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Abstract

My thesis explores three questions in factor-based investing.

In the first chapter, I study the correlation risk in trading stock market anoma-

lies. I propose a simple time-series risk measure in trading stock market anoma-

lies, CoAnomaly, the time-varying average pairwise correlation among 34 anomalies,

which helps to explain both the time-series and the cross-sectional anomaly return

patterns. Since correlations among underlying assets determine the portfolio vari-

ance, CoAnomaly is an important state variable for arbitrageurs who hold diversified

portfolios of anomalies to boost their performance. Empirically, I show that, first,

CoAnomaly is persistent and forecasts long-run aggregate volatility of the diversified

anomaly portfolio. Second, CoAnomaly positively predicts future average anomaly

returns in the time series. Third, in the cross-section of these 34 anomaly portfolios,

CoAnomaly carries a negative price of risk.

In the second chapter, instead of studying multiple anomalies in a portfolio, I

focus on one specific anomaly, momentum. I find that the momentum spread nega-

tively predicts momentum returns in the long-term, but not in the following month.

I further decompose the momentum spread into the spread of young or old momen-

tum stocks based on how long the stock has been identified as a momentum stock. I

show that the negative predictability is mainly driven by the old momentum spread.

As these old momentum stocks are more likely to be exploited by arbitrageurs, these

findings suggest that momentum is amplified by arbitrage activity and excessive ar-

bitrage destabilizes the asset prices and generates strong reversals.

In the third chapter, I revisit the robust diversification of factor investing and

study the intertemporal consideration of an anomaly investor. Motivated by Camp-

bell et al. (2017), I use vector autoregressions (VAR) and estimate an intertem-

poral CAPM with stochastic volatility for market-neutral investing with the focus

on a portfolio of 34 anomalies. Interestingly, based on my estimation, only the

correlation-induced volatility news carries a significant risk premium, which echos

my findings in the first chapter.
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Chapter 1

CoAnomaly: Correlation Risk in

Stock Market Anomalies

I propose a simple time-series risk measure in trading stock market anomalies,

CoAnomaly, the time-varying average correlation among 34 anomalies, which helps

to explain both the time-series and the cross-sectional anomaly return patterns.

Since correlations among underlying assets determine the portfolio variance, CoAnomaly

is an important state variable for arbitrageurs who hold diversified portfolios of

anomalies to boost their performance. Empirically, I show that, first, CoAnomaly is

persistent and forecasts long-run aggregate volatility of the diversified anomaly port-

folio. Second, CoAnomaly positively predicts future average anomaly returns in the

time series. Third, in the cross-section of these 34 anomaly portfolios, CoAnomaly

carries a negative price of risk. These return patterns suggest that arbitrageurs take

the time-varying correlation into account and their intertemporal hedging demand

plays an important role in setting asset prices.

JEL-Classification : G11, G23.

Keywords : Stock Market Anomalies, Time-Varying Correlation Risk, Hedging

Demand of Sophisticated Investors.
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1.1 Introduction

Stock market anomalies are long-short portfolios exploiting stock characteristics

known to predict returns. Since these anomalies generate returns beyond what

standard notions of risk suggest, they have been the subject of a large body of

literature which tries to understand the origins of these anomalies. More recently,

researchers have started to study multiple anomalies jointly; however, they mainly

focus on either reducing the dimensionality of the anomaly space1, evaluating a new

factor given existing factors2, or comparing the costs/risks of trading each of these

anomalies3.

I propose a novel way to understand anomaly return dynamics through the lens

of sophisticated arbitrageurs who trade a diversified portfolio of anomalies. These

arbitrageurs understand the return-volatility trade-off and recognize that the portfo-

lio volatility is time-varying. If cross-anomaly correlation is the main source of news

about current and future volatility of a diversified portfolio of the anomalies, then

the time-varying cross-anomaly correlation arises as a state variable that predicts

the future returns on a diversified portfolio of anomalies in the time series and as a

risk factor that gets priced in the cross-section.

Based on this idea, I propose a simple measure of correlation risk faced by so-

phisticated arbitrageurs. This measure, which I term CoAnomaly, works both as

a predictor of future average anomaly return and as a risk factor that prices the

cross-section of anomaly portfolios.

To construct CoAnomaly, at each point of time, I calculate the average partial

correlation among anomaly returns using daily data within a time window. Effec-

tively, this measure evaluates how much these anomalies comove with each other

across time. I find that CoAnomaly shows time-series persistence and it is not par-

ticularly correlated with major existing risk measures, nor strongly predicted by

other state variables. More importantly, I find that CoAnomaly is the only variable

that can strongly and persistently predict future aggregate variance of the diversi-

fied anomaly portfolio up to one year. On the other hand, aggregate variance or

1See Fama and French (1996), Hou et al. (2015), Stambaugh and Yuan (2016), Harvey et al.
(2016) and Green et al. (2017) among the others.

2See Harvey et al. (2016), Feng et al. (2017), and Chinco et al. (2019) among the others.
3See Barroso and Santa-Clara (2015), Novy-Marx and Velikov (2016), Moreira and Muir (2017),

and Barroso and Maio (2018) among the others.
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average variance of anomalies is quickly mean-reverting and shows no such long-run

predictability. I do not intend to explain the source of correlations among anomalies

at the moment and simply take the time-varying correlation structure as given and

study the asset pricing implications for anomaly investing.

I first explore the time-series predictability of CoAnomaly. As expected, I find

that the näıve equal-weighted anomaly return (E.A.R.) is higher after high CoAnomaly

periods. I focus on E.A.R. for simplicity and I also show that this predictability ap-

plies to the in-sample mean-variance portfolio, which consists of these 34 anomalies.

The predictive regression shows that the quarterly E.A.R. will be 70 basis points

higher following a one-standard-deviation increase in CoAnomaly. This predictabil-

ity shows up robustly after controlling for other predictors, spans from one month to

one year, and does not suffer from the Stambaugh (1999) bias. This predictability

is robust to long and short legs of anomalies as well as different sets of anomalies.

To ease up the interpretation, I provide time-series sorting evidence. For 30% of the

sample period associated with high levels of CoAnomaly, the E.A.R. yields 1.20%

higher returns over the next 6 months, relative to its performance following the 30%

of the sample period associated with low CoAnomaly. The periods with higher fu-

ture anomaly returns do not mean that they are good states for arbitrageurs, as I

find that the future standard deviation of E.A.R. is higher and its skewness is more

negative after high CoAnomaly periods. Moreover, I find that the predictive power

is stronger in the recent half of my sample period, as the E.A.R. performance differ-

ence between high CoAnomaly periods and low CoAnomaly periods almost doubles

(from 1.20% to 2.36%). This sample period coincides with the period of fast emer-

gence and growth of professional asset managers. Furthermore, the predictability is

even more pronounced when I focus on the periods when quantitative equity hedge

funds suffer a low return (a proxy for high risk aversion), which is consistent with

the risk-return trade-off story from the perspective of these arbitrageurs. I also con-

duct a battery of robustness checks to make sure my results would not be driven by

several possible mechanisms.

In the cross-section, I find that the innovation of CoAnomaly carries a negative

price of risk. The negative sign of risk premium suggests that higher CoAnomaly

periods are hard times for these arbitrageurs as their portfolio variance goes up. I

13



check two sets of testing assets: the anomaly set including the 34 anomaly portfolios,

which are used to calculate the CoAnomaly measure, and a standard set which

includes equity portfolios sorted by size, book-to-market, momentum, and industry,

as well as the cross-section of Treasury bond portfolios sorted by maturity. The

price of risk is significant, and its magnitude is consistent across test portfolios and

specifications. On average, the quarterly risk premium associated with one unit

of the CoAnomaly beta is around -5%. In other words, investors demand lower

expected returns for portfolios that covary positively with CoAnomaly, since these

portfolios effectively provide hedges against the CoAnomaly risk. This finding is

consistent the with the recent event, ‘quant meltdown’ in August 2007, documented

by Khandani and Lo (2007) and Khandani and Lo (2011), in which they argue that

this hard period for quantitative investors is accompanied by high correlation among

their strategies. The fact that the correlation risk also gets priced in a broader set of

portfolios (industry portfolios and bonds) suggests the large presence of these asset

managers in different financial markets. Furthermore, the loadings on CoAnomaly

innovation help explain the cross-sectional return dispersion across these portfolios.

That said, my single factor does not fully explain the cross-section of anomaly returns

as large intercepts are left unexplained. I further construct CoAnomaly beta sorted

portfolios from stock level based on their estimated real-time CoAnomaly betas.

I find large dispersion in adjusted returns that line up well with the post-ranking

CoAnomaly betas.

My paper contributes to the literature in two aspects. First, I show that both the

time-series and cross-sectional return dynamics of stock market anomalies can be

partially explained by taking a portfolio view of these anomalies. This view stems

from the perspective of portfolio managers in quantitative equity hedge funds who

are betting on these anomalies, goes back to the basic trade-off between risk and

return, and studies the time-varying risk of trading these anomalies as diversified

portfolios. By focusing on the correlations among these anomalies that vary across

time, I provide evidence supporting the basic risk-return trade-off relationship in

anomaly asset prices. Moreover, this also sheds light on the understanding of the

volatility-managed portfolios by highlighting the importance of the correlation risk.

Existing literature mainly focuses on the volatility of a specific anomaly alone. In
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contrast, I study these anomalies jointly in a portfolio and show that it is the

comovement among these anomalies that plays a key role in evaluating the risk.

Second, CoAnomaly gives a better understanding of the investing behaviors of

the fast-growing sophisticated institutional investors, as I find that the time-series

predictability is stronger in the recent half of the sample, which coincides the period

with rapid growth in asset management industry4. Moreover, the predictability is

even more pronounced when these arbitrageurs are suffering low returns, presum-

ably inducing a higher risk aversion and making their trade-off incentives stronger.

On the other hand, since the CoAnomaly risk mechanically affects the investment

opportunity of these arbitrageurs, the hedging demand on this risk feeds back into

asset prices and a negative risk premium of CoAnomaly shows up in the cross-

sectional dispersion of average asset returns. My findings suggest that, first, these

arbitrageurs understand that the risk they face is time-varying and know how to pick

certain assets to hedge it; and second, their impacts to the market are substantial

so we can observe these return patterns from asset prices.

1.2 Related Literature

The exploration of stock market anomalies starts from the early testing on CAPM

and the empirical failure of a single market factor witnesses the explosion of iden-

tifying stock market anomalies by academics as well as by practitioners. Finance

researchers find it difficult to reconcile them with standard asset pricing models,

and several streams of approaches have been proposed to understand them: ex-

post factor models, principal component analysis, behavioral stories, intermediary

asset pricing, etc. On the practitioners’ side, it is not just the arbitrageurs strictly

chasing market neutrality, but also investors whose portfolio deviates from the mar-

ket portfolio are loading on certain strategies to some extent. Most recently, the

Exchange-Traded Fund (ETF) industry also started issuing factor-based ‘smart beta’

products, and both long-term investors and retail investors are investing in these

assets, hoping to boost their Sharpe ratio (see Cao et al. (2018)). There has always

been a debate about whether these anomalies represent true risk-adjusted excess

4Schwert (2003) and Chordia et al. (2011) find evidence that arbitrage activity on anomalies
increased following early 1990s.
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returns or whether they are compensation for omitted risk factors. I take no stand

on this issue and simply adopt the consensus interpretation of the market-neutral

quantitative equity investors who believe these anomalies do generate alphas with

respect to the market portfolio. Though concerns have been raised on whether there

are too many anomalies (see Hou et al. (2017)) or whether they can survive trans-

action costs (see Novy-Marx and Velikov (2016)), Martin Utrera et al. (2017) find

that transaction costs increase the number of significant characteristics due to the

canceling-out of transaction costs when combining and rebalancing characteristics.

It has been documented that these anomalies are indeed exploited by sophisti-

cated investors. Hanson and Sunderam (2013) use the short interest to show that

the amount of capital devoted to value and momentum, the two most prominent

strategies, has grown significantly since the late 1980s; McLean and Pontiff (2016)

find that anomaly returns are lower after publication. Because of the sophisticated

nature of these large and professional agents, some researchers argue that they are

aware of the (endogenous) systemic risk and will internalize the impact of their be-

havior. Koijen and Yogo (2015) find that most cross-sectional variation in stock

returns is contributed to retail investors instead of large asset managers. Mean-

while, there are also concerns about their roles and impacts, as Stein (2009) points

out that crowding and leverage can impair market efficiency and argue that capital

regulation may be helpful in dealing with the latter problem. Both theoretical work

and empirical evidence show this destabilizing effect of arbitrageurs, see Vayanos

and Woolley (2013) and Lou and Polk (2013).

When it comes to trading these anomalies, a proper risk measure is necessary to

access the cost and benefit. However, recent literature has documented the failure

in proper pricing of variance risk in finance as well as in macroeconomics. Dew-

Becker et al. (2017) find it was costless on average to hedge news about future

variance at horizons ranging from 1 quarter to 14 years between 1996 and 2014, and

only unexpected, transitory realized variance was significantly priced. Berger et al.

(2017) find that shocks to uncertainty have no significant effect on the economy, even

though shocks to realized stock market volatility are contractionary according to a

wide range of VAR specifications. On the other hand, as assets comove together, the

magnitude of the average correlation clearly affects how much investors can diversify
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and hence the future risk premium. Correlation Risk is studied pervasively. Pollet

and Wilson (2010) show that the average correlation between daily stock returns

predicts subsequent quarterly stock market excess returns since the market risk is

determined by the individual risks and the correlation among them. They start

from a measurement error issue of aggregate risk and show that changes in true

aggregate risk may nevertheless reveal themselves through changes in the correlation

between observable stock returns. However, I take a portfolio view of anomalies

from the arbitrageurs and show that the average correlation is an important state

variable, which acts as both a predictor in the time-series and a priced risk in the

cross-section. Driessen et al. (2009) study the different exposures to correlation

risk between index options and individual stock options and find that correlation

risk exposure explains the cross-section of the index and individual option returns

well. Buraschi et al. (2010) provides a theoretical model in which the degree of

correlation across industries, countries, or asset classes is stochastic. Buraschi et al.

(2013) find that the ability of hedge funds to create market-neutral returns is often

associated with significant exposure to correlation risk, which helps explain the large

abnormal returns found in previous models, and they also estimate a significant

negative market price of correlation risk. Adrian and Brunnermeier (2016) propose

a measure for systemic risk: CoVaR, the value at risk (VaR) of financial institutions

conditional on other institutions being in distress.

However, most research on the correlation risk mainly focuses on the correlation

risk in the aggregate stock market. This paper takes a novel perspective of looking at

the anomaly space from the scope of a portfolio manager chasing market neutrality

and studies the time-series predictability and cross-sectional pricing together. As a

closely related research, Stambaugh et al. (2012) find that investor sentiment posi-

tively predicts anomaly returns and argue that short-sale impediments contribute to

their finding as their effect concentrates on the short legs of anomalies. My result is

different from theirs in the sense that the predictability of CoAnomaly shows up for

both long legs and short legs, which is in line with the basic trade-off between risk

and expected return. Sotes-Paladino (2017) explores the optimal dynamic invest-

ment problem when mispricing assets are correlated, in which he considers a constant

correlation structure. On the other hand, this paper highlights the importance of
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time-variation in the correlation structure.

1.3 CoAnomaly

1.3.1 Data and Anomaly Construction

To construct the stock market anomalies, I use the stock return data from the

Center for Research in Security Prices (CRSP). The accounting data is taken from

Compustat - Capital IQ, and short interest data from Supplemental Short Interest

File of Compustat - Capital IQ. Since I use quarterly accounting information with

valid Report Date of Quarterly Earnings (RDQ) starting from late 1971 to construct

some anomalies, my main sample period starts in 1973 and ends in 2017. As my

later analysis does not depend on a balanced panel, I extend my main sample period

back to 1963 as a robustness check in the appendix (with anomalies which do not

require RDQ information), which generates consistent results.

The hedge fund index data is taken from the Hedge Fund Research website. The

HFRI® Indices are broadly constructed indices designed to capture the breadth of

hedge fund performance trends across all strategies and regions. I use the Equity

Market Neutral Index (HFRIEMNI), which studies the quantitative equity funds

and dates back to the beginning of 1990. Mispricing factors data is taken from

Stambaugh’s website5. TED rate data is downloaded from the website of Federal

Reserve Bank of St. Louis.

I consider a combined set of 34 stock market anomalies6 studied in the litera-

ture. For each anomaly, I compute the time-series of monthly value-weighted (VW)

returns on a long-short self-financed portfolio over the period 1973m1-2017m12. I

use the NYSE breakpoints for the anomaly characteristics to sort all stocks traded

on the NYSE, AMEX, and NASDAQ. To make sure my results are not driven by

micro-cap stocks and other microstructure issues, I exclude stocks with prices below

$5 per share or are in the bottom NYSE size decile. I closely follow Stambaugh

5I thank Robert Stambaugh for providing the daily mispricing factors data.
632 anomalies are following the the data library (click here) for Novy-Marx and Velikov (2016),

though they only use 23 of them in their analysis of their paper. Another 2 anomalies are from
Stambaugh et al. (2012), as 9 out of 11 anomalies they study overlap with Novy-Marx and Velikov
(2016)’s. I thank Thummim Cho for generously sharing the detailed anomaly replication procedure
and the portfolio data with me to make sure the coding errors are minimized.
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et al. (2012), Novy-Marx and Velikov (2016) and Cho (2017) to construct anoma-

lies, and the full set of anomalies is shown in appendix’ Table 1.15. I also normalize

all anomalies to make sure they have positive abnormal returns so that arbitrageurs

would hold a positive position on them.

1.3.2 CoAnomaly Calculation

I first construct value-weighted anomaly portfolios by sorting stocks into deciles

based on their anomaly characteristics available at the end of month t-1. Here,

I follow the standard procedure in the literature by using the NYSE breakpoints

for the sorting and the anomaly portfolio is longing the top decile and shorting

the bottom decile7. I construct both daily and monthly anomaly portfolios, and

I also use the cumulative monthly anomaly returns in a quarter as the quarterly

returns for the anomaly. After obtaining all the anomaly portfolios, I then compute

partial correlations using daily returns for each anomaly portfolio with respect to

the equal-weight of other anomaly portfolios8. CoAnomalyLS is the average partial

correlation for long-short anomaly portfolios. Short-leg CoAnomaly (CoAnomalyS)

is the average partial correlation for the bottom deciles of all anomalies, and long-leg

CoAnomaly (CoAnomalyL) is the average partial correlation for the top deciles of

all anomalies. Lou and Polk (2013) use this procedure to proxy the crowdedness of

momentum arbitrage activity; however, I use this to measure the correlation risk.

CoAnomalyLSt =
1

N

N∑
n=1

partialCorrt(ret
LS
n , retLS−n|MktRf)︸ ︷︷ ︸

Average partial correlation

for anomaly n

with respect to all other anomalies −n

=
1

N

N∑
n=1

ρLSn,−n,

CoAnomalySt =
1

N

N∑
n=1

partialCorrt(ret
S
n, ret

S
−n|MktRf) =

1

N

N∑
n=1

ρSn,−n,

7I adjust the signs of anomaly characteristics so that the outperforming stocks are always on
the top deciles (example: small stocks and value stocks).

8There is concern about nonsynchronous trading as in Frazzini and Pedersen (2014), but the
concern is mostly over the stock level and not on portfolio level, as they will cancel out within
diversified portfolios.
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CoAnomalyLt =
1

N

N∑
n=1

partialCorrt(ret
L
n , ret

L
−n|MktRf) =

1

N

N∑
n=1

ρLn,−n,

where N is the number of total test anomalies, ret
LS(/S/L)
n is the daily return of

the long-short(/short-leg/long-leg) portfolio for anomaly n, and ret
LS(/S/L)
−n is the

equal-weight daily return of long-short(/short-leg/long-leg) portfolios for all test

anomalies apart from anomaly n.9

The correlation is partial in the sense that I control for market exposure when

computing this correlation to purge away any comovement in anomaly returns in-

duced by the market. Two practical facts can justify this consideration. First,

most arbitrageurs (like hedge funds) who are the main traders and exploiters of

these anomalies are chasing market neutrality; and in general, the market betas on

portfolio level are fairly stable and can be predicted and hedged well.

I use the look-back period for three months, which means the CoAnomaly measure

at the end of June is constructed using daily returns in April, May, and June.

However, my main results are robust to other specifications, including the one-

month look-back window (with stronger effects). The CoAnomaly time series can

also be calculated by calculating the summation of the non-diagonal elements in

the correlation matrix for all anomalies, which generates the same results in the

qualitative sense.

1.3.3 Time Variation and Determinants of CoAnomaly

(Insert Table 1.1)

Table 1.1 reports the summary statistics of the CoAnomaly measure. I find that

CoAnomaly for long-short anomaly portfolios is mainly driven by the short leg.

CoAnomaly behaves quite differently for the long legs and the short legs, with a

negative correlation. In terms of magnitude, the short leg CoAnomaly is larger than

long leg CoAnomaly, which could be justified by the following: 1) Apart from size

9I also calculate the average pairwise partial correlation of the anomalies by averaging the non-
diagonal numbers in the estimated N×N correlation matrix. I find this average partial correlation,
slightly defined differently from CoAnomaly, have a strong correlation with the CoAnomaly, more
than 0.97.
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anomaly, most anomalies tend to have large firms on the long leg and small firms

on the short leg, so a larger price impact should be expected on the short leg than

on the long leg, and 2) arbitrageurs have a relatively higher trading presence than

other investors on the short legs and they tend to trade all these assets simulta-

neously. Note that CoAnomaly is not driven by the average correlation between

the constituents in the aggregate market by Pollet and Wilson (2010) as they are

mildly correlated. Later, I also include the average correlation in the market in my

predictive regression and find no effect.

I also check the contemporaneous correlations among different CoAnomaly mea-

sures and other market indices in the second half of my sample since some of them

are only available from the 1990s. I find that CoAnomaly is related to the market

realized variance and the VIX index, which suggests that CoAnomaly is related to

the risk in the market, but the comovement is not entirely matched. This pattern

can be seen in Figure 1.1 as well. The figure also shows an increasing trend in

CoAnomaly, which may be linked to the growth of sophisticated investors in the

last few decades. The market excess returns, TED rate, market liquidity level, and

equity neutral hedge fund index do not have a particularly strong correlation with

the CoAnomaly measure.

I also find that CoAnomaly is highly correlated with the correlation between two

mispricing factors as in Stambaugh and Yuan (2016), who argue that most stock

market anomalies can be explained by these two mispricing factors. Finally, the short

leg CoAnomaly exhibits positive correlation with sentiment index10 from Baker and

Wurgler (2006), which is consistent with Stambaugh et al. (2012) and suggests that

the high sentiment from overoptimistic retail investors may cause excess correlation

on overpriced assets.

Predicting CoAnomaly

CoAnomalyt = a+b×CoAnomalyt−1 +
∑
p

mp×Controlsp,t−1 +t×Trend+et. (1.1)

(Insert Table 1.2)

10Thank Jeffrey Wurgler for sharing the sentiment index data on his website.
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In panel A of Table 1.2, I conduct a predictive analysis of CoAnomaly to find the

potential determinants of the time-varying CoAnomaly. I find that all CoAnomaly

measures are fairly persistent and have a positive trend (except for the long leg

CoAnomaly). I run extra regressions of long-short CoAnomaly on various vari-

ables with a one-quarter lag. The investor sentiment appears to be the only con-

sistently strong predictor of CoAnomaly11. As the standard deviations of other

non-CoAnomaly regressors are normalized to 1, a one-standard-deviation increase

in market sentiment predicts around a 3 percent increase in CoAnomaly in the eco-

nomic magnitude. Apart from sentiment, none of the coefficients for other predictors

shows persistent significance, which includes market excess return, average liquidity,

TED rate, and Equity Market Neutral Index (HFRIEMNI)12.

One final observation is that the trend of CoAnomaly does not go beyond the

linear trend as the F-test for R-squared yields a value of 1.59, which indicates that

the increase in R-squared is not significant on adding more polynomials, as shown by

specification [4] in panel A of Table 1.2. From this point, unless explicitly addressed,

when I talk about CoAnomaly, I refer to the long-short CoAnomaly13.

1.3.4 Risk Measure: Variance or Correlation?

Predicting the Aggregate Anomaly Variance The variance of a diversified

portfolio, which serves as the traditional measure of the risk, is determined by both

the average variance of the constituent assets and the average correlation among

them14. I focus on a näıve portfolio by investing in these anomalies with equal

amounts, and I term the return as Equal-weighted Anomaly Return (E.A.R.), which

is the simple equal-weight mean return of 34 stock market anomalies. DeMiguel

11However, I do not include the investor sentiment in the VAR for later analysis as Jeffery
Wurgler argues in his website: Do not use these series for measuring changes in sentiment (e.g.
sentiment(t)-sentiment(t-1)) due to lag structures, among other considerations, as these are low-
frequency levels indicators.

12From a crowdedness of arbitrage capital perspective, this is not surprising considering that
while high arbitrage capital (lower TED rate, larger higher market, and hedge fund return, lower
volatility or higher liquidity) would induce more capital allocated in these anomalies, it is also
possible that arbitrageurs trade more frequently when they are facing capital constraints. Both of
these mechanisms may increase the comovement among assets. Given these effects are mixed, I do
not overinterpret the signs at the moment.

13Empirical results remain qualitatively the same if I use the short leg CoAnomaly.
14Consider a simple case: a portfolio with N symmetric assets, when N is large: σ2

p = N ×
( 1
N )2σ2 + 2× N(N−1)

2 ( 1
N )( 1

N )ρσσ ≈ ρσ2
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et al. (2007) show that many in-sample optimized techniques fail to beat the näıve

1/N rule out of sample in terms of Sharpe ratio, certainty-equivalent return, or

turnover. Later, I also extend my analysis to the in-sample mean-variance efficient

portfolio for robustness check.

In the first part of panel B of Table 1.2, I report the results of regressing the

realized aggregate variance of the equal-weighted anomaly returns (E.A.R.) on the

contemporaneous CoAnomaly and the average realized variance of single anoma-

lies. The aggregate variance of the Equal-weighted Anomaly Returns (E.A.R.) is

measured as the variance of daily returns within a given quarter. Average realized

variance is equally averaging the realized daily variances for the 34 stock market

anomalies in the same quarter. The results show that both CoAnomaly and the av-

erage variance contribute to the variance of the E.A.R., and these two components

capture almost all of the time-series variation in the E.A.R. aggregate variance (as

the R-Squared reaches 80%).

The remaining parts of panel B of Table 1.2 conduct predictive regression for the

aggregate variance of E.A.R. by using CoAnomaly, average variance, and aggregate

variance of E.A.R with lags up to four quarters. However, for average variance

and aggregate variance, the predictability quickly dies out after 2 quarters as the

R-squared dropped from around 50% for one-quarter lag to below 10% for above

two-quarter lags. On the contrary, CoAnomaly robustly and persistently explains

20% to 10% of the aggregate variance variation, for lags from one to four quarters.

These results (both the coefficients and the R-squared) clearly show that CoAnomaly

is the only component that maintains a strong predictive power across the one-year

period, and they also support the choice of CoAnomaly as a risk measure.

Economic Intuition Pollet and Wilson (2010) presents a stylized model to show

that the average correlation among assets, but not the average variance, is positively

related to the risk premium. They show that the risk premium is given by:

Et[rs,t+1]− rf,t+1 +
ρtσ

2
t

2
=

γ

βt(1− θt)
ρtσ

2
t −

γ

βt(1− θt)
θtσ

2
t , (1.2)

where rs,t+1 is the return on the stock market, rf,t+1 is the risk-free rate, ρt and

σ2
t are the average correlation and the average variance of single stocks, βt is the
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beta of stock market on the aggregate wealth portfolio, θt is the proportion of the

stock market risk component to the total risk for a single stock.

As shown in the equation, the relationship between risk premium and average

variance is not clear; however, the relationship between risk premium and the average

correlation is positive because the stock market is part of the aggregate wealth

portfolio. The reason behind this is that if the changes in the stock market variance

are orthogonal to the risk in aggregate wealth portfolio, then such changes in stock

market variance should be offset by changes in the covariance of the stock market

with the rest of the aggregate wealth portfolio, holding the risk of aggregate wealth

portfolio constant.

From another point of view, if single assets share common components from the

aggregate portfolio, the increase in volatility of this common component will, first,

drive up the volatility of single assets, and second and more importantly, induce

stronger comovement among these single assets. When the aggregate portfolio can-

not be measured perfectly, the volatility of an alternative pseudo-aggregate portfolio

can be a bad proxy for the aggregate risk. However, the correlation effect between

single assets remains robust.

In the market-neutral investment setting, these stock market anomalies constitute

only a subset of the whole investment universe of the sophisticated investors, which

is a perfect scenario that fits Roll (1977)’s critique. As argued in Pollet and Wilson

(2010), if the Roll (1977)’s critique is important, the variance may be weakly cor-

related with the aggregate risk and subsequent excess returns. Following the same

logic, the variance in these anomalies may provide contaminated information about

the risk of their aggregate portfolio.

Why not covariance? Standard portfolio theory states that the risk of a single

asset evaluated with respect to a diversified portfolio is measured by the covariance

between the asset and the portfolio. However, in the case of stock market anomalies,

I argue that CoAnomaly is a better measure than the covariance to proxy the risk:

to access the covariance, a benchmark portfolio is required, which is unrealistic in

the case of sophisticated institutional investors. Unlike the standard macrofinance

models normally assuming that long-term investors hold the aggregate market, the

investment universe of institutional investors, like hedge funds, go way beyond the
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stock market, to fixed-income, derivatives, and even to real estates and antiques.

On the other hand, even if the composition of the portfolio is identified, the exact

weight on each asset (strategy) is still unknown. Meanwhile, leverage is widely used

by these professional institutional investors and they manage their leverage ratio

across time and strategies. This effect also obfuscates the estimation of weights in

different strategies/anomalies. Therefore, in the case of sophisticated arbitrageurs,

a benchmark portfolio like the market portfolio cannot be observed, hence the co-

variance measure lacks a clear definition to measure the risk.

However, if single assets share common components from the aggregate portfolio,

the increase in volatility of this common component will induce stronger comovement

among these single assets. This effect on comovement also justifies my choice of using

the average correlation to calculate the CoAnomaly measure.

1.4 Time-Series Predictability of Anomaly Returns

Suppose an investor invests in a bundle of risky assets. Ceteris paribus, the increase

in the average return correlation among all these assets will make the optimal port-

folio riskier by increasing the variance, and the rational investor will ask for a higher

return on holding these assets as compensation. Given the sophisticated nature of

arbitrageurs, the risk-return trade-off is expected to hold in the anomaly investment

setting.

1.4.1 Predictive Regression

I first conduct the following predictive regression analysis to see whether CoAnomaly

can predict future anomaly returns:

E.A.R.t+1 = a+ b× CoAnomalyt + t× Trend

+
∑
p

mp ×Other.Predictorsp,t (+
∑
j

×βjBenchmark.Factorst+1) + et+1.

(1.3)

(Insert Table 1.3)
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In panel A of Table 1.3, I regress the equal-weighted anomaly Returns (E.A.R.) in

the next quarter on the observables in current quarters using non-overlapping data.

I also include a trend variable in all regressions, which turns out to carry a significant

negative coefficient, and this is consistent with recent findings of the return decay

in these anomalies (see McLean and Pontiff (2016)). The standard deviations of

all predictive regressors are normalized to 1. Column (1) shows that CoAnomaly

is a strong predictor of the E.A.R. and it alone with the trend can explain 8.1

percent of the time-series variation of the E.A.R.. Columns (2) and (3) show that

the predictive powers of the average variance and aggregate variance of anomalies

are negligible, consistent with recent findings of the weak or negative predictability

of variance measures (see Barroso and Maio (2018)). The economic magnitude of

CoAnomaly predictability on the E.A.R. is more than 70 basis points per quarter

given the one standard deviation change in CoAnomaly. Columns (4) and (5) include

both CoAnomaly, the average variance, and the aggregate variance of E.A.R., and

they show that only the average correlation predicts future returns. Next, I control

for the anomaly value spread and the sentiment. Anomaly value spread is the

average value spread for all anomalies, which is the difference in weighted average

log book-to-market ratio between the long legs and short legs. As Cohen et al.

(2003) argue the value spread must predict future returns, profitability and/or the

persistence of valuation levels following the firm-level decomposition by Vuolteenaho

(2002). Stambaugh et al. (2012) find that anomaly returns are higher following high

investor sentiment constructed by Baker and Wurgler (2006) and I find that the

sentiment has a strong predictive power. Nevertheless, the predictive power of my

CoAnomaly survives with statistical significance, albeit with a smaller scale. In the

last specification, the predictability remains strong after controlling other potential

predictors, including TED spread (TED), market excess return, market average

correlation, and E.A.R..

In panel B of Table 1.3, I report the benchmark-factor-adjusted regression results

as a clean-up test. I want to make sure that the time-variation in average anomaly

returns that CoAnomaly predicts is not driven by the benchmark factors as many

papers15 have argued that there are risk factors behind these factors. I can also tease

15See Fama and French (1992), Campbell and Vuolteenaho (2004), Zhang (2005), Lettau and
Wachter (2007), Garleanu et al. (2012) and Campbell et al. (2017) among the others.
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out the part of variation associated without any ‘premium’ like size factor, in which

alpha-seeking arbitrageurs will have less interest. Here I use Carhart (1997) four-

factor model as a benchmark, and my results are robust to different specifications,

including a single market factor, Fama-French three-factor model, and Fama-French

five-factor model. Once the returns are adjusted with contemporaneous benchmark

factors, CoAnomaly shows much stronger predictability. Note that the E.A.R. load-

ings on benchmark factors are consistent with literature: in general, (overpriced)

stocks in the short legs tend to be small stocks with higher market beta, which

results in negative loadings on both market factor and size factor; and anomalies

tend to load on value and momentum as Asness et al. (2013) point out.

In nontabulated results, I also show that my results are robust, albeit with smaller

magnitudes, when including two contemporaneous mispricing factors in Stambaugh

and Yuan (2016). Note that their study is focusing on explaining the cross-sectional

dispersion of anomaly returns by measuring their loadings on the two mispricing

factors; however, my result is focusing on the time-variation of anomaly returns. The

smaller magnitudes after controlling two mispricing factors, together with the fact

that E.A.R. is strongly loading on these two factors, suggest that the time-varying

returns of the two mispricing factors can also be explained, at least partially, by

CoAnomaly.

Anomaly Set Specification To make sure my results are robust to anomaly

specifications, I conduct the same analysis for two different sets of anomalies: 23

anomalies studied in Novy-Marx and Velikov (2016) (NMV) and 11 anomalies stud-

ied in Stambaugh et al. (2012) (SYY) separately. CoAnomaly, E.A.R., and other

anomaly-relevant measures are constructed with only these two sets, respectively.

The results are reported in the appendix, and I find that the predictability of

CoAnomaly is robust. However, I also find that the market sentiment has a rel-

atively stronger predictive power in the original anomaly set studied in Stambaugh

et al. (2012).

Sample Periods I check if my results are robust to 1) extending the main sample

period back to 1965, or 2) excluding the most recent financial crisis in 2008. The

market turmoil in 2008 has a large impact on broad financial markets and asset
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prices. As for the stock market anomalies, there has been some research on the

different behaviors during these periods: Daniel and Moskowitz (2016) show that

momentum strategy lost close to 50 percent following the 2008 turmoil.

Separate Long Legs and Short Legs Moreover, I show that CoAnomaly pre-

dicts future returns on anomalies for both their long legs and short legs, which is

more aligned to the risk-return trade-off story. The results can be found in the

appendix (see Table 1.17). My results are different from Stambaugh et al. (2012), as

they find that their predictability is concentrated on the short legs and argue that

this is consistent with a combination of short-sale impediments and market-wide

sentiment.

Different Horizons The predictive power of CoAnomaly is also robust for shorter

or longer horizons (see Table 1.18 in the appendix). However, the regression result

for 6-month E.A.R. is the strongest in terms of both coefficients and adjusted R-

squared, which is not surprising considering there is more noise in short run, and

the predictability will die out in the long run owing to the time-varying nature of

CoAnomaly. This also helps to partially alleviate the concern of spurious regression

raised by Ferson et al. (2003), since they argue that if the expected returns are per-

sistent, there is a risk of finding a spurious relation between the return and an inde-

pendent, highly autocorrelated lagged variable. Here, I show that the predictability

is strongest for 6 months, and the CoAnomaly measure has an autocorrelation coef-

ficient around 0.5 for 3 months, so in the 6-month window, the persistence level of

CoAnomaly is relatively low, which violates the ‘highly autocorrelated’ condition of

the spurious regression concern.

Mean-Variance Efficient Portfolio I also check the predictability for a mean-

variance efficient (MVE) portfolio consisting of these 34 anomalies, though I do not

focus my analysis on this ex-post efficient portfolio, which neither researchers nor

arbitrageurs know ex-ante. I compute the MVE portfolio weights by maximizing the

in-sample Sharpe ratio with respect to a zero-beta rate equal to 0, based on the in-

sample average returns and covariance matrix. Sophisticated arbitrageurs will hold

this optimal portfolio if anomalies arise from mispricing. I expect the pattern of risk-
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return trade-off to show up for the MVE portfolio. Consistent with my conjecture,

Table 1.19 in the appendix shows that the predictability for the MVE portfolio is

similar to that for the E.A.R..

1.4.2 Sorting in Time-series

(Insert Table 1.4)

To ease up the interpretation, I also provide evidence by sorting all months in

the time series. As shown in Panel A of Table 1.4, all months are sorted into three

groups based on CoAnomaly in month t. All sorting variables are detrended16 and

the time-series sorting uses 30% and 70% as breakpoints.

First, I show that higher past CoAnomaly does predict higher future CoAnomaly.

Note that the persistence in CoAnomaly is a necessary condition for the predictabil-

ity under the risk-return trade-off mechanism. I then check the returns of equal

weighting the long-short returns of all anomalies from the next month (t+1) to half

of a year (t+6). There is a monotonic and persistent pattern across groups, as high

CoAnomaly months are followed by high average returns on anomalies. On aver-

age, the difference in returns between following a high CoAnomaly and following a

low CoAnomaly (Diff 3-1) is 120 basis points in the following 6 months, which is

economically large and statistically significant.

I split my full sample periods, from 1973Q1 to 2017Q4, into two halves: 1) pre-

1994 and from 1973Q1 to 1993Q4, and 2) post-1994 and from 1994Q1 to 2017Q4.

As I turn to the second half of my sample (Panel B1 of Table 1.4), the predictability

is much stronger in both economic and statistical senses, as illustrated graphically

in Figure 1.2. This fact could be partially justified by the explosion of finding stock

market anomalies and the emergence of sophisticated institutional investors since

the early 90s. This split is also robust to different cutting points.

Double-sorting I further check whether this pattern will hold under different

market conditions for anomaly investors. I expect the asset pricing pattern from

the risk-return trade-off will be stronger when the investors are more risk-averse.

16Detrending means that I am not biasing my analysis to the front or tail of my sample periods.
The results are qualitatively the same if I use undetrended time-series.
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Given the fact that hedge funds are the main players in trading these anomalies, I

use the quantitative equity hedge fund returns (later HF Ret.) to proxy the risk-

aversion of these arbitrageurs. Among Hedge Fund Research Indices, I choose the

HFRI Equity Market Neutral Index, HFRIEMNI17, which is the average return of

all market-neutral quantitative equity funds in their database, to proxy the shocks

to these arbitrageurs. Therefore, I first sort all months based on the hedge fund

returns in month t, and then within each group, I sort on the CoAnomaly level. As

shown in Panel B1 of Table 1.4, the two sorting variables, column HF Ret. t, and

column CoAnomaly t do not show any particular relationship, so if I conduct the

double sorting independently, the results remain unchanged qualitatively.

Panel B2 of Table 1.4 shows the results of the double sorting. The predictability is

much stronger and more significant in the distress periods of hedge funds especially

in the short-run. Although the evidence is by no means definitive, it is consistent

with the possible explanation that due to various reasons, including the withdrawal

of capital by investors, hedge fund managers show higher risk aversion after poor

returns so the risk-return trade-off pattern in asset prices is stronger.

The main advantage of using the HFRIEMNI is that it is a direct measure of the

shocks to the arbitrageurs who are mainly trading stock market anomalies, which

is better than using the average returns on all anomalies as a proxy to the shocks

to the arbitrageurs because I cannot assume that arbitrageurs are betting these

anomalies consistently across time. There is a large body of literature documenting

the timing ability of different anomalies (e.g. Cohen et al. (2003) for timing value,

Lou and Polk (2013) and Barroso and Santa-Clara (2015) for timing momentum,

Moreira and Muir (2017) for timing an extensive set of factors based on their realized

volatility). Barroso et al. (2017) directly test the behavior of institutional investors

with 13F institutional holdings data, and find that these investors actually decrease

their loading on momentum before momentum crash, which rejects the idea that

17On their website, they state that ‘Equity Market Neutral strategies employ sophisticated quan-
titative techniques of analyzing price data to ascertain information about future price movement
and relationships between securities, select securities for purchase and sale. These can include
both Factor-based and Statistical Arbitrage/Trading strategies. Factor-based investment
strategies include strategies in which the investment thesis is predicated on the systematic analysis
of common relationships between securities. In many but not all cases, portfolios are constructed
to be neutral to one or multiple variables, such as broader equity markets in dollar or beta terms,
and leverage is frequently employed to enhance the return profile of the positions identified.’
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momentum crashes relate to institutional crowding. However, in results not shown

here, I also did the same test using the equal-weighted return on all anomalies as

a proxy of shocks to arbitrageurs and find similar patterns, but with less statistical

significance.

Control for Benchmark Factors Consistent with predictive regression, the re-

sults are stronger if I control for contemporaneous benchmark factors (a single mar-

ket factor and Carhart (1997) 4-factor model), as shown in Table 1.5. In non-

tabulated results, I find that my results are robust if I use post-1990 as the second

half of my sample, as the hedge fund index starts from 1990.

(Insert Table 1.5)

Evidence from Daily Returns and Higher Moments I report the summary

statistics of the daily raw returns of E.A.R.. The average daily raw returns show

similar patterns on the monthly level. The standard deviation of the E.A.R. is

also high after high CoAnomaly periods. More importantly, I find that the E.A.R.

returns tend to left-skewed more strongly following high CoAnomaly periods. In

the second sample period, the daily raw returns of E.A.R. show higher standard

deviations as well as stronger crash risks.

These empirical patterns clearly show that though the average (first moment) of

E.A.R. returns are higher after high CoAnomaly period, the risks (higher moments)

in trading anomalies are also higher. This pattern echoes the ‘Unwind Hypothe-

sis ’ analyzed in Khandani and Lo (2011), in which they observed large correlation

and crash in returns of long-short equity strategies during the ‘quant meltdown’ in

August 2007.

(Insert Table 1.6)

Other Robustness Checks In the appendix, I explore other drivers that may

affect my results: principal component analysis of these anomalies, small and high

idiosyncratic stocks driving results, too many anomalies and lack of dimension,

different CoAnomaly calculation window, and anomalies sharing same stocks. None

of these have a significant impact on my results.
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1.4.3 Out-of-Sample Tests and Econometric Issues

Here I conduct out-of-sample (OOS) tests and also explore two econometric issues

that might undermine the validity of my results, and I find evidence that the pre-

dictability of CoAnomaly is robust.

Out-of-Sample Tests In the out-of-sample tests, I compare the predictive power

between the historical sample mean and the predictive regressions. For both meth-

ods, the forcast for quarter t only uses information up to quarter t− 1. The out-of-

sample statistics are standard in the literature18 following McCracken (2007), Welch

and Goyal (2008) and Huang (2015).

One predictive regression of quarterly E.A.R. returns on CoAnomaly produces

an out-of-sample R-square of 2.16%. This contrasts with the results of other pre-

dictors for E.A.R. as well as the usual negative OOS R-squares of similar predictive

regressions for the market excess return.

(Insert Table 1.7)

Generated Regressors The standard errors in the above predictive regression re-

quire a caveat because the regressor CoAnomaly is generated from the daily anomaly

returns. To make sure this extra layer of noise does not undermine my main result,

I conduct a double-layer block bootstrap based on Djogbenou et al. (2015) and the

detailed process is described in the appendix. Table 1.8 reports the t-stats with

Newey and West (1987) correction and the t-stats with bootstrap standard errors.

The differences between these two are marginal and my results remain significant

robust.

(Insert Table 1.8)

This is not surprising since effectively, the CoAnomaly measure is calculated quite

precisely with high-frequency data used in the process. In the appendix, I show that

the standard errors in the CoAnomaly measure are relatively small compared to its

own time-variation.

18R2 = 1−MSEA

MSEN
, R2 = 1−(1−R2) T−k−1

T−k−p−1 , ∆RMSE =
√
MSEN−

√
MSEA and MSE−F =

(T − k)MSEN−MSEA

MSEA
, where MSEA and MSEN are the mean square errors of the predictive

regression and the historical sample mean respectively, T is the sample periods, k is the trading
periods, and p is the number of predictors.
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Biased Estimators As Stambaugh (1999) points out: when a rate of return is

regressed on a lagged stochastic regressor, the OLS estimator will be biased if the

innovations of the dependent variables and the innovations of the regressors are

correlated. A simple illustration of the Stambaugh (1999) bias (omitting means):

rt+1 = b× predt + et+1

predt+1 = φ× predt + ut+1.
(1.4)

In small-sample AR(1) regression, the estimate φ̂ tends to be downward biased. If

Cov(et+1, ut+1) < 0, then the coefficient in the predictive regression will be inflated,

as

E(b̂− b) =
Cov(et+1, ut+1)

V ar(ut+1)
E(φ̂− φ).

In my setting, there can be a potential problem since CoAnomaly is proxying the

risk. If the latent risk gets higher, the innovation in the CoAnomaly measure will

increase, and in the meantime, the assets will suffer a contemporaneous bad shock

as the future discount rate increases due to higher risk. This mechanism may lead

to a negative relationship between et+1 and ut+1.

To make sure my results do not suffer from this bias, I estimate a restricted

vector autoregression (VAR(1)) for the E.A.R. and CoAnomaly. I am interested in

the covariance between two shocks as well as the variance of the CoAnomaly shock.

E.A.R.t+1 = a+ b× CoAnomalyt + et+1

CoAnomalyt+1 = c+ d× CoAnomalyt + ut+1.
(1.5)

By estimating a VAR with only E.A.R. and CoAnomaly (both are detrended first

to avoid complication, and CoAnomaly is also normalized that standard deviation

equals to 1), I find that the estimated E.A.R. shocks et+1 and CoAnomaly shocks ut+1

are almost uncorrelated, with the correlation coefficient being equal 0.08. Moreover,

I also follow Baker et al. (2006) and conduct a Monte Carlo simulation under the

null, i.e., there is no predictability (b = 0). In the last column of panel B in

Table 1.9, I show that across several specifications, the probability that the simulated

coefficient, b, is higher than my estimated coefficient is always less than 0.01%. This

suggests that the predictability of my finding is extremely unlikely to be driven by
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the Stambaugh (1999) bias.

(Insert Table 1.9)

1.5 Price of Risk in Cross-Sectional Asset Prices

CoAnomaly positively predicts both higher volatility and higher returns on these

stock market anomalies; in other words, it forecasts changes in the distribution of

future return (investment opportunity). If there are some assets that comove with

CoAnomaly, I would expect sophisticated investors to use them as hedges.

Here I follow the procedure of Fama and MacBeth (1973) and Adrian et al. (2014)

to conduct a standard asset pricing test of whether CoAnomaly is priced in the

market. I use the simple detrended-AR(1) innovation et in the CoAnomaly measure

(the error terms in the specification (1) in Panel A of Table 1.2) as the shock here

for simplicity although my results are robust to other alternative specifications.

CoAnomalyt = a+ t× Trend + b× CoAnomalyt−1 + εt (1.6)

In the first step, based on different pricing models that I check, I regress the

excess returns on the different factors (including the innovations of CoAnomaly εt)

to get their risk exposures or betas:

Re
i,t = ci +

∑
j

βi,jfj + ei,t, t = 1, 2, ..., T for all i.

Then I run a cross-sectional regression of time-series average excess returns,

E[Re
i,t], on risk factor exposures β̂i estimated from the last step:

E[Re
i ] = λ0 +

∑
j

β̂i,jλj + ξi.

By doing this, the risk premia of different factors λj as well as the zero-beta rate

λ0 are calculated. Here, I assume that all assets have constant betas on different

factors.
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1.5.1 Price of Risk in Anomaly Portfolios

I first use the 34 long-short stock market anomalies as test portfolios. As they are

traded by anomaly arbitrageurs, I expect CoAnomaly to be priced among them.

(Insert Table 1.10)

Table 1.10 shows that CoAnomaly carries a significant and negative price of

risk. The negative sign of CoAnomaly risk means that investors are willing to

accept a lower average return if the asset positively comoves with CoAnomaly. In

other words, assets with a positive loading on CoAnomaly will give a lower average

return because these assets tend to do well in high CoAnomaly periods, providing

hedges against the CoAnomaly risk. This is consistent with the empirical fact that

CoAnomaly is a strong and persistent predictor of future aggregate variance for

these anomalies: so the increase in CoAnomaly implies higher aggregate volatility,

hence worse investment opportunity. This result echoes the finding in Driessen et al.

(2009). As both returns and CoAnomaly are measured in percentage, the economic

magnitude is that, given other things equal, one unit increase in the CoAnomaly

beta will lower the quarterly return of the asset by around 5%.

In the last column of Table 1.10, I also show the adjusted R-squared in the

cross-sectional regression, which represents how much the cross-sectional dispersion

of average returns among these anomaly portfolios can be explained by different

loadings on the factors. The single market factor only explains 3%, and once it

is augmented with CoAnomaly, they can explain 11.3% of the return dispersion.

This is a good performance given two facts: first, the test portfolios are 34 stock

market anomalies which are famous for being difficult to price, and second, contem-

poraneous return benchmarks only explain the dispersion with a similar proportion

(7.8% for Fama and French (1996) three-factor model and 13.8% for Carhart (1997)

four-factor model in nontabulated result).

I also control for two intermediary asset pricing factors: leverage of securities

broker-dealers from Adrian et al. (2014) and equity capital ratio of primary dealers

He et al. (2017). Both of these studies find a positive price of risk of the shocks

to financial intermediaries. I find that CoAnomaly maintains significant pricing

power and these two intermediary asset pricing factors do not show a large (though

35



positive) risk premium.

Note that there are large intercepts left for these anomaly portfolios. Conse-

quently, the standard Chi-square test of pricing errors gets rejected overwhelmingly.

However, pricing all assets is not the main purpose of the exercise here. All evi-

dence shown here is to support the fact that the CoAnomaly risk gets priced among

anomalies themselves. Moreover, it also helps explain the cross-sectional return

dispersions partially, as shown in the top two figures in Figure 1.3.

(Insert Figure 1.3)

1.5.2 Price of Risk in a Standard Set of Portfolios

I also use the standard set of test portfolios, which are the commonly studied equity

and government bond portfolios: 25 Fama-French size-value portfolios, 10 momen-

tum portfolios, 5 industry portfolios, and 6 treasury bond portfolios sorted by ma-

turity19. Five industry portfolios are included to make sure that my results are not

driven by the strong factor structure within size, value and momentum portfolios,

as suggested by Lewellen et al. (2010).

(Insert Table 1.11)

The point estimates of risk premia are different across specifications, but they

stay in a stable range and are slightly larger than the estimates in anomalies: On

average, one unit of loading on CoAnomaly generates -8% percent risk premium

per quarter. In nontabulated results, I find that CoAnomaly risk premium gets

subsumed to zero if I include all size, value and momentum factors together, which

is not surprising since most test portfolios are based on the characteristics behind

these factors and hence have a strong factor structure that can be explained by

‘themselves ’20.

19Portfolio returns are downloaded from French’s website. Thank him for providing the data.
20Cochrane (2009) states this point (page 126): ‘Thus, it is probably not a good idea to evaluate

economically interesting models with statistical horse races against models that use portfolio returns
as factors. Economically interesting models, even if true and perfectly measured, will just equal the
performance of their own factor-mimicking portfolios, even in large samples. Add any measurement
error, and the economic model will underperform its own factor-mimicking portfolios. And both
models will always lose in sample against ad hoc factor models that find nearly ex-post efficient
portfolios.’
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In panel B of Table 1.11, I exclude the 6 bond portfolios, and the risk premium of

CoAnomaly remains large and significant. The results also show that market factor

explains little cross-sectional variation of portfolio returns (and also comes with a

wrong sign of risk premium). However, on augmenting the CAPM with CoAnomaly,

I find that close to one-fourth of the total cross-sectional return dispersion can be

explained. I plot these results in the bottom figures in Figure 1.3.

In non-tabulated results, I find that the hedging portfolios for CoAnomaly risks,

i.e. portfolios with high CoAnomaly betas, tend to be large stocks, loser stocks, and

long-term bond portfolios.

These results provide strong evidence supporting that CoAnomaly is priced in the

market, and the most well-known stock market anomalies (size, value, and momen-

tum) can be explained, at least partially, by the different loadings on the CoAnomaly

risk. On the other hand, these results also suggest that arbitrageurs play important

roles in setting asset prices even for the standard assets, given the fact that the

priced CoAnomaly risk is a matter of concern to these arbitrageurs.

1.5.3 CoAnomaly Beta Sorted Portfolios

I use the entire cross-section of CRSP stock returns to construct portfolios based on

real-time CoAnomaly innovation betas. I find the post-ranking CoAnomaly betas is

consistent with estimated and the return dispersion in average returns line up well

with the betas after controlling other benchmark factors.

Constructing CoAnomaly Beta Sorted Portfolios I follow Fama and French

(1993) and Adrian et al. (2014) and form portfolios based on pre-ranking CoAnomaly

betas. The betas are computed by, at the end of every month, regressing past

monthly returns on the monthly CoAnomaly innovation, which follows the same

specification as in Equation 1.6 but on the monthly frequency. I use a 3-year rolling

window and require stocks to have more than 24 monthly returns. Specifically, at

each month, I sort the universe of Amex, NASDAQ, and NYSE stocks from CRSP

into quintiles based on their estimated CoAnomaly betas over the last 3 years (36

months) with NYSE breakpoints. This CoAnomaly factor is constructed in real-

time, so this procedure is tradable for investors. To avoid market microstructure
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issues, I drop stocks smaller than NYSE bottom 10% cutoff and stocks with a share

price under $5. I form value-weighted portfolios based on the CoAnomaly beta group

and also construct a long-short portfolio by taking the return difference between the

top quintile and the bottom quintile.

Betas and Adjusted Returns Panel A of Table 1.12 reports the post-ranking

betas of the quintile portfolios. The betas on different factors are estimated by

running a regression on all the factors. The post-ranking liquidity betas increase

monotonically across quintiles, consistent with the objective of the sorting procedure.

The ‘5-1’ spread, which goes long stocks with high CoAnomaly beta and short stocks

with low CoAnomaly beta, has a CoAnomaly beta of 0.030, with a t-statistic of

1.89. I also find this long-short portfolio tilts towards large stocks, growth stocks,

and winner stocks. Average market capitalization is also reported and the low

CoAnomaly beta stocks are generally smaller than others.

Panel B of Table 1.12 reports the return dispersion among these CoAnomaly beta

sorted portfolios. In general, the spread between the top quintile and the bottom

quintile is negative. This negative return spread shows significance after purging

away the effects of Fama-French five factors and momentum factor, which yields 13

basis points per month. These results are consistent with the negative price of risk

in CoAnomaly that I find earlier, but the lack of strong statistical significance also

suggests that the portfolio construction is still fairly noisy21.

(Insert Table 1.12)

1.6 Drivers of CoAnomaly

Up to this point, I am treating CoAnomaly as an exogenous risk in the sense that

I do not take any stand on what drives the time-variation of CoAnomaly. It is

worth taking a look at the potential driver of the correlations among anomalies.

Why do assets comove with each other in the first place? From the perspective

21Adrian et al. (2014) argue that: It is well known that sorting on characteristics is less noisy
than sorting on covariances, making factors formed on covariance sorts less equipped to capture the
underlying discount factor variation. In other words, even if past covariances are perfectly mea-
sured, they may not measure future conditional covariances well, and in particular characteristics
often give a better proxy.
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of the return decomposition identity, assets will comove due to the comovement in

their cash flow news, in their discount-rate news, or the interaction effects. As the

time-variation of CoAnomaly is large in the short-term (quarterly autocorrelation

coefficient around 0.5), it is unlikely the cash-flow component will be the main driver.

Hence, I consider the channel of discount rate commonality across anomalies. As

trading different assets together may induce comovement, it is natural to look at the

trading behaviors from both retail investors and institutional investors. In Panel A

of Table 1.2, I have already presented evidence that investor sentiment is the only

strong predictor of CoAnomaly on the aggregate level: CoAnomaly will increase

around 3% after a standard deviation increase in sentiment. This suggests that

retail investors contribute to the time-variation of CoAnomaly. Here, I will explore

further on anomaly level and see if I can find evidence that links CoAnomaly to

arbitrage activities of institutional investors.

1.6.1 Arbitraging Capital

Are the arbitrageurs driving the correlations among these anomalies? My results

suggest that the answer should be yes but not entirely, as I find mixed evidence for

this question: following McLean and Pontiff (2016), I find that partial correlations

with publicly-known strategies do increase after the publication of relevant research

papers; using short interests as a proxy to the arbitrage capital allocated to different

anomalies, I do not find that this proxy predicts the future change in the partial

correlations. Here, I delve into the anomaly level and create a panel with returns,

short interests, and partial correlations with other strategies for each anomaly.

Partial Correlation Change around Publication

(Insert Table 1.13)

Part.Corr.mpi,t = b1 × Post-Publication Dummy (+b2 × Trend) + ai + ei,t. (1.7)

I use the publication year as a structural change and find that the partial corre-

lation for each anomaly with then-public strategies increases after the publication of
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relevant academic research. Here, I only include anomalies with publication year no

earlier than 1990 (27 anomalies), to make sure that I have enough existing anoma-

lies to calculate the partial correlation. I conduct a regression approach to illustrate

this point as shown in Panel A of Table 1.13. On average, the partial correlation

is 13.2 percent higher (6.3 percent if controlling the trend) after the publication of

academic papers, and this result echoes the findings in McLean and Pontiff (2016),

where they find that once a predictor is published, its returns have a stronger beta

with respect to other post-publication predictor portfolios.

Figure 1.4 shows graphically that, on average, the partial correlation increases

around 10 percent on average across 27 anomalies, in a 10-year window around the

publication date. Another interesting pattern worth noting is that the increasing

trend in partial correlation emerges two years before the publication year, which

coincides with the length of the circulating-submitting-revising period of academic

publication.

(Insert Figure 1.4)

Short Interest to Proxy Arbitrage Capital To proxy the amount of arbitrage

capital level, I use two specifications for the short interests: the plain average level

on the short leg for each anomaly; and the coefficient on the dummy of the short

leg in a regression following Hanson and Sunderam (2013). As argued by Hanson

and Sunderam (2013), short interest is an excellent setting to empirically study the

arbitrage capital because: first, short-sellers are mainly alpha-seeking sophisticated

investors due to the complexity and the associated costs; second, the institutional

holdings data on the long legs is contaminated by passive indexing. I run predic-

tive panel regressions by regressing the partial correlations at on the lag of partial

correlations, the anomaly return, and (the change in) the short interest of each

anomaly:

Part.Corr.mpi,t = b1×Part.Corr.mpi,t−1+b2×Reti,t−1+b3×(∆)Short.Interesti,t−1+ai+dt+ei,t.

(1.8)

My results, as shown in Panel B of Table 1.13, if any, do not find any predictive
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power from the more arbitrage capital to the higher the partial correlation under

both specifications. If I acknowledge the short interest as a valid proxy for ar-

bitrage capital, there should be other more important drivers of the time-varying

correlations.

These two results together, suggest the following: the discovery of these anomalies

do attract arbitrageurs to profit from them, consequently increasing the level of

partial correlations among those anomalies; however, this tends to be a level shock

on the correlations, since I do not find the anomaly-level short interests (as a proxy

to the arbitrage capital) predicts the time-variation of the partial correlations.

1.6.2 Financial Intermediary and Endogenous Risk

Shock.CoAnomalyt = b1×Intermediary-Levelt+b2×∆Intermediary-Levelt+Controlst (+Trend) +et.

(1.9)

(Insert Table 1.14)

Finally, I connect CoAnomaly to the intermediary asset pricing literature, which

has been attracting a lot of attention recently. Both Adrian et al. (2014) and He

et al. (2017) find that the shocks to financial intermediaries’ balance sheet can have

strong asset pricing power. However, their results are somehow contradictory about

the sign of the price of risk: Adrian et al. (2014) use leverage of securities broker-

dealers (from the Federal Reserve Flow of Funds data) and He et al. (2017) use equity

capital ratio of primary dealers (the holding companies of trading counterparties to

the Federal Reserve Bank of New York), which is the reciprocal of the leverage.

Nevertheless, both of them find positive risk premia for the shocks. Cho (2017)

directly models that the intermediary-originated funding shocks to arbitrageurs will

induce excess comovement (beyond fundamentals) in anomaly returns and hence

generate endogenous risk22. This research directly links the CoAnomaly measure to

the time-series variation of the intermediary balance sheet.

22Indeed, to infer the endogenous risk partially induced by the trading of sophisticated investors,
ideally, researchers would like to observe their trading behaviors directly. However, the trading data
and holding data of sophisticated arbitrageurs are both notoriously difficult to obtain in practice.
Given the size of the institutional investors, their trading behaviors will pose a substantial price
impact on any assets, hence generating comovements and price impacts across assets. This also
motivates my study in the previous sections.
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Table 1.14 reports the regression results of CoAnomaly news23 on these financial

intermediary time series. I find that CoAnomaly shock has a negative loading on

both leverage shock and the capital ratio shock, which is consistent with the op-

posite signs in risk premia between CoAnomaly (negative) and the leverage shock

(positive as in Adrian et al. (2014)) / the capital ratio shock (positive as in He et al.

(2017)). This result is worth noting because these two intermediary measures are

negatively correlated by construction because they are reciprocals of each other by

construction24, and the CoAnomaly shock has a consistent sign on both of them.

However, I do not find any relationship with the term structure noise from Hu et al.

(2013), which measures the illiquidity in the arbitrage of the treasuries across ma-

turities. I also check if CoAnomaly shocks are correlated with real economy risk

variables, but I find no strong relationships with financial uncertainty and macro

uncertainty from Jurado et al. (2015) and cay variable from Lettau and Ludvigson

(2001).

The evidence suggests that the CoAnomaly measure is partially linked to the

intermediary asset pricing. It is also a support for Cho (2017)’s endogenous risk

story that the aggregate shocks to the financial intermediaries will affect the funding

liquidity conditions of arbitrageurs, and consequently, induce excess comovement in

anomaly assets that these arbitrageurs are betting on.

1.7 Conclusion

Given the empirical fact that the variance of anomalies is quickly mean-reverting

and does not predict future anomaly returns, I focus on the correlations among these

anomalies. I propose a time-series risk measure CoAnomaly based on averaging the

daily return correlations among 34 stock market anomalies to proxy the correlation

risk faced by arbitrageurs, who are generally regarded as the main investors of these

anomalies.

I find that CoAnomaly, (1) is an important component and a strong predictor of

aggregate variance of the diversified anomaly portfolio, (2) positively predicts future

23CoAnomaly news is estimated from the intertemporal CAPM VAR, and it is the same time-
series of the CoAnomaly-driven variance news since I assume the average variance does not change.

24They are not entirely negatively correlated as the two papers use different datasets and defi-
nitions about financial intermediaries. In my sample, the correlation coefficient is 0.09
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average anomaly returns, and (3) carries a negative price of risk in the cross-section,

which indicates that the loss of investment diversification outweighs the benefit of

higher future anomaly returns. I also find that return patterns are consistent with

the idea that arbitrageurs take the CoAnomaly risk into account. These results

together highlight the importance of the comovement among anomaly assets. These

results show that the anomaly return dynamics can be rationalized in a portfolio

view from the perspective of anomaly investors.

The fact that CoAnomaly is robustly priced across different assets has a strong

asset pricing implication. The impact of professional asset managers is substantial

since the risk they care about is incorporated into the prices of many assets both

in the time series as well as the cross-section. There are policy implications for the

CoAnomaly measure as well: regulators can use it to evaluate the likelihood that

the stock market arbitrageurs destabilize the market if there is a market-wide shock

to the correlation structure. Based on this measure, future research can explore the

mechanisms and rationales behind the behaviors of the arbitrageurs with substantial

impacts, which may, in turn, lead to a better understanding of financial markets.
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1.8 Appendix

1.8.1 34 Stock Market Anomalies and Robustness of Pre-

dictability

(Insert Table 1.15)

The full list of 34 stock market anomalies is reported in Table 1.15. The average

monthly raw return of the equal-weighted anomaly return (E.A.R.) is 0.55%, with

a standard deviation of 1.31%. This gives an annual Sharpe ratio 1.5.25

Too Many Anomalies, Duplicated Anomalies, and Sample back to 1963

There is some concern that some anomalies have high correlations by construction,

as some composite anomalies incorporate information from other anomalies and

some other anomalies are quite similar to each other, like the net issuance annual

and net issuance monthly, PEAD with CAR3 (cumulative abnormal return) and

PEAD with SUE (standardized unexpected earnings). However, I argue that this

will not undermine my results since what I am exploiting is the time-variation of

the correlations among anomalies. The time-variation will not be sabotaged by the

unconditional high correlations among a few anomalies (as long as the predictability

is not driven by these highly-correlated anomalies). To make sure this is the case, I

also report results with fewer anomalies. As shown in Table 1.16, my main result of

predictability is robust to two different anomaly sets: 23 anomalies studied in Novy-

Marx and Velikov (2016) (NMV) and 11 anomalies studied in Stambaugh et al.

(2012) (SYY) separately.

I also check a longer sample period, which dates back to 1963. So between 1963

and 1972, I calculate CoAnomaly, E.A.R., aggregate variance and average variance

measure based on 27 anomalies which do not require valid Report Date of Quarterly

Earnings (RDQ) (see Table 1.15 for 7 excluded anomalies). Later, I merge the early

period data (1965-1972) with the original sample period data (1973-2017) and run

the predictive regression together. To avoid the possible complication in levels since

I am using different sets of anomalies, I also include a dummy for the pre-1973

quarters. The predictability shows up robustly.

25Assume there is no serial dependence, 0.55%×12
1.31%×

√
12

= 1.4544
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(Insert Table 1.16)

Separating Long Legs and Short Legs I conduct the same predictive regression

separating the long legs and short legs across 34 anomalies and report the results

in Table 1.17. Since the long-short portfolio is the long leg minus the short leg for

each anomaly, the coefficients for specifications (1), (5) and (7) in the Panel B of

Table 1.3 are the difference between the coefficients for long legs and short legs in

Table 1.17. The predictability is robust for both legs. Please also note that the

market beta for short legs is higher than long legs.

(Insert Table 1.17)

Different Horizons Table 1.18 reports predictive regression estimates of the

equal-weighted anomaly returns (E.A.R.) for return intervals of one, six and twelve

months using overlapping data. I find consistent results about the positive pre-

dictability of the CoAnomaly measure across different time horizons.

(Insert Table 1.18)

Mean-Variance Efficient Portfolio Since the trading size/capacity of different

anomalies has no clear definition like market cap for different stocks in the stock

market and is difficult to measure precisely, I remain agnostic about the relative

composition of the ’optimal’ portfolio in this anomaly-investing universe26. So my

main analysis focus on the most näıve way to aggregate these anomalies - simple

equally averaging them. This nonparametric approach should provide conservative

results. However, it is worth exploring other specifications of aggregating these

anomalies.

Table 1.19 reports the predictive regression results for the mean-variance efficient

(MVE) portfolio. The predictability is stronger for the raw returns compared with

E.A.R., which is not surprising considering the nature of the mean-variance efficient

26Recently there has been some literature studying this topic: Novy-Marx and Velikov (2016)
find strategies based on size, value, and profitability have the greatest capacities to support new
capital.
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portfolio. It is the optimal portfolio given the sample covariance structure, which

shares the information of CoAnomaly. MVE portfolio also shows no strong loadings

on the market and size factors, which is intuitive as the optimization procedure will

automatically choose not to load on the factors with a negligible risk premium. Note

that I do not adjust the weight to calculate the average variance, aggregate variance

and correlation (CoAnomaly) based on the MVE portfolio.

(Insert Table 1.19)

1.8.2 Estimating CoAnomaly: Estimation Errors, Calcula-

tion, and Other Proxy

Estimation Errors

(Insert Figure 1.5)

As mentioned before, the standard errors in the predictive regression require a

caveat because they do not take into account the estimation uncertainty in CoAnomaly.

Most of the previous studies on high-frequency asset correlations do not correct the

standard error issue from the estimation of correlations.

Following Djogbenou et al. (2015), I conduct a double-layer block bootstrap: I

first resample blocks of quarters from predictive regression, and I choose 4 quarters

as a block; and then conditioning on each resampled block, I resample daily anomaly

returns in the last quarter for each quarter in that block, and use these resampled

daily anomaly returns to calculate a new CoAnomaly measure; and then use all

quarters from the resampled blocks with resampled CoAnomaly to calculate the

predictive coefficient.

Table 1.8 has shown that the t-stats with bootstrap standard errors is only

marginally smaller than t-stats with Newey and West (1987) correction. The differ-

ences between these two are marginal and my results stay significant robustly.

I also conduct a bootstrap procedure to calculate the standard errors for the

CoAnomaly time series. I resample daily cross-sections of anomaly returns within

a quarter, which keeps the return structure across anomalies but also effectively
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assumes that there is time-series dependence across trading days. The standard

errors for each quarter are based on resampling 10000 times.

As shown in Figure 1.5, I draw the original CoAnomaly time series together with

its band of 90 percent confidence interval, and also the time series of the standard

errors as well. The estimation errors (around 0.02) are small in relative magnitude

compared with the time variation of CoAnomaly (with a standard deviation around

0.08), which suggests that the estimation is quite precise. This is because the esti-

mation uses much more observations from high-frequency daily data. Effectively I

am using more than 2000 data points (34 anomalies times 63 trading days in a quar-

ter) to estimate one metric, which is CoAnomaly. These relatively small estimation

errors suggest less serious problems for later inferences.

Principle Component I also calculate the first principal component in the 34

anomalies and find the variance of the first principal component does not contribute

to my results. As the principal component calculation requires the full sample,

which may be contaminated with some high volatility period, the no-effect result is

not unexpected. This check follows Connor and Korajczyk (1986) and Connor and

Korajczyk (1988), where they argue the first principal component for all stocks is a

common risk factor27.

Small and High iVol Stocks Considering the fact that the short leg of anoma-

lies is the main driver of the time-variation in CoAnomaly, and another fact that the

stocks in the short leg are small and volatile for most anomalies, a natural concern

is that the comovement among these small and volatile stocks may drive the results.

To rule out this mechanism, I conduct the following placebo test: I generate pseudo

anomalies through picking up similar stocks with the same size and iVol character-

istic scores for each anomaly. Then calculate a pseudo-CoAnomaly from these 34

pseudo anomalies. I find no effect of time-series predictability and cross-sectional

pricing.

Too Many Anomalies and Lack of Dimension One concern about CoAnomaly

is that among all these anomalies, some of them are highly correlated by construc-

27To some extent, if the volatility of the underlying single factor is higher, the correlations among
these anomalies will be higher assuming that the loadings on the single factor do not change.
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tion, for example, investment anomaly will mechanically be highly correlated with

asset growth anomaly and net issuance anomaly. In the meantime, different strate-

gies will have different size of trading capital in it. Following these two points,

simple equal weighting different anomalies may overweight some anomalies and can-

not fully exploit all information from the correlation structure, hence containing a

certain level of noise.

I fully acknowledge this concern and conduct a simple robustness test, which

produces results consistent with my findings. Instead of sorting months based on

CoAnomaly, I sort all months by the correlation between two mispricing factors as

in Stambaugh and Yuan (2016). In their study, they group 11 anomalies, which

have been studied in Stambaugh et al. (2012) and Stambaugh et al. (2015), into two

sets based on either cross-sectional correlations of stocks’ rankings on the anomaly

characteristics or time-series correlations of anomalies’ long-short return spreads.

Both methods yield the same clusters of anomalies in their work. I believe this mea-

sure will not suffer the problem of incorrectly-overweighting some set of anomalies

due to mechanical high correlations (low dimensionality). As reported in Panel A

of Table 1.20, there are two pieces of evidence supporting my results. First, the

CoAnomaly measure in next period is also increasing across groups sorted by the

correlation of two mispricing factors, which means that I am indeed catching up

some component in the correlation among all these stock market strategies. Second,

the pattern of future anomaly returns is consistent in both economic magnitude and

statistical significance.

I also repeat the above procedure with the Fama and French (2015)’s five-factor

model, Carhart (1997)’s four-factor model and Hou et al. (2015)’s q-factor model.

My results are robust to these specifications. Moreover, in non-tabulated results, I

also conduct Monte-Carlo simulations to randomly pick anomalies from the original

34 anomalies and then calculate the CoAnomaly within the newly picked 34 anoma-

lies (with replacement). For 9, 647 out of 10, 000 simulations, my results remain

qualitatively similar.

CoAnomaly Calculation Window As reported in Panel B of Table 1.20, the

results remain qualitatively unchanged if I use the CoAnomaly measure calculated

within one previous month. My main goal is proposing a new measure. In practice,
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money managers are facing different beta constraints and concentration limits, and

they also have different assets in hand. So they can certainly choose their optimal

anomaly / strategy set, weights, frequency, and sample window to calculate the

correlation risk measure tailored for and based on their portfolio composition and

other concerns.

(Insert Table 1.20)

Anomalies Sharing Same Stocks CoAnomaly will increase mechanically at

times when anomalies are sharing more stocks that are ‘mispriced ’. In the extreme

case, if all anomalies are longing the same ‘underpriced ’ stocks and shorting the

same ‘overpriced ’ stocks, CoAnomaly will be 1.

I propose a measure which I term the weighted anomaly score (WAS), which

captures this effect. For each stock at each point of time (end of a month), I first

calculate the short anomaly score (how many strategies/anomalies are shorting it),

then divide it with the total number of anomalies (34 in my case) to normalize

the score to one. I calculate the weighted average anomaly score for each anomaly

and then take the simple mean across all anomalies. This procedure is repeated

in each month, so a time series of WAS is generated. The same procedure can be

implemented in the long leg as well.

(Insert Table 1.21)

The results in Table 1.21 show that the composition mechanism is indeed an

important driver of CoAnomaly and in time-series evidence I also find the WAS

predicts the E.A.R.; however, in the cross-sectional pricing tests, I do not find a

significant price of risk.

This finding is not surprising. Suppose there is a single asset which is strongly

overpriced in the current period, it will be picked up by the short legs of strategies

using price information. This effectively mechanically increases both the WAS and

the CoAnomaly measure. In the next period(s), the price of the asset will go back to

the rational value, which will generate predictability for both WAS and CoAnomaly.

However, from arbitrageurs’ point of view, a single deeply-mispriced asset will not

be systemically important in terms of their fully diversified portfolio, so this WAS
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change is unlikely to induce a price of risk in the aggregate cross-section. Note

that, this composition mechanism, as one driver of the time-varying CoAnomaly,

does not undermine the trade-off story of arbitrageurs. Because these mispriced

assets are mispriced in equilibrium, the fact that their mispricing was ‘corrected ’

in the next period but not in this period suggests that there are some limits which

prevent arbitrageurs exploiting the mispricing fully, which is the main question I

am exploring in this paper. One limit can be the lack of diversification, effectively

captured by the CoAnomaly measure.
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List of Figures

This figure plots the time-series of the long-short CoAnomaly measure based on 34 stock market
anomalies. The blue line is the CoAnomaly measure with a time trend in grey, and the red

dashed line is the CBOE VIX measure.

Figure 1.1: Time-Series of CoAnomaly
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This figure reports the cumulative return (with 95% confidence intervals in dashed line) of
E.A.R. for one, three, and six months after different CoAnomaly periods, for the second half of
my sample spanning 1994 to 2017. It illustrates graphically the results in Panel B1 in Table 1.4.

Figure 1.2: Cumulative Equal-weighted Anomaly Returns after different CoAnomaly
periods
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Table 1.2: Determinants of CoAnomaly and Aggregate Variance

CoAnomalyt = a+ b× CoAnomalyt−1 +
∑
p

mp × Controlsp,t−1 + t× Trend + et.

Aggr.VarEAR,t = a+ b1 × CoAnomalyt + b2 ×Avg.Vart + b3 × CoAnomalyt ×Avg.Vart + ut

Panel A reports the predictive regression results of regressing CoAnomaly measures on the lag of
the same CoAnomaly measure and other state variables in the last quarter (standard deviation
normalized to 1). The coefficient on Trend is multiplied by 1000 and the coefficients on other non-
CoAnomaly regressors are multiplied by 100 for readability. Panel B reports the regression results
for different specifications for the aggregate variance of equal-weighted anomaly return (E.R.A.).
The sample period is from 1973 to 2017, 180 quarters. T-stats, shown in parentheses, are computed
with Newey and West (1987) correction for 4 lags.

Panel A: Determinent of CoAnomaly

Dep. Var. CoAnomaly LS CoAnomaly S CoAnomaly L CoAnomaly LS

[1] [2] [3] [4] [5] [6] [7]

CoAnomaly t-1 0.52 0.49 0.56 0.51 0.41 0.55 0.42
(6.02) (6.81) (8.85) (5.73) (5.50) (6.46) (5.06)

Sentiment t-1 3.12 2.67
(4.13) (3.36)

VIX t-1 2.10 1.83
(3.08) (1.78)

Trend T 0.09 0.13 -0.01 -0.05 0.37 0.27 0.37
(2.39) (3.83) (-0.42) (-0.39) (3.60) (2.96) (3.78)

Trend T-squared 0.00
(0.94)

Other Predictors N N N N N N Y
Adj. R-squared 35.1% 36.6% 34.2% 36.4% 51.8% 51.5% 52.2%

Panel B: Dependent Variable: Aggregate Variance of Equal-weighted Anomaly Returns (E.A.R.) estimated at t

(1) (2) (3) (4)
CoAnomaly t 0.741 0.123

(2.72) (3.84)
Average Var. t 0.171 0.164

(8.17) (8.11)
CoAnomaly*(Avg.Var.) t 0.643

(12.63)

Adj. R-squared 21.0% 78.4% 81.3% 94.3%

CoAnomaly t-1 0.749
(2.45)

CoAnomaly t-2 0.720
(2.37)

CoAnomaly t-3 0.591
(2.25)

CoAnomaly t-4 0.398
(2.01)

Adj. R-squared 20.9% 19.2% 12.7% 7.5%

Avg.Var t-1 0.124
(4.53)

Avg.Var t-2 0.075
(3.14)

Avg.Var t-3 0.040
(2.41)

Avg.Var t-4 0.022
(1.66)

Adj. R-squared 41.4% 14.9% 3.8% 0.7%

Aggr.Var t-1 0.787
(6.94)

Aggr.Var t-2 0.503
(6.89)

Aggr.Var t-3 0.275
(2.43)

Aggr.Var t-4 0.139
(1.73)

Adj. R-squared 61.7% 24.9% 7.1% 1.4%

54



Table 1.3: Predictive Regression at Quarterly Level (E.A.R.)

E.A.R.t+1 = a+b×CoAnomalyt+
∑
p

mp×Other.Predictorsp,t+t×Trend (+
∑
j

βj×Benchmark.Factorst+1)+et+1.

The dependent variable is the equal-weighted anomaly returns (E.A.R.) for the next quarter t+1. All
independent variables are measured in the quarter t. CoAnomaly is the average partial correlation
among 34 stock market anomalies (long-short). Average realized variance is equally averaging the
realized daily variances for the 34 stock market anomalies. Aggregate variance of the E.A.R. is
measured as the realized variance of daily returns. Other predictors include TED spread (TED),
market excess return, market average correlation, and E.A.R.. The standard deviations of all
regressors are also normalized to 1 and returns are measured in percentage. T-stats, shown in
parentheses, are computed with Newey and West (1987) correction for 4 lags.

Panel A: Dependent Variable Quarterly E.A.R. at t+1

(1) (2) (3) (4) (5) (6) (7)
CoAnomaly t 0.71 0.71 0.78 0.51 0.80

(2.59) (2.58) (2.69) (1.97) (2.85)
Average Var. t 0.04 0.03 0.39 0.02 0.35

(0.18) (0.11) (0.75) (0.03) (0.69)
Aggregate Var. t 0.04 -0.37 -0.51 -0.82

(0.18) (-0.79) (-1.19) (-1.87)
Anomaly Value Spread t 0.29 0.48

(1.13) (1.89)
Sentiment t 1.52 1.80

(3.81) (4.02)

Other Predictors N N N N N N Y
Trend T (negative) Y Y Y Y Y Y Y
Adj. R square 8.1% -1.8% -1.8% 7.3% 7.2% 16.4% 27.8%
N 179 179 179 179 179 179 118

Panel B: Dependent Variable Quarterly E.A.R. at t+1 with Benchmark Factor Adjustment

(1) (2) (3) (4) (5) (6) (7)
CoAnomaly t 0.78 0.75 0.80 0.67 0.74

(4.29) (4.14) (4.12) (3.50) (3.50)
Average Var. t 0.34 0.28 0.48 0.50 0.55

(2.30) (2.07) (1.55) (1.65) (1.57)
Aggregate Var. t 0.34 -0.22 -0.37 -0.41

(2.39) (-0.71) (-1.21) (-1.20)
Anomaly Value Spread t 0.04 0.03

(0.21) (0.18)
Sentiment t 0.78 0.69

(2.72) (1.98)

MktRf t+1 -0.17 -0.14 -0.14 -0.15 -0.15 -0.14 -0.15
(-7.40) (-5.52) (-5.72) (-6.33) (-6.32) (-6.21) (-6.08)

SMB t+1 -0.07 -0.10 -0.10 -0.09 -0.09 -0.09 -0.09
(-2.63) (-3.14) (-3.18) (-3.15) (-3.05) (-3.13) (-3.13)

HML t+1 0.20 0.18 0.18 0.20 0.20 0.17 0.17
(6.73) (5.92) (5.84) (6.90) (6.92) (5.67) (5.33)

UMD t+1 0.18 0.20 0.20 0.20 0.19 0.18 0.18
(8.76) (8.54) (8.56) (9.09) (8.83) (8.26) (7.88)

Other Predictors N N N N N N Y
Trend T (negative) Y Y Y Y Y Y Y
Adj. R square 74.9% 68.7% 69.1% 74.8% 74.6% 76.5% 77.4%
N 179 179 179 179 179 170 118
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Table 1.4: Monthly Sorting with Raw Returns

This table reports the mean of different measures after sorting all months into different groups based
on A) single-sorted by the CoAnomaly measure in the last quarter or B) double-sorted by returns
of quantitative equity hedge funds (HFRIEMNI) in the last quarter and then by the CoAnomaly
measure in last quarter. Both measures are detrended to make sure my results are not driven by
more recent periods. Then, I report the cumulative E.A.R. for the next 1, 3 and 6 months. T-stats,
calculated with Newey and West (1987) correction for 4 lags, are shown in parentheses.

Panel A: Sort all months based on CoAnomaly (Full sample)

CoAnomaly Group No. Months CoAnomaly t CoAnomaly t+1 E.A.R. t+1 E.A.R. t+3 E.A.R. t+6

1 162 . 0.10 0.11 0.45% 1.38% 2.91%
(14.45) (15.11) (4.77) (7.57) (10.67)

2 216 . 0.15 0.15 0.54% 1.69% 3.44%
(26.14) (25.38) (7.31) (12.09) (16.53)

3 162 . 0.22 0.20 0.73% 2.04% 4.11%
(29.98) (26.89) (7.08) (11.23) (13.64)

Diff 3-1 0.12 0.09 0.28% 0.66% 1.20%
(11.69) (8.37) (2.01) (2.57) (2.95)

Panel B1: Sort all months based on CoAnomaly (Second Half sample)

CoAnomaly Group No. Months HF Ret. t CoAnomaly t CoAnomaly t+1 E.A.R. t+1 E.A.R. t+3 E.A.R. t+6

1 79 5.2% 0.12 0.13 0.09% 0.57% 1.47%
(30.89) (11.15) (11.56) (0.61) (2.11) (3.53)

2 105 4.7% 0.17 0.17 0.40% 1.15% 2.09%
(30.13) (17.56) (16.85) (3.11) (4.66) (6.24)

3 80 5.1% 0.24 0.23 0.70% 1.79% 3.83%
(36.32) (19.32) (18.90) (4.07) (5.76) (7.11)

Diff 3-1 -0.04% 0.11 0.10 0.61% 1.23% 2.36%
(-0.19) (7.00) (6.25) (2.66) (2.97) (3.45)

Panel B2: First sort all months based on HF Ret., and then sort on CoAnomaly (Second Half sample)

HF Ret. Group CoAnomaly Group No. Months HF Ret. t CoAnomaly t CoAnomaly t+1 E.A.R. t+1 E.A.R. t+3 E.A.R. t+6

1

1 23 3.1% 0.15 0.18 -0.38% -0.63% -0.04%
2 32 3.1% 0.15 0.16 0.19% 1.11% 0.94%
3 24 3.6% 0.25 0.25 1.23% 2.23% 3.45%

Diff 3-1 1.61% 2.86% 3.50%
(3.08) (2.50) (2.15)

2

1 31 5.1% 0.12 0.12 0.52% 0.69% 1.56%
2 42 5.2% 0.18 0.16 0.24% 0.80% 1.94%
3 32 5.2% 0.26 0.25 0.70% 1.74% 4.07%

Diff 3-1 0.18% 1.05% 2.51%
(0.53) (2.07) (2.92)

3

1 24 6.5% 0.09 0.09 0.24% 1.44% 3.20%
2 32 6.5% 0.15 0.15 0.30% 1.37% 3.03%
3 24 6.4% 0.22 0.21 0.56% 1.92% 4.17%

Diff 3-1 0.32% 0.49% 0.97%
(0.88) (0.89) (0.85)
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Table 1.5: Monthly Sorting with Benchmark-Adjusted Returns

This table reports the benchmark-adjusted returns after sorting all months into different groups
based on A) single-sorted by the CoAnomaly measure, or B) double-sorted by returns of quantitative
equity hedge funds, and then by the CoAnomaly measure. Both measures are detrended to make
sure my results are not driven by more recent periods. All returns are adjusted for either the single
market factor or Carhart (1997) four factors. T-stats, calculated with Newey and West (1987)
correction for 4 lags, are shown in parentheses.

Panel A: Sort all months based on CoAnomaly (Full sample)

Market-Adjusted Carhart-4-Adjusted

CoAnomaly Group E.A.R. t+1 E.A.R. t+3 E.A.R. t+6 E.A.R. t+1 E.A.R. t+3 E.A.R. t+6

1 0.48% 1.49% 3.03% 0.38% 1.20% 2.67%
(5.08) (7.84) (10.57) (4.05) (6.70) (9.79)

2 0.57% 1.78% 3.67% 0.58% 1.78% 3.42%
(7.48) (12.79) (17.32) (7.22) (12.15) (16.24)

3 0.75% 2.13% 4.27% 0.75% 2.13% 4.42%
(6.81) (11.28) (14.16) (7.65) (11.81) (14.49)

Diff 3-1 0.27% 0.64% 1.24% 0.37% 0.93% 1.75%
(1.87) (2.42) (2.96) (2.74) (3.68) (4.28)

Panel B1: Sort all months based on CoAnomaly (Second Half sample)

Market-Adjusted Carhart-4-Adjusted

CoAnomaly Group E.A.R. t+1 E.A.R. t+3 E.A.R. t+6 E.A.R. t+1 E.A.R. t+3 E.A.R. t+6

1 0.18% 0.81% 1.96% 0.08% 0.58% 1.47%
(1.55) (3.63) (5.68) (0.55) (2.12) (3.47)

2 0.51% 1.41% 2.58% 0.46% 1.29% 2.40%
(5.32) (8.04) (10.57) (3.50) (5.08) (6.53)

3 0.65% 1.76% 3.69% 0.71% 1.87% 4.00%
(5.00) (7.65) (9.47) (3.78) (5.81) (7.32)

Diff 3-1 0.47% 0.95% 1.73% 0.63% 1.28% 2.53%
(2.73) (2.95) (3.32) (2.63) (3.03) (3.64)

Panel B2: First sort all months based on HF Ret., and then sort on CoAnomaly (Second Half sample)

Market-Adjusted Carhart-4-Adjusted

HF Ret. Group CoAnomaly Group E.A.R. t+1 E.A.R. t+3 E.A.R. t+6 E.A.R. t+1 E.A.R. t+3 E.A.R. t+6

1

1 -0.18% 0.09% 1.11% -0.41% -0.69% -0.14%
2 0.56% 1.68% 2.38% 0.20% 1.06% 0.99%
3 0.81% 1.85% 3.42% 1.13% 2.09% 3.27%

Diff 3-1 0.99% 1.75% 2.31% 1.55% 2.78% 3.41%
(3.01) (2.60) (2.40) (3.00) (2.48) (2.19)

2

1 0.51% 0.74% 1.56% 0.42% 0.57% 1.62%
2 0.34% 1.15% 2.46% 0.34% 1.09% 2.47%
3 0.64% 1.65% 3.69% 0.82% 1.94% 4.34%

Diff 3-1 0.13% 0.91% 2.13% 0.40% 1.37% 2.72%
(0.44) (2.18) (2.98) (1.12) (2.60) (3.00)

3

1 0.30% 1.47% 2.93% 0.34% 1.64% 3.09%
2 0.57% 1.56% 3.63% 0.39% 1.61% 3.54%
3 0.49% 1.92% 4.03% 0.50% 1.96% 4.37%

Diff 3-1 0.19% 0.46% 1.10% 0.16% 0.32% 1.27%
(0.64) (1.00) (1.23) (0.39) (0.51) (1.04)
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Table 1.6: Monthly Sorting with Daily Raw Returns and Higher Moments

This table reports the statistics of daily raw E.A.R. returns after sorting all months into different
groups based on the CoAnomaly measure. CoAnomaly measure is detrended to make sure my
results are not driven by more recent periods. I first calculated the statistics within each tracking
period (1 month or 3 months after sorting) for each month and take the simple average for each
statistic across months within the same CoAnomaly group.

Panel A: Sort all months based on CoAnomaly (Full sample)

Daily raw E.A.R. returns after next 1 month Daily raw E.A.R. returns after next 3 months

CoAnomaly Group No. Months Average St.D. Skewness Average St.D. Skewness

1 162 0.016% 0.160% -0.044 0.016% 0.165% -0.025
2 216 0.026% 0.151% -0.073 0.025% 0.158% -0.002
3 162 0.028% 0.216% -0.101 0.029% 0.218% -0.128

Panel B: Sort all months based on CoAnomaly (Second Half sample)

Daily raw E.A.R. returns after next 1 month Daily raw E.A.R. returns after next 3 months

CoAnomaly Group No. Months Average St.D. Skewness Average St.D. Skewness

1 79 0.005% 0.178% -0.071 0.009% 0.183% -0.062
2 105 0.017% 0.177% -0.079 0.015% 0.186% -0.098
3 80 0.030% 0.276% -0.151 0.028% 0.277% -0.149

Table 1.7: Out-of-Sample Predictability

This table reports the results of the out-of-sample tests. The out-of-sample adjusted R2 is reported
for each single predictors of E.A.R., with significance level calculated from MSE-F one-sided tests.
All predictors and E.A.R. are detrended first to avoid complication. CoAnomaly is the average
partial correlation among 34 stock market anomalies (long-short). The E.A.R. volatility is the
aggregate variance of the E.A.R., measured as the realized variance of daily returns. Sentiment
is the investor sentiment and anomaly value spread is the average book-to-market ratio difference
between anomaly long legs and short legs. Numbers are reported in percentage.

OOS R2 ∆RMSE

CoAnomaly 2.16** 0.28
E.A.R. Volatility -1.21 -0.87

Sentiment 0.68* 0.07
Anomaly Value Spread 0.13 0.03
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Table 1.8: Predictive Regression with Bootstrap T-stats

E.A.R.t+1 = a+ b× CoAnomalyt + t× Trend

+
∑
p

mp ×Other.Predictorsp,t (+
∑
j

βj ×Benchmark.Factorst+1) + et+1.

The dependent variable is the Equal-weighted Anomaly Returns (E.A.R.) for the next quarter t+1.
All independent variables are measured in the quarter t. CoAnomaly is the average partial correla-
tion among the whole long-short portfolio of 34 stock market anomalies. Average realized variance
is equally averaging the realized daily variances for the 34 stock market anomalies. Aggregate vari-
ance of the Equal-weighted Anomaly Returns (E.A.R.) is measured as the variance of daily returns.
E.A.R. is Equal-weighted Anomaly Returns and Anomaly Value Spread is the average value spread
for all anomalies. The standard deviations of all regressors are also normalized to 1 and returns are
measured in percentage. Results in the left panel do not adjust contemporaneous benchmark returns
and results in the tight panel are adjusted for Carhart-4 factors. T-stats, shown in parentheses, are
computed with: Newey and West (1987) correction for 4 lags in the first row; double-layer block
bootstrap standard errors in the second row.

Dependent Variable: Quarterly E.A.R. at t+1

Raw Return Benchmark-Adjusted Return

(1) (2) (3) (4) (5) (6)
CoAnomaly t 0.71 0.78 0.80 0.75 0.72 0.63
t-NW (2.59) (2.69) (2.85) (4.09) (3.82) (3.10)
t-bootstrap (2.11) (2.16) (2.14) (3.52) (3.09) (2.46)

Average Var. t 0.39 0.35 0.49 0.55
t-NW (0.75) (0.69) (1.58) (1.51)
t-bootstrap (0.54) (0.48) (1.09) (0.91)

Aggregate Var. t -0.37 -0.82 -0.15 -0.32
t-NW (-0.79) (-1.87) (-0.48) (-0.92)
t-bootstrap (-0.53) (-1.56) (-0.38) (-0.56)

Anomaly Value Spread t 0.48 0.00
t-NW (1.89) (-0.01)
t-bootstrap (1.82) (-0.00)

Sentiment t 1.80 0.69
t-NW (4.02) (2.04)
t-bootstrap (3.00) (1.89)

Carhart-4 Factors t+1 N N N Y Y Y
Trend Y Y Y Y Y Y
Controls N N Y N N Y
Adj. R square 8.1% 7.2% 27.8% 74.9% 74.6% 77.4%
N 179 179 118 179 179 118
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Table 1.9: Simulation Results for Biased Estimators

E.A.R.t+1 = a+ b× CoAnomalyt + et+1

CoAnomalyt+1 = c+ d× CoAnomalyt + ut+1

Panel A of the table reports the above VAR(1) estimates of the above system, together with the
standard deviations and correlations of the estimated shocks. Panel B of the table reports the Monte
Carlo simulation results based on different specifications, all conditioning on the null that there is
no predictability b = 0. Auto Correlation in CoAnomaly and Shock Correlation are the parameters
used for the Monte Carlo simulation. For each specification, the Monte Carlo simulation is based
on 10000 draws, and within each draw, a time-series with equal length to the original sample (180
quarters) is randomly generated with the original estimated variance-covariance matrix. Summary
statistics for the simulated coefficients are reported in the last three columns: the mean, standard
deviation, and the probability that the simulated coefficient is larger than the original estimation
(based on the normal distribution). T-stats, shown in parentheses, are computed with Newey and
West (1987) correction for 4 lags.

Panel A: VAR(1) with E.A.R. and CoAnomaly

VAR Estimates Standard Deviation of Shocks

a 1.50 b 0.71 e 2.34 u 0.79
(6.93) (2.84)

c 0.04 d 0.52 Correlation of Shocks

(0.47) (7.36) Corr(e,u)= 0.080

Panel B: Bias Simulated Result: Given No Predictability (b=0)

Simulated Predictability Coefficient: b

Auto Correlation in CoAnomaly d Shock Correlation Corr(e, u) Mean StD Prob(Sim>Est)

Specification Estimated 0.52 0.08 -0.004 0.176 0.0024%

Specification 1 0.52 0.00 0.002 0.180 0.0040%

Specification 2 0.52 -0.99 0.034 0.178 0.0074%

Specification 3 0.8 -0.99 0.051 0.135 0.0000%

Specification 4 0.95 -0.99 0.060 0.087 0.0000%
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Table 1.10: Pricing Test of CoAnomaly Risk - Anomaly Assets

E[Re
i ] = λ0 +

∑
j

β̂i,jλj + ξi.

This table reports the pricing results with 34 anomaly portfolios. In each row, I estimate the risk
premia λj for each factor in each the pricing model by regressing the anomaly returns on estimated

betas β̂j from time-series regression. For CoAnomaly, I use its innovation from a detrended AR(1).
Broker Dealer shock follows Adrian et al. (2014) and uses leverage of securities broker-dealers.
Primary dealer shock follows He et al. (2017) and uses the equity capital ratio of primary dealers.
The estimated risk premia along with Fama and MacBeth (1973) t-stats and Shanken (1992) t-
stats are reported. Cross-sectional R2 statistics are also reported for each pricing model to show
how much they can explain the average return dispersion of the test portfolios. Both returns and
CoAnomaly are measured in percentage.

Pricing Models Intercept MktRf CoAnomaly Broker Dealer Primary Dealer Adj. R-squared

CAPM 1.48 0.94 3.0%
t-FM (8.50) (1.41)
t-Shanken (6.42) (1.05)

CoAnomaly 1.52 -5.99 9.3%
t-FM (8.53) (-2.99)
t-Shanken (6.49) (-2.30)

Broker Dealer Leverage Shock 1.52 11.80 1.1%
t-FM (8.53) (0.61)
t-Shanken (6.49) (0.44)

Primary Dealer Capital Ratio Shock 1.46 15.80 3.3%
t-FM (8.64) (1.43)
t-Shanken (6.58) (1.14)

CoAnomaly+CAPM 1.58 0.72 -5.07 11.3%
t-FM (8.43) (1.07) (-2.46)
t-Shanken (6.14) (0.73) (-1.97)

CoAnomaly+Leverage 1.49 -5.25 2.51 9.9%
t-FM (7.67) (-2.75) (0.13)
t-Shanken (5.89) (-2.23) (0.07)

CoAnomaly+Capital Ratio Shock 1.52 -4.50 11.44 11.7%
t-FM (8.78) (-2.42) (1.05)
t-Shanken (7.49) (-1.99) (0.84)
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Table 1.11: Pricing Test of CoAnomaly Risk - Benchmark Assets

E[Re
i ] = λ0 +

∑
j

β̂i,jλj + ξi.

Panel A of this table reports the pricing results with 25 size and book-to-market portfolios, 10
momentum portfolios, 5 industry portfolios, and 6 treasury bond portfolios sorted by maturity. All
of these test portfolios are downloaded from French Data Library. In each row, I estimate the risk
premia λj of each factor in each the pricing model specification by regressing the portfolio excess

returns on estimated betas β̂j from time-series regression. The estimated risk premia along with
Fama and MacBeth (1973) t-stats and Shanken (1992) t-stats are reported. Cross-sectional R2

statistics are also reported for each pricing model to show how much they can explain the average
return dispersion of the test portfolios. Both returns and CoAnomaly are measured in percentage.
In panel B, I exclude the 6 bond portfolios.

Pricing Models Intercept MktRf CoAnomaly Adj. R-squared

Panel A: Equity Portfolios and Bond Portfolios

CAPM 1.10 1.13 23.9%
t-FM (3.92) (1.57)
t-Shanken (2.96) (1.25)

CoAnomaly 1.83 -10.45 30.1%
t-FM (3.75) (-2.28)
t-Shanken (2.69) (-1.97)

CAPM + CoAnomaly 1.54 0.41 -7.83 33.4%
t-FM (5.10) (0.57) (-2.99)
t-Shanken (3.54) (0.40) (-2.37)

Panel B: Equity Portfolios Only

CAPM 3.31 -0.90 3.9%
t-FM (3.82) (-0.84)
t-Shanken (2.42) (-0.68)

CoAnomaly 2.14 -8.19 24.1%
t-FM (3.43) (-2.38)
t-Shanken (2.49) (-2.02)

CAPM + CoAnomaly 3.92 -1.86 -9.51 26.4%
t-FM (4.48) (-1.74) (-3.47)
t-Shanken (3.14) (-1.33) (-2.84)
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Table 1.12: Value-Weighted Portfolios Sorted on Predicted CoAnomaly Betas

At each month-end between 1965 and 2017, eligible stocks are sorted into 5 portfolios according to
pre-ranking CoAnomaly betas. The betas are constructed by regressing the excess stock returns
on CoAnomaly innovations. The betas are estimated by regressing the value-weighted portfolio
excess returns on the CoAnomaly innovation, Fama-French five factors, momentum factor, liquidity
factor, and betting-against-beta factor. The first row of Panel A reports the time-series averages of
the quintile portfolios’ market capitalization (in million dollars). Rest of Panel A reports betas on
different factors. Panel B reports the raw and adjusted excess returns based on different benchmark
factors. The t-statistics are in parentheses.

Portfolios Sorted on CoAnomaly Beta

1 (low) 2 3 4 5 (high) 5-1

Panel A: Portfolio Betas

Market Cap (millions) 2046.7 3010.1 3210.5 3451.3 3195.1

Beta CoAnomaly (post) -0.018 -0.012 -0.001 0.008 0.013 0.030
(-1.74) (-1.06) (-0.05) (0.42) (1.17) (1.89)

Beta Market 1.05 0.96 0.97 1.00 1.08 0.03
(51.98) (65.32) (79.37) (80.56) (56.39) (0.94)

Beta SMB 0.15 -0.06 -0.02 -0.08 0.05 -0.10
(4.54) (-2.37) (-0.99) (-3.90) (1.49) (-1.91)

Beta HML 0.13 0.02 0.04 -0.03 -0.05 -0.18
(3.10) (0.84) (1.74) (-1.06) (-1.42) (-2.73)

Beta RMW -0.06 0.02 0.10 0.17 0.01 0.07
(-1.49) (0.70) (4.04) (6.81) (0.34) (1.11)

Beta CMA -0.10 0.03 0.08 0.05 0.03 0.13
(-2.19) (0.96) (2.80) (1.89) (0.77) (1.79)

Beta MOM -0.05 -0.06 -0.03 -0.04 0.02 0.07
(-2.84) (-3.63) (-2.39) (-2.96) (1.52) (2.78)

Beta LIQ -0.01 0.02 0.02 0.00 0.01 0.02
(-0.54) (1.14) (1.26) (0.26) (0.38) (0.55)

Panel B: Monthly Alphas (in percentage)

Raw Returns 0.65 0.60 0.62 0.62 0.62 -0.03
(2.92) (3.08) (3.29) (3.20) (3.10) (-0.14)

Alpha CAPM 0.08 -0.04 0.11 0.05 0.03 -0.05
(1.07) (-0.44) (1.47) (0.72) (0.52) (-0.87)

Alpha FF5 -0.02 -0.04 -0.07 -0.09 -0.09 -0.07
(-0.24) (-0.72) (-1.39) (-1.69) (-1.58) (-1.31)

Alpha FF5 + MOM 0.02 -0.01 -0.06 -0.07 -0.11 -0.13
(0.23) (-0.18) (-1.17) (-1.45) (-1.81) (-2.04)

Alpha FF5 + MOM + Liquidity 0.03 -0.05 -0.08 -0.10 -0.12 -0.15
(0.32) (-0.71) (-1.58) (-2.02) (-2.15) (-2.11)
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Table 1.13: Panel Regression: Partial Correlation of each Anomaly

Part.Corr.mp
i,t = b1 × Post-Publication Dummy (+b2 × Trend) + ai + ei,t.

Part.Corr.mp
i,t = b1 × Part.Corr.mp

i,t−1 + b2 × Reti,t−1 + b3 × (∆)Short.Interesti,t−1 + ai + dt + ei,t.

Panel A of this table reports the regression estimates by regressing the partial correlations on the
dummies of the post-publication periods (and a trend variable, with coefficient multiplied by 1000
for readability). For each anomaly, its post-publication dummy is equal to 1 if the quarter is in
or after the publication year, and zero otherwise. Panel B of this table reports the regression
estimates by regressing the partial correlation at time t on the lag of itself, the anomaly return and
(the change in) the short interest (raw level or regression dummy) of each anomaly at time t-1.
Panel A uses the sample for 27 anomalies (published on or after 1990) from 1990 to 2017. Panel B
uses all anomalies and short interest data from mid-1988 following Hanson and Sunderam (2013).
T-stats in the parentheses are calculated based on standard errors clustered in time and anomalies.

Panel A: Dependent Variable - Partial Correlation for each Anomaly t

(a) (b)
Post-Publication dummy 0.132 0.063

(3.83) (2.72)

Trend T 0.034
(2.31)

Anomaly Fixed Effect Yes Yes
No. Observations 3024 3024
Adj. R-squared 4.9% 8.3%

Panel B: Dependent Variable - Partial Correlation for each Anomaly t

Short Interest Level Short Interest Dummy

Part.Corr t-1 0.54 0.53 0.54 0.53
(7.97) (7.97) (8.02) (7.96)

Ret t-1 0.16 0.15 0.16 0.15
(0.72) (0.68) (0.71) (0.68)

Short.Int t-1 0.04 0.26
(1.79) (0.52)

Change.Short.Int t-1 -0.02 -0.24
(-0.72) (-0.40)

Time Fixed Effect Yes Yes Yes Yes
Anomaly Fixed Effect Yes Yes Yes Yes
No. Observations 3944 3944 3944 3944
Adj. R-squared 53.1% 51.4% 52.0% 51.0%
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Table 1.14: Regressing the CoAnomaly Shocks and CoAnomaly Levels on Financial
Intermediary Balance Sheet Levels and Shocks

News.CoAnomalyt = b1×Intermediary-Levelt+b2×∆Intermediary-Levelt+Controlst (+Trend) +et.

This table reports the contemporaneous quarterly regression estimates. CoAnomaly news is esti-
mated using the third volatility specification in the ICAPM VAR. Financial Intermediary Leverage
and Leverage shock are constructed as in Adrian et al. (2014) and Cho (2017). Capital Ratios and
Shocks follow He et al. (2017). Term structure noise is from Hu et al. (2013), financial uncertainty
and macro uncertainty from Jurado et al. (2015), cay variable from Lettau and Ludvigson (2001). I
also control for seasonality. The sample period covers from 1973 to 2016 for financial intermediary
information, and from 1987 to 2016 for other measures owing to data availability. T-stats, shown
in parentheses, are computed with Newey and West (1987) correction for 4 lags.

Dependent Variable: CoAnomaly News

[1] [2] [3] [4] [5] [6]
Leverage 0.001 0.001

(1.69) (0.96)

Leverage Shock -0.012 -0.011
(-2.11) (-1.82)

Capital Ratio -0.060 -0.034
(-0.24) (-0.14)

Cap.Ratio Shock -0.105 -0.109
(-2.14) (-2.25)

Term Structure Noise 0.000 0.004
(0.07) (0.75)

Financial Uncertainty 0.022 0.013
(0.39) (0.23)

Macro Uncertainty 0.022 -0.057
(0.21) (-0.43)

Cay -0.195 -0.059
(-0.59) (-0.17)

Seasonality N Y N Y N Y
N 172 172 172 172 124 124
Adj. R-Squared 3.2% 5.1% 2.7% 7.2% -2.7% 1.6%
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Table 1.16: Predictive Regression at Quarterly Level (E.A.R.) Adjusted with Bench-
mark

E.A.R.t+1 = a+b×CoAnomalyt+
∑
p

mp×Other.Predictorsp,t+t×Trend+
∑
j

βj×Benchmark.Factorst+1+et+1.

The dependent variable is the Equal-weighted Anomaly Returns (E.A.R.) for the next quarter
t+ 1 for 23 anomalies in Novy-Marx and Velikov (2016) (NMV), 11 anomalies in Stambaugh et al.
(2012) (SYY), or a time-series combination of 27 anomalies (1963-1972) and 34 anomalies (post-
1973) separately. CoAnomaly, average variance, and aggregate variance are also measured within
23 anomalies in Novy-Marx and Velikov (2016), 11 anomalies in Stambaugh et al. (2012), or a time-
series combination, respectively. The standard deviations of all regressors are also normalized to 1
and returns are measured in percentage. The coefficients on the trend variable and the pre-1973
dummy are multiplied by 1000 for readability. The investor sentiment data starts from mid-1965 and
ends in 2014. T-stats, shown in parentheses, are computed with Newey and West (1987) correction
for 4 lags.

Dependent Variable: Quarterly E.A.R. at t+1

23 Anomalies from NMV 11 Anomalies from SYY Sample back to 1963

(1) (6) (7) (1) (6) (7) (1) (6*) (7*)
CoAnomaly t 0.65 0.54 0.57 0.66 0.37 0.38 0.73 0.57 0.59

(4.18) (3.09) (3.11) (2.61) (1.33) (1.35) (3.92) (3.01) (2.91)

Average Var. t 0.37 0.35 0.14 0.41 0.51 0.62
(1.32) (1.07) (0.25) (0.66) (1.68) (1.70)

Aggregate Var. t -0.30 -0.24 -0.06 -0.38 -0.31 -0.37
(-1.00) (-0.76) (-0.12) (-0.71) (-0.98) (-1.06)

Anomaly Value Spread t 0.11 0.08 -0.15 -0.15 -0.03 -0.05
(0.65) (0.45) (-0.47) (-0.44) (-0.17) (-0.25)

Sentiment t 0.66 0.41 1.25 1.55 0.94 0.88
(2.41) (1.26) (2.27) (2.54) (2.33) (1.79)

Market Avg. Corr.t -0.01 0.01 0.00
(-0.87) (0.20) (-0.21)

E.A.R. t -0.02 -0.49 -0.07
(-0.14) (-1.65) (-0.41)

MktRf t -0.23 -0.17 -0.11
(-1.22) (-0.50) (-0.55)

TED Rate t -0.16 -0.51
(-0.77) (-1.27)

Trend T -0.02 -0.02 -0.02 0.01 0.05 0.04 -0.04 -0.02 -0.03
(-1.52) (-1.10) (-0.81) (0.46) (1.29) (0.75) (-2.65) (-1.29) (-1.47)

Pre-1973 Dummy -0.06 -0.05 -0.06
(-1.89) (-1.81) (-1.83)

MktRf t+1 -0.10 -0.08 -0.07 -0.16 -0.14 -0.14 -0.12 -0.10 -0.10
(-4.61) (-3.51) (-3.30) (-3.96) (-3.29) (-3.11) (-5.81) (-4.90) (-4.75)

SMB t+1 0.00 -0.01 -0.02 -0.19 -0.19 -0.20 -0.09 -0.11 -0.11
(0.02) (-0.48) (-0.64) (-4.22) (-4.15) (-4.24) (-3.20) (-3.78) (-3.80)

HML t+1 0.22 0.20 0.21 0.04 0.01 0.00 0.18 0.16 0.16
(8.34) (7.14) (6.87) (0.88) (0.24) (0.07) (6.08) (5.25) (4.90)

UMD t+1 0.23 0.22 0.23 0.31 0.31 0.30 0.20 0.20 0.20
(11.76) (11.00) (10.75) (9.38) (8.89) (8.06) (9.47) (9.33) (8.89)

Adj. R square 73.0% 75.4% 76.4% 69.8% 72.1% 73.9% 68.1% 70.8% 72.0%
N 179 170 118 179 170 118 217 200 200
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Table 1.17: Predictive Regression: Long leg and Short Leg

E.A.R.legt+1 = a+b×CoAnomalyt+
∑
p

mp×Other.Predictorsp,t+t×Trend+
∑
j

βj×Benchmark.Factorst+1+et+1.

The dependent variable is the long and short legs of Equal-weighted Anomaly Returns (E.A.R.) for
the next quarter t+ 1. All independent variables are measured in the quarter t. CoAnomaly is the
average partial correlation for the whole long-short portfolio of 34 stock market anomalies. Average
realized variance is equally averaging the realized daily variances for the 34 stock market anomalies.
The standard deviations of all regressors are also normalized to 1 and returns are measured in
percentage. The coefficient on the trend variable is multiplied by 1000 for readability. T-stats,
shown in parentheses, are computed with Newey and West (1987) correction for 4 lags.

Dependent Variable: Quarterly E.A.R. at t+1

Long leg Short leg

(L1) (L5) (L7) (S1) (S5) (S7)
CoAnomaly t 0.24 0.29 0.36 -0.54 -0.51 -0.39

(2.23) (2.51) (2.87) (-3.63) (-3.18) (-2.18)

Average Var. t 0.33 0.38 -0.15 -0.17
(1.78) (1.86) (-0.60) (-0.57)

Aggregate Var. t -0.27 -0.38 -0.05 0.03
(-1.47) (-1.91) (-0.19) (0.10)

Anomaly Value Spread t 0.24 0.21
(2.24) (1.35)

Sentiment t 0.18 -0.51
(0.88) (-1.74)

Market Avg. Corr.t -0.01 0.00
(-1.19) (-0.17)

E.A.R. t -0.16 0.01
(-1.48) (0.07)

MktRf t 0.05 0.24
(0.41) (1.37)

TED Rate t -0.02 0.12
(-0.13) (0.64)

Trend T -0.03 -0.03 -0.03 0.01 0.02 0.01
(-2.66) (-2.83) (-2.14) (1.06) (1.20) (0.36)

MktRf t+1 0.97 0.97 0.97 1.13 1.12 1.12
(72.62) (68.92) (69.66) (61.20) (57.12) (55.81)

SMB t+1 0.11 0.11 0.11 0.19 0.20 0.20
(6.84) (6.40) (6.27) (8.12) (8.29) (8.10)

HML t+1 0.10 0.10 0.08 -0.10 -0.10 -0.10
(5.79) (6.00) (4.08) (-4.06) (-4.07) (-3.52)

UMD t+1 0.04 0.04 0.03 -0.14 -0.15 -0.15
(3.13) (3.04) (2.21) (-8.44) (-8.51) (-7.86)

Adj. R square 98.0% 98.2% 98.3% 98.0% 98.1% 98.2%
N 179 170 118 179 170 118
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Table 1.18: Predictive Regression: Different Horizons

The dependent variable is the Equal-weighted Anomaly Returns (E.A.R.) for the next 1 month or
6 months. All independent variables are measured in the quarter t, so there is overlapping data.
CoAnomaly is the average partial correlation for the whole long-short portfolio of 34 stock market
anomalies. Anomaly Value Spread is the average value spread for all anomalies. The coefficients
are normalized to the quarterly specification as in Table 1.3, so they can be compared with each
other. The standard deviations of all regressors are also normalized to 1 and returns are measured
in percentage. The coefficient on the trend variable is multiplied by 1000 for readability. T-stats,
shown in parentheses, are computed with Newey and West (1987) correction for 4 lags.

Dependent Variable: Cumulative Equal-weighted Anomaly Returns (E.A.R.) in the future

E.A.R. in next 1 month E.A.R. in next 6 months E.A.R. in next 12 months

(1) (2) (3) (4) (5) (6) (4) (5) (6)
CoAnomaly t 0.44 0.46 0.37 0.43 0.44 0.33 0.32 0.26 0.15

(2.81) (2.76) (2.23) (3.06) (3.04) (2.33) (2.92) (2.33) (1.49)

Average Var. t 0.91 0.74 0.56 0.57 0.28 0.30
(1.20) (0.98) (1.87) (2.01) (1.17) (1.37)

Aggregate Var. t -0.32 -0.42 -0.21 -0.37 0.07 -0.10
(-0.46) (-0.61) (-0.70) (-1.33) (0.31) (-0.49)

Anomaly Value Spread t 0.17 -0.03 0.21
(0.97) (-0.48) (2.01)

Sentiment t 0.44 0.51 0.35
(2.41) (3.14) (2.85)

Trend T -0.03 -0.03 -0.03 -0.04 -0.04 -0.02 -0.04 -0.04 -0.03
(-2.65) (-2.79) (-1.96) (-2.33) (-2.55) (-1.53) (-3.17) (-3.25) (-2.92)

Other Predictors N N Y N N Y N N Y
Carhart-4 Factors t+1 Y Y Y Y Y Y Y Y Y
Adj. R square 61.5% 62.5% 63.4% 67.5% 68.3% 71.6% 72.2% 75.5% 76.9%
N 539 539 511 534 534 506 528 528 500
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Table 1.19: Predictive Regression: Mean-Variance Efficient Portfolio

R.MVEt+1 = a+b×CoAnomalyt+
∑
p

mp×Other.Predictorsp,t+t×Trend+
∑
j

βj×Benchmark.Factorst+1+et+1.

The dependent variable is the in-sample mean-variance efficient portfolio return (MVE) for the
next quarter t + 1. All independent variables are measured in the quarter t. CoAnomaly is the
average partial correlation for the whole long-short portfolio of 34 stock market anomalies. Average
realized variance is equally averaging the realized daily variances for the 34 stock market anomalies.
Aggregate variance of the E.A.R. is measured as the variance of daily returns. The coefficient on
the trend variable is multiplied by 1000 for readability. T-stats, shown in parentheses, are computed
with Newey and West (1987) correction for 4 lags.

Dependent Variable: Quarterly MVE at t+1

(1) (2) (3) (4) (6) (7)
CoAnomaly t 0.52 0.62 0.69 0.60 0.66 0.68

(2.67) (3.03) (3.39) (3.51) (3.70) (3.59)

Average Var. t 0.80 0.94 0.70 0.84
(2.18) (2.58) (2.20) (2.49)

Aggregate Var. t -0.53 -0.89 -0.43 -0.65327
(-1.61) (-2.79) (-1.48) -2.1983

Anomaly Value Spread t 0.24 -0.65
(1.31) (-2.20)

Sentiment t 0.90 0.44
(2.76) (1.43)

Market Avg. Corr.t -0.01 -0.01
(-0.65) (-0.71)

E.A.R. t -0.28 -0.27
(-1.53) (-1.61)

MktRf t 0.32 -0.02
(1.62) (-0.08)

TED Rate t -0.52 -0.58
(-2.31) (-2.83)

MktRf t+1 -0.01 -0.02 0.01
(-0.56) (-0.67) (0.25)

SMB t+1 0.01 0.00 -0.01
(0.50) (0.07) (-0.42)

HML t+1 0.13 0.12 0.09
(4.72) (4.19) (3.31)

UMD t+1 0.08 0.09 0.09
(4.37) (4.38) (4.21)

Trend T -0.08 -0.09 -0.09 -0.07 -0.07 -0.09
(-4.65) (-4.88) (-3.82) (-4.53) (-4.73) (-3.98)

Adj. R square 17.7% 19.1% 27.6% 39.7% 43.0% 46.9%
N 179 179 118 179 179 118
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Table 1.20: Robustness: Correlation between Two Mispricing Factors and 1-month
CoAnomaly

This table reports the robustness check results for Table 1.4. Instead of using the three-month
CoAnomaly measure, I use the correlation between two mispricing factors in Stambaugh and Yuan
(2016), or the one-month CoAnomaly measure.

HF Ret. Group Corr. Group No. Months HF Ret. t CoAnomaly t CoAnomaly t+1 E.A.R. t+1 E.A.R. t+3 E.A.R. t+6

Panel A1: sorting on Correlation of two Mispricing Factors

1 79 0.49% 0.11 0.13 0.18% 0.67% 1.93%
(4.26) (9.09) (11.65) (1.17) (2.26) (4.35)

2 105 0.62% 0.16 0.16 0.30% 0.81% 1.68%
(6.67) (17.77) (16.15) (1.83) (2.44) (3.10)

3 80 0.41% 0.22 0.20 0.64% 1.84% 3.46%
(3.67) (16.53) (13.25) (2.39) (4.05) (4.84)

Diff 3-1 -0.08% 0.11 0.07 0.46% 1.17% 1.54%
(-0.51) (6.43) (3.87) (1.48) (2.14) (1.82)

Panel A2: First sort all months based on HF Ret., and then sort on Correlation of two Mispricing Factors

1

1 23 -0.54% 0.15 0.16 0.03% -0.22% 0.28%
2 32 -0.40% 0.19 0.18 -0.28% -0.12% -0.62%
3 24 -0.38% 0.24 0.19 0.90% 2.03% 4.12%

Diff 3-1 0.88% 2.25% 3.84%
(1.45) (1.70) (2.04)

Panel B1: sorting on the 1-month CoAnomaly

1 79 0.58% 0.09 0.12 -0.01% 0.21% 0.98%
(5.21) (9.45) (9.92) (-0.07) (0.64) (1.88)

2 105 0.48% 0.15 0.17 0.29% 1.15% 1.87%
(4.84) (16.73) (15.83) (1.78) (3.62) (3.63)

3 80 0.51% 0.23 0.19 0.84% 1.83% 4.14%
(4.74) (19.49) (15.08) (3.19) (4.14) (6.24)

Diff 3-1 -0.07% 0.14 0.08 0.85% 1.62% 3.16%
(-0.39) (9.01) (4.32) (2.79) (2.93) (3.75)

Panel B2: First sort all months based on HF Ret., and then sort on 1-month CoAnomaly

1

1 23 -0.50% 0.13 0.16 -0.81% -1.17% -0.92%
2 32 -0.40% 0.17 0.16 0.31% 0.83% 0.46%
3 24 -0.41% 0.29 0.21 0.95% 1.75% 3.90%

Diff 3-1 1.76% 2.92% 4.82%
(2.47) (2.08) (2.34)

Table 1.21: Weigted Anomaly Score

This table reports the time-series properties of the Weighted Anomaly Score (WAS) for the long legs
and the short legs of 34 stock market anomalies. WAS for the short leg (WAS s) is calculated as the
following: for each stock at each point of time (end of a month), I first calculate the short anomaly
score (how many strategies / anomalies are shorting it), then divide it with the total number of
anomalies (34 in my case) to normalize the score to one. I calculate the weighted average anomaly
score for each anomaly and then take the simple mean across all anomalies. This procedure is
repeated in each month, so a time series is generated. The same procedure can be done on the long
leg to get the WAS for the long leg (WAS l).

WAS l WAS s

MEAN 0.157 0.179
STD 0.009 0.017

Correlation with

WAS l 1 -0.375
WAS s -0.375 1
CoAnomaly LS -0.193 0.279
CoAnomaly L 0.16 0.02
CoAnomaly S -0.315 0.406
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Anomaly Portfolios: This figure plots the quarterly realized mean returns of 34 anomaly
portfolios against the predicted mean excess returns. In the left figure, I use CAPM to predict
portfolio returns, and in the right figure, I use CAPM + CoAnomaly.

Standard Portfolios: This figure plots the quarterly realized mean excess returns of 40 equity
portfolios (25 size- and book-to-market-sorted portfolios, 10 momentum-sorted portfolios, and 5
industry portfolios) against the predicted mean excess returns. In the left figure, I use CAPM to
predict portfolio returns, and in the right figure, I use CAPM + CoAnomaly.

Figure 1.3: Realized versus Predicted Returns: Comparing CAPM versus CAPM +
CoAnomaly.
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This figure plots the average partial correlation (together with its confidence interval) relative for
its all-sample mean for each anomaly around its academic publication year, with -5 to 5 years
window, averaging across 27 anomalies. The partial correlations for each anomaly are calculated
with respect to other post-publication strategies up to each year. Dashed lines indicate the 90%
confidence interval.

Figure 1.4: Partial Correlation Change around the Publication Year

Figure 1.5: CoAnomaly (blue solid) and its Bootstrap Standard Error (red dashed,
10000 times)
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Chapter 2

Decomposing Momentum Spread

Since momentum arbitrage activity, buying winners and selling losers, effectively en-

larges the return spread between these two groups, I find that the momentum spread

(the difference of the formation-period recent 6-month returns between winners and

losers) negatively predicts future momentum profit in the long-term, but not in the

following month. I further decompose the momentum spread into the spreads of old

or young momentum stocks based on whether a stock has been identified as a mo-

mentum stock for more than three months. I show that the negative predictability is

mainly driven by the old momentum spread. For the top 20% of the sample period

associated with the highest values of old momentum spread, the momentum rever-

sals happen sooner (only six months after formation) and stronger (more than 120

basis points per month from month 7 to month 24 after formation), relative to neg-

ligible momentum reversals observed following the bottom 20% period with low old

momentum spread. As these old momentum stocks are more likely to be exploited

by arbitrageurs, these findings suggest that momentum is amplified by arbitrage ac-

tivity and excessive arbitrage destabilizes asset prices and generates strong reversals.

JEL-Classification : G12, G14

Keywords : Momentum, Return Spread, Underreaction and Overreaction, Desta-

bilizing Mechanism of Excessive Arbitrage.
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2.1 Introduction

Among all cross-sectional anomalies in the stock market, momentum is one of those

that have been studied extensively but remains difficult to be justified in a rational

model. The main reason is that it is difficult to explain two intertwisted phenomena,

both the mid-term momentum and long-term reversal, in a single rational frame-

work. Above that, momentum profits also shows strong time-series predictability

(see Cooper et al. (2004), Stivers and Sun (2010) and Barroso and Santa-Clara

(2015) among the others).

Another important feature of momentum is its vulnerability to destabilizing ex-

cessive arbitrage since arbitrageurs buy stocks whose prices rise (winners) and sell

stocks whose prices fall (losers). The arbitrage activity will push the winners’ price

even higher and the losers’ price even lower, which may attract more momentum

arbitrageurs given that newcomers cannot distinguish the momentum price pattern

coming from fundamental information or previous arbitrage activity. This loop is a

typical case of positive feedback. If the change in form fundamental does not catch

up with this speed, this will create a momentum bubble and bust since prices cannot

deviate from fundamentals without a limit and will go back to the fair value in the

long-term. Following this logic, excessively strong arbitrage activity in momentum

will, first, drive up the momentum spread, which is the formation-period return

difference between past winners and losers, and second, create strong reversals.

Is it the time-varying crowding in momentum arbitrage activity, captured by the

momentum spread, driving the time-variation in momentum profit? My answer is

yes. Based on this question, I first show that momentum spread negatively predicts

momentum returns. Though similar empirical facts have been documented in the

literature (see Stivers and Sun (2010) and Huang (2015)), I find that this negative

predictability emerges mostly in the long-term, i.e. six months after the formation

period, but not in the short-term. I argue that this is due to the bubble nature of

the momentum effect. If mid-term momentum and long-term reversal result from

the combination of both underreaction and overreaction, timing the switch between

these two states, or equivalently timing the peak of momentum bubble, should be

difficult. However, the long-term reversals will emerge ultimately and this is the

part I focus on. This predictive effect is also robust to controlling other benchmark
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factors. To close the circle, I also provide evidence that the momentum spread is

linked to the amount of momentum arbitrage capital.

Figure 2.1: Different Momentum Strategy Performance

Time-series average of the cumulative returns for momentum portfolios (no balanc-
ing after formation) up to 60 months after their formation periods associated with
high or low old momentum spreads. The dashed line shows the averaged momen-
tum cumulative performance following months associated with a low old momentum
spread (top 20%). The solid line shows the averaged momentum cumulative perfor-
mance following months associated with a high old momentum spread (top 20%).

(Insert Figure 2.1)

I further decompose the momentum spread into old momentum spread and young

momentum spread and provide evidence that the negative predictability is mainly

driven by the old momentum spread. For every period, I classify all momentum

stocks (separating winners and losers) into two subgroups based on how long they

have been identified as a momentum stock. Old (Young) momentum spread is de-

fined as the momentum spread within old (young) momentum stocks, which have

been identified as momentum stocks for more than (less or equal to) three months.

Due to the high correlation among spread-based predictors, I conduct a within-

group-controlled analysis to show that old momentum spread has the strongest
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predictive power within the spread-based family. I use a horse-race regression to

show the strong predictability of old momentum spread after controlling several

well-known momentum predictors, including market state and volatility among the

others. These empirical findings connect the literature on the time-series momentum

signal (see Novy-Marx (2012)) and cross-sectional momentum stock composition (see

Chen et al. (2009)).

To address why the long-term predictability of old momentum spread is so strong,

I argue that it contains better information about the momentum arbitrage activity.

Presumably, old momentum stocks are more likely to be traded by arbitrageurs

because they need to observe momentum characteristics first. I provide evidence

by first showing that the young and old momentum stocks are different: young

momentum stocks show higher loadings to fundamental-driven variation, while the

old momentum stocks are more sensitive to VIX and suffer unconditional sooner

and stronger reversals going forward. I also show that momentum strategy with old

momentum stocks, first, revert sooner and stronger than young momentum strategy

unconditionally, and second, this reversal pattern can be strongly predicted by old

momentum spread conditionally.

This mechanism is indirectly modeled by Hong and Stein (1999), which is so far

one of the studies that successfully explain the mid-term momentum and long-term

reversal in a unified model. In their model, the existence of momentum traders is

the key to the result. These arbitrageurs will trade old momentum stocks more

due to the positive feedback, so the information in old momentum spread would

help me identify the Destabilizing Mechanism of Excess Arbitrage. I provide empir-

ical evidence which is consistent with several implications of their paper. Among

all momentum spread-based measures, the old momentum spread has the highest

predictive power and generates a monotonic pattern across time. Overall, my find-

ings suggest that the momentum effect is initiated by fundamental news (for young

momentum stocks) and amplified by arbitrage activity (for old momentum stocks),

which echoes the findings in Novy-Marx (2015) and Gargano and Rossi (2018).

Finally, I present some results of using the old momentum spread to predict re-

turns of a group of ‘contrarian’ strategies, including value, low-beta and low volatil-

ity. The logic follows that if momentum bubble busts, I expect arbitrageurs to
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allocate capital to other strategies, which generates price impacts.

Related Literature The cross-sectional determinants of momentum have been

widely studied in the last two decades and the time-variation of momentum is less

explored, but recently it has caught more attention. Among them, Cooper et al.

(2004) find that momentum premium falls when the market return in the past three

years is low. Stivers and Sun (2010) find that momentum premium is negatively

related to the recent cross-sectional dispersion and Wang and Xu (2015) find that

market volatility has significant power to negatively forecast momentum payoffs.

Instead of focusing on the market, Barroso and Santa-Clara (2015) find that the

volatility of momentum is highly variable over time and predictable and it also

predicts momentum returns. Daniel and Moskowitz (2016) document infrequent but

repeating crashes of momentum strategy and link this phenomenon to significant

time-varying exposure to systematic factors, which is explored by work such as

Kothari and Shanken (1992) and Grundy and Martin (2001).

Arbitrageurs can contribute to higher liquidity and informational efficiency in the

market, but they can also cause instability by taking high leverages and overcrowding

as Stein (2009) points out. Jacobs and Levy (2014) document some stylized facts of

smart beta investing, and also point out that overcrowding may lead to overvaluation

and factor crash. Among all strategies, momentum is most prone to excess arbitrage

since arbitrageurs are buying the winners and selling the losers, which will produce

a price impact and broaden the momentum spread. If the arbitrageurs cannot infer

how much capital is trading on this momentum-type ’unanchored ’ strategy by Stein

(2009), they may create a bubble of excessive arbitrage, which leads to the long-

term reversal of the strategy, and may destabilize the market subsequently to a

bigger extent. Barroso et al. (2017) show that this crowding mechanism can explain

momentum tail risk with myopic arbitrageurs. In contrast, an ’anchored ’ strategy

like value, arbitrageurs are buying the high book-to-market (B/M) ratio stocks and

selling the low book-to-market (B/M) ratio stocks, and pushing the value spread

lower, which is a natural anchor for the value strategy.

Proxy the crowdedness of momentum arbitrage activity, several attempts have

been made. Lou and Polk (2013) infer arbitrage activity from return correlations

and find that the average pairwise correlation predicts reversals. Huang (2015)
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use momentum gap, the difference between the 75th and 25th percentiles of the

distribution of cumulative stock returns, to proxy arbitraging activity and find that

higher momentum activity is followed by stronger reversals.

I consider my result different from and more robust than Huang (2015) for two

reasons: first, his result of predicting next-month momentum return is not robust

in my sample, and as I argue the main reason for this could be the imperfect timing

capability of the peak of momentum bubble; second, the momentum is not a linear

strategy, trading the decile momentum stocks shows much higher return than trading

quintile momentum stocks1, so by construction, momentum arbitrage will have a

larger effect on the momentum spreads between top decile and bottom decile.

Novy-Marx (2012) finds that momentum is primarily driven by the stocks’ per-

formances in the twelve to seven months from portfolio formation, which supports

my choice of focusing on the recent performance spread of momentum stocks. Some

other research supports the idea of decomposing momentum stocks in the cross-

section: Chen et al. (2009) find that a two-way sorting based on long-term (two-year)

and recent performance (one-year) can accommodate both momentum and long-

term reversal effects by distinguishing between fresh and stale winners and losers,

which is consistent with the story that investors mistakenly respond to shocks to firm

fundamentals as if they are going to continue in the long run. Daniel et al. (2017)

propose a ‘Betting Against Winners’ strategy that goes short the overpriced winners

and long other winners generates a Sharpe-ratio of 1.08, due to the disagreement

and short-sale constraints.

2.2 Momentum Spread

Given that momentum arbitrage will push winners and losers far away from each

other, effectively broadening the past performance difference between these two

groups of stocks, I first check whether this time-varying momentum spread can

predict future momentum performance. I find that these spread-type measures have

limited power of predicting momentum reversals in the short-term. However, the

predictability emerges only if we focus on the long-term momentum performance.

1This can be easily checked by simply comparing the average return of UMD factor (top 30% -
bottom 30%) and MOM factor (top 10% - bottom 10%) on French’s website.
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I show that if the momentum spread is particularly large, the momentum strategy

will reverse sooner and stronger going forward.

2.2.1 Data and Spread Construction

I use the stock return data from the Center for Research in Security Prices (CRSP)

and accounting information data from Compustat - Capital IQ. I include only stocks

for companies listed on the NYSE, AMEX, or NASDAQ that have a CRSP share

code of 10 or 11. To make sure my results are not driven by micro-cap stocks and

other microstructure issues, I exclude stocks with prices below $5 per share or are

in the bottom NYSE size decile. At the end of each month, I sort all remaining

stocks into deciles based on the return in the last twelve months (skipping the most

recent month, i.e. t-12 to t-2). The momentum strategy return is the value-weighted

portfolio return difference between the top decile and bottom decile. As for the case

of stock delisting, I follow Green et al. (2017) to add delisting returns back to returns

in the spirit of Shumway and Warther (1999). That is, for the firms with dlstcd =

500 or dlstcd within [520, 584], I use dlret = -0.35 if exchcd = 1 or 2 and dlret =

-0.55 if exchcd = 3.

I also download the hedge fund asset under management AUM data from the

BarclayHedge. I focus on two categories: all hedge funds and the Equity Market

Neutral2. Fama-French factors are from Kenneth French website3.

Momentum spread I define the momentum spread as the difference of the weighted

lagged 6-month cumulative returns between the top and bottom decile stocks, and

the weight is the same lagged market capitalization weighting the returns.

Mom.Spreadt−1 = Past.Rett−6,t−1,Winners − Past.Rett−6,t−1,Losers.

2On the BarclayHedge website, they state the Equity Market Neutral as:This investment strat-
egy is designed to exploit equity market inefficiencies and usually involves being simultaneously long
and short matched equity portfolios of the same size within a country. Market neutral portfolios are
designed to be either beta or currency neutral, or both. Well-designed portfolios typically control for
industry, sector, market capitalization, and other exposures. Leverage is often applied to enhance
returns.

3I show my sincere gratitude to Ken French for supplying the Fama-French factors.
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where Past.Rett−6,t−1,Winners denotes the value-weighted average cumulative re-

turns in the past six months for stocks in the winner decile at the end of each month

t-1 and Past.Rett−6,t−1,Losers denotes the value-weighted average cumulative returns

in the past six months for stocks in the loser decile at the end of each month t-1.

My momentum spread is not defined as the return spreads of the typical forma-

tion periods returns. The formation period momentum spread can be defined as

F.Spreadmom = Past.Rett−12,t−2,Winners−Past.Rett−12,t−2,Losers, which is the differ-

ence of the weighted lagged 12-month cumulative return (skipping the most recent

month) between the winners and losers. Note that, because of this difference in

the definitions, the momentum spread might be negative for some periods since

they are not spreads of the formation-period returns, which are strictly positive by

construction.

I define the spread based on recent six-month returns mainly for two reasons:

first, hypothetically, the spread in the recent periods is more likely to capture the

effect from arbitraging activity as arbitrageurs need time to observe the momentum

characteristics and then begin to trade momentum stocks, which may happen in the

early half in the formation period; second, empirically, Novy-Marx (2012) shows that

the momentum is primarily driven by firms’ performance 12 to seven months prior

to portfolio formation. On the other hand, Novy-Marx (2015) also shows that price

momentum can be explained by the momentum in the change of firm fundamentals.

So, in a relative sense, the price information in the first half of formation period is

more fundamental-driven; on the other side of the coin, the price information in the

second half is more likely to be none-fundamental-driven.

Another advantage of focusing the spreads in the periods different from the exact

momentum formation periods is that it generates dispersion among the momentum

stocks in the same batch of formation, i.e. the old momentum stocks and the young

momentum stocks which I will discuss later. This allows me to bring the information

in the cross-section of momentum stocks into the time-series predictability.

(Insert Figure 2.2)

Figure 2.2 plots the time-series of momentum spread. It is relatively stable and

persistent, and its time-series average is 55.3% with a standard deviation of 27.3%
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Figure 2.2: Time-series of Momentum Spread

as reported in Table 2.6. We can see that there is a peak in the 2000 dot-com bubble

and it reaches a negative value after the financial crisis in 2008.

Formation Gap and Formation Spread I also construct two other spread-

based measure, the formation period momentum gap (formation gap, for the rest of

the paper) and the formation period momentum spread (formation spread, for the

rest of the paper), for comparison in my analysis. Formation gap is the defined as

Huang (2015) proposed, the difference between the 75th and 25th percentiles of the

distribution of lagged 12-month cumulative return (skipping the most recent month,

i.e. from month t-12 to t-2). Formation spread is the difference of the weighted

lagged 12-month cumulative return (skipping the most recent month) between the

winners and losers, as defined before.

2.2.2 Predictability of the Momentum Spread

I analyze different sets of monthly momentum portfolio returns based on how far

they are from the formation period. Specifically, I study four sets of monthly returns:

month 1-6, month 7-12, month 12-24, and month 25-36. It allows me to observe the

heterogeneity in predicting momentum strategy by separating the future momentum

performance.
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Short-term Predictability: Negligible I first examine whether the momentum

profits are predictable in the very short-run and track the profits on the momentum

strategy over the next month subsequent to portfolio formation. All months are

classified into five groups based on their different time-series measures. I consider

four spread-type predictors, which are momentum spread, old momentum spread

(constructed with old momentum stocks only, see section 2.3.1), formation gap and

formation spread, as well as loser comomentum from Lou and Polk (2013)4.

(Insert Table 2.1)

Table 2.1 shows the predictability of these five predictors. These results show

that all four spread-based predictors have no strong predictability for momentum

profits in the next month after portfolio formation and only the comomentum has

a strong predictive power in the short-term.

This is not surprising considering that it is difficult to time the peak of momentum

bubble. By trading momentum strategy, arbitrageurs are pushing the momentum

spreads larger, which will be captured by these spread-based predictors. Excessive

momentum arbitrage activities may push the winner stocks too high and loser stocks

too low so that they will reverse in the long-term, as long as their fundamental does

not change with the same magnitude. However, in the short-term, it is very difficult

to time the peak of excessive trading and momentum bubble, so this predictive

power will not show up.

Table 2.1 also shows the 1-month predictability result for two subsample periods,

from 1960 to 1989 and from 1990 to 2018. The predictability of the formation gap

documented by Huang (2015), if any, is mostly concentrated in the first half of the

sample. If this predictability is indeed driven by excessive momentum arbitrage as

he argues, this result is difficult to interpret given the fact that in the second half of

my sample, momentum is publicly discovered by Jegadeesh and Titman (1993) and

the professional managers are dominating the market.

However, the predictability of comomentum is stronger in the second half of my

sample (with the discovery of momentum strategy and the growth in professional

4I are using the comomentum (the average pairwise partial return correlation) in the loser
decile following their main analysis. Thanks to Dong Lou and Christopher Polk for sharing the
time-series of comomentum.
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arbitrageurs), which is consistent with Lou and Polk (2013)’s interpretation of in-

ferring arbitrage activity from correlation among momentum stocks.

Long-term predictability: Strong

(Insert Table 2.2)

When looking into the long-term, Table 2.2 uses momentum spread to sort all

months into groups. I show that in the short-term (within six months after the

momentum portfolio formation), there is no consistent pattern across groups. How-

ever, I find strong predictive power for momentum strategy returns using momen-

tum spread after six months following the formation of the momentum portfolio.

Table 2.2 also shows that this predictive pattern preserves if I use other spread-type

predictors, like formation gap or formation spread, though with a much smaller

magnitude or a smaller significance level. Lastly, I show that the predictability of

comomentum is strongest in the short-term.

In a nutshell, the momentum spread-type measures negatively predict the mo-

mentum portfolio returns in the long-term, but not in the short-term.

Table Details Here, I show how I construct the result statistics for all time-series

sorting tables (Table 2.1, Table 2.2, and similar tables in following sections). All

months are sorted into five groups based on their values of one time-series measure

(for example, momentum spread) realized at the formation period. Then I create

dummies for these months based on which group they are assigned to. Then I regress

a set of future monthly returns (for example, all the monthly returns between 7 to

12 months after the formation) on the group dummies as well as contemporaneous

Fama-French three factors. The average returns reported in each column in the

tables are the regression coefficients on different dummies, αs,1, αs,2, αs,3, αs,4, αs,5,

for each future set s (for example, ‘month 1-6’ means all the months within first half

an year after the momentum formation).

rt,t+i = αs,111+αs,212+αs,313+αs,414+αs,515+βM,s×MktRft+i+βS,s×SMBt+i+βH,s×HMLt+i+εt,t+i

for all formation months t and all actual months t + i where i ∈ s (for example,
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I treat each month between 7 to 12 months after each momentum formation as an

observation). T-stats, shown in the parentheses, are based on the standard errors

clustered on the actual return months t + i and across time with Newey and West

(1987) correlation for 6 lags.

To get the difference in the mean return between group 5 and group 1, I conduct

similar analysis with the following modification: Instead of regressing on five dummy

variables, I regress each set of future monthly returns (for example, all the monthly

returns between 7 to 12 months after the formation) on a constant 1 and the dummies

for group 2 to group 5, as well as contemporaneous Fama-French three factors:

rt,t+i = α̃s,1+α̃s,212+α̃s,313+α̃s,414+α̃s,515+βM,s×MktRft+i+βS,s×SMBt+i+βH,s×HMLt+i+εt,t+i

The regression coefficients on the dummies are effectively the average return dif-

ference from group 1. For example, α̃s,5 measures the average return difference

between group 5 and group 1 after adjusting contemporaneous Fama-French three

factors. This number is also the one reported in the row ‘5 1’ of the time-series

sorting tables.

2.2.3 Link to Arbitrage Activity

As discussed before, the mechanism between momentum spread and momentum ar-

bitrage capital is straight-forward: momentum arbitrageurs are buying winners and

selling losers with the hope that they can profit from the slow dissemination of in-

formation and/or the underreaction of other investors. Meanwhile, their arbitraging

behavior will impact the asset prices as well, which are reflected in the momentum

spread. When the aggregate momentum arbitrage capital is excessively high, the

prices would complete the convergence to the true value or even overshoot, which

generates no profit or strong reversals in the future.

Mom.Spreadt = β0+β1×HFAUMt−1+β2×Mom(12−1)t−1+β3×Comomentumt−1+Controlst−1+et

(2.1)
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Table 2.3 connects momentum spread to several variables that proxy for the

amount of capital allocated in momentum arbitrage. Specifically, I use several vari-

ables in quarter t−1 to forecast the momentum spread in quarter t. The forecasting

variables I focus on here include the asset under management (AUM) of the hedge

fund industry, the momentum returns in the most recent 12 months and the co-

momentum by Lou and Polk (2013). I would expect that more capital managed by

hedge funds, or higher past momentum profit, or larger comovement among momen-

tum stocks to proxy higher momentum arbitrage capital leads to a larger momentum

spread.

(Insert Table 2.3)

In the sample period 2000-2018, where the aggregate hedge fund AUM data is

available, I first find that when more asset is managed by hedge fund managers, who

are the main investors in momentum, the future momentum spread is relatively

high. The result from the momentum returns in the most recent 12 months is

also consistent my above hypotheses: arbitrageurs will pour in more capital if they

find the past performance of momentum is high. These results are robust when

controlling the market state variables like the past 36-month market returns and

the market dispersion. In the last column, I move to the sample period 1965-2010

studied in Lou and Polk (2013) and find that the momentum spread is also relatively

high after high comomentum periods.

Higher Moments: Standard Deviation and Skewness

(Insert Table 2.4)

Table 2.4 checks the predictability of the momentum spread for higher moments

of the momentum strategy. If the above excessive arbitrage argument is valid, I

would expect periods with intensive momentum arbitrage activity would be followed

by a higher standard deviation in momentum strategy and large crash risk going

forward. Numbers in Table 2.4 confirms this hypothesis. The momentum strategy

exhibits higher standard deviation after large momentum spread periods. As for the

skewness, the crash-risk effect shows up after the first half-year and is particularly

strong in the second year.
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If we consider a mean-variance investor, though the average return is not pre-

dictable in the short-run, she might still benefit from timing the momentum strategy

using the momentum spread due to the predictability in the standard deviation, the

second moment.

Why the Momentum Spread is different from the Momentum Gap?

75%25%10% 90%0% 100%

Formation GAP (cut-off)

Formation SPREAD (weighted average)

What is the economic motivation behind using the momentum spread instead of

the formation gap? First, instead of using the cut-off in the distribution of past

returns among stocks, I use the weighted average of past returns for the extreme

winners and losers. Momentum is not a linear strategy and it is more profitable to

trade the extreme winner and losers. This empirical fact will attract more arbitrage

activity in these extreme stocks, so the spread from averaging the past performances

of these stocks should be a better measure for arbitrage activity. Second, as argued

by Novy-Marx (2012), momentum profit is mainly driven by the performance in the

months from t-12 to t-6, so I use the performance from t-6 to t-1 to predicting the

reversal - the non-profiting part of momentum.

Next, I will decompose momentum spread and focus on the momentum spread of

the old momentum stocks because these stocks have been identified as momentum

stocks for a longer length of time, and presumably, would be more heavily traded

by arbitrageurs.

2.3 Decomposing Momentum Spreads

I now turn to the second main point of my paper: Can we refine the predictability

from momentum spread by decomposing it? Recently, people have started to look

into the cross-section of momentum stocks and find that by taking into account

more information we can identify the true future winners and losers and hence

improve the momentum performance. Chen et al. (2009) use a two-way sorting
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based on long-term (two-year) and recent performance (one-year) can accommodate

both momentum and long-term reversal effects. Daniel et al. (2017) use institutional

ownership and short interest data to filter out overpriced winners.

The method that I propose to distinguish momentum stocks is based on how

many months a single stock has been identified as a momentum stock, which I term

as momentum age. Since it takes time for the arbitrageurs to observe the momentum

characteristics and to start to trade them, the stocks with more months identified

as momentum stocks, i.e. old momentum stocks, are more likely to be traded by the

arbitragers. So I focus on the momentum spread for these old momentum stocks

and find that this old momentum spread has the strongest predictability for future

momentum reversals across spread-based measures. I also provide evidence that

these old momentum stocks are indeed more connected with arbitrage activity and

less with fundamental information.

2.3.1 Momentum Age: Old and Young Momentum Stocks

and Spreads

Momentum Age At the end of every month, after selecting the momentum stocks

by their past performance, I classify them into subgroups based on their momentum

age. I define momentum age as the number of months that a stock has been con-

secutively identified as a momentum stock in the past few months, both for winners

and losers separately. For example, at the end of September, Microsoft shows up

in the momentum portfolio as a winner (in the top decile), and it is not a winner

in the last August, I assign age one to it. A month later, at the end of October, if

Microsoft again stays as a winner (again in the top decile), then its momentum age

will become two.

Table 2.5 reports the composition of momentum stocks in terms of their age,

averaged across time. Stocks with momentum age larger than seven months consist

of less than 20 percent of the momentum portfolio, which highlights the high turnover

of momentum strategy. We can also see that the turnover are slightly higher for

losers. In the second half of the whole sample, which is after the public finding of the

momentum phenomenon and also witnesses the growth of sophisticated arbitrageurs

like hedge funds, I find that the proportion of extreme old momentum stocks (with
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age 8 or plus) is smaller, which indicates that the turnover is higher possibly due

to larger arbitrage activity. Apart from that, I do not find much difference in the

pattern of the distribution.

(Insert Table 2.5)

In non-tabulated results, I do not find that there is any significant difference

between old and young momentum stocks in terms of their market cap, market

beta, book-to-market ratio or liquidity level.

Old and Young Momentum Stocks and Spreads After the formation of mo-

mentum portfolio at the end of each month, within the batch of momentum stocks, I

further separate them into two groups based on the momentum age of a stock: young

(1-3) and old (4 and above)5 Both winners and losers are defined as the stocks in

the top and bottom deciles based on their past performance of recent 12 months,

but skipping the recent month.

I define the old momentum spread as the difference between the weighted average

of the past cumulative returns for old winners and old losers, and stocks being ‘old ’

means that their momentum ages are above three months. Similarly, I can define the

young momentum spread. Together with the momentum spread I defined earlier,

these three momentum spreads are effectively the same, but calculated with all

momentum stocks regardless of being old and young:

Mom.Spreadt−1 = Past.Rett−6,t−1,Winners − Past.Rett−6,t−1,Losers.

Old.Mom.Spreadt−1 = Past.Rett−6,t−1,Winners,old − Past.Rett−6,t−1,Losers,old.

Y oung.Mom.Spreadt−1 = Past.Rett−6,t−1,Winners,young − Past.Rett−6,t−1,Losers,young.

Note that the momentum spread for all stocks can be (roughly) viewed as the

weighted average of the old momentum spread and young momentum spread. Be-

cause the old and young stocks have different weights within the winner leg and the

loser leg, this is an approximation relationship.

5I also tried other classifications, like young (1-4) and old (5 and above), and all my results
hold qualitatively.
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Again, there are mainly two reasons I am defining them in this way: first, the

main reason I use the momentum spread, instead of momentum gap (the difference

of the 75th and 25th cutoff), is that as mentioned before, momentum is not a

linear strategy - trading the extreme decile momentum stocks shows much higher

profit than trading quintile momentum stocks. If these spread-based measures are

truly capturing momentum arbitrage activity as Huang (2015) argues in his paper,

I would expect the momentum arbitrage pushes the extreme measures wider. In

other words, the measures using extreme stocks (in the top or bottom decile) should

contain more information about arbitrage activity, proxy the momentum arbitrage

activity better, and hence predict the momentum reversal more strongly than the

measures using the non-extreme stocks (at the 75th or 25th cut-off). However, as

shown in his paper, if he is using another measuring, the difference between the 90th

and 10th percentiles of the distribution of cumulative stocks returns, his results are

less robust.

Second, I use the past cumulative returns in the last 6 months, t − 6 to t − 1,

instead of t − 12 to t − 2, to calculate the momentum spread. The main reason

I do this is that, since momentum ranking is based on the t − 12 to t − 2 returns

and both of old and young momentum stocks need to meet the momentum criteria

(cut-off) first, the correlation between old formation spreads and young formation

spreads will be too high, conditioning on being calculated from the same ranking

period returns. By using a shorter time horizon (t − 6 to t − 1) from the ranking

horizon, the correlation between old and young momentum spreads decreases, which

enables me to study them separately. This modification is also consistent with the

result in Novy-Marx (2012): since he finds that momentum return with the one-year

ranking period, is mainly positively driven by the first half of the year, one would

expect the second half of the year is negatively driving the momentum return, in a

relative sense. This naturally connects to the destabilizing excessive arbitrage.

High Correlation between Spread-based Predictors By construction, these

spread-based measures will have high correlations among them because they share

overlapping periods.

(Insert Table 2.6)
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Table 2.6 reports the summary statistics and correlations among different predic-

tors for momentum strategy returns. Momentum spread has a mean around 55%

which lies between the old momentum spread and young momentum spread. Young

momentum spread is slightly larger, which makes sense since young momentum

stocks have to perform well in the recent half-year to show up as momentum stocks.

As for the correlations, the spread-based predictors are highly correlated by con-

struction, which motives me to conduct a specific approach in the next step to find

the strongest predictor. However, they are not particularly correlated with non-

spread-based predictors like comomentum, past momentum volatility, past market

return, volatility, and dispersion.

2.3.2 Strong Predictability of Old Momentum Spread

Long-term Predictability of Old Momentum Spread

(Insert Table 2.7)

Table 2.7 shows the time-series sorting results of predicting future momentum

strategy returns with old momentum spread. Similar to the results in Table 2.2, old

momentum spread preserves strong predictability for momentum reversals starting

from the second half-year after the formation period and until two years after. This

is not surprising considering the fact that old momentum spread is part of the

momentum spread. A more interesting exercise is to disentangle and compare the

predictive effect of two components of the momentum spread, i.e. old and young

momentum spreads.

Comparing the Predictive Power between Old Momentum Spread and

Other Spread-based Predictors Due to the high correlation between spread-

based predictors as shown in Table 2.6, a direct regression analysis by throwing

in all spread-based predictors will suffer multicollinearity problem and the results

will be difficult and unreliable to interpret. To avoid this problem, I run a within-

group-controlled regression as the following: for all the momentum strategy monthly
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returns in month t+ i within future set s,

rt,t+i = Σ10
k=1αk1k︸ ︷︷ ︸

Dummy controls of
the first predictor

+ βxt−1︸ ︷︷ ︸
Second predictor

+FF.Factorst+i + εt,t+i (2.2)

To compare the predictive power of two predictors, I first sort all formation

months into deciles based on the first predictor and then generate dummies 1k for

each formation months based on which group they are assigned to. Then I regress

the future momentum returns on the second predictor xt−1 in their formation period

and the dummies based on the first predictor, as well on contemporaneous Fama-

French three factors, as Equation 2.2 shows. rt,t+i represent the momentum strategy

return in month t+ i from the formation month t. I consider the months i after the

momentum formation in groups: month 1-6, month 7-12, month 12-24 and month

25-26. This effectively constrains the regression coefficients in each group to be the

same.

The regression coefficients from Equation 2.2 are effectively the same with Equa-

tion 2.3, which is easier to interpret. Equation 2.3 can be understood as that I first

sort all months into ten deciles k based on their first predictor, and then within

each group, I demean both the momentum returns rt,t+i,k on the left-hand side and

the second predictor xt−1,k on the right-hand side. Put differently, this regression

analyzes the predictive power of the second predictor on top of the predictability of

the first predictor.

(rt,t+i,k − rt+i,k)︸ ︷︷ ︸
Demean returns

within groups soted on
the first predictor

= α+ β(xt−1,k − xk)︸ ︷︷ ︸
Demean the second predictor

within groups soted on
the first predictor

+FF.Factorst+i+et,t+i.

(2.3)

(Insert Table 2.8)

Results of these controlled-dummy regressions are shown in Table 2.8. I only

report the point estimates of the coefficients for β for each specification and each
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future month set s: the first predictor as dummy controls, the second predictor

as the regressor and which months each regression are focusing on. It shows that

after controlling the old momentum spread, none of the young momentum spread,

the formation gap, the formation spread or the comomentum shows strong and

consistent predictive power for long-term reversals of momentum strategy. I also

find that the comomentum still preserves strong predictability in the first half-year.

Please note that the magnitude of the coefficients are comparable as I standardize

all second predictors to have a standard deviation equal to 1.

However, if I switch the order and control any of these variables first, and then

regress the long-term momentum strategy returns on the old momentum spreads, the

predictability for reversals for periods between 6 and 24 months after momentum

formation is significant and consistent. This result supports that old momentum

spread shows stronger predictive power for momentum reversals than other spread-

based predictors.

Predictive Regression: Comparing with more Predictors After ruling out

the spread-based competitors, I can include other momentum predictors which have

low correlation with old momentum spread.

Here I focus on five predictors well documented in the literature: past 36-month

market return studied in Cooper et al. (2004), 3-month moving average of the cross-

sectional return dispersion in 100 size-value portfolio studied in Stivers and Sun

(2010), past 6-month realized market volatility studied in Wang and Xu (2015), past

6-month realized momentum volatility studied in Barroso and Santa-Clara (2015),

and lastly, comomentum studied in Lou and Polk (2013).

(Insert Table 2.9)

Table 2.9 show the regression results for three group of months. In the short-

term, i.e. in the first six months after the momentum formation, the predictability of

old momentum spread is negligible and other competing predictors have a stronger

forecasting power. However, if we focus on the long-term predictability, for both

month 7-12 and month 13-24, the predictive power of old momentum spread remains

strong and drives out the predictability of other predictors.
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2.3.3 Old and Young Momentum Portfolios

Next, I provide evidence that supports the idea that old momentum spread is more

connected to the momentum arbitrage activity.

Stronger Unconditional Reversals of Old Momentum Portfolios The first

idea that I want to establish and elaborate here is that if a stock has been in the

momentum portfolios for a longer horizon, it will be pushed further away from

its fundamentals by the momentum traders. If this holds true, I would expect an

unconditional stronger reversal for these old momentum stocks.

To see whether the above hypothesis holds in the data, I slit the momentum

strategy into two parts: young momentum strategy which only consists of young

momentum stocks and old momentum strategy which only consists of old momentum

stocks.

MOMyoung = Ret Winnersyoung −Ret Losersyoung,

MOMold = Ret Winnersold −Ret Losersold,
(2.4)

where Ret Winnersyoung =
∑
ωiRi and i ∈ Young Winners and the weight ωi

is the lagged market cap; and similar for Ret Losersyoung, Ret Winnersold, and

Ret Losersold.

(Insert Figure 2.3)

In Figure 2.3, I replicate the classical figure 3 in Jegadeesh and Titman (2001)

with the same sample period and plot the cumulative returns of the original momen-

tum portfolio, as well as the young and old momentum portfolio separately. The

figure shows that the old momentum portfolio will revert sooner and stronger, while

the young momentum portfolio bearly reverse in the first 30 months after the port-

folio formation. The pattern remains similar if I extend to the most recent periods.

This pattern is consistent with the idea that old momentum stocks are pushed too

far away from their fundamentals and their prices will revert to their fair value in

the long run.
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Figure 2.3: Momentum Strategy Performance: Old and Young

Cumulative momentum returns for old and young momentum portfolios (no balanc-
ing after formation) up to 60 months. The sample period in this figure is 1965-1997,
which is the same with Jegadeesh and Titman (2001).

Another pattern in Figure 2.3 worth mentioning is that the old momentum stocks

have better performance in the first ten months after the formation period. This

fact is consistent with the idea of the coordination problem among momentum ar-

bitrageurs: it is difficult for the market participants to infer how much capital in

aggregate is allocated in the momentum arbitrage, so they may overchase the old

and strong winners myopically in the short-term and generate the stronger reversals

in the long-term. From another perspective, this also supports the empirical fact

that the predictability from the spread will not emerge in the short-term but the

long-term. Huang et al. (2016) also find a similar pattern in the beta arbitrage and

argue that arbitrage activity instead generates booms and busts in the strategy.

More specifically, they find that when activity is high, prices overshoot as short-run

abnormal returns are much larger and then revert in the long run.

Different Factor Loadings of Old and Young Momentum Portfolios I also

provide evidence that the old momentum strategy and young momentum strategy
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carries different loadings on certain factors. I run the following regressions and

report the loadings βk on different factors for old momentum strategy and young

momentum strategy separately.

rt = a+ ΣkβkFk,t + εt (2.5)

I consider the following factors. Post–earnings-announcement drift (PEAD) fac-

tor, which is constructed by longing the stocks in the top decile and shorting the

stocks in the bottom decile based on the three-day cumulative abnormal returns

around the most recent earnings announcement days. This PEAD factor proxies

the profit from trading on the fundamental news. VIX, the CBOE Volatility Index,

measures the market expectation of future volatility. HFI is the Equity Market

Neutral Index (HFRIEMNI) from Hedge Fund Research website. I use the Equity

Market Neutral Index (HFRIEMNI), which studies the quantitative equity funds and

dates back to the beginning of 1990. Liquidity Level is the market liquidity measure

by Pastor and Stambaugh (2003). MktRf, SMB, and HML are the standard three

Fama-French factors.

(Insert Table 2.10)

Table 2.10 shows that young momentum strategy has a stronger loading on the

PEAD factor, which supports the idea that young momentum is more about the fun-

damental information. It also shows that the old momentum strategy has stronger

loadings on the VIX index and the long-short equity hedge fund returns. This obser-

vation is consistent with that old momentum stocks is more traded and affected by

the arbitrageurs. The sign of the coefficient on VIX is also consistent with the above

interpretation. When some unexpected negative shock hits the market, or when VIX

goes up and margin (requirement) becomes tight, or when arbitrageurs unwind part

of their bettings on (old) momentum positions and generate negative price impacts.

One final observation is that the negative correlation between momentum and value

is mostly driven by old momentum stocks.

These results consolidate the idea that, in a relative sense, the information in old

momentum stocks is more associated with arbitrage activity and the information in

young momentum stocks is more associated with the fundamental news. With this
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evidence in mind: if momentum stocks with different ages are behaving differently

after the formation, it is natural to expect the momentum stocks (and their spreads)

with different ages are also carrying different information at the formation time.

This drives me to treat the old momentum spread and young momentum spread

differently.

Predicting Old and Young Momentum Portfolios Finally, I show that the

predictability to the old momentum portfolio is stronger in magnitude. Since, first,

the old momentum spreads are the main driver of the predictability, second, the

old momentum stocks are suffering unconditional long-term reversal the most (from

Figure 2.3), and third, there is supportive evidence that old momentum stocks are

more traded by arbitrageurs and pushed further away from their fundamentals,

combining these three facts should yield stronger predictability of old momentum

spread on old momentum stocks than on young momentum stocks.

(Insert Table 2.11)

Table 2.11 checks the predictability of old momentum spread for old and young

momentum portfolios separately. Clearly, the long-term predictability (month 6-24)

of old momentum spread exists for both types of momentum portfolios. More impor-

tantly, it also shows that this predictive effect is much stronger for old momentum

portfolios in terms of both the economic magnitude and statistical significance.

2.3.4 Implication from Hong and Stein (1999)’s Model

Now I borrow the model in Hong and Stein (1999) to link the old momentum spread

to excessive arbitrage activity, which may push the winners too high and losers too

low and lead to a mechanical long-term reversal back to their fundamentals.

In the classical paper by Hong and Stein (1999), A unified theory of underreaction,

momentum trading, and overreaction in asset markets, they build an equilibrium

model with bounded rationality. In their model, there are two types of investors,

News-watchers and Momentum traders, both risk-averse with CARA utility. Their

rationality is bounded in a way: for news-watchers, they only process fundamental

information; and for momentum traders, they only trade on the past price change.
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In a simplified version of their model, the price follows a process:

Pt = Pt−1 + ∆It +Xt −Xt−12, (2.6)

where ∆It is the change in the fundamental information and Xt is the price impact

from momentum trading activity, which follows

Xt = φ∆Pt−1, (2.7)

φ the equilibrium demand elasticity, and 12 is the holding period: after 12 periods,

momentum traders will close their position, which brings in an opposite price impact

with a lag of 12, −Xt−12.

In their original model, they assume that the size of momentum traders is constant

over time, which is not true in the real world. In practice, the arbitrage capital

has a huge time-variation in practice, and meanwhile, the exact amount to capital

allocated in arbitrage activity is unknown to arbitrageurs. Stein (2009) argue that

without knowing the exact amount of arbitrage activity if all arbitrageurs are just

optimizing their own leverage without considering the externality, financial markets

will suffer possible destabilization. He denotes this as a coordination problem, which

comes from the inability of traders to condition their behaviour on current market-

wide arbitrage capacity.

If the time-variation of momentum arbitrage capital γt was introduced Hong and

Stein (1999)’s model, which comes from the time-variation in either the original asset

under management, the leverage on original arbitrage capital, or the momentum

traders’ risk aversion. Most importantly, this is not observed by other momentum

traders. The new momentum trade follows:

Xt = γtφ∆Pt−1, (2.8)

and in their original model, γt = 1.

With this modification, there is an amplification effect in the momentum
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positive feedback:

dXt

dγt−1

|γt = γtφ
d∆Pt−1

dγt−1

= γtφ(φ∆Pt−2), (positive). (2.9)

Momentum positive feedback captures that more momentum arbitrage capital

in last period γt−1 will generate a larger price impact ∆Pt−1, and this will attract

more momentum trading in this period with the same direction. In Hong and Stein

(1999), they explore the change in risk tolerance, which has the same effect here.

Figure 2.4: Cumulative impulse response in Hong and Stein (1999)’s model

Hong and Stein (1999)’s model with different risk tolerance from momentum traders,
or equivalently different amount arbitrage capital in trading momentum. The higher
the gamma, the higher the risk tolerance, the more intense the momentum arbitrage.

(Insert Figure 2.4)

Figure 2.4 shows the impulse response function of prices if there is a fundamental

shock. It takes the benchmark parameterization in Hong and Stein (1999), with

the z = 12 measuring the (linear) rate of information flow and higher values of z

implying slower information diffusion, and j = 12 the momentum traders’ horizon,

and the volatility of the new shocks 0.5.
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The momentum age can be recovered in this figure. In this case, let me suppose

the cross-sectional winner cutoff6 is 0.6, an arbitrary number for illustrative purpose.

The price before the fundamental information shock (t=0) will be zero. After a

positive fundamental information shock to the stock, its price will trend up but it

will not be identified as a winner immediately because its price is below the cross-

sectional winner cutoff, 0.6. After 6 lags of the initial positive shock, its price goes

above the winner cutoff and this stock will appear as a young winner stock for the

first time. After eight lags, its price is still trending up and it has been identified as

a winner stock for more than three periods, in other words, an old winner stock. It is

clear in the figure that the higher the momentum age, the larger the formation spread

(the price between the current price and the price 12 periods ago). In the figures,

the formation spread is the vertical distance between the price and the horizontal

axis if we focus on the first 12 periods after the initial fundamental shock. This is

because the price is zero before the shock.

On the other hand, in Figure 2.4, the momentum traders’ risk tolerance takes

three values γ = 1/3, γ = 1/7 and γ = 1/11, which is one potential source of

the time-varying momentum arbitrage capital. The figure clearly shows that with

more momentum arbitrage capital (in this case, the momentum traders are more

risk-tolerant), the momentum spread is larger and the following long-term reversal is

stronger. Moreover, due to the positive feedback in trading momentum, the absolute

difference in the momentum spread between low and high scenarios will be larger

if we focus on the old momentum stocks. This observation provides a theoretical

foundation of using the old momentum spread to predict future reversals.

I formulate three hypotheses below and show that my empirical findings consistent

with them:

� Hypothesis 1: With the increase in the momentum age, the momentum

formation spread (the difference of the past cumulative returns between the

winners and losers) will be larger.

� Hypothesis 2: Conditioning on same age (a given point on the horizontal

axis), more momentum arbitrage capital will drive up the momentum spreads

6Momentum arbitrageurs need time to observe the momentum characteristics in the cross-
section and then start to trade these stocks.
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and result in stronger reversals in the long-term.

� Hypothesis 3: Because of the positive feedback effect, the price impact com-

ing from momentum trading will increase with the momentum age, relative

to the fundamental part. Old momentum spreads will carry relatively more

information about the momentum arbitrage activity than young momentum

spreads. Old momentum spreads will predict the long-term reversal of mo-

mentum more strongly.

(Insert Table 2.12, Table 2.2 and Table 2.8)

In Table 2.12, I find evidence consistent with the Hypothesis 1. With higher

momentum arbitrage activity, proxied by larger old momentum spreads, the past

return spreads (from t-12 to t-2) between winners and losers are larger. This effect

is larger for stocks with higher momentum ages, the old momentum stocks.

Previous results shown in Table 2.2 support that the larger the momentum spread

is, the stronger the reversal will be, consistent with the Hypothesis 2. In Table 2.8,

I find the old momentum spread has higher predictability than the young one, which

is consistent with Hypothesis 3.

2.4 Robustness

Momentum Arbitrage in the Formation Period One concern is that arbi-

trageurs will begin trading momentum stocks only after the momentum charac-

teristics are observed. That concern is mitigated by the fact that I measure the

momentum characteristic based on a relatively long ranking period up to one year

while other studies have shown that using ranking periods as short as 3 or 6 months

(see Jegadeesh and Titman (1993)) also produces mid-term momentum effect. Pre-

sumably, momentum traders are trading based on these short-term momentum char-

acteristics and thus would have been pushing winners and losers apart from each

other, which would be picked up my measure, the (old) momentum spread. Never-

theless, if I instead measure the (old) momentum spread in the post-ranking period,

most of my results continue to hold since, first, the reversal that I am trying to

explain is not happening in the short-run (within half of a year), and second, the

(old) momentum spread measure is persistent.
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Subsample Analysis: Stronger Predictability in the Second Half

(Insert Table 2.13)

Table 2.13 reports the time-series sorting results in two subsample periods. The

predictability is stronger in the second half of the sample, from 1990 to 2018, in terms

of both the economic magnitude and the statistical significance. This supports the

argument of the destabilizing mechanism of excessive arbitrage since the momentum

arbitrage is larger in the second half of the sample with the momentum effect being

publicly studied around the 90s and the large growth in asset management industry

since then.

Out-of-Sample Predictability Though the main point of this paper is not to

propose a way to exploit the predictability in momentum strategy, it is still worth

to explore whether the in-sample relation between the old momentum spread and

future reversals is stable when extending out of sample (OOS). Welch and Goyal

(2007) have highlighted the problem of out-of-sample predictability and argued that

in-sample correlations conceal a systematic failure of these variables out of sample.

They find that none of the well-known market predictors are able to beat a simple

forecast based on the historical average stock return. Campbell and Thompson

(2007) show that forecasting variables with significant forecasting power in-sample

generally have a better out-of-sample performance than a forecast based on the

historical average return, once imposing restrictions on the signs of coefficients and

return forecasts. I follow Campbell and Thompson (2007) to construct the out-of-

sample R-squared:

R2
OOS = 1− Σ(rt − r̂t)

Σ(rt − rt)
(2.10)

where rt is the future momentum strategy return, r̂t is the fitted value from a

predictive regression estimated in the rolling look-back (training) periods, and rt is

the historical average return estimated in the look-back periods. For example, if the

look-back years equal to 10, I use the data from 2001 to 2010 to train the model

and then use it to predict the momentum returns starting in 2011.

(Insert Table 2.14)
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Table 2.14 reports the out-of-sample returns with three predictors, Old Momen-

tum Spread, Formation Gap and Comomentum. For each predictor, I further split

their predictability for the future three sets of months: month 1-6, month 7-12 and

month 13-24. I also checked the stability in the choice of the look-back (training)

period by reporting the different look-back periods. As the table shows, in the

short-term, the past average outperforms all predictors with all out-of-sample R-

squared being negative, including the comomentum which has the highest in-sample

predictability for the first six months. When we look at the month 7-12, the old

momentum spread shows strong out-of-sample predictability for several different

look-back periods.

2.5 Cross Predictability and Factor Timing Strat-

egy

Another observation from Table 2.2 is that, after controlling Fama-French three

factors, the predictability of long-term reversal decreases in terms of magnitude

(though still robust). Put differently, the momentum spread can predict other factors

(size and value factors in this case) as well.

There are several strategies or factors consistent with the idea of low-risk defensive

investing. Asness et al. (2014) state that ‘low-risk investing that focus on various

measures: market beta (Black (1972); Frazzini and Pedersen (2014)), total volatility

(e.g., Baker et al. (2011)), residual volatility (e.g., Falkenstein 1994; Ang et al.

(2006); Blitz and Van Vliet (2007)), the minimum-variance portfolio, and other

related measures (for connections between these measures, see Clarke et al. (2013)).’

These types of strategies are all longing the relatively low-risk and high-value stocks

with high book-to-market ratio, low idiosyncratic volatility and low market beta,

and shorting the counterparts.

On the other hand, momentum is more ‘aggressive’ by chasing the winners and

losers, and for most of the time, coming with relatively higher risk. There is also

anecdotal evidence suggesting that hedge funds, especially high-frequency trading

funds, prefer to hold stocks with high iVol and large beta, for intraday trading on

both directions.
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If the momentum spread, proxying the momentum arbitrage capital, forecasts

the bust of momentum bubble, I would expect that arbitrageurs or the investors

in momentum will reallocate capital to other investment strategies if they find that

momentum is not profitable anymore going forward.

I simply consider an equal-weighted low-risk combo factor for value, low-iVol and

low-beta strategy, as in Equation 2.11. I use a moving average (MA) strategy to

time the factor returns: comparing the ’old momentum spread⊥’ with its MA in the

last 12 months. ’old momentum spread⊥’ is the part orthogonal to the cumulative

market returns and the market volatility in the last 36 months, which have been

found being able to predict momentum returns by Cooper et al. (2004) and Wang

and Xu (2015) respectively.

Combot =
1

3
(HMLt + V OLt +BABt). (2.11)

(Insert Table 2.15 and Table 2.16)

Table 2.15 and Table 2.16 show that with high old momentum spread (a proxy for

high momentum arbitrage), the combo strategy performs poorly in the short-term,

but relatively well in the long-term. It is logically the same story in the momen-

tum predictability, but with opposite direction: in the short-run, arbitrageurs are

still riding on momentum, without knowing the exact time the bubble will burst.

However, in the long-term, momentum performs badly and the combo strategy per-

forms well. It is plausible that when arbitrageurs find momentum is not profiting

anymore, they decide to move their capital to pursue other strategies. This ’substi-

tute’ effect (without identification) is stronger in the recent 20 years, possibly with

the increasing market share of professional institutional investors, allocating capital

across strategies from time to time.

2.6 Conclusion

Different from prior studies, I find that the momentum spread negatively predicts

momentum returns in the long-term, but not in the following month. This pre-

dictability is strong and robust after controlling several other known momentum

predictors as well as the contemporaneous Fama-French three factors. I provide
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supportive evidence and argue that excessive momentum arbitrage activity drives

up the momentum spread and leads to lower future momentum returns or even re-

versals; more importantly, these reversals will not show up instantly, but rather in

the long-term (mostly after the first six months).

I decompose the momentum spread into old and young ones based on the momen-

tum age of stocks and find that the old momentum spread drives the predictabil-

ity. Both before and after adjusting Fama-French three factors, the old momentum

spread has the highest predictive power for long-term reversals of momentum strat-

egy among the momentum spread-based family and it also drives out the predictabil-

ity of past market performance, volatility, cross-sectional dispersion, and momentum

volatility. Given the evidence that suggests these old momentum stocks are more

likely to be traded by arbitrageurs and the predictability to long-term reversals is

stronger in the recent thirty years, these facts help to pin down the destabilizing

mechanism of excessive arbitrage. I also connect the old momentum spread to the

excessive momentum arbitrage activity based on Hong and Stein (1999)’s canonical

model and test several implications that fit my hypotheses.

Finally, I find cross-predictability using the old momentum spread and argue

that this could be due to the time-varying allocation of capital by the arbitrageurs.

Though it is not the main point of this paper, further analysis is highly recommended

in this direction to solidify the argument.

In a nutshell, these empirical patterns highlight the importance of arbitrageurs in

setting asset prices and excessive arbitrage activity might destabilize certain asset

prices due to the coordination problem in crowding.
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Table 2.2: Forecasting Momentum Returns with Momentum Spread and Other Pre-
dictors

This table reports the average raw and Fama-French 3-factor adjusted monthly returns of the
momentum portfolio for the 1-6, 7-12, 13-24 and 25-36 months after their formation (without any
rebalancing). All months are sorted into five groups based on their momentum spread realized at
the formation period. 5-1 means the difference between the average returns in the group with the
largest momentum spread and the group with the smallest. The last panel reports a similar analysis
with other predictors, including Formation Gap, Formation Spread, and Comomentum. The sample
period is from 1960 to 2018. T-stats, shown in the parentheses, are based on the standard errors
clustered on the actual return months t+ i and across time with Newey and West (1987) correlation
for 6 lags.

Panel A: Raw Returns

TS Group Rank Month 1-6 Month 7-12 Month 12-24 Month 25-36

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat
1 0.96% (3.99) 0.80% (4.11) 0.16% (0.97) -0.06% (-0.38)
2 1.22% (4.66) 0.15% (0.65) 0.06% (0.33) 0.09% (0.47)
3 0.81% (3.06) 0.19% (0.83) -0.32% (-1.79) 0.11% (0.52)
4 0.95% (3.24) 0.57% (2.14) -0.27% (-1.15) -0.33% (-1.30)
5 0.63% (1.15) -0.58% (-1.22) -1.02% (-3.45) -0.01% (-0.02)

5 1 -0.32% (-0.55) -1.39% (-2.71) -1.18% (-3.55) 0.06% (0.19)

Panel B: Fama-French 3-factor Adjusted Returns

TS Group Rank Month 1-6 Month 7-12 Month 12-24 Month 25-36

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat
1 1.24% (5.02) 0.88% (4.32) 0.36% (2.34) 0.10% (0.55)
2 1.49% (5.28) 0.51% (2.06) 0.18% (1.18) 0.26% (1.48)
3 1.16% (4.63) 0.50% (2.34) -0.23% (-1.42) 0.23% (1.17)
4 1.22% (4.27) 0.63% (2.62) -0.15% (-0.70) -0.15% (-0.60)
5 0.91% (1.95) -0.09% (-0.23) -0.55% (-2.08) 0.23% (0.85)

5 1 -0.33% (-0.64) -0.97% (-2.28) -0.91% (-3.03) 0.14% (0.44)

Panel C: Fama-French 3-factor Adjusted Returns with Other Predictors

TS Group Rank Month 1-6 Month 7-12 Month 12-24 Month 25-36

Predictor: Formation Gap

1 1.21% (3.62) 0.62% (1.92) 0.18% (0.86) 0.27% (1.41)
5 1.15% (2.17) 0.24% (0.59) -0.53% (-2.02) -0.11% (-0.43)

5 1 -0.07% (-0.11) -0.37% (-0.73) -0.71% (-2.13) -0.38% (-1.22)

Predictor: Formation Spread

1 1.03% (2.57) 0.78% (2.67) 0.18% (0.89) 0.16% (0.72)
5 0.97% (1.91) 0.18% (0.46) -0.30% (-1.22) -0.22% (-0.87)

5 1 -0.06% (-0.10) -0.61% (-1.27) -0.48% (-1.50) -0.38% (-1.15)

Predictor: Comomentum

1 1.55% (5.66) 0.59% (2.51) 0.29% (1.52) 0.34% (1.50)
5 0.04% (0.07) -0.02% (-0.05) -0.27% (-0.85) 1.13% (3.64)

5 1 -1.51% (-2.34) -0.61% (-1.32) -0.56% (-1.56) 0.78% (2.09)
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Table 2.3: Forecasting Momentum Spread

Mom.Spreadt = β0+β1×HFAUMt−1+β2×Mom(12−1)t−1+β3×Comomentumt−1+Controlst−1+et

This table reports the quarterly predictive regressions of momentum spread on variables related
to momentum arbitrage capital. HF.AUMt−1 is the log asset under management in hedge funds
obtained from BarclayHedge in quarter t-1. Mom(12 − 1)t−1 is the 1-year cumulative momentum
strategy ending in quarter t-1. Due to data availability, the sample period for the first two regressions
is from 2000 to 2018 and the sample period for the third regression is from 1965 to 2010. T-stats,
shown in the parentheses, are based on the standard errors with Newey and West (1987) correlation
for 4 lags.

Determinants of Momentum Spread

[1] [2] [3]
HFAUM t-1 0.77 0.78

(2.63) (2.63)

Mom(12-1) t-1 0.18 0.17 -0.04
(2.85) (2.67) (-0.56)

MktRf(36-1) t-1 -0.05 0.37
(-0.87) (5.00)

CrossS.Disp(MA-3) t-1 0.00 0.02
(0.78) (2.84)

Comomentum t-1 0.99
(2.14)

Trend Yes Yes Yes
Sample 2000-2018 2000-2018 1965-2010
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Table 2.4: Predicting Higher Moments of Momentum: Standard Deviation and
Skewness

This table reports the standard deviation and skewness of the momentum monthly returns for
the 1-6, 7-12, 13-24 and 25-36 months after their formation (without any rebalancing). All
months are sorted into five groups based on their momentum spread realized at the formation
period. The sample period is from 1960 to 2018.

Panel A: Standard Deviation of Momentum Monthly Returns

Group Rank Month 1-6 Month 7-12 Month 12-24 Month 25-36

1 4.7% 3.8% 4.1% 4.4%
2 5.2% 4.7% 4.6% 4.9%
3 5.6% 4.9% 5.0% 5.8%
4 6.3% 5.7% 6.3% 6.8%
5 9.2% 7.6% 6.7% 6.4%

Panel B: Skewness of Momentum Monthly Returns

Group Rank Month 1-6 Month 7-12 Month 12-24 Month 25-36

1 -0.02 0.01 -0.25 -0.08
2 -0.10 -0.13 0.03 0.26
3 -0.95 -0.14 -0.16 0.32
4 -0.35 0.20 -0.94 0.14
5 0.34 -0.28 -1.74 0.33

Table 2.5: Momentum Age Distribution

This table reports the percentage distribution of momentum stocks for different momentum ages.
At the end of every month, after selecting the momentum stocks by their past performance (t-12 to
t-2), I classify them into subgroups based on their momentum age, which is the number of months
that a stock has been consecutively identified as a momentum stock in the past few months, both
for winners and losers separately. The numbers below are the time-series average of the composition
of momentum stocks.

Momentum Stocks’ Composition based on Momentum Age

Full Samle: 1960-2018

Young (1 - 3) Old (4 - 8+)

Winners 56.6% 43.4%
Losers 59.0% 41.0%

Momentum Age 1 2 3 4 5 6 7 8+

Winners 28.2% 16.7% 11.8% 8.9% 7.1% 5.7% 4.7% 17.0%
Losers 30.0% 17.2% 11.9% 8.9% 6.9% 5.5% 4.4% 15.4%

1960-1989

Winners 28.4% 16.6% 11.5% 8.8% 6.9% 5.6% 4.6% 17.6%
Losers 30.4% 16.9% 11.6% 8.7% 6.8% 5.3% 4.3% 16.1%

1990-2018

Winners 27.9% 16.8% 12.0% 9.1% 7.2% 5.8% 4.7% 16.4%
Losers 29.4% 17.4% 12.1% 9.1% 7.0% 5.6% 4.5% 14.7%
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Table 2.7: Forecasting Momentum Returns with Old Momentum Spread

This table reports the average raw and Fama-French 3-factor adjusted monthly returns of the
momentum portfolio for the 1-6, 7-12, 13-24 and 25-36 months after their formation (without any
rebalancing). All months are sorted into five groups based on their momentum spread realized
at the formation period. 5-1 means the difference between the average returns in the group with
the largest momentum spread and the group with the smallest. The sample period is from 1960
to 2018. T-stats, shown in the parentheses, are based on the standard errors clustered on the
actual return months t+ i and across time with Newey and West (1987) correlation for 6 lags.

Panel A: Raw Returns

Month 1-6 Month 7-12 Month 12-24 Month 25-36

TS Group Rank Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat
1 0.77% (2.98) 0.69% (3.28) 0.25% (1.44) 0.05% (0.28)
2 0.99% (3.69) 0.11% (0.50) -0.24% (-1.50) -0.01% (-0.08)
3 0.83% (3.25) 0.29% (1.21) -0.04% (-0.25) 0.20% (0.99)
4 1.29% (4.35) 0.61% (2.48) -0.40% (-1.94) -0.41% (-1.81)
5 0.68% (1.37) -0.58% (-1.27) -0.96% (-3.22) -0.04% (-0.13)

5 1 -0.09% (-0.17) -1.27% (-2.55) -1.20% (-3.58) -0.09% (-0.26)

Panel B: Fama-French 3-factor Adjusted Returns

Month 1-6 Month 7-12 Month 12-24 Month 25-36

TS Group Rank Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat
1 1.00% (3.99) 0.87% (3.94) 0.36% (2.21) 0.15% (0.85)
2 1.29% (4.62) 0.56% (2.67) -0.08% (-0.54) 0.13% (0.74)
3 1.34% (5.06) 0.38% (1.66) 0.08% (0.48) 0.35% (1.81)
4 1.40% (5.00) 0.70% (3.00) -0.21% (-1.17) -0.17% (-0.76)
5 0.99% (2.31) -0.09% (-0.24) -0.53% (-1.90) 0.21% (0.77)

5 1 -0.01% (-0.03) -0.96% (-2.31) -0.88% (-2.83) 0.06% (0.19)
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Table 2.8: Comparing the Predictability of Old Momentum Spreads and Other
Predictors

rt,t+i = Σ10
k=1αk1k︸ ︷︷ ︸

Dummy controls of
the first predictor

+ βxt−1︸ ︷︷ ︸
Second predictor

+FF.Factorst+i + εt,t+i

This table reports the coefficients β of regressing monthly momentum strategy returns on different
pairs of predictors in 1-6, 7-12, 13-24 and 25-36 months after each momentum formation batch.
Each number in the table represents a point estimate of beta given one regression specification
(one pair of predictors for one set of months), with its t-stat in parentheses right below it. rt,t+i

denotes the return in month t + i of the momentum strategy formed in month t. The first
predictor will be used in generating dummy controls. 1k is the dummy which takes value 1
if the control series’ value falls into the kth decile and 0 otherwise. The second predictor x is
normalized to have a standard deviation equal to 1. Standard errors are clustered on the actual
return months t + i and across time with Newey and West (1987) correlation for 6 lags. All
second predictors are normalized to have a standard deviation equal to 1. Fama-French three
factors include MktRft+i, SMBt+i, and HMLt+i in month t + i. 5% statistical significance is
indicated in bold.

Panel A: Predictive Regression Results of Other Predictors after controlling Old Momentum Spread

Dummy controls Predictor x Month 1-6 Month 7-12 Month 12-24 Month 25-36

Old Mom. Spread Young Mom. Spread -0.26% -0.53% -0.13% 0.05%
(-0.90) (-2.74) (-1.43) (0.40)

Old Mom. Spread Formation Gap -0.17% -0.13% -0.17% -0.16%
(-0.62) (-0.67) (-1.54) (-1.41)

Old Mom. Spread Formation Spread -0.15% -0.43% -0.14% -0.13%
(-0.44) (-1.96) (-1.10) (-0.93)

Old Mom. Spread Comomentum -0.54% -0.18% -0.10% 0.34%
(-1.99) (-0.99) (-0.61) (1.88)

Panel B: Predictive Regression Results of Old Momentum Spread after controlling Other Predictors

Dummy controls Predictor x Month 1-6 Month 7-12 Month 12-24 Month 25-36

Young Mom. Spread Old Mom. Spread 0.13% -0.48% -0.22% 0.01%
(0.64) (-2.64) (-2.37) (0.10)

Formation Gap Old Mom. Spread -0.06% -0.58% -0.23% 0.09%
(-0.27) (-3.37) (-2.51) (0.69)

Formation Spread Old Mom. Spread -0.16% -0.52% -0.25% 0.12%
(-0.67) (-3.17) (-2.79) (1.00)

Comomentum Old Mom. Spread -0.10% -0.55% -0.29% -0.02%
(-0.40) (-2.95) (-2.96) (-0.17)
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Table 2.9: Forecasting the Monthly Momentum Strategy Returns in the First Half-
Year, the Second Half-Year, and the Second Year

rt,t+i = βiOld.Mom.Sprdt−1 + Σnβi,nPredictorn,t−1 + Controls+ εt,t+i

This table reports the coefficients β of regressing monthly momentum strategy returns on the pre-
dictors in 1-6, 7-12, and 13-24 months after each momentum formation batch. Each row represents
the point estimates of betas for a specification. Panel A, B, and C reports the results based on 1-6,
7-12, and 13-24 months respectively. rt,t+i denotes the return in month t + i of the momentum
strategy formed in month t. Standard errors are clustered on the actual return months t + i and
across time with Newey and West (1987) correlation for 6 lags. All predictors are normalized to
have a standard deviation equal to 1. The controls include contemporaneous Fama-French three
factors, an intercept, and a trend variable.

Panel A: Predicting Monthly Momentum Returns for Month 1-6

Predictors [1] [2] [3] [4] [5] [6]

Old Mom. Sprd -0.31% -0.17% -0.18% -0.03% -0.08% -0.33%
(-1.33) (-0.69) (-0.73) (-0.12) (-0.31) (-1.46)

MktRf(36-1) 0.74% 0.39%
(2.81) (1.50)

MktVol(6-1) -1.13% -0.82%
(-3.94) (-2.44)

MomVol(6-1) -0.96% -0.41%
(-3.18) (-1.13)

CrossS.Disp(MA-3) -0.42% 0.14%
(-1.40) (0.49)

Comomentum -0.52% 0.20%
(-1.99) (0.79)

Panel B: Predicting Monthly Momentum Returns for Month 7-12

Predictors [1] [2] [3] [4] [5] [6]

Old Mom. Sprd -0.53% -0.54% -0.53% -0.51% -0.51% -0.53%
(-3.07) (-3.12) (-3.05) (-2.99) (-2.91) (-3.19)

MktRf(36-1) 0.06% -0.06%
(0.28) (-0.28)

MktVol(6-1) -0.34% -0.46%
(-1.97) (-1.83)

MomVol(6-1) -0.20% 0.10%
(-0.92) (0.33)

CrossS.Disp(MA-3) -0.05% 0.06%
(-0.21) (0.26)

Comomentum -0.13% 0.01%
(-0.70) (0.06)

Panel C: Predicting Monthly Momentum Returns for Month 12-24

Predictors [1] [2] [3] [4] [5] [6]

Old Mom. Sprd -0.16% -0.29% -0.30% -0.27% -0.27% -0.18%
(-1.88) (-3.36) (-3.45) (-2.73) (-3.01) (-1.97)

MktRf(36-1) -0.38% -0.56%
(-2.03) (-2.94)

MktVol(6-1) -0.31% -0.39%
(-1.41) (-1.52)

MomVol(6-1) -0.29% -0.28%
(-1.32) (-1.10)

CrossS.Disp(MA-3) 0.01% 0.15%
(0.06) (0.97)

Comomentum -0.11% 0.08%
(-0.71) (0.53)113



Table 2.10: Different Factor Loadings of Old and Young Momentum Portfolios

rt = a+ ΣkβkFk,t + εt

In this table, each column reports the regression coefficients βk of regressing old or young
momentum strategies on different contemporaneous factors. Old and young momentum strategies
are formed with only old and young momentum stocks separately. PEAD is the return of
long-short strategy based on the three-day cumulative abnormal returns around the most recent
earnings announcement days following Brandt et al. (2008). VIX is the CBOE Volatility Index.
HFI is the Equity Market Neutral Index (HFRIEMNI) from Hedge Fund Research website.
Liquidity Level is the market liquidity measure by Pastor and Stambaugh (2003). MktRf, SMB,
and HML are the three Fama-French factors. The sample period is from 1960 to 2018. T-stats,
shown in the parentheses, are based on the standard errors adjusted for Newey and West (1987)
correlation for 6 lags.

Regressing Old and Young Momentum Strategy Returns on Contemporaneous Factors

Sample periods 1960-2018 1990-2017

Factors Old Mom Young Mom Old Mom Young Mom

PEAD 0.68 0.78 0.41 0.55
(2.85) (3.64) (2.25) (3.37)

VIX -0.20 -0.05
(-2.25) (-0.49)

HFI 4.75 4.23
(7.01) (5.32)

Liquidity Level -0.03 0.01
(-0.34) (0.15)

MktRf -0.20 -0.40 -0.56 -0.64
(-1.18) (-2.65) (-3.54) (-3.90)

SMB 0.23 0.59 0.12 0.51
(0.83) (1.65) (0.46) (1.53)

HML -0.76 -0.42 -1.02 -0.58
(-2.53) (-1.21) (-4.42) (-2.13)
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Table 2.11: Forecasting the Monthly Momentum Strategy Returns in the First Half-
Year, the Second Half-Year, and the Second Year

This table reports the average Fama-French 3-factor adjusted monthly returns of the old and
young momentum strategy for the 1-6, 7-12, 13-24 and 25-36 months after their formation
(without any rebalancing). Old and young momentum strategies are formed with only old and
young momentum stocks separately. All months are sorted into five groups based on their old
momentum spread realized at the formation period. 5-1 means the difference between the average
returns in the group with the largest old momentum spread and the group with the smallest. The
sample period is from 1960 to 2018. T-stats, shown in the parentheses, are based on the standard
errors clustered on the actual return months t+ i and across time with Newey and West (1987)
correlation for 6 lags.

Panel A: Future Returns of Old Momentum Stocks

Group Rank Month 1-6 Month 7-12 Month 12-24 Month 25-36

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat
1 1.18% (4.24) 0.81% (3.16) 0.45% (2.20) -0.19% (-0.78)
2 1.71% (5.66) 0.59% (2.43) -0.14% (-0.79) 0.08% (0.37)
3 1.63% (5.35) 0.56% (1.96) -0.16% (-0.76) 0.08% (0.31)
4 1.64% (5.02) 0.68% (2.35) -0.44% (-1.73) -0.45% (-1.48)
5 1.23% (2.58) -0.29% (-0.69) -0.66% (-1.86) 0.67% (1.94)

5 1 0.04% (0.08) -1.10% (-2.29) -1.10% (-2.79) 0.86% (2.11)

Panel A: Future Returns of Young Momentum Stocks

Group Rank Month 1-6 Month 7-12 Month 12-24 Month 25-36

Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat
1 0.93% (3.64) 0.84% (3.85) 0.22% (1.40) 0.27% (1.55)
2 1.12% (3.93) 0.65% (2.72) 0.02% (0.13) 0.12% (0.72)
3 1.23% (4.80) 0.34% (1.50) 0.14% (0.84) 0.43% (2.13)
4 1.30% (4.77) 0.68% (2.81) -0.01% (-0.08) -0.04% (-0.20)
5 1.01% (2.43) 0.10% (0.30) -0.44% (-1.61) -0.26% (-0.99)

5 1 0.09% (0.19) -0.74% (-1.83) -0.66% (-2.15) -0.53% (-1.74)

Table 2.12: Percentage of Momentum Age in Momentum Stocks.

This table reports the formation spreads (t-12 to t-2) for all momentum stocks, young
momentum stocks and old momentum stocks. I sort all months into three groups based on their
old momentum spread and then I calculate the formation spreads for different groups of
momentum stocks.

Formation Spreads (t-12 to t-2)

Old Mom. Spread Group All Young Old

<30% 98.2% 87.1% 113.9%
30%-70% 127.4% 110.4% 151.0%
>70% 182.1% 151.9% 217.2%
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Table 2.13: Subsample Analysis: Predicting Momentum Performance with Old Mo-
mentum Spread

This table reports the average raw monthly returns of the momentum portfolio for the 1-6, 7-12,
13-24 and 25-36 months after their formation (without any rebalancing) for the two subsample
periods. All months are sorted into five groups based on their momentum spread realized at the
formation period. 5-1 means the difference between the average returns in the group with the
largest momentum spread and the group with the smallest. T-stats, shown in the parentheses,
are based on the standard errors clustered on the actual return months t+ i and across time with
Newey and West (1987) correlation for 6 lags.

Panel A: Subsample 1960-1989

Month 1-6 Month 7-12 Month 12-24 Month 25-36

TS Group Rank Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat
1 1.12% (3.14) 0.73% (2.57) 0.11% (0.49) -0.33% (-1.60)
2 1.45% (4.57) 0.34% (1.29) -0.03% (-0.15) -0.18% (-0.84)
3 1.37% (4.10) 0.14% (0.45) -0.21% (-1.05) -0.49% (-2.36)
4 1.36% (4.13) 0.38% (1.17) -0.22% (-0.90) 0.13% (0.47)
5 0.63% (1.20) 0.15% (0.27) -0.72% (-2.28) -0.72% (-2.22)

5 1 -0.49% (-0.80) -0.58% (-0.99) -0.83% (-2.24) -0.38% (-1.03)

Panel B: Subsample 1990-2019

Month 1-6 Month 7-12 Month 12-24 Month 25-36

TS Group Rank Estimate t-stat Estimate t-stat Estimate t-stat Estimate t-stat
1 0.31% (0.81) 0.68% (2.04) 0.15% (0.54) 0.47% (1.57)
2 0.51% (1.48) 0.01% (0.02) 0.00% (0.02) 0.58% (1.82)
3 0.32% (0.66) 0.23% (0.64) -0.29% (-0.94) 0.10% (0.27)
4 1.31% (2.64) 0.39% (1.02) -0.25% (-0.80) -0.22% (-0.70)
5 0.69% (0.81) -0.83% (-1.09) -1.32% (-2.80) 0.45% (1.03)

5 1 0.38% (0.42) -1.51% (-1.84) -1.46% (-2.85) -0.02% (-0.03)
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Table 2.14: Out-of-Sample R-squared for Different Predictors

R2
OOS = 1− Σ(rt − r̂t)

Σ(rt − rt)
This table reports the Out-of-Sample R-squared for three predictors: Old Momentum Spread,
Formation Gap and Comomentum. The look-back years report how many years of data is used
for training the predictive model. The Out-of-Sample R-squared statistic is calculated following
Campbell and Thompson (2007).

Predictor: Old Momentum Spread

Look-back Years Month 1-6 Month 7-12 Month 13-24

5 -0.64% 3.28% -2.73%
10 -0.22% 1.87% -1.20%
20 -0.22% 2.45% -0.11%

Predictor: Formation Gap

Look-back Years Month 1-6 Month 7-12 Month 13-24

5 -7.12% 1.69% -5.28%
10 -1.50% -1.66% -0.31%
20 -0.46% 0.05% 0.07%

Predictor: Comomentum

Look-back Years Month 1-6 Month 7-12 Month 13-24

5 -2.47% -4.47% -3.33%
10 -1.43% -3.51% -2.40%
20 -0.17% -1.14% -0.03%

Table 2.15: Combo Factor Returns.

This table reports the average returns of the combo strategy, for 1-6, 7-12, 13-24 and 25-36
months. All months are sorted into two groups based on their old momentum spread ⊥ realized
in the last month, and its relative value compared to its MA in the last 12 month.

1965-2010

<MA12 >MA12
Variable Mean t Value Variable Mean t Value

Combo 1 3 1.0% 3.22 Combo 1 3 0.5% 1.64
Combo 4 6 1.2% 3.73 Combo 4 6 0.4% 1.2
Combo 7 12 1.7% 3.99 Combo 7 12 1.7% 3.17
Combo 13 24 3.4% 5.09 Combo 13 24 4.1% 5.18
Combo 25 36 2.6% 3.6 Combo 25 36 5.3% 7.46
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Table 2.16: Combo Factor Returns in 1990-2010.

This table reports the average returns of the combo strategy, for 1-6, 7-12, 13-24 and 25-36
months. All months are sorted into two groups based on their old momentum spread ⊥ realized
in the last month, and its relative value comparing to its MA in the last 12 month.

1990-2010

<MA12 >MA12
Variable Mean t Value Variable Mean t Value

Combo 1 3 0.7% 1.24 Combo 1 3 -0.3% -0.4
Combo 4 6 0.9% 1.65 Combo 4 6 -0.4% -0.6
Combo 7 12 0.1% 0.24 Combo 7 12 1.2% 1.15
Combo 13 24 0.0% 0.01 Combo 13 24 3.7% 2.37
Combo 25 36 0.9% 0.69 Combo 25 36 3.0% 2.27
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Chapter 3

Anomaly Investing:

Out-of-Sample Performance and

Intertemporal Considerations

I first show that the näıve equal-weighted 1/N investing in the set of 34 stock market

anomalies is a robust implementation for out-of-sample diversification. Two types

of popular portfolio optimization methods, including Sharpe-Ratio-optimizing with

weight constraints and Dimension-Reduction with machine learning techniques, do

not achieve robustly higher out-of-sample performance. Further to explore the gains

and risks in investing stock market anomalies, I take this equal-weighted anomaly

portfolio to an intertemporal CAPM framework with stochastic volatility to un-

derstand the investment considerations of a specific anomaly investor. Based on

my estimation, only the correlation-induced volatility news carries a significant risk

premium, which highlights the economic importance of the comovement in anomaly

asset prices.

JEL-Classification : G11, G23.

Keywords : Portfolio Strategy, Diversification, Machine Learning, Hedging De-

mand of Sophisticated Investors.
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3.1 Introduction

One important question in the anomaly investing is how to construct the optimal

out-of-sample portfolio when combining all the anomalies. The groundbreaking re-

search of Markowitz (1952) shows that investors with mean-variance preferences

should allocate capital based on the expected returns and covariance, but it has

notoriously unstable out-of-sample behaviors as the estimation error in the mo-

ments tends to lead to extreme portfolio weights. Though different methods and

modifications have been proposed to overcome the measurement error issue, the

equal-weighting 1/N rule still serves as a robust benchmark as argued in DeMiguel

et al. (2007).

In the sample of 34 stock market anomalies, I explore two sets of mean-variance-

efficient-optimized (MVE-optimized) portfolios: Sharpe-Ratio-based portfolios which

are designed to maximize the Sharpe ratio, and Dimension-Reduction-based port-

folios which are proposed to shrink the cross-section of a large number of anomaly

portfolios. I find that they do achieve a higher out-of-sample Sharpe ratio in a long

sample between 1983 to 2017 comparing to the 1/N equal-weighted anomaly (EAR)

portfolio, but this outperformance is coming with a higher portfolio turnover among

anomalies. This implies the outperformance is not likely to survive the transaction

costs. Moreover, in the second half of my sample, i.e. from 2000 to 2017, I find that

EAR actually achieves the mean-variance efficiency since regressing other MVE-

optimized portfolios on the EAR does not leave significantly positive intercepts.

This motivates me to take the conservative but robust EAR portfolio to explore the

intertemporal consideration in anomaly investing in the second half of this paper.

Guo (2018) shows that the time-varying average correlation among stock market

anomalies, which he terms as CoAnomaly, predicts the future anomaly returns as

well as the future variance of the aggregate anomaly portfolio. In other words, this

state variable, CoAnomaly, predicts two directions in the change of the investment

opportunity for anomaly investors at the same time: the benefit from higher ex-

pected returns and the loss from large aggregate variance. To explore which of these

two effects is stronger, I study the intertemporal hedging demand of a particular ar-

bitrageur who seeks market-neutral absolute returns and invests in these long-short

stock market anomalies in a more general framework.
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Motivated by Campbell et al. (2017), I use vector autoregressions (VAR) and

estimate an intertemporal CAPM with stochastic volatility for factor investing with

the focus on 34 stock market anomalies. To accommodate the rebalancing nature of

these anomaly portfolios, I construct the cash-flow and discount-rate news following

a bottom-up approach, i.e. news estimated on stock levels and then aggregated

to anomaly level. After aggregating the news to the portfolio level, I find that

anomalies returns are mainly driven by cash-flow news.

Since the aggregate portfolio volatility can be decomposed into the average vari-

ance of the constituents and the correlations among the constituents, I study the

pricing effects of the different volatility proxies separately: aggregate variance,

average-variance-driven variance, and CoAnomaly-driven variance. Of the three,

I find evidence that only the news on CoAnomaly-driven variance gets robustly

priced in my estimation.

These facts are consistent with the negative risk premium of CoAnomaly docu-

mented in Guo (2018) since I show that, in my estimation, the anomaly investors

care about the CoAnomaly-driven volatility risk premium and the risk premium

on the discount rate news in close to zero. Moreover, I find that these anomalies

are profiting by loading on the CoAnomaly-driven volatility risk, which might ex-

plain why their ‘abnormal’ returns are sustained in equilibrium instead of being

fully eliminated. This could be due to the limited diversification on these correlated

anomalies, which is in line with the limits of arbitrage literature.

The interpretation and extrapolation of the above results should be done with

care since the intertemporal CAPM is a partial equilibrium model and the estimation

of the model is based on the assumption that the specific anomaly investor is holding

the EAR portfolio. That being said, the results clearly show that the comovement

within the investment set of anomaly investors will affect their marginal utility.

Related Literature The optimal diversification question has been a central re-

search topic in the finance literature. As the estimation error in the standard mean-

variance optimization will generate unstable and extreme weights on assets, both

Bayesian approaches and non-Bayesian approach has been proposed to address this

121



issue1. DeMiguel et al. (2007) surveyed 14 different models and compared their per-

formance with the simple 1/N equal-weighting diversification and find that the latter

is a robust benchmark within their samples. That being said, they argue that their

study is ‘not to advocate the use of the 1/N heuristic as an asset-allocation strategy,

but merely to use it as a benchmark to assess the performance of various portfolio

rules proposed in the literature’. Compared with their overwhelming results based

on model parameters estimated from monthly returns, I find that daily returns will

deliver less estimation error and more robust performance for the MVE-optimized

models in the long sample.

Recently, the finance literature has started to explore the impacts and efficiency

of machine learning techniques which have been used in practice for years. Gu

et al. (2018) synthesize several machine learning techniques with predicting asset

and factor returns and find that they do add value in terms of achieving positive

out-of-sample positive return prediction R2. Kozak et al. (2017) consider a robust

stochastic discount factor (SDF) that summarizes the joint explanatory power of

a large number of cross-sectional stock return predictors with the motivation from

machine learning literature. However, I do not find these techniques outperform the

1/N strategy robustly, especially in the recent sample periods.

Many researches have documented that anomaly returns are predictable empir-

ically (see Cohen et al. (2003), Stambaugh et al. (2012), Greenwood and Hanson

(2012), and Novy-Marx (2014) among the others). Guo (2018) has shown that the

time-varying average correlation among anomalies has strong predictive power to

both the future average returns and the future volatility of these anomalies. It is

worth to explore the intertemporal hedging considerations of these anomaly investors

given the investment opportunity is time-varying. The intertemporal CAPM with

stochastic volatility developed by Campbell et al. (2017) provides a comprehensive

framework to study the intertemporal considerations as both the first and second

moments of asset returns are time-varying. This topic has also been explored from

a theoretical perspective (see Kondor and Vayanos (2019) among the others).

1Both Pástor (2000) and Pástor and Stambaugh (2000) establish their prior based on asset-
pricing models. Stutzer (1995) and Ghosh et al. (2016) construct their stochastic discount factors
based on the information criterion
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3.2 Robust Anomaly Investing

In this section, I first explore whether an anomaly investor can achieve better per-

formance by deviating from the näıve 1/N diversification. I found that the simple

equal-weighted portfolio by averaging all anomalies is not dominated by other more

advanced techniques of searching for the mean-variance-efficient-optimized port-

folios, including the Sharpe-Ratio-based optimization with norm constraints, and

Dimensional-Reduction-based efficient portfolios with machine learning methods.

The 34 anomalies I consider here are from the same set studied in Guo (2018),

which is a union set of anomalies studied in Stambaugh et al. (2012) and Novy-

Marx and Velikov (2016) and includes Accruals (acc), Asset growth (atgrowth),

Asset turnover (ato), Beta arbitrage (beta), Composite equity issues (ceissue), Fail-

ure probability (failprob), Gross margins (gm), Industry mom. + Relative rev.

(hfcombo1), Industry mom. + Relative rev. + Season. (hfcombo2), Idiosyncratic

volatility (idiovol), Industry momentum (indmom1m), Investment (invest), Momen-

tum (mom12m), Net issuance annual (netissue a), Net issuance monthly (netis-

sue m), Net operating assets (netoa), Ohlson’s O-score (ohlson), PEAD(CAR3)

(peadcar3), PEAD(SUE) (peadsue), Piotroski’s f-score (piotroski), Gross profitabil-

ity (profit), Industry relative reversals (relrev1m), Short-run reversals low volatility

(relrev1mlow), Short-run reversals (rev1m), Long-run reversals (rev60m), Return-

on-assets (roa), Return-on-book equity (roe), Return-on-market equity (rome), Sea-

sonality (seasonal), Size (size), Value + Momentum (valmom), Value + Mom +

Prof (valmomprof), Value + Profitability (valprof), Value (value). The labels for

the anomalies are reported in parentheses.

The whole sample is from 1973 to 2017 with both monthly returns as well as

daily returns. Anomalies are based on monthly, quarterly or annually rebalancing

and please see Guo (2018) for more details.

3.2.1 Equal-Weighted and Sharpe-Ratio-Based Diversifica-

tion

How to construct the diversified anomaly portfolio optimally is certainly a key ques-

tion for factor investors in practice. This is also important for finance academics as
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the mean-variance efficient portfolio contains the same pricing information as the

stochastic discount factor (SDF, see Hansen and Jagannathan (1991)). Different

from the standard investment question in the aggregate market, anomaly portfolios

do not have a natural equilibrium weight like the market capitalization. For aca-

demic researchers as well as arbitrageurs, it is extremely difficult to infer how much

capital was allocated in each strategy at each point of time. On the other hand,

the variance-based efficient portfolio back to Markowitz (1952) suffers the problem

of measurement error in the expected returns and the covariance matrix, and it also

ignores other practical issues like price impacts. Here I propose several weighting

candidates on anomalies and compare their out-of-sample performances.

Näıve 1/N Diversification A natural starting point is to put equal weight on

each of these anomalies. Overweighting some small and illiquid stocks is less of

concern as I construct these anomalies from stocks based on value-weighting and

excluded the stocks which are in the bottom decile of NYSE breakpoint. In this

case of 34 anomalies, I assign a weight 1/34 to each one of them.

Sharpe-Ratio-Based Mean-Variance Efficient Portfolios If we believe that

the past covariance structure is precisely estimated and persistent in the near future,

we can form the mean-variance efficient portfolio based on the estimated expected

returns and the covariance matrix.

The standard mean-variance optimization is notorious for producing extreme

weights which is quite unstable across time, mainly due to the estimation error

in the first and second moments. Attempts have been made to handle the measure-

ment errors and to improve the out-of-sample performance of the Markowitz model.

The vast literature on this issue includes the Bayesian approach (diffuse priors and

shrinkage estimators), robust portfolio allocation rules, imposing short-selling and

other constraints, etc.

Here I consider a simple box-constraints by bounding the weight on each anomaly

within a cerntain positive range to avoid extreme weights. I solve the following

maximization problem,
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max
w

(w′µ− rf )/(w′Σw)

s.t. w′~1 = 1

and wi ∈ [wmin, wmax] for all wi in w

where w is the vector of portfolio weights, µ is the vector of expected return, rf

the risk-free rate, and Σ is the total covariance matrix.

3.2.2 Dimension-Reduction-Based Mean-Variance Efficient

Portfolios

Machine learning, or statistical learning, has been introduced to the investment

process and now has been widely used across the industry. Due to the versatility

of different machine learning techniques and the validation of the hyperparameters,

these methods normally generate strong out-of-sample predictability. However, the

shortcoming is evident given that these methods are purely statistical and data-

based without using explicit instructions.

Recently, finance academics have started to look into the performance and im-

pacts of machine learning methods. Among different studies, Kozak et al. (2017)

consider a robust stochastic discount factor (SDF) that summarizes the joint ex-

planatory power of a large number of cross-sectional stock return predictors. As

the SDF naturally maps to the mean-variance efficient portfolio which achieves the

highest Sharpe ratio, this method fits the purpose of identifying the optimal weights

in the anomaly portfolio.

Starting in a Bayesian setting to estimate an SDF in the linear span of factor

returns Ft, Mt = 1−b′(Ft−EFt), they propose a prior on the expected future factor

returns µ,

µ ∼ N (0,
κ2

τ
Σ2), (3.1)

where τ = tr[Σ] and κ is a scaling constant. Following the eigendecomposition of

the covariance matrix Σ = QDQ′, where Q is the matrix of eigenvectors and D is
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the diagonal matrix of decreasing-ordered eigenvalues, the above prior is equivalent

to

D−
1
2µP ∼ N (0,

κ2

τ
D), (3.2)

where µP = Q′µ is the expected returns of the principal component portfolios.

Effectively, this prior implies that we are more uncertain about the non-zero Sharpe

ratio (the left-hand side of Equation 3.2) on the principal components associated

with large eigenvectors and consequently we are more willing to accept that the

principal components with large eigenvectors carry a large Sharpe ratio estimated

from the data. As Kozak et al. (2018) argue, absence of near-arbitrage opportunities

implies that the high Sharpe ratio PCs must coincide the PCs with high eigenvalues.

Moreover, they Kozak et al. (2017) show that this Bayesian estimator maps into

a L-2 penalized machine learning estimator which minimizes the HJ distance,

b̂ = argmin
b
{(µ− Σb)′Σ−1(µ− Σb) + γb′b}, (3.3)

where γ = τ
κ2T

and T is the sample periods. As κ = E[µ′Σ−1µ]−
1
2 , which is the

expected maximum Sharpe Ratio under the prior, Kozak et al. (2017) bring economic

interpretation to the penalty hyperparameter γ in this machine learning field. I also

entertain the above machine learning problem with sparsity, which introduces a

penalty on the L-1 norm and helps to select a subset of relevant factors.

b̂ = argmin
b
{(µ− Σb)′Σ−1(µ− Σb) + γ1b

′b+ γ2ΣN
i=1|bi|}. (3.4)

This method is known as elastic net by Zou and Hastie (2005).

Implementation I estimate two sets of portfolio weights, one based on the anomaly

portfolios and the other based on the principal components calculated from the

anomaly portfolios. I start from the HJ-distance in the optimization problem, which

can be rewritten as
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(µ− Σb)′Σ−1(µ− Σb) = (µ− Σb)′QD−1Q′(µ− Σb)

= [D−
1
2Q′(µ− Σb)]′[D−

1
2Q′(µ− Σb)]

= [D−
1
2Q′µ−D−

1
2Q′Σb)]′[D−

1
2Q′µ−D−

1
2Q′Σb)]

= [D−
1
2Q′µ−D−

1
2Q′ΣQbP )]′[D−

1
2Q′µ−D−

1
2Q′ΣQbP )].

Effectively, I can estimate b by using penalized linear regression with D−
1
2Q′µ on

D−
1
2Q′Σ (termed as DR raw), and estimate bP by using penalized linear regression

with D−
1
2Q′µ on D−

1
2Q′ΣQ (termed as DR pca). Finally, I normalize the coefficient

to have a summation of weight 1, w = 1
ΣNi=1bi

b. Similar normalization can be done

starting from b = QbP for DR pca.

3.2.3 Comparing Different Weighting Methods

Estimation with Past Information Only: Look-back Choices I am in-

terested in the performance of different mean-variance efficient-optimized (MVE-

optimized) portfolios out-of-sample. So at the beginning of each month, I calculate

the weights based on only the past information.

I consider three look-back choices: (1) using the past 10 years as a rolling window

to estimate the mean and covariance of anomaly portfolios (following DeMiguel et al.

(2007) as a comparable benchmark), (2) using the past 10 years to estimate the

covariance and using all past periods to estimate the mean, and (3) using all past

periods to estimate the mean and covariance.

Due to the estimation in the look-back periods with a minimum of 10 years, the

results are based on anomaly returns starting from 1983 to 2017. Different from

DeMiguel et al. (2007), I use daily, instead of monthly, anomaly returns to estimate

model parameters. This choice of high-frequency daily returns will produce more

precise estimation in the second moments as argued in Kozak et al. (2017).

Since I am studying the long-short zero-cost anomaly portfolios, I start with the

risk-free rate rf = 0, though my results are robust of using other specifications. For

the maximizing Sharpe ratio problem, I consider three different box constraints for

each weight: relatively unconstrained wi ∈ [−1, 1] (SR [-1,1]), non-negative weights
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wi ∈ [0, 1] (SR [0,1]), and capped weights wi ∈ [0.01, 0.1] (SR [0.01,0.1]). The first

unconstrained case (SR [-1,1]) is relative in the sense that I still place a constraint

that requires the absolute value of every weight being no greater than 1. If this mild

constraint is removed, the standard mean-variance optimization will generate unrea-

sonably extreme weights and huge turnover in most cases, for example, a monthly

turnover as large as 606594.36% for industry portfolios as shown in DeMiguel et al.

(2007). As for the dimension reduction with penalized regression of raw anomaly

portfolios (DR raw) or principal components (DR pca), I do not tune the hyper-

parameters γ1 and γ2. I choose the κ = 3 as the prior belief about the maximum

Sharpe ratio in the economy and the weight to sparsity penalty 0.05. Note that,

in the potential validation process, it does not necessarily require to maintain the

temporal order as Bergmeir and Beńıtez (2012) point out.

I use the daily anomaly returns to estimate the weights and I first orthogonalize

all anomaly returns with respect to the market using betas estimated within the past

estimation period. Given the estimated weight ŵ at the beginning of each month, I

construct the daily time-series of mean-variance efficient portfolios with Pt = ŵtFt

within that month. I repeat this step every month.

I also report the monthly turnover on the anomaly level for each MVE-optimized

portfolio. The turnover is defined as

Turnover =
1

T
ΣT
t=1ΣN

n=1|ŵn,t+1 − ŵn,t+ |, (3.5)

where wn,t+1 is the weight of anomaly n for month t + 1 after rebalancing and

wn,t+ is the weight for month t+1 before balancing, which is the weight from month

t times the aggregate return of anomaly n in month t.

Out-of-Sample Performance

(Insert Table 3.1)

Table 3.1 reports the time-series average of weights on each anomaly that the

five different MVE methods assigned based on the look-back choice (2) of using the

past 10 years to estimate the covariance and using all past periods to estimate the

mean. At the end of the table, I report the simple cross-anomaly average of the

standard deviation, max, and min. Effectively, the average standard deviation is
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a proxy for the turnover on anomaly level of each MVE portfolios. Sharpe-Ratio-

based MVE methods (SR m1top1, SR 0to1, and SR 001to01) clearly tend to have

higher turnovers than the Dimension-Reduction-based MVE methods (DR raw and

DR pca). It is also worth mentioning that these two families of methods disagree

on certain anomalies. For example, size gets relatively high weights from Sharpe-

Ratio-Based MVE methods while Dimension-Reduction-Based MVE methods put

higher weights on 1-month industry momentum.

(Insert Table 3.2)

Panel A of Table 3.2 reports the annualized average returns and Sharpe ratio of

the five MVE methods from three different look-back choices. The monthly turnover

is also reported in the last column. I also normalize the weights so that each portfolio

has the summation of the weights on 34 anomalies up to 1. If the MVE weights are

only based on the past 10 years to estimate the mean and covariance of anomaly

portfolios as in look-back choice (1), the unconstrained the Sharpe-Ratio-Based

MVE method (SR m1top1), as well as Dimension-Reduction-based MVE methods

produce low out-of-sample Sharpe ratios, all below 1, with high turnover ratios. On

the contrary, two Sharpe-Ratio-Based MVE methods with constraints on weights

(SR [0,1] and SR [0.01,0.1]) produce high out-of-sample Sharpe ratios.

If I use the past 10 years to estimate the covariance and use all past periods to

estimate the mean as in look-back choice (2), the poor performances of the uncon-

strained the Sharpe-Ratio-Based MVE method (SR m1top1), as well as Dimension-

Reduction-based MVE methods, are improved quite a lot. If I use all past periods to

estimate the mean and the covariance as in look-back choice (3), the out-of-sample

performances of all methods are highest, though the improvement is marginal from

look-back choice (2).

This result highlights the time-varying average returns in the cross-section of

anomalies and shows that it is better to use all available information to estimate

the mean. It partially shares the same insight with Kozak et al. (2017) since their

results focus on the uncertainty or the estimation error in the means of returns.

It also demonstrates the superiority of using daily data in the estimation which is

ignored by DeMiguel et al. (2007), at least within my sample of 34 anomalies.
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Panel B of Table 3.2 reports the same results with the focus on the second half

of my sample, 2000-2017. The pattern discussed above remains similar to the whole

sample while the magnitude of returns and Sharpe ratio are almost halved for most

cases.

Table 3.2 also reports the annualized average returns and Sharpe ratio of the

equal-weighted anomaly portfolio (EAR) at the end of each panel. It clearly shows

that its Sharpe ratio is relatively low compared to other MVE portfolios. Next, I

evaluate different MVE portfolios with respect to the EAR portfolio statistically.

Do they outperform the 1/N weighting significantly? Now I focus the on

the pricing ability of the näıve equal-weighted anomaly (EAR) portfolio. If its

pricing power strong, or in other words, if it is close to the mean-variance efficient

portfolio, then the intercept of regressing other MVE-optimized portfolios on EAR

shall not be significantly different from zero. Here I run the following regression:

Rt = α + βmMktRft + βeEARt + εt,

where Rt is the daily return of each of the MVE-optimized portfolios. Here I

focus on the MVE-optimized portfolios based on the look-back choice (2), using the

past 10 years to estimate the covariance and using all past periods to estimate the

mean.

(Insert Table 3.3)

Table 3.3 reports the results of the above regression for the whole sample 1983-

2017 as well as the second half-sample. The regression is based on daily returns and

the intercepts are reported as annualized returns. The standard errors with Newey

and West (1987) correction for 10 lags are reported in the parentheses.

It clearly shows that in the full sample, the EAR, together with the market excess

return, cannot price the five MVE-optimized portfolios as large positive intercepts

are left unexplained relative to the standard errors. However, if we look at the second

half sample, EAR has stronger pricing power in the last two decades. The Sharpe-

Ratio-based unconstrained portfolio (SR [-1,1]) is the only MVE-optimized portfolio

that has a significant alpha left unexplained. This is not surprising considering the
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high turnover of this MVE-optimized portfolio (see Table 3.1 and Table 3.2) and

I did not take into account the transaction cost of trading these anomalies. If

the transaction costs are accounted for, it is not clear that the Sharpe-Ratio-based

unconstrained portfolio (SR [-1,1]) can outperform the EAR.

In a nutshell, I find that in my 34-anomaly-investing setting, the näıve 1/N EAR

portfolio serves as a robust benchmark out-of-sample. This finding echoes the results

in DeMiguel et al. (2007), where they conduct a more comprehensive analysis by

comparing 14 models on 7 empirical datasets. Next, I will take this EAR benchmark

to study the intertemporal consideration of a specific anomaly investor.

3.3 Intertemporal CAPM for Market-Neutral In-

vesting

Guo (2018) provides evidence that the time-varying average correlation among

anomalies, CoAnomaly, is a strong predictor of the anomaly returns, and on the

other hand, it has a mechanical link to the portfolio volatility and predicts the fu-

ture variance of trading these anomalies as well. From an intertemporal perspective,

the first fact is an increase in the investment opportunity as the level of future re-

turn is higher, so CoAnomaly should carry a positive price of risk, holding other

things constant (discount rate channel); however, the second fact is a deterioration

of investment opportunity as the future variance is higher, so CoAnomaly should

be negatively priced across assets (volatility channel). This section makes a step

further to study the intertemporal hedging demand of the anomaly investors in a

more general framework, and most importantly, to see: first, which risk matters for

these arbitrageurs, and second, why CoAnomaly carries a negative price of risk.

As Maio and Santa-Clara (2012) argue, the ICAPM places restrictions on the

behavior of the state variable: if a state variable forecasts positive changes in the

investment opportunities, its innovation should carry a positive price of risk. On

the other hand, if the state variable forecasts the increase in the volatility, its price

of risk should be negative. Given the empirical fact that CoAnomaly innovation

is negatively priced in the cross-section as shown in Guo (2018), it suggests that

the loss of investment diversification exceeds the benefit of higher future anomaly
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returns, which is confirmed in my analysis: the discount-rate news carries a negligible

risk premium, similar to the findings in aggregate stock market by Campbell and

Vuolteenaho (2004), and CoAnomaly-driven variance news has a large and negative

risk premium.

3.3.1 Stochastic Volatility Setting

Campbell et al. (2017) consider a investor with Epstein and Zin (1991) recursive

utility and can write the investor’s value function as

Ut =
{

(1− δ)C
1−γ
θ

t + δEt[U
1−γ
t+1 ]

1
θ

} θ
1−γ

where γ is the relative risk aversion (RRA) parameter, θ = 1−γ
1−1/ψ

and ψ is the in-

tertemporal elasticity of substitution (IES). RRA measures the willingness to substi-

tute consumption across states of nature, and IES measures willingness to substitute

over time.

Epstein and Zin (1991) show that this utility specification leads to the Euler

equation

Et

[
δθ
(
Ct+1

Ct

) θ
ψ
(

1

RW,t+1

)1−θ

Rt+1

]
= 1,

where RW,t+1 = Wt+1/(Wt−Ct) is the return on a claim to the wealth, Epstein and

Zin (1991) use stock market index return as a proxy. The corresponding stochastic

discount factor can be written as

Mt+1 = δθ
(
Ct+1

Ct

) θ
ψ
(
Wt − Ct
Wt+1

)1−θ

(3.6)

Campbell and Vuolteenaho (2004) assume homoscedasticity of market returns,

so all discount rate shocks are coming from shocks to the risk-free rate and they

cannot generate time-varying risk premium. Campbell et al. (2017) expand this to

heteroscedasticity by considering time-varying volatility. They rewrite the innova-

tion in the log SDF as

mt+1 − Et[mt+1] =
θ

ψ
(ht+1 − Et[ht+1])− γ(rt+1 − Et[rt+1]) (3.7)
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where ht+1 = ln(Wt+1/Ct+1). Solving forward with the assumption that asset

returns and all state variables are jointly normal and the SDF should price the

return on the wealth portfolio 0 = lnEt[exp{mt+1 + rt+1}] = Et[mt+1 + rt+1] +

1
2
V art[mt+1 + rt+1], they get

ht+1 − Et[ht+1] = (ψ − 1)(Et+1 − Et)
∞∑
j=1

ρjrt+1+j

+
1

2

ψ

θ
(Et+1 − Et)

∞∑
j=1

ρjV art+j[mt+1+j + rt+1+j]

= (ψ − 1)NDR,t+1 +
1

2

ψ

θ
NRISK,t+1,

(3.8)

where ρ is the loglinearization parameter2, the discount rate news NDR,t+1 =

(Et+1−Et)
∑∞

j=1 ρ
jrt+1+j, and the news of future riskNRISK,t+1 = (Et+1−Et)

∑∞
j=1 ρ

jV art+j[mt+1+j+

rt+1+j].

Rearrange above two equations with the present-value identity that rt+1−Et[rt+1] =

NCF,t+1−NDR,t+1 (see Campbell and Shiller (1988), Campbell (1991) and Campbell

and Vuolteenaho (2004)), they get

mt+1 − Et[mt+1] = −γ[rt+1 − Et[rt+1]]− (γ − 1)NDR,t+1 +
1

2
NRISK,t+1

= −γNCF,t+1 − (−NDR,t+1) +
1

2
NRISK,t+1,

(3.9)

where the cash-flow news NCF,t+1 = (Et+1−Et) =
∑∞

j=1 ∆dt+1+j with ∆d the log

dividend growth.

Campbell et al. (2017) further write the news about the future risk into the news

about the future volatility by assuming that there is a common risk component that

governs time-variation in all shocks, which will drive the log SDF in a linear way in

2Campbell et al. (2017) show that ρ ≈ 1 − C/W , and the economic meaning of which is how
much of wealth in proportion is reinvested each period. I set it to be 0.95 per annual, equivalently
0.98726 per quarter.
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their log-linear model.

NewsRisk,t+1 = (Et+1 − Et)
∞∑
j=1

ρjV art+j[mt+1+j + rt+1+j]

= (Et+1 − Et)
∞∑
j=1

ρj(ωσ2
t+j)

= ω(Et+1 − Et)
∞∑
j=1

ρj(σ2
t+j)

= ωNewsV olatility,t+1 (or ωNewsV,t+1).

(3.10)

where the ω solves

ωσ2
t = (1− γ)2V art[NCF,t+1] + ω(1− γ)Covt[NCF,t+1, NV,t+1] +

1

4
ω2V art[NV,t+1].

(3.11)

Following the moment condition that the SDF prices all assets Et[Mt+1Ri,t+1] = 0,

the asset pricing equation in a beta representation form can be written as:

Et[Ri,t+1 −Rf,t+1] = γCovt[ri,t+1 − rf,t+1, NewsCF,t+1]

+ Covt[ri,t+1 − rf,t+1,−NewsDR,t+1]− 1

2
ωCovt[ri,t+1 − rf,t+1, NewsV,t+1]

= γV art(rM,t+1)
Covt[ri,t+1 − rf,t+1, NewsCF,t+1]

V art(rM,t+1)

+ V art(rM,t+1)
Covt[ri,t+1 − rf,t+1,−NewsDR,t+1]

V art(rM,t+1)

− 1

2
ωV art(rM,t+1)

Covt[ri,t+1 − rf,t+1, NewsV,t+1]

V art(rM,t+1)

= γV art(rM,t+1)× βi,t,CFM

+ V art(rM,t+1)× βi,t,DRM

− 1

2
ωV art(rM,t+1)× βi,t,VM ,

(3.12)
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where the betas are defined as following,

βi,t,CFM ≡ Covt[ri,t+1 − rf,t+1, NewsCF,t+1

V art(rM,t+1)

βi,t,DRM ≡ Covt[ri,t+1 − rf,t+1, NewsV,t+1]

V art(rM,t+1)

βi,t,VM ≡ Covt[ri,t+1 − rf,t+1, NewsV,t+1]

V art(rM,t+1)
.

(3.13)

The above beta representation can be conditioned down to obtain the uncondi-

tional implications, which are estimated and tested by Campbell et al. (2017).

3.3.2 Volatility Decomposition and Specification

I further divide the variance of the diversified portfolio into variances and covariances

of its constituents. Here, I derive the case of equal-weighted constituents; however,

this can be extended to value-weighted and other-weighted easily3.

NewsV olatility,t+1 = (Et+1 − Et)
∞∑
j=1

ρjV art+j[
1

N

N∑
n=1

rn,t+j+1]

= (Et+1 − Et)
∞∑
j=1

ρj(
N∑
n=1

1

N2
V art+j[rn,t+j+1]

+
∑
l 6=m

1

N2
Covt+j[rl,t+j+1, rm,t+j+1])

= (Et+1 − Et)
∞∑
j=1

ρj (
1

N

∑N
n=1 V art+j[rn,t+j+1]

N

+
N − 1

N

∑
l 6=mCovt+j[rl,t+j+1, rm,t+j+1]

N(N − 1)
)

= (Et+1 − Et)
∞∑
j=1

ρj(
1

N
Avg.Variancet+j+1 +

N − 1

N
Avg.CoVariancet+j+1).

(3.14)

This shows that volatility news can be decomposed into two parts — news about

average variance and news about average covariance. Moreover, as the equation

above shows, when the portfolio is fully diversified (i.e. when N is large enough),

the effect from the average variance converges to zero and the average covariance

3A simple example: consider a portfolio with two constituents, A and B, with weights 1/3 and
2/3, respectively. It can be viewed as an equal-weighted portfolio with constituents A, 1

2 B, and 1
2

B.
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dominates the whole effect. As the covariance can be decomposed into average

variance and average correlation, I make further assumptions about the constant

variances or the constant correlations across time and assets to study the different

effects from either the average variance or the correlation. This imperfect simplifi-

cation ignores the potential comovement between the level of average variance and

the level of average correlation, but it may help me study the two effects separately

or at least, provide suggestive evidence about which time-varying component in the

aggregate variance plays a stronger role. Therefore, when N is large,

NewsV olatility,t+1 ≈ (Et+1 − Et)
∞∑
j=1

ρjAvg.CoVariance

Specification 2 : Constant corr. = (Et+1 − Et)
∞∑
j=1

ρj ×Avg.Correlation×Avg.Variancet+j+1

Specification 3 : Constant var. = (Et+1 − Et)
∞∑
j=1

ρj ×Avg.Variance×Avg.Correlationt+j+1.

(3.15)

In the estimation of the intertemporal CAPM for market neutral investing, I

present results for three specifications: Specification 1, I use the time-varying vari-

ance of aggregate portfolio return as the stochastic volatility measure; Specification

2, I assume that the correlation structure between anomalies is constant through

time and across asset pairs and use the time-varying average variance for anomalies

as the stochastic volatility measure; Specification 3, I assume the average variance

for anomalies is constant through time and across assets, and use the time-varying

average correlation (CoAnomaly) as the stochastic volatility measure.

Note that through these specifications, instead of perfectly modeling the volatility

dynamic, I am effectively searching for a better4 proxy for the marginal utility (SDF

mt) of the investor from the data, since the definition of news of future risk is

NRISK,t+1 = (Et+1−Et)
∑∞

j=1 ρ
jV art+j[mt+1+j +rt+1+j] (see Equation 3.9). In other

words, I am exploring which variation is of concern to the investor, by observing the

price dynamics of the assets held by the investor.

In the appendix, I take another approach to isolate the effect on the aggregate

4In the sense that it has a stronger power to price the assets.
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volatility coming from CoAnomaly, by constraining the VAR estimation and shutting

down the feedback loop of the variance. I find that the two approaches generate

consistent results.

VAR Specification and Estimation Procedure for Volatility

xt+1 = x +Bxt + σtut+1, (3.16)

Here, I estimate the volatility shocks on the aggregate level separately to avoid

the covariance complication from bottom-up approach; however, in the appendix,

I provide evidence that this separated estimation generates consistent results. I

estimate a first-order aggregate VAR as in Equation 3.16, where xt+1 is a 5 × 1

vector of state variables with the following order:

xt+1 = [ EV olt+1 V St+1 PEt+1 MktRft+1 DEFt+1 ]′, (3.17)

and given this structure, news about the future expected volatility (EV ol) can

be written as

NEV ol,t+1 = e′1ρB(IK − ρB)−1σtut+1, (3.18)

where e′1 is a K × 1 vector, whose first element is 1 and others 0, and IK is a

identity matrix. K is the number of state variables in the VAR system, and in this

case, K equals 5.

The first variable is the expected volatility of equal-weighted anomaly return

EV olEAR,t+1. This variable is meant to capture the conditional forward-looking

volatility of the E.A.R. in the following period, so the innovation to this variable

naturally links to the volatility news term above, NewsV . The estimation procedure

follows Campbell et al. (2017) closely by using a two-stage VAR regression with

quarterly data. To estimate the EV olEAR,t+1, I run a regression of the realized

volatility RV olEAR,t+1 on RV olEAR,t as well as other state variables at time t, and

then using the predicted value for R̂V olEAR,t+1 as the EV olEAR,t, which only depends

on information available at time t.

Other aggregate variables include: small-stock value spread (VS), which is adapted

137



from the literature (see Campbell and Vuolteenaho (2004) and Campbell et al.

(2017))5; PE ratio, which is the cyclically adjusted price-to-earnings ratio, down-

loaded from Shiller’s website; market excess return (MktRf); default spread (DEF),

defined as the difference between the log yield on Moody’s BAA and AAA bonds,

downloaded from the Federal Reserve Bank of St. Louis, which is known to track

the aggregate market returns and default probabilities, reflecting news about future

volatility.

In the first stage of estimating the expected volatility, I deviate from the standard

OLS in three ways: first, given that heteroskedasticity is modeled directly, I estimate

this regression using weighted least square (WLS), where the weight of each obser-

vation pair is based on the realized volatility in the previous quarter; second, I make

sure the predicted value (expected volatility) is positive by winsorizing the fitted

values, which are negative or positive but close to zero; third, I shrink the weight

towards the equal weight by choosing a shrinking ratio 0.9, which means 90% of the

weight is based on past volatility. The last step is to make sure my results are not

driven by observations in the low volatility environment. In the second stage, I use

the inverse of expected volatility in time t to weight the regression with dependent

variables in time t+1, as in Equation 3.17. The estimation results are reported in

Table 3.4.

(Insert Table 3.4)

3.3.3 Bottom-Up VAR Approach for Rebalanced Portfolios

Cohen et al. (2003) argue that for rebalancing portfolios, the aggregate VAR ap-

proach will generate different interpretations from simple news decomposition. Lochstoer

and Tetlock (2017) also point this out by providing a model to show that inferring

cash flow and discount rate shocks directly from a VAR estimated using returns

and cash flows of rebalanced anomaly portfolios (trading strategies) obfuscates the

underlying sources of anomaly returns. In their Appendix, they provide extreme ex-

amples in which firms’ expected cash flows are constant, but direct VAR estimation

suggests that all return variation in the rebalanced anomaly portfolio comes from

5The value spread is also a strong predictor of the value premium, which can explain some part
of the premia for many anomalies, since many of them are somehow ‘value-ish’.
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cash flow shocks. They suggest using the stock-level decomposition through a panel

VAR following Vuolteenaho (2002), and then aggregating the stock-level cash flow

and discount-rate news to the portfolio level. This consideration fits the anomaly

case that I am studying. Therefore, I follow their procedure and incorporate tech-

niques from other papers in this literature, including Vuolteenaho (2002), Cohen

et al. (2003), Campbell et al. (2009), and Antón (2011).

Firm-Level VAR I first conduct the firm-level VAR, mainly following Lochstoer

and Tetlock (2017)6. Vuolteenaho (2002) derives the present-value decomposition

on stock level by assuming that clean-surplus accounting and the log-linearization

both hold as Ohlson (1995). Therefore, I measure log clean-surplus return on equity

lnROECS as:

lnROECS
i,t+1 ≡ ri,t+1 + ρbmi,t+1 − bmi,t. (3.19)

Specification I assume the firm-level expected log returns are linear functions

with observables (X, including firm-level observable vector Xi,t and aggregate level

observable vector XA,t).

Zi,t =


ri,t − ri,t
Xi,t −X i,t

XA,t −XA,t


The vector evolves according to a VAR(1):

Zi,t+1 = AZi,t + εi,t+1, (3.20)

where εi,t+1 is a vector of shocks to each state variable. I assume all firms are

following the same VAR(1) process and the firm-level characteristics help to capture

the heterogeneity between different firms.

After I estimate the VAR system, I can back out the discount rate shocks as

implied by the present-value relation (see Campbell and Shiller (1988) and Campbell

6The main difference from Lochstoer and Tetlock (2017) is that I conduct the analysis on
quarterly basis as opposed to annual basis.
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(1991)):

DRShock
i,t+1 = (Et+1 − Et)

∞∑
j=2

ρjri,t+j

= e′1

∞∑
j=1

ρjAjεi,t+1

= e′1ρA(IK − ρA)−1εi,t+1.

(3.21)

I can extract the cash-flow news by subtracting the minus discount-rate news

from discount rate shocks following ri,t+1 − Etri,t+1 = CF Shock
i,t+1 −DRShock

i,t+1 :

CF Shock
i,t+1 = ri,t+1 − Etri,t+1 +DRShock

i,t+1

= e′1

∞∑
j=1

ρjAjεi,t+1

= e′1ρ(IK + A(IK − ρA)−1)εi,t+1.

(3.22)

Specification and Estimation I include the firm log returns, clean-surplus earn-

ings, log book-to-market ratio, and two characteristics including momentum and

iVol, as well as aggregate variable CoAnomaly that I am interested in. All firm-level

variables apart from the first three are normalized to unconditional mean zero and

standard deviation one. I do not allow feedback from firm-level shocks to aggregate

levels, so I set the lower-left part of matrix A to zero.

To separate the different predictive effects for stocks in the anomaly long legs and

short legs, I also include the interaction between CoAnomaly and anomaly dummy

for long legs or short legs: the long leg dummy is 1 if the stock at that period

is classified as a long leg stock by aggregating signals from 34 anomalies, and 0

otherwise; the short leg dummy is 1 if the stock at that period is classified as a short

leg stock by aggregating signals from 34 anomalies7.

To avoid possible complications with the use of the log transformation, I unlever

the stock by 10 percent following the standard procedure in the literature, i.e., I

define the stock return as a portfolio consisting of 90 percent of the firm’s common

stock and 10 percent investment in Treasury Bills. Following the same concern, I

7I use 4 out of 34 as threshold for long leg classification, and 8 out of 34 as threshold for short
leg classification, as short leg stocks are more concentrated. Though these choices are somewhat
ad hoc admittedly, my results are robust of variations in these thresholds.
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define the log book-to-market ratio as bm ≡ log(0.9×BE+0.1×ME
ME

).

After demeaning the data in each cross-section, I use WLS to estimate each row

in the A matrix of the VAR. The weight is the product of two measures: the inverse

of the number of stocks in each cross-section, which ensures that the estimates are

not driven by the recent years with a growing number of traded firms, and the

inverse of the expected volatility estimated from the volatility estimation step, as

the heteroskedasticity is modeled directly. I impose zero intercepts on all state

variables, and my results are robust to allowing intercepts.

(Insert Table 3.5)

Table 3.5 reports the estimation of the transition matrix A in Equation 3.20

and the news functions for discount-rate and cash-flow news. The t-stats are based

on the double-clustered standard errors following Petersen (2009). The results are

in line with the literature: stocks with a high book-to-market ratio, high past re-

turns, and low idiosyncratic volatility have higher expected returns. Importantly,

the predictability result shows up in the firm-level analysis as the interaction be-

tween CoAnomaly and the short leg dummy carries a negative coefficient, which

means when CoAnomaly is high, stocks in the anomaly short legs will experience

low returns.

Portfolio Level The discount-rate news (cash-flow news) on long-short portfolio

level is defined as the difference in the weighted average discount-rate news (cash-

flow news) between the long leg and short leg for each anomaly.

DRp,t+1 = ≡
∑

i∈long leg of Anomaly p

wpiDRi,t+1 −
∑

i∈short leg of Anomaly p

wpiDRi,t+1

CFp,t+1 = ≡
∑

i∈long leg of Anomaly p

wpiCFi,t+1 −
∑

i∈short leg of Anomaly p

wpiCFi,t+1.

(3.23)

Then I define the discount-rate news (cash-flow news) of the E.A.R. as the equal-

weighted average of the discount-rate news (cash-flow news) from the 34 anomalies.

I also define the shock to the E.A.R. as the difference between the cash-flow news
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and the discount-rate news:

DRShock
EAR,t+1 ≡

∑
34 Anomalies

DRShock
p,t+1

CF Shock
EAR,t+1 ≡

∑
34 Anomalies

CF Shock
p,t+1

EARt+1 − Et[EARt+1] ≡ CF Shock
EAR,t+1 −DRShock

EAR,t+1.

(3.24)

3.3.4 Estimation Result

(Insert Table 3.6)

I extract the volatility news for three specifications as mentioned before: Speci-

fication 1, the aggregate variance of E.A.R.; Specification 2, the average of the 34

anomalies’ variance, scaled by the unconditional mean of CoAnomaly; Specification

3, CoAnomaly, scaled by the unconditional average of the 34 anomalies’ variance.

Cash-flow news and discount-rate news of the E.A.R. are generated by summing up

the cash-flow news and discount-rate news on the stock level as discussed before8.

Panel A of Table 3.6 shows the correlations among different news. For the E.A.R.,

the unexpected return shock is mainly driven by cash flow news and there is a neg-

ative correlation between cash flow news and discount rate news. Both results are

broadly consistent with the findings in Lochstoer and Tetlock (2017). Within the

three specifications of volatility news, the average variance news is strongly cor-

related with the aggregate variance news, which could explain why the aggregate

variance does not predict the future returns since the information it contains is

contaminated by the average variance. On the other hand, CoAnomaly news is

negatively correlated with two variance news. This pattern can also be confirmed

in Figure 3.1, which draws the smoothed news terms for the three volatility spec-

ifications, and shows that the CoAnomaly news behaves differently from the two

variance measures.

(Insert Figure 3.1)

8The cash flow and discount rate news reported are based on the estimation specification
weighted according to aggregate volatility, and if I use other specifications, they have little ef-
fect on my results.
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This figure plots the time-series of the smoothed volatility news from three different
specifications: aggregate variance (solid black), average-variance-driven (thick dashed red), and
CoAnomaly-driven (thin dashed green). The decay parameter is set to 0.08 per quarter, and the
smoothed news series is generated as MAt(N) = 0.08Nt + (1− 0.08)MAt−1(N).

Figure 3.1: Smoothed Volatility News

Test Assets I use a total of 68 portfolios, which are the long legs and short legs

of the 34 stock market anomalies, as the test assets to estimate the ICAPM model.

Since I am studying the market-neutral investment universe, I removed the market

component for each test asset by subtracting its in-sample market beta times the

contemporaneous market return in each period.

Beta Estimation Similar to Campbell and Vuolteenaho (2004) and Campbell

et al. (2017), I divide all three covariances by the variance of the E.A.R. shocks to

compare to previous research:

βi,CFEAR ≡
Cov(ri,t, CF

Shock
EAR,t)

V ar(rEAR,t − Et−1[rEAR,t])

βi,DREAR ≡
Cov(ri,t,−DRShock

EAR,t)

V ar(rEAR,t − Et−1[rEAR,t])

βi,VEAR ≡ Cov(ri,t, NVEAR,t)

V ar(rEAR,t − Et−1[rEAR,t])
.

(3.25)

The estimated betas are reported in the appendix (see Panel B of Table 3.8). I

find that the beta spreads between long legs and short legs are large and positive

for both cash-flow news and discount rate news. I also find the volatility beta for
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the long-short anomalies is negative on average, which means these anomalies are

betting on the CoAnomaly risk (as the CoAnomaly risk premium is negative as

well). The empirical fact that beta spreads are large between long legs and short

legs also partially alleviates the concern of the weak factor, as Bryzgalova (2014)

points out.

Model Estimation

Ri = g1β̂i,CFEAR + g2β̂i,DREAR + g3β̂i,VEAR + ei (3.26)

I estimate the above beta representation using GMM9, with moment conditions

listed in the appendix. This is equivalent to estimating the model parameter γ

using the moment condition in Equation 3.13. I estimate the risk premia g as

well as evaluate the pricing performance of the following asset pricing models: 1)

the traditional ‘CAPM’ in anomaly universe by constraining the risk premia on the

cash-flow news and discount-rate news to be the same; 2) the two-beta intertemporal

CAPM by constraining the risk premium of discount-rate news to be the variance of

E.A.R. shocks (0.0008 ≈ 0.0282); and 3) the three-beta intertemporal CAPM for 3

different volatility specifications by constraining the risk premium of discount-rate

news to be the variance of E.A.R. and imposing the condition in Equation 3.11.

Panel B of Table 3.6 reports the estimation results. I find that the ‘vanilla

CAPM’ works much better in the market-neutral investment universe than in the

aggregate stock market, with a significantly positive price of risk which is close

to the unconditional E.A.R.. This is not surprising considering the E.A.R. is the

summation of these 34 anomalies as well as the sophisticated nature of the investors

who are betting on them. Two-beta ICAPM only marginally improves the pricing

power, as I find that the cash-flow component is dominating the premia from the

anomaly returns.

Across three specifications of volatility news, I only find the volatility premium

to be large and significant when CoAnomaly is used to proxy the risk, but not the

aggregate variance or the average variance. This result is also consistent with the

9The model follows a linear factor structure (with the caveat that both raw returns and log
returns show up), given the news terms.
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predictive result in Guo (2018), where I show that only CoAnomaly remains a strong

predictor of aggregate variance in the long-term. I also report the constrained and

unrestricted risk premia in panel C of Table 3.6, which do not show many differences.

Meanwhile, I find that on average, these anomalies have negative loadings on the

CoAnomaly-driven variance news (shown in the Table 3.8 in the appendix), which

means these anomalies do gain higher returns by taking CoAnomaly risk premium.

In other words, the CoAnomaly risk premium can be a potential explanation of why

the ‘CAPM-alphas’ in these anomalies are not driven to zero by arbitrageurs, which

is new evidence supporting limits of arbitrage. On average, around one eighth of

the average anomaly return is explained by the premium on the CoAnomaly-driven

variance news10.

The implied risk aversion coefficient γ is large (around 20) compared to the one

estimated in the aggregate stock market. This is not surprising since the type of

investor that I study is famous for generating high returns with risk management11.

It may also be that the estimation of the risk aversion coefficient is contaminated

by the high leverage that arbitrageurs usually take12. Note that the overidentifying

test (equivalent to testing the pricing errors equal to zero) is still rejected; however,

it is much closer to no-rejection than testing ICAPM in the aggregate stock market.

3.3.5 Robustness: Alternative Specification of the Volatility

Decomposition

To examine the robustness of my findings with the CoAnomaly-driven volatility

specification from the simple decomposition approach, I consider another approach

to extract the time-variation in aggregate volatility induced by CoAnomaly. I focus

10CoAnomaly risk premium in E.A.R. = (CoAnomaly-driven variance beta spread -0.04 - 0.07
= -0.11) * (Risk premium on CoAnomaly-driven variance news -0.0214) = 0.00235. The quarterly
E.A.R. return premium can be calculated by either checking the 1-beta CAPM risk premia (0.0163)
or by checking the Table 1.15 ((1+0.0055)3−1 = 0.0166). Therefore, the proportion of CoAnomaly
risk premium over the total E.A.R. return premium is 0.00235

0.0166 = 0.142.
11γt of a mean-variance agent who always holds the risky assets, as in Merton (1969), needs to

satisfy Et[Rt+1] = γtσ
2
t , which indicates γt =

Et[Rt+1]

σ2
t

.

12Rearrange the equation above, 1 =
Et[Rt+1]

σt

1

σtγt
. The first term is the Sharpe ratio of the risky

portfolio, which will not be affected by a single investor. If the investor is taking higher leverage,
her portfolio volatility goes up and obfuscates the estimation of γt in the second term. Effectively,
a high risk aversion coefficient might incorrectly capture the high leverage that arbitrageurs take
but is not observable to us.
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on the aggregate variance of E.A.R. and impose constraints in the VAR estimation

to isolate the effect from CoAnomaly.

I follow the same two-stage procedure to estimate the volatility news. However,

here I use only one volatility, the aggregate variance (Aggr.Var) of E.A.R., and in the

VAR system, I also include CoAnomaly as a state variable. I estimate the following

first-order VAR:

xt+1 = x +Bxt + σtut+1,

where the state variables include:

xt+1 = [EV ol(Aggr.V ar)t+1 V St+1 PEt+1 MktRft+1 DEFt+1 CoAnomalyt+1]′.

I estimate the volatility news for three cases by imposing different restrictions

on estimating the transition matrix B: (1) no-constraint, where I do not impose

any constraint on estimating it; (2) restricted, where I do not allow the aggregate

volatility feed back to itself and effectively I restrict the autoregressive coefficient

on aggregate volatility to zero; (3) no-feedback, where I do not allow the aggregate

volatility feedback to any state variable, which means I restrict the first column of

B to be zero.

(Insert Table 3.7)

In the Panel A of Table 3.7, I report the news functions e′1ρB(IK − ρB)−1 that

map shocks to different state variables to the volatility news for above three cases.

It shows that, in the no-constraint case, the volatility news is dominated by the

negative shock to the expected aggregate variance due to the strong mean-reverting

feature of aggregate variance; however, if I shut down the feedback loop within the

aggregate variance itself, as shown in the restricted case, the effect becomes smaller,

but still gets transitioned from other state variables; in the no-feedback case, I do

not allow the aggregate variance feedback to any state variable, which yields a zero

loading on the aggregate variance shock. In the last case, most of the change to

future volatility comes from CoAnomaly shock, and this effectively carries the same
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logic when focusing on the only the CoAnomaly-driven volatility (Specification 3 in

the main result).

Panel B of Table 3.7 confirms the consistency between the two approaches: the

time-series correlation between estimated volatility news of the CoAnomaly-driven

specification and of the no-feedback case is close to 1. In nontabulated results, I

also find the pricing effects are similar if I use the estimated volatility news from the

no-feedback case. However, if the feedback from aggregate variance is allowed (fully

or partially), the estimated volatility news behaves quite differently, even when I

include CoAnomaly as a state variable. This is consistent with Pollet and Wilson

(2010)’s argument that information about the risk from the aggregate variance is

contaminated.

3.3.6 Interpretation of the Market-Neutral Investing ICAPM

In a nutshell, the special investor that I am studying 1) cares about the cash-

flow news and CoAnomaly-driven volatility news and 2) does not pay a premium

for assets that comove with the discount-rate news. These two facts also justify

why CoAnomaly carries a negative price of risk given it positively predicts future

anomaly returns: for the market-neutral investor, it is the volatility of the return

(second moment of investment opportunity) that matters not simply the level (first

moment of investment opportunity).

However, extrapolation of these results must be conducted with care. Camp-

bell et al. (2017) interpret their results as a microeconomic description about the

intertemporal considerations of conservative long-term equity investors (including

institutions such as pension funds and endowments) but not as a description of

a representative-agent model of general equilibrium in financial markets. This is

because their model and calibration depend on the assumption that the long-term

equity investor who is content to hold the aggregate stock market and her average

consumption-wealth ratio is relatively stable. Unlike the aggregate stock market, my

ICAPM setting in anomaly investing relies on a stronger assumption that assumes

the arbitrageur studied here always holds the equal-weighted anomaly portfolio, with

another implication following this assumption being that this arbitrageur does not

manage her exposure to these portfolios according to stochastic volatility. This is
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a compromise given the fact that there is no ‘value-weighted’ portfolio of different

anomalies, and researchers are agnostic about how much capital is allocated to each

strategy even in the aggregate for all arbitrageurs as a whole.

Consequently, the result I show can only be interpreted as follows: if there is an ar-

bitrageur chasing market neutrality by always holding these stock market anomalies

with equal weight, how her SDF changes given the behavior of these anomaly assets,

to what extent can the intertemporal considerations in the time-varying investment

opportunity (level and volatility) explain the cross-section of anomaly returns, and

most importantly, which part of volatility does she actually care about. Therefore,

the implied risk-aversion coefficient from the estimated risk premia cannot be in-

terpreted as the risk-aversion coefficient of a representative arbitrageur in a general

equilibrium sense, given the limits to interpreting the risk-aversion coefficient of a

representative agent in Campbell et al. (2017).

3.4 Conclusion

I first show that the näıve 1/N equal-weighted investing in 34 anomalies do serve

as a robust benchmark. Five mean-variance-efficient-optimized portfolios, including

three Sharpe-Ratio-based with weight constraints and two Dimensional-Reduction-

based, generate higher Sharpe-ratio in the full sample but they also come with the

cost of higher turnover ratio. Moreover, in the recent 18 years, this outperformance

is not robust comparing with the equal-weighted anomaly return (EAR) portfo-

lio. I also find that by taking an unconditional historical mean will provide better

estimates of future anomaly returns than using a rolling-window approach. That

being said, the starting point of these results is based on the anomalies already

constructed, so potential gains can still be exploited from the bottom-up portfolio

construction on stock level (see Brandt et al. (2009) for an example).

I next use the EAR portfolio as a conservative benchmark to study the intertem-

poral consideration of anomaly investors in an intertemporal CAPM framework with

stochastic volatility. The model estimation shows the cash-flow news carries a large

and positive risk premium and the premium on discount-rate news is negligible. As

for the volatility news, I find evidence that only the CoAnomaly-induced part in the
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aggregate variance of the equal-weighted anomaly portfolio carries a negative and

significant price of risk.

These results echo the findings in Guo (2018) and suggest that the comovement

among these stock market anomalies is an important determinant of the marginal

utility of arbitrageurs. Though the drivers of the time-varying comovement are

not explored here, future research may study the links among the comovement,

fundamental risks and the trading behavior of arbitrageurs.
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3.5 Appendix: Estimation Procedure in the ICAPM

Here, I will discuss several issues in detail about the estimation of the intertemporal

CAPM.

Average Variance and Correlation Decomposition I make two sets of strong

assumptions to separate the effects from average variance and from the correlation.

This is a compromise due to the difficulty in modeling the time-variation of both

average variance and correlation at the same time in the ICAPM. So I choose to

take a short-cut to study the relative importance of each component in the total

volatility. As shown in Guo (2018), the changes in CoAnomaly and changes in the

average variance of each anomaly can explain more than 80% of the changes in

E.A.R. variance. So this simplification covers a large portion of the time-variation

in volatility.

Specification 2 — I assume that the correlation structure between anomalies is

constant through time and across asset pairs, and all assets have the same conditional

variance σ2
t+j+1. The second assumption can accommodate the case that assets have

different conditional variance by splitting assets of high variance into smaller pieces.

Avg.CoVariancet+j+1 =

∑
l 6=mCovt+j[rl,t+j+1, rm,t+j+1]

N(N − 1)

=

∑
l 6=m σl,t+j+1σm,t+j+1ρlm

N(N − 1)

(Equal Conditional Variance) =

∑
l 6=m σt+j+1σt+j+1ρlm

N(N − 1)

= σ2
t+j+1 ×

∑
l 6=m ρlm

N(N − 1)

= σ2
t+j+1 × Correlation,

(3.27)

where Correlation is the average pairwise correlation between assets. In the

empirical part, I use the unconditional sample mean of CoAnomaly to proxy this.

Specification 3 — I assume the variance of each anomaly is identical and con-

stant through time and across assets, and use the time-varying average correlation
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(CoAnomaly) as the stochastic volatility measure.

Avg.CoVariancet+j+1 =

∑
l 6=mCovt+j[rl,t+j+1, rm,t+j+1]

N(N − 1)

=

∑
l 6=m σl,t+j+1σm,t+j+1ρlm

N(N − 1)

(Constant Conditional Variance) =

∑
l 6=m σ

2ρlm,t+j+1

N(N − 1)

= σ2 ×
∑

l 6=m ρlm,t+j+1

N(N − 1)

= σ2 × Avg-Correlationt+j+1,

(3.28)

where Avg-Correlationt+j+1 is the average pairwise correlation between assets at

each point of time, and in my setting, it is exactly the CoAnomaly measure.

Estimation of Model Parameters I do not follow Campbell et al. (2017) to

estimate all three news terms in a single aggregate VAR. As argued before, unlike the

aggregate stock market portfolio, the aggregate VAR approach on anomaly portfolios

are facing much more serious problems than the market portfolio due to the changing

weights and rebalancing of the constituents. However, if I conduct the bottom-up

approach by extracting the discount-rate news and cash flow news on stock level

and then summing them up to portfolio level, I face two challenges which do no

show up in their setting: the estimation of model parameter ω and the log return

decomposition.

Parameter omega ω in the model have to satisfy the following condition:

ωσ2
t = (1− γ)2V art[NCF,t+1] + ω(1− γ)Covt[NCF,t+1, NV,t+1] +

1

4
ω2V art[NV,t+1].

(3.29)

As shown in the online appendix of Campbell et al. (2017), the above equation

can be directly mapped to the coefficients estimated the aggregate VAR. Since I do

not estimate the aggregate VAR, I cannot follow this approach. Instead, I move the

conditional variance term to the right-hand side and then use the sample moments
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to the scaled variances and covariances of different news to estimate ω.

ω = (1− γ)2V art[NCF,t+1]

σ2
t

+ ω(1− γ)
Covt[NCF,t+1, NV,t+1]

σ2
t

+
1

4
ω2V art[NV,t+1]

σ2
t

= (1− γ)2V art[
NCF,t+1

σt
] + ω(1− γ)Covt[

NCF,t+1

σt
,
NV,t+1

σt
] +

1

4
ω2V art[

NV,t+1

σt
].

(3.30)

So the estimated ω̂ and estimated γ̂ in my setting need to satisfy the sample

moments of the above equation:

ω̂ = (1−γ̂)2V̂ ar[
NCF,t+1

σt
]+ω̂(1−γ̂)Ĉov[

NCF,t+1

σt
,
NV,t+1

σt
]+

1

4
ω̂2V̂ ar[

NV,t+1

σt
], (3.31)

which will have two solutions. Campbell et al. (2017) further show that ω̂ is the

one with the negative sign on the radical13

ω̂ =

[1− (1− γ̂)Ĉov[
NCF,t+1

σt
,
NV,t+1

σt
]]

1
2
V̂ ar[

NV,t+1

σt
]

−

√
[1− (1− γ̂)Ĉov[

NCF,t+1

σt
,
NV,t+1

σt
]]2 − (1− γ̂)2V̂ ar[

NV,t+1

σt
]V̂ ar[

NCF,t+1

σt
]

1
2
V̂ ar[

NV,t+1

σt
]

.

Note that this equation requires an existence condition on γ, which can be sim-

plified as:

1− 1

(ρn + 1)σcfσv
≤ γ ≤ 1− 1

(ρn − 1)σcfσv
(3.32)

where ρn is the correlation of the cash-flow and volatility news, σcf = V art[
NCF,t+1

σt
]

and σv = V art[
NV,t+1

σt
]. I use the sample moments to get the bound14 for γ, which

13Inserting the sample moments for CoAnomaly-driven variance news: ω̂ =
[1− (1− 19.625) ∗ 0.0922−

√
[1− (1− 19.625) ∗ 0.0922]2 − (1− 19.625)2 ∗ 0.011881 ∗ 0.394384

1
2 ∗ 0.011881

=

53.47; however, for aggregate variance news and average variance news, the sample moment
conditions are binding, so the GMM estimates are fitting the cash-flow news, which is the most
prominent factor in the stock market anomaly space.

14Inserting the sample moments: γ ≤ 1− 1
(0.316−1)×0.628×0.109 = 22.35786
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requires it no larger than 22.36.

GMM Estimation Here are the moment conditions in estimating the ICAPM

conditioning on estimated news terms:

g(4N+2)×1(b) =



E
[
βi,CFEAR −

Cov(ri,t, CF
Shock
EAR,t)

V arEAR

]
E
[
βi,DREAR −

Cov(ri,t,−DRShock
EAR,t)

V arEAR

]
E
[
βi,VEAR −

Cov(ri,t, NVEAR,t)

V arEAR

]
E
[
Ri − g1βi,CFEAR − g2βi,DREAR − g3βi,VEAR

]
E
[
g2 − V arEAR

]
E
[
κ(g1, g3)

]


,

where the first three are defining three betas for N assets, next one is the pricing

condition, and the last two are conditions from the model. κ(g1, g3) = 0 is equivalent

to the equation between γ and ω since effectively g1 = γVEAR and g3 = −1
2
ωVEAR,

analogous to Equation 3.12.

I then use a selection matrix a(3N+5)×(4N+2) to define which linear combination of

g(4N+2)×1(b) will be set to zero:

a(3N+5)×(4N+2) =


I3N×3N 03N×N 03N×2

03×3N β′N×3 03×2

02×3N 02×N C2×2

 ,
where βN×3 = [βCF,N×1 βDR,N×1 βV,N×1] is the three-beta matrix, and C2×2

is a choice matrix by selecting conditions when estimating the model. If I want

to estimate the ICAPM, I choose C2×2 =

1 0

0 1

, which effectively impose both

conditions from the ICAPM; if I want to estimate the constrained model, I choose

C2×2 =

1 0

0 0

, which only imposes the premium on the discount rate news equals

the variance of E.A.R.; if I want to estimate the unconstrained model, I choose

C2×2 =

0 0

0 0

, which imposes no constraints on the risk premia. In the first

two cases, β′N×3 in a(3N+5)×(4N+2) will be modified accordingly to accommodate the
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change in numbers of moment conditions, for example, if I chose C2×2 =

1 0

0 0

, the

second row of β′N×3 will be set to zero because I estimate g2 from E
[
g2 − V arEAR

]
instead of E

[
Ri − g1βi,CFEAR − g2βi,DREAR − g3βi,VEAR

]
.

The parameter estimates will be b̂ such that

a(3N+5)×(4N+2) × g(4N+2)×1(b̂) = 0(3N+5)×1.

Note that the moments g(4N+2)×1(b) and the choice matrix C are just for the

simplicity of illustrative purposes, and in the estimation, I delete irrelevant moments

from the system, so the J-test is equivalent to testing the pricing errors to be zero

for all test assets.

Log Returns I report the variance-covariance matrix for the scaled news in Ta-

ble 3.8. I find that the scaled variance of E.A.R. shock happened to be close to

1, which is the implication of the model structure. However, I do not impose this

restriction as I estimate the volatility news and cash-flow and discount-rate news in

two VAR systems. So the result suggests that separating the news estimation does

not generate modeling inconsistency.

(Insert Table 3.8)

The portfolio cash flow and discount rate shocks are not simple weighted averages

of firms’ cash flow and discount rate shocks because the firm-level variance decom-

position applies to log returns15. To make sure my simplification is not driving my

results, I also sum up the level shocks using a second-order Taylor expansion fol-

lowing Lochstoer and Tetlock (2017) and then take log again on the portfolio level,

which does not change my findings in a qualitative way.

15See a simple case: log( 1
2R1 + 1

2R1) 6= 1
2 log(R1) + 1

2 log(R2)
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Table 3.2: Out-of-Sample Performance: Returns, Sharpe Ratio and Turnover

This table reports the out-of-sample annualized return and Sharpe ratio of MVE-optimized port-
folios as well as their monthly turnover. I normalize the weights so that each portfolio has the
summation of the weights on 34 anomalies up to 1. I consider three look-back choices for estimating
the weights: (1) using the past 10 years to estimate the mean and covariance of anomaly portfolios,
(2) using the past 10 years to estimate the covariance and using all past periods to estimate the
mean, and (3) using all past periods to estimate the mean and covariance. Monthly turnover on
the anomaly level is reported in the last column.

Panel A: Out-of-Sample Annualized Return and Sharpe Ratio - 1983-2017

Look-back (1) (2) (3)

MVE methods Return Sharpe.R Turnover (M) Return Sharpe.R Turnover (M) Return Sharpe.R Turnover (M)

SR [-1,1] 7.06% 0.94 36.2% 6.08% 1.71 7.5% 6.43% 1.78 5.0%
SR [0,1] 5.79% 1.50 7.4% 5.61% 1.65 4.1% 6.03% 1.76 2.9%
SR [0.01,0.1] 5.68% 1.49 6.0% 5.43% 1.57 3.5% 5.86% 1.67 2.7%
DR raw 6.36% 0.86 8.4% 6.44% 1.23 2.4% 6.50% 1.42 2.4%
DR pca 6.27% 0.85 9.1% 6.40% 1.24 3.7% 6.47% 1.42 2.6%

EAR 5.19% 0.99 3.0%

Panel B: Out-of-Sample Annualized Return and Sharpe Ratio - 2000-2017

Look-back (1) (2) (3)

MVE methods Return Sharpe.R Turnover (M) Return Sharpe.R Turnover (M) Return Sharpe.R Turnover (M)

SR [-1,1] 6.46% 0.64 60.0% 3.83% 0.93 7.7% 3.83% 0.91 5.1%
SR [0,1] 4.17% 0.88 8.4% 3.35% 0.84 4.1% 3.61% 0.90 2.9%
SR [0.01,0.1] 3.96% 0.84 6.8% 3.20% 0.77 3.7% 3.46% 0.82 2.8%
DR raw 3.34% 0.34 12.0% 3.40% 0.52 2.4% 3.49% 0.63 2.7%
DR pca 3.24% 0.33 13.1% 3.39% 0.52 4.4% 3.48% 0.63 2.8%

EAR 3.68% 0.54 3.3%

Table 3.3: Comparing MVE-Optimized Portfolios with EAR

Rt = α+ βmMktRft + βeEARt + εt,

This table reports the regression coefficients (α, βm, βe) of regressing MVE-optimized portfolios on
market excess returns and EAR. The MVE-optimization is based on look-back choice (2), using
the past 10 years to estimate the covariance and using all past periods to estimate the mean. The
regression is based on daily returns and the intercepts are reported as annualized returns. The
standard errors with Newey and West (1987) correction for 10 lags (two weeks) are reported in the
parentheses.

Full Sample: 1983-2017 Second Half-Sample: 2000-2017

Intercept MktRf EAR Intercept MktRf EAR
SR [-1,1] 3.75% 0.018 0.418 1.86% 0.055 0.444

(0.55%) (0.007) (0.027) (0.81%) (0.007) (0.032)

SR [0,1] 3.12% 0.018 0.451 1.29% 0.053 0.478
(0.48%) (0.006) (0.030) (0.68%) (0.006) (0.035)

SR [0.01,0.1] 2.67% 0.016 0.505 0.96% 0.050 0.531
(0.45%) (0.006) (0.029) (0.66%) (0.006) (0.034)

DR raw 1.49% 0.019 0.920 -0.33% 0.042 0.949
(0.43%) (0.005) (0.021) (0.60%) (0.006) (0.025)

DR pca 1.49% 0.016 0.921 -0.30% 0.037 0.945
(0.40%) (0.005) (0.020) (0.55%) (0.005) (0.023)
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Table 3.5: Firm-level VAR Estimation

This table reports the WLS parameter estimates of the firm-level VAR model by regressing the state
variables on a one-quarter lagged value of these state variables. Log(Ret), log(BM), and log(ROE)
satisfy the log clean-surplus condition as lnROECS

i,t+1 ≡ ri,t+1 + ρbmi,t+1− bmi,t. Momentum is the
cumulative return in the last 12 months ignoring the most recent month, and iVol is the idiosyncratic
volatility measured by daily volatility orthogonal to the market component in a given quarter. These
two measures are normalized to mean zero and standard deviation one. CoAnomaly is the average
pairwise partial correlation among 34 stock market long-short anomalies. The dummy L is 1 if the
stock is in the long legs for more than 4 anomalies, and dummy S is 1 if the stock is in the short
legs for more than 8 anomalies, and zero otherwise. T-stats, reported in parentheses, are calculated
with standard errors clustered by time and firm. The sample period for the dependent variables is
1973Q2—2017Q4.

Panel A: Transition Matrix of Firm-level VAR

log(Ret) log(BM) log(ROE) Mom iVol CoAnomaly CoAnomaly * L CoAnomaly * S

log(Ret) 0.0049 0.0206 0.0012 0.0083 -0.0128 0.0022 -0.0019 -0.0068
(0.22) (5.36) (0.08) (2.21) (-2.02) (1.24) (-0.74) (-2.30)

log(BM) -0.0709 0.9496 -0.1490 0.0189 -0.0181 -0.0072 0.0038 0.0031
(-3.41) (74.04) (-10.64) (5.84) (-3.41) (-1.11) (0.97) (0.31)

log(ROE) -0.0659 -0.0396 -0.1432 0.0193 -0.0304 -0.0049 0.0007 -0.0037
(-4.78) (-10.29) (-2.46) (5.08) (-7.25) (-0.81) (0.19) (-0.22)

Mom 1.0868 -0.0320 -0.1061 0.6108 0.0209 0.0026 0.0121 0.0032
(14.57) (-2.41) (-3.58) (14.40) (1.67) (0.14) (0.80) (0.10)

iVol -0.5482 0.0228 0.1212 -0.0398 0.7640 -0.0112 -0.0115 0.0105
(-10.82) (4.66) (4.56) (-6.94) (30.41) (-0.93) (-1.24) (0.70)

CoAnomaly 0 0 0 0 0 0.6673 0.0022 0.0327
. . . . . (55.03) (0.24) (2.17)

CoAnomaly * L 0 0 0 0 0 0.0427 0.3020 0.0038
. . . . . (3.52) (32.66) (0.26)

CoAnomaly * S 0 0 0 0 0 0.0090 0.0026 0.3354
. . . . . (0.74) (0.28) (22.26)

Panel B: News Function of Firm-level VAR

Discount-Rate News 1.071 0.595 -0.095 0.050 -0.114 -0.001 -0.005 0.009
Cash-Flow News 0.071 0.595 -0.095 0.050 -0.114 -0.001 -0.005 0.009

158



Table 3.6: Market-Neutral Asset Pricing Tests

Ri = g1β̂i,CFEAR
+ g2β̂i,DREAR

+ g3β̂i,VEAR
+ ei

Panel A reports the summary statistics of the estimated news and the time-series correlations among
them. Panel B reports the risk premium estimates for different factors in three different asset pricing
models. 1-beta CAPM constrains the cash-flow news and discount-rate news having the same price
of risk. 2-beta ICAPM and 3-beta ICAPM constrain the risk premium of discount-rate news to
be the variance of the equal-weighted anomaly return. Moreover, 3-beta ICAPM also imposes the
constraint on risk premia between cash flow news and volatility news. Panel C reports the risk
premia estimates for another two cases: constraining the risk premium on discount rates to be the
unconditional variance and no restrictions at all. Test assets are the long legs and short legs of
the 34 stock market anomalies. T-stats, reported in parentheses, are calculated with GMM and
conditioned on the estimated news.

Panel A: Cash-flow, Discount-rate and Variance News for the Equal-weighted Anomaly Portfolio

E.A.R. Shock CF News DR News Var News (Aggr) Var News (Avg) Var News (CoAnomaly)

Mean 0.000 0.001 0.001 0.001 0.001 0.000
Standard Deviation 0.028 0.021 0.013 0.005 0.005 0.006

Correlation

Shock E.A.R. 1
CF News 0.90 1
DR News -0.68 -0.28 1
Var News (Aggr) -0.31 -0.17 0.38 1
Var News (Avg) -0.52 -0.39 0.48 0.88 1
Var News (CoAnomaly) 0.32 0.32 -0.12 -0.30 -0.28 1

Panel B: Asset Pricing Test with Model Restrictions

1-beta CAPM 2-beta ICAPM 3-beta ICAPM

Volatility Proxy Agg.Var Avg.Var CoAnomaly

Cash-Flow Premium 0.0163 0.0183 0.0164 0.0172 0.0157
(5.35) (6.04) (4.57) (5.14) (4.47)

Discount-Rate Premium 0.0163 0.0008 0.0008 0.0008 0.0008
(5.35) - - - -

Volatility Premium -0.0035 -0.0007 -0.0214
(-0.27) (-0.06) (-3.94)

Implied gamma 20.4 22.9 20.5 21.5 19.6

Implied omega - - 8.8 1.8 53.5

Overidentifying p-value 0.009 0.013 0.013 0.014 0.018
Cross-sectional Adj. R-squared 48.1% 48.3% 49.4% 49.2% 58.3%

Panel C: Asset Pricing Test without Model Restrictions

Constrained Unrestricted

Volatility Proxy Agg.Var Avg.Var CoAnomaly Agg.Var Avg.Var CoAnomaly

Cash-Flow Premium 0.0170 0.0172 0.0138 0.0167 0.0168 0.0166
(3.64) (3.79) (3.15) (3.06) (3.26) (3.42)

Discount-Rate Premium 0.0008 0.0008 0.0008 0.0038 -0.0066 -0.0078
- - - (0.21) (-0.57) (-0.13)

Volatility Premium -0.0013 -0.0023 -0.0353 -0.0015 -0.0025 -0.0320
(-1.12) (-1.37) (-3.44) (-0.34) (-0.92) (-3.21)

Overidentifying p-value 0.020 0.019 0.022 0.023 0.021 0.032
Cross-sectional Adj. R-squared 61.2% 60.9% 64.2% 62.7% 62.4% 65.3%
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Table 3.7: Robustness: Volatility Specification

Panel A reports the news functions e′1ρB(IK − ρB)−1 that map shocks to different state variables
to the volatility news for three cases estimated: no-constraint, restricted, and no-feedback. Panel B
reports the time-series correlation between the estimated volatility news between CoAnomaly-driven
(Specification 3 in the main result) and three cases above.

Panel A: News Funtion from Shocks to State Variables

E.Aggr.Var t VS t PE t MktRf t DEF t CoAnomaly t

no-constraint -2.71 -0.62 29.36 -0.40 2.80 2.05
restricted -1.88 -1.28 39.73 -0.40 3.37 2.34
no-feedback 0 -1.40 17.55 -0.68 2.89 1.18

Panel B: Time-Series Correlation between Volatility News

CoAnomly-driven no-constraint restricted no-feedback

CoAnomly-driven 1
no-constraint 0.06 1
restricted 0.56 0.45 1
no-feedback 0.98 0.11 0.52 1
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Table 3.8: Scaled News Terms and Anomaly Betas

Panel A reports the variance-covariance matrix for the in-sample scaled news terms. All raw news
is divided by the conditional variance EV AR estimated from the last periods. Panel B reports the
estimated betas on cash-flow, discount-rate and CoAnomaly-driven variance news for both long legs
and short legs of all 34 anomalies.

Panel A: Variance-Covariance Matrix for Different Scaled News

E.A.R. CF DR Vol (Aggr) Vol (Avg) Vol (CoAnomay)

E.A.R. 0.996
CF 0.702 0.394
DR -0.294 -0.065 0.229
Vol (Aggr) 0.062 0.038 -0.024 0.032
Vol (Avg) -0.087 -0.045 0.041 -0.017 0.019
Vol (CoAnomay) -0.056 0.092 0.033 -0.023 0.031 0.012

Standard Deviation 0.998 0.628 0.478 0.178 0.137 0.109

Panel B: Betas of 68 Portfolios

Long leg Short leg

CF-beta DR-beta Vol-beta (CoAnomaly-driven) CF-beta DR-beta Vol-beta (CoAnomaly-driven)

acc -0.73 -0.07 -0.04 -0.22 -0.20 0.02
atgrowth 0.30 -0.02 -0.09 -0.64 0.00 0.12
ato 0.78 -0.07 -0.15 -0.92 -0.16 0.18
beta 0.48 0.32 -0.56 -0.59 -0.11 0.23
ceissue 0.63 -0.05 -0.13 -1.17 0.33 0.18
failprob 0.39 -0.01 -0.27 -1.26 -0.49 0.22
gm -0.20 -0.05 0.03 -0.04 -0.08 -0.08
hfcombo1 0.50 -0.12 0.03 -0.62 0.01 -0.06
hfcombo2 0.63 -0.02 0.03 -0.60 0.01 -0.06
idiovol 0.37 0.13 -0.01 -1.14 -0.22 0.04
indmom1m 0.64 -0.06 -0.13 -0.58 -0.02 0.21
invest 0.39 0.06 -0.10 0.13 -0.12 0.08
mom12m 0.01 -0.03 0.06 -1.17 -0.39 0.29
netissue a 0.49 0.22 -0.06 -0.36 -0.08 0.06
netissue m 0.39 0.18 -0.09 -0.66 -0.12 0.14
netoa 0.67 -0.01 0.02 -0.51 0.01 -0.08
ohlson -0.08 -0.04 0.01 -0.65 -0.25 0.00
peadcar3 -0.26 -0.06 -0.05 -0.25 -0.08 0.18
peadsue 0.51 0.06 0.02 -0.64 -0.10 0.01
piotroski 0.10 -0.02 0.03 -1.58 -0.34 0.08
profit 0.37 -0.05 -0.04 -0.60 -0.17 -0.12
relrev1m -0.85 -0.06 0.29 -0.54 -0.07 -0.06
relrev1mlow 0.43 -0.11 0.10 0.46 0.33 0.06
rev1m -0.96 -0.11 0.30 -0.10 -0.02 -0.01
rev60m 0.41 -0.03 -0.14 -0.24 -0.06 0.02
roa 0.49 0.00 0.02 -1.38 -0.18 0.10
roe 0.48 0.06 -0.01 -1.44 -0.19 0.17
rome 0.69 0.01 -0.01 -1.36 -0.17 0.14
seasonal -0.02 0.08 0.11 -0.09 -0.03 -0.15
size -0.06 -0.03 -0.13 0.00 0.03 -0.02
valmom 0.67 0.06 -0.17 0.13 -0.19 0.04
valmomprof 0.50 0.06 -0.14 -0.51 -0.20 0.29
valprof 0.73 -0.04 -0.06 -0.50 -0.08 0.21
value 0.82 0.11 -0.03 -0.09 -0.09 0.06

E.A.R. 0.29 0.01 -0.04 -0.58 -0.10 0.07
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