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Abstract

First, I investigate the change in hate crime targeting race or religion after the Brexit vote.
My results reveal a substantial and transitory increase in such hate crime following the vote.
The focus of my analysis is the considerable spatial heterogeneity of this increase. Areas with
a greater increase in hate crime are characterized by both a greater immigrant share and
higher income proxies. Issues of multiple hypothesis testing and model selection limit the use
of classic methods; therefore, I apply and adapt recent machine learning methods to uncover
patterns in the spatial heterogeneity.

I then focus on the question how to utilize data from randomized control trials to obtain an
optimal dynamic treatment rule. Consider a situation wherein individuals arrive sequentially
- for example when becoming unemployed - to a social planner. Once each individual arrives,
the planner decides instantaneously on a treatment assignment - for example job training -
while taking into account the characteristics of the individual and the remaining capacity
to offer training. In order to decide optimally, expectations over the dynamic process of
unemployment patterns are required. Reinforcement learning methods can be used to solve
this dynamic optimization problem and the resulting algorithm has a number of desirable
properties.

Finally, I study the creation of not-for-profit firms. Reputation is key for high-quality
producers when quality is only observed after the time of purchase. For companies that
potentially enter several markets, I show that the concern for reputation affects both the
optimal organizational form and the decision which markets to enter. Specifically, a market
with poor customers that would be ignored in isolation can be served for signaling purposes.
The optimal organizational forms in that case are a not-for-profit firm used for signaling in
the “market for the poor” and an associated for-profit firm in the “market for the rich”.
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Chapter 1

Hate Crime after the Brexit Vote:
Heterogeneity Analysis based on a Universal
Treatment

1.1 Introduction

Several countries have reported an increasing number of hate crimes, including the United
States, Italy, and England.1 The harm from such violence is not limited to the moment of
the act. The hate-based motivation carries the threat of repeated targeting of the victims and
their families.2 Such violence affects a substantial part of the population and challenges policy
makers around the globe.3

This paper studies hate crime targeting race or religion in the context of the United King-
dom European Union membership referendum (‘Brexit vote’). On June 23 2016, the UK
decided to leave the EU, defying most polls (e.g. Lord Ashcroft, 2016). News reports and
politicians have associated an upsurge in hate crime with the Brexit vote (e.g. BBC, 2017a;
Time, 2017; Al Jazeera, 2017; Financial Times, 2017).4 The broad press-coverage and govern-
mental reports (e.g. Home Office, 2017) indicate that insight into underlying mechanisms is
needed. Moreover, analyzing this shock to hate crime contributes to a better understanding
of hate crime in general.

This paper not only confirms that the Brexit vote led to an increase in racial or religious
hate crime, but uses regional data to investigate the spatial heterogeneity of this increase. As
an agnostic basis to evaluate potential mechanisms, I use the the temporal structure of the
effect as well as the spatial heterogeneity combined with area-characteristics.

The key findings show that the Brexit vote led to a substantial increase in racial or religious
hate crime for approximately six weeks after the vote and had no effect before. In July 2016,
the magnitude of the increase was 21% (550 hate crimes) in Greater London and Greater
Manchester, with considerable spatial heterogeneity captured by borough-level5 census and
vote data. The average increase is statistically insignificant at 14% in the tercile of boroughs
with the lowest predicted effect, but significant at 28% in the tercile with the highest. I
find that mainly proxies of the migrant share, income, and wealth are strongly (positively)
associated with a higher increase in hate crime after the vote. These findings are robust across
different methods and different from the heterogeneity of the increase in hate crime observed

1Levin & Reitzel (2018), Monella (2018).
2See Craig-Henderson & Sloan (2003) or McDevitt et al. (2001), who outline the psychological costs of hate

crime.
3See Hall (2013) or Gerstenfeld (2017), who highlight a large number of policy efforts in various countries.
4Others dispute the connection between the vote and the rise in hate crime (e.g. Daily Mail, 2016; Spectator,

2017).
5A borough is an administrative division. In London and Manchester, the average borough-population is

275,000.
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after terror attacks (see also Ivandic et al., 2018).
The main empirical challenge concerns model selection. Scores of economic models from

several fields are potentially applicable. Being completely agnostic, more than 1016 linear
models of the spatial heterogeneity can be formed with the 68 variables that characterize the
areas in my main dataset. Since OLS is designed to test but not select a model, standard
OLS is not a suitable method. In addition, the issue of seed dependency arises.6 Finally, the
Brexit vote was a unique event by which all regions were treated simultaneously, resulting in
the lack of a control group.

To address these challenges, I use a unique dataset and apply and adapt state-of-the-art
methodology. While definitive causal statements are not possible, this method results in an
agnostic basis on which potential mechanisms can be evaluated. Namely, I do not choose
a specific model (out of the 1016 possible models) ex-ante but obtain a model as a result,
complete with parameter estimates and significance statements.

The dataset has two key components. The first is racial or religious hate crime data from
Greater London at the borough-month level. This was only recently made publicly available
by the Metropolitan Police. The second is detailed confidential high-frequency data on hate
crime from the Greater Manchester Police. Joining the two datasets at the borough-month
level results in panel data of 42 boroughs over 88 months, which I am the first to construct
and employ. The panel structure with a monthly frequency allows me to conduct a thorough
heterogeneity analysis, in particular allowing for spatial heterogeneity in the short term effect.7

Contrasting a number of possible mechanisms with the key results of the analysis, my
preferred interpretation is that the Brexit vote affected hate crime mainly through information-
updating. Namely, individuals updated their information about society’s attitude towards
immigrants.8 One specific channel is that the information update led to an increase in hate
crime in those boroughs where the expected social cost of offending had been high and the
opportunities for offending (i.e. the presence of victims) were plentiful. The former is in line
with the increase being pronounced in wealthier areas (see e.g. Mayda, 2006) and the latter
with it being more pronounced in areas with a higher migrant share. An alternative channel is
that people who were more surprised by the Brexit vote’s outcome had a larger information-
update which resulted in a larger increase in hate crime (for details see also Albornoz et al.,
2018). In that channel, potential offenders operate locally and their beliefs about the national
attitudes are biased towards the regional attitudes. A proxy for the latter is the regional
Brexit vote, which is correlated with measures of wealth and migrant share.

Conversely, the results provide evidence against a number of alternative mechanisms. A
first prominent example are mechanisms building on the unemployment share (e.g. Falk et

6Some methods rely on a single data split, usually in a training and a test sample. While the split is random,
different seeds lead to different splits and, since the number of observations is finite, potentially to different
results.

7Using respective time series hate crime data, I show that the aggregated time series of racial or religious
hate crime in these two metropolitan areas mirrors that of England and Wales. However, the spike after the
Brexit vote appears to be more pronounced in London and Manchester. While the difference is insignificant,
it points towards my results since the migrant share is higher in London and Manchester.

8Immigration was a key topic, see e.g. Goodwin & Milazzo (2017) or Meleady et al. (2017).
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al., 2011, Krueger & Pischke, 1997). Opportunity cost theories of hate crime are also unfit to
explain why the increase in hate crime was larger in boroughs with higher wages.9 Moreover,
the transience of the increase in hate crime excludes mechanisms based on altered fundamen-
tals, expected or actual, as these did not revert back after six weeks. One example is the
exchange rate, which partially embeds expected changes in other fundamentals and dropped
for a sustained period after the vote (see Douch et al., 2018). Furthermore, the lack of an
increase in hate crime prior to the vote is evidence against aggressive media coverage (alone)
having an effect. The Brexit coverage featured immigration as a key topic long before the vote
(see Moore & Ramsay, 2017).

In terms of methodology, this is one of few papers to employ the recent advances in machine
learning to obtain valid inference on heterogeneous treatment effects.10 After evaluating the
magnitude and temporal structure of the ‘Brexit effect’, I proceed in four steps to analyze the
spatial heterogeneity. First, I use an adapted version of Chernozhukov et al.’s (2018b) approach
to analyze the magnitude of spatial heterogeneity captured by the ‘candidate variables’, i.e. the
variables from the census and vote data. Second, I apply conditional post-selection lasso
(CPSL; see Lee et al., 2016; Tibshirani et al., 2016) to obtain a linear prediction model of that
heterogeneity. Third, I propose a novel splitting based estimation method which allows for a
quasi-linear model with interactions. The standard method to analyze treatment heterogeneity
is to interact treatment with the variable of interest. As a complementary final step, I run
multiple regressions with each candidate variable individually and adjust the result for multiple
hypothesis testing. Model selection remains a problem in this last step, but it allows me to
test the individual correlations of each candidate variable with the increase in hate crime, and
benchmark the results of the previous methods against these correlations. To the best of my
knowledge, the application of Chernozhukov et al.’s (2018b) approach and also the use of CPSL
to analyze heterogeneous treatment effects is novel. I provide an adaption and application of
these methods to a common situation in economics, where a single event leads to universal
treatment.

I evaluate the overall magnitude and temporal structure of the ‘Brexit effect’ using standard
methods. At the month-borough level, I find the effect to be predominantly present in July
2016, the month following the vote, which is relevant for the subsequent heterogeneity analysis.

To evaluate the spatial heterogeneity, I first measure the abnormal hate crime in July 2016
as the difference between the observed and the predicted number of hate crimes.11 For that
measure, I show the spatial heterogeneity that is captured by the candidate variables to be
significant (building on Chernozhukov et al., 2018b).12 What remains to be explained is the

9The opportunity cost of time of potential offenders is key in such theories (see e.g. Medoff, 1999).
10Other examples include Bertrand et al. (2017), or Knaus et al. (2017).
11This measure also allows for the use of simple machine learning methods to predict the change in hate crime

for each borough, which can be of direct interest for policing and policy. If the vote and census data is sufficiently
explanatory, the spatial heterogeneity in predicted changes is more informative than the heterogeneity in the
measure itself due to potential over-fitting on noise in the measure (see e.g. Hastie et al., 2009).

12Due to the fact that every borough is treated simultaneously, the overlap condition fails, prohibiting me to
use propensity score matching (as done by Chernozhukov et al., 2018b). Instead, I use the measure mentioned
above. This measure could potentially be comprised of noise with an arbitrary spatial heterogeneity. Evidence
from permutation inference refutes this concern: compared to results from the same procedure, but using the
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cross-borough heterogeneity in the single time period July 2016, using a subset of candidate
variables. Consequently, the CPSL method is directly applicable, despite the fact that it was
not designed for analyzing heterogeneous treatment effects. As a result, a parsimonious linear
prediction model of the conditional average treatment effect (CATE) is obtained with valid
inference for its parameters. In brief, the CPSL method first uses the standard lasso method
to select a model.13 For the variables contained in the chosen model, confidence intervals are
obtained and the lasso parameter estimates are adjusted.

In addition, I develop an ad hoc multiple splitting estimation method (building on Cher-
nozhukov et al., 2018b; Athey & Imbens, 2016, 2017; Rinaldo et al., 2018). Since CPSL
theoretically assumes i.i.d. data, I first use the splitting based approach to confirm the linear
model resulting from CPSL. While some assumptions are stronger, my approach allows me, for
example, to correct for heteroskedasticity.14 Moreover, interactions of candidate variables can
be included to obtain a quasi-linear model instead.15 The splitting based estimation uses lasso
on a random half of the sample to select a model, and the other half to estimate that model.
For a single sample split, this leads to valid inference and overcomes the issues of multiple
hypothesis testing and model selection. However, in my setting with a finite number of bor-
oughs, different models are obtained depending on the split. This seed dependency challenge
is overcome by repeating the process 1000 times. Unfortunately, aggregating the estimates
across iterations results in theoretically ambiguous bias. A series of simulations using this
paper’s data suggest that this bias is negligible in the current context.

The splitting based estimation and the CPSL method arrive at highly similar linear pre-
diction models, providing evidence in favor of their validity in this setting. When the splitting
based estimation is used to obtain a quasi-linear model (allowing for interactions and squared
terms), the result is again similar. For the absolute effect, it is even the case that the same
interaction-free model is chosen again.

In sum, my proposed approach for analyzing the spatial heterogeneity not only proves to
be robust, but also provides interesting findings that are arguably free from model selection
bias, which would debilitate any heterogeneity analysis relying on standard methods.

Related Literature
This paper contributes to the literature on the economics of hate crime, which is the

intersection between three literature strands: the economics of crime, the economics of conflict,
and the economics of taste-based discrimination and racism. In addition, parts of the specific

other months as placebo treatments, July 2016 is clearly a tail event.
13The lasso (least absolute shrinkage and selection operator, Tibshirani, 1996) is related to OLS, but penalizes

the magnitude of the estimated coefficients. Less important coefficients are shrunken to zero. The remaining
variables can be interpreted as a data-driven model choice. The caveat that lasso-based methods cannot
guarantee the selected variables to be the true data generating process due to correlations in the candidate
variables is limited. The true variables are likely unobserved, meaning that the realistic (and achieved) objective
is finding an insightful descriptive model.

14The key assumption of CPSL is i.i.d. data, although Tibshirani et al. (2018) suggest that the approach
could be valid more broadly. The key assumption of my splitting based approach is that the theoretically
ambiguous bias is negligible.

15More precisely, it allows for interactions under the condition that the non-interacted candidate variables
must also be included in the model. This condition makes the interactions interpretable. This is enforced by
using hierarchical lasso (see Bien et al., 2013, Lim & Hastie, 2015) instead of regular lasso to obtain the model.
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Brexit literature are related to this paper as well. Finally, methodologically, this paper builds
on the literature devoted to obtaining valid inference from machine-learning-based methods.

Both the taste-based discrimination and the crime literature date back to seminal work
by Becker (1957, 1968). Even when discriminatory tastes are fixed, whether or not people
publicly act upon them depends on the expected costs of the action, including social costs.
Related to the current paper, Bursztyn et al. (2017) build on this argument and show that the
willingness to publicly act in a xenophobic way changes quickly when information about the
preferences of society regarding migrants becomes available through a controversial vote. They
focus on the Trump election, and while their laboratory setting allows for a better analysis of
the precise mechanisms, it is impossible to develop strong statements pertaining to real life
decisions, especially violence.

Related papers from the conflict literature include Esteban & Ray (2011), Esteban et
al. (2012), Caselli & Coleman (2013), and Mitra & Ray (2014). More specifically related,
Blair et al. (2017) use machine learning methods (namely lasso, random forests, and neural
networks) to forecast local violence. Their setting allows for the predictions to be tested. Lasso
is shown to be the best performing method, which has inspired the current paper to make use
of lasso-based methods.

Regarding the effect of the Brexit vote on hate crime, Devine (2018) also finds that the
Brexit vote led to a significant increase in racial or religious hate crime. He relies on time
series intervention models and does not address the heterogeneity of the effect. In a paper
complementary to mine, Albornoz et al. (2018) develop a detailed model, particularly focusing
on effect-heterogeneity. The key difference to my paper is that, regarding the heterogeneity
of the increase in hate crime, they focus exclusively on the Brexit vote shares, while I use
data-driven models.

Further regarding the Brexit vote, but related to the vote outcome rather than crime,
Becker et al. (2017) analyze the spatial variation in the vote with candidate variables similar
to this paper. Other than the role of income proxies, which are positively associated with both
the remain vote share and the increase in hate crime, the important variables are different.16

Finally, this paper is related to the literature about finding a (interpretable) model for the
conditional average treatment effects (CATE) (see Chernozhukov et al., 2018b, for a recent
review). In addition to the literature mentioned above when outlining the methods, Wager and
Athey (2018) specifically address heterogeneous treatment effects. They use a ‘causal forest’,
but emphasize that the method relies on large samples. Furthermore, forests are considerably
harder to interpret than lasso results.

The remainder of this paper is structured in the following way. Sections 2 and 3 describe
the data and analyze the overall effect of the Brexit vote on racial or religious hate crime.
Section 4 outlines how the spatial heterogeneity of the effect is measured and shows that it is

16Fetzer (2018) suggests that austerity measures were pivotal for the vote. These measures have predomi-
nantly concerned public sector employees and receivers of social benefits, starting from the year 2011. In the
current study, 2011 census data is used which includes the share of public sector workers, social housing renters,
and further proxies for the share of people receiving benefits. These measures are not of central importance
for the post-vote increase in hate crime.
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substantial. The methodology used to model the heterogeneity is outlined in section 5, and
its results are presented subsequently in section 6. Section 7 discusses the implications of the
results for potential economic mechanisms at play as well as policy considerations. Finally,
section 8 concludes the paper.

1.2 Datasets and Summary Statistics

Regarding crimes, panel data from the police forces of two of the three largest metropoli-
tan areas of England is used: Greater London and Greater Manchester. For the Greater
Manchester Police (hereafter GMP), I use extensive confidential data from April 2008 to July
2017. This data contains all incidents the GMP has attended. Among other things, the type
of offense, its severity, time, and precise location is recorded.17 A subset of these incidents
classify as crimes, which is the focus of this analysis. In principle, every crime has at least
one offender. However, it is only rarely the case that the offender is known (which results in
limited and selected data on offenders). It is moreover recorded whether or not an incident is
classified as a hate incident/crime, and if so categorized respectively (hate targeting race, re-
ligion, disability, sexual orientation, etc). This paper focuses on racial or religious hate crime,
which is by far the most common type of hate crime. Moreover, most racial or religious hate
crimes are racial hate crimes.

Regarding the Metropolitan Police of Greater London, the monthly total of racial or reli-
gious hate crimes for each of its 32 boroughs is available, from April 2010 to April 2018 (see
Metropolitan Police, 2018).

In addition, time series data for 38 aggregated police forces from England and Wales is
provided by the Home Office (2017).18 Monthly data is available from April 2013 to August
2017, and daily data from April 2016 to August 2017. Time series data is not suitable for the
heterogeneity analysis, but it can provide insight with regard to the overall response to the
Brexit vote (see also Devine, 2018).

In my main analysis regarding the spatial heterogeneity, I combine the data from London
and Manchester and focus on racial or religious hate crimes per borough-month and population
million.19 Summary statistics about this data are presented in Table 1.1 and further visual-
izations of the aggregate data (including details available for Manchester only) are provided in
section 1.3. Table 1.1 shows the variance in hate crimes is considerable and already suggests

17While the data is unusually detailed, information about victims, which is highly sensitive and confidential,
could not be obtained.

18There are in total 43 regular police forces in England and Wales, plus the transport police. The 38 forces
that did provide the data are: Avon and Somerset, Bedfordshire, British Transport Police, Cambridgeshire,
Cheshire, City of London, Cleveland, Cumbria, Devon and Cornwall, Durham, Dyfed-Powys, Gloucestershire,
Greater Manchester, Gwent, Hampshire, Hertfordshire, Humberside, Kent, Lancashire, Lincolnshire, Mersey-
side, Metropolitan Police, North Wales, North Yorkshire, Northamptonshire, Northumbria, Nottinghamshire,
South Wales, South Yorkshire, Staffordshire, Surrey, Sussex, Thames Valley, Warwickshire, West Mercia, West
Midlands, West Yorkshire, Wiltshire.

19Borough-level population estimates are available for the relevant years up to and including the key year
2016 (Office for National Statistics, 2017). Thereafter (i.e. for the 7 months in 2017), the 2016 population data
is used.
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that while there are more hate crimes in July in general, there were even more in July 2016.

Manchester London Total

Min. Hate Crimes per Month 9 0 0
Max. Hate Crimes per Month 417 595 595
Mean Hate Crimes per Month 94 118 112
[NMan = 880; NLon = 2816; NTot = 3696] (52) (66) (64)
Mean July Hate Crimes 110 149 140
[NMan = 80; NLon = 256; NTot = 336] (59) (86) (82)
Mean July 2016 Hate Crimes 138 245 219
[NMan = 10; NLon = 32; NTot = 42] (65) (110) (111)
Note: Standard deviations in parentheses. Hate crimes are measured in terms of the
monthly number of racial or religious hate crimes per million of borough population.
The mean total number of monthly hate crimes per borough is 27 for Manchester, 31
for London, and 30 in total. 42 boroughs (10 and 32) are observed over 88 months.

Table 1.1: Racial or Religious Hate Crime Summary Statistics

While there are strict guidelines on the side of the police to minimize the influence of
reporting, the definition of hate crime is subjective. According to a general agreement of the
major agencies involved, a hate crime is defined as: “Any crime which is perceived by the
victim or any other person to be motivated by hostility or prejudice based on a person’s race”
(Home Office, 2017). There are therefore both the criminal actions by the offenders as well as
the reporting behavior of the victims and witnesses that potentially affect the recorded hate
crimes. While the fact that only reported crimes enter the data is a common issue of research
in crime, the ramifications of this in the specific context of this paper will still feature in the
discussion (see section 1.7.1). Crucially, further data from the Home Office (2017) regarding
‘hate’ and ‘non-hate’ crimes of specific offense-types supports the claim that (considerable)
relabelling of non-hate crimes to hate crimes did not occur.

The Brexit vote data on the counting area level is publicly available from the Electoral
Commission (2016). This data includes all 382 local authority districts in the UK, 42 of
which are covered by the operating area of the GMP and the London Metropolitan Police.
In the urban context, these districts are boroughs. The overall outcome of the Brexit vote is
commonly considered to be surprising. For example, data from a survey in May 2016 by Lord
Ashcroft (2016) suggests that only 35% expected the leave campaign to win.

Finally census data is used from the 2011 census (Office for National Statistics, 2016). The
census is taken every decade, so the 2001 census is considerably outside of the period for which
crime data is available. The census contains a large number of correlated variables. Avoiding
very high correlations while also aiming to lose as little information as possible, I have selected
67 variables.20

20These variables are fractions of people with certain characteristics living in the area of interest, namely:
male, single, same sex civil partnership, divorced, Christian, Buddhist, Hindu, Jewish, Muslim, Sikh, other
religion, not stating religion, aged younger than 16, between 16 and 29, between 30 and 64, over 64, living in
a one person household, lone parents, social housing renter, white, South Asian, other Asian, black, Arab, of
mixed ethnicity, born in an old EU state (joined prior to 2000), born in a new EU state, born in the rest of
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The variables from the vote and census data are the ‘candidate variables’ I consider in the
main analysis regarding the heterogeneity of the increase in racial or religious hate crime after
the Brexit vote. Summary statistics about them (using the average across candidate variables)
are outlined in Table 1.2. The statistics confirm that there is cross-borough variation in the
vote and census data and show to what extent the variables are correlated.

Manchester London Total

Average Borough-Mean 0.168 0.168 0.168
(0.224) (0.205) (0.208)

Average Borough-Minimum 0.138 0.111 0.108
(0.200) (0.172) (0.170)

Average Borough-Maximum 0.203 0.246 0.253
(0.247) (0.246) (0.255)

Average Absolute Correlation 0.46 0.36 0.39
(0.27) (0.23) (0.24)

Note: Standard deviations in parentheses. The average refers to the averaging
across the 68 census and vote variables. Mean, minimum, and maximum refer to a
comparison across boroughs (32 in London, 10 in Manchester). The absolute
correlation refers to the pairwise correlation across the 68 census and vote
variables.

Table 1.2: Candidate Variables Summary Statistics

1.3 Empirical Analysis of the Aggregate Effect

Every region in the UK has been treated simultaneously by the Brexit vote. Event time
therefore coincides (up to a constant) with real time. This makes the analysis of its effects
challenging, especially its short term effect. Including dummy variables for a short period after
the vote in a regression of racial or religious hate crime on several controls is prone to produce
confidence intervals that are not valid for the effect of the Brexit vote. Asymptotically, validity
is achieved, but this is asymptotic with respect to the length of the ‘short period’. Weather, for
example, could affect crime, news from across the globe, and countless other factors. Trying
to control for many things can help, but is doomed to virtually never achieve evidence that is
truly informative about the effect of interest.

Permutation tests can address this issue, and also visual inspection results in evidence
for a strong ‘Brexit effect’.21 The approaches indicate that racial or religious hate crime has
increased after the Brexit vote for a period of approximately six weeks. No permanent effect

the world, born in the UK, not speaking English, immigrated within the last 2 years, providing unpaid care, of
bad health, disabled, fully deprived, not deprived, having central heating, having no qualifications, and being
economically active. In addition, of those that are economically active, the share of unemployed, self employed,
working from home, and working part time. Finally, the fraction of 2 bedroom flats as well as the share of
people working in each of the 18 main industries (highest level of aggregation), and in each of the four social
grades: AB, C1, C2, and DE.

21The use of difference-in-difference as well as synthetic control methods also support this insight. They
faces some challenges in the setting at hand and are discussed in Appendix A.1 and A.2.
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could be detected. The effect is visually obvious for the combined 38 police forces and London.
For Greater Manchester, it is less pronounced. In sum, the ‘Brexit effect’ seems to exist overall,
but there are signs for the importance of spatial heterogeneity.

1.3.1 Descriptive Data Visualization

Visual inspection of the time series of racial or religious hate crime leave little doubt
that the increase fallowing the Brexit vote was more than coincidence. In Figure 1.1 ‘Brexit’
indicates July 2016 and a clear, unprecedented high. Following a synthetic control approach
leads qualitatively to the same result (see Appendix A.1), and also provides evidence that this
is a hate-crime specific phenomenon. The combined London and Manchester data form the
basis of my analysis in the following sections of this paper, as only there I possess the relevant
data for the heterogeneity analysis.22 Figure 1.1 shows that it is qualitatively similar to the
overall data from the 38 forces of England and Wales, the spike after the vote possibly being
more pronounced in London and Manchester (which is in line with my results in section 1.6).

Figure 1.1: Racial or Religious Hate Crime over Time: England and Wales vs London and
Manchester

There is a second clear spike in Figure 1.1, which corresponds to June 2017. This is
arguably a consequence of the terror attacks in Manchester (22nd of May), and London (3rd of
June and 19th of June). Another attack took place in London on the 22nd of March, potentially
explaining the increase before the second peak. Such major terror attacks on English soil did
not appear in the rest of the time period at hand (the previous major incidence was the
‘7/7 attack’ in July 2005). Terror attacks are not the focus of this paper, but Ivandic et
al. (2018) use the same Manchester dataset to analyze the effect of terror on hate crime (and
find especially strong effects after attacks on English soil).

While the ‘Brexit effect’ appears rather strikingly in the 38 combined forces, especially in
London, it is less pronounced for Manchester. This is a first sign for the importance of spatial

22As discussed previously, different hate crime data sources are used. To the best of my knowledge, they are
not in conflict and can be added (just as the 38 police forced were added by the Home Office). Still, force-
specific differences are imaginable. In the heterogeneity analysis, I will specifically allow for the possibility of a
differential effect of Brexit by force, but this dummy is not picked up. Regarding the main analysis, I include
borough fixed effects, which implies force dummies. In Figure 1.1, the data was simply added.
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heterogeneity. Moreover, at least for Manchester where I possess the data needed to make this
distinction, the ‘Brexit effect’ was almost exclusively driven by racial (but not religious) hate
crime. The respective figures can be found in Appendix A.6.

Figure 1.2: Concentration 6 Weeks after the Vote and No Pre-Vote Effect Visible (38 Police
Forces)

In terms of temporal structure, the monthly data in Figure 1.1 shows an increase in crime
numbers mainly in July 2016. Figure 1.2 uses daily data for the 38 forces. There is no visible
effect prior to the vote. After the vote, the effect seems to be pronounced for approximately
six weeks. Figure 1.3 uses the weekly data for Manchester and compares the average effect
of periods of different lengths (but all starting the day after the vote where the results were
made public, the 24th of June).23 This average effect is ranked compared to all other possible
(overlapping) periods24 of the same length starting at another week (488 weeks are in the
data). After 6 weeks, adding additional weeks to the duration is clearly harming the average
effect’s ranking. This is evidence against the effect lasting for longer than 6 weeks. The
‘Summer of Terror’ 2017 makes it difficult to visually evaluate long-term effects. However,
especially in the longest time series, that for London, there does not seem to be an obvious
long-term effect of the Brexit vote (see Appendix A.6).

Comparing the behavior of racial or religious hate crime to some key factors of the envi-
ronment, no obvious alternative explanation can be found. If anything, Figure 1.4 shows that
July 2016 was a little dryer than other Julys in England, and that the immigration of EU
job-seekers was at a high just before the Brexit vote.25 The latter is arguably related to the
topic at hand, but the increase was rather gradual, and resembles in no way the clear spike
after the vote. The increase happened before the vote, and thereafter, there was a decrease
that was steady but not immediately dropping.

23The data from Manchester is suitable for such an exercise due to the long pre-vote period. This lacks the
daily data of the 38 forces.

24Periods are blocks of weeks. This visualization is related to the permutation tests discussed in section
1.3.2.

25In the graphs with quarterly data, the red line indicates the third quarter 2016, starting on the first of
July.
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Figure 1.3: Rarity of Spike Depending on Duration Confirms 6 Week Effect-Duration (Manch-
ester)

Note: Weather data for England, other data for the UK. Data sources: MetOffice (2018), Office for National Statistics
(2018a, 2018c), London Stock Exchange (2018), Home Office (2018).

Figure 1.4: No Comparable Spike in Migration, Economic Activity, or July Weather

In terms of the type and severity of the crimes that are flagged as racial or religious
hate crime, the differences are marginal. As shown in Figure 1.5 for Manchester (for which I
possess the relevant data), if anything, violence against the person is relatively more common
in the period after the vote, presumably at the expense of criminal damage.26 In terms of

26Other crime types that have been flagged as racial or religious hate crimes are: sexual offenses, theft
offenses, possession of weapons, miscellaneous crimes against society, and fraud. Individually, they all make
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severity, there is no significant difference in the most severe crimes, which are arguably the
most important ones both in terms of their frequency and effect on the victim. There is a
small increase in crimes of the lowest severity. Finally, in terms of how the police was informed
about the crime, there are again only minor differences. Calls over the radio (i.e. directly from
police officers) seem to have decreased and miscellaneous methods have increased.

Figure 1.5: Only Small Differences in Method of Call, Crime Types, and Severity (Manchester)

1.3.2 Permutation Tests

The idea of permutation tests dates back to Fisher (1935). Using permutation tests for
dependent data, which is generally implied by time series data, has evolved later and blocks
of data can be used in a way related to block bootstrapping (see Kirch, 2007).27 I consider
July 2016 as potential short term effect, and the period thereafter as potential long term
effect. As the data is at the monthly level, the duration is therefore only one period (and the
remainder of the data respectively) and hence no blocks are necessary.28 A common use in
current economics for permutation tests in the time dimension is in the setting of synthetic

up less than 1.7% of all racial or religious hate crime cases.
27The major difference between block bootstrapping and block permutation tests is that in the latter, each

possible block is drawn exactly once (as opposed to random draws with replacement).
28Blocks were used in the related visualization in Figure 1.3.
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control studies, where they are also called ‘in-time placebos’ (see Appendix A.1 and Abadie
et al., 2015).

The general idea is to assign a placebo treatment to time periods where in fact no treatment
has occurred, and compare the placebo treatment estimates to the true treatment estimates.
This is informative about the likelihood that the treatment-estimate was caused by shocks
that coincided with the treatment date, rather than the treatment itself. Assuming that no
other rare event took place simultaneously that (strongly) affected hate crime, and under the
stronger assumption that frequency and distribution of such shocks was constant, the p-value
can be interpreted as probability of the treatment (Brexit vote) having a causal effect. To
weaken the latter assumption, I use time, time squared, and month of the year dummies as
controls. Following Freedman and Lane (1983; confirmed as appropriate in the comparative
study of Winkler et al., 2014), I use the residuals of a regression of monthly crimes on the
mentioned controls.

(1) (2) (3) (4)
RR Hate Crime Log(RR Hate Cr.) RR Hate Crime Log(RR Hate Cr.)

July 2016 550** 0.21** 784** 0.13**
[373] [0.07] [399] [0.02]

Post July 2016 -48 -0.05 20 0.01
Data London &

Manchester
London &
Manchester

England &
Wales

England &
Wales

Observations 88 88 53 53
Note: Permutation inference on time series data (88 and 53 months). Lower consonance interval boundary of
significant parameters in brackets (i.e. effect size at a 95% benchmark of the placebo treatments). Controls: Time,
time squared, month of the year. Mean racial or religious hate crime for London & Manchester: 1251 (log: 7.09);
for England & Wales: 3495 (log: 8.13). Using (flawed) classic robust standard errors, all July 2016 dummies are
significant at the 1% level, and none of the post July 2016 dummies are significant.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table 1.3: Overall Effect of the Brexit Vote on Hate Crime Considerable but Transitory

The results are presented in Table 1.3. There is a significant temporary, but no permanent
effect. The point estimate for the temporary effect for London and Manchester is 550 racial
or religious hate crimes in absolute terms and 21% in relative terms (a difference-in-difference
estimation leads to a highly similar result, see Appendix A.2). The lowest possible p-values
depend on the number of observations and are 1

88 (achieved for London and Manchester), and
1
53 respectively. While classical confidence intervals are not defined for permutation inference,
‘consonance intervals’ are (see e.g. Kempthorne & Folks, 1971). The lower bound of the
consonance interval is obtained in the following way. First, the regression is run with all 87
(52 for England & Wales) placebo months and all 87 placebo-coefficients are saved for both the
short term (“July 2016”) and long term (“Post July 2016”) effect. Next, the 95th percentile of
the placebo-coefficients is computed and subtracted from the coefficients of the real regression.
The resulting difference is the lower bound of the consonance interval. For the long-term effect,
the effect of the real regression is not higher than the 95th percentile of the placebo estimates
(and also not lower than the 5th percentile). Consequently, no lower bound of the consonance
interval is reported in Table 1.3.
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The effects are qualitatively alike in both datasets, i.e. both London and Manchester as
well as England and Wales as a whole experience an increase in the short term but no long-
term effect. The relative magnitude of the short-term effect appears to be larger in London
and Manchester. However, the lower bound of the short term effect’s consonance interval for
London and Manchester is not higher than the point estimate for England and Wales. Either
there is indeed no significant difference or the number of datapoints is too low to detect it.
In section 1.6 (regarding the heterogeneity within London & Manchester), a key finding is
the (short-term) effect to be more pronounced in areas with more recent immigrants. If this
finding is extrapolated to all of England and Wales, it would make sense for the short-term
effect to be more pronounced in London and Manchester as the share of recent immigrants is
higher compared to the rest of England and Wales. In sum, while the subsequent heterogeneity
analysis is limited to London and Manchester and external validity remains a concern, there
is at least no obvious discrepancy coming from the times-series data of hate crimes.

1.4 Spatial Heterogeneity: Challenge, Measure, and Relevance

The previous section was already suggestive of the importance of spatial heterogeneity. This
section measures it, shows the existence of relevant spatial heterogeneity that is captured by
the candidate variables, and discusses the challenges that a standard OLS approach cannot
address.

1.4.1 Standard Method and Challenges

If the model of heterogeneity is unknown, the standard OLS method is not applicable. It is
not designed for model selection. The standard OLS method is illustrated in the following
example. In the first step, the researcher chooses one or more candidate variables, say the
remain-share in the Brexit vote. Only this choice allows for the estimation of a regression such
as the following:

crimeat = α+Btγ +BtRaβ + Tatδ +Aa + eat (1.1)

In the above regression, Bt represents a dummy for the selected period after the Brexit vote
(July 2016), Aa is the area fixed effect, Ra stands for the share of remain votes, Tat controls
for time effects, and crimeat is the number of racial or religious hate crimes per million of
borough population per month. Due to the area fixed effect, the level of Ra does not enter the
regression. The parameter of interest, β, shows how the post-vote period was differentially
affecting hate crime depending on the remain vote share. Choosing months as time dimension
(t) and boroughs as areas (a) allows me to use both the London and the GMP data. I moreover
choose time, time squared, and month-of-the-year dummies as well as their interactions with
the borough fixed effect as time controls Tat.29

29The parameter of interest is estimated to be highly significant at 2.85. The term is also economically large.
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As any other candidate variable (Ra) could have been chosen by the researcher, a multiple
hypothesis problem arises. For example, even absent of any true heterogeneity 5% of all
variables will in expectation be significant for explaining heterogeneous treatment effects (when
tested at the 5% level of significance). This means not only that a single researcher that tries
to find a significant effect will be successful if sufficiently many variables are tested, but also
the collective of researchers might be unknowingly doing just that.

Nevertheless, at least if there are only few possible variables, this is the standard method
to test individual effects. Therefore, one possibility is to run a separate regression for each
candidate variable and record each β̂ with its p-value. I will use this as a benchmark to the sub-
sequently introduced machine-learning-based methods. To alleviate the multiple hypothesis
problem, I use the FDR correction method by Benjamini and Yekutieli (2001).30 Controlling
for borough-specific time effects helps to satisfy the parallel trends assumption for the vari-
ous regressions. Assuming that it is not the case that both εat is serially correlated and the
relevant lags are correlated with the candidate variable (e.g. Ra), these tests indicate which
variables are individually correlated with the increase in hate crime after the Brexit vote.

However, this ignores the issue of model selection. Out of the 68 possible candidate vari-
ables, a researcher could choose a subset of variables (several variables of interest and/or
controls). The number of possible models is larger than 1016. Consequently, standard OLS
methods cannot be adjusted or used to choose a specific model.

This paper builds on lasso-based methods in order to choose the most informative model
in terms of prediction performance. A fully theoretically founded economic model is infeasible
to use. It would need to be sufficiently established that it is credibly chosen ex-ante. No such
model (or set of models) exists in the current setting. The most informative model is a feasible
alternative. If the resulting model is approached from a specific economic perspective and a
subset of the resulting variables is interpreted as controls, the implicit criterion for controls is
to include those that are relevant in terms of predictive performance.

However, simply applying lasso to a version of regression 1.1, where Ra is replaced with all
candidate variables, is hardly constructive. The standard lasso does not produce confidence
intervals or p-values. Moreover, the path of the lasso to select variables follows the correlation
with the dependent variable. Since BtRa is zero in 87 out of 88 months, the correlation of
this term with the dependent variable will be low. Therefore, any such interactions are almost
guaranteed not to be part of the selected model. I propose instead to focus on the one month
where this interaction is not zero.

Boroughs with a high remain vote have a remain vote share of around 60%. The estimated crime-increase for
July 2016 in a 60%-remain borough is 60.7 hate crimes per million of population. Boroughs with a low remain
vote have a remain-share of around 40%, which results in an estimated increase of only 3.8. Standard errors
were clustered at the borough level. The regression table can be found in Appendix A.6.

30Early papers about multiple hypothesis testing focus on the family-wise error rate (FWER), for example
the Bonferroni correction (see Dunn, 1961). However, with many potential hypotheses, the power of FWER
methods becomes minuscule. False discovery rate (FDR) methods are often regarded as an improvement (see
Austin et al., 2014). The standard method is the Benjamini and Hochberg (1995) FDR correction. However,
this relies on the test statistics being non-negatively dependent of each other. This assumption is strong in the
current setting due to the combination of the correlations among the candidate variables with the correlations
of the candidate variables with the treatment effect. Benjamini and Yekutieli (2001) have developed a more
conservative FDR adjustment that is also robust to negatively dependent test statistics.
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1.4.2 Obtaining a Measure: Detrending, Deseasonalizing, and Demeaning

To measure the abnormal crime after the Brexit vote, I use the following regression:

crimeat = α+Btγ + Tatδ +Aa + εat (1.2)

Time controls (Tat), area (boroughs), period (months), and Brexit definition (Bt; July
2016) are equivalent to the specification above, but contrary to regression 1.1, no dimension of
heterogeneity is included. Based on section 1.3, the treatment is assumed to be only present
(or relevant) in one period: July 2016. I use the heterogeneity in εa,July16 as heterogeneity of
interest.31 Consequently, the analysis of this measure (εa,July16) is fully cross sectional.32 To
obtain a measure of abnormal crime, the constant γ̂ is added, which is not relevant for the
heterogeneity analysis.

The related question about the spatial heterogeneity in the relative instead of the absolute
increase in racial or religious hate crime is addressed accordingly using regression 1.3:

log(crimeat) = αl +Btγ
l + Tatδ

l +Aa + εlat (1.3)

There are several other ways how the abnormal crime in July 2016 could be measured.
Using all months but July 2016, all months but June, July, and August 2016, or only the
months before July 2016 to then predict the (counterfactual) number of hate crimes per bor-
ough in July 2016 all result in similar or even identical models chosen by the lasso. The
same is true for including the lagged dependent variable as additional regressor or instead of
the time-squared regressor.33 Details can be found in Appendix A.4. All of the above use
a panel-OLS as predictor. Consequently, the maintained model assumption in this paper is
how time trends, seasonalities, and borough fixed effects are controlled for. The remainder
of the model is chosen by lasso-based methods (see section 1.5). The panel-OLS arguably
adds reasonable structure to support out of sample predictions. A random forest, for example,
performs inferiorly.34

A disadvantage of the first proposed (and used) measure is that it suffers from attenuation
bias if only one heterogeneity-variable is used (see Lemma 1) and from unknown bias with

31The number of observations in this cross section (42 overall, reduced to 21 in the splitting approaches) is
not uncommon in the relevant literature. In two key papers for the remainder of this paper, Lee et al. (2016)
use simulations with 25 observations, and Tibshirani et al. (2016) such with 50 observations. Also Hebiri and
Lederer (2013) use only 20 observations in their simulations. However, this finite number implies that seed
dependency is a serious issue.

32It is not the case that the rest of the data is disregarded though. It is used to detect time trends,
seasonalities, and borough fixed effects in regression 1.2, and moreover for permutation tests in section 1.4.4.

33A final approach would be not to generate a separate measure but instead use a partially penalized lasso
in a version of regression 1.1 where Ra is replaced with all candidate variables and all control variables are
not punished. The result is again similar. However, it is not obvious how such an approach can be paired
with the CPSL method in section 1.5.1 (circumnavigating the problem via differentially weighted parameter
standardization does not provide a satisfactory result). Given this disadvantage, I generally refrain from using
this approach. The exception is section 1.6.3, which includes an illustrative comparison of the this approach
with the here proposed measure.

34Using all months except for June, July, and August 2016, leaving out one additional month for growing
the forest or running the panel OLS, the OLS produces a lower average MSE for predicting the left out month
(done once for each month in the data).
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more than one heterogeneity-variables. In retrospect, it would have been preferable to use one
of the other ways to obtain the (counterfactual) number of hate crimes per borough in July
2016, for example those not using July 2016 or those not using June, July, and August 2016.
Fortunately, the resulting models are the same in terms of the chosen variables (see Appendix
A.4) and the simulation-results in section 1.5.2.2 are promising even with this current method.

The current method can be interpreted as panel-OLS results using a different (but closely
related) dependent variables than regression 1.1: hate crime free from the part that is explained
by the control variables in the least square sense. This is the case as all candidate variables I
consider are constant in the period I study.35 Consequently including a borough fixed effect
makes including levels redundant. Again, the assumption is needed that it is not the case
that both εat (εlat) is serially correlated and the relevant lags are correlated with the candidate
variables.

Lemma 1
Take the regression y = xβ+Zγ+ν. The OLS estimator β̂ obtained from the regression
MZy = xβ + ε is attenuated compared to that obtained from y = x′β + Zγ + ν.36

Proof: see Appendix A.3.
In the current setting, the interaction between a candidate variable and the treatment

dummy take the role of x in Lemma 1 (provided there is only one candidate variable as
Lemma 1 does not generalize to the multi-variable case), and all controls take the role of Z
(i.e. all regressors in regression 1.2). I propose to only use the residuals of the Brexit period
(July 2016). This is only a minor adjustment. All x entries in the above notation are 0 in
any other period. Therefore, only the estimate of the intercept is potentially affected by this,
which is of no concern in my setting. In section 1.6.3, both the here proposed measure as
well as a standard regression (alike regression 1.1) are used. The differences are small (and
insignificant).

1.4.3 Mapping the Spatial Heterogeneity

A first use of the measure is to obtain predictions at the borough level. This is directly relevant
for policymakers and the police. However, plainly mapping εa,July16 + γ̂ and εla,July16 + γ̂l of
the regressions 1.2 and 1.3 is problematic since the contained noise is displayed as much as
the signal. In line with the remainder of the paper, I use a lasso with all candidate variables
to visualize the predicted changes in racial or religious hate crime in July 2016 on maps. The
cross validation used along with the lasso avoids over-fitting and hence extracts signal from
the measure (to the extent that the candidate variables capture the spatial heterogeneity).

The results are shown in Figure 1.6. Two aspects stand out. First, the prediction quite
visibly imposes a structure on the effect. While this might partly be due to missing additional
prediction variables, it is also due to the extraction of signal from noise. Second, even in the

35The census data is decennial and the Brexit vote data unique.
36As usual, MZ = I − Z(Z′Z)−1Z′.
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(a) Observed Absolute Hate Crime Increase (b) Observed Relative Hate Crime Increase

(c) Predicted Absolute Hate Crime Increase (d) Predicted Relative Hate Crime Increase
Note: Top: Greater Manchester. Bottom: Greater London. Increase refers to the difference in observed or predicted
hate crimes per million of borough population versus the borough-level detrended, deseasonalized, and demeaned value.
Method used for the predictions: Lasso with 69 candidate variables (vote and census data, plus a dummy for Manchester).

Figure 1.6: Borough-Level Hate Crime Increase in July 2016
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predicted values, the heterogeneity is considerable. This heterogeneity is now analyzed more
formally.

1.4.4 Significance of the Captured Heterogeneity

The spatial heterogeneity that is captured by the candidate variables is the fundamental basis
for the models obtained in the following sections. This section shows the heterogeneity is
significant and most of it can be attributed to the Brexit vote.

For a first illustration, I use a measure analogue to that proposed in section 1.4.2 but
constructed for each month in the data (not only July 2016). Figure 1.7 depicts the variance
of this measure across the 42 boroughs of Greater Manchester and Greater London for each
month. In other words, regression 1.2 with Bt re-defined for each month in the data was run
88 times (for each month in the data) and the variance across boroughs of the residual for
which Bt = 1 (i.e. its averaged squared value) is depicted in Figure 1.7. Striking is not only
the magnitude of the spike after the Brexit vote, but also the lack of a comparable spike when
racial or religious hate crime increased a year later (arguably) due to the terror attacks.

Figure 1.7: Variance in Detrended Deseasonalized Racial or Religious Hate Crime across
Boroughs

To formally analyze the captured heterogeneity, I build directly on the approach proposed
by Chernozhukov et al. (2018b) which only requires minimal assumptions. Their method uses
propensity score matching which allows (asymptotically) for statements about the true under-
lying CATE. This is impossible in my setting. All regions were treated simultaneously and all
candidate variables are time-constant. Consequently, the overlap condition, which is necessary
for propensity score matching, fails. Instead, I will use a simpler version of Chernozhukov et
al.’s (2018b) approach, using the previously introduced measure that encompasses the ‘Brexit
effect’ but also noise in July 2016. Consequently, Chernozhukov et al. (2018b) denote such an
approach as ‘Naive Strategy’ and ‘not Quite Right’. However, I do not to stop at this point but
use appropriate permutation tests to provide evidence that July 2016 leads to a tail outcome
(compared to results using each other month as placebo). This provides strong evidence that
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the measure does contain relevant signal and that the Brexit vote is at least partly responsible
for the observed heterogeneity. More specifically, permutation inference suggests that with
90% certainty, at least 71% of the captured heterogeneity is due to the Brexit vote.

The key technique used is repeated splitting. The data is randomly split in two equally
large parts that Chernozhukov et al. (2018b) denotes ‘auxiliary’ and ‘main sample’. In the
auxiliary sample, any machine learning method can be used to produce predictors that will be
used for the main sample.37 Given the focus on lasso-based methods in this paper (consistent
with the findings of Blair et al., 2017), I choose to use a simple lasso, using 3-fold38 cross
validation to determine the lasso penalty parameter commonly denoted λ.

Using the machine learning algorithm trained on the auxiliary sample, predicted treatment
effects for the main sample are obtained. These are a function of the candidate variables and
can be used to conduct the following analyses:

1) Divide the main sample in K bins according to the predicted treatment. The
difference in hate crime between the top and bottom bin reflects the importance
of the heterogeneity captured by the candidate variables. While Chernozhukov et
al. (2018b) use K=5, I have a smaller sample and use 3 bins.39

2) Regress the dependent variable on a constant and the demeaned treatment predic-
tion. The estimate of the latter is a second way to assess the importance of the
heterogeneity that is captured by the candidate variables.40

To address seed dependency of the specific split used, the above is repeated 100 times. The
median of the values is used as point estimate. Regarding the p-values, the median is used
as well, but they are corrected by doubling them. While this guarantees that the median
approach does not lead to a larger share of false positives, it is rather conservative. Further
details can be found in Chernozhukov et al. (2018b).

Regarding the permutation tests, I exploit the fact that I observe 87 other months in
the data. The above procedure is repeated another 87 times, using a regression analogue to
regression 1.2 (regression 1.3 respectively), but changing the definition of the Bt dummy and
choosing the respective residuals each time. As a result, 87 complete sets of placebo results
are obtained.

37Chernozhukov et al. (2018b) outline a method to find the best method and tuning parameters to maxi-
mize the correlation between the true and the estimated proxy CATE. This is again infeasible in my setting.
Chernozhukov et al. (2018b) stress that while using the “best” method is helpful, their approach only requires
a useful proxy of a treatment prediction.

383-fold cross validation was chosen since after the split, 21 observations remain, so 3 is a divisor of the sample
size. Moreover, this section focuses on tercile comparisons, so using 3-fold cross validation seems consistent.

39Chernozhukov et al. (2018b) also propose to compare the difference in means of all candidate variables
of the observations in the top versus those in the bottom bin. The results of doing that can be found in
Appendix A.9. The issue of multiple hypothesis testing due to having many variables is not resolved though.
I therefore propose to again use Benjamini-Yekutieli (2001) FDR adjustments. The results of such a binning
approach could be of policy interest and provides a robustness check to the method outlined in section 1.4.1.
The splitting is useful as it is not advisable to bin using the true crime outcome that includes the error term
(see Abadie et al., 2018, for more details).

40Since the measure proposed in section 1.4.2 is used, the constant should result in a zero estimate. This
can be used as an additional check (successful in this paper).
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The results of the first measure of heterogeneity are shown in Table 1.4. After sorting the
boroughs into three bins (terciles) according to their predicted increase in crime (which is only
a function of the candidate variables), it becomes visible that the top tercile has experienced
a considerably higher increase in racial or religious hate crime (as measured by γ̂ + ε̂a,July2016

and γ̂l+ ε̂la,July2016 from the regressions 1.2 and 1.3 respectively). For the top bin, the increase
is significant at 92 crimes per population-million. For the bottom bin it is insignificant at
10. The difference is large and significant at 82 crimes per population-million. However, the
significance here has two issues. First, it could be that there are some differences every month
due to various other causes (which is again why this is ‘not Quite Right’, see above). Second,
the significance here is based on 42 datapoints, of which only 21 are used in every iteration
(to guarantee that the bins are indeed only based on a function of the candidate variables).
De facto, however, there are 88 months times 21 (or 42) observations, which can exploited.

(1) (2) (3) (4)
ε(Hate Crimes per Pop. Mio.) ε(log(Hate Crimes per Pop. Mio.))

Top Tercile Bottom Ter. Top Tercile Bottom Ter.

July 2016 Mean 91.8*** 9.8 0.278*** 0.142
Tercile Difference 81.99*** 0.136
Permutation Sign. ** **
Perm. 90% Benchmark 76.30 [93%] 0.12 [86%]
Perm. 95% Benchmark 69.50 [85%] 0.09 [67%]
Candidate Variables 69 69
Observations 42 42
Placebos (Perm. Test) 87 86
Note: ε(.) indicates that the borough-level dependent variable (racial or religious hate crimes per population
million or the log of it) was first detrended, demeaned and deseasonalized using 88 months of data. 42 boroughs
repeatedly sampled and classified to terciles. Terciles according to (out of sample) predicted values. Method used
for the predictions: Lasso with 69 candidate variables (vote and census data, plus a dummy for Manchester). July
2016 indicates how in July 2016 (the month after Brexit), this value was higher than mean, trend, or season would
suggest. Permutation inference uses other months than July 2016 as placebos. The benchmarking refers to
subtracting the 90th/95th percentile of the placebo values. Percentages in brackets indicate how much of the
heterogeneity is attributed to the Brexit vote if July 2016 had spatial noise equal to the 90th/95th percentile
(using 88 months of data). The one month where one of the boroughs experienced 0 hate crimes was not used as a
placebo for the relative case as the logarithm is not defined.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table 1.4: Captured Heterogeneity Large and Mainly Attributable to the Brexit Vote

Permutation inference solves both these issues. Analogue to section 1.3.2, a lower bound
of the consonance interval is obtained by subtracting the 90th (or 95th) percentile of the
difference obtained in the 87 placebo-months from the difference obtained in July 2016. After
this subtraction, 93% (85%) of the effect (i.e. of 82 crimes per population-million) is still there.
This is considerable. It means that, assuming other forces affecting hate crime were within the
first 9 deciles of their distribution, this ‘Naive Strategy’ (see above) results in a measure that is
mainly due to the ‘Brexit effect’. It provides the rational for basing this paper’s heterogeneity
analysis on this measure.

The mean number of monthly racial or religious hate crimes in the three years before the
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vote across all Greater London and Greater Manchester is 85 per population-million. The
heterogeneity in Table 1.4 (with a difference of 82) is therefore large, which could be expected
from the Figures 1.6 and 1.7.

Regarding the relative effect, the difference is not significant using the standard measure.
While this is likely due to a lower heterogeneity, note that the difference is significant using
the (here arguably superior) permutation inference - i.e. the heterogeneity in the relative effect
is unusually large in July 2016 compared to the other months in the sample. The fact that
86% (67%) of the effect remains after subtracting the 90th (95th) percentile of the placebo
measures indicates again that the difference is mainly due to the ‘Brexit effect’ (assuming no
other uncommonly considerable other factor). Consequently, while the relative effect demands
a more cautious treatment, an analysis of it appears justified. It is moreover the case that
understanding this smaller relative heterogeneity is crucial given the absolute crime numbers
underlying it.

The results regarding the second measure of heterogeneity are highly similar (see Appendix
A.4).

1.5 Heterogeneity Models: Methodology

Having established that the spatial heterogeneity captured by the available candidate variables
is substantial, this section outlines two methods to obtain parsimonious linear and quasi-linear
prediction models to describe this heterogeneity. The selection of the candidate variables is
lasso-based, but the aim is not only to obtain a model, but also estimate it with valid confidence
intervals for the parameters.

1.5.1 Obtaining Linear Models: Conditional Post-Selection Lasso

The conditional post-selection lasso concept (see Lee et al., 2016; Tibshirani et al., 2016)
was designed for valid inference after model selection (by lasso or lars41), but not specifically
heterogeneous treatment effects. Due to the plain setup following the proposed measure (see
section 1.4.2), however, it is directly applicable to the problem at hand.

In a first step, the model is selected using a regular lasso.42 In a second step, the estimates
are adjusted and confidence intervals are generated by conditioning on the fact that the chosen
model was selected in that way. This is based on a truncated Gaussian test, which builds
on the assumption of i.i.d. Gaussian errors. However, Tibshirani et al. (2018) show that
asymptotically, the errors do not need to be Gaussian. They even report simulations with
heteroskedastic errors where this approach still produces valid results.

41Least angle regression, see e.g. Efron et al. (2004).
42In principle, forward stepwise, lars, or lasso have been demonstrated to be feasible (Tibshirani et al., 2016).

All of which are closely interlinked penalized regression methods (see Efron et al., 2004). Using the arguably
most common type and following Lee et al. (2016), I choose lasso.
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The first step implies choosing a penalty term, the hyperparameter commonly labeled λ.43

I employ repeated 10-fold cross validation (following Kim, 2009),44 and use the common rule
to ‘err on the side of parsimony’ (Hastie et al., 2009), i.e. choose the most parsimonious model
within one standard error.45

The main reason to use repeated cross validation is the overarching topic of (virtual) seed
independency, which is violated by single 10-fold cross validation. Unlike the methods outlined
in section 1.4.4 and 1.5.2, the conditional post-selection lasso approach does not involve any
other form of repeated lasso-itarations. In line with the previous section, I also use repeated 3-
fold cross validation (in Appendix A.4), which leads to virtually identical results in my setting.
I always standardize the independent variables.

For the current setting, the performance of the lasso with correlated candidate variables
is important. Hebiri and Lederer (2013) show that in such a case, penalty terms (λ) based
on common theoretical considerations lead to suboptimal predictions, but not such based
on cross validation (which is used throughout this paper). Another concern is the variable
selection. Zhao and Yu (2006) outline that the irrepresentability condition must be satisfied
for the true variables of the data generating process to be selected. This condition is almost
certainly violated by the correlations at hand. In the current setting (and frequently in non-
simulation cases), however, it is doubtful that the truly data generating variables are in my
data. Therefore, the resulting estimated models in section 1.6.1 and 1.6.2 do not necessarily
point to variables of the true data generating process, but instead to useful predictors. In order
to still be able to compare the results across different methods, I have reduced the number
of candidate variables by removing those that are the most correlated (in general above 0.9),
while still arguably representing all relevant census categories.

1.5.2 Obtaining Linear & Quasi-Linear Models: Splitting Based Estimation

This section is inspired by Athey and Imbens (2017), Chernozhukov et al. (2018b), and
Rinaldo et al. (2018). I propose an alternative approach which is more flexible than that out-
lined in section 1.5.1. Avoiding seed dependency comes at the cost of theoretically ambiguous
bias. After developing the approach, I show the extent of this concern in simulations. Within
my sample and the results I observe, the bias seems small and the coverage high.

43To answer the simpler question which single variable explains the heterogeneity the best, I also choose
another λ such that the number of chosen regressors is one. Theoretically, the lasso approach can select and
drop variables. If only one variable is selected though, it is impossible that a variable is dropped for one other
variable (only a combination of variables can make the first variable redundant). Consequently, this will be a
uniquely defined variable, which is the one for which the correlation with the dependent variable is the highest.
The results of this exercise are displayed in Appendix A.9.

44Specifically, I use 1000 repetitions, so around 10% of the possible splits are used, which is optimal in
simulations by Kuhn & Johnson (2014) (although the difference to using e.g. 100 repetitions is marginal).

45While this is standard, it makes little sense to do so in the other lasso applications in this paper. In case of
the previous section, the model never becomes visible but only its prediction is used. As outlined in the next
section, in case of the repeated splitting, there is already a tendency to shorter models due to the selection
procedure, hence adding more parsimony does not seem warranted. In Appendix A.4, I also list the results
from using the plain minimum of the cross validation (i.e. discarding this rule for parsimony).
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1.5.2.1 Empirical Approach

The key concept of this approach is the following. First, the sample is split into two halves.
Second, one half is used for model selection using lasso. Third, the other half is used to
estimate the model resulting from the previous step. Fourth, the first three steps are repeated
1000 times. Finally, the (estimated) models of the 1000 iterations are aggregated to a single
model with parameter estimates.

The approach combines repeated splitting similar to section 1.4.4 with the logic of the
‘honest’ approach developed by Athey and Imbens (2016, 2017). Contrary to Athey and
Imbens (2016) though, I assume a (quasi) linear structure and use lasso, not regression trees.
Intuitively, the lasso selection in one half of the data provides a model to which I can commit
in the other half. This is related to the ex-ante commitment through a pre-analysis plan (see
e.g. Olken, 2015).

Regarding model selection, I use two specifications. In the first, I use standard lasso (on
standardized data) to find a linear model just like with CPSL in the previous section.46 In the
second specification, I use the hierarchical lasso approach of Bien et al. (2013) to find a quasi-
linear model. This approach allows me to include interactions between candidate variables in
the model, but guarantees that the level of each chosen interaction-variable is also included,
allowing the result to be interpretable. This second specification is not only interesting for
the current application but also shows that the splitting based estimation is more flexible in
the model-selection part than standard CPSL (which focuses on standard lasso). Aside from
hierarchical lasso, several other model selection techniques are imaginable for the splitting
based estimation.47

Regarding estimating the model, I use OLS. This means not only following most of the
standard economics literature, but also that the common standard error corrections are pos-
sible (contrary to the CPSL approach). In other applications, other estimation techniques
might be more appropriate and the splitting based estimation approach is flexible in the sense
that other techniques can simply replace the OLS estimation.

Omitting the last two steps and splitting the sample only once delivers consistent and
unbiased estimates. However, then the approach is seed dependent. Consequently, the last two
steps are necessary since seed dependency matters (see Appendix A.7) and since is impossible
for a single researcher, and especially for the profession of social sciences as a whole, to commit
ex post to a specific random sample split.

The last step involves aggregating 1000 different models.48 Rinaldo et al. (2018) point out
that a theoretical foundation to aggregate different models is missing in the current literature.
I suggest the following procedure (inspired by Chernozhukov et al., 2018b). Select the most

46I employ 10-fold cross validation for choosing the hyperparameter λ, reporting the 3-fold cross validation
results in Appendix A.4. The exception are the computationally intensive hierarchical lasso models that
allow for interactions and squared terms. For those I only use the computationally less intensive 3-fold cross
validation.

47The recent One Covariate at a Time Multiple Testing (OCMT) procedure (see Chidik et al., 2018), or
the Leave-Out-COvariates (LOCO) approach (see Rinaldo et al., 2018), for example, could be interesting
alternatives.

48Note that this is different in section 1.4.4, where each iteration produces estimates for the same parameters.
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common model (subject to constraints, see below) and use the median estimates of those
iterations that resulted in the selected model. Contrary to Chernozhukov et al. (2018b), I
refrain from doubling the p-values. This is rather conservative and the subsequent simulations
do not indicate that it would be required for this method and setting.

While this procedure virtually eliminates seed dependency (see Appendix A.7), and to some
extent the common criticism of sample splitting methods that half of the data is not used for
inference, it introduces bias. Since all splits influence the choice which model is selected (and
hence which splits are generating the final estimates), there is no longer complete independence
between the sub-sample used for model selection and the sub-sample used for inference. The
resulting net bias remains unclear. Intuitively, there are both forces to amplify and attenuate
the estimators.49 It is a key concern what kind of net-bias can be expected for the specific
data, questions, and results at hand. The simulations in the subsequent section are designed
to address this concern.

Another use of the simulations is to compare constraints regarding selecting the most
common model across the 1000 iterations. The constraint concerns the length of the models.
Longer models have the issue of featuring more possible combinations of variables. Especially
since my candidate variables are correlated, the probability that a one-variable model is chosen
multiple times is much higher than the probability that the exact same five-variable model (for
example) is chosen multiple times. Choosing merely similar but not identical (long) models
in the last step of the splitting based estimation bears the problem that there is no obvious
choice within those models and estimators. This is the reason why I propose choosing the
most common model across the 1000 iterations subject to a constraint. The constraint is
that the model has to include at least L variables. I allow L to take the following values:
one, two, the floor of the mean of the model lengths minus one standard deviation, and the
respective ceiling.50 The simulations in the following section are consulted to make a choice
that is appropriate for the specific data, questions, and results at hand.

49On the one hand, there is at least one force to attenuate the true effect. If the sample is split such that
many of the observations that are driving the effect are in the sub-sample for model selection, the model is
safe to be selected but they are lacking in the sub-sample where inference is conducted, resulting in attenuated
estimates. Conversely, if these observations are in the sub-sample for inference, a different model is likely to
be chosen in the model-selection stage, resulting in these splits being dropped. On the other hand, there is
at least one countering force. In the sample as a whole, those variables are chosen which have the highest
correlation due to signal plus noise. Therefore, such noise that produces amplification bias is prone to be found
in the chosen estimators.
In addition, the confidence intervalls might also be incorrect. One reason for that is that they are standard

OLS intervals, based on half of the observations (inference sample only). The fact that other splits of the data
resulted in the same variable(s) being correlated with the outcome variable implies that, de facto, more than
half of the observations were used for the estimates. Consequently, the confidence intervals would be too large.

50As in section 1.5.1, I also show which single variable explains the heterogeneity best. This collapses to
finding the candidate variable that is most correlated with the dependent variable in the mining sample.
Comparing this to the equivalent question in section 1.5.1, the advantage of this approach is to be potentially
less affected by outliers (a general concern of standard econometric methods, see Young, 2018). However,
this approach has the downside of potential bias (relying on simulation evidence). The results are shown in
Appendix A.9.
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1.5.2.2 Simulations

I construct the dependent variable in the following way: y = Xβ + ε. The true effects (β)
and truly relevant regressors (X) vary for the different simulations, while the noise parameter
ε is always a random variable with a standard Normal distribution.51 The number of relevant
regressors and the magnitude of the true effects is motivated both by simulations in the related
literature (namely Lee et al., 2016; Tibshirani et al., 2016; Reid et al., 2017), as well as the
characteristics of the results obtained in section 1.6.52

Simulations are a useful tool in this context to analyze whether (1) the true model is
found (which is ambitious since the irrepresentability condition is violated), and (2) whether
the obtained β̂ is consistent for β̃, where β̃ = argmin(y − Xβ + ε)2 s.t.

[
β = β̂ if β̂ = 0

]
;

i.e. whether the conditional correlations are measured consistently conditional on using the
model that is “found”.

As shown in Table 1.5, I consider the following data generating processes (DGP): y =

2X1 + ε; y = 2X2 + 2X3 + ε; y = 2X1 + X4 + X5 + ε; y = 2X1 + 2X3 + 2X6 + 2X7 + ε.
Further complementary simulations that concern only the best single variable (instead of the
best model) are shown in Appendix A.6 and also use y = ε; y = X1 + ε.

I use the real dataset to guarantee that the correlation structure of the candidate variables
is identical to that in the actual regressions in section 1.6. In order to have the most relevant
correlation structure for the results, an important part of the simulations considers effects
driven by those regressors that are detected in section 1.6 and such that are highly correlated
with them. Specifically, variable X1 is chosen rather clearly in section 1.6. The variables X2

and X3 are highly correlated with X1 and with each other. They are included to test to what
extent this is a concern. The third DGP follows again the results obtained in section 1.6. The
final DGP contains again X1, as well as one highly correlated (X3) and two random other
variables. The common magnitude of the β in the true model (signal strength) of two follows
the aforementioned literature and the results in section 1.6.

As outlined in section 1.5.2.1, it is possible to restrict the model length (L). I compare the
following restrictions: L ≥ 1 (“1Var”), L ≥ 2 (“2Var”), L ≥ bmeanN (Z)−

√
varN (Z)c (“Floor”),

and L ≥ dmeanN (Z) −
√
varN (Z)e (“Ceiling”). Indexing by N denotes the mean/variance

across the N = 1000 iterations of obtaining the splitting estimator, not across the repetitions
of this process in the S = 1000 simulation iterations.

51As shown in Appendix A.6, the residual from the regressions 1.2 and 1.3 appear approximately normally
distributed (to the extent this can be judged from 42 observations).

52My setting consists of 42 observations and 68 vote and census variables (in total 69 candidate variables if
a dummy for Greater Manchester is added). Lee et al. (2016) simulate with 25 observations and 50 candidate
variables, and choose 5 variables to carry signal. Their case is slightly different, but in their setting, the signal
is 2. The simulations in Tibshirani et al. (2016) have 50 observations, 100 candidate variables and 2 truly active
variables. Again the signal strength is not directly comparable, but some of their simulations have signals of
up to 5. Reid et al. (2017) outline a more general approach. They propose using nα truly active variables,
with α taking values between 0.1 and 0.5 (i.e. between 1 and 6 variables for 42 observations). They take 1000
observations and suggest using signal strengths between 3 and 6. The characteristics of the simulation results
(not the parameters, but the frequency distribution within the 1000 splits of one iteration of my proposed
estimator) start to diverge strongly from the characteristics of the results in section 1.6 when many variables
with strong signals are introduced. In the interest of proximity to my setting, I remain on the lower end in
terms of number of variables and signal strength compared to the mentioned literature.
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Table 1.5 summarizes the results for different DGPs and constraints. While I generally
average biases across both models and regressors, I make the distinction between biases of
positive and negative parameters.53 Due to that, column 3 and 4 are informative about
the overall bias being potentially attenuating or amplifying. Column 5 indicates how often
β̃ is contained in the 95% interval of β̂, and column 6 states meanS(Lβ̂). Column 7 shows
meanS( C

1000), where C is the number of times the most frequent model (subject to the relevant
restriction) was chosen within each simulation iteration. As the true DGP becomes longer,
the mean frequency approaches 0.1%, i.e. C=1. This is problematic for the key argument
of seed independency (and highlights a limitation of the general applicability of the splitting
based approach). The eighth column indicates what fraction of the true DGP is on average
encompassed in the selected approximation model, i.e. what fraction of the non-zero elements
of β are also non-zero in β̂.54 As mentioned above, this is not necessarily expected to be large
due to the violated irrepresentability condition. Finally, the last column indicates how often
the weakest constraint (L ≥ 1) was binding across the simulation iterations.

The results show that the suggested approach is likely to be applicable to the current
setting. The magnitude of the bias is rather low, and more than 95% of the truly relevant
parameters are contained in the 95%-confidence intervals (around 95% if heteroskedasticity
robust S.E. are not used). If anything, the confidence intervals seem too conservative. Between
the constraints regarding the model selection, that requiring at least one variable seems to have
the most desirable attributes.

1.6 Heterogeneity Models: Results

Both approaches outlined in the previous sections lead to the same main result. It is
boroughs with a wealthy and/or immigration-heavy population that have experienced a more
pronounced increase in hate crime. The borough-share of recent immigrants (for the absolute
‘Brexit effect’), and that of people with formal qualifications (for the relative ‘Brexit effect’) are
of key predictive importance. Models that allow for interactions generally support this result.
The model regarding the absolute ‘Brexit effect’ even remains unchanged when including
interactions would be possible.

1.6.1 Linear Heterogeneity Models

The results of finding linear (prediction) models of the post-vote increase in hate crime are
summarized in Table 1.6. Panel A reports the result regarding the absolute effect, and panel
B that regarding the relative effect. The two approaches outlined in the sections 1.5.1 and
1.5.2 arrive at highly similar results. As a benchmark, the standard lasso is unsurprisingly

53Positive parameters are such for which the mean of the parameter of 1000 repeated OLS regressions of
the relevant approximation model with 42 observations randomly drawn from the DGP’s β̃ is larger than 0.01.
Negative parameters are smaller than -0.01 respectively. Other forms of grouping are imaginable. Given the
homogeneity in the type of candidate variables and the concern for amplification versus attenuation bias, I
believe this grouping in positive and negative parameters to be reasonable and informative.

54In the third model, for example, X4 is almost always absent in the chosen models while the other two
‘true’ regressors are usually included.
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considerably lower since the lasso penalty term (λ) leads to attenuation bias.55 Calculating
standard errors is generally problematic for the standard lasso (see e.g. Kyung et al., 2010). I
refrain from doing so as the lasso estimates are solely displayed as a comparison.

Regarding the result for the absolute increase, the chosen model contains the share of
recent immigrants, the share of people that do not state a religion, and the share of people
with no56 formal qualifications.57 The share of recent immigrants is significant and refers to
immigrants that have arrived within two years before participating in the 2011 census. Further
data provides strong evidence that (recent) immigration areas are virtually the same in 2011
and 2016.58 The parameter regarding the share of people without any qualifications is not
significant; the p-values are at 0.17 and 0.11 for column 1 and 2 respectively. Finally, the share
of people not stating a religion (which is different from people stating not to have a religion)
appears to be informative as well. However, the asterisks in parentheses indicate that the
significance disappears once heteroskedasticity robust errors are used (which is possible with
the splitting based approach, but not CPSL).59

Following the previous simulations of the splitting based approach, I chose the model-
selection constraint to include at least one variable (column 2). This constraint is not binding
(the intercept-only model is selected only twice out of 1000 splits, not shown in Table 1.6).60

As indicated in the last row of panel A, the resulting model was chosen 16 out of the 1000
splits. The fact that this number is not higher illustrates the problem of the lasso to obtain
different models in only slightly different settings. However, the approach presented in this
paper to use 1000 splits (i.e. similar settings) and then to aggregate alleviates this problem
to some extent. This problem is related to the issue of seed-dependency, in the sense that
different splits result in different but similar settings. As shown in Appendix A.7, running
lasso on a single split (i.e. one setting) reaches dramatically different models across different
splits. Aggregating it over 1000 splits leads to a considerable improvement in consistency. It is
also the case that a frequency of 1.6% is similar to the successful simulation in section 1.5.2.2.

55This is especially true for the relative case. Because a one-variable model was chosen, the penalty parameter
λ is arguably more important, and the lasso estimates suffer from more attenuation bias (which appears to be
the dominant bias here).

56This is the only direct measure of qualifications I include (i.e. no differentiation between different qualifi-
cations is included; see footnote 20).

57Results using different forms of cross validation are qualitatively similar, especially regarding the impor-
tance of recent immigrants, and can be found in Appendix A.4.

58The Office for National Statistics (2018b) provides some annual immigration data. The correlation of the
borough-share of immigrants in 2011 with that of 2016 is 0.97 for Greater London and Greater Manchester.
Direct annual data on recent immigrants is not available. However, the numbers of migrants that first register
with a general practitioner (relative to the borough population) in 2011 and 2016 are correlated with a coefficient
of 0.94. Moreover, the numbers of migrants registering in their borough to obtain a national insurance number
(necessary to work) in 2011 and 2016 (relative to the respective borough population) are correlated with a
coefficient of 0.97.

59In general, the effect of using HC errors is small, this being the only parameter whose significance is
affected by it. The reason why significance in parentheses is used is to illustrate that the two methods obtain
the same result, even regarding (qualitative) significance, under the same conditions (i.e. not correcting for
heteroskedasticity).

60In fact, even the ‘2 variables’- and the ‘floor’-constraint were not binding, and hence result in the identical
model. The ‘ceiling’-constraint did bind and leads to additionally including the share of people working in
electricity, gas, steam and air conditioning supply (industry code D). This results in the additional coefficient
being small with a large standard error (highly insignificant), and the other coefficients being hardly affected.
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(1) (2) (3) Indep. Var. Means

A) ε(Hate Crimes per Pop. Mio.)

Recent Immigrants 1237*** 1150* 977 0.024
No Religion Stated 641*** 715(**) 405 0.080
No Qualifications -235 -274 -114 0.194

Mean H.C. / Pop. Mio. 219 219 219
Frequency NA 1.6% NA

B) ε(log(Hate Crimes per Pop. Mio.))

No Qualifications -2.55* -2.67*** -0.37 0.194

Mean Log(H.C. / Pop. Mio.) 4.57 4.57 4.57
Frequency - 2.0% -
Method CPSL Splitting Lasso
Candidate Var. 69 68 69
Observations 42 42 42
Note: Method-chosen models from 68(69) candidate variables. ε(.) indicates the dependent variable is detrended,
deseasonalized, and demeaned on the borough level using 88 months of data. Cross sectional analysis across 42
boroughs in July 2016 (the month after Brexit). Hate Crimes (H.C.) is short for racial or religious hate crimes.
Recent Immigrants: share of people that have arrived in the UK within 2 years of the 2011 census. No Religion
Stated: share of people not stating a religion. No Qualifications: share of people without formal qualifications.
CPSL assumes i.i.d. errors by construction. Splitting allows for robust errors, parentheses indicate lost significance
due to using heteroskedasticity robust errors. Significance not defined for plain lasso (which serves as benchmark
only). Splitting cannot use the Manchester dummy variable as candidate since it has a constant value (0) for more
than half of the sample.

* p < 0.1, ** p < 0.05, *** p < 0.01 (for CPSL and Splitting)

Table 1.6: Best Linear Model for the Absolute/Relative Increase in Hate Crime

Finally, the model is the same as the one resulting from CPSL. The fact that the lasso agrees
with the conditional post-selection lasso (CPSL) in terms of selected variables is guaranteed
by construction.

Another benchmark to the two approaches outlined in this paper is the single split esti-
mator. This method is alike Athey and Imbens’ (2016) causal tree, but uses a lasso in half
of the sample instead of growing a tree (as suggested in passing by Athey and Imbens, 2017).
As discussed, the issue with that is its seed dependency and the here proposed splitting based
approach is stable across different seeds (dropping and/or adding at most one insignificant
variable in case of the full model as only main difference, see Appendix A.7).

In terms of magnitude, the result shows that boroughs that have one percentage point
more recent immigrants experienced a ‘Brexit effect’ that was 12 racial or religious hate crimes
higher per million borough-population in July 2016. The fraction of recent immigrants differs
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across boroughs: the fraction is 0.7% at the 25th percentile and at the 75th, it is 3.3%.61 The
predicted difference in the ‘Brexit effect’ between the 25th and the 75th percentile is therefore
approximately 31 crimes per million of population, controlling for the other two variables in
the model.62 The average number of racial or religious hate crimes per million in the three
years before the Brexit vote ranges across boroughs from 49 to 278, the mean across boroughs
being 117. As aforementioned, the mean across Greater London and Greater Manchester
overall is 85. The estimate of the July 2016 dummy in regression 1.2 is 52 (see Appendix A.6
for regression output).

Regarding the result for the relative increase, the chosen model contains only the share of
people with no formal qualifications.63 The constraint to include at least one variable in the
splitting based method was binding. The low variance across boroughs caused the splitting
based approach to choose the intercept-only model in 225 of the 1000 splits. As outlined in
section 1.4.4, the spatial heterogeneity is smaller in the relative than the absolute case. This
provides evidence that the areas where most of the ‘Brexit effect’ has occurred in absolute
terms are also areas with a generally high number of hate crimes. Indeed, running a regression
with no borough fixed effect but instead the selected candidate variables (listed in Table 1.6)
on the pre-Brexit-vote period demonstrates that the fraction of recent immigrants is indeed
highly correlated with the number of racial or religious hate crime (see Appendix A.6). In
that regression, the coefficient for the share of people without formal qualifications positive
though. This is in line with the findings about the relative ‘Brexit effect’.

Regarding the magnitude of the effect, moving across boroughs from the 75th to the 25th

percentile of the share of people without formal qualifications, the increase in racial or religious
hate crime is around 18 percentage points higher. As a benchmark, the average increase across
boroughs estimated with the July 2016 dummy in regression 1.3 is 20.6% (see Appendix A.6).

Figure 1.8: Heterogeneity in the Brexit Effect - Terror Spikes in 2017 Different from Brexit

The findings are visualized in Figure 1.8. There are considerably more racial or religious
61The 25th percentile of the fraction of people with no qualifications is 16.3%, and that of those not stating

a religion is 6.4%. The 75th percentile is 8.5% and 23.0% respectively.
62This is already substantial, and without controls it is almost twice as large (see Appendix A.9 for the result

of the best single variable).
63Single split comparisons, comparisons using different forms of cross validations, and results for the splitting

selection rule imposing at least two (not one) variables can be found in Appendix A.4 and A.7.
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hate crimes in the top tercile of boroughs with respect to share of recent immigrants, and
the spike after the Brexit vote is pronounced. In the bottom tercile, that spike is virtually
absent. The subsequent spike around the terror attacks indicates that it is hardly the case that
there was a lack of opportunities or victims in low-immigration boroughs - and also that the
heterogeneity regarding the increase of hate crime after terror attacks is different. Comparing
the top and bottom tercile of boroughs with respect to the fraction of qualified people shows
that while the numbers of crimes before and after the Brexit vote are comparable, the ‘Brexit
effect’ is dramatically different.

As mentioned previously, these findings are regarding a parsimonious prediction model.
A number of observed and unobserved factors are likely to drive the true data generating
process. While no included factor is a better single variable explanation of the absolute and
relative effect respectively, a combination of variables can certainly not be excluded to have
an effect; especially highly correlated ones. The candidate variables that are most correlated
with the variables chosen in the above models are listed in Appendix A.8. The lack of formal
qualifications, for example, is highly correlated with indicators of the social grade.

1.6.2 Quasi-Linear Heterogeneity Models

As outlined in section 1.5.2, I also use the hierarchical lasso method of Bien et al. (2013) in
the mining part of the splitting based estimation in order to obtain a model that is allowed to
include well interpretable interactions. As this increases the number of possible models to an
even higher number, I have increased the number of iterations to 5000. The results are shown
in Table 1.7.

The key insight from these results is that the same linear prediction model as in the
previous section is obtained in the absolute case. This is striking given that with (hierarchical)
interactions, there are now more than 1049 possible model choices; more than half the estimated
number of atoms in the known universe. The restriction to have at least one variable is always
binding. The model of the relative effect is different than before. The share of people without
formal qualifications is still a key predictor, but its effect seems to be different for different
boroughs. The minimum fraction of male people is 48.0%, the maximum 52.1%; but given
the large confidence intervals of the parameters, this results in little insight. In sum, Table
1.7 provides further robustness-evidence regarding the absolute model and further reason for
a cautious interpretation of the relative effect (but support for the share of people with formal
qualifications being important).

1.6.3 Individually Interacted Candidate Variables

Using each candidate variable individually implies a model with no control variables. This
tests the simple null hypothesis that, considered individually, the given candidate variable is
correlated with the increase in hate crime after the Brexit vote. It complements the previous

41



(1) (2) Indep. Var. Means

A) ε(Hate Crimes per Pop. Mio.)

Recent Immigrants 1426* 1309* 0.024
No Religion Stated 595 641 0.080
No Qualifications -214 -211 0.194

Mean H.C. / Pop. Mio. 219 219
Frequency 0.8% 1.0%

B) ε(log(Hate Crimes per Pop. Mio.))

No Qualifications 20.69 3.50 0.194
Male 8.64 -2.46 0.493
Male * No Qualifications -48.47 -6.14*** 0.096

Mean Log(H.C. / Pop. Mio.) 4.57 4.57
Frequency 1.2% 1.1%
Square Terms Allowed Yes No
Candidate Var. 68 68
Observations 42 42
Note: Method-chosen models from 68 candidate variables, their first order interactions, and, where indicated, their
squared values. ε(.) indicates the dependent variable is detrended, deseasonalized, and demeaned on the borough
level using 88 months of data. Cross sectional analysis across 42 boroughs in July 2016 (the month after Brexit).
Hate Crimes (H.C.) is short for racial or religious hate crimes. Recent Immigrants: share of people that have
arrived in the UK within 2 years of the 2011 census. No Religion Stated: share of people not stating a religion. No
Qualifications: share of people without formal qualifications. Heteroskedasticity robust errors used.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table 1.7: Best Quasi-Linear Model with Interactions using Splitting Based Estimation

results and shows the link to approaches that are more standard. Moreover, it allows me to
use both the measure proposed in section 1.4.2 and the standard approach.

To assess the economic significance and compare the results to the previous findings, I
weigh the results by a measure of variance. In line with the other sections of this paper, I use
the difference between the mean of the highest tercile of a given variable across the 42 boroughs
and the mean in the lowest tercile. I refer to it as tercile span. The estimated coefficient is then
multiplied with this tercile span. The Tables 1.8 and 1.9 show the 5 variables with the highest
effect as well as interesting cases where the null hypothesis could not be rejected.64 Regarding
the p-values, I follow the procedure described in section 1.4.1 and use Benjamini-Yekutieli
(2001) FDR adjustments.

64A complete list of all candidate variables can be found in Appendix A.9.
65Skilled working class: Main income from skilled manual work
66Water supply, sewerage, waste management and remediation activities
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Variable Estimate * Tercile Span Variable Estimate * Tercile Span

Recent Immigrants 85.0*** Recent Immigrants 99.1***
Social Grade C265 -77.8*** Social Grade C2 -90.8***
Mixed Ethnicity 77.1*** Mixed Ethnicity 90.0***
Industry Code E66 -76.8*** Industry Code E -89.6***
Born in the UK -76.5*** Born in the UK -89.2***
Econ. Active 11.8 Econ. Active 13.7
Unemployed 1.1 Unemployed 1.3

Using Residuals (ε) Using Full Regression
Note: Estimate refers to the individual estimated effect of the variable on racial or religious hate crime per borough
population million. Tercile span is the difference between the mean of the highest tercile of a given variable across
the 42 boroughs and the mean of the lowest tercile. Using residuals denotes a cross sectional analysis across 42
boroughs in July 2016 (the month after Brexit) with the dependent variable detrended, deseasonalized, and
demeaned at the borough level using 88 months of data. Full regression denotes directly using panel data of 42
boroughs and 88 months and interacting the variable with a dummy for July 2016. Benjamini-Yekutieli (2001)
FDR adjusted p values.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table 1.8: Top 5 Individually Important Variables & Unemployment (Absolute Increase)

I conduct this approach both following regression 1.1 (replacing the remain vote share with
each candidate variable), and also regressing the residual from regression 1.2 on the candidate
variable (and the respective analogues when using logarithmic crime as dependent variable).69

The former is the standard procedure, while the latter uses the proposed measure analogue to
all previous results. As expected, the differences are small and none are statistically significant.
The standard approach produces amplified coefficients relative to the residual based regression
as proven theoretically in Lemma 1 (see section 1.4.2).

The most important variable is unsurprisingly that chosen by the CPSL method and the
magnitude is similarly large. In terms of interesting variables for which I cannot reject the null
hypothesis, the share of unemployed people stands out given its prominence in the hate crime
literature. As it is related, I also report the coefficient regarding the share of economically
active people. Both are clearly insignificant in either case. Regarding the relative case, only
few variables are significant. This follows from the heterogeneity in the relative effect being
smaller.

The CPSL approach can also be used for finding the best one-variable model (see Appendix
A.9). In that case, the penalty parameter in the first step (the lasso) is set such that exactly one
variable is chosen. The first variable chosen by the lasso is the one that, after standardization,
is the most correlated with the dependent variable. Since the results in the Tables 1.8 and 1.9
are weighed by the tercile span (which is similar to standardization as the variable is divided
by a measure of its variance), it is not surprising that the same variable appears as the most
important one. Independent of the method, the disadvantage of focusing on the single most

67Water supply, sewerage, waste management and remediation activities
68Information and communication
69For the former, the whole panel is used and I cluster at the borough level (which includes robustness to

heteroskedasticity) as described in section 1.4.1. Regarding the latter, I use accordingly heteroskedasticity
robust errors, using only the cross section of residuals for July 2016 (see section 1.4.2).
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Variable Estimate * Tercile Span Variable Estimate * Tercile Span

No Qualifications -0.29** No Qualifications -0.34**
Industry Code E67 -0.27 Industry Code E -0.32
Industry Code J68 0.27* Industry Code J 0.31*
Recent Immigrants 0.25* Recent Immigrants 0.30*
Remain Vote 0.25 Remain Vote 0.30
Econ. Active 0.10 Econ. Active 0.12
Unemployed -0.05 Unemployed -0.06

Using Residuals (ε) Using Full Regression
Note: Estimate refers to the individual estimated effect of the variable on log(racial or religious hate crime per
borough population million). Tercile span is the difference between the mean of the highest tercile of a given
variable across the 42 boroughs and the mean of the lowest tercile. Using residuals denotes a cross sectional
analysis across 42 boroughs in July 2016 (the month after Brexit) with the dependent variable detrended,
deseasonalized, and demeaned at the borough level using 88 months of data. Full regression denotes directly using
panel data of 42 boroughs and 88 months and interacting the variable with a dummy for July 2016.
Benjamini-Yekutieli (2001) FDR adjusted p values.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table 1.9: Top 5 Individually Important Variables & Unemployment (Relative Increase)

important variable is the arbitrary choice of a one-variable model.

1.7 Mechanisms and Policy Implications

The findings of this paper provide a useful basis to discuss the possible economic mecha-
nisms behind the increase in racial or religious hate crime after the Brexit vote. The empirical
part remained agnostic with respect to theoretical considerations. This allows me to asses,
specify, and reframe various existing theories. The obtained results are also of direct interest
for policing and policy.

1.7.1 Economic Mechanisms

The main channel outlined in this section is information updating through the Brexit vote.
The idea is that the Bexit vote resulted in an information-update regarding the expected
opinions or norms in society. In a recent paper, Bursztyn et al. (2017) show that information
about vote results can significantly affect whether people publicly commit xenophobic actions,
which is in line with a model of expected social norms. The driving force in Bursztyn et
al.’s (2017) mechanism is that the update through an election result can quickly alter what is
considered to be socially acceptable behavior (which is crucial due to a cost of publicly acting
in a socially unacceptable way). Bursztyn et al. (2017) do not address spatial heterogeneity
directly. The most direct application of that paper regarding spatial heterogeneity in the
current Brexit-case could be to consider local election results. This is, however, not in line
with the empirical evidence as the increase in hate crime was not more pronounced in areas
with a high leave vote (but the opposite is the case, see section 1.6.3).

A first mechanism uses the driving force of Bursztyn et al.’s (2017) approach but is in
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line with the positive correlation of the increase in hate crime with the remain vote. It builds
on the fact that the outcome of the vote was according to pre-vote polls more surprising in
remain voting areas (see e.g. Lord Ashcroft, 2016). The key concept of this mechanism is
that the larger the surprise of the overall outcome of the Brexit vote (which was to leave
the EU), the larger the information update, and hence the larger the effect on hate crime.
The underlying idea is that people are influenced by those that live nearby and have a biased
opinion regarding the norms in the population as a whole. In a paper closely related and
simultaneous to the current paper, Albornoz et al., 2018 outline this mechanism in detail and
provide further evidence in favor of it.

The results presented in the previous sections are in line with this mechanism. While
the remain vote-share is not among the main heterogeneity variables (see section 1.6), it is
correlated with them. Regarding the temporal structure, the mechanism is silent. Arguably, it
does not seem justified to reject it due to the transitory nature of the increase in hate crimes.
Potential offenders receive further updates about the social norms with passing time or after
the action of offending. Moreover, the salience (and hence the ‘salience weight’) of the ‘Brexit
signal’ decreases over time (see Bordalo et al., 2012).

Another similar mechanism builds again on the driving force of Bursztyn et al.’s (2017)
approach and the overall outcome of the Brexit vote. In general, (potential) offenders have
to weigh the social and other costs against the benefits of their action. Prior to the vote,
some areas are in an equilibrium with relatively high social costs (social sanctions/‘push-
back’/reactions from bystanders of the crime) but also high benefits, while others are in an
equilibrium with lower costs and benefits. Regarding benefits, if the aim is to oust an opposing
group, an argument from the conflict literature is that violence targeted at wealthier areas is
effective because access to economic opportunities (e.g. jobs) or assets (e.g. flats) is obtained
(see e.g. Mitra & Ray, 2014). This is in line with immigration-critical arguments of immigrants
taking away jobs or flats. Regarding social costs, Mayda (2006) finds that in wealthy countries
such as the UK, skilled people’s preferences are more immigration friendly. This evidence is in
line with theoretical considerations that skilled people benefit more from immigrants and have
a lower risk to lose their job as a consequence of immigration (Mayda, 2006; Borjas, 1995).
Consequently, social norms are likely more protective of immigrants in wealthier areas. It is
then not surprising that, controlling for the share of immigrants, there is less hate crime in
wealthier areas before the Brexit vote (see Appendix A.6).70 The Brexit vote then provided
an information shock about social norms, which had a larger effect in areas where the social
costs were higher.

This mechanism specifically focuses on the association of wealth and income proxies (the
share of people with formal qualifications) with a higher increase in hate crime. The association
with a larger share of recent immigrants seems less surprising and in line with an opportunity
channel.71 The mechanism is again in line with the results found in the previous sections. An

70The share of qualified people is highly correlated with the share of immigrants (correlation: 0.64).
71More potential victims represent more opportunities for post-Brexit hate crime. While I have no access to

victim data, this finding suggests that immigrants are victims of the additional hate crime after the Brexit vote.
This is in line with anecdotes of immigrants thats were victims of racial hate crimes and incidents after the
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advantage of this mechanism is that it does not require me to assume that offenders offend
in the same region (i.e. borough) they live.72 While this assumption is rather common in
the literature, it becomes stronger the smaller the considered regions are, and in case of this
paper, the regions are rather small (smaller than in Falk et al., 2011; Krueger & Pischke, 1997;
Medoff, 1999, but comparable to Albornoz et al., 2018).

In related literature, a number of other candidate-mechanisms are outlined that are, in
principle, applicable to the current setting. While it is impossible to discuss all of them, I
list some prominent ‘candidate mechanisms’ and show how the results of the previous sections
contrast with them.

A first class of mechanisms state that a change in fundamentals can lead to an equilibrium
with a different level of conflict (see e.g. Esteban & Ray, 2011; Esteban et al., 2012; Caselli
& Coleman, 2013). The UK (rather surprisingly) voting to leave the EU has led to a change
in fundamentals, both expected and actual. A common example in the economics literature
on the Brexit vote is that the exchange rate was affected (see e.g. Douch et al., 2018), which
arguably implies expectations about future trade and other economic factors. However, the
data does not support mechanisms whose core is a permanent change to an equilibrium with
a higher level of conflict. Unlike hate crime, the exchange rate (as well as other fundamentals)
was affected rather permanently and did not revert back after six weeks.

A second candidate aspect of the Brexit vote is that it provided a signal on the basis
of which people coordinated to riot. However, information-induced riots are considerably
shorter-lived than six weeks (see e.g. Glaeser, 1994). There is also no evidence for a number
of consecutive gatherings or riots, and the daily time series data of England and Wales show
increased numbers of hate crime for virtually every day for weeks after the vote (see Figure
1.2).

Third, the aggressive rhetoric in the media or from campaigning is another potential aspect
of the Brexit vote to affect hate crime (for a brief review, see e.g. Gerstenfeld, 2017). However,
there was broad coverage and strong rhetoric against immigration several weeks prior to the
vote (Moore & Ramsay, 2017). The absence of a pre-vote effect in the hate crime numbers is
evidence against this theory.73

Fourth, the relative deprivation theory states that the unemployed (or their children) feel
deprived and are consequently more likely to follow extreme ideologies and develop violent
predispositions (Falk et al., 2011; Siedler, 2011). The unemployment share has consequently
been a major variable in previous hate crime analyses (e.g. Falk et al., 2011; Krueger & Pischke,
1997). I find that the unemployment rate is neither individually significantly correlated with
the post-vote increase in hate crime, nor does it appear as a key predictor in any model.
Despite the relatively high correlations between candidate variables in general, that of the

Brexit vote (e.g. in BBC, 2017b or Independent, 2016, the interviewed victims are Polish, Italian, Romanian,
and German - and they report that the offenders specifically mentioned their nationality and the Brexit vote).

72Since most hate-crime offenders are not caught, this is difficult to evaluate. At least in Manchester, for
which I have the detailed data, most offenders are not caught. Looking at the caught offenders is hardly helpful
as it is plausible that those offenders that live further away from the location of the crime are less likely to be
caught.

73Although it cannot be ruled out as a necessary pre-condition.
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unemployment share with the share of recent immigrants, people not stating a religion, and
people lacking formal qualifications is only 0.19, 0.06, and 0.46 respectively.74 The key caveat
is that offenders may not commit crimes in the borough they live. Nevertheless, the relative
deprivation theory is not a suitable model to explain the spatial heterogeneity in the hate crime
increase after the Brexit vote. Even if the crimes were committed by unemployed people, the
theory is silent about where this happens if it is not where the unemployed live.

Fifth, according to the opportunity cost theory, people with a low opportunity cost of
time are more likely to commit hate crimes (Medoff, 1999). The share of people with a low
wage is consequently in the focus of some hate crime studies (e.g. Krueger & Pischke, 1997;
Medoff, 1999). I find that income proxies are positively related to the post-vote increase in
hate crime. Therefore, the opportunity cost theory is also unfit to explain the observed spatial
heterogeneity.

Finally, the data in this paper naturally covers only reported hate crimes. Consequently,
changed reporting is another candidate mechanism. First, hate crimes could have been re-
ported after the Brexit vote that were previously not reported at all. Second, victims could
have been more sensitive about the fact that they are victims of a hate crime instead of a
regular crime.75 Regarding the second issue, there are five types of crime which are recorded
either as racially or religiously aggravated or non-aggravated.76 The hate crime data used
previously includes all types of crime, but these five types are sufficiently often racially or
religiously aggravated that the Home Office (2017) keeps specific record of aggravated and
non-aggravated crimes of these types. As shown in Appendix A.5, there is no drop in the
non-aggravated crimes when the respective aggravated crimes increase after the Brexit vote.
This is evidence against mere relabeling of crimes. Moreover, there are strict guidelines on
the side of the police to minimize the influence of reporting and subjectivity. Regarding the
first issue, I focus on crimes, not incidents. Minor incidents that are reported to the police
as hate crime do not enter my data as these would be classified as incidents, but not crimes
(see section 1.2). Incidents that do qualify as crimes and were not at all reported previously
are a more serious issue. However, if I assume that crimes of the highest severity are equally
often reported before and after the vote, there is evidence against this mechanism: the share
of most severe crimes among hate crimes did not change after the Brexit vote (see Figure 1.4).

74Testing individual correlations represents a comparison without controls, but remains unaffected by cor-
relations between candidate variables. The linear prediction model’s key predictors do not have the former
problem, but due to these correlations, it cannot be guaranteed that the unemployment rate does not feature
the true model. Therefore, it cannot be ruled out that the unemployment rate had any effect. However, given
the rather low pairwise correlations, a more complex correlation construct would be necessary. The unem-
ployment rate is certainly not the predominant key factor, and there is evidence against it being important at
all.

75Theoretically, the reporting issue has at least one more dimension, which is the reporting behavior of the
police. As shown in Figure 1.3, the way in which the police was called to a crime has, if anything, changed to
the police being less often called over the radio. Crucially, that implies that fewer crimes were directly reported
by police officers themselves in the period after the Brexit vote, which is evidence against different reporting
on the police-side.

76These are: assault with injury, assault with no injury, harassment, public distress, and criminal damage.
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1.7.2 Policy Implications

The question regarding policy implications involves that of external validity. I have argued
that the key feature of the Brexit vote regarding hate crime is that it was a public information
shock about society’s preferences regarding immigrants. While immigrants were not the only
focus of the Brexit vote, it was one of only few key themes (see Moore & Ramsay, 2017). The
preferences of those eligible to vote were then publicly revealed. Arguably, referendums are
generally more focused than elections. However, certain elections do have a strong focus on
immigration (for example) of the winning party or candidate, similar to the Brexit vote, and
have also led to increases in hate crime (e.g. the Trump election, see Bursztyn et al., 2017;
Mueller & Schwarz, 2018; but potentially also the latest Italian election, see Monella, 2018).
In that respect, there are two key policy implications.

The first concerns policing. For the police, it is of paramount importance to be prepared
for increases in hate crime of such high magnitudes. Handling racial or religious hate crimes
requires tact, experience, and expertise. Refresher courses for dealing with hate crime for
officers in the most affected locations, or distributing expert officers accordingly are two ex-
amples how an expected rise in hate crime can be addressed better than an unexpected one
(see Gerstenfeld, 2017). In case of a similar event, for example another referendum that is tied
closely to immigrants, the best predictor for the absolute rise in racial or religious hate crime
is the share of recent immigrants and the best predictor for the relative increase is the share
of people with formal qualifications;77 and this finding could arguably be extended beyond
London and Manchester, in particular to other British urban areas. Terror attacks also led to
sharp increases in hate crimes, but in different places.

The second policy implication concerns politics, namely holding certain referendums. While
many referendums target neither de jure nor de facto immigrants, or a specific group of people
in general, the Brexit vote shows that some did and it is arguably not unlikely that others will
follow. Taking into account the psychological trauma of hate crime victims (see e.g. Levin,
1999; Craig-Henderson & Sloan, 2003; McDevitt et al., 2001), the effects of such referendums
on hate crime should be taken into account. Consequently, appropriate accompanying and
preventive measures should be taken in the respective areas to counteract the potential in-
crease in hate crime in the weeks after the vote. In practice, examples of such measures include
training or mediation in schools or youth centers, or psychological and legal victim assistance
(see Gerstenfeld, 2017). Campaigns to encourage reporting hate crimes seem particularly suit-
able. Paired with investigating hate crimes thoroughly, this increases the expected legal cost
for offenders, counteracting the decrease in the expected social cost.

Moreover, while a shock is fundamental to analyze the role of expected social norms, a
gradual change in these expected norms has the same effect in the mechanisms discussed
above. Consequently, if there are signs of such a gradual change in expected norms or beliefs
of others, my findings help again to guide policy efforts to the most relevant locations. In that
respect, long term policies are more relevant, such as creating permanent training or mediation
centers or schemes. Reporting can be addressed more fundamentally with more time available.

77Alternatively, using the calculated predictions of the full model leads to an even better prediction.
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The confidence in the police can be strengthened, for example, or a strong local awareness of
alternative reporting possibilities can be built (see Gerstenfeld, 2017). The latter ideally also
result in police investigations and hence increase the expected punishment for offenders.

1.8 Conclusion

The key concept in the criminology literature with respect to increases in hate crime is
arguably that of ‘trigger events’: an event pushes certain potential offenders over the threshold
to commit a hate crime (see King & Sutton, 2013). In the classic economic formulation, a
crime is committed when its perceived benefits exceed the costs (see Becker, 1968), and a
‘trigger event’ can affect either factor. In this framework, my results help to narrow down
what the trigger implied by the Brexit vote was, in which areas triggered people acted, and
what underlying mechanisms were at play.

Regarding the trigger itself, the evidence points towards the Brexit vote being a public in-
formation shock regarding society’s attitude towards immigrants. While this cannot be stated
with certainty, several prominent alternative mechanisms can be ruled out. The temporal
structure, for example, is neither in line with an ‘inflammatory rhetoric’ mechanism, nor one
of changed economic fundamentals.

The spatial heterogeneity of the increase in hate crime was substantial, hence analyzing in
which areas triggered people acted is important. As a first step, I show that the heterogeneity
captured by census and vote data is considerable.

In a second step, I derive linear (prediction) models. These provide predictors with valid
confidence intervals. Both conditional post-selection lasso and the novel ad hoc splitting based
estimation lead to the same result: the share of recent immigrants is the best predictor for
the absolute increase in hate crime, and the fraction of people with formal qualifications is the
best predictor for the relative increase. The former, combined with a lower heterogeneity in
the relative effect, is in line with an opportunity channel. One mechanism consistent with the
latter is that the information update from the Brexit vote resulted in lower expected social
sanctions of hate crime, and that these sanctions are more important to prevent hate crime in
wealthier areas. The predictions and predictor estimates are also important to guide future
qualitative and quantitative research to better understand the effect of the Brexit vote on hate
crime, and potentially hate crime more generally. Moreover, they are of key importance for
policing and preventive measures.

In a third step, allowing for quadratic terms and interactions provides evidence that inter-
actions do not play an important role in best predicting the increase in hate crime after the
Brexit vote.

Finally, in a methodologically more standard fashion, each candidate variable is interacted
with the treatment dummy in separate regressions. This provides insight into individual
correlations, but ignores the model selection problem. Nevertheless, the results are in line
with the previous findings. Interestingly, the unemployment rate is neither economically nor
statistically significant.
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This four-step procedure of applying state-of-the-art machine learning methods to a uni-
versal unique treatment proves to be reasonable for the current setting, in part due to the
simulation evidence from using the real data. The first (and fourth) step can be directly ap-
plied to other settings. Whether or not conditional post-selection lasso can be used directly
depends on the setting. The current setting allows me to analyze the heterogeneity in a cross
sectional setup, and use the remaining panel data for detrending, demeaning, and deseasonal-
izing the dependent variable at the borough level. The key reasons why this is possible are that
the effect is temporary, and because including a borough fixed effect is reasonable. The third
step, using the proposed splitting based estimation, is theoretically ambiguous and relies on
simulations. Further theoretical research regarding the bias and consistency properties of this
method is needed and seems worthwhile given the promising simulation-performance. In my
simulations, the method performs best with few variables in the true data generating process.
Many variables carrying a strong signal are more problematic for the method, as then the
frequency with which the same model is chosen multiple times becomes prohibitively low.

Overall, this paper provides evidence on an agnostic basis to evaluate possible mechanisms
at play after the Brexit vote. This generates insight relevant for policy and academia alike.
While this insight does not provide all final answers regarding the specific mechanisms at
play, my findings help to identify those regions where the effect was particularly strong and
also those where the effect was virtually absent. Moreover, the fact that the result depicts
variables that are correlated and predictive of a larger increase can guide future studies. Either
these variables or something strongly correlated with them is likely of paramount importance.
More research is needed; examples include qualitative studies of the offenders’ motivation and
how they interpret public information shocks differently in different circumstances, or what
prevents increased offending in certain regions.
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Chapter 2

Dynamically Optimal Treatment Allocation
using Reinforcement Learning

2.1 Introduction

Consider a situation wherein a stream of individuals arrive sequentially - for example when
they get unemployed - to a social planner. Once each individual arrives, the planner needs
to decide what kind of action or treatment assignment - for example whether or not to offer
free job training - to provide to the individual, while taking into account various institutional
constraints such as limited budget and capacity. The decision on the treatment has to be
taken instantaneously, without knowledge of the characteristics of future individuals, though
the planner can, and should, form expectations over these future characteristics. Once an
action is taken, the individual is assigned to a specific treatment, leading to a reward, i.e. a
change in the utility for that individual. The planner does not observe these rewards directly
since they may be only realized much later, but she can estimate them using data from some
past observational studies. The action of the planner does, however, generate an observed
change to the institutional variables, such as budget or capacity. The planner takes note
of these changed constraints, and waits for the next individual to arrive. The process then
repeats until either time runs out or terminal constraints are hit, e.g. when budget or capacity
is depleted.

The above setup nests many important applications including selecting and supporting
people or projects with a fixed annual or quarterly budget or capacity. Indeed, we contend
that this is a common situation across governmental and non-governmental settings. Job
training, development aid, or any form of credit are only three examples that illustrate the
importance of reaching the best allocation decisions. In this paper, we show how one can
leverage randomized control trial or observational data and employ Reinforcement Learning
to estimate the optimal treatment assignment rule or policy function in this dynamic context
that maximizes ex-ante expected welfare.

If the dynamic aspect can be ignored, there exist a number of methods to estimate an op-
timal policy function that maximizes social welfare, starting from the seminal contribution of
Manski (2004), and further extended by Hirano and Porter (2009), Stoye (2009, 2012), Cham-
berlain (2011), Bhattacharya and Dupas (2012) and Tetenov (2012), among others. More
recently, Kitagawa and Tetenov (2018), and Athey and Wager (2018) have proposed using
Empirical Welfare Maximization (EWM) in this context. While these papers address the
question of optimal treatment allocation under co-variate heterogeneity, the resulting treat-
ment rule is static in that it does not change with time, nor with current values of institutional
constraints such as budget and capacity. Moreover, such rules assume that the population of
individuals under consideration is observable, which is not the case in our setup since indi-
viduals arrive sequentially. We also impose the requirement that the institutional constraints

51



(e.g. limited budget) hold ex-post. This too is in contrast to previous work which either re-
quired the constraints to hold on average (e.g. Bhattacharya and Dupas, 2012), or employed
a purely random allocation when the constraints were not met (e.g. Kitagawa and Tetenov,
2018). Note that the latter essentially implies using a different welfare criterion than the
standard ex-ante expected welfare criterion.

On the other hand, there also exist a number of methods for estimating the optimal
treatment assignment policy using sequential or ‘online’ data. This is known as the contextual
bandit problem, and a number of authors have proposed online learning algorithms for this
purpose including Dudik et al. (2011), Agarwal et al. (2014), Russo and van Roy (2016) and
Dimakopoulou et al. (2017). The central concern in bandit problems is the tradeoff between
exploration, for estimating the optimal treatment rule, and exploitation, for applying the best
current policy function. However, the eventual policy function that is learnt is still static in the
sense of not changing with institutional constraints or time. By contrast, we do not attempt
the question of exploration; indeed, the data we use is ‘offline’ in the sense of being observed
historically. However dynamics arise in our context due to inter-temporal tradeoffs: the social
planner has to weigh the utility gain from treating an individual arriving today against the
possibility that she may run out of budget or capacity for treating a more deserving individual
in the future.

Perhaps the closest set of results to our work is from the literature on dynamic treatment
regimes. We refer to Laber et al. (2014) and Chakraborty and Murphy (2014) for an overview.
Dynamic treatment regimes consist of a sequence of individualized treatment decisions for
health related interventions. Like our paper this involves solving a Bellman equation. However
the number of stages or decision points is quite small, typically between 1 and 3. By contrast,
the number of decision points (which is inversely related to frequency of arrivals) in our setting
is very high, and in fact we will find it more convenient to take the limit as the arrivals become
continuous and formulate the model as a differential equation. Additionally, in our paper, we
aim to find the optimal policy within a pre-specified class of policy rules. As explained by
Kitagawa and Tetenov (2018), one may wish to do this for computational, legal or incentive
compatibility reasons. We thus propose algorithms to solve for the optimum in a restricted
policy class. This is typically not a concern in dynamic treatment regimes. Finally, the data
requirements are very different. Dynamic treatment regimes are estimated from Sequential,
Multiple, Assignment Randomized Trials (SMART) (Murphy, 2005; Lei et al., 2012), where
participants move through two or three stages of treatment, which is randomized in each stage.
By contrast we only make use of a single RCT. Each individual in our setup is only exposed
to treatment once. The dynamics are faced not by the individual, but by the social planner.

In this paper we propose techniques for estimating an optimal policy function that maps the
current state variables of observed characteristics and institutional constraints to probabilities
over the set of actions. We treat the class of policy functions as given. Then for any policy
from that class, we can write down a Partial Differential Equation (PDE) that characterizes
the evolution of the expected value function under that policy, where the expectation is taken
over the distribution of the individual covariates. Using the data, we can similarly write
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down a sample version of the PDE that provides estimates of these value functions. The
estimated policy rule (within the candidate class) is the one that maximizes the estimated
value function at the initial time period. By comparing the two PDEs, we can uniformly
bound the difference in their corresponding solutions, i.e. the value functions. We then use
this to in turn bound the welfare regret from using the estimated policy rule relative to
the optimal policy in the candidate class. We find that the regret is of the (probabilistic)
order n−1/2; this is the same rate as that obtained by Kitagawa and Tetenov (2018) in the
static simultaneous allocation case. And also as in Kitagawa and Tetenov (2018), the rate
depends on the complexity of the policy function class being considered, as indexed by its
VC dimension. While treatment choice can be approached as a classification problem, we
do not base our approach on this literature. Due to our setting being dynamic, we instead
build on the optimal-control literature. Hence our theoretical results are based on exploiting
the properties of the PDEs using novel techniques that may be of independent interest. Our
techniques also allow for potentially non-differentiable value functions through the notion of
viscosity solutions to PDEs.

In terms of computation, we approximate the PDEs with suitable dynamic programming
problems by discretizing the number of arrivals. We then propose a modified Reinforcement
Learning algorithm that can be applied on the latter and that achieves the best value in a
pre-specified class of policy rules. Previous work in this literature in economics has used Gen-
eralized Policy Iteration (see e.g. Benitez-Silva et al., 2000). While this method works well
with discrete states, there are two major drawbacks: First, the algorithm becomes cumber-
some even with a few continuous states.78 Second, and more importantly, it does not allow
for restricting the solution to a pre-specified class of policy rules. In this paper, we propose
a modified Reinforcement Learning (RL) algorithm to solve this problem.79 We adapt the
Actor-Critic algorithm (e.g. Sutton et al., 2000; Bhatnagar et al., 2009) that has been applied
recently to great effect in applications as diverse as playing Atari games (Mnih et al., 2015) and
medical diagnosis (De Fauw et al., 2018). This appears to be a novel approach to the solution
of Hamilton-Jacobi-Bellman type PDEs. In addition to boasting of strong convergence prop-
erties, our algorithm is also parallelizable, which translates to very substantial computational
gains.

We also outline the computational and numerical properties of our algorithm. On the
computational side, we prove that it converges to a well defined optimum. This is based on
the convergence of stochastic gradient descent, and we are able to directly employ theorems
from the RL literature to this effect. On the numerical approximation side, we use results
from the theory of viscosity solutions to provide conditions on the level of discretization so
that the numerical error from this is negligible compared to the statistical error in the regret
bounds.

78Continuous states may be handled through discretization or parametric policy iteration. The former is
typically slower and suffers from a strong curse of dimensionality (see Benitez-Silva et al., 2000, Section 2.5);
while the latter requires numerical integration which is also very demanding with more than a few states. Also,
there is no proof of convergence for parametric policy iteration, and it is known that it fails to converge in
some examples.

79We refer to Sutton and Barto (2018) for a detailed comparison of recent RL algorithms with policy iteration.
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Finally, we also incorporate non-compliance in our dynamic environment. Under instru-
ment monotonicity, the only population subgroup for whom the social planner can affect a
change in welfare are the compliers. For always-takers and never-takers the social planner
would always end up treating the former and never treating the latter. Hence we can still per-
form welfare maximization using identified quantities, i.e. the local average treatment effect,
and the conditional probabilities of being in each of the sub-groups given the covariates.

We illustrate the feasibility of our algorithm using data from the Job Training Partnership
Act (hereafter JTPA). We incorporate dynamic considerations into this setting in the sense that
the planner has to choose whether to send individuals for training as they arrive sequentially.
The planner faces a budget constraint, and the population distribution of arrivals is also
allowed to change with time. We consider policy rules composed of 5 continuous state variables
(3 individual covariates along with time and budget), to which we add some interaction terms.
We then apply our Actor-Critic algorithm to estimate the optimal policy rule.

2.2 An Illustrative Example: Dynamic Treatment Allocation
with Budget or Capacity Constraints

To illustrate our setup and methods consider the following example: A social planner wants to
provide training to unemployed people. The planner starts with a fixed budget that she can
use to fund the training. Individuals arrive sequentially when they get unemployed, and the
planner is required to provide an instantaneous decision on whether to allocate training to each
individual as he/she arrives. The planner makes a decision based on the current budget and
the characteristics of the individual. Some individuals benefit more from the treatment than
others, so the planner has to decide whether to provide training to the current individual, or
to to hold off for a more eligible applicant at the risk of losing some utility due to discounting.
To help the planner decide, she can draw on information from a historical Randomized Control
Trial (RCT) on the effect of training, along with data on past dynamics of unemployment. We
assume in this section that the waiting time between arrivals is drawn from an exponential
distribution that does not vary with time, and also that the cost of training is the same for
all individuals. This allows us to characterize the problem in terms of Ordinary Differential
Equations (ODEs), which greatly simplifies the analysis. We consider more general setups,
leading to Partial Differential Equations (PDEs), in the next section.

Formally, let x denote the vector of characteristics on individual, based on which the
planner makes a decision on whether to provide training (a = 1) or not (a = 0). The current
budget is denoted by z. Once an action, a, has been chosen, the planner receives a reward,
i.e. a change in social welfare, of Y (a) that is equivalent to the potential outcome of the
individual under action a. We shall assume that Y (a) is affected by the covariates x but not
the budget. Define r(x, a) = E[Y (a)|x] as the expected (instantaneous) reward for the social
planner when the planner chooses action a for an individual with characteristics x. Since we
only consider additive welfare criteria in this paper, we may normalize r(x, 0) = 0, and set
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r(x, 1) = E[Y (1) − Y (0)|x]. Note that we can accommodate various welfare criteria, as long
as they are utilitarian, by redefining the potential outcomes.

If the planner takes action a = 1, her budget is depleted by c, otherwise it stays the same.
The next individual arrives after a waiting time ∆t drawn from an exponential distribution
Exponential(N). Note that N is the expected number of individuals in a time interval of length
1 (one could alternatively use this as the definition of N itself). We shall use N to rescale
the budget so that c = 1/N . With this, we reinterpret the budget as the fraction of people
in a unit time period that can be treated. Each time a new individual arrives, the covariates
for the individual are assumed to be drawn from a distribution F that is fixed but unknown.
The utility from treating successive individuals is discounted exponentially by e−β∆t. Note
that the expected discount factor is given by E[e−β∆t] = 1− β̃

N where β̃ = β +O(N−1). For
simplicity, we shall let β̃ = β.

The planner chooses a policy function π(a|x, z) that maps the current state variables x, z
to a probabilistic choice over the set of actions:

π(.|x, z) : (x, z) −→ [0, 1].

The aim of the social planner is to determine a policy rule that maximizes expected welfare
after discounting. Let vπ(x, z) denote the value function for policy π, defined as the expected
welfare from implementing policy π(·|x, z) starting from the state (x, z). In other words,

vπ(x, z) = E

[
1

N

∞∑
i=1

e−βTir(xi, 1)π(1|xi, zi)I(zi > 0)

∣∣∣∣∣x, z
]
,

where the expectation is joint over the times of arrival Ti :=
∑i

j=1 ∆tj , covariates x ∼ F

and zi which evolves according to the distribution of x and the randomization of the policy
π(.). It is more convenient to represent vπ(z, t) in a recursive form as the fixed point to the
equations80

vπ(x, z) =
r(x, 1)

N
π(1|x, z) +

(
1− β

N

)
Ex′∼F

[
vπ

(
x′, z − 1

N

)
π(1|x, z) + vπ(x′, z)π(0|x, z)

]
for z > 1/N

vπ(x, 0) = 0.

We can obtain more insight into the model if we integrate out x. This gives us the integrated
value function, which we also call the h-function:

hπ(z) = Ex∼F [vπ(x, z)].

Define π̄(a|z) = Ex∼F [π(a|x, z)] and r̄π(z) = Ex∼F [r(x, 1)π(1|x, z)]. We can also obtain hπ(.)

80We assume for simplicity that z is always in multiples of 1/N .
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as the solution to the recursive equations

hπ(z) =
r̄π(z)

N
+

(
1− β

N

){
hπ

(
z − 1

N

)
π̄(1|z) + hπ(z)π̄(0|z)

}
for z > 1/N, (2.1)

hπ(0) = 0.

In practice the value of N is very large, so that budget is almost continuous. In such cases
it is more convenient to work with the limiting version of (2.1) as N → ∞. To this end let
us subtract

(
1− β

N

)
hπ(z) from both sides of equation (2.1), multiply both sides by N and

take the limit as N →∞. We then end up with the following Ordinary Differential Equation
(ODE) for the evolution of hπ(.):

βhπ(z) = r̄π(z)− π̄(1|z)∂zhπ(z), hπ(0) = 0, (2.2)

where ∂z denotes the differential operator with respect to z, and hπ(0) = 0 is the initial
condition for the ODE.81 (2.2) is similar to the well known Hamilton-Jacobi-Bellman (HJB)
equation. The key difference however is that (2.2) determines the evolution of hπ(.) under a
specified policy, while the HJB equation provides an equation for the evolution of the value
function under an optimal policy. Both the discrete and continuous forms (2.1) , (2.2) are in-
sightful: we use the discrete version for computation, while the ODE version is more convenient
for our theoretical results.

The social planner’s decision problem is then to choose the optimal policy π∗ that max-
imizes the ex-ante expected welfare hπ(z0), over a pre-specified class of policies Π, where z0

denotes the initial value of the budget:

π∗ = argmax
π∈Π

hπ(z0).

How should the planner choose Π? Let us first look at the first best policy function:

π∗FB(1|x, z) = I
{
r(x, 1) + ∂zhπ∗FB (z) > 0

}
.

While π∗FB(.) maximizes the planner’s welfare, it suffers from two main drawbacks: First,
estimation of π∗FB(1|x, z) is computationally expensive when the dimension of states is very
large. Second, π∗FB(1|x, z) is highly non-linear in x, z, and the social planner may prefer
policies that are simpler for legal, ethical or incentive compatibility reasons. For instance,
if the policy function is highly non-linear in z, individuals may rationally decide to arrive
at slightly different times when the budget is different. Kitagawa & Tetenov (2018) provide
various arguments as to why it would be useful to restrict the complexity of π(1|x, z) with
respect to x in the static case. Ultimately, the choice of Π depends on computational and
policy considerations of the planner. For our theoretical results we take this as given and
consider a class Π of policies indexed by some (possibly infinite dimensional) parameter θ.

81The Picard-Lindeöf theorem guarantees a unique solution to (2.2) as long as r̄π(z) and π̄(1|z) are contin-
uous.
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Our results on computation are only slightly more restrictive in that we require πθ(.) to be
differentiable in θ. This still allows for rich spaces of policy functions. A rather convenient one
that we use in our empirical results is the class of exponential soft-max functions. To describe
this, let f(x, z) denote a vector of basis functions of dimension k over the space of (x, z). The
soft-max function takes the form

πθ(1|x, z) =
exp(θ′f(x, z))

1 + exp(θ′f(x, z))

for some parameter θ. In this case, the set of all possible policy functions considered is the
parametric class Π ≡ {πθ(.|s) : θ ∈ Θ}, for some compact set Θ. An advantage of the softmax
form is that it can be used to approximate any deterministic policy arbitrarily well. Indeed,
it can approximate π∗FB(.) if one chooses the dimension k of the basis to be large enough. At
the same time, it permits greater freedom than a deterministic policy since in problems with
significant function approximation, the best approximate policy is usually stochastic. Other
choices of policy classes are also possible, e.g. multi-layer neural networks. In Section 2.6.3 we
additionally discuss how one could work with deterministic classes of policy rules such as the
linear and generalized eligibility rules considered in Kitagawa and Tetenov (2018).

In what follows, we specify the policy class as Π ≡ {πθ(.) : θ ∈ Θ} and denote hθ ≡ hπθ
along with r̄θ ≡ r̄πθ . The social planner’s problem is then

θ∗ = argmax
θ∈Θ

hθ(z0). (2.3)

Clearly (2.3) is not feasible as one does not know r(x, 1), nor the distribution F to calculate
hθ(z). However the planner does have access to an RCT. Let us assume that the RCT consists
of an iid draw of size n from the distribution F . The empirical distribution Fn of these
observations is thus a good proxy for F . Let W denote the treatment assignment in the RCT
data. We also let µ(x,w) = E[Y (w)|X = x,W = w] denote the conditional expectations for
w = 0, 1, and p(x), the propensity score. We can then estimate r(x, 1) in many different ways.
We recommend a doubly robust method (see Athey and Wager, 2018), e.g.

r̂(x, 1) = µ̂(x, 1)− µ̂(x, 0) + (2W − 1)
Y − µ̂(x,W )

Wp̂(x) + (1−W )(1− p̂(x))
,

where µ̂(x,w) and p̂(x) are non-parametric estimates of µ(x,w) and p(x) respectively, and Y is
the observed outcome variable. In practice, µ̂(x,w) can be obtained through series regression,
or lasso; while p̂(x) can be obtained using a logistic regression or logistic lasso.

Define π̂θ(a|z) = Ex∼Fn [πθ(a|x, z)] and r̂θ(z) = Ex∼Fn [r(x, 1)πθ(1|x, z)]. Based on the
knowledge of r̂(.) and Fn, we can calculate the sample version of the h-function in the discrete
case as the solution to the recursive equations:

ĥθ(z) =
r̂θ(z)

N
+

(
1− β

N

){
ĥθ

(
z − 1

N

)
π̂θ(1|z) + ĥθ(z)π̂θ(0|z)

}
for z > 1/N, (2.4)

ĥθ(0) = 0.

57



Alternatively, in the limit as N →∞, we have the following ODE:

βĥθ(z) = r̂θ(z)− π̂θ(1|z)∂zĥθ(z), ĥθ(0) = 0. (2.5)

Using ĥθ(.) we can solve a sample version of the social planner’s problem:

θ̂ = argmax
θ∈Θ

ĥθ(z0).

Given θ, one could solve for ĥθ by backward induction starting from z = 1/N using (2.4).
In this simple example this is feasible as long as N is not too large, but note that one would
still need to calculate the summations Ex∼Fn [πθ(a|x, z)] and Ex∼Fn [r(x, 1)πθ(1|x, z)] for all
the possible values of z. And even where solving for ĥθ(z0) is feasible, we yet have to maximize
this over θ ∈ Θ. Such a strategy is computationally too demanding.82 Therefore in this paper
we advocate a Reinforcement Learning algorithm that directly ascends along the gradient
of ĥθ(z0) and simultaneously calculates ĥθ(z0) in the same series of steps. This makes the
algorithm very efficient. We describe this in greater detail in Section 2.4.

In the remainder of this section, we briefly outline the theory behind our approach. The
derivations here are informal, but provide intuition for our formal results in Section 2.5.

2.2.1 Regret Bounds

We would like to know how θ̂ compares to θ∗ in terms of the regret hθ∗(z0) − hθ̂(z0). The
bound for this depends on the sample size n and the complexity of the space Π = {πθ : θ ∈ Θ}.
One way to determine the complexity of Π is by its Vapnik-Cervonenkis (VC) dimension. In
particular, denote by v the VC-subgraph index of the collections of functions

I = {πθ(1|·, z) : z ∈ [0, z0], θ ∈ Θ}

indexed by z and θ. We shall assume that v is finite. Kitagawa and Tetenov (2018) were
the first to characterize the regret in the static setting in terms of the VC dimension of Π.
Relative to this, our definition of the complexity differs in two respects. First, our policy
functions are probabilistic (but cover deterministic treatment rules as special cases). Second,
for the purposes of calculating the VC dimension, we treat z as an index to the functions
πθ(1|·, z), similarly to θ. In other words πθ(1|·, z1) and πθ(1|·, z2) with the same θ are treated
as different functions. This is intuitive since how rapidly the policy rules change with budget
is also a measure of their complexity. Note that the VC index of I is not dim(θ) when θ is
Euclidean, but is in fact smaller. To illustrate, suppose that x is univariate and

I ≡ {Logit(g1(z) + g2(z)x) : g1, g2 are arbitrary functions}.
82Alternatively, one could solve ODE (2.5) directly, but this also has the same complexity.
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In this case the VC-subgraph index of I is at most 2. This is because the VC-subgraph index
of the class of functions F = {f : f(x) = a + xb over a, b ∈ R} is 2 since F lies in the (two
dimensional) vector space of the functions 1, x. The VC-subgraph index of I is the same or
lower than that of F (since the logit transformation is monotone), hence v ≤ 2 in this example.

We now show how one can derive probabilistic bounds for the regret hθ∗(z0) − hθ̂(z0).
First, under the assumption of finite VC dimension and other regularity conditions, Athey
and Wager (2018) show that for doubly robust estimates of the rewards,

Ex∼F

[
sup

θ∈Θ,z∈[0,z0]
|r̄θ(z)− r̂θ(z)|

]
≤ C0

√
v

n
, (2.6)

Ex∼F

[
sup

θ∈Θ,z∈[0,z0]
|π̄θ(1|z)− π̂θ(1|z)|

]
≤ C0

√
v

n

for some universal constant C0 < ∞. The above implies that the ODEs (2.2) and (2.5)
governing the motion of hθ(z) and ĥθ(z) are very similar, which indicates that hθ(.) and ĥθ(.)
should be uniformly close. Formally, denote δ̂θ(z) = hθ(z)− ĥθ(z). Now under some regularity
conditions (made precise in Section 2.5), it can be shown that supθ∈Θ,z∈[0,z0] |hθ(z)| < ∞.
Then from (2.2) and (2.5), we have

∂z δ̂θ(z) =
−1

π̄θ(1|z)
βδ̂θ(z) +

r̄θ(z)

π̄θ(1|z)
− r̂θ(z)

π̂θ(1|z)
+

(
1

π̂θ(1|z)
− 1

π̄θ(1|z)

)
βĥθ(z); δ̂θ(0) = 0

or
∂z δ̂θ(z) =

−1

π̄θ(z)
βδ̂θ(z) +Kθ(z); δ̂θ(0) = 0, (2.7)

where

Ex∼F

[
sup

θ∈Θ,z∈[0,z0]
|Kθ(z)|

]
≤M

√
v/n

for some M < ∞ by (2.6) and the uniform boundedness of hθ(z), assuming that π̄θ(z) is
uniformly bounded away from 0. Rewriting (2.7) in integral form and taking the modulus on
both sides, we obtain

∣∣∣δ̂θ(z)∣∣∣ ≤ zM√ v

n
+

∫ z

0

1

π̄θ(ω)
β
∣∣∣δ̂θ(ω)

∣∣∣ dω,
based on which we can conclude via Grönwall’s inequality that

∣∣∣δ̂θ(z)∣∣∣ ≤M1

√
v

n

uniformly over all θ ∈ Θ, z ∈ [0, z0], for some M1 < ∞ - here, all the inequalities should
be interpreted as holding with probability approaching one under F . The above discussion
implies

hθ∗(z0)− hθ̂(z0) ≤ 2 sup
θ∈Θ,z∈[0,z0]

∣∣∣δ̂θ(z)∣∣∣ ≤ 2M1

√
v

n
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with probability approaching one under F . Hence through this derivation, we have shown
that the regret declines with

√
v/n, which is the same rate that Kitagawa and Tetenov (2018)

derived for the static case.

2.2.2 Discretization and Numerical Error

As we mentioned earlier, we do not recommend using the ODE version of the problem to solve
for θ̂. Instead, it is usually much quicker to solve a discrete analogue of the problem as in (2.4).
Now in practice N maybe unknown or too large, but in either case we can simply employ any
suitably large normalizing factor bn, and solve the recurrence relation

h̃θ(z) =
r̄θ(z)

bn
+

(
1− β

bn

){
h̃θ

(
z − 1

bn

)
π̄θ(1|z) + h̃θ(z)π̄θ(0|z)

}
(2.8)

for h̃θ(.) together with the initial condition h̃θ(0) = 0. We are now faced with the issue of
choosing bn so that h̃θ(.) is sufficiently close to ĥθ(.) obtained from (2.5).

To answer this, we first note that ĥθ and ∂zĥθ are both Lipschitz continuous uniformly in
θ under some regularity conditions (c.f Section 2.5). Lipschitz continuity of ∂zĥθ implies

ĥθ(z) =
r̄θ(z)

bn
+

(
1− β

bn

){
ĥθ

(
z − 1

bn

)
π̄θ(1|z) + ĥθ(z)π̄θ(0|z)

}
+
Bθ(z)

b2n
,

where |Bθ(z)| ≤ B < ∞ uniformly over θ and z. Then defining δ̃θ(z) = ĥθ(z) − h̃θ(z), and
subtracting (2.8) from the previous display equation, we get

δ̃θ(z) =

(
1− β

bn

){
δ̃θ

(
z − 1

bn

)
π̄θ(1|z) + δ̃θ(z)π̄θ(0|z)

}
+
Bθ(z)

b2n
.

Now let Z(n) = {1/bn, 2/bn, . . . , z0}. From the previous display equation, it follows

sup
θ∈Θ,z∈Zn

|δ̃θ(z)| ≤
(

1− β

bn

)
sup

θ∈Θ,z∈Zn
|δ̃θ(z)|+

B

b2n
,

which implies supθ∈Θ,z∈Zn |δ̃θ(z)| ≤ B/bn upon rearrangement. So far h̃θ(.) was only defined
for multiples of bn, but we can extend it to all of [0, z0] by setting h̃θ(z) = h̃θ (bn bz/bnc).
Combining the above with the (uniform) Lipschitz continuity of ĥθ(·), we obtain

sup
θ∈Θ,z∈[0,z0]

∣∣∣δ̃θ(z)∣∣∣ = O

(
1

bn

)
.

Suppose that θ were estimated using (2.8) as

θ̃ = argmax
θ∈Θ

h̃θ(z0).
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Then in view of the previous discussion,

hθ∗(z0)− hθ̃(z0) ≤ 2M1

√
v

n
+ 2 sup

θ∈Θ,z∈[0,z0]

∣∣∣δ̃θ(z)∣∣∣ = 2M1

√
v

n
+O

(
1

bn

)
.

Hence the numerical error from discretization declines at the rate b−1
n . In particular, as long

as bn is chosen to be substantially bigger than
√
n, this approximation error is dwarfed by the

statistical error from the regret bound derived in Section 2.2.1.

2.3 General Setup

In this section, we generalize the setup of Section 2.2 in two ways: First we let the waiting times
vary with t so that time now becomes a state variable. Second, we allow for the evolution of z
to depend on the previous state variable (x, z, t). Among other things, this allows for situations
in which the cost of treatment is different for people with different covariates. We do not aim
to provide the most general model, but rather envision this as a template to demonstrate our
general results. In what follows, we use the ‘prime’ notation (e.g. x′) to denote one-step ahead
quantities following the current one (e.g. x).

The state variables are now
s := (x, z, t),

where x denotes the vector of characteristics or covariates of the individual, z is the insti-
tutional variable (e.g. the current budget or capacity), and t is time. As in Section 2.2, the
planner has to choose among actions a = {0, 1}. The choice of the action is determined by a
policy function, πθ(a|s) , indexed by θ, that maps the current state s to probabilities over the
set of actions:

πθ(.|s) : s −→ [0, 1].

Once an action, a, has been chosen, the planner receives a reward, i.e. a change in social
welfare, of Y (a) that is equivalent to the potential outcome of the individual under action a.
As in Section 2.2, we assume that Y (a) is affected by the covariates x but not the institutional
variable z or time t. Similarly, we also define r(x, 1) = E[Y (1) − Y (0)|s], together with the
normalization r(x, 0) = 0.

The waiting time t′ − t between individuals is random, and distributed as an Exponential
random variable with parameter λ(t):

N(t′ − t) ∼ Exponential(λ(t)),

where N is a normalization term, defined akin to Section 2.2 as the expected discounted
number of individuals that the planner would face. In contrast to Section 2.2, the hazard
rate λ(t) is now allowed to change with t. Additionally, the previous state s, and action a
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determine the future values of the institutional variable as

N(z′ − z) = Ga(x, t, z),

where Ga(.) is some known, deterministic function. For example, in the setup of Section 2.2,

Ga(x, t, z) =

−1 if a = 1 and z > 0

0 if a = 0.
(2.9)

Our current setup is more general and can allow for situations where the cost of the treatment
varies with individual, or with time. Finally, the distribution of the covariates is given by

x ∼ F,

where F is fixed and does not change with t or z. The program starts with an initial value of
z = z0 at t = t0, and ends when z ≤ 0.

It is useful to note here the assumptions implicit in our model. First, the rewards are
independent of time. This rules out cases where the effect on an action for each individual
may change with the arrival time of the individual. Note that rewards may still indirectly
depend on time if the distribution of the covariates changes with time. This assumption is
mainly made for convenience. Where estimation of time varying rewards is possible, one can
estimate r(x, t, a), and our results go through with some modifications. Note also that we
prohibit past values of x from affecting the distribution of x′. This rules out network effects,
for instance.

More importantly, our setup rules out situations where individuals can strategically respond
to the social planner’s policy, for example by arriving at different times. Indeed, the waiting
times and distribution of covariates are assumed to be independent of all state variables except
time. This is reasonable in some contexts, such as in unemployment dynamics where the date
of termination is not under complete control of the individual. Alternatively, this is also
reasonable if the policy under consideration is incentive compatible. For instance, if the social
planner were to pool individuals by placing them in a queue for a short while, this would
reduce the incentive for any single individual to change his/her arrival time.

Finally, we also do not allow the distribution of covariates to vary with time. This is a
restrictive assumption, and imposed mainly for ease of exposition and derivations. In Section
2.6.2, we show how one could relax this assumption.

Define Vθ(s) as the expected discounted value of all normalized future rewards r(x, a)/N ,
starting from state s, and when the planner chooses actions according to πθ. We let gλ(t)(.)

denote the probability density function of the exponential distribution with parameter λ(t).
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Vθ(.) can be obtained as the fixed point of the recursive equation:

Vθ(s) =
r(x, 1)πθ(1|x, z, t)

N

+

∫
e−β

ω
NEx′∼F

[
Vθ

(
x′, z +

G1(x, t, z)

N
, t+

ω

N

)
π(1|x, z, t) + . . . (2.10)

. . . +Vθ

(
x′, z +

G0(x, t, z)

N
, t+

ω

N

)
π(0|x, z, t)

]
gλ(t)(ω)dω, for z > 0

together with
Vθ(s) = 0 for z = 0.

As in Section 2.2, it will be more convenient to work with the integrated value function
hθ(z, t) = Ex∼F [Vθ(x, z, t)]. The recursive equation for hθ(z, t) is given by

hθ(z, t) =
Ex∼F [r(x, 1)πθ(1|x, z, t)]

N

+

∫
e−β

ω
NEx∼F

[
hθ

(
z +

G1(x, t, z)

N
, t+

ω

N

)
π(1|x, z, t) + . . . (2.11)

. . . +hθ

(
z +

G0(x, t, z)

N
, t+

ω

N

)
π(0|x, z, t)

]
gλ(t)(ω)dω, for z > 0

together with
hθ(z, t) = 0 for z = 0.

The above expression considerably simplifies if one considers the continuous case obtained as
the limit of N →∞. To this end, let us define the quantities

r̄θ(z, t) := Ex∼F [r(x, 1)πθ(1|x, z, t)]

and
Ḡθ(z, t) := Ex∼F [G1(x, z, t)πθ(1|x, z, t) +G0(x, z, t)πθ(0|x, z, t)] .

Now consider subtracting hθ (z, t)
∫
e−β

ω
N gλ(t)(ω)dω from both sides of equation (2.11), multi-

plying both sides by N , and taking the limit as N →∞. This leads (after some re-arrangement
of terms) to the following Partial Differential Equation (PDE) for the evolution of hθ(z, t):

λ(t)Ḡθ(z, t)∂zhθ(z, t) + ∂thθ(z, t)− βhθ(z, t) + λ(t)r̄θ(z, t) = 0, hθ(0, t) = 0 ∀ t (2.12)

where ∂z, ∂t are the partial differential operators, and hθ(0, t) = 0 is the boundary condition
for the PDE. The ‘derivation’ of (2.12) from (2.11) should be considered heuristic, the rigorous
justification is given by Theorem 3. For now, we will take PDE (2.12) to be the law of motion
governing the evolution of hθ(z, t) and assess its properties directly.

Unfortunately, for nonlinear PDEs of the form (2.12) above, it is unclear whether a classical
solution (i.e. a solution hθ(z, t) that is continuously differentiable) exist. Consequently, the
relevant solution concept that we need to employ here is that of a viscosity solution (Crandall
and Lions, 1983), which allows for lack of differentiability while still satisfying (2.12) in a
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generalized sense. This is a common solution concept for equations of the HJB form; we
refer to Crandall, Ishii and Lions (1992) for a user’s guide, and Achdou et al. (2017) for a
useful discussion. In our context, existence of a unique viscosity solution to (2.12) requires the
following conditions:

Assumption 1

(i) Ḡθ(z, t) and r̄θ(z, t) are Lipschitz continuous in (z, t) uniformly over θ.

(ii) λ(t) is Lipschitz continuous and uniformly bounded away from 0 for all t.

(iii) Ḡθ(z, t) is uniformly bounded away from 0 for all θ, z, t.

Assumption 1(i) requires Ḡθ(z, t) and r̄θ(z, t) to be sufficiently smooth. A sufficient con-
dition for this is πθ(1|x, t, z) is Lipschitz continuous in z, t uniformly over x, θ, but this is
still stronger than required. The assumption allows for non-smooth πθ as long as it can be
smoothed by taking expectations over x. Assumption 1(ii) implies that the expected waiting
time between arrivals varies smoothly with t and is also bounded from above (recall that the
expected waiting times are given by λ(t)−1). Assumption 1(iii) restricts the policy function
class and the functions Ga(x, z, t) so that there is always some expected change to the budget
at any given state. This is a mild assumption; as long as there exists a fraction of people that
benefit from treatment, it is a dominant strategy to choose a policy that generates a change
to the budget.

Lemma 2

Suppose that Assumption 1 holds. Then for each θ there exists a unique viscosity
solution hθ(z, t) to (2.12).

Proof: see Appendix B.1.
Note that (2.12) define a class of PDEs indexed by θ, the solution to each of which is the

integrated value function hθ(z, t) from following policy πθ. The social planner’s objective is
to choose the optimal policy function parameter, θ∗, that maximizes ex-ante expected utility
over the class of the policy functions Π = {πθ : θ ∈ Θ}:

θ∗ = argmax
θ∈Θ

hθ(z0, t0), (2.13)

where z0 and t0 refer to the initial time and budget respectively.

2.3.1 The Sample Version of the Social Planner’s Problem

The unknown parameters in the social planner’s problem are F , r(x, a) and λ(·). As discussed
in Section 2.2, the social planner can leverage RCT/observational data to obtain estimates
Fn and r̂(x, a) of F and r(x, a). In addition to these, she also now requires an estimate λ̂(t)

of the waiting times λ(t). In some cases, this can be estimated from the RCT data itself.
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Alternatively, it is possible to use a second data source and obtain λ̂(t) through a Poisson
regression, for example. This is feasible in the context of unemployment dynamics.

Given the estimates Fn, r̂(x, a), λ̂(t), and the policy πθ(.), we can plug them in to obtain
the quantities

r̂θ(z, t) ≡ Ex∼Fn [r̂(x, 1)πθ(1|x, z, t)]

and
Ĝθ(z, t) = Ex∼Fn [G1(x, z, t)πθ(1|x, z, t) +G0(x, z, t)πθ(0|x, z, t)] .

Based on the above we can construct the sample version of PDE (2.12) as

λ̂(t)Ĝθ(z, t)∂zĥθ(z, t) + ∂tĥθ(z, t)− βĥθ(z, t) + λ̂(t)r̂θ(z, t) = 0, ĥθ(0, t) = 0 ∀ t. (2.14)

A unique solution to PDE (2.14) exists for each θ under analogous conditions to Assumption
1, so we do not repeat them here. The unique solution is ĥθ(z, t), the value function under an
empirical dynamic environment determined by the quantities Fn, r̂(x, a), λ̂(t). As before, one
should think of (2.14) as defining a class of PDEs indexed by θ, the solution to each of which
is the integrated value function ĥθ(z, t) that can be used as an estimate for hθ(z, t). Based
on these integrated value function estimates, we can now solve a sample version of the social
planner’s problem as follows:

θ̂ = argmax
θ∈Θ

ĥθ(z0, t0). (2.15)

While the PDE form for ĥθ(z, t) is very convenient for our theoretical results, this is not
quite practical for computing θ̂. So for estimation we use a discretized version of (2.14), akin
to (2.11):

ĥθ(z, t) =


r̂θ(z,t)
bn

+ En,θ

[
e−β(t′−t)ĥθ (z′, t′) |z, t

]
for z > 0

0 for z = 0
(2.16)

where

En,θ

[
e−β(t′−t)ĥθ

(
z′, t′

)
|z, t

]
:=

∫
e−β

ω
bnEx∼Fn

[
ĥθ

(
z +

G1(x, t, z)

bn
, t+

ω

bn

)
π(1|x, z, t)

+ĥθ

(
z +

G0(x, t, z)

bn
, t+

ω

bn

)
π(0|x, z, t)

]
gλ̂(t)(ω)dω.

More generally, for any function f , we let En,θ[f(z′, t′)|z, t] denote the expectation over z′, t′

conditional on the values of t, z and when following the policy πθ. Precisely the expectation is
joint over three independent probability distributions: (i) The distribution Fn of the covariates,
(ii) the probability distribution over the (exponential) waiting time process indexed by {λ̂(t) :

t ∈ [t0,∞)}, and (iii) the probability distribution induced on z′ due to the randomization of
policies using πθ(a|s).

Note that we have chosen to ‘discretize’ (2.16) by the factor bn in analogy with the discus-
sion in Section 2.2.2. One can show that as bn →∞, the solution to (2.16) converges to that
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of (2.14). A formal statement to this effect, along with a bound on the numerical error for a
given choice of bn, is given in Section 2.5.1.

A useful aspect of the estimation of θ̂ is that it is equivalent to solving for the optimal
policy function under the sample dynamics described by Fn, r̂(x, a) and λ̂(t). Note that in
the sample version, both the rewards r̂(x, a), and dynamics (given a policy function π(.)) are
known. This nests the estimation of θ̂ into a standard Reinforcement Learning problem for
learning the optimal policy function under a known dynamic environment. In the next section,
we apply one such RL algorithm, the Actor-Critic algorithm.

2.4 The Actor-Critic Algorithm

In a standard Reinforcement Learning (RL) framework, an algorithm runs multiple instances,
called episodes, of a dynamic environment (or game). At any particular state on any particular
episode the algorithm takes an action a according to the current policy function πθ and observes
the reward and the future value of the state. Based on these observed values, it updates the
policy parameter to some new value θ′ according to a pre-specified criterion. The process then
continues with the new updated policy function πθ′ until the parameter θ or the cumulative
rewards converges.

Estimation of θ̂ in equation (2.16) fits naturally in the above context, since we can simulate
a ‘sample’ dynamic environment as follows: Suppose that the current state is s ≡ (x, z, t), and
the policy parameter is θ. The planner chooses an action a according to the policy function
πθ(a|s), which results in a reward of r̂(x, t). The next individual arrives at time t′ = t+∆t/bn

where
∆t ∼ Exponential(λ̂(t)).

New values of the institutional state variables are obtained as z′ = z + ∆z/bn, where

∆z = Ga(x, t, z).

New values of the covariates x′ are drawn from the distribution Fn(.), i.e. each individual is
drawn with replacement with probability 1/n from the sample set of observations. Based on
the reward r̂(x, a) and new state (x′, z′, t′), the policy parameter is updated to a new value
θ. This process then repeats indefinitely until θ converges. In between, each time an episode
ends, we simply restart a new episode.

In this section, we adapt one of the most widely used RL algorithms - the Actor-Critic
algorithm - to our context. We differ from the standard RL approach, however, in employing
the integrated value function ĥθ(z, t) as the central ingredient of our algorithm instead of the
value function V̂θ(s) - we explain the rationale for this in Section 2.4.1 below.

Actor-Critic algorithms aim to calculate θ̂ by updating θ at each state of each episode
using stochastic gradient descent along the direction ĝ(θ) ≡ ∇θ

[
ĥθ(z0, t0)

]
:

θ ←− θ + αθĝ(θ),
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where αθ is the step size parameter or learning rate. Denote by Q̂θ(s, a), the action-value
function

Q̂θ(s, a) := r̂n(x, a) + En,θ

[
e−β(t′−t)ĥθ(z

′, t′)|s, a
]
, (2.17)

where r̂n(x, a) := r̂(x, a)/bn. The Policy-Gradient theorem (see e.g. Sutton et al., 2000)
provides an expression for ĝ(θ) as

ĝ(θ) = En,θ

[
e−β(t−t0)Q̂θ(s, a)∇θ lnπ(a|s; θ)

]
,

where En,θ[.] in this context denotes the expectation over the (stationary) distribution of the
states s and actions a induced by the policy function πθ in the (sample) dynamic environment
of Section 2.3.1. A well known result (see e.g. Sutton and Barto, 2018) is that

En,θ

[
e−β(t−t0)Q̂θ(s, a)∇θ lnπ(a|s; θ)

]
= En,θ

[
e−β(t−t0)

(
Q̂θ(s, a)− b(s)

)
∇θ lnπ(a|s; θ)

]
for any arbitrary ‘baseline’ b(.) that is a function of s. Let ḣθ(z, t) denote some functional
approximation for ĥθ(z, t). We exploit the fact that the continuation value of the state-action
pair only depends on z, t, and therefore use ḣθ(z, t) as the baseline, which gives us

ĝ(θ) = En,θ

[
e−β(t−t0)

(
Q̂θ(s, a)− ḣθ(z, t)

)
∇θ lnπ(a|s; θ)

]
.

The above is infeasible since we don’t know Q̂θ(s, a). However we can heuristically approximate
Q̂θ(s, a) with the one step ‘bootstrap’ return as suggested by equation (2.17) (here the term
‘bootstrap’ refers to its usage in the RL literature, see Sutton and Barto, 2018):

R(1)(x, a) = r̂n(x, a) + I{z′>0}e
−β(t′−t)ḣθ(z

′, t′),

This enables us to obtain an approximation for ĝ(θ) as

ĝ(θ) ≈ g̃(θ) = En,θ

[
e−β(t−t0)δn(s, s′, a)∇θ lnπ(a|s; θ)

]
, (2.18)

where δn(s, s′, a) is the Temporal-Difference (TD) error defined as

δn(s, s′, a) := r̂n(x, a) + I{z′>0}e
−β(t′−t)ḣθ(z

′, t′)− ḣθ(z, t).

We now describe the functional approximation for ĥθ(z, t). Let φz,t = (φ
(j)
z,t , j = 1, . . . , dν)

denote a vector of basis functions of dimension dν over the space of z, t. For the sake of
argument, consider approximating ĥθ(z, t) by choosing the weights ν to minimize the infeasible
mean squared error criterion:

argmin
ν
Ŝ(ν|θ) ≡ argmin

ν
En,θ

[
e−β(t−t0)

∥∥∥ĥθ(z, t)− νᵀφz,t∥∥∥2
]
.
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Then we can update the value function weights, ν, using gradient descent

ν ←− ν + αν∇ν Ŝ(ν|θ)

for some value function learning rate αν . Here the gradient is given by

χ̂(ν|θ) := ∇ν Ŝ(ν|θ) ∝ En,θ
[
e−β(t−t0)

(
ĥθ(z, t)− νᵀφz,t

)
φz,t

]
.

The above procedure is infeasible since ĥθ(z, t) is unknown. However, as before, we can
heuristically approximate ĥθ(z, t) using the one step bootstrap return R(1) and obtain

χ̂(ν|θ) ≈ En,θ
[
e−β(t−t0)δn(s, s′, a)φz,t

]
. (2.19)

The heuristic for the bootstrap approximation above is based on equation (2.16), which implies
that an unbiased estimator of ĥθ(z, t) is given by sum of the current reward r̂n(x, a), and the
discounted future value of ĥ(z′, t′).

Using equations (2.18) and (2.19), we can now construct stochastic gradient updates for
θ, ν as

θ ←− θ + αθe
−β(t−t0)δn(s, s′, a)∇θ lnπ(a|s; θ) (2.20)

ν ←− ν + ανe
−β(t−t0)δn(s, s′, a)φz,t, (2.21)

by replacing the expectations in (2.18), (2.19) with their corresponding unbiased estimates
obtained from the values of state variables as they come up in each episode. Importantly,
the updates (2.20) and (2.21) can be applied simultaneously on the same set of current state
values, as long as αν � αθ. This is an example of two-timescale stochastic gradient decent:
the parameter with the lower value of the learning rate is said to be updated at the slower
time scale. When the timescale for ν is much faster than that for θ, one can imagine that the
value of ν has effectively converged to the value function estimate for current policy parameter
θ. Thus we can proceed with updating θ as if its corresponding (approximate) value function
were already known.

The pseudo-code for this procedure is presented in Algorithm 1.

2.4.1 Basis Dimensions and Integrated Value Functions

The functional approximation for ĥθ(z, t) involves choosing a vector of bases φz,t of dimension
dν . From a statistical point of view, the optimal choice of dν is in fact infinity. There is no bias-
variance tradeoff since we would like to compute ĥθ(z, t) exactly. We can simply take as high
a value of dν as computationally feasible. This useful property is a consequence of employing
ĥθ(z, t) rather than V̂θ(s) in the Actor-Critic algorithm. Since r̂(x, a) could be a function of
Y (as with doubly robust estimators, for example), we would need some regularization if we
try to obtain a functional approximation for V̂θ(s), to ensure we don’t overfit to the outcome
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data. This is not an issue for ĥθ(z, t), however, as it only involves the expected value of r̂(x, a)

given z, t. Thus by using ĥθ(z, t) we are able to avoid an additional regularization term.

Algorithm 1: Actor-Critic
Initialise policy parameter weights θ ← 0

Initialise value function weights ν ← 0

Repeat forever:

Reset budget: z ← z0

Reset time: t← t0

I ← 1

While z > 0:

x ∼ Fn (Draw new covariate at random from data)

a ∼ π(a|s; θ) (Draw action, note: s = (x, z, t))

R← r̂(x, a) (with R = 0 if a = 0)

∆t ∼ Exponential(λ̂(t)) (Draw time increment)

t′ ← t+ ∆t/bn

z′ ← z +Ga(x, z, t)/bn

δ ← R+ I{z′ > 0}e−β(t′−t)νᵀφz′,t′ − νᵀφz,t (Temporal-Difference error)

θ ← θ + αθIδ∇θ lnπ(a|s; θ) (Update policy parameter)

ν ← ν + ανIδφz,t (Update value parameter)

z ← z′

t← t′

I ← e−β(t′−t)I

2.4.2 Convergence of the Actor-Critic Algorithm

Our proposed algorithm differs from the standard versions of the Actor-Critic algorithm in only
using the integrated value function. Consequently, its convergence follows by essentially the
same arguments as that employed in the literature for actor-critic methods, see e.g. Bhatnagar
et al. (2009). In this section, we restate their main results, specialized to our context. Since all
of the convergence proofs in the literature are obtained for discrete Markov states, we need to
impose the technical device of discretizing time and making it bounded, so that the states are
now discrete (the other terms z and x are already discrete, the latter since we use empirical
data). This greatly simplifies the convergence analysis, but does not appear to be needed in
practice.

Let S denote the set of all possible values of (z, t), after discretization. Also, denote by Φ,
the |S|×dν matrix whose ith column is (φ

(i)
z,t, (z, t) ∈ S)ᵀ, where φ(i)

z,t is the ith element of φz,t.
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Assumption 2

(i) πθ(a|s) is continuously differentiable in θ for all s, a.

(ii) The basis functions {φ(i)
z,t : i : 1, . . . , dν} are linearly independent, i.e. Φ has full

rank. Also, for any vector ν, Φν 6= e, where e is the S-dimensional vector with
all entries equal to one.

(iii) The learning rates satisfy
∑

k α
(k)
ν →∞,

∑
k α

(k)2
ν <∞,

∑
k α

(k)
θ →∞,

∑
k α

(k)2
θ <

∞ and α(k)
θ /α

(k)
ν → 0 where α(k)

θ , α
(k)
ν denote the learning rates after k steps/updates

of the algorithm.

(iv) The update for θ is bounded i.e.

θ ←− Γ
(
θ + αθδn(s, s′, a)∇θ lnπ(a|s; θ)

)
where Γ : Rdim(θ) → Rdim(θ) is a projection operator such that Γ(x) = x for
x ∈ C and Γ(x) ∈ C for x /∈ C, where C is any compact hyper-rectangle in
Rdim(θ).

Differentiability of πθ with respect to θ is a minimal requirement for all Actor-Critic meth-
ods. Assumption 2(ii) is also mild and rules out multicollinearity in the basis functions for the
value approximation. Assumption 2(iii) places conditions on learning rates that are standard
in the literature of stochastic gradient descent with two timescales. Assumption 2(iv) is a
technical condition imposing boundedness of the updates for θ. This is an often used tech-
nique in the analysis of stochastic gradient descent algorithms. Typically this is not needed
in practice, though it may sometimes be useful to bound the updates when there are outliers
in the data.

Define Z as the set of local maxima of J(θ) ≡ ĥθ(z0, t0), and Zε an ε-expansion of that
set. Also, θ(k) denotes the k-th update of θ. We then have the following theorem on the
convergence of our Actor-Critic algorithm.

Theorem 1

Suppose that Assumption 2 holds and additionally that ∇θπθ(s) is uniformly Hölder
continuous in s. Then, for each ε > 0, there exists M such that if dν ≥ M , then
θ(k) → Zε with probability 1 as k →∞.

The above theorem is for the most part a direct consequence of the results of Bhatnagar
et al. (2009). We provide further discussion and a justification of the result in Appendix B.1.

2.4.3 Parallel Updates

While Theorem 1 assures convergence of our algorithm, in practice the updates could be
volatile and may take a long time to converge. Much of the reason for this is the correlation
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between the updates as one cycles through each episode - indeed, note that the state pairs
(s, s′) are highly correlated. Hence the stochastic gradients become correlated and one needs
many episodes to move in the direction of the true (i.e. the expected) gradient.

Algorithm 2: Parallel Actor-Critic
Initialise policy parameter weights θ ← 0

Initialise value function weights ν ← 0

Batch size B

For p = 1, 2, ... processes, launched in parallel, each using and updating the same
global parameters θ and ν:

Repeat forever:

Reset budget: z ← z0

Reset time: t← t0

I ← 1

While z > 0:

θp ← θ (Create local copy of θ for process p)

νp ← ν (Create local copy of ν for process p)

batch_policy_upates← 0

batch_value_upates← 0

For b = 1, 2, ..., B:

x ∼ Fn (Draw new covariate at random from data)

a ∼ π(a|s; θp) (Draw action, note: s = (x, z, t))

R← r̂(x, a) (with R = 0 if a = 0)

∆t ∼ Exponential(λ̂(t)) (Draw time increment)

t′ ← t+ ∆t/bn

z′ ← z +Ga(x, z, t)/bn

δ ← R+ I{z′ > 0}e−β(t′−t)νᵀpφz′,t′ − νᵀpφz,t (TD error)

batch_policy_upates← batch_policy_upates + αθIδ∇θ lnπ(a|s; θp)

batch_value_upates← batch_value_upates + ανIδφz,t

z ← z′

t← t′

I ← e−β(t′−t)I

If z ≤ 0, break For

Globally update: ν ← ν + batch_value_upates/B
Globally update: θ ← θ + batch_policy_upates/B
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This is a common problem for all Actor-Critic algorithms, but recently Mnih et al. (2015)
have proposed to solve this through the use of asynchronous parallel updates. The key idea
is to run multiple versions of the dynamic environment on parallel threads or processes, each
of which independently and asynchronously updates the shared global parameters θ and v.
Since at any given point in time, the parallel threads are at a different point in the dynamic
environment (they are started with slight offsets), successive updates are decorrelated. And
as an additional benefit, the algorithm is faster by dint of being run in parallel.

Algorithm 2 provides the pseudo-code for parallel updating. It also amends the previous
version of the algorithm by adding batch updates. In batch updating, the researcher chooses a
batch size B such that the parameter updates occur only after averaging over B observations.
This usually results in a smoother update trajectory because extreme values of the updates
are averaged out.

2.5 Statistical and Numerical Properties

In this section, we analyze the statistical and numerical properties of the estimated welfare
maximizing policy functions. The main result of this section is a probabilistic bound on the
regret defined as the maximal difference between the integrated value functions hθ̂(z0, t0) and
hθ∗(z0, t0). We derive this using our bound on the maximal difference in the value functions

sup
z∈[0,z0],t∈[t0,∞),θ∈Θ

|ĥθ(z, t)− hθ(z, t)| (2.22)

since
hθ∗(z0, t0)− hθ̂(z0, t0) ≤ sup

z∈[0,z0],t∈[t0,∞),θ∈Θ
2|ĥθ(z, t)− hθ(z, t)|.

The bound for (2.22) will depend on the sample size n and the complexity of the policy
function class, indexed by the Vapnik-Cervonenkis (VC) dimension of some specific collections
of functions.

We maintain Assumption 1 that is required for the existence of the value functions. In
addition, we impose the following:

Assumption 3

(i) (Bounded Rewards) There exists M <∞ such that |Y (0)|, |Y (1)| ≤M .

(ii) (Complexity of the Policy Function Space) The collections of functions

I = {πθ(1|·, z, t) : z ∈ [0, z0], t ∈ [t0,∞), θ ∈ Θ}

over the covariates x, and which are indexed by z, t and θ, is a VC-subgraph
class with finite VC index v1. Furthermore, for each a = 0, 1, the collection of
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functions

Ga = {πθ(a|·, z, t)Ga(·, z, t) : z ∈ [0, z0], t ∈ [t0,∞), θ ∈ Θ}

over the covariates x is also a VC-subgraph class with finite VC index v2. We
shall let v = max{v1, v2}.

Assumption 3(i) ensures that the rewards are bounded. This is a common assumption in
the treatment effect literature (see e.g. Kitagawa and Tetenov, 2018) and imposed mainly for
ease of deriving the theoretical results. Assumption 3(ii) has already been discussed in some
detail in Section 2.2. We only add here that in many of the examples we consider Ga(x, z, t)
is independent of x, as in equation (2.9) for example. In this case v1 = v2.

The next set of assumptions relate to the properties of the observational or RCT dataset
from which we estimate r̂(x, a).

Assumption 4

(i) (IID Draws from F ) The observed data is an iid draw of size n from the distribution
F .

(ii) (Selection on Observables) (Y (1), Y (0)) ⊥W |X.

(iii) (Strict Overlap) There exists κ > 0 such that p(x) ∈ [κ, 1− κ] for all x.

Assumption 4(i) assumes that the observed data is representative of the entire popula-
tion. If the observed population only differs from F in terms of the distribution of some
observed covariates, we can reweigh the rewards, and our theoretical results continue to ap-
ply. Assumption 4(ii) assumes that the observed data is taken from an observational study
that satisfies unconfoundedness. In Section 2.6.1, we consider extensions to non-compliance.
Assumption 4(iii) ensures that the propensity scores are strictly bounded away from 0 and 1.
Both Assumptions 4(ii) and 4(iii) are directly satisfied in the case of RCT data.

Under Assumptions 3 and 4, one can propose many different estimates of the rewards
r̂(x, 1) that are consistent for r(x, 1). In this paper we recommend doubly robust estimates.
As described in Section 2.2, an example of a doubly robust estimate of the reward is

r̂(x, 1) = µ̂(x, 1)− µ̂(x, 0) + (2W − 1)
Y − µ̂(x,W )

Wp̂(x) + (1−W )(1− p̂(x))
, (2.23)

where µ̂(x,w) and p̂(x) are non-parametric estimates of µ(x,w) and p(x). To simplify mat-
ters, we shall assume that these non-parametric estimates are obtained through cross-fitting
(Chernozhukov et al., 2018a). This is done as follows: We divide the data randomly divided
into K folds of equal size, and for each fold j, we run a machine learning estimator of our
choice on the other K−1 folds to estimate µ̂(−j)(x,w) and p̂(−j)(x). Then for any observation
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xj in some fold j, we set µ̂(xj , w) = µ̂(−j)(xj , w) and p̂(xj) = p̂(−j)(xj). We employ cross-
fitting estimators as they require minimal assumptions. Additionally, they have excellent bias
properties as demonstrated by Chernozhukov et al., (2018a), and Athey and Wager (2018).
We impose the following high level conditions for the machine learning methods used in our
cross-fitted estimates:

Assumption 5

(i) There exists an a > 0 such that for w = 0, 1

sup
x
|µ̂(x,w)− µ(x,w)| = Op(n

−a), sup
x
|p̂(x)− p(x)| = Op(n

−a).

(ii) (L2 convergence) There exists some ξ > 1/2 such that

E
[
|µ̂(x,w)− µ(x,w)|2

]
. n−ξ, E

[
|p̂(x)− p(x)|2

]
. n−ξ.

Assumption 5 is taken from Athey and Wager (2018). The requirements imposed are
weak and satisfied by almost all non-parametric estimators including series regression or lasso.
Using Assumptions 1-5, one can show that the quantities r̂θ(z, t), Ĝθ(z, t) are uniformly close
to r̄θ(z, t), Ḡθ(z, t). In particular, there exists a universal constant C0 such that

E

[
sup

z∈[0,z0],t∈[t0,∞),θ∈Θ
‖r̂θ(z, t)− r̄θ(z, t)‖

]
≤ C0

√
v1

n
and (2.24)

E

[
sup

z∈[0,z0],t∈[t0,∞),θ∈Θ

∥∥∥Ĝθ(z, t)− Ḡθ(z, t)∥∥∥
]
≤ C0

√
v2

n
.

The above inequalities are based on the work of Kitagawa and Tetenov (2018), and Athey and
Wager (2018).

Our final assumption is on the estimation of λ(t).

Assumption 6

supt

∣∣∣λ̂(t)− λ(t)
∣∣∣ . √v/n with probability approaching one under the probability dis-

tribution Ωλ(T) over the waiting time process indexed by {λ(t) : t ∈ [t0,∞)}.

Assumption 6 is made solely in order to obtain a
√
v/n bound on the regret.83 Clearly, this

is satisfied if one has a parametric model for λ(t). Alternatively, in some contexts, e.g. unem-
ployment dynamics, one might estimate λ(t) from a second data source that contains informa-
tion on arrival rates, with the size of this second dataset being much larger that n. In general,
however, estimation of λ(t) is an exercise in forecasting, and Assumption 6 a statement on
the accuracy of the forecasts. Clearly, the further we go into the future, the less confident we
would be in our forecast, and the less likely it is that Assumption 6 holds.

83On the other hand, if supt

∣∣∣λ̂(t)− λ(t)
∣∣∣ . b(n) with b(n) slower than

√
v/n, we can show by the same

techniques as the proof of Theorem 1 that the regret will be of the order b(n) as well.
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From (2.24) and Assumption 6, we find that the parameters characterizing the PDEs (2.12)
and (2.14) are uniformly close to each other. This indicates that the solutions to these PDEs
should also be uniformly close. Before we present a formal statement to this effect, we present
here a heuristic derivation assuming a classical solution exists and satisfies

sup
z,t,θ
|∂thθ(z, t)| <∞. (2.25)

Denote δ̂θ(z, t) = ĥθ(z, t)− hθ(z, t). Then from (2.12) and (2.14), we have

∂z δ̂θ(z, t) +
1

λ(t)Ḡθ(z, t)
∂tδ̂θ(z, t)−

βδ̂θ(z, t)

λ(t)Ḡθ(z, t)
= Âθ(z, t), δ̂θ(0, t) = 0 ∀ t (2.26)

where84

sup
z∈[0,z0],t∈[t0,∞),θ∈Θ

∥∥∥Âθ(z, t)∥∥∥ ≤ C√v/n
for some C < ∞ under Assumptions 1-6 and (2.25). The derivation of the last inequality in
particular makes use of (2.24). Now, equations of the kind (2.26) above can be converted into
ones involving only ordinary differentials using the technique of characteristic curves. Intu-
itively, characteristic curves enable us to ‘propagate’ the solution from the boundary condition
δ̂θ(0, t) = 0, by converting an equation that involves partials differentials to one involving ordi-
nary differentials along each characteristic curve. For (2.26), the relevant characteristic curves
are given by t = Γc(z), where each curve - indexed by a scalar c ∈ R which determines the
initial condition - is defined as the solution to the ODE85

dΓc(z)

dz
=

1

λ(Γc(z))Ḡθ(z,Γc(z))
, Γc(0) = c. (2.27)

Now for each c, denote ûθ(z; c) := δ̂θ(z,Γc(z)). Then by differentiating ûθ(z; c) with respect
to z, and using (2.26),(2.27), we obtain the following equation for the behavior along each
characteristic curve,

∂zûθ(z; c)−
β

λ(Γc(z))Ḡθ (z,Γc(z))
ûθ(z; c) = Âθ (z,Γc(z)) , ûθ(0; c) = 0. (2.28)

Since (2.28) is now in the form of an ODE, we can apply Grönwall’s inequality as outlined
in Section 2.2.1 to show that |ûθ(z; c)| ≤ C

√
v/n uniformly over all the possible values of

(θ, z, c), where C <∞ is some constant. But since every vector (z, t) ≡ (z,Γc(z)) for some c,
this implies that

∣∣∣δ̂θ(z, t)∣∣∣ ≤ C√v/n uniformly over all θ, z, t.
As noted previously, the derivation is only heuristic; the formal proof makes use of the

properties of viscosity solutions. The following is our main theorem of this section:

84All inequalities in this discussion should be understood as holding with probability approaching one under
the joint distribution of F × Ωλ(T).

85Under Assumption 1, the Picard-Lindelöf theorem guarantees existence of a unique solution for each c.
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Theorem 2

Suppose that Assumptions 1-6 hold. Then with probability approaching one under joint
the probability distribution F × Ωλ(T),

sup
z∈[0,z0],t∈[t0,∞),θ∈Θ

∣∣∣e−β(t−t0)
{
ĥθ(z, t)− hθ(z, t)

}∣∣∣ ≤ C√ v

n
.

Consequently,

hθ∗(z0, t0)− hθ̂(z0, t0) ≤ 2C

√
v

n
.

Additionally, the above statements hold uniformly over all F ×Ωλ(T) if similarly uni-
form versions of Assumptions 5 and 6 hold.

We prove Theorem 2 in Appendix B.1 by verifying the conditions in Souganidis (1985,
Proposition 1.4).

Though we do not formally show this, it seems likely that the
√
n rate for the regret

hθ∗(z0, t0)−hθ̂(z0, t0) cannot be improved upon, especially since Kitagawa and Tetenov (2018)
show that this rate is optimal in the static case. At the same time, we do not claim that the
VC dimension v in the rate is necessarily tight.86

2.5.1 Approximation and Numerical Convergence

In Section 2.3.1, we pointed out that for computation, it is preferable to use an approximate
version of PDE (2.14), given by (2.16). Indeed our algorithm in Section 2.4 was based on
this. Implementing this algorithm requires choosing a ‘approximation’ factor bn. Here we
characterize the numerical error resulting from any particular choice of bn. This is the PDE
counterpart of the analysis in Section 2.2.2.

In order to bound the numerical error, we make the additional assumption that Ĝθ(z, t)
is strictly negative. This is because the machinery for viscosity solutions typically requires
monotonicity with respect to hθ(z, t). We were able to avoid this previously by getting rid
of the hθ(z, t) term through a change of variables in the proofs of Lemma 2 and Theorem 2.
But this is not viable when working with the approximating equation (2.16). Note that in our
running example with job training, changes to budget are always negative, so this assumption
is obviously satisfied here.

For each θ ∈ Θ, denote by h̃θ(z, t) the solution to (2.16), and by ĥθ(z, t) the solution to
(2.14).

86Ideally, one would like to restrict the policy function class in Assumption 3(ii) to the lower dimensional
subspace of the values of (z, t) that are ‘typically’ encountered in following the optimal policies πθ∗ and πθ̂
(i.e. optimal for the true and sample dynamic environments respectively).
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Theorem 3

Suppose that Assumptions 1-6 hold. Assume further that Ĝθ(·) is strictly negative for
all θ, and |λ̂(·)Ĝθ(.)| ≤ M < ∞. Then, with probability approaching one under the
joint distribution of F × Ωλ(T), there exists K <∞ independent of θ, z, t such that

sup
z∈[0,z0],t∈[t0,∞),θ∈Θ

∣∣∣ĥθ(z, t)− h̃θ(z, t)∣∣∣ ≤ K√ 1

bn
.

We prove Theorem 3 in Appendix B.1. The upper bound, which is of the order b−1/2
n ,

appears to be sharp under our assumptions. We refer to Krylov (2005) for some results in this
direction. Note that this is of a smaller order than the rate of b−1

n we obtained in Section 2.2.2
for ODEs. One can understand this difference as the price for dealing with solutions ĥθ(z, t)
that are not differentiable everywhere, but are only valid in a viscosity sense.

Let θ̃ denote the numerical approximation to θ̂, obtained as the solution to

θ̃ = argmax
θ∈Θ

h̃θ(z0, t0).

By a direct application of Theorems 2 and 3,

hθ∗(z0, t0)− hθ̃(z0, t0) ≤ 2C

√
v

n
+ 2K

√
1

bn
.

Hence, as a rule of thumb, we recommend setting bn to be some multiple of, or exactly equal
to n. One could then try out a few different values, bn, 2bn etc to make sure the solution does
not change too much.

2.6 Extensions

2.6.1 Non-Compliance

As it is the case for our example in Section 2.7, a common issue in practice is that there is
substantial non-compliance. Here we show how our methods can be modified to account for
this. We assume that the treatment behaves similarly to a monotone instrumental variable in
that we can partition individuals into three categories: compliers, always-takers, and never-
takers.

We assume that the social planner cannot change the compliance behavior of any individ-
ual. Then the only category of people for whom a social planner can affect a welfare change
are the compliers. As for the always-takers and never-takers, the planner has no control over
their choices, so its equivalent to assume that the planner would always treat the former and
never treat the latter. Formally, the change in reward (conditional on the covariates) for the
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social planner from treating an individual i, as compared to not treating is

r(xi, 1) =

LATE(xi) if i is a complier

0 otherwise,
(2.29)

where LATE(x) denotes the local average treatment effect for an individual with covariate x.
As before, we normalize r(x, 0) to 0 as we only consider expected welfare. Note that always
takers and never-takers are associated with 0 rewards. The evolution of the budget is also
different for each group. In particular,

N(z′ − z) =


Ga(x, t, z) if i is a complier

G1(x, t, z) if i is an always-taker

G0(x, t, z) if i is a never-taker.

(2.30)

The planner does not know the true compliance behavior of any individual, but she can form
expectations over them given the observed covariates. Let qc(x), qa(x) and qn(x) denote the
probabilities that an individual is respectively a complier, always-taker or never-taker condi-
tional on x. Given these quantities, the analysis under non-compliance proceeds analogously
to Section 2.3, after taking relevant expectations over the rewards in (2.29), and over the
evolution of z in (2.30). In particular, let hθ(z, t) denote the integrated value function in the
current setting. Then we have the following PDE for the evolution of hθ(z, t):

λ(t)Ḡθ(z, t)∂zhθ(z, t) + ∂thθ(z, t)− βhθ(z, t) + λ(t)r̄θ(z, t) = 0, hθ(0, t) = 0 ∀ t,

where
r̄θ(z, t) := Ex∼F [qc(x)πθ(1|x, z, t)r(x, 1)] ,

and (in view of equation 2.30),

Ḡθ(z, t) := Ex∼F [qc(x) {πθ(1|z, t)G1(x, t, z) + πθ(0|z, t)G0(x, t, z)}

+ qa(x)G1(x, t, z) + qn(x)G0(x, t, z)] .

In order to estimate the optimal policy rule, we need estimates of qc(x), qa(x), qn(x), along
with LATE(x). To obtain these, we assume that the planner has access to an observational
study involving Z as the intended treatment status or instrumental variable, and W as the
observed treatment. As before, Y is the observed outcome variable. Observe that qa(x) =

E[W |X = x, Z = 0] and qn(x) = E[1 −W |X = x, Z = 1]. Hence we can estimate q̂a(x) by
running a Logit regression of W on X for the sub-group of the data with Z = 0. Estimation
of q̂n(x) can be done in an analogous manner. Using both these estimates, we can also obtain
q̂c(x) = 1 − q̂a(x) − q̂n(x). To estimate LATE(x), we recommend the doubly robust version
of Belloni et al. (2017). In the case where there do no exist any always-takers, the expression
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for this simplifies and is given by

ˆLATE(x) = θy(1)− θy(0)

where

θy(1) :=
µ̃(x,W, 1) + Z

p̂(x)(WY − µ̃(x,W, 1))

q̂c(x) + Z
p̂(x)(W − q̂c(x))

, and

θy(0) :=
µ̃(x, 1−W, 1) + Z

p̂(x) [(1−W )Y − µ̃(x, 1−W, 1)]−
[
µ̂(x, 0) + 1−Z

1−p̂(x)(Y − µ̂(x, 0))
]

Z
p̂(x) (q̂c(x)−W )− q̂c(x)

.

In these equations, µ̃(x, k, Z) is an estimator for E[kY |Z, x], which can be obtained through
series regression or other non-parametric methods. Furthermore, p̂(x) is an estimator for
p(x) = P (Z = 1|X = x) - the IV propensity score.

Given the estimates q̂c(x), q̂a(x), q̂n(x) and ˆLATE(x), it is straightforward to modify the
algorithm in Section 2.4 to allow for non-compliance. The main difference from Algorithm 2
is that at each update we would randomly draw the compliance nature of the individual from
a multinomial distribution with probabilities (q̂c(x), q̂a(x), q̂n(x)). Conditional on this draw,
the rewards are given by sample counterpart of (2.29), and the updates to budget by (2.30).
The pseudo-code for the resulting algorithm is provided in Appendix B.2.

Probabilistic bounds on the regret for the estimated policy rule can also be obtained by the
same techniques as in Section 2.5. If qc(x), qa(x), qn(x) were known exactly, we can show that
the rates for the regret remain unchanged at

√
v/n. The key step is to obtain concentration

bounds analogous to (2.24), following which we can proceed with the discussion in Section
2.5. A similar analysis when using the estimated quantities q̂c(x), q̂a(x), q̂n(x) is however more
involved; we leave the details for future research.

2.6.2 Arrival Rates Varying by Covariates

In many dynamic settings, like our example with JTPA in the next section, different individ-
uals not only respond differently to treatment, but also have (potentially) different dynamics
regarding their arrival rates. This is equivalent to saying that we would like to let the distri-
bution Ft of the covariates change with time (and in general be different from the limit of the
empirical distribution Fn). Precisely, let λx(t) denote the covariate specific arrival process.
Then we can decompose Ft as a time-varying compound distribution87

Ft(y) =

∫
x≤y

wt(x)dF (x) where wt(x) :=
λx(t)∫

λω(t)dF (ω)
.

With the above in mind, the PDE for the evolution of hθ(z, t) is the same as (2.12), but
87The functions F (.) and λ(.)(t) are separately identifiable since we associate F with the limit of Fn.
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now

r̄θ(z, t) := Ex∼Ft [πθ(1|x, z, t)r(x, 1)] ,

Ḡθ(z, t) := Ex∼Ft [G1(x, z, t)πθ(1|x, z, t) +G0(x, z, t)πθ(0|x, z, t)]

and λ(t) is replaced by λ̄(t) where

λ̄(t) := Ex∼Ft [λx(t)] .

Suppose that wt(x) were known piece-wise constant over some clusters j = 1, . . . , J on the
covariate space X . Then we could write Ft =

∑
j wt(j)Fj , where Fj denotes the distribution

of the covariates corresponding to cluster j. If in addition these cluster indices were known, we
can estimate the cluster specific arrival rates λ̂j(t), and weights ŵt(j) := q̂j λ̂j(t)/

∑
i q̂iλ̂i(t).

Here, q̂j denotes the empirical proportion of observations within cluster j. Using these, we
can replace Ft with the empirical counterpart Fn,t =

∑
j ŵt(j)Fn,j and construct the empirical

PDE (2.14) using the sample quantities

r̂θ(z, t) = Ex∼Fn,t [πθ(1|x, z, t)r̂(x, 1)] ,

Ĝθ(z, t) = Ex∼Fn,t [G1(x, z, t)πθ(1|x, z, t) +G0(x, z, t)πθ(0|x, z, t)] , and

λ̂(t) =
∑
j

ŵt(j)λ̂j(t).

The above discussion is only suggestive since we do not expect wt(x) to really be piece-wise
constant. However, as long as wt(x) is Lipschitz continuous, we can approximate it with a
piece-wise continuous function ŵt(x) by partitioning the space X of the covariates into a finite
set of clusters j = 1, . . . , J . To do this, we can employ iterative partitioning using the median
or mean (k-median/means clustering). After randomly choosing one observation per cluster
as starting point, each observation is assigned to the cluster which is closest in terms of the
median/mean, and then the cluster median/mean is recomputed (see Anderberg, 1973). The
value of J is allowed to increase with the sample size.

In terms of the theoretical bounds on the regret rates, we will now have an additional term
due to the approximation error from replacing wt(x) with the cluster estimate ŵt(x). Let us
denote this rate by R(n, J), i.e.

sup
x∈X

∣∣∣∣Ft(x)−
∫
y≤x

ŵt(y)dF (y)

∣∣∣∣ . R(n, J).

One can derive the rates R(n, J) under various conditions on the smoothness of wt(x), the
number of data-points used to estimate ŵt(·) (allowing that it could be obtained from a
different dataset), and the choice of J . To illustrate, suppose that wt(x) is continuously
differentiable and we use the same dataset as the RCT to estimate ŵt(x), then under some
regularity conditions one can show R(n, J) > J−dx +

√
J/n, where dx denotes the dimension

of x (Bonhomme et al., 2017). Different rates are possible under other assumptions; we
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shall not document these here but simply use R(n, J) to state our results. In particular, the
concentration inequalities (2.24) will now include an additional R(n, J) term:88

E

[
sup

z∈[0,z0],t∈[t0,∞),θ∈Θ
‖r̂θ(z, t)− r̄θ(z, t)‖

]
≤ C0

√
v1

n
+R(n, J),

with related expressions for Ĝθ(z, t)− Ḡθ(z, t) and λ̂(t)− λ̄(t). Subsequently, proceeding with
the remainder of the analysis in Section (2.5) enables us to show that

hθ∗(z0, t0)− hθ̂(z0, t0) ≤ 2C

(√
v

n
+R(n, J)

)
,

with probability approaching one.
It is straightforward to extend our Actor-Critic algorithm to allow for clusters: before each

update we sample the cluster index by drawing the value of j from a multinomial distribution
with probabilities (ŵt(1), . . . , ŵt(J)). The pseudo-code for the resulting algorithm is provided
in Appendix B.2.

2.6.3 Deterministic Policy Rules

So far our discussion has focused on policy rules that are in general stochastic. This gives
more flexibility to the social planner, but there are situations in which randomization is not
appealing for legal or ethical reasons. Here we investigate how one might adapt our proposed
algorithm when restricted to deterministic policy rules. Our theoretical results require no
modification as they already encompass deterministic policies.

One approach for handling deterministic policies is to approximate them by a randomized
policy that is arbitrarily close. For instance, suppose that the social planner is restricted to
using linear eligibility scores (Kitagawa and Tetenov, 2018) as policy rules, for example:

Π =
{
πθ : πθ(1|s) = I(s′θ > 0)

}
.

One issue with such a functional class is that it is not differentiable. However we can employ
analytical approximations to the step function to make these functions arbitrarily smooth. For
example, instead of Π we could employ the class

Π̃k =

{
π̃θ : π̃θ(1|s) =

1

2
+

1

π
arctan(ks′θ)

}
where k ∈ R+ is arbitrarily large. Then as k →∞, Π̃k → Π.

88In deriving this expression, we make use of the fact that the concentration bounds in (2.24) hold uniformly
over all probability distributions (and therefore hold uniformly over all F̃t(x) =

∫
ŵt(x)dF (x)). In particular,

we can decompose r̂θ(z, t) − r̄θ(z, t) as the difference between r̂θ(z, t) − r̃θ(z, t) and r̃θ(z, t) − r̄θ(z, t), where
r̃θ(z, t) := Ex∼F̃t

[πθ(1|x, z, t)r(x, 1)] and F̃t :=
∫
ŵt(y)dF (y). The first term is the of order

√
v/n due to the

uniform concentration bounds, while the second term R(n, J) then arises from the difference between Ft − F̃t
as discussed above.
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The main difficulty with applying our algorithm on Π̃k with a large k is that it does not
permit sufficient exploration. Hence when faced with policy rules that are close to deter-
ministic, we recommend using an off-policy actor-critic algorithm (Degris, White and Sutton,
2012). In an off-policy setting, the algorithm chooses actions according to a behavioral policy
(e.g. b(1|s) = 1/2), but uses the resulting outcomes to update the target policy πθ. To account
for the fact that the sequence of states under the target policy is different from that under the
behavioral policy, the updates are adjusted by the importance weights ρ(a|s) = πθ(a|s)/b(a|s).
With these modifications, it is straightforward to extend our actor-critic algorithm to the off-
policy context. The pseudo-code for this provided in Appendix B.2. The theoretical properties
of the algorithm can be derived in an analogous way to Section 2.4.2; we do not present them
here as they follow in a straightforward manner from the results in Degris, White and Sutton
(2012).

This approach requires a choice of k. Instead of keeping this constant, we can start from a
moderate initial value for k and increase it slowly in the course of the updates. In particular,
we recommend the following two-step procedure: First we solve for the optimal policy function
at some initial value of k using the on-policy algorithm from Section 2.4. We then use this
as the behavioral policy, and use our off-policy actor-critic algorithm to update the policy
function as the values of k are increased.

2.7 Empirical Application: JTPA

To illustrate our approach, we use the popular dataset on randomized training provided under
the JTPA, akin to e.g. Kitagawa and Tetenov (2018), or Abadie, Angrist, and Imbens (2002).
During 18 months, applicants who contacted job centers after becoming unemployed were
randomized to either obtain support or not. Local centers could choose to supply one of the
following forms of support: training, job-search assistance, or other support. Again akin to
Kitagawa and Tetenov (2018), we consolidate all forms of support. Baseline information about
the 20601 applicants is available as well as their subsequent earnings for 30 months. We follow
the sample selection procedure of Kitagawa and Tetenov (2018) and delete entries with missing
earnings or education variables as well as those that are not in the analysis of the adult sample
of Abadie, Angrist, and Imbens (2002). This results in 9223 observations.

In this setting, a policy maker is faced with a sequence of individuals who just became
unemployed. For each arriving individual, she has to decide whether to offer job training to
them or not. The decision is made based on current time, remaining budget, and individual
characteristics. For the latter, we follow Kitagawa and Tetenov (2018) and use education,
previous earnings, and age. Job training is free to the individual, however, costly to the policy
maker who has only limited funds.

The frequency with which people with given characteristics apply is not constant through-
out the year. As we use RCT data which contains information regarding when participants
arrived, we can estimate Poisson processes that are changing over the course of the year. We
first partition the data into clusters using k-median clustering on education, previous earnings,
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and age.89 Prior to the clustering, we standardize the variables. The resulting clusters are
described in Appendix B.4.

For each cluster, we estimate the arrival probabilities. While we assume that they are
constant across years, we allow for variation within a year. In particular, we specify the
following functional form for the cluster-specific Poisson parameter:

λc(t) = exp (β0,c + β1,csin(2πt) + β2,ccos(2πt)) .

Regarding time, t is normalized so that t = 1 corresponds to a year. For each cluster, we obtain
the estimates β̂c (and hence λ̂c(t)) using maximum likelihood estimation. Figure 2.1 shows
the estimated dynamic behavior of each cluster. People from cluster 1, for example, display a
less pronounced seasonal pattern regarding their arrival rates than people from cluster 2.

Figure 2.1: Clusters-Specific Arrival Rates over Time

We obtain the reward estimates r̂(x, 1) in two ways: (i) r̂(x, 1) = µ̂(x, 1)− µ̂(x, 0), and (ii)
from a doubly robust procedure as in (2.23). In both cases we use simple OLS to estimate the
conditional means. For this reason we shall call case (i) the case of standard OLS rewards.
The relevant covariates are education, previous earnings, and age. Estimating the propensity
score is not necessary in this context as it was set by the RCT to be 2

3 . Note that the
different reward estimates give rise to different heterogeneity patterns, which crucially affect
the resulting policy function. Indeed, while the doubly robust procedure consistently estimates
the true heterogeneity structure, the standard OLS does not. Consequently, we expect differing
parameters in the policy functions and treatment decisions.

In terms of the other parameters, we set the budget such that 1600 people can be treated,
89Given the limited amount of data, the number of clusters we can reliably estimate is limited too. We chose

to use four clusters. With more data, more clusters and hence a more detailed picture of differential arrival of
applications becomes possible.
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which is about a quarter of the expected number of people arriving in a year (given our Poisson
rates). Subsequently, we normalize z in such way that z0 = 0.25. We also use a discount factor
of β = − log(0.9), which implies an annualized discount rate of 0.9 (since t = 1 corresponds
to a year). The episode terminates when all budget is used up.

The primary outcome variable is the policy function. We chose the policy function class to
be of the logistic form πθ ∼ Logit(θᵀ1x+ θᵀ2x · z+ θᵀ3x · cos(2πt)), where x = (1, age, education,
previous earnings). We use cos(2πt) to ensure that the arrival rates are periodic, and to
prevent discontinuities at the end of the year. Note that this allows for episodes potentially
lasting longer than a year, but constrains the years themselves to be identical.

To run our Actor-Critic algorithm we need to set the learning rates. There exist some
rules of thumb for these, see e.g. Sutton and Barto (2018). In practice, however, we tune the
rates manually starting from the rules of thumb to optimize the performance of the algorithm.
Choosing a rate that is too high makes the algorithm unstable, while setting the rate too low
makes convergence slow. Based on pilot runs we found that by setting αθ = 0.3 and αν = 0.8

we could achieve good performance.
With these rates, employing the parallel actor-critic algorithm with clusters (see Appendix

B.2 and section 2.6.2) provides promising results. Figure 2.2 shows that the expected welfare
converges as learning occurs through the episodes. In both cases we normalize welfare so that
choosing a random policy provides a welfare of 1. The welfare is thus approximately three
times higher than that under random treatment in the initial episode. The parameters in the
policy function generally converge as well, as shown in Figure 2.3.

A: Doubly Robust Reward Estimates

B: Standard OLS Reward Estimates

Figure 2.2: Converging Episodic Welfare

In sum, we have shown that rewards are substantially higher than under random treat-
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A: Doubly Robust Reward Estimates B: Standard OLS Reward Estimates

Figure 2.3: Convergence of Policy Function Parameters

ment. Moreover, both rewards and policy function parameters converge. This illustrates the
functionality of our algorithm for given reward estimates.

2.8 Conclusion

In this paper we have shown how to estimate optimal dynamic treatment assignment rules
using RCT data under constraints on the policy space. We have proposed an Actor-Critic
algorithm to efficiently solve for these rules. Our framework can be naturally extended to
incorporate non-compliance using instrumental variables. Separately, our results also point
the way to using Reinforcement Learning to solve PDEs characterizing the evolution of value
functions. We do so by approximating the PDEs with a dynamic program. We were also able
to characterize the numerical error involved in this approximation.

Perhaps the main limitation of the current setting is that the policy is assumed not to affect
the environment. We believe this is a reasonable assumption in many contexts, especially in
settings like unemployment, arrivals to emergency rooms, childbirth (e.g. for the provision of
daycare) etc., where either the time of arrival is not in complete control of the individual, or
where it is determined by factors exogenous to the provision of treatment. Moreover, in cases
like microcredit or development aid, the budgetary cycle might be unknown to the individuals
(and potentially not constant) - prohibiting strategic arrival. At the same time, the assumption
is clearly circumspect in other cases. For instance, a treatment rule that is more favorable at
specific times may also encourage people to arrive at different times. If the response function
of the environment to the policy is known, it could be integrated in the approach outlined in
this paper. We leave that to future research.
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Chapter 3

Not-For-Profit Firms as Means of Market
Entry

3.1 Introduction

In recent years, large companies have created Not-For-Profit (NFP) firms with the stated
objective to provide affordable quality goods to the poor.90 These companies belong to varying
industries and only some of them are active in the country where they have created the NFP
firm (see Grameen, 2014a). This behavior appears puzzling at first, as creating a NFP firm for
the poor seems not to be profit maximizing; partly due to the NFP status itself, and partly
as For-Profit (FP) firms regularly ignore markets in which consumers are poor (Yunus, 2008).

I provide a novel explanation for this behavior, treating NFP firms as a signaling device.
The NFP firms are created in “markets for the poor”. These markets are by themselves not
attractive for companies because the profits that can be obtained there do not match the
costs of signaling high quality and developing a new product. However, NFP firms have
no incentives to lie about the produced quality - by definition they cannot keep any profits
from doing so (see Glaeser & Shleifer, 2001). Therefore, when they enter a new market, it
is rational to instantly believe their quality-claim - hence NFP firms face no signaling costs.
After producing sufficiently many high-quality goods with a NFP firm, a company earns a
global reputation for high quality. This reputation allows the company to profitably create an
additional firm in another (related) market for high-quality products, but with a FP status.

Consequently, the concern for reputation combined with companies being active in several
markets not only affects which markets are served, but also the optimal organizational form.
Contrary to large parts of the related literature,91 no altruistic motivation of any agent is
required. Nevertheless, profit-oriented companies create NFP firms in “markets for the poor”,
despite the fact that this is costly (the expected cost of developing a new product). Altruistic
motivation is complementary though, and I use motivated workers in an extension of the main
mechanism to achieve patterns of the creation of NFP firms that potentially better explain
the stylized facts. These motivated workers are part of the NFP firms though and the FP
companies creating the NFP firms are still free from any altruistic agents.

The model I present here is dynamic. As the markets grow over time (for example due
to population growth), establishing a NFP firm in a “market for the poor” becomes optimal.
The profits from operating in the “market for the rich” with a high-quality reputation grow,

90Examples include Danone, Uniqlo, Schneider Electric, Veolia, or Felissimo (Grameen, 2014a).
91This literature includes Glaeser & Shleifer, 2001; Rose-Ackerman, 1996 & 1997; Ghatak & Müller, 2011;

and Besley & Ghatak, 2007. The way altruism drives these models varies. For Rose-Ackerman (1996 & 1997),
altruism of firm owners and donations are key. In Besley & Ghatak (2007), altruistic consumers allow for
an equilibrium in which prices are high enough to pay for corporate social social responsibility - which can
arguably include the creation of NFP firms. In Ghatak & Müller (2011), the abundant supply of labor from
altruistic workers is key.
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but the expected costs of creating a NFP firm are constant.
Moreover, the model is a hybrid between a moral hazard and an adverse selection model.

It distinguishes two types of firms. While one type always produces high quality, producing
low quality is cheaper for the other type. Crucially though, the latter type is able to produce
high quality (at a high cost) and mimic the former type. This aspect is related to the model
by Laffont and Tirole (1986), where firms have different efficiency parameters but also choose
a level of effort. The model presented in this paper is simpler in the sense that only the latter
type makes a choice, but it extends the idea to an environment where the output’s quality is
unobserved at the time of purchase (and to more than one market).

The concept that firms need to establish a costly reputation when quality is only observed
after the purchase builds on the work by Shapiro (1983). The current paper is also related to
the literature regarding the advantages of production with a NFP status, including Francois
(2000, 2003), Hansmann (1980), Ghatak and Müller (2011), as well as Glaeser and Shleifer
(2001). The mechanism that FP firms, but not NFP firms, require a costly signal to establish
a high-quality reputation is also present in parts of this literature. I employ this mechanism in
a dynamic environment with more than one market (i.e. more than one variant of the good),
extending the work by Hansmann (1980) and Glaeser and Shleifer (2001). Finally, this paper
contributes to the literature concerning mechanisms behind the creation of NFP firms (see
footnote 91).

Case Studies
Evidence for the mechanism suggested in this paper can be found in case studies of NFP

firms that are created by large companies - usually in cooperation with the Grameen Creative
Lab, which fosters social businesses in general.

Danone: The French multinational food company Danone founded the NFP firm Grameen
Danone in 2006 in Bangladesh. It has designed a high quality yoghurt for children (it includes
additional nutrients for the children’s optimal development), which is sold at 6 Eurocents
(Grameen, 2014a). While the product itself is new and specifically designed for the poor, fresh
dairy products are the key component of Danone’s sales (58% in 2011; Danone, 2012). More
specifically, more expensive yoghurts that are nutritionally valuable for children are among
Danone’s major brands.92

Apart from the initial investment, no profits are allowed to flow back to Danone. Before
2006, Danone itself was not operating in Bangladesh (Yunus, 2007).

BBC business reporter James Melik (2009) believes the underlying reason for this NFP firm
is Danone’s goal to expand in South Asia. His German colleague at the business-newspaper
Handelsblatt had similar suspicions when Adidas evaluated the option to create a NFP firm
which would sell a pair of shoes for 1 Euro (Hauschild, 2014). Melik’s (2009) suspicion is
supported by the fact that the share of the Asia/Pacific market of Danone’s sales tripled from
5% in 1996 to 15% in 2011, documenting Danone’s ambition in the greater region (Danone,
2012).

Uniqlo: The Japanese multinational clothing company Uniqlo has founded Uniqlo Social
92E.g. Fruchtzwerge in Germany, Danimals in the US, Danino in Canada, or Danoninho in Brazil.
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Business Bangladesh, and Grameen Uniqlo in 2010 and 2011 respectively (Grameen Uniqlo,
2014b). These are also NFP firms that fully reinvest all potential profits. Consumers of
Grameen Uniqlo are not as poor as those from Grameen Danone – but the products are
still sold cheaply: prices start at 2.5 US$ (Sadique, 2013). Their primary business policy is
“(...) providing affordable (...) exceptional apparel.” (Grameen Uniqlo, 2014a). Uniqlo itself
is not present with shops in Bangladesh (Uniqlo, 2014). However, Yukihiro Nitta, the CEO
of Grameen Uniqlo, talks openly about the potential to become market leader in the fast
growing economy of Bangladesh, which has been interpreted as a sign that Uniqlo targets the
increasingly wealthy urban population there (see Sadique, 2013).

Schneider Electric: The globally operating French electricity corporation Schneider
Electric created a NFP firm called Grameen Schneider Electric. The stated goal of the NFP
firm is to provide electricity and associated services to the poor (Schneider Electric, 2012). The
difference to the previous examples is that Schneider Electric itself has already been present
in Bangladesh prior to establishing the NFP firm (Schneider Electric, 2014).

Further companies that have created NFP firms include Veolia and Felissimo (Grameen,
2014b). In sum, the model presented in this paper is motivated by the following stylized facts:

1. For-profit companies create NFP firms that provide cheap products specifically aimed at
the poor - even though the focus on the poor is not the core-business of these companies.

2. In two case-studies, these companies had not been present in the country at all (including
the market of their core-business). Journalists suspect that the motivation for the NFP-
creation is to allow for an entry in the “core-market” of the respective country.

3. In at least one case, the for-profit company creating the NFP firm was present in the
core-market of the country in which the NFP firm was created.

4. The notion that for-profit companies create NFP firms is, to the best of my knowledge,
a relatively recent phenomenon.

The remainder of this paper is organized as follows. Section 2 illustrates the basic mechanism
and showcases how reputation is obtained and what equilibrium is reached if no information
travels across markets. The full model, including the interaction between markets and the
idea of global reputation, is outlined in section 3. Section 4 provides the extension to include
motivated workers in the model. Finally, section 5 discusses welfare and policy implications
of the mechanisms presented in this paper and section 6 concludes.

3.2 Basic Framework

To illustrate the basic mechanism, this section outlines the basic environment of two types
of firms and one variant of product that can be produced in two qualities. Firms face the
situation that consumers cannot observe quality at the time of purchase. This can be overcome
by establishing a reputation for high quality, which is costly (see Shapiro, 1983). If given the
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incentive to do so, “discounter” firms can produce high quality to appear as a “quality expert”
firm and then produce low quality to “milk” this reputation. The full mechanism, including
the key aspect of having two variants of products, is outlined in section 3.3.

3.2.1 Quality & Demand

The quality of the product aε {h, l} is either high or low. The product has a credence-good
character: its quality is only observed one period after purchase, which defines the length of
a period. The quantity of the high-quality product that is demanded at time t is QDht (pht) =

Dt(k−pht). The demanded quantity of the low-quality product is QDlt (plt) = D̂t(z−plt). The
terms Dt and D̂t are growing over time (e.g. due to population growth). Specifically, they are
both assumed to grow at the constant rate g. Consequently, the prices pat potentially vary
over time as well.

3.2.2 Firms & Production

The product can be produced by two types of firms. The cost for a firm of type f to produce
quantity q of quality a is Cf (qa) = cfaqa; where fε {d, e}: firms are either “discounters” or
“quality experts”. Discounters have an advantage in producing low quality cheaply: cdl < cel.
Quality experts are able to produce high-quality cheaper: ceh < cdh. I abstract from the
case where quality experts are tempted to produce low quality. For that reason, I make the
simplifying assumption that for quality experts, producing high and low quality is equally
expensive: cel = ceh.

This setup contains elements of both adverse selection an moral hazard. There are two
different types of firms as in the standard adverse selection case. Moreover, discounters can
produce high quality, but are potentially tempted to produce low quality since this is cheaper,
as in a moral hazard setting.

Finally, firms can choose to operate with a not-for-profit (NFP) status. This status is
permanent and, contrary to quality-claims, always credible (other than quality, it can be
enforced through the legal system). By definition, NFP firms cannot make any profits, but
this also implies that they have no incentives to lie about the produced quality (Glaeser &
Shleifer, 2001). In the single-variant case presented in this section, choosing a NFP status will
never be optimal due to the inability to make any profits. It is nevertheless introduced here
because it is a fundamental part for the case with two variants outlined in section 3.3.

3.2.3 Equilibrium

Regarding the low-quality product, no firm has an incentive to lie about quality. No form
of signaling or reputational investment is required and the market is perfectly competitive.
Consequently, the equilibrium price p∗lt = cdl, which is constant. Regarding the demand
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parameter z, I assume z > cdl, so that there is positive demand for the low-quality product at
any point in time.

The equilibrium for the high-quality products is more subtle. Since quality is unobservable
at the time of purchase, consumers have a belief regarding each firm whether it produces
high or low quality (reputation of that firm). There is no equilibrium where the reputation
to produce high quality is free to obtain for FP firms. Discounters would claim to sell high
quality but profitably sell low quality and hence believing this claim would be irrational.93

I assume that all Nht firms that have the reputation to produce high quality at time t are
in Cournot competition. In terms of possible costly signals to obtain this reputation, I restrict
my focus to the production of the goods at any quantity or price, with or without a NFP
status.94 The cost of signaling for a firm of type f at time t is denoted sft. In equilibrium,
the entry of an additional quality expert is not profitable:

πcournotet (pht, Nht, r)− set ≤ 0, (3.1)

where πcournott (.) represents the discounted sum of profits at the interest rate r. The
standard Cournot equilibrium with Nht quality experts is given by each firm supplying q∗ht =
Dt

Nht+1 (k − ceh) . Each of these firms makes a discounted stream of profits of:

πcournotet =
1

1− 1+ĝ
1+r

Dt

(Nht + 1)2 (k − ceh)2 .

I make the technical assumption that r > g. The rate ĝ ≤ g denotes the growth rate of
the per-period profits of an individual firm, πcournot,periodt = Dt

(Nht+1)2
(k − ceh)2.95 If Nht is

constant, then ĝ = g.
The costs of signaling to each firm-type, sft, are such that discounters do not mimic quality

experts. Specifically, the cost of the considered signal is to produce ht
1+r high-quality goods in

the period prior to market entry and sell them with a loss at price plt:96

sft = ht (cfh − cdl) . (3.2)

Due to condition (3.1) and set < sdt,97 no discounter enters to permanently produce high
93The same is true for any probabilistic belief that attributes a non-zero probability for high quality to a FP

firm that does not invest in signaling.
94I can also allow for lump sum signals, but these are always dominated by production-based signals: since

ceh < cdh, producing the high-quality good results in a lower signaling cost for quality experts relative to
discounters, which is more efficient.

95The rate ĝ is not indexed by t because it is assumed to be time-independent. This means I assume a
constant rate of change of πcournot,periodet . See Appendix C.2 for a discussion.

96I assume that the demand in the low-quality market is large, so that selling at least ht
1+r

units in one period

is always possible and that firms can restrict the quantity in order not to sell more, i.e. Q
D
lt (cdl)

Nlt
> ht

1+r
, or if the

price is reduced to plt − ε, QDlt (cdl) >
ht
1+r

. The division by (1 + r) is for notational convenience as sft refers
to entry at time t by using this signal, but the action of signaling starts in the period prior to market entry.
This assumption (and notation) is for convenience only. If the assumption fails, products are sold over multiple
periods and discounted accordingly. In such a case, all that changes is the definition of ht. For example, if
two periods are necessary, h1t

1+r
units are sold in the period before obtaining the high-quality reputation, and

h2t

(1+r)2
units in the period before that, ht = h1t + h2t.

97In general, set ≤ sdt. If the signal was equally costly to both firms (e.g. “burning” money), then set = sdt,
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quality. However, discounters are relatively more efficient at producing low quality. There-
fore, they potentially choose to obtain a high-quality reputation to “milk” this reputation by
producing low-quality products labeled as high quality. This is feasible for one period. There-
after, consumers observe the quality and discover the fraud. Another equilibrium condition is
therefore:

πmilkdt (pht, Nht)− sdt ≤ 0. (3.3)

The “milking profit” is given by:

πmilkdt (pht, Nht) =
QDht (pht)

Nht
(pht − cdl) =

(
k − cdl −

Nht

Nht + 1
(k − ceh)

)
Dt

Nht + 1
(k − ceh) .

Finally, once a quality expert has paid the sunk cost to established a high-quality repu-
tation, there is no reason for that firm to exit the market, even if profits become lower over
time. This results in condition (3.4):

Nht ≤ Nh(t+1). (3.4)

In equilibrium, if condition (3.4) is slack, condition (3.1) must hold with equality as other-
wise more firms would enter. Similarly, if condition (3.4) holds with equality, condition (3.1) is
potentially slack. Moreover, I impose that condition (3.3) holds with equality; i.e. I select the
most profitable equilibrium for the firms. This selection is supported by backward induction.
Using (3.1)-(3.3) (all binding), the conditions determining N∗ht and s

∗
dt are given by:

1

1− 1+ĝ
1+r

Dt

(Nht + 1)2 (k − ceh)2 = sdt
ceh − cdl
cdh − cdl

, (3.5)

(
k − cdl −

Nht

Nht + 1
(k − ceh)

)
Dt

Nht + 1
(k − ceh) = sdt. (3.6)

Lemma 3
The absolute cost of signaling is increasing with the market size (for both type of firms),
at a non-decreasing rate.

Proof: Plugging the expression of sdt provided in condition (3.6) into condition (3.5), it
becomes clear that N∗ht is constant in time, condition (3.4) is satisfied, and ĝ = g. Due to this,
and assuming k > ceh (as otherwise there would be no demand for the high-quality product),
s∗dt is linearly increasing in Dt, and hence increasing at a constant rate over time, and due to
(3.2), so does s∗et.�

Intuitively, as the demand is increasing over time, so is the milking profit for discounters.
For condition (3.3) to hold, sdt needs to increase over time as well. This implies that a higher

but in case of production with a loss and ceh < cdh, the inequality is strict.
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quantity of high-quality products needs to be sold to obtain a reputation for high quality,
which means that set is also increasing.

Lemma 4
For the high-quality product to be supplied by a for-profit firm (N∗ht ≥ 1), the demand
parameter k (highest willingness to pay for the high-quality good) and the production
costs of discounters (cdl, cdh) need to be sufficiently large relative to ceh, the cost of the
quality experts to produce the high-quality good.

Proof: Again from the conditions (3.5) and (3.6), N∗ht is given by:

N∗ht =

(
cdh−cdl
ceh−cdl

1− 1+g
1+r

− 1

)
k − ceh
ceh − cdl

− 1.

Consequently, N∗ht ≥ 1 reduces to:

k − ceh ≥
2 (ceh − cdl)2

cdh−cdl
1− 1+g

1+r

− (ceh − cdl)
. (3.7)

While k > ceh and cdh > ceh > cdl, and hence both sides of the above inequality are
positive, the inequality does not hold if ceh is sufficiently close to k and/or ceh is close to cdh
but substantially different from cdl.98�

Lemma 4 implies that if the willingness (or ability) to pay of the consumers for the high-
quality product is low (k is low relative to ceh), then the high-quality market does not exist.

Finally, in this simplified setting, there are no incentives to create a NFP firm. Note though
that a NFP firm has no incentives to lie about quality and can consequently operate even if
condition 3.7 fails - as long as k > ceh.

3.3 Full Model

In the full model, there are two variants of the good, each of which can be produced in high
or low quality. Quality experts have an advantage in producing high quality regarding both
variants of the good. Consequently, one variant of the good can be used to signal being a
quality expert regarding both variants. Under some conditions, the optimal way to signal is
to operate a NFP firm that produces one of the two variants.

98Intuitively, πmilkdt is increasing in (k − ceh) (k − cdl). Regarding πcournotdt , both production costs and
“price defining costs” are ceh and hence πcournotdt is increasing in (k − ceh)2. It is always the case that
(k − ceh) (k − cdl) > (k − ceh)2 and other terms in the respective equations for the equilibrium profits can
lead to π∗milkdt < π∗cournotet (e.g. because the quality experts are in the market for more than one period).
However, if (k − ceh) (k − cdl)− (k − ceh)2 is too large, then the high-quality market collapses as πmilkdt is too
high. If k is large, then (k − ceh) (k − cdl) is similar to (k − ceh)2.

92



3.3.1 Quality & Demand

The key difference to section 3.2 is that there are two variants of the good. The idea is that
one of these variants is cheaper and aimed at “the poor”, while the other type is aimed at “the
rich”. For the remainder of this paper, I will use the following illustrative example. The good
is a shoe, the variant (v) of good for those with a sufficiently large willingness to pay (WTP)
for it (“the rich”) is a work boot and the other type (for “the poor”) is a sandal; i.e. vε {b, s}.
Both boots and sandals can be produced in high and low quality. The (relevant) demand
functions are summarized in Table 3.1.

QDvqt (pvqt) High WTP for Boots Low WTP for Boots

High-Quality Sandal 0 at pbht < k dt(j − psht)
Low-Quality Sandal 0 at pblt < z d̂t(y − pslt)
High-Quality Boot Dt(k − pbht) 0 at pbht ≥ cbeh
Low-Quality Boot D̂t(z − pblt) 0 at pblt ≥ cbdl

Table 3.1: Demand Functions by Consumer Type

Regarding the demand parameters (j, k, y, z) in Table 3.1, I assume z > cbdl and y > csdl,
so that these markets are served at perfectly competitive prices, as well as

k ≥ 2 (cbeh − cbdl)2

cbdh−cbdl
1− 1+g

1+r

− (cbeh − cbdl)
+ cbeh, and

2 (cseh − csdl)2

csdh−csdl
1− 1+g

1+r

− (cseh − csdl)
+ cseh > j > cseh. (3.8)

The former implies that the market for high-quality boots is guaranteed to be served (see
Lemma 4 and section 3.3.3), while the latter means that the market for high-quality sandals
would not be served in isolation.

Intuitively, “the poor” are highly price sensitive. Their willingness to pay for a high-quality
sandal is barely higher than its production cost. Moreover, for sandals, producing low quality
is cheap, while producing a high-quality durable sandal is rather expensive, so csdl is low
relative to cseh.

Finally, the demand scale parameters dt, Dt, and D̂t are assumed to grow at the constant
rate g.

3.3.2 Firms & Production

The cost for a firm of type f to produce quantity q of variant v and quality a is Cf (qva) =

cvfaqva. Regarding both boots and sandals, discounters have an advantage in producing low
quality and quality experts have an advantage in producing high quality: cbdl < cbel, csdl <

csel, cbeh < cbdh, cseh < csdh. I again abstract from the case where quality experts are tempted
to produce low quality and assume cbel = cbeh, csel = cseh.
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I focus on the situation where high-quality sandals are not yet a well established product -
namely they do not yet exist. Consequently, there is a risk of failure associated with attempt-
ing to produce high-quality sandals. While I assume that the cost function of production
(conditional on success) remains at Cf (qsh) = csfhqsh, there is a risk that the actual output
is useless (e.g. sandals that fall apart, or such that do not meet the taste of the consumers).
Specifically, I assume that there is an additional expected ex-ante cost of producing high-
quality sandals. This cost is constant over time, equal for both types of firms, and denoted
M.

Finally, firms are allowed to operate with different organizational forms in the boots and
the sandals market. Namely, a company can operate with a NFP status in the sandals market
but with a FP status in the boots market.

3.3.3 Equilibrium

Regarding both low-quality boots and sandals, markets are perfectly competitive with the
constant prices p∗blt = cbdl and p∗slt = csdl. A key implication of having two variants of the
product is that reputation carries through markets. If a firm has credibly signaled to be a
quality expert regarding the production of sandals, this firm is a quality expert in general -
also regarding the production of boots. Due to the assumed condition (3.8), the market for
high-quality sandals is not served in isolation (even if M was zero). Consequently, this market
can only be served for one of the following reasons:

Establishing Reputation Establish a high-quality reputation in the sandals market to prof-
itably enter the market for high-quality boots.

Benefiting from Reputation Firms that have already established a high-quality reputation
in the boots market enter the sandals market without the need for any further signaling.

3.3.3.1 Establishing Reputation

A firm can obtain a high-quality reputation via the boots market - namely by selling high-
quality boots with a loss as outlined in section 3.2. Alternatively, a firm can obtain a high-
quality reputation via the sandals market. This can be achieved either with a FP or a NFP
status. As a NFP firm is not allowed to make profits, pNFPsht = cseh.99 The ex-ante expected
cost M cannot be recouped as ex post, when successful, this would imply making a profit.

Lemma 5
If the optimal signal is producing high quality in the sandals market, the NFP status
is superior to the FP status.

99Discounters could theoretically charge pNFP,dsht = csdh but that is never optimal as it immediately reveals
their type.
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Proof: If a quality expert produces high-quality sandals with a FP status, the expected
cost of that are M plus the signaling costs in the sandals market. The expected benefits are the
profits from permanently operating in both the boots and sandals market with a high-quality
reputation. If it is done with a NFP status, the expected cost is M and the expected benefit
is only the profits from the boots market. As a direct consequence of Lemma 4 and due to the
assumed condition (3.8), the cost of signaling in the sandals market is higher than the profit
from operating in that market with a high reputation.�

In equilibrium, a sandal-producing NFP firm instantly obtains a high-reputation in the
sandals market, and after producing h̃t

1+r high-quality sandals within one period, this repu-
tation carries to the boots market.100 It is necessary to wait for one period, as otherwise
low-type firms would have an incentive to immediately milk the high reputation in the boots
market. With this one-period wait for the reputation to carry through markets, the argument
of Glaeser and Shleifer (2001) comes fully into play and it is rational to believe that NFP
firms produce high quality if they declare to do so (see section 3.3.4 for more details). The
role of h̃t is akin to that of ht previously, and the equilibrium conditions (replacing (3.1) -
(3.4) from section 2) that allow both signaling via producing high-quality boots at a loss and
via a sandal-producing NFP firm are:

πcournotbt ≤ min
{
s̃NFPet , sbet

}
, (3.9)

s̃NFPft = h̃t (csfh − cseh) +M, (3.10)

sbft = ht (cbfh − cbdl) . (3.11)

πmilkbdt ≤ s̃NFPdt , (3.12)

πmilkbdt ≤ sbdt. (3.13)

Nbht ≤ Nbh(t+1). (3.14)

Lemma 6
The absolute cost of NFP-signaling via the sandals market is constant in time for
quality experts, even as the markets grow in size.

Proof: The proof follows directly from equation (3.10).�
100Analogue to footnote 96, I assume that one period provides enough demand at psht = cseh to sell the

necessary h̃t
1+r

units (and also to sell ht
1+r

boots at cbdl) throughout this paper. In case of h̃t, the issue becomes
more subtle as it is linked to when the expected cost M occurs. As shown in Appendix C.5, it is sufficient to
assume that “market for the poor” is large relative to the “market for the rich”.
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Moreover, note that for discounters, this cost
(
s̃NFPdt

)
varies with time and is adjusted

accordingly (via the time-varying h̃t) such that no mimicking occurs.

Lemma 7
If the optimal signal is creating a NFP firm in the sandals market (particularly implying
s̃NFPet < sbet), the period-profit made by each high-reputation firm is constant.

Proof: Combining conditions (3.9) (binding) and (3.10):

1

1− 1+ĝ
1+r

Dt

(Nbht + 1)2 (k − cbeh)2 = M.

The number of firms with a high-quality reputation in the boots market, Nbht, is growing
in equilibrium to ensure that Dt

(Nbht+1)2
remains constant.101 Consequently, condition (3.14)

is slack, as required for condition (3.9) to be binding, πcournot,periodbet = Dt
(Nbht+1)2

(k − cbeh)2 is
constant, and hence ĝ = 0.�

Regarding the conditions (3.9) - (3.14), note that again either (3.9) or (3.14) is binding.
Moreover, condition (3.13) is always binding and condition (3.12) is binding unless this implies
a negative h̃t (i.e. always binding for sufficiently high t). The latter two being binding is again
due to the selection of the equilibrium that is supported by backward induction. Finally note
that M is assumed to be constant, which the fundamental reason for Lemma 7 to hold (see
section 3.4 for a mechanism where M drops to zero after the first producer of high-quality
sandals is operational).

3.3.3.2 Benefiting from Reputation

Firms that have obtained a high-quality reputation in the boots market could enter the sandals
market directly with a high reputation and make a positive period-profit until a NFP firm is
created and the market price psht becomes pNFPsht = cseh. The expected cost of doing so is
M. I assume that M is sufficiently large relative to the demand for high-quality sandals - in
particular relative to the share of the “poor” (people that would buy high-quality sandals in
principle) that buy at a price of cseh. As shown in Theorem 4 below, this assumption implies
that firms with a high-quality reputation (in the boots-market) do not benefit from it in the
sandals market. A sufficient assumption is the following:

M

QDsh1 (cseh)
>

(j − cseh)

4
(

1− 1+g
1+r

) , (3.15)

Intuitively, this is another condition stating that “the market for the poor” by itself is
unattractive for firms. Condition (3.15) is a stronger assumption than necessary. The necessary
and sufficient condition, which is considerably more difficult to interpret, is provided in the
proof of Theorem 4 below.

101The equilibrium is again assumed to have a constant rate of change of πcournot,periodbet if s̃NFPet < sbet. See
Appendix C.2 for a discussion.
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3.3.3.3 Equilibrium

The previous lemmas and assumptions lead to Theorem 4:

Theorem 4

1) If the initial demand in the boots market, namely D0, is sufficiently low, the initially
optimal form of market entry is signaling within the boots market.

2) As this market grows over time (as Dt grows with rate g), there exists a point in
time t = τ when the optimal form of market entry becomes “NFP-signaling”.

3) For t > τ , the profit each firm makes is constant, which implies that the number
of firms in the market for high-quality boots is increasing. Consequently, NFP
firms are not just a “credible threat” but in fact created.

4) Under the assumed condition (3.15) (and even under a weaker version), no firm
that already has a high-quality reputation will invest M in order to operate in the
sandals market.

Proof: See Appendix C.1.102

Theorem 4 states that if the boots market is sufficiently small initially, quality experts enter
initially by producing high-quality boots with a loss. The number of firms in that market then
remains constant until at some point (denoted τ), a NFP firm is created in the market for
high-quality sandals. Due to condition (3.15), this NFP firm, created by a quality expert, is
the first to ever offer high-quality sandals. After confirming the high-quality reputation, the
quality expert then enters the market for high-quality boots with an FP status.

3.3.4 Role of the NFP Status

In the mechanism above, the NFP status is critical as it avoids signaling costs. Since quality
claims are not enforceable, the NFP status is what guarantees that only quality experts offer
the high-quality sandals and consequently benefit from instant high-reputation in the sandals
market. Specifically, I assume:

• quality claims are not enforceable (i.e. sandal producers cannot be sued for producing
low-quality sandals, especially once they have stopped operations),

• the NFP status is enforceable (i.e. NFP sandal producers cannot exit the market (or
remain in it) with a profit; the owners would be sued). This implies the “non-distribution
constraint” of NFP firms to hold perfectly (see Hansmann, 1980).

102Intuitively, sbet is initially increasing since it is tied (via ht) to sbdt, which must be increasing to avoid
mimicking from becoming optimal as the markets grow. Due to the increasing sbet, entry is not attractive for
quality experts after the initial period. Once “NFP signaling” becomes optimal, the relevant signaling cost is
now s̃NFPbet for quality experts, which is no longer tied to sbdt or s̃NFPbdt . While the latter are still increasing
to avoid mimicking, s̃NFPbet is constant. Now quality experts create NFP firms (and enter subsequently) until
entry is not profitable as a larger Nbht implies lower prices and profits.
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Suppose instead a firm would commit to selling sandals at a discounted price such as cseh.
While this leads to the equivalent consumer surplus if these sandals are indeed of high qual-
ity, consumers cannot rationally believe the high-quality claim. Discounters can mimic this
approach, but produce low quality sandals and make a profit of:

πmilksdt =
QDsht (cseh)

Nsht
(cseh − csdl) > 0.

After one period, consumers learn about the true type of the firm and the (high-quality)
demand for that firm drops to 0. Note that this results in an overall profit of πmilksdt ; since no
high-quality sandals are sold, no development-costs (M) need to be invested.

The NFP status, however, ensures incentive-compatibility. Given that discounters cannot
make a profit in the first period and they can only carry the reputation to the boots market
after one period, they have no incentive to establish a NFP firm. Quality experts, however,
have an incentive to establish a NFP firm once t ≥ τ . Consequently, it is rational to believe
that a newly established NFP firm is a quality expert.

The above is true for any discounted price larger than csdl. Alternatively, quality ex-
perts could operate a FP firm and commit to a discounted price p ≤ csdl to ensure incentive
compatibility. However, this results in a signaling cost that is strictly larger than M and is
consequently not optimal.103

In sum, no quantity of high-quality sandals will be demanded if they are sold by a FP firm
at a price p > csdl unless that firm has previously established a high reputation. Similarly,
promising to sell any quantity at p > csdl is not a sufficient signal by itself. Selling at a price
p ≤ csdl (as a FP firm) results in a high reputation once enough units have been sold, but this
strategy is dominated by creating an NFP firm. Furthermore, selling at a price p > csdl and
promising to sell at p < csdl later is not a credible way of obtaining instant high reputation.
Therefore, any form of signaling by producing sandals with a FP firm is either infeasible or
dominated by using a NFP firm.

3.4 Extension: Motivated Workers

A key characteristic of the mechanism outlined above is that NFP firms are created even
though this creation is costly (the development cost M) and no pro-social motivation of any
sort is included in the model. The fundamental reason is that NFP firms allow for instant
high-quality reputation in the sandals market. However, the dynamic equilibrium described
in section 3.3.3.3 implies that NFP entry - and hence the creation of new and additional NFP
firms - occurs regularly once t > τ . Moreover, as mentioned in the introduction, it can be
observed that firms that are already active with a FP firm in a market “for the rich” create
NFP firms. So far, this cannot be explained with the mechanism presented above. Finally,
103The development costs M have to be spent in any case. Therefore, even if one sandal sold at a price
p ≤ csdl < cseh was sufficient to signal being a quality expert, this is more expensive than establishing an NFP
firm. Moreover, given πmilksdt > 0, the number of sandals needed to be sold at this price is generally larger than
one.
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I have assumed above that the cost M is constant in both time and the number of firms in
the high-quality sandals market. Given that the cost M is in part motivated by the fact that
high-quality sandals are a novel product, this assumption is potentially too strong in the long
run.

The (expected) cost of NFP creation being constant not only in time but also in the number
of NFP firms is also the underlying reason for the former two issues. This can be addressed
by extending the setting to include motivated workers. The idea of workers caring for the
impact of their work is common in the literature (in the context of NFP firms, see for example
Ghatak & Müller, 2011).

I model the production/labor market side in the following way. First, potential workers
have the simple utility function u = w + αi − ū, where w denotes wage, ū is the outside
option (to work elsewhere), 0 < α < 1, and i denotes impact of their work on “the poor”.
More specifically, i is defined as the increase in consumer surplus of consumers in the sandals
market that can be attributed to a firm entering (and remaining in) the market per worker of
that firm.

Second, regarding the cost of production, I assume csfa(p) = Asfawsap; where Asfa denotes
the productivity of a firm of type f to produce sandals of quality a and wsap the wage paid
to workers to produce sandals of the (believed104) quality a that are sold at price p. Since
workers only care about “the poor”, who do not demand any boots, the cost of producing boots
is not affected.

Regarding the market for low-quality sandals, which is perfectly competitive, this results in
a constant cost of production and a constant price p∗slt (see Appendix C.4). This is analogue to
the sections 3.2 and 3.3. The market for low-quality boots is not affected by the introduction
of motivated workers in the sandals market.

Regarding high-quality production, there are important differences to section 3.3. These
are driven by the fact that the first (NFP) firm to operate in the high-quality sandals market
has a significant impact on consumer surplus, while the effect of subsequent firms is generally
smaller, and under the current assumption of constant returns to scale, even zero. This is the
major aspect that workers internalize: they receive utility from being part of a new firm that
sells a product to the poor that makes their lives better, while they receive no utility from
being part of a firm that merely copies the product and sells it at the same price to the same
people that are also able to buy the product from the former firm. The consequences of this
are outlined in Theorem 5:

Theorem 5

1) With motivated workers, the expected cost of establishing a firm that produces high-
quality sandals (M) can drop to zero after the first such firm has successfully been
established, without causing an unbounded number of firm entries.

104Similar to consumers only trusting NFP firms instantly, the argument could be extended that FP (but not
NFP) firms have an incentive to cheat workers regarding the produced quality. This is not necessary in the
current setting as the consumer beliefs are sufficient to guarantee that a NFP status is optimal. Note though,
that is another potential advantage of the NFP status.
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2) Specifically, if M drops to zero and producing high-quality boots is a superior signal
to producing high-quality sandals, only one NFP firm is created at t = τ . This
leads to a unique increase in the number of firms in the high-quality boots market
(Nbh) by at most one.

3) If the “inside firms” of the boots market can overcome the associated coordination
problem, it is an “inside firm” that creates this NFP firm. This is guaranteed to
be the case for monopolists.

Proof: See Appendix C.3.
Intuitively, the expected cost M is not allowed to drop to zero in section 3.3 because there, the
cost of “NFP signaling” always equals M for quality experts. If M dropped to zero, there would
be an explosion of NFP firms. With motivated workers, however, the first NFP firm can operate
cheaper, and due to its NFP status, the price (psht) equals those cheaper production costs.
All following firms, even NFP firms established by quality experts, face a loss of producing at
this price, and hence the cost M is no longer required to prevent unboundedly many of them
entering the market.

After the first NFP firm has been established, the signaling options are therefore to either
produce high-quality boots or high-quality sandals at a loss. If the loss of doing the former
is lower for quality experts relative to discounters than doing the latter, producing high-
quality boots becomes again the best possible signal - as it was for t < τ (see Theorem 4.1).
Consequently, except for the creation of one NFP firm at t = τ , the situation is as described
in section 3.2.

If the creator of the NFP firm is not yet a high-reputation producer in the boots market,
she will enter the high-quality boots market. However, expecting this, the high-reputation
boots producers have an incentive to create the NFP firm themselves to avoid such a market
entry. For a monopolist, it is always profitable and also obvious that it is the monopolist
himself that needs to create the NFP firm. For Nbh > 1, the “inside firms” need to coordinate
regarding whom to create the NFP firm and how to split the costs. It is no longer profitable
for a single firm to spend M in order to prevent an outsider from entering.

3.5 Welfare & Policy Implications

In the mechanisms presented in the sections 3.3 and 3.4, NFP firms create high-quality sandals
and are universally beneficial to “the poor”, i.e. people with a low willingness to pay for boots.
They obtain access to a high-quality product (sandals) at production costs - or in case of
section 3.4 even cheaper.

The mechanisms are also beneficial to the “rich” consumers, provided time has progressed
sufficiently far (i.e. for a sufficiently large t). In the case outlined in section 3.3, the number
of firms in the high-quality boots market (Nbht) would be constant absent of the possibility of
“NFP entry” (see section 3.2). With “NFP entry”, however, (Nbht + 1) is growing constantly
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at the rate
√

1 + g − 1, hence eventually, N∗bht is guaranteed to be larger than equilibrium
number of firms in isolation obtained in section 2

(
N∗isolationbht

)
. A larger number of firms

implies lower prices and higher quantities, and hence higher consumer welfare. However, for
low values of t, the anticipated entry of additional boots producers lead to N∗bht ≤ N∗isolationbht

(at least for t ≤ τ ; see proof of Theorem 4.2). This implies higher prices for high-quality
boots compared to a case where no signaling through another market is possible. The latter
effect is mitigated if τ is large. In that case, the initial number of firms (Nbh0) is close to
N∗isolationbht and the condition that Nbht is non-decreasing guarantees it to remain at that level
(for t ≤ τ). However, a large τ also implies that it takes longer for entry via NFP creation to
occur and the benefits of “large t” to materialize.

The mechanism outlined in section 3.4 is qualitatively similar regarding welfare. The key
difference is that Nbh increases by at most one after t = τ . Consequently, N∗bht = N∗isolationbht

either initially, or eventually, or both. So initially, the consumer welfare of “the rich” is weakly
lower and eventually, it is weakly higher.

Regarding potential policy interventions, I first consider markets that satisfy the assump-
tions made in this paper and will therefore experience the creation of NFP firms eventually.
For these markets, the relevant task is not to create the initial conditions (as these were set
in the past), but to affect the environment for t > 0, and typically for 0 < t < τ . This implies
that condition (3.14) is binding: the number of firms in the high-quality market cannot be
decreasing. Imposing t < τ sets the focus on those markets that have not yet experienced NFP
entry, which is arguably more interesting for policy. As the number of firms in the high-quality
boots market is constant at N∗bh0 for 0 < t < τ , the period in which a NFP firm is created is
given by:

τ =

ln

 M(cbdh−cbdl)(N∗bh0+1)

D0(cbeh−cbdl)(k−cbeh)

(
k−cbdl−

N∗
bh0

N∗
bh0

+1
(k−cbeh)

)


ln (1 + g)
.

A lower value of τ is beneficial for both “rich” and “poor” consumers (but harms the profits
of the “inside firms”). If, for example, a policy can lower the cost M (e.g. by supporting research
and development), this leads to an earlier creation of the first NFP firm. The optimal number
of “inside firms” (Nbht) is, if anything, lower for an unexpected decrease in M (see proof of
Theorem 4.2). However, due to condition (3.14), Nbht remains constant.

Focusing on the extension with motivated workers, workers that are willing to work for
a lower wage for the initial NFP firm imply a larger set of markets that can be served by a
NFP firm.105 Therefore, policy interventions that increase the motivation of workers, or offer
other benefits for working at NFP firms, expand the set of markets that can benefit from the
mechanism outlined in this paper.

105Essentially, the cseh in condition (3.15) becomes lower.
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3.6 Conclusion

When quality is only observed after purchase and companies can operate several firms with
different organizational forms, NFP firms are created in “markets for the poor” as signaling
devices under the assumptions outlined above. A key part of these assumptions concern the
demand functions. The parameters are assumed such that (1) FP firms ignore “the market
for the poor” (at least in isolation) but (2) NFP firms are able to operate in this market (see
condition (3.8)). The former is in line with the observations of Yunus (2008). While assuming
(2) on top of (1) is restrictive to some degree, it directs the focus to those environments that
can benefit from “NFP signaling”. Moreover, introducing motivated agents (e.g. motivated
workers) partially alleviates the restrictions on the demand parameters.

For environments that meet these assumptions, NFP firms are eventually created. No pro-
social motivation is required, but employing motivated workers in the model (for example)
regulates the number of created NFP firms.

In terms of the four stylized empirical facts listed in section 3.1, the first point is taken
into the model as possible action of the companies. Under the assumptions mentioned above,
the outcome is in line with the second point and companies create NFP firms as their optimal
action to enter the FP market - both with and without motivated workers. With motivated
workers, also the third point is accounted for: it can be optimal for FP companies to create a
NFP firm in order to avoid entry of an additional competitor. Finally, the fourth point is also
part of the model’s outcome: only as markets grow to be sufficiently large, market entry via
NFP creation is optimal.

Once NFP firms are created, the mechanism outlined in this paper is beneficial to both
“the rich” and “the poor”. The former benefit from lower prices, while the latter benefit from
being offered a tailored quality product at production cost. Initially though, “the rich” are
potentially harmed by this mechanism: the expectation of future firm entry can lead to fewer
firms in the early periods, which implies higher prices. Consequently, given the conditions
for NFP entry are (and remain to be) met, any policy that leads to earlier NFP creation is
beneficial for all consumers (but harmful to firm profits).

It is left to future research to allow for interactions of the demands for the different goods.
For example, the model could be extended such that the demand for high-quality boots de-
creases once high-quality sandals become available. Note though that such forms of cannibal-
ization between the markets would not affect the results qualitatively as none of the driving
forces are affected: no changes occur prior to NFP signaling being optimal, markets and sig-
naling costs still grow over time, and once NFP entry is optimal, the cost of signaling remains
constant for quality experts. Consequently, the most important associated future research
arguably concerns empirically analyzing these markets and the testable predictions provided
in the current paper.
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Appendix

A Supplementary Material and Proofs to Chapter 1

A.1 Synthetic Control Method

The synthetic control method has been introduced in the seminal papers of Abadie and coau-
thors (Abadie & Gardeazabal, 2003; Abadie et al., 2010, 2015). It is a difference-in-difference
estimate where instead of one comparison, several comparisons are made, based on the pre-
event period. Under rather strong assumptions, a variant of the synthetic control method can
be applied to analyze the ‘Brexit effect’. This is done here for the example of London. The
result suggests a short term effect of the Brexit vote of one to two months.

Method

The synthetic control method requires panel data with a ‘donor pool’ of other entities that can
be used to model the entity in question in the post-treatment period. In my case, the entity in
question is racial or religious hate crime. For the donor pool, I require time series of variables
that are (1) affected similarly by factors that are not the Brexit vote, but (2) unaffected by the
Brexit vote. Other types of crime are my major candidates - although several issues require
attention. Provided sufficiently similar types are chosen, the requirement (1) is arguably only a
weak assumption. However, requirement (2), the unaffectedness by the Brexit vote, is a rather
strong assumption. Analyzing the time series of the relevant crime types for ‘Brexit effects’
can test this assumption to some extent. Another problem is that for the London data, only
aggregate information on crime is available to us. Hence a crime can be part of the aggregate of
racial or religious hate crime, but also part of the aggregate of harassment crime. In principle,
this violates the first requirement mechanically. However, racial or religious hate crimes are
rather rare.106 Thus while there will be bias, I expect that bias to be small. Moreover, if
anything, that bias will negate any effects of the Brexit vote specifically to racial or religious
hate crime, so the results below would be too conservative.

Another challenge when using a panel of different crime types is the fact that other than
for example states or countries, crime types do not have entity-level properties (such as GDP,
or inflation rate; see Abadie, Diamond & Hainmueller, 2015). The synthetic control method
relies on such properties as predictors of the main effect of interest. Plainly using month of
the year or a time trend is also infeasible because it is identical for all entities. However, a
key property of crime is its behavior across time, especially its seasonality. I generate averages
for each month of the year, as well as averages for each year, and use these as predictor
variables.107 That way, each entity in the panel has generally unique predictor variables.

106Example: For Manchester, where the data is on the incident-level, at most 21.5% of any given crime-type
(public order offense) used in the donor pool is flagged as racial hate crime. This is an outlier, with the second
most being violence without injury at 3.2%. Given that public order offenses (which are part of state based
crime) were only given weight 0.001, strong concerns about that outlier are arguably unwarranted.
107The average of the given year or calendar month was calculated for each observation based on all other
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Result

The synthetic control result is fully consistent with the visual inspection in section 1.3. I use
again July 2016 as the period affected by Brexit (results are robust to using June 2016). The
variables of the donor pool and their respective weights are depicted in Table A.1 below. The
result of using the synthetic control method with this panel data is illustrated in Figure A.1.
It becomes clear that at the time of the event, the synthetic racial or religious hate crime
completely lacks the spike of the true racial or religious hate crime. This is possibly the case
for June already and August thereafter, but seems to be over by September 2016, providing
evidence for the effect being temporary. There is another spike in 2017 which coincides with
the month after the Manchester terror attacks, which is in line with the findings of Ivandic,
Kirchmaier and Machin (2018), and hardly related to the Brexit vote itself.

Crime Control Weight

Assault with Injury 0.004
Common Assault 0.004
Harassment 0.11
Other Violence 0.016
Criminal Damage: Dwelling 0.009
Criminal Damage: Car 0.007
Criminal Damage: Other Building 0.013
Criminal Damage: Other 0.01
Rape 0.802
Other Sexual 0.016
Theft from Person 0.005
Theft from Shop 0.005
State Based Offense 0.001

Table A.1: Synthetic Control Weight (London)

observations, although using all observations lead to almost exactly the same results.
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Figure A.1: Synthetic Control (London)

What is rather surprising is that rape is such an important part of the synthetic construct.
The weights are generally quite different from Figure 1.5 and footnote 26, which served (other
than data availability) as guide which crime types to include. However, as shown in Figure A.1,
the match of the pre-period is reasonable, at least compared to the massive discrepancy around
the Brexit vote. I also emphasize that it was a key argument, that only few crimes of each type
are flagged as hate crimes, so Figure 1.5 is indeed a weak guideline. Moreover, both in-time
and ‘in-crime’ placebo exercises with a random other month before Brexit and a random other
crime-type are in line with the analysis. The in-time placebo produces virtually the same
result as Figure A.1, and the in-crime placebo shows if anything that only the synthetic crime
spikes at Brexit, which makes sense since that includes partially racial or religious hate crime
(see Figure A.2). Finally, in a simple regression of the monthly counts of racial or religious
hate crimes on the counts of all other crime types of the donor pool, it is indeed rape that has
the highest conditional correlation.

The absence of a spike for the synthetic crime suggests that the fact that some crime was
classified both as hate as well as other crime is indeed a minor issue. Moreover, it suggests that
crime that is not racially or religiously aggravated was not affected in a noticeable magnitude.
Additionally, I use each individual time series in the donor pool as independent variable in
a regression equivalent to the one used for the synthetic control method (month and year
averages), but also add a either a dummy for July 2016 or post (and including) July 2016
(i.e. Chow test for the intercept). Out of these 26 regressions, only one contains an estimator for
the dummy variable that is significant on the 10%-level (July 2016 dummy in the harassment
regression).
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Note: The dashed vertical line divides the pre- from the post-period. In the right-hand figure, it coincides with the
Brexit vote as this is the shock of interest. The left-hand figure depicts an ‘in-time placebo’, hence the pre-post divide
is at a random other point in time to show that not the mere pre-post divide is causing the difference but the shock of
interest. July 2016, i.e. the month after the Brexit vote, is indicated with a solid red vertical line in that figure.

Figure A.2: London: In-Time and In-Crime Synthetic Control Placebos

A.2 Difference-in-Difference Estimation

For London and Manchester, the data sources contain racial or religious hate crime but also
total crime. This can be used for a difference-in-difference estimation. As the magnitudes are
dramatically different, only the relative effect is analyzed. The assumption that the Brexit
vote did not affect the overall crime level is required for this analysis to be valid (along with
parallel trends).

Column 1 of Table A.2 shows the simplest possible difference-in-difference approach, re-
gressing log(monthly crimes) on a dummy for July 2016 (denoted ‘Brexit’), the crime-type
dummy (hate or total crime), and the term of interest: their interaction (standard errors in
parentheses). As shown in Figure A.3 though, this result is likely misleading. Hate crime
seems to have a slightly different trend and more pronounced seasonal effects than total crime.

Figure A.3: Trends

Column 2 shows the result where a type specific time trend (time and time squared) and
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type specific seasonalities (month-of-the-year dummies) are added as controls. The magnitude
of the effect is now at 0.27 (0.25 if the insignificant total Brexit effect is subtracted) for hate
crime, highly similar to the 0.21 obtained in section 1.3.2.

(1) (2) (3)
log(Crimes) log(Crimes) log(Crimes)

Hate Crime * Brexit 0.70** 0.27*** 0.38***
(0.30) (0.00) [0.19, 0.57]

Brexit 0.07 -0.02 -0.13
(0.21) (0.08) [-0.40, 0.15]

Type Fixed Effects Yes Yes Yes
Borough Specific Trends/Season. No Yes Yes
Std. Error Adjusted No No Wild C.

Bootstr.
Observations 176 176 2785

Table A.2: Overall Effect of Brexit: Difference-in-Difference Estimation

The standard errors are not adjusted in any way in Table A.2 and consequently invalid
(see e.g. Cameron et al., 2008). Obtaining valid standard errors is difficult in this setting.
Clustering on the crime type results in only two clusters, prohibitively few for any clustering
or adjusted clustering.

Running this difference-in-difference estimation (of column 2) separately for each month
in the data reveals that July 2016 results in the highest of all 88 estimates (and the second
highest absolute value). In that respect, the estimate is significant from a permutation-test
point of view.

The results of repeating this exercise with not only the short term but also potential long
run effects are displayed in the first two columns of Table A.3. Running that difference-in-
difference estimation separately for each month reveals that while the transitory effect (Hate
Crime * Brexit) is the second largest, the long term effect (Hate Crime * Post-Brexit) is in 21
out of 88 cases lower. So again, there does not seem to be a significant long-run effect of the
Brexit vote (the 0.40 in column 1 is also not a tail result if that estimation is run for every
month respectively). Regarding the short run effect, 0.18 is again close to the 0.21 obtained
in section 1.3.2.

Finally, in column 3 of both tables, slightly different data is used. The total crime is
split into sub categories. While GMP and the London Metropolitan police do not categorize
identical, 14 categories could be matched (losing 49% of the total crimes as measured in July
2016, but a trend comparison still highly resembles Figure A.3). That results in panel data of
15 crime types (including racial and religious hate crime) over 88 months. The advantage is
that now clustering the standard error by type results in 15 clusters. Following Cameron et
al. (2008), I use wild cluster bootstrapping (95% bootstrapped CI in brackets).
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(1) (2) (3)
log(Crimes) log(Crimes) log(Crimes)

Hate Crime * Brexit 0.76*** 0.18 0.23***
(0.24) (0.11) [0.08, 0.38]

Hate Crime * Post-Brexit 0.40*** -0.18*** -0.30***
(0.07) (0.05) [-0.52, -0.08]

Brexit 0.08 0.00 -0.12
(0.17) (0.08) [-0.40, 0.16]

Post-Brexit 0.11 0.04 0.35
(0.05) (0.04) [-0.30, 0.99]

Controlling for Type and Brexit Yes Yes Yes
Borough Specific Trends/Season. No Yes Yes
Std. Error Adjusted No No Wild C.

Bootstr.
Observations 176 176 2785

Table A.3: Overall Effect of Brexit: Difference-in-Difference Estimation with Long Run Effects

A.3 Proof of Lemma 1

Take the regression y = Xβ + Zγ + ν. By the Frisch-Waugh-Lovell theorem, the “classic”
OLS estimator is β̂c = (X ′MZX)−1X ′MZy. The OLS estimator obtained from the regression
MZy = Xβ+ ε is β̂p = (X ′X)−1X ′MZy. Further, X ′X−X ′MZX = X ′Z(Z ′Z)−1Z ′X, which
is positive semi-definite.108 In the single variable case, X is a vector (hence now denoted x)
and β is a scalar, and consequently |β̂c| ≥ |β̂p|. Unfortunately, the same cannot be stated for
the multi variable case.

Moreover, E
(
β̂p|X,Z

)
= β− (X ′X)−1X ′PZXβ. For the single variable case, this reduces

to E
(
β̂p|x, Z

)
=
(

1− x̂′x̂
x′x

)
β, where x̂ refers to the fitted values of a regression of x on Z.

Since x̂′x̂ ≥ x′x and both sides are positive, there is attenuation bias in β̂p. Moreover, since
x̂′x̂ = ESS + nx̄ and x′x = TSS + nx̄, the bias is directly related to R2

x,Z . Again, little can
be said about the multi variable case.

q.e.d.

A.4 Robustness: Alternative Measures & Forms of Cross Validation

In this appendix-section, I examine the robustness of the results with respect to alternative
measures and forms of cross validation. The alternative measures concern both the crime-
increase in July 2016 and the heterogeneity that is captured with the candidate variables.

Table A.4 shows the lasso models for different measures for the crime-increase in July 2016
(the increase being the difference between predicted and observed hate crime). The first two
108Another argument for the single variable case is that if x is regressed on Z (with error ε), then x′x =
x̂′x̂+ ε̂′ε̂ = x̂′x̂+ x′MZx, hence x′x ≥ x′MZx.

108



columns report again the measure used in the main section. Columns 3 and 4 as well as 5
and 6 show that not using July 2016 (not using June, July, and August 2016 respectively)
to obtain the prediction leads to an identical choice of variables. If only the pre-period is
used to predict the hate crime in July 2016, then a similar model is obtained for the absolute
effect (the difference being the lack of the share of individuals with no qualifications in the
model) and an intercept-only model for the relative effect (columns 7 and 8). Using a lagged
dependent variable in addition to the prediction-specification in the main text leads again to
the same model as in the main text (columns 9 and 10). When the lagged dependent variable
is used instead of time squared, a slightly different model is obtained (columns 11 and 12).
Instead of using the difference between predicted and observed hate crime as a measure, it
is also possible to run a partially penalized regression of equation 1.1 and only penalize the
interaction terms. The result of this is depicted in columns 13 and 14. The model of the
absolute effect still contains the share of recent immigrants, but now also the share of people
born in countries that were part of the EU in 2000 rather than the share of people stating
no religion and the share of people with no formal qualification. For the relative effect, an
intercept-only model results.

Table A.5 depicts the second measure of heterogeneity that is captured with the candidate
variables suggested by Chernozhukov et al. (2018b) - the first being displayed in Table 1.4
in the main text. Here, the predicted effect (that is a function of candidate variables only) is
not used for defining bins, but rather used in the simple regression of observed hate crimes on
predicted effect. Similar to Table 1.4, conventional significance is only obtained for the absolute
effect but significance based on permutation inference is obtained for both the absolute and
the relative effect.

The Tables A.6 and A.7 provide different forms of cross validation used in the approach
behind Table 1.6 in the main text. Columns 1 to 3 of Table A.6 (columns 3 to 5 of Table
A.7) are equivalent to panel A (B) of Table 1.6 except for using 3-fold instead of 10-fold cross
validation. The columns 6 and 7 (8 and 9 of Table A.7) differ from the lasso and associated
CPSL result in panel A (B) only be not using the ‘rule of parsimony’ discussed in footnote
45. Similarly, the columns 4 and 5 (6 and 7 of Table A.7) differ in both using 3 folds and
disregarding the ‘rule of parsimony’. Finally, the columns 1 and 2 of Table A.7 differ from the
result in panel B of Table 1.6 by imposing the binding condition of having at least 2 variables
included in the splitting based approach. This condition is not binding regarding the absolute
increase in hate crimes.
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(1) (2)
Hate Crimes per
Population Million

log(Hate Crimes per
Population Million)

Predicted Effect 1.28*** 0.58
Permutation Significance ** **
Permutation: 90% Benchmark 0.91 [71%] 0.48 [83%]
Permutation: 95% Benchmark 0.80 [62%] 0.25 [43%]
Candidate Variables 69 69
Observations 42 42
Placebos (Permut. Test) 87 86
Note: Measures of heterogeneity that is captured by the candidate variables. Permutation inference uses other
months than July 2016 (the month after Brexit) as placebos. The benchmarking refers to subtracting the
90th/95th percentile of the placebo values. Percentages in brackets indicate how much of the heterogeneity is
attributed to the Brexit vote if July 2016 had spatial noise equal to the 90th/95th percentile (using 88 months
of data). Method used for the predictions: Lasso with 69 candidate variables (vote and census data, plus a
dummy for Manchester). The lasso’s inherent attenuation bias is a potential reason for estimates larger than
one. The one month where one of the boroughs experienced 0 hate crimes was not used as a placebo for the
relative case as the logarithm is not defined.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table A.5: Alternative Measure for the Captured Heterogeneity

(1) (2) (3) (4) (5) (6) (7)
Recent Immigrants 1572*** 1237*** 902 1139*** 1087 842*** 1091
No Relig. Stated 806** 641** 337 631*** 518 842 545
No Qualific. -235 -79 -224* -171 -297 -181
Industry Code D -2015 -340 -545 -593
No Religion -166 -1
Sikh 166 17
Method Splitting CPSL Lasso CPSL Lasso CPSL Lasso
Folds 3 3 3 3 3 10 10
Parsimony Rule Never Yes Yes No No No No
Frequency 2.4% NA NA NA NA NA NA
Candidate Var. 68 69 69 69 69 69 69
Observations 42 42 42 42 42 42 42

* p < 0.1, ** p < 0.05, *** p < 0.01 (for CPSL and Splitting)

Table A.6: Results using Different Forms of Cross Validation (Absolute Effects)
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(1) (2) (3) (4) (5) (6) (7) (8) (9)

Rec. Immigr. 2.02 1.09

No Quali. -1.97 -2.26* -2.51*** -2.55* -0.34 -1.76** -1.31 -2.18 -1.67

Ind. Code D -25.11 -22.17 -8.53 -11.17 -13.65

Ind. Code E -3.22

Male 3.36 2.40

No Rel. St. 1.65 0.47

No Religion -0.88 -0.04

Method Splitting Splitting Splitting CPSL Lasso CPSL Lasso CPSL Lasso

Folds 3 10 3 3 3 3 3 10 10

Pars. Rule Never Never Never Yes Yes No No No No

Frequency 1.5% 1.3% 2.5% NA NA NA NA NA NA

Min 2 Var Yes Yes No Never Never Never Never Never Never

Cand. Var. 68 68 68 69 69 69 69 69 69

Obs. 42 42 42 42 42 42 42 42 42

* p < 0.1, ** p < 0.05, *** p < 0.01 (for CPSL and Splitting)

Table A.7: Results using Different Forms of Cross Validation (Relative Effects)

A.5 Racially or Religiously Aggravated vs Non-Aggravated Offenses

Figure A.4 shows the types of crime that are relatively frequently racial or religious hate crimes
and are hence especially tracked by the Home Office (2017). These crimes are: assault with
injury, assault with no injury, harassment, public distress, and criminal damage. The figure
depicts data for the 38 forces in England and Wales and both time series are standardized to
100 in April 2014. While an increase in racially or religiously aggravated offenses is observed,
non-aggravated offenses appear stable in July 2016.

Figure A.4: Racially or Religiously Aggravated vs Non-Aggravated Offenses
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A.6 Further Simulations, Visualizations & Regressions

Further Simulations

True DGP Bias in % of
CI

Param. in
CI

Mean Freq. Best Significant

Noise Only 2.2% 94% 5.2% NA 6%
X1 -0.9% 100% 36.1% 78% 99%
2X1 2.2% 99% 92.9% 100% 100%
2X2+2X3 1.4% 100% 48.0% 100% 100%
2X1+X4+X5 2.9% 100% 36.1% 52% 99%
Note: Each simulated 100 times. X1: share of immigrants arrived within 2 years; X2: share of remain
votes in the Brexit referendum; X3: share of people in a same-sex civil partnership; X4: share of people
with no qualifications; X5: share of people not stating a religion. Possible predictors: the 68 candidate
variables from the census and vote data.

Table A.8: Simulation Results Using a Single Variable: Bias Small, Coverage High

Table A.8 simulates the search for a single variable that explains best the treatment hetero-
geneity. When the true model contains more than one variable, it is not necessarily the case
that any of those variables is best. In the fifth row of Table A.8, for example, the correlation
structure among all 69 candidate variables leads to the case that despite the fact that only
X1, X4, and X5 are part of the true DGP, X7 is almost the best single variable to explain the
heterogeneity in an approximation model (it is highly correlated with both X1 and X4, the
difference to the truly best variable, X1, are marginal). This is desired in this setting, as it
directs the focus to the right boroughs using the most parsimonious model possible.109

The second column of Table A.8 indicates the average bias of the coefficients in terms
of the length of their 95% confidence interval. The next column indicates how often it is
the case that the “true”110 parameter of the chosen approximating model is contained in the
95% confidence interval. Column four indicates the mean frequency with which the “winning
variable” was chosen in each iteration of the simulation. Since the frequency itself is measured
across splits and not across simulation-iterations, it is also obtained in section 1.6 and can
therefore serve as a measure of similarity between the simulations and the real regressions.
The last two columns show to what percentage (across the number of simulation iterations)
the best variable was chosen, and to what percentage the chosen variable was significant at
the 95% level. The simulation results show that the confidence intervals are, if anything, too
large and the bias negligible. While it is not always the case that the best variable is found,
it needs to be stressed that it is often the case in my setting of correlated candidate variables
that the second or third best variables are almost equivalently informative predictors.
109Finding the variables best describing the heterogeneity is the question at hand, and it is not trivial given

the issue of multiple hypothesis testing. Finding variables that causally interact with the shock caused by the
Brexit vote would be even more desirable in order to pin down the exact mechanisms at play, but as of the
best of my knowledge, it is (currently) virtually impossible to do so quantitatively in this setting.
110True in the sense of its predictive property (i.e. including omitted variable bias).

113



Further Time Series Visualizations

Figure A.5 shows the time-series of racial or religious hate crimes for London and the other 37
forces excluding London. While the left-hand side shows the effect to be highly pronounced
in London, the right-hand side shows that a clear spike is also visible for the other 37 forces.
The phenomenon is consequently not just London-specific, but it was clearly more pronounced
there.

Figure A.5: Racial or Religious Hate Crime over Time: London vs the other 37 Forces

Figure A.6: Racial Hate Crimes over Time: Manchester

Figure A.6 depicts details that are only available for the data from Manchester. The
left-hand side shows that ‘racial or religious hate crime’ and ‘racial hate crime’ numbers are
almost identical (with the possible exception of the spike in summer 2017). This means that
very few ‘racial or religious hate crime’ are recorded to be driven by religious but not racial
hate. The right-hand side (as well as Figure A.8) shows weekly instead of monthly data - and
Figure A.7 even shows daily data. With higher frequencies, a specific spike is more difficult
to see (especially as the spike in Manchester is considerably less pronounced than in London).
However, in the weeks after the Brexit vote, there are more (and somewhat higher) peaks than
in the rest of the timeseries and fewer ‘valleys’.
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Figure A.7: Racial Hate Crimes over Time: Daily Data for Manchester

Figure A.8: Racial Hate Crimes over Time: Manchester Complete Weekly Data

Further Regression Tables

Table A.9 depicts the result from regression 1.1 in section 1.4.1, where the remain-voteshare
is used as only dimension of heterogeneity. It shows that the increase in hate crime was more
pronounced in boroughs with a high remain vote. While this is interesting (and confirmed in
Albornoz et al., 2018), it suffers from the problem that it can be viewed as an arbitrary choice
from the set of candidate variables.
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(1)
Brexit -110.03***
Remain X Brexit 2.85***
Time Linear -27.00***
Time Squared 0.02***
Brexit Def. July 2016
Area Borough
Time Month
Time X Area FE Yes
Area FE X Time Linear Yes
Area FE X Time Squared Yes
Cluster-Level Area
Clusters 42
Observations 3696

* p < 0.1, ** p < 0.05, *** p < 0.01

Table A.9: Regressing Racial or Religious Crime on the Sole Heterogeneity Dimension Remain
Vote

Table A.10 shows the results from the regressions 1.2 and 1.3. In the first row, it depicts
the average effect of July 2016 - i.e. the month after the Brexit vote.

(1) (2)
July 2016 51.92*** 0.2057***
Time Linear -26.4*** -0.2164***
Time Squared 0.02*** 0.0002***
Month X Borough FE Yes Yes
Borough FE X Time Linear Yes Yes
Borough FE X Time Squared Yes Yes
Cluster-Level Borough Borough
Clusters 42 42
Observations 3696 3696

* p < 0.1, ** p < 0.05, *** p < 0.01

Table A.10: Regression Equations 1.2 and 1.3

Table A.11 shows the effects of the most important single variable (in column 1), and of the
variables chosen in the resulting model of heterogeneity on hate crimes prior to the Brexit vote
(in column 2). Not surprisingly, the share of recent immigrants is also positively correlated
with hate crimes in the months before the Brexit vote (opportunity channel). Moreover, the
share of people with no formal qualifications is positively correlated with hate crimes before
the Brexit vote. This is in contrast with it being negatively associated with the increase of
hate crimes in the month after the Brexit vote (see Table 1.6, panel A).
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(1) (2)
Recent Immigrants 1782.51*** 2003.24***
No Religion Stated 417.51**
No Qualifications 315.80***
Time Linear -27.13*** -27.13***
Time Squared 0.02*** 0.02***
Month FE Yes Yes
Cluster-Level Borough Borough
Clusters 42 42
Observations 3108 3108

* p < 0.1, ** p < 0.05, *** p < 0.01

Table A.11: Regression on the Pre-Brexit Period Using Heterogeneity Variables instead of
Borough Fixed Effects

Residual Distributions

Figure A.9 shows the distribution of the July 2016-residuals of the regressions 1.2 and 1.3.

Figure A.9: Sample Distribution of July 2016-Residuals of Regression 1.2 and 1.3

A.7 Seed Dependency Examples: Repeated Splitting vs Single Split

In this appendix-section, the importance of the seed-dependency issue is visualized for the
current application. The Tables A.12 and A.14 illustrate the problem in the task of finding
the single most important candidate variable to predict the heterogeneity of the increase in
hate crime. The first four columns show the result of the splitting based method outlined in
section 1.5.2. While this approach uses 1000 seeds, it could still be seed dependent if 1000
is not enough. However, the fact that the results are highly similar when the seed numbers
1-1000, 1001-2000, 2001-3000, and 3001-4000 are used shows that the splitting based approach
has virtually overcome the seed-dependency problem. Conversely, for a single split, the seed
dependency problem is severe in the current application. As shown in the last four columns,
very different results (different variables in particular) occur for each seed if just a single split
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is used.
The Tables A.13 and A.15 show the same for the full model rather than a single variable.

The only difference in the splitting based approach is the inclusion or exclusion of one in-
significant variable (share of people with no qualifications in the case regarding the absolute
increase in hate crime). Conversely, vastly different models occur based on a single seed -
stressing again the importance of seed-dependency in the current application.

(1) (2) (3) (4) (5) (6) (7) (8)

Rec. Immigr. 2321*** 2273*** 2310*** 2261*** 2492*** 2790***

No Rel. St. 2401***

Social Gr. C -749***

Method Splitting Splitting Splitting Splitting 1 Split 1 Split 1 Split 1 Split

Seed 1-1000 1001-2000 2001-3000 3001-4000 1 2 3 4

Freq 46.2% 46.5% 46.0% 46.8% NA NA NA NA

Cand. Var. 68 68 68 68 68 68 68 68

Obs. 42 42 42 42 42 42 42 42

* p < 0.1, ** p < 0.05, *** p < 0.01

Table A.12: Seed Dependency Issue: Single Variable, Levels
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(1) (2) (3) (4) (5) (6)
Recent Immigrants 1150* 1581*** 1469*** 1962** 2312**
No Religion Stated 715** 791** 872** 863 933*
Sikh 460
No Qualifications -274 -368
Fully Deprived -121
Self Employed 609
Mixed Ethn 412
Age 0 - 15 348
Age 16 - 29 -310
Age 30 - 65 -74
Industry F -43
Industry G 256
Industry J 161
Industry L -1356
Industry O -387
Centr. Heating 3892*
Method Splitting Splitting Splitting 1 Split 1 Split 1 Split
Seed 1-1000 1001-2000 2001-3000 1 2 3
Freq 1.6% 1.7% 2.0% NA NA NA
Candidate Var. 68 68 68 68 68 68
Observations 42 42 42 42 42 42

* p < 0.1, ** p < 0.05, *** p < 0.01

Table A.13: Seed Dependency Issue: Full Model, Levels

(1) (2) (3) (4) (5) (6) (7) (8)

No Quali. -2.47*** -2.38*** -2.41*** -2.40***

Industry D -57.63**

Remain Vote 0.77* 0.69*

No Rel. St. 10.68**

Method Splitting Splitting Splitting Splitting 1 Split 1 Split 1 Split 1 Split

Seed 1-1000 1001-2000 2001-3000 3001-4000 1 2 3 4

Freq 26.6% 28.5% 29.7% 29.0% NA NA NA NA

Cand. Var. 68 68 68 68 68 68 68 68

Obs. 42 42 42 42 42 42 42 42

* p < 0.1, ** p < 0.05, *** p < 0.01

Table A.14: Seed Dependency Issue: Single Variable, Logs
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(1) (2) (3) (6) (7) (8)
Recent Immigrants 5.12* 0.90
Jewish -0.01
No Qualifications -2.67*** -2.37** -2.50** -1.83
Industry E -84.07
Industry G 4.18
Industry J 4.57
Industry O -1.70
Voted Remain -0.94
Method Splitting Splitting Splitting 1 Split 1 Split 1 Split
Seed 1-1000 1001-2000 2001-3000 1 2 3
Freq 2.0% 2.0% 2.4% NA NA NA
Candidate Var. 68 68 68 68 68 68
Observations 42 42 42 42 42 42

* p < 0.1, ** p < 0.05, *** p < 0.01

Table A.15: Seed Dependency Issue: Full Model, Logs

A.8 Correlation Structure

Recent Immigrants Correlation

Born in the UK -0.88
Born Rest of the World 0.86
Born in a 2000-EU State 0.84
2 Bedrooms or Fewer 0.81
Provides Unpaid Care -0.81

No Qualifications Correlation

Social Grade AB -0.93
Industry E111 0.89
Disabled 0.87
Industry J112 -0.86
Social Grade DE 0.83
Social Grade C2 0.83
Industry O113 -0.82

Table A.16: Candidate Variables with an Absolute Correlation to the Model Variables Larger
than 0.8 (None for No Religion Stated)

A.9 Further Methods & Results Ignoring Model Selection

Binning

Chernozhukov et al. (2018b) suggest an additional method to find variables that describe the
heterogeneity well. As for the measure of captured heterogeneity (see Table 1.4 in the main
text), the observations are binned according to the predicted effect. Next, the mean-difference
between the top and bottom bin is recorded for each candidate-variable. This is done in each
111Water supply, sewerage, waste management and remediation
112Information and communication
113Public administration and defense
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of the 100 splits, and the measures and p-values are aggregated akin to section 1.4.4, with
the addition of also conducting an FDR adjustment. Similar to section 1.6.3 but contrary to
the sections 1.6.1 and 1.6.2, no choice between correlated (groups of) variables is made. The
candidate variables with the largest difference (in percentage points, percent of the mean, and
percent of the tercile span) that are also significant at the 10% level are listed in Table A.17.
The complete list of significant variables is shown in Table A.18. Interestingly, after conducting
the FDR adjustment, none of the candidate variables are significant in characterizing boroughs
with the largest relative effect. As before, the tercile span is the difference between the mean
of the top and the mean of the bottom tercile of the relevant variable (across all 42 boroughs).
Overall, the variables seem to point to wealthy areas with a large fraction of immigrants.

Variable Difference

Born in the UK -28**

Remain Vote 25**

< 3 Bedrooms 20*

Christian -17*

Married 15*

Percentage Points

Variable Difference

Recent Immigrants 126%**

Industry Code E114 -102%**

Buddhist 93%**

Born Rest World 91%*

Mixed Ethnicity 80**

Percent of the Mean

Variable Difference

Industry Code E -86%**

Prov. Unpaid Care -84%**

Mixed Ethnicity 84%**

Industry Code J115 83%**

Remain Vote 83%**

Percent of Tercile Span

Table A.17: Statistically Significant Candidate Variables (Absolute Effect): Top 5

Comparing these results to those in section 1.6.3, there are clearly similarities. This shows
that the simple mechanism there is already rather informative. Also in line with the previous
section, unemployment (as any other insignificant variable in the previous section) is not a
significant characteristic of boroughs that were strongly affected. On the technical side, it
is not surprising that the list of significant variables is lower in this section. The p-values
are obtained from only half of the data and the rather conservative correction to double the
p-value after taking the median drives them up further.
114Water supply, sewerage, waste management and remediation
115Information and communication
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Variable Difference in Perc. Pts. % of Mean % of Tercile Span
Born in the UK -27.60** -39.6% -81.5%
Remain Vote 25.21** 44.3% 82.7%
2 Bedrooms or fewer 19.69* 38.8% 76.9%
Christian -16.55* -31.8% -72.2%
Married 14.92* 35.2% 74.6%
Socal Grade AB 14.04* 52.1% 69.9%
No Qualifications -8.93* -46.1% -78.6%
Social Grade C2 -8.89** -53.7% -81.8%
Industry Code M 7.36* 75.6% 80.0%
30 > Age > 15 6.64* 30.6% 69.9%
Age > 64 -5.44** -45.1% -76.4%
Industry Code G -5.05* -35.9% -74.4%
Industry Code J 4.65** 77.1% 83.4%
Disabled -4.31* -28.0% -76.6%
Industry Code F -3.86* -56.6% -73.4%
Recent Immigrants 3.02** 125.7% 82.0%
Providing Unpaid Care -2.71** -30.3% -84.4%
Industry Code R,S,T,U,Other 2.55** 42.8% 79.2%
Mixed Ethnicity 2.36** 80.0% 83.7%
Buddhist 0.78** 93.1% 80.0%
Industry Code E -0.47** -101.9% -86.1%
Born Rest World 0.01* 91.3% 74.6%

Absolute Effect

Table A.18: Complete List of Statistically Different Variables in Most vs Least Affected Terciles

Best Single Variable

Table A.19 is the equivalent of Table 1.6, but restricting each lasso to use exactly one variable.
For the lasso, and hence CPSL, the choice of the candidate variable is mechanically the same
as in Table 1.8 (Table 1.9 for the relative effect). The magnitude of the CPSL’s coefficient
is nevertheless interesting. The splitting based approach is not guaranteed to find the same
variable (e.g. in case of extreme outliers), but in this case it does. The magnitudes found by
CPSL and splitting are remarkably similar.
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(1) (2) (3) (4) (5) (6)
Hate Crimes per Pop. Million log(Hate Crimes per Pop. Million)

Recent
Immigrants

2308*** 2321*** 390

No Qualifications -2.55** -2.47*** -0.79
Method CPSL Splitting Lasso CPSL Splitting Lasso
Frequency NA 46.2% NA NA 26.6% NA
Candidate Var. 69 69 69 69 69 69
Observations 42 42 42 42 42 42
Note: Method-chosen models from 69 candidate variables. Cross sectional analysis across 42 boroughs in July 2016
(the month after Brexit). Dependent variable is detrended, deseasonalized, and demeaned at the borough level
using 88 months of data. Mean share of people that have arrived in the UK within 2 years of the 2011 census:
0.024. Mean log(hate crimes per borough population million) in July 2016: 4.567. Mean share of people not stating
a religion: 0.080. Mean share of people with no formal qualifications: 0.194. Mean hate crimes per borough
population million in July 2016: 219. C.P.S.L assumes i.i.d. errors by construction. In case of splitting
heteroskedasticity robust errors are used. Significance not defined for plain lasso (which serves as benchmark only).

* p < 0.1, ** p < 0.05, *** p < 0.01 (for CPSL and Splitting)

Table A.19: Best Single Variable for the Absolute/Relative Increase in Hate Crime

Individually Interacted Candidate Variables

For completeness, the Tables A.20 to A.23 provide the full versions of the Tables 1.8 and 1.9
in the main text. In Table A.20 (and A.21), it becomes visible that the share of people with
no qualifications is also strongly negatively associated with the absolute (and not just the
relative) increase in hate crimes. Similarly - although not picked up by the selected model
in Table 1.6 and only significant at the 10% level - the share of recent immigrants is also
correlated with the relative (and not just the absolute) increase in hate crime (see Tables A.22
and A.23).
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Candidate.Variable Estimate FDR Adjusted P Unadjusted Min. 95 Unadjusted Max. 95
Recent Immigrants 99.10 0.00 69.20 129.10
Social Grade C2 -90.80 0.00 -123.00 -58.50
Mixed Ethnicity 90.00 0.00 55.00 124.90
Industry Code E -89.60 0.00 -123.80 -55.40
Born UK -89.20 0.00 -120.50 -58.00
Industry Code J 88.80 0.00 49.00 128.50
Remain Vote 86.70 0.00 48.10 125.40
Industry Code M 85.90 0.00 49.90 121.90
No Qualifications -85.90 0.00 -117.50 -54.20
Industry Code G -84.30 0.00 -122.80 -45.80
Provide Unpaid Care -83.70 0.00 -116.40 -51.00
Industry Code Q -82.20 0.00 -111.90 -52.50
< 3 Bedrooms 81.90 0.00 50.90 112.90
Industry Code F -80.80 0.00 -114.30 -47.30
Born Rest World 79.40 0.00 44.50 114.40
Industry Code R,S,T,U,Other 79.10 0.00 37.90 120.40
Single 79.00 0.00 40.80 117.20
Christian -78.60 0.01 -120.80 -36.40
Fully Deprived 78.00 0.00 39.80 116.20
Buddhist 77.90 0.00 41.40 114.40
Born Recent EU 77.10 0.00 40.90 113.30
Social Grade AB 76.60 0.01 34.90 118.20
Same Sex Marriage 76.40 0.01 34.70 118.20
Aged Over 64 -72.90 0.00 -103.80 -42.00
Aged 16-29 71.70 0.00 36.30 107.10
Disabled -70.10 0.00 -99.30 -40.90
Industry Code C -67.70 0.00 -95.50 -39.90
Industry Code D -66.70 0.00 -94.20 -39.10
Industry Code O -64.90 0.06 -111.10 -18.60
No Religion Stated 64.60 0.00 51.00 78.20
Self Employed 62.60 0.02 23.00 102.20
Ethnic Other Asian 60.10 0.06 16.80 103.30
White -59.80 0.01 -92.50 -27.10
Work Part Time -58.90 0.10 -105.00 -12.80
Divorced -58.00 0.02 -93.10 -22.80
Aged 0-15 -54.50 0.03 -90.10 -19.00
Industry Code K 53.40 0.00 27.00 79.80
Work from Home 53.30 0.07 13.90 92.80
Industry Code L 50.40 0.00 26.80 73.90
Central Heating -50.00 0.02 -81.20 -18.90
Industry Code A -48.40 0.10 -86.40 -10.50
Social Grade DE -47.90 0.26 -93.50 -2.40
Industry Code I 46.90 0.00 23.90 69.90
Arab 46.40 0.01 20.00 72.90
Muslim 43.30 0.02 16.30 70.40
Rent Social H. 42.00 0.33 -0.50 84.40
1 Pers. Household 41.80 0.26 2.10 81.50
No English 41.50 0.03 14.40 68.60
Industry Code B 39.60 0.18 4.80 74.40
Male 38.60 0.06 10.80 66.40
Black 35.90 0.30 0.60 71.30
Industry Code H -34.00 1.00 -84.60 16.70
Born 2000-EU 33.50 0.20 3.40 63.50
Bad Health -32.30 0.68 -72.20 7.60
Industry Code P -23.00 0.86 -54.20 8.10
Social Grade C1 22.00 1.00 -24.70 68.70
Ethnic South Asian 19.60 1.00 -15.20 54.30
Aged 30-64 16.40 1.00 -26.40 59.30
Lone Parent -14.10 1.00 -52.00 23.80
Econ. Active 13.70 1.00 -25.50 53.00
Other Religion 10.50 1.00 -23.60 44.50
Jewish 9.90 1.00 -10.70 30.50
Sikh 9.20 1.00 -9.00 27.40
Not Deprived -8.00 1.00 -43.10 27.00
No Religion 7.00 1.00 -34.20 48.20
Industry Code N -6.60 1.00 -61.40 48.30
Hindu 6.10 1.00 -22.10 34.40
Unemployed 1.30 1.00 -39.00 41.60

Table A.20: Absolute Effect Using Full Regression
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Candidate.Variable Estimate FDR.Adjusted.P Unadjusted.Min.95 Unadjusted.Max.95
Recent Immigrants 85.00 0.00 58.90 111.00
Social Grade C2 -77.80 0.00 -105.00 -50.70
Mixed Ethnicity 77.10 0.00 47.70 106.50
Industry Code E -76.80 0.00 -106.40 -47.20
Born UK -76.50 0.00 -102.60 -50.40
Industry Code J 76.10 0.00 42.10 110.00
Remain Vote 74.30 0.00 41.90 106.70
Industry Code M 73.70 0.00 43.00 104.30
No Qualifications -73.60 0.00 -100.20 -47.00
Industry Code G -72.30 0.00 -104.50 -40.00
Provide Unpaid Care -71.70 0.00 -99.10 -44.40
Industry Code Q -70.40 0.00 -95.10 -45.80
< 3 Bedrooms 70.20 0.00 44.10 96.40
Industry Code F -69.20 0.00 -97.40 -41.10
Born Rest World 68.10 0.00 39.10 97.10
Industry Code R,S,T,U,Other 67.80 0.00 32.70 102.90
Single 67.70 0.00 35.40 100.10
Christian -67.40 0.01 -104.00 -30.70
Fully Deprived 66.80 0.00 34.20 99.50
Buddhist 66.80 0.00 36.10 97.50
Born Recent EU 66.10 0.01 28.70 103.50
Social Grade AB 65.60 0.01 30.10 101.20
Same Sex Marriage 65.50 0.01 28.10 102.90
Aged Over 64 -62.50 0.00 -88.30 -36.70
Aged 16-29 61.50 0.00 31.50 91.50
Disabled -60.10 0.00 -85.20 -35.00
Industry Code C -58.00 0.00 -82.00 -34.10
Industry Code D -57.10 0.00 -80.90 -33.30
Industry Code O -55.60 0.07 -96.70 -14.50
No Religion Stated 55.30 0.00 43.00 67.70
Self Employed 53.60 0.02 19.90 87.40
Ethnic Other Asian 51.50 0.07 13.60 89.30
White -51.30 0.01 -78.80 -23.70
Work Part Time -50.50 0.12 -91.40 -9.50
Divorced -49.70 0.02 -80.20 -19.20
Aged 0-15 -46.70 0.03 -77.00 -16.50
Industry Code K 45.80 0.01 20.50 71.10
Work from Home 45.70 0.08 11.50 79.90
Industry Code L 43.20 0.00 23.30 63.00
Central Heating -42.90 0.02 -68.80 -17.00
Industry Code A -41.50 0.11 -74.50 -8.60
Social Grade DE -41.10 0.25 -79.60 -2.50
Industry Code I 40.20 0.00 20.80 59.60
Arab 39.80 0.26 2.10 77.50
Muslim 37.10 0.02 14.30 60.00
Rent Social H. 36.00 0.33 -0.20 72.20
1 Pers. Household 35.80 0.25 2.30 69.40
No English 35.60 0.03 12.50 58.60
Industry Code B 34.00 0.59 -6.00 74.00
Male 33.10 0.06 9.20 57.00
Black 30.80 0.28 1.10 60.50
Industry Code H -29.10 1.00 -79.30 21.00
Born 2000-EU 28.70 0.21 3.00 54.40
Bad Health -27.70 0.67 -61.80 6.40
Industry Code P -19.70 0.93 -47.20 7.70
Social Grade C1 18.80 1.00 -21.00 58.70
Ethnic South Asian 16.80 1.00 -14.20 47.70
Aged 30-64 14.10 1.00 -24.00 52.20
Lone Parent -12.10 1.00 -44.40 20.20
Econ. Active 11.80 1.00 -20.90 44.50
Other Religion 9.00 1.00 -80.60 98.50
Jewish 8.50 1.00 -14.40 31.30
Sikh 7.90 1.00 -9.60 25.50
Not Deprived -6.90 1.00 -37.70 23.90
No Religion 6.00 1.00 -29.20 41.30
Industry Code N -5.70 1.00 -55.50 44.20
Hindu 5.30 1.00 -29.40 39.90
Unemployed 1.10 1.00 -33.80 36.00

Table A.21: Absolute Effect Using Residuals
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Candidate.Variable Estimate FDR.Adjusted.P Unadjusted.Min.95 Unadjusted.Max.95
No Qualifications -0.34 0.04 -0.51 -0.17
Industry Code E -0.32 0.15 -0.54 -0.09
Industry Code J 0.31 0.08 0.13 0.49
Recent Immigrants 0.30 0.08 0.12 0.48
Remain Vote 0.30 0.11 0.10 0.49
Born UK -0.29 0.14 -0.49 -0.09
Social Grade C2 -0.29 0.08 -0.46 -0.12
Social Grade AB 0.29 0.10 0.11 0.46
Mixed Ethnicity 0.28 0.15 0.07 0.49
Disabled -0.27 0.19 -0.49 -0.06
Industry Code Q -0.27 0.08 -0.42 -0.11
Industry Code G -0.26 0.14 -0.45 -0.08
Industry Code M 0.26 0.11 0.09 0.43
Provide Unpaid Care -0.26 0.15 -0.45 -0.07
Buddhist 0.25 0.15 0.07 0.42
Industry Code D -0.24 0.08 -0.39 -0.10
Industry Code F -0.24 0.11 -0.40 -0.08
Industry Code R,S,T,U,Other 0.23 0.17 0.06 0.41
Born Rest World 0.23 0.27 0.03 0.44
Aged Over 64 -0.23 0.19 -0.41 -0.05
Ethnic Other Asian 0.22 0.36 0.01 0.44
Divorced -0.22 0.26 -0.41 -0.03
Self Employed 0.22 0.26 0.03 0.41
Christian -0.22 0.49 -0.45 0.01
Industry Code C -0.22 0.19 -0.39 -0.04
Born Recent EU 0.22 0.15 0.06 0.37
Single 0.20 0.19 0.04 0.36
White -0.20 0.46 -0.41 0.00
Industry Code O -0.20 0.32 -0.39 -0.02
Social Grade DE -0.20 0.50 -0.41 0.01
Same Sex Marriage 0.20 0.17 0.05 0.35
< 3 Bedrooms 0.19 0.17 0.05 0.34
Bad Health -0.19 0.55 -0.41 0.02
Aged 16-29 0.19 0.28 0.02 0.35
Work from Home 0.18 0.25 0.03 0.34
Work Part Time -0.18 0.48 -0.36 0.01
Fully Deprived 0.18 0.42 0.00 0.35
Industry Code B 0.17 0.12 0.06 0.28
No Religion Stated 0.17 0.02 0.09 0.24
Aged 0-15 -0.15 0.30 -0.29 -0.02
Industry Code I 0.15 0.32 0.01 0.30
Industry Code L 0.15 0.32 0.01 0.28
Industry Code A -0.14 1.00 -0.35 0.07
Male 0.14 0.56 -0.01 0.29
Industry Code K 0.13 0.32 0.01 0.25
Born 2000-EU 0.13 0.70 -0.03 0.29
Muslim 0.12 1.00 -0.05 0.29
Arab 0.12 0.64 -0.02 0.26
Econ. Active 0.12 1.00 -0.06 0.30
Lone Parent -0.12 1.00 -0.28 0.05
Black 0.11 1.00 -0.07 0.30
No English 0.11 1.00 -0.05 0.27
Aged 30-64 0.10 1.00 -0.09 0.30
Industry Code H -0.09 1.00 -0.27 0.10
Ethnic South Asian 0.08 1.00 -0.08 0.24
Central Heating -0.08 1.00 -0.24 0.08
Rent Social H. 0.06 1.00 -0.11 0.23
1 Pers. Household 0.06 1.00 -0.10 0.21
Unemployed -0.06 1.00 -0.25 0.14
Hindu 0.05 1.00 -0.08 0.19
Not Deprived 0.05 1.00 -0.14 0.24
Sikh 0.05 1.00 -0.03 0.12
Other Religion 0.04 1.00 -0.09 0.17
Industry Code P -0.04 1.00 -0.17 0.09
Social Grade C1 0.03 1.00 -0.19 0.26
Industry Code N 0.03 1.00 -0.18 0.24
No Religion -0.03 1.00 -0.20 0.15
Jewish 0.02 1.00 -0.06 0.10

Table A.22: Relative Effect Using Full Regression
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Candidate.Variable Estimate FDR.Adjusted.P Unadjusted.Min.95 Unadjusted.Max.95
No Qualifications -0.29 0.03 -0.43 -0.15
Industry Code E -0.27 0.16 -0.47 -0.07
Industry Code J 0.27 0.08 0.12 0.41
Recent Immigrants 0.25 0.08 0.10 0.41
Remain Vote 0.25 0.10 0.09 0.42
Born UK -0.25 0.13 -0.42 -0.08
Social Grade C2 -0.25 0.08 -0.39 -0.10
Social Grade AB 0.24 0.08 0.10 0.39
Mixed Ethnicity 0.24 0.16 0.06 0.42
Disabled -0.23 0.23 -0.42 -0.05
Industry Code Q -0.23 0.08 -0.36 -0.10
Industry Code G -0.23 0.13 -0.38 -0.07
Industry Code M 0.22 0.08 0.08 0.36
Provide Unpaid Care -0.22 0.16 -0.38 -0.06
Buddhist 0.21 0.15 0.06 0.36
Industry Code D -0.21 0.08 -0.33 -0.09
Industry Code F -0.21 0.10 -0.34 -0.07
Industry Code R,S,T,U,Other 0.20 0.16 0.05 0.35
Born Rest World 0.20 0.25 0.03 0.37
Aged Over 64 -0.20 0.18 -0.35 -0.04
Ethnic Other Asian 0.19 0.37 0.01 0.37
Divorced -0.19 0.25 -0.35 -0.03
Self Employed 0.19 0.25 0.03 0.35
Christian -0.19 0.56 -0.39 0.02
Industry Code C -0.19 0.23 -0.34 -0.03
Born Recent EU 0.18 0.23 0.03 0.34
Single 0.18 0.18 0.04 0.31
White -0.17 0.45 -0.35 0.00
Industry Code O -0.17 0.37 -0.34 -0.01
Social Grade DE -0.17 0.50 -0.35 0.01
Same Sex Marriage 0.17 0.18 0.04 0.30
< 3 Bedrooms 0.17 0.16 0.04 0.29
Bad Health -0.17 0.56 -0.35 0.02
Aged 16-29 0.16 0.25 0.02 0.30
Work from Home 0.16 0.23 0.03 0.29
Work Part Time -0.15 0.53 -0.32 0.01
Fully Deprived 0.15 0.38 0.00 0.30
Industry Code B 0.14 0.15 0.04 0.25
No Religion Stated 0.14 0.03 0.08 0.21
Aged 0-15 -0.13 0.30 -0.25 -0.01
Industry Code I 0.13 0.37 0.01 0.26
Industry Code L 0.13 0.33 0.01 0.24
Industry Code A -0.12 1.00 -0.32 0.07
Male 0.12 0.66 -0.02 0.25
Industry Code K 0.11 0.36 0.01 0.22
Born 2000-EU 0.11 0.71 -0.02 0.25
Muslim 0.10 1.00 -0.05 0.25
Arab 0.10 1.00 -0.10 0.31
Econ. Active 0.10 1.00 -0.05 0.26
Lone Parent -0.10 1.00 -0.24 0.04
Black 0.10 1.00 -0.05 0.25
No English 0.10 1.00 -0.04 0.23
Aged 30-64 0.09 1.00 -0.09 0.26
Industry Code H -0.08 1.00 -0.26 0.11
Ethnic South Asian 0.07 1.00 -0.07 0.21
Central Heating -0.07 1.00 -0.20 0.07
Rent Social H. 0.05 1.00 -0.09 0.20
1 Pers. Household 0.05 1.00 -0.09 0.18
Unemployed -0.05 1.00 -0.22 0.12
Hindu 0.05 1.00 -0.13 0.22
Not Deprived 0.04 1.00 -0.13 0.22
Sikh 0.04 1.00 -0.03 0.11
Other Religion 0.03 1.00 -0.30 0.37
Industry Code P -0.03 1.00 -0.14 0.07
Social Grade C1 0.03 1.00 -0.17 0.22
Industry Code N 0.02 1.00 -0.17 0.22
No Religion -0.02 1.00 -0.17 0.13
Jewish 0.02 1.00 -0.06 0.09

Table A.23: Relative Effect Using Residuals

127



B Supplementary Material and Proofs to Chapter 2

B.1 Proofs of Main Results

We recall here the definition of a viscosity solution. Consider a second order differential partial
equation of the Dirichlet form

F
(
D2u(y), Du(y), u(y), y

)
= 0, u = 0 on ∂Y, (B.1)

where the domain is Y which is an open set, y is a vector, Du,D2u denote the first and
second order derivatives with respect to y, and ∂Y is the boundary of Y on which the initial
conditions are specified.116 We restrict ourselves to functions F (·) that are proper, i.e. F (·)
is non-decreasing in its third argument. Let C2(Y) denote the space of all twice continuously
differentiable functions on Y.

Definition B1

A function u is said to be a viscosity solution to (B.1) on the domain Y if it satisfies
the following:

(i) u = 0 on ∂Y, and

(ii) for each φ ∈ C2(Y), if u− φ has a local maximum at y0 ∈ Y, then

F
(
D2φ(y0), Dφ(y0), u(y0), y0

)
≤ 0;

(iii) similarly, for each φ ∈ C2(Y), if u− φ has a local minimum at y0 ∈ Y, then

F
(
D2φ(y0), Dφ(y0), u(y0), y0

)
≥ 0.

We shall also say that a function u satisfies the inequality

F
(
D2u(y), Du(y), u(y), y

)
≤ 0

in a viscosity sense if for each φ ∈ C2(Y), if u− φ has a local maximum at y0 ∈ Y, then

F
(
D2φ(y0), Dφ(y0), u(y0), y0

)
≤ 0.

Proof of Lemma 2

Recall that our partial differential equation is of the form

λ(t)Ḡθ(z, t)∂zhθ(z, t) + ∂thθ(z, t)− βhθ(z, t) + λ(t)r̄θ(z, t) = 0, hθ(0, t) = 0 ∀ t. (B.2)
116Note that the first and second arguments of F (·) are a matrix and a vector respectively.
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We shall first get rid of the inhomogeneous term −βhθ(z, t) as follows: Define uθ(z, t) :=

e−β(t−t0)hθ(z, t). Then (B.2) implies

λ(t)Ḡθ(z, t)∂zuθ(z, t) + ∂tuθ(z, t) + e−β(t−t0)λ(t)r̄θ(z, t) = 0, uθ(0, t) = 0 ∀ t.

Rewrite the above in the form

∂zuθ +Hθ(t, z, ∂tuθ) = 0, uθ(0, t) = 0 ∀ t, (B.3)

where H(z, t, p) is the Hamiltonian defined by

Hθ(t, z, p) =
1

λ(t)Ḡθ(z, t)
p+

e−β(t−t0)r̄θ(z, t)

Ḡθ(z, t)
.

Because e−β(t−t0) is strictly positive and twice continuously differentiable, it is straightforward
to show that if a viscosity solution uθ(z, t) exists for (B.3), then there also exists a viscosity
solution hθ(z, t) = eβ(t−t0)uθ(z, t) to (B.2). Furthermore, the converse is also true. Hence it
remains to show existence of a unique viscosity solution to (B.3).

Under Assumption 1, H(.) is uniformly continuous in all its three arguments. Furthermore,
for any t1, t2 ∈ R, it is true that

|Hθ(t1, z, p)−Hθ(t2, z, p)| ≤M(1 + |p|) |t1 − t2|

for some constant M that is independent of θ, z, t1, t2, p. Now as long as the Hamiltonian
satisfies the above properties, Souganidis (1985, Theorem 1) shows that a unique viscosity
solution exists for (B.3).@

Proof of Theorem 2

As in the proof of Lemma 2, we also convert PDE (2.14) into a form that does not include the
term −βĥθ(z, t). We then have the following PDEs:

∂zuθ +Hθ(t, z, ∂tuθ) = 0, uθ(0, t) = 0 ∀ t (B.4)

∂zûθ + Ĥθ(t, z, ∂tûθ) = 0, ûθ(0, t) = 0 ∀ t (B.5)

where

Hθ(t, z, p) =
1

λ(t)Ḡθ(z, t)
p+

e−β(t−t0)r̄θ(z, t)

Ḡθ(z, t)
,

Ĥθ(t, z, p) =
1

λ̂(t)Ĝθ(z, t)
p+

e−β(t−t0)r̂θ(z, t)

Ĝθ(z, t)
.

Note that as in Lemma 2, if ûθ(z, t) is the unique solution of (B.5), then ĥθ(z, t) = eβ(t−t0)ûθ(z, t)

is the unique solution for (2.14), and vice versa. Therefore we first obtain bounds on the sup
norm of ûθ(z, t)− uθ(z, t).
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We start with some properties of the solution uθ(z, t). We show that there exist L1, L2 <∞
such that

sup
θ
‖uθ‖ < L1, and (B.6)

sup
θ
‖∂tuθ‖ < L2 (B.7)

where ‖uθ‖ denotes the sup-norm of uθ(z, t) over its domain, and

‖∂tuθ‖ := sup
t1,t2∈[t0,∞),z∈[0,z0]

|uθ(z, t1)− uθ(z, t2)|
|t1 − t2|

denotes the Lipschitz constant for uθ(z, t) in terms of t (if uθ(z, t) is not Lipschitz continuous,
we set ‖∂tuθ‖ to∞). To prove the above, we first observe that Hθ(t, z, 0) is uniformly bounded
for all θ, z, t. Then (B.6) follows by Crandall and Lions (1987, Theorem VII.1, Remark i)117.
Furthermore, by Assumptions 1-6, there exists some constant B independent of θ, z, t1, t2, p
such that

Hθ(t1, z, λ(t2 − t1))−H(t2, z, λ(t2 − t1)) ≤ Bλ|t1 − t2|2 +B|t1 − t2|,

for any positive λ. Subsequently, by Crandall and Lions (1987, Theorem VII.1, Remark ii),
uθ(z, t) is uniformly Lipschitz continuous in t (i.e. uniformly over all θ, z). This proves (B.7).

Now define
A = {z, t, p : z ∈ [0, z0], t ∈ [t0,∞), |p| ≤ L2} .

By Souganidis (1985, Proposition 1.4),118 we have that for every z ∈ [0, z0] and θ ∈ Θ,

sup
t
|uθ(z, t)− ûθ(z, t)| ≤ z sup

(s,t,p)∈A

∣∣∣Hθ(t, s, p)− Ĥθ(t, s, p)
∣∣∣ . (B.8)

Hence it suffices to bound the right hand side of (B.8) uniformly over θ. To do this, observe
that by the results of Athey and Wager (2018), there exists C0 <∞ such that

E

[
sup

z∈[0,z0],t∈[t0,∞),θ∈Θ
‖r̂θ(z, t)− r̄θ(z, t)‖

]
≤ C0

√
v1

n
, and (B.9)

E

[
sup

z∈[0,z0],t∈[t0,∞),θ∈Θ

∥∥∥Ĝθ(z, t)− Ḡθ(z, t)∥∥∥
]
≤ C0

√
v2

n
.

The last inequality can also be derived from Kitagawa and Tetenov (2018, Lemma A.4). Using
(B.9) together with Assumptions 1-6, straightforward algebra enables us to show that

sup
θ∈Θ

sup
(z,t,p)∈A

∣∣∣Hθ(t, z, p)− Ĥθ(t, z, p)
∣∣∣ ≤ C3

√
v

n

117A careful examination of the proofs of Crandall and Lions (1987) shows that their results hold uniformly
in θ as long as the underlying properties on the Hamiltonian also hold uniformly.
118We take the special case of the Proposition in Souganidis (1985) where ε→ 0.
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with probability approaching one under F × Ωλ(T) (henceforth wpa1), where C3 is some
constant independent of θ, t, z, p. Substituting the above in (B.8), we obtain wpa1

sup
z∈[0,z0],t∈[t0,∞),θ∈Θ

|uθ(z, t)− ûθ(z, t)| ≤ z0C3

√
v

n
. (B.10)

In view of (B.10) and the definitions of uθ(z, t), ûθ(z, t), we have wpa1,

∣∣∣e−β(t−t0)
{
hθ(z, t)− ĥθ(z, t)

}∣∣∣ ≤ z0C3

√
v

n
.

This concludes the proof of the theorem.@

Proof of Theorem 3

The argument leading to the proof of Theorem 3 here was sketched by Souganidis (2009) in
an unpublished paper. We formalize the argument here.

All the inequalities in this section should be understood to be holding with probability
approaching 1 under the joint distribution of F ×Ωλ(t). In what follows, we drop this qualifi-
cation for ease of notation and hold this to be implicit. We also employ the following notation:
For any function f over (z, t), Df denotes its Jacobean. Additionally, ‖∂zf‖ , ‖∂zf‖ and ‖Df‖
denote the Lipschitz constants for f(·, t), f(z, ·) and f(·, ·). We shall represent PDE (2.14) by

F̂θ(∂tf, ∂zf, f, z, t) = 0, f(0, t) = 0 ∀ t (B.11)

with f denoting a function, and where

F̂θ(l, p, q, z, t) := l +
1

λ̂(t)Ĝθ(z, t)
p− β

λ̂(t)Ĝθ(z, t)
q +

r̂θ(z, t)

Ĝθ(z, t)
.

Additionally, denote our approximation scheme (2.16) by

Sθ([f ], f, z, t) = 0, f(0, t) = 0 ∀ t (B.12)

where for any two functions f1, f2,

Sθ ([f1], f2(z, t), z, t, bn) :=
bn

|Ĝθ(z, t)|

(
f2(z, t)− En,θ

[
e−β(t′−t)/bnf1(z′, t′)|z, t

])
− r̂θ(z, t)

|Ĝθ(z, t)|
.

(B.13)
Here [f ] refers to the fact that it is a functional argument. Note that ĥθ and h̃θ are the
functional solutions to (B.11) and (B.12) respectively. Also note that F̂θ(l, p, q1, z, t) ≥
F̂θ(l, p, q2, z, t) for all q1 ≥ q2 by our assumption that Ḡθ(z, t) is strictly negative. We shall
also make use of the following two properties for Sθ(·):

(i) Sθ(·) is monotone in its first argument i.e.

Sθ([f1], f, z, t, bn) ≥ Sθ([f2], f, z, t, bn) ∀ f2 ≥ f1.
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(ii) For all f and m ∈ R,

Sθ([f +m], f +m, z, t, bn) ≥ Sθ([f ], f, z, t) + χm,

where χ = cβ infθ,z,t |λ̂(t)Ĝθ(z, t)|−1 for some c = (0, 1). Note that χ > 0 by our
assumptions.

The first property is trivial to show. As for the second, observe that

Sθ([f +m], f +m, z, t, bn)− Sθ([f ], f, z, t) = m
bn

|Ĝθ(z, t)|

(
1− En,θ

[
e−β(t′−t)/bn |t

])
≥ χm.

We will also make use of the following properties of the solution ĥθ(z, t): There exist
K1,K2 satisfying

sup
θ

∥∥∥ĥθ∥∥∥ < K1, and (B.14)

sup
θ

∥∥∥Dĥθ∥∥∥ < K2. (B.15)

Equation (B.14) follows by similar arguments as in the proof of Theorem 2. For (B.15), note
that also by similar arguments as in the proof of Theorem 2, supθ

∥∥∥∂tĥθ∥∥∥ < L2 <∞. Set

A = {z, t, q, p : z ∈ [0, z0], t ∈ [t0,∞), |q| ≤ K1, |p| ≤ L2} .

Souganidis (1985, Proposition 1.5(e)) shows that

sup
t

∥∥∥ĥθ(z1, t)− ĥθ(z2, t)
∥∥∥ ≤ |z1 − z2| sup

(s,t,q,p)∈A
|Hθ(t, s, q, p)| , where (B.16)

Hθ(t, s, q, p) :=
1

λ̂(t)Ĝθ(z, t)
p− β

λ̂(t)Ĝθ(z, t)
q +

r̂θ(z, t)

Ĝθ(z, t)
.

In view of (B.16) and Assumptions 1-6, straightforward algebra shows that supθ

∥∥∥∂zĥθ∥∥∥ ≤
L3 <∞. Hence supθ

∥∥∥Dĥθ∥∥∥ ≤ K2 := L2 + L3 <∞. This proves (B.15).
We provide here an upper bound for

mθ := sup
z∈[0,z0],t∈[t0,∞)

(
ĥθ(z, t)− h̃θ(z, t)

)
. (B.17)

A lower bound for ĥθ − h̃θ can be obtained in an analogous manner. Clearly, we may assume
mθ > 0, as otherwise we are done. Denote (z∗θ , t

∗
θ) as the point at which the supremum is

attained in (B.17). Such a point exists since ĥθ and h̃θ are both continuous. We shall consider
separately the two cases: (i) z∗θ ≤ 2K2ε, and (ii) z∗θ > 2K2ε.

We start with case (i). In view of (B.15), and the fact ĥθ(0, t) = 0 ∀t, we have |ĥθ(z∗θ , t∗θ)| ≤
4K2

2ε. Furthermore, using Assumption 3, which implies ‖r̂θ‖ ≤ 2M < ∞, we can show using
the properties of contraction mappings that |h̃θ(z, t)| ≤ 2Mz for all z, t. Hence, |h̃θ(z∗θ , t∗θ)| ≤
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4MK2ε. Combining the above gives

mθ ≤ 4(K2
2 +MK2)ε. (B.18)

This completes the case where z∗θ ≤ 2K2ε.
We now turn to Case (ii), i.e. z∗θ > 2K2ε. To obtain the bound on mθ in this case, we shall

employ the sup-convolution of ĥθ(z, t), denoted by ĥεθ(z, t):

ĥεθ(z, t) := sup
r,w

{
ĥθ(r, w)− 1

ε

(
|z − r|2 + |t− w|2

)}
.

We discuss sup and inf-convolutions and their properties in Appendix B.3. In view of (B.15)
and Lemma B2 (below), ∥∥∥ĥθ − ĥεθ∥∥∥ ≤ 4K2

2ε, (B.19)

where the norm in the above expression should be understood as the supremum over all
t ∈ [t0,∞) and z > 2K2ε. Also, by Lemma B4 (below), there exists c < ∞ independent of
θ, z, t such that for all z > 2K2ε,

F̂θ(∂tĥ
ε
θ, ∂zĥ

ε
θ, ĥ

ε
θ, z, t) ≤ cε, (B.20)

where the above expression is to be interpreted in the viscosity sense. Finally, we also note
from Lemma B2 that ĥεθ is semi-convex with coefficient 1/ε.

We now compare Sθ(·) and F̂θ(·) at the function ĥεθ. Consider any (z, t) with z 6= 0 at which
ĥεθ is differentiable (note that because of semi-convexity, it is differentiable almost everywhere).
We can then expand

Sθ([ĥ
ε
θ], ĥ

ε
θ, z, t, bn) =

bnĥ
ε
θ(z, t)

|Ĝθ(z, t)|

(
1− En,θ

[
e−β(t′−t)/bn |z, t

])
+

1

|Ĝθ(z, t)|
En,θ

[
e−β(t′−t)/bn

{
ĥεθ(z, t)− ĥεθ(z′, t′)

}
|z, t

]
− r̂θ(z, t)

|Ĝθ(z, t)|

:= A
(1)
θ (z, t) +A

(2)
θ (z, t) +

r̂θ(z, t)

Ĝθ(z, t)
. (B.21)

Using the fact ‖hεθ‖ ≤
∥∥∥ĥθ∥∥∥ ≤ L1, straightforward algebra enables us to show using Assump-

tions 1-6 that
A

(1)
θ (z, t) ≤ − β

λ̂(t)Ĝθ(z, t)|
ĥεθ(z, t) +

C1

bn
, (B.22)

for some C1 independent of θ, z, t. We now consider A(2)
θ (z, t). Observe that by semi-convexity

of ĥεθ (Lemma B1 below),

ĥεθ(z
′, t′) ≥ ĥεθ(z, t) + ∂zĥ

ε
θ(z, t)(z − z′) + ∂tĥ

ε
θ(z, t)(t− t′)−

1

2ε

{
|z − z′|2 + |t− t′|2

}
.

Substituting the above into the expression for A(2)
θ (z, t), and using Assumptions 1-6, straight-
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forward algebra enables us to show

A
(2)
θ (z, t) ≤ ∂zĥεθ +

1

λ̂(t)Ĝθ(z, t)
∂tĥ

ε
θ +

C2

εbn
, (B.23)

where again C2 is independent of θ, z, t. Combining (B.21)-(B.23), and setting C = max(C1, C2),
we thus find

Sθ([ĥ
ε
θ], ĥ

ε
θ, z, t, bn) ≤ F̂θ(∂tĥεθ, ∂zĥεθ, ĥεθ, z, t) +

C

bn

(
1 +

1

ε

)
. (B.24)

In view of (B.24) and (B.20), we obtain

Sθ([ĥ
ε
θ], ĥ

ε
θ, z, t, bn) ≤ cε+

C

bn

(
1 +

1

ε

)
a.e. (B.25)

where the qualification almost everywhere (a.e.) refers to the points where Dĥεθ exists.
Let (here f+ := max(f, 0))

mε
θ := sup

z∈[0,z0],t∈[t0,∞)

(
ĥεθ(z, t)− h̃θ(z, t)

)+
,

and denote (z̆θ, t̆θ) as the point at which the supremum is attained (or where the right hand
side of the above expression is arbitrarily close to mε

θ in case z̆θ = ∞). Note that in view of
z∗θ > 2K2ε, equation (B.19) implies z̆θ > 0. Now,

ĥεθ ≤ h̃θ +mε
θ.

Then in view of properties (i), (ii) of S(·) derived above,

χmε
θ = Sθ

(
[h̃θ], h̃θ(z̆θ, t̆θ), z̆θ, t̆θ, bn

)
+ χmε

θ

≤ Sθ
(

[h̃θ +mε
θ], h̃θ(z̆θ, t̆θ) +mε

θ, z̆θ, t̆θ, bn

)
(B.26)

≤ Sθ
(

[ĥεθ], ĥ
ε
θ(z̆θ, t̆θ), z̆θ, t̆θ, bn

)
.

Without loss of generality, we may assume ĥεθ is differentiable at (z̆θ, t̆θ) as otherwise we can
choose a point arbitrarily close, given that ĥεθ is Lipschitz continuous and differentiable a.e.
Now we can combine (B.26) and (B.25) to obtain

mε
θ ≤ c1ε+

C1

bn

(
1 +

1

ε

)
, (B.27)

where c1 = χ−1c and C1 = χ−1C are independent of θ, z, t. Hence, in view of (B.19) and
(B.27),

mθ ≤ (4K2
2 + c1)ε+

C1

bn

(
1 +

1

ε

)
. (B.28)

This completes the derivation of the upper bound for mθ under case (ii), i.e. z∗θ > 2K2ε.
Finally, in view of (B.18) and (B.28), setting ε = b

−1/2
n gives the desired rate.@
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B.2 Pseudo-Codes and Additional Details for the Algorithm

This Section consists of two parts. In the first part, we give details about the convergence
of the Actor-Critic algorithm in Section 2.4.2, and provide a proof of Theorem 1 in the main
text. In the second part, we provide psuedo-codes and some additional discussion for various
extensions to the basic algorithm that were proposed in Section 2.6.

Convergence of the Actor-Critic Algorithm

Let h̄θ := ν̄ᵀθφz,t, where ν̄θ denotes the fixed point of the value function updates (2.21) for any
given value of θ. This is the ‘Temporal-Difference fixed point’, and is known to exist and also
to be unique (Tsitsiklis and van Roy, 1997). We will also make use of the quantities

h̄+
θ (z, t) ≡ Eθ[r̂n(x, a) + I{z′>0}e

−β(t′−t)h̄θ(z
′, t′)|z, t]

and
Eθ = Eθ

[
e−β(t−t0)

{
∇θh̄+

θ (z, t)−∇θh̄θ(z, t)
}]
.

Define Z as the set of local maxima of J(θ) ≡ ĥθ(z0, t0), and Zε an ε-expansion of that set.
Also, θ(k) denotes the k-th update of θ. The following theorem is a straightforward consequence
of the results of Bhatnagar et al. (2009).

Theorem B1 (Bhatnagar et al., 2009)
Suppose that Assumption 2 holds. Then, given ε > 0, there exists δ such that, if
supk |Eθ(k) | < δ, it holds that θ(k) → Zε with probability 1 as k →∞.

Intuition for the above theorem can be gleaned from the fact that the expected values of
updates for the policy parameter are approximately given by

E
[
e−β(t−t0)δn(s, s′, a)∇θ lnπ(a|s; θ)

]
≈ ∇θJ(θ) + Eθ.

Thus the term Eθ acts as bias in the gradient updates. One can show from the properties of
the temporal difference fixed point that if dν = ∞, then h̄θ(z, t) = h̄+

θ (z, t) = ĥθ(z, t), see
e.g. Tsitsiklis and van Roy (1997). Hence, in this case Eθ = 0. More generally, it is known
that

h̄θ(z, t) = Pφ[h̄+
θ (z, t)],

where Pφ is the projection operator onto the vector space of functions spanned by {φ(j) : j =

1, . . . , dν}. This implies that ∇θh̄+
θ (z, t)−∇θh̄θ(z, t) = (I − Pφ)[∇θh̄θ](z, t)119. Now, ∇θh̄θ is

uniformly (where the uniformity is with respect to θ) Hölder continuous as long as ∇θπθ(s)
is also uniformly Hölder continuous in s.120 Hence for a large class of sieve approximations
(e.g. Trigonometric series), one can show that supθ

∥∥(I − Pφ)[∇θh̄θ]
∥∥ ≤ A(dν) where A(.) is

119To verify this, note that we can associate h̄θ, h̄+
θ with vectors and Pφ with a matrix since we assumed

discrete values for z, t.
120This can be shown easily from the definition of the temporal difference fixed point.
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some function satisfying A(x) → 0 as x → ∞. This implies supθ |Eθ| ≤ A(dν). The exact
form of A(.) depends on the smoothness of ∇θh̄θ, and therefore that of ∇θπθ(s), with greater
smoothness leading to faster decay of A(.). In view of the above discussion, we have thus
shown the following:

Corollary B1

Suppose that Assumption 2 holds and additionally that ∇θπθ(s) is uniformly Hölder
continuous in s. Then, for each ε > 0, there exists M such that if dν ≥ M , then
θ(k) → Zε with probability 1 as k →∞.

The above was stated as Theorem 1 in the main text.

Extensions and Pseudo-Codes

Algorithm 3 and 4 provide the pseudo-codes for the algorithm with non-compliance and clusters
respectively.

Algorithm 3: Parallel Actor-Critic with Non-Compliance (part I/II)
Initialise policy parameter weights θ ← 0

Initialise value function weights ν ← 0

Batch size B

For p = 1, 2, ... processes, launched in parallel, each using and updating the same
global parameters θ and ν:

Repeat forever:

Reset budget: z ← z0

Reset time: t← t0

I ← 1

While z > 0:

θp ← θ (Create local copy of θ for process p)

νp ← ν (Create local copy of ν for process p)

batch_policy_upates← 0

batch_value_upates← 0
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Algorithm 3: Parallel Actor-Critic with Non-Compliance (part II/II)
For b = 1, 2, ..., B:

x ∼ Fn (Draw new covariate at random from data)

hetero ∼ multinomial(q̂c(x), q̂a(x), q̂n(x)) (Draw compliance heterogeneity)

a ∼ π(a|s; θp) (Draw action, note: s = (x, z, t))

If hetero = 1 (Sample draw is a complier)

R← L̂ATE(x) · I(a = 1) (I.e. r̂(x, a))

z′ ← z +Ga(x, z, t)/bn

Elseif hetero = 2 (Sample draw is always-taker)

R← 0

z′ ← z +G1(x, z, t)/bn

Elseif hetero = 3 (Sample draw is never-taker)

R← 0

z′ ← z +G0(x, z, t)/bn

∆t ∼ Exponential(λ̂(t)) (Draw time increment)

t′ ← t+ ∆t/bn

δ ← R+ I{z′ > 0}e−β(t′−t)νᵀpφz′,t′ − νᵀpφz,t (TD error)

batch_policy_upates← batch_policy_upates + αθIδ∇θ lnπ(a|s; θp)
batch_value_upates← batch_value_upates + ανIδφz,t

z ← z′

t← t′

I ← e−β(t′−t)I

If z ≤ 0, break For

Globally update: ν ← ν + batch_value_upates/B
Globally update: θ ← θ + batch_policy_upates/B
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Algorithm 4: Parallel Actor-Critic with Clusters
Initialise policy parameter weights θ ← 0

Initialise value function weights ν ← 0

Batch size B
Clusters c = 1, 2, . . . , C

Cluster specific arrival rates λ̂c(t)

For p = 1, 2, . . . processes, launched in parallel, each using and updating the same
global parameters θ and ν:

Repeat forever:

Reset budget: z ← z0

Reset time: t← t0

I ← 1

While z > 0:

θp ← θ (Create local copy of θ for process p)

νp ← ν (Create local copy of ν for process p)

batch_policy_upates← 0

batch_value_upates← 0

For b = 1, 2, ..., B:

λ̂(t)←
∑

c λ̂c(t) (Calculate arrival rate for next individual)

∆t ∼ Exponential(λ̂(t)) (Sample time increment until next arrival)

t′ ← t+ ∆t/bn

z′ ← z +Ga(x, z, t)/bn

c ∼ multinomial(p1, . . . , pC) (where pc := λ̂c(t)/λ̂(t))

x ∼ Fn,c (Draw new covariate at random from data cluster c)

a ∼ π(a|s; θp) (Draw action, note: s = (x, z, t))

R← r̂(x, a) (with R = 0 if a = 0)

δ ← R+ I{z′ > 0}e−β(t′−t)νᵀpφz′,t′ − νᵀpφz,t (TD error)

batch_policy_upates← batch_policy_upates + αθIδ∇θ lnπ(a|s; θp)

batch_value_upates← batch_value_upates + ανIδφz,t

z ← z′

t← t′

I ← e−β(t′−t)I

If z ≤ 0, break For

Globally update: ν ← ν + batch_value_upates/B
Globally update: θ ← θ + batch_policy_upates/B
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Additionally, Algorithm 5 provides the pseudo-code for an off-policy actor critic algorithm
that is useful for deterministic policy rules. For simplicity we provide the last algorithm
without parallel updates, though this could be easily extended to here as well.

Algorithm 5: Off Policy Actor-Critic following Degris et al. (2012)
Initialise policy parameter weights θ ← 0

Initialise value function weights ν ← 0

Initialise correction weights for value function update w ← 0

Repeat forever:

Reset budget: z ← z0

Reset time: t← t0

I ← 1

While z > 0:

x ∼ Fn (Draw new covariate at random from data)

a ∼ B(a|s) (sample action from behavioural policy)

R← r̂(x, a) (with R = 0 if a = 0)

∆t ∼ Exponential(λ̂(t)) (Draw time increment)

t′ ← t+ ∆t/bn

z′ ← z +Ga(x, z, t)/bn

δ ← R+ I{z′ > 0}e−β(t′−t)νᵀφz′,t′ − νᵀφz,t (Temporal-Difference error)

ρ← π(a|s;θ)
b(a|s) (Importance sampling)

ν ← ν + ανI
(
δρφz,t − ρe−β(t′−t)(wᵀφz,t)φz,t

)
(Update value parameter)

w ← w + αwI (δρφz,t − (wᵀφz,t)φz,t) (Correction term for off policy)

θ ← θ + αθIδρ∇θ lnπ(a|s; θ) (Update policy parameter)

z ← z′

t← t′

I ← e−β(t′−t)I

B.3 Semi-Convexity, Sup-Convolution etc

In this Section, we collect various properties of semi-convex/concave functions, and sup/inf-
convolutions used in the proof of Theorem 3. Many of these results are well known in the
literature of viscosity solutions. However we still provide proofs for the sake of completeness.
Also, in some cases we provide simpler proofs at the expense of obtaining results that are not
as sharp, but they will suffice for the purpose of proving Theorem 3.

In what follows we take y to be a vector in Rn. Additionally, for some function u, we let
‖Du‖ denote the Lipschitz constant for u, with the convention that it is∞ if u is not Lipschitz
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continuous.

Semi-Convexity and Concavity

Definition B2

A function u on Rn is said to be semi-convex with the coefficient c if u(y) + c
2 |y|

2

is a convex function. Similarly, u is said to be semi-concave with the coefficient c if
u(y)− c

2 |y|
2 is concave.

The proof of Theorem 3 makes use of the following property of semi-convex functions. An
analogous property also holds for semi-concave functions. We can also extend the scope of
the theorem (i.e. also to points where Du does not exist) by considering one-sided derivatives,
which can be shown to exist everywhere for semi-convex functions.

Lemma B1

Suppose that u is semi-convex. Then u is twice differentiable almost everywhere. Fur-
thermore, for every point at which Du exists, we have for all h ∈ Rn,

u(y + h) ≥ u(y) + hᵀDu(y)− c|h|2.

Define g(y) = u(y) + c
2 |y|

2. Since g(y) is convex, the Alexandrov theorem implies g(·) is
twice continuously differentiable almost everywhere. Hence u(y) = g(y) − c

2 |y|
2 is also twice

differentiable almost everywhere.
For the second part of the theorem, observe that by convexity,

g(y + h) ≥ g(y) + hᵀDg(y).

Note that where the derivative exists, Dg(y) = Du(y) + cy. Hence,

u(y) +
c

2
|y + h|2 ≥ u(y) +

c

2
|y|2 + hᵀDu(y) + chᵀy.

Rearranging the above expression gives the desired inequality.@

Sup and Inf Convolutions

Let u(y) denote a continuous function on some open set Y. Let ∂Y denote the boundary of
Y, and Ȳ its closure.

Definition B3

The function uε is said to be the sup-convolution of u if

uε(y) = sup
w∈Ȳ

{
u(w)− 1

2ε
|w − y|2

}
.
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Similarly, uε is said to be the inf-convolution of u if

uε(y) = inf
w∈Ȳ

{
u(w) +

1

2ε
|w − y|2

}
.

We shall also define yε as the value for which

u(yε)− 1

2ε
|yε − y|2 = uε(y),

if yε lies in Y (otherwise it is taken to be undefined). Analogously, yε is the value for which

u(yε) +
1

2ε
|yε − y|2 = uε(y).

Additionally, define Yε as the set of all points in Y that are atleast 2 ‖Du‖ ε distance away
from ∂Y, i.e.

Yε := {y ∈ Y : |y − w| ≥ 2 ‖Du‖ ε ∀w ∈ ∂Y}.

We have the following properties for sup and inf-convolutions:

Lemma B2

Suppose that u is continuous. Then,

(i) uε is semi-convex with coefficient 1/ε. Similarly, uε is semi-concave with coefficient
1/ε.

(ii) |yε − y| ≤ 2 ‖Du‖ ε and |yε − y| ≤ 2 ‖Du‖ ε.

(iii) for all y ∈ Yε, |uε(y)− u(y)| ≤ 4 ‖Du‖2 ε and |uε(y)− u(y)| ≤ 4 ‖Du‖2 ε.

We show the above properties for uε and yε. The claims for uε and yε follow in an analogous
manner.

For (i), observe that

uε(y) +
1

2ε
|y|2 = sup

w∈Ȳ

{
u(w) +

1

ε
wᵀy − 1

2ε
|w|2

}
.

The right hand side of the above expression is in the form of a supremum over affine functions,
which is convex. Hence (i) follows by the definition of semi-convex functions.

For (ii), by the definition of yε and uε,

1

2ε
|yε − y|2 ≤ u(yε)− u(y) ≤ ‖Du‖ |yε − y|.

Rearranging the above inequality we get |yε − y| ≤ 2 ‖Du‖ ε.
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For (iii), by the definition of yε (which exists for y ∈ Yε in view of part (ii)),

|uε(y)− u(y)| =
∣∣∣∣u(yε)− u(y) +

1

2ε
|yε − y|2

∣∣∣∣
≤ ‖Du‖ |yε − y|+ 1

2ε
|yε − y|2

≤ 4 ‖Du‖2 ε,

where the last inequality follows by (ii).@

Lemma B3

Assume that u is uniformly continuous. Suppose that φ ∈ C2(Y), such that uε−φ has
a local maximum at y0 ∈ Yε. Define ψ(y) = φ(y + y0 − yε0). Then u − ψ has a local
maximum at yε0 ∈ Y, and

Dψ(yε0) = Dφ(y0) =
1

2ε
(yε0 − y0).

Since uε − φ has a local maximum at y0, this implies there is a ball B(y0, r) of radius r
around y0 for which

uε(y0)− φ(y0) ≥ uε(w)− φ(w)

for all w ∈ B(y0, r). Hence,

u(yε0)− 1

2ε
|yε0 − y0|2 − φ(y0) ≥ uε(w)− φ(w)

≥ u(y)− 1

2ε
|w − y|2 − φ(w)

for all y and w ∈ B(y0, r) (note that yε0 ∈ Y in view of the definition of Yε and Lemma B2).
This implies that (yε0, y0) is the local maximum of the function

Υ(y, w) := u(y)− 1

2ε
|w − y|2 − φ(w).

In other words,
Υ(yε0, y0) ≥ Υ(y, w) ∀y and w ∈ B(y0, r). (B.29)

In view of (B.29), we have Υ(yε0, y0) ≥ Υ(w−y0 +yε0, w) for all w ∈ B(y0, r), which implies

u(yε0)− 1

2ε
|yε0 − y0|2 − φ(y0) ≥ u(w − y0 + yε0)− 1

2ε
|yε0 − y0|2 − φ(w).

Hence, for all w ∈ B(y0, r),

u(yε0)− φ(y0) ≥ u(w − yε0 + yε)− φ(w).

Now set y∗ = w − y0 + yε0 and observe that |y∗ − yε0| = |w − y0| ≤ r for all w ∈ B(y0, r). We
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thus obtain that for all y∗ ∈ B(yε, r),

u(yε0)− φ(y0) ≥ u(y∗)− φ(y∗ + y0 − yε0).

In view of the definition of ψ(.), the above implies

u(yε0)− ψ(yε0) ≥ u(y∗)− ψ(y∗) ∀y∗ ∈ B(yε0, r).

Hence u− ψ has a local maximum at yε0.
For the second part of the lemma, observe that by (B.29), Υ(yε0, y0) ≥ Υ(yε0, w) for all

w ∈ B(y0, r), which implies (after some rearrangement)

1

2ε
|yε0 − w|2 + φ(w) ≥ 1

2ε
|yε0 − y0|2 + φ(y0), ∀w ∈ B(y0, r).

Hence the function θ(w) := 1
2ε |y

ε
0−w|2 +φ(w) has a local minimum at w = y0. Consequently,

Dφ(y0) =
1

2ε
(yε0 − y0).

This proves the second claim after noting Dψ(yε0) = Dφ(y0).@
Our next lemma considers PDEs of the form

F (Du(y), u(y), y) = 0, u = 0 on ∂Y,

where the domain of the PDE is the open set Y. We shall assume that F (·) satisfies the
following property (here C <∞ denotes some constant)

|F (p, q1, y1)− F (p, q2, y2)| ≤ Cp{|q1 − q2|+ |y1 − y2|}. (B.30)

Lemma B4

Suppose that u is a viscosity solution of F (Du, u, y) = 0, and ‖Du‖ ≤ m < ∞.
Suppose also that F (·) satisfies (B.30). Then there exists some c depending on only C
(from B.30) and m such that for all y ∈ Yε,

F (Duε, uε, y) ≤ cε,

where the above holds in the viscosity sense.

Take any ϕ ∈ C2(Y) such that uε − ϕ has a local maximum at y0 ∈ Yε. Set ψ(y) :=

ϕ(y + y0 − yε0). Then by Lemma B3, u − ψ has a local maximum at yε0 ∈ Y. Hence by
definition of the viscosity solution

F (Dϕ(yε0), u(yε0), ϕ) ≤ 0. (B.31)
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Recall also from Lemma B3 that

|Dψ(y0)| = |Dφ(yε0)| = 1

2ε
|yε0 − y0| ≤ ‖Du‖ ≤ m.

We then have

|F (Dψ(y0), uε(y0), y0)− F (Dϕ(yε0), u(yε0), yε0)|

≤ Cm {|uε(y0)− u(yε0)|+ |y0 − yε0|}

≤ Cm {|uε(y0)− u(y0)|+ (1 +m)|y0 − yε0|}

≤ Cm{4m2 + 2m(1 +m)}ε := cε,

where the first inequality follows from (B.30) and the last inequality from Lemma B2. We
thus obtain in view of the above and (B.31) that

F (Dψ(y0), uε(y0), y0) ≤ cε. (B.32)

Since c is a constant, we have thus shown that if uε−ϕ has a local maximum at some y0 ∈ Yε,
then (B.32) holds. This implies that in a viscosity sense

F (Duε, uε, y) ≤ cε.

@

B.4 JTPA Application: Cluster Descriptions

We employ k-median clustering (a well-established method, for full details see Anderberg,
1973). The aim is to divide the candidates into k clusters. The clusters are chosen such
that the characteristics of each candidate (age, education, and previous earnings in our JTPA
example) are as close as possible to the characteristic-medians of their cluster. Formally, the
clusters are chosen such that the squared sum of Euclidean distances between the vector of
characteristics of each candidate and the vector of characteristic-medians of their cluster is as
small as possible.

In practice, we use Lloyd’s algorithm, as is usual for k-median clustering. First, we start
with k randomly selected candidates (k can be chosen freely, k = 4 in our JTPA example),
which are the ‘founding members’ of each cluster. All other candidates that are then allocated
to the cluster with the smallest Euclidean distance between the vector of characteristics of
the candidate and the founding member. Second, the median of each cluster’s characteristics
is computed and denoted ‘centroid’. Each candidate is then re-allocated to the cluster with
the smallest Euclidean distance between the vector of characteristics of the candidate and the
centroid. The second step is repeated until convergence, i.e until no more re-allocations occur.
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Cluster 1 Cluster 2 Cluster 3 Cluster 4
Age: Mean 31.8 44.9 31.3 26.9
Age: Min. 22 34 22 22
Age: Max. 63 78 57 34
Prev. Earnings: Mean 8999 1439 1413 1231
Prev. Earnings: Min. 3600 0 0 0
Prev. Earnings: Max. 63000 12000 9076 5130
Education: Mean 12.1 12.1 9.0 12.3
Education: Min. 7 8 7 11
Education: Max. 18 18 10 18
Observations 2278 2198 1698 3049

Table B.1: Cluster Descriptions

Table B.1 provides summary statistics for the variables in each cluster. Cluster 1 appears
to contain predominantly candidates with high previous earnings. Cluster 2’s distinguishing
factor is the high age, and for cluster 3 it is few years of education. Cluster 4 contains young
educated candidates with low previous earnings.
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C Supplementary Material and Proofs to Chapter 3

C.1 Proof of Theorem 4

Part 1)

For the boots market, condition (3.7) is satisfied (see condition (3.8) and Lemma 4). Con-
sequently, when focusing on the boots market in isolation, the equilibrium cost of signaling

(by producing high-quality at a loss) is sisolationbet = Dt
1− 1+g

1+r

(
k−cbeh

N isolation
bht +1

)2
, where N isolation

bht

is defined according to N∗ht in the single-variant case outlined in the proof of Lemma 4. In
the case of two variants, signaling via producing high-quality boots at a loss is still possible.
There may be a cheaper (and hence superior) way to signal initially. Moreover, even if not,
there may be a cheaper way to signal in the future, so that Nbht could be increasing in the
long run. At t = 0, this is (virtually121) equivalent to replacing g with ĝ < g. Consequently,

s∗be0 ≤ sisolationbe0 . If D0 < M
(

1− 1+g
1+r

)(
N isolation
bh0 +1
k−cbeh

)2

, then s∗bet < M as sisolationbet < M , and so
any form of high-quality production in the sandals market is inferior (since more expensive)
to signaling in the boots market.

Part 2)

As shown in part 1, the initially optimal way of signaling is producing high-quality boots
at a loss. If this remained to be the optimal way, then s∗bet would be equal to sisolationbet =

Dt
1− 1+g

1+r

(
k−cbeh

N isolation
bht +1

)2
. This is increasing linearly in Dt, which is growing at rate g. Therefore,

there exist a point in time t̃ for which sisolation
bet̃

> M if t > t̃. This contradicts the notion
that signaling via producing high-quality boots at a loss remains to be the optimal way of
signaling. Due to Lemma 5, the other relevant way of signaling is via producing high-quality
sandals with a NFP status and then entering the boots market with a FP status (entering the
boots market with a NFP status is not optimal due to the assumed condition (3.15), as shown
in part 4 below). This is optimal when s∗bet > M . As shown in part 1, this is not the case
for t = 0. Once this “NFP signaling” is optimal, the period-profit is constant by Lemma 7. It
remains to be shown that if “NFP signaling” becomes optimal for t ≥ τ , and consequently firms
anticipate period-profits to become stagnant, s∗bet is still increasing for t < τ , and reaching M
at t = τ .122 At t = 0 < τ (the latter following from part 1), N∗bh0 is given by using t = 0 in:

1−
(

1+ĝ
1+r

)τ−t
1− 1+ĝ

1+r

Dt

(Nbht + 1)2 (k − cbeh)2 +

(
1

1+r

)τ−t
1− 1

1+r

Dτ

(Nbhτ + 1)2 (k − cbeh)2 = sbdt
cbeh − cbdl
cbdh − cbdl

,

(C.1)
121The growth of Nbht can no longer be constant in that case. So ĝ is the “average” (constant) growth rate

of the process viewed at t = 0, defined such that the discounted profit is equivalent to that under the (real)
non-constant growth rates.
122Specifically, at t = τ , the profit from signaling in the previous period to now enter is zero (by the definition

of τ). In the subsequent period, it is larger than zero. Consequently, I assume that the NFP firm is created
at t = τ and entry into the boots market occurs one period thereafter. See below regarding the number of
periods needed for signaling (which I assume to be one).
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(
k − cbdl −

Nbht

Nbht + 1
(k − cbeh)

)
Dt

Nbht + 1
(k − cbeh) = sbdt. (C.2)

The latter equality does not include any profits from milking the sandals market, which
is verified in part 4. Note that at any t for which τ ≥ t > 0, equation (C.1) no longer holds
as condition (3.9) is slack. The discounted profits of entry via producing high-quality boots
(left-hand side of equation (C.1)), can be expressed as

ϕt
(Nbht+1)2

=
∑τ−1

x=t

(
1+g
1+r

)x
Dt

(Nbht+1)2
(k − cbeh)2 +

(
1

1+r

)τ−t∑∞
x=τ

(
1

1+r

)x
Dτ

(Nbhτ+1)2
(k − cbeh)2 .

Since Nbht ≤ Nbhτ for t < τ , this expression is, for a given Nbht, increasing in τ − t,
and hence decreasing in t (i.e. ϕt is decreasing in t). Moreover, for a given Nbht, the milking
profits (left-hand side of equation (C.2)) are increasing in t, and so are the cost of signaling
sbet = sbdt

cbeh−cbdl
cbdh−cbdl . Consequently, condition (3.9) is slack: a quality expert considering to

enter the market at time t in τ ≥ t > 0 faces lower profits and higher signaling costs compared
to t = 0, where quality experts were indifferent between entering or not. More formally, for
t ≤ τ and if both (C.1) and (C.2) were binding, then:

N
(C.1)binding
bht =

ϕt
cbdh−cbdl
cbeh−cbdl − (k − cbeh) (k − cbdl)Dt

(cbeh − cbdl)Dt
.

This expression is decreasing in t because ϕt is decreasing and Dt is increasing in t, which
violates condition (3.14). Therefore, condition (3.9) is slack, condition (3.14) is binding, and
N∗bht = N∗bh0 for τ ≥ t > 0. This result implies that ĝ = g and Nbhτ = N∗bh0,

123 and thus

N∗bh0 =
(cbdh − cbdl) (k − cbeh)

(cbeh − cbdl)2

(
1 + r

r − g
+

(
1 + g

1 + r

)τ (1 + r

r
− 1 + r

r − g

))
− k − cbdl
cbeh − cbdl

.

Equation (C.2) is not affected by condition (3.9) being slack, so

s∗bet =
cbeh − cbdl
cbdh − cbdl

(
k − cbdl −

N∗bh0

N∗bh0 + 1
(k − cbeh)

)
Dt

N∗bh0 + 1
(k − cbeh)

for t in τ ≥ t > 0, which is linearly increasing in Dt. In sum, for t ≤ τ , s∗bet is increasing over
time with a constant rate and it will reach M eventually. The point in time where it reaches
M is by definition τ .

Part 3)

Follows directly from Lemma 7. As Dt
(Nbht+1)2

is constant when s̃NFPet < sbet, and the latter is

true iff t > τ , (Nbht + 1)2 must be increasing at rate g when t > τ .

123I again assume a constant rate of change of πcournot,periodet for τ ≥ t > 0. See subsequent appendix-section
for a discussion.
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Part 4)

For t ≥ τ , psht = cseh due to this price being offered by a quality expert with NFP status.
For t < τ , the profit is

∑τ−1
x=t

(
1+g
1+r

)x
dt

(Nsht+1)2
(j − cseh)2. Under the weak assumption that

1+g
1+r > g, this profit is decreasing in t. Moreover, it is decreasing in Nsht. So the highest profit
πbenefitmax is achieved when only one firm enters as soon as it has established a high reputation
in the boots-market, i.e. at t = 1, and therefore πbenefitmax =

∑τ−1
x=1

(
1+g
1+r

)x
(1+g)d0

4 (j − cseh)2.
This profit is increasing in τ . The lowest τ under which non-negative profit can be made is

given by
(

1+g
1+r

)
1−( 1+g

1+r )
τlowest−1

1−( 1+g
1+r )

(1+g)d0
4 (j − cseh)2 = M , hence

τlowest =
ln
(

1− 4M(r−g)
d0(1+g)2(j−cseh)2

)
ln
(

1+g
1+r

) + 1.

The point in time τ is defined by s∗bet reaching M. Note that N∗bh0 is a function of τ , and use

N∗bh0 = α+

(
1 + g

1 + r

)τ
β

with α = (cbdh−cbdl)(k−cbeh)

(cbeh−cbdl)2

(
1+r
r−g −

k−cbdl
cbeh−cbdl

)
and β = (cbdh−cbdl)(k−cbeh)

(cbeh−cbdl)2

(
1+r
r −

1+r
r−g

)
. Then τ∗

is given by the following equation:

k − cbdl −
1

1 + 1

α+( 1+g
1+r )

τ∗
β

(k − cbeh) =
M (cbdh − cbdl)

D0 (k − cbeh) (cbeh − cbdl)

(
α+ 1

(1 + g)τ
∗ +

β

(1 + r)τ
∗

)
.

If max (τ∗) < τlowest, no for-profit firm will enter the high-quality sandals market. As
outlined in part 2 above, τ∗ must be bounded away from infinity, and by part 1, it is bounded
away from zero as well.

The condition max (τ∗) < τlowest is the necessary and sufficient condition that firms that
have obtained a high-quality reputation in the boots-market (with FP or NFP status) do not
benefit from it in the sandals market. It is not straightforward to interpret though (note that
ln
(

1+g
1+r

)
< 0). The much easier condition outlined in condition (3.15) above is obtained by the

following argument. The profit
∑τ−1

x=1

(
1+g
1+r

)x
(1+g)d0

4 (j − cseh)2 < (1+g)d0
4 (j − cseh)2 1

1− 1+g
1+r

.

If the latter is smaller than M, then this is also a sufficient (albeit too strong) condition.�

C.2 Non-Constant Rate of Change of the Period-Profit

So far, I have assumed a constant (possibly zero) rate of change of πcournot,periodbet (πcournot,periodet

in section 3.2 respectively). Since Dt grows at a constant rate, this implies the assumption
that (Nbht + 1) (Nht + 1 respectively) grows at a constant rate as well. This assumption does
not affect Theorem 4 (or the underlying lemmas) qualitatively for the following reasons.

Due to condition (3.14), (Nbht + 1) cannot be decreasing (condition (3.4) regarding (Nht + 1)

respectively).
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Moreover,
(
N(b)ht + 1

)
cannot be increasing at an increasing rate. If the growth rate of(

N(b)ht + 1
)
is low at time t and higher at time t′, then N∗(b)ht > N∗(b)ht′ . This is due to

the fact that having a high reputation is more profitable in a state where the growth rate
is still relatively low (as future profits are discounted). For t > τ , the cost of the signal is
constant, concluding the argument. While the cost of the signal is eventually determined
by πcournot,milk(b)et for t ≤ τ (or the case in section 3.2), the cost of the signal is decreasing in(
N(b)ht + 1

)
(see equation (3.6), and (3.13) accordingly), but πcournot,period(b)et decreases faster as(

N(b)et + 1
)
increases (at least for large values of

(
N(b)et + 1

)
).

For t > τ , (Nbet + 1) cannot be increasing at a decreasing rate with (Nbet + 1) converging
to a constant. Since the cost of signaling is constant and the demand is increasing, this would
imply that entrants could make a positive profit, which refutes (Nbet + 1) being/approaching
a constant.

Should there be equilibria for t > τ with (Nbet + 1) increasing at a decreasing rate but not
converging, none of the results change qualitatively. Theorem 4 as well as the Lemmas 3 to 7
still hold. The only difference was that (Nbet + 1) would grow a rate faster than

√
1 + g − 1

initially.
Should there be equilibria for t ≤ τ (or the case in section 3.2) with

(
N(b)et + 1

)
increasing

at a decreasing rate, again none of the results change. For a sufficiently large t, the growth rate
of
(
N(b)et + 1

)
becomes constant. Following the proof of Theorem 4.2 and Lemma 4 respec-

tively, it must be zero (i.e. in this case, non-converging
(
N(b)et + 1

)
cannot be an equilibrium).

At least eventually, as the growth rate of
(
N(b)et + 1

)
is sufficiently low, Lemma 3 and 4 hold.

The Lemmas 5 to 7 are not affected, and consequently Theorem 4 holds.
Finally, I assume

(
N(b)et + 1

)
not to be increasing at a fluctuating rate. Each period

has identical exogenous conditions, except for Dt that increases at a constant rate, and at
least for t ≤ τ and t > τ taken separately, either identical or smoothly developing endogenous
variables. A different reaction to the same event (Dt increasing) could only be caused by beliefs
that reactions to “Dt increasing” are different in the future (affecting the expected discounted
profits). If there are multiple equilibria (potentially introduced by (Nbet + 1) increasing at a
decreasing rate or τ* not being unique), I disregard cases that alternate between equilibria.

C.3 Proof of Theorem 5

Part 1) & Part 2)

Denote M(Nsh) the expected cost M as a function of the number of firms with a high-quality
reputation operating in the sandals market. As a shorthand, I use M0 as the expected cost
when there are no firms producing high-quality sandals and M1 as the cost when there is at
least one such firm. In the mechanism presented in section 3.3, a key feature is that NFP
signaling is free to quality experts, except for the constant expected cost M0, and M1 = M0.
If I imposed that M1 = 0, quality experts would be constantly incentivized to create NFP
firms in the sandals market, leading to an explosion of such NFP firms.

However, with motivated workers, even quality experts now face a positive cost of operating
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a NFP firm producing high-quality sandals, provided it is not the first firm in that market.
The price of the first NFP firm is, by definition of its NFP status, given by price equal to
costs: psht = Asfh(ū − αi), with f = e for the same reason as in Theorem 4: in equilibrium,
only quality experts enter the high-quality markets. Define ū as reservation utility of as many
workers as needed to produce one pair of sandals. Accordingly, the influence of that many
workers on the consumer surplus is i = j−psht

2 and the price is given by:

psht = c1st

seh =
Aseh (2ū− αj)

2− αAseh
.

Due to the assumption of constant returns to scale, this first NFP firm can serve the entire
market at psht = c1st

seh. Any potential later quality experts face production costs per unit of
claterseh = Asehū > c1st

seh. Consequently, all later firms make a loss of αAseh(j−ūAseh)
2−αAseh per unit sold.

This implies that, as before, s̃1stNFP
et = M0. However, imposing M1 = 0 no longer results

in s̃laterNFPet = 0, but s̃laterNFPet = h̃t
αAseh(j−ūAseh)

2−αAseh > 0. Regarding discounters, s̃laterNFPdt =

h̃t
2ū(Asdh−Aseh)+αAseh(j−ūAsdh)

2−αAseh .
The characteristics of the equilibrium are generally akin to section 3.3 and proven analogue

to Theorem 4. The key difference is that Theorem 4.3 only applies until one NFP firm is
created. Thereafter, s̃NFPft = s̃laterNFPft , as outlined above. There is also no longer a “threat”
of any form of entry that is not either high-quality boots production at a loss or high-quality
sandals production at a loss (the latter with a NFP status).

According to the proof of Lemma 4, the resulting number of firms if the former is optimal
is

N bsignal
bht =

(
cbdh−cbdl
cbeh−cbdl
1− 1+g

1+r

− 1

)
k − cbeh
cbeh − cbdl

− 1 (with cbfa = ūAbfa) .

If the latter is optimal, the qualitative argument remains identical (and N ssignal
bht is constant

for the same reason) and the key condition are (analogue to (3.5) and (3.6)):

1

1− 1+g
1+r

Dt

(Nbht + 1)2 (k − cbeh)2 = s̃laterNFPdt

αAseh (j − ūAseh)

2ū (Asdh −Aseh) + αAseh (j − ūAsdh)
,

(
k − cbdl −

Nbht

Nbht + 1
(k − cbeh)

)
Dt

Nbht + 1
(k − cbeh) = s̃laterNFPdt .

Consequently,

N ssignal
bht =

 2ū(Asdh−Aseh)+αAseh(j−ūAsdh)
αAseh(j−ūAseh)

1− 1+g
1+r

− 1

 k − cbeh
cbeh − cbdl

− 1 (with cbfa = ūAbfa) .

Neither N bsignal
bht nor N ssignal

bht are unbounded, which proofs part 1.
If signaling through the production of high-quality boots is superior to signaling through
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the production of high-quality sandals, then N∗ = N bsignal
bht . Formally, signaling in the boots

market is superior if a quality expert’s loss of producing a high-quality boot and selling it at
pbdl relative to a discounter’s loss of doing the same is lower than the analogue fraction for
sandals, i.e.:

cbeh − cbdl
cbdh − cbdl

>
αAseh (j − ūAseh)

2ū (Asdh −Aseh) + αAseh (j − ūAsdh)
. (C.3)

Under condition (C.3), max
{
N bsignal
bht , N ssignal

bht

}
= N bsignal

bht = N∗bht. This implies that
after one firm has entered via “NFP signaling”, the situation is as outlined in section 3.2. Prior
to entry via “NFP signaling”, the only difference to section 3.2 is the expected entry of one
firm, which will have created the NFP firm, at t = τ + 1. The exception of this case is when
an “inside firm” creates a NFP firm producing high-quality sandals (see part 3 below).

In sum, under condition (C.3) and absent of an “inside firm” creating the NFP firm, N∗bht
is constant for t ≤ τ as outlined in the proof of Theorem 4.2. After one firm has entered via
“NFP signaling”, the situation is akin to section 3.2 (possibly with (3.4) binding instead of
(3.1)) and N∗bht is constant again. The only rational belief prior to the firm entering “via NFP
signaling” is that exactly one firm will enter after t = τ , and N∗bht is determined accordingly.
Finally, if it is an “inside firm” that creates the NFP firm, it is rational to expect this, and
hence N∗bht is constant (and does not even increase by one after t = τ).124�

Part 3)

I denote the firms that have a high-quality reputation and sell boots “inside firms”. Inside
firms rationally expect that if there is no NFP firm selling high-quality sandals, an outside
quality expert will create such a NFP firm at t = τ and enter the market for high-quality
boots thereafter. This reduces the net present value of the stream of profits they receive.
Specifically, τ is defined such that M0 = π(Nbhτ+1)

1+Nbhτ
, where π(.) is the net present value of the

combined profits of all inside firms, taking into account that the equilibrium Cournot price
(and hence profits) depends on Nbht. Each inside firm obtains π(Nbhτ+1)

1+Nbhτ
if the outsider joins

and π(Nbhτ )
Nbhτ

if it is an inside firm that creates the NFP.

IfNbhτ = 1, then π(Nbhτ )
Nbhτ

− π(Nbhτ+1)
1+Nbhτ

= π(1)− π(2)
2 > π(2)

2 = M0 (at t = τ) since π(1) > π(2)

as a monopolist sets prices higher than two Cournot competing firms and is therefore able to
extract more surplus from the consumers. Consequently, a monopolist will always create the
first NFP firm to produce high-quality sandals.

ForNbhτ > 1, a coordination problem arises. Since the profit per firm and period is given by
πcournot,periodt = Dt

(Nbht+1)2
(k − cbeh)2, I express π(Nbh) = NbhC

(Nbh+1)2
, where C is a constant that

does not depend on Nbh. For Nbhτ = 2, π(Nbhτ )
Nbhτ

− π(Nbhτ+1)
1+Nbhτ

= C
9 −

C
16 <

C
16 = π(Nbhτ+1)

1+Nbhτ
= M0.

124Note: Much of this proof is due to constant returns to scale implying that a second NFP firm has no
impact on consumer surplus given the first is operating (and serving the entire market). More generally, if
NFP firms can choose to supply any given price and quantity as long as at least this quantity is demanded at
the price (i.e. NFP firms are allowed to be out of stock), then one NFP firm can create at least half as much
consumer surplus as two NFP firms. Consequently, a similar argument is potentially possible without relying
on CRS, but still obtaining only a limited number of NFP firms created after t = τ and allowing for M(Nsh)
to be decreasing. The formal details are left to future research.
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The same holds generally for Nbhτ ≥ 2 since

maxNbht≥2

(
C

(Nbht + 1)2 −
2C

(Nbht + 2)2

)
< 0.

Consequently, inside firms only create the NFP firm themselves if they are able to coor-
dinate whom to creates it and how to split the cost. Note that for inside firms, an even
split of costs is always preferable to an additional firm entering since π(Nbhτ )

Nbhτ
− M0

Nbhτ
=

π(Nbhτ )(Nbhτ+1)
Nbhτ (Nbhτ+1) −

π(Nbhτ+1)
Nbhτ (Nbhτ+1) >

Nbhτπ(Nbhτ+1)
Nbhτ (Nbhτ+1) = π(Nbhτ+1)

1+Nbhτ
. In sum, it is an inside firm that

creates the sandal-producing NFP firm if the inside firm is a monopolist or if the inside firms
are able to coordinate.�

C.4 Equilibrium of the Market for Low-Quality Sandals with Motivated
Workers

Should several firms be active in the sandals market, then none of them makes a differential
impact to the poor and pslt = Asdlū. What remains to be checked is whether in a dynamic
setting, the first firm optimally charges a price that is lower than Asdlū to benefit from the
motivation of the workers.

A monopolist maximizes:

maxpslt d̂t(y − pslt)
(
pslt −Asdl

(
ū− αy − psht

2

))
If α < 2

Asdl
, then the above function is concave and pMonopolist

slt = y
2 + Asdl(2ū−αy)

4−2αAsdl
. If, in

addition, pMonopolist
slt < Asdlū, then this price constitutes a dynamic equilibrium. The latter

condition can be rewritten as y < Asdlū−Asdlα (Asdlū− y), which must fail if y > Asdlū.
In sum, if a firm can sell low-quality sandals without motivated workers (y > Asdlū), then

the only equilibrium price is p∗slt = Asdlū. I assume throughout the paper that the market
for low-quality sandals is served. A sufficient assumption is y > Asdlū (which is akin to the
assumption that y > csdl in section 3.3). However, this assumption can be replaced by any
assumption that ensures that the market for low-quality sandals is served, such as y < Asdlū

and α < 2
Asdl

, in which case p∗slt = pMonopolist
slt .

C.5 Number of Periods Needed for Signaling

As mentioned in the footnotes 96 and 100, I assume throughout the paper that one period
is always sufficient to signal, i.e. to sell the quantities ht

1+r or h̃t
1+r respectively. Regarding h̃t

for t > τ in the case with motivated workers and ht in general, this assumption is only for
notational convenience. It can easily be changed, as outlined in footnote 96, without having
any effects on the results presented in this paper.

Except for these cases, the issue arises that the expected cost M is realistically spent in the
period where the NFP firm is created, not the period in which the FP firms enter the boots
market. The cost M is therefore (1 + r)x times the true development costs, where x refers to
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the number of periods needed for signaling. I assume x to always be equal to one, and hence
M to be constant. Due to (3.10) and (3.12), this implies that I assume that:

QDsht(cseh) > h̃t = max

{
0,

(
QDbht(pbht)

csdh − cseh
−M

)}
, with

QDbht(pbht)

csdh − cseh
=
Dt(k − cbeh)

(
k − cbdl − Nbht

Nbht+1(k − cbeh)
)

(Nbht + 1) (csdh − cseh)
.

Note that Q
D
bht(pbht)

csdh−cseh is strictly decreasing in Nbht, which is non-decreasing over time. There-

fore, Q
D
bht(pbht)

csdh−cseh grows over time at a rate weakly less than g. Since QDsht(cseh) = dt(j − cseh),
it grows at the rate g over time. Consequently, a sufficient condition is to assume that the
“market for the poor” is large relative to the “market for the rich”, such as:

d0 > D0

(k − cbeh)
(
k − cbdl −

N∗bh0
N∗bh0+1(k − cbeh)

)
(
N∗bh0 + 1

)
(csdh − cseh) (j − cseh)

.

I make the above assumption throughout this paper.
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