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Abstract

Lévy subordinators have become a fundamental component to be used to construct many useful

stochastic processes, which have numerous applications in finance, insurance andmany other fields.

However, as many applications of Lévy based stochastic models use fairly complicated analytical

and probabilistic tools, it has been challenging to implement in practice. Hence, simulation-based

study becomes more desirable. In this thesis, we deal with exact simulation on Lévy subordinators

and Lévy driven stochastic models. In the first part, we focus on developing more efficient exact

simulation schemes for Lévy subordinators with existing simulation algorithms in the literature.

Besides, we also introduce a new type of Lévy subordinators, i.e. truncated Lévy subordinators.

We study the path properties, develop exact simulation algorithms based on marked renewal rep-

resentations, and provide relevant applications in finance and insurance. The associated results in

this part are later used in the sequel. The second part of this thesis proposes a new type of point

processes by generalising the classical self-exciting Hawkes processes and doubly stochastic Pois-

son processes with Lévy driven Ornstein-Uhlenbeck type intensities. These resulting models are

analytically tractable, and intrinsically inherit the great flexibility as well as desirable features from

the two original processes, including skewness, leptokurtosis, mean-reverting dynamics, and more

importantly, the contagion or feedback effects. These newly constructed processes would then sub-

stantially enrich continuous-time models tailored for quantifying the contagion of event arrivals in

finance, economics, insurance, queueing and many other fields. In turn, we characterise the distri-

butional properties of this new class of point processes and design an exact simulation algorithm to

generate sample paths. This is done by applying the exact distributional decomposition technique.

We carry out extensive numerical implementations and tests to demonstrate the accuracy and ef-

fectiveness of our scheme and give examples of some financial applications to credit portfolio risk

to show the applicability and flexibility of our new model.
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Chapter 1

Introduction

Doubly stochastic Poisson processes or Cox processes (Cox, 1955, 1972) have now been widely

applied as survival or event timing models in many areas. They are more capable than Poisson

process to capture event arrivals with complex dynamics structures. However, in reality, except

for the impact from external factors, event arrivals may often present contagion, clustering, or

feedback effects, such as social media sharing online, trade transactions in market microstructure,

defaults in the credit market, jumps in investment returns, and loss claims in insurance businesses

to name a few. Das et al. (2007) and Duffie et al. (2009) provided evidence that, Cox models,

which are based on conditional independence assumption, can not fully capture credit contagion.

The phenomena of contagion became more evident in the credit market during the global financial

crisis of 2007-09 and European debt crisis since the end of 2009 (Giesecke et al., 2011). A seminal

framework tailored for modelling event contagion is Hawkes process (Hawkes, 1971a,b). It is a

self-exciting point process where each arrival of events would trigger a simultaneous jump in its

own intensity and hence more events follow. Empirical evidence and econometric analysis can

be viewed from Bowsher (2007), Large (2007), Crane and Sornette (2008), Errais et al. (2010),

Embrechts et al. (2011), Bacry et al. (2013), Aït-Sahalia et al. (2014, 2015) and Azizpour et al.

(2018). Recently, it has been extended in the literature by being combined with Cox processes to

enrich the model eligibility, in the sense that both internal and external impacts can be facilitated

in one single framework, see Brémaud and Massoulié (1996, 2002) and Dassios and Zhao (2011,

2017).

Meanwhile, from a micro perspective, it becomes more apparent that real financial data exhibits

deviations from normality with the availability of high-frequency data1. Barndorff-Nielsen and

Shephard (2001a,b) proposed a new class of stochastic processes, namely non-Gaussian Ornstein-

Uhlenbeck (OU) models, which have gained extensive popularity for modelling the non-normality
1See a pioneering investigation into the high-frequency financial data by Gençay et al. (2001).
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presented in finance and economics. They could offer greater flexibility and possess many crucial

features, such as skewness, leptokurtosis and mean-reverting dynamics, which are often observed

from financial markets2. Moreover, this generality does not hinder their analytical tractability.

In particular, they become extremely popular for modelling stochastic volatilities, see Barndorff-

Nielsen et al. (1998), Barndorff-Nielsen and Shephard (2001a,b, 2002, 2003a,b) and Carr et al.

(2003). These stochastic volatility models have further led to other applications such as derivat-

ive pricing and risk analysis, see Nicolato and Venardos (2003) and Li and Linetsky (2014). On

the other hand, these processes can serve as stochastic intensity models for event arrivals. For in-

stance, they have been used tomodel irregularly-spaced trade-by-trade intraday data, mortality rates

in insurance, and default intensities for credit risk in finance, see Rydberg and Shephard (2000),

Centanni and Minozzo (2006), Hainaut and Devolder (2008) and Schoutens and Cariboni (2010).

In particular, for credit risk modelling, a mean-reverting OU intensity could be particularly useful

to capture business cycle effects on average industrial defaults, as obviously default rates would

increase in a recession and decrease in a boom (Elsinger et al., 2006, p.1306). This is similar as

the environment of interest rates, so, defaults and the associated losses in the credit market often

present a mean-reverting pattern, see detailed analysis and evidence in Giesecke et al. (2011) from a

long-term historical perspective. Duffie et al. (2009) also found a mean-reverting frailty that would

influence U.S. non-financial defaults. Moreover, empirical evidence shows that, the tails of Gaus-

sian distributions are often too thin to capture risk in the credit market, and fluctuations are often

sudden and jump-like, which are driven by unexpected news announcements. The distribution of

default rates is highly skewed towards large values (Giesecke et al., 2011, p.236-239). Therefore,

macroeconomic shocks powered by a Lévy driven non-Gaussian process rather than a Gaussian

one may be more appropriate to capture the dynamic structure of default intensities in reality.

It is then natural for us to put these main streamlines above in the literature together to form a

unified and consistent framework. We construct a new large family of Lévy driven point processes,

termed self-exciting jump process with non-Gaussian OU intensity, or, Lévy driven contagion pro-

cess, see Qu et al. (2019). It is fundamentally powered by a Lévy subordinator. More precisely,

its stochastic intensity is a positive non-Gaussian process with additional self-exciting jumps. It

can be also defined as a branching process through the cluster process representation. Accord-

ingly, the resulting models are analytically tractable, and intrinsically inherit the great flexibility as

well as the desirable features from the two original processes, including skewness, leptokurtosis,

mean-reverting dynamics, and more importantly, the contagion or feedback effects. These newly

constructed processes would then substantially enrich continuous-time models tailored for quanti-

2See empirical evidences from Poterba and Summers (1988) and Cont (2001).
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fying the contagion of event arrivals in finance, economics, insurance, queueing and many other

fields.

Simulation plays a crucial role in the implementation, simulation-based statistical inference and

empirical studies for new models. For instance, for modelling credit risk in practice, events of

extreme losses and defaults are rare, and data are scarce. The key quantities at the center of financial

risk management, such as the value at risk of an aggregate loss distribution for a heterogeneous

portfolio, are often lack of closed-form formulas. The simulation-based approach then becomes

a standard technique. In particular, the exact simulation scheme is highly desirable as it has the

primary advantage of generating sample paths according to the underlying process law exactly

(Broadie and Kaya, 2006; Chen and Huang, 2013), no procedure of truncation or discretisation is

required. Moreover, there is no numerical inversion for the cumulative distribution function (CDF)

or Laplace (Fourier) transform. We propose a general sampling framework based on distributional

decomposition technique. The processes can be break into several types of basic components.

These components consist of compound Poisson processes and underlying Lévy subordinators,

each of which requires an exact simulation scheme in order to simulate the contagion processes.

For the compound Poisson process, it can be simulated either directly, or via an acceptance-

rejection (AR) scheme. For the underlying Lévy subordinator, there are simulation algorithms

available in the literature for some typical specifications of Lévy subordinators. However, the avail-

able examples of Lévy subordinators are very limited and there associated simulation algorithms

are not always efficient. Therefore, in this thesis, we carry out additional research on simulation of

Lévy subordinators. On one hand, we focus on developing more efficient exact simulation schemes

for those Lévy subordinators with existing simulation algorithms in the literature. On the other

hand, we construct new Lévy subordinators and develop exact simulation algorithms accordingly

to expand the family of underlying Lévy subordinators.

The thesis is organised as follows:

Chapter 2: We briefly review the definitions, properties and exact simulation algorithms for

typical Lévy subordinators, i.e. the compound Poisson process, the gamma process, the tempered

stable process. In addition, we develop an alternative exact simulation algorithm for the tempered

stable process based on two-dimensional single rejection scheme, which is more efficient than all

the existing algorithms in the literature.
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Chapter 3: We introduce a new type of Lévy subordinators, namely truncated Lévy subordin-

ators. We derive key distributional results, establish a marked renewal representation for this type

of processes and develop exact simulation schemes. We also provide several applications of the

truncated Lévy subordinators in finance and insurance.

Chapter 4: We focus on the Lévy driven Ornstein-Uhlenbeck(OU) processes. We provide the

preliminaries, including formal mathematical definitions and introductions for this class of pro-

cesses. The theoretical results for Laplace transform have been derived. Simulation algorithms

have also been provided for future study on self-excited point processes with Lévy driven OU in-

tensities.

Chapter 5: We introduce the Lévy driven contagion processes, derive distributional properties,

such as the Laplace transforms of the intensities, the joint Laplace transforms of the intensities

and pre-jump intensities, and develop a distributional decomposition scheme to establish exact

simulation schemes. Numerical examples and corresponding applications are also presented.
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Chapter 2

Lévy Subordinators

This chapter serves mainly two purposes. First, we give an overview of Lévy subordinators and

illustrate several typical Lévy subordinators, i.e. the compound Poisson process, the gamma pro-

cess, the tempered stable process. Second, we provide exact simulation algorithms to sample these

typical Lévy subordinators, which will be used in the sequel. In particular, for the tempered stable

process, we develop a more efficient uniformly bounded simulation algorithm in Section 2.4. This

method is later used for the implementation of the tempered stable based stochastic model prob-

lem. Our scheme is based on two-dimensional single rejection (SR). For our two-dimensional SR

scheme, its complexity is uniformly bounded over all ranges of parameters. This new algorithm out-

performs all existing schemes. In particular, it is much more efficient than the well-known double

rejection (DR) scheme suggested in Devroye (2009), which is the only algorithm with uniformly

bounded complexity that we can find in the current literature. Our algorithms are straightforward

to implement, and numerical experiments and tests are conducted to demonstrate the accuracy and

efficiency.

2.1 Definitions

Lévy processes have many interesting properties and play an important role in finance and insur-

ance. An overview of Lévy processes and their applications are available in Bertoin (1998); Sato

(1999); Kyprianou (2006); Barndorff-Nielsen et al. (2012). Meanwhile, Lévy subordinators, which

are real-valued Lévy processes with non-decreasing sample paths, have also been widely used for

financial modelling, see Barndorff-Nielsen (1998); Madan et al. (1998); Carr et al. (2003), etc. Let

us first establish some common notation and some properties of Lévy processes and Lévy subor-

dinators.

Definition 2.1.1. A stochastic process {Xt}t≥0 such that X0 = 0 is called a Lévy process if it

processes the following properties:
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1. Independent increments: for every increasing sequence of times t0, ..., tn, the random vari-

ables Xt0 , Xt1 − Xt0 , ..., Xtn − Xtn−1 are independent.

2. Stationary increments: for every s > 0, the law of Xt+s − Xt does not depend on t.

The law of a Lévy process is completely identified by its characteristic function, i.e. for all

t ≥ 0,

E
î
eivXt

ó
= exp (tΨ(v)) , v ∈ R,

where the characteristic exponent Ψ is of the form

Ψ(v) = ivc− v2b
2

+
∫

R

î
eivx − 1− ivx1{|x|<1}

ó
ν(x)dx,

with c ∈ R, b ∈ R+ and ν being the Lévy measure on R satisfying

∫
R

min{1, x2}ν(x)dx < ∞,

which characterizes the size and frequency of the jumps.

Definition 2.1.2. A Lévy subordinator is a real-valued Lévy process with non-decreasing sample

paths. It can be characterised via its Laplace transform, i.e.

E
î
e−vXt

ó
= exp (−tΦ(v)) , v ∈ R+,

where Φ is Laplace exponent of the form

Φ(v) =
∞∫

0

(1− e−vx)ν(x)dx,

with ν being the Lévy measure that satisfies the following condition

∞∫
0

min{1, x}ν(x)dx < ∞.

It follows that every subordinator is of bounded variation. When
∞∫

0

ν(x)dx < ∞, Xt is of finite

activity. Otherwise, Xt is an infinite activity process as it has an infinite number of small jumps in

finite time interval.

We now illustrate some examples of Lévy subordinators to which we refer throughout the thesis.
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2.2 Compound Poisson Process

Let N be a Poisson random variable with parameter λ > 0 and {Ji}i=1,2,... be a sequence of

independent and identical distributed (i.i.d) random variables with density f . For any v ∈ R+, we

have

E

e
−v

N∑
i=1

Ji

 = exp

Ñ
−λ

∞∫
0

Ä
1− e−vx

ä
f (x)dx

é
.

Now let Nt be a Poisson process with intensity λ > 0, then a compound Poisson process Xt is

defined by

Xt =
Nt∑

i=1

Ji, t > 0.

As Nt has stationary independent increments and {Ji}i=1,2,... are i.i.d random variables, it is clear

that the increments of Xt are stationary and independent. And right-continuity and left limits of the

Poisson process Nt also ensure right-continuity and left limits of the compound Poisson process.

Hence, compound Poisson processes are indeed Lévy processes. The Laplace transform of the

compound Poisson process Xt is given as

E
î
e−vXt

ó
= exp

Ñ
−λt

∞∫
0

Ä
1− e−vx

ä
f (x)dx

é
.

The Lévy measure ν(x) = f (x) is always finite.

Simulation of compound Poisson process at time t is straightforward. We interpret Xt at time t

as a compound Poisson variable with Poisson rate λt and jump distribution f (x).

2.3 Gamma Process

The gamma distribution with shape parameter α and rate parameter β, denoted by Γ(α, β), has the

density function

fΓ(α,β)(x) =
βα

Γ(α)
xα−1e−βx, α, β > 0,

where Γ(·) is the gamma function, i.e. Γ(u) :=
∞∫

0

su−1e−sds. The associated gamma process

{Xt, t ≥ 0} is a pure-jump increasing Lévy process with independently gamma distributed incre-

ments satisfying X1 ∼ Γ(α, β), X0 = 0, and it has Lévy measure

ν(x) =
αe−βx

x
, (2.3.1)
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where α, β > 0, is called a gamma process. The Laplace transform follows that

E
î
e−vXt

ó
=

Ç
1 +

v
β

åαt

. (2.3.2)

Gamma process is simple and highly mathematically tractable, which has been used as a very

popular representative for Lévy processes in the literature, see Barndorff-Nielsen and Shephard

(2001a,b, 2003a), Schoutens (2003), Cont and Tankov (2004), Kyprianou (2006) and Schoutens

and Cariboni (2010). It has been used to model stochastic volatilities (Barndorff-Nielsen and Shep-

hard, 2003a; Brockwell et al., 2007; Granelli and Veraart, 2016), human mortality rates, actuarial

valuations (Hainaut and Devolder, 2008) and instantaneous short rates of interest (Norberg, 2004;

Eberlein et al., 2013). Barndorff-Nielsen and Shephard (2001b, 2002, 2003a,b) used the gamma

based stochastic processes to model the stochastic volatility of stock prices, see also Roberts et al.

(2004), Jongbloed et al. (2005), Griffin and Steel (2006), Creal (2008) and Frühwirth-Schnatter and

Sögner (2009). Moreover, Nicolato and Venardos (2003) further applied these type of stochastic

volatility models to pricing European options. Schoutens and Cariboni (2010) and Bianchi and

Fabozzi (2015) also adopted the gamma based stochastic process as a stochastic intensity process

for modelling credit default risk and pricing credit default swaps (CDSs). Cartea et al. (2015,

p.220) used it for modelling the stochastic mean-reverting volume rate of trading, see also Cartea

and Jaimungal (2016).

Simulation of the gamma process at time t is achieved by sampling a gamma variable with shape

αt and rate β.

2.4 Tempered Stable Process

The tempered stable process was initially proposed by Tweedie (1984) and Hougaard (1986). It

is closely related with the stable process, which is a type of Lévy processes whose characteristic

exponents correspond to stable distributions. The Lévy measure of stable process is of the form

ν(x) =
θ

xα+1 ,

with stability parameter α ∈ (0, 1), and scale parameter θ > 0. In this case, the Laplace transform

is

E
î
e−vXt

ó
= exp

Ç
− tθΓ(1− α)

α
vα

å
.
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The tempered stable (TS) process, abbreviated as TS(α, β, θ), is defined by its Lévy measure

ν(x) =
θ

xα+1 e−βx, y ≥ 0, α ∈ (0, 1), β, θ ∈ R+, (2.4.1)

where β is the tilting parameter. The associated Laplace transform of tempered stable process is

of the form

E
î
e−vXt

ó
= exp

Ç
− tθΓ(1− α)

α
[(β + v)α − βα]

å
. (2.4.2)

The stable index α determines the importance of small jumps for the process trajectories, the in-

tensity parameter θ controls the intensity of jumps, and the tilting parameter β determines the decay

rate of large jumps. In particular, if α = 1
2 , it reduces to a very important distribution, the inverse

Gaussian (IG) distribution, which can be interpreted as the distribution of the first passage time of a

Brownian motion to an absorbing barrier. So, this family of tempered stable subordinator also cov-

ers the inverse Gaussian (IG) subordinator as an important special case (Barndorff-Nielsen, 1997,

1998). Conventionally, the inverse Gaussian distribution is denoted by IG (µIG, λIG) where µIG

is the mean parameter and λIG is the rate parameter, see a detailed introduction for inverse Gaus-

sian distributions in Chhikara and Folks (1988). The inverse Gaussian subordinator is a special

tempered stable subordinator such that Xt ∼ IG
Ä

t
c , t2
ä
for any c, t ∈ R+, i.e.,

IG
Å t

c
, t2
ã
D
= TS

Ç
1
2

,
c2

2
,

t√
2π

å
.

The family of tempered stable process plays a key role in mathematical statistics, as a model

for randomness used by Bayesians, and in economic models (Devroye, 2009). Furthermore, this

family has become a fundamental component to be used to construct many useful stochastic pro-

cesses, which have numerous applications in finance and many other fields. For example, Ornstein-

Uhlenbeck processes driven by tempered stable are used formodelling stochastic volatilities of asset

prices (Barndorff-Nielsen and Shephard, 2002, 2003a; Andrieu et al., 2010; Todorov, 2015). More

recently, tempered stable processes have been adopted for modelling the stochastic-time clocks in

a series of time-changed models proposed by Li and Linetsky (2013, 2014, 2015) and Mendoza-

Arriaga and Linetsky (2014, 2016).

The simulation design for exactly sampling tempered stable without bias has been recently

brought to the attention in the literature. The most widely used and trivial algorithm probably is

the simple stable rejection (SSR) scheme, which is developed by a simple combination of the well

known Zolotarev’s integral representation (Zolotarev, 1964) and an acceptance-rejection (A/R)

scheme; see Brix (1999). Hofert (2011a,b) suggested a fast rejection (FR) algorithm to enhance
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the SSR scheme. However, the complexities of SSR and FR are unbounded, which obviously limit

their applicability as they would become extremely inefficient for some parameter choices. To over-

come this problem, Devroye (2009) developed a novel scheme based on double rejection (DR) such

that the complexity is uniformly bounded. To further reduce the computational costs, we design a

very efficient new scheme based on two-dimensional single rejection (SR)1. The complexity of our

SR scheme is also uniformly bounded, and remarkably, it outperforms all existing schemes for all

ranges of parameters. More precisely, the complexity of our SR scheme is roughly bounded by 2.6

over all parameters, which is much smaller than the one for the DR scheme.

To establish the simulation algorithm for tempered stable, first, we provide preliminaries for

tempered stable distribution and the general two-dimensional SR framework in Section 2.4.1.

Remark 2.4.1. The term "complexity" in here and the other part of this thesis stands for the expected

number of iterations before halting. For acceptance-rejection scheme, the complexity of the scheme

is exactly the associated A/R constant.

2.4.1 Tempered Stable Distributions

Let Sα be a stable random variable with the stability index α ∈ (0, 1) with Laplace transform

E
î
e−vSα

ó
= e−vα

, v ∈ R+.

The density function of Sα has the well-known integral representation (Zolotarev, 1986),

fα(s) =
1
π

π∫
0

α

1− α
B(u)

1
1−α s−

1
1−α e−B(u)

1
1−α s−

α
1−α du, (2.4.3)

where B(u) is defined as

B(u) :=
sinα(αu) sin1−α

Ä
(1− α)u

ä
sin u

.

The associated tempered stable random variable Sα,β is defined through exponentially tilting the

distribution of Sα with tilting parameter β ∈ R+. The Laplace transform of Sα,β therefore is

E
î
e−vSα,β

ó
= eβα−(β+v)α

, (2.4.4)

1This idea originates from Dassios et al. (2018b) where they tailored efficient simulation algorithms for some special
TS classes.
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and the density function of Sα,β is given by

fα,β(s) = eβα−βs fα(s) =
π∫

0

f (s, u)du, (2.4.5)

where f (s, u) is the bivariate density function of (S, U) in (s, u) on [0, ∞)× [0, π], i.e.

f (s, u) =
αeβα

(1− α)π
B(u)

1
1−α s−

1
1−α e−B(u)

1
1−α s−

α
1−α−βs. (2.4.6)

Remark 2.4.2. For a tempered process Xt with Laplace transform (2.4.2), we have

Xt
D
= t̂Sα,βt̂,

with t̂ = [tθΓ(1− α)/α]
1
α , see Devroye (2009). Hence, without loss of generality, we set t̂ = 1,

i.e. θ = α
tΓ(1−α) in (2.4.1) for simplicity.

This Sα,β can not easily be simulated directly due to the Zolotarev’s integral representation

(2.4.3). However, we can use two-dimensional A/R scheme, namely two-dimensional single re-

jection scheme to sample (S, U) and return S to sample Sα,β instead.

2.4.2 Two-Dimensional Single Rejection Scheme

Given a bivariate variable (S, U)with density f (s, u), we can use the two-dimensional A/R scheme

to sample (S, U) by choosing an appropriate bivariate envelop (S′, U′)with density g(s, u). There-

fore, we can use the following general simulation framework, Algorithm 2.4.1, to sample the asso-

ciated marginal variate S.

Algorithm 2.4.1 (Two-Dimensional Single Rejection Framework). The simulation framework for

two-dimensional single rejection scheme is given as follows:

1. Set C = max
s,u
{ f (s, u)/g(s, u)},

2. Generate (S, U) with density g(s, u),

3. Generate V ∼ U (0, 1), if

V ≤ f (S, U)

Cg(S, U)
,

then, accept (S, U); Otherwise, reject this candidate and go back to Step 2,

4. Return S.
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For (S, U)with joint density (2.4.6), if we can find an appropriate bivariate envelop with low rejec-

tion rate, then this method is more suitable than the double rejection (DR) method used in Devroye

(2009), as there is only one rejection procedure is involved within entire simulation instead of two.

2.4.3 Exact Simulation Scheme

Several exact algorithms for simulating tempered stable have been proposed in the literature, i.e.

simple stable rejection (SSR) scheme (Brix, 1999), double rejection (DR) scheme (Devroye, 2009)

and fast rejection (FR) scheme (Hofert, 2011b). These algorithms are exact which can produce

very accurate samples. However, each of them has its own advantages and limitations. For the

SSR scheme, since the expected complexity is exponentially increasing, the algorithm has a very

poor acceptance rate for a large value of tilting parameter β. For the DR scheme, although the

complexity is uniformly bounded, the upper bound is still large. In particular, when α is close to 0,

the simulation becomes less efficient. As also pointed out by Hofert (2011b), comparing with the

SSR scheme, the DR scheme is more difficult for a practitioner to implement as the procedure is

rather complicated. For the FR scheme, it works well for a small value of α, but its complexity is

O(βα) which is clearly unbounded. In this section, we aim to develop a simpler and more efficient

algorithm with lower uniformly bounded complexity for all α ∈ (0, 1) and β ∈ R+ based on

two-dimensional single rejection (SR) framework.

According to (2.4.3) and (2.4.5), for X = βSα,β, the density of X is specified by

fX(x) =
1
π

π∫
0

αeβα

1− α
B(u)

1
1−α β

α
1−α x−

1
1−α e−B(u)

1
1−α β

α
1−α x−

α
1−α−xdu,

which is the marginal density of bivariate variable (X, U) on [0, ∞)× [0, π] with density

f (x, u) =
αeβα

π(1− α)
B(u)

1
1−α β

α
1−α x−

1
1−α e−B(u)

1
1−α β

α
1−α x−

α
1−α−x. (2.4.7)

To sample Sα,β, first, we sample (X, U) by applying the two-dimensional SR scheme in Algorithm

2.4.1, and then return Sα,β = X/β. Hence, to simulate (X, U) with density (2.4.7), we could

choose a Gamma-Uniform bivariate envelope (X′, U′) with density

g(x, u) =
1
π

1
Γ(m)

xm−1e−x. (2.4.8)

for some m ∈ R+. The details of the simulation procedure are provided as follows.
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Algorithm 2.4.2 (Exact Simulation of Sα,β withGamma-UniformEnvelope). The simulation scheme

for Sα,β with Gamma-Uniform envelope is given as follows:

1. Set C1 = (αβα)−βα

eαβα−1Γ (αβα)
Ä

α
1−α + αβα

äβα(1−α)+1,

2. Generate U ∼ U [0, π], X ∼ Γ (αβα, 1),

3. Set B(U) = sinα(αU) sin1−α
Ä
(1− α)U

ä
/sin U,

4. Generate V ∼ U [0, 1], if

V ≤ αeβα
Γ (αβα)

C1(1− α)
B(U)

1
1−α β

α
1−α X−

α
1−α−αβα

e−B(U)
1

1−α β
α

1−α X−
α

1−α ,

then, accept (X, U) and go to Step 5; Otherwise, reject this candidate and go back to Step

2,

5. Return X/β.

Proof. Given f (x, u) for (X, U) in (2.4.7) and g(x, u) for (X′, U′) in (2.4.8), we have

f (x, u)
g(x, u)

=
αeβα

Γ(m)

1− α
B(u)

1
1−α β

α
1−α x−

α
1−α−me−B(u)

1
1−α β

α
1−α x−

α
1−α

≤ αeβα
Γ(m)

1− α
B(u)

1
1−α β

α
1−α

 α
1−α B(u)

1
1−α β

α
1−α

α
1−α + m

−
(1−α)m+α

α

e
−B(u)

1
1−α β

α
1−α

ñ
αB(u)

1
1−α β

α
1−α

α+(1−α)m

ô−1

=
Å

α

1− α

ã−m(1−α)
α

β−mΓ(m)
Å

α

1− α
+ m
ãm(1−α)+α

α

e−
m(1−α)+α

α +βα
B(u)−

m
α

≤
Å

α

1− α

ã−m(1−α)
α

β−mΓ(m)
Å

α

1− α
+ m
ãm(1−α)+α

α

e−
m(1−α)+α

α +βα
B(0)−

m
α

=
Å

α

1− α

ã−m(1−α)
α

β−mΓ(m)
Å

α

1− α
+ m
ãm(1−α)+α

α

e−
m(1−α)+α

α +βα î
(1− α)1−ααα

ó−m
α

= C1(m, α, β),

where B(u) is a monotone increasing function with

min
0≤u≤∞

{B(u)} = B(0) = (1− α)1−ααα. (2.4.9)

The A/R constant C1(m, α, β) can be further minimised over m. The optimal value m∗ satisfies

α

1− α
ψ(0)(m∗) + ln

Å
α

1− α
+ m∗

ã
= ln

(
α

1
1−α β

α
1−α

)
, for ψ(0)(m) =

dΓ(m)

dm
. (2.4.10)

Hence, by approximating the LHS of (2.4.10), the optimal rate m∗ for the gamma-distributed en-
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velope is chosen by setting2

m∗ = αβα.

The A/R decision therefore follows

V ≤ f (X′, U′)
C1g(X′, U′)

,

with

C1 = C1 (αβα) = (αβα)−βα

eαβα−1Γ (αβα)
Å

α

1− α
+ αβα

ãβα(1−α)+1
.

where C1 is the associated A/R constant.

Remark 2.4.3. According to Stirling’s approximation for large x,

Γ(x + 1) ∼ xx+ 1
2 e−x+1, (2.4.11)

the following holds for very large β,

C1 = (αβα)−βα−1 eαβα−1Γ(αβα + 1)
Å

α

1− α
+ αβα

ãβα(1−α)+1

≤ (αβα)
1
2−βα(1−α)−1

Ç
αβα +

α

(1− α)

å1+βα(1−α)

≤ e
√

α

Ç
1 +

1
(1− α)βα

å
β

α
2 .

We can see that the complexity C1 is unbounded and the order of C1 for large β is less thanO
Ä

β
α
2
ä
.

Algorithm 2.4.2 has a better performance for a small α, since the A/R constant is relative small

and does not increase fast against the tilting parameter β. However, when α is large, this algorithm

becomes inefficient due to the low acceptance rate.

In order to improve the performance for a large α, we develop an enhanced algorithm based on

the new transformation

Z = B(U)
1

1−α S
− α

1−α

α,β . (2.4.12)

Hence, according to (2.4.6), by changing the variables of the joint distribution function from (S, U)

to (Z, U), we have

f (z, u) =
eβα

π
exp

(
−z− βB(u)

1
α z−

1−α
α

)
. (2.4.13)

2Alternatively, m∗ can also be obtained via numerical optimisation.
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To sample Sα,β, we could sample (Z, U) first, and then return Sα,β = B(U)
1
α Z−

1−α
α . A Gamma-

Uniform bivariate variate is also a suitable envelope to use to implement the two-dimensional SR

to sample (Z, U). The associated details are presented in Algorithm 2.4.3.

Algorithm 2.4.3 (Enhanced Exact Simulation of Sα,β with Gamma-Uniform Envelope). The en-

hanced simulation scheme for Sα,β with Gamma-Uniform envelope is given as follows:

1. Set C2 = β−α(1−α)βα
e(1−α)βα

Γ
Ä
(1− α)βα + 1

ä
(1− α)−(1−α)βα ,

2. Generate U ∼ U [0, π], Z ∼ Γ
Ä
(1− α)βα + 1, 1

ä
,

3. Set B(U) = sinα(αU) sin1−α
Ä
(1− α)U

ä
/sin U,

4. Generate V ∼ U [0, 1], if

V ≤ eβα
Γ ((1− α)βα + 1) Z−(1−α)βα

e−βB(U)
1
α Z−

1−α
α /C2,

then, accept (Z, U) and go to Step 5; Otherwise, reject this candidate and go back to Step

2,

5. Return B(U)
1
α Z−

1−α
α .

Proof. We choose an envelope (Z′, U′) with joint density function

g(z, u) =
1
π

1
Γ(r + 1)

zre−z,

according to (2.4.9), we have

f (z, u)
g(z, u)

= eβα
Γ(r + 1)z−re−βB(u)

1
α z−

1−α
α

≤ eβα
Γ(r + 1)z−re−βα(1−α)

1−α
α z−

1−α
α

≤
Ç

αr
(1− α)β

å rα
1−α

e−
rα

1−α+βα
Γ(r + 1)

î
(1− α)α

α
1−α

ó−r
= C2(r),

where C2(r) can be minimised over r. The optimal value r∗ satisfies

ψ(0)(r∗ + 1) =
α

1− α
ln

(
β(1− α)

1
α

r∗

)
, for ψ(0)(r) =

dΓ(r)
dr

. (2.4.14)

By approximating the LHS of (2.4.14), the optimal rate r∗ is chosen by setting

r∗ = (1− α)βα.
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Hence, the associated A/R constant with r∗ is given by

C2 = C2
Ä
(1− α)βα

ä
= β−α(1−α)βα

e(1−α)βα
Γ
Ä
(1− α)βα + 1

ä
(1− α)−(1−α)βα

.

where C2 is the associated A/R constant.

Remark 2.4.4. For large value of β, applying Stirling approximation in (2.4.11), we have

C2 ≤ e
√

1− αβ
α
2 ,

The complexity C2 is unbounded and the order is also less than O
Ä

β
α
2
ä
.

Although the complexity of Algorithm 2.4.3 is unbounded, there is still a massive improvement

for the acceptance rate for a large α. For small α, Algorithm 2.4.3 performs better than 2.4.2,

whereas for large α, the out-performance of Algorithm 2.4.3 is more substantial. In general, Al-

gorithm 2.4.3 is more favorable for C2 < C1.

Clearly, Algorithm 2.4.2 and 2.4.3 have better performance than the fast rejection (FR) scheme

(Hofert, 2011b), as the complexity of FR scheme is of order O (βα) which is growing faster than

the complexity of orderO
Ä

β
α
2
ä
. Comparing with DR scheme, Algorithm 2.4.2 and 2.4.3 are much

simpler to implement, but both complexities are unbounded. Therefore, the next task for us is to

design enhanced algorithms based on those bivariate envelopes used in Algorithm 2.4.2, 2.4.3 in

order to obtain uniformly bounded complexities over all parameter ranges.

Let us first consider the case when α is small. For Algorithm 2.4.2, we sample (X, U) with

density (2.4.7) by choosing an envelope (X′, U′) such that X′ ∼ Γ (αβα, 1), U′ ∼ U [0, π]. Instead

of a uniform-distributed envelope for U′, we use a truncated normal with domain (0, π). The

associated joint density of this Gamma and truncated normal bivariate variate (X̄, Ū) is of the

form

h(x, u) =
xαβα−1e−x

Γ (αβα)

»
2α(1− α)βα/

√
π

Erf
(

π
»

α(1− α)βα/2
) e−

α(1−α)βαu2

2 , (2.4.15)

In fact, this alternative bivariate envelope will significantly improve the efficiency of Algorithm

2.4.2. The details are given in Algorithm 2.4.4 below.

Algorithm 2.4.4 (Exact Simulation of Sα,β with Gamma and Truncated-Normal Envelope). The

simulation scheme for Sα,β with Gamma and Truncated-Normal envelope is given as follows:

1. Set C3 = Γ(αβα+1)β−α2βα
e−1+αβα

α−αβα
(1−α)−1−(1−α)βα

√
2πα(1−α)βα

(
1
βα + (1− α)

)1+(1−α)βα

,
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2. Generate U ∼ N
Ä
µ = 0, σ2 = [α(1− α)βα]−1 , lb = 0, ub = π

ä
,

3. Set B(U) = sinα(αU) sin1−α
Ä
(1− α)U

ä
/sin U,

4. Generate X ∼ Γ(αβα, 1),

5. Generate V ∼ U [0, 1], if

V ≤
Erf

(»
α(1− α)βαπ2/2

)
αeβα

Γ(αβα)β
α

1−α B(U)
1

1−α

C3(1− α)
»

2πα(1− α)βαX
α

1−α+αβα
e
−
Ä

βB(u)
1
α X−1
ä α

1−α +
α(1−α)βαU2

2 ,

then, accept (X, U) and go to Step 6; Otherwise, reject this candidate and go back to Step

2,

6. Return X/β.

Proof. Instead of simulating (X, U) with density in (2.4.7) with envelope (X′, U′) such that X′ ∼

Γ (αβα, 1) and U′ ∼ U [0, π], we consider a new envelope (X̄, Ū) such that X̄ ∼ Γ(αβα, 1) and

Ū ∼ N
Ä
µ = 0, σ2 = [α(1− α)βα]−1, lb = 0, ub = π

ä
3, which is a truncated normal variable

with mean µ = 0 and variance σ2 = 1
α(1−α)βα within the domain (0, π). Given the joint density

of (X, U) in (2.4.7) and joint density of (X̄, Ū) in (2.4.15), first, by maximising f (x, u)/g(x, u)

with respect to x, we have

f (x, u)
h(x, u)

=
Erf

(
π
»

α(1− α)βα/2
)

αeβα
Γ(αβα)

(1− α)
»

2πα(1− α)βα
B(u)

1
1−α β

α
1−α x−

α
1−α−αβα

× exp
Ç
−B(u)

1
1−α β

α
1−α x−

α
1−α +

α(1− α)βαu2

2

å
≤

Erf
(

π
»

α(1− α)βα/2
)

αeβα
Γ(αβα)

(1− α)
»

2πα(1− α)βα
β−αβα

B(u)−βα
e

α(1−α)βαu2

2

×
Ä
1 + (1− α)βα

ä1+(1−α)βα

e−(1+(1−α)βα).

According to Devroye (2009), we have the inequality

B(u)−βα ≤ B(0)−βα
e−

α(1−α)βαu2

2 =
î
αα(1− α)1−α

ó−βα

e−
α(1−α)βαu2

2 . (2.4.16)

Hence, by (2.4.16), we then have

f (x, u)
h(x, u)

≤
Erf

(
π
»

α(1− α)βα/2
)

Γ(αβα + 1)β−α2βα
e−1+αβα

α−αβα
(1− α)−1−(1−α)βα»

2πα(1− α)βα
(

1
βα + (1− α)

)−1−(1−α)βα

3"lb" stands for lower bound and "ub" stands for upper bound.
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≤ Γ(αβα + 1)β−α2βα
e−1+αβα

α−αβα
(1− α)−1−(1−α)βα»

2πα(1− α)βα

Ç
1
βα

+ (1− α)

å1+(1−α)βα

= C3,

where C3 is the associated A/R constant.

Remark 2.4.5. For a small α, the complexity of Algorithm 2.4.4 is uniformly bounded in terms of

β. In particular, with large value of β, we have

C3 ≤
1»

2π(1− α)

Ç
1
βα

+ (1− α)

å1+(1−α)βα

(1− α)−1−(1−α)βα

≤ e»
2π(1− α)

Ç
1 +

1
(1− α)βα

å
,

and it goes to e/
»

2π(1− α) when β goes to infinity.

For a large α, in particular when α is close to 1, Algorithm 2.4.4 is no longer suitable, we develop

an enhanced simulation scheme in Algorithm 2.4.5 based on the transformation in (2.4.12) using

the Gamma and truncated-normal bivariate envelope.

Algorithm 2.4.5 (Enhanced Exact Simulation of Sα,β with Gamma and Truncated-Normal Envel-

ope). The enhanced simulation scheme for Sα,β with Gamma and Truncated-Normal envelope is

given as follows:

1. Set C4 = e(1−α)βα
Γ((1−α)βα+1)√

2πα(1−α)βα
(1− α)−(1−α)βα

β−α(1−α)βα ,

2. Generate U ∼ N
Ä
µ = 0, σ2 = [α(1− α)βα]−1, lb = 0, ub = π

ä
,

3. Set B(U) = sinα(αU) sin1−α
Ä
(1− α)U

ä
/sin U,

4. Generate Z ∼ Γ ((1− α)βα + 1, 1),

5. Generate V ∼ U [0, 1], if

V ≤
Erf

(»
α(1− α)βαπ2/2

)
eβα

Γ ((1− α)βα + 1)

C4

»
2πα(1− α)βαZ(1−α)βα

e−βB(U)
1
α Z−

1−α
α +

α(1−α)βαU2

2 ,

then, accept (Z, U) and go to Step 6; Otherwise, reject this candidate and go back to Step

2,

6. Return B(U)
1
α Z−

1−α
α .

Proof. We consider a new envelope (Z̄, Ū) for (Z, U)with density (2.4.13), such that Z̄ ∼ Γ((1−

α)βα + 1, 1) and Ū ∼ N
Ä
µ = 0, σ2 = [α(1− α)βα]−1, lb = 0, ub = π

ä
, the joint density is
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given as

h(z, u) =
z(1−α)βα

e−z

Γ((1− α)βα + 1)

»
2α(1− α)βα/

√
π

Erf
(

π
»

α(1− α)βα/2
) e−

α(1−α)βαu2

2 .

Then, by maximising f (z, u)/h(z, u) with respect to z and applying inequality (2.4.16), we have

f (z, u)
h(z, u)

=
Erf

(
π
»

α(1− α)βα/2
)

eβα
Γ((1− α)βα + 1)»

2πα(1− α)βα
z−(1−α)βα

e−βB(u)
1
α z−

1−α
α +

α(1−α)βαu2

2

≤
Erf

(
π
»

α(1− α)βα/2
)

e(1−α)βα
Γ((1− α)βα + 1)»

2πα(1− α)βα
(1− α)−(1−α)βα

β−α(1−α)βα

≤ e(1−α)βα
Γ((1− α)βα + 1)»

2πα(1− α)βα
(1− α)−(1−α)βα

β−α(1−α)βα
= C4,

where C4 is the associated A/R constant.

Remark 2.4.6. For a large α, the complexity therefore is uniformly bounded. In particular, for large

value of β, we have C4 ≤ e/
√

2πα. It is reasonably small when α close to 1.

Since the complexity of Algorithm 2.4.4 is bounded for a small α and the complexity of Al-

gorithm 2.4.5 is bounded for a large α, a combination of Algorithm 2.4.4 and 2.4.5 therefore has a

bounded complexity over the whole range of α and β. In particular, given α and β with C4 > C3,

then Algorithm 2.4.5 outperforms Algorithm 2.4.4 much more substantially.

In general, each of Algorithm 2.4.2, 2.4.3, 2.4.4 and 2.4.5 has its own advantages for differ-

ent pairs of α and β, one could optimally combine all of them and implement the most efficient

scheme by choosing the scheme with the smallest complexity to sample the exponential tilted

stable Sα,β. The details are presented in Algorithm 2.4.6. The overall complexity C is given by

C = min {C1, C2, C3, C4}, which is uniformly bounded. The trend of this complexity in terms

of α and β is presented in Figure 2.1. Apparently, the complexity is uniformly bounded, which is

much smaller than the complexity of DR scheme (Devroye, 2009).

Algorithm 2.4.6 (Two-Dimensional Single Rejection Algorithm for Sα,β). The general simulation

scheme for Sα,β is given as follows:

1. set C1 = eαβα−1Γ(αβα)

(αβα)βα

(
α+α(1−α)βα

1−α

)βα(1−α)+1
, C2 = e(1−α)βα

Γ((1−α)βα+1)
(1−a)(1−α)βα

βα(1−α)βα ,

C3 = Γ(αβα+1)β−α2βα
e−1+αβα

α−αβα
(1−α)−1−(1−α)βα

√
2πα(1−α)βα(1/βα+(1−α))−1−(1−α)βα , C4 = e(1−α)βα

Γ((1−α)βα+1)√
2πα(1−α)βα((1−α)βα)(1−α)βα

2. if (C1 = min {C1, C2, C3, C4}) {

3. repeat{
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4. sample U ∼ U [0, π], X ∼ Γ(αβα, 1), V ∼ U [0, 1]

5. set B(U) = sinα(αU) sin1−α
Ä
(1− α)U

ä
/sin U, S = X/β

6. if (V ≤ αeβα
Γ(αβα)

1−α B(U)
1

1−α β
α

1−α X−
α

1−α−αβα
e−B(U)

1
1−α β

α
1−α X−

α
1−α /C1) break

7. }

8. }

9. if (C3 = min {C1, C2, C3, C4}){

10. repeat{

11. sample U ∼ N
Ä
µ = 0, σ2 = [α(1− α)βα]−1, lb = 0, ub = π

ä
12. set B(U) = sinα(αU) sin1−α

Ä
(1− α)U

ä
/sin U

13. sample X ∼ Γ(αβα, 1), V ∼ U [0, 1]; set S = X/β

14. if (V ≤
Erf
Ä√

α(1−α)βαπ2/2
ä

αeβα
Γ(αβα)β

α
1−α B(U)

1
1−α

C3(1−α)
√

2πα(1−α)βαX
α

1−α
+αβα e

−
Ä

βB(u)
1
α X−1
ä α

1−α +
α(1−α)βαU2

2 ) break

15. }

16. }

17. if (C2 = min {C1, C2, C3, C4}){

18. repeat{

19. sample U ∼ U [0, π], Z ∼ Γ
Ä
(1− α)βα + 1, 1

ä
, V ∼ U [0, 1]

20. set B(U) = sinα(αU) sin1−α
Ä
(1− α)U

ä
/sin U, S = B(U)

1
α Z−

1−α
α

21. if (V ≤ eβα
Γ((1− α)βα + 1)Z−(1−α)βα

e−βB(U)
1
α Z−

1−α
α /C2) break

22. }

23. }

24. if (C4 = min {C1, C2, C3, C4}){

25. repeat{

26. sample U ∼ N
Ä
µ = 0, σ2 = [α(1− α)βα]−1 , lb = 0, ub = π

ä
27. set B(U) = sinα(αU) sin1−α

Ä
(1− α)U

ä
/sin U,

28. sample Z ∼ Γ
Ä
(1− α)βα + 1, 1

ä
, V ∼ U [0, 1]; set S = B(U)

1
α Z−

1−α
α
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Figure 2.1: The complexity of Algorithm 2.4.6 for α ∈ (0, 1) and β ∈ R+.

29. if ( V ≤
Erf
Ä√

α(1−α)βαπ2/2
ä

eβα
Γ((1−α)βα+1)

C4
√

2πα(1−α)βαZ(1−α)βα e−βB(U)
1
α Z−

1−α
α +

α(1−α)βαU2

2 ) break

30. }

31. }

32. return S

2.4.4 Numerical Experiments

We provide numerical examples for sampling tempered stable variables. The simulation experi-

ments are all conducted on a normal laptop with the Intel Core i7-6500U CPU@2.50GHz pro-

cessor, 8.00GB RAM,Windows 10 Home and 64-bit Operating System. The algorithms are coded

and performed in R.3.4.2, and computing time is measured by the elapsed CPU time in seconds in

here and the other parts of this thesis.

Numerical validation and tests for the tempered stable algorithm are based on the probability

density function (PDF) and cumulative distribution function (CDF) of Sα,β, for which can be ob-

tained by inverting Laplace transform (2.4.4) numerically.
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Figure 2.2: Comparison of the empirical CDF/PDF for SR scheme (via Algorithm 2.4.6) of Sα,β with the
CDF/PDF obtained via numerical inverse using parameter settings α = 0.3, 0.6, β = 1.0, 5.0,
respectively.

For Algorithm 2.4.6, the plots of CDFs and PDFs under parameter settings α = 0.3, 0.6, β =

1.0, 5.0 are provided in Figure 2.2 . We can see that our algorithm can achieve a very high level of

accuracy, the simulated CDFs and PDFs are fitted pretty well to the associated numerical inversions.

There are a variety of available algorithms for numerically inverting Laplace transforms with high

accuracy in the literature, such as Gaver (1966), Stehfest (1970), Abate and Whitt (1992, 1995,

2006) to name a few. Here, we adopt the classical Euler scheme as described in Abate and Whitt

(2006, Section 5, p.415-416).

To investigate the performance of our SR scheme, we made a comparison of CPU time for Al-

gorithm 2.4.6 against the DR scheme for simulating 100, 000 replications under parameter settings

α ∈ {0.05, 0.1, ..., 0.9, 0.99} and β ∈ {0.01, 0.1, ..., 106}. The numerical results are reported in

Table 2.1. We can see that our SR scheme performances well for all combinations of α and β. The

out-performance of our algorithm would even become much more substantial when α is close to 0.

For example, it is about 8 times faster than the DR scheme when α = 0.05. In addition, Algorithm

2.4.6 is also very fast when the tilting parameter β is not very large, which clearly indicates that

the acceptance rate of Algorithm 2.4.6 is much higher than the DR scheme (Devroye, 2009) for a

small tilting parameter β.
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Table 2.1: Comparison of CPU time for the SR scheme (via Algorithm 2.4.6) against the DR scheme (Dev-
roye, 2009) based on parameter settings α ∈ {0.05, 0.1, ..., 0.9, 0.99} and β ∈ {0.01, 0.1, ..., 106};
each value in the table is produced from 100, 000 replications.

α
β 0.01 0.10 1.00 10 100 1,000 10,000 100,000 1,000,000

SR DR SR DR SR DR SR DR SR DR SR DR SR DR SR DR SR DR
0.05 2.58 18.35 2.33 18.80 2.36 19.05 2.42 19.24 2.23 18.62 2.22 19.09 2.47 18.79 2.32 18.59 2.45 18.16
0.10 2.51 19.36 2.67 18.92 2.56 18.36 2.47 18.14 2.62 18.08 4.44 17.98 3.96 17.71 4.08 17.3 3.44 16.78
0.20 2.33 18.72 2.53 20.44 5.22 18.26 4.51 17.16 3.86 16.31 3.50 15.43 3.58 9.43 3.22 6.91 3.05 5.18
0.30 2.02 19.23 2.36 18.16 4.45 17.54 4.50 15.93 3.95 14.14 3.21 6.84 3.30 4.98 3.21 4.39 2.69 4.07
0.40 1.93 18.69 2.35 18.29 4.03 18.61 3.86 14.97 3.69 7.19 3.78 4.69 3.47 4.64 3.19 4.12 2.76 4.21
0.50 1.73 19.55 1.94 18.53 3.59 17.08 3.50 13.73 3.22 5.14 3.11 4.46 3.36 4.23 3.53 3.95 3.69 4.02
0.60 1.56 18.66 1.97 19.05 3.65 18.47 3.28 13.97 3.39 4.75 3.19 4.22 3.00 4.19 3.49 4.03 3.17 4.03
0.70 1.61 18.50 1.76 18.81 3.46 17.88 3.17 9.28 3.01 4.50 3.11 4.32 3.19 4.23 3.34 3.97 3.25 4.08
0.80 1.84 18.53 1.83 18.49 3.45 18.42 2.94 9.33 2.92 4.52 2.38 4.47 3.17 4.81 3.31 3.92 3.07 4.24
0.90 1.78 18.45 1.59 18.96 1.70 18.62 2.90 14.73 2.76 4.46 2.39 4.55 2.84 4.78 2.94 4.00 2.86 4.97
0.99 1.50 17.81 1.54 18.00 1.62 18.86 1.88 18.44 3.14 13.94 2.28 4.41 2.64 4.69 3.02 4.06 2.83 4.21

2.5 Conclusion

In this chapter, we provide definitions of Lévy subordinators, discuss several classical Lévy subor-

dinators, i.e. the compound Poisson process, the gamma process and the tempered stable process,

and illustrate exact simulation algorithms for these processes. In particular, we develop a new effi-

cient simulation scheme for the tempered stable process based on two-dimensional single rejection,

which is very different from other existing schemes in the literature. The complexity of our new

algorithm is uniformly bounded over all range of parameters. Remarkably, it beats all other exist-

ing algorithms. At a number of points later on, we will use these processes and their simulation

algorithms to deal with more complicated Lévy based stochastic models.
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Chapter 3

Truncated Lévy Subordintors

In this chapter, we propose a new type of Lévy subordinators, namely the truncated Lévy subor-

dinators, which is obtained by restricting the size of each jump. The truncated Lévy subordinator

is defined through the Lévy measure with the limitation that the jump sizes do not exceed a certain

truncation level. We study the path properties of truncated Lévy subordinator and develop exact

simulation algorithm based on marked renewal process. In particular, we study several examples

of truncated Lévy subordinators, such as the Dickman process, the truncated gamma process, the

truncated stable process, the truncated inverse Gaussian process, in details. This type of Lévy sub-

ordinators has various applications in finance and insurance. First, we could use these processes to

model aggregate claims distributions as individual claim sizes are often bounded from above. We

also discover that the value of truncated Lévy subordinator at time t is the value of a perpetuity

with stochastic discounting. Besides, we observe that the process has a duality relationship with the

Parisian stopping time of diffusion processes. Hence our algorithms provide alternative methods

for pricing Parisian options and bonds.

3.1 Preliminaries

Definition 3.1.1. A truncated Lévy subordinator Zt is defined by restringing the Lévy measure ν

with an upper bound b. The Laplace transform of Zt is given as

E
î
e−vZt

ó
= exp

Ö
−t

b∫
0

(1− e−vz)ν(z)dz

è
, v ∈ R+.

Zt preserves most properties of the original Lévy subordinator. It is a non-decreasing process

with bounded variation and infinite activity, i.e, there are infinite number of jumps over a compact

interval. The only difference is that the sizes of those infinite number of jumps are not allowed
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to exceed a certain level b. This is illustrated in Figure 3.1, where we plot the sample paths of a

truncated Lévy subordinator Zt for three different truncation levels b.

0 1 2 3 4 5 6 7 8

0

5

10

15

b=0.2

b=1.5

b=3

Figure 3.1: Sample paths of a truncated Lévy Subordinator with b = 0.2, 1.5, 3, respectively.

The original non-truncated Lévy subordinator Xt is thus equivalent to

Xt
D
= Zt + Rt,

where Zt is the truncated Lévy subordinator with Lévy measure restricted to (0, b), and Rt is a

compound Poisson process with mean t
∫ ∞

b
ν(x)dx, independent from Zt, and the density of its

jump sizes is

f (x) =
ν(x)∫ ∞

b
ν(x)dx

, b ≤ x < ∞.

This allows us to consider subordinators whose Lévy measure is discontinuous at b, and thus jump

sizes are not characterised by a single continuous distribution. More generally, Rt can be replaced

by any compound Poisson process with an arbitrary Poisson rate and jump distribution.

The paths of the truncated Lévy subordinator Zt can be characterised via hitting times and as-

sociated overshoots. The definitions for hitting time and corresponding overshoot are provided as

below,

Definition 3.1.2. Let T be the first hitting time of level b of the truncated Lévy subordinator Zt,

and W be the associated overshoot at time T, i.e.

T : = inf {t > 0|Zt > b} , (3.1.1)

W : = ZT − b. (3.1.2)
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3.2 Distributional Properties

The general representation of the joint distribution of the first passage time and the associated

overshoot is formulated in Theorem 3.2.1.

Theorem 3.2.1. Let T be the first hitting time of level b of Zt with Lévy measure ν, and W be the

overshoot at time T. Then the joint distribution of (T, W) is given by

fT,W(t, w) =

b∫
w

f (y, t)ν(b + w− y)dy, (3.2.1)

where t ∈ (0, ∞), w ∈ (0, b), and f (·, t) denotes the density of Zt within (0, b). In particular, we

have

f (·, t) = eν̄(b)t fXt(·, t)1{0<x<b}, (3.2.2)

where ν̄(s) :=
∞∫

s

ν(x)dx, and fXt(·, t) is the density of Xt with Laplace transform

E
î
e−vXt

ó
= exp

Ñ
−t

∞∫
0

Ä
1− e−vx

ä
ν(x)dx

é
. (3.2.3)

Proof. Using the strong Markov property of Lévy processes, we have

P (T ∈ dt, W > w) = lim
ε→0

1
ε

P (Zt−ε ≤ b, Zt > b + w)

= lim
ε→0

1
ε

b∫
0

P(Zt−ε ∈ dy)P(Zε > b + w− y)

=

b∫
0

f (y, t)
∞∫

b+w−y

ν(u)dudy, (3.2.4)

Differentiating (3.2.4) with respect to w, the joint density of (T, W) directly follows (3.2.1). The

density of Zt within (0, b) can be derived though its Laplace transform, we have

f (x, t) = L−1
¶

E
î
e−vZt

ó©
1{0<x<b}

= L−1

exp

Ñ
−t

∞∫
0

Ä
1− e−vx

ä
ν(x)dx

é
exp

Ñ
t

∞∫
b

Ä
1− e−vx

ä
ν(x)dx

é 1{0<x<b}

= L−1

exp

Ñ
−t

∞∫
0

Ä
1− e−vx

ä
ν(x)dx

é
exp

Ñ
t

∞∫
b

ν(x)dx

é
exp

Ñ
−t

∞∫
b

e−vxν(x)dx

é 1{0<x<b}
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= L−1


∞∫

0

e−vx fXt(x, t)dx exp

Ñ
t

∞∫
b

ν(x)dx

é
∞∑

k=0

(−t)k

k!

Ñ ∞∫
b

e−vsν(x)dx

ék
 1{0<x<b}

= eν̄(b)t fXt(x, t)1{0<x<b}.

where fXt(·, t) denotes the density of Xt with Laplace transform (3.2.3).

Under the circumstance that the first passage time of Zt hits level b is greater than t, the dis-

tribution of the truncated process Zt is characterised via its density within (0, b). The details are

illustrated in Theorem 3.2.2.

Theorem 3.2.2. Given the time t, the density of {Zt|Zt < b} is given by

fZt|Zt<b(x|t) = fXt(x, t)
b∫

0

fXt(x, t)dx

, 0 < x < b, (3.2.5)

where fXt(·, t) denotes the density of Xt with Laplace transform (3.2.3).

Proof. The density immediately follows (3.2.5) by truncating the density of Xt.

3.3 Marked Renewal Representation

The paths of the truncated subordinator Zt can be characterised by a marked renewal process. First,

we define a sequence of hitting times T1, T2, T3, ..., and denoting Si =
i∑

j=1
Tj, let

Ti := inf{t > Si−1|Zt > ZSi−1 + b}, i = 2, 3, ..., (3.3.1)

These T1, T2, ... are treated as the holding times for the events {Ti−1 < t < Ti|Zt − ZTi−1 < b},

for i = 2, 3, .... We further define W1, W2, ... to be the overshoots at time S1, S2, ..., i.e.

Wi := ZSi − ZSi−1 − b. (3.3.2)

Hence, at time Si the process will automatically increase by (b + Wi) units for all i. Since the

process Zt has independent and stationary increments, each pair of (Ti, Wi) are independent and

identically distributed with joint density given in Theorem 3.2.1. In addition, Wi will be bounded

by 0 and b for all i as the jump sizes of the process is restricted with an upper bound b. The value

of the process at time Sn will be ZSn =
n∑

i=1
(b + Wi). The position of the process Zt at time t
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therefore can be expressed as using a marked renewal process as follows,

Zt =
Nt∑

i=1

(b + Wi) +
Ä

Zt − ZSNt
| SNt < t < SNt + Tn+1; Zt − ZSNt

< b + Wn+1
ä

, (3.3.3)

where Nt =
∞∑

i=1
1{Si≤t} is determined via (3.3.1) such that t ∈ [SNt , SNt + Tn+1). We also use

Figure 3.2 to illustrate the marked renewal idea graphically. The first part in (3.3.3) represents the

Figure 3.2: Graphical illustration of a sample path of Xt

T1

b

b
b + W1

T1 + T2

2b + W1

2b +
2∑

i=1
Wi

3b +
2∑

i=1
Wi

b

T1 + T2 + T3 T1 + ... + Tn+1T1 + ... + Tn

ZSNt

nb +
n−1∑
i=1

Wi

nb +
n∑

i=1
Wi

t

Zt
nb + b +

n∑
i=1

Wi

nb + b +
n+1∑
i=1

Wi

b+Wn+1

time

position of the truncated process at time SNt before reaches t. The second term in (3.3.3) represents

the movement of the process within the time t− SNt . As {t− SNt < Tn+1}
D
= {Zt−SNt

< b}, we

have

{Zt − ZSNt
| SNt < t < SNt + Tn+1, Zt − ZSNt

< b + Wn+1}
D
= {Zt−SNt

|t− SNt < Tn+1, Zt−SNt
< b + Wn+1}

D
= {Zt−SNt

|Zt−SNt
< b, Zt−SNt

< b + Wn+1}
D
= {Zt−SNt

|Zt−SNt
< b}. (3.3.4)
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Conditioning on t − SNt < Tn+1 and Zt−SNt
< b + Wn+1, the distribution of Zt−SNt

satisfies

(3.2.5) in Theorem 3.2.2. Thus, Zt can be simulated by generating pairs of hitting time and over-

shoot (Ti, Wi), stopping when the sum of Ti that have been generated, say SNt + Tn+1, becomes

larger than the input t. We then generate the part {Zt−SNt
|Zt−SNt

< b} and return to (3.3.3). We

give the details of the exact simulation method in Algorithm 3.3.1. In particular, we show how to

emphasis the marked renewal procedure using a recursive loop.

Algorithm 3.3.1 (Marked Renewal Simulation Framework). The truncated Lévy subordinator Zt

can be simulated via the following steps:

1. Set S = 0,

2. Generate (T, W) from the distribution fT,W(t, w) in (3.2.1); If t < T, go to step 3; Other-

wise, go to step 4,

3. Generate Z from the distribution fZt|Zt<b(x|t) in (3.2.5), then go to step 5,

4. Set S = S + b + W and t = t− T, then go back to step 2,

5. Return S + Z.

For implementation, one needs to specify the Lévy measure in explicit form in order to identify

the joint distribution of (T, W) and distribution of {Zt|Zt < b}. In the following sections, we con-

sider several typical examples of truncated Lévy subordinators and develop associated simulation

algorithms based on Algorithm 3.3.1.

3.4 Dickman and Truncated Gamma Process

Dickman processes (Dickman, 1930; Arratia, 1998; Penrose and Wade, 2004; Caravenna et al.,

2018) and truncated gamma processes are well-defined truncated Lévy subordinators. In this sec-

tion, we provide key results concerning the densities of hitting time and overshoot of these processes

and develop corresponding exact simulation algorithms.

3.4.1 Definitions and Distributional Properties

Definition 3.4.1. Let Zt be a Lévy subordinator with the following Laplace transform 1

E
î
e−vZt

ó
= exp

Ñ
−t

1∫
0

(1− e−vz)
1
z

e−µzdz

é
,

1Without loss of generality, we set the truncation level b = 1 to simplify notation.
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where µ ∈ R+ is the scaling parameter that controls the jump size. When µ > 0, Zt is a truncated

gamma process with parameter µ with Lévy measure e−µz

z 1{z<1}. When µ = 0, the associated

Laplace transform is given as

E
î
e−vZt

ó
= exp

Ñ
−t

1∫
0

1− e−vz

z
dz

é
,

which is the Laplace transform of a generalised Dickman distribution with parameter t. This is

also a Lévy process Zt with Lévy measure 1
z 1{z<1}, and hence we coin it the Dickman process.

Now, we obtain analytical joint distributions of the first hitting times and overshoots of the trun-

cated gamma process and the Dickman process. This is given in the following Lemma 3.4.1.

Lemma 3.4.1. Let T be the first hitting time of level 1 of a truncated gamma process Zt with µ ≥ 0,

and W be the associated overshoot. Then the joint distribution of (T, W) is given by

fT,W(t, w) =

1∫
w

eΓ(0,µ)tµt

Γ(t)
yt−1 e−µ(1+w)

1 + w− y
dy, for µ > 0, (3.4.1)

where t ∈ (0, ∞), w ∈ (0, 1).

For the Dickman process, the joint density of (T, W) is the limit of (3.4.1) as µ→ 0,

fT,W(t, w) =

1∫
w

e−γt

Γ(t)
yt−1

1 + w− y
dy, (3.4.2)

where γ is the Euler–Mascheroni constant, t ∈ (0, ∞), and w ∈ (0, 1).

Proof. Let f (x, t) denote the density of Zt. For µ > 0, according to Theorem 3.2.1, we have

f (x, t) = L−1
¶

E
î
e−vZt

ó©
1{0<x<1}

= L−1

exp

Ñ
−t

∞∫
0

Ä
1− e−vs

ä
s−1e−µsds

é
exp

Ñ
t

∞∫
1

Ä
1− e−vs

ä
s−1e−µsds

é 1{0<x<1}

= L−1


Ç

1 +
v
µ

å−t

exp

Ñ
t

∞∫
1

s−1e−µsds

é
∞∑

k=0

(−t)k

k!

Ñ ∞∫
1

e−vss−1e−µsds

ék
 1{0<x<1}

= L−1

etΓ(0,µ)
Ç

1 +
v
µ

å−t

+ etΓ(0,µ)
Ç

1 +
v
µ

å−t ∞∑
k=1

(−t)k

k!

Ñ ∞∫
1

e−vss−1e−µsds

ék
 1{0<x<1}

= L−1

{
etΓ(0,µ)

Ç
1 +

v
µ

å−t}
1{0<x<1}

=
eΓ(0,µ)tµt

Γ(t)
xt−1e−µx1{0<x<1}. (3.4.3)
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According to Theorem 3.2.1, we have

P (T ∈ dt, W > w) =

1∫
0

eΓ(0,µ)tµt

Γ(t)
yt−1e−µy

∞∫
1+w−y

z−1e−µzdzdy, (3.4.4)

Differentiating (3.4.4) with respect to w, the joint density of (T, W) in (3.4.1) directly follows. For

the Dickman process, we take the limit as µ → 0. The density of Zt within (0, 1) is obtain by

taking limit of (3.4.3), i.e.

f (x, t) = lim
µ→0

e[Γ(0,µ)+log(µ)]t

Γ(t)
xt−1e−µx =

e−γt

Γ(t)
xt−1, 0 < x < 1, (3.4.5)

with γ being the Euler–Mascheroni constant. Hence, associated distribution of (T, W) directly

follows (3.4.2).

Given that the first passage time of Zt hitting level 1 is greater than t, the distribution of the

truncated process Zt is characterised via its density within (0, 1). The details are in Lemma 3.4.2.

Lemma 3.4.2. The density of {Zt|Zt < 1} is given by

fZt|Zt<1(x|t) =


µt

Γ(t,µ)xt−1e−µx, µ > 0,

txt−1, µ = 0,
(3.4.6)

where 0 < x < 1.

Proof. Results in (3.4.6) immediately follows Theorem 3.2.2.

3.4.2 Exact Simulation Scheme

The first simulation method to sample the Dickman process is based on a density approximation

given in Devroye (2001). Later, Fill and Huber (2010) and Devroye and Fawzi (2010) using a dom-

inated coupling from the past procedure for Markov chains. Cloud and Huber (2017) proposed an

improvement by running both an upper and lower bound on the Markov chain. Chi (2012) sugges-

ted an alternative approach based on a rejection sampling procedure. However, these algorithms

are efficient only for the Dickman distribution, where the parameter t = 1, and their speed slows

down considerably when t gets larger than 1. In this section, based on the marked renewal frame-

work and choosing suitable acceptance-rejection (A/R) envelopes for fT,W(t, w) and fZt|Zt<1(x|t),

we develop an alternative simulation algorithm for the Dickman process, which outperforms all the

existing simulation algorithms, especially for t > 1.
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Algorithm 3.4.1 (Exact Simulation of Dickman Process). The Dickman process can be simulated

via the following steps:

1. Set S = 0, γ = −digamma(1),

2. Generate (T, W) via the following steps:

(a) Generate U1 ∼ U [0, 1], and set T = − 1
0.8 log U1,

(b) Generate Y ∼ Beta(T, 0.5), U2 ∼ U [0, 1], and set

W = Y− 1 + (1−Y) exp (−U2 log(1−Y)) ,

(c) Generate V ∼ U [0, 1], if

V ≤ 1
2.35

Γ(0.5)e−(γ−0.8)T

0.8Γ(T + 0.5)
(− log(1−Y))
(1−Y)−0.5 ,

then, accept (T, W); Otherwise, reject this candidate and go back to Step 2(a),

3. If t < T, go to Step 4; Otherwise, set S = S + 1 + W, t = t− T, and go back to Step 2,

4. Generate U ∼ U [0, 1], and set Z = U
1
t ,

5. Return S + Z.

Proof. For the joint density fT,W(t, w), we simulate (T, W, Y) jointly from the integral in (3.4.2),

f (t, w, y) =
e−γtyt−1

Γ(t)
1

1 + w− y
,

for t ∈ (0, ∞), 0 < w < y < 1. The A/R envelope chosen is

g(t, w, y) = σe−σt Γ(t + η)

Γ(t)Γ(η)
yt−1(1− y)η−1

1
1+w−y

(− log(1− y))
,

where σ = 0.8 and η = 0.5 are chosen numerically via two-dimensional optimisation. Further-

more, fZt|Zt<1(x|t) can be simulated directly via inverse transformation resulting in Step 4.

For the truncated gamma process, we propose the following algorithm based on the marked

renewal framework to sample truncated gamma process.

Algorithm 3.4.2 (Exact Simulation of Truncated Gamma Process). The truncated gamma process

can be simulated via the following steps:

1. Set S = 0,
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2. Generate (T, W) via the following steps:

(a) Numerically minimise

C(ϑ, δ) =
Γ(δ)e−µ

ϑ(1− δ)e
eΓ(0,µ) exp(Γ(0,µ)+ϑ+log(µ))µexp(Γ(0,µ)+ϑ+log(µ))eϑ exp(Γ(0,µ)+ϑ+log(µ))

Γ(exp (Γ(0, µ) + ϑ + log(µ)) + δ)
,

record the optimal value ϑ∗ and δ∗ and set C = C(ϑ∗, δ∗),

(b) Generate U1 ∼ U [0, 1] and set T = − 1
ϑ∗ log(U1),

(c) Generate Y ∼ Beta(T, δ∗), U2 ∼ U [0, 1] and set

W = Y− 1 + (1−Y) exp (−U2 log(1−Y)) ,

(d) Generate V1 ∼ U [0, 1], if

V1 ≤
1
C

Γ(δ∗)
ϑ∗

eΓ(0,µ)TµTeϑ∗T

Γ(T + δ∗)

− log(1−Y)
(1−Y)δ∗−1 e−µ(1+W),

then, accept (T, W); Otherwise, reject this candidate and go back to Step 2(b),

3. If t < T, go to Step 4; Otherwise, set S = S + 1 + W, t = t− T and go back to Step 2,

4. Generate Z via the following steps:

(a) Generate U3 ∼ U [0, 1] and set Z = U
1
t

3 .

(b) Generate V2 ∼ U [0, 1], if

V2 ≤ exp(−µZ),

then, accept Z; Otherwise, reject this candidate and go back to Step 4(a),

5. Return S + Z.

Proof. For the joint density fT,W(t, w), we simulate (T, W, Y) jointly from the integral in (3.4.1)

,

f (t, w, y) =
eΓ(0,µ)tµt

Γ(t)
yt−1 e−µ(1+w)

1 + w− y
,

where t ∈ (0, ∞), 0 < w < y < 1. We choose the envelope with density of the following form,

g(t, w, y) = ϑe−ϑt Γ(t + δ)

Γ(t)Γ(δ)
yt−1(1− y)δ−1

1
1+w−y

[− log(1− y)]
.

The ratio of the densities is bounded by

f (t, w, y)
g(t, w, y)

≤ Γ(δ)e−µ

α(1− δ)e
eΓ(0,µ)t∗µt∗eαt∗

Γ(t∗ + δ)
:= C(ϑ, δ),
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where we obtained by maximising the ratio with respect to t,

t∗ = exp
Å

Γ(0, µ) + α + log(µ) +O
Å 1

t∗

ãã
≈ exp (Γ(0, µ) + α + log(µ)) .

We then minimise C(ϑ, δ) with respect to ϑ and δ via two dimensional numerical optimisation.

Finally, {Zt|Zt < 1} can be simulated directly via A/R scheme by choosing an envelope with

density g(x, t) = xt−1

t 1{0<x<1}.

Remark 3.4.1. The numerical optimisation in here and the other parts of this thesis is only carried

once before entering the loop. Hence, the optimisation will not slow down the entire simulation

procedure.

3.5 Truncated Stable Process

Truncated stable processes and truncated tempered stable processes retain most properties of stable

processes and tempered stable processes. In this section, we analyse distributional properties of

these processes and develop corresponding exact simulation algorithms based on marked renewal

framework.

3.5.1 Definitions and Distributional Properties

Definition 3.5.1. Let Zt be a Lévy subordinator with Lévy measure

ν(z) =
αz−α−1e−µz

Γ(1− α)
1{0<z<1}, (3.5.1)

where α ∈ (0, 1) is the stability parameter and µ ∈ R is the tilting parameter. The associated

Laplace transform is given as

E
î
e−vZt

ó
= exp

Ñ
− αt

Γ(1− α)

1∫
0

(1− e−vz)z−α−1e−µzdz

é
, v ∈ R+.

For µ = 0, Zt is a truncated stable process with stability α. For µ > 0, Zt is a truncated tempered

stable process. For µ < 0, Zt is also a well-defined Lévy subordinator.

For µ = 0, Zt is a truncated stable process with stability α. As the density of a stable process

can be expressed using an integral representation of Zolotarev (1964), see Kanter (1975), Zolotarev

(1986), we can easily obtain analytical expression for the joint distribution (T, W) and the distri-

bution of {Zt|Zt < 1} based on Theorem 3.2.1 and 3.2.2.
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Lemma 3.5.1. For a truncated stable process Zt the joint distribution of (T, W) is given by

fT,W(t, w) =

1∫
w

π∫
0

αe
t

Γ(1−α)

πΓ(1− α)

α

1− α
A(u)y−

1
1−α t

1
1−α e−A(u)y−

α
1−α t

1
1−α 1

(1 + w− y)α+1 dudy,

(3.5.2)

and

A(u) :=
ñ

sin(αu)α sin((1− α)u)1−α

sin u

ô 1
1−α

. (3.5.3)

In addition, given the hitting time T, the density of {Zt|Zt < 1} is given by

fZt|Zt<1(x|t) =
π∫

0

1
Bπ

α

1− α
A(u)x−

1
1−α t

1
1−α e−A(u)x−

α
1−α t

1
1−α du, 0 < x < 1, (3.5.4)

where

B =

π∫
0

1
π

e−A(u)t
1

1−α du.

Proof. For a stable process St with Laplace transform

E
î
e−St
ó
= e−tvα

,

the density of St is of the form

fα(x, t) = t−
1
α fα(t−

1
α x, 1)

=
1
π

π∫
0

α

1− α
A(u)x−

1
1−α t

1
1−α e−A(u)x−

α
1−α t

1
1−α du, (3.5.5)

with A(u) defined in (3.5.3) (Devroye, 2009). Hence, the density of Zt within (0, 1) is given by

f (x, t) = exp

Ñ
tα

Γ(1− α)

∞∫
1

x−α−1dx

é
fα(x, t)

=
e

t
Γ(1−α)

π

π∫
0

α

1− α
A(u)x−

1
1−α t

1
1−α e−A(u)x−

α
1−α t

1
1−α du. (3.5.6)

The joint distribution of the hitting time and overshoot (T, W) therefore directly follows (3.5.2).

For truncated tempered stable process, the joint distribution of (T, W) and the distribution of

{Zt|Zt < 1} depends on the density of the associated tempered stable process. The details are
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given below in Lemma 3.5.2.

Lemma 3.5.2. For a truncated tempered stable process Zt with Lévy measure (3.5.1) for µ > 0,

the density of Zt within (0, 1) is given as

f (x, t; µ) =
e

t
Γ(1−α)

(e−µ+µαγ(1−α,µ))

π

π∫
0

α

1− α
A(u)x−

1
1−α t

1
1−α e−A(u)x−

α
1−α t

1
1−α−µxdu (3.5.7)

with A(u) defined in (3.5.3) and γ(·, ·) is the lower incomplete gamma function such that

γ(s, x) =
x∫

0

ys−1e−ydy.

Proof. For a general tempered stable process St with Laplace transform

E
î
e−vSt

ó
= exp

(
−t
[
(µ + v)α − µα])

The density of St is of the following form

fα,µ(x, t) = eµαt−µxt−
1
α fα(t−

1
α x, 1).

where fα(·, 1) is the associated density of stable distribution with stability α. Hence we obtain

(3.5.7) based on the Zolotarev integral representation and Theorem 3.2.1.

Lemma 3.5.3. For a truncated tempered stable process Xt, the joint distribution of (T, W) is of

the form

fT,W(t, w) =

1∫
w

π∫
0

αe
(e−µ+µαγ(1−α,µ))t

Γ(1−α)

πΓ(1− α)

α

1− α
A(u)y−

1
1−α t

1
1−α e−A(u)y−

α
1−α t

1
1−α e−µ(1+w)

(1 + w− y)α+1 dudy.

(3.5.8)

In addition, given the hitting, the distribution of {Zt|Zt < 1} is given by

f (x, t) =
∫ π

0

1
Dπ

α

1− α
A(u)x−

1
1−α t

1
1−α e−A(u)x−

α
1−α t

1
1−α−µxdu, (3.5.9)

where

D =

1∫
0

π∫
0

α

π(1− α)
A(u)x−

1
1−α t

1
1−α e−A(u)x−

α
1−α t

1
1−α−µxdudx.

Proof. (3.5.8) and (3.5.9) are derived directly based on Theorem 3.2.1, 3.2.2 and Lemma 3.5.2.
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3.5.2 Exact Simulation Scheme

For µ = 0, with analytical expressions for the joint distribution (T, W) and the distribution of

{Zt|Zt < 1} in Lemma 3.5.1, we can develop simulation algorithms to sample (T, W) and

{Zt|Zt < 1} accordingly. The details are provided in the following Algorithm 3.5.1 and 3.5.2.

Algorithm 3.5.1 (Exact Simulation of (T, W)). The hitting time and overshoot (T, W) can be

simulated via the following steps:

1. Set ζ = Γ(1− α)−1, and A0 = (1− α)α
α

1−α ,

2. Numerical minimise

C(λ) = A0eζ
1
α λ1− 1

α α(1−α)
1
α−1

(A0 − λ)α−2,

record the optimal value λ∗ and set C = C(λ∗),

3. Generate U ∼ U [0, π], U1 ∼ U [0, 1],

4. Set Y = 1−U1
1

1−α , AU =
î
sinα (αU) sin1−α ((1− α)U)/sin(U)

ó 1
1−α ,

5. Generate R ∼ Γ(2− α, AU − λ),

6. Generate V ∼ U [0, 1], if

V ≤ AUeζR1−αYα
e−λ∗R(AU − λ∗)α−2Yα−1(1− (1−Y)α)/C,

then, accept (R, Y, U) and go to Step 7; Otherwise, reject this candidate and go back to Step

3,

7. Generate U2 ∼ U [0, 1],

8. Set T = R1−αYα, and W = Y− 1 + [(1−Y)−α −U2 ((1−Y)−α − 1)]−
1
α ,

9. Return (T, W).

Proof. The simulation algorithm for (T, W) is developed based on an multi-dimensional A/R

scheme. The joint distribution of the hitting time and overshoot is given by

fT,W(t, w) =

1∫
w

π∫
0

f (t, y, u) f (w|y)dudy,

where

f (t, y, u) =
αζ

π(1− α)
A(u)y−

1
1−α t

1
1−α e−A(u)y−

α
1−α t

1
1−α +ζt

Ä
(1− y)−α − 1

ä
,
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for t ∈ (0, ∞), y ∈ (0, 1), u ∈ (0, π), and

f (w|y) =
1

(1+w−y)α+1

1
α ((1− y)−α − 1)

, 0 < w < y.

with ζ = 1
Γ(1−α) . We then make a transformation by setting r = y−

α
1−α t

1
1−α , the density of

(R, Y, U) is of the form

f (r, y, u) =
αζeζr1−αyα

π
A(u)r(1−α)y−(1−α)e−A(u)r(1− y)−α (1− (1− y)α) ,

for r ∈ (0, ∞), y ∈ (0, 1), u ∈ (0, π).

To simulate (R, Y, U), we choose an envelope with density

g(r, y, u) =
1
π

(A(u)− λ)2−αr1−αe−(A(u)−λ)r

Γ(2− α)
(1− α)(1− y)−α.

Hence, the ratio of these two densities is given as

f (r, y, u)
g(r, y, u)

=
αζΓ(2− α)A(u)

(1− α)(A(u)− λ)2−α
eζr1−αyα

e−λryα−1(1− (1− y)α)

≤ αζΓ(2− α)A0

(1− α)(A0 − λ)2−α
eζr1−αyα

e−λryα−1(1− (1− y)α)

≤ αζΓ(2− α)A0

(1− α)(A0 − λ)2−α
eζ

1
α λ1− 1

α α(1−α)
1
α−1

= C(λ), (3.5.10)

where A0 = (1− α)α
α

1−α . Note that C(λ) can be further minimised over λ via numerical optim-

isation.

Given Y, we can directly simulate W via inverse transformation as the CDF of {W|Y} is given

as

F(w|y) = 1
((1− y)−α − 1)

î
(1− y)−α − (1 + w− y)−α

ó
, 0 < w < y,

which can be inverted explicitly and thus simulated via inverse transformation.

Algorithm 3.5.2 (Exact Simulation of {Zt|Zt < 1}). The simulation Scheme for {Zt|Zt < 1} is

given as follows:

1. Generate U1 ∼ U [0, π], and set

AU1 =

ñ
sinα (αU1) sin1−α ((1− α)U1)

sin(U1)

ô 1
1−α

,
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2. Generate U2 ∼ U [0, π], and set

Z =

[
− log(U2)

AU1 t
1

1−α

]− α
1−α

, (3.5.11)

if Z < 1, then, accept Z; Otherwise, reject this candidate and go back to Step 1.

Proof. To generate {Zt|Zt < 1}, we can generate the stable process St with the density

f (x) =
π∫

0

1
π

α

1− α
A(u)x−

1
1−α t

1
1−α e−A(u)x−

α
1−α t

1
1−α du, 0 < x < ∞,

If St < 1, then we accept the candidate. St can be simulated via inverse transformation, the CDF

is given as

FSt(x) =
π∫

0

1
π

e−A(u)x−
α

1−α t
1

1−α du, 0 < x < ∞,

Hence, we first sample a uniform variable uniform variable with domain (0, π) and then sample

St via (3.5.11) through inverse transformation.

Hence, to generate a truncated stable sample Zt, we implement the following simulation scheme.

Algorithm 3.5.3 (Exact Simulation of Truncated Stable Process). The truncated stable Zt can be

simulated via Algorithm 3.3.1, by simulating (T, W) via Algorithm 3.5.1, and simulating {Zt|Zt <

1} via Algorithm 3.5.2.

For µ > 0, the truncated tempered stable process Zt can be simulated either via the marked

renewal approach or via simple rejection method based on truncated stable process. Although we

can use the marked renewal approach to generate this truncated tempered stable Zt, due to the

complexity of the analytical distribution of (T, W), we therefore design an alternative simulation

scheme based on the simulation algorithm for truncated stable process. As the density for the

truncated stable is obtained by tempering exponential function to the truncated stable process, we

can use an A/R scheme after generating the truncated stable sample. The procedures are illustrated

in Algorithm 3.5.4.

Algorithm 3.5.4 (Exact Simulation of Truncated Tempered Stable Process). The truncated tempered

stable Zt with µ > 0 can be simulated via the following steps:

1. Generate a truncated stable process Zt with stability α via Algorithm 3.5.3,
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2. Generate V ∼ U [0, 1], if

V ≤ exp(−µZt),

then, accept Zt; Otherwise, reject this candidate and go back to step 1.

This algorithm relies on the fact that the density of the truncated tempered stable process is

obtained by multiplying an exponential function to the density of the truncated stable process.

The algorithm only works efficiently for smaller tilting parameter µ. As the complexity of the al-

gorithm is given by exp(µ), the computation costs will increase rapidly when the tilting parameter

increases. In order to improve the efficiency and reduce simulation time, we develop the following

simulation algorithm to generate truncated tempered stable process.

Algorithm 3.5.5 (Enhanced Exact Simulation of Truncated Tempered Stable Process). Given µ >

0 and a constant b ∈ (0, 1), the simulation scheme for truncated tempered stable process Zt is

given as follows:

1. Generate a truncated tempered stable Yt with stability α, skewness M = µb, and scale
α

bαΓ(1−α) via Algorithm 3.5.4,

2. Generate Nt ∼ Poisson
(

t
Γ(1−α)

îÄ
b−αe−bµ − e−µ

ä
+ µα (Γ(1− α, µ)− Γ(1− α, µb))

ó)
,

3. Generate {Ji}i=1,2,...,Nt using an A/R scheme via the following steps,

(a) Numerical minimise

C(κ) =
α
Ä
e−(κ+µ)b − e−(κ+µ)

ä
max

{
eκ, eκb

bα+1

}
(κ + µ)

[(
b−αe−bµ − e−µ

)
+ µα (Γ(1− α, µ)− Γ(1− α, µb))

] , (3.5.12)

record the optimal value κ∗,

(b) Generate Ji by setting

Ji =
1

(κ∗ + µ)
ln
Ä
e−(κ

∗+µ)b − (e−(κ
∗+µ)b − e−(κ

∗+µ))U
ä

, U ∼ U [0, 1],

(c) Generate V ∼ U [0, 1], if

V ≤ 1

max
®

eκ∗ ,
eκ∗b

bα+1

´
Ji

α+1
eκ∗ Ji , (3.5.13)

then, accept Ji; Otherwise, reject this candidate and go back to Step 3(b),

4. Return b×Yt +
Nt∑

i=1
Ji.
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Proof. For a truncated tempered stable process Zt with µ > 0, the Laplace transform is of the

following form

E
î
e−vZt

ó
= exp

Ñ
− αt

Γ(1− α)

1∫
0

(1− e−vz)z−α−1e−µzdz

é
= exp

Ö
− αt

Γ(1− α)

b∫
0

(1− e−vz)
e−µz

zα+1 dz

è
exp

Ñ
− αt

Γ(1− α)

1∫
b

(1− e−vz)
e−µz

zα+1 dz

é
= exp

Ñ
− αt

bαΓ(1− α)

1∫
0

(1− e−vbz)
e−µbz

zα+1 dz

é
exp

Ñ
− αt

Γ(1− α)

1∫
b

(1− e−vz)
e−µz

zα+1 dz

é
,

where b < 1. Hence, we have

Zt
D
= b×Yt +

Nt∑
i=1

Ji,

where

• Yt is a truncated tempered stable process with Lévy measure

ν(dy) =
α

bαΓ(1− α)

e−My

yα+1 , for M = µb;

•
Nt∑

i=1
Ji is a compound Poisson process with

– Nt is a Poisson process with rate

t
Γ(1− α)

îÄ
b−αe−bµ − e−µ

ä
+ µα (Γ(1− α, µ)− Γ(1− α, µb))

ó
;

– {Ji}i=1,2,... are i.i.d jumps with density

f Ji(x) =
αx−α−1e−µx[(

b−αe−bµ − e−µ
)
+ µα (Γ(1− α, µ)− Γ(1− α, µb))

] ,
for x ∈ (b, 1).

These i.i.d jumps can be simulated via A/R scheme, we choose an envelope with density

g(x) =
(κ + µ)e−(κ+µ)x

e−(κ+µ)b − e−(κ+µ)
.

The A/R constant is given as C(κ∗) in (3.5.12), where κ∗ is the critical value that minimises C(κ).
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Since we break the truncated tempered stable process into a truncated tempered process with a

smaller tilting parameter and a compound Poisson process, the computation costs will be reduced

for the truncated tempered stable process with smaller tilting parameter, but there will be extra costs

to generate the compound Poisson process. Therefore, we also need to consider the efficiency to

generate the compound Poisson process to choose an optimal b to decompose the process.

Finally, for µ < 0, we could follow Algorithm 3.5.6 to simulate Zt.

Algorithm 3.5.6 (Exact Simulation of Zt with µ < 0). The simulation scheme for µ < 0 is given

as follows:

1. Generate a truncated stable Yt via Algorithm 3.5.3,

2. Generate Nt ∼ Poisson
(

tαF
Γ(1−α)

)
, where

F =

1∫
0

(e|µ|x − 1)x−α−1dx, (3.5.14)

3. Generate {Ji}i=1,2,...,Nt using an A/R scheme via the following steps,

(1) Numerical minimise

C(ξ) =
eξ − 1

Fξ(1− α)
max

¶
(e|µ| − 1)e−ξ , |µ|

©
,

record the optimal value ξ∗,

(2) Generate Ji by setting

Ji =

ñ
1
ξ∗

log
Ä
U
Ä
eξ∗ − 1

ä
+ 1
äô 1

1−α

, U ∼ U [0, 1],

(3) Generate V ∼ U [0, 1], if

V ≤ (e|µ|Ji − 1)e−ξ∗ J1−α
i

Ji max
¶
(e|µ| − 1)e−ξ∗ , |µ|

© ,

then, accept Ji; Otherwise, reject this candidate and go back to Step (2),

4. Return Yt +
Nt∑

i=0
Ji.

Proof. For µ < 0, Zt can be decomposed into a truncated stable process Yt with Lévy measure

in (3.5.1) with µ = 0 and a compound Poisson process with poisson rate tαF
Γ(1−α) for F in (3.5.14).
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The density of i.i.d jumps {Ji}i=1,2,... is given as

f Ji(x) =
1
F

e|µ|x − 1
xα+1 , 0 < x < 1.

We simulate Ji using an A/R scheme by choosing an envelope J′i with density

gJ′i
(x) =

ξ(1− α)

eξ − 1
eξx1−α

xα
, 0 < x < 1,

the CDF is given by

GJ′i
(x) =

eξx1−α − 1
eξ − 1

, 0 < x < 1,

which can be inverted explicitly and thus J′i can be simulated via inverse transformation. To find

the A/R constant, we have

f Ji(x)
gJ′i

(x)
=

eξ − 1
Fξ(1− α)

(e|µ|x − 1)e−ξx1−α

x

≤ eξ − 1
Fξ(1− α)

max
¶
(e|µ| − 1)e−ξ , |µ|

©
(3.5.15)

The A/R constant depends on the input µ, in order to obtain high acceptance rate, we use numerical

optimization to find the optimal ξ∗ that minimises (3.5.15).

3.5.3 Special Case: Truncated Inverse Gaussian Processes

In this section, we consider specifically the truncated inverse Gaussian Zt associated with Lévy

measure

ν(z) =
1√

2πz3
e−µz1{0<z<1}, µ ∈ R.

For µ > 0, Zt is a truncated inverse Gaussian process. We provide the joint density of the hitting

time and overshoot as below in Proposition 3.5.1.

Proposition 3.5.1. For a truncated inverse Gaussian Zt with µ ∈ R+, the joint distribution of the

hitting time T and overshoot W is given by

fT,W(t, w) =
e

t
Ä√

2
π e−µ+

√
2µ Erf(

√
µ)
ä

e−µ(1+w)e−
t2

2(1+w)

√
2π(1 + w)

3
2

×
Ç

1− t2

1 + w

åÑ
Erf

Ñ
t»

2w(1 + w)

é
− Erf

Ñ
t
√

w»
2(1 + w)

éé
+

te
t
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2
π e−µ+

√
2µ Erf(

√
µ)
ä

e−µ(1+w)

π
√

w(1 + w)2

Å
e−

t2
2 − we−

t2
2w

ã
, (3.5.16)
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for t ∈ R+ and w ∈ (0, 1).

Proof. According to Theorem 3.2.1, the joint distribution of (T, W) satisfies (3.2.1). First, one

can derive the density of Zt within (0, 1) through its Laplace transform,

f (y, t)

= L−1
¶

E
î
e−vZt

ó©
1{0<y<1}

= L−1

exp

Ñ
−t

1∫
0

Ä
1− e−vy

ä 1»
2πy3

e−
(
√

2µ)2y
2 dy

é 1{0<y<1}

= L−1


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0

e−vy te−
(
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2µy−t)2
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2πy3

dy exp
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1
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é
exp
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1

e−vy»
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(
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2µ)2y
2 dy

é 1{0<y<1}
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e−t(
√

2v+2µ−2µ) exp

Ñ
t

∞∫
1

e−µy»
2πy3

dy

é
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(−t)k
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1
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2y exp
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Ä√

2
π e−µ−

√
2µ Erfc(

√
µ)
ä

.

The joint distribution of the hitting time and overshoot (T, W) is therefore

fT,W(t, w)

=

1∫
0

f (y, t)ν(1 + w− y)dy

=

1∫
w

t»
2πy3

e−
(
√

2µy−t)2

2y e
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(3.5.17)
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We also have

1
w∫

w

1√
v

e−
t2v

2(1+w) dv

=

√2π
√

1 + w
t

Erf
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− Erf
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(3.5.18)

and

1
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(3.5.19)

Combining (3.5.17), (3.5.18) and (3.5.19), the joint density of (T, W) immediately follows (3.5.16).

The closed form marginal distribution of the hitting time therefore can be derived by integrating

the joint distribution of the hitting time and overshoot. The details are provided in Corollary 3.5.1.

Corollary 3.5.1. The marginal distribution of the hitting time T for Xt is given by

fT(t)

= e
t
Ä√

2
π e−µ+

√
2µ Erf(

√
µ)
äÇ 

2
π

e−µe−
t2
2 − 1

2
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2
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, (3.5.20)

for t ∈ R+.
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Proof. Since

y∫
0

e−µ(1+w−y)»
2π(1 + w− y)3

dw =

1∫
1−y

e−µz
√

2πz3
dz
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,

therefore, the marginal density of T is given by

fT(t) =
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0
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First of all, we have
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(3.5.22)
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In addition, we have
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=
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Substituting (3.5.22), (3.5.23), (3.5.24), and (3.5.25) into (3.5.21), the density of T directly follows

(3.5.20).

Proposition 3.5.2. Given the hitting time T, the density of {Zt|Zt < 1} is given by

fZt|Zt<1(x|t) =
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(3.5.26)

Proof. According to Theorem 3.2.2, we have
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Given T, the conditional density fZt|Zt<1 is a proper density function as fZt|Zt<1(x|t) > 0 for all

x ∈ (0, 1) and
∞∫

0

fZt|Zt<1(x|t)dx = 1.

For µ equal to 0, Zt is a truncated stable process with stability index α = 1/2, this has obvious

connections with the Parisian stopping time or drawdown stopping time of Brownian motion, see

Dassios and Lim (2018). The joint distribution of its first passage time and the overshoot, the mar-

ginal distribution of the first passage time and the conditional distribution of the truncated process

given the hitting time have simpler expressions which allow us to develop enhanced simulation

algorithms. The relevant results are listed in Corollary 3.5.2 below.

Corollary 3.5.2. Let fT,W(t, w) denote the joint density of the hitting time T and the overshoot W
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at the time of a truncated stable process Zt with Lévy measure

ν(z) =
1√
2π

z−
3
2 1{0<z<1},

let fT(t) denote the density of T, and fZt|Zt<1(x|t) denote the conditional density of Zt|Zt < 1.

Then we have the following results:
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fZt|Zt<1(x|t) =
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Erfc
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) t√
2πx3

e−
t2
2x , 0 < x < 1. (3.5.30)

Proof. These formulas directly follow (3.5.16), (3.5.20) and (3.5.26) with µ = 0.

Since the analytical joint distribution of hitting time and overshoot and conditional distribution of

{Zt|Zt < 1} for the truncated stable with index 1/2 and inverse Gaussian processes are available,

we, therefore, develop more efficient simulation algorithm to sample these processes. First, let us

consider the simulation algorithm for the truncated stable process with stability index 1/2.

Algorithm 3.5.7 (Exact Simulation of Truncated Stable 1/2). The simulation scheme for truncated

stable with stability 1/2 is given as follows:

1. Set S = 0,

2. Generate (T, W) via the following steps:

(1) Generate T by setting

T =
»
− log(U1)/0.33, U1 ∼ U [0, 1],

(2) Generate W by setting

W = 2−U2 −
√

1−U2 U2 ∼ U [0, 1],
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(3) Generate V1 ∼ U [0, 1], if

V1 ≤
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(
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) ,

then, accept (T, W); Otherwise, go back to Step (1),

With the accepted (T, W), if t < T, go to step 3; Otherwise, go to step 4,

3. Generate Z via the following steps,

(I) Generate Z by setting

Z = t2/
î
t2 − 2 ln(U3)

ó
, U3 ∼ U [0, 1], (3.5.31)

(II) Generate V2 ∼ U [0, 1], if

V2 ≤
√

Z, (3.5.32)

then, accept Z; Otherwise, go back to Step 3(I),

With the accepted Z, then go to step 5,

4. Set S = S + 1 + W and t = t− T then go back to step 2,

5. Return S + Z.

Proof. The simulation algorithms for (T, W) and {Zt|Zt < 1} are developed based on A/R

schemes using the densities given in Corollary 3.5.2. To generate (T, W), we choose an envel-

ope (T′, W ′) with density function

g(t, w) = 2αte−αt2
Ç

1√
w
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å

, α > 0,

so that (T′, W ′) can be simulated jointly and directly via explicit inverse transformation. The A/R

constant is given by
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Based on numerical approximation, we discovered that the optimal value α∗ that minimises C(α)

is 0.33 and that C(α∗) = 1.21. Hence, the expected number of iterations required for each sample

of (T, W) is 1.21.

To generate {Zt|Zt < 1}, we choose an envelope Z′ with density

fZ′(x|t) = e
t2
2

t2

2x2 e−
t2
2x , 0 < x < 1,

the CDF is given by

FZ′(x) = 1− e
t2
2 e−
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2x , 0 < x < 1,

which can be inverted explicitly and generated via (3.5.31). The A/R constant is given by

fZt|Zt<1(x|t)
fZ′(x|t) ≤
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π Erfc
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)
t
.

We then follow the A/R decision (3.5.32) to generate {Zt|Zt < 1}. Using these A/R algorithms to

generate (T, W) and {Zt|Zt < 1}, we then follow the recursive procedure to simulate the truncated

stable process Zt with stability index 1
2 .

To generate the truncated inverse Gaussian process, as the analytical joint distribution of the

hitting time and overshoot (T, W) and the conditional distribution of {Zt|Zt < 1}, we could

develop an exact simulation scheme for truncated inverse Gaussian process via marked renewal

approach. Unlike Algorithm 3.5.4, this alternative algorithms reduce the complexity for large value

of µ. The details are provided in Algorithm 3.5.8 below.

Algorithm 3.5.8 (Exact Simulation of Truncated Inverse Gaussian Process). The truncated inverse

Gaussian process can be simulated via the following steps:

1. Set S = 0,

2. Generate (T, W) via the following steps,

(1) Set
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(3.5.33)
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(2) Generate T by setting T =
»
−log(U1)/α∗ with U1 ∼ U [0, 1],

(3) Generate W by setting W = 2−U2 −
√
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(3.5.34)

with

C1 = 1.8× 1{µ<1}+
1{µ≥1}
2α∗π
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− α∗
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π e−µ +

√
2µ Erf(

√
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(1− 2α∗)2

è
,

then, accept (T, W); Otherwise, reject this candidate and go back to step 2(2),

With the accepted (T, W), if t < T, go to step 3; Otherwise, go to step 4,

3. Generate Z via the following steps,

(I) Generate Z by setting Z = t2/
î
t2 − 2 ln(U3)

ó
with U3 ∼ U [0, 1],

(II) Generate V2 ∼ U [0, 1], if V2 ≤ 1
C2

√
Ze−µZ, where

C2 =


exp(−µ), for µ ≤ 1

2 ,

1√
2πe

, for µ > 1
2 ,

then, accept Z; Otherwise, reject this candidate and go back to Step 3(I),

With the accepted Z, then go to step 5,

4. Set S = S + 1 + W and t = t− T then go back to step 2,

5. Return S + Z.

Proof. For µ > 0, given the joint density of (T, W) of the form (3.5.16), we choose an envelope

(T′, W ′) with density

g(t, w) = 2αte−αt2
Ç

1√
w
− 1
å

.
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Hence, the A/R constant is derived by finding the maximum of the ratio fT,W(t, w)
g(t, w)

in terms of t

and w, details are given as follow,
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We notice that for µ > 1, the maximum occurs at w = 0 and t =
√

2
π e−µ+

√
2µ Erf(

√
mu)

1−2α , and for

µ < 1, the maximum of the ratio does not exceed 1.8. Hence we have a choice of C̄ = 1.8 and

a = 1. Then with the A/R constant, the next task is to find the optimal α∗ such that C(µ, α∗) ≤

C(µ, α) for all α. As the derivative of C(µ, α) with respect to α satisfies the following

∂C(µ, α)

∂α
=
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the optimal α∗ satisfies the following equation

4α∗2 − 4α∗ −
( 

2
π

e−µ +
»

2µ Erf(
√

µ)

)2

α∗ + 1 = 0.

Hence, we can express the optimal α∗ in (3.5.33) in terms of µ. This α∗ indeed is the critical value

that minimises C(µ, α) as

∂C(µ, α)

∂α

∣∣∣∣∣
α=α∗

= 0, and
∂2C(µ, α)

∂α2

∣∣∣∣∣
α=α∗

> 0.

Then the two-dimensional A/R scheme to generate (T, W) is to choose an envelope with density

g(t, w) and the A/R decision directly follows (3.5.34). The expected number of iterations of this

A/R scheme is C1 = C(µ, α∗).
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To simulate {Zt|Zt < 1}, we use the same envelope that was used in Algorithm 3.5.7. The A/R

constant is given by

fZt|Zt<1(x|t)
fZ′(x|t) =

2e−
t2
2

Dt
√

2π

√
xe−µx ≤


2e−

t2
2 e−µ

Dt
√

2π
, for µ ≤ 1

2 ,

e−
t2
2

Dt
√

πe , for µ > 1
2 .

where D satisfies (3.5.27). The recursive procedure to simulate the truncated inverse Gaussian

process follows.

3.6 Numerical Experiments

In this section, we present some numerical results of the exact simulation methods developed in

Algorithm 3.4.1, 3.4.2, 3.5.3, 3.5.4, 3.5.5, 3.5.6, 3.5.7 and 3.5.8. Numerical validation and tests

for our simulation algorithms are all based on the true mean. The associated errors from the true

values are reported via the following three standard measures:

1. difference = estimated value - true value;

2. relative error (error %) = estimated value-true value
true value ;

3. root mean square error (RMSE) =
√
bias2 + SE2, where SE is the standard error of the

simulation output. The bias is conventionally set to zero as the algorithms we developed are

all exact simulation algorithms.

The detailed numerical results are reported in Table 3.1, 3.2, 3.3 . We can see that each algorithm

can achieve a very high level of accuracy, which is reflected by the difference in the theoretical

mean and associated percentage errors.

For the Dickman process, we implement a comparison between Algorithm 3.4.1 against the

algorithms suggested by Devroye and Fawzi (2010), Fill and Huber (2010), Chi (2012), and Cloud

and Huber (2017). The detailed numerical results based on different parameter settings against t

are reported in Table 3.4. In addition, we also compared the computation time to generate 100, 000

samples using these five algorithms for different values of t, and details are presented in Table 3.5.

We can see that sampling based on Algorithm 3.4.1 is much faster than algorithms in Devroye and

Fawzi (2010), Fill and Huber (2010), Chi (2012), and Cloud and Huber (2017). For instance, when

t = 3, Algorithm 3.4.1 is 4 times faster than Devroye and Fawzi (2010), 50 times faster than Fill

and Huber (2010), 25 times faster than Chi (2012), and 7 times faster than Cloud and Huber (2017).

Compared with the other algorithms, the main advantage of Algorithm 3.4.1 is that the incremental
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Table 3.1: Comparison between the true means and the associated simulation results for Algorithm 3.4.1,
3.4.2 based on the parameter setting t = 0.5, 1, 2.5, 3, µ = 0, 0.5, 1, respectively.

Paths True Simulation Diff Error% RMSE Time True Simulation Diff Error% RMSE Time
Algorithm 3.4.1 t = 0.5 µ = 0 t = 2.5 µ = 0

1,000 0.5000 0.4879 -0.0121 -2.47% 0.0155 0.11 2.5000 2.4421 -0.0579 -2.37% 0.0343 0.08
4,000 0.5000 0.5057 0.0057 1.12% 0.0079 0.13 2.5000 2.5148 0.0148 0.59% 0.0178 0.11
16,000 0.5000 0.5011 0.0011 0.22% 0.0040 0.38 2.5000 2.5073 0.0073 0.29% 0.0089 0.36
64,000 0.5000 0.5008 0.0008 0.16% 0.0020 1.09 2.5000 2.4975 -0.0025 -0.10% 0.0044 1.17
256,000 0.5000 0.5002 0.0002 0.05% 0.0010 4.35 2.5000 2.5058 0.0058 0.23% 0.0022 4.43
1,024,000 0.5000 0.5009 0.0009 0.19% 0.0005 16.63 2.5000 2.5003 0.0003 0.01% 0.0011 17.19

Algorithm 3.4.2 t = 1 µ = 0.5 t = 1 µ = 1
1,000 0.7869 0.7890 0.0020 0.25% 0.0183 0.14 0.6321 0.6426 0.0105 1.63% 0.0165 0.19
4,000 0.7869 0.7909 0.0039 0.49% 0.0095 0.28 0.6321 0.6318 -0.0003 -0.04% 0.0081 0.28
16,000 0.7869 0.7809 -0.0060 -0.76% 0.0047 0.66 0.6321 0.6338 0.0017 0.26% 0.0041 0.83
64,000 0.7869 0.7891 0.0021 0.26% 0.0024 2.12 0.6321 0.6304 -0.0017 -0.27% 0.0020 2.18
256,000 0.7869 0.7855 -0.0014 -0.18% 0.0012 8.38 0.6321 0.6324 0.0002 0.03% 0.0010 8.55
1,024,000 0.7869 0.7865 -0.0004 -0.05% 0.0006 33.09 0.6321 0.6327 0.0005 0.08% 0.0005 31.48

Algorithm 3.4.2 t = 3 µ = 0.5 t = 3 µ = 1
1,000 2.3608 2.3699 0.0091 0.38% 0.0326 0.17 1.8964 1.9056 0.0092 0.48% 0.0289 0.16
4,000 2.3608 2.3431 -0.0177 -0.75% 0.0163 0.30 1.8964 1.8995 0.0031 0.16% 0.0139 0.17
16,000 2.3608 2.3731 0.0123 0.51% 0.0083 0.75 1.8964 1.8964 0.0000 0.00% 0.0070 0.50
64,000 2.3608 2.3629 0.0020 0.08% 0.0041 2.12 1.8964 1.8965 0.0002 0.01% 0.0035 1.94
256,000 2.3608 2.3608 0.0000 0.00% 0.0021 8.76 1.8964 1.8977 0.0013 0.06% 0.0018 6.98
1,024,000 2.3608 2.3579 -0.0029 -0.12% 0.0010 32.33 1.8964 1.8960 -0.0003 -0.01% 0.0009 31.60

Table 3.2: Comparison between the true means and the associated simulation results for Algorithm 3.5.3,
3.5.4, 3.5.5, and 3.5.6 based on parameter setting t = 0.5, 1, 4, α = 0.3, 0.5, 0.8, and µ =
0,±0.5,±1, respectively.

Paths True Simulation Diff Error% RMSE Time True Simulation Diff Error% RMSE Time
Algorithm 3.5.3 α = 0.3 t = 0.5 µ = 0 α = 0.3 t = 1 µ = 0

1,000 0.1651 0.1602 -0.0049 -3.03% 0.0081 0.45 0.3302 0.3187 -0.0115 -3.60% 0.0112 0.37
4,000 0.1651 0.1619 -0.0032 -1.98% 0.0041 0.37 0.3302 0.3418 0.0116 3.40% 0.0062 0.57
16,000 0.1651 0.1651 0.0001 0.03% 0.0021 0.78 0.3302 0.3318 0.0016 0.50% 0.0029 1.09
64,000 0.1651 0.1661 0.0010 0.61% 0.0010 3.27 0.3302 0.3294 -0.0007 -0.22% 0.0015 3.71
256,000 0.1651 0.1647 -0.0004 -0.23% 0.0005 11.35 0.3302 0.3314 0.0012 0.37% 0.0007 12.62
1,024,000 0.1651 0.1652 0.0001 0.08% 0.0003 43.49 0.3302 0.3303 0.0002 0.05% 0.0004 44.38

Algorithm 3.5.3 α = 0.8 t = 0.5 µ = 0 α = 0.8 t = 1 µ = 0
1,000 0.4356 0.4289 -0.0067 -1.57% 0.0087 0.27 0.8713 0.8780 0.0067 0.76% 0.0118 0.42
4,000 0.4356 0.4315 -0.0041 -0.95% 0.0041 0.41 0.8713 0.8726 0.0013 0.15% 0.0061 0.39
16,000 0.4356 0.4345 -0.0011 -0.26% 0.0021 0.78 0.8713 0.8665 -0.0048 -0.56% 0.0030 0.69
64,000 0.4356 0.4361 0.0005 0.11% 0.0011 1.64 0.8713 0.8692 -0.0021 -0.24% 0.0015 2.20
256,000 0.4356 0.4359 0.0003 0.06% 0.0005 5.28 0.8713 0.8707 -0.0006 -0.07% 0.0008 7.59
1,024,000 0.4356 0.4352 -0.0005 -0.11% 0.0003 22.05 0.8713 0.8711 -0.0002 -0.02% 0.0004 26.09

Algorithm 3.5.4 α = 0.5 t = 0.5 µ = 1 α = 0.5 t = 4 µ = 1
1,000 0.2107 0.2111 0.0004 0.19% 0.0087 0.15 1.6854 1.6924 0.0070 0.40% 0.0250 0.14
4,000 0.2107 0.2069 -0.0038 -1.78% 0.0043 0.56 1.6854 1.6834 -0.0021 -0.12% 0.0122 0.61
16,000 0.2107 0.2129 0.0023 1.06% 0.0022 2.08 1.6854 1.6854 0.0000 0.00% 0.0062 2.73
64,000 0.2107 0.2093 -0.0013 -0.63% 0.0011 7.47 1.6854 1.6849 -0.0005 -0.02% 0.0030 10.67
256,000 0.2107 0.2102 -0.0005 -0.22% 0.0005 28.41 1.6854 1.6859 0.0005 0.03% 0.0015 43.81
1,024,000 0.2107 0.2108 0.0002 0.08% 0.0003 117.74 1.6854 1.6846 -0.0008 -0.04% 0.0007 167.59

Algorithm 3.5.5 α = 0.5 t = 0.5 µ = 1 α = 0.5 t = 4 µ = 1
1,000 0.2107 0.2127 0.0020 0.94% 0.0084 0.11 1.6854 1.6897 0.0043 0.25% 0.0243 0.12
4,000 0.2107 0.2059 -0.0048 -2.25% 0.0042 0.45 1.6854 1.6751 -0.0104 -0.61% 0.0124 0.40
16,000 0.2107 0.2098 -0.0009 -0.41% 0.0022 1.73 1.6854 1.6863 0.0009 0.05% 0.0062 1.75
64,000 0.2107 0.2114 0.0008 0.36% 0.0011 6.14 1.6854 1.6893 0.0039 0.23% 0.0031 7.45
256,000 0.2107 0.2111 0.0004 0.19% 0.0005 24.31 1.6854 1.6871 0.0017 0.10% 0.0015 30.41
1,024,000 0.2107 0.2107 0.0000 0.00% 0.0003 98.69 1.6854 1.6857 0.0003 0.01% 0.0008 110.74

Algorithm 3.5.6 α = 0.5 t = 0.5 µ = −0.5 α = 0.5 t = 1 µ = −1
1,000 0.3371 0.3298 -0.0073 -2.16% 0.0131 0.13 0.8252 0.7990 -0.0262 -3.17% 0.0220 0.33
4,000 0.3371 0.3362 -0.0009 -0.27% 0.0067 0.28 0.8252 0.8297 0.0045 0.54% 0.0111 0.48
16,000 0.3371 0.3345 -0.0026 -0.77% 0.0033 1.40 0.8252 0.8299 0.0047 0.56% 0.0056 1.94
64,000 0.3371 0.3356 -0.0015 -0.45% 0.0017 5.71 0.8252 0.8256 0.0004 0.04% 0.0028 7.52
256,000 0.3371 0.3370 -0.0001 -0.02% 0.0008 19.72 0.8252 0.8247 -0.0005 -0.06% 0.0014 30.31
1,024,000 0.3371 0.3373 0.0002 0.05% 0.0004 90.09 0.8252 0.8239 -0.0014 -0.16% 0.0007 152.13
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Table 3.3: Comparison between the true means and the associated simulation results for Algorithm 3.5.7
and 3.5.8 based on the parameter setting t = 1, 3 and µ = 0,±0.5,±1, respectively.

Paths True Simulation Diff Error% RMSE Time True Simulation Diff Error% RMSE Time
Algorithm 3.5.7 t = 1 µ = 0 t = 3 µ = 0

1,000 0.7979 0.8498 0.0519 6.50% 0.0171 0.07 2.3937 2.4404 0.0467 1.95% 0.0286 0.07
4,000 0.7979 0.8085 0.0106 1.33% 0.0083 0.27 2.3937 2.3856 -0.0081 -0.34% 0.0140 0.28
16,000 0.7979 0.8011 0.0032 0.41% 0.0041 1.08 2.3937 2.3935 -0.0001 0.00% 0.0070 1.57
64,000 0.7979 0.7971 -0.0008 -0.10% 0.0020 3.96 2.3937 2.3939 0.0002 0.01% 0.0035 4.88
256,000 0.7979 0.7970 -0.0009 -0.12% 0.0010 21.46 2.3937 2.3909 -0.0027 -0.11% 0.0018 19.07
1,024,000 0.7979 0.7983 0.0004 0.06% 0.0005 65.19 2.3937 2.3937 0.0000 0.00% 0.0009 90.81

Algorithm 3.5.8 t = 1 µ = 0.5 t = 3 µ = 1
1,000 0.6827 0.6889 0.0063 0.92% 0.0145 0.2 1.7876 1.7834 -0.0043 -0.24% 0.0216 0.14
4,000 0.6827 0.6848 0.0021 0.31% 0.0072 0.32 1.7876 1.7803 -0.0074 -0.41% 0.0105 0.45
16,000 0.6827 0.6789 -0.0038 -0.55% 0.0035 1.32 1.7876 1.7813 -0.0064 -0.36% 0.0053 1.95
64,000 0.6827 0.6831 0.0004 0.06% 0.0018 5.63 1.7876 1.7932 0.0055 0.31% 0.0027 8.38
256,000 0.6827 0.6836 0.0009 0.13% 0.0009 24.05 1.7876 1.7880 0.0004 0.02% 0.0013 30.37
1,024,000 0.6827 0.6822 -0.0005 -0.08% 0.0004 106.21 1.7876 1.7863 -0.0013 -0.07% 0.0007 126.28

Table 3.4: Comparison for Algorithm 3.4.1 and Algorithms suggested in Devroye and Fawzi (2010), Fill and
Huber (2010), Chi (2012), and Cloud and Huber (2017) based on the parameter setting t = 1, 3
respectively.

Paths True Simulation Diff Error% RMSE Time True Simulation Diff Error% RMSE Time
Algorithm 3.4.1 t = 1 t = 3

1,000 1.0000 0.9813 -0.0187 -1.91% 0.0218 0.07 3.0000 3.0031 0.0031 0.10% 0.0379 0.09
4,000 1.0000 1.0057 0.0057 0.57% 0.0114 0.17 3.0000 3.0030 0.0030 0.10% 0.0192 0.14
16,000 1.0000 1.0043 0.0043 0.43% 0.0056 0.28 3.0000 2.9979 -0.0021 -0.07% 0.0096 0.41
64,000 1.0000 0.9997 -0.0003 -0.03% 0.0028 0.97 3.0000 2.9967 -0.0033 -0.11% 0.0048 1.19
256,000 1.0000 0.9985 -0.0015 -0.15% 0.0014 4.30 3.0000 3.0041 0.0041 0.14% 0.0024 4.51
1,024,000 1.0000 0.9994 -0.0006 -0.06% 0.0007 16.69 3.0000 2.9978 -0.0022 -0.07% 0.0012 18.84
Devroye and Fawzi (2010) t = 1 t = 3
1,000 1.0000 0.9923 -0.0077 -0.77% 0.0221 0.03 3.0000 2.9731 -0.0269 -0.90% 0.0038 0.14
4,000 1.0000 0.9977 -0.0023 -0.22% 0.0113 0.13 3.0000 3.0006 0.0006 0.02% 0.0192 0.61
16,000 1.0000 1.0011 0.0011 0.11% 0.0056 0.57 3.0000 2.9935 -0.0065 -0.21% 0.0097 2.00
64,000 1.0000 1.0057 0.0057 0.56% 0.0028 1.95 3.0000 2.9951 -0.0049 -0.16% 0.0048 5.54
256,000 1.0000 1.0034 0.0034 0.33% 0.0014 7.99 3.0000 3.0014 0.0014 0.04% 0.0024 23.93
1,024,000 1.0000 0.9993 -0.0007 -0.07% 0.0007 37.51 3.0000 3.0014 0.0014 0.04% 0.0012 101.61

Fill and Huber (2010) t = 1 t = 3
1,000 1.0000 0.9851 -0.0149 -1.50% 0.0027 0.10 3.0000 2.9516 -0.0484 -1.64% 0.0398 1.31
4,000 1.0000 0.9977 -0.0023 -0.23% 0.0113 0.28 3.0000 2.9444 -0.0556 -1.88% 0.0195 4.56
16,000 1.0000 1.0004 0.0004 0.04% 0.0056 1.09 3.0000 3.0175 0.0175 0.58% 0.0099 18.69
64,000 1.0000 0.9968 -0.0032 -0.32% 0.0028 2.67 3.0000 2.9995 -0.0005 -0.02% 0.0049 75.23
256,000 1.0000 0.9977 -0.0023 -0.23% 0.0013 11.14 3.0000 2.9969 -0.0031 -0.10% 0.0025 325.37
1,024,000 1.0000 0.9994 -0.0006 -0.06% 0.0006 57.37 3.0000 3.0131 0.0131 0.43% 0.0012 1358.24

Chi (2012) t = 1 t = 3
1,000 1.0000 1.0070 0.0070 0.70% 0.0233 0.33 3.0000 3.0109 0.0109 0.36% 0.0392 0.62
4,000 1.0000 1.0100 0.0100 0.99% 0.0115 0.78 3.0000 3.0208 0.0208 0.69% 0.0197 2.19
16,000 1.0000 0.9955 -0.0045 -0.45% 0.0057 2.83 3.0000 3.0107 0.0107 0.35% 0.0099 8.44
64,000 1.0000 1.0026 0.0026 0.26% 0.0029 12.24 3.0000 3.0027 0.0027 0.09% 0.0050 31.16
256,000 1.0000 1.0018 0.0018 0.18% 0.0014 46.27 3.0000 3.0016 0.0016 0.05% 0.0025 132.28
1,024,000 1.0000 1.0036 0.0036 0.36% 0.0007 193.00 3.0000 2.9978 -0.0002 -0.01% 0.0012 514.12
Cloud and Huber (2017) t = 1 t = 3
1,000 1.0000 0.9832 -0.0168 -1.71% 0.0220 0.09 3.0000 2.9376 -0.0624 -2.12% 0.0379 0.28
4,000 1.0000 1.0153 0.0153 1.50% 0.0113 0.33 3.0000 2.9986 -0.0014 -0.05% 0.0195 0.92
16,000 1.0000 1.0059 0.0059 0.58% 0.0056 0.84 3.0000 3.0108 0.0108 0.36% 0.0096 2.31
64,000 1.0000 1.0076 0.0076 0.75% 0.0028 3.07 3.0000 3.0014 0.0014 0.05% 0.0048 8.61
256,000 1.0000 1.0013 0.0013 0.13% 0.0014 12.51 3.0000 3.0021 0.0021 0.07% 0.0024 36.47
1,024,000 1.0000 1.0017 0.0017 0.17% 0.0007 58.19 3.0000 3.0038 0.0038 0.13% 0.0012 155.93

random variables (Ti, Wi)i≥0 are i.i.d pairs, and this means that we can employ vectorisation to

reduce total computation time, especially for large values of t. Although the expected simulation

time is unbounded for Algorithm 3.4.1, the simulation idea based on the marked renewal approach

still outperforms the dominated coupling approach and rejection sampling approach, and evenmore

so when t is large.
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Table 3.5: Comparison CPU time (sec) for Algorithms suggested in Devroye and Fawzi (2010), Fill and
Huber (2010), Chi (2012) and Cloud and Huber (2017) with Algorithm 3.4.1 for 100, 000 replic-
ations.

Input t 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00 2.20 2.40 2.60 2.80 3.00 3.20 3.40
Algorithm 3.4.1 1.85 1.81 1.68 1.60 1.71 1.79 1.82 1.83 1.78 2.03 1.72 1.77 1.83 2.02 1.83 1.95

Devroye and Fawzi (2010) 3.02 2.23 3.19 3.94 5.66 5.47 5.23 5.31 5.93 8.48 7.22 7.51 7.97 8.47 10.88 11.50
Fill and Huber (2010) 1.87 2.53 3.14 4.12 5.68 7.34 10.33 13.64 18.28 20.76 36.78 51.22 70.23 100.75 140.91 200.04

Chi (2012) 3.92 6.28 9.62 18.52 21.25 23.53 27.45 31.80 34.78 36.92 38.41 41.57 55.31 50.54 55.83 59.23
Cloud and Huber (2017) 2.45 3.09 3.93 4.71 5.66 6.71 7.57 9.70 11.16 11.82 13.45 13.72 14.71 15.54 16.99 17.25

For truncated stable process and truncated tempered stable process, we have implemented the

exact simulation algorithms for Algorithm 3.5.3, 3.5.4, 3.5.5, and 3.5.6 based on parameter setting

t = 0.5, 1, 4, α = 0.3, 0.5, 0.8, and µ = 0,±0.5,±1, respectively. Convergence analysis for these

four algorithms based on the increasing numbers of samples is reported in Table 3.2. We can see

that Algorithm 3.5.3 is more efficient for large stability parameter α as C(λ) in (3.5.10) is smaller

for large α. Larger t also requires more computation time as one has to generate more hitting times

to break the marked renewal routine. Meanwhile, we carry out a comparison between Algorithm

3.5.4 and 3.5.5. We can see that when µ and t are small, the time needed for two algorithms are

more or less the same. However, when µ and t are larger, Algorithm 3.5.5 outperforms Algorithm

3.5.4 in terms of computation time. The out-performance becomes even more substantial when µ

and t increase.

For truncated inverse Gaussian process, we carry out the standard convergence analysis for the

Algorithms 3.5.7 and 3.5.8 with the parameter settings t = 1, 3, and µ = 0,±0.5,±1. The detailed

numerical results are reported in Table 3.3. The sample path of the truncated process Zt is provided

in Figure 3.3. We also plot histograms of the truncated process at time t for different values of µ.

The histograms and sample paths clearly demonstrate that the process increases faster for smaller

µ , especially when µ is negative. This is due to the fact that the mean of the first passage time to

level 1 decreases as µ decreases. This implies that the process with smaller tilting parameter µ will

on average hit the level 1 faster than the process with larger tilting parameter. For µ being negative,

the jump size is still restricted to (0, 1), but the process jumps more frequently compared with the

truncated process with positive µ.

3.7 Applications in Finance and Insurance

3.7.1 Exact Simulation of Generalised Vervaat Perpetuities

A stochastic perpetuity is a random variable which takes the form

X = Y1W1 + Y2W1W2 + Y3W1W2W3 + ... + YnW1W2...Wn + ..., (3.7.1)
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Figure 3.3: Sample Paths and Histograms of truncated IG with µ > 0, µ = 0 and µ < 0, respectively.

where the Wi and Yi are i.i.d random variables independent of each other. Perpetuities arise in a di-

verse range of fields such as economics (Embrechts et al., 1996), insurance mathematics (Nyrhinen,

2001), astrophysics (Chandrasekhar and Münch, 1950), analytic number theory (De Bruijn, 1951),

and in the analysis of Hoare’s selection algorithm (Mahmoud et al., 1995). We refer to Vervaat

(1979) and Embrechts and Goldie (1994) for a huge variety of references and examples of applica-

tions, ranging from the brightness of the Milky Way to ARCH processes of financial modelling. In

the context of economics, the quantity Yi represents a random cashflow at time i and Wi represents

the discount rate from time i to time i− 1. The random variable X then represents the net present

value of the stochastic cashflows.

When Wi
D
= U1/t, for U ∼ U [0, 1] and t ∈ R+, the random variable X is known as a gener-

alised Vervaat perpetuity. It was shown in Vervaat (1979) that the series converges if and only if

E
Ä
log+ |Yi|

ä
< ∞, and it satisfies the distributional identity

X D
= W(X + Y), (3.7.2)
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where W and Y represent random variables distributed like Wi and Yi respectively. Under the mild

condition

lim
y→0

P(Y < y)
y

< ∞, (3.7.3)

X turns out to be a Lévy process with Lévy measure proportional to 1
y P(Y > y), see Dassios et al.

(2019). There is also no loss of generality to consider only the case when Y > 0, as it can be shown

that a two-sided perpetuity can be split into the difference of two one-sided perpetuities. Goldie

and Grübel (1996) and Grübel and Rösler (1996) studied the tails of these perpetuities. Random

variables of this type also appear as the limit of shot noise processes (Takács, 1954, 1955).

In the simplest case when Yi = 1 almost surely, X reduces to the Dickman process. When Yi ∼

V, where V ∼ Exp(µ), we obtain the Gamma process with parameter µ, when Yi ∼ V ∧ 1, we

obtain the truncated Gamma process. To simulate more general Vervaat perpetuities, we develop

a decomposition scheme to break the Vervaat perpetuity X into the sum of a Gamma process (or

truncated Gamma process), and compound Poisson processes. The details are provided in the

following Lemma 3.7.1.

Lemma 3.7.1. Consider a perpetuity X defined in (3.7.1), with Y ∈ R+. If the density of Y

satisfies (3.7.3), then there exists k ∈ R+ and b ∈ R+ such that P(Y > y) ≥ e−ky for all y < b.

We then have the following two cases:

1. Case 1: There exists k ∈ R+ such that P(Y > y) ≥ e−ky for all y ∈ R+. Then we have

B =
∫ ∞

0

P(Y > y)− e−ky

y
dy < ∞, (3.7.4)

and thus

X D
= Γt +

Nt∑
i=1

Ji, (3.7.5)

where

• Γt is a Gamma process such that Γt ∼ Γ(t, k);

•
Nt∑

i=1
Ji is a compound Poisson process such that

– Nt is a poisson process with rate tB,

– {Ji}i=1,2,... are i.i.d jumps with density

gJi(y) =
P(Y ≥ y)− e−ky

By
, y ∈ R+.

2. Case 2: Otherwise, for the case that there only exists k ∈ R+ such that P(Y > y) ≥ e−ky
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for y < b. We have

D =
∫ b

0

P(Y > y)− e−ky

y
dy < ∞, (3.7.6)

and thus

X D
= Zt +

N1
t∑

i=1

J(1)i +

N2
t∑

k=1

J(2)k , (3.7.7)

where

• Zt is a truncated Gamma process with Lévy measure

ν(z) = z−1e−kz1{0<z<b};

•
N1

t∑
i=1

J(1)i is a compound Poisson process such that

– N1
t is a poisson process with rate tD,

– {J(1)i }i=1,2,... are i.i.d jumps with density

g
J(1)i

(y) =
P(Y ≥ y)− e−ky

Dy
, y ∈ (0, b).

•
N2

t∑
k=1

J(2)k is a compound Poisson process such that

– N2
t is a poisson process with rate tE, where

E =
∫ ∞

b

P(Y ≥ y)
y

dy (3.7.8)

– {J(2)k }i=1,2,... are i.i.d jumps with density

g
J(2)k

(y) =
P(Y ≥ y)

Ey
, y ∈ (b, ∞).

Proof. If the density of Y satisfies (3.7.3), then g(0) < ∞. Hence, the survival function of Y,

P(Y > y), decays at an exponential rate or slower at 0. This implies that there exists a k ∈ R+

such that P(Y > y) ≥ e−ky for all y < b, for some b ∈ R+.

1. Case 1: If, furthermore, there exists such k ∈ R+ so that P(Y > y) ≥ e−ky holds for all

y ∈ R+, then for B defined as in (3.7.4), we have that the integral B is finite since

∫ ∞

0

P(Y > y)− e−ky

y
dy =

∫ 1

0

P(Y > y)− e−ky

y
dy +

∫ ∞

1

P(Y > y)− e−ky

y
dy.

The second term is finite since we have assumed that the mean of Y exists, and we also have
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that

∫ 1

0

P(Y > y)− e−ky

y
dy

=
î
log y

Ä
P(Y > y)− e−ky

äó1
0
+
∫ 1

0
log y

Ç
g(y)− e−ky

k

å
dy

=
∫ 1

0
log y

Ç
g(y)− e−ky

k

å
dy < ∞,

since g(0) < ∞. Hence, the Laplace transform of X can be expressed as

E
î
e−βX

ó
= exp

Ç
−t
∫ ∞

0
(1− e−βy)

e−ky

y
dy
å

× exp
Ç
−tB

∫ ∞

0
(1− e−βy)

P(Y > y)− e−ky

By
dy
å

= E
î
e−βΓt

ó
E

ï
e−β

∑Nt
i=1 Ji

ò
, (3.7.9)

and we have the distributional decomposition result given in (3.7.5).

2. Case 2: In the case where we only have P(Y > y) ≥ e−ky for y < b for some b ∈ R+, we

define the integral D as in (3.7.6) and E as in (3.7.8). A similar argument as above would

show that they are finite, and we thus have

E
î
e−βX

ó
= exp

Ç
−t
∫ b

0
(1− e−βy)

P(Y > y)
y

dy
å

× exp
Ç
−t
∫ ∞

b
(1− e−βy)

P(Y > y)
y

dy
å

= exp
Ç
−t
∫ b

0
(1− e−βy)

e−ky

y
dy
å

× exp
Ç
−tD

∫ b

0
(1− e−βy)

P(Y > y)− e−ky

Dy
dy
å

× exp
Ç
−tE

∫ ∞

b
(1− e−βy)

P(Y > y)
Ey

dy
å

= E
î
e−βZt

ó
E

ñ
e−β

∑N1
t

i=1 J(1)i

ô
E

ñ
e−β

∑N2
t

k=1 J(2)k

ô
. (3.7.10)

The distributional decomposition result (3.7.7) thus follows.

Here, we provide some examples to demonstrate the methodology.

Example 1: Y ∼ Pareto(α, σ). The Laplace transform of X is

E
î
e−βX

ó
= exp

Ç
−t
∫ σ

0

1− e−βy

y
dy
å

exp
Ç
−t
∫ ∞

σ

1− e−βy

y

Ç
σ

y

åα

dy
å

. (3.7.11)

71



0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5
×10

4

0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5
×10

4

0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5
×10

4

0 5 10 15

0

0.5

1

1.5

2

2.5

3

3.5
×10

4

Figure 3.4: Histograms of perpetuity X with Y ∼ Γ(α, β) under the parameter setting α = 1, 1.5, 2, 2.5 and
β = 1.

Hence, X D
= Zt + CP, where Zt ∼ Dickman process, and CP is a Compound Poisson process,

independent of each other. The Dickman process can be generated using Algorithm 3.4.1, and the

Compound Poisson process can be generated easily via an A/R scheme.

Example 2: Y ∼ Gamma(α, β). Since g(0) < ∞2 for all α ≥ 1, we can simulate all Gamma

perpetuities with α ≥ 1 and all values of β. Furthermore, for all α ≥ 1, there exists a k such that

P(Y > y) ≥ e−ky for all y, thus the Gamma perpetuity X can be split into X D
= Zt + CP, where

Zt is a Gamma process, and CP is a Compound Poisson process independent of Zt. Figure 3.4

shows the histograms of the Vervaat perpetuity X for Y ∼ Γ(α, β) with different shape parameters

α.

Example 3: Y ∼ Weibull(κ, λ). Since g(0) < ∞ for all κ ≥ 1, we can simulate all Weibull

perpetuities with κ ≥ 1 and all values of λ. Furthermore, there only exists a k such that P(Y >

y) ≥ e−ky for y ∈ (0, b) for some b ∈ R+. The perpetuity can be split into X D
= Zt + CP1 +

CP2, where Zt is a truncated Gamma process, CP1 and CP2 are Compound Poisson processes,

independent of each other and Zt. The truncated Gamma process can be generated using Algorithm

3.4.2 and the two compound Poisson processes can be easily generated via A/R schemes.

2For simplicity, we assume Y has a continuous density g.

72



Example 4: Y ∼ Beta(α, β). Since g(0) < ∞ for all α ≥ 1, we can simulate all Beta per-

petuities with α ≥ 1 and all values of β. Furthermore, since the distribution has a finite support,

there only exists a k such that P(Y > y) ≥ e−ky for y ∈ (0, b) for some b ∈ R+. Hence, the

Lévy measure needs to be truncated. The Beta perpetuity can be split into X D
= Zt + CP1 + CP2,

where Zt is a truncated Gamma process, and CP1 and CP2 are two compound Poisson processes,

independent of each other and Zt.

Example 5: Y ∼ Normal(µ, σ2). The Normal perpetuity X is two-sided. One could sample

independent X1 and X2, each of which are half-normal perpetuities, and the difference X1− X2 is

the realisation of the two-sided perpetuity X.

For a half-normal perpetuity Xi, where Yi ∼ Half-Normal(µ, σ), there only exists a k such that

P(Y > y) ≥ e−ky for y ∈ (0, b) for some b ∈ R+. Hence, the perpetuity Xi falls into Case

2 and can be split into a truncated Gamma process and two compound Poisson processes. The

truncated Gamma process can be generated via Algorithm 3.4.2 and the two compound Poisson

processes can be easily generated via A/R schemes. Figure 3.5 illustrates a sample density plot for

the perpetuity Xi with Yi ∼ Half-Normal(0, 1). Figure 3.6 compares the distribution of Xi under

different parameter settings.

Now, we can simulate the Normal perpetuity X by generating two independent half-normal per-

petuities X1 and X2 and taking the difference X D
= X1 − X2. Figure 3.7 and 3.8 demonstrate the

distribution behaviour of the two sided perpetuity X via its histogram and density plot. We can also

obtain other variations of the Normal perpetuities by introducing a new variable B ∼ Bernoulli(p)

and setting X̂ D
= pX1 − (1− p)X2. When p = 1

2 and Xi ∼ Normal(0, 1), this is identical to the

Normal(0, 1) perpetuity. Figure 3.9 illustrates the differences of the perpetuity X̂ and X in terms

of their histograms.

3.7.2 Loss distributions with excess of loss reinsurance

We can use the truncated Lévy subordinator to model loss distribution of an insurer with the excess

of loss reinsurance with retention level b. Without loss of generality, we use truncated inverse

Gaussian as an example to illustrate the idea. Suppose the aggregate claims process follows an

inverse Gaussian process. For each claim larger than size b, the insurer only retains b and the

excess is ceded to the reinsurer. Denote the claims process of the insurer by CI
t , and that of the

reinsurer by CR
t . Then the joint Laplace transform of CI

t and CR
t is

E
[
e−βCI

t−γCR
t

]
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Figure 3.5: Probability density function of Perpetuity Xi with Yi ∼ Half-Normal(0, 1).
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Figure 3.7: Histogram and Density Plot of Perpetuity X with Y ∼ Normal(0, 1).

= exp

Ö
−t

b∫
0

(1− e−βx)
e−µx
√

2πx3
dx− t

∞∫
b

(1− e−βbe−γ(x−b))
e−µx
√

2πx3
dx

è
= exp

Ö
−t

b∫
0

(1− e−βx)
e−µx
√

2πx3
dx− tλ

∞∫
0

(1− e−βbe−γx)
e−µ(x+b)

λ
»

2π(x + b)3
dx

è
.

74



-4 -2 0 2 4 6 8

0

0.5

1

1.5

2
×10

4 Histogram

-4 -2 0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Density

Figure 3.8: Histogram and Density Plot of Perpetuity X with Y ∼ Normal(1, 1).
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Figure 3.9: Histogram of Perpetuity X̂ = BX1 − (1 − B)X2 with B ∼ Bernoulli(p) under parameter
setting p = 0.3, 0.5, 0.9.

Hence, we have that Ä
CI

t , CR
t

ä D
=

Ñ
Zb

t + bNt,
Nt∑

i=1

Yi

é
,

where Nt is a Poisson process with intensity λt, and

λ :=

 
2

πb
e−µb −

»
2µ Erfc(

»
µb),

and the jump distribution Yi has density

gY(y) =
e−µ(y+b)

λ
»

2π(y + b)3
, y > 0,

and Nt, Zb
t and Yi are all independent from each other. Using the simulation algorithm for Zt,

we can estimate the loss distributions of the insurer for a range of parameters and time horizons.

In addition, we can also estimate P(CI
t > x) for a given t, µ and truncation level b. Given t,

this probability mainly depends on the tilting parameter µ and the truncation level b. Figure 3.10

illustrates how P(CI
t > x) varies with the parameters.
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Importance sampling

When x is very large, the event {CI
t > x} is regarded as a rare event. The probabilityP

Ä
CI

t > x
ä
is

very small and hence inefficient to estimate using direct Monte Carlo simulation, since the variance

is much larger than what we are trying to estimate. We apply importance sampling to reduce the

variance by changing the probability measure, such that under the new measure, the rare event

happens more often and thus can be more efficiently estimated. Let us denote l(x) = eξx for some

ξ ∈ R, and after a change of probability measure, we have

E∗
[
1{CI

t >x}

]
=

E
[
1{CI

t >x}l(C
I
t )
]

E
î
l(CI

t )
ó ,

where E∗(·) denotes the Esscher transform. The Laplace transform of CI
t under the new measure

is

E∗
[
e−βCI

t

]
= E

 e−βCI
t eξCI

t

E
[
eξCI

t

]


=

exp

Ö
−t

b∫
0

(1− e−βxeξx)
e−µx
√

2πx3
dx

è
exp

Ñ
−t

∞∫
b

Ä
1− e−βbeξb

ä e−µx
√

2πx3
dx

é
exp

Ö
−t

b∫
0

(1− eξx)
e−µx
√

2πx3
dx

è
exp

Ñ
−t

∞∫
b

Ä
1− eξb

ä e−µx
√

2πx3
dx

é
= exp

Ö
−t

b∫
0

(1− e−βx)
e−(µ−ξ)x
√

2πx3
dx

è
exp

Ñ
−t

∞∫
b

Ä
1− e−βb

ä e−µx+ξb
√

2πx3
dx

é
.
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According to Asmussen and Glynn (2007) , ξ could be chosen to be the value such that E∗[CI
t ] = x

where

E∗[CI
t ] =



t Erf(
√

b(µ−ξ))√
2(µ−ξ)

+ teξb
(»

2
πb e−µb −

√
2µ Erfc(

»
µb)

)
, µ > ξ,

t
»

2b
π + teξb

(»
2

πb e−µb −
√

2µ Erfc(
»

µb)
)

, µ = ξ,

t Erfi(
√

b|µ−ξ|)√
2|µ−ξ|

+ teξb
(»

2
πb e−µb −

√
2µ Erfc(

»
µb)

)
, µ < ξ.

(3.7.12)

This optimal value of ξ can be computed numerically based on (3.7.12). If µ > ξ, CI
t
∗ remains

like the original claim process with parameter µ′ = µ− ξ > 0 under the new probability measure

and if µ < ξ, we have µ′ = µ− ξ < 0, in which case we can generate CI
t
∗ based on Algorithm

3.5.6. The estimate for P(CI
t > x) based on importance sampling will then be

P∗(CI
t > x) ≈ 1

n

n∑
i=1

1{x∗i >x}MCI
t
(ξ)e−ξx∗i , (3.7.13)

where x∗i are generated under the new probability measure and

MCI
t
(ξ) =



e
−t
î√

2(µ−ξ)Erf(
√

b(µ−ξ))−
√

2µ Erf(
√

bµ)+
√

2
πb (e−(µ−ξ)b−e−µb)

ó
×e
−t(1−eξb)

î√
2

πb e−µb−
√

2µ Erfc(
√

µb)
ó
, µ > ξ,

e
−t
√

2
πb

Ä
eξb−1−

√
bπξ Erfi(

√
ξb)
ä

e
−t(1−eξb)

î√
2

πb e−µb−
√

2µ Erfc(
√

µb)
ó
, µ = ξ,

e
−t
î
−
√

2|µ−ξ|Erfi(
√

b|µ−ξ|)−
√

2µ Erf(
√

bµ)+
√

2
πb (e|µ−ξ|b−e−µb)

ó
×e
−t(1−eξb)

î√
2

πb e−µb−
√

2µ Erfc(
√

µb)
ó
, µ < ξ.

Hence, with large x, we can apply the importance sampling scheme to estimate P(CI
t > x). Table

3.6 reports the estimated probability and estimated standard error based on direct Monte Carlo

simulation versus Importance Sampling. We can see that the estimated probabilities under the

two methods are very close. However, by using the importance sampling technique, the estimated

standard error has been reduced, particularly for a larger x.

Table 3.6: Comparison of estimated P(CI
t > x) and estimated standard error (SE) based on t = 10, µ =

0.5, b = 3 via direct simulation under original measure and importance sampling (IS), respect-
ively.

x 10 11 12 13 14 15 16 17 18 19 20

P(CI
t > x) 0.4203 0.2960 0.1995 0.1268 0.0780 0.0446 0.0261 0.0143 0.0073 0.0038 0.0018

SE(×10−4) 15.61 14.44 12.64 10.52 8.47 6.52 5.04 3.76 2.70 1.95 1.35

P(CI
t > x)(IS) 0.4208 0.2985 0.1999 0.1272 0.0787 0.0452 0.0256 0.0158 0.0074 0.0038 0.0019

SE(×10−4) 13.13 10.06 7.51 5.30 3.55 2.26 1.38 0.80 0.45 0.24 0.13
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3.7.3 Pricing zero coupon Parisian bond

The truncated stable process has a duality relation with the Parisian stopping time of squared Bessel

and CIR processes with dimension δ ∈ (0, 2), see Dassios et al. (2018a). In particular, for a

truncated Lévy subordinator Zt, we have ZT̃
D
= τ, where τ is the Parisian stopping time and T̃ is an

exponential random variable. Hence, one could use our exact simulation scheme to sample Parisian

stopping times and thus pricing Parisian zero coupon bonds. Let the dynamics of the interest rate

Rt follows a squared Bessel process or a CIR process under the risk-neutral probability measure

Q, we introduce a new type of Parisian-type bond, called the Parisian zero coupon bonds, which

pays off an amount depending on the final interest rate, when the interest rate remains strictly

positive for a consecutive length of time longer than a fixed window length D if this happens

before maturity time T. If the interest rate fluctuates around 0 until maturity, the bound expires

worthless. The buyer of the bond is thus betting against zero interest rates. Likewise, the seller

of the Parisian bond is effectively hedging against a period where interest rates fluctuate around 0.

This can be useful when considering interest rates which are bounded by a floor rate away from 0.

Let Ut := t− sup{s < t|Rs = 0} be the time elapsed since the last time Rt hits 0 for R0 = 0.

Then the Parisian stopping time of Rt starting at 0 is τ = inf{t > 0|Ut = D}. This is the first

time the duration of an excursion exceeds a certain threshold D > 0. The payoff of the bond will

thus be h(Rτ)1{τ<T} at time τ, where τ is the Parisian stopping time, and h : R+ → R+ is the

payoff function. Let P(r, T) be the no-arbitrage price of the bond, we have

P(r, T) = Er
Q

exp

Ñ
−

τ∫
0

Rsds

é
h(Rτ)1{τ<T}

 , (3.7.14)

where Er
Q denotes the expectation under the measure Q, for a process starting at R0 = r.

We obtain the Monte Carlo estimate of (3.7.14) by simulating the Parisian stopping time τ via

marked renewal procedure. In Table 3.7, we present numerical examples of the digital zero coupon

Parisian bond (h(x) = 1) and the zero coupon Parisian call (h(x) = (x − K)+), for a range of

parameters α and k. In general, the price for the zero coupon Parisian bond is higher than the zero

coupon Parisian call for all α.

3.8 Conclusion

In this chapter, we introduce a new type of Lévy subordinator whose jump sizes are restricted by

a certain truncation level. We have derived some important distributional properties of these pro-

cesses and marked renewal representation which leads to an exact simulation framework in general.
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Table 3.7: Price of zero coupon Parisian bond and zero coupon Parisian call with K = 0.15 under parameter
setting r0 = 0.05, 0.2 and α = 0.4, 0.6.

Payoff h(x) = 1

T δ = 1.2 δ = 1.2 δ = 0.8 δ = 0.8
r0 = 0.05 r0 = 0.2 r0 = 0.05 r0 = 0.2

2 0.3318 0.3430 0.1797 0.1937
3 0.4139 0.4241 0.2563 0.2670
4 0.4414 0.4525 0.3018 0.3100
5 0.4493 0.4621 0.3269 0.3328
6 0.4550 0.4627 0.3393 0.3440
7 0.4560 0.4647 0.3458 0.3518
8 0.4566 0.4658 0.3513 0.3565

Payoff h(x) = (x− K)+

T δ = 1.2 δ = 1.2 δ = 0.8 δ = 0.8
r0 = 0.05 r0 = 0.2 r0 = 0.05 r0 = 0.2

2 0.2675 0.2712 0.1421 0.1519
3 0.3240 0.3405 0.2098 0.2116
4 0.3500 0.3583 0.2330 0.2435
5 0.3536 0.3645 0.2518 0.2605
6 0.3624 0.3658 0.2685 0.2734
7 0.3615 0.3670 0.2699 0.2871
8 0.3658 0.3639 0.2713 0.2824

In particular, we have developed Algorithm 3.4.1 to sample the Dickman process, Algorithm 3.4.2

to sample the truncated gamma process, Algorithm 3.5.3 to sample the truncated stable process,

Algorithm 3.5.4 to sample the truncated tempered stable process and Algorithm 3.5.8 to sample

the truncated inverse Gaussian process. In addition, we develop an enhanced algorithm, Algorithm

3.5.5, to improve computational speed for the truncated tempered stable with large tilting parameter.

Extensive numerical experiments and tests are established in order to demonstrate the accuracy of

our results. We also provide applications to finance and insurance, which again demonstrate the

applicability and flexibility of our results.
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Part II

Exact Simulation on Lévy Based

Stochastic Models
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Chapter 4

Lévy Driven Ornstein-Uhlenbeck

Processes

In this chapter, we study theLévy drivenOrnstein-Uhlenbeck (OU) processes. This class of stochastic

processes is obtained through replacing the original Brownian motion in the OU process by a gen-

eral Lévy process. The resulting Lévy driven OU process retains the mean-reverting dynamics, and

also possesses some stylised features such as jumps and skewness, which often form the essential

components of real financial data. We systematically study distributional properties and design a

unique approach to exactly simulate these processes. Our key methodology for simulation design

is based on the distributional decomposition of stochastic processes with a minor aid of acceptance

and rejection scheme. The results immediately lead to very efficient algorithms without numerical

inversion.

4.1 Introduction

A Lévy driven Ornstein-Uhlenbeck process is the analogue of an ordinary Gaussian OU process

(Uhlenbeck and Ornstein, 1930) with its Brownian motion part replaced by a Lévy process. This

class of stochastic processes has been extensively studied in the literature, see Wolfe (1982), Sato

and Yamazato (1984), Barndorff-Nielsen (1998), Barndorff-Nielsen et al. (1998), Novikov (2004)

and Patie (2005). Comparing with the Gaussian OU processes, the non-Gaussian counterparts of-

fer greater flexibility that can accommodate some crucial distributional features, such as jumps,

mean-reverting dynamics, serial dependence and volatility clustering, which are often observed

in the real time series data1. Nowadays, these processes have been widely used as the continuous-

time stochastic models for the observed behaviour of price dynamics in finance and economics. The

applicability has been enhanced substantially by Barndorff-Nielsen and Shephard (2001b, 2002).
1See empirical evidences in finance from Carr et al. (2002).
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They proposed a variety of useful non-negative OU processes for modelling stochastic volatilities.

This class of models not only possess mathematically elegant properties, but also has nice eco-

nomic interpretations for which new information arrives in discrete packets and trades are made in

blocks2. It has also been widely used for modelling the stylised facts in the financial time series

of stock prices, interest rates and stochastic volatilities3. In addition, it has also been used in op-

tion pricing, see Nicolato and Venardos (2003), Kallsen et al. (2011) and Li and Linetsky (2014),

and for describing high-frequency financial data in market microstructure, see Barndorff-Nielsen

and Shephard (2003a,b) and Todorov and Tauchen (2006). The process is defined via stochastic

differential equation as below,

Definition 4.1.1 (LévyDrivenOrnstein-Uhlenbeck Process). Xt is a Lévy drivenOrnstein-Uhlenbeck

process that satisfies the stochastic differential equation (SDE)

dXt = −δXtdt + $dZt, t ≥ 0, (4.1.1)

where

• $ > 0 is a positive constant;

• δ > 0 is the constant rate of exponential decay;

• Zt ≥ 0 with Z0 = 0 is a pure-jump Lévy subordinator.

Equivalently, given the initial level X0 > 0 at time 0, the solution to this SDE (4.1.1) is given by

Xt = e−δtX0 + $

t∫
0

e−δ(t−s)dZs. (4.1.2)

Hence, the resulting process Xt is non-negative, and it is the continuous-time analogue of a discrete-

time autoregression of order 1 (i.e. AR(1)) (Barndorff-Nielsen et al., 1998, p.995). If Zt is replaced

by a standard Brownian motion, then, it returns to the ordinary Gaussian OU process (Uhlenbeck

and Ornstein, 1930).

4.2 Distributional Properties

In this section, we derive the Laplace transform of Lévy driven OU process for fix time in Theorem

4.2.1, which leads to key results of this chapter.

2See empirical evidences from the market microstructure in Easley and O’Hara (1987).
3See empirical evidences from Cont (2001).
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Theorem 4.2.1. For a general Lévy driven OU process Xt of Definition 4.1.1, the Laplace trans-

form of Xt+τ conditional on Xt is given by

E
î
e−vXt+τ | Xt

ó
= e−vwXt × exp

Ñ
−$

δ

v∫
vw

Φ(u)
u

du

é
, τ ∈ R+, (4.2.1)

where w := e−δτ and Φ(·) is the Laplace exponent of Lévy subordinator Zt.

Proof. Note that, in general, the Laplace exponent for Zt is

Φ(u) =
∞∫

0

Ä
1− e−uy

ä
ν(y)dy,

where ν is the Lévy measure of Zt. The infinitesimal generatorA of process (Xt, t) acting on any

function f (x, t) within its domain Ω (A) is given by

A f (x, t) =
∂ f
∂t
− δx

∂ f
∂x

+ $

Ñ ∞∫
0

î
f (x + y, t)− f (x, t)

ó
ν(y)dy

é
, (4.2.2)

see Duffie et al. (2003).

By applying the piecewise-deterministic Markov processes theory (Davis, 1984) and martingale

approach (Dassios and Embrechts, 1989), we can derive the conditional Laplace transform for Xt.

More precisely, set A f (x, t) = 0, we adopt a similar approach as Dassios and Jang (2003) and

Dassios and Zhao (2011) to find the martingale solution to A f = 0 for the generator (4.2.2).

We try a solution of exponential form e−xA(t)eR(t) where A(t) and R(t) are deterministic and

differentiable functions of time t. Then, we get

−xA′(t) + R′(t) + δxA(t)− $

∞∫
0

î
1− e−yA(t)

ó
ν(y)dy = 0,

which implies that,

A(t) = keδt, R(t) = $

t∫
0

Φ
Ä
keδs
ä

ds, ∀ k ∈ R+.

Hence, the martingale is of the form

exp
Ä
−Xtkeδt

ä
exp

Ñ
$

t∫
0

Φ
Ä
keδs
äé

, ∀ k ∈ R+. (4.2.3)
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Set k = ve−δ(t+τ), by martingale property, we obtain

E
î
e−vXt+τ | Xt

ó
= exp

Ä
−ve−δτXt

ä
exp

Ñ
−$

t+τ∫
t

Φ
Ä
ve−δ(T+τ−s)

ä
ds

é
= exp

Ä
−ve−δτXt

ä
exp

Ö
−$

δ

v∫
ve−δτ

Φ(u)
u

du

è
.

The conditional Laplace transform (4.2.1)4 in Proposition 4.2.1 is the key tool to develop our

exact simulation scheme later in this chapter. It can also be used to obtain an analytical formula for

the associated conditional expectation in Proposition 4.2.1.

Proposition 4.2.1. The expectation of Xt+τ conditional on Xt is given by

E [Xt+τ | Xt] = wXt +
$

δ
(1− w)E [Z1] , τ ∈ R+, (4.2.4)

where E[Z1] =

∞∫
0

sν(s)ds.

Proof. Based on Proposition 4.2.1, we have

E [Xt+τ | Xt] = − ∂

∂v
E
î
e−vXt+τ | Xt

ó ∣∣∣∣∣
v=0

= e−δτXt +
$

δ
lim
v→0

Ç
Φ′(v)−Φ′

Ä
e−δτv

äå
= e−δτXt +

$

δ
lim
v→0

Ñ ∞∫
0

se−vsν(s)ds− w
∞∫

0

se−wvsν(s)ds

é
= e−δτXt +

$

δ

Ä
1− e−δτ

ä ∞∫
0

sν(s)ds.

4.3 Shot-noise process

Let us start by looking at the simplest Lévy driven OU process, i.e. the shot noise process. The shot

noise process X = {Xt, t ≥ 0} is a positive stochastic process on positive half-line R+ following

4An alternative proof of this result via the characteristic function of stochastic integral for a continuous function
proposed by Lukacs (1969) can also be found in Wolfe (1982).
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the stochastic differential equation (4.1.1) in Definition 4.1.1, with Zt being a compound Poisson

process. Given the initial level X0 > 0, it is alternatively defined by

Xt = X0e−δt +
∑

0≤Ti<t
Zie−δ(t−Ti), t ≥ 0, (4.3.1)

where

• {Zi}i=1,2,... is a sequence of i.i.d jump sizes with density fZ;

• {Ti}i=1,2,... are the arrival times of a standard Poisson process Nt with rate ρ.

As concluded by Barndorff-Nielsen (1997), the compound Poisson based OU processes are

very tractable models that could facilitate many potential applications, see Barndorff-Nielsen and

Shephard (2001b, 2002, 2003b); Roberts et al. (2004); Jongbloed et al. (2005); Griffin and Steel

(2006); Creal (2008); Frühwirth-Schnatter and Sögner (2009); Schoutens and Cariboni (2010);

Bianchi and Fabozzi (2015), for further reference.

4.3.1 Laplace Transform

We derive the conditional Laplace transform of Xt+τ for a fix time t + τ given Xt in Theorem

4.3.1 below.

Theorem 4.3.1. The Laplace transform of Xt+τ conditional on Xt is given by

E
î
e−vXt+τ | Xt

ó
= e−vwXt × exp

Ü
−ρ

δ

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

fZ(su)duds

ê
, v ∈ R+,

(4.3.2)

where τ > 0 is any fixed-length time interval and w := e−δτ.

Proof. Based on Theorem 4.2.1, we have

E
î
e−vXt+τ | Xt

ó
= e−vwXt exp

Ñ
−$

δ

v∫
vw

Φ(u)
u

du

é
, w := e−δτ, (4.3.3)

where

Φ(u) =
∞∫

0

(1− e−vy) fZ(y)dy,

is the Laplace exponent of compound Poisson process. Rewriting the integral term in (4.3.3) as

v∫
vw

Φ(u)
u

du =

v∫
vw

1
u

∞∫
0

Ä
1− e−uy

ä
fZ(y)dydu
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=

∞∫
0

(1− e−vs)

s

s
w∫

s

fZ(y)dyds

=

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

fZ(su)duds,

the conditional Laplace transform of Xt can be expressed as (4.3.2).

4.3.2 Exact Simulation Scheme

The Laplace transform of Xt+τ conditional on Xt in Theorem 4.3.1 implies that Xt+τ has two

simple elements, one deterministic trend and one compound Poisson random variable. This result

immediately leads to an exact simulation algorithm.

Algorithm 4.3.1 (Exact Simulation of Shot noise Process via Decomposition Approach). The dis-

tribution of Xt+τ conditional on Xt can be exactly decomposed as

Xt+τ | Xt
D
= e−δτXt︸ ︷︷ ︸

Deterministic trend

+
N∑

k=1

Sk,︸ ︷︷ ︸
Finite jumps

τ ∈ R+, (4.3.4)

where

• N is a Poisson random variable ;

•
¶

Sk
©

k=1,2,...
are i.i.d random variables following a mixture of distributions with density

fSk(s) ∝
∫ 1

w

1
fZ(su)du; (4.3.5)

It is well known that there exists a simple alternative algorithm. This is a path-dependent ap-

proach that is constructed directly based on the definition of shot noise process (4.3.1).

Algorithm 4.3.2 (Exact Simulation of Shot noise process via Path-dependent Approach). Given

the ith jump arrival time Ti and the associated level XTi , we can exactly simulate the next arrival

time Ti+1 and the associated level XTi+1 by the following steps:

1. Generate an exponentially distributed random variable τ∗i+1 ∼ Exp(ρ) as the (i + 1)th

inter-arrival time;

2. Record the next jump arrival time Ti+1 = Ti + τ∗i+1;

3. Record the next pre-jump level XT−i+1
= XTi e

−δτ∗i+1;
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Table 4.1: Comparison for Algorithm 4.3.2 vs. Algorithm 4.3.1 for the shot noise process with exponential
jumps based on the parameters (δ, ρ; θ; X0) = (0.5, 1.0; 1.0; 10.0) for time intervals τ = 0.5, 1,
respectively.

τ Paths True Simulation Diff Error % RMSE Time Simulation Diff Error % RMSETime
Algorithm 4.3.2 Algorithm 4.3.1

τ = 0.5 10,000 8.2304 8.2525 0.0221 0.27% 0.0091 0.97 8.2222 -0.0082 -0.10% 0.0087 0.38
40,000 8.2304 8.2398 0.0094 0.11% 0.0045 3.64 8.2291 -0.0013 -0.02% 0.0044 1.39
160,000 8.2304 8.2329 0.0025 0.03% 0.0022 14.33 8.2288 -0.0016 -0.02% 0.0022 5.50
640,000 8.2304 8.2314 0.0010 0.01% 0.0011 59.48 8.2306 0.0002 0.00% 0.0011 21.92
2,560,000 8.2304 8.2301 -0.0003 0.00% 0.0006 224.03 8.2304 0.0000 0.00% 0.0006 88.48

Algorithm 4.3.2 Algorithm 4.3.1
τ = 1 10,000 6.8522 6.8621 0.0099 0.14% 0.0111 0.91 6.8418 -0.0104 -0.15% 0.0114 0.38

40,000 6.8522 6.8559 0.0037 0.05% 0.0056 3.61 6.8543 0.0021 0.03% 0.0057 1.59
160,000 6.8522 6.8535 0.0012 0.02% 0.0028 14.11 6.8536 0.0014 0.02% 0.0028 5.91
640,000 6.8522 6.8504 -0.0019 -0.03% 0.0014 55.88 6.8515 -0.0007 -0.01% 0.0014 23.19
2,560,000 6.8522 6.8521 -0.0001 0.00% 0.0007 240.42 6.8522 -0.0000 0.00% 0.0007 92.81

4. Generate Zi+1 with density fZ as the (i + 1)th jump size;

5. Record the next level XTi+1 = XT−i+1
+ Zi+1.

An obvious advantage of our decomposition approach (Algorithm 4.3.1) over the traditional

path-dependent approach (Algorithm 4.3.2) is that it can generate the distribution directly at the

target terminal t + τ without drawing complete skeletons of the underlying paths from the initial

time t to the terminal t + τ.

4.3.3 Simulation Studies

In this section, we illustrate the performance and effectiveness of our algorithm through numerical

experiments by assuming Zi follows an exponential distribution, i.e. the density function or Zi is

fZ(z) = θe−θu, θ > 0.

The parameters were set as (δ, ρ; θ; X0) = (0.5, 1.0; 1.0; 10.0), we conducted a numerical com-

parison between our decomposition scheme (Algorithm 4.3.1) and the traditional path-dependent

scheme (Algorithm 4.3.2) for time intervals τ = 0.5, 1. The detailed numerical results are repor-

ted in Table 4.1, where we can see that, for a slightly large number of paths, both algorithms are

extremely accurate (in terms of error, error%, and RMSE) by comparing the simulation-estimated

means with the associated true values provided by (4.2.4) in Proposition 4.2.1. By comparing the

computation time (CPU), we can clearly observe that our new scheme outperforms the traditional

approach.
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4.4 OU-Γ Process

The OU-Gamma (OU-Γ) process X = {Xt, t ≥ 0} is a positive stochastic process following the

stochastic differential equation (4.1.1) in Definition 4.1.1, with Zt being a gamma process. Unlike

the shot noise process, the OU-Γ process has infinite-activity jumps (i.e. infinite jumps over any

finite time horizon)5. Recently, Aït-Sahalia and Jacod (2009, 2011) found that high-frequency

stock price data present infinite-activity jumps. Ornthanalai (2014) also provided evidence for

infinite-activity jumps in index options and returns from 1996 to 2009, and suggested that infinite-

activity jumps, instead of the Brownian increments, should be the default modelling choice in asset

pricing models. To develop the exact simulation scheme to sample OU-Γ process, we first derive

the Laplace transform of the OU-Γ process.

4.4.1 Laplace transform

The condition Laplace transform of OU-Γ process is given as follows:

Theorem 4.4.1. The Laplace transform of Xt+τ conditional on Xt can be expressed as

E
î
e−vXt+τ | Xt

ó
= e−vwXt × exp

Ñ
−α$

δ
ln w

∞∫
0

Ä
1− e−vs

ä
s−1e−

β
w sds

é
× exp

Ü
−α$

δ

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

βe−βus ln ududs

ê
, v ∈ R+. (4.4.1)

Proof. The OU-Γ process Xt is driven by a Gamma process Zt with Laplace exponent

Φ(v) = α ln
Ç

1 +
v
β

å
, v ∈ R+,

and Lévy measure

ν(s) = αs−1e−βs, α, β > 0.

According to Theorem 4.2.1, we can express the conditional Laplace transform as

E
î
e−vXt+τ | Xt

ó
= e−vwXt exp

Ñ
−$

δ

v∫
vw

α

u
ln
Ç

1 +
u
β

å
du

é
= e−vwXt exp

Ñ
−$

δ

v∫
vw

1
u

∞∫
0

Ä
1− e−uy

ä
αy−1e−βydydu

é
, (4.4.2)

5As the Lévy density of a Gamma process has an infinite integral, the process has infinitely many jumps over any
time interval.
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where

v∫
vw

1
u

∞∫
0

Ä
1− e−uy

ä
αy−1e−βydydu

=

1∫
w

1
z

∞∫
0

(1− e−vzy)αy−1e−βydydz

=

∞∫
0

1− e−vs

s

s
w∫

s

αy−1e−βydyds

=

∞∫
0

1− e−vs

s

s
w∫

s

αy−1e−β s
w dyds +

∞∫
0

1− e−vs

s

s
w∫

s

αy−1
Ä
e−βy − e−β s

w
ä

dyds. (4.4.3)

Note that, both of the terms in (4.4.3) are positive, because e−βy ≥ e−β s
w for any y ∈

î
s, s

w

ó
.

1. The first term of (4.4.3) can be expressed as the Laplace exponent of a Gamma random

variable, i.e.,

∞∫
0

1− e−vs

s

s
w∫

s

αy−1e−β s
w dyds = α ln

Å 1
w

ã ∞∫
0

Ä
1− e−vs

ä
s−1e−

β
w sds. (4.4.4)

2. The inner integral of the second term of (4.4.3) can be rewritten as

1
s

s
w∫

s

αy−1
Ä
e−βy − e−β s

w
ä

dy

= α

1
w∫

1

1
x

e−βsx − e−β s
w

s
dx

= α

1
w∫

1

x−1

1
w∫

x

βe−βsududx

= α

1
w∫

1

βe−βsu ln udu. (4.4.5)

Finally, we can obtain the conditional Laplace transform (4.4.1) based on the integral representa-

tions of (4.4.4) and (4.4.5).

4.4.2 Exact Simulation Scheme

The distribution of Xt+τ conditional on Xt can be exactly decomposed into three basic components:

one deterministic trend, one gamma random variable, and one compound Poisson random variable.
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The details are provided in Algorithm 4.4.1.

Algorithm 4.4.1 (Exact Simulation of OU-Γ Process). The distribution of Xt+τ conditional on Xt

can be exactly decomposed as

Xt+τ | Xt
D
= e−δτXt︸ ︷︷ ︸

Deterministic trend

+ Γ̃︸︷︷︸
Infinite jumps

+
Ñ∑

k=1

Sk,︸ ︷︷ ︸
Finite jumps

τ ∈ R+, (4.4.6)

where

• Γ̃ is a gamma random variable of

Γ̃ ∼ Γ
Ä
α$τ, βeδτ

ä
; (4.4.7)

• Ñ is a Poisson random variable of rate 1
2 α$δτ2;

•
¶

Sk
©

k=1,2,...
are i.i.d random variables following a mixture of exponential distributions, i.e.,

Sk ∼ Exp
(

βeδτ
√

U
)

, U ∼ U [0, 1], ∀k = 1, 2, .... (4.4.8)

Proof. The three components of (4.4.6) correspond to the three terms of the conditional Laplace

transform (4.4.1), respectively:

1. The first term of (4.4.1) is the Laplace transform of e−δτXt.

2. The second term of (4.4.1) is the Laplace transform of a gamma random variable, Γ̃, and the

corresponding Lévy measure is specified by

ν(s) =
α$

δ
ln
Å 1

w

ã
s−1e−

β
w s.

3. The Laplace exponent of the third term in (4.4.1) can be rewritten as

α$

δ

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

βe−βus ln ududs =
α$

2δ
ln2 w

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

βue−βus fV(u)duds,

(4.4.9)

where

fV(u) =
2

ln2 w
ln u

u
, u ∈

ï
1,

1
w

ò
,

is the density function of random variable V. This clearly indicates that (4.4.9) is the Laplace

exponent of a compound Poisson random variable whose rate parameter is α$
2δ ln2 w and jump

92



Table 4.2: Comparison between the true mean and the associated simulation results using Algorithm 4.4.1
for the OU-Γ process based on the parameters (δ, $; α, β; X0) = (0.5, 1.0; 2.0, 2.0; 10.0) for T =
1, 2, 4, 10, respectively.

Paths True Simulation Diff Error % RMSE Time True Simulation Error Error % RMSE Time
T = 1 T = 2

10,000 6.8522 6.8471 -0.0051 -0.07% 0.0056 0.48 4.9430 4.9457 0.0026 0.05% 0.0066 0.61
40,000 6.8522 6.8527 0.0005 0.01% 0.0028 1.80 4.9430 4.9422 -0.0008 -0.02% 0.0034 2.16
160,000 6.8522 6.8500 -0.0022 -0.03% 0.0014 7.53 4.9430 4.9424 -0.0007 -0.01% 0.0017 7.94
640,000 6.8522 6.8522 -0.0001 0.00% 0.0007 30.14 4.9430 4.9432 0.0001 0.00% 0.0008 31.44
2,560,000 6.8522 6.8521 -0.0001 0.00% 0.0004 120.41 4.9430 4.9433 0.0003 0.01% 0.0004 126.03

T = 4 T = 10
10,000 3.0827 3.0826 -0.0000 0.00% 0.0093 0.77 2.0539 2.0345 -0.0194 -0.94% 0.0303 1.34
40,000 3.0827 3.0826 -0.0001 0.00% 0.0047 2.88 2.0539 2.0554 0.0015 0.07% 0.0153 4.83
160,000 3.0827 3.0854 0.0027 0.09% 0.0024 11.38 2.0539 2.0545 0.0006 0.03% 0.0076 19.14
640,000 3.0827 3.0812 -0.0015 -0.05% 0.0012 44.47 2.0539 2.0561 0.0022 0.11% 0.0038 77.05
2,560,000 3.0827 3.0836 0.0010 0.03% 0.0006 175.28 2.0539 2.0527 -0.0012 -0.06% 0.0019 305.59

sizes are exponentially distributed with rate βV. Here, V is a well-defined random variable

that can be exactly simulated via an explicit inverse transform, as the cumulative distribution

function (CDF) of V, i.e.,

FV(u) =
Å ln u

ln w

ã2

, u ∈
ï
1,

1
w

ò
,

can be inverted explicitly as

F−1
V (x) = w−

√
x, x ∈ [0, 1].

For the decomposition specified by (4.4.6), the compound Poisson random variable
Ñ∑

k=1

Sk can

only produce a finite number of (large) jumps. The extra term of the gamma random variable Γ̃ in

(4.4.6) clearly explains why the OU-Γ process has infinite-activity jumps for any time interval. That

is, within any time interval τ > 0, there always exists a gamma random variable Γ̃ that produces

an infinite number of (small) positive jumps.

4.4.3 Simulation Studies

In this section, we establish various numerical experiments to verify our algorithm. In the nu-

merical implementations, the parameters were set as (δ, $; α, β; X0) = (0.5, 1.0; 2.0, 2.0; 10.0).

for T = 1, 2, 4, 10, respectively. The associated numerical results are reported in Table 4.2. The

numerical results reported here show that the simulations are very fast and the associated errors

(measured in terms of error, error%, and RMSE) are small. Overall, it is evident that our newly

developed decomposition approach can achieve high accuracy as well as efficiency.
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4.5 OU-TS Process

OU-TS Process is a Lévy driven OU process Xt of Definition 4.1.1 with Lévy subordinator Zt

being a tempered stable process, i.e. Zt ∼ TS(α, β, θt). As pointed in the concluding remarks

of Barndorff-Nielsen and Shephard (2001c, p.19), this type of processes offer great flexibility and

are mathematically and computationally tractable, which could lead to a variety of applications,

e.g. Barndorff-Nielsen et al. (1998, 2002), Barndorff-Nielsen and Shephard (2001b, 2002, 2003a),

Nicolato and Venardos (2003), Gander and Stephens (2007a,b), Andrieu et al. (2010) and Todorov

(2015), etc.

4.5.1 Laplace Transform

The conditional distribution of OU-TS process is decomposable, due to the infinite divisibility

property of TS distribution. We choose a cutting value to break the OU-TS process into several

simple elements such that each one can be exactly simulated. Theorem 4.5.1 illustrates the exact

distributional decomposition of OU-TS process via integral transforms.

Theorem 4.5.1. For the OU-TS process Xt, the Laplace transform of Xt+τ conditional on Xt can

be expressed by

E
î
e−vXt+τ | Xt

ó
= e−vwXt × exp

Ñ
−$θ(1− wα)

αδ

∞∫
0

(1− e−vs)
e−

β
w s

sα+1 ds

é
× exp

Ü
−$θβαΓ(1− α)Dw

αδ

∞∫
0

(1− e−vs)

1
w∫

1

(βu)1−α

Γ(1− α)
s(1−α)−1e−βus uα−1 − u−1

Dw
duds

ê
,

where

Dw :=
1
α

Ä
w−α − 1

ä
+ ln w. (4.5.1)

Proof. Since the Lévy measure of TS is (2.4.1), the Laplace exponent is specified by

Φ(u)
∞∫

0

(1− e−uy)
θ

yα+1 e−βydy =
θΓ(1− α)

α

î
(β + u)α − βα

ó
,

where Γ(·) is gamma function, i.e. Γ(u) :=
∞∫

0

su−1e−sds. Based on Proposition 4.2.1, we have

E
î
e−vXt+τ | Xt

ó
= e−vwXt exp

Ñ
−$

δ

v∫
vw

1
u

∞∫
0

Ä
1− e−uy

ä θ

yα+1 e−βydydu

é
,
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where

v∫
vw

1
u

∞∫
0

Ä
1− e−uy

ä
θy−α−1e−βydydu

=

∞∫
0

1− e−vs

s

s
w∫

s

θy−α−1e−βydyds

=

∞∫
0

1− e−vs

s

s
w∫

s

θ

yα+1

Ä
e−β s

w + e−βy − e−β s
w
ä

dyds

=

∞∫
0

1− e−vs

s

s
w∫

s

θ

yα+1 e−β s
w dyds +

∞∫
0

1− e−vs

s

s
w∫

s

θ

yα+1

Ä
e−βy − e−β s

w
ä

dyds.(4.5.2)

Since y < s
w , the two terms in (4.5.2) are both positive for any y ∈ [s, s

w ]. In particular, for the

first term of (4.5.2), we have

∞∫
0

1− e−vs

s

s
w∫

s

θ

yα+1 e−β s
w dyds =

θ(1− wα)

α

∞∫
0

Ä
1− e−vs

ä e−
β
w s

sα+1 ds; (4.5.3)

for the second term of (4.5.2), we have

∞∫
0

Ä
1− e−vs

ä 1
s

s
w∫

s

θ

yα+1

Ä
e−βy − e−β s

w
ä

dyds

= θ

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

s−αx−α−1 e−βsx − e−β s
w

s
dxds

= θ

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

x−α−1s−α

1
w∫

x

βe−βsududxds

= θ

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

s−αβe−βsu
u∫

1

x−α−1dxduds

=
θβα

α
Γ(1− α)Dw

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

(βu)1−α

Γ(1− α)
s(1−α)−1e−βus 1

Dw

Ä
uα−1 − u−1

ä
duds, (4.5.4)

where

Dw =

1
w∫

1

Ä
uα−1 − u−1

ä
du =

1
α

Ä
w−α − 1

ä
+ ln w. (4.5.5)
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4.5.2 Exact Simulation Scheme

The exact distributional decomposition of Xt+τ conditional on Xt can be immediately identified

from the representation of Laplace transforms in Theorem 4.5.1, and hence implies an exact sim-

ulation scheme summarised in Algorithm 4.5.1.

Algorithm 4.5.1 (Exact Simulation of OU-TS Process). The distribution of Xt+τ conditional on

Xt can be exactly decomposed by

Xt+τ | Xt
D
= e−δτXt︸ ︷︷ ︸

Deterministic trend

+ ›TS︸︷︷︸
Infinite jumps

+
N∑

k=1

Sk︸ ︷︷ ︸
Finite jumps

, τ ∈ R+,

where

• ›TS is a tempered stable random variable, i.e.›TS ∼ TS
Å

α,
β

w
,

$θ

αδ
(1− wα)

ã
; (4.5.6)

• N is a Poisson random variable of rate $θ
αδ βαΓ(1− α)Dw with Dw given by (4.5.5);

•
¶

Sk
©

k=1,2,...
are i.i.d random variables of

Sk ∼ Γ
Ä
1− α, βV

ä
, (4.5.7)

given that V can be exactly simulated via Algorithm 4.5.2.

Proof. From Theorem 4.5.1, we can see that, the original Laplace transform has been broken into

three parts, and each part is a well-defined Laplace transform. In particular, (4.5.3) is the Laplace

transform of a tempered stable with Lévy measure

ν(s) =
θ(1− wα)

α
s−α−1e−

β
w s.

(4.5.4) is the Laplace transform of a compound Poisson random variable with the jump sizes fol-

lowing a gamma distribution of shape parameter (1 − α) and rate parameter βV. Here, V is a

well-defined random variable with density function

fV(u) =
1

Dw

Ä
uα−1 − u−1

ä
, u ∈

ï
1,

1
w

ò
, (4.5.8)

with Dw in (4.5.5). This random variable V can be simulated directly via A/R scheme provided in

Algorithm 4.5.2.
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Algorithm 4.5.2 (A/R Scheme for V). The random variable V, defined by its density (4.5.8), can

be exactly simulated via the following A/R procedure:

1. Set Cw := 1
α

Ä
w−

α
2 − 1

ä2,

2. Generate U1 ∼ U [0, 1],

3. Set

V =
Ä
1 +

√
αCwU1

ä 2
α , (4.5.9)

4. Generate U2 ∼ U [0, 1], if

U2 ≤
1
2

Vα − 1
Vα −V

α
2

,

then, accept V; Otherwise, reject this candidate and go back to Step 1.

Proof. Based on the density function (4.5.8), it is easy to derive the CDF of V by

FV(u) := Pr{V ≤ u} = 1
Dw

ñ
1
α

Ä
uα − 1

ä
− ln u

ô
, u ∈

ï
1,

1
w

ò
.

However, its inverse function has no explicit form, and the explicit inverse transform is not available.

Then, it is natural to consider the A/R scheme for exact simulation. We choose an envelope random

variable V ′ defined by its density function

g(u) =
1

Cw

Ä
uα−1 − u−

α
2−1
ä

, u ∈
ï
1,

1
w

ò
.

We can derive its CDF

G(u) =
1

αCw

Ä
u

α
2 − 1

ä2
, u ∈

ï
1,

1
w

ò
,

which can be inverted explicitly by

G−1(x) =
Ä
1 +

√
αCwx

ä 2
α , x ∈ [0, 1] .

Hence, V ′ can be exactly simulated by explicit inverse transform (4.5.9). Obviously, uα−1
uα−u

α
2
is a

strictly decreasing function of u ∈
î
1, 1

w

ó
. By L’Hôpital’s rule, we can find its upper bound

lim
u→1

uα − 1
uα − u

α
2
= 2.
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Then, we have

fV(u)
g(u)

=
Cw

Dw

uα − 1
uα − u

α
2
≤ Cw

Dw
lim
u→1

uα − 1
uα − u

α
2
= 2

Cw

Dw
:= c̄w, ∀u ∈

ï
1,

1
w

ò
. (4.5.10)

Remark 4.5.1. Note that, c̄w of (4.5.10) is the expected number of candidates generated until one

is accepted, hence, 1/c̄w is the acceptance probability, i.e. the probability of acceptance on each

attempt. Obviously, it is preferable for us to have c̄w close to 1. In fact, our Algorithm 4.5.2 is

pretty efficient, the acceptance probability is guaranteed to be above 50%. We let x = 1
w , and then,

we have
Cw

Dw
=

C 1
x

D 1
x

=
1
α

Ä
x

α
2 − 1

ä2

1
α (xα − 1)− ln x

, x > 1. (4.5.11)

Obviously,

d
dx

(C 1
x

D 1
x

)
=
Ä

x
α
2 − 1

ä
x

α
2−1

1
α

Ä
x

α
2 − x−

α
2
ä
− ln xî

1
α (xα − 1)− ln x

ó2 > 0, ∀x > 1,

so,
C 1

x
D 1

x

in (4.5.11) is a strictly increasing function of x > 1. When w→ 1 or x → 1, by L’Hôpital’s

rule, we obtain the lower bound

lim
x→1

C 1
x

D 1
x

= lim
x→1

xα−1 − x
α−1

2

xα−1 − x−1 = lim
x→1

(α− 1)xα−2 −
Ä

α
2 − 1

ä
x

α
2−2

(α− 1)xα−2 + x−2 =
1
2

;

when w → 0 or x → ∞, we obtain the upper bound lim
x→∞

C 1
x

D 1
x

=
1
α
1
α

= 1. Therefore, Cw
Dw
∈
Ä

1
2 , 1
ä

for w ∈ (0, 1), or, c̄w ∈ (1, 2) for w ∈ (0, 1), and we have (4.5.12). More precisely, we have

c̄w ∈ (1, 2) and 
c̄w → 1, when w→ 1,

c̄w → 2, when w→ 0.
(4.5.12)

4.5.3 Enhanced Algorithm for OU-IG Process

We provide an enhanced algorithm for the special case of OU-IG process. The enhancement is

mainly achieved by replacing the tempered stable random variable of (4.5.6) in Algorithm 4.5.1 by

an inverse Gaussian random variable, and it is well known that inverse Gaussian random variable

can be very efficiently simulated without A/R using the classical algorithm developed by Michael

et al. (1976).

Algorithm 4.5.3 (Enhanced Exact Simulation of OU-IG Process). For the OU process Xt with
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Lévy subordinator Zt ∼ IG
Ä

t
c , t2
ä
, c ∈ R+, we can exactly simulate XT+τ conditional on Xt via

modifying Algorithm 4.5.1 by

1. Setting α = 1
2 , β = 1

2 c2 and θ = 1√
2π

;

2. Replacing the general tempered stable random variable (4.5.6) by the inverse Gaussian ran-

dom variable›IG ∼ IG
Ç

µIG =
2$

δc

Ä√
w− w

ä
, λIG =

ï2$

δ

Ä
1−
√

w
äò2å

,

where µIG is the mean parameter and λIG is the rate parameter.

Proof. For an inverse Gaussian random variable IG ∼ IG
Ä

1
c , 1
ä
, the Lévy measure is given by

ν(s) =
1√

2πs3
e−

c2
2 s,

then, we have

IG ∼ TS
Ç

1
2

,
c2

2
,

1√
2π

å
.

If we set α = 1
2 , β = 1

2 c2 and θ = 1√
2π

, then, it recovers the special case of OU-IG process. In

particular, (4.5.6) turns to be

TS
Ç

1
2

,
c2

2w
,

2$

δ
√

2π
(1−

√
w)

å
,

with the associated Laplace exponent

∞∫
0

Ä
1− e−vs

ä 2$(1−
√

w)
δ√

2πs3
e−

Ä
c√
w

ä2

2 sds.

Note that, in general, the Laplace exponent of IG(µIG, λIG) is given by

∞∫
0

Ä
1− e−vs

ä √λIG√
2πs3

e−

(√
λIG

µIG

)2

2 sds, µIG, λIG ∈ R+. (4.5.13)

Under the parameter setting of α = 1
2 , β = 1

2 c2 and θ = 1√
2π

, the general tempered stable random

variable in (4.5.6) can be replaced by an inverse Gaussian random variable as

TS
Ç

1
2

,
c2

2w
,

2$

δ
√

2π
(1−

√
w)

å
D
= IG

Ç
2$

δc

Ä√
w− w

ä
,
ï2$

δ

Ä
1−
√

w
äò2å

.
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Figure 4.1: A simulated path of OU-TS process by Algorithm 4.5.1, with the parameter setting
(δ, $; α, β, θ; X0) = (0.2, 1.0; 0.9, 0.2, 0.25; 10) within the time period of [0, 100] and 10, 000
equally-spaced discretisation steps
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Figure 4.2: A simulated path of OU-IG process by Algorithm 4.5.3, with the parameter setting
(δ, $; c; X0) = (0.2, 1.0; 0.5; 2.0) within the time period of [0, 100] and 10, 000 equally-spaced
discretisation steps
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Table 4.3: Comparison between the true means and the associated simulation results for our exact simulation
schemes based on the parameter setting (δ, $; α, β, θ; X0; T) = (0.2, 1.0; 0.25, 0.5, 0.25; 10.0; 5.0)
for OU-TS processes and (δ, $; c; X0; T) = (0.2, 1.0; 1.0; 10.0; 5.0) for OU-IG processes, nτ =
1, 2, 5, 10, respectively.

Paths True Simulation Difference Error% RMSE Time Simulation Difference Error% RMSE Time
OU-TS nτ = 1 OU-TS nτ = 2

1,000 5.3072 5.3512 0.0440 0.83% 0.0419 2.52 5.3143 0.0071 0.13% 0.0411 0.39
4,000 5.3072 5.3273 0.0201 0.38% 0.0223 10.02 5.2956 -0.0116 -0.22% 0.0208 1.38
16,000 5.3072 5.3044 -0.0028 -0.05% 0.0101 40.28 5.3215 0.0143 0.27% 0.0104 5.33
64,000 5.3072 5.3102 0.0030 0.06% 0.0051 158.95 5.3095 0.0022 0.04% 0.0051 20.84
256,000 5.3072 5.3043 -0.0029 -0.05% 0.0026 634.52 5.3065 -0.0007 -0.01% 0.0026 82.63

OU-TS nτ = 5 OU-TS nτ = 10
1,000 5.3072 5.2500 -0.0572 -1.08% 0.0371 0.39 5.2621 -0.0451 -0.85% 0.0390 0.70
4,000 5.3072 5.3153 0.0080 0.15% 0.0209 1.56 5.2977 -0.0095 -0.18% 0.0203 2.72
16,000 5.3072 5.3125 0.0053 0.10% 0.0103 6.09 5.3083 0.0011 0.02% 0.0102 10.63
64,000 5.3072 5.2970 -0.0102 -0.19% 0.0050 24.16 5.3053 -0.0019 -0.04% 0.0051 41.73
256,000 5.3072 5.3101 0.0028 0.05% 0.0025 96.05 5.3066 -0.0006 -0.01% 0.0026 167.44

OU-IG nτ = 1 OU-IG nτ = 2
1,000 6.8394 6.8094 -0.0300 -0.44% 0.0454 0.09 6.8100 -0.0294 -0.43% 0.0462 0.14
4,000 6.8394 6.8353 -0.0041 -0.06% 0.0230 0.22 6.8424 0.0030 0.04% 0.0230 0.48
16,000 6.8394 6.8294 -0.0100 -0.15% 0.0117 0.95 6.8335 -0.0059 -0.09% 0.0115 1.66
64,000 6.8394 6.8365 -0.0029 -0.04% 0.0058 3.55 6.8415 0.0021 0.03% 0.0058 6.55
256,000 6.8394 6.8352 -0.0042 -0.06% 0.0029 13.64 6.8425 0.0031 0.05% 0.0029 25.72

OU-IG nτ = 5 OU-IG nτ = 10
1,000 6.8394 6.8576 0.0182 0.27% 0.0476 0.25 6.8478 0.0084 0.12% 0.0469 0.50
4,000 6.8394 6.8137 -0.0257 -0.38% 0.0228 0.94 6.8366 -0.0028 -0.04% 0.0236 1.98
16,000 6.8394 6.8637 0.0243 0.36% 0.0117 3.84 6.8491 0.0097 0.14% 0.0116 7.56
64,000 6.8394 6.8374 -0.0020 -0.03% 0.0058 15.02 6.8390 -0.0004 -0.01% 0.0057 29.69
256,000 6.8394 6.8394 -0.0000 0.00% 0.0029 59.80 6.8429 0.0035 0.05% 0.0029 119.45

Table 4.4: Comparison between the true means and the associated simulation results for our exact simulation
schemes based on the parameter setting (δ, $; c; X0; T) = (0.2, 1.0; 1.0; 10.0; 5.0) for OU-IG
process, and each value point is estimated from 100, 000 sample paths.

nτ True Simulation Difference Error% RMSE Time Simulation Difference Error% RMSE Time
OU-IG Algorithm 4.5.1 OU-IG Algorithm 4.5.3

1 6.8394 6.8423 0.0029 0.04% 0.0047 438.66 6.8393 -0.0001 0.00% 0.0047 5.48
2 6.8394 6.8358 -0.0036 -0.05% 0.0047 34.47 6.8351 -0.0043 -0.06% 0.0046 9.88
3 6.8394 6.8374 -0.0020 -0.03% 0.0046 30.19 6.8400 0.0006 0.01% 0.0046 14.63
4 6.8394 6.8402 0.0008 0.01% 0.0047 33.09 6.8511 0.0117 0.17% 0.0047 18.95
5 6.8394 6.8465 0.0071 0.10% 0.0046 37.52 6.8434 0.0040 0.06% 0.0047 23.75
6 6.8394 6.8403 0.0009 0.01% 0.0046 43.58 6.8310 -0.0084 -0.12% 0.0046 27.97
7 6.8394 6.8373 -0.0021 -0.03% 0.0046 47.80 6.8434 0.0040 0.06% 0.0047 32.83
8 6.8394 6.8246 -0.0148 -0.22% 0.0046 54.41 6.8363 -0.0031 -0.04% 0.0046 37.61
9 6.8394 6.8450 0.0056 0.08% 0.0046 59.55 6.8415 0.0021 0.03% 0.0046 42.80
10 6.8394 6.8385 -0.0009 -0.01% 0.0047 64.58 6.8316 -0.0078 -0.11% 0.0046 48.61

4.5.4 Simulation Studies

In this section, we establish numerical experiments to illustrate the performance and effectiveness

of our exact simulation schemes. We have implemented the exact simulation schemes for two cases,

OU-TS/OU-IG within the fixed time period [0, T], respectively.

Note that, the choice for the fundamental tempered stable generator is essential as it determines

overall simulation efficiency. Since our two-dimensional Single Rejection Scheme in Chapter 2

outperforms all the existing algorithms for any parameter settings, we therefore adopt the two-

dimensional Single Rejection Scheme in Algorithm 2.4.6 to implement Algorithm 4.5.1.
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We set the parameters (δ, $; α, β, θ; X0; T) = (0.2, 1.0; 0.25, 0.5, 0.25; 10.0; 5.0) for OU-TS pro-

cess and (δ, $; c; X0; T) = (0.2, 1.0; 1.0; 10.0; 5.0) for OU-IG process, and experiment with differ-

ent numbers of equally-spaced discretisation steps within the period [0, T], i.e. nτ := T/τ. Of

course, all of our algorithms can be directly applied to the irregularly-spaced time points whichmay

be more useful in practice6, and the equally-spaced cases here just serve for illustration purpose.

Simulated paths of OU-TS/OU-IG processes have been presented earlier in Figure 4.1 and Figure

4.2, respectively. Convergence analysis for the two cases based on the increasing numbers of sample

paths is reported in Table 4.3. The efficiency enhancement for simulating OU-IG process using the

enhanced schemes (Algorithm 4.5.3) against the associated general schemes (Algorithm 4.5.1 )

can be clearly observed through Table 4.4. Overall, from these numerical results reported in this

section, it is evident that each algorithm developed can achieve a very high level of accuracy as

well as efficiency.

4.6 Conclusion

In this chapter, we have developed an approach to exactly simulate Lévy drivenOrnstein-Uhlenbeck

processes which are constructed from typical Lévy subordinators, i.e. the compound Poisson pro-

cess, the gamma process and the tempered stable process. The algorithms are accurate and efficient

which have been numerically verified and tested by our extensive experiments. They could be easily

adopted for generating sample paths for modelling the dynamics of asset prices, stochastic volat-

ilizes and interest rates to name a few. They would be especially useful for statistical inference,

derivative pricing and risk management in practice.

6The data in practice, such as trade transactions from market microstructure, are often observed at irregularly-spaced
time points, see Engle and Russell (1998).
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Chapter 5

Lévy Driven Contagion Models

In this chapter, we introduce a new family of Lévy driven point processes with contagion, by gen-

eralising the classical self-exciting Hawkes process and doubly stochastic Poisson processes with

non-Gaussian Lévy driven Ornstein-Uhlenbeck type intensities. The resulting frameworkmay pos-

sess many desirable features such as skewness, leptokurtosis, mean-reverting dynamics, and more

importantly, the contagion or feedback effects, which could be very useful for modelling event ar-

rivals in finance, economics, insurance and many other fields. We characterise the distributional

properties of this new class of point processes and develop an efficient sampling method for gen-

erating sample paths exactly. Our simulation scheme is based on the distributional decomposition

of the point process and its intensity process. Extensive numerical implementations and tests are

reported to demonstrate the accuracy and effectiveness of our scheme. Moreover, we apply to port-

folio risk management as an example to show the applicability and flexibility of our algorithms.

5.1 Definitions

In this section, we construct a new framework for modelling event arrivals with contagion effects

based on Lévy processes. That is, the intensity of the point process is set up to be a non-Gaussian

OU process driven by a Lévy subordinator in cooperation with extra self-exciting jumps. Let us

first define a simpler version without the self-exciting component:

Definition 5.1.1 (Jump Process with Non-Gaussian Intensity). Jump process with non-Gaussian

intensity is a point process N ≡
¶

Ti
©

i=1,2,...
i.e. Nt =

∑
i≥1

1{Ti≤t} with the stochastic intensity λt

satisfying the stochastic differential equation

dλt = −δλtdt + $dZt, t ≥ 0, (5.1.1)

where
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• $ > 0 is an arbitrary positive constant;

• δ > 0 is the constant rate of exponential decay;

• Zt, with Z0 = 0, is a Lévy subordinator, which is called the background driving Lévy process

(BDLP) of a non-Gaussian OU process.

This is a special case of Cox point processes. A slightly mathematical generalisation but very

useful for applications is to further incorporate a feedback mechanism in the framework by adding

a series of self-exciting jumps, i.e. simultaneous jumps (or "co-jumps") in the point process and

its intensity process. More precisely, this new framework, as a generalised version of the jump

process of Definition 5.1.1, is defined via the stochastic intensity representation as below:

Definition 5.1.2 (Self-exciting Jump Process with Non-Gaussian Intensity). Nt is a self-exciting

jump process with non-Gaussian intensity, if the intensity process of (5.1.1) is replaced by

dλt = −δλtdt + $dZt + dJt, t ≥ 0, (5.1.2)

where the extra component Jt is a pure-jump process specified by

Jt :=
Nt∑

i=1

Xi, (5.1.3)

and {Xi}i=1,2,... are non-negative sizes of self-exciting jumps1 with distribution function G(z),

z > 0, occurring at the associated (ordered) arrival times
¶

Ti
©

i=1,2,...
, respectively.

Similar as the Hawkes process (Hawkes and Oakes, 1974), Nt in Definition 5.1.2 can be equi-

valently redefined as a branching process via a cluster process presentation (Daley and Vere-Jones,

2003, p.175-193). More precisely, Nt is a cluster point process which consists of two types of

points: immigrants and their offspring. The arrivals of immigrants follow a Cox process with Lévy

driven OU intensity (5.1.1). Each immigrant generates its offspring, each offspring would further

generate offspring, and so on. The generation of any offspring follows a Cox process with expo-

nentially decaying intensity X∗e−δ(t−T∗), where X∗ D= Xi and T∗ is the arrival (birth) time of its

previous generation. The superposition (Daley and Vere-Jones, 2003, Theorem 2.4.VI) of all of

these points forms our new self-exciting point process Nt with the stochastic intensity (5.1.2).

Note that, given the initial intensity level λ0 > 0, the intensity process (5.1.2) can be alternat-

1It is called "self-exciting", as the expression (5.1.3) reveals that the jumps simultaneously occur in the point process
Nt and its intensity λt, and hence the arrivals of jumps trigger more jumps afterwards.
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Figure 5.1: A sample path of interarrival intensity process (without self-exciting component) within the time
period t ∈ [0, 5] when the BDLP is a Gamma process

ively expressed as

λt = λ0e−δt + $

t∫
0

e−δ(t−s)dZs

︸ ︷︷ ︸
Exogenous commonly-shared risk

+
Nt∑

i=1

e−δ(t−Ti)Xi,︸ ︷︷ ︸
Endogenous contagion risk

t ≥ 0,

which is positive and càdlàg. In fact, this new framework integrates twomajor types of risk sources.

For example, in the context of credit risk or systemic risk, the first part (i.e. the first two terms)

is to model the cyclical dependency of companies on some exogenous risk (e.g. movements of

interest or FX rates) commonly shared in the entire market, and the cyclical oscillation is captured

by the mean-reverting Lévy driven OU process; fundamental common shocks are captured by the

pure-jump process Zt. The second part (i.e. the last term) is to model the endogenous contagion

risk due to the local interaction of companies in their business network, without which the overall

risk would be underestimated.

The interarrival intensity process {λt}Ti≤t<Ti+1 , for modelling exogenous commonly-shared

risk, is defined as the parts of intensity process excluding self-exciting jumps, i.e., (5.1.1), or,

λt = e−δtλ0 + $

t∫
0

e−δ(t−s)dZs, t ∈ [Ti, Ti+1).

For instance, a sample path of the interarrival intensity process (without self-exciting component)

within the time period t ∈ [0, 5] when the BDLP is a gamma process is represented in Figure 5.1.
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This framework is the generalisation of several classical models in the literature: If there is no

BDLP Zt, then, the point process Nt is a generalised Hawkes process (Hawkes, 1971a,b) with ran-

dom marks. If the BDLP Zt is trivially a subordinator of compound Poisson, then, Nt is a dynamic

contagion process (Dassios and Zhao, 2011).

For notation simplicity, we denote the Lévy measure of Zt by ν, the associated Laplace expo-

nent and mean at the unite time by

Φ(u) :=
∞∫

0

Ä
1− e−uy

ä
ν(y)dy, µZ := E[Z1] =

∞∫
0

yν(y)dy, u > 0,

the Laplace transform, mean of self-exciting jump sizes and a constant respectively by

ĝ(u) :=
∞∫

0

e−uydG(y), µG :=
∞∫

0

ydG(y), η := δ− µG,

which are assumed to be finite. In addition, we denote the (i + 1)th interarrival time by

τi+1 := Ti+1 − Ti, i = 0, 1, 2, ..., T0 = 0,

and the cumulative intensity process at time t by Λt :=
t∫

0

λudu.

Since this is a new family of point processes, one may be interested in their basic distributional

properties such as means and Laplace transforms. In particular, the conditional expectation of

point process is provided here in Proposition 5.1.1, as it will be used later as a simple and general

benchmark for numerically validating our newly-developed simulation algorithms.

Proposition 5.1.1 (Conditional Expectation of Point Process). The expectation of Nt+s conditional

on Nt and λt is given by

E [Nt+s | Nt, λt] =


Nt +

$µZ

η
s +
Ç

λt −
$µZ

η

å
1− e−ηs

η
, η 6= 0,

Nt + λts +
1
2

$µZs2, η = 0,
s > 0.

5.2 General Framework for Exact Simulation

In this section, we outline an exact simulation framework based on exact distributional decom-

position for a general point process of Lévy driven OU intensity with and without self-exciting

jumps as defined in Definition 5.1.1 and 5.1.2, respectively. The entire simulation scheme can be
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Figure 5.2: Illustration on the exact simulation procedures for a path of point process Nt and the skeleton of
its intensity process λt around the period [Ti, Ti+1]

decomposed into three major steps:

1. Conditional on the current arrival time Ti and the associated intensity level λTi , generate the

next interarrival time τi+1;

2. Further conditional on the realisation of this interarrival time τi+1, generate the pre-jump

intensity level λTi+τ−i+1
right before the next arrival time Ti+1 = Ti + τi+1;

3. Add a self-exciting jump size Xi+1 upon the intensity process λt and one unit in the point

process Nt both at the next arrival time Ti+1 = Ti + τi+1.

By recursively implementing the three steps above, a full path of the point process Nt in any time

horizon can be exactly produced without bias. A graphical illustration for this proposed algorithm

design is provided in Figure 5.2.

The third step indeed is straightforward. In particular, if Xi+1 ≡ 0 for any i, then, it corresponds

to the version without self-exciting jumps. In order to execute the first two steps, we have first to

further investigate the joint distributional properties of the next interarrival time τi+1 and the next

pre-jump intensity level λTi+τ−i+1
, which can be characterised by the conditional joint transform as

below.

Theorem 5.2.1 (Joint Laplace Transform of Pre-jump Intensity and Cumulative Intensity). Condi-

tional on the intensity levelλTi at the ith arrival time Ti, the joint transform of
(
λTi+τ− , ΛTi+τ −ΛTi

)
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for any given period τ ∈ (0, τi+1) is given by

E
[
e−vλTi+τ− e−(ΛTi+τ−ΛTi) | λTi

]

= exp

Ü
−
ï1

δ
+
Å

v− 1
δ

ã
w
ò

λTi − $

1
δ +(v− 1

δ )w∫
v

Φ(u)
1− δu

du

ê
, τ ∈ (0, τi+1) , (5.2.1)

where w := e−δτ.

Proof. Given the ith arrival time Ti, the infinitesimal generator of (Λ, λ, t) within the period t ∈

[Ti, Ti + τi+1) acting on any function f (Λ, λ, t) within its domain Ω(A) is given by

A f (Λ, λ, t) =
∂ f
∂t
− δλ

∂ f
∂λ

+ λ
∂ f
∂Λ

+ $


∞∫

0

ñ
f (Λ, λ + y, t)− f (Λ, λ, t)

ô
ν(y)dy

 . (5.2.2)

Consider a function

f (Λ, λ, t) = e−ṽΛe−λA(t)eR(t), ṽ ∈ R+, (5.2.3)

where A(t) and R(t) are deterministic and differentiable functions with respect to t. Substituting

(5.2.3) into (5.2.2) and setting A f = 0, we have

−λA′(t) + R′(t) + δλA(t)− ṽλ− $Φ
Ä

A(t)
ä
= 0.

Since this equation holds for any λ and Λ, it is equivalent to the equations

A′(t) = δA(t)− ṽ, R′(t) = $Φ
Ä

A(t)
ä
.

Hence, for any time t ∈ [Ti, Ti + τi+1), we have

A(t) = keδt − ṽ
eδt − 1

δ
, R(t) = $

t∫
0

Φ
Ç

keδs − ṽ
eδs − 1

δ

å
ds, k ∈ R+.

By the basic property of infinitesimal generator (Dassios and Embrechts, 1989), we have the mar-

tingale

e−ṽΛt exp

Ñ
−
Ç

keδt − ṽ
eδt − 1

δ

å
λt + $

t∫
0

Φ
Ç

keδs − ṽ
eδs−1

δ

å
ds

é
.

Setting ṽ = 1 and A (Ti + τ−) = v for any τ ∈ (0, τi+1) and using the martingale property, we
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have

E
[
e−vλTi+τ− e−(ΛTi+τ−ΛTi) | λTi

]
= exp

Ñ
−
ï1

δ
+
Å

v− 1
δ

ã
w
ò

λTi − $

τ∫
0

Φ
Å1

δ
+
Å

v− 1
δ

ã
e−δs
ã

ds

é
.

Hence, we can immediately obtain (5.2.1) by the change of variable u = 1
δ +
Ä
v− 1

δ

ä
e−δs.

Theorem 5.2.1 provides us with a crucial tool for further investigating the distributional prop-

erties of the interarrival time τi+1 and the pre-jump intensity level λTi+τ−i+1
, jointly and separately,

which later leads to their efficient algorithms for exact simulation as follows.

5.2.1 Exact Simulation of Interarrival Time

Let us first outline how to simulate the interarrival time. Given the intensity level λTi at the ith

arrival time Ti, interestingly, the (i + 1)th interarrival time τi+1 can be exactly expressed as the

minimum of two much simpler random variables V∗Ti
and V∗ where

1. V∗Ti
is a defective random variable, which can be directly generated by an explicit inverse

transform;

2. V∗ is a well-defined random variable, which can be exactly simulated by a simplified version

of the classical thinning scheme (Lewis and Shedler, 1979).

Algorithm 5.2.1 (Exact Simulation of Interarrival Time). Conditional on the intensity level λTi ,

the next interarrival time τi+1 can be exactly simulated via

τi+1
D
=


V∗ ∧V∗Ti

, Di > 0,

V∗, Di < 0,
(5.2.4)

where

• Di is simulated via

Di := 1 +
δ

λTi

ln U1, U1 ∼ U [0, 1];

• V∗Ti
is a simple defective random variable with P

Ä
V∗Ti

= ∞
ä
= exp

Ä
− 1

δ λTi

ä
, i.e.

V∗Ti

D
= − 1

δ
ln Di; (5.2.5)
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• V∗ is the first arrival time of a non-homogeneous Poisson process with the rate function

ζt := $Φ
Ä

G0(t)
ä
, G0(u) :=

1− e−δu

δ
, u ≥ 0, (5.2.6)

and it can be exactly simulated via the simplified thinning scheme of Simulation Scheme

5.2.2.

Proof. Setting v = 0 in (5.2.1) of Theorem 5.2.1, we have

P(τi+1 > τ | λTi) = E
[
e−(ΛTi+τ−ΛTi) | λTi

]
= P(V∗ > τ)× P(V∗Ti

> τ),

where

P(V∗ > τ) = exp

Ñ
−$

τ∫
0

Φ
Ä

G0(u)
ä
du

é
, P(V∗Ti

> τ) = e−G0(τ)λTi . (5.2.7)

This implies that, the next interarrival time τi+1 conditional on the current intensity level λTi can

be expressed as the minimum of two independent random variables V∗ and V∗Ti
. Note that, V∗Ti

is a

defective random variable since the CDF of V∗Ti
is

FV∗Ti
(τ) = 1− e−G0(τ)λTi ,

with FV∗Ti
(∞) = 1− exp

Ä
− 1

δ λTi

ä
< 1, and the density fV∗Ti

(τ) > 0 for any τ > 0. Obviously,

if Di > 0, then V∗Ti
can be exactly simulated using the explicit inverse transform (5.2.5). Whereas

V∗ can be interpreted as the first arrival time from a non-homogeneous Poisson process, and it can

be exactly simulated via Simulation Scheme 5.2.2 as below.

Algorithm 5.2.2 (Simplified Thinning Scheme). V∗ can be exactly simulated by the following

steps:

1. Initialise the candidate time t̃ = 0;

2. Generate E∗ ∼ Exp (ζ∞) where

ζ∞ := lim
t→∞

ζt = $Φ
Å1

δ

ã
, (5.2.8)

and set t̃ = t̃ + E∗;

3. Generate U2 ∼ U [0, 1],

• if U2 ≤ ζ(t̃)/ζ∞, then, accept this candidate by setting V∗ = t̃;
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• if U2 > ζ(t̃)/ζ∞, then, reject this candidate, and go back to Step 2 and continue.

Proof. Since ζt in (5.2.6) is a strictly increasing and concave function of time t with the initial

value ζ0 = 0 at time t = 0, the maximum level is ζ∞. Then, the algorithm above actually is a

simplified version of the classical thinning scheme (Lewis and Shedler, 1979) where only the first

arrival time within the period of [0, t] is recorded.

5.2.2 Exact Simulation of Pre-jump Intensity Level

Conditional the realisation of interarrival time τi+1 as generated by Simulation Scheme 5.2.1, the

Laplace transform of the next pre-jump intensity level λTi+τ−i+1
is provided as follows.

Theorem 5.2.2 (Laplace Transform of Pre-jump Intensity). Conditional on the intensity level λTi

and the (i + 1)th interarrival time τi+1, the Laplace transform of pre-jump intensity level λTi+τ−i+1

is given by

E

ï
e
−vλTi+τ−

i+1 | τi+1 = τ, λTi

ò
= e−vwλTi × exp

Ü
−$

1
δ +(v− 1

δ )w∫
v

Φ(u)−Φ
Å

u− u− 1
δ

v− 1
δ

v
ã

1− δu
du

ê

×

$

δ

∞∫
0

e−vs

s
w∫

s

e
s
δ e−

y
δ ν(y)dyds + wλTi

$

δ

∞∫
0

s
w∫

s

e
s
δ e−

y
δ ν(y)dyds + wλTi

. (5.2.9)

Proof. Note that, the density function of the (i + 1)th interarrival time conditional on the intensity

level λTi is

P(τi+1 ∈ dτ | λTi) = E

λTi+τ− exp

Ö
−

Ti+τ∫
Ti

λudu

è
| λTi

dτ,

which implies that,

E

ï
e
−vλTi+τ−

i+11{τi+1∈dτ} | λTi

ò
= E

λTi+τ−e−vλTi+τ− exp

Ö
−

Ti+τ∫
Ti

λudu

è
| λTi

dτ.

Hence, we have

E

ï
e
−vλTi+τ−

i+1 | τi+1 = τ, λTi

ò
=

E
[
λTi+τ−e−vλTi+τ− e−(ΛT+τ−ΛTi) | λTi

]
E
[
λTi+τ−e−(ΛTi+τ−ΛTi) | λTi

] . (5.2.10)
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The numerator of (5.2.10) can be obtained by differentiating the joint transform (5.2.1) w.r.t. v,

i.e.,

E
[
λTi+τ−e−vλTi+τ− e−(ΛTi+τ−ΛTi) | λTi

]
= − ∂

∂v
E

ñ
e−vλTi+τ− e

−
Ä

ΛTi+τ−−ΛTi

ä
| λTi

ô
= − ∂

∂v

exp
Å
−
ï1

δ
+
Å

v− 1
δ

ã
e−δτ

ò
λTi

ã
× exp

Ñ
−$

τ∫
0

Φ
Å1

δ
+
Å

v− 1
δ

ã
e−δu

ã
du

é
= − ∂

∂v

ñ
e−Gv(τ)λTi × e−$Fv(τ)

ô
= −

ï
$

∂

∂v
Fv(τ) +

∂

∂v
Gv(τ)

ò
× e−Gv(τ)λTi e−$Fv(τ),

where

Gv(u) :=
1
δ
+
Å

v− 1
δ

ã
e−δu, Fv(τ) :=

τ∫
0

Φ
Ä

Gv(u)
ä
du,

and

∂

∂v
Gv(τ) = −λTi e

−δτ,

∂

∂v
Fv(τ) =

τ∫
0

∞∫
0

ye−δue−[
1
δ +(v− 1

δ )e−δu]yν(y)dydu.

Note that, ν is the Lévy measure for Zt, therefore, we have

E

ï
e
−vλTi+τ−

i+1 | τi+1 = τ, λTi

ò
=

Ñ
$

τ∫
0

∞∫
0

ye−δue−[
1
δ +(v− 1

δ )e−δu]yν(y)dydu + e−δτλTi

é
× e−Gv(τ)λTi e−$Fv(τ)Ñ

$

τ∫
0

∞∫
0

ye−δue−
1
δ (1−e−δu)yν(y)dydu + e−δτλTi

é
× e−G0(τ)λTi e−$F0(τ)

=

$

τ∫
0

∞∫
0

ye−δue−[
1
δ +(v− 1

δ )e−δu]yν(y)dydu + e−δτλTi

$

τ∫
0

∞∫
0

ye−δue−
1
δ (1−e−δu)yν(y)dydu + e−δτλTi

×
E
[
e−vλTi+τ− e−(ΛTi+τ−ΛTi) | λTi

]
E
[
e−(ΛTi+τ−ΛTi) | λTi

] . (5.2.11)
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The first term of (5.2.11) can be calculated more explicitly as

$

τ∫
0

∞∫
0

ye−δue−[
1
δ +(v− 1

δ )e−δu]yν(y)dydu + e−δτλTi

$

τ∫
0

∞∫
0

ye−δue−
1
δ (1−e−δu)yν(y)dydu + e−δτλTi

=

$

1
δ +(v− 1

δ )w∫
v

∞∫
0

y
u− 1

δ

v− 1
δ

e−uyν(y)dy
du

1− δu
+ wλTi

$

1
δ +(v− 1

δ )w∫
v

∞∫
0

y
u− 1

δ

v− 1
δ

e
−
Å

u−
u− 1

δ

v− 1
δ

v

ã
y
ν(y)dy

du
1− δu

+ wλTi

=

$

1− δv

1
δ +(v− 1

δ )w∫
v

∞∫
0

ye−(u− 1
δ )ye−

y
δ ν(y)dydu + wλTi

$

1− δv

1
δ +(v− 1

δ )w∫
v

∞∫
0

ye
−
Å

u− 1
δ−

u− 1
δ

v− 1
δ

v

ã
y
e−

y
δ ν(y)dydu + wλTi

=

−$

δ

(1−δv)w∫
1−δv

∞∫
0

ye
(1−δv)zy

δ e−
y
δ ν(y)dydz + wλTi

−$

δ

(1−δv)w∫
1−δv

∞∫
0

ye
zy
δ e−

y
δ ν(y)dydz + wλTi

=

$

δ

∞∫
0

e−vs

s
w∫

s

e
s
δ e−

y
δ ν(y)dyds + wλTi

$

δ

∞∫
0

s
w∫

s

e
s
δ e−

y
δ ν(y)dyds + wλTi

. (5.2.12)

As the denominator of the second term of (5.2.11) can be also obtained nicely by setting v = 0 in

the joint transform (5.2.1), i.e.,

E
[
e−(ΛTi+τ−ΛTi) | λTi

]
= exp

Ü
−1− w

δ
λTi − $

1
δ +(v− 1

δ )w∫
v

Φ
Å

u− u− 1
δ

v− 1
δ

v
ã

1− δu
ds

ê
.

So, the second term of (5.2.11) can expressed by

E
[
e−vλTi+τ− e−(ΛTi+τ−ΛTi) | λTi

]
E
[
e−(ΛTi+τ−ΛTi) | λTi

]
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=

exp
Ä
−
î

1
δ +
Ä
v− 1

δ

ä
w
ó

λTi

ä
exp

Ü
−$

1
δ +(v− 1

δ )w∫
v

Φ(u)
1− δu

du

ê
exp
Ä
− 1

δ (1− w)λTi

ä
exp

Ü
−$

1
δ +(v− 1

δ )w∫
v

Φ
Å

u− u− 1
δ

v− 1
δ

v
ã

1− δu
du

ê
= e−vwλTi × exp

Ü
−$

1
δ +(v− 1

δ )w∫
v

Φ(u)−Φ
Å

u− u− 1
δ

v− 1
δ

v
ã

1− δu
du

ê
. (5.2.13)

Finally, we obtain (5.2.9) immediately by combining the results from (5.2.12) and (5.2.13).

Apparently, given the ith arrival time Ti and the (i + 1)th interarrival time τi+1, the pre-jump

intensity level λTi+τ−i+1
can be simulated by the numerical inversion of Laplace transform (5.2.9) for

any Lévy driven contagion process once the associated Lévy measure ν (and Laplace exponent Φ)

are specified. Indeed, exact simulation for stochastic processes based on the numerical inversion

of Laplace or Fourier transform has been widely adopted in the literature, see Broadie and Kaya

(2006), Glasserman and Liu (2010), Chen et al. (2012), Cai et al. (2017) and Kang et al. (2017).

However, for some subclasses such as the very popular specifications of gamma and tempered

stable processes, quite remarkably, based on Theorem 5.2.2 the pre-jump intensity level can be

exactly decomposed into several simple elements, each of which can be easily simulated exactly

without any numerical inversion procedure. In fact, this exact decomposition approach appropri-

ately breaks the Lévy measure of subordinator, and thereby it can be achieved by developing an

exact distributional decomposition through Laplace transform representations. In this chapter, our

focus is mainly on this decomposition approach, as it leads to a very efficient simulation algorithm

for exactly sampling the whole point process, and more importantly, it does not involve additional

discretisation or truncation errors which are inevitable in the numerical inversion approach. We

will present our discovery based on the decomposition approach in much more details later in Sec-

tion 5.3.

5.2.3 Exact Simulation of Self-exciting Jumps

Based on our key results of Algorithm 5.2.1 for the interarrival time τi+1 and Theorem 5.2.2 for

the associated pre-jump intensity level λTi+τ−i+1
, now, it is straightforward to further integrate the

self-exciting jumps as the final step.

Algorithm 5.2.3 (Exact Simulation of Self-exciting Jumps). Conditional on (λTi , Ti) for any step

index i ∈ N+, the next self-exciting jumps occurring simultaneously in the intensity process and
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the point process can be exactly simulated via the following steps:

1. Generate the (i + 1)th interarrival time τi+1 by thinning via Algorithm 5.2.1;

2. Set the (i + 1)th arrival time by Ti+1 = Ti + τi+1;

3. Generate the (i + 1)th pre-jump intensity λT−i+1
with Laplace transform (5.2.9) in Theorem

5.2.2;

4. Add a self-exciting jump of size Xi+1 to the intensity process at the (i + 1)th arrival time

Ti+1, i.e.

λTi+1 = λT−i+1
+ Xi+1. (5.2.14)

5. Add one unit to the point process at the (i + 1)th arrival time Ti+1, i.e. NTi+1 = NT−i+1
+ 1.

By recursively implementing Algorithm 5.2.3, the skeleton of any Lévy driven OU intensity

process λt and the associated full path of point process Nt in continuous time can be exactly gen-

erated. Moreover, there is almost no restriction on the size of self-exciting jump, Xi+1. It is very

flexible, as long as it would not overshoot the zero bound: it could be a constant, or, a random

variable having a highly general dependency on the past information before and at the arrival time

Ti.

Overall, the whole process can be decomposed into interarrival times, pre-jump intensity levels

and self-exciting jumps. When specifying the Lévy subordinator Zt, each of pre-jump intensity

levels in Step 3 in Algorithm 5.2.3 allows a further exact distributional decomposition, which leads

to an exact simulation algorithm without numerical inversion. The resulting scheme thereby has

no bias or truncation errors.

5.3 Typical Examples: GammaandTempered StableContagionMod-

els

For model implementation, one needs to further specify Zt in an explicit form. Probably the

most widely used and representative Lévy subordinators in the literature are gamma process and

tempered stable process. Many scholars adopted these Lévy subordinators as the building blocks

to further construct other useful stochastic processes, and there are tremendous relevant papers and

work in the literature, see Barndorff-Nielsen and Shephard (2001a,b, 2003a), Cont and Tankov

(2004), Schoutens and Cariboni (2010) and Li and Linetsky (2014) to name a few. In this section,

we consider two typical examples, i.e. the Gamma Contagion and the Tempered Stable Contagion,

and provide applications for these contagion models later in Section 5.5.
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Exact Simulation of Interarrival Time

For contagion models driven by the gamma process with shape a and rate b and the tempered

stable process with stability α, intensity θ and tilting β, the interarrival time can be simulated via

the general algorithm of thinning scheme, Algorithm 5.2.2, by simply calculating ζ∞ in (5.2.8)

from (5.2.6) explicitly as

ζ∞ =


$a ln

Å
1 +

1
δb

ã
, for Gamma,

−$θΓ(−α)

ñÅ
β +

1
δ

ãα

− βα

ô
, for Tempered Stable.

Exact Simulation of Pre-jump Intensity

The pre-jump intensity level conditional on the realisation of interarrival time is characterised by

the Laplace transforms (5.2.9) in Theorem 5.2.2, with Lévy measures ν and Laplace transform

specified by (2.3.1, 2.3.2) and (2.4.1, 2.4.2) for the gamma and tempered stable cases, respectively.

For both cases, the integral transforms of the pre-jump intensity levels actually can be broken into

several simple elements.

The Laplace transform of pre-jump intensity level with three terms in (5.2.9) actually consists

two parts: (5.2.12) and (5.2.13). Strikingly, based on Theorem 5.2.2, the first two terms of (5.2.9),

i.e., (5.2.13), can be further exactly decomposed for the specified gamma and tempered stable cases

respectively as follows.

Algorithm 5.3.1 (Exact Simulation of Pre-jump Intensity Level for Γ-Contagion). For the Γ-

contagion, conditional on the intensity level λTi and the realisation of the (i + 1)th interarrival

time τi+1 = τ, the distribution of the (i + 1)th pre-jump intensity level λTi+τ− can be exactly

decomposed by

λTi+τ− | λTi

D
= wλTi + Γ̃ + B̃× S +

Ñ∑
j=1

Sj, (5.3.1)

where

• Γ̃ is a gamma random variable of

Γ̃ ∼ Γ
Å
− a$

δ
ln w,

ϑ

w
− 1

δ

ã
, ϑ := b +

1
δ

; (5.3.2)

• B̃ is a Bernoulli random variable taking 0 with probability p1 and 1 with probability p2, and

p1 =
wλTi

a$
δ C + wλTi

, p2 =
a$
δ C

a$
δ C + wλTi

, C := δ ln
Åbδ + 1− w

bδ

ã
;
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• S is an exponential random variable of S ∼ Exp
Ä
ϑW0 − 1

δ

ä
and

W0
D
=
[
1− bδ

(
e

C
δ U0 − 1

)]−1
, U0 ∼ U [0, 1]; (5.3.3)

• ‹N is a Poisson random variable of rate a$
δ ϑCw and

Cw :=

1
w∫

1

ln u
ϑu− 1

δ

du;

•
¶

Sj
©

j=1,2,...
are i.i.d. with Sj ∼ Exp

Ä
ϑW − 1

δ

ä
, and W can be exactly simulated via the

A/R scheme of Algorithm 5.3.2.

Proof. In fact, Algorithm 5.3.1 is only an explicit specification of Theorem 5.2.2. Let us first

calculate the first two terms of (5.2.9), i.e., (5.2.13), by

E

ñ
e−vλTi+τ− e

−
Ä

ΛTi+τ−−ΛTi

ä
| λTi

ô
E

ñ
e
−
Ä

ΛTi+τ−−ΛTi

ä
| λTi

ô
= e−vwλTi × exp

Ñ
− a$

δ
ln
Å 1

w

ã ∞∫
0

Ä
1− e−vs

ä
s−1e−(

ϑ
w−

1
δ )sds

é
× exp

Ü
− aϑ$

δ

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

Å
ϑu− 1

δ

ã
e−(ϑu− 1

δ )s ln u
ϑu− 1

δ

duds

ê
. (5.3.4)

Then, by calculating the whole equation (5.2.9) more explicitly, the conditional Laplace transform

of the pre-jump intensity level λTi+τ− can be decomposed into four parts:

E

ï
e
−vλTi+τ−

i+1 | τi+1 = τ, λTi

ò
= e−vwλTi × exp

Ñ
− a$

δ
ln
Å 1

w

ã ∞∫
0

Ä
1− e−vs

ä
s−1e−(

ϑ
w−

1
δ )sds

é
× exp

Ü
− aϑ$

δ

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

Å
ϑu− 1

δ

ã
e−(ϑu− 1

δ )s ln u
ϑu− 1

δ

duds

ê
×

 a$C
δ

a$C
δ + wλTi

∞∫
0

e−vs

1
w∫

1

Å
ϑu− 1

δ

ã
e−(ϑu− 1

δ )s 1
C
Ä
ϑu2 − 1

δ u
äduds +

wλTi
a$C

δ + wλTi

 . (5.3.5)

This decomposition of (5.3.5) indicates that the conditional distribution of λTi+τ− is the sum of

four independent simple elements of (5.3.1): (1) one deterministic trend, (2) one random variable
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B̃ × S, (3) one gamma random variable, and (4) one compound Poisson random variable. Note

that, B̃× S can be alternatively defined as just one single random variable by

B̃× S D
=


0, with probability p1 =

wλTi
a$
δ C+wλTi

,

S ∼ Exp
Ä
ϑW0 − 1

δ

ä
, with probability p2 =

a$
δ C

a$
δ C+wλTi

.
(5.3.6)

The CDF of W0 is

FW0(u) =
1

Cw(a + 1
δ )

ln

ÑÄ
a + 1

δ

ä
u− 1

δ

a

é
, u ∈

ï
1,

1
w

ò
,

which can be inverted explicitly, so we have (5.3.3). The compound Poisson random variable
Ñ∑

j=1
Sj

has the Laplace transform

exp

Ü
− aϑ$

δ
Cw

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

Å
ϑu− 1

δ

ã
e−(ϑu− 1

δ )s ln u
Cw
Ä
ϑu− 1

δ

äduds

ê
,

so, the Poisson rate is aϑ$
δ Cw, and jump-sizes

¶
Sj
©

j=1,2,...
follow an exponential distribution with

rate ϑW− 1
δ . Here, W is a well-defined random variable with density (5.3.7), which can be exactly

simulated via the A/R scheme of Algorithm 5.3.2.

Algorithm 5.3.2 (A/R Scheme for W). The simulation scheme for W is given as follows:

1. Generate U ∼ U [0, 1], and set W = w−
√

U ,

2. Generate V ∼ U [0, 1], if

V ≤ bW/
ï
ϑW − 1

δ

ò
,

then, accept W; Otherwise, reject this candidate and go back to Step 1.

Proof. Note that,

ϑu− 1
δ
= bu +

1
δ
(u− 1) ≥ bu, u ∈

ï
1,

1
w

ò
,

then, we have

fW(u) =
1

Cw

ln u
ϑu− 1

δ

≤ 1
Cw

ln u
bu

. (5.3.7)

The density function of the envelope W ′ is

fW ′(u) =
1

Ew

ln u
u

, Ew :=
1
2

ln2 w, u ∈
ï
1,

1
w

ò
,
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and with analytic inverse

F−1
W ′ (x) = w−

√
x, x ∈ [0, 1].

Therefore, we have

fW(u)
fW ′(u)

=

1
Cw

ln u
ϑu− 1

δ

1
Ew

ln u
u

≤
1

Cw
ln u
bu

1
Ew

ln u
u

=
1
b

Ew

Cw
=

ln2 w
2bCw

:= c̄w,

and the acceptance condition for the A/R scheme is

V ≤ 1
c̄w

fW(W ′)
fW ′(W ′)

= b
W ′

ϑW ′ − 1
δ

.

Algorithm 5.3.3 (Exact Simulation of Pre-jump Intensity Level for TS-Contagion). For the TS-

contagion, conditional on the intensity level λTi and the realisation of the (i + 1)th interarrival

time τi+1 = τ, the distribution of the (i + 1)th pre-jump intensity level λTi+τ− can be exactly

decomposed by

λTi+τ− | λTi

D
= wλTi + ›TS + B̃× S +

Ñ∑
k=1

Sk, (5.3.8)

where

• ›TS is a tempered stable random variable of

TS ∼ TS
Å

α,
κ

w
− 1

δ
,

θ$

αδ
(1− wα)

ã
, κ := β +

1
δ

; (5.3.9)

• B̃ is a Bernoulli random variable taking 0 with probability p1 and 1 with probability p2, and

p1 :=
wλTi

θ$D
δ Γ(1− α) + wλTi

, p2 :=
θ$D

δ Γ(1− α)
θ$D

δ Γ(1− α) + wλTi

, D :=
δ

α

ïÅ
κ − w

δ

ãα

− βα
ò

;

• S is a mixture-Gamma random variable of S ∼ Γ
Ä
1− α, κV0 − 1

δ

ä
and

V0
D
=

[
δβ + 1− δ

Å
αD
δ

U2 + βα
ã 1

α

]−1

, U2 ∼ U [0, 1]; (5.3.10)

• ‹N is a Poisson random variable of rate θ$
αδ κΓ(1− α)Dw and

Dw :=

1
w∫

1

1− u−αÄ
κu− 1

δ

ä1−α
du; (5.3.11)

119



•
¶

Sk
©

k=1,2,...
are i.i.d. with Sk ∼ Γ

Ä
1− α, κV − 1

δ

ä
, and V can be exactly simulated via the

A/R scheme of Algorithm 5.3.4.

Proof. Algorithm 5.3.3 is another explicit specification of Theorem 5.2.2. Similarly as the previous

gamma case in Algorithm 5.3.1, given the Lévy measure (2.4.1), we can identify that (5.2.12) is

the Laplace transform of B̃× S from the calculation

$

δ

∞∫
0

e−vs

s
w∫

s

e
s
δ e−

y
δ ν(y)dyds + wλTi

$

δ

∞∫
0

s
w∫

s

e
s
δ e−

y
δ ν(y)dyds + wλTi

=

θ$

δ

∞∫
0

e−vs

1
w∫

1

s(1−α)−1e−(κu− 1
δ )su−1−αduds + wλTi

∞∫
0

1
w∫

1

s(1−α)−1e−(κu− 1
δ )su−1−αduds + wλTi

=
wλTi

θ$D
δ

Γ(1− α) + wλTi

× 1

+

θ$D
δ

Γ(1− α)

θ$D
δ

Γ(1− α) + wλTi

×
∞∫

0

e−vs

1
w∫

1

Ä
κu− 1

δ

ä1−α

Γ(1− α)
s(1−α)−1e−(κu− 1

δ )s u−1−α

D
Ä
κu− 1

δ

ä1−α
duds

= p1 ×E
î
e−v0
ó
+ p2 ×E

î
e−vS

ó
,

where

D =

1
w∫

1

u−1−αÄ
κu− 1

δ

ä1−α
du =

δ

α

ïÅ
κ − w

δ

ãα

− βα
ò

.

So, the outcome of B̃× S is trivially equal to 0 with probability p1, or, the random variable S with

probability p2. S follows a mixture-gamma distribution with the shape parameter 1− α and the

rate parameter κV0 − 1
δ . Here, V0 is a well-defined random variable with density function

fV0(u) =
u−α−1

D
Ä
κu− 1

δ

ä1−α
, u ∈

ï
1,

1
w

ò
. (5.3.12)

It can be directly simulated via the explicit inverse transform (5.3.10), as its CDF is

FV0(u) =
δ

αD

ñ
u−α
Å

κu− 1
δ

ãα

− βα

ô
, u ∈

ï
1,

1
w

ò
.
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The first two terms of (5.2.9), i.e., (5.2.13), can be expressed by

E

ñ
e−vλTi+τ− e

−
Ä

ΛTi+τ−−ΛTi

ä
| λTi

ô
E

ñ
e
−
Ä

ΛTi+τ−−ΛTi

ä
| λTi

ô
= e−vwλTi × exp

Ñ
− θ$

αδ
(1− wα)

∞∫
0

Ä
1− e−vs

ä 1
sα+1 e−(

κ
w−

1
δ )sds

é
× exp

Ü
− θ$

αδ
κΓ(1− α)

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

Ä
κu− 1

δ

ä1−α

Γ(1− α)
s(1−α)−1 1− u−αÄ

κu− 1
δ

ä1−α
duds

ê
,

since the Lévy measure ν for the tempered stable subordinator is specified in (2.4.1), and the

Laplace exponent of (5.2.13) can be rewritten by

$

1
δ +(v− 1

δ )w∫
v

Φ
Å

u− u− 1
δ

v− 1
δ

v
ã
−Φ(u)

1− δu
du

=
$

δ

∞∫
0

Ä
1− e−vs

ä 1
s

e
s
δ

s
w∫

s

θ

yα+1 e−κ s
w dyds

+
$

δ

∞∫
0

Ä
1− e−vs

ä e
s
δ

s

s
w∫

s

θ
Ä
e−κy − e−

κs
w
ä

yα+1 dyds

=

∞∫
0

Ä
1− e−vs

ä θ$

αδ
(1− wα)

1
sα+1 e−(

κ
w−

1
δ )sds

+
θ$

αδ
κΓ(1− α)

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

Ä
κu− 1

δ

ä1−α

Γ(1− α)
s(1−α)−1e−(κu− 1

δ )s 1− u−αÄ
κu− 1

δ

ä1−α
duds.

So, for (5.2.13), it consist three components: one deterministic trend, a tempered stable process

and a compound Poisson process. In particular, the rate of the compound Poisson process is ‹N is
θ$
αδ κΓ(1− α)Dw, and the jump sizes follow amixture-Gamma distributionwith the shape parameter

(1− α) and the rate parameter κV − 1
δ . Here, V is a well-defined random variable with density

fV(u) =
1− u−α

Dw
Ä
κu− 1

δ

ä1−α
, u ∈

ï
1,

1
w

ò
. (5.3.13)

Overall, we have the conditional Laplace transform of pre-jump intensity level explicitly as

E

ï
e
−vλTi+τ−

i+1 | τi+1 = τ, λTi

ò
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= e−vwλTi × exp

Ñ
− θ$

αδ
(1− wα)

∞∫
0

Ä
1− e−vs

ä 1
sα+1 e−(

κ
w−

1
δ )sds

é
× exp

Ü
− θ$

αδ
κΓ(1− α)Dw

∞∫
0

Ä
1− e−vs

ä 1
w∫

1

Ä
κu− 1

δ

ä1−α

Γ(1− α)
s(1−α)−1 1− u−α

Dw
Ä
κu− 1

δ

ä1−α
duds

ê
×

 wλTi
θ$D

δ Γ(1− α) + wλTi

+
θ$D

δ Γ(1− α)
θ$D

δ Γ(1− α) + wλTi

×

∞∫
0

e−vs

1
w∫

1

Ä
κu− 1

δ

ä1−α

Γ(1− α)
s(1−α)−1e−(κu− 1

δ )s u−1−α

D
Ä
κu− 1

δ

ä1−α
duds

.

We can identify from the Laplace transforms above that, the distribution of the (i + 1)th pre-jump

intensity level λTi+τ− conditional on λTi is exactly equal in distribution to the sum of four simple

elements provided in (5.3.8). All these components can be simulated exactly. To simulate the

TS random variable, one could use existing algorithm provided in Section 2.4. And to sample

the compound Poisson random variable ‹N, one first needs to generate the intermediate random

variable V with density (5.3.13). Since there is no closed form for the inverse function of the CDF

of V, we have to rely on the A/R scheme of Algorithm 5.3.4.

Algorithm 5.3.4 (A/R Scheme for V). The random variable V with density (5.3.13) can be exactly

simulated by the following A/R procedure:

1. Set Cw = 1
α (w

−α + wα − 2),

2. Generate U1 ∼ U [0, 1],

3. Set

V =

®
1
2

ñÄ
αCwU1 + 2

ä
+

…Ä
αCwU1 + 2

ä2 − 4
ô´ 1

α

, (5.3.14)

4. Generate U2 ∼ U [0, 1], if

U2 ≤
β1−α

Vα−1 −V−1−α

1−V−αÄ
κV − 1

δ

ä1−α
,

then, accept V; Otherwise, reject this candidate and go back to Step 1.

Proof. The density of V in (5.3.13) can be rewritten by

fV(u) =
1

Dw

1
κ1−α

1− u−αÄ
u− 1

δκ

ä1−α
, u ∈

ï
1,

1
w

ò
.
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By introducing a constant ξ such that

ξ ≥ u1−αÄ
u− 1

δκ

ä1−α
, ∀u ∈

ï
1,

1
w

ò
,

we have

fV(u) <
1

Dw

ξ

κ1−α

î
u−(1−α) − u−(1+α)

ó
, ∀u ∈

ï
1,

1
w

ò
.

Since the function u1−α

(u− 1
δκ )

1−α is a strictly decreasing function of u ∈
î
1, 1

w

ó
, i.e.

d
du

 u1−αÄ
u− 1

δκ

ä1−α

 = (α− 1)
1
δκ

u−α
Å

u− 1
δκ

ãα−2
< 0,

we have ξ ≥
(

κ
β

)1−α
for any u ∈

î
1, 1

w

ó
, and then,

ξ ≥ max
1≤u≤ 1

w

 u1−αÄ
u− 1

δκ

ä1−α

 =

Ç
κ

β

å1−α

.

We choose V ′ to be the envelope random variable with density

g(u) =
1

Cw

î
u−(1−α) − u−(1+α)

ó
, u ∈

ï
1,

1
w

ò
.

Its CDF is

G(u) =
1

αCw

Ä
u−α + uα − 2

ä
, u ∈

ï
1,

1
w

ò
,

which has an explicit inverse function

G−1(x) =
®

1
2

ñÄ
αCwx + 2

ä
+

…Ä
αCwx + 2

ä2 − 4
ô´ 1

α

, x ∈ [0, 1] .

Hence, V ′ can be exactly simulated via the explicit inverse transform (5.3.14). Setting ξ =
(

κ
β

)1−α
,

we have the acceptance rate (i.e. the expected number of candidates generated until one is accepted)

c̄w =
ξ

κ1−α

Cw

Dw
= β1−α Cw

Dw
≥ fV(u)

g(u)
.

We have also carried out some numerical tests for Algorithm 5.3.4 and have found that it can

achieve a high level of efficiency and accuracy. For example, it only takes about 7 seconds to gen-
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erate 1, 000, 000 replications with percentage error 0.1% for the parameter setting (δ, $, α, β, θ) =

(0.5, 1, 0.9, 0.2, 0.25).

Exact Simulation of Self-exciting Jumps

Conditional on the realisations of the interarrival time and pre-jump intensity level as above, the

associated self-exciting jump can be easily simulated by just following Algorithm 5.2.3 in general

both for Gamma and TS contagion processes.

5.4 Numerical Experiments

In this section, let us take the TS-contagion model as an example, to illustrate the performance

of our exact scheme through extensive numerical experiments, and postpone the implementation

for the Γ-contagion model later in Section 5.5 with more financial applications. The true value

of the conditional expectation of NT for any fixed time T > 0 provided in Proposition 5.1.1 is

used to numerically validate and test our algorithms. The associated errors from the true values are

reported by three standard measures, we implement Algorithm 5.2.3 for the tempered stable and

inverse Gaussian cases in a fixed period of [0, T] with andwithout self-exciting jumps, respectively:

Case I: Jump process with Lévy dirven OU intensity (of Definition 5.1.1);

Case II: Self-exciting jump process with Lévy driven OU intensity (of Definition 5.1.2).

For numerical implementation, we further assume that, the sizes of self-exciting jumps follow an

exponential distribution of rate γ > 0, i.e. Xi ∼ Exp(γ), and the stable index takes the values of,

say, α = 1/4 for the tempered stable case. ›TS of (5.3.9) is simulated using the two-dimensional

single rejection scheme in Algorithm 2.4.6 , and the parameters are set by:

1. TS Case I: (δ, $; α, β, θ; λ0) = (1.0, 0.5; 0.25, 0.2, 0.25; 0.5);

2. TS Case II: (δ, $; α, β, θ; γ; λ0) = (1.0, 0.5; 0.25, 0.2, 0.25; 5.0; 0.5);

3. IG Case I: (δ, $; c; λ0) = (1.0, 0.5; 0.5; 0.5);

4. IG Case II: (δ, $; c; γ; λ0) = (1.0, 0.5; 0.5; 4.0; 0.5).

Simulated sample paths of the point processes within a long period of t ∈ [0, 500] with the associ-

ated histograms are plotted in Figure 5.3, where the cluttering or contagious arrivals of jumps can

be clearly presented. Furthermore, to measure the accuracy and efficiency of our scheme, we carry

out the convergence analysis: Figure 5.4 presents log-log plots for the RMSE against the CPU time
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for each case in two different time horizons T = 2, 5, respectively, and the associated results in

detail are reported in Table 5.3. Overall, from these numerical results reported in this section, it is

evident that our exact scheme can achieve a very high level of accuracy and efficiency.

To be even more prudent, the simulation for the interarrival time based on the simplified thin-

ning scheme of Algorithm 5.2.2, as an intermediate step, can be also tested separately. To nu-

merically assess its accuracy and efficiency, we compare the simulated results of V∗ with its the-

oretical tail distribution P(V∗ > τ) as specified in (5.2.7), which can be calculated explicitly

by substituting the Laplace exponent Φ from (2.4.2). We set the parameters by (δ, $; α, β, θ) =

(0.5, 1.0; 0.9, 0.2, 0.25), and each estimation is based on 100, 000 replications. Error percentages

(Error%) for measuring relative errors are reported in Table 5.2. The total CPU time for producing

the whole Table 5.2 is only 12.64 seconds, and the error percentages are all very tiny.

5.5 Financial Applications: ComprehensiveRiskAnalysis forALarge

Portfolio Facing Contagious Losses

It has now been widely recognised among academics and financial practitioners that, risk spreads

through highly interconnected business networks, and defaults could trigger more defaults through

a domino effect. The resulting losses presented in financial markets could be amplified. As earlier

mentioned in Section 5.3, gamma distribution is a poplar build block in financial applications. Es-

pecially, it plays an important role in credit risk modelling. For instance, both the widely-used

framework of CreditRisk+ (1997) in the banking industry and influential papers by Gordy (2000,

2003) and Elsinger et al. (2006) in the literature, assumed that, macroeconomic factors are driven

by independent gamma-distributed random variables2. More recent evidences have been found by

Giesecke et al. (2011) that, long periods with relatively few defaults follow by episodes of sig-

nificant clustering of defaults and the resulting distribution of default rates is highly skewed to-

wards large values. This motivates us to adopt our new model of Γ-contagion as an example for

applications in risk management for a portfolio facing domino effect of losses. We assume that

exogenous commonly-shared risk is dynamically powered by a gamma process. More precisely,

we adopt the gamma distribution as the fundamental driver of randomness (or Gamma shock) to

construct the OU-Γ interarrival intensity for a point process Nt in Definition 5.1.2. A simulated

path of this interarrival intensity process within the time period t ∈ [0, 5] based on the parameter

setting (δ, $; a, b; λ0) = (1.0, 1.0; 4.0, 0.5; 2.0) is earlier plotted in Figure 5.1, where we can ob-

serve relatively high-frequent and small-size shocks. In fact, it is named as the OU-Γ process by
2Besides, it can be also equipped as a fundamental risk driver for price movements, e.g. the popular variance Gamma

model (Madan and Seneta, 1990; Madan et al., 1998).
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Figure 5.3: Simulated sample paths of the point processes and the associated histogram plots for Case I&II:
TS Case I (δ, $; α, β, θ; λ0) = (1.0, 0.5; 0.25, 0.2, 0.25; 0.5), TS Case II (δ, $; α, β, θ; γ; λ0) =
(1.0, 0.5; 0.25, 0.2, 0.25; 5.0; 0.5); IG Case I (δ, $; c; λ0) = (1.0, 0.5; 0.5; 0.5), IG Case II
(δ, $; c; γ; λ0) = (1.0, 0.5; 0.5; 4.0; 0.5)
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Table 5.1: Simulation results for Case I&II: TS Case I (δ, $; α, β, θ; λ0) = (1.0, 0.5; 0.25, 0.2, 0.25; 0.5),
TS Case II (δ, $; α, β, θ; γ; λ0) = (1.0, 0.5; 0.25, 0.2, 0.25; 5.0; 0.5); IG Case I (δ, $; c; λ0) =
(1.0, 0.5; 0.5; 0.5), IG Case II (δ, $; c; γ; λ0) = (1.0, 0.5; 0.5; 4.0; 0.5)

Case Paths True Simulation Error Error% RMSE CPU Time (sec)
TS Case

Case I, T = 2 100 1.0138 0.9300 -0.0838 -8.2683% 0.1281 0.11
400 1.0138 1.0525 0.0387 3.8146% 0.0834 0.36
1,600 1.0138 1.0363 0.0224 2.2118% 0.0398 1.37
6,400 1.0138 1.0184 0.0046 0.4548% 0.0208 5.29
25,600 1.0138 1.0167 0.0029 0.2853% 0.0099 20.53
102,400 1.0138 1.0133 -0.0005 -0.0509% 0.0049 81.74
409,600 1.0138 1.0127 -0.0012 -0.1147% 0.0024 321.78

Case I, T = 5 100 2.5488 2.5500 0.0012 0.0472% 0.2879 0.22
400 2.5488 2.4700 -0.0788 -3.0915% 0.1466 0.73
1,600 2.5488 2.6413 0.0925 3.6274% 0.0815 2.92
6,400 2.5488 2.5308 -0.0180 -0.7068% 0.0380 11.08
25,600 2.5488 2.5523 0.0035 0.1361% 0.0190 44.29
102,400 2.5488 2.5589 0.0101 0.3948% 0.0095 177.92
409,600 2.5488 2.5437 -0.0051 -0.1998% 0.0048 706.82

Case II, T = 2 100 1.1406 1.1500 0.0094 0.8281% 0.1520 0.14
400 1.1406 1.0925 -0.0481 -4.2133% 0.0909 0.36
1,600 1.1406 1.1581 0.0176 1.5404% 0.0453 1.48
6,400 1.1406 1.1233 -0.0173 -1.5145% 0.0228 5.71
25,600 1.1406 1.1468 0.0062 0.5472% 0.0114 23.21
102,400 1.1406 1.1305 -0.0101 -0.8835% 0.0056 90.92
409,600 1.1406 1.1454 0.0049 0.4282% 0.0028 365.82

Case II, T = 5 100 3.0290 2.9900 -0.0390 -1.2891% 0.3932 0.23
400 3.0290 3.0875 0.0585 1.9298% 0.1903 0.87
1,600 3.0290 3.0413 0.0122 0.4029% 0.0923 3.34
6,400 3.0290 3.0961 0.0670 2.2135% 0.0491 13.54
25,600 3.0290 3.0095 -0.0196 -0.6456% 0.0234 52.28
102,400 3.0290 3.0264 -0.0026 -0.0862% 0.0117 207.73
409,600 3.0290 3.0308 0.0017 0.0569% 0.0058 831.64

IG Case
Case I, T = 2 100 1.5677 1.5000 -0.0677 -4.3165% 0.1673 0.06

400 1.5677 1.6025 0.0348 2.2219% 0.0948 0.19
1,600 1.5677 1.6431 0.0755 4.8134% 0.0573 0.56
6,400 1.5677 1.5311 -0.0366 -2.3330% 0.0257 2.17
25,600 1.5677 1.5745 0.0068 0.4328% 0.0134 8.50
102,400 1.5677 1.5743 0.0066 0.4229% 0.0068 33.77
409,600 1.5677 1.5687 0.0011 0.0673% 0.0033 135.05

Case I, T = 5 100 4.5034 4.1500 -0.3534 -7.8468% 0.3880 0.11
400 4.5034 4.3075 -0.1959 -4.3494% 0.2118 0.27
1,600 4.5034 4.3394 -0.1640 -3.6416% 0.1026 1.06
6,400 4.5034 4.5084 0.0051 0.1125% 0.0546 4.23
25,600 4.5034 4.5268 0.0234 0.5202% 0.0272 16.83
102,400 4.5034 4.5236 0.0203 0.4500% 0.0135 67.08
409,600 4.5034 4.5037 0.0003 0.0067% 0.0068 268.24

Case II, T = 2 100 1.8035 1.7100 -0.0935 -5.1832% 0.21 0.11
400 1.8035 1.7925 -0.0110 -0.6087% 0.13 0.16
1,600 1.8035 1.7644 -0.0391 -2.1682% 0.06 0.58
6,400 1.8035 1.7758 -0.0277 -1.5357% 0.03 2.31
25,600 1.8035 1.8043 0.0008 0.0454% 0.02 9.31
102,400 1.8035 1.8025 -0.0010 -0.0569% 0.01 36.07
409,600 1.8035 1.8039 0.0004 0.0232% 0.00 145.36

Case II, T = 5 100 5.5817 5.2400 -0.3417 -6.1216% 0.4584 0.11
400 5.5817 5.4000 -0.1817 -3.2550% 0.2753 0.34
1,600 5.5817 5.6300 0.0483 0.8656% 0.1344 1.25
6,400 5.5817 5.5902 0.0085 0.1517% 0.0698 4.99
25,600 5.5817 5.5648 -0.0169 -0.3024% 0.0347 19.83
102,400 5.5817 5.5777 -0.0040 -0.0713% 0.0173 77.70
409,600 5.5817 5.5738 -0.0079 -0.1419% 0.0087 315.71
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Figure 5.4: Convergence analysis via RMSE v.s. CPU time by log-log plots for Case I&II: TS Case
I (δ, $; α, β, θ; λ0) = (1.0, 0.5; 0.25, 0.2, 0.25; 0.5), TS Case II (δ, $; α, β, θ; γ; λ0) =
(1.0, 0.5; 0.25, 0.2, 0.25; 5.0; 0.5); IG Case I (δ, $; c; λ0) = (1.0, 0.5; 0.5; 0.5), IG Case II
(δ, $; c; γ; λ0) = (1.0, 0.5; 0.5; 4.0; 0.5)

Table 5.2: Comparison between the theoretical formulas and the associated simulation results for the sim-
plified thinning scheme of Algorithm 5.2.2 with each estimation based on 105 replications

τ Pr {V∗ > τ} Simulation Error%
0.1 98.66% 98.62% -0.0367%
0.2 94.87% 94.80% -0.0752%
0.3 89.10% 89.01% -0.0965%
0.4 81.85% 81.81% -0.0499%
0.5 73.66% 73.60% -0.0819%
0.6 65.01% 64.86% -0.2268%
0.7 56.35% 56.12% -0.3943%
0.8 48.00% 47.89% -0.2333%
0.9 40.24% 40.15% -0.2239%
1.0 33.22% 33.13% -0.2773%

Barndorff-Nielsen and Shephard (2003a), which has become a very popular tool for modelling

stochastic volatilities in a continuous-time setup. Hainaut and Devolder (2008) used it as a spe-

cial case of Cox processes to model human mortality rates, and applied to actuarial valuation in

insurance. Eberlein et al. (2013) treated it as a one-factor model for describing the evolution of

instantaneous interest rates.

In reality, contagion may be triggered by losses or defaults of banks or other financial institu-

tions through inter-institutional lendings in the interbank market, or, it may be further amplified

due to some common asset holdings of overlapping portfolios (Caccioli et al., 2014). We offer

some numerical examples of comprehensive risk analysis for a large portfolio facing contagious
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defaults and losses. We construct a simple contagious loss process to capture the propagated de-

faults for a generic large pool of financial institutions (banks for short)3 within a financial system.

The aggregate loss process of this large portfolio by time t is

Lt =
Nt∑

i=1

Li, t ≥ 0,

where Nt is a Γ-contagion process, and Li ≥ 0 is the absolute value of the loss size for the ith

default, of which the mean is denoted by µL := E[Li] for any i. We assume that the sizes of

self-exciting jumps in (5.1.3) generally satisfy

Xi = vi × g(Ht), (5.5.1)

where

• Ht is the history of the loss path until time t, i.e. Ht := {(Li, Ti)}Ti<t;

• vi > 0 is the amplification multiplier4, which might be dependent on the degree of fin-

ancial connectivity of the underlying company i to others, or, the effects of policymakers’

interventions to limit the extent of contagion;

• g(·) is a general function of the losses.

In fact, (5.5.1) provides a channel for contagion (or feedback) effects of market participants’

reactions to adverse scenarios. The economic interpretation for this model is that, the impacts and

the timing of unexpected exogenic Gamma shocks acting on the entire portfolio as macroeconomic

scenarios are modelled by a mean-reverting OU-Γ process. Each of the shocks may not lead to

an immediate default but acts on the underlying intensity via a positive jump, which increases the

default probability afterwards. Meanwhile, endogenous shocks, i.e. contagious losses due to the

propagated defaults, are modelled by self-exciting jumps, and the associated magnitudes can be

captured by jump sizes {Xi}i=1,2,....

The great flexility of our exact simulation scheme allows us to accurately and efficiently gener-

ate highly comprehensive scenarios for risk assessment. In general, our algorithms can simulate

sample paths when loss sizes Li may depend on the entire history of Nt and λt before or at time

Ti. We discuss several circumstances which can be captured by our models as follows.

3The following framework of course would generically work for other types of similar institutions.
4The amplification mechanisms in detail were described and analysed in Brunnermeier (2009) and Brunnermeier

and Pedersen (2009).
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5.5.1 A Simple Benchmark Model

The loss occurred within a financial institution may spread via various business channels and even-

tually trigger subsequent losses of others in markets. Intuitively, a larger loss may make a larger

impact. For illustration convenience, we assume that the sizes of self-exciting jumps satisfy

Xi = v̄× Li,

where v̄ > 0 is the average amplification multiplier, meaning that each investment has a linear

and homogenous amplification effect. We further assume that each loss size is exponentially dis-

tributed, i.e. Li ∼ Exp(`), ` > 0 with mean µL := 1/`. To assess the overall risk of this portfolio,

we implement the exact simulation of Algorithm 5.2.3, 5.3.1 with (Case I) and without (Case II)

contagion in the fixed time period [0, t], respectively:

1. Case I: (δ, $; a, b; λ0) = (0.5, 0.5; 0.5, 2.0; 0.5);

2. Case II: (δ, $; a, b; `, v̄; λ0) = (0.5, 0.5; 0.5, 2.0; 8.0, 2.0; 0.5).

We concentrate on the default number Nt in the system. Case I or II can be considered as a bench-

mark model, as by Proposition 5.1.1 the expected default number has analytical forms:

Proposition 5.5.1 (Expectation of Nt). The expected default number until time t is given by

E[Nt | λ0] = λ0
1− e−ηt

η
+

$

η

Ç
t− 1− e−ηt

η

å
a
b

, η 6= 0, (5.5.2)

where

η =

 δ, for Case I,

δ− v̄/`, for Case II.

To explore the models, let us first carry out a sensitivity analysis for the expected default number

E[Nt | λ0] with respect to (w.r.t.) their key parameters for controlling the external Gamma shocks,

a and b, with andwithout contagion, and the results are provided respectively in Figure 5.5. Numer-

ical tests for our algorithms are based on the true means (5.5.2). The associated errors are reported

by three standard measures are reported in Table 5.3. Convergence analysis via log-log plots of the

RMSE against the CPU time for Case I&II and t = 2, 5 is presented in Figure 5.6. We can observe

that, simulations are pretty fast with very tiny errors, which provides the numerical evidence of

accuracy and efficiency for our algorithms.
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Figure 5.6: Convergence analysis via the log-log plots of the RMSE v.s. the CPU time for Case I&II
and t = 2, 5: (δ, $; a, b; λ0) = (0.5, 0.5; 0.5, 2.0; 0.5) for Case I, and (δ, $; a, b; `, v̄; λ0) =
(0.5, 0.5; 0.5, 2.0; 8.0, 2.0; 0.5) for Case II
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Table 5.3: Simulation results for Case I&II and time t = 2, 5: (δ, $; a, b; λ0) = (0.5, 0.5; 0.5, 2.0; 0.5) for
Case I, and (δ, $; a, b; `, v̄; λ0) = (0.5, 0.5; 0.5, 2.0; 8.0, 2.0; 0.5) for Case II

Case Paths True Simulation Error Error% RMSE CPU Time (sec)
Case I, t = 2 10,000 0.8161 0.8154 -0.0007 -0.08% 0.0094 5.00

40,000 0.8161 0.8151 -0.0010 -0.12% 0.0047 19.50
160,000 0.8161 0.8135 -0.0026 -0.31% 0.0024 80.13
640,000 0.8161 0.8159 -0.0001 -0.02% 0.0012 322.89
2,560,000 0.8161 0.8163 0.0003 0.03% 0.0006 1,280.63

Case I, t = 5 10,000 1.7090 1.7297 0.0207 1.21% 0.0152 9.66
40,000 1.7090 1.6993 -0.0097 -0.57% 0.0076 37.45
160,000 1.7090 1.7085 -0.0004 -0.02% 0.0038 148.38
640,000 1.7090 1.7079 -0.0010 -0.06% 0.0019 575.55
2,560,000 1.7090 1.7083 -0.0006 -0.04% 0.0009 2,291.14

Case II, t = 2 10,000 1.0000 0.9983 -0.0017 -0.17% 0.0128 5.94
40,000 1.0000 1.0054 0.0054 0.54% 0.0065 23.13
160,000 1.0000 1.0073 0.0073 0.73% 0.0032 92.63
640,000 1.0000 1.0000 0.0000 0.00% 0.0016 371.98
2,560,000 1.0000 0.9995 -0.0005 -0.05% 0.0008 1,489.06

Case II, t = 5 10,000 2.5000 2.5060 0.0060 0.24% 0.0263 13.06
40,000 2.5000 2.4964 -0.0036 -0.14% 0.0132 52.00
160,000 2.5000 2.4882 -0.0118 -0.47% 0.0065 201.44
640,000 2.5000 2.4972 -0.0028 -0.11% 0.0033 800.75
2,560,000 2.5000 2.4983 -0.0017 -0.07% 0.0016 3,197.61

5.5.2 A Model with Contagion Threshold

In reality, each loss might not necessarily cause a contagion immediately throughout the entire

system. Contagionmay be only triggeredwhen the loss surpasses a certain high level, i.e. contagion

is likely to occur only in severe scenarios, which has also been reported in Elsinger et al. (2006).

This circumstance could be modelled by a mixture of Case I and II, by assuming that the sizes of

self-exciting jumps Xi satisfy

Xi = vi × (Li − Ki)
+, (5.5.3)

where Ki ≥ 0 is the contagion threshold (i.e. the threshold that triggers the contagion effect of

the ith loss Li), and the contagion has been partially capped. When a bank is more vulnerable, its

threshold is more easy to be reached. Alternatively, we may interpret Ki as a capital buffer, and it

could be a certain quantile of the loss distribution Li. If we assign the same quantile to all banks,

it is equivalently meaning that, an identical economic capital applies to all banks, which is the

assumption made by Elsinger et al. (2006, p.1306-1308). If the magnitude of loss overshoots the

threshold, the bank may become insolvent, and this risk may then spread to other banks (through

the interbank market) resulting in a climb in the default intensity of the entire system (but would

not cause other banks default immediately). If the thresholds are very high comparing to the levels

of losses, then, it corresponds to a "weak contagion" environment; whereas if the thresholds are

very low, then, it is for a "strong contagion" environment.
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Table 5.4: Quantiles of the default number Nt=5, estimated from 106 replications based on the para-
meter setting (δ, $; a, b; `, v̄; λ0) = (0.5, 0.5; 0.5, 2.0; 8.0, 2.0; 0.5), with homogenous contagion
thresholds K = ∞, 1/8, 0, respectively

K
Quantile 5% 25% 50% 75% 95% Mean Min Max

∞ 0 1 1 2 5 1.7075 0 17
1/8 0 1 2 3 5 1.9417 0 22
0 0 1 2 4 8 2.5021 0 36

Table 5.5: Quantiles of the default number Nt=5, estimated from 106 replications based on the parameter
setting (δ, $; a, b; v̄; λ0) = (0.5, 0.5; 0.5, 2.0; 2.0; 0.5), with ` = 8, 4, 2, respectively

`
Quantile 5% 25% 50% 75% 95% Mean Min Max

8 0 1 2 4 8 2.4969 0 40
4 0 1 2 5 15 4.0628 0 130
2 0 1 4 16 73 15.5662 0 743

With the contagion threshold, contagion could be partially or fully triggered. Here for numerical

illustration, we assume that, losses are exponentially distributed and the amplification multipliers

and contagion thresholds are homogeneous, i.e. Li ∼ Exp(`), ai ≡ v̄ and Ki ≡ K ≥ 0. The

expected default number can hardly capture the full picture of the risk, and we have to look at the

entire distribution. We choose K = ∞, 1/8, 0 and plot the estimated probability mass function

(PMF) of the total default number within the period of [0, t] in Figure 5.7, and the corresponding

quantiles are reported in Table 5.4. More specifically, Cases K = ∞, 1/8, 0 correspond to the

non-contagion (i.e. Case I), partial contagion and full contagion (i.e. Case II), respectively. We

can clearly observe that, when K decreases, the contagion would become more pronounced and

the tail of losses becomes heavier. The system could be more susceptible to contagion risk when

capital buffer K is eroded, and contagion effects magnify the content of risk. As summarised by

Eisenberg and Noe (2001, p.1310), bank defaults may be driven by losses from market and credit

risk (i.e. fundamental default), and bank defaults may, however, also be initiated by contagion as

a consequence of other bank failures in the system (i.e. contagious default). The two types of

defaults, under our contagion model (i.e. the self-exciting jump sizes are not all equal to zeros), in

fact, are mixed and interacting with each other.

5.5.3 A Model with Explosive Defaults

Contagion or feedback effects could be even further reinforced due to highly leveraged positions

(e.g. complicated credit derivatives), and the resulting system thereby becomes explosive, see dis-

cussions on the impacts of financial innovations in Corsi et al. (2016, p.1085). This scenario would

be extremely severe, rare but possible, i.e. the entire system is not stable and near the boundary of

crush. Mathematically, it corresponds to the non-stationary case when η < 0 in our models. This
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Figure 5.7: Probability mass function (PMF) of the default number Nt=5, estimated from 106 replications
based on the parameter setting (δ, $; a, b; `, v̄; λ0) = (0.5, 0.5; 0.5, 2.0; 8.0, 2.0; 0.5), with ho-
mogenous contagion thresholds K = ∞, 1/8, 0, respectively; the associated quantiles are repor-
ted in Table 5.4

may due to the "liquidity black holes" when "fire sales" of assets occur: it further depresses prices

and leads to a sharp drop in liquidity andmay also bring other institutions to fail in a self-reinforcing

vicious spiral (Krishnamurthy, 2010; Cont andWagalath, 2013, 2016). All previous examples were

conducted under the stationary condition η > 0, and in fact our algorithms can also deal with non-

stationary cases. In Figure 5.8, we offer three representative examples of η = 1/4, 0,−1/2 (or

` = 8, 4, 2) for stationary, critical and explosive phases, respectively, and the associated quantiles

are reported in Table 5.5. In particular, η = 0 is the critical level of stability. The resulting loss

distributions could present heavy tails, which might be very desirable for many regulators and

practitioners.

5.5.4 Other Models

In fact, our models and the associated algorithms could be further extended in several other direc-

tions, and we briefly discuss as follows.

• A model with credit improvement: In this setup, we allow for the possibility of credit

improvement or relief. For example, when a big loss occurs, a rescue plan may be released

such as a "bailout" or a large cash injection into the system to ensure liquidity provision. This

might significantly enhance the financial system in a relatively short term, and the intensity
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Figure 5.8: Probability mass function (PMF) of the default number Nt=5, estimated from 106 replications
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level may have an immediate decline instead of a climb, i.e.,

λTi = diλT−i
, (5.5.4)

where di > 0 is a multiplier (which could be assumed to be a positive random variable). This

model allows the intensity to jump in two sides, which can be simply generated by replacing

(5.2.14) in the Step 4 of Algorithm 5.2.3 by (5.5.4).

• A model with structure breaks: A severe financial failure could make a large impact to

the entire economic environment. For example, the collapse of the U.S. investment banking

giant Lehman Brothers in Fall 2008marked a clear tipping point of the entire financial market

around the world. This would immediately act on the default intensity process and cause a

structure break for the whole financial system. To model this pattern, we have to go beyond

the original definition of the underlying intensity process (5.1.2), but our algorithms still can

handle it easily, i.e. after each self-exciting jump, all parameters Θ afterward can be resetted

to mimic a structure break. We can assign a new parameter set Θi immediately after the ith

defaults. Θi could depend on the value of the size of the ith self-exciting jump Xi, or, even its

whole history. So, the underlying intensity process (5.1.2) should be redefined locally based
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on the interarrival intensity (5.1.1) between two successive default times rather than globally

throughout the positive real line t ∈ R+. Let us illustrate a simple example, say, there

are two economic states after each self-exciting jump, one may correspond to a deteriorating

economic environment and the other is to an improved one. We can use the parameter settings

of Θ1 and Θ2 to model these two states respectively. We can choose one to be stable (i.e.

stationary case η > 0) and the other to be unstable (i.e. non-stationary case η > 0). Then,

the entire system could shift between locally stable and locally explosive phases. Analysis for

contagion risk based on the stability of branching processes and allowing for a shift between

two phases can also be found in Caccioli et al. (2014) and Corsi et al. (2016).

• A model with multiple exogenous risk drivers: In practice, there may be multiple risk

factors, such as sector-wide or market-wide events, commonly shared by all institutions.

Multi-factor models then are required for modelling intensity processes, see e.g. Duffie and

Gârleanu (2001), Das et al. (2007) and Longstaff and Rajan (2008). We could use a su-

perposition of OU intensity processes driven by different Gamma processes to capture the

corresponding multiple risk factors5. Accordingly, our algorithms may be extendable to this

version by using the superposition theory of point processes (Daley and Vere-Jones, 2003,

Theorem 2.4.VI).

• A model with multilateral contagion: Contagion not only occurs within one market (or

system, network) but could also spread across different markets. For example, when the

loss contagion and investors’ fears occur in the options market, it may also spread to the

market of the underlying equity or futures on which the options are written. This type of

contagion can be captured by adding mutually-exciting jumps. Similar as the multivariate

Hawkes process, a multi-dimensional Γ-contagion process has to be developed to capture

self-contagion effects for each individual, as well as the mutual contagion effects among

them.

5.6 Conclusion

In this chapter, we have introduced a new family of self-exciting jump processes whose intensities

are driven by Lévy driven OU processes, namely, Lévy driven contagion processes. Backed by

the very large family of Lévy subordinators, it indeed offers much richer choices beyond the clas-

sical Hawkes process for modelling the contagion of event arrivals in a continuous-time setup in

finance, economics and many other fields. We have derived some important distributional proper-
5Similarly, the superposition of OU stochastic volatility processes was proposed in Barndorff-Nielsen (2001) and

Barndorff-Nielsen and Shephard (2001b, 2002).
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ties of these new processes which lead to an exact simulation framework in general. In particular,

we have developed exact simulation algorithms by decomposition approach for the Gamma and

tempered stable cases as typical examples. The algorithms are accurate and efficient which have

been numerically verified and tested by extensive numerical experiments. We also provide applic-

ations to portfolio risk management, which again illustrate the efficiency, accuracy, applicability

and flexibility of our algorithms. As a class of reduced-form models, it could be easily extended

to pricing financial derivatives, particularly multiple-name credit products (e.g. collateralized debt

obligations and mortgage-backed securities). It can be employed empirically when input data is

available for parameter calibration. Furthermore, it could be widely applied to many other areas,

for example, to describe high-frequency trading data in market microstructure, or claim arrivals for

an insurance portfolio. Their statistical inference and econometric analysis for this new framework,

and further extensions to multidimensional point processes for modelling multilateral contagion,

as well as further applications and empirical work for portfolio credit risk analysis, could be very

interesting and meaningful topics for future research.
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