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Abstract

This thesis contains three chapters discussing different aspects of financial markets.

The first chapter studies the impact of learning information about future non-fundamental

shocks on stock price dynamics and provides a new insight into how rational speculators can

cause inefficiency and volatility to stock markets during periods of information technology

advancement. I construct an infinite-period competitive market model and analyze how an

increase in non-fundamental signal precision affects trading strategy of rational investors, price

formation, and efficiency. Contradicting to traditional rational speculative theory, I found that

higher non-fundamental signal precision can increase stock return volatility, increase price

sensitivity to both current and future non-fundamental shocks, and decrease price informa-

tiveness. Moreover, even though investors have better information about future stock prices,

they can predict stock returns less accurately. This is because the investors expect that their

future counterparts will also trade more aggressively on new non-fundamental information

that arrives in the future, causing future stock prices to be endogenously more volatile to new

non-fundamental shocks which are unpredictable to the investors at the present.

The second chapter develops a game-theoretic dynamic model to study strategic dealer

choice of buy-side investors in over-the-counter (OTC) secondary asset markets and provides

a new theory of why periphery dealers, despite locating at inferior positions in OTC dealer

network, can survive and co-exist with core dealers. My theory is based on a premise that

buy-side investors form a non-binding long-term relationship with core dealers to obtain costly

liquidity in bad periods. The main finding is that periphery dealers can help investors with

infrequent liquidity needs, those who cannot form the relationship with core dealers directly due

to commitment problem, successfully obtain costly liquidity in bad periods. By connecting with

several investors and forming relationship with a core dealer on their behalf, periphery dealer

will have enough power to pressure the core dealer to commit to the relationship. Therefore,

investors with infrequent liquidity needs will trade with periphery dealers to obtain the benefit of

long-term relationship, granting market power to periphery dealers to co-exist with core dealers.

The third chapter develops a game-theoretic model to study strategic formation of financial

network. In the model, a finite number of risk-averse agents who invest in risky projects can issue

and trade forward contracts (i.e. assets) to obtain fractions of investment return of other agents.

All trades are bilateral, each involving two parties with trading relationship privately bargaining
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on asset price and quantity. The main objective is to examine how structural properties of trading

network determine trading decision of the agents and equilibrium asset allocation. To this

end, I use the concept of line graph transformation to identify network of asset flows and map

positions of trading links onto the equilibrium outcome. The main insight is that equilibrium

asset allocation corresponds to a generalized Bonacich centrality of the network of asset flows.
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Chapter 1

A Hidden Curse of Non-fundamental
Information in Stock Markets

1.1 Introduction

In the past years, rapid rise of information technology has shifted competition and profitability

nature of financial markets towards information processing capability. Nowadays, all market

participants can store and analyze financial data more efficiently than ever before. However,

there is widespread debate on how this may cause inefficiency due to shifting nature of informa-

tion processing towards non-fundamental information, the information about temporary price

movement unrelated to the fundamentals. A recent empirical literature has found that stock

price informativeness has been declining over time (Farboodi et al (2017)).1 We aim to shed

light on this issue by studying the impact of learning non-fundamental information toward price

efficiency and implications of information technology growth in stock markets.

This paper focuses on future noise information – the information about temporary future

price deviation from the fundamentals. Based on traditional rational speculative theory (Fried-

man (1953)), learning more information about future non-fundamental shocks reduces asset

volatility while having ambiguous effect on price informativeness. Intuitively, when speculators

are more informed about future prices, they will buy more assets when asset price is low (and

vice versa). Therefore, asset price becomes less sensitive to current non-fundamental shock,

resulting in lower asset volatility and possible improvement on price efficiency. However, this

argument assumes that speculative return is exogenous which might be misleading for stock

markets, because future stock price dynamics depend on trading decision of future investors who

can also learn more non-fundamental information. We contribute to the literature by revisiting
1Farboodi et al (2017) found that price informativeness of all publicly traded firms in the US has declined. When

considering subsamples of S&P500 firms VS other public firms, price informativeness of S&P500 firms has been
increasing while that of other listed firms has been decreasing. The analysis suggested that the increase in price
informativeness of S&P500 firms can be explained by a change in size composition of S&P500 firms.
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this issue in an infinite-period dynamic setting, in which asset return depends on trading strate-

gies of future investors, and examine the impact of a permanent increase in non-fundamental

signal precision on price formation, volatility, and efficiency.

We develop an infinite-period competitive market model based on Farboodi and Veldkamp

(2018). There is a long-lived divisible risky asset (i.e. stock) which is a lifetime claim of

stochastic dividends that follow AR(1) process. In every period, a new generation of short-lived

investors is born and enters the market. Each cohort contains a unit continuum of rational

risk-averse investors who face an idiosyncratic non-tradable endowment shock and live for one

period. Prior to trading, they receive noisy private signals about dividend shock (i.e fundamental

shock) and next-period aggregate endowment shock (i.e future non-fundamental shock). At the

end of each period, the dividend is publicly observable and paid out to all investors. We follow

the notion of competitive rational expectation equilibrium and characterize the most informative

stationary equilibrium.

Our main finding is that, contradicting to classical rational speculative theory, an increase

in non-fundamental signal precision can increase asset return volatility and reduce price in-

formativeness. Also, asset price becomes more responsive to both current and future non-

fundamental shocks. The intuition is as follows. Consistent with the rational speculative theory,

better non-fundamental information partly reduces investment risk which stimulates trade and

moves the price to the right direction. However, there is a hidden adverse dynamic effect

from an endogenous change in trading strategies of future investors. When the quality of

non-fundamental information improves, future investors will also trade more assets based on

future non-fundamental information, causing future prices to be endogenously more volatile to

non-fundamental shock of further periods. Unfortunately, the investors cannot learn the future

non-fundamental information that their future counterparts can learn. As a result, future asset

price becomes endogenously harder to predict for the investors even though they have more

financial information. This higher future non-fundamental information risk feeds back into

trading decision of the investors, resulting in higher asset volatility, higher price sensitivity to

non-fundamental shocks, and lower price informativeness.

In addition, we found that price efficiency when investors do not have non-fundamental

information can be optimal (i.e. maximum price informativeness with minimum price sensitivity

to both non-fundamental shocks) if two conditions are met: 1) the investors have accurate private

fundamental signals and 2) discount factor approaches one. From the model, price efficiency

can increase when non-fundamental information quality improves due to two reasons. First, the

benefit of more financial information starts dominating the adverse dynamic feedback effect.

Second, when the investors trade more stocks based on non-fundamental information, past

stock prices are more informative about current non-fundamental shock, helping the investors

extract fundamental information from current stock price more accurately. Consequently, price

efficiency when the investors have good non-fundamental signals can improve from the level

which the investors have no non-fundamental signals. However, if the investors already have

perfect fundamental signal, they will use the information from past prices to extract only non-

fundamental information from the current price. Also, when discount factor is high, the future

noise information risk will cause large adverse impact toward the investors, resulting in no
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efficiency improvement from learning non-fundamental information.

To study the implications of non-fundamental information production on information tech-

nology growth, we introduce endogenous information acquisition to the model. Prior to trading,

investors strategically choose precisions of their fundamental and non-fundamental private

signals subject to an information technology constraint, a constraint which requires the sum

of acquired signal precisions to not exceed a value which we called information-processing

capacity. We examine how an increase in the processing capacity which permits the investors to

obtain higher quality of financial information will affect equilibrium information choice of the

investors and stock price informativeness.

Provided that 1) non-fundamental information is relatively hard to process and that 2)

discount factor is sufficiently high, we found that advancement in the information-processing

capacity can deteriorate price informativeness when the processing capacity is high. When

the processing capacity is low, financial information is scarce and stock price is uninformative.

Thus, the investors will acquire only fundamental information. However, once the processing

capacity is high, the fundamental information, both from stock price and from private signals

of the investors, is abundant. To outperform the market, the investors will start processing the

more costly non-fundamental information and free-riding the fundamental information from

stock prices. They may also process more fundamental information at this stage. However,

it will reduce their investment risks marginally, as they already have good quality of the

fundamental information. During this stage, an increase in the processing capacity causes price

informativeness to (non-monotonically) decrease and converge to a lower level.

At first sight, one may expect that there should be no non-fundamental information produc-

tion when the fundamental information is abundant since stock prices will be fully revealing.

Interestingly, the model predicts that price inefficiency from the non-fundamental information

production is bound to happen, because stock prices are never fully revealing. Due to the infinite-

period payoff structure of stocks, stock investors cannot learn perfectly future information, both

fundamental and non-fundamental information, that their future counterparts can learn. Thus,

regardless of how developed the information technology is, the stock price will not be fully

revealing, driving the investors to start processing the costly non-fundamental information to

make more speculative profits in due course.

Related literature

Our paper belongs to the early literatures that study how rational speculators can destabilize

asset prices. Hart and Kreps (1986) constructed a model consisting of rational speculators who

can store commodity across periods. They established that the speculators, who intend to buy

and store the commodity to resell at a higher price in the future, can cause price destabilization

from their de-storage strategies. Stein (1987) pointed out that an entry of rational speculators

who have noisy private fundamental information can bring noise to the market price, causing

negative informational externality to those who are already in the market. De Long et al (1989)

constructed a model which contains speculators and positive feedback traders – those who buy

securities when the asset price increases and sell securities when the asset price declines. They

established that rational speculators can destroy price informativeness, because their speculative
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trades can trigger positive feedback traders to react to the price move and destabilize the price

further away from the fundamentals. A more recent theoretical study by Madrigal (1996) proved

that an entry of non-fundamental speculators – those who have superior information about past

non-fundamental shocks which allows them to infer fundamental information from the market

price – can cause price destabilization. This is because their information free-riding behaviour

reduces trading profits of informed investors who will in turn respond by modifying their trading

strategies to convey less information. This paper contributes to the literature by showing that

future speculative investors can deteriorate price efficiency by creating future non-fundamental

information risk toward present speculative investors when the signal quality of future noise

shocks increases.

This paper also belongs to a growing literature which studies the impact of learning non-

fundamental information. Several literatures focus on information about short-term deviation of

past or current asset prices from the fundamentals (e.g. Ganguli and Yang (2009), Manzano

and Vives (2010), Guo and Yang (2014), Marmora and Rytchkov (2015), and Yang and Zhu

(2016), Farboodi and Veldkamp (2018)). Such noise information can improve price efficiency as

it helps risk-averse investors extract fundamental information from asset prices more accurately.

A main drawback which can cause inefficiency is that investors may excessively free-ride

information from asset prices rather than using their own private information. Another line of

literature focused on other types of information unrelated to the fundamentals such as beliefs of

other traders (Banerjee et al (2018)), trading motives of other investors (Banerjee and Green

(2015)), variance of non-fundamental factor (Hong and Rady (2002)), or the number of informed

traders (Gao et al (2013)). We contribute to this literature by studying a different type of non-

fundamental information – the information about future non-fundamental shock – and shedding

light on how the dynamic feedback effect from learning non-fundamental information can cause

price inefficiency.

The most closely related literature to this paper is Farboodi and Veldkamp (2018) which

studied evolution of information choice between fundamental and non-fundamental information

(about current noise) when there is long-run information-processing technology growth. In their

model, there is future fundamental information risk which prevents asset prices from being

fully informative. This is similar to the future non-fundamental information risk which causes

inefficiency in our paper. Farboodi and Veldkamp (2018) also established that investors will

initially acquire fundamental information when the technology is poor and will start acquiring

non-fundamental information to extract fundamental information from asset price later on.

However, price efficiency improves because the information about current noise helps the

investors extract fundamental information more accurately from the asset price. This is different

from our finding, particularly on implications towards price efficiency, which states that the

investors start processing costly non-fundamental information (about future noise) to beat the

market when trading on fundamental information is no longer profitable.

Structure of the paper

The rest of the paper is organized as follows. Section 2 outlines the model setting. Section

3 analyses the model without non-fundamental information production. Section 4 examines
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the impact of learning information about future non-fundamental shock. Section 5 analyzes

how learning information about current noise shock can deteriorate price informativeness in

our framework. Section 6 extends the model to include endogenous information acquisition

and analyzes the impact of information technology growth. Section 7 concludes. Throughout

the paper, NF information refers to information about future non-fundamental shock while

F information refers to information about fundamental shock unless stated otherwise. The

equilibrium characterization and all omitted proofs are in appendix.

1.2 The model

Consider a discrete-time infinite-period model based on Farboodi and Veldkamp (2018) consist-

ing of a risky asset (i.e stock) which is a claim on lifetime stochastic dividend payments {dt}∀t
and unlimited cash. The dividend payment follows AR(1) process of dt = αdt−1 + θt + θ̄

in which θt ∼ N(0, σ2
θ) is an i.i.d. random dividend shock and θ̄ ∈ R+ is the mean. Denote

τθ = 1
σ2
θ

. At the end of period t, dividend dt is publicly observable and paid out to all investors.

In every period, a new generation of risk-averse investors is born and enters the market.

Each cohort contains a unit continuum of investors who live for one period. Each investor i has

the following mean-variance utility function:

Ui(πit|I) = E(πit|I)− ρ

2
V ar(πit|I)

where ρ is the degree of risk aversion and πit = (δpt+1 + dt − pt)(xit − uit) is the return

from buying xit units of the risky asset at price pt and selling them in the next period at

pt+1. The non-tradable endowment shock uit = ut + σuiµuit consists of i.i.d. market-wide

shock ut ∼ N(0, σ2
u) and i.i.d. white noise idiosyncratic shock µuit. Denote τu = 1

σ2
u

. This

endowment shock is privately observable and represents investor sentiments or unexpected

idiosyncratic liquidity needs.2 We refer to dividend shock θt as the fundamental shock and

aggregate endowment shock ut as the non-fundamental shock. Note that an idiosyncratic

endowment shock uit which each investor i can observe is also informative about the non-

fundamental shock ut with precision of τui = 1
σ2
ui

. For simplicity, we assume that τui = 0,

implying that the investors cannot learn about non-fundamental factor ut from observing their

own endowment shocks.3

The trading timeline is as follows. At the beginning of period t, a cohort of investors enters

the market and observes public information dt−1, their private signals sit, and their endowment

shocks uit.4 Afterwards, all investors submit their demand schedules xit(pt, sit, uit, dt−1)

contingent on market price pt to an auctioneer who will set a price to clear the market. Then, all
2Note that this non-tradable endowment shock creates stochastic intercept in the demand function which serves

as a non-fundamental shock that prevents the stock price from being fully revealing. In fact, the stochastic aggregate
endowment shock in market price (ut) is identical to aggregate random demand of noise traders in the standard
competitive noise-trading model. See Manzano and Vives (2010) and Farboodi and Veldkamp (2018) for more
details.

3This assumption will not affect our main findings. We will discuss the role of information about current noise
factor ut in Section 1.5.

4For tractability purpose, we assume that the investors cannot observe past prices. This allows us to focus on the
main role of NF information in the model while avoiding complicated posterior updating about ut from past prices.
We discuss how relaxing this assumption would affect our results in Section 1.4.3.
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trades take place and the market continues to the next period in which 1) all investors close their

positions and realize their investment returns and 2) a new generation of investors enters the

market.

The equilibrium

Let Iit = {sit, uit, dt−1} be the information set of investor i at the time of submitting demand

schedule to the auctioneer. The equilibrium definition is as follows.

Definition 1.1 (Competitive rational expectation equilibrium) An equilibrium consists of a

sequence of market price function {pt(·)}∀t and demand function of all investors X(p) such

that

1. each investor chooses demand schedule optimally.

xit(pt) ∈ arg max
x

Ui(πit(x)|Iit)

2. market-clearing condition of the asset market is satisfied.∫
i
xitdi = 0

This is the standard competitive rational expectation equilibrium which imposes optimality

conditions in a competitive market framework. We also restrict our focus to the stationary

most-informative linear equilibrium as described below.

Definition 1.2 (Equilibrium selection) The equilibrium is such that

1. market price function is linear and stationary.

pt =
1

k4
(k1dt−1 + k2θt + k3ut+1 + ut + k5θ̄)

2. provided that multiple linear equilibria exist, choose the most informative linear equilib-

rium.

Measures of volatility and efficiency

First, our measure of stock volatility is unconditional asset return volatility as defined below.

Intuitively, this volatility metric evaluates the asset riskiness from a viewpoint of uninformed

investors.

Definition 1.3 (Volatility) Asset volatility in period t is var(δpt+1 + dt − pt).

It is worth noting that, even though this metric provides a good estimation of asset riskiness

in general, it might not reflect an actual risk of stock returns faced by individual investors. When

the investors have more financial information, they actually face lower return risk provided that

the stock volatility does not change. Therefore, we will also consider the variance of stock

return conditional on all information available to investors as defined below.
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Definition 1.4 (Perceived asset risk) Perceived asset risk of investor i in period t is var(δpt+1+

dt − pt|Iit, pt).

To measure price informativeness, we follow the notion of revelatory price efficiency (Bond

et al. (2012), Bai et al. (2016)) which estimates how much stock prices reveal the information

about fundamental components that have impact to real economic activity. In our model, the

assumption of exogenous random process of dividend shocks (i.e. no feedback channel between

stock price dynamics and firm’s decision making) does not allow us to clearly identify the key

factor that has real economic impact. To proceed, we will assume that the information about

dividend shocks which should convey new information about the firm’s fundamental in practice

can have real economic impact. This is intuitive, as real decision makers (e.g firm managers,

business partners of the firms, policymakers) depend on secondary market prices to learn new

information about the firm fundamentals to take appropriate actions (Bond et al. (2012)). We

define the level of price informativeness as follows.

Definition 1.5 (Informativeness) Price informativeness at period t is var(θt)− var(θt|pt)

From the definition, price informativeness estimates how much fundamental shock volatility

from an outsider viewpoint is reduced if the outsider observes the market price. An alternative

measure of price informativeness is price impact of fundamental shock (∂pt∂θt
). However, this

measure does not capture possible changes of non-fundamental components in stock prices. As

such, it may not be suitable in our study.

To measure market liquidity, the standard metric is price impact of non-fundamental shock

( ∂pt∂ut
). In the standard noise-trader model, this is the price impact of a trade from noise traders.

Intuitively, lower price impact of non-fundamental shock implies that market price can absorb

trade orders from noise traders well, reflecting a liquid (deep) market. In our model, price

impact of non-fundamental shock will indirectly measure how well an asset price can absorb non-

fundamental-driven portion of asset trading of investors. However, the price impact ∂pt∂ut
might

not contain enough information for measuring market liquidity in our context, as stock prices,

say in period t, might depend on both current fundamental shock ut and future non-fundamental

shock ut+1. Therefore, we measure market liquidity based on the following condition.

Definition 1.6 (Liquidity comparison) Market liquidity is lower(higher) if both ∂pt
∂ut

and ∂pt
∂ut+1

are higher(lower).

1.3 Baseline equilibrium without NF information.

In this section, we will analyze the model without non-fundamental (NF) information production

to understand fundamental properties of stock prices in our dynamic setting. We assume that the

investors obtain a noisy private signal about fundamental factor θt. Define sθ,it = θt +
√

1
τ̂θ
εθ,it

in which εθ,it is an i.i.d. random variable drawn from a normal distribution N(0, 1) with signal

precision τ̂θ. We obtain the following remark.

Remark 1.1 If private signal profile is sit = {sθ,it}, then
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1. an equilibrium in which the investors trade the asset exists if and only if the degree of risk

aversion is sufficiently low,

2. price informativeness increases if one of the following is true:

a) the degree of risk aversion decreases

b) τ̂θ increases if the degree of risk aversion is sufficiently low.

3. market price is never fully revealing for any positive value of risk-aversion degree.

Firstly, we found that the existence condition of equilibrium with trade depends on the

degree of risk aversion. When the investors are more risk-averse, they trade the asset less

aggressively, causing the asset prices to be more sensitive to non-fundamental shock and harder

to predict. This high volatility feeds back into trading decision of investors in previous periods,

causing asset price volatility to amplify further. Thus, if the investors are highly risk-averse,

asset return volatility can be indefinite which causes the market to shut down.5

Interpretation of the second remark is straightforward. Price informativeness is higher

if the investors are more risk-tolerant or if the investors are more informed about the asset

fundamental, because they are willing to buy more assets to speculate against price deviation

from the fundamentals. What is more interesting is the last remark which states that the asset

price will never be fully revealing even when the investors are perfectly informed about the

fundamental shock, consistent with the finding in Farboodi and Veldkamp (2018).

Why is the price not fully revealing when the investors have perfect information about

dividend shock θt? This seems counterintuitive as the investors with perfect fundamental signal

should continue trading until the asset price returns to its fundamental value, the expected

discounted sum of all future dividends E(
∑∞

i=t δ
i−tdi|dt−1, θt). However, this is not true

because the investors still face positive investment risk. Indeed, when trading assets, they do not

know the information about future dividend shock θt+1 which will arrive in the future. To see

this, consider the mathematical expression of the asset prices below. In period t, the investors

cannot perfectly forecast pt+1, because they are uninformed about θt+1. As such, they will be

reluctant to trade more assets and move the price towards the fundamental value, even though

there is profitable opportunity to do so.

pt = f(dt−1, θt, . . . )

pt+1 = f(dt, θt+1︸︷︷︸
unknown

, . . . )

At this point, one may claim that, if the investors in every period can also learn about

one-period ahead dividend shock (i.e. sit = {θt, θt+1}), then market price can be fully revealing.

Unfortunately, this is invalid because, from the viewpoint of investors, their future counterparts

will also learn information about fundamental shocks of further periods that they cannot learn
5Note also that non-stationary equilibrium with trade cannot exist too since there is no finite real-valued

coefficients in asset price function that are consistent with expected future price.
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today. This is illustrated mathematically below. In this situation, the investors in period t now

face future price risk from being uninformed about two-period ahead dividend shock θt+2.

pt = f(dt−1, θt, θt+1, . . . )

pt+1 = f(dt, θt+1, θt+2︸︷︷︸
unknown

, . . . )

Let us look into this issue by considering the case when the investors have more signals

about future dividend shocks. We obtain the following remark.

Remark 1.2 If private signal is sit = {θk}t+nk=t , then

1. asset price is not fully revealing for any finite value of n,

2. if discount factor is strictly less than one, price sensitivity to noise factor strictly decreases

when n increases,

3. if discount factor is one, price sensitivity to noise factor does not change when n increases.

This remark highlights an important distinction between stocks and other asset classes

with fixed maturity date. For the latter, asset prices may be fully informative if the investors

have perfect information about all fundamental shocks of the whole remaining asset lifetime.

However, because common stocks are expected to pay dividend perpetually, future price risk

will persist. Unless the investors have perfect information about all future dividends; that is,

when the investors in every period t have perfect information about all future dividend shocks

{θi}∞i=t or when there are no dividend shocks (i.e σ2
θ = 0), the asset price will not be fully

informative. Moreover, when the discount factor is high, a reduction in price sensitivity to noise

factor can be minimal.

One important implication from this finding is that any inefficiency from learning non-

fundamental information can be long-lasting, because the investors will always have incentive

to learn non-fundamental information. This is particularly true when the investors have good

fundamental information, because non-fundamental-information-based trading can be more

profitable to the investors who always look for new information that other investors do not have.

We will shed more light on this issue in the next two sections.

1.4 Analysis of learning NF information.

In this section, we will study how learning NF information, the information about next-period

aggregate endowment shock ut+1, can cause inefficiency to asset prices. We will first consider

the impact of learning NF information using a standard two-period model. Then, we analyze the

impact of an increase in NF information quality in our infinite-period model.

1.4.1 Static effect of learning NF information

Consider a classical two-period trading model with similar setting to our infinite-period dynamic

model. There is a risky divisible asset which pays a stochastic return θ + u2 in the second
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period where θ ∼ N(0, σ2
θ) is an i.i.d. stochastic fundamental factor and u2 ∼ N(0, σ2

u) is an

i.i.d. random non-fundamental factor. There is a unit continuum of investors with the following

mean-variance utility function:

Ui(πi|I) = E(πi|I)− ρ

2
V ar(πi|I)

where ρ is the degree of risk aversion and πi = (θ + u2 − p1)(xi − ui) is the return from

buying xi units of risky assets at price p1 in period 1. As noted before, the investors also face

non-tradable endowment shock ui = u1 +
√

1
τui
µui with market-wide shock u1 ∼ N(0, σ2

u)

and i.i.d white noise idiosyncratic shock µui1 in period 1. Assume that τui = 0. Let private

signal profile of investor i be si = {sθi, sui} in which

sθi = θ +

√
1

τ̂θ
εθi and sui = u2 +

√
1

τ̂u
εui

This setup allows the investors to observe both private fundamental signal sθi and non-fundamental

signal sui. The trading protocol and equilibrium solution concept are identical to our main

infinite-period model. Note that this static setting is a one-period snapshot of our infinite-period

model with an additional assumption that future asset prices remain unchanged regardless. We

obtain the following remark.

Remark 1.3 (Static effect of learning NF information) In the static setting, if τ̂θ is sufficiently

high, then an increase in τ̂u causes

1. perceived asset risk var(θ + u2|Ii, p1) to decrease

2. price impact of future noise factor ( ∂p1∂u2
) to increase

3. price impact of current noise factor ( ∂p1∂u1
) to decrease if and only if τ̂u >

ρ(τu−ρ)
τu

.

4. stock volatility to decrease if τ̂u >
ρ(τu−ρ)
τu

5. price informativeness to decrease if τu − ρ is positive and sufficiently high

6. price informativeness to increase if τu < ρ and τ̂u is small.

Moreover,

1. limτ̂u→∞
∂p1
∂u1

= 0,

2. limτ̂u→∞ var(θ|p) < limτ̂u→0 var(θ|p) if and only if ρ > τu, and

3. limτ̂u→∞ var(θ + u2 − p1) = 0.

Interpretation of this result is straightforward. When the investors have more financial

information to estimate their investment returns, their investment risks are lower, increasing

their willingness to trade more assets. Due to more aggressive trade, price sensitivity to current

noise factor ( ∂p1∂u1
) decreases while price sensitivity to future noise factor ( ∂p1∂u2

) increases. An

exception is when the noise factor volatility is relatively low, because the investors will free-ride

the non-fundamental information from asset price excessively when their own private signals are
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relatively low (i.e. when τ̂u <
ρ(τu−ρ)
τu

). This free-riding behavior decelerates aggregation speed

of non-fundamental information in the price and causes the price to be more sensitive to current

non-fundamental shock temporarily. As shown in Figure 1.1, price impact of non-fundamental

shock u1 increases temporarily before declining towards zero when non-fundamental signal

precision increases. Stock volatility declines, but price informativeness deteriorates. Eventually,

when the investors have perfect non-fundamental signal, asset price in period 1 will no longer

fluctuate with current non-fundamental shock u1 and stock volatility converges to zero. That is,

the asset price becomes fully informative about asset return θ + u2.

Figure 1.1: Simulation results of an increase in non-fundamental signal precision τ̂u with τu = 3,
ρ = 0.8, and τθ = 1.

Interestingly, price informativeness could improve when non-fundamental signal precision

increases, because asset price is less volatile to current non-fundamental shock. From the remark,

this scenario is possible when degree of risk aversion is so large that the asset price when there

is no non-fundamental information would be relatively volatile to current non-fundamental

shock u1. As shown in Figure 1.2, an increase in non-fundamental signal precision causes price

informativeness to increase and converge to a higher level.

In a nutshell, from efficiency point of view, learning NF information can improve price

efficiency and reduce asset volatility. However, this conclusion might be misleading for stock

markets since we have not yet considered dynamics effect from endogenous change of future

price dynamics.

1.4.2 Dynamic feedback effect and price inefficiency.

Our next step is to analyze the impact of learning NF information on price formation in

our dynamic setting. Let sθ,it = θt +
√

1
τ̂θ
εθ,it in which εθ,it is an i.i.d. random variable

drawn from a normal distribution N(0, 1) and τ̂θ is precision of the fundamental signal. Let

su,it = ut+1 +
√

1
τ̂u
εu,it in which εu,it is an i.i.d. random variable drawn from a normal
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Figure 1.2: Simulation results of an increase in non-fundamental signal precision τ̂u with τu = 1, ρ = 2,
and τθ = 1.

distribution N(0, 1) and τ̂u is precision of the non-fundamental signal. Throughout Subsection

1.4.2, we make the following assumption unless stated otherwise.

Assumption 1.1 Private signal profile is sit = {sθ,it, su,it}

Now, consider an exogenous increase in non-fundamental signal precision τ̂u. Undeniably,

better NF information must partly improve price efficiency based on our static analysis. In the

static model, risk-averse investors who learn more NF information will trade more aggressively

which will reduce price sensitivity to current non-fundamental shock. Additionally, since

the investors trade more assets on their NF information, current asset price becomes more

informative about future non-fundamental shock ut+1, providing more information about future

price to all investors. This in turn should reduce the price impact of noise factor ut even more.

Surprisingly, we found that this conjecture is invalid as established in the following proposition.

Proposition 1.1 (Inefficiency from learning NF information I) If 1) fundamental signal pre-

cision and discount factor are sufficiently high and 2) non-fundamental signal precision is

sufficiently low, an increase in non-fundamental signal precision leads to

1. lower market liquidity,

2. higher stock volatility,

3. lower price informativeness, and

4. higher perceived asset risk as measured by var(δpt+1 + dt|Iit, pt).

This proposition establishes contradicting predictions from classical rational speculative

theory. From the proposition, when the investors have better quality of NF information, the stock
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volatility increases, price informativeness declines, and price sensitivity to non-fundamental

factors increases (i.e. lower market liquidity). More surprisingly, the investors view that the

asset is riskier (i.e. higher var(δpt+1 +dt|Iit, pt)) despite having more information about future

price. This is because of higher future price risk endogenously created by future investors.

When receiving better NF information, the future investors will also trade more assets on their

NF information, causing the future prices to be more volatile to non-fundamental shocks of

further periods. However, the investors cannot learn the NF information that the future investors

can learn. This is illustrated mathematically below.

pt = f(dt−1, θt, ut+1, ut)

pt+1 = f(dt, θt+1, ut+2︸ ︷︷ ︸
unknown

, ut+1)

When the investors learn NF information, asset price in period t + 1 now depends on both

fundamental factor θt+1 and two-period ahead non-fundamental factor ut+2, both of which are

unknown to investors in period t. When the non-fundamental signal precision increases, asset

price pt+1 becomes more sensitive to noise factor ut+2 which adversely affects the investors

in period t. This higher stock return volatility feeds back into trading decision of investors,

resulting in lower price efficiency.

The next question is whether learning NF information can improve price efficiency at some

point; that is, whether the negative dynamic feedback effect will always dominate the positive

effect of learning more information. Indeed, we found that when the noise signal precision is

high, price efficiency might improve when the noise signal precision increases as implied in the

following proposition.

Proposition 1.2 (Inefficiency from learning NF information II) Provided that fundamental

signal precision and discount factor are sufficiently high,

1. limτ̂u→∞
∂pt
∂ut

< ∂pt
∂ut

for any τ̂u > 0,

2. limτ̂u→∞
∂pt
∂ut
≤ ∂pt

∂ut
at τ̂u = 0.

From the proposition, the price will be least sensitive to the current noise shock when

the investors have perfect non-fundamental signals. Interestingly, the sensitivity can even go

below the value which the investors do not have non-fundamental information. The is because

the marginal benefit of learning more information exceeds the negative dynamic feedback

effect. This finding suggests that it might be socially desirable if the investors have good

non-fundamental signals. However, our next proposition established that this is not the case

when discount factor is high.

Proposition 1.3 (Inefficiency from learning NF information III) If the fundamental signal

precision is sufficiently high and the discount factor is strictly less than one, then

1. limτ̂u→0 var(δpt+1 + dt − pt) > limτ̂u→∞ var(δpt+1 + dt − pt),

2. limτ̂u→0 var(δpt+1 + dt|Iit, pt) > limτ̂u→∞ var(δpt+1 + dt|Iit, pt),
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3. limτ̂u→0
∂pt
∂ut

> limτ̂u→∞
∂pt
∂ut

,

4. limτ̂u→0 var(θt|pt) < var(θt|pt) for any τ̂u ∈ R+ if the discount factor is sufficiently

high.

From the proposition, if the investors obtain good non-fundamental signals, then stock

volatility, perceived asset risk, and price sensitivity to noise factor ∂pt
∂ut

are lower than the level

which the investors have no NF information. However, price informativeness will always

be lower than the level which the investors do not have NF information if discount factor is

sufficiently high. This is because the price is more sensitive to future non-fundamental shock, but

the price sensitivity to current non-fundamental shock marginally declines due to the dynamic

feedback effect. Figure 1.3 displays simulation results of an increase in non-fundamental

Figure 1.3: Simulation results of an increase in non-fundamental signal precision τ̂u ∈ [0, 85] with
τu = 3, ρ = 0.085, τ̂θ = 100, α = 0.94, δ = 0.97, τθ = 3.

signal precision when the discount factor is 0.97. From the figure, price sensitivity to current

non-fundamental shock, asset volatility, and perceived investment risk increase initially before

declining to a new lower level. Price informativeness sharply declines and converges to a lower

value than the level which the investors do not have NF information.

Indeed, the discount factor partly determines magnitude of the adverse dynamic feedback

effect. As shown in the next proposition, we found that asset volatility, perceived investment

risk, and price sensitivity to current non-fundamental shock converge to the same level which

the investors do not have NF information when the discount factor is one. Intuitively, when

the investors care about future price immensely, they will be heavily affected by the adverse

dynamic feedback effect from higher future NF information risk which can offset the benefit

from learning more NF information completely.

Proposition 1.4 (Inefficiency from learning NF information IV) If τ̂θ is sufficiently high and

discount factor is one, then
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1. limτ̂u→0 var(δpt+1 + dt − pt) = limτ̂u→∞ var(δpt+1 + dt − pt),

2. limτ̂u→0 var(δpt+1 + dt|Iit, pt) = limτ̂u→∞ var(δpt+1 + dt|Iit, pt),

3. limτ̂u→0
∂pt
∂ut

= limτ̂u→∞
∂pt
∂ut

As shown in Figure 1.4, price sensitivity to current non-fundamental shock, asset volatility,

and perceived investment risk are always higher than the level which the investors do not have

NF information. Price informativeness will always be suboptimal when the investors learn NF

information. Indeed, we also found that price efficiency will be optimal when the investors

do not learn NF information if the discount factor approaches one, as stated in the following

remark.

Figure 1.4: Simulation results of an increase in non-fundamental signal precision τ̂u ∈ [0, 100] with
τu = 3, ρ = 0.085, τ̂θ = 100, α = 0.94, δ = 1, τθ = 3.

Remark 1.4 If discount factor is one and fundamental signal precision is sufficiently high,

then price informativeness and market liquidity are maximized if τ̂u = 0. Specifically, for any

τ̂u ∈ R+,

1. var(θt|pt) > limτ̂u→0 var(θt|pt),

2. ∂pt
∂ut+1

> limτ̂u→0
∂pt
∂ut+1

,

3. ∂pt
∂ut
≥ limτ̂u→0

∂pt
∂ut

.

So far, the main inefficiency from NF information production comes from the negative

dynamic feedback effect of future NF information risk. One might wonder whether allowing

the investors to learn future NF information that their future counterparts learn would solve this

problem. That is, what if the investors in period t can acquire information about ut+2? We found

that the inefficiency problem still remains. In fact, price informativeness can deteriorate even
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more. To see this, we now assume that the investors have perfect signals about non-fundamental

factors of several periods ahead as follows.

Assumption 1.2 Private signal profile is sit = {θt} ∪
⋃n
k=1{ut+k}

Consider the following proposition.

Proposition 1.5 (Learning far-future NF information) Provided that Assumption 1.2 is true,

price impact of current noise factor ( ∂pt∂ut
) is non-zero for any finite n ≥ 1. Also, if n increases,

then

1. asset volatility, perceived asset risk, and price impact of current noise factor ( ∂pt∂ut
)

decrease if discount factor is lower than one.

2. asset volatility, perceived asset risk, and price impact of current noise factor ( ∂pt∂ut
) do not

change if discount factor is one.

3. price informativeness is strictly lower if discount factor is sufficiently high.

This proposition confirms that learning information about non-fundamental shocks of several

periods ahead can deteriorate price efficiency, especially if the investors care a lot about the

future (i.e. high discount factor). The reason is that 1) future information uncertainty still

remains in the stock prices and 2) the negative feedback dynamic effect from NF information

uncertainty has significant impact on the investors. As a result, the price sensitivity to current

non-fundamental shock will decline marginally when the investors obtain more non-fundamental

signals. To illustrate, suppose that the investors in every period t obtain perfect noise signals

about {ut+1, ut+2}. As written mathematically below, asset price in period t+ 1 now contains

ut+3 which is unknown to investors in period t.

pt = f(dt−1, θt, ut+1, ut+2, ut)

pt+1 = f(dt, θt+1, ut+3︸ ︷︷ ︸
unknown

, ut+2, ut+1)

Thus, even though the investors obtain more future non-fundamental information, the asset

price will always be volatile to non-fundamental shock ut. In addition, the asset price is now

sensitive to new future non-fundamental shock ut+2, causing price informativeness to decline

further. Overall, an attempt to learn new NF information of future periods, instead of improving

efficiency, can turn out to harm market liquidity and price informativeness tremendously.

This finding provides an important insight for market regulators into how the benefits of

learning NF information can be overrated. Typically, we believe that the investors can reduce

their investment risks by learning more NF information which could improve price efficiency.

However, our model suggests that stock prices could become more volatile, less informative,

less liquid, and harder to estimate for all the investors. To promote price efficiency, perhaps a

better way is to promote fundamental information disclosure to allow the investors to properly

assess the firm prospects, both for the short term and the long-term. This can reduce the future

fundamental information risk and improve the quality of stock prices.

25



1.4.3 What if the investors can observe historical prices?

So far, we have assumed that investors cannot observe past prices when updating their posteriors.

This assumption, while giving us a tractable model, might raise concerns on the result robustness.

In this section, we will discuss how relaxing this assumption may affect our findings.

Why do investors value historical prices? Recall that when investors learn NF information,

asset prices will be informative about future noise factors. Therefore, the historical prices will

be another valuable source of learning information about current noise factor ut, helping the

investors in period t extract relevant information from current asset price more efficiently. To

clarify, below is the mathematical expression of asset price in period t and t− 1.

pt = f(dt−1, θt, ut+1, ut)

pt−1 = f(dt−2, θt−1, ut, ut−1).

The investors in period t would optimally use pt to learn about θt and ut+1 to forecast their

expected returns δpt+1 + dt. Therefore, learning ut from price pt−1 would increase their

information quality obtained from price pt even further. How much information about ut that

the investors can extract from pt−1 depends on the investor’s information about past dividend

shocks, past non-fundamental shocks, and the length of observable past price sequence. Note

that observing longer periods of past prices should increase the information quality about ut. To

illustrate, consider pt−2 = f(dt−3, θt−2, ut−1, ut−2) which is informative about ut−1. Indeed,

pt−2 reveals information about ut−1, helping the investors infer the information about ut from

pt−1 more accurately.

To conclude, the impact of NF information production missing from our previous analysis

is the impact from more information about current noise factor from past prices. In other

words, there is endogenous increase in public information about current noise factor when

the non-fundamental signal precision increases. This implies that most of our analysis should

remain true, particularly the findings based on the investors who obtain perfect signals about

θt and ut+1. This is because the investors already have perfect private information, and thus

additional information from past prices will be irrelevant.

However, one may wonder whether this assumption will significantly affect our analysis

when the investors have imperfect signals. With imperfect signals, the investors still depend on

the information they could learn from asset prices. Therefore, observing historical prices would

improve their information quality. This positive effect might dominate the negative dynamic

feedback effect which might compromise some of our findings.

To have a preliminary investigation on this conjecture while maintaining tractability of our

model, we now assume that the investors also obtain a private signal about current noise factor

ut with identical signal precision as if they can observe n periods of past prices. From the

equilibrium price function, we know that 1
k3

(k4pt−1 − k1dt−2 − k2θt−1 − k5θ̄) = ut + 1
k3
ut−1.

Provided that the investors know all past dividend shocks, this implies that the investors who

observe {pt−1, pt−2, . . . , pt−n} will obtain the information equivalent to observing a signal

about ut with signal precision k2
3τu

(
1−k2n3
1−k23

)
. Let sup,it = ut +

√
1
τ̂up
εup,it in which εup,it is an

i.i.d. white noise normally-distributed random variable and τ̂up = k2
3τu

(
1−k2n3
1−k23

)
. We make the

following assumption.
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Assumption 1.3 Private signal profile is sit = {sθ,it, su,it, sup,it}

This assumption states that in addition to the fundamental and non-fundamental information,

the investors also receive a private signal about current non-fundamental shock ut which is

informationally equivalent to observing n periods of past prices. Figure 1.5 compares two

simulation results when the investors cannot observe private signal sup,it and when n = 4

(equivalent to observing {pt−1, pt−2, pt−3, pt−4}). From the figure, allowing the investors who

have imperfect fundamental signals to observe past prices improves price efficiency compared

to the case of no past price observation. Since the precision of current non-fundamental signal

is endogenously increasing, the effect from observing past prices will start taking place when

the investors have sufficiently good non-fundamental signals. Indeed, the investors also obtain

better NF information from the asset price, but this might contribute positively to price efficiency.

From our previous analysis, when the investors have good non-fundamental signals, the positive

effect of learning more NF information will start dominating the negative dynamic feedback

effect. Therefore, having better quality of NF information from the market price can positively

affect price efficiency at this stage. However, note that the negative dynamic feedback effect

which causes price inefficiency still exists.

Figure 1.5: Simulation results of an increase in non-fundamental signal precision τ̂u ∈ [0, 100] when the
investors cannot observe sup,it (i.e unobservable past prices) and when they can observe sup,it for n = 4
with parameter value of τu = 4, ρ = 0.085, τ̂θ = 100, α = 0.94, δ = 0.97, τθ = 4.

In contrast, if the investors already have perfect fundamental signals, the type of information

the investors would learn from the price would be only the NF information. Thus, the assumption

on past price observations should affect only the speed of convergence of price efficiency when

there is an increase in non-fundamental signal precision. This is confirmed in the following

proposition.

Proposition 1.6 (Inefficiency from learning NF information V) If private signal profile sat-

isfies Assumption 1.3 and the discount factor is sufficiently high, then for any τ̂u > 0,
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1. limτ̂θ→∞ var(θt|pt) > limτ̂θ→∞,τ̂u→0 var(θt|pt),

2. limτ̂θ→∞
∂pt
∂ut+1

> limτ̂θ→∞,τ̂u→0
∂pt
∂ut+1

, and

3. limτ̂θ→∞
∂pt
∂ut
≥ limτ̂θ→∞,τ̂u→0

∂pt
∂ut

if the discount factor is one.

From the proposition, our findings on price efficiency from the previous section remain

true. When the investors have perfect fundamental signals and high discount factor, the price

informativeness will always be suboptimal. Also, when the discount factor is one, both price

informativeness and market liquidity are maximized when the investors do not have NF infor-

mation, because the investors do not need the informational benefit from past prices to learn the

fundamental information.

1.5 Impact of learning information about current
non-fundamental shock

In reality, apart from learning information about future noise shocks, the investors also process

order-flow data to estimate past or current non-fundamental shocks. This section will look

into the impact of learning information about current non-fundamental shock ut on price

informativeness and examine whether the interacting effects of learning information about both

current-period and future-period noise shocks can deteriorate price efficiency.

How would acquisition of the current-noise information affect price formation? In general,

there are two sources of financial information that investors in any period t can learn from:

private signal sit and public signal pt. Since better information about noise factor ut helps the

investors extract relevant information from asset price pt more accurately, price informativeness

can improve. However, as documented in standard literature, price informativeness deterioration

might come from herd behavior of the investors; they depend too much on information from

the price and too little on their private information, resulting in less degree of information

aggregation in asset prices.

In this section, we will show that price informativeness can decrease when the investors

obtain better current-noise information from a different angle. That is, the investors might extract

more NF information from asset price when they have better current-noise information which

can destroy price informativeness. Formally, we assume that investors in period t can observe

a private signal about noise factor ut in addition to their private signals about fundamental

factor θt and future non-fundamental shock ut+1. Define suc,it = ut +
√

1
τ̂uc
εuc,it in which

εuc,it ∼ N(0, 1) is an i.i.d. idiosyncratic disturbance. We make the following assumption.

Assumption 1.4 Private signal profile is sit = {sθ,it, su,it, suc,it}

Applying this assumption to our model, we obtain the following proposition.

Proposition 1.7 (Current-period noise information) Provided that Assumption 1.4 is satis-

fied, asset price dynamics when the investors have perfect signal about θt and ut+1 does not

depend on τ̂uc. Also, for X = {dt−1, θt, ut, ut+1},

lim
τ̂θ→∞,τ̂uc→∞

pt(X) = lim
τ̂u→∞,τ̂uc→∞

pt(X) = lim
τ̂θ→∞,τ̂u→∞

pt(X).
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This proposition emphasizes the role of current-noise information. First, the current-noise

information is redundant when investors already have perfect private signals. Second, when

the investors have perfect information about ut, the asset price function will be equivalent to

when the investors have perfect private signals. This is because the investors with imperfect

private signals, either fundamental or non-fundamental signals, now have a perfect public signal

– the asset price – to learn from. Note that this intuition works only if the investors already have

perfect signal of one information type so that the investors can infer the other information type

from the asset price perfectly.

There are two implications on price informativeness from this proposition. First, when the

investors already have good information about future noise factor ut+1, more information about

current noise factor ut will allow the investors to obtain more fundamental information from

the asset price which can improve price informativeness. This is shown in Figure 1.6 which

illustrates how an exogenous increase in signal precision of suc, the signal about ut, can improve

price efficiency.

Figure 1.6: Simulation results of an increase in signal precision τ̂uc ∈ [0, 100] with parameter value of
τu = 4, ρ = 0.085, τ̂θ = 3, τ̂u = 2000, α = 0.94, δ = 0.97, τθ = 4.

However, when the investors already have good private signal about fundamental factor, the

investors will instead use the asset price to obtain more NF information, resulting in possible

deterioration of price informativeness as stated in the following remark.

Remark 1.5 If 1) τ̂θ and discount factor are sufficiently high and 2) τ̂u is sufficiently low, then

lim
τ̂uc→0

var(θt|pt) < lim
τ̂uc→∞

var(θt|pt).

Figure 1.7 illustrates the impact of an increase in precision of current-noise signal when the

investors have good fundamental signals. Indeed, the evolution of price efficiency is similar to

the case of an increase in non-fundamental signal precision. From the figure, stock volatility

and price sensitivity to noise factor ut increases initially before gradually decreasing. Price

informativeness non-monotonically decreases to a lower level.
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Figure 1.7: Simulation results of an increase in signal precision τ̂uc ∈ [0, 100] with parameter value of
τu = 4, ρ = 0.085, τ̂θ = 5000, τ̂u = 0.5, α = 0.94, δ = 0.97, τθ = 4.

This finding provides one important insight into how post-trade market transparency (i.e.

public disclosure of past order flows) can adversely affect stock prices. Depending on what

information is in high demand from the investors, price informativeness which regulators would

like to promote can instead decrease in response to higher degree of post-trade transparency.

1.6 Endogenous information choice and information
technology growth.

So far, we have seen how learning information about future non-fundamental shock can cause

inefficiency to stock prices. However, given the assumption on exogenous non-fundamental

signal precision, we cannot see clearly whether the investors will indeed acquire more NF

information. Our next task is to study whether the investors will actually acquire NF information.

If so, under what conditions such NF information acquisition can deteriorate price inefficiency.

To this end, this section extends the model to incorporate endogenous information acquisition.

1.6.1 Model setting: information acquisition stage

We will now incorporate endogenous information acquisition stage to the model, allowing the

investors to strategically choose their private signal precisions. Denote sθ,it = θt +
√

1
τ̂θ,it

εθ,it

in which εθ,it is an i.i.d. random variable from normal distribution N(0, 1) with signal precision

τ̂θ,it, and su,it = ut+1 +
√

1
τ̂u,it

εu,it in which εu,it is an i.i.d. random variable from normal

distribution N(0, 1) with signal precision τ̂u,it. Define τ̂it = {τ̂θ,it, τ̂u,it}. Prior to trading in

period t, all investors who are born in period t can choose their private signal precisions τ̂it
subject to the following information technology constraint:

τ̂θ,it + γτ̂u,it ≤ Γ
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where γ ∈ R+ is a relative cost of processing NF information and Γ ∈ R+ is the information-

processing capacity. Assume that private signal profile is sit = {sθ,it, su,it} in which signal

precision τ̂it is now endogenously determined. The equilibrium definition which now includes

optimality condition for the information acquisition decision is as follows.

Definition 1.7 (Competitive rational expectation equilibrium) An equilibrium consists of in-

formation acquisition choices {τ̂it}∀i,t, market price functions {pt(·)}∀t, and demand functions

of all investors X(p) such that

1. each investor chooses signal precisions optimally

τ̂it ∈ arg max
τ̂it

Ui(πit) s.t. τ̂θ,it + γτ̂u,it ≤ Γ

2. each investor chooses demand schedule optimally.

xit(pt) ∈ arg max
x

Ui(πit(x)|Iit)

3. market-clearing condition of the asset market is satisfied.∫
i
xitdi = 0

Also, the equilibrium selection criteria now includes symmetric and stationary information

choice of the investors as below.

Definition 1.8 (Equilibrium selection) The equilibrium is such that

1. equilibrium signal precision is symmetric and stationary.

τ̂it = τ̂ = {τ̂θ, τ̂u}

2. market price function is linear and stationary.

pt =
1

k4
(k1dt−1 + k2θt + k3ut+1 + ut + k5θ̄)

3. provided that multiple linear equilibria exist, choose the most informative linear equilib-

rium.

1.6.2 Optimal information choice

First, let us examine how investors decide between processing fundamental and non-fundamental

information. Obviously, both types of information reduce forecasting error of different stochastic

components in future asset prices. Comparing to standard goods-consumption model, both

information types are comparable to differentiated goods which increase expected utility of the

investors. However, the investors have limited resources (i.e limited information-processing

capacity to process financial data) and must choose signal precision of each information type in

an optimal way. The following lemma describes optimal information choice of investors in the

equilibrium.

31



Lemma 1.1 (Optimal information choice) An equilibrium information choice (τ̂θ, τ̂u) of all

interior solutions must satisfy

1

γ
=

(
a1(τu + τ̂u) + τuk3(k3a1 − k2a2)

a2(τθ + τ̂θ)− τuk2(k3a1 − k2a2)

)2

in which a1 = δ k1k4 + 1 and a2 = δ
k4
.

This is a standard optimality condition in which relative marginal cost of processing more

fundamental information (left side) equals to its relative marginal benefit (right side). Both a1

and a2 are the coefficients of θt and ut+1 in expected return term E(δpt+1 + dt), respectively.6

The marginal cost term is directly derived from information technology constraint. The marginal

benefit term depends on 1) what information type the investors consider more significant for

their future price forecasts reflected by a1 and a2, 2) which factors are more volatile and thus

more valuable to learn as measured by τu and τθ, and 3) which information type the investors

can free-ride from the asset price as captured by |k3a1 − k2a2| weighted by information quality

of the asset price τu, the inverse volatility of current-noise factor ut. For instance, when k3
k2
< a2

a1
,

a case of NF information shortage in the asset price, the investors are more likely to process

more NF information on their own.

1.6.3 Information-processing capacity advancement

Now, let us analyze the impact of information-processing capacity development on equilibrium

information choice and price informativeness. Generally, better information-processing capacity

shall improve price informativeness. However, this depends on the type of financial information

that investors choose to process. If the investors process non-fundamental information heavily

when the information technology improves, price informativeness might in fact decrease. The

following proposition establishes that, if the NF information is costly to process, a permanent

decline in price informativeness is possible when the capacity is sufficiently good.

Proposition 1.8 (NF information acquisition) If γ and δ are sufficiently high, then there exists

Γ∗ ∈ R+ such that

1. τ̂u > 0 if Γ > Γ∗ and τ̂u = 0 otherwise,

2. there exists Γ̄ > Γ∗ such that for any Γ ≥ Γ̄,

var(θt|pt) > lim
Γ→Γ∗

var(θt|pt)

From the proposition, when the investors care a lot about the future and when NF information

is relatively hard to process, they will process cheaper fundamental information when the

processing capacity is low. This is because financial information is scarce, and market price

which is the public source of financial information is still uninformative.

However, once the processing capacity is high, there is abundance of fundamental infor-

mation both from private signals and asset price. Therefore, at some point all investors will
6Note that E(δpt+1 + dt) = (δ k1

k4
+ 1)θt +

δ
k4
ut+1 + · · · = a1θt + a2ut+1 + . . . .
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start processing more NF information to beat the market. This is shown in Figure 1.8 which

plots simulation results of an increase in information-processing capacity when the cost of pro-

cessing NF information is high. Even though the investors may also process more fundamental

Figure 1.8: Simulation results of an increase in information processing capacity Γ with parameter value
of τu = 4, ρ = 0.085, γ = 200, α = 0.94, δ = 0.97, τθ = 4.

information at this stage, it will marginally improve their fundamental information quality as

they already have good fundamental information. From the proposition, the efficiency effect of

the capacity increase is ambiguous in the neighborhood of Γ∗, the capacity threshold that the

investors start processing NF information. This is because the NF information is highly costly,

and thus the negative impact of NF information acquisition might not dominate the positive

impact of fundamental information acquisition at this point. However, once the market price

aggregates more NF information when the capacity is higher, the investors can now learn NF

information from the price, resulting in the deterioration of price informativeness.

Another important implication from the proposition is that the deterioration in price informa-

tiveness from NF information production is bound to happen. This finding is counterintuitive at

first glance. Intuitively, if the relative cost of NF information is sufficiently high and the capacity

is good, the investors will not process NF information as the asset price should be (almost)

fully revealing. However, recall from our previous section that stock prices will never be fully

revealing because of future fundamental information risk. Intuitively, investment risks of the

investors are not fully eliminated as they cannot learn perfectly the fundamental information
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that their future counterparts learn. As a consequence, the growing processing capacity will

eventually drive the investors to process the costly non-fundamental information once trading

on fundamental information no longer beats the market in due course.

Figure 1.9: Simulation results of an increase in information processing capacity Γ with parameter value
of τu = 4, ρ = 0.085, γ = 1, α = 0.94, δ = 0.97, τθ = 4.

It is worth noting that more NF information production does not imply that price informa-

tiveness must decline. Remember that the processing capacity advancement is essential for

investors to process more fundamental information. Therefore, if the investors are in shortage of

the fundamental information, price informativeness can increase even though the investors also

process more NF information. An example is when the cost of processing NF information is

relatively low as shown in Figure 1.9. In this scenario, the investors will process more of both

information types, and the negative effect of the NF information acquisition is dominated by the

positive effect of the fundamental information production.

Another note is that, if the cost of processing NF information is moderate, the deterioration of

price informativeness can be temporary. In this scenario, the investors might start processing the

NF information when the quality of their fundamental information is still imperfect. Therefore,

improvement in information processing capacity is still necessary for the investors to process

fundamental information later on. As such, price informativeness can bounce up to a higher

level when the processing capacity is more developed as shown in Figure 1.10.
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Figure 1.10: Simulation results of an increase in information processing capacity Γ with parameter value
of τu = 4, ρ = 0.085, γ = 40, α = 0.94, δ = 0.97, τθ = 4.

1.7 Concluding remark

This paper studies the impact of learning information about future non-fundamental shocks on

stock price formation and efficiency and provides an insight into how information technology

growth can be detrimental to stock markets. Our main finding is that, contradicting to con-

ventional wisdom on rational speculative trade, an increase in non-fundamental information

quality can increase stock volatility, decrease market liquidity, and reduce price informativeness.

Moreover, advancement in information-processing capacity can harm price informativeness

if the investors exploit its benefit toward processing more NF information. Our results point

out an important challenge faced by regulators on how to regulate stock markets and promote

efficiency in the current era of fast-paced information technology advancement.

Our paper can be extended to study a few related issues in stock markets. First, one can

relax the assumption about exogenous dividend payments and incorporate decision making of

firms to the model. This will allow us to see how a change in stock price dynamics from learning

NF information affects the firm’s decision making and its feedback effect toward the stock

traders. Second, one can consider endogenous acquisition of NF information from a different

perspective. That is, instead of imposing the information technology constraint, one can consider

costly information acquisition in which the investors face an increasing cost of acquiring NF

information. In this way, we can analyze whether NF information acquisition in the presence of
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dynamic feedback effect will exhibit strategic complementarity or substitutability among the

investors. Because of the dynamic feedback effect which endogenously increases stock return

volatility, it is possible to obtain strategic complementarity result along with its consequence of

over-acquisition of NF information.
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1.8 Appendix

1.8.1 Equilibrium characterization

In this section, we will solve for equilibrium price function assuming that the investors obtain

private signal of sit = {sθ,it, su,it, suc,it}. Recall that sθ,it = θt +
√

1
τ̂θ
εθ,it in which εθ,it is an

i.i.d. random variable drawn from normal distributionN(0, 1) and τ̂θ is precision of fundamental

signal, su,it = ut+1 +
√

1
τ̂u
εu,it in which εu,it is an i.i.d. random variable drawn from normal

distribution N(0, 1) and τ̂u is precision of non-fundamental signal, and suc,it = ut+
√

1
τ̂uc
εuc,it

in which εuc,it ∼ N(0, 1) is an i.i.d. idiosyncratic disturbance. Suppose that equilibrium price

function at period t is

pt =
1

k4
(k1dt−1 + k2θt + k3ut+1 + ut + k5θ̄)

in which the set of coefficients {k1, k2, k3, k4, k5} will be determined using market-clearing

condition. The standard utility-maximizing trading strategy of each investor from optimization

problem is

xit − uit =
E(δpt+1 + dt|Iit)− pt
V ar(δpt+1 + dt|Iit)

.

The next step is to find the posterior belief δpt+1 + dt|Iit of investor i given signal precision

{τ̂u, τ̂θ}. Denote a random variable zt = a1θt + a2ut+1. Our objective is to find the posterior

zt|pt, sit, uit. We first update stochastic components in zt using private signal sit which yields

θt|sθ,it = N

(
τ̂θ,itsθ,it
τθ + τ̂θ

, (τθ + τ̂θ)
−1

)

ut+1|su,it = N

(
τ̂u,itsu,it
τu + τ̂u

, (τu + τ̂u)−1

)
which , by independence, implies that

zt|sθ,it, su,it = N

(
a1
τ̂θ,itsθ,it
τθ + τ̂θ

+ a2
τ̂u,itsu,it
τu + τ̂u

, a2
1(τθ + τ̂θ)

−1 + a2
2(τu + τ̂u)−1

)
Also, the posterior belief about noise factor ut assuming that τui = 0 is

ut|suc,it, uit = N

(
τ̂uc

τu + τ̂uc
suc,it, (τu + τ̂uc)

−1

)
The last step is to update the posterior belief using pt. Denote p̂t ≡ k4pt − k1dt−1 − k5θ̄ =

k2θt + k3ut+1 +ut which is informationally equivalent to pt about zt. That is, zt|pt = zt|p̂t. To

find zt|p̂t, we find conditional probability distribution of p̂t|zt and apply Bayes’ rule to obtain

zt|p̂t. Rewrite p̂t as p̂t = βzt + rt which contains relevant information zt and a stochastic

residual term rt. A natural solution is to find optimal β which minimizes var(rt), find p̂t|zt,
and apply Bayes’ rule. However, zt and rt might be dependent since both factors can share

the same random variables θt and ut+1. To proceed, we assume that the investors ignore the

correlation between zt and rt. To find the optimal β ∈ arg minβ E(p̂t − βzt|sit, uit)2, we first

substitute p̂t and zt in the objective function which gives

β ∈ arg min
β

(k2 − βa1)2(τθ + τ̂θ)
−1 + (k3 − βa2)2(τu + τ̂u)−1 + (τu + τ̂uc)

−1.
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Taking first-order condition yields

−(k2 − βa1)a1(τθ + τ̂θ)
−1 +−(k3 − βa2)a2(τu + τ̂u)−1 = 0,

which can be easily proved that second-order derivative is always positive and thus second-order

condition is satisfied. Rearranging the condition gives

β =
k2a1(τu + τ̂u) + k3a2(τθ + τ̂θ)

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)

which implies that

E(rt|sit, uit, zt) = (k2 − βa1)
τ̂θsθ
τ̂θ + τθ

+ (k3 − βa2)
τ̂usu
τ̂u + τu

+
τ̂ucsuc
τ̂uc + τu

var(rt|sit, uit, zt) =
(k2a2 − k3a1)2

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)
+ (τu + τ̂uc)

−1

where the first term noise comes from the mismatch in the composition of θt and ut+1 and the

second term is the noise from ut in p̂t. Define ˆ̂pt = 1
β (p̂t − E(rt|sit, uit, zt)). Substituting

E(rt|sit, uit, zt) yields

ˆ̂pt =
p̂t −

(
(k2 − βa1) τ̂θsθ

τ̂θ+τθ
+ (k3 − βa2) τ̂usu

τ̂u+τu
+ τ̂ucsuc

τ̂uc+τu

)
β

which, given that 1
β p̂t = zt + 1

β rt, implies that

ˆ̂pt|zt = N

(
zt,

var(rt|sit, uit, zt)
β2

)
Denote τP = β2var(rt|sit, uit, zt)−1 which is the signal precision of ˆ̂pt. By standard Bayes

rule, we obtain

zt|sit, uit, pt = N

τZ
(
a1

τ̂θsθ
τ̂θ+τθ

+ a2
τ̂usu
τ̂u+τu

)
+ τP ˆ̂pt

τZ + τP
, (τZ + τP )−1


where τZ = (a2

1(τθ + τ̂θ)
−1 + a2

2(τu + τ̂u)−1)−1 which gives the following lemma.

Lemma 1.2 (Posterior updating) Let zt = a1θt + a2ut+1, then

zt|sit, uit, pt = N

τZ
(
a1

τ̂θsθ,it
τ̂θ+τθ

+ a2
τ̂usu,it
τ̂u+τu

)
+ τP ˆ̂pt

τZ + τP
, (τZ + τP )−1


where

β =
k2a1(τu + τ̂u) + k3a2(τθ + τ̂θ)

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)

ˆ̂pt =
1

β

(
k4pt − k1dt−1 − k5θ̄ − (k2 − βa1)

τ̂θsθ
τ̂θ + τθ

− (k3 − βa2)
τ̂usu
τ̂u + τu

− τ̂ucsuc,it
τ̂uc + τu

)
τZ = a2

1(τθ + τ̂θ)
−1 + a2

2(τu + τ̂u)−1

τP = β2

(
(k2a2 − k3a1)2

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)
+ (τu + τ̂uc)

−1

)−1
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Next, we use the lemma to characterize equilibrium price using market-clearing condition.

We first characterize general form which dictates both stationary and non-stationary equilibrium.

Then, we impose stationary condition to obtain our stationary equilibrium. From market-clearing

condition
∫
i xitdi = 0, we obtain∫

i

E(δpt+1 + dt|It)− pt
ρV ar(δpt+1 + dt|It)

di+ ut = 0

because
∫
uitdi = ut. Rearranging the condition gives∫

i
E(δpt+1 + dt|It)di+ ρV ar(δpt+1 + dt|It)ut = pt.

Recall that

pt =
1

k4t
(k1tdt−1 + k2tθt + k3tut+1 + ut + k5tθ̄).

Notice the time subscript in all coefficients in the price equation. However, to have clear

distinction between coefficients and random variables, we will drop subscript t and use ′ to

indicate coefficients in period t+ 1 instead as shown below.

pt =
1

k4
(k1dt−1 + k2θt + k3ut+1 + ut + k5θ̄)

and

pt+1 =
1

k′4
(k′1dt + k′2θt+1 + k′3ut+2 + ut+1 + k′5θ̄)

First, we know that

δpt+1 + dt = (δ
k′1
k′4

+ 1)dt + δ
k′2
k′4
θt+1 + δ

k′3
k′4
ut+2 +

δ

k′4
ut+1 + δ

k′5
k′4
θ̄

= (δ
k′1
k′4

+ 1)(αdt−1 + θt) + δ
k′2
k′4
θt+1 + δ

k′3
k′4
ut+2 +

δ

k′4
ut+1 + (δ

k′5
k′4

+ δ
k′1
k′4

+ 1)θ̄.

Notice that

E(δpt+1 + dt|It) = α(δ
k′1
k′4

+ 1)dt−1 + (δ
k′5
k′4

+ δ
k′1
k′4

+ 1)θ̄ + E((δ
k′1
k′4

+ 1)θt +
δ

k′4
ut+1|It)

V ar(δpt+1 + dt|It) = V ar(δ
k′2
k′4
θt+1 + δ

k′3
k′4
ut+2) + V ar((δ

k′1
k′4

+ 1)θt +
δ

k′4
ut+1|It).

Let a1 = δ
k′1
k′4

+ 1, a2 = δ
k′4

and zt = a1θt + a2ut+1 . Then, we have

E(δpt+1 + dt|It) = α(δ
k′1
k′4

+ 1)dt−1 + (δ
k′5
k′4

+ δ
k′1
k′4

+ 1)θ̄ + E(zt|It)

V ar(δpt+1 + dt|It) = V ar(δ
k′2
k′4
θt+1 + δ

k′3
k′4
ut+2) + V ar(zt|It).

Using the market-clearing condition, we obtain

pt = α(δ
k′1
k′4

+ 1)dt−1 + (δ
k′5
k′4

+ δ
k′1
k′4

+ 1)θ̄ +

∫
i
E(zt|Iit)di

+

(
V ar(δ

k′2
k′4
θt+1 + δ

k′3
k′4
ut+2) + V ar(zt|Iit)

)
ut (∗)
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Based on Lemma 1.2, we know that∫
i
E(zt|Iit)di =

∫
i

τZ
τZ + τP

(
a1

τ̂θsθ
τ̂θ + τθ

+ a2
τ̂usu
τ̂u + τu

)
+

τP
τZ + τP

ˆ̂pt di

=
τZ

τZ + τP

(
a1

τ̂θθt
τ̂θ + τθ

+ a2
τ̂uut+1

τ̂u + τu

)
+

τP
τZ + τP

∫
i

ˆ̂pit di (∗∗)

and that∫
i

ˆ̂pitdi =
1

β

(
k4pt − k1dt−1 − k5θ̄ − (k2 − βa1)

τ̂θθt
τ̂θ + τθ

− (k3 − βa2)
τ̂uut+1

τ̂u + τu
− τ̂ucut
τ̂uc + τu

)
Substituting

∫
i

ˆ̂pitdi into (**) and simplifying the expression yields∫
i
E(zt|Iit)di = θt

(
a1 −

τP
τZ + τP

(
k2

β
)

)(
τ̂θ

τ̂θ + τθ

)
+

ut+1

(
a2 −

τP
τZ + τP

(
k3

β
)

)(
τ̂u

τ̂u + τu

)
− ut

(
τP

τZ + τP

)(
τ̂uc

τ̂uc + τu

)(
1

β

)
+(

τP
τZ + τP

)
(
k4pt − k1dt−1 − k5θ̄

β
).

Last step is to plug in
∫
iE(zt|Iit)di and var(zt|Iit) into the market-clearing condition (*)

and compare the coefficients with the price equation we conjectured from the beginning. Let

var(δ
k′2
k′4
θt+1 + δ

k′3
k′4
ut+2) = Vt and note that var(zt|Iit) = (τZ + τP )−1. Once comparing the

coefficients, we obtain that equilibrium price function in any linear and symmetric equilibrium

given signal precision (τ̂u, τ̂θ.τ̂uc) must be such that

pt =
1

k4
(k1dt−1 + k2θt + k3ut+1 + ut + k5θ̄)

in which the set of coefficients must satisfy the following system of equations.

k1

k4
= αa1

k2 =
a1

(
τ̂θ

τ̂θ+τθ

)
ρ ((τZ + τP )−1 + Vt) +

(
τP

τZ+τP

)(
τ̂θ

τ̂θ+τθ
− τui

τui+τu

)
1
β

k3 =
a2

(
τ̂u

τ̂u+τu

)
ρ ((τZ + τP )−1 + Vt) +

(
τP

τZ+τP

)(
τ̂u

τ̂u+τu
− τui

τui+τu

)
1
β

k4 =
1

ρ ((τZ + τP )−1 + Vt) +
(

τP
τZ+τP

)(
1− τui

τui+τu

)
1
β

k5

k4
= δ

k′5
k′4

+ a1

where

a1 = δ
k′1
k′4

+ 1, a2 =
δ

k′4
, Vt = δ2

((
k′2
k′4

)2

σ2
θ +

(
k′3
k′4

)2

σ2
u

)

β =
k2a1(τu + τ̂u) + k3a2(τθ + τ̂θ)

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)
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τZ = (a2
1(τθ + τ̂θ)

−1 + a2
2(τu + τ̂u)−1)−1

τP = β2

(
(k2a2 − k3a1)2

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)
+ (τu + τ̂uc)

−1

)−1

Lastly, we impose stationarity condition and finalize our equilibrium characterization.

Consider k1
k4

= αa1, k5
k4

= δ
k′5
k′4

+ a1 and, a1 = δ
k′1
k′4

+ 1. Imposing stationary condition

{k1 = k′1, k4 = k′4, k5 = k′5}, we obtain that.

k1

k4
=

α

1− αδ
and

k5

k4
=

1

(1− δ)(1− αδ)

Combining all the results proves the following proposition.

Proposition 1.9 (Equilibrium characterization) Any stationary equilibrium price given sig-

nal precision {τ̂θ, τ̂u, τ̂uc} is such that

pt =
1

k4
(k1dt−1 + k2θt + k3ut+1 + ut + k5θ̄)

in which
k1

k4
=

α

1− αδ

k2 =
a1

(
τ̂θ

τ̂θ+τθ

)
ρ ((τZ + τP )−1 + Vt) +

(
τP

τZ+τP

)(
τ̂θ

τ̂θ+τθ
− τ̂uc

τ̂uc+τu

)
1
β

k3 =
a2

(
τ̂u

τ̂u+τu

)
ρ ((τZ + τP )−1 + Vt) +

(
τP

τZ+τP

)(
τ̂u

τ̂u+τu
− τ̂uc

τ̂uc+τu

)
1
β

k4 =
1

ρ ((τZ + τP )−1 + Vt) +
(

τP
τZ+τP

)(
1− τ̂uc

τ̂uc+τu

)
1
β

k5

k4
=

1

(1− δ)(1− αδ)
where

a1 =
1

1− αδ
, a2 =

δ

k4
, Vt = δ2

((
k2

k4

)2

σ2
θ +

(
k3

k4

)2

σ2
u

)

β =
k2a1(τu + τ̂u) + k3a2(τθ + τ̂θ)

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)

τZ = (a2
1(τθ + τ̂θ)

−1 + a2
2(τu + τ̂u)−1)−1

τP = β2

(
(k2a2 − k3a1)2

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)
+ (τu + τ̂uc)

−1

)−1

Denote k̂4 = 1
k4

. From the proposition, we can easily substitute (τ̂θ, τ̂u, τ̂uc) further and

obtain the following corollary.

Corollary 1.1 Provided that τ̂uc = 0 and τ̂θ →∞, then
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1. if τ̂u = 0, then

k1

k4
=

α

1− αδ
,
k2

k4
=

1

1− αδ
, k3 = 0, k̂4 = ρδ2

((
1

1− αδ

)2

σ2
θ + k̂2

4σ
2
u

)

2. if τ̂u →∞, then

k1

k4
=

α

1− αδ
,
k2

k4
=

1

1− αδ
, k3 = δ, k̂4 = ρδ2

((
1

1− αδ

)2

σ2
θ + δ2k̂2

4σ
2
u

)
.

1.8.2 Omitted proofs

Proof of Remark 1.1: To prove this remark, we first obtain equilibrium characterization of the

baseline model by substituting τ̂u = 0 and τ̂uc = 0 into Proposition 1.9, which yields

pt =
1

k4
(k1dt−1 + k2θt + ut + k5θ̄)

where
k1

k4
=

α

1− αδ
,

k2

k4
=

(
τ̂θ + k2

2τu
τθ + τ̂θ + k2

2τu

)(
1

1− αδ

)
k5

k4
=

1

(1− δ)(1− αδ)
, k4 =

(
τ̂θ

τ̂θ + k2
2τu

)
1

K

K = ρ

[
1

(1− δα)2(k2
2τu + τ̂θ + τθ)

+ δ2

((
k2

k4

)2 1

τθ
+

(
1

k4

)2 1

τu

)]
.

Next, we simplify the system of equations by substituting k2
k4

and K into the equation

k4 =
(

τ̂θ
τ̂θ+k22τu

)
1
K which yields

k2

τ̂θ

(
1 +

δ2(τ̂θ + k2
2τu)2

τθ + k2
2τu + τ̂θ

[
1

k2
2τu

+
1

τθ

])
︸ ︷︷ ︸

LHS

=
1

ρ

(
1

1− αδ

)
︸ ︷︷ ︸

RHS

(1.8.2.1)

which is now a function of only k2. Note that

k4 = (1− αδ)
(
τθ + τ̂θ + k2

2τu
τ̂θ + k2

2τu

)
k2

is a function of k2 which will always exist if k2 exists. Thus, we obtain the following lemma.

Lemma 1.3 A baseline equilibrium exists iff there exists k2 ∈ R+ such that

k2

τ̂θ

(
1 +

δ2(τ̂θ + k2
2τu)2

τθ + k2
2τu + τ̂θ

[
1

k2
2τu

+
1

τθ

])
=

1

ρ

(
1

1− αδ

)
.
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Next, we prove existence condition by finding a condition when k2 exists. Considering the

left term (LHS) from Equation 1.8.2.1, we can find that ∂LHS∂k2
≥ 0 if and only if

3δ2τ4
uk

8
2+6

(
δ2τθ +

7

6
δ2τ̂θ +

1

6
τθ

)
τ3
uk

6
2+3k4

2τ
2
u

(
(δ2 +

2

3
)τ2
θ +

τ̂θ
3

(7δ2 + 2)τθ + 5δ2τ̂2
θ

)
+ τuk

2
2

(
τ3
θ + 2τ2

θ τ̂θ(δ
2 + 1) + τθ τ̂

2
θ + δ2τ̂3

θ

)
≥ δ2τθ τ̂

2
θ (τθ + τ̂θ) (1.8.2.2)

which implies that there exists k∗2 such that ∂LHS∂k2
≥ 0 if k2 ≥ k∗2 and ∂LHS

∂k2
≤ 0 if k2 ≤ k∗2 as

plotted in Figure 1.11. This implies that k2 exists if and only if the right term (RHS) in Equation

1.8.2.1 is sufficiently high to have an intersection. That is, when ρ is sufficiently low. This

proves the first result in the remark. Note that we choose the most informative equilibrium, the

equilibrium with the higher k2 which is on the right side as marked in the figure.

Figure 1.11: A diagram illustrating how k2 of the most informative equilibrium is determined from an
intersection of LHS and RHS.

To perform comparative statics on price informativeness, recall that price informativeness

depends on var(θt|pt) = (τθ + k2
2τu)−1. Therefore, unless we analyze the effect of a change in

τθ, we can just analyze the effect on k2 using the equation 1.8.2.1. A higher k2 would imply

that price informativeness is higher.

First, an increase in ρ decreases k2 since RHS shifts downward. To see how an increase in

τ̂θ affects k2, we first obtain that ∂LHS∂τ̂θ
≤ 0 iff

δ2τ4
uk

8
2 + 2

(
δ2(τθ + τ̂θ) +

τθ
2

)
τ3
uk

6
2 + k4

2(τθ + τ̂θ)(δ
2(τθ + τ̂θ) + 2τθ)τ

2
u

+ k2
2τuτθ(τθ + τ̂θ)

2 ≥ δ2τθ τ̂
2
θ (1.8.2.3)

This finding implies that there exists k̂2 such that the LHS curve will shift down for all values

of k2 ≥ k̂2 and shift up for k2 ≤ k̂2 when τ̂θ increases. Given k∗2 in equation 1.8.2.2 and k̂2 in

equation 1.8.2.3, we know that a sufficient condition for the most informative equilibrium to

exhibit ∂k2∂τ̂θ
≥ 0 is when the equilibrium k2 ≥ max{k∗2, k̂2}. This condition guarantees that the

most informative equilibrium (k2 ≥ k∗2) is increasing in τ̂θ. Therefore, a sufficient condition

for the most informative k2 to be increasing in τ̂θ is that RHS is sufficiently high (such that

k2 ≥ max{k∗2, k̂2}). This can be achieved when ρ is sufficiently low.

Lastly, to prove that the market price is never fully revealing, it is sufficient to prove that

limτ̂θ→∞ k4 is finite. Recall that

k2

k4
=

(
τ̂θ + k2

2τu
τθ + τ̂θ + k2

2τu

)(
1

1− αδ

)
and k4 =

(
τ̂θ

τ̂θ + k2
2τu

)
1

K
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where K = ρ

[
1

(1− δα)2(k2
2τu + τ̂θ + τθ)

+ δ2

((
k2

k4

)2 1

τθ
+

(
1

k4

)2 1

τu

)]
.

Taking the limit, we obtain

lim
τ̂θ→∞

k2

k4
=

1

1− αδ

lim
τ̂θ→∞

k4 =
1

limτ̂θ→∞K

lim
τ̂θ→∞

K = ρ

[
δ2

((
1

1− αδ

)2 1

τθ
+

(
1

limτ̂θ→∞ k4

)2 1

τu

)]
.

Substitute limτ̂θ→∞K into limτ̂θ→∞ k4 and solve for limτ̂θ→∞ k4 in the most informative

equilibrium yields

lim
τ̂θ→∞

k4 =
1 +

√
1− 4ρ2δ4σ2

θσ
2
u

(1−αδ)2

2ρδ2σ2
θ

(1−αδ)2

which is finite. This proves the third result in the remark.

Proof of Remark 1.2: Let signal profile be sit = {θk}t+nk=t . Suppose that equilibrium price

function is

pt = k1dt−1 + k2,1θt + k2,2θt+1 + · · ·+ k2,n+1θt+n + k4ut (1.8.2.4)

Recall that the trading strategy of each investor i is

xit − uit =
E(δpt+1 + dt|Iit)− pt
V ar(δpt+1 + dt|Iit)

which, once combining with market-clearing condition, implies that

pt =

∫
i
E(δpt+1 + dt|Iit)di+ ρV ar(δpt+1 + dt|Iit)ut. (1.8.2.5)

We know that

E(δpt+1 + dt|Iit) = (δk1 + 1)dt + δ(k2,1θt+1 + k2,2θt+2 + · · ·+ k2,nθt+n)

var(δpt+1 + dt|Iit) = δ2var(k2,n+1θt+n+1 + k4ut+1|Iit) = δ2(k2
2,n+1σ

2
θ + k2

4σ
2
u).

Substituting into Equation 1.8.2.5 yields

pt = (δk1 + 1)dt + δ(k2,1θt+1 + k2,2θt+2 + · · ·+ k2,nθt+n) + ρδ2(k2
2,n+1σ

2
θ + k2

4σ
2
u)ut

Comparing the coefficients with Equation 1.8.2.4 proves the following lemma

Lemma 1.4 Given signal profile of sit = {θk}t+nk=t , the equilibrium price is

pt =
α

1− αδ
dt−1 +

θt
1− αδ

+ δ
θt+1

1− αδ
+ δ2 θt+2

1− αδ
+ · · ·+ δn

θt+n
1− αδ

+ k4ut

where k4 = ρδ2
[

δ2n

(1−αδ)2σ
2
θ + k2

4σ
2
u

]
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Figure 1.12: A diagram illustrating how an increase in n reduces k4 in the equilibrium.

It is immediate to see that the price is not fully revealing as k4 cannot be zero for any finite

value of n. This proves the first result in the remark.

Next, we will analyze the effect of an increase in n on k4. From k4 = ρδ2

[
δ2n

(1− αδ)2
σ2
θ + k2

4σ
2
u

]
︸ ︷︷ ︸

RHS

,

one can plot a diagram as shown in Figure 1.12.

As shown in Figure 1.12, an increase in n causes RHS to shift down, resulting in lower

equilibrium k4. Also, when discount factor is one, we obtain k4 = ρ
[

1
(1−α)2

σ2
θ + k2

4σ
2
u

]
which

is no longer depending on n. This proves the second and third finding in the remark.

Proof of Remark 1.3: First, we characterize the equilibrium in the static setting when

τ̂θ →∞. Suppose that equilibrium price in period 1 is

p1 = k1θ + k2u2 + k3u1.

Combine the standard trading strategy in period 1

xi − ui =
E(θ + u2|Ii)− p1

var(θ + u2|Ii)
,

with the market-clearing condition yields

p1 = E(θ + u2|Ii) + ρvar(θ + u2|Ii)u1.

Define p̂ ≡ p1−k1θ
k2

= u2 + k3
k2
u1 and τp =

(
k2
k3

)2
τu. We obtain that

u2|p1, sit ∼ N
(
τ̂usu,i + τpp̂

τ̂u + τp + τu
, (τ̂u + τp + τu)−1

)
.

Substituting into the market-clearing price condition gives

p1 = θ +
τ̂usu,i + τpp̂

τ̂u + τp + τu
+ ρ(τ̂u + τp + τu)−1u1.

Comparing the coefficients, we obtain

k1 = 1, k2 =
τ̂u + τp

τ̂u + τp + τu
, k3 =

τp
k3
k2

+ ρ

τ̂u + τp + τu
.

which we can solve to get k2k3 = τ̂u
ρ and that

k2 =
τ̂u +

(
τ̂u
ρ

)2
τu

τ̂u +
(
τ̂u
ρ

)2
τu + τu

, k3 =
ρ+

(
τ̂u
ρ

)
τu

τ̂u +
(
τ̂u
ρ

)2
τu + τu

.
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From the formula, we obtain limτ̂u→∞ k2 = 1 and limτ̂u→∞ k3 = 0 which implies that

limτ̂u→∞ var(θ + u2 − p1) = 0. Also, it is immediate to see that ∂k2∂τ̂u
> 0 For k3, first-order

derivative implies that ∂k3∂τ̂u
> 0 if and only if τ̂2

uτ
2
u + 2τuρ

2τ̂u + ρ4 − τ2
uρ

2 > 0. Solving this

quadratic equation for positive value of τ̂u, we obtain that τ̂u >
ρ(τu−ρ)
τu

. Therefore, ∂k3∂τ̂u
> 0

iff τ̂u >
ρ(τu−ρ)
τu

. This also immediately proves that ∂ var(θ+u2−p1)
∂τ̂u

< 0 if τ̂u >
ρ(τu−ρ)
τu

as k2

increases while k3 decreases. From perceived asset risk varθ + u2|p1, Ii = (τu + τp + τ̂u)−1,

it must decrease when τ̂u increases as ∂τp
∂τ̂u

> 0.

For the price informativeness, we know that var(θ|p1) = (τθ + (k2
2 + k2

3)−1τu)−1. Since

var(θ|p1, τ̂u = 0) = (τθ + ( τuρ )2τu)−1 and limτ̂u→∞ var(θ|p1) = (τθ + τu)−1, this implies

that price informativeness must increase for some τ̂u if ρ > τu, because var(θ|p1, τ̂u = 0) >

limτ̂u→∞ var(θ|p1) if ρ > τu. Moreover, considering the first-order derivative ∂k22+k23
∂τ̂u

, we

obtain

sgn(
∂(k2

2 + k2
3)

∂τ̂u
) = sgn

((
τ̂u
ρ

)3

τu +
τu
ρ

(τu − τ̂u)− ρ

)
which will always be positive if τu > ρ and |τu − ρ| is sufficiently high, and will be negative if

τu < ρ and τ̂u is sufficiently small. This proves the remark.

Proof of Proposition 1.1: First we substitute τ̂uc = 0 and τ̂θ → ∞ into equilibrium

characterization in Proposition 1.9 which gives the following lemma.

Lemma 1.5 Provided that τ̂uc = 0 and 1
τ̂θ

= 0, the equilibrium price is such that

k3 = δ
τ̂u + k2

3τu
τ̂u + k2

3τu + τu

k2

k4
=

1

1− αδ

k4 =
1− δ

k3

(
k23τu

τ̂u+k23τu+τu

)
ρδ2

((
k2
k4

)2
σ2
θ +

(
k3
k4

)2
σ2
u + 1

k24
(τ̂u + k2

3τu + τu)−1

)
From this characterization, we know that when τ̂u = 0, then

k3 = 0 and k4 =
1

ρδ2

((
1

1−αδ

)2
σ2
θ + 1

k24
σ2
u

)
Let k̂4 = 1

k4
be the price sensitivity to noise factor ut. Rewriting the condition of k4 gives

k̂4 = ρδ2

((
1

1− αδ

)2

σ2
θ + k̂2

4σ
2
u

)
→ k̂4 =

1−
√

1− 4ρ2δ4k̂2
2σ

2
θσ

2
u

2ρδ2σ2
u

.

To prove the first result in the remark, taking first-order derivative with respect to τ̂u around

τ̂u = 0 on k3 and k̂4 gives

∂k3

∂τ̂u

∣∣∣∣
τ̂u=0

=
1

τu
and

∂k̂4

∂τ̂u

∣∣∣∣∣
τ̂u=0

=
δ2k̂4(τu − ρk̂4)

τu(τu − 2ρk̂4δ2)
.

For the sign of ∂k̂4
∂τ̂u

∣∣∣
τ̂u=0

, it is positive if

46



1. τu − ρk̂4 ≥ 0 and τu − 2ρk̂4δ
2 ≥ 0, or

2. τu − ρk̂4 ≤ 0 or τu − 2ρk̂4δ
2 ≤ 0.

This implies that if δ is sufficiently high, ∂k̂4
∂τ̂u

∣∣∣
τ̂u=0

≥ 0 if τu ≥ 2ρk̂4δ
2 or τu ≤ ρk̂4. Checking

the condition τu ≥ 2ρk̂4δ
2 by substituting k̂4 yields

1 ≥ 1−

√
1−

4ρ2δ4( 1
1−αδ )2σ2

θ

τu

which is always true. This proves that, if δ is sufficiently high, then

∂k̂4

∂τ̂u

∣∣∣∣∣
τ̂u=0

=
δ2k̂4(τu − ρk̂4)

τu(τu − 2ρk̂4δ2)
≥ 0.

Also, since price sensitivity to next-period noise factor ut+1 is ∂pt
∂ut+1

= k3
k4

= k3k̂4, we

immediately obtain that ∂pt
∂ut+1

is increasing in τ̂u when τ̂u = 0. This proves the first result in

the proposition.

Next, we check the sign of ∂var(δpt+1+dt−pt)
∂τ̂u

. Taking first-order derivative with respect to

τ̂u and simplifying the condition gives

∂var(δpt+1 + dt − pt)
∂τ̂u

∣∣∣∣
τ̂u=0

= 2k̂4

(
(δ2 + 1)

∂k̂4

∂τ̂u
− δk4

τu

)

which, once substituting ∂k̂4
∂τ̂u

, will be positive if

τu(δ(δ2 + 1)− 1) > ρk4(1− δ)2

which is true if δ is sufficiently high. This proves the second result in the proposition.

It is immediate to see that price informativeness is decreasing when τ̂u = 0 since the k2
k4

remains unchanged, and k3
k4

and 1
k4

are both increasing. This proves the third result in the

proposition.

Lastly, we check the sign of ∂var(δpt+1+dt|Iit)
∂τ̂u

. First, note that var(δpt+1 + dt|Iit) =

δ2

((
k2
k4

)2
σ2
θ +

(
k3
k4

)2
σ2
u + k̂2

4(τ̂u + k2
3τu + τu)−1

)
. The first-order derivative with respect

to τ̂u implies that

∂var(δpt+1 + dt|Iit)
∂τ̂u

∣∣∣∣
τ̂u=0

≥ 0 iff
∂k̂4

∂τ̂u

∣∣∣∣∣
τ̂u=0

≥ k̂4

2τu
.

Substituting ∂k̂4
∂τ̂u

∣∣∣
τ̂u=0

into the condition ∂k̂4
∂τ̂u

∣∣∣
τ̂u=0

≥ k̂4
2τu

and simplifying the inequality condi-

tion gives the condition δ2 ≥ 1
2 which is true if δ is sufficiently high. This proves the last result

in the proposition.

Proof of Proposition 1.2: Recall from Lemma 1.5 that, provided that τ̂uc = 0 and τ̂θ →∞,

the equilibrium price is such that

k3 = δ
τ̂u + k2

3τu
τ̂u + k2

3τu + τu
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k2

k4
=

1

1− αδ
= k̂2

k4 =
1− δ

k3

(
k23τu

τ̂u+k23τu+τu

)
ρδ2

((
k2
k4

)2
σ2
θ +

(
k3
k4

)2
σ2
u + 1

k24
(τ̂u + k2

3τu + τu)−1

)
Denote limτ̂u→∞ k3 = k3∞, 1

k4
= k̂4, and limτ̂u→∞ k̂4 = k̂4∞. When τ̂u → ∞, we obtain

that k3∞ = δ and k̂4∞ = ρδ2(k̂2
2σ

2
θ + δ2σ2

uk̂
2
4∞) which can be solved to get k̂4∞ =

1−
√

1−4ρ2δ6k̂22σ
2
θσ

2
u

2ρδ4σ2
u

. Now, to find k̂4 for arbitrary τ̂u, consider the equation of k̂4.

k̂4 =
ρδ2

(
k̂2

2σ
2
θ + k2

3σ
2
uk̂

2
4 + k̂2

4(τ̂u + k2
3τu + τu)−1

)
1− δ

k3

(
k23τu

τ̂u+k23τu+τu

)
which is equivalent to

k̂4 = δk̂4

(
k3τu

τ̂u + k2
3τu + τu

)
+ ρδ2

(
k̂2

2σ
2
θ + k2

3σ
2
uk̂

2
4 + k̂2

4(τ̂u + k2
3τu + τu)−1

)
Comparing with the equation of k̂4∞, we obtain that k̂4 > k̂4∞ if and only if at k̂4 = k̂4∞,

δk̂4

(
k3τu

τ̂u + k2
3τu + τu

)
+ρδ2

(
k̂2

2σ
2
θ + k2

3σ
2
uk̂

2
4 + k̂2

4(τ̂u + k2
3τu + τu)−1

)
> ρδ2(k̂2

2σ
2
θ+δ

2σ2
uk̂

2
4).

(1.8.2.6)

This is directly proved from the left panel in Figure 1.13 which shows that the RHS term

which determines k̂4∞ must be lower than the RHS term which determines k̂4 evaluated at k̂4∞

to achieve k̂4 ≥ k̂4∞. Also, since a) RHS is continuous in τ̂u, b) k̂4 when τ̂u = 0 is weakly

higher than k̂4,∞ which can be proved easily by substituting τ̂u = 0 into Lemma 1.5, and c)
∂k̂4
∂τ̂u

> 0 from Proposition 1.1, the condition 1.8.2.6 is sufficient to rule out the other case when

all the intersections of k̂4 are on the left side of k̂4∞. This case is shown in the right panel in

Figure 1.13.

Figure 1.13: The diagram (left) illustrating that RHS which determines k̂4∞ must be below RHS which
determines k̂4 to achieve k̂4 ≥ k̂4∞. The right panel illustrates another possible case which yields
k̂4 ≤ k̂4∞.

Simplifying Equation 1.8.2.6 yields

ρδ4σ2
uk̂

2
4 < δk̂4

(
k3τu

τ̂u + k2
3τu + τu

)
+ ρδ2

(
k2

3σ
2
uk̂

2
4 + k̂2

4(τ̂u + k2
3τu + τu)−1

)
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which is always true if

ρδ2σ2
uk̂

2
4 < δk̂4

(
k3τu

τ̂u + k2
3τu + τu

)
+ ρδ2

(
k2

3σ
2
uk̂

2
4 + k̂2

4(τ̂u + k2
3τu + τu)−1

)
.

because δ ≤ 1. Rearranging and simplifying the condition, given that τ̂u 6= 0 yields

ρk̂4

τu

(
(1− δ2)(τ̂u + κ2

3τu) + τu
)
< τu.

This proves the following lemma.

Lemma 1.6 For any τ̂u ∈ R+, k̂4∞ < k̂4 if and only if ρk̂4∞τu
(
(1− δ2)(τ̂u + κ2

3τu) + τu
)
<

τu.

Indeed, k̂4∞ < k̂4 is always true for any positive k̂4 if δ is sufficiently high. To see this,

substituting k̂4∞ into ρk̂4∞
τu

(
(1− δ2)(τ̂u + κ2

3τu) + τu
)
< τu gives1−

√
1− 4ρ2δ6k̂2

2σ
2
θσ

2
u

2ρδ4σ2
u

( ρ

τu

)(
(1− δ2)(τ̂u + κ2

3τu) + τu
)
< τu.

which is equivalent to

1−
√

1− 4ρ2δ6k̂2
2σ

2
θσ

2
u <

2τuδ
4

(1− δ2)(τ̂u + κ2
3τu) + τu

which is true if δ is sufficiently high. This proves the proposition.

Proof of Proposition 1.3 and 1.4: Recall from Lemma 1.5 that if τ̂uc = 0 and τ̂θ → ∞,

the equilibrium price is such that

k3 = δ
τ̂u + k2

3τu
τ̂u + k2

3τu + τu

k2

k4
=

1

1− αδ

k4 =
1− δ

k3

(
k23τu

τ̂u+k23τu+τu

)
ρδ2

((
k2
k4

)2
σ2
θ +

(
k3
k4

)2
σ2
u + 1

k24
(τ̂u + k2

3τu + τu)−1

)
which, given that k̂4 = 1

k4
, is equivalent to

k̂4 = δk̂4

(
k3τu

τ̂u + k2
3τu + τu

)
+ ρδ2

(
k̂2

2σ
2
θ + k2

3σ
2
uk̂

2
4 + k̂2

4(τ̂u + k2
3τu + τu)−1

)
.

From the previous equilibrium conditions, when τ̂u = 0, we obtain

k3 = 0, k̂2 =
1

1− αδ
, k̂4 = ρδ2

(
k̂2

2σ
2
θ + k̂2

4σ
2
u

)
(∗)

Also, when τ̂u →∞, we obtain

k3 = δ, k̂2 =
1

1− αδ
, k̂4 = ρδ2

(
k̂2

2σ
2
θ + δ2k̂2

4σ
2
u

)
(∗∗).
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Denote k̂4,0 = k̂4 at τ̂u = 0 and k̂4,∞ = limτ̂u→∞ k̂4. From Equation (∗) and (∗∗), solving

for the most informative equilibrium k̂4,0 and k̂4,∞ yields

k̂4,0 =
1−

√
1− 4ρ2δ4k̂2

2σ
2
θσ

2
u

2ρδ2σ2
u

, and k̂4,∞ =
1−

√
1− 4ρ2δ6k̂2

2σ
2
θσ

2
u

2ρδ4σ2
u

which implies that

k̂4,0 > k̂4,∞.

Furthermore, one can prove that

var(δpt+1 + dt − pt|τ̂u = 0) = δ2k̂2
2σ

2
θ + δ2k̂2

4,0σ
2
u + k̂2

4,0σ
2
u

> δ2k̂2
2σ

2
θ + δ4k̂2

4,∞σ
2
u + k̂2

4,∞σ
2
u

= lim
τ̂u→∞

var(δpt+1 + dt − pt)

var(δpt+1 + dt|Iit, pt, τ̂u = 0) = δ2k̂2
2σ

2
θ + δ2k̂2

4,0σ
2
u

> δ2k̂2
2σ

2
θ + δ4k̂2

4,∞σ
2
u

= lim
τ̂u→∞

var(δpt+1 + dt|Iit, pt).

Also, when δ = 1 which implies that k̂4,0 = k̂4,∞, it is immediate to see that

var(δpt+1 + dt − pt|τ̂u = 0) = k̂2
2σ

2
θ + k̂2

4,0σ
2
u + k̂2

4,0σ
2
u

= k̂2
2σ

2
θ + k̂2

4,∞σ
2
u + k̂2

4,∞σ
2
u

= lim
τ̂u→∞

var(δpt+1 + dt − pt)

var(δpt+1 + dt|Iit, pt, τ̂u = 0) = k̂2
2σ

2
θ + k̂2

4,0σ
2
u

= k̂2
2σ

2
θ + k̂2

4,∞σ
2
u

= lim
τ̂u→∞

var(δpt+1 + dt|Iit, pt)

For the price informativeness, recall that k̂4,0 = k̂4,∞ ≤ k̂4 when δ = 1 by Proposition 1.2

and k̂3 > 0. Therefore, if δ is sufficiently high, then

var(θt|pt, τ̂u = 0) =

(
τθ +

(
k̂2

2

k̂2
4,0

)
τu

)−1

<

(
τθ +

(
k̂2

2

k̂2
3 + k̂2

4

)
τu

)−1

= var(θt|pt)

This proves Proposition 1.3 and 1.4.

Proof of Remark 1.4: This is directly proved from Proposition 1.2, 1.3, and 1.4.

Proof of Proposition 1.5: Let signal profile be sit = {uk}t+nk=t+1. Suppose that equilibrium

price function is

pt = k1dt−1 + k2θt + k3,1ut+1 + k3,2ut+2 + · · ·+ k3,nut+n + k4ut (1.8.2.7)
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Recall that the trading strategy of each investor i is

xit − uit =
E(δpt+1 + dt|Iit)− pt
V ar(δpt+1 + dt|Iit)

which, by market-clearing condition, implies that

pt =

∫
i
E(δpt+1 + dt|Iit)di+ ρV ar(δpt+1 + dt|Iit)ut. (1.8.2.8)

We know that

E(δpt+1 + dt|Iit) = (δk1 + 1)dt + δ(k3,1ut+2 + k3,2ut+3 + · · ·+ k3,n−1ut+n + k4ut+1)

var(δpt+1 + dt|Iit) = δ2var(k2θt+1 + k3,nut+n+1|Iit) = δ2(k2
2σ

2
θ + k2

3,nσ
2
u).

Substituting into Equation 1.8.2.8 yields

pt = (δk1+1)dt+δ(k3,1ut+2+k3,2ut+3+· · ·+k3,n−1ut+n+k4ut+1)+ρδ2(k2
2σ

2
θ+k2

3,nσ
2
u)ut.

Comparing the coefficients with Equation 1.8.2.7 yields the following lemma

Lemma 1.7 Given signal profile of sit = {uk}t+nk=t+1, the equilibrium price is

pt =
α

1− αδ
dt−1 +

θt
1− αδ

+ δk4ut+1 + δ2k4ut+2 + · · ·+ δnk4ut+n + k4ut

where k4 = ρδ2

[(
1

1−αδ

)2
σ2
θ + δ2nk2

4σ
2
u

]
.

From the lemma, it is immediate to see that the price is not fully revealing as k4 cannot be

zero for any finite value of n. Next, we will analyze the effect of an increase in n on k4. From

k4 = ρδ2

[(
1

1− αδ

)2

σ2
θ + δ2nk2

4σ
2
u

]
︸ ︷︷ ︸

RHS

, one can plot a diagram as shown in Figure 1.14

Figure 1.14: A diagram illustrating how an increase in n causes RHS to tilt downward which causes the
equilibrium k4 to decrease.

From Figure 1.14, an increase in n cause RHS to tilt downward, resulting in lower equilib-

rium k4. To conclude, k4 is decreasing in n when discount factor is less than one. From this

finding, we can further prove that

var(δpt+1 + dt − pt) = δ2σ2
θ

(
1

1− αδ

)2

+ σ2
uk

2
4

(
1 + δ2(n+1)

)
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var(δpt+1 + dt|Iit, pt) = δ2σ2
θ

(
1

1− αδ

)2

+ σ2
uk

2
4δ

2(n+1)

are both decreasing when n increases when δ < 1.

When δ = 1, we know that k4 is independent in n as k4 = ρ

[(
1

1−α

)2
σ2
θ + k2

4σ
2
u

]
. Also,

substituting δ = 1 into var(δpt+1 + dt − pt) and var(δpt+1 + dt|Iit, pt) gives

var(δpt+1 + dt − pt) = σ2
θ

(
1

1− α

)2

+ 2σ2
uk

2
4

var(δpt+1 + dt|Iit, pt) = σ2
θ

(
1

1− α

)2

+ σ2
uk

2
4

which does not depend on n as well. However, price informativeness must be decreasing when

n increases as

var(θt|pt) =

(
τθ +

(
1

1− α

)2( 1

k2
4(n+ 1)

)
τu

)−1

which is increasing in n. This proves the proposition.

Proof of Proposition 1.6: First, we will prove that limτ̂θ→∞,τ̂u→∞
∂pt
∂ut
≤ limτ̂θ→∞

∂pt
∂ut

.

Recall from Proposition 1.9 that any stationary equilibrium price with signal precision {τ̂θ, τ̂u, τ̂uc}
is such that

pt =
1

k4
(k1dt−1 + k2θt + k3ut+1 + ut + k5θ̄)

in which
k1

k4
=

α

1− αδ

k2 =
a1

(
τ̂θ

τ̂θ+τθ

)
ρ ((τZ + τP )−1 + Vt) +

(
τP

τZ+τP

)(
τ̂θ

τ̂θ+τθ
− τ̂uc

τ̂uc+τu

)
1
β

k3 =
a2

(
τ̂u

τ̂u+τu

)
ρ ((τZ + τP )−1 + Vt) +

(
τP

τZ+τP

)(
τ̂u

τ̂u+τu
− τ̂uc

τ̂uc+τu

)
1
β

k4 =
1

ρ ((τZ + τP )−1 + Vt) +
(

τP
τZ+τP

)(
1− τ̂uc

τ̂uc+τu

)
1
β

k5

k4
=

1

(1− δ)(1− αδ)
where

a1 =
1

1− αδ
, a2 =

δ

k4
, Vt = δ2

((
k2

k4

)2

σ2
θ +

(
k3

k4

)2

σ2
u

)

β =
k2a1(τu + τ̂u) + k3a2(τθ + τ̂θ)

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)

τZ = (a2
1(τθ + τ̂θ)

−1 + a2
2(τu + τ̂u)−1)−1

τP = β2

(
(k2a2 − k3a1)2

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)
+ (τu + τ̂uc)

−1

)−1
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Let τ̂uc = τ̂up. Denote limτ̂u→∞ k3 = k3∞, k̂4 = 1
k4

, and limτ̂u→∞ k4 = k4∞. Taking

limit τ̂θ →∞ and simplifying the equilibrium characterization yield the following equilibrium

conditions:
k2

k4
=

1

1− αδ
= k̂2

k3 = δ

(
k2

3(τu + τ̂up) + τ̂u
τ̂u + τu + k2

3(τu + τ̂up)

)
k̂4 = δk̂4

(
k3τu

τ̂u + k2
3(τu + τ̂up) + τu

)
+ρδ2

(
k̂2

2σ
2
θ + k2

3σ
2
uk̂

2
4 + k̂2

4(τ̂u + k2
3(τu + τ̂up) + τu)−1

)
Also, when considering τ̂u → ∞, we obtain k3∞ = δ and k̂4∞ = ρδ2(k̂2

2σ
2
θ + δ2σ2

uk̂
2
4∞).

Following the same argument in the proof of Proposition 1.2 (to obtain Lemma 1.6), we know

that k̂4 > k̂4∞ if and only if, at k̂4 = k̂4∞,

ρδ4σ2
uk̂

2
4 < δk̂4

(
k3τu

τ̂u + k2
3(τu + τ̂up) + τu

)
+ρδ2

(
k̂2

2σ
2
θ + k2

3σ
2
uk̂

2
4 + k̂2

4(τ̂u + k2
3(τu + τ̂up) + τu)−1

)
which is always true if

ρδ2σ2
uk̂

2
4 < δk̂4

(
k3τu

τ̂u + k2
3(τu + τ̂up) + τu

)
+ρδ2

(
k̂2

2σ
2
θ + k2

3σ
2
uk̂

2
4 + k̂2

4(τ̂u + k2
3(τu + τ̂up) + τu)−1

)
because δ ≤ 1. Rearranging and simplifying the condition, given that τ̂u 6= 0 yields

ρk̂4

τu

(
(1− δ2)(τ̂u + k2

3(τu + τ̂up)) + τu
)
< τu.

Indeed, k̂4∞ < k̂4 is always true if δ is sufficiently high and n is finite (to guarantee that τ̂up
is finite). To see this, substituting k̂4 = k̂4∞ into ρk̂4

τu

(
(1− δ2)(τ̂u + k2

3(τu + τ̂up)) + τu
)
<

τu. gives1−
√

1− 4ρ2δ6k̂2
2σ

2
θσ

2
u

2ρδ4σ2
u

( ρ

τu

)(
(1− δ2)(τ̂u + k2

3(τu + τ̂up)) + τu
)
< τu.

which is equivalent to

1−
√

1− 4ρ2δ6k̂2
2σ

2
θσ

2
u <

2τuδ
4

(1− δ2)(τ̂u + κ2
3τu) + τu

which is always true if δ is sufficiently high and n is finite (to guarantee that τ̂up is finite). Also,

substituting τ̂u = 0 into the equilibrium condition, we obtain that k̂4 ≥ k̂4∞ at τ̂u = 0. From

the proof, we obtain the following lemma

Lemma 1.8 Provided that Assumption 1.3 is true, then

1. limτ̂θ→∞,τ̂u→∞
∂pt
∂ut

< limτ̂θ→∞
∂pt
∂ut

for any τ̂u ∈ R+.

2. limτ̂θ→∞,τ̂u→∞
∂pt
∂ut
≤ limτ̂θ→∞

∂pt
∂ut

at τ̂u = 0.
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Next, we will prove Proposition 1.6. First note that limτ̂θ→∞,τ̂u→0 k̂4 = limτ̂θ→∞,τ̂u→∞ k̂4

if δ = 1 from Proposition 1.4. Note that Proposition 1.4 remains valid even though τ̂uc = τ̂up >

0 since the signal about ut does not affect the limit values in which τ̂θ →∞ and τ̂u →∞ of all

coefficients in the equilibrium price function. Also, from the equilibrium condition, k3 = 0 if

τ̂u = 0 and k3 > 0 if τ̂u > 0. Therefore, by Lemma 1.8, we immediately obtain that

lim
τ̂θ→∞

∂pt
∂ut
≥ lim

τ̂θ→∞,τ̂u→0

∂pt
∂ut

if δ = 1

lim
τ̂θ→∞

∂pt
∂ut+1

> lim
τ̂θ→∞,τ̂u→0

∂pt
∂ut+1

.

Lastly, from limτ̂θ→∞
∂pt
∂ut
≥ limτ̂θ→∞,τ̂u→0

∂pt
∂ut

when δ = 1 and limτ̂θ→∞
∂pt
∂ut+1

> 0.

Therefore, if δ is sufficiently high, then

lim
τ̂θ→∞,τ̂u→0

var(θt|pt) =

(
τθ +

(
k̂2

2

limτ̂θ→∞,τ̂u→0 k̂
2
4

)
τu

)−1

<

(
τθ +

(
k̂2

2

limτ̂θ→∞(k̂2
3 + k̂2

4)

)
τu

)−1

= lim
τ̂θ→∞

var(θt|pt)

This proves the proposition.

Proof of Proposition 1.7: Recall from Proposition 1.9 that any stationary equilibrium price

with signal precision {τ̂θ, τ̂u, τ̂uc} is such that

pt =
1

k4
(k1dt−1 + k2θt + k3ut+1 + ut + k5θ̄)

in which
k1

k4
=

α

1− αδ

k2 =
a1

(
τ̂θ

τ̂θ+τθ

)
ρ ((τZ + τP )−1 + Vt) +

(
τP

τZ+τP

)(
τ̂θ

τ̂θ+τθ
− τ̂uc

τ̂uc+τu

)
1
β

k3 =
a2

(
τ̂u

τ̂u+τu

)
ρ ((τZ + τP )−1 + Vt) +

(
τP

τZ+τP

)(
τ̂u

τ̂u+τu
− τ̂uc

τ̂uc+τu

)
1
β

k4 =
1

ρ ((τZ + τP )−1 + Vt) +
(

τP
τZ+τP

)(
1− τ̂uc

τ̂uc+τu

)
1
β

k5

k4
=

1

(1− δ)(1− αδ)
where

a1 =
1

1− αδ
, a2 =

δ

k4
, Vt = δ2

((
k2

k4

)2

σ2
θ +

(
k3

k4

)2

σ2
u

)

β =
k2a1(τu + τ̂u) + k3a2(τθ + τ̂θ)

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)
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τZ = (a2
1(τθ + τ̂θ)

−1 + a2
2(τu + τ̂u)−1)−1

τP = β2

(
(k2a2 − k3a1)2

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)
+ (τu + τ̂uc)

−1

)−1

Case I: when τ̂θ →∞ and τ̂u →∞
Taking limits of τ̂θ → ∞ and τ̂u → ∞ gives τZ → ∞. Also, one can easily simplify the

characterization into

k2 =
a1

ρVt
, k3 =

a2

ρVt
, k4 =

1

ρVt

which implies that

k2

k4
= a1 =

1

1− αδ
,

k3

k4
= a2 =

δ

k4
→ k3 = δ

Denote k̂2 = k2
k4

, k̂3 = k3
k4

, k̂4 = 1
k4

. From the equation k4 = 1
ρVt

, we can rewrite it after

substituting k̂2 and k̂3 as follows:

k̂4 = ρδ2

((
1

1− αδ

)2

σ2
θ + δ2σ2

uk̂
2
4

)
.

To conclude, if τ̂θ →∞ and τ̂u →∞, then

k̂2 =
1

1− αδ
, k3 = δ, k̂4 = ρδ2

((
1

1− αδ

)2

σ2
θ + δ2σ2

uk̂
2
4

)
.

which immediately proves that price efficiency of all measures does not depend on τ̂uc.

Case II: when τ̂θ →∞ and τ̂uc →∞
Taking limit τ̂θ →∞ and τ̂uc →∞ yields τP →∞, τZ = τu+τ̂u

a22
and β = k3

a2
. Substituting

τ̂θ → ∞, τ̂uc → ∞, β = k3
a2

, τZ = τu+τ̂u
a22

, and τP → ∞ into the characterization and

simplifying the system of equations yield

k2 =
a1

ρVt
, k3 =

a2

ρVt
, k4 =

1

ρVt

which implies that

k2

k4
= a1 =

1

1− αδ
,

k3

k4
= a2 =

δ

k4
→ k3 = δ

Denote k̂2 = k2
k4

, k̂3 = k3
k4

, k̂4 = 1
k4

. From the equation k4 = 1
ρVt

, we can rewrite it after

substituting k̂2 and k̂3 as follows:

k̂4 = ρδ2

((
1

1− αδ

)2

σ2
θ + δ2σ2

uk̂
2
4

)
.

To conclude, if τ̂θ →∞ and τ̂uc →∞, then

k̂2 =
1

1− αδ
, k3 = δ, k̂4 = ρδ2

((
1

1− αδ

)2

σ2
θ + δ2σ2

uk̂
2
4

)
.
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Case III: when τ̂u →∞ and τ̂uc →∞
Taking limit τ̂u → ∞ and τ̂uc → ∞ in the equilibrium characterization yields τP → ∞,

τZ = τθ+τ̂θ
a21

and β = k2
a1

. Substituting τ̂u →∞, τ̂uc →∞, β = k2
a1

, τZ = τθ+τ̂θ
a21

, and τP →∞
into the characterization and simplifying the system of equations yield

k2 =
a1

ρVt
, k3 =

a2

ρVt
, k4 =

1

ρVt

which implies that

k2

k4
= a1 =

1

1− αδ
,

k3

k4
= a2 =

δ

k4
→ k3 = δ.

Denote k̂2 = k2
k4

, k̂3 = k3
k4

, k̂4 = 1
k4

. From the equation k4 = 1
ρVt

, we can rewrite it after

substituting k̂2 and k̂3 as follows:

k̂4 = ρδ2

((
1

1− αδ

)2

σ2
θ + δ2σ2

uk̂
2
4

)
.

To conclude, if τ̂u →∞ and τ̂uc →∞, then

k̂2 =
1

1− αδ
, k3 = δ, k̂4 = ρδ2

((
1

1− αδ

)2

σ2
θ + δ2σ2

uk̂
2
4

)
.

From the three cases above, we obtain that, given that X = {dt−1, θt, ut, ut+1},

lim
τ̂θ→∞,τ̂uc→∞

pt(X) = lim
τ̂u→∞,τ̂uc→∞

pt(X) = lim
τ̂θ→∞,τ̂u→∞

pt(X).

as all the coefficients in the equilibrium price equation are identical across three cases. This

proves the proposition.

Proof of Remark 1.5: Recall from Proposition 1.9 that any stationary equilibrium price

with signal precision {τ̂θ, τ̂u, τ̂uc} is such that

pt =
1

k4
(k1dt−1 + k2θt + k3ut+1 + ut + k5θ̄)

in which
k1

k4
=

α

1− αδ

k2 =
a1

(
τ̂θ

τ̂θ+τθ

)
ρ ((τZ + τP )−1 + Vt) +

(
τP

τZ+τP

)(
τ̂θ

τ̂θ+τθ
− τ̂uc

τ̂uc+τu

)
1
β

k3 =
a2

(
τ̂u

τ̂u+τu

)
ρ ((τZ + τP )−1 + Vt) +

(
τP

τZ+τP

)(
τ̂u

τ̂u+τu
− τ̂uc

τ̂uc+τu

)
1
β

k4 =
1

ρ ((τZ + τP )−1 + Vt) +
(

τP
τZ+τP

)(
1− τ̂uc

τ̂uc+τu

)
1
β
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k5

k4
=

1

(1− δ)(1− αδ)
where

a1 =
1

1− αδ
, a2 =

δ

k4
, Vt = δ2

((
k2

k4

)2

σ2
θ +

(
k3

k4

)2

σ2
u

)

β =
k2a1(τu + τ̂u) + k3a2(τθ + τ̂θ)

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)

τZ = (a2
1(τθ + τ̂θ)

−1 + a2
2(τu + τ̂u)−1)−1

τP = β2

(
(k2a2 − k3a1)2

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)
+ (τu + τ̂uc)

−1

)−1

Case I: when τ̂θ →∞, τ̂u = 0, and τ̂uc = 0.
Substituting τ̂θ →∞, τ̂u = 0, and τ̂uc = 0 into the characterization gives

k2

k4
=

1

1− αδ
, k3 = 0, k4 =

1

K

where K = ρδ2

((
k2
k4

)2
1
τθ

+
(

1
k4

)2
1
τu

)
. Denote k̂4 = 1

k4
. Then, we have

k̂4 = ρδ2

((
1

1− αδ

)2

σ2
θ + σ2

uk̂
2
4

)
.

Case II: when τ̂θ →∞, τ̂u = 0, and τ̂uc →∞.
Substituting τ̂θ →∞, τ̂u = 0, and τ̂uc →∞ into the characterization gives

k2

k4
=

1

1− αδ
, k3 = δ, k4 =

1

K

where K = ρδ2

((
k2
k4

)2
1
τθ

+ δ2
(

1
k4

)2
1
τu

)
. Denote k̂4 = 1

k4
. Then, we have

k̂4 = ρδ2

((
1

1− αδ

)2

σ2
θ + δ2σ2

uk̂
2
4

)
.

Comparing two cases above, we see that when δ = 1, k2 and k4 are identical across two

cases. Consider var(θt|pt) =
(
τθ +

(
k22
k23+1

)
τu

)−1
. When τ̂θ → ∞, τ̂u = 0, and τ̂uc = 0,

we have var(θt|pt) =
(
τθ + k2

2τu
)−1. When τ̂θ → ∞, τ̂u = 0, and τ̂uc → ∞, we have

var(θt|pt) =
(
τθ +

(
k22
δ2+1

)
τu

)−1
. Therefore, when discount factor is one, var(θt|pt) given

that τ̂θ → ∞, τ̂u = 0, and τ̂uc = 0 must be lower than that of which τ̂θ → ∞, τ̂u = 0, and

τ̂uc →∞. By continuity, this inequality is valid if δ is sufficiently high. This proves the remark.

Proof of Lemma 1.1: First, we find the ex-ante payoff of each investor i. Consider the

ex-ante utility function

E(Uit(πit|Iit)) = E(E(δpt+1+dt−pt|Iit)(xt−uit))−
ρ

2
E (V ar((δpt+1 + dt − pt)(xt − uit)|Iit))
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Substituting xit − uit = E(δpt+1+dt|Iit)−pt
V ar(δpt+1+dt|Iit) yields

E(Uit(πit|Iit)) = E

(
E(δpt+1 + dt − pt|Iit)2

ρV ar(δpt+1 + dt|Iit)

)
− 1

2ρ
E

(
E(δpt+1 + dt − pt|Iit)2

V ar(δpt+1 + dt|Iit)

)
= E

(
E(δpt+1 + dt − pt|Iit)2

2ρV ar(δpt+1 + dt|Iit)

)
=
V ar (E(δpt+1 + dt − pt|Iit)) + E(E(δpt+1 + dt − pt|Iit))

2ρV ar(δpt+1 + dt|Iit)

Since for any random variable X,

V ar(X) = V ar(E(X|I)) + E(V ar(X|I))

together with law of iterated expectation, we obtain

E(Uit(πit|Iit)) =
V ar (δpt+1 + dt − pt)− V ar(δpt+1 + dt|Iit) + E(δpt+1 + dt − pt)

2ρV ar(δpt+1 + dt|Iit)

=
V ar (δpt+1 + dt − pt) + E(δpt+1 + dt − pt)

2ρV ar(δpt+1 + dt|Iit)
− 1

2ρ

which proves the following lemma

Lemma 1.9 Ex-ante payoff of each investor is

E(Uit(πit|Iit)) =
V ar (δpt+1 + dt − pt) + E(δpt+1 + dt − pt)

2ρV ar(δpt+1 + dt|Iit)
− 1

2ρ

To find optimal information choice, it is easy to see that investors will choose optimal

information choice to minimize V ar(δpt+1 + dt|Iit) to maximize the ex-ante utility. This is

because (τ̂u,it, τ̂θ,it) does not enter into E(δpt+1 + dt − pt) and that investors do not take into

account their influence of unconditional variance V ar (δpt+1 + dt − pt) in the competitive

market setting. Since V ar(δpt+1 + dt|Iit) = Vt + (τZ + τP )−1, optimization problem of any

investor i amounts to

(τ̂u,it, τ̂θ,it) ∈ arg max
τ̂uit,τ̂θit

τZ + τP

subject to the technological constraint

τ̂θ,it + γτ̂u,it ≤ Γ

Since we characterize only symmetric and stationary equilibrium information choice (τ̂θ, τ̂u) ,

we drop subscript it and set Lagrangian function as follows.

L = τZ + τP + λ(Γ− τ̂θ − γτ̂u)

Recall that when τ̂uc = 0

β =
k2a1(τu + τ̂u) + k3a2(τθ + τ̂θ)

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)

τZ = (a2
1(τθ + τ̂θ)

−1 + a2
2(τu + τ̂u)−1)−1

τP = β2

(
(k2a2 − k3a1)2

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)
+ (τu)−1

)−1

.
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We obtain

∂τZ
∂τ̂θ

=
a2

1(τu + τ̂u)2

(a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ))2

∂τZ
∂τ̂u

=
a2

2(τθ + τ̂θ)
2

(a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ))2

∂β

∂τ̂θ
=

a1a2(k3a1 − k2a2)(τu + τ̂u)

(a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ))2

∂β

∂τ̂u
=

a1a2(k2a2 − k3a1)(τθ + τ̂θ)

(a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ))2

∂(τP /β
2)

∂τ̂θ
=

(
τP
β2

)2( k2a2 − k3a1

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)

)2

a2
2

∂(τP /β
2)

∂τ̂u
=

(
τP
β2

)2( k2a2 − k3a1

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)

)2

a2
1

and the first-order condition for any interior solution of (τ̂u, τ̂θ) is

∂τZ + τP
∂τ̂u

− 2λγ = 0

∂τZ + τP
∂τ̂θ

− 2λ = 0

τ̂θ + γτ̂u = Γ

which can be simplified to the two following equations.

∂τZ+τP
∂τ̂θ

∂τZ+τP
∂τ̂u

=

∂τZ
∂τ̂θ

+ 2β ∂β
∂τ̂θ

( τP
β2 ) + β2 ∂(τP /β

2)
∂τ̂θ

∂τZ
∂τ̂u

+ 2β ∂β
∂ûθ

( τP
β2 ) + β2 ∂(τP /β2)

∂ûθ

=
1

γ

and τ̂θ + γτ̂u = Γ.

Let

B =
τP
β2

=

(
(k2a2 − k3a1)2

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)
+ (τu)−1

)−1

.

Substituting all the expressions into the optimality condition gives

1

γ
=

(a1(τu + τ̂u) + βB(k3a1 − k2a2)a2)2

(a2(τθ + τ̂θ) + βB(k2a2 − k3a1)a1)2

which also shows that ∂τZ+τP
∂τ̂θ

≥ 0 and ∂τZ+τP
∂τ̂u

≥ 0. Also,

βB =
k2a1(τu + τ̂u) + k3a2(τθ + τ̂θ)

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)

(
(k2a2 − k3a1)2

a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ)
+ (τu)−1

)−1

=
k2a1(τu + τ̂u) + k3a2(τθ + τ̂θ)

(k2a2 − k3a1)2 + (τu)−1X

where X = a2
1(τu + τ̂u) + a2

2(τθ + τ̂θ). Note that

a1(τu+τ̂u)+βB(k3a1−k2a2)a2 =

(
k3(k3a1 − k2a2) + a1(τu + τ̂u)(τu)−1

)
X

(k2a2 − k3a1)2 + (τu)−1X

a2(τθ + τ̂θ) + βB(k2a2 − k3a1)a1 =

(
k2(k2a2 − k3a1) + a2(τθ + τ̂θ)(τu)−1

)
X

(k2a2 − k3a1)2 + (τu)−1X

and thus substituting βX into the optimality condition yields

1

γ
=

(
k3(k3a1 − k2a2) + a1(τu + τ̂u)(τu)−1

k2(k2a2 − k3a1) + a2(τθ + τ̂θ)(τu)−1

)2
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This simplified optimality condition is similar to equating slope of indifference curve of investors

with price ratio of the technological constraint. The right hand side term is absolute value of

MRS of choosing information bundle (τ̂θ, τ̂u) while the left hand side is the price ratio which is

somewhat depend on the signal precision itself due to the non-linear nature of technological

constraint.

Last step is to check second-order condition whether the function τP + τZ is quasi-concave.

A sufficient way to prove this is to show that (negative) slope of the indifference curve is

decreasing in τ̂θ. To see this, let

MU = k3(k3a1 − k2a2) + a1(τu + τ̂u)(τu + τui)
−1

MD = k2(k2a2 − k3a1) + a2(τθ + τ̂θ)(τu + τui)
−1

and M =
MU

MD
.

Differentiate the slope of the indifference curve gives

∂M2

∂2τ̂θ
= −2M2

M2
D

(τu)−1
(
(k3a1 − k2a2)2 + a2

1(τu + τ̂u)(τu)−1 + a2
2(τθ + τ̂θ)(τu)−1

)
< 0

which is sufficient to prove that the second-order condition is satisfied. Thus, we obtain that, in

any symmetric equilibrium, optimal information choice (τ̂u, τ̂θ) for any interior solution must

satisfy
1

γ
=

(
τuk3(k3a1 − k2a2) + a1(τu + τ̂u)

τuk2(k2a2 − k3a1) + a2(τθ + τ̂θ)

)2

which proves the lemma.

Proof of Proposition 1.8: Recall that any equilibrium information choice of an interior

solution must satisfy

1

γ
=

(
τuk3(k3a1 − k2a2) + a1(τu + τ̂u)

τuk2(k2a2 − k3a1) + a2(τθ + τ̂θ)

)2

.

However, if γ is sufficiently high such that

1

γ
<

(
a1τu

τuk2
2a2 + a2(τθ + Γ)

)2

,

Then, a corner solution of τ̂u = 0 and τ̂θ = Γ is possible.

Next, we will prove that τ̂u > 0 if and only if Γ > Γ∗. Let Γ∗ satisfy

1

γ
=

(
a1τu

τuk̄2
2a2 + a2(τθ + Γ∗)

)2

.

where k̄2 is evaluated at (τ̂θ = Γ, τ̂u = 0).

Now, consider Γ < Γ∗. Suppose that there is an interior solution (τ̂θ, τ̂u) such that τ̂u > 0

in which
1

γ
=

(
τuk3(k3a1 − k2a2) + a1(τu + τ̂u)

τuk2(k2a2 − k3a1) + a2(τθ + τ̂θ)

)2

.
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Then, we can increase γ such that

1

γ
<

(
τuk3(k3a1 − k2a2) + a1(τu + τ̂u)

τuk2(k2a2 − k3a1) + a2(τθ + τ̂θ)

)2

.

for any (τ̂θ, τ̂u). That is, set γ to be sufficiently high to surpass the lowerbound of
(
τuk3(k3a1−k2a2)+a1(τu+τ̂u)
τuk2(k2a2−k3a1)+a2(τθ+τ̂θ)

)2
.

The lowerbound exists and must be positive because 1) k2, k3, and k4 are positive finite

value in the equilibrium which causes τuk2(k2a2 − k3a1) + a2(τθ + τ̂θ) to be finite and 2)

τuk3(k3a1 − k2a2) + a1(τu + τ̂u) > 0 when γ is sufficiently high. The latter condition is true

since τ̂u ≤ Γ∗

γ in any equilibrium and that Γ∗

γ =
(

a1τu
√

Γ∗

τuk̄22a2+a2(τθ+Γ∗)

)2
which implies that τ̂u

(and k3) are approximately zero when γ is sufficiently high. Therefore, if γ is sufficiently high,

then only corner solution where τ̂u = 0 exists.

When Γ > Γ∗, the corner solution is not possible since

1

γ
=

(
a1τu

τuk̄2
2a2 + a2(τθ + Γ∗)

)2

>

(
a1τu

τu k2
2

∣∣
τ̂u=0,τ̂θ=Γ

a2 + a2(τθ + Γ)

)2

.

as k2
2

∣∣
τ̂u=0,τ̂θ=Γ

> k̄2 based on Remark 1.1 proved in the baseline equilibrium setting. This

proves the first result in the proposition

To prove the second statement in the proposition, consider

1

γ
=

(
a1τu

τuk̄2
2a2 + a2(τθ + Γ∗)

)2

.

If γ is high, then Γ∗ must be high to achieve the break-even point. Recall from our previous

proof that if τ̂θ →∞ and τ̂u = 0, then
k2

k4
=

1

1− αδ
, k3 = 0, k4 =

1

K

where K = ρδ2

((
k2
k4

)2
1
τθ

+
(

1
k4

)2
1
τu

)
. Denote k̂4 = 1

k4
. Then, we have

k̂4 = ρδ2

((
1

1− αδ

)2

σ2
θ + σ2

uk̂
2
4

)
.

By continuity, we obtain that if Γ∗ is sufficiently large due to high γ, then the equilibrium price

at Γ∗ is such that

k2

k4
≈ 1

1− αδ
, k3 = 0, k̂4 ≈ ρδ2

((
1

1− αδ

)2

σ2
θ + σ2

uk̂
2
4

)
.

Now, consider Γ → ∞ which implies that τ̂θ → ∞ and τ̂u → ∞ in the interior solution.

Recall from the previous proof that if τ̂θ →∞ and τ̂u →∞, then

k2

k4
=

1

1− αδ
, k3 = δ, k̂4 = ρδ2

((
1

1− αδ

)2

σ2
θ + δ2σ2

uk̂
2
4

)
.

This immediately proves that if discount factor is sufficiently high which causes k̂4 (and k2) to

be approximately identical when Γ = Γ∗ and when Γ→∞, then

var(θt|pt,Γ = Γ∗) = (τθ + k2
2τu)−1 < (τθ +

k2
2

1 + δ2
τu)−1 = lim

Γ→∞
var(θt|pt)

By continuity, there exists Γ̄ > Γ∗ such that for any Γ ≥ Γ̄, var(θt|pt) > limΓ→Γ∗ var(θt|pt).

This proves the second statement and the proposition.
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Chapter 2

Periphery Dealers in Over-the-counter
Markets

2.1 Introduction

Over-the-counter (OTC) markets are off-exchange decentralized markets where investors search

for trading counterparties and privately negotiate to settle trades. In the past years, OTC markets

have been important segments for trading wide-ranging financial products such as interbank

loans, derivatives, and fixed-income securities. Due to non-standardized nature of these financial

products, OTC markets are illiquid and highly dependent on dealers, the market makers who

quote prices and provide liquidity to investors using their inventories. To design appropriate

regulatory framework and ensure market efficiency within OTC markets, understanding trading

strategies of all market participants is thus crucial for policymakers.

The objective of this paper is to study trading behavior of buy-side investors, particularly on

their dealer choices, and discuss the implications on market efficiency and stability. Our research

question comes from recent empirical findings about business models of dealers locating at

different positions in OTC dealer network. Several empirical studies on OTC secondary markets

have documented persistent core-periphery dealer network – few highly interconnected dealers

constitute the core and several sparsely connected dealers constitute the periphery.1 Based on Li

and Schürhoff (2019), dealers at the core are the main suppliers of liquidity (i.e. immediacy

provision), executing incoming order flows using their own inventories to provide immediacy

and offloading their positions later with another end-user investor. In contrast, dealers at the

periphery are distributors of liquidity (immediacy) from core dealers to end-user investors.

Compared to core dealers, periphery dealers are more likely to pre-arrange trades between a

more central dealer and an end-user investor rather than matching trades between two end-user
1Examples of empirical literatures on OTC trading network include Li and Schürhoff (2019) for municipal

bonds market, Di Maggio et al (2017) for corporate bonds market, Bech and Atalay (2010) and Afonso and Lagos
(2014) on interbank market, and Hollifield et al (2017) for securitization market.
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investors or taking positions to provide liquidity.2 According to Li and Schürhoff (2019),

“...consistent with central dealers providing more immediate execution and getting compensated

for doing so, we find that central dealers match buyers with sellers more directly. After

purchasing a bond from an investor, a central dealer is more likely to sell it to the end-buyer

than to off-load it to another dealer...central dealers are more likely to offer immediacy by

trading on a principal basis, that is, by taking bonds into inventory, than to prearrange trades

between a buyer and a seller, which takes time to execute...we find that bonds flow from

periphery to center and partially back. Dealers in the middle of a chain are more central than

either the dealer purchasing the bond from the customer or the dealer ultimately selling the

bond to the customer. Central dealers thus act as hubs by redistributing the order flow.”

This finding raises a few interesting theoretical questions. Without a physical barrier that

prohibits investors to contact core dealers directly and shorten the intermediation chain,3 why

do some investors choose to trade with periphery dealers? To be specific, given superior

dealer network position and an ability to exercise price discrimination of core dealers, why can

periphery dealers compete and co-exist with core dealers? We aim to shed light on this issue

by providing a new theory on strategic dealer choice of buy-side investors which explains why

periphery dealers can compete for order flows with core dealers.

Our theory is based on a premise that buy-side investors form a non-binding long-term

trading relationship with sell-side dealers to obtain liquidity (immediacy). Relationship es-

tablishment among market participants is common in financial markets due to their repeated

interactions.4 Because OTC markets are search-based markets which involve investors searching

for a dealer (or vice versa) who is willing to trade at the best price, an ability to maintain

contact with customers is valuable for dealers.5 One competitive strategy of dealers is to form

a non-binding long-term relationship with investors by offering special benefits, such as price

discount or inside information, to the investors who frequently trade with them.6 This paper

considers a type of long-term relationship in which dealers offer liquidity insurance – a promise

to execute trade orders on the spot at an affordable price (i.e. immediacy provision) during

illiquid periods – to their loyal clients. We will show that investors might strategically choose

periphery dealers, because they expect to receive higher future benefits from trading with the

periphery dealers than trading with core dealers.

We develop a game-theoretic infinite-period model of a dealer market for liquidity service,

the service to execute trade order on the spot (i.e. immediacy). In short, the model consists of

a principal dealer who can produce indivisible units of costly liquidity service, a competitive
2Similar to Li and Schürhoff (2019), Hollifield et al (2017) documented that periphery dealers are more likely to

pre-arrange trades compared to core dealers who mostly execute principal trades in securitization market.
3Note that this situation is different from public exchanges, where only exchange members can participate in

trading, thus the investors must trade via brokerage firms which justify the existence of brokers.
4 A few examples include order preferencing agreement between brokers and specialists (Benveniste et al (1992),

Harris (2002)) or among dealers in NASDAQ (Dutta and Madhavan (1997)), information sharing between brokers
and investors (Di Maggio et al (forthcoming)), relationship lending in interbank markets (Afonso et al (2014)) and
repo markets (Han and Nikolaou (2016)).

5As mentioned in Li and Schürhoff (2019), “Locating bonds and potential buyers thus requires that financial
intermediaries have active relationships with various types of investors as well as with other dealers.”

6Hendershott et al (2017) also found evidence of client-dealer relationships in corporate bonds market and
confirmed the impact of long-term relationship on execution costs.
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principal dealer who always provides liquidity service at a competitive price, a group of

homogeneous investors who face i.i.d. random liquidity shocks and will demand one unit of

liquidity service from a principal dealer, and an agency dealer who cannot produce liquidity

service but can intermediate trades between principal dealers and investors.7 Indeed, the

principal dealer represents dealers at the core and the agency dealer represents dealers at the

periphery in the dealer network. There are two random states which determine the principal

dealers’ costs of providing liquidity service: good states in which the cost is low and bad states in

which the cost is high. All agents are long-lived and can form a non-binding relationship among

each other. We apply the Folk theorem to study incentive of all players to enter a non-binding

long-term relationship and characterize optimal dealer choice of the investors.

Our setup exhibits two main features which capture trade frictions in OTC markets. The

first one is cash constraint problem, in which the investors do not have enough cash to pay for

costly liquidity service in bad states. In reality, when providing immediacy, a principal dealer

may incur high inventory risk in some periods, particularly for trade orders of older, seasoned,

or illiquid security. Therefore, even though investors might value immediacy much higher than

liquidity cost of the principal dealer, the investors are unable to get immediacy if they do not

have enough cash to pay now. The second feature is imperfect information problem, in which

the investors do not have any information about trade or liquidity shocks of other investors,

capturing the current state of opacity within OTC markets.8

The model gives three main insights. First, the investors must have frequent liquidity shocks

to successfully form long-term relationship with the principal dealer directly. Specifically, due to

the cash constraint problem, the investor and the principal dealer make a non-binding agreement,

in which the dealer will provide liquidity service at an affordable price in bad states as long

as the investor continues trading with the dealer and pays a premium in good states. If the

relationship formation is successful, both parties will obtain higher surplus: the investor secures

liquidity in future bad states and the principal dealer earns higher profit from future order flows.

However, to form a relationship, the investor must bring sufficiently high future benefits (i.e.

high frequency of liquidity needs) to the principal dealer, so that the dealer would commit

to incur an upfront loss of liquidity provision in bad states. Similarly, the investor must also

face frequent liquidity shocks to willingly trade with the principal dealer in good states. If the

investor has infrequent liquidity shocks, either 1) the dealer will strategically refuse to provide

costly liquidity when a bad state comes or 2) the investor will not trade with the principal dealer

when a good states come. This two-sided commitment problem creates a non-physical barrier

against the investors to establish the relationship with the principal dealer and obtain liquidity in

bad states if they have infrequent liquidity shocks.

The second insight is that an agency dealer can attenuate the commitment problem and

sustain the relationship between the investors and the principal dealer. Intuitively, the agency

dealer can form non-binding relationships with several investors and aggregate frequency of
7This assumption on exogenous business model of dealers allows us to examine the dealer choice of the buy-side

investors in a tractable framework. There are several literatures that focus on the sell-side behavior and try to explain
who will emerge as core or periphery dealers. See literature review for more details.

8Currently, several OTC markets require only dissemination of post-trade information without trader identity to
the public. Thus, the investors are unable to identify trading patterns of other investors. Note that this informational
friction prevents the investors from forming relationships among each other.
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liquidity needs to be sufficiently high. Then, the agency dealer forms another non-binding

relationship with the principal dealer on behalf of all the investors and agrees on liquidity quota,

the minimum per-period amount of liquidity service that the principal dealer must provide in

bad states. Setting low liquidity quota will increase the principal dealer’s incentive to commit

to costly liquidity provision in bad states. This is because, to continue receiving future order

flows of all the investors who connect with the agency dealer, the principal dealer only needs to

incur relatively low upfront cost of costly liquidity provision in bad states when the quota is

low. Therefore, if the investors have infrequent trading needs, they will trade with the agency

dealer to obtain the benefit of liquidity insurance rather than trading with the principal dealer for

a one-period benefit.

Our third insight is that, when connecting with agency dealer, investors can still face liquidity

shortage if too many investors simultaneously demand liquidity from the agency dealer in bad

states. This is because the agreed liquidity quota must be low enough for the principal dealer

to commit to the relationship. This finding sheds light on an empirical finding on a tradeoff

between execution cost and trading speed (Li and Schürhoff (2019)). From our model, there

is a tradeoff between execution cost and the degree of liquidity insurance coverage when an

investor selects a dealer: a relationship with principal dealer offers full liquidity insurance with

expensive premium while a relationship with agency dealer offers partial liquidity insurance with

cheaper premium. In appendix, we extend the model to include investors with heterogeneous

frequency of liquidity shocks and show that this tradeoff is applicable to only frequent-liquidity-

need investors who can form direct relationship with principal dealer. However, due to the

commitment problem, investors who have infrequent liquidity shocks can obtain only the latter

deal, granting market power to the agency dealer (at the periphery) to co-exist with principal

dealer (at the core).

Our finding has important implications on market efficiency and stability within OTC

secondary markets. Contradicting to traditional view on long intermediation chain as a source

of allocative inefficiency, our model suggests that an agency dealer who intermediates trade

between a main liquidity-providing principal dealer and a group of investors can improve

allocative efficiency and market liquidity. However, in terms of market stability as measured by

the likelihood of first-trigger event of systemic crisis, the impact of agency dealers is ambiguous.

On the one hand, they reduce liquidity risk of existing small investors who cannot obtain liquidity

in bad states without agency dealers. On the other hand, the presence of agency dealers can

attract more small investors to enter the market and start investing in the security. However,

these investors are highly subjected to liquidity shortage when several investors demand liquidity

simultaneously. Depending on further knock-on effects from the first-round liquidity dry-up

among the investors, emergence of agency dealers can cause an alarming concern to market

regulators.

Related literature

Our paper relates to the literature of endogenous intermediation in over-the-counter markets.

A group of literatures adopted search and bargaining model which involves atomistic players
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randomly matched among each other to trade assets.9 To illustrate, Hugonnier et al (2016)

considered a search model in which investors have heterogenous valuation and found that those

with moderate valuation will emerge as intermediaries. Üslü (2019) considered a case when

investors have heterogenous search intensity and established that those with high search intensity

will emerge as intermediaries. Farboodi et al (2017) relaxed the assumption of exogenous search

intensity. Afonso and Lagos (2015) developed a search model to study fed funds market and

show that the equilibrium exhibits endogenous intermediation even though all players are

identical. While these literatures can capture several important features of over-the-counter asset

markets, this random matching model might not be suitable for studying relationship-based

OTC markets in which market participants repeatedly interact with each other. This paper fills

in the gap by studying impact of long-term relationship between dealers and end-user clients on

OTC market structure.

Our paper also belongs to a growing literature of financial network formation. Farboodi

(2017) studied formation of credit lending network in which players form a link to manage

their counterpart risks. The mechanism is different from our paper which focuses on liquidity

management in secondary asset markets. Chang and Zhang (2019) developed a dynamic

matching model in which the matching process is endogenous and traders have heterogeneous

volatility of private asset valuation. They established that the equilibrium network exhibits a

multi-layered hierarchy core-periphery structure in which investors with relatively low volatility

emerge as intermediaries and investors with relatively high volatility act as end-user clients.

This is different from our paper which focuses on strategic dealer choice of end-user investors

through the lens of long-term relationships. Similar to ours, Hollifield et al (2017) developed

a theoretical model to study strategic dealer choice of buy-side investors. Different from our

findings, they established that some investors choose periphery dealers because the investors are

indifferent choosing between core and periphery dealers; the dealers have full bargaining power

and capture the whole trade surplus. Wang (2017) considered strategic long-term relationship

formation among dealers who have repeated interactions and explained how competition and

inventory management strategy among dealers can endogenously create core-periphery dealer

network. In Wang (2017), all dealers have exogenous customer bases. While this assumption

can represent some wholesale markets such as interbank markets well, the effect of dealer choice

of end-user investors on market structure in some secondary asset markets, such as fixed-income

security markets, is unclear. We contribute to this literature by studying strategic dealer choice

of end-user investors.

The closest literature to our paper is Neklyudov and Sambalaibat (2017), which developed a

matching model consisting of dealers and end-user clients. Similar to this paper, Neklyudov

and Sambalaibat (2017) found that traders with frequent liquidity needs choose core dealers

to obtain immediacy in the future. Traders with infrequent liquidity needs choose periphery

dealers since they can obtain better price. However, the underlying theory in Neklyudov and

Sambalaibat (2017) is different from ours. The main assumptions in Neklyudov and Sambalaibat

(2017) are 1) that end-user clients must always trade with the dealer whom they choose at the

beginning, 2) that pricing is non-strategic (Nash bargaining) and 3) that either a) order matching
9A few literatures on over-the-counter asset markets with random matching model include Duffie et al

(2005,2007), Lagos et al (2011), Vayanos and Weill (2008), Lagos and Rocheteau (2009).
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capability of dealers when the match involves two dealers is sufficiently more efficient than

that with one dealer or(and) b) bargaining power of the clients when trading via longer dealer

chain is sufficiently larger than that when trading via one dealer. Under these assumptions,

the periphery dealers can survive because surplus that the clients receive from the periphery

dealer can be higher than trading with core dealers. This is different from our paper mainly

in two ways. First, we apply the Folk theorem which allows the cost of forming client-dealer

relationships to be endogenous and explain why the investors must trade with specific dealers

repeatedly. Second, our result suggests that investors with infrequent liquidity needs choose

periphery dealers because they cannot form relationships with core dealers due to commitment

problem.

In finance literature, the theory of financial intermediary and social pressure in repeated

game setting with commitment limitation has been applied to credit payment enforcement.10

Babus and Hu (2017) and Fainmesser (2019) discussed the role of financial intermediaries on

solving commitment problem of unsecured debt contract, in which borrowers may strategically

default or not pay the debt. In their models, the financial intermediary can solve the commitment

issue by threatening to exclude bad borrowers from future interactions, prohibiting them to

meet several lenders who are clients of the intermediary in the future. Our paper contributes to

this literature by studying the role of intermediary who solves commitment problem of costly

liquidity provision in secondary asset markets.

Structure of the paper

The rest of the paper is structured as follows. Section 2 outlines the basic model. Section

3 discusses the equilibrium without long-term relationship. Section 4 introduces a notion of

liquidity insurance relationship and characterizes existence condition. Section 5 introduces an

agency dealer to the basic model. Section 6 discusses the role of agency dealer in the equilibrium.

Section 7 provides additional discussion of the results. Section 8 concludes. An analysis of the

model with heterogeneous investors and omitted proofs are in appendix.

2.2 Basic model

Consider an infinite-period game consisting of a principal dealer P who can provide indivisible

units of liquidity service, a competitive principal dealer P ′ who non-strategically provides

liquidity service at a competitive price, and a set of homogeneous investors I = {1, 2, . . . , N}
with |I| = n who face random liquidity demands.11 The liquidity service refers to dealer service

to execute a trade order on the spot by taking positions (i.e. immediacy). Assume that n is

common knowledge. Time is discrete and all players have discount factor δ.

There are binary observable market states θt ∈ {G,B} with Pr(θt = G) = p which

determine the cost of liquidity provision of both principal dealers {P, P ′}. Specifically, the
10See Greif et al (1994) and Fainmesser (2019) for more references.
11An implicit assumption in the model is that there is no asymmetric information about the asset fundamentals

across all players.
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per-unit cost of liquidity provision of all principal dealers at time t is

Ct =

0 if θt = G

C otherwise.

This assumption on the cost structure reflects liquidity condition in the dealer market in each

period. When θt = G (i.e. good state), principal dealers expect to find another counterparty to

offload their positions without much effort, and thus the cost of providing liquidity is null. The

opposite case is when θt = B (i.e. bad state) in which the dealers expect to incur high inventory

cost or high effort cost when offloading their positions.

In each period, investors face i.i.d. stochastic demand of liquidity service lit ∈ {0, 1} with

Pr(lit = 1) = q. Denote Q = qδ
1−δ . Private valuation of liquidity service of investor i is

Vit =

0 if lit = 0

V otherwise.

Note that this valuation does not reflect the asset fundamental value per-se. Instead, it indicates

investors’ private benefit of obtaining liquidity service (i.e. the benefit of fast trade execution).

In each period, all investors have cash endowment of VL which is not transferable across periods.

We make the following assumption.

Assumption 2.1 (Trade friction) V > C > VL

This assumption specifies that trade should always take place as the investors’ valuation of

liquidity service is always higher than liquidity-providing cost of dealers. However, the investors

do not have enough cash to cover high cost of liquidity provision of dealers in bad states.

Timeline

For every period t ≥ 1, the game runs as follows. At the beginning of period t, all players

observe market state θt and investors observe their own liquidity shocks lit. Then, the investors

contact principal dealer P who will quote βit ∈ R+ to all investors i ∈ I . After observing their

own quotes, all investors decide whether to accept or reject the quote, denoted by γit ∈ {0, 1}.
If investor i accepts the quote (γit = 1), dealer P will provide liquidity service to investor i

and receive cash βit. If rejecting the quote, investor i will obtain competitive price from dealer

P ′ which will give investor i an outside option of max{0, Vit − Ct}.12 After trade settlement,

dealer P observes liquidity shock of all investors lt = {lit}Ni=1, and the game moves to the next

period. Assume that the investors cannot observe neither actions, principal dealer’s quotes, nor

liquidity shocks of other investors throughout the game, reflecting the current limited market

transparency situation of several OTC markets.13 Formally, per-period payoff of investor i (uit)

and principal dealer P (πt) for any period t ≥ 1 satisfy

uit = γit(Vit − βit) + (1− γit)max{0, Vit − Ct}, πt =
∑
i∈I

γit(βit − Ct).

12This assumption implies that 1) market condition θt is homogeneous across dealers which represents frictionless
inter-dealer market where principal dealers can easily search and obtain liquidity among each other to realize full
trade surplus and 2) investors have perfect information about which principal dealers have liquidity in each period.

13This is equivalent to the standard assumption of private monitoring in the repeated game literature.
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Histories, information sets, and strategies

Let βt = {βit}Ni=1 and γt = {γit}Ni=1 be the sequence of actions of principal dealer P and all

investors, respectively. Let the set of histories at the beginning of period t be

Ht =

t−1⋃
j=1

[lj × θj × βj × γj ]

which consists of market states, liquidity shock realization of all investors, price quotes of the

dealer to all investors, and the decision of investors up to period t− 1. The information set of

principal dealer P (hPt) and investor i ∈ I (hit) at the beginning of period t are

hPt = Ht and hit =
t−1⋃
j=1

[lij × θj × βij × γij ] .

The strategy of principal dealer P and all investors i ∈ I are the functions which map the

information set at the beginning of period t and additional information observed in period t to

an action set such that

βt(θt, hPt) ∈ Rn+ and γit(θt, lit, βit, hit) ∈ {0, 1}.

The solution concept in this paper is the standard perfect Bayesian equilibrium.

2.3 Static equilibrium

To understand the role of long-term relationship, I will first characterize an equilibrium in a

static setting. It is trivial to see that there exists an equilibrium in which trade occurs only in

good states as established in the following proposition.

Proposition 2.1 (Static equilibrium) There exists an equilibrium in which for any investor

i ∈ I ,

β∗it =

0 if θt = G

C otherwise
, γ∗it(βit) =

1 if βit < Ct < Vit

0 otherwise

This result highlights a cash constraint problem in bad states. As shown in Figure 2.1,

the investors cannot buy liquidity service in bad states due to limited cash. In reality, there

are two possible scenarios, depending on whether the investors would like to buy or sell an

asset. If investors would like to buy an asset, they will not be able to buy immediately, causing

allocative inefficiency. However, if investors would like to sell an asset, they are still able to

sell immediately but at a cheap price. To illustrate, if F is a fair price of the asset, then the

dealer would buy at the maximum of F − c to compensate for costly liquidity service. However,

the investor would like to sell at the minimum of F − VL to meet his urgent need of cash. In

this situation, the investor has two options: 1) do not sell the asset or 2) sell the asset at F − c
now. The former choice creates allocative inefficiency while the latter choice is known for

creating fire-sale phenomenon which is a threat to market stability. In any event, the possible

failure of obtaining liquidity service motivates investors to form a long-term relationship with

the principal dealer, inter-temporally hedging against their liquidity needs.
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P ′P
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0

Figure 2.1: Static equilibrium with no trade during bad states.

2.4 Liquidity insurance relationship

This section will discuss what liquidity insurance relationship is, why it exists, and how it works.

The following definition formally describes the notion of liquidity insurance relationship.

Definition 2.1 (Liquidity insurance relationship) Provided that max{xG, xB} ≤ VL, an

equilibrium exhibits liquidity insurance relationship between investor i and principal dealer P ,

if the equilibrium outcome for every t is such that

β∗it =

xG if θt = G

xB if θt = B
, γ∗it(βit) =

1 if βit ≤ β∗it ≤ Vit
0 otherwise.

By definition, liquidity insurance relationship requires the dealer to provide liquidity service

at price xB ≤ VL during bad states in exchange of all future trade orders of the investor, as

illustrated in Figure 2.2. To compensate for the dealer loss in bad periods, the investor pays a

premium xG to the dealer when the state is good. Indeed, this informal relationship allows the

investor to hedge his liquidity needs across periods. In this way, both parties can obtain higher

surplus; the dealer earns more profits in good states and the investor obtains liquidity service in

bad states. This relationship will continue as long as 1) the dealer continues providing liquidity

as agreed in every period and 2) the investor continues buying liquidity service from the dealer

as agreed in every period.14 Any deviation will result in reversion to a no-relationship outcome

in subsequent periods in which both players obtain their outside options.

i

PP ′

i

PP ′

good state bad state

xG xB

Figure 2.2: Liquidity provision of P under liquidity insurance relationship.

Under what conditions would the players successfully form the relationship then? The

answer lies upon whether they can reach an agreement on (xG, xB) which determines allocation

of the trade surplus. Because of no legal enforcement on the agreement, the relationship can

exist if both parties obtain sufficiently high surplus in the relationship that they are willing to

commit to the relationship. For the dealer, xG must be sufficiently high that he is willing to incur

upfront loss in bad states to continue reaping future benefits in good states of the relationship.
14Note that there are several possible punishment strategies to sustain the relationship. However, this trigger

strategy is the most severe one, which will give us the weakest condition for the relationship equilibrium to exist.
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On the other hand, xG must be sufficiently low that the investor is willing to pay the premium

during good states, instead of strategically opting out from the relationship and choose P ′, to

continue the relationship and obtain liquidity insurance during bad periods. This two-sided

commitment problem is shown in the following lemma.

Lemma 2.1 (Insurance premium) In any equilibrium,

1. principal dealer P will commit to the liquidity insurance relationship if and only if

xG ≥
1 +Q(1− p)

Qp
(C − xB),

2. investor i will commit to the liquidity insurance relationship if and only if

xG ≤ max

{
Q(1− p)
1 +Qp

(V − xB), VL

}
.

The lemma highlights how feasible range of the premium depends on Q, the investor’s

trading frequency weighted by discount factor. On the one hand, when the investor has low

future trading needs, reflected by lowQ, he will request lower insurance premium since he would

not get much benefit from future liquidity coverage. Also, such premium must be feasible to pay

during good states (i.e. xG ≤ VL). On the other hand, the dealer will demand high premium

when the investor has low future trading needs, because the investor will rarely bring future order

flows during good states. Therefore, the investor must have sufficiently high liquidity needs to

successfully reach the agreement with the dealer, as confirmed in the following proposition.

Proposition 2.2 (Equilibrium existence) A liquidity insurance equilibrium between investor i

and principal dealer P exists if and only if VL > (1− p)C and

Q ≥ max

{
1 +

√
1 + 4p(1− p)(V − C)

2p(1− p)(V − C)
,

C − VL
VL − (1− p)C

}
.

This proposition is intuitive. When the investors have low trading needs, they will obtain

low benefit from the relationship and will not commit to paying the premium to the dealer. For

the same reason, the dealer will not commit to providing costly liquidity during bad states as he

expects to reap low future benefit from the investor. This implies that the investors suffer from

the commitment problem and are excluded by the principal dealer, despite possibility of higher

payoffs for both parties under the agreement, when the investors have infrequent liquidity needs.

2.5 The model with an agency dealer

As discussed previously, lack of legal enforcement on the relationship contract and the commit-

ment problem cause relationship failure when the investors have infrequent liquidity needs. This

commitment problem exists because a threat by individual investors to terminate the relationship

is not significant enough to affect the principal dealer. However, what if the investors collec-

tively form the relationship with a principal dealer as a group? That is, if the dealer violates

the agreement with an investor in the coalition, all the investors would collectively terminate

71



the relationship. As shown in panel (b) in Figure 2.3, when the investors form a coalition, they

can pool their liquidity needs, which will enlarge contract space that they can negotiate with

the principal dealer, and collectively punish the principal dealer when needed. With larger set

of contracting space and collective punishment, possibility of reaching a long-term agreement

increases.

Unfortunately, such coalition formation is not possible due to lack of necessary information

for collective punishment. To form a coalition, the investors must have information of other

investors’ trading activities to monitor and collectively punish the principal dealer. However, the

investors cannot observe neither actions, liquidity shocks, nor the principal dealer’s quotes of

other investors in the OTC markets.

P

ii i

(a) No relationship
when Q is low

P

ii i

(b) Collusion under
full information

P

A

ii i

(C) A as a facilitator under
imperfect information

Figure 2.3: Illustration of the role of an agency dealer

This gives rise to emergence of an agency dealer who can aggregate liquidity needs of the

investors, act on behalf of all the investors and the principal dealer, and punish the principal

dealer for all the investors when needed. This is shown in panel (c) in Figure 2.3. In this

case, the investors only need to monitor and maintain a long-term relationship with the agency

dealer which does not require the investors to have perfect information about trades of other

investors. Also, a threat imposed by the agency dealer towards the principal dealer to terminate

the relationship would represent a collective threat from all the investors. Therefore, if all

players can reach an agreement which provides correct incentives to the agency dealer, the

relationship formation can be successful.

In this paper, we will prove that agency dealer can indeed solve the commitment problem and

help investors obtain costly liquidity in bad states when the investors have infrequent liquidity

needs. We start with formal description of the model with agency dealer in this section. In

the next section, we introduce the notion of liquidity insurance relationship via agency dealer,

characterize existence condition and highlight important implications of market fragmentation

on market efficiency and stability.

Model setting

Consider an infinite-period baseline model which now consists of an agency dealer A who can

intermediate trades between a principal dealer and the investors. The agency dealer has no cost

of intermediation but will incur indefinite inventory cost if producing liquidity service. To solve

for the interesting case which the agency dealer solves the commitment problem and not the

problem of cash constraint in good states, we assume that VL > (1− p)C and Q ≥ C−VL
VL−(1−p)C .
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Timeline

For every period t ≥ 1, the game runs as follows. At the beginning of period t, all players

observe market state θt and all investors observe their own liquidity shocks. All investors cannot

observe liquidity shocks of other investors. Let It = {i|lit=1} be the set of active investors with

|It| = nt. All active investors It contact agency dealer A who in turn contacts principal dealer

P to get a quote.15 Inactive investors i 6∈ It realize payoff 0.

First, principal dealer P quotes (βAt,mt) ∈ R+ × I+ to agency dealer A which specifies

per-unit upstream price of liquidity βAt and maximum quantity of liquidity mt that he is willing

to supply at price βAt. If mt < nt, principal dealer P will accommodate the residuals nt −mt

at competitive price Ct.

After obtaining the quote, agency dealer A chooses (dAt, βt) ∈ {0, 1}×Rnt+ which decides

whether to accept the quote (dAt = 1) from principal dealer P and what prices to quote to

all active investors denoted by βt = {βit|∀i ∈ It}. If rejecting the principal dealer’s offer

(dAt = 0), he will get a competitive upstream price quote Ct from principal dealer P ′ and obtain

an additional outside option WAt.16 Let β̂At = dAtβAt + (1− dAt)Ct be the actual price that

agency dealer A pays to principal dealer P for trade orders covered within the supply quantity

mt.

After observing retail price quote βit, each investor i ∈ It chooses γit ∈ {0, 1} to in-

dicate whether to accept the offer. If rejecting the offer, the investors obtain outside option

of max{0, V − Ct}. Afterwards, agency dealer A reports final trade demands
∑

i∈It γit to

principal dealer P to settle all trades.17

At the end of period t, after trade settlement, principal dealer P observes liquidity shocks

and retail prices of all investors {lt, βt} and all active investors It observe the actual upstream

price β̂At, and the game continues to the next period.18 Formally, the per-period payoff of active

investor i ∈ It (πit), of principal dealer P (πPt), and of agency dealer A (πAt) satisfy

πPt = dAt

(∑
i∈It

γit

)
(βAt − Ct)

πAt =
∑
i∈It

γitβit −min

{
mt,

∑
i∈It

γit

}
β̂At −max

{
0,
∑
i∈It

γit −mt

}
Ct + (1− dAt)WAt

πit = γit(V − βit) + (1− γit)max{0, V − Ct}.

15This implies that agency dealer A knows the liquidity shock realization of all investors before contacting P .
16Note that this assumption is without loss of generality, as it is always optimal for agency dealer A to fully route

the order to either P or P ′. When routing some orders to P ′ and some to P , P can detect that deviation in the next
stage which will trigger punishment in subsequent periods. Thus, it is always optimal for A to fully route the orders
to P ′ if deciding to defect in the first place. Also, note that A has no incentive to renegotiate with P to get higher
payoff by lowering liquidity insurance, as the investor will also detect such renegotiation ex-post through a higher
markup.

17This simplifies the game as in reality A can strategically report the wrong number of liquidity demand during
good state. However, relaxing this assumption does not matter, as agency dealesr A has no incentive to direct partial
trade orders to P ′ anyway.

18The assumption on ex-post lt observability of principal dealer P simplifies our analysis to the case of perfect
monitoring on the behaviour of all investors.19 Also, this assumption of ex-post trading price observability reflects
the current state of limited post-trade transparency in OTC markets, which allows all players to observe additional
information after trade settlement. We will discuss in detail about this information structure in the next part.
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Histories, information sets, and strategies

Denote Akt the set of actions taken by player k ∈ {P,A} ∪ It in period t. Information set

of each player at the beginning of period t consists of a sequence of observable past actions

and state realization up until period t − 1. We assume that all players can observe only their

neighbours’ actions who have direct interaction with them at the time of trading, but they can

observe additional information ex-post.20 Specifically, let hkt ⊂ Ht be the information set of

player k at the beginning of period t such that

hkt =


⋃t−1
j=1

[
×k∈{P,A}Akj ×

{∑
i∈Ij γij

}
× [lj × θj ]

]
if k = P⋃t−1

j=1

[
×k∈{P,A}∪IjAjt × [lj × θj ]

]
if k = A⋃

j∈Tkt

[
Akj × βkj × β̂Aj

]
×
⋃t−1
j=1 [lkj × θj ] if k ∈ I

where Tkt = {j|k ∈ Ij , ∀j ≤ t− 1} is the set of active periods of investor k up to period t− 1.

In simple words, everyone knows all past realizations of market state. Principal dealer

P knows 1) past actions of himself and of the agency dealer, 2) past liquidity shocks of all

investors, and 3) total number of executed trades (
∑

i∈Ij γij) in the past. The agency dealer has

perfect information about the game. The investor i knows 1) his own past liquidity shocks, 2)

his own past actions, 3) past quotes he obtained from agency dealer A when he is active, and 4)

past upstream prices of his own trades.

We consider only pure strategy equilibrium. Specifically, the strategy of principal dealer

P , agency dealer A, and investor i ∈ I for any period t maps the information that each player

knows at the time of trading to an action set such that

1. for principal dealer P who quotes upstream price and sets supply quantity:

(βAt,mt)(θt, hPt) ∈ R+ × I+

2. for agency dealer A who decides whether to accept P ’s offer and determines downstream

prices:

(dAt, βt)(θt, βAt,mt, hAt, lt) ∈ {0, 1} ×Rnt+

3. for investor i ∈ I who decides whether to accept A’s offer:

γit(βit, lit, θt, hit) ∈ {0, 1}.

The solution concept used in this paper is the standard perfect Bayesian equilibrium.

Discussion on the model

Recall that the main cause, which prevents investors to pool their liquidity demands and negotiate

as a group with the principal dealer directly, is lack of information about other investors’ trade.

This is reflected in the assumption that the investors can only observe information of their own
20This is similar to the current state of OTC markets, as post-trade transparency regulation which requires

publication of past trading details (price and quantity) allows the market participants to obtain the additional
information ex-post.
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transactions but not others. For the collusion among investors to succeed, all the investors

must be able to simultaneously punish the principal dealer when appropriate. Without the

information to monitor the principal dealer properly, collective punishment is impossible.

From the model, there are two important features when trading via agency dealer. First, a

threat by the agency dealer toward the principal dealer represents a threat from all the investors.

Such threat can substitute the collective punishment of all the investors, provided that the agency

dealer has the incentive to punish the principal dealer. Second, even though investors do not

have information about other investors, they now have information about upstream prices of

their trades ex post. If the upstream price is contingent on whether the principal dealer and

the agency dealer are still in the agreement, then information about upstream price is sufficient

for the investors to monitor both dealers and assess whether the relationship is still ongoing.

These two features, as we will see in the next section, contribute to the success of relationship

formation.

2.6 Relationship via an agency dealer

We will begin our analysis by formally defining the notion of liquidity insurance relationship

via agency dealer. Different from our baseline case, it is a non-binding agreement between a

principal dealer and a group of investors with an intervention of agency dealer who can make

profits from his intermediation service, as described in the following definition.

Definition 2.2 (Liquidity insurance equilibrium via agency dealer) Provided thatmax{xG+

FiG, xB + FiB} ≤ VL for all i ∈ I and n∗ ≤ n, an equilibrium exhibits liquidity insurance

relationship among {P,A, I} if the equilibrium outcome in every period t ≥ 1 is such that

(β∗At,m
∗
t ) =

(xG, n) if θt = G

(xB, n
∗) otherwise

(d∗At, β
∗
t ) =


(1, {xG + FiG}nti=1) if θt = G

(1, {xB + FiB}nti=1) if θt = B and nt ≤ n∗

(1, {xB + FiB}n
∗
i=1 ∪ {C + Fi}nti=n∗+1) if θt = B and nt > n∗

γ∗it =

1 if βit ≤ β∗it ≤ VL
0 otherwise

From the definition, investors form a relationship with agency dealer A, who will in turn

form liquidity insurance relationship on their behalf with principal dealer P . In the agreement,

principal dealer P trades with agency dealer A at per-unit price xG in good states for unlimited

quantity and at per-unit price xB for maximum quantity n∗ ≤ n in bad states. Thus, n∗

determines the extent of insurance coverage from principal dealer P . If n∗ = n, we say that

the insurance is unconstrained which guarantees full insurance to all investors. If n∗ < n, the

insurance is constrained in which the investors get partial insurance coverage and face liquidity

shortage in some bad periods.21 Agency dealer A accepts the offer and quotes the agreed retail
21Note that if one assumes arbitrary distribution of liquidity shock, n∗ < n can provide full insurance to all

investors if the probability that more than n∗ investors would demand liquidity at the same time is zero.
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price β∗it to investors with price markup (FiG, FiB). For the investors, they always accept offer

from agency dealer A, unless the price exceeds VL. This idea is illustrated in Figure 2.4.

P ′ P

A

I2I1

good state

xG

xG + FGxG + FG

P ′ P

A

I2I1

bad state

(xB, n
∗ = 1)

xB + FBC

Figure 2.4: Illustration of an equilibrium outcome under liquidity insurance relationship via agency
dealer when n∗ = 1.

It is worth noting that pooling liquidity needs of all the investors enlarges contract space of

choosing m∗t , the liquidity quota, against the number of investors. With bilateral relationship

between P and i, liquidity quota in both states is fixed (i.e. m∗t = n = 1). However, when

there are several investors, the choice of liquidity quota is richer (i.e. m∗t (θt = G) = n and

m∗t (θt = B) = n∗ ≤ n). The ability to adjust the liquidity quota n∗ (and n∗

n ), which affects

incentives to form the relationship of both P and I , from liquidity pooling is the main key for

successful relationship formation.

Lastly, to reflect how principal dealers in relationship-based OTC markets compete for

relationships with agency dealers in practice, we make an additional assumption on outside

option of agency dealer A. Denote π∗At = πAt(β
∗
At,m

∗
t , d
∗
At, β

∗
t , γ
∗
t ) the payoff of agency dealer

in period t under the liquidity insurance equilibrium outcome in Definition 2.2. Assume that

the outside option of agency dealer A in period t is WAt = π∗At − πAt(dAt = 1) if there exists

k ≤ t− 2 such that

1. history of action sets of {P,A, I} of all periods up to period k coincides with the liquidity

insurance relationship equilibrium outcome,

(βAj ,mj , dAj , βj , γj) = (β∗Aj ,m
∗
j , d
∗
Aj , β

∗
j , γ
∗
j ), ∀j ≤ k

2. market state in period k + 1 is bad,

θk+1 = B

3. agency dealer A has been rejecting offers from principal dealer P since period k + 1,

dAj = 0, ∀j where k + 1 ≤ j ≤ t− 1.

Otherwise, the outside option WAt = 0.

In other words, if in the past

1. agency dealer A had successfully formed a long-term relationship with principal dealer P

and all investors I , and

76



2. agency dealer A rejected an offer from principal dealer P in a bad state and has been

rejecting all offers since then,

then the agency dealer will obtain a payoff identical to the payoff under the relationship

equilibrium outcome if rejecting offer from principal dealer P in period t (i.e. πAt(dAt = 0) =

π∗At). Intuitively, this assumption allows agency dealer to establish a new relationship with other

principal dealers in the market if the relationship with principal dealer P is broken. As we

will see later, the possibility to establish a new relationship will incentivise the agency dealer

to punish principal dealer P if principal dealer P deviates from the agreement in bad states.

Without this assumption, the agency dealer might have an incentive not to punish principal

dealer P in bad states, as the agency dealer will lose future intermediation profits. Note from

the assumption that agency dealer A must have had relationships with all the investors up until

period k to entitle for this outside-option relationship payoff. 22

2.6.1 Trigger strategy via an agency dealer

Next, we propose a strategy profile of all players that can support the relationship outcome

in the equilibrium. There are many possible strategy profiles that one can propose. However,

the strategy must ensure that every player will be monitored and punished by some players if

deviating. We propose the following strategy.

Definition 2.3 (Trigger strategy via an agency dealer) The modified trigger strategy consists

of

1. a strategy of principal dealer P in which

a) (βAt,mt) = (β∗At,m
∗
t ) if the history set hPt satisfies, for all j ≤ t− 1,

i. P never deviates in the past, (βAj ,mj) = (β∗Aj ,m
∗
j )

ii. A never deviates in the past, (dAj , βj) = (d∗Aj , β
∗
j )

iii. I never deviate in the past,
∑

i∈Ij γij ≥
∑

i∈Ij γ
∗
ij

b) (βAt,mt) = (Ct, n) if otherwise

2. a strategy of agency dealer A in which

a) (dAt, βt) = (d∗At, β
∗
t ) if the history set hAt satisfies, for all j ≤ t− 1,

i. P never deviates in the past, (βAj ,mj) = (β∗Aj ,m
∗
j )

ii. A never deviates in the past, (dAj , βj) = (d∗Aj , β
∗
j )

iii. and P does not deviate in period t, (βAt,mt) = (β∗At,m
∗
t )

b) (dAt, βt) = (0, β∗) if otherwise.

3. a strategy of every investor i ∈ I in which
22This gives an incentive for A to maintain the relationship with every I . Without this assumption, the agency

dealer might have incentive in some cases to terminate the agreement with a few investors. Relaxing this assumption
will introduce one more equilibrium condition which requires that the agency dealer cannot connect with too many
investors; that is, the size of agency dealer must be small enough.
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a) γit = γ∗it if the history set hit satisfies, for all j ∈ Tit,

i. P and A never deviate in good state in the past, β̂Aj = β∗Aj

ii. A never unilateral deviate with i in the past, βij = β∗ij

iii. i never deviates in the past, γij = γ∗ij

iv. and A does not deviate in period t, βit = β∗it

b) γit = 0 if otherwise.

This strategy follows the rationale of standard trigger strategy. Every player will continue

choosing the agreed actions as long as they do not detect any deviation. If they detect a deviation,

they will terminate the relationship and revert to the no-relationship equilibrium strategy forever.

From the definition, every player reverts to the static Nash equilibrium outcome after detecting

deviation, except agency dealer A who will reject offer from principal dealer P but still quote

downstream price β∗t after the deviation, as it is weakly dominant to do so.23 Note that investors

can monitor agency dealer A and principal dealer P (imperfectly) but not other investors.

The punishment scheme in this proposed strategy is as follows. When P deviates in a bad

state by not providing costly liquidity, A will reject the offer and terminate the relationship

with P . This threat is credible, because A, if punishing, can obtain outside option equivalent

to the equilibrium relationship payoff in all subsequent periods.24 When P deviates in a good

state by quoting upstream price higher than the agreed level, active investors, who can observe

the change in upstream price in the subsequent period, and agency dealer A will terminate the

relationship. The threat by agency dealer A is also credible, because agency dealer A can obtain

(weakly) lower upstream price by choosing P ′ in the deviating period and in all subsequent

periods.

When any i ∈ I deviates in a good state by rejecting offer, P will terminate the relationship

with A.25 When A deviates in a good state, P will terminate the relationship, triggering active

investors who can observe the changing upstream price to terminate the relationship with A.

The resulting termination by the investors will threat A not to deviate, since A will no longer

obtain the equilibrium relationship payoff (i.e. WAt = 0 for all subsequent periods). Note that

A and I have no incentive to deviate during bad states.

2.6.2 Commitment problem and incentive constraints

Next, we will examine the commitment problem and construct incentive constraints of all

players. This is not as obvious as our baseline case, because it now involves an agency dealer

who has a private interest of maximizing his intermediation profit.
23This is because the agency dealer can still make positive profits even if WAt = 0. Thus, the agency dealer has

an incentive to quote the price at β∗ to deceive remaining investors that the relationship is still on.
24Note that the investors themselves cannot detect the deviation of the principal dealer in bad states when there is

partial insurance (n∗ < n), because the investors do not know whether the no-trade outcome is due to the principal
dealer’s deviation. Therefore, A must be the one who punishes P .

25This implies that deviation from one investor will break down the whole relationship. Note that, if investor i
deviates, A may have an incentive not to punish the investor. This is because A obtains more profits when there
are more trades to intermediate, thus he prefers more investors to contact him. Therefore, P must be the one who
punishes investor i by stopping providing liquidity to A. In practice, principal- and agency dealer might resolve this
problem through renegotiation. We assume that the renegotiation is not possible.
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I: Commitment problem of principal dealer P and investors I

Similar to baseline case, P must commit to providing liquidity in bad states and investors must

commit to trading with A instead of seeking cheaper prices from P ′ in good states.26 Therefore,

(xG, xB) must be sufficiently high to incentivize P , and xG + FiG must be sufficiently low to

incentivize every investor i ∈ I .

To see this formally, let αi(n∗, nt) : I+ × I+ → [0, 1] be a liquidity allocation function to

investor i which indicates the probability that investor i will obtain liquidity in period t, given

liquidity quota n∗ and aggregate liquidity demand nt. If αi = 1, investor i obtains liquidity

with probability one. Let f(k) = Pr(
∑

j∈I ljt = k) and f−i(k) = Pr(
∑

j∈I−i ljt = k)

be the probability distribution of aggregate liquidity shocks when including and excluding

investor i, respectively. Denote κ(n∗) =
∑

k≤n∗ f(k)(k) +
∑

n≥k>n∗ f(k)(n∗) and yi(n∗) =∑
k≤n∗−1 f−i(k) +

∑
k>n∗−1 f−i(k)αi(n

∗, k). Intuitively, κ(n∗) is the expected amount of

liquidity that P must provide to A during bad states and yi(n∗) is the probability that investor i

obtains liquidity in bad states. Consider the following lemma.

Lemma 2.2 (Equilibrium price) In any equilibrium

1. principal dealer P will commit to liquidity insurance agreement if

xG ≥
n∗ + δ

1−δ (1− p)κ(n∗)

nQp
(C − xB)

2. investor i ∈ I will commit to liquidity insurance agreement if

xG + FiG ≤ max
{
Q(1− p)yi(n∗)

1 +Qp
(V − (xB + FiB)), VL

}

This lemma highlights how changing liquidity quota n∗ affects incentive of principal dealer

P and investors. For the principal dealer, a decrease in liquidity quota n∗ increases his incentive

to commit to the relationship, as reflected in lower requirement on premium xG. Setting low

n∗ decreases the relationship-continuation cost of P , because P just needs to provide costly

liquidity (at most) n∗ units in bad states to continue the relationship and obtain future order

flows from agency dealer. On the other hand, a decrease in n∗ reduces incentive of the investors

to commit to the agreement. Intuitively, lower n∗ decreases the likelihood of obtaining liquidity

in bad states yi(n∗), resulting in lower willingness of the investors to trade with agency dealer

in good states.

II: Commitment problem of agency dealer A

Ideally, principal dealer P and investors would like to trade via an intermediating person who

has no interest misalignment. However, it is unrealistic as actions taken by agency dealer A is

strategic and can only be detected with delay. In the relationship, a good agency dealer A must

have incentive to 1) route trade orders of all investors in every period to principal dealer P and
26Note that principal dealer has no commitment problem in good states. If P deviates in good states, A will

reject the offer immediately.
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2) acquire liquidity from principal dealer P and pass it to demanding investors. The second

agency problem is not our concern, as the payoff structure of agency dealer A induces him

to intermediate as many transactions as possible. In fact, agency dealer A has no incentive to

withhold liquidity in any period. This is one of the main features of agency dealer A attributing

to successful relationship formation: by delegating the power to a third party who has no

misaligned interest, all the investors do not have to worry about collective punishment by all the

investors on agency dealer A.

P

A

i

P ′

ii i

0 xG

Figure 2.5: Illustration of strategic deviation of A when choosing whom to send trade orders to.

The first problem is of our interest. Recall that investors can monitor agency dealer A by

looking at upstream price after trade settlement, but this will cause delay in punishment if agency

dealer A deviates. As illustrated in Figure 2.5, delay in punishment creates an opportunity

for agency dealer A to strategically route orders to P ′, pay upstream price 0 (instead of xG),

and get upfront higher intermediation profits in the deviating period. Once agency dealer

A pulls the trigger, principal dealer P will terminate the relationship. Active investors who

observe abnormal upstream price will stop trading with agency dealer A in subsequent periods.

Therefore, principal dealer P and investors must leave agency dealer A a sufficiently large

trade surplus, in the form of intermediation fees (FiG, FiB), so that he will commit to sending

trade orders to P in good states and continue collecting future intermediation fees. Denote

σ(n∗) = κ(n∗)
κ(n) which is the degree of liquidity insurance. Consider the following lemma which

is derived from incentive constraint of agency dealer A.

Lemma 2.3 (Intermediation fee) A pair of intermediation fee (FB, FG) in any symmetric

equilibrium satisfies

Q((1− p)σ(n∗)FB + pFG) ≥ xG.

From the lemma, the extent of agency cost depends on upstream price xG. This is intuitive,

as the upfront deviating benefit of agency dealer A depends on price gap between what P and

P ′ charge, and this gap is the premium xG. Also, the more frequently investors trade (higher

Q), the more frequently agency dealer A obtains intermediation fees, and thus lower fees per

transaction is required to incentivize agency dealer A.

2.6.3 Equilibrium analysis: effectiveness of agency dealer

Our last step is to find out when agency dealer A can successfully help the investors, who

otherwise would have been excluded from principal dealer P , eventually obtain costly liquidity

in bad states from principal dealer P . Let QP be the minimum Q for the liquidity insurance

equilibrium between principal dealer P and investor i to exist, and QA be the minimum Q for
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the liquidity insurance equilibrium between {P,A, I} to exist. Therefore, if QP > QA and if

Q ∈ [QA, QP ), then the investors who cannot form a relationship with P can now do so via

agency dealer A. The following proposition provides the condition which agency dealer A can

successfully help the investors get liquidity insurance from the principal dealer.

Proposition 2.3 (Effectiveness of agency dealer) QA < QP if, for any i ∈ I , there exists

n∗ ∈ I+ such that

1 +Q(1− p)
n∗

n +Q(1− p)σ(n∗)
>

(
1 +

1

Qp

)(
1

yi(n∗)

)
.

This condition compares the benefit of successful relationship formation by trading via A

with its cost. The benefit is the change in incentive of principal dealer P to enter the relationship

as reflected in the left term. The right term accounts for the cost of trading via A (i.e. the

intermediation fee) and any negative impact on the incentive of investors.27

1 +Q(1− p)
n∗

n +Q(1− p)σ(n∗)︸ ︷︷ ︸
principal dealer

IC

>

(
1 +

1

Qp

)
︸ ︷︷ ︸
intermediation

fee

(
1

yi(n∗)

)
︸ ︷︷ ︸

investor i
IC

When will this condition be satisfied? The answer relies on whether there exists a real-

valued liquidity quota n∗ that can satisfy this condition. Recall that liquidity quota n∗ is the

minimum per-period amount of liquidity that principal dealer P must provide in every bad

states. A reduction in n∗ will effectively reduce the upfront cost of sustaining the relationship

of the principal dealer relative to its benefit of relationship continuation of obtaining future

order flows from all investors. This is shown in the ratio n
n∗ in the incentive constraint of the

principal dealer in the left side. When the relationship-continuation cost is lower (i.e. lower

n∗) or the relationship-continuation benefit is higher (i.e. higher n), the principal dealer would

be more willing to sustain the relationship. Also, a decrease in n∗ reduces the degree of

liquidity insurance (i.e. lower σ(n∗)). As a result, a decrease in n∗ results in higher likelihood

of successful relationship formation via agency dealer. Note that, from the proposition, the

liquidity quota must be less than the number of investors (i.e. n∗ < n) for the condition to be

satisfied. This implies that the investors will obtain partial insurance when trading with agency

dealer.

Remark 2.1 If QA < QP , n∗ < n must be true

Unfortunately, decreasing n∗ also has a negative effect on incentive of the investors, as it

reduces the extent of liquidity insurance. Specifically, a decline in n∗ reduces the probability that

investors will obtain liquidity yi(n∗), decreasing their willingness to commit to the relationship.

This idea is graphically illustrated in Figure 2.6. Overall, whether the relationship formation

will be successful depends on which effect dominates. This implies that relationship formation

via agency dealer A cannot always solve the commitment problems.
27Note that in the case of perfect monitoring (i.e when investors can perfectly observe other investor’s actions,

liquidity shocks, and the principal dealer’s response to every investors), then investors would no longer need A. This
implies that the intermediation fees will disappear from this condition. That is, 1+Q(1−p)

n∗
n

+Q(1−p)σ(n∗)
≥ 1

yi(n∗) .
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Figure 2.6: Graphical illustration of how high probability of simultaneous liquidity shocks by several
investors can cause relationship failure.

When would agency dealer A be most efficient at facilitating the relationship then? Ideally,

one should be able to reduce n∗ to minimize the relationship-continuation cost of principal dealer

P with minimal impact on liquidity insurance coverage of the investors. This is achievable only

when investors rarely acquire liquidity at the same time: the probability that several investors

face liquidity shocks in the same period is low. An extreme case is when the probability of

liquidity shock q is almost zero, implying that it is almost impossible that more than one investor

would demand liquidity at the same time. To clarify this point, consider the following corollary.

Corollary 2.1 If q ∈ Nε(0), then

1. yi(n∗) ≈ 1 and σ(n∗) ≈ 1 for any n∗ ∈ I+

2. QA < QP if p > 1
2 and

n

n∗
>

1 + pQ

Q(2p− 1)

The first condition states that even n∗ = 1 can guarantee almost full insurance to all investors

when the probability of liquidity shock q is almost zero. This is because it is very rare that

more than one investor would acquire liquidity at the same time. In this case, one can set the

quota n∗ = 1 to minimize the relationship-continuation cost with trivial effect on the degree

of liquidity insurance coverage, resulting in the highest likelihood of successful relationship

formation with (almost) full insurance coverage towards the investors. The second condition

states that, if the number of investors is sufficiently large, agency dealer A will have adequate

negotiation power to connect investors with the principal dealer. An implication from this finding

is that, in practice, an agency dealer will be ideal for investors who 1) rarely face liquidity

shocks (i.e. low q) but 2) are reasonably risk-averse about liquidity risk (i.e. moderate Q).

Result discussion

Our finding sheds light on the strategic dealer choice of investors in relationship-based OTC

markets. When the investors choose whom to trade with, they will take into account all possible

future benefits that they can obtain from the chosen dealer. In the relationship-based market,

when principal dealers attempt to compete with agency dealers and shorten the intermediation

chain, by quoting a one-period cheaper price to the low-trading-need investors, the investors

still prefer their agency dealers. This is because the investors know that maintaining informal

relationships with the agency dealer can bring higher benefits from future liquidity insurance,

the benefit that principal dealer cannot offer due to commitment problem. This can explain why
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the agency dealers, despite locating at inferior network positions, can still attract clients and

survive in the OTC markets.

Another interpretation of this finding relates to empirical findings on a tradeoff between

execution cost and trading speed when investors choose a dealer (Li and Schürhoff (2019)). In

relationship-based market, it might be more appropriate to state that there is a tradeoff between

execution cost (xG) and the degree of future liquidity insurance (yi(n∗)) when choosing a dealer.

That is, principal dealers will offer full liquidity insurance with expensive premium (i.e. high

xG and yi(n∗) = 1), while agency dealers will offer partial liquidity insurance with cheaper

premium (i.e. low xG and yi(n∗) < 1). When the investors have low trading needs, they cannot

choose the former agreement, granting market power to agency dealers to co-exist with the

principal dealers.

2.6.4 Implications on equilibrium prices

One interesting empirical prediction of our study is the relationship between equilibrium price

and length of intermediation chain in relationship-based markets. Our model suggests that retail

prices quoted by agency dealers can be cheaper than that quoted by principal dealers, because

the price accounts for future liquidity insurance benefits that their respective clients would

obtain. This contradicts to traditional belief that retail prices from longer intermediation chain is

higher due to higher markups. Consider the following proposition.

Proposition 2.4 (Price comparison) If QA ≤ Q < QP , a downstream price quoted by agency

dealer A in any liquidity insurance equilibrium among {P,A, I} must be lower than any price

that would have induced principal dealer P to form a direct relationship with an investor i ∈ I .

From Figure 2.7, without the intervention of agency dealer A, principal dealer P will charge

expensive price xG which is too high for investor i to commit to the relationship. However,

when trading via agency dealer, the investor can get cheaper prices due to lower degree of future

liquidity insurance. In the equilibrium, the size of coalition must be high enough for the agency

dealer to secure good price xG + FG from the principal dealer. As a result, the final price

xG + FG will be lower than the quote that the investors would have obtained directly from the

principal dealer, despite combining with the intermediation markup.

P

A i

xG
P

A

i

xG + FG

Figure 2.7: Graphical illustration of price comparison in which xG > xG + FG if QA ≤ Q < QP .

2.6.5 Discussion on market efficiency and stability

In terms of market efficiency, our finding provides an important insight into conventional wisdom

about "long intermediation chain as a source of allocative inefficiency". In our model, agency

dealers who act as financial intermediaries between principal dealers and end-user investors
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improve allocative efficiency. With their presence in the market, low-trading-need investors,

such as retail investors, are more likely to obtain liquidity (i.e. immediacy) even though they

are not active players in secondary OTC markets. This results in improvement on allocative

efficiency and reduction in liquidity risk of OTC-based assets. Moreover, the presence of agency

dealers can enhance market participation of low-trading-need investors. Since the agency dealers

reduce liquidity risk and increase total surplus of the low-trading-need investors, presence of the

agency dealers can incentivize more low-trading-need investors, who might not invest in the

asset when there is no agency dealers, to enter the market.28 The resulting increase in market

participation can improve market efficiency and liquidity further.

However, in terms of financial stability as measured by the likelihood of first-trigger event

of systemic crisis, it is ambiguous to conclude whether agency dealers will be socially desirable.

Remember that trading with agency dealers solves the commitment problem because of lower

liquidity quota in bad states. Therefore, low-trading-need investors are still not fully insured

against extreme events when several investors demand liquidity simultaneously, as illustrated

in Figure 2.8. The liquidity shortage among several low-trading-need investors in extreme

events, despite highly unlikely, is still possible. Unfortunately, in some extreme events such

as when the investors would like to sell the asset simultaneously to meet their cash demands,

liquidity shortage can cause market disruption and trigger systemic crisis from asset fire-sale

phenomenon.

P

A

Figure 2.8: Graphical illustration of liquidity shortage in an extreme event when all the investors demand
liquidity simultaneously when n∗ = 2.

Consequently, presence of agency dealers has ambiguous effect on market stability. On

the one hand, they improve liquidity condition of existing investors with low trading needs
who would have invested in the asset, regardless of their presence. In this case, agency dealers

improve market stability. On the other hand, agency dealers can also deteriorate market stability

by attracting more low-trading-need investors to enter the market and start investing in the

security. However, the low-trading-need investors are highly subjected to liquidity shortage

during extreme events. Depending on further knock-on effects from the first-round liquidity dry-

up among the low-trading-need investors, emergence of agency dealers can cause an alarming

concern to the market regulators in terms of market stability.

2.7 Result discussion

2.7.1 Will investors with high trading needs choose agency dealers?

The assumption of homogeneous investors in the model so far allows us to understand the role

of agency dealers, but the equilibrium outcome when there are several types of investors in
28To see this, one can easily extend our model by allowing the investors to decide whether to enter the market in

period 0. If entering, they have to pay participation cost c.
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the market remains unclear. Given high bargaining power of obtaining good price of agency

dealers, would high-trading-need investors who can form direct relationship with principal

dealers choose agency dealers instead?

In appendix, we extend our model to include two types of investors: an investor with high

trading needs (i.e. the high type) and a group of investors with low trading needs (i.e. the low

type). We found that the high-type investor might indeed choose agency dealer, if the size of

agency dealer (i.e. the number of low-type investors connecting with the agency dealer) is

sufficiently large. This is because the high-type can obtain reasonably low price even if he

might be able to get only partial liquidity insurance from the agency dealer. However, if the

agency dealer does not have sufficiently large low-type clientèle, the high-type investor will

prefer direct relationship with the principal dealer to avoid intermediation fees and obtain full

liquidity insurance.

The implication on market efficiency when the high-type switches to agency dealer is

ambiguous. On the one hand, the low-type investors may benefit from the resulting higher

bargaining power of the agency dealer. On the other hand, when the high-type chooses the

agency dealer, either 1) the high-type will crowd out liquidity from the low-type in bad states if

liquidity quota does not increase in response to the joining of the high-type or 2) the low-type

might face higher price due to higher upstream price and agency cost if liquidity quota increases

in response to the joining of the high-type. Moreover, it is possible that some low-type investors

will no longer be able to form a relationship with the agency dealer upon the joining of the

high-type investor. In our model, we cannot examine this effect, since we assume that the

agency dealer can obtain outside option equivalent to the equilibrium relationship payoff only

if the agency dealer still connects with all the (low-type) investors in the game. Under this

assumption, every investor matters to the agency dealer, thus the agency dealer can commit to

every relationships with the investors. Relaxing this assumption might cause the agency dealer

to lose a few low-type investors upon the joining of the high-type investor, resulting in lower

allocative efficiency.

2.7.2 Possibility of a principal dealer executing agency trade.

In our model, we assume that only agency dealer can intermediate trades between a principal

dealer and investors. However, one can argue that in reality a principal dealer can take both

roles: providing liquidity by taking positions for their own clients and intermediating trans-

actions between low-trading-need investors and another principal dealer. Our conjecture is

that intermediation via an agency dealer who do not take positions and do not have their own

high-trading-need client base is preferable for both the investors and the upstream principal

dealer. This is because of higher agency cost when trading via the principal dealer. Unlike an

agency dealer, a principal dealer has an incentive to withhold trade orders from the investors

during good times. This agency problem supports the theory that vertical market fragmentation

(i.e existence of periphery layer) can still emerge despite the presence of multiple principal

dealers.
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2.7.3 Direct relationship with partial insurance coverage

In our model, an agency dealer can sustain relationship between a principal dealer and several

investors when the investors have infrequent liquidity shocks, by reducing liquidity quota

to induce the principal dealer to eventually commit to the relationship. In the equilibrium,

the investors will only obtain partial insurance coverage from the agency dealer. From this

finding, one can argue that the investors can just form partial insurance relationship directly

with a principal dealer, by requiring the principal dealer to provide liquidity with some positive

probability. This type of direct relationship will save the intermediation fees and improve the

surplus of both the investor and the principal dealer.

Unfortunately, this type of direct relationship with partial insurance between a principal

dealer and an investor involves a new imperfect monitoring problem: the investor cannot monitor

perfectly whether the principal dealer is still randomly providing liquidity or he strategically

reneges the agreement in bad states. From our model, trading via an agency dealer can eliminate

this imperfect monitoring problem, because investors do not have to monitor the agency dealer

who, unlike the principal dealer, has no incentive to withhold liquidity in bad states. Moreover,

trading via agency dealer allows investors to pool their liquidity shocks and enlarge contracting

space, increasing the likelihood of relationship formation. Therefore, intermediated relationship

can be preferable to direct relationship with partial insurance.

2.7.4 Multiple agency dealers and competition

Throughout the paper, we consider the model with one agency dealer. So far, our result suggests

that a market with only one agency dealer might be socially optimal (i.e. highest likelihood for

successful relationship), because contracting space is largest and a threat that the agency dealer

can impose on the principal dealer is maximized. Also, when we allow our model to contain

multiple agency dealers, equilibrium market structure is likely to be a market which only one

agency dealer forms the relationship with all the investors. However, the market structure with

one agency dealer might no longer be an equilibrium when we consider a more general setting.

Firstly, our model assumes that there is perfect competition among sell-side dealers. There-

fore, it is not surprising to get the equilibrium in which the market contains only one agency

dealer. However, if we consider competition structure and surplus allocation in a more realistic

setting, an equilibrium with several agency dealers can emerge endogenously. This is because the

investors need to establish relationships with several dealers to increase their outside options.29

Secondly, our model assumes that other principal dealers in the market will consider forming

relationship with the agency dealer only if 1) the agency dealer terminates the relationship with

previous principal dealer in a bad state and 2) all investors are still in the relationship with the

agency dealer. Under this assumption, the agency dealer can commit to relationships with all the

investors in the game. If relaxing this assumption, a commitment problem of agency dealer will

arise when agency dealer is too big, because punishment from each individual investor might

not be strong enough to threat the agency dealer to commit to the relationship in good states.

That is, in periods when the number of active investors is small and the market state is good,
29See Wang (2017) for more details on relationship formation and market competition
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the agency dealer will choose the other principal dealer P ′, get cheaper upstream price in the

deviating period, and establish relationship with a new principal dealer in subsequent periods. If

the size of agency dealer is large enough, relationship termination from a few active investors

in the deviating period will not be enough to prevent the agency dealer from forming a new

relationship later. Thus, in the relationship equilibrium, each individual investor must be able

to effectively punish the agency dealer. Indeed, relaxing this assumption will introduce one

more equilibrium condition on the size of agency dealer. Due to the size limit on agency dealer,

equilibrium with multiple agency dealers will naturally exist.

2.8 Concluding remark.

To summarize, this paper studies strategic dealer choice of buy-side investors in over-the-counter

(OTC) asset markets and provides a new insight into why periphery dealers, despite locating

at inferior positions in OTC dealer network, can survive and co-exist with core dealers. Our

main finding is that investors will trade with periphery dealers to obtain the benefit of long-term

relationship instead of trading with core dealers on a one-period basis when the investors have

infrequent liquidity needs, allowing periphery dealers to co-exist with core dealers.

Our finding on long-term relationships opens up a challenging question for policy makers

on designing appropriate marketplaces for OTC-traded products. Long-term relationships and

dealer network have been the bone of over-the-counter markets for several years due to the

feature of OTC-traded products which are non-standardized, traded in large lots, and highly

illiquid. However, recent financial crisis has put this traditional OTC market mechanism into

question. What should be a suitable policy direction for regulators or what regulatory framework

should be put in place are important questions we are yet to discover.
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2.9 Appendix

2.9.1 Additional material: the model with heterogeneous investors

In this section, we extend our model to have two types of investors: a high-trading-need investor

who can form direct relationship with principal dealers and a group of low-trading-need investors

who cannot do so, and characterize the conditions when the high-trading-need investor chooses

the agency dealer (pooling equilibrium) instead of the principal dealer (separating equilibrium).
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Figure 2.9: Pooling equilibrium (left) and separating equilibrium (right).

Model extension

Consider the model with an agency dealer and two types of investors: a high-type investor H

with probability of liquidity shock qH and a group of low-type investors IL = {1, 2, · · · , N}
with probability of liquidity shock qL and |IL| = n. Define Qi = qiδ

1−δ . We limit our analysis to

a special case under the following assumptions.

Assumption 2.2

1. qL ∈ Nε(0)

2. QH ≥ QP ≥ QL

3. n ≥ 1
QL
max

{
2Y −QH , 2p(1+QLp)

2(C−VL)
(1−p)((QLp)2(V−VL)−(1+QLp)2(C−VL))

−QH
}

4. {P,A} obtain their lowest possible payoffs.

The first assumption assumes that the low-type investors rarely face liquidity shocks, im-

plying that they can obtain almost full insurance in the equilibrium. This assumption allows us

to draw an insight about equilibrium market structure without technical complications about

a change in the low-type investors’ incentive from endogenous adjustment in the degree of

liquidity insurance coverage.

The second and third assumption specify characteristics of the low-type and the high-type.

The second assumption states that only the high-type investor can form the relationship directly

with the principal dealer. The third assumption states that the number of the low-type investors is

sufficiently large that they can form the relationship with the agency dealer without the inclusion

of the high-type investor; that is, a separating equilibrium can exist. The last assumption

specifies equilibrium surplus allocation of all players in a competitive dealer market, where the

sell-side dealers compete for relationship formation in a large decentralized market. This also

implies that we will consider only the most-likely-to-exist equilibrium, in which the low-type

investors obtain their highest possible payoffs.
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Timeline

The timeline of the game is identical to our main setting, except that the investors must choose

whom they want to form the relationship with in period t = 0. Specifically, all investors

i ∈ I decide whom they want to form the long-term relationship in period 0, denoted by

di0 = {A,P}. Assume that every player can observe all the investors’ dealer choice, implying

that the investors know the coalition size of the agency dealer. Denote N(A) = {i|di0 = A}
and N(P ) = {i|di0 = P} the set of investors who choose A and P in period 0, respectively.

The equilibrium

Before characterizing the equilibrium, we first formally define two types of the equilibrium.

Definition 2.4 (Equilibrium definition) A liquidity insurance equilibrium is

1. a pooling equilibrium if

a) di0 = A for all i ∈ I

b) FiG = xG
pQi

and FiB = 0

2. a separating equilibrium if

a) di0 = A for all i ∈ IL
b) dH0 = P

c) n∗ = 1

From the definition, we rule out the possibility of cross-subsidy across investors under

pooling equilibrium in condition (1.b). Specifically, the investors are responsible to pay for

only the agency cost incurred from their own transactions, and the agency dealer A cannot

strategically place higher fees to some investors to cover other investors’ agency costs. We also

consider only the separating equilibrium when liquidity quota n∗ is one. This is intuitive given

that the probability of liquidity shocks of the low-type investors is almost zero.

Our next step is to characterize existence condition of both the pooling and separating

equilibrium. The condition will depend on the decision of the high-type investor, because the

low-type investors have no other options but to form the relationship with the agency dealer.

Therefore, we only need to compare the expected payoff that the high-type would get under

separating equilibrium with his expected payoff under pooling equilibrium.

What is the key factor that determines the dealer choice of the high-type investor? Obviously,

one is the equilibrium price that he could obtain from both dealers. However, the high-type

investor must also consider his probability of obtaining liquidity in the future (i.e. his insurance

coverage yi(n∗)), if he chooses the agency dealer. To illustrate this point, we will consider

two cases of pooling equilibrium: the case of n∗ = 1 and the case of n∗ = 2. In the first

case, the agency dealer does not alter the liquidity quota to cover the inclusion of the high-type

investor; therefore, the high-type investor faces higher liquidity risk (i.e. lower yi(n∗)). The

second case is when the agency dealer adjusts the liquidity quota to n∗ = 2 to cover for the

high-type investor. In this case, the high type still obtains (almost) full insurance when choosing

the agency dealer.
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Case I: liquidity quota n∗ = 2 under pooling equilibrium.

The first case is when the liquidity quota rises by one unit to cover frequent liquidity needs

of the high-type investor. As shown in Figure 2.10, a unit increase in the quota will guarantee

the high-type investor almost full insurance coverage. Therefore, the decision of the high-type

investor will depend on the final price that he would be charged by the agency dealer. Consider

the following proposition.
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Figure 2.10: Graphical illustration of a unit increase in liquidity quota when the high-type investor
chooses A.

Proposition 2.5 (Equilibrium characterization I) Provided that n∗ = 2 under pooling equi-

librium and that Assumption 2.2 is satisfied,

1. pooling equilibrium exists if p > 1
2 and

NQL ≥
2 +QH
2p− 1

2. separating equilibrium exists if p ≤ 1
2 , or if p > 1

2 and

NQL ≤
2 +QH
2p− 1

.

Interpretation of this proposition is straightforward. The high-type investor would prefer A

if the price quoted by A is cheaper than the price quoted by P . Therefore, when coalition size

of the low-type nQL is large enough relative to his own size QH , the high-type investor would

arbitrage by choosing the agency dealer.

Interestingly, the pooling equilibrium is more efficient than the separating equilibrium due

to positive externality from the high-type investor: the amount of liquidity provision in bad

states is slightly higher than the separating equilibrium. In the pooling, the low-type investors

have higher chance of obtaining liquidity in bad states, because they, as a group, can obtain

two units of liquidity instead of one unit when the high-type investor does not have liquidity

shock. However, will pooling equilibrium be preferable to all players? According to the next

proposition, the low-type investors in fact receive lower payoff if the high-type investor chooses

the agency dealer.

Proposition 2.6 (Surplus allocation) In the pooling equilibrium, the low-type investors obtain

lower payoff compared to the case which the high-type investor chooses the principal dealer.
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This finding is surprising, given that the inclusion of the high-type investor should help

the low-type investors get lower price due to larger group size. In addition, liquidity insurance

coverage of the low-type investors increases. The answer is because the upstream price depends

not only on the number of investors but also on the liquidity quota that the agency dealer requests

from the principal dealer. Upon the participation of the high-type investor, the upstream price

quoted to the agency dealer in fact increases which can hurt the low-type investors. Moreover,

the extra trade surplus goes to the agency dealer who also charges higher intermediation fees to

the low-type investors in response to higher upstream price.30 This finding implies that agency

dealer might improve market liquidity and efficiency, but he can have too much bargaining

power over low-type investors who have no other options but to trade with him.

Case II: liquidity quota n∗ = 1 under pooling equilibrium.
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Figure 2.11: Graphical illustration of no adjustment in liquidity quota when the high-type investor
chooses A.

The second type of pooling equilibrium is when the agency dealer does not request more

liquidity quota from the principal dealer to cover liquidity needs of the high-type investor in

the pooling equilibrium. Obviously, this is an inefficient pooling equilibrium, as the high-type

investor crowds out liquidity coverage from the low-type investors. In this situation, the dealer

choice of the high-type investor depends on both the price and the degree of his insurance

coverage he can obtain from A. Let xPA be the price that P offers to A when H chooses A and

and xPH be the price that P offers to H directly. The following lemma provides a sufficient

condition for the high-type investor to prefer A.31

Lemma 2.4 In period 0, dH0 = A if

xPH − xPA ≥
1

QHp
xPA +

(
1− p
p

)
(nqL) (V − VL)

From the lemma, even though A can get lower price from P , choosing A is not always

an optimal decision for the high-type investor because of two reason because of two reasons:

positive intermediation fees (i.e. 1
QHp

xPA) and lower probability of obtaining liquidity in bad

states (i.e.
(

1−p
p

)
(nqL) (V − VL)). Indeed, the larger the number of low-type investors is, the

30Recall that the agency cost (i.e. minimum intermediation fees required by the agency dealer) depends directly
on the upstream price. When the upstream price increases, the agency dealer has more incentive to send trade orders
to the competitive principal dealer, resulting in higher agency cost.

31Note that this lemma considers a strategy profile with the lowest possible probability that the high-type investor
will get liquidity in bad states to obtain a sufficient condition.
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lower the chance that the high-type investor would get obtain liquidity in bad states is. Thus, the

price quoted by A must be sufficiently low to compensate for the lower insurance coverage.

Can a pooling equilibrium exist? From the lemma, the number of low-type investors must

be so high that A can get a very attractive upstream price for a pooling equilibrium to exist. The

following proposition provides a sufficient condition for existence of the pooling equilibrium.

Proposition 2.7 (Equilibrium characterization II) Provided that 1) n∗ = 1 under pooling

equilibrium, 2) p > 1
2 , and 3) qH is sufficiently low, there is a real interval [Q, Q̄] ∈ R+ in

which a pooling equilibrium exists if NQL ⊂ [Q, Q̄]

This proposition is straightforward. If 1) the frequency of liquidity needs of the high-type

is sufficiently low that his benefit of choosing A is relatively large and 2) the number of the

low-type investors is also large enough to bring the upstream price down significantly, then

the high-type investor will choose the agency dealer. However, the main difference from the

previous type of pooling equilibrium is the restriction on upperbound of frequency of aggregate

liquidity needs of all the low-type investors (nqL). This is because, unlike the previous type of

pooling equilibrium, the high-type investor faces higher likelihood of liquidity shortage when

the whole group of low-type investors demand liquidity more frequently.

Discussion

Overall, what do we learn from this section? For one thing, we know that agency dealers

and principal dealers are not direct competitors. From the model, an agency dealer attracts

trade orders from low-trading-need investors who are not the main target clients of principal

dealers. However, if agency dealers are bigger, they can start competing with principal dealers

by attracting the high-type investors. Such competition can be undesirable to both low-type

investors and principal dealers. From the model, under the case of efficient pooling equilibrium

(n∗ = 2) in which a high-type investor can bring more liquidity to low-type investors, the market

player who gains is the agency dealer at the expense of the low-type investors. In a nutshell,

agency dealers should be sufficiently big to effectively negotiate with principal dealers, but they

can become too big and harm the main market participants – main liquidity-providing supplier

(principal dealers) and end-user investors.
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2.9.2 Omitted proofs

First, the list of a few notations used in the following proofs are as follows.

• f(k) = Pr(
∑

j∈I ljt = k)

• f−i(k) = Pr(
∑

j∈I−i ljt = k)

• κ(n∗) =
∑

k≤n∗ f(k)(k) +
∑

n≥k>n∗ f(k)(n∗)

• σ(n∗) = κ(n∗)
κ(n)

• yi(n∗) =
∑

k≤n∗−1 f−i(k) +
∑

k>n∗−1 f−i(k)αi(n
∗, k)

Also, note that κ(n) =
∑

k≤n Pr
(∑

i∈I lit = k
)
k = nq since it is the mean of binomial

distribution.

Proof of Lemma 2.1: To prove the lemma, we have to consider both "if" and "only if"

condition. For the "if" condition, we follow the standard trigger strategy and use the static

equilibrium strategy as a threat on deviation of both players. That is, if someone deviates, both

of them will receive their respective outside options in all subsequent periods. For the "only

if" part, it is always true, because both players must obtain higher payoff under equilibrium

relationship outcome than their outside options when they choose to form the relationship. In an

equilibrium, the following incentive constraints must be true.

1. the investor is willing to pay insurance premium xG and continue the relationship instead

of contacting P ′ in good states

−xG +Q[p(V − xG) + (1− p)(V − xB)] ≥ QpV [E1.1]

2. the insurance premium xG is feasible to pay by the investor

xG ≤ VL [E1.2]

3. the principal dealer is willing to provide costly liquidity immediacy and continue the

relationship rather than withholding the liquidity in bad states

xB − C +Q(pxG + (1− p)(xB − C)) ≥ 0 [E2]

Rearranging [E1.1] and combining with [E1.2] yields

xG ≤ max
{
Q(1− p)
1 +Qp

(V − xB), VL

}
[E3]

Rearranging [E2] gives

xG ≥
1 +Q(1− p)

Qp
(C − xB) [E4]

which proves the lemma.
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Proof of Proposition 2.2: To prove the existence condition, we find the condition in which

there exists (xG, xB) ∈ [0, VL] × [0, VL] such that [E3] and [E4] are satisfied. From Lemma

2.1, [E3] and [E4] are both satisfied when

1 +Q(1− p)
Qp

(C − xB) ≤ Q(1− p)
1 +Qp

(V − xB) [E5]

and
1 +Q(1− p)

Qp
(C − xB) ≤ VL [E6].

Rearranging [E5] gives

1 +Q(1− p)
Qp

C − Q(1− p)
1 +Qp

(V ) ≤ 1 +Q(1− p) +Qp

Qp(1 +Qp)
xB.

From this condition, it is obvious that xB = VL will maximize the chance of equilibrium

existence. This is also intuitive as it reduces the distortion in bad states. Substituting xB = VL

into [E5] and [E6] gives

1 +Q(1− p)
Qp

(C − VL) ≤ Q(1− p)
1 +Qp

(V − VL) [E5′]

1 +Q(1− p)
Qp

(C − VL) ≤ VL [E6′]

Solving [E5′] for Q ∈ R+ gives

Q ≥
1 +

√
1 + 4p(1− p)(V − C)

2p(1− p)(V − C)

and rearranging [E6′] gives

Q ≥ C − VL
VL − (1− p)C

provided that VL > (1− p)C

which proves the proposition.

Proof of Lemma 2.2: To prove this lemma, we consider the following incentive constraints

of the principal dealer and all investor i ∈ I:

1. principal dealer P must have incentive to provide liquidity in bad states and continue the

relationship

n∗(xB − C) +
δ

1− δ
(nqpxG − (1− p)(C − xB)κ(n∗)) ≥ 0 [A1]

2. investor i has no incentive to choose P ′ during good state

−(xG +FG) +Q(p(V − (xG +FG)) + (1− p)yi(n∗)(V − (xB +FB)) ≥ QpV [A2]

3. investor i can afford to purchase liquidity service in all periods.

xG + FiG ≤ VL [A3]

xB + FiB ≤ VL [A4].
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Rearranging [A1] yields

xG ≥
n∗ + δ

1−δ (1− p)κ(n∗)

nQp
(C − xB) [E1].

Rearranging [A2] and combining with [A3] give

xG + FiG ≤ max
{
Q(1− p)yi(n∗)

1 +Qp
(V − (xB + FiB)), VL

}
[E2]

which proves the lemma.

Proof of Lemma 2.3: To prove this lemma, we consider incentive constraint of the

agency dealer. The reason we restrict our attention to only symmetric equilibrium in which

all investors face same allocation rule αi(n∗, nt) = αj(n
∗, nt) which implies that, for a

given n∗, yi(n∗) = yj(n
∗) for all i, j ∈ I and face same intermediation fees in every state

(FiB, FiG) = (FjB, FjG) = (FB, FG), is that it maximizes the likelihood of an equilibrium to

exist. Since for an equilibrium to exist, all investors must agree to the relationship, including the

ones who face the most restrictive incentive constraint. Under symmetric equilibrium, incentive

constraint of the agency dealer is

(1− p)FB

∑
k≤n∗

[
Pr

(∑
i∈I

lit = k

)
k

]
+

∑
n≥k>n∗

[
Pr

(∑
i∈I

lit = k

)
n∗

]
+ pFG

∑
k≤n

[
Pr

(∑
i∈I

lit = k

)
k

]
≥ (1− δ)nxG

δ

This is in fact the most restrictive incentive constraint of the agency dealer, which is when he

chooses P ′ when all investors demand liquidity in good states and earns maximum deviating

payoff nxG.32 Substituting κ(n) = nq and rearranging the constraint give

Q((1− p)σ(n∗)FB + pFG) ≥ xG [I]

which proves the lemma.

Proof of Proposition 2.3: To prove the proposition, we find the existence condition of the

liquidity insurance equilibrium among {P,A, I} and compare it to the existence condition of the

direct relationship equilibrium between {P, i}. To characterize the existence condition, we find

the minimum value of Q in which there exists {xG, xB, FG, FB} such that incentive constraints

of all players ([E1], [E2], [I]) and feasibility conditions ([A3], [A4]) are satisfied.

First,

FB = VL − xB [C1]

32We confirmed this again in the proof of Proposition 2.3
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must be true or else we can increase xB or FB which will relax other constraints and get the

lower Q. Next, from [A3],

FB = max

{
xG
Q − pFG

(1− p)σ(n∗)
, 0

}
[C2]

or else we can decrease FB and relax other constraints to get lower Q. Considering the interior

solution, we obtain from [C1] and [C2] that

xB = VL −
xG
Q − pFG

(1− p)σ(n∗)
[C3].

Next, from [E1], we obtain

(1 +
n

n∗
QA)(C − xB) ≤ n

n∗
QpxG

where A = (1− p)σ(n∗) < 1. Next, substituting xB from [C3] into this condition gives

(1 +
n

n∗
QA)

(
C −

(
VL −

xG
Q − pFG

A

))
≤ n

n∗
QpxG [E1′].

Rearranging [E1′] gives

(1 +
n

n∗
QA) (C − VL) ≤ n

n∗
Qp(xG + FG)−

(
n

n∗
+

1

QA

)
xG +

p

A
FG [E1′′].

Consider [E2]. Substituting FB = VL − xB from [C1] and rearranging [E2] gives

xG + FG ≤
Q(1− p)yi(n∗)

1 +Qp
(V − VL) [E2′].

From both [E1′′] and [E2′], to relax the constraint and minimize the value of Q, we must set xG
to its lowest possible value while setting FG to its highest possible value to relax the constraint

[E1′′] while unchanging the left term of [E2′]. Since FB cannot go below zero, we obtain the

following lemma.

Lemma 2.5 xG = pQFG and FB = 0

This lemma is intuitive. Because there is restriction during the bad state on the maximum price

that the principal dealer can charge, further distortion by setting FB higher will deteriorate profit

of P even more. Lastly, substituting xG = pQFG into [E1′′] yields

(1 +
n

n∗
QA) (C − VL) ≤ n

n∗
Q2p2FG

which can be simplified into

(1 + n
n∗QA) (C − VL)

n
n∗Q

2p2
≤ FG [E1′′′].

Also, substituting xG = pQFG into [E2′] gives

FG ≤
(1− p)Qyi(n∗)(V − VL)

(1 +Qp)2
[E2′′].
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Therefore, the equilibrium exist if

(1 + n
n∗QA) (C − VL)

n
n∗Q

2p2
≤ (1− p)Qyi(n∗)(V − VL)

(1 +Qp)2

which is equivalent to

(1 + n
n∗QA) (C − VL) (1 +Qp)

n
n∗Q

2p2yi(n∗)
≤ Q(1− p)(V − VL)

1 +Qp
[E3.A]

Next, we compare the equilibrium existence condition [E3.A] with the existence condition

from Proposition 2.2. Recall the condition [E5′] from the proof in Proposition 2.2 that liquidity

insurance equilibrium between {i, P} for any i ∈ I exists if and only if

(1 +Q(1− p))(C − VL)

Qp
≤ Q(1− p)(V − VL)

1 +Qp
[E3.P ]

Let QP be the minimum Q that satisfies liquidity insurance existence condition between {P, i}
in the basic model and QA be the minimum Q that satisfies liquidity insurance existence

condition between {P,A, I}. From [E3.A] and [E3.P ], QA < QP if

(1 + n
n∗QA) (C − VL) (1 +Qp)

n
n∗Q

2p2yi(n∗)
≤ (1 +Q(1− p))(C − VL)

Qp
.

Substituting A = (1− p)σ(n∗) into the condition and simplifying give(
1 +Q(1− p)

n∗

n +Q(1− p)σ(n∗)

)
≥
(

1 +
1

Qp

)(
1

yi(n∗)

)
.

Lastly, we need to verify that, given that QP > Q > QA,

1. the maximum agency cost of A is indeed nxG which will validate the incentive constraint

of A in Lemma 2.3.

2. xG + FG ≤ VL

To prove the first claim, we need to show that, when pQFG = xG,

nxG > zxG + (n− z) qpδ

1− (1− q)δ
(xG + FG)

where the right term of the inequality is the expected payoff of the agency dealer when he decides

to choose P ′ when there are z liquidity orders in a good period. Substituting pQFG = xG into

the inequality condition yields

1 >
qpδ

1− (1− q)δ
(1 +

1

pQ
)

which, once being simplified, becomes

1 > p

which is always true. This validates the incentive constraint of A in Lemma 2.3.
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To prove our second claim, it is sufficient to prove that xF + FG is lower than any price xG
offered by P to i under direct liquidity insurance relationship between {P, i}. First, the direct

liquidity insurance relationship equilibrium between {P, i} does not exist (i.e. Q < QP ) when

any xG which satisfies the following constraint

xG ≥
1 +Q(1− p)

Qp
(C − xB)

violates the incentive constraint of investor i such that

xG >
Q(1− p)
1 +Qp

(V − xB) [Z1].

However, any equilibrium price xG + FG under liquidity insurance equilibrium between

{P,A, I} must satisfy the incentive constraint of investor i, which is

xG + FG ≤
Q(1− p)yi(n∗)

1 +Qp
(V − (xB + FB)) [Z2].

Let xG = Q(1−p)
1+Qp (V −xB) be the minimum price that the principal dealer quotes to investor

i in any direct relationship equilibrium. Since yi(n∗) ≤ 1, we obtain

xG + FG ≤
Q(1− p)yi(n∗)

1 +Qp
(V − (xB + FB)) < xG.

Since xG ≤ VL at xB = VL by assumption, xG + FG ≤ VL must be true. This proves the

second claim and the proposition.

Proof of Proposition 2.4: Recall from the proof of Proposition 2.3 that

xG + FG ≤
Q(1− p)yi(n∗)

1 +Qp
(V − (xB + FB)) < xG.

This immediately proves the proposition.

Proof of Corollary 2.1: From the first-order Taylor approximation, limq→0κ(n∗) = nq(1−
q)n−1 = nq. Also, limq→0f−i(0) → 1. Therefore, limq→0yi(n

∗) = 1, σ(n∗) = κ(n∗)
κ(n) , and

limq→0 σ(n∗) = 1. This proves the first condition in the corollary.

Next, from Proposition 2.3, QA < QP if

1 +Q(1− p)
n∗

n +Q(1− p)σ(n∗)
≥
(

1 +
1

Qp

)(
1

yi(n∗)

)
.

Substituting yi(n∗) = 1 and σ(n∗) = 1 into the condition gives

1 +Q(1− p)
n∗

n +Q(1− p)
≥ 1 +

1

Qp
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which will be satisfied if p > 1
2 and

n

n∗
≥ 1 + pQ

Q(2p− 1)
.

This proves the corollary.

Proof of Proposition 2.5: To prove this proposition, we 1) compare the expected payoff of

the high-type investor if he chooses A with his expected payoff if he chooses P and 2) check

that the low-type can form the relationship under both types of equilibrium. Let xP be the price

that the principal dealer would charge the high-type investor under separating equilibrium and

xA + FH be the equilibrium price that the agency dealer would charge the high-type investor

under pooling equilibrium. From Lemma 2.2, when n∗ = 2 under pooling equilibrium and

{P,A} obtains lowest possible payoff by Assumption 2.2, we obtain

xP =

(
1

QHp
+

1− p
p

)
(C − VL)

and

xA =

(
2

(QH + nQL)p
+

1− p
p

)
(C − VL) and FH =

xA
pQH

.

Therefore, the high-type investor would choose A if(
2

(QH + nQL)p
+

1− p
p

)
(1 +

1

QHp
) ≤ 1

QHp
+

1− p
p

.

Simplifying the condition gives

nQL ≥
2 +QH
2p− 1

provided that p >
1

2
[C1].

Next,we show that the low-type investors can form the relationship in both separating and

pooling equilibrium. From Lemma 2.2, the low-type investors would commit to the relationship

in the pooling equilibrium if(
2

nQL +QH
+

1− p
p

)(
QLp+ 1

QLp

)
≤ QL(1− p)(V − VL)

(1 +QLp)(C − VL)
.

Rearranging the condition yields

n ≥ 1

QL

(
2p(1 +QLp)

2(C − VL)

(1− p)((QLp)2(V − VL)− (1 +QLp)2(C − VL))
−QH

)
which is always true by Assumption 2.2. Similarly, from Lemma 2.2, the low-type investors

would commit to the relationship in the separating equilibrium if(
1

nQL
+

1− p
p

)(
QLp+ 1

QLp

)
≤ QL(1− p)(V − VL)

(1 +QLp)(C − VL)

which is equivalent to

n ≥ 1

QL

(
p(1 +QLp)

2(C − VL)

(1− p)((QLp)2(V − VL)− (1 +QLp)2(C − VL))

)
.
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This is always satisfied by Assumption 2.2. This proves the proposition.

Proof of Proposition 2.6: Let bs be the price that A charges to the low-type investors under

separating equilibrium and bp be the price that A charges to the low-type investors under pooling

equilibrium. Notice that bs < bp if [C1] is true. To see this, from Lemma 2.2, bs < bp if

1

nQLp
+

1− p
p

<
2

(QH + nQL)p
+

1− p
p

.

Rearranging the condition gives

nQL > QH .

which is always true when [C1] is true. This implies that the payoff of the low-type investors can

be lower in the pooling equilibrium compared to the case when the high-type investor chooses

P . Note that this is also true despite relaxing the restriction on no cross-subsidy across investors.

To see this, first note that the payoff of the principal dealer from the relationship does not change

(which is 2(C − VL)). Next, when the high-type investor chooses A, it will drive the upstream

price upward. Therefore, the amount of surplus that all players must leave to A must be strictly

higher by at least the new upstream price xG. However, upon choosing A, the high-type investor

increases total trade surplus by almost zero since qL → 0. This proves Proposition 2.6.

Proof of Lemma 2.4: To prove the lemma, we compare the payoff of the high-type investor

when he chooses A against his payoff when he chooses P . Let xPA be the price that P offers to

A when H chooses A. Let xPH be the price that P offers to H when H chooses P . Given that

FH = 1
QHp

, the payoff when H chooses A is higher than the payoff when he chooses P if

QH(p(V −XPA − FH) + (1− p)M(V − VL)) ≥ QH(p(V − xPH) + (1− p)(V − VL))

where M is the probability that the high-type investor will get liquidity in bad states if joining

A. This term will be at the lowest value when M = 1− nqL, which is when A gives priority to

the low-type investors. Substituting M = 1−nqL and FH = 1
QHp

into the condition, we obtain

xPH − xPA ≥
1

QHp
xPA +

(
1− p
p

)
(nqL) (V − VL)

which proves the lemma.

Proof of Proposition 2.7: From Lemma 2.2, we obtain

xPH =

(
1

QHp
+

1− p
p

)
(C − VL)

and that

xPA =

(
1

(QLn+QH)p
+

(
1− p
p

)(
nQL +QH − nQLqH

nQL +QH

))
(C − VL).
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Let Q̂ = nQL and QN = QH + Q̂. Plugging xPH and xPA into

xPH − xPA ≥
1

QHp
xPA +

(
1− p
p

)
(nqL) (V − VL)

yields

1

QHp
+

1− p
p
−
(

1 +
1

QHp

)(
1

QNp
+

(
1− p
p

)(
1− nqLqH

q̂

))
≥ q̂

(
1− p
p

)(
V − VL
C − VL

)
which must be true if

1

QHp
+

1− p
p
−
(

1 +
1

QHp

)(
1

QNp
+

1− p
p

)
≥ q̂

(
1− p
p

)(
V − VL
C − VL

)
.

Rearranging this condition gives

Q̂− 1

p
− (1− p)QN ≥ Q̂QNqH(1− p)

(
V − VL
C − VL

)
which is identical to

Q̂2qH(1− p)
(
V − VL
C − VL

)
+ Q̂

[
q2
H(

δ

1− δ
)(1− p)

(
V − VL
C − VL

)
− p
]

+
1

p
+ (1− p)QH ≤ 0.

The left side is the standard quadratic function of Q̂. From the above inequality, a solution

for Q̂ exists if

q2
H(

δ

1− δ
)(1− p)

(
V − VL
C − VL

)
− p < 0

and(
p− q2

H(
δ

1− δ
)(1− p)

(
V − VL
C − VL

))2

− 4qH(1− p)
(
V − VL
C − VL

)(
1

p
+ (1− p)QH

)
≥ 0.

Both of them will be true if qH is sufficiently low. This proves Proposition 2.7.
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Chapter 3

Strategic Formation of Financial
Network

3.1 Introduction

In globalization era, financial interconnectedness becomes a prominent feature of global financial

landscape via all kinds of connection - equities, debts, derivatives, and other types of financial

obligations. While financial interlinkage brings a benefit of risk-sharing across financial entities,

it also generates financial fragility, or the so-called systemic risk, due to cascading failure from

interdependencies within the financial system. The materialization of systemic risk in the recent

financial crisis highlights a necessity to understand formation of financial network and possible

build-up of systemic risk.

While the literatures have unveiled systemic consequence of cascading failures of a fixed

financial network,1 the story of financial network formation which is critical for regulatory

design remains mystifying to regulators. In this spirit, this paper develops a game-theoretic

model to study strategic formation of financial network. The main objective is to identify

equilibrium pattern of financial network emerged from strategic decision of all self-interested

agents who can trade forward contracts (i.e. assets) to obtain fractions of investment return of

other players in a trading network. We contribute to the literature by shedding light on how the

equilibrium asset allocation depends on structural properties of trading network.

In the model, there is a finite number of risk-averse agents investing in a risky project and

holding unlimited amount of cash. To diversify the risk, agents can issue forward contracts (i.e.

asset) which guarantee a fraction of their project returns and sell to whom they have trading

connection with. All trades are bilateral, each involving two parties privately agreeing on asset

price and quantity. All trading relationships are represented by a directed network, in which
1A few examples include Allen and Gale (2000), Elliott et al (2014), Acemoglu et al (2015), Cabrales et al

(2014).
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vertices represent all agents in the economy and arcs indicate possibilities of bilateral trading

among agents.2

Asset prices are endogenously determined in two stages. In the first stage, agents simultane-

ously quote asset prices to all neighbouring buyers with a promise to sell unlimited amount of

assets at the quoted prices. In the second stage, after observing the quotes, all agents decide

quantities of asset demand. Asset resale is prohibited throughout the paper. We characterize the

unique subgame perfect equilibrium for an arbitrary trading network under standard assumptions

of CARA utility function and normal distribution of asset returns.

The main feature of the model is endogeneity of asset demand function, which depends on

topology of the trading network and asset return correlations. Intuitively, a quantity change in

asset demand of an agent from a price change causes his neighbour, his neighbour’s neighbours,

and so on to optimally adjust their portfolio compositions accordingly. This in turn can cause

non-trivial change in asset demand of all agents despite the agents being indirectly connected

through a sequence of counterparties. Such information is summarized in quantity impact

matrix, the coefficient matrix of asset demand functions determined in the second stage, which

indicates the sensitivity of demand quantity to a price change of all assets.

To examine how equilibrium asset allocation depends on structure of trading network, we

use the concept of line graph transformation to obtain a network of asset flows and identify

trading-link positions. Conceptually, the line graph transformation converts links of all agents

in the original network to become vertices in a new network, the network of asset flows, and

edges between each pair of new nodes represent the agents that tie the asset flows together.

Theoretically, the line graph is a network representation of local interactions of all players, so

its centrality plays a critical role in determining the equilibrium outcome.

There are three main insights from the model. First, the quantity impact matrix corresponds

to contribution matrix of a generalized Bonacich centrality measure of an asset-flow network, in

which the links between asset-flow nodes represent the buying parties of the asset flows. The

weight assigned to each link in the asset-flow network depends on opportunity of the buyer in

the flow to find substitutable assets and to sell his own asset. Intuitively, if a flow is central, a

price change in the flow will have significant impact on asset demand quantity of other asset

flows in the network.

The second insight is that the equilibrium asset allocation corresponds to a generalized

Bonacich centrality index of a network of asset flows, in which the links between asset-flow

nodes represent the buying and selling parties of the flows. Intuitively, demand quantity in a flow

is large (small) if the flow is adjacent to large-quantity flows with positive (negative) weight in

the asset flow network. We found that the weight assigned to each link in the asset flow network

relies on 1) the opportunity of the buying agent in the flow to buy other assets or to sell his asset,

2) the opportunity of the selling agent to sell the asset to other neighbours, and 3) the cost of

network externality from a price increase in a flow towards asset demand of other flows that

belong to the same seller. Intuitively, the selling agent will internalize the externality cost by

strategically increasing trading quantity (by reducing the price) in the asset flow that generates

positive externality toward his other asset outflows.
2Note that the assumption on directed network implies that some agents might be only the seller or the buyer in

the relationship.
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The third insight is that a constrained efficient allocation, the allocation which maximizes

the Utilitarian welfare subject to the trade friction of incomplete network, corresponds to a

generalized Bonacich centrality of an asset flow network, in which the links between asset-flow

nodes represent the agents whose utilities are affected by a quantity change in the corresponding

pair of asset-flow nodes. The main difference between the constrained efficient outcome and the

equilibrium outcome is the weight assigned to the links in the asset flow network. Specifically,

the weight for the constrained efficiency outcome depends on whether a quantity increase in

both connecting asset-flow nodes increases the utility of the agent corresponding to the link

between the two nodes.

We also found that the equilibrium asset allocation in a complete network is not efficient

in general due to monopolistic price-setting friction. An exception is when asset correlations

converge to one or become sufficiently negative. In both cases, the (inverse) asset demand

function becomes perfectly elastic; an increase in asset price can cause significant impact on the

demand quantity. Interestingly, when the correlation is sufficiently negative, market efficiency

can also be achieved even though the assets are not perfectly substitutable. The intuition is as

follows. With negative correlation, agents are willing to purchase high volume of assets despite

facing high asset price due to hedging benefits. When the correlation is highly negative, the

sellers can quote (almost) a zero-risk-premium asset price without losing the demand quantity.

However, a price increase above this level will significantly reduce demand quantity since it

exceeds the return mean. Since all agents cannot extract more rents by raising asset prices and

limiting demand quantities, the market inefficiency from the monopolistic friction disappears.

To obtain more insights, we further examine two specific cases: the case of no correlation

and the case of identical correlation in a star network and a core-periphery network. The no-

correlation assumption simplifies the model to a monopoly problem with differentiated goods,

as the quantity impact matrix becomes diagonal. We found that equilibrium asset allocation and

risk premium depend conversely on the degree centrality of selling parties, as predicted by the

standard monopoly problem.

The model provides a few interesting insights when examining the case of negative correla-

tions. Specifically, in the star network, central agent holds larger proportion of his own asset

than peripheral agents when the correlation is sufficiently negative. Moreover, when the number

of peripheral agents increases, the central agent sells less proportion of his own asset away

despite facing higher asset demands. The explanation is that, when the correlation is negative,

virtual value of assets to an agent depends on the variety of assets that the agent is holding due

to hedging benefits, resulting in larger amount of asset holdings of the hub in the equilibrium.

Considering equilibrium payoff, in the case of no asset correlation, trading with well-

connected neighbours is less beneficial than with stand-alone neighbours because of higher

competition. However, when the correlation is negative, connecting to well-connected agent

can be more beneficial. In the star network, if the asset correlation is negative, the utility of

the peripherals increases when the number of peripherals increases. This is because the benefit

from higher virtual asset valuation to the hub, of which the peripherals can take advantage by

charging higher prices, outweighs the loss from higher competition.
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Related literature.

This paper belongs to a vast growing literature in network theory in economics. Bramoullé

et al (2016) provided detailed discussion on the literature. Our paper is closely related to a

small literature of network games which map equilibrium outcome to Bonacich centrality in

a linear-quadratic framework. Ballester et la (2006) was the first to find the linkage between

Nash equilibrium and Bonacich centrality. Specifically, they found that Nash equilibrium

of noncooperative games with finite number of players, local complementarity, and linear-

quadratic interdependent utility is proportional to players’ Bonacich centrality in the network

when the direct effect is small; that is, when the equilibrium is interior and unique. Ballester

and Calvó-Armengol (2010) generalized the theory to cover broader class of games with local

substitutability in which local complementarity can be induced by a specific transformation.

Bramoullé and Kranton (2007) considered a game of public goods provision which has large

direct effects. Bramoullé et al (2014) generalized the findings in Ballester et al (2006) and

Bramoullé and Kranton (2007) by considering arbitrary level of direct effects and concluded

that equilibrium outcome depends on the lowest eigenvalue.

A few papers have developed network models with linear-quadratic framework and small

direct effects to study specific settings. For example, Calvó-Armengol et al (2009) developed a

network model to study peer effects in education. Denbee et al (2018) developed a model of

interbank network to study reserve holding decisions of banks. Candogan et al (2012) considered

a trading game in which a monopolist can sell a divisible good to consumers who face local peer

effects in social network from the goods consumption. They found that equilibrium prices of

the monopolist charged to each consumer correspond to Bonacich centrality of the consumer’s

position in the social network. The most closely related literature to this paper is Bimpikis et

al (forthcoming). Specifically, Bimpikis et al (forthcoming) considered a Cournot game with

homogenous goods in bipartite network and applied the concept of line graph to show that the

equilibrium production quantity corresponds to Bonacich centrality of the line graph. Our paper

contributes to this literature by considering an asset trading game and relating the equilibrium

asset allocation to the Bonacich centrality of the asset flow network.

There is a growing literature of trading in decentralized markets which can be divided mainly

into two groups based on assumptions of market environment. In the first group, studies of asset

trading were conducted in a search and bargaining model in which atomistic traders are matched

randomly in large markets (e.g. Duffie et al (2005,2007), Lagos et al (2011), Vayanos and Weill

(2008), Lagos and Rocheteau (2009), Afonso and Lagos (2015)). In the other group, trades

occur on a fixed network (e.g. Kranton and Minehart (2001), Gale and Kariv (2007), Blume et

al (2009), Manea (2011), Candogan et al (2012), Gofman (2014), Nava (2015), Condorelli et al

(2017), Choi et al (2017), Malamud and Rostek (2017), Kondor and Babus (2018), Bimpikis

et al (forthcoming)). Our paper belongs to the latter group. To the best of our knowledge, this

paper is the first to show the relationship between equilibrium asset allocation and centrality of

asset flows in decentralized asset markets.

Lastly, this paper also relates to a literature of financial network formation. While the theory

literature focused mainly on financial network formation from credit lending which can create

systemic crisis due to a sequence of counterparty risk exposure (e.g. Farboodi (2017), Babus
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(2016), Acemoglu et al (2015), Zawadowski (2013)), a small literature discussed systemic risk

from common asset holdings (e.g. Wagner (2008, 2010), Raffestin (2014)). Allen et al (2012)

developed a model with endogenous asset holding to analyze how an interplay between common

asset holding and short-term debt can generate systemic risk. We contribute to the literature by

characterizing strategic asset holdings of all agents in a general trading network which could be

further generalized to analyze the degree of systemic risk.

Structure of the paper.

The rest of the paper is organized as follows. Section 2 describes the model setting. Section 3

discusses the notion of line graph transformation. Section 4 examines equilibrium outcome and

discusses how it relates to the network centrality. Section 5 considers a constrained efficient

outcome and implications on market efficiency. Section 6 considers a few special cases of

trading network. Section 7 concludes. All proofs are in appendix.

3.2 The model

Consider a one-period economy with a finite number of risk-averse agents described by a set

of players N = {1, 2, ..., n}. Each agent invests in a risky project and holds unlimited amount

of cash. The project returns follow a joint normal distribution N(d,Σ) in which Σ is positive

definite with all diagonal elements of one (σ2
i = 1;∀i ∈ N ).3 Denote off-diagonal element

σij = Σij . All agents have CARA utility function with identical degree of risk aversion α.

To diversify the risk, each agent can trade forward contract, a claim on the issuer’s project

return.4 Equivalently, all agents are endowed with one divisible unit of risky forward contract

(i.e. asset), which is a claim to their own project returns, and they can trade the assets among

each other. Denote forward contract of agent i as asset i. Assume that di ≥ ασ2
i ,∀i ∈ N to

ensure that every agent prefers holding one unit of their own assets at the outset.5

To describe the trading environment, let a graph g represent bilateral trading relationships

among agents, in which ij ∈ g indicates the possibility of agent i selling asset i to agent j. The

trading network is directed (i.e. ij ∈ g 6→ ji ∈ g) and common knowledge. Throughout the

paper, flow ij ∈ g refers to trade link ij. LetB(i) = {j ∈ N, ij ∈ g} and S(i) = {k ∈ N, ki ∈
g} be the set of buyers and sellers of agent i, respectively. Denote S̄(i) = S(i) ∪ {i} and

B̄(i) = B(i)∪{i}. Let qij be asset quantity that agent i sells to agent j and qii = 1−
∑

j∈B(i)

qij

3 This implies that all the project returns have homogeneous volatility which is normalized to one, but the
pairwise correlation across agents can be different.

4 Note that out setting fits in two possible scenarios. The first is when the project ownership is transferred. This
is just a standard asset trading game. The other case is when the project ownership is not transferable. In this case,
the agents may refuse to pay the project return to the contract buyers when exposing to losses from other assets
in the portfolio. Consequently, while sharing the idiosyncratic risk amongst agents, trading forward contracts also
originates the network of risk exposure, thereby generating systemic risk. Our setting can explain this situation if the
agents do not realize the counterparty risk when trading assets.

5 The marginal benefit of holding more units of asset exceeds the marginal cost when the amount of asset holding
is less than di

ασ2
i
. To see this, note that the first-order condition when the agent cannot trade is dui

dqii
= di−ασ2

i qi = 0

which gives the optimal asset holding qi = di
ασ2

i
. Therefore, if di

ασ2
i
< 1, holding one unit of assets is be optimal.

This assumption is analogous to the classical non-satiation assumption within the set [0, 1]n. If this assumption is
violated, the agents would prefer discarding a part of initial asset holding, as holding one unit of asset is not optimal.
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is the net asset i holding of agent i after trading. The CARA utility function of agent i can be

simplified to the following mean-variance utility function:

Ui = di −
∑
j∈B(i)

qij(di − pij) +
∑
k∈S(i)

qki(dk − pki)−
α

2
[
∑
k∈S̄(i)

∑
l∈S̄(i)

σklqkiqli].

The asset prices are endogenously determined in two stages. In the first stage, every agent

i ∈ N quotes (per unit) asset prices, denoted by pij , to all his potential buyers j ∈ B(i). The

price-quoting process for all transactions takes place simultaneously. In the second stage, upon

receiving the price offers, all agents j ∈ B(i) decide how much to buy from agent i, denoted

by qij . Afterwards, all trades are settled in which all agents j ∈ B(i) pay pijqij to agent i and

obtain asset i at the quantity qij . For simplicity, assume that agents cannot sell other agents’

assets. We follow the standard notion of subgame perfect equilibrium as follows.

Definition 3.1 (Subgame Perfect Nash Equilibrium) The equilibrium strategy profile con-

sists of a vector of asset prices P and a collection of demand function Q = {qj : P → R} such

that

qj = arg max
qj∈Qj

uj(Q,P );∀j ∈ N

pi = arg max
pi∈Rn(i)

ui(q(P ), P );∀i ∈ N

where Qj = {qj : PRN(j)
+ → Rn(j)} ∀j ∈ N and q(P ) = {qj(P ), ∀j ∈ N}

This is the standard definition of the subgame perfect equilibrium which could be solved by

backward induction. First, we obtain asset demand functions of all players in the second stage

by solving the system of best-response functions given an arbitrary price vector P . Given the

asset demand functions, we then solve for equilibrium prices in the first stage.

3.3 Notion of line graph transformation

This section will discuss the concept of line graph transformation. Instead of considering the

position of decision-making agents, we will consider the position of asset flows using the notion

of line graph. Essentially, the line graph transformation is a means of constructing the network

of relationships, by converting all links of the original graph into vertices of the new graph and

assigning links to the new nodes accordingly. Consider the formal definition of the line graph in

Definition 3.2.

Definition 3.2 (Line graph) Consider a network G = (V,E). The line graph of G, L(G) =

(V ′, E′), is such that

1) each vertex of L(G) describes an edge of G.

2) a pair of vertices of L(G) are connected if and only if the corresponding edges in G are

incident.
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Figure 3.1: Graphical illustration of line graph transformation for undirected network (left) and directed
network (right)

Simply put, a line graph of G describes the relationships between edges of G. By transform-

ing every edge of G to be vertices of L(G), two nodes of L(G) are linked if the corresponding

edges in G are neighbouring by a node in G. The line graph transformation is straightforward

for the case of undirected network. The left panel in Figure 3.1 displays a line graph for an

undirected network in which all the links in the original network becomes the vertices in the

new network.

The definition can be applied to the case of directed network. However, a complication

arises when assigning links and link directions to the line graph. In the literature, a directed line

graph L(G) = (V ′, E′) is the transformation of the directed network G = (V,E) when 1) all

the arcs ij ∈ E are transformed to be nodes ij ∈ V ′ of the directed line graph L(G) and 2) two

vertices which represent directed edges from i1 to j1 and from i2 to j2 in G are connected in the

line graph if j1 = i2. This is shown in the right panel of Figure 3.1. From the figure, the new

nodes represent trading relationships between agents and the new edges represent the players

who knot the trading links together. The direction of the new edges indicates the direction of

asset flowing within the original trading network.

In our paper, the transformed line graph will consist of four types of linkages. Analogous to

traditional network theory, we define four types of link adjacency matrices which summarize

the information about different types of connection between two flows as follows.6

Definition 3.3 (Link adjacency matrix) In a line graph L(G), the entries of its corresponding

link adjacency matrices W out
B , W in

B , W in
S , W out

S are

W in
S,(i1j1,i2j2) =

{
1 if i1 = j2

0 if otherwise
W out
S,(i1j1,i2j2) =

{
1 if i1 = i2 and j1 6= j2

0 if otherwise

W out
B,(i1j1,i2j2) =

{
1 if j1 = i2

0 if otherwise
W in
B,(i1j1,i2j2) =

{
1 if j1 = j2 and i1 6= i2

0 if otherwise

From the definition, W out
B and W in

S are the standard out-degree and in-degree adjacency

matrices for a directed line graph in the literature. Intuitively, W out
B identifies which flows depart

from the same buyer while W in
S indicates which flows are pointing toward the same seller in the

original trading network. Consider the left panel in Figure 3.2. For the flow ij, the matrix W out
B

will identify the asset outflows of buyer j while the matrix W in
S will identify the asset inflows

6 In the literature, the adjacency matrix for a directed line graph is the outward adjacency matrix W out
B . Note

that the link adjacency matrix is not necessary symmetric.
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of seller i. Similarly, the other two matrices W in
B and W out

S will indicate which flows have the

same buyer and the same seller, respectively. For flow ij in Figure 3.2, W in
B will identify all the

other flows that agent j is the buyer, while W out
S will identify all the other flows that agent i is

the seller.

i j
qijW in

S W out
B i j

qijW out
S W in

B

Figure 3.2: Graphical illustration of the matrix W in
S and W out

B (left) and the matrix W out
S and W in

B

(right).

The usage difference among these four adjacency matrices might not be evident at this

point, but all of them play important parts in determining centrality index of asset flows in later

sections. In short, W in
B and W out

B will matter for characterizing asset demand function in the

second stage, when the agents must decide how much to buy assets for a given price. Meanwhile,

W in
S and W out

S will matter when characterizing equilibrium price and asset allocation in the

first stage, when the agents must decide what prices to set.

3.4 Equilibrium outcome and network structure

This section will analyze how equilibrium outcome depends on structural properties of trading

network. We will proceed by considering the definition of generalized Bonacich centrality

measure and proving that quantity impact matrix, asset allocation, and risk premium in the

equilibrium are all closely related to the generalized Bonacich centrality of asset flow network.

To begin, we will list down all relevant notations in our analysis. Let the row (column) ik

of a matrix be the row (column) corresponding to the flow ik and n(g) = |g| be the number of

transactions. Define the following notations.

1. Qn(g)×1 is a quantity vector of all transactions ij ∈ g.

2. Pn(g)×1 is a price vector of all transaction ij ∈ g.

3. ΣL is a n(g)× n(g) correlation matrix in which ΣL,(i1k1,i2k2) = σi1i2 .

4. d is a n(g)× 1 vector of asset return mean where dik = di.

5. z is a n(g)× 1 vector of asset correlations where zik = σik.

Now, consider the following definition of generalized Bonacich centrality for a line graph.7

7See Jackson (2008) for more details on Bonacich centrality.
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Definition 3.4 (Generalized Bonacich Centrality) Let K be an n× 1 real-valued vector and

A be a weighted adjacency matrix of a line graph L(G). The vector of the generalized Bonacich

centrality C(A,K) of L(G) is such that

C(A,K) = (I −A)−1K

where (I −A)−1 is a contribution matrix and K is a vector of base values.

In the literature, the simplest centrality measure is the degree which counts the number of

ties. In contrast, the generalized Bonacich centrality quantifies a node importance that depends

not only on the number of its neighbours but also on the importance of its neighbours. A node

with less degree might be more (less) important as measured by the Bonacich centrality if it is

surrounded by important nodes when the weight is positive (negative).8

The information about asset flow centrality is contained in the contribution matrix (I−A)−1:

row i1j1 of (I − A)−1 represents the impact of flow i1j1 to the network and the column i2j2
represents the impact of other flows in the network toward flow i2j2. Vector K identifies a

base value of each node, capturing the extent to which the centrality of each node is affected

by some exogenous factors. Multiplying this contribution matrix with the vector K gives a

generalized Bonacich centrality measure; that is, centrality of flow i1j1 is the weighted sum of

the contributions of flow i1j1 toward the network.

In our trading game, the line graph is a network representation of local interactions of all

players, in which a node can represent trading decision in a transaction and a link between

two nodes represents the player who makes strategic trading decision of the corresponding

nodes. Hence, an equilibrium outcome emerged from strategic local interactions of the entire

trading network will somehow related to the generalized Bonacich centrality index, taking into

account both direct effects (toward adjacent asset-flow nodes) and indirect effects (toward other

non-adjacent asset-flow nodes). Also, the weight for adjusting adjacency matrix will indicate the

degree of strategic interdependence. That is, a positive (negative) weight indicates the degree of

strategic complementarity (substitution).

3.4.1 Asset demand function

We will start the equilibrium analysis by characterizing an equilibrium demand function. Let

◦ be the standard Hadamard product matrix operator. That is, for any m× n matrix A and B,

(A ◦B)ij = AijBij . Consider the following lemma.

Lemma 3.1 (Equilibrium demand function) The equilibrium asset demand function is such

that

Q = Φ(d− αz)− ΦP

where Φ = 1
α(I − (ΣL ◦W out

B − ΣL ◦W in
B ))−1 is a quantity impact matrix.

From the lemma, the magnitude of quantity impact of pij relates to Bonacich centrality of

flow ij in an asset flow network. When asset returns are correlated, marginal utility of buying
8See Bonacich (1987) and Bonacich and Lloyd (2004) for the interpretation of negative weights.
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assets of an investor depends on his portfolio composition. Therefore, if an agent decides to

buy less amount of his neighbour’s asset, it will affect his neighbour’s trading decision which

in turn affects his neighbours’ neighbour’s decision and so on, resulting in the asset demand

being dependent on asset prices of all transactions. Information about the global effect of a price

change throughout the network is summarized in the quantity impact matrix Φ.

Indeed, the quantity impact matrix is the contribution matrix of the asset flow network with

weighted adjacency matrix A = ΣL ◦W out
B − ΣL ◦W in

B . This implies that a sensitivity of

demand quantity to pi1j1 depends on the contribution value of flow i1j1 toward other flows

embedded in the asset flow network. If flow i1j1 is in a central position, in which a change in

the quantity of asset flow qi1j1 significantly interrupts other flows in the network, the impact of

change in pi1j1 will be influential. Figure 3.3 illustrates how a change in p31 can affect asset

demands of all agents. When asset demand q31 changes due to a change in price p31, this will

directly affect q13 which will further affect other flows. If flow 31 is central, the impact towards

other flows can be significant.

3 12

M p31 →M q31M q32

M q13M q23

Figure 3.3: Graphical illustration in the original trading network of how a change in p31 can affect asset
demands of all agents.

Note that we assign non-zero weights to the link adjacency matrices which identifies all

pairs of asset flows linked by the same buyers. This is intuitive, as asset demands depend on

strategic buying decision of agents. In particular, W out
B and W in

B capture how buying decision

of an agent will be affected by demand quantity of his asset outflows and his other asset inflows,

respectively. This is graphically illustrated in Figure 3.4. Also, the link adjacency matrix W out
B

is positively weighted while W in
B is negatively weighted by asset correlations to reflect the

asset substitutability degree. Intuitively, when the asset correlation is positive, the agent’s asset

demand in a flow will be positively (negatively) affected by a quantity increase in another asset

outflow (inflow).

j iqij

qj1

qj2

qj3

qj4 j iqij

q1j

q2j

q3j

q4j

Figure 3.4: Graphical illustration of how buying decision of agent j in flow ij is affected by demand
quantity in his other asset inflows (right) and asset outflows (left).
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3.4.2 Asset allocation and prices

This section will discuss how equilibrium asset allocation depends on structure of asset-flow

network. We will show that the equilibrium asset allocation corresponds to a generalized

Bonacich centrality of network of asset flows with appropriate weight assignment to each link.

First, we must ensure that our interior solution in the first stage game satisfies second-

order condition. Consider an arbitrary n × n matrix E. A submatrix of E, denoted by

E[i1, i2, · · · , in|j1, j2, · · · , jk], is the matrix consisting of intersection of rows {i1, i2, · · · , in}
and columns {j1, j2, · · · , jn}. Let Mout

i = {ik;∀k ∈ B(i)} be the set of outflows of agent i

and M in
i = {ki;∀k ∈ S(i)} be the set of inflows of agent i. Denote Ea,bi be the submatrix of

E[Ma
i ,M

b
i ] when a, b ∈ {in, out} which contains the intersection of rows Ma

i and columns

M b
i . To illustrate, Φout,in

i is the submatrix of Φ in which all the rows correspond to all asset

outflows of agent i and all the columns correspond to all asset inflows of agent i. We make the

following assumption.

Assumption 3.1 (Second-order condition) For all i ∈ N ,

1. Φout,out
i + Φout,out′

i is positive definite

2. Φin,out′

i Σin,in
L,i Φin,out

i −[Φout,out′

i Σout,in
L,i Φin,out

i +(Φout,out′

i Σout,in
L,i Φin,out

i )′]+σ2
i Φ

out,out′

i Φout,out
i

is positive definite

This assumption gives a sufficient condition to guarantee that an interior price solution

derived from first-order condition in the first stage is utility-maximizing.9 Intuitively, the

assumption puts a restriction on asset demand function to be well-behaved. The first restriction

is analogous to downward-sloping demand function in the standard profit maximization problem.

The second restriction takes into account a change in marginal utility from risk component of

risk-averse sellers. Consider the following proposition regarding the equilibrium asset allocation.

Proposition 3.1 (Equilibrium asset allocation) In a trading network G, provided that As-

sumption 3.1 is true, the equilibrium asset allocation corresponds to a generalized Bonacich

centrality index of a line graph of G. Specifically, there exists a real-valued diagonal matrix

V = V (Φ,W out
S ) and a real-valued off-diagonal matrix F = F (Φ,W out

S ) such that

Q = (I − V Ā)−1V (1̂− z)

where Ā = ΣL ◦ (W out
B +W in

S −W in
B −W out

S ) + F ◦W out
S .

Intuitively, the adjacency matrix Ā summarizes local interactions of all selling parties, who

indirectly choose demand quantity of all his asset outflows by strategically setting prices in

the first stage. To interpret this proposition, I decompose the adjacency matrix Ā into three

components as follows:

Ā = ΣL ◦ (W out
B −W in

B )︸ ︷︷ ︸
(1)

+ ΣL ◦ (W in
S −W out

S )︸ ︷︷ ︸
(2)

+F ◦W out
S︸ ︷︷ ︸

(3)

.

9Specifically, the assumption guarantees that ui(q(P ), P ), is concave in prices pi so that the first-order (linear)
condition is indeed the best response function for all sellers.
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The first component (1) identifies how every pair of asset flows in the asset-flow network is

connected by the buying parties in the flows. Specifically, the matrices capture the opportunity

of the buying party in each flow to sell their own assets to their neighbors (W out
B ) and to buy

assets from other neighbors (W in
B ). All links in the asset-flow network are weighted by asset

correlation to adjust for asset substitutability. Intuitively, this component identifies the asset

demand function. Notice that this matrix component is identical to the adjacency matrix that

determines the quantity impact matrix Φ, the coefficient matrix of asset demand function, as

established in Lemma 3.1.

The second and third components (2,3) identify how every pair of asset flows is connected by

the selling parties in the flows. Specifically, the second component (2) captures the opportunity

of the selling party in each flow to sell their assets to other neighbors (W out
S ) and to buy

other assets from their neighbors (W in
S ), weighted by correlation matrix to account for asset

substitutability.

Interestingly, the last component (3) identifies how every pair of asset flows can be affected

by a cost of network externality, an externality of a price change in a flow which can affect

demand quantity in other outflows of the same seller. Intuitively, a price change in flow ij will

not only affect demand quantity qij but also indirectly affect demand quantity in other outflows of

the same selling agent (qik; ∀k ∈ B(i)), even though prices in other outflows remain unchanged.

The extent of network externality is indicated in the off-diagonal matrix F (Φ,W out
S ). When

flow ij has positive externality toward other outflows of agent i (i.e. a quantity increase in flow

ij increases demand quantity in other outflows), agent i will strategically increase qij , by setting

low price pij , to earn extra profits in other asset outflows from the externality.

Another weighting matrix that affects the centrality of asset flows is the diagonal real-valued

matrix V (Φ,W out
S ). Intuitively, it identifies own-price network effect. To illustrate, when

agent i increases price pij , there is direct effect on quantity demand qij . However, there is also

indirect network effect on quantity demand qij . Because demand quantity in other flows will be

affected from the first-round change in qij , asset demand qij will in turn change in response to

endogenous change of portfolio composition of agent j.

Lastly, regarding equilibrium asset price, consider the asset demand function.

1

α
(I − (ΣL ◦W out

B − ΣL ◦W in
B ))−1︸ ︷︷ ︸

Quantity impact matrix Φ

(d− P − αr) = (I − V Ā)−1V (1̂− z)︸ ︷︷ ︸
Equilibrium asset allocation Q

Recall that the quantity impact matrix Φ is the contribution matrix corresponding to a

generalized Bonacich centrality of the asset flow network with weighted adjacency matrix

ΣL ◦ W out
B − ΣL ◦ W in

B . As we have discussed, the equilibrium asset allocation Q is the

generalized Bonacich centrality index of asset flow network with weighted adjacency matrix

V Ā and base vector V (1̂− z). Therefore, the implied risk premium adjusted for the degree of

risk aversion and asset correlation is the vector of base value that equates these two centrality

measures.
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3.5 Implications on market efficiency

There are two main frictions in this economy that cause market inefficiency. One is trade

friction from incomplete trading network, in which the agents are restricted to trade with only

the connecting agents. The other friction is trade friction from monopolistic price-setting

behavior. To shed light on market efficiency, this section will characterize the constrained

optimal allocation, which maximizes Utilitarian social welfare subject to the trade friction from

incomplete trading network, and discuss the conditions when the decentralized outcome is

constrained efficient.10 Let W (Q, g) =
∑

i∈N Ui be the Utilitarian welfare function of the

economy with network structure g. Consider the following definition.

Definition 3.5 (Constrained efficiency) A constrained efficient allocationQSB(g) is such that

QSB(g) = arg max
Q∈Rn(g)

W (Q, g)

From the definition, a constrained efficient allocation maximizes the sum of utilities of all

agents given that a social planner can only allocate the goods between agents who are connected

in the trading network. Note that the allocation is Pareto efficient when network g is complete.

Given the definition, we can characterize a constrained efficient allocation as follows.

Proposition 3.2 (Constrained efficient allocation) In a trading network g, the constrained

efficient allocation is

QSB =
1

2

(
I − 1

2
ASB

)−1

(1̂− z)

where ASB = ΣL ◦ (W in
S +W out

B −W out
S −W in

B ).

From the proposition, the constrained efficient allocation is also associated with a generalized

Bonacich centrality, in which the weight takes into account only the asset correlation of adjacent

asset flows. Intuitively, when a social planner chooses optimal asset allocation, he considers

how an asset quantity change in a flow affects portfolio risk of the agents involved. Unlike the

allocation from the decentralized system, there is no quantity impact matrix involved in the

weighting matrix or the base-value vector. This is because the social planner decides how to

allocate assets by internalizing how quantity change in one asset flow affects welfare, in contrast

to the decentralized outcome in which each agent will exercise his bargaining power by limiting

trading quantities and charging higher prices. For a decentralized economy to be constrained

efficient, consider the next proposition.

Proposition 3.3 (Constrained efficiency) The decentralized equilibrium allocation QE is con-

strained efficient if and only if (
Φ′ ◦ (W out

S + I)
)−1

QE → 0̂.

10Note that the allocation which maximizes Utilitarian social welfare function is the set of Pareto efficient
allocations, as the utility function is quasi-linear without restrictions on monetary transfer across agents. Such
allocation is also minimizing the aggregate portfolio risk of the whole economy.
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This proposition implies that a decentralized equilibrium can be efficient when (inverse)

demand function of all sellers are almost perfectly elastic; that is, a slight change in a price

has significant impact on demand quantity in all asset outflows of the same seller. An obvious

example is when the asset is (almost) perfectly substitutable among all the agents such that

no seller could afford a significant loss in demand by increasing asset prices. In this case, the

economy is converging towards a price-taking economy, where the decision of all agents when

choosing demand quantity in the second stage has no effect on equilibrium prices, resulting in

no distortion in the decentralized outcome.

To see this clearly, consider an economy with identical asset correlation. Let r∗ ∈
{− 1
|N |−1 , 1}. The following corollary provides an example when the decentralized outcome is

efficient.

Corollary 3.1 If asset returns are identically correlated and the trading network is complete,

then the asset allocation is efficient iff r → r∗.

This corollary shows that when there is no trade friction from incomplete trading network,

the monopolistic inefficiency does not dissipate away due to monopolistic behavior of agents.

When the correlation is positive, an increase in the number of agents does not eliminate the

market inefficiency as the assets are always heterogeneous. Figure 3.5 compares the equilibrium

allocation (left) with the efficient allocation (right) when there is no asset correlation.11 From

the figure, agents hold excessive amount of their assets and buy too few of other assets in the

decentralized outcome.
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Figure 3.5: Equilibrium asset allocation (left) and efficient allocation(right) when there is no asset return
correlation

Interestingly, when the correlation is sufficiently negative, the decentralized outcome will

converge towards the efficient allocation. Specifically, the marginal utility of holding assets is

increasing in the quantity of all assets in the pool due to hedging benefit when the correlation

is negative. When the marginal benefit of hedging is relatively high, the buyers are willing to

purchase high volume of assets despite facing high asset prices, resulting in elastic (inverse)

demand function when the correlation is sufficiently negative or when the number of agents is

sufficiently high. Therefore, optimal pricing strategy of the seller is to quote the highest possible

level of prices such that the buyers are still willing to buy assets. This outcome is equivalent to

the price-taking economy, in which the asset prices are fixed at the zero-risk-premium prices.
11 Note that this allocation is also Pareto optimal for any correlation value regardless of the difference in the

mean of asset returns, as there is no restriction on monetary transfers
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At this price, all agents will choose to trade assets at the efficient level (full hedging) despite the

persistence of monopolistic friction, as illustrated in Figure 3.6.
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Figure 3.6: Numerical result of asset allocation when r → − 1
|N |−1

3.6 Special cases

To obtain more insights, this last section will analyse the equilibrium outcome of a few special

cases. Throughout this section, assume that trading network is undirected; that is, if ij ∈ g, then

ji ∈ g. Also, all numerical examples assume that α = 1 and di = 1 for all agents. We will first

consider a case of no asset correlation. Then we consider a case of identical asset correlations

with two structures of trading network: the star network and the core-periphery network.

3.6.1 No asset correlation

To begin, we make the following assumption to restate that there is no pairwise correlation

between assets; the asset returns are i.i.d. normally distributed.

Assumption 3.2 σij = 0 ∀i, j ∈ N and i 6= j

The following corollary describes the equilibrium.

Corollary 3.2 (Equilibrium outcome I) In an arbitrary network g, if Assumption 3.2 is satis-

fied, ∀ij ∈ g
1) qij = 1

2+n(i)

2) pij = di − α
2+n(i)

3) ui = di − α
2+n(i) + α

2

∑
j∈N(i)

( 1
(2+n(j))2

)

4) qii = 2
2+n(i) .

Under the assumption of independent return distributions, the situation collapses to a

classical monopoly problem. In our context, each agent is both a monopolist of his own asset

and a buyer of his neighbours’ assets. From the corollary, an asset price depends on return mean

of the asset di adjusted for risk premium and price markup. When the agent is more risk-averse,

the buying agent will demand higher risk premium, pushing the price downward. Also, higher

number of buyers of agent i (i.e. higher n(i)) increases the equilibrium price since agent i

attains more monopoly power.
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Interestingly, asset prices depend only on the degree of the sellers and not of the buyers;

that is pij = pik,∀j, k ∈ N(i).12 This is because all agents could raise asset price without

affecting the buyers’ demand of other assets when the asset return is uncorrelated. As predicted

by standard monopoly problem, well-connected sellers can charge high prices and limit the

amount of assets sold to each neighbour to gain higher profits. Also, the well-connected agents

will trade away larger fraction of their own assets due to higher asset demands.

It is true that the utility from selling assets of agents depends on the number of neighbors

of the agents. However, the agent’s net utility also depends on his neighbours’ degree. This is

because the agents are also buying assets from the neighbors. Therefore, the marginal utility

of connecting to one more agent decreases if this agent is well-connected. Let n be the degree

centrality of agent i and n(j) be the degree centrality of agent j. The marginal utility of agent i

connecting to agent j is

ui(N(i) + j)− ui(N(i)) =
α

(2 + n+ 1)(2 + n)
+

α

2(2 + n(j))

From the above equation, the marginal utility of connecting to j diminishes when the

degree of agent j increases. This finding implies that agents prefer forming a relationship with

low-degree agents to gain the highest bargaining power when considering endogenous trading

network formation.

3.6.2 Identical asset correlation

This subsection will analyse equilibrium outcome when asset return correlations are identical.

Consider the following assumption.

Assumption 3.3 σij = σkl = r ∈ (− 1
|N |−1 , 1), ∀ij ∈ g and i 6= j.13

Star network

A star network is the network structure in which there is one node (hub) at the centre and a few

nodes (periphery) connecting to the hub. Therefore, the centre node has superior competitive

power over the peripheral nodes. Let i be the agent at the centre and j be an agent at the

periphery. Denote n = n(j). Consider the following remark.

Remark 3.1 If Assumption 3.3 is satisfied and trading network is a star network, then

1) qii ≥ qjj if and only if r ≤ −(4n−1)+
√

8n+9
2(2n2−2n−1)

< 0

2) qij ≤ qji
3) limr→− 1

n
qij = 0, limr→− 1

n
qji = 1

In the star network, the hub is both the monopolist of his own asset and the monopsonist of

his neighbouring assets. When the correlation increases, the hub will buy less of his neighbouring

assets, as the marginal benefit drops significantly from holding large unit of all assets in the pool.
12 When there is no asset return correlation, the utility function is separable in the quantity of asset holdings by

assumption of CARA utility function. Note that the quantity impact matrix is diagonal.
13To guarantee the positive definiteness of the variance-covariance matrix, the correlation must be greater than

− 1
|N|−1

.
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Meanwhile, as the marginal benefit of selling the asset increases when the correlation increases,

the hub will sell more units of asset to the peripherals by quoting lower prices, resulting in

qii ≤ qjj when the correlation is positive. Based on the remark, regardless of the correlation

value, quantity of asset outflow from the hub is always lower than quantity of asset inflow to the

hub (i.e. qij ≤ qji) due to monopolistic and monopsonistic power of the hub. This is illustrated

in the right panel of Figure 3.7.
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Figure 3.7: Numerical result of asset allocation when qii > qjj (left) and qii < qjj (right)

However, the scenario can be different when the correlation is negative. In this case, the

opportunity to buy a variety of assets decreases the willingness to sell the asset of the hub due to

hedging motives. In fact, the hub is willing to buy more of neighboring assets at the higher price.

The peripherals, in spite of keening to buy more assets from the hub, cannot do so as the hub

also would like to hold his own asset and will request expensive prices from the peripherals who

would like to buy. As a result, the peripherals will demand less of the hub’s asset compared to

the case of no asset correlation. When the correlation is sufficiently negative, the asset outflow

quantity from the hub is so low that the proportion of the hub’s asset in his portfolio is greater

than the proportion of the peripherals’ own asset holding, qii ≥ qjj , as illustrated in the left

panel in Figure 3.7. An extreme case is when the correlation goes to − 1
n , in which the hub fully

exploits the hedging opportunity by buying all assets from his neighbors and selling none to

them (full hedging).

The next question is how the equilibrium outcome would change when the number of

periphery agents increases. Consider the following remark.

Remark 3.2 Consider two star-network economies with the number of the periphery agents n

and n′ such that n′ > n. If Assumption 3.3 is satisfied, then

1) ∃r < 0 such that qjj(n′) < qjj(n)

2) ∃r < 0 such that qii(n′) > qii(n)

3) ∃r < 0 such that uj(n′) > uj(n)

This remark highlights the role of asset correlation toward the competition structure in the

network. Generally, when the correlation is positive, more number of the peripherals means that

there are more substitutable assets for the hub to buy. Therefore, the hub will demand less unit

of assets from each periphery agent, and the utility of the periphery will decrease due to more

aggressive competition.

Interestingly, when the asset correlation is negative, the outcome could be different. From

the remark, it is possible that the proportion of the peripherals’ own asset holding decreases and
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Figure 3.8: Numerical example of asset allocation when r = -0.3

that of the hub increases when the number of the periphery agents increases, as numerically

illustrated in Figure 3.8. Since the marginal utility of the hub to buy assets depends positively

on the variety of assets in possession when the correlation is negative, the hub will want to buy

larger amount of assets from each agent at the periphery when the number of periphery agents

increases. Meanwhile, the marginal benefit of holding own asset of the hub is so high that the

proportion of hub’s own asset in the portfolio also increases, despite higher demand from more

buyers.

The last point in the remark sounds counter-intuitive at first. It is natural to think that

payoffs of the periphery agents will decline when adding more periphery agents due to higher

competition. However, the virtual value of the peripherals’ assets toward the hub depends

crucially on the number of periphery agents. When the correlation is negative, the more variety

of assets the hub is holding, the more valuable the peripheral assets are to the hub due to hedging

benefits, and thus the higher prices the peripherals could charge to the hub. Therefore, if the

correlation is sufficiently negative, the benefit from higher virtual asset value outweighs the

costs from more competition, resulting in higher utility of all the peripherals, as numerically

illustrated in Figure 3.9.
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Figure 3.9: The utility of agents when r = -0.3

Core-periphery network

The core-periphery structure describes a topology in which the cores refer to the central and

densely connected set of nodes and the peripherals are the sparsely connected set of nodes who

connect to only the cores. This section examines the equilibrium outcome in a case of two core

agents, each connecting with two peripheral agents, as shown in Figure 3.10.

119



1 2

3

4 5

6

qcc qcc

q
cp

q
pc

q cp

q pc

q
cp
q
pc

q cp
q pc

Figure 3.10: An example of a core-periphery network

Let qcc, qcp, qpc (pcc, pcp, ppc) denote equilibrium quantities and prices of transactions be-

tween the cores, from the cores to the peripherals, and from the peripherals to the cores,

respectively. Consider the following proposition.

Remark 3.3 If Assumption 3.3 is satisfied and the economy is the core-periphery network with

n(core) = 2 and n(periphery) = 2, then

1) ∃k ∈ R+ such that ∂qcc
∂r

∣∣∣
r=k

> 0.

2) qcp < qpc and pcp − dc > ppc − dp.
3) pcp < pcc and qcp < qcc when r < 0.

Intuitively, when the correlation is positive, an increase in correlation should reduce the

volume of asset trading between any pair of agents. However, this is not always the case for

the core-periphery network. The remark shows that the core agents may exchange more unit

of assets with the other core agent when the correlation increases. The main explanation relies

on the cores’ network position, where they can sell their assets relatively easy compared to the

peripherals. Therefore, the cores are more willing to buy additional assets from others compared

to the peripherals.

The second statement in the remark arises from the friction of imperfect competition between

the cores and the peripherals. Similar to the case of the star network, the cores are the sole

buyers and sellers of the peripheral assets in the core-periphery network. Therefore, the cores

will quote higher prices to the peripherals and limit the trading quantity in the equilibrium, as

illustrated in Figure 3.11.
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Figure 3.11: Asset flow and prices between the cores and the peripherals

Interestingly, based on the remark, the equilibrium price and trading quantity from the cores

to the peripherals are lower than the trading quantities among the cores when the correlation is

negative. When the asset is complementary, the richer variety of assets the cores are holding,
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the higher the marginal benefit of the cores to buy more assets. Thus, the cores could charge

higher prices to their core neighbour, who value the asset greatly, and still receive higher asset

demand in the equilibrium. This is numerically illustrated in Figure 3.12
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Figure 3.12: Trading quantities and prices between the cores and the peripherals

3.7 Concluding remark

To summarize, this paper develops a theoretical model to study the formation of financial

network driven by risk diversification motives. Using the concept of line graph transformation,

we found that equilibrium asset allocation corresponds to a generalized Bonacich centrality of

the network of asset flows.

It is worth pointing out that our main results are restrictive to linearity properties of best-

response functions based on the assumption of CARA utility function and joint normal distri-

bution of asset returns. With the linear best responses, unique equilibrium trading outcome

coincides with the Bonacich centrality of the line graph in the same manner with Ballester et

al (2006) and Bimpikis et al (forthcoming). Deviating from this assumption causes the best-

response function to contain high-order non-linear terms which can compromise our conclusion.

However, it seems intuitive to confirm that Bonacich centrality of the line graph is the right

solution for any decentralized trading game with linear trading strategies.

The natural step from here is to study the implications of systemic risk from trade friction.

One can use this model to explore how topology of trading network shapes the fragility of

financial network. This model can also serve as a tool for policymakers to study regulatory effect

of limiting market participation of financial institutions to limit financial interconnectedness.

Possible future extensions of the paper include:

1. Moral hazard. This paper abstracts from risk-taking behaviour of agents by the assumption

on exogeneity of project riskiness. Relaxing this assumption is also the next step to study

the risk-taking channel, in which the moral hazard is the key to propagate and amplify the

systemic risk in the financial network. Risk-sharing is the double-edge sword as it also

generates the excessive risk-taking behaviour when agents partially bear the risk from

their actions. The extension of this model by endogenizing the choice of investment in

the project is another challenge for future research.
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2. Endogenous trading network. In this paper, one main assumption is the exogenous trading

network. Relaxing this assumption to incorporate endogenous trading network formation

can provide more interesting insights on the formation of financial network.
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3.8 Appendix

3.8.1 Summary of matrix notations

Let the row (column) ik of a matrix be the row (column) corresponding to the transaction ik.

Let n(i) = |N(i)| and n(g) = |g| Define the following notations

1. The link adjacency matrix

a) W in
S,(i1k1,i2k2) =

{
1 if i1 = j2

0 if otherwise

b) W out
B,(i1k1,i2k2) =

{
1 if j1 = i2

0 if otherwise

2. The adjustment matrix

a) W out
S,(i1k1,i2k2) =

{
1 if i1 = i2 and j1 6= j2

0 if otherwise

b) W in
B,(i1k1,i2k2) =

{
1 if j1 = j2 and i1 6= i2

0 if otherwise

3. Qn(g)×1 is the vector of quantity for all transaction ij ∈ g.

4. Pn(g)×1 is the vector of prices for all transaction ij ∈ g.

5. ΣL is the n(g)× n(g) matrix in which ΣL,(i1k1,i2k2) = σi1i2 .

6. Let F be the n(g)× n(g) matrix, then

a) F̂ km = F ◦W k
m for k ∈ {in, out} and m ∈ {S,B} where W k

m is the link adjacency

matrix

b) FD = F ◦ I where I is the identity n(g)× n(g) matrix

c) F out,outi is the n(i)× n(i) submatrix of F [ik; ∀k ∈ N(i)|ij;∀j ∈ N(i)].

d) F in,outi is the n(i)× n(i) submatrix of F [ki;∀k ∈ N(i)|ij; ∀j ∈ N(i)].

e) F in,ini is the n(i)× n(i) submatrix of F [ki; ∀k ∈ N(i)|ji; ∀j ∈ N(i)].

f) F out,ini is the n(i)× n(i) submatrix of F [ik;∀k ∈ N(i)|ji; ∀j ∈ N(i)].

7. [k]−Dj×j , k ∈ R be the j × j matrix with all zeros at the diagonal and all k off the diagonals.

8. d is the n(g)× 1 vector of asset return where dik = di

9. z is the n(g)× 1 vector of asset correlation where zik = σik
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3.8.2 Equilibrium characterization

To characterize an equilibrium, I use the backward induction method. Consider buyer’s maxi-

mization problem in which agent j ∈ N will choose asset demand vector qj to maximize his

utility given any arbitrary price vector P as follows

qj = arg maxqj∈Qj uj(Q,P )

where Qj = {qj : PRN(j)
+ → Rn(j)}.

Recall the mean-variance utility function ∀i ∈ N

Uj = dj−
∑

k∈N(j)
qjk(dj−pjk)+

∑
k∈N(j)

qkj(dk−pkj)−
α

2
[
∑

k∈N̄(j)

∑
l∈N̄(j)

σklqkjqlj ].

We obtain the first-order condition for buyer j as follows.

duj
dqij

= di − pij − ασij(1−
∑

k∈N(j)

qjk)− α
∑

m∈N(j)

σmiqmj = 0; ∀i ∈ N(j).

Since the Hessian matrix, where jk ∈ N(j) for all k, is

H(uj)(qj) = −α



∂2uj
∂q2j1j

∂2uj
∂qj1jqj2j

· · · ∂2uj
∂qj1jqjn(j)j

∂2uj
∂qj2jqj1j

∂2uj
∂q2j2j

· · · ∂2uj
∂qj2jqjn(j)j

...
...

. . .
...

∂2uj
∂qjn(j)j qj1j

∂2uj
∂qjn(j)j qj2

· · · ∂2uj
∂2qjn(j)j



= −α


σj1j1 σj1j2 · · · σj1jn(j)
σj2j1 σj2j2 · · · σj2jn(j)

...
...

. . .
...

σjn(j)j1 σjn(j)j2 · · · σjn(j)jn(j)


which is negative definite as the correlation matrix is positive definite by assumption.

First-order condition gives the demand function for asset i as follows:

pij = di − ασij(1−
∑

k∈N(j)

qjk)− α
∑

m∈N(j)

σmiqmj

= di − ασij + α[σij
∑

k∈N(j)

qjk −
∑

m∈N(j)

σmiqmj ].

Using the matrix notations, the demand function can be written in matrix form as

P = d− αz + α[ΣL ◦ (W out
B −W in

B )− ΣD]Q.

Rearranging the terms gives

Q = (ΣL ◦ (W out
b −W in

b ))Q+
1

α
Σ−1
D [d− P − αz].
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Define Ā = ΣL ◦ (W out
b −W in

b ). We obtain that

Q =
1

α
(I − Ā)−1[d− P − αz].

Let Φ = 1
α(I − Ā)−1 be the price impact matrix. Substituting into the asset demand function

gives

q(P ) = Φ[d− P − αz].

As a result, we obtain the following lemma.

Lemma 3.2 The equilibrium asset demand function is such that

Q = Φ(d− αz)− ΦP

where Φ = 1
α(I − (ΣL ◦W out

B − ΣL ◦W in
B ))−1.

Moving to the first stage, agent i chooses price vector pi such that

pi = arg max
pi∈R+n(i)

ui(q(P ), P )

subject to asset demand function q(P ) = Φ[d− P − αz].

The first-order condition of agent i for transaction ij is

∂ui
∂pij

= qij+
∑

m∈N(i)

(pim−di)
∂qim
∂pij

−
∑

m∈N(i)

(pmi−dm)
∂qmi
∂pij

−α
∑

k∈N̄(i)

∑
l∈N̄(i)

σklqki
∂qli
∂pij

= 0.

To verify that the first-order condition gives the maximum solution, it suffices to prove that

ui(q(P ), P ) is concave in pi. Since

∂2ui
∂p2

ij

= 2
∂qij
∂pij

− α
∑

k∈N̄(i)

∑
l∈N̄(i)

σkl
∂qki
∂pij

∂qli
∂pij

= 2
∂qij
∂pij

− α[
∑

k∈N(i)

∑
l∈N(i)

σkl
∂qki
∂pij

∂qli
∂pij

− 2
∑

k∈N(i)

∂qik
∂pij

∑
l∈N(i)

σil
∂qli
∂pij

+ σ2
i (
∑

k∈N(i)

∂qik
∂pij

)2]

∂2ui
∂pij∂pih

=
∂qij
∂pih

+
∂qih
∂pij

− α
∑

k∈N̄(i)

∑
l∈N̄(i)

σkl
∂qki
∂pih

∂qli
∂pij

=
∂qij
∂pih

+
∂qih
∂pij

− α[
∑

k∈N(i)

∑
l∈N(i)

σkl
∂qki
∂pih

∂qli
∂pij

− (
∑

k∈N(i)

∂qik
∂pij

∑
l∈N(i)

σil
∂qli
∂pih

+
∑

k∈N(i)

∂qik
∂pih

∑
l∈N(i)

σil
∂qli
∂pij

) + σ2
i (
∑

k∈N(i)

∂qik
∂pij

)(
∑

k∈N(i)

∂qik
∂pih

)]

which can be written in terms of Hessian matrix as

H(ui)(pi) = −(Φout,out
i + Φout,out′

i )− α{(Φin,out′

i Σin,in
L,i Φin,out

i

− [Φout,out′

i Σout,in
L,i Φin,out

i + (Φout,out′

i Σout,in
L,i Φin,out

i )′] + σ2
i Φ

out,out′

i Φout,out
i )}

where
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1. Φout,out
i is the n(i)× n(i) submatrix Φ[ik;∀k ∈ B(i)|ij;∀j ∈ B(i)]

2. Φin,out
i is the n(i)× n(i) submatrix Φ[ki; ∀k ∈ S(i)|ij; ∀j ∈ B(i)]

3. Σin,in
L,i is the n(i)× n(i) submatrix ΣL[ki;∀k ∈ S(i)|ji;∀j ∈ S(i)]

4. Σout,in
L,i is the n(i)× n(i) submatrix ΣL[ik;∀k ∈ B(i)|ji; ∀j ∈ S(i)].

Then I obtain the following Lemma.

Lemma 3.3 u(q(P ), P ) is concave in pi if H(ui)(pi) is positive definite.

By Assumption 3.1, u(q(P ), P ) is concave. Thus, the first-order condition is utility maxi-

mizing. Recall that the first-order condition is

∂ui
∂pij

= qij+
∑

m∈N(i)

(pim−di)
∂qim
∂pij

−
∑

m∈N(i)

(pmi−dm)
∂qmi
∂pij

−α
∑

k∈N̄(i)

∑
l∈N̄(i)

σklqki
∂qli
∂pij

= 0.

Consider the last term
∑

k∈N̄(i)

∑
l∈N̄(i)

σklqki
∂qli
∂pij

, one can expand this term into

∑
k∈N̄(i)

∑
l∈N̄(i)

σklqki
∂qli
∂pij

=
∑

k∈N(i)

∑
l∈N(i)

σklqki
∂qli
∂pij

+
∑
l∈N(i)

σilqii
∂qli
∂pij

+
∑

k∈N(i)

σkiqki
∂qii
∂pij

+ σ2
i qii

∂qii
∂pij

=
∑

k∈N(i)

∑
l∈N(i)

σklqki
∂qli
∂pij

+
∑
l∈N(i)

σil
∂qli
∂pij

−
∑
l∈N(i)

∑
k∈N(i)

σilqik
∂qli
∂pij

−
∑

k∈N(i)

σkiqki
∑

k∈N(i)

∂qik
∂pij

− σ2
i

∑
k∈N(i)

∂qik
∂pij

+ σ2
i

∑
k∈N(i)

qik
∑

k∈N(i)

∂qik
∂pij

.

Simplifying the terms gives

∑
k∈N̄(i)

∑
l∈N̄(i)

σklqki
∂qli
∂pij

=
∑

k∈N(i)

∑
l∈N(i)

∂qli
∂pij

(σklqki−σilqik)+
∑

k∈N(i)

∂qik
∂pij

∑
k∈N(i)

(σ2
i qik−σkiqki)

− σ2
i

∑
k∈N(i)

∂qik
∂pij

+
∑
l∈N(i)

σli
∂qli
∂pij

.

Substituting
∑

k∈N̄(i)

∑
l∈N̄(i)

σklqki
∂qli
∂pij

into the first-order condition gives

qij − α[
∑

k∈N(i)

∑
l∈N(i)

∂qli
∂pij

(σklqki − σilqik) +
∑

k∈N(i)

∂qik
∂pij

∑
k∈N(i)

(σ2
i qik − σkiqki)]+

[
∑

m∈N(i)

∂qim
∂pij

(pim−di)−
∑

m∈N(i)

∂qmi
∂pij

(pmi−dm)]+α[σ2
i

∑
k∈N(i)

∂qik
∂pij
−
∑
l∈N(i)

σli
∂qli
∂pij

] = 0

which can be written in matrix form as follows.

(I+α[Φ̂out′
B (Σ̂in

LB+ΣD−Σ̂out
LB)+(Φ̂out′

S +Φ′D)(Σ̂out
LS+ΣD−Σ̂in

LS)])Q−(Φ̂out′
S −Φ̂out′

B +Φ′D)(P−d)

− α(ΣD(Φ̂out′
S + Φ′D)1̂− Φ̂out′

B z) = 0

where
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1. Φ̂k
i = Φ ◦ W k

m for k ∈ {in, out} and m ∈ {S,B} where W k
m is the link adjacency

matrix.

2. Σ̂k
Lm = ΣL ◦W k

m for k ∈ {in, out} and m ∈ {S,B}

3. ΣD,(n×n) = ΣL,(n×n) ◦ I(n×n) ; n = n(g)

4. ΦD,(n×n) = Φ(n×n) ◦ I(n×n).

The last step is to use the demand function to solve for the equilibrium price. Define

Γ = I + α[Φ̂out′
B (Σ̂in

LB + ΣD − Σ̂out
LB) + (Φ̂out′

S + Φ′D)(Σ̂out
LS + ΣD − Σ̂in

LS)]

Θ = −α(ΣD(Φ̂out′
S + Φ′D)1̂− Φ̂out′

B z)

Given Γ and Θ, the first-order condition in matrix form can be simplified into

ΓQ− (Φ̂out′
S − Φ̂out′

B + Φ′D)(P − d) + Θ = 0.

Substituting the demand function q(p) = Φ[d− p− αz] gives

ΓΦ[d− P − αz]− (Φ̂out′
S − Φ̂out′

B + Φ′D)(P − d) + Θ = 0

−(Φ̂out′
S − Φ̂out′

B + Φ′D + ΓΦ)(P − d) + (Θ− αΓΦz) = 0.

Therefore, the equilibrium price is

P = d+ (Φ̂out′
S − Φ̂out′

B + Φ′D + ΓΦ)−1[Θ− αΓΦz]

with the equilibrium asset allocation

Q = Φ[(Φ̂out′
S − Φ̂out′

B + Φ′D + ΓΦ)−1[αΓΦz −Θ]− αz].

Therefore, we obtain the following proposition.

Proposition 3.4 (Equilibrium characterization) If Assumption 3.1 is satisfied, the equilib-

rium (P, q(P )) that solves the trading game is such that

P = d+ (Φ̂out′
S − Φ̂out′

B + ΦD + ΓΦ)−1[Θ− αΓΦz]

q(P ) = Φ[d− P − αz]

Where Θ = α(Φ̂out′
B z − (Φ̂out′

S + ΦD)1̂)

Γ = I + α[Φ̂out′
B (Σ̂in

LB + I − Σ̂out
LB) + (Φ̂out′

S + ΦD)(Σ̂out
LS + I − Σ̂in

LS)].

Next, we can further simplify the equilibrium asset allocation. From the demand function

Q = Φ(d − P − αz), I obtain d − P = Φ−1Q + αz. Substituting this into the equilibrium

condition in the proposition gives

(Γ + (Φ̂out′
S − Φ̂out′

B + ΦD)(Φ−1))Q︸ ︷︷ ︸
LHS

= −α(Φ̂out′
S − Φ̂out′

B + ΦD)z −Θ︸ ︷︷ ︸
RHS

(3.8.2.1)
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Substituting Θ and ΣD = I into the right hand side (RHS) gives

RHS = α(Φ̂out′
S + ΦD)(1̂− z).

For the left-hand side (LHS), substituting Γ and Φ gives

LHS = [I + α(Φ̂out′
S + ΦD)[(I + Σ̂in

LB) + (I + Σ̂out
LS )]]− α(Φ̂out′

S + ΦD)(Σ̂out
LB + Σ̂LS)]Q.

Define A = Σ̂out
LB + Σ̂LS . Rewrite Equation 3.8.2.1 as

[I+α(Φ̂out′
S + ΦD)[(I+ Σ̂in

LB) + (I+ Σ̂out
LS )]]−α(Φ̂out′

S + ΦD)A]Q = α(Φ̂out′
S + Φ′D)(1̂− z)

(3.8.2.2)

Define W = α[I + α(Φ̂out′
S + ΦD)[(I + Σ̂in

LB) + (I + Σ̂out
LS )]]−1(Φ̂out′

S + ΦD). We can rewrite

Equation 3.8.2.2 as

(I −WA)Q = W (1̂− z) → Q = (I −WA)−1W (1̂− z)

which gives the next corollary.

Corollary 3.3 The equilibrium asset allocation is

Q = (I −WA)−1W (1̂− z)

where

1. W = α[I + α(Φ̂out′
S + ΦD)[(I + Σ̂in

LB) + (I + Σ̂out
LS )]]−1(Φ̂out′

S + ΦD)

2. A = Σ̂out
LB + Σ̂LS .

3.8.3 Positive definiteness of correlation matrix

This section will find a condition to guarantee positive definiteness of asset correlation matrix

when the asset return correlations are identical. Mathematically, the correlation among random

variables are not pairwise independent. If R is a correlation matrix, then the correlations must at

least satisfy the condition det(R) > 0. This section will prove that the condition 1 > r > − 1
n−1

when n is the number of assets is sufficient to guarantee positive definiteness of the correlation

matrix.

Given a correlation matrix

R =


1 r r

r
. . . r

r r 1


n×n

,

one can rewrite the matrix to be R = rA− (r − 1)I when A is the matrix with all entries of 1

and I is the diagonal matrix. Next, one can find that

det(R) = rndet(A− r − 1

r
I).

Let λ = r−1
r . Substituting λ into the above equation gets

det(R) = rndet(A− λI) (3.8.3.1)
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where det(A− λI) is the characteristic polynomials of matrix A. From

det(A− λI) = f(λ) = (−1)n[λn − a1λ
(n−1) + · · ·+ (−1)nan]

where a1 = tr(A), an = det(A), ai is the sum of the row-i diagonal minors of A, implying that

a1 = tr(A) = n

an = det(A) = 0

ai = 0,

substituting all the conditions into the characteristic polynomials gives

det(A− λI) = f(λ) = (−1)nλ(n−1)(λ− n).

Substituting λ = r−1
r and det(A− λI) into Equation 3.8.3.1 gives

det(R) = (1− r)(n−1)(1 + r(n− 1)).

Therefore, the necessary and sufficient condition for the correlation matrix R to be positive

definite is r > − 1
n−1 .

3.8.4 Omitted proofs

Proof of Lemma 3.1: See the proof of equilibrium characterization.

Proof of Proposition 3.1: From Corollary 3.3, we know that

(W−1 −A)Q = 1̂− z

where

W = α[I + α(Φ̂out′
S + ΦD)[(I + Σ̂in

LB) + (I + Σ̂out
LS )]]−1(Φ̂out′

S + ΦD)

A = Σ̂out
LB + Σ̂LS .

Substituting W and A gives

(
1

α
(Φ̂out′

S + ΦD)−1 + [2I + Σ̂in
LB + Σ̂out

LS ]− Σ̂out
LB − Σ̂in

LS)Q = 1̂− z (∗).

Let V = [2I + 1
α(Φ̂out′

S + ΦD)−1
D ]−1 and Ā = Σ̂out

LB + Σ̂in
LS −

1
α(Φ̂out′

S + ΦD)−1
off −

Σ̂in
LB − Σ̂out

LS where (Φ̂out′
S + ΦD)−1

off is the matrix collecting only the off-diagonal terms (i.e.

(Φ̂out′
S + ΦD)−1 ◦ ([1]n(g)×n(g) − I)) and (Φ̂out′

S + ΦD)−1
D is the matrix collecting only the

diagonal terms (i.e (Φ̂out′
S + ΦD)−1 ◦ I). Substituting K and Ā into the equation gives

Q = (I − V Ā)−1V (1̂− z).

This proves the proposition.
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Proof of Proposition 3.2: To prove the proposition, we find first-order condition of ∂W
∂qij

=
∂Ui+Uj
∂qij

for all ij ∈ g. The first-order condition written in matrix form for all ij ∈ g is

2Q = ASBQ+ (1̂− z) where ASB = Σin
LS + Σout

LB − Σout
LS − Σin

LB. This implies that

Q =
1

2

(
I − 1

2
ASB

)−1

(1̂− z).

Note that the second-order condition is always satisfied as the correlation matrix is positive

definite. This proves the proposition.

Proof of Proposition 3.3: Recall Equation (∗) that the equilibrium asset allocation satisfies

(
1

α
(Φ̂out′

S + ΦD)−1 + [2I + Σ̂in
LB + Σ̂out

LS ]− Σ̂out
LB − Σ̂in

LS)QSB = 1̂− z.

From Proposition 3.2, the constrained efficient allocation is

QE =
1

2

(
I − 1

2
ASB

)−1

(1̂− z)

where ASB = Σin
LS + Σout

LB − Σout
LS − Σin

LB. This implies that, when QE = QSB = Q,

(
1

α
(Φ̂out′

S + ΦD)−1 + [2I + Σ̂in
LB + Σ̂out

LS ]− Σ̂out
LB − Σ̂in

LS)Q = (2I −ASB)Q

must be true. Simplifying the terms give (Φ̂out′
S + ΦD)−1Q = 0. This proves the proposition.

Proof of Corollary 3.1: To prove this proposition, we find the quantity impact matrix Φ of a

complete network. Let n be the number of agents in the economy. Let the ith n-1 rows/columns

associate with the transaction outflow from the ith agent as shown below

12 · · · 1n 21 · · · n(n− 1)

12
...

1n

21
...

n(n− 2)

n(n− 1)



aa aa aa aa aa aa

aa aa aa aa aa aa

aa aa aa aa aa aa

aa aa aa aa aa aa

aa aa aa aa aa aa

aa aa aa aa aa aa

aa aa aa aa aa aa


and the correlation of asset flow is

ΣL =


[1](n−1)×(n−1) [r](n−1)×(n−1) [r](n−1)×(n−1)

[r](n−1)×(n−1)
. . . [r](n−1)×(n−1)

[r](n−1)×(n−1) [r](n−1)×(n−1) [1](n−1)×(n−1)


n(n−1)×n(n−1)

From Proposition 3.4 that Ā = ΣL ◦ (W out
B −W in

B ), the elements of matrix (I − Ā) is

(I − Ā)(i1k1,i2k2) =


1 if i1 = i2 and j1 = j2

−r if j1 = i2 and j1 6= j2

r if j1 = j2 and i1 6= i2

0 if otherwise.

130



Now, consider the following matrix B defined as follows.

B(i1k1,i2k2) =


a = − (n−2)r+1

K if i1 = i2 and j1 = j2

c = r
K if i1 6= i2 and j1 = j2

b = − r
K if j1 = i2 and j1 6= j2

0 if otherwise

where K = (n− 1)r2 − (n− 2)r − 1. In what follows, I argue that B is the inverse matrix of

(I − Ā) which can be easily verified by checking that (I − Ā)B = I . Thus, the quantity impact

matrix Φ = 1
α(I − Ā)−1 is

Φ(i1j1,i2j2) =


− (n−2)r+1

αK if i1 = i2 and j1 = j2
r
αK if i1 6= i2 and j1 = j2

− r
αK if j1 = i2 (and j1 6= j2)

0 if otherwise

where K = (n− 1)r2 − (n− 2)r − 1. From Φ, we can obtain that

Φ̂out
S = 0 and ΦD = −

(
(n− 2)r + 1

αK

)
In(n−1)×n(n−1).

Therefore,

(Φ̂out
S + ΦD)−1 = Φ−1

D = −
(

αK

(n− 2)r + 1

)
In(n−1)×n(n−1)

which implies that all elements in (Φ̂out
S + ΦD)−1 will be zero if K = 0. This is true when

r ∈ {− 1
n−1 , 1}.

14 This proves the proposition.

Proof of Corollary 3.2: First, reorder the rows/columns associate with the transaction

for all matrices as {12, 13, ..., 1n(1), 21, 23, ..., 2n(2), ...., nn(n)}, which can be illustrated as

below
12 · · · 1n(1) 21 · · · nnn

12
...

1n1

21
...

nnn−1

nnn



aaa aaa aaa aaa aaa aaa

aaa aaa aaa aaa aaa aaa

aaa aaa aaa aaa aaa aaa

aaa aaa aaa aaa aaa aaa

aaa aaa aaa aaa aaa aaa

aaa aaa aaa aaa aaa aaa

aaa aaa aaa aaa aaa aaa


Also, given σij = 0;∀i, j ∈ N , the correlation matrix of the asset flow or ΣL becomes

ΣL,(i1k1,i2k2) =

{
σ2
i if i1 = i2

0 if otherwise
14Note that one can go further to obtain equilibrium characterization by substituting all matrices of the relevant

parameter value and verifying the second-order condition). One will obtain that qij = (n−2)r+1
(n+1)((n−2)r+1)+r

and

pij = dij − α ((n−1)r+1)2

(n+1)((n−2)r+1)+r
.
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Also, by definition of W out
b and W in

b , all the elements where i1 = i2 are zero. Thus, the

quantity impact matrix Φ is simplified to

Φ =
1

α
(I − Ā)−1Σ−1

D =
1

α
Σ−1
D = ΦD

where the last equality is from ΦD = Φ ◦ I = Φ as the matrix Φ is a diagonal matrix.

To find the equilibrium price, recall from Proposition 3.4 that

Γ = I + α[Φ̂out′
B (Σ̂in

LB + ΣDΣ̂out
LB) + (Φ̂out′

S + Φ′D)(Σ̂out
LS + ΣD − Σ̂in

LS)]

Θ = −α(ΣD(Φ̂out′
S + Φ′D)1̂− Φ̂out′

B z).

Since 1) Φ = ΦD and 2) the elements on the diagonal of W out
B , W in

S and W out
S are zero, then

Φ̂out
B = Φ ◦W out

B = 0

Φ̂out
S = Φ ◦W out

S = 0

Φ̂in
S = Φ ◦W in

S = 0.

Therefore, we obtain that

Γ = I + αΦ′D(Σ̂out
LS + ΣD − Σ̂in

LS).

Since Σ̂in
LS = ΣL ◦W in

S = 0 and Φ′D = ΦD, substituting these two conditions gives

Γ = 2I + Σout
Ls and Θ = −1̂.

The last step is to plug in all the coefficient matrices into the equilibrium condition. From

Proposition 3.4, we obtain that

1

ασ2
i

Ai(pi − di) = −1̂ for i ∈ N

where

Ai =


3 1 · · ·

1
. . . 1

... 1 3


n(i)× n(i)

and pi − di =


...

pij − di
...


n(i)× 1

.

To solve for pi, by symmetry of pij = pik for j, k ∈ N(i), I obtain

pij = di − α
σ2
i

2 + n(i)
.

To find the equilibrium quantity, substituting p into the demand function q(P ) = Φ[d−P −αz]
gives

qij =
1

2 + n(i)
.

Also,

qii = 1−
∑

k∈N(i)

qik = 1− n(i)

2 + n(i)
=

2

2 + n(i)
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and

Ui = di −
∑

j∈N(i)
qij(di − pij) +

∑
k∈N(i)

qki(dk − pki)−
α

2
[
∑

k∈N̄(i)

∑
l∈N̄(i)

σklqkiqli]

= di −
∑

j∈N(i)
qij(di − pij) +

∑
k∈N(i)

qki(dk − pki)−
α

2
[
∑

k∈N̄(i)
σ2
kq

2
ki]

= di − α
σ2
i

2 + n(i)
+
α

2

∑
j∈N(i)

(
σ2
j

(2 + n(j))2
).

Note that the second-order condition is satisfied as all diagonal elements of Φ are positive. This

proves the corollary.

Proof of Remark 3.1: First, we find the equilibrium characterization of a star network

based on Proposition 3.4. Let n be the number of peripherals {1, 2, 3..., n} and denote the center

node (hub) h. Let the first n rows/columns associate with transaction outflows from the hub and

the last n rows/columns associate with transaction inflows to the hub. Then the link adjacency

matrices are as follows:

W out
B =

[
[0]n×n In×n

[1]n×n [0]n×n

]
W in
B =

[
[0]n×n [o]n×n

[0]n×n [1]−Dn×n

]

W out
S =

[
[1]−Dn×n [0]n×n

[0]n×n [0]n×n

]
W in
S =

[
[0]n×n [1]n×n

In×n [0]n×n

]

and the correlation of asset flow is

ΣL =

[
[1]n×n [r]n×n

[r]n×n I + [r]−Dn×n

]
and ΣD =

[
In×n [0]n×n

[0]n×n In×n

]
.

Therefore, we can obtain the quantity impact matrix Φ of a star network as follows.

Φ =
1

α



c d d re rf rf

d
. . . d rf

. . . rf

d d c rf rf re

g · · · g e f f
...

. . .
... f

. . . f

g · · · g f f e


where c = 1 − r2

(nr+1)(r−1) , d = −r2
(nr+1)(r−1) , e = −(r(n−1)+1)

(nr+1)(r−1) , f = r
(nr+1)(r−1) , g =

−r
(nr+1)(r−1) . Next step is to find all the expressions for the coefficients in the equilibrium

condition. Let [k]−D for k ∈ R be the matrix with all zeros at the diagonal and all k off the
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diagonals. Given the quantity impact matrix Φ above, we can obtain

Φ̂out
B = Φ ◦W out

B =
1

α

[
[0]n×n (re)In×n

[g]n×n [0]n×n

]
Φ̂out
S = Φ ◦W out

B =
1

α

[
[d]−Dn×n [0]n×n

[0]n×n [0]n×n

]

Σ̂in
LB = ΣL ◦W in

B =
1

α

[
[0]n×n [0]n×n

[0]n×n [r]−Dn×n

]
Σ̂out
LB = ΣL ◦W out

B =
1

α

[
[0]n×n rIn×n

[r]n×n [0]n×n

]

Σ̂in
LS = ΣL ◦W in

S =
1

α

[
[0]n×n [r]n×n

rIn×n [0]n×n

]
Σ̂out
LS = ΣL ◦W out

S =
1

α

[
[1]−Dn×n [0]n×n

[0]n×n [0]n×n

]

ΣLD = ΣL ◦ I =
1

α

[
In×n [0]n×n

[0]n×n In×n

]
ΦD = Φ′D = Φ ◦ I =

1

α

[
cIn×n [0]n×n

[0]n×n eIn×n

]

where c = 1 − r2

(nr+1)(r−1) , d = −r2
(nr+1)(r−1) , e = −(r(n−1)+1)

(nr+1)(r−1) , f = r
(nr+1)(r−1) , g =

−r
(nr+1)(r−1) . Also, from Proposition 3.4, we can further obtain the expression for Γ and Θ as

follows. Let K = (nr + 1)(r − 1), To find Γ, substituting all relevant variables found above

gives

Γ =

[
In×n + [1]n×n [0]n×n

[0]n×n (1 +B)In×n

]
where B =

(r(n− 1) + 1)(r2 − 1)

K

Similarly, we can obtain

Θ = −

[
nr2−(n−1)r−1

K
(r(n−1)+1)(r2−1)

K

]
= −

[
[1]n×1

[B]n×1

]
.

The last step is to plug in all the expressions into the equilibrium condition in Proposition 3.4

and impose symmetric conditions. We can obtain the following expression for the equilibrium

asset price and allocation.

[
ph−d
α

pp−d
α

]
=

[
−r − (r−1)(nr−r+1)(−n2r2+nr2−4nr+r2+2r−3)

X

−1− (r−1)(n3(3r3+2r2)−6n2r3+7n2r2+4n2r+2nr3−10nr2+8nr+2n+r2−5r+4)
X

]
[
qh

qp

]
=

[
(nr+1)((n−1)r+1)((2n−3)r+3)

X
((n−1)r+1)(n2(r2+r)−n(r2−2r)+n−r2−r+2)

X

]
whereX = n3(r3+5r2)+n2(−5r3+5r2+7r)+n(r3−12r2+10r+3)+r2+r3+n4r3−8r+6.

Note that the second-order condition is also satisfied. To see this, first consider the second-order

condition for trading strategy of the peripherals.

∂2up
∂p2

ph

= 2
∂qph
∂pph

− α[
∂qph
∂pph

2

+
∂qhp
∂pph

2

− 2r
∂qph
∂pph

∂qhp
∂pph

] (3.8.4.1)

Also, recall that

Φ =
1

α



c d d re rf rf

d
. . . d rf

. . . rf

d d c rf rf re

g · · · g e f f
...

. . .
... f

. . . f

g · · · g f f e


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where c = 1 − r2

(nr+1)(r−1) , d = −r2
(nr+1)(r−1) , e = −(r(n−1)+1)

(nr+1)(r−1) , f = r
(nr+1)(r−1) , g =

−r
(nr+1)(r−1) . Given the expression of Φ , we obtain

∂qph
∂pph

= − e
α

and
∂qhp
∂pph

= −re
α
.

Substituting into Equation 3.8.4.1 gives

∂2up
∂p2

ph

= −2
e

α
− e2

α
+
r2e2

α
=
−2e− (1− r2)e2

α
.

Since e = r(n−1)+1
(nr+1)(1−r) > 0 as r ∈ (−1

n , 1), then ∂2up
∂p2ph

< 0 which satisfies the maximization

problem.

To check the second-order condition for the hub, recall that the second-order condition for

the first stage is satisfied if H(ui)(pi) is positive definite from Lemma 3.3.

For the first term Φout,out
i + Φout,out′

i , recall that

Φout,out
i =


c d d

d
. . . d

d d c


where c = 1 − r2

(nr+1)(r−1) = 1 + d, d = −r2
(nr+1)(r−1) . To check that Φout,out

i is positive

definite, first define

K =

∣∣∣∣∣∣∣∣
1 + d d d

d
. . . d

d d 1 + d

∣∣∣∣∣∣∣∣
k×k

, ∀k ≤ n(g)

which implies that

K = (1 + d)k(1− d

1 + d
)(k−1)(1 +

d

1 + d
(k − 1)).

Since d = −r2
(nr+1)(r−1) ≥ 0 as r ∈ (−1

n , 1), then K > 0, ∀k ≤ n(g). Therefore, Φout,out
i is

positive definite and thus Φout,out
i + Φout,out′

i is positive definite.

Consider the leftover term in H(ui)(pi). Since Φout,out′

i Σout,in
L,i Φin,out

i is symmetric, it is

sufficient to prove that

Φin,out′

i Σin,in
L,i Φin,out

i − 2Φout,out′

i Σout,in
L,i Φin,out + +σ2

i Φ
out,out′

i Φout,out
i

is positive definite. Given the expression of quantity impact matrix Φ we found earlier, one can

obtain

Φin,out
i = [g]n×n, Φout,out

i = cIn×n + [d]−Dn×n, Σin,in
L,i = In×n + [r]−Dn×n, Σout,in

L,i = [r]n×n.

Therefore, we obtain that

Φin,out′

i Σin,in
L,i Φin,out

i − 2Φout,out′

i Σout,in
L,i Φin,out + σ2

i Φ
out,out′

i Φout,out
i

= (1 + 2d+ nd2 +N)In×n + (2d+ nd2 +N)[1]−Dn×n
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where N = n(g2(1 + (n− 1)r)− 2gr(c+ d(n− 1))). To see that this term is positive definite,

define

L =

∣∣∣∣∣∣∣∣
1 +A A A

A
. . . A

A A 1 +A

∣∣∣∣∣∣∣∣
l×l

where A = 2d+ nd2 + n(g2(1 + (n− 1)r)− 2gr(c+ d(n− 1))). Therefore, we just need to

prove that A is positive definite. Since we know that

L = (1 +A)l(1− A

1 +A
)(l−1)(1 +

A

1 +A
(l − 1))

Substituting all the relevant parameter values into A gives

A =
nr4

(nr + 1)2(r − 1)2
− 2r2

(nr + 1)(r − 1)
− nr2(r(n− 1) + 1)

3(nr + 1)(r − 1)
≥ 0.

The last inequality is from the assumption that r ∈ (−1
n , 1). Therefore, the second-order

condition of the hub is satisfied. Up to this point, we can obtain the following corollary.

Corollary 3.4 (Equilibrium characterization of star trading network) Let i be the agent at

the central (hub) and j be at the periphery. If Assumption 3.3 is satisfied and the network is the

star network, then [
qij

qji

]
=

[
(nr+1)((n−1)r+1)((2n−3)r+3)

X
((n−1)r+1)(n2(r2+r)−n(r2−2r−1)−r2−r+2)

X

]

whereX = n4r3+n3(r3+5r2)+n2(−5r3+5r2+7r)+n(r3−12r2+10r+3)+r2+r3−8r+6.

To prove the first statement in the remark, first note that X > 0. To see this, consider

∂X

∂r
= r2[3n4 + 3n3 − 15n2 + 3n+ 3] + r[10n3 + 10n2 − 24n+ 2] + 7n2 + 10n− 8.

Since [3n4 + 3n3 − 15n2 + 3n+ 3] > 0 and [10n3 + 10n2 − 24n+ 2] > 0 when n ≥ 2,

then infr∈(− 1
n
,1)[

∂X
∂r ] = 3n+ 1 + 1

n + 3
n2 > 0. Therefore, minrX = X(r = − 1

n) which is

X(r = − 1

n
) = −n− 1 + 5n+

5

n
+ 5− 7n+− 1

n2
− 12

n
− 10 + 3n+ (

1

n
)2 − (

1

n
)3 +

8

n
+ 6

=
1

n
− 1

n3
> 0.

Therefore, X > 0. Consider the condition qii ≥ qjj , this is true if and only if qji ≥ nqij .

Substituting qji and qij into the inequality condition and simplifying the terms give r2(2n2 −
2n− 1) + r(4n− 1) + 2 ≤ 0, which will be satisfied if

r ∈ (
−(4n− 1)−

√
8n+ 9

2(2n2 − 2n− 1)
,
−(4n− 1) +

√
8n+ 9

2(2n2 − 2n− 1)
).

It is easy to check that −(4n−1)+
√

8n+9
2(2n2−2n−1)

≤ 0 as (4n−1)2 ≥ 8n+9 if and only if 2n2−2n−1 ≥ 0

By assumption that r ∈ (− 1
n , 1), there exists the range of correlation such that qii ≤ qjj if
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− 1
n ≤

−(4n−1)+
√

8n+9
2(2n2−2n−1)

, which is always satisfied when n ≥ 2. Also, −(4n−1)−
√

8n+9
2(2n2−2n−1)

< − 1
n

is always satisfied, since rearranging the condition gives n ≥ − 1
3+
√

8n+9
which always holds.

Therefore, qii ≥ qjj iff

r ∈ (− 1

n
, 1) ∩ (

−(4n− 1)−
√

8n+ 9

2(2n2 − 2n− 1)
,
−(4n− 1) +

√
8n+ 9

2(2n2 − 2n− 1)
)

which is

r ∈ (− 1

n
,
−(4n− 1) +

√
8n+ 9

2(2n2 − 2n− 1)
).

This proves the first statement in the remark.

To prove the second statement in the remark, suppose that qji ≥ qij . Substituting qji and qij
and simplifying the terms gives

((n− 1)r + 1)(r − 1) ≤ 0

which is always true as r ∈ (− 1
n , 1). This proves the statement.

To prove the last statement in the remark, substituting r ∈ {− 1
n , 1} into the characterization

in Lemma 3.4 immediately proves the statement. This proves the statement and the remark.

Proof of Remark 3.2: Let n′ = n+ 1. To prove the first statement in the remark, consider

the equilibrium outcome when r → − 1
n′ . By Corollary 3.4, one can obtain limr→− 1

n′
qji = 1.

Also, substituting r = − 1
n′ into the analytical solution for qji(n) gives

qji(n, r = − 1

n′
) =

2

3
−

4n+ 16
3

6n2 + 15n+ 14
< 1.

By continuity of qji in r, there exists r < 0 such that qji(n′) > qji(n). Since qjj(n′) < qjj(n)

if and only if qji(n′) > qji(n), this proves the statement.

To prove the second statement in the remark, consider the equilibrium outcome when

r → − 1
n′ . By Corollary 3.4, one can obtain n′qij(n′, r → − 1

n′ ) = 0. Substituting r = − 1
n′

into the analytical solution for qij(n) gives

nqij(n, r = − 1

n′
) =

2n(n+ 6)

6n2 + 15n+ 14
> 0.

By continuity of qij in r, there exists r < 0 such that nqij(n) > n′qij(n
′). Since qii(n′) > qii(n)

if and only if nqij(n) > n′qij(n
′), this proves the second statement in the remark.

To prove condition 3, note that the utility of the periphery agent j is

uj = dj − (pij − di)qij + (pji − dj)qji −
α

2
(q2
ij + (1− qji)2 + 2rqij(1− qji)).

By Corollary 3.4, one can obtain

lim
r→− 1

n′

uj(n
′) = dj + α

[
11

5(n+ 1)
−

86n5 + 124
5

6n2 + 15n+ 14

]
.
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Also, we obtain

lim
r→− 1

n′

uj(n) = dj − α

[
24n4 + 314n3

3 + 376n2

3 + 88n
9 −

512
9

(n+ 1)(6n2 + 15n+ 14)2
+

1

18

]
.

Therefore, I obtain

lim
r→− 1

n′

(uj(n
′)− uj(n)) =

1

18
−

[
28n3

3 + 89n2

3 + 236n
9 − 244

9

(n+ 1)(6n2 + 15n+ 14)2

]
which is always greater than 0. To see this, suppose that it is not, then

(n+ 1)(6n2 + 15n+ 14)2 ≤ 18

[
28n3

3
+

89n2

3
+

236n

9
− 244

9

]
which gives

36n5 + 216n4 + 405n3 + 279n2 + 144n+ 684 ≤ 0

which is impossible. By continuity of uj in r, there exists r < 0 such that uj(n′) > uj(n). This

proves the last statement in the remark.

Proof of Remark 3.4: First, we find the equilibrium outcome for the core-periphery

network when there are two agents at the core and two agents at the periphery. Let agent

1 and 2 be the cores, agent 3 and 4 be the peripherals connecting to 1, and agent 5 and 6

be the peripherals connecting to 2. Let the row and column of all matrices are ordered as

{12, 13, 14, 21, 25, 26, 31, 41, 52, 62}.
First, we find the expression for Φ. Since this is the symmetric network, I can only consider

the elements in column 12, 13, and 31, as the elements in other columns can be found by

symmetric properties. Let K1 = −2r2 + 3r + 1, K2 = −2r2 + 2r + 1, K3 = (r − 1)K1, and

M = (2r + 1)K3. From Proposition 3.4, one can obtain the elements of column 12,13,31 in Φ

as follows:

Φ(:, 12)′ =
1

α

[
( r+0.5
K1
− 1

2(r−1)) −r2
K3

−r2
K3

−r
K3

r2

K3

r2

K3

−r
K3

−r
K3

r
K3

r
K3

]
Φ(:, 13)′ =

1

α

[
− r2

M −−(2r4−6r3+4r+1)
M − r2K2

M − rK2
M − r3

M − r3

M − rK2
M − rK2

M − r2

M − r2

M

]
Φ(:, 31)′ =

1

α

[
r2

M −r (−2r3+2r2+4r+1)
M

r2K2
M

rK2
M

r2

M
r2

M − (−2r3+2r2+4r+1)
M

rK2
M

r2

M
r2

M

]
Using this matrix Φ, one can obtain other coefficient matrices in Proposition 3.4 as follows.

Γ =



A 0 0 0 0 0

0 A 0 0 0 0

0 0 a4 0 0 0

0 0 0 a4 0 0

0 0 0 0 a4 0

0 0 0 0 0 a4


where A =

a1 a1 a1

a2 a3 a1

a2 a2 a3

 ,


a1 = 3r+1
K1

+ 1

a2 = (3r+1)K2

(2r+1)K1

a3 = 2.5− (2r2+2.5r+0.5)
(2r+1)K1

a4 = 2(−r4−2r3+5r2+5r+1)
(2r+1)K1

Θ =

[
−3r + 1

K1
− (3r + 1)K2

(2r + 1)K1
− (3r + 1)K2

(2r + 1)K1
− 3r + 1

K1
− (3r + 1)K2

(2r + 1)K1
− (3r + 1)K2

(2r + 1)K1

· · · − (r + 1)(−2r3 + 2r2 + 4r + 1)

(2r + 1)K1
· · ·︸ ︷︷ ︸

×4

]
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Let pcc, pcp, ppc(qcc, qcp, qpc) denote the price(quantity) of transaction between the cores,

that from the cores to the peripherals, and that from the peripherals to the cores, respectively.

Substituting all the relevant parameters into Proposition 3.4 and imposing symmetric condition,

one can obtain the equilibrium outcome as follows.pcc − dcpcp − dc
ppc − dp

 = −α


184r8+142r7−866r6−822r5+475r4+874r3+411r2+82r+6

216r7+78r6−1012r5−614r4+717r3+803r2+268r+30
168r8+98r7−768r6−656r5+441r4+758r3+363r2+76r+6

216r7+78r6−1012r5−614r4+717r3+803r2+268r+30
152r8+150r7−694r6−794r5+293r4+804r3+455r2+110r+10

216r7+78r6−1012r5−614r4+717r3+803r2+268r+30


and qccqcp

qpc

 =


− −400r8+52r7+1898r6+312r5−1700r4−871r3+85r2+120r+18

2(−216r8+138r7+1090r6−398r5−1331r4−86r3+535r2+238r+30)

− −320r8−40r7+1570r6+460r5−1428r4−879r3+25r2+108r+18
2(−216r8+138r7+1090r6−398r5−1331r4−86r3+535r2+238r+30)
−336r8+36r7+1554r6+256r5−1336r4−731r3−3r2+64r+10

2(r−1)(216r7+78r6−1012r5−614r4+717r3+803r2+268r+30)


The last step is to check whether the second-order condition in the first stage is satisfied.

Consider the second-order condition for the peripheral agent:

∂2up
∂p2

pc

= 2
∂qpc
∂ppc

− α[
∂qpc
∂ppc

2

+
∂qcp
∂ppc

2

− 2r
∂qpc
∂ppc

∂qcp
∂ppc

]

Substituting the first-order derivative value using the Φ matrix as previously found, I obtain the

following equation:

∂2up
∂p2

pc

=
(−2r3 + 2r2 + 4r + 1)(2r4 − 8r3 + 2r2 + 5r + 1)

α(2r + 1)2(r − 1)(−2r2 + 3r + 1)2

which is always negative as −2r3 + 2r2 + 4r+ 1 > 0 and 2r4− 8r3 + 2r2 + 5r+ 1 > 0 when

r ∈ (−1
5 , 1). To check the second-order condition for the cores, we must prove that H(ui)(pi)

from Lemma 3.3 must be positive definite. Since

Φout,out
i =


r+0.5
K1
− 1

2(r−1) − r2

M − r2

M

− r2

K3
−2r4−6r3+4r+1

M − r2K2
M

− r2

K3
− r2

M −2r4−6r3+4r+1
M

 Σin,in
L,i =

1 r r

r 1 r

r r 1



Φin,out
i =

−
r
K3

− rK2
M − rK2

M

− r
K3

− rK2
M − rK2

M

− r
K3

− rK2
M − rK2

M

 Σout,in
L,i =

r r r

r r r

r r r

 .
Substituting into the Hessian matrix H and checking all the principal minors, one can find that

H is positive definite if r ∈ (−1
5 , 0.6813). Therefore, the equilibrium outcome ispcc − dcpcp − dc

ppc − dp

 = −α


184r8+142r7−866r6−822r5+475r4+874r3+411r2+82r+6

216r7+78r6−1012r5−614r4+717r3+803r2+268r+30
168r8+98r7−768r6−656r5+441r4+758r3+363r2+76r+6

216r7+78r6−1012r5−614r4+717r3+803r2+268r+30
152r8+150r7−694r6−794r5+293r4+804r3+455r2+110r+10

216r7+78r6−1012r5−614r4+717r3+803r2+268r+30


and qccqcp

qpc

 =


− −400r8+52r7+1898r6+312r5−1700r4−871r3+85r2+120r+18

2(−216r8+138r7+1090r6−398r5−1331r4−86r3+535r2+238r+30)

− −320r8−40r7+1570r6+460r5−1428r4−879r3+25r2+108r+18
2(−216r8+138r7+1090r6−398r5−1331r4−86r3+535r2+238r+30)
−336r8+36r7+1554r6+256r5−1336r4−731r3−3r2+64r+10

2(r−1)(216r7+78r6−1012r5−614r4+717r3+803r2+268r+30)


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if r ∈ (−1
5 , 0.6813).

To prove the first statement in the remark, using the equilibrium asset quantity above, one

can obtain ∂qcc
∂r (r = 0.5) = 2.1025. By continuity, ∃k ∈ R+ such that ∂qcc∂r (r = k) > 0. This

proves the statement.

To prove the second statement in the remark, using the equilibrium condition above, I obtain

qcp − qpc =
2(r − 1)

A︷ ︸︸ ︷
(4r6 − 11r5 − 22r4 + 18r3 + 35r2 + 15r + 2)

216r7 + 78r6 − 1012r5 − 614r4 + 717r3 + 803r2 + 268r + 30︸ ︷︷ ︸
B

(pcp−dc)−(ppc−dp) =
−2α(2r + 1)(r − 1)

A︷ ︸︸ ︷
(4r6 − 11r5 − 22r4 + 18r3 + 35r2 + 15r + 2)

216r7 + 78r6 − 1012r5 − 614r4 + 717r3 + 803r2 + 268r + 30︸ ︷︷ ︸
B

To see that A > 0 and B > 0 when r ∈ (−1
5 , 1), set A = 0 and B = 0 and solve for r yields

1. if r ∈ {−1.3146,−0.5449, 1.5846, 3.7135, 0.0096i−0.3442,−0.0096i−0.3442}, then

A = 0.

2. if r ∈ {−1.8088,−0.5887,−0.4562,−0.3983,−0.3013, 1.1899, 2.0023}, then B = 0.

Since A > 0 and B > 0 when r = 0, then A > 0 and B > 0 when r ∈ (−1
5 , 1) by continuity.

Therefore, qcp < qpc and pcp − dc > ppc − dp. This proves the statement.

To prove the last statement, using the equilibrium condition previously found, I obtain

pcp − pcc =
−2rα(2r + 1)(r2 − 1)

C︷ ︸︸ ︷
(−4r4 − 9r3 + 25r2 + 18r + 3)

(216r7 + 78r6 − 1012r5 − 614r4 + 717r3 + 803r2 + 268r + 30)

qcp − qcc =
2r

D︷ ︸︸ ︷
(20r6 − 3r5 − 85r4 − 48r3 + 20r2 + 18r + 3)

(216r7 + 78r6 − 1012r5 − 614r4 + 717r3 + 803r2 + 268r + 30)

Note that C > 0 when −1
5 < r < 0 since −4r4 − 9r3 > 0 and 25r2 + 18r + 3 > 0. To

see that D > 0, setting D = 0 and solving for r give

r ∈ {−1.4831,−0.5776,−0.3896,−0.3211, 0.6041, 2.3172}

Since D > 0 when r = 0. By continuity, D > 0 if r ∈ (−1
5 , 0). Therefore, pcp < pcc and

qcp < qcc when r is negative. This proves the statement and the remark.

140



Bibliography

D. Acemoglu, A. Ozdaglar, and A. Tahbaz-Salehi. Systemic risk and stability in financial

networks. American Economic Review, 105(2):564–608, 2015a.

D. Acemoglu, A. Ozdaglar, and A. Tahbaz-Salehi. Systemic risk in endogenous financial

networks. Working paper, 2015b.

G. Afonso and R. Lagos. An empirical study of trade dynamics in the interbank market. Federal

Reserve Bank of New York Staff Reports, 2014.

G. Afonso and R. Lagos. Trading dynamics in the market for federal funds. Econometrica, 83

(1):263–313, 2015a.

G. Afonso and R. Lagos. Trading dynamics in the market for federal funds. Econometrica, 83

(1):263–313, 2015b.

G. Afonso, A. Kovner, and A. Schoar. Trading partners in the interbank lending market. Working

Paper, 2014.

F. Allen and D. M. Gale. Financial contagion. Journal of Political Economy, 108(1):1–33, 2000.

F. Allen, A. Babus, and E. Carletti. Asset commonality, debt maturity and systemic risk. Journal

of Financial Economics, 104(3):519–534, 2012.

A. Babus. The formation of financial networks. RAND Journal of Economics, 47(2):239–272,

2016.

A. Babus and T. W. Hu. Endogenous intermediation in over-the-counter market. Journal of

Financial Economics, 125(1):200–215, 2017.

A. Babus and P. Kondor. Trading and information diffusion in over-the-counter markets.

Econometrica, 86(5):1727–1769, 2018.

J. Bai, T. Philippon, and A. Savov. Have financial markets become more informative? Journal

of Financial Markets, 122(3):625–654, 2016.

141



C. Ballester and A. Calvó-Armengol. Interactions with hidden complementarities. Regional

Science and Urban Economics, 40:397–406, 2010.

C. Ballester, A. Calvó-Armengol, and Y. Zenou. Who’s who in networks. Wanted: the Key

Player. Econometrica, 74(5):1403—-1417, 2006.

S. Banerjee and B. Green. Signal or noise? uncertainty and learning about whether other traders

are informed. Journal of Financial Economics, 117(2):398–423, 2015.

S. Banerjee, J. Davis, and N. Gondhi. When transparency improves, must prices reflect

fundamentals better? Review of Financial Studies, 31(6):2377–2414, 2018.

M. L. Bech and E. Atalay. The topology of the federal funds market. Physica A: Statistical

Mechanics and its Applications, 389(22):5223–5246, 2019.

L. M. Benveniste, A. Marcus, and W. J. Wilhelm. What’s special about the specialist? Journal

of Financial Economics, 32(1):61–86, 1992.

K. Bimpikis, S. Ehsani, and R. Ilkilic. Cournot competition in networked markets. Management

Science., forthcoming.

L. E. Blume, D. Easley, J. Kleinberg, and Éva Tardos. Trading networks with price-setting

agents. Games and Economic Behavior, 67(1):36 – 50, 2009.

P. Bonacich. Power and centrality: A family of measures. American Journal of Sociology, 92

(5):1170–1182, 1987.

P. Bonacich and P. Lloyd. Calculating status with negative relations. Social Networks, 26:

331–338, 2004.

P. Bond, A. Edmans, and I. Goldstein. The real effects of financial markets. Annual Review of

Financial Economics, 4:339–360, 2012.

Y. Bramoullé and R. Kranton. Public goods in networks. Journal of Economic Theory, 135(1):

478–494, 2007.

Y. Bramoullé, R. Kranton, and M. D́Amours. Strategic interaction and networks. American

Economic Review, 104(3):898–930, 2014.

Y. Bramoullé, A. Galeotti, and B. Rogers. The Oxford Handbook of the Economics of Networks.

Oxford University Press, 06 2016. ISBN 9780199948277.

A. Cabrales, P. Gottardi, and F. Vega-Redondo. Risk sharing and contagion in networks. Review

of Financial Studies, 30(9):3086—-3127, 2017.

A. Calvó-Armengol, E. Patacchini, and Y. Zenou. Peer effects and social networks in education.

Review of Economic Studies, 76:1239–1267, 2009.

O. Candogan, K. Bimpikis, and A. Ozdaglar. Optimal pricing in networks with externalities.

Operations Research, 60(4):883–905, 2012.

142



B. Chang and S. Zhang. Endogenous market making and network formation. Working Paper,

2019.

S. Choi, A. Galeotti, and S. Goyal. Trading in networks: Theory and experiments. Working

Paper, 2015.

D. Condorelli, A. Galeotti, and L. Renou. Bilateral trading in networks. Review of Economic

Studies, 84(1):82–105, 2017.

J. B. De Long, A. Shleifer, L. H. Summers, and R. J. Waldman. Positive feedback investment

strategies and destabilizing rational speculation. The Journal of Finance, 45(2):379–395,

1990.

E. Denbee, C. Julliard, Y. Li, and K. Yuan. Network risk and key players: A structural analysis

of interbank liquidity. Working Paper, 2018.

M. Di Maggio, A. Kermani, and Z. Song. The value of trading relationships in turbulent times.

Journal of Financial Economics, 124(2):266–284, 2017.

M. Di Maggio, F. A. Franzoni, A. Kermani, and C. Sommavilla. The relevance of broker

networks for information diffusion in the stock market. Journal of Financial Economics,

forthcoming.

D. Duffie, N. Gârleanu, and L. H. Pedersen. Over-the-counter markets. Econometrica, 73:

1815–1847, 2005a.

D. Duffie, N. Gârleanu, and L. H. Pedersen. Over-the-counter markets. Econometrica, 73:

1815–1847, 2005b.

D. Duffie, N. Gârleanu, and L. H. Pedersen. Valuation in over-the-counter markets. Review of

Financial Studies, 20(6):1865–1900, 2007a.

D. Duffie, N. Gârleanu, and L. H. Pedersen. Valuation in over-the-counter markets. Review of

Financial Studies, 20(6):1865–1900, 2007b.

P. K. Dutta and A. Madhavan. Competition and collusion in dealer markets. Journal of Finance,

52(1):245–276, 1997.

M. Elliott, B. Golub, and M. O. Jackson. Financial networks and contagion. American Economic

Review, 104(10):3115–53, 2014.

I. P. Fainmesser. Exclusive intermediation in unobservable networks. Games and Economic

Behavior, 113:533–548, 2019.

M. Farboodi. Intermediation and voluntary exposure to counterparty risk. Working paper,

2017a.

M. Farboodi. Intermediation and voluntary exposure to counterparty risk. Working Paper,

2017b.

143



M. Farboodi and L. Veldkamp. Long run growth of financial data technology. Working paper,

2018.

M. Farboodi, G. Jarosch, and R. Shimer. The emergence of market structure. Working Paper,

2017a.

M. Farboodi, A. Matray, and L. Veldkamp. Where has all the big data gone? Working paper,

2017b.

M. Friedman. Essays in Positive Economics. University of Chicago, Chicago, USA, 1953.

D. Gale and S. Kariv. Financial networks. American Economic Review, 97(2):99–103, 2007.

J. V. Ganguli and L. Yang. Complementarities, multiplicity, and supply information. Journal of

the European Economic Association, 7(1):90–115, 2009.

F. Gao, F. Song, and J. Wang. Rational expectations equilibrium with uncertain proportion of

informed traders. Journal of Financial Markets, 16(3):387–413, 2013.

M. Gofman. A network-based analysis of over-the-counter markets. Working Paper, 2014.

A. Greif, P. Milgrom, and B. R. Weingast. Coordination, commitment, and enforcemenent: The

case of the merchant guild. Journal of Political Economy, 102(4):745–776, 1994.

M. Guo and H. Ou-Yang. Feedback trading between fundamental and nonfundamental informa-

tion. Review of Financial Studies, 28(1):247–296, 2015.

S. Han and K. Nikolaou. Trading relationships in the otc market for secured claims: Evidence

from triparty repos. Finance and Economics Discussion Series 2016-064. Washington: Board

of Governors of the Federal Reserve System, 2016.

L. Harris. Trading and Exchanges Market Microstructure for Practitioners. OUP USA, 2002.

ISBN 0195144708, 978-0195144703.

O. Hart and D. Kreps. Price destabilizing speculation. Journal of Political Economy, 94(5):

927–952, 1986.

T. Hendershott, D. Li, D. Livdan, and N. Schürhoff. Relationship trading in otc markets.

Working Paper, 2017.

B. Hollifield, A. Neklyudov, and C. S. Spatt. Bid-ask spreads, trading networks and the pricing

of securitizations. Review of Financial Studies, 30(9):3048–3085, 2017.

H. Hong and S. Rady. Strategic trading and learning about liquidity. Journal of Financial

Markets, 5(4):419–450, 2002.

J. Hugonnier, B. Lester, and P. O. Weill. Heterogeneity in decentralized asset markets. Working

Paper, 2016.

M. O. Jackson. Social and Economic Networks. Princeton University Press, Princeton, NJ,

USA, 2008. ISBN 0691134405, 9780691134406.

144



R. E. Kranton and D. F. Minehart. A theory of buyer-seller networks. American Economic

Review, 91(3):485–508, 2001.

R. Lagos and G. Rocheteau. Liquidity in asset markets with search frictions. Econometrica, 77

(2):403–426, 2009a.

R. Lagos and G. Rocheteau. Liquidity in asset markets with search frictions. Econometrica, 77

(2):403–426, 2009b.

R. Lagos, G. Rocheteau, and P.-O. Weill. Crises and liquidity in over-the-counter markets.

Journal of Economic Theory, 146(6):2169–2205, 2011a.

R. Lagos, G. Rocheteau, and P.-O. Weill. Crises and liquidity in over-the-counter markets.

Journal of Economic Theory, 146(6):2169–2205, 2011b.

D. Li and N. Schürhoff. Dealer networks. Journal of Finance, 74(1):91–144, 2019.

V. Madrigal. Non-fundamental speculation. Journal of Finance, 51(2):553–578, 1996.

S. Malamud and M. Rostek. Decentralized exchange. American Economic Review, 107(11):

3320–3362, 2017.

M. Manea. Bargaining on stationary networks. American Economic Review, 101(5):2042–80,

2011.

C. Manzano and X. Vives. Public and private learning from prices, strategic substitutability and

complementarity, and equilibrium multiplicity. Journal of Mathematical Economics, 47(3):

346–369, 2011.

P. Marmora and O. Rytchkov. Learning about noise. Working paper, 2015.

F. Nava. Efficiency in decentralized oligopolistic markets. Journal of Economic Theory, 157:

315–348, 2015.

A. Neklyudov and B. Sambalaibat. Endogenous specialization and dealer networks. Working

Paper, 2017.

L. Raffestin. Diversification and systemic risk. Journal of Banking and Finance, 46:85–106,

2014.

J. Stein. Informational externalities and welfare-reducing speculation. Journal of Political

Economy, 95(6):1123–1145, 1987.

S. Üslü. Pricing and liquidity in decentralized asset markets. Working Paper, 2019.

D. Vayanos and P.-O. Weill. A search-based theory of the on-the-run phenomenon. Journal of

Finance, 63:1351–1389, 2008a.

D. Vayanos and P.-O. Weill. A search-based theory of the on-the-run phenomenon. Journal of

Finance, 63:1351–1389, 2008b.

145



W. Wagner. The homogenization of the financial system and financial crises. Journal of

Financial Intermediation, 17:330–356, 2008.

W. Wagner. Diversification at financial institutions and systemic crises. Journal of Financial

Intermediation, 19:373–386, 2010.

C. Wang. Core-periphery trading networks. Working Paper, 2017.

L. Yang and H. Zhu. Back-running: Seeking and hiding fundamental information in order flows.

Review of Financial Studies, forthcoming.

A. Zawadowski. Entangled financial systems. The Review of Financial Studies, 26:1291–1323,

2013.

146


	A Hidden Curse of Non-fundamental Information in Stock Markets
	Introduction
	The model
	Baseline equilibrium without NF information.
	Analysis of learning NF information.
	Static effect of learning NF information
	Dynamic feedback effect and price inefficiency. 
	What if the investors can observe historical prices?

	Impact of learning information about current non-fundamental shock
	Endogenous information choice and information technology growth. 
	Model setting: information acquisition stage 
	Optimal information choice
	Information-processing capacity advancement

	Concluding remark
	Appendix
	Equilibrium characterization
	Omitted proofs


	Periphery Dealers in Over-the-counter Markets
	Introduction
	Basic model
	Static equilibrium
	Liquidity insurance relationship
	The model with an agency dealer
	Relationship via an agency dealer
	Trigger strategy via an agency dealer
	Commitment problem and incentive constraints
	Equilibrium analysis: effectiveness of agency dealer
	Implications on equilibrium prices
	Discussion on market efficiency and stability

	Result discussion
	Will investors with high trading needs choose agency dealers?
	Possibility of a principal dealer executing agency trade.
	Direct relationship with partial insurance coverage
	Multiple agency dealers and competition

	Concluding remark.
	Appendix
	Additional material: the model with heterogeneous investors
	Omitted proofs


	Strategic Formation of Financial Network
	Introduction
	The model
	Notion of line graph transformation
	Equilibrium outcome and network structure
	Asset demand function
	Asset allocation and prices

	Implications on market efficiency
	Special cases
	No asset correlation 
	Identical asset correlation

	Concluding remark
	Appendix
	Summary of matrix notations
	Equilibrium characterization
	Positive definiteness of correlation matrix
	Omitted proofs


	Bibliography

