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Abstract

The thesis covers three main chapters. The first chapter (which is a joint work) we develop a theoretical 
model of rational bubble. In equilibrium, a bubble can persist until it bursts following an exogenous shock, 
even when all the agents are aware of the bubble and that it will burst in finite time. Applying the model in 
the context of the sub-prime mortgage crisis, we argue that excessive sub-prime lending behaviour may 
be sensible with the introduction of securitization. W e thus provide a rational explanation for the housing 
bubble and the dramatic increase in sub-prime default rates.
In the second chapter I conduct empirical short-dated volatility forecasting in foreign exchange, and carry 
out a realistic volatility swap trading strategy based on the forecast. Additional to applying regime-switch 
technique, I propose a double-step approach to circumvent the disadvantage of employing GARCH-type 
model in the high frequency data in FX market, so that it can separate the effect of intraday/intraweek 
seasonality and pre-scheduled macroeconomic data releases from the underlying data process. By 
keeping a battery of models and rotating among them, the forecast ability gets significantly enhanced and 
the trading profit is pronounced even after considering transaction cost.
In the third chapter I explore the cross-sectional predictive power of the most important two factors in the 
implied volatility surface - skew and term structure - at individual firm level. Stocks with lower implied 
volatility skew and higher implied volatility term structure outperform the comparative peers. In particular, 
the interaction between these two factors reinforces the predictive power, and the return of a weekly long- 
short strategy can be improved greatly with the attachment of term structure on skew. By sorting firms 
based on skew and term structure one may also be able to pick up takeover targets and seize the big 
positive premium.
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Abstract

W e develop a theoretical m odel o f  rational bubble. In equilibrium, a bubble can persist until 

it bursts following an exogenous shock, even when all the agents are aware o f the bubble and that 

it will burst in finite time. Applying the model in the context o f  the recent sub-prime mortgage 

crisis, we argue that excessive sub-prime lending behavior may be rational with the introduction 

o f securitization. T he process is much like a Ponzi scheme where lending is profitable as long 

as investors continue to  invest, and vice versa. W e thus provide a rational explanation for the 

housing bubble and the dramatic increase in sub-prime default rates.
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1 Introduction

Bubbles have been the central theme of the financial market in the past decade. Following the burst 
of the dot-com bubble in 2001, there have been strong deviations o f asset prices from fundamentals 
across many different markets and countries, such as the US housing bubble, the Chinese stock 
market bubble, the worldwide commodity bubble, and so on. Especially, the collapse of the US 
housing bubble and the sub-prime mortgage market has eventually lead to the recent global financial 
crisis.

However, the existence of bubbles still remains theoretically controversial. For example, the 
backward induction argument and the transversality condition preclude the existence of bubbles 
in finite-horizon models and infinite-horizon inter-temporal models respectively. Moreover, the 
efficient market hypothesis implies that the presence o f sufficiently many well-informed arbitrageurs 
will ensure that large deviations from fundamental values are not possible. Nonetheless, Abreu and 
Brunnermeier (2003) showed that bubbles can persist given dispersion o f opinion among rational 
arbitrageurs and the presence of behavioral traders. Hence the backward induction argument could 
fail if agents do not have common knowledge about the timing of the burst o f the bubble.

We develop a theoretical model o f bubbles and argue that speculative bubbles can be sustained 
even if all agents are rational. Our result relies on the assumption that the bubble will burst 
following an exogenous shock and agents are only partially informed o f the timing o f this shock. In 
our model, the investors are fully aware that the asset price has departed from fundamentals since 
the start o f the bubble, therefore they only have incentives to buy the asset if they expect to sell the 
asset later at a high price. Ideally each investor would like to sell the asset just before the bubble 
bursts in order to maximize profits. Because investors have heterogeneous beliefs about the time of 
the burst, they would have different exit strategies, hence the backward induction argument does 
not apply. This intuition is very similar to Abreu and Brunnermeier (2003), however our model is 
different in several ways. Most importantly, there is no behavioral traders in our model, and agents 
are fully rational in the sense that they are well aware of the bubble since the very beginning rather 
than being sequentially informed of the mis-pricing.

Our model is a very simplified illustration of the above intuition. In the baseline model, there 
are two investors who can trade one virtually worthless asset in each period. Each investor needs 
to pay a fixed premium above the market price when he wants to buy the asset from the other. 
The process will terminate following an exogenous shock taking place at an unknown date. Each 
investor will receive a noisy signal of this date but does not know the signal of the other. That is, 
the investors have heterogeneous beliefs about the date when the bubble will burst. The uncertain 
timing of the burst o f the bubble together with heterogeneous beliefs ensure that the model does 
not have problems arising from backward induction or transversality condition.
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In equilibrium, the investors will ride the bubble until some point according to their own exit 
strategy which depends on their private beliefs. Although this is a zero-sum game, each investor 
has the incentives to ride the bubble as far as he could, because the potential gain from winning 
the game is increasing as the bubble grows. The intuition is that, no matter how large the bubble 
is, there is always a good chance that my opponent will exit after me in which case I will make a 
larger profit. Thus the investors would gamble for profits while being perfectly aware of the bubble. 
Moreover, we extend the model with noisier signals and different strategies of the investors. We 
show that bubbles tend to last longer in illiquid markets.

We then apply the model in the context of the recent housing bubble and sub-prime crisis in 
the US in order to derive more economic implications. Although the results of the model can be 
naturally extended to many speculative bubbles we have experienced in the financial market, our 
application of the model in the sub-prime mortgage market is not a straightforward extension. In 
particular, the housing bubble in our model is not supported directly by speculative buyers but 
through excessive lending and securitization behavior of the mortgage lenders.

The sub-prime mortgage industry has been partly blamed for the emergence and collapse of 
the recent US housing bubble. Loose lending standards have provided excessive credit to the sub­
prime borrowers who have a poor credit history and ability to repay their loans. It has been argued 
that, as a result of the fact that the sub-prime mortgage lenders securitize their loans and sell the 
securitized products to the investors, the lenders have shifted the risks associated with sub-prime 
lending away and do not have enough incentives to maintain the quality of the borrowers, hence we 
observe the boom and collapse of the sub-prime industry. The dramatic increase in the default rates 
in the industry after the housing bubble burst might suggest that investors have underestimated 
the risk inherent in the mortgage-backed assets that they bought. However, this cannot stand if 
we assume that the investors are rational and anticipate the moral hazard issues ex-ante.

Our paper tries to establish a different perspective by extending our model o f rational bubbles. 
Because sub-prime borrowers frequently incur difficulties to repay, the payoff from lending largely 
depends on the price of the houses that will be repossessed by the lenders in case of default. If 
house prices always rise, there would be virtually no risk associated with lending. House prices 
would keep rising if the lenders can fuel the demand by keeping lending generously to the borrowers 
and refinancing existing borrowers with financial problems. Thus sub-prime lending would become 
profitable and rational with rising house prices, or a housing bubble.

House prices cannot rise forever. When the bank stops lending following a liquidity shock1, the 
housing bubble will burst and house prices will plummet due to foreclosures on sub-prime loads

lBasically we need some exogenous shock to terminate the bubble process, and we did not feel it is crucial to 
specify the exact nature o f the shock. While we have used a liquidity shock in this model, we believe that changes in 
policy, interest rates and other exogenous factors could all trigger the burst o f the bubble.

3



accumulated over the years. Thus sub-prime lending would become unprofitable before the burst 
of the housing bubble and the bank would not lend in the very first place by backward induction. 
However, the introduction o f securitization would enable the bank to transfer the risk to investors 
and gamble in the same way as in the baseline model. That is, banks have incentives to lend as long 
as investors are willing to buy the mortgage-backed securities (MBS), and investors have incentives 
to buy the MBS as long as banks are willing to refinance borrowers. Because o f the uncertain 
timing of the shock, a bubble in the house price can persist with the same intuition in the baseline 
model.

The rest of the paper is organized as follows. Section 2 is a brief literature review. Section 
3 introduces the baseline model as well as some extensions and implications. Section 4 describes 
and discusses the application of the model in the sub-prime mortgage market. Finally Section 5 
concludes.

2 Related Literature

Allen et al. (1993) provided necessary conditions for a bubble to occur. They say that a rational 
expectations equilibrium exhibits a strong bubble if the price is higher than the dividend with 
probability one. They show that in a finite-period general equilibrium model in which a bubble 
is possible, each agent must have private information in the period and state in which the bubble 
occurs, and the agents’ trades cannot be common knowledge. Allen and Gorton (1993) show that a 
bubble can exist because the fund managers without private information will churn at the expense 
of uninformed investors, who cannot observe the skill of the fund managers. These papers assume 
that all agents are fully rational.

Abreu and Brunnermeier (2003) developed a model of bubbles in which rational arbitrageurs 
interact with boundedly rational behavioral traders. They show that the inability of arbitrageurs 
to temporarily coordinate their selling strategies together with the presence of behavioral traders 
results in the persistence of bubbles over a substantial period. In Abreu and Brunnermeier (2003), 
arbitrageurs sequentially become aware o f the bubble and hence are uncertain about the timing 
of the burst of the bubble. The incentives of the arbitrageurs to time their exits as close to the 
burst of the bubble as possible lead to the persistence of the bubble. Sato (2008) extended the 
paper and show that the presence o f relative ranking tournament among fund managers affects 
their incentives to attack or instead ride asset bubbles.

Our model is different from the above in the following ways. All agents are fully rational in our 
model. The bubble will end in finite time with probability one, but the length of the bubble is not 
bounded above. Unlike Allen et al. (1993), the asymmetric information does not come from the
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period and state in which the bubble occurs, but the time at which the bubble will burst. That 
is, all agents are fully aware of the bubble from the beginning, but they do not know each other’s 
beliefs about the timing of the burst of the bubble. Moreover, the agents’ trades are common 
knowledge and there is no sequential awareness.

On the application in the sub-prime mortgage market and securitization, there is a rich literature 
focusing on the role and implication of securitization. It remains controversial whether lenders 
exploit asymmetric information to sell riskier loans into the public markets or retain riskier loans 
in response to regulatory capital incentives (regulatory capital arbitrage). Calem and LaCour-Little 
(2004) argue that, for most mortgage loans, existing regulatory capital levels are too high, creating 
an incentive to securitize the least risky loans. In addition to regulatory capital rules favoring 
securitization, the presence of information asymmetries also encourages securitization. DeMarzo 
and Duffie (1999) using a liquidity based model of securitization show that if the issuer does not 
wish to retain any portion of the mortgage backed security, then she should sell only those loans 
having the lowest degree of asymmetric information into the pool and retain those loans with high 
degree of asymmetric information.

Our paper innovates in arguing that securitization enabled the bank to gamble with the investors 
and benefit from lending excessively to sub-prime borrowers and riding the bubble. This result is 
consistent with Keys et al. (2008) who empirically examine the default probability of portfolios 
with different securitization levels and find that portfolios with higher securitization volume are 
like to have high default rates, hence implying that the bank may have incentives to loosen lending 
standard in presence of securitization. Furthermore, Coval et al. (2007) show that many structured 
finance instruments can be characterized as economic catastrophe bonds that default only under 
severe economic conditions. This is consistent with our model in which the MBS would only have 
a negative return when the bubble bursts with a small probability. The difference is that Coval 
et al. (2007) blame the rating agencies for the mis-pricing of these instruments whereas we show 
that a bubble can persist without such intermediation problems.

3 Baseline Model

Using a parsimonious model, we will show that rational agents with heterogeneous beliefs will ride 
the bubble and gamble on future profits given high enough incentives. The model is very simple 
but illustrate the intuition why rational investors would speculate on over-priced assets. The basic 
setup of the model is described below.
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3.1 Basic Setup

Consider a discrete-time model with infinite time periods 0,1,2... Suppose there are two investors: 
investor A and investor B, each with an initial wealth of IVo- They will both receive income in each 
period2. The amount of income they receive in period t is fce.

There is an asset that has a fundamental value o f 1 and can be traded between the two investors. 
Assume that the asset can only be bought at a multiple k of its current price3. So in period t, one 
investor can decide whether or not to buy this asset from the other at a price of k*.

The above assumption is important because it provides incentives for the investors to ride the 
bubble. We can think o f it as price impact of trades in the reality.

Suppose that both investors will experience a liquidity shock at a random date T  and they 
will consume all their wealth at this date (the asset itself has a consumption value o f 1). Both 
investors will maximize the expected value of this consumption, which we denote by C. Assume 
that investors are risk-neutral and have zero discount rate. Hence the expected utility of each 
investor is the expectation of his final consumption at the date of liquidity shock.

Finally we denote the date of liquidity shock by T  and assume that it will be drawn ex-ante from 
a Geometric distribution4 with parameter p. Each investor will receive a noisy signal s about T. 
The signal can be T— 1 or T-h 1 with probability 1 respectively5. This assumption o f heterogeneous 
beliefs was necessary for a bubble equilibrium 6 to exist (see Appendix A .l for a detailed proof).

3.2 Characterization of Equilibrium

P roposition  3.1. Given the above assumptions, there exists a Nash equilibrium such that each 
investor buys the asset until their signaled date, i.e. if an investor received a signal s, he will buy 
the asset at period t if and only if t < s.

aThis is to ensure that they have enough funds to sustain the bubble in the long run. That is, we need the 
investors to have finite capital but not be constrained by capital in the long run. Alternatively, we can assume that 
they have unlimited access to short-term financing.

3Here we show that a particular bubble price path with a constant inflator is possible given certain parametric 
restrictions. Any other price paths with time-dependent inflator are possible as long as those restrictions are satisfied.

4We need distributions with probability densities that do not converge to zero too fast along the tails. For example, 
Poisson distribution will not work. The intuition is that, when the random variable is Poisson distributed, if one 
agent received a sufficiently large signal, it will be extremely unlikely that other agents had larger signals. Other 
distributions that will work in our model include discrete uniform distribution and logarithmic series distribution.

®Note that the investors are correct on average. There are good reasons why investors in reality would have 
dispersed opinions the timing of an exogenous event, such as information cost. We have adopted the simplest 
possible noise distribution here, which can be extended as we show later.

6i.e. an equilibrium where both investors buy the asset from each other for a significant period of time
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The following table illustrates the wealth of the investors and the asset price (that one investor 
needs to pay to buy it from the other) in equilibrium before the bubble bursts:

Date 0 1 2

Income N /A k ki2

Wealth o f A * W 0 Wo +  k  +  k * W 0  +  k  +  k 2 +  k - k 2 . . .

Wealth o f B W 0 * W 0  +  k - k Wo +  k  +  k 2 - k  +  k 2 . . .

Asset Price 1 k k 2

The asterisk indicates the ownership o f the asset. At the date of liquidity shock, the investor 
will consume all his available wealth and the asset (if he owns it).

The investors are subject to the budget constraint that Wj >  0 for all t. We can see from the 
above that this constraint is always satisfied.

3.3 Proof of Equilibrium

Let’s check the incentives of the investors in each period given that the asset is still being traded. 
Suppose that investor A received a signal s (and that he can buy the asset at period s, s—2, s —4 ,...) .  
Denote his wealth at period t by Wt-

At period s, investor A knows for sure that T — s +  1 given a signal s. So he will not buy the 
asset since he cannot sell it at a higher price in the future.

At period s—2, if investor A buys the asset at price fc*-2 , he will lose if T =  s— 1 with probability 
P (T  =  s — l|s) =  and he will gain if T  =  s +  1 with probability P (T  =  s +  l|s) =  1|1̂ _p)3 •
Hence his expected final consumption from buying is
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5 + 1

Ea- 2(C|s,buy) =  I 1 f  \W .-3 +  { k -  1 )k*~* +  X  **1
 ̂ t= s—1

+
1

l +  ( l - i >)2
[wv-2 +  i - * * ~ a +  * - 1]

If investor A does not buy at s — 2, his expected final consumption is

5 + 1

Es_ 2(C|s, don’t buy) =  +  X  **1

1
l + ( l - p )2

[W +2 +  f c - 1]

Hence we see that investor A would prefer buying when

Ea_ 2(C|s,buy) - E a_2(C'|s, don’t buy) 

>  0

This holds for every s if and only if

k >  1 +
1

( 1 - p ) 2 (3.1)

At period s — 4, investor A knows that investor B will always buy the asset in the next period, 
so it is optimal for investor A  to buy. This is true for all the remaining periods.

Now we go on to check the incentive of investor B given that his counterpart follows the 
equilibrium strategy. Suppose that investor B received a signal s (and that he can buy the asset 
at period s +  1, s — 1, s — 3 , . . . ) .

At period s +  1, the liquidity shock will happen and there will be no trading at this period.

At period s — 1, since there was no shock taking place at s — 1, investor B knows for sure 
T  =  s +  1 given the signal s. If he buys the asset at he will lose if investor A gets signal a
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and quits at s, with probability |; and he will gain if investor A  gets signal s + 2 and continues to 
buy at s, with probability 5, too. Thus the expected final consumption from buying is

Ea_ 1(C|«,buy) =  i [W .- i  +  (k — l ) * - 1 +  h* +  ks+1} 

+ h w „ - 1 +  1 -  k*-1 4- ks +  Jts+1]

If investor B does not buy at s — 1, his expected final consumption is

E ,_ x(C|a>don’t buy) =  \[Wa- i  +  Jb* +  ks+l] 

+ ^ [W ,- i  +  A:s +  fcs+1]

Hence we see that investor B would prefer buying when

E^-iiCIs, buy) -  E5_ i (C|s, don’t buy)

= |[(fc -  l)*—1] + |[1  -  fc*-1]
>  0

This holds for every s if and only if

Jfc >  2 (3.2)

At period s — 3, if investor B buys the asset at the price ks~3, he will lose if investor A gets 
signal 5 — 2 and quits the market then, with probability 2[1+J _ ?)p j; otherwise investor B will gain 
with probability 1 — • The expected final consumption from buying is
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E s_3(C h b u y ) =  — ^  (i[W V .3 +  1 -  k°~3 +  k3~2 +  k - 1)

+\[W a- 3 +  ( k -  1 )ka~3 +  k3~2 + k3- 1})

(1 — p)^
+ r V_i .g _ . Ea- 1(C|s,buy)

The expected final consumption if investor B does not buy at s — 3 is

Es_3(C|s,don’t buy) =
1 +  (1 - p)2

(1 - p ) 2 «+1
+ r ^ i - . - 3 + E / * i

which is less than Es_3(C|s,buy) given that condition (3.2) holds.

At all the remaining periods, investor B will always buy since he knows that investor A will not 
quit in the next period.

Therefore, the above is a Nash equilibrium if both conditions (3.1) and (3.2) are satisfied. Since 
2 <  1 +  -(j-jp )? , the equilibrium holds if and only if

‘ > ‘  +  ( 5 ^ #  <3-3>

Hence we have derived a condition for which the bubble can persist in equilibrium. That is, 
given a high enough reward, rational agents with heterogeneous beliefs have incentives to ride the 
bubble, even though they know en-ante that this is a bubble and it will burst in finite time.

3.4 Extension

In the following we will extend the model to show that a bubble equilibrium holds with noisier 
signals and different strategies of the investors. In particular, there exists a Nash equilibrium in 
which the investors buy until some period before or after their signals, for different ranges of the 
price multiplier k.
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The extended model will be the same as the baseline model in that the exogenous shock will 
happen at time T  which follows a Geometric distribution with parameter p. The difference is that 
now each investor will receive ex-ante a signal s which is uniformly distributed over the interval 
[max{0,T — n },T  +  n].

We will show that there exists a set of Nash equilibrium characterized by their equilibrium 
strategies and conditions on the price multiplier k. In each equilibrium NEm where m is an 
integer, an investor with private signal s buys the asset at period t if and only if t < s +  m, for a 
certain interval of k.

Lem m a 3.1. Suppose that investor B has a signal s' and will buy the asset at t with t <  s’ +  m. 
Then if it is optimal for investor A to buy at time t, it is also optimal for him to buy at any time 
i < t.

Proof. See Appendix A .2 □

Lemma 3.1 can be interpreted as that if the value of k is a large enough incentive for the investor 
to buy at time t, then it is also sufficiently large for the investor to buy at any time before t, given 
that his counterpart follows the euqilibrium strategy. In other words, the necessary condition on k 
for the investor to buy at time t is weakly increasing in t.

Lem m a 3.2. Let g(m,n,p) be a function such that

g(m,n,p) =  <
m + n + j + I / ,  _  \ j  , _ 2 n _ M  _  - O r

2->j=l m+n+j+3 v1 P> +  2 n + l 'i  Pi
'2r 
*3-E 5 o ( i - p ) i

I X ^ & t t - p y  +  a g i U - p ) *

—  if m >  —n — 1 1—1

if m <  —n — 1

where m is an integer, n is a non-negative integer and p is a probability. Then g is an increasing 
function of m and is greater than 1.

Proof. See Appendix A.3 □

P roposition  3.2. Given that g(m, n,p) < k <  g(m +  l ,n ,p ), there exists a Nash equilibrium NEm 
such that each investor with a private signal s will buy the asset at t if and only i f t < s  +  m where 
m < n — 2.

Proof. See Appendix 3.2 □



We can see that g(m,n,p) is independent of m when m < —n — 1, and then increasing with 
m. In other words, when the equilibrium strategy is to exit very early, we have a threshold level 
of incentive k that must be satisfied to make the investors trade. Otherwise, a larger m leads to a 
higher lower-bound of k, i.e. in order to encourage the investors to exit the market relatively late 
and ride the bubble for a longer period of time, a higher incentive is needed. Hence the implication 
is that bubbles tend to last longer in markets with higher market impacts o f trade. On the other 
hand, a smaller incentive is required with more conservative exit strategies adopted by the investors.

In addition, g(m>n,p) is decreasing with n and increasing with p. The intuition is that the 
less accurate the signals, the more likely that someone will exit after myself, and hence a small 
incentive is required to encourage people to trade. Similarly, the less likely that the exogenous 
shock happens in the next period, the more willingness-to-trade the investors have. An extreme 
case is when n =  0 and g(m,n,p) —► oo. This is intuitive since when every investor knows definitely 
when the shock will happen, backward induction eliminates the bubble ex-ante.

This game is not constrained to be played only between two investors. Since the one who sells at 
time t and buys at time t +  2 is not necessarily the same person, it is straightforward to extend the 
result to more investors, assuming that the investors cannot observe who have exited the market. 
Otherwise, the investors would update their beliefs upon observation and the model will become 
more complicated. We leave it to future research.

3.5 Summary

To summarize, we have developed a model of rational bubbles based on several assumptions. Firstly, 
we have assumed that the asset price needs to be inflated by an exogenous factor every time being 
traded. Secondly, the bubble will burst following an exogenous shock and the date of the shock 
follows a Geometric distribution. Thirdly, the investors have heterogeneous beliefs about the date 
of the shock.

Our model shows that an equilibrium in which a bubble can persistently exists given that the 
bubble grows fast enough. In the baseline model, the speed at which the bubble grows only depends 
on k, the exogenous inflation factor, hence the implication is that bubbles are more likely in illiquid 
markets where trading impact on the market price is relatively high. In the extension we have 
shown that a higher inflation factor will result in bubbles that last longer. Furthermore, a higher 
dispersion of signals and a smaller probability of exogenous shock could also extend the life of the 
bubble.

Our model does not have a realistic background and aims at illustrating the intuition. However, 
it can be easily extended to many cases of asset price bubbles in the reality. In the following
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section we will apply the model in the context of the recent US housing bubble and sub-prime 
mortgage crisis. Note that this is not a straightforward extension. In particular, the housing 
bubble in our model is not supported directly by speculative buyers but through excessive lending 
and securitization behavior o f the mortgage lenders. One o f our objectives in doing so is to show 
that the intuition can be applied in more sophisticated frameworks.

4 Application in Sub-prime Mortgage Market

The sub-prime mortgage industry has been partly blamed for the emergence and collapse of the 
recent US housing bubble. Loose lending standards have provided excessive credit to the sub­
prime borrowers who have a poor credit history and ability to repay their loans. It has been argued 
that, as a result of the fact that the sub-prime mortgage lenders securitize their loans and sell the 
securitized products to the investors, the lenders have shifted the risks associated with sub-prime 
lending away and do not have enough incentives to maintain the quality of the borrowers, hence we 
observe the boom and collapse of the sub-prime industry. The dramatic increase in the default rates 
in the industry after the housing bubble burst might suggest that investors have underestimated 
the risk inherent in the mortgage-backed assets that they bought. However, this cannot stand if 
we assume that the investors are rational and anticipate the moral hazard issues ex-ante.

We try to establish a different perspective by extending our model of rational bubbles. We argue 
that the introduction o f securitization would enable the bank to transfer the risk to investors and 
gamble in the same way as in the baseline model. That is, banks have incentives to lend as long as 
investors are willing to buy the mortgage-backed securities (MBS), and investors have incentives to 
buy the MBS as long as banks are willing to refinance borrowers. Because of the uncertain timing 
of the shock, a bubble in the house price can persist with the same intuition in the baseline model.

The sub-prime mortgage market is a complex mechanism involving the processes of mortgage 
lending, securitization and derivatives trading with many individual investors and financial inter­
mediates and a variety of practices and contractual terms. In order to illustrate our ideas with as 
few unnecessary complications as possible, our model is a much simplified version of the real world. 
In particular, the mortgages have a simple structure and will last for one period only. Moreover, 
house prices will stay constant at a “bubble” level rather than continuously increasing. These are 
simplifications to better deliver the intuition rather than necessary consequences or constraints of 
the model.
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4.1 Basic Setup

Our model is set in infinite discrete time periods with t =  1 ,2 ,3 ,___ There are three classes of
agents: borrowers, a bank and an investor. All agents are risk neutral.

As we will see later, the setup of the model is in essence the same as the rational bubbles model 
we introduced in the previous section. In particular, the bubble process will terminate following an 
exogenous shock, and the bank and the investor maximize their terminal wealth (or consumption). 
Therefore, we will need to assume an initial wealth and a deterministic income process for the 
bank and the investor so that the capital constraints are satisfied7 For the purpose of simplicity, 
we omit the details of these assumptions here (See Appendix A.5 for full specification). Similarly, 
we assume that all agents apart from the borrowers are subject to a liquidity shock and they will 
behave strategically to maximize consumption at the date o f the shock as in the baseline model8.

4.1.1 Borrowers

In each period, there will be N  new sub-prime borrowers who would like to gain access to the 
housing market. Each new borrower has zero initial wealth and expects to receive an income I  in 
each period. The borrowers are called “sub-prime” because their income is very unstable, that is, 
their income is subject to a shock with probability A. After an income shock, the borrower will not 
receive any income for the current and all remaining periods. Assume that the borrowers realize a 
large enough utility from living in a house so that they always want to borrow.

4.1.2 Mortgage Lender

There is a bank (or mortgage lender) who has the ability to identify the borrowers and lend them 
money through issuing mortgages. We assume that the length of the mortgage is one period and the 
mortgage interest rate is exogenously given by r. That is, after one period, the mortgage borrowers 
must repay 1 +  r  times the amount of the loan. Assume that the borrowers will be able to repay 
the loan fully with an income of I.

The mortgage contract also stipulates that the bank has the right to repossess the borrowers’ 
homes should they default. The bank will immediately liquidate the repossessed houses for cash.

The bank can refinance mortgages, i.e. it can lend to the borrowers with existing mortgages.

7This is for the purpose of simplicity only. When the bank is constrained by capital, there also exists a bubble 
equilibrium where house prices will increase.

®Again, the shock can be interpreted in many ways as we will discuss in the end o f this section.
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The contract terms are the same for new and refinancing mortgages. If an existing borrower 
borrowed P  in period t and applies for refinancing in period t +  1, the amount of the refinancing 
mortgage will be (1 +  r)P.

In the same way as in the baseline model, we assume that the bank maximizes consumption 
following the liquidity shock and has an income process ensuring that he is not constrained by 
wealth (see Appendix A.5 for details).

4.1.3 H ousing M arket

Now we introduce the housing market. We assume that the house price Pt in each period is the 
equilibrium price such that total demand is equal to total supply. The fundamental supply of 
houses is fixed at S, and the fundamental demand9 of houses is determined by the exogenous 
function D(Pt), which is assumed to be decreasing and convex in Pt. The total demand will 
include both the fundamental demand and the demand from sub-prime lending (if any), and the 
total supply will include the fundamental supply and the liquidated houses of borrowers who have 
defaulted (if any). Hence, without any lending to the sup-prime borrowers, the house price will be 
at the fundamental level PF such that D(PF) =  S.

Before introducing the investor, let’s first look at the basic case where no securitization is 
allowed.

4.2 Concept of Bubble

We argue that a bubble in the housing market can exist as a result of excessive lending and 
securitization. In order to show this, we need to define our concept of bubble first. We define a 
house price bubble to be the level at which house prices cannot be sustained without securitization.

P roposition  4.1. Let Pi and P2 be such that D{P\) +  N =  S and D(P2) — S +  N. Assume 
(1 — A)(l 4-r) +  A I* <  1. Then without securitization, the bank does not have incentives to lend to 
all sub-prime borrowers and keep the price at P i.

Proof. See Appendix A.6 □

We can see from Figure 1 that if the bank lends to all N  borrowers at period 0, the house price 
will firstly rise as a result o f excessive lending, and then fall below the fundamental price due to

®Because we only have sub-prime borrowers in our model, we can think o f the fundamental demand as consisting 
of the house buyers with no mortgages or prime mortgages.
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Pi Bubble

foreclosures, which means a negative return to the bank on repossessed houses. The bank would 
not be willing to refinance the borrowers either, since their incomes would remain zero in the future. 
Because the fundamental return from lending to all the sub-prime borrowers is negative, the bank 
does not have incentives to sustain the bubble alone. However, given that the bank can transfer 
the risk to the investor through securitization, it is possible that a house price bubble is sustained.

4.3 Securitization

We argue that securitization can act as a means for the bank and the investor to take risk and 
gamble for profit on overvalued assets. As a result, the house price will be kept at artificially high 
levels before eventually bursting.

There is one investor in the market who maximizes consumption following the liquidity shock 
and has an income process ensuring that he is not constrained by wealth (see Appendix A.5 for de­
tails). In each period, the bank can choose to securitize the mortgages it issued and sell them to the 
investor. We call those securitized mortgages MBS. Let L% be the total value of securitized mort­
gages at period t. We denote the price of the MBS by M{ and assume that is determined through 
negotiation between the bank and the investor, i.e. the bank captures a premium/securitization 
fee on those MBS that is a fixed fraction of the total loan amount. Thus we have 1 <  7^ <  1 +  r 
for all t.

The division of profits between the bank and the investor, is the key parameter in this 
model and is analogous to the parameter k in the baseline model. The housing bubble can only 
be sustained given certain restrictions on this parameter ensuring large enough incentives for both 
parties. While we have exogenously assumed that ^  is a fixed outcome through negotiation, we
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acknowledge that there are other possible explanations such as switching cost and competition.

Finally, we assume that the date of liquidity shock T is randomly drawn from a Geometric 
distribution with parameter p. At the start of the bubble, the bank and the investor each receives 
a noisy signal s about T, which is binomially distributed on (T — 1,T +  1) with probability 5.

P roposition  4.2. Given that (2—6) <  ^  <  and $ >  1 — ^ [ ^ 2  where 6 =  D pi°°),
there exists a Nash equilibrium such that}0

• Given a signal s, the bank lends and securitizes as much as possible until the liquidity shock

• Given a signal s, the investor buys the MBS at period t if and only if t <  s

so that the house price will stay at P* before the bubble bursts, where D(P*) +  N =  S.

Proof. See Appendix A.7 □

We see that the bubble equilibrium holds when the negotiation outcome is within a certain 
interval. The intuition is that the division of profits between the bank and the investor must be 
’’ fair” enough to ensure that both parties have incentives to ride the bubble. Moreover, such an 
interval exists only if 6 is small enough relative to r. In particular, if we assume D ~1(oo) =  0, we 
need r >  1 +  ^ . This may seem unrealistically large, but this is only a result of simplification.
As we have seen in the extension o f the baseline model, a lower k is required with more conservative 
strategies etc. Similarly, as we introduce such a natural extension, the magnitude o f r will become 
more sensible, and a higher r will result in longer persistence of bubbles.

4.4 Implications

To summarize, the housing bubble can persist if (2—S) <  <  2^x-^j|a+i+< where <5 >  1—
i.e. the negotiation outcome is such that both the bank and the investor receive a large enough 
share of the return on the mortgages. The equilibrium would fail to hold if r is too small, so that 
the profits are not enough for the bank and the investor to ride the bubble; or if p is too large, so 
that the risk of losing is too large that riding the bubble is not optimal.

Hence we argue that securitization has enabled the mortgage lenders to transfer the risk to and 
gamble with the investors on sub-prime mortgages which are otherwise unprofitable. As a result, 
there is continuous excessive demand in the housing market and a housing bubble can persist. 10

10Here <5 is the lower bound of total return of mortgages securitized one period before the bubble bursts.
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Before the burst o f the bubble, the bank is willing to refinance sub-prime borrowers with diffi­
culties to repay, therefore borrowers with financial problems could avoid foreclosure by refinancing 
and default rates are kept at artificially low levels. For example, nearly 60% of sub-prime loans 
originated in 2003 were for refinancing according to Chomsisengphet and Pennington-Cross (2006). 
As we showed in the model, once the bank stops lending and the housing bubble bursts, the bor­
rowers are no longer able to refinance their mortgages and observed default rates will increase 
dramatically. Thus we argue that such an increase is not necessarily due to irrational expectation 
of the investors but the change in the refinancing policy of the mortgage lenders.

As the bubble persists, the amount o f total mortgages outstanding will increase. Hence the 
longer the bubble persists, the more defaults and foreclosures are expected when the bubble bursts, 
and the negative impact on the housing market will be more drastic. Therefore, as the bank raised 
lending standards and the number of buyers in the mar ket decreased, we observe a sharp rise in 
home inventories and fall in house prices in 2006-7.

There were many other factors that have contributed to this process. The tranching practices 
and lax behavior of rating agencies have resulted in plenty of A-grade MBS and enabled the bank 
to sell the securitized products to more institutional investors subject to regulations. Speculative 
home buyers, falling interests and loose regulatory practices have all contributed to the bubble. 
Hence the exogenous shock can be interpreted in many ways. A sudden change in any of those 
exogenous factors mentioned above could potentially lead to the collapse of the bubble.

5 Conclusion

We have developed a model of rational bubbles. Assuming an exogenous shock and heterogeneous 
beliefs, we show that rational agents have incentives to invest in a virtually worthless asset and 
gamble with each other for profits, even if it is common knowledge ex-ante that it is a bubble 
and will burst in finite time. As a result, over-valuation of the asset can persist for a significant 
period before eventually bursting. We have also shown that the higher the price inflator (the rate 
of increase of the asset price after each trade), the longer the bubble can persist. Thus we have 
shown that given some exogenous price path, a bubble can exist in a financial market in which the 
fundamental value of the asset becomes almost irrelevant.

We then apply the model in the sub-prime mortgage market. Despite the poor quality of the 
sub-prime borrowers, the bank has incentives to lend to and refinance all the borrowers and sustain 
a housing bubble, given that it is able to securitize the mortgages and sell them to the investors. 
Hence banks have incentives to lend as long as investors are willing to buy the mortgage-backed 
securities (MBS), and rational investors have incentives to buy the MBS as long as banks are willing
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to refinance the borrowers. Because o f the uncertain timing of the exogenous shock, a bubble in 
the house price can persist with the same intuition in the baseline model. Once the bank stops 
lending and the housing bubble bursts, the borrowers are no longer able to refinance their mortgages 
and observed default rates will increase dramatically. Thus we argue that such an increase is not 
necessarily due to irrational expectation of the investors but the change in the refinancing policy 
of the mortgage lenders.
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A Technical Appendix

A .l Proof of the necessity of exogenous shock in baseline model

Proof. In order to prove that heterogeneous beliefs is necessary for a bubble equilibrium (i.e. an 
equilibrium where both investors buy the asset from each other for a significant period o f time) to 
exist, we display below a model that is the same as the baseline model except that investors do not 
receive signals about the date of the exogenous shock. That is, the probability that the exogenous 
shock happens in the next period is constant for all periods. We show that a bubble equilibrium 
does not exist in this case.

Consider a discrete-time model with infinite time periods 0,1,2... Suppose there are two in­
vestors: investor A and investor B, each with an initial wealth of Wo. They will both receive 
income in each period. The amount of income they receive in period t is k(.

There is an asset that has a fundamental value of 1 and can be traded between the two investors. 
Assume that the asset can only be bought at a multiple k of its current price. So in period t, one 
investor can decide whether or not to buy this asset from the other at a price of kl.

Suppose that the investors do not consume normally, but at each period in time, there is a 
probability A that both investors have a liquidity shock and will consume all their wealth (the 
asset itself has a consumption value of 1). Both investors will maximize the expected value o f this 
consumption, which we denote by C. Assume that investors are risk-neutral and have zero discount 
rate.

We will show that the Nash Equilibrium where both investors always buy does not hold.

Let’s check the incentives of the investors in each period given that the asset is still being traded.

In period t, suppose that investor A  can buy the asset from investor B. Let the current wealth 
of investor A be Wt. Then investor A will buy if

Et(C|buy) >  Ef(C| don’t buy) (A.1)

The expected consumption if investor A buys is (assuming that both investors will follow the 
equilibrium strategy in the following periods)
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A (Wt +  fct+1 -  fc* +  1) +  A(1 -  A)[Wi +  ki+1 +  kt+2 +  ( - 1  +  fc)fc*J 

+A(1 -  A f [ W l +  fct+1 +  kt+2 +  kt+3 +  (—1 +  fc — fc2)fc* + 1 ] + .. .

The expected consumption if investor A  does not buy is

A [Wt +  kt+i) +  A(1 — A)[Wt +  kt+1 +  fct+2] +  A(1 — A)2[W* +  fct+i +  fct+2 +  fct+3] +  ••• (A.3)

Hence we can see that Et(C'|buy) >  Et(C|don’t buy) if

OO t  0 0

fc4A £  (i -  a) - 1^  (-1 y v - 1}+ aE  (! -  ^ r 1̂ ) > 0 (A-4)
1=1 j= 1 t=l

where I(i) =  0 if i is even, and I(i) =  1 if i is odd. The second term A (1 — A)*-1I(i) =  
A[1 +  (1 -  A)2 +  (1 — A)4 +  ...]  is equal to j z v

Therefore the condition for buying becomes

OO t  1

(i -  *)M E  {-lyif'-'j +
i= l
00

3=1
2 - A

=  fc* A (1 -  A)
¡-t —1 — (—l)*+1fc*

i= l 1 +  fc
+ 2 -  A

fc{A[—1 +  (1 — A)(—1 +  k) +  (1 — A)2(—1 +  k +  fc2) +  ...] +
2 - A

00  00  CO .

=  fc‘ A [ - l  £  (1 -  A)« +  k £  (1 -  A)f +  fc2 £  (1 -  A n  +  2 Z a

00 1
=  fc‘ ^ (_ i ) ‘+4[ ( i -A ) f c ] i +  — > 0

»=0

If (1 — A)fc >  1, this alternating series does not converge. If (1 — A)fc <  1, the scries converges 
to Hence the condition can be rewritten as fc* <  <  jr x  <  This clearly does
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not hold for all t given k >  1. Hence the proposed equilibrium does not hold. □

23



A.2 Proof of Lemma 3.1

Proof. First of all, it is easy to show that t <  s +  n -  2 because the investor will never buy at period 
s +  n — 1 since he knows for sure that the shock will happen next period. In addition, if m > 0, 
the lemma trivially holds for t < m  because investor B will trade for at least m periods (say, when 
s =  0). Therefore, in the following we assume t € [max{0,m +  1}, a +  n — 2].

We will check investor A ’s incentives before period t given that he will buy the asset at t.

At period t, given that investor B will buy the asset at t <  s' +  m, the only possible signals of 
investor B that would make him stop buying at £ +  1 are i — m o t t — m — 1, since investor B still 
bought the asset at time t — 1. So we can find a lower bound for investor A ’s expected consumption 
if he buys. We have

Bt(C\s,buy)

> P (T  =  t +  1|T >  r t) [Wt +  1 +  kt+1] 

+  P (T  =  £ +  2|T >  Tt) Wt +  P (s ' <  t -  m|s' > t  — m — 1,T  =  £ +  2) 

+  P(s’ > t  -  m|s' > t - m - l , T  =  t +  2 )kt+l +  kt+l +  kt+2

Wt + P(s' <  t —  m\s' > t  — m — 1,T =  i)
a+n

+  ¿ 2  P(T  =  i\T>Tt)
i=t+3

+  P (s ' >  t -  m\s' > t  — m — 1,T  =  i)kt+i +  fct+1 +  kt+2

+  max {E i+2(C|s,buy), E t+2(C|s, don’t buy)} - k*

where Tt =  max{t 4-1, s — n, t — m — n — 1} and P (T  =  i\T >Tt) (i =  t +  1, t +  2 , . . . ,  s +  n) is the 
conditional probability of T =  i given investor A ’s information set at time t. This information set 
contains three parts. First, since the shock has not happened yet, investor A knows that T >  t + 1. 
Second, investor A  knows from his private signal s that T  >  max{0, s — n}.  Third, investor B must 
have received a signal s' >  t — m — 1 since he bought at time t — 1, hence T >  max{0, t — m — n — 1}. 
Therefore Tt can be interpreted as the earliest possible shock time given current information set.

In addition, P(s'|s' > t  — m — 1 ,T  =  i) is the conditional probability that investor B received 
a signal s' given that T — i and s' > t — m — 1. Using Bayesian probability and the property of 
Geometric distribution, it is easy to show that

P (T  =  i| T > T t)
0 if i < T t

(1 - P Ÿ -Tt if i > T t
U l r M - p Y - Tt
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and
>  t — mis' > t — m — 1,T =  i)

'
0 if i < t  — n — m 

m + n  +  i — t------------------------ - if t — n — m < i  < t  +  n — m
_  J m +  n +  t — t +  2
” 1 2 n .r • ,---------  if i — t +  n — m2n +  1

1 if i > t  +  n - m\

The expected consumption of investor A if he does not buy at period t is

Et(C|s, don’t buy)
*+n
Y  P (r =  i\T > Tt)[Wt +  Y  V]

i= t+ l i= t+ l

Therefore, investor A is willing to buy at period t if

Et(C|s,buy) — Ei(C|s,don’t buy) 
>P(T =  f + l | T > r t)

+  P(T = t + 2|T > Ti) P(s' < t  — m|s' > t  — m — 1,T =■ t + 2) 

+ P(s' > t -  m|«' > t - m - l , T  = t + 2)kt+l

P(s' < t — m|s/ > t  — m — l ,T  — i)
s + n

+ Y  P ( r  =  i | T > r t)
i=t+3

+ P(s' > t — m\sf > t — m — 1,T =  i)fct+1

+ max {Et+2(C|s, buy) — Et+2(C|s, don’t buy), 0} — kl > 0

This holds if and only if

where s+n
X  =  Y ,  ( i —p y TtP(s , > t  — m \ s ' > t  — m — l ,T  = i) 

i=max{t+2,Tt}

(A.5)
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Similarly, investor A will choose to buy at period t — 2 if

Et_ 2(C)s,buy) — E t_2(C|s,don’t buy) 

> P (T  =  t -  l\T >  t / _ 2)

+  P (T  =  t\T >  Tt-2) P (s ' < t  — m — 2\s'>t — m — 3,T =  t) 

+  P (s' >  t — m — 2\s' > t  — m — 3, T  =

P (s ' < t — m — 2|s' >  t — m — 3,
a+n

+  £  P ( r  =  i\T >  Tt-2 )
i=t+ 1

T =  i) +  P (s ' > t — m — 2|s; > t  — m — 3,T =

+  Ei(C|s, buy) -  Et(C|s, don’t buy) k l~2 > 0

This holds if and only if

k > s £ U ( i  - p y - Tt- 2

where
a+n

(A.6)

Y =  ( l - p ) ’' - T*-2P (s ' > t - m - 2 \ s '  > t - m - 3 , T  =  i)
<=max{t,T«_2 }

Now we need to prove (A.5) is a sufficient condition that (A.6) holds. Since 77 =  max{s — n,t +  
1, £ — m — 1}, we need to consider the following three cases:

(I) If Tt =  s — n, i.e. the preconditions satisfy:

{s —n > t + l  ( t < s  — n — 1

8 — n > t  — m — n — 1 ^ f < s  +  m +  l

In this case, condition (A.5) becomes

£ S * - n ( l - P r (3- n)
X
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where
s+n

X  =  Y 1  ( ! -  i5)<_(s_n)P (s ' >  t -  m\s' > t - m - l , T  =  i)
i=m ax{t+2,i—n}

It is straightforward to show that r t- 2  =  s — n, thus condition (A.6) becomes

E £ ; _ „ a  - p r (s- n)
Y

where
a+n

Y =  (1 -  p y -ta- n)P(s' > t - m -  2|s' > t - m - Z , T  =  i)
i=a—n

Because
P (s ' >  t — m\a' >  t — m — 1,T =  i)

f
0

m +  n +  i — t 
m  +  n +  i — t +  2 

2n
2n +  1

if i < t — n -  m

if t — n — m < i < t  +  n — m

if t =  i 4- n — m

1 if i > t +  n — m

and
P (s ' >  t — m — 21s' > t  — m — 3, T =  i)

0 if i < t  — n — m — 2
m +  n +  i —t +  2 
m + n +  i —1 +  4 

4 2 n
2n +  l

if t - n  — m — 2 < i < t  +  n - m - 2  

if i =  t +  n — m — 2

1 if i >  t +  n — m — 2

Comparing the above two expressions, we can show that

P (s ' > t — m — 2\s' >  t — m — Z,T =  i) > P (s / > t — m|s; >  t — m — \,T

i.e. V  >  X . Therefore

E ^ - n U  -  P)M a~n) .  E ^ - n U  -  P)f~(j~n) 
Y  ~ X
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Hence condition (A.6) is weaker than condition (A.5) when r t =  s — n

(II) If Tt =  t +  1, then r t_2 will be either t — 1 or s — n. 

In this case, the lower bound of k in condition (A.5) is:

x
where

a+n
X  — ^  (1 — p)‘ (t+1)p (s ; >  t — m\s' > t — m — 1,T  =  i)

i=t+2
a+n—t

=  <

2 n
2 n +  
n—m—l

E

j ( i - p ) +  s  i1 ~ py 1
j =3

m + n +  j
(‘ + ¿ T i l 1 -p )" " "* '1 +  E  ( i - p ) j_1

j=n-m+l

if m e  (t — s,n — 2)

if m =  n — 2

a+n-t

“  m + n + j + 2

a+n—t—1 

£
m +  n +  j  

m +  n +  j  +  2J=2

2n
( l - p ) *  1 + 2 ^ + I ^ 1 ‘ ' ^ S+r’ 4 1  ifm  =  i _ s

s+n—t

E
3 =  2

m +  n +  j  
m + n + j + 2

( i - Py - i if m < t — s

(II. 1) If Tt- 2 =  t — 1, the preconditions satisfy:

f t  — l > s  — n 

\ t — 1 >  i — m — n — 3

t > s —n + 1 

m +  n +  2 >  0

Now the lower bound in condition (A.6) is:

E ë T - i a - p ) * - ^
Y
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where

s+n
Y  — ^ E (l — p)1 ^ 1̂ P(s' > t - m — 2|s' >  t — m -  3,T =  i)

=

i—t

2 n
2n+ 1 
n—m —3

E

s+ n—t

( i - p ) +  £  a - p ) J+1
3=1

m +  n +  j  +  2. ,  N . 2n

if m =  n — 2

s+ n —t
,  ( i - p v ‘+1 +  — — £  d - p ) j+1+-i m +  n +  j  +  2n + r  P> . ^  11J=0 j = n - m - l

if m € (t -  s — 2 ,n -  2)
4+tl—t —1

Z  "* t " + J +  ! (1 -  py*' + 7 ^ - r ( l  -  ifm = i — s — 2+ +  m +  n +  j + 4 ' '  2 n + l vJ=Q
s+n—t
Z  " + , 1 + J  +  2 ( i - p ) W  “  m +  n +  j  +  4 V if rn <  t — s — 2

Note that polynomial y  has degree s +  n — t +  1, while X  has degree s +  n — t — 1, so we can 
write Y  as Y =  X  +  f(t) ,  where

m  =

( i - p ) s+n- ‘ + ( i - p ) a+n- t+i
Of}

— (1

2n — 1 
2 n +  1( l - p ) n

2n
+  2n +  l (1 ~P)

a+n—t

E
j = s + n —t—1

m +  n +  j  +  2 +1
m +  n +  j  +  4 V

when t < a +  m 

when t =  s +  m +  1 

1 when t =  s +  m +  2

when t >  a +  m +  2

Therefore

E g * - i ( i  -  p ) ^ “ 15 E & + 1U -  p),'~(e+1) +  (i  -  p)-,+n- ‘ +  ( i  -  p)s+n- i+1
^  *  +  /(« )

X

(II. 2) Suppose Tt =  t +  1 and r (_2 =  s — n. The preconditions are 

t +  1 >  s — n

< f + l > £ — m — n — 1 = >  

s — n >  t — 1
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Because the previous analysis for Tt =  tj_ 2 =  s —n has already included the case of t =  s — n — 1, 
and the analysis for t * =  t + 1  and tj_ 2 =  t — 1 has covered the case of t =  s — n +  1, we only need 
to look at the case where t =  s — n.

Then the lower bound o f condition (A.6) becomes

Y

where

s + n

Y =  ( l - p ) <- ( s- n) p ( s '> t - m - 2 | s ' > i - m - 3 , T  =  i)
i= s—n

/ 2 n
2n +  1

2n
+ X > - p ) j'

j=i

- ^ - 3 m + i ± j  +  2 ( 1 _  y
^  m +  n +  j + 4 v 
3 =0

2 n
2?i 4- 1 (1 - P )

2n—1

E m  +  n + j  +  2 j  +
m +  n +  j  +  4' '

2 n
2n + 1 ( 1 - P ) 2n

if m =  n — 2

2n
2+ E

j=n—m—l
if m e  ( —n — 2, n — 2) 

if m =  — n — 2

Y  can be written as Y =  +  g(t) where t =  s — n and

' ( 1 - P )a" -1 +  ( 1 - P ) an

p (0  = "

V

2 n
2n +  1 
2n — 1 
2n + 1

(1 - P ) 2" “ 1

( I - P )2” " 1

+  ( 1 - P ) 2n

+
2 n

2n + 1 ( l ~ P ) 2n

if m G [-n , n -  2] 

if m =  - n  — 1

if m =  —n — 2

Therefore

E ^ - n ( l - P ) M * -n)
y

<

S £ T -» + i ( i  - p ) 1- * * " ^  +  (1 -  p)2n

E ^ n-n +i ( i - p ) M a- n+1)x
Hence condition (A .5) is also stronger than condition (A.6) when Tt =  t +  1 and Tf_ 2 =  s — n.
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(Ill) If T( =  t — m — n — 1, the preconditions axe

t — m — n — 1 >  s — n 
t — m — n — 1 >  t +  1 {i >  s +  m +  1 

m +  n  +  2 <  0

The case o fm  +  n + -2  =  0 has been discussed before, so in this section we only focus on the 
case of m +  n +  2 <  0. The lower bound in condition (A.5) is:

E s+n
i=(—m—n—1(1 — py -(t-m -n -1)

~~x

where

s+n
X  =  Y ,  ( !  -  p)i_(i_m_n_1)P (s / >  t -  m|s' >  t -  m -  1, T  =  *)

i—t—m—n—1
s + n -t  , . .

_  ^  m +  n +  j  ^  ^ , +m+n+i

j=—m—n+1 m +  n + j  +  2

Similar as (II), Tt- 2  is either t — m — n — 3 or s — n:

(III. 1) If t t - 2  =  t — m — n — 3, the preconditions satisfy

t — m — n — 3 > s  — n 

m +  n +  2 <  0

t >  s +  m +  3 

m +  n +  2 < 0

Now the lower bound in condition (A.6) is

Es+n 
i= t - 3(1 -  p ) i - ( t - m - n - 3)

Ÿ

where

s+n
y =  Y  ( i - p y ~ (t~m~n~3}P ( s ' > t - m - 2 i s ' > t - m - 3 , T  =  i)

i= t—m—n—3
s+n

=  Y  (1 - p y -V -m- n-V p (s ' > t — m — 2|s' > t - m - 3 , T  — i)
i= t—m—n—l 

s+n—t
=  V  m  +  n + j  +  2 (1 _  xj+m+ „ + 3

^  ,m  +  n +  i +  4 v 'j= —m—n—1
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s+n—t
Hence Y  =  X  +  ^

j= s+ n —t—1

m + n +  j  +  2 
m + n +  j  +  4

(1 -  p)J+m+n+3.

Therefore

s+n
^  _  p y - ( t - m - n - l )  _|_ ^  _  p^m +2n+s-t+2  ^  _  p^m +2n+3-t+3

i= t—m—n—1
s+n—t

x +  V '  m + n  +  j  +  2 / x _  \j+m +n+ 3

"» +  "  +  .#+  4

(III. 2) If Tt- 2  =  s -  n, we have

t — m — n — 1 > a — n 

1 t —m —n —3 < s —n 

m +  n +  2 < 0

s +  m +  l < i < s  +  m +  3 

m +  n +  2 <  0

The case t =  a +  m +  1 has been covered in section (I), and the case t — s +  rn +  3 has been 
included in (III. 1), so in this section we only work with the case t =  s +  m +  2.

When t =  a +  m +  2, the lower bound in (A.5) becomes

E £ a-n +l ( l ~ P ) M ' - W+1)x
where

3 + t i

X =  (1 — p)*-(*~n+1)P (s ' > t — m|s' > t  — m — l ,T  =  i)
» = 3 —7 1+ 1

2n-2
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Now the lower bound for condition (A.6) is:

E S i - n l l - p ) ' - ' - " - 1’

where

Hence

Thus

s+n

Y =  i1 “  > t — m — 2|s' > t — m — 3,T =  i)
i=s—n
2 n - l

D  j :
i= i J

=  T "  — pY+1 +  t— —r ( l  — p)j  +  2 2n + l v
2n+l

E g . - „ ( i  -  p )‘ ~(— ]) £ £ , - , « ( 1  -  +  ( i  -  , ) *  +  ( i  -  ?)*■+•
y  *  +  I S i ( i - f ’)2"  +  f e ( i - i > ) ! " «

E f a . - . - n ( ' - p ) ‘ - (*-n'fl)
x

Therefore when Tt =  t — m — n — 1 and Tt~2 =  s — n, condition (A.5) is also stronger than 
condition (A.6).

To conclude, we have proved that condition (A.5) is stronger than condition (A.6). That is, 
when investor A is willing to buy at period i, it is also optimal for him to buy at period t — 2. □
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A .3 Proof of Lemma 3.2

Proof. First of all, it is easy to see that g(m ,n,p ) >  1 +  -  from the expression of g.

When to <  —n — 1, it is obvious that g(m — 1) <  g(m).

Now suppose to >  —n — 1. Let a and b be such that g(m) =  g. Then it can be shown that 
S (m -l )  =  where c =  ( l - p ) n— and d =  ^ ? 2 ( l - p ) ' l— 1+ ^ I ( l - p ) n— - ^ T( l -p ) '* - ’n- 1. 
We know that, given g >  1 +  £, g±J < g if | <  1 +  A. But

c 1

1

” l»a&I + (l-JOjSt
< 1 + 1n

Therefore it follows that g(m  — 1) <  g(m), i.e. g Ls an increasing function of m. □
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A.4 Proof of Proposition 3.2

Proof. WLOG we only check the incentives of investor A. Recall from the proof of Lemma 3.1 that 
the condition for investor A to buy the asset at time t is:

k >
E a+n  

j=Tt (i - p y - rt

E iiL c p + W 1 -py~Tt p (s' > 1 -  mW >  t - m - l . r  =  i) (A.7)

where
P is ' >  t — mis1 >  t — 

0
m +  n +  i — t 

m +  n +  i —1 +  2
1 2n

2 n -f-1
1

m --1  ,T  =  i)

if i < t —n —m

if i e ( t - n - - m,t +  n — m)

if i = t + n —m

if i > t + n - m

Replacing t by a +  m, we can find that the condition for which investor A  will buy the asset at 
s +  m is

k >  < £?= 1 - P ) j  +  a & iU  -
\n—m —1

E j= 0( i - p ) J~
y-2n-l _2_/i 
2^j=l j+2 ■pV +  s t i «1 - ? ) 2"

if m >  —n — 1

if m <  —n — 1

Hence investor A will buy the asset at t =  s +  m given that k >  g(m,n,p) where <7(m,n,p) is 
as we defined in Lemma 3.2. Moreover, Lemma 3.1 implies that investor A will be willing to buy 
the asset at all periods before s +  m.

Finally, we need to show that investor A does not want to buy the asset at s +  m +  1. Since g 
is an increasing function of m, we can find an interval g(m) < k < g(m + 1 )  for A:, which implies 
that investor A is not willing to buy at s +  m +  1 given that investor B ’s strategy is to buy until 
t >  a +  m +  1. Hence it is sufficient to show that investor A is not willing to buy at a +  m +  1 in 
NEm because it is less likely that investor B will buy in the future. Therefore investor A does not 
want to deviate from the equilibrium strategy.

□
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A .5 Specification of wealth and income in the model of sub-prime mortgages

In order to satisfy the wealth constraints, we need the following assumptions:

• The initial wealth of the bank is greater than NP* where D(P*) +  N  — S.

• The initial wealth of the investor is greater than (1 +  r)NP*.

• The bank has an income of (1 +  r)t_1AATP* in period t.

• The investor has an income of (1 +  r)lXNP* in period t.

Proof. In the bubble equilibrium, the total amount of capital that the bank needs to lend (out­
standing loan) at period t will be (1 +  r)lXNP* +NP*  where D( P* ) +N  =  S. The amount of 
capital that the investor needs to buy the MBS will be less than the outstanding loan multiplied by 
1 -|- r. Hence it is easy to show that the above specification of initial wealth and income garantees 
that the bank and the investor are not constrained by capital in equilibrium. □
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A.6 Proof of Proposition 4.1

Proof. The total payoff to the bank after lending to N  borrowers at t =  0 and not lending at t =  1 
will be =  (1 — A)(l +  r) +  ApJ where P2 < Pi. If the bank lends to and refinances everyone at 
t =  1 and keep the price at Pi, the delinquent borrowers will never be able to repay the loan, and 
the liquidation price of repossessed houses will be lower since the expected number of foreclosures 
will be higher, hence the payoff would be less than 4>. Therefore the assumption that <I> <  1 ensures 
that the bank does not have incentives to sustain the housing bubble. □
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A .7 Proof of Proposition 4.2

Proof. First of all, in equilibrium, the total amount of mortgages outstanding in period t will be

At period s, the investor is certain that there will be a liquidity shock at s +  1, so he will not 
buy at s.

At period s — 1, given that the shock has not happened, the investor knows for sure T  =  s +  1. 
Since the bank always lends until the shock, the investor will buy at s — 1, and the expected payoff 
is (1 +  r)Ls_ i -  Ma_i.

At period s — 2, suppose that the investor buys MBS, he will either get SLa- 2 , if the shock 
strikes at s — 1, with conditional probability P (T  =  s — l|s) given signal s; or (1 +  r)L s_2 +  [(1 +  
r)La- 1 — Ma_i], if the shock happens at s +  1, with conditional probability P (T  =  s +  l|s). In the 
latter situation the payoff is combined with the expected income both from buying at s — 2 as well 
as that from a — 1 (the item in square brackets), since the investor will go on buying as long as the

£ )*_{(! +  rfXNP*  +  NP*. Suppose that the liquidity shock will happen in period t +  1, the total
Ell^d+r )‘A ps

P *

where D (PS) =  S +  tXN.  It is clear that this return is bounded below by some for all t.
As the equilibrium needs to hold in the infinite horizon, we will use S in the rest of the proof.

Suppose that the investor received a signal s. We check whether the investor will deviate from 
equilibrium:

shock takes place at s +  1. The expected payoff for the investor is:

învestor,s—2 — P (P  — 8 — l|s)<SZ/s_2 +  P (T  — S +  l|s) 

•{(1 +  r)La- 2  +  [(1 +  r)La- i  -  M _ i ] }  -  Af._a
(A.8)

“  p (T = « - i )+ p ( r = i+ i )  — i+ (i-p )2
P(T=g—1) _  1

We have $ investor,a-2 >  0 Vs if and only if

Mt 2(1 +  r ) ( l  — p)2 +  S 
Lt <  2(1 — p)2 +  1

(A.9)

At s — 3, there is no risk of losing and the investor will buy. This is true for all remaining 
periods.
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The investor has no incentive to deviate from his optimal strategy if (A.9) holds and L < M < 
(1 +  r)L.

Now suppose that the bank received a signal s.

At period s, the supply shock will surely happen at s +  1. If the bank continues to lend and 
securitize, he will get Ms if the investor got signal s +  2, which happens with probability the 
bank will get SLa if the investor got signal s, with probability too. Thus the expected payoff of 
the bank at s is:

*ban k,s =  \(M 3 +  5Ls) - L a (A .10)

We have $  bank,3 >  0 Vs if and only if

^ > ( 2  -S )  (A .l l)

At period s — 1, since the shock has not happened yet, the bank knows for sure that it will 
happen at s +  1, which implies that the investor will certainly buy at period s — 1. Hence the bank 
will not deviate.

At period s — 2, the shock will be at either s — 1 or s +  1, thus the bank’s payoff depends on 
the signal of the investor. If the investor’s signal is s — 2, he will not buy the MBS and the bank 
will get SLa- 2 with conditional probability P (s  — 2|s); if the investor’s signal is s or s 4- 2, he will 
continue to buy and the bank will get Ma- i  +  Es_2[lI>6an)c,s-l&s] with probability 1 — P (s — 2(s).

The expected payoff of the bank to lend at s — 2 is:

*6on*,.-2 =  P(* -  2|s)(iL._a) +  [1 -  P (s  -  2|s)]

•{Ma—2 +  Es_2[i*6anA!,s—l&s]) ~  ■̂ 's—2

where P (s — 2|s) is the conditional probability for the investor got signal s — 2 given that the the 
bank got signal s:

P (s -  2|s) =  P (s  -  2|T =  s -  1)P(T  =  s -  l|s) =
1

2[1 + (1 - P )2]

Therefore, <I>6«nfc,s-2  >  $txmk,8> so that (A .l l)  can guarantee that (A.12) is positive.

At period s — 3, the bank knows the investor will definitely buy and it is profitable to lend and 
securitize. The same is true for the remaining periods. Therefore the bank has no incentive to 
deviate if (A .l l)  holds.
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Combining (A.9) and (A .11), we see that the equilibrium holds as long as

,n n . Mt ^2(l +  r ) ( l - p ) 2 + 5 
{ 2 - d ) <  —  <  2 (1 _ p)2 +  1 . (A.13)

Finally we check consistency, i.e. we need 1 <  x f  <  1 +  r. It can be shown that (A.13) is
consistent if and only if 5 >  1 — □
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A bstract

This paper studies a wide range of empirical volatility models and the implied volatility to 

forecast short-dated volatility in FX market using high frequency data. Instead of promoting a 

single method, this paper argues that each model has its own expertise in the specific environment, 

and overall forecast can be more robust to keep a battery of models and take a collective signal 

from them. To mimic the real trading environment and exclude look-ahead bias, estimation and 

forecasting is conducted on a rolling basis. Moreover, a realistic 2-week volatility swap trading 

strategy is tested according to the forecast. The profit is pronounced even after considering trans­

action costs. Especially, the model combination constantly outperforms any single model, and is 

able to seize the upside from each of them. On the technical side, this paper proposes a double-step 

approach to circumvent the disadvantage o f employing GARCH-type model in high frequency data 

in FX market, so that it can separate effect of intraday /  intraweek seasonality and pre-scheduled 

macroeconomic data releases from underlying data process. The double-step approach is the first 

time being applied in the context of volatility forecasting and proved to be significantly effective 

in model improvement. Furthermore, regime-switch technique is applied to enhance the model 

adaptability.

Keywords: shorted-dated volatility, volatility forecasting, volatility swap.
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1 Introduction

Either as an indicator of the contemporaneous spot price movement, or as an investable asset alone, 

volatility has been increasingly researched especially after the recent financial crisis. Since 2007 the 

market has witnessed the ebb and flow of volatility with each strong wave mirroring a turbulence 

of market sentiment. This experience, nevertheless, provides us with a great opportunity to form 

a better understanding of volatility evolution.

There have been controversial results in the literature as to  the best volatility forecast mech­

anism (Jorion 1995; Anderson 1998; Jiang and Tian 2005; Andersen and Bondarenko 2007). The 

traditional empirical models have well documented the stylized features of volatility, including lcp- 

tokurtosis, clustering and persistence; however, none of these econometric forecast methods escape 

from the shortcoming o f their backward-looking nature. Empirical models use the past to predict 

the future, which is a setback when forecasting into near-term events that have been known to 

be more volatile than normal, and which are not part of the estimation window. The obvious 

alternative -  market-implied volatilities -  are typically backed out from the Black & Scholes model 

and thus suffer from model-dependency (and reliability) issues.

The essential problem lies in the fact that the data generating process for volatility is unob­

servable, or in other words, the “true” realized volatility is a latent variable that can only be 

“represented” by observable proxy. In this sense, any argument on the best unbiased forecast can 

be in vain if the proxy choice for realized volatility is arbitrary. Instead, a more relevant and inter­

esting question becomes whether it is possible to construct a strategy to exploit the divergence of 

forecasts and the proxy given all the observable market conditions. For example, in a volatility swap 

contract the realized volatility is defined as the square root of annualized daily squared returns. 

Therefore, the forecasts built around a volatility swap will use this specific proxy as comparison 

benchmark.

This paper takes the agnostic view that no single model (including implied volatility) can 

consistently outperform others. Rather than sticking to one method from the beginning to the 

end, it keeps a battery o f models and takes a collective signal from them. To guarantee the 

adaptability of each model within the selection pool, it further applies a Markov regime switching 

technique. Interestingly I find that different characteristics embedded in different models tend to 

highlight themselves in distinct volatility regimes, so rotating across models along with the changes
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in market turns out to be the best approach.

This research uses intraday high frequency data from the foreign exchange market -  the most 

liquid of all markets - which brings both advantages and challenges. A major improvement is 

the growth in information, thus reducing output noise relative to the equivalent with daily data. 

However, there are difficulties associated with FX intraday data. Firstly, currency markets exhibit 

seasonal volatility patterns linked to relative intra-day and intra-week liquidity. Although the most 

liquid currencies are traded around the clock, trading volumes can be concentrated around time 

periods where major time zones (US, Europe, Asia) overlap. Intra-week volume patterns are also 

notable, leading to a rise in volatility over the course of the week and culminating with an abrupt 

fall at the end o f the week. A blind adoption of an empirical model like GARCH on such a dataset 

distorts the recursive relationship that the model assumes.

Secondly, since an exchange rate is the relative valuation between two currencies, its price and 

volatility can be highly vulnerable to events that are idiosyncratic to each currency. Therefore, 

FX volatility is also subject to regular macroeconomic data releases from each side. Key examples 

include central bank rates decisions, inflation, manufacturing and unemployment data. The price 

movement tends to be more volatile around the short period when there is a data release. In certain 

circumstances the volatility in a 1-hour interval can be lOx that o f non-event hourly intervals. 

This paper proposes a two-step approach to “cleanse” the original data to circumvent the above- 

mentioned two problems, so that normal empirical models can be operated on high frequency data. 

The double-step approach is the first time being applied in the context of volatility forecasting and 

proved to be significantly effective.

Daily data was proper when the research was centred in long-dated (monthly or longer) volatility 

forecast. With the engagement of high frequency data, it allows us to look into a more flexible 

forecast length, in particular, short-dated forecast window altering from overnight to several weeks. 

This provides indication for gamma trading since a delta neutral strategy involves dynamic hedging 

and profit taking which is essentially long gamma1. In the short end, such a strategy is determined

1For example, a deltarhedged portfolio can be constructed by a long position in a call option and short position in 

delta shares of the underlying asset so that the return on the portfolio is risk-free rate. Given theta, gamma of a long 

position in option is always positive, or in other words delta is an increasing function of stock price. The delta-hedged 

gain, which is in excess of risk-free rate, could be realized by selling more stocks when share price increases (thus delta 

increases as well) and buying stocks back when share prices drops (thus delta reduces). This strategy dynamically 

hedges the underlying asset movement, and it is only exposed to volatility risk in short term.
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by how fast the spot prices moves, or namely the volatility. In this paper I choose 2-week window as 

forecast length due to the tenor of the volatility swap contracts used in the trading strategy tests. 

Currency options with 2-week maturity have high liquidity and a great amount of transaction 

volume, which have a similar market size as single-week options. The process presented in this 

paper can be adapted to any other forecast windows.

Another key difference from previous literature is this paper does not stop at the stage that 

comparing in-sample fit and out-of-sample squared error. Instead, to better address the dynamics 

and mimic the real trading, I run a rolling in-and-out-of-sample from 2007 to 2010, resulting in 

more than 1,000 forecast numbers. Each calibration and forecast only encompasses the information 

available at that time to avoid hindsight bias. Moreover, a trading strategy is constructed based 

on the deviation of the forecast from volatility swap strike. With the cumulative P&L (Profit and 

Loss) and Sharpe Ratio calculated at the end of 2010, this paper exhibits a more comprehensive 

picture of forecast performance than what delivered by MSE or the Mincer-Zarnowitz R2. The 

profit following such a strategy is significant even after accounting for transaction cost, additionally 

making it practical and realistic.

The rest of the paper is organized as follows: section 2 reviews the literature related to volatility 

forecasting, high frequency seasonality, and volatility swap. Data sources, general descriptions 

and methodology are detailed in Section 3. Section 4 demonstrates in-sample fit, out-of-sample 

predictability as well as volatility swap trading payoffs. Robustness check and comments are laid 

out in Section 5, while Section 6 concludes the paper.

2 Related Literature

There is a massive amount o f research regarding volatility models. Generalized autoregressive con­

ditional heteroskedasticity (GARCH, Bollerslev, 1986) and its derivatives such as GJR (Glosten, Ja- 

gannathan and Runkle, 1993), EGARCH (Nelson, 1991), IGARCII (see Bollerslev and Wooldridge 

1992 for a survey of GARCH literature) are the most widely applied group. Some papers (Diebold, 

1986, and Lamoureux and Lastrapes, 1990) argued that high estimated persistence may originate 

from structural switches in the variance process, which was not addressed by traditional GARCII 

models. Their argument is clearly related to the findings of Perron (1989), Cai (1994), Wong and 

Li (2001), and Lanne and Saikkonen (2003).
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Following this argument, Hamilton (1989) raised the idea of applying Markov process on the 

estimation o f autoregressive parameters. Enlightened by it, Lam (1990) and Kim (1994) improved 

the algorithm; moreover, Hamilton and Susmel (1994), Gray (1996), Klassen (2002), and Haas et 

al (2004) proposed different theoretical approaches to handle Markov Regime-switch GAR.CII, and 

provided practical ways to circumvent the path-dependence problem. More papers (Marcucci, 2005, 

Cheung and Miu, 2009) showed empirically that Regime-switch GAR.CH does show a significant 

outperformance than more traditional single-regime GARCH.

As an alternative, some studies such as Day and Lewis (1993), Jorion (2005) and Christensen 

and Prabhala (1998) argued implied volatility from traded options data does a better job in pre­

dicting future volatility, since it takes market consensus and have forward-looking advantage. The 

traditional employed implied volatility was a single number backed out from B-S formula, repre­

sented by delta-neutral or ATM option. Recent literature improved this calculation and turned to 

model-free implied volatility. Following the model-free implied volatility derived by Britten-Joncs 

and Neuberger (2000), Jiang and Tian (2005) implemented it using a practical method.

The difficulty surrounding high-frequency GARCH model concentrates in seasonality, autocor­

relation, and pre-scheduled macroeconomic data release. Various papers (Anderson and Bollerslcv, 

1997b, 1998b; Taylor and Xu, 1997; Beltratti and Morana, 1999; Gencay, Sclcuk and Whitclier 

2001a) suggested different approaches to handle seasonality problem. The typical methods include 

Flexible Fourier Form (Anderson and Bollerslev, 1997b; Cai et al, 2001, Dominquez and Panthaki, 

2006, Laakkonen, 2007); Locally Weighted Scatterplot Smoothing method (Cleveland, 1979) and 

Intraday Average Observations Model (Omrane and Giot, 2005). Bauwens et al. (2005) also applied 

the Intraday Average Observations Model on macro news, which is close to the filtering procedure 

employed in this paper.

Apart from the above literature which either has its technique directly applied in this paper, 

or aims at tackling similar question, a number of other papers axe closely related to this research, 

especially the discussion regarding to realized volatility measure. Fundamental econometric analysis 

of realized variance or volatility is studied by Andersen, Bollerslev, Diebold and Labys (2003) and 

Barndorff-Nielsen and Shephard (2002); Barndorff-Nielsen, Hansen, Lude and shepherd (2008a) 

introduced realized-kernel estimator. For a more concrete survey, see Andersen, Bollerslcv and 

Diebold (2009).

Papers related to variance/volatility trading and continuous delta-hedging, which is partly
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employed in this paper at the strategy section, include Neuberger (1990), Carr and Madan (1998), 

and Carr and Lee (2009).

3 Data and Methodology

3.1 Data

Data in this paper stems from several sources: the full sample of EURUSD spot price is from Jan­

uary 2004 to December 2010. I obtain 1-minute BID and ASK prices from Reuters, and interpolate 

missing minutes by repeating the last observations -  thus mimicking the live data feed and in line 

with market practice. Since EURUSD is the mostly traded and liquid currency pair, the quality 

of the raw data is very robust. In 7 years, only less than 1% of the data has been interpolated. 

Later I select hourly data from the complete minute set because according to previous intraday 

research (Andersen and Bollerslev), the hourly frequency has already got rid of the bid-ask bounce 

and become nearly un-correlated, while still retaining the intense intraday information. Original 

trading data’s time tick is GMT; while event calendar and seasonality are both consistent with 

local market (recorded in London time) trading hours, which have one hour lag to GMT in the 

summer. To be compatible, all the time tick is modified to London time according to daylight 

savings. Furthermore, following the global FX market open and close hours, I define one week 

trading period as from 9pm Sunday (London time, when the Australian market opens) to 9pm 

Friday (London time, when the North American market closes). Any data which falls out of this 

range is deleted.

Following Andersen and Bollerslev return calculation in high frequency data, I estimate the 

MID price as the geometric mean of BID and ASK2. Hourly return is calculated as the difference 

of log MID price and its one hour lag, and hourly variance as return square.

Pt =  y/A^Bt

rt =  (log Pt -  log Pt- 1) * 100

The first out-of-sample forecast window starts from 01 Jan 2007, so I list general statistics of the 

aI also test on the more popular definition of MID price as 0.5*(ASK+B1D). The results look very similar.
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whole sample period and those after 2007 separately in Table 1. The whole picture o f hourly return 

and variance are shown in Figure 1. Even in a glance we are able to catch the wild fluctuation 

around the credit crunch and European sovereign debt crisis. The nature o f the volatility process 

is ever-changing and it is necessary to base the forecast on a rolling calibration window.

The second data source contains the Macroeconomic data release calendar. From Bloomberg 

I collect the influential pre-scheduled news announcements in the US and Europe (which mainly 

consists German and EU news) for the period 2004-1010. Table 2 exhibits a summary of events.

The third part encloses data from the options market. EURUSD 2-week options are considered 

because this tenor is typically viewed as the shortest length for volatility swap contracts. To be in 

line with the trading strategy built in the later section of the paper, here I focus on the options 

with this short-dated window. The option data is recorded daily at 5pm New York time, and the 

options expire at 3pm New York time 2 weeks ahead.

I take two parallel measurements of implied volatility: the first one is commonly used delta- 

neutral implied volatility (hereafter DNIV) for options with 2-week tenor, backed out from Black- 

Scholes formula. The second measurement is so-called “model-free” implied volatility (hereafter 

MFIV) and takes the entire volatility skew or smile under consideration. I follow the method 

proposed by Jiang and Tian (2005), including all available options with the same 2-wcck maturity 

but at various strike prices. Slightly different from Jiang and Tian (2005), I relax their assumption 

that interest rate is zero, and download interest curves for both USD and EUR in calculating 

forward exchange rate for a given strike price. The formula to compute model-free implied variance 

is as follows:

EQ =  2 J °°  C(T, F(I\)) — max(50 — A",0)

where F(K) is forward exchange rate for strike price level K , and it can be attained by interest rate 

parity.

The above formula is the risk-neutral expectation of implied variance. However, due to Jensen’s 

Inequality, as pointed out by Britten-Jones and Neuberger’s (2000), the square root of right side 

would be upward-biased estimator of implied volatility.

C ( T , F ( K ) ) - m a x ( S o - K , 0 )  lr,
K 2
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Meanwhile, the MFIV by nature is expected to be higher than DNIV owning to the fact that 

OTM options are generally more expensive than ATM ones (volatility smile). Hence we can antic­

ipate the true implied volatility should lie somewhere between DNIV and the number on the right 

side.

The data for DNIV stretches throughout the whole forecast period (2007 to 2010). Unfortu­

nately the more complete option data on spectral strikes is only available after Oct 2008, so the 

MFIV is only able to race half way. As seen from Figure 2 the disagreement between these two 

time-series is mostly trivial except for the period around credit crisis where the volatility skew is 

more evident. The insignificant difference is also confirmed by the t-statistics in Table 3. Rendering 

to these facts, for the rest o f this paper I only use DNIV for its longer history. Nonetheless, we 

shall keep in mind that neither of the two concepts is free from risk premium and thus both will 

exhibit the upward tilt while forecasting future realized volatility.

3.2 Methodology

3.2.1 Seasonality and Event

After the preliminary filter using a week-frame from 9pm Sunday to 9pm Friday, I apply a two-step 

approach to clean out the effects of seasonality and of data releases by assuming that the influence 

from these two are independent.

Thanks to high efficiency in the FX market, prices usually catch up very rapidly following 

events and the fluctuation is highly concentrated around the exact release time. So I simply define 

event time as the hour range within which there is a macroeconomic data release. When dealing 

with seasonality alone, I only select the non-event hours so that the distortion from event effect is 

controlled.

To remove the stylized intraweek autocorrelation, I follow the intuition from the Intraday Av­

erage Observations Model which was first introduced by Bauwens, Ben Omrane and Giot (2005), 

and modify it to serve my purpose. The following process Ls repeated in every rolling in-sample 

window, which covers the most recent 20-week data (2400 observations) immediately before the 

forecast window. Rolling samples ensure no hindsight.

One week is divided into 120 time-buckets by hour, with each hour indexed by “hour-of-the- 

week” h= 1, 2, . . . ,  120. After picking the non-event hours, I calculate the average hourly variance
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for each h across the in-sample period:

v r
w

=  -L  V y " 1
U ) = l

where w = l, 2,..., 20 is week index, W =20 and the superscript Tie denotes non-event time. V is 

hourly variance as stated in last session (o f ).

This gives us a picture of how on average volatility changes from hour to hour in a week. 

Seasonality adjustment coefficient can be computed as the ratio between each hour-of-the-week’s 

variance and its weekly average:

V ne
q , —  h_______

_l_v-120 yne
120 ¿-<A=1 vh

Here &h — It which indicates if normalizing the original variance data by dividing S/,

respectively, it will not change the overall weekly variance, but only peel off the part attached with 

seasonality. In other words, we expect the adjusted time series variance VWth is clean of intraday 

or intraweek pattern, where

Notice that in the numerator it is Vw<h instead of V "eh even though I only take the latter to 

calculate adjustment ratio at the first place. It comes from the assumption that seasonality and 

event impacts are independent, hence the resulted variance Vw>h will be only exposed to data release 

for event hours (additional to other irregular factors that affect volatility).

The rest of the task is to get rid o f the part associated with events. I do not treat all types 

of data releases equally since some of them have a much more significant influence in FX market 

than others. For instance, currency markets are often more sensitive to central bank interest rate 

decisions and inflation data (due to carry trade), and growth and unemployment data (due to risk 

appetite), compared to other releases. On the other hand, some other events do not perform as 

big drivers as these. However, if looking at single event type separately, there are not enough 

observations in 20 weeks to reach a solid statistics for its effect, as most of the data releases are 

monthly.

To circumvent this problem I take an anchored window starting from 2004 and first implement 

the above method to strip out seasonality. The coefficient of influence o f Event i is calculated as:
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Ei = Nj 2 -j= \  vj
1 I/tl

Nne L k = 1 vk

where N( is observation o f event i; and Nne is the number of non-event time. 

Finally, the clean variance and return can be obtained by

Vw,h
Eil(i) +  1 • (1 -  /(¿ ))

^ w,h • I(rw,h >  0) +  (-l)\Z^«,,h  • I(rw<h <  0)

where I(i) is the indicator function which is equal to 1 if event i happens during the hour (w,h), 

or 0 otherwise. Likewise I (rWth >  0) is the indicator that is 1 if the original return is positive.

The above practice can be viewed as “cleansing” before feeding the data into forecast engine. 

After the double-step filtering, rWth is regarded as return free from seasonality and event influence, 

and therefore qualifies for recursive calibration o f the fitting models (such as GARCII). While after 

forecast results from empirical models come out, the reversed procedure is attached to “re-pollute” 

the data by injecting seasonality and event effects back into the forecasted time series.

In the end, the 2-week volatility forecast will be

v £ ‘ -
i

252 x 21 
H

H

£ ( v f s<)2
k=i

where V^cst is each single hour’s forecasted volatility after “re-pollution” ; H is number of hours 

till the option expires; and is the final forecast for annualized volatility.

3.2.2 Forecasting M odels

Among numerous volatility models, I take in the most commonly exploited ones: GARCII, GJR, 

EWMA (exponentially-weighted moving average), and MA (moving average).

GARCH: a\ =  K  +  a  • e?_x +  0  •

GARCH is the most traditional empirical volatility model, which captures long-term variance 

(K), consequence from instantaneous innovation (a) and memory from past shocks (0).

GJR: a\ =  K  +  a  • +  0 • +  0 • e?_1 • I (e t-1 < 0)
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In the GJR model the volatility is treated asymmetrically depending on the instantaneous 

return: negative return has a stronger impact (8>0).

EWMA: a\ =  (1 -  A) • e?_1 +  A •

EWMA is an alteration o f MA, setting more weights to the more recent observations than 

history. In the literature, Riskmetrics EWMA has been widely used in which A for monthly data 

is fixed to 0.97 and daily 0.94. In this paper I do not stick to a constant A, but calibrate it via a 

rolling sample as GARCH family models.

MA:

MA is an easy, but powerful method as we will see later. One item that needs mentioning is that 

the in-sample size for the MA estimate is different from others. For models that ask for calibration, 

a sufficiently large dataset is needed and the recursive nature will automatically set less weight to 

older samples. However, simple moving average does not discriminate on data history, and I have 

to exogenously confine the sample N to a shorter period so that the stale information would not 

be included. Here N is set to 240 (2-week data, similar as the forecast window length).

Except for the MA case, each model goes through a Markov regime-switch technique in order to 

enhance its adaptability to changing market conditions. I assume that there are 3 volatility regimes 

(low, medium, and high) and each can be represented by a set of coefficients. Ideally, if states can 

be explicitly identified, the problem will be reduced to single-regime model that may estimate and 

forecast individually. However, the real state is unobservable and different regimes can transmit 

between each other across time. As a result we are only able to make an ex-ante expectation of the 

future regime or an ex-post expectation of the current regime by Bayes updating, but even these 

expectations are hard to attain if at all possible. The path-dependence characteristic of regime­

switching recursive model makes the full identification unfeasible, and in the existing literature 

there are different means to approximate the current conditional variance (Gray 1996, Klaassen 

2002). In this paper I follow the approach proposed by Haas et al (2004) and only allow the 

updating conditional variance occur independently within regime. Since this paper is not focused 

on specific technique, I will not dig deep into the argument on selecting the best approximation. 

The following example o f 3-regime GARCH model illustrates the main algorithm. Similar idea is 

applied on other empirical models.

A 3-regime GARCH model can be written as:
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hUl =  K i +  <*i -(£\)2 +  pi -hi

where ¿=1,2,3 stands for different regimes and h\+l is the conditional variance at time t+1 for 

regime i. The conditional expectation o f variance at t+1 is determined by both h\ and P(st+1 =  

i\Ft)i which is the conditional probability that the future state will be i given all information until 

t:

3
ht+i =  h\+iP(st+i =  i\rt)

»=1
Assuming a first-order Markov chain, the second part of the right side can be written as 

3 3
P(st+i =  i\F t) = ^2 P(st+1 =  i, st =  j\F t) =  ^2  P (s i+ i =  *l5t =  j)P(st =  j\F t)

j= i j= i

On the right side, the first item P(si+i =  ¿|«t =  j )  is decided by a 3x3 transaction probability 

matrix which is fixed across the time (for a given state j, the probability that it will change into 

state i next period remains at Pij). The second item P(st =  j\Ft) denotes the ex-post expectation 

of state after the observation at time t arrives:

P(st =  j\F t) =  P(st =  j\F t - i ,r t) = f ( s t = j , r t\Ft-i) 
f(rt\Ft-i)

f(rt\st =  j)P (s t =  j\F t - 1) 
E ?= l /M a t  =  j )P (s t =  j\Ft-i)

which in turn depends on the previous time’s ex-ante expected probability. The recursive equations 

above demonstrate how the conditional expectations are formed before and after a certain data 

point arrives. In order to get the whole successive system working, an initial regime probability, 

P(so =  j\Fo) needs to be fed in, and conventionally it is chosen as an unconditional or stationary 

probability. Please refer to the appendix for details.

In the end, the innovation is assumed to follow a normal distribution, i.e.,

f(n\st =  j )  =
1

^2nh{
e x p (- (n  ~  c)2 

2h{

Then all the parameters can be optimized through MLE (Maximum Likelihood Estimation) 

method by maximizing the log-likelihood function
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In L =  Y1 / M r t-l) = ^ 2 ln X ! / W s‘ = 0^(«t = *1 rt-i)
t=i t=i L*=i

4 Emiprical Results

4.1 S eason a lity  an d  E ven t A d ju s tm e n t

Figure 3 is the autocorrelogram of hourly variance within one week before and after seasonal­

ity/event adjustment. The raw variance exhibits a clear pattern of seasonality, and the peak auto­

correlation occurs around every 24 hours. This corresponds to the previous research. The hourly 

variance after cleansing appears to be more random. Even though not all the autocorrelation 

coefficients strictly collapse to a narrow range, the regular form has vanished.

If we plot the average seasonality adjustment ratio 5/, (Figure 4), we are able to see a quite 

similar shape as the first graph of Figure 3. The adjustment ratio is very high at the very beginning 

of the week, and is followed by an immediate sharp drop, which is simply because the first hour’s 

return is calculated as the difference between the log price of the first hour on Sunday and that 

of the last hour on previous Friday. Since the first open hour will reflect the information released 

during the weekend, it is reasonable to expect a larger jump between these two numbers at this 

time bucket than during continuous hours. Throughout the week, double peaks can be spotted 

every day, which signify the two important overlapping periods across time zone: the first happens 

when the Asian market and the European market both open; and the second is when the European 

market intersect with the North American market. The analogous outline of the adjustment ratio 

Sh and raw variance autocorrelation enlightens the fact that when dividing the raw data by Sh, it 

will result a time series that bears no autocorrelation.

The US dollar, often treated as a safe-haven currency, has exposed itself to news via heteroge­

neous aspects. When a US data release shows positive surprise, it works both in favour and against 

the USD: a brighter US economic outlook favours the greenback, while a rise in risk appetite often 

works against it -  since the USD is the world’s most used funding currency. Under different market 

environments, these contradictory interpretations and forces lead to varied price reactions to sim­

ilar macroeconomic surprises. However, while the direction o f the spot move may be time-variant 

around these events, the impact on variance is generally stable: it usually surges.

Table 4 summarizes the impact from data releases. Several interesting discoveries are worth
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addressing. First, the influences from different events diverge a lot. The most influential is the 

US Fed Rate decision, which is announced at monthly FOMC Meeting. Since short-term exchange 

rate moves are largely determined by interest rate differentials, investors weight heavily on the 

shocks brought by the Fed. This became more evident around the period of Quantitative Easing I 

and II. Second, the US NFP (Non-Farm Payroll) and Unemployment Rate are always announced 

in the same report, so altogether these two share a large weight. On the other side, some event 

like EU Unemployment Rate does not stir the market, either because investors do not regard it as 

important, or because European data often produces less surprises to the market.

4 .2  F orecast R esu lts

As discussed in the introduction, the true realized volatility is unobservable and subject to defini­

tion, or more concretely, the data frequency in use. This becomes a potential problem o f all the 

research on forecasting methods as long as the realized volatility is used as a benchmark or criteria 

to assess models. In my opinion, a definition of realized volatility is ought to correspond to the 

strategy that is built around it. For instance, in the context of a volatility swap, realized volatility 

should be compatible with what is stated in the contract, which is conventionally the square root of 

annualized daily return square; while in the case of a dynamic delta-hedging strategy, the realized 

volatility calculation should take the same data frequency as that of rebalance or hedging.

Later in this paper I will construct a volatility swap strategy based on the deviation o f fore­

cast and strike price. In this context, when evaluating the models’ out-of-sample predictability I 

calculate realized volatility as defined in a volatility swap, which is based on daily return. In line 

with forecast length, the window is also set to 2 weeks. The daily price is used and the result is 

annualized.

RVd =
N

252
~N

N
X > g P t - l o g P t- , )
i=l

2

The realized volatility throughout 4 years is displayed in Figure 5. If we compare it with Figure 

2 and 8, we can see that the realized volatility from a daily calculation is much spikier than the 

hourly peer, mainly due to noise involved in daily data.

Two conventional criteria, SE (Squared Error) and AE (Absolute Error) from each model are 

listed in Table 5. Both of them evaluate how the forecasts deviate from the real values, but SE
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penalizes outliers more. Surprisingly, MA is the best performer in terms of either standard; while 

what is even more unexpected is the forecasting power of implied volatility is the weakest among all 

the candidates. The first finding matches what was argued by Andersen, Bollerslev, Diebold and 

Meddahi (2002) that past integrated volatility had a superior performance than more complicated 

GARCH models, though I will show in Section 4.4 that if simply take recent realized volatility 

without seasonality or effect adjustment, the result will be inferior. The second discovery, however, 

is different from Jorion (1995) who claimed that implied volatility forecasted better than empirical 

models.

As I will discuss in Section 4.4, DNIV actually outperforms if calculating realized volatility using 

hourly data, which indicates a more appropriate application of DNIV in a delta-neutral strategy 

with hourly rebalancing.

Table 5 also presents the Mincer-Zamowitz R2, another popular measurement to assess pre­

dictability. The idea is to regress out-of-sample realized volatility on the various forecasts and 

calculate the explanatory power (R2) of each. All the models show reasonably good fits with MA 

marginally outperforming others.

So far with the full hindsight, we may argue that the moving average on high frequency data has 

the best predictability of future (lower frequency) realized volatility; however, it does not rule out 

the possibility that different models have complementary effect such that a “portfolio” of methods 

might outperform any single one. Hence, for the next step I carry out an experiment on three 

different ways to combine the signals, and two other ways to select models on the way. To avoid 

data mining, the choices are set as simple as possible:

Signal Combination:

[Cl] Weighted by the accuracy (inverse o f SE) o f the latest forecast;

[C2] Weighted by the average accuracy (inverse of the MSE -  Mean Squared Error) since the 

back-test began;

[C3] Equally weighted;

Signal Selection:

[51] Only apply the model which has the smallest SE in the latest forecast;

[52] Only apply the model which has the smallest MSE so far.
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The difference between signal combination and selection is that the former always takes the full 

information from every model; the methods that perform better in the most recent history ([Cl]) 

or on average ([C2]) are allocated heavier weights. [C3] is the most straightforward way to the 

get a collective signal without any discrimination of any model. The signal selection, though also 

keeping tracking of all the records, only relies on one o f the forecasts each time. Corresponding 

to a similar construction idea, [SI] and selection [S2] respectively choose the best latest model and 

best model on average until the forecast date. The results are presented in Table 6.

These signal combination approaches, especially [C2], have outperformed the best method alone 

in terms of squared errors and Mincer-Zarnowitz R2. MSEs have been improved, and the forecasts 

turn out to be more stable (the standard deviations of the errors are smaller). The MAE of the mov­

ing average method is still the smallest even including full battery, which shows the improvement 

from signal combination is larger on the outliers.

Signal selection, with its emphasis still on the single method, does not improve the result. 

However, [S2] actually provides us with a more realistic picture that excludes forward-look bias. 

Imagine an investor selects the model on the way by monitoring each one’s performance. Every 

day she gets a snapshot of Table 5, and applies which is shown to be the best model. She will end 

up with the last row of Table 6 at the end of 2010.

4 .3  T ra d in g  S tra teg y

A trading strategy based on the prediction can be a more practical test to gauge model performance, 

which also corresponds to the motivation of seeking a superior forecast model. In the case of 

volatility forecast, one direct and straightforward application is the volatility swap, a contract to 

exchange a fixed amount (strike) against a varying number that depends on the volatility realized 

within certain period. If a trader believes the future volatility should be significantly higher than 

the strike price, she will be the swap buyer; and vice versa. A long position in volatility swap is 

also widely used as a hedge to the underlying asset since the negative correlation between an asset’s 

spot price and its volatility is commonly observed.

Unfortunately, like with most other swap contracts, volatility swaps are traded over the counter 

and historical price data is hardly available. There are substitutes, though, to approximate it. One 

way is to estimate strike through adjusting DNIV by skew. Skew captures the relative cheapness of 

OTM calls against OTM puts, and since volatility swap can be (imprecisely) replicated by options
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with a spectrum of strikes, the whole skew is under consideration in pricing volatility swap strike. 

This approximation by intuition is effectively the same as MFIV, which has been discussed in 

Section 3. There are disadvantages of MFIV, however, including partial reliance o f the accuracy 

on Black-Scholes formula (despite the fact that it is called “model free” ) and its static nature. In 

reality, volatility traders usually apply a more computational intensive model SLV (stochastic-local 

volatility model) to dynamically set weights to stochastic volatility and local volatility, and blend 

them into the final volatility swap price.

In this paper, I employ a similar way as SLV to estimate historical volatility swap prices. The 

result is regarded as the volatility swap mid strike. To better mimic the real trading, a conventional 

spread (0.5 volatility points) is added (subtracted) to represent the Ask (Bid) price. Therefore, the 

fact that the forecast is different from strike Mid is not necessary to trigger a position; only when 

the deviation is big enough, a long or short position will be entered. I set a pre-screening threshold 

10% to ensure that only significant mispricing will be exploited and therefore, the profit is more 

likely to overcome the transaction cost.

I start with the simplest strategy that always enters 1 unit of capital per vega point (i.e. vega 

notional =  1) once the enter signal is triggered. Suppose an investor joins the market with 10 units 

of vega notional at the beginning of 20073. Every day after making forecast, she is allowed to buy 

(sell) one unit o f vega notional if the forecast is 10% higher (lower) o f the strike MID. Each swap 

has two-week tenor and the investor always holds the contract until its maturity. Therefore, the 

maximum absolution position one investor can have is 10 vega notional. The realized P&L (Profit 

and Loss) at the end of two weeks is calculated as:

P hL  =  ±1 x [RV^W — strike) x 100

The sign before the position is positive (negative) if she is long (short) the volatility swap. 

Correspondingly, strike price is Ask (Bid) if it is a long (short) position.

I test the strategy performance according to every single model as well as the combined and 

selected signals. In addition, since the volatility swap is regarded attractive to sellers thanks to 

the associated risk premium, I include a naive short strategy as a benchmark, which enters a short 

volatility swap position (with 1 unit vega notional) every day without any signal filtering.

3Note the initial vega notional is not investment cost, as in a volatility swap the notional is not really exchanged.
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Table 7 displays the annualized P&L, standard deviation and Sharpe ratio of each alternative. 

I use P&L instead of investment return is because the volatility swap is virtually a forward contract 

and the notional is simply a scalar. Or in other words, the investment cost for the trading strategy 

is merely zero. Therefore, it would be misleading to use returns.

It is interesting to see the discrepancy o f real-life strategy performance against the forecast 

error analysis in Table 5. GARCH, which showed the worst MSE as well as MAE, turns out to 

be the biggest winner when applied to trading in terms of annualized P&L, Sharpe ratio and the 

ratio between average win and loss. We can understand this inconsistence by noting the standard 

deviation of P&L from GARCH model is also far the highest, which is in line with its relative poor 

predictability: it misses the goal very often (in fact most of the time, see the hit ratio in Table 8); 

however, it shines once it gets the forecast right, which, is often the case when volatility shoots 

high. The results from the MA method are somewhat opposite: the forecasts are very accurate 

(lowest MSE and MAE), the hit ratios are high (see Table 8), the returns and risk are low but the 

returns in an average losing trade outweigh that of the average winning trade. No single model 

universally outperforms others. This outcome also confirms the necessity of investigating model 

forecasts in the context o f trading environment.

However, the tradeoffs between different styles start to dissolve when I take signals from a 

battery of models. The group of model combination delivers significantly improved performance 

than individual models by both enhancing the average P&L and reducing the risk (slightly higher 

than MA, though). The annual Sharpe ratios have increased by 40%-100% than the best single 

GARCH model.

The Naive Short strategy results in a negative average payoff and far more volatile return. In 

fact, had an investor blindly gone short volatility during financial crisis, she would have incurred a 

massive loss, as shown in Figure 6 and Table 9.

I summarize more information about the long/short positions and other return metrics in Table 

8. As we expected, empirical model predictions are more prone to enter a short position since the 

volatility swap strike is often higher than the “fair” value, and average hit ratio is also much higher 

for short positions. The outcome from the naive short shows that 47.44% of the time the volatility 

swap strike has overestimated subsequent realized volatility even after adjusting transaction cost. 

While each individual model’s short signal is trustworthier than the naïve short, as we can see from 

higher hit ratios for short positions, the long signal often results in a loss. However, this does not
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necessarily imply it is meaningless to enter a long position, since the upside from buying volatility 

can be much higher than the downside, due to the limit of lower bound of volatility. What we 

have experienced during financial crisis is the best proof, and the models do register their best 

performance in that period as a sharp contrast against the naive short strategy (Figure 6).

Table 8 also shows Investors would trade less frequently in model combinations (smaller posi­

tion percentage), which can be understood as “average effect” of taking collective signals from all 

the models. Hence extreme forecast figures will be alleviated, leaving a more stable and reliable 

prediction, and long or short signals may only be pronounced when individual methods confirm 

with each other.

Figure 6 plots the cumulative P&L for single models and the naïve short strategy. We are 

able to see that MA works the best in quiet period as prior to 2008; while in Q4 2008 GARCH 

quickly takes over. In fact, the majority o f the profits are realized in high volatility regime such 

as financial crisis, since this is right the time that the models pick up the correct buy signals and 

benefit from the large volatility space in upside. While in normal/calmer period, risk premium and 

transaction costs make it hard to beat the benchmark. On the other side, the profit captured in 

the naïve short is allied with risk premium. During the financial crisis, the risk premium did not 

catch up quickly enough with the sudden and massive surge of the realized volatility; however, in 

the aftermath of the crisis, with little risk appetite remaining, risk premium did not recede with the 

realized volatility and hence the naïve short strategy profited from the volatility swap overpricing. 

Therefore, the profit of naive short is closely related to contemporaneous discrepancy of market 

sentiment and realized volatility. Another strong hit in mid-2010 can be noticed, caused by the 

European sovereign risk and another wave of risk aversion.

Figure 7 shows the cumulative P&L for different model combinations, which gives a clearer 

picture of how the collective signal takes effect. The rationale behind it is that different models 

register outperformance in different regimes. As we see from Figure 7, before the financial crisis the 

combined model escapes from the losses as most of single models have, but performs as well as the 

best single model in that period, MA; while once the crisis kicks off, the combined model quickly 

takes the full power from GARCH and GJR, by entering full capacity o f position and consistently 

making profit.

In building a trading strategy, the maximum drawdown is an important concern from a risk 

management perspective. The naïve short strategy is very vulnerable to drawdowns and can be
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easily stopped out once the sharp drop in cumulative return happens. As seen in Table 9, all 

other models are much steadier in terms of maximum drawdowns and recovery time. More impres­

sively none of them witnessed significant drawdowns during the volatility spike of Q4 2008. Model 

combinations again show a superior performance.

One alternative is to replace DNIV by volatility swap strike when combining or selecting signals, 

since there are sufficient reasons to believe the strike contains more comprehensive information than 

DNIV (the former contains message from the whole volatility surface rather than a single point), 

even though it can be argued that swap strike is not public information. Indeed this improves the 

risk-adjusted performance even further by both increasing the return and reducing the risk. To 

conserve space I will only present the results from signal combinations in Table 10.

So far, we always enter with one unit of vega notional per position regardless o f how different the 

forecast is from the swap strike, as long as it passes the 10% pre-screening criterion. It is possible 

to outperform even more by scaling the position according to the distance between forecast and 

strike. I set the position as follows:

posi =  i l  X [1 +abs(fcsti — strike)/strike]

So the idea that the more positive the spread between model forecast and current strike is, the 

more the trader buys; the more negative the spread is, the more the trader sells. Note that since 

now the lower bound of the position is 1.1 vega units (because the pre-condition to enter a position 

is that the forecast needs to be at least 10% away from the strike) and most of the time it would 

be larger, and therefore we should not compare the absolute levels o f average P&L and standard 

deviation with previous un-scaled cases. Nevertheless, the annual Sharpe ratio still conveys the 

useful information in Table 11:

From Table 11, the risk-adjusted payoffs have enhanced substantially in all cases by the extra 

information acquired from the relative strength of the forecast from the strike. Once again cor­

responding to what was found in Table 10, using swap strike instead o f DNIV also improves the 

results.
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5 Robustness Check

In this section I carry out some alterations o f the main procedure, in order to check (1) if the model 

presented above outperforms simple methods; and (2) whether changing some circumstances will 

deteriorate the model’s robustness.

5.1 Daily Data

The very first thing is to verify the impact that changing data frequency has on results; specifically, 

whether the results deteriorate if we replace intra-day data with daily data as usually done in 

models that forecast volatility over longer windows. If the results are similar, there is no gain from 

the computational hassle associated with hourly data. In Table 121 present the model performance 

in daily version. As expected, high frequency data does bring in additional information that is not 

captured in daily sample. The squared errors and absolute errors are much larger as well as more 

volatile than in the intraday version, implying the employment of intraday data does lead to a 

higher accuracy and stability. The annual Sharpe ratios following these forecasts also exhibit an 

obvious drop, and the MA model’s Sharpe ratio even drops down to -1.68. As seen before, moving 

average in high frequency data gives a very appealing outcome; but in the daily version it is much 

inferior to other more sophisticated econometric models. I also list the model combinations in 

Table 12. Similar as above, collective signals improve model prediction and trading payoff even 

when individual models perform poorly.

5.2 No Seasonality or Event Adjustments

Having confirmed the merits of using intra-day data, the next task is to check whether the sear 

sonality and event adjustment is proper. I rerun the whole process by simply inputting the raw 

hourly data without taking care of seasonality or macroeconomic data releases. The results are as 

in Table 13.

Compared to Table 5, the model predictability is much poorer if seasonality and event impact 

are not removed, as the statistics for squared errors and absolute errors are significantly higher. The 

difference is more pronounced in GARCH and GJR, which makes sense since this type of models is 

famous for failing to deal with high frequency data due to seasonality. A similar conclusion can be 

drawn from the comparison of Sharpe ratios when applying signals generated from forecasts with
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or without seasonality amendments. In the case of no adjustment, GARCH, GJR, and MA all 

end up with a negative payoff, but unexpectedly EWMA leads to a positive Sharpe ratio, which is 

even higher than its counterpart with adjustment. Nevertheless this improvement is much minor 

compared to other models’ deterioration. All in all, the procedure regarding seasonality and event 

boosts the predictability, and in fact, it is one of the critical steps to make the strategy work.

5.3 Lagged Realized Volatility

Motivated by the MA’s superior performanc, here I test if other easy ways such as lagged realized 

volatility or its various versions of moving average can also reach a decent forecast. Notice in this 

way only daily data is involved and no intraday information gets employed.

From Table 14, none of the easy ways have a comparable performance as the intraday model in 

terms o f the accuracy of the forecast. The Sharpe ratios are mostly negative.

5.4 Fixed-parameter E W M A

A more common way to apply EWMA is as Riskmetrics does, which fixes A at 0.97 for monthly 

data or 0.94 for daily data. In my calibration I keep A varying so that the parameter may adapt 

to the most recent information. As a comparison, I also test a static A on EWMA. The results in 

Table 15 confirm the rolling calibration does lead to a better forecast.

5.5 Realized Volatility Calculated in Hourly Data

As mentioned before, true realized volatility is an unobservable data process and subject to the 

definition, which in turn should correspond to the frequency that the trading process is trying to 

exploit. In the previous sessions I choose to calculate the realized volatility in terms of the square 

root of annualized squared daily returns, because the payoff of a volatility swap contract is set in 

that fashion. However, it is not the only way to look at model application, especially when my 

forecast window is more flexible intraday.

For instance, if I assume that the purpose of the forecast is to serve delta-neutral (or gamma) 

trading strategy with the hedging/taking profit frequency on hourly basis. In this case, since the 

profit in the short end exclusively depends on the volatility realized each hour, hourly volatility is 

more relevant.
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Compared to Figure 5, the realized volatility in Figure 8 is much smoother, which makes sense 

since the noise embedded in daily data gets alleviated. I also re-construct the forecast performance 

table for single models, as shown in Table 16.

The most noticeable change as a comparison to Table 6 is that model predictability is signif­

icantly higher when using intraday realized volatility, which shows a even more profitable poten­

tial application could be reached in high frequency trading strategy other than volatility swap. 

Among single methods, MA is still the best approach in terms of all the measurements. That said, 

delta-neutral implied volatility, which used to be the worst performer to forecast realized volatility 

calculated from daily data, now becomes one of the top candidates. This indeed should be the case 

since option prices do reflect intraday information, and the best approach to exploit the information 

should also extend into higher frequency.

When forecasting in intra-day horizons, the seasonality and event adjustments become even 

more critical, since this is the case when the individual time bucket really presents its idiosyncratic 

effect. In Table 17, the result shows model forecast performance without data cleansing, compared 

to the realized volatility on an hourly basis. Once again it confirms that the seasonality and event 

adjustments do improve the overall predictability.

6 Conclusion

In order to forecast short-dated volatility in a highly efficient market, this paper explores a wide 

range of empirical models as well as the implied volatility, which is often perceived as the mar­

ket’s own volatility forecast. A Markov regime switch technique and rolling in-and-out-of sample 

separations have been applied in order to improve the adaptability. In contrast with previous 

literature that usually promotes one given method, this paper argues that either no single model 

can consistently capture the best available information or that, if there is one, it is unlikely to be 

determined without look-ahead bias. Since each methodology has its own expertise in the specific 

“golden environment” , the overall forecast can be more robust to keep a battery o f models and 

take a collective signal from them.
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The availability of intraday data allows the research to stride into a more flexible forecast 

window. Hourly ETJRUSD data is employed in this study. To handle the inability of recursive 

econometric models in dealing with high frequency data, this paper proposes a double-step approach 

to separate the underlying volatility process from intraday/intraweek seasonality in FX market as 

well as the short-term exposure to the pre-scheduled macroeconomic announcement. By applying 

this procedure, the predictability of all empirical models was substantially enhanced.

To access model performance further than evaluating forecast errors, this paper constructs a 

2-week volatility swap based on the deviation between forecast and swap strike. The profit is 

significant even after considering transaction costs. Especially, the model combination constantly 

outperforms any single model, and is able to seize the upside from each o f them.

However, using volatility swaps might not be the best strategy to exploit the full power o f the 

model since the forecast into intraday volatility shows an even more precise outcome. In fact, 

predictive power alone varies with frequency and definition o f the realized volatility, thus there is 

no given answer whether one model does or does not work; it is the final application and trading 

instrument altogether that decide on the best applicable model. More sophisticated and higher 

frequency trading strategies can be designed for the results from this paper, which is left to further 

research.
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A Appendix: Steady-state Probabilities for Markov Chain

This appendix demonstrates the approach to get the unconditional, or steady-state probabilities for 

a first-order Markov Chain, which is usually used as the initial state probabilities in the recursive 

process. It is listed here for the purpose of completeness. For more details please refer to Marcucci 

(2001) .

Denote the transition matrix for N states as follows:

^ P n P21 ••• P N l  ^

p  =
P l 2 P22 P N 2

\  P i n P 2 N  ‘  •‘ P n n  /

where pij is the probability that the state j  will occur conditional on the current state t. Since 

states are mutually exclusive and collectively exhaustive, every column of the transition matrix 

sums up to 1, i.e.,
N

¿ P y  = 1
i

Assume 7r* is the N  x 1 vector o f steady-state probabilities

’ Pr(st =  1) ' 7Tu

Pr(st =  2)
= 7r2t

1--
---

---

Co II W 1__
__

_

. 1Tm .
The first condition on the steady-state probabilities is they add up to 1. Let in be a 1 X N  unit 

vector, hence

*n  • TTt =  1

The second condition comes from its steady feature, which means the state probabilities will 

remain the same once it is reached:

which is equivalent to

P -7 r t =  7rt+1 =  7Tt
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From above two conditions we can get

where

A • 7Tt =
On

1

Therefore

A = In - P

ÎN

7r* =  (A 'A )-1 A' On
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Table 1 General Statistics for Hourly Return and Variance
This table shows the general statistics (mean, median, standard deviation, skewness, kurtosis, minimum and 
maximum) o f  hourly return and variance o f  EURUSD for the whole period (2004-2010) and the sub­
sample period (2007-2010) when forecasts are carried out. Here rt =  (log(Pt)  — log(Pt_ ! ) )  x  100 ;

Whole Sample (2004-2010) Forecast Sample (2007-2010)
# o f Obs. 42,903 24,138

rt n Ot
Mean 2.0817e-004 0.0184 1.7412e-004 0.0225
Median 0 0.0031 0 0.0037
Std. Dev. 0.1358 0.0735 0.1500 0.0876
Skewness 0.1570 26.4741 0.1775 24.9191
Kurtosis 16.9084 1.3305et-003 16.1789 1.,1092e+003
Min -1.9172 0 -1.9172 0
Max 2.3061 5.3179 2.3061 5.3179

Table 2 Macroeconomic Data Releases

This table shows pre-scheduled macroeconomic data releases that are related to USD and EUR market. 
Bloomberg tickers, event names and release frequency are listed.

Bloomberg Ticker Corresponding Event Release Schedule
CPUPXCHG US Core CPI Monthly
USURTOT US Unemployment Rate Monthly
NFPTCH US NFP Monthly
FDTR FOMC Meeting (Fed Rate) Monthly
NAPMPMI US ISM Manufacturing Monthly
RSTAMOM US Retail Sales (with Autos)1 Monthly
USGDPCQOQ US GDP Quarterly Quarterly/Monthly
GRZEWI German ZEW Survey Monthly
GRIFPBUS IFO Germany Business Climate Monthly
ECCPEMUY Euro HICP (inflation indicator) Monthly
PM1TMEZ Euro PM I Manufacturing Monthly
UMRTEMU EU Unemployment Rate Monthly

1 Retail Sales without Auto is also released at the same time.
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Table 3 Statistics o f Delta-neutral IV and Model-free IV from Oct 2008-Dec 2010
This table compares the delta-neutral implied volatility (DNIV) and model-free implied volatility (M FIV) 
for 2-week tenor EURUSD options between Oct 2008 and Dec 2010. MFIV is calculated by following the 
method proposed by Jiang and Tian (2005).

MFIV= roo C(T,f(y))-tnax(S0-y.O)
k2 dK

Mean Std. Dev. Sample size
DNIV 0.1401 0.0441 543
MFIV 0.1432 0.0474 543
DNIV-MFIV: t stats 1.1323

Table 4 Event Effect (E{)

This table shows the event multiplier o f  each macroeconomic data release on hourly variance, Et . 
which is calculated as the ratio o f  the average hourly variance (net o f  seasonality) when event / 
happens, and the average hourly variance (net o f  seasonality) when there is no event. The estimation 
period is anchored from the beginning o f  2004.

US Event Effect EU Event Effect
US Core CPI 1.43 German ZEW Survey 1.65
US Unemployment Rate 7 no IFO Germany Business Climate 2.86
US NFP Euro HICP (inflation indicator) 1.63
FOMC Meeting (Fed Rate) 15.25 Euro PMI Manufacturing 1.90
US ISM Manufacturing 1.50 EU Unemployment Rate 0.98
US Retail Sales (with Autos) 1.43
US GDP Quarterly 1.97
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Table 5 Squared Error and Absolute Error (RV from Daily Data)

This table shows the statistics o f  the squared error and absolute error for each volatility forecast model 
(GARCH, GJR, EW M A, M A  and Delta-neutral implied volatility) from the 1“ , January 2007 to the 17u', 
December 2010. Forecast is conducted every day into the next 2 weeks, and on a rolling basis. GARCH, GJR 
and EWMA are regime-switch models that are estimated by the most recent 20-week data. M oving Average 
(M A) is based on the latest 2-week data. Delta-neutral implied volatility (DNIV) is backed out from 2-week 
EURUSD options. The realized volatility is calculated as the square root o f  annualized daily average return 
square. The last column Mincer-Zamowits R2 reports the results o f  regressing realized volatility on each 
forecasted volatility.

Total # o f  out-of-sample forecast windows: 1021 (01.01/2007-17.12.2010)
Model SE mean 

*10000
SE std 
*10000

AE mean 
*100

AE std 
*100

Mincer- 
Zamowitz R'

GARCH 10.871 24.020 2.296 2.368 92.28%
GJR 10.631 22.635 2.274 2.338 92.39%
EWMA 10.655 26.021 2.240 2.376 92.18%
MA 10.250 24.440 2.167 2.358 92.51%
DNIV 12.204 26.896 2.526 2.415 92.44%

Table 6 Model Combination and Model Selection

This table shows the statistics o f  the squared error and absolute error for “ signal combination”  and “ signal 
selection”  from the Is*, January 2007 to the 17th, December 2010. Forecasts are conducted every day into the 
next 2 weeks, and on a rolling basis. In each forecast, a set o f  models: GARCH, GJR, EW M A, M A and 
DNIV are kept on the battery. [C l] sets weight to each model as the inversed squared error o f  the last period; 
[C2] sets weight as the inversed average squared error, [C3] sets equal weights; [S I] only takes the best 
model for the last period; [S2] only takes the most accurate model on average so far. The realized volatility is 
calculated as the square root o f  annualized daily return square average. The last column Mincer-Zamowits R2 
reports the results o f  regressing realized volatility on each forecasted volatility.

Total # o f out-of-sample forecast windows: 1021 (01.01/2007-17.12.2010)
SE mean 
*10000

SE std 
*10000

AE mean 
*100

AE std 
*100

Mincer- 
Zamowitz R2

[Cl] w=l/SE(t-l) 10.441 23.394 2.252 2.318 92.59%
[C2] w=l/MSE 10.092 22.996 2.201 2.292 92.83%
[C31 Equally weighted 10.086 23.061 2.202 2.290 92.86%
[SI] Model=min SE(t-l) 11.012 25.335 2.303 2.390 92.09%
fS2] Model=min MSE 11.131 25.062 2.268 2.448 92.24%
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Table 7 Annual Performance, Average Win and Loss
This table shows performance (annual P&L, standard deviation o f  P&L and the Sharpe ratio) o f  a volatility 
swap trading strategy for each forecast model. Forecasts are conducted every day into the next 2 weeks, and 
on a rolling basis. Every day, i f  the volatility forecast is 10% higher (lower) than the MID o f  2-week 
volatility strike, a long (short) position (each with 1 vega notional) will be entered in the 2-week volatility 
swap, and the trade is unwound after 2 weeks. Trading performance based on each single model (regime- 
switch GARCH, GJR and EW M A, M A  and DNIV), as well as model combinations and selections are 
reported. For each model combination, [C l]  sets weight to each model as the inversed squared error o f  the 
last period; [C2] sets weight as the inversed average squared error; [C3] sets equal weights. For each model 
selection, [SI] only takes the best model for the last period; [S2] only takes the most accurate model on 
average so far. The last three columns display average win, average loss and the ratio between win and loss 
for the trading strategy. Performance based on the naïve short strategy (entering a short position every day 
regardless o f  model prediction) is listed in the bottom.

M odels Ann. A nn. Ann. A verage A verage W in /L oss
P & L Std Sharpe W in L oss

Individual models
GARCH 22.943 31.511 0.728 2 .315 1.830 1.265
GJR 6.063 29.081 0.208 2.036 1.933 1.053
EWMA 15.556 28 .379 0.548 2.014 1.926 1.046
M A 16.562 23 .004 0.720 1.678 1.759 0.954
DNIV 0 0 n/a n/a n/a n/a
Model Combinations
[C l] w = l/S E (t-l) 24.311 23 .407 1.039 2.128 1.747 1.218
[C2] w =l/M SE 31 .585 24 .707 1.278 2.294 1.970 1.165
fC31 Equally weighted 35.213 24 .156 1.458 2.341 1.931 1.212
Model Selections
[SI] Model=min SE(t-l) -1 .460 23.001 -0 .063 1.886 1.792 1.053
rS2] Model=min MSE 7.096 28.421 0.250 1.998 2.001 0.998
Benchmark
Naïve Short -42 .050 42 .708 -0 .985 1.754 1.901 0 .923
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This table shows the performance o f  a volatility swap trading strategy: the percentage o f  the time with 
positions on, the probability o f  long and short position, and the hit ratio (possibility o f  achieving a profit) 
under long or short position for each forecast model. Forecasts are conducted every day into the next 2 
weeks, and on a rolling basis. Every day, i f  the volatility forecast is 10% higher (lower) than the MID o f  2- 
week volatility strike, a long (short) position (each with 1 vega notional) will be entered in the 2-week 
volatility swap, and the trade is unwound after 2 weeks. Trading performance based on each single model 
(regime-switch GARCH, GJR and EW M A, M A  and DNIV), as well as model combinations and selections 
are reported. For each model combination, [C l]  sets weight to each model as the inversed squared error o f  
the last period; [C2] sets weight as the inversed average squared error; [C3] sets equal weights. For each 
model selection, [S I] only takes the best model for the last period; [S2] only takes the most accurate model 
on average so far. Hit ratio is calculated as the ratio o f  the number o f  trades that make profit and the total 
number o f  trades. Performance based on the naive short strategy (entering a short position every day 
regardless o f  model prediction) is listed in the bottom.

Table 8 Long/Short Position and Hit Ratio o f a Volatility Swap

Models

Individual models

Position % Long % Short %
Long

Hit Ratio________
Short Overall

GARCH 46.52% 36 .16% 63 .84% 32 .81% 57 .96% 48 .87%
GJR 46 .78% 36 .52% 63 .48% 31 .54% 60 .62% 50 .00%
EWMA 45.99% 29 .71% 70 .29% 30 .77% 61 .38% 52 .29%
M A 38.63% 24 .49% 75 .51% 37 .50% 62 .16% 56 .12%
DNIV 0 0 0 0 0 0
Model Combinations
[C l] w = l/S E (t-l) 30 .62% 26 .18% 73 .82% 36 .07% 59 .30% 53 .22%
[C2] w=l/M SE 28 .91% 30 .00% 70 .00% 33 .33% 66 .23% 56 .36%
rC31 Equally weighted 27 .07% 32 .04% 67 .96% 33 .33% 68 .57% 57 .28%
Model selections
[SI] Modcl=min SE(t-l) 33 .77% 24 .12% 75 .88% 29 .03% 54 .36% 48 .25%
[S2] Model=min MSE 43 .50% 33 .84% 66 .16% 32 .14% 61 .64% 51 .66%
Benchmark
Naïve Short 100.00% 0.00% 100.00% n/a 47 .44% 4 7 .44%
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Table 9 Maximum Drawdowns

This table shows the performance o f  a volatility swap trading strategy: maximum drawdown magnitude and 
drawdown period for each forecast model. Forecasts are conducted every day into the next 2 weeks, and on 
a rolling basis. Every day, i f  the volatility forecast is 10% higher (lower) than the MID o f  2-week volatility 
strike, a long (short) position (each with 1 vega notional) will be entered in the 2-week volatility swap, and 
the trade is unwound after 2 weeks. Trading performance based on each single model (regime-switch 
GARCH, GJR and EWMA, M A and DNIV), as well as model combinations and selections are reported. 
For each model combination, [C l]  sets weight to each model as the inversed squared error o f  the last period; 
[C2] sets weight as the inversed average squared error, [C3] sets equal weights. For each model selection, 
[SI] only takes the best model for the last period; [S2] only takes the most accurate model on average so far. 
Maximum drawdown is measured as the largest peak-to-trough decline o f  the P&L. The peak is the starting 
time o f  drawdown, and the drawdown recovery time is when the P&L returns to the previous peak level. 
Performance based on the naive short strategy (entering a short position every day regardless o f  model 
prediction) is listed in the bottom.

M odels
Max.
Drawdown

Drawdown
starts

Max
drawdown
time

Drawdown
recovers

Duration
(days)

Individual models
GARCH 72.4542 02-Jan-07 10-Mar-08 10-Oct-08 109
GJR 70.2949 02-Jan-07 08-NOV-07 07-0ct-08 191
EW M A 64.3326 02-Jan-07 10-Mar-08 10-Oct-08 109
M A 42.6238 04-Jan-08 26-Mar-08 06-0ct-08 104
DNIV n/a n/a n/a n/a n/a
Model Combinations
[C l] w =l/S E (t-l) 30.7636 20-Apr-09 22-Jul-09 18-Feb-10 122
[C2] w=l/M SE 35.7158 20-Apr-09 13-Aug-09 11-Feb-10 101
ÌC3] Equally weighted 37.845 20-Apr-09 13-Auq-09 17-Feb-10 105
Model selections
[SI] Model=min SE(t-l) 56.8758 02-Jan-07 12-Sep-08 02-Mar-10 246
[S2] Model=min MSE 63.3989 22-Jan-07 24-Jul-08 10-Oct-08 43
Benchmark
Naive Short 262.4915 11-Jan-07 22-Jan-09 n/a n/a
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Table 10 Annual Performance o f Volatility Swap o f Model Combinations
This table shows annual P&L, standard deviation, and the Sharpe ratio o f  the trading performance if  
replacing DNIV (delta-neutral implied volatility) with the volatility swap strike in model combination. 
Forecasts are conducted every day into the next 2 weeks, and on a rolling basis. Every day, i f  the 
volatility forecast is 10% higher (lower) than the M ID o f  2-week volatility strike, a long (short) 
position (each with 1 vega notional) will be entered in the 2-week volatility swap, and the trade is 
unwound after 2 weeks. The models that come into combined signals include: regime-switch GARCH, 
GJR and EW M A, M A  and the volatility swap strike. [C l]  sets weight to each model as the inversed 
squared error o f  the last period; [C2] sets weight as the inversed average squared error; [C3] sets equal 
weights.

M odels Ann. P & L Ann. Std Ann. Sharpe
M odel Combinations
[C l]  w = l/S E (t-l) 31 .889 22 .168 1.439
[C2] w =l/M SE 38.966 24 .442 1.594
[C31 Equally weighted 36.886 23.492 1.570

Table 11 Sharpe Ratio Comparison

This table compares annual Sharpe Ratios between unit position and adjusted position; and between using 
DNIV (delta-neutral implied volatility) and the volatility swap strike in model combination. Forecasts are 
conducted every day into the next 2 weeks, and on a rolling basis. Every day, i f  the volatility forecast is 10% 
higher Gower) than the MID o f  2-week volatility strike, a long (short) position will be entered in the 2- 
week volatility swap, and the trade is unwound after 2 weeks. In the case o f  unit position, each volatility 
swap is assigned with 1 vega notional; while in the case o f  adjusted position, the more deviated the forecast 
moves from volatility swap, the larger vega notional is allocated in the position, i.e., Post =  ± 1  * (1 +  
abs(Fori — Strike)/Strike). Besides DNIV or swap strike, other models in model combinations include 
regime-switch GARCH, GJR and EW M A, and MA.

M odels Adjusted
Position

Unit
Position

Adjusted
Position

Unit
Position

Individual Models
GARCH 0.838 0.728
GJR 0.356 0.208
EWMA 0.649 0.548
M A 0.765 0.720
Model Combinations

with DNIV with Swap Strike
[C l]  w = l/S E (t-l) 1.088 1.039 1.504 1.439
[C 2]w = l/M SE 1.334 1.278 1.648 1.594
fC31 Equally weighted 1.505 1.458 1.626 1.570
Model Selections

with DNIV with Swap Strike
[SI] Model=min SE(t-l) -0 .002 -0 .063 0.621 0.539
[S21 Model=min MSE 0.366 0.250 0 .648 0.532
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Table 12 Model Performance from Daily Data

This table shows the robustness check result when applying daily data to forecast 2-week volatility and 
trading based on it. Squared errors and absolute errors for each single model and model combinations 
are reported, where the realized volatility is calculated as the square root o f  annualized daily average 
return square. Annual Sharpe ratios for trading volatility swap accordingly are listed in the last column.

M odels SE mean 
*10000

SE std 
*10000

A E  m ean 
*100

A E  std 
*100

Sharpe Ratio

Individual models
GARCH 12.253 28.967 2.414 2.536 0.137
GJR 11.558 29.716 2.335 2 .473 0 .116
EWMA 12.297 31.477 2 .375 2.581 0.062
M A 16.317 37.909 2.764 2 .947 -1 .680
Model Combinations
[C l] w =I/SE(t-l) 11.563 27 .169 2.354 2 .455 -0 .515
[C 2]w =l/M SE 10.553 24.677 2.254 2.341 0.852
fC31 Equally weighted 10.920 26.625 2.269 2.404 0 .813

Table 13 Model Performance without Seasonality or Event Adjustments

This table shows the robustness check result when applying high frequency data to forecast 2-week 
volatility and trading based on it without the seasonality or event adjustments. Squared errors and 
absolute errors for each single model are reported, where the realized volatility is calculated as the 
square root o f  annualized daily average return square. Annual Sharpe ratios for trading volatility swap 
accordingly are listed in the last column.

M odel SE mean 
*10000

SE std 
*10000

A E  mean 
*100

A E  std 
*100

Sharpe
Ratio

GARCH 14.577 33 .437 2 .642 2 .758 -2 .455
GJR 14.053 32.459 2 .563 2 .737 -2 .378
EWMA 11.375 26 .613 2 .314 2 .455 0.702
MA 11.060 26 .717 2.269 2 .433 -1 .670
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Table 14 Performance o f Lagged Realized Volatility and Its Moving Averages
This table shows the robustness check result when applying a simple lagged moving average o f  
realized volatility to forecast 2-week volatility and trading based on it. Squared errors and absolute 
errors for each simple moving average are reported, where the realized volatility is calculated as the 
square root o f  annualized daily average return square. Annual Sharpe ratios for trading volatility swap 
accordingly are listed in the last column.

Model SE mean 
*10000

SE std 
*10000

AE mean 
*100

AE std 
*100

Sharpe
Ratio

Lagged RV 17.425 45.174 2.795 3.102 -1.980
Lag RV MA=3 (3d) 16.453 42.387 2.682 3.045 -1.449
Lag RV MA=5 (1w) 15.443 39.052 2.598 2.950 -0.956
Lag RV MA=10 (2w) 13.070 31.403 2.443 2.667 -0.463
Lag RV MA=20 (4w) 11.400 27.567 2.283 2.489 -0.186

Table 15 Performance of fixed-parameter EW MA

This table shows the robustness check result when applying RiskMetrics fixed EWMA (X=0.97) to 
forecast 2-week volatility and trading based on it. Squared errors and absolute errors are reported, 
where the realized volatility is calculated as the square root o f  annualized daily average return square. 
The annual Sharpe ratio for trading volatility swap accordingly is listed in the last column.

Model SE mean 
*10000

SE std 
*10000

AE mean 
*100

AE std 
*100

Sharpe
Ratio

Fixed EWMA 14.310 36.141 2.607 2.742 -3.041
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Table 16 Squared Error and Absolute Error (RV from Hourly Data)

This table shows the robustness check result when calculating realized volatility as the square root o f  
annualized hourly average return square. Statistics o f  squared errors and absolute errors are reported.

Model SE mean* 10000 SE std *10000 AE mean *100 AE std *100
GARCH 6.555 13.712 1.781 1.840
GJR 6.375 13.115 1.778 1.794
EWMA 5.798 12.286 1.703 1.703
MA 4.536 8.547 1.556 1.455
DNIV 4.850 9.601 1.634 1.477

Table 17 Squared Error and Absolute Error (RV from Hourly Data) without 
Seasonality or Event Adjustments

This table shows the robustness check result when calculating realized volatility as the square root o f  
annualized hourly average return square, and applying high frequency data directly without the 
seasonality or event adjustments. Squared errors and absolute errors are reported.

Model SE mean* 10000 SE std *10000 AE mean * 100 AE std *100
GARCH 9.185 20.061 2.129 2.158
GJR 8.339 17.839 2.013 2.072
EWMA 6.816 15.415 1.809 1.883
MA 4.997 10.227 1.619 1.542
DNIV 4.850 9.601 1.634 1.477
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Figure 1 Hourly Return and Variance

This figure shows historical hourly returns and hourly variance o f  EURUSD between 2004 and 2011. 
Hourly returns are calculated as log difference o f  mid price, which, is the geometric average o f  bid and 
ask price. Hourly variance is calculated as the hourly return square.

2011

Hourly return2 (% 2)
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Figure 2 Model-free and Delta-neutral Implied Volatility (2w window, annualized)

This figure shows the delta-neutral implied volatility (DN1V) and model-free implied volatility (MFIV) 
for 2-weck tenor EURUSD options. DN1V is catching a single point (delta-neutral strike, which is 
approximately ATM ) on the implied volatility surface, wdiilc MFIV is calculated by following the 
method proposed by Jiang and Tian (2005).
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Figure 3 Comparison of Variance Autocorrelation before and after Adjustment

This figure shows autocorrelation o f  hourly variance before and after the seasonality adjustment.
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Figure 4 Intraweek Seasonality (Sh)
This figure shows the seasonality adjustment multiplier, Sh, which is calculated as the average hourly 
variance o f  hour-of-the-week /;, divided by overall hourly variance o f  a week.

Intraweek Seasonality

82



This figure shows EURUSD realized volatility o f  the 2-week tenor, calculated as the square root o f  the 
annualized average daily return square.

Figure 5 Annualized 2-Week Realized Volatility (Daily Frequency)

Realized Volatility
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Figure 6 Cumulative P&L o f Single Models and Naïve Short

This figure shows the cumulative P&L o f  trading volatility swap based on single models (regime­
switching GARCH, GJR and EWMA; and MA). Forecasts arc conducted every day into the next 2 
weeks, and on a rolling basis. Every day, i f  the volatility forecast is 10% higher (lower) than the MID 
o f  2-week volatility strike, a long (short) position (each with 1 vega notional) will be entered in the 2- 
wcek volatility swap, and the trade is unwound after 2 weeks. The single trade’ s P&L is calculated as 
the difference o f  annualized realized volatility and volatility swap strike (ask price i f  enter buy, and bid 
price if  enter sell), multiply the position indication (1 if  buy, -1 i f  sell) and 100. The cumulative P&L is 
added up from the beginning o f  2007. As a contrast, a naive short strategy enters a sell position every 
day regardless what the forecasting model predicts.
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Figure 7 Cumulative P&L of Model Combinations

This figure shows the cumulative P&L o f  trading volatility swap based on model combinations. 
Forecasts are conducted every day into the next 2 weeks, and on a rolling basis. The candidate 
forecasting models include: regime-switch GARCII, GJR, and EWMA; M A; DN1V. After obtaining 
individual forecast figure, the numbers arc aggregated in 3 alternative ways: [C l] sets weight to each 
model as the inversed squared error o f  the last period; [C2] sets weight as the inversed average squared 
error; [C3] sets equal weights. Every day, after the collective signal is generated, i f  the number is 10% 
higher (lower) than the MID o f  2-week volatility strike, a long (short) position (each with 1 vega 
notional) will be entered in the 2-week volatility swap, and the trade is unwound after 2 weeks. The 
single trade’ s P&L is calculated as the difference o f  the annualized realized volatility and volatility 
swap strike (ask price if enter buy, and bid price if  enter sell), multiply the position indication (1 i f  buy, 
-1 if  sell) and 100. The cumulative P&L is added up from the beginning o f  2007.
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This figure shows EURUSD realized volatility o f  the 2-week tenor, calculated as the square root o f  the 
annualized average hourly return square.

Figure 8 Annualized 2-Week Realized Volatility (Hourly Frequency)
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Extract More from The Volatility Surface

Y iyi Wang

London School of Economics 

November 27, 2011

Abstract

This paper explores the cross-sectional predictive power o f the mast important two factors in 

the implied volatility surface - skew and term structure - at individual firm level. Stocks with lower 

implied volatility skew and higher implied volatility term structure outperform the comparative 

peers. In particular, skew represents a directional signal about what has not been captured by 

the stock price, while term structure reflects upcoming events without indicating the sign (positive 

or negative) of it. Therefore, the interaction between these two factors reinforces their predictive 

power, and the annual return o f a weekly long-short trading strategy can be enhanced from 14.87% 

to 20.90% with the attachment of term structure on skew. By linking the factors to information 

asymmetry proxies, this paper highlights the internal drivers of such forecasting ability. In the end, 

this paper looks at a subsample of companies that witnessed takeover announcements during the 

period. The result confirms the options market’s leading position in price discovery. By sorting 

firms based on skew and term structure one may also be able to pick up takeover targets and seize 

the big positive premium.

Keywords: implied volatility surface, skew, term structure, return prediction, information-based trading.
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1 Introduction

The options market is well known for its leading role in price discovery. A  large amount o f existing 

research (Easley, O ’Hara and Srinivas 1998, Chan, Chung and Fong, 2002) look into the lead-lag 

relationship between option prices and the underlying stock market, which sheds light on how the 

information transfers between the two markets and how the trading behaviour links to each other. 

As some of the literature documented (Cao, Chen and Griffin, 2003), options, especially short-term 

OTM (out-of-the-money) options are the optimal instruments for the informed investors due to the 

high leverage. If the cash market is quick enough to capture the information inferred from options 

market, the additional message will soon get reflected in stock price and the opportunity for profits 

will vanish. However, as pointed out by Xing, Zhang and Zhao (2010), the underlying market is 

slow in incorporating what is embedded in option prices, which makes it possible to construct a 

stock portfolio to exploit the hidden profit.

Instead of looking at option prices directly, this paper chooses to study alternative signals 

from the implied volatility surface. Implied volatility is the parameter a that inserts into the 

Black-Sholes model so that the plain vanilla option price from the formula matches the market 

price of the option. According to the Black-Sholes assumption, asset returns follow a log normal 

distribution and the standard deviation (a) is a constant across various strike prices and time to 

maturity. However, the implied volatility backed out from traded option prices clearly contradicts 

this assumption. In fact, it is widely known that the implied volatility demonstrates non-flat 

instantaneous “volatility smile” (often observed in FX and equity index) or “skew/smirk” (often 

observed in single equity) for a given tenor; and on the other dimension, implied volatility for 

different maturities also exhibits a similar pattern. Short-term volatility is usually more sensitive 

to the contemporaneous market condition change and the upcoming events, thus present a higher 

“volatility of volatility” . Overall, while mapping the implied volatility to different strike levels and 

tenors, the 3-D plot (so-called implied volatility surface) shows the whole picture of the market 

expectation for the future volatility. If the information is absorbed quicker in the options market 

than the underlying stock market, what is concealed in the surface can be applied to predict stock 

market returns.

According to some principal component analysis (PCA) studies (Cont and Fonseca 2002, Roux 

2006), among all the factors, the most important three components of the total variation in volatility
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surfaces include level, term structure and skew. Among these three, it is most straightforward to 

understand the relationship between return and level mode. Early studies (Giot 2003, Dennis, 

Mayhew and Stivers, 2006) showed implied volatility level has strong negative contemporaneous 

relationship with spot return. Due to the nature of equity market and the sensitivity of supply- 

demand forces to market sentiment, large jumps in spot tend to be downwards rather than upwards. 

This asymmetric pattern is also one o f the conventional explanations for the existence of implied 

volatility skew.

Volatility skew, or smirk, presents the phenomenon that OTM put is more expensive than OTM 

call. Therefore, if taking a snapshot of a volatility surface for a given time to maturity, one can 

observe a downward-sloping implied volatility curve. To understand the predictability of implied 

volatility skew, it is helpful to review the other reasons for its presence. Firstly, the underlying asset 

distribution presents a less heavy right tail and a heavier left tail. In other words, the possibility and 

magnitude of negative extreme value are both much higher than the positive comparatives. Hence, 

a steeper skew usually reflects a deteriorate expectation for the future performance. Secondly, 

the price tends to be more volatile at lower level, which has been widely spotted during each 

financial crisis. Thirdly, the OTM puts are usually purchased as a hedge against the long position 

in underlying stock. Since the normal market is net long stock, the demand for puts also pushes the 

price higher. In this case, if the investors become more confident in the future stock performance, 

they will either decrease the hedging position in put, or simply turn to long in call, either of which 

will make the implied volatility skew decrease (become flatter). Therefore, the information inferred 

from skew is “directional” .

Xing, Zhang and Zhao (2010) did find the shape o f volatility smirk exhibit pronounced pre­

dictability for future stock returns, since the flatter smirk is associated with a better earnings 

surprise, and vice versa. Their research enlightened an important way to extract useful indications 

from implied volatility surface, though they confined the study at the level o f volatility skew, while 

other important aspects of the surface remained untouched. This paper makes the contribution in 

filling the gap of exploring the cross-sectional relationship between term structure and subsequent 

returns -  moreover, the significant information that can be obtained from the interaction between 

implied volatility skew and term structure, or namely, the whole surface. It shows that when incor­

porating the term structure and its interaction, a more sophisticated portfolio can be constructed, 

which leads to a better reward-to-risk profile.
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The relationship between terra structure and return, however, is not that clear-cut. As the 

difference o f implied volatility between short and long tenors, the term structure tends to be less 

correlated with changes in fundamental risk in the long run, which leads to a similar shift in 

options with both short- and long-maturities. Therefore, the volatility term structure is likely to 

reflect more temporary information, either due to the transitory short-term volatility swing, or 

because of pending information. The first reason, short-term volatility swing can be viewed as 

an instantaneous reaction o f option market towards market sentiment or stock idiosyncratic risk. 

Because implied volatility is mean reverting, the implied volatility of shorter maturity options 

move more volatile than that of longer maturity options (Stein, 1989). If this is the case, the 

contemporaneous relationship between term structure and market return is expected to display 

similar pattern as that between volatility and return. On the other hand, if the change in term 

structure is caused largely by pending information such as earnings announcements or merger and 

acquisition decisions, it will remain high or increase consistently until the final news comes out and 

the uncertainty gets resolved. In this case, term structure is more possible to be positive correlated 

to subsequent return, as a sign of information premium. Overall, it remains an empirical question 

whether the term structure will reflect more the transitory short-term volatility swing, or pending 

information.

Even if the volatility term structure does imply pending information, unlike skew, it is “non- 

directional” . However, it serves as an accelerator or confirmer when it interacts with evident 

skew change. For instance, if the increasing term structure is attached with a decreasing skew, 

it emphasizes the good information ahead and the chance that it can be realized soon, therefore 

strengthens the predictive power of skew. Likewise, comparable impact is also expected if the 

increasing term structure coexists with increasing skew.

This paper starts with a similar approach as Xing, Zhang and Zhao (2010), studying the forecast 

ability of the information from implied volatility at the single stock level. But different from them, 

this paper focuses on the change (deviation) of each stock’s skew/term structure from its usual 

level to control the idiosyncratic risk (such as options for some stocks have persistent lower skew, 

simply because those firms have lower fundamental risk). More importantly, the prediction effect 

from term structure is analysed in details, especially its interaction with skew. The results show the 

correlation between skew and subsequent return remains substantially negative and its prediction 

power lasts as long as 6 month time, as documented by Xing, Zhang and Zhao (2010). On the
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other side, the term structure displays a positive relationship with future return, thus addressing 

the statement that the information factor associated with term structures takes on a dominant 

role in its relationship with returns. However, since the term structure reflects more temporary or 

undecided/unreleased news which resolves soon, its predictive power does not extend into the future 

as far as the skew does. Nevertheless, its effect is more enduring when combined with skew. The 

cross product of these two important elements turns out to be significantly negatively correlated 

with future returns. Considering the sign of each effect on its own, this result indicates that the 

signals extracted from skew and term structure do reinforce each other. While applying this idea to 

portfolio construction, the paper shows that by introducing the information from term structure, 

the weekly return from a long-short strategy can improve from 28.6 basis points (14.87% annually) 

to 40.2 basis points (20.90% annually).

By inutition, information acts as the key contributor of the predictive power for both skew and 

term structure. Then the question is whether this can be shown empirically. If the hypothesis 

holds, we should be able to observe the stocks with lower skew and higher term structure mean­

while presenting a higher concentration of information. This paper tests on two proxies to measure 

cross-sectional degree of information asymmetry: probability of informed trading (PIN) and bid- 

ask spread. The results confirm the strong connection between information and skew/term/cross 

product. Furthermore, implied volatlity surface factors remain significant after including informa­

tion proxies in predicting return, hence they are not shadow factors of information proxies that 

have been studied before.

Following the same idea, this paper carries out an event study on the subsample of takeover 

targets to investigate how the implied volatility surface evolves before concentrated information 

release. Merger and acquisitions (M&A) are ideal events to study price discovery in a highly 

volatile environment driven by information. Because of the considerable takeover premium paid to 

the target firms during the M&A process, their prices usually demonstrate massive positive jumps 

on announcement dates. A vast body of literature do research on this topic (Palepu, 1986; Powell, 

1997, 2001; Brar, Giamouridis and Liodakis, 2009), aiming at picking up the companies with higher 

possibility of being taken over by looking at firms’ accounting measures. Cao, Chen and Griffin 

(2005) linked trading behaviour in the options market with takeover targets and showed the higher 

buy-sell imbalance in options can predict next day return prior to takeover announcements. The 

analysis o f implied surface in this paper is in line with the argument of previous literature that
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the options market seizes information prior to the event happening. A  clear pattern of increasing 

term structure and decreasing skew can be caught as early as 9-10 months ahead of takeover 

announcement, which is earlier than the reaction of stock market. Moreover, if following the 

“long” portfolio constructed as the baseline result, about 9.28% of overall takeover cases can be 

captured. Even though this paper does not specifically target predicting takeover probability, it 

provides a potential signal to be employed with the more conventional accounting-based models.

The remainder o f the paper is organized as follows. Section 2 describes the data set, key 

variables and testing hypotheses. Section 3 presents the empirical results from implied volatility 

surface prediction and portfolio construction. Section 4 investigates the relationship between skew 

and term structure with information proxies. Section 5 extends the idea to M&A subsample and 

reports the event study results. Section 6 concludes.

2 Data, Key Variables and Hypotheses

2.1 Data Source

The data used in the paper is from OptionMetrix, which covers the historical option prices, volumes, 

implied volatility, sensitivity information from January 1996 to December 2010. The data base 

includes all US listed equities and market indices and all US listed index and equity options. 

This paper keeps all the valid firm sample as long as the data history is longer than half a year. 

Besides the main data set, equity returns, trading volume and bid-ask prices are from Centre for 

Research in Security Prices (CRSP). Fama-French 3 factors together with momentum and long-term 

reversal factors are downloaded from Professor Kenneth French’s website. M&A data is provided 

by Securities Data Company (SDC) Platinum, and filtered by standard procedure (exclude the 

bids classified as acquisitions of partial stakes, minority squeeze-outs, buybacks, recapitalizations, 

and exchange offers; exclude the bids where the acquirer’s previous stake exceeding 50%, or a 

consequent stake less than 50%). In the end, the quarterly PIN measure from 1996 to 2005 is 

generously delivered by Professor Stephen Brown.

Panel A of Table 1 reports sample size o f each year. The sample contains the stocks that have 

option trading records more than 6 months and have valid link with CRSP return data.
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2.2 Key Variables

Skew in intuition is the implied volatility curve for a given expiration date, however, there is no 

fixed skew measure in past literature. For example, Bates (1991) set skew as arithmetic differ­

ences between OTM put volatility and OTM call volatility, based on the percentage moneyness 

(strike price over spot price); Hull, Nelken and White (2004) defined skew in a similar arithmetic 

differences, but based on delta. The difference o f the above two definitions lies in the convention 

whether the option price is quoted and traded according to sticky strike, or sticky delta. Alterna­

tive skew measures, among others, include Carr and Wu (2007) and Mixon (2009), where skews 

are normalized versions o f the above. In the research closest to this paper, Xing, Zhang and Zhao 

(2010) adopted the definition similar to Bates (1991), which is implied volatility of OTM put minus 

that of ATM call, with the moneyness depending on the ratio o f strike price to the stock price. 

Mixon (2010) surveyed these measures and argued that after controlling for volatility and kurtosis, 

the most robust definition for skew is normalized arithmetic differences of put and call volatilities 

based on delta. Therefore, this paper applies this measure:

SKEW itd =
yQ jJ lh A P U T  _  y Q iß 5 A C A L L

V O L ff ( 1)

where i is the index for firm and d is the index for date. Since the short-tenor options are the most 

sensitive to reflect skew shift, when calculating skew only options with maturity=30 days are used. 

Furthermore, in order to control for the case such as some firms always have lower skew merely 

because of lower fundamental risk (instead o f positive information ahead), for each firm the SKEW 

is standardized by its mean and standard deviation in the past 6 months1. This procedure is also 

employed by Cao, Chen and Griffini (2003).

The term structure definition follows the same idea as skew. Since now the focus is on differences 

in maturity, I choose deltarneutral implied volatility for each tenor. The measure is also normalized 

by past half-year mean and standard deviation.

TERMi>d =
V O L f ^ 'lM -V O L 50A,1V

i,d
V O L f ^ ’m

(2)

‘ An alternative way o f standardization is only to substract the past 6 months mean from the current value. The 

main result remains the same.
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After computing daily standardized skew and term structure, each measure is averaged to a 

weekly equivalent (Tuesday close to Tuesday close). The interaction variable of skew and term 

structure is simply the cross product of both.

SKEW TERM iw =  SKEW i%w • TERMi<w (3)

Besides the main measures from the surface, this paper also encloses control variables proposed 

by Xing, Zhang and Zhao (2010). The important control variables for each firm include: SIZE, 

which is the market capitalization; TURNOVER, which is the trading volume divided by shares 

outstanding; last month VOL and SKEWNESS stand for empirical volatility and skewness of return 

distribution; PVOL, which is difference between short-term delta-neutral implied volatility and last 

month empirical volatility, represents the risk premium embedded in options market.

In order to link the implied volatility skew, term structure and their cross product with the 

informativeness of the underlying asset, this paper employs two alternative information proxies. 

The first one is probability of informed trading (PIN) based on the EKO market microstructure 

model of information asymmetry (Easley Kiefer and O ’Hara, 1997). The EKO model sets out a 

structure to infer existing informed trading out o f the observed order flows. According to the EKO 

model, PIN can be expressed as a function of number of buy and sell, which is identified by Lee 

and Ready Algorithm (1991). Previous studies (Easley, Hvidkjaer, and O ’Hara, 2002; Vega, 2006; 

Chen, Goldsteian, and Jiang, 2007; Ferreria and Laux, 2007) have proved that PIN is an effective 

measure to estimate the information density. This paper uses the quarterly PIN calculated by 

Professor Stephen Brown, which intersects the main data set from 1996 to 2005.

The other alternative proxy for information asymmetry employed in this paper is bid-ask spread. 

Theoretically there are two main sources contributing to the spread: liquidity and adverse selection. 

But while only the latter is driven by information, this paper takes a relatively loose assumption, 

and argues that if information is the common force of both bid-ask spread and implied volatility 

surface, at least we should be able find the significant relationship between them.

The statistics of variables are summarized in Table 1.
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Based on the discussion in the introduction, this paper derives four hypotheses. The first hypothesis 

tests predictability of implied volatility skew and term structure independently. Since skew is caused 

by investors’ expectation about future negative shock, then the decreasing (flattening) skew maps 

into a positive future prospect. Term structure, on the other side, predicts subsequent return in 

terms of information premium.

Hi: The implied volatility surface has significant power in forecasting subsequent returns. Re­

turns are likely to rise with decreasing SKEW, and increasing TERM.

The first half of above hypothesis has been tested in Xing, Zhang and Zhao (2010). If SKEW is 

regarded as a directional bet o f future news, then TERM plays more like a timing signal, which in­

dicates an upcoming event without acknowledging its direction. However, under the circumstances 

when these two factors interact with each other, the effects are expected to be enlarged, such as 

Hypothesis 2:

H2: The prediction power will be strengthened when SKEW and TERM cooperate.

Considering TERM’S timing characteristics, I also test the following hypothesis:

H3: TERM only has predictability that works in the short-term, while SKEW can forecast into 

future much further.

The last hypothesis looks into the fundamental cause o f the prediction power, and explores the 

interconnection between SKEW, TERM and information proxy.

H4: For firms with lower SKEW and higher TERM, there will be more intensive informed 

trading of their stocks.

The empirical outcome o f these four hypotheses is presented in the next section.

3 Empirical Results

The results from empirical analysis will be represented as follows. In section 3.1, Fama-MacBeth 

(1973) regression exhibits the main forecasting ability o f implied volatility surface, either on its 

own or after controlling firm variables. Section 3.2 constructs a portfolio based on the rankings of 

SKEW and TERM, confirming the economic significance of each factor.

2.3 Hypotheses
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3.1 Fama-MacBeth Regression

The baseline Fama-MacBeth regression begins with the following equation, which corresponds to 

Hypothesis 1.

^i,w — /3o,tti "b fi\,w '  "b $ 2 ,w ' r i,m—l  "b 03tui ' f i ,y —l "b ' S  K  EW%>w—\ *b ‘ TERMi>w—\

where rj(U, is the return for firm i in week w. The lagged weekly return for the same firm riiU,_i 

is included to control for momentum; the previous month’s return (excluding the last week) ritm-l 

and the previous year’s return (excluding the last month) r ^ - i  are also enclosed to control for 

reversal effect. SKEWiiW~i and TERM^w-\ are standardized skew and term structure respectively 

for week w-1. The cross-sectional regression is conducted for each week, and the reported estimates 

of each parameter axe after the Newey-West (1987) adjustment. The calibration and t-statistics 

for this regression and its univariate version are presented in Table 2 (Column A-C).

As analysed in the introduction, short-term volatility deviations from the long-term mean - 

prompting a TERM shift - are due to two main reasons: (i) changes in market circumstances (such 

as instantaneous data release, market sentiment shifts, etc.), or (ii) information foresight. In the 

market, the first reason can be often detected as a negative contemporaneous correlation between 

return and TERM; while the second reason takes a form of lead-lag relationship. Therefore, to 

control for returns at the right side o f the regression also separates these two effects, so that TERM 

performs as a less noisy information carrier.

From Table 2, firms with decreasing SKEW tend to gain higher subsequent return. This phe­

nomenon has been well analysed by Xing, Zhang and Zhao (2010). The coefficient of term structure 

shows a significantly positive relationship with next week return, though the magnitude and sig­

nificance is not as large as that o f skew. As discussed before, this is because the skew signifies a 

clear directional surprise, while term structure in itself is non-directional, but only confirms with 

the presence of undisclosed information.

The next step is to introduce the cross product of two variables. Because the cross product may 

capture a non-linear relationship between each single variable and the dependent variable, it might 

easily lead to a spurious significance. In order to control for this, the second moment o f SKEW  

and TERM are taken in the regression2:

aI also tried controlling for higher moments o f each variable, and the results remain unchanged.
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ri,iv — /3o,tu +  01 ,tu ’ r t,tu -l +  02 ,tu ' r i,m—l +  03,tu ’ r i,V~l +  04 ,tu ' S K E W i tW- x  +  /35 w - T E R M i ^ - i  

+ 0 6 ,tu • S ^ ^ W f t u - 1  +  0 7 ,tu • TE R M fw_y +  0 8iU) • S A W * , « - ! . TERMhŴ  (5 )

where the term SK-EWi,«,-! • TERMiiW-x  captures the interaction between them. Since term 

structure in itself reflects how fast the information (regardless o f the sign) can be released and 

absorbed into the underlying asset price, when we look at the predictive power of the near-future 

return, high TERM  intensifies the effect of SKEW. The significantly negative coefficient of the 

cross product in Table 2 (Column D) rejects the null hypothesis o f H2. The intuition is, when an 

increasing TERM is attached on a decreasing SKEW, it senses that the hidden positive information 

can be disclosed soon, hence strengthens the negative relation between SKEW and return; while 

when a decreasing TERM  coexists with a decreasing SKEW, it implies the positive information 

might be realized later, hence alleviates SKEW ’S impact in the short term.

To control for other variables at firm level that might also influence return, a more comprehensive 

regression is carried after adding independent variables. The corresponding results are shown in 

Table 2 (Column E).

r’i,w 0 0 ,tu +  01,w ' 7'j,iu—1 +  02,w ’ î,m—1 +  03,«, ' 7*i,j/—1 +  04,«, " SKE

+05,u, ■ TERMi,w-\ +  06 u, ■ SKEW^w_1 +  07li, •T ERMiW_ x (6)

+ 0 8 ,w ' SKEWitW~i • TERM^yj-x +  0 9 i1u • CONTROLiiW-i

The control variables contain those conventional factors such as SIZE and TURNOVER, and 

also some other variables that are known to have forecast ability. One is empirical volatility, which 

is computed as standard deviation of the past month’s daily return. Ang, Hodrick, Xiang and 

Zhang (2006a) found firms with higher idiosyncratic volatility are inclined to have lower future 

return; Barberis and Huang (2005) and Mitton and Vorkink (2006a) raised the argument that 

this anomaly was caused by investors’ preference for positive skewness. Therefore, skewness of the 

past month’s daily return is also introduced in the regression as a control variable. Furthermore, 

following Xiang, Zhang and Zhao (2010), I include a volatility premium proxy PVOL, calculated 

as the difference o f 30-day delta-neutral implied volatility and last month’s empirical volatility. 

The idea is that, since all the implied measures are backed out from the B-S model, there is an
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embedded risk premium in its risk-neutral implied volatility. In order to isolate the prediction 

power o f SKEW /TERM  from the effect o f market risk preference variation, PVOL is enclosed.

It is noticeable that SKEW becomes even more pronounced after controlling for other factors. 

However, TERM ’S prediction in itself becomes weaker and insignificant. This shows the information 

premium attached on TERM  has been overshadowed by other firm-specific variables. Interestingly, 

the cross product term remains impressively significant. It again confirms the conjecture that 

non-directional information associated with TERM  works through the interaction with directional 

information embedded in SKEW,

Empirical volatility is negatively correlated with subsequent returns, though not significantly, 

which matches the previous literature. Empirical skewness, on the other hand, is substantially 

positively correlated. This result is in line with Xing, Zhang and Zhao (2010), but contradicts 

earlier studies. Xing et al. (2010) found this positive relationship vanished when extending the 

return horizon, which can be confirmed with the sample in this paper.

An alternative regression to control other conventional factors is to replace the dependent vari­

able by alpha from Fama-French-Momentum-Reversal five-factor (similar as Fama-French-Carhart 

(1997) four-factor) model. The results are reported in Table 3 and similar to the baseline regres­

sion3.

In order to test the efficacy o f the volatility surface on a longer holding horizon, Table 4 tries out 

different future returns as dependent variables. Column A  lists the regression result for predicting 

average weekly return o f subsequent 4 weeks. Column B to E decompose the next 4 weeks’ return 

into the 1st to the 4th week separately, hence providing a more straightforward way to show how 

each factor’s effect decays with time, and how the information embedded in these factors gets 

realized in the stock market. As we see from Table 4, skew captures the information which is more 

long-lasting, slower to be reflected in the underlying stock (even though it does wane along the 

time); in other words, skew can react much earlier than the information gets completely captured by 

stock price. Imagine an investor obtains private positive information about a firm without knowing 

when exactly it will turn out to be public; she would enter into call positions across different 

expiries. Only when the investor also acknowledges that the good information will be disclosed 

soon, she will concentrate in buying short-term calls. Therefore, both the term structure and its

8Since alpha is computed from the factor model that has controlled for momentum and reversal factors, here the 

right side o f the regression only includes the lagged week’s alpha.
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interaction with the skew take effect in a shorter horizon, and this information becomes realized 

in the underlying market much faster. Indeed, although overall the cross product has significant 

forecast ability on the next 4 week’s return, this effect is mostly absorbed in the week coming 

right after, and reduces to be unremarkable later on. Column G shows that none o f the factors 

calculated 6 weeks ago still sustain a predictive power on the return. Note that this discovery does 

not necessarily lead to the conclusion that only short horizon strategies are profitable; instead, it 

is more that a majority of the profit will concentrate in the early weeks.

3.2 Portfolio Trading Strategy

Enlightened by the results from Fama-MacBeth regression, in this subsection I use a portfolio 

trading strategy to demonstrate the economic benefit of applying information from implied volatility 

surfaces.

3 .2 .1  S in g le  S o r t

I start by sorting on SKEW. Each week after computing the normalized SKEW factor, the whole 

universe is ranked and equally divided into 5 groups. Portfolio 1 contains the bottom 20% SKEW 

while portfolio 5 contains the top 20% SKEW, Portfolio is constructed equally-weighted by its 

constituents, and rebalanced on a weekly basis. Since firms need half-a-year history as normalized 

benchmarks, the earliest portfolio construction time is from July 1996, and it lasts till the end of 

2010.

Table 5 reports the characteristics of each quintile (Panel A )4 and the average subsequent

4 An interesting fact in Panel A is that empirical skewness seems to  have a monotonic increasing pattern with 

implied volatility skew. This is counterintuitive since the skewness measures how the underlying return distribution 

tilted to the right tail; while implied volatility skew is caused by fat tail in the extreme negative value. Thus in 

intuition empirical skewness and implied skew should be negative correlated, and have opposite relationship with 

future returns, which, has been proved by Fama-MacBeth regression (Table 2). One possible explanation is that 

implied volatility is a forward-looking measure; hence it performs a stronger link with future empirical skewness, 

rather than past levels. If we regress future empirical skewness on its lagged value and lagged implied skew, we can 

see that the implied skew is significantly negatively correlated with future skewness (t-stat around -10.3). In the 

unreported table, I double sort the universe based on skewness and implied skew. After controlling for skewness, 

portfolios with lower implied skew have higher subsequent returns; after controlling implied skew, portfolios with 

lower past-month, skewness have higher subsequent returns. Both factors are significant but implied skew has a 

stronger effect.
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weekly return for each portfolio (Panel B). The excess return above the risk-free rate (3-month 

Treasury-Bill rate), alpha after the Fama-French-Momentum-Reversal model and annual Sharpe 

ratios are also presented. The main finding in Panel B matches that o f Xing et al. (2010). If 

taking a long-short trading strategy (long the lowest SKEW quintile and short the highest), the 

weekly profit can be 28.6 basis points, which is 14.87% annually. The difference can be even more 

evident if controlling for the common factors and calculating alpha, which is 30.4 basis points 

weekly or 15.81% annually. When prolonging the holding horizon, the average weekly return from 

the long-short strategy becomes smaller, but remains highly significant.

A  similar single-sorting based on TERM has been conducted and reported in Table 6. From the 

lowest quintile to the highest comparative, the average subsequent return has increased monoton- 

ically from 17.6 basis points (9.15% annually) to 29.1 basis points (15.13% annually). Alpha also 

behaves in a similar fashion. As a contrast to SKEW, when increasing the predicting window, the 

difference between top and bottom portfolios drops significantly and dies out fast. This corresponds 

to the analysis in Table 4.

3.2.2 Double Sort

It is more interesting to explore the interaction between SKEW and TERM. As we know from the 

above discussion, SKEW denotes directional information, while TERM carries the signal of timing. 

Since TERM itself is non-directional, its effect on return prediction is asymmetric when it attaches 

with high SKEW or low SKEW.

The asymmetry can be detected in the following way: I first sort on SKEW and divide the 

whole Universe into 5 groups. Then I take out the top and bottom 20%, and rank each group 

based on TERM respectively. The idea is: the lowest SKEW  quintile carries the most positive 

prospective information. Within this sample, the higher the TERM, the sooner the good news will 

be realized, so the higher the short-term return (Table 7, Column A). On the contrary, the highest 

SKEW quintile signifies the most adverse future information. Within this sample, the higher TERM 

subgroup should have lower near-end return because it indicates that the bad information will be 

soon absorbed into price. Indeed, Column B in Table 7 shows the return in the highest TERM 

subsample is worse than the lowest TERM group, even though the difference is not significant; it 

forms a clear contrast to Column A.

An alternative way to look at the asymmetry is to sort by TERM first and then SKEW, which
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is exhibited in Table 8. Column A shows the influence o f SKEW within the lowest TERM  quintile; 

and Column B is the comparative in the highest TERM quintile. Now that the high TERM acts 

as a barometer for the pending news to happen, SKEW ’s effect is more remarkable in the highest 

TERM quintile, either in terms o f the difference between the top and bottom sub-quintiles, or in 

terms of ¿-statistics.

Both o f the above double sorting approaches highlight the fact that it is possible to improve the 

portfolio performance by taking into account the TERM  factor and its interaction with SKEW, As 

we see in Table 5, the long-short strategy based on single sorting on SKEW can bring about weekly 

return 28.6 basis points (14.87% annually), now while after double sorting the weekly return can 

increase to 40.2 basis points (20.90% annually).

4 Information Proxies

The previous sections have assessed the efficacy of the measurements from implied volatility surface 

SKEW and TERM . In this section, I am going on to  explore the driver of their predictive power. 

The reason that implied volatility can forecast return lies in the fact that informed traders are more 

inclined to trade in options market due to the high leverage (Esley, O ’Hara and Srinivast 1998; Cao, 

Chen, Griffin, 2003). Hence information is first captured by the options market, and then spills to 

the stock market. Other research (Mayhew, Sarin and Shastri, 1995; Kumar, Sarin and Shastri, 

1998) also found that the stocks that have corresponding options traded generally show greater 

price efficiency.

Two information proxies: probability of informed trading (PIN) and bid-ask spread are em­

ployed here to test their relationship with implied volatility surface. As shown in the EKO model, 

PIN is a measure estimates cross-sectional degree o f information asymmetry5:

P IN  = ------- -----------  (7)
â  + £(, + E,

where a  is the probability that traders aquire private inforamtion about the firm’s fundamentals 

at the beginning o f a trading day; n is the average arrival rate o f buy(sell) orders from informed 

traders based on good(bad) news; £b and es are arrival rate o f buy and sell orders from uninformed 

traders. Hence the denominator apL +  Eb +  es denotes total amount o f orders and the numerator

BPlease check Easley, Kiefer and O ’Hara (1997) for details.
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is the portion from informed traders. So PIN calibrates the fraction of informed trading among 

overall order flows.

In microstructure literature, the bid-ask spreads mainly associate with two causes: inventory 

costs (Amihud and Mendelson, 1980, 1982) and adverse selection (Copeland and Galai, 1983, 

Glosten and Milgrom, 1985). The rationale o f the latter is a market-maker will optimize his 

position by setting a bid-ask spread to maximize the difference between the expected profit from 

uninformed investors and expected loss occurred during trading with informed investors. In this 

sense, the bid-ask spread can be regarded as a “polluted” measure of asymmetric information (due 

to the inventory cost component) and only employed as a robustness check and supplement to PIN, 

Two alternative definitions of bid-ask spread are tested:

SPREAD

SPREAD%

ASK  -  B ID  
ASK  -  B ID
Traded price

(8)

(9)

If the information is the common force that moves SKEW and TERM, a strong connection 

between these factors and information proxies is expected. Therefore, the first step is to check the 

relationship between PIN/Bid-ask spread and SKEW /TERM .

The PIN measure is computed quarterly, while the SKEW and TERM, as used in the first 

section, are aggregated weekly. Therefore, I try two slightly different ways: the first is to match 

quarterly PIN with corresponding weekly SKEW /TERM  directly; and the second is to first aggre­

gate SKEW /TERM  into quarterly and then link them with the same quarter PIN. For the bid-ask 

spread (as well as spread%) measure, it is calculated from daily close ask, bid and traded prices, 

Then the weekly average is matched with the weekly SKEW /TERM ,

Table 9 illustrates the results from the panel regression when running information proxy (PIN 

or bid-ask spread) on SKEW, TERM  and their cross product:

IN Fu =  SKEWitt +  TERMifi +  SKEW  • TERMiit (10)

where INF refers to one of the measures that were just discussed: PIN or bid-ask spread. The 

errors are clustered by firm. Just as expected, firms with higher TERM and lower SKEW are 

engaged with higher information density. Furthermore, the interaction term also behaves as in
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the return prediction, such that the coexistence o f higher TERM and lower SKEW intensify one 

another.

Table 10 carries more detailed double sorting on SKEW and TERM. The numbers in the table 

stand for the average PIN of each grid. Since the regression might only reflect an overall linear 

relationship, the sorting method can uncover how the information proxy varies across different 

quantiles of each measure. Generally the observation confirms what can be seen from panel regres­

sion. Especially for the relationship between TERM and PIN: across different SKEW quintiles, PIN 

almost always increases with TERM. However, the interesting bit is that across different TERM  

quintiles, PIN in the largest SKEW quintile appears consistently larger than that in the second 

largest SKEW quintile.

The non-monotonicity o f the relationship between information content and SKEW is not sur­

prising, though. On the contrary, it once again confirms what was analysed before - that SKEW 

designates directional signals - hence the information density is actually a U-shape function of 

SKEW. That is, both highest and lowest quintiles represent a higher possibility o f private infor­

mation presence, with opposite signs o f prospective information. The lowest end, however, has a 

much stronger effect and dominates the correlation on average.

The above results have proved implied volatility surface indeed takes a root in private infor­

mation, and has a direct link with the price informativeness. Now the question is whether the 

employed information proxy, PIN or Bid-ask spread, has already captured the explanatory power 

of future return, and makes SKEW /TERM  redundant. In order to test this question, I include the 

information proxy and its second moment6 in the baseline regression, such as

r i,w — 00,w d" 01,w ’ tu—1 + 02,w " r i,m —1 "b 03t\u • • S K  EWi>w—i

+05,w ' TERMitW-x  +  /?6,u) • SKEW?w_x +  07<w • TERM?w_x 

+06,w ‘ SA  EWitw—i ' TERMiiW- i  +  0$,w ' CONTROLi>w—\

+0io,w • IN FiiW- i  +  0 n>w • I N F ^  (11)

Because the PIN data is from 1996 to  2005, here I re-run the baseline regression without adding

®The second moment is added to capture the possible non-linear relationship. The positive relationship between 

PIN and return was initially found by Easley et al. (2002). For a critique of the results, check Duarte and Young 

(2008), and Mohanram and Rajgopal (2009).
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information measures as a comparison in Column A, Table 11. The main effects are very close to 

what I have found in Section l 7. Column B-D list the results from the controlled regression after 

enclosing PIN, bid-ask spread and normalized spread respectively. The magnitude and significance 

of SKEW /TERM /cross product remain at a similar level as the un-controlled regression. Therefore, 

even though the volatility surface exhibits a very close relationship with information density, its 

prediction for future return is not overshadowed by stock market information proxies.

5 Example: Merger and Acquisitions

As discussed in previous sections, since the options market can be a platform for informed traders 

to execute front-running, implied volatility surface will display a strong and clear pattern before the 

information eventually gets disclosed. This section will go on to shed light on the implied volatility 

change during a typical example of concentrated information release, merger and acquisition.

Takeover activity has been widely studied in financial literature because it represents an ideal 

event that trading activity and information exchange both reach an enormous level. In particular, 

it is usually followed by an immediate corporate control shift and coupled with a large amount of 

price premium for takeover targets. Therefore, there is a great incentive for investors to hunt for 

the information regarding merger and acquisition and trade accordingly.

First, this paper conducts an event study on the target companies that have takeover announce­

ments occurred between 1996 and 2010, and have options trading on the stocks, which end up with 

1411 company takeovers8. With full backward-looking bias, I calculate the weekly average SKEW 

and TERM up to 53 weeks (about a year) prior to takeover announcement., Chart 1 illustrates 

the average pattern o f SKEW and TERM, with 0 on the horizontal axis stands for the week of 

event. As we expected, SKEW  exhibits a persistent downtrend, which is possibly caused by large 

purchase in call options or unwinding positions in put -  both send out a positive signal about the 

future return; TERM, on the other hand, has a consistent uptrend that reinforces the probability 

that pending information is ahead.

7I also tried across different sub-periods as a robustness check. The prediction power o f SKEW, TERM  and the 

cross product is generally time-homogeneous.
8Apart from the standard filters as mentioned before, I also exclude the cases that the target companies have 

another takeover within previous one year, and only keep the first announcement. Takeovers which have the time 

gap longer than one year are remained.
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Chart 1 also plots cumulative abnormal return (CAR) as a comparison to the trend of SKEW 

and TERM. The reason is while informed traders act on the private information in the options 

market (buy calls and sell puts), they will also trade the underlying stocks. To check if the 

options market indeed has a leading position in price discovery, weekly CAR is plotted with the 

two implied volatility surface measurements. The way to calculate CAR is similar to computing 

alpha in Section 1. Firm-specific factor loadings are calibrated based on FamarFrench-Momentum- 

Reversal five-factor model, and then alpha for each firm each day is calculated as the difference 

between realized return and expected return, which applies the factor loadings and four factor levels 

on that day. Daily abnormal return is averaged into weekly, and aggregated from 53 weeks prior 

to the announcement week, which reaches a single target’s CAR. In the end, the cross-sectional 

average CAR is reported. It is clear to see that SKEW and TERM  (the options market) react 

earlier than CAR (the stock market), with a more remarkable leading trend spotted in SKEW. 

This once again confirms how SKEW and TERM differ in how far they predict future return. 

Although both o f them start to show a trend as early as about 40 weeks (9-10 months) before the 

announcement, SKEW ’s pattern is more pronounced; while the significant upward jump in TER.M 

happens much later.

' '  So far, the result needs perfect hindsight to see how implied volatility surface evolves ahead of 

a big event. The next step is trying to extract ex-ante signals. Motivated by the portfolio sorting 

approach in Section 1, I summarize each target’s portfolio ranking (both SKEW and TERM ) at 

the last week prior to takeover. The idea is to explore the cross-sectional distribution o f target 

firms’ SKEW and TERM rightly before the event; and if following the portfolio purchase proposed 

by Section 1 (buy the lowest SKEW and highest TERM ), how many of the overall takeover cases 

can be captured in the portfolio.

Table 12 lists number o f merger and acquisitions that belong to each portfolio. Out of 1411 

announcements, 131 (9.28%) have located within the intersection of lowest SKEW quintile and 

highest TERM  quintile. This number is much higher than all the other occurrences. Summing 

across each quintile for each measure also indicates generally the targets have lower ranking in 

SKEW and higher ranking in TERM before the final price jump at the announcement. Without 

involving return comparison, this table itself states sorting portfolio according to implied volatility 

surface displays good ability to pick up takeover targets.

Past literature exerts large effort to forecast the possibility that a company will become a
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takeover target. The common methodology is to employ accounting data (ROE, P /E , growth, etc.) 

and construct a Logit or Probit model (Palepu, 1986; Powell, 1997, 2001). This paper does not 

specifically aim at predicting M&A probability; however, it provides an alternative way to tackle 

that type o f problem. It would be interesting to see if combining the signals from relatively higher 

frequency market data (such as implied volatility surface in this paper) with those from lower 

frequency accounting data will improve the prediction performance.

6 Conclusion

Options are one of the best instruments to trade on private information; hence the implied volatility 

surface contains the information that has not been quick enough for the stock market to reflect. 

This paper explores the predictive power of two most important components on implied volatility 

surface: skew and term structure, as well as their interaction with each other. Using all available 

options data in the U.S, market from 1996 to 2010, it shows firms with lower skew and higher term 

structure tend to  have higher subsequent returns. Implied volatility skew denotes a directional bet 

on firms’ future outlook, while the term structure serves more as a non-directiona.l signal about 

how fast the pending information will be released. Therefore, when high term structure occurs 

together with low skew, the predictive power for a positive jump in stock price will be even greater. 

Both. FamarMacBeth regression and portfolio construction support this argument, and significant 

economic interest can be realized by trading on implied volatility surface.

By connecting implied volatility surface measures to information proxies, this paper demon­

strates it is private information that drives the changes in skew and term structure. Alligning to 

previous research on lead-lag relationships in option and stock prices, this paper reaches a similar 

conclusion (but from a new angle) that firms with more extreme implied volatility surface change 

are more informative. Controlled regression indicates the forecastability of skew, term structure and 

their cross product is robust even after introducing the information proxies and other firm-specific 

variables, showing that the information contained in implied volatility surface is not redundant.

This paper also applies the idea on M&A sample, which represents as an event o f condensed 

information release. Implied volatility skew and term structure react accordingly much earlier 

before the announcements, and earlier than the reaction from the stock market. It shows that if 

following the weekly portfolio construction based on the lowest skew quintile and the highest term
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structure quintile, about 9.2% of overall target companies can be picked in the portfolio. This 

provides one promising application o f the study: that is to combine it with other conventional 

M&A prediction models.
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Table 1 Summary Statistics

This table shows the summarized statistics o f  main variables covered in this paper. Panel A  lists number o f  firms 
exist in each year. Any firm that has valid intersection between CRSP and OptionMetrics data that is longer than 6 
months is retained in the sample. Panel B shows mean and a range o f  quantiles o f  employed variables. For each 
firm, SKEW is the weekly average o f  daily implied volatility skew, which is the difference between 30-day tenor 
25 A O TM  PUT implied volatility and 25 A OTM  CA LL implied volatility, divided by  30-day tenor 50 A implied 
volatility; z-SKEW  is the normalized SKEW by the firm-specific mean and standard deviation for the previous 6 
months; TERM is the weekly average o f  daily implied volatility term structure, which is the difference between 
30-day tenor 50 A implied volatility and 1-year 50 A implied volatility, divided by 30-day 50 A implied volatility; 
z-TERM is the normalized TERM by the firm-specific mean and standard deviation; SIZE is the market 
capitalization; TURNOVER is daily transaction volume divided b y  shares outstanding; V O L  is the standard 
deviation o f  daily return for the previous month; SKEWNESS is the empirical skewness o f  daily return for the 
previous month; PVOL is difference between 30-day 50 A implied volatility and VO L; PIN is quarterly probability 
o f  informed trading calculated from microstructure data, as proposed by EKO model; Bid-ask spread/price is the 
daily close bid-ask spread normalized by close prices.

Panel A: number of firms

Year # of firms Year # of firms
1996 1769 2004 2385

1997 2257 2005 2580
1998 2569 2006 2839

1999 2706 2007 3141

2000 2505 2008 3180

2001 2351 2009 3120
2002 2362 2010 3081

2003 2223

Overall 6108

Panel B: statistics of main variables

Variable Mean 5% 10% 25% 50% 75% 90% 95%

SKEW 0.090 -0.161 -0.070 0.016 0.088 0.163 0.248 0.324
z-SKEW 0.021 -1.432 -1.049 -0.508 0.011 0.540 1.099 1.503

TERM 0.042 -0.133 -0.083 -0.016 0.040 0.100 0.170 0.223
z-TERM -0.022 -1.752 -1.343 -0.714 -0.040 0.655 1.327 1.770

SIZE (billion $) 5.925 0.135 0.208 0.466 1.269 3.779 23.390 84.713
TURNOVER (%) 1.433 0.156 0.223 0.386 0.714 1.334 2.420 3.600
VOL (%) 2.908 0.905 1.118 1.598 2.386 3.601 5.297 6.675
SKEWNESS 0.183 -1.210 -0.784 -0.291 0.169 0.650 1.205 1.654

PVOL 0.463 0.183 0.218 0.294 0.409 0.579 0.780 0.917

PIN 0.145 0.067 0.081 0.105 0.136 0.175 0.219 0.252
Bid-ask spread/price {%) 0.637 0.036 0.052 0.095 0.232 0.799 1.724 2.525

Ill



Table 2 Fama-MacBeth Regression on Weekly Return
This table shows results from the Fama-MacBeth regression (4), (5) and (6). The dependent variable is the 
leading weekly return. For the independent variables, RET (lag. w ) is the past weekly return; RET (lag. m) is 
the past monthly return excluding the last week, scaled to the weekly level; RET (lag. y ) is the past yearly 
return excluding the last month, scaled to the weekly level; SKEW is the normalized implied volatility skew 
and SKEW2 is its square; TERM  is the normalized implied volatility term structure and TERM2 is its square; 
SKEW *TERM  is the cross product o f  SKEW and TERM; Log(SIZE) is the nature log o f  market capitalization; 
TURNOVER is the transaction volume normalized by  shares outstanding; SKEWNESS and VO L are the 
empirical skewness and standard deviation o f  the previous month daily return; PVOL is difference between 30- 
day 50 A implied volatility and VO L. All independent variables are one week lagged from the dependent 
variable. The results are after Newey-W est adjustment.

Dependent variab le^  w

(A) (B) (C) (D) (E)
RET (lag. w) -0.0188

(-5.06)***
-0.0165
(-5.27)***

-0.0186
(-5.03)***

-0.0184
(-4.97)***

-0.0260
(-7.98)***

RET (lag. m) -0.00104
(-0.15)

-0.00362
(-0.52)

-0.00094
(-0.13)

-0.00073
(-0.10)

-0.01702
(-2.91)***

RET (lag. y) 0.0578
(151)

0.0544
(1.42)

0.0562
(147)

0.0558
(1.46)

0.0544
(1.80)*

SKEW -0.000938
(-10.33)***

-0.000954
(-10.57)***

-0.00102
(-10.11)***

-0.00100
(-11.60)***

SKEW2 0.0000222
(0.54)

-1.06e-6
(-0.29)

TERM 0.000220
(2.26)**

0.000203
(2.09)**

0.000225
(2.18)**

0.0000857
(0.73)

TERM2 0.0000212
(0.68)

-5.13e-6
(-0.13)

SKEW*TERM -0.000220
(-3.73)***

-0.000221
(-3.83)***

log(SIZE) -0.000207
(-1.52)

TURNOVER 0.0322
(3.55)***

SKEWNESS 0.00120
(8.94)***

VOL -0.0200
(-1.48)

PVOL -0.00275
(-128)

*** indicates significance at 1%; ** indicates significance at 5% ; * indicates significance at 10%.
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Table 3 Fama-MacBeth Regression on Weekly Alpha
This table shows the results from the Fama-MacBeth regression (4), (5) and (6) but with weekly alpha as the 
dependent variable. Alpha is calculated as the residual o f  the Fama-French-Momentum-Reversal five-factor 
model. For the independent variables, ALPH A is the lagged weekly alpha; SKEW  is the normalized implied 
volatility skew and SKEW2 is its square; TERM  is the normalized implied volatility term structure and TERM2 is 
its square; S K E W T E R M  is the cross product o f  SKEW and TERM; Log(SIZE) is the nature log  o f  market 
capitalization; TURNOVER is the transaction volume normalized by  shares outstanding; SKEWNESS and 
VO L are the empirical skewness and standard deviation o f  the previous month daily return; PVO L is difference 
between 30-day 50 A implied volatility and VOL. All independent variables are one week lagged from the 
dependent variable. The results are after Newey-W est adjustment.

Dependent v a r ia b ^ a q  w

(A) (B) (C) (D) (E)
ALPHA -0.0214 

(-7.17)***
-0.0220
(-7.40)***

-0.0212
(-7.14)***

-0.0211
(-7.10)***

-0.0239
(-8.47)***

SKEW -0.00103 
(-11.83)***

-0.00104
(-12.03)***

-0.00110
(-11.15)***

-0.00113
(-12.87)***

SKEW2 0.0000387
(1.01)

0.0000146
(0.40)

TERM 0.000147
(1.70)*

0.000127
(1.46)

0.000135
(1.45)

0.0000410
(0.43)

TERM2 -0.0000122
(-0.32)

-0.0000288
(-0.79)

SKEW*TERM -0.000217
(-3.67)***

-0.000208
(-3.56)***

log(SIZE) 0.0000581
(0.68)

TURNOVER 0.0404
(4.68)***

SKEWNESS 0.000811
(7.97)***

VOL -0.0198
(-1.80)*

PVOL -0.000525
(-0.36)

*** indicates significance at 1%; ** indicates significance at 5% ; * indicates significance at 10%.
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Table 4 Fama-MacBeth Regression o f  Multiple Horizons
This table shows the results from the Fama-MacBeth regression (6) with the dependent variable as returns from 
different leading periods. In column (A ), the dependent variable is the average weekly return for the leading 4 
weeks; in column (B )-(G ), the dependent variable is the weekly return for the 1st -  6th week in the future 
respectively. For the independent variables, RET (lag. w) is the past weekly return; RET (lag. m) is the past 
monthly return excluding the last week, scaled to the weekly level; RET (lag. y) is the past yearly return 
excluding the last month, scaled to the weekly level; SKEW is the normalized implied volatility skew and 
SKEW2 is its square; TERM is the normalized implied volatility term structure and TERM2 is its square. 
SKEW ’ TERM  is the cross product o f  SKEW and TERM; Log(SIZE) is the nature log  o f  market capitalization; 
TURNOVER is the transaction volume normalized by shares outstanding; SKEWNESS and V O L  are the 
empirical skewness and standard deviation o f  the previous month daily return; PVO L is difference between 30- 
day 50 A implied volatility and VO L. All independent variables are one week lagged from the Is' week 
dependent variable. The results are after Newey-W est adjustment.

Dependent variab les  k
(A) (B) (C) (D) (E) (F) (G)

Next 4w 1st week 2nd week 3rd week 4th week 5th week 6th week
RET (lag. w) -0.00976

(-7.07)***

RET (lag. m) -0.00922
(-3.47)***

RET (lag. y) 0.0618
(3.92)***

SKEW -0.000503
(-12.27)***

SKEW2 -1.75e-5
(-1.08)

TERM 6.84e-6
(0.12)

TERM2 -4.18e-5
(-2.33)**

SKEWTERM -8.84e-5
(-2.98)***

log(SIZE) -0.000190
(-3.24)***

TURNOVER 0.0132
(3.31)***

SKEWNESS 0.000489
(8.18)***

VOL -0.00859
(-1.45)

PVOL -0.00270
(-2.37)**

-0.0260 -0.00914
(-7.98)*** (-3.16)***

-0.01702 -0.00724
(-2.91)*** (-1.26)

0.0544 0.0644
(1.80)* (2.19)**

-0.00100 -0.000458
(-11.60)*** (-5.55)***

-1.06e-6 -2.21e-6
(-0.29) (-0.07)

8.57e-5 -0.000101
(0.73) (-0.85)

-5.13e-6 -8.81e-5
(-0.13) (-2.04)**

-0.000221 -1.60e-5
(-3.83)*** (-0.28)

-0.000207 -0.000218
(-1.62) (-1.69)*

0.0322 0.00945
(3.55)*** (1.08)

0.00120 0.000418
(8.94)«** (3.16)***

-0.0200 -0.00366
(-1.48) (-0.28)

-0.00275 -0.00279
(-128) (-1.35)

-0.00384 0.00143
(-1.46) (0.52)

-0.00204 -0.00827
(-0.36) (-1.50)

0.0643 0.0615
(2.19)** (2.11)**

-0.000344 -0.000225
(-4.34)*** (-2.73)***

-1.62e-5 -3.79e-5
(-0.51) (-1.22)

-4.43e-6 -4.89e-5
(-0.04) (-0.43)

-4.53e-5 -3.80e-5
(-115) (-0.95)

-2.59e-5 -7.01e-5
(-0.44) (-122)

-0.000241 -0.000247
(-1.86)* (-1.90)*

0.00364 0.00125
(0.45) (0.17)

0.000220 0.000130
(1.72)* (0.55)

-0.00868 -0.000931
(-0.67) (-0.07)

-0.00236 -0.00266
(-1-16) (-1.34)

-0.00211 0.000119
(-0.81) (0.05)

-0.00343 -0.00271
(-0.63) (-0.48)

0.0630 0.0536
(2.19)** (1.90)*

-9.75e-5 -5.13e-5
(-1.25) (-0.61)

-2.43e-5 -4.23e-5
(-0.77) (-1.28)

-0.000134 -0.000162
(-1.10) (-1.39)

-6.24e-5 5.02e-6
(-1.39) (0.12)

2.97e-5 8.41e-6
(0.50) (0.13)

-0.000235 -0.000210
(-183)* (-1.64)

0.00565 -0.00849
(0.74) (-1.02)

7.17e-5 -2.83e-5
(0.62) (-0.23)

-0.0135 -0.00842
(-1.04) (-0.64)

-0.00190 -0.00184
(-0.95) (-0.94)

*** indicates significance at 1%; ** indicates significance at 5% ; * indicates significance at 10%.
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Table 5 Portfolio Trading Strategy (Single Sort on SKEW)
This table shows the portfolio characteristics and performance when sorting on nonnalized SKEW and 
dividing the universe into 5 portfolios. Portfolio is constnicted equally weighted by  its constituents and 
rebalanced on a weekly basis. LO W  contains the firms with the lowest 20%  SKEW and HIGH contains 
those with the highest 20%  SKEW.

„Portfolio Criteria: SKEW (normalized)
„Panel A: Quintile characteristics

SKEW SKEW last month last month TERM
(normalized) (not normalized) size(bS) voi skewness (normalized)

LOW -1.206 -0.073 6.055 0.0300 0.124 0.021
2 -0.400 0.039 5.766 0.0295 0.174 0.029
3 0.009 0.083 5.539 0.0295 0.194 0.006
4 0.425 0.131 5.783 0.0291 0.212 -0.042

„ HIGH 1.278 0.257 6.384 0.0282 0.235 -0.110
low-high -2.483 -0.330

_ f-stat -193.27*** -101.89***
„Panel B: future returns

return ex-ret1 alpha ann. Sh next 4w next 8w next 12w next 16w next 20w next 24w
LOW 0.377% 0.318% 0.269% 0.621 0.294% 0.273% 0.269% 0.264% 0.262% 0.260%

2 0.292% 0.234% 0.175% 0.474 0.263% 0.254% 0.254% 0.251% 0.251% 0.253%
3 0.217% 0.158% 0.088% 0.324 0.232% 0.236% 0.238% 0.236% 0.240% 0.240%
4 0.191% 0.132% 0.061% 0.274 0.213% 0.220% 0.222% 0.223% 0.226% 0.228%

„  HIGH 0.091% 0.032% -0.034% 0.069 0.159% 0.182% 0.195% 0.199% 0.203% 0.205%
L-H 0.286% 0.290% 0.304% 0.130% 0.091% 0.074% 0.065% 0.059% 0.056%

_t-stat 8.11*** 8.11*** 11.75*** 7.90*** 7.02*** 7.52*** 7.90*** 8.19*** 8.30***

*** indicates significance at 1%; ** indicates significance at 5% ; * indicates significance at 10%.

1 Return minus risk-free rate, which is the contemporaneous 3-month treasury rate.
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Table 6 Portfolio Trading Strategy (Single Sort on TERM)
This table shows the portfolio characteristics and performance when sorting on normalized TERM  and 
dividing the universe into 5 portfolios. Portfolio is constructed equally weighted by  its constituents and 
rebalanced on a weekly basis. LO W  contains the firms with the lowest 20%  TERM  and HIGH contains 
those with the highest 20%  TERM.

^Portfolio Criteria: TERM (normalized)
_Panel A: Quintile characteristics

TERM TERM last month last month SKEW
(normalized]I (not normalized) size(b$) voi skewness (normalized)

LOW -1.387 -0.058 6.000 0.0278 0.208 0.096
2 -0.518 0.006 6.091 0.0285 0.194 0.034
3 -0.030 0.041 5.908 0.0292 0.187 0.006
4 0.466 0.078 5.943 0.0297 0.177 -0.017

_  HIGH 1.373 0.148 5.586 0.0310 0.173 -0.013
low-high -2.760 -0.206

_  t-stat -226.18*** -135.76***
„Panel B: future returns

return ex-ret alpha ann. Sh next 4w next 8w next 12w next 16w next 20w next 24w
LOW 0.176% 0.117% 0.069% 0.241 0.210% 0.224% 0.234% 0.234% 0.236% 0.241%

2 0.201% 0.142% 0.093% 0.291 0.215% 0.220% 0.226% 0.226% 0.229% 0.232%
3 0.231% 0.172% 0.117% 0.351 0.234% 0.235% 0.235% 0.234% 0.236% 0.238%
4 0.271% 0.212% 0.135% 0.431 0.253% 0.243% 0.240% 0.240% 0.242% 0.238%

„HIGH 0.291% 0.232% 0.145% 0.471 0.250% 0.244% 0.242% 0.237% 0.241% 0.238%
L-H -0.115% -0.115% -0.076% -0.041% -0.020% -0.007% -0.003% -0.005% 0.004%

_J-Stat -3.19*** -3.19*** -2.86*** -2.37** -1.79* -0.760 -0.34 -0.62 0.51

* * *  indicates significance at 1%; **  indicates significance at 5% ; * indicates significance at 10%.
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Table 7 Effect o f TERM  in the Lowest and Highest SKEW Quintiles

This table shows the effect o f  TERM in portfolios with the lowest and highest SKEW . Portfolio is first 
constructed by sorting on SKEW. Column (A ) contains the quintile with the lowest SKEW; column (B ) 
contains the highest SKEW  quintile. Within each quintile, portfolio is formed again based on TERM. LOW  
contains those with the lowest 20%  TERM; HIGH contains those with the highest 20%  TERM.

(A)
The Lowest SKEW Quintile

(B)
The Highest SKEW Quintile

LOW 0.318% 0.064%
2 0.257% 0.081%

TERM 3 0.387% 0.111%
4 0.448% 0.145%
HIGH 0.476% 0.053%
L-H -0.158% 0.011%
f-stat -2 .8 *** 0.21

*** indicates significance at 1%; ** indicates significance at 5% ; * indicates significance at 10%.

Table 8 Effect o f SKEW  in the Lowest and Highest TERM  Quintiles

This table shows the effect o f  SKEW in portfolios with the lowest and highest TERM. Portfolio is first 
constructed by sorting on TERM. Column (A ) contains the quintile with the lowest TERM; column (B) 
contains the highest TERM  quintile. Within each quintile, portfolio is formed again based on TERM. LOW  
contains those with the lowest 20%  SKEW ; HIGH contains those with the highest 20%  SKEW.

(A)
The Lowest TERM Quintile

(B)
The Highest TERM Quintile

LOW 0.290% 0.465%
2 0.246% 0.413%

SKEW 3 0.119% 0.287%
4 0.160% 0.224%
HIGH 0.063% 0.064%

L-H 0.227% 0.402%
t-stat 4 .4 0 *** 7 .27 ***

*** indicates significance at 1%; ** indicates significance at 5% ; * indicates significance at 10%.
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Table 9 Panel Regression o f  Information Proxies
This table shows the result o f  running panel regression o f  PIN (probability o f  informed trading) and bid- 
ask/spread on SKEW, TERM  and their cross product. The panel regression is clustered by  firm. When 
using PIN as the independent variable, in column “ Weekly”  the dependent variables are weekly; in column 
“ Quarterly”  the dependent variables are averaged into quarterly. When using bid-ask spread as the 
independent variable, in column “ Spread”  the bid-ask spread is calculated as the difference between daily 
close bid and ask, and then average into weekly; in column “ Spread%”  the bid-ask spread is calculated as 
the difference between bid and ask, normalized by daily close price and then average into weekly.

PIN Bid-ask spread (weekly)
Weekly Quarterly Spread Spread%

SKEW -0.0239 -0.0412 -0.0562 -0.00580
(-10.87)*** (-7.10)*** (-15.40)*** (-18.28)***

TERM 0.0189 0.0422 0.134 0.00730
(5.79)*** (6.60)*** (19.74)*** (27.90)***

SKEW*TERM -0.0102 -0.0131 -0.0134 -0.00120
(-4.43)*** (-0.53) (-7.09)*** (-5.36)***

*** indicates significance at 1%; ** indicates significance at 5% ; * indicates significance at 10%.
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Table 10 PIN in Double Sorting on SKEW and TERM
This table shows the average PIN in different quintile groups o f  SKEW and TERM, In Panel A , SKEW and 
TERM  are both weekly measures and they match with the corresponding PIN which is quarterly. In Panel 
B , SKEW and TERM  are first averaged into quarterly and then match with the PIN. Results o f  double- 
sorted and single-sorted (while controlled for the other measure) are listed.

Panel A: Match quarterly P IN  with corresponding weekly SKEW  and TERM
TERM

LOW 2 3 4 HIGH
LOW 0.1596 0.1602 0.1609 0.1620 0.1676

2 0.1473 0.1483 0.1487 0.1487 0.1487
SKEW 3 0.1373 0.1392 0.1391 0.1388 0.1410

4 0.1312 0.1337 0.1345 0.1348 0.1373
HIGH 0.1411 0.1397 0.1392 0.1404 0.1494

TERM (control SKEW) SKEW (control TERM)
LOW 0.1434 0.1620

2 0.1442 0,1480
3 0.1445 0.1390
4 0.1448 0.1346

HIGH 0.1489 0.1424
L-H -0.0055 0.0196

t- stat 8 .33 *** 31 .72***

Panel B: Match quarterly PIN  with quarterly averaged SKEW and TERM
TERM

LOW 2 3 4 HIGH
LOW 0.1649 0.1647 0.1683 0.1681 0.1763

2 0.1513 0.1522 0.1517 0.1518 0.1539
SKEW 3 0.1387 0.1420 0.1418 0.1417 0.1412

4 0.1301 0.1319 0.1332 0.1353 0.1385
HIGH 0.1393 0.1349 0.1340 0.1326 0.1495

TERM (control SKEW) SKEW (control TERM)
LOW 0.1452 0.1686

2 0.1453 0.1515
3 0.1450 0.1409
4 0.1464 0.1341

HIGH 0.1523 0.1391
L-H -0.0071 0.0295

t-stat -  3 .01 *** 10 .87***
*** indicates significance at 1%; ** indicates significance at 5% ; * indicates significance at 10%.
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This table shows the results from the Fama-MacBeth regression (11). The dependent variable is the leading 
weekly return. Besides the independent variables in Table 2, it also controls for PIN or bid-ask spread 
(absolute spread or percentage o f  trading prices). The results are after Newey-W est adjustment.

Table 11 Fama-MacBeth Regression after Including Information Proxy

Dependent variab le^  w
(A) (B) (C) (D)

RET (lag. w) -0.0392 -0.0392 -0.0263 -0.0269
(-10.23)*** (-1032)*** (-8.13)*** (-8.28)***

RET (lag. m) -0.0248 -0.0250 -0.0169 -0.0177
(-3.59)**» (-3.66)*** (-2.89)*** (-3.00)***

RET (lag. y) 0.0880 0.0877 0.0565 0.0510
(2.60)*** (2.59)*** (1.89)* (1.7D*

SKEW -0.00137 -0.00137 -0.00100 -0.00101
(-12.92)*** (-12.87)*** (-11.36)*** (-11.42)***

SKEW2 1..89e-5 1.93e-5 -8.83e-6 -1.00e-5
(0.41) (0.42) (-0.24) (-0.27)

TERM 0.000145 0.000128 7.45e-5 4.22e-5
(1.05) (0.94) (0.64) (0.36)

TERM2 -7.55e-5 -7.76e-5 2.96e-6 -2.43-6
(-1.52) (-1.56) (0.07) (-0.06)

SKEWTERM -0.000219 -0.000214 -0.000215 -0.000217
(-2.73)*** (-2.65)*** (-3.47)** (-3.53)**

log(SIZE) -0.000216 -0.000218 -0.000213 -0.000254
(-1.20) (-125) (-158) (-2.03)**

TURNOVER 0.0597 0.0610 0.0293 0.0268
(3.80)*** (4.12)*** (3.25)»** (3.12)***

SKEWNESS 0.00141 0.00141 0.00121 0.00122
(8.42)*** (8.48)*** (8.88)*** (8.93)***

VOL -0.0298 -0.0300 -0.0209 -0.0179
(-1.83)* (-1.86)* (-1.55) (-1-32)

PVOL -0.00310 -0.00311 -0.00320 -0.00266

PIN

PIN2

SPREAD

SPREAD2

SPREAD%

SPREAD%2

(-1.02) (-1.06)
0.00688

(1.00)

-0.0224
(-1.69)»

(-1.51)

-0.00585
(-1.95)*

0.00633
(0.79)

(-1.23)

0.0320
(0.37)
-9.15
(-1.26)

*** indicates significance at 1%; ** indicates significance at 5% ; * indicates significance at 10%.
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Table 12 Takeover Distribution in SKEW-TERM Portfolios
This table shows within each portfolio constructed by double sorting on weekly SKEW and TERM (5 x 5 ), 
number o f  firms that have been taken over in the following week. For example, the number for the 
intersection o f  LO W  SKEW and HIGH TERM is 131, which means i f  forming a portfolio by  selecting 
lowest SKEW and highest TERM  during 1996 to 2010, there were 131 firms in this portfolio being taken 
over within the holding horizon (one week).

TERM
LOW 2 3 4 HIGH SUM

LOW 49 51 56 61 131 348
2 43 52 44 55 94 288

SKEW 3 31 46 40 52 81 250
4 49 54 43 66 62 274

HIGH 41 38 45 42 85 251
SUM 213 241 228 276 453 1411
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Chart 1 SKEW, TERM and CAR before Taken Over

This chart plots the weekly implied volatility skew and term structure along with cumulative abnormal 
return (CAR) o f  the firms that have been taken over, up to one year before the merger and acquisition 
announcements. SKEW is the weekly average o f  daily implied volatility skew, which is the difference 
between 30-day tenor 25 A OTM PUT implied volatility and 25 A OTM CALL implied volatility, divided 
by 30-day tenor 50 A implied volatility; TERM is the weekly average o f  daily implied volatility term 
structure, which is the difference between 30-day tenor 50 A implied volatility and I-year 50 A implied 
volatility, divided by 30-day 50 A implied volatility; CAR is calculated as the sum o f  abnormal return from 
one year prior to takeover announcement, in which abnormal return is the difference between actual return 
and the return estimated from Fama-French-Momentum-Reversal five-factor model.
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