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Abstract

This thesis contains three essays exploring the asset pricing implications of asymmetric in-

formation and trading constraints.

Chapter 1 studies how short-sale constraints affect the informational effi ciency of market

prices and the link between prices and economic activity. I show that under short-sale con-

straints security prices contain less information. However, short-sale constraints increase the

informativeness of prices to some agents who learn about the quality of an investment oppor-

tunity from market prices and have additional private information. This, in turn, can lead

to higher allocative effi ciency in the real economy. My result thus implies that the decrease

in average informativeness due to short-sale constraints can be more than compensated by

an increase in informativeness to some agents.

In Chapter 2, I develop an equilibrium model of strategic arbitrage under wealth con-

straints. Arbitrageurs optimally invest into a fundamentally riskless arbitrage opportunity,

but if their capital does not fully cover losses, they are forced to close their positions. Strate-

gic arbitrageurs with price impact take this constraint into account and try to induce the

fire sales of others by manipulating prices. I show that if traders have similar proportions

of their capital invested in the arbitrage opportunity, they behave cooperatively. However,

if the proportions are very different, the arbitrageur who is less invested predates on the

other. The presence of other traders thus creates predatory risk, and arbitrageurs might be

reluctant to take large positions in the arbitrage opportunity in the first place, leading to an

initially slow convergence of prices.

Chapter 3 (joint with Dömötör Pálvölgyi) studies the uniqueness of equilibrium in a

textbook noisy rational expectations economy model a la Grossman and Stiglitz (1980). We

provide a very simple proof to show that the unique linear equilibrium of their model is the
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unique equilibrium when allowing for any continuous price function, linear or not. We also

provide an algorithm to create a (non-continuous) equilibrium price that is different from the

Grossman-Stiglitz price.
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Chapter 1

Short-sale constraints and credit

runs

1.1 Introduction

According to the view of many academics and regulators, short-sale constraints compromise

market liquidity and reduce the informativeness of market prices, while preventing value-

destroying price manipulation and hence severe economic ineffi ciencies. A press release of

the Securities and Exchange Commission (SEC), issued on the 19th of September, 2008,

clearly illustrates this point. They state that "under normal market conditions, short selling

contributes to price effi ciency and adds liquidity to the markets", but argue in favour of

an emergency order that bans short selling, as shorting, observed e.g. after the collapse of

Lehman Brothers, can lead to sudden price declines unrelated to true value. Since financial

institutions "depend on the confidence of their trading counterparties in the conduct of their

core business", if prices can influence how these institutions are perceived by counterparties

and clients, low prices can have damaging effects on the value of institutions as well. Thus,

providing a floor to asset prices can be beneficial.1

In this chapter I examine how short-sale constraints affect both the informational effi ciency

1See http://www.sec.gov/news/press/2008/2008-211.htm. A similar point is reached by the Financial
Services Authority (FSA) discussion paper on short-selling (Financial Services Authority (2009), p.11-12). In
particular, they claim that the negative impact of shorting "reduces the ability of a firm to raise equity capital
or to borrow money, and makes it harder for banks to attract deposits."

11



of prices, and the link between prices and economic activity. I show that under short-sale

constraints security prices contain less information. This is consistent with previous work,

and my contribution is to derive a simple closed-form solution of a rational expectations equi-

librium (REE) with short-sale constraints. My main result concerns the feedback to the real

economy. I find that although prices contain less information, short-sale constraints increase

the informativeness of prices to some agents who have additional private information. This,

in turn, yields an equilibrium of the real economy that has higher allocative effi ciency. My

result thus implies that the decrease in average informativeness due to short-sale constraints

can be more than compensated by an increase in informativeness to some agents.

To analyze the informational effects of short-sale constraints, I extend an asset pricing

model with information spillover from the financial market to the real economy. I use a noisy

rational expectations model of a financial market with asymmetric information, where noise

comes from a random demand shock, as in Grossman and Stiglitz (1980), and I introduce

short-selling constraints on a subset of informed traders. For the real part of the economy, I

consider a distressed financial institution (e.g. investment bank) that requires outside capital

from multiple lenders or short-term creditors to support its existing positions.2 Creditors,

endowed with dispersed private information about the value of the bank’s assets, consider

whether to supply capital to this institution. I model bank financing as game with strategic

complementarities: the bank survives if the amount of capital provided by creditors is suf-

ficiently large, and creditors’payoff is higher if the bank avoids bankruptcy.3 Besides their

private signals, creditors also observe the price of a traded security. The connection between

the security market and the financing is provided by the correlation between the payoff of

the security and the unknown quality of the financial institution. Therefore, the price, which

gathers information in the security market, constitutes a public signal to capital providers.4

2There is ample anecdotal evidence about Bear Stearns and Northern Rock not being able to secure short-
term financing and being the victims of runs by their creditors at the beginning of the 2007-2008 crisis; see, for
example, Brunnermeier (2009) and Shin (2009). Ivashina and Scharfstein (2010) show that after the failure of
Lehman Brothers in September 2008, there were runs by short-term lenders on financial institutions, making
it hard for banks to roll over their short term debt. Moreover, runs on other financial institutions, such as
investor withdrawals from hedge funds or mutual funds can be viewed as a coordination game among capital
providers, see Shleifer and Vishny (1997) and the vast literature on limited arbitrage.

3 Indirect and direct evidence of coordination motives among creditors have been shown by Asquith et al.
(1994), Brunner and Krahnen (2008) and Hertzberg et al. (2010). Moreover, Chen et al. (2010) document
coordination motives among investors of mutual funds.

4The financial asset can be interpreted, for example, as a zero-net-supply derivative on the share price of
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The main observation of the model is that even though short-sale constraints decrease the

information content of prices, certain creditors endowed with additional private information

can learn more from asset prices with short-sale constraints than without the constraints. The

idea is that when creditors combine their private signals with the market price to form beliefs

about the state of the world, they also have to assess to what extent a high (low) market price

reflects a high (low) fundamental value or a high (low) demand shock, i.e. whether informed

traders buy or whether they (would) short-sell. In presence of short-sale constraints, a high

demand shock increases the price, and informed investors would like to short, but cannot. It

leads to a decrease in the aggregate order flow, which is dominated by noise trading. High

price realizations are hence more noisy and less informative about the true state of the world,

as negative information about fundamentals is less incorporated into prices. Put differently,

a given price realization means lower payoff if one believes the constraint binds in the market.

To see the intuition for how prices can provide more information in presence of trading

constraints, consider a creditor who receives a private signal realization higher than the price

she sees. A high signal means that according to her private information, states when the

payoff is lower than the price have low probabilities as they are tail events. She knows that if

informed traders (those who can) are shorting, the same price realization corresponds to lower

fundamentals compared to the case without short-sale constraints. But lower fundamentals

have smaller probabilities according to her private belief. Combining these two observations,

she assigns a smaller probability to informed traders shorting the asset than without short-

sale constraints, and thus thinks the asset payoff is higher. This reinforces her private signal,

and implies that her posterior can be more precise than without short-sale constraints.

Then I study the effect of short-sale constraints in the security market on the bank

financing. I show that the presence of short-sale constraints introduces multiple equilibria

in the coordination game, even when private information is arbitrarily precise. This result

stems from the observation that creditors with high private signal learn more from the market

price in presence of short-sale constraints. Indeed, when their posterior variance is smaller,

creditors have more precise assessments about both the bank’s fundamental and about the

information of other creditors. For every level of private noise precision, when short-sale

the bank, as an industry index that includes the bank, or the price of a security that the bank has on the
asset side of the balance sheet.
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constraints are suffi ciently tight, they reinstate common knowledge among the subset of

more informed creditors, and lead to self-fulfilling beliefs and two stable equilibria. I refer to

the first one, when creditors rely only on their private signals, as the informationally effi cient

equilibrium, because in the limit when private signals become very precise, agents ignore the

market price. This equilibrium is equivalent to the unique equilibrium of the game without

short-sale constraints. However, in presence of the constraint there exists a second stable

equilibrium, where creditors with high private signals keep relying on the public signal, if

they know that other creditors with similarly high signals do as well.

Interestingly, in this second stable equilibrium the bank receives more capital than in

the informationally effi cient equilibrium, thus they can be called high and low investment

equilibrium, respectively. This is because short-sale constraints only improve the precision of

agents with signals higher than the market price, so they are the creditors who might react

to the ’news’in short-sale constraints. Intuitively, short-sale constraints can only affect the

equilibrium outcome if there are some creditors who behave differently in the informationally

effi cient equilibrium, but due to short-sale constraints learn more about each other’s action.

Thus it is straightforward that the second equilibrium, whenever it exists, must feature

more capital provision than the informationally effi cient equilibrium. Short-sale constraints

improve the information of some agents who would stay out in absence of the constraint, and

create self-fulfilling beliefs and multiplicity in equilibrium actions among these creditors. This

leads to more investment, banks with lower asset quality remain solvent, and the equilibrium

is closer to the first best. I conclude that short-sale constraints improve allocational effi ciency

by mitigating the adverse effect of the coordination externality. Therefore, if the gain of

short-sale constraints in terms of the increased allocational effi ciency of the real economy is

higher (or more important) than the loss in terms of informational ineffi ciency in the financial

market, short-sale constraints can be beneficial.

The model presented in this chapter is not the first to highlight the impact of trading

constraints on the allocational effi ciency of the real economy. Panageas (2003) and Gilchrist

et al. (2005) study firms’ investment decisions when they raise capital during asset price

bubbles, when the cost of capital is low due to short-sale constraints. Both studies rely on

the literature initiated by Miller (1977) and Harrison and Kreps (1978), who suggest a link

between the level of belief heterogeneity and inflated asset prices (see also Scheinkman and
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Xiong (2003), and Rubinstein (2004) for many more ’anomalies’associated with short-sale

constraints). In contrast to these papers, in my model agents are rational, and short-sale

constraints do not inflate the price, following the insights of Diamond and Verrecchia (1987).

In particular, in this study security prices in presence of short-sale constraints are lower than

without the constraints, and hence according to Panageas (2003) and Gilchrist et al. (2005)

investment should be lower. My focus is on the information provided by market prices instead

of price levels.

The financial market model of this chapter is similar to that in Yuan (2005, 2006), who

studies a REE with asymmetric information and constraints on borrowing and shorting. She

numerically shows that, in presence of borrowing restrictions, a higher market price can reduce

uncertainty about the constraint status of informed investors, and that this information effect

can be strong enough to cause a backward bending demand curve. In contrast, the first part

of this chapter provides a simple closed-form solution of a model that is simplified in one

dimension but allows for more generality in other dimensions.5 Finally, Bai et al. (2006)

and Marin and Olivier (2008) study the effects of short-sale constraints when investors trade

for informational and allocational purposes. In both papers, trading constraints limit the

positions of all informed traders. When the constraints bind, asset prices stop reflecting

fundamentals, uninformed investors demand a large discount, and prices exhibit large drops.

Therefore, in these models high prices are more informative than low prices. In contrast,

in models presented here and in Yuan (2005, 2006), only a subset of informed investors are

subject to the short-selling constraint, and uninformed investors need to form beliefs about

the size of the demand shock, i.e. the constraint status of informed investors. The most

important distinction is that short-sale constraints bind for high prices, making them less

informative than low prices.

The model also belongs to the literature on coordination games with strategic comple-

mentarities, developed by Carlsson and van Damme (1993) and Morris and Shin (1998), and

contributes to discussion about the fragile interaction between private and public information

(see, for example, Morris and Shin (1999, 2001, 2002, 2003, 2004) and Hellwig (2002)). In

5Also, in a financial market with wealth- and shortsale-constrained risk-neutral agents and an asset supply
exponentially distributed, Barlevy and Veronesi (2003) present a theory of stock market crashes, where high
asset prices are more informative than low prices.
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particular, Morris and Shin (2001) show that when private information becomes arbitrarily

precise, a coordination game has a unique equilibrium. In the discussion of Morris and Shin

(2001), Atkeson (2001) highlights the potential role of financial markets as the source of en-

dogenous public information, formalized by Angeletos and Werning (2006). They show that a

unique equilibrium might not prevail, if the precision of the public signal that aggregates pri-

vate information increases faster than the precision of the private signal. Hellwig et al. (2006)

and Tarashev (2007) also study a coordination game with a financial price as the public sig-

nal, while Ozdenoren and Yuan (2008) and Goldstein et al. (2009) study coordination among

traders in the market. A common element in these papers is that the informational content

of the public signal does not vary across equilibria. In contrast to many previous models, in

the model presented in this chapter the informativeness of the public signal varies across its

realizations. This is similar in spirit to Angeletos et al. (2006). However, in their analysis

the signal is the equilibrium action of a policy maker, whereas in my study the varying in-

formativeness is the result of the asymmetric nature of short-sale constraints. Finally, there

are several papers that highlight the adverse effect of short-selling on allocative effi ciency in

the economy and hence argue in favour of short-sale constraints, see for example Goldstein

and Guembel (2008) or Liu (2010). However, to my knowledge, this is the first model that

explicitly studies the informational effect of short-sale constraints on real economic activity.

The remainder of the chapter is organized as follows. Section 1.2 presents the financial

market. Section 1.3 studies the equilibrium of the financial market and examines the effect of

short-sale constraints on the equilibrium price. Section 1.4 analyzes the information content

of stock prices with and without short-sale constraints for outside observers. Section 1.5

embeds the credit run model into the economy, and Section 1.6 presents the equilibrium

of the coordination game with the skewed public signal. Section 1.7 discusses the results,

contrasts the findings with the related literature, and provides some comparative statics and

policy implications. Finally, Section 1.8 concludes.

1.2 Model

This section introduces the financial market model. I consider a two-period economy with

dates t = 0 and 1. At date 0 investors trade, and at date 1 assets pay off. The market is

16



populated by three types of agents: informed and uninformed rational investors, and noise

traders.

1.2.1 Assets

There are two securities traded in a competitive market, a risk-free bond and a risky stock.

The bond is in perfectly elastic supply and is used as numeraire, with the risk-free rate

normalized to 0. The risky asset is assumed to be in net supply of S ≥ 0, and has final

dividend payoff d at date 1, that is the sum of two random components: d = f +n. The first

risky component of the dividend payoff, f , can be regarded as the fundamental value of the

asset. The second component, n, is thought of as additional noise, preventing agents from

knowing the exact dividend payoff. The price of the stock at date 0 is denoted by p.

1.2.2 Traders

I assume that the asset market is populated by a continuum of rational traders in unit

mass. Traders do not hold endowments in the risky security. They are risk averse and,

for tractability, I assume that they have a mean-variance objective function over terminal

wealth.6 Agent k, for k ∈ [0, 1], maximizes

E [Wk|Ik]−
ρ

2
V ar [Wk|Ik] ,

where ρ is the risk aversion parameter, common across agents. The final wealth Wk =

W 0
k + xk (d− p) is given by the initial wealth W 0

k plus the number of shares purchased, xk,

multiplied by the profit per share, d − p. Ik is the information set of trader k, and E [.|Ik]

and V ar [.|Ik] denote the expectation and variance conditional on the information set Ik,

respectively.

Rational investors can be either informed or uninformed. Informed traders, who have a

measure of λ and are indexed with k ∈ [0, λ), observe the realization of the fundamental f

6The mean-variance objective function is equivalent to maximizing exponential (i.e. CARA) utility as long
as the uncertainty faced by traders is Gaussian. With short-sale constraints this is not the case for uninformed
investors, but the model is nevertheless solvable and yields qualitatively the same result as the one dicussed
here.
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but not n. The other set of rational traders, with measure 1−λ, and indexed with k ∈ [λ, 1],

are uninformed, and do not observe any (private) signals about f . Instead, all agents of the

model observe the market price p. These assumptions imply that the risk associated with n is

unlearnable for everyone, thus uninformed traders try to best guess component f . Formally,

the information set of informed traders is Ii = {f, p} = {f}, as the price cannot provide

more information about the final payoff than their private observation. The information set

of uninformed traders is Iui = {p}.

Further, I assume that informed traders might be subject to short-sale constraints.7 In

particular, short-sale constraints mean that trader k’s stock position is bounded below by

zero, xk ≥ 0. Short-sale constraints can be thought of as an extreme case of infinite costs

when selling short. I assume that 0 ≤ w < 1 proportion of informed traders are subject

to short-sale constraints, and index them by k ∈ [0, wλ), while the remaining, with mass

(1− w)λ, for k ∈ [wλ, λ), are unconstrained. When w = 0, none of the informed traders are

restricted from shorting.8 Throughout the chapter, a higher w can be (broadly) interpreted

as higher cost and/or more diffi cult shorting. This includes regulatory restrictions (such as

the short-sale ban of 2008 or the uptick rule), legal restrictions, search costs for lenders,

rebate rates, costs of derivative trading, and even the amount of institutional trading in the

market.9 As agents inside the different investor classes are identical, I drop the subscript k

from now on.

Finally, there are noise traders in the market, whose trading behavior is not derived from

utility maximization. Noise traders simply buy u shares. I will refer to their trade order as

demand shock.10

Regarding the distribution of random variables, I assume that fundamental f is drawn

7For simplicity, I assume that uninformed traders are not subject to short-sale constraints. Such an
extension would only affect the equilibrium price level by influencing the demand of uninformed traders, but
would not change the information content of the market price.

8The qualitative results of the model do not depend on the exact proportions of the three different trader
classes. The cardinal question is whether w = 0 or w > 0. As discussed later, the assumption w < 1 impies
that there are always unconstrained informed traders, the stock price always reflects the fundamental f up to
some noise, and the equilibrium stock price does not exhibit a jump.

9See the Securities and Exchange Commission Rule 10a-1, Almazan et al. (2004), Duffi e et al. (2002),
Jones and Lamont (2002), Ofek and Richardson (2003), and Nagel (2005), respectively, for these proxies on
the diffi culty of short-selling.
10As it is standard in models with informational heterogeneity, the presence of noise trading u makes sure

that the price does not reveal f perfectly, and hence the Grossman-Stiglitz paradox does not apply.
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from an improper uniform distribution on the real line. The unlearnable noise component is

given by n ∼ N
(
0, σ2

n = τ−1
n

)
, and the demand shock is given by u ∼ N

(
0, σ2

u = τ−1
u

)
, where

σ2
x denotes the variance of random variable x, and τx denotes its precision. Throughout the

chapter φ (.) denotes the probability density function (pdf) of a standard normal distribution,

Φ (.) is its corresponding cumulative distribution function (cdf), and Φ−1 (.) is the inverse of

the cdf.

1.2.3 Equilibrium concept

I define an equilibrium of the financial market as follows.

Definition 1 A rational expectations equilibrium (REE) of the asset market is a collection

of a price function P (f, u), and individual strategies for constrained informed, unconstrained

informed and uninformed traders, xc (f, p), xuc (f, p), and xui (p), respectively, such that

1. demand is optimal for informed traders:

xc (f, p) ∈ arg max
x∈R+

E [W c|f ]− ρ

2
V ar [W c|f ] , (1.1)

and

xuc (f, p) ∈ arg max
x∈R

E [W uc|f ]− ρ

2
V ar [W uc|f ] ; (1.2)

2. demand is optimal for uninformed traders:

xui (p) ∈ arg max
x∈R

E
[
W ui|P (f, u) = p

]
− ρ

2
V ar

[
W ui|P (f, u) = p

]
; (1.3)

3. market clearing:

wλxc (f, p) + (1− w)λxuc (f, p) + (1− λ)xui (p) + u = S, (1.4)

Conditions (1.1)-(1.4) define a competitive noisy rational expectations equilibrium for

the trading round. In particular, condition (1.1) states that individual asset demands are

optimal for informed traders subject to short-sale constraints, conditioned on their private

information. Similarly, condition (1.2) states that individual asset demands are optimal
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for informed traders with no restriction on shorting, given their private information. Also,

condition (1.3) states that individual asset demands are optimal for uninformed traders,

conditioned on any information they infer from the price. Finally, (1.4) imposes that the

asset market clears: aggregate demand equals supply.

1.3 Equilibrium in the financial market

This section solves for the equilibrium of the trading round and studies the informational

effects of short-sale constraints on market prices. The model is solved in the general case

with w ≥ 0, then I contrast the results for w = 0 and w > 0, that is in absence and presence

of short-selling constraints, respectively.

Given the optimization problems (1.1), (1.2) and (1.3), optimal demands are the following:

an unconstrained informed trader submits demand function

xuc (f, p) =
f − p
ρσ2

n

, (1.5)

a short-sale constrained informed trader demands

xc (f, p) = max

{
f − p
ρσ2

n

, 0

}
= 1f≥p

f − p
ρσ2

n

, (1.6)

and an uninformed trader demands

xui (p) =
E [f |P = p]− p

ρ (V ar [f |P = p] + σ2
n)
. (1.7)

Solving for equilibrium requires three fairly standard steps. First, I postulate a REE

price function. Given the price, I derive the optimal demand of uninformed traders. Finally,

I show that the market indeed clears at the conjectured price.

I conjecture the equilibrium price of the form

P = f +

 A (u− C) if u ≤ C

B (u− C) if u > C
, (1.8)

with constants A, B and C to be determined in equilibrium, where A,B > 0.
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Uninformed agents’information set is given by I = {P (f, u) = p}. They observe neither

f , nor u, only the price realization p; and they know that in equilibrium this is a piecewise

linear function of the two unknown variables, described in (1.8). From the price realization

p they form a probabilistic estimate about the fundamental f , while also guessing whether

short-sale restrictions bind for constrained traders. Given the conjectured price function (1.8)

and the Gaussian distribution of u, uninformed investors’posterior is characterized by the

conditional probability density function

g (f |P = p) = 1f<pg (f |P = p) + 1f≥pg (f |P = p) (1.9)

=
1

Bσu
1f<pφ

(
f − (p+BC)

Bσu

)
+

1

Aσu
1f≥pφ

(
f − (p+AC)

Aσu

)
,

where I use that for any X random variable with density function gX (x) and a ϕ (.) contin-

uous, differentiable, and injective transformation, the density function of Y = ϕ (X) is given

by

gY (y) = gX
(
ϕ−1 (y)

) ∣∣ϕ−1′∣∣ .
The above density function in turn allows uninformed traders to compute the conditional

expectation and variance of payoff f given p:

E [f |P = p] = p+D and V ar [f |P = p] = E −D2, (1.10)

where

D ≡ −A
C∫

−∞

(u− C)φ (u) du−B
∞∫
C

(u− C)φ (u) du, and

E ≡ A2

C∫
−∞

(u− C)2 φ (u) du+B2

∞∫
C

(u− C)2 φ (u) du.

The conjectured REE price function must equate demand and supply for each possible

resolution of f and u. Substituting the optimal demands (1.6)−(1.7) into the market clearing
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condition (1.4) gives

wλ1f≥p
f − p
ρσ2

n

+ (1− w)λ
f − p
ρσ2

n

+ (1− λ)
p+D − p

ρ (E −D2 + σ2
n)

+ u = S,

where the resulting coeffi cients must equal the conjectured A, B and C, which leads to the

following result:

Theorem 2 A piecewise linear REE of the model exists in the form

P = f +

 A (u− C) if u < C

B (u− C) if u ≥ C
, (1.11)

where

A =
ρσ2

n

λ
and B =

ρσ2
n

(1− w)λ
,

and C is the solution of

0 = L (C) ≡ C +
1− λ
ρ

D (C)

E (C)−D2 (C) + σ2
n

− S. (1.12)

The omitted technicalities are provided in the appendix.

To see why the model has such an elegant solution, regardless of the distributional as-

sumptions on n and u, notice that the demand of uninformed traders is constant, independent

of the price p:

xui =
E [f |P = p]− p

ρ (V ar [f |P = p] + σ2
n)

=
D

ρ (E −D2 + σ2
n)
.

It is due to the diffuse prior assumption, which implies that uninformed traders have only

one source of information, namely the market price. Thus, a change in the price p is fully

offset by a change in their expectation E [f |p], while the precision of their information, given

by V ar [f |p], remains constant. Hence, the diffuse prior assumption makes the the inference

problem of uninformed traders trivial, and simplifies the analysis relative to Yuan (2005,

2006).

To see the intuition behind the piecewise linear structure and the presence of a kink

at u = C, consider the aggregate demand of informed investors, given by wxc (f, p) +

(1− w)xuc (f, p), for the price p being close to fundamental payoff f . As long as p ≤ f ,
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the short-selling constraint does not bind, and a unit mass of informed investors are present

in the market, submitting a total demand of (f − p) /A. However, for price and fundamental

realizations such that p > f , some informed traders are barred from the market, and in-

formed investors’aggregate demand is (1− w) (f − p) /A, less in absolute terms. It implies

that when p > f , a less aggressive informed demand meets the residual demand, defined as

the demand of uninformed traders, plus the demand of noise traders, minus the asset supply,

i.e. u + xui − S, which is simply a linear function of the demand shock u. Therefore, the

equilibrium price is more sensitive to large demand shocks, implying B ≥ A, and is a linear

function of state variables f and u, conditional on both the constraint binding or not.

Figure 1-1 illustrates the main result of this section. The graph shows the asymmetric

change in the equilibrium price due to the presence of short-sale constraints. When shorting

is allowed (left panel), the slope of the price p as a function of demand shock u is the same for

every realization of the shock. When shorting is prohibited (right panel), the price function

is steeper for large demand shocks than for small (negative) demand shocks. It means that

when the constraint binds for some speculators, a small increase in the demand shock has

a larger upward price impact. Thus, the price reveals information about the payoff f at

different rates in the two regions: it provides more information when the constraint does not

bind, i.e. the demand shock is low, and less information, when the constraint does bind, i.e.

the demand shock is high.

1.3.1 Properties of the equilibrium price

The rest of the section illustrates how certain properties of the equilibrium price change due

to short-sale constraints. In order to determine the direct effect of introducing short-sale

constraints in a market, one can compare conditional moments of the fundamental f . My

main focus is on the information content of the price, illustrated by the conditional variance

and skewness. All the results are proven in the Appendix.

Notice first that A = ρσ2
n/λ does not depend on w. Let Bw, Cw, Dw and Ew denote

the equilibrium constants B, C, D and E as a function of the w proportion of short-sale-

constrained informed traders. Similarly, one can define Pw to be the equilibrium price function

as a function of w, for given f and u realizations and with the corresponding equilibrium
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coeffi cients Bw and Cw. The absence of short-sale constraints, i.e. w = 0, implies A = B0 =

ρσ2
n/λ, and solving for the equilibrium price, (1.12) yields

C0 =
λ+ ρAσ2

u

1 + ρAσ2
u

S.

If the asset is in positive net supply, S > 0, C0 is positive, and D0 = AC0 > 0, which

means that uninformed investors’ expectation about the asset payoff is above the market

price, E [f |P0 = p] = p + D0 > p, and they demand a discount of D0 > 0 to hold the asset.

The equilibrium price thus becomes

P0 (f, u) = f +A (u− C0) , (1.13)

which implies a conditional second moment of

V ar [f |P0 = p] = A2σ2
u. (1.14)

As (1.9) shows, in the presence of short-sale constraints, the conditional distribution

changes because of the different impact of the demand shock on the price for high and low

prices, that is when the constraint binds or not. The following proposition compares the

informativeness of market prices with and without short-sale constraints:

Proposition 3 Short-sale constraints lead to a decrease in price informativeness, which is

defined as the inverse of the conditional variance of the payoff. Formally, for any price

realization p,

V ar [f |Pw = p] > V ar [f |P0 = p] . (1.15)

Condition (1.15) shows that short-sale constraints increase uninformed traders’perceived

uncertainty about the asset payoff, because they decrease the information content of the

market price for high demand shock realizations.11 Uninformed investors demand a larger

discount for this increase in uncertainty, implying Dw > D0.

11The increase in the conditional variance is present in Bai et al. (2006) and Marin and Olivier (2008) as
well, but, as discussed shortly, in those models short-sale constraints decrease the information content of the
market price for low price realizations.
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It is also interesting to see the implications of short-sale constraints on the equilibrium

price volatility. From equations (1.11) and (1.13) one can obtain

V ar [Pw|f ] = Ew −D2
w and V ar [P0|f ] = A2σ2

u.

Comparing the volatility with and without short-sale constraints gives the following result:

Proposition 4 Short-sale constraints lead to an increase in price volatility:

V ar [Pw|f ] > V ar [P0|f ] .

This finding is in line with previous empirical results. Indeed, Ho (1996) finds an increase

in stock return volatility when short sales were restricted during the Pan Electric crisis in the

Singapore market in 1985-1986. Boehmer et al. (2009) document a sharp increase in intraday

volatility during the September 2008 emergency order.

The asymmetric effect of short-sale constraints on prices and price informativeness can

be easily tested by analyzing return skewness. In the static model presented here, one can

define two returns. Following Bai et al. (2006), I define the announcement-day return of the

stock as the dollar return made between the trading round, date 0, and the final date 1,

and the market return as the return made between a hypothetical date −1, before trading

commences, and date 0. For simplicity, I assume that the price at this date −1, denoted by

p−1 is constant. Formally, the announcement-day return is given by r (f, u) = f − P (f, u),

and the market return is given by R (f, u) = P (f, u)− p−1.

Hong and Stein (2003) argue that short-sale constraints can lead to negative skewness

in stock returns, which they relate to market crashes. On the empirical side, Reed (2007)

documents that under short-sale constraints, the distribution of announcement day stock

returns is more left-skewed. He also reports that returns have larger absolute values, when

short-selling is constrained. Calculating properties of the announcement-day return with and

without short-sale constraints gives the following results:

Proposition 5 Short-sale constraints lead to more negatively skewed announcement-day re-

turns:

Skew [rw (f, u)] < Skew [r0 (f, u)] ,
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and an increase in the absolute value of returns:

E [|rw (f, u)|] > E [|r0 (f, u)|] .

The intuition for the negative skewness and is that short-sale constraints impede the

negative information to be incorporated into the price, which leads to larger realized losses

when the final payoff becomes public knowledge. Market prices reflect positive information

more, and hence announcement day returns are smaller in this case. Moreover, absolute

returns increase simply because losses become larger.

Regarding empirical evidence, Bris et al. (2007) find that in markets where short-selling is

either prohibited or not practiced, market returns display significantly less negative skewness.

Analyzing market returns with and without short-sale constraints gives the following result:

Proposition 6 Short-sale constraints lead to less negatively skewed market returns:

Skew [Rw (f, u)] > Skew [R0 (f, u)] .

Because of short sale constraints, negative information is less incorporated to the mar-

ket price and hence downward price movements and negative market returns are smaller in

markets where shorting is prohibited.

To conclude this section with a technical sidenote, it is interesting to mention that there

are differences in the asset pricing implications of two branches of asymmetric information

models with portfolio constraints. The first type of these models includes Bai et al. (2006)

and Marin and Olivier (2008). In both of these papers, noise in the market (from the point

of view of uninformed traders) comes from the unknown endowment of insiders, and trading

constraints limit the positions of all informed traders. These assumptions have two implica-

tions: the constraint status of informed investors can be directly inferred from the equilibrium

price, and the constraint for insiders is binding for low prices. Therefore, in these models,

high prices are more informative than low prices. The model presented here belongs to the

other branch, together with Barlevy and Veronesi (2003), and Yuan (2005, 2006). In these

studies noise arrives to the market from noise traders’demand or random supply, and only

a subset of informed investors are subject to the short-selling constraint. Importantly, un-
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informed traders have to guess the probability that the constraint binds, and the constraint

binds for high prices. Therefore, low prices are more informative than high prices.12

1.4 Short-sale constraints and conditional variance

According to the prevailing view, the introduction of short-sale constraints reduces the infor-

mativeness of the market price, which is confirmed by the analysis of the previous section.

Indeed, (1.15) states that the perceived uncertainty of uninformed traders increases with a

partial ban on shorting. This section investigates the effect of short-sale constraints, when

an outside observer (e.g. a creditor from Section 1.5) with additional private information

tries to learn from the market price. I show that in presence of short-sale constraints the

information content of the market price (which constitutes a public signal) varies with the

private signal of this agent. In particular, if this information content is measured by the

variance conditional on the private and the public signal, then it is a non-monotonic function

of the private signal. Moreover, for some private signal realizations the conditional variance

is lower in presence of short-sale constraints than for the same private signal in absence of

the constraint.

First, I restate the equilibrium price provided in (1.11), with the emphasis on the infor-

mation content of the price, characterized by the pdf of the payoff, conditional on observing

only the market price p:

Proposition 7 A piecewise linear REE of the financial market exists with

P = f +

 A (u− C) if u < C

B (u− C) if u ≥ C,

where the equilibrium constants A, B ≥ A, and C are uniquely determined. Moreover,

conditional on the price observation, the payoff f is only ’locally’ Gaussian, with a jump

12The model presented in this paper here does not cover the w = 1 case, which is the subject of Bai et al.
(2006) and Marin and Olivier (2008). When the constraint binds, the aggregate demand of all rational traders
would be price-inelastic, and hence no price could clear the market with the random noise trading.

27



around the price realization p:

g (f |P = p) =
1

Bσu
1f<pφ

(
f − (p+BC)

Bσu

)
+

1

Aσu
1f≥pφ

(
f − (p+AC)

Aσu

)
. (1.16)

When w = 0, that is A = B, the conditional distribution simplifies to a normal distribution:

g (f |P0 = p) =
1

Aσu
φ

(
f − (p+AC0)

Aσu

)
.

Figure 1-2 illustrates the distribution of f conditional on the market-clearing price p in

absence and presence of short-sale constraints. The left panel shows that the distribution

without short-sale constraints is normally distributed with mean p+AC0 and precision τAu ≡

1/
(
A2σ2

u

)
. The right panel shows that under short-sale constraints the distribution is only

locally normal, but not globally. For states of the world when the constraint does not bind,

i.e. f ≥ p, it is normally distributed with mean p + AC and precision τAu. For states

of the world when the constraint binds in the financial market, i.e. f < p, it is normally

distributed with mean p+BC and precision τBu ≡ 1/
(
B2σ2

u

)
. The variance increases, that

is the precision decreases, because in this case there is less informed trading in the market.

Consider now a creditor who, besides observing the market price realization p, is also

endowed with private signal t. For the tractability of the analysis, I assume that this private

signal is given by t = f + ξ, where ξ ∼ N
(
0, σ2

t = τ−1
t

)
.

Suppose first that there are no short-sale constraints in the market. Due to the jointly

Gaussian distribution of f , t and p, the inference problem of the agent is simple: her posterior

about the f is normally distributed with mean τ t
τ t+τAu

t + τAu
τ t+τAu

(p+AC0) and precision

τ t + τAu. That is, her conditional pdf is given by

g (f |t, P0 = p) =
1

(τ t + τAu)−1φ

f −
[

τ t
τ t+τAu

t+ τAu
τ t+τAu

(p+AC0)
]

(τ t + τAu)−1/2

 , (1.17)

and due to the characteristics of normal distributions, her conditional variance is independent

of the private signal realization t:

V ar [f |t, P0 = p] = (τ t + τAu)−1 .
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Consider now the case with short-sale constraints. A creditor must combine her private

signal t, which is normally distributed, with the public signal p, whose distribution is only

locally normal, given in (1.16). A simple application of Bayes’rule implies that her posterior

becomes

g (f |t, P = p) = π · g (f |t, P = p, f < p) + (1− π) · g (f |t, P = p, f ≥ p) , (1.18)

where π ≡ Pr (f < p|t, p) and 1 − π ≡ Pr (f ≥ p|t, p) are the probabilities the agent assigns

to the constraint binding or not, respectively, and the conditional pdfs g (f |t, P = p, f < p)

and g (f |t, P = p, f ≥ p) belong to truncated normal distributions on the respectable ranges

f < p and f ≥ p. In particular,

g (f |t, P = p, f < p) = 1f<p
1

(τ t + τBu)−1/2

φ

(
f− τtt+τBu(p+BC)

τt+τBu

(τ t+τBu)−1/2

)

Φ

(
p− τtt+τBu(p+BC)

τt+τBu

(τ t+τBu)−1/2

)

is the pdf of a truncated normal distribution with mean τ t
τ t+τBu

t + τBu
τ t+τBu

(p+ CB) and

precision τ t+τBu, because if the short-sale constraint binds in the financial market, the price

equals p = f +B (u− C). Similarly,

g (f |t, P = p, f ≥ p) = 1f≥p
1

(τAu + τ t)
−1/2

φ

(
f− τtt+τAu(p+AC)

τt+τAu

(τ t+τAu)−1/2

)

1− Φ

(
p− τtt+τAu(p+AC)

τt+τAu

(τ t+τAu)−1/2

)

is the pdf of a truncated normal distribution with mean τ t
τ t+τAu

t + τAu
τ t+τAu

(p+AC) and

precision τ t + τAu, because if the short-sale constraint does not bind in the financial market,

the price equals p = f +A (u− C).

The conditional variance of a creditor in presence of short-sale constraints, as a function of

the private signal t is illustrated on Figure 1-3. In general, the computation of this conditional

variance becomes analytically intractable, but Figures 1-4 and 1-5 help to understand the

intuition behind it.

Let us fix p, and consider two special cases. First, suppose that the creditor receives a
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much higher private signal, i.e. t→∞. As it implies

lim
t→∞

π = Pr (f < p|t, p) = 0 and lim
t→∞

Pr (f ≥ p|t, p) = 1,

the creditor is sure that the constraint does not bind in the financial market, which implies

that all informed traders trade, and hence the precision of the price signal is τAu. Therefore,

the posterior precision of the information available to her is given by τ t + τAu, as if there

were no short-sale constraints in the market at all. Figure 1-3 illustrates that in this case the

conditional variances do not differ with and without the constraint.

Suppose now that the creditor receives a private signal much lower than the market price,

i.e. t→ −∞. It implies that

lim
t→−∞

π = Pr (f < p|t, p) = 1 and lim
t→−∞

Pr (f ≥ p|t, p) = 0,

hence she is sure that the constraint binds in the financial market, which implies that only

a subset of informed traders trade, and hence the precision of the price signal is τBu, lower

than without the short-sale constraints. Therefore, the posterior precision of the information

available to her is given by τ t+τBu, again lower than without the constraint. Put it differently,

her posterior variance, as illustrated on Figure 1-3, increases. Thus, short-sale constraints

decrease price informativeness for agents with private signals much smaller than the price

realization.

Finally, consider the cases when the two signals are close to each other. Figures 1-4

and 1-5 illustrate the change in the conditional distribution due to short-sale constraints

for a creditor with a private signal greater than the price, t > p, and for a creditor with a

private signal smaller that the price, t < p, respectively. Contrasting the signal distributions

without and with short-sale constraints, it is easy to see that when t > p, the introduction

of short-sale constraints means that the creditor puts smaller weights on low payoff states

of the world that she would consider unlikely based only on her private signal. The reason

for this is that when constraint binds in the security market, i.e. when f < p, the demand

shock is amplified due to the short-sale constraint. Therefore, the same price realization

means a lower fundamental. However, if t > p, the private signal of the creditor suggests that
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the fundamental is high, thus low fundamental states are even more improbable. The agent

knows that the market price is more likely to contain more positive information in general,

therefore she becomes more certain about the payoff being high. Short-sale constraints hence

confirm and strengthen her private information, as Figure 1-4 suggests. When t → ∞, this

effect gets weaker, and in the limit disappears. Hence, for t → ∞, short-sale constraints do

not alter the conditional distribution, and thus the conditional variance is not affected either.

When t < p, the opposite effect arises. Comparing the signal distributions without and

with short-sale constraints, when t < p, the introduction of short-sale constraints means

that the creditor puts larger weights on states of the world that she thought to be unlikely

based on her private signal. That is, short-sale constraints force the agent to consider some

previously irrelevant states of the world. She knows that the market price is more likely to

contain more positive information in general, therefore when her private signal is below the

price realization, her uncertainty about whether the constraint binds in the financial market

increases, and hence her uncertainty about the payoff increases, too. Short-sale constraints

dispute her private information, and hence weaken her posterior precision, as Figure 1-5

suggests. When t → −∞, this effect gets weaker, and in the limit disappears. However, the

agent becomes certain that the constraint binds, and in this case the precision of the price

signal is lower. Hence, for t → −∞, short-sale constraints alter the conditional distribution

by affecting its precision, and thus the conditional variance increases.

As the following proposition states, short-sale constraints can increase the information

content of the price for high enough private signal realizations, measured by the variance

conditional on the private and the public signal:

Proposition 8 There exists constant t such that the posterior variance of the asset payoff

conditional on observing price p and private signal t, V ar [f |t, p], is lower under short-sale

constraints (i.e. when w > 0 or B > A), if and only if t − p ≥ t. The threshold t is a

decreasing function of w, and limσt t = 0.

The following section studies how this non-monotonic change in the conditional variance

due to short-sale constraints affects coordination in a game with strategic complementarities.
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1.5 Economy with a financial market and creditors

This section extends the previous setup by embedding a coordination game between dates

0 and 1. Suppose that a financial institution (e.g. investment bank, or bank, for short) is

financed through a combination of short-term and long-term debt. Long-term debt holders

are passive - in the past they have decided to provide capital that cannot be withdrawn.

Short-term debt matures at date t = 1, on which occasion it can be renewed.

The state of fundamentals is characterized by θ that is interpreted as the cash-flow the

bank’s assets generate at date 1. Higher values of θ correspond to higher quality/liquidity

projects. I assume that the bank has outstanding debt with size normalized to 1, from which

the short-term debt amounts to ω and the long-term debt is 1− ω. Short-term debt holders

(creditors, for short from now on) can decide to roll over their debt. For simplicity, I assume

that the bank’s assets generate suffi ciently large cash-flows in the long run, but they only

have θ to pay out creditors who demand capital payoff at date 1. Therefore, the bank remains

solvent if and only if θ ≥ ω (1− I), where I denotes the proportion of creditors who roll over,

and hence ω (1− I) is the amount to be paid out to creditors who recall their loans.

Creditors are a continuum of risk-neutral agents with measure one, and indexed by j ∈

[0, 1].13 Each creditor can choose between two actions. They either provide capital (i.e. roll

over the short-term debt), ij = 1, the risky action, or refrain from doing so (i.e. recall the loan

or withdraw money), ij = 0, the safe action. The net payoff from withdrawing is normalized

to zero. The net payoff from lending to the bank is 1− c if the bank remains solvent and −c

otherwise, where c ∈ (0, 1) parametrizes the private costs of lending, which can be interpreted,

for example, as transaction costs, administrative fees, or taxes.14 It follows that the payoff

of creditor j is

U (ij , I, θ) = ij
(
1θ≥ω(1−I) − c

)
, (1.19)

13The security market and debt market (i.e. the capital provision environment of creditors) are assumed to
be segmented markets, that is the asset price is fully exogenous from the point of view of creditors, and hence
it does not incorporate their private information, as in Angeletos and Werning (2006). See the discussion
later.
14As creditors are assumed to be risk-neutral, this setting is equivalent to any set of payoffs {πH , πL, π0},

where providing capital pays either πH in case of the bank remaining solvent and πL < πH in case of failure,
while recalling the loan gives a sure payoff π0 that satisfies πL < π0 < πH . The utility of a creditor in this
setting would simply be a linear function of the utility given in (1.19), and hence would lead to the same
optimal action.
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where 1θ≥ω(1−I) is the indicator of the bank remaining solvent, and takes the value of 1 if

θ ≥ ω (1− I) and 0 otherwise.15

If creditors know the value of θ perfectly before making their decision, there exist a

tripartite classification of the state, in the spirit of Obstfeld (2004). Based on this, the optimal

strategy of creditors is as follow: If θ ≤ 0, then the dominant strategy is to withdraw deposits

from the bank, irrespective of what other capital providers do, because the bank always fails.

In turn, if θ ≥ ω, then the dominant strategy is to give money to the bank, irrespective of

what other creditors do, because it always remains solvent. When the bank asset value θ

lies in the interval (0, ω), there is a coordination problem among capital providers. On one

hand, if every other creditor rolls over the debt, the bank survives, and lending yields more

than withdrawing: 1− c > 0. On the other hand, if every other creditor withdraws, the bank

fails, and withdrawing yields more than financing the bank: 0 > −c. Therefore, both I = 1

and I = 0 is an equilibrium whenever θ ∈ (0, ω): the former outcome represents the first

best, while the latter is considered a coordination failure. In this interval the bank’s future

depends on the size of the credit run.16

Following standard global game setups in the spirit of Carlsson and van Damme (1993)

and Morris and Shin (1998), I assume that information is imperfect, so that the state θ is

not common knowledge. In the beginning of the game, nature draws θ from a diffuse uniform

distribution over the real line, which constitutes the agents’initial common prior about the

state of the world. Investor j then receives a private signal tj = θ + ξj , where ξj has a

Gaussian distribution with mean 0 and standard deviation σt, ξj is independent of θ, and

independently and identically distributed across short-term debt holders. The precision of

the private signal is given by τ t = 1/σ2
t .

To connect the security trading and the credit run, I assume that the payoff of the asset,

15The coordination setup presented here is a simplified version of models on bank runs, e.g. Diamond and
Dybvig (1983), Rochet and Vives (2004) and Goldstein and Pauzner (2005); or Morris and Shin (2004), who
study coordination among creditors of a distressed borrower. In contrast to those papers, I choose to work
with a parsimonious model, as my aim is to analyze the effect of short-sale constraints on coordination, instead
of providing a more realistic setting. In particular, I will abstract away from the first mover’s advantage and
demand-deposit insurance, emphasized by Diamond and Dybvig (1983) and Goldstein and Pauzner (2005), or
the price at which the debt is issued, as in Morris and Shin (2004).
16There exist other interpretations of coordination, here presented using the terminology of creditor runs.

In models of currency crises, as in Obstfeld (1986, 2004) or Morris and Shin (1998), speculators decide whether
to attack a currency by shorting it. Chamley (1999), Morris and Shin (1999) and Dasgupta (2007) consider
investment complementarities.
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f , correlates with the quality of the banks’ assets. Thus, the price of the financial asset,

p, can provide additional (public) information regarding the state of the world beyond the

private signals, and hence can facilitate or hurt coordination among capital providers. For

simplicity, I assume f = θ, and think about the traded asset as the (only) security that the

bank has on the asset side of the balance sheet, a zero-net-supply financial derivative on the

bank’s equity, or as an industry index that includes the bank. Thus, the price is an exogenous

signal from the viewpoint of creditors, in the sense that the , but is nevertheless correlated

with the fundamental θ.

Because the two parts of the economy are segmented, with an information spillover from

the financial market to the credit run in the form of the price p, without the outcome of the

coordination game affecting the market price, the equilibrium of the whole economy is also

separable into two parts. In fact, it is just a simple conjugate of the equilibrium of the trading

round, defined in Definition 1 and discussed in Section 1.3, and the equilibrium of the run,

conditional on the realization of the market price. Thereby, I only define the equilibrium of

the coordination game:

Definition 9 Let p denote the price of the asset with payoff f = θ emerging from the financial

market. A perfect Bayesian equilibrium of the credit run consists of individual strategies for

investing, i (tj , p), and the corresponding aggregate, I (θ, p), such that

1. decision is optimal for creditors:

i (tj , p) ∈ arg max
i∈{0,1}

E [U (i, I (θ, p) , θ) |tj , p] for j ∈ [0, 1] ; (1.20)

2. proportion of short-term debt rolled over is

I (θ, p) =
∫ 1

0 i (tj , p) dj; (1.21)

3. agents update their beliefs according to Bayes’rule.

This section hence only solves for the equilibrium of a standard global game setup with

private and public information, fully characterized by conditions (1.20) and (1.21). Combining

the equilibrium of the credit run with the equilibrium of the financial market would provide

an equilibrium of the whole economy.
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I restrict my attention to monotone equilibria, defined as perfect Bayesian equilibria such

that, for a given realization p of the public signal, a creditor provides capital to the bank

if and only if the realization of her private signal is at least some threshold t∗ (p); that is

i (tj , p) = 1 iff tj ≥ t∗ (p). It implies that the bank can be characterized in a similar way: the

bank with asset quality θ survives if and only if this quality is higher that some threshold

θ∗ (p); formally if θ ≥ θ∗ (p).17

1.6 Credit runs and portfolio constraints

After trading in the financial market has taken place, but before the payoff at date 1 happens,

creditors decide whether to roll over short-term debt, thereby providing capital to the bank

in need of liquidity, or to withdraw it. Since the payoff of the financial asset f and the bank

asset value θ are correlated, the equilibrium price of the financial market, p, provides an

observable public signal regarding the unknown parameter θ, and creditors can coordinate

their actions based on it. In the following subsections, I solve the coordination model, first

without constraints on short-selling, then with the short-sale constraints.

1.6.1 Equilibrium analysis with no short-sale constraints

In this section I provide a solution to the coordination game among capital providers when

short-selling is allowed for everyone. To pin down the equilibrium of the model, characterized

by the pair {t∗, θ∗}, I solve for the optimal θ∗ while taking t∗ as given, and for the optimal t∗

if θ∗ is assumed to be given. The joint solutions of these two conditions describe the equilibria

of the credit run.

In a monotone equilibrium described above, creditors with private signals tj ≥ t∗ pro-

vide capital. Based on the joint distribution of θ and the private signals tj , the aggregate

proportion of creditors who roll over is given by

I (θ, p) = Pr (t ≥ t∗ (p) |θ) = 1− Φ (
√
τ t (t∗ (p)− θ)) .

17My results concerning multiple equilibria are obtained even within this restricted class. Moreover, in
absence of short-sale constraints, uniqueness within this class implies overall uniqueness, see Morris and Shin
(1998, 1999).
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The right hand side of this equation increases in θ, therefore a better bank receives more

capital rolled over. The bank avoids bankruptcy if and only if θ ≥ θ∗ (p), where θ∗ (p) is the

quality of the marginal bank that solves θ = ω (1− I (θ, p)). Therefore,

t∗ (p) = θ∗ (p) +
1
√
τ t

Φ−1

(
θ∗ (p)

ω

)
. (1.22)

Condition (1.22) characterizes the banks that survives withdrawals for a given switching

strategy t∗ (p). There are several remarks to be made about this equation. First, notice that

the right-hand side of (1.22) is strictly increasing in θ∗ (p), therefore there is a unique θ∗ (p)

that satisfies the equation for a given t∗ (p). Secondly, the bank survival threshold θ∗ (p) is an

increasing function of the creditor cutoff t∗ (p), as a lower switching strategy from creditors

implies more capital rolled over, and hence a bank with lower asset payoff surviving. Thirdly,

as
dt∗ (p)

dθ∗ (p)
= 1 +

1
√
τ tω

1

φ
(

Φ−1
(
θ∗(p)
ω

)) > 1,

it must be that dθ∗/dt∗ < 1. The presence of strategic complementarities implies that any

increase in the cutoff t∗ (p) results in a smaller increase in the marginal bank’s value, because

no creditor can be certain about the signals received by others and hence the strategy of

others. Finally, in the limit when private signals become arbitrarily precise, τ t →∞, creditors

become certain about others’signals as well, and the bank survival threshold θ∗ (p) becomes

exactly the individual capital provision threshold t∗ (p).

Next, consider the derivation of the equilibrium cutoff strategy t∗ (p) as a function of the

threshold θ∗ (p). Creditors receive payoff 1 if the bank avoids distress, and 0 if not, while

paying a cost c. Because they do not observe the state θ directly, the payoff from rolling over

the loan must be calculated from the posterior distribution over the states, conditional on the

private and public signal. If creditor j knows that the bank solvency threshold is θ∗ (p), she

assigns probability Pr (θ ≥ θ∗ (p) |tj , p) to the bank surviving, based on all her information,

which implies that the expected payoff from rolling over is Pr (θ ≥ θ∗ (p) |tj , p)− c. As with-

drawing yields a payoff normalized to 0, the signal of the marginal agent, who is indifferent

between withdrawing or not, must solve the indifference condition Pr (θ ≥ θ∗ (p) |tj , p) = c.

In absence of short-sale constraints, the market price is p = θ + A (u− C0). As u is
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normally distributed with mean zero and precision τu = 1/σ2
u, the precision of the price signal

is τAu ≡ τu/A2. Therefore, the posterior of agent j about θ is normally distributed with mean

τ t
τ t+τAu

tj+ τAu
τ t+τAu

(p+AC0) and precision τ t+τAu. Thus, the indifference condition becomes

Φ

(√
τ t + τAu

(
θ∗ (p)− τ t

τ t + τAu
t∗ (p)− τAu

τ t + τAu
(p+AC0)

))
= 1− c,

which is equivalent to

θ∗ (p) =
τ t

τ t + τAu
t∗ (p) +

τAu
τ t + τAu

(p+AC0) +
1√

τ t + τAu
Φ−1 (1− c) , (1.23)

and implies a linear relationship between θ∗ and t∗. Figure 1-6 illustrates the the critical

mass condition, (1.22), and the individual optimality condition without short-sale constraints,

(1.23), respectively.

An equilibrium is the joint solution to conditions (1.22) and (1.23), which lead to

τAu√
τ t
θ∗ (p)− Φ−1

(
θ∗ (p)

ω

)
=

√
1 +

τAu
τ t

Φ−1 (1− c) +
τAu√
τ t

(p+AC0) .

As the left-hand side of the equation is a continuous function of θ∗, which takes the value

−∞ for θ∗ = ω and ∞ for θ∗ = 0, the equation always has a solution. Moreover, the solution

is unique for every p0 if and only if the left-hand side of the equation is a strictly decreasing

function of θ∗, that is if and only if τAu ≤
√

2πτ t.18

The following proposition states the above result:

Proposition 10 (Morris and Shin) In absence of short-sale constraints, the equilibrium

is unique if and only if the private noise is small relative to the price noise, that is for

σt ≤
√

2πA2σ2
u. Moreover, in the limit as private noise vanishes so that σt → 0, a creditor

with private signal below t∗ (p) = cω recalls her loan, and the bank with asset quality below

θ∗ (p) = cω fails.

Proposition 10 confirms the uniqueness result of Morris and Shin (1999, 2001). For any

positive level of noise in the public signal, σu > 0, uniqueness is ensured by suffi ciently

18As Figure 1-6 suggests, this is equivalent to the slope of the critical mass condition (1.22) always being
below the slope of the individual optimality condition, (1.23).
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small noise in the private signal. The intuition is that as the private signal becomes much

more precise than the public signal, creditors stop relying on the public signal and use only

their private information. This implies that the equilibrium dependence on the common

noise component u vanishes, and makes it harder to predict the actions of others, heightening

strategic uncertainty. When strategic uncertainty is strong enough, multiplicity breaks down.

It is interesting to note that the equilibrium run size and outcome outcome does not depend

on public signal p (or common noise component u), which is the second finding of Morris and

Shin (1999). In what follows, I will refer to this equilibrium as the informationally effi cient

equilibrium,. It is important to mention that this informationally effi cient equilibrium is

different from the first best or allocationally effi cient equilibrium, i.e. I∗ = ω and θ∗ = 0.

This difference is due to the presence of the coordination externality.

1.6.2 Equilibrium analysis with short-sale constraints

As shown in Section 1.3, the introduction of short-sale constraints has an adverse effect on

the market price. The fact that the price reveals information about the payoff at different

rates for high and low realizations of the demand shock implies that short-sale constraints

notably change the inference problem of creditors, as presented in Section 1.4.

To solve for the equilibrium in presence of short-sale constraints, one needs to repeat the

steps of the previous subsection. First, given that the joint distribution of the state θ and the

private signals does not change, the critical mass condition (1.22) that determines the quality

of the marginal bank as a function of individual strategies, does not change either. However,

short-sale constraints do affect the posterior of creditors after observing both the price and

the private signal. The public signal p is now only locally Gaussian, but not globally, as given

in (1.16) and illustrated on Figure 1-2.

As shown in Section 1.4, in presence of short-sale constraints the posterior pdf can be

given in the following way (see (1.18)):

g (θ|t, P = p) = π · g (θ|t, P = p, θ < p) + (1− π) · g (θ|t, P = p, θ ≥ p) .

In this equation, π ≡ Pr (θ < p|t, P = p) and 1− π ≡ Pr (θ ≥ p|t, P = p) denote probabilities

that the creditor with private signal t associates with the short-sale constraint binding in
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the financial market or not, respectively. Moreover, the conditional pdfs g (θ|t, P = p, θ < p)

and g (θ|t, P = p, θ ≥ p) belong to the class of truncated normal distributions, with means
τ t

τ t+τBu
t + τBu

τ t+τBu
(p+ CB) and τ t

τ t+τAu
t + τAu

τ t+τAu
(p+ CA), and precisions τ t + τBu and

τ t + τAu, respectively, because in the first case the creditor knows the short-sale constraint

binds in the financial market, and hence the price equals p = θ + B (u− C), while in the

second case this creditor knows the constraint does not bind, and hence the price equals

p = θ +A (u− C).

As before, the expected net payoff of agent j from providing capital to the bank, for a

fixed success threshold θ∗, is Pr (θ > θ∗|tj , P = p)−c and hence t∗ must solve the indifference

condition Pr (θ ≥ θ∗|tj , P = p) = c, which is equivalent to

θ∗ (p) =


τ t

τ t+τBu
t∗ (p) + τBu

τ t+τBu
(p+BC) + 1√

τ t+τBu
Φ−1

(
(1− c) π

∗
B
π∗

)
if θ∗ (p) ≤ p

τ t
τ t+τAu

t∗ (p) + τAu
τ t+τAu

(p+AC) + 1√
τ t+τAu

Φ−1
(

1− c1−π∗A
1−π∗

)
if θ∗ (p) > p,

(1.24)

where π∗ ≡ Pr (θ < p|t∗, p) is the probability the marginal agent assigns to the short-sale

constraint binding in the market, π∗B ≡ Pr (θ < p|t∗, p = θ +B (u− C)) is the probability

that the marginal agent assigns to informed traders shorting/selling in a market with no

constraints but volatility τ−1
Bu, and π

∗
A ≡ Pr (θ < p|t∗, p = θ +A (u− C)) is the probability

that the marginal agent assigns to informed traders shorting/selling in a market with no

constraints but volatility τ−1
Au. It is easy to see that when there are no short-sale constraints,

i.e. B = A, π∗ = π∗A = π∗B, and (1.24) is equivalent to (1.23).

Figure 1-7 illustrates the critical mass condition, (1.22), and the individual optimality

condition in presence of short-sale constraints, (1.24), respectively. The former displays the

quality of the marginal bank, θ∗, given that creditors follow the threshold strategy with t∗,

that is a capital provider leaves her money in the bank if and only if she receives private signal

tj ≥ t∗. As the θ∗ threshold is determined only by the joint distribution of the fundamental

and the private signals, short-selling constraints do not alter it.

What changes is the optimal switching strategy of creditors for a fixed θ∗ bank solvency

threshold. However, as the distributions are not jointly Gaussian, the posterior (1.18) is not

Gaussian any more, and hence it is not possible to simplify condition (1.24) further more,

and to provide a simple necessary and suffi cient condition for the number of equilibria. The
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reason for this is that, as seen on Figure 1-7, the slope of (1.24) is not monotonic. Instead,

short-sale constraints create a hump shape on the individual optimality condition, with the

slope dθ∗/dt∗ of the individual optimality condition taking values between the upper slope

at the kink, dθ∗/dt∗|θ∗→p+, where it is clearly the smallest, and when θ∗ → −∞, where it is

the largest, τ t+τBuτ t
. Thus, a suffi cient condition for uniqueness would be that

dθ∗

dt∗
|θ∗→p+ >

1

1 + 1√
τ tω

√
2π
. (1.25)

However, as shown in Appendix 1.9.3, there exists a constant σt > 0 such that for every 0 <

σt < σt, there is a price realization p such that (1.25) does not hold, and hence the individual

optimality condition and the critical mass condition have three intersections. Thereby, there

are multiple equilibria of the system of equations (1.22) and (1.24). The following proposition

formally states this result:

Proposition 11 In presence of short-sale constraints, there are multiple equilibria in invest-

ment strategies when σt is suffi ciently small. Moreover, multiplicity remains as private noise

vanishes so that σt → 0: the switching strategies become

t∗ (p) = θ∗ (p) =

 cω for all p

p if βcω < p < cω,
(1.26)

and hence for every θ ∈ [p, cω) both the informationally effi cient equilibrium and a ’high

capital provision’equilibrium exist whenever βcω ≤ p ≤ cω, where β = A2

(1−c)B2+cA2 < 1.

The technical bits of the proof are in Appendix 1.9.3.

The informationally effi cient equilibrium is the same as the unique equilibrium of the

unconstrained economy: a bank with asset quality above cω remains solvent. However, there

exists an equilibrium with more capital provision: creditors also finance banks with lower

asset quality, between the public signal realization p and cω. This is an informationally

ineffi cient equilibrium, as agents put excessive weight on the public signal. It is characterized

by overinvestment compared to the informationally effi cient equilibrium, because agents with

lower signals provide capital too, hence I refer to it as the ’high investment’equilibrium.
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1.7 Discussion

In this section I discuss my results on multiplicity, allocational effi ciency, provide comparative

statics, and refer to some policy implications.

1.7.1 Multiplicity

Canonical papers in the literature on transparency show that releasing more information is

not necessarily good. Indeed, in Morris and Shin, while without a public signal the market

may be in a uniqueness region, by adding a precise enough public signal, the economy has

multiple equilibria.

Since Morris and Shin (2001), several authors have considered ways that reinstate mul-

tiplicity in coordination games. The existing literature mainly focuses on the endogenous

nature of the public signal. For example, Angeletos and Werning (2006) study financial mar-

ket prices, which aggregate the dispersed information of agents, or direct noisy signals about

others’activity. Information aggregation can overturn the Morris and Shin (1998) unique-

ness result and lead to multiplicity if the precision of public information increases faster

than the precision of the private information. Hellwig et al. (2006) and Tarashev (2007) also

study coordination games with financial prices being endogenous public signals. Because all

these papers stay in the class of jointly Gaussian distributions, the informational content of

the public signal does not vary for its different realizations and hence across the multiple

equilibria.

In contrast, the model presented here provides a fundamentally different setting. What is

cardinal for the analysis is that agents with different private signals interpret the same public

signal in different ways. In particular, the information they infer from the public signal

changes with the distance of their private and public signal. Holding the price constant

and increasing the private signal can provide more information about the composition of the

market price: a high price is more likely to be the result of a high demand shock than a low

price to be the result of a low demand shock, because in the first case the fewer informed

traders have a smaller corrective effect on the market price.

According to the prevailing view, the introduction of short-sale constraints reduces the

informativeness of the market price, i.e. decrease its precision, and hence, following the
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Morris and Shin logic, should not lead to coordination failures. Indeed, (1.15) states that the

perceived uncertainty of uninformed traders increases with a ban on shorting. The surprising

finding of this model is that, in contrast to the existing literature, I show that short-sale

constraints can make asset prices contain more information for some creditors with additional

information, as demonstrated in Proposition 8.19

Although both the setup and the motivation are different, the results of this chapter

are close in spirit to Angeletos et al. (2006). They examine the informational role of policy

decisions in a coordination setting. They show that policy interventions create endogenous

public information and can lead to multiple equilibria.20 There are two differences though.

First, in their paper the public signal reveals that the state of the world is neither too

high, nor too low. In contrast, short-sale constraints ’help’ to rule out only lower states

of the world by making creditors’posterior distributions more left-skewed. This has strong

implications on allocational effi ciency, discussed below. Second, in their analysis the signal

is the equilibrium action of a policy maker, whereas the present article takes the constraint

as given. I show that, even abstracting from signaling and analyzing the constraint on short-

selling as an endogenous decision of regulators, short-sale constraints are nevertheless capable

of suggesting that prices, influenced by demand shocks, are lower than economic fundamentals

would imply. It would be interesting to see how introducing signaling (i.e. endogenizing the

authority’s decision to introduce short-sale constraints in a security market) would influence

the results of the model.

19 It is interesting to refer back to similarities and differences with Bai et al. (2006), and Marin and Olivier
(2008). What is crucial in the analysis is that short-sale or other trading constraints result in a varying
information content across different price levels. Therefore, even if the asset pricing implications of the two
types of models are different, qualitative results, such as the increasing information content of the price under
short-sale constraints for some agents with additional private information, and the possibility of multiple
equilibria would not be affected. However, with a financial market model, where high asset prices are more
informative than low prices, the informationally effi cient equilibrium would be allocationally more effi cient as
well.
20The two types of equilibria that they identify are also in line with the findings of this paper. Their inactive-

policy equilibrium, where agents coordinate on a strategy that is insensitive to the policy, is analogous to my
informationally effi cient level of creditor run, and their continuum of active-policy equilibria correspond to
equilibria when capital provision depends on the price p.
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1.7.2 Effi ciency

An interesting result of the chapter is that in the second equilibrium creditors always provide

more capital than in the informationally effi cient equilibrium. It is shown in 1.26: the second

equilibrium only exists for βcω < p < cω.

The intuition is the following. As shown in Proposition 8, asset prices under short-sale

constraints provide more information to creditors with high private signals. First, consider

the case when p > cω. Without short-sale constraints, in the informationally effi cient (unique)

equilibrium, creditors rely only on their private signals, and based on their assessments about

the bank’s asset value, agents with private signals tj ≥ cω provide capital to the bank. In

presence of short-sale constraints, agents with private signals above p will become more

informed about both the fundamental θ and hence about other creditors’beliefs. Therefore

short-sale constraints weaken strategic uncertainty among these creditors, leading to the

possible multiplicity of equilibria. In one equilibrium they all provide capital, but as they all

provide capital in the informationally effi cient equilibrium, it would not change bankruptcy

outcomes. In the other equilibrium they all refrain from doing so, which implies that only

agents with medium signals (between cω and p) would invest, which is not a monotone

equilibrium. Therefore when p > cω, the uniqueness of the equilibrium survives.

Consider now the case when p < cω. In this case, agents with signals above p become more

informed due to short-sale constraints. Those with signals above c will become more certain

about what others do, which only reinforces their willingness to invest. The main difference

is that now creditors with signals p < tj < cω, who would have stayed out in absence of the

constraint, obtain more precise information. Therefore strategic uncertainty weakens among

these creditors, and they all become more informed about both the fundamental θ and about

the beliefs of other creditors who have signal realizations between p and cω. Self-fulfilling

beliefs and the resulting multiplicity hence arise in this group of creditors with medium

realizations of the private signal. If they all stay out, we obtain an equilibrium equivalent to

the informationally effi cient equilibrium. However, there exist another equilibrium in which

they all provide capital. In this second equilibrium creditors rely more on the public signal.

As the second equilibrium only emerges when p < cω, the second equilibrium, with

bankruptcy threshold θ∗ = p is closer to the first best (θ∗ = 0) than the informationally
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effi cient equilibrium (θ∗ = cω). I conclude that short-sale constraints improve economic

effi ciency by mitigating the adverse effect of the coordination externality. In contrast to

Morris and Shin (2002), who show that an increase in transparency might decrease welfare,

short-sale constraints provide a ’good type’of transparency, recreating multiplicity only when

it is desirable.21

1.7.3 Comparative statics and policy implications

The two main parameters of the coordination game are the proportion of informed investors

barred from shorting, w, and creditors’private cost of providing capital, c.

As motivated in Section 1.2, the interpretation of w is quite broad. Here I focus mainly

on regulatory restrictions such as a short-sale ban, the uptick rule, or legal restrictions on

institutional trading. As shown in Section 1.6, w only affects the lower threshold for existence

of the high investment equilibrium, through influencing

β =
A2

(1− c)B2 + cA2
,

which simplifies to

β =
(1− w)2

(1− c) + c (1− w)2 .

It is easy to verify that
∂β

∂w
= − 2 (1− w) (1− c)[

(1− c) + c (1− w)2
]2 < 0,

i.e. tighter short-selling constraints lead to a higher probability of multiple equilibria. One

interpretation of this multiplicity in the bankruptcy outcome is an increase in ex ante un-

certainty about the outcome of the coordination, which can be interpreted as undesirable

excess volatility. Clearly, to make predictions about the impact of certain policy measures,

one needs to be able to find robust patterns across certain equilibria, as in Angeletos et al.

(2008).

21This is clearly not a welfare analysis of the whole economy, which would have to take into account
that short-sale constraints compromise market liquidity and price discovery, and certainly make constrained
informed investors worse off.
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The other crucial parameter of the coordination model is the private cost of capital provi-

sion, c. Parameter c affects the net benefit or loss for creditors if they choose the risky action.

Clearly, a higher c makes capital provision less desirable from the point of view of creditors,

which implies that in the informationally effi cient equilibrium, with θ∗ = cω in the limit,

banks receive less capital and hence they need a higher asset quality to remain solvent. The

effect on the lower threshold for a high investment equilibrium, βcω, is more subtle. After

some simple algebra one finds that

∂β

∂c
= (1− w)2 1− (1− w)2[

1− c+ c (1− w)2
]2 ≥ 0,

which also implies that as long as short-selling is restricted, i.e. w > 0, βcω increases in c.

Moreover, one can characterize the benefit of short-sale constraints by the proportion

of additional banks that get financed, cω − βcω = (1− β) cω, which can be interpreted as

the ex ante probability of multiple equilibria. Here the lower bound, βcω decreases in w,

hence tighter short-sale constraints increase the benefits in the real economy. Furthermore,

it satisfies
∂

∂c
((1− β) cω) =

[(
1− c
c

)2

− (1− w)2

]
ω

1− (1− w)2[
1−c
c + (1− w)2

]2 ,

which implies an inverse U-shaped relationship. For small c values the derivative is positive,

hence the ex ante probability of multiplicity, or the potential benefit of short-sale constraints,

increases, while for c close to 1, this benefit decreases.

Finally, as the analysis of the previous section shows that tighter short-sale constrains

can promote allocational effi ciency, one can reflect on the short-sale bans around the globe

in late 2008 and the following year. In fact, a sudden jump in c, implied for example by

news that the investment opportunity worsens, increases the bankruptcy threshold for the

bank. Introducing strict enough shorting restrictions, by increasing w, can create a second

equilibrium and hence partly offset the increase in c. Empirical studies about the effect of

short-sale bans in and after 2008, such as Boehmer et al. (2009) and Beber and Pagano

(2011), conclude that if the SEC’s and other regulators’ goal with the short-sale ban was

to artificially raise prices on financial stocks, they failed, and in the meantime compromised

market quality. However, the SEC might have just been trying to avert a credit run on the
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largest investment banks. My model shows that while short-sale constraints increase market

volatility, they can also affect the information that agents learn from prices, and can lead

to outcomes where creditors do not withdraw money from low quality banks. Washington

Mutual and Wachovia did go bankrupt during the 3-week shorting ban, collapsing under

the weight of their bad loans, suggesting that their fundamentals were below the threshold

βcω. But, while it is now clear that other financial firms such as Citigroup had extremely

troubled fundamentals, the introduction of short-sale constraints could have contributed to

their survival.

1.8 Concluding remarks

The model presented in this chapter examines the informational effects of short-sale con-

straints when asset prices provide guidance for decisions made in a coordination environment.

I present a model that shows although short-selling constraints make asset prices more volatile

and decrease price informativeness, they can provide more information for certain agents of

the economy, who are endowed with additional private information too. Due to learning

more in presence of short-sale constraints, creditors with moderate private signals are willing

to lend more, if they think others with similar signals lend as well, which leads to a second

equilibrium with higher allocational effi ciency. My result thus implies that the decrease in

average informativeness is more than compensated by an increase in informativeness to some

agents.

The existing literature studying the effects of short-sale constraints identifies both bene-

fits and detriments of these restrictions. The first group include prevention from speculative

shorting that otherwise could lead to bear raids. On the other hand, introducing a ban

on short-selling has been shown to decrease market liquidity and reduce price informative-

ness. In this chapter, I show that, allowing for a richer structure than in previous models,

short-sale constraints can increase the information content of market prices. Although it

leads to informational ineffi ciency in capital provision, it can increase allocative effi ciency

and prevent financial institutions from collapsing in uncertain times, when a fear of distress

prevents creditors to roll over short-term debt. In particular, short-sale constraints improve

the information of creditors with private signals above the market price realization. If this
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increase in precision is strong enough, short-sale constraints can create a second equilibrium

in which creditors provide more capital, leading to less severe credit runs. My model hence

suggests that emergency orders such as the one in September 2008 can increase effi ciency

even in absence of manipulative shorting, if the foregone costs of a potential collapse of part

of the banking industry and systemic risk (i.e. the increase in allocational effi ciency in the

real economy) are large enough to dominate the costs of compromised market quality (i.e.

the fall in informational effi ciency in the financial market) in troubled times.

The model considered here studies information aggregation in a coordination game, with

an external public signal emerging from a market subject to trading constraints. A more

straightforward way to study information aggregation and portfolio restrictions would be to

assume that investors with dispersed information are actually participants in the market, and

hence the market price aggregates their information in presence of the short-selling constraint.

Such a model must be more complicated because of the dual role of the price (for the inference

and market clearing), but the present analysis suggests that it could shed more light on the

interaction between asymmetric information and portfolio constraints.
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1.9 Appendix

1.9.1 REE in the financial market

Optimal demands. Investor k’s optimization problem is given by

max
xk

U (Wk) = E [Wk|Ik]−
ρ

2
V ar [Wk|Ik]

= xk (E [f |Ik]− p)−
ρ

2
x2
k

(
V ar [f |Ik] + σ2

n

)
.

Solving the FOC without short-sale constraints, one obtains

xk =
E [f |Ik]− p

ρ (V ar [f |Ik] + σ2
n)
.

From here the optimal demands for all three types of traders are straightforward.

Proof of Theorem 2. The derivation in the main text provides the step-by-step solution

to the problem. There are three issues left for this appendix: (i) to derive the conditional

expectations E [f |p] and E
[
f2|p

]
, and the conditional variance V ar [f |p], (ii) to prove the

existence of the equilibrium, and (iii) to analyze uniqueness.

(i) The conditional distribution (1.9) implies that the expectation simply becomes

E [f |P = p] =

p∫
−∞

1

Bσu
fφ

(
f − (p+BC)

Bσu

)
df +

∞∫
p

1

Aσu
fφ

(
f − (p+AC)

Aσu

)
df = p+D,

where

D ≡ Bσu

− C
σu∫

−∞

(
v +

C

σu

)
φ (v) dv +Aσu

∞∫
− C
σu

(
v +

C

σu

)
φ (v) dv

= AC − (B −A)σu

∞∫
C
σu

(
w − C

σu

)
φ (w) dw,
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and similarly

E
[
f2|p

]
=

C∫
−∞

[p−A (u− C)]2 φ (u) du+

∞∫
C

[p−B (u− C)]2 φ (u) du = p2 + 2pD + E,

with

E ≡ A2

C∫
−∞

(u− C)2 φ (u) du+B2

∞∫
C

(u− C)2 φ (u) du

= A2
[
σ2
u + C2

]
+
(
B2 −A2

) ∞∫
C

(u− C)2 φ (u) du.

Therefore

V ar [f |p] = E
[
f2|p

]
− E2 [f |p] = E −D2,

that is independent of p. From here, the calculations end in the main text, and C solves

0 = L (C) ≡ C +
1− λ
ρ

D (C)

E (C)−D2 (C) + σ2
n

− S. (1.27)

Consider the case when w = 0, that is B0 = A; it implies that

D0 = AC0 and E0 = A2
[
σ2
u + C2

0

]
,

therefore

V ar [f |p0] = E0 −D2
0 = A2σ2

u,

and hence

C0 =
λ+ ρAσ2

u

1 + ρAσ2
u

S = kS,

where 0 ≤ k ≤ 1. As S ≥ 0, we also get that C0 ≥ 0. In particular, if the asset is in positive

net supply, S > 0, C0 is positive, and D0 = AC0 > 0, which means that uninformed investors

demand a discount of D0 > 0 to hold the asset.

(ii) To show the existence of a real C that satisfies L (C) = 0, notice that when B > A,
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for C = C0,

L (C0) = C0 +
1− λ
ρ

D (C0)

E (C0)−D2 (C0) + σ2
n

− S

< −1− λ
ρ

B −A
E (C0)−D2 (C0) + σ2

n

∞∫
C0

(u− C0)φ (u) du < 0.

Moreover, from (1.27) one can rewrite L (C) as

L (C) = C +
1− λ
ρ

D (C)

E (C)−D2 (C) + σ2
n

− S

=
λV ar [f |p] + σ2

n

λV ar [f |p] + λσ2
n

C − 1− λ
ρ

B −A
V ar [f |p] + σ2

n

∞∫
C

(u− C)φ (u) du− S,

where S is constant, V ar [f |p] is finite (see below in the proof of Proposition 3), and for

C →∞,
∞∫
C

(u− C)φ (u) du→ 0. Therefore,

lim
C→∞

L (C) =∞. (1.28)

As L (C) is continuos, combining it with L (C0) < 0 and (1.28), it must have a real root above

C0.

(iii) For the proof of uniqueness, notice first that for every C < C0, D (C) < D (C0) and

V ar [f |p] > V ar [f |p0], therefore

L (C) < L (C0) < 0.

Thus, there is no such C < C0 that satisfies L (C) = 0. Regarding the case C > C0, simple

algebra shows that

dD

dC
= A− (B −A)

d

dC

∞∫
C

(u− C)φ (u) du > A > 0,
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and

E −D2 = A2
[
σ2
u + C2

]
+
(
B2 −A2

) ∞∫
C

(u− C)2 φ (u) du

= A2σ2
u + 2 (B −A)A

∞∫
C

u (u− C)φ (u) du+ (B −A)2 V ar [max {0, u− C}] ,

hence
d

dC

[
E −D2

]
< 0.

Therefore, D(C)

E(C)−(D(C))2+σ2
n
is increasing in C, and

d

dC
L (C) = 1 +

d

dC

D (C)

ρ
[
E (C)− (D (C))2

]
+A

> 1.

As L (C) is strictly increasing and continuous, the L (C) = 0 equation must have a unique

solution.

Proof of Proposition 3. From (1.10),

V ar [f |p] = E −D2

= A2σ2
u +

(
B2 −A2

) ∞∫
C

(u− C)2 φ (u) du−

 ∞∫
C

(u− C)φ (u) du

2
+ 2 (B −A)AC

∞∫
C

(u− C)φ (u) du+ 2A (B −A)

 ∞∫
C

(u− C)φ (u) du

2

,

where the second term of the RHS is nonnegative due to Jensen’s inequality applied on the

random variable w ≡ max {0, u− C} and the convex function x 7→ x2: E
[
w2
]
≥ E2 [w], and

the third and fourth components are trivially non-negative too. Therefore

V ar [f |p] ≥ A2σ2
u = V ar [f |p0] . (1.29)

Proof of Proposition 4. Due to the improper prior assumption, V ar [p|f ] = V ar [f |p] =
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E − D2 and V ar [p0|f ] = V ar [f |p0] = A2σ2
u, hence (1.29) also implies that V ar [p|f ] ≥

V ar [p0|f ].

Proof of Proposition 5. As r0 = f − p0 = A (u− C0), where u has a symmetric

distribution around 0, which implies Skew [r0] = 0. Therefore, to have Skew [r] < Skew [r0],

it is suffi cient to show E
[
(r − E [r])3

]
< 0. From its definition,

r = f − p = −

 A (u− C) if u ≤ C

B (u− C) if u > C
,

and

E
[
(r − E [r])3

]
= E

[
r3
]
− 3E

[
r2
]
E [r] + 2E3 [r]

where

E [r] = D = AC − (B −A)

∞∫
C

(u− C)φ (u) du,

E
[
r2
]

= E = A2
(
σ2
u + C2

)
+
(
B2 −A2

) ∞∫
C

(u− C)2 φ (u) du, and

E
[
r3
]

= A3C
(
3σ2

u + C2
)
−
(
B3 −A3

) ∞∫
C

(u− C)3 φ (u) du.

After some tedious algebra, the negativity of the skewness follows from the fact that the

skewness of the random variable w = max {0, u− C} is positive.

To prove the second part of the proposition, notice that

E [|r0|] = E [A |u|] = 2A

∞∫
0

max {u,C0}φ (u) du
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and

E [|r|] = B

∞∫
C

(u− C)φ (u) du−A
C∫

−∞

(u− C)φ (u) du

= (B +A)

∞∫
C

uφ (u) du− (B −A)C

∞∫
C

φ (u) du+ 2AC

C∫
0

φ (u) du,

thus simple algebra yields

E [|r|]− E [|r0|] = (B −A)

∞∫
C

(u− C)φ (u) du+ 2A

∞∫
0

(max {u,C} −max {u,C0})φ (u) du.

On the right-hand side both components are non-negative, therefore E [|r|] ≥ E [|r0|].

Proof of Proposition 6. As R = p − p−1 = f − r − p−1, Skew [R|f ] = Skew [−r]

and Skew [R0|f ] = Skew [−r0], hence Skew [R|f ] > Skew [R0|f ] is straightforward from

Skew [r] < Skew [r0].

1.9.2 Information content of the price under short-sale constraints

The posterior of a creditor with private signal t and price signal p that comes from a financial

market with short-sale constraints is given by

g (f |t, P = p) = π · g (f |t, P = p, f < p) + (1− π) · g (f |t, P = p, f ≥ p) ,

where, using the simplifying notation

Φ1 = Φ

(
p− τ tt+τBu(p+BC)

τ t+τBu

(τBu + τ t)
−1/2

)
and Φ2 = 1− Φ

(
p− τ tt+τAu(p+AC)

τ t+τAu

(τAu + τ t)
−1/2

)
,

the variable

π = Pr (f < p|t, P = p)

=

(τBu+τ t)
−1/2

τ−1
t τ−1

Bu

φ

(
t−(p+BC)

(τ−1
Bu+τ−1

t )
1/2

)
Φ1

(τBu+τ t)
−1/2

τ−1
t τ−1

Bu

φ

(
t−(p+BC)

(τ−1
Bu+τ−1

t )
1/2

)
Φ1 + (τAu+τ t)

−1/2

τ−1
t τ−1

Au

φ

(
t−(p+AC)

(τ−1
Au+τ−1

t )
1/2

)
Φ2
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gives the probability that the creditor assigns to the constraint binding in the financial market,

Pr (f ≥ p|t, P = p) = 1− π, and the conditional distributions are given by

g (f |t, P = p, f < p) = 1f<p
1

(τBu + τ t)
−1/2 Φ1

φ

(
f − τ tt+τBu(p+BC)

τ t+τBu

(τBu + τ t)
−1/2

)

and

g (f |t, P = p, f ≥ p) = 1f≥p
1

(τAu + τ t)
−1/2 Φ2

φ

(
f − τ tt+τAu(p+AC)

τ t+τAu

(τAu + τ t)
−1/2

)
.

When no informed trader is subject to the short-sale constraint, i.e. w = 0 or B = A,

both truncated normal pdfs belong to the same normal distribution, with mean τ t
τ t+τAu

t +

τAu
τ t+τAu

(p+AC0) and precision τ t + τAu, and the probabilities simplify to

Pr (f < p|t, P0 = p) = Φ

(
p− τ tt+τBu(p+AC0)

τ t+τAu

(τBu + τ t)
−1/2

)
and

Pr (f ≥ p|t, P0 = p) = 1− Φ

(
p− τ tt+τBu(p+AC0)

τ t+τAu

(τBu + τ t)
−1/2

)
.

1.9.3 Global game solution under short-sale constraints

General notations

As shown in Section 1.4, in presence of short-sale constraints the posterior pdf becomes

g (θ|t, P = p) = π · g (θ|t, P = p, θ < p) + (1− π) · g (θ|t, P = p, θ ≥ p) ,

hence a simple integration yields that

G (x|t, P = p) = π ·G (x|t, P = p, θ < p) if x ≤ p,

and

G (x|t, P = p) = π ·G (p|t, P = p, θ < p) + (1− π) ·G (x|t, P = p, θ ≥ p) if x > p.
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Combining it with the indifference condition Pr (θ ≥ θ∗|t∗, P = p) = c gives

1− c = π ·G (θ∗|t∗, P = p, θ < p) if θ∗ ≤ p,

and

1− c = π ·G (p|t∗, P = p, θ < p) + (1− π) ·G (θ∗|t∗, P = p, θ ≥ p) if θ∗ > p,

which leads to (1.24) with the notation

π∗A = Φ

(
p− τ tt∗+τAu(p+AC)

τ t+τAu

(τ t + τAu)−1/2

)
and π∗B = Φ

(
p− τ tt∗+τBu(p+BC)

τBu+τ t

(τ t + τBu)−1/2

)

and

π∗ ≡ Pr (θ < p|t∗, p)

=

(τBu+τ t)
−1/2

τ−1
t τ−1

Bu

φ

(
t∗−(p+BC)

(τ−1
Bu+τ−1

t )
1/2

)
π∗B

(τBu+τ t)
−1/2

τ−1
t τ−1

Bu

φ

(
t∗−(p+BC)

(τ−1
Bu+τ−1

t )
1/2

)
π∗B + (τAu+τ t)

−1/2

τ−1
t τ−1

Au

φ

(
t∗−(p+AC)

(τ−1
Au+τ−1

t )
1/2

)[
1− π∗A

] .
Multiplicity

First, I characterize the critical mass and individual optimality curves, (1.22) and (1.24),

respectively. It is easy to see that both of them imply θ∗ is a continuous and strictly increasing

function of t∗.

Condition (1.22) yields that the slope of the critical mass curve (CM , for simplicity) is

given by
dt∗

dθ∗
= 1 +

1
√
τ tω

1

φ
(

Φ−1
(
θ∗

ω

)) ,
or by its inverse

δCM ≡
dθ∗

dt∗
=

1

1 + 1√
τ tω

1

φ(Φ−1( θ
∗
ω ))

for the θ∗ that solves

t∗ = θ∗ +
1
√
τ t

Φ−1

(
θ∗

ω

)
.

Thus, δCM can be interpreted as a function of t∗. In particular, as 0 < φ (x) < 1/
√

2π for
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every x ∈ R, we have a lower and an upper threshold for the slope:

0 < δCM < δCM ≡
1

1 + 1√
τ tω

√
2π
,

and it reaches its maximum for

θ∗ =
ω

2
,

or for the t∗ value of

t∗ =
ω

2
.

Moreover, as φ (x) is strictly increasing for x < 0 and strictly decreasing for x > 0, and θ∗ is

an increasing function of t∗, the slope δCM is strictly increasing in t∗ for t∗ < ω
2 and strictly

decreasing for t∗ > ω
2 . Therefore, δCM takes every value in

(
0, δCM

]
for t∗ ≤ ω

2 , and every

value between δCM and 0, when t∗ increases from ω
2 to ∞, where δCM < 1.

Now I turn my attention to the individual optimality curve (IO, for simplicity), given in

(1.24), which, for tractability, is restated here:

θ∗ =


τ t

τ t+τBu
t∗ + τBu

τ t+τBu
(p+BC) + 1√

τ t+τBu
Φ−1

(
(1− c) π

∗
B(p,t∗)

π∗(p,t∗)

)
if θ∗ ≤ p

τ t
τ t+τAu

t∗ + τAu
τ t+τAu

(p+AC) + 1√
τ t+τAu

Φ−1
(

1− c1−π∗A(p,t∗)

1−π∗(p,t∗)

)
if θ∗ > p.

The first observation I make is that this condition can be rewritten with the introduction of

∆θ ≡ θ∗ − p and ∆t ≡ t∗ − p:

∆θ =


τ t

τ t+τBu
∆t+ τBu

τ t+τBu
BC + 1√

τ t+τBu
Φ−1

(
(1− c) π

∗
B(∆t)

π∗(∆t)

)
if ∆θ ≤ 0

τ t
τ t+τAu

∆t+ τAu
τ t+τAu

AC + 1√
τ t+τAu

Φ−1
(

1− c1−π∗A(∆t)

1−π∗(∆t)

)
if ∆θ > 0,

(1.30)

where

π∗A (∆t) = Φ

(
−τ t∆t+ τAuAC

(τ t + τAu)1/2

)
and π∗B (∆t) = Φ

(
−τ t∆t+ τBuBC

(τ t + τBu)1/2

)
, (1.31)
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and

π∗ (∆t) =

=

(τBu+τ t)
−1/2

τ−1
t τ−1

Bu

φ

(
∆t−BC

(τ−1
Bu+τ−1

t )
1/2

)
π∗B (∆t)

(τBu+τ t)
−1/2

τ−1
t τ−1

Bu

φ

(
∆t−BC

(τ−1
Bu+τ−1

t )
1/2

)
π∗B (∆t) + (τAu+τ t)

−1/2

τ−1
t τ−1

Au

φ

(
∆t−AC

(τ−1
Au+τ−1

t )
1/2

)[
1− π∗A (∆t)

] .
(1.32)

It means that on the (t∗, θ∗) plane every solution-pair (t∗ (p) , θ∗ (p)) of (1.24) is given by

an appropriate shift of the point (∆t,∆θ) along the 45-degree line, where ∆t and ∆θ solve

(1.30) − (1.32), and are only functions of the parameters of the model and the equilibrium

constants of the financial market, and do not depend on p. It also implies that the slope and

convexity attributes of the curve do not depend on p either.

The characterization of the solution to (1.30)− (1.32) is as follows. The slope of the curve

is given by

δIO (∆t) =


τ t

τ t+τBu
+ 1√

τ t+τBu

d
d(∆t)Φ−1

(
(1− c) π

∗
B(∆t)

π∗(∆t)

)
if ∆θ ≤ 0

τ t
τ t+τAu

+ 1√
τ t+τAu

d
d(∆t)Φ−1

(
1− c1−π∗A(∆t)

1−π∗(∆t)

)
if ∆θ > 0,

=


τ t

τ t+τBu
+ (1−c)
√
τ t+τBuφ

(
Φ−1

(
(1−c)

π∗
B

(∆t)

π∗(∆t)

)) d
d(∆t)

(
π∗B(∆t)

π∗(∆t)

)
if ∆t ≤ ∆t0

τ t
τ t+τAu

− c
√
τ t+τAuφ

(
Φ−1

(
1−c

1−π∗
A

(∆t)

1−π∗(∆t)

)) d
d(∆t)

(
1−π∗A(∆t)

1−π∗(∆t)

)
if ∆t > ∆t0.

where ∆t0 is the unique solution to

π∗ (∆t0) = 1− c,

i.e. ∆t0 is the ∆t value that gives ∆θ = 0 in (1.31). Moreover, after some demanding

calculations, omitted here, it is possible to show that:

1. d
d(∆t)

(
π∗B(∆t)

π∗(∆t)

)
> 0 for ∆t ≤ ∆t0 and d

d(∆t)

(
1−π∗A(∆t)

1−π∗(∆t)

)
< 0 for ∆t > ∆t0;

2. δIO is increasing in ∆t for both (−∞,∆t0) and (∆t0,∞);

3. In the limits ∆t→ ±∞ we have lim∆t→−∞ δIO (∆t) = τ t
τ t+τBu

and lim∆t→∞ δIO (∆t) =
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τ t
τ t+τAu

4. There is a ’kink’at ∆t0, and thus the IO curve is not differentiable: on the two sides

of ∆t = ∆t0, the slopes are finite but different. In particular, I define α (∆t0) and

β (∆t0) such that τ t
τ t+τBu

< 1
β(∆t0) ≡ lim∆t→∆t0− δIO (∆t) < ∞ and 0 < α (∆t0) ≡

lim∆t→∆t0+ δIO (∆t) < τ t
τ t+τAu

, are well-defined, and satisfy α (∆t0) < 1
β(∆t0) ;

5. The slope δIO (∆t) is increasing in ∆t and takes every value in
(

τ t
τ t+τBu

, 1
β(∆t0)

)
for

∆t < ∆t0, and is increasing and takes every value in
(
α (∆t0) , τ t

τ t+τAu

)
for ∆t > ∆t0.

In what follows, for simplicity, I refer to this (∆t0, 0) point as the ’kink’of the IO curve.

The next observation is that the uniqueness or multiplicity of the solutions for a given

parameter set depends only on which part of the CM curve the ’kink’of the IO condition

would get shifted to. In particular, if the ’kink’is shifted to a part of the CM curve where its

slope is suffi ciently small such that δCM ≤α (∆t0), there is a unique solution. This is because

both before and after the kink the IO curve is steeper than the CM curve, and hence there

cannot be any more intersections. However, if at this point the slope satisfies δCM >α (∆t0),

multiplicity can be ensured by choosing the appropriate p: if the kink is before t∗ = ω
2 ,

as δIO starts to increase from α (∆t0), and as δCM decreases, a slight increase in p would

ensure that they have multiple equilibria, and if the kink is after t∗ = ω
2 , as δIO increases

from α (∆t0), and as δCM increases too, a slight decrease in p would ensure that they have

multiple equilibria. Therefore, in what follows, I solve for the point where the ’kink’gets

shifted to, and determine the relationship of the two slopes δCM and δIO.

First, suppose that α (∆t0)≥ δCM ; in this case there is a unique solution. This condition

hence requires

α (∆t0) ≥ 1−
√

2π√
2π +

√
τ tω

.

Second, suppose that 0 < α (∆t0) < δCM . It means that there are two points of the CM

curve such that the slope is exactly α (∆t0): they are pinned down by

θ∗ = ω

(
1− Φ

[
φ−1

(
1

ω
√
τ t

α (∆t0)

1− α (∆t0)

)])
<
ω

2
and

θ
∗

= ωΦ

[
φ−1

(
1

ω
√
τ t

α (∆t0)

1− α (∆t0)

)]
>
ω

2
,
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where φ−1 (y) denotes the unique non-negative x such that φ (x) = y for y ≤ 1/
√

2π. There-

fore, if the shifted kink has θ∗ ≤ θ∗ or θ∗ ≥ θ
∗
, the solution is unique, and if θ∗ < θ∗ < θ

∗
,

there are multiple equilibria.

As the ’kink’has coordinates (∆t0, 0) on the (t∗, θ∗) plane, shifting it is equivalent to

moving it to the point (p+ ∆t0, p). It is thus on the CM curve if and only if

p+ ∆t0 = p+
1
√
τ t

Φ−1
( p
ω

)
,

that is if it is shifted by p̂ = ωΦ
(√
τ t∆t0

)
, to the point

(
ωΦ
(√
τ t∆t0

)
+ ∆t0, ωΦ

(√
τ t∆t0

))
.

Therefore, there are multiple equilibria if and only if

θ∗ < ωΦ (
√
τ t∆t0) < θ

∗
,

that is
1

ω
√
τ t

α (∆t0)

1− α (∆t0)
< φ (

√
τ t∆t0) <

1√
2π
,

or, equivalently,

α (∆t0) < 1− 1

1 + ω
√
τ tφ

(√
τ t∆t0

) .
But what is exactly α (∆t0) ≡ lim∆t→∆t0+ δIO (∆t)? Using the relevant part of the δIO

function, and the fact that π∗ (∆t0) = 1−c, the (upper) slope δIO close to the ’kink’becomes

α (∆t0) = lim
∆t→∆t0+

δIO (∆t)

= (1− c) τ t
τ t + τAu

+ c
τ t

τ t + τBu

τBu
τAu

−cτBu
τAu

1√
τ t + τBu

φ

(
∆t0−BC

(τ−1
t +τ−1

Bu)
1/2

)
φ

(
∆t0−AC

(τ−1
t +τ−1

Au)
1/2

)
(

∆t0−AC
τ−1
t +τ−1

Au

− ∆t0−BC
τ−1
t +τ−1

Bu

)
Φ
(
− τ t∆t0+τBuBC√

τ t+τBu

)
φ
(
− τ t∆t0+τAuAC√

τ t+τAu

) .

Because of the elaborate expression above, it is impossible to characterize the number

of equilibria as a function of the precisions τ t and τu in the general case. Instead, I only

consider the special case, when τu is held constant and τ t → ∞, because this is the case

where Morris and Shin provide uniqueness. In fact, it is easy to show that π∗ (∆t0) = 1− c
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implies ∆t0 = 0,and hence

α ≡ lim
τ t→∞

α (∆t0) = (1− c) + c
τBu
τAu

=
(1− c)B2 + cA2

B2
< 1.

For multiplicity it must be that

α (∆t0) < 1− 1

1 + ω
√
τ tφ

(√
τ t∆t0

) ,
but when τ t →∞, the RHS converges to 1, and in the limit indeed

α =
(1− c)B2 + cA2

B2
< 1.

Therefore, when the private signal becomes arbitrarily precise, there are still multiple equi-

libria of the coordination problem. Similarly one can show that in the limit τ t → ∞ the

’lower’slope of the IM curve becomes

1

β
≡ lim

τ t→∞
1

β (∆t0)
= (1− c) + c

τAu
τBu

=
(1− c)B2 + cA2

A2
> 1.

The next question is what the exact thresholds are in these multiple equilibria. First,

one derived intersection is at the kink, which provides an equilibrium of the model. By its

definition, the kink satisfies ∆θ0 = 0, which in the limit τ t → ∞ implies ∆t0 = 0, and thus

the shifting by p gives the solution t∗ = θ∗ = p.

For a second intersection to be derived, one needs to find the joint solution of equations

(1.22) and (1.24) in the limit when τ t →∞. Instead of solving for the explicit joint solutions,

I instead guess and verify that the solution is t∗ = θ∗ = cω, and only when p < cω. Indeed,

assuming that θ∗ = cω, the CM equation gives

t∗ = θ∗ +
1
√
τ t

Φ−1

(
θ∗

ω

)
= cω +

1
√
τ t

Φ−1 (c) ,

and hence when τ t →∞, the RHS converges to cω, therefore we have limτ t→∞ t
∗ = cω.
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Suppose now that t∗ = cω, and plug it in the IM equation. First, if θ∗ > p,

lim
τ t→∞

1− π∗A (p, t∗ = cω)

1− π∗ (p, t∗ = cω)
= 1 +

A2

B2

φ

(
− (p−cω)+BC

τ
−1/2
Bu

)
φ

(
− (p−cω)+AC

τ
−1/2
Au

) − 1

 lim
τ t→∞

Φ (
√
τ t (p− cω)) ,

where limτ t→∞Φ
(√
τ t (p− cω)

)
is bounded and hence always finite. Therefore, in the limit

it satisfies

lim
τ t→∞

1√
τ t + τAu

Φ−1 (.) = 0,

and hence limτ t→∞ θ
∗ = cω. Therefore, in the limit the other intersection satisfies t∗ = θ∗ =

cω.

Second, suppose that θ∗ ≤ p. When t∗ = cω, in the limit τ t →∞ again

lim
τ t→∞

π∗B (p, t∗ = cω)

π∗ (p, t∗ = cω)
= lim

τ t→∞
Φ (
√
τ t (p− cω))

+
B2

A2

φ

(
− (p−cω)+AC

τ
−1/2
Au

)
φ

(
− (p−cω)+BC

τ
−1/2
Bu

) (1− lim
τ t→∞

Φ (
√
τ t (p− cω))

)
,

which is always finite, and hence in the limit (1.24) simplifies to limτ t→∞ θ
∗ = cω. Therefore,

in the limit the other intersection satisfies t∗ = θ∗ = cω.
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Figure 1-1: The equilibrium price as a function of the fundamental and demand shock, in
absence and presence of short-sale constraints.
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The demand shock (u) is on the x axis and the payoff (f) is on the y axis. The left panel shows
the price when informed investors are not short-sale constrained, and the right panel shows
the price when w > 0 proportion of informed investors are subject to short-sale constraints.
The parameters are set to S = 0, σ2

n = 1, λ = 0.5 and w = 0.9, which imply A = 1 and
B = 10. The equilibrium value of C depends on the assumption about the demand shock
distribution gu; without making any distributional assumptions I set C = 0.1.
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Figure 1-2: Distribution of f conditional on p, in absence and presence of short-sale con-
straints.
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The left panel shows that the distribution without short-sale constraints is Gaussian. The
right panel shows that in presence of short-sale constraints (dashed line), the distribution is
only locally normal, with different means and variances on the two segment, and with a jump
at the price p. For comparison, the continuous line represents the conditional distribution
without the constraint.
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Figure 1-3: Variance of f , conditional on the private signal t and the price p, without and
with short-sale constraints.
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The solid line shows the variance of f conditional on the private signal t and the price p
with no short-sale constraints. The dashed line shows the same in presence of short-sale
constraints. When t→∞, short-sale constraints do not change price informativeness. When
t→ −∞, short-sale constraints, intuitively, decrease price informativeness. For intermediate
t values, creditors can actually learn more from prices under short-sale constraints. The
parameters are set to σt = 0.2, σu = 0.5, σn = 1, ρ = 1, λ = 0.5 and w = 0.9, implying A = 2
and B = 20.
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Figure 1-4: Conditional distribution of f based on t, p, and both t and p, in absence and
presence of short-sale constraints, when t > p.
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The top left panel shows g (f |t) and g (f |p), and the top right panel shows g (f |t, p), without
short-sale constraints. The bottom left panel shows g (f |t) and g (f |p), and the bottom
right panel shows g (f |t, p), with short-sale constraints. The parameters are set to σt = 0.5,
σu = 0.7, σn = 1, ρ = 1, λ = 0.5, and w = 0.6. Signal realizations are t = −0.2 and p = 0.14.
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Figure 1-5: Conditional distribution of f based on t, p, and both t and p, in absence and
presence of short-sale constraints, when t < p.
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The top left panel shows g (f |t) and g (f |p), and the top right panel shows g (f |t, p), without
short-sale constraints. The bottom left panel shows g (f |t) and g (f |p), and the bottom
right panel shows g (f |t, p), with short-sale constraints. Signal realizations are t = 0.2 and
p = −0.14.
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Figure 1-6: IO and CM conditions without short-sale constraints.
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This figure plots the critical mass condition, (1.22), thin line, and the individual optimality
condition without short-sale constraints, (1.23), dotted line. The cutoff strategy for invest-
ment, t∗, is shown on the x axis, and the success threshold, θ∗, is on the y axis. The
parameters and variable realizations used here are σn = 1, σu = 0.5, σt = 0.3, ω = 0.8,
c = 0.7 and p = 0.25.
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Figure 1-7: IO and CM conditions with short-sale constraints.
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This figure plots the critical mass condition, (1.22), thin line, and the individual optimality
condition with short-sale constraints, (1.24), dashed line. The cutoff strategy for investment,
t∗, is shown on the x axis, and the success threshold, θ∗, is on the y axis. The parameters
and variable realizations used here are σn = 1, σu = 0.5, σt = 0.3, ω = 0.8, c = 0.7 and
p = 0.25. For comparison, the dotted line shows the individual optimality condition without
short-sale constraints, (1.23).
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Chapter 2

Financially constrained strategic

arbitrage

2.1 Introduction

Large traders, such as dealers, hedge funds and other financial institutions play an important

role in financial markets when exploiting the relative mispricing of assets: through their

trading, these arbitrageurs bring prices closer to fundamentals and provide liquidity to other

market participants. However, their willingness to provide liquidity can be subject to many

factors. For example, institutional investors’ trades can have significant price impact as

their strategies often involve dealing with large positions in assets held by a relatively few

number of investors. Also, wealth constraints and risk management policies crucially affect

arbitrageurs’allocation of capital to trading opportunities. Therefore, when a small number

of arbitrageurs are present in a market, in addition to internalizing their own price impact

when making investment decisions, they also internalize the impact of their trades on the

constraints and portfolio decisions of other large traders.

This chapter studies how wealth constraints of strategic arbitrageurs affect their will-

ingness to invest, and the dynamics of prices. Arbitrageurs can invest in a fundamentally

riskless arbitrage opportunity. They are required to have positive mark-to-market capital

at all times, and if they violate this constraint, they have to liquidate their risky positions.

As their portfolio is evaluated at up-to-the-minute market information, some arbitrageurs
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can adversely affect market prices and hence trigger the liquidation of others. I show that

whether arbitrageurs behave cooperatively or engage in predatory behaviour depends on their

size of investment in the arbitrage opportunity. When arbitrageurs have similar proportions

invested in the arbitrage, they behave cooperatively, and spread their orders over several

trading periods to minimize price impact. However, if there is significant difference in this

ratio, the trader with low proportion of wealth invested in the arbitrage predates on the

trader with high proportion of wealth in the arbitrage, and forces her to exit the market.

Moreover, I show that the threat of predation can make arbitrageurs reluctant to invest in

the first place, and they only exploit the mispricing shortly before it disappears.

To analyze the effect of wealth constraints on arbitrage trading I consider the follow-

ing setup, which partially builds on the models of Gromb and Vayanos (2002) and Kondor

(2009). Two assets with identical payoffs are traded in segmented markets at different prices,

and arbitrageurs take long-short positions to exploit this mispricing. In the absence of arbi-

trageurs, the gap between prices would be constant for a finite time horizon, then it would

exogenously disappear. Therefore, the arbitrage is fundamentally riskless. Arbitrageurs, by

trading, endogenously determine the size of the gap. If arbitrageurs on aggregate buy more

of the cheap asset and short more of the expensive asset, i.e. they short the gap, prices of

the assets converge, and the gap shrinks. On the other hand, if arbitrageurs sell the cheap

asset and buy the more expensive, i.e. they go long in the gap, prices diverge, and the gap

widens. I consider a finite set of large arbitrageurs who invest in this arbitrage opportunity.

Arbitrageurs have two important features. They are strategic, that is, they realize hey have

a price impact on the gap, and they face wealth constraints, that is, they must fully collat-

eralize for losses. Moreover, when their capital is insuffi cient, arbitrageurs must close their

positions and leave the market. The wealth constraint thus implies that arbitrageurs’capital

limits the positions they can take if they do not want to violate the constraint. However,

the liquidation constraint can also provide incentives for some arbitrageurs to make prices

diverge and trigger the insolvency of other traders.

The main results are obtained in a framework with two arbitrageurs. Suppose first that

arbitrageurs already have some bets in place about the gap. I show that their behaviour

depends on their exposure to the arbitrage opportunity. In particular, if traders have similar

proportion of capital invested in the assets, they behave cooperatively, and the equilibrium
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gap decreases quickly. Arbitrageurs compete with each other and rush to the market, hence

prices converge, and the wealth constraint never binds. However, if there is a significant

difference in the proportion of their capital invested in the arbitrage opportunity, the trader

with lower proportion of wealth invested in the gap predates on the trader with high pro-

portion of wealth invested in the gap: the former (short-)sells the cheap asset and buys the

expensive one, thus prices diverge. Arbitrageurs suffer losses, but these losses are higher

for the arbitrageur who has invested more in the gap. If she violates her wealth constraint,

she is forced to close her positions in the following period. This in turn widens the price

gap even more, and makes future investment opportunities even better for the sole solvent

arbitrageur.1

Given the cooperative or predatory behaviour discussed above, I also examine whether

arbitrageurs are willing to invest in the arbitrage opportunity at the first place if they know

they can become exposed to predation by other arbitrageurs. It is important to emphasize

that the possible future losses are all due to predatory behaviour as opposed to unforeseen

shocks, and are all subject to more than one arbitrageur being present in the market. As

liquidation is costly, the threat of predation by other arbitrageurs implies that strategic

traders reduce their initial investments so that liquidation does not happen in equilibrium.

However, as long as one arbitrageur has a much higher level of capital than the other, it

does not affect the gap path significantly, because the increased investment of the former

compensates for the small position taken by the latter. I show that the wealth constraint

has its strongest effect on the gap process when arbitrageurs start with similarly low level of

capital. In this case arbitrageurs are reluctant to invest much, as shorting one more unit of

1The following quote provides an insight on the recent forced liquidation of Focus Capital, by suggesting that
arbitrageurs occasionally decide to withdraw liquidity from markets, making prices diverge from fundamentals
and forcing distressed institutions to unwind some of their positions at great losses:

"In a letter to investors, the founders of Focus, Tim O’Brien and Philippe Bubb, said it had
been hit by “violent short-selling by other market participants”, which accelerated when rumors
that it was in trouble circulated. Sharp drops in the value of its investments led its two main
banks to force it to sell last Tuesday, according to the letter." (Financial Times, March 4, 2008)

Other famous examples of predatory trading include the near-collapse of Long-Term Capital Management
(LTCM) in 1998, when Goldman Sachs and other counterparties strategically traded against LTCM to ag-
gravate its situation. The proposal of UBS Warburg, to take over Enron’s traders without taking over its
trading positions, was opposed on the same ground - it presented potential predatory risk (AFX News Lim-
ited, AFX-Asia, January 18, 2002). See Edwards (1999) and Loewenstein (2000) for detailed analyses on the
LTCM crisis, and Table I of Brunnermeier and Pedersen (2005) for an extensive list on examples of predatory
trading.
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the gap has a large effect on the proportion of wealth put into the arbitrage opportunity, and

exposes the trader to become a prey of the other arbitrageur. Therefore, the gap changes

very little initially, and agents only race to the arbitrage opportunity later.

These results are very much in contrast to the case with a single (monopolistic) arbi-

trageur. She knows that she faces a one-sided bet: if the trader shorts the gap, prices

converge. This implies that her mark-to-market wealth never decreases, and the wealth con-

straint never binds. In the absence of other arbitrageurs, she gradually provides liquidity

to the local markets to minimize her price impact, and her profits are not competed away.

My analysis suggests that as the presence of other arbitrageurs creates predatory risk, in-

creased competition in liquidity provision does not always imply that market segmentation

and abnormal profits disappear quickly.

The model presented here is related to several strands of the literature, in addition to

that on financial constraints. It is connected to models of limited arbitrage, including Shleifer

and Vishny (1997), Xiong (2001), Gromb and Vayanos (2002), and Liu and Longstaff (2004).

A large part of this literature focuses on potential losses in convergence trading due to in-

stitutional frictions or capital constraints. The common element in these models is that

their mechanisms amplify exogenous shocks: arbitrageurs have to liquidate part of their po-

sitions after an initial shock to prices which creates further adverse price movements and

liquidations. In my model, the amplification mechanism is endogenized and entirely strate-

gic. Arbitrageurs are not fully competitive, and hence some of them can exploit their price

impact to force others into distress. This type of strategic interaction, which is missing from

the above papers, makes a fundamentally riskless arbitrage opportunity risky.

The two papers closest to my analysis on financially constrained arbitrage are Kondor

(2009) and Attari and Mello (2006). Kondor (2009) develops an equilibrium model of con-

vergence trading and its impact on asset prices, where arbitrageurs optimally decide how to

allocate their limited capital over time. He shows that prices of identical assets can diverge

even if the constraints faced by arbitrageurs are not binding, and that in equilibrium arbi-

trageurs’activity endogenously generates losses with positive probability, even if the trading

opportunity is fundamentally riskless. Whereas he works with one representative arbitrageur

and his focus is on the endogenous determination of the price gap, I study the trading be-

haviour of imperfectly competitive arbitrageurs, who try to exploit the vulnerability of each
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other by engaging in predatory trading. Attari and Mello (2006) analyze the trading strategy

of a monopolistic arbitrageur who can, to some extent, influence the dynamics of prices on

which capital requirements are based. They show that financial constraints are responsible

for volatile prices and for time variation in the correlations of prices across markets. In con-

trast, my model allows for heterogeneity among arbitrageurs and focuses on the strategic

interaction among them. Moreover, the lack of uncertainty allows me to provide analytical

solution in my setting, while they can only numerically solve their model.

The model also belongs to those on predatory trading (i.e. trading that induces and/or

exploits the need of other investors to reduce their positions) and forced liquidation. Brun-

nermeier and Pedersen (2005) show that if a distressed trader needs to sell for exogenous

reasons, others also sell and subsequently buy back the asset. This leads to price overshoot-

ing and a reduced liquidation value for the distressed trader. Hence, the market is illiquid

when liquidity is most needed. Carlin et al. (2007) analyze how episodic illiquidity can arise

from a breakdown in cooperation between market participants. They consider a repeated

setting of a predatory stage game and show that while most of the time traders provide ap-

parent liquidity to each other, when the steaks are high, cooperation breaks down, leading to

sudden and short-lived illiquidity. In these papers liquidation is exogenously imposed on some

agents, as arbitrageurs become distressed due to an adverse shock and have to liquidate, while

solvent traders take advantage of them. In contrast, the model presented here endogenizes

the solvency of arbitrageurs: as capital requirements depend on observed prices, arbitrageurs

might be able to induce the distress of others by manipulating the price, thus giving rise to

predatory risk, which discourages investors from investing in the arbitrage opportunity.2

Abreu and Brunnermeier (2002, 2003) also provide a model with limited willingness of

arbitrageurs to exploit a mispricing. They consider a setup where arbitrageurs want to invest

while other arbitrageurs are investing, but asymmetric information causes a coordination

problem. In contrast, in the model of this chapter information is symmetric, and arbitrageurs

want to invest when others do not. It creates an incentive to drive other investors out from

the market, which in turn prevents arbitrageurs with limited capital from investing much in

the first place.

2See also papers that concentrate on endogenous risk as a result of amplification due to financial constraints,
e. g. Bernardo and Welch (2004), Danielsson et al. (2004, 2011), and Morris and Shin (2004).
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The chapter proceeds as follows. Section 2.2 presents the general model. Section 2.3

solves the case with a single arbitrageur. Section 2.4 derives the equilibrium of the model

with two strategic arbitrageurs. Section 2.5 analyzes the effect of predatory threat on the

initial investment decisions. Finally, Section 2.6 concludes.

2.2 Model

The model is similar to the setups of Gromb and Vayanos (2002) and Kondor (2009). Time

is discrete and there are four periods, t = 0, 1, 2, and 3. There is a set of arbitrageurs

who can invest in two traded assets: a riskless bond and a fundamentally riskless arbitrage

opportunity. The riskless bond has a constant return, normalized to one. The arbitrage

opportunity is called a (price) gap, denoted by gt in period t = 0, ..., 3. I assume that this

gap starts at an initial level of g > 0 and disappears due to an exogenous shock at date 3,

i.e. g3 = 0. I also assume, and then confirm in equilibrium, that it is always non-negative.

The natural interpretation of the gap is the difference between the prices of two risky

assets with identical payoffs that are traded in segmented markets by local traders, and only

a set of arbitrageurs can trade in both of them.3 The prices can be different due to an

initial supply shock to the local traders in one market, which disappears at date 3. In this

setting, arbitrageurs can take long-short positions by buying the cheaper asset and shorting

the expensive asset. This strategy gives a fundamentally riskless arbitrage opportunity if held

until the price difference disappears at date 3, which can also be thought of as the maturity

of the gap. Investing more into the arbitrage opportunity, which is essentially betting on the

converge of the prices of the two assets, happens by increasing the long position in the cheap

asset and increasing the short position (in absolute terms) in the expensive asset. I also refer

to this as shorting the gap.4

There are a finite number arbitrageurs, denoted by I, which for simplicity is either one

3See Gromb and Vayanos (2002) for a microfoundation in this spirit. Not modelling the local markets and
using the shortcut of a gap asset means that arbitrageurs are not allowed to take asymmetric positions in the
two assets.

4As the focus of this analysis is on the strategic interaction among large traders facing an arbitrage oppor-
tunity, I take market segmentation for local traders as given. Gromb and Vayanos (2002), Zigrand (2004) and
Kondor (2009) use similar assumptions. See Van Nieuwerburgh and Veldkamp (2009, 2010) for an information-
based mechanism that results in endogenous market segmentation.
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or two. Arbitrageurs behave strategically. In particular, when there is a single arbitrageur,

I = 1, she has monopoly power over providing liquidity in the local markets. I refer to the

case with two arbitrageurs, I = 2, as a duopoly of strategic traders. Arbitrageurs, indexed

by i = 1, ..., I, are assumed to be risk neutral. They start with positive capital M i in the

bond and no initial endowment in the arbitrage opportunity, xi = 0, and maximize expected

utility of their date 3 wealth.

Arbitrageurs’activity affects the difference between the prices of local assets. In particu-

lar, when arbitrageurs in aggregate short xt units of the gap, its level is given by

gt = g − λxt, t = 0, 1, 2, (2.1)

where λ > 0 is an exogenously given illiquidity parameter that describes the price impact of

arbitrage trades.5 Equation (2.1) can also be given in the dynamic form:

gt = gt−1 − λ (xt − xt−1) (2.2)

for t = 0, 1, 2, and with g−1 ≡ g and x−1 ≡ 0. Equation (2.2) shows that when arbitrageurs

increase their long position in the cheaper asset and their short position in the expensive

asset by one unit, the price difference decreases, and the gap shrinks by λ.

Moreover, arbitrageurs are subject to wealth constraints. In particular, they are required

to have non-negative marked-to-market wealth at all times.6 If a trader violates this con-

straint, i.e. she defaults, she has to close all her positions in the following period. I refer to

this as fire-sale or liquidation. Formally, if arbitrageur i has M i
t−1 in the riskless bond and a

short position of xit−1 units of the gap after trading at date t − 1, then her mark-to-market

wealth is M i
t−1 − gt−1x

i
t−1, and the constraint can be written as:

if M i
t−1 − gt−1x

i
t−1 < 0, it must be that xit = 0.

5 I assume that increasing the short position in the gap by one unit always has the same price impact (as
long as xt < g/λ). It holds, for example, if local traders having exponential utility and asset payoffs are
normally distributed.

6The specific wealth constraint considered in this model is just one of many financial constraints that
are based on market prices, e.g. margin constraints (Brunnermeier and Pedersen (2009) and Garleanu and
Pedersen (2011)), or value at risk (VaR) constraints (Garleanu and Pedersen (2007)). They would lead to
qualitatively similar results.
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The wealth constraint requires that arbitrageurs can always cover their accumulated losses

from their bond positions. As long as they do not default, they do not face any restrictions

on their orders in the following trading period. However, when they do default, they must

close their positions immediately, i.e. sell all the risky assets that they hold and buy back

what they short in the following period.7

Arbitrageur i’s optimization problem is as follows:

max
{xit}2

t=0

W i
3

(
M i
)

= M i +
2∑
t=0

gt
(
xit
) (
xit − xit−1

)
, (2.3)

subject to the evolution of the gap:

gt = gt−1 − λ
I∑
i=1

(
xit − xit−1

)
for t = 0, 1, 2, (2.4)

and the wealth constraint:

xit = 0 if M i
t−1 < gt−1x

i
t−1 for t = 0, 1, 2, (2.5)

where g−1 ≡ g, M i
−1 ≡ M i and xi−1 ≡ 0 for i = 1, ..., I. In each trading period t = 0, 1, 2,

first it is determined whether an arbitrageur is solvent. Second, the risky asset is traded.

The equilibrium of the economy is defined as follows:

Definition 12 A dynamic Nash-equilibrium of the trading game consists of the gap {gt}2t=0

and the holdings of arbitrageurs
{
xit
}2

t=0
for i = 1, ..., I, such that

{
xit
}2

t=0
solve (2.3) subject

to (2.4) and (2.5).

Before proceeding to the solution of the model, I make two observations about the opti-

mization problem and the wealth constraint.

First, it is important to notice that as long as there is a single arbitrageur, i.e. she has

monopoly power in providing liquidity, the market price used to evaluate her portfolio only

7The combination of the wealth constraint and the liquidation can be thought of as a shortcut for the joint
effect of two well-known phenomena. On one hand, the relationship between past performance and fund flows
has been documented for various asset classes. See, for example, Chevalier and Ellison (1997) and Sirri and
Tufano (1998), or Berk and Green (2004), who provide a model of active portfolio management when fund
flows rationally respond to past performance. On the other hand, Coval and Stafford (2007) show that funds
experiencing large outflows decrease existing positions by engaging in fire-sales, which creates price pressure.
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depends on her risky holdings. However, when there are at least two strategic agents, the

trade order of one of them influences the market clearing price and hence affects the constraint

status of the other arbitrageur. In particular, widening the gap between the prices of the two

assets creates losses to someone who is betting on the convergence of prices, and might even

trigger her fire-sale. When this distressed trader is forced to close her positions, this further

widens the gap, and creates a more profitable opportunity to agents still solvent. Therefore,

although it is costly to trade against price convergence, there is also a benefit of having a

better investment opportunity later on. Moreover, an arbitrageur close to bankruptcy might

not mind violating her constraint at all. When others are betting on divergence and thus

are effectively widening the gap, it can be very costly to support the price to ensure that she

remains solvent.

Second, there is a natural way to simplify the wealth constraint (2.5). Since the dynamics

of the riskless position can be expressed as

M i
t = M i

t−1 + gt
(
xit − xit−1

)
(2.6)

for t = 0, 1, 2, it is easy to show that requiring non-negative capital at time t, M i
t − gtxit ≥ 0,

is equivalent to

M i
t−1 ≥ gtxit−1. (2.7)

If it does not hold, arbitrageur i is forced to liquidate in the following period: xit+1 = 0.

However, in this 4-period economy, marking to market is only relevant after period 1. This

is because for t = 0, condition (2.7) is equivalent to M i ≥ g0x
i, which always holds as

arbitrageurs start with positive bond positions (M i > 0) and no endowment in risky assets

(xi = 0). In addition, violating the constraint at t = 2 would mean that an arbitrageur has

to liquidate her risky position in period 3, but there is no trading at date 3 as assets already

pay off. Therefore the wealth constraint is only relevant after period t = 1: if arbitrageur i

fails to satisfy

M i
0 ≥ g1x

i
0, (2.8)

she must liquidate at period 2, i.e. have xi2 = 0.

Further simplification of (2.8) can provide additional intuition regarding the nature of the
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constraint. In particular, from (2.6), (2.8) is equivalent to

M i ≥ (g1 − g0)xi0. (2.9)

The left hand side of this inequality is the mark-to-market wealth of arbitrageur i at date

0, which is positive by assumption, and hence the agent is not distressed at date 0. The

right hand side of the inequality represents the loss arbitrageur i makes on her positions

between date 0 and 1. Hence, (2.9) requires the arbitrageur’s wealth before trading at date

1 to be enough to cover all the losses suffered on her initial position. However, it might not

always hold. In particular, when initially arbitrageur i is shorting the gap, xi0 > 0, but it

actually widens, g1 > g0, the wealth constraint gets tighter and she can become distressed if

her starting capital is not suffi ciently high. Similarly, arbitrageur i’s wealth constraint gets

tighter if she bets on price divergence, xi0 < 0, while the gap shrinks, g1 < g0. On the other

hand, as long as arbitrageur i bets on the convergence (divergence), and prices do converge

(diverge), the constraint gets relaxed.

2.3 Monopoly

In this section I solve for the optimal trades of the unconstrained and the constrained monop-

olist arbitrageur. With a sole arbitrageur, I = 1, the trading game simplifies to a portfolio

choice problem, subject to a wealth constraint that affects the trading speed of the agent.

Dropping the superscript referring to the only arbitrageur i = 1, her optimization problem

can be written as:

max
{xt}2t=0

W i
3 (M) = M +

2∑
t=0

gt (xt) (xt − xt−1) (2.10)

subject to market clearing:

gt = gt−1 − λ (xt − xt−1) for t = 0, 1, 2, and g−1 ≡ g,

and the insolvency constraint:

x2 = 0 if M < (g1 − g0)x0. (2.11)
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First, I solve the optimization problem without (2.11). The optimal trades and the gap

process in absence of the wealth constraint are summarized in the following result:

Proposition 13 The unconstrained monopolist arbitrageur gradually provides liquidity in

the local markets, i.e. she trades the same amount in every period. Formally,

x0,u =
1

4λ
g, x1,u =

1

2λ
g, and x2,u =

3

4λ
g,

and the gap decreases linearly over time:

g0,u =
3

4
g, g1,u =

1

2
g, and g2,u =

1

4
g.

Proposition 13 states that in case there is a single strategic trader taking advantage of

the mispricing across markets, her early trades only compete with her later trades. As she

can commit to a strategy that minimizes her price impact, she smoothes her orders across

several dates, and hence trades the same amount in each period. This is illustrated on Figure

2-1.

Suppose now that the monopolist arbitrageur is subject to wealth constraint (2.11), which

might prevent her to supply liquidity as in Proposition 13. The main question is whether a

trader endowed with positive capital and facing a riskless arbitrage opportunity would ever

get to a state where she faces liquidation. The answer is negative:

Proposition 14 The wealth constraint never binds on the equilibrium gap path. Therefore it

does not affect the trading of a monopolist arbitrageur, and does not influence the convergence

speed of the two prices.

The result of Proposition 14 is rather straightforward. It is obvious that the constrained

arbitrageur can never be better off than the unconstrained arbitrageur of Proposition 13.

However, she can achieve the same terminal wealth. This is because when a single strategic

trader shorts the gap, the convergence is purely the effect of her trade. Consequently, she

is making profits throughout the whole process, and the gap decreases, g1 − g0 < 0. The

wealth constraint thus never binds, and in fact never affects the equilibrium trading of the

arbitrageur.
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2.4 Duopoly

2.4.1 Benchmark case

Similarly to the monopoly case, I start with characterizing the equilibrium orders and the

gap process when there are two strategic arbitrageurs, I = 2, and they face no constraints on

the positions taken in the gap asset. However they are aware that investing one more unit of

capital at a certain date decreases the return on future investments of both arbitrageurs. It

has two contrasting implications regarding their trading behaviour. First, they would like to

trade slowly to minimize their price impact. Second, both of them would still like to trade

faster than the other arbitrageur. Formally, I obtain the following results:

Proposition 15 The equilibrium holdings of unconstrained duopolist arbitrageurs are give

by

xi0,u =
385

1299λ
g, xi1,u =

182

433λ
g, and xi2,u =

205

433λ
g, for i = 1, 2,

and the gap decreases as

g0,u =
529

1299
g, g1,u =

69

433
g, and g2,u =

23

433
g.

Figure 2-2 illustrates the evolution of the gap and the holdings of the duopolist arbi-

trageurs, and contrasts the gap processes in the monopoly and duopoly cases. The main

message of Proposition 15 is that when there are two strategic traders taking advantage of

the mispricing across markets, these competing arbitrageurs race to the market, and the price

gap decreases much faster than with a single arbitrageur.

This result is clearly intuitive. As before, illiquidity gives arbitrageurs an incentive to

spread trades over time, in order to minimize their price impact. However, now the trade

order of an arbitrageur at a certain date not only competes with her later investments, but

also with all the present and future investments of the other arbitrageur. As arbitrageurs

face a downward sloping demand curve, they both try to trade before the other arbitrageur

trades, and the presence of another arbitrageur leads to competition between them. The

equilibrium strategy shows that the second effect is stronger than the first. This is why

duopolist strategic traders cannot commit to a strategy that minimizes their joint price
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impact and takes advantage of the mispricing the most effi cient way (from the viewpoint of

arbitrageurs in aggregate). Instead they both race to the market at date 0. As Figure 2-2

shows, trading volume is large in the early periods; and the gap converges faster than with a

single arbitrageur, and slows down later.

2.4.2 Constrained case

In the remainder of this section I consider a subgame of the optimization program (2.3) to

study how wealth constraints affect arbitrage activity with two strategic traders. I assume

that some trading at date 0 has already taken place: the price gap is given by g0, and

arbitrageurs already have short positions xi0 in the gap asset and bond holdingsM
i
0, i = 1, 2.8

I proceed to the overall solution in Section 2.5 after discussing the equilibria of the subgame

and the notion of predatory threat.

The optimization problem of agent i is the following:

max
xi1,x

i
2

W i
3

(
M i

0, x
i
0, g0

)
= M i

0 + g1

(
xi1
) (
xi1 − xi0

)
+ g2

(
xi2
) (
xi2 − xi1

)
.

subject to market clearing:

gt = gt−1 − λ
(
xit − xit−1 + x−it − x−it−1

)
for t = 1, 2 and i = 1, 2,

where −i denotes the other agent; and the insolvency constraints:

xi2 = 0 if M i <
(
g1

(
xi1
)
− g0

)
xi0, and x

−i
2 = 0 if M−i <

(
g1

(
xi1
)
− g0

)
x−i0 .

The second wealth constraint indicates that arbitrageur i is aware of the constraint for arbi-

trageur −i, and hence can influence the price to trigger her fire-sale.

To define an equilibrium, I define the states of the world and two notions of value functions

as follows:

Definition 16 At date 1 each arbitrageur can be in one of three states: (i) state n for the

8One reason for being endowed with the risky assets before trade starts would be because traders previously
enjoyed some (unmodelled) private benefits from holding them.
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constraint being satisfied and not binding at the equilibrium holding and gap, i.e. M i >(
g1

(
xi1
)
− g0

)
xi0; (ii) state b for the constraint binding, M

i =
(
g1

(
xi1
)
− g0

)
xi0; or (iii)

state v for the constraint being violated, M i <
(
g1

(
xi1
)
− g0

)
xi0.

At date 2 each arbitrageur can be in one of two states: (i) state s for solvent (i.e. trade

freely), or (ii) state l for liquidated/insolvent (i.e. having to close her risky position).

The dynamics of states are as follows: (i) If arbitrageur i satisfies her wealth constraint,

she can freely trade in period 2. Formally, if arbitrageur i is in state n or b at date 1, she

gets to state s at date 2; (ii) On the other hand, if the arbitrageur violates the constraint, she

must liquidate in period 2. Formally, if agent i is in state v at date 1, she gets to state l at

date 2.

Given the definition of states, one can define the state-dependent value functions:

Definition 17 The state-dependent (or conditional) value function of agent i = 1, 2 in period

t = 1, 2 and arbitrageur states {jk} is denoted by Vt,jk
(
M i
t , x

i
t,M

−i
t , x−it

)
, where

j and k are the states of arbitrageur i and −i, respectively; j, k ∈ {n, b, v} if t = 1, and

j, k ∈ {s, l} if t = 2;

M i
t and x

i
t are the after-trade holdings of arbitrageur i; and

M−it and x−it are the after-trade holdings of arbitrageur −i.

Based on the state-dependent value functions I define the value function such that the

optimization problem is the problem of choosing the optimal demand and the state jointly:

Definition 18 The value function of agent i at date t is the merger of different conditional

value functions from different states of the world given as

V i
t

(
M i
t , x

i
t,M

−i
t , x−it

)
=
∑
j,k

1jkVt,jk
(
M i
t , x

i
t,M

−i
t , x−it

)
where 1jk is an indicator, and takes the value of 1 if, based on their date 1 mark-to-market

portfolio value, arbitrageur i is in state j and arbitrageur −i is in state k, and zero otherwise.

Finally, given the value function, I take the standard definition of a Nash-equilibrium:
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Definition 19 A Nash-equilibrium of the economy is a vector of demands
{
xit
}
i=1,2;t=1,2

such that xit solves the program

max
x

V i
t

(
M i
t , x

i
t,M

−i
t , x−it |x−it ;M i

t−1, x
i
t−1,M

−i
t−1, x

−i
t−1

)
= V i

t

(
M i
t−1 + gt (x)

(
x− xit−1

)
, x,M−it−1 − gt (x)

(
x−it − x−it−1

)
, x−it

)
where gt (x) is the market-clearing gap in period t when agent i submits the demand x, and

agent −i submits her equilibrium demand x−it .

Before proceeding to the equilibria of this game, let me make an observation about the

wealth constraint. As described in (2.8), the wealth constraint can be expressed as M i ≥

(g1 − g0)xi0 for i = 1, 2. Thus, if arbitrageur i enters period 1 with a zero position in the

risky assets, xi0 = 0, her constraint will never bind. Suppose now that both arbitrageurs have

taken non-zero positions at date 0. Then M1/x1
0 and M

2/x2
0 exist, and they describe the

inverse of the proportion of wealth invested in the gap. Suppose further that both x1
0 and

x2
0 are positive (as it is going to be in equilibrium), that is arbitrageurs initially bet on the

convergence of prices. It implies that the wealth constraints can be rewritten in the form

M1

x1
0

≥ g1 − g0 and
M2

x2
0

≥ g1 − g0.

It is easy to see that as long as the proportion invested in the gap asset is different between

agents, for example M1/x1
0 > M2/x2

0, there is a natural order between arbitrageurs. If

arbitrageur 2 is solvent, arbitrageur 1 remains solvent too. On the other hand, if arbitrageur

1 is insolvent, arbitrageur 2 has to liquidate too. Moreover, there always exists a gap level

g1 such that arbitrageur 1 remains solvent while arbitrageur 2 goes bankrupt. Therefore the

trader with higher M i/xi0 ratio, i.e. lower proportion of wealth invested in the arbitrage

opportunity, can always be more aggressive, while the arbitrageur with higher proportion of

wealth invested in the gap must be more cautious with her trades. In the characterization of

the equilibrium I will refer to them as arbitrageurs a and c.9

9 IfM1
0 /x

1
0 =M2

0 /x
2
0, the constraint binds for them at the same time. It implies that either both arbitrageurs

remain solvent, or they both go bankrupt. Also, when, for example, arbitrageur 1 does not trade in period 0,
i.e. x1

0 = 0, the constraint will never bind for her. This case can be thought of as the limit when M
1
0 /x

1
0 →∞.
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Before proceeding to the solution of the model, I discuss the methodology of the equi-

librium construction. The above problem can be solved backwards. First I solve for the

optimal trades at date 2 given the conjectured state arbitrageurs are in (ss, sl, or ll), and

obtain value functions representing their continuation utilities. Then I solve for the optimal

trades of period 1. The complexity of the solution arises here regarding how to deal with

the liquidation constraint. The possibility of forced liquidation implies that the optimization

problem of an arbitrageur is globally non-continuous and non-concave, so local conditions

for the equilibrium are not suffi cient. However, the optimization problem is locally concave

almost everywhere. Figures 2-3 and 2-4 illustrate the utility of an arbitrageur as a function

of her trade at date 1 while holding the other arbitrageur’s date-1 trade constant in two

particular cases. It is straightforward that the optimization problem can always be divided

into three segments that correspond to the states of the world such that the utility function

is concave in each segment.10 The possible portfolios of an arbitrageur in one segment lead

to a different continuation state from portfolios in another segment: if a trader increases her

short position suffi ciently, the gap shrinks and both arbitrageurs remain solvent. However if

an arbitrageur decides to go long in the gap, the gap widens, and can push (at least) one

arbitrageur into distress. Consequently, for each portfolio choice of the other trader, an arbi-

trageur compares the locally optimal investment strategies in the three segments, and picks

the one with highest utility.

Because of the local concavity, given the other arbitrageur’s investment decision, there is

an optimal portfolio within each state of the world. Combining these conditions for the two

arbitrageurs gives a set of candidate equilibria, satisfying that none of the traders want to

alter their strategies as long as the state of the world remains the same. Therefore, it must

be also checked whether these trades are globally optimal too, i.e. whether any arbitrageur

would prefer to deviate in such a way that changes the state of the world.

10The three states from the viewpoint of the aggressive arbitrageur are ss, sl and ll. From the viewpoint
of the cautious arbitrageur the possible states are ss, ls and ll. This is because the roles of arbitrageurs
imply that it is impossible to have a case when the cautious arbitrageur remains solvent and the aggressive
arbitrageur becomes insolvent.
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Candidate equilibria

I describe the equilibria of the economy in two steps. First, I provide the set of candidate

equilibria with the locally optimal portfolios, which also determine the gap path. The derived

date-1 gap g1, combined with (2.9), thus provides a straightforward necessary condition on

the proportion of wealths invested for such an equilibrium to exists. Then I discuss the actual

equilibria of the economy for the three cases when (i) both arbitrageurs remain solvent; (ii) the

aggressive arbitrageur remains solvent, but the cautious is insolvent; or (iii) both arbitrageurs

go bankrupt. These are different from the candidate equilibria because the globally optimal

portfolios must satisfy more requirements than local optimality. For tractability, I only discuss

the cases when arbitrageurs initially short the gap asset, i.e. xa0, x
c
0 > 0, which will be the

case in equilibrium. All the other cases are described in an internet appendix.

Proposition 20 When both arbitrageurs remain solvent, the locally optimal strategies and

the gap path are given by

xi1 − xi0 =
7

23λ
g0 and xi2 − xi1 =

3

23λ
g0 for i = a, c. (2.12)

and

g1 =
9

23
g0 and g2 =

3

23
g0.

Such a candidate equilibrium exists for every 0 < M c/xc0 < Ma/xa0. Moreover, the wealth

constraint is not binding for any arbitrageur.

Suppose that both arbitrageurs remain solvent, and it happens without the constraint

binding for the cautious arbitrageur. It implies that the locally optimal strategies are those

that would emerge in the equilibrium of the economy with no wealth constraint.11 As before,

since arbitrageurs face a downward sloping demand curve, they both try to trade before the

other arbitrageur trades. It leads to competition between them: arbitrageurs race to the

market, and the gap shrinks quickly. Since the gap decreases, g1 < g0, arbitrageurs record

profits throughout the convergence, thus they indeed remain solvent even if they start with

11For this note that substituting the date-0 unconstrained gap, g0,u, into g0 gives the same portfolios that
were derived in Proposition 15.
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very low capital. Moreover, the constraint of arbitrageur c cannot bind in equilibrium, because

that would imply the gap must widen, g1 > g0. However, in this case both arbitrageurs would

be willing to short the gap a little bit more to trade before the other arbitrageur, hence the

gap would shrink, and the constraint would not bind any more.

Proposition 21 When the aggressive arbitrageur remains solvent and the cautious liqui-

dates:

(i) There exists a candidate equilibrium where the wealth constraint is not binding for the

aggressive arbitrageur. The locally optimal strategies and the gap path are given by

xi1 − xi0 =
1

5λ
(g0 − λxc0) for i = a, c,

xa2 − xa1 =
1

2λ
(g1 + λxc1) and xc2 = 0,

and

g1 =
3

5
g0 +

2

5
λxc0 and g2 =

2

5
g0 +

3

5
λxc0.

The candidate equilibrium requires xc0 >
1
λg0 and 0 < M c/xc0 < −2

5 (g0 − λxc0) ≤Ma/xa0.

(ii) There exists a candidate equilibrium where the wealth constraint is binding for the

aggressive arbitrageur when 0 < M c/xc0 < Ma/xa0 < −2
5 (g0 − λxc0). As the constraint is

binding for the aggressive arbitrageur, the locally optimal strategies and the gap path satisfy

g1 − g0 = Ma/xa0. Moreover, there are many possible optimal trades as this case corresponds

to a corner solution.

The proposition states that as long as the constraint does not bind for arbitrageur a, the

locally optimal strategies satisfy that arbitrageurs sell the same amount from the cheap asset

and buy the same amount from the expensive asset, driving the gap up at date 1. In fact, the

cautious trader knows that if the aggressive trader goes long in the gap asset to widen the gap,

she does not have enough capital to cover her losses emerging due to the price divergence,

and she will be forced to close her position. As arbitrageurs face a downward sloping demand

curve, the cautious trader wants to avoid a round-trip transaction (buying and then being

forced to sell, or selling and then buying), because it would lead to additional losses. She also

wants to minimize her price impact when liquidating. Therefore, she conducts the fire-sale
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in two periods, and closes part of her positions already at date 1 and the rest at date 2.

In the meantime, at date 1 the aggressive arbitrageur finds it optimal to do exactly the

same the cautious arbitrageur does. Notice that the condition xc0 >
1
λg0 implies that the gap

widens through time, i.e. g2 > g1 > g0. Hence when trader c finishes the fire-sale, trader a

will face a better arbitrage opportunity to invest than in the very beginning, as the gap is

wider. In fact, the aggressive trader withdraws liquidity instead of providing liquidity exactly

when the cautious arbitrageur would need it the most. This is in the spirit of Brunnermeier

and Pedersen (2005). However, in this model predation happens endogenously, unlike in

Brunnermeier and Pedersen (2005), where the prey is passive. Here arbitrageur c could avoid

bankruptcy by taking a suffi ciently large long position and ensuring she suffers no losses

between periods 0 and 1, but she realizes it would be too costly for her. The constraints on the

proportion of the wealth invested correspond to the fact that the aggressive arbitrageur can

indeed cover her losses due to the gap diverging from g0 to g1, while the cautious arbitrageur

cannot.

Proposition 21 also states that a qualitatively similar candidate equilibrium (but with

different trades) can happen even if arbitrageur a has lower level of capital (or higher propor-

tion of capital invested in the arbitrage opportunity). This is because with M c/xc0 < Ma/xa0

the aggressive arbitrageur can always set the gap such that her losses are still covered by her

starting wealth while violating the wealth constraint of the cautious arbitrageur.

Proposition 22 When both arbitrageurs become insolvent, the locally optimal strategies and

the gap path are given by

xi1 − xi0 = −1

3

(
xi0 + x−i0

)
and xi2 = 0 for i = a, c.

and

g1 = g0 +
2λ

3
(xa0 + xc0) and g2 = g0 + λ (xa0 + xc0) .

Such a candidate equilibrium exists if 0 < M c/xc0 < Ma/xa0 < 2λ (xa0 + xc0) /3.

When both arbitrageurs violate the constraint and become insolvent, they have to strate-

gically liquidate their positions through two periods. Arbitrageurs know that they are facing

a downward sloping demand curve, and want to minimize their price impact while liquidating.
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To close their positions, they have to buy the expensive asset and sell the cheap asset, hence

they both want to buy/sell before the other arbitrageur. Thus they race to the market. In

equilibrium, they liquidate the same amount at date 1, namely 2/3 of their aggregate asset

holdings, and at date 2 they liquidate the remaining 1/3.

Equilibrium characterization

Given the locally optimal strategies, it is possible to analyze under what circumstances they

are globally optimal too. Regarding the equilibrium with both arbitrageurs solvent, I obtain

the following result:

Proposition 23 There exists an equilibrium of the trading game with both arbitrageurs re-

maining solvent (state ss) if and only if

Ma

xa0
>
M c

xc0
≥ ∆1

nn,nv (g0, x
c
0) , (2.13)

where the function ∆1
nn,nv (·, ·) > 0 is given in Appendix 2.7.2.

According to Proposition 20, it was possible to have a candidate equilibrium such that

both arbitrageurs remain solvent for any proportions of wealth invested in the arbitrage

opportunity, because prices converged and arbitrageurs made profits throughout the whole

trading process. When looking for an actual equilibrium, turns out this is not the case.

In particular, as the aggressive arbitrageur is aware of the wealth constraint of the cautious

agent, arbitrageur a can engage in the manipulation of date-1 prices. Facing a downward

sloping demand curve, this manipulation is costly because of the price impact. However,

manipulation can be profitable due to two sources of profits. First, if the cautious arbitrageur

goes bankrupt, the aggressive arbitrageur has monopoly power in providing liquidity to local

traders at date 2. Second, as arbitrageur c has a short position in the gap after period 1, i.e.

xc1 = xc0 + 7
23λg0 > 0, her fire-sale widens the gap and makes forced liquidation even more

desirable for the aggressive trader. The cost of manipulation is decreasing in the proportion

of arbitrageur c’s wealth invested into the arbitrage opportunity, i.e. increasing in M c/xc0,

while the profit of the fire-sale is increasing in xc1, i.e. in both the cautious arbitrageur’s

holding before date 1, xc0, and the initial gap g0. Combining these observations, there exists
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a threshold for M c/xc0 such that if the proportion of arbitrageur c’s wealth invested into the

arbitrage opportunity is low enough, forcing her to liquidate is too costly, and an equilibrium

with both agents remaining solvent exists.

Next, I present the conditions under which predation happens.

Proposition 24 There exists an equilibrium with the aggressive arbitrageur remaining sol-

vent and the cautious arbitrageur becoming insolvent (state sl) if and only if

0 <
M c

xc0
≤ ∆c

nv,nn (g0, x
c
0) and

Ma

xa0
≥ ∆c

nv,vv (g0, x
a
0, x

c
0) , (2.14)

where ∆c
nv,nn (·, ·) ,∆c

nv,vv (·, ·) > 0 are given in Appendix 2.7.2.

Comparing Propositions 21 and 24, the main difference is that the wealth requirements

are tighter. For an equilibrium it must be that the locally optimal strategies are globally

optimal too. It is apparent that the key is whether the cautious arbitrageur would be better

off avoiding liquidation as a result of some costly price manipulation at date 1 that changes

the state of the world.

The cautious arbitrageur starts trading with an initial long position in the arbitrage

opportunity, but due to her limited capital, she cannot sustain losses caused by the activity

of the aggressive arbitrageur in the short run. It is apparent that if arbitrageur c wants to

remain solvent, she can always do so. This is because if arbitrageur a widens the gap, trader

c can always engage in exactly the opposite trade that leaves the gap unchanged, and thus

leaves the state untouched as well. The question is how costly it is.

In particular, suppose the aggressive arbitrageur’s strategy is fixed at buying a very large

amount of the gap asset, which makes prices diverge. Arbitrageur c, being subject to the

wealth constraint, can do two things. First, she can short enough so that she neutralizes the

effect of the aggressive arbitrageur’s trades and brings g1 suffi ciently close to the the original

level g0. In this case she remains solvent. As she faces a downward sloping demand curve,

shorting a large amount of the gap asset is costly, as it diminishes future returns on the assets

she is holding. On the other hand, the benefit of this strategy is that the arbitrageur remains

solvent and can invest again at date 2. Alternatively, she can accept that she is pushed to

insolvency. In that case the optimal liquidation strategy means shorting less at date 1, which
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leads to smaller price impact. Moreover, since the other trader is still solvent at date 2, the

cautious arbitrageur can liquidate at more favourable prices.

Whether the cautious trader thus finds it optimal to liquidate or not, given the selling

pressure of the aggressive trader, depends on the relative costs and gains of these two strate-

gies. In particular, the profit from remaining solvent increases in her initial position xc0, and

in the gap size g0. This implies that the threshold for equilibrium on the proportion of wealth

invested by the cautious arbitrageur, ∆c
nv,nn (·, ·), is an increasing function of both xc0 and g0.

Finally, regarding equilibria in which both agents get liquidated I obtain the following

result:

Proposition 25 There exists no equilibrium of the trading game with both arbitrageurs being

insolvent.

This result is rather intuitive. Indeed, liquidation imposes a cost on both agents, because

they have to close the positions they previously created to bet on the convergence of prices.

Put it differently, arbitrageurs must sell assets at lower prices than they have bought them,

or buy back previously shorted assets at prices higher than when they started to short them.

Given that the divergence in prices is solely the effect of their own activities, arbitrageurs

could avoid these self-imposed costs by not trading at all in period 1. By simply holding on

to their existing positions the gap would not change, and the constraint would not get tighter

than before. Arbitrageurs would remain solvent and their optimal unconstrained trades in

period 2 could not make them worse off than the forced liquidation.

The different regions for the proportions of wealth invested in the arbitrage opportunity

described in Propositions 23 and 24 are illustrated on Figure 2-5.

2.5 Predatory threat and arbitrage

So far I have taken the initial positions xi0 and the gap g0 as given. In this section I endogenize

xi0 by extending the previous analysis with an investment phase at date 0. Arbitrageurs know

that the initial positions they take and hence the gap they face affect which state of the world

they get into after date 0. I show that liquidation does not happen in equilibrium, but as
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long as one arbitrageur has a much higher level of capital than the other, it does not affect

the gap path significantly. I show that the wealth constraint has its strongest effect on the

gap path when arbitrageurs start with similarly low level of capital. In this case the gap

decreases very little in period 0, then both agents rush to the arbitrage opportunity.

When solving the date-0 optimization problem, I restrict the (on- and off-equilibrium)

action space of arbitrageurs to trades with which they end up in either an ss or an sl

equilibrium. It means that for a given x2
0, arbitrageur 1 must choose her position x1

0 in such

a way that arbitrage positions maximize her utility while satisfying either (2.13) or (2.14).

Of course when deciding on the initial investment xi0, arbitrageur i also realizes that as long

as her proportion of wealth invested into the arbitrage opportunity is higher than that of the

other trader, i.e. M i/xi0 < M−i/x−i0 , the wealth constraint is tighter for her, and hence she

takes the role of the cautious arbitrageur. Formally, I look for a dynamic equilibrium where

arbitrageur i solves the problem

xi0 ∈ arg max
x

W i
3 = V0

(
x|M i,M−i, x−i0

)
,

where

V0

(
x|M i,M−i, x−i0

)
=


V0,ss

(
M i

0, x
i
0,M

−i
0 , x−i0

)
if satisfy conditions for ss equilibrium

V0,sl

(
M i

0, x
i
0,M

−i
0 , x−i0

)
if satisfy conditions for sl equilibrium

V0,ls

(
M i

0, x
i
0,M

−i
0 , x−i0

)
if satisfy conditions for ls equilibrium,

As the optimization programs of arbitrageurs with these constraints become diffi cult to

solve in closed form (it includes solving 4th order equations), I make some simplifying steps

and then solve the problem numerically. In particular, first I solve the optimization problems

given that both agents remain solvent while satisfying the constraints for an ss equilibrium,

i.e.

max
xi0

V0,ss

(
M i

0, x
i
0,M

−i
0 , x−i0

)
≡M i

0 +
72

232λ
g2

0 = M i + g0x
i
0 +

72

232λ
g2

0

subject to (2.13), and then I confirm that none of the agents have incentives to deviate to the sl

state when the other arbitrageur chooses the optimal strategy x−i0 that solves her program.12

12The deviations allowed here include those when the arbitrageur goes long in the gap, i.e. xi0 < 0, even
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Propositions 26 and 27 describe the equilibrium date-0 trading of strategic arbitrageurs:

Proposition 26 None of the arbitrageurs are forced to liquidate in equilibrium.

This result is rather intuitive. It shows that arbitrageurs reduce their initial investments

such that liquidation does not happen in equilibrium. This is because liquidation is rather

costly. As there is no uncertainty in the model, no strategic agent wants to buy an asset that

she has to sell later with certainty, since buying an asset pushes its price up while selling

decreases its price, both working against the profit of this kind of round-trip transaction. It

implies that liquidation does not happen in equilibrium, but the threat of liquidation is still

present on the off-equilibrium path.

Proposition 27 Based on the initial capital of traders, the effect of the wealth constraint on

arbitrageur activity can be divided into four cases.

(I) There exists a constant Ω > 0 such that for M1,M2 ≥ 1
λΩg2, arbitrageur strategies

and the gap path are the same as in the unconstrained case, discussed in Proposition 15.

(II) There exists a function Φ (.) such that when 0 < M2 < 1
λΩg2 and M1 ≥ Φ

(
M2
)
,

arbitrageur 2 is the cautious trader, and the constraint (2.13) binds for her. As a result, she

trades less at date 0 than in the unconstrained case.

(III) Similarly, when 0 < M1 < 1
λΩg2 and M2 ≥ Φ

(
M1
)
, arbitrageur 1 becomes the

cautious trader, and the constraint (2.13) binds for her. She trades less at date 0 than in the

unconstrained case.

(IV) When both arbitrageurs have low level of capital, M1,M2 < 1
λΩg2, and they are

close to each other such that M1 < Φ
(
M2
)
and M2 < Φ

(
M1
)
, both arbitrageurs invest less

than in the unconstrained case, and hence the gap remains larger.

The four regions for cases (I)-(IV) are illustrated on Figure 2-6. Arbitrageurs remain

solvent in all cases. Moreover, Φ (.) is positive, strictly increasing, satisfies Φ (x) > x for

0 < x < 1
λΩg2, and Φ (x) = x for x = 0 or x = 1

λΩg2.

Proposition 27 describes the initial trades as a function of arbitrage capital. First, if

both arbitrageurs start with suffi ciently high level of capital, the wealth constraint does not

though those cases were not discussed in Section 2.4.
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affect their trades and hence the dynamic equilibrium of the model is exactly the same as in

unconstrained case, described in Proposition 15. As arbitrageurs have a lot of cash on hand

that can provide a cushion against very large adverse movements in the gap, they race to the

market and take large bets on the convergence of prices. Traders’positions and the evolution

of the gap are illustrated on Figure 2-2.

When at least one arbitrageur has a low capital level to start with, while the other has

(relatively) more, e.g. M1 ≥ Φ
(
M2
)
, the wealth constraint affects the date 0 trading through

affecting agent 2’s willingness to invest. Arbitrageur 2 must short less compared to the case

when the constraint is not effective, x2
0 < xi0,u, because she wants to avoid liquidation later

on. In fact, she takes such a small position that it is not worth for arbitrageur 1 to push her

to insolvency. On the other hand, arbitrageur 1 can invest more, x1
0 > xi0,u, as long as she

has a lower proportion in the gap asset. This is rather profitable for her, as the threat of

potential liquidation restricts the ability of arbitrageur 2 to provide liquidity to local traders,

and agent 1 has almost monopoly power in doing so. The large position that arbitrageur

1 takes compensates for the small holdings by arbitrageur 2 so the date 0 gap is not very

different from the case when both arbitrageurs have high level of capital. This is illustrated

on Figure 2-7.

Finally, when both arbitrageurs have low capital level to start with, and they are close

to each other so that M1 < Φ
(
M2
)
and M2 < Φ

(
M1
)
, the wealth constraint is impor-

tant for both arbitrageurs. In particular, suppose that the proportion of wealth invested

in the arbitrage opportunity is fixed for both agents, and it is larger for arbitrageur 2, i.e.

M1/x1
0 > M2/x2

0. It implies that agent 2 is the cautious arbitrageur and faces a tighter

wealth constraint, so she must reduce her holdings if she wants to avoid forced liquidation.

However, by investing less she decreases her proportion of wealth in the arbitrage opportu-

nity to below that of arbitrageur 1, that is she makes M1/x1
0 < M2/x2

0. Now arbitrageur 1

becomes the cautious arbitrageur, she is more prone to predatory risk, so she should reduce

her initial investment. This drives the M1/x1
0 ratio above M

2/x2
0, and so on. In the end,

both arbitrageurs trade very little at date 0, x1
0, x

2
0 � xi0,u, and the gap level remains high,

g0 � g0,u. Given that both of them remain solvent, in the next period they both race to the

arbitrage opportunity, and the gap quickly shrinks. This is illustrated on Figure 2-8.
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2.6 Final remarks

This chapter presents an equilibrium model of endogenous predation and forced liquidation

among strategic arbitrageurs who are subject to capital constraints. Arbitrageurs bet on the

convergence of prices of two assets, but when prices actually diverge and their marked-to-

market portfolio value becomes negative, traders have to unwind their risky holdings imme-

diately and leave the market. This implies that arbitrageurs’wealth limits the positions they

can take as long as they do not want to violate the constraint. Strategic traders may trigger

the bankruptcy of ’weaker’agents, which creates predatory risk and implies that even if the

investment opportunity is a fundamentally riskless arbitrage, traders might be reluctant to

invest in it.

First I study a model when agents are already endowed with positions in the risky assets.

I show that when traders have similar proportion of wealth invested in the arbitrage opportu-

nity, they behave cooperatively, and prices converge through time, as in a benchmark model

without the constraint. However, if there is a significant difference in their proportion of

wealth invested, the arbitrageur with lower proportion invested in the arbitrage opportunity

predates on the other trader by manipulating the price and forcing her to unwind her position

at a large discount.

Then I examine whether a strategic trader is willing to build up a portfolio if it makes

her prone to predation and hence large losses. I show that in the equilibrium of the full

model liquidation never happens, but the threat of predation makes arbitrageurs reluctant

to invest much in the arbitrage opportunity because of the presence of other arbitrageurs.

In particular, the wealth constraint seriously affects the gap between the asset prices when

arbitrageurs have similarly low level of capital, and implies that instead of racing to the

opportunity arbitrageurs stay out, and the gap decreases gradually.

In the model presented here there is no informational asymmetry about the opportunity

among arbitrageurs, and prices and positions are always deterministic. Naturally, this pro-

vides an opportunity to extend the framework in several dimensions. For example, it would

be interesting to allow for asymmetric positions in the two risky assets and see what effect

it would have if some strategic traders only had information about one leg of the trades of

other arbitrageurs, as anecdotal evidence recalls about the trading counterparties of LTCM.

94



Moreover, it would be important to evaluate the empirical significance of the presented mech-

anism and to distinguish it from others that result in similarly slow trading of large traders,

e.g. Kyle (1985). These are left for future work.
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2.7 Appendix

2.7.1 Optimal trading of the monopoly

First I solve the problem without the wealth constraint.

Proof of Proposition 13. The arbitrageur’s optimization program is given by

max
{xt}2t=0

W3 = M +
2∑
t=0

gt (xt) (xt − xt−1) (2.15)

where gt = gt−1 − λ (xt − xt−1) for t = 0, 1, 2 and g−1 ≡ g. Writing it as a dynamic program

it becomes

max
x2

W3 = M1 + g2 (x2) (x2 − x1) ,

and the FOC yields 0 = g2 + dg2

dx2
(x2 − x1) = g1 − 2λ (x2 − x1), i.e.

x2 − x1 =
1

2λ
g1 and g2 =

1

2
g1. (2.16)

Moreover, W3 = M1 + g2 (x2) (x2 − x1) = M1 + 1
4λg

2
1. Going back one more period the

optimization program becomes

max
x1

W3 = M1 +
1

4λ
g2

1 = M0 + g1 (x1 − x0) +
1

4λ
g2

1

= M0 + (g0 − λ (x1 − x0)) (x1 − x0) +
1

4λ
(g0 − λ (x1 − x0))2 ,

and the FOC yields 0 = g0 − 2λ (x1 − x0) − λ 1
2λ (g0 − λ (x1 − x0)), or x1 − x0 = 1

3λg0.

Therefore, g1 = 2
3g0 and W3 = M0 + 1

3λg
2
0. Going back to the date 0 optimization it becomes

max
x0

W3 = M0 +
1

3λ
g2

0 = M + g0x0 +
1

3λ
g2

0

= M + (g − λx0)x0 +
1

3λ
(g − λx0)2 ,

so the FOC yields 0 = g−2λx0− 2
3 (g − λx0), or x0 = 1

4λg. Therefore, g0 = 3
4g, which implies

that the monopoly gradually provides liquidity in the local markets:

xt,u − xt−1,u =
1

4λ
g for t = 0, 1 and 2,
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that is

x0,u =
1

4λ
g, x1,u =

1

2λ
g, and x2,u =

3

4λ
g,

and the gap decreases linearly over time:

g0,u =
3

4
g, g1,u =

1

2
g, and g2,u =

1

4
g,

where the subscript u refers to the arbitrageur being unconstrained.

Proof of Proposition 14. For the full consideration of the effect of the constraint on

the optimal portfolio choice of the monopolistic arbitrageur, one should analyze the 2-period

subgame in which the constraint affects the optimal trades, given the gap g0 and the positions

she has after trading at date 0, M0 and x0, and then consider the portfolio choice problem

at date 0. However, on the unconstrained equilibrium path the gap converges to zero, i.e.

g1 − g0 < 0, and (2.8) is always satisfied. Given that arbitrageur can never achieve higher

utility in the constrained portfolio choice problem than in the unconstrained problem, but

the unconstrained optimum is feasible when incorporating the constraint, it does not affect

the equilibrium holdings and gap for a monopolistic arbitrageur.

2.7.2 Optimal trading of the duopoly

Following the same footsteps as with the monopoly, first I solve the problem without the

wealth constraint.

Proof of Proposition 15. Arbitrageur i’s optimization program, i = 1, 2, is given by

max
{xit}2

t=0

W i
3 = M i +

2∑
t=0

gt
(
xit
) (
xit − xit−1

)
, (2.17)

where gt = gt−1 − λ
(
xit − xit−1

)
− λ

(
x−it − x−it−1

)
for t = 0, 1, 2 and g−1 ≡ g. In period 2 it is

given by

max
xi2

W i
3 = M i

1 + g2

(
xi2
) (
xi2 − xi1

)
= M i

1 +
(
g1 − λ

(
xi2 − xi1

)
− λ

(
x−i2 − x

−i
1

)) (
xi2 − xi1

)
,

97



and the FOCs yield

xi2 − xi1 = x−i2 − x
−i
1 =

1

3λ
g1 and g2 =

1

3
g1. (2.18)

Moreover,W i
3 = M i

1+g2

(
xi2 − xi1

)
= M i

1+ 1
9λg

2
1. Going back one more period the optimization

problem becomes

max
xi1

W i
3 = M i

1 +
1

9λ
g2

1

= M i
0 +

(
g0 − λ

(
xi1 − xi0

)
− λ

(
x−i1 − x

−i
0

)) (
xi1 − xi0

)
+

1

9λ

(
g0 − λ

(
xi1 − xi0

)
− λ

(
x−i1 − x

−i
0

))2
,

and the FOC yields xi1−xi0 = x−i1 −x
−i
0 = 7

23λg0. Therefore, g1 = 9
23g0, andW i

3 = M i
0+ 72

232λ
g2

0.

Going back to the date 0 optimization, it becomes

max
xi0

W i
3 = M i

0 +
72

232λ
g2

0 = M i +
(
g − λxi0 − λx−i0

)
xi0 +

72

232λ

(
g − λxi0 − λx−i0

)2
,

so the FOC yields xi0 = x−i0 = 385
1299λg. Therefore, g0 = 529

1299g, which implies that the duopoly

gradually provides liquidity in the local markets: xi0 = 385
1299λg, x

i
1 = 182

433λg, and x
i
2 = 205

433λg,

for i = 1, 2,and the gap’s evolution is given by g0 = 529
1299g, g1 = 69

433g, and g2 = 23
433g.

Next I consider the case with the wealth constraint. First I characterize the optimal

trades in period 2 conditional on the status of the two agents, and derive the value functions

given the states and positions.

Suppose that the positions before trade happens at date 2 are M i
1 and xi1, and M−i1

and x−i1 , for agents i and −i in the riskless and the risky assets, respectively. As a reminder,

subscript {t, jk} refers to time period t and status of traders i and −i, respectively, where the

date 2 state can take two values: j, k ∈ {s, l}, i.e. solvency or liquidation, and it corresponds

to whether the agents satisfied or violated the wealth constraint. For example, g2,sl

(
xi1, x

−i
1

)
denotes the gap in period 2 as a function of the position xi1 of the arbitrageur who remains

solvent and the position x−i1 of the arbitrageur who is liquidated.

The following propositions state the optimal trades, equilibrium gaps and value functions

in three possible cases at date 2. First, I restate a previous result without proof for the ss

state, then I solve for the equilibria of the sl and ll states.
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Proposition 28 In period 2, conditional on both agents being solvent, the first-best trade

orders and equilibrium gap are given by

xi2,ss − xi1,ss =
1

3λ
g1 for i = 1, 2, and g2,ss =

1

3
g1. (2.19)

Proof. Straightforward from (2.18). It also results in a continuation value function of

V1,ss

(
M i

1, x
i
1,M

−i
1 , x−i1

)
= M i

1 + 1
9λg

2
1.

Proposition 29 In period 2, conditional on agent i being solvent and −i being liquidated,

the first-best trade order and the equilibrium gap are given by

xi2,sl
(
xi1, x

−i
1

)
= xi1 +

1

2λ

(
g1 + λx−i1

)
, xi2,ls = 0 and g2,sl

(
xi1, x

−i
1

)
=

1

2

(
g1 + λx−i1

)
. (2.20)

Proof. The optimization problem of agent i is the same as in the ss case as she remains

solvent, which yields the same FOC

0 = g1 − 2λ
(
xi2 − xi1

)
− λ

(
x−i2 − x

−i
1

)
. (2.21)

As agent −i has to close her position, x−i2,ls = 0. Substituting into (2.21), it becomes

xi2,sl = xi1 +
1

2λ

(
g1 + λx−i1

)
,

and the gap is

g2,sl

(
xi1, x

−i
1

)
=

1

2

(
g1 + λx−i1

)
.

The value functions for the two agents are V1,sl

(
M i

1, x
i
1,M

−i
1 , x−i1

)
= M i

1 + 1
4λ

(
g1 + λx−i1

)2
,

and V1,ls

(
M i

1, x
i
1,M

−i
1 , x−i1

)
= M i

1 − 1
2

(
g1 + λxi1

)
xi1.

Proposition 30 In period 2, conditional on both agents being liquidated, the trade orders

and the equilibrium gap are given by

xi2,ll = 0 and g2,ll = g1 + λ
(
xi1 + x−i1

)
. (2.22)

The value functions are V1,ll

(
M i

1, x
i
1,M

−i
1 , x−i1

)
= M i

1 −
(
g1 + λ

(
xi1 + x−i1

))
xi1, i = 1, 2.
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Suppose now that Ma/xa0 > M c/xc0, hence we can define

x ≡ xa0 + xc0 −
1

λ

M c

xc0
> x ≡ xa0 + xc0 −

1

λ

Ma

xa0

as the thresholds on trades at date 1 that change the state of the world for arbitrageurs. It

implies that at date 1 arbitrageur i faces the following optimization problem:

max
x

M i
0 + g1 (x)

(
x− xi0

)
+ 1Mi

xi0

,M
−i

x−i0

≥g1(x)−g0

1

9λ
g1 (x)2 + 1Mi

xi0

≥g1(x)−g0>
M−i
x−i0

1

4λ

(
g1 (x) + λx−i1

)2
− 1M−i

x−i0

≥g1(x)−g0>
Mi

xi0

1

2
(g1 (x) + λx)x− 1Mi

xi0

,M
−i

x−i0

<g1(x)−g0

(
g1 (x) + λ

(
x+ x−i1

))
x,

where I have combined the continuation values for the four states of the world, given above.

From here it is easy to show that the FOCs become

0 = g1 − λ (xa1 − xa0)− 2

9
g1 if xa1 > x− xc1,

0 ≥ g1 − λ (xa1 − xa0)− 2

9
g1 if xa1 = x− xc1,

0 = g1 − λ (xa1 − xa0)− 1

2
(g1 + λxc1) if x− xc1 > xa1 > x− xc1,

0 ≥ g1 − λ (xa1 − xa0)− 1

2
(g1 + λxc1) if xa1 = x− xc1,

0 = g1 − λ (xa1 − xa0)− (g1 + λ (xa1 + xc1)) if xa1 < x− xc1

for the aggressive trader and

0 = g1 − λ (xc1 − xc0)− 2

9
g1 if xc1 > x− xa1,

0 ≥ g1 − λ (xc1 − xc0)− 2

9
g1 if xc1 = x− xa1,

0 = g1 − λ (xc1 − xc0)− 1

2
(g1 + λxc1) if x− xc1 > xc1 > x− xa1,

0 ≥ g1 − λ (xc1 − xc0)− 1

2
(g1 + λxc1) if xc1 = x− xa1,

0 = g1 − λ (xc1 − xc0)− (g1 + λ (xc1 + xa1)) if xc1 < x− xa1

for the cautious trader. Combining these gives the following cases:
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• Suppose xa1 + xc1 > x, then the FOCs yield

xa1 − xa0 = xc1 − xc0 =
7

23λ
g0.

The condition xa1 + xc1 ≥ x is equivalent to

M c ≥ −14

23
g0x

c
0,

which always holds.

• Supposexa1 + xc1 = x, hence the FOCs simplify to

xa1 − xa0 ≥
7

9λ

(
g0 +

M c

xc0

)
and xc1 − xc0 ≥

7

9λ

(
g0 +

M c

xc0

)
.

It implies that

g1 = g0 − λ [xa1 + xc1 − (xa0 + xc0)] ≤ −
(

5

9
g0 +

14

9

M c

xc0

)
< 0

which cannot happen if M c/xc0 > 0.

• Suppose we have x > xa1 + xc1 > x, which implies that

xa1 − xa0 = xc1 − xc0 =
1

5λ
(g0 − λxc0) ,

hence

g1 = g0 −
2

5
(g0 − λxc0) ,

and it must be that

0 <
M c

xc0
< −2

5
(g0 − λxc0) ≤ Ma

xa0
.

• Suppose xa1 + xc1 = x, then the FOCs become

xa1 +
1

2
xc1 ≥

1

2λ

(
g0 +

Ma

xa0

)
+ xa0
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and

xc1 ≥
1

3λ

(
g0 +

Ma

xa0

)
+

2

3
xc0.

Also it must be that xa1 + xc1 = x = xa0 + xc0 − 1
λ
Ma

xa0
.

• Finally, suppose xa1 + xc1 < x, then we have

xa1 − xa0 = xc1 − xc0 = −1

3
(xa0 + xc0) ,

and it requires xa1 + xc1 < x, i.e.

0 <
M c

xc0
<
Ma

xa0
<

2

3
λ (xa0 + xc0) .

These conditions describe the locally optimal trades and the trivial constraints on the

proportion of wealth invested, presented in Propositions 20-22. What is left is to check

whether they are globally optimal too, i.e. whether any arbitrageur wants so deviate while

changing the state too.

Optimal trading conditional on getting to state ss

There is no candidate equilibrium with the constraint binding for arbitrageur c. Besides the

above requirements on arbitrageur capital, in an equilibrium with not binding constraints it

must also be checked whether arbitrageur a would like to deviate and trigger the bankruptcy

of arbitrageur c. This is because agent c’s position in the first best solution is not equivalent

to full liquidation, thus it might be profitable for agent a to trigger agent c’s bankruptcy.

For this, suppose that arbitrageur a deviates so that she remains solvent but arbitrageur c is

liquidated. She is better off if and only if

V1,sl

(
Ma

0 + g1 (xa1 − xa0) , xa1,M
c
0 + g1

(
xc1,nn − xc0

)
, xc1,nn

)
> V1,ss

(
Ma

0 + g1,nn

(
xa1,nn − xa0

)
, xa1,nn,M

c
0 + g1,nn

(
xc1,nn − xc0

)
, xc1,nn

)
,

that is if her utility from getting into state sl with positions Ma
0 + g1 (xa1 − xa0) and xa1 in the

riskless and the risky assets, respectively, is higher than the utility she derives in state ss from
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holding positionsMa
0 +g1,nn

(
xa1,nn − xa0

)
and xa1,nn (which are the locally optimal holdings in

that state), while assuming that arbitrageur c stays with the equilibrium holding xc1,nn. After

some algebra, she is better off deviating iff xa1 ∈
(
xann,nv − δann,nv, xann,nv + δann,nv

)
, where

xann,nv =
3

23λ
g0 + xa0 +

1

3
xc0,

and

δann,nv =
2

3λ

√√√√(15− 2
√

6

23
g0 + λxc0

)(
15 + 2

√
6

23
g0 + λxc0

)
.

Given g0 ≥ 0 and the assumption xc0 > 0, the discriminant is non-negative and δann,nv exists.

As arbitrageur 1 can only push arbitrageur 2 into liquidation by increasing the gap while

making sure she does not get liquidated, i.e. by choosing a trade

− 1

λ
Ma/xa0 −

(
xc1,nn − xc0

)
≤ xa1 − xa0 < −

1

λ
M c/xc0 −

(
xc1,nn − xc0

)
,

her deviation can increase her utility if and only if both − 1
λM

a/xa0−
(
xc1,nn − xc0

)
< xann,nv −

xa0 + δann,nv and xann,nv − xa0 − δann,nv < − 1
λM

c/xc0 −
(
xc1,nn − xc0

)
hold. Hence a simple

reorganization of these inequalities implies that a necessary condition for the existence of the

equilibrium is that either Ma/xa0 ≤ −10
23g0 + 1

3λx
c
0 − λδann,nv or M c/xc0 ≥ −10

23g0 + 1
3λx

c
0 +

λδann,nv. As M
a/xa0 > 0, it must be that M c/xc0 ≥ ∆a

nn,nv ≡ −10
23g0 + 1

3λx
c
0 + λδann,nv.

Optimal trading conditional on getting to state sl

To check whether an equilibrium with arbitrageur a being solvent and arbitrageur c having to

liquidate exists, it must be checked whether arbitrageur c would prefer to change her trading

speed and remain solvent, whether she would prefer to force arbitrageur 1 to distress, or

whether the constrained arbitrageur a would prefer to liquidate.

Equilibrium with non-binding constraint The possible deviations are when arbitrageur

c forces arbitrageur a into distress, or when arbitrageur c rescues herself. As the constraint

might not bind in equilibrium when arbitrageurs start with different positions, it must also
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be checked whether arbitrageur c wants to trigger the distress of arbitrageur a while rescuing

herself.

Agent c forces agent a into liquidation. Arbitrageur c is better off forcing the

liquidation or arbitrageur a iff

V1,ll

(
M c

0 + g1 (xc1 − xc0) , xc1,M
a
0 + g1

(
xa1,nv − xa0

)
, xa1,nv

)
> V1,ls

(
M c

0 + g1,nv

(
xc1,vn − xc0

)
, xc1,vn,M

a
0 + g1

(
xa1,nv − xa0

)
, xa1,nv

)
,

that is if her utility from getting into state ll with positions M c
0 + g1 (xc1 − xc0) and xc1 in the

riskless and the risky assets, respectively, is higher than the utility she derives in state ls from

holding positions M c
0 + g1,nv

(
xc1,vn − xc0

)
and xc1,vn (which are actually the optimal holdings

in that state), while assuming that arbitrageur a stays with the equilibrium holding xa1,nv.

After some algebra, she is better off deviating iff xc1 ∈
(
xcnv,vv − δcnv,vv, xcnv,vv + δcnv,vv

)
, where

xcnv,vv = −1

2
xa0 +

3

5
xc0 −

1

10λ
g0,

and

δcnv,vv =
1√
3λ

√(
1

10
g0 −

1

2
λxa0 +

7

5
λxc0

)(
− 9

10
g0 −

3

2
λxa0 −

3

5
λxc0

)
,

with the discriminant being negative (hence a deviation cannot increase her utility) iff

0 < xa0 <
1

5λ
g0 +

14

5
xc0.

Suppose that the discriminant is non-negative and hence δcnv,vv exists.

Since xa0 > 0, arbitrageur c can push arbitrageur a into liquidation by increasing the

gap, i.e. by choosing a trade xc1 − xc0 < − 1
λM

a/xa0 −
(
xa1,nv − xa0

)
. She can deviate while

increasing her utility if and only if − 1
λM

a/xa0 −
(
xa1,nv − xa0

)
> x2

nv,vv − xc0 − δcnv,vv. Hence a

simple reorganization of this inequality implies that in equilibrium it must be that Ma/xa0 ≥

− 1
10g0 + 1

2λx
a
0 + 3

5λx
c
0 + λδcnv,vv. Notice that as x

c
0 > 0, arbitrageur c will remain distressed

when pushing arbitrageur a into bankruptcy, and hence no other condition is needed.
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Agent c rescues herself. Arbitrageur c is better off rescuing herself iff

V1,ss

(
M c

0 + g1 (xc1 − xc0) , xc1,M
a
0 + g1

(
xa1,nv − xa0

)
, xa1,nv

)
> V1,ls

(
M c

0 + g1,nv

(
xc1,vn − xc0

)
, xc1,vn,M

a
0 + g1

(
xa1,nv − xa0

)
, xa1,nv

)
,

that is if her utility from getting into state ss with positions M c
0 + g1 (xc1 − xc0) and xc1 in the

riskless and the risky assets, respectively, is higher than the utility she derives in state ls from

holding positionsM c
0 +g1,nv

(
xc1,vn − xc0

)
and xc1,vn (which are actually the optimal holdings in

that state), while assuming that arbitrageur a stays with the equilibrium holding xa1,nv. After

some tedious algebra, she is better offdeviating iffxc1 ∈
(
xcnv,nn − δcnv,nn, xcnv,nn + δcnv,nn

)
with

xcnv,nn =
7

20λ
g0 +

87

80
xc0 and

δcnv,nn =
3
√

457

80λ

√√√√(228 + 20
√

2

457
g0 + λxc0

)(
228− 20

√
2

457
g0 + λxc0

)
.

Given g0 ≥ 0 and the assumption xc0 > 0, the discriminant is non-negative and δ2
nv,nn exists.

Since xa0, x
c
0 > 0, arbitrageur c can rescue herself by shrinking the gap, i.e. by choosing a

trade xc1 − xc0 ≥ − 1
λM

c/xc0 −
(
xa1,nv − xa0

)
. She can deviate while increasing her utility if and

only if − 1
λM

c/xc0−
(
xa1,nv − xa0

)
< xcnv,nn−xc0 + δcnv,nn. Hence a simple reorganization of this

inequality implies that in equilibrium it must be that M c/xc0 ≤ −11
20g0 + 9

80λx
c
0 − λδcnv,nn.

Summary for unconstrained sl equilibrium. Combining the initial constraints that

are based on the equilibrium price and the above constraints regarding potential deviations

yields that the unconstrained sl equilibrium exists if 0 < M c/xc0 ≤ ∆c
nv,nn and M

a/xa0 ≥

∆c
nv,vv, where ∆c

nv,nn = −11
20g0 + 9

80λx
c
0 − λδcnv,nn and

∆c
nv,vv = max

{
−2

5

(
g0 − λx2

0

)
;− 1

10
g0 +

1

2
λxa0 +

3

5
λxc0 + λδcnv,vv

}
.

Equilibrium with binding constraint The possible deviations from the equilibrium

trades are when arbitrageur c either forces arbitrageur a into distress or rescues herself,
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and when arbitrageur a decides to liquidate.

Agent c forces agent a into liquidation. Arbitrageur c is better off forcing the

liquidation or arbitrageur 1 iff

V1,ll

(
M c

0 + g1 (xc1 − xc0) , xc1,M
a
0 + g1

(
xa1,bv − xa0

)
, xa1,bv

)
> V1,ls

(
M c

0 + g1,bv

(
xc1,vb − xc0

)
, xc1,vb,M

a
0 + g1

(
xa1,bv − xa0

)
, xa1,bv

)
,

that is if her utility from getting into state ll with positions M c
0 + g1 (xc1 − xc0) and xc1 in

the riskless and the risky assets, respectively, is higher than the utility she derives in state

ls from holding positions M c
0 + g1,bv

(
xc1,vb − xc0

)
and xc1,vb (which are actually the optimal

holdings in that state), while assuming that arbitrageur a stays with the equilibrium holding

xa1,bv. After some algebra, she is better off deviating iff x
c
1 ∈

(
xcbv,vv − δ

c
bv,vv, x

c
bv,vv + δcbv,vv

)
,

where

xcbv,vv =
1

6λ
g0 −

1

2
xa0 +

1

3
xc0 +

2

3λ

Ma

xa0
, and

δcbv,vv =
1√
3λ

√(
Ma

xa0
+

1

2
g0 −

1

2
λxa0 + λxc0

)(
Ma

xa0
−
(

1

2
g0 +

3

2
λxa0 + λxc0

))
,

with the discriminant being negative (hence a deviation cannot increase her utility) iff

−1

2
g0 +

1

2
λxa0 − λxc0 <

Ma

xa0
<

1

2
g0 +

3

2
λxa0 + λxc0.

Suppose now that the discriminant is non-negative and hence δcbv,vv exists. As x
a
0, x

a
0 > 0,

arbitrageur c can push arbitrageur a into liquidation by increasing the gap, i.e. by choosing

a trade xc1 < xc1,vb. She can deviate while increasing her utility if and only if x
c
1,vb > xcbv,vv −

δcbv,vv. A simple reorganization of this inequality implies that a necessary condition for the

equilibrium is Ma/xa0 + g0 + 2λxc0 ≤ 0, which cannot happen. Therefore the equilibrium can

only exist if −1
2g0 + 1

2λx
a
0 − λxc0 < Ma/xa0 <

1
2g0 + 3

2λx
a
0 + λxc0.
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Agent a decides to liquidate. She is better off triggering her own liquidation iff

V1,ll

(
Ma

0 + g1 (xa1 − xa0) , xa1,M
c
0 + g1,bv

(
xc1,vb − xc0

)
, xc1,vb

)
> V1,sl

(
Ma

0 + g1

(
xa1,bv − xa0

)
, xa1,bv,M

c
0 + g1,bv

(
xc1,vb − xc0

)
, xc1,vb

)
,

that is if her utility from getting into state ll with positions Ma
0 + g1 (xa1 − xa0) and xa1 in

the riskless and the risky assets, respectively, is higher than the utility she derives in state

ls from holding positions Ma
0 + g1

(
xa1,bv − xa0

)
and xa1,bv (which are the optimal holdings in

that state), while assuming that arbitrageur c stays with the equilibrium holding xc1,vb. After

some algebra, she is better off deviating iff xa1 ∈
(
xabv,vv − δ

a
bv,vv, x

a
bv,vv + δabv,vv

)
, where

xabv,vv = −1

2

(
1

3λ

Ma

xa0
+

1

3λ
g0 − xa0 +

2

3
xc0

)
, and

δabv,vv =
1

2λ

√(
Ma

xa0
+ g0 + λxa0

)(
11

3

Ma

xa0
− 1

3
g0 − 3λxa0 −

8

3
λxc0

)
,

with the discriminant being negative (hence a deviation cannot increase her utility) iff

0 <
Ma

xa0
<

1

11
g0 +

9

11
λxa0 +

8

11
λxc0.

Suppose that the discriminant is non-negative and hence δabv,vv exists.

As xa0, x
c
0 > 0, arbitrageur a can trigger her own liquidation by increasing the gap, i.e. by

choosing a trade xa1 < xa1,bv. She can deviate while increasing her utility if and only if x
a
1,bv >

xabv,vv−δ
a
bv,vv. A simple reorganization of this inequality implies that a necessary condition for

the equilibrium is thus either 0 < Ma/xa0 <
1
11g0 + 9

11λx
a
0 + 8

11λx
c
0 or

1
11g0 + 9

11λx
a
0 + 8

11λx
c
0 ≤

Ma/xa0 ≤ −1
7g0 + 3

7λx
a
0 + 4

7λx
c
0. As this latter would also imply 3g0 + 5λxa0 + 2λxc0 ≤ 0, which

never holds, therefore the equilibrium only exists if 0 < Ma/xa0 <
1
11g0 + 9

11λx
a
0 + 8

11λx
c
0.

Agent c rescues herself. Arbitrageur c is better off rescuing herself iff

V1,ss

(
M c

0 + g1 (xc1 − xc0) , xc1,M
a
0 + g1

(
xa1,bv − xa0

)
, xa1,bv

)
> V1,ls

(
M c

0 + g1,bv

(
xc1,vb − xc0

)
, xc1,vb,M

a
0 + g1

(
xa1,bv − xa0

)
, xa1,bv

)
,
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that is if her utility from getting into state ss with positions M c
0 + g1 (xc1 − xc0) and xc1 in the

riskless and the risky assets, respectively, is higher than the utility she derives in state ls from

holding positionsM c
0 +g1,bv

(
xc1,vb − xc0

)
and xc1,vb (which are actually the optimal holdings in

that state), while assuming that arbitrageur a stays with the equilibrium holding xa1,bv. After

some tedious algebra, she is better off deviating iff xc1 ∈
(
xcbv,nn − δ

c
bv,nn, x

c
bv,nn + δcbv,nn

)
with

xcbv,nn =
7

12λ

(
g0 +

Ma

xa0

)
+

41

48
xc0 and

δcbv,nn =

√
7

4λ

√√√√(Ma

xa0
+ g0 +

23 + 3
√

2

14
λxc0

)(
Ma

xa0
+ g0 +

23− 3
√

2

14
λxc0

)
,

where xa0, x
c
0 > 0 implies that the discriminant is non-negative and hence δ2

bv,nn exists.

As xc0 > 0, arbitrageur c can rescue herself by shrinking the gap, i.e. by choosing a trade

xc1 − xc0 ≥ − 1
λM

c/xc0 −
(
xa1,bv − xa0

)
. She can deviate while increasing her utility if and only

if − 1
λM

c/xc0 −
(
xa1,bv − xa0

)
< xcbv,nn − xc0 + δcbv,nn. A simple reorganization of this inequality

implies that a necessary condition for the equilibrium is M c/xc0 ≤ 3
4M

a/xa0 − 1
4g0 − 3

16λx
c
0 −

λδcbv,nn.

However, given M c/xc0 > 0, it should be that λδcbv,nn <
3
4M

a/xa0 − 1
4g0 − 3

16λx
c
0. After

substituting in for δcbv,nn and using that M
a/xa0 > 0 as well, it can be shown that it cannot

hold. Therefore agent c always rescues herself, and a constrained sl equilibrium thus never

happens.

Optimal trading conditional on getting to state ll

As it is shown below, it is enough to consider the possible deviation when arbitrageur 1 rescues

herself, as it already implies there is no equilibrium with both agents becoming distressed.

Arbitrageur a rescues herself. If, for example, it is shown that arbitrageur a deviates,

there is no equilibrium with double liquidation at all. She is better off rescuing herself iff

V1,sl

(
Ma

0 + g1 (xa1 − xa0) , xa1,M
c
0 + g1

(
xc1,vv − xc0

)
, xc1,vv

)
> V1,ll

(
Ma

0 + g1,vv

(
xa1,v − xa0

)
, xa1,vv,M

c
0 + g1,vv

(
xc1,vv − xc0

)
, xc1,vv

)
,
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that is if her utility from getting into state sl with positions Ma
0 + g1 (xa1 − xa0) and xa1 in the

riskless and the risky assets, respectively, is higher than the utility she derives in state ll from

holding positions Ma
0 + g1,vv

(
xa1,v − xa0

)
and xa1,vv (which are actually the optimal holdings

in that state), while assuming that arbitrageur 2 stays with the equilibrium holding xc1,vv.

After some, she is better off deviating iff xa1 ∈
(
xavv,nv − δavv,nv, xavv,nv + δavv,nv

)
with

xavv,nv = xa0 +
1

3λ

(
g0 +

2

3
λxa0 −

1

3
λxc0

)

and

δavv,nv =
2

3λ

∣∣∣∣g0 +
5

3
λxa0 +

2

3
λxc0

∣∣∣∣ .
As xa0, x

c
0 > 0, agent a has to decrease the gap, i.e. buy more (or short less) to make sure

Ma/xa0 ≥ g1 − g0, and for this she needs a trade of xa1 ≥ − 1
λM

a/xa0 − xc1,vv. Combining

with the other condition yields that she can deviate iff − 1
λM

a/xa0 − xc1,vv < xavv,nv + δavv,nv.

However, as this constraint is equivalent to 0 < g0 + λxa0 + Ma/xa0, which always holds as

all three components are non-negative, arbitrageur a always deviates and thus there is no

equilibrium with both agents getting liquidated.
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2.7.3 Trading under predatory threat

As mentioned in the main part of the chapter, the optimization programs of arbitrageurs

with these constraints becomes diffi cult to solve in closed form (it includes solving 4th order

equations). Thus, I provide some preliminary analysis in the following three Lemmas to

decrease the potential set of equilibria, and then I solve the remaining problem numerically.

First, it is easy to see that:

Claim 31 There exists no equilibrium without trading at date 0.

This Lemma is rather intuitive. If, for example, arbitrageur 1 does not trade in period

0, arbitrageur 2 is better off investing a little into the arbitrage opportunity that staying out

completely, as long as her trade satisfies (2.13). Given the assumption M2 > 0, there exists

a suffi ciently small x2
0 such that it is possible.

Similarly:

Claim 32 There exists no equilibrium with only one arbitrageur trading at date 0.

If, for example, arbitrageur 1 does trade in period 0, arbitrageur 2 can take an arbitrarily

small position such that M2/x2
0 > M1/x1

0. It implies that she becomes the aggressive agent,

and as there is no equilibrium in which both arbitrageurs are liquidated, she will never be

liquidated. As there is no threat of predation on her, investing is strictly better than staying

out, as it is a fundamentally riskless arbitrage opportunity.

Finally:

Claim 33 There is no equilibrium with any agent having xi0 < 0.

First, an agent cannot have xi0 < 0 and become liquidated later, because in this case

not trading at date 0 would make her better off for two reasons: she can trade freely later;

moreover, liquidation means closing positions that one has built up previously. Second, if and

agent has xi0 < 0 and she uses it to force the other trader to liquidation, arbitrageur −i can

decide to withdraw from trading in the first period, with which she stays solvent, moreover

faces a better investment opportunity, because the effective gap for her is even larger than

before.
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Therefore, it must be that in equilibrium x1
0, x

2
0 > 0. Suppose now that under their

trades arbitrageurs end up in an unconstrained ss equilibrium. Going back to the date 0

optimization, arbitrageur i’s optimization problem becomes

max
xi0

W i
3 = M i

0 +
72

232λ
g2

0 = M i +
(
g − λxi0 − λx−i0

)
xi0 +

72

232λ

(
g − λxi0 − λx−i0

)2
, (2.23)

so the FOC yields x1
0 = x2

0 = (1/λ)αg > 0 with α = 385
1299 . Therefore, g0 = (1− 2α) g = 529

1299g,

and the optimal holdings and the equilibrium gap are as in the model with no constrained,

in Proposition 15. This yields a utility of V
(
M i
)

= M i + g0x
i
0 + 72

232λ
g2

0 = M i + 1
λ∆g2 with

∆ = (1− 2α)α+ 72
232 (1− 2α)2.

When is it an equilibrium in presence of the wealth constraint? First, it must satisfy the

conditions derived in Appendix 2.7.2. The equilibrium candidate order and gap

x2
0 =

385

1299λ
g and g0 =

529

1299
g

satisfy

x2
0 >

2
(√

233− 15
)

23λ
g0,

hence it must be that
M1

x1
0

,
M2

x2
0

≥ −10

23
g0 +

1

3
λx2

0 + λδ1
nn,nv,

which is equivalent to

M1,M2 ≥ 1

λ
Ωg2

with

Ω ≡ α

−10

23
+

83

69
α+

2

3

√√√√(15− 2
√

6

23
(1− 2α) + α

)(
15 + 2

√
6

23
(1− 2α) + α

)
=

385
(
4
√

130051− 305
)

3 ∗ 12992
> 0.

Second, it must be that none of the agents want to deviate from this profile and change the

state. As having to liquidate puts a constraint on the strategy space of an arbitrageur, none

of the arbitrageurs want to change the state in order to trigger her own distress. Therefore
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the only deviation one has to check is triggering the liquidation of the other arbitrageur.

I confirm it numerically that as long as arbitrageurs trade such that they satisfy (2.13), it

would be too costly for any trader to go long the gap and trigger the liquidation of the

other arbitrageur. Therefore the equilibrium trades are those obtained from (2.23), subject

to (2.13). This concludes the solution.
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Figure 2-1: Equilibrium gap path and the optimal holdings of the monopoly in the arbitrage
opportunity over time.

0 1 2 3

2

4

6

8

10

12

x t, g
t

t

monopoly holdings
gap

The dashed line shows the evolution of the gap and the solid line shows the evolution of the
position of the monopolist arbitrageur as a function of time. The monopoly provides liquidity
to local markets by trading at dates 0, 1 and 2, and the gap disappears at date 3 and remains
closed thereafter. The model parameters are set to g = 10 and λ = 1.
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Figure 2-2: Equilibrium gap path and the optimal holdings of the duopoly over time.

0 1 2 3

2

4

6

8

10

12

xi t, g
t

t 0 1 2 3

2

4

6

8

10

12

g t

t

duopoly holdings
gap

monopoly gap
duopoly gap

The left panel plots the evolution of the gap (dashed line) and the position of an unconstrained
duopolist arbitrageur (solid line) as a function of time. The right panel compares the gap
when a single arbitrageur (solid line) or two unconstrained arbitrageurs (dashed line) provide
liquidity in local markets. The duopoly provides liquidity to local markets by trading at
dates 0, 1 and 2, and the gap disappears at date 3 and remains closed thereafter. The model
parameters are set to g = 10 and λ = 1.
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Figure 2-3: The utility of the aggressive arbitrageur as a function of her trade at date 1.
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The utility of the aggressive arbitrageur as a function of her trade at date 1, xa1, while holding
the cautious arbitrageur’s date-1 trade constant at xc1 = 0. The figure illustrates that the
optimal strategy is to go short in the gap, and in this case both arbitrageurs remain solvent.
The parameters are set to g0 = 3, λ = 1, Ma = 8, M c = 10, xa0 = 1, xc0 = 3.
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Figure 2-4: The utility of the aggressive arbitrageur as a function of her trade at date 1.

­8 ­6 ­4 ­2 0 2 4 6 8
­80

­60

­40

­20

0

20

40

ut
ilit

y

xa
1

locally  optimal
f or state ss

locally  optimal
f or state ll

locally  optimal
f or state sl

globally  optimal
portf olio

The utility of the aggressive arbitrageur as a function of her trade at date 1, xa1, while holding
the cautious arbitrageur’s date-1 trade constant at xc1 = 3. The figure illustrates that the
optimal strategy is to go long in the gap and force the cautious arbitrageur into distress. The
parameters are set to g0 = 3, λ = 1, Ma = 8, M c = 10, xa0 = 1, xc0 = 3.
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Figure 2-5: Capital thresholds for the different types of equilibria.
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The horizontal axis plots the inverse of the proportion of capital invested in the arbitrage
opportunity by the aggressive arbitrageur,Ma/xa0, and the vertical axis plots the same for the
cautious arbitrageur, M c/xc0. When both agents have low proportion of wealth invested in
the risky assets, top right region, the wealth constraint does not affect arbitrage trading and
the gap path, and an sl equilibrium exists. When arbitrageur a has a much lower proportion
of wealth invested in the arbitrage opportunity that arbitrageur c, bottom left region, there
exists an sl equilibrium. The aggressive arbitrageur predates on the cautious by widening
the gap at date 1, and shorting it after the liquidation, at date 2. For other possible levels
of proportion of capital invested in the arbitrage that satisfy Ma/xa0 ≥ M c/xc0 there is no
equilibrium.
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Figure 2-6: Capital thresholds in the four different cases when arbitrageurs are subject to
wealth constraints.
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The horizontal axis plots the starting capital of arbitrageur 1, M1, and the vertical axis plots
the starting capital of arbitrageur 2, M2. When both agents have large initial capital to
invest, Region I, the wealth constraint does not affect arbitrage trading and the gap path.
When at least one arbitrageur has a low capital level to start with, while the other has
relatively more, i.e. Regions II and III, the wealth constraint affects the arbitrage positions
but the gap path is close to the gap of the unconstrained case. Finally, when both arbitrageur
have similarly low capital level to start with, Region IV, both arbitrageurs trade very little
initially and the gap remains large. The model parameters are set to g = 10 and λ = 1,
which imply that the threshold for Region I is approximately 1

λΩg2 ≈ 8.651.
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Figure 2-7: Equilibrium gap path and the optimal holdings of the duopoly in the arbitrage
opportunity over time.
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The dotted line shows the evolution of the gap, and the dotted/dashed lines show the evolution
of the positions of the constrained duopolist arbitrageurs as a function of time, when their
initial capital levels M1 and M2 are significantly different from each other. To contrast, the
dashed line shows the evolution of the gap and the solid line shows the evolution of the
positions when the duopoly is unconstrained, as on Figure 2-2. Trading happens at dates 0, 1
and 2, and the gap disappears at date 3 and remains closed thereafter. The model parameters
are set to g = 10, λ = 1, M1 > 7.18 and M2 = 5.
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Figure 2-8: Equilibrium gap path and the optimal holdings of the duopoly in the arbitrage
opportunity over time.
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The dotted line shows the evolution of the gap, and the dotted/dashed lines show the evo-
lution of the positions of the constrained duopolist arbitrageurs as a function of time, when
their initial capital levels M1 and M2 are similar. To contrast, the dashed line shows the
evolution of the gap and the solid line shows the evolution of the positions when the duopoly
is unconstrained, as on Figure 2-2. Trading happens at dates 0, 1 and 2, and the gap dis-
appears at date 3 and remains closed thereafter. The model parameters are set to g = 10,
λ = 1, M1 = 1.17 and M2 = 0.9.
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Chapter 3

On the uniqueness of equilibrium in

the Grossman-Stiglitz noisy REE

model

3.1 Introduction

In their seminal paper, Grossman and Stiglitz (1980) present a framework for a noisy rational

expectations economy (REE), which since became a workhorse model studying asymmetric

information in competitive financial markets. The basic purpose of the model is to resolve

the paradox of fully revealing equilibria in models of asymmetric information: in such envi-

ronments, prices would perfectly transmit the information of informed traders to uninformed

ones, and therefore would imply that the value of information is zero. In their paper, they

propose a model of asymmetric information and an equilibrium of the model, in which prices

reflect the information of informed individuals, but only partially. Those who spend resources

to obtain information do receive compensation from others without the information.

The standard Grossman and Stiglitz method, which has become widely used in models of

asymmetric information, draws heavily on the fact that random variables are jointly normally

distributed and investors have exponential (i.e. CARA) utilities, as it allows to work with

linear demand functions and an equilibrium price function linear in state variables. However,

the question whether there exist other equilibria of their model, which are potentially both
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less tractable and less appealing in their predictions, remains. In this chapter, which is joint

work with Dömötör Pálvölgyi, we seek to explore this issue.

The main contribution of the chapter is to show that the model proposed by Grossman

and Stiglitz indeed has a unique equilibrium when allowing for any continuous equilibrium

price function, linear or not. Our solution method is different from the usual "conjecture and

verify" approach, where the conjecture about a specific functional form of price naturally

imposes limitations on the proof, and only allows to study existence and uniqueness in a

particular class of functions. Here we propose a simple proof to show that no equilibrium

besides the linear class can exist for this model, which hence complements the usual technique

and leads to the conclusion that the unique equilibrium in the linear class of the Grossman

and Stiglitz model is actually the sole equilibrium in the broader class of all continuous price

functions as well.

Moreover, we show that relaxing the assumption of continuous prices leads to multiplicity

in the possible equilibrium price functions. In particular, we provide an algorithm to create a

(non-continuous) equilibrium price that is different from the Grossman-Stiglitz price function

on a zero-measure set.

The noise in the REE proposed by Grossman and Stiglitz serves the purpose of reveal-

ing information only partially, therefore this chapter naturally belongs to the literature on

partially-revealing rational expectations equilibria. Although the theory of fully-revealing

REE is largely complete, with many studies on the generic existence and uniqueness, and

some non-generic examples of non-existence (see, for example, Radner (1979), and Jordan

(1982, 1983)), we know much less about partially-revealing REEs. Previous studies were

mainly concerned about the existence of a rational expectations equilibrium in different

settings, see for example Grossman (1976), Grossman and Stiglitz (1980), Hellwig (1980),

Diamond and Verrecchia (1981), and Ausubel (1990). In contrast, we study uniqueness of

the noisy REE in the model of Grossman and Stiglitz (1980). Our study is also related to

DeMarzo and Skiadas (1998), who show uniqueness of a (non-noisy) perfectly revealing REE

in the model of Grossman (1976), and give examples of partially revealing equilibria when

payoffs are non-normal. Finally, Breon-Drish (2010) shows that in case of normality, the

unique linear equilibrium is unique in the class of differentiable equilibrium price functions.

Both of these studies use much more elaborate solution techniques than the present chapter,
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while restricting their attention in the possible equilibrium price functions.

The remainder of the chapter is organized as follows. Section 3.2 presents the model.

Section 3.3 studies the linear equilibrium of the economy using the standard "conjecture

and verify" method of Grossman and Stiglitz. Section 3.4 presents the argument for no

equilibrium outside the linear class when allowing for any continuous price function. Section

3.5 provides an algorithm for a non-continuous price function. Finally, Section 3.6 concludes.

3.2 Model

This section introduces the baseline model. We consider a two-period economy with dates

t = 0 and 1. Agents, specified later, trade at date 0. At date 1, assets pay off and agents

consume.

3.2.1 Assets

There are two securities traded in a competitive market, a risk-free bond and a risky stock.

The bond is in perfectly elastic supply and is used as numeraire, with the risk-free rate nor-

malized to 0. The risky asset is assumed to be in random aggregate supply of u ∼ N
(
0, σ2

u

)
,

and has random final payoff d at date 1, with ex ante distribution d ∼ N
(
d, σ2

d = 1/τd
)
,

which constitutes the common prior for all agents. The price of the stock at date 0 is denoted

by p.

3.2.2 Agents

We assume that the asset market is populated by a continuum of agents (also called traders)

with measure one. Agents do not hold endowments in the risky assets. Agent k ∈ [0, 1]

maximizes her negative exponential utility with CARA-coeffi cient α:

E [− exp (−αWk) |Ik] ,

where the final wealth Wk = Wk0 + xk (d− p) is given by the starting wealth Wk0, plus the

number of shares purchased, xk, multiplied by the profit per share, d − p. Ik denotes the
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information set of a trader, and E [.|Ik] and V ar [.|Ik] denote the expectation and variance

conditional on the information set Ik, respectively.

Traders can be either informed or uninformed. Informed traders, who form a mass of

0 < w ≤ 1, observe the signal s = d+ η, with η ∼ N
(
0, σ2

s = 1/τ s
)
.1 The rest of the agents,

with measure 1 − w, are uninformed, and do not observe any signals about f . Instead, all

agents of the model observe the market price p.2 Formally, the information set of all informed

traders is given by Ii = {s, p}, but as the price does not contain more information about

the final payoff than their private observation, {s} is a suffi cient statistics for {s, p}. The

information set of uninformed traders is Iui = {p}. As agents inside the different investor

classes are identical, we drop the subscript k from now on.

3.2.3 Equilibrium

We define an equilibrium of the above economy as follows.

Definition 34 An equilibrium consists of a price function P (s, u), and individual strategies

for informed and uninformed traders, xi (s, p) and xui (p), respectively, such that

1. demand is optimal for informed traders:

xi (s, p) ∈ arg max
x∈R

E
[
− exp(−αW i)|s, p

]
; (3.1)

2. demand is optimal for uninformed traders:

xui (p) ∈ arg max
x∈R

E
[
− exp(−αW ui)|p

]
; (3.2)

3. market clearing:

wxi (s, p) + (1− w)xui (p) = u, (3.3)

Conditions (3.1)-(3.3) define a competitive noisy rational expectations equilibrium. In

particular, condition (3.1) states that individual asset demands are optimal for informed

1This assumption ensures that informed agents submit a downward-sloping demand curve.
2As it is standard in models with informational heterogeneity, the presence of random supply u makes sure

that the price does not reveal d perfectly and hence the Grossman-Stiglitz paradox does not apply.
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traders, conditioned on their observation and anything inferable from the price. Also, con-

dition (3.2) states that individual asset demands are optimal for uninformed traders, condi-

tioned on any information they infer from the price. Finally, (3.3) imposes that the market

of the risky asset clears: aggregate demand equals supply.

3.3 The unique linear equilibrium

We first present the solution technique of Grossman and Stiglitz (1980). Solving for an

equilibrium of the financial market requires three fairly standard steps. First, we postulate a

REE price function. Given the price, we derive the optimal demand of uninformed traders.

Finally, we check under what conditions the market clears at the conjectured price.

Following their seminal paper, we restrict our attention to the class of price functions that

are linear in the state variables s and u. Formally, we conjecture a price function in the form

P (s, u) = Ad+B (s− Cu) ,

with constants A, B and C to be determined in equilibrium.

As it is well known, the assumption of the jointly normal distribution of d and s and the

exponential utility implies that the informed optimization problem (3.1) simplifies to

xi (s, P (s, u) = p) ∈ arg max
x∈R

E
[
W i|s, P (s, u) = p

]
− α

2
V ar

[
W i|s, P (s, u) = p

]
.

Moreover, the jointly normal distribution of d, s and u, and the conjectured linear form of

the equilibrium price function implies that the price is normally distributed as well, which

together with the exponential utility implies that the uninformed optimization problem (3.2)

simplifies to

xui (P (s, u) = p) ∈ arg max
x∈R

E
[
W ui|P (s, u) = p

]
− α

2
V ar

[
W ui|P (s, u) = p

]
.

It is straightforward from here that optimal demands are the following: as informed traders
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cannot learn anything new from the price, they submit demand function

xi (s, p) =
E [d|s]− p
αV ar [d|s] , (3.4)

while uninformed traders demand

xui (p) =
E [d|p]− p
αV ar [d|p] . (3.5)

Informed investors know the prior distribution of d and observe signal s, hence their

posterior distribution is Gaussian with the mean and variance

E [d|s] =
τdd+ τ ss

τd + τ s
and V ar [d|s] = (τd + τ s)

−1 .

Given that uninformed agents know the prior distribution of d and observe the market price

p, which is a normally distributed noisy signal about s and hence a normally distributed

noisy signal about d itself, their posterior distribution is Gaussian with mean and variance:

E [d|p] =
τdd+ τp

p−Ad
B

τd + τp
and V ar [d|p] = (τd + τp)

−1 ,

where τp ≡ 1/σ2
p denotes the precision of the price, with the price being a signal about payoff

d with variance σ2
p = σ2

s + C2σ2
u.

The conjectured REE price function must equate demand and supply for each possible

resolution of s and u. Substituting the optimal demands (3.4) and (3.5) into the market

clearing condition (3.3) gives

w

τdd+τss
τd+τs

− p
α (τd + τ s)

−1 + (1− w)

τdd+τp
p−Ad
B

τd+τp
− p

α (τd + τp)
−1 = u.

Reorganizing the above equation, and using that in equilibrium the resulting coeffi cients must

equal the conjectured A, B and C, we obtain the following result:

Theorem 35 (Grossman-Stiglitz) In the family of linear equilibria there exists a unique
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REE of the model. The equilibrium price function is given in the form of

P (s, u) = Ad+B (s− Cu) , (3.6)

where

A =
τd

τd + wτ s + (1− w) τp
, B = 1−A, and C =

α

wτ s
,

with τp = 1/
(
σ2
s + C2σ2

u

)
.

3.4 The unique continuous price

In this section we show that the unique linear equilibrium of the model, solved by Grossman

and Stiglitz (1980) and discussed in Section 3.3, is actually the unique equilibrium when

allowing for any continuous price function.

The first observation we make is that the demand of informed traders is the same as before.

Indeed, the only uncertainty they face is the unlearnable noise η, contained in their signal

s, that is normally distributed. Therefore, the optimization problem of informed traders is

unchanged and independent of the equilibrium price function. It implies that their demand

is linear in signal s and price p:

xi (s, p) =

τdd+τss
τd+τs

− p
α (τd + τ s)

−1 =
τd
α
d+

τ s
α
s− τd + τ s

α
p.

Second, whatever the equilibrium distribution of the market price is, uninformed traders’

expectation and variance of d will be a function of the observed market price only, p, up to

a constant. Therefore their demand is also a function of the equilibrium price p only; let us

denote it by xui (p). Market clearing implies that

w

(
τd
α
d+

τ s
α
s− τd + τ s

α
p

)
+ (1− w)xui (p) = u,

that is

g (p) = s− Cu, (3.7)
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where

g (p) ≡ τd + τ s
τ s

p− (1− w)Cxui (p)− τd
τ s
d,

and we already use the notation C ≡ α/ (wτ s) from Theorem 35. Given the optimal demand

function xui (.) of uninformed investors (for which we want to solve for), one also knows the

function g, and hence from a price realization P (s, u) = p it is possible to compute s− Cu.

Therefore, p always reveals s − Cu. The main question is whether p can tell more about s

than just revealing s−Cu. In what follows, we make some simple observations based on (3.7)

to argue that if P (s, u) is continuous, it cannot. Hence p and s − Cu are observationally

equivalent.

Lemma 36 For a given price realization p, the possible (s, u) pairs are all on a straight line.

The proof of Lemma 36 is straightforward from (3.7). It implies that for a fixed P (s, u) =

p price the corresponding iso-price set on the (s, u) plane is a subset of a single straight line

with tangency 1/C (see Figure 3-1). As such a line can be defined by its intercept with the

horizontal axis, we can refer to it both as the line consisting of points that satisfy s−Cu = lp

for a given constant lp, or simply denote it lp.

Next, we argue that given a p realization of the market price, uninformed agents cannot

learn more about the signal s than its linear combination with the supply shock, s − Cu.

Suppose that the converse is true, which implies that P (s, u) must be a function of s not only

through s−Cu. If this is the case, there must be two price realizations p1 and p2, such that

p1 6= p2 but g (p1) = g (p2). It is equivalent to say that there are two pairs, (s1, u1) 6= (s2, u2),

such that they correspond to the two different prices, P (s1, u1) = p1 and P (s2, u2) = p2

while they are on the same line: s1 − Cu1 = lp = s2 − Cu2 with lp ≡ lp1 = lp2 .

As P (s, u) is a continuous function of the random variables s and u, the Intermediate

Value Theorem (see, for example, Bartle (1976), p. 153.) implies that if we connect the two

points (s1, u1) and (s2, u2) with any simple curve γ, then there must be at least one point

(s, u) on γ such that

P (s, u) =
p1 + p2

2
.

We will apply this theorem to two curves. The first curve will be simply the segment

connecting (s1, u1) and (s2, u2), which is a part of line lp. Take a point from this segment,
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denoted by (s∗, u∗), such that

P (s∗, u∗) =
p1 + p2

2
,

as illustrated on Figure 3-2. (If there are at least two, take any one of them.) The second

will be any curve whose intersection with the line is only (s1, u1) and (s2, u2). This will give

a point outside lp, denoted by (s∗, u∗), such that

P (s∗, u∗) =
p1 + p2

2
.

Given that (s∗, u∗) /∈ lp, it must be that s∗ − Cu∗ 6= lp. Hence we found two points of

the (s, u) plane such that they admit the same price, P (s∗, u∗) = P (s∗, u∗) = p1+p2

2 , but

g
(p1+p2

2

)
= s∗ − Cu∗ 6= s∗ − Cu∗ = g

(p1+p2

2

)
. This is clearly a contradiction.

Therefore, it must be that a price realization P (s, u) = p is equivalent to observing the

random variable p̃ ≡ s − Cu, i.e. the p 7−→ lp mapping is a one-to-one mapping. If both s

and u are normally distributed, p̃ is normally distributed as well, and combining it with the

normally distributed prior leads to Gaussian conditional distributions. Hence, uninformed

agents’optimization program is necessarily a CARA-normal setting, with optimal demand

xui (p̃) =
E [d|p̃]− p
αV ar [d|p̃] ,

and the expectation and variance given by

E [d|p̃] =
τdd+ τ p̃p̃

τd + τ p̃
and V ar [d|p̃] =

(
τd + τ p̃

)−1

for some τ p̃. Market clearing then becomes

w

(
τd
α
d+

τ s
α
s− τd + τ s

α
p

)
+ (1− w)

τdd+ τ p̃p̃−
(
τd + τ p̃

)
p

α
(
τd + τ p̃

)−1 = u,

therefore p is linear in s, u and p̃. Using p̃ ≡ s − Cu we obtain that p must be linear in

the state variables s and u. As we already showed that in the linear class there is a single

equilibrium price function, we can conclude that the well-known Grossman-Stiglitz unique
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linear equilibrium is actually the unique equilibrium of the economy when allowing for any

continuous price function:

Theorem 37 In the family of continuous equilibrium price functions, there exists a unique

REE of the model. The equilibrium price function is given in the linear form of

P (s, u) = Ad+B [s− Cu] ,

where the coeffi cients A, B and C are those given in Theorem 35.

3.5 Non-continuous price functions

If the price function P does not have to be continuous but only measurable, then it is possible

to have several equilibrium price functions. In this section we will show the existence of such

price functions.

We construct a P that is non-continuous, and different from the Grossman-Stiglitz price

function on a zero-measure subset of the whole (s, u) plane. We start with a definition.

Definition 38 We say that a region R in the (s, u) plane is P -homogenous if P (s, u) is

constant. We also call region R p-homogenous, if P (s, u) = p for all (s, u) ∈ R.

From the definition of the equilibrium it is clear that the P -homogenous regions uniquely

determine P . Moreover, let us denote the unique linear price function by P0; we have seen

that the P0-homogenous regions are exactly the lines with tangency 1/C.

Definition 39 We further say that P2 is a refinement of P1 if every P2-homogenous region

is contained in a P1-homogenous region.

Note that Lemma 36 claims that every price function is a refinement of P0.

To make a non-continuous valid price function, we will start from the unique linear equi-

librium, P0 and we will change it on some lines with tangency 1/C. The following observation

will be crucial:
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Claim 40 Suppose we take a refinement of P0, P , such that each P -homogenous region is a

line or halfline with tangency 1/C. Suppose that on a line l with tangency 1/C the unique

linear price took value p, and the two P -homogenous halflines are separated by the point

t ∈ l. Denote by p− (t) the price on the left side of t (i.e. the set of points on l that have

lower s-coordinate than t), and by p+ (t) the price on the right side of t. Then we have

p− (t) < p < p+ (t).

Proof. The proof follows from the fact that the random variable describing the set of

potential s values on the right half of the line first-order stochastically dominates the variable

if s can be on the whole line, therefore any expected utility-maximizing uninformed agent

prefers it. It increases their demand, and hence, by market clearing, it must fetch a higher

price. A similar argument applies to the left side too.

We define a sequence of functions {Pi}∞i=0 such that we start from the unique linear equi-

librium P0, and after countably many steps we obtain a non-continuous valid price function.

In every step i we refine the previous function by splitting some Pi−1-homogenous lines into

two Pi-homogenous halflines.

In the beginning we pick an arbitrary line with tangency 1/C, denote it by l. We split

it arbitrarily using Claim 40, obtaining two new price values, p− and p+, on this line. This

gives us P1. Notice that P1 is not a valid price function, because it takes the value p− on

two different lines with tangency 1/C: on (some part of) l and on lp− , which was the p−-

homogenous line of P0 before. Similarly, P1 takes the value p+ on some part of l and on lp+ ,

which was the p+-homogenous line of P0 before. This would contradict Lemma 36, hence we

have to modify P1.

In the second step, we split lp− and lp+ into two halflines, again using Claim 40. We

take care that the four new prices that we obtain correspond to four lines that we have not

modified yet. As we have only modified three lines so far, it is possible to find appropriate

points for this splitting. This gives us P2. Figures 3-3, 3-4 and 3-5 show the first two steps

of this construction. As before, P2 is not a valid price function, because there are some price

realizations that correspond to more than one line, contradicting Lemma 36. Thus in the

third step we modify these four lines, and so on.

After the first n steps we have already modified 2n − 1 lines. On 2n−1 − 1 of them, Pn is
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in line with Lemma 36, but on the other 2n−1 the price function Pn takes 2n values that are

used on 2n yet unchanged lines. Using Claim 40 we split these 2n lines into 2n+1 halflines.

Computing the demand of uninformed investors and applying the market clearing condition

for all these halflines can yield 2n+1 new prices. This gives us Pn+1, which is still not a valid

price function, and so on.

This algorithm gives a measurable price function that is continuous except for on count-

ably many lines. Notice that this function is also the same as the original unique linear

equilibrium except for a measure-zero set: the countable set of lines we have modified.

3.6 Conclusion

The standard method of conjecturing and then verifying a linear equilibrium price function

has become widely used in models of asymmetric information. While papers following this

technique show that the price function is unique in the linear class, they claim we do not

know anything outside the linear class. Hence it is important to study whether there exist

other equilibria of such a model, which are potentially both less tractable and less appealing

in their predictions.

In this chapter we explore this question. Our solution method is different from the usual

"conjecture and verify" approach, where the conjecture about a specific functional form of

price naturally imposes limitations on the proof. Our contribution complements the usual

techniques and leads to the conclusion that the unique linear equilibrium of the Grossman and

Stiglitz model is unique when allowing for any continuous price function. We also provide an

algorithm to create a (non-continuous) equilibrium price that is different from the Grossman-

Stiglitz price function.

In this chapter we restrict our attention to the assumptions of the original Grossman

and Stiglitz (1980) paper. There are some straightforward ways to generalize our results.

First, our result on the non-continuous price function is probably extendable to a price

function which is non-continuous on a positive measure set. Second, it would be interesting

to see whether we could provide similar statements about the equilibrium in the same setting

but with more general parameter distributions and utility functions. Third, an important

question is whether our result would stay in a modification of the model with incorporating
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imperfect competition, as in Kyle (1989). Finally, it would be interesting to study whether

other equilibria exist in certain settings of information aggregation in financial markets, when

agents have differential information, and all of them have something to learn from the price,

e.g. in Hellwig (1980) or Diamond and Verrecchia (1981). These problems are left for future

research.
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Figure 3-1: The set of (s, u) combinations that satisfy s− Cu = lp.
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Figure 3-3: The unique continuous price function P0.
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On line lp it satisfies P0 = p, on line lp− it takes the value P0 = p−, and on line lp+ it takes
the value P0 = p+.
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Figure 3-4: The construction of P1.
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l
p

l
p+

l
p­

P1=p ­

P1=p ­

P1=p+

P1=p+

We take an arbitrary point on lp and split it into two halflines. We compute uninformed
traders’s demand if they know s is on the halfline left to the splitting point, and plug it into
the market-clearing condition, which leads to the price p−. We proceed similarly with the
halfline right to the splitting point and obtain p+. Notice that it is not a valid price function
yet, as for example P1 = p+ on some part of lp and of course on the original lp+ (illustrated
by dashed lines), contradicting Lemma 36. Also, P1 = p− on some part of lp and of course on
the original lp− (illustrated by dotted lines). Therefore, in the next step we have to modify
the prices on lp+ and lp− .
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Figure 3-5: The construction of P2.
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We take one arbitrary point on lp+ and one on lp− , and split each to two halflines. For all
four halflines we compute the uninformed demands conditional on knowing that s is on the
appropriate halfline, and then obtain the market clearing prices for them. In this process we
make sure none of the prices are p, p+ or p−, otherwise we choose a different splitting. Notice
that now there is no problem with prices p+ and p−, as they are fetched only if s is on a part
of lp. However, P2 is still not a valid price function, because there are four price levels, p++,
p+−, p−+, and p−−, that are achieved on both a halfline and a line, contradicting Lemma 36
(illustrated by +, �, 4 and ×, respectively). Hence, in the next step we must modify P2 on
the lines lp++ , lp+− , lp−+ , and lp−− .
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