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Abstract

Data-adaptive modelling has enjoyed increasing popularity across a wide range of

statistical problems. This thesis studies three adaptive multiscale approaches, one in

regression and two in trend segmentation.

We first introduce a way of modelling temporal dependence in random functions,

assuming that those random curves are discretised on an equispaced grid. Considering

a common dependence structure across the discretised curves, we predict the most

recent point from the past observations in the framework of linear regression. Our

model partitions the regression parameters into a smooth and a rough regime where

rough regression parameters are used for observations located close to the response

variable while the set of regression coefficients for the predictors positioned far from the

response variable are assumed to be sampled from a smooth function. The smoothness

change-point and the regression parameters are jointly estimated, and the asymptotic

behaviour of the estimated change-point is presented. The performance of our new

model is illustrated through simulations and four real data examples including country

fertility data, pollution data, stock volatility series and sunspot number data.

Secondly, we study the detection of multiple change-points corresponding to linear

trend changes or point anomalies in one-dimensional data. We propose a data-adaptive

multiscale decomposition of the data through an unbalanced wavelet transform, hoping

that the sparse representation of the data is achieved through this decomposition.

The entire procedure consists of four steps and we provide a precise recipe of each.
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We show that the performance of our method is particularly remarkable in detecting

point anomalies or frequent change-points with short segments. The consistency of the

estimated number and locations of change-points is investigated, and the practicality

of our approach is demonstrated through simulations and real data examples including

Iceland temperature data and sea ice extent of the Arctic and the Antarctic.

Lastly, we introduce a new model for detecting trend changes in high-dimensional

panel data which is an extension of the one-dimensional multiscale approach described

above into the high-dimensional settings. We investigate two scenarios, change-points in

piecewise-constant and piecewise-linear signals. The new approach performs well across

a wide range of signals, not only when the changes occur in most of the data sequences

but also when only a sparse subset of data sequences changes. The consistency of

the estimated number and locations of change-points is shown under two scenarios

considered. The usefulness of our approach is demonstrated through numerical studies

and two real data examples, South Africa temperature data and sea ice extent of the

Arctic and the Antarctic.
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Chapter 1

Introduction

In many applications, statistical models are often designed to capture some changes that

the ingredient of a model undergoes. Changes arise in many contexts such as changes in

distribution of a time series or jumps in a sequence of regression coefficients where jump

is regarded as a type of change. When such change occurs at some points, detecting

those change-points is not only an important task but also useful for a higher-level

representation of the data that is taken as a follow-up analysis of the change-point

detection. It is indeed a problem of significant interest in many application and recent

examples include detecting price inflation (Groen et al., 2013), detection of DNA copy

number variants (Olshen et al., 2004), detecting change-points in functional magnetic

resonance imaging (fMRI) data (Cribben and Yu, 2017), climate change detection

(Robbins et al., 2011) and detecting exoplanets from light curve data (Fisch et al.,

2018).

The main body of this thesis deals with the problem of detecting a single or multiple

change-points where the changes occur in a sequence of regression coefficients or in

univariate or high-dimensional data sequences. The core methodologies introduced in

Chapters 3-5 are all data-adaptive and view the change-point detection as a multiscale

problem, where a methodology is referred to as data-adaptive if it can adjust the
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parameters or the order of its optimisation process to the data at hand. In Chapter 2,

we provide a literature review on the relevant fields including various regularisations

imposed on the functional linear regression coefficient and change-point detection

methodologies for univariate and high-dimensional data sequences. The remainder of

this thesis is structured as follows.

Chapter 3. Smooth-Rough Partitioning of the regression coefficients

In this chapter, we propose the Smooth-Rough Partition (SRP) model, a

new way of modelling temporal dependence in random functions. Assuming

the curves are discretised on an equispaced grid, the most recent points are

predicted from the past observations in the framework of linear regression.

The proposed model reflects the ‘decaying memory’ structure of the time

series by partitioning the regression parameters into a smooth and a rough

regime. Specifically, unconstrained (rough) regression parameters are used

for observations located close to the response variable, while the set of

regression coefficients for the predictors positioned far from the response

variable are assumed to be sampled from a smooth function. The regression

parameters and the point at which the change in smoothness occurs are

jointly estimated from the data, and the asymptotic behaviour of the

estimated change-point is analysed. We illustrate its good performance

through simulations. The usefulness of partitioning the effects into two

scales is demonstrated through four real datasets, one of which shows that

the SRP framework can also be a useful alternative to the AR modelling

especially when the time series possesses long-term dependence. The SRP

model is implemented in the R package srp, available from CRAN.

Chapter 4. Trend Segmentation in data sequences
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In this chapter, we propose TrendSegment, a new methodology for detect-

ing multiple change-points corresponding to linear trend changes or point

anomalies in one-dimensional data. A core ingredient of TrendSegment is a

new Tail-Greedy Unbalanced Wavelet (TGUW) transform: a conditionally

orthonormal, bottom-up transformation of the data through an adaptively

constructed unbalanced wavelet basis, which results in a sparse representa-

tion of the data. The bottom-up nature of this multiscale decomposition

enables the detection of point anomalies and linear trend changes at once

as the decomposition focuses on local features in its early stages and on

global features next. The proposed method merges multiple regions in a

single pass over the data which not only reduces the computational com-

plexity but also guarantees the consistency of the estimated number and

locations of change-points under the assumption of i.i.d. Gaussian noise.

We demonstrate the practicality of our approach through simulations and

two real data examples, involving Iceland temperature data and sea ice

extent of the Arctic and the Antarctic. Our methodology is available from

the R package trendsegmentR.

Chapter 5. Trend Segmentation for high-dimensional panel data

As an extension of TrendSegment introduced in Chapter 4 into high-

dimensional settings, we propose a new methodology for detecting trend

changes in high-dimensional panel data which is referred to as High-

dimensional Trend Segmentation (HiTS). The key ingredient of the HiTS

procedure is a high-dimensional version of the TGUW transform proposed

in Chapter 4, that constructs an unbalanced wavelet basis (which is common

to all univariate data sequences) in a data-adaptive way, by performing

consecutive merges of neighbouring regions from bottom to top. We in-
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vestigate HiTS in two scenarios, one of which is the case when the set

of underlying signals are all piecewise-constant and the other case is for

piecewise-linear signals. Our methodology is designed to be robust in

estimating the number and locations of change-points not only when the

changes are dense across the panel but also when the changes occur only

in a sparse subset of the coordinates. We consider both independent and

dependent noise settings and show the consistency of the estimated number

and locations of change-points under two scenarios considered. The HiTS

procedure is easy to implement and rapidly computed even in the case of

a large number of coordinates. The usefulness of HiTS is demonstrated

through extensive numerical studies and two real data examples including

South Africa temperature data and sea ice extent of the Arctic and the

Antarctic. The new methodology is implemented in our GitHub repository

(Maeng, 2019c).

We note that each of the main chapters includes their own introduction section

where more detailed motivations are given. Finally, Chapter 6 gives a brief summary

of the contributions of this thesis and points a number of possible directions for future

research.



Chapter 2

Literature review

In this chapter, we provide a literature review on the adaptive multiscale approaches

studied in this thesis. This involves change-point detection in regression parameters

and trend segmentation in low- and high-dimensional settings.

2.1 Regularisations on the functional linear regres-

sion coefficient

In this section, we introduce some existing approaches in the literature that are

relevant to our proposal in Chapter 3. These mainly cover regularisations imposed on

the functional linear regression coefficient by detecting a change-point or by finding

informative regions of the regression parameter. We first briefly introduce the scalar-

on-function regression in Section 2.1.1 then review the relevant methodologies in later

sections. In Chapter 3, the important differences between those methodologies and our

proposal will be highlighted and the performances are also compared and contrasted.
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2.1.1 Functional linear regression

Over the last few decades, functional data analysis (FDA) has been growing in im-

portance and enjoying increased attention where an extensive review can be found

in Ramsay and Silverman (2005). Functional objects arise in many contexts and the

applications in the literature include prediction of daily curves of particulate matter in

the air (Aue et al., 2015), testing stationarity of intraday price curves of a financial

asset (Horváth et al., 2014), modelling the dynamics of fertility rate (Chen et al.,

2017), studying the effect of air pollution on the mortality rate across cities (Kong

et al., 2016), prediction of the protein content of meat from spectral curves (Zhu et al.,

2014), investigation of a bike sharing system by predicting bike pick-up counts (Han

et al., 2018), choosing predictive days from daily egg-laying counts for fruit flies (Ji

and Müller, 2017) and predicting sucrose content of orange juice from its near-infrared

spectrum (Ferraty et al., 2010).

The main ingredients of functional data analysis are random functions Xi ∈ L2[0, 1]

where i = 1, . . . , n and [0, 1] is a compact subset of R. If the random functions Xi are

believed to possess temporal dependence and are analysed by separating the domain

they live on into shorter units, we call such a data structure functional time series.

Functional time series analysis has been an active field of research in recent years. The

best-known model in this area is the first-order functional autoregressive model proposed

by Bosq (2000). Other recent contributions include testing for stationarity (Horváth

et al., 2014), testing for mean functions in a two-sample problem (Horváth et al., 2013),

testing for error correlation (Gabrys et al., 2010) and prediction (Antoniadis et al.,

2006; Aue et al., 2015).
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On the other hand, if the functions are used as a predictor for explaining a scalar

response variable Y , this simply describes the standard functional linear regression:

Yi = µ+
∫ 1

0
β(t)Xi(t)dt+ εi, i = 1, ..., n, (2.1)

where β(t) ∈ L2([0, 1]) is a square integrable function, X(t) is a functional covariate, µ

is a scalar coefficient and ε is a random error with mean zero and finite variance. This

model has been widely studied in the literature e.g. the reader can find a review of

numerous approaches to scalar-on-function regression in Reiss et al. (2017).

Our interest is in the coefficient function β(t) which shows the relationship between

Y and X(t) where the interpretation is fairly straightforward; the subintervals with

greater |β(t)| is where X is more influential to predict Y . Since X(t) has infinite

dimension, Y can be perfectly predicted unless any restriction is imposed on β(t). The

required regularisation on β(t) is usually achieved by a basis expansion, which enables

a finite number of basis functions to approximate the infinite-dimensional function. In

general, the basis functions can be classified into two categories: 1) predetermined basis

vectors such as the Fourier series, splines or wavelets and 2) data-driven basis vectors,

mostly eigenfunctions obtained from the functional principal component analysis, where

more details can be found in Ramsay and Silverman (2005). In what follows, we give a

brief description of each case.

Fixed basis functions

When X(t) is assumed to be fully observed and β(t) is spanned by a number of basis

functions as β(t) ≈ ∑L
l=1 blBl(t), the integration term in (2.1) can be approximated as

∫ 1

0
Xi(t)β(t)dt ≈

L∑
l=1


∫ 1

0
Xi(t)Bl(t)dt

bl. (2.2)
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The regularisation usually take one of two possible ways: 1) choosing an appropriate

size of L to prevent both undersmoothing and oversmoothing of β(t) and 2) adding

roughness penalty which controls the smoothness of β(t) under the fixed size of L that

is large enough to avoid undersmoothing. The latter is often called ‘penalised splines’

due to the penalty term in its objective function and can be viewed as a generalised

ridge regression. The detailed estimation procedure of the latter is presented in Section

3.2.1.

Data-driven basis functions

When the data-driven basis functions are used, it is common to assume that the

unknown β(t) belongs to the function space of X(t). This enables us to expand both

β(t) and X(t) with orthonormal eigenfunctions, ψ1, ψ2, ..., of the integral operator Γ

with kernel k where the singular value decomposition of the covariance function is

defined as

k(t, s) = cov(X(t), X(s)) =
∞∑

j=1
vjψj(t)ψj(s),

and (Γφ)(t) =
∫
k(t, s)φ(t)ds with a square integrable function φ(t). The eigenfunctions

are obtained from the functional principal component analysis and both β(t) and X(t)

can be written as

β(t) =
∞∑

k=1
bkψk(t), Xi(t) = µx(t) +

∞∑
k=1

aikψk(t), (2.3)

where µx(t) is the mean curve of X. Thanks to the orthonormality of eigenfunctions,

the integration term in (2.1) is now simplified as

∫ 1

0
Xi(t)β(t)dt =

∞∑
k=1

aikbk, (2.4)
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and this allows us to write the model (2.1) as Yi = µ + ∑∞
k=1 aikbk + εi. In practice,

we usually use the truncated version, Yi = µ+∑L
k=1 aikbk + εi, where a scree plot is

often engaged for choosing an optimal L. When the functional principal component

scores, {aik}L
k=1, are predicted under a fixed L, the regression coefficients, {bk}L

k=1, can

be simply estimated through the standard least-squares estimation.

2.1.2 Finding null subregions via variable selection techniques

As a way of regularising the standard scalar-on-function regression coefficient, we

can consider finding subregions or points in the regression function over which the

changes in the corresponding X(t) have a greater effect on the response variable. From

this point of view, some researchers have used ideas from variable selection to obtain

β(t) = 0 for the non-informative subintervals and β(t) ̸= 0 for the informative ones.

Functional linear regression that’s interpretable

James et al. (2009) employ the LASSO (Tibshirani, 1996) and the Dantzig selector

(Candes and Tao, 2007) with the aim of improving the interpretability of β(t) in (2.1).

They assume sparsity in the dth derivative of β(t), for example if the model has the

sparsity conditions, d = 0, 2, then the estimator β̂(t) would be a mix of zero regions

(returned by the condition d = 0, i.e. sparsity in the 0th derivative) and regions of

linear trend (guaranteed by d = 2, i.e. the sparsity in the second derivative). Dividing

the time period into a fine grid of points, they use the variable selection methods to

determine whether each grid point of β(t) has zero dth derivative. In practice, they

adopt two derivatives, d = 0 (as a default) and the other chosen from d = 2, 3, 4 by

minimising cross validation (CV) error. As the smoothness of β̂(t) only depends on the

non-zero d, this approach is not designed to reflect a varying smoothness behaviour in

β(t).
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Other approaches

Similarly, Zhou et al. (2013) use the Dantzig selector and the SCAD approach (Fan

and Li, 2001) and Lin et al. (2015) propose a functional version of SCAD by combining

the SCAD method and smoothing splines to obtain a smooth and sparse estimator for

the functional coefficient.

2.1.3 Selecting predictive design points

Another way of regularising the functional linear regression coefficient is finding a set

of grid points on the given interval in which X(t) has the greatest predictive impact

on Y . We examine the relevant methodologies in what follows.

Point of impact

Kneip et al. (2016) introduce the following model under the name of functional linear

regression model with points of impact:

Yi =
q∑

j=1
αjXi(tj) +

∫ 1

0
β(t)Xi(t)dt+ εi, i = 1, . . . , n, (2.5)

where both functional and scalar parameters are explored in the framework of scalar-

on-function regression. The model is proposed for some situations when only one or

several points in X(t) have a significant relevance on the scalar response variable Y .

In estimating the locations of the influential points, they remove the observations

adjoining the points of impact. After collecting the candidates of points of impact

under a suitable cut-off parameter, the model parameters q, α and β in (2.5) are

estimated by minimising the Schwarz’s Information Criterion (SIC, Schwarz (1978)).

Similar studies include McKeague and Sen (2010) who explore the selection of a single

point of impact with the motivation from gene expression data.
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Most-predictive design points

Ferraty et al. (2010) propose an explicit way of choosing a few influential points

(t1, ..., tr) in the following functional nonparametric model,

Yi = m(Xi(t1), ..., Xi(tr)) + εi, i = 1, ..., n, (2.6)

where m is a smooth functional that would be estimated to capture a nonlinear rela-

tionship after choosing r predictive design points, Xi(t1), ..., Xi(tr), from the functional

predictor Xi(t). Finding several predictive design points is connected with the idea of

reducing the infinite dimension of the functional covariate X to a lower dimension. The

approach is based on the discretised curves rather than a full function X and the given

value of r is assumed to be significantly smaller than the number of discrete observations

of X. The set of predictive points is selected through the stepwise algorithm.

2.1.4 Change-point detection ideas

In this section, we introduce two methodologies including the idea of detecting a single

change-point in the functional linear regression coefficient.

Truncation in β(t)

Hall and Hooker (2016) find the truncation point θ under the following truncated

functional linear model:

Yi = µ+
∫ θ

0
β(t)Xi(t)dt+ εi, i = 1, ..., n. (2.7)

Under the full functional framework, the truncation point θ defines the non-zero interval

in β(t). The optimal θ is estimated from the entire interval [0, 1] by minimising the
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penalised least-squares as follows:

θ̂ = arg min
θ

n∑
i=1

{
Yi − µ̌−

∫ θ

0
β̌(t)Xi(t)dt

}2

+ nλθ2, (2.8)

where (µ̌, β̌(t)) are the pilot estimators obtained without a truncation constraint and λ

is the tuning parameter adjusting the location of θ̂ closer to the lower endpoint of the

interval. This approach is motivated by a real example modelling particulate matter

emissions (PM) from diesel trucks.

Discontinuity in β(t)

Other works based on the partitioning idea include Goia and Vieu (2015). While

Hall and Hooker (2016) engage one continuous function β(t) for fitting both non-zero

and zero regions, Goia and Vieu (2015) use two smooth functions, β1(t) and β2(t), by

dividing the entire interval into two subintervals with one discontinuity point. They

suggest the partitioned functional single index model as follows:

Yi = µ+ g1

(∫
[0,λ]

β1(t)Xi(t)dt
)

+ g2

(∫
(λ,1]

β2(t)Xi(t)dt
)

+ εi, i = 1, ..., n, (2.9)

where g1 and g2 are smooth functions to be estimated and the breakpoint λ identifies

a discontinuity in the functional regression coefficient.

2.1.5 Partial functional linear regression

The skeleton of our new model in Chapter 3 is similar to that of partial functional

linear regression,

Yi = µ+αTZi +
∫ 1

0
β(t)Xi(t)dt+ εi, i = 1, . . . , n, (2.10)
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where Y is a scalar response variable, Z is a q-dimensional vector of scalar random

variables and X(t) is a functional random variable. This regression model was recently

studied by Kong et al. (2016), Zhou et al. (2016), Zhou and Chen (2012), Shin and

Lee (2012), Shin (2009), Aneiros-Pérez and Vieu (2008) and Goia (2012).

2.2 Change-point detection in one-dimensional data

We consider a univariate time series that is a collection of observations recorded

in time order. Time series arise in many contexts, for example economics (stock

price, unemployment rate, GDP, inflation, exchange rate), environment (pollution,

temperature, precipitation, sea level, earthquake, wind speed, sea ice cover), medical

sciences (DNA copy number, fMRI scans, brain activity records via EEG) and astronomy

(counts of sunspots, light curves, satellite orbital cycles).

Changes in time series can be classified as distributional (e.g. mean or variance)

change or trend (e.g. constant or linear or quadratic) change. Detecting the number

and locations of distributional changes is important when the stationarity assumption

is violated and the underlying process changes their distribution over time as it

approximates the stationary time intervals by identifying their boundaries. On the

other hand, detecting changes in trend can be useful for feature extraction or data

mining as it reduces the dimension by dividing a time series into a number of pieces

corresponding to features of interest. In both cases, segmenting time series is an

important investigation in the initial stage of analysis as it can affect the analysis

performed in later stages.

Especially, multiple change-point detection is a problem of importance in many

applications; recent examples include automatic detection of change-points in cloud data

to maintain the performance and availability of an app or a website (James et al., 2016),

climate change detection in tropical cyclone records (Robbins et al., 2011), detecting
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exoplanets from light curve data (Fisch et al., 2018), detecting changes in the DNA

copy number (Bardwell and Fearnhead, 2017; Jeng et al., 2012; Olshen et al., 2004),

estimation of stationary intervals in potentially cointegrated stock prices (Matteson

et al., 2013), estimation of change-points in multi-subject fMRI data (Robinson et al.,

2010) and detecting changes in vegetation trends (Jamali et al., 2015).

Change-point detection approaches have a form of either offline or online. Of-

fline (posteriori) change-point detection algorithms identify the change-points in a

retrospective view by investigating all the observed data points at once. By contrast,

online detection algorithms do not operate with a fixed-length sequence; instead, the

observations are received and monitored sequentially over time.

In the following sections, we focus mainly on a posteriori multiple change-point

analysis for piecewise-constant and piecewise-linear signal models. We consider the

change-point model

Xt = ft + εt, t = 1, . . . , T, (2.11)

where ft is a deterministic and unknown piecewise-polynomial signal and εt’s are

random errors with zero mean and constant variance. The signal contains N unknown

change-points, η1, η2, . . . , ηN , at which the features of interest in ft undergo changes.

2.2.1 Segmentation of piecewise-constant signal

A large body of trend segmentation deals with the case when ft in (2.11) is a piecewise-

constant signal and its change-points η1, η2, . . . , ηN are formulated as follows,

ft = θℓ for t ∈ [ηℓ−1 + 1, ηℓ], ℓ = 1, . . . , N + 1, (2.12)
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where N is either known or unknown, θ1, . . . , θN+1 ∈ R and θℓ ̸= θℓ+1 for ℓ = 1, . . . , N .

We remark that detecting changes in mean can be categorised into either distributional

or trend change.

Constrained optimisation approaches

One of the major classes of multiple change-point detection methodologies is based on

the minimisation of criterion function as follows:

arg min
η1,...,ηN

{
L(Xt, η1, . . . , ηN) + pen(N, η1, . . . , ηN)

}
, (2.13)

where L(·) is called loss or cost function that has a form of likelihood (or least-squares)

and measures the fit of estimated value to the data, while pen(·) is the penalty added

to prevent overfitting. Under the assumption of Gaussian noise, Yao and Au (1989)

consider the least-squares estimators of change-point locations when the number of

change-points is fixed. Considering the number of change-points as the dimension of a

model, Yao (1988) uses the Schwarz’s Information Criterion (SIC, Schwarz (1978)), also

known as the Bayesian information criterion (BIC), under the Gaussian assumption to

estimate N which gives the following optimisation problem,

arg min
η1,...,ηN

T log
 1
T

N+1∑
ℓ=1

ηℓ∑
t=ηℓ−1+1

(
Xt − X̄(ηℓ−1 + 1, ηℓ)

)2
+ 2N log T

, (2.14)

where X̄(ηℓ−1 + 1, ηℓ) is the mean of Xηℓ−1+1, . . . , Xηℓ
. Examples of a penalty that is

linear in the number of change-points can be found in Lee (1995), Lavielle and Moulines

(2000) and Boysen et al. (2009). For a penalty depending on both the number and the

locations of change-points, see Pan and Chen (2006) and Zhang and Siegmund (2007).

Lee (1997) and Frick et al. (2014) relax the Gaussian assumption on εt to exponential

families. In particular, Frick et al. (2014) is shown to control the family-wise error rate
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while Li et al. (2016) suggest an approach based on the control of the false discovery

rate.

Those penalty-based optimisations are often criticised for its computational speed

of at least O(T 2). To overcome this issue, Killick et al. (2012) introduce the Pruned

Exact Linear Time (PELT) algorithm and Rigaill (2015) proposes the pruned Dynamic

Programming Algorithm (pDPA), where both methods achieve a linear computational

cost in best-case scenarios but the speeds remain quadratic in the worst cases. As

an extension, Maidstone et al. (2017b) introduce two algorithms, one of which is

the Functional Pruning Optimal Partitioning (FPOP) that uses functional pruning

technique of Rigaill (2015) to solve the penalised minimisation problem and always

prunes more than PELT. Other variants include the Generalized Functional Pruning

Optimal Partitioning (GFPOP) proposed by Hocking et al. (2018) and the Generalized

Pruned Dynamic Programming Algorithm (GPDPA) introduced by Hocking et al.

(2017). Tickle et al. (2018) pursue the computational improvement of some of those

dynamic programming approaches based on parallel computing.

Binary Segmentation

Binary Segmentation (Vostrikova, 1981) has been widely used in multiple change-point

detection as it is conceptually simple and easy to implement. It has a top-down

character in that it searches the entire dataset in the initial step, and if any change-

point is detected then the same procedure is repeated for two subintervals split by the

detected change-point. In detecting a change-point, a test statistic, Cp,q,r(X), defined

for any 1 ≤ p ≤ q ≤ r ≤ T is used in that a change-point in [p, r] is defined as

q∗ = arg max
p≤q≤r

|Cp,q,r(X)|, if max
p≤q≤r

|Cp,q,r(X)| > λ, (2.15)
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where λ is a pre-specified threshold. For example, in the implementation of the Binary

Segmentation, Vostrikova (1981) uses the Cumulative Sum (CUSUM) statistic:

Cp,q,r(X) =
√

r − q

(r − p+ 1)(q − p+ 1)

q∑
t=p

Xt −
√

q − p+ 1
(r − p+ 1)(r − q)

r∑
t=q+1

Xt, (2.16)

which can be constructed from the fact that under the assumption of Gaussian noise

with a constant and known variance, maximising the size of CUSUM statistic in (2.16)

is equivalent to finding the maximum likelihood estimator for the piecewise-constant

signal with a single change-point. The Binary Segmentation procedure continues to

search the shorter segments to the left and the right of the detected change-point

as long as the maximum size of CUSUM statistic exceeds the threshold and stops

searching if no more change-points are detected.

Although Binary Segmentation is one of the most popular approaches in multiple

change-points detection, as it finds a single change-point at each segment (i.e. fitting

a best piecewise-constant function with a single change-point in the least-squares

sense), it may fail to perform adequately if [p, r] in (2.16) contains more than one true

change-point. There have been a number of works in the literature which attempt

to remedy this issue but keep the idea of Binary Segmentation, for example Circular

Binary Segmentation (Olshen et al., 2004; Venkatraman and Olshen, 2007), Wild

Binary Segmentation (WBS, Fryzlewicz (2014)), Narrowest-Over-Threshold (NOT,

Baranowski et al. (2019)) and Wild Binary Segmentation 2 (Fryzlewicz, 2018a). In

detail, the WBS methodology adds the random characteristics which enhance the

ability of CUSUM estimator in detecting multiple change-points. In the initial stage,

it compares the CUSUM statistics, Cp′,q,r′(X), obtained from the randomly selected

segments [p′, r′] rather than using a global CUSUM statistic, C1,q,T (X), computed on

the entire dataset X1, . . . , XT . Then, the overall maximiser of the entire collection of

CUSUM statistics is chosen as a change-point only when it exceeds a pre-specified
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threshold, i.e.

q∗ = arg max
p′≤q≤r′

|Cp′,q,r′(X)|, if max
q

|Cp′,q,r′(X)| > λ, (2.17)

where λ is a pre-specified threshold. If the first change-point is declared, the WBS

algorithm repeats the same procedure in the left and the right of the change-point as

done in the Binary Segmentation. The WBS algorithm can in principle be extended

to the detection of other types of change e.g. changes in the second order structure

of a time series (Korkas and Fryzlewicz, 2017), however there is a possibility that the

chosen interval contains two or more change-points, in which case the algorithm may

fail other than piecewise-constant signal. To ensure that at most one change-point

exists in the selected segment, Baranowski et al. (2019) propose a multiple change-

point detection device termed Narrowest-Over-Threshold (NOT), which focuses on the

narrowest segment among those whose contrast exceeds a pre-specified threshold, thus

a change-point is chosen as,

q∗ = arg min
p′, arg maxp′≤q≤r′ |Cp′,q,r′ (X)|, r′

{|r′ − p′| : max
q

|Cp′,q,r′(X)| > λ}, (2.18)

where λ is a pre-specified threshold. The NOT approach enhances the ability of

CUSUM estimator by investigating short segments containing only one change-point

with a high probability. Based on those test statistics introduced in Baranowski

et al. (2019), Anastasiou and Fryzlewicz (2019) propose Isolate-Detect (ID) approach

that continuously searches data segments for changes by expanding those segments

from the leftmost and the rightmost of the entire interval, which can be seen as a

modified sliding window algorithm. Other methods related to the Binary Segmentation

include Fryzlewicz (2007), which uses the discrete unbalanced Haar wavelet transform
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for nonparametric function estimation and shows that Binary Segmentation can be

interpreted in terms of the unbalanced Haar wavelet.

Binary Segmentation has also been popularly used for one-dimensional data outside

the piecewise-polynomial segmentation. Fryzlewicz and Subba Rao (2014) use the

Binary Segmentation algorithm for detecting change-points in the structure of an auto-

regressive conditional heteroscedastic model and Cho and Fryzlewicz (2012) consider

the locally stationary wavelet (LSW) time series model and estimate change-points

in the second-order structure. Other related methodologies for high-dimensional time

series will be reviewed in Section 2.3.

Bottom-up structure

Bottom-up procedures have rarely been used in change-point detection. Matteson and

James (2014) use an agglomerative algorithm for hierarchical clustering in the context

of change-point analysis. Messer et al. (2014) propose a multiple filter algorithm which

detects change-points by searching from the smallest to the largest window sizes of a

time series. Fryzlewicz (2018b) introduces the Tail-Greedy Unbalanced Haar (TGUH)

transform, a bottom-up and data-adaptive transformation of univariate sequences

that performs multiple change-point detection in the piecewise-constant signal. In the

initial stage of the TGUH transform, the raw data are considered smooth coefficients,

i.e. (s1,1, s2,2, . . . , sT,T ) = (X1, X2, . . . , XT ), and it recursively updates the sequence of

smooth coefficients by merging the local segments, i.e. applying local conditionally

orthonormal transformations. To decide which pair of neighbouring regions should be

merged next, we compare the corresponding detail-type coefficients, where the detail

coefficient for merging two neighbouring smooth coefficients sp,q and sq+1,r is defined

as,

dp,q,r =
√

r − q

r − p+ 1sp,q −
√
q − p+ 1
r − p+ 1sq+1,r, (2.19)
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where sp,r = (r − p + 1)−1/2∑r
s=p Xs is always achieved as the algorithm progresses.

We can simply show that the formula of the detail coefficient in (2.19) is equal to

that of CUSUM statistic in (2.16). As the magnitude of the detail coefficient implies

the strength of the corresponding local constancy, we sort the sequence |dp,q,r| in

non-decreasing order and give priority in merging to a pair of smooth coefficients

corresponding to the smallest detail coefficient.

We now provide a simple example of the TGUH transformation where the accom-

panying illustration is in Figure 2.1. This example shows single merges at each pass

through the data, although it can be generalised into multiple passes through the data

which is referred to as “tail-greediness”. We refer to jth pass through the data as scale

j. Assume that we have the initial input s0 = (X1, X2, . . . , X5), so that the complete

TGUH transform consists of 4 merges. We now show 4 example merges one by one.

Scale j = 1. From the initial input s0 = (X1, . . . , X5), we consider 4 pairs

(X1, X2), (X2, X3), (X3, X4), (X4, X5) and compute the size of the detail for

each pair, where the formula can be found in (2.19). Suppose that (X2, X3)

gives the smallest size of detail, |d2,2,3|, then merge (X2, X3) through the

orthogonal transformation formulated as follows:

 sp,r

dp,q,r

 =

−bp,q,r ap,q,r

ap,q,r bp,q,r


 sp,q

sq+1,r

 , i = 1, . . . , n. (2.20)

where ap,q,r =
√

r−q
r−p+1 and bp,q,r = −

√
q−p+1
r−p+1 . Then update the data

sequence into s = (X1, s2,3, d2,2,3, X4, X5).

Scale j = 2. The possible pairs for next merging are (X1, s2,3), (s2,3, X4),

(X4, X5). Assume that (X4, X5) gives the smallest size of detail coefficient

|d4,4,5| among the three candidates, then we merge them through the or-
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thogonal transformation formulated in (2.20) and now update the sequence

into s = (X1, s2,3, d2,2,3, s4,5, d4,4,5).

Scale j = 3. We now compare two candidates for merging, (X1, s2,3),

(s2,3, s4,5). Suppose that (s2,3, s4,5) has the smallest size of detail; we merge

this pair and update the data sequence into s = (X1, s2,5, d2,2,3, d2,3,5, d4,4,5).

Scale j = 4. The only available pair is now (X1, s2,5), thus we merge this

and update the data sequence into s = (s1,5, d1,1,5, d2,2,3, d2,3,5, d4,4,5). The

transformation is completed with the updated data sequence which contains

T − 1 = 4 detail and 1 smooth coefficients.

X1 X2 X3 X4 X5

scale j = 1

X1 s2,3 d2,2,3 X4 X5

scale j = 2

X1 s2,3 d2,2,3 s4,5 d4,4,5

scale j = 3

X1 s2,5 d2,2,3 d2,3,5 d4,4,5

scale j = 4

Fig. 2.1 Construction of tree for the example in Section 2.2.1; each diagram shows all
merges performed up to the given scale.

One of the important properties of the TGUH transform is “tail-greediness” which

reduces the computational complexity by allowing us to perform multiple merges over

non-overlapping regions in a single pass over the data. It is called “tail-greedy” as
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those details chosen in each pass correspond to the lower tail of their distribution. The

resulting transformation of the data hopes to push the bulk of the variance of the input

data vector in only a few detail-type coefficients arising at coarse levels, which enables

the sparse representation of the data. In Section 4, we will introduce the Tail-Greedy

Unbalanced Wavelet (TGUW) transform, that is an extension of the TGUH transform

in Fryzlewicz (2018b) into the one for piecewise-linear signal settings.

Point anomalies

The detection of point anomalies has been widely studied in both time series and

machine learning literature and an extensive review can be found in Chandola et al.

(2009). There have been substantial discussions in statistical methodologies about how

to achieve robustness to outliers, for example, in the framework of change-point analysis,

Fearnhead and Rigaill (2019) propose to use a loss function that is less sensitive to

the presence of outliers within a penalised optimisation framework. In contrast to the

methodologies pursuing robustness to outliers, some methods are designed to detect

anomalies. Fisch et al. (2018) propose an algorithm for detecting Collective And Point

Anomalies (CAPA) with respect to mean and variance. The TrendSegment approach

that will be introduced later in Chapter 4 also focuses on detecting point anomalies,

but our framework is different from that of Fisch et al. (2018) in that we focus on linear

trend changes and point anomalies in (2.11) with the underlying signal in (2.21), while

their focus is not on trends but only on point and collective anomalies with respect to

a constant baseline distribution.

Other approaches

There are a number of approaches which do not directly belong to any of the above

categories, but we mention a few. Eichinger and Kirch (2018) study a moving sum
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(MOSUM) procedure which detects a change-point by computing a statistic over sliding

windows at a given bandwidth. In nonparametric settings, Harchaoui and Cappé (2007)

and Harchaoui et al. (2009) propose kernel-based methods for multiple change-point

detection and Haynes et al. (2017) investigate a nonparametric version of PELT method

proposed by Killick et al. (2012). Lastly, although many Bayesian approaches are

available in the literature, we only mention a selection. Early Bayesian methodologies

for single change-point detection include Chernoff and Zacks (1964) and Broemeling

(1972), and those for multiple change-points include Barry and Hartigan (1993), Inclan

(1993) and Stephens (1994). More recent contributions include Bayesian inference for

multiple change-point problems (Fearnhead, 2006; Fearnhead and Liu, 2007; Wilson

et al., 2010) and detecting abnormal regions (Bardwell and Fearnhead, 2017).

2.2.2 Segmentation of piecewise-linear signal

Change-point detection in higher-order polynomial trends has recently attracted much

attention in the literature and largely focuses on piecewise-linear segmentation. We

consider the scenario in which the underlying signal ft in (2.11) is formulated as follows,

ft = θℓ,1 + θℓ,2 t, for t ∈ [ηℓ−1 + 1, ηℓ], ℓ = 1, . . . , N + 1, (2.21)

where θ1,1, θ1,2, . . . , θN+1,1, θN+1,2 ∈ R and fηℓ
+ θℓ,2 ≠ fηℓ+1 for ℓ = 1, . . . , N . This

definition permits both continuous and discontinuous changes.

The change-point model in (2.11) with the piecewise-linear signal in (2.21) can be

considered as a special case of segmented linear regression in which a sequence of T

pairs of observations (Xt, Yt)t=1,...,T is segmented into a number of groups depending

on the corresponding regression parameters and multiple regressions are performed on
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those segments as follows:

Yt = θℓ,1 + θℓ,2 Xt + εt, for t ∈ [ηℓ−1 + 1, ηℓ], ℓ = 1, . . . , N + 1, (2.22)

where the change-point model in (2.11) with the underlying signal in (2.21) is obtained

when Xt = t in (2.22).

Single change-point

Early works on segmented linear regression in model (2.22) focus mainly on the single

change-point case when N = 1 in (2.22). Quandt (1958) introduces a maximum

likelihood method for detecting the unknown change-point and Smith and Cook (1980)

propose a Bayesian analysis and use it for detecting the rejection time of transplanted

kidneys. Worsley (1983) considers the piecewise multiple linear regression that is a

generalised version of (2.22) with multiple regressors as follows:

Yt = θℓ,1 Xt,1+θℓ,2 Xt,2+· · ·+θℓ,p Xt,p+εt, for t ∈ [ηℓ−1+1, ηℓ], ℓ = 1, . . . , N+1,

(2.23)

and studies the single change-point case when N = 1 in (2.23) by proposing a maximum

likelihood method as an extension of Quandt (1958) designed for the model with one

regressor.

Multiple change-points

Now we discuss relatively recent approaches proposed to deal with multiple change-

points either in (2.22) or (2.23) under the penalised regression framework. Bai and

Perron (1998) apply the least square principles to the model (2.23) and estimate the
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locations of change-point by solving the following:

(η̂1, . . . , η̂N) = arg min
η1,...,ηN

ηℓ+1−ηℓ≥β

N+1∑
ℓ=1

ηℓ∑
t=ηℓ−1+1

{
Yt − (θ̂ℓ,1 Xt,1 + θ̂ℓ,2 Xt,2 + · · · + θ̂ℓ,p Xt,p)

}2
,

(2.24)

where N is assumed to be known, β is given and (θ̂ℓ,1, . . . , θ̂ℓ,p) are the least-squares

estimators for any fixed (η1, . . . , ηN ). As a practical solution of (2.24), Bai and Perron

(2003) suggest an algorithm based on dynamic programming.

Under the continuity restriction at change-points, the model (2.22) can be repa-

rameterised as

Yt = θηℓ
+
θηℓ+1 − θηℓ

ηℓ+1 − ηℓ

(t−ηℓ)+εt, for t ∈ [ηℓ−1 +1, ηℓ], ℓ = 1, . . . , N +1, (2.25)

and under this framework, Maidstone et al. (2017a) consider l0 penalty and propose a

pruned dynamic programming algorithm to solve the minimisation problem,

arg min
N

η1,...,ηN
θη1 ,...,θηN+2

N+1∑
ℓ=1

 1
σ2

ηℓ∑
t=ηℓ−1+1

(
Yt − θηℓ

−
θηℓ+1 − θηℓ

ηℓ+1 − ηℓ

(t− ηℓ)
)2

+ γ(ηℓ+1 − ηℓ)
+ βN

,
(2.26)

where β is a positive penalty constant, γ(·) is a non-negative and non-decreasing

function for penalising segment-length and σ2 is assumed to be known.

Similarly, under the least-squares principle with the continuity constraint at change-

points, Kim et al. (2009) and Tibshirani (2014) consider ‘trend filtering’ with the l1

penalty, in which case the optimisation problem for the model (2.11) with the signal

(2.21) is formulated as

arg min
ft

(1/2)
T∑

t=1
(Xt − ft)2 + λ

T −1∑
t=2

|ft−1 − 2ft + ft+1|

, (2.27)
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where λ is a positive tuning parameter. The trend filtering focuses on function

estimation rather than change-point detection, however as studied in Lin et al. (2017),

those two goals are connected to each other in the sense that a fast enough l2 error

rate of estimated function implies that each true change-point has an estimator nearby.

The Narrowest-Over-Threshold (NOT, Baranowski et al. (2019)) method and the

Isolate-Detect (ID, Anastasiou and Fryzlewicz (2019)) approach introduced in Section

2.2.1 explicitly deal with higher-order polynomial trends e.g. piecewise-linear, by

applying an appropriate test statistic that is derived from the generalised likelihood

ratio under the assumption of Gaussian noise. When the underlying signal is a

piecewise-constant function, the test statistic (often referred to as a contrast function)

obtained from the generalised likelihood ratio is equivalent to the CUSUM statistic

in (2.16), however in the case of higher-order polynomial, the contrast function has

a more complicated form. Apart from the form of the contrast function, both NOT

and ID algorithms operate in the same ways described in Section 2.2.1; NOT prefers

the narrowest segment among those whose contrast exceeds a pre-specified threshold

and continues to search in the Binary Segmentation framework and ID continuously

searches expanding data segments for changes.

Piecewise-linear segmentation is an important investigation in the initial stage of

analysis, thus often used in time series data mining. Keogh et al. (2004) mention that

sliding windows, top-down and bottom-up approaches are three principal categories

which most time series segmentation algorithms can be grouped into. Keogh et al.

(2004) apply those three approaches to the detection of changes in linear trends in 10

different signals and discover that the performance of bottom-up methods is better

than that of top-down methods and sliding windows, notably when the underlying

signal has jumps, sharp cusps or large fluctuations. Their bottom-up algorithm merges

adjacent segments of the data according to a criterion involving the minimum residual
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sum of squares (RSS) from a linear fit, until the RSS falls under a certain threshold.

However, the lack of precise recipes for the choice of this threshold parameter causes

the performance of this method to be somewhat unstable, as we report in Section 4.4.

In nonparametric regression analysis, there have been some discussions about the

estimation of jump regression curves. Jump regression can be related to change-point

analysis in that both focus on curve segmentation, although the ultimate goals are

different; the former is finding the discontinuous points in the regression curve and

fitting an arbitrary continuous curve between any two consecutive jump points, the

latter is estimating the number and locations of change-points in features of interest

(e.g. changes in mean or slope). Early works in jump regression are established on the

assumption that the number of jumps is known, for example kernel-type estimators

of jump points (McDonald and Owen, 1986) and detecting jumps and sharp cusps by

discrete wavelet transform (Wang, 1995). Under the assumption of the unknown number

of jumps, Xia and Qiu (2015) propose a jump information criterion for optimising the

number and sizes of jumps.

Finally, we discuss a few other approaches for multiple change-point detection.

McZgee and Carleton (1970) suggest a hierarchical clustering-based approach, Kim et al.

(2000) use several permutation tests with continuity constraint at change-points and

Yu et al. (2007) propose a weighted least-squares approach for multiple change-point

detection as an extension of Hudson (1966) that is designed for detecting a single

change-point. Ertel and Fowlkes (1976) consider the piecewise multiple linear regression

with multiple regressors and multiple change-points, which is the case when N > 1 in

(2.23), and Spiriti et al. (2013) study two algorithms for optimising the knot locations

in least-squares and penalised splines.
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2.3 Change-point detection in panel data

We now consider n univariate data sequences where each sequence consists of T

observations collected over time. Then the n-dimensional panel data has a matrix form

of the dimension n× T as follows:



X1,1 X1,2 X1,3 · · · X1,T

X2,1 X2,2 X2,3 · · · X2,T

... ... ... ... ...

Xn,1 Xn,2 Xn,3 · · · Xn,T


. (2.28)

This type of multivariate or high-dimensional panel data arises in many different fields

including finance, environment, biology, economics, medical sciences and astronomy.

If those data sequences in (2.28) experience structural changes at some time points,

estimating the number and locations of those change-points is not only often itself of

significant interest but also useful for a higher-level representation of the data such as

time series clustering or classification. It is indeed a problem of importance in many

applications and recent examples include the detection of DNA copy number variants

in multiple samples (Zhang et al., 2010), detecting most recent change-point of the

events in a telecommunications network recorded for a set of regions (Bardwell et al.,

2019), estimation of change-points in average daily river flows recorded in many years

(Dette and Gösmann, 2018), detecting change-points in functional magnetic resonance

imaging (fMRI) data containing many subjects (Cribben and Yu, 2017; Li et al., 2019),

detecting price inflation from UK retail price index data composed of many component

indices (Groen et al., 2013).

Change-point detection in panel data introduces many challenges that are not

present in the case of a univariate data sequence. Even in the simplest setting with a
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single change-point, it may happen that all univariate data sequences have a change-

point at different time points or that the change occurs only in a sparse subset of the

data sequences. In the following sections, we review how these issues have been dealt

with in the literature under various types of structural changes, including changes in

mean and/or variance, changes in cross-sectional dependence and changes in polynomial

trend. This review covers the existing change-point analyses for both multivariate and

high-dimensional panel data where the high-dimensional regime refers to when the

dimension n is comparable, or even larger than, the length T of the data stream.

2.3.1 Early works for the case of single change-point

Common change in mean

When the detection of a common change in mean is of interest, the panel data in (2.28)

is reformulated as (X1, . . . ,XT ) where they are independent n-dimensional random

vectors sampled from,

X t ∼ Nn(µt,Σ), 1 ≤ t ≤ n, (2.29)

and Σ is non-singular covariance matrix. Many of the early works concern the following

hypothesis,

H0 : µ1 = µ2 = · · · = µn = µ,

against the alternative

H1 : µ1 = · · · = µη ̸= µη+1 = · · · = µn, (2.30)

where µ and η are unknown.

Several authors propose Bayesian methods for testing a single mean shift in (2.30).

Sen and Srivastava (1973) and Booth and Smith (1982) propose Bayesian statistics
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assuming that Σ is the identity matrix and Σ is unknown, respectively. Perreault et al.

(2000) apply a Bayesian procedure to detect a single common change in the mean of

six hydrological time series. Son and Kim (2005) consider detecting a single change in

mean and/or covariance of a sequence of independent multivariate normal vectors.

The likelihood-ratio procedure is popularly used in early studies. Srivastava and

Worsley (1986) suggest likelihood ratio tests for the change model in (2.29) and (2.30)

with an unknown covariance matrix. Generalising this method, Worsley (1986) studies

the detection of a single change in the parameter of the exponential family distribution.

Krishnaiah et al. (1987) propose a local likelihood approach for estimating multiple

change-points in the mean of multivariate normal distribution. Assuming a single

mean shift in (2.29), James et al. (1992) give an asymptotic approximation for the

significance level of the likelihood ratio test.

CUSUM is frequently employed for detecting a change in mean vector in the

multivariate statistical process control. Woodall and Ncube (1985) propose to use

a set of univariate CUSUM procedures for the multivariate case and Healy (1987)

discusses detecting a change in mean vector or covariance matrix when the likelihood

functions for both before and after the change are known. Crosier (1988) proposes

two multivariate CUSUM procedures; the first CUSUM vector is obtained from a

univariate series attained by reducing each multivariate observation and the other gives

a CUSUM procedure directly from the multivariate observations. Another variant of

multivariate CUSUM is introduced in Pignatiello Jr and Runger (1990) and a more

complete review of the multivariate CUSUM quality-control can be found in Wierda

(1994), Lowry and Montgomery (1995) and Mason et al. (1997). CUSUM statistic

is also often used in high-dimensional change-point problem and various aggregating

methods are formulated later in Section 2.3.3.
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Random change-point

The random change-point model for panel data is first introduced by Joseph (1989).

Under the name multi-path change-point model, he considers a single change-point in

two scenarios as in (2.31); 1) when the change occurs at the same point η in all data

sequences (the left matrix) and 2) when the change ηi occurs at random positions in

ith data sequence (the right matrix), where ith row corresponds to ith data sequence.



X1,1 · · · X1,η | X1,η+1 · · · X1,T

X2,1 · · · X2,η | X1,η+1 · · · X2,T

... ... ... ... ... ... ...

Xn,1 · · · Xn,η | X1,η+1 · · · Xn,T


,



X1,1 · · · X1,η1 | X1,η1+1 · · · X1,T

X2,1 · · · X2,η2 | X1,η2+1 · · · X2,T

... ... ... ... ... ... ...

Xn,1 · · · Xn,ηn | X1,ηn+1 · · · Xn,T


.

(2.31)

In the case of a common change-point, the distribution of the variables Xi,t is assumed

to be changed at the change-point η and the bootstrap method is used for approximating

the distribution of η̂, where various methods are explored including maximum likelihood,

conditional maximum likelihood, nonparametric and Bayesian in a way of extending

the exiting methods for one-dimensional data into multivariate settings. In the case

of varying change-points, {ηi}n
i=1 is assumed to follow a distribution Gη(t) and a few

Bayesian techniques are studied with a variety of prior distributions.

We emphasise that these early ideas are established under the assumption that

the pre-change data, {Xi,t}i=1,...,n,t=1,...,ηi
, follow a single distribution f1 and the post-

change data, {Xi,t}i=1,...,n,t=ηi+1,...,T , is sampled from another distribution f2. With this

assumption, the multi-path change-point model is improved and applied in Joseph

and Wolfson (1992), Joseph and Wolfson (1993), Joseph et al. (1997) and Bélisle et al.

(1998). In particular, Joseph et al. (1996) extend the maximum likelihood estimators

of Joseph and Wolfson (1993) to correlated observations, where an autoregressive (AR)
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process of order p is assumed to the observations from any ith row of (2.28) and the

change occurs in its mean and/or autocovariance function. Asgharian and Wolfson

(2001) concern the inclusion of covariates in the change-point distribution and study

the impact of covariates on the change-point and the parameters. Robinson et al.

(2010) extend the maximum likelihood estimation studied in Joseph and Wolfson (1993)

and apply it to multiple change-point detection in multi-subject fMRI data.

2.3.2 Multiple change-point detection in multivariate time se-

ries

Later works in change-point detection for panel data are developed in a way of

considering multiple changes rather than a single change, assuming common change-

points rather than random change-points and considering a more complex structure

such as dependence across the panel.

Changes in mean

We consider the case when the number and locations of change in mean are of interest.

The n-dimensional random vectors, X1, . . . ,XT , are assumed to have N distinct

change-points in mean,

0 = η0 < η1 < η2 < . . . < ηN < ηN+1 = T, (2.32)

such that

µηℓ+1 = · · · = µηℓ+1
= µ(ℓ), for ℓ = 0, . . . , N, (2.33)

µ(ℓ) ̸= µ(ℓ−1), for ℓ = 1, . . . , N, (2.34)

where the values of N and η1, . . . , ηN are unknown.
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Under this setting, Horváth et al. (1999) propose several test statistics for changes

in the mean of multivariate stationary processes. Vert and Bleakley (2010) view

this multiple change-point detection as a convex optimisation problem, and find the

solution by using a group LARS (Yuan and Lin, 2006). Siegmund et al. (2011) consider

the same problem for independent multivariate Gaussian random vectors with an

identity covariance matrix. Maboudou-Tchao and Hawkins (2013) propose a maximum

likelihood approach for detecting changes in mean and/or covariance of multivariate

Gaussian data in the following setting:

ηℓ + 1 ≤ t ≤ ηℓ+1, X t ∼ Nn(µ(ℓ),Σ(ℓ)), (2.35)

where ℓ = 0, . . . , N .

Changes in other features

In a more general context, Lung-Yut-Fong et al. (2011b) consider a nonparametric

approach for detecting multiple changes in distribution where no prior knowledge of

the distribution is required. To study the same problem, Lung-Yut-Fong et al. (2011a)

propose a test statistic by generalising the Mann-Whitney Wilcoxon two-sample test in

multivariate settings. Matteson and James (2014) propose nonparametric procedures

using both divisive and agglomerative algorithms for hierarchical clustering. In a

slightly different setting, Ma and Yau (2016) propose a likelihood-based approach for

partitioning an n-dimensional time series into stationary segments and use a pruned

dynamic programming for efficient computation. Ombao et al. (2005) also study the

segmentation of multivariate nonstationary time series by using a collection of bases

named smooth localised complex exponentials in Ombao et al. (2002).

Some authors focus on detecting multiple changes in the cross-covariance structure.

Lavielle and Teyssiere (2006) propose an algorithm based on a penalised log-likelihood
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and use dynamic programming to compute the optimal path. Aue et al. (2009)

propose a nonparametric test based on CUSUM statistic for detecting a structural

change in the covariance matrix and extend it to the multiple change-point case via

Binary Segmentation. Preuss et al. (2015) suggest a nonparametric procedure for

detecting changes in the autocovariance function of a multivariate stationary process

by comparing the estimated spectral distribution of different segments. Schröder and

Ombao (2019) study the detection of frequency-specific changes in autospectra and

coherences for multivariate time series where the procedure is based on a multivariate

CUSUM statistics.

Groen et al. (2013) study the detection of multiple changes in regression coefficient

by using the average and the maximum of n CUSUM statistics where each component is

computed from n-dimensional time series. Kirch et al. (2015) consider detecting change-

points in multivariate time series by using the parameters of vector autoregressive (VAR)

model as features with application to electroencephalogram (EEG) data. Bardwell

et al. (2019) focus on detecting the most recent change-points in panel data,

Xi,t = fi,t + εi,t, i = 1, . . . , n, t = 1, . . . , T, (2.36)

where the signal vectors {f i}n
i=1 are assumed to have a form of piecewise-linear function.

They first analyse each time series independently through a penalised likelihood

approach and post-process to partition n univariate data sequences into a small number

of groups that share the most recent change-point.

2.3.3 High-dimensional change-point problem

We consider the high-dimensional settings when both dimension n and the length

T can be large and the dimension is comparable, or even larger than, the length of

the series. High-dimensional change-point analysis is still in its early stages and has
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recently received increasing attention. Many works have considered detecting changes

in mean when {f i}n
i=1 in (2.36) are modelled as piecewise-constant on which the main

focus of our review will be placed. Other related works developed in the context

of change-point detection will also be discussed. In what follows, we classify those

techniques for high-dimensional time series into few categories and one methodology

can be shown in more than one category.

Least-squares criterion

Some authors employ a least-squares criterion to detect a change-point in mean. Bai

(2010) is one of the early works in high-dimensional change-point analysis where

the consistency of the least-squares estimator of a single change-point is considered.

Bhattacharjee et al. (2019) extends the least-square-based approach proposed in Bai

(2010) to the case when both temporal and cross-sectional dependences exist.

CUSUM aggregation

The CUSUM procedure has been popularly used in high-dimensional settings. Under

the assumption of a single change-point, many different test statistics have been

proposed in a way of aggregating CUSUM series, C1
1,q,T , . . . , Cn

1,q,T , across the panel,

where the CUSUM for the ith time series {Xi,t}T
t=1 is defined as:

Ci
p,q,r =

√
r − q

(r − p+ 1)(q − p+ 1)

q∑
t=p

Xi,t −
√

q − p+ 1
(r − p+ 1)(r − q)

r∑
t=q+1

Xi,t. (2.37)

Note that the CUSUM in (2.37) is the generalised version of the one for univariate time

series formulated in (2.16). Zhang et al. (2010) propose a change-point test based on

the l2-aggregated chi-squared statistics derived under the i.i.d. Gaussian assumption.

Similarly, Horváth and Hušková (2012) consider a test statistic through a l2-aggregation
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of CUSUM series as:

max
q

[
q(T − q)√

nT 2

n∑
i=1

{
(Ci

1,q,T )2 − 1
}]
, (2.38)

against the alternative hypothesis that the change occurs in all coordinates while

Enikeeva and Harchaoui (2013) suggest using a combination of two chi-square type

test statistics to enhance the performance in situations where the change occurs only

in a subset of coordinates. Cho and Fryzlewicz (2015) consider a l1-aggregation of the

hard-thresholded CUSUM series,

max
q

n∑
i=1

|Ci
1,q,T | · I{|Ci

1,q,T | > λ}, (2.39)

as a test statistic for detecting a change in the second-order structure of high-dimensional

time series, where λ is a pre-specified threshold. Jirak (2015) suggests the use of the

following pointwise maximum (l∞-aggregation) of the CUSUM statistics as a test

statistic:

max
q

max
i

(
q(T − q)

T

)1/2

|Ci
1,q,T |. (2.40)

Cho (2016) proposes double CUSUM statistic that is obtained by applying CUSUM

transform twice, for each time series first and then again to the sorted CUSUM matrix

along the temporal axis. Wang and Samworth (2018) propose a two-stage procedure

including the projection of the CUSUM-transformed data and the application of an

existing algorithm for univariate change point estimation, where the extension for

the multiple change-points is established by borrowing the idea of the Wild Binary

Segmentation algorithm (Fryzlewicz, 2014).
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Changes in a sparse subset of data sequences

High-dimensional settings consider the case when the number of time series can be very

large and it is often too restrictive to assume that all data sequences change at the same

locations. As a relaxation of this assumption, some authors focus on cross-sectionally

sparse changes.

Without a specific assumption on sparsity, Enikeeva and Harchaoui (2013) employ

the scan statistic aimed at improving flexibility in detecting a sparse change and Jirak

(2015) studies how to identify the set of coordinates those experience a change. In a

slightly different setting, Xie and Siegmund (2013) study the case when a change-point

affects only a subset of series, through a mixture procedure based on a generalised

likelihood ratio statistics.

Under the sparsity assumptions, Cho and Fryzlewicz (2015) propose sparsified

binary segmentation that follows the binary structure for detecting multiple changes

but uses the thresholded (or sparsified) CUSUM statistics. Cho (2016) proposes

the aggregation of CUSUM statistics through an adaptive partitioning of the panel

and Wang and Samworth (2018) apply a sparse singular value decomposition to the

CUSUM-transformed data.

Dependences

There are few recent works focusing on both temporal and cross-sectional dependences

of high-dimensional time series. Based on a general weak dependence concept, Jirak

(2015) studies the asymptotic limit distribution of the coordinate-wise CUSUM statis-

tics. Under both temporal and cross-sectional dependences, Safikhani and Shojaie

(2017) study the detection of changes in the coefficients of high-dimensional vector

autoregressive (VAR) model. In particular, their method allows the dimension to

grow exponentially fast with respect to the length of the series. Bhattacharjee et al.
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(2019) propose a least-squares approach for a single change-point where the temporal

and cross-sectional dependences are modelled by a moving average error process with

infinite order. Li et al. (2019) propose a testing procedure for multiple change-points

when both temporal and spatial dependences exist.

Other approaches

Aston and Kirch (2018) study the asymptotic efficiency of the change-point detection

test for a single change in mean, that allows us to compare the power of different

tests in the high-dimensional settings. Chen and Zhang (2015) propose a graph-based

approach for detecting changes in distribution under the assumption that a sequence

of n-dimensional observation is independent. Soh and Chandrasekaran (2017) propose

a change-point detection method for high-dimensional signals by combining the filtered

derivative approach with the convex optimisation. Cribben and Yu (2017) study the

detection of changes in network structure in the high-dimensional time series framework.

Some other works in covariance change-point detection include Barigozzi et al. (2018)

and Wang et al. (2017).



Chapter 3

Smooth-Rough Partitioning of the

regression coefficients

3.1 Introduction

In this chapter, we consider random functions Xi ∈ L2[0, 1] where i = 1, . . . , n and

[0, 1] is a compact subset of R. The random functions arise in many contexts e.g.

intraday price curves of a financial asset or daily curves of particular matter in the air,

and in practice, they are often observed on a grid, rather than continuously. Under

the assumption that the repeated realisations of the trajectories are generated by a

suitable underlying process, we focus on the random nature of those functions.

The observation of i.i.d. square-integrable random functions Xi(t) ∈ L2[0, 1] on an

equispaced grid {t0, t1, . . . , tT } gives the discretised curves {Xi(t0), Xi(t1), . . . , Xi(tT )}

for i = 1, . . . , n where t0 = 0 and tT = 1. Based on these design points, our ob-

jective in this work is to predict the final point Xi(tT ) from the past observations

{Xi(t0), . . . , Xi(tT −1)}. This is an important applied problem in a variety of fields,

including public health, earth sciences, finance and environment, as our data examples

in Section 3.5 illustrate. Arguably the simplest statistical framework for expressing
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the dependence of Xi(tT ) on {Xi(t0), . . . , Xi(tT −1)} is linearity, and with this in mind,

this work focuses on the following model:

Xi(tT ) = µ+
T∑

j=1
αjXi(tT −j) + εi, i = 1, . . . , n. (3.1)

We now discuss its specifics. In our asymptotic considerations, we work with a fixed T ,

however, in practice, T can be large. For example, two of the datasets in Section 3.5

have T roughly of the order of n which inevitably brings us into a high-dimensional

setting and the set of parameters αj cannot be estimated well by classical approaches.

In addition, we often experience a high degree of collinearity between the predictors.

As a way of regularising the problem, our proposal in this work is to split the set of

parameters {α1, . . . , αT } into two sets, {α1, . . . , αq} and {αq+1, . . . , αT }, as follows,

Xi(tT ) = µ+
q∑

j=1
αjXi(tT −j) +

T∑
j=q+1

αjXi(tT −j) + εi, i = 1, . . . , n, (3.2)

and assume that the second set, {αq+1, . . . , αT }, is discretised from a smooth curve

β(t), which gives the model of this chapter:

Xi(tT ) = µ+
q∑

j=1
αjXi(tT −j) +

T∑
j=q+1

β(tT −j)Xi(tT −j) + εi, i = 1, . . . , n, (3.3)

where the final point Xi(tT ) is a scalar response variable, {Xi(tT −j),j=1,...,T } ∈ RT repre-

sents scalar predictors and εi’s are iid Gaussian random errors with E(εi|Xi(tT −j),j=1,...,T )

= 0 and unknown variance σ2. Since all the dependent and independent variables

are obtained from random functions, we assume them to be random. The unknown

parameter set contains a constant µ ∈ R, real and scalar α = (α1, . . . , αq)⊤ ∈ Rq, real

and functional β ∈ L2[t0, tT −q−1] and a change-point index parameter q. Throughout

the chapter, we will be referring to (3.3) as the Smooth-Rough Partition (SRP) model.
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The SRP model assumes that the change-point index q is unknown, and we estimate

it from the data via a change-point detection technique. This is possible because we

will be assuming that the coefficients αj are rougher than the coefficients β(tT −j), i.e.

exhibit more variation. One can consider the case of multiple change-points, however

in this chapter, we focus on the simplest case when a single change-point exists in

smoothness of the regression coefficients.

We now motivate the smooth-rough partitioning idea in more detail. The partition-

ing of the regression coefficients into two classes of smoothness captures the difference

in the relative importance of the observations in predicting the final point Xi(tT ).

Constraining the β’s to be smooth reflects the relatively lower importance of the more

remote observations, whose influence on Xi(tT ) is ‘bundled together’ by the smoothness

restriction in β. By contrast, the unconstrained parameters α are not connected to

each other in any (functional) way, so are able to capture any arbitrary linear influence

of the near observations on Xi(tT ). The smoothness assumptions on (α, β) will be

specified in Section 3.3.

The smooth-rough partitioning results in regression estimation that is interpretable

in the sense that it automatically separates the effects that can be seen as “long-term”

(these are the ones corresponding to the smooth portion of the parameter vector) from

those that can be seen as “instantaneous” (these are the ones that correspond to the

rough portion of the parameter vector). In other words, the SRP framework can be

seen as a “two-scale” approach to linear prediction, where the two scales are defined

by both the smoothness and the extent of the regression parameter vector (i.e. the

long, smooth portion and the short, rough portion). For example, Figure 3.1 shows

that the daily curves of hourly average nitrogen oxides level in Mexico City contain 24

observations each and have similar patterns including two peaks around hours 9 and

21. In the context of the pollution data, it is reasonable to believe that the level of
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Fig. 3.1 The daily curves of hourly average nitrogen oxides (parts per billion) at the
Pedregal station in Mexico City in 2016.

pollution at hour 24 depends both on the overall shape and level of the curve up until

the current time i.e. hour 24 (which could be seen as the long-term effect) and the

levels immediately preceding the current time (which can be seen as the instantaneous

effect). Although we focus on predicting the pollution level at hour 24, if the prediction

of a particular hour is of interest, the hours of the curves can be repositioned to put

the hour of interest to the final point as a response variable. In Section 3.5.2, we show

that those daily curves appear to display both long-term and instantaneous temporal

dependences, which are well captured by the SRP model. Besides, in Section 3.5, we

demonstrate the usefulness of our two-scale framework in various other real-world

datasets e.g. fertility rate data and high-frequency stock volatility series, to which we

can attach similar interpretations.
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Additionally, the SRP framework can also be useful in the modelling and forecasting

of univariate time series, especially those that are believed to be well modelled as AR

(autoregressive) processes with large orders. In this case, the smoothing technique of

the SRP model would be able to offer both regularisation and interpretability, especially

if the time series is believed to possess long memory which will typically be the case if

an AR model with a large order is used in the first place. For example, the middle

plot of Figure 3.2 shows that the square-rooted monthly sunspot number series may

need large-order autoregression (even up to or exceeding order 100), in which case it

may be advantageous to use the SRP model over plain AR modelling. In Section 3.5.4,

we illustrate that the two-scale framework of the SRP approach is useful in modelling

the long memory of a time series.
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Fig. 3.2 Square-rooted monthly numbers of sunspots from 1749 to 2013 (left), its partial
autocorrelation function with maximum lag=150 (middle) and the autocorrelation
function with maximum lag=150 (right).

Model (3.3) covers two special cases: 1) in the case of q = T , i.e. if we ignore

the constrained part, then it has the form of multiple linear regression Xi(tT ) =

µ + ∑T
j=1 αjXi(tT −j) + εi and 2) when q = 0, i.e. without the unconstrained part,

if the summation is replaced by integration with a large enough T , then it becomes

scalar on function regression with Xi(tT ) = µ +
∫ tT −1

t0 β(t)Xi(t)dt + εi. Unlike the

former, completely unconstrained case, the regularisation in model (3.3) operates in a
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way that reduces the model’s degrees of freedom. In the examples of Section 3.5, we

empirically show that the full model (3.3) exhibits better prediction performance than

these two extreme cases. This further justifies our efforts in proposing a methodology

for detecting the change-point index q automatically from the data.

We now explain how the SRP model is different from those introduced in Sections

2.1.2-2.1.5 which regularise the functional linear regression coefficient in different ways.

In contrast to the ‘null subregion’ approaches introduced in Section 2.1.2, we do not

regularise by finding null subregions of β(t) but by imposing different smoothness

constraints over different sections of the parameter curve. Capturing two different

regimes of smoothness of β(t) is done by estimating a change-point which splits

the more informative (rough) and the less influential (smooth) regions in β(t). In

estimating the locations of the influential points by the point of impact approach

(Kneip et al., 2016) introduced in Section 2.1.3, they remove the observations adjoining

the points of impact, which would be unnecessary in our SRP model as the unrestricted

coefficients are grouped into a single region that is the nearest to the time-location of

the response variable. While the point of impact approach uses the functional part

for estimating the common effect on the entire interval [0, 1], the SRP model uses the

smooth functional parameter for a subregion (rather than the entire region) to capture

the vanishing memory structure of time series. In Section 3.4, we give examples to show

the importance of keeping non-zero (but smooth) part of β(t). Some methodologies

based on the change-point detection idea are introduced in Section 2.1.4, however

neither of these methods use their concept of change-point detection to differentiate

between two classes of smoothness, as done by the SRP model. If q in model (3.3) were

known, the skeleton of the SRP model is similar to that of partial functional linear

regression model in (2.10) in Section 2.1.5. It is worth mentioning that the SRP model

studies the case when q is unknown and chooses both independent and dependent
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variables from one curve in a time series context. The performance of our technique is

compared to some of the methods mentioned above in Sections 3.4 and 3.5.

The remainder of this chapter is organised as follows. Section 3.2 describes the

model and the parameter estimation procedure and Section 3.3 presents the relevant

theoretical results. The supporting simulation studies are outlined in Section 3.4, with

further real-data illustrations in Section 3.5 regarding country fertility data, Mexico

city pollution data, stock volatility series and sunspot number data. The technical

proofs are in Section 3.6. The SRP methodology is implemented in the R package srp.

3.2 Model and its estimation

We work with the discretised curves {Xi(t0), . . . , Xi(tT )}i=1,...,n observed from each

function Xi(t) on the equispaced T + 1 discrete points including both endpoints. Since

the regression coefficients vary by q, we rewrite model (3.3) as

Xi(tT ) = µq +
q∑

j=1
αq

jXi(tT −j) +
T∑

j=q+1
βq(tT −j)Xi(tT −j) + εi, i = 1, . . . , n, (3.4)

where 1 ≤ q ≤ T . The point tT −q is where a sudden smoothness change occurs in the

sequence of the regression coefficients, with the coefficients αq
j being unconstrained

in terms of their smoothness and the coefficients βq(tT −j) assumed to be a sampled

version of a smooth function. Although later the entire function βq(t) is estimated (in a

form of function), we only use the points discretised from β̂q(t) and also keep the SRP

model with the discrete points βq(tT −j) as in (3.4). This is because our model is built

on the discretised curves, {Xi(t0), . . . , Xi(tT )}i=1,...,n, rather than the fully observed

curves. The change-point location in (3.4) is the same for all i’s. Our expectation

is that q is substantially smaller than T and the optimal q is chosen by examining

a number of q’s over a subset of {1, . . . , T}, which we specify in Section 3.2.1. The
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reason why T is assumed to be fixed is that if we were to allow T → ∞, then tT would

asymptotically approach tT −1 and we could simply predict X(tT ) by X(tT −1).
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Fig. 3.3 The estimated regression coefficients of the functional linear regression (red
dashed) and the SRP model (black) for predicting the average of nitrogen oxides level
at hour 24.

We recall the daily curves of hourly average nitrogen oxides in Mexico City shown in

Figure 3.1 to motivate the change-point in (3.4). When the final observation recorded

at hour 24 is predicted from the past observations indexed 1 to 23, we compare the

estimated regression coefficients of the SRP model in (3.4) (i.e. when the model includes

both unconstrained and constrained parts in regression parameters) with the estimated

functional linear regression coefficient of the model Xi(tT ) = µ+
∫ tT −1

t0 β(t)Xi(t)dt+ εi

(i.e. when the unconstrained part is ignored in (3.4)). Figure 3.3 shows that those

two behave differently especially in the region corresponding to the unconstrained

regression coefficients in (3.4). In Section 3.5.2, we show that partitioning the regression

parameters into a smooth and a rough regime empirically gives better prediction

performance than the functional linear regression model.



3.2 Model and its estimation 62

The set of unknown parameters in (3.4) can be categorised into two types: 1)

change-point tT −q and 2) regression coefficients (µq,αq, βq). Our interest includes the

estimation of the underlying smooth function β(t). Broadly speaking, two possible

ways exist: 1) estimate (β̂q(t0), . . . , β̂q(tT −q−1)) and then use interpolation to obtain

the functional form of β̂q(t) or 2) obtain the interpolant {X(t), t ∈ [t0, tT −q−1]} and

then estimate the function β̂q(t) through basis expansion. In this work, we use the

latter approach as it is more popular and the former approach needs a particular

penalty to make it feasible if T is close to or exceeding n. Examples of the former can

be found in Cardot et al. (2007) and Crambes et al. (2009).

The interpolant {Xi(t), t ∈ [t0, tT −q−1]} is obtained from the discrete observations

(Xi(t0), . . . , Xi(tT −q−1)) using natural cubic splines with knots at (t0, . . . , tT −q−1). As

stated in Crambes et al. (2009), the essential property of natural splines is that for any

vector, the unique natural spline interpolant exists and it can be expressed as a B-spline

expansion with dimension equal to ‘number of knots + 2’ (in our case T − q + 2) as

follows,

Xi(t) =
T −q+2∑

h=1
dihBh(t), t ∈ [t0, tT −q−1], (3.5)

where Bh(t) is a set of basis functions for the normalised B-splines {Bh}h=1,...,T −q+2.

B-splines stands for basis splines as it is used as basis functions for the space of splines.

Any spline function can be presented as a unique linear combination of B-splines, where

a spline function is a piecewise polynomial function.

As stated in Section 2.1.1, dimension reduction is necessary for the estimation

of β(t). In what follows, we use B-splines. Cardot et al. (2003) argue that spline

estimators should be preferred to the functional PC approach when X(t) is rough and

the functional coefficient is smooth, which is the case we are interested in. Moreover, a

spline estimator is not directly affected by the estimation of the eigenstructure of the

covariance operator of X(t).
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Let S be the space of splines defined on [t0, tT −q−1] with degree s and k−1 equispaced

interior knots where L = k + s denotes the dimension of S. Then one can derive a set

of basis functions from the normalised B-splines {Bl}l=1,...,L to approximate βq(t) as

βq(t) ≈
L∑

l=1
bq

lBl(t), t ∈ [t0, tT −q−1], (3.6)

where bl represents the corresponding coefficient. For each tT −q, the set of the regression

parameters simplifies to δq = (µq,αq, bq
1, . . . , b

q
L)⊤ ∈ R1+q+L where αq = (αq

1, . . . , α
q
q)⊤.

The choice of L is considered in Section 3.2.2.

3.2.1 Joint estimation procedure for parameters

We suggest a one-stage estimation procedure for the change-point and the regression

parameters. Since the parameter q represents the number of scalar parameters, under

fixed L, q itself determines the dimension of the model. Thus, using the well-known

criterion of Schwarz (1978), we estimate q by minimising

SIC(q) = n · logM(q) + (q + L+ 1) · log n, (3.7)

where

M(q) = 1
n

n∑
i=1

{
Xi(tT ) − µ̂q −

q∑
j=1

α̂q
jXi(tT −j) −

T∑
j=q+1

β̂q(tT −j)Xi(tT −j)
}2

, (3.8)
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and (µ̂q, α̂q
j , β̂q(tT −j)) are repeatedly estimated for each q by minimising the following

sum of squared errors with appropriate penalisations,

(α̂q, β̂q(t)) = arg min
αq ,βq(t)

 1
n

n∑
i=1

{
X̃i(tT ) −

q∑
j=1

αq
jX̃i(tT −j) −

∫ tT −q−1

t0
βq(t)X̃i(t)dt

}2

+ λ1δ
q
0

⊤δq
0 + λ2

∫ tT −q−1

t0

{
βq(m)(t)

}2
dt

, (3.9)

µ̂q =X̄(tT ) −
q∑

j=1
α̂q

jX̄(tT −j) −
T∑

j=q+1
β̂q(tT −j)X̄(tT −j),

where δq
0 = (αq, bq

1, . . . , b
q
L)⊤ ∈ Rq+L, X̃i(tT −j) and X̃i(t) are demeaned predictors,

X̄(tT −j) = 1
n

∑n
i=1 Xi(tT −j) and βq(m)(t) is the mth derivative of βq(t) with the positive

integer m satisfying m < s where s denotes the degree of space S. We note that M(q)

in (3.8) comes from the Gaussian error assumption in model (3.3) on which SIC can be

written in terms of the residual sum of squares (RSS) as SIC = n · log(RSS/n) + (q +

L+ 1) · log n. Importantly, in Section 3.6, it will be shown that the log n in the penalty

term of SIC (which is larger than that of AIC (Akaike, 1974)) plays an important

role in achieving the consistency of the estimated change-point index parameter q, and

this justifies the usage of SIC in estimating q.

The penalty terms in (3.9) contain two tuning parameters: λ1 controls a ridge-type

penalty and λ2 governs the smoothness of the estimated β̂q(t). In practice, only the

initial values of λ1 and λ2 need to be specified by the user and the optimal values are

selected automatically via a cross-validation-type criterion described in Section 3.2.2.

If q were known, our task would be to estimate the regression parameters (µq,αq, βq).

However, we assume that q is not known and estimate the parameters (q, µq,αq, βq)

jointly. We preserve the original time scale of βq(t) instead of rescaling it to [0, 1] so

that we can place α̂q̂ and β̂ q̂(t) on the same time scale.
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We present a procedure for the estimation of regression parameters in (3.9). Under

a fixed q, one of those components in (3.9) can be approximated by the basis expansions

described in (3.5) and (3.6) as follows:

∫ tT −q−1

t0
βq(t)X̃i(t)dt ≈

T −q+2∑
h=1

L∑
l=1

dih

{ ∫ tT −q−1

t0
Bh(t)Bl(t)dt

}
bq

l = d⊤
i Jqbq, (3.10)

where di = (di,1, ..., di,T −q+2)⊤, bq = (bq
1, ..., b

q
L)⊤ and Jq is a matrix of the dimension

(T − q + 2) × L with its (h, l)th element, Jq
hl =

∫ tT −q−1
t0 Bh(t)Bl(t)dt. The two penalty

terms in (3.9) can be reconstructed as δq
0

⊤Rqδq
0 = λ1δ

q
0

⊤δq
0 + λ2

∫ tT −q−1
t0 {βq(m)(t)}2dt

where

Rq
(q+L)×(q+L) =

λ1Iq 0

0 λ1IL + λ2Rq
0

 , (3.11)

and Rq
0 is a L×L matrix with its (h, l)th element, Rq

0,hl =
∫ tT −q−1

t0 {B(m)
h (t)}{B(m)

l (t)}dt.

The penalised minimisation in (3.9) can be simplified as

PENSSEλ1,λ2 [δq
0 = (αq, bq)⊤] = ∥ X̃(tT ) − (X̃αq +DJ qbq) ∥2 +δq

0
⊤Rqδq

0, (3.12)

where X̃n×q = (X̃(tT −1), ..., X̃(tT −q)) and Dn×(T −q+2) = (d⊤
1 , ...,d

⊤
n ). Given some

tuning parameters λ1 and λ2, the minimiser δ̂q

0 can be attained as a closed form of

δ̂
q

0 = (Aq⊤Aq +Rq)−1Aq⊤X̃(tT ) (3.13)

where Aq = [X̃ DJ q] is the design matrix.

We now consider why the minimisation of the SIC penalty in (3.7) is particularly

useful in estimating q. First, let q0,α0, β0 denote the true values of the parameters

q,α, β, respectively. The left plot in Figure 3.4 shows that as a function of q, M(q)

typically decreases sharply as q ↑ q0, and becomes relatively flat (as n → ∞) for q ≥ q0.
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Fig. 3.4 Mean of {M(q)}1≤q≤50 (left) and {SIC(q)}1≤q≤50 (right) defined in (3.8) and
(3.7) (respectively) over 100 simulation runs for Case 2 defined in Section 3.4, in which
case q0=3.

For q > q0, as q is larger than the true one, the smooth function β0(t) on the interval

[tT −q, tT −q0−1] is inevitably estimated by the scalar estimators (α̂q, . . . , α̂q0+1), in which

case the scalar estimators (α̂q, . . . , α̂q0+1) are obtained in a relatively flexible way in

that the smoothness is unrestricted, therefore the fit is typically good which causes the

flat shape of M(q) when q > q0. Conversely, when q < q0, some of the unrestricted

parameters, (α0,q0 , . . . , α0,q+1), are estimated by (β̂q(tT −q0), . . . , β̂q(tT −q−1)) under a

smoothness restriction, which typically causes M(q) to be away from its minimum for

q < q0. The right plot in Figure 3.4 shows that the SIC penalty “lifts” the flat part of

M(q) and enables us to estimate the q parameter close to its true value. This is shown

theoretically in Section 3.3 and numerically in Sections 3.4 and 3.5.

When finding the optimal q in (3.7), although q can in principle be large enough up

to q = T , we recommend examining 1 ≤ q ≤ q̄, where q̄ is substantially smaller than T .

In the examples considered in Sections 3.4 and 3.5, we take q̄ = min(⌈T × 0.1⌉, 30).

Based on our empirical experience, when q is large, there is the possibility that the

optimisation of the two tuning parameters, λ1 and λ2 in (3.9), becomes unstable in
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that it becomes highly dependent on the selection of their initial values. In addition,

examining the entire range 1 ≤ q ≤ T can make the algorithm unnecessarily slow

especially when both T and n are large. In practice, even if we do not restrict q to

be small as stated above, the minimiser q̂ of SIC(q) in (3.7), if computed successfully

despite the potential stability issues, is typically obtained to be substantially smaller

than T .

3.2.2 Selection of the tuning parameters

To select the tuning parameters, we use the magic function from the R package mgcv

(Wood (2006)). The mgcv includes various regression models such as GAM or the

generalised ridge regression. The magic function is useful in that it is able to optimise

over more than one penalty parameters (λ1 and λ2 in our case) by minimising GCV

based on Newton’s method where GCV function is as follows:

GCV(λ1, λ2) = n ∥ (I −A∗(λ1, λ2))X̃(tT ) ∥2

[tr(I −A∗(λ1, λ2))]2
, (3.14)

where A∗(λ1, λ2) = Aq(Aq⊤Aq +Rq)−1Aq⊤ and (Rq, Aq) can be found in (3.11) and

(3.13), respectively. The practical use of the magic function in our setting is as follows:

magic( y, X, sp, S, off ).

Note that y is the response vector, X is the design matrix, sp is the starting values

for optimising penalty parameters, S is a list of penalty matrices and off is an array

indicating the locations of the first parameter penalised by the corresponding penalty

matrices in S. In our case, the penalty matrix Rq in (3.11) can be represented as the

sum of two matrices where each contains the corresponding penalty parameters λ1 and
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λ2 as follows,

Rq
(q+L)×(q+L) =

λ1Iq 0

0 λ1IL + λ2Rq
0

 = λ1Iq+L + λ2

0 0

0 Rq
0

 ,

therefore for a certain q, the magic function has the form of

magic( y=X̃(tT ), X=Aq, sp=c(1, 1), S=list(Iq+L, Rq
0), off=c(1, q + 1) ).

The results give the optimal penalty parameters, λ̂1 and λ̂2, and also the estimators

(α̂q, β̂q(t)) in (3.9) under a certain q.

Regarding the dimension of βq, we typically set L to be large but substantially

smaller than T − q. As mentioned in Ruppert (2002), the number of basis functions

tends not to play an important role in functional linear regression with a roughness

penalty, if we choose it to be large enough to prevent undersmoothing. Following the

rule of thumb from Ruppert (2002), we use L = 35 in Sections 3.4 and 3.5, except in

cases in which T < 40, when we use L = 9.

3.3 Theoretical results

In this section, we assume that the SRP model in (3.4) is correct and explore the

asymptotic behaviour of q̂, the estimator of the change-point index q0. There is a one-

to-one correspondence between q and tT −q, so we will be interchangeably considering

q̂ and tT −q̂. We denote the true values of scalars α and function β by (α0, β0) and

assume the following conditions.

Assumption 3.1 β0(t) is continuous on t ∈ [t0, tT −q0−1] and α0 is composed of the

finite number of scalars α0 = (α0,1, . . . , α0,q0)⊤ on t ∈ [tT −q0 , tT −1].

Assumption 3.2 The true change-point tT −q0 ∈ (t0, tT −1] is where the change of

smoothness occurs in the sequence of true regression parameters. When q0 > 1, taking
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q1 such that 1 ≤ q1 < q0, for any q ∈ [q1, q0), there exist δ1, δ2, δ3 > 0 and c1, c2, c3 > 0

such that (a) inf1≤j≤q |α0,j − α̂q
j | > δ1, sup1≤j≤q |α0,j − α̂q

j | ≤ c1 (b) infq0<j≤T |β0(tT −j) −

β̂q(tT −j)| > δ2, supq0<j≤T |β0(tT −j)− β̂q(tT −j)| ≤ c2 and (c) infq<j≤q0 |α0,j − β̂q(tT −j)| >

δ3, supq<j≤q0 |α0,j − β̂q(tT −j)| ≤ c3.

Assumption 3.3 Taking q2 such that 1 ≤ q0 < q2 < T ,

(a) sup
q0≤q≤q2

1
n

n∑
i=1

[ ∑
1≤j≤q0

(α0,j − α̂q
j)X̃i(tT −j)

]2

= Op(n−1),

(b) sup
q0≤q≤q2

1
n

n∑
i=1

[ ∑
q<j≤T

(β0(tT −j) − β̂q(tT −j))X̃i(tT −j)
]2

= Op(n−1),

(c) sup
q0<q≤q2

1
n

n∑
i=1

[ ∑
q0<j≤q

(β0(tT −j) − α̂q
j)X̃i(tT −j)

]2

= Op(n−1).

Assumption 3.4 When q2 is as in Assumption 3.3,

(a) sup
q0≤q≤q2

∣∣∣∣∣ 1n
n∑

i=1
(εi − ε̄)

∑
1≤j≤q0

(α0,j − α̂q
j)X̃i(tT −j)

∣∣∣∣∣ = Op(n−1),

(b) sup
q0≤q≤q2

∣∣∣∣∣ 1n
n∑

i=1
(εi − ε̄)

∑
q<j≤T

(β0(tT −j) − β̂q(tT −j))X̃i(tT −j)
∣∣∣∣∣ = Op(n−1),

(c) sup
q0<q≤q2

∣∣∣∣∣ 1n
n∑

i=1
(εi − ε̄)

∑
q0<j≤q

(β0(tT −j) − α̂q
j)X̃i(tT −j)

∣∣∣∣∣ = Op(n−1).

Assumption 3.5 The independent and identically distributed errors εi are independent

of the predictors. We further assume E(X⊤X) + E(ε2) < ∞ with E(ε) = 0, where

Xn×T = (X(t0), X(t1), . . . , X(tT −1)).

Assumption 3.6 Writing the singular value decomposition of the covariance matrix

of X as K(k1,k2) = cov(X(tk1), X(tk2)) = ∑T
j=1 vjψjψ

⊤
j where v1 ≥ v2 · · · > 0 are

eigenvalues, and ψ1,ψ2, . . . are the corresponding eigenvectors, we assume that the

eigenvalues decay sufficiently fast so that the condition ∑T
j=1 v

1/2
j

∥∥∥ψj

∥∥∥
∞
< ∞ holds.
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Assumption 3.2 quantifies the non-convergences occurring when q < q0 as mentioned in

the discussion of the shape of the function M(q) in Section 3.2.1. It can be seen that

Assumption 3.2 is somewhat strong as it states that the non-convergences occur in

all regions of the estimated regression coefficients. Based on our empirical experience,

among three non-convergences stated in Assumption 3.2, the last component (i.e.

|α0,j − β̂q(tT −j)|) generally has the most significant effect on the non-convergence of

M(q). However, this is not always the case as both of the smooth and the rough

regression parameters are estimated at once by minimising (3.9) in a way of affecting

each other, which implies that the non-convergence caused by estimating the rough part

(α0,j) through the smooth estimator (β̂q(tT −j)) possibly induces the non-convergence of

the estimators in other regions such as α0,j estimated by α̂q
j and/or β0(tT −j) estimated

by β̂q(tT −j).

In contrast to Assumption 3.2, Assumptions 3.3 and 3.4 list the converging com-

ponents of M(q) when q ≥ q0, where those can be considered as a discrete version of

the following assumptions made on the estimated regression coefficients in Hall and

Hooker (2016):

sup
θ1≤θ≤θ2

1
n

n∑
i=1

[ ∫ θ

0
(β̂(t) − β0(t))(Xi(t) − X̄(t))dt

]2

= Op(n−1), (3.15)

sup
θ1≤θ≤θ2

∣∣∣∣∣ 1n
n∑

i=1
(εi − ε̄)

∫ θ

0
(β̂(t) − β0(t))(Xi(t) − X̄(t))dt

∣∣∣∣∣ = Op(n−1), (3.16)

where θ1 and θ2 satisfy 0 ≤ θ1 < θ0 < θ2 ≤ 1 and θ0 is the true truncation point. As has

been noted by many researchers (see e.g. Pumo (1998), Cardot et al. (2003), Cardot

et al. (2007), Crambes et al. (2009), Descary and Panaretos (2019)), discretisation

of the curves X has no effect on the convergence rate of the regression parameter

if the number of discretisation point is sufficiently large. Specifically, Cardot et al.

(2003) find that when β̂(t) is spanned by usual splines (e.g. B-splines), the equal rate
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of convergence is guaranteed under the condition that the longest distance between

grid points, maxi|ti+1 − ti|, converges to zero fast enough compared to the number of

knots chosen for the space of B-splines when the number of observations n goes to

infinity. Hall and Hooker (2016) investigate the case when the set of eigenfunctions of

the covariance operator of X(t) are used, by which the B-spline expansion employed in

this chapter can be replaced. They mention that the methods used by Cai and Hall

(2006) can give the rate of convergence of βq(t) in (n−1/2, n0) for Assumption 3.3-(b)

under appropriate smoothness conditions for β(t), X(t) and the covariance function,

measured by the spacing of the eigenvalues in a full functional setting (that is, when

q = 0 in our case). Similarly, Crambes et al. (2009) derive the rate of convergence for

the general spline classes which is comparable to that of Cai and Hall (2006), under

the usual smoothness assumptions on β(t) and X(t) defined by the continuity of its

derivatives. The methods used in Crambes et al. (2009) can give the rate in Assumption

3.3-(b) under appropriate smoothness conditions for β(t) and X(t) in a full functional

setting. Since our model contains scalar covariates and has the ridge type penalty in

(3.9), we postulate the same or slightly slower rates, which are also supported by our

numerical experience. Assumptions 3.5 and 3.6 are used for establishing Lemma 3.1 in

Section 3.6, that is related to the corresponding components in Assumption 3.4 when

q < q0 as in Assumption 3.2.

We are now ready to state our main result.

Theorem 3.1 If q̂ is any value of q which minimises (3.7) on the interval [q1, q2] when

q1 and q2 are chosen to satisfy 1 ≤ q1 < q0 < q2 < T , then under Assumptions 3.1–3.6,

we have P (q̂ = q0) → 1 as n → ∞.

The result of Theorem 3.1 agrees with the numerical evidence of the increased closeness

of q̂ to q0 as n increases that is illustrated in Figure 3.7. Technical proof is available in

Section 3.6.
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3.4 Simulations

In this section, we evaluate the finite-sample performance of our approach. We expect

the performance of our method to vary depending on the size of change between

β0(t) and α⊤
0 (i.e. |α0,q0 − β0(tT −q0−1)|) and on the degree of fluctuations in the α⊤

0

coefficients relative to the smoothness of β0(t). The true signals are available from the

R package srp.

Based on the model (3.4), we consider the following four parametric cases, Case 1:

µ0 = 0.0180,α0 = (0.4, 0.2, 0.1)⊤, Case 2: µ0 = −0.0836,α0 = (0.6,−0.5, 0.4)⊤, Case 3:

µ0 = −0.0239,α0 = (0.4, 0.2, 0.1)⊤ and Case 4: µ0 = −0.0742,α0 = (0.4,−0.2, 0.1)⊤,

to investigate how the performance of change-point detection is affected by the degree of

changes in the regression parameters. The true change-point index parameter is q0 = 3

for all cases as shown in Figure 3.5 where β0(t) and α⊤
0 are plotted on a different scale.

In the data generating process based on the model (3.4), we use the Gaussian noise εi

with the signal-to-noise ratio, defined as σ2
X/σ

2, equal to 4 where σ2
X = var(X(tT ) − ε)

and σ2 is the error variance. In Cases 1 and 3, α0 shows less fluctuation than in Cases

2 and 4. The size |α0,3 − β0(tT −4)| of the change-point is approximately 0.4 in Case 2

and approximately 0.1 in the remaining three cases. Case 3 is similar to Case 1 except

that its β0(t) = b0 + b1t is linear. We simulate n = 300 independent copies of each

process, in which the length of the sample is T + 1 = 360 (see formula (3.4)).

In each of 100 Monte Carlo runs, we split n = 300 observations into training

and test sets of sizes n1 = 150 and n2 = 150, respectively. The training sample

is used to obtain q̂ and (α̂, β̂) by minimising (3.7) and (3.9), respectively. The

accuracy of the regression parameter estimators can be evaluated by comparing

(α̂q, β̂q(t)) and (α0, β0(t)); however, if the change-point is incorrectly estimated,

i.e. q̂ ̸= q0, the length of the vector α̂q is not matched with that of α0 and
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Fig. 3.5 True regression parameters of Cases 1-4 with different scale for each β0(t)
(solid line) and α⊤

0 (dots).

neither is β̂q(t). To circumvent this, we discretise β̂q(t) and β0(t) and define γ̂ q̂

and γ0 of dimension T × 1 as γ̂ q̂ =
(
α̂q̂

1, . . . , α̂
q̂
q̂, β̂

q̂(t0), . . . , β̂ q̂(tT −q̂−1)
)⊤

and γ0 =(
α0,1, . . . , α0,q0 , β0(t0), . . . , β0(tT −q0−1)

)⊤
, which enables us to use the following sum-of-

squared-errors (SSE) criterion:

SSE =
[
γ̂ q̂ − γ0

]⊤[
γ̂ q̂ − γ0

]
. (3.17)

The prediction performance is examined in the test sample by computing the mean-

square prediction error (MSPE),

MSPE = 1
n2

n2∑
i=1

{Xi(tT ) − X̂i(tT )}2, (3.18)

where X̂i(tT ) is the prediction using the estimated parameters (q̂, µ̂q̂, α̂q̂, β̂ q̂(t)).

3.4.1 Competing methods

We compare the performance of our approach to the following existing methodologies:

multiple linear regression (MLR), ridge regression (RIDGE), functional linear regres-

sion with penalised B-splines (FLR, Cardot et al. (2003)), interpretable functional
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linear regression (FLiRTI, James et al. (2009)), most-predictive design points approach

(MPDP, Ferraty et al. (2010)) and functional nonparametric regression (NP, Ferraty

and Vieu (2002)). We also compare our proposal (SRPC) with its simplified version

named SRPL, which follows the form of SRPC except that β0(t) is estimated as a

linear function. The corresponding objective functions for the parametric methods are

as follows:

MLR : α̂q̂1 = arg min
αq̂1

1
n1

n1∑
i=1

{
X̃i(tT ) −

q̂1∑
j=1

αq̂1
j X̃i(tT −j)

}2

,

FLR : β̂(t) = arg min
β(t)

1
n1

n1∑
i=1

{
X̃i(tT ) −

∫ tT −1

t0
β(t)X̃i(t)dt

}2

+ λ
∫ tT −1

t0

{
β(m)(t)

}2
dt,

SRPL : (α̂q̂2 , b̂0, b̂1) = arg min
αq̂2 ,b0,b1

1
n1

n1∑
i=1

{
X̃i(tT ) −

q̂2∑
j=1

αq̂2
j X̃i(tT −j)

−
∫ tT −q̂2−1

t0
(b0 + b1t)X̃i(t)dt

}2

.

The objective function of our method (SRPC) is in (3.9) and we determine q̂1 and q̂2

for MLR and SRPL by minimising SIC(q) in (3.7) with appropriate M(q) for each. In

the implementation of FLR, we use cubic smoothing splines (s = 3) with the dimension

L = 35 for both β(t) and Xi(t) where the derivative order of β(t) is m = 2 and

λ is selected by minimising GCV in (3.14). Ridge parameter is also optimised by

minimising GCV. For the implementation of other methods, we follow the suggestions

of each paper for selecting the tuning parameters and the R code is available on the

web (FLiRTI: http://www-bcf.usc.edu/~gareth/research/Research.html, MPDP and

NP: http://www.math.univ-toulouse.fr/~ferraty/). The R code for all simulations can

be downloaded from our GitHub repository (Maeng, 2019b).

http://www-bcf.usc.edu/~gareth/research/Research.html
http://www.math.univ-toulouse.fr/~ferraty/
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As an aside, we considered two variations of our proposal SRPC as follows:

(α̂q, β̂q(t)) = arg min
αq ,βq(t)

 1
n

n∑
i=1

{
X̃i(tT ) −

q∑
j=1

αq
jX̃i(tT −j) −

∫ tT −q−1

t0
βq(t)X̃i(t)dt

}2

+ λ2

∫ tT −q−1

t0

{
βq(m)(t)

}2
dt

, (3.19)

(α̂q, β̂q(t)) = arg min
αq ,βq(t)

 1
n

n∑
i=1

{
X̃i(tT ) −

q∑
j=1

αq
jX̃i(tT −j) −

∫ tT −q−1

t0
βq(t)X̃i(t)dt

}2

+ λ1(αq)⊤αq + λ2

∫ tT −q−1

t0

{
βq(m)(t)

}2
dt

, (3.20)

where the estimators in (3.19) are attained by penalising the smooth function β(t)

only, while those in (3.20) are affected also by a ridge-type penalty for scalar regression

coefficients α. The only difference between our model SRPC and its variant in (3.20) is

that SRPC deals with possible multicollinearity between both rough (scalar) and smooth

(functional) coefficients, while the model in (3.20) only considers multicollinearity

between rough coefficients. As our proposal showed better and more stable prediction

performances than those two variants above, we only report the results of SRPC.

3.4.2 Simulation results

The top row of Figure 3.6 shows that the mean of 100 SIC(q) is minimised at true

q0 = 3 for all cases. Case 2 shows a more rapid decrease than the other cases when

q ↑ q0 due to the larger size of change at the change-point. Similarly, in the bottom

row, we see that the mode of q̂ is q0 = 3 in all cases. Since Cases 1 and 3 have a

relatively smooth α, q̂ = 1, 2(< q0) are selected more frequently than in Cases 2 and 4,

which have relatively more fluctuating α’s. Figure 3.7 provides numerical evidence of

the increased closeness of q̂ to q0 in Case 4 as the sample size n increases.
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Fig. 3.6 (1st row) Mean of {SIC(q)}1≤q≤10 defined in formula (3.7) over 100 simulation
runs for Cases 1-4 (1st-4th column); (2nd row) Barplots of the 100 q̂ estimated by
minimising {SIC(q)}1≤q≤30 where the black bars indicate the true change-point index
parameter q0 = 3.
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Fig. 3.7 Barplots of the 100 q̂ estimated by minimising SIC(q) in formula (3.7) with
increasing n = 300, 600, 1200 under Case 4. The black bars indicate the true change-
point index parameter q0 = 3.

As is apparent from Table 3.1, FLR and RIDGE perform systematically worse than

the others. Our proposal, SRPC, outperforms the others in Cases 1, 2 and 4 and the

difference is the most striking in Cases 2 and 4, in which a sudden smoothness change

occurs. In Case 3 whose true β(t) is linear, SRPL turns out to be the best-performing

method.

Examining Figure 3.8, while the misestimation in SRPC is mainly located around

the true change-point, in FLiRTI and FLR it is scattered over the whole interval. In

addition, the graph offers visual confirmation of the superior performance of SRPC in
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Table 3.1 The mean(sd) of SSE(×102) defined in formula (3.17) over 100 simulation
runs for the parametric methods in all cases. Bold: methods with the lowest mean of
SSE.

Case MLR FLR FLiRTI SRPL SRPC RIDGE
1 1.39(0.73) 5.32(1.33) 1.11(0.44) 1.43(0.69) 1.00(0.86) 19.90(2.05)
2 10.24(2.59) 75.08(1.76) 31.25(9.24) 9.09(1.03) 2.06(0.76) 72.80(2.87)
3 0.79(0.55) 5.28(1.30) 0.78(0.39) 0.64(0.56) 1.08(1.20) 19.12(1.91)
4 11.31(1.38) 21.37(1.63) 9.72(2.32) 6.96(0.79) 1.03(0.44) 24.30(1.23)

Fig. 3.8 True (black) and 100 estimated (grey) regression parameters for Cases 1-
4(1st − 4th column) with three methods, FLR(1st row), FLiRTI(2nd row) and SRPC(3rd

row). The corresponding numerical summaries of these results are in Table 3.1.

Cases 1, 2 and 4. In particular, in Cases 2 and 4, FLR ignores the sudden fluctuation

in α by estimating it as a smooth function. Unlike FLR and FLiRTI, SRPC shows its
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advantages not only when scale changes are present (Cases 1 and 3) but also when a

sudden smoothness change occurs at the change-point (Cases 2 and 4).

Table 3.2 contains two more columns than Table 3.1 as the mean-square prediction

error can also be obtained for the nonparametric methods, MPDP and NP, which do

not involve the estimation of (α̂, β̂(t)). In all cases considered, FLR, MPDP, NP and

RIDGE show worse prediction performance than the other methods. SRPC performs

better than FLiRTI for all cases (but more noticeably so in Cases 2 and 4). SRPC is

superior to SRPL in all cases except Case 3 which is expected since Case 3 includes a

linear β0(t). However, SRPC is not far behind SRPL in Case 3 as the smoothness of

β̂(t) is flexibly controlled by the automatically chosen penalty. We note that all cases

considered in simulations assume a single change-point in the sequence of regression

coefficients under the framework of decaying memory of time series. We expect that

the SRPC will underperform but the FLiRTI will outperform in the case when the

sequence of true regression coefficients is a mix of zero regions and non-zero regions

with more than one change-point.

Table 3.2 The mean(sd) of MSPE(×102) defined in formula (3.18) over 100 simulation
runs for all methods in all cases. Bold: methods with the lowest mean of MSPE.

Case MLR FLR FLiRTI SRPL SRPC MPDP NP RIDGE
1 21.83 23.39 20.48 22.12 18.95 26.22 79.04 43.52

(2.7) (3.2) (2.7) (2.8) (3.2) (5.1) (9.9) (7.0)
2 53.97 83.38 51.71 50.81 27.55 69.20 102.21 94.76

(7.0) (9.9) (9.3) (7.1) (4.4) (21.4) (11.5) (11.3)
3 17.26 22.01 17.86 15.61 16.80 21.41 74.82 41.35

(2.1) (3.0) (2.5) (2.1) (3.3) (3.8) (9.7) (6.8)
4 30.48 28.17 22.17 22.05 10.88 39.18 43.54 35.68

(4.2) (4.2) (4.1) (2.8) (1.6) (15.7) (5.6) (4.3)

From the viewpoint of choosing predictive design points (sometimes called points

of impact by others), three elements in the true scalar coefficient vector, α⊤
0 , can be
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considered as a set of predictive points in all cases as they have a relatively larger size

than β0(t). Among the candidate models, MPDP is established on this idea, thus we

compare three predictive time-points (t359, t358, t357) with those selected by MPDP

although MPDP performs a nonparametric regression on the selected predictive design

points.

Table 3.3 The percentages indicating how many time-points are selected as the most-
predictive design points from (t359, t358, t357) by MPDP over 100 simulation runs in all
cases.

Number of time-points chosen from (t359, t358, t357)
Case 3 points selected 2 points selected 1 point selected None

1 15% 84% 1% 0%
2 78% 3% 17% 2%
3 27% 73% 0% 0%
4 4% 48% 48% 0%

As shown in Table 3.3, all three points (t359, t358, t357) are more often selected as

the predictive design points when the size of change at the change-point is relatively

large (e.g. in Case 2). Comparing the other three cases (Cases 1, 3 and 4), although

they have the equal size of α0 as (|α0,1|, |α0,2|, |α0,3|) = (0.4, 0.2, 0.1), the percentage

of choosing all three points is highest in Case 3 followed by Cases 1 and 4. This

indicates that the smoothness of β(t) is also an important factor for differentiating

the non-influential part from the most informative points. In other words, under the

equal size and the equal length of α0, the more flat β(t) is, the easier we detect the

predictive points.
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3.5 Data applications

In this section, our methodology is applied to country fertility data, Mexico city

pollution data, stock volatility series and sunspot number data. The data can be

obtained from the Human Fertility Database (www.humanfertility.org), the R package

aire.zmvm, the Wharton Research Data Services (wrds-web.wharton.upenn.edu/

wrds/) and the Base R datasets available from CRAN, respectively.

3.5.1 Country fertility rate data

Forecasting future fertility rates has a great impact on governments in planning

children’s service and education. We use fertility rates at age 20, recorded for 36 years

from 1974 to 2009 for 31 countries around the world. As shown in Figure 3.9, the

fertility rates at age 20 show an overall decreasing trend in all countries and although

it is not illustrated in this section, similar patterns are observed at ages 21–26, while

fertility rates at ages 30–39 have obvious increasing trends in recent years from 1990

onwards, which reflects the phenomenon of more women deferring childbirth to a later

age.

The final observation recorded in 2009 is predicted from the past observations from

1974 to 2008. To compare the prediction power of the new model with competitors,

we split the whole dataset into a training sample of size n1 = 26 and a test set of size

n2 = 5 randomly 100 times and compute the mean, median and standard deviation

of the 100 mean-square prediction errors defined in (3.18). In the training set, the

B-spline expansion with dimension L = 9 is used for SRPC, SRPL and FLR. As found

in Table 3.4, MLR, SRPC and SRPL lead to similar performance in prediction, which

is better than that of the nonparametric methods (MPDP, NP), the full functional

model (FLR), the full scalar setting (RIDGE) and FLiRTI.

www.humanfertility.org
wrds-web.wharton.upenn.edu/wrds/
wrds-web.wharton.upenn.edu/wrds/
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Fig. 3.9 The fertility rates at age 20 from 1974 to 2009 for 31 countries.

Table 3.4 The mean, median and standard deviation of 100 MSPE’s (×106) defined in
formula (3.18) for all methods described in Section 3.4.1, for the case study in Section
3.5.1. Bold: methods with the three lowest MSPE’s.

MLR FLR FLiRTI SRPL SRPC MPDP NP RIDGE
mean 3.36 12.60 5.99 3.45 3.73 5.38 139.55 7.73

median 2.98 9.15 3.95 3.12 3.28 3.65 118.48 4.97
sd 2.00 10.70 6.13 1.94 2.32 5.33 114.58 7.39

As shown in Figure 3.10, q̂. = 1, 2 are the most frequently selected as the optimal

size of scalar variables for MLR, SRPL and SRPC. Although MLR and SRPL seem to

be slightly better than SRPC in prediction in Table 3.4, Figure 3.10 shows that SRPC

is the most frequently selected as the best-performing method in terms of MSPE from

100 samples. In Figure 3.11, the functional estimators β̂(t) for FLR and FLiRTI and

the discrete ones for RIDGE live in the whole interval t ∈ [t0, tT −1] while SRPC, MLR
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Fig. 3.10 Barplots of the 100 q̂1 for MLR (first), 100 q̂2 for SRPL (second) and 100 q̂
for SRPC (third) estimated by minimising {SIC(q), 1 ≤ q ≤ 4} in formula (3.7) and
the frequency barplot of the best-performing method (with the lowest MSPE) out of
the 100 samples (fourth) for the case study in Section 3.5.1.
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Fig. 3.11 A randomly selected estimated regression coefficients of the six parametric
methods (MLR, SRPL, SRPC, FLR, FLiRTI, RIDGE) for predicting fertility rates at
age 20 in 2009 from the past observations (1974-2008).

and SRPL assign the corresponding subintervals for α̂ with the optimally chosen q̂ = 1,

q̂1 = 2 and q̂2 = 1 (respectively). The estimated curves for FLR and FLiRTI and the

estimated coefficients for RIDGE appear to be relatively oscillatory over the entire
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interval under a fixed smoothness while the smoothness of the SRP estimators varies

as dictated by their design. Interestingly, all parametric methods give a large size of

the regression coefficient at year 2008, which contrasts with the coefficients for years

1974–2007 which are close to zero. In a time series context, this indicates that the

fertility rate in 2008 is more influential for predicting the fertility rate in 2009 than the

older observations are.

3.5.2 Nitrogen oxides in Mexico City

We use the daily curves of hourly average nitrogen oxides level in Mexico City, introduced

in Section 3.1. As shown in Figure 3.1, daily curves contain 24 observations each and

have similar patterns including two peaks around hours 9 and 21. The final observation

recorded at hour 24 is predicted from the past observations indexed 1 to 23. We split

the whole dataset into a training sample of size n1 = 161 and a test set of size n2 = 86

randomly 100 times and compute the mean, median and standard deviation of the

100 mean-square prediction errors defined in (3.18). In the training set, the B-spline

expansion with dimension L = 9 is used for SRPC, SRPL and FLR. As found in Table

3.5 and Figure 3.12, SRPC gives the best prediction among all methods and is also the

most frequently selected as the best-performing one from the 100 samples in terms of

MSPE. As shown in Figure 3.12, q̂ = 3 is the most frequently selected as the optimal

size of scalar variables for SRPC while q̂. = 2 is so for MLR and SRPL.

In Figure 3.13, it is interesting to observe that the smooth portion of the SRP

parameter vector appears to be non-trivially different from zero, which, together with

the fact that the SRP model outperforms its competitors in the forecasting exercise

reported above, provides evidence for the existence and impact of the long-term

temporal dependence in this dataset. It is also apparent that all the methods attempt

to fit a particularly large-size regression coefficient at hour 23. The SRPC curve detects
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Fig. 3.12 Barplots of the 100 q̂1 for MLR (first), 100 q̂2 for SRPL (second) and 100 q̂
for SRPC (third) estimated by minimising {SIC(q), 1 ≤ q ≤ 3} in formula (3.7) and
the frequency barplot of the best-performing method (with the lowest MSPE) out of
the 100 samples (fourth) for the case study in Section 3.5.2.
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Fig. 3.13 A randomly selected estimated regression coefficients of the six parametric
methods (MLR, SRPL, SRPC, FLR, FLiRTI, RIDGE) for predicting the average of
nitrogen oxides level at hour 24.

a change at hour 20, where it experiences a seemingly non-trivial drop. It would be

difficult for us to conclude that this drop is merely caused by a boundary effect as the

RIDGE solution (in which there are no boundary effects to speak of) also experiences
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a dip at that point. In the same manner, the sudden increase observed in the FLR

curve at hour 23 does not appear to be a mere boundary effect, but it also reflects this

method’s own effort to fit the influential predictor under its own smoothness constraints.

The results in Table 3.5 show that it is useful to apply two different regularisations,

as done in SRPC, depending on the perceived importance of predictors, rather than

estimating the regression coefficients under an unvarying regularisation, as done in

RIDGE.
Table 3.5 The mean, median and standard deviation of 100 MSPE’s (×102) defined in
formula (3.18) for all methods described in Section 3.4.1, for the case study in Section
3.5.2. Bold: methods with the three lowest MSPE’s.

MLR FLR FLiRTI SRPL SRPC MPDP NP RIDGE
mean 75.50 86.44 73.88 75.41 72.35 74.92 126.09 74.42

median 75.38 85.16 74.04 75.13 71.84 74.23 126.99 73.41
sd 12.92 14.03 12.96 14.10 13.18 13.13 26.63 12.94

3.5.3 High frequency volatility series

In financial data analysis, modelling high-frequency volatility has attracted much

attention in recent years. Especially, in the functional framework, nonparametric

methods have been extensively studied (Bandi and Phillips, 2003; Kristensen, 2010;

Reno, 2008). Müller et al. (2011) emphasise the random nature of volatility functions

under the assumption that the repeated realisations of the volatility trajectories come

from a suitable functional volatility process. Our interest is also in the random nature

of functional observations rather than in modelling potential dependencies between

curves, therefore, as in Müller et al. (2011), we view the daily curves as i.i.d. random

functions. We aim to predict the latest point of the curves from the past observations.

Specifically, our methodology is applied to the prediction of the Disney stock

volatility where the raw observations contain n = 248 trading days available from
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January 2, 2013 to December 30, 2013 and each curve has 395 grid points of closing

prices recorded every 1 minute. The volatility trajectories are obtained from the return

series in the same way as in Müller et al. (2011), however we retain the roughness of

volatility trajectories by using natural cubic splines as in (3.5) rather than smoothing

them. This is important as volatility is not observable but typically estimated to be

oscillatory, thus an extra smoothing step can possibly cause the loss of important

information as stated in Kneip et al. (2016).
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Fig. 3.14 Barplots of the 100 q̂1 for MLR (first), 100 q̂2 for SRPL (second) and 100 q̂
for SRPC (third) estimated by minimising {SIC(q), 1 ≤ q ≤ 30} in formula (3.7) and
the frequency barplot of the best-performing method (with the lowest MSPE) out of
the 100 samples (fourth) for the case study in Section 3.5.3.

We split the dataset into a training and a test set of size n1 = n2 = 124 randomly

100 times and in the training set, the B-spline expansion with dimension L = 35 is

used for SRPC, SRPL and FLR. Figure 3.14 shows that q̂1 = 3 is the most frequently

chosen for MLR while q̂2 = 1 and q̂ = 1 are the most frequently selected for SRPL and

SRPC, respectively.

Similar to the previous examples in Sections 3.5.1 and 3.5.2, Figure 3.15 shows that

all the parametric methods reflect the ‘fading memory’ of the time series by assigning a

large-size regression coefficient for observations located close to the closing volatilities,

which contrasts with the coefficients for intervals positioned far from the closing

volatility. As found in Table 3.6 and Figure 3.14, SRPC leads to the best prediction
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Fig. 3.15 A randomly selected estimated regression coefficients of the six parametric
methods (MLR, SRPL, SRPC, FLR, FLiRTI, RIDGE) for predicting closing volatility
of the Disney stock data from January to December in 2013.

among all methods and is also the most frequently selected as the best-performing one

in terms of MSPE from 100 samples.

Table 3.6 The mean, median and standard deviation of 100 MSPE’s defined in formula
(3.18) for all methods described in Section 3.4.1, for the case study from Section 3.5.3.
Bold: methods with the three lowest MSPE’s.

MLR FLR FLiRTI SRPL SRPC MPDP NP RIDGE
mean 2.88 4.10 3.13 2.96 2.78 3.02 6.29 4.34

median 2.80 4.05 3.08 2.91 2.72 2.77 6.18 4.29
sd 0.56 0.58 0.68 0.56 0.51 1.52 0.71 0.48
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3.5.4 Monthly numbers of sunspots

In this section, we demonstrate the usefulness the SRP framework in univariate time

series modelling, as an alternative to the AR model, which is often used in time series

forecasting. The SRP model is similar to the AR model in that they both specify

the fading memory structure of the time series under linear dependence of the output

variable on its own previous values. In practice, the AR(p) model is usually fitted with

a small p for simplicity, interpretability and better forecasting performance, however it

may fail in the presence of longer memory. In this case, the SRP model can also be used

for the forecasting of a univariate time series, where it becomes an autoregressive (AR)

model with a large order (e.g. AR(T ) in (3.3) with a fixed T ) under the smooth-rough

regularisation.

We use the sunspot number data shown in Figure 3.2 in Section 3.1. The data

contains 3177 observations available from 1749 to 2013 and we perform a square root

transformation to the raw data. We split the whole dataset into a training sample of

size n1 = 2223 and a test set of size n2 = 954 and create the data matrix for each set via

a moving window with a prespecified number T +1 = 151 of discrete points in one curve

(150 for covariates and 1 for the response variable), i.e. from the univariate time series

(x1, x2, . . . , xn1) in the training sample, we create 2073 curves, X1(t) = (x1, x2, . . . , x151),

X2(t) = (x2, x3, . . . , x152), . . ., Xn1−151+1 = (xn1−150, xn1−149, . . . , xn1). In the same way,

we create 804 curves for the test sample. In each curve, we use the last points as the

response variable and the covariates are the remaining 150 observations. Due to the

temporal dependence in the entire dataset, we do not randomly repeat the construction

of the training and test sets.

From the training set, with L = 35, the optimal change-point index parameter

for MLR, SRPL and SRPC are chosen as q̂1 = 5, q̂2 = 6, q̂ = 2 (respectively) from

{q : 1 ≤ q ≤ 15} as shown in Figure 3.16. As the optimal size q̂1 = 5 for MLR is
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obtained by minimising the SIC, the estimated regression coefficients are very close to

that of the AR(5) model and the significance of the first five lags is already revealed

in the partial autocorrelation function in Figure 3.2. In Figure 3.16, the FLR and

RIDGE estimators appear to be relatively oscillatory over the entire interval, while

the estimators for FLiRTI and SRPC are relatively smoother. We also obtain the OLS

(ordinary least-squares) estimator which is slightly more fluctuating than RIDGE, but

is not included in Figure 3.16. As is apparent from Table 3.7, our approach shows

an improvement in prediction compared to the other methods. From this example,

SRPC appears to be a useful substitution for a classical AR(p) model with a small p,

especially when the memory of a time series is relatively long.
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Fig. 3.16 Estimated regression coefficients of the six parametric methods (MLR,
SRPL, SRPC, FLR, FLiRTI, RIDGE) for predicting the sunspot number of next month
from past 150 months of sunspot number.
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Table 3.7 MSPE (×102) defined in formula (3.18) for all parametric methods described
in Section 3.4.1 and OLS, for the case study from Section 3.5.4. Bold: methods with
the three lowest MSPE’s.

MLR FLR FLiRTI SRPL SRPC RIDGE OLS
MSPE 11.67 12.09 12.59 11.09 10.72 11.17 11.11

3.6 Proofs

The proof of Theorem 3.1 in Section 3.3 is presented. The preparatory lemma is

developed first and the main part of the proof is presented in Section 3.6.1.

Lemma 3.1 Let 1 ≤ q1 < q0 as in Assumption 3.2. If Assumptions 3.1, 3.2, 3.5 and

3.6 hold then, uniformly in q ∈ [q1, q0),

(a) 1
n

n∑
i=1

(εi − ε̄)
{ q∑

j=1
(α0,j − α̂q

j)X̃i(tT −j)
}

= Op(n−1/2|q|),

(b) 1
n

n∑
i=1

(εi − ε̄)
{

T∑
j=q0+1

(β0(tT −j) − β̂q(tT −j))X̃i(tT −j)
}

= Op(n−1/2|T − q0|),

(c) 1
n

n∑
i=1

(εi − ε̄)
{ q0∑

j=q+1
(α0,j − β̂q(tT −j))X̃i(tT −j)

}
= Op(n−1/2|q0 − q|).

Our Lemma 3.1 is similar to the Lemma in Hall and Hooker (2016) who study the

consistency of truncation point in functional linear regression with one functional

predictor. The proof of Lemma 3.1 can be simply obtained by following the proof of

Lemma presented in the technical appendix to Hall and Hooker (2016) and also by

considering a discrete version of it, i.e. replacing a curve with a vector, under our

assumptions.
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3.6.1 Proof of Theorem 3.1

Let q1 and q2 as in Assumptions 3.2 and 3.3, respectively. Since Xi(tT ) = µ +∑q0
j=1 α0,j{Xi(tT −j) − EX(tT −j)} + ∑T

j=q0+1 β0(tT −j){Xi(tT −j) − EX(tT −j)} + εi, we

have Xi(tT ) − X̄(tT ) = ∑q0
j=1 α0,jX̃i(tT −j) +∑T

j=q0+1 β0(tT −j)X̃i(tT −j) + (εi − ε̄), thus

M(q) defined in (3.8) of Section 3.2.1 is expanded as

M(q) = 1
n

n∑
i=1

[
Xi(tT ) − µ̂q −

q∑
j=1

α̂q
jXi(tT −j) −

T∑
j=q+1

β̂q(tT −j)Xi(tT −j)
]2

= 1
n

n∑
i=1

[
Xi(tT ) − X̄(tT ) −

q∑
j=1

α̂q
jX̃i(tT −j) −

T∑
j=q+1

β̂q(tT −j)X̃i(tT −j)
]2

= 1
n

n∑
i=1

[ q0∑
j=1

α0,jX̃i(tT −j) +
T∑

j=q0+1
β0(tT −j)X̃i(tT −j) −

q∑
j=1

α̂q
jX̃i(tT −j)

−
T∑

j=q+1
β̂q(tT −j)X̃i(tT −j) + (εi − ε̄)

]2

,

where q ∈ [q1, q2]. M(q) has a different form for three cases: 1) q > q0, 2) q < q0 and

3) q = q0. Firstly, if q > q0, for q ∈ (q0, q2], we have

M(q) = 1
n

n∑
i=1

 q0∑
j=1

(α0,j − α̂q
j)X̃i(tT −j) +

T∑
j=q+1

(β0(tT −j) − β̂q(tT −j))X̃i(tT −j)

+
q∑

j=q0+1
(β0(tT −j) − α̂q

j)X̃i(tT −j) + (εi − ε̄)
2

. (3.21)

If q < q0, for q ∈ [q1, q0),

M(q) = 1
n

n∑
i=1

 q∑
j=1

(α0,j − α̂q
j)X̃i(tT −j) +

T∑
j=q0+1

(β0(tT −j) − β̂q(tT −j))X̃i(tT −j)

+
q0∑

j=q+1
(α0,j − β̂q(tT −j))X̃i(tT −j) + (εi − ε̄)

2

. (3.22)
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Lastly, when q = q0,

M(q) = 1
n

n∑
i=1

 q0∑
j=1

(α0,j − α̂q0
j )X̃i(tT −j) +

T∑
j=q0+1

(β0(tT −j) − β̂q0(tT −j))X̃i(tT −j)

+ (εi − ε̄)
2

. (3.23)

3.6.1.1 Convergence rates of M(q) for three cases

Now we explore the behaviour of M(q). For the first case, 1) q > q0, under Assumptions

3.3 and 3.4, (3.21) simplifies to

M(q) = 1
n

n∑
i=1

{ q0∑
j=1

(α0,j − α̂q
j)X̃i(tT −j)

}2

+ 1
n

n∑
i=1

{
T∑

j=q+1
(β0(tT −j) − β̂q(tT −j))X̃i(tT −j)

}2

+ 1
n

n∑
i=1

{ q∑
j=q0+1

(β0(tT −j) − α̂q
j)X̃i(tT −j)

}2

+ 2
n

n∑
i=1

(εi − ε̄)
{ q0∑

j=1
(α0,j − α̂q

j)X̃i(tT −j)
}

+ 2
n

n∑
i=1

(εi − ε̄)
{

T∑
j=q+1

(β0(tT −j) − β̂q(tT −j))X̃i(tT −j)
}

+ 2
n

n∑
i=1

(εi − ε̄)
{ q∑

j=q0+1
(β0(tT −j) − α̂q

j)X̃i(tT −j)
}

+ 1
n

n∑
i=1

(εi − ε̄)2

=Op(1/n) + Vn, (3.24)
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uniformly in q ∈ (q0, q2], where Vn refers to the error term which does not depend on

q. In the second case, 2) q < q0, using Lemma 3.1, (3.22) simplifies to

M(q) = 1
n

n∑
i=1

{ q∑
j=1

(α0,j − α̂q
j)X̃i(tT −j)

}2

+ 1
n

n∑
i=1

{
T∑

j=q0+1
(β0(tT −j) − β̂q(tT −j))X̃i(tT −j)

}2

+ 1
n

n∑
i=1

{ q0∑
j=q+1

(α0,j − β̂q(tT −j))X̃i(tT −j)
}2

+ 2
n

n∑
i=1

(εi − ε̄)
{ q∑

j=1
(α0,j − α̂q

j)X̃i(tT −j)
}

+ 2
n

n∑
i=1

(εi − ε̄)
{

T∑
j=q0+1

(β0(tT −j) − β̂q(tT −j))X̃i(tT −j)
}

+ 2
n

n∑
i=1

(εi − ε̄)
{ q0∑

j=q+1
(α0,j − β̂q(tT −j))X̃i(tT −j)

}
+ 1
n

n∑
i=1

(εi − ε̄)2

=M1(q) +M2(q) +M3(q) +Op(n−1/2|q|) +Op(n−1/2|T − q0|)

+Op(n−1/2|q0 − q|) + Vn, (3.25)

uniformly in q ∈ [q1, q0), where

M1(q) =
∑

1≤k1,k2≤q

{α0,k1 − α̂q
k1}{α0,k2 − α̂q

k2}K̂(k1,k2), (3.26)

M2(q) =
∑

q0+1≤k1,k2≤T

{β0(tT −k1) − β̂q(tT −k1)}{β0(tT −k2) − β̂q(tT −k2)}K̂(k1,k2), (3.27)

M3(q) =
∑

q+1≤k1,k2≤q0

{α0,k1 − β̂q(tT −k1)}{α0,k2 − β̂q(tT −k2)}K̂(k1,k2), (3.28)

and K̂(k1,k2) is the empirical version of K defined in Assumption 3.6. Now we define

κ3(q) =
∑

q+1≤k1,k2≤q0

{α0,k1 − β̂q(tT −k1)}{α0,k2 − β̂q(tT −k2)}K(k1,k2),
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to deal with M3(q). If we show that, for any bounded vector z = (z0, ..., zT −1)⊤,

sup
u,v∈[0,T −1]

∣∣∣∣∣
v∑

k1=u

v∑
k2=u

zk1zk2

{
K̂(k1,k2) −K(k1,k2)

}∣∣∣∣∣ → 0 in probability, (3.29)

then we can argue that supq∈[q1,q0)

∣∣∣M3(q)−κ3(q)
∣∣∣ → 0 in probability by taking a vector

z with its elements zj = (α0,j − β̂q(tT −j)) if q + 1 ≤ j ≤ q0 and zj = 0 otherwise. We

can simply derive (3.29) under Assumptions 3.2 and 3.5 and the following inequality

used in Hall and Hooker (2016),

sup
u,v∈[0,T −1]

∣∣∣∣∣
v∑

k1=u

v∑
k2=u

zk1zk2

{
K̂(k1,k2) −K(k1,k2)

}∣∣∣∣∣ ≤ (sup
j

|zj|)2
v∑

k1=u

v∑
k2=u

∣∣∣K̂(k1,k2) −K(k1,k2)

∣∣∣
(3.30)

where u, v ∈ [0, T − 1]. Similarly, κ1(q) and κ2(q) can be defined for M1(q) and M2(q),

respectively and following from Assumption 3.2, κ1(q), κ2(q) and κ3(q) are bounded

away from zero whenever q < q0.

Lastly, when q = q0, under Assumptions 3.3 and 3.4, (3.23) can be simplified as

M(q) = 1
n

n∑
i=1

{ q0∑
j=1

(α0,j − α̂q0
j )X̃i(tT −j)

}2

+ 1
n

n∑
i=1

{
T∑

j=q0+1
(β0(tT −j) − β̂q0(tT −j))X̃i(tT −j)

}2

+ 2
n

n∑
i=1

(εi − ε̄)
{ q0∑

j=1
(α0,j − α̂q0

j )X̃i(tT −j)
}

+ 2
n

n∑
i=1

(εi − ε̄)
{

T∑
j=q0+1

(β0(tT −j) − β̂q0(tT −j))X̃i(tT −j)
}

+ 1
n

n∑
i=1

(εi − ε̄)2

=Op(1/n) + Vn. (3.31)
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3.6.1.2 Expansions of SIC(q) based on M(q)

To prove Theorem 3.1, it suffices to show that SIC(q) − SIC(q0) is positive for both

cases 1) q > q0 and 2) q < q0. If q > q0, for ϵ > 0,

SIC(q) − SIC(q0) =n · log
(
M(q)
M(q0)

)
+ (q − q0) · log n

=n · log
(

1 − M(q0) −M(q)
M(q0)

)
+ (q − q0) · log n

≥ − n(1 + ϵ)
(
M(q0) −M(q)

M(q0)

)
+ (q − q0) · log n.

where the last inequality is obtained from log(1 − x) = −x− x2/2 − x3/3 − x4/4 · · · .

Since Vn = σ2 + op(1) and M(q0) −M(q) = Op(1/n) for q > q0 by (3.24) and (3.31),

SIC(q) − SIC(q0) is guaranteed to be positive as n → ∞.

Conversely, if q < q0,

SIC(q) − SIC(q0) =n · log
(
M(q)
M(q0)

)
+ (q − q0) · log n

≥n · log
(
M(q)
M(q0)

)
− q0 · log n.

Since it can be simply shown that M(q)
M(q0) > 1 + 1

n
for q < q0 from (3.25) and (3.31),

SIC(q) − SIC(q0) is guaranteed to be positive as n → ∞. Hence, we simply deduce

that P (q̂ = q0) → 1 as n → ∞.



Chapter 4

Trend Segmentation in data

sequences

4.1 Introduction

This chapter considers the change-point model

Xt = ft + εt, t = 1, . . . , T, (4.1)

where ft is a deterministic and piecewise-linear signal containing N change-points, i.e.

time indices at which the slope and/or the intercept in ft undergoes changes. These

changes occur at unknown locations η1, η2, . . . , ηN . The εt’s are iid random errors

following the normal distribution with mean zero and variance σ2. Both continuous

and discontinuous changes in the linear trend are permitted. A point anomaly can be

viewed as a separate data segment containing only one data point. Therefore, if fηℓ
is a

point anomaly, then the two consecutive change-points that define it, ηℓ−1 and ηℓ, are

linked via ηℓ−1 = ηℓ − 1 under the definition of a change-point specified later in (4.35).

Our main interest is in the estimation of N and η1, η2, . . . , ηN under some assumptions
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that quantify the difficulty of detecting each ηi; therefore, our aim is to segment the

data into sections of linearity and/or point anomalies in ft. In particular, a point

anomaly can only be detected when it has a large enough jump size with respect to

the signal levels to its right and left, while a change-point capturing a small size of

linear trend change requires a longer distance from its adjacent change-points to be

detected. Detecting both linear trend changes and point anomalies is an important

applied problem in a variety of fields, for example Figure 4.1 shows a land temperature

dataset; some strong local trends appear to be present and the point corresponding

to 1918 appears to be a point anomaly. Regarding the 1918 observation, Moore and

Babij (2017) report that “[t]he winter of 1917/1918 is referred to as the Great Frost

Winter in Iceland. It was the coldest winter in the region during the twentieth century.

It was remarkable for the presence of sea ice in Reykjavik Harbour as well as for the

unusually large number of polar bear sightings in northern Iceland.” As illustrated

1800 1850 1900 1950 2000

−
1

0
−

8
−

6
−

4
−

2

year

Fig. 4.1 January average temperature in Reykjavik recorded from 1763 to 2013.

with more details in Section 4.5, many existing change-point detection methods for the

piecewise-linear model fail in this type of signal that includes abrupt local features or

frequent change-points. In Section 4.5.1, we show that our new methodology can detect
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not only change-points in linear trend but it can also detect the 1918 observation as a

point anomaly, which the other methods do not achieve.

The change-point detection procedure proposed in this chapter is referred to as

TrendSegment. It is designed to work well in detecting not only long trend segments and

point anomalies but also short trend segments that are not necessarily classified as point

anomalies. Later in this chapter, we show that TrendSegment offers good performance

in estimating the number and locations of change-points across a wide range of signals

containing a mix of constant and linear segments and/or point anomalies. TrendSegment

is also shown to be statistically consistent and computationally efficient. Core to the

TrendSegment procedure is a new Tail-Greedy Unbalanced Wavelet (TGUW) transform:

a conditionally orthonormal, bottom-up transformation for univariate data sequences

through an adaptively constructed unbalanced wavelet basis, which results in a sparse

representation of the data. The TGUW transform, which underlies TrendSegment, is

designed to handle scenarios involving frequent change-points or abrupt local features,

in which many existing change-point detection methods fail as illustrated later in this

chapter. It constructs a data-adaptive wavelet basis in a bottom-up way in that it

consecutively merges neighbouring segments of the data from its finest level. This

enables it to identify local features at an early stage before it proceeds to focus on

more global features corresponding to longer data segments.

We emphasise that the TGUW transform is an extension of the Tail-Greedy

Unbalanced Haar (TGUH, Fryzlewicz (2018b)) transform illustrated in Section 2.2.1, a

bottom-up, agglomerative and data-adaptive transformation of univariate sequences

that facilitates change-point detection in the “piecewise-constant” sequence model.

The extension to the TGUW transform is done by constructing adaptive wavelets

instead of adaptive Haar, which enables change-point detection in the “piecewise-linear”

model. In principle, it can be extended to higher-order piecewise polynomials, but we
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do not pursue this in the current work. We emphasise that this extension from TGUH

to TGUW is both conceptually and technically non-trivial, due to the fact that it is

not a priori clear how to construct a suitable wavelet basis in TGUW for wavelets

other than adaptive Haar. In the TGUH transform, constructing the adaptive Haar

wavelet is relatively simple; as formulated in (2.19), for any pair of neighbouring regions

[p, q] and [q + 1, r], the corresponding detail-type coefficient dp,q,r (whose magnitude

represents the strength of the corresponding local constancy) is equal to the formulation

of CUSUM statistic. Therefore, the corresponding wavelet function ψp,q,r has a form of

piecewise-constant function as follows:

dp,q,r =
√

r − q

r − p+ 1sp,q −
√
q − p+ 1
r − p+ 1sq+1,r,

=
√

r − q

(r − p+ 1)(q − p+ 1)

q∑
t=p

Xt −
√

q − p+ 1
(r − p+ 1)(r − q)

r∑
t=q+1

Xt, (4.2)

= ⟨X, ψp,q,r⟩,

where X = {X1, X2, . . . , XT }⊤ and sp,q is a smooth coefficient such that sp,r =

(r − p+ 1)−1/2∑r
s=p Xs which can be interpreted as a scaled local sample mean. This

enables us to perform a local orthonormal transform for a pair of smooth coefficients,

(sp,q, sq+1,r), through a unique orthonormal matrix which returns the new (smooth,

detail) pair as follows:

 sp,r

dp,q,r

 =


√

q−p+1
r−p+1

√
r−q

r−p+1√
r−q

r−p+1 −
√

q−p+1
r−p+1


 sp,q

sq+1,r

 = Λp,q,r

 sp,q

sq+1,r

 , (4.3)

where Λp,q,r is an orthonormal matrix. However, this does not occur in TGUW; the

corresponding local orthonormal transform matrix for performing each merge has the

dimension 3 × 3 (instead of 2 × 2 in TGUH) and the matrix does not have uniqueness.

The orthonormal matrix, Λ, for the local TGUW transform is composed of two low
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filter vectors (ℓ1 and ℓ2) of length 3 (which correspond to two new smooth coefficients

s1
p,r, s2

p,r) and one high filter vector h of length 3 (which corresponds to one new detail

coefficient dp,q,r) as follows:


s1

p,r

s2
p,r

dp,q,r


3×1

=


ℓ⊤

1

ℓ⊤
2

h⊤


3×3


s1

s2

s3


3×1

= Λ3×3


s1

s2

s3


3×1

. (4.4)

Unlike the TGUH transform in (4.3), the TGUW transform in (4.4) returns two

smooth coefficients. Due to the non-uniqueness of those two low filter vectors in

(4.4), it is not clear how to understand and interpret the corresponding two new

smooth coefficients. The non-uniqueness itself does not affect the recursively performed

orthonormal transformations, but we should impose a certain guiding principle in the

way the merges are performed to guarantee that an adaptively constructed unbalanced

wavelet basis has orthonormality. Establishing this guiding principle (which will be

specified in Section 4.2.2) is new and the most challenging part in our unbalanced

wavelet transform compared to the unbalanced Haar transform, by which our algorithm

is able to detect changes in the linear trend and point anomalies at the same time. The

computational cost of TGUW is the same as TGUH. Important properties of the TGUW

transform include conditional orthonormality, nonlinearity and “tail-greediness”, and

will be investigated in Section 4.2. The TGUW transform is the first step of the

TrendSegment procedure, which involves four steps.

The remainder of this chapter is organised as follows. Section 4.2 gives a full

description of the TrendSegment procedure and the relevant theoretical results are

presented in Section 4.3. The supporting simulation studies are described in Section

4.4 and our methodology is illustrated in Section 4.5 through climate datasets. The
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proofs of our main theoretical results are in Section 4.6. The TrendSegment procedure

is implemented in the R package trendsegmentR.

4.2 Methodology

4.2.1 Summary of TrendSegment

The TrendSegment procedure for estimating the number and the locations of change-

points includes four steps. We give a broad picture first and outline details in later

sections.

1. TGUW transformation. Perform the TGUW transform; a bottom-up unbalanced

adaptive wavelet transformation of the input data X1, . . . , XT by recursively

applying local conditionally orthonormal transformations. This produces a data-

adaptive multiscale decomposition of the data with T − 2 detail-type coefficients

and 2 smooth coefficients. The resulting conditionally orthonormal transform of

the data hopes to push most of the energy of the signal in only a few detail-type

coefficients arising at coarse levels. This sparse representation of the data justifies

thresholding in the next step.

2. Thresholding. Set to zero those detail coefficients whose magnitude is smaller

than a pre-specified threshold as long as all the non-zero detail coefficients are

connected to each other in the tree structure. This step performs “pruning” as a

way of deciding the significance of the sparse representation obtained in step 1.

3. Inverse TGUW transformation. Obtain an initial estimate of ft by carrying

out the inverse TGUW transformation of the thresholded coefficient tree. The

resulting estimator can be shown to be l2-consistent, but not yet consistent for

the number (N) and the locations of change-points (η1, . . . , ηN).



4.2 Methodology 102

4. Post-processing. Post-process the estimate from step 3 by removing some change-

points perceived to be spurious, which enables us to achieve estimation consistency

for N and η1, . . . , ηN .

We devote the following four sections to describing each step above in order.

4.2.2 TGUW transformation

Key principles of the TGUW transform

In the initial stage, the data are considered smooth coefficients and the TGUW trans-

form iteratively updates the sequence of smooth coefficients by merging the adjacent

sections of the data which are the most likely to belong to the same segment. The

merging is done by performing an adaptively constructed orthonormal transformation

to the chosen triplet of the smooth coefficients and in doing so, a data-adaptive unbal-

anced wavelet basis is established. The TGUW transform is completed after T − 2

such orthonormal transformations and each merge is performed under the following

principles.

1. In each merge, three adjacent smooth coefficients are selected and the orthonormal

transformation converts those three values into one detail and two (updated) smooth

coefficients. The size of the detail coefficient gives information about the strength of

the local linearity and the two updated smooth coefficients are associated with the

estimated parameters (intercept and slope) of the local linear regression performed on

the raw observations corresponding to the initially chosen three smooth coefficients.

2. “Two together” rule. The two smooth coefficients returned by the orthonormal

transformation are paired in the sense that both contain information about one

local linear regression fit. Thus, we require that any such pair of smooth coefficients

cannot be separated in any subsequent merges. We refer to this recipe as the “two

together” rule.
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3. To decide which triplet of smooth coefficients should be merged next, we compare

the corresponding detail coefficients as their magnitude represents the strength of

the corresponding local linear trend; the smaller the (absolute) size of the detail,

the smaller the local deviation from linearity. Smooth coefficients corresponding to

the smallest detail coefficients have priority in merging.

As merging continues under the “two together” rule, all mergings can be classified

into one of three forms, Type 1: merging three initial smooth coefficients, Type 2:

merging one initial and a paired smooth coefficient and Type 3: merging two sets of

(paired) smooth coefficients. Note that Type 3 is composed of two consecutive merges

of triplets and more details are given later.

Table 4.1 Notation. See Section 4.2.2 for formulae for the terms listed.

Xp pth element of the observation vector X = {X1, X2, . . . , XT }⊤.
s0

p,p pth initial smooth coefficient of the vector s0 where X = s0.
dp,q,r detail coefficient obtained from {Xp, . . . , Xr} (merges of Types

1 or 2).
s1

p,r, s
2
p,r smooth coefficients obtained from {Xp, . . . , Xr}, paired under

the “two together” rule.
d1

p,q,r, d
2
p,q,r paired detail coefficients obtained by merging two adjacent

subintervals, {Xp, . . . , Xq} and {Xq+1, . . . , Xr}, where r >
q + 2 and q > p+ 1 (merge of Type 3).

s data sequence vector containing the (recursively updated)
smooth and detail coefficients from the initial input s0.

Example

We now provide a simple example of the TGUW transformation to help readers

understand the entire procedure at a glance. The accompanying illustration is in

Figure 4.2 and the notation for this example and for the general algorithm introduced

later is in Table 4.1. This example shows single merges at each pass through the

data. We will later generalise it to multiple passes through the data, which will

speed up computation where the device is referred to as “tail-greediness”. We refer
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to jth pass through the data as scale j. Assume that we have the initial input

s0 = (X1, X2, . . . , X8), so that the complete TGUW transform consists of 6 merges.

We show 6 example merges one by one under the rules introduced above. This example

demonstrates all three possible types of merges.

Scale j = 1. From the initial input s0 = (X1, . . . , X8), we consider 6 triplets

(X1, X2, X3), (X2, X3, X4), (X3, X4, X5), (X4, X5, X6), (X5, X6, X7), (X6, X7, X8) and

compute the size of the detail for each triplet, where the formula can be found in

(4.5). Suppose that (X2, X3, X4) gives the smallest size of detail, |d2,3,4|, then merge

(X2, X3, X4) through the orthogonal transformation formulated in (4.7) and update

the data sequence into s = (X1, s
1
2,4, s

2
2,4, d2,3,4, X5, X6, X7, X8). We categorise this

transformation into Type 1 (merging three initial smooth coefficients).

X1 X2 X3 X4 X5 X6 X7 X8

Type 1 merging

Type 2 merging

Type 3 merging

scale j = 1, 2

X1 s
2,4

1
s

2,4

2 d2,3,4 s
5,7

1
s

5,7

2 d5,6,7 X8

scale j = 3

s
1,4

1
s

1,4

2 d1,1,4 d2,3,4 s
5,7

1
s

5,7

2 d5,6,7 X8

scale j = 4

s
1,7

1
s

1,7

2 d1,1,4 d2,3,4 d
1,4,7

1
d

1,4,7

2 d5,6,7 X8

scale j = 5

Fig. 4.2 Construction of tree for the example in Section 4.2.2; each diagram shows all
merges performed up to the given scale.

Scale j = 2. From now on, the “two together” rule is applied. Ignoring any detail

coefficients in s, the possible triplets for next merging are (X1, s
1
2,4, s

2
2,4), (s1

2,4, s
2
2,4, X5),
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(X5, X6, X7), (X6, X7, X8). We note that (s2
2,4, X5, X6) cannot be considered as a

candidate for next merging under the “two together” rule as this triplet contains only

one (not both) of the paired smooth coefficients returned by the previous merging.

Assume that (X5, X6, X7) gives the smallest size of detail coefficient |d5,6,7| among the

four candidates, then we merge them through the orthogonal transformation formulated

in (4.7) and now update the sequence into s = (X1, s
1
2,4, s

2
2,4, d2,3,4, s

1
5,7, s

2
5,7, d5,6,7, X8).

This transformation is also Type 1.

Scale j = 3. We now compare four candidates for merging, (X1, s
1
2,4, s

2
2,4),

(s1
2,4, s

2
2,4, s

1
5,7), (s2

2,4, s
1
5,7, s

2
5,7) and (s1

5,7, s
2
5,7, X8). The two triplets in middle, (s1

2,4, s
2
2,4, s

1
5,7)

and (s2
2,4, s

1
5,7, s

2
5,7), are paired together as they contain two sets of paired smooth coef-

ficients, (s1
2,4, s

2
2,4) and (s1

5,7, s
2
5,7), and if we were to treat these two triplets separately,

we would be violating the “two together” rule. The summary detail coefficient for this

pair of triplets is obtained as d2,4,7 = max(|d1
2,4,7|, |d2

2,4,7|), which is compared with those

of the other triplets. Now suppose that (X1, s
1
2,4, s

2
2,4) has the smallest size of detail;

we merge this triplet and update the data sequence into s = (s1
1,4, s

2
1,4, d1,1,4, d2,3,4,

s1
5,7, s

2
5,7, d5,6,7, X8). This transformation is of Type 2.

Scale j = 4. We now have two pairs of paired coefficients: (s1
1,4, s

2
1,4) and (s1

5,7, s
2
5,7).

Therefore, with the “two together” rule in mind, the only possible options for merging

are: to merge the two pairs into (s1
1,4, s

2
1,4, s

1
5,7, s

2
5,7), or to merge (s1

5,7, s
2
5,7) with X8.

Suppose that the first merging is preferred. The merge of (s1
1,4, s

2
1,4) and (s1

5,7, s
2
5,7)

into (s1
1,4, s

2
1,4, s

1
5,7, s

2
5,7) is of Type 3 and is performed in two stages as follows. In the

first stage, we merge (s1
1,4, s

2
1,4, s

1
5,7) and then update the sequence temporarily as s =

(s1′
1,7, s

2′
1,7, d1,1,4, d2,3,4, d

1
1,4,7, s

2
5,7, d5,6,7, X8). In the second stage, we merge (s1′

1,7, s
2′
1,7, s

2
5,7),

which gives the updated sequence s = (s1
1,7, s

2
1,7, d1,1,4, d2,3,4, d

1
1,4,7, d

2
1,4,7, d5,6,7, X8). As

a summary detail coefficients for this merge, we use d1,4,7 = max(|d1
1,4,7|, |d2

1,4,7|).
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Scale j = 5. The only available triplet is now (s1
1,7, s

2
1,7, X8), thus we perform this

Type 2 merge and update the data sequence into s = (s1
1,8, s

2
1,8, d1,1,4, d2,3,4, d

1
1,4,7, d

2
1,4,7,

d5,6,7, d1,7,8). The transformation is completed with the updated data sequence which

contains T − 2 = 6 detail and 2 smooth coefficients.

TGUW transformation: general algorithm

We now formulate in generality the TGUW transformation illustrated in the above

example. One of the important principles is “tail-greediness” (Fryzlewicz, 2018b) which

enables us to reduce the computational complexity by performing multiple merges over

non-overlapping regions in a single pass over the data. More specifically, it allows us to

perform up to max{2, ⌈ραj⌉} merges at each scale j, where αj is the number of smooth

coefficients in the data sequence s and ρ ∈ (0, 1). The lower bound of 2 is essential to

permit a Type 3 transformation, which consists of two merges.

Sometimes, we will be referring to a detail coefficient d·
p,q,r as d(j,k)

p,q,r or d(j,k), where

j = 1, . . . , J is the scale of the transform (i.e. the consecutive pass through the data)

at which d·
p,q,r was computed, k = 1, . . . , K(j) is the location index of d·

p,q,r within all

scale j coefficients, and d·
p,q,r is d1

p,q,r or d2
p,q,r or dp,q,r, depending on the type of merge.

We now describe the TGUW algorithm.

1. At each scale j, find the set of triplets that are candidates for merging under the

“two together” rule and compute the corresponding detail coefficients. Regardless of

the type of merge, a detail coefficient d·
p,q,r is, in general, obtained as

d·
p,q,r = as1

p:r + bs2
p:r + cs3

p:r, (4.5)

where p ≤ q < r, sk
p:r is the kth smooth coefficient of the subvector sp:r with a length

of r−p+1 and the constants a, b, c are the elements of the detail filter h = (a, b, c)⊤.

We note that (a, b, c) also depends on (p, q, r), but this is not reflected in the
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notation, for simplicity. The detail filter is a weight vector used in computing the

weighted sum of a triplet of smooth coefficients which should satisfy the condition

that the detail coefficient is zero if and only if the corresponding raw observations

over the merged regions have a perfect linear trend. If (Xp, . . . , Xr) are the raw

observations associated with the triplet of the smooth coefficients (s1
p:r, s

2
p:r, s

3
p:r)

under consideration, then the detail filter h is obtained in such a way as to produce

zero detail coefficient only when (Xp, . . . , Xr) has a perfect linear trend, as the

detail coefficient itself represents the extent of non-linearity in the corresponding

region of data. This implies that the smaller the size of the detail coefficient, the

closer the alignment of the corresponding data section with linearity. Specifically,

the detail filter h = (a, b, c)⊤ is established by solving the following equations,

awc,1
p:r + bwc,2

p:r + cwc,3
p:r = 0,

awl,1
p:r + bwl,2

p:r + cwl,3
p:r = 0,

a2 + b2 + c2 = 1,

(4.6)

where w·,k
p:r is kth non-zero element of the subvector w·

p:r with a length of r − p+ 1,

and wc and wl are weight vectors of constancy and linearity, respectively, in which

the initial inputs have a form of wc
0 = (1, 1, . . . , 1)⊤,wl

0 = (1, 2, . . . , T )⊤. The last

condition in (4.6) is to preserve the orthonormality of the transform. Intuitively, the

detail filter h becomes a normal vector of the plane {(x, y, z) | x− 2y+ z = 0}. The

solution to (4.6) is unique up to multiplication by −1 and this can be simply shown

by solving the equations e.g. a+ b+ c = 0, a+ 2b+ 3c = 0 and a2 + b2 + c2 = 1.

2. Summarise all d·
p,q,r constructed in step 1 to a (equal length or shorter) sequence

of dp,q,r by finding a summary detail coefficient dp,q,r = max(|d1
p,q,r|, |d2

p,q,r|) for any

pair of detail coefficients constructed by type 3 merges.
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3. Sort the size of the summarised detail coefficients |dp,q,r| obtained in step 2 in

non-decreasing order.

4. Extract the (non-summarised) detail coefficient(s) |d·
p,q,r| corresponding to the small-

est (summarised) detail coefficient |dp,q,r| where both |d1
p,q,r| and |d2

p,q,r| should

be extracted only if dp,q,r = max(|d1
p,q,r|, |d2

p,q,r|). Repeat the extraction until

max{2, ⌈ραj⌉} (or all possible, whichever is the smaller number) detail coefficients

have been obtained, as long as the region of the data corresponding to each detail

coefficient extracted does not overlap with the regions corresponding to the detail

coefficients already drawn.

5. For each |d·
p,q,r| extracted in step 4, merge the corresponding smooth coefficients

by updating the corresponding triplet in s, wc and wl through the orthonormal

transform as follows,


s1

p,r

s2
p,r

d·
p,q,r

 =


ℓ⊤

1

ℓ⊤
2

h⊤




s1

p:r

s2
p:r

s3
p:r

 = Λ


s1

p:r

s2
p:r

s3
p:r

 , (4.7)


wc,1

p,r

wc,2
p,r

0

 = Λ


wc,1

p:r

wc,2
p:r

wc,3
p:r

 ,

wl,1

p,r

wl,2
p,r

0

 = Λ


wl,1

p:r

wl,2
p:r

wl,3
p:r

 . (4.8)

The key step is finding the 3 × 3 orthonormal matrix, Λ, which is composed of

one detail and two low-pass filter vectors in its rows. Firstly the detail filter h⊤

is determined to satisfy the conditions in (4.6), and then the two low-pass filters

(ℓ⊤
1 , ℓ

⊤
2 ) are obtained by satisfying the orthonormality of Λ. There is no uniqueness

in the choice of (ℓ⊤
1 , ℓ

⊤
2 ), but this has no effect on the orthonormal transformation

itself. The details of this mechanism can be found in Section 4.2.6.



4.2 Methodology 109

6. Go to step 1 and repeat at new scale j = j + 1 as long as we have at least three

smooth coefficients in the updated data sequence s.

More specifically, the detail coefficient in (4.5) is formulated for each type of merging

introduced in Section 4.2.2 as follows.

Type 1: merging three initial smooth coefficients (s0
p,p, s

0
p+1,p+1, s

0
p+2,p+2),

dp,p+1,p+2 = ap,p+1,p+2s
0
p,p + bp,p+1,p+2s

0
p+1,p+1 + cp,p+1,p+2s

0
p+2,p+2. (4.9)

Type 2: merging one initial and a paired smooth coefficient (s0
p,p, s

1
p+1,r, s

2
p+1,r),

dp,p,r = ap,p,rs
0
p,p + bp,p,rs

1
p+1,r + cp,p,rs

2
p+1,r, where p+ 2 < r, (4.10)

similarly, when merging a paired smooth coefficient and one initial, (s1
p,r−1, s

2
p,r−1, s

0
r,r),

dp,r−1,r = ap,r−1,rs
1
p,r−1 + bp,r−1,rs

2
p,r−1 + cp,r−1,rs

0
r,r, where p+ 2 < r. (4.11)

Type 3: merging two sets of (paired) smooth coefficients, (s1
p,q, s

2
p,q) and (s1

q+1,r, s
2
q+1,r),

d1
p,q,r = a1

p,q,rs
1
p,q + b1

p,q,rs
2
p,q + c1

p,q,rs
1
q+1,r

d2
p,q,r = a2

p,q,rs
01
p,r + b2

p,q,rs
02
p,r + c2

p,q,rs
2
q+1,r

=⇒ dp,q,r = max(|d1
p,q,r|, |d2

p,q,r|),

(4.12)

where q > p+ 1 and r > q + 2. Importantly, the two consecutive merges in (4.12) are

achieved by visiting the same two adjacent data regions twice. In this case, after the

first detail coefficient, d1
p,q,r, has been obtained, we instantly update the corresponding

triplets s, wc and wl via an orthonormal transform as defined in (4.7) and (4.8).

Therefore, the second detail filter, (a2
p,q,r, b

2
p,q,r, c

2
p,q,r), is constructed with the updated

wc and wl in a way that satisfies the conditions (4.6).
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The TGUW transform eventually converts the input data sequence X of length

T into the sequence containing 2 smooth and T − 2 detail coefficients through T −

2 orthonormal transforms. The detail coefficients d(j,k) can be regarded as scalar

products between X and a particular unbalanced wavelet basis ψ(j,k), where the formal

representation is given as {d(j,k) = ⟨X, ψ(j,k)⟩,j=1,...,J,k=1, ...,K(j) } for detail coefficients

and s1
1,T = ⟨X, ψ(0,1)⟩, s2

1,T = ⟨X, ψ(0,2)⟩ for the two smooth coefficients. The set

{ψ(j,k)} is an orthonormal unbalanced wavelet basis for RT .

4.2.3 Thresholding

As the TGUW transform is performed in a way to push the l2 energy of the input

data to a small number of detail coefficients, the bulk of variability (= deviation from

linearity) of the signal tends to be mainly captured by few detail coefficients computed

at the later stages of the transform. This sparse representation of the input data

justifies thresholding as a way of deciding the significance of each detail coefficient.

Two important rules of thresholding are referred to as the “connected” rule and

the “two together” rule which should simultaneously be satisfied. These two rules are

illustrated in Figure 4.3 by using the tree established in the example of Section 4.2.2.

The diagram in top-row describes the “connected” rule which prunes the branches of

the TGUW detail coefficients if and only if the detail coefficient itself and all of its

children coefficients fall below a certain threshold in absolute value. If both d1,1,4 and

d1,7,8 were to survive the initial thresholding, the “connected” rule would mean we also

had to keep d1
1,4,7 and d2

1,4,7, which are the children of d1,7,8 and the parents of d1,1,4 in

the TGUW coefficient tree.

The “two together” rule in thresholding is similar to the one in the TGUW trans-

formation except it targets pairs of detail rather than smooth coefficients. It only

applies to pairs of detail coefficients arising from Type 3 merges e.g. (d1
1,4,7, d

2
1,4,7) in
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s
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1
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s
1,8

1
s

1,8
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1,4,7

1
d

1,4,7
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1,4,7

1
d
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2
d5,6,7 d1,7,8

Fig. 4.3 The tree of mergings in the example illustrated in Section 4.2.2. Diagrams
in left-column show the examples of tree obtained from initial hard thresholding, the
one in top-right shows the tree after applying the “connected” rule and the one in
bottom-right shows the tree after applying the “two together” rule described in Section
4.2.3. Solid line represents a survived merging and dashed line shows a denoised one.

bottom-row of Figure 4.3, in such a way that both detail coefficients should be kept if

at least one survives the initial thresholding. This is a natural requirement as a pair

of Type 3 detail coefficients effectively corresponds to a single merge of two adjacent

regions.

Through the thresholding, we wish to estimate the underlying signal f = (f1, · · · , fT )⊤

in (4.1) by estimating µ(j,k) = ⟨f , ψ(j,k)⟩ where ψ(j,k) is an orthonormal unbalanced

wavelet basis constructed in the TGUW transform from the data. Throughout the

entire thresholding procedure, the “connected” and “two together” rules are applied

in this order. We firstly apply the “connected” rule which gives us µ̂(j,k)
0 , the initial
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estimator of µ(j,k), as

µ̂
(j,k)
0 = d(j,k)

p,q,r · I
{

∃(j′, k′) ∈ Cj,k

∣∣∣d(j′,k′)
p′,q′,r′

∣∣∣ > λ
}
, (4.13)

where I is an indicator function and

Cj,k =
{

(j′, k′), j′ = 1, . . . , j, k′ = 1, . . . , K(j′) : d(j′,k′)
p′,q′,r′ is such that [p′, r′] ⊆ [p, r]

}
.

(4.14)

Now the “two together” rule is applied to the initial estimator µ̂(j,k)
0 to obtain the final

estimator µ̂(j,k). We firstly note that two detail coefficients, d(j,k)
p,q,r and d(j′,k′)

p′,q′,r′ are called

“paired” when they are formed by Type 3 merges and when (j, p, q, r) = (j′, p′, q′, r′).

The ‘two together” rule is formulated as below,

µ̂(j,k) =



µ̂
(j,k)
0 , if d(j,k)

p,q,r is not paired,

µ̂
(j,k)
0 , if d(j,k)

p,q,r is paired with d(j,k′)
p,q,r and both µ̂

(j,k)
0 and µ̂

(j,k′)
0 are

zero or non-zero, (4.15)

d(j,k), if d(j,k)
p,q,r is paired with d(j,k′)

p,q,r and µ̂
(j,k′)
0 ̸= 0 and µ̂

(j,k)
0 = 0.

These two rules are useful in that they not only produce a simpler shape of tree

which is easier to prune but also give a more interpretable form of the estimated

function f̃ which will be produced later by the inverse TGUW transformation in

Section 4.2.4. Only when the thresholding is performed in a way to satisfy both of the

two rules introduced above, f̃ is equivalent to the piecewise-linear function composed

of best linear fits (in the least-squares sense) for each interval of linearity i.e. f̃ is

constructed as follows:

f̃t = θ̃ℓ,1 + θ̃ℓ,2 t for t ∈
[
η̃ℓ−1 + 1, η̃ℓ

]
, ℓ = 1, . . . , Ñ, (4.16)
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where η̃0 = 0, η̃Ñ+1 = T and (θ̃ℓ,1, θ̃ℓ,2) are the OLS intercept and slope coefficients,

respectively, for the corresponding pairs {(t,Xt), t ∈ [η̃ℓ−1 + 1, η̃ℓ]}.

As an aside, we note that the number of survived detail coefficients are not exactly

matched with the number of estimated change-points in f̃ as a pair of detail coefficients

arising from Type 3 merge are associated with a single change-point.

4.2.4 Inverse TGUW transformation

The estimator f̃ of the true signal f in (4.1) is obtained by inverting the orthonormal

transformation in (4.7) in reverse order to that in which they were originally performed.

This inverse TGUW transformation is referred to as TGUW−1, and thus

f̃ = TGUW−1
{
µ̂(j,k), j = 1, . . . , J, k = 1, . . . , K(j) ∥ s1

1,T , s
2
1,T

}
, (4.17)

where µ̂(j,k) is the sequence of the thresholded detail coefficients in (4.15) and ∥ denotes

vector concatenation. The inverse TGUW transform can be illustrated by borrowing

the simplified notation in (4.4) as follows:


s1

s2

s3

 =


ℓ⊤

1

ℓ⊤
2

h⊤



−1
s1

s2

d

 = Λ⊤


s1

s2

d

 =

ℓ1 ℓ2 h




s1

s2

d

 , (4.18)

where the transform matrix Λ is orthogonal such that Λ⊤ = Λ−1.

4.2.5 Post-processing for consistency of change-point detec-

tion

As will be specified in Theorem 4.1 of Section 4.3, the piecewise-linear estimator f̃

in (4.17) possibly overestimates the number of change-points. This is because f̃ is l2
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consistent (i.e. T−1∑T
i=1(f̃i − fi)2 converges to zero with probability approaching to 1

as T → ∞), but not yet consistent for the number and the locations of change-points.

Lin et al. (2017) show that we can usually post-process l2-consistent estimators as a

fast enough l2 error rate implies that each true change-point has an estimator nearby.

To remove the spurious estimated change-points and to achieve the consistency of

the number and the locations of the estimated change-points, we borrow the post-

processing framework of Fryzlewicz (2018b). The post-processing methodology includes

two stages, i) execution of three steps, TGUW transform, thresholding and inverse

TGUW transform, again to the estimator f̃ in (4.17) and ii) examination of regions

containing only one estimated change-point to check for its significance. As will be

described below, these two stages of post-processing are not used in practice (thus

ignored in simulations and data analysis) for some practical reasons, however they are

essential to achieve the consistency of the number and the locations of the estimated

change-points as shown in Theorem 4.3.

Stage 1.

We transform the estimated function f̃ in (4.17) with change-points (η̃1, η̃2, . . . , η̃Ñ)

into a new estimator ˜̃f with corresponding change-points (˜̃η1, ˜̃η2, . . . , ˜̃η ˜̃N). Using f̃ in

(4.17) as an input data sequence s, we perform the TGUW transform as presented in

Section 4.2.2, but in a greedy rather than tail-greedy way such that only one detail

coefficient d(j,1) is produced at each scale j, and thus K(j) = 1 for all j. We repeat

to produce detail coefficients until the first detail coefficient such that |d(j,1)| > λ is

obtained where λ is the parameter used in the thresholding procedure described in

Section 4.2.3. Once the condition, |d(j,1)| > λ, is satisfied, stop merging and relabel

the surviving change-points as (˜̃η1, ˜̃η2, . . . , ˜̃η ˜̃N) and construct the new estimator ˜̃f as

˜̃ft = ˜̃θℓ,1 + ˜̃θℓ,2 t for t ∈
[
˜̃ηℓ−1 + 1, ˜̃ηℓ

]
, ℓ = 1, . . . , ˜̃N, (4.19)
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where ˜̃η0 = 0, ˜̃η ˜̃N+1 = T and ( ˜̃θℓ,1,
˜̃θℓ,2) are the OLS intercept and slope coefficients,

respectively, for the corresponding pairs {(t,Xt), t ∈
[
˜̃ηℓ−1 + 1, ˜̃ηℓ

]
}. The exception is

when the region under consideration only contains a single data point Xt0 (a situation

we refer to as a point anomaly throughout the chapter), in which case fitting a linear

regression is impossible. We then set ˜̃ft0 = Xt0 .

Stage 2.

From the estimator ˜̃ft in Stage 1, we obtain the final estimator f̂ by pruning the

change-points (˜̃η1, ˜̃η2, . . . , ˜̃η ˜̃N ) in ˜̃ft. For each i = 1, . . . , ˜̃N , compute the corresponding

detail coefficient dpi,qi,ri
as described in (4.10)-(4.12), where pi =

⌊
˜̃ηi−1+˜̃ηi

2

⌋
+ 1, qi = ˜̃ηi

and ri =
⌈

˜̃ηi+˜̃ηi+1
2

⌉
. Now prune by finding the minimiser ℓ0 = arg mini |dpi,qi,ri

| and

removing ˜̃ηℓ0 and setting ˜̃N := ˜̃N − 1 if |dpℓ0 ,qℓ0 ,rℓ0
| ≤ λ where λ is the same as in

Section 4.2.3. Then relabel the change-points with the subscripts i = 1, . . . , ˜̃N under

the convention ˜̃η0 = 0, ˜̃η ˜̃N+1 = T . Repeat the pruning while we can find ℓ0 which

satisfies the condition
∣∣∣dpℓ0 ,qℓ0 ,rℓ0

∣∣∣ < λ. Otherwise, stop, set N̂ as the number of

detected change-points and reconstruct the change-points η̂i in increasing order for

ℓ = 0, . . . , N̂ + 1 where η̂0 = 0 and η̂N̂+1 = T . The estimated function f̂ is obtained by

simple linear regression for each region determined by the final change-points η̂1, . . . , η̂N̂

as in (4.19), with the exception for point anomalies as described in Stage 1 above.

Through these two stages of post-processing, the estimation of the number and the

locations of change-points becomes consistent, and the relevant theoretical results can

be found in Section 4.3. Based on our empirical experience, Stage 1 rarely makes a

difference in practice but causes an additional computational cost, and Stage 2 tends

to over-prune change-points estimates and makes the procedure computationally heavy.

For these practical reasons, in what follows, we recommend to use f̃ in (4.17) as the
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estimator of the TrendSegment procedure and disable Stages 1 and 2 of post-processing

by default.

4.2.6 Extra discussion of TGUW transformation

Sparse representation.

We first recall that the TGUW transformation is obtained by a data-adaptively chosen

orthonormal basis in RT as follows,



s1
1,T

s2
1,Td(j,k)

j=1,...,J,k=1,...,K(j)




=



ψ(0,1)

ψ(0,2)ψ(j,k)
j=1,...,J,k=1,...,K(j)






X1

X2
...
XT

 = ΨT ×T


X1

X2
...
XT

 ,

(4.20)

where Ψ is an orthogonal matrix. The orthogonal transformation matrix Ψ in (4.20)

contains T orthonormal basis vectors in its rows that can be categorised into two:

1)
{
ψ(j,k)

j=1,...,J,k=1,...,K(j)

}
corresponding to detail coefficients

{
d(j,k)

j=1,...,J,k=1,...,K(j)
}

where d(j,k) = ⟨X, ψ(j,k)⟩ and 2) ψ(0,1) and ψ(0,2) corresponding to two smooth coeffi-

cients, s1
1,T = ⟨X, ψ(0,1)⟩ and s2

1,T = ⟨X, ψ(0,2)⟩.

The TGUW transform is linear and orthonormal only when conditioning on the

order in which the merges are performed. The orthonormality of the unbalanced

wavelet basis, {ψ(j,k)}, implies Parseval’s identity:

T∑
t=1

X2
t =

J∑
j=1

K(j)∑
k=1

(d(j,k))2 + (s1
1,T )2 + (s2

1,T )2. (4.21)

Furthermore, the filters (ψ(0,1), ψ(0,2)) corresponding to the two smooth coefficients

s1
1,T and s2

1,T form an orthonormal basis of the subspace {(x1, x2, . . . , xT ) | x1 − x2 =

x2 − x3 = · · · = xT −1 − xT } of RT . (See later part of this section for further details.)
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This implies
T∑

t=1
X2

t − (s1
1,T )2 − (s2

1,T )2 =
T∑

t=1
(Xt − X̂t)2 (4.22)

where X̂ = s1
1,Tψ

(0,1) + s2
1,Tψ

(0,2) is the best linear regression fit to X achieved by

minimising the sum of squared errors. The equation (4.22) can be simply shown as

follows:

T∑
t=1

(Xt − X̂t)2 =(X − s1
1,Tψ

(0,1) − s2
1,Tψ

(0,2))⊤(X − s1
1,Tψ

(0,1) − s2
1,Tψ

(0,2))

= X⊤X + (s1
1,T )2 + (s2

1,T )2 − 2s1
1,T ⟨X, ψ(0,1)⟩ − 2s2

1,T ⟨X, ψ(0,2)⟩

= X⊤X − (s1
1,T )2 − (s2

1,T )2.

This, combined with the Parseval’s identity above, implies,

T∑
t=1

(Xt − X̂t)2 =
J∑

j=1

K(j)∑
k=1

(d(j,k))2. (4.23)

By construction, the detail coefficients |d(j,k)| obtained in the initial stages of the

TGUW transform tend to be small in magnitude. Then the Parseval’s identity in

(4.21) implies that a large portion of ∑T
t=1(Xt − X̂t)2 is explained by only a few large

|d(j,k)|’s arising in the later stages of the transform; in this sense, the TGUW transform

provides sparsity of signal representation.

Computational complexity.

Assume that αj smooth coefficients are available in the data sequence s at scale j and we

allow the algorithm to merge up to
⌈
ραj

⌉
many triplets (unless their corresponding data

regions overlap) where ρ ∈ (0, 1) is a constant. This gives us at most (1 − ρ)jT smooth

coefficients remaining in s after j scales. Solving for (1 − ρ)jT ≤ 2 gives the largest

number of scales J as
⌈
log(T )/ log

(
(1 − ρ)−1

)
+ log(2)/ log(1 − ρ)

⌉
, at which point the



4.2 Methodology 118

TGUW transform terminates with two smooth coefficients remaining. Considering that

the most expensive step at each scale is sorting which takes O(T log(T )) operations,

the computational complexity of the TGUW transformation is O(T log2(T )).

Shape of the unbalanced wavelet basis.

We now explore the shape of the adaptively constructed unbalanced wavelet basis.

First, we denote that ψ(j,k) in (4.20) is sometimes referred to as ψ(j,k)
p,q,r . One of the

important properties of the unbalanced wavelet basis is that ψ(j,k)
p,q,r always has a

shape of linear trend in regions that are previously merged and this linearity will

also be preserved in future merges, as long as later transforms are performed under

the “two together” rule. For example, as mentioned earlier in this section, two

vectors, (ψ(0,1), ψ(0,2)), corresponding to the two smooth coefficients s1
1,T and s2

1,T , have

linear trends in the region [1, T ] as they form an orthonormal basis of the subspace

{(x1, x2, . . . , xT ) | x1 − x2 = x2 − x3 = · · · = xT −1 − xT } of RT . This is due to the fact

that the local orthonormal transforms continue in a way of extending the geometric

dimension of subspace in which an orthonormal basis lives.

Through an illustrative example, we now show how a basis vector ψ(j,k)
p,q,r keeps its

linearity in subregions that are already merged in previous scales, which includes a

geometric interpretation of the TGUW transformation. Suppose that the initial data

sequence is s0 = (X1, . . . , X5) and the initial weight vectors of constancy and linearity

are wc
0 = (1, 1, 1, 1, 1)⊤ and wl

0 = (1, 2, 3, 4, 5)⊤, respectively. As we have the data

sequence of length 5, the complete TGUW transform consists of 3 orthonormal trans-

formations and the most important task for each transform is finding an appropriate

orthonormal matrix.

First merge. Assume that (X3, X4, X5) is chosen as the first triplet to be merged.

To find the values of the transform matrix Λ,
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Λ =


ℓ1,1 ℓ1,2 ℓ1,3

ℓ2,1 ℓ2,2 ℓ2,3

a b c

 =


ℓ⊤

1

ℓ⊤
2

h⊤

 , (4.24)

we first seek the detail filter, h, which satisfies the conditions (1) h⊤wc
0,3:5 = 0, (2)

h⊤wl
0,3:5 = 0 and (3) h⊤h = 1, where w·

0,p:r is the subvector of length r− p+ 1. Thus,

h is obtained as a normal vector to the plane {(x, y, z) | x−2y+z = 0}. Then, two low

filter vectors (ℓ1 and ℓ2) are obtained under the conditions, (1) ℓ⊤
1 h = 0, (2) ℓ⊤

2 h = 0,

(3) ℓ⊤
1 ℓ2 = 0 and (4) ℓ⊤

1 ℓ1 = ℓ⊤
2 ℓ2 = 1 which implies that ℓ1 and ℓ2 form an arbitrary

orthonormal basis of the plane {(x, y, z) | x − 2y + z = 0} and this guarantees the

linear trend of ℓ1 and ℓ2. Now, the orthonormal transform updates the data sequence

and weight vectors as follows,

s0 = (X1, . . . , X5) → s = (X1, X2, s
1
3,5, s

2
3,5, d3,4,5),

wc
0 = (1, 1, 1, 1, 1)⊤ → wc = (1, 1, ec1 , ec2 , 0)⊤,

wl
0 = (1, 2, 3, 4, 5)⊤ → wl = (1, 2, el1 , el2 , 0)⊤,

(4.25)

where the constants (ec1 , ec2) and (el1 , el2) are obtained by Λwc
0,3:5 = (ec1 , ec2 , 0)⊤ and

Λwl
0,3:5 = (el1 , el2 , 0)⊤, respectively. As ℓ1 and ℓ2 form an orthonormal basis of the

plane {(x, y, z) | x−2y+z = 0}, ec1 , ec2 and el1 , el2 are unique constants which represent

wc
0,3:5 and wl

0,3:5 as a linear span of basis vectors ℓ1 and ℓ2 as follows:

wc
0,3:5 = ec1ℓ1 + ec2ℓ2, wl

0,3:5 = el1ℓ1 + el2ℓ2. (4.26)

Importantly, the orthonormal transform matrix ΨT ×T in (4.20) (i.e. an orthonormal

basis in R5 in this example) is constructed by recursively updating its initial input

Ψ0 = I5×5 through local orthonormal transforms. For example, if (p, q, r)th elements in
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s are selected to be merged, then we extract the corresponding (p, q, r)th columns of

Ψ⊤ and update them through the matrix multiplication with Λ used in that merge.

Therefore, the first orthonormal transform performed in (4.25) updates the initial

matrix Ψ⊤
0 by multiplying Λ to the corresponding (3, 4, 5)th columns of Ψ⊤

0 which

returns the following,

Ψ⊤ =



1 0 0 0 0

0 1 0 0 0

0 0 ℓ1,1 ℓ2,1 a

0 0 ℓ1,2 ℓ2,2 b

0 0 ℓ1,3 ℓ2,3 c


. (4.27)

The 5th column of Ψ⊤ is now fixed (not going to be updated again) as it corresponds to

the detail coefficient but other four columns corresponding to the smooth coefficients

in s would be updated as the merging continues.

Second merge. Suppose that (X2, s
1
3,4,5, s

2
3,4,5) are selected to be merged next

under the “two together” rule. Then we need to find the following orthonormal

transform matrix,

Λ∗ =


ℓ∗

1,1 ℓ∗
1,2 ℓ∗

1,3

ℓ∗
2,1 ℓ∗

2,2 ℓ∗
2,3

a∗ b∗ c∗

 =


ℓ∗

1
⊤

ℓ∗
2

⊤

h∗⊤

 , (4.28)

where its elements would be different from those in (4.24). The detail filter h∗⊤ =

(a∗, b∗, c∗) is constructed from the corresponding weight vectors, wc
2:4 = (1, ec1 , ec2)⊤

and wl
2:4 = (2, el1 , el2)⊤, by satisfying the conditions (1) h∗⊤wc

2:4 = 0, (2) h∗⊤wl
2:4 = 0

and (3) h∗⊤h∗ = 1. The detail filter is a weight vector designed for indicating the

strength of linearity in (X2, X3, X4, X5) as (ec1 , ec2) and (el1 , el2) already contain the

information of three raw observations (X3, X4, X5). Then, two low filters, ℓ∗
1 and ℓ∗

2, are
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obtained by satisfying the conditions, ℓ∗
1

⊤h∗ = 0, ℓ∗
2

⊤h∗ = 0, ℓ∗
1

⊤ℓ∗
2 = 0 and Λ∗⊤Λ∗ = I.

Now the data sequence and the weight vectors are updated as follows,

s = (X1, X2, s
1
3,5, s

2
3,5, d3,4,5) → s = (X1, s

1
2,5, s

2
2,5, d2,2,5, d3,4,5),

wc = (1, 1, ec1 , ec2 , 0)⊤ → wc = (1, e∗
c1 , e

∗
c2 , 0, 0)⊤, (4.29)

wl = (1, 2, el1 , el2 , 0)⊤ → wl = (1, e∗
l1 , e

∗
l2 , 0, 0)⊤,

and Ψ⊤ is also updated into

Ψ⊤ =



1 0 0 0 0

0 ℓ∗
1,1 ℓ∗

2,1 a∗ 0

0

0

0

ℓ∗
1,2ℓ1 + ℓ∗

1,3ℓ2



ℓ∗
2,2ℓ1 + ℓ∗

2,3ℓ2



b∗ℓ1 + c∗ℓ2


a

b

c


.

(4.30)

At this scale, the 4th column of Ψ⊤ is fixed. This corresponds to the Type 2 basis

vector in (4.41) whose non-zero subregion is composed of a single point (a∗) and a

linear trend (b∗ℓ1 + c∗ℓ2).

Importantly, the orthonormal transform at this scale is performed in a way of

returning an orthonormal basis of the expanded subspace e.g. 2nd and 3rd columns

of (4.30) (which are referred to as ℓ∗∗
1 and ℓ∗∗

2 in (4.31)) are obtained as an arbitrary

orthonormal basis of the subspace {(w, x, y, z) | w − x = x− y = y − z} of R4. This is

due to the semi-orthogonality of the transformation matrix Π in (4.31) which extends

the dimension from R3 to R4 but preserves the fact that (ℓ∗
1, ℓ

∗
2) and (ℓ∗∗

1 , ℓ
∗∗
2 ) form

an arbitrary orthonormal basis of the corresponding subspaces. This guarantees the
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properties, ℓ∗∗
1

⊤ℓ∗∗
2 = 0 and ℓ∗∗

1
⊤ℓ∗∗

1 = ℓ∗∗
2

⊤ℓ∗∗
2 = 1, where

ℓ∗∗
1 =



ℓ∗
1,1ℓ∗

1,2ℓ1 + ℓ∗
1,3ℓ2




=



1 0 0

0

0

0

ℓ1



ℓ2






ℓ∗

1,1

ℓ∗
1,2

ℓ∗
1,3

 = Π


ℓ∗

1,1

ℓ∗
1,2

ℓ∗
1,3

 ,

ℓ∗∗
2 =



ℓ∗
2,1ℓ∗

2,2ℓ1 + ℓ∗
2,3ℓ2




=



1 0 0

0

0

0

ℓ1



ℓ2






ℓ∗

2,1

ℓ∗
2,2

ℓ∗
2,3

 = Π


ℓ∗

2,1

ℓ∗
2,2

ℓ∗
2,3

 , (4.31)

and Π is obtained from the 2nd to 4th columns of (4.27) and the selected rows correspond

to the indices of smooth coefficients associated in the orthonormal transformation in

(4.28).

As is in (4.26), now the extended subregions of the original weight vectors, wc
0,2:5

and wl
0,2:5, can also be presented as a linear combination of ℓ∗∗

1 and ℓ∗∗
2 as follows:

wc
0,2:5 = e∗

c1ℓ
∗∗
1 + e∗

c2ℓ
∗∗
2 , wl

0,2:5 = e∗
l1ℓ

∗∗
1 + e∗

l2ℓ
∗∗
2 , (4.32)

where ℓ∗∗
1 and ℓ∗∗

2 form an orthonormal basis of the subspace {(w, x, y, z) | w − x =

x− y = y− z} of R4. This can be simply shown by 1) expressing the weight vectors as

a linear combination of two low filters,

wc
2:4 = (1, ec1 , ec2)⊤ = e∗

c1ℓ
∗
1 + e∗

c2ℓ
∗
2,

wl
2:4 = (2, el1 , el2)⊤ = e∗

l1ℓ
∗
1 + e∗

l2ℓ
∗
2,

(4.33)
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and 2) performing the matrix multiplication with Π in (4.31) to both sides of (4.33),

LHS : Πwc
2:4 = (1, ec1ℓ1 + ec2ℓ2)⊤ = (1, 1, 1, 1)⊤ = wc

0,2:5, RHS : e∗
c1ℓ

∗∗
1 + e∗

c2ℓ
∗∗
2 ,

LHS : Πwl
2:4 = (2, el1ℓ1 + el2ℓ2)⊤ = (2, 3, 4, 5)⊤ = wl

0,2:5, RHS : e∗
l1ℓ

∗∗
1 + e∗

l2ℓ
∗∗
2 .

(4.34)

Last merge. In the same manner, after the last orthonormal transform is applied

to (X1, s
1
2,5, s

2
2,5), we end up with the finalised Ψ⊤ in which an orthonormal basis of the

subspace {(v, w, x, y, z) | v − w = w − x = x − y = y − z} of R5 is shown in its first

and second columns where these two columns correspond to two basis vectors, ψ(0,1)

and ψ(0,2), in (4.20). Regardless of the length of data (T ), the first two columns of the

finalised Ψ⊤ build two smooth coefficients (s1
1,T , s

2
1,T ) and always keep a linear trend

with length T , while the shape of other columns of Ψ⊤ corresponding to the detail

coefficients depends on the type of merge and follows one of the forms in (4.41).

As shown above, the non-uniqueness of the low filters has no effect on preserving

the linearity of the subregions that are already merged. In simulation studies, we

empirically found that the choice of low filters has no qualitative effect on the results

as long as they are chosen by satisfying the orthonormality condition of the transform,

thus we used a fixed type of function for choosing a set of low filters rather than

choosing an arbitrary set of low filters that satisfies the orthonormal condition every

run which also saves the computational costs.

4.3 Theoretical results

We study the l2 consistency of f̃ and ˜̃f , and the change-point detection consistency of

f̂ , where the estimators are defined in Section 4.2. The l2 risk of an estimator f̃ is

defined as
∥∥∥f̃ − f

∥∥∥2

T
= T−1∑T

i=1(f̃i − fi)2, where f is the underlying signal as in (4.1).
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We note the true change-points {ηi, i = 1, . . . , N} are such that,

ft = θℓ,1 + θℓ,2 t for t ∈ [ηℓ−1 + 1, ηℓ], ℓ = 1, . . . , N + 1

where fηℓ
+ θℓ,2 ̸= fηℓ+1 for ℓ = 1, . . . , N.

(4.35)

This definition permits both continuous and discontinuous changes and if fηi
is a

point anomaly, there exist two consecutive change-points at ηi − 1 and ηi where

ηi−1 = ηi − 1. The consistency of the estimated number and locations of the change-

points is established under the following conditions.

Assumption 4.1 σ2 = Var(εt) = 1 in model (4.1).

Assumption 4.2 Let the threshold take the form of λ = C1{2 log(T )}1/2 with a

constant C1 large enough.

In Assumption 4.1, σ is assumed to be known for simplicity as it is a nuisance

parameter. If it is unknown, we can plug in the Median Absolute Deviation estimator

(Hampel, 1974) that will be formulated later in Section 4.4.1 and this does not affect

the validity of our theory. However, here we assume σ = 1 for notational convenience

which is standard in the literature.

Assumption 4.2 is established on Assumption 4.1 where the generalised form of

the threshold is λ = C1σ{2 log(T )}1/2. The optimal value of the constant C1 for the

practical application of TrendSegment procedure will be specified in Section 4.4.1.

Regarding the degree of dependence on Gaussianity, the normality assumption plays

an important role in Lemma 4.1 in Section 4.6 in that the tail bound for standard

normal distribution is associated with the size of the threshold λ in Assumption 4.2. It

is reasonable to consider the case when the i.i.d Gaussian assumption on εt is extended

to dependent or heavy-tailed noise, which we do not pursue in this section but an

extension to dependent noise will be explored in Chapter 5.
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We firstly investigate the l2 behaviour of f̃ . The proofs of Theorems 4.1-4.3 can be

found in Section 4.6.

Theorem 4.1 Xt follows model (4.1) and f̃ is the estimator in (4.17). Then under

Assumptions 4.1-4.2, we have

∥f̃ − f∥2
T ≤ C2

1
1
T

log(T )
{

4 + 8N
⌈
log(T )/ log

(
(1 − ρ)−1

)
+ log(2)/ log(1 − ρ)

⌉ }
,

(4.36)

with probability approaching 1 as T → ∞ and the piecewise-linear estimator f̃ contains

Ñ ≤ CN log(T ) change-points where C is a constant and ρ ∈ (0, 1) is a constant which

controls the greediness level of the TGUW transformation.

Thus, f̃ is l2 consistent if N = O(1). The crucial mechanism of l2 consistency is the

“tail-greediness” which allows up to K(j) ≥ 1 smooth coefficients to be removed at each

scale j. In other words, if we proceed in a greedy way, i.e. we only merge one triplet at

each scale of the TGUW transformation, then l2 consistency is generally unachievable

as the largest number of scales J is not bounded above by
⌈
log(T )/ log

(
(1 − ρ)−1

)
+

log(2)/ log(1 −ρ)
⌉

in (4.36). Thus, in simulations and data application, we merge more

than one triplet in a single pass over the data and the details can be found in Section

4.4.1.

We now move onto the estimator ˜̃f obtained in the first stage of post-processing.

Theorem 4.2 Xt follows model (4.1) and ˜̃f is the estimator in (4.19). Then under

Assumptions 4.1-4.2, we have
∥∥∥ ˜̃f − f

∥∥∥2

T
= O

(
NT−1 log2(T )

)
with probability ap-

proaching 1 as T → ∞ and there exist at most two estimated change-points between

each pair of true change-points (ηi, ηi+1) for i = 0, . . . , N , where η0 = 0 and ηN+1 = T .

Therefore ˜̃N ≤ 2(N + 1).
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We see that ˜̃f is l2 consistent, but inconsistent for the number of change-points. For the

consistency of the estimated number and locations of the change-points, we consider

the following conditions.

Assumption 4.3 The number of true change-points, N , is finite.

Assumption 4.4 Let ∆T = minℓ=1,...,N

{(
¯
f ℓ

T

)2/3
· δℓ

T

}
where

¯
f ℓ

T = min
(∣∣∣fηℓ+1 − 2fηℓ

+

fηℓ−1

∣∣∣, ∣∣∣fηℓ+2 − 2fηℓ+1 + fηℓ

∣∣∣) and δℓ
T = min

(∣∣∣ηℓ − ηℓ−1

∣∣∣, ∣∣∣ηℓ+1 − ηℓ

∣∣∣). Assume that

T 1/3R
1/3
T = o

(
∆T

)
where

∥∥∥ ˜̃f − f
∥∥∥2

T
= Op

(
RT

)
is as in Theorem 4.2.

Assumption 4.3 controls the number of true change-points, which is often used (see e.g.

Dalalyan et al. (2017), Fryzlewicz (2018b)) and sometimes called the “strong sparsity”

case, in contrast to the “weak sparsity” case, in which the total variation of the true

signal is controlled. Assumption 4.4 quantifies the difficulty of detecting a change-point

in terms of distance from its neighbouring change-points and size of the change in

linear trend.

Now we investigate the final estimators, f̂ and N̂ .

Theorem 4.3 Xt follows model (4.1) and (f̂ , N̂) are the estimators obtained in

Section 4.2.5. Then under Assumptions 4.1-4.4, we have

P
(
N̂ = N, max

ℓ=1,...,N

{
|η̂ℓ − ηℓ| ·

(
¯
f ℓ

T

)2/3
}

≤ CT 1/3R
1/3
T

)
→ 1, (4.37)

as T → ∞ where C is a constant.

Our theory indicates that in the case in which minℓ
¯
f ℓ

T is bounded away from zero,

the consistent estimation of the number and locations of change-point is achieved by

assuming T 1/3R
1/3
T = o(δT ) where δT = minℓ=1,...,N+1 |ηℓ − ηℓ−1|. In addition, when

point anomalies exist in the set of true change-points, a point anomaly ηk and its

neighbouring change-point ηk−1 = ηk − 1 can be detected exactly at their true locations

only if the corresponding
¯
f ℓ

T s satisfy the condition min
(
¯
fk

T ,¯
fk−1

T

)
& log(T ).
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4.4 Simulation study

4.4.1 Parameter choice

Choice of the “tail-greediness” parameter. As introduced in Section 4.2.2,

ρ ∈ (0, 1) is a constant which controls the greediness level of the TGUW transformation

in the sense that it decides how many merges are performed in a single pass over

the data. A large ρ can reduce the computational cost but it makes the procedure

less adaptive, whereas a small ρ gives the opposite effect. Based on our empirical

experience, the best performance is achieved in the range ρ ∈ (0, 0.05] and we use

ρ = 0.04 as a default in the simulation study and data analyses.

Choice of threshold λ. Motivated by Theorem 4.1, we use the threshold of the

form λ = Cσ(2 log T )1/2 and estimate σ using the Median Absolute Deviation (MAD)

estimator (Hampel, 1974) defined as σ̂ = Median(|X1 −2X2 +X3|, . . . , |XT −2 −2XT −1 +

XT |)/(Φ−1(3/4)
√

6) where Φ−1 is the quantile function of the Gaussian distribution.

We use C = 1.3 as a default as it empirically led to the best performance over the

range C ∈ [1, 1.4]. As we can find a threshold which corresponds to a specific candidate

model produced by TrendSegment, in practice, the user can set the threshold in a way

of finding the best model (i.e. best for their goal from their point of view), from all

possible candidate models. We illustrate how the choice of the threshold affects the

estimated change-points in Section 4.5.1 with Iceland temperature data.

Choice of the parameter for balancedness. As our wavelet basis is unbal-

anced, we define the parameter B balancing the estimated change-points which makes

η̃i to be survived from thresholding only when the following condition is satisfied,

B <
η̃i+1 − η̃i

η̃i+1 − η̃i−1
< 1 − B, where i = 1, . . . , Ñ and B ∈ [0, 1/2), (4.38)
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with the convention η̃0 = 0 and η̃Ñ+1 = T . In the remainder of the chapter, we use

B = 0 as a default as it allows the TrendSegment procedure to detect both point

anomalies and change-points in linear trend at once. Someone who is interested only

in detecting (relatively long) linear trends without point anomalies can control this

balancing parameter in the R package trendsegmentR as some extent of balancing

can improve the accuracy of estimating the number of change-points.

4.4.2 Simulation settings

We consider i.i.d. Gaussian noise and simulate data from model (4.1) using 8 signals,

(M1) wave1, (M2) wave2, (M3) mix1, (M4) mix2, (M5) mix3, (M6) lin.sgmts, (M7)

teeth and (M8) lin, shown in Figure 4.4. (M1) is continuous at change-points, while

(M2) has discontinuities. (M3) has a mix of continuous and discontinuous change-points

and contains both constant and linear segments, whereas (M4) is of the same type

but also contains two point anomalies. In addition, (M5) has two particularly short

segments. (M6) contains isolated spike-type short segments. (M7) is piecewise-constant,

and (M8) is a linear signal without change-points. We note that the simulation results

under dependent or heavy-tailed errors are also presented and the signals and R code

for all simulations can be downloaded from our GitHub repository (Maeng, 2019a).

4.4.3 Competing methods and estimators

We perform the TrendSegment procedure based on the parameter choice in Section 4.4.1

and compare the performance with that of the following competitors: Narrowest-Over-

Threshold detection (NOT, Baranowski et al. (2019)) implemented in the R package

not from CRAN, Isolate-Detect (ID, Anastasiou and Fryzlewicz (2019)) available

in the R package IDetect, trend filtering (TF, Kim et al. (2009)) available from

https://github.com/glmgen/genlasso, Continuous-piecewise-linear Pruned Optimal

https://github.com/glmgen/genlasso
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Fig. 4.4 Examples of data with its underlying signal studied in Section 4.4. (a)-(h)
data series Xt (light grey) and true signal ft (black).

Partitioning (CPOP, Maidstone et al. (2017a)) available from https://www.maths.

lancs.ac.uk/~fearnhea/Publications.html and a bottom-up algorithm based on the

residual sum of squares (RSS) from a linear fit (BUP, Keogh et al. (2004)). The

TrendSegment methodology is implemented in the R package trendsegmentR.

As BUP requires a pre-specified number of change-points or a well-chosen stopping

criterion which can vary depending on the data, we include it in the simulation study

with the stopping criterion optimised for the best performance using the knowledge of

the truth but do not include it in data applications. We are aware that the methods

of Spiriti et al. (2013) and Bai and Perron (2003) implemented in the R packages

https://www.maths.lancs.ac.uk/~fearnhea/Publications.html
https://www.maths.lancs.ac.uk/~fearnhea/Publications.html
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freeknotsplines and strucchange can be added in a list of competing methods

however, these are excluded as we have found them to be particularly slow. For

instance, the minimum segment size in strucchange can be adjusted to be small as

long as it is greater than or equal to 3 for detecting linear trend changes. This cannot

capture point anomalies but is suitable for detecting very short segments (e.g in (M6)

lin.sgmts). However, this setting is accompanied by extremely heavy computation:

with this minimum segment size in place, a single signal simulated from (M6) took us

over three hours to process on a standard PC.

Out of the competing methods tested, ID, TF and CPOP are in principle able to

classify two consecutive time point as change-points, and therefore they are able to

detect point anomalies. NOT and BUP are not designed to detect point anomalies

as their minimum distance between two consecutive change-points is restricted to be

at least two. For NOT, we use the contrast function for not necessarily continuous

piecewise-linear signals. Regarding the tuning parameters for the competing methods,

we follow the recommendation of each respective paper or the corresponding R package.

4.4.4 Results

The summary of the results for all models and methods can be found in Tables 4.2 and

4.3. We run 100 simulations and as a measure of the accuracy of estimators, we use

Monte-Carlo estimates of the Mean Squared Error of the estimated signal defined as

MSE=E{(1/T )∑T
t=1(ft − f̂t)2}. The empirical distribution of N̂ −N is also reported

where N̂ is the estimated number of change-points and N is the true one. In addition

to this, for comparing the accuracy of the locations of the estimated change-points η̂i,

we show estimates of the scaled Hausdorff distance given by

dH = 1
T
Emax

{
max

i
min

j

∣∣∣ηi − η̂j

∣∣∣, max
j

min
i

∣∣∣η̂j − ηi

∣∣∣} (4.39)
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where i = 0, . . . , N + 1 and j = 0, . . . , N̂ + 1 with the convention η0 = η̂0 = 0, ηN+1 =

η̂N+1 = T and η̂ and η denote estimated and true locations of the change-points. The

smaller the Hausdorff distance, the better the estimation of the change-point locations.

For each method, the average computation time in seconds is shown.

The results for (M1) and (M2) are similar. TrendSegment shows comparable

performance to NOT, ID and CPOP in terms of the estimation of the number of

change-points while it is less attractive in terms of the estimated locations of change-

points. TF tends to overestimate the number of change-points throughout all models.

When the signal is a mix of constant and linear trends as in (M3), TrendSegment, NOT

and ID still perform well in terms of the estimation of the number of change-points while

CPOP tends to overestimate. We see that TrendSegment has a particular advantage

over the other methods especially in (M4) and (M5), when point anomalies exist or

in the case of frequent change-points. TrendSegment shows its relative robustness

in estimating the number and the location of change-points while ID and CPOP

significantly underperform and NOT completely ignores the point anomalies as expected.

(M6) is another example where only TrendSegment shows a good performance. For the

estimation of the piecewise-constant signal (M7), no methods show good performances

and NOT, ID and TrendSegment tend to underestimate the number of change-points

while CPOP and TF overestimate. In the case of the no-change-point signal (M8),

all methods estimate well except TF. In summary, TrendSegment is never among the

worst methods, is almost always among the best ones, and is particularly attractive for

signals with point anomalies or short segments. With respect to computation time,

NOT and ID are very fast in all cases, TrendSegment is slower than these two but is

faster than TF, CPOP and BUP, especially when the length of the time series is larger

than 2000.
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Table 4.2 Distribution of N̂ − N for models (M1)-(M4) and all methods listed in
Sections 4.4.1 and 4.4.3 with i.i.d. Gaussian noise over 100 simulation runs. Also
the average MSE (Mean Squared Error) of the estimated signal f̂t defined in Section
4.4.4, the average Hausdorff distance dH given by (4.39) and the average computational
time in seconds using an Intel Core i5 2.9 GHz CPU with 8 GB of RAM, all over 100
simulations. Bold: methods within 10% of the highest empirical frequency of N̂−N = 0
or within 10% of the lowest empirical average dH(×102). Note that TrendSegment is
shortened to TS.

N̂ −N

Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

TS 0 0 0 99 1 0 0 0.044 2.79 1.12
NOT 0 0 0 99 1 0 0 0.034 2.09 0.29

ID 0 0 0 99 1 0 0 0.029 1.45 0.22
TF 0 0 0 0 0 0 100 0.016 4.29 36.30

CPOP 0 0 0 99 1 0 0 0.014 0.78 8.55
BUP 0 1 18 81 0 0 0 0.069 3.88 2.62

(M2)

TS 0 0 2 98 0 0 0 0.109 1.90 1.06
NOT 0 0 2 98 0 0 0 0.092 1.56 0.35

ID 0 0 0 94 6 0 0 0.089 1.44 0.23
TF 0 0 0 0 0 0 100 0.065 2.31 31.34

CPOP 0 0 0 93 7 0 0 0.065 1.15 2.09
BUP 100 0 0 0 0 0 0 0.752 4.69 2.21

(M3)

TS 0 0 1 97 2 0 0 0.032 3.23 1.47
NOT 0 0 0 100 0 0 0 0.020 2.35 0.36

ID 0 0 1 94 5 0 0 0.047 2.37 0.33
TF 0 0 0 0 0 0 100 0.023 5.87 45.31

CPOP 0 0 0 61 32 6 1 0.024 2.34 21.11
BUP 0 0 0 3 18 47 32 0.041 5.41 3.50

(M4)

TS 0 0 5 76 18 1 0 0.030 1.81 1.48
NOT 0 100 0 0 0 0 0 0.066 2.10 0.33

ID 0 11 52 35 2 0 0 0.163 1.83 0.30
TF 0 0 0 0 0 0 100 0.080 6.10 44.78

CPOP 0 0 2 22 45 27 4 0.025 1.60 7.79
BUP 0 0 8 31 45 13 3 0.092 5.30 3.62
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Table 4.3 Distribution of N̂ − N for models (M5)-(M8) and all methods listed in
Sections 4.4.1 and 4.4.3 with i.i.d. Gaussian noise over 100 simulation runs. Also
the average MSE (Mean Squared Error) of the estimated signal f̂t defined in Section
4.4.4, the average Hausdorff distance dH given by (4.39) and the average computational
time in seconds using an Intel Core i5 2.9 GHz CPU with 8 GB of RAM, all over 100
simulations. Bold: methods within 10% of the highest empirical frequency of N̂−N = 0
or within 10% of the lowest empirical average dH(×102). Note that TrendSegment is
shortened to TS.

N̂ −N

Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M5)

TS 0 0 1 71 24 4 0 0.031 1.42 1.49
NOT 0 0 99 1 0 0 0 0.040 1.20 0.29

ID 0 0 1 2 14 32 51 0.277 8.28 0.30
TF 0 0 0 0 0 0 100 0.116 6.17 43.13

CPOP 0 0 0 11 22 39 28 0.023 1.41 5.12
BUP 0 0 10 45 37 7 1 0.090 4.78 3.64

(M6)

TS 0 0 0 96 4 0 0 0.013 0.05 1.65
NOT 63 22 4 2 3 0 6 0.240 15.51 0.28

ID 3 16 0 9 44 1 27 0.151 16.37 0.37
TF 0 0 0 0 0 0 100 0.134 10.98 48.19

CPOP 0 0 0 20 41 24 15 0.034 0.13 5.11
BUP 0 0 0 0 0 0 100 0.135 10.17 4.00

(M7)

TS 0 5 21 40 28 6 0 0.119 7.02 0.65
NOT 1 1 8 56 31 3 0 0.065 2.62 0.25

ID 3 0 16 14 26 13 28 0.320 10.87 0.12
TF 0 0 0 0 0 0 100 0.097 6.11 23.19

CPOP 0 0 1 1 3 17 78 0.055 3.37 1.19
BUP 70 25 5 0 0 0 0 0.277 11.89 1.58

(M8)

TS 0 0 0 100 0 0 0 0.001 0.00 1.01
NOT 0 0 0 100 0 0 0 0.001 0.00 0.17

ID 0 0 0 100 0 0 0 0.001 0.00 0.59
TF 0 0 0 78 5 2 15 0.002 9.08 35.79

CPOP 0 0 0 100 0 0 0 0.001 0.00 12.96
BUP 0 0 0 0 0 0 100 0.011 46.34 2.63
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Table 4.4 Distribution of N̂ − N for models (M1)-(M4) and all methods listed in
Sections 4.4.1 and 4.4.3 with the noise term εt being AR(1) process of φ = 0.3 over 100
simulation runs. Also the average MSE (Mean Squared Error) of the estimated signal
f̂t, the average Hausdorff distance dH and the average computational time in seconds
using an Intel Core i5 2.9 GHz CPU with 8 GB of RAM, all over 100 simulations. Bold:
methods within 10% of the highest empirical frequency of N̂ −N = 0 or within 10% of
the lowest empirical average dH(×102). Note that TrendSegment is shortened to TS.

N̂ −N

Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

TS 0 0 4 93 3 0 0 0.081 3.58 1.27
NOT 0 0 0 91 9 0 0 0.072 2.95 0.26

ID 0 0 0 82 14 4 0 0.067 2.65 0.38
TF 0 0 0 0 0 0 100 0.532 5.00 36.61

CPOP 0 0 0 7 15 6 72 0.080 3.69 4.95
BUP 0 0 8 86 6 0 0 0.077 3.66 2.75

(M2)

TS 1 6 23 69 1 0 0 0.195 2.44 1.12
NOT 0 0 8 83 6 2 1 0.182 2.11 0.31

ID 0 0 0 69 24 5 2 0.155 1.75 0.40
TF 0 0 0 0 0 0 100 0.600 2.38 32.03

CPOP 0 0 0 1 6 8 85 0.163 1.98 1.50
BUP 100 0 0 0 0 0 0 0.717 4.63 2.39

(M3)

TS 0 1 5 88 6 0 0 0.052 4.16 1.56
NOT 0 0 0 89 7 4 0 0.042 3.40 0.31

ID 0 0 3 77 16 3 1 0.064 3.12 0.50
TF 0 0 0 0 0 0 100 0.259 6.24 44.94

CPOP 0 0 0 1 4 10 85 0.068 4.67 9.57
BUP 0 0 0 0 3 18 79 0.056 5.57 3.56

(M4)

TS 0 6 23 53 18 0 0 0.058 2.41 1.53
NOT 0 93 6 1 0 0 0 0.086 2.91 0.31

ID 2 6 30 49 10 2 1 0.165 2.99 0.48
TF 0 0 0 0 0 0 100 0.218 6.22 45.99

CPOP 0 0 0 1 3 9 87 0.066 4.02 5.40
BUP 0 0 0 11 35 37 17 0.109 5.64 3.77
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Table 4.5 Distribution of N̂ − N for models (M5)-(M8) and all methods listed in
Sections 4.4.1 and 4.4.3 with the noise term εt being AR(1) process of φ = 0.3 over 100
simulation runs. Also the average MSE (Mean Squared Error) of the estimated signal
f̂t, the average Hausdorff distance dH and the average computational time in seconds
using an Intel Core i5 2.9 GHz CPU with 8 GB of RAM, all over 100 simulations. Bold:
methods within 10% of the highest empirical frequency of N̂ −N = 0 or within 10% of
the lowest empirical average dH(×102). Note that TrendSegment is shortened to TS.

N̂ −N

Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M5)

TS 0 0 19 54 21 6 0 0.055 1.87 1.54
NOT 0 0 91 6 3 0 0 0.060 1.94 0.28

ID 0 0 9 23 23 18 27 0.402 9.47 0.46
TF 0 0 0 0 0 0 100 0.182 6.21 42.65

CPOP 0 0 0 0 2 4 94 0.068 3.70 4.08
BUP 0 0 0 15 37 32 16 0.112 5.25 3.53

(M6)

TS 0 0 0 98 2 0 0 0.018 0.06 1.70
NOT 68 9 10 4 1 3 5 0.257 21.63 0.25

ID 20 10 0 0 11 0 59 0.164 12.83 0.63
TF 0 0 0 0 0 0 100 0.332 11.04 47.43

CPOP 0 0 0 5 11 17 67 0.056 4.86 5.31
BUP 0 0 0 0 0 0 100 0.170 10.18 3.95

(M7)

TS 11 38 31 15 3 2 0 0.217 11.52 0.68
NOT 5 12 19 24 22 7 11 0.158 7.69 0.24

ID 32 1 18 26 14 5 4 0.511 17.54 0.03
TF 3 0 0 0 0 0 97 0.623 7.01 23.25

CPOP 0 0 0 0 0 1 99 0.162 5.27 0.85
BUP 54 43 3 0 0 0 0 0.283 11.92 1.55

(M8)

TS 0 0 0 100 0 0 0 0.003 0.00 1.09
NOT 0 0 0 93 3 3 1 0.005 2.02 0.19

ID 0 0 0 100 0 0 0 0.003 0.00 0.51
TF 0 0 0 0 0 0 100 0.551 49.94 35.81

CPOP 0 0 0 30 10 3 57 0.035 19.71 7.55
BUP 0 0 0 0 0 0 100 0.025 46.73 2.72
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Table 4.6 Distribution of N̂ − N for models (M1)-(M4) and all methods listed in
Sections 4.4.1 and 4.4.3 with the noise term εt being i.i.d. t5 over 100 simulation runs.
Also the average MSE (Mean Squared Error) of the estimated signal f̂t, the average
Hausdorff distance dH and the average computational time in seconds using an Intel
Core i5 2.9 GHz CPU with 8 GB of RAM, all over 100 simulations. Bold: methods
within 10% of the highest empirical frequency of N̂ − N = 0 or within 10% of the
lowest empirical average dH(×102). Note that TrendSegment is shortened to TS.

N̂ −N

Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

TS 0 0 3 55 32 5 5 0.083 3.41 1.09
NOT 0 0 0 98 2 0 0 0.037 2.21 0.26

ID 0 0 0 85 10 4 1 0.036 1.87 0.29
TF 0 0 0 0 0 0 100 0.017 4.36 36.49

CPOP 0 0 0 21 20 20 39 0.064 2.28 5.69
BUP 0 4 13 78 5 0 0 0.071 3.84 2.62

(M2)

TS 0 3 11 70 10 5 1 0.164 2.18 1.03
NOT 0 0 3 85 11 0 1 0.098 1.69 0.29

ID 0 0 0 77 21 2 0 0.102 1.36 0.38
TF 0 0 0 0 0 0 100 0.067 2.29 31.41

CPOP 0 0 0 14 23 25 38 0.119 1.54 1.66
BUP 100 0 0 0 0 0 0 0.752 4.69 2.18

(M3)

TS 0 1 11 41 25 10 12 0.073 4.90 1.44
NOT 0 0 0 96 3 1 0 0.021 2.54 0.31

ID 0 0 1 73 19 3 4 0.053 2.72 0.44
TF 0 0 0 0 0 0 100 0.024 5.92 46.35

CPOP 0 0 0 9 10 11 70 0.065 3.57 11.71
BUP 0 0 0 1 21 40 38 0.043 5.44 3.52

(M4)

TS 0 3 14 34 23 16 10 0.075 3.10 1.46
NOT 0 97 3 0 0 0 0 0.066 2.45 0.28

ID 1 12 22 48 10 3 4 0.159 2.42 0.42
TF 0 0 0 0 0 0 100 0.081 6.06 45.74

CPOP 0 0 0 4 4 15 77 0.062 3.37 5.15
BUP 0 2 7 28 47 12 4 0.095 5.30 3.56
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Table 4.7 Distribution of N̂ − N for models (M5)-(M8) and all methods listed in
Sections 4.4.1 and 4.4.3 with the noise term εt being i.i.d. t5 over 100 simulation runs.
Also the average MSE (Mean Squared Error) of the estimated signal f̂t, the average
Hausdorff distance dH and the average computational time in seconds using an Intel
Core i5 2.9 GHz CPU with 8 GB of RAM, all over 100 simulations. Bold: methods
within 10% of the highest empirical frequency of N̂ − N = 0 or within 10% of the
lowest empirical average dH(×102). Note that TrendSegment is shortened to TS.

N̂ −N

Model Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M5)

TS 0 0 9 40 19 21 11 0.069 2.72 1.49
NOT 0 0 95 4 1 0 0 0.042 1.29 0.26

ID 0 0 1 16 24 23 36 0.372 9.86 0.43
TF 0 0 0 0 0 0 100 0.118 6.15 43.23

CPOP 0 0 0 3 8 12 77 0.060 2.97 3.55
BUP 0 0 10 40 43 6 1 0.083 4.76 3.51

(M6)

TS 0 0 0 46 2 39 13 0.035 3.16 1.66
NOT 54 21 4 8 5 1 7 0.244 17.30 0.23

ID 8 8 0 0 6 0 78 0.125 6.99 0.62
TF 0 0 0 0 0 0 100 0.138 10.99 48.53

CPOP 0 0 0 9 11 17 63 0.059 4.68 3.48
BUP 0 0 0 0 0 0 100 0.145 10.27 3.92

(M7)

TS 14 28 32 14 8 4 0 0.204 11.21 0.65
NOT 0 6 16 30 36 11 1 0.079 5.12 0.22

ID 14 8 12 17 24 13 12 0.421 16.22 0.04
TF 0 0 0 0 0 0 100 0.098 6.08 23.86

CPOP 0 0 0 0 4 5 91 0.102 3.01 0.81
BUP 69 28 3 0 0 0 0 0.266 12.12 1.47

(M8)

TS 0 0 0 49 0 43 8 0.030 14.86 1.01
NOT 0 0 0 100 0 0 0 0.001 0.00 0.17

ID 0 0 0 99 1 0 0 0.001 0.00 0.45
TF 0 0 0 65 12 9 14 0.003 14.63 36.03

CPOP 0 0 0 35 0 34 31 0.042 20.53 3.91
BUP 0 0 0 0 0 0 100 0.014 46.80 2.62



4.5 Data applications 138

In addition to the simulation results with i.i.d. Gaussian noise, we present the

results with two different distributions of the noise, (a) εt follows a stationary Gaussian

AR(1) process of φ = 0.3, with zero-mean and unit-variance and (b) εt ∼ i.i.d. scaled

t5 distribution with unit-variance, where the summary of the results for all models

and methods can be found in Tables 4.4-4.7. We use C = 1.8 as a default for the

thresholding constant of TrendSegment. Among other competitors, only ID provides

the option for heavy-tailed noise in their R package IDetect and other methods are

set to their default settings. TrendSegment appears to be relatively useful under a

heavy-tailed or dependent noise especially when the underlying signal contains point

anomalies or short segments.

4.5 Data applications

4.5.1 Average January temperatures in Iceland

We analyse a land temperature dataset available from http://berkeleyearth.org, con-

sisting of average temperatures in January recorded in Reykjavik recorded from 1763

to 2013. Figure 4.5a shows the data; the point corresponding to 1918 appears to be a

point anomaly, where this aspect is commented earlier in Section 4.1.

The TrendSegment estimate of the piecewise-linear trend is shown in Figure 4.5b.

It identifies 2 change-points, 1917 and 1918, where the temperature in 1918 is fitted as

a single point as it is much lower than in other years. Figures 4.5c and 4.5d show that

NOT and CPOP detect a change of slope in 1974, ID returns an increasing function

with no change-points and TF reports 6 points with the most recent one in 1981, but

none of them detects the point anomaly.

Out of the competing methods, all except NOT are in principle able to detect

changes in linear trend and point anomalies at the same time. We examine whether any

http://berkeleyearth.org


4.5 Data applications 139

1800 1850 1900 1950 2000

−
1

0
−

8
−

6
−

4
−

2

year

(a) data

1800 1850 1900 1950 2000

−
1

0
−

8
−

6
−

4
−

2

year

obs
TrendSegment

(b) TrendSegment

1800 1850 1900 1950 2000

−
1

0
−

8
−

6
−

4
−

2

year

NOT
ID

(c) NOT and ID

1800 1850 1900 1950 2000

−
1

0
−

8
−

6
−

4
−

2

year

TF
CPOP

(d) TF and CPOP

Fig. 4.5 Change-point analysis for January average temperature in Reykjavik from
1763 to 2013 in Section 4.5.1. (a) the data series, (b) the data series (grey dots) and
estimated signal with change-points returned by TrendSegment( ), (c) estimated
signal with change-points returned by NOT ( ) and ID ( ), (d) estimated signal
with change-points returned by TF ( ) and CPOP ( ).

of our competing methods can estimate the 1918 observation as a single point by varying

their tuning parameters; TF selects the optimal tuning parameter by minimising k-fold

CV, thus we use a number of different values for k, but fail in finding an estimated

fit that includes a point anomaly in 1918. ID requires a choice of constant for the

threshold in a similar way that we need to choose an appropriate constant for the

threshold. However, the number of estimated change-points increase suddenly (rather

than gradually) with decreasing constant C̃ in the threshold λID = C̃σ̂(2 log T )1/2.

Figure 4.6 shows that ID reports no change-points when C̃ ∈ [0.335, 1.4], but suddenly

detects so many change-points (including a single point in 1918) when C̃ decreases

by 0.005 from C̃ = 0.335 to C̃ = 0.330. CPOP requires a choice of a parameter

which penalises the number of estimated change-points (i.e. β in (2.27)), where the
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Fig. 4.6 Change-point analysis for January average temperature in Reykjavik from
1763 to 2013 in Section 4.5.1. (a) the data series (grey dots) and estimated signal
with change-points returned by ID ( ) when 0.335 ≤ C̃ ≤ 1.4 is used for the
threshold λID = C̃σ̂(2 log T )1/2, (b) when C̃ = 0.330 is used for the threshold λID =
C̃σ̂(2 log T )1/2.

default is given as the Schwarz’s Information Criterion (SIC, Schwarz (1978)) (i.e.

β = 2 log(n) = 11.07 in this data example). We can control the value of β through the

R function CROPS.CPOP, and Figure 4.7 shows the results under two different values

of β; CPOP does not fit the 1918 observation as a single point when β = 7.5 but does

so when β = 5.5.
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Fig. 4.7 Change-point analysis for January average temperature in Reykjavik from
1763 to 2013 in Section 4.5.1. (a) the data series (grey dots) and estimated signal with
change-points returned by CPOP ( ) when β = 7.5 is used, (b) when β = 5.5 is
used.

To see how the choice of the threshold in the TrendSegment procedure affects the

estimated change-points, we engage two different constants, C = 1.5 and C = 1.0,
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for the threshold (λ = Cσ(2 log T )1/2) introduced in Section 4.4.1, where the default,

C = 1.3, is used in Figure 4.5b. Figure 4.8 shows that the threshold with C = 1.5

returns no change-points while that with C = 1.0 detects one more change in 1974

compared to the estimated change-points when the default value (C = 1.3) is used.

Interestingly, the added change-point, 1974, is the one reported by NOT and CPOP

under their default parameter settings as shown in Figure 4.5.

This example illustrates the flexibility of the TrendSegment as it detects not only

change-points in linear trend but it can identify a point anomaly at the same time,

which the competing methods do not achieve under their default parameter settings.
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Fig. 4.8 Change-point analysis for January average temperature in Reykjavik from
1763 to 2013 in Section 4.5.1. (a) the data series (grey dots) and estimated signal with
change-points returned by TrendSegment( ) when C = 1.5 is used for the threshold
λ = Cσ̂(2 log T )1/2, (b) when C = 1.0 is used for the threshold λ = Cσ̂(2 log T )1/2.

4.5.2 Monthly average sea ice extent of Arctic and Antarctic

We analyse the average sea ice extent of the Arctic and the Antarctic available from

https://nsidc.org to estimate the change-points in its trend. As mentioned in Serreze

and Meier (2018), sea ice extent is the most common measure for assessing the feature

of high-latitude oceans and it is defined as the area covered with an ice concentration

of at least 15%. Here we use the average ice extent in February and September as it is

https://nsidc.org
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known that the Arctic has the maximum ice extent typically in February while the

minimum occurs in September and the Antarctic does the opposite.

Serreze and Meier (2018) indicate that the clear decreasing trend of sea ice extent

of the Arctic in September is one of the most important indicators of climate change.

In contrast to the Arctic, the sea ice extent of the Antarctic has been known to be

stable in the sense that it shows a weak increasing trend in the decades preceding 2016

(Comiso et al., 2017; Serreze and Meier, 2018). However, Rintoul et al. (2018) warn

of a possible collapse of the past stability by citing a significant decline of the sea ice

extent in 2016. We now use the most up-to-date records (to 2018) and re-examine the

concerns expressed in Rintoul et al. (2018) with the help of our change-point detection

methodology.

Figures 4.9 and 4.10 show the well-known decreasing trend of the average sea ice

extent in the Arctic both in its winter (February) and summer (September). In Figure

4.9, the TrendSegment estimate identifies change-points in 2004 and 2007 and detects

a sudden drop during 2005-2007 which is also captured by TF and CPOP but ignored

by NOT and ID. In Figure 4.10, TrendSegment and CPOP identify one change-point

in 2006 which differentiates the decreasing speed of winter ice extent in the Arctic

before and after 2006. The NOT estimate identifies two change-points where ID return

a simple linear fit without any change-point.

As observed in the above-mentioned literature, the sea ice extent of the Antarctic

shows a modest increasing trend up until recently (Figures 4.11 and 4.12); however, we

observe a strong decreasing trend from the TrendSegment estimate with the detected

change-point in 2016 for the Antarctic summer (February) and from 2015 for the

Antarctic winter (September), which is in line with the message of Rintoul et al. (2018).

Figure 4.11 shows that other methods also fit a strong decreasing trend by identifying
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a change-point around 2014 in February of the Antarctic and Figure 4.12 shows similar

results except that NOT returns no change-point.

The CAPA methodology proposed by Fisch et al. (2018) for detecting point anoma-

lies and anomalous segments in terms of the model parameters (mean and variance)

identifies one change-point in 2001 for ice extent of the Antarctic in February and report

that both mean and variance increase after 2001. However, it has to be borne in mind

that this methodology is designed for piecewise-constant, rather than piecewise-linear

fits (whereas the data suggest that the latter may be more appropriate).

4.6 Proofs

4.6.1 Some useful lemmas

In this section, the proofs of Theorems 4.1-4.3 are given. We first present two prepara-

tory lemmas.

Lemma 4.1 Let ψ(j,k) = ∑I(j,k)

i=1 φ
(j,k)
i g

(j,k)
i where φ

(j,k)
i are constants and g

(j,k)
i are

vectors of equal length with ψ(j,k) where I(j,k) ∈ {3, 4}, j = 1, . . . , J, k = 1, . . . , K(j).

If we define the set G = {gl} where there is a unique correspondence between{
g

(j,k)
i i=1,...,I(j,k),j=1,...,J, k=1,...,K(j)

}
and {gl}, we then have P (AT ) ≥ 1 − C2T

−1 where

AT =
{

max
gl∈G

|g⊤
l ε| ≤ λ

}
, (4.40)

λ is as in Assumption 4.2 and C2 is a positive constant.

Proof. We firstly show that for any fixed (j, k), g(j,k)
i and φ

(j,k)
i satisfy the con-

ditions,
(
g

(j,k)
i

)⊤
g

(j,k)
i = 1,

(
g

(j,k)
i

)⊤
g

(j,k)
i′ = 0 and ∑

i

(
φ

(j,k)
i

)2
= 1, where ψ(j,k) =
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Fig. 4.9 Change-point analysis for the monthly average sea ice extent of the Arctic in
February from 1979 to 2018 in Section 4.5.2. (a) the data series (grey dots) and the
estimated signal with change-points returned by TrendSegment ( ), (b) by NOT
( ) and ID ( ), (c) by TF ( ) and CPOP ( ).
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Fig. 4.10 Change-point analysis for the monthly average sea ice extent of the Arctic in
September from 1979 to 2018 in Section 4.5.2. (a) the data series (grey dots) and the
estimated signal with change-points returned by TrendSegment ( ), (b) by NOT
( ) and ID ( ), (c) by TF ( ) and CPOP ( ).
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Fig. 4.11 Change-point analysis for the monthly average sea ice extent of the Antarctic
in February from 1979 to 2018 in Section 4.5.2. (a) the data series (grey dots) and the
estimated signal with change-points returned by TrendSegment ( ), (b) by NOT
( ) and ID ( ), (c) by TF ( ) and CPOP ( ).
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Fig. 4.12 Change-point analysis for the monthly average sea ice extent of the Antarctic
in September from 1979 to 2018 in Section 4.5.2. (a) the data series (grey dots) and
the estimated signal with change-points returned by TrendSegment ( ), (b) by NOT
( ) and ID ( ), (c) by TF ( ) and CPOP ( ).
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∑I(j,k)

i=1 φ
(j,k)
i g

(j,k)
i . Depending on the type of merge, ψ(j,k) fall into one of the followings,

Type 1: ψ(j,k)
p,q,r = α1ep + α2ep+1 + α3ep+2,

Type 2: ψ(j,k)
p,q,r = β1ep + β2(0, . . . , 0︸ ︷︷ ︸

p×1

, ℓ⊤
1,p+1,r, 0, . . . , 0︸ ︷︷ ︸

(T −r)×1

) + β3(0, . . . , 0︸ ︷︷ ︸
p×1

, ℓ⊤
2,p+1,r, 0, . . . , 0︸ ︷︷ ︸

(T −r)×1

),

ψ(j,k)
p,q,r = β4(0, . . . , 0︸ ︷︷ ︸

(p−1)×1

, ℓ⊤
1,p,r−1, 0, . . . , 0︸ ︷︷ ︸

(T −r+1)×1

) + β5(0, . . . , 0︸ ︷︷ ︸
(p−1)×1

, ℓ⊤
2,p,r−1, 0, . . . , 0︸ ︷︷ ︸

(T −r+1)×1

) + β6er,

Type 3: ψ(j,k)
p,q,r = γ1(0, . . . , 0︸ ︷︷ ︸

(p−1)×1

, ℓ⊤
1,p,q, 0, . . . , 0︸ ︷︷ ︸

(T −q)×1

) + γ2(0, . . . , 0︸ ︷︷ ︸
(p−1)×1

, ℓ⊤
2,p,q, 0, . . . , 0︸ ︷︷ ︸

(T −q)×1

)

+ γ3(0, . . . , 0︸ ︷︷ ︸
q×1

, ℓ⊤
1,q+1,r, 0, . . . , 0︸ ︷︷ ︸

(T −r)×1

) + γ4(0, . . . , 0︸ ︷︷ ︸
q×1

, ℓ⊤
2,q+1,r, 0, . . . , 0︸ ︷︷ ︸

(T −r)×1

),

(4.41)

where ei is a vector of length T having 1 only at ith element and zero for the others.

As is shown in Section 4.2.6, ℓ1,i,j and ℓ2,i,j are an arbitrary orthonormal basis of the

subspace {(x1, x2, . . . , xj−i+1) | x1 − x2 = x2 − x3 = · · · = xj−i − xj−i+1} of Rj−i+1.

In any case, we can obtain the representation ψ(j,k) = ∑I(j,k)

i=1 φ
(j,k)
i g

(j,k)
i from (4.41)

if the constants φ(j,k)
i correspond to {αi}3

i=1 in Type 1, {βi}3
i=1 or {βi}6

i=4 in Type 2 and

{γi}4
i=1 in Type 3 and g(j,k)

i is the corresponding vector. From the orthonormality of the

basis (ℓ1,m,n, ℓ2,m,n) for any (m,n), we see that the conditions,
(
g

(j,k)
i

)⊤
g

(j,k)
i = 1 and(

g
(j,k)
i

)⊤
g

(j,k)
i′ = 0, are satisfied for any (i, i′, j, k) where i ̸= i′. In addition, as ψ(j,k) keep

orthonormality, we can argue that φ(j,k)
i is bounded by the condition ∑i

(
φ

(j,k)
i

)2
= 1

for any (i, j, k) which implies ∑3
i=1 α

2
i = ∑3

i=1 β
2
i = ∑6

i=4 β
2
i = ∑4

i=1 γ
2
i = 1 in (4.41).

If we predefine the pairs (ℓ1,m,n, ℓ2,m,n) for any (m,n) by choosing an orthonormal

basis of the subspace {(x1, x2, . . . , xn−m+1) | x1 −x2 = x2 −x3 = · · · = xn−m −xn−m+1}

of Rn−m+1, then there exist at most T 2 vectors gl in the set G. This is because m and

n can be randomly chosen from {1, 2, . . . , T} with replacement and if m ̸= n, the two

drawn pairs, (m,n) and (n,m), correspond to the same basis vectors, (ℓ1,m,n, ℓ2,m,n),
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while (m,m) correspond to one vector em. Now we are in position to show that

P (AT ) ≥ 1 − C2T
−1. Using a simple Bonferroni inequality, we have

1 − P (AT ) ≤
∑
G

P (|Z| > λ) ≤ 2T 2φZ(λ)
λ

= 1
C1

√
πTC2

1 −2√log T
≤ C2

T
(4.42)

where φZ is the p.d.f. of a standard normal Z,

P (|Z| > λ) = 2 1√
2π

∫ ∞

λ
e−x2/2dx ≤ 2 1√

2π

∫ ∞

λ

x

λ
e−x2/2dx = 2e

−λ2/2

λ
√

2π
(4.43)

and
φZ(λ)
λ

=
1√
2π
e−C2

1 log T

C1
√

2 log T = 1
2C1

√
π · TC2

1
√

log T
. (4.44)

This completes the proof.

Lemma 4.2 Let S1
j = {1 ≤ k ≤ K(j) : d(j,k) is dp,q,r such that p < ηi + 1/2 < r for

some i = 1, . . . , N }, and S0
j = {1, . . . , K(j)} \ S1

j . On the set AT in (4.40) which

satisfies P (AT ) → 1 as T → ∞, we have

max
j=1,...,J,

k∈S0
j

∣∣∣d(j,k)
∣∣∣ ≤ λ, (4.45)

where λ is as in Assumption 4.2.

Proof. On the set AT , the following holds for j = 1, . . . , J, k ∈ S0
j ,

∣∣∣d(j,k)
∣∣∣ =

∣∣∣(ψ(j,k))⊤ε
∣∣∣

=
∣∣∣∣φ(j,k)

1

(
g

(j,k)
1

)⊤
ε+ φ

(j,k)
2

(
g

(j,k)
2

)⊤
ε+ φ

(j,k)
3

(
g

(j,k)
3

)⊤
ε+ φ

(j,k)
4

(
g

(j,k)
4

)⊤
ε

∣∣∣∣
≤ max

j, k

(∣∣∣φ(j,k)
1

∣∣∣+ ∣∣∣φ(j,k)
2

∣∣∣+ ∣∣∣φ(j,k)
3

∣∣∣+ ∣∣∣φ(j,k)
4

∣∣∣) ·
(

max
l: gl∈G

∣∣∣g⊤
l ε
∣∣∣),
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where ε = (ε1, . . . , εT )⊤. The condition, ∑i

(
φ

(j,k)
i

)2
= 1 for any fixed (j, k), given in

the proof of Lemma 4.1 implies that maxi

∣∣∣φ(j,k)
i

∣∣∣ ≤ 1 for any (j, k), thus we have (4.45)

when the constant C1 for λ in (4.45) is larger than or equal to 4 times C1 used in

(4.40).

4.6.2 Proof of Theorems 4.1 - 4.3

Proof of Theorem 4.1 Let S1
j and S0

j as in Lemma 4.2. From the conditional

orthonormality of the unbalanced wavelet transform, on the set AT in (4.40), we have

∥f̃ − f∥2
T = 1

T

J∑
j=1

K(j)∑
k=1

(
d(j,k) · I

{
∃(j′, k′) ∈ Cj,k |d(j′,k′)| > λ

}
− µ(j,k)

)2

+ T−1
(
s1

1,T − µ(0,1)
)2

+ T−1
(
s2

1,T − µ(0,2)
)2

≤ 1
T

J∑
j=1

 ∑
k∈S0

j

+
∑

k∈S1
j

(d(j,k) · I
{

∃(j′, k′) ∈ Cj,k |d(j′,k′)| > λ
}

− µ(j,k)
)2

+ 4C2
1T

−1 log T

=: I + II + 4C2
1T

−1 log T, (4.46)

where µ(0,1) = ⟨f , ψ(0,1)⟩ and µ(0,2) = ⟨f , ψ(0,2)⟩. We note that
(
s1

1,T − µ(0,1)
)2

≤

2C2
1 log T is simply obtained by combining Lemma 4.2 and the fact that s1

1,T − µ(0,1) =

⟨ε, ψ(0,1)⟩, which can also be applied to obtain
(
s2

1,T − µ(0,2)
)2

≤ 2C2
1 log T . By Lemma

4.2, I
{

∃(j′, k′) ∈ Cj,k |d(j′,k′)| > λ
}

= 0 for k ∈ S0
j and also by the fact that

µ(j,k) = 0 for j = 1, . . . , J, k ∈ S0
j , we have I = 0. For II , we denote B =

{
∃(j′, k′) ∈
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Cj,k |d(j′,k′)| > λ
}

and have

(
d(j,k) · I{B} − µ(j,k)

)2
=
(
d(j,k) · I{B} − d(j,k) + d(j,k) − µ(j,k)

)2

≤
(
d(j,k)

)2
I
(∣∣∣d(j′,k′)

∣∣∣ ≤ λ for all (j′, k′) ∈ Cj,k

)
+
(
d(j,k) − µ(j,k)

)2

+ 2
∣∣∣d(j,k)

∣∣∣ I(∣∣∣d(j′,k′)
∣∣∣ ≤ λ for all (j′, k′) ∈ Cj,k

) ∣∣∣d(j,k) − µ(j,k)
∣∣∣

≤ λ2 + 2C2
1 log T + 2λC1{2 log T}1/2. (4.47)

Combining with the upper bound of J , ⌈log(T )/ log((1 − ρ)−1) + log(2)/ log(1 −

ρ)⌉, and the fact that |S1
j | ≤ N , we have II ≤ 8C2

1NT
−1⌈log(T )/ log((1 − ρ)−1) +

log(2)/ log(1 − ρ)⌉ log T , and therefore

∥f̃ − f∥2
T ≤ C2

1 T
−1 log(T )

{
4 + 8N ⌈log(T )/ log((1 − ρ)−1) + log(2)/ log(1 − ρ)⌉

}
.

(4.48)

As the estimated change-points are obtained through those detail coefficients, thus

at each scale, up to N estimated change-points are added. Combining it with the

largest scale J whose order is log T , the number of change-points in f̃ returned from

the inverse TGUW transformation is up to CN log T where C is a constant.

Proof of Theorem 4.2 Let B̃ and ˜̃B the unbalanced wavelet basis corresponding to

f̃ and ˜̃f , respectively. As the change-points in ˜̃f are a subset of those in f̃ , establishing
˜̃f can be considered as applying the TGUW transform again to f̃ which is just a

repetition of procedure done in estimating f̃ in the greediest way. Thus ˜̃B is classified

into two categories, 1) all basis vectors ψ(j,k) ∈ B̃ such that ψ(j,k) is not associated with

the change-points in f̃ and |⟨X, ψ(j,k)⟩| = |d(j,k)| < λ and 2) all vectors ψ(j,1) produced

in Stage 1 of post-processing.

We now investigate how many scales are used for this particular transform. First,

the detail coefficients d(j,k) corresponding to the basis vectors ψ(j,k) ∈ B̃ live on no
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more than J = O(log T ) scales and we have |S1
j | ≤ N by the argument used in the

proof of Theorem 4.1. In addition, the vectors ψ(j,1) in the second category correspond

to different change-points in f̃ and there exist at most Ñ = O(N log T ) change-points

in f̃ which we examine one at once (i.e. |S1
j | ≤ 1), thus at most Ñ scales are required

for d(j,1). Combining the results of two categories, the equivalent of quantity II in the

proof of Theorem 4.1 for ˜̃f is bounded by II ≤ C3NT
−1 log2 T and this completes the

proof of the l2 result,
∥∥∥ ˜̃f − f

∥∥∥2

T
= O

(
NT−1 log2(T )

)
where C3 is a positive constant

large enough.

Finally, we show that there exist at most two change-points in ˜̃f between true

change-points (ηℓ, ηℓ+1) for ℓ = 0, . . . , N where η0 = 0 and ηN+1 = T . Consider the

case where three change-point for instance (˜̃ηl, ˜̃ηl+1, ˜̃ηl+2) lie between a pair of true

change-point, (ηℓ, ηℓ+1). In this case, by Lemma 4.2, the maximum magnitude of two

detail coefficients computed from the adjacent intervals, [˜̃ηl +1, ˜̃ηl+1] and [˜̃ηl+1 +1, ˜̃ηl+2],

is less than λ and ˜̃ηl+1 would be get removed from the set of estimated change-points.

This satisfies ˜̃N ≤ 2(N + 1).

Proof of Theorem 4.3 From Assumption 4.4, the followings hold.

• Given any ϵ > 0 and C > 0, for some T1 and all T > T1, it holds that

P
(∥∥∥ ˜̃f − f

∥∥∥2

T
> C3

4 RT

)
≤ ϵ where ˜̃f is the estimated signal specified in Theorem

4.2.

• For some T2, and all T > T2, it holds that C1/3T 1/3R
1/3
T (

¯
f ℓ

T )−2/3 < δℓ
T for all

ℓ = 1, . . . , N .

Following the argument used in the proof of Theorem 19 in Lin et al. (2016), we

take T ≥ T ∗ where T ∗ = max{T1, T2} and let rℓ,T = ⌊C1/3T 1/3R
1/3
T (

¯
f ℓ

T )−2/3⌋ for

ℓ = 1, . . . , N . Suppose that there exist at least one ηℓ whose closest estimated change-

point is not within the distance of rℓ,T . Then there are no estimated change-points in
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˜̃f within rℓ,T of ηℓ which means that ˜̃fj displays a linear trend over the entire segment

j ∈ {ηℓ − rℓ,T , . . . , ηℓ + rℓ,T }. Hence

1
T

ηℓ+rℓ,T∑
j=ηℓ−rℓ,T

( ˜̃fj − fj

)2
≥

13r3
ℓ,T

24T
(
¯
f ℓ

T

)2
>
C3

4 RT . (4.49)

The first inequality holds by Lemma 20 of Lin et al. (2016), and the second one holds

by the definition of rℓ,T . Assuming that at least one ηℓ does not have an estimated

change-point within the distance of rℓ,T implies that the estimation error exceeds C3

4 RT

which is a contradiction as it is an event that we know occurs with probability at most

ϵ. Therefore, there must exist at least one estimated change-point within the distance

of rℓ,T from each true change point ηℓ.

Throughout Stage 2 of post-processing, ˜̃ηℓ0 is either the closest estimated change-

point of any ηℓ or not. If ˜̃ηℓ0 is not the closest estimated change-point to the nearest

true change-point on either its left or its right, by the construction of detail coefficients

in Stage 2 of post-processing, Lemma 4.2 guarantees that the corresponding detail

coefficient has the magnitude less than λ and ˜̃ηℓ0 gets removed. Suppose ˜̃ηℓ0 is the

closest estimated change-point of a true change-point ηℓ and it is within the distance of

CT 1/3R
1/3
T

(
¯
f ℓ

T

)−2/3
from ηℓ. If the corresponding detail coefficient has the magnitude

less than λ and ˜̃ηℓ0 is removed, there must exist another ˜̃ηℓ within the distance of

CT 1/3R
1/3
T

(
¯
f ℓ

T

)−2/3
from ηℓ. If there are no such ˜̃ηℓ, then by the construction of the detail

coefficient, the order of magnitude of
∣∣∣dpℓ0 ,qℓ0 ,rℓ0

∣∣∣ would be such that
∣∣∣dpℓ0 ,qℓ0 ,rℓ0

∣∣∣ > λ thus

˜̃ηℓ0 would not get removed. Therefore, after Stage 2 of post-processing is finished, each

true change-point ηℓ has its unique estimator within the distance of CT 1/3R
1/3
T

(
¯
f ℓ

T

)−2/3
.



Chapter 5

Trend Segmentation for

high-dimensional panel data

5.1 Introduction

In this chapter, we consider one panel of n univariate data sequences where the

dimension n and the length of data sequences T may be large and the dimension is

comparable with, or even larger than the length of data sequences. We propose the

change-point model for high-dimensional panel data,

Xi,t = fi,t + εi,t, i = 1, . . . , n, t = 1, . . . , T (5.1)

where f i = (fi,1, . . . , fi,T )⊤ is the underlying signal vector of the observation X i =

(Xi,1, . . . , Xi,T )⊤. For each i, εi = (εi,1, . . . , εi,T )⊤ is the independent Gaussian random

error with the conditions that E(εi) = 0, Var(εi) = σ2
i . The errors can be dependent

across the panel. Including this case, in Section 5.3, we explore two other cases, 1)

when the errors have temporal dependence and 2) when the cross-sectional dependence

is captured through a specific structure.
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We assume that the signal vectors {f i}n
i=1 share N distinct change-points,

0 = η0 < η1 < η2 < . . . < ηN < ηN+1 = T, (5.2)

in that at each change-point ηℓ, there exists at least one signal f i in which the trend

change occurs at fi,ηℓ
. For each change-point ηℓ, the change can occur in a dense subset

of the coordinates (e.g. all coordinates {f i}i=1,...,n) or only in a sparse subset of the

coordinates, where the sparsity is formulated later in Section 5.2.1. The signal vectors,

{f i}n
i=1, are assumed to have a form of either piecewise-constant or piecewise-linear

between any adjacent change-points, ηℓ and ηℓ+1. The piecewise-linear signal does not

need to be continuous at change-points and this will be formulated later in Section

5.2.1. The value of N is unknown and can grow with n and T .

We introduce a new methodology invented for multiple trend change detection in

high-dimensional panel data which we refer to as High-dimensional Trend Segmentation

(HiTS) in this chapter. HiTS performs well for a set of signals with long trend

segments or frequent change-points with short segments or a mix of those. Besides,

it is designed to work well in a particular setting where only a sparse subset of

coordinates have changes in trend. The main ingredient of the HiTS procedure is a

new High-dimensional Tail-Greedy Unbalanced Wavelet (HiTGUW) transform that

is a conditionally orthonormal, bottom-up transform for high-dimensional panel data

through an adaptively constructed unbalanced wavelet basis. The HiTGUW transform

is an extension of the TGUW transform introduced in Chapter 4 for a univariate

data sequence into high-dimensional settings. As in the case of TGUW, the HiTGUW

transform is also achieved in a data-driven way in that a wavelet basis is constructed

through recursively aggregating the information of all coordinates. In Section 5.3, the

HiTS algorithm is shown to be statistically consistent in estimating the number and

the locations of change-points and in Sections 5.4 and 5.5, we show that HiTS provides
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a good performance not only in the case where the changes in trend occur in most of

the coordinates but also when only a sparse subset of data sequences undergoes the

changes. Other benefits of the HiTS procedure include low computational cost and

ease of implementation.

Change-point analysis for high-dimensional time series has recently received much

attention in the literature. Many of the existing works study the case when {f i}n
i=1

in (5.1) are modelled as piecewise-constant and a review of the relevant literature

can be found in Section 2.3.3. This is an important applied problem in a variety of

fields, for example when we have a land temperature dataset that consists of average

temperatures recorded in 50 cities of South Africa for 157 years as shown in Figure

5.1, our interest is in detecting and locating change-points in time that are shared by

50 cities in the way we define in (5.2) and if any change-point is detected, it is also

of interest to find cities in which the estimated change-point is truly located. Both

directions are explored in Section 5.5.1. Importantly, the temperature curves in Figure

5.1 appear to have cross-sectional dependence in that all curves tend to move together

depending on years. The asymptotic behaviour of the estimated change-points under

cross-sectional dependence is explored in Section 5.3.

The other commonly-encountered signals in practice include the piecewise-linear

structure. Investigating common changes in piecewise-linear panel data is an important

task as the simplest model designed for detecting level changes cannot give any useful

information when the underlying signal has a form of piecewise-linear or when the

interest is in detecting change-points in slope. Despite the simplicity of the concept,

to the best of our knowledge, detecting multiple change-points in linear trend for

high-dimensional panel data has not previously been studied. The HiTS algorithm

introduces a new way of detecting multiple change-points in both piecewise-constant and

piecewise-linear trends, which can in principle be extended to higher-order polynomials,
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Fig. 5.1 January average temperature curves of 50 cities in South Africa from 1857 to
2013.

but we do not pursue in this work. In Section 5.5.2, the usefulness of the HiTS

algorithm in detecting multiple changes in linear trend is illustrated through a climate

data that consists of monthly average sea ice extent of Arctic and Antarctic.

Considering the previous works for detecting multiple change-points for high-

dimensional panel data, many of them are heavily inspired by Binary Segmentation

(BS, Vostrikova (1981)) and its variants e.g. wild binary segmentation (Fryzlewicz,

2014). However, as shown in Maeng and Fryzlewicz (2019) and Fryzlewicz (2018b) under

the univariate data setting, the top-down (i.e. divisive) approaches such as BS often

fail to perform adequately in the case of multiple change-points whereas the bottom-up

(i.e. agglomerative) procedure which recursively merges the neighbouring regions of

the data performs better. The current work extends the bottom-up procedures studied



5.2 Methodology 158

in Fryzlewicz (2018b) and Maeng and Fryzlewicz (2019) to the problem of detecting

changes in mean and in slope (respectively) in high-dimensional panel data. However,

we emphasise that the HiTS procedure has entirely different goals from those two

methods designed for univariate data sequences. The HiTS algorithm focuses on the

aggregation of the adaptively-obtained statistics from the high-dimensional panel data

where the details will be specified later in Section 5.2.3. Importantly, the aggregation

is designed to work well in the extremely sparse case when a very small number of

coordinates change at some change-points. As will be shown in Section 5.4, HiTS works

substantially better than existing competitors in estimating multiple change-points

when the signal is cross-sectionally extremely sparse and/or when long, short or a mix

of those trend segments exist.

The outline of the remainder of this chapter is as follows. In Section 5.2, we give a

full description of the HiTS procedure under two scenarios and Section 5.3 presents the

relevant theoretical results under various assumptions on the errors. The supporting

numerical studies are given in Section 5.4 and the usefulness of our methodology is

illustrated in Section 5.5 through South Africa temperature data and sea ice extent

data. The proofs of our main theoretical results are in Section 5.6.

5.2 Methodology

5.2.1 Settings

The following two commonly-encountered scenarios are investigated in this work.

(S1) Piecewise-constant structure:

fi,t = θi,ℓ for t ∈ [ηℓ−1 + 1, ηℓ], ℓ = 1, . . . , N + 1, (5.3)

where ∃ Ωℓ =
{
i :
∣∣∣fi,ηℓ+1 − fi,ηℓ

∣∣∣ ̸= 0
}

⊂
{
1, . . . , n

}
such that Ωℓ ̸= ∅ for ℓ = 1, . . . , N.
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(S2) Piecewise-linear structure:

fi,t = θ1
i,ℓ + θ2

i,ℓ t for t ∈ [ηℓ−1 + 1, ηℓ], ℓ = 1, . . . , N + 1, (5.4)

where ∃ Ωℓ =
{
i : fi,ηℓ

+ θ2
i,ℓ ̸= fi,ηℓ+1

}
⊂
{
1, . . . , n

}
such that Ωℓ ̸= ∅ for ℓ = 1, . . . , N.

We note that fi,t is the underlying signal in model (5.1). The definition of (S2) permits

both continuous and discontinuous changes.

5.2.2 Structure of HiTS

The skeleton of the HiTS procedure for estimating the number and the locations of

change-points is similar to that of TrendSegment in Chapter 4 and consists of the

following four steps.

1. HiTGUW transformation. Perform the HiTGUW transform to the input data

matrix by recursively applying the conditionally orthonormal transformations

to the same local regions of all vectors X1, . . . ,Xn in a bottom-up way. This is

an unbalanced adaptive wavelet transformation and produces a data-adaptive

multiscale decomposition of the data matrix with detail-type coefficients of

the dimension n × (T − 1) and smooth coefficients of the dimension n × 1 in

scenario (S1), and with detail-type coefficients of the dimension n× (T − 2) and

smooth coefficients of the dimension n× 2 in scenario (S2). The novelty of this

transformation comes from the way of aggregating detail-type coefficients that

decide which regions should be merged first. The details can be found in Section

5.2.3.

2. Thresholding. Aggregate the detail coefficients coordinate-wisely. If the magni-

tude of the (aggregated) detail coefficients is smaller than a pre-specified threshold

then set to zero those of corresponding (non-aggregated) detail coefficients as
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long as all the non-zero (aggregated) detail coefficients are connected to each

other in the tree structure which shows the merging history. This step de-

cides the significance of the sparse representation suggested in the HiTGUW

transformation.

3. Inverse HiTGUW transformation. Carry out the inverse HiTGUW transformation

with the thresholded coefficients in step 2 and this gives initial estimates of

f 1, . . . ,fn that can be shown to be l2-consistent, but not yet consistent for the

number and the locations of change-points.

4. Post-processing. Perform the two stages of post-processing by removing some

change-points shown to be spurious. This step enables us to achieve estimation

consistency for the number and the locations of change-points.

In the following four sections, we describe each step above in order for both scenarios

(S1) and (S2) given in (5.3) and (5.4), respectively.

5.2.3 HiTGUW transformation

In this section, we describe the HiTGUW transformation in detail. We first provide

a simple example of the HiTGUW transformation in each scenario to help readers

understand the entire procedures at a glance and then formulate the HiTGUW transfor-

mation in generality in each scenario. In the initial stage, the input data is considered

smooth coefficients and the HiTGUW transform iteratively updates the sequences

of smooth coefficients by merging the adjacent sections of the data which are most

likely to belong to the same segment in terms of the polynomial trend of interest. We

emphasise that at each merge, the same sections of the coordinates are merged at

once and those sections are chosen by aggregating the features of all coordinates. The

following examples show single merges at each pass through the data, but we will later

generalise it to multiple passes through the data, which speed up computation where
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the device is called “tail-greediness” as is in Chapter 4. We refer to jth pass through the

data as scale j. We note that mergings performed in scenario (S1) have no particular

type but merges in scenario (S2) can be classified into one of three forms, Type 1, 2

and 3, where Type 2 and 3 merges are built under the “two together” rule introduced

in Section 4.2.2. The notation for the following examples and for the general algorithm

introduced later is in Table 5.1.

Table 5.1 Notation. See Section 5.2.3 for formulae for the terms listed.

X i = (Xi,1, . . . , Xi,T ) ith data sequence.
S data sequence matrix of the dimension n× T containing

the (recursively updated) smooth and detail coefficients
from the initial input of S0.

S0
i,t the element of the matrix S0 where S0

i,t = Xi,t.
di,[p,q,r] detail coefficient obtained from {Xi,p, . . . , Xi,r} (all

merges in scenario (S1) and merges of Types 1 or 2
in scenario (S2)).

d1
i,[p,q,r], d

2
i,[p,q,r] paired detail coefficients obtained by merging two adja-

cent subintervals, {Xi,p, . . . , Xi,q} and {Xi,q+1, . . . , Xi,r},
where r > q + 2 and q > p + 1 (merge of Type 3 in
scenario (S2)).

si,[p,r] smooth coefficients obtained from {Xi,p, . . . , Xi,r} in sce-
nario (S1).

s1
i,[p,r], s

2
i,[p,r] smooth coefficients obtained from {Xi,p, . . . , Xi,r}, paired

under the “two together” rule in scenario (S2).

Example for scenario (S1)

We provide a simple example of the HiTGUW transformation in scenario (S1) where

the accompanying illustration can be found in Figure 5.2. Assume that we have the

initial input data matrix of the dimension 3 × 5,

S0 =


X1,1 X1,2 X1,3 X1,4 X1,5

X2,1 X2,2 X2,3 X2,4 X2,5

X3,1 X3,2 X3,3 X3,4 X3,5

 , (5.5)
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thus the complete algorithm consists of 4 merges.

X1,1 X1,2 X1,3 X1,4 X1,5

X2,1 X2,2 X2,3 X2,4 X2,5

X3,1 X3,2 X3,3 X3,4 X3,5

scale j = 1

X1,1 s1,[2,3] d1,[2,2,3] X1,4 X1,5

X2,1 s2,[2,3] d2,[2,2,3] X2,4 X2,5

X3,1 s3,[2,3] d3,[2,2,3] X3,4 X3,5

scale j = 2

X1,1 s1,[2,3] d1,[2,2,3] s1,[4,5] d1,[4,4,5]

X2,1 s2,[2,3] d2,[2,2,3] s2,[4,5] d2,[4,4,5]

X3,1 s3,[2,3] d3,[2,2,3] s3,[4,5] d3,[4,4,5]

scale j = 3

X1,1 s1,[2,5] d1,[2,2,3] d1,[2,3,5] d1,[4,4,5]

X2,1 s2,[2,5] d2,[2,2,3] d2,[2,3,5] d2,[4,4,5]

X3,1 s3,[2,5] d3,[2,2,3] d3,[2,3,5] d3,[4,4,5]

scale j = 4

Fig. 5.2 Construction of tree for the example of scenario (S1) in Section 5.2.3; each
diagram shows all merges performed up to the given scale.

Scale j = 1. From the initial input S0 in (5.5), we consider 4 pairs of columns,

(1st, 2nd), (2nd, 3rd), (3rd, 4th), (4th, 5th), compute the detail vector for each pair of

columns (where the formula can be found in (5.16)) and obtain the aggregated detail

coefficient for each detail vector (from the formula, d∗
[p,q,r] = maxi |di,[p,q,r]|) as follows:


X1,1 X1,2

X2,1 X2,2

X3,1 X3,2

 →


d1,[1,1,2]

d2,[1,1,2]

d3,[1,1,2]

 → d∗
[1,1,2],


X1,2 X1,3

X2,2 X2,3

X3,2 X3,3

 →


d1,[2,2,3]

d2,[2,2,3]

d3,[2,2,3]

 → d∗
[2,2,3],


X1,3 X1,4

X2,3 X2,4

X3,3 X3,4

 →


d1,[3,3,4]

d2,[3,3,4]

d3,[3,3,4]

 → d∗
[3,3,4],


X1,4 X1,5

X2,4 X2,5

X3,4 X3,5

 →


d1,[4,4,5]

d2,[4,4,5]

d3,[4,4,5]

 → d∗
[4,4,5],



5.2 Methodology 163

where the absolute values of the aggregated details are compared. Suppose that d∗
[2,2,3]

has the smallest size, then merge the corresponding pair of columns and update the

initial input matrix in (5.5) into the following data sequence matrix:

S =


X1,1 s1,[2,3] d1,[2,2,3] X1,4 X1,5

X2,1 s2,[2,3] d2,[2,2,3] X2,4 X2,5

X3,1 s3,[2,3] d3,[2,2,3] X3,4 X3,5

 . (5.6)

As will be specified later, the l∞-aggregation of the detail coefficients enables the

HiTGUW transform to provide a good performance not only when the changes occur

in most of the data sequences but also when only a sparse subset of data sequences

undergoes the changes.

Scale j = 2. From now on, we ignore any detail coefficient columns in the updated

data matrix. Then the possible pairs of neighbouring columns for next merging are:


X1,1 s1,[2,3]

X2,1 s2,[2,3]

X3,1 s3,[2,3]

 ,

s1,[2,3] X1,4

s2,[2,3] X2,4

s3,[2,3] X3,4

 ,

X1,4 X1,5

X2,4 X2,5

X3,4 X3,5

 ,

where their corresponding aggregated detail coefficients are d∗
[1,1,3], d∗

[2,3,4], d∗
[4,4,5], respec-

tively. Assume that the last pair of columns gives the smallest size of the aggregated

detail coefficient among 3 candidates, then we merge them through the orthogonal

transformation formulated in (5.18). The data matrix is now updated into

S =


X1,1 s1,[2,3] d1,[2,2,3] s1,[4,5] d1,[4,4,5]

X2,1 s2,[2,3] d2,[2,2,3] s2,[4,5] d2,[4,4,5]

X3,1 s3,[2,3] d3,[2,2,3] s3,[4,5] d3,[4,4,5]

 . (5.7)
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Scale j = 3. We now compare the following two candidates for merging,


X1,1 s1,[2,3]

X2,1 s2,[2,3]

X3,1 s3,[2,3]

 ,

s1,[2,3] s1,[4,5]

s2,[2,3] s2,[4,5]

s3,[2,3] s3,[4,5]

 .

Suppose that the second merging is preferred, then we update the data sequence into

S =


X1,1 s1,[2,5] d1,[2,2,3] d1,[2,3,5] d1,[4,4,5]

X2,1 s2,[2,5] d2,[2,2,3] d2,[2,3,5] d2,[4,4,5]

X3,1 s3,[2,5] d3,[2,2,3] d3,[2,3,5] d3,[4,4,5]

 , (5.8)

by performing an orthonormal transformation.

Scale j = 4. We have only one pair of columns available:


X1,1 s1,[2,5]

X2,1 s2,[2,5]

X3,1 s3,[2,5]

 ,

and the orthonormal transformation gives the following updated data matrix,

S =


s1,[1,5] d1,[1,1,5] d1,[2,2,3] d1,[2,3,5] d1,[4,4,5]

s2,[1,5] d2,[1,1,5] d2,[2,2,3] d2,[2,3,5] d2,[4,4,5]

s3,[1,5] d3,[1,1,5] d3,[2,2,3] d3,[2,3,5] d3,[4,4,5]

 . (5.9)

Therefore, the transformation is completed with T −1 = 4 columns of detail coefficients

and 1 column of smooth coefficients.
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Example for scenario (S2)

Unlike scenario (S1), the HiTGUW algorithm for the piecewise-linear signals in scenario

(S2) requires the high-dimensional version of the “two together” rule that forces any

paired smooth coefficient vectors returned by an orthonormal transform not to be

separated in any subsequent merges. This is a natural requirement as any such paired

smooth coefficient vectors contain information about local linear regression fits.

In addition, only in scenario (S2), as merging continues under the high-dimensional

version of the “two together” rule, all merges can have one of three forms, Type 1:

merging three initial smooth coefficient vectors, Type 2: merging one initial smooth

coefficient vector and a paired vectors of smooth coefficients and Type 3: merging

two sets of (paired) vectors of smooth coefficients which is composed of two merges of

triplets of smooth coefficient vectors. The following example demonstrates all three

possible types of merges.

We now provide a simple example of the HiTGUW transformation in scenario

(S2), which produces a tree whose structure is the same as the one constructed in the

previous example in Section 4.2.2. The length of the panel data used in this example

is also the same as that of the data sequence in Section 4.2.2, but the dimension is

different; now we consider three univariate data sequences (i.e. the dimensionality is

n = 3), while a univariate data sequence (i.e. n = 1) is considered in Section 4.2.2.

The accompanying illustration is in Figure 5.3 and the relevant notation can be found

in Table 5.1. Assume that we have the initial input matrix of the dimension 3 × 8,

S0 =


X1,1 X1,2 X1,3 X1,4 X1,5 X1,6 X1,7 X1,8

X2,1 X2,2 X2,3 X2,4 X2,5 X2,6 X2,7 X2,8

X3,1 X3,2 X3,3 X3,4 X3,5 X3,6 X3,7 X3,8

 , (5.10)
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so that the complete HiTGUW transform consists of 6 merges. We show 6 example

merges one by one under the high-dimensional “two together” rule.

Scale j = 1. From the initial input S0 in (5.10), we consider 6 triplets of columns,

(1st, 2nd, 3rd), (2nd, 3rd, 4th), (3rd, 4th, 5th), (4th, 5th, 6th), (5th, 6th, 7th), (6th, 7th, 8th), and

compute the detail vector for each triplet of columns (where the formula can be found

in (5.19)) and obtain the aggregated detail coefficient for each detail vector (from the

formula, d∗
[p,q,r] = maxi |di,[p,q,r]|) as follows:


X1,1 X1,2 X1,3

X2,1 X2,2 X2,3

X3,1 X3,2 X3,3

 →


d1,[1,2,3]

d2,[1,2,3]

d3,[1,2,3]

 → d∗
[1,2,3],


X1,2 X1,3 X1,4

X2,2 X2,3 X2,4

X3,2 X3,3 X3,4

 →


d1,[2,3,4]

d2,[2,3,4]

d3,[2,3,4]

 → d∗
[2,3,4],


X1,3 X1,4 X1,5

X2,3 X2,4 X2,5

X3,3 X3,4 X3,5

 →


d1,[3,4,5]

d2,[3,4,5]

d3,[3,4,5]

 → d∗
[3,4,5],


X1,4 X1,5 X1,6

X2,4 X2,5 X2,6

X3,4 X3,5 X3,6

 →


d1,[4,5,6]

d2,[4,5,6]

d3,[4,5,6]

 → d∗
[4,5,6],


X1,5 X1,6 X1,7

X2,5 X2,6 X2,7

X3,5 X3,6 X3,7

 →


d1,[5,6,7]

d2,[5,6,7]

d3,[5,6,7]

 → d∗
[5,6,7],


X1,6 X1,7 X1,8

X2,6 X2,7 X2,8

X3,6 X3,7 X3,8

 →


d1,[6,7,8]

d2,[6,7,8]

d3,[6,7,8]

 → d∗
[6,7,8],

where the size of the aggregated details are compared. Suppose that d∗
[2,3,4] has the

smallest size, then merge the corresponding triplet of columns and update the initial

data matrix in (5.10) into:

S =


X1,1 s1

1,[2,4] s2
1,[2,4] d1,[2,3,4] X1,5 X1,6 X1,7 X1,8

X2,1 s1
2,[2,4] s2

2,[2,4] d2,[2,3,4] X2,5 X2,6 X2,7 X2,8

X3,1 s1
3,[2,4] s2

3,[2,4] d3,[2,3,4] X3,5 X3,6 X3,7 X3,8

 . (5.11)

We categorise this transformation into Type 1 (merging three initial smooth coefficient

vectors).
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Scale j = 2. From now on, the “two together” rule is applied. Ignoring any detail

coefficient columns in the data matrix in (5.11), the possible triplets of columns for

next merging are (1st, 2nd, 3rd), (2nd, 3rd, 5th), (5th, 6th, 7th), (6th, 7th, 8th) columns. We

note that the triplet of (3rd, 5th, 6th) columns cannot be considered as a candidate for

next merging under the “two together” rule as this triplet contains only one (not both)

of the paired smooth coefficient columns returned by the previous merging. Assume

that the triplet of (5th, 6th, 7th) columns gives the smallest size of the aggregated

detail coefficient d∗
[5,6,7] among the four candidates, then we merge them through the

orthogonal transformation formulated in (5.22) and now update the data sequence

matrix into

S =


X1,1 s1

1,[2,4] s2
1,[2,4] d1,[2,3,4] s1

1,[5,7] s2
1,[5,7] d1,[5,6,7] X1,8

X2,1 s1
2,[2,4] s2

2,[2,4] d2,[2,3,4] s1
2,[5,7] s2

2,[5,7] d2,[5,6,7] X2,8

X3,1 s1
3,[2,4] s2

3,[2,4] d3,[2,3,4] s1
3,[5,7] s2

3,[5,7] d3,[5,6,7] X3,8

 . (5.12)

This transformation is also Type 1.

Scale j = 3. We now compare four candidates for merging, the triplet of

(1st, 2nd, 3rd), (2nd, 3rd, 5th), (3rd, 5th, 6th) and (5th, 6th, 8th) columns of (5.12). To obey

the “two together” rule, we should treat two triplets in middle, (s1
·,[2,4], s

2
·,[2,4], s

1
·,[5,7])

and (s2
·,[2,4], s

1
·,[5,7], s

2
·,[5,7]), together as they contain two sets of paired smooth coefficient

columns, (s1
·,[2,4], s

2
·,[2,4]) and (s1

·,[5,7], s
2
·,[5,7]), where s·

·,[p,r] = (s·
1,[p,r], s

·
2,[p,r], . . . , s

·
n,[p,r])⊤.

The summary detail coefficient vector for this pair of triplet columns is obtained as


d1,[2,4,7]

d2,[2,4,7]

d3,[2,4,7]

 =


max(|d1

1,[2,4,7]|, |d2
1,[2,4,7]|)

max(|d1
2,[2,4,7]|, |d2

2,[2,4,7]|)

max(|d1
3,[2,4,7]|, |d2

3,[2,4,7]|)

 .
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X1,1 X1,2 X1,3 X1,4 X1,5 X1,6 X1,7 X1,8

X2,1 X2,2 X2,3 X2,4 X2,5 X2,6 X2,7 X2,8

X3,1 X3,2 X3,3 X3,4 X3,5 X3,6 X3,7 X3,8

Type 1 merging
Type 2 merging
Type 3 merging

scale j = 1, 2

X1,1 s1,[2,4]
1

s1,[2,4]
2 d1,[2,3,4] s1,[5,7]

1
s1,[5,7]

2 d1,[5,6,7] X1,8

X2,1 s2,[2,4]
1

s2,[2,4]
2 d2,[2,3,4] s2,[5,7]

1
s2,[5,7]

2 d2,[5,6,7] X2,8

X3,1 s3,[2,4]
1

s3,[2,4]
2 d3,[2,3,4] s3,[5,7]

1
s3,[5,7]

2 d3,[5,6,7] X3,8

scale j = 3

s1,[1,4]
1

s1,[1,4]
2 d1,[1,1,4] d1,[2,3,4] s1,[5,7]

1
s1,[5,7]

2 d1,[5,6,7] X1,8

s2,[1,4]
1

s2,[1,4]
2 d2,[1,1,4] d2,[2,3,4] s2,[5,7]

1
s2,[5,7]

2 d2,[5,6,7] X2,8

s3,[1,4]
1

s3,[1,4]
2 d3,[1,1,4] d3,[2,3,4] s3,[5,7]

1
s3,[5,7]

2 d3,[5,6,7] X3,8

scale j = 4

s1,[1,7]
1

s1,[1,7]
2 d1,[1,1,4] d1,[2,3,4] d1,[1,4,7]

1
d1,[1,4,7]

2 d1,[5,6,7] X1,8

s2,[1,7]
1

s2,[1,7]
2 d2,[1,1,4] d2,[2,3,4] d2,[1,4,7]

1
d2,[1,4,7]

2 d2,[5,6,7] X2,8

s3,[1,7]
1

s3,[1,7]
2 d3,[1,1,4] d3,[2,3,4] d3,[1,4,7]

1
d3,[1,4,7]

2 d3,[5,6,7] X3,8

scale j = 5

Fig. 5.3 Construction of tree for the example of scenario (S2) in Section 5.2.3; each
diagram shows all merges performed up to the given scale.

The corresponding aggregated detail coefficient is obtained as d∗
[2,4,7] = maxi |di,[2,4,7]|i=1,2,3,

which is compared with those of other triplets of columns. Now suppose that the triplet

of (1st, 2nd, 3rd) columns of (5.12) has the smallest size of aggregated details; we merge

this triplet of columns and update the data sequence matrix into

S =


s1

1,[1,4] s2
1,[1,4] d1,[1,1,4] d1,[2,3,4] s1

1,[5,7] s2
1,[5,7] d1,[5,6,7] X1,8

s1
2,[1,4] s2

2,[1,4] d2,[1,1,4] d2,[2,3,4] s1
2,[5,7] s2

2,[5,7] d2,[5,6,7] X2,8

s1
3,[1,4] s2

3,[1,4] d3,[1,1,4] d3,[2,3,4] s1
3,[5,7] s2

3,[5,7] d3,[5,6,7] X3,8

 . (5.13)

This transformation is of Type 2.

Scale j = 4. We now have two pairs of paired coefficient columns: (s1
·,[1,4], s

2
·,[1,4]) and

(s1
·,[5,7], s

1
·,[5,7]) in (5.13). Therefore, with the “two together” rule in mind, the only possi-
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ble options for merging are: to merge the two pairs into (s1
·,[1,4], s

2
·,[1,4], s

1
·,[5,7], s

2
·,[5,7]), or to

merge (s1
·,[5,7], s

1
·,[5,7]) with X ·,8. Suppose that the first merging is preferred. The merge

of (s1
·,[1,4], s

2
·,[1,4]) and (s1

·,[5,7], s
2
·,[5,7]) into (s1

·,[1,4], s
2
·,[1,4], s

1
·,[5,7], s

2
·,[5,7]) is of Type 3 and is

performed in two stages as follows. In the first stage, we merge (s1
·,[1,4], s

2
·,[1,4], s

1
·,[5,7]) and

then update the data matrix temporarily as S = (s1′

·,[1,7], s
2′

·,[1,7],d·,[1,1,4],d·,[2,3,4],d
1
·,[1,4,7],

s2
·,[5,7],d·,[5,6,7],X ·,8). In the second stage, we merge (s1′

·,[1,7], s
2′

·,[1,7], s
2
·,[5,7]), which gives

the updated data sequence matrix shown at the bottom right diagram of Figure 5.3.

As an aggregated detail coefficient for this merge, we use d∗
[1,4,7] = maxi |di,[1,4,7]|i=1,2,3

where di,[1,4,7] = max(|d1
i,[1,4,7]|, |d2

i,[1,4,7]|).

Scale j = 5. The only available triplet of columns is now (s1
·,[1,7], s

2
·,[1,7],X ·,8), thus

we perform this Type 2 merge and update the data sequence matrix into

S =


s1

1,[1,8] s2
1,[1,8] d1,[1,1,4] d1,[2,3,4] d1

1,[1,4,7] d2
1,[1,4,7] d1,[5,6,7] d1,[1,7,8]

s1
2,[1,8] s2

2,[1,8] d2,[1,1,4] d2,[2,3,4] d1
2,[1,4,7] d2

2,[1,4,7] d2,[5,6,7] d2,[1,7,8]

s1
3,[1,8] s2

3,[1,8] d3,[1,1,4] d3,[2,3,4] d1
3,[1,4,7] d2

3,[1,4,7] d3,[5,6,7] d3,[1,7,8]

 . (5.14)

The transformation is completed with the updated data sequence matrix which contains

T − 2 = 6 columns of detail coefficients and 2 columns of smooth coefficients.

Discussion on the coordinate-wise aggregation of detail coefficients

Before formulating the HiTGUW transform in general, we discuss some properties of

the aggregation method used in the transformation. As shown in the two examples

above, conceptually, the difference between TrendSegment and HiTS is that we need

to aggregate n detail coefficient vectors computed from n univariate data sequences to

decide which region should be merged first in the HiTGUW transform. For this purpose,

we choose the l∞ norm and now justify this choice in detail. We recall that a detail

coefficient di,[p,q,r] is computed from a subregion {Xi,p, . . . , Xi,r} of ith data sequence and
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it represents the strength of the corresponding local polynomial trend; the smaller the

(absolute) size of the detail, the smaller the local deviation from constancy in scenario

(S1) and from linearity in scenario (S2). Therefore, the coordinate-wise pointwise

maximum (l∞-aggregation) of detail coefficient vectors, d∗
[p,q,r] = maxi=1,...,n |di,[p,q,r]|,

corresponds to a data sequence whose deviation from a local polynomial trend is the

strongest among all n univariate data sequences in a fixed subregion [p, r].

As those smooth coefficient vectors corresponding to the smallest “aggregated” detail

coefficients have priority in merging in the HiTGUW transform, using l∞-aggregation

allows us to merge the neighbouring regions whose least likely data sequence (i.e. a

data sequence corresponding to the maximum size of the detail) is more likely to

belong to the same segment in terms of a polynomial trend than the least likely data

sequence of other neighbouring regions. In other words, the l∞-aggregation of the

detail coefficients encourages the HiTGUW transform to operate in a way of delaying

the merge of regions in which at least one data sequence includes an extremely large

size of change. Therefore, as will be supported by our numerical studies in Section 5.4,

the HiTS algorithm provides a particularly better performance than other competing

methods in the extremely sparse case (i.e. when a very small number of data sequences

experiences the changes) in which other competing methods significantly underperform,

but become relatively less attractive than other methods when the changes occur in

most of the data sequences. We note that our theory in Section 5.3 is not built on a

particular assumption on the sparsity level.

Although the l∞-aggregation enables the HiTS algorithm to capture some sparse

changes well, if there exist two types of changes, 1) a sparse but large change and 2) a

dense but gentle change, the HiTS algorithm possibly misses a chance of detecting some

gentle changes occurred in most of the data sequences. This is because the HiTGUW

transform is performed in a way of prioritising the merge of the subregions including a
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dense but gentle change and delaying the merge of the subregions containing a sparse

but large change, which gives a higher chance to “a sparse but large change” to be

survived in thresholding.

In the literature, other possible ways of aggregation have been suggested for CUSUM

series e.g. l2-norm (Horváth and Hušková, 2012) and l1-norm to the hard-thresholded

CUSUM series (Cho and Fryzlewicz, 2015). As opposed to those methods based on

the Binary Segmentation (thus they focus on the region corresponding to the “largest”

aggregated CUSUM series to operate a divisive algorithm), our agglomerative approach

gives priority in merging to the region corresponding to the “smallest” aggregated

detail coefficients in which l∞-norm works well for estimating change-point that is

sparse across the panel. Some other existing ways of aggregation or projection for

the high-dimensional panel data can be found in Section 2.3.3, however we emphasise

that the aggregation of detail-type coefficients for a bottom-up transformation has not

previously been studied in the literature.

As is in the TGUW transform introduced in Chapter 4, the HiTGUW transfor-

mation also has the “tail-greediness” (Fryzlewicz, 2018b) which allows us to reduce

the computational complexity by performing multiple merges over non-overlapping

regions in a single pass over the data. More specifically, in scenario (S1), it enables

us to perform up to ⌈ραj⌉ merges at each scale j, where αj is the number of smooth

coefficient columns in the data matrix S and ρ ∈ (0, 1). In scenario (S2), up to

max{2, ⌈ραj⌉} merges are allowed to be performed at each scale j where the lower

bound of 2 is essential to permit a Type 3 transformation, which consists of two merges.

In this chapter, a detail coefficient d·
i,[p,q,r] will be sometimes referred to as d(j,k)

i or

d
(j,k)
i,[p,q,r], where j = 1, . . . , J is the scale of the transform at which d·

i,[p,q,r] was computed,

and k = 1, . . . , K(j) is the location index of d·
i,[p,q,r] within all scale j coefficients. Note
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that d·
i,[p,q,r] is di,[p,q,r] or d1

i,[p,q,r] or d2
i,[p,q,r] depending on the type of merge in scenario

(S2).

Now we are ready to formulate the HiTGUW transformation in general for each

scenario.

HiTGUW transformation: general algorithm in scenario (S1)

In general, the HiTGUW algorithm in scenario (S1) is formulated as follows.

1. At each scale j, for each pair of neighbouring smooth coefficients, (si,[p,q], si,[q+1,r]),

compute the corresponding detail coefficient di,[p,q,r] for i = 1, . . . , n and its coordinate-

wise aggregation as follows,

di,[p,q,r] = ap,q,r si,[p,q] + bp,q,r si,[q+1,r], i = 1, . . . , n, (5.15)

d∗
[p,q,r] = max

i

∣∣∣di,[p,q,r]

∣∣∣
i=1,...,n

, (5.16)

where p < q < r. The constants ap,q,r, bp,q,r are the elements of the detail filter

hp,q,r = (ap,q,r, bp,q,r)⊤ where ap,q,rbp,q,r < 0. The detail filter should satisfy the

condition that the detail coefficient di,[p,q,r] is zero for any i only if the corresponding

raw observations of merged regions, (Xi,p, . . . , Xi,r), form a constant vector. This

implies that the smaller size of detail coefficient we have, the stronger constancy exists

in those regions. Another requirement on the detail filter is a2
p,q,r + b2

p,q,r = 1 which

preserves the orthonormality of the transform. Specifically, those two conditions

give the following,

ap,q,r =
√

(r − q)/(r − p+ 1), bp,q,r = −
√

(q − p+ 1)/(r − p+ 1). (5.17)

2. Sort the size of the aggregated detail coefficients d∗
[p,q,r] obtained in step 1 in non-

decreasing order.
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3. Extract the (non-aggregated) detail coefficient vector
{
di,[p,q,r]

}n

i=1
corresponding to

the smallest (aggregated) detail coefficient d∗
[p,q,r]. We repeat the extraction until

⌈ραj⌉ (or all possible, whichever is the smaller number) detail coefficient vectors

have been obtained, as long as the region of the data corresponding to each detail

coefficient vector extracted does not overlap with the regions corresponding to the

detail coefficient vectors already drawn.

4. For each di,[p,q,r] extracted in step 3, merge the corresponding smooth coefficients

through the orthonormal transform as follows,

 si,[p,r]

di,[p,q,r]

 =

−bp,q,r ap,q,r

ap,q,r bp,q,r


 si,[p,q]

si,[q+1,r]

 , i = 1, . . . , n. (5.18)

5. Go to step 1 and repeat at new scale j = j + 1 as long as we have at least two

columns of smooth coefficients in the updated data sequence matrix S.

HiTGUW transformation: general algorithm in scenario (S2)

In general, the HiTGUW algorithm in scenario (S2) is formulated as follows.

1. At each scale j, find the set of triplet columns of smooth coefficients in S that are

candidates for merging under the “two together” rule. Compute the corresponding

detail coefficients where it is formulated as follows in any type of merge,

d·
i,[p,q,r] = ap,q,rS

1
i,p:r + bp,q,rS

2
i,p:r + cp,q,rS

3
i,p:r, i = 1, . . . , n, (5.19)

where p < q < r, Sk
i,p:r is the kth smooth coefficient column of the submatrix S[,p:r] of

the dimension n× (r− p+ 1) and the constants ap,q,r, bp,q,r, cp,q,r are the elements of

the detail filter hp,q,r = (ap,q,r, bp,q,r, cp,q,r)⊤. The detail filter produces the weighted

sum of a triplet of smooth coefficient columns and should satisfy the condition that
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the detail coefficient is zero if and only if the corresponding raw observations over

the merged regions have a perfect linear trend. Therefore, the detail coefficient

represent the extent of non-linearity in the corresponding region of data which

implies that the smaller the size of the detail coefficient, the stronger the linearity

of the corresponding data. Specifically, the detail filter hp,q,r = (ap,q,r, bp,q,r, cp,q,r)⊤

is obtained by solving the following equations,

ap,q,rw
c,1
p:r + bp,q,rw

c,2
p:r + cp,q,rw

c,3
p:r = 0,

ap,q,rw
l,1
p:r + bp,q,rw

l,2
p:r + cp,q,rw

l,3
p:r = 0,

a2
p,q,r + b2

p,q,r + c2
p,q,r = 1,

(5.20)

where w·,k
p:r is kth non-zero element of the subvector w·

p:r of length r − p+ 1, and

wc and wl are weight vectors of constancy and linearity, respectively, whose initial

inputs are wc
0 = (1, 1, . . . , 1)⊤ and wl

0 = (1, 2, . . . , T )⊤. The last condition in (5.20)

preserves the orthonormality of the transform and the detail filter obtained as a

solution of (5.20) is unique up to multiplication by −1.

2. Find a summary detail coefficient di,[p,q,r] = max(|d1
i,[p,q,r]|, |d2

i,[p,q,r]|) for any pair of

detail coefficients constructed by Type 3 merges. Using a summarised sequence of

di,[p,q,r], compute the aggregated detail coefficients,

d∗
[p,q,r] = max

i

∣∣∣di,[p,q,r]

∣∣∣
i=1,...,n

. (5.21)

3. Sort the size of the aggregated detail coefficients
∣∣∣d∗

[p,q,r]

∣∣∣ obtained in step 2 in

non-decreasing order.

4. Extract the (non-summarised and non-aggregated) detail coefficients
{∣∣∣d·

i,[p,q,r]

∣∣∣}n

i=1

corresponding to the smallest (summarised and aggregated) detail coefficient
∣∣∣d∗

[p,q,r]

∣∣∣
where both

{∣∣∣d1
i,[p,q,r]

∣∣∣}n

i=1
and

{∣∣∣d2
i,[p,q,r]

∣∣∣}n

i=1
should be extracted only when di,[p,q,r] =
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max
(∣∣∣d1

i,[p,q,r]

∣∣∣, ∣∣∣d2
i,[p,q,r]

∣∣∣) is extracted. The extraction should be repeated until

max{2, ⌈ραj⌉} (or all possible, whichever is the smaller number) columns of detail

coefficients are obtained, as long as the region of the data corresponding to each col-

umn of detail coefficients extracted does not overlap with the regions corresponding

to the columns of detail coefficients already drawn.

5. For each
∣∣∣d·

i,[p,q,r]

∣∣∣ extracted in step 4, merge the corresponding smooth coefficients

by updating the corresponding triplet columns in S and the corresponding triplet

in wc and wl through the orthonormal transforms as follows,


s1

i,[p,r]

s2
i,[p,r]

d·
i,[p,q,r]

 =


ℓ⊤

1

ℓ⊤
2

h⊤




S1

i,p:r

S2
i,p:r

S3
i,p:r

 = Λ


S1

i,p:r

S2
i,p:r

S3
i,p:r

 , i = 1, . . . , n, (5.22)


wc,1

p,r

wc,2
p,r

0

 = Λ


wc,1

p:r

wc,2
p:r

wc,3
p:r

 ,

wl,1

p,r

wl,2
p,r

0

 = Λ


wl,1

p:r

wl,2
p:r

wl,3
p:r

 . (5.23)

The orthonormal matrix, Λ, of the dimension 3 × 3 is obtained in the same way as

in the TGUW transformation by finding two low-pass filters (ℓ⊤
1 , ℓ

⊤
2 ) which satisfy

the orthonormality of Λ.

6. Go to step 1 and repeat at new scale j = j + 1 as long as we have at least three

columns of smooth coefficients in the updated data sequence matrix S.

More in detail, the detail coefficient in (5.19) is formulated for Type 3 merge as follows,

d1
i,[p,q,r] = a1

p,q,rs
1
i,[p,q] + b1

p,q,rs
2
i,[p,q] + c1

p,q,rs
1
i,[q+1,r],

d2
i,[p,q,r] = a2

p,q,rs
01
i,[p,r] + b2

p,q,rs
02
i,[p,r] + c2

p,q,rs
2
i,[q+1,r], i = 1, . . . , n,
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where q > p+1 and r > q+2. As is in the TGUW transform in Chapter 4, after the first

detail coefficient vector,
{
d1

i,[p,q,r]

}n

i=1
, is obtained, we instantly update the corresponding

triplet columns in S and triplets of wc and wl through an orthonormal transform

as defined in (5.22) and (5.23). Thus, the second detail filter, (a2
p,q,r, b

2
p,q,r, c

2
p,q,r), is

obtained with the updated wc and wl in a way that satisfies the conditions in (5.20).

The HiTGUW transform ultimately converts the input data matrix X of the

dimension n×T into the matrix containing one column of smooth coefficients and T −1

columns of detail coefficients through T − 1 orthonormal transforms in scenario (S1),

and converts the input data matrix X into the matrix containing 2 columns of smooth

coefficients and T−2 columns of detail coefficients through T−2 orthonormal transforms

in scenario (S2). In both scenarios, a detail coefficient d(j,k)
i is the scalar products

between X i and a particularly constructed unbalanced wavelet basis ψ(j,k), where the

formal representation is given as
{
d

(j,k)
i = ⟨X i, ψ

(j,k)⟩,i=1,...,n, j=1,...,J, k=1, ...,K(j)
}
. The

smooth coefficient has a form of si,[1,T ] = ⟨X i, ψ
(0,1)⟩ in scenario (S1) and s1

i,[1,T ] =

⟨X i, ψ
(0,1)⟩, s2

i,[1,T ] = ⟨X i, ψ
(0,2)⟩ in scenario (S2) for i = 1, . . . , n. The set {ψ(j,k)} is

an orthonormal unbalanced wavelet basis for RT .

Computational complexity of HiTGUW

As in the TGUH and the TGUW transforms, the HiTGUW (in both scenarios (S1)

and (S2)) includes at most J = O(log(T )) scales as the number of merges depends only

on the length of data sequences T , not on the dimension n. The HiTGUW algorithm

requires O(nT ) operations for computing detail coefficients and aggregating them by

finding the coordinate-wise maximum. Sorting the aggregated detail coefficients takes

up to O(T log(T )) operations, thus the computational complexity of the HiTGUW

transform is obtained as O(log(T ) · max(nT, T log(T ))), that is equal to O(nT log(T ))

if n > log(T ) and is same as that of TGUW, O(T log2(T )), if n < log(T ).
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5.2.4 Thresholding

Through the thresholding, we wish to estimate the underlying signal {f i}n
i=1 in (5.1) by

estimating µ(j,k)
i = ⟨f i, ψ

(j,k)⟩ for i = 1, . . . , n where ψ(j,k) is an orthonormal unbalanced

wavelet basis constructed in the HiTGUW transform from the data. In both scenarios

(S1) and (S2), the HiTGUW detail coefficients are thresholded under the “connected”

rule which prunes the branches of the (aggregated) HiTGUW detail coefficients if and

only if the (aggregated) detail coefficient itself and all of its (aggregated) children

coefficients fall below a certain threshold in absolute value. Pruning the branch of

the aggregated detail coefficients implies that all elements of the corresponding (non-

aggregated) detail coefficient vector are set to zero. After the “connected” rule is

applied, only in scenario (S2), we use the “two together” rule that is similar to the one

in Section 4.2.3 except for the fact that it targets paired vectors of detail coefficients

rather than pairs of detail coefficients. The “two together” rule means that both such

detail coefficient vectors should be kept if at least one (aggregated) detail coefficient

survives the initial hard thresholding. This is a necessary condition as a pair of Type 3

detail coefficient vectors corresponds to a single merge of two adjacent regions.

The “connected” rule for scenarios (S1) and (S2)

Throughout the thresholding procedure under the “connected” rule the estimator µ(j,k)
i

is obtained as

µ̂
(j,k)
i = d

(j,k)
i,[p,q,r] · I

{
∃(j′, k′) ∈ Cj,k

∣∣∣d∗(j′,k′)
[p′,q′,r′]

∣∣∣ > λ
}
, i = 1, . . . , n, (5.24)
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where I is an indicator function and

Cj,k =
{

(j′, k′), j′ = 1, . . . , j, k′ = 1, . . . , K(j′) : d∗(j′,k′)
[p′,q′,r′] is such that [p′, r′] ⊆ [p, r]

}
.

(5.25)

The “two together” rule only for scenario (S2)

Only in scenario (S2), let the estimators
{
µ̂

(j,k)
i

}n

i=1
in (5.24) be the initial estimators{

µ̂
(j,k)
i,0

}n

i=1
and apply the “two together” rule to obtain the final estimators

{
µ̂

(j,k)
i

}n

i=1
.

We note that two detail coefficients, d(j,k)
i,[p,q,r] and d(j′,k+1)

i′,[p′,q′,r′] are called “paired” when they

are formed by Type 3 merges and when (i, j, p, q, r) = (i′, j′, p′, q′, r′). For i = 1, . . . , n,

the “two together” rule is formulated as below,

µ̂
(j,k)
i =



µ̂
(j,k)
i,0 , if d(j,k)

i,[p,q,r] is not paired,

µ̂
(j,k)
i,0 , if d(j,k)

i,[p,q,r] is paired with d
(j,k′)
i,[p,q,r] and both µ̂

(j,k)
i,0 and µ̂

(j,k′)
i,0 are

zero or non-zero, (5.26)

d
(j,k)
i , if d(j,k)

i,[p,q,r] is paired with d
(j,k′)
i,[p,q,r] and µ̂

(j,k′)
i,0 ̸= 0 and µ̂

(j,k)
i,0 = 0.

The application of the “connected” rule in scenario (S1) ensures that f̃ i is a

piecewise-constant function composed of sample means for each estimated segment

for all i = 1, . . . , n. Similarly, the usage of both “connected” and “two together” rules

in scenario (S2) guarantees that f̃ i is a piecewise-linear function composed of best

linear fits (in the least-squares sense) for each estimated interval of linearity for all

i = 1, . . . , n.

5.2.5 Inverse HiTGUW transformation

The estimator {f̃ i}n
i=1 of the true signal {f i}n

i=1 in (5.1) is obtained by inverting (=

transposing) the orthonormal transformations, (5.18) in scenario (S1) and (5.22) in
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scenario (S2), in reverse order to that in which they were originally performed. This

inverse HiTGUW transformation is referred to as HiTGUW−1, and formulated for each

scenario as follows,

Scenario (S1)

f̃ i = HiTGUW−1
{
µ̂

(j,k)
i , j = 1, . . . , J, k = 1, . . . , K(j) ∥ si,[1,T ]

}
, i = 1, . . . , n,

(5.27)

Scenario (S2)

f̃ i = HiTGUW−1
{
µ̂

(j,k)
i , j = 1, . . . , J, k = 1, . . . , K(j) ∥ s1

i,[1,T ], s
2
i,[1,T ]

}
, i = 1, . . . , n,

(5.28)

where µ̂(j,k)
i is in (5.24) in scenario (S1) and (5.26) in scenario (S2), and ∥ denotes

vector concatenation.

5.2.6 Post-processing for consistent estimation

As will be specified in Theorems 5.1 and 5.2 in Section 5.3, the piecewise-constant

estimator in (5.27) and the piecewise-linear one in (5.28) possibly overestimate the

number of change-points. To get rid of the spurious estimated change-points and to

achieve the consistency of the number and locations of the estimated change-points,

we propose the modified post-processing framework of Fryzlewicz (2018b) in scenario

(S1) and that of TrendSegment in Chapter 4 in scenario (S2). The post-processing

methodology contains two stages and both scenarios (S1) and (S2) are considered in

each stage.
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Stage 1

In this stage, we execute three steps, HiTGUW transform, thresholding and inverse

HiTGUW transform, again to the estimated function f̃ in (5.27) or (5.28) (depending

on the scenario). Using f̃ as an input data matrix, the HiTGUW transform is performed

as presented in Section 5.2.3, but in a greedy rather than tail-greedy way such that only

one detail coefficient vector
{
d

(j,1)
i

}n

i=1
is produced at each scale j, and thus K(j) = 1

for all j. We continue to produce detail coefficient until the first (aggregated) detail

coefficient such that |d∗(j,1)| > λ is attained and once that condition is satisfied, stop

merging and relabel the surviving change-points as (˜̃η1, ˜̃η2, . . . , ˜̃η ˜̃N ). The new estimator

is referred to as ˜̃f and we note that λ is the parameter used in thresholding in Section

5.2.4. For each scenario, the new estimator
{ ˜̃f i

}n

i=1
is constructed as follows,

Scenario (S1):

˜̃fi,t = 1
˜̃ηℓ − ˜̃ηℓ−1

˜̃ηℓ∑
t=˜̃ηℓ−1+1

Xi,t for t ∈
[
˜̃ηℓ−1 + 1, ˜̃ηℓ

]
, i = 1, . . . , n, ℓ = 1, . . . , ˜̃N,

(5.29)

Scenario (S2):

˜̃fi,t = ˜̃θ1
i,ℓ + ˜̃θ2

i,ℓ t for t ∈
[
˜̃ηℓ−1 + 1, ˜̃ηℓ

]
, i = 1, . . . , n, ℓ = 1, . . . , ˜̃N, (5.30)

where ˜̃η0 = 0, ˜̃η ˜̃N+1 = T and ( ˜̃θ1
i,ℓ,

˜̃θ2
i,ℓ) are the OLS estimators of the corresponding pairs{

(t,Xi,t), t ∈ [˜̃ηi−1 + 1, ˜̃ηi]
}
. In both scenarios, when the region under consideration

only contains a single data point X·,t0 , we simply set ˜̃fi,t0 = Xi,t0 .

Stage 2

In the second stage, we examine the regions containing only one estimated change-point

to check for its significance. We transform the estimator ˜̃f obtained in Stage 1 with
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change-points (˜̃η1, ˜̃η2, . . . , ˜̃η ˜̃N) into the final estimator f̂ with corresponding change-

points (η̂1, η̂2, . . . , η̂N̂) by pruning. For each ℓ = 1, . . . , ˜̃N , compute the aggregated

detail coefficient d∗
[pℓ,qℓ,rℓ] as described in (5.16) and (5.21) for scenarios (S1) and (S2),

respectively, where pℓ =
⌊

˜̃ηℓ−1+˜̃ηℓ

2

⌋
+ 1, qi = ˜̃ηℓ and rℓ =

⌈
˜̃ηℓ+˜̃ηℓ+1

2

⌉
. Find the minimiser

ℓ0 = arg minℓ

∣∣∣d∗
[pℓ,qℓ,rℓ]

∣∣∣ and if the condition,
∣∣∣d∗

[pℓ0 ,qℓ0 ,rℓ0 ]

∣∣∣ ≤ λ, is satisfied then remove

˜̃ηℓ0 and set ˜̃N := ˜̃N − 1 where λ is as in Stage 1. After removing one change-point,

relabel the remaining ones with the subscripts ℓ = 1, . . . , ˜̃N under the convention

˜̃η0 = 0, ˜̃η ˜̃N+1 = T . We repeat to prune while we can find ℓ0 which satisfies the condition∣∣∣d∗
[pℓ0 ,qℓ0 ,rℓ0 ]

∣∣∣ ≤ λ, otherwise, stop and set N̂ as the number of detected change-points.

Relabel the change-points η̂i in increasing order for i = 0, . . . , N̂+1 with the convention

η̂0 = 0 and η̂N̂+1 = T . For each scenario, the final estimator is constructed as follows,

Scenario (S1):

f̂i,t = 1
η̂ℓ − η̂ℓ−1

η̂ℓ∑
t=η̂ℓ−1+1

Xi,t for t ∈
[
η̂ℓ−1 + 1, η̂ℓ

]
, i = 1, . . . , n, ℓ = 1, . . . , N̂,

(5.31)

Scenario (S2):

f̂i,t = θ̂1
i,ℓ + θ̂2

i,ℓ t for t ∈
[
η̂ℓ−1 + 1, η̂ℓ

]
, i = 1, . . . , n, ℓ = 1, . . . , N̂, (5.32)

where η̂0 = 0, η̂N̂+1 = T and (θ̂1
i,ℓ, θ̂

2
i,ℓ) are the OLS estimators of the corresponding

pairs {(t,Xi,t), t ∈ [η̂i−1 + 1, η̂i]}, with the exception for point anomalies as described

in Stage 1 above. Through these two stages of post-processing, the consistency of

the number and the locations of the estimated change-points is achieved, and further

details can be found in Section 5.3.

In Sections 5.4 and 5.5, we disable Stages 1 and 2 of post-processing in scenario

(S1) and disable only Stage 2 of post-processing in scenario (S2) by default. From

our empirical experiences, Stage 1 rarely makes a difference in practice in scenario
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(S1) but is useful for removing the overestimated change-points in scenario (S2) with

an additional computational cost. In both scenarios, Stage 2 tends to over-prune

change-point estimates.

5.3 Theoretical results

In this section, we study the l2 consistency of three estimators,
{
f̃ i

}n

i=1
,
{ ˜̃f i

}n

i=1
and{

f̂ i

}n

i=1
, obtained in Section 5.2 where the l2 risk of any set of estimators

{
f̃ i

}n

i=1
is

defined as
∥∥∥f̃ − f

∥∥∥2

n,T
= 1

n
1
T

∑n
i=1

∑T
t=1

(
f̃i,t − fi,t

)2
and f is the underlying signal in

(5.1).

5.3.1 Under temporal independence and general cross-sectional

dependence

We first examine the case when the Gaussian random errors in model (5.1) have

temporal independence but possibly have cross-sectional dependence. The nature of

the cross-sectional dependence is general in that no specific structure is given and the

theoretical results stated in this section do not necessarily need the assumption of

cross-sectional independence. We first make the following assumptions.

Assumption 5.1 Var(εi) = σ2
i = 1 for all i in model (5.1).

Assumption 5.2 Let the threshold take the form of λ = C1{2 log(nT )}1/2 with a

constant C1 large enough.

Assumption 5.3 The dimensionality n satisfies n ∼ Tα for some fixed α ∈ (0,∞).

As is in Assumption 4.1, we assume that Var(εi) is known. This is because if it is

unknown in practice it can usually be estimated using Median Absolute Deviation
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(MAD) (Hampel, 1974). Even if σ2
i s vary across data sequences Xi, we can simply

normalise each data sequence by its MAD estimator and more details can be found in

Section 5.4.1. It is reasonable to consider the case that the errors have the temporal

dependence or a specific form of cross-sectional dependence, thus in Sections 5.3.2

and 5.3.3, we explore how our method works when those relaxations are given. The

threshold in Assumption 5.2 has the generalised form (λ = C1σ{2 log(nT )}1/2) and is

similar to that in Assumption 4.2 in Section 4.3 except the fact that log(T ) is replaced

with log(nT ). This is related to the number of Gaussian components considered, which

is T for a univariate time series in Chapter 4 but nT for a high-dimensional panel data

that increases with both the length T and the dimension n of the data. The optimal

value of the constant C1 for the practical application of TrendSegment procedure will

be specified in Section 5.4.1. In Assumption 5.3, the dimensionality n can increase with

T at a polynomial rate, which is necessary for the significant detail coefficients (i.e.

those corresponding to the true change-points) to be survived from the thresholding

stage. For example, if n can increase with T at an exponential rate (i.e. n ∼ eT ), then

the threshold will become too large, thus those significant details coefficients may be

annihilated in thresholding.

We investigate the l2 behaviour of
{
f̃ i

}n

i=1
in (5.27) and (5.28) returned by the

inverse HiTGUW transformation.

Theorem 5.1 {X i}n
i=1 follows model (5.1) in scenario (S1) and {f̃ i}n

i=1 is the esti-

mator in (5.27). Then under Assumptions 5.1-5.3, we have

∥f̃ − f∥2
n,T ≤ C2

1
1
T

log(nT )
{

2 + 8N ⌈ log(T )/ log(1 − ρ)−1 ⌉
}
, (5.33)

with probability approaching to 1 as n, T → ∞ and the piecewise-constant estimator

{f̃ i}n
i=1 in (5.27) contains Ñ ≤ CN log(T ) change-points where C is a constant.
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Theorem 5.2 {X i}n
i=1 follows model (5.1) in scenario (S2) and {f̃ i}n

i=1 is the esti-

mator in (5.28). Then under Assumptions 5.1-5.3, we have

∥f̃−f∥2
n,T ≤ C2

1
1
T

log(nT )
{

4+8N
⌈
log(T )/ log

(
(1−ρ)−1

)
+log(2)/ log(1−ρ)

⌉ }
,

(5.34)

with probability approaching to 1 as n, T → ∞ and the piecewise-linear estimator

{f̃ i}n
i=1 in (5.28) contains Ñ ≤ CN log(T ) change-points where C is a constant.

In both scenarios (S1) and (S2), f̃ is l2 consistent if N = O(1). The l2 consistency

shown in Theorems 5.1 and 5.2 is guaranteed by the “tail-greediness” of the HiTGUW

transform. In other words, if we merge only one pair (in scenario (S1)) or one triplet

(in scenario (S2)) at each scale, then the consistency is not achieved.

Now we move onto the estimators ˜̃f in (5.29) and (5.30) obtained in the first stage

of post-processing.

Theorem 5.3 {X i}n
i=1 follows model (5.1) in either scenario (S1) or scenario (S2)

and
{ ˜̃f i

}n

i=1
is the estimator either in (5.29) in scenario (S1) or (5.30) in scenario (S2).

Then under Assumptions 5.1-5.3, we have
∥∥∥ ˜̃f − f

∥∥∥2

n,T
= O

(
NT−1 log(T ) log(nT )

)
with probability approaching to 1 as n, T → ∞ and there exist at most two change-points

between true change-points, (ηℓ, ηℓ+1) for ℓ = 0, . . . , N , which satisfies ˜̃N ≤ 2(N + 1)

where η0 = 0 and ηN+1 = T .

We see that ˜̃f is l2 consistent, but inconsistent for the number of change-points. The

consistency of the estimated number and locations of the change-points is established

under the following conditions.

Assumption 5.4 The number of true change-points, N , is finite.

Assumption 5.5 Consider the scenario (S1) when fi,t is in (5.3). Let ∆n,T =

minℓ

{(
¯
f ℓ

n,T

)2
· δℓ

n,T

}
where

¯
f ℓ

n,T = mini:i∈Ωℓ

{
min

(
|fi,ηℓ+1 − fi,ηℓ

|, |fi,ηℓ
− fi,ηℓ−1|

)}
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and δℓ
n,T = min

(
|ηℓ − ηℓ−1|, |ηℓ+1 − ηℓ|

)
. Assume that nTRn,T = o

(
∆n,T

)
where∥∥∥ ˜̃f − f

∥∥∥2

n,T
= Op(Rn,T ) is as in Theorem 5.3 and ˜̃f is the estimator in (5.29).

Assumption 5.6 Consider the scenario (S2) when fi,t is in (5.4). Let ∆n,T =

minℓ

{(
¯
f ℓ

n,T

)2/3
· δℓ

n,T

}
where

¯
f ℓ

n,T = mini:i∈Ωℓ

{
min

(
|fi,ηℓ+1 − 2fi,ηℓ

+ fi,ηℓ−1|, |fi,ηℓ+2 −

2fi,ηℓ+1 + fi,ηℓ
|
)}

and δℓ
n,T = min

(
|ηℓ − ηℓ−1|, |ηℓ+1 − ηℓ|

)
. Assume that n1/3T 1/3R

1/3
n,T =

o
(
∆n,T

)
where

∥∥∥ ˜̃f − f
∥∥∥2

n,T
= Op(Rn,T ) is as in Theorem 5.3 and ˜̃f is the estimator in

(5.30).

Similar to Assumption 4.3, we control the number of true change-points to be finite

in Assumption 5.4. Assumptions 5.5 and 5.6 quantify the difficulty of detecting a

change-point in terms of distance from its neighbouring change-points and size of the

change in a similar way that Assumption 4.4 does for a univariate data sequence, but

the relevant conditions in Assumptions 5.5 and 5.6 are imposed by aggregating the

quantified difficulties across the panel.

We finally describe the final estimators f̂ in (5.31) and (5.32).

Theorem 5.4 {X i}n
i=1 follows model (5.1) in scenario (S1) and

(
{f̂ i}n

i=1, N̂
)

are the

estimators in (5.31). Then under Assumptions 5.1-5.5, we have

P
(
N̂ = N, max

ℓ=1,...,N

{
|η̂ℓ − ηℓ| ·

(
¯
f ℓ

n,T

)2
}

≤ CnTRn,T

)
→ 1, (5.35)

as n, T → ∞ where C is a constant.

Theorem 5.5 {X i}n
i=1 follows model (5.1) in scenario (S2) and

(
{f̂ i}n

i=1, N̂
)

are the

estimators in (5.32). Then under Assumptions 5.1-5.4 and 5.6, we have

P
(
N̂ = N, max

ℓ=1,...,N

{
|η̂ℓ − ηℓ| ·

(
¯
f ℓ

n,T

)2/3
}

≤ Cn1/3T 1/3R
1/3
n,T

)
→ 1, (5.36)

as n, T → ∞ where C is a constant.
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Theorems 5.4 and 5.5 indicate that when point anomalies exist in the set of true change-

points under any scenario, a point anomaly ηk and its neighbouring change-point

ηk−1 = ηk − 1 can be detected exactly at their true locations only if the corresponding

¯
f ℓ

n,T s satisfy the condition min
(
¯
fk

n,T ,¯
fk−1

n,T

)
&
√
n log(T ) log(nT ).

Regarding how much the results of this section depend on the Gaussian assumption,

we first emphasise that the size of the threshold λ in Assumption 5.2 is closely associated

with the tail bound for the standard normal distribution. As this threshold plays an

important role in having the bound NT−1 log(T ) log(nT ) in Theorems 5.1 and 5.2

which affects the results of the following Theorems 5.3-5.5, the extension to the non-

Gaussian distributions can be considered as long as we obtain an appropriate threshold

from its tail bound and the corresponding threshold achieves the l2 consistency results

shown in Theorems 5.1 and 5.2.

5.3.2 Under a specific form of temporal dependence and gen-

eral cross-sectional dependence

In this section, we extend our method to a more realistic setting when the noise

is dependent across the time. We consider the case where the errors of the ith data

sequence, εi in model (5.1), form a stationary Gaussian process with the autocorrelation

function ρi(k) for i = 1, . . . , n, where the nature of the cross-sectional dependence is

general. We first make the following assumptions.

Assumption 5.7 For each i, εi in model (5.1) denotes a stationary Gaussian process

with the autocorrelation functions ρi(k), satisfying R = maxi
∑∞

k=−∞ |ρi(k)| < ∞.

Assumption 5.8 Let the threshold take the form of λ = C3{2R log(nT )}1/2 with a

constant C3 large enough, where R is as in Assumption 5.7.
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Corollary 5.1 Suppose {X i}n
i=1 follows model (5.1) in scenario (S1), then under

Assumptions 5.1, 5.3-5.5, 5.7-5.8, the conclusions of Theorems 5.1, 5.3 and 5.4 still

hold with different constants.

Corollary 5.2 Suppose {X i}n
i=1 follows model (5.1) in scenario (S2), then under

Assumptions 5.1, 5.3-5.4, 5.6, 5.7-5.8, the conclusions of Theorems 5.2, 5.3 and 5.5

still hold with different constants.

Corollaries 5.1-5.2 imply that the conclusions of Theorems 5.2, 5.3 and 5.5 still holds

with the threshold given in Assumption 5.8, therefore those theorems constructed

under the temporal independence assumption of the noise are special cases of those

obtained under the dependent noise setting formulated in Assumption 5.7, because we

have R = maxi
∑∞

k=−∞ |ρi(k)| = 1 when the errors of any time series component are

independent. The proofs of Corollaries 5.1-5.2 can be found in Section 5.6.

5.3.3 Under temporal independence and a specific form of

cross-sectional dependence

We now assume that the errors are dependent across the panel and the noise ε′
1, ε

′
2, . . . , ε

′
T

are n-dimensional random vectors sampled from ε′
t ∼ Nn(0,Σ) where Σ is a positive

matrix of the dimension n× n in which all the elements are strictly positive. Since we

only consider the dependence across the panel, the errors within any data sequence

are assumed to be independent. As shown in the following Corollaries 5.3 and 5.4,

HiTS keeps its consistency in estimating the number and the locations of change-points

if a specific structure of the cross-sectional dependence is assumed. The proofs of

Corollaries 5.3 and 5.4 can be found in Section 5.6.
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Assumption 5.9 In model (5.1), the noise vectors ε′
1, ε

′
2, . . . , ε

′
T are n-dimensional

random vectors sampled from ε′
t ∼ Nn(0,Σ) where Σ is a positive matrix of the

dimension of n× n in which all the elements are strictly positive.

Corollary 5.3 Suppose {X i}n
i=1 follows model (5.1) in scenario (S1), then under

Assumptions 5.1-5.5, 5.9, the conclusions of Theorems 5.1, 5.3 and 5.4 still hold with

different constants.

Corollary 5.4 Suppose {X i}n
i=1 follows model (5.1) in scenario (S2), then under

Assumptions 5.1-5.4, 5.6, 5.9, the conclusions of Theorems 5.2, 5.3 and 5.5 still hold

with different constants.

5.4 Simulations

Although the asymptotic behaviours of the HiTS algorithm are studied under various

dependence structures in Section 5.3, in simulations, we only consider the case when

the noise ε′
1, ε

′
2, . . . , ε

′
T are n-dimensional random vectors sampled from ε′

t ∼ Nn(0, In),

which can be classified into the case stated in Section 5.3.1.

5.4.1 Parameter choice

Choice of threshold λ. As stated in Theorems 5.1 and 5.2, we use the threshold

of the form λ = Cσ
√

2 log(nT ). In the implementation of the HiTS procedure, we

assume that σ is unknown and can vary across data sequences Xi. We first estimate

each σi using the Median Absolute Deviation (MAD) estimator (Hampel, 1974) defined

as σ̂i = Median(|Xi,2 −Xi,1|, . . . , |Xi,T −Xi,T −1|)/(Φ−1(3/4)
√

2) in scenario (S1) and

σ̂i = Median(|Xi,1 − 2Xi,2 + Xi,3|, . . . , |Xi,T −2 − 2Xi,T −1 + Xi,T |)/(Φ−1(3/4)
√

6) in

scenario (S2) for i = 1, . . . , n where Φ−1 is the quantile function of the Gaussian

distribution. Then we normalise each data sequence by its estimated standard deviation
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and use the threshold λ = C
√

2 log(nT ) by replacing σ to 1. We use C = 1.2 as a

default in both scenarios as it empirically led to the best performance over the range

C ∈ [1, 1.4].

Choice of the “tail-greediness” parameter. ρ ∈ (0, 1) is the parameter which

decides the number of merges performed in a single pass over the data. We use ρ = 0.04

as a default in the simulation study and data analyses as our empirical experience

shows that the best performance is achieved in the range ρ ∈ (0, 0.05].

Level of cross-sectional sparsity. In both scenarios (S1) and (S2), we con-

sider the simulation settings, n = (100, 300, 500) and sparsity=(0.01, 0.1, 0.7), where

⌊sparsity · n⌉ = | ∪N
ℓ=1 Ωℓ| is the number of coordinates which experience the changes,

Ωℓ is defined in (5.3) in scenario (S1) and (5.4) in scenario (S2) and ⌊x⌉ is the nearest

integer from x. Under the size of n, the simulation setting can be high-dimensional

depending on the length of data sequences T , which varies with signal considered in

Section 5.4.2.

Level of overlap between coordinates. Similar to those done in Wang and

Samworth (2018), in what follows, we consider three different levels of overlap between

the coordinates, (1) “complete-overlap” case in which all true change-points, η1, . . . , ηN ,

occur in all coordinates those including change-points, f 1, . . . ,f |∪N
ℓ=1Ωℓ|, (2) “half-

overlap” case in which the first half of true change-points, η1, . . . , η⌊N/2⌉, occurs in all

coordinates those including change-points, f 1, . . . ,f |∪N
ℓ=1Ωℓ|, while the last half of true

change-points, η⌊N/2⌉+1, . . . , ηN , occurs only in the half of those coordinates having

change-points, f 1, . . . ,f ⌊|∪N
ℓ=1Ωℓ|/2⌉, and (3) “no-overlap” case in which the first half

of true change-points, η1, . . . , η⌊N/2⌉, occurs only in the first half of those coordinates

including change-points, f 1, . . . ,f ⌊|∪N
ℓ=1Ωℓ|/2⌉, and the last half of true change-points,

η⌊N/2⌉+1, . . . , ηN , occurs only in the last half of those coordinates including change-

points, f ⌊|∪N
ℓ=1Ωℓ|/2⌉+1, . . . ,f |∪N

ℓ=1Ωℓ|, thus the set of true change-points is divided into
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two disjoint sets and each set of change-points occurs in disjoint sets of coordinates. In

simulations, we compare the results of those three cases under the same level of cross-

sectional sparsity, which allows us to see how the form of overlap between coordinates

affects the results when the total number of coordinates experiencing changes at some

points is fixed.

5.4.2 Simulation setting

Signals in scenario (S1)

We simulate data from the model (5.1) with the signal (5.3). As shown in Figure

5.4, we use 6 signals, (M1) bump, (M2) little.bump, (M3) three, (M4) teeth, (M5)

extreme.teeth, (M6) blocks, that are specified below.

(M1) bump: T = 100, N = 2 change-points at t = 33, 66 with values between change-

points 2, -2.

(M2) little.bump: T = 100, N = 2 change-points at t = 33, 66 with values between

change-points 4/3, -4/3.

(M3) three: T = 200, N = 3 change-points at t = 50, 100, 150 with values between

change-points 1, -1.5, 2.

(M4) teeth: T = 300, N = 9 change-points at t = 30, 60, 90, 120, 150, 180, 210, 240,

270 with values between change-points -2, 2, -2, 2, -2, 2, -2, 2, -2.

(M5) extreme.teeth: T = 500, N = 39 change-points at t = 13, 25, 38, 50, 63, 75, 88,

100, · · · , 463, 475, 488 with values between change-points -3, 3, -3, 3, · · · , 3, -3.

(M6) blocks: T = 1000, N = 11 change-points at t = 103, 134, 154, 236, 256, 410, 451,

666, 779, 799, 830 with values between change-points 1.464, -1.930, 1.298, -1.564,

1.830, -1.637, 1.168, 1.274, -1.535, 1.569, -1.937.
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Signals in scenario (S2)

We simulate data from model (5.1) with the signal (5.4). Figure 5.5 shows 6 signals,

(M1) one, (M2) wave, (M3) mix1, (M4) mix2, (M5) extreme.wave, (M6) lin.sgmts, that

are specified below.

(M1) one: T = 100, N = 1 change-point at t = 50, with the corresponding jump size 0

and change in the slope -1/8 starting value for the intercept -1 and slope 1/16.

(M2) wave: T = 200, N = 9 change-points at t = 20, 40, 60, 80, 100, 120, 140, 160,

180, with the corresponding changes in the slope -0.5, 0.5, -0.5, 0.5, -0.5, 0.5, -0.5,

0.5, -0.5, starting value for the intercept -2 and slope 0.25.

(M3) mix1: T = 320, N = 7 change-points at t = 40, 80, 120, 160, 200, 240, 280, with

the corresponding sizes of jump 1, -1, 0, -1, 1.5, -1, 0 and changes in the slope

0.2, -0.2, -0.2, 0.2, 0.2, -0.4, 0.4, starting value for the intercept -4 and slope 0.

(M4) mix2: T = 400, N = 9 change-points at t = 50, 100, 105, 150, 200, 250, 255, 300,

350, with the corresponding sizes of jump -4, 7, -5, -1, 1, -6.5, 5.5, 2.5, 0 and

changes in the slope 0, 1/6, -1/4, 1/6, -1/6, 1/12, 0, 1/12, -1/6, starting value

for the intercept 4 and slope 0.

(M5) extreme.wave: T = 500, N = 24 change-points at t = 20, 40, 60, 80, · · · , 420,

440, 460, 480, with the corresponding changes in the slope -2/3, 2/3, -2/3, 2/3,

· · · , 2/3, -2/3, starting value for the intercept -4 and slope 1/3.

(M6) lin.sgmts: T = 500, N = 8 change-points at t = 100, 105, 200, 205, 300, 305, 400,

405, with the corresponding sizes of jump 6.5, -6.625, 6.5, -6.625, 6.5, -6.625, 6.5,

-6.625 and changes in the slope 1/32, -1/32, 1/32, -1/32, 1/32, -1/32, 1/32, -1/32,

starting value for the intercept -2 and slope 0.
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5.4.3 Competing methods

We perform the HiTS procedure based on the parameter choice in Section 5.4.1 and

compare the performance with that of the following competitors: Sparsified Binary

Segmentation (SBS, Cho and Fryzlewicz (2015)) and Double Cusum (DC, Cho (2016))

implemented in the R package hdbinseg and Informative Sparse projection (IS, Wang

and Samworth (2018)) available in the R package InspectChangepoint. The HiTS

methodology is implemented in our GitHub repository (Maeng, 2019c). Regarding the

tuning parameters for the competing methods, we follow the recommendation of each

paper or the corresponding R package.

5.4.4 Simulation results

We run 100 simulations and the summary of the results can be found in Tables 5.2 -

5.13. We report Monte-Carlo estimates of the Mean Squared Error of the estimated

signal defined as MSE=E
{

(1/T )∑n
i=1

∑T
t=1(fi,t − f̂i,t)2

}
and also give estimates of the

scaled Hausdorff distance defined in (4.39). The small size of the Hausdorff distance

indicates the better estimation of the change-point locations. We also report the

empirical distribution of N̂ − N where N̂ is the estimated number of change-points

and N is the true one. The average computation time in seconds is shown for each

method. We note that R code for all simulations can be downloaded from our GitHub

repository (Maeng, 2019c).

Result of scenario (S1)

The simulation results for all models and methods in scenario (S1) are summarised in

Tables 5.2 - 5.10. The HiTS procedure has a particular advantage over other methods in

terms of the estimation of the number and the locations of change-points when the level

of sparsity is extreme (only one observation X i includes true change-points i.e. n=100
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and sparsity=0.01) in which other competing methods significantly underperform. The

HiTS algorithm also outperforms in the case of “complete-overlap”, while it is slightly

less attractive when the level of sparsity is either “half-overlap” or “no-overlap” in

which DC performs well and HiTS shows comparable results.

In all cases considered, all four methods including HiTS show better performances

in (M2) with sparsity=0.1 compared to those in (M1) with sparsity=0.01. The only

difference between models (M1) and (M2) is the jump size where the jump sizes of

(M1) is 1.5 times larger than those of (M2). This implies that when a small number

of change-points exist (which is 2 in models (M1) and (M2)), it is easier for all four

methods to detect the weaker but denser signal than stronger but sparse signal. In

model (M3) which includes three change-points with varying jump sizes, HiTS, SBS

and IS give comparable performance to DC when sparsity level is 0.1 or 0.7, while DC

exhibits better performance than others when sparsity is 0.01.

We see that HiTS is particularly attractive when relatively many (≥ 3) true change-

points exist ((M4) and (M6)) or in the case of extremely frequent change-points in (M5).

HiTS shows its robustness in estimating the number and the location of change-points

in all sparsity levels and all sizes of n considered, except when sparsity is 0.01 in (M5)

and (M6) in which no methods perform well. IS gives comparable performance to HiTS

only in the case of “complete-overlap” and “half-overlap” with the sparsity level 0.7

while SBS and DC always significantly underestimate.

In all models (M1)-(M6), all four methods tend to show better performances in terms

of the estimation of the number and the locations of change-points as the dimension n

increases under any fixed level of overlap or as the level of overlap increases in order of

“no-overlap”, “half-overlap” and “complete-overlap” under any fixed n. With respect

to computation time, HiTS is very fast (less than 1.5 seconds) in all cases and the

computation time does not increase proportional to the dimension, while SBS, DC and
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IS are much slower than HiTS especially when either the dimension n is larger than

equal to 300 or the length of data sequences T is larger than equal to 500.

Result of scenario (S2)

The summary of the simulation results for all models and methods in scenario (S2)

can be found in Tables 5.11 - 5.13. As is in scenario (S1), HiTS performs well not only

in single change-point but also in multiple and/or frequent change-points. In general,

the HiTS procedure shows better performance as the level of overlap increases in order

of “no-overlap”, “half-overlap” and “complete-overlap” under any fixed n and a fixed

sparsity level.

When the length of data sequences T is relatively larger than the dimension of the

data n, in any model, the estimation of the number of change-points of HiTS tends to

be improved when the sparsity level increases in the cases of “complete-overlap” and

“half-overlap”, but the tendency is not clear in “no-overlap” case. When the level of

sparsity is extreme (i.e. n=100 and sparsity=0.01), HiTS relatively underperforms in

(M2)-(M4) in all cases of overlap.
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(a) (M1) bump (b) (M2) little.bump

(c) (M3) three (d) (M4) teeth

(e) (M5) extreme.teeth (f) (M6) blocks

Fig. 5.4 Examples of data with its underlying signal studied in Section 5.4.2 in scenario
(S1). (a)-(f) visualisation of the data matrix X when n=100, sparsity=0.1 and
“complete-overlap” case.
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Table 5.2 Distribution of N̂ − N for models (M1)-(M6) and all methods over 100 simulation runs in the “complete-overlap” case with n = 100
in scenario (S1). Also the average MSE (Mean Squared Error) of the estimated signal f̂ , the average Hausdorff distance dH and the average
computational time in seconds using an Intel Core i9 3.6 GHz CPU with 8 GB of RAM, all over 100 simulations. Bold: methods within 10% of the
highest empirical frequency of N̂ − N = 0 or within 10% of the lowest empirical average dH(×102).

N̂ −N N̂ −N
Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

0.01

HiTS 0 16 2 77 2 2 1 3.10 10.29 0.16

(M4)

0.01

HiTS 56 27 0 17 0 0 0 2.53 22.79 0.31
SBS 0 100 0 0 0 0 0 1.88 34.00 1.17 SBS 100 0 0 0 0 0 0 1.34 50.00 1.55
DC 0 65 0 34 1 0 0 2.29 22.66 2.84 DC 100 0 0 0 0 0 0 1.47 45.47 3.89
IS 0 89 3 5 3 0 0 2.06 31.69 0.36 IS 100 0 0 0 0 0 0 1.38 48.52 0.73

0.1

HiTS 0 0 0 92 3 4 1 3.50 1.57 0.19

0.1

HiTS 0 0 0 98 1 1 0 3.89 0.68 0.31
SBS 0 67 0 33 0 0 0 7.68 23.05 1.18 SBS 100 0 0 0 0 0 0 10.34 50.00 1.56
DC 0 11 0 83 6 0 0 3.97 4.63 2.87 DC 100 0 0 0 0 0 0 10.34 50.00 5.20
IS 0 0 0 88 10 1 1 3.21 1.40 0.36 IS 0 0 0 79 15 5 1 3.56 0.87 0.78

0.7

HiTS 0 0 0 95 2 3 0 3.15 0.56 0.20

0.7

HiTS 0 0 0 99 0 1 0 3.43 0.07 0.31
SBS 0 0 0 100 0 0 0 3.01 0.01 1.18 SBS 100 0 0 0 0 0 0 70.34 50.00 1.57
DC 0 0 0 98 2 0 0 3.01 0.25 2.84 DC 100 0 0 0 0 0 0 70.34 50.00 5.15
IS 0 0 0 94 5 1 0 3.08 0.68 0.37 IS 0 0 0 90 7 3 0 3.42 0.31 0.78

(M2)

0.01

HiTS 0 62 5 30 3 0 0 2.07 26.23 0.16

(M5)

0.01

HiTS 100 0 0 0 0 0 0 4.69 20.11 0.37
SBS 0 100 0 0 0 0 0 1.39 34.00 1.18 SBS 100 0 0 0 0 0 0 2.45 49.88 1.92
DC 0 92 0 8 0 0 0 1.52 31.40 2.78 DC 100 0 0 0 0 0 0 2.45 49.75 5.12
IS 0 96 4 0 0 0 0 1.44 33.94 0.36 IS 100 0 0 0 0 0 0 2.45 49.78 1.10

0.1

HiTS 0 1 1 90 4 3 1 3.84 5.06 0.15

0.1

HiTS 0 0 0 99 0 1 0 8.55 0.28 0.39
SBS 0 93 1 6 0 0 0 4.86 32.09 1.18 SBS 100 0 0 0 0 0 0 22.66 50.00 1.95
DC 0 73 0 22 5 0 0 4.59 26.07 2.86 DC 100 0 0 0 0 0 0 22.66 50.00 7.14
IS 0 0 0 84 14 1 1 3.34 2.07 0.36 IS 0 0 0 61 32 7 0 8.19 0.34 1.34

0.7

HiTS 0 0 0 91 6 3 0 3.73 1.21 0.17

0.7

HiTS 0 0 0 100 0 0 0 8.00 0.00 0.39
SBS 0 35 0 65 0 0 0 12.25 12.17 1.19 SBS 100 0 0 0 0 0 0 157.45 50.00 1.99
DC 0 13 0 85 2 0 0 6.37 4.71 2.84 DC 100 0 0 0 0 0 0 157.45 50.00 7.14
IS 0 0 0 90 9 1 0 3.14 1.07 0.36 IS 0 0 0 91 9 0 0 8.02 0.07 1.35

(M3)

0.01

HiTS 4 52 29 15 0 0 0 1.58 23.57 0.27

(M6)

0.01

HiTS 95 2 1 2 0 0 0 0.81 14.75 0.49
SBS 69 27 4 0 0 0 0 1.21 42.35 1.36 SBS 100 0 0 0 0 0 0 0.62 44.69 2.79
DC 0 39 32 29 0 0 0 1.65 18.77 3.27 DC 100 0 0 0 0 0 0 0.66 22.50 8.61
IS 31 54 13 1 0 0 1 1.37 32.56 0.55 IS 100 0 0 0 0 0 0 0.60 30.60 2.00

0.1

HiTS 0 0 13 87 0 0 0 2.49 5.53 0.26

0.1

HiTS 1 15 10 74 0 0 0 1.51 1.22 0.50
SBS 0 5 17 78 0 0 0 2.31 5.92 1.36 SBS 100 0 0 0 0 0 0 3.69 32.23 2.83
DC 0 0 1 98 1 0 0 2.14 0.92 3.26 DC 100 0 0 0 0 0 0 2.88 25.80 12.21
IS 0 0 0 96 4 0 0 2.08 0.44 0.56 IS 0 1 0 64 20 11 4 1.33 0.78 2.06

0.7

HiTS 0 0 0 98 1 1 0 2.37 0.47 0.26

0.7

HiTS 0 0 0 100 0 0 0 1.33 0.08 0.50
SBS 0 0 0 100 0 0 0 2.08 0.06 1.35 SBS 100 0 0 0 0 0 0 18.05 25.60 2.95
DC 0 0 0 99 1 0 0 2.02 0.08 3.26 DC 100 0 0 0 0 0 0 19.26 26.77 12.34
IS 0 0 0 96 4 0 0 2.04 0.26 0.56 IS 0 0 0 80 14 6 0 1.23 0.55 2.05
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Table 5.3 Distribution of N̂ − N for models (M1)-(M6) and all methods over 100 simulation runs in the “complete-overlap” case with n = 300
in scenario (S1). Also the average MSE (Mean Squared Error) of the estimated signal f̂ , the average Hausdorff distance dH and the average
computational time in seconds using an Intel Core i9 3.6 GHz CPU with 8 GB of RAM, all over 100 simulations. Bold: methods within 10% of the
highest empirical frequency of N̂ − N = 0 or within 10% of the lowest empirical average dH(×102).

N̂ −N N̂ −N
Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

0.01

HiTS 0 4 2 89 3 2 0 9.61 6.50 0.37

(M4)

0.01

HiTS 13 19 0 68 0 0 0 9.89 6.99 0.52
SBS 0 98 1 1 0 0 0 5.70 33.69 1.77 SBS 100 0 0 0 0 0 0 4.00 49.74 2.89
DC 0 53 0 47 0 0 0 7.33 18.77 6.11 DC 100 0 0 0 0 0 0 4.55 43.55 8.60
IS 0 78 1 17 2 2 0 6.64 27.54 3.45 IS 100 0 0 0 0 0 0 4.38 45.42 5.14

0.1

HiTS 0 0 0 94 1 5 0 10.00 1.17 0.36

0.1

HiTS 0 0 0 100 0 0 0 10.86 0.43 0.53
SBS 0 22 0 78 0 0 0 13.72 7.61 1.78 SBS 100 0 0 0 0 0 0 30.99 50.00 2.90
DC 0 2 0 96 2 0 0 9.81 1.14 6.21 DC 100 0 0 0 0 0 0 30.99 50.00 9.92
IS 0 0 0 75 21 4 0 10.04 3.15 3.55 IS 0 0 0 76 13 8 3 10.52 0.89 5.68

0.7

HiTS 0 0 0 96 0 4 0 9.59 0.47 0.35

0.7

HiTS 0 0 0 100 0 0 0 10.14 0.01 0.53
SBS 0 0 0 100 0 0 0 9.01 0.00 1.78 SBS 100 0 0 0 0 0 0 210.99 50.00 2.95
DC 0 0 0 99 1 0 0 9.04 0.11 6.22 DC 100 0 0 0 0 0 0 210.99 50.00 9.90
IS 0 0 0 83 16 1 0 9.64 2.04 3.55 IS 0 0 0 84 10 5 1 10.31 0.58 5.69

(M2)

0.01

HiTS 0 64 4 32 0 0 0 5.96 25.65 0.38

(M5)

0.01

HiTS 85 7 0 8 0 0 0 19.72 9.53 0.66
SBS 0 99 1 0 0 0 0 4.19 34.00 1.77 SBS 100 0 0 0 0 0 0 7.37 49.02 3.91
DC 0 91 2 7 0 0 0 4.57 31.74 6.05 DC 100 0 0 0 0 0 0 7.34 49.75 11.53
IS 0 87 3 5 4 1 0 5.01 31.42 3.44 IS 100 0 0 0 0 0 0 7.42 49.35 6.70

0.1

HiTS 0 0 0 94 1 5 0 10.63 2.82 0.37

0.1

HiTS 0 0 0 100 0 0 0 24.58 0.13 0.67
SBS 0 63 0 37 0 0 0 13.05 22.09 1.78 SBS 100 0 0 0 0 0 0 68.02 48.84 3.98
DC 0 55 0 44 1 0 0 12.46 19.27 6.13 DC 100 0 0 0 0 0 0 67.99 50.00 13.65
IS 0 0 0 75 21 4 0 10.14 3.24 3.55 IS 0 0 0 58 17 14 11 24.72 0.42 9.36

0.7

HiTS 0 0 0 95 0 5 0 9.97 0.67 0.36

0.7

HiTS 0 0 0 100 0 0 0 24.19 0.01 0.68
SBS 0 6 0 94 0 0 0 14.06 2.16 1.78 SBS 100 0 0 0 0 0 0 472.34 50.00 4.05
DC 0 0 0 99 1 0 0 9.04 0.11 6.22 DC 100 0 0 0 0 0 0 472.34 50.00 13.64
IS 0 0 0 81 17 2 0 9.74 2.32 3.55 IS 0 0 0 97 2 1 0 24.11 0.03 9.38

(M3)

0.01

HiTS 0 26 49 25 0 0 0 5.10 20.16 0.44

(M6)

0.01

HiTS 80 19 0 1 0 0 0 2.70 9.89 0.93
SBS 56 32 10 2 0 0 0 3.76 38.68 2.34 SBS 100 0 0 0 0 0 0 1.87 43.57 6.31
DC 0 6 36 58 0 0 0 5.55 11.32 7.19 DC 100 0 0 0 0 0 0 2.12 20.95 19.50
IS 0 35 37 20 5 3 0 5.12 19.21 4.41 IS 99 1 0 0 0 0 0 2.00 22.46 10.78

0.1

HiTS 0 0 3 95 1 1 0 6.82 2.28 0.44

0.1

HiTS 0 6 0 94 0 0 0 4.14 0.66 0.94
SBS 0 0 2 98 0 0 0 6.16 0.70 2.34 SBS 100 0 0 0 0 0 0 8.70 25.87 6.41
DC 0 0 0 100 0 0 0 6.07 0.13 7.19 DC 100 0 0 0 0 0 0 8.63 25.80 23.75
IS 0 0 0 86 9 5 0 6.35 1.32 4.47 IS 0 0 0 80 13 6 1 3.74 0.50 11.29

0.7

HiTS 0 0 0 98 1 1 0 6.79 0.42 0.44

0.7

HiTS 0 0 0 100 0 0 0 3.80 0.05 0.93
SBS 0 0 0 100 0 0 0 6.02 0.00 2.35 SBS 100 0 0 0 0 0 0 53.29 25.50 6.77
DC 0 0 0 100 0 0 0 6.01 0.00 7.19 DC 100 0 0 0 0 0 0 55.02 25.80 23.94
IS 0 0 0 88 8 4 0 6.29 1.08 4.48 IS 0 0 0 85 12 2 1 3.68 0.36 11.29
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Table 5.4 Distribution of N̂ − N for models (M1)-(M6) and all methods over 100 simulation runs in the “complete-overlap” case with n = 500
in scenario (S1). Also the average MSE (Mean Squared Error) of the estimated signal f̂ , the average Hausdorff distance dH and the average
computational time in seconds using an Intel Core i9 3.6 GHz CPU with 8 GB of RAM, all over 100 simulations. Bold: methods within 10% of the
highest empirical frequency of N̂ − N = 0 or within 10% of the lowest empirical average dH(×102).

N̂ −N N̂ −N
Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

0.01

HiTS 0 4 0 86 6 4 0 16.25 5.88 0.48

(M4)

0.01

HiTS 6 12 0 82 0 0 0 16.97 4.03 0.73
SBS 0 95 1 4 0 0 0 9.68 32.68 2.34 SBS 100 0 0 0 0 0 0 6.74 49.06 4.07
DC 0 40 0 59 1 0 0 12.98 14.61 9.51 DC 100 0 0 0 0 0 0 8.05 40.82 13.53
IS 0 76 0 17 4 3 0 11.33 26.83 13.08 IS 96 2 1 1 0 0 0 8.82 37.44 17.12

0.1

HiTS 0 0 0 89 7 4 0 16.64 1.35 0.48

0.1

HiTS 0 0 0 100 0 0 0 17.90 0.43 0.73
SBS 0 9 0 91 0 0 0 18.25 3.16 2.35 SBS 100 0 0 0 0 0 0 51.68 49.74 4.12
DC 0 2 0 97 1 0 0 15.81 0.79 9.49 DC 100 0 0 0 0 0 0 51.67 50.00 14.99
IS 0 0 0 82 14 3 1 16.23 2.27 13.47 IS 0 0 0 66 19 12 3 17.62 1.28 19.32

0.7

HiTS 0 0 0 91 5 4 0 16.04 0.95 0.47

0.7

HiTS 0 0 0 100 0 0 0 16.81 0.01 0.73
SBS 0 0 0 100 0 0 0 14.97 0.00 2.35 SBS 100 0 0 0 0 0 0 351.67 50.00 4.18
DC 0 0 0 100 0 0 0 14.97 0.00 9.56 DC 100 0 0 0 0 0 0 351.67 50.00 14.97
IS 0 0 0 91 8 1 0 15.53 1.21 13.45 IS 0 0 0 87 12 1 0 16.90 0.48 19.36

(M2)

0.01

HiTS 0 52 4 41 2 1 0 11.11 21.81 0.49

(M5)

0.01

HiTS 57 24 1 18 0 0 0 37.32 5.26 0.94
SBS 0 97 0 3 0 0 0 7.20 33.07 2.35 SBS 100 0 0 0 0 0 0 12.27 49.01 5.75
DC 0 92 1 6 1 0 0 7.61 31.87 9.52 DC 100 0 0 0 0 0 0 12.22 50.00 18.23
IS 0 77 4 13 5 1 0 9.16 28.86 13.07 IS 100 0 0 0 0 0 0 12.39 49.18 20.52

0.1

HiTS 0 0 0 90 6 4 0 17.64 2.81 0.49

0.1

HiTS 0 0 0 100 0 0 0 40.41 0.08 0.97
SBS 0 51 0 49 0 0 0 20.22 17.71 2.35 SBS 100 0 0 0 0 0 0 113.32 49.75 5.87
DC 0 56 0 42 2 0 0 20.85 19.71 9.47 DC 100 0 0 0 0 0 0 113.31 50.00 20.63
IS 0 0 0 83 12 3 2 16.33 2.13 13.45 IS 0 0 0 46 21 15 18 41.40 0.55 30.63

0.7

HiTS 0 0 0 91 4 5 0 16.81 1.10 0.47

0.7

HiTS 0 0 0 100 0 0 0 39.97 0.00 0.98
SBS 0 2 0 98 0 0 0 17.65 0.70 2.35 SBS 100 0 0 0 0 0 0 787.23 50.00 5.95
DC 0 0 0 99 1 0 0 15.02 0.16 9.57 DC 100 0 0 0 0 0 0 787.23 50.00 20.57
IS 0 0 0 86 11 3 0 15.90 1.75 13.46 IS 0 0 0 95 5 0 0 40.03 0.04 30.47

(M3)

0.01

HiTS 0 11 50 38 1 0 0 9.08 16.69 0.61

(M6)

0.01

HiTS 68 24 2 6 0 0 0 4.71 8.84 1.37
SBS 27 53 14 6 0 0 0 6.75 30.48 3.26 SBS 100 0 0 0 0 0 0 3.08 42.94 10.24
DC 0 5 22 72 1 0 0 9.57 7.81 11.29 DC 100 0 0 0 0 0 0 3.55 20.10 31.15
IS 0 10 31 48 8 3 0 9.55 11.79 15.46 IS 92 3 2 2 1 0 0 3.84 18.78 30.22

0.1

HiTS 0 0 2 96 1 1 0 11.27 2.04 0.61

0.1

HiTS 0 0 1 99 0 0 0 6.62 0.33 1.38
SBS 0 0 0 100 0 0 0 10.08 0.12 3.27 SBS 100 0 0 0 0 0 0 14.27 25.43 10.45
DC 0 0 0 100 0 0 0 10.01 0.01 11.26 DC 100 0 0 0 0 0 0 14.49 25.99 35.42
IS 0 0 0 83 12 4 1 10.64 1.56 15.60 IS 0 0 0 64 18 14 4 6.38 1.03 31.91

0.7

HiTS 0 0 0 99 0 1 0 10.83 0.27 0.61

0.7

HiTS 0 0 0 100 0 0 0 6.22 0.03 1.35
SBS 0 0 0 100 0 0 0 10.00 0.00 3.27 SBS 100 0 0 0 0 0 0 89.60 25.60 10.71
DC 0 0 0 100 0 0 0 10.00 0.00 11.25 DC 100 0 0 0 0 0 0 90.77 25.60 34.53
IS 0 0 0 92 6 1 1 10.31 0.74 15.59 IS 0 0 0 70 20 6 4 6.26 0.82 31.59
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Table 5.5 Distribution of N̂ − N for models (M1)-(M6) and all methods over 100 simulation runs in the “half-overlap” case with n = 100
in scenario (S1). Also the average MSE (Mean Squared Error) of the estimated signal f̂ , the average Hausdorff distance dH and the average
computational time in seconds using an Intel Core i9 3.6 GHz CPU with 8 GB of RAM, all over 100 simulations. Bold: methods within 10% of the
highest empirical frequency of N̂ − N = 0 or within 10% of the lowest empirical average dH(×102).

N̂ −N N̂ −N
Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

0.01

HiTS 0 16 2 77 2 2 1 3.10 10.29 0.16

(M4)

0.01

HiTS 56 27 0 17 0 0 0 2.53 22.79 0.30
SBS 0 100 0 0 0 0 0 1.88 34.00 1.19 SBS 100 0 0 0 0 0 0 1.34 50.00 1.53
DC 0 63 0 36 1 0 0 2.32 22.11 2.88 DC 100 0 0 0 0 0 0 1.47 45.11 3.86
IS 0 89 3 5 3 0 0 2.06 31.69 0.36 IS 100 0 0 0 0 0 0 1.38 48.52 0.74

0.1

HiTS 0 0 0 92 3 4 1 3.52 2.04 0.15

0.1

HiTS 0 0 0 99 0 1 0 3.92 1.08 0.30
SBS 0 0 4 96 0 0 0 3.16 1.58 1.22 SBS 100 0 0 0 0 0 0 8.12 40.33 1.54
DC 0 0 0 98 2 0 0 3.15 0.67 2.89 DC 16 84 0 0 0 0 0 4.47 12.27 3.94
IS 0 0 0 91 8 0 1 3.14 1.14 0.37 IS 0 0 0 65 25 9 1 3.67 1.17 0.78

0.7

HiTS 0 0 0 94 3 3 0 3.25 0.67 0.13

0.7

HiTS 0 0 0 99 0 1 0 3.51 0.13 0.30
SBS 0 0 0 100 0 0 0 3.04 0.02 1.24 SBS 100 0 0 0 0 0 0 49.44 29.92 1.56
DC 0 0 0 99 1 0 0 2.99 0.11 2.89 DC 100 0 0 0 0 0 0 51.76 35.40 5.11
IS 0 0 0 94 5 0 1 3.09 0.67 0.37 IS 0 0 0 89 8 3 0 3.43 0.34 0.78

(M2)

0.01

HiTS 0 62 5 30 3 0 0 2.07 26.23 0.15

(M5)

0.01

HiTS 100 0 0 0 0 0 0 4.69 20.11 0.37
SBS 0 100 0 0 0 0 0 1.39 34.00 1.19 SBS 100 0 0 0 0 0 0 2.45 49.73 1.91
DC 0 94 0 5 1 0 0 1.50 32.16 2.78 DC 100 0 0 0 0 0 0 2.45 49.75 5.11
IS 0 96 4 0 0 0 0 1.44 33.94 0.36 IS 100 0 0 0 0 0 0 2.45 49.78 1.11

0.1

HiTS 0 1 11 78 7 2 1 3.76 8.41 0.12

0.1

HiTS 0 7 0 92 0 1 0 8.64 0.54 0.38
SBS 0 0 29 71 0 0 0 3.25 10.26 1.22 SBS 100 0 0 0 0 0 0 17.25 25.00 1.95
DC 0 5 10 84 1 0 0 3.33 6.38 2.88 DC 100 0 0 0 0 0 0 17.25 25.00 6.70
IS 0 0 0 90 9 0 1 3.21 1.61 0.37 IS 11 5 0 49 27 7 1 8.36 1.95 1.29

0.7

HiTS 0 0 0 92 5 3 0 3.83 1.52 0.13

0.7

HiTS 0 0 0 100 0 0 0 8.01 0.00 0.38
SBS 0 0 0 100 0 0 0 3.13 0.16 1.23 SBS 100 0 0 0 0 0 0 118.33 25.00 1.99
DC 0 0 0 99 1 0 0 3.01 0.12 2.89 DC 100 0 0 0 0 0 0 118.33 25.00 7.03
IS 0 0 0 93 6 0 1 3.10 0.74 0.37 IS 0 0 0 87 13 0 0 8.03 0.11 1.29

(M3)

0.01

HiTS 4 52 29 15 0 0 0 1.58 23.57 0.26

(M6)

0.01

HiTS 95 2 1 2 0 0 0 0.81 14.75 0.48
SBS 69 27 4 0 0 0 0 1.21 42.38 1.35 SBS 100 0 0 0 0 0 0 0.62 45.10 2.77
DC 0 42 31 27 0 0 0 1.63 19.20 3.23 DC 100 0 0 0 0 0 0 0.66 22.40 8.57
IS 31 54 13 1 0 0 1 1.37 32.56 0.55 IS 100 0 0 0 0 0 0 0.60 30.60 1.95

0.1

HiTS 0 0 13 87 0 0 0 2.50 5.59 0.26

0.1

HiTS 14 24 6 56 0 0 0 1.48 2.59 0.48
SBS 0 11 16 73 0 0 0 2.61 7.78 1.35 SBS 100 0 0 0 0 0 0 2.94 22.27 2.81
DC 0 0 0 99 1 0 0 2.17 0.85 3.23 DC 100 0 0 0 0 0 0 1.55 5.06 8.31
IS 0 0 0 95 5 0 0 2.09 0.48 0.56 IS 0 31 3 42 15 7 2 1.31 2.48 2.01

0.7

HiTS 0 0 0 98 1 1 0 2.33 0.46 0.26

0.7

HiTS 0 0 0 100 0 0 0 1.36 0.14 0.48
SBS 0 0 0 100 0 0 0 2.39 0.28 1.35 SBS 100 0 0 0 0 0 0 11.16 14.24 2.93
DC 0 0 0 99 1 0 0 2.02 0.08 3.23 DC 100 0 0 0 0 0 0 5.42 5.10 11.91
IS 0 0 0 96 4 0 0 2.04 0.26 0.56 IS 0 0 0 79 16 5 0 1.24 0.56 2.01
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Table 5.6 Distribution of N̂ − N for models (M1)-(M6) and all methods over 100 simulation runs in the “half-overlap” case with n = 300
in scenario (S1). Also the average MSE (Mean Squared Error) of the estimated signal f̂ , the average Hausdorff distance dH and the average
computational time in seconds using an Intel Core i9 3.6 GHz CPU with 8 GB of RAM, all over 100 simulations. Bold: methods within 10% of the
highest empirical frequency of N̂ − N = 0 or within 10% of the lowest empirical average dH(×102).

N̂ −N N̂ −N
Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

0.01

HiTS 0 0 21 76 1 2 0 9.06 11.45 0.35

(M4)

0.01

HiTS 60 22 0 18 0 0 0 7.48 18.25 0.51
SBS 0 19 63 18 0 0 0 6.97 27.26 1.76 SBS 100 0 0 0 0 0 0 3.35 47.67 2.88
DC 0 1 13 86 0 0 0 8.75 5.46 6.17 DC 90 10 0 0 0 0 0 6.04 22.23 8.56
IS 0 1 64 22 12 1 0 8.09 24.72 3.50 IS 100 0 0 0 0 0 0 4.40 30.23 5.17

0.1

HiTS 0 0 0 94 1 5 0 10.06 1.52 0.34

0.1

HiTS 0 0 0 100 0 0 0 10.95 0.67 0.52
SBS 0 0 0 100 0 0 0 9.13 0.11 1.77 SBS 100 0 0 0 0 0 0 23.72 35.68 2.89
DC 0 0 0 100 0 0 0 9.03 0.02 6.16 DC 100 0 0 0 0 0 0 21.53 29.85 9.88
IS 0 0 0 76 20 4 0 9.98 2.99 3.55 IS 0 0 0 73 15 9 3 10.60 0.98 5.61

0.7

HiTS 0 0 0 96 0 3 1 9.70 0.49 0.34

0.7

HiTS 0 0 0 100 0 0 0 10.35 0.05 0.51
SBS 0 0 0 100 0 0 0 9.01 0.00 1.77 SBS 100 0 0 0 0 0 0 143.42 29.97 2.93
DC 0 0 0 100 0 0 0 9.01 0.00 6.16 DC 100 0 0 0 0 0 0 163.76 42.20 9.84
IS 0 0 0 84 14 2 0 9.64 1.94 3.54 IS 0 0 0 83 8 7 2 10.37 0.61 5.61

(M2)

0.01

HiTS 0 33 52 15 0 0 0 6.16 29.78 0.35

(M5)

0.01

HiTS 98 0 0 2 0 0 0 14.97 17.01 0.65
SBS 0 37 60 3 0 0 0 5.65 32.08 1.76 SBS 100 0 0 0 0 0 0 5.71 25.11 3.92
DC 0 22 51 27 0 0 0 6.59 24.69 6.15 DC 100 0 0 0 0 0 0 5.71 25.00 11.41
IS 0 42 48 9 1 0 0 5.83 32.14 3.46 IS 100 0 0 0 0 0 0 5.80 24.99 6.66

0.1

HiTS 0 0 6 89 1 4 0 10.53 4.97 0.35

0.1

HiTS 0 0 0 100 0 0 0 24.73 0.21 0.67
SBS 0 0 0 100 0 0 0 9.15 0.33 1.77 SBS 100 0 0 0 0 0 0 51.75 25.00 3.97
DC 0 0 2 98 0 0 0 9.29 1.41 6.17 DC 100 0 0 0 0 0 0 51.74 25.00 13.53
IS 0 0 0 76 20 4 0 9.99 2.99 3.55 IS 0 0 0 57 18 12 13 24.77 0.44 8.94

0.7

HiTS 0 0 0 94 1 5 0 10.43 1.03 0.35

0.7

HiTS 0 0 0 100 0 0 0 24.15 0.01 0.67
SBS 0 0 0 100 0 0 0 9.01 0.00 1.77 SBS 100 0 0 0 0 0 0 355.01 25.00 4.05
DC 0 0 0 100 0 0 0 9.01 0.00 6.16 DC 100 0 0 0 0 0 0 355.01 25.00 13.51
IS 0 0 0 81 18 1 0 9.71 2.33 3.54 IS 0 0 0 93 6 0 1 24.15 0.07 8.92

(M3)

0.01

HiTS 6 17 49 28 0 0 0 5.07 20.89 0.43

(M6)

0.01

HiTS 93 7 0 0 0 0 0 2.43 8.94 0.91
SBS 27 40 27 6 0 0 0 4.07 30.88 2.32 SBS 100 0 0 0 0 0 0 1.46 25.53 6.27
DC 1 6 43 49 1 0 0 5.43 13.56 7.21 DC 100 0 0 0 0 0 0 2.49 8.78 19.11
IS 43 21 23 10 2 1 0 4.12 33.16 4.34 IS 100 0 0 0 0 0 0 1.71 22.35 10.39

0.1

HiTS 0 0 3 95 1 1 0 6.89 2.35 0.43

0.1

HiTS 1 15 2 82 0 0 0 4.11 1.29 0.91
SBS 0 0 0 100 0 0 0 6.48 0.73 2.33 SBS 100 0 0 0 0 0 0 7.46 18.47 6.40
DC 0 0 0 99 1 0 0 6.12 0.22 7.16 DC 100 0 0 0 0 0 0 4.51 5.14 19.11
IS 0 0 0 86 9 5 0 6.36 1.34 4.47 IS 0 2 1 73 19 4 1 3.76 0.66 10.95

0.7

HiTS 0 0 0 97 2 1 0 6.75 0.44 0.43

0.7

HiTS 0 0 0 100 0 0 0 3.87 0.10 0.91
SBS 0 0 0 100 0 0 0 6.48 0.12 2.33 SBS 100 0 0 0 0 0 0 33.15 14.43 6.74
DC 0 0 0 100 0 0 0 6.01 0.00 7.15 DC 100 0 0 0 0 0 0 16.35 5.20 23.30
IS 0 0 0 86 10 4 0 6.32 1.32 4.47 IS 0 0 0 83 13 3 1 3.69 0.42 10.99
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Table 5.7 Distribution of N̂ − N for models (M1)-(M6) and all methods over 100 simulation runs in the “half-overlap” case with n = 500
in scenario (S1). Also the average MSE (Mean Squared Error) of the estimated signal f̂ , the average Hausdorff distance dH and the average
computational time in seconds using an Intel Core i9 3.6 GHz CPU with 8 GB of RAM, all over 100 simulations. Bold: methods within 10% of the
highest empirical frequency of N̂ − N = 0 or within 10% of the lowest empirical average dH(×102).

N̂ −N N̂ −N
Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

0.01

HiTS 0 0 8 83 5 4 0 16.10 7.58 0.46

(M4)

0.01

HiTS 17 18 2 63 0 0 0 15.92 7.18 0.70
SBS 0 12 36 52 0 0 0 13.45 16.24 2.33 SBS 100 0 0 0 0 0 0 6.09 47.69 4.06
DC 0 0 2 98 0 0 0 15.02 1.47 9.47 DC 74 26 0 0 0 0 0 11.68 17.36 13.53
IS 0 0 2 77 17 3 1 16.38 3.44 13.43 IS 99 1 0 0 0 0 0 8.47 33.05 17.17

0.1

HiTS 0 0 0 89 7 3 1 16.88 1.70 0.46

0.1

HiTS 0 0 0 100 0 0 0 17.90 0.66 0.72
SBS 0 0 0 100 0 0 0 14.97 0.00 2.34 SBS 100 0 0 0 0 0 0 39.12 33.52 4.13
DC 0 0 0 100 0 0 0 15.02 0.03 9.45 DC 100 0 0 0 0 0 0 37.50 30.80 15.09
IS 0 0 0 80 16 3 1 16.34 2.47 13.43 IS 0 0 0 67 18 12 3 17.65 1.25 19.38

0.7

HiTS 0 0 0 91 5 4 0 16.24 1.07 0.46

0.7

HiTS 0 0 0 100 0 0 0 16.81 0.03 0.71
SBS 0 0 0 100 0 0 0 14.97 0.00 2.33 SBS 100 0 0 0 0 0 0 235.81 29.98 4.15
DC 0 0 0 99 1 0 0 15.02 0.16 9.45 DC 100 0 0 0 0 0 0 278.98 45.20 14.94
IS 0 0 0 88 10 2 0 15.75 1.57 13.41 IS 0 0 0 84 14 2 0 16.97 0.59 19.01

(M2)

0.01

HiTS 0 29 35 33 3 0 0 11.59 23.92 0.47

(M5)

0.01

HiTS 90 2 0 8 0 0 0 32.99 8.34 0.91
SBS 0 31 51 18 0 0 0 10.50 27.28 2.32 SBS 100 0 0 0 0 0 0 11.00 25.40 5.77
DC 0 28 29 43 0 0 0 11.59 19.80 9.46 DC 100 0 0 0 0 0 0 10.99 25.00 18.03
IS 0 54 23 19 3 1 0 10.17 27.35 13.07 IS 100 0 0 0 0 0 0 11.38 24.96 20.34

0.1

HiTS 0 0 3 89 5 3 0 17.38 4.51 0.46

0.1

HiTS 0 0 0 100 0 0 0 40.66 0.18 0.93
SBS 0 0 0 100 0 0 0 15.12 0.26 2.33 SBS 100 0 0 0 0 0 0 86.24 25.00 5.85
DC 0 0 2 98 0 0 0 15.35 1.15 9.44 DC 100 0 0 0 0 0 0 86.23 25.00 20.44
IS 0 0 0 81 14 3 2 16.39 2.35 13.43 IS 0 0 0 41 20 21 18 41.53 0.60 29.45

0.7

HiTS 0 0 0 92 4 4 0 17.16 1.28 0.46

0.7

HiTS 0 0 0 100 0 0 0 40.00 0.00 0.93
SBS 0 0 0 100 0 0 0 14.97 0.00 2.34 SBS 100 0 0 0 0 0 0 591.67 25.00 5.95
DC 0 0 0 100 0 0 0 14.97 0.00 9.46 DC 100 0 0 0 0 0 0 591.67 25.00 20.42
IS 0 0 0 85 10 4 1 16.12 1.87 13.42 IS 0 0 0 92 7 1 0 40.07 0.07 29.29

(M3)

0.01

HiTS 0 7 53 39 1 0 0 9.14 16.43 0.59

(M6)

0.01

HiTS 82 14 2 2 0 0 0 4.44 8.13 1.31
SBS 18 40 34 8 0 0 0 7.22 27.66 3.24 SBS 100 0 0 0 0 0 0 2.93 25.16 10.22
DC 0 1 24 75 0 0 0 9.65 7.32 11.32 DC 100 0 0 0 0 0 0 4.36 6.94 30.72
IS 4 10 30 47 6 3 0 9.33 13.33 15.32 IS 96 1 2 1 0 0 0 3.79 13.10 29.71

0.1

HiTS 0 0 2 96 1 1 0 11.33 2.17 0.59

0.1

HiTS 0 7 1 92 0 0 0 6.60 0.80 1.32
SBS 0 0 0 100 0 0 0 10.42 0.42 3.24 SBS 100 0 0 0 0 0 0 11.97 18.00 10.35
DC 0 0 0 100 0 0 0 10.02 0.02 11.23 DC 99 1 0 0 0 0 0 7.49 5.10 30.76
IS 0 0 0 83 12 4 1 10.64 1.56 15.49 IS 0 1 0 62 18 14 5 6.40 1.15 31.29

0.7

HiTS 0 0 0 99 0 1 0 10.59 0.22 0.59

0.7

HiTS 0 0 0 100 0 0 0 6.34 0.09 1.31
SBS 0 0 0 100 0 0 0 10.27 0.04 3.25 SBS 100 0 0 0 0 0 0 55.19 14.34 10.79
DC 0 0 0 100 0 0 0 10.00 0.00 11.22 DC 100 0 0 0 0 0 0 27.24 5.10 34.30
IS 0 0 0 91 7 1 1 10.34 0.86 15.49 IS 0 0 0 67 22 7 4 6.29 0.88 31.15
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Table 5.8 Distribution of N̂ − N for models (M1)-(M6) and all methods over 100 simulation runs in the “no-overlap” case with n = 100 in scenario
(S1). Also the average MSE (Mean Squared Error) of the estimated signal f̂ , the average Hausdorff distance dH and the average computational
time in seconds using an Intel Core i9 3.6 GHz CPU with 8 GB of RAM, all over 100 simulations. Bold: methods within 10% of the highest
empirical frequency of N̂ − N = 0 or within 10% of the lowest empirical average dH(×102).

N̂ −N N̂ −N
Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

0.01

HiTS 0 16 2 77 2 2 1 3.10 10.29 0.17

(M4)

0.01

HiTS 56 27 0 17 0 0 0 2.53 22.79 0.31
SBS 0 99 1 0 0 0 0 1.89 33.99 1.19 SBS 100 0 0 0 0 0 0 1.34 50.00 1.53
DC 0 65 0 35 0 0 0 2.28 22.55 2.89 DC 100 0 0 0 0 0 0 1.48 45.30 3.87
IS 0 89 3 5 3 0 0 2.06 31.69 0.36 IS 100 0 0 0 0 0 0 1.38 48.52 0.75

0.1

HiTS 0 0 0 93 3 3 1 3.56 2.41 0.16

0.1

HiTS 0 0 0 99 0 1 0 3.93 1.27 0.31
SBS 0 0 27 73 0 0 0 4.20 11.37 1.21 SBS 100 0 0 0 0 0 0 6.02 29.21 1.54
DC 0 0 0 99 1 0 0 3.07 0.50 2.85 DC 51 49 0 0 0 0 0 4.82 11.13 3.82
IS 0 0 0 80 19 0 1 3.30 2.19 0.37 IS 0 1 0 65 29 3 2 3.68 1.47 0.78

0.7

HiTS 0 0 0 92 2 4 2 3.37 0.88 0.15

0.7

HiTS 0 0 0 99 0 1 0 3.54 0.16 0.31
SBS 0 0 10 90 0 0 0 10.91 6.17 1.21 SBS 100 0 0 0 0 0 0 34.44 20.81 1.55
DC 0 0 0 99 1 0 0 2.99 0.11 2.87 DC 100 0 0 0 0 0 0 34.33 20.21 5.10
IS 0 0 0 91 8 0 1 3.17 1.03 0.37 IS 0 0 0 84 12 4 0 3.47 0.44 0.78

(M2)

0.01

HiTS 0 62 5 30 3 0 0 2.07 26.23 0.17

(M5)

0.01

HiTS 100 0 0 0 0 0 0 4.69 20.11 0.38
SBS 0 100 0 0 0 0 0 1.39 34.00 1.20 SBS 100 0 0 0 0 0 0 2.45 49.73 1.91
DC 0 95 0 4 1 0 0 1.49 32.49 2.80 DC 100 0 0 0 0 0 0 2.45 49.75 5.11
IS 0 96 4 0 0 0 0 1.44 33.94 0.36 IS 100 0 0 0 0 0 0 2.45 49.78 1.11

0.1

HiTS 0 0 15 75 8 2 0 3.66 9.82 0.19

0.1

HiTS 0 2 0 97 0 1 0 8.64 0.45 0.38
SBS 0 2 56 42 0 0 0 3.53 18.29 1.20 SBS 100 0 0 0 0 0 0 11.62 25.00 1.94
DC 0 3 13 83 1 0 0 3.25 6.75 2.89 DC 100 0 0 0 0 0 0 11.62 24.95 5.30
IS 0 0 0 81 18 0 1 3.39 3.42 0.38 IS 16 5 4 26 30 13 6 8.63 3.41 1.28

0.7

HiTS 0 0 0 93 2 3 2 3.86 1.76 0.19

0.7

HiTS 0 0 0 100 0 0 0 8.00 0.00 0.38
SBS 0 0 1 99 0 0 0 3.74 1.32 1.21 SBS 100 0 0 0 0 0 0 78.89 25.00 1.99
DC 0 0 0 99 1 0 0 3.00 0.12 2.92 DC 100 0 0 0 0 0 0 78.89 25.00 7.02
IS 0 0 0 90 9 0 1 3.23 1.22 0.38 IS 0 0 0 50 39 11 0 8.14 0.36 1.29

(M3)

0.01

HiTS 4 52 29 15 0 0 0 1.58 23.57 0.26

(M6)

0.01

HiTS 95 2 1 2 0 0 0 0.81 14.75 0.49
SBS 70 27 3 0 0 0 0 1.21 42.59 1.35 SBS 100 0 0 0 0 0 0 0.62 44.91 2.78
DC 0 40 32 28 0 0 0 1.64 19.02 3.25 DC 100 0 0 0 0 0 0 0.66 22.39 8.58
IS 31 54 13 1 0 0 1 1.37 32.56 0.56 IS 100 0 0 0 0 0 0 0.60 30.60 1.95

0.1

HiTS 0 2 37 61 0 0 0 2.32 11.60 0.26

0.1

HiTS 22 36 4 38 0 0 0 1.41 3.47 0.49
SBS 0 28 50 22 0 0 0 2.62 20.05 1.35 SBS 100 0 0 0 0 0 0 1.70 19.66 2.81
DC 0 0 10 90 0 0 0 2.12 3.49 3.24 DC 100 0 0 0 0 0 0 1.41 7.99 8.28
IS 0 0 0 96 4 0 0 2.09 0.70 0.57 IS 7 30 8 33 12 7 3 1.33 3.33 2.00

0.7

HiTS 0 0 0 97 2 1 0 2.38 0.96 0.27

0.7

HiTS 0 0 0 100 0 0 0 1.40 0.16 0.49
SBS 0 0 2 98 0 0 0 4.43 2.64 1.37 SBS 100 0 0 0 0 0 0 7.55 17.17 2.92
DC 0 0 0 99 1 0 0 2.03 0.12 3.28 DC 100 0 0 0 0 0 0 7.16 15.91 11.86
IS 0 0 0 96 4 0 0 2.04 0.26 0.59 IS 0 0 0 79 15 6 0 1.26 0.65 2.01
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Table 5.9 Distribution of N̂ − N for models (M1)-(M6) and all methods over 100 simulation runs in the “no-overlap” case with n = 300 in scenario
(S1). Also the average MSE (Mean Squared Error) of the estimated signal f̂ , the average Hausdorff distance dH and the average computational
time in seconds using an Intel Core i9 3.6 GHz CPU with 8 GB of RAM, all over 100 simulations. Bold: methods within 10% of the highest
empirical frequency of N̂ − N = 0 or within 10% of the lowest empirical average dH(×102).

N̂ −N N̂ −N
Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

0.01

HiTS 0 0 18 78 2 2 0 9.13 10.71 0.35

(M4)

0.01

HiTS 66 17 1 16 0 0 0 7.16 18.30 0.52
SBS 0 14 55 31 0 0 0 7.53 22.30 1.77 SBS 100 0 0 0 0 0 0 3.18 45.64 2.88
DC 0 0 10 90 0 0 0 8.85 4.09 6.20 DC 98 2 0 0 0 0 0 5.20 20.29 8.56
IS 0 1 63 24 11 1 0 8.15 23.63 3.50 IS 100 0 0 0 0 0 0 3.63 24.86 5.14

0.1

HiTS 0 0 0 95 1 4 0 9.95 1.49 0.35

0.1

HiTS 0 0 0 100 0 0 0 10.98 0.77 0.52
SBS 0 0 28 72 0 0 0 12.02 10.64 1.77 SBS 100 0 0 0 0 0 0 16.79 24.36 2.90
DC 0 0 0 100 0 0 0 9.06 0.07 6.18 DC 100 0 0 0 0 0 0 16.38 20.03 9.86
IS 0 0 0 76 20 2 2 10.11 3.06 3.55 IS 0 0 0 74 15 7 4 10.63 1.01 5.61

0.7

HiTS 0 0 0 95 0 5 0 9.69 0.61 0.35

0.7

HiTS 0 0 0 100 0 0 0 10.33 0.06 0.52
SBS 0 0 18 82 0 0 0 40.72 7.87 1.77 SBS 100 0 0 0 0 0 0 102.88 20.24 2.93
DC 0 0 0 100 0 0 0 9.01 0.00 6.18 DC 100 0 0 0 0 0 0 103.91 20.65 9.84
IS 0 0 0 80 18 2 0 9.78 2.51 3.55 IS 0 0 0 80 11 5 4 10.45 0.74 5.61

(M2)

0.01

HiTS 0 22 62 15 1 0 0 6.50 28.69 0.36

(M5)

0.01

HiTS 100 0 0 0 0 0 0 14.03 15.66 0.65
SBS 0 30 67 3 0 0 0 5.87 30.41 1.76 SBS 100 0 0 0 0 0 0 4.59 25.02 3.93
DC 0 15 64 21 0 0 0 6.64 26.31 6.19 DC 100 0 0 0 0 0 0 4.59 25.00 11.43
IS 0 41 47 10 1 1 0 6.01 30.73 3.46 IS 100 0 0 0 0 0 0 4.63 25.00 6.66

0.1

HiTS 0 0 6 89 3 2 0 10.34 5.44 0.35

0.1

HiTS 0 0 0 100 0 0 0 24.74 0.22 0.67
SBS 0 0 37 63 0 0 0 9.81 12.79 1.76 SBS 100 0 0 0 0 0 0 34.86 24.98 3.97
DC 0 0 3 97 0 0 0 9.26 1.76 6.18 DC 100 0 0 0 0 0 0 34.85 25.00 13.55
IS 0 0 0 74 21 4 1 10.21 3.46 3.55 IS 0 0 0 35 27 17 21 25.16 0.60 8.97

0.7

HiTS 0 0 0 92 3 5 0 10.66 1.37 0.35

0.7

HiTS 0 0 0 100 0 0 0 24.14 0.01 0.66
SBS 0 0 0 100 0 0 0 9.23 0.12 1.76 SBS 100 0 0 0 0 0 0 236.61 25.00 4.07
DC 0 0 0 100 0 0 0 9.01 0.00 6.18 DC 100 0 0 0 0 0 0 236.62 25.00 13.53
IS 0 0 0 79 19 2 0 9.81 2.62 3.55 IS 0 0 0 69 23 5 3 24.38 0.20 8.95

(M3)

0.01

HiTS 0 38 45 17 0 0 0 4.66 21.41 0.43

(M6)

0.01

HiTS 99 1 0 0 0 0 0 2.20 11.05 0.92
SBS 2 43 46 9 0 0 0 4.45 23.64 2.33 SBS 100 0 0 0 0 0 0 1.38 23.87 6.31
DC 0 17 41 42 0 0 0 5.13 15.23 7.15 DC 100 0 0 0 0 0 0 2.26 11.27 19.09
IS 1 77 16 6 0 0 0 4.01 24.79 4.35 IS 100 0 0 0 0 0 0 1.56 21.38 10.44

0.1

HiTS 0 0 16 82 1 1 0 6.70 5.92 0.43

0.1

HiTS 2 30 6 62 0 0 0 4.04 2.03 0.92
SBS 0 3 29 68 0 0 0 7.17 9.51 2.33 SBS 100 0 0 0 0 0 0 4.76 18.75 6.42
DC 0 0 0 100 0 0 0 6.14 0.66 7.16 DC 100 0 0 0 0 0 0 4.13 11.07 21.79
IS 0 0 0 86 8 6 0 6.38 1.38 4.47 IS 0 2 1 72 17 6 2 3.80 0.72 11.01

0.7

HiTS 0 0 0 96 3 1 0 6.89 0.76 0.43

0.7

HiTS 0 0 0 100 0 0 0 3.90 0.11 0.92
SBS 0 0 0 100 0 0 0 8.14 0.60 2.33 SBS 100 0 0 0 0 0 0 18.86 15.05 6.72
DC 0 0 0 100 0 0 0 6.01 0.00 7.17 DC 100 0 0 0 0 0 0 26.47 20.50 23.10
IS 0 0 0 85 11 4 0 6.34 1.41 4.47 IS 0 0 0 82 12 5 1 3.71 0.48 11.03
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Table 5.10 Distribution of N̂ − N for models (M1)-(M6) and all methods over 100 simulation runs in the “no-overlap” case with n = 500
in scenario (S1). Also the average MSE (Mean Squared Error) of the estimated signal f̂ , the average Hausdorff distance dH and the average
computational time in seconds using an Intel Core i9 3.6 GHz CPU with 8 GB of RAM, all over 100 simulations. Bold: methods within 10% of the
highest empirical frequency of N̂ − N = 0 or within 10% of the lowest empirical average dH(×102).

N̂ −N N̂ −N
Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time Model sparsity Method ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

0.01

HiTS 0 0 13 79 5 3 0 15.57 8.59 0.46

(M4)

0.01

HiTS 30 25 4 41 0 0 0 14.65 10.04 0.72
SBS 0 2 56 42 0 0 0 13.24 19.19 2.33 SBS 100 0 0 0 0 0 0 5.61 40.20 4.08
DC 0 0 4 95 1 0 0 14.97 2.34 9.54 DC 98 2 0 0 0 0 0 8.92 18.20 13.46
IS 0 0 23 65 6 4 2 15.45 10.73 13.37 IS 100 0 0 0 0 0 0 6.02 20.42 16.87

0.1

HiTS 0 0 0 90 6 3 1 16.82 1.83 0.46

0.1

HiTS 0 0 0 100 0 0 0 17.98 0.73 0.73
SBS 0 0 19 81 0 0 0 18.89 7.82 2.34 SBS 100 0 0 0 0 0 0 27.63 22.15 4.08
DC 0 0 0 99 1 0 0 15.06 0.20 9.47 DC 100 0 0 0 0 0 0 27.35 20.01 15.20
IS 0 0 0 81 14 3 2 16.42 2.37 13.44 IS 0 0 0 64 19 13 4 17.75 1.31 19.45

0.7

HiTS 0 0 0 90 7 3 0 16.12 1.03 0.46

0.7

HiTS 0 0 0 100 0 0 0 16.83 0.03 0.75
SBS 0 0 19 81 0 0 0 70.65 8.30 2.34 SBS 100 0 0 0 0 0 0 171.52 20.15 4.29
DC 0 0 0 100 0 0 0 14.97 0.00 9.54 DC 100 0 0 0 0 0 0 174.04 20.91 15.52
IS 0 0 0 86 11 3 0 15.92 1.83 13.42 IS 0 0 0 81 15 4 0 17.07 0.72 19.86

(M2)

0.01

HiTS 0 11 66 21 2 0 0 11.61 26.66 0.47

(M5)

0.01

HiTS 94 4 0 2 0 0 0 29.64 9.99 0.96
SBS 0 8 82 10 0 0 0 10.90 27.96 2.33 SBS 100 0 0 0 0 0 0 7.57 25.06 6.00
DC 0 8 60 31 1 0 0 11.88 23.10 9.47 DC 100 0 0 0 0 0 0 7.57 24.97 18.83
IS 0 23 60 16 0 1 0 10.81 28.56 13.14 IS 100 0 0 0 0 0 0 7.65 24.90 21.37

0.1

HiTS 0 0 5 87 5 3 0 17.17 5.27 0.47

0.1

HiTS 0 0 0 100 0 0 0 40.50 0.15 0.95
SBS 0 0 17 83 0 0 0 15.69 6.22 2.34 SBS 100 0 0 0 0 0 0 58.08 24.97 5.84
DC 0 0 3 96 1 0 0 15.30 1.66 9.49 DC 100 0 0 0 0 0 0 58.06 25.00 20.43
IS 0 0 0 80 14 4 2 16.60 2.69 13.45 IS 0 0 0 22 26 20 32 42.13 0.75 29.64

0.7

HiTS 0 0 0 91 5 4 0 17.58 1.34 0.47

0.7

HiTS 0 0 0 100 0 0 0 39.97 0.00 0.96
SBS 0 0 0 100 0 0 0 15.16 0.06 2.34 SBS 100 0 0 0 0 0 0 394.27 25.00 5.96
DC 0 0 0 100 0 0 0 14.97 0.00 9.55 DC 100 0 0 0 0 0 0 394.29 25.00 20.43
IS 0 0 0 83 14 3 0 16.10 2.16 13.44 IS 0 0 0 71 26 2 1 40.35 0.20 29.39

(M3)

0.01

HiTS 0 35 47 17 1 0 0 7.66 21.06 0.60

(M6)

0.01

HiTS 94 6 0 0 0 0 0 3.76 11.83 1.35
SBS 1 76 22 1 0 0 0 6.27 25.10 3.25 SBS 100 0 0 0 0 0 0 2.48 21.40 10.34
DC 0 24 41 35 0 0 0 8.08 16.71 11.26 DC 100 0 0 0 0 0 0 3.56 12.65 30.73
IS 0 85 11 4 0 0 0 6.09 24.50 15.04 IS 100 0 0 0 0 0 0 2.62 21.34 29.24

0.1

HiTS 0 0 8 90 2 0 0 11.09 3.94 0.60

0.1

HiTS 1 15 2 82 0 0 0 6.59 1.27 1.35
SBS 0 0 20 79 1 0 0 11.57 6.64 3.25 SBS 100 0 0 0 0 0 0 7.92 18.88 10.43
DC 0 0 0 100 0 0 0 10.07 0.19 11.25 DC 100 0 0 0 0 0 0 6.95 14.01 34.40
IS 0 0 0 83 12 4 1 10.65 1.58 15.52 IS 0 1 0 59 21 13 6 6.45 1.18 31.40

0.7

HiTS 0 0 0 99 0 1 0 10.73 0.38 0.60

0.7

HiTS 0 0 0 100 0 0 0 6.37 0.10 1.35
SBS 0 0 0 100 0 0 0 11.21 0.18 3.26 SBS 100 0 0 0 0 0 0 29.65 13.99 10.86
DC 0 0 0 100 0 0 0 10.00 0.00 11.25 DC 100 0 0 0 0 0 0 45.66 21.23 34.73
IS 0 0 0 87 10 2 1 10.48 1.20 15.52 IS 0 0 0 64 23 9 4 6.32 0.90 31.46
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(a) (M1) one (b) (M2) wave

(c) (M3) mix1 (d) (M4) mix2

(e) (M5) extreme.wave (f) (M6) lin.sgmts

Fig. 5.5 Examples of data with its underlying signal studied in Section 5.4.2 in scenario
(S2). (a)-(f) visualisation of the data matrix X when n=100, sparsity=0.1 and
“complete-overlap” case.
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Table 5.11 Distribution of N̂ − N for models (M1)-(M6) and all methods over 100 simulation runs in the “complete-overlap” case in scenario (S2).
Also the average MSE (Mean Squared Error) of the estimated signal f̂ , the average Hausdorff distance dH and the average computational time in
seconds using an Intel Core i9 3.6 GHz CPU with 8 GB of RAM, all over 100 simulations.

N̂ −N N̂ −N

Model n sparsity ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time Model n sparsity ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

100
0.01 0 0 6 91 2 1 0 4.07 11.24 2.49

(M4)

100
0.01 6 27 33 28 4 2 0 4.93 8.13 8.20

0.1 0 0 0 97 2 1 0 4.33 6.63 2.49 0.1 0 0 4 91 5 0 0 5.84 3.59 8.01
0.7 0 0 0 93 5 2 0 5.88 7.78 2.52 0.7 0 0 0 92 8 0 0 9.38 2.72 10.19

300
0.01 0 0 0 96 3 1 0 12.44 8.39 6.88

300
0.01 1 8 29 47 15 0 0 15.29 6.10 22.61

0.1 0 0 0 97 2 1 0 12.79 5.73 6.93 0.1 0 0 0 94 6 0 0 16.91 2.92 22.31
0.7 0 0 0 92 6 2 0 18.55 8.27 7.11 0.7 0 0 1 85 14 0 0 30.90 3.50 30.15

500
0.01 0 0 0 96 4 0 0 20.62 9.36 11.22

500
0.01 0 1 22 56 20 1 0 25.95 5.26 37.79

0.1 0 0 0 95 3 2 0 22.59 9.43 11.30 0.1 0 0 0 97 3 0 0 28.08 3.11 38.57
0.7 0 0 0 98 1 1 0 28.37 7.16 11.28 0.7 0 0 8 88 4 0 0 59.36 4.58 72.39

(M2)

100
0.01 21 20 29 30 0 0 0 8.99 7.68 4.46

(M5)

100
0.01 2 6 25 67 0 0 0 10.23 1.87 9.26

0.1 0 0 0 97 3 0 0 10.99 2.77 4.41 0.1 0 0 0 100 0 0 0 11.51 1.15 9.46
0.7 0 0 0 96 4 0 0 15.60 2.62 4.77 0.7 0 0 0 100 0 0 0 19.80 1.24 11.28

300
0.01 1 6 20 73 0 0 0 29.71 4.24 12.27

300
0.01 0 0 2 98 0 0 0 30.68 1.42 25.96

0.1 0 0 0 100 0 0 0 32.66 2.50 12.48 0.1 0 0 1 99 0 0 0 34.14 1.14 27.53
0.7 0 0 0 96 4 0 0 49.78 2.70 15.51 0.7 0 0 2 93 5 0 0 67.19 1.52 39.85

500
0.01 0 4 16 80 0 0 0 49.76 3.95 19.81

500
0.01 0 0 3 96 1 0 0 50.94 1.35 42.24

0.1 0 0 0 99 1 0 0 54.93 2.90 20.41 0.1 0 0 2 98 0 0 0 56.68 1.22 46.36
0.7 0 0 0 97 3 0 0 82.23 2.71 25.50 0.7 0 1 7 85 6 1 0 124.03 1.66 75.44

(M3)

100
0.01 3 6 54 37 0 0 0 4.88 7.26 6.78

(M6)

100
0.01 0 4 1 82 12 1 0 3.86 2.59 10.54

0.1 0 1 20 76 3 0 0 6.93 5.81 7.32 0.1 0 0 0 99 1 0 0 3.67 0.24 9.11
0.7 0 0 7 75 17 1 0 16.18 5.24 8.31 0.7 0 0 0 100 0 0 0 3.60 0.20 8.83

300
0.01 0 1 39 59 1 0 0 15.04 6.43 19.17

300
0.01 0 1 0 91 8 0 0 11.10 0.92 28.09

0.1 0 0 10 88 2 0 0 19.53 5.08 20.50 0.1 0 0 0 99 1 0 0 10.84 0.26 26.00
0.7 0 0 0 90 10 0 0 43.21 4.77 30.85 0.7 0 0 0 100 0 0 0 10.81 0.20 25.34

500
0.01 0 0 41 59 0 0 0 24.90 6.36 31.51

500
0.01 0 0 0 97 3 0 0 18.25 0.52 46.03

0.1 0 0 11 87 2 0 0 32.69 5.38 33.49 0.1 0 0 0 100 0 0 0 17.98 0.20 41.82
0.7 0 0 2 64 33 1 0 79.18 5.06 63.15 0.7 0 0 0 100 0 0 0 17.98 0.20 41.89
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Table 5.12 Distribution of N̂ − N for models (M1)-(M6) and all methods over 100 simulation runs in the “half-overlap” case in scenario (S2).
Also the average MSE (Mean Squared Error) of the estimated signal f̂ , the average Hausdorff distance dH and the average computational time in
seconds using an Intel Core i9 3.6 GHz CPU with 8 GB of RAM, all over 100 simulations.

N̂ −N N̂ −N

Model n sparsity ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time Model n sparsity ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

100
0.01 0 0 6 91 2 1 0 4.07 11.24 2.53

(M4)

100
0.01 6 27 33 28 4 2 0 4.93 8.13 8.27

0.1 0 0 0 97 2 1 0 4.33 6.63 2.54 0.1 0 0 13 82 4 1 0 5.59 4.25 8.02
0.7 0 0 0 93 5 2 0 5.88 7.78 2.56 0.7 0 0 1 93 6 0 0 8.81 3.51 9.79

300
0.01 0 0 0 96 3 1 0 12.44 8.39 7.18

300
0.01 5 29 33 26 7 0 0 14.10 8.40 23.11

0.1 0 0 0 97 2 1 0 12.79 5.73 7.08 0.1 0 1 2 94 3 0 0 16.34 3.31 22.57
0.7 0 0 0 92 6 2 0 18.55 8.27 7.27 0.7 0 2 6 75 17 0 0 38.58 5.19 33.69

500
0.01 0 0 0 96 4 0 0 20.62 9.36 11.41

500
0.01 0 12 27 46 15 0 0 25.03 6.75 39.38

0.1 0 0 0 95 3 2 0 22.59 9.43 11.51 0.1 0 0 5 89 6 0 0 27.24 3.92 39.39
0.7 0 0 0 98 1 1 0 28.37 7.16 11.46 0.7 0 0 18 66 16 0 0 53.20 6.07 63.15

(M2)

100
0.01 21 20 29 30 0 0 0 8.99 7.68 4.54

(M5)

100
0.01 2 6 25 67 0 0 0 10.23 1.87 9.42

0.1 0 1 9 90 0 0 0 10.83 3.56 4.57 0.1 0 0 12 87 1 0 0 11.52 1.65 10.43
0.7 0 0 0 93 7 0 0 15.52 3.03 4.98 0.7 0 0 5 80 15 0 0 21.20 1.77 13.38

300
0.01 13 24 36 27 0 0 0 26.78 6.91 12.64

300
0.01 7 15 21 57 0 0 0 29.77 2.03 26.78

0.1 0 0 2 98 0 0 0 32.43 3.09 12.82 0.1 0 0 0 98 2 0 0 33.78 1.34 29.58
0.7 0 0 0 97 3 0 0 46.90 3.04 15.02 0.7 0 0 8 87 5 0 0 66.94 1.71 41.26

500
0.01 2 11 22 65 0 0 0 48.33 4.41 20.21

500
0.01 0 1 12 87 0 0 0 50.66 1.60 43.96

0.1 0 0 0 100 0 0 0 54.38 3.21 20.92 0.1 0 0 4 94 2 0 0 56.34 1.49 50.29
0.7 0 0 0 98 2 0 0 74.22 2.90 24.64 0.7 0 0 8 84 8 0 0 115.23 1.79 78.92

(M3)

100
0.01 3 6 54 37 0 0 0 4.88 7.26 6.80

(M6)

100
0.01 0 4 1 82 12 1 0 3.86 2.59 10.65

0.1 0 0 0 95 5 0 0 6.74 5.87 7.22 0.1 0 0 0 99 1 0 0 3.70 0.34 9.39
0.7 0 0 0 86 14 0 0 13.83 5.20 8.97 0.7 0 0 0 100 0 0 0 3.60 0.20 9.32

300
0.01 0 1 10 86 3 0 0 15.47 6.34 19.09

300
0.01 0 2 0 85 12 1 0 11.14 1.68 30.71

0.1 0 0 0 91 9 0 0 19.28 5.38 20.66 0.1 0 0 0 100 0 0 0 10.85 0.22 28.22
0.7 0 0 0 88 12 0 0 38.65 5.13 33.13 0.7 0 0 0 100 0 0 0 10.94 0.22 26.59

500
0.01 0 0 6 90 4 0 0 25.96 6.27 31.56

500
0.01 0 2 0 93 5 0 0 18.29 1.05 47.69

0.1 0 0 0 92 8 0 0 31.63 5.44 34.03 0.1 0 0 0 99 1 0 0 18.01 0.21 43.01
0.7 0 0 0 67 28 5 0 69.38 5.11 65.61 0.7 0 0 0 100 0 0 0 18.06 0.20 43.91
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Table 5.13 Distribution of N̂ − N for models (M1)-(M6) and all methods over 100 simulation runs in the “no-overlap” case in scenario (S2). Also
the average MSE (Mean Squared Error) of the estimated signal f̂ , the average Hausdorff distance dH and the average computational time in
seconds using an Intel Core i9 3.6 GHz CPU with 8 GB of RAM, all over 100 simulations.

N̂ −N N̂ −N

Model n sparsity ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time Model n sparsity ≤-3 -2 -1 0 1 2 ≥3 MSE dH(×102) time

(M1)

100
0.01 0 0 6 91 2 1 0 4.07 11.24 2.54

(M4)

100
0.01 6 27 33 28 4 2 0 4.93 8.13 8.26

0.1 0 0 0 97 2 1 0 4.33 6.63 2.54 0.1 1 13 34 44 7 1 0 5.68 7.22 8.38
0.7 0 0 0 93 5 2 0 5.88 7.78 2.56 0.7 0 0 40 59 1 0 0 8.34 7.26 8.57

300
0.01 0 0 0 96 3 1 0 12.44 8.39 7.04

300
0.01 33 32 20 15 0 0 0 12.80 10.29 23.75

0.1 0 0 0 97 2 1 0 12.79 5.73 7.09 0.1 0 0 26 70 4 0 0 16.17 5.57 22.91
0.7 0 0 0 92 6 2 0 18.55 8.27 7.27 0.7 0 3 30 64 3 0 0 28.78 6.55 29.80

500
0.01 0 0 0 96 4 0 0 20.62 9.36 11.43

500
0.01 17 28 41 14 0 0 0 22.30 10.39 41.47

0.1 0 0 0 95 3 2 0 22.59 9.43 11.51 0.1 0 4 25 64 7 0 0 27.14 5.66 41.25
0.7 0 0 0 98 1 1 0 28.37 7.16 11.50 0.7 0 0 11 81 8 0 0 43.61 6.25 46.16

(M2)

100
0.01 21 20 29 30 0 0 0 8.99 7.68 4.54

(M5)

100
0.01 2 6 25 67 0 0 0 10.23 1.87 9.35

0.1 5 29 56 10 0 0 0 10.41 7.20 5.53 0.1 17 28 45 10 0 0 0 11.84 2.83 16.85
0.7 0 0 39 60 1 0 0 15.97 5.58 6.48 0.7 2 8 39 47 4 0 0 25.33 2.68 28.50

300
0.01 57 33 10 0 0 0 0 22.39 10.63 14.42

300
0.01 79 19 2 0 0 0 0 26.46 3.27 41.24

0.1 1 16 65 18 0 0 0 31.35 6.89 16.11 0.1 19 27 40 14 0 0 0 35.41 2.85 73.54
0.7 0 0 39 57 4 0 0 44.93 5.62 18.91 0.7 4 12 29 44 9 2 0 76.21 2.68 113.79

500
0.01 46 42 11 1 0 0 0 39.17 9.09 23.82

500
0.01 64 18 17 1 0 0 0 45.17 3.09 78.29

0.1 1 12 62 25 0 0 0 52.41 6.89 27.55 0.1 10 21 46 23 0 0 0 59.01 2.72 118.72
0.7 0 0 48 49 3 0 0 75.02 6.13 32.26 0.7 3 23 37 30 6 1 0 127.69 2.91 162.68

(M3)

100
0.01 3 6 54 37 0 0 0 4.88 7.26 6.89

(M6)

100
0.01 0 4 1 82 12 1 0 3.86 2.59 10.70

0.1 0 0 3 90 7 0 0 6.16 5.90 7.08 0.1 0 0 0 100 0 0 0 3.73 0.55 9.33
0.7 0 0 0 78 21 1 0 10.71 5.51 8.90 0.7 0 0 0 100 0 0 0 3.60 0.20 9.05

300
0.01 0 1 29 69 1 0 0 15.04 6.60 19.28

300
0.01 1 2 9 74 13 1 0 11.06 2.21 30.91

0.1 0 0 0 87 13 0 0 17.64 5.05 20.73 0.1 0 0 0 99 1 0 0 10.94 0.31 27.31
0.7 0 0 2 83 15 0 0 32.96 5.77 32.25 0.7 0 0 0 100 0 0 0 10.97 0.22 26.93

500
0.01 0 3 29 66 2 0 0 24.69 6.50 32.37

500
0.01 0 0 19 72 9 0 0 18.06 1.33 45.45

0.1 0 0 0 89 11 0 0 29.30 5.17 36.79 0.1 0 0 0 99 1 0 0 18.08 0.22 40.25
0.7 0 0 1 58 38 3 0 59.59 5.75 66.94 0.7 0 0 0 100 0 0 0 17.98 0.20 40.61
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5.5 Data applications

5.5.1 Average January temperatures in South Africa

We study a land temperature dataset available from http://berkeleyearth.org. As

introduced earlier in Section 5.1, this data set consists of average temperatures in

January recorded in 50 cities of South Africa from 1857 to 2013. The curves of 50 cities

are shown in Figure 5.1 and they appear to have cross-sectional dependence. As studied

in Section 5.3, assuming cross-sectional correlation does not affect the consistency

results, thus we use the threshold that is the same as one used in simulations.

The HiTS algorithm identifies 2 change-points, 1912 and 1965, while SBS detects a

change in 1911 and DC returns 2 change-points, 1911 and 1965. IS reports 9 change-

points that include 1911 and 1965. Figure 5.6a shows that HiTS and DC share one

change-point in 1965 and that SBS and DC share one point in 1911 where the estimated

signals from all methods except IS return positive mean changes. Figure 5.6b shows

the time location of 9 change-points detected by IS where two of them are either very

close or equal to the estimated change-points by HiTS.

As an effort to find which coordinate(s) is associated with each of those estimated

change-point, using f̃ as an input data matrix, we first compute the (non-aggregated)

detail coefficients for each change-point returned by HiTS as given in (5.15). Then we

perform hard thresholding on those detail coefficients where the threshold is the same

as the one used Section 5.2.4. We refer to this process as “post-thresholding”.

Specifically, in the post-thresholding, two estimated change-points in 1912 and

1965 for all 50 cities are treated separately, thus each of 100 estimated change-points

should be either survived or removed. For example, if the detail coefficient computed

for the change of Cape town in 1912 is survived from the post-thresholding then

we consider the change in 1912 is relevant to Cape town otherwise we conclude the

http://berkeleyearth.org
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DC
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(a) Cape town

HiTS HiTS
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(b) 50 cities in South Africa

Fig. 5.6 Change-point analysis for January average temperature curves of 50 cities in
South Africa from 1857 to 2013 in Section 5.5.1. (a) the data series (grey dots) of Cape
town and estimated signal with change-points returned by HiTS ( ), SBS ( ), DC
( ) and IS( ), (b) visualisation of the data matrix and estimated change-points
returned by HiTS and IS.
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Table 5.14 Fifty cities in South Africa classified into four categories by the post-
thresholding of the HiTS algorithm described in Section 5.5.1.

Estimated change-points Cities
1912, 1965 George
1912 Cape Town, Paarl, Somerset West, Worcester
1965 Bisho, Durban, East London, Port Elizabeth,

Richards Bay, Uitenhage
None Alberton, Benoni, Bethal, Bloemfontein, Boks-

burg, Botshabelo, Brakpan, Brits, Johan-
nesburg, Kimberley, Klerksdorp, Kroonstad,
Krugersdorp, Middelburg, Midrand, Nelspruit,
Newcastle, Nigel, Orkney, Phalaborwa, Pieter-
maritzburg, Pietersburg, Potchefstroom, Pot-
gietersrus, Pretoria, Queenstown, Randfontein,
Rustenburg, Soweto, Springs, Tembisa, Vander-
bijlpark, Vereeniging, Verwoerdburg, Virginia,
Vryheid, Welkom, Westonaria, Witbank

change is not associated with the corresponding city. As shown in Table 5.14, after the

post-thresholding, the curves of 50 cities can be classified into four categories: cities

including 1) two change-points in 1912 and 1965, 2) only one change-point in 1912, 3)

only one change-point in 1965 and 4) no change-points. Figure 5.7 shows one randomly

selected city from each category.

To see whether this classification includes any useful information, we mark the

location of each city on a South Africa map as shown in Figure 5.8. Interestingly, those

cities from the same category are geographically close to each other. Especially, George

is the only city in which both estimated change-points in 1912 and 1965 are survived

and Figure 5.8 shows that George is geographically located between two groups of

cities, one including the estimated change-point only in 1912 and the other having only

in 1965. This example shows the possibility that the HiTS procedure can be a useful

first step for a higher-level representation of the high-dimensional panel data e.g. time

series classification.
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Fig. 5.7 The post-thresholded HiTS estimate of the piecewise-constant trend for January
average temperature curves of 4 cities in South Africa from 1857 to 2013 in Section
5.5.1. (a) the data series (grey dots); the HiTS estimate ( ) for average temperature
of Cape town, (b) Durban, (c) George and (d) Johannesburg.

5.5.2 Monthly average sea ice extent of Arctic and Antarctic

We analyse the sea ice extent of the Arctic and the Antarctic available from https:

//nsidc.org to estimate the change-points in its linear trend. This dataset consists of

the monthly average sea ice extent of the Arctic and the Antarctic from 1979 to 2018

where the curves of all months are shown in Figures 5.9 and 5.11, respectively.

Figure 5.9 shows the well-known decreasing trend of the average sea ice extent in

the Arctic and the HiTS estimate identifies change-points in 1988, 2003 and 2007. This

is not much different from the estimated change-points obtained in Section 4.5.2 where

February and September are analysed separately as a univariate data sequence and

https://nsidc.org
https://nsidc.org
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Fig. 5.8 The geographical locations of 50 cities in South Africa that are classified into
four categories by the post-thresholding of the HiTS algorithm described in Section
5.5.1; cities with estimated change-points in 1912 and 1965 (⃝), in 1912 (�), in 1965
(△) and those with no estimated change-points (×).

two change-points in 2004 and 2007 are identified in February and one change-point in

2006 is detected in September.

As done in Section 5.5.1, to examine which month is associated with each of those

three change-points, we perform post-thresholding on the estimated functions for 12

months. Figure 5.10 indicates that two change-points in 2003 and 2007 are survived in
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Fig. 5.9 The monthly average sea ice extent in the Arctic from 1979 to 2018 analysed
in Section 5.5.2 ( ) and the estimated change-points returned by HiTS ( ).

January and February while the change-point in 1988 is survived only in December.

All three change-points are thresholded in other months from March to November.

Unlike the gentle decreasing trend shown in the sea ice extent of the Arctic, Figure

5.11 shows that the sea ice extent of the Antarctic has a modest increasing trend

until recent years. However, at the same time, relatively strong decreasing trends are

observed in most of the months from around 2016 and this is identified by the HiTS

estimate which detects change-points in 1980, 1983 and 2015.

As in the Arctic data, we perform post-thresholding on the curves of 12 months.

Figure 5.12 shows that the estimated change-point in 2015 is survived in all months

except January while the change-point in 1980 survives only in April and the one in

1983 does so in October.
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Fig. 5.10 The post-thresholded HiTS estimates of the piecewise-linear trend for monthly
sea ice extent in the Arctic from 1979 to 2018 analysed in Section 5.5.2. The data
series (grey dots), the HiTS estimate ( ) and survived change-points ( ) for each
month.

5.6 Proofs

The proofs of Theorems 5.1-5.5 and Corollaries 5.1-5.4 are given below.

5.6.1 Some useful lemmas

We first present preparatory lemmas.
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Fig. 5.11 The monthly average sea ice extent in the Antarctic from 1979 to 2018
analysed in Section 5.5.2 ( ) and the estimated change-points returned by HiTS ( ).

Lemma 5.1 Let {X i}n
i=1 follow model (5.1) in scenario (S1) and let Assumption 5.1

hold. We then have P (An,T ) ≥ 1 − C3(nT )−1 where

An,T =
{

max
i,j,k

|⟨ψ(j,k), εi⟩| ≤ λ

}
, (5.37)

λ is as in Assumption 5.2 and C3 is a positive constant.

Proof. Using a simple Bonferroni inequality, we have

1 − P (An,T ) ≤
∑
i,j,k

P (|Z| > λ) ≤ nT 3φZ(λ)
λ

≤ C3

nT
(5.38)
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Fig. 5.12 The post-thresholded HiTS estimates of the piecewise-linear trend for monthly
sea ice extent in the Antarctic from 1979 to 2018 analysed in Section 5.5.2. The data
series (grey dots), the HiTS estimate ( ) and survived change-points ( ) for each
month.

where φZ is the p.d.f. of a standard normal Z and

P (|Z| > λ) = 2 1√
2π

∫ ∞

λ
e−x2/2dx ≤ 2 1√

2π

∫ ∞

λ

x

λ
e−x2/2dx = 2e

−λ2/2

λ
√

2π
. (5.39)

This completes the proof.

Lemma 5.2 In scenario (S2), let ψ(j,k) = ∑I(j,k)

m=1 φ
(j,k)
m g(j,k)

m where φ(j,k)
m are constants

and g(j,k)
m are vectors of equal length with ψ(j,k) where I(j,k) ∈ {3, 4}, j = 1, . . . , J, k =
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1, . . . , K(j). If we define the set G = {gl} where there is a unique correspon-

dence between
{
g(j,k)

m m=1,...,I(j,k),j=1,...,J, k=1,...,K(j)

}
and {gl}, we then have P (Bn,T ) ≥

1 − C3(nT )−1 where

Bn,T =
{

max
i

max
gl∈G

|g⊤
l εi| ≤ λ

}
, (5.40)

i = 1, . . . , n, λ is as in Assumption 5.2 and C3 is a positive constant.

Proof. In Section 4.6, it is shown that there exist at most T 2 vectors gl in the

set G and for any fixed (j, k), g(j,k)
m and φ(j,k)

m satisfy the conditions,
(
g(j,k)

m

)⊤
g(j,k)

m = 1,(
g(j,k)

m

)⊤
g

(j,k)
m′ = 0 and ∑m

(
φ(j,k)

m

)2
= 1. Therefore, using a simple Bonferroni inequality,

we have

1 − P (Bn,T ) ≤
∑

i

∑
G

P (|Z| > λ) ≤ 2nT 2φZ(λ)
λ

≤ C3

nT
(5.41)

where φZ is the p.d.f. of a standard normal Z and

P (|Z| > λ) = 2 1√
2π

∫ ∞

λ
e−x2/2dx ≤ 2 1√

2π

∫ ∞

λ

x

λ
e−x2/2dx = 2e

−λ2/2

λ
√

2π
. (5.42)

This completes the proof.

Lemma 5.3 Let S1
j =

{
1 ≤ k ≤ K(j) :

{
d

(j,k)
i,[p,q,r]

}n

i=1
such that p < ηℓ + 1/2 < r for

some ℓ = 1, . . . , N
}

, and S0
j = {1, . . . , K(j)} \ S1

j . On the set Bn,T which satisfies

P (Bn,T ) → 1 as n, T → ∞, we have

max
i=1,...,n,
j=1,...,J,

k∈S0
j

∣∣∣d(j,k)
i

∣∣∣ ≤ λ, (5.43)

where λ is as in Assumption 5.2 and Bn,T is as in (5.40).
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Proof. On the set Bn,T , the following holds for i = 1, . . . , n, j = 1, . . . , J, k ∈ S0
j ,

∣∣∣d(j,k)
i

∣∣∣ =
∣∣∣(ψ(j,k))⊤εi

∣∣∣
=
∣∣∣∣φ(j,k)

1

(
g

(j,k)
1

)⊤
εi + φ

(j,k)
2

(
g

(j,k)
2

)⊤
εi + φ

(j,k)
3

(
g

(j,k)
3

)⊤
εi + φ

(j,k)
4

(
g

(j,k)
4

)⊤
εi

∣∣∣∣
≤ max

j, k

(∣∣∣φ(j,k)
1

∣∣∣+ ∣∣∣φ(j,k)
2

∣∣∣+ ∣∣∣φ(j,k)
3

∣∣∣+ ∣∣∣φ(j,k)
4

∣∣∣) ·
(

max
i

max
l: gl∈G

∣∣∣g⊤
l εi

∣∣∣).
The condition, ∑m

(
φ(j,k)

m

)2
= 1 for any fixed (j, k), given in the proof of Lemma 5.2

implies maxm

∣∣∣φ(j,k)
m

∣∣∣ ≤ 1 for any (j, k), thus we have (5.43) when the constant C1 for

λ in (5.43) is larger than or equal to 4 times C1 used in (5.40).

Lemma 5.4 Let {X i}n
i=1 follow model (5.1) in scenario (S1) and let Assumptions 5.1

and 5.7 hold. We then have P (Cn,T ) ≥ 1 − C3(nT )−1 where

Cn,T =
{

max
i,j,k

|⟨ψ(j,k), εi⟩| ≤ λ

}
, (5.44)

λ is as in Assumption 5.8 and C3 is a positive constant.

Proof. Let Bi be the autocorrelation matrix of εi where Bi = [ρi(j − k)]j,k=1,...,T .

Then by the argument used in the proof of Corollary 1 of Baranowski et al. (2019)

(i.e. the largest eigenvalue of Bi is bounded above by ∑∞
k=−∞ |ρi(k)|), we attain

∥Bi∥∞ ≤ ∑∞
k=−∞ |ρi(k)| for i = 1, . . . , n. For any fixed (j, k), ⟨ψ(j,k), εi⟩ follows a

normal distribution with mean zero and

Var(⟨ψ(j,k), εi⟩) = (ψ(j,k))⊤Bi(ψ(j,k)) ≤
∞∑

k=−∞
|ρi(k)|. (5.45)

Then we have that

P (⟨ψ(j,k), εi⟩ ≥ λ) = P

⟨ψ(j,k), εi⟩√
R

≥ C3

√
2 log(nT )

 ≤ e−C2
3 log(nT )

C3

√
2 log(nT )

. (5.46)
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Considering all possible nT 3 combinations of (j, k), a simple Bonferroni inequality

returns

1 − P (Cn,T ) ≤ C3

nT
. (5.47)

This completes the proof.

Lemma 5.5 In scenario (S2), let ψ(j,k) = ∑I(j,k)

m=1 φ
(j,k)
m g(j,k)

m where φ(j,k)
m , g(j,k)

m and I(j,k)

are defined as in Lemma 5.2. Let Assumptions 5.1 and 5.7 hold and the set G = {gl}

is defined as in Lemma 5.2. We then have P (Dn,T ) ≥ 1 − C3(nT )−1 where

Dn,T =
{

max
i

max
gl∈G

|g⊤
l εi| ≤ λ

}
, (5.48)

λ is as in Assumption 5.8 and C3 is a positive constant.

Proof. As in Lemma 5.2, there exist at most T 2 vectors gl in the set G and for any

fixed (j, k), g(j,k)
m and φ(j,k)

m satisfy the conditions,
(
g(j,k)

m

)⊤
g(j,k)

m = 1,
(
g(j,k)

m

)⊤
g

(j,k)
m′ =

0 and ∑
m

(
φ(j,k)

m

)2
= 1. Let Bi be the autocorrelation matrix of εi where Bi =

[ρj−k]j,k=1,...,T . Using the argument used in Lemma 5.4, for any fixed l, g⊤
l εi follows a

normal distribution with mean zero and

Var(g⊤
l εi) = g⊤

l Bigl ≤
∞∑

k=−∞
|ρi(k)|. (5.49)

By the same argument used in the proof of Lemma 5.4, we have

1 − P (Dn,T ) ≤ C3

nT
. (5.50)
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Lemma 5.6 Let {X i}n
i=1 follow model (5.1) in scenario (S1) and let Assumptions 5.1

and 5.9 hold. We then have P (En,T ) ≥ 1 − C3(nT )−1 where

En,T =
{

max
i,j,k

|⟨ψ(j,k), εi⟩| ≤ λ
}
, (5.51)

εi = (εi,1, . . . , εi,T ), λ is as in Assumption 5.2 and C3 is a positive constant.

Proof. For any fixed (j, k),
{
U

(j,k)
i

}n

i=1
forms a centred Gaussian random vector

with E
((
U

(j,k)
i

)2)
= 1 for all i = 1, . . . , n where U (j,k)

i = ⟨ψ(j,k), εi⟩. As there exist

at most T 3 basis ψ(j,k), we consider the set W =
{
U ℓ = (U ℓ

1, . . . , U
ℓ
n), ℓ = 1, . . . , T 3

}
where there exist a unique correspondence between the set W and the set

{
U (j,k) =

(U (j,k)
1 , . . . , U (j,k)

n ), j = 1, . . . , J, k = 1, . . . , K(j)
}
.

We denote that the cov(U ℓ
i , U

ℓ
j ) depends on the square of the sum of non-zero

elements in the corresponding ψ and also depends on the corresponding correlation

element selected from Σ. Then we can find the Gaussian random vector U ∗ such that

E((U∗
i − U∗

j )2) ≥ E((U ℓ
i − U ℓ

j )2) in the set W . Using the Slepian’s inequality (Slepian,

1962), for any a ∈ R and for all ℓ,

P
(

max
i
U ℓ

i > a
)

≤ P
(

max
i
U∗

i > a
)
. (5.52)

Using a simple Bonferroni inequality, we have

1 −P (En,T ) = P
(

max
i,j,k

|⟨ψ(j,k), εi⟩| > λ
)

≤ nT 3P
(

max
i
U∗

i > λ
)

≤ nT 3φZ(λ)
λ

≤ C3

nT
,

(5.53)

where φZ is the p.d.f. of a standard normal Z. This completes the proof.

Lemma 5.7 Let {X i}n
i=1 follow model (5.1) in scenario (S2). Let Assumptions 5.1

and 5.9 hold and the set G = {gl} is defined as in Lemma 5.2. We then have
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P (Fn,T ) ≥ 1 − C3(nT )−1 where

Fn,T =
{

max
i

max
gl∈G

|g⊤
l εi| ≤ λ

}
, (5.54)

λ is as in Assumption 5.2 and C3 is a positive constant.

Proof. For any fixed l,
{
U l

i

}n

i=1
forms a centred Gaussian random vector with

E
((
U l

i

)2)
= 1 for all i = 1, . . . , n where U l

i = ⟨gl, εi⟩. As shown in Lemma 5.2, there

exist at most T 2 basis vector gl in the set G. We now consider the set V =
{
U ℓ =

(U ℓ
1, . . . , U

ℓ
n), ℓ = 1, . . . , T 2

}
. Following the same argument used in the proof of Lemma

5.6 and using the Slepian’s inequality (Slepian, 1962), for any a ∈ R and for all ℓ,

P
(

max
i
U ℓ

i > a
)

≤ P
(

max
i
U∗

i > a
)
. (5.55)

Using a simple Bonferroni inequality, we have

1−P (Fn,T ) = P
(

max
i

max
gl∈G

|g⊤
l εi| > λ

)
≤ 2nT 2P

(
max

i
U∗

i > λ
)

≤ 2nT 2φZ(λ)
λ

≤ C3

nT
,

(5.56)

where φZ is the p.d.f. of a standard normal Z. This completes the proof.

5.6.2 Proof of Theorems 5.1 - 5.5

Proof of Theorem 5.1. Let S1
j and S0

j be as in Lemma 5.3. From the conditional

orthonormality of the unbalanced wavelet transform, on the set An,T defined in Lemma
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5.1, we have

∥f̃ − f∥2
n,T

= 1
n

1
T

n∑
i=1

J∑
j=1

K(j)∑
k=1

(
d

(j,k)
i · I

{
∃(j′, k′) ∈ Cj,k max

i

∣∣∣d(j′,k′)
i

∣∣∣ > λ
}

− µ
(j,k)
i

)2

+ 1
nT

n∑
i=1

(s1,[1,T ]
i − µ

(0,1)
i )2

≤ 1
n

1
T

n∑
i=1

J∑
j=1

 ∑
k∈S0

j

+
∑

k∈S1
j

(d(j,k)
i · I

{
∃(j′, k′) ∈ Cj,k max

i

∣∣∣d(j′,k′)
i

∣∣∣ > λ
}

− µ
(j,k)
i

)2

+ 2C2
1T

−1 log(nT )

=: I + II + 2C2
1T

−1 log(nT ). (5.57)

By Lemma 5.1, I
{
∃(j′, k′) ∈ Cj,k maxi

∣∣∣d(j′,k′)
i

∣∣∣ > λ
}

= 0 for k ∈ S0
j and also by the

fact that µ(j,k)
i = 0 for i = 1, . . . , n, j = 1, . . . , J, k ∈ S0

j , we have I = 0. For II , we

denote B =
{

∃(j′, k′) ∈ Cj,k maxi

∣∣∣d(j′,k′)
i

∣∣∣ > λ
}

and have

max
i

{(
d

(j,k)
i · I

{
B
}

− µ
(j,k)
i

)2
}

(5.58)

= max
i

{(
d

(j,k)
i · I

{
B
}

− d
(j,k)
i + d

(j,k)
i − µ

(j,k)
i

)2
}

≤ max
i

{(
d

(j,k)
i

)2
· I
(

max
i

∣∣∣d(j′,k′)
i

∣∣∣ ≤ λ
)

+
(
d

(j,k)
i − µ

(j,k)
i

)2

+ 2
∣∣∣d(j,k)

i

∣∣∣ · I(max
i

∣∣∣d(j′,k′)
i

∣∣∣ ≤ λ
)

·
∣∣∣d(j,k)

i − µ
(j,k)
i

∣∣∣}

≤ λ2 + 2C2
1 log(nT ) + 2λC1{2 log(nT )}1/2

≤ 8C2
1 log(nT ).
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Combining with the upper bound of J , ⌈log(T )/ log(1 − ρ)−1⌉, and the fact that

|S1
j | ≤ N , we have II ≤ 8C2

1NT
−1⌈log(T )/ log(1 − ρ)−1⌉ log(nT ), and therefore

∥f̃ − f∥2
n,T ≤ C2

1
1
T

log(nT )
{

2 + 8N ⌈ log(T )/ log(1 − ρ)−1 ⌉
}
. (5.59)

Also, at each scale, the estimated change-points are obtained up to size N , combining

it with the largest scale J , the number of change-points in f̃ returned from the inverse

HiTGUW transformation is up to CN log(T ) where C is a constant.

Proof of Theorem 5.2. Let S1
j and S0

j be as in Lemma 5.3. From the conditional

orthonormality of the unbalanced wavelet transform, on the set Bn,T defined in Lemma

5.2, we have

∥f̃ − f∥2
n,T

= 1
n

1
T

n∑
i=1

J∑
j=1

K(j)∑
k=1

(
d

(j,k)
i · I

{
∃(j′, k′) ∈ Cj,k max

i

∣∣∣d(j′,k′)
i

∣∣∣ > λ
}

− µ
(j,k)
i

)2

+ 1
nT

n∑
i=1

(s1,[1,T ]
i − µ

(0,1)
i )2 + 1

nT

n∑
i=1

(s2,[1,T ]
i − µ

(0,2)
i )2

≤ 1
n

1
T

n∑
i=1

J∑
j=1

 ∑
k∈S0

j

+
∑

k∈S1
j

(d(j,k)
i · I

{
∃(j′, k′) ∈ Cj,k max

i

∣∣∣d(j′,k′)
i

∣∣∣ > λ
}

− µ
(j,k)
i

)2

+ 4C2
1T

−1 log(nT )

=: I + II + 4C2
1T

−1 log(nT ). (5.60)

By Lemma 5.3, I
{
∃(j′, k′) ∈ Cj,k maxi

∣∣∣d(j′,k′)
i

∣∣∣ > λ
}

= 0 for k ∈ S0
j and also by the

fact that µ(j,k)
i = 0 for i = 1, . . . , n, j = 1, . . . , J, k ∈ S0

j , we have I = 0. Through the

same reasoning used in the proof of Theorem 5.2, we have

max
i

{(
d

(j,k)
i · I

{
B
}

− µ
(j,k)
i

)2
}

≤ 8C2
1 log(nT ), (5.61)
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for II and

∥f̃−f∥2
n,T ≤ C2

1
1
T

log(nT )
{

4+8N
⌈
log(T )/ log

(
(1−ρ)−1

)
+log(2)/ log(1−ρ)

⌉ }
.

(5.62)

Also, the number of change-points in f̃ returned from the inverse HiTGUW transfor-

mation is up to CN log(T ) which is equal to the one in the proof of Theorem 4.1 where

C is a constant. This completes the proof.

Proof of Theorem 5.3. Let B̃ and ˜̃B the unbalanced wavelet basis corresponding to

f̃ and ˜̃f , respectively. As the change-points in ˜̃f are a subset of those in f̃ , establishing
˜̃f can be regarded as applying the HiTGUW transform again to f̃ , which is just a

repetition of the estimation procedure f̃ but performed in a greedy way. Thus ˜̃B

is classified into two categories, 1) all basis vectors ψ(j,k) ∈ B̃ such that ψ(j,k) is not

associated with the change-points in f̃ and maxi

∣∣∣⟨X i, ψ
(j,k)⟩

∣∣∣ = maxi

∣∣∣d(j,k)
i

∣∣∣ < λ and

2) all vectors ψ(j,1) produced in Stage 1 of post-processing.

We now investigate how many scales are used for this particular transform. Firstly,

the detail coefficients {d(j,k)
i }n

i=1 corresponding to the basis vectors ψ(j,k) ∈ B̃ live on

no more than J = O(log(T )) scales and we have |S1
j | ≤ N by the argument used

in the proofs of Theorems 5.1 and 5.2. In addition, the vectors ψ(j,1) in the second

category above correspond to different change-points in f̃ and there exist at most

Ñ = O(N log(T )) change-points in f̃ which we examine one at once (i.e. |S1
j | ≤ 1),

thus at most Ñ scales are required for {d(j,1)
i }n

i=1. Combining the results of the two

categories, the equivalent of quantity II in the proofs of Theorems 5.1 and 5.2 for ˜̃f is

bounded by II ≤ CNT−1 log(T ) log(nT ) and this completes the proof of the l2 result,∥∥∥ ˜̃f − f
∥∥∥2

T
= O

(
NT−1 log(T ) log(nT )

)
where C is a large enough positive constant.

Finally, we show that there exist at most two change-points in ˜̃f between true

change-points (ηℓ, ηℓ+1) for ℓ = 0, . . . , N where η0 = 0 and ηN+1 = T . Consider
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the case where three change-point for instance (˜̃ηl, ˜̃ηl+1, ˜̃ηl+2) lie between a pair of

true change-points, (ηi, ηi+1). In this case, by Lemmas 5.1 and 5.3, the maximum

magnitude of two detail coefficients computed from the adjacent intervals, [˜̃ηl + 1, ˜̃ηl+1]

and [˜̃ηl+1 + 1, ˜̃ηl+2], is less than λ and ˜̃ηl+1 would get removed from the set of estimated

change-points. This leads to ˜̃N ≤ 2(N + 1).

Proof of Theorem 5.4. From the assumptions of Theorem 5.4, the followings hold.

• Given any ϵ > 0 and C > 0, for some T1, n1 and all T > T1 and n > n1, it holds

that P
(∥∥∥ ˜̃f − f

∥∥∥2

n,T
> C

4Rn,T

)
≤ ϵ where ˜̃f is the estimated signal in (5.29).

• For some T2, n2 and all T > T2 and n > n2, it holds that CnTRn,T (
¯
f ℓ

n,T )−2 < δℓ
n,T

for all ℓ = 1, . . . , N .

Similar to the argument used in the proof of Theorem 8 in Lin et al. (2016), we

take T ≥ max{T1, T2} and n ≥ max{n1, n2}, and let rℓ
n,T = ⌊CnTRn,T (

¯
f ℓ

n,T )−2⌋ for

ℓ = 1, . . . , N . Suppose that there exists at least one ηℓ whose closest estimated change-

point is not within the distance of rℓ
n,T . Then there is no estimated change-point in

˜̃f within rℓ
n,T of ηℓ which means that ˜̃fi,j displays a constant function over the entire

segment j ∈ {ηℓ − rℓ
n,T , . . . , ηℓ + rℓ

n,T } for all i = 1, . . . , n. Hence

1
nT

∑
i∈Ωℓ

ηℓ+rℓ
n,T∑

j=ηℓ−rℓ
n,T

( ˜̃fi,j − fi,j)2 ≥
rℓ

n,T

2nT
(
¯
f ℓ

n,T

)2
>
C

4 Rn,T . (5.63)

We see that assuming that at least one ηℓ does not have an estimated change-point within

the distance of rℓ
n,T implies the estimation error exceeds C

4Rn,T which is a contradiction

as it is an event that we know occurs with probability at most ϵ. Therefore, there must

exist at least one estimated change-point within the distance of rℓ
n,T from each true

change-point ηℓ where ℓ = 1, . . . , N .
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Throughout Stage 2 of post-processing, ˜̃ηℓ0 is either the closest estimated change-

point of any ηℓ or not. If ˜̃ηℓ0 is not the closest estimated change-point to the nearest

true change-point on either its left or its right, by the construction of detail coefficient

in Stage 2 of post-processing, Lemma 5.1 guarantees that the corresponding detail

coefficient has the magnitude less than λ and ˜̃ηℓ0 gets removed. Suppose ˜̃ηℓ0 is the

closest estimated change-point of a true change-point ηℓ and it is within the distance

of CnTRn,T

(
¯
f ℓ

n,T

)−2
from ηℓ. If the corresponding detail coefficient has the magnitude

less than λ and ˜̃ηℓ0 is removed, there must exist another ˜̃ηℓ within the distance of

CnTRn,T

(
¯
f ℓ

n,T

)−2
from ηℓ. If there are no such ˜̃ηℓ, then by the construction of the

detail coefficient, the order of magnitude of maxi

∣∣∣∣d[pℓ0 ,qℓ0 ,rℓ0 ]
i

∣∣∣∣ would be such that

maxi

∣∣∣∣d[pℓ0 ,qℓ0 ,rℓ0 ]
i

∣∣∣∣ > λ thus ˜̃ηℓ0 would not get removed. Therefore, after Stage 2 post-

processing is finished, each true change-point ηℓ has its unique estimator within the

distance of CnTRn,T

(
¯
f ℓ

n,T

)−2
.

Proof of Theorem 5.5. From the assumptions of Theorem 5.5, the followings hold.

• Given any ϵ > 0 and C > 0, for some T1, n1 and all T > T1 and n > n1, it holds

that P
(∥∥∥ ˜̃f − f

∥∥∥2

n,T
> C3

4 Rn,T

)
≤ ϵ where ˜̃f is the estimated signal in (5.30).

• For some T2, n2 and all T > T2 and n > n2, it holds that C1/3n1/3T 1/3R
1/3
n,T (

¯
f ℓ

n,T )−2/3 <

δℓ
n,T for all ℓ = 1, . . . , N .

Similar to the argument used in the proof of Theorem 19 in Lin et al. (2016), we take

T ≥ max{T1, T2} and n ≥ max{n1, n2}, and let rℓ
n,T = ⌊C1/3n1/3T 1/3R

1/3
n,T (

¯
f ℓ

n,T )−2/3⌋

for ℓ = 1, . . . , N . Suppose that there exist at least one ηℓ whose closest estimated

change-point is not within the distance of rℓ
n,T . Then there is no estimated change-point

in ˜̃f within rℓ
n,T of ηℓ which means that ˜̃fi,j displays a linear trend over the entire
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segment j ∈ {ηℓ − rℓ
n,T , . . . , ηℓ + rℓ

n,T } for all i = 1, . . . , n. Hence

1
nT

∑
i∈Ωℓ

ηℓ+rℓ
n,T∑

j=ηℓ−rℓ
n,T

( ˜̃fi,j − fi,j)2 ≥
13(rℓ

n,T )3

24nT
(
¯
f ℓ

n,T

)2
>
C3

4 Rn,T . (5.64)

The first inequality holds due to the Lemma 20 in Lin et al. (2016), and the second

holds by the definition of rℓ
n,T . Following the similar argument used in the proof

of Theorem 5.4, there must exist at least one estimated change-point within the

distance of rℓ
n,T from each true change-point ηℓ and after the Stage 2 post-processing

is finished, each true change-point ηℓ has its unique estimator within the distance of

Cn1/3T 1/3R
1/3
n,T

(
¯
f ℓ

n,T

)−2/3
.

5.6.3 Proof of Corollaries 5.1 - 5.4

Proof of Corollary 5.1. Let S1
j and S0

j be as in Lemma 5.3. Following the same

argument used in the proof of Theorem 5.1 with Lemma 5.4, in terms of the l2

consistency, we have

∥f̃ − f∥2
n,T ≤ C2

3
1
T
R log(nT )

{
2 + 8N ⌈ log(T )/ log(1 − ρ)−1 ⌉

}
, (5.65)

with probability approaching to 1 as n, T → ∞ and the piecewise-constant estimator{
f̃ i

}n

i=1
in (5.27) contains Ñ ≤ CN log(T ) change-points where C is a constant. This

completes the proof of the first part corresponding to Theorem 5.1. And the conclusions

of Theorems 5.3 and 5.4 are obtained by using the arguments used in the proofs of

Theorems 5.3 and 5.4.

Proof of Corollary 5.2. Let S1
j and S0

j be as in Lemma 5.3. Following the argument

used in Lemma 5.3, on the set Dn,T which satisfies P (Dn,T ) → 1 as n, T → ∞, we have

maxi=1,...,n,j=1,...,J,k∈S0
j

∣∣∣d(j,k)
i

∣∣∣ ≤ λ where Dn,T is defined in Lemma 5.5. Then following
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the same argument used in the proof of Theorem 5.2 with Lemma 5.5, in terms of the

l2 consistency, we have

∥f̃−f∥2
n,T ≤ C2

3
1
T
R log(nT )

{
4+8N

⌈
log(T )/ log

(
(1−ρ)−1

)
+log(2)/ log(1−ρ)

⌉ }
,

(5.66)

with probability approaching to 1 as n, T → ∞ and the piecewise-linear estimator{
f̃ i

}n

i=1
in (5.28) contains Ñ ≤ CN log(T ) change-points where C is a constant. This

completes the proof of the first part corresponding to Theorem 5.2 and the conclusions

of Theorems 5.3 and 5.5 are achieved by following the arguments used in the proofs of

Theorems 5.3 and 5.5.

Proof of Corollary 5.3. Let S1
j and S0

j be as in Lemma 5.3. We attain the l2 results

by following the arguments used in the proof of Theorem 5.1 with Lemma 5.6. And

the conclusions of Theorems 5.3 and 5.4 are obtained by using the arguments used in

the proofs of Theorems 5.3 and 5.4.

Proof of Corollary 5.4. Let S1
j and S0

j be as in Lemma 5.3. Following the argument

used in Lemma 5.3, on the set Fn,T which satisfies P (Fn,T ) → 1 as n, T → ∞, we

have maxi=1,...,n,j=1,...,J,k∈S0
j

∣∣∣d(j,k)
i

∣∣∣ ≤ λ where Fn,T is defined in Lemma 5.7. Then, the

l2 result is attained by using the arguments used in the proof of Theorem 5.2 with

Lemma 5.7. And the conclusions of Theorems 5.3 and 5.5 are achieved by following

the arguments used in the proofs of Theorems 5.3 and 5.5.



Chapter 6

Conclusions

This thesis considers adaptive multiscale approaches to the trend segmentation of data

sequences and linear regression. In this chapter, we provide a brief summary of our

main contributions in Chapters 3, 4 and 5 and discuss possible directions for future

research.

Chapter 3 introduces the smooth-rough partition model, a new way of regularising

linear regression coefficients for modelling temporal dependence in random functions.

The SRP model represents a compromise between a completely unregularised and a

completely regularised linear model in that it keeps all the effects as non-zero but

partitions them into two classes of regularity. The SRP framework can be generalised

to linear regression with a scalar response Y and a discretised functional predictor X(t),

and here are some interesting avenues to apply. The SRP approach can be a useful

alternative to sparsity-based approaches as retaining the smooth non-zero regression

parameter can be beneficial for prediction, as demonstrated in Chapter 3. Especially,

when potential regressors have been pre-ordered in terms of their importance, the

SRP framework can replace truncation or cutting-off techniques. For example, when a

principal component (PC) regression is carried out, the SRP idea allows us to keep

the entire PC scores under two different smoothness constraints rather than removing
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most of them by truncation, by estimating the change-point of the effect of PC scores

in terms of extent and smoothness. In a general linear regression, the SRP framework

would be a useful tool if one pursues the balance of prediction and interpretability,

as it keeps all the regression parameters for a better prediction performance but also

gives a reasonable interpretation by estimating a change-point.

In Chapter 4, we propose TrendSegment, a methodology for detecting multiple

change-points corresponding to linear trend changes or point anomalies in univariate

time series. We first consider the situation when the underlying signal of the data

becomes more complex, e.g. a mixture of constant, linear and quadratic trends, in which

case our method TrendSegment can be extended to offer a multi-trend segmentation.

In the simulations performed in Chapter 4, TrendSegment performs pretty well in a mix

of piecewise-constant and piecewise-linear signals, however it gives a piecewise-linear

estimate instead of distinguishing the intervals of the linear trend from the constant

ones. To examine which polynomial trend is appropriate for each subregion of the

TrendSegment estimate, we can think of simultaneous investigation of the filter for each

of constancy, linearity and quadraticity and the corresponding detail coefficients, where

the filters are operated along with the tree structure constructed to fit a piecewise

function with the highest order of interest.

Another possible extension of the TrendSegment procedure is to propose a hybrid

method of top-down and bottom-up transforms for trend segmentation. The simulation

studies in Chapter 4 show that the bottom-up approach performs well in estimating

the number of change-point but is less attractive than competitors in localisation (i.e.

estimating the exact locations of change-points). This is due to the fact that the

bottom-up transform is constructed in a way of focusing on local features in its early

stages and on global features next. The hybrid approach will promote detection of
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change-points across a wider range of signals and will improve the estimation accuracy

of change-point by taking advantages of both top-down and bottom-up transforms.

Chapter 5 introduces High-dimensional Trend Segmentation (HiTS), a methodol-

ogy for detecting trend changes in high-dimensional panel data, which extends the

bottom-up transformation proposed in Chapter 4 into high-dimensional settings. The

HiTS procedure can be extended in several directions. The analysis of South Africa

temperature data in Section 5.5.1 implies that the feature extraction results of the HiTS

procedure can pave the way for time series clustering. A similar way of thinking appears

in previous works, e.g. Jirak (2015) studies a way of identifying the set of coordinates

those undergo a change, however an extension to a higher-level representation such as

classification or clustering has not previously been studied. Another avenue to extend

this work is relaxing those assumptions on temporal and cross-sectional dependences

stated in Section 5.3, to make the HiTS procedure work in more general noise settings.
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