentiment
data by firm and year. I then aggregate each topic’s sentiment measure by CEO term
and standardize the resulting measures by their standard deviations.105 This results
in Table 1.7’s sample of 393 observations at firm by CEO term level, covering 277
firms. To examine the relationship between CEO’s trust attitude and corporate trust
culture, I regress the described aggregated corporate-trust-culture sentiment measure
on CEO’s inherited trust, controlling for period-average firm’s and CEO’s characteristics
and 3-digit industry fixed effects (column 2) or even firm fixed effects (column 3). The
coefficients reports a strong association between CEO’s trust and corporate trust culture,
which is unlikely to be driven by firm-CEO matching as suggested by column (3). This
relationship is robust to adding additional controls for CEO’s approval rate by the same
sets of reviewers (column 4) and CEO’s other cultural traits as studied in Table 1.2
(columns 5 and 6). Even though these results should be taken with great caution,106

they do provide suggestive evidence that CEO’s trust attitude affects how those in below
levels view and work with one another.107

1.7 Interpretation and discussions

1.7.1 Innovating or patenting?

Using patents to measure innovation raises the concern that a CEO’s trust attitude may
be correlated with her preference for patenting instead of having a true impact on
innovation. The direction this correlation is ambiguous. On one hand, a more trusting
CEO may count on her employees to keep trade secrets and therefore chooses to patent
less. If so, the baseline estimates do not capture the full extent of CEO’s trust effect
on innovation. On the other hand, a more trusting CEO could have better confidence
in the patent system and thus higher propensity to patent. To assess if the observed
effect is driven by this, I construct measures of CEO’s confidence in the government
and in the scientific community as proxies for her confidence in the patent system.108

Controlling for either of these measures in equation 1.5 does not significantly alter the

in the review. To avoid overweighing long reviews, I recode positive sentiment counts to 1 and negative
sentiment counts to -1.

105I only keep the CEO terms for which there are at least 120 reviews, to avoid the results being driven
by a few idiosyncratic reviews.

106The caveats include: (i) the firm by CEO term subsample used in this analysis is small and only
partly overlaps with the baseline sample, and (ii) the corporate-trust-culture and other culture measures
are constructed from online reviews by only a subsample of firms’ employees.

107This resonates with Graham et al.’s (2018) finding that corporate culture is primarily set by the current
CEO.

108These measures are calculated in the same way as CEO’s inherited trust measure using answers to
relevant questions in the GSS. Confidence in the government is the average of confidence in the federal
government, US Supreme Court, and Congress. On their own, only CEO’s trust in the scientific community
is positively and significantly associated with patenting.
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CEO’s trust coefficient, suggesting that the latter is unlikely to be confounded by CEO’s
confidence in the patent system and relevant institutions (Table A.8, columns 5 and 6).109

Furthermore, results from the bilateral trust subsamples (Table 1.3) provide another
strong piece of evidence, for in this specification CEO’s propensity to patent is fully
absorbed by CEO fixed effects.110 Together, the evidence indicate that the estimates
from using patents as the outcome variable do capture the effect of CEO’s trust on true
innovation, not just its effect on patenting propensity.

1.7.2 Timing of CEO’s trust effect

Does the effect of CEO’s trust increase or decrease over time? Again, there is not a clear
prediction of how the effect should evolve. On one hand, it takes time for a new CEO
to implement hard policies or transmit soft culture, and for R&D to materialize into
innovation, so one should expect larger effect over time. On the other hand, the theory
suggests that CEO’s prior belief, or inherited trust, should become less important as
she updates her belief after each period. Therefore, whether CEO’s trust effect becomes
larger or smaller remains an empirical question. Figure A.5 plots CEO’s trust coefficients
by the duration of CEO’s tenure in the firm.111 It may seem surprising that there is a
rather immediate effect, but note that the patent outcome variable is one-year forward.
That is, CEO’s trust has largest effect on patents filed in her third year in the firm.
As researchers could anticipate future policy and culture changes following a CEO
transition, it is likely that they adjust their project choices accordingly immediately after
the transition‘, even before those changes materialize. In addition, since Hall et al. (1986)
it has been shown that patent applications are often timed quite closely to R&D, and in
a few exceptions such as pharmaceuticals, I observe no effect of CEO’s trust on firm’s
patents (Table 1.9, column 5). Finally, the declining trend is suggestive of the presence of
CEO’s belief updating over time as implied by the model, even though the coefficients
are not statistically different from one another.

1.7.3 Heterogenous effects by CEO and firm

Table 1.8 investigates how CEO’s trust effect varies with CEO background. Column
1 interacts the CEO’s inherited trust with her highest education level.112 While both

109The resulting CEO’s trust estimate (standard error) is 0.069 (0.017) with control for CEO’s confidence
in the government, and is 0.063 (0.018) with control for CEO’s confidence in the scientific community. I do
not include both controls in the same regression as they are highly correlated (correlation of 0.76).

110Even if CEOs may have different levels of confidence in the patent systems of different countries, it
is unlikely to be an issue for Table 1.3’s results. This is because the countries in which firms would file
for patent protection are not necessarily the home countries of inventors, which is especially true for the
subsample of US-based inventors in which patents are mostly file in the US.

111Specifically, Figure A.5 plots the coefficients β̂k for k ∈ [1, 9] from estimating: asinh(pat f d,t+1) =

∑9
k=1 (trust f dt × tenuredk × successord) + X f t + Zdt + θE + ωt + ε f dt using the transition-event sample, in

which (i) tenuredk is an indicator equal to 1 if the CEO d starts working in firm f in year t− k + 1, and (ii)
sucessord is an indicator equal to 1 if CEO d is the successor in transition E.

112Education level below college degree is coded to -1, college degree – 0, master degrees – 1, and
doctorate – 2.
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CEO’s inherited trust and education level positively impact innovation, their interaction
term is negative, indicating that inherited trust and education are substitutes. To better
understand what kind of knowledge reduces the effect of prior belief, column 2 to 4
interacts CEO’s trust with dummies indicating if the CEO has at least a master degree
(column 2), a doctorate (column 3), and a postgraduate degree that is not an MBA
(column 4). The interaction terms in columns 2 and 3 suggest that CEO’s trust effect
is halved if the CEO has some postgraduate education and eliminated if the CEO has
a doctorate. Most interestingly, the negative interaction term is largest in magnitude
and statistically significant in column 4, suggesting that it is technical knowledge that
reduces the effect of trust. Similarly, column 6 reports a negative interaction term
between CEO’s trust and a dummy indicating if she has prior R&D experience. These
results imply that trust is a substitute for knowledge of R&D processes and that prior
belief becomes less important with exposure and experience.113

Table 1.9 reports some additional results on heterogeneous effects by firm size and
industry. First, interaction terms between CEO’s trust and second-order polynomial of
firm’s size decile (with respect to its 3-digit industry) suggest that the effect is largest
among median-size firms. This possibly reflects the observation that it is more difficult
for CEOs to have considerable impact on researchers in very large firm (while R&D
and innovation may be less relevant for very small ones). Second, CEO’s trust effect
is considerable larger in ICT and electronic sectors (10.5%, statistically significant at 5%
level). This is consistent with the argument that CEO’s trust effect should be more visible
where the lag between R&D and patents is shorter, and where the firm is smaller.114

This effect in the remaining sectors, however, is also positive and statistically significant,
although of smaller magnitude (4.7%, statistically significant at 5% level). Put different,
the effect of CEO’s trust on innovation is ubiquitous across different industry sectors.

1.7.4 CEO’s practice: qualitative insights

This paper’s ensemble of quantitative evidence on the effect of CEO trust on patents
may lead to questions on how exactly CEOs influence innovation processes within the
firm. Channels highlighted in my model include the management of researchers in
terms of recruitment, retention, and incentives. While it remains a major challenge to
run large-scale surveys with quantitative questions on top managers’ practices,115 one
can still get some qualitative insights from a recent survey on leadership and innovation

113In the context of cross-country venture capital investment, Bottazzi et al. (2016) similar finds that
education and work experience reduce the effect of bilateral trust on investment.

114The average firm in ICT is about half the size (as measured by employment) of the average firms in
the remaining sectors. Yet they file about over half of all the patents in the sample.

115An exception is Bandiera et al.’s (2017) data on CEO’s time use and practices. Even in the recent
literature on management surveys since Bloom and Van Reenen (2007), in most cases one can only obtain
information from lower-level staffs.
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among senior managers worldwide.116 It is interesting to note that many managers echo
support for my model’s assumptions. The leadership team are often directly involved
in personnel decisions regarding innovation, and other big-picture decisions, but do
not “have a lot of control over the innovation process,” especially in measuring efforts
towards innovation. Similar to my model’s setting, while the leadership actively picks
and retains innovators, their actions and efforts cannot be observed or monitored.117

Top managers’ views also corroborate this paper’s insights. When asked about
processes of great impact on improving innovation performance, the second most agreed
answer is about promoting risk taking that encourages innovation.118 Shortermism
and fear of failure are also ranked among the top of inhibitors of innovation. While
almost all respondents agree that people and corporate culture are the most important
determinants of innovation, top managers’ top worry is not having the right talent,
yet employees are most concerned about firm’s culture. In that regard, trust and
engagement are seen as the most important for a strong performance in innovation.

To summarize the qualitative insights from the survey, Barsh et al. (2008) recom-
mends fostering an “innovation culture based on trust,” in which people trust that
it is safe to pursue risky ideas and paths. While one should be cautious of the
methodological rigor of a qualitative, open-end survey, the qualitative insights suggest
that trust has in practice been considered as an important driver of corporate innovation.

1.8 Concluding remarks

Let us recall a well-known tale among generations of employees at IBM, one of the most
innovative corporations in the 20th century that has relied on its culture of tolerance of
failure to encourage exploration and innovation. Thomas Watson Sr., IBM’s founder, was
once discussing a ten million dollar mistake one of his executives had just made. “I guess
you want my resignation,” said the executive. Watson replied, “You can’t be serious.
We have just spent ten million dollars educating you.”119 The anecdote highlights this
paper’s message on the role of such trusting CEOs in inculcating a corporate culture of
tolerance of failure, which can lead to more innovation.

More generally, this paper provides a broad range of empirical evidence on the
association between CEO’s trust and firm innovation, measured by patent quantity and
quality. I measure a CEO’s inherited trust based on her ethnic origins as inferred from
her last name. Using within-firm changes in CEOs, I find that one standard deviation

116The survey was conducted by The McKinsey Quarterly (Barsh et al., 2007, 2008) in September 2007,
covering 722 executives at the senior vice president level and above and 736 lower-level executives around
the world.

117Regarding personnel decisions, there is a broad range of variation, as my model predicted: Innovators
are only “protected” in about a third to a half of the surveyed firms, and across firms tolerance of failure in
innovation varies greatly, with failure in innovation ranging from an opportunity to learn to a significant
threat to one’s career.

118The only slightly more popular answer is “Making innovation a core part of the leadership agenda.”
119The anecdote is recounted in Ederer and Manso (2013), based on Bennis and Nanus (1997).
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increase in CEO’s generalized trust is associated with over 6% increase in annual patent
counts and 4% increase in average patent quality. I further use CEO’s bilateral trust
towards researchers in or from different countries to show that this increase is generated
by inventors towards whom the CEO’s bilateral trust is stronger, in a specification that
controls for firm by year, CEO, and inventor country fixed effects. Given the presence
of stringent fixed effects and rigorous controls, these results are unlikely to be driven by
confounding factors such as CEO’s country of origin or individual characteristics.

These empirical findings are best understood in a simple principal-agent model of
exploration versus exploitation with unobserved researcher’s type, in which the CEO’s
trust encourages a good researcher to undertake high-risk explorative R&D thorugh her
tolerance of failure. The model further predicts that (i) CEO trust’s effect on innovation
is driven by high-quality patents, and that (ii) it is larger among firms with better
researcher quality, both of which are confirmed in the data. I also find that CEO’s
inherited trust robustly predicts corporate trust culture in a sample of close to 400 major
US firms for which measures of corporate culture are constructed from text analysis of
online employee reviews.

The paper’s results fit in a crucial gap in the recent literature on long-term
development and trust, in showing micro-evidence of how trust may affect innovation,
the indispensable determinant of productivity growth in the long run. The paper
also broadens our understanding of the impact of CEO’s traits on firm’s decisions,
performance, and culture (Bertrand and Schoar, 2003).

The current set of results leave out a few important questions to future work. First,
while the main mechanism works through tolerance of failure, we do not have a direct
measure of tolerance. Second, it may be fruitful to model the match between CEOs and
firms, and control for it explicitly in trying to estimate the effect of CEO’s trust on firms.
Third, it would be interesting to better understand in which context does excessive trust
lead to suboptimal innovation and performance.

45



Figure 1.1: Distribution of CEO’s inherited trust measure

Notes: This figure shows the 1st-99th percentile distribution of CEO’s GSS-based
inherited generalized trust measure as described in subsection 1.3.2 for 5,753 CEOs in
the baseline sample. The solid vertical line corresponds to the 50th percentile of the
distribution. The dashed vertical lines correspond to the 10th and 90th percentiles of
the distribution.

Figure 1.2: Pre-change patents and change in CEO’s trust

Notes: This figure plots the coefficients γ̂k for k ∈ [−6,−1] from estimating:
∆trust f dt = ∑−1

k=−7 γk(asinh(pat f dt)× eventt−k) + βtrust f dt + X f t + Zdt + ωt + ε f dt,
in which (i) ∆trust f dt is the difference between CEO d’s and her successor’s trust
measures, (ii) eventt−k is an indicator equal to 1 if the transition happens in year
t− k, and (iii) X f t additionally includes a full set of firm’s SIC3 industry dummies.
Estimates are shown with their 95% confidence intervals. Standard errors are
clustered by SIC3 industry.
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Figure 1.3: Pre-trend in patents

Notes: This figure plots the coefficients γ̂k for k ∈ [−7,−2] relative to γ̂−1 from
estimating: asinh(pat f dt) = ∑−1

k=−7 γkeventt−k + X f t + Zdt + θ f + ωt + ε f dt, in which
eventt−k is an indicator equal to 1 if the next CEO transition happens in year
t− k. Estimates are shown with their 95% confidence intervals. Standard errors are
clustered by firm.

Figure 1.4: Patents by change in CEO’s trust (matched sample)

Notes: This figure plots firms’ average residual patent application counts (after
partialling out the covariates) by year with respect to CEO transition year (i.e., year 0).
Among the sample of CEO transitions in which both predecessor’s and successor’s
tenures are at least 5 years, each transition in which the new CEOs are more trusting
than their predecessors (i.e., trust-increasing transition) is matched to a transition in
which the new CEOs are less trusting than their predecessors (i.e., trust-decreasing
transition) based on their average pre-transition residual patent counts. The solid
blue line groups together all trust-increasing CEO transitions and the dotted red line
corresponds to their matched trust-decreasing CEO transitions. Each group’s annual
average residual patent counts are plotted relative to the group’s pre-transition mean,
which is normalized to 0.
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Figure 1.5: Distribution of CEO’s bilateral trust towards researchers

Notes: This figure shows the distribution of CEO’s bilateral trust measure as described
in subsection 1.3.2 for CEO-inventor country pairs in the baseline bilateral samples.
The upper plot corresponds to the bilateral trust sample in which an inventor’s
country is inferred from his patent-listed address for non-US-based inventors. The
lower plot corresponds to the bilateral trust sample in which an inventor’s country
is additionally inferred from his last name for US-based inventors. The solid vertical
line corresponds to the 50th percentile of the distribution. The dashed vertical lines
correspond to the 10th and 90th percentiles of the distribution.
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Figure 1.6: Project outcome distributions under different mechanisms

Notes: The top figure illustrates the spread of project outcome distributions under
more exploration; the bottom figure the rightward shift under greater effort. The
dotted red line (both figures) corresponds to the baseline project outcome distribution.
The solid blue line (top figure) corresponds to the same distribution under high-risk
exploration, which is a mean preserving spread of the baseline. The solid green line
(bottom figure) corresponds to the same distribution under greater effort, which is
rightward shift of the baseline. The solid vertical line at 0 represents the quality
threshold above which projects get patented and become observable. The dashed
vertical line corresponds to a quality threshold c.
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Figure 1.7: CEO’s trust effect by patent quality decile

Notes: This figure plots the effects of CEO’s trust on firm’s patent counts in different
quality deciles estimated using equation (1.5), using as the dependent variable the
inverse hyperbolic sine of patent counts in the upper plot and winsorized patent
counts in the lower plot. A patent’s quality decile is computed based on its forward
citation counts with respect to its technology field × year cohort. Estimates are shown
with their 95% confidence intervals. Standard errors are clustered by CEO’s main
ethnicity.
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Table 1.1: Baseline effect of CEO’s trust on firm’s patents

(1) (2) (3) (4) (5) (6) (7)
Dependent variable: asinh(Future patent applications)
CEO’s trust (baseline) 0.059*** 0.063*** 0.063*** 0.066***

(0.018) (0.017) (0.019) (0.019)
CEO’s trust (LASSO) 0.067***

(0.021)
CEO’s trust (full GSS) 0.041**

(0.018)
CEO’s trust (WVS) 0.031**

(0.013)
Firm & Year FEs X X X X X X X
CEO controls X X X X X X
Firm controls X X X X X
Industry × Year FEs X
Observations 29,384 29,384 29,384 29,384 29,384 29,384 29,384
Firms 3,598 3,598 3,598 3,598 3,598 3,598 3,598

Notes: This table reports the baseline effect of CEO’s inherited trust on firm’s patents using equation (1.5). Baseline
sample includes all observations of firm f × year t × its current CEO d. The dependent variable is the inverse
hyperbolic sine of firm f ’s patent application counts in year t + 1. The explanatory variable is CEO d’s trust
measures, constructed from: (i) CEO’s ethnic origins and GSS trust question, considering only respondents in
highly prestigious occupations (subsection 1.3.2) (columns 1-4); (ii) all commonly observable characteristics of
CEOs and GSS respondents, including ethnic origin, age, gender, education, and birth cohort, using LASSO
(column 5); (iii) CEO’s ethnic origins and GSS trust question, considering the full sample of respondents (column
6); and (iv) CEO’s ethnic origins and WVS trust question (column 7). All trust measures are standardized by the
standard deviation of GSS-based inherited trust measure at ethnicity level. Baseline controls include (i) firm’s age,
age squared, ln(total assets), ln(sale), and (ii) CEO’s age, age squared, gender, education dummies, tenure in firm.
Standard errors are clustered by CEO’s main ethnicity.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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Table 1.2: Controlling for confounding variables

Panel A. Controlling for home countries’ level of development
(1) (2) (3) (4) (5) (6)

Dependent variable: asinh(Future patent applications)
CEO’s trust 0.053*** 0.061*** 0.058*** 0.060*** 0.067*** 0.045**

(0.017) (0.019) (0.019) (0.019) (0.019) (0.020)
ln(GDP) 0.003 -0.015

(0.013) (0.027)
ln(Population) -0.013 -0.006

(0.011) (0.020)
GDP growth (%) 0.005** 0.004*

(0.002) (0.002)
High school grad (%) -0.001 -0.000

(0.000) (0.001)
Governance quality (pct) 0.022 0.008

(0.055) (0.102)
ln(US trade volume) 0.005 0.020*

(0.008) (0.010)
ln(Patent applications) -0.007 -0.003

(0.005) (0.012)
Firm & Year FEs X X X X X X
Baseline controls X X X X X X
Observations 29,384 29,384 29,384 29,384 29,384 29,384
Firms 3,598 3,598 3,598 3,598 3,598 3,598

Notes: This panel controls for CEO’s home countries’ macroeconomic characteristics using equation
(1.5). Baseline sample includes all observations of firm f × year t × its current CEO d. The dependent
variable is the inverse hyperbolic sine of firm f ’s patent application counts in year t+ 1. The explanatory
variable is CEO d’s GSS-based inherited trust measure, standardized by its standard deviation at
ethnicity level (subsection 1.3.2). Baseline controls include (i) firm’s age, age squared, ln(total assets),
ln(sale), and (ii) CEO’s age, age squared, gender, education dummies, tenure in firm. CEO’s home
country controls include year t’s ln(GDP), ln(population), and GDP growth rate (column 1), population
share of high school graduates (column 2), average percentile ranking of World Bank governance
indices (column 3), ln(US exports + US imports) (column 4), and ln(total patent applications filed at
the country’s patent office) (column 5). Column (6) controls for all those variables. Standard errors are
clustered by CEO’s main ethnicity.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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Panel B. Controlling for other cultural traits
(1) (2) (3) (4) (5)

Dependent variable: asinh(Future patent applications)
CEO’s trust 0.063*** 0.052** 0.068*** 0.053** 0.053**

(0.018) (0.019) (0.019) (0.021) (0.023)
College grad (%) 0.073 0.198** 0.143

(0.100) (0.093) (0.115)
Work ethic (z-score) 0.017 0.022 0.023

(0.015) (0.016) (0.015)
Risk preference (z-score) -0.038 -0.033 -0.033

(0.023) (0.025) (0.029)
GDP growth (%) 0.005*

(0.003)
ln(US trade volume) 0.001

(0.009)
Firm & Year FEs X X X X X
Baseline controls X X X X X
Observations 29,384 29,384 29,384 29,384 29,384
Firms 3,598 3,598 3,598 3,598 3,598

Notes: This panel controls for CEO’s other inherited cultural traits using equation (1.5). Baseline sample
includes all observations of firm f × year t × its current CEO d. The dependent variable is the inverse
hyperbolic sine of firm f ’s patent application counts in year t + 1. The explanatory variable is CEO d’s
GSS-based inherited trust measure, standardized by its standard deviation at ethnicity level (subsection
1.3.2). Baseline controls include (i) firm’s age, age squared, ln(total assets), ln(sale), and (ii) CEO’s age,
age squared, gender, education dummies, tenure in firm. Column (1) controls for the share of college
graduates in CEO’s ethnic groups. Column (2) controls for CEO’s inherited work ethic, derived from the
GSS question: “Some people say that people get ahead by their own hard work; others say that lucky breaks or help
from other people are more important. Which do you think is most important?”. Column (3) controls for CEO’s
inherited risk preference, proxied by the share of GSS respondents in CEO’s ethnic groups who have stock
market or mutual fund investments. Column (4) controls for all of those variables. Column (5) further
controls for CEO’s home countries’ GDP growth rate and ln(US exports + US imports). Standard errors are
clustered by CEO’s main ethnicity.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.

Table 1.3: CEO’s trust effect in bilateral trust samples

(1) (2) (3) (4) (5) (6)
Dependent variable: asinh(Future patent applications)

Sample: Based on inventors’ Non-US addresses Addresses and last names

CEO’s bilateral trust 0.052** 0.051** 0.034* 0.026** 0.025** 0.013**
(0.023) (0.024) (0.021) (0.011) (0.011) (0.006)

Firm × Year FEs X X X X
CEO FEs X X X X
Inventor country FEs X X
CEO × Year FEs X X
Inv. country × Year FEs X X
Firm × Inv. country FEs X X
Year FEs X X
Observations 23,284 23,284 23,284 56,942 56,942 56,942
Firm × Inv. country’s 3,481 3,481 3,481 8,554 8,554 8,554
Firms 730 730 730 1,263 1,263 1,263

Notes: This table reports the effect of CEO’s bilateral trust towards a country on patents by inventors from
that country using equation (1.6). Samples include all observations of firm f × year t × its current CEO d ×
country c such that firm f has patents by inventors from country c during 2000-2012. An inventor’s country
is inferred from his patent-listed address for non-US-based inventors in columns (1)-(3), and additionally
from his last name for US-based inventors in columns (4)-(6). The explanatory variable is CEO d’s bilateral
trust towards individuals from country c, standardized by its standard deviation at country pair level. The
dependent variable is firm f ’s total patent application counts by inventors from country c in year t + 1.
Standard errors are clustered by CEO’s main ethnicity × inventor country.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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Table 1.4: Bilateral trust effect with country pairwise controls

(1) (2) (3) (4) (5) (6) (7) (8)
Dependent variable: asinh(Future patent applications)

Sample: Based on inventors’ Non-US addresses Addresses and last names

CEO’s bilateral trust 0.047* 0.042* 0.052** 0.052** 0.016 0.024* 0.023** 0.027**
(0.029) (0.025) (0.024) (0.024) (0.013) (0.013) (0.011) (0.011)

Common language dummy 0.057 0.011
(0.047) (0.025)

Geographical distance (1000km) -0.002 -0.011
(0.019) (0.011)

Genetic distance (z-score) 0.018 -0.019
(0.084) (0.053)

Excl. same-country pairs X X
Firm × Year FEs X X X X X X X X
CEO FEs X X X X X X X X
Inventor country FEs X X X X X X X X
Observations 20,878 23,284 23,284 22,881 51,936 56,942 56,942 55,444
Firm × Inv. country’s 3,145 3,481 3,481 3,421 7,932 8,554 8,554 8,323
Firms 496 730 730 728 1,020 1,263 1,263 1,263

Notes: This table controls for other CEO-inventor country pairwise characteristics besides bilateral trust using equation (1.6).
Samples include all observations of firm f × year t × its current CEO d × country c such that firm f has patents by inventors
from country c during 2000-2012. An inventor’s country is inferred from his patent-listed address for non-US-based inventors
in columns (1)-(4), and additionally from his last name for US-based inventors in columns (5)-(8). The explanatory variable is
CEO d’s bilateral trust towards individuals from country c, standardized by its standard deviation at country pair level. The
dependent variable is firm f ’s total patent application counts by inventors from country c in year t + 1. Columns (1) and (5)
exclude same-country CEO-inventor country pairs. Columns (2) to (6) control for CEO-inventor country pairwise distances,
including: (i) whether the countries share a common language (columns 2 and 6), (ii) weighted geographical distance between
the countries (columns 3 and 7), and (iii) weighted genetic distance between the countries’ populations (columns 5 and 8)
(Spolaore and Wacziarg, 2016). Standard errors are clustered by CEO’s main ethnicity × inventor country.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.

Table 1.5: CEO’s trust effect on quality-weighted patents

(1) (2) (3) (4) (5) (6) (7) (8)
Dependent var: asinh(Future quality-weighted patents)

Quality measure: Forward Backward Tech. Gene- Origi- Granted Granted Average
cites NPL cites scope rality nality all USPTO cites

CEO’s trust 0.100*** 0.103*** 0.061** 0.053*** 0.050*** 0.049*** 0.056*** 0.044**
(0.031) (0.031) (0.025) (0.015) (0.015) (0.016) (0.014) (0.020)

Firm & Year FEs X X X X X X X X
Baseline controls X X X X X X X X
Observations 29,384 29,384 29,384 29,384 29,384 29,384 29,384 29,384
Firms 3,598 3,598 3,598 3,598 3,598 3,598 3,598 3,598

Notes: This table reports CEO’s trust effect on quality-weighted patents using equation (1.5). Baseline sample includes all
observations of firm f × year t × its current CEO d. The dependent variable is the inverse hyperbolic sine of firm f ’s patent
application counts in year t + 1, weighted by: forward citations (column 1); backward citations to non-patent (i.e., scientific)
literature (column 2); patent technological scope (column 3); generality index (i.e., technological diversity of forward citations)
(column 4); originality index (i.e., technological diversity of backward citations) (column 5); granted patents (column 6); and
granted USPTO patents (column 7). The dependent variable in column 8 is the inverse hyperbolic sine of firm f ’s average
forward citations per patent in year t + 1 (or zero if firm f has zero patent applications in year t + 1). The explanatory variable
is CEO d’s GSS-based inherited trust measure, standardized by its standard deviation at ethnicity level (subsection 1.3.2).
Baseline controls include (i) firm’s age, age squared, ln(total assets), ln(sale), and (ii) CEO’s age, age squared, gender, education
dummies, tenure in firm. Standard errors are clustered by CEO’s main ethnicity.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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Table 1.6: CEO’s trust effect by pre-transition researcher pool quality

(1) (2) (3) (4) (5) (6)
Dependent variable: asinh(Future patent applications) asinh(R&D

All patents High quality efficiency)

CEO’s trust 0.066*** 0.066*** 0.067*** 0.057*** 0.039***
(0.018) (0.018) (0.019) (0.015) (0.013)

Trust × Proxy for pre-tran- 0.040** 0.034* 0.021 0.039** 0.025**
sition researcher quality (0.018) (0.018) (0.017) (0.019) (0.011)
Trust × Quality quintile 1 0.028

(0.042)
Trust × Quality quintile 2 0.038

(0.028)
Trust × Quality quintile 3 0.065

(0.052)
Trust × Quality quintile 4 0.076**

(0.029)
Trust × Quality quintile 5 0.128***

(0.037)
Pre-transition window -1 to 0 -2 to 0 All yrs -1 to 0 -1 to 0 -1 to 0
Firm & Year FEs X X X X X X
Baseline controls X X X X X X
Observations 19,506 19,508 19,547 19,506 19,506 19,506
Events 2,278 2,279 2,285 2,278 2,278 2,278

Notes: This table explores the heterogeneous effects of CEO’s trust on firm’s patents by pre-transition researcher pool
quality using equation (1.5) and the sample constructed from CEO transition events. For each event, I include all firm f
× year t × its current CEO d observations that correspond to the predecessor’s and successor’s terms. The explanatory
variable is CEO d’s GSS-based inherited trust measure, standardized by its standard deviation at ethnicity level (subsection
1.3.2). Firm-level proxy for researcher pool quality is computed from averaging the residuals from regressing patents
on observable firm and CEO characteristics, controlling for SIC2 industry and year fixed effects (subsection 1.6.3) over
different pre-transition windows. The dependent variable is the inverse hyperbolic sine of firm f ’s (i) patent application
counts (columns 1 to 4), (ii) high quality (i.e., above median) patent application counts (column 5), and (iii) R&D efficiency,
calculated as patent application counts over lagged R&D expenditure (column 6), in year t + 1. Baseline controls include
(i) firm’s age, age squared, ln(total assets), ln(sale), asinh(R&D expenditure), and (ii) CEO’s age, age squared, gender,
education dummies, tenure in firm. Column (4) interacts CEO’s trust measure with researcher pool quality quintile
dummies (computed based on firm-level proxy for pre-transition researcher pool quality). The remaining columns interact
CEO’s trust measure with firm-level proxy for pre-transition pool quality. Standard errors are clustered by CEO’s main
ethnicity.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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Table 1.7: CEO’s trust effect on “corporate trust culture”

(1) (2) (3) (4) (5) (6)
Dependent variable: Corporate trust culture
CEO’s trust 0.179*** 0.193*** 0.452* 0.234*** 0.427** 0.755**

(0.062) (0.072) (0.258) (0.073) (0.174) (0.327)
CEO approval (%) 1.584*** 1.540** 0.893

(0.588) (0.591) (0.920)
College grad (%) -0.687 -1.397

(1.100) (1.653)
Work ethic -0.254* -0.256*

(0.143) (0.152)
Risk preference -0.286 -0.693*

(0.246) (0.362)
Industry (SIC3) FEs X X X X
Baseline controls X X X X X
Firm FEs X X
Observations 393 393 393 393 393 393
Firms 277 277 277 277 277 277
Industries (SIC3) 90 90 90 90 90 90

Notes: This table presents the effect of CEO’s trust on measures of corporate culture computed
from online employee reviews (Sull, 2018). Sample includes all firm f × CEO d observations over
the 2008-2017 period. The explanatory variable is CEO d’s GSS-based inherited trust measure,
standardized by its standard deviation at ethnicity level (subsection 1.3.2). The dependent variable
measures firm f ’s “corporate trust culture” (i.e., the extent to which employees trust one another)
during CEO d’s term. Baseline controls include (i) firm’s average age, average age squared,
ln(average total assets), ln(average sale), and (ii) CEO’s average age, average age squared, gender,
education dummies, average tenure in firm (controls are averaged over CEO d’s term in firm f ).
CEO approval rate is computed from online employee reviews. Additional controls for CEO’s
other cultural traits are as explained in Table 1.2’s notes. Standard errors are clustered by SIC3
industry.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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Table 1.8: Heterogeneous effects by CEO’s background

(1) (2) (3) (4) (5)
Dependent variable: asinh(Future patent applications)
CEO’s trust 0.085*** 0.082*** 0.072*** 0.097*** 0.063***

(0.017) (0.019) (0.016) (0.020) (0.018)
Education level 0.159

(0.113)
Trust × Education level -0.028

(0.022)
Postgraduate degree dummy 0.176

(0.149)
Trust × P.G. degree -0.030

(0.029)
Doctorate dummy 0.308

(0.299)
Trust × Doctorate -0.056

(0.058)
Non-MBA P.G. degree dummy 0.702***

(0.230)
Trust × Non-MBA P.G. degree -0.135***

(0.044)
R&D experience dummy 0.536

(0.704)
Trust ×R&D experience -0.135

(0.148)
Firm & Year FEs X X X X X
Baseline controls X X X X X
Observations 29,384 29,384 29,384 29,384 29,384
Firms 3,598 3,598 3,598 3,598 3,598

Notes: This table explores the heterogeneous effects of CEO’s trust on firm’s patents by CEO education
and experience using equation (1.5). Baseline sample includes all observations of firm f × year
t × its current CEO d. The dependent variable is the inverse hyperbolic sine of firm f ’s patent
application counts in year t+ 1. The explanatory variable is CEO d’s GSS-based inherited trust measure,
standardized by its standard deviation at ethnicity level (subsection 1.3.2). Baseline controls include (i)
firm’s age, age squared, ln(total assets), ln(sale), and (ii) CEO’s age, age squared, gender, education
dummies, tenure in firm. Column (1) interacts CEO’s trust measure with her highest education level
(-1 – no degree, 0 – Bachelor degree, 1 – Masters degree, 2 – Doctor degree). Columns (2)-(4) interact
CEO’s trust measure with a dummy indicating if (i) she has a masters or doctorate (column 2), (ii) she
has a doctorate (column 3), or (iii) she has a masters or doctorate but not an MBA degree (column 4).
Column (5) interacts CEO’s trust measure with a dummy indicating if she has prior R&D experience.
Standard errors are clustered by CEO’s main ethnicity.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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Table 1.9: Heterogeneous effects by firm’s characteristics

(1) (2) (3) (4) (5) (6)
Dependent variable: asinh(Future patent applications)

Sample: By asset By employ- IT/ Non-IT/ Pharma/ Non-Phar-
size ment size Electr. Electr. Chem. ma/Chem.

CEO’s trust 0.105** 0.047** 0.019 0.062***
(0.041) (0.019) (0.063) (0.020)

Trust × Size quintile 1 0.020 0.011
(0.033) (0.036)

Trust × Size quintile 2 0.014 0.049
(0.032) (0.031)

Trust × Size quintile 3 0.132*** 0.141***
(0.043) (0.028)

Trust × Size quintile 4 0.084** 0.045
(0.039) (0.035)

Trust × Size quintile 5 0.077*** 0.075**
(0.022) (0.031)

Firm & Year FEs X X X X X X
Baseline controls X X X X X X
Observations 29,384 28,713 6,958 22,426 3,310 26,074
Firms 3,598 3,577 884 2,715 438 3,161

Notes: This table explores the heterogeneous effects of CEO’s trust on firm’s patents by firm size and industry using
equation (1.5). Baseline sample includes all observations of firm f × year t × its current CEO d. The dependent
variable is the inverse hyperbolic sine of firm f ’s patent application counts in year t + 1. The explanatory variable
is CEO d’s GSS-based inherited trust measure, standardized by its standard deviation at ethnicity level (subsection
1.3.2). Baseline controls include (i) firm’s age, age squared, ln(total assets), ln(sale), and (ii) CEO’s age, age squared,
gender, education dummies, tenure in firm. Columns (1) and (2) interact CEO’s trust measure with firm’s size
quintile dummies, computed with respect to firm’s 3-digit industry × year cohort using total assets or employment
as firm size measure. Columns (3) corresponds to the subsample of firms in ICT and electronic industries (i.e.,
computer and data processing services (SIC 737), computer and office equipment (SIC 357), electronic and other
equipment (SIC 36)) and column (4) – the remaining subsample. Column (5) corresponds to the subsample of
firms in pharmaceutical and chemical industries (i.e., chemicals and allied products (SIC 28)) and column (6) – the
remaining subsample. Standard errors are clustered by CEO’s main ethnicity.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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Chapter 2

Do Tax Incentives Increase Firm
Innovation? An RD Design for RDD

This chapter is jointly co-authored with Antoine Dechezleprêtre, Elias Einiö, Ralf Martin,
and John Van Reenen.

This chapter presents evidence of causal impacts of research and development (R&D) tax
incentives on own-firm innovation and technological spillovers. Exploiting a change in the asset-
based size thresholds that determine eligibility for R&D tax subsidies we implement a Regression
Discontinuity Design using administrative tax data. There are statistically and economically
significant effects of tax on R&D and (quality-adjusted) patenting that persist up to 7 years
after the change. R&D tax price elasticities are large, with a lower bound of 1.1, consistent
with the fact that the treated group is drawn from smaller firms that we show are more likely
subject to financial constraints. Our RD design has power to identify positive spillovers on
technologically-close peers, when these neighbors are in a sufficiently small technology class with
the treated firms.

59



2.1 Introduction

Innovation is recognized as the major source of growth in modern economies. But
because of knowledge externalities, private returns on research and development (R&D)
are generally estimated to be lower than their social returns, suggesting the need for
some public subsidy.1 Consequently, not only does every country treat R&D investments
more generously than capital investment, but the majority of OECD countries also have
additional fiscal incentives for R&D. Over the last two decades, these tax incentives have
grown more popular compared to more direct R&D subsidies to firms.2

But do R&D tax incentives really increase innovation? In this paper, we identify the
impact of R&D tax incentives by exploiting a policy reform in the UK which raised the
size threshold under which firms can access the more generous tax regime for small- and
medium-sized enterprises (SMEs). Importantly, the new SME size threshold introduced
was unique to the R&D Tax Relief Scheme, and does not overlap with access to other
programs or taxes. Given this change, we can implement a Regression Discontinuity
(RD) Design (Lee and Lemieux, 2010) at differences in innovation activity around the
new SME threshold, which was based on accounting data pre-dating the policy change.
We show that there are no discontinuities in any outcome around the threshold in the
years prior to the policy change.

To analyze the impact of the R&D tax incentive on innovation activity, we use a
newly assembled dataset that links the universe of UK companies with their confidential
Corporate Tax returns (including firms’ R&D expenditures) from the HMRC (the UK
equivalent of the US IRS), their patent filings in all major patent offices in the world,
and their financial accounts. The data is available before and after the R&D tax change,
allowing us to analyze the causal impact of the tax credit up to seven years after the
policy change.

A key advantage of our firm-level patent dataset is that it enables us to assess the
effect of tax incentives not only on R&D spending (an input) but also on innovation
outputs.3 Indeed, the tax incentive could increase observed R&D without having much
effect on innovation if, for example, firms relabeled existing activities as R&D to take
advantage of the tax credits (e.g., Chen et al. (2018)) or only expanded very low-quality

1Typical results find marginal social rates of return to R&D between 30% and 50% compared to private
returns between from 7% to 15% (Hall et al., 2010). Endogenous growth theories Romer (1990); Aghion
and Howitt (1992) provide several reasons why private innovative activities do not take into account
externalities over producers and consumers, and produce sub-optimal levels of R&D. For evidence showing
R&D externalities, see for example Bloom et al. (2013). There is also evidence that these spillovers are
partially localized geographically, so the country where the R&D is performed obtains a disproportionate
share of the productivity benefits, at least initially (e.g., Jaffe et al., 1993).

2Over the period 2001-2011, R&D tax incentives were expanded in 19 out of 27 OECD countries (OECD,
2014). One reason for this shift is that subsidizing R&D through the tax system rather than direct grants
reduces administrative burden and mitigates the risk of “picking losers” (e.g., choosing firms with low
private and social returns due to political connections, e.g., Lach et al., 2017).

3There is a large literature on the effects of public R&D grants on firm and industry outcomes such as
González et al. (2005), Takalo et al. (2013), Einiö (2014), Goodridge et al. (2015), Jaffe and Le (2015), and
Moretti et al. (2016). The earlier literature is surveyed in David et al. (2000).
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R&D projects. We can also directly examine the quality of these additional innovations
through various commonly used measures of patent value, such as citations received
and family size.

Another major advantage of our data and study design is that we are able to assess
the impact of R&D tax credits on SMEs, allowing us to compare the response of SMEs
to that of large firms, which have been the focus of most of the existing literature
because accounting regulations in most countries only require larger (usually public
listed) firms to report R&D. But since at least Arrow (1962), it has been recognized that
financial markets may under-supply credit for R&D and these problems are likely to be
particularly acute for SMEs.4

We find large effects of the tax policy on R&D and patenting activity. Following the
policy change, R&D more than doubled in firms below eligibility threshold, followed
by about a 60% increase in patenting. There is no evidence that these innovations are
of lower value. We can reject absolute elasticities of R&D with respect to its user cost of
less than 1.1 with a 5 percent level of confidence.5 Our higher elasticities are likely to be
because the sub-population “randomized in” by the RD Design is composed of smaller
firms than have usually been examined and so are more likely to be credit constrained
and therefore are also more responsive to R&D tax credits. We confirm this intuition by
showing the response is particularly strong for firms in industries that are more likely
to be subject to financial constraints.

The main economic rationale given for more generous tax treatment of R&D is that
there are technological externalities, so that the social return to R&D exceeds the private
return. Our design also allows us to estimate the causal impact of tax policies on R&D
spillovers, i.e., innovation activities of firms that are technologically connected to policy-
affected firms, through employing a similar RD Design specification with connected
firms’ patents as the outcome variable of interest. We find evidence that the R&D
induced by the tax policy generated positive spillovers on innovations by technologically
related firms, especially in small technology classes. Focusing on these smaller peer
groups is exactly where we expect our design to have power to detect spillovers (see
Angrist, 2014 and Dahl et al., 2014). Simple partial equilibrium calculations suggest
that over 2006-2011 the UK R&D policy induced about $2 of private R&D for every $1
of taxpayer money and that aggregate UK business R&D would have been about 13%
lower in the absence of the policy.6

Related Literature. Most directly, our paper contributes to the literature which seeks
to evaluate the causal impact of tax policies on firms’ R&D. Earlier evaluations were

4Since R&D costs are mainly people, it is hard to post collateral to borrow against R&D projects.
Furthermore, asking outsiders for finance may reveal the innovation and so undermine its value.

5See surveys by Becker (2015), OECD (2013) or Hall and Van Reenen (2000) on R&D to user costs
elasticities. The mean elasticities are usually between 1 and 2 whereas our mean results are twice as large.

6See Akcigit et al. (2017) and Acemoglu et al. (2018) for rigorous discussion of optimal taxation and
R&D policy in general equilibrium.
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conducted at the state or macro-economic level face the problem that changes of policies
are likely to be coincident with many unobserved factors that may influence R&D.7

Recent studies use firm-level data and more compelling causal designs, but focus on
the impact of R&D tax credits on R&D expenditures. Agrawal et al. (2014) exploit a
change in eligibility rules for R&D tax credits under Canada’s tax incentive program
to look at the tax effect on R&D investment for small private Canadian firms. They
show that firms eligible to benefit from the more generous tax credit program spent 15
percent more on R&D following the program change, compared to firms with the same
taxable income before the change. Rao (2016) uses administrative tax data and looks at
the impact of US tax credits on R&D (but not other firm outcomes). In her approach she
uses the changes in the Federal tax rules interacted with lagged firm characteristics to
generate instrumental variables for the firm-specific user cost of R&D. Bøler et al. (2015)
employ a difference-in-differences strategy to investigate how the introduction of R&D
tax credit in Norway affects profits, intermediate imports and R&D.8 Guceri (2018) and
Guceri and Liu (2017) also use a diff-in-diffs approach to uncover positive effects from
recent UK R&D tax policies.9 Chen et al. (2018) is perhaps the closest paper to ours. The
authors examine the impact of tax changes on R&D and other outcomes in a sample
of Chinese firms using an RD Design. They find positive impacts, although there are
large amounts of relabeling (much more than we find empirically in our application).
Our paper, like Chen et al. (2018), relies on an RD design, which relaxes the stronger
identification conditions implicit in a diff-in-diffs design. We are distinct from these
papers by focusing on causal tax policy effects on innovation outcomes in addition to
R&D inputs.

Second, we relate to the literature that examines the impact of research grants using
ratings given to grant applications as a way of generating exogenous variation around
funding thresholds. Jacob and Lefgren (2010) and Azoulay et al. (2015) examine NIH
grants; Ganguli (2017) looks at grants for Russian scientists and Bronzini and Iachini
(2014); and Bronzini and Piselli (2016) study firm R&D subsidies in Italy.10 Howell (2017)
uses the ranking of US SBIR proposals for energy R&D grants and finds significant
effects of R&D grants on future venture capital funding and patents. Like us, she

7For example, Bloom et al. (2002), Wilson (2009), Chang (2018).
8See also Czarnitzki et al. (2011), Cappelen et al. (2012), and Bérubé and Mohnen (2009) who look at

the effects of R&D tax credits on patents and/or new products. Branstetter and Sakakibara (2002) examine
Research Joint Ventures and patents.

9Although complementary to our paper they look only at R&D and not at innovation outcomes or
spillovers. Further, they condition on R&D performing firms which creates selection issues and means
that they cannot look at the extensive margin (i.e., they cannot examine whether any firms start or stop
performing R&D as a result of the tax changes).

10The authors look at the impacts of R&D subsidies on investment and patents in Northern Italy in
an RD Design (they do not have R&D data). In their setting the running variable is based on project
application scoring by a committee of experts. They observe a discontinuity in the score distribution
around the eligibility cut-off, which they interpret as a sign of program managers being able to assign
higher scores for projects just below the cut-off to avoid appeals.
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also finds bigger effects for small firms.11 However, none of these papers examine tax
incentives directly.

Third, our paper also contributes to the literature on the effects of R&D on innovation
(e.g., Doraszelski and Jordi, 2013 and the Hall et al., 2010 survey). We find that R&D
has a positive causal effect on innovation, with elasticities that are underestimated
in conventional OLS approaches. Although there is also a large literature on R&D
spillovers (e.g., Bloom et al., 2013) we are to our knowledge, the first to provide evidence
for the existence of technology spillovers in an RD setting.

Finally, we connect to an emerging field which looks at the role of both individual
and corporate tax on inventors. This literature also appears to be finding an important
role for taxation on mobility, quantity and quality of innovation.12

The paper is organized as follows. Section 2.2 details the institutional setting; Section
2.3 explains the empirical design; Section 2.4 describes the data; Section 2.5 presents the
main results; Section 2.6 – technology spillover analysis; Section 2.8 concludes.

2.2 Institutional setting

We give more details of the institutional setting and tax policies in Appendix B.1 (e.g.,
Table B.1 details the policy changes over time), but summarize the most important
features in this section. From the early 1980s the UK business R&D to GDP ratio fell,
whereas it rose in most other OECD countries. In 2000, an R&D Tax Relief Scheme was
introduced for small and medium enterprises (SMEs) and it was extended to cover large
companies in 2002 (but SMEs continued to enjoy more generous R&D tax relief). The
policy cost the UK government £1.4bn in 2013 alone (Fowkes et al., 2015).

The tax policy is based on the total amount of R&D, i.e., it is volume-based rather
than calculated as an increment over past spending like the US R&D tax credit. It
works mostly through enhanced deduction of R&D from taxable income, thus reducing
corporate tax liabilities.13 At the time of its introduction, the scheme allowed SMEs
to deduct an additional enhancement rate of 50% of qualifying R&D expenditure from
taxable profits (on top of the 100% deduction that applies to any form of current
expenditure). If an SME was not making profits, it could surrender enhanced losses
in return for a payable tax credit14 amounting to 16% of enhanced R&D.15 This design
feature was aimed at dealing with the problem that smaller companies may not be
making enough profits to benefit from the enhancement rate. The refundable aspect of

11Larger program effects for smaller firms are also found in several paper such as Wallsten (2000),
González et al. (2005), Görg and Strobl (2007), Bronzini and Iachini (2014) and Zwick and James (2017).

12Akcigit et al. (2016); Akcigit et al. (2016); Moretti and Wilson (2017); Bell et al. (2018); Akcigit et al.
(2018).

13Only current R&D expenditures, such as labor and materials, qualify for the scheme, but since capital
only accounts for about 10% of total R&D, this is less important.

14Throughout we will use “tax credit” to refer to this refundable element of the scheme as distinct from
the “enhanced tax deduction” element.

15Or equivalently, 24% (=16% x 150%) of total R&D expenditure. See Finance Act 2000 (Chapter 17,
Schedule 20).
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the scheme is particularly beneficial to firms which are liquidity constrained and we will
present evidence in line with the idea that the large responses we observe are related
to the alleviation of such financial constraints. Large companies had a less generous
deduction rate of 25% of their R&D and could not claim the refundable tax credits in
the case of losses (Finance Act, 2002).

The policy used the definition of an SME recommended by the European Commis-
sion (EC) throughout most of the 2000s. This was based on assets, employment and sales
from the last two accounting years. It also takes into consideration company ownership
structure and requires that in order to change its SME status, a company must fall in
the new category in at least two consecutive years.

We focus on the major change to the scheme that commenced from August 2008. The
SME assets threshold was increased from e43m to e86m, the employment threshold
from 249 to 499 and the sales threshold from e50m to e100m.16 Because of these
changes, a substantial proportion of companies that were eligible only for the large
company rate according to the old definition became eligible for the SME rate. In
addition to the change in SME definition, the UK government also increased the
enhancement rate for both SMEs and large companies in the same year. The SME
enhancement rate increased from 50% to 75%.17 For large companies, the rate changed
from 25% to 30%. The policy change implies a reduction in the tax-adjusted user cost
of R&D from 0.19 to 0.15 for the newly-eligible SMEs whereas the user cost for large
companies was basically unchanged (subsection 2.7.2 below and Table B.2).

We examine the impact of this jump from 2008 onwards in tax-adjusted user cost
of R&D at the new SME thresholds. There are several advantages of employing this
reform instead of the earlier changes. First, unlike the previous thresholds based
on the EU definition, which were extensively used in many other support programs
targeting SMEs, the thresholds introduced in 2008 were specific to the R&D Tax Relief
Scheme. This allows us to recover the effects of the R&D Tax Relief Scheme without
confounding them with the impact of other policies. Second, identifying the impacts
around newly introduced thresholds mitigates biases arising from tax planning which
may cause endogenous bunching of firms around the thresholds. We show that there
was no bunching around these thresholds in 2007 (or earlier) and covariates were all
balanced at the cutoffs. This is important as although the policy was not completely
detailed until July 2008 (and implemented in August 2008), aspects of the policy were
understood in 2007 so firms may in principle have responded in advance. Information
frictions, adjustment costs, and policy uncertainty mean that this adjustment is likely

16The other criteria laid down in the EC 2003 recommendation (e.g., two-year rule) were maintained in
the new provision in Finance Act 2007 (Chapter 11). This act did not appoint a date on which new ceilings
became effective. The date was appointed in the Finance Act 2007, Section 50 (Appointed Day) Order 2008
of July 16th, 2008.

17In parallel, the SME payable tax credit rate was cut slightly to 14% (from 16%) of enhanced R&D
expenditure (i.e., 24.5% of R&D expenditure) to ensure that R&D tax credit falls below the 25% limit for
state aid.
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to be sluggish, especially for the SMEs we study.18 The 2007 values of firm sizes are
therefore what we use as running variables, as they matter for the firm’s SME status in
2009 by the two-year rule, but are unlikely to be affected by tax-planning incentives.

We focus on assets as the key running variable. This is one of the three determinants
of SME status and, unlike employment and sales, does not suffer from missing values
in the available datasets. We discuss this in detail in Section 2.4, and we also consider
using employment and sales in subsection 2.7.6, which yields similar results.

2.3 Empirical strategy

Consider a simple RD equation of the form:

Ri,t = α1,t + βR
t Ei,2007 + f1,t(zi,2007) + ε1i,t (2.1)

where Ri,t is the R&D expenditure of firm i in year t and ε1i,t is an error term. We use
polynomials of the running variable, assets in 2007 f1,t(zi,2007), which are allowed to be
different either side of the new SME threshold (z̃). Ei,2007 is a binary indicator equal to
one if 2007 assets are less than or equal to the threshold value and zero otherwise. The
coefficient of interest βR

t estimates the effect of being eligible for the more generous SME
scheme on a firm’s R&D spending at this threshold. In an RD Design, the identification
assumption requires that the distribution of all predetermined variables is smooth
around the threshold, which is testable on observables. This identification condition
is guaranteed when firms cannot precisely manipulate the running variable (Lee, 2008).
Under this assumption, eligibility is as good as randomly assigned at the cutoff. We
reproduce regressions based on equation (2.1) for year by year outcomes, as well as
their average over three post-policy years. We also estimate analogous regressions in
the pre-policy years to assess the validity of the RD Design. The “new SME”, i.e.,
those which became SMEs only under the new definition, could only obtain the higher
tax deduction rates on R&D performed after August 2008. Hence, to the extent that
firms could predict the change in thresholds in early 2008 (or they could manipulate
the reported timing of within year R&D), such companies would have an incentive to
reduce 2008 R&D expenditures before August and increase them afterwards. To avoid
these complexities with the transition year of 2008, we focus on 2009 and afterwards as
full post-policy years.

As is standard in RD Designs (Lee and Lemieux, 2010), we control for separate
polynomials of the running variable on both sides of the asset threshold of e86m.19 As
noted above, because of the two-year rule, a firm’s SME status in 2009 is partly based

18Sluggish adjustment to policy announcements is consistent with many papers in the public finance
literature (e.g., Kleven and Waseem, 2013).

19In the baseline results, being mindful of Gelman and Imbens (2014) warning against using higher
order polynomials when higher order coefficients are not significant, we use a first order polynomial. We
show in robustness checks that including higher order polynomials produce qualitatively similar results
across all specifications.
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on its financial information in 2007. Using total assets in 2007 as our primary running
variable thus mitigates the concern that there may have been endogenous sorting of
firms across the threshold. Figure 2.1 shows that firms’ 2007 total asset distribution
appears continuous around the new 2008 SME threshold of e86m. The McCrary test
gives a discontinuity estimate (log difference in density height at the SME threshold) of
-0.026 with a standard error of 0.088, insignificantly different from zero. In later years
there is a small but insignificant increase in bunching (subsection 2.7.5).

In terms of innovation outputs, we consider the following RD equation:

PATi,t = α2,t + βPAT
t Ei,2007 + f2,t(zi,2007) + ε2i,t (2.2)

where the dependent variable PATi,t is number of patents filed by firm i in year t, over
a longer post-policy period from 2009 to 2015, due to the potential lag between R&D
inputs and outputs. Under the same identification assumptions discussed above, β̂PAT

consistently estimates the causal effect of being eligible for the more generous SME
scheme at the threshold.

Thirdly, we consider the structural patent equation:

PATi,t = α3,t + γtRi,t + f3,t(zi,2007) + ε3i,t (2.3)

which can be interpreted as a “knowledge production function” as in Griliches (1979).
Equations (1) and (3) correspond to a fuzzy RD model that estimates the impact of
additional R&D spending induced by the difference in tax relief schemes on firm’s
patents, using Ei,2007 as the instrument for R&D. With homogeneous treatment effects,
the IV estimate delivers the causal effect of R&D on patents under the exclusion
restriction that the discontinuity-induced exogenous fluctuations in Ei,2007 does not affect
innovation outputs through any channel other than qualifying R&D.20

Under the identification assumptions discussed above, the RD Design guarantees
that Ei,2007 (conditional on appropriate running variable controls) affects innovations
only through a firm’s eligibility for the SME scheme, which directly translates into
qualifying R&D expenditure. It is possible that firms benefitting from the SME scheme
(i) also increase complementary non-qualifying spending, such as investments in capital
or managerial capabilities (even though they would want to classify as much of this
spending as qualifying R&D expenditure as possible), or alternatively (ii) relabel existing
non-R&D spending as qualifying R&D expenditure to claim R&D tax relief. The first
channel would bias our estimate of γ upward, while the second channel would bias it
downward. Empirically, we do not find evidence of discontinuities in firm’s capital
expenses, (non-R&D) administrative expenses, or any expense category other than
qualifying R&D at the eligibility threshold in the post-policy period. This suggests

20With heterogeneous treatment effects, IV requires a monotonicity assumption that moving a firm’s size
slightly below the threshold always increases R&D. In this case, γ is the Average Causal Response (Angrist
and Imbens, 1995), a generalization of the Local Average Treatment Effect that averages (with weights) over
firms’ causal responses of innovation outputs to small changes in R&D spending due to the IV.
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that these other channels through which Ei,2007 could affect innovations and the biases
they imply are unlikely to be of first order concern. Relabeling is potentially a harder
problem to deal with, but this affects only R&D expenditures and not patenting activity,
which is the main outcome variable we focus on.

In Appendix 3.1 we shows how equations (2.1) and (2.3) can be derived from
optimizing behavior of a firm with an R&D augmented CES production function and
Cobb-Douglas knowledge production function. We discuss how the elasticity of R&D
with respect to its user cost can be derived in subsection 2.7.2.

2.4 Data

2.4.1 Data sources

Appendix B.2 details our data sources. Our data comes from three main sources: (1)
HMRC Corporate Tax returns (CT600) and its extension, the Research and Development
Tax Credits (RDTC) dataset, which provide data on the universe of UK firms and
importantly includes firm’s R&D expenditures as claimed under the R&D Tax Relief
Scheme, (2) Bureau Van Dijk’s FAME dataset which provides data on the accounts of
the universe of UK incorporated firms, and (3) PATSTAT which has patent information
on all patents filed by UK companies in the main 60 patent offices across the world.

CT600 is a confidential administrative panel dataset provided by HMRC Datalab
which consists of tax assessments made from the returns for all UK companies liable
for corporation tax. The dataset covers financial years 2000 to 201121, with close to 16
million firm by year observations, and contains all information provided by firms in
their annual corporate tax returns. We are specifically interested in the RDTC dataset,
which consists of all information related to the R&D Tax Relief Scheme including the
amount of qualifying R&D expenditure each firm has in a year and the scheme under
which it makes the claim (SME vs. Large Company Scheme). Firms made 53,000 claims
between 2000 and 2011 for a total of £5.8 billion in R&D tax relief, about 80% of the
claims are under the SME scheme.

We only observe total R&D when firms seek to claim R&D tax relief. All firms
performing R&D are in principle eligible for tax breaks which as we have discussed are
generous. Further, all firms must submit tax returns each year and claiming tax relief
is a simple part of this process. Hence we believe we have reasonably comprehensive
coverage of current R&D spending. Ideally, we would cross check at the firm level with
R&D data from other sources, but UK accounting regulations (like the US regulation
of privately listed firms) do not insist on SMEs reporting their R&D, so there are many
missing values. Statistics provided by internal HMRC analysis indicate that qualifying

21The UK fiscal year runs from April 1st to March 31st so 2001-02 refers to data between April 1st, 2001
and March 31st, 2002. In the text we refer to the financial years by their first year, so 2011-12 is “2011”.
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R&D expenditure amounts to 70% of total business R&D (BERD).22 Note that the other
outcomes (like patents) are observed for all firms, regardless of their R&D status.

CT600 makes it possible to determine the SME status of firms which claim the R&D
tax relief, but not the SME status of the vast majority of firms which are not claiming.
Employment and total assets are not available because such information is not directly
required on corporate tax forms. Furthermore, only tax-accounting sales is reported in
CT600, while the SME definition is based on financial-accounting sales as reported in
company accounts.23 Consequently, we turn to a second dataset, FAME, which contains
all UK company accounts since about the mid-1980s. We match CT600 to FAME by an
HMRC-anonymized version of company registration number (CRN), which is a unique
regulatory identifier in both datasets. We merged 95% of CT600 firms between 2006 and
2011 with FAME and these firms cover 100% of R&D performing firms and patenting
firms. Unmatched firms are slightly smaller but not statistically different from matched
ones across different variables reported in CT600, including sales, gross trading profits,
and gross and net corporate tax chargeable (Appendix B.2.4).

All firms are required to report their total assets in company accounts, but reporting
of sales and employment is mandatory only for larger firms. In our FAME data, between
2006 and 2011, only 5% of firms reported employment and only 15% reported sales.
By comparison 97% reported assets. Even in our baseline sample of relatively larger
firms around the SME asset threshold of e86m, employment and sales are still only
reported by 55% and 67% of firms respectively. For this reason, we focus on exploiting
the SME asset threshold with respect to total assets and use this as the key running
variable in our baseline specification. Financial variables are reported in sterling while
the SME thresholds are set in euros, so we convert assets and sales using the same tax
rules used by HMRC for this purpose. In addition, FAME provides industry, location,
capital investment, profits, remuneration and other financial information through to
2013, though coverage differs across variables.

We use assets as our key running variable, although we also experiment with using
employment and sales to determine SME status, despite the greater number of missing
values. In principle, using both running variables should increase efficiency, but in
practice (as we explain in subsection 2.7.6) it does not lead to material gains in the
precision of the estimates. Hence, in our main specifications, we use the asset-based
criteria for determining eligibility, because it allows us to cover a larger company
population and it is clearer for graphical RD presentation.24

22There are various reasons for this difference, including the fact that BERD includes R&D spending on
capital investment whereas qualified R&D does not (only current expenses are liable). It is also the case that
HMRC defines R&D more narrowly for tax purposes that BERD which is based on the Frascati definition.

23Tax-accounting sales turnover is calculated using the cash-based method, which focuses on actual cash
receipts rather than their related sale transactions. Financial-accounting turnover is calculated using the
accrual method, which records sale revenues when they are earned, regardless of whether cash from sales
has been collected.

24It is worth noting that using only one threshold for identification in a multiple threshold policy design
does not violate the assumptions for RD Design; it may just reduce the efficiency of the estimates.
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Our third dataset is PATSTAT which is the largest available international patent
database and covers close to the population of all worldwide patents since the 1900s.
It brings together nearly 70 million patent documents from over 60 patent offices,
including all of the major offices such as the European Patent Office, the United States
Patent and Trademark office (USPTO) and the Japan Patent Office (JPO). Patents filed
with the UK Intellectual Property Office are also included. To assign patents to UK-
based companies we use the matching between PATSTAT and FAME implemented by
Bureau Van Dijk and available from the ORBIS database. Over our sample period, 94%
of patents filed in the UK and 96% of patents filed at the EPO have been successfully
associated with their owning company. We select all patents filed by UK companies
up to 2015. Our dataset contains comprehensive information from the patent record,
including application date, citations, and technology class. Importantly, PATSTAT
includes information on patent families, which are sets of patents protecting the same
invention across several jurisdictions. This allows us to identify all patent applications
filed worldwide by UK-based companies and to avoid double-counting inventions that
are protected in several countries.25

In our baseline results, we use the number of patent families – irrespective of where
the patents are filed – as a measure of the number of inventions for which patent
protection has been sought. That is, we count the number of patents filed anywhere in
the world by firms in our sample, whether at the UK, European or US patent office, but
we use information on patent families to ensure that an invention patented in multiple
jurisdictions is counted once. Patents are sorted by application year.

Numerous studies have demonstrated a strong link between patenting and firm
performance.26 Nevertheless, patents have their limitations (e.g., Hall et al., 2013). To
tackle the problem that the value of individual patents is highly heterogeneous, we
using various controls for patent quality such as (i) the number of countries where IP
protection is sought (e.g., US and Japan), and (ii) weighting patents by future citations.27

2.4.2 Baseline sample descriptive statistics

We construct our baseline sample from the above three datasets. Our baseline sample
contains 5,888 firms with total assets in 2007 between e61m and e111m which survive
based on a e25m bandwidth around the threshold, with 3,651 firms under the e86m
SME asset threshold and 2,327 firms above the threshold. Our choice of bandwidth is
guided by results from the Calonico et al. (2014) robust optimal bandwidth approach,
yet we still have to decide on one single bandwidth for both R&D and patent outcomes

25This means that our dataset includes patents filed by foreign affiliates of UK companies overseas that
relate to an invention filed by the UK-based mother company. However, patents filed independently by
foreign affiliates of UK companies overseas are not included.

26For example, see Hall et al. (2005) on US firms or Blundell et al. (1999) on UK firms.
27Variations of these quality measures have been used by inter alia Lanjouw et al. (1998), Harhoff et al.

(2003), and Hall et al. (2005).
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to have a consistent baseline sample.28 Therefore, we also show robustness to a range
of alternative bandwidths. Firms which exit after 2008 are kept in the sample to avoid
selection bias, but are given zero R&D and patents. Our key outcome variables include
amount of qualifying R&D expenditure, and number of patents filed. All nominal
variables are converted to 2007 prices using the UK Consumer Price Index, and all
outcome variables are winsorized at 2.5% of non-zero values to mitigate outliers.29 In
2006-2008, 259 firms in this baseline sample had positive R&D and this number rose to
329 over 2009-2011 (roughly 5% of aggregate R&D expenditure). 172 firms filed 1,127
patents over 2006-2008, and 189 firms filed 1,628 patents over 2009-2013.

Table 2.1 gives some descriptive statistics on the baseline sample. In the 2006-2008
period firms below the threshold spent on average £61,030 per annum on R&D and firms
above the threshold spent an average of £93,788 (with an overall average of £73,977).
After the policy between 2009 and 2011 these numbers changed to £80,269 and £101,917.
In other words, the gap in R&D spending between the two groups of firms around the
threshold reduced by more than 30% from £32,758 pre-policy to £21,649 post-policy.
In terms of innovation outputs, the average number of patents per annum was similar
between the two groups of firms before the policy change (0.061 vs. 0.067), while after
the policy change, firms below the SME asset threshold filed around 40% more patents
than those above the threshold over 2009-2013 (0.063 vs. 0.044).

These “difference-in-differences” estimates are consistent with our hypothesis that
the 2008 policy change induces firms newly eligible for the SME scheme to increase
their R&D and patents. The naive difference-in-difference estimates imply unadjusted
increases of 15% in R&D and 38% in patents from being below the new SME asset
threshold. However, differential time effects across firms of different size would
confound these simple comparisons. In particular, recessions are likely to have larger
negative effects on smaller firms (which are less likely to survive and are harder hit by
credit crunch) than larger firms, which would lead to an underestimate of the positive
causal impact of the policy. This is a particular concern in our context as the global
financial crisis of 2008-2009 is coincident with the policy change. Even the addition of
trends will not resolve the issue because the Great Recession was an unexpected break in
trend. However, the RD Design is robust to this problem as it enables us to assume that
the impact of the recession is similar around the threshold, whereas the difference-in-
difference estimator is not. Consequently, we now turn to implementing the RD Design
of equations (1)-(3) to investigate the causal effects directly.

28The Calonico et al. (2014) robust optimal bandwidth for using R&D as the outcome variable is 20, and
for using patents as the outcome variable is 30. Our baseline bandwidth choice of 25 is in between these
two. We also implemented the Imbens and Kalyanaraman (2011) optimal bandwidth approach, which gave
similar results.

29This is equivalent to winsorizing the R&D of the top 5 to 6 R&D spenders and the number of patents
of the top 2 to 4 patenters in the baseline sample each year. We also show robustness to excluding outliers
instead of winsorizing outcome variables.
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2.5 Results

2.5.1 R&D results

Table 2.2 examines the impact of the policy change on R&D (equation (2.1)). The key
explanatory variable is the binary indicator for whether the firm’s total assets in 2007
did not exceed the new SME asset threshold of e86m, and the running variable is the
firms’ total assets in 2007. The baseline sample includes all firms with total assets in 2007
between e61m and e111m, including non-R&D-performers. Looking at each of the two
pre-policy years 2006 and 2007 and the transition year 2008 in columns (1)-(3), we find
no significant discontinuity in R&D at the threshold. In the next three columns, we
observe that from 2009 onward, firms just below the SME threshold have significantly
more R&D than firms just above the threshold. Columns (7) and (8) average the three
pre-policy/transition and three post-policy years respectively, and column (9) uses the
difference between these averages as outcome variable. Although formally, our analysis
indicates no pre-policy trends, we consider column (9) a conservative estimate (£60,400).
A similar approach is to directly control for pre-policy R&D (the 2006-2008 average) in
column (10) which yields a near identical estimate of £63,400 which is significant at the
5% level. These coefficients are not far below the pre-policy average annual R&D of
£74,000, suggesting that the policy had a substantial impact from an economic as well
as statistical perspective.

Figure 2.2 shows visually the discontinuous jumps in R&D at the SME asset
threshold. Unsurprisingly, larger firms with more assets do more R&D as shown by
the upward sloping regression lines, but right across the threshold there is a sudden
jump in R&D consistent with a policy effect. The magnitude of the jump corresponds to
the estimate in column (8) of Table 2.2.

Validity checks. Table 2.3 further examines the validity of our RD Design by looking
at the balance of pre-determined covariates. Firms right below and above the threshold
are similar to one another in their observable characteristics prior to the policy change.
The differences in sales, employment, and capital between the two groups of firms in
2006 and 2007 are both small and statistically insignificant in columns (1) through (6).
In column (7), we use a pseudo threshold of e71m with as an upper bound the true
threshold of e86m and as a lower bound e46m (e25m below the pseudo-threshold as
in the baseline). In column (8), we use a pseudo threshold of e101m with as a lower
bound the true threshold of e86m and as an upper bound e116m (e25m above the
higher pseudo-threshold). These placebo tests are based on the idea that, after the policy
change, we should not observe any discontinuity in R&D around any asset threshold
other than the true threshold. Neither placebo tests yield statistically significant effects.
We also run similar placebo tests using all possible integer pseudo thresholds between
e71m and e101m with a band ranging from e25m below to e25m above the pseudo
threshold (we do not truncate the band at the true threshold for these specifications).
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Figure B.3, which plots the resulting coefficients and their 95% confidence interval
against the corresponding thresholds, shows that the estimated discontinuities in R&D
peaks at the true threshold of e86m, while they are almost not statistically different
from zero anywhere else.

Our results are robust to a wide range of robustness tests (Table B.3). First, if we add
a second order polynomial to the baseline specification of column (8) in Table 2.2, the
discontinuity (standard error) is larger at 189.9 (84.7).30 Second, the results are robust to
alternative choices of kernel weights and sample bandwidths.31 Third, the discontinuity
remains significant when we add industry and/or location fixed effects or use different
winsorization or trimming rules. Fourth, we obtain statistically significant effects of
comparable magnitude when using count data models instead of OLS.32 Finally, we
estimate the same specification as in Table 2.2 but use survival as the dependent variable,
finding an insignificant coefficient.

2.5.2 Patent results

We now turn to our results on patents, which is the key outcome of interest. Table
2.4 reports the patent RD regressions (equation (2.2)) using the same specification
and sample as Table 2.2. As with R&D, the first three columns show no significant
discontinuity around the threshold for patenting activity prior to the policy change. By
contrast, there is a significant increase in patenting in the post-policy period from 2009
onward, which persists through to the end of our patent data in 2015, 7 years after the
policy change (columns (4)-(10) of Panel A).33 Although we will focus on the 5 years
from 2009 to 2013 (columns (5)-(7) in Panel B) as our baseline “post-policy period” for
subsequent patent analyses, the results are qualitatively similar if we use the 2009-2011
average (columns (2)-(4)) or 2009-2015 average (columns (8)-(10)). According to column
(5) of Panel B there is an average discontinuity estimate of 0.069 extra patents per year for
firms below the policy threshold. The corresponding coefficient for the pre-policy period
is less than half the size and statistically insignificant (column (1)). If we use the more-
conservative before-after or lagged-dependent variable-specifications, the discontinuity
estimates are 0.042 and 0.049 (columns (6) and (7)). Again, these coefficients are sizeable
in comparison with the pre-policy mean patents of 0.064. Figure 2.3 illustrates the

30Adding a third order polynomial also yields a similar estimate and we cannot reject that the higher
order terms are jointly zero.

31This include using Epanechnikov or triangular kernel weights, narrower bandwidths of e15m or
e20m, or larger bandwidths of e30m or e35m. For larger bandwidths, we (i) add a second order
polynomial to improve the fit (the coefficients on the second order assets terms are significant for
both bandwidths), or (ii) use triangular kernel weights. All specifications yield statistically significant
discontinuity estimates of comparable magnitude to our baseline result in column (8) of Table 2.2.

32We do this to allow for a proportionate effect on R&D (as in a semi-log specification). Using a Poisson
specification yields coefficient (standard error) of 1.31 (0.49) and using a Negative Binomial specification
yields 1.22 (0.49).

33These statistically-significant discontinuity estimates decrease in magnitude gradually over time, as
2007 assets becomes a progressively weaker predictor of firm’s SME status. Part of this is because firms
below the asset threshold in 2007 grow and eventually are no longer SMEs. In Table B.10, we report
evidence of substantial policy-induced increase in employment that is consistent with this explanation.
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discontinuity in the total number of patents filed over 2009-2013, which corresponds
to the estimate in column (5) of Table 2.4 Panel B. As with R&D there is clear evidence
of the discontinuity in innovation outcomes at directly the point of the SME threshold
for R&D tax relief purpose.34

This is a key result: nothing in the R&D tax policy required a firm to show any
patenting activity either in applying for R&D grants or in any auditing by the tax
authority of how the money is spent. Therefore there is no administrative pressure to
increase patenting. It may seem surprising that we observe a response in patenting
as soon as 2009, but patent applications are often timed quite closely to research
expenditures.35 It is also possible that firms filed their off-the-shelf inventions when
the policy change effectively reduced their patent filing costs. This would translate into
a larger estimate in 2009, but cannot explain the persistent effects through 2015. Finally,
we ran all the robustness and validity tests discussed for the R&D equation on the
patent regressions. These include adding higher order polynomial controls or industry
and/or location fixed effects, using alternative choices of kernel weights and sample
bandwidths, using different winsorization or trimming rules, employing count data
models instead of OLS (Table B.4), and employing pseudo SME thresholds (Figure B.4).
The increase in patenting among firms below the SME threshold remains robust across
these alternative specifications and peaks only at the true threshold, further confirming
the validity of the RD Design and the policy effect on innovation.

As patents vary widely in quality, one important concern is that the additional
patents induced by the policy could be of lower value. Table 2.5 investigates this
possibility by considering different ways to account for quality. Column (1) reproduces
our baseline result of patent counts. Column (2) counts only patents filed in the UK
patent office, column (3) has those filed at the European Patent Office (EPO) and column
(4) at the USPTO. Since filing at the EPO and USPTO is more expensive than just at the
local UK office,36 these patents are likely to be of higher value. It is clear that there is also
a significant and positive effect on these high value patents. Although the coefficient is
larger for UK patents, so is the pre-policy mean. Focusing on the relative effect in the
final row (the RD coefficient divided by the pre-policy mean of the dependent variable),
these are no smaller for EPO and USPTO patents than they are for UK patents (1.03
for UK, 1.20 for EPO and 1.58 for USPTO). We generalize this approach in column (5)
by weighting by patent family size, i.e., the total number of jurisdictions in which each
invention is patented. This also generates a significant relative effect of around 0.9.

Column (6) of Table 2.5 weights by future citations, which yields a positive and
significant estimate. However, we need to keep in mind that our data is very recent

34Pseudo threshold tests similar to those in Figure B.3 show that the estimated discontinuities in patents
peak at the real SME threshold of e86m and are not statistically different from zero elsewhere (Figure B.4).

35See the literature starting with Hall et al. (1986). There are exceptions, of course, where lags between
R&D and patenting are longer such as pharmaceuticals.

36For example, filing at the EPO costs around e30,000 whereas filing just in the UK costs between e4,000
and e6,000 Roland Berger Market Research (n.d.).
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for forward citation count purpose,37 so the elasticity is less meaningful. To address
this issue, we use the number of patents that are in the top citation quartile (in their
technology class by filing year cohorts) in column (7). Here we obtain a relative effect
of 1.06, very similar to the baseline. Finally, we examine heterogeneity with respect
to technology segment looking specifically at chemicals (including biotechnology and
pharmaceuticals) in column (8) and Information and Communication Technologies in
column (10). These sectors do produce somewhat larger relative effects (both around 1.7
compared to 1.0 in the others), but columns (9) and (10) show that our results are not all
driven by these technologically dynamic sectors.

In summary, there is no evidence from Table 2.5 of any major fall in innovation
quality due to the policy.38 The policy appears to robustly raise quality-adjusted patent
counts across many measures of patent quality.

2.5.3 IV results for the knowledge production function

Table 2.6 estimates knowledge production functions (IV patents regressions) where the
key right-hand-side variable, R&D, is instrumented by the discontinuity at the SME
threshold (equation (2.3)).39 As discussed in Section 2.3, the exclusion restriction, which
requires that the instrument affects innovations only through qualifying R&D, is likely
to hold in our setting given the lack of evidence of policy effect on other non-qualifying
expense categories (Table B.12). Column (1) presents the OLS specification, which
shows a positive association between patents and R&D. Column (2) reports a larger
IV coefficient implies that one additional patent costs on average $2.4 million (= 1/0.563
using a $/£ exchange rate of 1.33) in additional R&D. At the pre-policy means of R&D
and patents (£0.074m and 0.064 respectively), this implies an elasticity of patents with
respect to R&D of 0.65 for our IV estimates (compared to 0.24 for OLS). If we also control
for average pre-policy patents over 2006-2008 as in column (7) of Table 2.4 Panel B, the
IV estimate decreases from 0.56 to 0.43 (Table B.5 Panel B) implying an elasticity of 0.50.

The next columns of Table 2.6 compare UK, EPO and US filings. All indicate
significant effects of addition R&D on patents, which are again larger for IV than OLS.
The corresponding costs for one additional UK, EPO, or USPTO patent are $2.1, $4.5,
and $4.0 million respectively (columns (4), (6), and (8)), which reflects the fact that only

37Patents are typically published 18 months after the application filing date, and it takes an average of
5 years after the publication date for a patent to receive 50% of its lifetime citations.

38We have also looked at many other indicators of quality such as weighting by (i) patent scope (i.e.,
the number of patent classes a patent is classified into), (ii) the originality index (a measure of how diverse
a patent’s backward citations are), and (iii) generality index (a measure of how diverse a patent’s forward
citations are). We also count the number of patents that are in their respective cohorts’ top quality quartile
as measured by these indices. All of these quality-weighted and top-quality-quartile patent counts yield
positive and significant estimates with implied proportionate effects comparable to our baseline patent
result (Table B.6 Panel A). Separately, we look at the number of patents subsequently granted (rather than
all applications); this similarly yields a positive and signifi-cant estimate.

39In the corresponding IV model, the first-stage regression of R&D on the below-asset-threshold
instrument is report-ed in column (8) of Table 2.2, and the reduced form regression of patents on the
same instrument is reported in column (5) of Table 2.4 Panel B.
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inventions of higher value typically get patented outside of the UK.40 These figures are
broadly in line with the existing estimates for R&D costs per patent of $1 to $5 million.41

We again subject these IV regressions to the robustness tests discussed for R&D and
patent regressions to show that the magnitudes are robust (Table B.5).

The fact that the IV effects are larger than OLS is consistent with the LATE
interpretation that the IV specification estimates the impact of R&D on patents among
complier firms which increase their R&D because of the policy. If these firms are more
likely to be financially con-strained they are more likely to have higher-return R&D
projects, which they could not have taken without the policy. Some direct evidence
for this hypothesis is presented in Table 2.7. We calculate the average cash holdings to
capital ratio in each three-digit industry in the pre-policy period using the population
of UK firms.42 All else equal we expect industries with higher cash-to-capital ratios as
being less financially constrained. In columns (1) and (4) of Table 2.7, we fully interact
all right-hand-side variables in our baseline specification with the industry cash-to-
capital measure. The interaction terms indicate that the treatment effects on both R&D
and patents are significantly larger for firms in financially constrained sectors. The
other columns split sample into industries below and above the mean of the financial
constraints measure (instead of using it as a continuous measure) which again show
our results are positive and significant only for the firms who are more likely to be
financially constrained. 43 In addition, we also calculate the Rajan and Zingales (1998)
index of industry external-finance dependence and find qualitatively similar results
(Table B.18).

2.6 R&D technology spillovers

The main economic rationale given for more generous tax treatment of R&D is that
there are technological externalities, so the social return to R&D exceeds the private
return. Our design also allows us to estimate the causal impact of tax policies on
R&D spillovers, i.e., innovation activities of firms that are technologically connected
to policy-affected firms, through employing a similar RD Design specification with

40Despite the weak adjusted first-stage F-statistic of 5.6, the Anderson-Rubin weak-instrument-robust
inference tests indicate that all of the IV estimates are statistically different from zero even in the possible
case of weak IV.

41See Hall and Ziedonis (2001), Arora et al. (2008), Gurmu and Pérez-Sebastián (2008), and Dernis et al.
(2015).

42This ratio is computed using FAME data for the universe of UK firms between 2000 and 2005. Cash
holding is the amount of cash and cash equivalents on the balance sheet; capital is proxied by fixed assets.
We first (i) average cash holding and capital within firm over 2000-2005, then (ii) calculate the cash holding
to capital ratio at the firm level, and finally (iii) average this ratio across firms by industry. Constructing
the measure at the 2-digit and 4-digit industry levels, or using cash flow instead of cash holding, yield
qualitatively similar results.

43The IV estimate for the effect of R&D on patents (similar to Table 2.6 column (2)) in the subsample of
more financial-ly constrained firms is 0.602, significant at 5% level, and larger than the baseline estimate of
0.563. This is con-sistent with our hypothesis that the returns to R&D are higher among more financially
constrained firms.
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connected firms’ patents as the outcome variable of interest (Dahl et al. (2014) for a
similar methodological approach in a different context).

For this exercise, we consider two firms to be technologically connected if they (i)
patent primarily in the same 3-digit technology class and (ii) have a high technological
proximity – we use the conventional Jaffe (1986) measure of this.44 We then construct
a sample of all firm i and j dyads (i 6= j) in which (a) firm i is within our baseline
sample of firms with total assets in 2007 between e61m and e111, and (b) firm j is
technologically connected to firm i. Firms i and j are drawn from the universe of UK
firms over 2000-2008 where we can construct these measures. There are 203,832 possible
such dyads in our data, covering 547 unique firm i’s and 17,632 unique firm j’s in 91
different technology classes. For ease of exposition, we from now on call firm i the
“baseline firm” and firm j the “connected firm.”

Our baseline reduced-form spillover specification estimates the impact of base-line
firm i’s eligibility for the SME scheme based on the asset rule (i.e., being below or at the
SME asset threshold) on connected firm j’s average patents over 2009-2013:

PATj,09−13 = α4 + θEi,2007 + f4(zi,2007) + g4(zi,2007) + ε4ij (2.4)

Each observation is a pair of a baseline firm and a connected firm; PATj,09−13 is
the connected firm’s average patents over 2009-2013; Ei,2007 is the baseline firm’s
threshold indicator in 2007; and f4(zi,2007) and g4(zi,2007) are polynomials of baseline
and connected firms’ total assets in 2007.45 As discussed in section 3, Ei,2007 is as good
as random in the RD Design, which allows us to interpret θ̂ as a consistent estimate of
the causal impact of baseline firm i’s likely-eligibility on connected firm j’s innovations.

In addition, we also estimate the following IV specification:

PATj,09−13 = α5 + ξRi,09−11 + f5(zj,2007) + g5(zj,2007) + ε5ij (2.5)

using Ei,2007 as the instrument for R&D by baseline firm Ri,09−11 as in equation (2.3).
The exclusion restriction requires that the discontinuity-induced random fluctuations in

44Let Fi = (Fi1, . . . , FiΥ) be a 1 x Υ vector where Fiτ = niτ
ni

is firm i’s number of patents in technology
class τ as a share of firm i’s total number of patents. (i) Firm i’s primary technology class is defined as

τ∗ = arg maxτ Fiτ . (ii) Firms i and j’s Jaffe technological proximity is defined as ωij =
Fi F′j

[(Fi F′i )
1
2 (Fj F′j )

1
2 ]

, the

uncentered angular correlation between Fi and Fj. ωij is equal to 1 if firms i and j have identical patent
technology class distribution. It is zero if the firms patent in entirely different technology classes. To avoid
picking up policy-endogenous connections Manski (1993), we compute Fi and Fj using the firms’ pre-policy
patent applications over 1900-2008 (most of these are filed after 1980). Our baseline firms patent primarily
in 91 different technology classes, out of the 123 available 3-digit IPC classes. 0.75 is the median Jaffe
technological proximity among firm pairs patenting primarily in the same 3-digit technology class, which
we use as the cut off for high technological proximity. Using alternative definitions does not affect our
qualitative findings.

45Conditional on f4(zi,2007), Ei,2007 is as good as random in the RD Design. It is therefore conditionally
uncorrelated with connected firm j’s characteristics. As a result, controlling for g4(zi,2007) is not needed
for identification, although it helps improve precision as connected firm j’s are drawn from a wide support
in terms of firm size (as captured by zi,2007). Our results are robust to dropping this additional g4(zi,2007)
control.
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the baseline firm’s asset-based eligibility would only affect the connected firm’s patents
through spillovers from the baseline firm’s innovation activities. Under this additional
exclusion restriction assumption equation (2.5) consistently estimates the magnitude of
the spillovers. Standard errors are clustered by baseline and connected firms’ shared
primary technology class to address the fact that the residuals may be correlated.

Column (1) of Table 2.8 reports the reduced-form spillover regression using the full
sample of baseline firm-connected firm dyads, which yields a small and statistically
insignificant coefficient. However, we expect spillovers to have measurable impact only
in small-enough technology classes, where a single firm has a good chance of affecting
the technological frontier in the field and thus other firms’ innovations. This is why
Angrist (2014) recommends and Dahl et al. (2014) implement a focus on looking at
groups with small numbers of peers when examining spillover effects. Column (2) tests
this by fully interacting the terms in equation (2.4) with the size of the dyad’s primary
technology class. The resulting interaction term is negative and statistically significant at
the 5% level, confirming our hypothesis that spillovers are larger in smaller technology
classes. Figure 2.5 presents this result visually by plotting the spillover coefficients by
the size percentile of the dyad’s primary technology class,46 which yields a downward
sloping curve.

Guided by Figure 2.5, we split the full sample of baseline firm-connected firm dyads
by the size of the dyad’s primary technology class (at 200 which is the 40th percentile).
The subsample of small primary technology classes includes 2,093 dyads of 67 baseline
firms and 1,190 connected firms in 36 technology classes. The reduced-form spillover
coefficient in this subsample (column (4)) is positive and weakly significant despite
the small sample size, and an order of magnitude larger than in the large technology
classes in column (3). The presence of positive R&D spillovers on innovations only in
small technology classes is robust to a range of robustness tests, including (i) excluding
connected firms that are also in the baseline sample to avoid contamination from direct
policy effect (column (5)),47 (ii) extending the definition of technological connectedness
to all firms patenting primarily in the same 3-digit technology class (column (6)),48

and (iii) examining the evolution of spillovers effect over alternative post-policy periods
(columns (7)-(8)).49

46This graph is estimated semi-parametrically: the spillover coefficient at each technology class size
percentile (the X-axis variable) is obtained from the regression specified in equation (2.4), weighted by a
kernel function at that percentile point (Appendix B.3.1).

47As Ei,2007 is as good as random in the RD Design, it is conditionally uncorrelated with whether
connected firm j also benefits from the policy. Therefore, technically we do not have to control for possible
direct policy effect. Empirically, the spillover point estimate in column (5) is almost the same as the baseline
point estimate in column (4).

48Relaxing the definition of technological connectedness expectedly results in smaller spillover estimates,
even in proportionate terms. More importantly, we observe the same pattern that spillovers are large and
significant only in small technology classes (Figure B.7).

49The point estimates in columns (7) and (8) indicate that spillovers are positive and significant
throughout the post-policy years. They also appear larger when we extend the post-policy period to later
years. On the contrary, we find no evidence of spillovers on connected firm j’s average pre-policy patents
over 2006-2008.
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Finally, in the last two columns, we estimate the IV specification using the subsample
of small technology classes, with column (9) reporting the first stage and column (10)
– the 2SLS. The first-stage effect of the baseline firm’s below-asset-threshold indicator
on its own post-policy R&D is not statistically significant due to the very small sample
of only 67 baseline firms. However, the magnitude of the estimate in relation to the
sample pre-policy mean is comparable to our baseline R&D results in Table 2.2, if not
larger. Due to a weak first stage, the IV estimate of R&D spillovers in column (9) is also
not statistically significant at conventional levels, yet the Anderson-Rubin test, which
is robust to weak instruments, rejects the null hypothesis that this estimate is zero at
10% level. In term of magnitude, the spillover estimate is about 40% (= 0.22/0.56) of the
direct effect of policy-induced R&D on own patents (Table 2.6).

These findings together provide evidence that policy-induced R&D has a sizable
positive impacts on innovation outputs of not only the firms who receive R&D tax
subsidies but also other firms in similar technology areas. To our knowledge this paper
is the first to provide RD estimates of technology spillovers.

2.7 Extensions and robustness

2.7.1 Intensive versus extensive margins

The additional amount of R&D could come from firms which would not have done any
R&D without the policy change (i.e., the extensive margin) or from firms which would
have done R&D, although in smaller amounts (i.e., the intensive margin). In Table B.7,
we estimate the baseline RD regression with dummies for whether the firm performs
R&D or files patent as outcome variables, and find evidence of extensive margin effects
only for patent outcomes. Alternatively, we split the baseline sample by firms’ pre-policy
R&D and patents in Table B.8, and by industry pre-policy patenting intensity in Table
B.9. Both exercises show that firms and sectors already engaged in innovation activities
have the strongest responses to the policy change. These results provide strong evidence
that the policy does not meaningfully affect a firm’s selection into R&D performance
but works mostly through the intensive margin. In other words, the policy appears
to mostly benefit firms that are already performing R&D and filing patents in the pre-
policy period, which then helps increase these firms’ chances of continuing to have
patented innovations in the post-policy period.

We also split the baseline sample into firms which made some capital investments
in the pre-policy period, and firms that did not (Table B.11). The policy effects on R&D
and patents are larger among firms which had invested, suggesting that current R&D
and past capital investments are more likely to be complements than substitutes. This
is consistent with the idea that firms having previously made R&D capital investments
have lower adjustment costs and therefore respond more to R&D tax incentives (Agrawal
et al., 2014).
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2.7.2 Magnitudes and tax-price elasticities

What is the implied elasticity of R&D with respect to its tax-adjusted user cost? We
define the elasticity as the percentage difference in R&D capital with respect to the
percentage difference in the tax-adjusted user cost of R&D.50 Given the large policy-
induced R&D increase in our setting, we calculate the percentage difference relative to
the midpoint instead of either end points, following the definition of the arc elasticity
measure.51 Specifically, the tax-price elasticity of R&D η is given by:

η =
% difference in R
% difference in ρ

=

RSME−RLCO
(RSME+RLCO)/2

ρSME−ρLCO
(ρSME+ρLCO)/2

where ρSME and ρLCO are the firm’s tax-adjusted user cost of R&D under the SME and
the large companies (“LCO”) schemes, and RSME and RLCO are the firm’s R&D.52

Deriving % difference in R: To obtain estimates of the treatment effects of the difference
in tax relief schemes on R&D (i.e, RSME − RLCO) and patents, we need to scale β̂R and
β̂PAT by how sharp Ei,2007 is as an instrument for a firm’s eligibility as Ei,2007 does not
perfectly predict firm i’s post-policy SME status, SMEi,t. We estimate this “sharpness”
(λ) using the following equation:

SMEi,t = α6,t + λtEi,2007 + f6,t(zi,2007) + ε6i,t (2.6)

Equations (6) and (1) correspond to the first stage and reduced form equations in a fuzzy
RD Design that identifies the effect of the change in the tax relief scheme on a firm’s
R&D at the SME asset threshold, using Ei,2007 as an instrument for SMEi,t.

Our setting differs from standard fuzzy RD Designs in that SMEi,t is missing for
the firms with no R&D (we do not have enough information in our data on sales and
employment to determine their eligibility with reasonable precision). Therefore, we can
only estimate equation (2.6) on the subsample of R&D performing firms.53 Selection
into this subsample by R&D performance raises the concern whether the resulting λ̂ is
a consistent estimator of the true λ in the full baseline sample which includes non-R&D
performers. In Appendix B.1.4 we prove that a sufficient condition for E(λ̂) = λ is
that the SME-scheme eligibility does not increase firm’s likelihood of performing R&D
compared to being ineligible, which is the case in our setting as shown in subsection

50For example, Hall and Jorgenson (1967) or Bloom et al. (2002).
51Calculating the percentage difference relative to one end point vs. the other end point yields very

different results when the difference between the two points is large. Alternatively, we define the elasticity
as the log difference in R&D capital with respect to the log difference in the tax-adjusted user cost of R&D:
η = ln(RSME/RLCO)

ln(ρSME/ρLCO)
, which yields quantitatively similar elasticity estimates (Table B.15).

52Formally, the numerator of the tax price elasticity should be the R&D capital stock rather than flow
expenditure. However, in steady state the R&D flow will be equal to R&D stock multiplied by the
depreciation rate. Since the depreciation rate is the same for large and small firms around the discontinuity,
it cancels out (Appendix B.1).

53For the same reason, we cannot directly estimate the corresponding structural equation for the full
baseline sample.
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2.7.1. In this case the composition of eligible and non-eligible firms below and above the
threshold in the estimation sample would be the same as in the full baseline sample. As a
result, we are able to derive β̂R/λ̂ and β̂PAT/λ̂, in which β̂R and β̂PAT are estimated from
the full baseline sample and λ̂ – the R&D performing sample, as consistent estimators
of the causal effect of tax policy change on R&D and patents at the threshold. Finally,
we retrieve these estimators’ empirical distributions and confidence intervals using a
bootstrap procedure.

Table 2.9 reports the “first-stage” SME-status RD regressions of equation (2.6) using
the same specification as Table 2.2 and the subsample of R&D performing firms in each
respective year.54 Columns (1)-(3) show that being under the new SME asset threshold in
2007 significantly increases the firm’s chance of being eligible for the SME scheme in the
post-policy years, even though the instrument’s predictive power decreases over time
as we would expect. Columns (4)-(6) aggregate a firm’s SME status over different post-
policy periods, which yield coefficients in the range of 0.25 to 0.46 that are all significant
at the 1% level. In what follows we will use the mid-range coefficient on SME status of
0.353 (column (5)) as the baseline estimate of λ in equation (2.6). Table 2.2 column (9)’s
R&D discontinuity estimate of £60,400 then implies a causal annual treatment effect of
£60,400/0.353 = £171,200.55 Together, these estimates yield a percentage difference in
R&D of 1.07.56

Deriving % difference in ρ: We calculate the tax-adjusted user cost, ρ f , based on the
actual design of the R&D Tax Relief Scheme (Appendix B.1.5 for more details):

ρ f =
(1− A f )

(1− τf )
(r + δ)

where sub-script f ∈ {SME, LCO} denotes whether the firm is a smaller (SME) or
larger company (LCO), A is the value of R&D tax relief, τ is the effective corporate tax
rate, r is the real interest rate, and δ is the depreciation rate. We calculate A separately
for the deduction case and the payable credit case under each scheme using the policy
parameters and derive the average value of A under each scheme using the probability
that a baseline sample firm falls into each case.57 The resulting average tax-adjusted user

54A firm’s SME status over a period is the maximum of its SME status in each of the year within the
period. We also report elasticity estimates derived from alternative estimates of λ (using different post-
policy periods) in Table B.15.

55As the tax-adjusted user cost of R&D for large companies remains unchanged over 2006-2011 (Table
B.2), it seems reasonable to use the average R&D over 2006-2008 as a proxy for how much an average firm
would spend on R&D if it remained a large company over 2009-2011.

56That is, RSME−RLCO
(RSME+RLCO)/2 = 171.2

(171.2+74.0+74.0)/2 = 1.07.
57The value of the tax relief (i) in the deduction case is Ad, f = τf (1 + e f ) where e f is the enhancement

rate, (ii) in the payable credit case is Ac = c(1 + e) where c is the payable tax credit rate. We use the share
of baseline firms with corporate tax liabilities over 2006-2007 as a proxy for the probability that a baseline
firm falls into the deduction case.
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cost of R&D is 0.15 under the SME scheme and 0.19 under the large company scheme
over 2009-2011, which translates into a percentage difference in user cost of 0.27.58

Deriving η: Putting the elements together we obtain a tax-price elasticity of R&D of
about 4 (= 1.07/0.27), which is substantially higher than the typical values of between
one and two found in other studies.59 Note that Acemoglu and Linn (2004) also find
R&D elasticity estimates in the range of 4 with respect to market size and suggest
that this should be the same as R&D elasticity with respected to its user cost. In our
view, a better way to think of these estimates is to consider the empirical distribution.
We perform a bootstrap procedure with 1,000 replications where in each replication,
we draw observations with replacement from the baseline sample and calculate the
elasticities based on the resulting regression estimates and sample means.60 Table B.16
Panel A summarizes the results which imply that any R&D tax-price elasticity lower
than 1.1 can be rejected with a 5% level of confidence in our setting.

It is worth highlighting that our setting is different from those in previous studies.
Most previous studies on R&D tax credits have effectively focused on larger firms such
as publicly listed firms or using state/macro data that are dominated by larger firms’
expenditures. Our sample, by contrast, is predominantly of smaller firms around the
e86m threshold. As we have argued, these firms are more likely to be financially
constrained and thus likely to be more responsive to R&D tax incentives. Many recent
empirical studies find greater responses of smaller firms to such policy shifts.61 Another
consideration is that the new SME thresholds were introduced in the Global Financial
Crisis where all firms were more likely to be credit constrained. Although our RD
Design is robust to this, this may limit external validity. However, it is worth pointing
out that the tax effect on R&D are strong as late as 2011 (and patents as late at 2015),
well after the end of the credit crunch.62

58We set the real interest rate r to 5% and depreciation rate δ to 15%. As (r + δ) cancels out in the
percentage difference between ρSME and ρLCO, the values of these parameters do not affect the final tax-
price elasticity estimate.

59The same calculations yield an elasticity of patents with respect to R&D user cost of 3.6. The patent
treatment effect derived from Table 2.4’s baseline patent discontinuity estimate of 0.042 (Panel B column
(5)) is 0.119 (= 0.042/0.353). This treatment effect and the pre-policy mean patents of 0.064 imply a patent
percentage difference of PATSME−PATLCO

(PATSME+PATLCO)/2 = 0.119
(0.119+0.064+0.064)/2 = 0.96. This then yields a patent elasticity

with respect to R&D tax-adjusted user cost of 3.6 (= 0.96/0.27).
60As the first-stage estimate of the effect of firm’s below-asset-threshold indicator on its post-policy SME

status is based on a smaller sample of 361 R&D performing firms, we separately draw 361 observations
from this subsample and 5,527 (=5,888-361) observations from the remaining subsample.

61For example, Howell (2017), Zwick and James (2017) and Wallsten (2000) for the US, González et al.
(2005) for Spain, Lach (2002) for Israel, and Bronzini and Iachini (2014) for Italy and Görg and Strobl (2007)
for Ireland.

62Finally, it is also worth noting that we derive the elasticity estimate as E(∆Ri)
E(∆ρi)

(instead of E(∆Ri
∆ρi

) as is
standard in the literature), as we do not observe SMEi and implied ρi for non-R&D-performing firms. In
the sample, it is expected that financially constraint firms have larger elasticity, and are also more likely
to experience larger reduction in tax-adjusted user costs of R&D. This positive correlation implies that
| E(∆Ri)

E(∆ρi)
| > |E(∆Ri

∆ρi
)|.
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2.7.3 Cost effectiveness of the R&D Tax Relief Scheme

A full welfare analysis of the R&D policy is complex as one needs to take into account
general equilibrium effects through spillovers (Section 2.6) and possibly aggregate
effects on scientists’ wages (Goolsbee, 1998). We take one step in this direction by
implementing a simple “value for money” calculation based on how much additional
R&D is generated per pound sterling of taxpayer money (“Exchequer Costs”). The
details of the calculations are in Appendix B.1.6, and we only summarize the key results
of the analysis here.

Our estimates imply that over 2006-2011, the “value for money ratio” (i.e., the ratio of
policy-induced R&D to policy tax payer costs) of the SME deductible scheme is 3.9, SME
payable scheme – 2.9, and large company scheme – 1.5.63 During this period, annually,
£302m of Exchequer costs generate £991m additional R&D in the SME scheme, and
£660m of Exchequer costs generate £992m additional R&D in the large company scheme.
This translates into an aggregate value for money ratio of 2.1.

Figure 2.4 shows estimates of the counterfactual business R&D (BERD) to GDP ratio
in the absence of the tax relief scheme. It is striking that since the early 1980s UK BERD
became an increasingly small share of GDP, whereas it generally rose in other major
economies. Our analysis suggests that this decline would have continued were it not for
the introduction and extension of a more generous fiscal regime in the 2000s.64 Business
R&D would have been 13% lower over the 2006-2011 period (total BERD is larger than
tax qualifying R&D).

A full welfare analysis could produce even larger benefit to cost ratios. First, since the
tax-payer costs are transfers, only the deadweight cost of tax should be considered (e.g.,
Gruber (2011) uses 40%). Second, the additional R&D is likely to have technological
spillovers to other firms, raising their innovation rates (e.g., Bloom et al., 2013) as
examined in Section 2.6. On the other hand, there may be general equilibrium effects
raising the wages of R&D scientists which would dampen the overall effect.

2.7.4 R&D tax effects on other aspects of firm performance

We examine if the tax policy generated changes in other aspects of firm performance
through to 2013 (Table B.13). We again use the baseline specification but use (i) sales,
(ii) employment, (iii) capital, and (iv) Total Factor Productivity (TFP) as the outcome
variables.65 Panel B reports sizable, robust, and growing estimates of the policy impact

63To be consistent with how policy tax payer costs are reported in HMRC data, we calculate these value
for money ratios without accounting for pre-enhancement lost tax revenue from policy-induced R&D. If
we also include this amount into tax payer costs, the respective value for money ratios of the three schemes
are 2.2, 2.9, and 1.1, and the aggregate value for money ratio of the whole R&D Tax Relief Scheme over
2006-2011 is 1.5. Note that for the SMEs, we use the median elasticity estimates (4.0) in our calculations,
and for the large companies, we use the lower-bound elasticity estimates (1.1).

64The trend annual decline in business R&D intensity was 0.0190% between 1981 and 1999. We estimate
that in the absence of the policy change the decline would have continued at 0.0195% a year 1999 to 2012.

65We also include 2-digit industry fixed effects to absorb across-industry heterogeneity in production
function. Our results are qualitatively similar without these fixed effects.
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on employment over 2009-2013, consistent with a dynamic in which firms increase R&D,
then innovate, and then grow larger. In Panel A, estimates are less precise but exhibit
similar pattern, suggesting that the policy also have some positive impact on sales.
On the other hand, we find little evidence of policy-induced increase in capital (Panel
C). This may reflect contemporaneous substitution towards intangible capital (R&D)
and away from tangible capital. Finally, we examine if more innovations translate into
higher productivity by computing and estimating the policy impact on TFP (Panel D).66

Similar to Panel A, the resulting estimates, although noisy, are substantially larger in the
post-policy years, especially in comparison to the pre-policy estimates of close to zero.

These results should be interpreted with caution. As discussed above, there are
many miss-ing values on accounting values of employment and sales as UK accounting
regulations do not insist on these being reported for smaller and medium sized
enterprises (as in the US). Nevertheless, the results suggest that the policy positively
impacts other measures of size and productivity as well as innovation.

2.7.5 Bunching at the threshold in later years

As discussed in Section 2.3, we chose total assets in 2007 as our primary running variable
to avoid potential endogenous sorting of firms across the threshold once the policy
effective date was announced in 2008. We test the validity of our primary running
variable choice and our concern by performing the McCrary test for each year from
2006 to 2011,67 which estimates the discontinuity in firms’ total asset distribution at
the SME threshold of e86m. The respective McCrary tests for 2006 and 2007 confirm
that firms did not manipulate their total assets to bene-fit from the SME scheme before
2008.68 On the other hand, there is some graphical evidence of firms’ bunching right
below the e86m from 2009 onward although it is small and insignificant. Finally, Figure
B.5 pools together the two years before the policy change (2006-2007) and Figure B.6 the
three years after the change (2009-2011). Endogenous sorting does seem to happen, but
only after the policy became effective.69

66We compute TFP by estimating a production function using the Olley and Pakes (1996) method,
based on value added (calculated as sales minus imputed materials), capital, and wages, and at 2-digit
industry level. We also compute alternative TFP measures, including Olley-Pakes TFPs based on alternative
measures of production inputs and outputs, and Solow-residual TFPs. All measures give qualitatively
similar results.

67We exclude 2008 as the increase in deduction rate for large companies became effective before the
effective date for the changes in the SME scheme (including increase in deduction rate for SMEs and SME
definition change) was announced much later in the year. As such, it is hard to predict which way the
bunching would happen in this year, or if it would happen at all.

68The log differences in density height at the SME threshold in 2006 and 2007 are not statistically
different from zero, with coefficients (standard errors) of 0.029 (0.065) and -0.026 (0.088) respectively.

69If knowledge production benefits from economy of scale, then firm’s attempt to “stay small” to benefit
from the SME scheme could lead to an underestimation of the true returns of R&D on patents (and vice
versa). However, the small difference in firm size between those right below and above the threshold is
unlikely to generate bias large enough to be of first order concern.
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2.7.6 Exploiting other elements of the SME definition

We also ran RD regressions using other elements of the SME definition (sales and
employment) to estimate the impacts of the policy (Table B.14). We must interpret these
results with caution because, as noted above, there are many missing values on sales
and especially employment. Furthermore, we also find evidence that the asset criterion
is more binding than the sales one. A firm is considered an SME if it meets either one of
the criteria, thus the asset criterion is binding only when the firm already fails the sales
one and vice versa.70

As expected, while we still find positive effects on R&D and innovation outputs using
the sales or employment criterion, these effects are not always statistically significant.
They are also of smaller magnitude compared to our baseline effects estimated using the
asset criterion when taking into consideration the baseline pre-policy R&D and patent
means of the respective sample. The discontinuity estimate to pre-policy mean ratios for
R&D using asset, sales, and employment criteria are 1.67, 1.16, and 0.41 respectively, and
the same set of ratios for patents are 1.09, 0.31, and 0.41.71 We also examined whether
combining the different SME criteria could increase the efficiency of our estimates, but
found no significant improvement.72

2.8 Conclusion

Fiscal incentives for R&D have become an increasingly popular policy of supporting
innovation across the world. But little is known about whether these costly tax breaks
causally raise innovation. We address this issue by exploiting a change in the UK R&D
tax regime in 2008 which raised the size threshold determining whether a firm was
eligible for the more generous SME tax relief scheme. This enables us to implement
a RD Design and assess impact of the policy on R&D and innovation (as measured
by patenting). Using total assets in the pre-policy period of 2007 we show that there
is no evidence of discontinuities around the threshold prior to the policy, which is
unsurprising as the new threshold is only relevant for the R&D Tax Relief Scheme and
not for other programs targeting SMEs.

70The binding/non-binding ratio (i.e., the number firms for which the criterion binds divided by the
number of firms for which the criterion does not bind) for the asset criterion is 0.36, while the same ratio
for the sales criterion is only 0.20 (Appendix B.2.6 for further details).

71Even when we restrict the sample to firms for which the sales criterion binds when using the sales
running variable, the proportionate effects are still lower than our baseline results, and the estimates are
not statistically significant.

72The below-asset-threshold indicator almost always generates large and statistically significant effects
on both R&D and patents, while the below-sales-threshold indicator does not (Table B.10 Panel B). This is
consistent with the observation that the asset criterion is more binding and therefore the below-asset-threshold
indicator is a more precise instrument for firm’s SME status. Joint F-statistics for below-asset-threshold and
below-sales-threshold indicators indicate that their effects on R&D and patents are always jointly significant.
Finally, the IV estimates for R&D effect on patents using both criteria as instrumental variables for R&D
are similar to our baseline. However, they are less precise due to the inclusion of an additional weak
below-sales-threshold indicator instrument.
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The policy caused an economically and statistically significant increase in R&D
and patent-ing (even after quality-adjusting). Furthermore, the tax policy appears
to stimulate positive technology spillovers. This suggests that R&D tax policies do
seem effective in increasing innovation, and not simply devices for relabeling existing
spending or shifting innovative activities between firms. The implied elasticities of
patenting and R&D with respect to changes in its (tax adjusted) user cost are large. We
argue that the R&D elasticity is large compared to existing estimates because we focus
on firms that are smaller, and therefore more likely to be subject to financial constraints,
than those conventionally used in the extant literature. Over the 2006-2011 period we
calculate that the tax relief scheme meant aggregate business R&D was 13% higher than
it would otherwise have been, halting the secular decline of the UK’s share of business
R&D in GDP.

There are many caveats when moving from these results to policy. Although the
results are optimistic about the efficacy of tax incentives, the large effects come from
smaller firms and should not be generalized across the entire size distribution – this
does imply that targeting R&D policy on financially constrained SMEs is worthwhile
(although a first best policy would be to deal directly with credit market imperfections).
Furthermore, our estimates are based on the period after the global financial crisis when
credit frictions may have been particularly acute. However, the fact that the impact is
also large seven years after the crisis period suggest that this should not be overstated.

We have partially examined general equilibrium effects by demonstrating that the
R&D tax policy stimulates patenting activity not only for the firms directly benefited,
but also creates spillovers for other firms which were indirectly affected. However, there
may be other equilibrium effects that reduce innovation. For example, subsidies are
captured in the form of higher wages rather than a higher volume of R&D, especially in
the short-run. We believe that this is less likely to be a first order problem when there
is large international mobility of inventors, as is the case in the UK (e.g., Akcigit et al.,
2016; and within the US see Moretti and Wilson, 2017). Furthermore, the policy’s effect
on patenting implies that the increase in R&D is driven by volume and not just wages.
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Figure 2.1: McCrary test for no manipulation at the SME asset threshold in 2007

Notes: McCrary test for discontinuity in distribution density of total assets in 2007 at the SME
asset threshold of e86m. Sample includes firms with total assets in 2007 between e46m and
e126m. The discontinuity estimate (log difference in density height at the SME threshold) is
-0.026, with standard error of 0.088.

Figure 2.2: Discontinuity in average R&D expenditure over 2009-2011

Notes: The figure corresponds to the baseline R&D regression based on equation (2.1), using an
OLS Regression Discontinuity (RD) Design. The dependent variable is average R&D expenditure
over 2009-2011. The running variable is total assets in 2007 with a threshold of e86m. The
baseline sample includes firms with total assets in 2007 e25m above and e25m below the cut-off
(i.e., between e61m and e111m). Controls for first order polynomials of the running variable
separately for each side of the threshold are included. The OLS discontinuity estimate at the
e86m threshold is 123.2 with a standard error of 52.0. Each point represents a bin of 368 firms
on average, over a range of e3m. (Bin size is large due to data confidentiality requirement.)
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Figure 2.3: Discontinuity in average number of patents over 2009-2013

Notes: The figure corresponds to the baseline patent regression based on equation (2.3), using
an OLS Regression Discontinuity (RD) Design. The dependent variable is average number of
patents over 2009-2013. The running variable is total assets in 2007 with a threshold of e86m.
Baseline sample includes firms with total assets in 2007 e25m above and below the cut-off
(i.e., between e61m and e111m). Controls for first order polynomials of the running variable
separately for each side of the threshold are included. The OLS discontinuity estimate at the
e86m threshold is 0.069 with a standard error of 0.026. Each point represents a bin of 368 firms
on average, over a range of e3m. (Bin size is large due to data confidentiality requirement.)

Figure 2.4: Business Enterprise R&D over GDP, selected countries

Notes: The data is from OECD MSTI downloaded February 9th, 2016. The dotted line (“UK
without tax relief”) is the counterfactual R&D intensity in the UK that we estimate in the absence
of the R&D Tax Relief Scheme (sub-section 2.7.3 and Appendix B.1.6 for details).
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Figure 2.5: Spillovers on connected firm’s patents by primary patent class size

Notes: This figure presents semi-parametric estimates of the spillover coefficient on
technologically-connected firm’s patents as a function of the technology class size percentile (the
X-axis variable). The semiparametric estimation is based on equation (2.4), using a Gaussian
kernel function of the X-axis variable and a bandwidth of 20% of the range (Appendix C.1 for
details). The 40th percentile of technology class size is 200. The dashed lines indicate the 90%
confidence interval for the spillover coefficients.
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Table 2.1: Baseline sample descriptive statistics

89



Table 2.2: R&D regressions
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Table 2.3: Pre-treatment covariate balance tests and placebo tests
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Table 2.4: Reduced-form patent regressions
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Table 2.5: Effects of R&D tax relief on quality-adjusted patents
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Table 2.6: Effects of R&D on patents (IV regressions)
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Table 2.7: Heterogeneous effects of R&D tax relief by financial constraints

95



Table 2.8: R&D technology spillovers on patents
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Table 2.9: SME status regressions
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Chapter 3

Evidence from Vietnam

This chapter shows that from 2001 to 2008, the gradual privatization program in Vietnam has
strong positive spillovers on firms’ total factor productivity through backward linkages. A firm
gains on average 4 percentage points in TFP if private firms in all of its downstream industries
increase their market share by 10%. This effect comes mainly from privatized domestic firms
within local markets. It is stronger for upstream industries under more competition from imports,
and weaker for those that export more. The effect on allocative efficiency is imprecisely negative
and mitigates the overall effect on industry TFP index, as new entrants but not incumbents
capture very large gains in TFP. I present evidence that the effect works through elevated pressure
from privatized client firms. Furthermore, the spillovers are stronger when provincial institutions
favor state-owned firms and create higher entry costs, suggesting that good governance and
privatization spillovers are substitutes.

98



3.1 Introduction

Ever since Plato and Aristotle, ownership by the state or by private entities has
always been a central topic in debates regarding economic systems, public policies and
their consequences. In recent decades, thousands of state-owned enterprises (SOEs)
have been privatized in both developed and developing countries, most often guided
by economic theories that predict higher productivity and efficiency under private
ownership. However, there are large gaps between theory and empirical evidence on the
effects of privatization. Recent empirical findings have found a wide range of estimates
of privatization benefits (Estrin et al., 2009), as not all privatization campaigns have lived
up to the projected progress in productivity, thus fueling debates among economists
and policy makers on the consequences of privatization. This paper contributes to
those debates with the novel suggestion that privatization’s effects can be strongly
advantageous when one looks for benefits beyond the privatized firms, into their
upstream and downstream industries. With empirical evidence that privatization yields
large spillovers on upstream firms’ productivity, the paper supplies a strong reason in
favor of privatization because of its macroeconomic advantages.

The foremost arguments for or against privatization have always been its direct
impacts on privatized firms and related factors such as excessive labor or performance.
Consequently, most economists and policy makers study and debate on the potential
direct impacts. Little is asked and answered, however, on the spillovers of privatization
on other firms in the same and in other industries. Yet, this may be key to understanding
the overall success or failure of large privatization campaigns seen in transition
economies since the 1990s.

While SOEs can be found almost everywhere in the world, the importance of
privatization has been mostly stressed among transition economies, where SOEs once
were the sole key drivers of the economy, and where many countries are still struggling
to find consistent growth. Understanding privatization effects, especially at the macro
level, is particularly important in those countries. In the 1990s, transition policies in
Eastern Europe and former Soviet republics were mostly radical, resulting in sharp
increases of the share of private firms from almost zero to at least half the economy
over a couple of years (Table 3.1, Estrin et al., 2009). The rich political and economic
environment surrounding those policies also carry along many events at the same time,
such as the introduction of free elections and labor market liberalization, making it
hard to disentangle the effects of privatization, especially when one wants to consider
cross-industry spillover. Vietnam is among the very few countries that at some point
followed tightly Soviet-style planning before market liberalization, and yet chose to
undergo a gradual pattern of privatization, where private and state-owned firms coexist
for an extended period of time in an economy where most aspects (such as salary and
employment) had been liberalized before. Over the period from 2001 to 2008, the share
of private firms in manufacturing has slowly grown from to 66.1% to 86.8%, or a modest
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but gradual gain of less than 3% a year. It has happened throughout most manufacturing
industries, but at slow, varying speeds, so that one could use such variation to estimate
privatization effects on firms and industries’ productivity.

Because privatized firms are usually not chosen randomly, existing studies of the
direct effect of privatization on firm performance have spent much effort on controlling
for selection issues, usually with fixed effects or instrumental variables (as noted by
Estrin et al., 2009). By studying how upstream and downstream privatization leads to
firm performances, I shift the focus to indirect effects of privatization through linkage
spillover. I thus avoid the most thorny issue of endogeneity, by which individual
firms’ specific shocks may partially cause both privatization and performance changes.
Instead, my identification assumption only restricts that there be no correlated shocks
that have influences on downstream (or upstream) privatization and also same-industry
performance. I will further argue that if such shocks exist, they will have biased the
results against my findings.

To understand privatization’s indirect impacts on productivity, I apply Olley and
Pakes’s (1996) (OP) structural estimation to estimate individual firms’ total factor
productivity (TFP) for all manufacturing firms in the Vietnam Enterprise Census of
all firms with 10 employees or more. I then decompose each industry’s TFP index into
an unweighted average TFP and a covariance term measuring allocative efficiency. This
decomposition is used to study privatization’s impacts on all components of the overall
TFP index.

Firm-level regressions of TFP on privatization measures show a strong, robust effect
of downstream privatization. TFP increases by 4 percentage points when downstream
privatization increases by 10%. The effect comes from increases in domestic private,
rather than foreign ownership, and is only in place for private firms’ TFP.

As a whole, the manufacturing sector in Vietnam, represented by 43,545 firms in
my sample, has enjoyed substantial growth of TFP during the period 2001 to 2008. The
annual TFP growth of 2.6% over this period is half explained by unweighted average
TFP growth, and half by increased allocative efficiency. Downstream privatization has
a very strong positive impact on unweighted average TFP. On the other hand, its effect
on allocative efficiency is negative, although not significant, resulting in an overall effect
on industrial TFP index that is negligible. Further decomposition shows that the effect
comes mostly from largely improved TFPs among entrants, while incumbent firms are
not significantly affected.

I investigate the potential channels of influence of downstream privatization on
TFP. I control for proxies of demand and industrial competition, and find that the
effect is dominated by privatization of downstream firms in the same local market.
Because the effect works through entrants rather than incumbent firms, it is unlikely
to be technology spillovers via learning by doing. Instead, the evidence points to an
explanation that privatized downstream industries raise the pressure on suppliers, thus
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pushing suppliers, especially entrants, to improve their productivity if they want to
enter and survive in the market.

I ask whether this privatization effect is complement or substitute with institution
quality regarding SOEs, private firms and especially entrants. I find that they are
substitutes. In good-governance provinces, where SOEs are treated with less favor,
and/or barrier to entry is lower, the privatization effect is smaller. Understandably,
when SOEs are not treated differently, they tend to resemble private firms more.

This paper resonates from a line of research in the trade economics literature that
studies spillover effects of FDIs through linkages in the host country. Javorcik (2004)
finds sizeable linkage effects of FDI on TFP in Lithuania, and Arnold et al. (2011) finds
linkage effects of service liberalization on downstream manufacturing TFP in the Czech
Republic, which work mostly through entry in downstream industries. Gorodnichenko
et al. (2010) looks at a more comprehensive sample of surveyed firms across 27 emerging
markets and finds a positive relationship between same-industry foreign competition
and firm innovations, probably because of higher pressure from competition. However,
this literature has looked only at the effects on individual firms, and overlooked the
effects on different components of the TFP index. I do find important effects on
individual firms, but also point out the much mitigated effect on overall industry TFP,
because of the allocative efficiency component.

Several economic theories have examined the channels through which firm TFP
may improve in those situations. Notably, Aghion et al. (2005) and Aghion et al.
(2009) model how competitive pressure, either from among existing firms in the same
industry, or from the threat of entry, shapes firms’ behaviors in improving productivity.
Rodriguez-Clare’s (1996) international trade model shows that a multinational’s entry,
under sufficient complementarity with domestic suppliers, could spur growth in the
upstream industry, thanks to larger demands coming from the international market.
Lin and Saggi (2007) proposes a different channel of linkage effects via the supply side,
where foreign firms could contract to transfer new technology to domestic suppliers.
Sutton (2007) also models vertical transfers of capabilities from foreign firms to domestic
firms, because of quality requirement on the international market.

Looking beyond vertical linkages, the paper contributes to a larger literature on the
determinants of productivity within and across firms Syverson (2011). The paper also
connects to the recent literature that emphasizes the large role of allocative efficiency,
notably since Hsieh and Klenow (2009) and Bartelsman et al. (2013), with for example
an application to China Brandt et al. (2012, 2013). Once again, I find that allocative
efficiency is important in understanding overall TFP, in that the positive effect of
privatization on individual firms could be offset by that on allocative efficiency.

There has been a large literature that addresses the causes and consequences
of privatization in transition economies, surveyed in Megginson and Netter (2001),
Djankov and Murrell (2002), Estrin et al. (2009). In tandem with the rising interests
in the Chinese economy (e.g. Song et al., 2011), this paper belongs to a few that have
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studied Vietnam’s recent grow phenomenon using the Vietnam Enterprise Census Bai
et al. (2013); McCaig and Pavcnik (2012); Tran (2013). It shows similarities between
Vietnam and China when it comes to firm and industry characteristics Brandt et al.
(2012), suggesting that results from Vietnam may be generalizable to China and other
transition contexts too.

The paper is organized as follows. Section 3.2 presents a background discussion on
privatization in Vietnam. Section 3.3 details all methodologies used in the paper, for
which an uninterested reader could skip. Section 3.5 exposes the results, and section 3.6
discusses the key implications and caveats, suggests future work, and concludes.

3.2 Background of privatization in Vietnam

Before the mid-80s, Vietnam followed a central-planning economic model based on a
large public sector with thousands of state-owned enterprises (SOEs). In 1986, the
Vietnamese government launched a market liberalization Reform, known as Doi Moi,
to eliminate the role of central-planning and open the country’s borders to international
capital and trade flows. Over the past 20 years, Vietnam has achieved a remarkable
average annual growth rate of 7.3%, making it one of the fastest growing economies
in the world over this period. Based on my calculation, Vietnam’s manufacturing total
factor productivity (TFP) also grew at 2.6% per year between 2001 and 2008, which is
on par with TFP growth in China and high in comparison with other Asian countries
Brandt et al. (2012).

The reform of SOEs plays a key role in this comprehensive economic renovation.
A key problem SOEs face is their multiple, ambiguous, and conflicting goals, which
constrain the SOEs’ managerial autonomy. Under this system, managers and workers
are often poorly motivated, leading to weak business performance, low efficiency, and
operating losses. The first SOE reform in Vietnam provided these firms with more
managerial autonomy to make business plans and set product prices. However, it ended
up causing many SOEs to fall in the red as government subsidies were also cut.

In 1992, the Vietnamese government decided to deal with SOEs more comprehen-
sively through a privatization program, under the name equitization, with the goal
to raise firms’ productivity through supposedly more efficient private ownership.
More specifically, the program objectives include improving firms’ performance and
competitiveness via ownership diversification; mobilizing capital from employees and
outside investors, including domestic and foreign investors, for technology renewal and
business development; and balancing state, employee, and shareholder interests within
the privatized firm. Vietnamese SOEs were allowed to choose one of the following
forms of privatization: (i) maintain existing state capital and issue additional shares to
mobilize more capital; (ii) sell a part of existing state capital; (iii) sell entire existing state
capital; or (iv) sell existing state capital and concurrently issue additional shares (which
is by far the most popular form of privatization). In short, the method of privatization
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in Vietnam takes form of privatization through sale of state property and privatization
from below.

The actual privatization process in Vietnam can be divided into pilot stage and
expansion stage. The pilot privatization program was initiated in 1992, focusing on
small and medium SOEs that were non-strategic and profitable. From 1996 onward,
all non-strategic small and medium SOEs were encouraged to be privatized. However,
only 123 firms got privatized during the period 1992-1998, according to the National
SOE Reform Board, because of opposition to privatization among interest groups and
administrative difficulties.

The government then promulgated Decrees 44/1998/ND-CP (1998) and 64/2002/ND-
CP (2002) to accelerate privatization, with an official target to privatize all three
thousand non-strategic SOEs. The progress of the privatization program during this
stage was more impressive. By the end of 2004, 2,242 SOEs had been completely
privatized. Most of them were small and medium SOEs (81.5% of these firms had less
than VND 10 billion, equivalent to USD 500,000, in capital) and their new shareholders
were predominantly insiders (managing board and employees). Finally, the milestone
of the privatization program came in 2005 when the government introduced the new
Enterprise Law, which unified SOE Law, Foreign Direct Investment Law, and the old
Enterprise Law. This legal unification was part of Vietnam’s preparation for joining the
World Trade Organization, for which Vietnam had promised to create a level playing
field for all enterprises. The new Enterprise Law helped boost privatization efforts and
as a result, 929 SOEs were privatized in 2005 alone. By the end of 2005, Vietnam’s
privatization program has achieved its official target.

3.3 Measurements and estimation

3.3.1 Main estimation strategy and identification

I ask the following empirical questions. First, what are the impacts of a higher degree
of private firms in upstream and downstream industries on a firm’s and an industry’s
TFP? Second, how can the industry-level impact be decomposed into different parts,
notably between incumbents and entrants, and between unweighted average logTFP and
allocative efficiency across firms? Third, what are the channels of influence? Fourth, is
this privatization impact stronger or weaker under low versus high quality governance?
In other words, is privatization and governance quality substitutable or complementary?

I proceed as follows. First, I use Olley and Pakes’s (1996) (OP) structural estimation
procedure to obtain firm TFPs for each industry. Second, I construct aggregate indices of
revenue-weighted shares of upstream/downstream/same-industry private firms. Third,
I regress firm and industry logTFPs on privatization measures, taking into account the
dynamic autoregressive nature of TFP measures as modeled by OP. Fourth, I interact
privatization meaures with industry characteristics to understand the channels. Fifth,
I decompose industry logTFP indices into an unweighted average logTFP across firms
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and a covariance term that measures allocative efficiency Olley and Pakes (1996). I
also decompose industry TFPs into incumbent firms’ TFPs and entrants’ TFPs. I then
regress those components on privatization measures. Sixth, I interact privatization
measures with measures of provincial governance to understand the substitutability
between privatization and governance.

The estimation strategy depends on the identification assumption that privatization
in upstream and downstream industries happens independently from the determinants
of firm TFPs. After controlling for firm fixed effects and a year trend, the identification
comes from off-trend variations in upstream and downstream privatization across
industries. I argue that those variations are reasonably exogenous to firm TFPs.
As discussed previously, the government’s general plan was determined to privatize
most industries, either partly or fully, but left the specific privatization schedule
open. It implies different paces of privatization across different industries, which
were jointly influenced by insider management teams, interested outsider private firms
and businessmen, and also regulators across different ministries and provinces. As a
result, after controlling for firm fixed effects and a year trend, the remaining variation
in privatization over the period in question could be considered as unpredictable, so
reverse causation is unlikely.

The identification assumption would be at odd with the existence of a macroeco-
nomic shock that affects all industries differently, such that its impacts on an industry is
correlated with how downstream the industry is in the economy’s structure. Section 3.6
will explore if this alternative explanation could explain my results.

As will be discussed next, OP’s model allows for a reasonably flexible evolution in
TFP, that is, it follows a first-order Markov process. It is taken into account by a dynamic
panel specification, for firm i in industry s and year t, as follows:

logTFPist = ρlogTFPis,t−1 + βSSameIndst + βUUpst + βDDownst + αis + δt + εist, (3.1)

where SameIndst, Upst and Downst denote the privatized shares in the same industry
and the linkage-weighted privatized shares in upstream and downstream industries,
respectively.

A simple fixed-effect regression of this dynamic specification will suffer from the
Nickell (1981) bias, because the demeaned variable of lagged outcome logTFPis,t−1 will
be correlated with the demeaned error term εist. The bias in this context could be
particularly large, because it is of order O(T−1) where T is the time dimension of the
panel. To avoid biases in dynamic models of panel data, I follow Holtz-Eakin et al. (1988)
and Arellano and Bond (1991) in using lags of the outcome variable as instruments in
the difference equation.1 Because the variable SameIndist (same industry privatization)
is potentially determined endogenously in period t, I further use its lags as instruments

1I do not apply Arellano and Bover’s (1995) method of using lagged differences as instruments in
the level equation, because it requires additional assumptions, in particular one of stationarity, that is not
justifiable in this context.
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in the difference equation. I limit the number of lags to at most 3, so as to keep
reasonably strong instruments (Arellano and Bover’s (1995) critique). All results are
robust to specifications with different numbers of lags, different levels of standard error
clustering, and further treating SameIndist as exogenous.

I also apply the same method to other measures of TFP, including the revenue-
weighted average logTFP Ωst in each industry and its components according to different
decompositions:

Ωst = ρΩs,t−1 + βSSameIndst + βUUpst + βDDownst + αs + δt + ηst, (3.2)

The following subsections will detail methodologies to construct the key measures
used in the paper, including TFP estimation using OP’s structural estimation method,
privatization measures through linkages, OP’s decomposition of TFP index, and
identification of influence channels.

3.3.2 Total factor productivity estimation

Similar to the large literature on total factor productivity estimation, I start with a
simplifying assumption of Cobb-Douglas production function of capital K and labor
L for each firm i in industry s and year t: log Yist = βk log Kist + βl log List + ωist + ηist.
Here ωist denotes the part of logTFP term observed by the firm before making decisions
on inputs, and η the additional exogenous shock that is thus uncorrelated with inputs.
As summarized in Griliches and Mairesse (1998) and Ackerberg et al. (2007), a number
of key issues are present in empirical studies of firm-level productivity. First, firms
make choices over inputs in order to maximize their objectives, so the input variables K
and L are naturally endogenous, and likely correlated with the TFP term ω. Second, in
sufficiently long panels, many firms with very low TFP will choose to exit the market,
which creates a selection problem for the econometrician. Those two endogeneity
problems could be addressed by either finding appropriate instrumental variables
for inputs and exits (from natural experiments or economic theory), or imposing a
restriction on TFP as a firm fixed effect (ωist = ωis).

In practice, the specification of constant TFP as fixed effects can be excessively
restrictive Ackerberg et al. (2007), especially in manufacturing industries. It takes root
from models where firms learn passively about their fixed TFP over time Jovanovic
(1982); Hopenhayn (1992). The fixed TFP assumption implies that the distributions
of TFP and firm size remains dependent on the initial draws at entry (i.e. long term
memory) Pakes and Ericson (1998). In a more realistic setting, Ericson and Pakes’s (1995)
model allows TFP to evolve over time, possibly endogenously, according to a Markov
process. In this case, the TFP and size distributions are much more dependent on the
recent past.2 Fixed-effect specifications of production functions will be theoretically ill-

2Indeed, Pakes and Ericson (1998) finds evidence among manufacturing industries in support of Ericson
and Pakes (1995) against Jovanovic (1982).
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fitted in a context where firms’ production and productivity evolve quickly, such as in a
transition economy.3

To address concerns of endogeneity and heterogeneity, I thus adopt Olley and
Pakes’s (1996) (OP) approach to estimate firms’ production function and TFP in separate
estimations for each industry, as it builds on theoretical results from Ericson and Pakes’s
(1995) model. The model considers a general, flexible form of industrial structure
among firms with heterogenous productivity and firm-specific uncertainties following a
Markov process (which encompasses the special case of time-invariant TFP). Each firm’s
expected profit depends flexibly on the current and future structure of all existing firms,
and so do their free decisions to enter or exit. Ericson and Pakes (1995) proves existence
of a unique Markov perfect Nash equilibrium, shows that in equilibrium the industrial
structure evolves continually as an ergodic Markov process, and determines conditions
where (i) investment is a bijective function of productivity, and (ii) exit decision is a step
function of productivity. These two properties are crucial in OP’s estimation method.
We will also use the model’s key insights on entry and exit decisions.

The first property implies that investment iit = it(kit, ωit) can be inverted to obtain:
ωit = ht(kit, iit). (Lower-case variable names denote the log of corresponding variables
in upper cases.) The subscript t indicates potential influences of time-varying factors
that affect all firms alike, such as demand shocks. In my analysis, it also represents
changes in upstream and downstream privatization. One can then rewrite log output
as: yist = βkkist + βl list + ht(kit, iit) + ηist. Now denote φt(kit, iit) = βkkist + ht(kit, iit):

yist = βl list + φt(kit, iit) + ηist. (3.3)

In the first step, this equation is estimated semiparametrically by representing the
function φ(k, t) as a polynomial series of (kit, iit). Total fixed assets are used as capital
stocks, and investment is computed from Ki,t+1 = (1− δ)Kit + Iit for a discount rate
δ = 0.05. From the first step, we obtain consistent estimates of β̂l and φ̂t(kit, iit).

OP’s method models ωit to evolve following an exogenous Markov process, so we
can write: ωit = E[ωit|Ii,t−1] + ξit = E[ωit|ωi,t−1] + ξit = g(ωi,t−1) + ξit for some
function g where ξit is an innovation uncorrelated with ki,t−1. Thus, we could write:

yit − βl lit = βkkit + g(ωi,t−1) + ξit + ηit

= βkkit + g(φt(ki,t−1, ii,t−1)− βkki,t−1) + ξit + ηit.
(3.4)

Given the exogeneity of the innovation (ξit + ηit) in each period t, we can estimate
the last equation, using the previous semiparametric estimates φ̂t(ki,t−1, ii,t−1) and a
polynomial series to represent the function g. We need to use nonlinear least squares,
because βk is present both within g and outside.

3Furthermore, when inputs are measured with errors (from surveys or calculation assumptions of
capital value and labor bill), fixed-effect regressions tend to attenuate the coefficients of inputs, as observed
in Ackerberg et al. (2007).
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So far, the procedure will produce consistent estimates of production function
parameters if the exit decision is not correlated with productivity. From Ericson and
Pakes (1995), the exit decision (denoted by χit = 0) is a step function of productivity:
χit = 1 i f f ωit ≥ ωt(kit). To correct for endogenous selection, we rewrite the previous
output formula in expectation, conditional on past state variables and survival:

E[yit − βl lit|Ii,t−1, χit = 1] = βkkit + E[ωi,t|Ii,t−1, χit = 1] = βkkit + g(ωi,t−1, ωt(kit)).
(3.5)

We could apply the nonlinear estimation above to identify βk only if we have a separate
proxy for ωt(kit).

This proxy comes from actual observations of exits.4 In the second step, we estimate
the probability of exit Pr(χit = 1|Ii,t−1) = Pr(ωit ≥ ωt(kit)|Ii,t−1) in a probit model
and predict it as ϕt(ii,t−1, ki,t−1) = Pit. Let us denote ωt(kit) = f (ωi,t−1, Pit), and put it
back into function g in equation (3.5). We can rewrite it to include exogenous innovation
terms ζit and ηit, where g̃ is defined by g̃(ωi,t−1, Pit)) = g(ωi,t−1, ωt(kit)):

yit − βl lit = βkkit + g̃(φi,t−1 − βkki,t−1, Pit) + ζit + ηit. (3.6)

In the third step, using estimates β̂l , φ̂i,t−1, and P̂it from previous steps, we can use
nonlinear least squares to estimate the remaining coefficient βk. Lastly, TFP is backed
out as the residual yist − β̂kkist − β̂l list.

This 3-step procedure produces consistent estimates of the parameters of the
production function within each industry.5 Variables that do not vary across firms in
the same the industry, such as my measures of upstream and downstream privatization,
enter the estimation as time-variant components. I will therefore retrieve TFP measures
and regress them on those variables to estimate their impacts on firm TFP.

The OP procedure assumes that TFP follows a first-order Markov process, of which
the constant TFP in fixed effect specifications is a special case. When we study the
impacts of different measures of privatization on TFP, it is important to take into account
this feature by modeling an autoregressive component of TFP.

I want to highlight three implementation choices of my OP procedure. First, because
of the lack of reliable data on firm-level quantities (or prices), I follow the literature in
using revenues, not quantities, as the measure of firm output. Labor L is measured
as wage bill, and capital K as total fixed assets on the balance sheet. I thus measure
the revenue-based TFP, or TFPR (see the distinction in for example Hsieh and Klenow,
2009). The overall effects on TFPR could be coming from either physical TFP (TFPQ) or
output prices.

4I follow the literature in assuming firms exit if they are not observed before the end date of the panel.
Missing data remain a thorny issue for this methodology.

5Standard errors from this procedure could be calculated from analytical formulae, by bootstrapping,
or by implementing an equivalent one-step GMM procedure suggested by Wooldridge (2009). For my
purpose, it is unnecessary to compute standard errors from OP, since I will only use the derived TFP as
dependent variable in the next stage.
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Second, I do not model a firm’s endogenous decision to invest in improving
TFP (e.g. Aw et al., 2008) for two reasons: (i) I do not have reliable measures
of research and development, or any form of investment towards this end, to be
able to identify meaningful variations in firm’s decisions to improve TFP, and (ii) I
believe most Vietnamese manufacturing firms improve their TFPs via passive learning
of new management and technological practices, rather than actively search for new
technologies. Good measures of research and development are subject of my future
research.

Third, it is possible in OP’s procedure to identify in addition an evolution of TFP that
depends on macroeconomic changes over time (i.e. identify a function E[ωit|Ii,t−1] =

g(ωi,t−1, ∆t) = gt(.), where ∆t groups all industry-wide shocks at time t). However, I
have not done so because that will automatically remove a lot of meaningful variations
on the time dimension, including variations pertaining to upstream and downstream
privatization.6 A resulting caveat is that I need to assume that firms would set their
capital in expectation of an exogenous process of TFP evolution, and they cannot
anticipate the variation of changes in upstream/downstream privatization. In future
work, I will include privatization measures directly in OP’s estimation to obtain their
impacts within each industry.

3.3.3 Decomposition of industry TFP

To understand the channels by which linkage privatization may affect an industry’s TFP,
I decompose the revenue-weighted average of firm logTFPs ωist in an industry s, defined
as the industry TFP index Ωst, into the sum of the unweighted average of firm TFPs and
a covariance term Olley and Pakes (1996):

Ωst =
N

∑
i=1

Sistωist =
1
N

N

∑
i=1

ωist +
N

∑
i=1

(Sist −
1
N
)(ωist −

1
N

N

∑
i=1

ωist)

= ωst + Ncov(Sit, ωist),

(3.7)

where Sist =
Yist

∑N
i=1 Yist

is the revenue share of firm i in industry s. ωst is the unweighted
average of logTFP across all firms in industry s. The OP covariance term Ncov(Sit, ωist),
measures the degree of efficient allocation of resources across firms in a single industry.7

It is higher when resources are allocated more efficiently, in that firms with higher
TFPs are also producing more output in the industry. It reaches its hypothetical
maximum if all revenues are concentrated in the firm with the highest TFP. I will study
upstream/downstream privatization’s effects on both components of the decomposition.

A different way to measure allocative efficiency, according to Hsieh and Klenow’s
(2009) model, is to consider the variance term of all firms’ revenue-based TFPs (TFPR)

6For the same reason, I only include an annual trend in my dynamic panel regressions of TFPs.
7See Bartelsman et al. (2013) for a model with labor overhead and semi-fixed capital where firms have

heterogenous revenue-based TFPs in equilibrium even without distortion in allocation, and OP’s covariance
term is the key measure of allocative inefficiency.
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in an industry. In their framework, this variance term measures directly the overall effect
of distortion on an industry’s aggregate TFP. The best allocation of resources happens in
an economy without distortion, in such a way to equalize all TFPRs, so the variance will
be equal to zero. The two measures of allocative efficiency point to different directions:
Better allocative efficiency is increasing in OP’s covariance term, while in Hsieh and
Klenow’s (2009) model it is decreasing in the variance of TFPRs.

Application to two groups: Incumbents and entrants One can apply the decomposi-
tion in equation (3.7) to only two groups, such as incumbent and entrant firms. The TFP
index of the industry Ωst is equal to half the sum of the TFP index of incumbents ΩI

st

and entrants ΩE
st, plus OP’s covariance term between those two that indicates allocative

efficiency between incumbents and entrants:

Ωst =
1
2
(ΩI

st + ΩE
st) +

1
2
(SI

st − SE
st)(Ω

I
st −ΩE

st). (3.8)

Since the market share of incumbents is much larger than that of entrants, the covariance
term is positive when ΩI

st > ΩE
st. In this case, if we keep the first term constant, allocative

efficiency will increase when either SI
st − SE

st or ΩI
st −ΩE

st increases.
From equation (3.8), I can apply the decomposition of equation (3.7) on each

weighted average logTFP: ΩI
st = ω I

st + CovI
st and ΩE

st = ωE
s t + CovE

st. I end up with
a decomposition of Ωst into five different terms. Four of them measure mean and
allocative efficiency within each group (incumbents or entrants), and the other measures
the allocative efficiency between the two groups.

3.3.4 Measures of privatization and linkages

My measure of same-industry privatization is a revenue-weighted average of an
indicator of privatization for each firm. In order to capture key differences between
firms that are managed mostly towards “state-owned” objectives and those that are
managed more towards private gains (for which profit maximization should be the
principal purpose), I choose the indicator whether private ownership exceeds 50%
as the benchmark measure of firm-level privatization, or whether there is nonzero
foreign ownership. In Vietnam, partially private firms with less than 50% of private
ownership are usually heavily subject to state controls, and behave similarly to fully
state-owned firms (their private shares are small, and mostly distributed among their
own employees without giving them real control rights). I also count all firms with
foreign ownership, because they are usually heavily influenced by foreign shareholders,
and behave remarkably different from state-owned firms.8 For robustness checks, I also
create other indicators of firms with non-zero private shares and firms with non-state

8Because there are multiple barriers to the repatriation of capital and profits, foreign shareholders,
mostly direct investors, usually request strong influence on a firm’s management as a necessary condition
for them to invest.
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control.9 The measure is then: SameIndst =
YistPist

∑N
i=1 Yist

, given the privatized indicator Pist

and revenue Yist.
I use Vietnam’s input-output matrix (2 digit industry level) to measure backward

linkages from privatization in downstream industries, and forward linkages from
privatization in upstream industries. I compute the matrix (αsk)s,k=1,J where αsk denotes
the proportion of industry s’s output supplied to industry k: αsk = FYsk

∑j FYsj
where FYsj

is the output flow from industry s to j (output from s used in final consumption and
export is thus excluded). Similarly, I compute (ζks)

J
k,s=1 where ζks denotes the proportion

of industry s’s intermediary inputs supplied from industry k: ζks =
FYks

∑j FYjs
. By definition,

∑k αsk = 1 and ∑k ζks=1. An industry s’s measure of downstream privatization is
a weighted sum of privatization in all industries except itself, with weights αsk. Its
measure of upstream privatization is a weighted sum of privatization in all industries
except itself, with weights ζks:

Downst = ∑
k 6=s

αskSameIndkt ; Upst = ∑
k 6=s

ζksSameIndkt. (3.9)

Because the flow of intermediary goods within each industry s is excluded in the
calculation of its measures of upstream and downstream privatization, the weights in
Downst add up to only 1− αss, and those in Upst to 1− ζss.

3.3.5 Investigation of influence channels

I am further interested in the channels of spillovers from downstream privatization via
backward linkages. Privatization in downstream industries may affect their suppliers’
productivity through (i) increasing demand for intermediate products, which allows
suppliers to benefit from economies of scales, such as suggested by Rodriguez-
Clare (1996), (ii) higher requirements for product and service quality, which pressure
suppliers to improve their management and technology, and/or (iii) direct technological
spillovers. I control for the demand channel with a measure of demand addressed to
each industry s: Demandst = ∑k αskYkt. I also control for the Herfindahl-Hirschman
index of industry concentration to account for the type of pressure from competition
similar to that in Aghion et al. (2005) and Aghion et al. (2009).

The pressure channel should work best among firms that are geographically close,
and depend on each industry’s exposure towards its downstream industries. In a model
such as Ericson and Pakes’s (1995), the pressure channel could be understood as more
stringent conditions of survival. Consequently, only entrants with sufficiently high
draws of TFP choose to enter the market, so the effect of downstream privatization
on entrants’ TFP should be positive.

The direct technological spillover channel is related to technological spillovers from
FDIs’ vertical linkages Javorcik (2004). In the context of privatized firms, they probably

9See Appendix Table C.1 for descriptions of firm ownership classification and private firm definitions.
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do not have better (explicit) knowledge of production technology than state-owned
firms. If it is about the transfers of tacit knowledge, including for example incentive
systems and management practices, it should likely work through learning by doing,
and should affect mostly incumbent firms, not entrants. Therefore, by studying the
effect of downstream privatization on incumbents versus entrants, we could deduce
whether it is about pressure or transfer of tacit knowledge.

3.4 Data description

3.4.1 Data sources

My main data source is the Vietnam Enterprise Census (VEC), which is conducted
annually by the General Statistics Office of Vietnam (GSO) since 2000. All firms with
more than 9 workers are legally obliged to fill out the census’ questionnaire. Although
this questionnaire has been slightly revised every year, the basic indicators remain
unchanged. These indicators cover information on firms’ name, address, ownership,
industry, revenue, assets, investment, employment, wage bill, imputed material costs as
well as tax records and industry-specific variables. I match firms in VEC data across
different years using their names and corporate tax codes to construct a panel dataset
covering the period 2001-2008.10 This raw panel dataset contains 886,997 firm × year
observations and covers a total of 294,323 firms. Tables 1 and 2 report the key summary
statistics of firms included in this benchmark panel dataset.

I construct my benchmark dataset of manufacturing firms from this raw dataset. A
challenge I face is that GSO changed its industry classification system in 2006. Before
2006, GSO used the Vietnam Standard Industrial Classification (VSIC) 1993 system, a
version of the International Standard Industrial Classification (ISIC) Revision 2. From
2006 onward, GSO moved to VSIC 2007, which is closer to the ISIC Revision 3. The
Vietnam’s 2000 input-output matrix also employs another classification system that
slightly differs from the VSIC 1993. As a result, it takes me a considerable amount
of time to match the industry codes across these systems of classification. The next
challenge is that some firms in my panel dataset have different industry codes (at 2-
digit VSIC level) in different years. I identify these firms’ main industry as the one
recorded for at least 50% of the firms’ occurrences in the dataset and drop the firms for
which I could not identify their main industry (these firms account for about 10% of
total manufacturing firms). I also drop all observations with zero or negative revenue
from sales of goods and services (proxy for output), fixed assets (proxy for capital), or
wage bill (proxy for labor). Finally, I have to exclude three industries – manufacturing
of tobacco (VSIC 16), refined petroleum products (VSIC 23), and office machinery and
computers (VSIC 30), as the small sample size makes it impossible to apply the Olley-

10VEC data in year 2000 do not contain information on revenue. I also exclude years 2009 and 2010 to
avoid the large noises coming from the global crisis that started to hit Vietnam in this period.
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Pakes procedure to these industries.11 My final benchmark panel dataset contains
145,380 firm × year observations, covering 43,545 firms across 18 two-digit level VSIC
manufacturing industries. Table 3.1 reports the distribution by industries of firms
included in this benchmark panel dataset.

I classify firms’ ownership using the firm-type question included in every year of
the census. This question asks firms to identify themselves as one of the 14 different
firm types listed, ranging from fully SOE to fully-private enterprise to fully-foreign-
owned enterprise (more details on this in Appendix Table C.1). I also cross-check a
firm’s answer to this question with information on its capital structure to ensure that I
correctly identify its ownership type. Throughout most of this paper, I define a private
firm as one having at least 50% domestic private ownership or one having non-zero
foreign ownership. In a few cases, I use slightly different definitions of private firms for
robustness checks. These definitions are detailed in Appendix Table C.1.

For total factor productivity (TFP) estimation using Olley-Pakes procedure, I
calculate real output as reported revenue from sales of goods and services, deflated
by the Producer Price Index (PPI) of the corresponding industry.12 Capital is defined
as the value of fixed assets at the beginning of the year, deflated by the simple average
of the deflators for five industries: machinery and equipment, office machinery and
computers, electrical equipment and apparatus, motor vehicles, and other transport
equipment. Labor is proxied by total wage bill, deflated by the Consumer Price Index
(CPI). Investment is equal to the value of total reported investment, deflated by the same
deflators used for capital. As robustness checks, I use total employment count for labor
instead of total wage bill or include imputed material costs, deflated by CPI, in my TFP
estimations.13 The summary statistics of these key variables and resulting estimated
TFP are reported in Table 3.2.

Finally, my other data sources include Vietnam’s 2000 input-output matrix, obtained
from GSO, and Vietnam Provincial Competitiveness Indices, a set of survey-based
indices of industries’ governance perceptions constructed with the help of UNDP, for
the period 2005-2008.

3.4.2 The process of privatization in Vietnam

Table 3.1 describes the manufacturing industries in my sample, and the overall picture
of privatization from 2001 to 2008. Privatization has taken place gradually across all

11There are 37 firms in manufacturing of tobacco (VSIC 16), 62 firms in manufacturing of refined
petroleum products (VSIC 23), and 44 firms in manufacturing of office machinery and computers (VSIC
30) in 2001-2008.

12GSO only publishes industry-level PPI data for 2005 and 2010 onward. I construct PPI data for the
period 2001-2008 by regressing available PPIs on relevant CPI components of the same period and use the
resulting coefficients to predict past PPIs from past CPI components (which are available for this period). I
am confident about this approach, as most of these regressions have R-squared above 0.9.

13VEC does not directly collect information on material costs in its questionnaire. The VEC dataset only
contains imputed material costs calculated for a subsample of firms based on information collected in a
much smaller-scaled survey on manufacturing activities. Therefore, I include imputed material costs only
in my alternative TFP estimations used for robustness checks.
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industries, albeit at different paces. By the end of the period, most firms have become
private, but the remaining SOEs are quite sizeable. Privatization has been fastest in
publishing and printing, wearing apparel, and textiles, with changes of more than 30
percentage points in SameIndst, but also quite rapid in non-metallic mineral products
and machinery and equipment. At the other end, private firms’ shares increased very
little for beverages, motor vehicles and other transport equipment. Private firms’ shares
have increased from 66.1% in 2001 to 86.8% in 2008, or an increase of 20.7%.

Table 3.1 shows the evolution over time of each of the three measures of privatization
across all industries. The overall upwardness in all three measures is universal, although
their trends could differ a lot in each industry and year. Upstream and downstream
measures are substantially smaller, because the flow of intermediary goods within each
industry s is excluded in their calculation. 3.1

Table 3.2 shows the summary statistics of the major variables used in my estimations
across firms, and Table 3.3 describes privatization summary statistics per year across
industry × years. The standard deviation of the three privatization measures is around
16-18%. Across industries, same-industry, downstream, and upstream privatization
measures have grown by 17.5, 18.1 and 12.1 percentage points respectively over the
course of 7 years from 2001 to 2008. Privatization has thus been mostly gradual.

3.5 Estimation results

3.5.1 The distribution and evolution of firm TFPs in Vietnam

Table 3.4 exhibits the different decompositions of firm TFPs as discussed in section 3.3.3
for every year. The annual growth rate in TFP index amounts to 2.6%, although there
was a slight decline around 2001-2003 before recovery from 2004 to 2008. Over the
period 2001-2008, roughly half of the gain in TFP comes from the unweighted average
among firms, and the other half from better allocation of resources across firms. Those
numbers are illustrated in Table 3.2.

Among all firms, private firms have much higher TFPs than state-owned firms, as
illustrated in Table 3.3. Furthermore, this gap seems to widen over time, as state-owned
firms struggle to improve their TFPs after the early slump from 2001 to 2003. Table
3.4 shows that within the remaining state-owned firms, unweighted average logTFP
actually increased. However, resource allocation among them deteriorates, which more
than mitigates the apparent improvement in unweighted average logTFP.

A closer look at the evolution of TFPs within firms that privatized sheds further
light on state-owned firms’ unweighted average logTFP. Table 3.4 examines the average
TFP of firms that are eventually privatized, in reference to the year of privatization.
Pre-privatization TFP is low and decreasing until privatization, but bounces back after
privatization. Those facts put together imply that state-owned firms with low TFP are
likely to get privatized and switch to the sample of private firms. They also suggest that
privatization improves TFP within firms. The validity of this conclusion relies on the

113



differences-in-differences assumption that firms that do not privatize would follow the
pre-privatization trend.

If this assumption does not hold in reality, the chance of privatization is endogenous
to firms’ recent TFP, so one cannot use the double differences to obtain the direct effect
of privatization on privatized firms. This argument echoes the reason why identification
of privatization’s direct effects is difficult. Even when I only look at the industry-
wide measure of same-industry private shares, there still is a possibility of immediate
correlation between the privatization measure and the recent innovation term in TFP.
Therefore, in my dynamic models of panel data of firms and industries, I include same-
industry privatization as an endogenous variable, so that its coefficient is identified
using its lagged level as instrument for the difference equation. In contrast, upstream
and downstream privatization measures are much less likely to suffer from this direct
endogeneity problem. Hence they are included directly in the regressions.

The allocative efficiency of resources between private and state-owned firms is
measured by 1

2 (S
P
st − SSO

st )(ΩP
st − ΩSO

st ) as in equation (3.8) where superscripts P and
SO indicate private and state-owned, respectively. This term has substantially improved
from 2001 to 2008, since SP

st increases from 65.6% to 86.3%, and the TFP gap widens from
0.42 log points to 0.59 log points (roughly 17 percentage points increase). Overall, this
has substantially contributed to the efficiency of all manufacturing industries.

In the decomposition of TFP index of private firms into those of incumbents and
entrants, incumbents’ TFP index is larger than entrants’ TFP index, but the gap shrinks
considerably from 0.18 log points in 2001 down to 0.03 log points in 2008. While
incumbents’ TFP has increased at rate of about 1.3% a year, entrants’ TFP grows at 3.4%
annually. Among incumbents, the gain comes entirely from better allocative efficiency.
In contrast, among entrants, the gain comes only from better TFP among new batches
of entrants, while allocative efficiency among entrants fluctuates but does not improve.
Lastly, the allocation of resources between entrants and incumbents is measured by
1
2 (S

I
st − SE

st)(Ω
I
st −ΩE

st) from equation (3.8). This term drops in 2008 when the TFP gap
becomes very small.

The evolution of TFPs in Vietnam is similar to that of China in Brandt et al.’s (2012)
description, especially in that entrants made the strongest progress in TFP growth
during the same period. The annual contribution of entrants to overall TFP growth
may not be large though, because of their small shares each year.

3.5.2 Spillover on firm-level productivity

Strong spillovers on firm TFP from downstream privatization

Table 3.5 explores the association between firm TFP and privatization in downstream
and upstream industries, using Section 3.3.1’s dynamic specification that allows for firm
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fix effects and autoregressive TFP.14 The privatization measures for same-, upstream,
and downstream industries are detailed in section 3.3.4. Columns (1) reports that the
coefficient of spillovers from downstream privatization through backward linkages to
the sample of private firms is positive and statistically significant. The point estimate
of 0.336 implies that one standard deviation increase in downstream privatization
corresponds to a sizable increase of 0.06 log points in firm TFP. The coefficient of same-
industry privatization is similarly positive and significant, while I do not detect any
spillovers from upstream privatization. Columns (2) and (3) show results for the samples
of state-owned firms and firms privatized during the period, respectively. None of the
coefficients of same-industry, upstream, and downstream privatization is positive and
significant in these regressions. Table 3.5 thus offers complementary evidence that not
only do state-owned and newly privatized firms in transition economies struggle to reap
the direct benefits of privatization (e.g. Estrin et al., 2009), they do not even gain from
the indirect spillovers from privatization in upstream and downstream industries.

Columns (4) considers the baseline sample of private firms, and controls for
(i) the demand channel using demand for intermediate products from downstream
industries, and (ii) industry concentration using same-industry Herfindahl-Hirschman
Index as mentioned in section 3.3.5. Column (5) further controls for downstream and
upstream HHI, where DownHHIst = ∑k 6=s αsk HHIkt and UpHHIst = ∑k 6=s ζksHHIkt. If
downstream privatization increases downstream industries’ demand for intermediate
products, which in turn increases firm productivity through economies of scale, this
situation can still be regarded as a spillover effect. The same argument also applies for
spillover effect through decreasing downstream or upstream concentration. However,
even after controlling for these channels, the coefficients of downstream privatization
remain positive and significant, suggesting a more direct spillover channel than the ones
controlled for. The results from Table 3.5 together indicate that private firm productivity
improves with not only privatization in the same industry but also privatization in
downstream industries. The productivity autoregressive coefficient is consistently
around 0.31-0.32, which confirms and strengthens the validity of my estimation strategy.

Table 3.6 presents robustness checks for the spillover effect of downstream priva-
tization on private firm productivity. Columns (1) and (2) use the samples of firms
that were always private and firms that were never private throughout the period,
respectively. The results are analogous to those reported in columns (1) and (2) of
Table 3.5. Columns (3) and (4) use alternative definitions of private firms to calculate
the privatization measures and define the sample of private firms. The effect disappears
when I use a looser definition (i.e. firms having non-zero domestic private or non-zero
foreign ownership) and strengthens when I use a stricter definition (i.e. firms controlled
by domestic private or foreign entities.) The last two columns use alternative TFP

14OLS regressions with firm fixed effects yield similar point estimates for the spillover effects of
downstream privatization on firm productivity in different samples of firms. These results are reported
in Appendix Table C.2.
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measures estimated using employment count instead of wage bill (column (5)) or using
wage bill and imputed material costs (column (6)). The spillover effect of downstream
privatization remains robust in these regressions with similar point estimates.15

Spillover driven by domestic privatization rather than foreign ownership

The existing literature has generally found that foreign ownership has strong positive
effects on firms’ performance in transition economies. These effects may apply directly
to firms with foreign participation Estrin et al. (2009); Commander and Svejnar (2011),
or indirectly to domestic firms through knowledge transfer or via competitive pressure
Javorcik (2004); Gorodnichenko et al. (2010); Arnold et al. (2011). On the other hand,
research on the direct effect of domestic privatization on firms’ performance has yielded
mixed results Estrin et al. (2009), and none thus far has attempted to access the
indirect spillover effect of privatization through upstream and downstream linkages.
Table 3.7 thus decomposes privatization measures into purely-domestic and foreign-
affiliated components to examine which is the driver of the spillovers from downstream
privatization. The first two columns split the baseline sample of private firms into
purely-domestic private firms (column (1)), for which the effect remains strong and
significant, and foreign-affiliated firms (column(2)), for which the effect disappears.
I then split same-industry, upstream, and downstream privatization measures into
shares of purely-domestic private firms and shares of foreign-affiliated firms in same,
upstream, and downstream industries.16 The result reported in column (3) suggests
that in my case, domestic privatization and not foreign entry is the key driver of firm
productivity improvement. Columns (4) to (6) are similar to the first three columns but
use alternative definitions based on control rights, namely domestic-controlled private
firms and foreign-controlled firms. The results from these regressions confirm my novel
finding on the importance of domestic privatization.

Spillover from downstream privatization mainly due to pressure channel

As discussed in section 3.3.5, I will include the two following control variables. Increased
demand for intermediate products is accounted for by the variable Demandst constructed
from downstream demands, and concentration by the industry’s Herfindahl-Hirschman
Index HHIst. In column (4) of Table (5), while the coefficient of demand is positive
and statistically significant as expected, the coefficient of downstream privatization
also remains sizable and significant, suggesting that the spillovers also work through

15I replicate the whole set of regressions in Tables 5 and 6 with TFP measures estimated using wage
bill and imputed material costs. My key results remain qualitatively similar and are reported in Appendix
Table C.3.

16The share of purely-domestic private firms in industry s is SameIndD
st = ∑i Yist Dist

∑i Yist
, where Dist is

the indicator of purely-domestic private firms. Similarly, the share of foreign firms in industry s is
SameIndF

st =
∑i Yist Fist

∑i Yist
, where Fist is the indicator of foreign firms. The upstream and downstream measures

of privatization for purely-domestic private firms or foreign firms are calculated by applying equation (3.9)
to SameIndD

st and SameIndF
st.
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increasing pressure to deliver from downstream industries. I now check the prediction
regarding the pressure channel that spillovers from more closely-linked downstream
firms are larger. This happens when (i) the downstream firms are in the same local
market, or (ii) intermediate consumption from downstream industries constitutes a
larger shares of gross outputs.

Table 3.8 compares the spillover effect of privatization within the same market and
that of privatization in different markets. I conduct the analysis with two different
geographical definitions of markets: (i) GSO’s classification of 8 different regions, and
(ii) a classification into three large regions, North, Center, South, that are historically
and geographically separable.17 Columns (1) to (3) of Table 3.8 consider a local market
as one of the three large regions, while columns (4) to (6) replicate them on the 8 smaller
regions. Columns (1) and (2) contrast results using privatization measures calculated
only for the same local market (column (1)) and only for other markets (column (2)).18

Consistent with my prediction, the coefficient of downstream privatization in column
(1) more than doubles that in column (2), and both are statistically significant. Column
(3) includes both sets of same-market and different-market privatization measures in
one same regression. Only the coefficient of downstream privatization in the same
market remains significant with similar point estimate to that in column (1). In the
replications on 8 smaller regions, shown in columns (4) to (6), the results are qualitatively
similar, even though the coefficient of downstream privatization in the same market is
much bigger as markets are more narrowly defined. The point estimate of 1.178 implies
that one standard deviation increase in same-market downstream privatization measure
corresponds to a sizable increase of 0.22 log points in firm TFP. Together, results from
Table 3.8 strongly suggest that spillovers from downstream privatization are much larger
when the privatization takes place within geographical proximity.

Table 3.9 examines the prediction that downstream privatization has stronger
spillover effects across industries with higher intermediate consumption shares of
gross outputs. Intermediate consumption share of gross outputs IC/GO is calculated
as IC/(IC + FC) × (1 − X/GO), and imports shares of intermediate consumption
as M/(IC + FC), where GO is the industry’s gross outputs, IC – intermediate
consumption, FC – final consumption, X – exports, and M – imports, as IC + FC +

X = GO + M.19 If most of a industry’s gross outputs go on to be inputs for its
downstream industries (high intermediate consumption shares of gross outputs), then

17The North includes the Red River Delta, North East, and North West regions. The Center includes
the Northern Central Coast, Southern Central Coast, and Central Highlands regions. The South includes
Mekong River Delta and South Eastern regions.

18For a local market m and industry s, the share of same-market private firms in industry s is
SameIndSM

mst = ∑i Yist PitSMimt
∑i Yist

, where SMimt is the indicator whether firm i is in market m, and Pit indicates

its private status. Similarly, the share of different-market private firms in industry s is SameIndDM
mst =

∑i Yist Pit(1−SMimt)
∑i Yist

. The upstream and downstream measures of privatization for same versus other local

markets are calculated by applying equation (3.9) to SameIndSM
mst and SameIndDM

mst .
19 IC/GO and M/(IC + FC) ratios are calculated for each industry based on Vietnam’s 2000 IO table.
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higher product and service requirements from these downstream industries are likely to
exert more pressure, and thus downstream privatization is likely to have strong spillover
effect on the industry’s TFP. The converse is expected if most of the industry’s gross
outputs are channeled into final consumption or exports instead (low intermediate
consumption shares of gross outputs.) Columns (1) and (2) split the baseline sample
into firms in intermediate-good-producing industries, defined as industries with above-
median intermediate consumption shares of gross outputs, and firms in remaining non-
intermediate-good-producing industries, respectively. Column (3) directly compares
the different spillover effects of downstream privatization across these industries by
interacting the downstream privatization measure with an indicator whether the firm
belongs to an intermediate-good-producing industry. The results from these regressions
confirm my prediction. The spillovers are pronounced among firms in industries that
provide relatively large shares of their gross outputs to downstream industries and
is non-detectable among the remaining firms. The difference between these spillover
coefficients is also sizeable and statistically significant.

If higher requirements from downstream industries put pressure on supplier firms to
improve, this effect should be reinforced for supplier firms facing more competition with
imports. Columns (4) to (6) examine this question by comparing the spillover effects of
downstream privatization on import-competing industries, defined as industries with
above-median imports shares of intermediate consumption, and remaining non-import-
competing industries. Again, the spillovers are large among firms in industries facing
high competition with imports and is much smaller otherwise. The difference is also
sizable and statistically significant, as reported in column (6). Finally, columns (7)
and (8) report that the spillovers from downstream privatization are most pronounced
among firms in industries with both strong interactions with downstream industries
(measured as high intermediate consumption shares of gross outputs) and intense
competitive pressure from imports (high imports shares of intermediate consumption.)

Overall, the results from this section establish that domestic privatization in
downstream industries has a positive spillover effect on the productivity of their
supplier firms. This effect is driven by the increasing pressure to deliver from
downstream industries following their privatization, and is larger where there are
stronger interactions with downstream industries. Therefore, I observe the strongest
spillover effect from downstream privatization in the same market, in industries with
high intermediate consumption shares of gross outputs, and in industries facing intense
competition with imports.

3.5.3 Spillover on industry × market-level productivity

Improvements from unweighted average logTFP, not allocative efficiency

I now explore whether the within-firm productivity improvement that corresponds to
downstream privatization found in the previous section is meaningful at an aggregate
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level. If within-firm productivity improvement is coupled with more efficient resource
allocation across firms, the spillover effect on aggregate productivity could even
be larger than that on firm-level productivity. In contrast, if allocative efficiency
deteriorates, downstream privatization may have little or no effect on aggregate
productivity. To address this question, I aggregate firm productivity at the industry
× market level (using the three-region definition of markets), and calculate measures of
privatization, concentration, and demand at the same level.20

In Table 3.10, I apply the baseline dynamic specification that includes industry ×
market fixed effects and an autoregressive coefficient (section 3.3.1) on the decomposed
parts of industry TFP index, including the unweighted average logTFP and OP’s
covariance term as detailed in section 3.3.3. As the baseline results in Table 3.5 suggest,
I look at aggregate productivity of private firms and state-owned firms separately.
Columns (1) to (3) confirm that downstream privatization does not have any spillover
effect on state-owned firms on aggregate. The coefficients of downstream privatization
on state-owned firms’ weighted average logTFP, unweighted average logTFP, and OP’s
covariance term are all negative, though none of them is statistically significant.

Among private firms, the coefficient of downstream privatization on unweighted
average logTFP is positive and significant (column (5)), consistent with evidence of
spillovers on firm-level productivity from the previous section. I do not detect any
downstream privatization spillovers on weighted average logTFP (column (4)) or OP’s
covariance term (column (6)). In the latter regression, the coefficient of downstream
privatization is negative and sizable, though not statistically significant. Allocative
efficiency in manufacturing industries Vietnam, reported in Table 3.4, has improved
during this period, similar to what happened in many other transition economies
Bartelsman et al. (2013). However, results from Table 3.10 imply that spillovers from
downstream privatization do not contribute to this development.21

Improvement on extensive rather than intensive margins

Table 3.11 studies spillover effects of downstream privatization on private firms’
aggregate TFP index through intensive and extensive margins. I apply the two-group
decomposition detailed in section 3.3.3 to incumbents versus entrants. Columns (1)
to (3) examine downstream privatization’s spillover effect on incumbents’ aggregate
productivity, including the TFP index, unweighted average productivity, and the OP
covariance term among incumbent firms. Columns (4) to (6) replicate them for
entrants’ aggregate productivity. In the first three regressions, downstream privatization
coefficients are statistically nonsignificant. The coefficient on unweighted average
logTFP is positive and sizeable, while that on OP’s covariance term is negative.

20All results remain qualitatively similar if I aggregate firm productivity at the industry level instead.
These results are reported in Appendix Tables 4 and 5.

21I also replicate this exercise using log real labor productivity (LPR) as the measure of productivity, as
used by Bartelsman et al. (2013). The results are qualitatively similar to those reported in this table.
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On the contrary, among entrants, downstream privatization’s coefficients on weighted
average logTFP (column (4)) and unweighted average (column (5)) are both large and
significant, and the coefficient on OP’s covariance term (column (6)) is also positive
although not significant. The point estimate of 1.861 in column (4) implies that one
standard deviation increase in downstream privatization measure corresponds to an
impressive increase of 0.33 log point in entrants’ TFP index. Column (12) shows in
a robustness check that the same coefficient in a firm-level regression among entrant
firms22 doubles that in the baseline firm-level regression (0.813 versus 0.405). These
results indicate that there are positive spillovers from downstream privatization on
entrants’ productivity and they are meaningful at both aggregate and firm levels.

So far, I have observed that downstream privatization positively affects entrants’ TFP
index, but has an imprecise effect on incumbents’ TFP index or overall private firms’ TFP
index. This leaves us with the remaining OP covariance term between incumbent and
entrant groups of firms. Results in columns (7) (covariance of weighted average logTFP
and revenue shares) and (8) (covariance of unweighted average logTFP and revenue
shares) confirm that downstream privatization reduces the OP covariance term, which
explains the nonsignificant result on overall private firms’ TFP (column (4) in Table 3.7).

To understand those results better, recall that the OP covariance term in the two-
group decomposition of TFP index is 1

2 (S
I
st − SE

st)(Ω
I
st − ΩE

st). Columns (9) and (10)
show that privatization in downstream industries helps reduce the productivity gap
between incumbent and entrant private firms, respectively in terms of both weighted
and unweighted average logTFP (though incumbents remain more productive than
entrant firms on average), which is consistent with my previous results. Column (11)
shows that downstream privatization also contributes to the increasing revenue shares
of entrants, and thus the decreasing revenue share gap with incumbents, as reported
in Table 3.4. Both effects explain the negative coefficient of downstream privatization
on the OP covariance term found in columns (7) and (8). While it is indicative that
downstream privatization reduces allocative efficiency, I need to be cautious that this
exercise regards only the short-term year-on-year effects. If new, better entrants will
continue to grow in TFP to a level above incumbents’, then this apparent reduction of
allocative efficiency in the short run could be the root of better allocative efficiency in
the long run. This is a key caveat of section 3.3.3’s decomposition.

The results in this section indicates clearly that spillovers from downstream
privatization work mostly through entrants’ productivity. As argued from section 3.3.5,
the evidence is thus against the influence channel of direct knowledge transfers between
existing firms, which probably pass through learning by doing, since privatized firms
are unlikely better endowed in the type of hard knowledge transferrable via blueprints
and contractual agreements, as usually discussed in the literature on FDI spillovers
Javorcik (2004); Lin and Saggi (2007). On the contrary, it is much more likely that

22In this column, I only use a standard fixed effect specification without dynamics, because individual
entrant firms cannot have lagged TFP in their first year in the sample.
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firms are put under higher pressure to improve efficiency by privatized downstream
industries, so that entrants will only enter if they are already very productive. This
channel has been overlooked in extant research on both FDI spillovers and privatization.

3.5.4 Privatization effect and institution quality are substitutes

In this section, I examine the interaction between spillovers from downstream privati-
zation and institutional environment. If private ownership and institution quality are
complements, the spillover effect is likely stronger in better institutional settings. The
converse is true if private ownership and institution quality are substitutes instead.

I use provincial governance indicators taken from the Vietnam Provincial Compet-
itiveness Indices (PCI) to proxy for institution quality. Many studies of Vietnam have
documented that the provincial government, more than the central government, is the
relevant level of government when thinking about the institutional climate facing firms
Bai et al. (2013); Malesky (2008). The PCI is a set of survey-based indices of industries’
governance perceptions that has been systematically constructed with the help of UNDP
since 2005 (see details in Malesky (2006) and subsequent reports.) Among the available
indicators, I select two that are relevant to my context: (i) state-owned enterprise (SOE)
bias index, which measures the extent of provincial policy bias towards state-owned
firms (for example, in terms of access to cheaper capital), and (ii) entry cost index,
which assesses the differences in entry costs for new firm across provinces. The first
indicator speaks volume to the gap between private and state-owned firms considered
in previous sections, and the second indicator helps clarify the channel of influence
through entrants’ improved TFPs. Other indicators available in the PCI are not directly
related to my discussion.23 Since the PCI is available only from 2005 onwards, I use the
averages of these indices in each province between 2005 and 2008 as proxies for that
province’s institution quality throughout my sample period (2001-2008). This approach
is valid since institution quality does not change drastically between 2005 and 2008.

Columns (1) to (4) of Table 3.12 explore the interaction between downstream
privatization spillovers and provincial SOE bias. In columns (1) and (2), the spillover
effect is large and significant in both samples of private firms in provinces with above-
median and below-median SOE-bias scores (higher score indicates less bias), with
similar point estimates. When I interact downstream privatization measure with either a
dummy indicating if the firm’s province has above-median SOE-bias score (column (3))
or directly with province’s SOE-bias score (column (4)), the coefficients of the interaction
terms in both regressions are negative and statistically significant. These results suggest
that downstream privatization has larger spillover effect in provinces with larger market
imperfection caused by SOE bias.

Columns (5) to (8) repeat the exercise and show similar patterns of substitutability
between entry-cost score and privatization spillover effects. The only difference with the

23Further details on PCI’s methodology and indices are available online at http://eng.pcivietnam.
org/index.php.
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previous 4 columns is in column (5), where the coefficient of downstream privatization
among private firms in provinces with below-median entry costs is much smaller and
not significant. Column (9) combines both measures of governance imperfection to
show that downstream privatization spillovers matter more when both imperfections are
strong. Finally, column (10) saturates the model with all interactions between SOE bias,
entry costs and downstream privatization, and shows that downstream privatization
spillovers matter most in provinces with largest market imperfection in both dimensions
of strong SOE bias and high entry costs.

These results provide evidence that private ownership and institution quality are
substitutes in my setting. When there is initially a strong gap between state-owned
and private firms, privatization brings a larger change to the business environment,
especially reinforcing the pressure on suppliers of the privileged state-owned firms.
In areas where entry costs are high, it is likely that incumbents have enjoyed some
market power without worry about competing potential entrants. Downstream
privatization exerts additional pressure that likely improves both incumbents and
entrants’ productivity.

The substitutability between downstream privatization effect and institution quality
implies that when a large-scale reform including governance improvements and
privatization is undertaken, its effects on economic performances may be lower than
the sum of potential effects of all components, at least in the short run. This observation
clearly does not recommend against large-scale reforms. Rather, one should guard
against premature conclusions that their effects are too low.

3.6 Discussion and concluding remarks

This paper has found robust evidence of a strong positive association between
downstream privatization and private firm TFP improvement. The effect comes more
from privatization to domestic than foreign shareholders. However, the influence on
industry TFP indices is substantially mitigated by a reverse effect on within-industry
allocative efficiency. The effect comes mostly from improved TFP among entrants, whose
market shares are growing and whose TFPs are catching up with incumbents’.

This could be taken as evidence of causation under the identification assumption
that no detrended shocks can have differential effects across industries that cause both
downstream privatization and upstream TFP growth. Even if there are correlated shocks
that affect privatization, I would argue that they will bias the results against my findings.
For a single firm, as we have seen in Table 3.4, a negative shock to TFP is likely to
lead to privatization. A negative shock is likely to also affect immediate upstream and
downstream industries negatively, which creates a negative correlation between TFP
and downstream privatization. So it works against my finding of a positive relationship.
Therefore, I am confident of my causal interpretation of the results.
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In the paper, I have controlled for several potential channels of influences from
downstream privatization to upstream TFP. To account for privatization’s effect on the
size of the downstream industry, I have controlled for a measure of aggregate demand
addressed to each industry. I include the Herfindahl-Hirschman Index of industrial
concentration to control for competition. Regarding technological transfers, I argue that
privatized firms do not possess better technological blueprints after privatization, so
the technological edge they may diffuse must be tacit knowledge of management and
organization. Such knowledge is hardly contractible for transfers, and would have been
learned by doing instead. Since the strong effect of downstream privatization comes on
entrants, instead of incumbents, I conclude that the major channel of influence must be
direct effect of higher pressure on suppliers coming from newly privatized client firms.

I further discover that privatization and local governance quality are substitutes.
Privatization is likely to bring the best TFP improvements out of upstream industries in
provinces where private, entrant firms are most likely to suffer from bad governance.
With the natural caveat of generalizability, this finding suggests that further privatiza-
tion would bring negligible gains in good-governance environments (e.g. Singapore or
Taiwan), while it could bring additional economy-wide gains in developing countries.
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Figure 3.1: Privatization measures (2001-2008)
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Figure 3.2: Manufacturing TFP decomposition (2001-2008)

Figure 3.3: Manufacturing TFP (2001-2008)

Private vs. state-owned firms
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Figure 3.4: TFP evolution of privatized firms
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Table 3.1: Distribution of firms by industry (2001-2008)
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Table 3.2: Summary statistics for key variables (2001-2008)

Table 3.3: Additional summary statistics for privatization measures (2001-2008)
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Table 3.4: Manufacturing TFP decomposition by firm type (2001-2008)
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Table 3.5: Dynamic panel regressions at firm level
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Table 3.6: Robustness checks for spillover from downstream privatization
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Table 3.7: Domestic vs. foreign ownership and spillover
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Table 3.8: Spillover form downstream privatization in same vs. different markets
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Table 3.9: Spillover on intermediate-good-producing and import-competing industries
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Table 3.10: Dynamic panel regression at industry x market level
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Table 3.11: Spillover on incumbent vs. entrant firms
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Table 3.12: Provincial institution quality and spillover
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Cappelen, Ådne, Arvid Raknerud, and Marina Rybalka, “The Effects of R&D Tax

Credits on Patenting and Innovations,” Research Policy, 2012, 41 (2), 334–345.
Card, David and Stefano DellaVigna, “What do Editors Maximize? Evidence from

Four Leading Economics Journals,” 2017. Working Paper.
Caselli, Francesco, “Accounting for Cross-Country Income Differences,” in Philippe

Aghion and Steven Durlauf, eds., Handbook of Economic Growth, Vol. 1A, Amsterdam:
Elsevier, 2005, pp. 679–741.

Cassiman, Bruno, Reinhilde Veugelers, and Pluvia Zuniga, “In Search of Performance
Effects of (In)direct Industry Science Links,” Industrial and Corporate Change, 2008, 17
(4), 611–646.

Chang, Andrew, “Tax Policy Endogeneity: Evidence from R&D Tax Credits,” Economics
of Innovation and New Technology, 2018, pp. 1–25.
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A.1 Theory appendices

A.1.1 Proof of Proposition 1

Recall from subsection 1.2.1 that in period 1, the manager sets bL and bM to zero and
chooses bH to maximize her expected payoff from hiring a good researcher:∫ π̄(D)

0

[
sM + VP

2

]
dπ +

∫ 1

π̄(D)

{
π
[
sH − bH + VP

2

]
+ (1− π)

[
sL + DVP

2

]}
dπ (A.1)

where π̄(D) =
c+(1−D)VA

2
bH+(1−D)VA

2
. To further reduce notation burden, I omit the outcome

superscript H from bH and the period subscript 2 from VP
2 and VA

2 for the rest of this
subsection.

Expression (A.1)’s first order condition with respect to b is:

∂π̄

∂b

[
sM + VP

]
− ∂π̄

∂b
π̄
[
sH − b + VP

]
− ∂π̄

∂b
(1− π̄)(sL + DVP)−

∫ 1

π̄
πdπ = 0(A.2)

⇐⇒
(
−∂π̄

∂b

){
π̄
[
sH − b− sL + (1− D)VP

]
−
[
sM − sL + (1− D)VP

]}
−
∫ 1

π̄
πdπ = 0(A.3)

where
(
− ∂π̄

∂b

)
= c+(1−D)VA

(b+(1−D)VA)2 and
∫ 1

π̄ πdπ = 1−π̄2

2 .

Notice that (i)
(
− ∂π̄

∂b

)
, (ii) π̄, (iii)

[
sH − b− sL + (1− D)VP], and (iv)

∫ 1
π̄ πdπ are

decreasing in b. In addition, (v) π̄
[
sH − b− sL + (1− D)VP]− [sM − sL + (1− D)VP] is

non-negative as any value of b that makes (v) negative cannot be the manager’s optimal
choice. The first order condition therefore is also decreasing in b in the relevant range of
b. This implies that for a given set of parameters (i.e., sL, sM, sH, c, D, and corresponding
VP, VA), equation (A.3) has a unique solution b∗ that maximizes the manager’s expected
payoff in equation (A.1), which induces the good researcher to explore when π is above
threshold π̄∗ = c+(1−D)VA

b∗+(1−D)VA .

Comparative static of π̄∗ with respect to (1−D)VP. As equation (A.3) is decreasing in
b and (1− D)VP, its unique solution b∗ is also decreasing in (1− D)VP. It then follows
that π̄∗ is increasing in (1− D)VP (as π̄∗ is decreasing in b∗).

Comparative static of π̄∗ with respect to (1− D)VA. Let’s rewrite b and ∂π̄
∂b in terms

of π̄:

b =
c + (1− D)VA

π̄
− (1− D)VA =

c
π̄
+

(
1
π̄
− 1
)
(1− D)VA, (A.4)

∂π̄

∂b
=

c + (1− D)VA

(b + (1− D)VA)2 =
π̄2

c + (1− D)VA . (A.5)
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Next, let’s also rewrite the first order condition with respect to b (equation A.3) in
terms of π̄:

π̄2

c + (1− D)VA

{
π̄

[
∆HL −

c
π̄
−
(

1
π̄
− 1
)
(1− D)VA

]
− ∆ML

}
− 1− π̄2

2
= 0(A.6)

⇐⇒ π̄∆HL − ∆ML −
[(

1
π̄2 − 1

)
c + (1− D)VA

2
+ c + (1− π̄)(1− D)VA

]
= 0(A.7)

where ∆HL = sH − sL + (1− D)VP and ∆ML = sM − sL + (1− D)VP, both are positive.
As equation (A.7) is increasing in π̄, it has a unique solution π̄∗. Furthermore, as
equation (A.7) is decreasing in (1− D)VA, this unique solution π̄∗ is increasing in (1−
D)VA.

Comparative static of π̄∗ with respect to D. As (1− D)VP and (1− D)VA are both
decreasing in D, it follows that π̄∗ is also decreasing in D (as π̄∗ is increasing in (1−
D)VP and (1− D)VA). That is, for a given set of parameters (i.e., sL, sM, sH, c, and
corresponding VP, VA), π̄∗(1) < π̄∗(0).

A.1.2 No credible commitment to tolerance of failure

This subsection considers the case when the manager cannot credibly commit to being
tolerant of failure, the key decision that drives the model’s results. In this setting, her
decision whether to tolerate period 1’s bad outcome is based on her updated belief at
the end of period 1, with the aim to maximize her period-2 payoff. As bad outcome
happens with probability 1− θP due to a bad researcher and with probability θP (1−π̄)2

2

due to good researcher’s bad luck (π̄ is the good researcher’s exploration threshold),
the manager’s updated belief after observing period 1’s bad outcome is:

θU =
θP(1− π̄)2

2(1− θP) + θP(1− π̄)2 . (A.8)

She then chooses to rehire the researcher if her period-2 expected payoff is larger
than her outside option of zero. That is, when:

θP(1− π̄)2

2(1− θP) + θP(1− π̄)2 VP
2 +

2(1− θP)

2(1− θP) + θP(1− π̄)2 sL > 0 (A.9)

⇐⇒ θP >
−2sL

(1− π̄)2VP
2 − 2sL ≡ θ̄post(π̄). (A.10)

In an equilibrium in which the manager chooses to tolerate failure (i.e., D = 1),
the good researcher’s exploration threshold in period 1 is π̄ = π̄∗(1). This is then an
equilibrium only when θP > θ̄post(π̄∗(1)). Vice versa, in an equilibrium in which the
manager chooses not to tolerate failure (i.e., D = 0), the good researcher’s exploration
threshold is π̄ = π̄∗(0). This is then an equilibrium only when θP ≤ θ̄post(π̄∗(1)). In
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addition, as π̄∗(1)) < (π̄∗(0) (Proposition 1) and sL < 0, it follows that θ̄post(π̄∗(1)) <
θ̄post(π̄∗(0)). The game’s equilibrium can be summarized up as follows.

Proposition 4. When the manager cannot credibly commit to being tolerant of failure, the game’s
equilibrium depends on her prior belief θP.
(i) If θP > θ̄post(π̄∗(0)), the manager credibly chooses to tolerate failure (i.e., D = 1) and the
good researcher chooses exploration in period 1 when π1 > π̄∗(1).
(ii) If θP ≤ θ̄post(π̄∗(1)), the manager chooses not to tolerate failure (i.e., D = 0) and the good
researcher chooses exploration in period 1 when π1 > π̄∗(0).
(iii) If θ̄post(π̄∗(1)) < θP ≤ θ̄post(π̄∗(0)), there are two equilibria: one in which the manager
tolerates failure (i.e., D = 1) as in (i), and one in which she does not (i.e., D = 0) as in (ii).

Comparison with the baseline model. Recall from subsection 1.2.1 that in the baseline
model when the manager can credibly commit to tolerance of failure, she chooses so (i.e.,
D = 1) when her prior belief θP is above threshold θ̄ (equation 1.2):

θP >
−2sL

2
[
VP

1 (1)−VP
1 (0)

]
+ [1− π̄∗(0)]2 VP

2 − 2sL
≡ θ̄.

As VP
1 (1) > VP

1 (0) and sL < 0, it follows that θ̄ < θ̄post(π̄∗(0)) (see equation A.10). The
intuition is that the manager’s ex ante cutoff θ̄ takes into consideration VP

1 (1)− VP
1 (0),

the gain from optimal exploration in period 1 under D = 1, and therefore θ̄ is lower
than her ex post cutoff θ̄post(π̄∗(0)), which does not internalize this gain.

As a result, for θP ∈ (θ̄, θ̄post(π̄∗(0))), without the capacity to commit, there
always exists an equilibrium in which the manager does not tolerate period 1’s bad
outcome (i.e., D = 0), even though it is ex ante optimal for her to do so (i.e., D = 1)
(Proposition 4).1 Furthermore, if it is also the case that θ̄ < θ̄post(π̄∗(1)),2 then for
θP ∈ (θ̄, θ̄post(π̄∗(1))), this non-tolerant equilibrium is the unique equilibrium, and the
manager cannot at all implement the ex ante desirable policy of tolerance of failure.
These problems are alleviated only if the manager can credibly commit to her ex ante
decision, as in the baseline model, or if she is high trusting with θP > θ̄post. This result
implies that trust acts as a substitute for commitment.

1In this case, there is another equilibrium in which she does tolerate period 1’s failure.
2The relationship between θ̄ and θ̄post(π̄

∗(1)) is ambiguous and depends on the parameter set.
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A.2 Data construction

A.2.1 Firm sample construction

BoardEx to Computstat. I start with BoardEx dataset which contains detailed data on
the background of CEOs and top officers for a large set of firms worldwide and select
all firms that are both listed and headquartered in the US.3 I then match the selected
BoardEx firms to Compustat using ticker. To ensure that the matching is correct, I
manually check all cases in which (i) the matching is not one to one,4 or (ii) the company
names in BoardEx and Compustat do not match. I then use CIK code to verify that the
matching is indeed correct. Matched firms are larger than the remaining Compustat
firms, with coverage of 55% in terms of firm counts and 85% in terms of total assets
among Compustat firms with non-missing total assets between 2000 and 2011.

BoardEx-Compustat to Orbis. Next, I match BoardEx-Compustat firms to Orbis, a
global company database provided by Bureau Van Dijk, to obtain the linkage between
firms and patents.5 This patent-to-firm linkage is based on a matching procedure
implemented by the OECD and is available as part of Orbis.6 The matching between
BoardEx-Compustat and Orbis firms is done via ISIN/CUSIP. I also manually check
all cases in which (i) the matching is not one to one, or (ii) the company names in
BoardEx/Compustat and Orbis do not match. In addition, I use Orbis’ manual search
function to look for BoardEx-Compustat firms that cannot be identified in Orbis using
ISIN/CUSIP. This results in a close to full match (above 99%) and allows me identify
all patent applications owned by the matched firms. As Orbis also contains information
on firm’s ownership structure, I additionally identify patent applications by subsidiaries
that are above 50% owned by one of these firms.

Sample restriction. Finally, I exclude all firms in finance, insurance, and real estate
(SIC2 between 60 and 67), as these sectors make up a considerable share of the firm
sample but traditionally do not patent their innovations. This resulting sample includes
4,345 firms during the study period between 2000 and 2011 (Table A.3), which yields
in a final baseline sample of 3,598 firms after conditioning on firms having at least one
CEO (i) whose ethnic origins could be inferred from her last name, and (ii) whose data
on gender, age, and education are non-missing (see appendix A.2.3).

3BoardEx and Compustat data were retrieved through the Wharton Research Data Services (WRDS) in
May 2017.

4This can happen when a firm undergoes a major merger and acquisition (M&A), in which case
BoardEx considers it to be two different firms before and after the M&A while Compustat considers it
to be the same firm if the ticker does not change. I follow BoardEx’s approach to ensure that within-firm
identification strategty is valid.

5I accessed Orbis platform through the LSE Library Services. The linkage between firms and patents
provided by Orbis was retrieved in July 2017.

6The matching is done based on the names and addresses of patent applicants on patent records, which
data are available from PATSTAT. In an UK setting, Dechezleprêtre et al. (2018) find that the matching
quality is excellent with about 95% of UK and EPO patents being matched to their owning companies.

157



A.2.2 Patent and inventor data

My patent data are drawn from the 2016 Autumn Edition of the World Patent Statistical
Database (PATSTAT) maintained by the European Patent Office (EPO). PATSTAT is the
world’s largest international patent database with nearly 70 million patent documents
from over 60 patent offices, including all the major ones such as the United States Patent
and Trademark office (USPTO), the European Patent Office (EPO), the Japan Patent
Office (JPO), and the Chinese Patent and Trademark Office (SIPO). PATSTAT data cover
close to the population of all worldwide patents between 1900 and 2015 and contain
comprehensive information on patent application and publication dates, applicants and
inventors, patent family, technology classification, and backward and forward citations.

Baseline patent counts. Each patent application to a patent office is uniquely identified
in both PATSTAT and Orbis by its unique EPODOC application number. In addition to
this identifier, PATSTAT reports a unique patent family indicator (DOCDB) which is the
same for all patent applications (in different countries) related to the same invention.
For the purpose of measuring innovation (i.e., to avoid double-counting inventions that
are protected in several countries), I count all patent applications in the same family,
irrespective of where they are filed, as one patent and assign this patent to its earliest
application year. I only consider patents applications classified as “patent of invention”
in PATSTAT, which is equivalent to USPTO’s utility patents. The number of patent
families filed by a firm (or a group of inventors in a firm) is my primary measure of
innovation.7 Over 2000-2012, 2,230 out of 3,598 baseline firms filed at least one patent,
and together owned 1.8 million patent applications in 700,000 patent families over this
period. In addition, I also construct alternative measures of innovation counting only
patent families filed to or granted by the USPTO, which yield similar results (e.g., Table
1.5, Table A.14).

Patent quality measures. While not all innovations are patented and patenting norms
vary across industries, it is reasonable to assume that within the same industry, the
most valuable inventions are patented and therefore counting patents screens out the
low-value ones.8 In addition, I utilize various measures of patent quality to adjust for
quality variation among patents and, more importantly, directly study this variation as
an outcome of interest. The most well-known patent quality measure is forward citation
counts (i.e., the number of future citations a given patent receives), which has been
shown to be positively correlated with patent quality (Trajtenberg, 1990; Harhoff et al.,
1999; Moser et al., 2015) and also firm’s market value (Hall et al., 2005; Kogan et al.,

7I do not use fractional count to account for multiple applicants as this requires obtaining patent-firm
linkage for the universe of firms. However, in practice, only a small share of patents are filed jointly by at
least two firms (Dechezleprêtre et al., 2018).

8Note that all specifications in this paper include fixed effects below industry level, thereby sufficiently
accounting for across-industry heterogeneity.
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2017). In this paper, I use forward citation counts to compute: (i) a patent’s quality
decile relative to its technology field by application year cohort (e.g., Figure 1.7, Table
A.13),9 (ii) firm’s quality-adjusted patent counts, and (iii) firm’s average patent quality.
Given that forward citations take time to accumulate, I restrict my sample to patents
filed before 2012 to allow for observation windows of at least 5 years.

Besides forward citations, I also employ a range of alternative patent quality
measures (Squicciarini et al., 2013), as listed below.

• First, the number of scientific papers a patent cite reflects how close the patent
is to scientific knowledge and is an indicator of more complex and fundamental
knowledge contained in the patent (Branstetter, 2005; Cassiman et al., 2008).

• Second, the scope of a patent, defined as the number of distinct technology classes
(at IPC4 level) the patent is allocated to, has been shown to be associated with the
patent’s technological and economic value (Lerner, 1994).

• Third, the generality index, defined as one minus the technology-class Herfind-
ahl–Hirschman Index (HHI) (at IPC4 level) of a patent’s forward citations,
measures the range of technology fields and industries influenced by the patent
(Trajtenberg et al., 1997).

• Fourth, the originality index, defined as one minus the technology-class HHI (at
IPC4 level) of a patent’s backward citations, captures the breath of technology
fields on which the patent relies, thereby reflecting its knowledge diversification
(Trajtenberg et al., 1997).

Inventor data. PATSTAT also contains information on patent inventors’ names and
addresses as they appear on patent records. Based on data on inventors’ countries
extracted or inferred from their addresses (as provided by PATSTAT), 1,554 firms and
30% of patents in my sample have at least one non-US-based inventors. The share
non-US-based inventors in each of these patents ranges from 0.5 to 1, with 1 being the
median. That is, 60% of these patents are exclusively by non-US-inventors; furthermore,
in almost all cases the inventors are based in the same country, consistent with the
interpretation that the patents are by overseas R&D labs of multinational firms. The 10
most common locations of these labs, based on their patent contributions, are (in order)
Germany, Great Britain, India, Canada, Japan, China, France, Israel, Switzerland, and
Italy.10 As it is possible for one patent to have inventors based in different countries, I
use fractional count to calculate the number of patents at firm by inventor country level.

Data on patent inventors’ names in PATSTAT come in much less standardized format
as they are extracted from patent records from many different patent offices worldwide.

9Schmoch (2008) classifies patents into 35 technology fields of balanced size in 6 technology sectors of
based on the International Patent Classification (IPC). This classification has subsequently been used in the
innovation literature by Squicciarini et al. (2013) and Dechezleprêtre et al. (2018), among others.

10Eurobarometer bilateral trust measure is available for 7 out of these 10 countries.
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To correctly separate out an inventor’s last name (from first and middle names and
even addresses), I supplement an algorithmic procedure with manual data cleaning.
This allows me to identify 200,000 unique inventor last names from 1.8 million unique
inventor name strings with reasonable confidence. Next, I match these last names to
ethnic origins using the census-based mapping detailed in A.2.4, and further manually
clean the remaining unmatched ones (as described in appendix A.2.3). By this process, I
am able to identify the inventors’ countries of origin for 90% of the patent sample based
on either their non-US address or last names. I also use fractional count to calculate the
number of patent at firm by inventor country level, as one patent could have multiple
inventors and one inventor count be probabilistically mapped to multiple countries of
origin.

A.2.3 CEO biographical data

I identify a firm’s CEO in BoardEx from her position title, that is, if (i) it includes either
one of the following phrases: “CEO,” “Chief Executive,” or “Principal Executive,” and
(ii) the phrase is not preceded by terms such as deputy, vice, division, group, regional,
emeritus, etc. I verify if each firm has one CEO at a point in time, unless there are
co/joint-CEOs, and manually check all exceptions. CEO transitions are inferred from
the start and end dates of each CEO position.

CEOs’ trust measures are computed from their ethnic origins as inferred from their
last names (see subsection 1.3.2). I first map CEOs’ last names to ethnic origins using
the census-based last name-ethnic origin mapping detailed in appendix A.2.4. For the
remaining CEOs whose last names do not appear with reasonable frequency in the
censuses, I handpick out cases in which the last names distinctively belong to an ethnic
group,11 and manually search for the origins of unmatched CEO last names that appear
with high frequency. This results in a final match rate of 83% at CEO level (77% from
census-based mapping, 4% from manual mapping, and 2% from non-US citizenship).
Panel A of A.3 shows that there are no significant differences between these name-
matched 83% and the remaining non-matched 17% across all observable characteristics.

Besides using CEOs’ names to infer their ethnic origins, I also employ data on their
nationality, gender, age, education, and employment history. First, I exclude all CEOs
who are explicitly not US citizens. They comprise only 4.8% of the 54% of CEOs for
whom BoardEx contains nationality information. A quick check reveals that the other
46% represent cases in which the CEOs are obviously US citizens, so that the firm’s
website does not state their nationality. They are thus counted as US citizens. Second,
I classify all degrees associated with each CEO into four different categories: below
bachelor, bachelor, masters, and doctorate, and separately identify if a CEO has an MBA
degree. I further supplement this classification with relevant information contained in
CEOs’ titles, such as “Doctor,” “JD,” or “MBA.” The education variable is equal to the

11For example, compound last names including “Van” are likely Dutch, “Von” German, or “Les” French,
etc. Further details are available upon request.
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highest degree level a CEO has attained, and CEOs with no education information are
dropped. Third, I use information on CEOs’ employment history to impute their tenure
in the respective firms, and to identify whether they have held an R&D related position
prior to becoming the CEO. R&D-related positions are those whose title contains either
one of the following words (or their derivations): “research,” “innovation,” “scientific,”
or “technology.”

Table A.7 employ special subsamples of CEO retirement and death events. I define
retirement as cases in which the CEOs (i) leave office at the age of or around 65, and (ii)
do not have any executive positions afterward, as observed in BoardEx. 65 is the official
Social Security retirement age and the traditional retirement age used in the related
literature (e.g, Fee et al., 2013). In the data, I also observe a spike in CEO’s leaving
executive positions for good around 65. CEO deaths are identified from CEO’s year of
death as provided by BoardEx. They could be unexpected or the result of long-term
health decline. Given that there are very few CEO deaths while still in position in my
sample (only 34 cases), I do not further narrow them down to only sudden deaths as is
the standard in the related literature (Nguyen and Nielsen, 2010; Bennedsen et al., 2010).

A.2.4 Mapping last names to ethnic origins

Sample of foreign-origin individuals. I start with de-anonymized full population
samples of four US censuses between 1910 and 1940, which contain information on
names and birthplaces of the US population. These restricted-access de-anonymized
censuses are provided by the Minnesota Population Center through a formal application
process. I keep all observations that meet the following criteria: (i) the individual is
either male or never-married female; (ii) his last name is non missing; and (iii) either he
or one of his parents was born outside of the US. This results in a sample of 79 million
individuals with foreign (i.e., non-US) birthplace or ancestry across four censuses.

Each individual’s origin is defined as: (i) his birthplace if it is outside of the US, (ii)
his father’s birthplace if his own birthplace is in the US or missing, or (iii) his mother’s
birthplace if both his own and his father’s birthplaces are in the US or missing. I further
refine this mapping by (i) dropping foreign-born individuals to both US-born parents,
(ii) assigning individuals who were born outside of the US and Europe (e.g., Canada,
Australia) to his parents’ birthplaces if they were born in Europe, and (iii) refining coarse
birthplace information (e.g., Central Europe) with additional information on mother
tongue. However, these adjustments affect less than 1% of the sample. Among the 79
million foreign-origin individuals in the censuses, 87% are originally from Europe, 7%
from Canada, 3% from Central America (mostly Mexico), 2% from Asia, and 1% from
other parts of the world.

Last name-GSS ethnic origin mapping. Birthplace data in the census are coded mostly
at country level, while ethnic-specific trust measure derived from the GSS is available
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for 36 most common ethnicities in the US (Table A.1). To address this, I construct a
mapping between these two different classifications as follows.

• First, I map a country of origin in the census to an ethnic origin in the GSS if they
represent the same country (e.g., Germany, Sweden, Italy) or region (e.g., England
and Wales, Scotland).

• Second, I create new “aggregate” GSS ethnic groups (mostly for different regions
within Europe) and map the remaining census countries of origin to their
corresponding aggregate ethnic groups if possible. For example, Bulgarian, which
is not an ethnicity included in the GSS, is mapped to a new ethnic group labeled as
Eastern European, which is the aggregate of GSS ethnic groups Czechoslovakian,
Hungarian, Polish, Romanian, and Russian.

• Third, I map the remaining countries in the census to existing coarse ethnic groups
in the GSS such as African, Arabic, other Asian, other Spanish, or missing.

While this mapping may seem coarse, the fact that the GSS’ ethnic classification is
designed to cover the most common ethnicities in the US implies that a large share
(at least 80%) of foreign-origin individuals in the censuses could be mapped to a GSS
ethnic origin under the first step. On the other hand, the remaining ones still need to
be accounted for systematically, as dropping them could introduce unwanted selection
into the final last name-ethnic origin mapping. The exact correspondence between the
census’ country of origin and the GSS’ ethnic origin classifications is available upon
request.

79 million foreign-born individuals in the censuses share among them five million
unique last names, the majority of which appear fewer than 10 times. To improve
precision, I first filter out aberrant observations by dropping ethnic origins that occur
less than 10% of the times for a given last name. I then consider only 75,000 last names
that appear for at least 100 times in the remaining sample, which constitute 66% of
this sample. The probabilistic mapping between last names and GSS ethnic origins is
constructed from the resulting sample. Specifically, I compute wse, the probability that
a person with last name s is of ethnicity e as wse = nse

Ns
, in which nse is the number

of individuals with last name s from ethnic origin e, and Ns is the total number of
individuals with last name s in the sample. For example, based on this mapping, the
last name Johnson is 78% Swedish and 22% Norwegian; the last name Smith is 32%
English, 26% German, 24% Irish, and 18% Canadian.

This last name-GSS ethnic origin mapping is used in computing CEO’s inherited
generalized trust measure,12 and other measures of inherited cultural traits. In
sensitivity tests, I find that lowering the aforementioned 100 observation and 10% share
cutoffs to retain more observations does not significantly improve the match rate of CEO
last names and slightly reduces the precision of the key estimates.

12wde = wse if CEO d’s last name is s.
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Most common last name supplements. One concern is that data from historical
censuses do not capture more recent waves of migration to the US. However, it has
been shown that CEOs in the US are predominantly “WASP” (White Anglo-Saxon
Protestant), which groups arrived in the US well before the 1940s. Furthermore, to
address the concern, I supplement the census-based mapping with lists of most common
last names in 50 different countries collected from online sources such as forebear.com

or wikipedia.com. These lists also provide me a way to cross-check the quality of the
census-based mapping. First, I develop a list of all last names that could account for at
least 0.01% of immigrants in the US. Each last name’s predicted share is computed as
the share of the last names in its respective country times the share of immigrants from
that country in the US foreign-origin population (based on census data between 1960-
2015). I then convert countries to GSS ethnic origins and add last names from the list
to the census-based mapping. For last names that are already included in the mapping,
I find that the census-based mapping is generally consistent with the information from
the list.

Last name-Eurobarometer origin mapping. To compute CEOs’ bilateral trust measure,
I construct the mapping between last names and countries of origin covered in the
Eurobarometer in similar steps to above. As the Eurobarometer provides bilateral trust
measure for only 16 trust-originating and 28 trust-receiving countries, foreign-origin
individuals in the census sample who are not from one of these countries are assigned
to the “not-covered” category. Furthermore, I construct two separate mappings. The
first one considers the 16 trust-originating countries and is used for mapping CEOs’
last names. The second one considers the 28 trust-receiving countries and is used for
mapping inventors’ last names.

After constructing the first mapping that is used for CEOs, I drop all last names with
above 20% probability of being from a “not-covered” country of origin, then drop this
“not-covered” category and rescale the remaining wse’s so that ∑e∈E wse = 1 where E is
the set of 16 trust-originating countries. That is, the final mapping contains only last
names with at least 80% probability of being from countries for which bilateral trust
measure is available. The rescaling is required as the CEO’s bilateral trust measure is
the weighted average of country pairwise bilateral trust.
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A.3 Trust measurement error and bias

A.3.1 Relative magnitude of trust measurement error

Because of the indirect nature of my measure of inherited trust, it is important to gauge
the relative magnitude of measurement error, and its impact on the estimate. In what
follows, I propose a method to evaluate the extent of measurement error of inherited
trust, using existing results from trust game experiments such as Glaeser et al.’s (2000).
Denote a person i’s trust as Ti, the major ingredient in my theory. As remarked in the
literature, the GSS’s trust survey question produces a measurement error εi, so that we
only observe surveyed trust as TSi = Ti + εi.The empirical ethnic component of trust,
as calculated from trust survey, is TEthc = E(TSi|c) = E(Ti|c) + E(εi|c). In case of an
independent error εi, TEthc = E(Ti|c).

My first question is on the relative magnitude of the discrepancy between TEthc and
Ti, namely RTEth = Var(TEthi)

Var(Ti)
. As Var(TEthc)

Var(TSi)
= 0.06 comes straight from the GSS sample,

it remains to find RT = Var(Ti)
Var(TSi)

.
Consider the experimental setting in Glaeser et al. (2000) in which subjects play a

trust game, and their decisions are then linked to their answers to a GSS trust question.
Based on the literature on the stability of trust experiments, I suppose that the trust game
decision TGi (a number between 0 and 15 in that context) contains an idiosyncratic error
ηi: TGi = γTi + ηi, with a ratio of signal to total variation RTG = Var(γTi)

Var(TGi)
. According

Falk et al. (2016), this ratio is around 60%. We learn from Glaeser et al. (2000) that the
regression of TGi on TSi yields a coefficient of b̂G with a standard error of σ̂G. I will
make use of those two numbers and RTG to compute RT.13

Using formulae of regressions with measurement errors, I can write b̂G = γ Var(Ti)
Var(TSi)

=

γRT. Its standard error can also be written as:

σ̂2
G =

Var(TGi − b̂GTSi)

Var(TSi)
=

Var[(γ− γRT)Ti + ηi − γRTεi]

Var(TSi)

= γ2(1− RT)
2RT + γ2 1− RTG

RTG
RT + γ2R2

T(1− RT)

= γ2RT(1− RT) + γ2 1− RTG

RTG
RT.

Replacing γ = b̂G/RT, we obtain:

σ̂2
GRT = b̂2

G

(
1− RT +

1− RTG

RTG

)
⇒ RT =

b̂2
G

(b̂2
G + σ̂2

G)RTG
=

t2

t2 + 1
1

RTG
,

13There is a debate following Glaeser et al. (2000) on the validity of different trust measures. In defense of
trust surveys, Sapienza et al. (2013) argue that the sender’s behavior in the trust game, Glaeser et al.’s (2000)
preferred measure of trust, is not necessarily a good measure of trust, because it is confounded by other-
regarding preferences. In contrast, WVS/GSS trust questions better capture the belief-based component of
the trust game, which corresponds better to the concept of trust as defined in Gambetta (1988) and in my
model.
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with t = b̂G
σ̂G

the t-statistic of the test bG = 0. As there are two potential outcomes from
trust games in Glaeser et al. (2000), I compute the average of t over the two potential
outcomes from trust games in Glaeser et al. (2000) at around 0.50,14 mapping into RT =

0.33. I thus deduce RTEth = 0.18. That is, the ethnic component of trust measures
about 18% of the variation in individual trust. Finally, when I use a LASSO model to
predict trust using all observables and their interactions, the ratio of predicted variation
Var(TEthc)

Var(TSi)
rises to about 0.11, corresponding to RTEth = 0.33.

Discussion. A few remarks can be drawn from those exercises. First, one can argue
that TEthc is a much better measure of trust than a simple survey answer TSi, as the
variance of the survey noise εi far outweighs the variance of individual components
Ti − TEthc (the ratio of variance is 0.67

0.27 , or about 2.5 times). Therefore, it would not have
added value even if we could administer a trust survey among CEOs.15 Second, even if
we could run a trust game among CEOs, the ratio of the variance of the experimental

noise ηi to the variance of νi is about 0.33× 100%−60%
60%

0.27 ∼ 0.81. That is, using my inherited
trust measure is 81% as precise as using trust game results from CEOs. Third, as
shown in appendix A.3.1, while ethnic specific inherited trust likely represents only
18% of inherent individual trust, the benchmark regression likely produces an unbiased
of the true effect (there is no attenuation bias as in the case of classical measurement
errors). The main intuition from this exercise is that both methods of elicitation
of individual trust, either via surveys or via trust games, produce a considerable
amount of measurement error, as has been shown throughout the literature. While
my method of averaging trust survey answers by ethnic origin misses the individual-
specific component of trust, it also helps in smoothing out those measurement errors.
Quantitatively, the latter effect can more than compensate the former.

A.3.2 Bias due to trust measurement error

The second question regarding measurement error is how much does the discrepancy
between TEthc and Ti affect the estimate of the effect of trust. Let us assume the
true relationship between innovation outcome Yf t of firm f in year t and its current
CEO d’s individual trust Tdt as Yf t = βTdt + θ f + u f dt, with a firm fixed effect θ f ,
and an independent error term u f dt. When current CEO’s ethnic-specific inherited
trust TEthct is used in place of individual trust Tdt, the fixed effect estimator is
β̂TE =

Cov(M.Yf t,M.TEthct)

Var(M.TEthct)
, given the linear de-mean operator M.Xit = Xit − Et(Xit|i).

14The outcomes are the amount sent by the first player, and the reservation price that the first player
considers equivalent to the value of the game. As discussed in Sapienza et al. (2013), those measures should
be considered with caution, as they may also include effects due to social preferences, not just beliefs

15Of course, if we can administer many trust surveys on the same individual, we can average out much
more precisely individual trust. I consider this possibility highly infeasible though.
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Also observe that:

Cov(M.Yf t, M.TEthct) = Cov(βM.Tdt + M.u f dt, M.TEthct)

= βCov(M.E(Tdt|c) + M.(Tdt −E(Tdt|c)), M.TEthct)

= βCov(M.TEthct −M.E(εdt|c), M.TEthct).

In case of independent survey measurement error εdt, the expression above is
reduced to βVar(M.TEthct). Therefore, using the ethnic component of trust TEthct in
place of individual trust Tit does not create any bias in the firm fixed effect specification.
In essence, this exercise is similar to taking a cell-average of the right hand side variable,
and then use it as a new regressor, a procedure that is very useful especially when one
can only observe cell averages (see also Angrist and Pischke, 2009, c. 2.).

If the survey measurement error εdt is not mean-independent of the respondent’s
country, β̂TE with be biased from β by −Cov(M.E(εdt|c),M.TEthct)

Var(M.TEthct)
. Based on the empirical

results, we can assume that there is little autocorrelation over time between different
CEOs at the same firm, in which case we can get rid of the operator M to rewrite the
bias as −Cov(E(εdt|c),TEthct)

Var(M.TEthct)
.

The bias’ sign is that of −Cov(E(εdt|c), TEthct), or the opposite of the covariance
across countries between ethnic-based inherited trust, and individual survey measure-
ment errors. It is likely negative if, for example, high-trust countries’ respondents tend
to push their answers higher, and low-trust countries’ respondents tend to lower theirs.
There is a technical reason to expect this pattern: Surveyed trust TSi is a yes-no answer,
which naturally exaggerates the variation in the individual trust component Ti. For
example, two individuals’ beliefs at 60% and 40% will map into two opposite answers
of value 1 and 0, respectively.16 Consequently, the estimator β̂TE likely underestimates
the true effect of individual CEO’s trust on innovation.

16There is, however, another reason to expect the covariance to be negative and the bias positive: if the
individual belief ranges mostly on one side of 50%, say, from 50% to 100%, then they all correspond to a
survey answer of 1. As a stronger belief entails a smaller error term, the covariance is negative. When both
effects are taken into account, based on the empirical distribution of survey answers, I can show that under
mild conditions, and in most simple simulations, the positive-covariance effect largely dominates, therefore
the bias is very probably negative.
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A.4 Framework for separating mechanisms

A.4.1 Proof of Proposition 3

As the count of patents within quality range [c1, c2] is N
[

F( c2−b̃(T)
a(T) )− F( c1−b̃(T)

a(T) )
] de f
≡

Y(a(T), b(T)), the effects of changes in a and b on patent counts within quality range
[c1, c2] are:

∂Y
∂a

= N
[

f
(

c2 − b̃
a

)(
− c2 − b̃

a2

)
− f

(
c1 − b̃

a

)(
− c1 − b̃

a2

)]
, (A.11)

∂Y
∂b

= N
[

f
(

c2 − b̃
a

)(
−1
a

)
− f

(
c1 − b̃

a

)(
−1
a

)]
. (A.12)

Recall the assumptions from subsection 1.6.1 that better quality patents are always rarer
(i.e., F′T(x) is decreasing on [0, ∞) ∀T). This assumption implies that f

(
c2−b̃

a

)
< f

(
c1−b̃

a

)
as c1 < c2. As a result, ∂Y

∂b in expression (A.12) is always positive, indicating that higher
b(T) increases the count of patents within the quality range [c1, c2] ⊂ [0, ∞).

A.4.2 Patent quality under mean-preserving spread

Unlike expression (A.12) which is always positive, expression (A.11) does not have an
unambiguous sign: while f

(
c−b̃

a

)
is decreasing in c over the [c1, c2] interval as shown in

appendix A.4.1, c− b̃ is increasing. It is thus possible to identify the mechanism at work
(i.e., through a(T) or b(T)) under conditions that warranty ∂Y

∂a < 0, namely, for ranges
of c where f

(
c−b̃

a

) (
c−b̃
a2

)
is increasing in c. This condition is quite easy to satisfy for

small c, at least among distributions in the exponential family, such that when c is small,
f
(

c−b̃
a

)
decreases less fast than c− b̃ increases. The following proposition illustrates a

special case:

Proposition 5. Consider a normal distribution N (x̄, σ) with density f , and b = 0 (i.e., no
mean-shifting mechanism at work). Higher a(T) decreases the count of patents of quality within
any range [c1, c2] ⊂ [0, aσ + x̄].

Proof. The proposition’s statement is equivalent to ∂Y
∂a in expression (A.12) being

negative, itself equivalent to f
(

c−b̃
a

) (
c−b̃
a2

)
being increasing in c over the [c1, c2] interval.

This happens when its derivative with respect to c: 1
a2

[
1
a f ′
(

c−b̃
a

) (
c− b̃

)
+ f

(
c−b̃

a

)]
, is

nonnegative.
In case f is a normal distribution density, this derivative being nonnegative is

equivalent to − 1
a2σ2 (c − b̃)2 + 1 ≥ 0 ⇔ |c − b̃| = |c − x̄ − b| ≤ aσ. Let b = 0, this

condition is equivalent to c ∈ [0, aσ + x̄].
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Figure A.1: Patents by change in CEO’s trust (non-matched sample)

Notes: This figure plots firms’ average residual patent application counts (after
partialling out the covariates) by year with respect to CEO transition year (i.e., year
0). The solid blue line groups together all CEO transitions in which the new CEOs are
more trusting than their predecessors (i.e., trust-increasing transitions), and the dotted
red line corresponds to those in which the new CEOs are less trusting (i.e.,trust-
decreasing transitions). Each group’s annual average residual patent counts are
plotted relative to the group’s pre-transition mean, which is normalized to 0. The
sample includes CEO transitions in which both predecessor’s and successor’s tenures
are at least 5 years.

Figure A.2: CEO’s trust effect by change in CEO’s trust

Notes: This figure plots semi-parametric estimates of the CEO’s trust coefficient on
firm’s patents as a function of the change in CEO’s trust after the corresponding
transition (the X-axis variable). The semiparametric estimation is based on equation
(1.5), using a Gaussian kernel function of the X-axis variable and a bandwidth of 20%
of the range. The dashed lines indicate the 95% confidence intervals for the CEO’s
trust coefficients. Standard errors are clustered by CEO’s main ethnicity.
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Figure A.3: Pre-change patents and new CEO’s bilateral trust

Notes: This figure plots the coefficients γ̂k for
k ∈ [−6,−1] from estimating: ∆bitrust f dct =

∑−1
k=−7 γk(asinh(pat f dct)× eventt−k) + βbitrust f dct + X f t + Zdt + θ f + κc + ωt + ε f dct,

in which (i) ∆bitrust f dct is the difference between CEO d’s and her successor’s
bilateral trust measures towards individuals from country c, and (ii) eventt−k is an
indicator equal to 1 if the transition happens in year t − k. Estimates are shown
with their 95% confidence intervals. Standard errors are clustered by firm. The
upper plot corresponds to the bilateral trust sample in which an inventor’s country
is inferred from his patent-listed address for non-US-based inventors. The lower
plot corresponds to the bilateral trust sample in which an inventor’s country is
additionally inferred from his last name for US-based inventors.
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Figure A.4: CEO’s trust effect by pre-transition researcher pool quality

Notes: This figure plots semi-parametric estimates of the CEO’s trust coefficient
on firm’s patents as a function of pre-transition researcher pool quality (the X-axis
variable). Firm-level proxy for researcher pool quality is computed from the residuals
from regressing patents on observable firm and CEO characteristics, controlling for
SIC2 industry and year fixed effects (subsection 1.6.3) over a 2-year pre-transition
window. The semiparametric estimation is based on equation (1.5), using a Gaussian
kernel function of the X-axis variable and a bandwidth of 20% of the range. The
dashed lines indicate the 95% confidence intervals for the CEO’s trust coefficients.
Standard errors are clustered by CEO’s main ethnicity.

Figure A.5: CEO’s trust effect by tenure in firm

Notes: This figure plots the coefficients β̂k for k ∈ [1, 9] from estimating:
asinh(pat f d,t+1) = ∑9

k=1 (trust f dt × tenuredk × successord) +X f t +Zdt + θE +ωt + ε f dt
using the transition-event sample, in which (i) tenuredk is an indicator equal to 1 if the
CEO d starts working in firm f in year t− k+ 1, and (ii) sucessord is an indicator equal
to 1 if CEO d is the successor in transition E.
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Table A.1: GSS inherited trust measure by ethnic origin

Rank Ethnic origin Trust measure Rank Ethnic origin Trust measure

1 Belgium 0.727 19 Japan 0.500
2 Sweden 0.629 20 Romania 0.500
3 Switzerland 0.622 21 India 0.494
4 Norway 0.619 22 Arabic 0.478
5 Denmark 0.603 23 Other Asian 0.478
6 Canada 0.600 24 Italy 0.470
7 England and Wales 0.593 25 China 0.468
8 Hungary 0.587 26 Greece 0.467
9 Lithuania 0.577 27 Austria 0.465

10 Ireland 0.565 28 Spain 0.423
11 Russia and former USSR 0.565 29 Finland 0.419
12 Scotland 0.553 30 Portugal 0.368
13 Germany 0.553 31 Mexico 0.368
14 Netherlands 0.551 32 Philippines 0.356
15 Czechslovakia 0.551 33 West Indies (Hispanic) 0.353
16 Yugoslavia 0.533 34 Africa 0.265
17 France 0.529 35 Other Spanish 0.246
18 Poland 0.523 36 West Indies (non-Hispanic) 0.200

Notes: This table reports inherited trust measure by ethnic origin, ethtruste, computed as the average trust attitude (0 – low
trusting, 1 – high trusting) of GSS respondents whose (i) self-reported ethnic origin is e and (ii) GSS occupation prestige score is at
least 50 (subsection 1.3.2). The standard deviation of this inherited trust measure at ethnicity level is 0.115.

Table A.2: GSS ethnic origins of CEOs

Baseline sample Name-matched sample

Rank Ethnic origin Share of CEOs Rank Ethnic origin Share of CEOs

1 Ireland 19.5% 1 Ireland 18.8%
2 Germany 18.7% 2 Germany 18.0%
3 England and Wales 16.6% 3 England and Wales 17.2%
4 Canada 10.0% 4 Canada 10.1%
5 Russia and former USSR 8.1% 5 Russia and former USSR 8.3%
6 Italy 6.7% 6 Italy 6.6%
7 Scotland 3.3% 7 Scotland 3.2%
8 Sweden 2.7% 8 Sweden 2.6%
9 Poland 2.2% 9 Poland 2.2%
10 Austria 1.6% 10 Australia 1.6%
11 Norway 1.6% 11 Norway 1.5%
12 China 1.2% 12 China 1.1%
13 Mexico 0.9% 13 Mexico 0.9%
14 India 0.7% 14 India 0.9%
15 Netherlands 0.7% 15 Netherlands 0.8%
16 Denmark 0.7% 16 Denmark 0.7%
17 Czechslovakia 0.6% 17 Czechslovakia 0.6%
18 Hungary 0.5% 18 Hungary 0.5%

N = 5,753 N = 7,027

Notes: This table reports the distribution of CEOs’ ethnic origins as inferred from their last names (subsection 1.3.2) for (i) 5,753
CEOs in the baseline sample, and (ii) 7,027 name-matched CEOs.
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Table A.3: Baseline sample’s descriptive statistics

Panel A. CEO’s characteristics
Sample: Baseline Name-matched Unmatched

Mean S.D. Mean S.D. Mean S.D.
Inherited generalized trust (baseline) 0.56 (0.04) 0.56 (0.04)
Inherited generalized trust (LASSO) 0.55 (0.09) 0.55 (0.09)
Inherited generalized trust (full GSS) 0.45 (0.04) 0.45 (0.04)
Inherited generalized trust (full WVS) 0.37 (0.08) 0.36 (0.08)

Gender (1 – male, 0 – female) 0.97 (0.18) 0.97 (0.17) 0.98 (0.15)
CEO’s age in 2000 48.2 (9.1) 48.6 (9.3) 48.1 (9.12)
Highest degree: Bachelor 0.37 (0.48) 0.36 (0.48) 0.34 (0.47)
Highest degree: Masters 0.43 (0.49) 0.43 (0.49) 0.42 (0.49)
Highest degree: Doctor 0.18 (0.38) 0.18 (0.38) 0.21 (0.41)
Has MBA degree 0.34 (0.48) 0.34 (0.47) 0.35 (0.48)
Has non-MBA postgrad degree 0.26 (0.44) 0.26 (0.44) 0.28 (0.45)
Has prior R&D experience 0.02 (0.14) 0.02 (0.13) 0.02 (0.14)
Age when becoming CEO 50.1 (8.5) 50.3 (8.7) 49.9 (8.9)
Prior tenure in firm (yrs) 6.44 (8.18) 6.59 (8.36) 6.70 (8.57)
Tenure as CEO (yrs) 7.23 (6.14) 7.23 (6.32) 7.22 (6.11)
# CEOs 5,753 7,027 1,466

Panel B. Firm’s characteristics
Sample: Baseline Name-matched Unmatched

Mean S.D. Mean S.D. Mean S.D.
Patent applications p.a. 18.0 (149.7) 15.9 (138.8) 5.2 (25.2)
asinh(patent applications) 1.00 (1.62) 0.93 (1.56) 0.86 (1.36)
Citation-weighted patents p.a. 202.9 (1,953) 176.1 (1,764) 59.7 (230.5)
asinh(citation-weighted patents) 1.72 (2.56) 1.61 (2.49) 1.55 (2.34)

Firm’s age in 2000 11.3 (15.4) 12.1 (15.2) 8.7 (13.7)
# years in sample 7.5 (3.6) 9.5 (3.1) 8.4 (3.8)
# CEOs in sample 1.68 (0.88) 2.13 (1.13) 1.17 (0.41)
# matched CEOs in sample 1.68 (0.88) 1.85 (1.00) 0.00 (0.00)
Is R&D performing firm 0.60 (0.49) 0.59 (0.49) 0.63 (0.48)
Is patenting firm 0.55 (0.50) 0.57 (0.49) 0.55 (0.50)
Total assets p.a. ($mil) 3,472 (14,957) 3,460 (19,541) 1,676 (9,198)
Total sales p.a. ($mil) 2,924 (12,765) 2,824 (13,163) 2,179 (12,373)
Employment p.a. (’000) 10.76 (51.72) 9.94 (46.68) 5.20 (15.10)
R&D stock p.a. ($mil) 297.1 (2,003) 272.5 (1,895) 82.0 (271.4)
R&D expenditure p.a. ($mil) 71.9 (466.4) 66.1 (442.8) 23.7 (90.6)
# Firms 3,598 4,000 345

Notes: Panel A reports the descriptive statistics of CEO’s characteristics for (i) 5,753 CEOs in the baseline sample, (ii) 7,027
name-matched CEOs, and (iii) 1,466 unmatched CEOs. Panel B reports the descriptive statistics of firm’s characteristics
for (i) 3,598 firms in the baseline sample (considering only firm × year observations that correspond to name-matched
CEOs), (ii) 4,000 firms having at least one name-matched CEOs (considering all firm × year observations in the study
period), and (iii) 345 firms having no name-matched CEO. Inherited generalized trust measure ranges from 0 – low
trusting to 1 – high trusting.
p.a. stands for per annum.
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Table A.4: Bilateral trust samples’ descriptive statistics

Panel A. CEO’s characteristics
Sample: Based on inventors’ Non-US addresses Addresses/last names
# associated inventor countries 4.8 (5.2) 6.8 (6.1)
Bilateral trust (towards inventor country) 2.69 (0.31) 2.67 (0.32)

Inherited generalized trust (baseline) 0.55 (0.04) 0.55 (0.04)
Gender (1 – male, 0 – female) 0.97 (0.16) 0.97 (0.16)
CEO’s age in 2000 48.4 (8.8) 48.3 (8.8)
Highest degree: Bachelor 0.35 (0.48) 0.36 (0.48)
Highest degree: Masters 0.45 (0.50) 0.44 (0.50)
Highest degree: Doctor 0.19 (0.39) 0.18 (0.38)
Has MBA degree 0.37 (0.48) 0.37 (0.48)
Has non-MBA postgrad degree 0.26 (0.44) 0.25 (0.44)
Has prior R&D experience 0.03 (0.16) 0.02 (0.15)
# CEOs 960 1,654

Panel B. Firm’s characteristics
Sample: Based on inventors’ Non-US addresses Addresses/last names
# associated inventor countries 4.8 (5.1) 6.8 (6.1)
Patent applications p.c. p.a. 1.5 (10.7) 3.0 (21.3)
asinh(patent applications) 0.39 (0.85) 0.68 (1.03)
Citation-weighted patents p.c. p.a. 11.9 (69.9) 30.5 (222.5)
asinh(citation-weighted patents) 0.86 (1.59) 1.59 (1.90)

Firm’s age in 2000 14.0 (16.6) 12.6 (15.7)
# years in sample 6.4 (3.7) 6.4 (3.7)
# CEOs in sample 1.4 (0.6) 1.4 (0.6)
Total assets p.a. ($mil) 4,840 (20,729) 3,983 (17,037)
Total sales p.a. ($mil) 3,960 (12,921) 3,294 (11,490)
Employment p.a. (’000) 12.4 (36.8) 10.7 (35.0)
R&D stock p.a. ($mil) 803.3 (3,234) 479.3 (2,491)
R&D expenditure p.a. ($mil) 189.1 (735.4) 113.4 (567.0)
# Firms 730 1,263

Notes: This table reports the descriptive statistics of CEO’s and firms’ characteristics for (i) CEOs and firms in the
bilateral trust sample based on inventors’ patent-listed non-US addresses, and (ii) CEOs and firms in the bilateral trust
sample based on inventors’ addresses (for non-US based inventors) or last names (for US-based inventors). Bilateral
trust measure ranges from 1 – least trusting to 4 – most trusting. Inherited generalized trust measure ranges from 0 –
low trusting to 1 – high trusting.
p.c. stands for per country; p.a. stands for per annum.

Table A.5: Average patents before and after CEO transitions

Variable: Average residual asinh(patents)

Sample: Before transition After transition Difference
Trust-increasing CEO transitions -0.146 -0.012 0.135*

(0.056) (0.052) (0.076)
Trust-decreasing CEO transitions -0.088 -0.216 -0.128*

(0.053) (0.051) (0.073)
Difference -0.058 0.204*** 0.262**

(0.077) (0.073) (0.106)

Notes: This table reports the average residual patent application counts (after partialling out the covariates) in the 5 years
before and after CEO transitions, separately for trust-increasing and trust-decreasing transitions as described in the notes
to Figure 1.4. There are 61 trust-increasing CEO transitions, each of which is matched to a trust-decreasing CEO transition
based on their average pre-transition residual patent counts (resulting in a total of 44 unique matched trust-decreasing CEO
transitions). Pre-transition period covers years -5 to 0; post-transition period covers years 1 to 5.
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Table A.6: Robustness checks for CEO’s trust effect on firm’s patents

Panel A.
(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable: asinh(Future patent applications)

Specification: Baseline Alt. clusterings Alt. samples Poisson

CEO’s trust 0.063*** 0.063*** 0.063*** 0.063*** 0.061*** 0.075*** 0.087*** 0.168**
(0.019) (0.022) (0.022) (0.019) (0.020) (0.020) (0.026) (0.069)

Sample excluding Single- Female Interim Transition
tons CEOs CEOs years

Clustering scheme Firm Two-way Robust
Firm & Year FEs X X X X X X X X
Baseline controls X X X X X X X X
Observations 29,384 29,384 29,384 29,195 28,523 28,909 26,202 17,536
Firms 3,598 3,598 3,598 3,409 3,550 3,558 3,552 1,915

Panel B.
(1) (2) (3) (4) (5) (6) (7) (8)

Dependent variable: Future patent applications

Forward: 1-year 2-year 3-year

Transformation: asinh(.) log(1+.) win. raw asinh(.)

Specification: Additional controls Alt. transformations Alt. forwards

CEO’s trust 0.066*** 0.063*** 0.060*** 0.053*** 1.462** 4.464*** 0.046* 0.039*
(0.019) (0.019) (0.018) (0.015) (0.584) (1.293) (0.027) (0.023)

log(employment) 0.101***
(0.012)

asinh(R&D stock) 0.015*
(0.008)

asinh(R&D exp.) 0.092***
(0.011)

Dep. var. mean 13.28 18.02
Firm & Year FEs X X X X X X X X
Baseline controls X X X X X X X X
Observations 28,506 29,384 29,384 29,384 29,384 29,384 29,384 29,384
Firms 3,548 3,598 3,598 3,598 3,598 3,598 3,598 3,598
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Panel C.
(1) (2) (3) (4) (5) (6)

Dependent variable: asinh(Future patent applications) D(asinh(pat))

CEO’s trust 0.070*** 0.071*** 0.041 0.035
(0.018) (0.019) (0.028) (0.025)

Trust × Change in trust 0.013
(0.012)

Post-transition -0.056***
(0.018)

Post-transition × Trust-increasing 0.087***
(0.021)

Predecessor CEO’s trust -0.016***
(0.005)

Event sample Trust Trust
increasing decreasing

Event & Year FEs X X X X X X
Baseline controls X X X X X X
Observations 20,389 20,389 19,504 9,764 9,740 2,444
Events 2,446 2,446 2,343 1,191 1,152 2,444

Notes: This table report the robustness checks for the baseline effect of CEO’s inherited trust on firm’s patents using
equation (1.5). Panel A: Column (1) reports the baseline specification in which (i) the sample includes all observations
of firm f × year t × its current CEO d; (ii) the dependent variable is the inverse hyperbolic sine of firm f ’s patent
application counts in year t + 1; (iii) the explanatory variable is CEO d’s GSS-based inherited trust measure, standardized
by its standard deviation at ethnicity level (subsection 1.3.2); (iv) baseline controls include firm’s age, age squared, ln(total
assets), ln(sale), and CEO’s age, age squared, gender, education dummies, tenure in firm; and (v) standard errors are
clustered by CEO’s main ethnicity. Column (2) clusters standard errors by firm. Column (3) clusters standard errors
two-way by CEO’s main ethnicity and firm. Column (4) excludes singletons; column (5) female CEOs; column (6) interim
CEOs; column (7) CEO transition years. Column (8) estimates a semi-log Poisson count model with winsorized pat f ,t+1
as the dependent variable. Panel B: Column (1) additionally controls for ln(employment); column (2) asinh(R&D stock);
column (3) asinh(R&D expenditure). Columns (4)-(6) use ln(1 + pat f ,t+1), winsorized pat f ,t+1, and raw pat f ,t+1 as the
dependent variable. Columns (7)-(8) use asinh(pat f ,t+2) and asinh(pat f ,t+3) as the dependent variable. Panel C: This
panel employs a sample constructed from CEO transition events and event fixed effects (instead of firm fixed effects).
For each event, I include all firm f × year t × its current CEO d observations that correspond to the predecessor’s and
successor’s terms. Column (1) reports the baseline CEO’s trust effect using this sample. Column (2) interacts CEO’s trust
measure with ∆trustE, the difference between successor and predecessor CEOs’ trust measures. Column (3) presents a
difference-in- differences specification in which the post-transition dummy is interacted with a dummy indicating the
transition is a trust-increasing event. Columns (4) and (5) employ subsamples of trust-increasing and trust-decreasing
CEO transition events. Column (6) reports β̂ from estimating: ∆ asinh(patE) = βtrustpre

E + ∆XE + ∆ZE + εE, in which
(i) each observation E is a CEO transition event, (ii) ∆ asinh(patE), ∆XE, and ∆ZE are the differences between post- and
pre-transition average patents, firm’s, and CEO’s characteristics respectively, and (iii) trustpre

E is the trust measure of the
predecessor CEO.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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Table A.7: CEO’s retirement and death events

Panel A. Including all years in each event
(1) (2) (3) (4) (5) (6) (7)

Dependent var: asinh(Next period’s patent applications) D(.)

Sample: Retired Retired Retired Died tran- Died tran- Retired Retired
64-65 64-66 63-67 sition yr sition yr+1 or died or died

CEO’s trust 0.281*** 0.104** 0.083* 0.410 0.400 0.095**
(0.095) (0.042) (0.047) (0.308) (0.279) (0.045)

Predecessor CEO’s trust -0.024**
(0.012)

Observations 913 2,285 3,440 253 353 3,756 386
Events 92 230 346 34 46 386 386

Panel B. Excluding transition years
(1) (2) (3) (4) (5) (6) (7)

Dependent var: asinh(Next period’s patent applications) D(.)

Sample: Retired Retired Retired Died tran- Died tran- Retired Retired
64-65 64-66 63-67 sition yr sition yr+1 or died or died

CEO’s trust 0.328*** 0.137** 0.124** 0.736** 0.780*** 0.142**
(0.103) (0.060) (0.056) (0.363) (0.300) (0.054)

Predecessor CEO’s trust -0.029**
(0.012)

Event & Year FEs X X X X X X
Baseline controls X X X X X X
Observations 825 2,073 3,126 217 306 3,400 377
Events 91 228 342 29 40 377 377

Notes: This table reports CEO’s trust effect in subsamples of transitions following CEO’s retirements or deaths. Columns
(1)-(6) estimate equation (1.5). Each subsample includes all firm f × year t × its current CEO d observations that correspond
to the predecessor’s and successor’s terms of the relevant transitions (Panel A) and that are not the transition years (Panel B).
Columns (1)-(3)’s subsamples include transitions in which the predecessor CEO retired at 65, between 64 and 66, or between
63 or 67 respectively. Columns (4)-(5)’s subsamples include transitions in which the predecessor CEO died in or within one
year of the transition year. Column (6) combines column (3)’s and column (5)’s subsamples. The dependent variable is the
inverse hyperbolic sine of firm f ’s patent application counts in year t + 1. The explanatory variable is CEO d’s GSS-based
inherited trust measure, standardized by its standard deviation at ethnicity level (subsection 1.3.2). Baseline controls include
(i) firm’s age, age squared, ln(total assets), ln(sale), and (ii) CEO’s age, age squared, gender, education dummies, tenure in
firm. Column (7) estimates ∆ asinh(patE) = βtrustpre

E + ∆XE + ∆ZE + εE, in which (i) each observation E is a CEO transition
event included in column (6)’s subsample, and (ii) trustpre

E is the trust measure of the departing CEO. Standard errors are
clustered by CEO’s main ethnicity in columns (1) to (3) and (6). Robust standard errors are reported for columns (4), (5), and
(7).
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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Table A.8: Alternative measures of other cultural traits

(1) (2) (3) (4) (5) (6)
Dependent variable: asinh(Future patent applications)
CEO’s trust 0.067*** 0.059*** 0.063*** 0.073*** 0.069*** 0.063***

(0.022) (0.020) (0.018) (0.023) (0.017) (0.018)
Self-reported upper class -0.131

(0.196)
Occupation prestige 0.015

(0.015)
Alt. work ethic 0.008

(0.021)
Alt. risk preference -0.027

(0.026)
Confidence in government 0.011

(0.013)
Confidence in science 0.032*

(0.017)
Firm & Year FEs X X X X X X
Baseline controls X X X X X X
Observations 29,384 29,384 29,384 29,384 29,384 29,384
Firms 3,598 3,598 3,598 3,598 3,598 3,598

Notes: This table explores alternative GSS-based measures of CEO’s other inherited cultural traits as
additional controls in equation (1.5). Baseline sample includes all observations of firm f × year t × its
current CEO d. The dependent variable is the inverse hyperbolic sine of firm f ’s patent application counts
in year t + 1. The explanatory variable is CEO d’s GSS-based inherited trust measure, standardized by its
standard deviation at ethnicity level (subsection 1.3.2). Baseline controls include (i) firm’s age, age squared,
ln(total assets), ln(sale), and (ii) CEO’s age, age squared, gender, education dummies, tenure in firm. Column
(1) controls for the share of self-reported upper class in CEO’s ethnic groups. Column (2) controls for average
GSS occupational prestige score among those in CEO’s ethnic groups. Column (3) controls for CEO’s inherited
work ethic, derived from the GSS question: “If you were to get enough money to live as comfortably as you would
like for the rest of your life, would you continue to work or would you stop working?”. Column (4) controls for CEO’s
inherited risk preference, proxied by the share of GSS respondents in CEO’s ethnic groups who consider job
security as the least important feature of a job. Columns (5) and (6) control for CEO’s inherited confidence
in the government and in the scientific community, derived from the GSS question: “I am going to name some
institutions in this country. As far as the people running these institutions are concerned, would you say you have a
great deal of confidence, only some confidence, or hardly any confidence at all in them?”. Cultural trait controls in
columns (2)-(6) are standardized by their standard deviations at ethnicity level. Standard errors are clustered
by CEO’s main ethnicity.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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Table A.9: Global Preference Survey’s trust and other cultural traits

(1) (2) (3) (4) (5) (6) (7)
Dependent variable: asinh(Future patent applications)
CEO’s trust (GPS) 0.040** 0.039*** 0.036** 0.041** 0.046*** 0.041** 0.043***

(0.015) (0.014) (0.015) (0.016) (0.013) (0.016) (0.013)
Risk preference 0.003 0.019

(0.017) (0.027)
Patience 0.010 -0.016

(0.014) (0.026)
Positive reciprocity -0.005 0.003

(0.018) (0.033)
Negative reciprocity -0.023*** -0.031***

(0.007) (0.010)
Altruism -0.003 0.004

(0.014) (0.028)
Firm & Year FEs X X X X X X X
Baseline controls X X X X X X X
Observations 29,384 29,384 29,384 29,384 29,384 29,384 29,384
Firms 3,598 3,598 3,598 3,598 3,598 3,598 3,598

Notes: This table employs inherited trust measure and other cultural trait measures constructed in the same way
as described in subsection 1.3.2 but using the Global Preference Survey (GPS) (Falk et al., 2018). Baseline sample
includes all observations of firm f × year t × its current CEO d. The dependent variable is the inverse hyperbolic
sine of firm f ’s patent application counts in year t + 1. The explanatory variable is CEO d’s GPS-based inherited
trust measure, standardized by its standard deviation at ethnicity level. Baseline controls include (i) firm’s age,
age squared, ln(total assets), ln(sale), and (ii) CEO’s age, age squared, gender, education dummies, tenure in
firm. Column (1) reports the baseline effect of CEO’s GPS-based inherited trust. Column (2) controls for CEO’s
inherited risk preference; column (2) patience; column (3) positive reciprocity; column (4) negative reciprocity;
column (5) altruism. Column (6) controls for all those variables. Standard errors are clustered by CEO’s main
ethnicity.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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Table A.10: CEO’s trust effect in US-only bilateral trust sample

(1) (2) (3) (4) (5) (6) (7)
Dependent variable: asinh(Future patent applications)

Sample: Based on last names of US-based inventors
CEO’s bilateral trust 0.019* 0.019* 0.011 0.005 0.017 0.018 0.020*

(0.011) (0.011) (0.007) (0.012) (0.012) (0.011) (0.011)
Common language dummy 0.017

(0.024)
Geographical distance (1000km) -0.008

(0.010)
Genetic distance (z-score) -0.019

(0.049)
Excl. same-country pairs X
Firm × Year FEs X X X X X X
CEO FEs X X X X X X
Inventor country FEs X X X X X
CEO × Year FEs X
Inv. country × Year FEs X
Firm × Inv. country’s FEs X
Year FEs X
Observations 53,967 53,967 53,967 49,497 52,769 52,769 51,334
Firm × Inv. country’s 8,240 8,240 8,240 7,661 8,051 8,051 7,828
Firms 1,186 1,186 1,186 970 997 997 997

Notes: This table reports the effect of CEO’s bilateral trust towards a country on patents by inventors from
that country using equation (1.6). Samples include all observations of firm f × year t × its current CEO
d × country c such that firm f has patents by inventors from country c during 2000-2012. An inventor’s
country is inferred from his last name only for US-based inventors. The explanatory variable is CEO d’s
bilateral trust towards individuals from country c, standardized by its standard deviation at country pair level.
The dependent variable is firm f ’s total patent application counts by inventors from country c in year t + 1.
Column (4) excludes same-country CEO-inventor country pairs. Columns (5) to (7) control for CEO-inventor
country pairwise distances, including: (i) whether the countries share a common language (column 5), (ii)
weighted geographical distance between the countries (column 6), and (iii) weighted genetic distance between
the countries’ populations (column 7) (Spolaore and Wacziarg, 2016). Standard errors are clustered by CEO’s
main ethnicity × inventor country.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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Table A.11: Margins of CEO’s bilateral trust effect

Panel A. Bilateral trust sample based on inventors’ non-US addresses
(1) (2) (3) (4) (5) (6)

Dependent variable: asinh(Future patent applications)

By firms in bila- By inventor groups

Sample: teral trust sample Both margins Intensive margin

CEO’s generalized trust 0.101*** 0.126***
(0.037) (0.027)

CEO’s bilateral trust 0.047* 0.037* 0.053 0.072
(0.024) (0.020) (0.049) (0.049)

Observations 7,356 6,915 22,450 22,450 9,065 9,065
Firm × Inv. country’s 3,383 3,383 1,673 1,673
Firms 724 724 700 700 437 437

Panel B. Bilateral trust sample based on inventors’ addresses and last names
(1) (2) (3) (4) (5) (6)

Dependent variable: asinh(Future patent applications)

By firms in bila- By inventor groups

Sample: teral trust sample Both margins Intensive margin

CEO’s generalized trust 0.071** 0.095***
(0.031) (0.028)

CEO’s bilateral trust 0.025** 0.015** 0.031** 0.020**
(0.011) (0.007) (0.013) (0.009)

Firm & Year FEs X X
Baseline controls X
Firm × Year FEs X X
CEO FEs X X X X
Inventor country FEs X X
Firm × Inv. country FEs X X
Year FEs X X
Observations 12,764 11,931 53,967 53,967 38,467 38,467
Firm × Inv. country’s 8,240 8,240 6,418 6,418
Firms 1,256 1,256 1,186 1,186 925 925

724 724 700 700 437 437

Notes: This table reports CEO’s generalized and bilateral trust effects on patents among the samples of
firms included in bilateral trust analyses. In Panel A, an inventor’s country is inferred from his patent-
listed address for non-US-based inventors; in Panel B, an inventor’s country is additionally inferred
from his last name for US-based inventors. In each panel, columns (1) and (2) report CEO’s generalized
trust effect on firm’s patents among the sample of firms included in the corresponding panel’s bilateral
trust sample, using equation (1.5) (i.e., observation unit is firm f × year t × its current CEO d, see
notes to Table 1.1 for further details). Columns (3)-(6) report CEO’s bilateral trust effect on inventors’
patents using equation (1.6) (i.e., observation unit is firm f × year t × its current CEO d × country
c, see notes to Table 1.3 for further details). Columns (3) and (4) employ all observations such that
firm f has patents by inventors from country c during 2000-2012. The resulting coefficients capture
both intensive and extensive margins of CEO’s bilateral trust effect. Columns (5) and (6) employ only
observations such that firm f has patents by inventors from country c before CEO d assumes position.
The resulting coefficients capture only the intensive margin of CEO’s bilateral trust effect. Standard
errors are clustered by CEO’s main ethnicity in columns (1) and (3) and by CEO’s main ethnicity ×
inventor country in columns (3)-(6).
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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Table A.12: Directions of CEO-inventor bilateral trust

Panel A. Bilateral trust sample based on inventors’ non-US addresses
(1) (2) (3) (4) (5)

Dependent variable: asinh(Future patent applications)
CEO-toward-inventors bilateral trust 0.102*** 0.100** 0.138***

(0.025) (0.044) (0.052)
Inventors-toward-CEO bilateral trust 0.076** 0.003 -0.016

(0.032) (0.047) (0.055)
Observations 12,863 12,863 12,863 12,863 12,863
Firm × Inventor country’s 2,009 2,009 2,009 2,009 2,009
Firms 580 580 580 580 580

Panel B. Bilateral trust sample based on inventors’ addresses and last names
(1) (2) (3) (4) (5)

Dependent variable: asinh(Future patent applications)
CEO-toward-inventors bilateral trust 0.041** 0.030 0.049*

(0.016) (0.026) (0.028)
Inventors-toward-CEO bilateral trust 0.037*** 0.013 0.029

(0.014) (0.023) (0.026)
Firm × Year FEs X X X X X
CEO FEs X X X X X
Inventor country FEs X X X X X
Inventors-to-CEO trust decile FEs X
CEO-to-inventors trust decile FEs X
Observations 32,648 32,648 32,648 32,648 32,648
Firm × Inventor country’s 5,005 5,005 5,005 5,005 5,005
Firms 1,072 1,072 1,072 1,072 1,072

Notes: This table explores the effects of different directions of bilateral trust on patents using equation (1.6).
Samples include all observations of firm f × year t × its current CEO d × country c such that (i) firm f has
patents by inventors from country c during 2000-2012, and (ii) both bilateral trust variables are non-missing.
An inventor’s country is inferred from his patent-listed address for non-US-based inventors in Panel A, and
additionally from his last name for US-based inventors in Panel B. The explanatory variables are (i) CEO
d’s bilateral trust towards individuals from country c, and (ii) individuals from country c’s bilateral trust
towards CEO d, both standardized by their same standard deviations at country pair level. The dependent
variable is firm f ’s total patent application counts by inventors from country c in year t+ 1. Decile dummies
in columns (4) and (5) are computed with respect to the relevant bilateral trust sample. Standard errors are
clustered by CEO’s main ethnicity × inventor country.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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Table A.13: Bilateral trust effect by patent quality

(1) (2) (3) (4) (5) (6) (7) (8)
Dependent variable: asinh(Future patents in each quality quartile)

Sample: Based on non-US addresses Based on addresses/last names

Quality quartile: 1st 2nd 3rd 4th 1st 2nd 3rd 4th

CEO’s bilateral trust 0.017 0.014 0.017 0.027* 0.004 0.006 0.008 0.024***
(0.012) (0.011) (0.015) (0.016) (0.006) (0.005) (0.007) (0.009)

Firm × Year FEs X X X X X X X X
CEO FEs X X X X X X X X
Inventor country FEs X X X X X X X X
Observations 23,284 23,284 23,284 23,284 56,942 56,942 56,942 56,942
Firm × Inv. country’s 3,481 3,481 3,481 3,481 8,554 8,554 8,554 8,554
Firms 730 730 730 730 1,263 1,263 1,263 1,263

Notes: This table reports the heterogenous effects of CEO’s bilateral trust on patents in different quality quartiles using
equation (1.6). Samples include all observations of firm f × year t × its current CEO d × country c such that firm
f has patents by inventors from country c during 2000-2012. An inventor’s country is inferred from his patent-listed
address for non-US-based inventors in columns (1)-(4), and additionally from his last name for US-based inventors in
columns (5)-(8). The explanatory variable is CEO d’s bilateral trust towards individuals from country c, standardized
by its standard deviation at country pair level. The dependent variable is firm f ’s total patent application counts by
inventors from country c in year t + 1 in each patent quality quartile, with 1 being the bottom quartile and 4 the top.
A patent’s quality quartile is computed based on its forward citation counts with respect to its technology field × year
cohort. Standard errors are clustered by CEO’s main ethnicity × inventor country.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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Table A.14: Bilateral trust effect on quality-weighted patents

Panel A. Bilateral trust sample based on inventors’ non-US addresses
(1) (2) (3) (4) (5) (6) (7)

Dependent variable: asinh(Future quality-weighted patents)

Quality measure: Forward Backward Tech Gene- Origi- Granted Granted
cites NPL cites scope rality nality all USPTO

CEO’s bilateral trust 0.095** 0.053* 0.100*** 0.023 0.032* 0.040* 0.038*
(0.039) (0.032) (0.034) (0.015) (0.018) (0.021) (0.020)

Observations 23,284 23,284 23,284 23,284 23,284 23,284 23,284
Firm × Inv. country’s 3,481 3,481 3,481 3,481 3,481 3,481 3,481
Firms 730 730 730 730 730 730 730

Panel B. Bilateral trust sample based on inventors’ addresses and last names
(1) (2) (3) (4) (5) (6) (7)

Dependent variable: asinh(Future quality-weighted patents)

Quality measure: Forward Backward Tech Gene- Origi- Granted Granted
cites NPL cites scope rality nality all USPTO

CEO’s bilateral trust 0.051*** 0.046*** 0.051*** 0.020** 0.022** 0.023** 0.027**
(0.018) (0.016) (0.016) (0.008) (0.009) (0.010) (0.011)

Firm × Year FEs X X X X X X X
CEO FEs X X X X X X X
Inventor country FEs X X X X X X X
Observations 56,942 56,942 56,942 56,942 56,942 56,942 56,942
Firm × Inv. country’s 8,554 8,554 8,554 8,554 8,554 8,554 8,554
Firms 1,263 1,263 1,263 1,263 1,263 1,263 1,263

Notes: This table reports CEO’s bilateral trust effect on quality-weighted patents using equation (1.6). Samples include
all observations of firm f × year t × its current CEO d × country c such that firm f has patents by inventors from
country c during 2000-2012. An inventor’s country is inferred from his patent-listed address for non-US-based inventors
in Panel A, and additionally from his last name for US-based inventors in Panel B. The explanatory variable is CEO
d’s bilateral trust towards individuals from country c, standardized by its standard deviation at country pair level. The
dependent variable is firm f ’s total patent application counts by inventors from country c in year t + 1, weighted by:
forward citations (column 1); backward citations to non-patent (i.e., scientific) literature (column 2); patent technological
scope (column 3); generality index (i.e., technological diversity of forward citations) (column 4); originality index (i.e.,
technological diversity of backward citations) (column 5); granted patents (column 6); and USPTO patents (column 7).
Standard errors are clustered by CEO’s main ethnicity × inventor country.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.

Table A.15: Effect of CEO’s trust on R&D

(1) (2) (3) (4) (5) (6)
Dependent variable: asinh(R&D expenditure) asinh(R&D stock)

Forward : 0 year 1 year 2 year 0 year 1 year 2 year

CEO’s trust 0.028 0.018 0.020 -0.014 0.001 0.018
(0.032) (0.027) (0.029) (0.019) (0.018) (0.019)

Firm & Year FEs X X X X X X
Baseline controls X X X X X X
Observations 29,384 28,125 26,710 29,384 28,125 26,710
Firms 3,598 3,558 3,487 3,598 3,558 3,487

Notes: This table reports the baseline effect of CEO’s inherited trust on R&D expenditure and stock using equation (1.5).
Baseline sample includes all observations of firm f × year t × its current CEO d. The dependent variable is the inverse
hyperbolic sine of firm f ’s R&D expenditure or stock in year t + km for k ∈ [1, 3]. The explanatory variable is CEO d’s
GSS-based inherited trust measure, standardized by its standard deviation at ethnicity level (subsection 1.3.2). Baseline
controls include (i) firm’s age, age squared, ln(total assets), ln(sale), and (ii) CEO’s age, age squared, gender, education
dummies, tenure in firm. Standard errors are clustered by CEO’s main ethnicity.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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Table A.16: Effect of CEO’s trust on firm future performance

Panel A.
(1) (2) (3) (4) (5)

Dependent variable: Future ln(sales) ln(employment) ln(capital) TFP (KL) TFP (KLM)
CEO’s trust -0.036** -0.032** -0.022 0.006 0.000

(0.017) (0.013) (0.025) (0.013) (0.026)
Trust × Proxy for pre-tran- 0.048*** 0.034*** -0.000 0.015 0.031
sition researcher quality (0.014) (0.010) (0.013) (0.011) (0.018)
Firm & Year FEs X X X X X
Baseline controls X X X X X
Observations 18,019 17,873 16,782 17,238 7,719
Events 2,237 2,224 2,149 2,177 1,421

Panel B.
(1) (2) (3) (4) (5)

Dependent variable: Future ln(sales) ln(employment) ln(capital) TFP (KL) TFP (KLM)
Trust × Quality quintile 1 -0.153*** -0.154*** -0.068 0.007 -0.008

(0.040) (0.035) (0.047) (0.036) (0.041)
Trust × Quality quintile 2 -0.119** -0.044 -0.063* -0.046 -0.076

(0.046) (0.030) (0.036) (0.030) (0.052)
Trust × Quality quintile 3 0.039 0.002 0.006 0.035 -0.005

(0.058) (0.043) (0.049) (0.060) (0.106)
Trust × Quality quintile 4 0.058** 0.069** 0.104** -0.008 -0.026

(0.024) (0.026) (0.051) (0.032) (0.052)
Trust × Quality quintile 5 0.034 -0.000 -0.056 0.051* 0.117***

(0.045) (0.027) (0.050) (0.027) (0.041)
Firm & Year FEs X X X X X
Baseline controls X X X X X
Observations 18,019 17,873 16,782 17,238 7,719
Events 2,237 2,224 2,149 2,177 1,421

Notes:
This table explores the heterogeneous effects of CEO’s trust on firm’s patents by pre-transition researcher pool quality
using equation (1.5) and the sample constructed from CEO transition events. For each event, I include all firm f × year
t × its current CEO d observations that correspond to the predecessor’s and successor’s terms. The explanatory variable
is CEO d’s GSS-based inherited trust measure, standardized by its standard deviation at ethnicity level (subsection
1.3.2). Firm-level proxy for researcher pool quality is computed from averaging the residuals from regressing patents on
observable firm and CEO characteristics, controlling for SIC2 industry and year fixed effects (subsection 1.6.3) over a 2-
year pre-transition window. The dependent variable is firm f ’s performance in year t + 2, including: ln(sales) (column 1);
ln(employment) (column 2); ln(capital) (column 3); TFP computed from value added, employment, and capital following
Olley and Pakes (1996) (column 4); and TFP computed from sales, employment, capital, and material following Olley
and Pakes (1996) (column 5). Baseline controls include (i) firm’s age, age squared, asinh(R&D expenditure), and (ii)
CEO’s age, age squared, gender, education dummies, tenure in firm. Panel A interacts CEO’s trust measure with firm-
level proxy for pre-transition pool quality. Panel B interacts CEO’s trust measure with researcher pool quality quintile
dummies (computed based on firm-level proxy for pre-transition researcher pool quality). Standard errors are clustered
by CEO’s main ethnicity.
*** denotes statistical significance at 1% level, ** 5% level, * 10% level.
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B.1 Institutional details of policy and tax-adjusted user cost

B.1.1 SME definition

The UK R&D Tax Relief Scheme’s SME (Small and Medium Sized Enterprise) definition
is based on total assets (“balance sheet total”), employment (“staff headcount”), and
sales (“turnover”) as described in Section 2.2. We summarize the key elements of the
definition rules below but for further technical details on these rules see http://www.

hmrc.gov.uk/manuals/cirdmanual/CIRD91400.htm.
Measurements of staff headcount, assets, and sales turnover for ceiling tests:

Assets is the gross amount of assets shown in the company accounts. The staff
headcount of an enterprise represents the number of full-time person-years attributable
to people who have worked within or for the enterprise during the year under
consideration.1 The staff headcount and financial data used for the “ceiling tests” (the
maximum values possible for a firm to be eligible for SME status) are those relating to
the latest accounting year. Assets and sales are converted to Euros using the exchange
rate on the last day of the relevant accounting period, or the average exchange rate
throughout that accounting period (whichever is more beneficial for the enterprise). An
enterprise passes the ceiling tests if its staff headcount and either its aggregated assets or
its aggregated turnover fall below the respective ceilings. An enterprise loses (acquires)
its SME status if it fails (passes) the ceiling tests over two consecutive accounting periods.

Account aggregation rules for different enterprise types: In the case of an au-
tonomous enterprise, the staff headcount and financial data are determined exclusively
on the basis of the consolidated account of the enterprise itself.2 In the case of a
“linked” enterprise, the ceiling tests are applied to the aggregates of the figures in
its own accounts and those from the accounts of all other enterprises to which it is
linked (including non-UK ones), unless the linked enterprises’ account data are already
included through account consolidation.3

B.1.2 UK R&D Tax Relief Scheme

The R&D Tax Scheme includes a SME Scheme and a Large Company (“LCO”)
component.4 Between its introduction in 2000 and 2012, more than 28,500 different

1The contributions of part-time workers, or those who work on a seasonal or temporary basis count as
appropriate fractions of a full-time person-year. The term staff includes employees, persons seconded to
the enterprise, owner-managers, partners (other than sleeping partners); it excludes apprentices or students
engaged in vocational training with an apprenticeship or vocational training contract, and any periods or
maternity or parental leave.

2An autonomous enterprise is one that is not a linked enterprise or a partner enterprise. Generally, an
enterprise is autonomous if it has holding of less than 25% of the capital or voting rights in one or more
enterprises and/or other enterprises do not have a stake of 25% or more of the capital voting rights in the
enterprise.

3Linked enterprises are those in which one enterprise is able to exercise control, directly or indirectly,
over the affairs of the other.

4For further details, see http://www.hmrc.gov.uk/manuals/cirdmanual/CIRD90000.htm (SME
Scheme) and http://www.hmrc.gov.uk/manuals/cirdmanual/CIRD85050.htm (Large Company Scheme).
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companies had made claims under the SME Scheme, and over 7,000 under the Large
Company Scheme, claiming more than £9.5bn in total R&D support. The annual amount
of R&D support had risen to over £1bn by 2008, reaching £1.4bn in 2012, and covered
qualifying R&D expenditure worth £13.2bn HMRC (2014).

Both SME and Large Company Schemes are volume-based, i.e., the tax relief accrues
on the total R&D spending rather than the incremental R&D over a prior base (the
main US R&D tax relief scheme is incremental). It works mostly through enhanced
deduction of current R&D expenditure from taxable income, thus reducing R&D-
performing companies’ corporate tax liabilities. For example, if a company is allowed
an enhancement rate of 75%, for a £10,000 spend on R&D, it can deduct an additional
£7,500 from its taxable income before calculating its tax liability. In addition, under the
SME Scheme, a company that has taxable loss after the additional deduction can also
claim payable tax credit up to the amount of payable credit rate × enhanced qualifying
R&D expenditure5 This payable tax credit can only be used to reduce the company’s
employers’ payroll tax (National Insurance Contributions, NIC) liabilities. Alternatively,
the company (either as an SME or as a large company) can choose to carry the loss
forward as normal. Qualifying R&D expenditure must be allowable as a deduction
in calculating trading profits, which includes all flow costs, employee costs, materials,
utilities, software, or subcontracted R&D expenditure (but only if the contractor is an
SME).6 To be eligible for R&D tax relief, a company must also spend at least £10,000
a year on qualifying R&D expenditure in an accounting period. If an SME works as
a subcontractor for a large company, only the subcontractor SME can claim R&D tax
relief, under the Large Company Scheme.7 There is also an upper limit of e7.5m on the
total amount of aid a company can receive for a R&D project under the SME Scheme.

The evolution of the UK R&D Tax Relief Scheme is summarized in Table A1. It was
first introduced in April 2000 only for SMEs (Finance Act 2000),8 then later extended to

5For example, if a company is allowed an enhancement rate of 75% and payable credit rate of 14%,
spends £10,000 in R&D, and has no taxable income before the additional deduction, it can claim payable
tax credit of 0.14 ×£10,000 × (1+0.75)=£2,450. If instead the company has £1,500 in taxable income before
the additional deduction, it can first use £2,000 of its R&D to reduce its taxable income to zero (i.e., £1,500
= 75% x £2000, then claim payable tax credit of 0.14 × £8,000×(1+0.75)=£1,960. This latter case is called a
combination claim.

6A large company that has taxable loss before the additional deduction therefore may still benefit from
R&D tax relief by carrying the “enhanced” loss forward to further reduce its taxable income in the next
period. However, this reduction is only meaningful when the company has enough taxable income in this
next period.

7An SME already receiving another form of notified state aid for a project cannot claim R&D tax relief
for that same project under the SME Scheme (which is also a notified state aid), as total state aid intensity
cannot exceed 25% under European Commission’s State Aid rules. However, from April 2003 onward,
SMEs are allowed to claim R&D tax relief for such projects under the Large Company Scheme.

8Qualifying R&D expenditure could include R&D performed outside of the UK by foreign branches
of UK holding companies, as foreign branches’ revenues and costs are directly consolidated into their
UK holding companies’ tax revenues and costs for UK tax purpose. Qualifying R&D expenditure is
unlikely to include R&D performed outside of the UK by foreign subsidiaries of UK holding companies, as
foreign subsidiaries’ net profits are indirectly incorporated into their UK holding companies’ tax revenues
as dividends for UK tax purpose instead.
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large companies starting from April 2002 (Finance Act 2002).9 Between April 2000 and
December 2004 the ceilings for staff headcount, assets, and sales were 249, e27m, and
e40m respectively. From January 2005, they were raised to 249, e43m, and e50m. This
followed European Union guidelines for SME definitions. Throughout the period from
April 2000 (April 2002) to March 2008, the enhancement rates were set at 50% for SMEs
and 25% for large companies, and the payable credit rate for SMEs was 16%.10

As discussed in the main paper, various changes to the scheme became effective at
different points in 2008. First, from April 2008, the enhancement rate for large companies
was increased from 25% to 30%. Then from August 2008, the enhancement rate for SMEs
was increased from 50% to 75% and the payable credit rate for SMEs was reduced from
16% to 14% (to ensure that state aid intensity stays below the EU imposed limit of 25%).
Also from August 2008, the SME Scheme was extended to “larger” SMEs as the SME
ceilings were doubled to 499, e86m, and e100m for staff headcount, assets, and sales
respectively. This change in SME definition is applicable only for the purpose of the
R&D tax relief and therefore is the main focus of our paper, as it allows us to separate
the impacts of the R&D Tax Relief Scheme from other programs. It should also be
noted that while these new SME ceilings were announced in Finance Act 2007, the date
on which they became effective (August 1st, 2008) was announced much later, in July
2008.11

There were tweaks to the system in 2011 and 2012. From April 2011, the SME
enhancement rate was increased to 100% and the SME payable credit rate was reduced
to 12.5%. From April 2012, the SME enhancement rate was again increased to 125%.
However, the SME definition as announced in Finance Act 2007 and the large company
enhancement rate of 30% remained unchanged throughout this period.

The formal definition of R&D has been stable. To qualify for tax relief the costs
must be consistent with the UK accounting definition of R&D under GAAP (accounting
standards FRS102 s18, IAS38, FRS105 s13 and SSAP13). “To quality for R&D, a company
must be undertaking a project to seek an advance in science or technology through the
resolution of scientific or technological uncertainties. The advance being sought must
constitute an advance in the overall knowledge or capability in a field of science or
technology, not a company’s own state of knowledge or capability alone.”

B.1.3 A Simple Model of patents and R&D demand

Consider a CES production function in R&D capital (G) and non-R&D capital (Z). If
input markets are competitive we can write the long-run static first order condition for

9Finance Act 2000 (Chapter 17, Schedule 20) and Finance Act 2002 (Chapter 23, Schedule 12).
10One exception to this differential treatment of SMEs and large companies was the Vaccine Research

Relief Scheme (VRR) launched in April 2003, which extended the higher 50% additional allowance to cover
specific areas of vaccine and drug research conducted in large companies (Finance Act 2003, Chapter 14,
Schedule 31). The VRR enhancement rate was later reduced to 40% from August 2008 onward.

11Finance Act 2007, Section 50 (Appointed Day) Order 2008 of July 16th, 2008.
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factor demand of the firm as:

lnG = −σlnρ + σlnU + lnZ + B (B.1)

where ρ is the user cost of R&D capital, U is is the user cost of non-R&D capital and B is
a technological constant reflecting factor bias terms in the production function. Assume
that G can be described by the perpetual inventory formula Gt = (1 − δ)Gt−1 + Rt

where R is the R&D expenditure in period t. Since in steady state, the R&D just offsets
the depreciated part of the R&D stock δG = R, we can re-write the first order condition
in steady state as:

lnR = −σlnρ + σlnU + lnZ + lnδ + B (B.2)

This is essentially the equation we estimate in equation (2.1). We also consider a
knowledge production function:

lnPAT = µ + αlnG

Substituting the R&D first order condition into this “structural” patent equation
generates our key reduced form patent equation:

ln PAT = −ασlnρ + αlnZ + ασlnU + αlnδ + αB− µ

This is essentially what we estimate in equation (2.2). Around the R&D SME threshold
the user cost of non-R&D capital and technology are assumed to be smooth. Non-R&D
capital (assets) is the running variable so we have a polynomial approximation to lnZ.

The main departure from the R&D and patent equations above is that the presence of
firms with zero patents and/or R&D means we cannot take logarithms. So we use levels
instead of logs as dependent variables. To obtain the logarithmic (proportional) changes
we use the empirical averages of the dependent variable in the pre-policy period. We
also show that the calculations are robust to using a Poisson regression whose first
moment is the exponential log-link function and so is equivalent to estimating in
logarithms.

B.1.4 Estimating the instrument’s sharpness using a subsample

Our approach is a fuzzy RD Design. Equations (2.1) and (2.3) are the first stage and
structural form of a knowledge (patent) production function. But as discussed in
subsection 2.7.2 we may also be interested in the elasticity of R&D with respect to its
tax-adjusted use cost. To do this we need to scale the estimate in equation (2.1) by the
“sharpness” of the IV. Consider equation (2.6):

SMEi = α6 + λEi,2007 + f6(zi, 2007) + ε6i

Recall that Ei,2007 is a binary indicator of firm i’s being below the new asset threshold
in 2007 and SMEi is a binary indicator of the firm’s true SME eligibility (which is
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observable only for R&D performing firms). Let λE = Pr(SME = 1|E, Z) for E ∈ {0, 1}
in the full baseline sample of both R&D performing and non-R&D performing firms. For
the sharpness of Ei,2007 as an instrument for firm’s SME-scheme eligibility, we would
like to estimate λ ≡ λ1 − λ0. The problem is that we only observe SMEi for the
subsample of R&D performing firms as (a) this data is not in HMRC datasets for non-
R&D performers and (b) we cannot calculate eligibility status with precision from the
accounting variables. Thus we can only estimate equation (2.6) on the R&D performers
subsample. Under the RD Design identification assumptions discussed in Section 2.3,
the resulting λ̂ from this regression is a consistent estimate for λ̃ ≡ λ̃1 − λ̃0, where
λ̃E = Pr(SME = 1|E, Z, R > 0) for E ∈ {0, 1}. When will λ̃ be equal to λ? We will prove
that a sufficient condition for this is that SME-scheme eligibility does not change firm’s
likelihood of performing R&D, which is something we test (and find empirical support
for) in the data.

Let pS and pL are the probabilities a firm will perform R&D if it is eligible for the
SME scheme (pS), and if it is not (pL), and ρ ≡ pS

pL
. Note that by RD Design, we can

assume that pS (and pL) is the same for firms just below and above the threshold. In the
subsample of R&D performing firms, we then have:

λ̃E = Pr(SME = 1|E, Z, R > 0) =
λE pS

λE pS + (1− λE)pL

Expanding and rearranging λ̃1 − λ̃0 gives:

λ̃1 − λ̃0 = (λ1 − λ0)
pS pL

[λ1 pS + (1− λ1)pL][λ0 pS + (1− λ0)pL]

⇒ λ̃ = λ
ρ

(λ1ρ + 1− λ1)(λ0ρ + 1− λ0)

= λ{1 + (ρ− 1)[(1− λ1)(1− λ0)− λ1λ0ρ]

[1 + λ1(ρ− 1)][1 + λ0(ρ− 1)]
}

When SME-scheme eligibility does not change firm’s likelihood of performing R&D
ρ = 1 (i.e. pS = pL). In this case λ̃ = λ. Table B.7 Panel A shows that the policy does not
appear to increase firm’s participation in R&D performance, suggesting that pS ≈ pL or
ρ ≈ 1 holds in our setting.12 This implies that λ̃ ≈ λ in a first-order approximation (as
(ρ−1)[(1−λ1)(1−λ0)−λ1λ0ρ]
[1+λ1(ρ−1)][1+λ0(ρ−1)] ≈ 0).13

Finally, consider the sign of the second-order bias when ρ is not exactly 1. If ρ > 1,
the sign of the bias depends on (1− λ1)(1− λ0)− λ1λ0ρ which can be either negative or
positive. When λ1 + λ0 ≥ 1 (i.e., sufficiently large share of SME firms in the full baseline

12Formally, the regressions in Table B.7 Panel A estimate ∆p = Pr(R > 0|E = 1, Z) − Pr(R > 0|E =
0, Z) = [λ1 pS + (1− λ1)pL]− [λ0 pS − (1− λ0)pL] = (λ1 − λ0)(ps − pL). ∆p = 0 implies that pS − pL = 0
under the reasonable assumption that λ1 − λ0. In addition, Table B.8 provides further evidence that the
policy effect on R&D is entirely driven by pre-policy R&D performing firms, whose decisions to engage in
R&D performance in the pre-policy period did not depend on their post-policy SME status.

13Note that although pS = pL is a sufficient condition, it is not a necessary condition. λ̃ ≈ λ also if (i)
λ = 0, (ii) λ1 = 1 and λ0 = 0 (or vice versa), or (iii) ρ = (1−λ1)(1−λ0)

λ1λ0 .
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sample) (1 − λ1)(1 − λ0) ≤ λ1λ0 < λ1λ0ρ, which implies that the bias is negative.
However, when λ1 + λ0 < 1, the bias could still be either negative or positive.

B.1.5 Tax-adjusted user cost of R&D

The full formula for tax-adjusted user cost of R&D as described in sub-section 7.2 is:

ρt, f = (Pr(Has tax liability)×
(1− τt(1 + et, f ))

(1− τt)

+Pr(No tax liability)× (1− ct, f (1 + et, f )))× (r + δ)

where τ is the effective corporate tax rate, e is the enhancement rate, c is the payable
credit rate, r is the real interest rate, δ is the depreciation rate, t denotes year, and f
denotes the whether the company is an SME or a large company. Note that ρt, f varies
over time with τt, et, f , and ct, f .

For simplicity, we do not consider the possibility that a loss-making large company
may still benefit from R&D tax relief by carrying the “enhanced” loss forward to future
years to reduce its taxable income, as this reduction is only meaningful if the company
makes enough profits in this next period. This simplification may overestimate large
companies’ tax-adjusted user cost of R&D and, as a result, underestimate the R&D
tax-price elasticity (by overestimating the difference in tax-adjusted user cost of R&D
between SMEs and large companies). We also do not consider combination claims (cases
in which an SME combines tax deduction with the payable tax credit) as there are almost
none of them in our baseline sample.

The evolution of tax adjusted user costs of R&D for SMEs and large companies over
time is summarized in Table B.2. For large companies (for which the payable credit rate
is always zero), there are slight decreases in the corporate tax rate over 2006-12 (from
30% to 28% to 26%) coupled with slight increases in the enhancement rate (from 25%
to 30%) over the same period. This resulted in a relatively stable tax-adjusted user cost
of 0.190 throughout this period. It is therefore reasonable to use the baseline sample’s
average R&D over 2006-08 as a proxy for how much an average firm in the baseline
sample would spend on R&D if it remained a large company over 2009-11, after the
policy change. For SMEs, large increases in enhancement rate (from 50% to 75% to 100%)
more than offset the slight decrease in corporate tax rate and payable credit rate (from
16% to 14% to 12.5%), leading to a steady reduction in SMEs’ tax-adjusted user cost of
R&D from 0.154 in 2006 to 0.141 in 2011. This widens the difference in tax-adjusted user
cost of R&D between SMEs and large companies over time, from an average percentage
difference of -0.218 over 2006-08 to -0.269 over 2009-11.

Finally, as a robustness check, we also consider using the small firm profit rate (from
19% to 21% to 20% over 2006-11) instead of the main rate for corporate tax rate. As the
tax deduction is less generous with a lower corporate tax rate, the resulting tax-adjusted
user cost in the tax deduction case is higher for both SMEs and large companies and
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their gap is smaller in magnitude (average percentage difference over 2006-08 is -0.185
and over 2009-11 is -0.228).

B.1.6 Macro aspects of the R&D Tax Relief Scheme

A full welfare analysis of the R&D Tax Relief Scheme requires both an analysis of the
benefits in terms of (say) the increased GDP generated by the R&D induced by the
policy (including spillovers) and the deadweight cost of taxation. We would also need
to take a position on other general equilibrium effects such as the increase in the wages
of R&D workers due to increased demand (Goolsbee, 1998). As an interim step towards
this we follow the convention in the literature which is to calculate a “value for money”
ratio µ ≡ ∆R

∆EC
where ∆R is the amount of R&D induced by the policy and ∆EC is the

total amount of additional taxpayer money needed to pay for the scheme (which we call
“Exchequer Cost”, EC).

We consider three policy-relevant experiments. First, we look at the 2008 extension
of the SME Scheme. Second, we do a “value for money” calculation in our data period
2006-11. Finally, we do a simulation of what the path of UK business R&D to GDP
would have been with and without the R&D Tax Relief Scheme.

2008 extension of the SME Scheme

With respect to the 2008 extension of the SME Scheme to cover “larger” SMEs, ∆R

measures the increase in R&D induced by more generous tax relief under the SME
Scheme by a firm benefitting from the scheme thanks to the new thresholds. That is,
∆R = Rnew − Rold where Rnew and Rold are the firm’s R&D’s under the new and old
policies respectively. Similarly, ∆EC = ECnew − ECold where ECnew and ECold are the
firm’s corresponding Exchequer costs due to the policy change.

Rearranging the R&D tax-price elasticity formula gives:

η =

Rnew−Rold
(Rnew+Rold)/2

ρnew−ρold
(ρnew+ρold)/2

=
∆R
R̄
∆ρ

ρ̄

≡ ∆R

R̄
= η ×

∆ρ

ρ̄

where ρ is the tax-adjusted user cost of R&D, ∆A ≡ Anew − Aold, and Ā ≡ (Anew +

Aold)/2. For simplicity, we consider the tax deduction case and the SME payable tax
credit case separately.

SME tax deduction case
In this case,

ρdeduction =
(1− τ(1 + e))

1− τ
(r + δ)

ECdeduction =R× e× τ

where τ is the effective corporate tax rate, e is the enhancement rate, r is the real interest
rate, and δ is the depreciation rate. As the above firm moves from being a large company
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pre-2008 to being an SME post-2008, its enhancement rate increases from 25% to 75%.
At the same time, corporate tax rate decreases from 30% to 28%. Combining eold = 0.25,
enew = 0.75, τold = 0.30, τnew = 0.28 with estimated R&D tax-price elasticity of η = −4.0
gives ∆ρ

ρ̄ = −0.23 and ∆R
R̄ = 0.92, which implies Rnew

Rold
= 2.70.

On the cost side, we have:

ECold =Rold + eold + τold = Rold × 0.075

ECnew =Rnew + enew + τnew = Rnew × 0.21

Putting all the elements together gives

µdeduction ≡ ∆R

∆EC
=

Rnew − Rold

ECnew − ECold
=

(Rold × 2.70)− Rold

(Rold × 2.70× 0.21)− (Rold × 0.075)
=

1.70
0.49

= 3.46

so the value for money ratio in the SME tax deduction case is 3.46. In other words, £1 of
taxpayer money generates £3.46 in additional R&D.

Finally, note that ∆EC could be rewritten as:

∆EC = ECnew − ECold = Rnew × 0.21− Rold × 0.075 = ∆R × 0.21 + Rold × (0.21− 0.075)

where the first element represents the Exchequer costs associated with new R&D and
the second term reflects additional Exchequer costs paid on existing R&D due to more
generous tax relief. In this case, the majority of the additional costs are because of the
new R&D generated, i.e., ∆R × 0.21 = Rold × 0.36 makes up close to 73% of ∆EC(∆EC =

Rold × 0.49).
SME payable tax credit case
In this case,

ρcredit =(1− c(1 + e))(r + δ)

ECcredit =R× c× (1 + e)

where c — the payable credit rate -– is always zero for large companies and 14% for
SMEs post-2008. Combining cold = 0, cnew = 0.14, eold = 0.25, enew = 0.75, and η = −4.0
gives ∆ρ

ρ̄ = −0.28 and ∆R
R̄ = 1.11, which implies Rnew

Rold
= 3.51. On the cost side, ECold = 0

and ECnew = Rnew × cnew × (1 + enew) = Rnew × 0.25. Putting all the elements together
gives:

µpayable ≡ ∆R

∆EC
=

Rnew − Rold

ECnew − ECold
=

Rold × 3.51− Rold

Rold × 3.51× 0.25− 0
=

2.51
0.86

= 2.92

The value for money ratio in the payable tax credit case is 2.92. In this case, the amount
of additional R&D’s Exchequer costs due to newly-generated R&D ∆R × 0.25 = Rold ×
0.62 constitutes close to 72% of ∆EC(∆EC = Rold × 0.82).
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R&D Tax Relief Scheme over 2006-11

To evaluate the overall R&D Tax Relief Scheme over 2006-11, we calculate:

µ ≡ ∆R

∆EC
=

Rtax relief − Rno tax relief

ECtax relief − ECno tax relief
=

Rtax relief − Rno tax relief

EC

separately for each of three sub-schemes, SME tax deduction scheme (Table B.17 Panel
B), SME payable tax credit scheme (Panel C), and large company tax deduction scheme
(Panel D), in each year, using the same approach as described in detail above. We
generalize our estimated tax-price elasticity of 4.0 to the whole population of SMEs, but
use a lower-bound tax-price elasticity of 1.1 for the population of large companies as
these firms are less likely to be credit constrained and therefore less responsive to tax
incentives. In addition, we use the small profits rate (19%-21%) instead of the regular
corporate tax rate (26%-30%) for the population of SMEs as most of them are much
smaller than the “larger” SMEs in our baseline sample and therefore most likely qualify
for the small profits rate.

As reported in Table B.17, the SME tax deduction’s value for money ratio decreases
from 4.2 in 2006 to 3.6 in 2011 as SME tax deduction becomes significantly more
generous over time. On the other hand, SME payable tax credits and large company
tax deduction’s value for money ratios are stable at around 2.9 and 1.5 respectively as
these schemes do not change much over this period. The fact that all the value for
money ratios are well above unity indicates that the R&D Tax Relief Scheme is effective
in inducing additional R&D at relatively low cost to the Exchequer. Finally, we estimate
the amount of additional R&D induced by the R&D Tax Relief Scheme as ∆R = µ× EC
using the calculated value for money ratios µ’s and Exchequer costs national statistics
(HMRC 2015). We do this for each of the three schemes in each year in Panels B, C and
D, and then aggregate them together in Panel E.

To give an example, consider the SME tax deduction scheme in Panel B for 2009.
The tax-adjusted user cost of R&D under this sub-scheme in 2009, calculated using the
policy parameters, is 1−0.21×(1+0.75)

1−0.21 (0.05 + 0.15) = 0.16 The counterfactual user cost in
world without R&D tax relief is 0.05 + 0.15 = 0.20 (e = 0). The percentage difference
between these user costs is then ∆ρ

ρ̄ = 0.16−0.20
(0.16+0.20)/2 = −0.22. The tax-price elasticity of

R&D of SMEs as estimated in sub-section 7.2 is ηSME = −4.0.
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The elasticity formula and Exchequer cost formulae give:

ηSME =
∆R
R̄
∆ρ

ρ̄

= R̄× ηSME ×
∆ρ

ρ̄

∆EC = ECtax relief − 0 = Rtax relief × e× τ

= (R̄ +
∆R

2
× e× τ = R̄× (1 + 0.5 +

∆R

R̄
)× e× τ

⇒ µSME deduction =
∆R

∆EC
=

ηSME × ∆ρ

ρ̄

(1 + 0.5× ∆R
R̄ )× e× τ

=
4.0× 0.22

(1 + 0.5× 4.0× 0.22)× 0.75× 0.21
= 3.89

We report this value for money ratio in the second row of Table B.17 Panel B. From
HMRC data we know that £130m was paid out in the SME deduction in this year. Hence,
we can calculate that the total amount of additional R&D induced ∆R = µSME deduction ×
EC=3.89×130=506 (£m), as shown in fourth row of Panel B.

As discussed in sub-section 2.7.3, our aggregate estimates in Panel E suggest that
the overall impact of the R&D Tax Relief Scheme is large. Over 2006-11, the policy,
which costs less than £6 billion in lost tax revenue, induced close to £12 billion in
additional R&D. On an annualized basis, spending £0.96 billion produced £1.98 billion
of additional R&D.

These calculations show our estimates of what the counterfactual path of R&D would
have been in the absence of the R&D Tax Relief Scheme. The bottom row of Table B.17
gives the yearly breakdown. For example, the final column shows that on average 2006-
11 we estimate that R&D would be a full 20% lower in the absence of the tax scheme.

Counterfactual R&D without the Tax Relief Scheme 2000-11

It is important to note that throughout our analysis we have been focusing on qualifying
R&D, i.e., that part of business R&D that is eligible for tax relief. Aggregate qualifying
R&D is lower than the figures for Business Enterprise R&D (BERD) reported in Figure
2.4. For example, in 2011 aggregate BERD was £17bn and aggregate qualifying R&D
was £12bn. There are various reasons for this difference, including the fact that BERD
includes R&D spending on capital investment whereas qualified R&D does not (only
current expenses are liable). It is also the case that HMRC defines R&D more narrowly
for tax purposes that BERD which is based on the Frascati definition.

We present counterfactual BERD to GDP ratios in Figure 2.4. To calculate the
counterfactual (the dotted line “UK without tax relief” in Figure 2.4) we simply deduct
the additional qualified R&D that we estimate were created by the R&D tax relief system
(second row of Table B.17 Panel E) from the aggregate BERD numbers from OECD MSTI
Dataset (https://stats.oecd.org/Index.aspx?DataSetCode=MSTI_PUB). Since BERD
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is greater than qualifying R&D, the 20% fall in qualifying R&D translates into a 13% fall
in BERD.

B.2 Data

B.2.1 CT600 dataset

The CT600 dataset is constructed by the UK tax authority (HMRC) and is a confidential
panel dataset of corporate tax returns or assessments made from the returns for the
universe of companies that file a corporate tax return in the UK. We can only access
the dataset from within an HMRC facility (similar to a US Census Bureau Research
Data Center) and merging with other datasets requires approval from HMRC. It is
currently not possible to merge CT600 with other government secured datasets available
at different facilities.14 The CT600 dataset covers all accounting periods whose end dates
fall between April 1st, 2001 and March 31st, 2012 (we denote the fiscal year ending in
March 31st, 2012 by “2011” as most of the data will fall in this calendar year) and consists
of all information on the UK Company Tax Return form (which is called the CT600
form). Specifically, an extension of CT600, the Research and Development Tax Credits
(RDTC) dataset, provides detailed information on tax relief claims. However, CT600
contains little information on financial statement variables (e.g., assets and employment
are not included) as they are not directly required on corporate tax forms. 15

We convert the original observation unit of firm by accounting period in CT600 to
firm by financial year by aggregating all accounting periods the end dates of which fall
in the same financial year.16 This conversion affects a very small number of observations
as only 3% of our firm by year observations are aggregates of multiple accounting
periods. Our converted dataset then contains 15.7 million firm by year observations
over 12 financial years from 2000 to 2011 (covering 3.2 million firms), including 9.1
million firm by year observations over our study period from 2006 to 2011 (covering
2.5 million firms). Our key variables of interest are those related to firms’ R&D tax
relief claims from CT600’s RDTC dataset, which include the amount of qualifying R&D
expenditure each firm has in each year and the scheme under which it makes the claim
(SME vs. Large Company Scheme). These variables, originally self-reported by firms
on their CT600 forms, have been further validated and corrected by HMRC staff using
additional tax processing data available only within the tax authority. It should also be

14For example, it is currently not possible to merge CT600 with the BERD firm survey which is used to
build the national estimate of R&D. Since BERD is a stratified random sample which puts large weight on
the biggest R&D performers, we would likely only have a small overlap with firms around the threshold.

15The CT600 dataset was further extended to cover up to the end of financial year 2014 in late 2017.
However, the corresponding RDTC dataset has not been made available as of the writing of this paper.
As a result, we focus on the period between 2009 and 2011, for which we have reliable R&D data, as our
post-policy period for R&D analyses. In addition, it is unlikely that our key running variable – total assets
in 2007 – has strong predictive power of firm’s SME status after 2011. We do use data on sales up to 2013
from this extended CT600 dataset in our firm performance analysis (see Table B.13).

16Financial year t begins on April 1st of year t and ends on March 31st of year t + 1.
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noted that R&D tax relief variables are only available for R&D-tax-relief-claiming firms
for the years in which they make the claims. While we believe it is reasonable to assume
that non-claiming firms have zero qualifying R&D expenditure, it is not possible to
construct their precise SME eligibility without full information on employment, assets
(balance sheet total), sales, and ownership structure.

Table B.20 shows that over our study period of 2006-11, we observe claims in 53,491
firm by year observations (by 20,730 firms), 81% of which are under the SME Scheme.
The total qualifying R&D expenditure and estimated Exchequer costs under the SME
Scheme are in nominal terms £11.2bn and £1.8bn respectively; the corresponding figures
under the Large Company Scheme are £48.5bn and £3.9bn (excluding claims by SME
subcontractors). These figures are in line with the official R&D Tax Relief Scheme
statistics released in HMRC (2014).

We also use the data on sales and on investment in plant and machinery from CT600.
Sales are annualized to account for different accounting period lengths. CT600 tax-
accounting sales, which is calculated using the cash-based method, is not the same as
financial-accounting sales (reported in the FAME data – see below), which is calculated
using the accrual method and used to determine SME eligibility.17 However, CT600 sales
provides a good measure for firms’ growth and performance, given its wide coverage.

B.2.2 FAME dataset

FAME is a database of UK companies provided by Bureau Van Dijk (BVD), a private
sector company. The panel dataset contains companies’ balance sheet and income
statement data from companies’ annual accounts filed at the UK company registry
(Companies House), together with additional information on addresses and industry
codes. Like other countries, UK regulations for reporting accounting variables vary
with company size, so some balance sheet and income statement variables are missing
– we discuss the implications of this below.18

Our FAME dataset also covers 14 financial years from 2000 to 2013 and contains 23.9
million firm by year observations (covering 4.4 million firms), including 11.5 million
firm by year observations over our study period from 2006-11 (covering 3.1 million
firms). Our key SME-eligibility variable from FAME (for R&D tax relief purpose) is
total assets (i.e., balance sheet total). As almost all UK companies are required by the
Companies House to send in their balance sheets for their annual accounts regardless
of their size, total assets coverage in FAME is close to complete, at 97% over our study

17The cash-based method focuses on actual cash receipts rather than their related sales transactions. The
accrual methods records sale revenues when they are earned, regardless of whether cash from sales has
been collected.

18All UK limited companies, public limited companies (PLC), and limited liability partnerships (LLP) are
required to file annual accounts with the Companies House. An annual account should generally include
a balance sheet, an income statement, a director’s report, and an audit report. However, smaller companies
may be exempt from sending in income statement, director’s report, or audit report. All UK registered
companies are required to file annual returns with the Companies House, which contain information on
registered address and industry codes.
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period of 2006-11. On the other hand, sales (financial-accounting sales used to determine
SME eligibility) is reported by only 15%, as smaller firms are not required to provide
their income statements.19 The proportion of firms who report employment is even
lower at 5%, as employment reporting is not mandatory. Even in our baseline sample of
relatively larger firms (i.e., firms with total assets in 2007 between e61m and e111m), the
proportion of firms who report sales is 67% and the proportion who report employment
is 55%. For this reason, while we do use FAME sales and employment as running
variables in some alternative specifications, our baseline sample and key results are
derived using total assets as the running variable.

Besides total assets, sales, and employment, other FAME variables used in our paper
include primary industry code (UK 4-digit SIC), address, and fixed assets as a proxy for
capital stock.

B.2.3 PATSTAT dataset

Our patent data are drawn from the World Patent Statistical Database (PATSTAT)
maintained by the European Patent Office (EPO).20 PATSTAT is the largest international
patent database available to the research community and includes nearly 70 million
patent documents from over 60 patent offices, including all of the major offices such as
the United States Patent and Trademark office (USPTO), the Japan patent office (JPO)
and the Chinese Patent and Trademark Office (SIPO) in addition to the EPO. PATSTAT
data cover close to the population of all worldwide patents between 1900-2015.

PATSTAT reports the name and address of patent applicants, which allows matching
individual patents with company databases. The matching between PATSTAT and
FAME is implemented by Bureau Van Dijk and is available as part of the ORBIS online
platform through a commercial agreement. The quality of the matching is excellent:
over our sample period, 94% of patents filed in the UK and 96% of patents filed at the
EPO have been matched with their owning company.

A patent in country i grants a holder an exclusive right to commercially exploit the
invention in that country. Accordingly, she will patent her invention in country i if she
plans to either market there directly or license to another firm who will sell it there.
The set of patents in different countries related to the same invention is called a patent
family. The vast majority of patent families include only one patent (usually in the home
country of the inventor). Importantly, PATSTAT reports not only the unique identifier
of each patent application, it also indicates a unique patent family indicator for each
patent (we use the DOCDB patent family indicator). This allows us to identify all patent
applications filed worldwide by UK-based companies and to avoid double-counting
inventions that are protected in several countries.

19Small companies (those having any 2 of the following: (1) sales of £6.5m or less, (2) assets of £3.26m
or less, (3) 50 employees or less) are only required to send in balance sheets. Micro-entities (those having
any 2 of the following: (1) sales of £632,000 or less, (2) assets of £316,000 or less, (3) 10 employees or less)
are only required to send in simplified balance sheets.

20For further details see http://www.epo.org/searching/subscription/raw/product-14-24.html.
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In this study, our primary measure of innovation is the number of patent families
– irrespective of where the patents are filed. This proxies for the number of inventions
a firm makes. This means that we count the number of patents filed anywhere in
the world by firms in our sample, be it at the UK Intellectual Property Office, at
the European Patent Office, at the USPTO or anywhere else, but we use information
on patent families to make sure that any invention patented in several places is only
counted once. Patents are sorted by the first year they were filed (the priority year). We
use fractional counts to account for multiple applicants. For example, if two firms jointly
apply for a patent, then each firm is attributed one half of a patent. In practice, only 8%
of patents filed by UK-based companies are filed jointly by at least two companies.

There are many well-known issues with patents as a measure of innovation. As
noted above, not all inventions are patented, although it is reasonable to assume
the most valuables ones are, so counting patents screens out many of the low value
inventions. Nevertheless, since patents are of very heterogeneous importance we use
several approaches to examine how our results change when looking at patent quality.
First, we distinguish between patents filed at the UK patents office and patents files at
the EPO and USPTO.21 Since the financial and administrative cost is about six times
higher at the EPO than UK patent office, EPO and USPTO patents will, on average be of
higher private value. A second measure of patent quality is the size of patent families,
the number of jurisdictions in which each patent is filed. There is evidence that the
number of jurisdictions in which a patent is filed is an indicator of its economic value as
patenting is costly (see Guellec and Van Pottelsberghe de la Potterie, 2004, and Harhoff
et al., 2003). A third measure of quality is to distinguish by technology class, as some
classes (e.g., pharmaceuticals) are likely to be more valuable than others (e.g., business
process methods). Fourth, we know whether the patent filed was subsequently granted,
with the reasonable presumption that granted patents are of higher value. Fifth, we
use patent citations, also available from PATSTAT. For each patent in the database, we
know how many times it was cited by subsequent patents (excluding self-citations). We
use the number of subsequent citations (referred to as forward citations) as a measure
of value. Again, this measure is well rooted in the patent literature (Hall et al., 2005,
Lanjouw et al., 1998). The disadvantage for our purposes is that we only have a short
finite window of time for future citations causing a truncation problem.

In PATSTAT, patents are categorized based on the International Patent Classification
(IPC). We use IPC codes at three-digit level to construct measures of the technological
distance between firms used to investigate spillover effects.

21Note that because of differences in the “technological scope” of patents across patent offices, two
patents filed in the UK may be “merged” into a single patent filed at the EPO. In this case, these three
patents will constitute a single patent family and the number of patent families is smaller than the number
of UK patents. This configuration happens very rarely, however.
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B.2.4 Sample construction: merging datasets

CT600 was merged with FAME using an HMRC-anonymized version of company
registration number (CRN), which is a unique regulatory identifier in both datasets.
95% of CT600 firms between 2006 and 2011 also appear in FAME, covering close to
100% of R&D performing firms and 100% percent of patenting firms in this period.22

Unmatched firms are slightly smaller but not statistically different from matched ones
across different variables reported in CT600, including sales, gross trading profits, and
gross and net corporate tax chargeable.23 Furthermore, that the match rate is less than
100% is due to CRN entering error in FAME, which happens more often among firms
that are much smaller than those around SME-eligibility thresholds.24 For these reasons,
we believe sample selection due to incomplete matching between CT600 and FAME is
unlikely to be an issue for us.25

PATSTAT has been merged with FAME by BVD. As PATSAT comprehensively covers
all UK patenting firms, we can safely infer that non-matched firms have zero patents.
Over our study period of 2006-11, 9,420 out of 2.5 million CT600 firms claim a total
of 46,405 patent families (in 17,293 firm by year observations), including 23,617 higher-
quality EPO patents. These patents cover 90% of the total recorded in PATSTAT.

From the merged master dataset, we construct our baseline sample based on total
assets in 2007, as it is our key running variable. Specifically, our baseline sample includes
5,888 firms that satisfy the two following conditions: (1) the firm’s total assets in 2007
is between e61m and e111m (within e25m below and above the SME threshold of
e86m), and (2) the firm appears in CT600 in 2008 (to exclude firms exiting before the
policy change in 2008). Baseline sample descriptive statistics are summarized in Table
2.1 and discussed in detail in sub-section 2.4.2.

B.2.5 Variable construction

As FAME total assets and sales are reported in sterling while the corresponding SME
ceilings are set in euros, we convert sterling to euros using the exact same rule used by
HMRC for tax purposes. That is, the conversion should be done using the exchange
rate on the last day of the relevant accounting period or the average daily exchange rate
throughout that accounting period, whichever is more beneficial for the enterprise. The

22Out of 2,495,944 firms present in CT600 between 2006 and 2011, 2,358,948 firms are matched to FAME
(94.5% match rate). Over the same period, 20,627 out of 20,730 R&D-performing firms and 9,376 out of
9,420 patenting firms are matched to FAME (99.5% match rate).

23Differences (standard errors) between matched and unmatched firms in sales (£’000), gross trading
profits (£), gross corporate tax chargeable (£) and net corporate tax chargeable (£) are 970 (3,286), 8,969
(13,703), 3,497 (3,898) and 1,961 (2,291) respectively. None of these differences are statistically significant at
conventional level.

24Because of confidentiality concerns, we do not get to work directly with CRNs but an anonymized
version of CRNs provided by the HMRC Datalab for both FAME and CT600 datasets. This prevents us
from further cleaning and matching of initially unmatched firms due to above issue.

25The correlation between ln(sales) from CT600 and ln(sales) from FAME is 0.90. As noted above, the
variables are not measured in the same way, but the fact that their correlation is high is reassuring that the
match is well performed.
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daily exchange rate is obtained from the OECD, exactly the same method as used by
HMRC.

For qualifying R&D expenditure, we do not include the amounts claimed by SME
subcontractors, which do not benefit from more generous reliefs under the SME Scheme.
Since SME subcontracting makes up only a small portion of the overall R&D Tax Relief
Scheme, we confirmed excluding SME subcontracting does not materially affect our key
findings. To account for price differences across years, we also convert nominal values
of R&D expenditure to their real values in 2007 price, using UK annual CPI as reported
in the World Bank Economic Indicators database.26

We address the presence of outliers in R&D spending or patenting by winsorizing
our key outcome variables, which include qualifying R&D expenditure and number of
all patents as well as number of EPO patents, UK patents, and US patents. Specifically,
for each variable, the top 2.5% of non-zero values in each year within the sample of
firms with 2007 total assets between e46m and e126m are set to the corresponding
97.5 percentile value (i.e., winsorization at 2.5% of non-zero values). This translates
into “winsorizing” the R&D of top 5 to 6 R&D spenders and the number of patents of
top 2 to 4 patenters in the baseline sample in each year. It should be noted that our
key findings are robust to alternative choices of winsorization window (e.g., 1% or 5%
instead of 2.5%), or to excluding outliers instead of winsorizing outcome variables (see
Tables A3-A5). Construction of other variables is detailed in the notes to tables.

B.2.6 Running variable selection: SME criterion binding ratio

We chose total assets as the key running variable as it is the only SME criterion with
close to complete coverage in FAME. In addition, as discussed in sub-section 2.7.6, we
also find evidence that the asset criterion is more binding than the sales one. A firm is
considered an SME if it meets either one of the criteria, thus the asset criterion is binding
only when the firm already fails the sales one and vice versa.

We calculate the binding/non-binding ratio for the asset criterion as the number of
firms with 2007 sales in [e100m, e180m] (i.e., firms for which the asset criterion binds),
divided by the number of firms with 2007 sales in [e20m, e100m] (i.e, firms which also
meet the sales criterion), conditioned on firms’ 2007 total assets being in [e36m, e136m]
(i.e., +/-e50m window around the asset threshold of e86m). Similarly, the same ratio for
the sales criterion is the number of firms with 2007 assets in [e86m, e166m] (i.e., firms
for which the sales criterion binds), divided by the number of firms with 2007 assets in
[e6m, e86m] (i.e., firms which already meet the asset criterion), conditioned on firms’
2007 sales being in [e50m, e150m] (i.e., +/-e50m window around the sales threshold
of e100m). The binding/non-binding ratio for the asset criterion is 0.36, considerably
higher than the same ratio for the sales criterion of 0.20, as presented in Figure B.8.

26Ratios of current-£ to 2007-£ derived using UK annual CPI are 1.023 for 2006, 1.000 for 2007, 0.965 for
2008, 0.945 for 2009, 0.915 for 2010, and 0.875 for 2011.
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This implies that the below-asset-threshold indicator is a more precise instrument for
firm’s SME status than the below-sales-threshold indicator, consistent with the results
reported in Table B.14 Panel B. Finally, the qualitative results that the asset criterion is
more binding than the sales criterion does not change when we pick different windows
to calculate the binding/non-binding ratios.

B.3 R&D technology spillovers

B.3.1 Semi-parametric estimation of spillovers

We modify the spillover regression in equation (2.4) from section 2.6 to model the
potentially heterogeneous effect of baseline firm i’s likely-eligibility for the SME scheme
on connected firm j’s average patents over 2009-13 as a non-parametric function of the
primary technology class size (measured in percentile and denoted as x):

PATj,09−13 = α4(x) + θ(x)Ei,2007 + f4(zi,2007, x) + g4(zk,2007, x) + ε4ij

Figure 2.5 plots the estimated function θ(x) of the spillover effect based on primary
technology class size percentile. It is estimated from semi-parametric local linear
regressions of equation (2.4) at each value of x, weighted by a Gaussian kernel with
a bandwidth of 20% (with x ranging from 1 to 100). The observed pattern is similar
across a wide range of bandwidths.

B.3.2 Alternative approach to estimating R&D technology spillovers

In this sub-section, we discuss a complementary approach to estimating R&D tech-
nology spillovers using a monadic specification instead of the dyadic specification
discussed in Section 2.6. Following the work of Jaffe (1986) we calculate the knowledge
spillover pool available to firm j as spilltechRj,09−11 = ∑i,i 6=j ωijRi,09−11 where Ri,09−11 is
the average R&D of firm i over 2009-11 and ωij is measure of technological “proximity”
between firms i and j, computed based on the distribution of technology classes in which
the firms patent (e.g., if two firms have identical patent class distributions then proximity
is 1; if they patent in entirely different patent classes then proximity is zero).27 We follow
our earlier approach of using (Ei,2007 as instrument for Ri,09−11 ((Ei,2007 is firm i’s below-
asset-threshold indicator in 2007).28 Consequently, we construct spilltechRj,09−11 =

∑i,i 6=j ωijEi,2007 as instrument for spilltechRj,09−11. The exclusion restriction requires that

27Following Jaffe (1986) we define proximity as the uncentered angular correlation between the vectors

of the proportion of patents taken out in each technology class ωij =
Fi F′j

(Fi F′i )
1
2 (Fj F′j )

1
2

Fi = (Fi1, ..., FiΥ) is a 1

× Υ vector where Fiτ = niτ
ni

is firm i’s number of patents in technology field τ as a share of firm i’s total
number of patents. To calculate Fiτ , we use information on all patents filed between 1900 and 2011 and
their 3-digit International Patent Classification (IPC), which classifies patents into 123 different technology
fields. These data are available from PATSTAT. Bloom et al. (2013) show that the Jaffe measure delivers
similar results to more sophisticated measures of proximity.

28More generally, (Ei,2007 = I{zi,2007 ≤ z̃} is a binary indicator equal to one if the 2007 financial variable
zi,2007 is equal to or less than the corresponding new SME threshold for it, z̃.
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the discontinuity-induced random fluctuations in firm i’s eligibility would only affect
technologically-connected firm j’s R&D and innovation through R&D spillovers.

Our monadic spillover IV regression estimates the impact of the aggregate R&D
spillover pool available to firm j, spilltechRj,09−11, on firm j’s innovation, PATj,09−13,
controlling for firm j’s own R&D using Ei,2007 as an instrument:

PATj,09−13 = α + ψspilltechRj,09−11 + Fj(Z2007) + ζEE,2007 + g(zj,2007) + πtechconnectj + εj

where Fj(Z2007) = ∑i,i 6=j ωij f (zi,2007) and Z2007 is a vector comprising of the 2007
assets for all firms; f (zi,2007) and g(zj,2007) are polynomials of firms i and j’s 2007
total assets; and techconnectj = ∑i,i 6=j ωij.29 We instrument spilltechRj,09−11 with
spilltechEj,2007. Fj(Z2007) and g(zj,2007) are polynomial controls for spilltechEj,2007 and
Ej,2007 respectively while techconnectj additionally controls for spillover-receiving firm
j’s level of “connectivity” in technology space. We estimate the above equation on the
sample of firm j’s with total assets in 2007 between e51m and e121m. This is a larger
bandwidth than in the baseline sample as the policy-induced R&D can have spillovers
on firms well beyond the policy threshold.30 Standard errors are bootstrapped using
1,000 replications over firms.

Column (1) of Table B.18 reports the first stage for the R&D spillover term and
column (2) the first stage for spillover-receiving firm j’s own R&D. As expected the
instrument spilltechEj,2007 significantly predicts spilltechRj,09−11 (column (1)) and the
instrument Ej,2007 significantly predicts connected firm j’s own R&D (column (2)). The
instruments spilltechEj,2007 and Ej,2007 are jointly statistically different from zero in both
columns, with F-statistics of 26.9 and 6.4 respective. Interestingly, we see that in the
reduced form patent model of column (3) the R&D spillover instrument, spilltechEj,2007,
has a large and significant positive effect on firm j’s patents. This is consistent with

29Given equation (2.1) for firm i’s R&D as Rj,09−11 = α + βREi,2007 + f (zi,2007) + εi, aggregating across
all firm i’s around the SME asset threshold and using ωij as weights gives:

∑
i,i 6=j

ωijRi,09−11 = α ∑
i,i 6=j

ωij + βR ∑
i,i 6=j

ωijEi,2007 + ∑
i,i 6=j

ωij f (zi,2007) + ∑
i,i 6=j

ωijεi

⇒ spilltechRj,09−11 = αtechconnectj + βRspilltechEj,2007 + Fj(Z2007) + νj

This equation shows that Fj(Z2007) is the appropriate polynomial control when using spilltechEj,2007
as instrument for spilltechRj,2007. The key condition that νj = ∑i,i 6=j ωijεi is mean independent of
spilltechEj,2007 conditional on Fj(Z2007) follows from RD Design results. To address non-trivial serial
correlation among the error term νj we correct the standard errors using 1,000 bootstrap replications over
firms.

30Note that spilltechRj,09−11 is calculated using the population of all possible firm i’s, while
spilltechEj,2007 and Fj(Z2007) are calculated using all firm i’s with 2007 total assets between e51m and
e121m (same as the sample on which we nomadic spillover equation), as the RD Design works best in
samples of firms around the relevant threshold. Our key results are robust to using different sample
bandwidths around the threshold to calculate spilltechEj,2007 and/or to estimate the monadic spillover
equation. In addition, in all reported results, we use second order polynomial controls separately on each
side of the threshold for f (zj,2007) and g(zj,2007)). In this larger sample we found that higher order terms
were significant. However, using different orders of polynomial controls does not change our qualitative
findings.
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the hypothesis that policy-induced R&D has sizeable spillover effect on technologically-
connected firms’ innovation.

Turning to the IV results, column (4) suggests that there is no significant R&D
spillover effect on technologically-connected firms’ R&D, as already suggested by the
R&D regression in column (2). By contrast, columns (5) and (6) report that the aggregate
R&D spillover pool available to firm j, spilltechRj,09−11 does have a causal impact on
firm j’s patenting, consistent with the patent regression in column (3). This spillover
effect is robust after controlling for the policy’s direct effect on firm j’s R&D, either
by (i) including Ej,2007 as a control in addition to the instrumented spillover term
(column (5)), or (ii) including Rj,09−11 as a control and using Ej,2007 as the corresponding
instrument (column (6)). The latter is a very demanding specification, and even though
the corresponding spillover coefficient is no longer significant,31 its magnitude is almost
identical in both specifications.

In terms of magnitudes, the last two columns suggest that a £1m increase in R&D
by a firm i with an identical technological profile will increase firm j’s patenting by
0.014, which is 3.4% of the direct effect of an equivalent R&D increase by the firm itself
(=0.014/0.412). Combining this with the mean level of connectivity among firms in the
sample gives us the total spillover effect of 0.616 (= 0.014 x 44). In other words, the total
spillovers of an £1m increase in R&D on all technology-connected firms’ patenting is
about 1.5 x (= 0.616/0.412) the direct effect on own patenting.32

This presence of positive R&D spillovers on innovations is robust to a wide
range of robustness tests. The reduced-form spillover coefficient capturing effect of
spilltechEj,2007 on firm j’s patents (column (3)’s specification) is robust to (i) limiting
firm j sample to only patenting firms, (ii) using EPO, UK, and US patent outcomes, (iii)
employing the more sophisticated Mahalanobis generalization of the Jaffe proximity
measure to allow for between field overlap (see Bloom et al., 2013), (iv) reconstructing
the standard Jaffe measure of technological proximity using only information on patents
filed up to 2008, and (v) using smaller or large sample to calculate the instrument
spilltechEj,2007 or to estimate the monadic spillover equation.

Besides spillovers in technology space, there may be some negative R&D spillovers
through business stealing effects among firms in similar product markets. To ad-
dress this concern, we follow Bloom et al. (2013) and construct spillsicRj,09−11 =

∑i,i 6=j φijRi,09−11 that captures the aggregate R&D spillovers pool in product market

31If we use robust standard errors instead of bootstrapped standard errors, the estimated coefficient
(standard error) for spilltechRj,09−11 from column (6)’s specification is 0.014 (0.007), statistically significant
at 5% level.

32Consider a firm i that increases its R&D by £1m. The spillover of this R&D increase on a firm j’s
patenting, as estimated by the monadic spillover equation, is ψωij. Summing this spillover over all spillover-
receiving firms j’ patenting gives total spillovers of ψ ∑i,i 6=j ωij = ψtechconnecti, which is the product of
the spillover coefficient and firm i’s level of connectivity. The estimated total spillover effect for an average
firm i is then ψ̂techconnecti = 0.014× 44 = 0.616.
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space, where φij is a measure of product market distance between firms i and j.33 We
also construct spillsicEj,2007 = ∑i,i 6=j φijEi,2007 as instrument for spillsicRj,09−11. We found
no significant effects of spillsicRj,09−11 on either firm j’s R&D or firm j’s patents.

In summary, these findings provide evidence that policy-induced R&D have sizable
positive impacts on not only R&D performing firms but also other firms in similar
technology areas, as measured by patents. This further supports the use of R&D
subsidies in the UK context.

33φij = 1 if firm i operates in the same industry as firm j and φij = 0 otherwise. To calculate φij, we use
firms’ primary industry codes at 3-digit Standard Industry Classification (SIC). These data are available
from FAME.
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Figure B.1: Discontinuity in average R&D expenditure over 2009-2011

Figure B.2: Discontinuities in average number of patents over 2009-2013
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Figure B.3: Discontinuities in 2009-11 R&D at “pseudo” SME asset thresholds

Figure B.4: Discontinuities in 2009-13 patents at “pseudo” SME asset thresholds
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Figure B.5: McCrary test at the SME asset threshold before the policy change

Figure B.6: McCrary test at the SME asset threshold after the policy change
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Figure B.7: Spillovers on “loosely” connected firm’s patents by patent class size
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Figure B.8: Number of firms with binding/non-binding asset and revenue thresholds
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Table B.1: Design of UK R&D Tax Relief Scheme, 2000-2012

Table B.2: Tax-adjusted user cost of R&D capital over time
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Table B.3: Robustness checks for R&D regressions
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Table B.4: Robustness checks for reduced-form patent regressions
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Table B.5: Robustness checks for effects of R&D on patents (IV regressions)
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Table B.6: Additional results on effects of R&D tax relief on quality-adjusted patents
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Table B.7: Discontinuities in the probabilities of doing any R&D or filing any patents

Table B.8: Heterogeneous effects of R&D tax relief by past R&D and patents
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Table B.9: Heterogeneous effects of R&D tax relief by industry patenting intensity
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Table B.10: Heterogeneous effects of R&D tax relief by Biotech-pharma (BTP)
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Table B.11: Heterogeneous effects of R&D tax relief by firms’ past capital investments
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Table B.12: Effects of R&D tax relief on other expense categories
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Table B.13: Effects of R&D tax relief on other measures of firms performance
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Table B.14: Estimating impacts of R&D tax relief using other SME criteria
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Table B.15: Tax-price elasticities of R&D and patents using different approaches
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Table B.16: Bootstrapping elasticity estimates
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Table B.17: Value for money analysis of R&D Tax Relief Scheme
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Table B.18: Heterogeneous effects of R&D tax relief by external finance dependence

Table B.19: R&D technology spillovers on R&D and patents

227



Table B.20: Descriptive statistics
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Appendices to Chapter 3:
Privatization and Productivity in
Upstream Industries
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Figure C.1: Industry-level TFP decomposition (2001-2008)



Table C.1: Firm ownership classification and private firm definitions



Table C.2: OLS regression at firm level with firm fixed effects



Table C.3: Dynamic panel regressions using TFP estimated with material costs



Table C.4: Dynamic panel regressions at industry level
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Table C.5: Spillover on incumbent vs. entrant firms (Industry-level regressions
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