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Abstract

Chapter 1 is concerned with estimation of functionals of a latent weight function
that satisfies possibly high dimensional multiplicative moment conditions. A
leading example is functionals of the stochastic discount factor in asset pricing.
This chapter proposes to estimate the latent weight function by an information
theoretic approach combined with the `1-penalization technique to deal with high
dimensional moment conditions under sparsity. This chapter derives asymptotic
properties of the proposed estimator and illustrates the proposed method by a
theoretical example on treatment effect analysis and empirical example on the
stochastic discount factor.

In Chapter 2, I introduce a semiparametric framework called the average
regression functional, defined as a continuous linear function of a conditional
expectation function. This framework is relevant to many empirical problems,
including estimating average treatment effects, regression discontinuity design
away from cut-off and measurement error with auxiliary data. I develop a new
minimax methodology to estimate average regression functionals. Embedded in
a penalized series space, this new strategy exploits a minimax property of a
key nonparametric component of the average regression functional and aims to
directly control main remainder bias. I then construct a new class of estimators,
called minimax learners and show they are straightforward to implement due to
their minimum distance representation.

In Chapter 3, I separately study in detail asymptotic properties of minimax
learners as the ratio of controls to sample size goes to zero, constant and infinity.
Root-n normality is established under weak conditions for all three cases. In
simulations where selection bias is mild, minimax learners behave stably, maintain
small mean square error and do not over control; if selection bias is substantial,
minimax learners are able to correctly reduce mean square error as more relevant
controls are added.

As an empirical illustration, Chapter 4 revisits the work of Ferraz and Finan
(2011) that studies the effect of electoral accountability on corruption. With
plausibly exogenous treatment, one of their main empirical strategies is OLS with
many controls. I find estimates from OLS change considerably as more covariates
are sequentially added to the regression. Minimax learners, on the other hand,
perform stably and lead to economically coherent conclusions, even when the
number of controls is much larger. Other popular off-the-shelf shrinkage methods
do not work as well as minimax learners.
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Chapter 1

Information theoretic approach to
multiplicative models

1.1 Introduction

1.1.1 Motivation

In empirical analysis, economic information and other statistical information are
commonly characterized by moment conditions on observables. The generalized
method of moments provides a unified framework to analyze the moment con-
dition models and numerous extensions have been proposed in the econometrics
literature. In this chapter, we consider the following moment condition model
taking a multiplicative form:

E[ω(X)g(X)] = r, (1.1)

whereX is a vector of observables, ω : X → (0,∞) is an unknown weight function,
g is a vector of known functions of X, and r is a vector of known constants or
moments of observables (say, r = E[r(X)] for some known r(·)). We are interested
in the situation where the observables X and/or functions g are high dimensional
(possibly larger than the sample size).

In general, there exists a non-trivial set of ω ∈ W that satisfies (1.1). In this
chapter, we introduce an information theoretic approach to select a particular
element ω0 ∈ W , and define the object of interest as its linear functional:

θ0 = E[ω0(X)h(X, Y )], (1.2)

where Y is another vector of observables and h is a vector of known functions of
(X, Y ). This chapter develops a general estimation and inference method for the
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parameter θ0 under possibly high dimensional moment conditions (1.1).
Interestingly, this setup can be motivated by somewhat distant economic prob-

lems: inference on stochastic discount factors (SDF) and missing data problems
including treatment effect analysis. The latent weight ω plays the role of the SDF
for the former example, and the (reciprocal of) missing probability or propensity
score for the latter.

Example 1.1 (Stochastic discount factor). In a discrete time economy with no
arbitrage, there exists a strictly positive SDF mt such that

E[mtRj,t+1] = 1, (1.3)

where Rj,t+1 is the short term return of asset j between time t and t + 1. This
equation says that any asset j in the market would share the same expected return
when discounted by the SDF mt (see Cochrane, 2009, for a review). Let Xt =

(R1,t+1, . . . , RK,t+1)′ be a K-vector of observable short term returns. Then (1.3)
implies E[mtXt] = 1. The object of our interest in this example is the projected
SDF onto the space of Xt defined as ω(Xt) = E[mt|Xt] so that E[ω(Xt)Xt] = 1.
This setup can be considered as a special case of (1.1) with g(X) = X and r = 1.
Note that ω(Xt) could have the same pricing implications as mt (Rosenberg and
Engle, 2002; Cochrane, 2009). Unless market is complete, ω is generally set
identified from the moment condition E[ω(Xt)Xt] = 1.

Inference on the SDF is one of the central topics in financial economics. For
example, Christensen (2016) investigated extraction of permanent and transitory
components of the SDF process, which requires estimation of E[mts(Xt)s(Xt+1)′]

for a vector of known basis functions s(·). Christensen (2016) considered two
cases: (i) mt is directly observable, and (ii) mt is replaced with a (parametric
or nonparametric) preliminary estimator. Our information theoretic approach
will provide a nonparametric estimator for some particular choice of ω and an
alternative estimator for E[mts(Xt)s(Xt+1)′] designed for high dimensional setups.
2

Example 1.2 (Missing data). Consider the problem of estimating a population
mean from incomplete outcome data (see Roderick et al., 2002, for a survey).
For each unit i = 1, . . . , N , we observe an indicator variable Di (Di = 1 if unit i
responds and Di = 0 otherwise), outcome variable Yi = DiY

∗
i (Yi = 0 means Y ∗i

is missing), and vector of covariates Xi. We are interested in the population mean
θ = E[Y ∗i ]. Under conditional independence of Y ∗ and D given X and certain
overlap assumptions, the parameter of interest is identified as θ = E[ω(X)Y D],
where ω(X) = 1/P{D = 1|X}. In this setup, many estimation and inference
methods for θ and their generalizations have been proposed (e.g. Tsiatis, 2007),
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including the inverse probability weighted estimator n−1
∑n

i=1 ω̃(Xi)YiDi, where
ω̃(x) is a nonparametric estimator of 1/P{D = 1|X = x}.

Our information theoretic approach can be applied in this setup to develop
an alternative estimator of θ. By the law of iterated expectations, the moment
conditions (1.1) may be given by

E[ω(X)g(X)D] = E[g(X)], (1.4)

for any vector of known functions g. Then the estimation problem of θ can be
formulated as a special case of ours by replacing the expectations in (1.1) and
(1.2) with the conditional expectations given D = 1 and setting r = E[g(X)]

and h(X, Y ) = Y . In the recent literature of missing data analysis and causal
inference, so-called the balancing covariates approach explores the moment condi-
tions in (1.4) to find adjusting weights used for estimation of θ (e.g., Zubizarreta,
2015; Chan et al., 2016). This chapter proposes an alternative estimation method
that may be considered as an extension of these papers toward high dimensional
environments. 2

1.1.2 Methodology

In this chapter, we propose an information theoretic approach to select an element
ω0 satisfying (1.1) and to estimate the parameters θ0 in (1.2). Our method allows
high dimensional observables and/or moment functions (possibly higher than the
sample size). This feature is particularly desirable for our motivating examples.
For Example 1.1, the number of assets may be very large. For Example 1.2,
the number of covariates tends to be large so that the conditional independence
assumption (unconfoundedness or ignorability in causal analysis) is likely to be
satisfied.

A key issue for estimation of θ is how to pin down a particular weight function
ω0 satisfying (1.1). In this chapter, we address this issue by an information
theoretic approach. More precisely, we regard the latent weight function as the
Radon-Nikodym derivative ω = dQ/dP, where P is the data generating measure
of X and Q is a tilted model-based measure. Then the moment condition (1.1)
is written as EQ[g(X)] = r, where EQ[·] means expectation under Q. To pin
down the tilted measure Q, we apply the information projection based on the φ-
divergence (e.g., Csiszar, 1975; Liese and Vajda, 1987). In particular, we consider
the minimization problem using some strictly convex divergence function φ :
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(0,∞)→ R, that is

min
Q

EP

[
φ

(
dQ
dP

)]
, s.t. EQ[g(X)] = r. (1.5)

Under some regularity conditions,1 it is known that this minimization problem is
associated with the following dual problem (see, Theorem 2.4 and Corollary 2.6
in Borwein and Lewis, 1991, and Section 5.2.3 in Boyd et al., 2004).

min
λ

EP[φ∗(λ
′g(X))− λ′r], (1.6)

where φ∗(a) = supb∈(0,∞){ab − φ(b)} is the convex conjugate of φ. Furthermore,
the solution Q∗ of (1.5) can obtained by the solution of the dual problem as

dQ∗
dP

(·) = φ(1)
∗ (λ′∗g(·)), (1.7)

where λ∗ is the solution of (1.6) and φ(1)
∗ is the first derivative of φ∗.

We now define the weight function ω0 satisfying (1.1) of our interest. Since
the dimension of g, denoted by K, grows as the sample size increases, we define
ω0 as the limit of the information projection in (1.7), i.e.,

ω0(·) = lim
K→∞

dQ∗
dP

(·) = lim
K→∞

φ(1)
∗ (λ′∗g(·)). (1.8)

Based on this uniquely defined ω0, our object of interest is defined as

θ0 = EP[ω0(X)h(X, Y )]. (1.9)

Let En[·] be the sample mean and
∥∥·∥∥

1
be the `1-norm for a vector. Also let

I{x ∈ Xn} be a trimming term for an increasing sequence {Xn} to X to deal
with technical problems for unbounded support of X (cf. Chen and Christensen,
2015). By taking sample counterparts for the trimmed moment functions, our
information theoretic estimator of θ0 is obtained as

θ̂ = En[φ(1)
∗ (λ̂′g(X)I{X ∈ Xn})h(X, Y )], (1.10)

1Precisely, suppose E[|gj(X)|2] < ∞ for each j = 1, . . . ,K and there exists Q̃ such that its
Radon-Nikodym derivative q(x) = dQ̃

dP (x) is strictly positive for almost every x, EP[q(X)2] <∞,
and EP[g(X)q(X)] = r.
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where

λ̂ =



arg min
λ

En[φ∗(λ
′g(X)I{X ∈ Xn})− λ′r(X)I{X ∈ Xn}]

(low dimensional case)

arg min
λ

En[φ∗(λ
′g(X)I{X ∈ Xn})− λ′r(X)I{X ∈ Xn}] + αn

∥∥λ∥∥
1

(high dimensional case)

,

(1.11)
αn is a penalty level chosen by the researcher, and r(X) may be a vector of known
constants (as in Example 1.1). The `1 penalty term for the high dimensional case
is introduced to regularize behaviors of the estimator λ̂. Although this chapter
focuses on the `1-penalization (Tibshirani, 1996), other penalization methods
(such as the smoothly clipped absolute deviation by Fan and Li (2001), and
minimax concave penalty by Zhang, 2010) may also be applied.

It should be noted that not only the population objects ω0 and θ0 but also the
estimator θ̂ depend on the choice of the divergence function φ. Popular choices are
(i) Kullback-Leibler divergence (or relative entropy) φ(x) = x log x with φ∗(y) =

ey−1 , (ii) reverse Kullback-Leibler divergence (or Berg entropy) φ(x) = − log x

with φ∗(y) = −1 − log(−y), and Pearson’s χ2 divergence φ(x) = (x − 1)2 with
φ∗(y) = y2

4
+ y. When ω is set identified by the moment conditions (1.1) (as

in Example 1.1), different choices of φ typically select different elements in the
identified set for ω ∈ W . An optimal choice of φ is beyond the scope of this
chapter: such analyses typically require additional criteria, such as higher-order
properties of the estimator, Bayesian interpretations, and economic motivations.2

We emphasize that although the construction of λ̂ in (1.11) is analogous to
the generalized empirical likelihood estimator for overidentified moment condi-
tion models (Newey and Smith, 2004), our setup and properties of the estimator
are significantly different from theirs due to three reasons. First, our moment
conditions (1.1) contain the latent weight function ω, and the information pro-
jection is applied to estimate ω0. Second, the interpretation and property of
λ̂ are different from theirs. In the conventional generalized empirical likelihood
estimator, λ̂ plays the role of the Lagrange multiplier or shadow price for the
moment conditions, and converges to zero as the sample size increases if model is
correctly specified. On the other hand, in our approach, λ̂ is an estimator for the

2For example, the estimator derived via Kullback-Leibler divergence has a quasi maximum
likelihood interpretation and is consistent with the maximum entropy principle in Bayesian
methods (Stutzer, 1995). Also, in asset pricing literature, the SDF estimated by the Kullback-
Leibler divergence is particularly attractive since it is: (i) intrinsically related to the concept
of entropy of pricing kernels, (ii) adapted to the popular log-linear modeling of the SDF, and
(iii) consistent with the optimal portfolio choice with an expected utility maximizing investor
who has constant absolute risk aversion utility. See Backus et al. (2014) and Hansen (2014)for
further details.
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dual parameter λ∗ and typically does not converge to zero (even if the moment
conditions are correctly specified). With this respect, our method is more in line
with the sieve estimation methodology. Finally, we allow the moment conditions
(1.1) to be high dimensional (possibly larger than the sample size), where the
estimator λ̂ has to be regularized as in (1.11).

1.1.3 Related literature

The construction of our estimator is related to the literature of exponential tilting,
empirical likelihood, and its variants (for example, Kitamura and Stutzer 1997;
Smith 1997; Imbens et al. 1998; see, Owen, 2001a; Kitamura, 2006, for surveys).
In spite of similarity of the construction of the estimator, however, our setup and
property of the Lagrange multiplier λ̂ are quite different from this literature as
discussed in Section 1.1.2. Indeed our treatment on the Lagrange multiplier shares
more similarities with coefficients for basis functions in series or sieve estimation
(see Chen, 2007, for a review).

In order to deal with high dimensional moment conditions, we adapt the
general theory of the lasso with convex loss functions by Van de Geer (2008);
Bühlmann and Van De Geer (2011) to our setup. In terms of inference, the
debiasing method adopted in Section 1.3 of this chapter is similar to Zhang and
Zhang (2014a); Van de Geer et al. (2014). We note this complements the literature
on high dimensional semiparametric inference with locally/doubly robust moment
conditions (e.g., Farrell, 2015; Belloni et al., 2017a). Our method can also be
compared to high dimensional versions of empirical likelihood methods, such as
Hjort et al. (2009); Tang and Leng (2010); Lahiri and Mukhopadhyay (2012).
Again, however, our setup and treatment on λ̂ are intrinsically different from this
literature (typically λ̂ converges to λ∗ in our setup, not zero).

The main applications of our method are inference on missing data models,
treatment effects, and stochastic discount factors. Here we only mention closely
related papers to clarify our contributions in these fields. See Imbens and Rubin
(2015); Cochrane (2009) for overview of these topics.

In the context of missing data and treatment effect analysis, the proposed
method, illustrated in Section 1.4, is closely related to the recent literature on
balancing weights (Zubizarreta 2015; Chan et al. 2016; Athey et al. 2018). Com-
pared to Zubizarreta (2015); Chan et al. (2016), this chapter is considered as an
extension toward a high dimensional setup. Compared to Athey et al. (2018),
this chapter proposes an alternative estimation method for treatment effects un-
der high dimensional covariates by utilizing an information theoretic approach.

In the realm of asset pricing, this chapter is closely related to information
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theoretic approaches for semi-nonparametric analysis on the SDF (e.g., Kita-
mura and Stutzer 2002; Ghosh et al. 2015, 2016). In this context, we make three
contributions. First, our method can be regarded as an extension of these ex-
isting methods to high dimensional environments (especially for a large number
of assets). Second, our theoretical analysis for the low dimensional case in Sec-
tion 1.2 provides a theoretical background for the analysis in Ghosh et al. (2015,
2016). Third, as mentioned in Example 1.1, this chapter can provide an alterna-
tive method to extract permanent and transitory components of the SDF process
(Christensen, 2016).

Notations for Chapter 1

We work with triangular array data {Xi,n, Yi,n}ni=1, which are considered as the
first n elements of the infinite sequence {Xi,n, Yi,n}∞i=1 generated from a probability
measure Pn. Our asymptotic analysis is based on the array asymptotics. To
simplify the notation, we suppress the subscripts and denote by {Xi, Yi}ni=1 and
P. Also, let E[·] = EP[·] be expectation under P, En[·] be the empirical average,
I{A} be the indicator function for an event A, |B| =

√
λmax(B′B) be the L2

norm for a scalar, vector, or matrix B, and a ∨ b = max{a, b}. For a matrix C,
let λmax(C) and λmin(C) be its maximum and minimum eigenvalues, respectively,

and denote ‖C‖∞ = max
ij
|cij| and ‖C‖1 = max

1≤j≤n

m∑
i=1

|cij|. The convergence “→” is

understood as the one for n→∞. Finally for two sequences of numbers An and
Bn, “An . Bn” means there exists some constant C that does not depend on n
such that An ≤ BnC all n large enough.

1.2 Low dimensional case

In this section, we present asymptotic properties of our information theoretic
estimator θ̂ for the low dimensional case, where the dimension K of function g

in (1.1) grows slowly compared to the sample size n. In this case, computation
of λ̂ in (1.11) does not involve the `1-penalization. We first impose the following
conditions.

Condition D.

1. {Xi, Yi}ni=1 is a strictly stationary and ergodic triangular array, and {Xi}ni=1

is α-mixing with mixing coefficients {αX,m} satisfying
∑n

m=1 α
1/2−1/q
X,m . 1

for some q > 2.

2. The support X ⊆ Rp of X is a Cartesian product of p convex intervals with
nonempty interiors. {Xn} is an increasing sequence of compact, convex,
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and nonempty subsets of X , and satisfies P{X /∈ Xn} = o(n−1).

3. ω0 exists and is a continuous function bounded from above and away from
zero with E[ω0(X)2] < ∞. h is a scalar-valued continuous function with
E[h(X, Y )2] < ∞. There exists Q̃ such that its Radon-Nikodym deriva-
tive satisfies %(x) = dQ̃

dP (x) > 0 for almost every x, E[%(X)2] < ∞, and
E[g(X)%(X)] = E[r(X)].

Condition D contains standard assumptions on the data and functions in (1.1)
and (1.2). Condition D(1) allows data to be weakly dependent, which covers
independent and identically distributed (iid) data as a special case.3 Condition
D(2) is on the support of X and the trimming set Xn. For example, the condition
P{X /∈ Xn} = o(n−1) is satisfied with Xn = {x ∈ Rd : |x| ≤ n1/a} for a ∈ (0, a1)

with E[|X|a1 ] <∞. Condition D(3) is on the functions ω0 in (1.8) and h in (1.2),
and constraint qualifications to guarantee the duality results in (1.6) and (1.7).
If the underlying model that implies (1.1) uniquely identifies ω as K →∞ (as in
Example 1.2), ω0 is considered as this identified ω. If the underlying model that
implies (1.1) partially or set identifies ω even when K →∞ (as in Example 1.1),
ω0 is considered as a particular element in the identified set of ω defined by the
limit of the information projection in (1.8). To simplify the presentation, we focus
on the case where h (and thus θ0) is scalar. An extension to the case of vector
θ0 is straightforward. It is also possible to extend our method to the case where
θ0 is implicitly defined as a solution of moment conditions E[h(Z, θ0, ω0(X))] = 0

for Z = (Y,X ′)′ and a linear map h (in ω0).
Let gn(X) = E[g(X)g(X)′I{X ∈ Xn}]−1/2g(X)I{X ∈ Xn} be the orthonor-

malized version of g after trimming. We impose the following assumptions.

Condition S.

1. All eigenvalues of E[g(X)g(X)′I{X ∈ Xn}] are strictly positive for each n,
and |En[gn(X)gn(X)′]− I| = op(1).

2. There exists some λb ∈ RK such that

sup
x∈Xn
|[φ(1)
∗ ]−1(ω0(x))− λ′bgn(x)| .ηK,n, (1.12)√

E[{ω0(X)− φ(1)
∗ (λ′bgn(X))}2] . ςK,n, (1.13)

for some ηK,n → 0 and ςK,n → 0.
3Also it is interesting to extend our approach to introduce some blocking scheme for efficiency

gain as in Kitamura and Stutzer (1997).
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Condition S lists requirements for the functions g and gn. Condition S(1) con-
tains eigenvalue conditions on E[g(X)g(X)′I{X ∈ Xn}] to guarantee existence of
gn, and the convergence of the matrix En[gn(X)gn(X)′]. This convergence is
satisfied if {Xi}ni=1 is iid and ζ2

K,n logK → 0, where ζK,n = supx∈X |gn(x)| (see,
Lemma A.3 (i)). This can be satisfied for dependent data as well. For exam-
ple, by Chen and Christensen (2015, Lemma 2.2), if {Xi}ni=1 is stationary and
β-mixing with mixing coefficients {βm} and is such that βmn/m → 0 for some
integer m ≤ n/2, then |En[gn(X)gn(X)′] − I| = Op(

√
mζ2

K,n logK/n) provided
mζ2

K,n logK/n → 0.4 Condition S(2) imposes assumptions on series approxima-
tions by gn for [φ

(1)
∗ ]−1(ω0). The orders of the approximation errors ηK,n and ςK,n

depend on the choices of the basis functions g, trimming set Xn, and smoothness
of [φ

(1)
∗ ]−1(ω0(·)). It can be verified by using results from functional analysis lit-

erature (e.g., Lorentz, 1966; Schumaker, 2007). For example, if X = [0, 1] and g
is a vector of polynomials or splines, then we can set as Xn = X , and ηK,n is of
order O(K−s/p), where s is the number of continuous derivatives of [φ

(1)
∗ ]−1(ω0(·))

and p is dimension of X, and ςK,n ≤ ηK,n. Note different choice of φ∗ results
in different economic modeling of target object ω0. For example, if φ(x) = 1

2
x2,

[φ
(1)
∗ ]−1(ω0(·)) = ω0(·), it implies ω0(·) is approximately linear. On the other hand,

for Kullback-Leibler divergence φ(x) = x log x, [φ
(1)
∗ ]−1(ω0(·)) = logω0(·) + 1. It

implies that target ω0(·) is log linear, which is consistent with many financial
models (for example, Vasicek, 1977) and might be more attractive for financial
applications.

Let rn(X) = E[g(X)g(X)′I{X ∈ Xn}]−1/2r(X)I{X ∈ Xn} and

MK,n = max
1≤j≤K

{E[|gnj(X)|q]}1/q ∨ {E[|rnj(X)|q]}1/q for q in Condition D(1),

ς̃K,n =

√√√√ 1

n

(
ς2
K,n + ς

1+2/q
K,n

n∑
m=1

α
1/2−1/q
X,m

)
,

BK,n = ςK,n +
√
ς̃K,n, µK,n = 1 +MK,n

n∑
m=1

α
1/2−1/q
X,m .

We impose the following assumptions for the convex conjugate function φ∗.

Condition I. φ∗ : (0,∞) → R is strictly convex and three times continuously
differentiable. Also, (i) the second derivative φ(2)

∗ is bounded from above and away
4Thus object ζK,n is important for our analysis. In general, ζK,n ≤

λmin {E[g(X)g(X)′I{X ∈ Xn}]}−1/2 supx∈Xn
|g(x)|. So impact of diminishing eigenvalues

is captured by the growth rate of λmin {E[g(X)g(X)′I{X ∈ Xn}]}−1/2. If X is compact and
rectangular, usually λmin {E[g(X)g(X)′I{X ∈ Xn}]}−1/2 . 1 (Chen and Christensen, 2015),
and if in addition spline or wavelet series are used, ζK,n = O(

√
K); and for power series,

ζK,n = O(K) (Newey, 1997).
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from zero, or (ii) ζK,n(
√
KµK,n/n+BK,n) . 1.

Three times continuous differentiability of φ∗ excludes some popular choices.
For example, if φ(x) = − log x is the reverse Kullback-Leibler divergence (which
corresponds to empirical likelihood), then its convex conjugate is φ∗(y) = −1 −
log(−y) having a discontinuity point at y = 0, and this choice is ruled out by
Condition I.5 On the other hand, Kullback-Leibler divergence φ(x) = x log x

(corresponding to the exponential tilting) and half Pearson’s χ2 divergence φ(x) =
1
2
(x−1)2 (corresponding to the continuous updating GMM) satisfy this condition.
Let ω̂(x) = φ

(1)
∗ (λ̂′g(x)I{x ∈ Xn}). Based on the above conditions, the con-

vergence rates of ω̂(·) and consistency of the estimator θ̂ in (1.10) are obtained
as follows.

Theorem 1.1. Suppose that Conditions D, S, and I hold true, KµK,n/n → 0,
and BK,n → 0. Then

√
En[{ω̂(X)− ω0(X)}2] = Op(

√
KµK,n/n+BK,n), (1.14)

and θ̂ p→ θ0. If we additionally assume ζK,n
√
KµK,n/n → 0 and ζK,nBK,n → 0,

then

sup
x∈Xn
|ω̂(x)− ω0(x)| = Op(ζK,n

√
KµK,n/n+ ζK,nBK,n + ηK,n). (1.15)

The consistency of θ̂ is established by showing that of ω̂ under the empirical
L2-norm in (1.14). As a byproduct of the proof of (1.14), we can obtain (1.15),
an upper bound of the uniform convergence rate of ω̂ over the trimming set
Xn.6 Interestingly, although our setup is different from standard nonparametric
series estimation and ω0 is not a conditional expectation function, we achieve a
similar convergence rate with conventional series estimators for regression models.
Indeed, our proof is in line with series estimation methods, where the estimation
error of ω̂ can be decomposed into two parts: approximation bias (corresponding
to BK,n) and sampling error (corresponding to

√
KµK,n/n). The approximation

error is dealt with Lemma A.2 while the sampling error is controlled by Lemma
A.3. In particular, µK,n characterizes a slowdown of the convergence rate for

5Intuitively, for the case of EL, we are approximating ω0 using form φ
(1)
∗ (λ′g(x)) = − 1

λ′g(x) .
Therefore uniform approximation might fail since a small change of λ′g(x) around point 0 can
lead to infinitely large variations in terms of approximation quality.

6This sup norm rate is admittedly not optimal. But for asymptotic normality of our estima-
tor, such sup norm rate is not needed. It is also an open question whether we can improve the
convergence rate in (1.14) to establish the optimality rate as in Belloni et al. (2015); Chen and
Christensen (2015). Since our estimator ω̂ and target ω0 are more complicated than the least
squares estimator for the conditional mean, such analysis will be technically more involving.
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the sampling error due to weak dependence of the data. If the data is iid, then
µK,n = 1, and the sampling error is of order

√
K/n. On the other hand, ς̃K,n is an

additional term due to weak dependence in the approximation bias BK,n. If the
data is iid and

√
nςK,n → ∞, then the bias term becomes a familiar expression

BK,n = ςK,n.
We next consider the limiting distribution of our estimator θ̂. To this end, we

add the following conditions.

Condition N.

1. There exists a function rh : X → R such that E[rh(X)] = E[ω0(X)E[h(X, Y )|X]]

and

E[β′{ω0(X)gn(X)− rn(X)} − {ω0(X)E[h(X, Y )|X]− rh(X)}]2 = o(n−1),

(1.16)
where β = E[φ

(2)
∗ (λ′bgn(X))gn(X)g′n(X)]−1E[φ

(2)
∗ (λ′bgn(X))gn(X)h(X, Y )].

2. |En[φ
(2)
∗ (λ′bgn(X))gn(X)gn(X)′]−E[φ

(2)
∗ (λ′bgn(X))gn(X)gn(X)′]| = Op(ΓK,n)

for some ΓK,n → 0.

3. E[h2(X, Y )|X = ·] is bounded from above, E[|h(X, Y )|q1/(1−q1/q)] < ∞ for
some q1 ∈ (2, q] and E[|rh(X)|q] <∞.

4. {Yi, Xi}ni=1 is α-mixing with mixing coefficients {αXY,m}m∈N satisfying

n∑
m=1

α
(a/(2+a))∨(1/2−1/q1)
XY,m . 1

for some a > 0 and E[|Φ|2+a] <∞, where

Φ = ω0(X)h(X, Y )− θ0 − {ω0(X)E[h(X, Y )|X]− rh(X)}. (1.17)

Condition N(1) is considered as the mean square continuity condition (As-
sumption 5.3 in Newey, 1994b) in our setup, which guarantees the

√
n-consistency

of θ̂ even though ω̂ converges at a slower rate. Basically, (1.16) requires that
E[h(X, Y )|X = ·] is well approximated by the basis functions gn(·). This re-
quirement is typically verified by the results in functional analysis. The function
rh should be specified for each application. If r(X) is known constants (as in
Example 1.1), we can simply set as rh(X) = θ0. For Example 1.2, we can set
as rh(X) = E[Y ∗|X]. Proposition 1.1 below gives two examples, where (1.16)
is satisfied. Condition N(2) is analogous to Condition S(1). The convergence
rate ΓK,n can be established as

√
ζ2
K,n logK/n for the iid case (by Lemma A.3
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(i)), and
√
mζ2

K,n logK/n for the β-mixing case (by adapting Lemma 2.2 of Chen
and Christensen, 2015). Condition N(3) contains mild assumptions on h and rh.
Condition N(4) requires α-mixing for the joint {Xi, Yi}ni=1 to apply a central limit
theorem to 1√

n

∑n
i=1 Φi, where Φi is the influence function for θ̂.

By imposing this additional condition, the limiting distribution of the estima-
tor θ̂ is obtained as follows.

Theorem 1.2. Suppose that the conditions of Theorem 1.1 and Condition N hold
true. In addition, ζ4

K,nKµK,n/
√
n→ 0,

√
nζK,nBK,n → 0, and

√
KµK,nζK,nΓK,n →

0. Then
√
n(θ̂ − θ0)

d→ N(0, V ),

where V = limn→∞ V ar(
√
nEn[Φ]).

This theorem says that our information theoretic estimator θ̂ is
√
n-consistent

and asymptotically normal. If the data is iid, the variance term becomes E[Φ2],
which is also the semiparametric efficiency bound.

The asymptotic variance V can be estimated by some heteroskedasticity auto-
correlation consistent estimator. For example, based on Newey and West (1987),
V can be estimated by

V̂ = γ̂0 + 2
Mn∑
l=1

(
Mn − l
Mn

)
γ̂l,

where γ̂l = (n− l)−1
∑n

i=l+1(Φ̂i−n−1
∑n

i=1 Φ̂i)(Φ̂i−l−n−1
∑n

i=1 Φ̂i) is the sample
autocovariance of

Φ̂i = I{Xi ∈ Xn}[ω̂(Xi)h(Xi, Yi)− θ̂ − {ω̂(Xi)ĥ
X(Xi)− r̂h(Xi)}],

ĥX and r̂h are some nonparametric estimators of E[h(X, Y )|X = ·] and rh, re-
spectively, and Mn is a tuning parameter. By adapting the proof of Newey and
West (1987, Theorem 2) to the present context, the consistency of V̂ is obtained
as follows.

Proposition 1. Suppose that the conditions of Theorem 1.2 hold true. Addition-
ally, assume that E[|Φi|4q2+δ] <∞ for some q2 > 1 and δ > 0,

∑n
m=1 α

1−1/(2q2)
XY,m .

1, supx∈Xn |ĥX(x) − E[h(X, Y )|X = x]| = Op(Rn) and supx∈Xn |r̂h(x) − rh(x)| =

Op(Rn) for Rn = ζK,n
√
KµK,n/n + ζK,nBK,n + ηK,n, Mn → ∞, and MnRn → 0.

Then V̂ p→ V .

Compared to Theorem 1.1, we impose more stringent conditions on K. For
example, in an iid setting, suppose X = [0, 1]d, Xn = X , and g is a vector of
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B-spline basis functions with K ∝ na for a > 0. Then it holds ζK = O(
√
K). If

ω0 lies in some Hölder function class, we can typically assume ςK,n = K−a1 , where
a1 depends on the smoothness of ω0 and dimension of X. Then the conditions
required for K are satisfied with a ∈ (1/2(a1 − 1), 1/6) and a1 > 4. Therefore,
for Theorem 1.2, K should grow at a sufficiently slow rate and ω0 should be
sufficiently smooth. Also note that the condition ζ4

K,nKµK,n/
√
n → 0 is in fact

the worst case scenario due to generality of the divergence function φ, and can
be weakened if some choices of φ, such as Pearson’s χ2 divergence.

We close this section by providing some specific examples that satisfy Condi-
tion N(1).

Proposition 1.1. Suppose the assumptions in Theorem 1.2 except for (1.16) hold
true.

(i) Suppose r(X) is a vector of known constants, P{X /∈ Xn} = o((Kn)−1)

and
E[{E[h(X, Y )|X]− λ′gn(X)}2] = o(n−1), (1.18)

for some λ ∈ RK. Then (1.16) is satisfied with rh(X) = θ0.
(ii) In Example 1.2 on missing data, suppose

E[{E[Y ∗|X]− λ′gn(x)}2] = o(1),

for some λ ∈ RK. Then (1.16) is satisfied with rh(X) = E[Y ∗|X].

Based on Proposition 1.1, if r(X) is a vector of known constants, the influence
function Φ simplifies to Φ = ω0(X){h(X, Y )− E[h(X, Y )|X]}.

1.3 High dimensional case

In this section, we consider the high dimensional case, where the dimension K of
the moment functions g can be larger and grow faster than the sample size n. In
this case, λ̂ in (1.11) is computed by the `1-penalization. High dimensionality of g
can be caused by either high dimensionality of the original data X or many trans-
formations (or basis functions) based on low dimensional X. In either case, as far
as the latent weight function ω0 in (1.8) admits certain sparse representation, our
penalized estimator can consistently estimate ω0 and the parameter of interest
θ0. In Section 1.3.1, we study asymptotic properties of ω̂ to estimate ω0. Then
we consider three estimation approaches, debiasing (Section 1.3.2), post selection
(Section 1.3.3), and targeted debiasing (Section 1.3.4), and present conditions to
achieve

√
n-normality for the estimators of θ0.
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1.3.1 Estimation of ω0

We first present asymptotic properties of ω̂. For the high dimensional case, we
impose the following assumptions on the data.

Condition D’. {Xi, Yi}ni=1 is an iid triangular array. The support X ⊆ Rp of X
is a Cartesian product of p convex intervals with nonempty interiors. Condition
D(3) holds true.

For the high dimensional case, we focus on the case of iid data. An extension to
dependent data involves development of empirical process theory for dependent
data, and is beyond the scope of this chapter. We also do not use trimming.
Impact from possible unbounded support is dealt implicitly by the growth rate
of supx∈X

∥∥g(x)
∥∥
∞ and a mild sup-norm approximation assumption over X (see

the statement in Theorem 1.3).
To state additional conditions for the high dimensional case, we introduce fur-

ther notation. For an index subset S ⊂ {1, . . . , K}, let |S| be its cardinality (with
slight abuse of notation), λS = (λ1,S, . . . , λK,S)′ be a K dimensional vector with
λj,S = λjI{j ∈ S} for the j-th component λj of λ, and λSc = (λ1,Sc , . . . , λK,Sc)

′

with λj,Sc = λjI{j /∈ S}. So, λS and λSc have non-zero elements only in the index
set S and its complement Sc, respectively. Furthermore, let S be a class of index
sets.7 We introduce the so-called compatibility condition.

Condition C. For each S ∈ S , there exists some constant φS > 0 such that for
all λ satisfying

∥∥λSc∥∥1
≤ 3
∥∥λS∥∥1

, it holds
∥∥λS∥∥1

≤ φ−1
S

√
λ′E[g(X)g(X)′]λ

√
|S|.

This is a high level condition that bounds
∥∥λS∥∥1

by the L2-norm of its cor-
responding function λ′g(· ). Such compatibility condition is commonly employed
in the high dimensional statistics literature, such as the restricted eigenvalue
condition in Bickel et al. (2009). Let λ∗ = arg minλ E[φ∗(λ

′g(X))− λ′r(X)] and

E (λ) = E[φ∗(λ
′g(X))− λ′r(X)]− E[φ∗(λ

′
∗g(X))− λ′∗r(X)],

be the excess risk. Given S with associated compatibility constants {φS : S ∈
S } in Condition C, the oracle λo achieves the best sparse approximation of E (λ)

as

λo = arg min
λ:Sλ∈S

2E (λ) +
8α2

n

φ2
Sλ
%
|Sλ|, (1.19)

7Knowledge of S can reflect researchers’ priors on what might be important sets of covari-
ates. In the worst case, without any prior knowledge, S should contain all possible index sets
that are subsets of full set of covariates.
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where Sλ = {j : λj 6= 0}, αn is a penalty level in (1.11), and % is a constant
defined in Condition H below. Let Qo be the minimized value of (1.19) and
ωo(x) = φ

(1)
∗ (λ′og(x)). Note that E (λo) ≥ E (λ∗) = 0 and a part of our sparsity

assumption is characterized by the convergence rate of E (λo) toward zero. Let

νn(λ) = En[φ∗(λ
′g(X))− λ′r(X)]− E[φ∗(λ

′g(X))− λ′r(X)],

be an empirical process. We impose the following assumptions.

Condition H. For every ε > 0 small enough and n large enough, there exist
positive constants σε,n, %, and A such that for M = Qo

2σε,n
,

1. P
{

sup∥∥λ−λo∥∥
1
≤M
|νn(λ)− νn(λo)| ≤ σε,nM

}
≥ 1− ε,

2. for any λ satisfying
∥∥λ− λo∥∥1

≤M , it holds

sup
x∈X
|(λ− λo)′g(x)| ≤ A, %(λ− λo)′E[g(X)g(X)′](λ− λo) ≤ E (λ),

3. σε,n ≤ αn/8 and αn ∝
√

logK/n for all n ∈ N.

Condition H(1) controls the empirical process νn(λ) in a neighborhood of the
oracle λo. Intuitively, we require that νn(λ)−νn(λo) will be small when λ is close
to λo in terms of the l1-norm. The order of σε,n, which is typically O(

√
logK/n),

can be derived by empirical process theory.8 By Condition H(2), the excess risk
E (λ) can be bounded from below by a quadratic function of λ when λ is close
to λo in terms of the l1-norm. Condition H(3) is on the penalty coefficient αn.
First, αn should be large enough to offset the effect from σε,n. Second, since σε,n
is typically of order O(

√
logK/n), αn should be the same order to achieve the

fastest convergence. 9

Under these conditions, the convergence rate of ω̂ and consistency of the
parameter estimator θ̂ are established as follows. Let ζ̃K = supx∈X

∥∥g(x)
∥∥
∞,

s = |Sλo |, κo,n = E (λo)
√

n
logK
∨s
√

logK
n

, and {ξn} and {ςo,n} be positive sequences

such that
∥∥En[g(X)g(X)′

∥∥
∞= Op(ξn) and

√
E[{ωo(X)− ω0(X)}2] . ςo,n, respec-

tively.
8Since our objective function is Lipschitz in a neighborhood of λo, probabilistic inequalities,

such as Bühlmann and Van De Geer (2011, Lemma 14.20), can be applied.
9There are in general two ways to select αn in a data driven way: First, αn may be chosen by

cross validation although it might lack theoretical justification; Second, αn can also be chosen
as the smallest value such that Condition H stands with a large probability. That is, we can set
αn = 8σ̂ε,n, where σ̂ε,n is an estimate of σε,n, making use of empirical process and moderate
deviation theory. See Belloni et al. (2012) for further details on this.
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Theorem 1.3. Suppose Conditions D’, C, and H hold true, and Condition I
holds true with I(ii) replaced by ζ̃Kκo,n . 1. Furthermore, assume that ςo,n → 0,
κo,nξ

1/2
n → 0, and supx∈X |ωo(x)− ω0(x)| . 1. Then√

En[{ω̂(X)− ω0(X)}2] = Op(κon
√
ξn + ςo,n), (1.20)

and θ̂ p→ θ0. If we additionally assume ζ̃Kκo,n → 0 and supx∈X |ωo(x)−ω0(x)| →
0, then

sup
x∈X
|ω̂(x)− ω0(x)| p→ 0. (1.21)

This theorem, a counterpart of Theorem 1.1 for the high dimensional case, es-
tablishes the empirical L2 convergence rate of ω̂, which is required for consistency
of θ̂. Note that we only require the boundedness of the uniform approximation
error supx∈X |ωo(x) − ω0(x)| by the oracle. Furthermore, this uniform approxi-
mation condition can be dropped if Condition I(ii) is satisfied. The object ζ̃K
depends on the choice of basis functions g and X . For example, if g is a vector
of polynomials over X = [0, 1]p, it holds ζ̃K = O(1). The object ξn measures
the growth rate of the sup-norm of En[g(X)g(X)′]. It can be controlled effec-
tively by Hoeffding’s inequality, and is typically of order O(‖E[g(X)g(X)′]‖∞)

(or could be O(1) for certain basis functions). In this case, if we further assume
E (λo) = O(s logK/n) and ςo,n = O(s

√
logK/n), then the empirical L2 con-

vergence rate of ω̂ is of order Op(s
√

logK/n) and the dimension K may grow
faster than n even at an exponential rate. For the high dimensional case, the
approximation bias for ω0 tends to be larger and is controlled by the approxi-
mate sparsity assumption that requires sufficiently fast decays of the excess risk
E (λo) and approximation error ςo,n. On the other hand, the sampling error of
the estimator is controlled by Condition C. A byproduct of this theorem is the
uniform consistency in (1.21) under additional assumptions.10

1.3.2 Debiased estimator for θ0

In this subsection, we consider a debiased estimation method for θ0 in the high
dimensional setup. It is well known that plug-in methods to estimate finite di-
mensional objects, where the first step is implemented by the lasso, typically
cannot achieve the

√
n-normality. There is a recent literature in statistics (e.g.,

Zhang and Zhang 2014b; Van de Geer et al. 2014) that develop procedures to
10For the high dimensional case in (1.11), alternatively setting first term as logEn[φ∗(λ

′g(X)−
λ′r(X)] might not necessarily work as our theory for high dimensional part relies on the first
term being strictly convex and showing quadratic behavior. With log transformation, such
requirement might fail. Even if convexity does not fail, Condition H will become increasingly
more difficult to analyze after log transformations. Hence, we do not recommend taking such
transformations for high dimensional calculations in practice.
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debias the lasso estimators to achieve the
√
n-normality for finite dimensional

objects of interest. It is natural to ask whether such debias procedures may be
applied to our setup. However, in our setting, it seems the debiasing procedure
achieves

√
n-normality to estimate θ0 only under some stringent conditions.

To illustrate this point, suppose φ(2)
∗ (· ) = c∗ > 0 for some known constant c∗

(for example, by choosing φ(x) = 1
2
x2). Let κ̂ = (sign(λ̂1), . . . , sign(λ̂K))′ and Θ̂

be an approximation of the ‘inverse’ of En[g(X)g(X)′] (which may not exist in
the high dimensional case). Here we consider the debiased estimator

θ̂DB = En[{φ(1)
∗ (λ̂′g(X)) + αng(X)′Θ̂κ̂}h(X, Y )],

where the additional term αng(·)′Θ̂κ̂ corrects the first-order bias from the plug-in
estimation by λ̂. We note that this additional term will be different if we drop the
requirement φ(2)

∗ (· ) = c∗ > 0. To establish the
√
n-normality of θ̂DB, we impose

the following assumptions. Let β̂DB = Θ̂′En[g(X)h(X, Y )].

Condition DB.

1. There exist functions rh, r̃h, h̃X : X → R such that E[rh(X)] = E[ω0(X)E[h(X, Y )|X]],
E[r̃h(X)] = E[ω0(X)h̃X(X)], and

En[β̂′DB{ω0(X)g(X)− r(X)} − {ω0(X)h̃X(X)− r̃h(X)}]2 = op(n
−1),

(ς2
n + ςnn

−1/2)En[h̃X(X)− β̂′DBg(X)]2 = op(n
−1).

2.
√
nκo,n ‖En[h(X, Y )g(X)]‖∞

∥∥∥I − En[g(X)g(X)′]Θ̂
∥∥∥

1
= op(1).

Condition DB highlights two key requirements for achieving
√
n-normality of

the debiased estimator θ̂DB. Condition DB(1) is a natural extension of Condition
N(1) under the high dimensional case. It requires that β̂′DBg(·) should converge
fast enough to some function h̃X(·). Intuitively, h̃X(·) can be understood as an
approximation of E[h(X, Y )|X =· ]. This is a key condition to correct the bias
from the second step to compute θ̂DB. On the other hand, Condition DB(2)
controls the `1-regularization bias. It says the matrix Θ̂ should be selected to
guarantee

∥∥∥I − En[g(X)g(X)′]Θ̂
∥∥∥

1
to be sufficiently small.

The
√
n-normality of the debiased estimator θ̂DB is obtained as follows. Let

{τn} be a positive sequence such that√
E[{E[h(X, Y )|X]− h̃X(X)}2] ∨

√
E[{rh(X)− r̃h(X)}2] . τn.

Theorem 1.4. Suppose Conditions D’, C, H, and DB hold true and φ(2)
∗ (· ) =

c∗ > 0 for some known constant c∗. If supx∈X E[h(X, Y )2|X = x] . 1, ςn → 0,
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τn → 0, and
√
nςnτn → 0, then

√
n(θ̂DB − θ0)

d→ N(0,E[Φ2]).

Theorem 1.4 gives conditions under which the debiased estimator θ̂DB can
achieve

√
n-normality. It seems the requirements on Θ̂ listed in Condition DB

are difficult to avoid. In fact, our debiasing procedure may be considered as an
in-between the parametric debiasing of Zhang and Zhang (2014b); Van de Geer
et al. (2014), and the complete debiasing of Farrell (2015); Belloni et al. (2017b).
It is beyond the scope of this chapter to study a practical way of finding the
matrix Θ̂ (for example, by adapting the lasso with nodewise regression in Van de
Geer et al., 2014), and we leave this for future research.

1.3.3 Post selection estimator for θ0

Given that the debiasing procedure in the last subsection requires relatively
strong conditions, we propose the following post selection method to obtain a
√
n-consistent estimator for θ0.

1. Compute λ̂ in (1.11) for the high dimensional case. Let s = |Ŝ| be the
cardinality of the selected set Ŝ = {j : λ̂j 6= 0}.

2. Let gs and rs be the s-dimensional functions corresponding to the selected
set Ŝ. Implement (1.11) for the low dimensional case (i.e., without the
`1-penalty) based on gs and rs. Denote the solution of this step as

Λ̂ = arg min
Λ∈Rs

En[φ∗(Λ
′gs(X))− Λ′rs(X)]. (1.22)

3. Construct the post selection estimator as

θ̃ = En[φ(1)
∗ (Λ̂′gs(X))h(X, Y )].

To study asymptotic properties of the post selection estimator θ̃, we introduce
some notation. Let Λ∗ = arg minΛ∈Rs E[φ∗(Λ

′gs(X))−Λ′rs(X)] be the population
counterpart of (1.22), and ω∗(x) = φ

(1)
∗ (Λ′∗gs(x)), which is an approximation of

ω0 using the selected vector gs. Note that ω∗ could be different from ωo selected
by the oracle λo. Also, define

βs = E[φ(2)
∗ (Λ′∗gs(X))gs(X)gs(X)′]−1E[φ(2)

∗ (Λ′∗gs(X))gs(X)E[h(X, Y )|X]]

and h̃X(x) = β′sgs(x). We impose the following conditions.
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Condition N’. There exist functions rh, r̃h : X → R such that E[rh(X)] =

E[ω0(X)E[h(X, Y )|X]], E[r̃h(X)] = E[ω0(X)h̃X(X)], and

E[β′s{ω0(X)gsi(X)− rs(X)} − {ω0(X)h̃X(X)− r̃h(X)}]2 = o(1). (1.23)

Condition N’ can be viewed as an extension of the mean square continuity
(as in Assumption 5.3 of Newey, 1994a) for imperfect model selection, where
h̃X(·) = β′sgs(·) is understood as an approximation of E[h(X, Y )|X = ·] based
on the selected basis functions gs. In the case of imperfect model selection (i.e.,
Ŝ 6= Sλo), ω∗ and h̃X may not approximate ω0 and hX well enough, respectively.
We impose the following conditions for those approximation errors.

Condition S’. For each n, all eigenvalues of E[gs(X)gs(X)′] are bounded from
above and away from zero, conditional on the selected set Ŝ. Also, for some
positive sequences {ςs,n} and {τs,n},√

E[{ω0(X)− ω∗(X)}2] . ςs,n, (1.24)√
E[{E[h(X, Y )|X]− h̃X(X)}2] . τs,n. (1.25)

Because of the imperfect model selection, ςs,n and τs,n may not vanish suffi-
ciently fast as in Theorem 1.2. Instead, we only require ςs,n and τs,n to be O(1).
Let ζs = supx∈X |gs(x)|.

Condition I’. φ∗ : (0,∞)→ R is strictly convex and three times continuously dif-
ferentiable, sup

x∈X
φ

(2)
∗ (Λ′∗gs(x)) . 1, and sup

Λ∈Rs:|Λ−Λ∗|.
√
ζ2s
n

En[φ
(3)
∗ (Λ′gs(X))2] = Op(1).

Condition I’ is a counterpart of Condition I, and imposes additional require-
ments on the conjugate function φ∗. They can be trivially satisfied for some diver-
gence functions, such as φ(x) = 1

2
x2. This can also be satisfied if supx∈X |[φ

(1)
∗ ]−1(ω0(x))−

Λ′∗gs(x)| . 1, i.e., the selected model Λ′∗gs(·) for [φ
(1)
∗ ]−1(ω0(·)) is not too far.

Under these conditions, the
√
n-normality of the post selection estimator θ̃ is

obtained as follows.

Theorem 1.5. Suppose Conditions D’, S’, I’, and N’ hold true. In addition,
ζ2
s log s/n→ 0, ζ6

s /
√
n→ 0, and E[(Φ + v1 + v2 + v3)2] <∞, where Φ is defined

in (1.17). Then

√
n(θ̃ − θ0 + b)

d→ N(0,E[(Φ + v1 + v2 + v3)2]), (1.26)
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where b = E[(ω0(X)− ω∗(X))(hX(X)− h̃X(X))],

v1 = (ω∗(X)− ω0(X))(h(X, Y )− hX(X)),

v2 = ω0(X)(hX(X)− h̃X(X)) + r̃h(X)− rh(X),

v3 = (ω∗(X)− ω0(X))(hX(X)− h̃X(X))− E[(ω∗(X)− ω0(X))(hX(X)− h̃X(X))].

Furthermore, if ςs,n → 0, τs,n → 0, and
√
nςs,nτs,n → 0, then

√
n(θ̃ − θ0)

d→ N(0,E[Φ2]). (1.27)

This theorem characterizes the effects of the imperfect model selection from
the first step lasso procedure. b is an additional bias term, and v1, v2, and
v3 are additional variance terms. In particular, v1 is the additional variance
due to imperfect approximation of ω0 by ω∗, and v2 is another variance term
due to imperfect approximation of hX by h̃X , and v3 is the term due to slow
approximation of both hX and ω0. For the case of (1.27), we can conduct inference
on θ0 by estimating the asymptotic variance E[Φ2]. On the other hand, if the
imperfect model selection is severe in the sense that ςs,n = τs,n = O(1), the post
selection estimator θ̃ will have the asymptotic bias b and additional terms in the
variance as in (1.26). We leave valid inference in this general case for future
research.

1.3.4 Targeted debiasing estimator for θ0

In this subsection, we discuss a targeted debiasing procedure, which is between
the debiasing procedure for the whole vector λ̂ in Section 1.3.2 and post selection
procedure in Section 1.3.3.

Without loss of generality, we assume the first s elements of {1, . . . , K} are
selected by λ̂. Suppose that Θ̂s is a good approximation of the inverse of the s×s

matrix E[φ
(2)
∗ (λ′osgs(X))gs(X)gs(X)′]. For example, a practical choice would be

the empirical counterpart (En[φ
(2)
∗ (λ̂′sgs(X))gs(X)gs(X)′])−1. Define the targeted

debiasing version λ̂TD of λ̂ as

λ̂TD = (Λ̂′s, 0
′
K−s)

′, Λ̂s = λ̂s + Θ̂sαnκ̂s,

and 0K−s is the (K − s)-dimensional vector of zeros. That is, we only correct the
bias for the selected elements by Ŝ. Then θ0 is estimated by

θ̂TD = En[φ(1)
∗ (λ̂′TDg(X))h(X, Y )].
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Let γ̃n = κo,n ∨
√
s logK/n, ωs(x) = φ

(1)
∗ (λ′osgos(x)), and h̃XTD(x) = β̃′sgs(x),

where

β̃s = E[φ(2)
∗ (λ′osgs(X))gs(X)gs(X)′]−1E[φ(2)

∗ (λ′osgs(X))gs(X)E[h(X, Y )|X]].

For the limiting distribution of θ̂TD, we add the following assumptions.

Condition TD.

1. There exists functions rh, r̃hTD : X → R such that E[rh(X)] = E[ω0(X)E[h(X, Y )|X]],
E[r̃hTD(X)] = E[ω0(X)h̃XTD(X)], and

E[{β̃′s(ω0(X)gs(X)− r(X))− (ω0(X)h̃XTD(X)− r̃hTD(X))}2]→ 0.

2. |Θ̂−Q(2)(λos)
−1| = Op(%n) and

√
nγ̃nζs%n → 0.

3. Condition I’ holds true with Λ∗ and
√

ζ2s
n
replaced by λos and γ̃n, respectively.

4. Condition S’ holds true with ω∗ and h̃X replaced by ωs and h̃XTD, respectively
.

Condition TD(1) is a counterpart of Condition N’(2). The roles of Conditions
TD(3)-(4) for the targeted debiasing procedure are same as Conditions I’ and S’
for the post selection procedure, respectively. Condition TD(2) is concerned with
quality of the targeted debiasing procedure. Under these conditions, the targeted
debiasing estimator θ̂TD admits the same asymptotic representation as the post
selection estimator as illustrated by the following theorem.

Theorem 1.6. Suppose Conditions D’, C, H, and TD hold true. Additionally
assume

√
nκ2

o,nζ
4
s → 0,

√
nζ2

s γ̃
2
n → 0, and E[(Φ + ṽ1 + ṽ2 + ṽ3)2] <∞. Then

√
n(θ̃ − θ0 + b̃)

d→ N(0,E[(Φ + ṽ1 + ṽ2 + ṽ3)2]).

where b̃, ṽ1, ṽ2, and ṽ3 are same as those in Theorem 1.5 with replacements of
ω∗, h̃X , and r̃h with ωs, h̃XTD, and r̃hTD, respectively.

1.4 Theoretical application: treatment effect

In this section, we extend Example 1.2 in Section 1.1 and consider estimation of
the average treatment effect. Let Di be the indicator of a treatment for individual
i = 1, . . . , n (Di = 1 and 0 mean treated and not treated, respectively). For each
i, there exist two potential outcomes, Yi(1) if treated and Yi(0) if not treated.
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The observable outcome is Yi = DiYi(1)+(1−Di)Yi(0). Also, let Xi be covariates
of individual i. Based on a random sample {Di, Yi, Xi}ni=1, we wish to estimate
the average treatment effect τ = E[Y (1) − Y (0)]. Under the unconfoundedness
and overlap assumptions, τ can be identified as (Rosenbaum and Rubin, 1983b)

τ = E[ωt(X)DY ]− E[ωu(X)(1−D)Y ] ≡ θt − θu,

where ωt(x) = π(x)−1, ωu(x) = {1 − π(x)}−1, and π(x) = Pr{D = 1|X = x} is
the propensity score. We treat ωt and ωu as latent weight functions, and construct
moment conditions as in (1.1) by utilizing the property of the propensity score:

E[Dωt(X)g(X)] = E[(1−D)ωu(X)g(X)] = E[g(X)], (1.28)

for any g. By applying our methodology based on (1.28), the weight function ωt

can be estimated by{
ω̂t(x) = φ

(1)
∗ (λ̂′1g(x)) (low dimensional case)

ω̃t(x) = φ
(1)
∗ (Λ̂′1g(x)) (high dimensional case)

,

where

λ̂1 =

 arg min
λ

En[Dφ∗(λ
′g(X))− λ′g(X)] (low dimensional case)

arg min
λ

En[Dφ∗(λ
′g(X))− λ′g(X)] + α1n

∥∥λ∥∥
1

(high dimensional case)
,

Λ̂1 = arg min
Λ∈Rs1

En[Dφ∗(Λ
′gs1(X))− Λ′gs1(X)],

where gs1 is the s1-dimensional functions corresponding to Ŝ1 = {j : λ̂1j 6= 0}.

Then θt is estimated by θ̂t = En[ω̂t(X)DY ] for the low dimensional case, or by
the post selection estimator θ̃t = En[ω̃t(X)DY ] for the high dimensional case.
Similarly we can estimate ωu and θu (by replacing D with (1 − D)). Then the
average treatment effect τ can be estimated by τ̂ = θ̂t− θ̂u for the low dimensional
case, or τ̃ = θ̃t− θ̃u for the high dimensional case. By applying the results in the
previous sections, we obtain the following corollary.

Corollary 1.1. Consider the setup of this section. Suppose D⊥(Y (1), Y (0))|X
(unconfoundedness condition), and the propensity score π is bounded away from
0 and 1 over the compact support X (overlap condition). Furthermore, assume
E[Y 2(0)] <∞, E[Y 2(1)] <∞.

(i) [Low dimensional case] Under the assumptions of Theorem 1.2, in particular,
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if

sup
x∈X
|E[Y (1)|X = x]− λ′1g(x)| = o(1),

sup
x∈X
|E[Y (0)|X = x]− λ′0g(x)| = o(1),

for some λ1, λ0 ∈ RK, it holds

√
n(τ̂ − τ)

d→ N(0,Σ),

where Σ = E
[
{E[Y (1)|X]− E[Y (0)|X]− τ}2 + Var(Y (1)|X)

π(X)
+ Var(Y (0)|X)

1−π(X)

]
.

(ii) [High dimensional case] Under the assumptions of Theorem 1.5, it holds

√
n(τ̃ − τ + bps)

d→ N(0,Σps),

where the formula of bps ≥ 0 and Σps ≥ Σ can be found accordingly via
Theorem 1.5.

Proofs are similar to those of Theorems 1.2 and 1.5. This corollary may be
considered as an extension of Chan et al. (2016) to the high dimensional case
by using the `1-penalized estimator. Note that the asymptotic variance Σ is the
semiparametric efficiency bound for τ established in Hahn (1998).

1.5 Empirical application: stochastic discount fac-

tor

To illustrate performance of the proposed method, we consider Example 1.1 in
Section 1.1 and estimate the SDF in an equity market. We compare out-of-sample
performance of the proposed method with other leading factors in empirical fi-
nance literature. In particular, the approach adopted by Ghosh et al. (2015) is a
special case of ours for the low (and fixed) dimensional case. Our major findings
are: (i) in the low dimensional setup where the number of portfolios in the mar-
ket is small, predictability of our method is at least as good as the Fama-French
three factors model, and the cross sectional errors are lower, and (ii) in a relatively
high dimensional setup where the number of portfolios is similar to the number of
training periods, upon choosing suitable penalty levels, our method outperforms
the Fama-French three factors model while Ghosh et al. (2015)’s method shows
erratic behaviors.
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1.5.1 Methodology

Following the convention in empirical finance, we estimate the normalized SDF
using Kullback-Leibler divergence function φ(x) = x log x and excess asset re-
turns. To be precise, in July year l, we form a training subsample using portfolio
returns data of past 30 years. Based on this training subsample, we estimate the
normalized SDF using the proposed method.

In particular, the moment condition in (1.1) can be written as

E[ω(Rt1)Rt1 ] = 0,

where Rt1 is a vector of excess portfolio returns between time t1 and t1 + 1(a
month between year l and l − 30) and ω(Rt1) =

E[mt1 |Rt1 ]

E[mt1 ]
is the the normalized

and projected SDF on excess returns. Since φ∗(y) = ey−1, applying our methods
yields ω̂(Rt1) =

exp(λ̂′Rt1 )

T−1
1

∑T1
t1=1 exp(λ̂′Rt1 )

,11 where

λ̂ =

 arg min
λ
T−1

1

∑T1
t1=1 exp(λ′Rt1) (low dimensional portfolios)

arg min
λ
T−1

1

∑T1
t1=1 exp(λ′Rt1) + αn

∥∥λ∥∥
1

(high dimensional portfolios)
.

Based on this λ̂, we predict the SDF using a testing subsample one year ahead
from year l with total time periods of T2. Then the estimated out-of-sample SDF
from July year l to June year l + 1 would be ω̂(Rt2) =

exp(λ̂′Rt2 )

T−1
2

∑T2
t2=1 exp(λ̂′Rt2 )

, where

t2 is a month between year l and l + 1. We continue to build the estimated SDF
time series in this fashion to cover all periods in our sample.

To test the cross-sectional predictability of our estimated out-of-sample SDF,
we use the two-pass regression in empirical finance (Fama and MacBeth 1973;
Cochrane 2009). In the first step, we run a time series OLS regression of excess
returns Rj on our estimated out-of-sample SDF ω̂ for each portfolio j. We record
its slope coefficient β̂j as its factor loading. Then in the second step, we run a
cross sectional OLS regression from R̄ on β̂, where R̄ is a vector of average excess
returns for all portfolios, and β̂ is a vector of estimated factor loadings in the first
step. We compare the adjusted R-squared as well as the estimated constant in
the second regression to other empirical asset pricing models.

1.5.2 Data

All data are taken from Kenneth French’s data library. To make the results
comparable with existing literature (e.g., Fama and French 1993; Lewellen et al.
2010; Ghosh et al. 2015), the out-of-sample evaluation covers from July 1963

11For simplicity and convenient comparison with other methods, we do not use trimming.
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to December 2010. We use monthly data so each training subsample is of size
T1 = 360 and each testing subsample is of size T2 = 12 (except for the last rolling
window where T2 = 6). We only consider equity portfolios returns, which are
quoted in %.

We compare three methods: Our method without penalty (essentially, Ghosh,
Julliard and Taylor, 2016), our method with `1-penalization, and Fama-French
three factors model. These methods are compared under the following scenarios.

(i) Low dimensional case: the SDF is constructed from 25 size and book-to-
market portfolios, 10 momentum portfolios, 25 size, and long term reversal
portfolios, respectively.

(ii) Intermediate case: the SDF is constructed from 100 size and book-to-market
portfolios, 49 industry portfolios, and 25 long term reversal and size+25
short term reversal and size+25 momentum portfolios, respectively.

(iii) High dimensional case: use all portfolios available from Kenneth French’s
data library. Since some data are only available from 1960s, the out-of-
sample period can only cover months from July 1993 to December 2010.
The SDF is constructed from the two sets of portfolios: (a) 300 portfolios
that include 100 portfolios based on size and book-to-market, 100 portfolios
based on size and operating profitability, and 100 portfolios formed on size
and investment, and (b) 425 portfolios that include 300 portfolios above, 49
industry portfolios, 25 portfolios on long term reversal and size, 25 portfolios
on short term reversal and size, and 25 momentum portfolios.

1.5.3 Empirical results

1.5.3.1 Low dimensional and intermediate cases

Table 1 presents the cross sectional regression results for the low dimensional
case. The numbers of portfolios are less than 30 in all panels and the training
subsample size is 360. Although penalization seems unnecessary, we present the
result when the penalty level is 0.05, a relatively small penalty, for comparison.
The numbers in parentheses are t-values for the coefficients above. In all pan-
els, the estimated price of risk is highly significant with the correct sign, either
with or without penalty. The adjusted R-squared for the no penalty estimate is
larger than the one for the Fama-French model in Panels A and B. The adjusted
R-squared for the penalized estimate is worse than the one for the no penalty esti-
mate in these two panels. Since the dimension is low, we expect every portfolio is
informative and there is no need for penalization. Moreover, we can see that the

35



intercept estimates are all much smaller than the Fama-French estimates. This
also indicates that our model is better than Fama-French three factor models.
Panel C is interesting, where the no penalty estimate is worse than the penal-
ized estimate. This result indicates usefulness of penalization even for the low
dimensional case.12

Table 2 summarizes the results for the intermediate case, where the number
of portfolios ranges from 50 to 100. The results are similar to the low dimensional
case in Table 1. Our method (with or without penalty) outperforms the Fama-
French model for most cases in terms the intercept estimates and adjusted R-
squared.

1.5.3.2 High dimensional case

This case is of our major interest, where the no penalty estimate (essentially
Ghosh et al., 2015) is not applicable or performs erratically, and it is crucial
to introduce penalization. In this case, the choice of the penalty level becomes
more important. We create a grid from 0.1 to 2 with 0.05 increments, estimate
the SDF by our method, and implement the cross sectional regression for each
penalty level.

The results are summarized in Figure 1. The SDF estimates without penal-
ization perform very badly with the adjusted R-squared close to 0 and relatively
large intercept estimates. As the penalty level increases, the performance of our
method gets better. When the penalty level is approximately above 0.5, pre-
dictability of our method surpasses Fama-French, and the intercept estimates are
much smaller. Then performance of our method gets worse when the penalty
level continues to increase above 1.5. This is expected because the number of
portfolios selected will be too small for too large penalty levels and the perfor-
mance would deteriorate. Based on these results, we set the penalty level at 0.9
for 300 portfolios and 0.85 for 425 portfolios, and report the results in Table 3.
We can see that the adjusted R-squared by the penalized SDF estimate is much
higher than the one of Fama-French and that its intercept estimate is close to
0 and insignificant. Therefore, our method shows excellent performance upon
choosing suitable penalty levels.

12Under-performance of the no penalty estimate (for both low and high dimensional cases)
may be due to non-existence of higher moments. Note that both Ghosh et al. (2015) (no penal-
ization) and our method using Kullback-Leibler divergence divergence (with `1 penalization)
rely upon the exponential moments E[exp(λ′Rt1)] whose finiteness implies infinite order of mo-
ments of Rt1 . If some higher moments of Rt1 does not exist, the no penalty estimator will
behave erratically. Although formal analysis is beyond the scope of this chapter, we conjecture
that our `1-penalization may effectively remove such problematic components in asset return
movements. On the other hand, if non-existence of higher moments is a significant concern, we
can flexibly choose a different divergence function, for example, Pearson’s χ2 divergence.
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The number of active portfolios chosen in each year for each penalty level
is summarized in Figures 2 (300 portfolios) and 3 (425 portfolios). Without
penalization, too many portfolios will be used and cause undesirable performance.
As the penalty level increases, the number of selected portfolios drops quickly,
and at the levels used for Table 3, the number of portfolios selected is around
5-10.

1.5.3.3 Time series property of penalized SDF estimates

We illustrate time series properties of the penalized SDF estimates for 300 and 425
portfolios at the penalty levels used for Table 3. The plot is displayed in Figure
4 and the gray shaded areas correspond to NBER recessions. Our SDF estimates
catch those macro events very well. In Table 4 we run a time series regression
of our SDF estimates on other key factors in the market including Fama-French
three factors and momentum factors. We can see that correlations of our SDF
estimates with those leading factors are very small, and the adjusted R-squared is
also small. This indicates that our method catches critical information for asset
pricing in the market that cannot be explained by Fama-French and momentum
factors.
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1.5.4 Tables and figures

Table 1.1: Cross sectional regression in low dimensional case

Const. λSDF λRM λSMB λHML Adjusted
R2

Panel A: 25 size and book-to-market

SDF: No penalty 0.649 -0.257 0.844
(13.977) (-11.438)

SDF: α = 0.05
0.720 -0.124 0.625

(10.146) (-6.400)

3 Factors 1.668 -0.751 0.204 0.437 0.714
(4.401) (-2.067) (3.853) (6.773)

Panel B: 10 momentum

SDF: No penalty 0.752 -0.168 0.918
(21.715) (-10.056)

SDF: α = 0.05
0.716 -0.129 0.908

(18.714) (-9.493)

3 Factors 2.365 -1.198 -0.068 -1.485 0.815
(1.576) (-0.754) (-0.057) (-1.615)

Panel C: 25 long term reversal and size

SDF: No penalty 0.741 -0.215 0.505
(8.023) (-5.049)

SDF: α = 0.05
0.382 -0.180 0.785
(4.372) (-9.416)

3 Factors 0.702 0.219 0.111 0.633 0.754
(2.541) (0.833) (1.678) (5.051)

Note: Cross sectional regression results in the low dimensional case. The estimated SDF
is derived in a rolling window out-of-sample fashion from July 1963 to December 2010,
using portfolios in each corresponding panel. Panel A presents results using 25 size and
book-to-market portfolios, Panel B presents results using 20 momentum portfolios, and
Panel C is concerned with results using 25 long term reversal and size portfolios. The
second column is the estimated constant in each model, the last column records the
adjusted R2, and the other columns summarize estimated price of risk. Numbers in the
bracket are the corresponding t-values. In each panel the first row is about the estimated
SDF when no penalty is imposed, the second row is the estimated SDF when penalty
level is at 0.05, and the third row is the seminal Fama-French three factor models.
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Table 1.2: Cross sectional regression in intermediate case

Const. λSDF λRM λSMB λHML Adjusted
R2

Panel A: 100 size and book-to-market

SDF: No penalty 1.033 -0.926 0.581
(52.744) (-11.532)

SDF: α = 0.1
0.725 -0.273 0.652

(20.435) (-13.367)

3 Factors 1.575 -0.639 0.190 0.439 0.627
(8.618) (-3.670) (5.577) (11.175)

Panel B: 49 industry

SDF: No penalty 0.800 -0.129 0.329
(16.239) (-4.852)

SDF: α = 0.1
0.686 -0.065 0.294
(0.686) (-0.065)

3 Factors 1.064 -0.008 -0.096 -0.109 -0.002
(6.229) (-0.047) (-0.923) (-1.151)

Panel C: 25 long term reversal+25 short term reversal+25 momentum

SDF: No penalty 1.083 -1.919 0.605
(48.960) (-10.698)

SDF: α = 0.1
1.130 -0.484 0.441

(43.162) (-7.705)

3 Factors 1.416 -0.432 0.293 0.012 0.153
(4.489) (-1.454) (3.370) (0.064)

Note: Cross-sectional regression results in the intermediate case. The estimated SDF
is derived in a rolling window out-of-sample fashion from July 1963 to December 2010,
using portfolios in each corresponding panel. Panel A presents results using 100 size
and book-to-market portfolios, Panel B presents results using 49 industry portfolios,
and Panel C presents results using 75 portfolios listed in the beginning of the panel.
The second column is the estimated constant in each model, the last column records
the adjusted R2, and the other columns summarize estimated price of risk. Numbers
in the bracket are the corresponding t-values. In each panel the first row is about the
estimated SDF when no penalty is imposed, the second row is the estimated SDF when
penalty level is at 0.1, and the third row is the seminal Fama-French three factor models.
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Figure 1.1: Summary of cross sectional regression against different penalty levels
in high dimension case (K = 300 or 425; T = 360)
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Figure 1.2: Number of active portfolios selected under 300 portfolios case
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Figure 1.3: Number of active portfolios selected under 425 portfolios case

42



Table 1.3: Cross sectional regression in high dimensional case

Const. λSDF λRM λSMB λHML Adjusted
R2

Panel A: 300 portfolios
100 size & book-to-market+100 size & operating profitability+100 size & investment

SDF: α = 0.1
1.027 -1.197 0.032

(14.062) (-3.306)

SDF: α = 0.9
-0.050 -0.214 0.658
(-0.851) (-24.017)

3 Factors 4.687 -3.891 0.699 -0.517 0.301
(10.986) (-9.998) (5.295) (-2.900)

Panel B: 425 portfolios
300 in Panel A+49 industry+25 long term rev.+25 short term rev.+25 momentum

SDF: α = 0.1
1.206 -0.292 0.018

(12.684) (-2.967)

SDF: α = 0.85
0.024 -0.154 0.455
(0.383) (-18.800)

3 Factors 2.914 -2.121 0.659 -0.305 0.190
(10.507) (-8.339) (6.331) (-2.205)

Note: Cross-sectional regression results in the high dimensional case. The estimated
SDF is derived in a rolling window out-of-sample fashion from July 1993 to December
2010, using portfolios in each corresponding panel. Panel A presents results using 300
portfolios, and Panel B presents results using 425 portfolios. The second column is
the estimated constant in each model, the last column records the adjusted R2, and
the other columns summarize estimated price of risk. Numbers in the bracket are the
corresponding t-values. In each panel the first row is about the estimated SDF when
the penalty level is set at 0.1, the second row is the estimated SDF when penalty level is
at 0.9 and 0.85, respectively, and the third row is the seminal Fama-French three factor
models.
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Figure 1.4: Time series plot of estimated SDF in high dimensional case: July
1993 - December 2010.
Grey shaded area represents NBER recessions
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Table 1.4: Time series properties of estimated SDF from high dimensional case

α βRM βSMB βHML βMOM Adjusted
R2

Panel A: 300 portfolios, α = 0.9
1.011 -0.004 -0.014 -0.007 -0.007 0.118

(85.846) (-1.427) (-4.106) (-1.851) (-3.264)
Panel B: 425 Portfolios, α = 0.85

1.012 -0.006 -0.016 -0.003 -0.008 0.171
(84.730) (-2.340) (-4.712) (-0.879) (-3.594)

Note: Time series regression of estimated SDF extracted from the high dimensional case
against key factors in the market. The estimated SDF is derived in a rolling window out-
of-sample fashion from July 1993 to December 2010, using portfolios and penalty level
in each corresponding panel. Panel A presents results using 300 portfolios and when
penalty level is 0.9, and Panel B presents results using 425 portfolios and when penalty
level is set at 0.85. The first column is the estimated constant (or, “alpha”) in each
regression, the last column records the adjusted R2, and the other columns summarize
estimated beta for each factor. Numbers in the bracket are the corresponding t-values.
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Chapter 2

Minimax learning for average
regression functionals: framework

2.1 Introduction

Empirical analyses in many disciplines increasingly rely on a large number of
control variables (hereafter controls). A vast majority of research in empirical
economics works with observational data (Imbens and Wooldridge, 2009; An-
grist and Pischke, 2010; Oster, 2017). So causal inference usually needs some
form of exogeneity assumption (Heckman et al., 1999; Imbens, 2004), which is
more plausible conditioning on many controls. For example, to get results com-
parable to experimental studies in job training programs, Heckman et al. (1997,
1998) recommend including a full set of variables related to program participation
and labor market outcomes. With the sizable datasets economists are working
with nowadays, it is also common to include many fixed effects in regressions
to capture widespread heterogeneity in data (Card et al., 2013) or to simulate
a quasi-experimental environment (Rossin-Slater, 2017). In some fields, say po-
litical economy (Ferraz and Finan, 2011) and macroeconomics (Nakamura and
Steinsson, 2018), ideal experimental designs rarely exist. Therefore, whether in-
cluded controls are rich enough to capture main source of bias becomes crucial.
Even in experimental studies, including covariates is able to sometimes reduce
variance (Section 4.4, Duflo et al., 2007) or alleviate crossover effect (Linnemayr
and Alderman, 2011).

However, the presence of many controls challenges our practice in empirical re-
search. Albeit popular, OLS is subject to a problem of “over control” (or “spurious
omitted variable bias”). Without any discipline of the coefficients, adding more
regressors can distort estimates. Such distortion can be so large that improvement
from addressing omitted variable bias is negligible. Ignoring such effect can lead
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to misinterpretation of empirical results. If data do contain considerable bias,
this bias issue further intertwines with the many-controls issue in a complicated
way. Using OLS is potentially even more dangerous: a correctly specified model
with many controls can perform worse than a biased model with fewer controls
in terms of mean square error. Off-the-shelf shrinkage methods do not solve “over
control” easily. An influential line of research from Belloni et al. (2012, 2014,
2017b, etc.) advances the state by validating inference based on (post) lasso
selections. Although allowing a much larger number of controls, their results
naturally extend a question of whether some of the technical assumptions are
realistic to suit broader scenarios in applied research.

Standard econometric theory also appears less satisfactory when the number
of covariates becomes large. To achieve desirable asymptotic properties, bias and
variance of many nonparametric methods need to be carefully traded off with
the help from tuning parameters (for series method, it is the number of basis
functions k in a sample of size n). For example, to establish

√
n normality,

default theory often requires nonparametric part of the model to reach at least
op(n

−1/4) convergence rate. Such a condition can be strict for problems with many
controls, as it implies k should grow slowly. Even if these technical conditions
are asymptotically attainable, they leave little guidance on the actual choice of k
for any realistic sample size. As a result, empirical performance of fitted models
is often sensitive to k. This can still happen for off-the-shelf shrinkage methods
if the number of controls is too large.

In recognition of these empirical and theoretic challenges, the rest of the thesis
aims to develop an estimation method that

1. Achieves
√
n normality under weaker conditions. Indeed, although there

are many results on the attainability of
√
n normality and semiparametric

efficiency, it is not yet crystal clear to what extent we can relax those
technical conditions.

2. Displays improved finite sample performance. The estimation method should
avoid introducing undesirable distortion when dimension increases, i.e., it
should not “over control”.

3. Is straightforward to implement so applied researchers can apply conve-
niently.

To achieve these goals, I focus on semiparametric models whose object of interest
can be expressed as a population weighted average of a nonparametric regression.
This simple setting is relevant to many empirical problems in economics. See
Section 2.2 for a detailed discussion. It also allows us to explore interesting facets
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of asymptotic theory absent otherwise for general models. The rest of the thesis
contributes to the literature mainly in the following two aspects:

1. it proposes a new minimax methodology and develops a new class of esti-
mators called “minimax learners”.

2. it studies asymptotic properties of minimax learners and presents a relative
complete set of distributional results under various dimensional frameworks
and considerably weak conditions.

Embedded in a penalized series space, the estimating strategy exploits a mini-
max property of a fundamental component (called Riesz Representer, or RR) of
the average regression functional and aims to directly control key remainder bias
term. This strategy is inspired by two branches of exceptional work in recent lit-
erature: series estimation of RR and its high dimensional variants, pioneered by
Newey and Robins (2018); Chernozhukov et al. (2018c); and minimax approach
to linear semiparametric models, explored in Hirshberg and Wager (2018); Wong
and Chan (2018). This chapter deviates from previous literature, calibrating RR
in the penalized series space with a criterion different from Hirshberg and Wager
(2018). It is carefully designed to accommodate even high dimensional situa-
tions. Penalized series space proves a powerful tool, improving finite sample and
asymptotic performance. As a first theoretic result, this chapter uncovers an in-
timate connection between proposed minimax strategy and traditional minimum
distance estimation. Minimax exercise embedded in the series space can be an-
alyzed in a weighted minimum distance fashion. It thus links this chapter with
earlier fine works of Chen and Pouzo (2012, 2015a), but with inherently differ-
ent motivations. Due to the minimum distance structure, this minimax exercise
is straightforward to implement and computationally competitive compared to
other infinite dimensional minimax exercises.

When k
n
→ 0 (up to log term), I show a kind of plug-in estimator constructed

with calibrated RR (called “minimax BP learner”) can achieve
√
n normality and

semiparametric efficiency under weak conditions. If the underlying regression
function is smooth enough, calibrated RR only needs to be consistent in ‖· ‖P,2
norm without a convergence rate requirement. This is close to the minimal con-
dition so far in the literature, which relies on cross fitting. More interestingly,
the minimax BP learner is able to achieve

√
n normality even when k

n
→ c where

0 < c < 1. Under this asymptotic framework, calibrated RR is not even con-
sistent.

√
n normality comes from fast approximation of the regression function

and a central limit theorem established around sample mean.
This framework also accommodates ultra high dimensional situations when

k
n
→∞, suitable if there are many technical controls or interaction terms. I show
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that a doubly robust estimator constructed with calibrated RR (called “mini-
max DR learner”) is

√
n normal and semiparametrically efficient under conditions

weaker than Belloni et al. (2017b); Chernozhukov et al. (2018a), and comparable
to Chernozhukov et al. (2018c). In particular, calibrated RR only needs to be
l1 consistent with no rate condition per se, if it converges relatively fast under a
weak norm, which also does not have to be op(n−1/4). These results are derived
together with two key techniques. First, further l1 regularization is added to
the original penalized series space, making calibrated RR a Generalized Minimax
Elastic Net (GMEN) learner. GMEN learner can sometimes converge faster than
a pure lasso based method. Second, the first step estimator of the regression
function is assumed to be derived from a different random sample, in line with
recent literature advocating cross fitting. This also allows inclusion of any ma-
chine learning method in the first step. However, GMEN learner is still calibrated
from the main sample, weaker than earlier results in the literature.

As an empirical illustration, I revisit Ferraz and Finan (2011)’s work that
exploits a natural experiment and studies the effect of electoral accountability
on corruption. With plausibly exogenous treatment, one of their main empirical
strategies is OLS with many controls. I find estimates from OLS change con-
siderably as more covariates are sequentially added to the regression. Minimax
learners, on the other hand, perform stably and produce economically coherent
conclusions, even when the number of controls is much larger. Other popular
off-the-shelf shrinkage methods do not work as well as minimax learners. This
exercise shows the main conclusion of Ferraz and Finan (2011) is robust. How-
ever, the over control problem of OLS is salient in this setting. Ignoring this
effect leads to an interpretation of spurious omitted variable bias in their data.

2.1.1 Related literature

The rest of the thesis builds on a sequence of fruitful research on semiparametric
inference. For general results, see Bickel (1982); Robinson (1988); Newey (1990);
Van Der Vaart et al. (1991); Bickel et al. (1993); Andrews (1994); Newey (1994b);
Newey and McFadden (1994); Van der Vaart (1998), etc. The workhorse asymp-
totics is the series method, well studied by at least Newey (1991); Donald and
Newey (1994); Newey (1997); Shen (1997); Huang (2003); Ai and Chen (2003);
Newey and Powell (2003), etc. For a review, see Chen (2007). And see Bel-
loni et al. (2015); Chen and Pouzo (2015b); Hansen (2015) for recent asymptotic
refinement.

RR is a fundamental concept in functional analysis. It stems from the famous
Riesz representation theorem that connects Hilbert space and its dual via a simple
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inner product structure. While the role of RR has been widely known to estab-
lish semiparametric efficiency bound (Newey 1990, 1994b), it is relatively a recent
matter to study how RR can be directly approximated without knowing its func-
tional form. The average regression functional set-up in this chapter follows the
exemplary work of Newey and Robins (2018), who introduce series estimation of
RR and study asymptotic properties of corresponding cross-fitted doubly robust
and plug-in estimators. Similar framework is used later by Chernozhukov et al.
(2018b,c), extending to high dimensional cases by lasso and Dantzig regularized
minimum distance estimators. The ultimate goal of this chapter is quite simi-
lar, but the minimax motivation is conceptually different. Compared to Newey
and Robins (2018), I work with penalized series space under a different identi-
fication strategy, and does not use sample splitting. This in fact connects with
the penalized sieve minimum distance (PSMD) estimation studied in Chen and
Pouzo (2012, 2015a). Compared to Chernozhukov et al. (2018c), proposed GMEN
learner can sometimes attain a better convergence rate. Sample splitting proce-
dure in this thesis is slightly weaker, and a data-driven algorithm for the l1 penalty
coefficient is also proposed.

The rest of the thesis has also been inspired by recent minimax approach
to semiparametric models. Specifically, Wong and Chan (2018) study a similar
problem for average treatment effect in reproducing kernel Hilbert space, but do
not show consistency of their weight (which is closely related to RR). Under the
framework of Newey and Robins (2018), Hirshberg and Wager (2018) propose
a minimax exercise in general, infinite dimensional penalized space, and focus
on asymptotic properties of doubly robust estimators. Their outstanding works
motivate us to look at a minimax problem but in penalized series space, which to
the best of my knowledge, has not been studied systemically before. While their
asymptotics centers around what I think as low dimensional cases, the minimax
strategy in this chapter is carefully devised to accommodate both low and high
dimensional situations. The simple linear structure of series space enables us
to get a richer set of asymptotic results, and offers computational advantage
as well. The broader minimax idea is not new in the literature. It has been
recently revisited in a range of topics, like kernel methods for linear functionals
(Armstrong and Kolesár, 2018b,a) and regression discontinuity designs (Imbens
and Wager, 2018).

Minimax BP learner has a close relation with the popular balancing method
in statistic literature, for example, Hainmueller (2012); Imai and Ratkovic (2014);
Zubizarreta (2015); Chan et al. (2016); Kallus (2016); Athey et al. (2018), etc. In
fact, RR is the ideal weight to be used in balancing literature. Asymptotic results
when k

n
→ c > 0 have also been inspired by alternative asymptotic theories devel-
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oped in Chao et al. (2012); Cattaneo et al. (2018b,a) and by conditional inference
approach discussed in Athey et al. (2018). In ultra high dimensional situations
when k

n
→ ∞, minimax DR learner builds on the popular “doubly robust” or

“locally robust” literature, see Belloni et al. (2012); Farrell (2015); Chernozhukov
et al. (2016); Rothe and Firpo (2016); Belloni et al. (2017b); Chernozhukov et al.
(2018b,a), etc. In terms of high dimensional technical results, I benefit from an
outstanding line of research on l1 regularization methods (Bühlmann and Van
De Geer, 2011; Bickel et al., 2009; Koltchinskii et al., 2009; Koltchinskii, 2009,
etc.) and extensions to elastic net style regularizations (Bunea, 2008; Hebiri et al.,
2011).

2.1.2 Notations and definitions for the rest of the thesis

Triangular array asymptotics

The rest of the thesis works with triangular array data {Yi,n, Zi,n, Xi,n}ni=1, which
are first n items of infinite sequences {Yi,n, Zi,n, Xi,n}∞i=1 generated from proba-
bility measure P = Pn. To simplify notation, use {Yi, Zi, Xi}ni=1 and P instead.
Thus write E[· ] = EP[· ] as the expectation operator under P.

Random variables and functions

Capital letters X, Y . . . usually refer to random variables, while small letters
x, y . . . refer to arguments in their supports or some numbers. For a vector a =

(a1, a2 · · · , ak)′ ∈ Rk,m(z, a) = [m(z, a1),m(z, a2) · · · ,m(z, ak)]
′ is a k−dimensional

column vector. 1{· } is the indicator function. En[· ] = 1
n

n∑
i=1

(· ) is the empirical
average.

Norms

For a vector a = (a1, a2 · · · , ak)′ ∈ Rk , let ‖a‖ =

(
k∑
j=1

a2
j

)1/2

, ‖a‖1 =
k∑
j=1

|aj| and

‖a‖∞ = max
1≤j≤k

|aj| denote its l2, l1 and sup norms, respectively. For a function

f : X → R, let ‖f‖P,q =
[∫
|f(x)|q dP(x)

]1/q
, 1 ≤ q ≤ ∞ denote its Lq(P) norm.

In particular, ‖f‖2
P,2 = E[f(X)2], ‖f‖P,∞ = sup

x∈X
|f(x)|. For a square matrix

A = {aij}ki,j=1, let λmax(A), λmin(A) and tr(A) be its largest eigenvalue, smallest
eigenvalue and trace, respectively. Thence let ‖A‖ =

√
λmax(A′A) be its spectral

norm. If A is symmetric, ‖A‖ = max
i
|λi(A)|. Write ‖A‖max = max

1≤i,j≤k
|aij|,

‖A‖∞ = max
1≤i≤k

k∑
j=1

|aij|.
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Numbers and words

For two sequences of numbers an and bn, an ∨ bn = max{an, bn}, an ∧ bn =

min{an, bn}; an . bn means an ≤ cbn for some constant c that does not depend
on n. Bold 0 represents a (k dimensional) vector with each entry valued 0.
“Wpa1” means “with probability approaching 1”. “LIE” means “Law of Iterated
Expectations”. “CIA” means “Conditional Independence Assumption”.

Empirical process

For a function class F , let ‖Q‖F = sup {|Qf | : f ∈ F}. An envelope function for
F is defined as some F such that |f(x)| ≤ F (x), for each f ∈ F and each x ∈ X .
The covering number N(F , L2(Q), δ) is the smallest number of L2(Q) balls of
radius δ to cover F . A Rademacher random variable ηi is such that P(ηi =

−1) = P(ηi = 1) = 1
2
.

Convex functions in Hilbert space

LetH be a Hilbert space with inner product 〈· , · 〉 : H×H → R. Write f(h) : H →
R∪{+∞} as an extended real function. Denote dom(f) = {h ∈ H : f(h) < +∞}
as the domain of f . Function f is proper if dom(f) 6= ∅ and is convex if

f(λh1 + (1− λ)h2) ≤ λf(h1) + (1− λ)f(h2) (2.1)

for each h1, h2 ∈ dom(f) and λ ∈ (0, 1). If inequality in (2.1) is strict whenever
h1 6= h2 and λ ∈ (0, 1), say f is strictly convex. Function f is strongly convex
with parameter c > 0 if

f(λh1 + (1− λ)h2) ≤ λf(h1) + (1− λ)f(h2)− c

2
λ(1− λ) ‖h1 − h2‖P,2

for each h1, h2 ∈ dom(f) and λ ∈ (0, 1).

2.2 Average regression functional and related ex-

amples

This section introduces the average regression functional framework. Suppose we
observe a scalar valued random variable Y ∈ R, a dZ-dimensional random vector
Z and a dX-dimensional subvector X of Z

Z ∈ Z ⊆ RdZ , X ∈ X ⊆ RdX , X ⊆ Z. (2.2)
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Define γ0(x) = E[Y |X = x] ∈ Θγ as the conditional expectation function. As-
sume Θγ is a nonempty convex interior of the LP,2 space that consists of all
f : X → R such that E[f(X)2] < ∞. Object of interest θ0 for the rest of the
thesis is the continuous linear functional E[m(Z, ·)] : LP,2 → R evaluated at γ0

θ0 = E[m(Z, γ0(X))], (2.3)

where m(z, · ) is a known linear function such that for every γ1, γ2 ∈ LP,2 and
every constant r ∈ R

m(z, rγ1(x) + γ2(x)) = rm(z, γ1(x)) +m(z, γ2(x)). (2.4)

By Riesz representation theorem, E[m(Z, ·)] admits a simple inner product struc-
ture in LP,2: There exists a unique α0 ∈ Θα ⊆ LP,2 such that for each γ ∈ LP,2

E[m(Z, γ(X))] = E[γ(X)α0(X)]. (2.5)

Call α0 the Riesz Representer (hereafter RR) of E[m(Z, ·)]. Assume Θα is also
a nonempty convex interior of the LP,2 space. (2.5) has been commonly used
to establish semiparametric variance bound for θ0 via a mean square continuity
condition (for example, see Newey, 1994b). This chapter studies how (2.5) helps
identify and approximate α0 without knowing its functional form, which is an
essential purpose for the rest of the thesis. Indeed, by (2.5), we can interpret
θ0 as a RR weighted population average of a regression function (aka “average
regression functional”)

θ0 = E[α0(X)︸ ︷︷ ︸
weight

γ0(X)︸ ︷︷ ︸
regression

]. (2.6)

As shown by examples below, many economic problems display this structure.
To save space, detailed derivations of RR in some examples are left in Appendix
B.

Example 2.1. Missing data and average treatment effect
Consider a framework of incomplete outcome data studied in Rubin (1974);

Rosenbaum and Rubin (1983a). For each individual unit i = 1 . . . n, we observe
an indicator variable Ti (Ti = 1 if unit i responds and Ti = 0 if missing), outcome
variable Yi = TiY

∗
i (Yi = 0 means Y ∗i is missing), and a covariate vector Xi

that describes pre response individual characteristics. We are concerned about
the population mean θ0 = E[Y ∗]. Under the assumption that Y ∗ and T are
conditionally independent given X, θ0 can be identified as

θ0 = E[γ0(X, 1)],
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where γ0(x, 1) = E[Y |X = x, T = 1]. Define the inverse propensity score as
ω(x) = 1/P{T = 1|X = x}. Further under overlap assumption that

0 < P[T = 1|X = x] < 1 for all x ∈ X ,

we have for each g ∈ LP,2

E[ω(X)Tg(X)] = E[g(X)]. (2.7)

(2.7) identifies RR as
α0(x, t) = ω(x)t.

This framework can be extended to account for average treatment effect (see
for example Qiu and Otsu, 2018), which has become one of the most popular
approaches to causal analysis in observational studies (for a review, see Imbens
and Rubin, 2015; Imbens and Wooldridge, 2009).

Example 2.2. Regression discontinuity design away from cut-off
Slightly modify Example 2.1 but keep notation (Y, T,X). In addition, re-

searchers understand that T is determined by a scalar running variable R at
cut-off point 0 (without loss of generality, hereafter wlog)

T = 1{R ≥ 0},

where 1{· } is the indicator function. Fix a known boundary point b > 0. Object
of interest is the population mean of Y ∗ in a neighborhood around cut-off

θ0 = E[Y ∗| − b ≤ R ≤ b] .

This object is helpful for external validity reasons, for example, when we are in-
terested in the population group away from cut-off (say, inframarginal applicants)
instead of a group at the immediate neighborhood of cut-off. One way to identify
θ0 is through the Conditional Independence Assumption, similar to Angrist and
Rokkanen (2015): Y ∗ and R are independent conditional on X and −b ≤ R ≤ b.
Then it can be shown

θ0 = E[γ0(X)| − b ≤ R ≤ b], (2.8)

where γ0(x) = E[Y |0 ≤ R ≤ b,X = x]. RR is found in a fashion similar to (2.7)
under suitable overlap assumption

α0(x, r) = ω(x)1{r ≥ 0}, (2.9)
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where ω(x) = 1/E [1{R ≥ 0}|X = x,−b ≤ R ≤ b] is the (R-linked) inverse propen-
sity score.

Example 2.3. Weighted average derivative and single index model
Suppose we are interested in the weighted average of some partial derivative

of a regression function

θ0 = E
[
w(X)

∂γ0(X)

∂X1

]
, (2.10)

where X is a vector of covariates whose first element is X1, w(x) is a known
weight function and γ0(x) = E[Y |X = x]. (2.10) encompasses several interesting
models in the literature, like single index model (Stoker, 1986; Härdle and Stoker,
1989; Powell et al., 1989, etc.) and nonseparable model (Imbens and Newey, 2009;
Altonji et al., 2012, etc.). See Cattaneo et al. (2013) for a review. To find RR,
assume w(x) has value 0 at boundaries. Integration by parts yields

θ0 = −E
[
γ0(X)

∂v(X)/∂X1

f(X)

]
,

where v = wf and f is the density of X. RR is then identified as

α0(x) = −∂v(x)/∂X1

f(x)
.

See Newey and Stoker (1993) and Newey and Robins (2018) for more details.

Example 2.4. Average effect after policy intervention
This set-up was introduced by Stock (1989) and has been further studied by

Rothe and Firpo (2016). As usual let γ0(x) = E[Y |X = x] be the conditional
expectation and π(x) be a known policy function. Intuitively, the distribution of
X is shifted to a new random variable Xπ such that Xπ(x) = π(x) after policy
intervention. We are interested in predicting average effect on outcome Y after
policy intervention, written as

θ0 = E[γ0(π(X))]. (2.11)

Rewriting (2.11) by change of measure, we find RR in this case as α0(x) =
fπ(x)
f(x)

, where f and fπ are densities of X and Xπ, respectively.

Example 2.5. Average consumer surplus
This is an example from nonparametric welfare analysis. To introduce the

idea, consider a highly simplified version of the problem studied in Hausman
and Newey (1995, 2016, 2017). Write the demand function of a commodity as
γ0(p, z) = E[Q|P = p, Z = z] where P is the price, Q is the quantity demanded
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and Z is a vector of other characteristics that affect demand. Wlog, denote Z1,
the first variable of Z, as income. Thus define approximate consumer surplus for
a price change from p0 to p1 as

∫ p1
p0
γ0(p, Z)dp. Object of interest is

θ0 = E
[
ω(Z)

∫ p1

p0

γ0(p, Z)dp

]
,

for some known weight function ω(z). Parameter θ0 is viewed as the average
effect of the price change on certain income (and possibly other observable char-
acteristics) groups. Let fP |Z(p|z) be the conditional density. It can be shown
that

θ0 = E
[
ω(Z)1{p0 ≤ P ≤ p1}

fP |Z(P |Z)
γ0(P,Z)

]
,

suggesting that RR admits α0(p, z) = ω(z)1{p0≤p≤p1}
fP |Z(p|z) . Allowing individual hetero-

geneity, Hausman and Newey (2016) extend the above analysis to derive bounds
on average exact consumer surplus, which is also an average regression functional.
See Chernozhukov et al. (2018c) for further derivation of RR in these more so-
phisticated cases.

Example 2.6. Measurement error with auxiliary data
This example is inspired by Chen et al. (2005); Lee and Sepanski (1995). To

simplify presentation suppose we are interested in the population mean of a latent
variable X∗ not directly observable

θ0 = E[X∗].

However, we have access to a primary data set of random variable X (possibly
mismeasured) and an auxiliary data set of random variables {X∗A, XA}. Under
strong ignorability assumption that conditional densities fX∗A|XA=x = fX∗|X=x for
all x ∈ X , θ0 can be expressed as

θ0 = E[γ0(X)] = E[γA0 (X)],

where γ0(x) = E[X∗|X = x] and γA0 (x) = EA[X∗A|XA = x], with EA[· ] denoting
the expectation operator for auxiliary data set. Let fX and fXA be the marginal
densities of X and XA, respectively. We can further write

θ0 = EA
[
γA0 (X)

fX(X)

fXA(X)

]
,

so RR is identified as α0(x) = fX(x)
fXA (x)

.
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Example 2.7. Expected conditional covariance and partly linear model
Given random variables {Y,W,X}, we are interested in

θ0 = E[cov(Y,W |X)] = E [W (Y − E[Y |X])] ,

which has been studied in Robins et al. (2008); Newey and Robins (2018). Note θ0

is composed of two parts. The first part, E[WY ], is a moment of observables and
can be directly estimated by sample averages. The second part, −E[WE[Y |X]],
is an average regression functional evaluated at γ0(x) = E(Y |X = x). By Law of
Iterated Expectations (hereafter LIE)

−E [WE[Y |X]] = −E [E[W |X]E[Y |X]] ,

identifying RR as α0(x) = −E[W |X = x]. θ0 can also be motivated from a partly
linear projection, in a fashion similar to the seminal work of Robinson (1988).
Indeed, consider a partly linear model

Y = β0W + h(X) + U, (2.12)

where h(x) is an unknown function, U is the error term such that E[UW ] = 0

and E[Uf(X)] = 0 for any f ∈ LP,2. Parameter θ0 is then the numerator of the
coefficient β0 = E[(Y−E[Y |X])W ]

E[(W−E[W |X])W ]
.

2.3 Minimax learning in penalized series space

2.3.1 Identification: three ways

There are three method-of-moment approaches to identify θ0 in the literature

θ0 = E[m(Z, γ0(X))]; (DP) (2.13)

= E[α0(X)Y ]; (BP) (2.14)

= E[m(Z, γ0(X)) + α0(X)(Y − γ0(X))]. (DR) (2.15)

(2.13) directly comes from the original definition of θ0. It contains one nui-
sance function γ0, a conditional expectation of observables. Estimation of θ0

through (2.13) is straightforward: first estimate γ0 by any nonparametric method,
followed by a simple “plug-in” procedure to construct a sample analogue of (2.13).
Thus call any estimator for θ0 based on (2.13) a “Direct Plug-in” (DP) learner.
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To see (2.14), simply apply (2.6) followed by LIE

θ0 = E[α0(X)γ0(X)] = E[α0(X)Y ].

In order to estimate θ0 via (2.14), we also only need to estimate one nuisance
function: α0 (RR). However, since α0 often is not a conditional expectation,
estimation of α0 is more involved. To mark the link with statistics literature, call
any estimator for θ0 based on (2.14) a “Balancing Plug-in” (BP) learner. Indeed,
α0 can also be viewed as the weight to balance outcome variable Y in population.

The third identifying moment condition for θ0, (2.15), has been popular in
recent literature. It extends (2.13), taking account of adjustment term α0(x)(y−
γ0(x)), which is mean zero by LIE. The form of (2.15) originates from semipara-
metric theory. For model (2.3), it is well known that any semiparametric effi-
cient estimator ϑ̂, if exists, should have an asymptotic linear form

√
n(ϑ̂− θ0) =

√
nEnφ+ op(1), where φ is the influence function defined as

φ(y, z, x) = m(z, γ0(x)) + α0(x)(y − γ0(x))− θ0. (2.16)

By property of influence function, Eφ = 0, which yields (2.15). Note (2.15)
contains two nuisance functions: both γ0 and α0. Therefore computationally it
is the most costly one. However, since (2.15) comes from the influence function,
it has a “small bias” property: small changes around either of the two nuisance
functions will not adversely affect estimating θ0 too much. Thus (2.15) is po-
tentially more “robust” to mistakes made in the first step estimation of nuisance
functions, aka “Doubly Robust” (DR). Note (2.15) has also been called “locally
robust” or “Neyman orthogonal”.

Based on the identification strategies discussed above, the next subsection
introduces a minimax methodology of calibrating α0. This calibrated RR can be
flexibly used to construct either BP or DR learners for θ0. When k

n
→ c < 1, I

will show a BP learner usually suffices. These new results complement DP and
DR learners studied in Newey and Robins (2018). When k

n
→∞, plug-in learner

of either kind usually does not achieve
√
n normality easily. Hence naturally a

DR learner is considered for such high dimensional problems.

2.3.2 Calibration of the Riesz Representer

Given a sample {Xi, Yi, Zi}ni=1 of size n, a vector of k basis functions p(x) =

(p1(x), p2(x) . . . pk(x))′, and a k × k matrix Wn, propose to calibrate α0 in a
penalized series space with a minimax criterion
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α̃ = arg min
α∈Θn

 sup
g∈HWn

{En[α(X)g(X)−m(Z, g(X))]}2 + Pn(α(X))

(minimax) (quality control)

 ,

(2.17)
where

Θn =
{
α = a′p : a ∈ Rk

}
, (series space)

HWn =
{
g = β′Wnp : β ∈ Rk, ‖β‖ ≤ 1

}
, (calibration space)

En[· ] = 1
n

n∑
i=1

(· ) is the sample average, and Pn(α(X)) : Θn → [0,+∞) is a

sample based penalty function of α. Θn is a standard series space used to ap-
proximate RR, while the role of HWn is mainly to facilitate minimax calibra-
tion (hence called calibration space). Penalty function Pn(α(X)) provides ad-
ditional regularization to avoid overfitting and to improve finite sample as well
as asymptotic performance. It is common to use a Tikhonov penalty, for exam-
ple, Pn(α(X)) = Enα2(X). Additional l1 penalization can also be included in
Pn(α(X)) to accommodate high dimensional situations. Minimax exercise (2.17)
can be further motivated by two intuitive arguments.

Intuition 1: α̃ exploits a minimax property of RR in population

Observe that α0 ∈ Θα is the unique solution of the following minimax problem

min
α∈Θα

[
sup
g∈LP,2

{E[α(X)g(X)−m(Z, g(X))]}2

]
.

Indeed, definition of RR in (2.5) implies

sup
g∈LP,2

{E[α0(X)g(X)−m(Z, g(X))]}2 = 0,

while for any α 6= α0, it must be

sup
g∈LP,2

{E[α(X)g(X)−m(Z, g(X))]}2 > 0

by uniqueness of α0. Thus, α̃ can be loosely interpreted as a sample analogue of
a population minimax problem, but in computationally feasible spaces Θn and
HWn and subject to a “quality control” term Pn(α(X)).
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Intuition 2: minimax learning directly controls key remainder “bias”
term

Suppose an econometrician developed some learner θ̄ with generic first step esti-
mators γ̄ and ᾱ for γ0 and α0, respectively. As long as either BP or DR approach
is involved, θ̄ will necessarily admit the following asymptotic linear structure

√
n(θ̄ − θ0) =

√
nEnφ+R1 +R2,

where the leading term can be shown to be asymptotically normal with φ

defined in (2.16), R1 and R2 are remainder terms

R1 =
√
nEn [ᾱ(X)gγ(X)−m(Z, gγ(X))] , (2.18)

R2 =
√
nEn [(ᾱ(X)− α0(X)) e] , (2.19)

and
e = Y − γ0(X). (2.20)

The form of gγ depends on which method is used

gγ =

γ0, (BP approach)

γ0 − γ̄. (DR approach)

(2.19) is concerned with estimation noise from ᾱ. It is mean zero under some
conditions and can be usually controlled quite effectively. Even if we do not
control (2.19),

√
n normality turns out to be still possible. On the other hand,

(2.18) involves the interplay between unknown functions gγ and ᾱ. It is not
mean zero and much difficult to deal with. Suppose gγ can be approximated by
some basis functions. α̃ then tries to directly control (2.18) by minimizing its
largest possible realization in a carefully constructed small ball HWn . With this
respect, α̃ is a minimax estimator with criterion directly targeting (2.18), the key
“remainder bias” of any learner for θ0.

2.3.3 Implementation

The solution of minimax exercise (2.17) can be found straightforwardly, thanks
to the simplistic structures of Θn and HWn .

Proposition 2.1. Given Wn, for each α ∈ Θn,

sup
g∈HWn

{En[α(X)g(X)−m(Z, g(X))]}2 = ‖WnEn[eα(Z)]‖2 ,
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where eα(z) = m(z, p(x))− α(x)p(x).

Proof of Proposition 2.1 is simple and left to Appendix B. By Proposition 2.1,
α̃ defined in (2.17) has an equivalent weighted minimum distance representation

α̃ = arg min
α∈Θn

Qn(α), (2.21)

where
Qn(α) = En[eα(Z)]′WnEn[eα(Z)]︸ ︷︷ ︸

minimum distance

+ Pn(α(X))︸ ︷︷ ︸
series penalization

, (2.22)

with Wn = W ′
nWn symmetric and positive semidefinite by construction and

should satisfy some conditions stated below in Assumptions L3, M2 or H3. The
first half of the criterion function (2.22) is aWn weighted norm of En[eα(Z)], and
the second half is an empirical penalization function of α. Such a structure is
reminiscent of the PSMD estimator studied in Chen and Pouzo (2012, 2015a).
However, the motivation in this chapter is inherently different. Related to eα,
define

eR(z) = m(z, p(x))− α0(x)p(x), (2.23)

an object important for later asymptotic analysis. Indeed, by definition of RR,
EeR = 0. The role of eR is similar to that of e defined in (2.20) for a regression.
Thus call eR the “Riesz error” of the model.

2.3.4 Construction of minimax learners

2.3.4.1 When k
n
→ c for some c ∈ [0, 1)

This includes a low dimensional case when c = 0, and a moderately high di-
mensional scenario when c 6= 0 but smaller than one. Construct a minimax BP
learner for θ0 as follows

θ̂BP = En[α̃(X)Y ], (2.24)

where α̃ is calibrated from (2.17) by setting

Pn(α(X)) = λ1Enα2(X), (2.25)

and λ1 > 0 is a coefficient practically determined by the econometrician. The
ridge style penalization (2.25) is simple to analyze asymptotically, and has been
popular in balancing literature to control how volatile α̃ should be in sample.1

By the equivalent representation result in Proposition 2.1, α̃ admits an explicit
1I suspect the theory can be applied to other penalization functions that display quadratic

behaviors, for example, strongly convex functions.
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formula
α̃(x) = p(x)′(ĜWnĜ+ λ1Ĝ)−ĜWnP̂ , (2.26)

where
Ĝ = En[p(X)p(X)′], P̂ = En[m(Z, p(X))], (2.27)

and (· )− denotes the Moore–Penrose inverse. Indeed, objective function in (2.21)
becomes continuously differentiable and strongly convex. First order approach
applies. As a result, θ̂BP is computationally competitive compared to other meth-
ods that carry out minimax exercises in infinite dimensional spaces, which often
require numerical optimization.

Special case When λ1 = 0 and Wn = I, (2.26) reduces to

α̂(x) = p(x)′(ĜĜ)−ĜP̂ . (2.28)

In theory, (2.28) equals the estimator proposed in Newey and Robins (2018)2

α̂(x) = p(x)′Ĝ−P̂ . (2.29)

However, (2.28) and (2.29) can be calculated quite differently by any software
due to inherent computational constraint. Such computational discrepancy seems
more salient when k becomes large. This fact motivates a new measure of design
uncertainty for Ĝ. See Appendix B for more discussions on this issue.

2.3.4.2 When k
n
→∞

This high dimensional situation imposes two major challenges to this minimax
methodology. First, magnitude of R1 will usually be substantially larger for
plug-in learners; Second, both HWn , the calibration space, and Θn, the standard
series space, grow too quickly and become increasingly complicated. While the
first challenge can be addressed by using a DR approach, resolving the second
requires more careful control of both Θn and HWn . This is achieved by manipu-
lating Pn(α(X)) and Wn under framework (2.17): The dimension of Θn can be
effectively reduced by incorporating a lasso term in Pn(α(X)), and HWn shall
be controlled “small enough” through selecting a suitable (possibly data-driven)
weight matrix.3

To be specific, a minimax DR learner for θ0 can be constructed as follows

2Since by Corollary 20.5.5 in Harville (1998), Ĝ− = (ĜĜ)−Ĝ.
3Another potential way to proceed is to consider the same minimax exercise in an l1 ball:

Hλ̃ =
{
g = β′p : β ∈ Rk, ‖β‖1 ≤ λ̃

}
, with λ̃ as some small number specified by the researcher.

I leave this for future research.
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θ̂DR = En[m(Z, γ̂(X)) + α̃(X)(Y − γ̂(X))], (2.30)

where γ̂ is any preliminary estimator of γ0 possibly derived from some machine
learning algorithm, and α̃ is still the solution of (2.17), but with an elastic net
style penalty

Pn(α(X)) = λ1Enα2(X) + λ2 ‖a‖1 , (2.31)

and λ1, λ2 are some penalty loadings.4 Call α̃ derived with (2.31) a Generalized
Minimax Elastic Net (GMEN) learner. By Proposition 2.1, GMEN learner α̃ also
has a weighted minimum distance representation: α̃(x) = ã′p(x), where

ã = arg min
a∈Rk

{
(Ĝa− P̂ )′Wn(Ĝa− P̂ ) + λ1a

′Ĝa+ λ2 ‖a‖1

}
, (2.32)

where Ĝ and P̂ are defined in (2.27). Solution of (2.32) can be found by fast
algorithms, for instance, Orthant-Wise Limited-memory Quasi-Newton (OWL-
QN) method.

4In fact, the theory can be relatively straightforwardly extended to cover cases with a penalty
function Pn(α(X)) = λ1a

′Γ′Γa + λ2 ‖a‖1 for some matrix Γ. This Tikhonov plus lasso style
penalty could potentially perform even better if Γ is selected to reflect underlying data structure.
Also see discussion at the end of Theorem 3.5 for more details.
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Chapter 3

Minimax learning for average
regression functionals: theory

3.1 Theory: minimax BP

Assumption O.

1. [Data] Random vectors (Yi, Z
′
i, X

′
i)
′ , i = 1 . . . n, are independently and iden-

tically distributed (hereafter iid) for each n and satisfy (2.2);

2. [Strong exogeneity] E[e|Z] = 0, E[e2|Z] < ∞ almost surely, where e is
defined in (2.20);

3. [Functional restriction] Function m(z, · ) is linear in the sense of (2.4), and
is bounded such that for any γ ∈ LP,2, E[m2(Z, γ(X))] ≤ CE[γ2(X)] < ∞
for some constant C.

Assumption O imposes some basic requirements on the data structure, and
applies throughout the rest of the asymptotic analyses. O-(1) flexibly accommo-
dates situations when dX , the dimension ofX, is fixed or growing.1 O-(2) restricts
the behavior of first two conditional moments of e defined in (2.20). Exogeneity
condition E[e|Z] = 0 is useful to simplify asymptotics involving remainder term
R2, but is not automatically guaranteed at the generality of (2.3). It is satisfied
if

1. Z = X, which covers Examples 2.1-2.6, or,

2. Conditional on X, e is independent of (Z \X), the subvector of Z excluding
X.

1If the dimension of X is growing as n→∞ , dX should be understood as dX,n.
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It can also be avoided if some cross-fitting scheme is used so that α̃ is calibrated
only using data from a different random sample, which can be potentially applied
to Example 2.7.2 Error term e is additionally assumed to have a finite conditional
variance, which is standard but might be weakened by imposing higher uncondi-
tional moments for e and X. See for example, Hansen (2015). O-(3) is sufficient
for the existence of RR and for finite semiparametric variance bound but is not
necessary. This assumption is also key to get consistency of α̃ under weak con-
ditions. Otherwise, functional form of m(z, · ) might deteriorate estimation as
well as approximation. If this happens, m(z, · ) is not continuous, and O-(3) can
be modified such that E[m2(Z, γ(X))] ≤ dkE[γ2(X)] where dk is growing as a
function of k, similar to Assumption 6 in Newey and Robins (2018). This allows
rates slower than the ones presented in the main theorems below.

3.1.1 Asymptotic normality and semiparametric efficiency

when k
n → 0

Assumption L1.

1. [Series space] All eigenvalues of E[p(X)p(X)′] are bounded from above and
away from zero;

2. [Series approximation] There exist some vectors βb, ab and some numbers
rγ0 , rα0 such that

sup
x∈X
|γ0(x)− β′bp(x)| = rγ0 ; sup

x∈X
|α0(x)− a′bp(x)| = rα0 .

Discussion of Assumption L1

L1 is a prerequisite of series approximation. L1-(1) is a common eigenvalue as-
sumption, typically satisfied in a low dimensional environment.3 L1-(2) imposes
some mild restrictions on approximation quality of series space Θn, measured by
magnitude of rγ0 and rα0 . If model is correctly specified, rγ0 and rα0 should go
to 0 as n→∞. When γ0 and α0 are within a Hölder class of smoothness order s

rγ0 = k−ηγ , rα0 = k−ηα ,

2It is beyond the scope of this chapter to formally establish asymptotics under this case, but
results in Newey and Robins (2018) are useful.

3For example, it holds if X = [0, 1]dX with dX fixed and density of X is bounded away from
zero and from above. See also Newey (1988) and Proposition 2.1 in Belloni et al. (2015) for
more discussions.
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where ηγ and ηα are non negative functions of the following parameters: smooth-
ness s, X’s dimension dX , as well as properties of basis functions p. See DeVore
and Lorentz (1993); Newey (1997); Chen (2007) for more details on approximation
results.

Following Newey (1997), the following object is important for asymptotic
analysis

ξk = sup
x∈X
‖p(x)‖ .

Let f ∈ Θf where Θf is some function class. Denote Lnf as the least square
projection of f onto Θn. Thus define the so called Lebesgue integral as

`k = sup

(
‖Lnf‖P,∞
‖f‖P,∞

: ‖f‖P,∞ 6= 0, f ∈ Θf

)
,

which has been used in Huang (2003); Belloni et al. (2015); Chen and Pouzo
(2015b). For certain basis functions, `k exploits stability relations between ‖· ‖P,2
and ‖· ‖P,∞ norms of projections. For more background materials on series esti-
mation and least square projection, see Appendix C.1.

Assumption L2. As k →∞ and n→∞:

1. [Dimension restriction] ξ2k log k

n
= o(1);

2. Either of the following two conditions holds:

(a) [Approximation quality] rγ0 = O( 1√
n
), `krγ0 = O(1), rα0 = o(1);

(b) [Approximation quality]
√
nrα0rγ0 = o(1), `krα0rγ0 = o(1), rα0 = o(1),

[Model complexity] (`k + 1)rγ0

(√
k log ξk + kξk log ξk√

n

)
= O(1).

Discussion of Assumption L2

L2 lists key dimension and approximation requirements and is of first order impor-
tance. Dimension restriction imposed by L2-(1) is knowingly the weakest possible
in the literature. Suppose we choose spline or wavelet series, ξk =

√
k (Newey

1997). L2-(1) reduces to k log k
n
→ 0. Under this condition, α̃ will be consistent in

‖· ‖P,2 norm.
L2-(2) is the other factor that crucially determines asymptotic growth of k.

For spline and wavelet series, `k = O(1) (Huang, 2003; Chen and Pouzo, 2015b).
So if γ0 has a fast approximation rate O( 1√

n
), L2-(2)-(a) can be invoked with no

approximation rate condition imposed on α0. Thus, it seems worthwhile to give
priority to approximating γ0 when selecting basis functions. Let rγ0 = k−η for
some η > 0 and k = nr for some r > 0. Then L2-(2)-(a) and L2-(1) together
imply r is allowed in the range [ 1

2η
, 1) (ignoring log k term), as long as 1

2
< η < 1.
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L2-(2)-(b) can be viewed as an asymptotic refinement of its counterpart (a).
It relaxes approximation quality but requires a new model complexity term. Thus
a trade-off exists. In fact, approximation quality in L2-(2)-(b) plus L2-(1) forms
the minimal condition needed for

√
n normality and semiparametric efficiency so

far in the literature, see Newey and Robins (2018). Also note `krα0rγ0 = o(1) is a
very weak condition, trivially satisfied as long as

√
nrα0rγ0 = o(1) and `k√

n
<∞.

Since no cross fitting is used, model complexity term arises naturally from a
stochastic equicontinuity term (or intuitively, “own observation bias”) controlled
by empirical process theory.4 If cross fitting is employed, model complexity term
can be further relaxed.

It is useful to compare L2 with similar conditions in Newey and Robins (2018).
Suppose `k = O(1), ξk = O(

√
k) and ignore log terms:

1. If γ0 is very smooth in the sense that η ≥ 1, model complexity term becomes
of order rγ0k

√
k
n
, which is finite trivially so long as k

n
→ 0. L2 reduces to

the minimal rate requirement so far in literature:
√
nrα0rγ0 = o(1) and

k
n

= o(1).

2. If γ0 is ordinarily smooth in the sense that η > 1
2
, L2-(2)-(a) can be invoked

to get (close to but not minimal) condition: k
n

= o(1), rα0 = o(1) and
rγ0 = O( 1√

n
). Cross fitted DP and doubly cross fitted DR estimators in

Newey and Robins (2018) can satisfy minimal conditions in this case.

3. If γ0 is not smooth enough such that η ≤ 1
2
, we need both rγ0

√
k
(

1 + k√
n

)
=

O(1) and
√
nrα0rγ0 = o(1). Hence k is required to grow slower than k

n
=

o(1). Additional rate conditions will have to be imposed. Under this case,
neither cross fitted DP or doubly cross fitted DR estimator in Newey and
Robins (2018) can meet the minimal requirement in general either. But
they do have smaller remainder terms due to cross fitting structure.

Assumption L3. As k →∞ and n→∞:

1. [Diverging α0] (‖α0‖P,∞ ∧ `k)rγ0 = o(1);

2. [Weight matrix] W ′
nWnĜ is symmetric and W ′

nWn − I is positive semidefi-
nite;

3. [Penalty] λ1 = o( 1
n
).

4I suspect this term might be further weakened. I leave this for future research.
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Discussion of Assumption L3

L3 is concerned with a set of regularity conditions. L3-(1) allows diverging α0,
different from a literature that usually assumes boundedness. If `k = O(1),
‖α0‖P,∞ is allowed to grow with no rate requirement, as long as rγ0 = o(1).
Otherwise, additional restrictions on ‖α0‖P,∞ might be needed.

L3-(2) is a novel condition on the choice of Wn, which affects convergence
rate of θ̂BP . Symmetry of W ′

nWnĜ allows tractable asymptotic behavior of α̃. It
requires Ĝ andW ′

nWn to be commutable. A sufficient condition is that they share
the same eigenspace, which can be constructed easily. To achieve

√
n normality

of θ̂BP , all eigenvalues of W ′
nWn needs to be bounded away from 1. Interestingly,

this is stricter than what is required for ‖· ‖P,2 consistency of α̃, which only needs
λmin(W ′

nWn) to be bounded away from 0. (See Lemma C.16.)
L3-(3) specifies the correct asymptotic order of λ1. In practice it often suffices

to select a small penalty. Other data-driven methods, such as cross-validation or
Lepski’s method, may be used.

Theorem 3.1. [Approximate minimax balancing] If O, L1, L2 and L3 hold, then
θ̂BP defined in (2.24) admits

√
n
(
θ̂BP − θ0

)
=

1√
n

n∑
i=1

[m(Xi, γ0(Xi)) + α0(Xi)(Yi − γ0(Xi))− θ0] + op(1),

and
√
n
(
θ̂BP − θ0

)
d→ N(0,Ω),

where Ω = E [m(X, γ0(X)) + α0(X)(Y − γ0(X))− θ0]2.

This is the first main result of the chapter, sharing a spirit similar to the
“approximate balancing” literature (For example, Zubizarreta, 2015; Athey et al.,
2018). Indeed, θ̂BP tries to balance a set of covariates only “approximately”, trad-
ing off between a minimax criterion and a ridge style penalty term. Theorem
3.1 seems to be the first result that establishes semiparametric efficiency for BP
methods, without imposing strong convergence rate conditions for nuisance pa-
rameters, sample splitting or DR moment conditions. In fact, it seems that as
long as γ0 is estimated by standard series method, DR learner will hardly improve
Theorem 3.1. Theorem 3.1 can be extended to the following relevant case.

Corollary 3.1. [Exact minimax balancing] Set λ1 = 0. Then, Theorem 3.1 still
stands for any positive definite W ′

nWn if O, L1, L2 and L3-(1) hold.

Corollary 3.1 pursues a strategy to “exactly balance” all covariates in the
minimax sense. Indeed, when λ1 = 0 and ξ2k log k

n
→ 0, minimax BP learner using
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any positive definite W ′
nWn is the same as α̂ wpa1. Under this scenario minimax

criterion in (2.17) can achieve zero at α̂ wpa1.
Overall, upon suitable choice of weight matrix, “approximate minimax bal-

ancing” will not do worse than “exact minimax balancing” asymptotically, but
might gain finite sample performance due to additional penalization. However,
the price to pay for “approximate minimax balancing” is a more limited choice of
weight matrix. Simulation shows that setting Wn = I with a small λ1 can deliver
desirable result under moderately high dimensions.

3.1.2 Consistent estimation of variance

Since

Ω = V ar [m(Z, γ0(X)) + α0(X)(Y − γ0(X))− θ0]

=
∣∣E [m(Z, γ0(X)) + α0(X)(Y − γ0(X))]2 − θ2

0

∣∣ ,
a natural plug-in estimator for Ω admits

Ω̂ =
∣∣∣En [m(Z, γ̂s(X)) + α̃(X)(Y − γ̂s(X))]2 − θ̂2

BP

∣∣∣ , (3.1)

where γ̂s(x) = p(x)′Ĝ−En[p(X)Y ] is the standard series estimator for γ0. Confi-
dence intervals can be constructed accordingly based on θ̂BP and standard error√

Ω̂.

Theorem 3.2. Suppose Theorem 3.1 holds. In addition:

1. ‖γ̂s − γ0‖P,∞ = op(1);

2. For some δ > 0, E
[
|e|2+δ

]
<∞ and ξ

2+δ
δ

k

√
log k
n

= o(1).

Then: Ω̂
p→ Ω.

Consistency of Ω̂ demands stronger conditions due to presence of second mo-
ment. Assumption (1) stipulates that γ̂s should be consistent in sup norm, which
can be verified by more primitive conditions. For example, Theorem 4.3 in Belloni
et al. (2015) and Lemma 2.4 in Chen and Pouzo (2015b) both establish optimal
sup norm convergence for γ̂s under weak conditions, allowing k

n
→ 0 up to log

terms. It is also possible to relax (1) by imposing higher moment conditions for
basis functions, see Hansen (2015). (2) sees a trade-off between existence of higher
moments for e and growth rate restrictions on k. This condition is mainly used
to show convergence of random matrix involving e2. If E[e4] <∞, (2) translates

to ξ2
k

√
log k
n
→ 0, stronger than L2-(1). Both (1) and (2) can be further weakened

under cross fitting set-up. Notice sup norm consistency of α̃ is not required.
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3.1.3
√
n normality when k

n → c < 1

To achieve semiparametric efficiency, θ̂BP requires at least k
n
→ 0 (up to log

terms). Such a condition currently seems unavoidable as it stems from the es-
sential need to consistently estimate α0. However, this subsection shows that

√
n

normality can sometimes still be established even when α̃ is not consistent. This
relies on two key elements: relatively faster approximation of γ0 (Assumption
M1) and a central limit theorem around En[γ0(X)] (Assumption M2).

Assumption M1. As k →∞ and n→∞:

1. [Invertibility and dimension restriction] P{λmin(Ĝ) > 0} → 1, ξ2k log k

n
→

c1 <∞;

2. [Approximation quality] rγ0 = o
(

1√
n

)
, `krγ0 = O(1), rα0 = O(1).

Compared to L2, dimension restriction is relaxed to M1-(1), which guarantees
positive definiteness of Ĝ as well as asymptotic boundedness of λmax(Ĝ). M1-(1)
necessarily implies k

n
< 1, but it does not need to vanish to 0 (aka alternative

k
n
→ c asymptotics). Under this scenario, α̃ is not consistent. M1-(2) requires γ0

to be approximated sufficiently fast such that rγ0 = o
(

1√
n

)
. However, α0 does

not need to be correctly specified as long as rα0 = O(1) and `krγ0 = O(1). M1 is
hard to relax at this moment.

Assumption M2. [Central limit theorem]

1. Enα̂(X)2 = Op(1), where α̂(X) is defined in (2.29);

2.
max
i
|α̃(Xi)|
√
n

= op(1);

3. λ21
λ2min(W ′nWn)λmin(Ĝ)

= Op(1);

4. ‖α0‖2
P,2−r2

α0
is bounded away from zero; E [e2|Z] is bounded away from zero

almost surely; E
[
|e|3 |Z

]
<∞ almost surely.

M2 is mainly in place to allow a central limit theorem. M2-(1) is an asymptotic
boundedness condition so that Enα̃(X)2 = Op(1). M2-(2) says max

i
|α̃(Xi)| should

grow strictly slower than rate
√
n. M2-(3) is a new condition that characterizes

the relation among degree of penalization, high dimensionality of the design and
choice of weight matrix. It makes sure inverse asymptotic variance does not
explode. M2-(4) is a regularity condition and fairly weak. Condition related
to ‖α0‖2

P,2 − r2
α0

can be interpreted as a constraint on approximation error: r2
α0

should not be too large compared to ‖α0‖2
P,2. The other conditions on e are quite

common in the literature. Except M2-(4), the other three conditions currently
seem a bit high level. Below I briefly discuss some of their low level conditions
before introducing formal distributional result.
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Discussion of M2-(1)

There are some simple situations when M2-(1) holds. See Lemma C.25 for detailed
discussions. Basically, if O, L1 and M1 are satisfied, M2-(1) holds if either of the
following two conditions is true:

1. There exists some c2 > 0 such that P{λmin(Ĝ) ≥ c2} → 1;

2. There exists some scalar valued function $(z) such that P̂ = En[$(Z)p(X)]

and E[$(Z)2] <∞.

(1) strengthens M1-(1) so that
∥∥∥Ĝ−1

∥∥∥ will also be Op(1). Lemma C.26 demon-
strates a sufficient condition for existence of such c2: if M1-(1) is satisfied, we
additionally need

√
2c1 + 1

3
c1 < 1. Simple calculation yields that c1 should be

small enough so that c1 < 0.38. See Lemma C.26 for details. (2) exploits a simple
multiplicative structure of m(z, · ) to achieve asymptotic boundedness, leveraging
nice properties from empirical projection.

Discussion of M2-(2)

M-(2) is currently difficult to relax except in some special cases. Trivially, it is
satisfied if ξ2k log k

n
= o(1) (shown by Lemma C.27), which goes back to k

n
→ 0

regime. Otherwise, study of max
i
|α̃(Xi)| is more challenging, almost requiring

a bound on ‖α̃‖P,∞. Lemma C.28 uses techniques such as symmetrization and
entropy integral bound to explore possible primitive conditions for M-(2). Further
restrictions on basis functions and the structure of m(z, · ) have to be imposed.

Discussion of M2-(3)

M2-(3) says λmin(Ĝ) should not go to zero faster than λ21
λ2min(W ′nWn)

. This condition
can be trivially satisfied when λ1 = 0, a case with no penalization. Otherwise, λ1

and Wn should be carefully chosen to counteract high dimensionality issues from
possibly diminishing eigenvalues of Ĝ. This seems to confirm the conventional
wisdom that while “machine learning” methods perform better empirically, track-
ing their asymptotic distributions can be more strenuous. When λ1 6= 0, several
situations allow M2-(3):

1. If c1 is small enough, it can be shown by Lemma C.26 that Ĝ has eigenvalues
bounded away from zero. M2-(3) then holds for all Wn satisfying L3-(2);

2. Suppose λmin(Ĝ) shrinks at some rate κn → 0. Then conditional on L3-(2),
M2-(3) becomes λ21

κn
= O(1). That is, λmin(Ĝ) is allowed to go to zero slower

than rate 1
n2 ;
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3. If the behavior of λmin(Ĝ) is uncertain, Wn can be chosen to counteract
effect from diminishing λmin(Ĝ). For example, conditional on L3-(2), we
can set W ′

nWn such that its smallest eigenvalue is
(

1 + 1

λmin(Ĝ)

)
.

Theorem 3.3. [
√
n normality without consistency] Assume O, L1, L3, M1 and

M2 hold. Then

√
n
[
θ̂BP − Enm(Z, γ0(X))

]
=

1√
n

n∑
i=1

[α̃(Xi)(Yi − γ0(Xi))] + op(1),

and
√
nV −1/2

n

[
θ̂BP − Enm(Z, γ0(X))

]
d→ N(0, 1),

where Vn = 1
n

n∑
i=1

{α̃2(Xi)E [e2
i |Zi]} and N(0, 1) is a standard normal random

variable. Moreover, θ̂BP − θ0 = Op(
1√
n
).

Theorem 3.3 seems to be the first result in the literature that establishes
√
n

normality for BP learners when k
n
→ c < 1. Object Enm(Z, γ0(X)) is a sample

mean that might be of interest as well, see Athey et al. (2018) on conditional
average treatment effect. Theorem 3.3 is also an intermediate step toward

√
n

normality of θ̂BP around population mean θ0. Some central limit theorem that
allows complicated dependence structure could help. Another way to achieve
normality is to further relax conditions in M2 and to make use of the growing
variance term. Moreover, when k

n
→ c < 1, consistent estimation of Vn is often

not trivial. I leave these interesting aspects for future research.
The following corollary provides a counterpart of the exact minimax balancing

result in Corollary 3.1. Similarly, the choice of weight matrix is wider without
penalization. It might be more attractive for hypothesis testing.

Corollary 3.2. Set λ1 = 0. Theorem 3.3 still holds for each positive definite
W ′
nWn if O, L1, M1, L3-(1), and M2-(1), (2), (4) hold.

3.2 Theory: minimax DR

This section studies large sample properties of θ̂DR defined in (2.30) tailored for
ultra high dimensional situations. To proceed, let α∗(x) = a′∗p(x), where

a∗ = arg min
a∈Rk

E[α0(X)− a′p(X)]2 + λ∗ ‖a‖1 , (3.2)

where λ∗ is a theoretic penalty coefficient. α∗ can be viewed as the best l1
regularized approximation of α0. And some entries of a∗ will be 0 (thus a∗ is
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sparse) when λ∗ is large enough. Write u∗ = α0 − α∗, the approximation error of
α∗.

Assumption H1. [Series space under high dimensions]

1. E[pj(X)2] ≤ C̃2 for all j = 1 . . . k, where 0 < C̃ <∞;

2. α∗ exists and Eu2
∗ = µ2

∗ for some number µ∗ > 0.

Discussion of Assumption H1

H1 is the high dimensional counterpart of L1, and accounts for several key features
of high dimensional settings. When we include many covariates in empirical anal-
ysis, λmin {E[p(X)p(X)′]} can decrease at certain rate and λmax {E[p(X)p(X)′]}
might be very large. Thus assumption like L1-(1) common in low dimensions
is not suitable, and least square approximation usually does not apply. H1-(1)
only requires second moments of all basis functions bounded from above, which
is weaker but still allows tractable asymptotic analysis. H1-(2) imposes a basic
sparse approximation condition for α0. It can be verified by more primitive condi-
tions, as some functions admit sparse representations with certain basis functions.

Following Belloni et al. (2017b); Qiu and Otsu (2018); Chernozhukov et al.
(2018c), let

Λn = sup
x∈X

(
max
1≤j≤k

|pj(x)|
)
.

Compared to ξk, Λn is more useful in high dimensional situations.

Assumption H2. As k →∞ and n→∞:

1. [Dimension restriction] Λn

√
log k
n

= o(1);

2. [First step] γ̂ is estimated from a different iid sample, which is independent
from the main sample used to calibrate α̃. ‖γ̂ − γ0‖P,2 = Op(ϕ

γ
n) for some

ϕγn → 0;

3. [Quality of learners]
[
(ã− a∗)′Ĝ(ã− a∗)

]1/2

= Op(ϕ
α
n) for some ϕαn → 0.

ϕγnµ∗ = o( 1√
n
), ϕγnϕαn = o( 1√

n
), ‖ã− a∗‖1 = op(1);

4. [Diverging α0] ‖α0‖P,∞ ϕγn = o(1).

Discussion of Assumption H2

H2-(1) allows k to grow faster than n, up to factor Λn and log term (aka high
dimensional asymptotics). It slightly improves a similar result in Chernozhukov
et al. (2018c) by exploiting a sharper bound using knowledge from second mo-
ment. H2-(2) is concerned with first step estimator γ̂, which should be consistent
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and achieve convergence rate Op(ϕ
γ
n) in ‖· ‖P,2 norm. The assumption that γ̂ is

trained from a different iid sample can accommodate generic machine learning
estimators for γ0. It is in line with the recent literature advocating cross fitting
(for example, Robins et al., 2009; Newey and Robins, 2018; Chernozhukov et al.,
2018b,c) to deal with potentially complicated machine learning algorithms. How-
ever, H2-(2) only requires γ0 to be estimated from a different sample, while α̃ is
calibrated from the main sample. With this respect, this is a “single” cross fitting
scheme weaker than the “double” cross fitting where both nuisance functions are
estimated from different samples. If γ0 is estimated using lasso, it is possible
to omit this cross fitting assumption by imposing more technical conditions on
stochastic equicontinuity terms.

H2-(3) is a high level condition showing a trade-off between qualities of γ̂
and α̃. Such trade-off emerges naturally from the doubly robust structure of
θ̂DR, which can effectively control remainder term R1 in (2.18). RR α0 needs
to be approximately sparse in this set-up since sparse α∗ is involved, while γ0

does not have to be. Compared to the existing literature, H2-(3) is distinct in
the followings aspects: It only requires convergence rate of α̃ under a weaker

empirical norm
[
(ã− a∗)′Ĝ(ã− a∗)

]1/2

, so that stronger l1 convergence rate is
not needed per se other than consistency. Since calibrating α̃ does not involve
cross fitting, this seems quite weak. This condition also implies that both α̃ and
γ̂ attaining op(n−1/4) rate is only sufficient but not necessary. Our asymptotics
allows a broader scenario when one of them is estimated relatively at faster rate
while the other can converge slower than op(n−1/4), echoing similar recent result
in Chernozhukov et al. (2018c). Also note H2-(4) highlights that ‖α0‖P,∞ is
permitted to grow up to the convergence rate of γ̂.

Theorem 3.4. Let O, H1 and H2 hold. Then

√
n
(
θ̂DR − θ0

)
=

1√
n

n∑
i=1

[m(Zi, γ0(Xi)) + α0(Xi)(Yi − γ0(Xi))− θ0] + op(1),

and
√
n
(
θ̂DR − θ0

)
d→ N(0,Ω),

where Ω is defined the same way as in Theorem 3.1.

Theorem 3.4 establishes
√
n normality as well as semiparametric efficiency of

θ̂DR under a set of general assumptions. It underlines a high level convergence
hypothesis for α̃ in terms of γαn and ‖ã− a∗‖1 in H3-(3). These two objects can
be further studied with more technical assumptions.

To continue, let A∗ be an index set of nonzero elements of a∗ and S∗ = |A∗|
is its cardinality. Thus for each vector a = (a1, · · · , ak)′ ∈ Rk, define aA∗ =
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(a1,A∗ , . . . aj,A∗ . . . , ak,A∗)
′ ∈ Rk, where for each j = 1 · · · k, aj,A∗ = aj1{j ∈ A∗}.

Similarly, define aAc∗ = (a1,Ac∗ , . . . aj,Ac∗ . . . , ak,Ac∗)
′, where for each j = 1 · · · k,

aj,Ac∗ = aj1{j /∈ A∗}. In other words, aA∗ and aAc∗ have non-zero elements only in
A∗ and its complement set Ac∗, respectively. Furthermore, write Wn = ĜW ′

nWn,
which turns out to be the effective weight matrix; Ĝ = (WnĜ+λ1Ĝ), a generalized
Gram matrix whose role is similar to that of Ĝ in a lasso regression.

Assumption H3. The following four conditions are satisfied simultaneously:

1. [Maximum of empirical averages] There exist some εRn , εmn , εun such that wpa1

∥∥En[eR]
∥∥
∞ = εRn ,

‖En[p(X)u∗]− E[p(X)u∗]‖∞ = εun,

‖Enm(Z, p(X))− Em(Z, p(X))‖∞ = εmn ;

2. [Choice of weight matrix] Ĝ − Ĝ is positive semidefinite, ‖Wn‖∞ = εWn for
some εWn > 0;

3. [Compatibility] For every a ∈ Rk such that
∥∥aAc∗∥∥1

≤ 3 ‖aA∗‖1, it follows

‖aA∗‖
2
1 ≤

(a′Ĝa)S∗
κn

, where κn = κn(Wn, Ĝ, λ1) > 0 is a number that depends
on Wn, Ĝ and λ1;

4. [Penalty] λ2 ≥ 2λ0, where λ0 = 2
[
(εRn + εun + C̃µ∗)(ε

W
n + λ1) + λ1(εmn + C̃C1/2)

]
→

0 as k →∞ and n→∞.

Discussion of Assumption H3

H3 highlights several aspects we endeavor to manage in challenging high dimen-
sional situations. Each of them can be interpreted intuitively. H3-(1) is in essence
an empirical process condition concerning vectors of empirical averages. When
the dimension is growing too fast, l2 counterparts of objects in H3-(1) usually
diverge at rate O

(√
k
n

)
. However, their l∞ norms can still be controlled quite

well, if each empirical average has tail probability diminishing exponentially. See
Appendix C.4 for more detailed treatment of these conditions. In particular,

Lemma C.35 establishes εun = Op

(√
log k
n

Λnµ∗

)
under O and H1 without sub-

gaussianity of u∗. And a good control of εRn and εun does require subgaussianity
of their corresponding random objects. Lemmas C.34 and C.36 explore several
common primitive conditions on the structure of m(z, p(x)) and α0, and show

that εRn and εun are of order
√

log k
n

up to some factors.

H3-(2) prescribes a correct choice for Wn. To achieve faster convergence, Ĝ
should not be “too small” in the sense that Ĝ − Ĝ is positive semidefinite, nor

75



“too big” as a larger εWn slows down convergence. A simple sufficient condition
for Ĝ − Ĝ to be positive semidefinite is that Wn has eigenvalues no smaller than
1. εWn summarizes the impact of Wn on the convergence rate and might or might
not grow asymptotically. It shall be suitably chosen such that H3-(3) and (4) are
both fulfilled. Since dimension of Wn is growing with k at rate faster than n,
choosing a right Wn is more delicate. It is beyond the scope of this chapter to
give a general form of εWn , but note several simple scenarios:

1. If Ĝ is invertible wpa1, setting W ′
nWn = Ĝ− yields Wn = I wpa1. Hence

εWn = Op(1).

2. If Ĝ is normalized so that Ĝ = I, setting W ′
nWn = I yields Wn = I and

εWn = 1.

3. Since Ĝ might not be invertible, choosing Wn through Wn can be difficult.
Instead, consider selecting Wn directly. This opens up potentially many
choices of Wn and diverse behaviors of εWn .

H3-(3) is a modified version of compatibility condition in Van de Geer (2007); Van
De Geer et al. (2009). Same as restricted eigenvalue condition (Bickel et al., 2009),
compatibility condition mainly alleviates inadequate behavior (non-invertibility)
of design matrix in high dimensions. But compatibility condition is usually
slightly weaker. For intuition we can interpret κn as the restricted minimum
eigenvalue.5 H3-(3) deviates from the usual compatibility condition in two ways:
First, it extends compatibility condition to matrix Ĝ, which is construed as a gen-
eralized Gram matrix, taking into consideration of effective weight matrix and
ridge style penalty. Second, κn is allowed to vary according to Wn, Ĝ and λ1.
This is more realistic and different from a standard lasso where it is often assumed
a constant. These modifications naturally adapt to a more complicated Ĝ. More
importantly, it helps to see why sometimes α̃ is able to improve convergence rate
when lasso fails. Intuitively, additional penalization from λ1Ĝ and a non identity
Wn could lead to a larger κn while a pure lasso might have very small κn. See
end of this section for further discussions.

H3-(4) gives the correct choice for λ1 and λ2. It is much less lucid since
we have two tuning parameters to train, and they both affect convergence rate.
Coefficient λ2 should be chosen large enough to dominate λ0. Coefficient λ1, on
the other hand, usually shall be chosen small enough to counteract effects from
term (εmn + C̃C1/2). But sometimes it pays to set a larger λ1. See end of this
section for further discussions.

5For good discussions on compatibility and restricted eigenvalues of matrices, see Sections
6.12 and 6.13 in Bühlmann and Van De Geer (2011).
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Theorem 3.5. [Convergence rate of GMEN learner] Let O, H1 and H3 hold.
Then

ϕαn = O

(
λ2

√
S∗
κn

)
, ‖ã− a∗‖1 = Op

(
λ2
S∗
κn

)
.

Theorem 3.5 provides the low-level support for key rate condition in H2-(3)
of Theorem 3.4. If H3 holds, then ϕγnϕ

α
n = o

(
1√
n

)
if ϕγnλ2

√
S∗
κn

= o
(

1√
n

)
and

‖ã− a∗‖1 = op(1) if λ2
S∗
κn
→ 0. Notice ϕαn is converging to zero faster than

‖ã− a∗‖1.

Further discussion of Theorem 3.5

According to Theorem 3.5, performance of α̃ hinges on three important factors:
effective weight matrix Wn, compatibility number κn and penalty coefficients
λ1 and λ1. Interaction of these three determines the convergence rate of α̃ in
a complicated way. Specially, the study of κn is challenging since it can not be
verified empirically in general. Though beyond the scope of this chapter to look
into this, several cases might be relevant for future research.

1. Benchmark case: Wn = I, λ1 = 0 and κn(I, Ĝ, 0) = κ0,n is a con-
stant. GMEN learner becomes the minimum distance lasso learner in Cher-
nozhukov et al. (2018c). The correct choice for λ2 should be O(εRn +εun+µ∗)

so that
ϕαn = O

[
(εRn + εun + µ∗)

√
S∗

]
.

2. Benchmark case with a small λ1. If λ1 is small enough so that λ1(εmn ∨
C̃C1/2) is negligible compared to (εRn + εun + C̃µ∗)(1 + λ1), convergence rate
is guaranteed the same with benchmark case. A larger λ1 than what is
required leads to slower convergence.

3. Benchmark case with diminishing κ0,n. If κ0,n is diminishing, the best rate
for minimum distance lasso is

ϕαn = O

[
(εRn + εun + µ∗)

√
S∗

κ
1/2
0,n

]
, ‖ã− a∗‖1 = Op

[
(εRn + εun + µ∗)S∗

κ0,n

]
,

(3.3)
slower than case (1). In particular, ‖ã− a∗‖1 might not even converge if
κ0,n → 0 fast, for example, at rate O

[
(εRn + εun + µ∗)S∗

]
. If this happens, it

is worthwhile to choose a non identity Wn and a larger λ1. Suppose Wn

is selected such that H3-(2) is met with εWn = O(1). Since λ1Ĝ is positive
semidefinite, κn(Wn, Ĝ, λ1 > 0) ≥ κn(Wn, Ĝ, λ1 = 0). If λ1 is large enough
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so that λ1(εmn ∨ C̃C1/2) dominates (εRn + εun + C̃µ∗)(1 + λ1), it can be seen

ϕαn = O

[
λ1

√
S∗

κ
1/2
n (Wn, Ĝ, λ1 > 0)

]
, ‖ã− a∗‖1 = Op

[
λ1S∗

κn(Wn, Ĝ, λ1 > 0)

]
.

(3.4)
(3.4) improves (3.3) if κn(Wn, Ĝ, λ1 > 0) is significantly larger than κ0,n.
Similar results have also been discussed in Hebiri et al. (2011).

3.2.1 Data-driven selection of penalties

Theorem 3.5 shows that depending on the level of λ1 and structure of Ĝ, α̃ displays
two types of convergence rates: the first best scenario is to select a small λ1 with
a large enough λ2 (fast convergence regime); the second best scenario is to choose
a larger λ1 with λ2 adjusted accordingly (slow convergence regime). It is beyond
the scope of this chapter to study theoretically justified data-driven choice for
both λ1 and λ2. However, data-driven selection of λ2 is possible under the first
best scenario. It can also shed some light on the choice of λ1. Propose to set λ2

as

λ̂2 = ĉ


∥∥∥Ψ̂∥∥∥

∞√
n

Φ−1

(
1− t̂

2k

)
εWn

 , (3.5)

where Ψ̂ is determined by an iterative algorithm at the end of this section, Φ(· )
is the distribution function of a standard normal variable, and ĉ and t̂ are some
practical loadings. Note εWn can be directly calculated since the researcher chooses
Wn. To achieve the first best rate, apply a small number for λ1 after finding λ̂2.
To achieve the second best rate, try resetting both λ1 and λ2 at similar magnitude
but larger than λ̂2.

(3.5) is theoretically motivated and inspired by Belloni et al. (2011, 2012).
The intuition is as follows: we aim to find the smallest level of λ2 such that H3-
(4) stands with a large probability. In the first best scenario, the leading term
of λ0 in H3-(4) should be εRn εWn . Denote Ψ = diag[ψ1, ψ2, . . . , ψk] as the k × k

diagonal matrix, where ψj =
{
En
[
eRj
]2}1/2

for each j = 1 . . . k. Then

εRn =
∥∥EneR∥∥∞ ≤ ‖Ψ‖∞ ∥∥∥S̃∥∥∥∞ , (3.6)

where ∥∥∥S̃∥∥∥
∞

=
∥∥Ψ−1EneR

∥∥
∞ = max

1≤j≤k

∣∣∣∣∣EneRjψj

∣∣∣∣∣ .
By moderate deviation theory (for example, Belloni et al., 2012; Jing et al.,
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2003), for some confidence level t̂, we can expect

P
[√

n
∥∥∥S̃∥∥∥

∞
> Φ−1

(
1− t̂

2k

)]
≤ t̂− o(1).

(3.5) thus reflects the idea to bound term
∥∥∥S̃∥∥∥

∞
in (3.6) with a large probabil-

ity. In practice, we set ĉ = 1.1, t̂ = 0.1/ log(k ∨ n), in line with recommendations
in Belloni et al. (2011, 2012, 2014, 2017b). Finally, Ψ is estimated by Ψ̂ using the
iterative algorithm below.

Algorithm [Iterative estimation of Ψ ]

Step 0: Choose ĉ = 1.1, t̂ = 0.1/ log(k∨n) and λ1 = 0. Let L = 15 be the number
of iterations.

Step 1: Let Ψ̂ 1 = diag[ψ̂1
1, ψ̂

1
2, . . . ψ̂

1
k], where ψ̂1

j =
{
En [pj(X)− Enpj(X)]2

}1/2
for each j =

1 . . . k. Find λ̂2 according to (3.5) and parameters in step 0. Compute α̃1 with
these penalty loadings according to (2.32).

Step 2: For l = 2 . . . L, update λ̂2 according to Ψ̂ l = diag[ψ̂l1, ψ̂
l
2, . . . ψ̂

l
k], where

ψ̂lj =
{
En
[
m(Z, pj(X))− α̃(l−1)(X)pj(X)

]2}1/2

for each j = 1 . . . k,

where α̃(l−1) is calibrated in iteration l−1 according to (2.32). Repeat the process
for L times.

Step 3: Use Ψ̂ = diag[ψ̂L+1
1 , ψ̂L+1

2 , . . . ψ̂L+1
k ] as the final estimate for Ψ , where

ψ̂L+1
j =

{
En
[
m(Z, pj(X))− α̃L(X)pj(X)

]2}1/2

for each j = 1 . . . k.

3.3 Monte Carlo exercises

3.3.1 Performance of minimax BP learner under moder-

ately high dimensions

This subsection assesses finite sample performance of θ̂BP when k < n. The set-up
follows closely with the simulation study in Kang et al. (2007), which has become a
standard framework for evaluating empirical performance of different estimators.6

See Example 2.1 for background knowledge. Let U = {U1, U2, U3, U4}′ be a vector
6Similar experimental studies have also been carried out in Tan (2010); Rotnitzky et al.

(2012); Imai and Ratkovic (2014); Zubizarreta (2015); Chan et al. (2016) etc., mainly to evaluate
the strength of balancing methods compared to other methods.
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of four random variables from multivariate standard normal distribution N(0, I4)

where I4 is a 4× 4 identity matrix. The outcome variable Y ∗ is generated as

Y ∗ = 210 + 27.4U1 + 13.7U2 + 13.7U3 + 13.7U4 + e,

where e follows a standard normal distribution N(0, 1) and is independent of U .
The true propensity score π(u) = P {T = 1|U = u} is set with a logistic fashion

π(u) = Λ(−u1 + 0.5u2−0.25u3−0.1u4),

where Λ(· ) = exp(·)
1+exp(·) . Observed outcome is then Y = TY ∗. The econometrician

does not observe U directly but only its transformed version, denoted as X =

{X1, X2, X3, X4}′, with

X1 = exp

(
U1

2

)
, X2 =

U2

1 + exp(U1)
+ 10,

X3 =

(
U1U3

25
+ 0.6

)3

, X4 = (U2 + U4 + 20)2.

An iid sample of size n = 200 is drawn from observables {Y, T,X1, X2, X3, X4}.
This mechanism generates a mean response rate of 0.5. Target parameter is
E[Y ∗] = 210. By Example 2.1, α0(x, t) = t/P{T = 1|X = x} and the linear
function m(z, g(x)) is just g(x). For simplicity, set Wn = I throughout the
exercise. Hence, given some basis functions p, we can construct

Θn =
{
α = t(a′p) : a ∈ Rk

}
,

HI =
{
g = β′p : β ∈ Rk, ‖β‖ ≤ 1

}
.

θ̂BP can be computed via equation (2.24), with calibrated RR admitting an ex-
plicit solution: α̃(x, t) = tã′p(x), where

ã =
[
ĜT ĜT + λ1ĜT

]−
ĜT P̂ , (3.7)

and ĜT = En[Tp(X)p′(X)] and P̂ = En[p(X)].

3.3.1.1 Baseline result with mild selection bias

In the first exercise I look at a situation with mild selection bias, where all relevant
regressors are included from the beginning. Spaces Θn and HI are constructed
using B-splines or orthogonal polynomials based on X. The dimension k for B-
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splines ranges from 5 to 121, covering 11 possible cases. This makes k
n
grow from

0.025 to 0.605. As the dimensional restriction on polynomials is stricter, this
exercise only considers 9 possible scenarios for polynomials: k starts from 5 to
70, so that k

n
increases from 0.025 to 0.35. Detailed procedures for constructing

these basis functions can be found in Tables 3.1 and 3.2.
A number of papers in the literature (for example, Hainmueller, 2012; Imai and

Ratkovic, 2014; Chan et al., 2016, etc.) have shown in simulations that balancing
style estimators usually outperform other methods (for example, matching and
inverse propensity score estimators) in terms of bias and root mean square error
(RMSE). So, the focus of this exercise is to compare the following three balancing
plug-in estimators:

1. Minimax BP learner: RR is computed with coefficient (3.7), where λ1 =

0.002 for B-splines and λ1 = 0.001 for orthogonal polynomials.

2. “Newey-Robins” (NR) learner: RR is computed with coefficient ãNR =

Ĝ−T P̂ , the estimator proposed in Newey and Robins (2018).

3. “Simple Ridge” (SR) learner: RR is computed with coefficient ãSR = (ĜT ĜT+

λ1I)−ĜT P̂ , with λ1 same as minimax BP learner. This is the estimator we
would get with a naive ridge penalty Pn(α(X)) = ‖a‖2.

Out of interest, performance of the following two baseline estimators are reported
as well:

1. A naive estimator when θ0 is estimated by simply averaging on observed
outcomes.

2. A simple averaging estimator when α0 is known.

Bias and RMSE are computed for each of the five estimators above with 10000
experiments. I also report mean TMU for estimating E[Y ∗] based on design
matrix ĜT . Results are collected in Tables 3.3 and 3.4 as well as Figures 3.1 and
3.2.

I also study empirical coverage probabilities of these five estimators, when
the variance is estimated by equation (3.1), with γ0(x, 1) = E[Y |X = x, T = 1]

estimated by standard series method with the same basis functions. Nominal
coverage probabilities are set at 1% and 5%, respectively. Results after 10000
simulations are reported in Tables 3.5 and 3.6.

Simulation results corroborate both Theorems 3.1 and 3.2. Under this mild
selection bias scenario, minimax BP learner with a small penalty maintains a
stable performance with a small RMSE over the span of k

n
ratios. In fact, it has
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the smallest RMSE for most k
n
ratios, except in cases when k

n
is very small (usually

< 0.1). On the other hand, RMSE of NR learner shoots up quite considerably
as k

n
increases. SR learner also behaves stably, but at the price of large bias

and RMSE. As k
n
increases, calculated mean TMU also grows, implying there

is more computational uncertainty due to higher dimensions. Note the unbiased
averaging estimator when α0 is known also behaves poorly and a naive averaging-
on-observed estimator is even more erratic. Similar conclusions can be drawn in
terms of inference. Coverage probabilities of minimax BP learner is more stable
compared to the other two alternatives, NR and SR learners. When k

n
is very

small, minimax BP learner does not outperform NR learner. As k
n
starts to grow,

coverage probabilities of minimax BP learner catch up and behave more steadily.
SR learner behaves significantly worse than the other two in all situations.

3.3.1.2 Robustness check: considerable selection bias

I next design a situation with considerable bias. At the beginning only X4 is used
to construct B-splines. So, severe selection bias exists in the specification. But
researchers gradually add more and more relevant regressors (X3, X2, X1 and their
technical terms) to alleviate bias. This creates a total of 10 cases with dimension
k growing from 5 to 121. When the number of regressors exceeds 70, selection
bias is very mild. Detailed procedures for constructing these basis functions can
be found in Table 3.7. Bias and RMSE are computed for each of the same five
estimators used earlier after 10000 experiments. Results are collected in Table 3.8
and Figure 3.3. It is clear that under this considerable bias scenario, minimax BP
learner is able to correctly pick up improvement from alleviated OVB. Both bias
and RMSE decrease to a desirable level as the model becomes correctly specified.
NR or SR learner cannot achieve this easily. In particular, if NR learner is used,
a correctly specified model with many regressors can behave much worse than a
misspecified model with severe bias but fewer regressors.

3.3.1.3 Robustness check: sensitivity to penalty coefficient

Finally, I check sensitivity of θ̂BP to the choice of λ1. Set-up is the same with
earlier case of mild selection bias using B-splines. But λ1 ranges from 0 to 0.005.
Results after 10000 simulations are collected in Table 3.9 and Figure 3.4. All of
them perform stably and much better than NR learners.
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3.3.2 Performance of GMEN learner under high dimen-

sions

The aim of this subsection is to study finite sample performance of GMEN learner
α̃ defined in (2.32) under ultra high dimensional regimes. I choose λ2 in a data-
driven way according to (3.5), and look at how estimation error of α̃ changes
under various specifications as well as levels of λ1. Simulation results are in line
with Theorem 3.5: when the model is sparse enough, a small λ1 usually suffices
for a good performance; when the model becomes less sparse, sometimes a larger
λ1 leads to a better result.

For simplicity, the set-up still follows the missing data framework in Example
(2.1). Since α0 is defined irrespective of outcome variable Y , I only focus on
observed data {T,X} excluding Y . Specifically, X is a random vector of k = 300

covariates drawn from N(0,Σ), where Σ(j1,j2) = (0.75)|j1−j2| for 1 ≤ j1, j2 ≤ k is
the variance covariance matrix. The propensity score is designed with a logistic
fashion

π0(x) = P(T = 1|X = x) = Λ [1 + A′πx] ,

where Λ(· ) = exp(·)
1+exp(·) and

Aπ = ρa(1,−2−ta , 3−ta , · · · j−ta , · · · − p−ta).

The two parameters (ρa, ta) are chosen by the researcher: ta controls sparsity and
ρa controls signal strength of the model. I create a grid of ta and ρa at different
values

ta = (0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.9);

ρa = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1).

Sample size n = 200. Throughout this experiment I choose Wn = I for
simplicity. λ2 is calculated by the data-driven algorithm discussed in (3.5), and
λ1 takes value in a grid from 0 to 0.1, with an 0.005 increase each step. GMEN
learner α̃ is computed according to (2.32) using R package “lbfgs”. I report the
average of empirical root mean square error

{
En [α̃(X)− α0(X)]2

}1/2
over 1000

simulations. Results are collected in Figures 3.5, 3.6 and 3.7.
The empirical performance of α̃ depends a lot on the data generating process.

In general, when the model is more sparse (larger ta), a small λ1 usually delivers a
good finite sample performance (Figure 3.5). Under these circumstances, a larger
λ2 yields a larger estimation error. On the other hand, in a large-ρa specification
and when the model is less sparse (say ta = 0.1), estimation error turns out to be
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quite big and is decreasing as λ1 increases (Figures 3.6 and 3.7). This corroborates
Theorem 3.5 quite well. In practice, the real data generating process is never
known. A practical recommendation for applied work is to start with a small
nonzero λ1 and see how results might change when λ1 increases. Cross validation
could be used for selecting λ1. More research is needed on theoretically justified
data-driven choices for λ1.

3.3.3 Tables and figures

Table 3.1: Construction of B-splines: mild selection bias

Model df of order of Aggregating pattern
k k

neach Xj each Xj for Xj, j = 1 . . . 4

(1) 1 1 additive 5 0.025
(2) 2 2 additive 9 0.045
(3) 3 2 additive 13 0.065
(4) 4 3 additive 17 0.085
(5) 5 3 additive 21 0.105
(6) 5 3 (5)+1st and 2nd same degree interactions 21 + 12 = 33 0.165
(7) 5 3 (5) + all same degree interactions 21 + 30 = 51 0.255
(8) 6 3 additive+same degree interactions 25 + 36 = 61 0.305
(9) 6 3 (8)+df = 1 interactions with df = 2 and 3 61 + 24 = 85 0.425
(10) 6 3 (9)+df = 1 interactions with df = 4 and 5 85 + 24 = 109 0.545
(11) 6 3 (8)+ df = 1 interactions with all other df terms 61 + 60 = 121 0.605

Note: This table shows how we construct B-splines basis functions of different dimensions with R
function “bs”. Some terminologies: A spline of order r with t interior knots has dimension r + t.
The degree of freedom (df) of B-spline defined on R is such that it has df − r interior knots. Notice
R ignores the constant so the real dimension always needs to add 1.

Table 3.2: Construction of orthogonal polynomials: mild selection bias
Model degree Aggregating pattern for Xj, j = 1 . . . 4 k k

n

(1) 1 all 1st degree polynomials 5 0.025
(2) 2 (1)+ same regressors’ 2nd degree polynomials 9 0.045
(3) 2 (1)+all regressor’ 2nd degrees polynomials 15 0.075
(4) 3 (3)+half of 3rd degree polynomials 15+10=25 0.125
(5) 3 (3)+all 3rd degree polynomials 15+20=35 0.175
(6) 4 (5)+ first 10 4th degree polynomials 35+10=45 0.225
(7) 4 (6)+ second 10 4th degree polynomials 35+20=55 0.275
(8) 4 (7)+ third 10 4th degree polynomials 35+30=65 0.325
(9) 4 (5)+all 4th degree polynomials 35+35=70 0.35

Note: Orthogonal polynomials are constructed straightforwardly with R package “poly”.

84



Table 3.3: Bias and RMSE using B-splines, 10000 Monte Carlo, λ1 = 0.002, mild
selection bias

Model k k
n

NR Minimax BP SR Mean
Bias RMSE Bias RMSE Bias RMSE TMU

(1) 5 0.025 -0.6404 3.3775 -3.8049 4.8548 -12.0300 12.4907 0.0000
(2) 9 0.045 -3.0948 4.7457 -4.5542 5.3889 -9.8147 10.3187 0.0020
(3) 13 0.065 -2.0888 4.2762 -4.9485 5.8034 -11.3977 11.8625 0.0050
(4) 17 0.085 -2.4118 11.1004 -5.1964 6.0223 -12.0436 12.5116 0.0249
(5) 21 0.105 -1.7891 17.7536 -5.2546 6.0873 -10.9903 11.4777 0.0449
(6) 33 0.165 -4.8446 14.8438 -5.2335 6.0627 -11.7762 12.2495 0.0370
(7) 51 0.255 -3.5531 16.5214 -5.1723 5.9932 -11.2596 11.7459 0.0492
(8) 61 0.305 -0.4233 14.8353 -5.1933 6.0162 -11.3621 11.8633 0.0450
(9) 85 0.425 -0.6467 15.3074 -5.1013 5.9352 -11.3714 11.8766 0.0519
(10) 109 0.545 -0.3799 14.4902 -5.0826 5.9193 -11.3699 11.8769 0.0516
(11) 121 0.605 -0.4192 14.7215 -5.0849 5.9207 -11.3696 11.8768 0.0523
(12) Naive average -10.0458 10.6347
(13) α0(X) known 0.1584 23.6996

Table 3.4: Bias and RMSE using orthogonal polynomials, 10000 Monte Carlo,
λ1 = 0.001, mild selection bias

Model k k
n

NR Minimax BP SR Mean
Bias RMSE Bias RMSE Bias RMSE TMU

(1) 5 0.025 -0.6404 3.3775 -6.0196 6.6971 -11.0890 11.6207 0.0000
(2) 9 0.045 -3.0948 4.7457 -5.1090 5.9144 -11.3495 11.8623 0.0143
(3) 15 0.075 -1.5043 3.8659 -6.1856 6.8593 -11.1085 11.6401 0.0128
(4) 25 0.125 5.9640 15.5018 -6.3648 7.0406 -11.1049 11.6353 0.0519
(5) 35 0.175 6.4579 16.0746 -6.3638 7.0419 -11.1100 11.6401 0.0557
(6) 45 0.225 -6.6549 27.2024 -6.4208 7.0899 -11.1180 11.6479 0.1096
(7) 55 0.275 -8.1283 26.9325 -6.4274 7.0940 -11.1197 11.6493 0.3311
(8) 65 0.325 -8.0678 26.5464 -6.4276 7.0942 -11.1200 11.6496 0.1960
(9) 70 0.35 -7.7737 26.3677 -6.4321 7.1002 -11.1243 11.6537 0.1026
(12) Naive average -10.0458 10.6347
(13) α0(X) known 0.1584 23.6996
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Figure 3.1: Bias and RMSE, B-splines, mild selection bias
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Figure 3.2: Bias and RMSE, orthogonal polynomials, mild selection bias
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Table 3.5: Coverage probability using B-splines, 10000 Monte Carlo, λ1 = 0.002,
mild selection bias

Model k k
n

NR Minimax BP SR
5% 1% 5% 1% 5% 1%

(1) 5 0.025 0.9348 0.9833 0.8946 0.9753 0.3695 0.7945
(2) 9 0.045 0.8053 0.9214 0.7262 0.8766 0.3904 0.7309
(3) 13 0.065 0.8613 0.9462 0.7666 0.9125 0.3313 0.7094
(4) 17 0.085 0.8959 0.9708 0.8090 0.9257 0.4267 0.7491
(5) 21 0.105 0.9236 0.9795 0.8408 0.9382 0.5631 0.8249
(6) 33 0.165 0.9268 0.9822 0.8271 0.9431 0.4721 0.7927
(7) 51 0.255 0.9008 0.9755 0.8455 0.9365 0.5887 0.8450
(8) 61 0.305 0.9317 0.9851 0.8854 0.9561 0.6234 0.8755
(9) 85 0.425 0.9113 0.9791 0.9266 0.9674 0.7394 0.9211
(10) 109 0.545 0.8831 0.9651 0.9450 0.9755 0.7926 0.9402
(11) 121 0.605 0.8805 0.9630 0.9460 0.9740 0.8013 0.9404
(12) Naive 0.1741 0.3766
(13) α0(X) known 0.9342 0.9772

Table 3.6: Coverage probability using orthogonal polynomials, 10000 Monte
Carlo, λ1 = 0.001, mild selection bias

Model k k
n

NR Minimax BP Simple ridge
5% 1% 5% 1% 5% 1%

(1) 5 0.025 0.9348 0.9833 0.8204 0.9608 0.4500 0.8310
(2) 9 0.045 0.8053 0.9214 0.6998 0.8679 0.2881 0.6472
(3) 15 0.075 0.8940 0.9664 0.7557 0.9269 0.4021 0.7750
(4) 25 0.125 0.9351 0.9901 0.9211 0.9813 0.7308 0.9307
(5) 35 0.175 0.9296 0.9906 0.9295 0.9808 0.7601 0.9341
(6) 45 0.225 0.9482 0.9936 0.9576 0.9867 0.8536 0.9608
(7) 55 0.275 0.9572 0.9946 0.9560 0.9869 0.8570 0.9605
(8) 65 0.325 0.9575 0.9964 0.9614 0.9886 0.8626 0.9648
(9) 70 0.35 0.9559 0.9955 0.9586 0.9871 0.8622 0.9616
(10) Naive 0.1741 0.3766
(11) α0(X) known 0.9342 0.9772
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Table 3.7: Construction of B-splines: considerable selection bias

Model Regressors df of order of Aggregating pattern
k k

nused each Xj each Xj for Xj

(1) X4 only 4 3 additive 5 0.025
(2) X4 only 5 3 additive 6 0.03
(3) X3, X4 only 5 3 additive 11 0.055
(4) X3, X4 only 5 3 (3)+ same degree interactions 16 0.08
(5) X2, X3, X4 only 5 3 additive+same degree interactions 31 0.155
(6) X2, X3, X4 only 5 3 (5)+ df = 1 interactions with all other

df terms
55 0.275

(7) X2, X3, X4 only 6 3 additive+ same degree
interactions+df = 1 interactions with

all other df terms

67 0.335

(8) All 6 3 (7) +X1 73 0.365
(9) All 6 3 additive+same degree

interactions+df = 1 interactions with
df = 5 and 6

85 0.425

(10) All 6 3 additive+same degree
interaction+df = 1 interactions with

all other df terms

121 0.605

Note: This table shows how we construct B-splines basis functions of different dimensions with R
function “bs”. Some terminologies: A spline of order r with t interior knots has dimension r + t.
The degree of freedom (df) of B-spline defined on R is such that it has df − r interior knots. Notice
R ignores the constant so the real dimension always needs to add 1.

Table 3.8: Bias and RMSE using B-splines, 10000 Monte Carlo, λ1 = 0.002,
considerable selection bias

Model k k
n

NR Minimax BP Simple ridge
Bias RMSE Bias RMSE Bias RMSE

(1) 5 0.025 -12.3471 12.7659 -12.8001 13.1886 -12.2811 12.7143
(2) 6 0.03 -12.3616 12.8130 -12.8344 13.2205 -12.6920 13.1125
(3) 11 0.055 -11.5525 14.1700 -12.6433 13.0143 -12.1266 12.5324
(4) 16 0.08 -19.1261 23.0365 -20.2015 20.6683 -20.0538 20.5281
(5) 31 0.155 -17.9294 23.7115 -19.4334 19.9311 -20.0314 20.4959
(6) 55 0.275 -9.1457 20.3253 -11.5796 11.9982 -12.2974 12.6762
(7) 67 0.335 -10.6529 23.3291 -11.3636 11.8042 -12.6588 13.0421
(8) 73 0.365 -1.2343 20.8580 -5.2934 6.1331 -11.1601 11.6531
(9) 85 0.425 -0.6845 14.9800 -5.1839 6.0073 -11.3643 11.8660
(10) 121 0.605 -0.3799 14.4902 -5.0826 5.9193 -11.3699 11.8769
(12) Naive average -10.0458 10.6347
(13) α0(X) known 0.1584 23.6996
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Figure 3.3: Bias and RMSE, B-splines, considerable selection bias
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Table 3.9: Sensitivity of θ̂BP to λ1 using B-splines, 10000 Monte Carlo, mild selection bias

Model k k
n

λ1 = 0 λ1 = 0.001 λ1 = 0.002 λ1 = 0.003 λ1 = 0.004

Bias RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE

(1) 5 0.025 -0.6404 3.3775 -2.4214 3.8804 -3.7352 4.8249 -4.8314 5.7219 -5.8081 6.5660

(2) 9 0.045 -2.7246 4.2714 -3.6326 4.6738 -4.5510 5.3910 -5.2480 5.9982 -5.9014 6.5619

(3) 13 0.065 -2.6026 4.1235 -3.9635 4.9994 -4.8965 5.7670 -5.6489 6.4320 -6.2802 6.9773

(4) 17 0.085 -2.8785 4.2637 -4.3213 5.3010 -5.1920 6.0275 -5.8184 6.5771 -6.4304 7.1101

(5) 21 0.105 -3.0002 4.3796 -4.3746 5.3580 -5.2010 6.0466 -5.8601 6.6309 -6.4006 7.0975

(6) 33 0.165 -2.8472 4.2580 -4.4166 5.3672 -5.2155 6.0543 -5.8022 6.5738 -6.4192 7.1271

(7) 51 0.255 -2.6549 4.0324 -4.4033 5.3293 -5.1614 5.9882 -5.6977 6.4622 -6.2732 6.9823

(8) 61 0.305 -2.5957 3.9553 -4.3113 5.2456 -5.1847 6.0134 -5.7946 6.5625 -6.4253 7.1304

(9) 85 0.425 -2.5434 3.9136 -4.2287 5.1759 -5.0911 5.9317 -5.6998 6.4786 -6.3278 7.0430

(10) 109 0.545 -2.5401 3.9075 -4.2107 5.1607 -5.0720 5.9155 -5.6812 6.4628 -6.3096 7.0271

(11) 121 0.605 -2.5504 3.9102 -4.2136 5.1620 -5.0740 5.9165 -5.6824 6.4634 -6.3103 7.0274
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Figure 3.4: Sensitivity of θ̂BP to λ1 using B-splines, mild selection bias
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Figure 3.5: Performance of GMEN learner under high dimensions (1)
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Note: Vertical axis represents average of empirical RMSE. λ2 is selected by data-driven algorithm.
ta represents sparsity of the model, and ρa is signal strength. Results are reported after 1000
simulations.
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Figure 3.6: Performance of GMEN learner under high dimensions (2)
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of the model and ρa is the signal strength. Results are reported after 1000 simulations.
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Figure 3.7: Performance of GMEN learner under high dimensions (3)
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RMSE is usually too large to be effectively included in the left, and is hence reported in the
corresponding right plot. λ2 is selected by proposed data-driven algorithm. ta represents sparsity
of the model and ρa is the signal strength. Results are reported after 1000 simulations.
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Chapter 4

Minimax learning for average
regression functionals: application

In this chapter I apply minimax learners to the work of Ferraz and Finan (2011).
They study the effect of electoral accountability on corruption using a unique
municipality-level dataset from Brazil. What is special about their dataset is
that: (1) it is observed at subnational level; (2) it is perceived to be a natural
experiment so treatment is plausibly close to random assignment. Hence one
of their main empirical strategies is OLS with controls of many mayoral and
municipal characteristics. They find in municipalities where mayors are serving
first term, share of resources involving corruption is significantly lower than in
municipalities with second-term mayors. Their results lend convincing evidence to
political agency models that underscore how re-election incentives affect political
behavior (see Besley, 2006 for a review), and are consistent with other empirical
works in this field (for example, Besley and Case, 1995; List and Sturm, 2006).

Within this context, the objective of this exercise is to investigate the perfor-
mance of minimax learners as well as other popular methods in the literature.
I find the main result of Ferraz and Finan (2011) very robust. However, OLS
suffers from a problem of “over control”, distorting estimates considerably due to
dimensionality issues of many controls. Ignoring this effect can lead to misin-
terpretation of the dataset. Minimax learners, on the other hand, do not over
control, perform stably and lead to economically coherent conclusion. It also
seems to confirm indeed selection bias in the data of Ferraz and Finan (2011)
is mild. In line with the theory developed in this thesis, θ̂BP works well for
moderately high dimensional cases, while θ̂DR can handle ultra high dimensional
situations nicely. Other off-the-shelf shrinkage methods (ridge, lasso, etc.) do not
work as well as minimax learners. In particular, when there are many controls,
performance of doubly robust estimators with (post) lasso selected propensity
scores appears less satisfactory.
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4.1 Main empirical framework

Ferraz and Finan (2011) use the following linear regression as one of the main
empirical strategies

Yi = θ0Ti +X ′iβ + Z ′iγ + εi, (4.1)

where Yi stands for the share of resources related to corrupt activities in munici-
pality i, as collected from audit reports, Ti is the treatment

Ti =

1 if mayor i’s term limit is not binding,

0 if mayor i’s term limit is binding,

and εi is the error term. In (4.1), object of interest is θ0, which can be
interpreted as the average treatment effect of reelection incentives on corruption
if individual treatment effect is a constant (see Angrist, 1998). To solve potential
endogeneity, Ferraz and Finan (2011) distinguish two important sets of controls

X : municipal characteristics, Z : mayor characteristics.

The key identification assumption is that all potential confounders have been
included in X and Z such that E[ei|T,X,Z] = 0 for each observation i.

This exercise deviates from the slightly restrictive controlled regression ap-
proach (4.1) to a more flexible semiparametric framework. Let us denote Y (1)

as the level of corruption when mayor’s term limit is not binding (or equiva-
lently, when mayor has reelection incentives), and denote Y (0) as the level of
corruption when mayor’s term limit is binding (no reelection incentives). The ob-
ject of interest is then the expected difference between the two corruption levels
θ0 = E[Y (1)] − E[Y (0)]. Example 2.1 applies. Under conditional independence
and overlap assumptions, θ0 is identified as

θ0 = E [E[Y |X,Z, T = 1]]− E[E[Y |X,Z, T = 0]] . (4.2)

Similar to the idea of (2.7), RR can be found for E[Y (1)] and E[Y (0)], respectively.

4.2 Main empirical results

As one of their primary empirical analyses, Ferraz and Finan (2011) explore how
estimate of θ0 in (4.1) changes when different sets of covariates are included.
They start with a plain vanilla mean comparison, and gradually add five sets
of relevant controls: mayor characteristics, municipal characteristics, political
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and judicial institutions, lottery and state dummy variables. A full specification
includes a total of 67 controls versus a sample size of 476. This is moderately
high dimensional with k

n
= 0.14. I compare estimates using OLS and minimax

BP learner with Wn = I and λ1 = 0.001. I also report results from six other
popular methods in the literature: ridge regression based on (4.1) with fixed
penalty 0.001; ridge regression based on (4.1) with 10 fold cross validation; linear
partialling out method for (4.1) with post lasso selection; double selection for
(4.1) with post lasso selection; doubly robust methods based on (4.2) with lasso
and post lasso selected propensity scores, respectively. Results are collected in
Table 4.1.

From Table 4.1 we see OLS estimates are quite unstable, sensitive to which
controls are included. A simple mean comparison yields a point estimate of -
0.0188, meaning lame duck mayors on average steal 1.88 percentage points more
resources. As we add more regressors, magnitude of the estimate increases some-
times quite substantially. Once all 67 regressors are included, the point estimate
becomes -0.0275. Though all significant at 5% level, such a disparity is quite evi-
dent considering the unit of outcomes is percentage point. To put these numbers
into perspective, on average each municipality receives an annual federal transfer
of R$5.5 million. A simple mean comparison would predict that every lame duck
mayor steals approximately R$100,000 more than first term mayor. With all 67
regressors, the prediction becomes close to R$150,000, an increase of almost 50%.
See Figure 4.1 for a detailed illustration. On the other hand, minimax BP learner
produces quantitatively stable estimate at around -0.018 throughout six specifi-
cations, and all of them are statistically significant at at least 10% level. Also
see Figure 4.2. Estimates from minimax BP learner are coherent with a dataset
that has mild selection bias. While what we see from OLS with many controls are
probably a result of “over control”: adding more regressors only distorts estimates
so much that improvement from addressing omitted variable bias is tiny. This
problem is not easily solved by off-the-shelf shrinkage methods. Performance of
naive ridge regression with a penalty λ1 = 0.001 improves a little bit but overall
quite similar to OLS. Ridge regression with 10 fold cross validation almost com-
pletely breaks down, yielding nothing stable or significant at all. The four other
lasso based selection methods perform well overall but not as stably as minimax
BP learner. In this case, the most competitive one seems to be the doubly robust
method based on (4.2) with lasso selected propensity score. Note linear regression
based methods (double selection and partialling out) do not work as well as those
using doubly robust approach based on (4.2).

Following Ferraz and Finan (2011), Tables 4.2 and 4.3 report effects of reelec-
tion incentives using two alternative measures of corruption as observed outcome:
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number of irregularities associated with corruption and share of service items in-
volving corruption. Results are also similar to those in Table 4.1.

4.3 Controlling for ability and experience

So far added covariates do not account for unobserved characteristics of individual
politicians, such as political ability and experience. These personal characteristics
are hard to measure, but omitting them might lead to sizable bias. For instance,
if we believe more experienced and/or more able politicians are more corrupt, we
over estimate the effect of reelection incentives. Ferraz and Finan (2011) carefully
devise several strategies to tackle this potential source of bias. In this subsection I
illustrate some of them and see how results would look like if minimax BP learner
is applied.

To control for political experience, specifications (1) to (6) of Table 4.4 reesti-
mate all original specifications (1)-(6) in Table 4.1, but with one additional proxy
variable for each specification. This additional proxy indicates whether first term
mayor was in power in one of the previous three terms. To account for possible
nonlinearity, specification (7) further adds interaction terms of political experi-
ence proxy with 11 other continuous variables on top of specification (6). Results
show clearly that OLS produces even more unstable results when this political
experience proxy is added. On the other hand, minimax BP learner with same
level of penalty λ1 = 0.001 still behaves robustly, with statistically significant
estimates at around -0.017. Other methods do not behave as well as minimax
BP learner. In particular, doubly robust with post lasso selected propensity score
performs a bit erratically, especially in specification (7).

Following Ferraz and Finan (2011), mayor’s political ability can be controlled
by comparing second term mayors with a subset of first term mayors who are
reelected in subsequent elections. This reduces sample size from 476 to 313.
Results are reported in Table 4.5. All methods, except cross validated ridge
regression, deliver very significant results with increased magnitude compared to
full sample size. Minimax BP learner is still quite stable compared to OLS and
most other off-the-shelf methods.

4.4 Accounting for many more controls

Finally I explore how minimax learners perform in the presence of many more
technical controls. B-splines are first created based on 11 continuous regressors
used in Table 4.1. Adding interaction and second order terms, I get four specifica-
tions with many technical controls. The number of controls in these specifications
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ranges from 67 to 254.1 Under this high dimensional situation, θ̂DR is more suit-
able than θ̂BP . To construct θ̂DR, first step γ̂ is estimated using “rlasso” in “hdm”
R package and α̃ is calibrated with Wn = I and λ2 selected by proposed data-
driven algorithm. Results are reported in Table 4.6 against different levels of
λ1, ranging from 0 to 0.1. Standard errors are calculated using simple plug-in
method. Table 4.6 also reports results using the other four lasso based meth-
ods mentioned earlier. Finally, for comparison purpose, Table 4.7 collects results
using θ̂BP with a series of small penalties.

We find θ̂DR behaves very well. The estimate is stable and significant across
the four high dimensional specifications. The choice of λ1 has a minimal im-
pact on point estimate, but a larger λ1 leads to smaller standard error and thus
more significant estimate. Doubly robust estimators using (post) lasso selected
propensity scores do not behave well especially when k becomes too large. This
might signal erratic behavior of inverse of estimated propensity score under high
dimensions, even if it is regularized. Linear partialling out and linear double se-
lection methods on the other hand, behave stably under this case and produce
significant estimates throughout four specifications. Their simple linear struc-
ture might be the reason behind these results. There are some other interesting
findings. θ̂BP still behaves very stably even in the presence of many controls.
However, when there are too many regressors (k = 188, 254), computed standard
errors become too large to make estimates significant. This is well expected. See
discussions for Theorems 3.2 and 3.3. Dimensionality has a more adverse effect on
variance estimation. Nevertheless, these exercises under many technical controls
further support the view that Ferraz and Finan (2011)’s data are close to random
assignment. Their main result stays robust.

4.5 Tables and figures

1See footnote of Table 4.6 for a detailed procedure on how to construct these controls.
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Table 4.1: Effect of reelection incentives on corruption: baseline results
Specification (1) (2) (3) (4) (5) (6)

k 1 21 28 32 41 67

n 476 476 476 476 476 476

TMU: EY (1) 0 0.0330 0.0198 0.0509 0.0718 0.0989

TMU: EY (0) 0 0.0248 0.0273 0.0313 0.0404 0.0557

OLS
Effect -0.0188** -0.0198** -0.0200** -0.0235** -0.0261** -0.0275**

S.E. (0.0095) (0.0096) (0.0099) (0.0108) (0.0106) (0.0113)

Minimax BP Effect -0.0187** -0.0186** -0.0162* -0.0182* -0.0182* -0.0182**

(Wn = I, λ = 0.001) S.E. (0.0094) (0.0087) (0.0088) (0.0097) (0.0095) (0.0092)

OLS+ridge Effect -0.0195** -0.0197** -0.0233** -0.0256** -0.0263**

λ = 0.001 S.E. (0.0096) (0.0099) (0.0108) (0.0106) (0.0113)

OLS+ridge Effect -0.0070 -0.0078 -0.0010 -0.0076 -0.0053

10 fold CV S.E. (0.0097) (0.0100) (0.0110) (0.0109) (0.0119)

Doubly robust Effect -0.0180* -0.0177* -0.0252** -0.0252** -0.0214*

post lasso selected p.s.† S.E. (0.0094) (0.0096) (0.0111) (0.0111) (0.0110)

Doubly robust Effect -0.0188** -0.0181* -0.0225** -0.0225** -0.0219**

lasso selected p.s. S.E. (0.0095) (0.0095) (0.0100) (0.0100) (0.0100)

Linear partialling out Effect -0.0177* -0.0198** -0.0248*** -0.0259*** -0.0216**

post lasso selection S.E. (0.0093) (0.0093) (0.0096) (0.0095) (0.0096)

Linear double selection Effect -0.0180* -0.0200** -0.0248** -0.0260** -0.0224**

post lasso selection S.E. (0.0096) (0.0095) (0.0104) (0.0103) (0.0105)

Mayor characteristics No Yes Yes Yes Yes Yes

Municipal characteristics No No Yes Yes Yes Yes

Political and judicial characteristics No No No Yes Yes Yes

Lottery dummy No No No No Yes Yes

State dummy No No No No No Yes

Note: k refers to the number of regressors and n is the sample size. Numbers in parentheses
are computed standard errors. (1)-(6) use the same controls as those in Table 4 of Ferraz and
Finan (2011). Mayor characteristics include: age, gender, education, party affiliation; Municipal
characteristics include: log population, percentage of the population that has at least a secondary
education, percentage of the population that lives in the urban sector, new municipality, log GDP
per capita in 2002, Gini coefficient, log amount of resources sent to the municipality; Political and
judicial characteristics include: effective number of political parties in the legislature, the number
of legislators divided by the number of voters, the share of the legislature that is of the same party
as the mayor, and whether the municipality is judiciary district. Two ridge methods use R package
“glmnet”; Four lasso based methods use R package “hdm”.
*** Significant at 1%. ** Significant at 5 %. * Significant at 10%.
† propensity score.
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Figure 4.1: Effect of a lame duck mayor on a 5.5 million transfer: OLS

A: Change of point estimate as number of regressors increases
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B: Point estimates with 90% confidence intervals
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Note: This figure illustrates how much more value out of a R$5.5 million transfer would be
stolen by a second term mayor according to estimations of OLS in Table 4.1. Panel A shows
how point estimate changes as we add more regressors from specification (1) to (6) in Table
4.1. Red areas represent an increase and green areas represent a decrease. Panel B shows
point estimate with 90% confidence interval for each specification (1)-(6) in Table 4.1.
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Figure 4.2: Effect of a lame duck mayor on a 5.5 million transfer: minimax BP
learner

A: Change of point estimate as number of regressors increases
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B: Point estimates with 90% confidence intervals
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Note: This figure illustrates how much more value out of a R$5.5 million transfer would be
stolen by a second term mayor according to estimations of minimax BP learner in Table 4.1.
Panel A shows how point estimate changes as we add more regressors from specification (1) to
(6) in Table 4.1. Red areas represent an increase and green areas represent a decrease. Panel
B shows point estimate with 90% confidence interval for each specification (1)-(6) in Table 4.1.
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Table 4.2: Effect of reelection incentives on alternative measure of corruption
Specification (1) (2) (3) (4) (5) (6)

Corruption measure numbers of irregularities involving corruption

k 1 21 28 32 41 67

n 476 476 476 476 476 476

OLS
Effect -0.3875** -0.4297*** -0.3641** -0.3947** -0.4470*** -0.4710***

S.E. (0.1583) (0.1549) (0.1525) (0.1530) (0.1506) (0.1478)

Minimax BP Effect -0.3857** -0.4320*** -0.3477** -0.3528** -0.3568*** -0.3568***

(λ = 0.001) S.E. (0.1576) (0.1495) (0.1421) (0.1409) (0.1343) (0.1225)

OLS+ridge Effect -0.4222*** -0.3451*** -0.3804** -0.4226*** -0.4584***

λ = 0.001 S.E. (0.1549) (0.1524) (0.1527) (0.1506) (0.1490)

OLS+ridge Effect -0.2072 -0.2405 -0.2628* -0.3155** -0.2484

10 fold CV S.E. (0.1562) (0.1534) (0.1533) (0.1523) (0.1541)

Doubly robust Effect -0.3612** -0.2864* -0.4123*** -0.4123*** -0.4035***

post lasso selected p.s.† S.E. (0.1589) (0.1507) (0.1540) (0.1540) (0.1514)

Doubly robust Effect -0.3873** -0.3445** -0.4402*** -0.4408*** -0.4323***

lasso selected p.s. S.E. (0.1581) (0.1568) (0.1554) (0.1553) (0.1551)

Linear partialling out Effect -0.4359*** -0.3048** -0.3797** -0.3581** -0.3872***

post lasso selection S.E. (0.1572) (0.1442) (0.1494) (0.1493) (0.1393)

Linear double selection Effect -0.4367*** -0.3152** -0.3872*** -0.3618** -0.3998***

post lasso selection S.E. (0.1579) (0.1452) (0.1456) (0.1460) (0.1406)

Mayor characteristics No Yes Yes Yes Yes Yes

Municipal characteristics No No Yes Yes Yes Yes

Political and judicial characteristics No No No Yes Yes Yes

Lottery dummy No No No No Yes Yes

State dummy No No No No No Yes

Note: k refers to the number of regressors and n is the sample size. Numbers in parentheses
are computed standard errors. (1)-(6) use the same controls as those in Table 4 of Ferraz and
Finan (2011). Mayor characteristics include: age, gender, education, party affiliation; Municipal
characteristics include: log population, percentage of the population that has at least a secondary
education, percentage of the population that lives in the urban sector, new municipality, log GDP
per capita in 2002, Gini coefficient, log amount of resources sent to the municipality; Political and
judicial characteristics include: effective number of political parties in the legislature, the number
of legislators divided by the number of voters, the share of the legislature that is of the same party
as the mayor, and whether the municipality is judiciary district. Two ridge methods use R package
“glmnet”; Four lasso based methods use R package “hdm”.
*** Significant at 1%.
** Significant at 5 %.
* Significant at 10%.
† propensity score.
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Table 4.3: Effect of reelection incentives on alternative measure of corruption
Specification (1) (2) (3) (4) (5) (6)

Corruption measure share of audited items involving corruption

k 1 21 28 32 41 67

n 476 476 476 476 476 476

OLS
Effect -0.0076 -0.0100*** -0.0077 -0.0081* -0.0100** -0.0105**

S.E. (0.0048) (0.0045) (0.0047) (0.0047) (0.0044) (0.0044)

Minimax BP Effect -0.0076 -0.0091** -0.0062 -0.0057 -0.0055 -0.0055

(λ = 0.001) S.E. (0.0048) (0.0044) (0.0044) (0.0044) (0.0039) (0.0036)

OLS+ridge Effect -0.0098** -0.0074 -0.0080* -0.0096** -0.0103**

λ = 0.001 S.E. (0.0045) (0.0047) (0.0047) (0.0044) (0.0043)

OLS+ridge Effect -0.0030 -0.0035 -0.0043 -0.0066 -0.0058

10 fold CV S.E. (0.0046) (0.0047) (0.0047) (0.0045) (0.0045)

Doubly robust Effect -0.0067 -0.0043 -0.0069 -0.0074* -0.0049

post lasso selected p.s.† S.E. (0.0048) (0.0049) (0.0048) (0.0045) (0.0048)

Doubly robust Effect -0.0076 -0.0063 -0.0080* -0.0080* -0.0078*

lasso selected p.s. S.E. (0.0048) (0.0048) (0.0047) (0.0047) (0.0047)

Linear partialling out Effect -0.0099** -0.0055 -0.0073 -0.0082* -0.0073*

post lasso selection S.E. (0.0048) (0.0046) (0.0048) (0.0045) (0.0041)

Linear double selection Effect -0.0099** -0.0058 -0.0074 -0.0081* -0.0077*

post lasso selection S.E. (0.0047) (0.0046) (0.0046) (0.0043) (0.0041)

Mayor characteristics No Yes Yes Yes Yes Yes

Municipal characteristics No No Yes Yes Yes Yes

Political and judicial characteristics No No No Yes Yes Yes

Lottery dummy No No No No Yes Yes

State dummy No No No No No Yes

Note: k refers to the number of regressors and n is the sample size. Numbers in parentheses
are computed standard errors. (1)-(6) use the same controls as those in Table 4 of Ferraz and
Finan (2011). Mayor characteristics include: age, gender, education, party affiliation; Municipal
characteristics include: log population, percentage of the population that has at least a secondary
education, percentage of the population that lives in the urban sector, new municipality, log GDP
per capita in 2002, Gini coefficient, log amount of resources sent to the municipality; Political and
judicial characteristics include: effective number of political parties in the legislature, the number
of legislators divided by the number of voters, the share of the legislature that is of the same party
as the mayor, and whether the municipality is judiciary district. Two ridge methods use R package
“glmnet”; Four lasso based methods use R package “hdm”.
*** Significant at 1%.
** Significant at 5 %.
* Significant at 10%.
† propensity score.
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Table 4.4: Effect of reelection incentives on corruption: controlling for political
experience

Specification (1) (2) (3) (4) (5) (6) (7)
k 1+1 21+1 28+1 32+1 41+1 67+1 67+1+11

n 476 476 476 476 476 476 476

TMU: EY (1) 0 0.0622 0.0064 0.0222 0.0413 0.0739 0.0764

TMU: EY (0) 0 0.0417 0.0435 0.0629 0.0749 0.1037 0.0351

OLS
Effect -0.0164* -0.0178* -0.0179* -0.0217* -0.0243** -0.0262** -0.0246**

S.E. (0.0099) (0.0101) (0.0103) (0.0113) (0.0110) (0.0116) (0.0122)

Minimax BP Effect -0.0179* -0.0185** -0.0159* -0.0179* -0.0179* -0.0178* -0.0177*

(λ = 0.001) S.E. (0.0098) (0.0087) (0.0088) (0.0096) (0.0095) (0.0092) (0.0093)

OLS+ridge Effect -0.0195** -0.0176* -0.0233** -0.0238** -0.0250** -0.0243**

λ = 0.001 S.E. (0.0096) (0.0103) (0.0108) (0.0110) (0.0117) (0.0122)

OLS+ridge Effect -0.0070 -0.0070 -0.0100 -0.0073 -0.0051 -0.0041

10 fold CV S.E. (0.0097) (0.0105) (0.0110) (0.0113) (0.0123) (0.0130)

Doubly robust Effect -0.0180* -0.0188* -0.0252** -0.0230** -0.0173 -0.0486

post lasso selected p.s.† S.E. (0.0094) (0.0101) (0.0111) (0.0111) (0.0111) (0.0346)

Doubly robust Effect -0.0188** -0.0176** -0.0225** -0.0214** -0.0210** -0.0249*

lasso selected p.s. S.E. (0.0095) (0.0094) (0.0100) (0.0099) (0.0098) (0.0132)

Linear partialling out Effect -0.0177* -0.0169* -0.0248*** -0.0231** -0.0202** -0.0196**

post lasso selection S.E. (0.0093) (0.0095) (0.0096) (0.0099) (0.0099) (0.0099)

Linear double selection Effect -0.0180* -0.0170* -0.0248** -0.0232** -0.0210* -0.0204*

post lasso selection S.E. (0.0096) (0.0100) (0.0104) (0.0110) (0.0111) (0.0112)

Mayor characteristics No Yes Yes Yes Yes Yes Yes

Municipal characteristics No No Yes Yes Yes Yes Yes

Political and judicial characteristics No No No Yes Yes Yes Yes

Lottery dummy No No No No Yes Yes Yes

State dummy No No No No No Yes Yes

Note: k refers to the number of regressors and n is the sample size. Numbers in parentheses
are computed standard errors. (1)-(6) use the same controls as those in Table 4 of Ferraz and
Finan (2011). Mayor characteristics include: age, gender, education, party affiliation; Municipal
characteristics include: log population, percentage of the population that has at least a secondary
education, percentage of the population that lives in the urban sector, new municipality, log GDP
per capita in 2002, Gini coefficient, log amount of resources sent to the municipality; Political and
judicial characteristics include: effective number of political parties in the legislature, the number
of legislators divided by the number of voters, the share of the legislature that is of the same party
as the mayor, and whether the municipality is judiciary district. The one additional regressor
used in each specification is a proxy of political experience, indicating whether a first term mayor
was a mayor in one of previous three terms. In specification (7), the 11 additional regressors are
interactions of non-dummy regressors in (6) with the political experience indicator, respectively.
*** Significant at 1%. ** Significant at 5 %. * Significant at 10%.
† propensity score.
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Table 4.5: Effect of reelection incentives on corruption: controlling for political
ability
Specification (1) (2) (3) (4) (5) (6)

k 1 21 28 32 41 67

n 313 313 313 313 313 313

TMU: EY (1) 0 0.0403 0.1636 0.1377 0.0570 0.0055

TMU: EY (0) 0 0.0542 0.0114 0.0267 0.0358 0.0259

OLS
Effect -0.0345*** -0.0356*** -0.0358*** -0.0411*** -0.0418*** -0.0398***

S.E. (0.0097) (0.0103) (0.0109) (0.0118) (0.0122) (0.0130)

Minimax BP Effect -0.0345*** -0.0303*** -0.0310*** -0.0330*** -0.0330*** -0.0329***

(λ = 0.001) S.E. (0.0097) (0.0087) (0.0091) (0.0092) (0.0092) (0.0091)

OLS+ridge Effect -0.0349*** -0.0351*** -0.0402*** -0.0409*** -0.0385***

λ = 0.001 S.E. (0.0104) (0.0110) (0.0119) (0.0123) (0.0131)

OLS+ridge Effect -0.0160 -0.0140 -0.0167 -0.0125 -0.0102

10 fold CV S.E. (0.0104) (0.0113) (0.0123) (0.0127) (0.0140)

Doubly robust Effect -0.0344*** -0.0351*** -0.0405*** -0.0405*** -0.0377***

post lasso selected p.s.† S.E. (0.0100) (0.0103) (0.0109) (0.0109) (0.0112)

Doubly robust Effect -0.0338*** -0.0337*** -0.0357*** -0.0357*** -0.0353***

lasso selected p.s. S.E. (0.0097) (0.0097) (0.0097) (0.0097) (0.0096)

Linear partialling out Effect -0.0326*** -0.0305*** -0.0359*** -0.0359*** -0.0371***

post lasso selection S.E. (0.0111) (0.0111) (0.0114) (0.0114) (0.0112)

Linear double selection Effect -0.0338*** -0.0314*** -0.0370*** -0.0370*** -0.0385***

post lasso selection S.E. (0.0097) (0.0098) (0.0107) (0.0107) (0.0108)

Mayor characteristics No Yes Yes Yes Yes Yes

Municipal characteristics No No Yes Yes Yes Yes

Political and judicial characteristics No No No Yes Yes Yes

Lottery dummy No No No No Yes Yes

State dummy No No No No No Yes

Note: This table only uses a subsample of second term mayors and first term mayors who were
later reelected, as a control for political ability. k refers to the number of regressors and n is the
sample size. Numbers in parentheses are computed standard errors. (1)-(6) use the same controls as
those in Table 4 of Ferraz and Finan (2011). Mayor characteristics include: age, gender, education,
party affiliation; Municipal characteristics include: log population, percentage of the population
that has at least a secondary education, percentage of the population that lives in the urban sector,
new municipality, log GDP per capita in 2002, Gini coefficient, log amount of resources sent to the
municipality; Political and judicial characteristics include: effective number of political parties in
the legislature, the number of legislators divided by the number of voters, the share of the legislature
that is of the same party as the mayor, and whether the municipality is judiciary district.
*** Significant at 1%.
** Significant at 5 %.
* Significant at 10%.
† propensity score.
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Table 4.6: Effect of reelection incentives on corruption: minimax DR with many
controls

Specification (1) (2) (3) (4)

k 67 122 188 254

n 476 476 476 476

Minimax DR w. lasso Effect -0.0192** -0.0201** -0.0204** -0.0178*

λ1 = 0 S.E. (0.0091) (0.0091) (0.0091) (0.0091)

Minimax DR w. lasso Effect -0.0192** -0.0201** -0.0204** -0.0178**

λ1 = 0.03 S.E. (0.0089) (0.0088) (0.0088) (0.0088)

Minimax DR w. lasso Effect -0.0192** -0.0201** -0.0204** -0.0178**

λ1 = 0.06 S.E. (0.0086) (0.0086) (0.0086) (0.0086)

Minimax DR w. lasso Effect -0.0192** -0.0201** -0.0204** -0.0178**

λ1 = 0.1 S.E. (0.0083) (0.0083) (0.0083) (0.0083)

Doubly robust Effect -0.0214* -0.0225* 0.0409 0.0011

post lasso selected p.s.† S.E. (0.0110) (0.0125) (0.1052) (0.0240)

Doubly robust Effect -0.0219** -0.0223** -0.0203 -0.0157

lasso selected p.s. S.E. (0.0100) (0.0101) (0.0140) (0.0110)

linear partialling out Effect -0.0216** -0.0211** -0.0198** -0.0211**

post lasso selection S.E. (0.0096) (0.0095) (0.0096) (0.0095)

linear double selection Effect -0.0224* -0.0221** -0.0205* -0.0221**

post lasso selection S.E. (0.0105) (0.0104) (0.0106) (0.0104)

Note: k refers to the number of regressors and n is the sample size. Numbers in paren-
theses are computed standard errors. Controls in each specification are constructed as
follows:
56 dummy variables in specification (6) from Table 4.1 are directly used in all speci-
fications. In addition, we collect all 11 continuous regressors used in specification (6)
from Table 4.1. Based on these 11 continuous regressors, we generate B-splines in the
following way: (1), degree of freedom 1 and order 1; (2), degree of freedom 1 and or-
der 1, with all interactions; (3) degree of freedom 2 and order 2, with all same degree
interactions; (4), degree of freedom 3 and order 2, with all same degree interactions.
*** Significant at 1%.
** Significant at 5 %.
* Significant at 10%.
† propensity score.
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Table 4.7: Effect of reelection incentives on corruption: minimax BP with many
controls

Specification (1) (2) (3) (4)

k 67 122 188 254

n 476 476 476 476

OLS Effect -0.0275**

S.E. (0.0113)

λ1 = 0
Effect -0.0277*** -0.0241** -0.0248 -0.0249

S.E. (0.0103) (0.0096) (0.0213) (0.0339)

λ1 = 0.002
Effect -0.0245** -0.0245** -0.0244 -0.0240

S.E. (0.0097) (0.0094) (0.0212) (0.0339)

λ1 = 0.004
Effect -0.0233** -0.0238** -0.0234 -0.0232

S.E. (0.0095) (0.0093) (0.0212) (0.0339)

λ1 = 0.006
Effect -0.0225** -0.0232** -0.0228 -0.0227

S.E. (0.0094) (0.0093) (0.0212) (0.0339)

λ1 = 0.008
Effect -0.0220** -0.0228** -0.0223 -0.0222

S.E. (0.0093) (0.0093) (0.0212) (0.0339)

λ1 = 0.01
Effect -0.0215** -0.0224** -0.0219 -0.0218

S.E. (0.0092) (0.0092) (0.0212) (0.0339)

Note: k refers to the number of regressors and n is the sample size. Numbers in paren-
theses are computed standard errors. Controls in each specification are constructed as
follows:
56 dummy variables in specification (6) from Table 4.1 are directly used in all speci-
fications. In addition, we collect all 11 continuous regressors used in specification (6)
from Table 4.1. Based on these 11 continuous regressors, we generate B-splines in the
following way: (1), degree of freedom 1 and order 1; (2), degree of freedom 1 and or-
der 1, with all interactions; (3) degree of freedom 2 and order 2, with all same degree
interactions; (4), degree of freedom 3 and order 2, with all same degree interactions.
*** Significant at 1%.
** Significant at 5 %.
* Significant at 10%.
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Appendix A

Supplementary materials for
Chapter 1

A.1 Mixing

The probability space is (Ω,F ,P). For any two σ−fields A ∈ F and B ∈ F ,
define the following measures of dependence:

α(A,B) = sup |P(A ∩B)− P(A)P(B)| , A ∈ A, B ∈ B;

β(A,B) = sup
1

2

I∑
i=1

J∑
j=1

|P(Ai ∩Bj)− P(Ai)P(Bj)| ,

where the supremum is taken over all pairs of (finite) partitions {A1, . . . , AI} and
{B1, . . . , BJ} of Ω such that Ai ∈ A for each i and Bj ∈ B for each j. For a
sequence {Xi}∞i=−∞, the m−th α−mixing coefficient is defined as

αm = sup
i
α(σ(. . . , Xi−1, Xi), σ(Xi+m, Xi+m+1, . . .)),

and it is said to be α−mixing if αm → 0 as m → ∞. Similarly, its m−th
β−mixing coefficient is defined as

βm = sup
i
β(σ(. . . , Xi−1, Xi), σ(Xi+m, Xi+m+1, . . .)),

and {Xi}∞i=−∞ is called β−mixing if βm → 0 as m→∞. See Bradley et al. (2005)
for more details.
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A.2 Proofs for low dimensional case

A.2.1 Lemmas

Lemma A.1. Let f(x) = (f1(x), . . . , fK(x))′ be a K-dimensional vector of func-
tions, and Mq = max1≤j≤K{E|fj(X)|q}1/q. Suppose {Xi}ni=1 is α-mixing with
mixing coefficient {αm}m∈N satisfying KM2(M2 + Mq

∑n
m=1 α

1/2−1/q
m )/n→ 0 for

some q ∈ (2,∞]. Then

|En[f(X)]− E[f(X)]| = Op


√√√√KM2

n

(
M2 +Mq

n∑
m=1

α
1/2−1/q
m

) .

Lemma A.2. Suppose Conditions D, S, and I hold true. Then

(i) for all x ∈ X and n large enough, λ′bgn(x) ∈ C, where C is a compact set in
R,

(ii) supx∈Xn |ω0(x)− φ(1)
∗ (λ′bgn(x))| = O(ηK,n).

Lemma A.3. Suppose Conditions for Theorem 1.1 hold true. Then

(i) If we additionally assume that {Xi}ni=1 is iid and ζ2
K,n logK/n → 0, then

|En[gn(X)gn(X)′]−I| = Op(
√
ζ2
K,n logK/n), and thus λmin(En[gn(X)gn(X)′])

is bounded away from zero and from above with probability approaching to
one.

(ii) |En[rn(X)− ω0(X)gn(X)]| = Op(
√
KµK,n/n),

(iii) |En[{ω0(X)− φ(1)
∗ (λ′bgn(X))}gn(X)]| = Op(BK,n).

(iv) |λ̃ − λb| = Op(
√
KµK,n/n + BK,n), where λ̃ = arg min

λ
En[φ∗(λ

′gn(X)) −
λ′rn(X)].

Proof of Lemma A.1

Let W (X) = f(X)− E[f(X)]. Note that

E[|En[W (Xi)]|2] =
1

n2

n∑
i=1

K∑
j=1

E[Wj(Xi)
2] +

1

n2

n∑
i 6=l

K∑
j=1

E[Wj(Xi)Wj(Xl)].

The first term is bounded as 1
n2

∑n
i=1

∑K
j=1 E[W 2

j (Xi)] ≤ KM2
2/n. For the second

term, (Hall et al., 1980, Corollary A.2) implies

|E[Wj(Xi)Wj(Xl)]| . {E[|Wj(Xi)|q]}1/q
√
E[Wj(Xl)2]α

1/2−1/q
i−l ≤MqM2α

1/2−1/q
i−l ,
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and thus 1
n2

∑n
i 6=l
∑K

j=1 E[Wj(Xi)Wj(Xl)] . KMqM2

∑n
m=1 α

1/2−1/q
m . Therefore,

the conclusion follows by Markov’s inequality.

Proof of Lemma A.2 (i)

By boundedness of ω0 (Condition D) and continuity of [φ
(1)
∗ ]−1(·) (Condition I),

both γ = infx∈X [φ
(1)
∗ ]−1(ω0(x)) and γ = supx∈X [φ

(1)
∗ ]−1(ω0(x)) are finite. Thus,

by (1.12) in Condition S, there exists C1 > 0 such that

λ′bgn(x) ∈ [γ − C1ηK,n, γ + C1ηK,n], (A.1)

for all x ∈ Xn (and thus for all x ∈ X ) and n large enough. The conclusion
follows by the requirement ηK,n → 0.

Proof of Lemma A.2 (ii)

Note (A.1) also guarantees

ω0(x)− φ(1)
∗ (λ′bgn(x)) ∈ [φ(1)

∗ (λ′bgn(x)− C1ηK,n)− φ(1)
∗ (λ′bgn(x)),

φ(1)
∗ (λ′bgn(x) + C1ηK,n)− φ(1)

∗ (λ′bgn(x))],

for all x ∈ Xn and n large enough. By applying the mean value theorem to the
upper and lower bounds under Condition I, there exist c1, c2 > 0 such that

φ(1)
∗ (λ′bgn(x) + C1ηK,n)− φ(1)

∗ (λ′bgn(x)) ≤ c1C1ηK,n,

φ(1)
∗ (λ′bgn(x)− C1ηK,n)− φ(1)

∗ (λ′bgn(x)) ≥ −c2C1ηK,n,

for all x ∈ Xn and n large enough. Combining these results, the conclusion
follows.

Proof of Lemma A.3 (i)

This follows directly from (Belloni et al., 2015, Lemma 6.2) or (Chen and Chris-
tensen, 2015, Lemma 2.1).

Proof of Lemma A.3 (ii)

Let f(x) = rn(x)−ω0(x)gn(x). By (1.1) and Cauchy-Schwarz inequality, we have

|E[f(X)]| . |E[{ω0(X)g(X)− r(X)}I{X /∈ Xn}]|

≤
√

E[|ω0(X)g(X)− r(X)|2]
√
P{X /∈ Xn} = o(

√
K/n), (A.2)
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where the equality follows from Condition S. Condition S guarantees max
1≤j≤K

{E[|fj(X)|q]}1/q .

MK,n. Thus, Lemma A.1 implies

|En[f(X)]− E[f(X)]| = Op(
√
KµK,n/n). (A.3)

The conclusion follows by (A.2) and (A.3).

Proof of Lemma A.3 (iii)

Let ξ(X) = {ω0(X)−φ(1)
∗ (λ′bgn(X))} and ρ̂ = (En[gn(X)gn(X)′])−1En[gn(X)ξ(X)].

By the assumption |En[gn(X)gn(X)′]−I| = op(1), it holds (En[gn(X)gn(X)′])−1 =

Op(1), and then

|En[gn(X)ξ(X)]| ≤ |En[gn(X)gn(X)′]||ρ̂| . |ρ̂| .
√
En[(ρ̂′gn(X))2], (A.4)

with probability approaching one, where the last inequality follows from Condi-
tion S. Since ρ̂ is the empirical projection coefficient from ξ(X) on gn(X), we
have

En[(ρ̂′gn(X))2] ≤ {En[ξ(X)2]− E[ξ(X)2]}+ E[ξ(X)2] = Op(B
2
K,n), (A.5)

where the equality follows from (1.13) in Condition S and Lemma A.1 (note that
E[|ξ(X)|q] . ς

2/q
K,n under Conditions D and S). The conclusion follows from (A.4)

and (A.5).

Proof of Lemma A.3 (iv)

Recall that ω̂(X) = φ
(1)
∗ (λ̂′g(X)I{X ∈ Xn}) = φ

(1)
∗ (λ̃′gn(X)), where λ̃ = arg max

λ
Q̂(λ)

and
Q̂(λ) = λ′En[rn(X)]− En[φ∗(λ

′gn(X))].

By Condition I, Q̂(λ) is strictly concave in λ. Let Q̂(1)(λ) and Q̂(2)(λ) be the first
and second derivatives of Q̂(λ), respectively. The proof is split into several steps.

Step 1: Show Q̂(1)(λb) = Op(δn), where δn =
√
KµK,n/n + BK,n. Since

Q̂(1)(λb) = En[rn(X)− φ(1)
∗ (λ′bgn(X))gn(X)], the triangle inequality yields

|Q̂(1)(λb)| ≤ |En[rn(X)− ω0(X)gn(X)]|+ |En[{ω0(X)− φ(1)
∗ (λ′bgn(X))}gn(X)]|

Thus, Lemma A.3 (ii) and (iii) imply Q̂(1)(λb) = Op(δn).
Step 2: Show that for any C > 0, there exists some c > 0 such that ηC =

inf
|λ−λb|≤Cδn,x∈X

φ
(2)
∗ (λ′gn(x)) > c. This is trivially true under Condition I (i), so we
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focus on the case of Condition I (ii) (i.e., δnζK,n = O(1)). Pick any C > 0. Note
that

|λ′gw(x)| ≤ |λ′bgn(x)|+ |λ− λb||gn(x)| ≤ |λ′bgn(x)|+ CδnζK,n,

for all λ satisfying |λ − λb| ≤ Cδn. Thus, by Lemma A.2 (i), λ′gw(x) lies in
some compact set C̃ for all λ satisfying |λ − λb| ≤ Cδn and x ∈ X . Since
φ

(2)
∗ is continuous (by Condition I), Wierstrass theorem guarantees ηC > c =

mina∈C̃ φ
(2)
∗ (a) > 0.

Step 3: Show there exists some C∗ > 0 such that Q̂(λ) < Q̂(λb) with prob-
ability approaching one for all λ satisfying |λ − λb| = C∗δn. Pick any ε > 0. By
Step 1, we can take C∗ > 0 such that

P{|Q̂(1)(λb)| < cC∗δn/4} ≥ 1− ε, (A.6)

for all n large enough, where c > 0 is chosen in Step 2. An expansion of Q̂(λ)

around λ = λb yields

Q̂(λ)− Q̂(λb) = Q̂(1)(λb)
′(λ− λb) +

1

2
(λ− λb)′Q̂(2)(λ̇)(λ− λb),

for some λ̇ on the line joining λ and λb. By Step 2,

Q̂(2)(λ̇) = −En[φ(2)
∗ (λ̇′gn(X))gn(X)gn(X)′] ≤psd −cEn[gn(X)gn(X)′],

and Condition S(2) implies

1

2
(λ− λb)′Q̂(2)(λ̇)(λ− λb) ≤ −

c

4
|λ− λb|2,

with probability approaching one. Combining these results, for all λ satisfying
|λ− λb| = C∗δn,

Q̂(λ)− Q̂(λb) ≤ |Q̂(1)(λb)||λ− λb| −
c

4
|λ− λb|2 ≤

(
|Q̂(1)(λb)| −

cC∗δn
4

)
|λ− λb|.

Thus, (A.6) implies that Q̂(λ) < Q̂(λb) with probability approaching one.
Step 4: By continuity of Q̂(λ), it has a maximum on the compact set {λ :

|λ−λb| ≤ C∗δn}. By Step 3, the maximum λ̃C∗ on set {λ : |λ−λb| ≤ C∗δn} must
satisfy |λ̃C∗ − λb| < C∗δn. By concavity of Q̂(λ), λ̃C∗ also maximizes Q̂(λ) over
Rk. The conclusion follows by the same argument used at the end of the proof of
(Newey and McFadden, 1994, Theorem 2.7).
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A.2.2 Proof of Theorem 1.1

Proof of (1.14)

Let ωb(x) = φ(1)
∗(λ
′
bgn(x)). By an expansion around λ̃ = λb,

ω̂(x)− ωb(x) = φ(2)
∗ (λ̄′xgn(x))(λ̃− λb)′gn(x), (A.7)

where λ̄x is a point on the line joining λ̃ and λb. Pick any C > 0. From Step 2
in the proof of Lemma A.3 (iv), λ′gn(x) lies in some compact set C̃ for all x ∈ X
and λ satisfying |λ− λb| ≤ Cδn. Weierstrass theorem and Condition I imply

sup
|λ−λb|≤Cδn,x∈X

φ(2)
∗ (λ′gn(x)) < C1 <∞, (A.8)

for some C1 > 0.
For the compact set C̃ defined above, let En be the event that λ̄′xgn(x) ∈ C̃ for

all x ∈ X . Lemma A.3 (iv) guarantees P{En} → 1. Observe that

En[{ω̂(X)− ωb(X)}2] = (λ̃− λb)′En[{φ(2)
∗ (λ̄′Xgn(X))}2gn(X)gn(X)′](λ̃− λb)

≤ C1|λ̃− λb|2|En[gn(X)gn(X)′]| = Op(|λ̃− λb|2), (A.9)

where the inequality follows from (A.8) and P{En} → 1, and the second equality
follows from Condition S and Lemma A.3 (iv). Now, the argument in the proof
of Lemma A.3 (iii) for (A.5) yields

En[{ωb(X)− ω0(X)}2] = Op(B
2
K,n). (A.10)

The conclusion follows by (A.9), (A.10), and the triangle inequality.

Proof of θ̂ p→ θ0

Observe that

|θ̂ − θ0|

≤ |En[ω̂(X)h(X, Y )]− En[ω0(X)h(X, Y )]|+ |En[ω0(X)h(X, Y )]− E[ω0(X)h(X, Y )]|

≤
√

En[{ω̂(X)− ω0(X)}2]
√
En[h(X, Y )2] + |En[ω0(X)h(X, Y )]− E[ω0(X)h(X, Y )]|

= Op(
√
KµK,n/n+BK,n) + op(1)

where the first inequality follows from the triangle inequality, the second inequal-
ity follows from Cauchy-Schwarz inequality, the final equality follows from the
law of large numbers (under Condition D) for stationary and ergodic processes
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and (1.14) in Theorem 1.1.

Proof of (1.15)

By the triangle inequality,

sup
x∈Xn
|ω̂(x)− ω0(x)| ≤ sup

x∈Xn
|ω̂(x)− ωb(x)|+ sup

x∈Xn
|ωb(x)− ω0(x)|.

From the proof of (1.14), it is easy to see that supx∈Xn |ω̂(x)−ωb(x)| = Op(ζK,n(
√
KµK,n/n+

BK,n)). Thus, the conclusion follows by Lemma A.2 (ii).

A.2.3 Proof of Theorem 1.2

Let

hi = h(Xi, Yi), hXi = E[hi|Xi], ω0i = ω0(Xi),

gni = gn(Xi), ωbi = φ(1)
∗ (λ′bgni), ω̂i = φ(1)

∗ (λ̃′gni), (A.11)

rni = rn(Xi), rhi = rh(Xi).

By an expansion of θ̂ = 1
n

n∑
i=1

φ
(1)
∗ (λ̃′gni)hi around λ̃ = λb, we decompose

√
n(θ̂ − θ0) =

1√
n

n∑
i=1

(ω0ihi − θ0) + T1 + T2 + T3 + T4,

where

T1 = E[φ(2)
∗ (λ′bgni)hig

′
ni]
√
n(λ̃− λb),

T2 =
1√
n

n∑
i=1

{φ(2)
∗ (λ′bgni)hig

′
ni − E[φ(2)

∗ (λ′bgni)hig
′
ni]}(λ̃− λb),

T3 =
1

2
(λ̃− λb)′

(
1√
n

n∑
i=1

φ(3)
∗ (λ̇′gni)hignig

′
ni

)
(λ̃− λb), T4 =

1√
n

n∑
i=1

(ωbihi − ω0ihi),

and λ̇ lies on the line joining λ̃ and λb.
First, we consider T2. Since Lemma A.2 (i) and Assumption N imply

max
1≤j≤K

{E[|φ(2)
∗ (λ′bgn)hgnj|2]} . 1
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and max
1≤j≤K

{E[|φ(2)
∗ (λ′bgw)hgnj|q1 ]}1/q1 .MK,n, Lemma A.1 yields

∣∣∣∣∣ 1n
n∑
i=1

{φ(2)
∗ (λ′bgni)hig

′
ni − E[φ(2)

∗ (λ′bgni)hig
′
ni]}

∣∣∣∣∣ = Op

(√
KµK,n
n

)
.

Thus, Cauchy Schwarz inequality and Lemma A.3 (iv) imply T2 = Op(
√
KµK,n(

√
KµK,n/n+

BK,n)).

Next, we consider T3. The definitions of ζK,n and matrix L2 norm, Lemmas A.2
(i) and A.3 (iv), and Condition I imply | 1

n

∑n
i=1 φ

(3)
∗ (λ̇′gni)hignig

′
ni| = Op(ζ

2
K,n).

Thus, Cauchy Schwarz inequality and Lemma A.3 (iv) imply

T3 = Op(
√
nζ2

K,n(KµK,n/n+B2
K,n)).

Third, we consider T4. From the proof of Lemma A.3 (iii), and the law of
large numbers, we have T4 = Op(

√
nBK,n).

We now consider T1. By expanding the first order condition of λ̃,

0 =
1

n

n∑
i=1

{φ(1)
∗ (λ̃′gni)gni−rni} =

1

n

n∑
i=1

(ωbigni−rni)+
1

n

n∑
i=1

φ(2)
∗ (λ̄′gni)gnig

′
ni(λ̃−λb),

(A.12)
where λ̄ lies on the line joining λ̃ and λb. Let ψ = E[φ

(2)
∗ (λ′bgni)hig

′
ni], Σ =

E[φ
(2)
∗ (λ′bgni)gnig

′
ni], and Σ̄ = 1

n

n∑
i=1

φ
(2)
∗ (λ̄′gni)gnig

′
ni. By solving this for λ̃−λb and

inserting to T1, we have

T1 = −ψΣ̄−1 1√
n

n∑
i=1

(ωbigni − rni) = T11 + T12 + T13,

where

T11 = −ψ(Σ̄−1 − Σ−1)
1√
n

n∑
i=1

(ωbigni − rni),

T12 = −ψΣ−1 1√
n

n∑
i=1

(ωbi − ω0i)gni, T13 = −ψΣ−1 1√
n

n∑
i=1

(ω0igni − rni).

For T12, note that

|T12| ≤ |ψ|
1

λmin(Σ)

∣∣∣∣∣ 1√
n

n∑
i=1

(ωbi − ω0i)gni

∣∣∣∣∣ .
It is easy to see |ψ| = O(ζK,n) due to the definition of ζK,n. Lemma A.3 (iii)
yields

∣∣∣ 1√
n

∑n
i=1(ωbi − ω0i)gni

∣∣∣ = Op(
√
nBK,n). Since λmin(Σ) is bounded away

from zero by Condition D and Lemma A.2 (i), we have T12 = Op(
√
nζK,nBK,n).
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For T11, note that (A.12) implies

T11 =
√
nψ(Σ̄−1 − Σ−1)Σ̄(λ̃− λb) =

√
nψΣ−1(Σ− Σ̄)(λ̃− λb),

which can be bounded as |T11| ≤
√
n|ψ| 1

λmin(Σ)
|Σ − Σ̄| · |λ̃ − λb|. By the triangle

inequality and Condition (1) in Theorem 1.2,

|Σ− Σ̄| ≤ |En[(φ(2)
∗ (λ̄′gn)− φ(2)

∗ (λ′bgn))gng
′
n]|+Op(ΓK,n).

By an expansion of φ(2)
∗ (λ̄′gni), Lemma A.2 (i) and Lemma A.3 (iv), we have

|En[(φ
(2)
∗ (λ̄′gn) − φ(2)

∗ (λ′bgn))gng
′
n]| = Op(ζ

3
K(
√
KµK,n/n + BK,n)). Therefore, we

obtain
|Σ− Σ̄| = Op(ζ

3
K,n(

√
KµK,n/n+BK,n) + ΓK,n).

Also by |ψ| = O(ζK,n) and Lemma A.3 (iv), we have

|T11| = Op

(√
nζ4

K,n(KµK,n/n+B2
K,n) +

√
nζK,nΓK,n(

√
KµK,n/n+BK,n)

)
.

Now consider T13. Note that

T13 = − 1√
n

n∑
i=1

(ω0ih
X
i − rhi )− 1√

n

n∑
i=1

{β′(ω0igni − rni)− (ω0ih
X
i − rhi )}

= − 1√
n

n∑
i=1

(ω0ih
X
i − rhi ) + op(1),

where the second equality follows from Lemma A.1 and the condition (1.16).
Combining these results, we obtain

√
n(θ̂ − θ0) =

1√
n

n∑
i=1

{ω0ihi − θ0 − (ω0ih
X
i − rhi )}+Op(rn),

where rn = (
√
n(ζ4

K,nKµK,n/n+ ζK,nBK,n +
√
KµK,n/nζK,nΓK,n)). Since rn → 0

by the assumption, the central limit theorem for α mixing processes (for example,
Theorem 0 in Bradley et al., 1985) yields the conclusion.
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A.2.4 Proof of Proposition 1.1

Proof of (i)

In this case, r(X) is a constant vector r = E[ω0igi]. We set rh(X) as a constant
vector rh = E[ω0ih

X
i ]. Observe that

E[β′(ω0igni − rni)− (ω0ih
X
i − E[ω0ih

X
i ])]2 ≤ N1 +N2 +N3,

where

N1 = E[β′(ω0igni − E[ω0igni])− (ω0ih
X
i − E[ω0ih

X
i ])]2,

N2 = E[β′(E[ω0igni]− E[rni])]
2, N3 = E[β′(E[rni]− rni)]2.

For N1,

N1 ≤ E[ω2
0i(h

X
i − β′gni)2] ≤

(
sup
x∈X

ω2
0(x)

φ
(2)
∗ (λ′bgn(x))

)
E[(h̃i − β′pg̃ni)2],

where h̃i =

√
φ

(2)
∗ (λ′bgni)h

X
i , g̃i =

√
φ

(2)
∗ (λ′bgni)gni, and βp = E[g̃nig̃

′
ni]
−1E[g̃nih̃i].

Since βp is the projection coefficient that solves minb E[(h̃i− b′g̃ni)2], the assump-
tion in (1.18) guarantees N1 = o(n−1). For N2, (A.2) implies |β| = O(1) (because
β is a projection coefficient). By (1.18), we have

N2 . E[|ω0(X)g(X)− r(X)|2]P{X /∈ Xn} = o(n−1).

For N3, the definition of rni, |β| = O(1), and (1.18) imply

N3 = E[β′(rni − E[rni])]
2 . |β|2KP{X ∈ Xn}P{X /∈ Xn} = o(n−1).

Combining these results, the conclusion follows.

Proof of (ii)

This follows by a standard projection argument and thus the proof is omitted.

A.3 Proofs for high dimensional case

A.3.1 Proof of Theorem 1.3

By the mean value theorem, there exists tx ∈ [0, 1] such that

ω̂(x)− ωo(x) = φ(2)
∗ (λ′og(x) + tx(λ̂− λo)′g(x))(λ̂− λo)′g(x), (A.13)
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for each x ∈ X .
First, consider the case of Condition I (ii), i.e., ζ̃Kκo,n . 1. Hölder’s inequality

and Lemma A.4 (ii) imply

sup
x∈X
|tx(λ̂− λo)′g(x)| ≤

∥∥λ̂− λo∥∥1
ζ̃K = Op(ζ̃Kκo,n) = Op(1). (A.14)

The assumption supx∈X |ωo(x)− ω0(x)| . 1 and (A.14) imply P{En} → 1, where
En is the event that φ(2)

∗ (λ′og(x) + tx(λ̂ − λo)′g(x)) lies in a bounded set for all
x ∈ X . On the event En, (A.13) and (A.14) imply

En[{ω̂(X)− ωo(X)}2] . (λ̂− λo)′En[g(X)g(X)′](λ̂− λo)

≤
∥∥∥λ̂− λo∥∥∥2

1
‖En[g(X)g(X)′]‖∞ = Op(κ

2
onξn),

where the second inequality follows from Hölder’s inequality and the equality
follows from Lemma A.4 (ii) and the definition of ξn.

Now consider the case of Condition I(i), i.e., φ(2)
∗ is bounded from above and

away from zero. In this case, it is easy to see that we still have En[{ω̂(X) −
ωo(X)}2] = Op(κ

2
onξn) from (A.13).

Therefore for both cases, on the event En, the triangle inequality, the result
En[{ω̂(X)−ωo(X)}2] = Op(κ

2
onξn), and the assumption

√
E[{ωo(X)− ω0(X)}2] .

ςo,n yield the conclusion in (1.20).
Proofs of θ̂ p→ θ0 and (1.21) are similar to those of Theorem 1.1, and thus

omitted.

A.3.2 Proof of Theorem 1.4

We employ the notation in (A.11). By the Karush-Kuhn-Tucker (KKT) condition
of λ̂ in (1.11) for the high dimensional case, an expansion around λ̂ = λo yields

0 = Q(1)
n (λ̂) + αnκ̂ = Q(1)

n (λo) + c∗En[g(X)g(X)′](λ̂− λo) + αnκ̂,

where Qn(λ) = En[φ∗(λ
′g(X)) − λ′r(X)] and Q

(1)
n (λ) = En[φ

(1)
∗ (λ′g(X))g(X) −

r(X)] is its first derivative. Since ωo(·) = φ
(1)
∗ (λ′og(·)), an expansion of 1

n

∑n
i=1 φ

(1)
∗ (λ̂′gi)hi

around λ̂ = λo yields

θ̂DB =
1

n

n∑
i=1

ωoihi +
1

n

n∑
i=1

c∗hig
′
i{(λ̂− λo) + αnΘ̂κ̂}.
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By plugging in the form of αnκ̂ from the KKT condition to the above equation,
we obtain

1

n

n∑
i=1

c∗hig
′
i{(λ̂− λo) + αnΘ̂κ̂}

=
1√
n

n∑
i=1

c∗hig
′
i{(λ̂− λo)− Θ̂[Q(1)

n (λo) + En[g(X)g(X)′](λ̂− λo)]}

= − 1√
n

n∑
i=1

c∗hig
′
iΘ̂En[ωo(X)g(X)− r(X)] + T4,

where T4 = 1√
n

∑n
i=1 c∗hig

′
i(I − En[g(X)g(X)′]Θ̂)(λ̂ − λo). Combining these re-

sults and the definition of β̂DB, we obtain the following decomposition

√
n(θ̂DB − θ0) =

1√
n

n∑
i=1

{rhi − θ0 + ω0i(hi − hXi )}+ T1 + T2 + T3 + T4 + T5 + T4,

where

T1 = −c∗
1√
n

n∑
i=1

[β̂′DB(ω0igi − ri)− (ω0ih̃
X
i − r̃hi )],

T2 =
1√
n

n∑
i=1

(ωoi − ω0i)(h̃
X − β̂′DBgi), T3 =

1√
n

n∑
i=1

(ωoi − ω0i)(h
X
i − h̃Xi ),

T4 =
1√
n

n∑
i=1

(ωoi − ω0i)(hi − hXi ), T5 =
1√
n

n∑
i=1

[ω0i(h
X
i − h̃Xi ) + (r̃hi − rhi )].

Condition DB guarantees T1
p→ 0. By Cauchy-Schwarz inequality,

|T2| ≤
√
n

√√√√ 1

n

n∑
i=1

(ωoi − ω0i)2

√√√√ 1

n

n∑
i=1

(h̃X − β̂′DBgi)2 p→ 0,

where the equality follows from Chebychev’s inequality for the term 1
n

∑n
i=1(ωoi−

ω0i)
2 and Condition DB.
For T3, Cauchy-Schwarz inequality and the assumptions in the theorem imply

E[T3] .
√
nςnτn → 0. Also, by Chebychev’s inequality implies T3 − E[T3]

p→ 0.
Combining these results, we obtain T3

p→ 0. Note that both T4 and T5 have
zero mean. Thus, Chebychev’s inequality implies T4 = Op(ςn) = op(1) and T5 =

Op(τn) = op(1). Finally, by Hölder’s inequality, we have

T4 .
√
n

∥∥∥∥∥ 1

n

n∑
i=1

higi

∥∥∥∥∥
∞

∥∥∥I − En[g(X)g(X)′]Θ̂
∥∥∥

1

∥∥∥λ̂− λo∥∥∥
1

= op(1),
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under the assumptions of this theorem .
Combining these results, we obtain

√
n(θ̂DB − θ0) =

1√
n

n∑
i=1

{rhi − θ0 + ω0i(hi − hXi )}+ op(1),

and the conclusion follows by a central limit theorem.

A.3.3 Proof of Theorem 1.5

First, we show
∣∣∣Λ̂− Λ∗

∣∣∣ = Op (γn) , where γn =
√

ζ2s
n
. Recall Λ̂ = arg maxΛ∈Rs Q̂s(Λ),

where
Q̂s(Λ) = En[Λ′rs(X)− φ∗(Λ′gs(X))].

By Condition I’, Q̂s(Λ) is strictly concave in Λ. Note Q̂(1)
s (Λ∗) = Op

(√
ζ2s
n

)
. In-

deed, Q̂(1)
s (Λ∗) = En[rs(X)−φ(1)

∗ (Λ′∗gs(X))gs(X)] and since Λ∗ = arg minΛ∈Rs E[Λ′rs(X)−
φ∗(Λ

′gs(X))], E[rs(X) − φ(1)
∗ (Λ′∗gs(X))gs(X)] = 0. Recall ω∗(x) = φ

(1)
∗ (Λ′∗gs(x)).

It follows by Assumption S and Chebyshev’s inequality that Q̂(1)
s (Λ∗) = Op

(√
ζ2s
n

)
.

The rest of the proof is similar to steps 2-4 in Lemma A.3 (iv) and thus is omitted.
Next, by an expansion of the post info lasso estimator θ̃ = 1

n

∑n
i=1 φ

(1)
∗ (Λ̂′gsi)hi

around Λ̂ = Λ∗, we obtain

√
n(θ̃ − θ0 + b) =

1√
n

n∑
i=1

(Φi + v1i + v2i + v3i) + T1 + T2 + T3,

where

T1 = E[φ(2)
∗ (Λ′∗gsi)higsi]

′√n(Λ̂− Λ∗) +
1√
n

n∑
i=1

(ω∗ih̃
X
i − r̃hi ),

T2 =

(
1√
n

n∑
i=1

φ(2)
∗ (Λ′∗gsi)higsi − E[φ(2)

∗ (Λ′∗gsi)higsi]

)′
(Λ̂− Λ∗),

T3 =
1

2
(Λ̂− Λ∗)

′

(
1√
n

n∑
i=1

φ(3)
∗ (Λ̃′gsi)higsig

′
si

)
(Λ̂− Λ∗),

and Λ̃ is on the line joining Λ̂ and Λ∗. By Condition I’ and Chebyshev’s and
Cauchy Schwarz inequalities,

|T2| ≤
√
n

∣∣∣∣∣ 1√
n

n∑
i=1

φ(2)
∗ (Λ′∗gsi)higsi − E[φ(2)

∗ (Λ′∗gsi)higsi]

∣∣∣∣∣ |Λ̂− Λ∗| = Op(ζsγn).
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For T3, similarly we have

|T3| ≤
√
n|Λ̂− Λ∗|2

∣∣∣∣∣ 1n
n∑
i=1

φ(3)
∗ (Λ̃′gsi)higsig

′
si

∣∣∣∣∣
2

= Op(
√
nζ2

sγ
2
n).

We now consider T1. By expanding the first order condition of Λ̂,

0 =
1

n

n∑
i=1

{φ(1)
∗ (Λ̂′gsi)gsi−rsi} =

1

n

n∑
i=1

(ω∗igsi−rsi)+
1

n

n∑
i=1

φ(2)
∗ (Λ̄′gsi)gsig

′
si(Λ̂−Λ∗),

where Λ̄ lies on the line joining Λ̂ and Λ∗. Similarly denote Σs = E[φ
(2)
∗ (Λ′∗gsi)gsig

′
si]

and Σ̄s = 1
n

∑n
i=1 φ

(2)
∗ (Λ̄′gsi)gsig

′
si. By solving this for Λ̂−Λ∗ and inserting to T1,

we have

T1 = −E[φ(2)
∗ (Λ′∗gsi)higsi]

′Σ̄−1
s

1√
n

n∑
i=1

(ω∗igsi−rsi)+
1√
n

n∑
i=1

(ω∗ih̃
X
i −r̃hi ) = T11+T12+T13,

where

T11 = −E[φ(2)
∗ (Λ′∗gsi)higsi]

′(Σ̄−1
s − Σ−1

s )
1√
n

n∑
i=1

(ω∗igsi − rsi),

T12 = −E[φ(2)
∗ (Λ′∗gsi)higsi]

′Σ−1
s

1√
n

n∑
i=1

(ω0igsi − rsi) +
1√
n

n∑
i=1

(ω0ih̃
X
i − r̃hi ),

T13 = −E[φ(2)
∗ (Λ′∗gsi)higsi]

′Σ−1
s

1√
n

n∑
i=1

(ω∗i − ω0i)gsi +
1√
n

n∑
i=1

(ω∗i − ω0i)h̃
X
i .

For T11, we apply a similar argument used to bound T11 in Theorem 1.2 but for
iid data, which yields |T11| = Op(

√
nζ4

sγ
2
n). Note that E[T12] = 0. By Condition

N’(2) and Chebyshev’s inequality, T12 = op(1). Also, the definition of h̃Xi implies
T13 = 1√

n

∑n
i=1(ω∗i − ω0i)(h̃

X
i − β′sgsi) = 0. Combining these results, we have

√
n(θ̃ − θ0 + b) =

1√
n

n∑
i=1

(Φi + v1i + v2i + v3i) + rn,

where rn = Op(ζ
6
s /
√
n) = op(1) under the assumptions in this theorem. The

conclusion follows by applying a central limit theorem for i.i.d data.
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A.3.4 Proof of Theorem 1.6

Recall ωs(x) = φ
(1)
∗ (λ′osgos(x)). By an expansion of the debiased estimator

θ̂TD =
1

n

n∑
i=1

φ(1)
∗ (λ̂′TDgi)hi =

1

n

n∑
i=1

φ(1)
∗ (Λ̂′sgsi)hi

around Λ̂s = λos, we obtain

√
n(θ̂TD − θ0 + b̃) =

1√
n

n∑
i=1

(Φi + ṽ1i + ṽ2i + ṽ3i) + T1 + T2 + T3,

where

T1 =
√
nE[φ(2)

∗ (λ′osgsi)higsi]
′(Λ̂s − λos) +

1√
n

n∑
i=1

(ωsih̃
X
TDi − r̃hTDi),

T2 =

[
1√
n

n∑
i=1

{φ(2)
∗ (λ′osgsi)higsi − E[φ(2)

∗ (λ′osgsi)higsi]}

]′
(Λ̂s − λos),

T3 =
1

2
(Λ̂s − λos)′

(
1√
n

n∑
i=1

φ(3)
∗ (Λ̃′sgsi)higsig

′
si

)
(Λ̂s − λos),

and Λ̃s is on the line joining Λ̂s and λos. Since Condition TD(3) implies E[φ
(2)
∗ (λ′osgs)h]2 =

O(1), Chebyshev’s inequality yields∣∣∣∣∣ 1√
n

n∑
i=1

{φ(2)
∗ (λ′osgsi)higsi − E[φ(2)

∗ (λ′osgsi)higsi]}

∣∣∣∣∣ = Op(
√
ζ2
s /n).

Thus, by Cauchy-Schwarz inequality and Lemma A.5(ii), it follows

|T2| ≤
√
n

∣∣∣∣∣ 1n
n∑
i=1

{φ(2)
∗ (λ′osgsi)higsi − E[φ(2)

∗ (λ′osgsi)higsi]}

∣∣∣∣∣ |Λ̂s − λos| = Op(ζsγ̃n).

For T3, note that

|T3| ≤
√
n|gs|2|Λ̂s − λos|2

√√√√ 1

n

n∑
i=1

φ
(3)
∗ (Λ̃′sgsi)

2

√√√√ 1

n

n∑
i=1

h2
i = Op(

√
nζ2

s γ̃
2
n),

where the first inequality follows from Cauchy-Schwarz inequality, and the equal-
ity follows from the law of large numbers, Condition TD(3), and Lemma A.5
(ii).
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Now we consider T1. By Lemma A.5 (i), we have

Λ̂s − λos = −Θ̂s
1

n

n∑
i=1

(ωsigsi − rsi) + 4̃,

where 4̃ = (Is− Θ̂sQ
(2)
n (λ̄s))(λ̂s−λos) and Q(2)

n (λ̄s) = En[φ
(2)
∗ (λ̄′sgs)gsg

′
s]. Also let

Q(2)(λos) = E[φ
(2)
∗ (λ′osgs)gsg

′
s]. Note that T1 is decomposed as T1 = T11 +· · ·+T14,

where

T11 = −
√
nE[φ(2)

∗ (λ′osgsi)higsi]
′Q(2)(λos)

−1 1

n

n∑
i=1

(ω0igsi − rsi) +
1√
n

n∑
i=1

(ω0ih̃
X
TDi − r̃hTDi),

T12 = −
√
nE[φ(2)

∗ (λ′osgsi)higsi]
′Q(2)(λos)

−1 1

n

n∑
i=1

(ωsi − ω0i)gsi +
1√
n

n∑
i=1

(ωsi − ω0i)h̃
X
i ,

T13 = −
√
nE[φ(2)

∗ (λ′osgsi)higsi]
′(Θ̂−Q(2)(λos)

−1)
1

n

n∑
i=1

(ωsigsi − rsi),

T14 =
√
nE[φ(2)

∗ (λ′osgsi)higsi]4̃.

For T11, Condition TD and Chebychev’s inequality imply

T11 = − 1√
n

n∑
i=1

{β̃′s(ω0igsi − rsi)− (ω0ih̃
X
i − r̃hi )

p→ 0.

By the definition, T12 = − 1√
n

∑n
i=1(ωsi − ω0i)(β̃

′
sgsi − h̃Xi ) = 0. To bound T13,

note E[φ
(2)
∗ (λ′osgsi)higsi] = Op(ζs). By Cauchy-Schwarz inequality, Lemma A.5

(iv), and Condition TD(2), we have

|T13| =

∣∣∣∣∣√nE[φ(2)
∗ (λ′osgsi)h

X
i gsi]

′(Θ̂−Q(2)(λos)
−1)

1

n

n∑
i=1

(ωsigsi − rsi)

∣∣∣∣∣ = Op(
√
nζs%nγ̃n).

Similarly, by Cauchy-Schwarz inequality, Lemma A.5 (ii) and (v), and the relation
between `1- and `2-norms, it holds

|T14| =
∣∣∣√nE[φ(2)

∗ (λ′osgsi)h
X
i gsi]

′(Is − Θ̂Q(2)
n (λ̄s))(λ̂s − λos)

∣∣∣
≤
√
nE[φ(2)

∗ (λ′osgsi)h
X
i gsi]

′|Is − Θ̂Q(2)
n (λ̄s)|

∥∥∥λ̂s − λos∥∥∥
1

= Op(
√
nκ2

o,nζ
4
s +
√
nζsκo,n%n).

Combining these results, we obtain

√
n(θ̂TD − θ0 + b̃) =

1√
n

n∑
i=1

(Φi + ṽ1i + ṽ2i + ṽ3i) + rn,
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where rn = Op(
√
nκ2

o,nζ
4
s +
√
nγ̃nζs%n +

√
nζ2

s γ̃
2
n) = op(1) under the assumptions

of this theorem. The conclusion follows by applying a central limit theorem.

A.3.5 Lemmas

Lemma A.4. Under the conditions of Theorem 1.3, it holds

(i) Pr

{
1
2
E (λ̂) + αn

∥∥λ̂− λo∥∥1
≤ 4E (λo) + 16α2

ns

φ2Sλo
%

}
≥ 1− ε,

(ii) E (λ̂) = Op(κon
√

logK/n) and
∥∥λ̂− λo∥∥1

= Op(κon).

Lemma A.5. Let Q(λs) = E[φ∗(λ
′
sgs)− λ′srs] and Qn(λs) = En[φ∗(λ

′
sgs)− λ′srs].

Under the conditions of Theorem 1.6, it holds

(i) Λ̂s−λos = −Θ̂ 1
n

n∑
i=1

(ωsigsi− rsi) + 4̃, where 4̃ = (Is− Θ̂sQ
(2)
n (λ̄s))(λ̂s−λos),

and λ̄s is on the line between λ̂s and λos,

(ii) |Λ̂s − λos| = Op(γ̃n), where γ̃n = κo,n ∨
√
s logK/n,

(iii) |Q(2)
n (λ̄s)−Q(2)(λos)| = Op(κo,nζ

3
s ),

(iv) | 1
n

∑n
i=1(ωsigsi − rsi)| = Op(γ̃n),

(v) |Is − Θ̂sQ
(2)
n (λ̄s)| = Op(κo,nζ

3
s + %n).

Proof of Lemma A.4 (i)

Pick any ε > 0 small enough and n ∈ N large enough to satisfy Condition H.
Then set M = Qo

2σε,n
and take λ̄ = tλ̂+ (1− t)λo with t = M

M+

∥∥λ̂−λo∥∥
1

. Due to the

definition of λ̂ in (1.11) and convexity of its objective function, we have

En[φ∗(λ̄
′g(X))− λ̄′r(X)] + αn

∥∥λ̄∥∥
1
≤ En[φ∗(λ

′
og(X))− λ′or(X)] + αn

∥∥λo∥∥1
,

and thus

E (λ̄) + αn
∥∥λ̄∥∥

1
≤ −{νn(λ̄)− νn(λo)}+ E (λo) + αn

∥∥λo∥∥1

≤ E (λo) + αn
∥∥λo∥∥1

+
Qo

2
, (A.15)

with probability at least 1−ε, where the second inequality follows from Condition

H (i) combined with
∥∥λ̄ − λo

∥∥
1

=
M

∥∥λ̂−λo∥∥
1

M+

∥∥λ̂−λo∥∥
1

≤ M . Hereafter all inequalities

involving λ̄ hold true with probability at least 1− ε.
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Note that λ = λSλo +λScλo , and particularly λo,Sλo = λo and λo,Scλo = 0. Thus,
(A.15) and the triangle inequality imply

E (λ̄) + αn
∥∥λ̄Scλo∥∥1

≤ E (λo) + αn
∥∥λ̄Sλo − λo∥∥1

+
Qo

2
(A.16)

≤ Qo + αn
∥∥λ̄Sλo − λo∥∥1

,

where the second inequality follows from E (λo) ≤ Qo

2
(due to the definition of

Qo). Thus, the triangle inequality yields

E (λ̄) + αn
∥∥λ̄− λo∥∥1

≤ Qo + 2αn
∥∥λ̄Sλo − λo∥∥1

. (A.17)

In order to bound the right hand side of (A.17), we consider two cases: (I)
2αn

∥∥λ̄Sλo − λo∥∥1
< Qo, and (II) 2αn

∥∥λ̄Sλo − λo∥∥1
≥ Qo.

Case (I) 2αn
∥∥λ̄Sλo − λo∥∥1

< Qo.
In this case, (A.17) and Condition H (iii) imply

E (λ̄) + αn
∥∥λ̄− λo∥∥1

< 2Qo ≤
αnM

2
, (A.18)

and thus
∥∥λ̄− λo∥∥1

≤ M
2
.

Case (II) 2αn
∥∥λ̄Sλo − λo∥∥1

≥ Qo.
In this case, (A.16) and λo,Scλo = 0 guarantees

∥∥λ̄Scλo−λo,Scλo∥∥1
=
∥∥λ̄Scλo∥∥1

≤ 3
∥∥λ̄Sλo−λo,Sλo∥∥1

≤ 3
√
s

φSλo

√
(λ̄− λo)′E[g(X)g(X)′](λ̄− λo),

(A.19)
where the last inequality follows from Condition C. Observe that

E (λ̄) + αn
∥∥λ̄− λo∥∥1

≤ 4αn
∥∥λ̄Sλo − λo∥∥1

≤ 4αn
√
s

φSλo

√
(λ̄− λo)′E[g(X)g(X)′](λ̄− λo),

where the first inequality follows from (A.17) and the condition of Case (II),
the second inequality follows from (A.19) (note λo = λo,Sλo ). Now by using
xy ≤ x2 + y2

4
for any x, y ∈ R, we obtain

4αn
√
s

φSλo

√
(λ̄− λo)′E[g(X)g(X)′](λ̄− λo)

≤1

2

(
%(λ̄− λo)′E[g(X)g(X)′](λ̄− λo) +

16αns

φ2
Sλo
%

)
≤ 1

2

(
E (λ̄) +

16αns

φ2
Sλo
%

)
,

where the second inequity follows from Condition H (ii). Combining these results
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with the definition of Qo,

E (λ̄) + αn
∥∥λ̄− λo∥∥1

≤ 1

2
E (λ̄) +

8α2
ns

φ2
Sλo
%
≤ 1

2
E (λ̄) +Qo, (A.20)

which implies (by Condition H (iii))
∥∥λ̄− λo∥∥1

≤ 2σεM
αn
≤ M

4
.

Therefore, for both cases, it holds
∥∥λ̄ − λo∥∥1

≤ M
2

and also
∥∥λ̂ − λo∥∥1

≤ M ,
i.e., λ̂ is close enough to λo to invoke Condition H (i).

Repeat the proof above by replacing λ̄ with λ̂. Then we obtain the counter-
parts of (A.18) and (A.20) with replacements of λ̄ with λ̂, i.e.,

1

2
E (λ̂) + αn

∥∥λ̂− λo∥∥1
≤ 2Qo,

with probability at least 1− ε. Therefore, the conclusion follows.

Proof of Lemma A.4 (ii)

By setting αn ∝
√

logK
n

, Part (i) of this lemma implies

1

2
E (λ̂) +

√
logK

n

∥∥λ̂− λo∥∥1
= Op

(
E (λo) ∨ s logK

n

)
,

and the conclusion follows.

Proof of Lemma A.5 (i)

By the KKT conditions for λ̂s, an expansion around λos yields

0s =
1

n

n∑
i=1

(ωsigsi − rsi) + αnκ̂s =
1

n

n∑
i=1

(ωsigsi − rsi) +Q(2)
n (λ̄s)(λ̂s − λos) + αnκ̂s,

(A.21)
where λ̄s is on the line between λ̂s and λos. Thus, we have

Λ̂s−λos = λ̂s−λos+Θ̂sαnκ̂s = λ̂s−λos−Θ̂s

[
1

n

n∑
i=1

(ωsigsi − rsi) +Q(2)
n (λ̄s)(λ̂s − λos)

]
,

where Is is an s× s identity matrix, the first equality follows from the definition
of Λ̂s, and the second equality follows from (A.21). The conclusion follows by the
definition of 4̃.
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Proof of Lemma A.5 (ii)

By the definition of Λ̂s,

|Λ̂s − λos| ≤ |λ̂s − λos|+ |Θ̂sαnκ̂s| ≤
∥∥∥λ̂s − λos∥∥∥

1
+ |Θ̂sαnκ̂s|

. κo,n +

√
s logK

n
= Op

(
κo,n ∨

√
s logK

n

)
,

where the first inequality follows from the triangle inequality, the second inequal-
ity follows from the relationship between the `1- and `2-norms, and the third
inequality follows from Lemma A.4 (ii) and the assumption |Θ̂s| = Op(1).

Proof of Lemma A.5 (iii)

Note that

Q(2)(λos) = E[φ(2)
∗ (λ′osgs)gsg

′
s], Q(2)

n (λ̄s) = En[φ(2)
∗ (λ̄′sgs)gsg

′
s],

and further denote Q(2)
n (λos) = En[φ

(2)
∗ (λ′osgs)gsg

′
s]. By Lemma A.5 (ii) and Con-

dition TD(3), we have

|Q(2)
n (λ̄s)−Q(2)

n (λos)| = |En[{φ(2)
∗ (λ′osgs)− φ(2)

∗ (λ̄′sgs)}gsg′s]|

≤ ζ2
s

{
sup

Λ:‖Λ−λos‖1.γ̃n

1

n

n∑
i=1

φ(3)
∗ (λ′sgsi)

2

}1/2{
1

n

n∑
i=1

{(λ̄s − λos)′gs}2

}1/2

= Op(κo,nζ
3
s ).

Thus, the triangle inequality and Lemma A.3 (i) imply

|Q(2)
n (λ̄s)−Q(2)(λos)| ≤ |Q(2)

n (λ̄s)−Q(2)
n (λos)|+ |Q(2)

n (λos)−Q(2)(λos)|

= Op(κo,nζ
3
s ) +Op

(√
ζ2
s log s

n

)
= Op(κo,nζ

3
s ).

Proof of Lemma A.5 (iv)

By (A.21), we have

| 1
n

n∑
i=1

(ωsigsi − rsi)| ≤ |Q(2)
n (λ̄s)(λ̂s − λos)|+ |αnκ̂s|

≤
∣∣Q(2)

n (λ̄s)
∣∣ ∥∥∥λ̂s − λos∥∥∥

1
+ |αnκ̂s|

.
∥∥∥λ̂s − λos∥∥∥

1
+ |αnκ̂s| = Op

(
κo,n ∨

√
s logK

n

)
,

129



where the second inequality follows from the definition of the matrix norm | · |
and the relationship between the `1- and `2-norms, and the third inequality uses
Lemma A.4 (iii) and Condition TD.

Proof of Lemma A.5 (v)

By triangle inequality, we have

|Is − Θ̂sQ
(2)
n (λ̄s)| ≤ |{Q(2)(λos)

−1 − Θ̂s}Q(2)(λos)|+ |Θ̂s{Q(2)(λos)−Q(2)
n (λ̄s)}|.

Condition TD guarantees Q(2)(λos) = O(1) and Θ̂s = Op(1). Thus, the conclusion
follows by Lemma A.5 (iii).
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Appendix B

Supplementary materials for
Chapter 2

B.1 Derivations of RR in some examples

Example 2.2

First, show (2.8). By LIE and CIA:

E[Y ∗| − b ≤ R ≤ b] = E[E[Y ∗| − b ≤ R ≤ b,X]| − b ≤ R ≤ b]

= E[E[Y ∗|0 ≤ R ≤ b,X]| − b ≤ R ≤ b]

= E[E[Y ∗T |0 ≤ R ≤ b,X]| − b ≤ R ≤ b]

= E[E[Y |0 ≤ R ≤ b,X]| − b ≤ R ≤ b]

= E[γ0(X)| − b ≤ R ≤ b].

To see the continuous linear structure of the underlying functional, note θ0 can
be further rewritten as

θ0 = E[ς(R)γ0(X)],

where ς(r) = 1{−b≤r≤b}
E[1{−b≤R≤b}] . Indeed, by definition of conditional expectation

E[γ0(X)| − b ≤ R ≤ b] =
E[1{−b ≤ R ≤ b}γ0(X)]

P[−b ≤ R ≤ b]
=

E[1{−b ≤ R ≤ b}γ0(X)]

E[1{−b ≤ R ≤ b}]

=E
[

1{−b ≤ R ≤ b}
E[1{−b ≤ R ≤ b}]

γ0(X)

]
= E[ς(R)γ0(X)].

Finally derive RR in the form of (2.9). Assume

0 < E [1{R ≥ 0}|X = x,−b ≤ R ≤ b] < 1 for all x ∈ X (overlap).
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Then by LIE and CIA, for each g ∈ LP,2

E [ω(X)1{R ≥ 0}g(X)| − b ≤ R ≤ b] = E
[

1{R ≥ 0}g(X)

E [1{R ≥ 0}|X,−b ≤ R ≤ b]
| − b ≤ R ≤ b

]
= E [g(X)| − b ≤ R ≤ b] .

Example 2.3

Let v(x) = w(x)f(x). Assume w(x) has value 0 at boundaries and integrate by
parts

θ0 =

∫
w(x)f(x)

∂γ0(x)

∂X1

dx =

∫
v(x)

∂γ0(x)

∂X1

dx

= −
∫
γ0(x)

∂v(x)

∂X1

dx = −E
[
γ0(X)

∂v(X)/∂X1

f(X)

]
.

Example 2.4

Let Fπ(x) and fπ(x) be the cumulative distribution and probability density func-
tions of Xπ, respectively. Similarly, let the cumulative distribution and proba-
bility density functions of X be F (x) and f(x), respectively. Apply change of
measure

E[γ0(π(X))] =

∫
γ0(x)dFπ(x) =

∫
γ0(x)fπ(x)dx

=

∫
γ0(x)

fπ(x)

f(x)
f(x)dx =

∫
γ0(x)

fπ(x)

f(x)
dF (x).

Example 2.5

Let f(z), fP,Z(p, z), fP |Z(p|z) be the marginal, joint and conditional densities,
respectively. Then by definition of marginal density and apply double integration

θ0 = E
[
ω(Z)

∫ p1

p0

γ0(p, Z)dp

]
= E

[
ω(Z)

∫
1{p0 ≤ p ≤ p1}γ0(p, Z)dp

]
=

∫ ∫
ω(z)1{p0 ≤ p ≤ p1}γ0(p, z)f(z)dpdz

=

∫ ∫
ω(z)1{p0 ≤ p ≤ p1}γ0(p, z)

fP,Z(p, z)

fP |Z(p|z)
dpdz

= E
[
ω(Z)1{p0 ≤ P ≤ p1}

fP |Z(P |Z)
γ0(P,Z)

]
.
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Example 2.6

Apply change of measure

θ0 =

∫
γA0 (x)fX(x)dx =

∫
γA0 (x)

fX(x)

fXA(x)
fXA(x)dx = EA

[
γA0 (X)

fX(X)

fXA(X)

]
.

B.2 Proof of Proposition 2.1

For each α ∈ Θn, let

(I) = sup
g∈HWn

{En[α(X)g(X)−m(Z, g(X))]}2,

(II) = ‖WnEn[eα(Z)]‖2 .

Step 1: show (I) ≤ (II).

For each g ∈ HWn

{En[α(X)g(X)−m(Z, g(X))]}2 = {β′En[α(X)Wnp(X)−m(Z,Wnp(X))]}2

≤ ‖β‖2 ‖En[α(X)Wnp(X)−m(Z,Wnp(X))]‖2

≤ ‖WnEn[eα(Z)]‖2 , (B.1)

where the first equality is by linearity of m(z, ·), the second line follows from
Cauchy-Schwarz inequality, and the third relation uses ‖β‖ ≤ 1 and linearity of
m(z, ·) again. Since (B.1) stands for each g ∈ HWn , this direction is proved when
sup is applied on both sides of display (B.1).

Step 2: show (II) ≤ (I).

Further denote Eα,W = WnEn[eα(Z)]. Then

(I) = sup
‖β‖≤1

β′Eα,WE ′α,Wβ ≥ sup
‖β‖=1

β′Eα,WE ′α,Wβ = λmax(Eα,WE ′α,W ) ≥ ‖Eα,W‖2 ,

where the last relation follows since ‖Eα,W‖2 is one of the eigenvalues of Eα,WE ′α,W .
To see this, write λ as one of the eigenvalues of Eα,WE ′α,W , with v denoted as its
corresponding eigenvector. By definition, Eα,WE ′α,Wv = λv. Premultiplying both
sides by Eα,W yields

E ′α,WEα,WE ′α,Wv = E ′α,Wλv = λE ′α,Wv,
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or
(
‖Eα,W‖2 − λ

)
E ′α,Wv = 0. Therefore ‖Eα,W‖2 must be one of its eigenvalues.

Proof of this direction is completed by recalling definition of Eα,W .

Step 3: conclusion follows by steps 1 and 2.

B.3 Measure of design uncertainty when k
n → c < 1

Motivated by the fact that (2.28) and (2.29) can be calculated very differently,
propose the following measure of design uncertainty. Let θ̂1 = En[Y p(X)′](ĜĜ)−ĜP̂ ,
θ̂2 = En[Y p(X)′]Ĝ−P̂ , define

πθ =

∣∣∣∣∣ θ̂1 − θ̂2

min(θ̂1, θ̂2)

∣∣∣∣∣ . (B.2)

Measure πθ evaluates the percentage difference between computed Ĝ− and
(ĜĜ)−Ĝ in a given sample targeted at learning θ0. Thus call πθ Targeted Mea-
sure of Uncertainty (TMU) for design Ĝ. Simulation shows that magnitude of πθ
is usually associated with dimension k and complexity of basis functions. Hence,
a larger πθ often signals a more uncertain specification due to more taxing com-
putations. If this happens, it seems more appropriate to apply penalization.
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Appendix C

Supplementary materials for
Chapter 3

C.1 Basic lemmas

This section presents some useful lemmas to facilitate proofs of main theorems.
Proofs for these lemmas can be found in Appendix C.5.

C.1.1 Useful maximal inequalities

The following maximal inequality is useful to control stochastic equicontinuity
terms in low dimensional cases. Proved by Giné and Koltchinskii (2006), it has
also been adapted by Belloni et al. (2015).

Lemma C.1. [Theorem 3.1, Giné and Koltchinskii, 2006] Let ς1 · · · ςn be iid
random variables taking values in a measurable space (S,S ) with common distri-
bution P defined on the underlying n−fold product probability space. Let F be a
suitable measurable class of functions mapping S to R with a measurable envelope
F . Let σ2 be a constant such that sup

f∈F
var(f) ≤ σ2 ≤ ‖F‖2

P,2. Suppose that there

exist constants A > e2 and V ≥ 2 such that

sup
Q
N(F , L2(Q), δ ‖F‖Q,2) ≤

(
A

δ

)V
for all 0 < δ ≤ 1. Then

E

[∥∥∥∥∥
n∑
i=1

{f(ςi)− E[f(ςi)]}

∥∥∥∥∥
F

]
≤ C

√nσ2V log

(
A ‖F‖P,2

σ

)
+ V ‖F‖P,∞ log

(
A ‖F‖P,2

σ

) ,
where C is a universal constant.
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The next lemma is particularly helpful in high dimensional asymptotics and
has been proved in Dümbgen et al. (2010) and Lemma 14.24 in Bühlmann and Van
De Geer (2011). In this thesis it is mainly used to bound term ‖En[p(X)u∗]− E[p(X)u∗]‖∞
without assuming subgaussianity of u∗. The key idea is to use a symmetrization
argument. Similar techniques have been explored in, for example, Lemma S4 of
Belloni et al. (2012).

Lemma C.2. [Nemirovski moment inequality] Let {X1 . . . Xn} be iid random
variables, and let {f1(x) . . . fk(x)} be a class of k functions. Then

Emax
1≤j≤k

∣∣∣∣∣
n∑
i=1

[fj(Xi)− Efj(Xi)]

∣∣∣∣∣ = O

√log kE

[
max
1≤j≤k

n∑
i=1

fj(Xi)
2

]1/2
 .

C.1.2 More results on least square projection

Suppose L1 holds. Write Lnα0 = a′lp as the least square projection of α0 onto Θn,
where al is the projection coefficient. Denote uα0 = α0−Lnα0 as the correspond-
ing projection error. Similarly, let Lnγ0 = β′lp be the least square projection of
γ0 onto Θn, with βl as the coefficient and uγ0 = γ0 − Lnγ0 as the error. On
the other hand, let αb = a′bp be the infeasible best approximation of α0 in Θn,
where ab is the approximation coefficient and rα0 = α0 − αb is the corresponding
approximation error. Also define γb = β′bp as the infeasible best approximation
for γ0 in Θn, with βb as the coefficient and rγ0 = γ0 − γb as the error. By L1,
‖rα0‖P,∞ = rα0 , ‖rγ0‖P,∞ = rγ0 .

Lemma C.3. If L1 holds, then:

1. E[uα0p(X)] = 0, E[uγ0p(X)] = 0;

2. ‖uα0‖P,2 ≤ rα0 ; ‖uγ0‖P,2 ≤ rγ0 ;

3. ‖uα0‖P,∞ ≤ (`k + 1)rα0 ; ‖uγ0‖P,∞ ≤ (`k + 1)rγ0 .

Lemma C.4. Let O and L1 hold. If rα0 = O(1), then al = O(1); if rγ0 = O(1),
then βl = O(1).

C.1.3 Asymptotic linear forms

Lemma C.5. The asymptotic linear form of θ̂BP defined in (2.24) admits

√
nEn [α̃(X)Y − θ0]

=
1√
n

n∑
i=1

[m(Zi, γ0(Xi)) + α0(Xi)(Yi − γ0(Xi))− θ0] +R1BP +R2,
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where

R1BP =
1√
n

n∑
i=1

[α̃(Xi)γ0(Xi)−m(Zi, γ0(Xi))] ,

R2 =
1√
n

n∑
i=1

[(α̃(Xi)− α0(Xi)) ei] .

Lemma C.6. The asymptotic linear form of θ̂DR defined in (2.30) admits

√
nEn [m(Z, γ̂(X)) + α̃(X)(Y − γ̂(X))− θ0]

=
1√
n

n∑
i=1

[m(Zi, γ0(Xi)) + α0(Xi)(Yi − γ0(Xi))− θ0] +R1DR +R2,

where

R1DR =
1√
n

n∑
i=1

[m(Zi, γ̂(Xi)− γ0(Xi))− α̃(Xi)(γ̂(Xi)− γ0(Xi))] ,

R2 =
1√
n

n∑
i=1

[(α̃(Xi)− α0(Xi)) ei] .

C.1.4 Lemmas for term R1BP

When k
n
→ c < 1, R1BP can usually be managed quite effectively. The main idea

is to decompose γ0 into a main part directly controlled by minimax learning, and
a “residual part” shown to be sufficiently small. Linearity of m(z, · ) then implies
that magnitude of R1BP can not be larger than the sum of the two. For some
f ∈ LP,2, consider the following decomposition

f = πnf + rn, (C.1)

where πnf ∈ Θn can be regarded as an “approximation mapping” to Θn and rn is
the corresponding “approximation error”. Often it would be convenient to choose
πnf as Lnf , but this might not always be the case.

Lemma C.7. If there exists a decomposition (C.1) for f ∈ LP,2, then

{En [α̃(X)f(X)−m(Z, f(X))]}2 . T1 + T2,

where

T1 = {En[α̃(X)πnf(X)−m(Z, πnf(X))]}2 ;

T2 = {En[α̃(X)rn −m(Z, rn)]}2 .
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The next lemma gives the stochastic order of term T2, the part not in the
control of minimax learning.

Lemma C.8. If there exists a decomposition (C.1) for f ∈ LP,2, then

{En[α̃(X)rn −m(Z, rn)]}2 = Op


[

1

n

n∑
i=1

(α̃(Xi)− α0(Xi)) rni

]2


+Op

{
‖rn‖2

P,∞ ∧ ‖α0‖2
P,∞ ‖rn‖

2
P,2

n

}
.

Lemma C.8 bounds {En[α̃(X)rn −m(Z, rn)]}2 by two terms. A simple but not

necessarily the best way to control the first term,
[

1
n

n∑
i=1

(α̃(Xi)− α0(Xi)) rni

]2

, is

by Cauchy-Schwarz inequality, which suffices if γ0 is smooth enough. Otherwise,
further decomposition would help. The order of the second term is pinned down
by the magnitude of rn (measured by its two different norms) as well as divergence
of α0 (measured by its sup norm).

The next lemma presents some inequalities useful for controlling term T1 when
k
n
→ c < 1.

Lemma C.9. Let α̃ be calibrated according to display (2.17).

1. Then, for every f ∈ HWn and α ∈ Θn

{En[α̃(X)f(X)−m(Z, f(X))]}2 + Pn(α̃(X))

≤ sup
g∈HWn

{En[α(X)g(X)−m(Z, g(X))]}2 + Pn(α(X)), (C.2)

and

Pn(α̃(X)) ≤ sup
g∈HWn

{En[α(X)g(X)−m(Z, g(X))]}2 + Pn(α(X)). (C.3)

2. If in addition W ′
nWn− I is positive semidefinite, then for every f ∈ Θn and

α ∈ Θn

{En [α̃(X)f(X)−m(Z, f(X))]}2 (C.4)

.

{
sup

g∈HWn
{En[α(X)g(X)−m(Z, g(X))]}2 + Pn(α(X))

}
‖f‖2

P,2 .

C.1.5 Lemma for term R1DR.

The next lemma shows a well trained estimator from a different random sample
can simplify asymptotics considerably when k

n
→ ∞. This mechanism avoids
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studying stochastic equicontinuity terms on a case-by-case basis, and allows γ̂ to
be any machine learning estimator when constructing θ̂DR.

Lemma C.10. [Conditional convergence implies unconditional convergence] Let
{Xn} , {Yn} be two sequences of random vectors, and let {An} be a sequence of
positive numbers.

1. If conditional on {Yn}, ‖Xn‖ = op(An), then ‖Xn‖ = op(An) uncondition-
ally;

2. If conditional on {Yn}, ‖Xn‖ = Op(An), then ‖Xn‖ = Op(An) uncondition-
ally.

C.1.6 Lemmas for term R2

The following lemmas are particular useful for studying remainder terms involving

e. Write Zn = (Z1, . . . Zn) ∈ Zn, where Zn =
n∏
i=1

Zi is a product support. Let

Ai(· ) : Zn → R be a function of Zn for each i = 1 . . . n. Note {Ai(· )}ni=1 are not
necessarily iid distributed.

Lemma C.11. [Property of e] If O holds, then

1

n

n∑
i=1

[Ai(Zn)ei] = Op


√√√√√E

[
1
n

n∑
i=1

A2
i (Zn)

]
n

 .

The next lemma can be invoked to establish a central limit theorem even when
α̃ can not consistently estimate α0.

Lemma C.12. [Central limit theorem] Suppose O and the following conditions
hold:

1. min
i
{E[e2

i |Zi]} is bounded away from zero and E
[
|ei|3 |Zi

]
< ∞ almost

surely;

2.
max
i
|Ai(Zn)|
√
n

= op(1);

3. 1
n

n∑
i=1

A2
i (Zn) = Op(1);

4.
[

1
n

n∑
i=1

A2
i (Zn)

]−1

= Op(1).
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Then

n−1/2V−1/2
n

n∑
i=1

[Ai(Zn)(Yi − γ0(Xi))]
d→ N(0, 1),

where Vn = 1
n

n∑
i=1

[A2
i (Zn)E[e2

i |Zi]] and N(0, 1) is a standard normal random vari-

able.

C.2 Proofs for main results when k
n → 0

Notations. Write G = E[p(X)p(X)′], Ĝ = En[p(X)p(X)′], P̂ = En[m(Z, p(X))],
Wn = W ′

nWn, eR = m(z, p(x)) − α0(x)p(x). For this and next sections let ã =

(ĜWnĜ + λ1Ĝ)−ĜWnP̂ , â = Ĝ−P̂ . Hence minimax BP learner admits α̃(x) =

p(x)′ã, while α̂(x) = p(x)′â. Denote Ψn =
(
WnĜ+ λ1I

)−1

WnĜ.

C.2.1 Additional convergence results when k
n → 0

The first lemma below is concerned with basic matrix law of large numbers when
k
n
→ 0.

Lemma C.13. Let O and L1 hold and ξ2k log k

n
→ 0. Then:

1. E
[∥∥∥Ĝ−G∥∥∥] . ξ2k log k

n
+

√
ξ2k log k

n
;

2.
∥∥∥Ĝ−G∥∥∥ = Op

(√
ξ2k log k

n

)
;

3. Ĝ has eigenvalues bounded away from zero and from above wpa1.

Proof. See Lemma 6.2 in Belloni et al. (2015) for statements (1) and (2). To see
(3), note by L1-(1), there exists some c > 0 such that all eigenvalues of G are
larger than or equal to c. If wpa1 Ĝ has some eigenvalue smaller than c

2
, then

there exists some vector x ∈ Rk, ‖x‖ = 1 such that x′Ĝx < c
2
. It follows∥∥∥Ĝ−G∥∥∥ ≥ ∣∣∣x′(Ĝ−G)x

∣∣∣ =
∣∣∣x′Ĝx− x′Gx∣∣∣ ≥ ∣∣∣ c

2
− c
∣∣∣ =

c

2
,

contradicting statement (2). Next by statement (2), definition of G and triangle
inequality

λmax

(
Ĝ
)

=
∥∥∥Ĝ∥∥∥ ≤ (∥∥∥Ĝ−G∥∥∥+ ‖G‖

)
= Op(1).

Hence all eigenvalues of Ĝ are bounded from above wpa1.

The next lemma presents several convergence results useful for showing consis-
tency of α̃.
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Lemma C.14. Let O and L1 hold and ξ2k log k

n
→ 0. Then:

1. Ĝ−1EneR = Op

(√
ξ2k
n
∧
√
‖α0‖P,∞k

n

)
.

2. Ĝ−1En[uα0p(X)] = Op(rα0).

Proof. Statement (1): Note by definition of α0, EeR = 0.

E
∥∥En[eR]

∥∥2
= E

(
En[eR]′En[eR]

)
=

1

n
E[(eR)′eR] (C.5)

=
1

n
E

[
k∑
j=1

(eRj )2

]
=

1

n

k∑
j=1

E [m(Z, pj(X))− α0(X)pj(X)]2

.
1

n

k∑
j=1

Em2(Z, pj(X)) +
1

n

k∑
j=1

Eα2
0(X)p2

j(X),

where the first equality is by definition of vector norm ‖· ‖, the second equality
uses iid assumption and EeR = 0, the third and fourth equality are simply rewrit-
ing equations, and final relation follows from triangle inequality. Apply O and
standard algebra

1

n

k∑
j=1

Em2(Z, pj(X)) ≤ C

n

k∑
j=1

Ep2
j(X) =

C

n
tr(G) ≤ Ckλmax(G)

n
= O

(
k

n

)
,

1

n

k∑
j=1

Eα2
0(X)p2

j(X) =
1

n
E

[
α2

0(X)
k∑
j=1

p2
j(X)

]
=

1

n
E
[
α2

0(X)p(X)′p(X)
]
,

with either
E
[
α2

0(X)p(X)′p(X)
]
≤ ξ2

kEα2
0(X) . ξ2

k,

or

E
[
α2

0(X)p(X)′p(X)
]
≤ ‖α0‖P,∞ E [p(X)′p(X)] = ‖α0‖P,∞ E [tr(p(X)′p(X))]

= ‖α0‖P,∞ tr(G) = O
(
‖α0‖P,∞ k

)
.

It follows by Markov inequality

∥∥En[eR]
∥∥ = Op

√k

n
∨

√ξ2
k

n
∧

√
‖α0‖P,∞ k

n

 = Op

(√k

n
∨
√
ξ2
k

n

)
∧

√
‖α0‖P,∞ k

n


= Op

√ξ2
k

n
∧

√
‖α0‖P,∞ k

n

 .
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Further by Lemma C.13,
∥∥∥Ĝ−1

∥∥∥ = Op(1). Hence conclusion follows

∥∥∥Ĝ−1Enb0

∥∥∥ ≤ ∥∥∥Ĝ−1
∥∥∥ ‖Enb0‖ = Op

√ξ2
k

n
∧

√
‖α0‖P,∞ k

n

 .

Statement (2): Denote L̃nuα0 = p′Ĝ−1En[uα0p(X)] as the empirical projection
of uα0 onto Θn. It follows

∥∥∥Ĝ−1/2En[uα0p(X)]
∥∥∥ = Op(rα0) since

∥∥∥Ĝ−1/2En[uα0p(X)]
∥∥∥2

= En
[
(L̃nuα0)uα0

]
= En

[
(L̃nuα0)

2
]
≤ En

[
u2
α0

] p→ E
[
u2
α0

]
≤ r2

α0
,

where the first equality is by rewriting, the second and third relations are by
definition of empirical projection, the fourth relation follows from Khinchin law
of large numbers, and final relation uses Lemma C.3-(2). Conclusion follows since∥∥∥Ĝ−1En[uα0p(X)]

∥∥∥ ≤ ∥∥∥Ĝ−1/2
∥∥∥∥∥∥Ĝ−1/2En[uα0p(X)]

∥∥∥ = Op(rα0),

where
∥∥∥Ĝ−1/2

∥∥∥ = Op(1) as well when ξ2k log k

n
→ 0 by Lemma C.13.

Lemma C.15. Let O and L1 hold and ξ2k log k

n
→ 0. Then:

1. ‖â− al‖ = Op

[(√
ξ2k
n
∧
√
‖α0(X)‖P,∞k

n

)
+ rα0

]
;

2. ‖â‖ = Op(1).

Proof. Recall α0 = a′lp+ uα0 . Then definition of â and al yields that wpa1

â = Ĝ−En[m(Z, p(X))− α0(X)p(X)] + Ĝ−En[α0(X)p(X)]

= Ĝ−EneR + Ĝ−En[uα0p(X)] + al.

Note Ĝ− = Ĝ−1 wpa1 by Lemma C.13. Thus wpa1, â − al = Ĝ−1EneR +

Ĝ−1En[uα0p(X)]. Statement (1) follows by triangle inequality and Lemma C.14

‖â− al‖ ≤
∥∥∥Ĝ−1EneR

∥∥∥+
∥∥∥Ĝ−1En[uα0p(X)]

∥∥∥ = Op

√ξ2
k

n
∧

√
‖α0‖P,∞ k

n

+ rα0

 .
Statement (2) follows from triangle inequality, Lemma C.4 and statement (1).

Lemma C.16. Let Lemma C.15 holds. If in addition, WnĜ is symmetric and
has eigenvalues bounded away from zero wpa1, then ‖ã− al‖ = op(1).
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Proof. By Lemma C.13 and assumptions for this lemma, it is easy to see Ĝ
(
WnĜ+ λ1I

)
also has eigenvalues bounded away from zero wpa1. Hence, wpa1 (ĜWnĜ +

λ1Ĝ)− = (ĜWnĜ+ λ1Ĝ)−1. Recall Ψn =
(
WnĜ+ λ1I

)−1

WnĜ. Standard alge-
bra yields that wpa1

ã =
[
Ĝ
(
WnĜ+ λ1I

)]−1

ĜWnP̂ =
(
WnĜ+ λ1I

)−1

WnP̂

=
(
WnĜ+ λ1I

)−1

WnĜĜ
−1P̂ = ΨnĜ

−1P̂ = Ψnâ. (C.6)

Thus by triangle inequality

‖ã− al‖ ≤ ‖Ψnâ− â‖+ ‖â− al‖ ≤ ‖Ψn − I‖ ‖â‖+ ‖â− al‖ .

Since ‖â− al‖ = op(1) and ‖â‖ = Op(1) by Lemma C.15, it suffices to show
‖Ψn − I‖ = op(1).

By assumption, for some c > 0, we can write
{
µW
j

}k
j=1

, where wlog µW
1 ≥

µW
2 . . . ≥ µW

k > c, are k real eigenvalues of WnĜ. Since WnĜ is assumed sym-
metric, WnĜ is also orthogonally diagonalizable. That is, there exists some U
such that U ′U = I, and some diagonal matrix Λ with

{
µW
j

}k
j=1

on the diagonal
such that WnĜ = UΛU ′. Apply standard algebra

WnĜ+ λ1I = UΛU ′ + λ1UU
′ = U(Λ + λ1I)U ′,

Ψn =
(
WnĜ+ λ1I

)−1

WnĜ = U(Λ + λ1I)−1U ′UΛU ′ = U(Λ + λ1I)−1ΛU ′,

Ψn − I = U(Λ + λ1I)−1ΛU ′ − UU ′ = U
[
(Λ + λ1I)−1Λ− I

]
U ′.

(Λ + λ1I)−1Λ− I is apparently a diagonal matrix so that for each j = 1 . . . k

λj [(Ψn − I)′(Ψn − I)] =

(
µW
j

µW
j + λ1

− 1

)2

=

(
λ1

µW
j + λ1

)2

.

It follows

‖Ψn − I‖ = {λmax [(Ψn − I)′(Ψn − I)]}1/2
=

λ1

µW
k + λ1

=
1

1 + µW
k /λ1

p→ 0,

since wpa1 µWk
λ1
≥ c

λ1
→∞. This completes proof for Lemma C.16.
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C.2.2 Additional results for controlling stochastic equicon-

tinuity terms

The following lemmas concern some stochastic equicontinuity terms in the re-
mainder terms of Lemma C.5.

Lemma C.17. If conditions for Theorem 3.1 hold, 1√
n

n∑
i=1

[(ã− al)′p(Xi)ei] =

op(1).

Proof. Let ã−al
‖ã−al‖

= ã so that ‖ã‖ = 1. Decompose

1√
n

n∑
i=1

[(ã− al)′p(Xi)ei] = ‖ã− al‖
1√
n

n∑
i=1

[ã′p(Xi)ei] .

From Lemma C.16, ‖ã− al‖ = op(1), so it remains to show 1√
n

n∑
i=1

[ã′p(Xi)ei] =

Op(1). Note

E

[
1

n

n∑
i=1

(ã′p(Xi))
2

]
= E

[
ã′Ĝã

]
≤ E

[
‖ã‖2

∥∥∥Ĝ∥∥∥] ≤ E
∥∥∥Ĝ∥∥∥ . 1, (C.7)

where the last inequality is by Lemma C.13 and triangle inequality

E
∥∥∥Ĝ∥∥∥ ≤ E

∥∥∥Ĝ−G∥∥∥+ E ‖G‖ . ξ2
k log k

n
+

√
ξ2
k log k

n
+ λmax(G) . 1.

Since ã is also a function of Z1 · · ·Zn, Lemma C.11 can be invoked with Ai(Zn) =

ã′p(Xi) so that

1

n

n∑
i=1

[ã′p(Xi)ei] = Op

√E
[

1
n

∑n
i=1 (ã′p(Xi))

2]
n

 = Op

(√
1

n

)

where the second relation follows from display (C.7).

Lemma C.18. If conditions for Theorem 3.1 hold

1√
n

n∑
i=1

[(α̃(Xi)− Lnα0(Xi))uγ0i] = Op

[
‖ã− al‖ (`k + 1)rγ0

(√
k log ξk +

kξk log ξk√
n

)]
.

Proof. By definition of Lnα0, 1
n

n∑
i=1

[(α̃(Xi)− Lnα0(Xi))uγ0i] = 1
n

n∑
i=1

[(ã− al)′p(Xi)uγ0i].

Let ã−al
‖ã−al‖

= ã so that ‖ã‖ = 1. Consider function class F =
{
a′p(x)uγ0 : ‖a‖ = 1, a ∈ Rk

}
.
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For any f ∈ F

E[f(X)] = E [a′p(X)uγ0(X)] = a′E[p(X)uγ0 ] = 0,

where the last equality follows from Lemma C.3-(1). Further, by Lemma C.3-(3)

var(f(X)) = E[f(X)2] = E
[
(a′p(X))

2
u2
γ0

]
≤ ‖uγ0‖

2
P,∞ E[a′p(X)p(X)′a] . (`k + 1)2r2

γ0
,

and

|a′p(x)uγ0| ≤ ‖a‖ ‖p(x)‖ |uγ0| ≤ ξk ‖uγ0‖P,∞ ≤ ξk(`k + 1)rγ0 .

Thus pick envelope function F = ξk(`k + 1)rγ0 . For every pair of a1, a2 ∈ Rk with
unit l2 norm

|a′1p(x)uγ0 − a′2p(x)uγ0 | = |(a1 − a2)′p(x)uγ0| ≤ ‖a1 − a2‖ ‖p(x)‖ |uγ0|

≤ ‖a1 − a2‖ ξk(`k + 1)rγ0 .

It follows then for some universal constant CA

sup
Q
N(F , L2(Q), δ ‖F‖Q,2) ≤

(
CA
δ

)k
.

Pick σ = (`k + 1)rγ0 and apply Lemma C.1

E

∥∥∥∥∥ 1√
n

n∑
i=1

[ã′p(Xi)uγ0i]

∥∥∥∥∥
F

. (`k + 1)rγ0
√
k log ξk +

kξk(`k + 1)rγ0 log ξk√
n

= (`k + 1)rγ0

(√
k log ξk +

kξk log ξk√
n

)
.

Hence Markov inequality yields∥∥∥∥∥ 1√
n

n∑
i=1

[ã′p(Xi)uγ0i]

∥∥∥∥∥
F

= Op

[
(`k + 1)rγ0

(√
k log ξk +

kξk log ξk√
n

)]
.

Conclusion follows by noting

∣∣∣∣∣ 1√
n

n∑
i=1

[(α̃(Xi)− Lnα0(Xi))uγ0i]

∣∣∣∣∣ ≤ ‖ã− al‖
∥∥∥∥∥ 1√

n

n∑
i=1

[ã′p(Xi)uγ0i]

∥∥∥∥∥
F

.
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C.2.3 Additional results for Theorem 3.1

Theorem C.1. If conditions for Theorem 3.1 hold, R1BP defined in Lemma C.5
is op(1).

Proof. Step 0. Consider Lnγ0, the least square projection of γ0 onto Θn. (C.1) is
obviously satisfied for γ0 with

πnγ0 = Lnγ0, rn = uγ0 .

Apply Lemma C.7 to R1BP . It follows R2
1BP ≤ nT̂1 + nT̂2, where

T̂1 = {En [α̃(X)Lnγ0(X)−m(Z,Lnγ0(X))]}2 ; T̂2 = {En [α̃(X)uγ0 −m(Z, uγ0)]}
2 .

Step 1: bound T̂1. Note by Lemma C.15, ‖â‖ = Op(1), so wpa1 â′p(X) ∈ Θn.
Since by assumption W ′

nWn − I is positive semidefinite, Lemma C.9-(2) can be
invoked with α = â′p and f = Lnγ0

T̂1 . T̂11 + T̂12,

where

T̂11 = sup
g∈HWn

{En[â′p(X)g(X)−m(Z, g(X))]}2 ‖Lnγ0‖2
P,2 ,

T̂12 = λ1En[â′p(X)]2 ‖Lnγ0‖2
P,2 .

Notice wpa1 T̂11 = 0, as for any g ∈ HWn

En [â′p(X)g(X)−m(Z, g(X))] = β′WnEn [(â′p(X)) p(X)−m(Z, p(X))] = 0,

where the first equality follows by linearity of m(z, · ) and the second equality is
by definition of â. And ‖Lnγ0‖2

P,2 = a′lGal = O(1) by L1 and Lemma C.4.
Next, bound T̂12. First note

En [â′p(X)]
2

= â′Ĝâ ≤ ‖â‖2
∥∥∥Ĝ∥∥∥ ≤ Op(1),

where the last relation is by Lemmas C.15 and C.13. By assumption λ1 = o
(

1
n

)
.

It follows

T̂12 = λ1En [â′p(X)]
2 ‖Lnγ0‖2

P,2 = λ1Op(1)O(1) = op

(
1

n

)
.
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Step 2: bound T̂2. By Lemma C.8, T̂2 = T̂21 + T̂22, where

T̂21 = Op


[

1

n

n∑
i=1

(α̃(Xi)− α0(Xi))uγ0i

]2
 , T̂22 = Op

{
‖uγ0‖

2
P,∞ ∧ ‖α0‖2

P,∞ ‖uγ0‖
2
P,2

n

}
.

Show both T̂21 and T̂22 are op( 1
n
). First note directly

T̂22 = Op


[
(`k + 1)2 ∧ ‖α0‖2

P,∞

]
r2
γ0

n

 = op

(
1

n

)
,

where the first relation is by Lemma C.3-(2) and (3), and the second relation is
by L3-(1). To bound T̂21, we consider two cases.

Case 1: L2-(2)-(a) is satisfied. By Cauchy-Schwarz inequality

T̂21 = Op

[
1

n

n∑
i=1

(α̃(Xi)− α0(Xi))
2 1

n

n∑
i=1

u2
γ0i

]
. (C.8)

By iid assumption and Lemma C.3-(2) and (3)

E

(
1

n

n∑
i=1

u2
γ0i
− Eu2

γ0

)2

=
E
[
u2
γ0
− Eu2

γ0

]2
n

≤
Eu4

γ0

n
≤
‖uγ0‖

2
P,∞ ‖uγ0‖

2
P,2

n
≤

(`k + 1)2r4
γ0

n
.

It follows from Markov inequality

1

n

n∑
i=1

u2
γ0i
− Eu2

γ0
= Op

(
`kr

2
γ0√
n

)
= Op

(
rγ0√
n
`krγ0

)
= Op

(
1

n

)
,

where the last relation is from L2-(2)-(a). It follows

1

n

n∑
i=1

u2
γ0i

=
1

n

n∑
i=1

u2
γ0i
− Eu2

γ0
+ Eu2

γ0
= Op

(
1

n

)
, (C.9)

since Eu2
γ0
≤ r2

γ0
= Op(

1
n
) as well by Lemma C.3-(2). Further decompose α0 =

Lnα0 + uα0 . Triangle inequality yields

1

n

n∑
i=1

(α̃(Xi)− α0(Xi))
2 ≤ 1

n

n∑
i=1

(α̃(Xi)− a′lp(Xi))
2

+
1

n

n∑
i=1

u2
α0i

= op(1),

(C.10)

since from Lemmas C.16 and C.13
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1

n

n∑
i=1

(α̃(Xi)− a′lp(Xi))
2

= (ã− al)′Ĝ(ã− al) ≤ ‖ã− al‖2
∥∥∥Ĝ∥∥∥ ≤ op(1)Op(1) = op(1),

and by Khinchin law of large numbers and Lemma C.3: 1
n

∑n
i=1 u

2
α0i

p→ Eu2
α0

=

op(1). Hence T̂21 = op(1)Op(
1
n
) = op(

1
n
) by displays (C.8), (C.9) and (C.10).

Case 2: L2-(2)-(b) is satisfied. Apply standard decomposition and triangle
inequality

T̂21 . {En [(α̃(X)− Lnα0(X))uγ0 ]}
2 + {En[uα0uγ0 ]}

2 . (C.11)

By iid assumption and Lemma C.3-(2) and (3)

E [En[uα0uγ0 ]− E[uα0uγ0 ]]
2 ≤

E[u2
α0
u2
γ0

]

n
≤
‖uγ0‖

2
P,∞ E[u2

α0
]

n
.

(`k + 1)2r2
γ0
r2
α0

n
.

Markov inequality yields

En[uα0uγ0 ]− E[uα0uγ0 ] = Op

(
`krγ0rα0√

n

)
= op

(
1√
n

)
. (C.12)

By Cauchy-Schwarz inequality and Lemma C.3-(2)

|Euα0uγ0 | ≤ ‖uα0‖P,2 ‖uγ0‖P,2 ≤ rγ0rα0 = op

(
1√
n

)
. (C.13)

It follows then by triangle inequality, displays (C.12) and (C.13)

En[uα0uγ0 ] = En[uα0uγ0 ]− E[uα0uγ0 ] + E[uα0uγ0 ] = op

(
1√
n

)
. (C.14)

Finally Lemma C.18 yields

1√
n

n∑
i=1

[(α̃(Xi)− Lnα0(Xi))uγ0i]

=Op

[
‖ã− al‖ (`k + 1)rγ0

(√
k log ξk +

kξk log ξk√
n

)]
,

=op(1)Op(1) = op(1), (C.15)

by L2-(2)-(b) and Lemma C.16. Hence, displays (C.11), (C.14) and (C.15) to-
gether yield T̂21 = op(

1
n
) as well. Summarizing steps 0-2 concludes that R2

1BP =

n(T̂1 + T̂2) = op(1).

Theorem C.2. If conditions for Theorem 3.1 hold, R2 defined in Lemma C.5 is
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op(1).

Proof. By standard decomposition, R2 = 1√
n

n∑
i=1

{[α̃(Xi)− α0(Xi)] ei} = T̂3 + T̂4,

where

T̂3 =
1√
n

n∑
i=1

[(α̃(Xi)− Lnα0(Xi)) ei] , T̂4 =
1√
n

n∑
i=1

[(Lnα0(Xi)− α0(Xi)) ei] .

It follows by Lemma C.11 (treating Lnα0(Xi) − α0(Xi) = Ai(Zn) ) and iid as-
sumption

1√
n
T̂4 = Op

√ 1
n

∑n
i=1 E [Lnα0(Xi)− α0(Xi)]

2

n

 = Op

(√
Eu2

α0

n

)
= op

(√
1

n

)
,

(C.16)

where the last relation is from Lemma C.3-(2) and L2-(2). Next, by definition of
α̃ and Lnα0 and Lemma C.17

T̂3 =
1√
n

n∑
i=1

[(ã− al)′p(Xi)ei] = op(1). (C.17)

Hence R2 = op(1) by displays (C.16) and (C.17).

C.2.4 Additional results for Theorem 3.2

Lemmas below are understood to hold if conditions for Theorem 3.2 hold.

Lemma C.19. En[m2(Z, γ̂s(X)− γ0(X))] = op(1).

Proof. By standard decomposition and triangle inequality

En[m2(Z, γ̂s(X)− γ0(X))] . En
[
m2 (Z, γ̂s(X)− Lnγ0(X))

]
+ En

[
m2(Z, uγ0)

]
.

Step 1: bound En[m2(Z, uγ0)]. By Khinchin law of large numbers, O-(3),
Lemma C.3 and L3-(1)

En[m2(Z, uγ0)]
p→ E[m2(Z, uγ0)] ≤ CEu2

γ0
≤ Cr2

γ0
= op(1).

Step 2: bound En[m2(Z, γ̂s(X) − Lnγ0(X))]. Let β̂ = Ĝ−En[p(X)Y ], and
β̃ = β̂−βl

‖β̂−βl‖ . It follows by linearity of m(z, · )

En[m2(Z, γ̂s(X)−Lnγ0(X))] =
∥∥∥β̂ − βl∥∥∥2

Enm2(Z, β̃′p(X)) ≤
∥∥∥β̂ − βl∥∥∥2

sup
‖β̃‖=1

Enm2(Z, β̃′p(X)).
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By Theorem 4.1 in Belloni et al. (2015),
∥∥∥β̂ − βl∥∥∥ = op(1). It suffices to show

sup
‖β̃‖=1

Enm2(Z, β̃′p(X)) = Op(1).

sup
‖β̃‖=1

Enm2(Z, β̃′p(X)) ≤ Ξ11 + Ξ12,

where

Ξ11 = sup
‖β̃‖=1

[
Enm2(Z, β̃′p(X))− Em2(Z, β̃′p(X))

]
, Ξ12 = sup

‖β̃‖=1

[
Em2(Z, β̃′p(X))

]
.

By O-(3), Ξ12 = O(1) since

Ξ12 ≤ sup
‖β̃‖=1

{
CE

[
β̃′p(X)

]2
}

= sup
‖β̃‖=1

[
Cβ̃′Gβ̃

]
. sup
‖β̃‖=1

[∥∥∥β̃∥∥∥2

λmax(G)

]
<∞.

Next, we show Ξ11 = op(1) by invoking Corollary 2.2 in Newey (1991).
(1) Compactness. Satisfied since β̃ ∈ Cβ̃ =

{
β ∈ Rk : ‖β‖ = 1

}
.

(2) Pointwise convergence. By O-(3) and L1

E
[
m2(Z, β̃′p(X))

]
. E

[
β̃′p(X)

]2

= β̃′Gβ̃ ≤
∥∥∥β̃∥∥∥2

‖G‖ <∞,

it follows by Khinchin law of large numbers that pointwisely Enm2(Z, β̃′p(X))
p→

Em2(Z, β̃′p(X)).

(3) Assumption 3A. Let m(β) = m(z, β′p(x)). Then for any β̃1, β̃2 ∈ Cβ̃,
apply standard decomposition, triangle inequality and linearity of m(z, · ):∣∣∣Enm2

(
β̃1

)
− Enm2

(
β̃2

)∣∣∣ ≤ 2
∣∣∣Enm(β̃2

)
Enm

(
β̃1 − β̃2

)∣∣∣+
∣∣∣Enm2

(
β̃1 − β̃2

)∣∣∣
≤2
[
Enm2

(
β̃2

)]1/2 [
Enm2

(
β̃1 − β̃2

)]1/2

+
[
Enm2

(
β̃1 − β̃2

)]1/2

.

By step (2), Enm2(β̃2)
p→ Em2(β̃2) = O(1). By Khinchin law of large numbers

and O-(3) again:

Enm2
(
β̃1 − β̃2

)
p→ Em2

(
β̃1 − β̃2

)
= E

[
m(Z, (β̃1 − β̃2)′p(X))

]2

≤ CE
[
(β̃1 − β̃2)′p(X)

]2

≤ Cλmax(G)
∥∥∥β̃1 − β̃2

∥∥∥2

.

Thus
∣∣∣Enm2(β̃1)− Enm2(β̃2)

∣∣∣ ≤ Op(1)
∥∥∥β̃1 − β̃2

∥∥∥ and Assumption 3A is satisfied.
Ξ11 = op(1) by Corollary 2.2 in Newey (1991). Proof is completed by steps 1 and
2.
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Lemma C.20. En [α̃(X)(γ̂s(X)− γ0(X))]2 = op(1).

Proof. By Lemmas C.16 and C.4 and triangle inequality:

‖ã‖ ≤ ‖ã− al‖+ ‖al‖ = op(1) +O(1) = Op(1).

Also by Lemma C.13, λmax(Ĝ) = Op(1). Hence

Enα̃2(X) = ã′Ĝã ≤ ‖ã‖2 λmax(Ĝ) = Op(1).

It follows then by Assumption (1) in Theorem 3.2

En [α̃(X)(γ̂s(X)− γ0(X))]2 ≤ ‖γ̂s − γ0‖2
P,∞ Enα̃2(X) = op(1)Op(1) = op(1).

Lemma C.21. En [(α̃(X)− α0(X))2e2] = op(1).

Proof. Note α̃−α0 = α̃−Lnα0−uγ0 = (ã−al)′p−uγ0 . By standard decomposition

En
[
(α̃(X)− α0(X))2e2

]
. Ξ31 + Ξ32,

where

Ξ31 = En
[
((ã− al)′p(X))

2
e2
]
, Ξ32 = En

[
u2
γ0
e2
]
.

By Khinchin law of large numbers

Ξ32
p→E
[
u2
γ0
e2
]

= E
[
u2
γ0
E[e2|X]

]
. E[u2

γ0
] = op(1),

where the inequality follows from O-(2) so that E[e2|X] < ∞ since X ⊆ Z, and
the last last relation is by L2-(2). Next, we show Ξ31 = op(1) as well. Note

Ξ31 = (ã− al)′En
[
p(X)p(X)′e2

]
(ã− al) ≤ ‖ã− al‖2

∥∥En [p(X)p(X)′e2
]∥∥ .

Since ‖ã− al‖ = op(1) by Lemma C.16, it suffices to show ‖En [p(X)p(X)′e2]‖ =

Op(1). To this end, by triangle inequality

∥∥En [p(X)p(X)′e2
]∥∥ ≤ ∥∥En [p(X)p(X)′e2

]
− E

[
p(X)p(X)′e2

]∥∥+
∥∥E [p(X)p(X)′e2

]∥∥ .
Since E[e2|X] <∞, we have

∥∥E [p(X)p(X)′E[e2|X]
]∥∥ = sup

‖a‖=1

E
[
(a′p(X))

2 E[e2|X]
]
. sup
‖a‖=1

E
[
(a′p(X))2

]
= ‖G‖ = O(1).
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And by Lemma 3.1 in Chen and Pouzo (2015b)

∥∥En [p(X)p(X)′e2
]
− E

[
p(X)p(X)′e2

]∥∥ = op(1)

by Assumption-(2) in Theorem 3.2. This completes the proof for Lemma C.21.

C.2.5 Proofs for main results when k
n → 0.

C.2.5.1 Proof of Theorem 3.1

By Lemma C.5, Theorems C.1 and C.2

√
nEn [α̃(X)Y − θ0] =

1√
n

n∑
i=1

[m(Xi, γ0(Xi)) + α0(Xi)(Yi − γ0(Xi))− θ0] + op(1),

since both R1BP and R2 are op(1). Conclusion follows by Lindeberg–Lévy central
limit theorem.

C.2.5.2 Proof of Corollary 3.1

Similar to proof of Theorem 3.1, we show both R1BP and R2 are op(1). First note
by Lemma C.13, Ĝ− = Ĝ−1 wpa1. So wpa1

α̃(x) = p(x)′(ĜWnĜ)−ĜWnP̂ = p(x)′(ĜWnĜ)−1ĜWnP̂ = p(x)′Ĝ−1P̂ . (C.18)

Thus it suffices to treat α̃(x) = p(x)′Ĝ−1P̂ . Next decompose

γ0 = Lnγ0 + uγ0 ; α̃− α0 = α̃− Lnα0 − uα0 .

It follows

R1BP =
1√
n

n∑
i=1

[α̃(Xi)γ0(Xi)−m(Zi, γ0(Xi))] = T̂1 + T̂2,

R2 =
1√
n

n∑
i=1

[(α̃(Xi)− α0(Xi)) ei] = T̂3 + T̂4,

where

T̂1 =
√
nEn [α̃(X)Lnγ0(X)−m(Z,Lnγ0(X))] , T̂2 =

√
nEn [α̃(X)uγ0 −m(Z, uγ0)] ,

T̂3 =
√
nEn [(α̃(X)− Lnα0(X)) e] , T̂4 =

√
nEn [uα0e] .
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Since Lnγ0 = β′lp, T̂1 admits

T̂1 = En [α̃(X)Lnγ0(X)−m(Z,Lnγ0(X))] = En [α̃(X) (β′lp(X))−m(Z, β′lp(X))]

= β′lEn[α̃(X)p(X)−m(Z, p(X))] = 0,

since En[m(Z, p(X))− α̃(X)p(X)] = 0 by definition of α̃ when λ1 = 0. To show
T̂2 = op(1), note T̂2 = T̂21 + T̂22, where

T̂21 =
√
nEn [(α̃(X)− α0(X))uγ0 ] , T̂22 =

√
nEn [α0(X)uγ0 −m(Z, uγ0)] .

Same techniques used in Theorem C.1 to bound T̂21 and T̂22 can be applied for
T̂21 and T̂22, respectively. Proofs to show T̂3 and T̂4 are op(1) are essentially the
same with those for terms T̂3 and T̂4 in Theorem C.2. Thus details are omitted.
Since both R1BP and R2 are op(1), conclusion follows by Lindeberg–Lévy central
limit theorem.

C.2.5.3 Proof of Theorem 3.2

By continuous mapping theorem, Ω̂
p→ Ω if

En [m(Z, γ̂s(X)) + α̃(X)(Y − γ̂s(X))]2
p→ E [m(Z, γ0(X)) + α0(X)(Y − γ0(X))]2

and θ̂BP
p→ θ0. By Theorem 3.1, θ̂BP = θ0 +Op(n

−1/2). It remains to show

En [m(Z, γ̂s(X)) + α̃(X)(Y − γ̂s(X))]2
p→ E [m(Z, γ0(X)) + α0(X)(Y − γ0(X))]2 .

To this end, apply standard decomposition

En [m(Z, γ̂s(X)) + α̃(X)(Y − γ̂s(X))]2 − E [m(Z, γ0(X)) + α0(X)(Y − γ0(X))]2

≤J1 + J2,

where

J1 = En [m(Z, γ̂s(X)) + α̃(X)(Y − γ̂s(X))]2 − En [m(Z, γ0(X)) + α0(X)(Y − γ0(X))]2 ,

J2 = En [m(Z, γ0(X)) + α0(X)(Y − γ0(X))]2 − E [m(Z, γ0(X)) + α0(X)(Y − γ0(X))]2 .

The following steps bound J1 and J2 respectively and show both of them are
op(1).
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Step 1: bound J2.

By triangle inequality, O-(2) and (3) and LIE

E [m(Z, γ0(X)) + α0(X)(Y − γ0(X))]2 ≤ 2E
[
m2(Z, γ0(X))

]
+ 2E

[
α2

0(X)e2
]

≤ 2CE[γ2
0(X)] + 2E[α2

0(X)E(e2|X)]

. E[γ2
0(X)] + E[α2

0(X)] <∞.

It follows then by Khinchin law of large numbers that J2 = op(1).

Step 2: bound J1.

Let φ̂(z) = m(z, γ̂s(x)) + α̃(x)(y− γ̂s(x)), φ0(z) = m(z, γ0(x)) +α0(x)(y−γ0(x)).
Decompose J1 = J11 + J12, where

J11 = 2En[φ0(φ̂− φ0)], J12 = En[φ̂− φ0]2.

By Cauchy-Schwarz inequality, |J11| ≤ 2[Enφ2
0]1/2{En[φ̂ − φ0]2}1/2. By step 1,

Enφ2
0 = Op(1). It suffices to show En[φ̂−φ0]2 = op(1) to conclude both J11 = op(1)

and J12 = op(1).

Step 3: show En[φ̂− φ0]2 = op(1).

By standard decomposition

En[φ̂− φ0]2 = En[m(Z, γ̂s(X))−m(Z, γ0(X)) + α̃(X)(Y − γ̂s(X))− α0(X)(Y − γ0(X))]2

= En[m(Z, γ̂s(X)− γ0(X))− α̃(X)(γ̂s(X)− γ0(X))

+ (α̃(X)− α0(X))(Y − γ0(X))]2

. En[m(Z, γ̂s(X)− γ0(X))− α̃(X)(γ̂s(X)− γ0(X))]2

+ En[(α̃(X)− α0(X))(Y − γ0(X))]2

. Ξ1 + Ξ2 + Ξ3,

where

Ξ1 = En[m2(Z, γ̂s(X)− γ0(X))], Ξ2 = En[α̃(X)(γ̂s(X)− γ0(X))]2,

Ξ3 = En[(α̃(X)− α0(X))2e2].

Conclusion follows by Lemmas C.19, C.20 and C.21.
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C.3 Proofs for main results when k
n → c < 1

Notations. Main notations are the same as those in Appendix C.2.

C.3.1 Additional results on asymptotic boundedness

Lemma C.22. If O, L1 and M1-(1) hold,
∥∥∥Ĝ∥∥∥ = Op(1).

Proof. Note Ĝ =
n∑
i=1

p(Xi)p(Xi)
′

n
and for eachXi, λmin

(
p(Xi)p(Xi)

′

n

)
≥ 0, λmax

(
p(Xi)p(Xi)

′

n

)
=∥∥∥p(Xi)p(Xi)′n

∥∥∥ ≤ ξ2k
n
. Furthermore, λmax(G) < ∞ by L1. Thence Theorem 5.1 in

Tropp (2015) on matrix Chernoff bounds can be invoked: for every % > 0

Eλmax(Ĝ) ≤ e% − 1

%
λmax(G) +

ξ2
k log k

n%
→ e% − 1

%
λmax(G) +

c1

%
<∞.

It follows by Markov inequality that
∥∥∥Ĝ∥∥∥ = λmax

(
Ĝ
)

= Op

[
Eλmax

(
Ĝ
)]

=

Op(1).

Lemma C.23. If conditions for Theorem 3.3 hold, then

1. Enα̃2(X) = Op(1);

2.
∥∥∥P̂∥∥∥−1

= Op(1);

3. {En [α̃2(X)]}−1
= Op(1);

4. V −1
n = Op(1).

Proof. Statement (1): Apply Lemma C.9-(1) with α = α̂ = â′p

λ1
1

n

n∑
i=1

α̃2(Xi) ≤ sup
g∈HWn

{En[α̂(X)g(X)−m(Z, g(X))]}2 + λ1
1

n

n∑
i=1

[α̂(X)]2.

By M1-(1), Ĝ− = G−1 wpa1. Hence sup
g∈HWn

{En [â′p(X)g(X)−m(Z, g(X))]}2 = 0

by definition of â. Further by M2-(1), it follows 1
n

n∑
i=1

α̃2(Xi) ≤ 1
n

n∑
i=1

α̂2(Xi) =

Op(1).

Statement (2): Let K = {1 . . . k} be the index set of basis function p(x) =

{p1(x), . . . , pk(x)}′, and K̃ ⊆ K be some index set such that its cardinality
∣∣∣K̃∣∣∣ =

k̃, k̃ →∞ and k̃
k
→ 0. Denote pK̃(x) as a vector of k̃ basis functions selected by

K̃: pj(x) ∈ pK̃(x) if and only if j ∈ K̃. Thus write P̂ K̃ = 1
n

n∑
i=1

m(Zi, p
K̃(Xi)).
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By construction of pK̃(x),
∥∥∥P̂∥∥∥ ≥ ∥∥∥P̂K̃∥∥∥, so it suffices to show

∥∥∥P̂K̃∥∥∥−1

= Op(1).

By decomposition P̂ K̃ = M̂ K̃
1 + M̂ K̃

2 , where

M̂ K̃
1 =

1

n

n∑
i=1

m(Zi, p
K̃(Xi))− Em(Z, pK̃(X)); M̂ K̃

2 = Em(Z, pK̃(X)).

It suffices to show that
∥∥∥M̂ K̃

2

∥∥∥ is bounded away from zero and M̂ K̃
1 = op(1).

Step 1: show M̂ K̃
1 = op(1). By iid assumption and O-(3)

E
∥∥∥M̂ K̃

1

∥∥∥2

≤
E
[
m(Z, pK̃(X))′m(Z, pK̃(X))

]
n

=

∑
j∈K̃

Em2(Z, pj(X))

n
.
k̃

n
=
k̃

k

k

n
→ 0,

where the last relation follows from k̃
k
→ 0 by construction and k

n
≤ ξ2k log k

n
→ c1

by M1-(1). It follows by Markov inequality that M̂ K̃
1 = op(1).

Step 2: show
∥∥∥M̂ K̃

2

∥∥∥ is bounded away from zero. Consider the least square

projection of α0 on pK̃ : α0 = LK̃n α0 + uK̃αo , where LK̃n α0 = pK̃′aK̃l , a
K̃
l is the

projection coefficient and uK̃α0
is the projection error. Note by construction and

L1, E
[
pK̃(X)pK̃(X)′

]
has eigenvalues bounded from above and away from zero

as well. Since∥∥∥LK̃n α0

∥∥∥2

P,2
= (aK̃l )′E

[
pK̃(X)pK̃(X)′

]
aK̃l ≤

∥∥∥aK̃l ∥∥∥2

λmax

{
E
[
pK̃(X)pK̃(X)′

]}
,

∥∥∥aK̃l ∥∥∥2

≥

∥∥∥LK̃n α0

∥∥∥2

P,2

λmax

{
E
[
pK̃(X)pK̃(X)′

]} =
‖α0‖2

P,2 −
∥∥∥uK̃α0

∥∥∥2

P,2

λmax

{
E
[
pK̃(X)pK̃(X)′

]} ≥ ‖α0‖2
P,2 −

(
rK̃α0

)2

λmax

{
E
[
pK̃(X)pK̃(X)′

]} ,
where the second relation is by Pythagoras’ theorem and the last relation is by

Lemma C.3. It follows
∥∥∥aK̃l ∥∥∥2

is bounded away from zero by λmax

{
E
[
pK̃(X)pK̃(X)′

]}
bounded from above, M2-(4) and construction of pK̃ . Moreover, by definition of
projection ∥∥∥aK̃l ∥∥∥ =

∥∥∥∥E [pK̃(X)pK̃(X)′
]−1

E
[
α0(X)pK̃(X)

]∥∥∥∥
≤
∥∥∥∥E [pK̃(X)pK̃(X)′

]−1
∥∥∥∥∥∥∥E [α0(X)pK̃(X)

]∥∥∥
= λ−1

min

{
E
[
pK̃(X)pK̃(X)′

]}∥∥∥E [α0(X)pK̃(X)
]∥∥∥ .

It follows∥∥∥M̂ K̃
2

∥∥∥ =
∥∥∥E [α0(X)pK̃(X)

]∥∥∥ ≥ λmin

{
E
[
pK̃(X)pK̃(X)′

]}∥∥∥aK̃l ∥∥∥ .
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So
∥∥∥M̂ K̃

2

∥∥∥ is also bounded away from zero since λmin {E [pK̃(X)pK̃(X)′]} is bounded
away from zero as well. Conclusion follows by steps 1 and 2.

Statement (3): Recall α̃ = p′ã, where ã = (ĜWnĜ + λ1Ĝ)−ĜWnP̂ . Note
by M1-(1), Ĝ− = Ĝ−1 wpa1. Since both Ĝ and Wn are invertible wpa1, display

(C.6) still holds. That is, wpa1 ã = ΨnĜ
−1P̂ where Ψn =

(
WnĜ+ λ1I

)−1

WnĜ.
Therefore

[
1

n

n∑
i=1

α̃2(Xi)

]−1

=
(
ã′Ĝã

)−1

=
(
P̂ ′Ĝ−1Ψ′nĜΨnĜ

−1P̂
)−1

≤
∥∥∥P̂∥∥∥−2

λ−1
min

(
Ĝ−1Ψ′nĜΨnĜ

−1
)
,

where the last inequality is by property of the positive definite matrix Ĝ−1Ψ′nĜΨnĜ
−1.

By statement (2),
∥∥∥P̂∥∥∥−1

= Op(1). It suffices to show λ−1
min

(
Ĝ−1Ψ′nĜΨnĜ

−1
)

=

Op(1). To this end, write

Ĝ−1Ψ′nĜΨnĜ
−1 = Ĝ−1GWn (GWn + λ1I)−1 Ĝ

(
WnĜ+ λ1I

)−1

WnĜĜ
−1 = Gn,

(C.19)

where Gn =Wn (GWn + λ1I)−1 Ĝ
(
WnĜ+ λ1I

)−1

Wn. Thus

λ−1
min

(
Ĝ−1Ψ′nĜΨnĜ

−1
)

= λmax

(
G −1
n

)
= λmax

[
W−1

n

(
WnĜ+ λ1I

)
Ĝ−1 (GWn + λ1I)W−1

n

]
=
∥∥∥Ĝ+ 2λ1W−1

n + λ2
1W−1

n Ĝ−1W−1
n

∥∥∥
≤
∥∥∥Ĝ∥∥∥+

∥∥2λ1W−1
n

∥∥+

∥∥∥∥λ2
1

(
WnĜWn

)−1
∥∥∥∥ ,

where the first equality follows from property of λmax(· ) and λmin(· ), the sec-
ond equality applies display (C.19), the third equality is by definition of matrix
norm ‖· ‖ and rewriting, and final inequality follows from triangle inequality. By
Lemma C.22,

∥∥∥Ĝ∥∥∥ = Op(1); By L3-(2),Wn has eigenvalues bounded away from 1,
so ‖W−1

n ‖ = 1
λmin(Wn)

= Op(1) and it follows ‖2λ1W−1
n ‖ = 2λ1 ‖W−1

n ‖ = Op(λ1) =

op(1). Finally,
∥∥∥∥λ2

1

(
WnĜWn

)−1
∥∥∥∥ ≤ λ21

λ2min(Wn)λmin(Ĝ)
= Op(1) by M2-(3). Conclu-

sion follows.
Statement (4): It follows by definition of Vn, E [e2

i |Zi] bounded from below
almost surely and statement (3)

V −1
n =

{
1

n

n∑
i=1

[
α̃2(Xi)E[e2

i |Zi]
]}−1

.

{
1

n

n∑
i=1

[
α̃2(Xi)

]}−1

= Op(1).
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Lemma C.24. If O, L1 and M1 hold, and in addition λmin(Ĝ) is bounded away
from zero wpa1, then:

1.
∥∥∥Ĝ−1

∥∥∥ = Op(1).

2. ‖â− al‖ = Op(1).

3. ‖â‖ = Op(1).

Proof. Statement (1): By M1, Ĝ is invertible wpa1. Also since λmin(Ĝ) is
bounded away from zero wpa1,

∥∥∥Ĝ−1
∥∥∥ = 1

λmin(Ĝ)
= Op(1).

Statement (2): By L1, al = G−1E[p(X)α0(X)] is well defined. By M1-(1),
Ĝ is invertible wpa1, so â = Ĝ−1P̂ wpa1. Hence similar to Lemma C.15, the
following decomposition still stands

â− al = Ĝ−1EneR + Ĝ−1En[uα0p(X)],

where recall eR(z) = m(z, p(x))− α0(x)p(x). The same idea for proof of Lemma
C.14 can be used to get

E
∥∥EneR∥∥2

.
ξ2
k

n
→ c1(up to log term).

By Markov inequality

∥∥EneR∥∥ = Op

(√
ξ2
k

n

)
= Op(1). (C.20)

By statement (1) and display (C.20)∥∥∥Ĝ−1EneR
∥∥∥ ≤ ∥∥∥Ĝ−1

∥∥∥∥∥EneR∥∥ = Op(1)Op(1). (C.21)

By statement (1) and a similar argument with Lemma C.14-(2)

∥∥∥Ĝ−1En[uα0p(X)]
∥∥∥ =

∥∥∥Ĝ−1/2Ĝ−1/2En[uα0p(X)]
∥∥∥ ≤ ∥∥∥Ĝ−1/2

∥∥∥∥∥∥Ĝ−1/2En[uα0p(X)]
∥∥∥

≤ Op(1)Op(rα0) = Op(1). (C.22)

Statement (2) then follows by triangle inequality, displays (C.21) and (C.22).
Statement (3): This directly follows from statement (2), Lemma C.4 and

triangle inequality

‖â‖ ≤ ‖â− al‖+ ‖al‖ = Op(1) +O(1) = Op(1). (C.23)
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C.3.2 Additional results for Theorem 3.3.

Theorem C.3. If conditions for Theorem 3.3 hold

R1BP =
1√
n

n∑
i=1

[α̃(Xi)γ0(Xi)−m(Zi, γ0(Xi))] = op(1).

Proof. Decompose γ0 = Lnγ0 + uγ0 , with Lnγ0 = β′lp. Since β′lp ∈ Θn, Lemma
C.7 can be invoked to yield R1BP = T̃1 + T̃2, where

T̃1 =
1√
n

n∑
i=1

[m(Zi, β
′
lp(Xi))− α̃(Xi)(β

′
lp(Xi))] , T̃2 =

1√
n

n∑
i=1

[m(Zi, uγ0i)− α̃(Xi)uγ0i ] .

Step 1: bound T̃1. Apply Lemma C.9-(2) with α = α̂ = â′p and f = β′lp

1

n
T̃ 2

1 .

{
sup

g∈HWn
[En (α̂(X)g(X)−m(Z, g(X)))]2 + λ1Enα̂2(X)

}
‖β′lp‖

2
P,2 ,

(C.24)

Note Ĝ− = Ĝ−1 wpa1 by M1-(1). It follows sup
g∈HWn

{En [â′p(X)g(X)−m(Z, g(X))]}2 =

0 wpa1 by definition of â. Moreover, by L1 and Lemma C.4

‖β′lp‖
2
P,2 = β′lGβl . ‖βl‖

2 λmax(G) = O(1)O(1) = O(1).

By M2-(1), 1
n

n∑
i=1

α̂(Xi)
2 = Op(1). Finally since λ1 = o( 1

n
), conclude

T̃ 2
1 . no(

1

n
)Op(1)O(1) = op(1).

Step 2: bound T̃2. Apply Lemmas C.8 and C.3-(3)

1

n
T̃ 2

2 = Op

{
[En (α̃(X)− α0(X))uγ0 ]

2}+Op


[
(`k + 1)2 ∧ ‖α0‖2

P,∞

]
r2
γ0

n

 ,

where

Op


[
(`k + 1)2 ∧ ‖α0‖2

P,∞

]
r2
γ0

n

 = op

(
1

n

)
directly under L3-(1). By iid assumption, Lemma C.3, Markov inequality and
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M1-(2)

1

n

n∑
i=1

u2
γ0i
− Eu2

γ0
= Op

(
`kr

2
γ0√
n

)
= Op

(
`krγ0√
n

rγ0

)
= op

(
1

n

)
,

Eu2
γ0

= ‖uγ0‖
2
P,2 ≤ r2

γ0
= op

(
1

n

)
.

Hence 1
n

n∑
i=1

u2
γ0i

= 1
n

n∑
i=1

u2
γ0i
− Eu2

γ0
+ Eu2

γ0
= op

(
1
n

)
. By triangle inequality

1

n

n∑
i=1

(α̃(Xi)− α0(Xi))
2 .

1

n

n∑
i=1

α̃2(Xi) +
1

n

n∑
i=1

α2
0(Xi) = Op(1),

since 1
n

n∑
i=1

α2
0(Xi)

p→ Eα2
0(X) <∞ by Khinchin law of large numbers and 1

n

n∑
i=1

α̃2(Xi) =

Op(1) by Lemma C.23. It follows from Cauchy-Schwarz inequality

{En [(α̃(X)− α0(X))uγ0 ]}
2 ≤

(
1

n

n∑
i=1

u2
γ0i

)
1

n

n∑
i=1

(α̃(Xi)− α0(Xi))
2 = op

(
1

n

)
.

Hence T̃2 = op(1). Proof is completed by combining above two steps.

Theorem C.4. Under conditions of Theorem 3.3

n−1/2V −1/2
n

n∑
i=1

[α̃(Xi)(Yi − γ0(Xi))]
d→ N(0, 1),

where Vn = 1
n

n∑
i=1

{α̃2(Xi)E[e2
i |Zi]} and N(0, 1) is a standard normal random vari-

able.

Proof. Let Ai(Zn) = α̃(Xi) and verify conditions of Lemma C.12: Conditions
(1) and (2) follow from M2-(4). Conditions (3) and (4) are satisfied by Lemma
C.23. Proof is completed by directly invoking Lemma C.12.

C.3.3 Proofs for main results when k
n → c < 1

C.3.3.1 Proof of Theorem 3.3

By standard decomposition

√
nV −1/2

n

[
θ̂BP − Enm(Z, γ0(X))

]
= n−1/2V −1/2

n

n∑
i=1

[α̃(Xi)(Yi−γ0(Xi))]+V
−1/2
n R1BP ,
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whereR1BP = 1√
n

n∑
i=1

[α̃(Xi)γ0(Xi)−m(Zi, γ0(Xi))]. By Theorem C.3 and Lemma

C.23 V −1/2
n R1BP = Op(1)op(1) = op(1). Conclusion then follows from Theorem

C.4. To see θ̂BP − θ0 = Op

(
1√
n

)
, note by decomposition: θ̂BP − θ0 = θ̂BP −

En[m(Z, γ0(X))]+En[m(Z, γ0(X))]−θ0. Then θ̂BP−En[m(Z, γ0(X))] = Op

(
1√
n

)
directly from previous statement and En[m(Z, γ0(X))]−θ0 = Op

(
1√
n

)
by Markov

inequality.

C.3.3.2 Proof of Corollary 3.2

The main decomposition in the proof of Theorem 3.3 still holds

√
nV −1/2

n

[
θ̂BP − Enm(Z, γ0(X))

]
= n−1/2V −1/2

n

n∑
i=1

[α̃(Xi)(Yi − γ0(Xi))] + V −1/2
n R1BP ,

with R1BP = T̃1 + T̃2, where

T̃1 =
1√
n

n∑
i=1

[m(Zi, β
′
lp(Xi))− α̃(Xi) (β′lp(Xi))] , T̃2 =

1√
n

n∑
i=1

[m(Zi, uγ0i)− α̃(Xi)uγ0i ] .

By M1-(1), Ĝ− = Ĝ−1 wpa1. Hence α̃ = p′Ĝ−1P̂ wpa1. See also (C.18) in the
proof of Corollary 3.1. It follows by linearity of m(z, · ), βl = O(1) and definition
of α̃

T̃1 =
1√
n

n∑
i=1

[m(Zi, β
′
lp(Xi))− α̃(Xi) (β′lp(Xi))]

= β′l

{
1√
n

n∑
i=1

[m(Zi, p(Xi))− α̃(Xi)p(Xi)]

}
= 0.

T̃2 can be controlled the same way as in Theorem C.3 to conclude T̃2 = op(1).
Next, since now α̃ = p′Ĝ−1P̂ wpa1, it follows[

1

n

n∑
i=1

α̃2(Xi)

]−1

=
(
P̂ ′Ĝ−1P̂

)−1

≤
∥∥∥P̂∥∥∥−2

λ−1
min(Ĝ−1) =

∥∥∥P̂∥∥∥−2

λmax(Ĝ).

Thus,
[

1
n

n∑
i=1

α̃2(Xi)

]−1

= Op(1) by Lemmas C.22 and C.23. It follows then by

M2-(4) that

V −1
n =

{
1

n

n∑
i=1

[
α̃2(Xi)E[e2

i |Zi]
]}−1

.

{
1

n

n∑
i=1

[
α̃2(Xi)

]}−1

= Op(1).
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Hence V −1/2
n R1BP = op(1). The rest of the proof is similar to Theorem 3.3.

Details are omitted.

C.3.4 Sufficient conditions

Lemma C.25. Suppose O, L1 and M1 hold. Then either of the two conditions
below is sufficient for M2-(1).

1. P{λmin(Ĝ) ≥ c2} → 1 for some c2 > 0;

2. P̂ = En[$(Z)p(X)] for some scalar valued function $(z) and E[$(Z)2] <

∞.

Proof. If condition (1) holds, by Lemmas C.24 and C.23 and α̂ = â′p

∣∣∣∣∣ 1n
n∑
i=1

α̂2(Xi)

∣∣∣∣∣ =
∣∣∣â′Ĝâ∣∣∣ ≤ ‖â‖2

∥∥∥Ĝ∥∥∥ = Op(1)Op(1) = Op(1).

If condition (2) holds, note â = Ĝ−P̂ = Ĝ−1P̂ wpa1 by M1-(1). Hence wpa1

1

n

n∑
i=1

α̂2(Xi) =
1

n

n∑
i=1

[p′(Xi)â]
2

=
1

n

n∑
i=1

[
p′(Xi)Ĝ

−1P̂
]2

=
1

n

n∑
i=1

[
p′(Xi)Ĝ

−1En[$(Z)p(X)]
]2

=
1

n

n∑
i=1

[
L̃n$(Xi)

]2

,

where L̃n$ is the empirical projection of $ onto Θn. But

1

n

n∑
i=1

[
L̃n$(Xi)

]2

≤ 1

n

n∑
i=1

$(Zi)
2 p→ E$2(Z) <∞,

where the first inequality is by definition of empirical projection, the second
relation follows by Khinchin law of large numbers, and the last inequality is by

assumption. As a result, 1
n

n∑
i=1

α̂2(Xi) = Op(1) as well.

The following lemma gives a primitive condition so that condition (1) in Lemma
C.25 holds.

Lemma C.26. If O, L1 and M1-(1) hold, and in addition G = I and
√

2c1+ 1
3
c1 <

1, then λmin(Ĝ) ≥ c2 = 1−
√

2c1 − 1
3
c1 > 0 wpa1.

Proof. Let Si = p(Xi)p(Xi)
′

n
. Hence

n∑
i=1

ESi = G by iid assumption, and E [Si − ESi]

is a zero matrix by construction. It follows by triangle inequality that λmax(Si −
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ESi) ≤
ξ2k
n

+ λmax(G)
n

. Invoke matrix Bernstein inequality for symmetric matrix
(Theorem 6.6.1 of Tropp, 2015)

E
∥∥∥Ĝ−G∥∥∥ = Eλmax

[
n∑
i=1

(Si − ESi)

]
≤
√

2v∗ log k +
1

3

(
ξ2
k

n
+
λmax(G)

n

)
log k,

(C.25)
where

v∗ =

∥∥∥∥∥
n∑
i=1

E (Si − ESi) (Si − ESi)

∥∥∥∥∥ ≤
n∑
i=1

‖E (Si − ESi) (Si − ESi)‖ (C.26)

=
n∑
i=1

∥∥ES2
i − ESiESi

∥∥ ≤ n∑
i=1

∥∥ES2
i

∥∥ =
1

n2
n
∥∥E [(p(X)p(X)′)2

]∥∥ ≤ ξ2
k

n
λmax(G).

The first relation of (C.26) is by definition v∗ in Theorem 6.6.1 of Tropp (2015),
and the first inequality is by triangle inequality, the second equality is a direct cal-
culation, the second inequality is due to the positive semidefiniteness of ESiESi,
the third equality is by directly rewriting ES2

i and identical distribution assump-
tion; the final inequality uses the property that for any a ∈ Rk with ‖a‖ = 1

a′ [p(X)p(X)′p(X)p(X)′] a ≤ ξ2
ka
′ [p(X)p(X)′] a.

Combining (C.25) and (C.26)

E
∥∥∥Ĝ−G∥∥∥ ≤√2

ξ2
k

n
λmax(G) log k +

1

3

(
ξ2
k

n
+
λmax(G)

n

)
log k

→
√

2c1λmax(G) +
1

3
c1 =

√
2c1 +

1

3
c1 < 1, (C.27)

where the last inequality follows from assumption G = I so λmax(G) = 1. Now
suppose wpa1, λmin(Ĝ) < c2. Then there exists a ∈ Rk with ‖a‖ = 1 such that
a′Ĝa < c2. Hence∥∥∥Ĝ−G∥∥∥ ≥ ∣∣∣a′(Ĝ−G)a

∣∣∣ =
∣∣∣a′Ĝa− a′Ga∣∣∣ =

∣∣∣a′Ĝa− 1
∣∣∣ > 1− c2 >

√
2c1 +

1

3
c1.

That is, wpa1,
∥∥∥Ĝ−G∥∥∥ will be larger than

√
2c1 + 1

3
c1, which violates (C.27)

since we always have
∥∥∥Ĝ−G∥∥∥ ≥ 0. Therefore wpa1 all eigenvalues of Ĝ are no

smaller than c2.

The next two lemmas discusses several scenarios under which
max
i
|α̃(Xi)|
√
n

= op(1)

can be satisfied. The first one is trivial.

Lemma C.27. If conditions for Theorem 3.3 hold and ξ2k log k

n
→ 0, then

max
i
|α̃(Xi)|
√
n

=

op(1).
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Proof. If ξ2k log k

n
→ 0, λmin(Ĝ) is bounded away from zero wpa1 by Lemma C.13.

Then by Lemma C.24, ‖â‖ = Op(1). Proof of Lemma C.16 can be recycled so

‖ã‖ ≤ ‖ã− â‖+ ‖â‖ ≤ ‖Ψn − I‖ ‖â‖+ ‖â‖ = op(1) +Op(1) = Op(1).

Since α̃ = ã′p, apply Cauchy-Schwarz inequality and definition of ξk

max
i
|α̃(Xi)| ≤ sup

x∈X
|α̃(x)| = sup

x∈X
|ã′p(x)| ≤ sup

x∈X
|‖ã‖ ‖p(x)‖|

= ‖ã‖ sup
x∈X
‖p(x)‖ = ‖ã‖ ξk = Op(ξk).

Therefore
max
i
|α̃(Xi)|
√
n

= Op

(
ξk√
n

)
= op(1).

To introduce the next lemma, let p̃(x) = p′(x)Ĝ−1

‖p′(x)Ĝ−1‖ .

Lemma C.28. Suppose conditions for Theorem 3.3 hold. Then
max
i
|α̃(Xi)|
√
n

= op(1)

if:

1. There exists some c2 > 0 such that P{λmin(Ĝ) ≥ c2} → 1;

2. λ1 = 0, `
2
krα0√
n

= o(1);

3. There exists some ξLk such that wpa1,

sup
x1,x2∈X ,x1 6=x2

‖p̃(x1)− p̃(x2)‖ ≤ ξLk ‖x1 − x2‖ .

4. One of the following two conditions holds:

(a) There exists some ∆i = ∆(Zi) and m > 2 such that En[eR(eR)′] =

En[∆2p(X)p(X)′] and wpa1 E [maxi |∆i| |X1 · · ·Xn] . n1/m, and n1/m
√

log ξLk
n1/2 →

0.

(b) For some t < 1,
∥∥eR(eR)′

∥∥ ≤ ξ2
kn

t for each i = 1 . . . n, λmax

{
E[eR(eR)′]

}
≤

ξ2kn
t

n
log k, and nt/2

n1/2

√
log ξLk → 0.

Proof. The proof is long and deferred to Appendix C.5.

C.4 Proofs for main results when k
n →∞

Notations. Main notations are the same as those in Appendix C.2. But now
α̃ = p′ã, where ã is the solution of display (2.32). Further write

Wn = ĜW ′
nWn, Ĝ = ĜW ′

nW nĜ+ λ1Ĝ = WnĜ+ λ1Ĝ, M̂ = WnP̂ .
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C.4.1 Additional convergence results when k
n →∞

Lemma C.29. If O and H1 hold and Λn

√
log k
n
→ 0, then

1. E
[∥∥∥Ĝ−G∥∥∥

max

]
= O

(
Λn

√
log k
n

)
;

2.
∥∥∥Ĝ−G∥∥∥

max
= Op

(
Λn

√
log k
n

)
;

3.
∥∥∥Ĝ∥∥∥

max
= Op(1).

Proof. Statement (1): By definition,
∥∥∥Ĝ−G∥∥∥

max
= max

1≤j,l≤k

∣∣∣∣ 1
n

n∑
i=1

∆G
j,l(i)

∣∣∣∣ , where
∆G
j,l(i) = pj(Xi)pl(Xi)−Epj(Xi)pl(Xi).Note E∆G

j,l(i) = 0,
∣∣∆G

j,l(i)
∣∣ ≤ |pj(Xi)pl(Xi)|+

|Epj(Xi)pl(Xi)| ≤ 2Λ2
n. Let σ2

max = max
1≤j,l≤k

1
n

n∑
i=1

E
∣∣∆G

j,l(i)
∣∣2. It follows

σ2
max = max

1≤j,l≤k
E
∣∣∆G

j,l

∣∣2 ≤ max
1≤j,l≤k

E[pj(X)pl(X)]2 ≤ Λ2
n max

1≤j≤k
E[p2

j(X)] = O(Λ2
n),

where the first relation is by identical distribution assumption, the second in-
equality follows by property of variance, the third relation is by definition of Λn,
and the last relation is due to H1. Further denote ∆̃G

j,l(i) =
∆Gj,l(i)

σmax
. Note for all

constant L > 0

E max
1≤j,l≤k

∣∣∣∣∣ 1n
n∑
i=1

∆̃G
j,l(i)

∣∣∣∣∣ =
L

n
E max

1≤j,l≤k

∣∣∣∣∣ 1L
n∑
i=1

∆̃G
j,l(i)

∣∣∣∣∣
≤ L

n
log

{
E exp

[
max

1≤j,l≤k

∣∣∣∣∣ 1L
n∑
i=1

∆̃G
j,l(i)

∣∣∣∣∣
]}

≤ L

n
log

{
E

k∑
j,l=1

exp

[∣∣∣∣∣ 1L
n∑
i=1

∆̃G
j,l(i)

∣∣∣∣∣
]}

=
L

n
log

{
k∑

j,l=1

E exp

[∣∣∣∣∣ 1L
n∑
i=1

∆̃G
j,l(i)

∣∣∣∣∣
]}

, (C.28)

where the first relation is simply by rewriting equation, the second inequality is
by Jensen’s inequality, the third relation is by property of max(· ) and the final

relation is due to linearity. To bound E exp

[∣∣∣∣ 1
L

n∑
i=1

∆̃G
j,l(i)

∣∣∣∣] for each j, l = 1 . . . k,

let 2Λ2
n

σmax
= L̃. Claim

For any L > L̃,E exp

[∣∣∣∣∣ 1L
n∑
i=1

∆̃G
j,l(i)

∣∣∣∣∣
]
≤ 2 exp

[
n

2(L2 − LL̃)

]
. (C.29)
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By claim (C.29) and display (C.28), for each L > L̃

E max
1≤j,l≤k

∣∣∣∣∣ 1n
n∑
i=1

∆̃G
j,l(i)

∣∣∣∣∣ ≤ L

n
log

{
2k2 exp

[
n

2(L2 − LL̃)

]}
=
L log(2k2)

n
+

1

2(L− L̃)
.

Now picking L = L̃+
√

n
log 2k2

yields

E max
1≤j,l≤k

∣∣∣∣∣ 1n
n∑
i=1

∆̃G
j,l(i)

∣∣∣∣∣ ≤ L̃ log 2k2

n
+

3

2

√
log 2k2

n
.

Finally recall L̃ = 2Λ2
n

σmax
, conclusion follows

E

[
max

1≤j,l≤k

∣∣∣∣∣ 1n
n∑
i=1

∆G
j,l(i)

∣∣∣∣∣
]

= σmaxE

[
max

1≤j,l≤k

∣∣∣∣∣ 1n
n∑
i=1

∆̃G
j,l(i)

∣∣∣∣∣
]

= σmaxO

(
Λ2
n

σmax

log k

n
+

√
log k

n

)

= O

(
Λ2
n log k

n
+ σmax

√
log k

n

)
= O

(
Λ2
n log k

n
+ Λn

√
log k

n

)

= O

[
Λn

√
log k

n

(
Λn

√
log k

n
+ 1

)]
= O

(
Λn

√
log k

n

)
,

where the last relation follows from assumption that Λn

√
log k
n
→ 0.

Now show claim (C.29) holds. By construction, E∆̃G
j,l(i) = 0, for each i =

1 . . . n. By iid assumption and definition of σ2
max

1

n

n∑
i=1

E
∣∣∣∆̃G

j,l(i)
∣∣∣2 = E

∣∣∣∆̃G
j,l(i)

∣∣∣2 =
E
∣∣∣∆̃G

j,l(i)
∣∣∣2

σ2
max

≤
max

1≤j,l≤k
E
∣∣∆G

j,l

∣∣2
σ2

max

≤ 1;

While for t = 3, 4 . . .

1

n

n∑
i=1

E
∣∣∣∆̃G

j,l(i)
∣∣∣t = E

∣∣∣∆̃G
j,l(i)

∣∣∣t ≤ E
∣∣∣∆̃G

j,l(i)
∣∣∣2 (L̃)t−2

≤
(
L̃
)t−2

.

So by Lemma 14.1 in Bühlmann and Van De Geer (2011) and standard algebra,
for any L > L̃
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E exp

[
1

L

n∑
i=1

∆̃G
j,l(i)

]
= E

n∏
i=1

{
exp

[
∆̃G
j,l(i)

L

]}
=

n∏
i=1

E exp

[
∆̃G
j,l(i)

L

]

= exp

{
n∑
i=1

logE exp

[
∆̃G
j,l(i)

L

]}

≤ exp

{
n∑
i=1

[
E exp

∣∣∣∣∣∆̃G
j,l(i)

L

∣∣∣∣∣− 1− E

∣∣∣∣∣∆̃G
j,l(i)

L

∣∣∣∣∣
]}

≤ exp

 ∞∑
t=2

n∑
i=1

E
∣∣∣∆̃G

j,l(i)
∣∣∣t

t!Lt


 = exp

n ∞∑
t=2

E
∣∣∣∆̃G

j,l(i)
∣∣∣t

t!Lt




≤ exp

 n

2L2

∞∑
t′=0

(
L̃

L

)t′
 = exp

[
n

2L2

1

1− L̃
L

]
= exp

[
n

2(L2 − LL̃)

]
.

(C.30)

Hence for each L > L̃

E exp

∣∣∣∣∣ 1L
n∑
i=1

∆̃G
j,l(i)

∣∣∣∣∣ ≤ E exp

[
1

L

n∑
i=1

∆̃G
j,l(i)

]
+ E exp

[
1

L

n∑
i=1

(
−∆̃G

j,l(i)
)]

≤ 2 exp

[
n

2(L2 − LL̃)

]
,

where the first relation is because e|X| ≤ eX + e−X for any X, and the second

relation follows from display C.30 (which applies to E exp

[
− 1
L

n∑
i=1

∆̃G
j,l(i)

]
trivially

as well).
Statement (2): This follows from statement (1) and Markov inequality.
Statement (3): This follows from triangle inequality, statement (2) and ‖G‖max <

∞ by H1.

C.4.2 Additional results for Theorem 3.4

Lemma C.30. If conditions for Theorem 3.4 hold, then R1DR defined in Lemma
C.6 is op(1).

Proof. The proof follows from three steps.
Step 1: preparations. By standard decomposition

R1DR =
1√
n

n∑
i=1

[m(Zi, γ̂(Xi)− γ0(Xi))− α̃(Xi)(γ̂(Xi)− γ0(Xi))] = T̄1 + T̄2,

167



where

T̄1 =
1√
n

n∑
i=1

[m(Zi, γ̂(Xi)− γ0(Xi))− α0(Xi)(γ̂(Xi)− γ0(Xi))] ,

T̄2 =
1√
n

n∑
i=1

[(α0(Xi)− α̃(Xi))(γ̂(Xi)− γ0(Xi))] .

In the following we show both T̄1 and T̄2 are op(1).
Step 2: bound T̄1. By H2-(2), γ̂ is estimated from a different iid sample (wlog,

call it S) independent from the main sample. Then conditional on S, function
f̃(z) = m(z, γ̂(x) − γ0(x)) − α0(x)(γ̂(x) − γ0(x)) is iid distributed. Further by
definition of α0, E[f̃ |S] = 0. So by O and H2-(4)

E[f̃ 2|S] . E[α0(X)2(γ̂(X)− γ0(X))2|S] + E[m(Z, γ̂(X)− γ0(X))2|S]

. ‖α0‖P,∞ E[(γ̂(X)− γ0(X))2|S] + CE[(γ̂(X)− γ0(X))2|S]

. ‖α0‖P,∞ ‖γ̂ − γ0‖2
P,2 = o(1).

It follows E
[(

Enf̃
)2

|S
]

=
E[f̃2|S]

n
= o( 1

n
). By a conditional version of Markov

inequality, En
[
f̃ |S
]

= op(
1√
n
). Then Lemma C.10 yields Enf̃ = op(

1√
n
), or T̄1 =

√
nEnf̃ = op(1).
Step 3: bound T̄2. By Cauchy-Schwarz inequality

T̄ 2
2 =

1

n

(
n∑
i=1

[(α0(Xi)− α̃(Xi))(γ̂(Xi)− γ0(Xi))]

)2

≤ n
1

n

n∑
i=1

[α0(Xi)− α̃(Xi)]
2 1

n

n∑
i=1

[γ̂(Xi)− γ0(Xi)]
2 = nT̄21T̄22, (C.31)

where

T̄21 =
1

n

n∑
i=1

[α0(Xi)− α̃(Xi)]
2 , T̄22 =

1

n

n∑
i=1

[γ̂(Xi)− γ0(Xi)]
2 .

Step 3-1: bound T̄22. Similar to that of T̄1, by H-(2), function γ̂ − γ0 is iid
distributed. So conditional on S, E

[∣∣T̄22

∣∣ |S] = T̄∆1 + T̄∆2, where

T̄∆1 = E
[∣∣En[γ̂(Xi)− γ0(Xi)]

2 − E[(γ̂(Xi)− γ0(Xi))
2|S]

∣∣ |S] ,
T̄∆2 = E

[
(γ̂(Xi)− γ0(Xi))

2|S
]
.

By H2-(2)
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T̄∆2 = ‖γ̂ − γ0‖2
P,2 = Op

[
(ϕγn)2

]
→ 0.

Also by iid assumption, T̄∆1 . E [(γ̂(X)− γ0(X))2|S] = Op [(ϕγn)2] as well. Hence
conditional on S

E
[∣∣T̄22

∣∣ |S] = Op

[
(ϕγn)2

]
+Op

[
(ϕγn)2

]
= Op

[
(ϕγn)2

]
.

Conditional Markov inequality yields (T̄22|S) = Op[(ϕ
γ
n)2]. It follows by Lemma

C.10 again
T̄22 = Op[(ϕ

γ
n)2]. (C.32)

Step 3-2: bound T̄21. Since by definition u∗ = α0−α∗, standard decomposition
yields

T̄21 =
1

n

n∑
i=1

[α0(Xi)− α̃(Xi)]
2 ≤ 1

n

n∑
i=1

[α̃(Xi)− α∗(Xi)]
2 +

1

n

n∑
i=1

u2
∗.

By iid assumption, 1
n

n∑
i=1

u2
∗i

p→ E[u2
∗] = ‖u∗‖2

P,2 = µ2
∗. So 1

n

n∑
i=1

u2
∗i = Op(µ

2
∗).

Moreover, by definition of ϕαn

1

n

n∑
i=1

(α̃(Xi)− α∗(Xi))
2 = (ã− a∗)′Ĝ(ã− a∗) ≤ Op

[
(ϕαn)2

]
. (C.33)

Summarizing displays (C.31), (C.32) and (C.33), we conclude

T̄2 =
√
n [Op(ϕ

γ
nϕ

α
n) +Op(ϕ

γ
nµ∗)] = op(1).

Conclusion then follows from steps 1-3.

Lemma C.31. If conditions for Theorem 3.4 hold, R2 defined in Lemma C.6 is
op(1).

Proof. By standard decomposition and definition of α∗

R2 =
1√
n

n∑
i=1

[(α̃(Xi)− α0(Xi))ei] = T̄3 + T̄4,

where

T̄3 =
1√
n

n∑
i=1

[(α̃(Xi)− α∗(Xi))ei] , T̄4 = − 1√
n

n∑
i=1

u∗iei.
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By Lemma C.11 and iid assumption

1√
n
T̄4 = Op


√√√√ 1

n

n∑
i=1

E[u∗iei]2

n

 = Op

(√
Eu2
∗

n

)
= Op

(√
µ2
∗
n

)
= op

(√
1

n

)
,

(C.34)

since µ∗ → 0 due to H1. To bound T̄3, decompose

T̄3 =
1√
n

n∑
i=1

[(ã− a∗)′p(Xi)ei] = ‖ã− a∗‖1

1√
n

n∑
i=1

[ν̃ ′p(Xi)ei] ,

where ν̃ = ã−a∗
‖ã−a∗‖1

. By H2-(3), ‖ã− a∗‖1 = op(1). It remains to bound 1√
n

n∑
i=1

[ν̃ ′p(Xi)ei].

Notice ν̃ is a function of (Z1 · · ·Zn), so Lemma C.11 can be invoked withAi(Zn) =

ν̃ ′p(Xi).

E

[
1

n

n∑
i=1

A2
i (Zn)

]
= E

[
ν̃ ′Ĝν̃

]
. E

[
‖ν̃‖2

1

∥∥∥Ĝ∥∥∥
max

]
= E

[∥∥∥Ĝ∥∥∥
max

]
. 1,

where the first inequality uses Cauchy-Schwarz inequality, the second equality is
by ‖ν̃‖1 = 1 and the last relation follows E [‖G]‖max] < ∞. To see this, note by
triangle inequality, Lemma C.29-(3) and H1

E
[∥∥∥Ĝ∥∥∥

max

]
≤ E

[∥∥∥Ĝ−G∥∥∥
max

]
+ E [‖G]‖max] <∞.

Therefore, Lemma C.11 yields 1
n

n∑
i=1

[ν̃ ′p(Xi)ei] = Op

(
1√
n

)
and

T̄3 =
√
nop(1)Op

(
1√
n

)
= op(1). (C.35)

Final conclusion follows from (C.34) and (C.35).

C.4.3 Additional results for Theorem 3.5

Lemma C.32. If conditions for Theorem 3.5 hold, then 2(ã− a∗)′(M̂ − Ĝa∗) ≤
‖ã− a∗‖1 λ0 wpa1, where λ0 = 2

[
(εRn + εun + C̃µ∗)(ε

W
n + λ1) + λ1(εmn + C̃C1/2)

]
.

Proof. By Holder’s inequality
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2(ã− a∗)′(M̂ − Ĝa∗) ≤
∣∣∣2(ã− a∗)′(M̂ − Ĝa∗)

∣∣∣ ≤ 2 ‖ã− a∗‖1

∥∥∥M̂ − Ĝa∗∥∥∥
∞
.

Hence it suffices to show 2
∥∥∥M̂ − Ĝa∗∥∥∥

∞
≤ λ0. Firstly, note

‖E[p(X)u∗]‖∞ = max
1≤j≤k

|E[pj(X)u∗]| ≤ max
1≤j≤k

[
Ep2

j(X)
]1/2 [Eu2

∗
]1/2 ≤ C̃µ∗.

(C.36)
Secondly, standard decomposition yields

P̂ − Ĝa∗ = En[m(Z, p(X))]− En[p(X)α∗(X)]

= En[m(Z, p(X))− p(X)α0(X)] + En[p(X)u∗ − E(p(X)u∗)] + E[p(X)u∗].

Hence by H3, display (C.36) and triangle inequality∥∥∥P̂ − Ĝa∗∥∥∥
∞
≤ εRn + εun + C̃µ∗. (C.37)

Therefore by definition of induced ‖· ‖∞ matrix norm and H3-(2), wpa1∥∥∥(Wn + λ1I)(P̂ − Ĝa∗)
∥∥∥
∞
≤ ‖Wn + λ1I‖∞

∥∥∥P̂ − Ĝa∗∥∥∥
∞
≤ (εRn + εun + C̃µ∗)(ε

W
n + λ1).

(C.38)

Thirdly, by O and H1

‖Em(Z, p(X))‖∞ = max
1≤j≤k

|E[m(Z, pj(X))]| ≤ max
1≤j≤k

[
Ep2

j(X)
]1/2

C1/2 ≤ C̃C1/2 <∞.

Triangle inequality and H3 yield∥∥∥P̂∥∥∥
∞
≤ ‖En[m(Z, p(X))− Em(Z, p(X))]‖∞ + ‖Em(Z, p(X))‖∞ ≤ εmn + C̃C1/2.

(C.39)
Final conclusion follows by triangle inequality, displays (C.37), (C.38) and (C.39)

∥∥∥M̂ − Ĝa∗∥∥∥
∞

=
∥∥∥WnP̂ − (WnĜ+ λ1Ĝ)a∗

∥∥∥
∞

=
∥∥∥(Wn + λ1I)(P̂ − Ĝa∗)− λ1P̂

∥∥∥
∞

≤
∥∥∥(Wn + λ1I)(P̂ − Ĝa∗)

∥∥∥
∞

+ λ1

∥∥∥P̂∥∥∥
∞

≤ (εRn + εun + C̃µ∗)(ε
W
n + λ1) + λ1(εmn + C̃C1/2).

Lemma C.33. If conditions for Theorem 3.5 hold, then 2(ã − a∗)′Ĝ(ã − a∗) +
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λ2

∥∥ãAc∗∥∥1
≤ 3λ2 ‖ãA∗ − a∗A∗‖1 wpa1.

Proof. Start from definition of ã. Since

ã = arg min
a∈Rk

(Ĝa− P̂ )′W ′
nWn(Ĝa− P̂ ) + λ1a

′Ĝa+ λ2 ‖a‖1 ,

it follows

(Ĝã− P̂ )′W ′
nWn(Ĝã− P̂ ) + λ1ã

′Ĝã+ λ2 ‖ã‖1

≤(Ĝa∗ − P̂ )′W ′
nWn(Ĝa∗ − P̂ ) + λ1a

′
∗Ĝa∗ + λ2 ‖a∗‖1 ,

or by symmetry of W ′
nWn and Ĝ

ã′ĜW ′
nWnĜã− 2ã′ĜW ′

nWnP̂ + λ1ã
′Ĝã+ λ2 ‖ã‖1

≤a′∗ĜW ′
nWnĜa∗ − 2a′∗ĜW

′
nWnP̂ + λ1a

′
∗Ĝa∗ + λ2 ‖a∗‖1 . (C.40)

Re-write display (C.40) using notation Ĝ and M̂

ã′Ĝã− 2ã′M̂+ λ2 ‖ã‖1 ≤ a′∗Ĝã− 2a′∗M̂+ λ2 ‖a∗‖1 . (C.41)

With ã = ã− a∗ + a∗ trivially, (C.41) becomes

(ã− a∗ + a∗)
′Ĝ(ã− a∗ + a∗)− 2(ã− a∗ + a∗)

′M̂+ λ2 ‖ã‖1 ≤ a′∗Ĝa∗ − 2a′∗M̂+ λ2 ‖a∗‖1 ,

or by symmetry of Ĝ as well

(ã− a∗)′Ĝ(ã− a∗) + λ2 ‖ã‖1 ≤ 2(ã− a∗)′(M̂ − Ĝa∗) + λ2 ‖a∗‖1 .

Let En be the event such that 2(ã− a∗)′(M̂ − Ĝa∗) ≤ ‖ã− a∗‖1 λ0, it follows by
Lemma C.32 that P(En)→ 1. So wpa1

2(ã− a∗)′Ĝ(ã− a∗) + 2λ2 ‖ã‖1 ≤ 2λ0 ‖ã− a∗‖1 + 2λ2 ‖a∗‖1 ,

or, since λ2 ≥ 2λ0

2(ã− a∗)′Ĝ(ã− a∗) + 2λ2 ‖ã‖1 ≤ ‖ã− a∗‖1 λ2 + 2λ2 ‖a∗‖1 . (C.42)

To this end, note by triangle inequality
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‖ã‖1 = ‖ãA∗‖1 +
∥∥ãAc∗∥∥1

= ‖a∗A∗ − (ãA∗ + a∗A∗)‖1 +
∥∥ãAc∗∥∥1

≥ ‖a∗A∗‖1 − ‖ãA∗ − a∗A∗‖1 +
∥∥ãAc∗∥∥1

.

So (C.42) yields

2(ã−a∗)′Ĝ(ã−a∗)−2λ2 ‖ãA∗ − a∗A∗‖1+2λ2 ‖a∗A∗‖1+2λ2

∥∥ãAc∗∥∥1
≤ ‖ã− a∗‖1 λ2+2λ2 ‖a∗‖1 .

Note
∥∥a∗Ac∗∥∥1

= 0, so

‖ã− a∗‖1 = ‖ãA∗ − a∗A∗‖1 +
∥∥ã∗Ac∗ − a∗Ac∗∥∥1

= ‖ãA∗ − a∗A∗‖1 +
∥∥ã∗Ac∗∥∥1

.

Also ‖a∗‖1 = ‖a∗A∗‖1, it follows

2(ã− a∗)′Ĝ(ã− a∗) + 2λ2 ‖a∗A∗‖1 + λ2

∥∥ãAc∗∥∥1
≤ 3λ2 ‖ãA∗ − a∗A∗‖1 + 2λ2 ‖a∗A∗‖1 .

(C.43)
Simplifying (C.43) yields

2(ã− a∗)′Ĝ(ã− a∗) + λ2

∥∥ãAc∗∥∥1
≤ 3λ2 ‖ãA∗ − a∗A∗‖1 ,

which is the desired result.

C.4.4 Proof of main results when k
n →∞

C.4.4.1 Proof of Theorem 3.4

By Lemma C.6

√
nEn [m(Z, γ̂(X)) + α̃(X)(Y − γ̂(X))− θ0]

=
1√
n

n∑
i=1

[m(Zi, γ0(Xi)) + α0(Xi)(Yi − γ0(Xi))− θ0] +R1DR +R2,

where R1DR = op(1) by Lemma C.30 and R2 = op(1) by Lemma C.31. Conclusion
follows from Lindeberg–Lévy central limit theorem.

C.4.4.2 Proof of Theorem 3.5

Note
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2(ã− a∗)′Ĝ(ã− a∗) + λ2 ‖ã− a∗‖1

=2(ã− a∗)′Ĝ(ã− a∗) + λ2 ‖ãA∗ − a∗A∗‖1 + λ2

∥∥ãAc∗∥∥1

≤3λ2 ‖ãA∗ − a∗A∗‖1 + λ2 ‖ãA∗ − a∗A∗‖1 = 4λ2 ‖ãA∗ − a∗A∗‖1 ,

where the second relation follows wpa1 by Lemma C.33. Since a∗Ac∗ = 0, Lemma
C.33 also implies that

∥∥ãAc∗ − a∗Ac∗∥∥1
≤ 3 ‖ãA∗ − a∗A∗‖1 wpa1. So H-(3) can be

invoked for vector (ã− a∗) and Ĝ. It follows wpa1

2(ã− a∗)′Ĝ(ã− a∗) + λ2 ‖ã− a∗‖1 ≤ 4
[
(ã− a∗)′Ĝ(ã− a∗)

]1/2

λ2

√
S∗
κn

≤ (ã− a∗)′Ĝ(ã− a∗) +
4λ2

2S∗
κn

,

since 4ab ≤ a2 + 4b2 for any number a and b. Rearrange above inequality

(ã− a∗)′Ĝ(ã− a∗) + λ2 ‖ã− a∗‖1 ≤
4λ2

2S∗
κn

,

and it must be

(ã− a∗)′Ĝ(ã− a∗) = Op

(
λ2

2S∗
κn

)
, ‖ã− a∗‖1 = Op

(
λ2S∗
κn

)
.

By H3-(2), (ã − a∗)
′Ĝ(ã − a∗) = Op

(
λ22S∗
κn

)
as well since (ã − a∗)

′Ĝ(ã − a∗) ≤
(ã− a∗)′Ĝ(ã− a∗) if (Ĝ − Ĝ) is positive semidefinite. Conclusion follows.

C.4.5 Sufficient conditions

Lemma C.34. Suppose O and H1 hold.
(1) If there exists some number ρ1n such that |m(z, pj(z))− pj(x)α0(x)| ≤

ρ1nΛn for each j = 1 . . . k, then εRn = ρ1nΛn

√
log k
n

.
(2) Suppose (1) holds and in addition ‖α0‖P,∞ < ∞. Then εRn = ρ1nΛn log k

n
+√

log k
n

;
(3) If there exists some number ρ2n and sub-gaussian f(z) such that

|m(z, pj(x))− pj(x)α0(x)| ≤ ρ2nf(z)

for each j = 1 . . . k, then εRn = ρ2n

√
log k
n

.

Proof. Let eRj (z) = m(z, pj(x)) − α0(x)pj(x). Note
∥∥En[eR]

∥∥
∞ = max

1≤j≤k

∣∣En[eRj ]
∣∣
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and by definition of α0, EeRj = 0 for each j = 1 . . . k.
Statement (1): By assumption,

∣∣eRj ∣∣ ≤ ρ1nΛn. Then from Lemma 14.14 in
Bühlmann and Van De Geer (2011) (i.e., Hoeffding moment inequality)

Emax
1≤j≤k

∣∣En[eRj ]
∣∣ ≤ [2 log 2k]1/2 max

1≤j≤k

[
n∑
i=1

(
ρ1nΛn

n

)2
]1/2

= O

(
ρ1nΛn

√
log k

n

)
.

Conclusion follows from Markov inequality.
Statement (2): Let (σRmax)2 = max

1≤j≤k
En
[
E
[∣∣eRj ∣∣2]]. Note by O, H1 and

‖α0‖P,∞ <∞

(σRmax)2 = max
1≤j≤k

E
∣∣eRj ∣∣2 ≤ max

1≤j≤k
Em2(Z, pj(X)) + max

1≤j≤k
E[α2

0(X)p2
j(X)]

≤ C max
1≤j≤k

Ep2
j(X) + ‖α0‖P,∞ max

1≤j≤k
Ep2

j(X) <∞.

Denote ẽRj =
eRj
σRmax

, it follows

En
[
E
∣∣ẽRj ∣∣2] =

En
[
E
∣∣eRj ∣∣2]

(σRmax)2
≤

max
1≤j≤k

En
[
E
∣∣eRj ∣∣2]

(σRmax)2
= 1.

And by assumption, for t = 3, 4 . . .

En
[
E
∣∣ẽRj ∣∣t] ≤ (ρ1nΛn

σRmax

)t−2

En

E ∣∣∣∣∣ eRjσRmax

∣∣∣∣∣
2
 ≤ (ρ1nΛn

σRmax

)t−2

.

Thus Lemma 14.12 in Bühlmann and Van De Geer (2011) (i.e., a version of
Bernstein’s inequality) can be invoked

E
(

max
1≤j≤k

∣∣En[eRj ]
∣∣) = σRmaxE

[
max
1≤j≤k

∣∣En[ẽRj ]
∣∣] = O

(
ρ1nΛn log k

n
+

√
log k

n

)
.

Then statement (2) follows by Markov inequality.
Statement (3): We need to show that for any δ > 0, there exists some C∗ <∞

large enough such that PR
n = P

{
max
1≤j≤k

∣∣En [eRj ]∣∣ > C∗ε
R
n

}
< δ.

Let ‖X‖ψ2
= inf {t > 0 : E exp(X2/t2) ≤ 2} be the sub-gaussian norm of ran-

dom variable X. Note ‖X‖ψ2
<∞ if X is sub-gaussian. By a version of Hoeffd-

ing’s inequality (for example, Theorem 2.6.3 in Vershynin, 2018), we have for any

175



C∗ and some constant c∗

PR
n ≤

k∑
j=1

P
{∣∣En [eRj ]∣∣ > C∗ε

R
n

}
=

k∑
j=1

P

{∣∣∣∣∣
n∑
i=1

1

n
eRj,i

∣∣∣∣∣ > C∗ε
R
n

}

≤
k∑
j=1

2 exp

− nc∗C
2
∗
(
εRn
)2[

max
i

∥∥eRj,i∥∥ψ2

]2

 =
k∑
j=1

2 exp

−nc∗C2
∗
(
εRn
)2∥∥eRj ∥∥2

ψ2

 ,
where the last relation follows by identical distribution assumption. Since also
for some c̃ > 0

∥∥eRj ∥∥ψ2
≤ c̃ ‖m(Z, pj(X))− pj(X)α0(X)‖ψ2

= c̃ ‖|m(Z, pj(X))− pj(X)α0(X)|‖ψ2

≤ c̃ ‖ρ2nf(Z)‖ψ2
≤ c̃ρ2n ‖f(Z)‖ψ2

,

where the first relation follows from Lemma 2.6.8 in Vershynin (2018), the second
equality is by definition of sub-gaussian norm, the third relation is by assumption
and definition of sub gaussian norm, and the last inequality uses property of any
norm. Hence

PR
n ≤ 2k exp

[
− cC2

∗

‖f(Z)‖2
ψ2
c̃2

(√
nεRn
ρ2n

)2
]

= 2 exp

[
log k

(
1− cC2

∗

‖f(Z)‖2
ψ2
c̃2

)]
,

and for any δ > 0, picking C∗ > c̃ ‖f(Z)‖ψ2

√
1
c∗
− log δ−log 2

c∗ log k
yields the desired

conclusion.

Lemma C.35. Suppose O and H1 hold. Then εun = Op

(√
log k
n

Λnµ∗

)
.

Proof. To bound ‖En [p(X)u∗ − E[p(X)u∗]]‖∞, use Lemma C.2. Let fj =
pju∗
n

for
each j = 1 . . . k. Then

Emax
1≤j≤k

∣∣∣∣∣
n∑
i=1

{fj(Xi)− E[fj(Xi)]}

∣∣∣∣∣ ≤ (8 log 2k)1/2 E

[
max
1≤j≤k

n∑
i=1

fj(Xi)
2

]1/2

,

but

E

[
max
1≤j≤k

n∑
i=1

fj(Xi)
2

]1/2

= E

[
max
1≤j≤k

n∑
i=1

p2
j(Xi)u

2
∗i

n2

]1/2

≤ E

[
n∑
i=1

Λ2
nu

2
∗i

n2

]1/2

≤ Λn√
n

(
Eu2
∗i
)1/2

=
Λn√
n
µ∗.

176



Hence

Emax
1≤j≤k

∣∣∣∣∣
n∑
i=1

{fj(Xi)− E[fj(Xi)]}

∣∣∣∣∣ ≤ (8 log 2k)1/2 Λn√
n
µ∗.

Conclusion follows by Markov inequality.

Lemma C.36. Suppose O and H1 hold.
(1) If there exists some number ρ3n such that |m(z, pj(x))| ≤ ρ3nΛn for each

j = 1 . . . k, then εmn = ρ3nΛn log k
n

+
√

log k
n

;
(2) If there exists some number ρ4n and sub-gaussian h(z) such that |m(z, pj(x))| ≤

ρ4nh(z) for each j = 1 . . . k, then εmn = ρ4n

√
log k
n

.

Proof. The proofs are similar to those of statements (2) and (3) in Lemma C.34.
Thus details are omitted.

C.5 Proofs for basic lemmas and other related re-

sults

C.5.1 Proof of Lemma C.1

See Giné and Koltchinskii (2006).

C.5.2 Proof of Lemma C.2

Let η1 . . . ηn be a series of independent Rademacher random variables independent
of X. By symmetrization inequality (Lemma 2.3.1, Vaart and Wellner, 1996)

Emax
1≤j≤k

∣∣∣∣∣
n∑
i=1

[fj(Xi)− Efj(Xi)]

∣∣∣∣∣ ≤ 2Emax
1≤j≤k

∣∣∣∣∣
n∑
i=1

[fj(Xi)ηi]

∣∣∣∣∣ . (C.44)

Notice E [fj(X)η] = 0 for each j = 1 . . . k, and |fj(x)ηi| ≤ |fj(x)| by definition of
ηi, i = 1 . . . n. It follows by Lemma 14.14 of Bühlmann and Van De Geer (2011)
(or Hoeffding’s moment inequality)

E

(
max
1≤j≤k

∣∣∣∣∣
n∑
i=1

[fj(Xi)ηi]

∣∣∣∣∣
)
≤ [2 log 2k]1/2 max

1≤j≤k

[
n∑
i=1

fj(Xi)
2

]1/2

. (C.45)

Combining (C.44) and (C.45) yields the result.
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C.5.3 Proof of Lemma C.3

To save space, only prove results related to α0. Those related to γ0 can be shown
in the same fashion. By definition

al = arg min
a∈Rk

E[α0(X)− a′p(X)]2. (C.46)

Statement (1) then follows from first order condition

2E [(α0(X)− a′lp(X))p(X)] = 0.

Statement (2) directly follows from definition of least square projection in (C.46)

E[u2
α0

] ≤ E[r2
α0

] ≤ ‖rα0‖
2
P,∞ = r2

α0
.

To see statement (3), use `k to investigate relationship between ‖uα0‖P,∞ and
‖rα0‖P,∞. By standard decomposition and definition of rα0

uα0 = α0 − a′bp+ a′bp− a′lp = rα0 + a′bp− a′lp,

where

a′bp− a′lp = p′E[p(X)p(X)′]−1E[p(X)p(X)′]ab − p′E[p(X)p(X)′]−1E[p(X)α0(X)]

= p′E[p(X)p(X)′]−1E [p(X)(p(X)′ab − α0(X))]

= Ln(p′ab − α0) = Lnrα0 .

Then statement (3) follows from triangle inequality and definition of `k.

C.5.4 Proof of Lemma C.4

Apply definition of Lnα0 and λmin {E[p(X)p(X)′]}

‖Lnα0‖2
P,2 = a′lE[p(X)p(X)′]al ≥ ‖al‖2 λmin {E[p(X)p(X)′]} .

By L1, E[p(X)p(X)′] has all eigenvalues bounded away from zero. It follows

‖al‖2 ≤
‖Lnα0‖2

P,2

λmin {E[p(X)p(X)′]}
≤
‖α0‖2

P,2 + ‖uα0‖
2
P,2

λmin {E[p(X)p(X)′]}
= O(1),

where the second inequality is by triangle inequality, and final relation follows
from ‖α0‖P,2 = O(1) by O and ‖uα0‖P,2 = O(1) by Lemma C.3-(2) and rγ0 = O(1).
Proof for the case of βl is the same and thus omitted.
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C.5.5 Proofs of Lemmas C.5 and C.6

Results follow from standard decomposition.

C.5.6 Proof of Lemma C.7

This follows from standard decomposition and linearity of m(z, ·)

{En [α̃(X)f(X)−m(Z, f(X))]}2

= {En [α̃(X)πnf(X)−m(Z, πnf(X)) + α̃(X)rn −m(Z, rn)]}2

≤2 {En [α̃(X)πnf(X)−m(Z, πnf(X))]}2 + 2 {En [α̃(X)rn −m(Z, rn)]}2 = 2T1 + 2T2.

C.5.7 Proof of Lemma C.8

By standard decomposition and linearity of m(z, ·)

{En [α̃(X)rn −m(Z, rn)]}2 =

{
1

n

n∑
i=1

[(α̃(Xi)− α0(Xi))rni + α0(Xi)rni −m(Zi, rni)]

}2

≤ 2T21 + 2T22,

where T21 =

[
1
n

n∑
i=1

(α̃(Xi)− α0(Xi)) rni

]2

, and T22 =

{
1
n

n∑
i=1

[α0(Xi)rni −m(Zi, rni)]

}2

.

Note by Markov inequality

T22 = Op

(
‖rn‖2

P,∞ ∧ ‖α0‖2
P,∞ ‖rn‖

2
P,2

n

)
,

since by iid assumption, property of α0 (E[α0(X)rn −m(Z, rn)] = 0) and O-(3)

ET22 = E

{
1

n

n∑
i=1

[α0(Xi)rni −m(Zi, rni)]

}2

=
1

n
E [α0(X)rn −m(Z, rn)]2

.
1

n
E [α0(X)rn]2 +

1

n
Em2(Z, rn) .

1

n
E
[
α2

0(X)r2
n

]
+
C

n
Er2

n .
1

n
E
[
α2

0(X)r2
n

]
,

and E [α2
0(X)r2

n] can be bounded by either

E
[
α2

0(X)r2
n

]
≤ ‖rn‖2

P,∞ Eα2
0(X) . ‖rn‖2

P,∞ ,

or
E
[
α2

0(X)r2
n

]
≤ ‖α0‖2

P,∞ E[r2
n] = ‖α0‖2

P,∞ ‖rn‖
2
P,2 .
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C.5.8 Proof of Lemma C.9

Statement (1)

By definition of α̃ in (2.17)

sup
g∈HWn

{En[α̃(X)g(X)−m(Z, g(X))]}2 + Pn(α̃(X))

≤ sup
g∈HWn

{En[α(X)g(X)−m(Z, g(X))]}2 + Pn(α(X)),

for every α ∈ Θn. (C.2) then follows from definition of sup operator. Indeed, for
every f ∈ HWn

{En[α̃(X)f(X)−m(Z, f(X))]}2 ≤ sup
g∈HWn

{En[α̃(X)g(X)−m(Z, g(X))]}2.

And (C.3) follows from (C.2) and {En[α̃(X)f(X)−m(Z, f(X))]}2 ≥ 0.

Statement (2)

For every f ∈ Θn, write f(x) = β′p(x) for some β ∈ Rk (wlog). By Cauchy-
Schwarz inequality

{En [α̃(X)f(X)−m(Z, f(X))]}2 = (β′En[eα̃(Z)])
2 ≤ ‖β‖2 ‖En[eα̃(Z)]‖2 ,

(C.47)

where eα̃(z) = m(z, p(x))− α̃(x)p(x). Next, note for every α ∈ Θn

‖En[eα̃(Z)]‖2 = ‖WnEn[eα̃(Z)]‖2 + En[eα̃(Z)]′(I −W ′
nWn)En[eα̃(Z)]

≤ ‖WnEn[eα̃(Z)]‖2 = sup
g∈HWn

{En[α̃(X)g(X)−m(Z, g(X))]}2

≤ sup
g∈HWn

{En[α̃(X)g(X)−m(Z, g(X))]}2 + Pn(α̃(X))

≤ sup
g∈HWn

{En[α(X)g(X)−m(Z, g(X))]}2 + Pn(α(X)), (C.48)

where the first equality follows by writing out ‖· ‖, the second relation is from
assumption thatW ′

nWn−I is positive semidefinite, the third relation uses Propo-
sition 2.1, the fourth relation is because Pn(α̃(X)) ≥ 0 by assumption, and final
relation is due to definition of α̃. On the other hand

‖β‖2 ≤
‖f‖2

P,2

λmin {E[p(X)p(X)′]}
, (C.49)
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since by L1

‖f‖2
P,2 = β′E[p(X)p(X)′]β ≥ ‖β‖2 λmin {E[p(X)p(X)′]} .

Combining (C.47), (C.48) and (C.49) yields the conclusion.

C.5.9 Proof of Lemma C.10

Statement (1)

‖Xn‖ = op(An) conditional on Yn means for any δ > 0 we have P {‖Xn‖ > δAn|Yn} →
0 as n → ∞. Then by dominated convergence theorem (for example, Theorem
25.12 of Billingsley, 2008)

P {‖Xn‖ > δAn} ≤ E[P {‖Xn‖ > δAn|Yn}]→ 0,

since P {‖Xn‖ > δAn|Yn} is uniformly integrable.

Statement (2)

This follows from statement (1). See also Lemma 6.1 in Chernozhukov et al.
(2018a) for more details.

C.5.10 Proof of Lemma C.11

By O

E[Ai(Zn)ei|Z1, · · ·Zn] = Ai(Zn)E[ei|Z1, · · ·Zn] = Ai(Zn)E[ei|Zi] = 0.

Hence E[Ai(Zn)ei] = 0 for each i = 1 . . . n by LIE. Since also E[e2|Z] <∞ almost
surely,

var

[
1

n

n∑
i=1

(Ai(Zn)ei)

]
= E

[
var

(
1

n

n∑
i=1

(Ai(Zn)ei)|Z1, · · ·Zn

)]

=
1

n2

n∑
i=1

E
[
A2
i (Zn)var(ei|Z1, · · ·Zn)

]
=

1

n2

n∑
i=1

E
[
A2
i (Zn)var(ei|Zi)

]
.

1

n2

n∑
i=1

EA2
i (Zn) =

1

n
E

[
1

n

n∑
i=1

A2
i (Zn)

]
.

Conclusion follows by Markov inequality.
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C.5.11 Proof of Lemma C.12

Note 1√
n

n∑
i=1

[Ai(Zn)(Yi− γ0(Xi))] = 1√
n

n∑
i=1

[Ai(Zn)ei]. The proof takes four steps.

Step 1

Conditional on Z1, · · ·Zn,

E[Ai(Zn)ei|Z1, · · ·Zn] = Ai(Zn)E[ei|Zi] = 0.

Step 2

Conditional on Z1, · · ·Zn, similar to proof of Lemma C.11

var

(
1√
n

n∑
i=1

[Ai(Zn)ei]|Z1, · · ·Zn

)
=

1

n

n∑
i=1

[
A2
i (Zn)var(ei|Z1, · · ·Zn)

]
=

1

n

n∑
i=1

{
A2
i (Zn)E[e2

i |Z1, · · ·Zn]
}

=
1

n

n∑
i=1

{
A2
i (Zn)E[e2

i |Zi]
}
.

Let Vn = var

(
1√
n

n∑
i=1

[A2
i (Zn)ei]|Z1 . . . Zn

)
, and Ui = n−1/2V−1/2

n Ai(Zn)ei. Then

n∑
i=1

var (Ui|Z1, · · ·Zn) = 1.

Moreover, by assumption, E[e2|Z] is bounded away from zero almost surely and[
1
n

∑n
i=1A2

i (Zn)
]−1

= Op(1). So conditional on Z1, · · ·Zn, V−1
n = O(1).

Step 3

Show that conditional on Z1, · · ·Zn,
n∑
i=1

Ui
d→ N(0, 1).Note conditional on Z1, · · ·Zn,

{Ui}ni=1 are mean zero and independently distributed. Invoke a version of Berry-
Esseen inequality (for example, Theorem 3.6 in Chen et al., 2010)

sup
t∈R

∣∣∣∣∣P
(

n∑
i=1

Ui ≤ t|Z1, · · ·Zn

)
− Φ(t)

∣∣∣∣∣ ≤ min

{
n∑
i=1

[
E |Ui|3 |Z1, · · ·Zn

]
, 1

}
.

Hence it suffices to show
n∑
i=1

[
E |Ui|3 |Z1, · · ·Zn

]
= op(1). By assumption, max|Ai(Zn)|√

n
=

o(1) and 1
n

n∑
i=1

A2
i (Zn) = O(1) conditional on Z1, · · ·Zn. It follows
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n∑
i=1

[
E |Ui|3 |Z1, · · ·Zn

]
=

n∑
i=1

n−3/2V−3/2
n |Ai(Zn)|3 E

[
|ei|3 |Z1, · · ·Zn

]
=

1

n3/2
V−3/2
n

n∑
i=1

|Ai(Zn)|3 E
[
|ei|3 |Zi

]
.

1

n3/2

n∑
i=1

|Ai(Zn)|3 E
[
|ei|3 |Zi

]
(since V−1

n = O(1))

.
1

n3/2

n∑
i=1

|Ai(Zn)|3 (since E
[
|ei|3 |Zi

]
bounded from above a.s.)

≤ max |Ai(Zn)|√
n

1

n

n∑
i=1

A2
i (Zn) ≤ o(1)O(1) = o(1).

Step 4

Conclude unconditionally
n∑
i=1

Ui
d→ N(0, 1), or n−1/2V−1/2

n

n∑
i=1

[Ai(Zn)ei]
d→ N(0, 1)

by dominated convergence theorem (for example, Theorem 25.12 of Billingsley,
2008).

C.5.12 Proof of Lemma C.28

Note under stated assumptions, both Ĝ and Wn are invertible wpa1. Hence,
when λ1 = 0, α̃ = p′(ĜWnĜ)−ĜWnP̂ = p′â wpa1, where â = Ĝ−1P̂ . It suffices
to treat α̃ = â′p. By triangle inequality

max
i
|α̃(Xi)|
√
n

.
max
i
|α̃(Xi)− Lnα0(Xi)|

√
n

+
max
i
|Lnα0(Xi)|
√
n

.

First, note by L1 and Lemma C.4

E
[
(Lnα0)2 (X)

]
= a′lGal ≤ ‖al‖

2 λmax(G) <∞.

It follows then
max
i
|αl(Xi)|
√
n

= op(1) by Lemma 11.2 in Owen (2001b).

Next bound
max
i
|α̃(Xi)−αl(Xi)|
√
n

. By Lemma C.15

â− al = Ĝ−1EneR + Ĝ−1En[uα0p(X)].

Thus standard decomposition yields

α̃(Xi)− Lnα0(Xi) = p′(Xi)
{
Ĝ−1EneR + Ĝ−1En[uα0p(X)]

}
= p′(Xi)Ĝ

−1EneR + L̃nuα0i,
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where L̃nuα0 = p′Ĝ−1En[uα0p(X)] is the empirical projection of uα0 onto Θn.
Thus

max
i
|α̃(Xi)− αl(Xi)| ≤ max

i

∣∣∣p′(Xi)Ĝ
−1EneR

∣∣∣+ max
i

∣∣∣L̃nuα0i

∣∣∣ .
Note by definition of `k and Lemma C.3

max
i

∣∣∣L̃nuα0 i

∣∣∣ ≤ ∥∥∥L̃nuα0

∥∥∥
P,∞

. `k ‖uα0‖P,∞ . `2
krα0 .

Hence
max
i
|L̃n(uα0i)|√

n
= op(1) under stated assumptions. As a final step we show

max
i

∣∣∣p′(Xi)Ĝ
−1EneR

∣∣∣
√
n

= op(1).

The proof is long and split into 5 steps.

Step 1

By assumption (1) in Lemma C.28 and Lemma C.24,
∥∥∥Ĝ−1

∥∥∥ = Op(1). Hence

max
i

∣∣∣p′(Xi)Ĝ
−1EneR

∣∣∣
√
n

= max
i

∥∥∥p′(Xi)Ĝ
−1
∥∥∥ ∣∣p̃(Xi)

′EneR
∣∣

√
n

≤max
i

∥∥∥p′(Xi)Ĝ
−1
∥∥∥max

i

∣∣p̃(Xi)
′EneR

∣∣
√
n

≤

(
max
i
‖p′(Xi)‖

)∥∥∥Ĝ−1
∥∥∥

√
n

max
i

∣∣p̃(Xi)
′EneR

∣∣
≤ ξk√

n

∥∥∥Ĝ−1
∥∥∥max

i

∣∣p̃(Xi)
′EneR

∣∣ . Op(1)max
i

∣∣p̃(Xi)
′EneR

∣∣ .
It suffices to show max

i

∣∣p̃(Xi)
′EneR

∣∣ = op(1).

Step 2

Note

max
i

∣∣p̃(Xi)
′EneR

∣∣ ≤ sup
x∈X

[
p̃(x)′EneR

]
= sup

x∈X
En
[
p̃(x)′eR

]
= sup

x∈X
En
[
p̃(x)′eR − Ep̃(x)′eR

]
,
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where the last equality follows from sup
x∈X

Ep̃(x)′eR = 0. To see this, for any p̃(x)

Ep̃(x)′eR = Ep̃(x)′[m(Z, p(X))− α0(X)p(X)] = E
k∑
j=1

p̃j(x)[m(Z, pj(X))− α0(X)pj(X)]

= E
k∑
j=1

[m(Z, p̃j(x)pj(X))− α0(X)p̃j(x)pj(X)],

=
k∑
j=1

E[m(Z, p̃j(x)pj(X))− α0(X)p̃j(x)pj(X)] = 0,

since for any j = 1 . . . k

E[p̃j(x)pj(X)]2 = E[p̃2
j(x)p2

j(X)] ≤ E[‖p̃(x)‖2 p2
j(X)] ≤ E[p2

j(X)] <∞.

It follows by definition of α0

E[m(Z, p̃j(x)pj(X))− α0(X)p̃j(x)pj(X)] = 0,∀j = 1 . . . k.

Step 3

Bound sup
x∈X

∣∣En [p̃(x)′eR − Ep̃(x)′eR
]∣∣. Conditional on data, let

D :=
{
d = (d1,d2, . . .dn) ∈ Rn : di = p̃(x)′eRi , x ∈ X

}
.

Then define ‖· ‖n,2 on Rn as ‖d‖2
n,2 =

n∑
i=1

d2
i . By symmetrization inequality

(Lemma 2.3.1, Vaart and Wellner, 1996), it follows

Esup
x∈X

∣∣En [p̃(x)′eR − Ep̃(x)′eR
]∣∣

=E
[
E
(

sup
x∈X

∣∣En [p̃(x)′eR
]∣∣ |X1 . . . Xn

)]
=2E

[
E
(
Eηsup

x∈X

∣∣En [p̃(x)′eRη
]∣∣ |X1 . . . Xn

)]
,

where η1 . . . ηn are independent Rademacher random variables. Therefore it suf-
fices to bound Eηsup

x∈X

∣∣En[p̃(x)′eRη]
∣∣ .
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Step 4

By Dudley’s inequality (Dudley, 1967, also see proof of Lemma 4.2 in Belloni
et al., 2015)

Eηsup
x∈X

∣∣En [p̃(x)′eRη
]∣∣ . 1√

n

∫ D
0

√
logN(D, ‖· ‖n,2 , δ)dδ,

whereD = 2sup
d
‖d‖n,2 = 2

{
En
[
p̃(x)′eR

]2}1/2

= 2
{
En
[
p̃(x)′eR

]2}1/2

≤ 2
[∥∥EneReR′∥∥]1/2.

For any x1, x2 ∈ X , wpa1{
En
[
p̃(x1)′eR − p̃(x2)′eR

]2}1/2

=
{
En
[
(p̃(x1)− p̃(x2))′ eR

]2}1/2

≤
{

[p̃(x1)− p̃(x2)]′En
[
eReR′

]
[p̃(x1)− p̃(x2)]

}1/2

≤‖p̃(x1)− p̃(x2)‖
∥∥En[eReR′]

∥∥1/2 ≤ ξLk ‖x1 − x2‖
∥∥En [eReR′]∥∥1/2

,

where the last inequality follows from definition of ξLk . It follows for some universal
constant CD

N(D, ‖· ‖n,2 , δ) ≤

(
CD
∥∥En[eReR′]

∥∥1/2
ξLk

δ

)dX

and

∫ D
0

√√√√dX log

(
C ‖En[eReR′]‖1/2 ξLk

δ

)
dδ ≤

∥∥En [eReR′]∥∥1/2
∫ 2

0

√
dX log

(
CDξLk
δ

)
dδ.

Step 5

Bound
∥∥En[eReR′]

∥∥1/2. Consider two cases.

Case 1 If Assumption (4)-(a) of Lemma C.28 holds

∥∥En[eReR′]
∥∥1/2

=
∥∥En[∆2p(X)p(X)′]

∥∥1/2 ≤ max
i
|∆i| Ĝ1/2.

Note Ĝ1/2 = Op(1). So wpa1

E
{
En
[
eReR′

]
|X
}
. n1/m.

Hence

E
[
sup
x∈X

∣∣En [p̃(x)′eR − Ep̃(x)′eR
]∣∣ |X1 . . . Xn

]
≤
n1/m

√
log ξLk

n1/2
→ 0.
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Conclusion follows by Markov inequality.

Case 2 If Assumption (4)-(b) of Lemma C.28 holds, it follows from Jensen’s
inequality and matrix Chernoff bounds (Theorem 5.1, Tropp, 2015) that

E
[∥∥En[eReR′]

∥∥1/2
]
≤
(
E
∥∥En[eReR′]

∥∥)1/2
.

√
ξ2
kn

t

n
log k →

√
c1n

t/2.

Hence

E
[
sup
x∈X

∣∣En [p̃(x)′eR − Ep̃(x)′eR
]∣∣] . E

∥∥En [eReR′]∥∥1/2
√

log ξLk .
nt/2√
n

√
log ξLk → 0,

and conclusion follows from Markov inequality.
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