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Abstract

In this thesis I investigate the drivers of household clean energy technology adoption,

looking at the role of economic variables, such as prices and monetary incentives,

but also at non-strictly economic dimensions, such as geography, peer in�uence,

health concerns, and heterogeneity in experience, priorities and perceptions of the

technology.

The topic develops into two main lines of inquiry. The �rst one explores the

uptake of residential solar PV systems in the UK. In Chapter 1 I look at how the

UK feed-in tari� (FIT) scheme contributed to shape the distribution of decentralised

electricity generation around the country. I ask in particular how e�ective the policy

was at triggering the siting of solar installations in locations with better generation

potential. In Chapter 2 I show that peer e�ects contribute to the di�usion of this

technology, and they act as complements to the monetary incentives. I discuss two

possible channels through which peer e�ects may operate � social utility derived

from imitation, and social learning from information sharing among neighbours �

and �nd evidence consistent with a dominant role of the latter.

The second line of research focuses on valuation of non-traditional cookstoves

in Sub-Saharan refugee settlements (Chapter 3) and rural villages in Odisha, India

(Chapter 4). I use stated preferences to investigate how di�erent features of the

cooking technologies and household heterogeneity a�ect willingness to pay. In the

context of refugee settlements in Sub-Saharan Africa (Chapter 3), I complement

the analysis by looking at how the non-traditional cookstoves distributed among

the residents a�ect fuel e�ciency, health and safety, time use and the gendered

distribution of the cooking workload. In Chapter 4, I focus instead on how positive

and negative experiences with biogas for cooking a�ect the stated willingness to pay

for that technology in rural India, and how experience interacts with risk aversion,

time preferences, and credit constraints.
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Introduction

Technological innovation is often cited in sustainable development discussions as the

key to conciliate environmental protection with development objectives (Ja�e et al.,

2003). If new inventions are fundamental to this purpose, attention must also be

paid to the process of adoption and di�usion of the new technologies on the ground,

and to the feedback that actual use under di�erent circumstances may provide to

innovation. To this purpose, behavioural and technical change need to go hand in

hand.

Given the monetary but also cognitive investments needed to switch to a new,

and therefore uncertain, technology, as well as the informational and economic exter-

nalities stemming from its adoption, di�usion is likely to be slower than the socially

optimal path would recommend (Ja�e et al., 2005). This picture becomes even more

complicated in the case of low-carbon energy technologies, as the issues linked to

the di�usion of innovation are compounded by the environmental dimension, and in

particular by the presence of environmental externalities and services whose bene�ts

or costs are non-rival and non-excludable.

The result of this, as Ja�e et al. (2003) point out, is a paradox of low rates

of adoption despite cost-e�ectiveness. Technological, organizational, social, and

institutional path dependency have resulted in a carbon lock-in, which requires

exogenous forces to be escaped (Unruh, 2000; Unruh, 2002; Unruh and Carrillo-

Hermosilla, 2006).

From an academic standpoint, this thesis contributes new perspectives and new

evidence to the literature on technology adoption, pro-environmental behaviour, and

the costs and bene�ts of the sustainable energy transition. In particular, the thesis

focuses on low-carbon energy generating technologies, and explores household pref-

erences and decisions when they are o�ered monetary incentives to adopt (Chapter

1), when they interact with peers (Chapter 2), when they have heterogeneous expec-
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tations but also heterogeneous priorities with respect to the service the technology is

o�ering (Chapter 3), and when they have di�erent levels of relevant past experiences

(Chapter 4).

From a policy perspective incentives, past experience, expectations and peer

e�ects all contribute to shape the economic trade-o�s and social norms that are

critical in the transition towards a more sustainable and clean energy system. In

each setting, I therefore acknowledge the role of economic drivers and market failures

(in particular externalities, imperfect information, split incentives, and lack of access

to credit), but also behavioural features (such as bounded rationality, inertia and

default bias, risk and uncertainty aversion, myopia, environmental attitudes and

social norms), and discuss how policy instruments may be designed to leverage the

interdependencies between the two dimensions.

This thesis explores several of the �promising and unanswered research questions�

identi�ed by Greenstone and Jack (2015), which are relevant for countries at all

income levels, as we grapple with the current climate crisis. In particular �What

factors or design elements cause people [...] to make energy e�ciency investments�,

�What are the costs and bene�ts of policies to improve environmental quality and

access to energy?�, �Will clean-energy products that work in the lab have the same

results when real people use them in real world settings?�, and �What policies can

be e�ective for climate mitigation?�.

In particular, Chapter 1 focuses on output-based incentives for small-scale re-

newables generation in the UK and their e�ectiveness in pushing the adoption of

residential solar photovoltaic (PV) systems towards locations with better potential

for electricity generation. Features of the UK Feed-in Tari� design and frequent up-

dates to the amount of subsidies o�ered are used to identify the e�ects of the scheme

on the geographical distribution of residential PV installations in the country. With

the estimated parameters, I then predict the uptake of residential photovoltaic ar-

rays under a hypothetical alternative policy scenario - a capacity-based subsidy -

and compare the resulting geographical distributions of installations and the rel-

ative cost-e�ectiveness. The main contribution of this paper is the estimation of

the responsiveness of residential PV demand to subsidy and installation price in

a context where incentives are output-based. As predicted by the theory, I �nd a

positive subsidy elasticity of demand, and a negative price elasticity. The geograph-

ical distribution of residential solar PV triggered by the policy appears to be only
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weakly correlated to the generation potential. This is the result of counteracting

e�ects due to of socio-demographic composition, work arrangements and character-

istics of the built environment. In fact, many of these contextual elements tend to

be more favourable for solar adoption in areas with lower solar potential. As a con-

sequence, the output-based subsidy is still more cost-e�ective than the hypothetical

capacity-based one, which fails to counteract those e�ects and results in a negative

correlation between installations and generation potential. On the other side, the

estimated trade-o� between the upfront price and periodic subsidies point towards

a high implicit discount rate of households, suggesting that an upfront incentive ad-

justed according to generation potential would have been more cost-e�ective. The

paper concludes with a discussion of the additionality of the policy and the amount

and cost of averted emissions from o�set generation.

Chapter 2 investigates how peer e�ects shape the spatial and temporal di�usion

patterns of residential solar photovoltaic (PV) systems in the UK, while a monetary

incentive scheme is in place. The literature suggests that household decision to

install solar panels, as well as to adopt other innovative technologies or practices, is

a�ected by peers who have already done so. This in�uence could operate through

information sharing with neighbours or peers � the social learning channel � or

because households obtain a non-monetary payo� when conforming with peers, that

increases the utility of adopting � the social utility channel.

I set up a simple model of technology adoption which considers the two channels

of peer in�uence, and obtain a set of hypotheses on the direction of peer e�ects,

how they evolve over time, and how they interact with the monetary incentives.

I then use spatial econometrics and purposely constructed estimators to test the

hypotheses with data from the UK, and �nd that the social learning channel seems

to be the dominant mechanism in the context under analysis. Of relevance for policy,

I �nd that peer e�ects are economically signi�cant, but they tend to be stronger in

the early period of the policy and become weaker in later years. I also �nd that

peer e�ects and monetary incentives act as complements, and discuss how this result

could be leveraged in policy design.

The second half of the thesis focuses on a di�erent set of energy-generating

technologies � clean cookstoves in low and middle income countries � that is similarly

associated to low rate of adoption, despite large potential private and social bene�ts.

Chapter 3 investigates whether low willingness to pay for non-traditional cookstoves
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is linked to mismatches between expected and actual performances, and between

the type of improvements promised and those each user is interested in. I use a

new and rich dataset compiled from surveys in two refugee settlements in Burkina

Faso and Kenya to test two competing interpretations: (i) users have low valuation

for the improvements o�ered by non-traditional cookstoves, or (ii) users value the

improvements but do not expect the stoves to deliver on them. In doing this, I show

the importance of controlling for respondents' expectations regarding the technology

o�ered, and heterogeneity of priorities on cooking.

In the second part of the paper, I look at whether the non-traditional cookstoves

distributed in the camps (mainly basic models of fuelwood improved cookstoves,

or ICS) delivers any signi�cant improvement in four dimensions of welfare - fuel

e�ciency, health and safety, time use, and women and children workload. In the last

part of the paper, I bridge the results on the bene�ts provided by non-traditional

cooking systems with the stated preferences and show that women are relatively

better than men at factoring the gains into their valuation.

Finally, Chapter 4 investigates preferences for small-scale biogas plants for cook-

ing among households in rural India. In addition to improving health thanks to

reduced smoke and indoor air pollution, biogas has the potential to be cheaper than

other cooking fuels, improve waste disposal and provide high-quality fertiliser for

agriculture. Data come from a discrete choice experiment (DCE) with over 500

households in rural Odisha, India, in an area that already has some penetration of

biogas thanks to subsidisation schemes. Using a strati�ed random sample, the paper

examines how previous experience with biogas is associated with the willingness to

pay (WTP) for the technology.

My co-authors and I �nd that households have strong interest for decrease in

smoke emissions and fuel savings, and appear to be highly interested in biogas

rather than non-traditional biomass-fuelled cookstoves. Households who have no

experience but are planning to build a biogas plant have similar preferences to

households who already have biogas and did not experience any malfunctions, while

households who had negative experience have a less enthusiastic taste for biogas. We

also �nd that experience (both positive and negative) counteracts the negative e�ects

on willingness to pay of risk aversion, impatience and concerns regarding access to

credit, and �nd no evidence of price anchoring, i.e. respondents who already have

biogas do not appear to tie their valuation to the price they paid. Policy implications
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are discussed for how to encourage uptake and use of the technology, and insights are

provided on the risk of abandonment of the new technology and on why households

engage in fuel stacking.
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Chapter 1

Output-based incentives for

residential solar PV: Demand

responsiveness, geographical

distribution, and alternative policy

scenarios

1.1 Introduction

In the last two decades, governments around the globe � as well as local authorities,

consumers' associations, and even utilities and private companies � have come up

with a rich variety of policy tools and incentives in support of the uptake of residen-

tial solar photovoltaic (PV) generation to help decarbonise the energy system. This

paper focuses speci�cally on output-based subsidies, a type of monetary incentive

that is paid periodically � for example every quarter or every year � and depends on

the amount of electricity generated by the PV system in each period. According to

economic theory, this feature of the policy design should trigger more installations

to occur where there is better potential for electricity generation, as in this case

the system would produce more and the household would receive larger payments

compared to a household in an area with lower solar potential (other things equal).

At the same time, households have to face an inter-temporal trade-o� between the

costs and bene�ts of adopting solar PV, as the price for the system and its installa-
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tion is mostly paid upfront (or over a short period), while the subsidy payments are

received periodically over several years. I exploit these two features of the policy

design to identify the e�ects of the output-based subsidy scheme on the geographical

distribution of residential PV systems, and investigate the implicit trade-o� between

upfront costs and future bene�ts that is revealed by households' observed behaviour.

Data for the empirical analysis come from England and Wales1, a territory where

there is a relevant geographical variation in solar potential, and a de facto pure

output-based subsidy scheme was in place between April 2010 and March 2019.

Frequent changes in the FIT rate assigned to new adopters, combined with the ex-

pected electricity generation outcome of each location, provide the variation needed

to identify the key parameters in the model, and estimate how the subsidy a�ects

the decision to install. This estimation strategy faces a number of challenges that I

address in the chapter, in particular endogeneity of the main regressors, self-selection

and correlated unobservables, bunching, and the use of a count outcome variable.

The estimated parameters are then used to investigate the trade-o� between up-

front costs and future subsidies and estimate the implicit discount factor. If house-

holds discount future subsidies at a higher rate than the government can borrow

at, then an upfront incentive would be more cost-e�ective than a periodic payment.

Finally, the estimated model is used to predict and compare the uptake of residential

solar PV under the observed policy scenario and under a hypothetical alternative

scheme, with subsidies still paid periodically but independent of the output gen-

erated � i.e. a capacity-based scheme, as one kW of installed capacity is paid the

same annual subsidy no matter how much it produces and where it is located in

the country. For each scheme, I investigate the resulting geographical distribution

of PV systems and the relative cost-e�ectiveness in terms of installed capacity and

generated electricity. If the output-based incentive is more successful in triggering

installations in locations with better solar potential than the capacity-based incen-

tive, then the former should result in a lower marginal cost of generation.

The research questions explored in this Chapter contribute to our understanding

of how centralised market-based incentives, such as Feed-in Tari� schemes, interact

with the behaviour of decentralised agents, that are now both consumers and produc-

ers of electricity. More broadly, the paper contributes to the literature on the future

1Northern Ireland is excluded as it is not involved in the UK Feed-in Tari� scheme. Scotland
is excluded because statistical areas in the country are constructed in a di�erent way as compared
to England and Wales.
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of electricity system regulation, load and capacity management, and integration of

renewables, and discusses practical policy alternatives to improve cost-e�ectiveness

of renewable energy subsidies, given budgetary pressure.

The paper develops as follows: Section 1.2 presents the main literature of refer-

ence and details the research questions addressed in the rest of the Chapter, while

Section 1.3 outlines the theoretical framework for the analysis. Section 1.4 provides

information on the UK Feed-in Tari� policy and the data used; Section 1.5 focuses on

the estimation of the parameters of interest, discussing the main challenges and the

identi�cation strategy, and presenting the results. Alternative policy scenarios and

cost-e�ectiveness are then investigated in Section 1.6, while Section 1.7 concludes.

1.2 Motivation

1.2.1 Main literature of reference

This research builds on a growing body of literature investigating the demand for

residential solar PV systems and the e�ectiveness of incentives for their adoption,

with applications mainly to the US, and most frequently California � De Groote

and Verboven (2019) on Flanders being a notable exception. The Flemish incentive

scheme consists of a mix of output-based subsidies � similar to the UK scheme � and

net metering � which is instead absent in the UK. In the US, support for residential

solar systems is o�ered at the federal level through a tax credit for around 30% of

the system cost. This is complemented by state-speci�c schemes, usually consisting

of some form of subsidies and net metering. Under the California Solar Initiative

(CSI) General Market Program, for example, residential solar PV owners can choose

between an output-based subsidy called Performance Based Incentive paid monthly

for 5 years, or an upfront lump-sum payment called Expected Performance-Based

Buydown � with the vast majority choosing the latter (Hughes and Podolefsky,

2015). Although classi�ed as a capacity-based subsidy, the Expected Performance-

Based Buydown is actually adjusted depending on the expected generation of the

solar array, calculated taking into account the characteristics of the system and the

roof, as well as the solar insolation of the location where it is installed. In the rest of

the Chapter, I will draw comparisons between the results reported by the literature

on the CSI and the results obtained here for the UK, and I will discuss the strengths
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and weaknesses of each policy design.

The literature looking at the microeconomics of residential solar subsidies may

be classi�ed according to two main approaches � reduced-form models and static

estimates on one side, and dynamic decision-making problems employing structural

models on the other. Among the works in the �rst strand, Hughes and Podolefsky

(2015) and Pless and van Benthem (2019) focus on the California Solar Initiative,

using di�erent empirical strategies. Hughes and Podolefsky (2015) exploit the dif-

ference in rebate amounts o�ered by di�erent utilities to identify the e�ects of the

rebate. As each utility serves a di�erent territory, the boundaries of the catchment

areas provide the discontinuity needed for identi�cation. This is combined with time

�xed e�ects and utility-speci�c time-varying �xed e�ects to control for unobservables

that might bias the estimates. Allowing the elasticity parameter to vary, they �nd

that a 0.10 USD (6%) increase in the rebate rate results in 20% more installations

in the early periods of the policy, but this e�ects decreases to 8% in later times,

corresponding to an average elasticity of -1.2. They estimate that the cost of the

policy is 0.06 USD/kWh generated. Pless and van Benthem (2019) focus instead on

the pass-through of the CSI rebate that is paid to the installers rather than to the

end-users, and in their analysis they estimate a price elasticity of demand for solar

panels of -0.85. Another important work to mention for its methodological as well as

empirical contribution, is Gillingham and Tsvetanov (2019). The authors estimate

the demand for residential PV in Connecticut, where systems are eligible for upfront

rebates. Their estimation model addresses three main issues that commonly arise

in this type of analyses, namely the use of a count outcome variable with excess

zeros, unobserved heterogeneity, and endogeneity of the main regressor - the price

of the PV installation. They develop a consistent estimator for an instrumental vari-

able (IV) Poisson hurdle model with �xed e�ects, and use subsidy rates and roo�ng

contractor wages after controlling for general local wages as instruments. The iden-

ti�cation strategy relies on di�erences in the rebate levels over time � due to cuts

to the incentives � and over di�erent location � due to time lags in the incentive

registration procedure. They estimate a price elasticity of -0.65.

Among the structural models, again focusing on California, Benthem et al. (2008)

build an inter-temporal model to derive the optimal solar subsidy schedule in Cali-

fornia, in the presence of environmental externalities and unappropriated learning-

by-doing, and �nd that the existing incentive schemes in the state are very close to
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the model's optimum, while without learning-by-doing, environmental externalities

alone cannot justify the high levels of subsidy. Burr (2016) analyses di�erent types

of incentives, concluding that upfront subsidies tend to result in more installations,

but output-based subsidies are more e�cient. She also notes that sub-optimal siting

of residential PV results in high welfare cost. Langer and Lemoine (2018) estimate

what the e�cient subsidy schedule looks like when taking into account expecta-

tions about future subsidy and technology cost. Bollinger and Gillingham (2019)

use a dynamic model of demand and supply to investigate the role of a rebate paid

through the installers in fostering learning-by-doing in the industry. Allowing the

elasticity to vary over time, they �nd values between -1.2 and -0.8, consistent with

results from previous reduced-form analysis. In a recent working paper, Snashall-

Woodhams (2019) uses highly disaggregated data on electricity consumption and

estimates of solar generation potential at the rooftop level to model households'

choice to adopt solar and compare the CSI with an optimally targeted subsidy. He

�nds that households discount heavily future bene�ts from solar, estimating an an-

nual discount factor of about 82%. Finally, De Groote and Verboven (2019) use

variation in subsidies for residential PV in the Flanders, Belgium, and a detailed

structural model to identify the discount rate users appear to employ when choos-

ing whether to install residential solar. As in the paper on California, they �nd

the annual discount rate to be very high at 15% (equivalent to an annual discount

factor of 0.86), and conclude that in cases in which the agents are myopic or dis-

count heavily the future for other reasons, upfront subsidies are more cost-e�ective.

On the issue of siting and geographical distribution of residential solar, it is worth

mentioning recent work by Sexton et al. (2018), estimating the e�ects of solar elec-

tricity generation on averted pollution damages and on grid congestion, and how

they vary over the US territory. They �nd substantial heterogeneity and spillovers

across states, and conclude that incentives could be made more e�cient and more

environmental bene�ts could be achieved by better linking the level of subsidies to

the location-speci�c outcome.

1.2.2 Research questions

Building on this literature, this Chapter aims to estimate the elasticity of residential

solar demand to an output-based subsidy, such is the one employed in the UK, and
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to the investment price of the system. This �rst step serves then as an input to

investigate and discuss how output-based subsidies shape the geographical distribu-

tion of solar PV systems over the country, and their e�ectiveness in triggering more

installations in locations with better potential for electricity generation.

To delve deeper into what mechanisms might be at play I use event study analysis

to test whether there is a bunching issue in the data and evidence of inter-temporal

substitution, and I exploit features of the policy design to investigate time pref-

erences and discounting, following a similar approach as De Groote and Verboven

(2019). I also brie�y start exploring the role of peer e�ects and heterogeneity of

the elasticity parameters over time, which are the focus of the next Chapter, and

I provide some estimates of the share of marginal and infra-marginal adopters (i.e.

the additionality of the policy), and the rents appropriated by the latter group.

In the second part of the paper, I use the estimates for the parameters of interest

to predict the pattern of installation under an alternative policy design � a capacity-

based subsidy constant throughout the country, but paid periodically so to preserve

the inter-temporal trade-o� between costs and bene�ts. By keeping all else equal �

i.e. the cost of the panels, geographic and climatic characteristics of each location,

and the idiosyncratic `preferences' of the residents of each area � I can therefore

compare how linking the incentive to the solar potential of a location improves the

cost-e�ectiveness of the scheme.

The UK FIT scheme is particularly interesting because it is an output-based

incentive � a production subsidy is paid periodically for each kWh of generated

electricity, according to the rate in e�ect at the date of installation. Variation in the

level of (expected) subsidy results from di�erences in the expected electricity output

in di�erent locations in the country and from changes in the FIT rate over time.

In fact, because the subsidy is output-based an installation in a location with high

solar potential receives a higher subsidy than a location with low solar potential, all

else equal. Similarly, a system installed in the early years of the programme receives

a di�erent subsidy than a system installed after the policy reforms.

Estimation in this setting presents a number of challenges. First, while the

subsidy rate was progressively curtailed, the cost of PV systems has also been falling

over time. I therefore control for changes in the cost. To control for potential

endogeneity and measurement error in my main regressors, I use an instrumental

variable approach. More speci�cally, I use local installers' wage, after controlling for
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general wage in the area, and price index of PV modules in international markets to

instrument for the cost of installation. To instrument for the subsidy, I instead use

relative latitude and longitude within municipalities and the FIT rate for di�erent

types of system. The former a�ects how much electricity the household can expect

from the panels, due to the solar potential of the location, while the latter is a

measure of government support for solar adoption and renewables in general and is

therefore correlated to the FIT rate of residential panels. In turn, the amount of

electricity generated and the FIT rate determine the subsidy the household receives.

Areas and time �xed e�ects are then used to correct for self-selection and cor-

related unobservables. Because the outcome is a count variable, I construct an

estimator based on Gillingham and Tsvetanov (2019) that assumes a Poisson data-

generating process, and provides consistent estimates when introducing IV and �xed

e�ects. I then perform robustness checks to address bunching � in case households

respond strategically to changes in the subsidy rate by installing later or earlier �

and investigate two mechanisms that might cause heterogeneity in the e�ects of the

main regressors, namely change in the parameters over time and peer e�ects.

Once I have estimated the parameters of interest, I use the �tted model to

predict the number of installations that would have occurred without subsidy and

when and where these installations would have occurred. I can then estimate the

rent that is appropriated by these inframarginal adopters, and identify the marginal

installations that have been induced by the policy, and would not have happened

without it. In the last part of the paper I predict the geographical distribution of

installations under an alternative policy scenario with a capacity-based subsidy. I

then use the results of this analysis to discuss the cost-e�ectiveness of the policy,

comparing the costs, the capacity installed and the electricity generated under each

scenario. The cost of decreased GHG emissions is also discussed.

1.3 Theoretical framework

1.3.1 Single agent problem

In the context of small-scale electricity generation, it is becoming more and more

common to refer to the owner of a system as a `prosumer' - a portmanteau between

the terms producer and consumer. The term aims to stress the change that these
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systems introduce in the relationship between the agent and the energy they consume

and produce, introducing new processes and frameworks of analysis. According to

this theoretical framework, the households involved in the decision to adopt a PV

system may be modelled as pro�t-maximising and cost-minimising agents, following

the theory of the �rm in microeconomics:

max
qk={0,1}

Π(qk, ψk) = Sk(yk(qk, ψk))− Ck(qk) (1.1)

that is, agent k chooses whether to adopt (qk = 1) or not (qk = 0) � or the capacity

to install � in the same way a �rm may choose to `enter the market' or to make

an investment, so to maximise their pro�ts (Π). ψk represents the solar generation

potential of the location where the installation is being considered, and depends on

conditions such as weather and cloud coverage, as well as tilt and azimuth of the

roof, and shading.

Pro�ts are given by the di�erence between the revenues that can be obtained

from the production of electricity (i.e. the subsidy S) and the cost, or investment

price, required to install (C). The cost includes the price of the modules, the inverter,

and any other component of the system, as well as the service of getting the panels

physically installed on the roof and the system up and running. In line with the

information collected from in-depth interviews with UK prosumers,2 the cost is

assumed to be paid upfront and without taking loans � but the analysis can be

easily adapted to accommodate instalments and loans. Given the speci�c case of

solar PVs in the UK, the revenues correspond to the output-based FIT subsidy and

depends positively on the electricity generated by the system (yk), which in turns

depends positively on the decision to install and on the solar potential of the location,

i.e. ∂Sout
k (yk)

∂yk
> 0 and ∂yk(qk,ψk)

∂ψk
> 0. As the UK incentive is purely output-based and

does not depend on the amount of electricity consumed by the household,3 there is

no need to model the consumption side in this framework. Therefore:

∂Πout(qk, ψk)

∂ψk
=
∂Soutk (yk(qk, ψk))

∂ψk
− ∂Ck(qk)

∂ψk
=
∂Soutk (yk(qk, ψk))

∂yk(qk, ψk)

∂yk(qk, ψk)

∂ψk
> 0

To understand how this scheme di�ers from a capacity-based incentive, consider

2In-depth interviews were conducted as part of the ENABLE EU project. More information on
the project and the methodology may be found in Standal et al. (2018, 2020).

3For example, the UK does not have any form of net metering, a scheme frequently used in
other countries. More details on the policy background are presented in the next Section.
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that under the latter the subsidy would only depend on the installation decision, i.e.

Scap = S(qk), and the solar generation potential parameter drops out of the pro�t

formula, so that:
∂Πcap(qk)

∂ψk
=
∂Scapk (qk)

∂ψk
− ∂Ck(qk)

∂ψk
= 0

That is, compared with capacity-based subsidies, output-based subsidies should trig-

ger more installations in areas with higher solar potential, and the di�erence between

the two distribution is larger the more variation in solar potential there is over the

country (i.e. the larger ∂yk(qk,ψk)
∂ψk

is), the higher the payment of an additional unit

of electricity generation is (∂S
out
k (yk(qk,ψk))

∂yk(qk,ψk)
), and the more responsive households are

to the level of subsidy.

Output-based subsidies are paid periodically4 in the case of the UK FIT for 20

years (or 25 for early stages of the scheme). The total subsidy Sk is therefore the

present value of the �ow of annual payments sk. Each payment is calculated as the

product between the FIT rate per kWh and the total amount of electricity generated

in the corresponding period. The latter is not a pre-determined amount, but depends

on several factors outside of the agent's control, including the solar potential of the

location and actual weather conditions. When considering whether or not to install,

the actual generation is therefore unobservable by the agent, and they consider

instead an `expected outcome'. I calculate the latter as the average estimated yearly

amount of electricity generated by a system according to its geographical location,

under some standard technical parameters.5 This value approximates the estimates

of electricity production that are provided by websites and solar installers.6

When the agent considers installing, the expected outcome is therefore the same

in every year � as roof characteristics are �xed, there is no reason to expect sys-

tematic di�erences in the weather in one direction or the other between years, and

the FIT rate per kWh generated is determined by the rate in place at the time of

adoption and is held �xed throughout the subsidy period.7 The annual subsidy can

therefore be considered as an annuity, calculated as the product of the expected an-

4Payments are usually monthly, quarterly or annually � here I consider annually, but this does
not a�ect the rest of the analysis.

5See Section 1.4 for more details.
6Interviews con�rm that households in the UK consider these estimates when deciding whether

to install PVs.
7The rate is indexed to the Retail Price Index (RPI) and is therefore adjusted for in�ation on

a yearly basis. There is therefore no need for the household to take in�ation into consideration in
their decision.
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nual generation (a random variable) times the FIT rate at the time of the installation

(a constant):

sk,t(yk,t(qk,t=0, ψk)) = yk,t(qk,t=0, ψk) · FITt=0 (1.2)

and taking the expectation at the time of the adoption decision:

E[sk,t(yk,t(qk,t=0, ψk)] = E[yk,t(qk,t=0, ψk) · FITt=0] =

= E[yk,t(qk,t=0, ψk)] · FITt=0 =

= sk(ȳk(qk,t=0, ψk) ∀t = 1, ..., T (1.3)

The total subsidy is therefore the present value of an annuity over a �nite period of

time:

Sk(qk) =
n∑
t=0

sk,t(yk,t(qk,t=0, ψk)

(1 + r)t
=

1− (1 + r)−T

r
sk(ȳk(qk,t=0)) = ρ sk(ȳk(qk,t=0))

(1.4)

where T is the number of years the subsidy is paid for (in this case 20 years), and

r is the discount rate. I do not make any assumption on the discount rate but

consider it as one of the parameter to be estimated. In the estimation section I

therefore calculate the implicit discount rate derived from the inter-temporal trade-

o� between upfront costs and future subsidies.

As the government sets the FIT rates, agents are `subsidy-takers' (equivalent to

price-takers �rms in the theory of the �rm). Similarly, agents can be considered to

be cost-takers, as their individual choices are unlikely to a�ect the investment cost

(in this case the price of the PV system and its installation). To support the latter

assumption, it is worth remembering that PV modules and inverters are mostly

imported from abroad and their price is determined in the international market.

1.3.2 Aggregate demand

The dependent variable for the empirical analysis is Qi,t, the count of new installa-

tions in a location i at a given time t, so from the single-agent problem, I aggregate

as follows:

Qi,t =
∑
k∈i,t

qk (1.5)
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Changes in the subsidies and in the installation price result in changes in the prof-

itability of the investment, and therefore trigger adjustment responses in how many

prosumers decide to install, which can be captured by a total elasticity term:

ηΠ =
∆Q

∆Π

Π

Q
=

∆Q

Q

S − C
∆S −∆C

=
ηS ∆S − ηC ∆C

∆S −∆C
(1.6)

and substituting for the expression of S in equation 1.4:

ηΠ =
ηs ρ∆s− ηC ∆C

ρ∆s−∆C

The parameters of interest in the estimation are therefore the partial elasticity

of installations to changes in the annual subsidy:

ηs =
% change in #installations

% change in subsidy
=

∆Q

∆s

s

Q
= βs

s

Q
(1.7)

and the partial elasticity to changes in the cost of purchasing and installing a PV

systems:

ηC =
% change in #installations

% change in cost
=

∆Q

∆C

C

Q
= βC

C

Q
(1.8)

I assume that agents display a constant response to changes in the levels of subsidies

and installation cost (β), and the elasticity therefore varies depending on the value

of these variables and of the number of installations (Q). I obtain estimates of the

β coe�cients through a reduced-form regression analysis in the next Section, and

then calculate the elasticity at the means of the parameters.

Another element of interest is the discount rate r. It is possible to recover

an implicit discount rate from the regression coe�cients by imposing that agents

respond in the same way to an increase (or decrease) in the total revenues S, as they

respond to a decrease (or increase) of the same magnitude in the installation cost C

(the same assumption is made implicitly in De Groote and Verboven, 2019). This

implies that the only di�erence between changes in the annual subsidy and changes

in the cost is that the former entails future cash �ows that need to be discounted,

while the latter is an upfront payment. Details of how the implicit discount rate is

obtained are presented in Section 1.5 when the regression model is presented.

Within this framework, I consider the main decision for a household to be

whether to install a PV system or not. I do not model the decision on the ca-
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pacity, or size to be installed, as in the UK there is evidence that this is constrained

by the available space on the roof and by the barrier of smaller FIT rates and au-

thorisation requirements for systems larger than 4kW. In fact, under the UK FIT

scheme (which applies to solar PV system up to 5MW), only systems 0-4kW are

eligible for the highest subsidy rate and do not require any authorization to be in-

stalled and connected to the grid, so that over 90% of the installations eligible for

FIT in the UK (i.e. solar PV systems up to 5MW) have a declared net capacity

smaller than 4kW (see Figure 1.3).

The size of the system is therefore implicitly constrained to a maximum of 4kW

in order to obtain the highest FIT rate and avoid the bureaucracy of obtaining

the authorization. Within the 0-4kW range, I assume that the size of the system

depends exogenously on the rooftop space available and is uncorrelated to the solar

potential of an area. UK prosumers interviewed by the author (Standal et al., 2018,

2020) often mentioned that the number of panels installed was constrained by the

size of their roof. I do take into consideration that as the technology evolves, a panel

of the same surface area may correspond to greater installed capacity. To do this,

I compute the median panel size installed in each local authority8 in each year (see

Figure 1.1) and use this value whenever I need to convert the number of installations

into installed capacity.

The analysis can be easily extended to model the choice of the panel size, by

considering a continuous qk bounded at zero, rather than a dichotomous variable. In

this case the aggregated demand Q =
∑

k qk would represent the installed capacity

rather than the count of installations, and would be continuous, but still bounded

at zero.

To estimate how responsive demand is to changes in the subsidy, I use a reduced-

form model (described in more details in Section 1.5) with the number of new PV

installations on the left-hand side, and the annual expected subsidy that could be

received given the location and the date of the installation on the right-hand side.

The dataset consists of a panel of installation counts for each location in England

and Wales, observed at the monthly level. For each observation unit I calculate

the corresponding expected annual subsidy given the location and date. The next

Section provides additional information on the policy context and the data used.

8Local authorities are administrative areas at a higher aggregation level than the statistical
areas considered as observation units.
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Figure 1.1: Distribution of system size in each year, in the 0-4kW category.

1.4 Policy background and data

1.4.1 The UK Feed-in Tari� scheme: a pure output-based

subsidy

Between 2010 and 2019, the UK supported small-scale clean electricity generation

through a Feed-In Tari� (FIT) scheme, which covered solar PV, wind turbines,

hydroelectric, micro combined heat and power (CHP), and anaerobic digestion sys-

tems, up to 5MW. The scheme provides direct economic bene�ts to the owner of the

system through two rates, the generation or production rate for generated electric-

ity, and the export rate for the electricity that is sold to the grid. The production

rate is paid on the total amount of generated electricity, recorded by an appropriate

meter, while the export rate is paid on the assumption that 50% of the electricity

generated is exported, as the quantity e�ectively exported is not currently metered

for residential small-scale systems (McKenna et al., 2018). This makes the subsidy

purely output-based, as its amount only depends on the electricity generated, and

does not require to model and estimate how much of the electricity generated is

used for self-consumption and how much is exported (in the UK there was no net

metering scheme in place in the years included in the analysis).
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The rates are assigned according to the date of the installation, with di�erent

values depending on the technology and the installed capacity of the system. These

rates are then paid for 20 years (25 for solar installations in the early years of the

scheme, later shortened to 20 for consistency with the other eligible technologies),

and every year they are adjusted for in�ation, according to the changes in the

Retail Price Index over the previous year. The budget for the scheme comes from

the general electricity bills of all energy suppliers' customers - as it is the case for

other energy-related schemes in the country. This funding mechanism has attracted

a lively political debate on the distributional equity of the scheme, and was one of

the main arguments behind the closure of the scheme in 2019. While this issue is

not convered in this Chapter, I refer to Grover and Daniels (2017) for a discussion

on the UK, and Borenstein (2017) for California.

Figure 1.2: Changes in the FIT rates (production and export), for 0-4kW solar PV systems.

The FIT scheme was reformed various times since its introduction in April 2010.9

The evolution of the rates for 0-4 kW solar PV systems, is shown in Figure 1.2.

Quoting the sustained decrease in capital costs of solar PVs as the main rationale,

the production rate has been repeatedly adjusted downward, moving from 54.17

9Details on the various phases and reforms of the policy have been collected from materials and
reports by the UK O�ce of Gas and Electricity Market (Ofgem) and the former Department of
Energy and Climate Change (DECC), now merged in the Department for Business, Energy and
Industrial Strategy (BEIS).
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p/kWh10 in 2010 to 3.79 at the beginning of 2019, to be de�nitely phased out in

March 2019. Major reforms to the rate and other features of the scheme were intro-

duced in 2012 and 2016. In particular, an automatic and roughly quarterly degres-

sion mechanism was introduced at the end of 2012. The degression mechanism was

pegged to pre-determined deployment objectives, that were nonetheless frequently

modi�ed. If these were not met and uptake was lower than the required threshold,

the degression was postponed for up to two consecutive quarters. The rationale was

that in this way the rate could be progressively reduced in line with the reduction in

costs and increase in uptake without the need for government intervention, therefore

reducing uncertainty in the sector. The scheme was initially intended until 2015,

triggering a period of policy uncertainty as reforms to the system were discussed and

the renewal of the scheme was questioned. The FIT scheme was then suspended at

the beginning of 2016, before being reformed and re-instated in February.

Contrarily to the production tari�, the export tari� rate has undergone fewer

amendments, and was adjusted upward, from 3.82 p/kWh to 5.38 p/kWh, in mid-

2012. These progressive and sharp changes to the subsidy rate provide the main

source of variation over time for the identi�cation of the subsidy elasticity as ex-

plained in the following sections.

Aggregated data and trends on adoption of small-scale PVs in the UK are pre-

sented in Figures 1.3 and 1.4. Residential installations of less than 4kW constitute

the vast majority (more than 90%) of small-scale electricity generating installations

in the UK, both in terms of number and aggregated capacity. The trends in both

�gures show evident changes in correspondence of the major policy reforms.

1.4.2 Data

I compile two versions of my main dataset, one using as units of observation the

Lower-layer Super Output Areas (LSOAs) as de�ned in the 2001 Census, and one

using a higher level of aggregation, the Middle-layer Super Output Areas (MSOAs).

The �nal dataset consists of observations for all the 34,378 LSOAs � or 7,194 MSOAs

� in England and Wales.11 Super output areas at di�erent aggregation levels are

10The tari� is indexed to in�ation and updated every year. All the tari� values are expressed at
their 2019 level, at the time the FIT scheme was closed.

11Northern Ireland is excluded as it is not involved in the UK Feed-in Tari� scheme. Scotland
is excluded because statistical areas in the country are constructed in a di�erent way as compared
to England and Wales.
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Figure 1.3: Cumulative installed capacity in the UK (kW), by month.

Figure 1.4: Number of installation in the UK, by month.
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a statistical construct, developed for presenting local statistical information from

di�erent sources and o�ces in a standardized way.

The choice of LSOAs and MSOAs as aggregation levels is driven on one side

by data availability, as these are the most granular level at which PV installa-

tion data could be obtained, but at the same time is preferred over post-code

district (the other available unit) due to the way they are constructed. In fact,

the LSOAs ans MSOAs are purposedly de�ned to insure within-homogeneity and

between-comparability in the context of Neighbourhood Statistics and Census data

collection, and to be roughly comparable to one another in terms of size of resi-

dent population. Geographical proximity and information on the prevalent type of

dwelling, tenure, etc. are also used to ensure a compact shape and socio-demographic

homogeneity12. LSOAs have a minimum of 1,000 residents, a maximum of 3,000 and

an average of 1,500 (equivalent to 650 households, with a minimum and maximum

of 400 and 1,200 respectively). MSOAs contain a minimum of 5,000 residents (or

2,000 households) and a maximum of 15,000 (or 6,000 households).

These are all desirable properties for an areal unit in spatial analysis, given that

the exact coordinates of the installations are not available. Nevertheless, we must be

aware of the Modi�able Areal Unit Problem which comes with such aggregations, as

results may be sensitive to the level of aggregation as well as the shape and where the

boundaries are set, and an extension of the present work may check the robustness

of the results when other speci�cations are chosen (e.g. LSOAs, local authorities

or postcode districts. See Briant et al., 2010 for the general issue and Flowerdew,

2011 for the speci�c case of UK Census data). Details of the main variables used

for the analysis are described in the next paragraphs, while summary statistics are

presented in Table 1.1.

Data on residential solar PV installations

Data on residential PV installations are obtained from the Ofgem Feed-in Tari�

Installation Report, which contains information on the country's small-scale (i.e.

below 5MW) renewable energy generation systems that are connected to the grid,

12The o�cial de�nition and methodology are provided by the Neighbourhood Statistics division
of the O�ce for National Statistics (ONS). Some LSOAs and MSOAs were merged or split in 2011,
due to changes in their composition, however these changes only a�ected 2.5% LSOAs and 2.1% of
MSOAs. See �Census geography - An overview of the various geographies used in the production
of statistics collected via the UK census.�, on the ONS portal.
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Table 1.1: Summary statistics.

mean sd min p25 p50 p75 max

PV count 1.01 2.66 0 0 0 1 219
Installed base 38 46 0 5 21 54 474
Generation potential 957.17 58.77 729.16 919.68 966.18 986.04 1121.76

(kWh/year)
Subsidy 2.53 1.26 1.05 1.58 1.73 4.12 5.03

(100GBP/kW)
Install. cost 2.23 0.71 .13 1.71 1.91 2.62 7.68

(1,000GBP/kW)
Pres.Value of Pro�tability 0.45 0.86 -3.23 -0.13 0.06 1.03 4.58

(1,000GBP/kW)
Internal Rate of Return 0.09 0.05 0.00 0.06 0.07 0.11 3.60
Electricity price (p/kWh) 14.49 1.07 12.06 13.69 14.75 15.25 16.67
Av. electricity cons. 2010 3865.56 611.22 2388.93 3456.26 3734.87 4128.44 7779.3

(kWh/year)
Density 3265 3508 6 650 2466 4478 27673
Surface area (km2) 21.01 52.78 0.29 1.73 3.19 11.86 1128.07
Owner-occupied houses 1906 695 24 1488 1926 2357 5182
Median house price 202.09 125.56 30.00 124.98 172.75 243.66 3500.00

(1,000GBP)
Total resident population 7904 1694 2225 6618 7695 8867 25245
� 40-64 year old 2557 555 545 2165 2496 2882 6226
� ≥65 year old 1363 495 194 1015 1310 1642 4656
� socio-economic group A 179 112 16 96 153 235 868
� socio-economic group B 263 180 24 136 220 340 1593
� socio-economic group C 972 347 228 723 945 1186 2849
� socio-economic group D 491 163 70 375 470 586 2384
� socio-economic group E 365 154 81 260 336 438 1388
� socio-economic group F 374 130 55 282 365 456 1105
� socio-economic group G 611 199 121 467 597 736 1580
� socio-economic group H 474 223 59 304 442 611 1513
Flats 601 686 11 184 363 717 5725
Terraced houses 816 559 17 394 684 1112 3710
Semi-detached houses 989 508 11 646 939 1286 3569
Detached houses 713 593 3 199 546 1140 3716
Work from home 302 136 57 206 274 364 1167
Homemaker 340 114 46 261 323 398 1123
Retired 712 241 94 547 688 848 2445
Unemployed 175 95 18 104 148 224 838
Born in UK 6588 1395 2082 5583 6478 7399 13536
Born in EU 166 146 16 78 120 195 1550
Born elsewhere 480 660 17 121 213 470 6143
PV FIT rate, 1-5MW 12.44 9.97 5.73 6.38 7.10 8.90 30.70

(p/kWh)
Wind FIT rate, 0-2kW 26.22 9.31 13.73 17.78 21 36.2 36.2

(p/kWh)
Latitude 52.356 1.129 49.922 51.478 52.134 53.369 55.765
Longitude -1.353 1.303 -6.312 -2.216 -1.382 -0.250 1.747
Chinese PV price index 0.81 0.38 0.53 0.55 0.57 0.98 1.62
Median earnings 510.24 62.52 443.10 469.20 484.50 529.00 670.80

(GBP/week)
Median wage, electric 12.53 1.02 11.14 11.86 12.2 12.92 15.35

(GBP/hour)

# Months 70
# Statistical areas 7,194
# Local authorities 348
Tot. observations 503,580
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as well as stand-alone systems. Each installation record contains among other pieces

of information the LSOA in which the system is located, the date the system was

commissioned, the declared net capacity of the system, the technology,13 and a

code for the FIT rate it receives. To construct my dataset, I select the solar PV

installations that receive the FIT rate for 0-4 kW systems. Of these, I remove

the installations assigned to the �middle� rate, as this indicates the owner has 25

or more installations � and is therefore likely to be a solar company installing on

rented rooftop space, rather than a household � as well as installations receiving the

�lower� rate, meaning that the building where the solar PV system is being installed

does not satisfy the minimum Energy E�ciency Requirement (this only a�ects 1%

of installations in the 0-4 kW category).

13The report includes all the technologies eligible for FIT, i.e. solar PV, wind turbines, hydro-
electric, micro combined heat and power (CHP), and anaerobic digestion systems.
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(a) 2011 (b) 2017

Figure 1.5: Geographical distribution of residential solar PV systems in England and Wales.
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The total stock of 0-4 kW solar PV systems in each LSOA is mapped in Figure

1.5 for 2011 and 2017. Comparing this Figure with Figure 1.6, it can be seen that

installations appear to be mainly concentrated in rural and less dense areas, while

the major cities - London in particular - display a substantially lower installed base,

consistent with the literature (Graziano and Gillingham, 2015). Although income

is considered as a key determinant of PV adoption � both directly, because of the

investment required, and indirectly, as higher-income households are more likely to

live in a house rather than in a �at and to be owners rather than tenants � there does

not seem to be an evident correlation between the two variables (Figure 1.7), as the

wealthy South-East has a relatively low number of adoptions, while the South-West

and part of Wales have the largest installed base in the country, despite not being

rich areas. At the same time, areas around Leeds are relatively wealthy and rich in

residential PVs, while the northernmost parts of Wales and Yorkshire are neither.

Solar irradiation is another relevant variable, as it is the key determinant of PV

electricity yield (see Figure 1.8). Again, if compared with the PV system distribution

maps, it can be seen that although some areas, such as the South-West, have a

consistent positive relationship between insolation and PV adoption, the situation in

other areas is more puzzling, with the South-East showing substantial unexploited

potential for solar power, while adoption is higher at the border with Scotland

despite receiving considerably less solar radiation. Understanding the drivers behind

the adoption of residential solar PV is therefore a less straightforward task than one

might think, as socio-economic, demographic, geographical and built-environment

characteristics all contribute to shape the uptake of this technology.

Annual (expected) subsidy and the investment cost of PV installations

To estimate the role monetary incentives play in this context, I need a measure

of the annual subsidy (i.e. the `revenues') that can be expected when installing

a residential solar PV system at a given time and in a given location. I compute

these annual potential revenues as the product of the estimated annual electricity

output of a panel of 1kW of installed power at a given location, by the FIT rates

applicable in a given month. The electricity output is measured in kWh/year for kW

of installed power, and varies according to the geographical location and its solar

insolation, as well as contextual factors such as cloud cover and rainy days, buildings
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Figure 1.6: Geographical distribution of rural and urban areas in England and Wales.

Figure 1.7: Geographical distribution of income in England and Wales.
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and trees shadows, as well as the tilt, azimuth and direction of the roofs. Data on

the output for each year between 2009 and 2016, under some standard installation

conditions14, were obtained from the Photovoltaic Geographical Information System

(PVGIS European Communities, 2001-2017)15 for each LSOA population-weighted

centroid, and averaged over the di�erent years to smooth the e�ects of meteorological

factors. The resulting distribution of the electricity output over England and Wales

is presented in Figure 1.8.

These values change over space, but are time-invariant. The FIT rates per kWh

generated, on the contrary, are constant throughout the country, but vary in time.

Each installation is assigned the FIT rate in place on the date of the installation,

and that rate is paid for 20 years according to the kWh of electricity generated in

each year. As described above, the owner of the system is paid a production rate for

the electricity generated, and an export rate for 50% of the total generation, which

is assumed to be the quantity exported to the grid, as the actual amount exported is

not metered. I therefore obtain the annual expected revenue for each LSOA-month

combination as the product of the yearly expected electricity generation for 1kW

installed in that LSOA and the rate corresponding to that month (in p/year per kW

of installed power). MSOA-level data are obtained as average of the LSOAs values.

The total rate is given by the production rate plus 0.5 times the generation rate.

The resulting annual subsidy variable varies in both time and space � due to

the changes in FIT rate and the variation in solar generation potential, respectively

� and this variation is exploited to identify the e�ect of subsidy on adoption in

the following section. The range of the expected revenues for each month across

the di�erent locations are presented in Figure 1.9, while summary statistics are

presented in Table 1.1. The average subsidy varies from more than 400 GBP per

year per kW of installed capacity at the start of the scheme, to between 150-200

GBP after the reforms in 2012, to only around 65 GBP after the 2016 reform.

The way subsidy data are calculated and the way subsidy rates are determined

by the government may raise concerns of measurement errors and endogeneity. Mea-

14Peak power: 1kW; slope: 35 degrees; system losses: 14%. System losses gives an average of
the performance over the 20 years the FIT is paid out, and include module degradation of about
0.5% per year.

15Data were obtained from the European Commission Joint Research Centre in Ispra. Values are
based on the PVGIS SARAH database. Details on the methodology and the dataset can be found
in Huld and Amillo (2015) and Huld et al. (2012). More information on the data and methodology
can be found at https://ec.europa.eu/jrc/en/PVGIS/docs/methods.
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surement errors may arise because the expected electricity outcome is obtained for

standard parameters levels and at the population-weighted centroids, rather than

using actual values (which are unobservables). Regarding endogeneity, the frequent

adjustments and cut to the subsidy rate may have been a�ected by the demand for

solar systems. Instrumental variables (IV) for subsidies are therefore introduced in

the next Section.

Figure 1.8: Map of electricity generation. Output, kWh/year for kW of installed power,
average 2009-2016. Own elaboration on Photovoltaic Geographical Information System
(PVGIS) data.

I refer to the price paid to purchase and install a solar system as `cost' of the

installation, as I am framing the installation problem as an investment decision

with a trade-o� between costs and future revenues. Data on the median cost for

an installation per postcode area per quarter comes from the Micro Certi�cation

Scheme (MCS) to which each installation must register to be eligible for the FIT.

Additional data on the countrywide average cost per month comes from the Depart-

ment of Energy and Climate Change (DECC, now part of BEIS, the Department
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Figure 1.9: Expected annual FIT payments for kW of installed power, according to month
of installation and location (left axis; average value highlighted), and number of residential
PV installations in each month (right axis). Own calculation on Photovoltaic Geographical
Information System (PVGIS) data and Ofgem data.

for Business, Energy and Industrial Strategy) �Annual Cost of Small-Scale Solar

Technology Summary�, May 2017. Cost data were only collected in a systematic

manner starting from April 2013, and the Department does not provide data for

previous years; for years before 2013, estimates of the average country-wide cost are

obtained from the Green Business Watch report �UK residential solar panel costs

and returns: 2010-2017�. These are used for consistency checks.

MCS data are converted from cost per installation to cost per kW installed,

by dividing them by the capacity of the median installation in the corresponding

area and quarter. The resulting postcode-area-by-quarter dataset contains missing

values for cases in which no installation was recorded or the price was not reported.

I �rst assign the costs of each postcode area to all of the MSOAs within it, and the

average price of multiple postcode areas to MSOAs that cross postcode boundaries.

Imputing the postcode area-level data (this is a higher level of aggregation with

respect to MSOAs, but is the most disaggregated level MCS agreed to disclose) to

the MSOAs is a sensible approach in this setting, as installers compete over large

areas and could carry out installations far from their headquarters.16. Moreover, the

16Based on interviews with prosumers (Standal et al., 2018, 2020) and information from installers'
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supermarket chain Tesco, and more recently Ikea, sell solar panels throughout the

country, contributing to make the cost of installations more uniform across larger

areas. I then interpolate the existing data for each MSOA over time, to �ll the

gaps in the time series. This approach leaves missing data before the �rst price in

a location is recorded and after the last one, as well as missing data for postcode

areas with no cost data throughout the period. This missing data are imputed by

using the average cost for the region17 to which the MSOA belongs, for any given

year, based on the same rationale of competition among suppliers discussed above.

Finally, the quarterly data are converted into monthly data using the moving

average over the two months before and after each observation, to smooth the trends.

The distribution of the �nal cost data for every year is presented in Figure 1.10 and

summary statistics are presented in Table 1.1. The average cost across the country

decreased from about 3,000 GBP per kW of installed capacity in 2010-2011 to about

2,000 in 2012-2015, to plateau around 1,600 GBP from 2016 onwards.

The need to use data at a higher aggregation level, impute missing data that

cannot be observed and to smooth data trends to convert them from quarterly

into monthly can be framed as an issue of measurement error, and might produce

measurement error bias. The cost of the installations might also be a�ected by

the demand for systems in each period, therefore challenging the assumption of

exogeneity of this regressor � although most of the hardware components, inverter

and PV modules are imported from other countries and their price is therefore

determined in the international market. As for the subsidy variable, these issues are

addressed using an instrumental variable (IV) approach, as illustrated in the next

Section.

As shown in Section 1.3, installing a solar PV system can be thought of as

an investment, as households pay the upfront installation cost, and then receive a

return over time thanks to the FIT scheme, here approximated by constant expected

annual revenues. To have an idea of how attractive this investment is, I build cash-

�ow vectors of the (negative) upfront installation cost and 20 successive constant

(positive) payments of the expected annual revenues, and use them to calculate the

internal rate of return (IRR) of the investment for each area-month combination.

The results of the calculation are presented in Figure 1.11, comparing the trend in

websites.
17Regions are a more aggregated administrative level, in total there are 10 regions in England

and Wales.
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Figure 1.10: Trend in the cost of residential solar PV systems. Own elaboration on data
from MCS.

the IRR with the observed trend in installations.

It can be noticed that the estimated IRR (calculated for every area-month, not

just for those with a positive number of installations) before 2016 is almost always

above 3%, and in the early period of the policy, when the tari� rates were held �xed

while the cost was falling, it scored as high as 10-18% for the average area, well above

the returns from low-risk investments in �nancial instruments in the country.18 The

trend in installations appear to follows the trend in the IRR, and the values are

positively correlated.

Savings on electricity bills and other covariates

More indirect bene�ts of adopting residential solar are provided through savings in

the electricity bills, as the generated electricity can be used for free reducing the

amount of energy bought from the utility. In fact, given that export to the grid is

`deemed' and not actually measured, self-consumption does not a�ect the payment

received through the generation and export rate, and it therefore has no opportunity

cost.
18During in-depth interviews with households who installed residential PV at various moments,

it was often mentioned that the solar panels were seen as a sensible investment and a better
alternative than keeping money in the bank (Standal et al., 2020).
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Figure 1.11: Internal rate of return, for kW of installed power, according to the month of
installation and location (left axis, average value highlighted), and number of residential PV
installations in each month (right axis). Own calculation on data provided by Photovoltaic
Geographical Information System (PVGIS, Huld et al., 2012), Micro Certi�cation Scheme
and Ofgem.

McKenna et al. (2018) monitored data from more than 300 UK households in-

volved in a smart grid project, and found that on average the annual self-consumption

level for households with solar PV systems is around 45% of the total PV generation,

covering around 24% of households electricity demand. For reference, the yearly

electricity demand of a household in the UK is around 4,000 kWh and the average

retail price of electricity in the period of reference is around 15 p/kWh, resulting

in estimated savings of around 138 GBP/year per household. This is equivalent to

less than a third of the expected annual subsidy in the early period of the policy,

while it is comparable with the expected annual subsidy in the last months of the

policy. The relevance of bill savings with respect to the subsidy has therefore grown

over time, as the amount of subsidies decreased. The study, together with other

quantitative and qualitative work on the UK (see for example Standal et al., 2020,

2018; Bulkeley et al., 2016; Bell et al., 2015; Bulkeley et al., 2015) �nds a large

range for self-consumption values (both in absolute terms and as a percentage of

total electricity demand), and show that the level achieved by a households is highly

heterogeneous and depends on a wide variety of factors, including social, economic,
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educational, geographical, technical and demographic characteristics (including for

example how much time member of the household spend at home during the day,

i.e. when the system is generating; whether they have timers to schedule the use

of appliances; age and gender composition; education level and background; load

pro�le of the household and the type of appliances used), inter-household dynamics,

the level of internalization of green preferences and of familiarity and understanding

of `smart' grid procedures and technical aspects of the grids. They �nd that the size

and generation of the solar PV system are therefore only part of the explanation

for the level of self-consumption and bill savings. Qualitative evidence from these

studies also show that many UK households are unwilling to change their habits

and to put much e�orts in monitoring generation and shifting their electricity use

accordingly. In particular, quoting Bulkeley et al. (2015): �The UK's feed-in tari�,

particularly in the presence of low interest rates and insecurity about housing and

�nancial markets, led to PV being regarded as one of the most secure and prof-

itable forms of investment during 2010 �2011 [...] and has given rise to a logic of

investing in PV and focusing on the export of power rather than any engagement

with how using the electricity generated by PV could also lead to �nancial (and

environmental) bene�ts�. It should also be noticed that in the UK residential sector

electricity is used for lighting and electrical appliances, while space heating � the

demand for which is correlated to weather and climatic condition, and therefore to

the generation of the solar module � is mainly achieved using natural gas (according

to Palmer and Cooper, 2013, pp. 46-49, 90% of UK households had central heating

in 2011, and of these 91% used natural gas; these shares are even higher if excluding

�ats and considering only houses). The need for space heating therefore does not

directly a�ect electricity consumption, nor self-consumption of electricity generated

by the solar PV system.

For all these reasons, I consider savings on the electricity bills as an indirect

bene�t of adoption rather than one of the main explanatory variables, and control

for it in the regression analysis using:

� Average electricity price in each electricity Distribution Network Operator

(DNO) region19 in each year � as larger savings may be obtained in areas where

19Electricity distribution in England and Wales is divided in the following network regions: East
Midlands; Eastern; London; Merseyside and North Wales; North East; North West; South East;
South Wales; South West; Southern; West Midlands; Yorkshire.
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electricity is more expensive. Data on the �average annual domestic standard

electricity unit cost� in pence per kWh are obtained from BEIS (2018).

� Average electricity consumption in each location before the FIT scheme started

� as households who consume more have more to gain from free electricity.

Data on the �Average Ordinary Domestic Consumption� in kWh come from

DECC (2012).

� Resident population working from home, working as homemakers, and retired

� as they spend more time at home during daytime and therefore have the

possibility to shift their energy demand to times when the panels are generating

and to use the free electricity. Data are obtained from the UK Census (ONS,

2005).

Other control variables used in the regression analysis are:

� Population density, constructed by dividing the resident population by the

surface area. Previous literature, for example Graziano and Gillingham (2015),

found that households in areas with lower density and rural areas, are more

likely to adopt solar PV, due to the characteristics of the built environment,

more suitable housing stock, and less shading from nearby buildings.

� Number of owner-occupied houses, from ONS (2018) to control for the po-

tential market size of residential customers. Tenants and households living in

multi-apartment buildings su�er from split-incentive and coordination prob-

lems, and adoption of solar PV is therefore less likely.

� Median house price from ONS (2017)), to control for house value.

� Total resident population, population 40-64 and population above 65 years

of age from ONS (2016) and previous editions, to control for demographic

composition. People in these age brackets are more likely to own a house, to

not be thinking about moving in the immediate future, and to have �nished

repaying the mortgage and therefore to have available liquidity to invest, all

favourable conditions for purchasing solar PV.

� Socio-economic group A (Large employers and higher managerial and admin-

istrative occupations), B (Higher professional occupations), C (Lower man-
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agerial, administrative and professional occupations), D (Intermediate occu-

pations), E (Small employers and own account workers), F (Lower supervisory

and technical occupations), G (Semi-routine occupations), and H (Routine

occupations) from ONS (2005), to capture household income and other socio-

economic characteristics.

� Unemployment level from ONS (2005), to control for economic conditions in

the area.

� Flats, Terraced houses, Semi-detached houses, Detached houses from ONS

(2005). To control for house type and available rooftop space. Households

living in �ats are likely to su�er from a coordination problem or constraints

on the use of the rooftop, so I expect less installations in areas with more �ats.

� Born in UK, EU, or elsewhere from ONS (2005) to control for the likelihood

of remaining in the country and in the same house until old age, and therefore

to be able to appropriate the bene�ts from the solar system. Foreign-born

residents may have family and connections in other countries and may therefore

be more mobile.

It is to be noted that data from the 2001 Census (ONS, 2005), the number of owner-

occupied houses and the average electricity consumption before the FIT scheme

started are time invariant values. Summary statistics were presented in Table 1.1.

1.5 Estimation model

1.5.1 Identi�cation strategy

Following from eq. (1.5) from the theoretical framework developed above, I specify a

linear estimation equation to estimate the demand for residential PV. By developing

the expression of the pro�tability in terms of subsidy and cost, and the total subsidy

in terms of the annual payments, the regression equation becomes:

Qi,t = β0 + βΠ Πi,t + ui,t =

= β0 + βΠ (Si,t − Ci,t) + ui,t =

= β0 + βΠ

(1− 1
(1+r)n

r
si,t − Ci,t

)
+ ui,t
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I then re-name the coe�cients to obtain the more familiar regression form:

Qi,t = β0 + βssi,t + βCCi,t + ui,t (1.9)

with

βs = βΠ

(1− 1
(1+r)n

r

)
βC = −βΠ

(1.10)

where Qi,t is the number of new installations in location i at time t; Ci,t is the cost

for a 1kW installation in location i at time t; and si,t is the expected annual subsidy

for a 1kW system installed at time t in location i. βs captures the responsiveness of

demand to changes in the subsidy and βC the responsiveness of demand to changes

in the cost of the system, as described in Section 1.3. I run the regression in (1.9)

to estimate β̂s and β̂C and use them to compute the partial elasticities at the mean.

I then obtain the implicit discount rate r̂ by solving the two-equation system in two

unknowns in (1.10).

βs is identi�ed thanks to variation in the expected subsidy si,t over time � due to

changes in the FIT rate � and over space � because the subsidy is output-based and

there is heterogeneity in the expected outcome at each location according to climatic

and geographic conditions. In the case of βC , there is an issue of measurement error,

as I do not observe Ci,t, but only its median across postcode-areas:

Cit = C̄jt + vit

Moreover, both regressors may be correlated with the error term, if for example the

subsidy and the cost are adjusted by the government and the installers according

to the demand for solar PV systems, casting doubts on whether the exogeneity

assumption required for the identi�cation and estimation of the parameters is valid.

In the following paragraphs I present the main challenges for the estimation of these

parameters and re�ne the regression model to obtain consistent estimates. The

results of the regression analysis are then presented.
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1.5.2 Estimation challenges

Bunching

Short-term dynamics - such as delaying or anticipating installations to bene�t from

a higher subsidy or a lower cost - might confound identi�cation of long-term e�ects.

Figure 1.12 plots the installation trend against the changes in subsidy, showing

spikes in uptake in the months just before a subsidy change, and downturns just

after. To investigate bunching in the data, I consider two main strategies:

� restrict the sample by dropping observations in the month before and after

the tari� change (Hughes and Podolefsky, 2015); given the frequent subsidy

updates, this technique reduces the sample size substantially, hindering the

identi�cation of the parameters;

� perform an event study analysis and control for time to/since subsidy change

in the regression (Rogers and Sexton, 2014).

Figure 1.12: Trend in the monthly number of residential PV installations. The vertical
lines highlight the months in which a change in the subsidy rate occurred (the dashed lines
represent changes outside the time-frame considered in this paper).

The results from the event study analysis are reported in Figure 1.13. Regressing

the number of adoptions over the number of months before or after the nearest tari�
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Figure 1.13: Event-study analysis. Results from regressing the number of installations per
month per MSOA over the number of months before/after the nearest subsidy rate change.

change shows how a positive anticipation e�ect exists in the two months before the

change, getting stronger as the event approaches. This e�ect is counterbalanced

by lower than expected level of adoptions in the two months after the event, again

stronger in size the closer the event is. These results suggest that households substi-

tute adoptions over time, as the two e�ects almost exactly cancel each other out. No

signi�cant e�ect is detected for earlier or later months. In the regression I therefore

include indicators to control for whether the observation is one month before a tari�

change, two months before, one month after, or two months after, with any other

time being the baseline.

Measurement error, Endogeneity and IVs

If the explanatory variables su�er from classical errors-in-variables, then OLS es-

timation results in an attenuation bias and the estimated β̂ coe�cient is biased

towards zero (Pischke, 2007). I therefore use an instrumental variable (IV) strategy

to obtain a consistent estimator in the presence of measurement error and, more

generally, endogeneity. In order to use IVs, both the relevance and the exclusion

assumption must hold, i.e. the instrument chosen must be correlated with the re-

gressor (relevance assumption) and only a�ect the outcome through the regressor
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and no other channel (exclusion restriction).

Following the previous literature, I look for supply shifters to instrument for the

cost of the installations. In particular, I use the monthly Chinese PV modules price

index (as in De Groote and Verboven, 2018), and the regional median hourly pay for

�Skilled Metal, Electrical and Electronic Trades� workers20, a proxy for installers'

wage. The latter is �rst regressed on the median general wage for the region to

remove possible income e�ects, which would be correlated with the error term in

the demand equation (as discussed in Gillingham and Tsvetanov, 2019). While the

price index only varies over time, the wage data are disaggregated for each of the

10 regions of England and Wales, introducing variations over space, although they

are not available at the monthly level, but only yearly. I perform robustness checks

using the German-European and the Japanese-Korean PV modules price indices,

and wage data at the 3- and 4-digits SOC, and results do not change.

To instrument for the subsidy, I use geographic location � and in particular

the latitude and longitude of the population-weighted centroid of each area � and

the FIT production rate for systems of larger size (1-5MW) and for a di�erent

technology (residential wind turbines, 0-2kW). As can be seen from Figure 1.8,

the expected electricity generation, and therefore the subsidy, becomes larger when

moving from North to South, and from West to East. Once area-speci�c �xed

e�ects and location covariates are controlled for (see next paragraph), the relative

latitude and longitude of the location with respect to the average of the �xed e�ect

should only a�ect the demand for solar panels through the electricity output that

may be expected from the panels, and therefore the subsidy that may be received.

This instrument only varies over space, so I combine it with another instrument

that captures variation over time. I use the FIT production rate for residential

wind turbines with capacity 0-2kW and the FIT production rate for solar farm with

capacity 1-5MW as proxies for the government's general support to residential-level

smallest-scale distributed generation, and to solar generation respectively. This

instrument controls for the fact that the government might change the FIT rate for

residential solar PV systems depending on their demand, and therefore introduce

endogeneity in the regression. I perform robustness checks using the FIT production

20Here I use data for the 2-digit Standard Occupational Classi�cation (SOC): 52 �Skilled Metal,
Electrical and Electronic Trades�. Data at lower levels are missing for some regions. The codes
for the lower levels are 3-digit SOC: 524 �Electrical and Electronic Trades�; 4-digit SOC: 5241
�Electricians and electrical �tters�.
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rates for 0-4kW systems and a draft of FIT rate changes pre-announced in 2010 as

alternative instruments, and results do not change substantially. Summary statistics

for the instrumental variables are also included in Table 1.1, previously presented.

The exclusion restriction cannot be tested, but it is credible that the price of PV

modules on the international market can only a�ect the uptake of solar PV systems

by a�ecting the cost of installing them, and possibly by a�ecting the subsidies, if

the government decides to cut them as the technology gets cheaper. Raw data

on installers' wages may re�ect the living conditions in an area and the income of

its residents, and would therefore violate the exclusion restriction; for this reason

the wages are regressed on the median income of the area and only the residuals

used. Similarly, the FIT rates and the latitude and longitude of a location should

only a�ect the uptake through the subsidy channel, especially once �xed e�ects and

location covariates are controlled for.

The result Section presents estimates for the �rst stage of the two-stage least-

square (2SLS) regressions with IVs in Table 1.4, showing that the instruments chosen

are signi�cantly correlated with the regressors, and can explain changes in those

variables. In fact, the price of the PV modules and the wage paid to installers

are important components of the total installation costs (Gillingham et al., 2016;

Seel et al., 2014). Similarly, due to the way the policy is designed, the only two

components of the subsidy amount are the FIT rate and the electricity generated;

as discussed above, latitude and longitude of the location are good predictors of

the latter component, as it is highly a�ected by climatic and weather conditions,

which in turn tend to worsen when moving towards the North and towards the

West, i.e. towards the Atlantic Ocean. The second component � the FIT rate �

is determined by the government as part of their strategy to support distributed

renewable generation, and therefore the rates for di�erent technologies and di�erent

capacity bands are likely to move in the same direction.

Another issue that may undermine the use of IVs, is the weak instrument problem

� if the instrument has low explanatory power for the regressor, the regression may

fail to detect the e�ect of the regressor on the outcome, even if in the true model

the e�ect is signi�cant. Diagnostic statistics and tests for weak instruments are

presented in the result Section, in Table 1.4. When there is only one endogenous

variable, a common statistics of reference for weak instruments is the F statistics of

the excluded regressors. When there is more than one endogenous regressor, as in
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this case, Stock and Yogo (2005) tests can be used. Stock and Yogo (2005) provide

critical values for a test of relative bias and for a test of size distortion induced

by weak instruments, for di�erent sets of parameters. The null hypothesis for both

tests is that the instruments are weak, and the test statistic is given by the minimum

eigenvalue statistic developed by Cragg and Donald (1993), which coincides with the

F statistic of the excluded regressors when there is only one endogenous variable. If

the test statistic is larger than the critical value, then weak instruments should not be

an issue. I perform the test using the largest critical values reported by the software

package21, i.e. setting the largest tolerable bias of the 2SLS estimator at 5% for the

�2SLS relative bias test�, and the largest actual rejection rate for a 5% signi�cance

level Wald test at 10% for the �2SLS nominal 5% Wald test� (StataCorp, 2017).

As a measure of correlation between the regressors and the excluded instruments, I

calculate and report in the Table the partial R2 statistic from Shea (1997), and the

adjusted partial R2 � which applies a correction according to the degrees-of-freedom

of the estimation model, to account for the fact that the more instruments are used

the larger the bias of the estimator becomes.

Unobserved heterogeneity and �xed e�ects

To control for unobserved heterogeneity, I introduce di�erent sets of area-speci�c and

time-speci�c �xed e�ects. Events that a�ect the whole country in a given period,

or speci�c characteristics or local policies and institutions that make areas di�erent

from each other but are not observed in my dataset, would in fact bias the results

of the analysis if not taken into consideration. In these cases, the error term in

eq. (1.9) violates the assumptions required to have a consistent OLS estimator. I

assume a basic speci�cation of the error term as:

ui,t = µi + γt + εi,t (1.11)

where µi represents the time-invariant area-speci�c �xed e�ect and γt is a country-

wide time �xed e�ect; εi,t is a zero-mean i.i.d. error.

In my preferred speci�cation, I estimate the parameters using a regression speci-

�cation with lower-tier local authority �xed e�ects. Local authorities are the admin-

istrative divisions corresponding to the local governments, and I expect di�erences in

21The model is etimated in Stata 15 using the ivregress and estat �rststage packages.
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local institutions and policies � if any � to occur at this level, while LSOAs, MSOAs,

and statistical areas' boundaries in general do not have any administrative meaning.

In total, there are 348 lower-tier local authorities in England and Wales, consisting

of local authority (or non-metropolitan) districts, unitary authorities, metropolitan

districts, and London boroughs.22 location-speci�c covariates (where the location

can be the LSOA or the MSOA, depending on the level of aggregation chosen; some

of the covariates are time-invariant) and the main regressors are then used to control

for the relevant drivers of PV adoptions within each location � built-environment,

socio-economic characteristics, work arrangements and demographic composition,

as described in the data section.

For time �xed e�ects I use year and month of the year �xed e�ect; the �rst

is intended to control for macro-trends in the country, while the latter is used to

control for seasonality e�ects.

As a robustness check, the regression is also estimated using two other alternative

speci�cations for �xed e�ects, one using area �xed e�ects at the lowest level available

(in this case any time-invariant variable is removed from the regression equation as

they are absorbed in the �xed-e�ect term), and one with year-varying local-authority

�xed e�ect, obtained by interacting local authority district with the year, rather than

adding them separately. In all the speci�cations month-of-the-year �xed e�ects are

used to control for seasonality in adoptions.

Count models, fractional models, and prevalence of zeros

Finally, another concern with the estimation model presented above is the use of a

linear speci�cation. In fact, a linear speci�cation assumes that the outcome variable

is continuous, unbounded and measured on an interval or ratio scale. Continuity

and unboundedness are restrictive assumptions in this case, as the outcome variable

is the count of installations, and therefore discrete and bounded at zero. Non-linear

models for discrete and count outcome would be more appropriate in this case.

Nevertheless, the linear model has the important advantages to be able to exploit

the panel structure of the dataset to control for area-speci�c and time-speci�c �xed

e�ects, while at the same time addressing the problem of endogenous subsidies and

PV installation costs, which is more problematic to do with non-linear models. In

22For more information on local authorities see the O�ce for National Statistics (ONS) website:
https://www.ons.gov.uk/census/2001censusandearlier/glossary.
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particular, �xed e�ects do not simply cancel out as in a linear model, and non-linear

models can su�er from the incidental parameters problem. To resolve these issues,

I use a Poisson regression model, as the Poisson distribution is more appropriate

for count outcome variables and at the same time a consistent estimator can be

constructed to include �xed e�ects and endogenous regressors, as discussed in the

next paragraph.

Using a Poisson distribution, the estimation equation (1.9) becomes:

Pr(Qi,t|λ) =
e−λ λQi,t

Qi,t!
with λ = eβ0+βssi,t+βCCi,t (1.12)

where Pr(Qi,t) is the probability of observing a count of Qi,t installations in a given

area at a given time. While equation (1.10) used to estimate the time discount does

not change.

A further issue is the large share of observations with zero new installations in the

dataset, especially when LSOAs are used as units of analysis. I address this issue by

aggregating the data at the MSOA-level, and restricting the sample of observations

to the period between April 2010, when the FIT scheme started, to January 2016,

just after a major reform took place and imposed severe cuts to the subsidy. After

this time, installation rates in the country went substantially down (as can be seen in

Figure 1.4 in the previous Section), and many solar installers �led for bankruptcy or

moved out of the solar sector. This might have caused a structural break in the data

and the mechanisms behind households' adoption behaviour might be di�erent than

in the previous period. Distribution of the observations at the LSOA-level, in this

period contains 81% of zero, and only 14% of the observations have one installation,

3% have two, 1% three, etc.; more variation exists instead at the MSOA-level, as

the share of observations with zero installations goes down to 58%, while 23% have

one, 10% two, 4% three, etc. (see Figure 1.14).

In this case the dependent variable is not left-censored, but might also include

structural zeros, as a di�erent data generating process may be required to model

whether the outcome is zero or non-zero, as opposed to how many installations

there are conditional on there being at least one (see e.g. Gillingham and Tsve-

tanov, 2019). A strategy to deal with count data bounded at zero and structural

zeros is the use of Tobit models, zero-in�ated models and hurdle models, although

these have less desirable properties when dealing with �xed e�ects and endogenous
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Figure 1.14: Histogram of the number of installations observed per MSOA per month (in
the period 2010-2015).

regressors. Results from a Tobit model with and without instrumental variables (IV)

but without �xed e�ects are presented in Table A.1 in the Appendix as robustness

check.

I conduct further robustness checks using the proportion of households adopting

PVs as dependent variable, instead of the count, as another way to address the

issues posed by count outcome variables censored ar zero. To do this, I take the

ratio of PV installations over the number of `available' owner-occupied houses in

each area in each month. The denominator is calculated using data on the number

of owner-occupied houses in each area and subtracting the existing installed-base of

PV systems to obtain the houses that are still available to host new installations.

Owner-occupied houses are chosen as the reference market base because in the case

of tenants and �ats, split-incentives, property rights and coordination problems may

arise. This is of course a proxy, as residential installations may still occur in other

types of buildings and under other types of tenancy, and multiple installations may

occur on the same building in case of enlargement of existing systems, nevertheless

I believe this to be a reasonable assumption for the purpose at hand. In this case,

the outcome variable is a share bounded between zero and one, and a fractional

model based on a logistic or probit regression can be used. To address the issue of

58



structural zeros in this context, I also estimate a zero-in�ated beta model. Results

from this robustness checks are presented in Table A.2 in the Appendix.

Consistent estimator for Poisson model with endogenous regressors and

�xed e�ects

To incorporate the considerations presented in this Section, my preferred approach is

to use a Poisson model with endogenous regressors and �xed e�ects, as presented in

Gillingham and Tsvetanov (2019). Endogeneity of the regressors is addressed usins

a control function approach. In the �rst stage, I regress the endogenous regressors

on the excluded and included instruments, using a linear model with �xed e�ects,

and recover the residuals. In the second stage, I use a Poisson model to regress the

number of installations in each area and in each month on the main regressors, the

estimated residuals from the previous stage, and the covariates and �xed e�ects. I

assume a Poisson data-generating process, and use a maximum likelihood estimator,

as Blundell et al. (2002) show that this does not su�er from the incidental parameter

problem (the main concern which makes linear models preferable to non-linear ones

when �xed e�ects need to be used) in this setting. I use bootstrapping to obtain

standard errors. Gillingham and Tsvetanov (2019) provide details on the consistency

of this estimator.

1.5.3 Results

Results from the regression analysis are presented in Tables 1.2-1.7 for the main

speci�cations. Results from relevant robustness checks mentioned in the previous

section are presented in Appendix A.1. Regression tables include estimates of the

coe�cients of the main regressors (subsidies and installation costs), as well as their

partial elasticities evaluated at the mean (percentage change in the outcome variable

due to a 1% change in the regressor, everything else being equal) and the mean values

for the number of residential solar PV systems installed, the amount of the expected

annual subsidy and the cost of installing, to facilitate interpretation. Standard errors

are clustered at the MSOA level.

The model is estimated in levels, so elasticity is not constant but depends on the

value of the variables. Regression tables show the elasticity calculated at the mean

values to allow comparisons between linear and non-linear models, as in these cases
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the coe�cients obtained from the regressions have di�erent meanings and cannot be

compared directly. In most cases, the values for the elasticity to the subsidy and to

the cost are high and above 1. This is not worrying, as those values only represent

partial elasticities. The parameter usually reported in the literature, especially in

the case of rebates to the installation costs, is the total elasticity to the cost net of

subsidies � or equivalent, but with opposite sign, the total elasticity to the subsidies

net of the installation costs, i.e. ηΠ in equation (1.6). To facilitate comparison

with results from the literature, I re-estimate the model using the present value of

subsidies net of installation costs, using a 7% discount rate (as assumed in Benthem

et al., 2008) that take into consideration the opportunity cost of paying to install a

solar PV system rather than investing the same amount in a �nancial instrument

with a comparable risk pro�le. I can then directly estimate ηΠ. Standard errors for

the elasticity parameters are obtained using the delta method.

Finally, the tables also include the implicit annual discount rate and discount

factor. This is obtained by solving the system of equations (1.10) for r, using the

estimates for the beta coe�cients obtained from the regression β̂s and β̂C in place

of their true values βs and βC . Some regression speci�cations result in values of

β̂C that are too low compared to β̂s, so that the equation does not have any real

positive solution. When this is the case, the implicit discount rate is missing.

Tables 1.2 and 1.3 shows the results for various speci�cations of the generalised

linear model. The �rst table includes the coe�cients and diagnostic statistics ob-

tained from the regressions, while the second one includes estimates for the elasticity

parameters and the implicit discount rate and factor. The �rst column (1) contains

the results from a basic OLS regression of the number of PV installation in each

area in each month on the expected annual subsidy (i.e. the annual `revenue' the

prosumer expects to make) and the cost of the installations. Models (2) and (3)

includes local authority, year, and month �xed e�ects to capture unobserved ge-

ographical (but time-invariant) characteristics and temporal (but space-invariant)

events, with a short and a longer set of covariates as controls. The short set of

covariates include the price of electricity, the number of owner-occupied houses,

and indicators of proximity to a change in the rate, as described in the Section on

bunching. The longer set of covariates include all the other controls described in

the Section on data. Model (4) is the traditional �xed-e�ects speci�cation, with

MSOA-level �xed e�ects. This model only includes time-varying covariates (price of
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electricity, the number of owner-occupied houses, and indicators of proximity to a

change in the rate, median house price, density, population between 40-64 years old,

and population above 65), as the others are absorbed by the �xed e�ects. The two

�nal columns (5) and (6) use the interaction between local authorities and years in-

stead of introducing them separately to control for time-varying �xed e�ects. Again,

the two models di�er by a shorter and a longer set of covariates.
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Table 1.2: Regression table for the linear models with di�erent speci�cations of the �xed e�ects.

(1) (2) (3) (4) (5) (6)
OLS FE FE FE FE FE

Subsidy (100GBP/kW) 0.810∗∗∗ 1.145∗∗∗ 1.141∗∗∗ 1.155∗∗∗ 1.201∗∗∗ 1.198∗∗∗

(0.013) (0.021) (0.021) (0.011) (0.022) (0.022)

Install. cost (1,000GBP/kW) -1.195∗∗∗ -0.142∗∗∗ -0.143∗∗∗ -0.140∗∗∗ -0.867∗∗∗ -0.868∗∗∗

(0.021) (0.022) (0.022) (0.013) (0.059) (0.058)

Covariates No Short Long Time-varying Short Long
MSOA FE No No No Yes No No
Local authority FE No Yes Yes No No No
Loc. auth. X Year No No No No Yes Yes
Year No Yes Yes Yes No No
Month of the year No Yes Yes Yes Yes Yes

N 503580 503580 503580 503580 503580 503580
R2 0.05 0.18 0.19 0.12 0.22 0.23
adj. R2 0.05 0.18 0.19 0.11 0.22 0.23
F 1852.5 390.5 268.4 2470.1 440.6 276.9
AIC 2388415.70 2312438.25 2308850.62 2295182.91 2286235.55 2282436.49
BIC 2388449.09 2312738.75 2309384.83 2295505.67 2286469.27 2282903.93

Standard errors (in parentheses) are clustered at the MSOA level. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 1.3: Estimated elasticities and implicit discount rate for the linear models with di�erent speci�cations of the �xed e�ects.

(1) (2) (3) (4) (5) (6)
OLS FE FE FE FE FE

mean values:

PV count 1.01 1.01 1.01 1.01 1.01 1.01

Subsidy (10GBP/kW) 2.53 2.53 2.53 2.53 2.53 2.53

Install. cost (100GBP/kW) 2.23 2.23 2.23 2.23 2.23 2.23

partial elasticities:

Subs.elasticity 2.04∗∗∗ 2.88∗∗∗ 2.87∗∗∗ 2.90 ∗∗∗ 3.02∗∗∗ 3.01∗∗∗

(0.033) (0.054) (0.054) (0.027) (0.056) (0.055)

Cost elasticity -2.65∗∗∗ -0.31∗∗∗ -0.32∗∗∗ -0.30∗∗∗ -1.92∗∗∗ -1.93∗∗∗

(0.047) (0.049) (0.048) (0.029) (0.131) (0.128)

overall elasticity1:
Pres. value of net subsidy 0.275∗∗∗ 0.323∗∗∗ 0.323∗∗∗ 0.337∗∗∗ 0.490∗∗∗ 0.489∗∗∗

(0.003) (0.007) (0.007) (0.004) (0.010) (0.010)

Impl.discount rate 13.6% 3.4% 3.4%

Impl.discount factor 88.0% 96.4% 96.3%

Standard errors (in parentheses) are calculated using the delta method. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

1Elasticity to the present value of net subsidies (i.e. present value of subsidies net of installation costs), with 7% discount rate.
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The coe�cient of the annual subsidy (and therefore the corresponding partial

elasticity) are robust through all the �xed e�ects speci�cations, and slightly lower

in the basic OLS speci�cation. The coe�cient of the system costs are robust to the

use of local authority or MSOA-level �xed e�ects in models (2), (3), and (4), but

becomes larger when local authority �xed e�ects are interacted with years (models

(5) and (6)), and even larger in the basic OLS speci�cations. The implicit discount

rate and factor, and the overall elasticity parameter are lower than corresponding

estimates for US and Belgium found in the literature.

As discussed in the previous Section, these model speci�cations are not satisfac-

tory as they fail to address two main problems of the data, namely the fact that

the outcome variable is a discrete count variable, bounded at zero, and that the

main regressors may be endogenous. Tables 1.4 and 1.5 improve upon the analysis

by addressing the endogeneity problem through the use of IVs in a two-stage least

squares (2SLS) regression. To check for robustness, speci�cations with di�erent sets

of �xed e�ects are estimated. Model (1) and (2) include the preferred set: local au-

thority, year, and month-of-the-year �xed e�ects. Model (3) uses MSOA-level �xed

e�ects in place of the local authorities, while the last model (4) uses the interaction

between local authorities and years.
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Table 1.4: Regression table for the �rst stage of the linear models with IV.

(1) (2) (3) (4)
Subsidy Install. cost Subsidy Install. cost Subsidy Install. cost Subsidy Install. cost

FIT production rate, 1-5MW -0.0469∗∗∗ -0.00656∗∗∗ -0.0469∗∗∗ -0.00655∗∗∗ -0.0469∗∗∗ -0.00656∗∗∗ -0.0469∗∗∗ -0.00656∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Wind FIT productionrate, 0-2kW 0.00161∗∗∗ -0.0182∗∗∗ 0.00159∗∗∗ -0.0183∗∗∗ 0.00161∗∗∗ -0.0182∗∗∗ 0.00161∗∗∗ -0.0182∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Latitude -0.187∗∗∗ -0.0347 -0.191∗∗∗ -0.0483∗ . . -0.181∗∗∗ -0.0276
(0.014) (0.024) (0.014) (0.024) (.) (.) (0.014) (0.024)

Longitude 0.0251∗ 0.0196 0.0250∗ 0.0185 . . 0.0143 0.00707
(0.010) (0.017) (0.010) (0.017) (.) (.) (0.010) (0.017)

Chinese PV price index 2.243∗∗∗ 0.795∗∗∗ 2.244∗∗∗ 0.804∗∗∗ 2.243∗∗∗ 0.795∗∗∗ 2.243∗∗∗ 0.795∗∗∗

(0.002) (0.005) (0.002) (0.005) (0.002) (0.005) (0.002) (0.005)

Wage electric sector (residuals) -0.0587∗∗∗ 0.122∗∗∗ -0.0594∗∗∗ 0.114∗∗∗ -0.0572∗∗∗ 0.123∗∗∗ -2.328∗∗∗ -1.402∗∗∗

(0.002) (0.009) (0.002) (0.009) (0.002) (0.009) (0.041) (0.082)

Covariates Short Long Short Short
MOSA FE No No Yes No
Local authority FE Yes Yes No No
Loc. auth. X Year No No No Yes
Year Yes Yes Yes No
Month of the year Yes Yes Yes Yes

N 503580 503580 503580 503580 503580 503580 503580 503580
R2 0.94 0.86 0.94 0.86 0.94 0.86 0.95 0.96
adj. R2 0.94 0.86 0.94 0.86 0.94 0.86 0.95 0.95

Shea's Partial R2 0.10 0.03 0.10 0.04 . . 0.10 0.08
Shea's Partial adj.R2 0.10 0.03 0.10 0.03 . . 0.09 0.07
min eigenvalue stats 2887.15 2904.69 . 7134.42
relative bias test crit.val.1 15.72 15.72 . 13.97
nom.5% Wald test crit.val.2 21.68 21.68 . 19.45

Standard errors (in parentheses) are clustered at the MSOA level. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
1 Critical value for 2SLS relative bias test at 5%; 2 Critical value for 2SLS size of nominal 5% Wald test at 10%.
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Results for the �rst stage are included in Table 1.4, showing the coe�cients of

the excluded instruments and diagnostic statistics. Reassuringly, the Shea's mea-

sure for correlation between the instruments and the regressors, and the two tests

from Stock and Yogo (2005) do not point to a weak instrument problem. As ex-

pected, the annual subsidy is negatively correlated with the latitude and positively

with the longitude (i.e. it is larger moving towards the South and the East), and

is positively correlated with the FIT rate for small scale wind. The coe�cient for

the FIT production rate for larger scale solar has a negative sign � a possible in-

terpretation for this result is that once covariates and �xed e�ects are taken into

consideration, residential small-scale solar PV and larger scale solar farm are consid-

ered as substitutes to the government, and therefore they are negatively correlated,

for example to make sure that sales of solar systems are stable over time and provide

more certainty and stability to the solar sector and to installers. To make sure this

is not problematic for the estimation, robustness checks using the FIT production

rates for 0-4kW systems and a FIT rate schedule pre-announced in 2010 instead of

the 1-5MW rate are presented in Table A.3 in the Appendix, con�rming the same

results. The subsidy is also positively correlated with the Chinese PV module price

index, as both the subsidies and the price tend to decrease over time, and negatively

correlated with the residuals of wage in the electric sector, although the latter coef-

�cient is small in magnitude. Installation cost is strongly and positively correlated

with the price index and the wage, as expected, with the exception of the last model

with year-varying local authority �xed e�ects.

Results for the second stage are presented in Table 1.5. Coe�cients are robust

to the di�erent speci�cations, and much larger in magnitude than the estimates

without IV, consistent with an attenuation bias from classical errors-in-variables.

The estimates suggest that a cut of 1 GBP in the annual expected subsidy per kW

of installed capacity would result in around 0.026 fewer installations per MSOA,

equivalent to 187 fewer installations across the country; while a decrease of 10 GBP

in the upfront cost for installing would result in 0.079 more installations in each

MSOA, i.e. 568 over the country. This time the implicit discount rate, and the

overall elasticity parameter are larger than corresponding estimates for US and Bel-

gium found in the literature, but again, results should be taken with caution due to

issues of model misspeci�cation.

Finally, Table 1.6 and 1.7 illustrate the results from the Poisson regression, with
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Table 1.5: Regression table for the second stage of the 2SLS estimator, with IV. Estimated
elasticities and implicit discount rate included.

(1) (2) (3) (4)
IV,2SLS IV,2SLS IV,2SLS IV,2SLS

Subsidy (100GBP/kW) 2.584∗∗∗ 2.617∗∗∗ 2.675∗∗∗ 2.841∗∗∗

(0.057) (0.057) (0.044) (0.057)

Install. cost (1,000GBP/kW) -7.823∗∗∗ -7.859∗∗∗ -7.966∗∗∗ -8.738∗∗∗

(0.171) (0.169) (0.092) (0.169)

Covariates Short Long Time-varying Short
MSOA FE No No Yes No
Local authority FE Yes Yes No No
Loc. auth. X Year No No No Yes
Year Yes Yes Yes No
Month of the year Yes Yes Yes Yes

N 503580 503580 503580 503580
χ2 1194226.0 38174.7 93437.6 356864.6

mean values:

PV count 1.01 1.01 1.01 1.01

Subsidy (100GBP/kW) 2.53 2.53 2.53 2.53

Install. cost (1,000GBP/kW) 2.23 2.23 2.23 2.23

partial elasticities:

Subs.elasticity 6.49∗∗∗ 6.58∗∗∗ 6.72∗∗∗ 7.14 ∗∗∗

(0.144) (0.143) (0.111) (0.143)

Cost elasticity -17.32∗∗∗ -17.40∗∗∗ -17.64∗∗∗ -19.35∗∗∗

(0.378) (0.374) (0.203) (0.374)

overall elasticity1:
Pres. value of net subsidy 1.114∗∗∗ 1.129∗∗∗ 1.156∗∗∗ 1.143∗∗∗

(0.019) (0.020) (0.015) (0.019)

Impl.discount rate 30.1% 29.9% 29.6% 30.6%

Impl. discount factor 76.8% 77.0% 77.2% 76.6%

Standard errors (in parentheses) are clustered at the MSOA-level. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

1Elasticity to the present value of net subsidies (i.e. present value of subsidies net of installation costs),

using a 7% discount rate.
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and without �xed e�ects, and with and without IVs, to better account for the

discrete and bounded nature of the count outcome variable. The model is again

estimated using di�erent speci�cations of the �xed e�ects and covariate sets to

check for robustness of the results. Speci�cation (1) and (2) include the main set

of �xed e�ects (local authority, year, and month of the year) with the short and

long covariate set respectively; speci�cation (3) is estimated using covariates but

no �xed e�ects; while speci�cation (4) uses MSOA-level �xed e�ects instead of the

local authorities.23

The two �nal models, (5) and (6), take into consideration the potential endo-

geneity of the regressors, using a control function appraoch in a two-stage estimation

procedure with �xed e�ects in both stages and a Poisson speci�cation for the second

stage, following Gillingham and Tsvetanov (2019) (see Section 1.5). Standard errors

are bootstrapped. The former model uses the long covariate set and the preferred

�xed e�ect speci�cations (local authority, year, and month of the year), while the lat-

ter replaces the local authority e�ects with MSOA-level, and therefore only includes

time-varying controls. The �rst stage for these two models are the same as those

used in speci�cation (2) and (3) of the 2SLS linear model presented above (in Table

1.4). Coe�cients are very similar in the two speci�cations. Results are robust across

the di�erent �xed-e�ects speci�cations without IVs, but the coe�cients appear once

again to be underestimated with respect to the regression models with IVs, consis-

tent with the presence of attenuation bias from classical errors-in-variables. As for

the linear speci�cation, the model without �xed e�ects still result in an estimate for

the subsidy coe�cient that is very close to those obtained with �xed e�ects, while

the cost coe�cient is less robust.

23The speci�cation with time variant local authority-level �xed e�ects could not be estimated
due to lack of computational power.
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Table 1.6: Regression table for the Poisson models.

(1) (2) (3) (4) (5) (6)
Poisson Poisson Poisson Poisson Poisson Poisson

w. IV, MLE w. IV, MLE

Subsidy (100GBP/kW) 0.704∗∗∗ 0.702∗∗∗ 0.615∗∗∗ 0.713∗∗∗ 1.907∗∗∗ 1.951∗∗∗

(0.004) (0.004) (0.006) (0.004) (0.027) (0.022)

Install. cost (1,000GBP/kW) -0.0399∗∗∗ -0.0402∗∗∗ -0.309∗∗∗ -0.0586∗∗∗ -4.182∗∗∗ -4.245∗∗∗

(0.005) (0.005) (0.013) (0.005) (0.056) (0.043)

Covariates Short Long Long Time-varying Long Time-varying
MSOA FE No No No Yes No Yes
Local authority FE Yes Yes No No Yes No
Year Yes Yes No Yes Yes Yes
Month Yes Yes No Yes Yes Yes

Var. instrumented Subsidy Subsidy
Install. cost Install. cost

N 503580 503580 503580 502250 503580 502250
pseudo R2 0.30 0.31 0.24 0.33
χ2 567162.9 584687.6 54713.3 335423.5 . 233670.8
AIC 1293795.18 1276312.46 1406601.00 1175195.14 1254529.88 1153547.38
BIC 1297957.61 1280708.61 1406946.02 1175506.69 1255075.22 1153881.19

Standard errors (in parentheses) are clustered at the MSOA-level. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 1.7: Estimated elasticities and implicit discount rate for the Poisson models.

(1) (2) (3) (4) (5) (6)
Poisson Poisson Poisson Poisson Poisson Poisson

w. IV, MLE w. IV, MLE

mean values:

PV count 1.01 1.01 1.01 1.01 1.01 1.01

Subsidy (100GBP/kW) 2.53 2.53 2.53 2.53 2.53 2.53

Install. cost (1,000GBP/kW) 2.23 2.23 2.23 2.23 2.23 2.23

partial elasticities:

Subs.elasticity 1.78∗∗∗ 1.77∗∗∗ 1.56∗∗∗ 1.80∗∗∗ 4.82∗∗∗ 4.93∗∗∗

(0.010) (0.010) (0.014) (0.010) (0.069) (0.055)

Cost elasticity -0.09∗∗∗ -0.09∗∗∗ -0.69∗∗∗ -0.13∗∗∗ -9.31∗∗∗ -9.45∗∗∗

(0.011) (0.011) (0.030) (0.012) (0.124) (0.095)

overall elasticity1:
Pres. value of net subsidy 0.203∗∗∗ 0.201∗∗∗ 0.251∗∗∗ 0.866∗∗∗

(0.001) (0.001) (0.003) (0.012)

Impl.discount rate 0.05% 21.5% 21.3%

Impl. discount factor 99.95% 82.3% 82.4%

Standard errors (in parentheses) are calculated using the delta method. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.

1Elasticity to the present value of net subsidies (i.e. present value of subsidies net of installation costs), with 7% discount rate.
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Coe�cients from Poisson models are not directly comparable with those of lin-

ear models, due to the di�erent meaning they have. For this reason, Table 1.7

reports estimates of the partial elasticity at the mean, as well as the overall elastic-

ity estimated using net subsidies rather than subsidies and costs separately. Both

the partial and overall elasticities and the time discount from the Poisson models

without IVs are smaller in magnitude than the parameters obtained from the corre-

sponding linear models. The same holds for the partial and overall elasticities and

time discount from the Poisson models with IVs, which are smaller than those from

the 2SLS linear models. Due to the theoretical considerations described in Section

1.5, the preferred speci�cations are the Poisson models with instrumental variables

and �xed e�ects presented in column (5) and (6).

The coe�cients estimated with this model have a less straightforward interpre-

tation, as they show the the expected increase in log count for a one-unit increase

in the regressor, all else equal. The estimates for elasticity at the mean show that

a 1% cut in the annual subsidy would result in a much higher 4.82% decrease in

installation, although if the installation costs also drop 1% at the same time, this

would push adoption up 9.31%. At the mean values of 253 GBP of annual subsidy

per kW of installed capacity, 2,230 GBP of installation costs per kW of installed ca-

pacity, and 1.01 installations per MSOA in each month, these results would translate

into 0.19 fewer installations per MSOA (or 1,393 fewer installations over the whole

territory) if the annual expected subsidy per kW of installed capacity decreases by

10 GBP, and 0.42 more installations per MSOA (or 3,032 over the whole territory)

if the costs per kW of installed capacity decrease by 100 GBP, holding all the other

variables constant.

Comparing estimates from model (5) with results from the literature, I �nd

substantial similarities. The estimate of 0.87 for the overall elasticity to net subsidies

at the means, can be interpreted as an elasticity of -0.87 to the cost of installing the

system, net of the subsidy. This means that a 1% decrease in the overall costs net of

subsidies � or equivalently a 1% increase in the overall pro�tability of the investment

� results in 0.87% more installations. At the mean value of 1.01 installations per

MSOA per month and 451 GBP of expected pro�ts per kW of installed capacity, this

is equivalent to 0.0195 more installations per MSOA, or 140 throughout the territory

for a 10 GBP decrease in the cost of the system net of subsidies. In this sense, this

result is very close to the estimate of -0.85 found using a dynamic structural model
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by Pless and van Benthem (2019) for the California rebate policy, and close to the

-0.65 found by Gillingham and Tsvetanov (2019) for Connecticut, using reduced-

form. In all of these cases, the main takeaway is that the elasticity parameter is

high, pointing to the fact that households are highly responsive to changes in the

subsidies and costs of solar PV systems.

The annual discount rate and discount factor estimated from the coe�cients in

model (5) are 21.5% and 82.3% respectively. This result is again very close to the

estimated 82% discount factor on future electricity savings for California obtained

by Snashall-Woodhams (2019). The discount rate is larger than � but still compa-

rable to � the 15% discount rate for FIT payments estimated by De Groote and

Verboven (2019) for Belgium. Both papers use dynamic structural models and are

therefore better suited than the reduced-form analysis of this Chapter to identify

the parameter; yet, it is reassuring that results are consistent, and contribute to

the evidence that households `behave as if' they discount heavily the future, when

considering whether to adopt solar panels. It is worth remarking that this parame-

ter can capture other behavioural features in addition to pure time preferences, so

that it does not necessarily mean that agents are myopic. For example, it might

capture time inconsistent discounting, such as hyperbolic discounting; mistakes in

calculating the subsidies or undervaluation due to uncertainty and risk aversion, as

future subsidies are not as certain as the upfront cost; default bias, as households

might prefer to stick with their current energy setting rather than investing cogni-

tive e�orts in modifying it; unobserved search costs to obtain relevant information

or other transaction costs; or households might be afraid they will not be able to

appropriate all of the subsidies, for example if they think they may move out of the

house before the end of the 20 year subsidy period. Such high trade-o� between

upfront costs and future bene�ts suggest that in general upfront subsidies are more

cost-e�ective, as discussed in the next Section.

In the next section, I will use model (5) as the preferred speci�cation for pre-

dictions rather than model (6), which uses MSOA-level �xed e�ects instead of local

authority �xed e�ects, because the latter does not allow the use of latitude and

longitude as instruments (as they are time invariant), and for the same reason, sev-

eral covariates of interest cannot be included. This makes the interpretation of the

mechanisms at play more di�cult, as most channels get absorbed in the MSOA �xed

e�ects. Moreover, MSOA level �xed e�ects may also absorb a substantial share of
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the variation in subsidies used for identi�cation � especially in the months when

there is no change in the FIT rate and the identi�cation relies on spatial di�erences

among the MSOAs. Nevertheless, it is reassuring that the estimates for the two

models are very close.24

Robustness checks using a Tobit model bounded at zero, and fractional models

with the shares of new installations as outcome variable, are presented in Tables

A.1 and A.2 in the Appendix. The fractional models used are fractional logit,

fractional probit and fractional probit with heteroskedasticity, with and without

area- and time-speci�c �xed e�ects. To account for structural zeros, a zero-in�ated

beta model is also estimated.

Further analysis on the possibility that e�ects are heterogeneous is described in

Appendix A.2. In particular, I test for the hypothesis that e�ects are heterogeneous

over time, as found by Hughes and Podolefsky (2015), or depend on the existing

installed base due to the presence of peer e�ects, as in Bollinger and Gillingham

(2012); Richter (2014); Graziano and Gillingham (2015); Müller and Rode (2013);

Rode and Weber (2016); Baranzini et al. (2017). These topics will be the focus of

the next Chapter.

1.6 Cost-e�ectiveness and alternative policy design

1.6.1 Additionality of the subsidy, rent appropriation and

comparison between FIT and upfront incentives

In this section, I discuss the cost-e�ectiveness of the UK FIT scheme given the results

of the previous Sections. To start this analysis, I use the preferred speci�cation � the

Poisson model with endogenous regressors and �xed e�ects � to predict the number

of installations that would have occurred even with no subsidies, to understand the

additionality of the policy. In particular, I assume that the production rate is zero

and only the export rate is paid for the electricity sold to the grid, estimated to be

50% of the total generation, as for the existing policy. Estimates have been repeated

assuming not even the export rate is o�ered and the results are very similar.

Figures 1.15, 1.16, and 1.17 show the �tness of the estimated model, by compar-

24As a robustness check, the analysis in the next Section has been replicated using model (6),
and the results are robust.
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ing the observed and predicted number of installations over time (by month) and

over space (by MSOA, and by local authority) respectively. In what follows I refer to

the marginal adopters as the `policy-induced' installations, computed by subtracting

the number of inframarginal adopters from the number of installations predicted for

each subsidy scenario. I predict that without the subsidy, 13,136 installations would

have happened anyway in the period under consideration, corresponding to about

2.6% of the predicted total under the existing scheme.25 Nevertheless, the rents ap-

propriated by these inframarginal adopters are even lower than this share, because

compared to the marginal installations they tend to occur in later times, when the

cost of installing and the FIT rate are lower, and in areas with lower solar generation

potential. I estimate that the amount of subsidy paid out to these households is

1.5% of the total, suggesting that the scheme has a very high additionality and not

many households would have adopted without incentives to do so.

Figure 1.15: Comparison of the number of installed PV systems observed and predicted,
in each month.

By inducing more installations, the objective of the scheme is to decrease emis-

sions from electricity generation in the country. Before the introduction of the FIT

25The number of per capita installations predicted in absence of subsidies is comparable to the
number of installations in Norway, a country with almost no support scheme for solar as of 2016
(Standal et al., 2020); in fact it is even larger, consistent with the better solar potential of the UK
compared to Norway. This comparison suggests that the estimates are in a sensible range.
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Figure 1.16: Comparison of the number of installed PV systems by the end of the sample
observed and predicted, in each location.

Figure 1.17: Comparison of the number of installed PV systems by the end of the sample
observed and predicted, in each local authority.
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scheme in April 2010, the carbon intensity of electricity generation in the UK was

estimated to be around 500 grams of CO2-equivalent per kWh (Sta�ell, 2017). I

estimate that the installations of residential solar PV systems induced by the policy

between April 2010 and January 2016 (i.e. the marginal installations) will have pro-

duced more than 46,700 GWh during their lifetime. Useful lifetime is assumed to be

30 years as in Benthem et al. (2008) and in the pessimistic scenario of Frischknecht

et al. (2015) � although this assumption might be conservative, as the latter study

considers 35 and 40 years in their realistic and optimistic scenario respectively. This

is equivalent to 23.35 million metric tons of CO2-eq emission avoided, as compared

to the case in which the same amount of electricity was generated using the energy

mix the country had in 2010.

This is achieved with an expenditure of around 7.31 billion GBP in FIT payments

over the 20 years each installation is eligible for support (present value calculated

using a 5% discount rate; this would be 5.23 billion GBP with a 10% discount rate

� see Table 1.8). This is equivalent to approximately 313 GBP per metric ton of

CO2-eq avoided (224 GBP per metric ton, if considering a discount rate of 10%),

more than twice as expensive as the California upfront rebate scheme, estimated

at between 130 and 196 USD26 by Hughes and Podolefsky (2015). In terms of

electricity generated, I estimate a cost of the policy of 0.156 GBP per kWh (present

value calculated using a 5% discount rate; this would be 0.112 using a 10% discount

rate), about three times the cost per kWh of the California CSI, estimated at 0.06

USD in the same study.27

This di�erence can be explained by the fact that the California CSI consists

of rebates on the upfront cost of the PV systems, while the UK FIT consists of

subsidies paid periodically over a 20-year period. As households are estimated to

have a high discount rate for the subsidy � which I have estimated at 21% per year

for the UK � part of the subsidies in the FIT scheme end up paying for households'

`impatience', and other behavioural features that make households undervalue their

future bene�ts (default bias, uncertainty and risk aversion, mistakes in calculating

the present value, and so on). In fact, at a 21% discount rate, the cost of the

policy drops to 0.06 GBP per kWh generated and 135 GBP per metric ton of CO2-

eq avoided, in line with the corresponding estimates for the upfront incentives in

26Equivalent to 100-150 GBP, at an exchange rate of 1.31 USD for 1 GBP.
27Equivalent to 0.046 GBP, at an exchange rate of 1.31 USD for 1 GBP.
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California.

As long as this discount rate is higher than the interest rate on loans for the

government or the utilities, upfront incentives would have been more cost-e�ective

than the FIT scheme, all else equal. Even in this case, the policy remains very

expensive if considered only as a tool to correct environmental externalities; as a

reference point the European Union Emissions Trading System (EU ETS) carbon

market price has never been above 25 GBP per metric ton of CO2-eq avoided, and

the estimates for the social cost of carbon (SCC) proposed in the Stern Review do

not exceed 100 GBP (Stern, 2007). Yet, support for renewables provides additional

bene�ts, including fostering innovation and learning-by-doing (Ja�e et al., 2005). In

particular, Benthem et al. (2008) �nd that when both environmental externalities

and unappropriated learning-by-doing are taken into account, the incentive schemes

in California are very close to the optimal incentive schedule.

1.6.2 Alternative policy scenarios: output-based v. capacity-

based

While the high estimated discount rate suggests that upfront incentives would have

been more cost-e�ective than the existing FIT scheme, an advantage of the latter is

that it provides stronger incentives to install in locations with higher solar generation

potential. To assess the bene�ts of this feature, in this Section the existing FIT

scheme is compared with an hypothetical alternative policy design that pays the

same annual subsidy throughout the country, keeping the timeline and scale of

changes as in the original. In what follows, I use again the preferred speci�cation, the

Poisson model with endogenous regressors and local authority-level �xed e�ects, to

predict and compare the distribution of installations under the following conditions:

� annual output-based subsidy, as observed in the UK.

� annual capacity-based subsidy, set as the mean of the expected annual output-

based subsidy over the country, in each month. In this case I use the newly

created values for the subsidy and the original cost data to obtain the predicted

number of installations.

Figure 1.18 shows the subsidy schedule under the two scenarios. The main objec-

tive of the following analysis is to investigate how linking the subsidy to electricity
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generation, and therefore implicitly to the solar generation potential of a location,

a�ects the siting of installations. To do this, I look at how much solar capacity and

electricity generation each subsidy induces, where the installations occur, and at

what cost to the bill-payers.

Figure 1.18: Schedules of subsidies under the di�erent policy scenarios.

For each subsidy scenario, I �t the model using the two subsidy schedules and

keep the rest of the variables as they are, and predict the number of installations in

each MSOA in each month. I then net them out of the inframarginal adopters and

convert them into equivalent installed capacity and generation. To obtain an esti-

mate of the installed capacity, I multiply the count of installations by the median size

of the observed installations in each year in each local authority area (see Figure 1.3).

The use of year-speci�c size values should capture the technological improvements

in the sector, as newer panels have a larger capacity than older ones. Generation

is obtained by multiplying the estimated installed capacity in each MSOA for the

average estimated output of that area. I then compute the total subsidies paid, the

subsidy per `induced' kW installed, and the subsidy per `induced' kWh generated.

Comparisons between the capacity and generation induced by each type of subsidy

and the cost of the policy, are presented in Figure 1.19 and Table 1.8.

The �rst two panels of the Table show the total installed capacity net of infra-

marginal adoptions, and the electricity that is expected to be generated over the
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(a)

(b)

Figure 1.19: New capacity (a) and generation (b) induced by di�erent subsidies (net of
inframarginal adopters) in each year.
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Table 1.8: Subsidies per kW of installed capacity and per kWh generated, total capacity
installed, total generation and total expenditures for each subsidy scheme, net of infra-
marginal adoptions.

Total MW of (net) capacity installed between 2010-2015
output-based subsidy capacity-based subsidy

1,575 1,620

Overall GWh generated assuming panel life is 30 years
output-based subsidy capacity-based subsidy

46,781 47,028

Total subsidies for panels installed between 2010-2015, present value (billion GBP)
output-based subsidy capacity-based subsidy

disc. rate = 0 11.17 11.54
disc. rate = 5% 7.31 7.55
disc. rate = 10% 5.23 5.40

Subsidies per kW of installed capacity, present value (GBP/kW)
output-based subsidy capacity-based subsidy

disc. rate = 0 7,092 7,124
disc. rate = 5% 4,640 4,661
disc. rate = 10% 3,320 3,336

Subsidies per kWh generated, present value (GBP/kWh)
output-based subsidy capacity-based subsidy

disc. rate = 0 0.239 0.245
disc. rate = 5% 0.156 0.161
disc. rate = 10% 0.112 0.115
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lifetime of the PV systems, assuming it to be 30 years. Consistent with �ndings in

Burr (2016), the capacity-based subsidy induces more installed capacity than the

output-based subsidy � in this scenarios, the capacity-based subsidy results in 3%

more installations than the output-based subsidy. But if we look at the generation,

the gap between capacity- and output-based subsidy becomes almost negligible, at

only 0.5%; this is evidence that subsidies linked to generation are more e�ective at

inducing installations in areas with higher generation potential, if compared with

capacity-based incentives that are undi�erentiated across the country. The third

panel shows the overall amount of subsidies committed to the scheme (i.e. for all

of the 20 years for which installations are eligible for FIT support), under three

di�erent values of the discount rate: 0, 5 and 10%, to show how the results change

depending on assumptions made on this parameter. The fourth and �fth panels

show the average cost of the policy per kW of installed capacity and for kWh of

electricity generated. These are computed net of inframarginal adoptions, the adop-

tions that would have occurred even with no incentive. Once again in line with the

theoretical results in Burr (2016), the output-based annual subsidy appear to be

more cost-e�ective than the capacity-based annual subsidy.

Finally, I look at the geographical distribution of residential PV systems result-

ing under each policy scenario. The null hypothesis, according to economic theory, is

that, all other things equal, output-based subsidies should result in a higher number

of installations in locations with a better generation potential � and therefore there

should be a positive correlation between the number of installations and the gener-

ation potential. The capacity-based subsidies on the contrary is indi�erent between

areas with larger or smaller potential and should therefore result in no correlation

(other things equal). Looking at the empirical results, I �nd that the output-based

subsidy is indeed better than the capacity-based subsidy in allocating installations

according to the generation potential, but when �xed e�ects and other covariates

are considered, the resulting geographical distribution is more complex than what

the above hypotheses suggest. In fact, the correlation between installations induced

by output-based subsidies and the generation potential of the area is close to zero in

my data (0.085), while the correlation between the installations predicted under the

capacity-based subsidy and the generation potential becomes strongly negative (-

0.153). Interestingly, the inframarginal installations (i.e. the installations estimated

to occur even without subsidies) are also negatively correlated with the generation
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potential although much closer to zero, with a correlation coe�cient of -0.079. These

results are illustrated in Figure 1.20, which shows the predicted number of instal-

lations in each area-month against the generation potential of the area, for each

scenario. The plot lines represent the fractional polynomial �t lines. The di�erence

is stronger when restricting the focus to the period with high subsidies � i.e. before

the 2012-reform � with correlation coe�cients of 0.108 and -0.219, respectively, while

it is attenuated after the 2012-reform, when the correlation coe�cients become 0.084

and -0.121 (Figure 1.21). This con�rms that linking the subsidy to the actual gener-

ation or generation potential improves the cost-e�ectiveness of the incentive scheme

and favours a more e�cient28 siting of the solar PV systems in terms of generation

per kW installed, as compared to a geographically undi�erentiated subsidy.

Overall, the analysis of this Section shows that cost-e�ectiveness of the incentive

scheme could be improved by paying the subsidy upfront, but retaining the di�erenti-

ation of the subsidy according to generation potential. This combination of features

is exactly the solution adopted by California under the Expected Performance-Based

Buydown � an upfront rebate that is adjusted according to the expected generation

of the solar array, calculated taking into account the PV module type and the lo-

cation, orientation and shading of the system. In fact, Benthem et al. (2008) �nd

that this incentive scheme, as designed and realised in California, is very close to

the optimal solar subsidy schedule resulting from their model (when accounting for

environmental externalities and unappropriated learning-by-doing).

1.6.3 Determinants of PV siting: incentives, built-environment,

work arrangements and socio-demographic conditions

To explain why the geographical distribution of residential solar PV adoptions in-

duced by the policy is only weakly correlated to the generation potential, I look at

the role of other covariates. In fact, the results from the scenario analysis suggest

that while output-based subsidies are pushing installations towards locations with

better generation potential, other elements are operating in the opposite direction.

Even though there is no straightforward reason to expect that any of the covariates

(besides the subsidy) is directly correlated with generation potential, in practice

28In this Section I consider `e�cient siting' purely in terms of maximisation of electricity gener-
ation given the investment in installed capacity in each month.
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Figure 1.20: Correlation between installations and potential generation in the area in which
they are installed, under the di�erent subsidy scenarios (fractional polynomial �t lines).

(a) (b)

Figure 1.21: Correlation between installations and potential generation in the area in
which they are installed, under the di�erent subsidy scenarios (fractional polynomial �t
lines) before (a) ad after (b) the policy reform of 2012.
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their distribution over the territory might be. For this reason, I obtain the partial

correlations of all the covariates with the solar generation potential, and compare

the signs of the correlation coe�cients with the signs of the coe�cients from the

preferred regression model to see how they explain the resulting siting distribution

of solar systems.

Results are presented in Table 1.9. As expected, subsidies are strongly correlated

with the generation potential, due to the way they are designed, and have a positive

e�ect on uptake. The two e�ects combined favour an e�cient (in terms of total

generation) siting of the solar systems in locations with larger generation potential.

The same result is achieved by the installation costs, which have a negative e�ect on

adoption and negative correlation with generation potential. Electricity price and

electricity consumption in 2010 have a positive e�ect on solar PV adoptions, as they

proxy for electricity bill savings, but they have opposite e�ects on the siting of the

systems, as price tends to be higher in locations with larger generation potential,

but consumption tends to be lower.

As found by Graziano and Gillingham (2015), population density has a nega-

tive e�ect on PV adoptions, which are more abundant in rural and sparse areas.

Combined with a positive correlation with generation potential in the UK, den-

sity therefore contributes to ine�cient system siting. Other covariates that have

a negative e�ects on residential solar PV uptake but are positively correlated with

generation potential are median house price,29 population between the age of 40 and

64, and residents in the intermediate socio-economic groups C to F (lower manage-

rial, administrative and professional occupations; intermediate occupations; small

employers and own account workers; lower supervisory and technical occupations).

On the other side, number of owner-occupied houses, residents working from home,

and residents belonging to the social-economic group of large employers and higher

managerial and administrative occupations (socio-economic group A) and to rou-

tine occupations (socio-economic group H) have a positive e�ect on PV adoption

but are negatively correlated with solar electricity generation. All these drivers push

installations towards locations with relatively worse generation potential.

29Note that in the UK historical houses, such as listed buildings and buildings in conservation
areas, have stringent regulation on what modi�cations can be made and require authorisation for
the installation of solar panels and other energy related measures (Hilber et al., 2019). Moreover,
the aesthetics of the house is an important concern in the country, and many households oppose
solar panels because they make the house look �hugly� or are afraid it might lower the value of the
house (Standal et al., 2020). These concerns are likely to a�ect higher-value houses.
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Table 1.9: E�ects of covariates on solar PV uptake, partial correlation of covariates with
the generation potential of locations, and resulting e�ect on siting.

PV count Generation potential resulting e�ect
(Poisson, IV) (partial correlations) on siting

Subsidy (100GBP/kW) 1.907∗∗∗ (0.022) 10.23∗∗∗ (0.101) +

Install. cost (1,000GBP/kW) -4.182∗∗∗ (0.056) -1.580∗∗∗ (0.167) +

Electricity price (p/kWh) 0.190∗∗∗ (0.018) 8.020∗∗∗ (0.118) +

Electricity consumption in 2010 0.0001∗∗∗ (0.000) -0.015∗∗∗ (0.000) −

Density -0.0001∗∗∗ (0.000) 0.0003∗∗∗ (0.000) −

# Owner-occupied houses 0.0001∗∗∗ (0.000) -0.035∗∗∗ (0.000) −

Median house price -0.000002∗∗∗ (0.000) 0.0001∗∗∗ (0.000) −

Population 40-64 -0.0001∗∗∗ (0.000) 0.011∗∗∗ (0.000) −

Population ≥65 0.0002∗∗∗ (0.000) 0.059∗∗∗ (0.000) +

Residents in socio-economic group A 0.0002∗ (0.000) -0.201∗∗∗ (0.002) −

Residents in socio-economic group B 0.0003∗∗∗ (0.000) 0.0187∗∗∗ (0.001) +

Residents in socio-economic group C -0.0000 (0.000) 0.049∗∗∗ (0.001) .

Residents in socio-economic group D -0.0004∗∗∗ (0.000) 0.012∗∗∗ (0.001) −

Residents in socio-economic group E -0.0004∗∗∗ (0.000) 0.120∗∗∗ (0.001) −

Residents in socio-economic group F -0.0000 (0.000) 0.091∗∗∗ (0.001) .

Residents in socio-economic group G 0.0001 (0.000) 0.068∗∗∗ (0.001) .

Residents in socio-economic group H 0.0005∗∗∗ (0.000) -0.085∗∗∗ (0.001) −

Flats -0.0002∗∗∗ (0.000) -0.009∗∗∗ (0.000) +

Terraced houses -0.0001∗∗∗ (0.000) -0.022∗∗∗ (0.000) +

Semi-detached houses 0.0000 (0.000) -0.039∗∗∗ (0.000) .

Detached houses 0.0003∗∗∗ (0.000) 0.001∗∗∗ (0.000) +

Work from home 0.0011∗∗∗ (0.000) -0.238∗∗∗ (0.002) −

Homemaker 0.0001 (0.000) 0.181∗∗∗ (0.001) .

Retired -0.0002∗∗∗ (0.000) -0.053∗∗∗ (0.001) +

Unemployed -0.0003∗ (0.000) -0.255∗∗∗ (0.002) +

Born in EU 0.0002∗ (0.000) 0.022∗∗∗ (0.001) +

Born in UK 0.0000 (0.000) 0.003∗∗∗ (0.000) .

N 503580 503580
R2 0.318
adj. R2 0.318
pseudo R2 0.325
F 10676.0

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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The forces that push in the opposite direction � that is towards more e�cient

siting for electricity generation � due to positive coe�cients for both adoption and

generation potential are population older than 65 years old, residents in higher

professional occupations (socio-economic group B) and homemakers spending time

taking care of the home, residents born in the EU and UK, as opposed to outside

of the EU, and the presence of detached houses. The same result occurs when both

coe�cients are negative, as in the case of areas with large presence of apartments

(�ats), terraced houses, retired residents and unemployment.

Besides the e�ects of these variables, the situation is likely to be further com-

plicated by unobservables (variables that are not observed in the dataset), such as

green preferences and local campaigns and initiatives, that are captured by area-

speci�c �xed e�ects and contribute to shape the distribution of solar systems around

the UK. Moreover, peer e�ects due to information sharing, social norms and imi-

tative behaviour, might compound these mechanisms by triggering a domino e�ect,

once solar PV systems start appearing in a neighbourhood.30 Understanding the

combined e�ects of these elements can therefore explain the puzzling distribution of

residential solar PV around England and Wales.

Therefore, the distribution of residential solar systems appears to be shaped not

only by the subsidy, but also by the counteracting e�ects of several other forces,

including socio-demographic composition, work arrangements and characteristics of

the built environment. Understanding the complementarities between these ele-

ments and the mechanisms behind these e�ects can therefore help design more ef-

fective and better targeted policies, which take into consideration the monetary and

non-monetary incentives and the di�erent physical, technological, socio-demographic

and economic constraints at play.

1.7 Conclusion

The main contributions of this Chapter have been to estimate the responsiveness

of demand for residential PV systems to the UK output-based subsidies, to iden-

tify what other forces shape the spatial distribution of solar installations around

30Evidence that peer e�ects play a signi�cant role in the di�usion of new technology, and in
particular of residential solar PV, is documented in the literature (Bollinger and Gillingham, 2012;
Richter, 2014; Graziano and Gillingham, 2015; Müller and Rode, 2013; Rode and Weber, 2016;
Baranzini et al., 2017), and suggested by the exploratory analysis presented in Appendix A.2.
This is the topic of the next Chapter.
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the country, and to understand the strengths and weaknesses of the policy design

and how it could be changed to improve cost-e�ectiveness and achieve a more e�-

cient siting of residential solar in terms of overall generation obtained from a given

installed capacity.

As predicted by the theory, I �nd a positive subsidy elasticity of demand, with

the number of installations decreasing in response to cut to the subsidies. This is

counterbalanced by the negative elasticity to the cost of installing, with the number

of installations increasing as the cost falls. Using a consistent estimator for a Poisson

model with �xed e�ects and endogenous regressors, I estimate that on average a 1%

cut in the annual expected subsidy results in a 4.82% drop in installations, but if the

installation costs decrease by 1% then this boost adoption by 9.31% (when taking

all variables at their mean values). These values represent partial elasticities. When

considering the cost of installations net of the present value of all future subsidies

as the main regressor � as commonly done in the literature, especially when rebate

schemes are under analysis � the estimate for the overall elasticity at the mean is

-0.87, meaning that a 1% decrease in the net costs, or equivalently a 1% increase in

the pro�tability of the investment, results in 0.87% more installations. This value

is comparable to estimates obtained in the literature for the US and Belgium, and

suggest that a drop of 10 GBP in the net costs (or equivalently a raise of 10 GBP in

the pro�tability) per kW of installed capacity would result in 140 more installations

throughout the territory.

I have then used the resulting estimates to discuss the cost-e�ectiveness of the

subsidy scheme and the degree of inframarginal adoptions and rent appropriation.

The additionality of the policy appears to be very large, with only few installations

predicted to have happened without any form of support, and mainly in later years,

when the cost of PV systems was lower. Nevertheless, electricity generated by

the residential PV installations appears to be more costly than other sources in the

country, and even more expensive than residential solar electricity in other countries.

I estimate a cost of the policy of 0.112-0.156 GBP per kWh generated (present value

calculated using a 10% and 5% discount rate respectively), and of approximately

224-313 GBP per metric ton of CO2-eq avoided with respect to the energy mix

in place in 2010, before the FIT scheme started (present value calculated using a

10% and 5% discount rate respectively). On one side, it should be considered that

solar PV systems are also linked to additional bene�ts in terms of technological
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innovation, learning-by-doing, social learning, and reduction of local pollutants and

negative externalities that are associated with other energy sources (Ja�e et al.,

2005; Benthem et al., 2008), and this would therefore justify a higher cost of solar

energy with respect to other sources.

Yet, these bene�ts could likely be achieved at a lower cost than what UK energy

bill payers have been paying, by providing incentives upfront, as in the case of the

California Expected Performance-Based Buydown, or other rebate schemes in the

US and around the world. In fact, I estimate that households behave `as if' they were

heavily discounting future subsidies, meaning that a large share of the subsidies end

up paying for households' `impatience', and other behavioural features that make

households undervalue future bene�ts from adoption (default bias, uncertainty and

risk aversion, mistakes in calculating the present value, and so on). High discount

rates are a common feature in the literature on new technology adoption, and very

similar values have been found in the context of residential solar PV systems for

Belgium and California, using more complex structural models with dynamic opti-

misation of decisions. When calculating the present value of the policy expenditures

using the estimated 21% discount rate households seem to be using, the cost drops

to 0.06 GBP per kWh generated and 135 GBP per metric ton of CO2-eq avoided,

in line with the corresponding estimates for the policy cost of upfront rebates in

California.

In terms of geographical distribution, I �nd that the existing output-based sub-

sidy scheme is more cost-e�ective than the hypothetical alternative capacity-based

subsidy considered. In fact, while capacity-based subsidies induce more installa-

tions than the standard output-based incentive, these occur in areas with worse

generation potential. This is consistent with theoretical results from Burr (2016).

Overall, retaining the di�erentiation of the subsidy according to generation potential

is therefore helpful to improve the cost-e�ectiveness and e�ciency of the subsidy.

Nevertheless, there appear to be other mechanisms at play that result in a distribu-

tion of systems that is only weakly correlated to the generation potential. This is

because in the UK several built environment, work arrangements and socio-economic

characteristics that are associated with solar PV adoption � such as wealthier socio-

economic groups, lower population density, more owner-occupied houses and more

people working from home � tend to be negatively correlated with locations' genera-

tion potential. This result could be leveraged to target future policies and to design
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support schemes that take into consideration a broader set of monetary and non-

monetary incentives and di�erent physical, technological, socio-demographic and

economic constraints.

At the same time, the observable characteristics included in the dataset are likely

to be only a part of all the forces at play, as location speci�c �xed e�ects might be

absorbing other relevant mechanisms that are unobserved in this analysis, such as

green preferences, and local campaigns and initiatives. Peer e�ects, documented in

the literature and detected through some preliminary analysis in this paper, might

further compound the existing e�ect by triggering a chain reaction, once solar PV

systems start appearing in a neighbourhood. More research on these channels would

therefore be relevant.

In conclusion, the �ndings of this Chapter suggest that a combination of upfront

incentives di�erentiated so to take into consideration generation potential would

be a more cost-e�ective solution than both annual output-based subsidies and up-

front capacity-based rebates. California Expected Performance-Based Buydown is

an example of how such incentive could be designed, as it o�ers an upfront rebate

calculated according to the expected generation of the solar array, taking into con-

sideration the location, orientation and shading of the installation, and even the

e�ciency of the PV module purchased.

Future extensions of the research might integrate into the analysis grid network

costs (generation, transmission, distribution, congestion, etc.), the geographical dis-

tribution of demand, and the potential solar energy generation in each location at a

higher resolution (particularly useful would be at the week and weekend level, and

by day and night time) to assess where a hypothetical central planner would have

preferred to site the solar systems, and discuss how these `optimal' distribution of

installations across the country compares with the decentralised decisions triggered

by di�erent incentive designs.

The research questions explored in this Chapter contribute to our understand-

ing of how centralised market based incentives, such as subsidy, interact with the

behaviour of decentralised agents, that are now both consumers and producers of

energy. It also discusses practical policy alternatives to improve cost-e�ectiveness of

renewables subsidy, given budgetary pressure. More broadly, the paper contributes

to the literature on technology adoption and policy intervention in the case of exter-

nality, the future of electricity system regulation, load and capacity management,
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and integration of renewables.
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Chapter 2

The role of peer e�ects and

monetary incentives in the di�usion

of residential solar PV

2.1 Introduction

Together with externalities and non-rival and non-excludable bene�ts (Ja�e et al.,

2005), incomplete information and information asymmetries, on one side, and deci-

sion heuristics and behavioural factors on the other, may also contribute to inertia

and slow uptake in the di�usion of low-carbon innovations (Foster and Rosenzweig,

2010). While imperfect information is one of the causes of market failures listed in

the standard economic models, and as such it has a longer tradition in economic

literature, the discipline's focus on behavioural mechanisms is more recent. Both

channels may have e�ects that spill over from an individual to the other through

social interactions or simple physical proximity, therefore violating the standard as-

sumptions of causal inference and requiring more complex estimation procedures

and research designs. Moreover, the observational similarities of their e�ects make

separate identi�cation di�cult.

This Chapter focuses on how these two channels may explain the presence of peer

e�ects in the uptake of residential solar PV systems. I focus in particular on two

spillover mechanisms, social learning through information sharing � within the more

standard economic channel � and social utility derived from pressure to conform

and imitation as a decision heuristic � representing the behavioural channel. To this
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aim, I choose residential solar PV systems as the focus of the analysis because it is

a visible technology and as such knowledge of who has adopted can be transmitted

even without communication. This means that geographical proximity can be used

as proxy for the transmission of information and peer pressure rather than actual

communication networks, that would be much more di�cult to obtain data on.

This technology is also of particular relevance due to its promising role in re-

ducing emissions from electricity generation and therefore in contributing to climate

change mitigation. On this account, governments around the world have been ex-

perimenting with new measures to support its deployment, with a range of monetary

incentives, informational interventions, �nancing mechanisms, and community ini-

tiatives. This provides a fertile setting for academic research, to understand and

learn from what has been done and inform future policy design.

Compared to the existing literature, this paper adds more theoretical background

to the analysis to suggest possible mechanisms behind peer e�ects in solar PV adop-

tion. A simple static model sets up the household's decision to install solar panels

given the subsidy o�ered, the upfront cost required to obtain the technology and the

information the household has collected. The initial baseline model is then extended

to include peer e�ects according to two di�erent mechanisms. The �rst one is an

imitation behaviour due to the utility premium obtained from conforming with peers

and �keeping up with the Joneses� (the social utility channel); this utility premiums

can also be seen as savings in the cognitive costs required to make the decision,

achieved by using imitation of neighbours' behaviour as a decision heuristic. The

second mechanism consists of information sharing at the local level, with peers who

have already adopted the technology (the social learning channel). For each channel,

propositions are derived on the direction of the peer e�ects, how they would evolve

over time, and how the peer e�ects would a�ect the subsidy elasticity. While both

mechanisms support the hypotheses that peer e�ects are present and signi�cant, in-

teract with subsidies and are not constant over time, they predict di�erent patterns

of evolution over time. I use these insights from the model to test which mechanism

is more consistent with the results from the reduced-form regression analysis, and

therefore �nd evidence on which one is dominant. This paper also looks explicitly

at how peer e�ects and monetary incentives interact and whether they are comple-

ments or substitutes, and provides a discussion on how the result could be leveraged

in policy design.
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The research questions explored in this paper contribute to the broader re-

search question of what are the economic and non-economic determinants of low-

carbon technology adoption, at the household level, by combining more standard

micro-economic theory of consumers' decisions with the literature on innovation

spillovers, imitative behaviour, and social learning. In fact, in terms of policy impli-

cations, deployment subsidies are usually justi�ed using environmental externalities

or `learning-by-doing' arguments, but if spillover e�ects are present then this may be

an additional argument to consider, as they might act as a multiplier of the learning-

by-doing e�ect. Any complementarity or substitutability between peer e�ects and

monetary incentives should therefore be factored in when calculating the optimal

level of the incentive, as well as its schedule over time.

Section 2.2 presents the main literature on peer e�ects and solar PV adoptions,

as well as other technologies and practices, while Section 2.3 details the model and

derive a set of propositions to be tested in the empirical part of the paper. Section 2.4

provides more information on the policy setting and the data used in the analysis, as

well as a descriptive analysis of the spatial patterns of adoptions in the UK. Section

2.5 introduces the regression analysis, discussing the challenges to identi�cation, the

estimation strategy to address them, and how the estimators and the peer variables

are de�ned; and Section 2.6 presents the results, as well as a series of robustness

checks. Finally, Section 2.7 concludes with a discussion of the policy implications.

2.2 Peer e�ects and technology uptake

Peer e�ects and solar PV systems

Solar energy generation technologies have seen rapid improvements in the last decades,

as well as a steep reductions in their price, making them a promising tool to help

reduce emissions and mitigate the climate crisis. Policies that provide support to the

development and deployment of these technologies have similarly been experiment-

ing with di�erent designs and frequent adjustments to keep up with the changing

situation. This has provided fertile terrain to assess the e�ectiveness of di�erent

policy instruments and research the economic and non-economic mechanisms that

drive the uptake of these technologies.

In this context, a literature on the role of peer e�ects in the adoption of resi-
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dential solar PV systems and other energy e�ciency technologies has developed in

the last few years. Wolske et al. (2020) provide a multi-disciplinary review of the

literature on peer e�ects in households' energy-related behaviours, covering stud-

ies more speci�cally on solar panels. Of relevance to this paper, they identify two

main channels through which peer e�ects operate � social norms and interpersonal

communication and persuasion � and describe di�erent mechanisms behind each of

them. Distinguishing the e�ects of the two channels using quantitative empirical

analysis and observational data encounters several challenges, so that most of the

economic literature so far has focused on identifying and quantifying peer e�ects in

general, an already methodologically onerous task.

Bollinger and Gillingham (2012) is one of the very �rst papers in this literature,

studying adoption of solar PV in California. They introduce the identi�cation strat-

egy that several subsequent papers, including this one, use. They exploit the time

lag between the decision to adopt solar and the moment in which the panels are

actually put on the roof and start producing, which is caused by administrative and

bureaucratic requirements. In fact, a household can only be a�ected by their peers

up to the moment in which the decision is taken. Yet, their solar panels will only

start in�uencing others once they are visible on the roof and the household starts

having information on their production. They conclude that peer e�ects are present

and are stronger the larger the peer installations are and the closer to the reference

household.

Graziano and Gillingham (2015), focus on Connecticut and extend the previous

methodologies by applying spatial analysis tools and more explicit spatial variables.

They study in particular the role of geography and the built environment and �nd

that rural areas and smaller towns drive the di�usion of solar panels in the State.

They con�rm that peer e�ects are positive and signi�cant and �nd that the in�uence

of peers' installations become weaker the further away in space they are, and the

further back in time they were installed.

To overcome the identi�cation challenges of peer e�ects, Gillingham and Bollinger

(2017) exploit the Solarize campaigns as a natural �eld experiment to study the

uptake of solar panels, again in Connecticut. The Solarize scheme combines an in-

formational campaign led by volunteer ambassadors, with group pricing to lower

the price of installation, providing di�erent level of price and peer interaction treat-

ments, which the paper uses to estimate the e�ects. They �nd the intervention to be
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highly cost-e�ective. As the intervention explicitly increases information provision

and information sharing, the main channel responsible for the e�ect appears to be

social learning.

Other studies in Europe were conducted by Müller and Rode (2013) and Rode

and Weber (2016) for Germany, Baranzini et al. (2017) and Carattini et al. (2018)

for Switzerland, and Palm (2017) in Sweden. In particular, Müller and Rode (2013)

focuses on only one city and use a discrete-choice framework to model the choice

on whether to install or not, given policy support and existing nearby installations,

while Rode and Weber (2016) set up an epidemic di�usion model enhanced with a

spatial component to capture spatial and temporal patterns of adoption across the

whole country. Palm (2017) uses a mix of qualitative interviews and quantitative

survey methods in Sweden, and �nd that, according to households self-reported

information, peer e�ects mainly operated through active interaction within existing

social network, rather than passively through simple visibility of the panels, and that

households rely on their peers mainly to con�rm the functioning of the technology.

Carattini et al. (2018) focus instead on Switzerland, and exploit cultural barriers

and language di�erences within the country as a discontinuity design. They �nd

that language barriers hampers adoption of solar PV, suggesting once again that

social learning is a relevant mechanism at play. Baranzini et al. (2017) extends the

analysis of peer e�ects in residential solar adoptions to the additional categories of

businesses and farms, and to types of installation with di�erent visibility, on the

roof as opposed to integrated on the side of a building, and concludes that better

visibility is associated with stronger e�ects, and that while households are in�uenced

by installations in all categories, farms and businesses tend to be in�uenced only by

installations in the same categories, that is farms and businesses respectively. All

con�rm that peer e�ects play a relevant role in the adoption of solar technologies.

The main study on the UK, and one of the �rst economic studies to identify

peer e�ects in residential PV adoptions, is Richter (2014). While in this Chapter

I use a similar identi�cation strategies and estimators as in her paper, the key

di�erence is that she uses more standard econometric techniques and does not take

into consideration the spatial dimension of the di�usion process beyond the borders

of the unit of analysis. Her analysis is also restricted to the �rst three years of the

FIT scheme and uses postcode-districts, a much larger unit of aggregation than the

LSOA I use in this paper � for comparison, there are 34,738 LSOAs in England
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and Wales, but only 2,269 postcode-district. Spatial analysis on the di�usion of

residential PVs in the UK is instead presented by Balta-Ozkan et al. (2015) and

Westacott and Candelise (2016), but using cross-sectional data. They therefore

provide a snap-shot of the situation in the country at one point in time, and do not

research how changes in the policy a�ect the di�usion at di�erent points in time

The evolution of peer e�ects in the adoption of residential PV has been investi-

gated from an empirical perspective by Bollinger and Gillingham (2012), using year

dummies interacted with the lagged installed base. They �nd that peer e�ects in

California have strengthened over the years, consistently with the observed intro-

duction of marketing strategies to leverage these e�ects. Similar results have been

found by Graziano and Gillingham (2015) for Connecticut. Richter (2014) uses a

similar method for the UK, but with quarter dummies, and �nds that peer e�ects

seem to be stronger in periods of policy changes, but overall decrease over time. Fi-

nally, Baranzini et al. (2017) estimate the coe�cient for neighbouring installations

in Switzerland using rolling 4-year samples, and again �nd evidence that peer e�ects

in PV installations have decreased over time.

Peer e�ects and other `green' technologies

Expanding the analysis to other `green' technologies and spillovers from one tech-

nology to another, La Nauze (2019)'s paper on Australia studies how pro-social

motivations and virtue signalling of installing solar panels a�ect purchase of green

power in the neighbourhood, and �nd a positive spillover e�ect from one technology

to the other. Narayanan and Nair (2013) focuses on the adoption of electric vehi-

cles in California, using a clever identi�cation strategy based on di�erent brands of

hybrid cars, one that is visibly hybrid and others that are indistinguishable from

the regular fuel versions of the same car. Bollinger et al. (2019) focus instead on

the adoption of water conservation practices in gardening in California. Their iden-

ti�cation strategy is based on an instrumental variable approach, using households

that have recently moved to a new neighbourhood.

Other studies rely on �eld experiments and RCTs to better control for con-

founders and endogeneity in the identi�cation of peer e�ects. Alem and Dugoua

(2019) for example, conducted an RCT in India o�ering solar lanterns, and divided

their sample into control, unincentivised communication treatment and incentivised
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communication treatment. They �nd that communication strongly increases WTP.

Peer e�ects and agricultural and microcredit decisions

Similar research has been conducted in rural Asia and Africa to study the role

of peer e�ects in the adoption of agricultural technologies and practices, with a

particular focus on social learning. Bandiera and Rasul (2006) study peer e�ects in

the adoption of a newly introduced crop, sun�ower, using data on farmers' social

networks in Mozambique. They �nd that while peer e�ects play a role, farmers

who have better knowledge and information on the new crop are less in�uenced by

peers. Similarly, Conley and Udry (2010) focus on peer e�ects in crop choices in

Ghana, using explicit data on communication networks; they �nd positive social

learning e�ects in the case of pineapples, a new crop, but no social learning in the

case of crops that are already commonly used, suggesting that information from

peers becomes redundant when individuals already have familiarity with the crop.

Finally, Di Falco et al. (2020) identify peer e�ects in the number and type of climate

change adaptation strategies adopted by farmers in rural Ethiopia, and construct

a placebo test in which neighbours are re-assigned at random to corroborate the

�nding.

Another recent strand of research looks instead at whether di�erent types of

�peers� or information sources have di�erent e�ects on the outcome. Krishnan and

Patnam (2014) introduce a non-overlapping peer-of-peer IV strategy to identify so-

cial learning in the adoption of fertilizer and improved seeds in Ethiopia, and �nd

that the e�ects evolve di�erently over time depending on whether the informa-

tion came from neighbouring farmers or extension agents. BenYishay and Mobarak

(2019) and Banerjee et al. (2013) study the role of the identity of the �injections

points� of a new technology, or of information on a new technology, and use dif-

ferent de�nitions of social, cultural, and geographic networks to identify peers in

agriculture and microcredit respectively.

The interaction between peer e�ects and monetary variables

To the best of my knowledge, the interaction between peer e�ects and responsiveness

to subsidy has not been explored in the literature on residential PV installations.

This paper challenges the null hypothesis of no interaction between the two e�ects.
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The idea of an interaction e�ect between a monetary elasticity (usually price) and

peer e�ects is not entirely new to the economic literature. One of the �rst to put

the hypothesis forward was Leibenstein (1950). In the paper "Bandwagon, Snob

and Veblen E�ects in the Theory of Consumers' Demand", QJE, he integrates peer

e�ects (called bandwagon e�ects in the paper) in the theory of demand, and shows

how in the case of a change in price, the demand would change not only because of

the direct price e�ect, but also because of the changes in other people's demand, so

that the �nal elasticity of demand would capture both e�ects. Another interesting

and relevant point is that of social taboos when bandwagon e�ects are present, i.e.

at the beginning no one buys because no one else does, but for some price, enough

people would buy despite the taboo triggering the taboo breaking points and starting

the di�usion process. This could be relevant for the case of PV as a new technology

that is initially frown upon. Following this theoretical framework, some empirical

studies have been conducted, especially in the health economic literature, looking

at alcohol and smoking. Relevant examples are Manning et al. (1995) and Ayyagari

et al. (2013). The closest study in terms of the interaction e�ect considered is

a recent working paper by La Nauze (2019). She �nds that solar panels have a

positive spillover e�ect on the purchase of green power, but the e�ect is smaller

when subsidies are higher, possibly because virtue signalling become confused with

pro�t maximisation.

Looking at the interaction between peer behaviour and subsidy is equivalent

to ask whether responsiveness to subsidy is heterogeneous depending on how many

peers are adopting. Investigating potential heterogeneity in the elasticity to subsidies

is particularly relevant for welfare analysis and has important policy implications.

In fact, it is critical to understand the impact of changes in the tari�, in terms

of who will be more a�ected, the externalities generated, and the resulting welfare

e�ects. These results could be a starting point to improve the e�ciency of the

current policy, as well as its distributional e�ects, or even thinking about new and

more sophisticated policy mixes.

Some studies on heterogeneous price elasticity exist in the energy economics

literature, although they mainly focus on the interaction with income (Archibald and

Gillingham, 1980) or with the level of consumption (for example fuel price elasticity

and driving intensity, in Frondel et al., 2012). Another relevant work that tested

whether price elasticity changes depending on the level of information consumers
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have on the good, is Ashraf et al. (2013), in the context of a health product. They

conduct a �eld experiment in Zambia o�ering water puri�cation products households

were not familiar with. The product was o�ered at di�erent prices and coupled with

di�erent levels of information about its use, and the authors �nd that demand

for the product is more elastic when information is provided, therefore suggesting

that subsidies are more e�ective when complemented with informational treatments.

Interestingly, they �nd that the informational e�ect in isolation does not have any

direct e�ect on the demand for the product.

In order to contribute to this literature, my research focuses on decisional spillovers

across space and time � whereby individuals a�ect each other's decisions via social

interaction or simple geographic proximity, and technological choices made in the

past provide information, as well as a reference point or `default' options that will

a�ect future decisions. The e�ect of social pressure, private and social learning, and

information accumulation in these cases is not straightforward. Agents who have

a behavioural bias towards the status quo technology (default bias) for example,

will require very high net bene�ts before choosing to switch to the new technology,

and may push others to do the same. Similarly, sharing information on the positive

externality of the technology and the bene�ts that are di�cult to exclude, may give

rational agents an incentive to free-ride and the resulting di�usion of the technology

will be socially sub-optimal. On the other side, information sharing and social pres-

sure may trigger cooperative behaviours, via willingness to monitor and sanction,

social preferences, or herding and reputational e�ects of the early adopters.

2.3 Theoretical framework

2.3.1 Model

The model is inspired by the formalisation of the decision to purchase a �nancial

asset in the presence of social learning and social utility presented in Bursztyn et al.

(2014, Appendix B), and of the role of peer e�ects in general in the decision to

go see a movie at the theatre, in Moretti (2011). The theoretical framework used

draws further inspiration from other relevant articles that model peer e�ects under

social utility and/or social learning to derive hypotheses for empirical testing, in

particular Sorensen (2006) for the case of health plan choices, and Young (2009), who
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characterises the shape of aggregate uptake under di�erent peer e�ect mechanisms.

Given that economic bene�ts are often quoted as one of the main incentives

in favour of residential PVs, and this was con�rmed in qualitative interviews con-

ducted by the author around the country (Standal et al., 2020), the baseline model

formalises the decision to install or not install solar panels as a function of the sub-

sidy and the cost of the technology at a certain time and location. The model is

then extended to account for peer e�ects. In particular, I consider two di�erent

mechanisms through which peer e�ects may operate: social utility � which provides

a premium for conforming with neighbours who have already adopted and triggers

imitative behaviour � and social learning � where households who have already in-

stalled provide an additional source of information at the local level. These two

mechanisms result in a set of hypotheses on the pattern of solar PV adoption that

are then tested in the empirical section of the paper.

It is to be noted that this model regards decisions as static, i.e. households

decide whether to install or not given present conditions, rather than when to in-

stall. Bollinger and Gillingham (2012) make the same assumption, supported by

the speci�c context and information collected through a survey. This assumption is

also consistent with qualitative interviews conducted by the author. Nevertheless,

dynamic versions of this model could be explored in the future, as they would pro-

vide further insights into the di�usion of the technology. The framework could also

be extended introducing environmental motivations as an additional non-monetary

component of the payo� of adoption more generally. Heterogeneity of motivations

and sophistication of the households would also be interesting extensions to explore

in the future.

The model presented is intended to capture the main features of early stages of

the adoption process, when saturation of the market is not yet an issue. This is

appropriate for the UK in the period considered, as at the end of 2016 90% of the

LSOAs had a penetration of residential solar panels of less than one system for every

10 owner-occupied houses, and half of the LSOAs had less than one solar installation

for every 37 owner-occupied houses. And this is not considering houses occupied by

tenants nor any block of �ats, social housing or multi-family property or any other

residential dwelling not classi�ed as house. The potential market is therefore likely

to be even larger.
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Baseline model, no peer e�ects

In the case of innovative technology, it is common to assume that there is inertia

in the di�usion process (Young, 2009; Richter, 2014). This can be included in the

model by assuming that in each period and in each location, i.e. for each combination

(l, t), only a fraction α of all the suitable households that constitute the potential

market for solar PV systems consider installing solar panels. If household i is among

those ones, they decide whether to install a solar PV system (qi,l,t = 1) or not

(qi,l,t = 0) given the conditions in that location at that time. Aggregating the

individual decisions gives Ql,t =
∑

i∈(l,t) qi, the total number of households installing

in location l at time t. In what follows, I drop the subscript l and t for ease of

exposition.

The decision set for household i is therefore qi = {0, 1}. I assume that once

a household has installed solar panels, they are out of the market. Installing the

system provides a monetary payo� x, which in the case of the UK represents the

periodic FIT payments. The payo� is risky and uncertain, and its realisation follows

a probability density function f(x), which is the same for all households within

a given location-time combination (l, t), after controlling for covariates. To see

why the payo� is risky and uncertain, consider that the FIT payments in the UK

depend on the subsidy rate in place at the time the system is registered and the

electricity generated by the system in each period. The latter depends in turns on

characteristics of the systems, tilt and direction of the rooftop, solar irradiation at

the location, but also contextual weather conditions. Moreover, once the household

decides to install solar panels, the actual installation occurs at a lag, due to the

bureaucracy involved and the time the installer needs to inspect the house, obtain

all the components of the systems, connect the wires and inverter to the electric

system, and place the solar modules on the roof. By the time the installation is

completed and the system can be registered for the FIT scheme, the subsidy rate

might have therefore been cut to a lower level. While this example is speci�c to

the context studied in this paper, support schemes for renewable energy and new

technologies in general tend to have similar elements of uncertainty and risks.

Household i's utility from installing is given by ui(x), so that higher payo�s

provide more utility, but at a decreasing rate (du(x)/dx > 0 and d2u(x)/dx2 < 0),

as commonly assumed in microeconomics. For simplicity, I assume that ui(x) =
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u(x) for all i within a given location and time. Each i obtains information on the

payo� they can expect given the present conditions, represented by a signal si. The

signals for all households within a given location and time come from a common

distribution, but each household has a di�erent realisation, for example because

they look for information from di�erent sources, or ask di�erent questions. Signals

are informative, so that if payo� x is higher, households tend to observe higher

values of the signal si. I follow Bursztyn et al. (2014) and formalise this condition

by assuming that conditional density f(x|si) satis�es the monotone likelihood ratio

property (MLRP).

Household i will install only if the expected utility of adoption is larger than

the opportunity cost of adopting, represented by ū. ū includes the upfront cost

of installing. In the baseline scenario, where households are not a�ected by the

decisions of their peers, this translates into:

Pr(qi = 1) = Pr(E(u(x|si)) > ū) (2.1)

where

E(u(x|si)) =

∫
u(x) f(x|si) dx (2.2)

so increases in x and relatedly more favourable signals si increase the probability of

adoption.

As time passes, it is realistic that households across the country become generally

more familiar with the solar PV technology and the support scheme o�ered, and their

sophistication increases. As in Bursztyn et al. (2014), this is rendered in the model

by assuming that as time passes the distribution of the signal becomes more precise

and its variance decreases: σst2 ≤ σst1 if t2 > t1. Under continuity and di�erentiability

assumptions this can be written as dσs/dt ≤ 0. The precision of the signal per se

does not a�ect u(.), but only means that households make on average more `correct'

decisions, by installing if payo� is high with respect to the opportunity cost, and

not installing if it is low, so that ∂E(u(x|si))
∂σs = 0. This is consistent with the �nding

from Ashraf et al. (2013), reviewed above.
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Model with social utility � peer e�ects as imitative behaviour

When social utility is at play, household i obtains extra utility if they can �keep up

with the Joneses� by imitating or conforming to the behaviour of their neighbours

(or peers). In this context it is reasonable to assume that utility from adoption � or

equivalently the disutility of being the odd one out that does not have solar panels

� is therefore higher the more widespread PV systems are in the neighbourhood and

the stronger the �social norm� around solar panel is. Let us denote as γ the strength

of the social norm, and as Q−i the number of neighbours who have already installed

solar panels on their rooftops at the time i is making the decision on whether to

adopt. Note that Q−i can be any form of aggregation of the individual installations

already existing in the neighbourhood, for example the sum of the installations or

the cumulative share, and installations could be weighted depending for example

on the distance from i or on how far back in time they occurred. Note that a key

identifying assumption in the paper is that an installation can a�ect peers living in

the neighbourhood only once it has been purchased and installed on the roof, and

therefore becomes visible to others. Then if Q−i,2 > Q−i,1:

u(x|γ,Q−i,2)|q=1 − u(x|γ,Q−i,2)|q=0 ≥ u(x|γ,Q−i,1)|q=1 − u(x|γ,Q−i,1)|q=0 (2.3)

that is households who live in neighbourhoods with more installations get higher

utility from installing (or higher disutilities from not installing) than households

who live in neighbourhoods with lower penetration of the technology, given the

same payo� and the same level of social norm; and similarly, if γ2 > γ1:

u(x|γ2, Q−i)|q=1 − u(x|γ2, Q−i)|q=0 ≥ u(x|γ1, Q−i)|q=1 − u(x|γ1, Q−i)|q=0 (2.4)

that is households who install when the social norm towards solar panels is stronger

get higher utility from installing (or higher disutility from not installing) than house-

holds who install when the social norm is weaker, given the same level of penetration

of the technology in the neighbourhood and the same payo�. These results rely on

mild monotonicity assumptions on the utility function u(.).

In particular, this can be speci�ed as household i obtaining an additional non-
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monetary payo� from installing � or social payo� � on top of the monetary payments:

xsocial = g(γ,Q−i) (2.5)

Function g(.) aggregates the number of peer adoptions and translate them into

the social payo�.1 I do not impose a speci�c form for the aggregate function, but

consistent with the speci�cation commonly proposed in the literature I assume that

the social payo� g(.) increases the more peers have already installed: ∂g(γ,Q−i)
∂Q−i

≥ 0.

Similarly, the social payo� increases the stronger the social norm is: ∂g(γ,Q−i)
∂γ

≥ 0.

The social norm acts as a multiplier, so that when the social norm is stronger, one

extra installation in the neighbourhood has a stronger impact on i's decision, as

compared to the case with a weaker social norm. This can be formalized using the

cross derivative ∂2g(γ,Q−i)
∂γ∂Q−i

≥ 0. As g(.) increases the total payo�, it also increases the

expected utility, so that ∂E(u(x|si))
∂g(.)

= ∂E(u(x|si))
∂x

∂x
∂g(.)
≥ 0. Utility therefore becomes a

function of the two types of payo�, monetary and social:

u = u(xmonetary, xsocial) = u(xmonetary, g(γ,Q−i)) (2.6)

with utility increasing in each of the payo� (∂u(xmon,g(.))
∂xmon > 0 and ∂u(xmon,g(.))

∂g(.)
> 0).

The two payo�s may substitute each other, if keeping up with the neighbours is

perceived as equivalent to an increase in the monetary subsidy; or complement each

other, if they are perceived as complements, so that keeping up with the neighbours

provide even more utility when the monetary payo� is also large, while the utility of

conforming is not as large if the monetary payo� is low. The �rst case seems more

intuitive for the setting of the paper, but I will discuss how each assumption a�ect

the hypotheses of the model. If the two payo�s are substitute, increasing one of

them results in diminishing marginal utility for the other, so that ∂2u(xmon,g(.))
∂xmon∂g(.)

≤ 0

[substitute case]. If the payo�s are complement the opposite occurs; ∂
2u(xmon,g(.))
∂xmon∂g(.)

≥ 0

[complement case]. Note that if g(γ,Q−i) = 0 � i.e. there is no social utility � then

1Di�erent type of aggregations have been proposed in the literature, although in general e�ects
are assumed to be cumulative, e.g. g(q−i) =

∑
θq−i where q−i are the decisions of each of i's peer,

and θ is some weighting parameter, representing for example some form of distance between i and
each of their peer, or the total number of peers � therefore making the peer e�ects determined
by the share of adoptions in the neighbourhood rather than the count. Cumulative e�ects can be
linear, follow a concave/convex function, therefore becoming weaker/stronger the more adopters
there are in the peer group, or act through a threshold e�ect, with g(q−i) = I[

∑
θq−i ≥ threshold],

so that peer adopters only a�ect decisions after they have reached a critical mass.
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u(xmonetary, g(.)) = u(x) and the model becomes the baseline model described above.

As in the baseline model, household i will install only if the expected utility of

adoption is larger than the opportunity cost of adopting. If social utility is present,

this translates into:

Pr(qi = 1) = Pr(E(u(x|si, γ, Q−i)) > ū) (2.7)

where

E(u(x|si, γ, Q−i)) =

∫
u(xmonetary, g(γ,Q−i)) f(x|si) dx (2.8)

It is realistic to assume that the social norm around solar panels becomes stronger

over time (Carattini et al., 2019), as the climate emergency become more severe and

knowledge of their social bene�ts � such as positive externalities in the form of

support to innovation, and reduction of negative externalities, by replacing fossil

fuels in energy generation (Benthem et al., 2008) � increases. This is modeled as

γ = γ(t) such that γ(t2) > γ(t1) ∀t2 > t1. Under continuity and di�erentiability

assumptions this can be written as dγ/dt > 0.

Model with social learning � peer e�ects as information sharing

In a model with social learning, household i obtains additional information from the

actions of their neighbours. Again, the assumption is that an installation can only

a�ect peers living in the neighbourhood once it has been purchased and installed

on the roof, and the decision of the household therefore becomes visible to oth-

ers. Households i therefore obtains information from installations that have already

occurred and past actions or decisions of the neighbours, as the contemporaneous

decision-making process is not visible. In particular, i infers that the more neigh-

bours have adopted solar panels so far, the better the conditions in the area must

be. In fact, neighbours' decisions depend (at least partly) on their private signals,

and if they have installed solar panels it means they are likely to have received a

favourable signal, given that f(x|si) satis�es MLRP. If household i is one of the

households considering whether to install solar panels at time t, they can therefore

derive a `social signal' ssociali looking at how many solar panels have been installed in

the neighbourhood so far (as only solar panels already installed and visible can pro-

vide a signal), and this signal is more favourable the more neighbours have adopted:

105



ssociali = h(Q−i) and h(Q−i,2) ≥ h(Q−i,1) ∀Q−i,2 > Q−i,1. Function h(.) aggregates

the installations in the neighbourhood in a similar way to function g(.) in the so-

cial utility case, but in this case it translates them into an informational signal,

rather than a payo�. Under continuity and di�erentiability assumptions, this can

be written as dh(Q−i)/dQ−i ≥ 0.

In the baseline model, i only had a private signal si = sprivi . Now, the total

information available to i is a combination of the private signal sprivi and the social

signal ssociali . Each signal carries more weight in the decision-making process de-

pending on its precision. As described in the baseline model, the precision of the

private signal increases with time, as households become more sophisticated. The

total information can therefore be written as:

si = φ(sprivi , ssoci ) = ωpriv sprivi + ωsoc ssoci = ωpriv sprivi + ωsoc h(Q−i) (2.9)

where φ(.) is an aggregation function � for simplicity I assume a weighted average

� and ωpriv and ωsoc are weights, representing the importance given to each type of

signal. I assume that weights depend on the precision of the signals, so that a more

precise signal carries more weight in the �nal decision. The weights are constrained

to be non-negative and no larger than 1, i.e. 0 ≤ ωpriv ≤ 1 and 0 ≤ ωsoc ≤ 1.

As remarked in the baseline case, increased precision of either signal implies that

i is more likely to make the `correct' decision according to the payo�, and does

not a�ect utility directly. This means that weights actually re�ect the `relative'

precision of the two signals, and if one weight increases the other must decrease.

This insures that if the two signals have the same value, a change in their precision

does not change the value of φ; intuitively, if both signals have the same values and

provide the same information, changing the weight of one or the other should not

a�ect the utility. I therefore impose that weights must sum to one: ωpriv + ωsoc = 1

or equivalently ωsoc = 1− ωpriv. If ωsoc = 0 � i.e. there is no social learning � then

ωpriv = 1 and si = sprivi , and the model becomes the baseline model described above.

The aggregate information is more favourable for the installation of solar panels

the more favourable each of the signals is � all else equal � and as before, the expected

utility tend to increase on average the more favourable the aggregate information
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is, because of the MLRP of f(x|si), so that:

E(u(x|sprivi , ssoci,2 )) ≥ E(u(x|sprivi , ssoci,1 )) ∀ ssoci,2 > ssoci,1 (2.10)

As in the baseline model, household i will install only if the expected utility of

adoption is larger than the opportunity cost of adopting. If social learning is present,

this translates into:

Pr(qi = 1) = Pr(E(u(x|sprivi , ssoci ) > ū) (2.11)

where

E(u(x|sprivi , ssoci )) =

∫
u(x) f(x|sprivi , ssoci ) dx =

=

∫
u(x) f(x|(ωpriv sprivi + (1− ωpriv) h(Q−i))) dx (2.12)

As in the baseline model, precision of the private signal increases as time passes

and households become more sophisticated, i.e. ωpriv = ωpriv(t) such that dωpriv(t)/dt ≥

0. In this case, this assumption means that the relative weights given to the pri-

vate and social signals shift, so that the private signal carries more weight in the

decision-making process, and the social signal becomes less important. In fact,

dωsoc/dt = −dωpriv/dt ≤ 0 The rationale is that as households become more so-

phisticated, they can extract more information from their private signal, so that

information from the social signal becomes more and more redundant. Consistently,

the social signal becomes less precise as time passes, because it depends on the

stock of existing solar panels and therefore captures information that was available

at di�erent points in the past. In fact, the social signal is a synthesis of the private

signals neighbours received at the time they decided to adopt and as the time range

gets longer it becomes more and more likely that some of those pieces of information

are not relevant any more. The implicit assumption is therefore that information

obtained through private sources and through social learning are substitute.

Intuitively, the idea is that at the beginning of the period, solar panels and the

subsidy scheme are still very novel and there is not much information available on

them, so that households considering solar panels can learn a lot from neighbours

who have already done so. As time passes, information on the technology and
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the subsidy scheme becomes more easily available and accessible everywhere in the

country, thanks for example to the news or the internet, so that households can

obtain more relevant information privately rather than learning from neighbours

who have installed in the past, when the cost of solar panels, the subsidy rate and

the technology were likely di�erent from the current one. This assumption is sensible

in the empirical setting considered, as the cost of solar panels have been decreasing

quickly thanks to competition in the international markets, and the subsidy rate was

changed on average once every three or four months between January 2012 and the

end of the FIT scheme, in April 2019. This assumption is also consistent with results

from the literature, such as Bandiera and Rasul (2006)'s study on the adoption of

a new crop among farmers in Mozambique, which found that social learning had a

weaker e�ect on the decision of farmers who started out with better information,

and a stronger e�ect on farmers who had less information. Similarly, Conley and

Udry (2010) found that peers' choices have an e�ect on the adoption of a new crop

in Ghana, but no e�ect on decisions related to an already widespread and better

known crop.

2.3.2 Predictions and hypothesis testing

The theoretical framework described above results in a series of propositions on

the adoption patterns in the presence of peer e�ects, the evolution of peer e�ects

over time, and the interaction between peer e�ects and subsidy responsiveness. The

propositions provide hypotheses that can be tested in the empirical analysis, to

check whether data are consistent with the presence of peer e�ects, and which of

the two channels � social utility or social learning � is dominant. As the empirical

section relies on a reduced form model and quasi-experimental data, the two channels

cannot be separately identi�ed, so that if both channels are relevant, the estimated

coe�cients represent the net e�ect.

Peer e�ects lead to clusters of adoption

The �rst proposition describes how peer e�ects shape the adoption patterns of res-

idential solar PV systems over space. In this case, both channels lead to the same

prediction, which can be used to test whether data are consistent with the presence

of peer e�ects in general:
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PROPOSITION 1: If social utility or social learning are present, household i is

more likely to adopt the more existing installations there are in the neighbourhoods,

all else equal. If there are no peer e�ects, then the number of existing installations

in the neighbourhood does not a�ect household i's decision, once all other character-

istics are conditioned for. This is equivalent to state that if peer e�ects are present,

then more new installations occur in areas where there is a larger installed base as

compared to areas with a smaller installed base.

Proof. (0) In the baseline case with no peer e�ects, i decides in isolation and the

expected utility does not depend on neighbours' decisions, so EQ−i,2
(u(x|si)) =

EQ−i,1
(u(x|si)) ∀ Q−i,2 > Q−i,1. Under continuity and di�erentiability assumptions,

and according to equations (2.1) and (2.2) and the way the elements of the model

are de�ned, the same result can be written as:

∂Pr(qi = 1)

∂Q−i
=
∂Pr(qi = 1)

∂E(u(x|si))
∂E(u(x|si))

∂Q−i
= 0

(i) In the social utility case, the more neighbours have already adopted, the larger the

non-monetary payo� is, by de�nition of social utility in the model, i.e. ∂g(γ, Q−i)
∂Q−i

≥ 0.

This increases utility i, according to equation (2.6), i.e. ∂u(xmon,g(.))
∂g(.)

∂g(γ, Q−i)
∂Q−i

≥ 0.

In turns, this pushes up the expected utility of i by mild monotonicity assumptions,

and therefore the probability of adoption, according to equation (2.7). The overall

result can be obtained by applying the chain rule for derivation on equation (2.8):

∂Pr(qi = 1)

∂Q−i
=

∂Pr(qi = 1)

∂E(u(xmon, g(γ,Q−i)|si))
∂E(u(xmon, g(γ,Q−i)|si))

∂g(γ, Q−i)

∂g(γ, Q−i)

∂Q−i
≥ 0

because each element of the expression is non-negative.

(ii) In the social learning case, the more neighbours have already adopted, the

more favourable is the social signal i receives, by de�nition of social learning in

the model, i.e. dh(Q−i)
dQ−i

≥ 0. Household i's aggregate signal on the pro�tability

of installing solar panels is therefore more favourable too, according to equation

(2.9): ∂si
∂h(Q−i)

= ωsoc ≥ 0, as the weights are constrained between zero and one.

Because f(x|si) satis�es MLRP, this increases the expected utility of installing for

i, as shown in equation (2.10). As a consequence, the probability that i adopts solar
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panels increases too, according to equation (2.11). Under stricter assumptions on

the conditional distribution function, and on continuity and di�erentiability of the

various elements, this result can be summarised using the chain rule for derivation

on equation (2.12):

∂Pr(qi = 1)

∂Q−i
=

∂Pr(qi = 1)

∂E(u(x|sprivi , ssoci ))

∂E(u(x|sprivi , ssoci ))

∂ssoci

∂ssoci
∂h(Q−i)

∂h(Q−i)

∂Q−i
≥ 0

because each of the derivative is positive.

Evolution of peer e�ects over time

Statically, both channels predict the presence of localised spillover e�ects that would

result in cluster of adoptions, but when time is considered, the two mechanisms lead

to di�erent predictions on the evolution of peer e�ects:

PROPOSITION 2: If social utility is the dominant channel through which peer

e�ects operate, then the e�ect of a larger installed base in the neighbourhood becomes

stronger over time. Conversely, if information sharing is the dominant mechanism

through which peer e�ects operate, then the e�ect of a larger installed base in the

neighbourhood becomes weaker over time.

Proof. (i) In the social utility case, as time passes the social norm around solar panels

becomes stronger, dγ
dt
≥ 0. Because the social norm acts as a multiplier for the peer

e�ects, when the social norm becomes stronger the e�ect of one extra installation

in the neighbourhood becomes larger, i.e. it provides a larger non-monetary payo�:

∂2g(γ,Q−i)

∂t∂Q−i
=
∂ ∂g(γ,Q−i)

∂Q−i

∂γ

dγ

dt
=
∂2g(γ,Q−i)

∂γ ∂Q−i

dγ

dt
≥ 0

by applying Young's theorem, and because the cross derivative is assumed to be

non-negative ∂2g(γ,Q−i)
∂γ ∂Q−i

≥ 0, as described in the set-up of the model. Therefore as

time passes (t ↑) the e�ect on the social payo� of one additional installation in the

neighbourhood increases (∂g(γ,Q−i)
∂Q−i

↑), and as a direct consequence, the e�ect of one

additional peer installation on the utility increases as well (∂u(xmon,g(.))
∂Q−i

↑). This result

carries over to the expected utility (∂E(u(xmon|si, γ, Q−i))
∂Q−i

↑), and by equation (2.7),

to the probability of adoption. At the same time, sophistication of the households
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increases, which in the model translates into a more precise signal. But as described

in the model, higher precision per se does not a�ect the payo� of i, but only decreases

the standard deviation of the distribution function f(xmon|si). In the social utility

case, neighbouring installations and signal do not interact, so changes in the precision

do not a�ect the strength of peer e�ects. Therefore the overall result is that the

strength of peer e�ects increases over time.

(ii) The opposite occurs in the social learning case, as there is no social payo� �

i.e. g(γ,Q−i) = 0 � and therefore the social norm does not enter the model, but

peer installations do a�ect the signal. As described in the model, as time passes

households' sophistication increases, translating into a more precise private signal,

and therefore more weight being put on the private signal rather than on the social

signal when making a decision, i.e. dωpriv

dt
≥ 0 and dωsoc

dt
≤ 0 because ωsoc = 1−ωpriv.

Peer installations do not interact with the private signal directly, so the e�ect of

one additional installation in the neighbourhood always has the same e�ect on the

private component of the signal, which is zero. Di�erent is the situation for the

social component of the signal, as the e�ects of time and additional installation are

both relevant and move in opposite direction � in fact, one additional installation

makes the social signal more favourable, therefore increasing the expected utility

from adoption, but as time passes the weight given to the social signal is lower,

therefore decreasing its e�ect on the �nal probability of adoption. This can be

written using cross-derivatives, as:

∂2si
∂t∂Q−i

=
∂((1− ωpriv(t)) h(Q−i)

∂t∂Q−i
+
∂(ωpriv(t) sprivi )

∂t∂Q−i
=

=
∂(1− ωpriv(t)) ∂h(Q−i)

∂Q−i

∂t
+ 0 =

=
∂(1− ωpriv(t))

∂t

∂h(Q−i)

∂Q−i
+ (1− ωpriv(t)) ∂

2h(Q−i)

∂t∂Q−i
=

= −dω
priv(t)

dt

∂h(Q−i)

∂Q−i
+ 0 =

= −dω
priv(t)

dt

∂h(Q−i)

∂Q−i
≤ 0

which holds because dωpriv

dt
≥ 0 and ∂h(Q−i)

∂Q−i
≥ 0. Therefore as time passes (t ↑) one

additional installation in the neighbourhood has a smaller e�ect on the overall sig-

nal ( ∂si
∂Q−i

↓), which means that the e�ect on the expected utility � and by equation

(2.11) on the probability of adoption � will also become weaker (∂E(u|sprivi , ssoci )

∂Q−i
↓).
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Therefore, one extra installation in the neighbourhood has a smaller e�ect on the

probability of adoption, as time passes. This result relies on the assumption that

information obtained through private sources and through social learning are sub-

stitute and that as time passes private information is more reliable than the social

signal, because general knowledge of the topic is more widespread and sources of

information are more accessible, facilitating private learning, while information pro-

vided by neighbours who have installed solar panels in the past becomes more and

more out-dated.

Interaction between peer e�ects and subsidy responsiveness

Predictions with respect to the interaction between peer e�ects and subsidy respon-

siveness depend on more speci�c assumptions on how elements of the model interact,

but can still be helpful to characterise the empirical results:

PROPOSITION 3: If social utility is the dominant channel then a change in

subsidies � i.e. the monetary payo� � triggers a smaller response in areas with higher

penetration of the solar panels if the monetary and social payo� are substitute; the

opposite occurs if the two payo�s are complements. If information sharing is the

dominant mechanism then the responsiveness to a subsidy can increase, decrease

or stay the same where more neighbours have installed, depending on whether each

additional installation carries more information than the previous one (for example

because the more people install the more they prove that solar panels can be pro�table

for a wide range of house types and lifestyles), less (for example because information

starts getting redundant), or the same.

Proof. (i) In the social utility case, an increase in the monetary payo� increases

utility, as does one extra installation in the neighbourhood, according to equations

(2.5) and (2.6). In the substitute case, because of diminishing marginal utility,

one extra installation in areas where the subsidy is larger has a smaller e�ect on i's

expected utility if compared to the e�ect where the subsidy is lower. Equivalently, an

increase in the subsidy has a smaller impact on i's expected utility if there are more

installation in the neighbourhood, as compared to an area with fewer installation.

The opposite occurs in the complement case, as more neighbouring installations and
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larger subsidies boost each other's e�ect. This can be formally shown as:

∂2u(xmon, g(γ,Q−i))

∂xmon∂Q−i
=
∂ ∂u(xmon,g(γ,Q−i))

∂Q−i

∂xmon
=
∂
(
∂u(xmon,g(γ,Q−i))

∂g(γ,Q−i)
∂g(γ,Q−i)
∂Q−i

)
∂xmon

=

=
∂2u(xmon, g(γ,Q−i))

∂xmon∂g(γ,Q−i)

∂g(γ,Q−i)

∂Q−i
+
∂2g(γ,Q−i)

∂xmon∂Q−i
=

=
∂2u(xmon, g(γ,Q−i))

∂xmon∂g(γ,Q−i)

∂g(γ,Q−i)

∂Q−i
+ 0

=
∂2u(xmon, g(γ,Q−i))

∂xmpn∂g(γ,Q−i)

∂g(γ,Q−i)

∂Q−i
(2.13)

by applying Young's theorem and the fact that ∂2g(γ,Q−i)
∂xmon∂Q−i

= 0 as the monetary

payo� is not a direct component of the social payo�, even though the two payo�s

interact. Given that ∂g(γ,Q−i)
∂Q−i

≥ 0, the sign of expression (2.13) is determined by

the cross-derivative of utility with respect to the two payo�s. By de�nition, the

latter is negative if the two payo�s are substitute, and positive if the two payo�s

are complements. If the e�ect on the expected utility becomes weaker/stronger, so

does the e�ect on the probability of adoption, by equation (2.7).

(ii) While in the social utility case Q−i only a�ects the total payo�, in the social

learning case Q−i only a�ects the signal the household receives. Both an increase in

the payo� x and in the penetration of the solar panels in the neighbourhood Q−i have

a positive e�ect on the expected utility, but whether the two e�ects complement,

substitute or are independent of each other depends on the functional form of f(x|s).

This can be seen, for example, by considering that if an area receives a relatively

lower subsidy due to worse generation potential or because of a (past) change in

the subsidy rate, this a�ects i, but would have also a�ected their neighbours in

the same direction. This can be written as Q−i = Q−i(x) with dQ−i

dx
≥ 0. The two

variables are therefore interacting within the signal function. The interaction within

the social signal can be written as a cross-derivative of the signal with respect to

each of the two variables that are changing:

∂2ssoci
∂x∂Q−i

=
∂2h(Q−i(x))

∂x∂Q−i
=
∂
(
∂h(Q−i(x))

∂x

)
∂Q−i

=
∂
(
∂h(Q−i(x))

∂Q−i

∂Q−i(x)
∂x

)
∂Q−i

=

=
∂h(Q−i(x))

∂Q−i

∂
(
∂Q−i

∂Q−i

)
∂x

+
∂Q−i(x)

∂x

∂2h(Q−i(x))

∂Q2
−i

=

=
∂Q−i(x)

∂x

∂2h(Q−i(x))

∂Q2
−i
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Given that dQ−i

dx
≥ 0, the sign of the cross-derivative is the same as the sign of the

second derivative of the signal with respect to peer installations, which is undeter-

mined unless more assumptions on h(Q−i) are made. Therefore whether the e�ect of

a change in subsidy increases, decreases or stays the same depending on the number

of nearby installations � or equivalently, whether the in�uence of nearby installa-

tions is stronger, weaker or the same depending on the amount of subsidy o�ered

� depends on whether each additional installation provides more, less or the same

amount of information than the previous one, that is whether information travels

faster, slower or at the same rate, when there are more installations in the neigh-

bourhood. Given the general formulation of the model, the sign of the interaction

is therefore not determined without imposing further assumptions on the functional

form of f(x|s). In this model I assumed for simplicity that the private signal and

the precision of the signals do not depend on Q−i, and that the aggregate signal si is

linear in the private and social component. A di�erent speci�cation of the aggregate

signal could introduce another channel of interaction between x and Q−i, but the

proposition would still be inconclusive unless more assumptions on the functional

forms are made.

2.4 Background information and data

Between 2010 and 2019, the UK supported small-scale clean electricity generation

through a Feed-In Tari� (FIT) scheme, which covered solar PV, wind turbine, hy-

droelectric, micro combined heat and power (CHP), and anaerobic digestion. The

scheme provides direct economic bene�ts for the owner of the system through two

types of tari�s, the generation or production tari�, for generated electricity, and the

export tari�, for the electricity that is sold to the grid. For residential solar PV, the

production tari� is paid on the total amount of generated electricity, recorded by an

appropriate meter, while the export tari� is paid on the assumption that 50% of the

electricity generated is exported, as the amount e�ectively exported is not currently

metered. Owners obtain further indirect bene�ts through savings in the electricity

bills, as the generated electricity can be used for free reducing the amount of energy

that has to be bought from the utility.

The tari� rates are assigned according to the date of the installation, with di�er-

ent values depending on the technology and the capacity of the system. These rates
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are then paid for 20 years (25 for solar installations in the early years of the scheme,

later shortened to 20 as for the other eligible technologies), and are progressively

adjusted for the in�ation, according to the changes in the Retail Price Index over

the previous year. The budget for the scheme came from the general electricity bills

of all energy suppliers' customers - as it is the case for other energy-related schemes

in the country. The scheme was reformed various times since its inception in April

2010, and closed to new applicants in March 2019.2 The evolution of the FIT for

residential solar systems (systems ≤4kW), is shown in Figure 2.1.

Figure 2.1: Changes in the FIT. Vertical lines represent the date the changes were imple-
mented. Own elaboration on data from Ofgem.

Quoting the sustained decrease in the price of solar PV as the main rationale,

the production tari� has been repeatedly adjusted downward, moving from almost

54 p/kWh in 2010 to 4 at the beginning of 2017.3 Major reforms to the value of

the tari� and other features of the scheme were introduced in 2012 and 2016. In

particular, an automatic quarterly degression mechanism was introduced at the end

of 2012. The degression mechanism was pegged to pre-determined deployment ob-

2Details on the various phases and reforms of the policy are provided by the Department
for Business, Energy and Industrial Strategy (BEIS), into which the Department of Energy and
Climate Change (DECC) was merged in 2016, and the O�ce of Gas and Electricity Markets
(Ofgem).

3Rates are adjusted every year based on the retail price index (RPI), to account for in�ation.
In the Chapter the RPI-adjusted rates as they were at the time the scheme was closed in 2019 are
used.
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jectives. If these were not met and uptake was lower than the required threshold,

the degression was postponed for up to two consecutive quarters. In this way, the

tari�s could be progressively reduced in line with the reduction in costs and in-

crease in uptake without the need for government intervention, therefore reducing

uncertainty in the sector. The scheme was initially intended until 2015, triggering

a period of policy uncertainty as reforms to the system were discussed and the re-

newal of the scheme was questioned. The FIT scheme was then suspended at the

beginning of 2016, before being reformed and re-instated in February of the same

year, to run until March 2019, after which the scheme was closed to any new appli-

cant. Contrarily to the production tari�, the export tari� rate has undergone fewer

amendments, and was adjusted upward, from 3.57 p/kWh to 5.03 p/kWh in 2012.

These progressive changes to the policy provide the main source of variation over

time for the identi�cation of the responsiveness to subsidies (see following sections).

Aggregated data and trends on adoption of small-scale PVs in the UK are pre-

sented in Figg. 2.2 and 2.3. Domestic installations of up to 4kW constitute the

vast majority of small-scale electricity generating installations in the UK, both in

terms of number and aggregated capacity. The trends in both �gures present evi-

dent changes in correspondence of the major policy reforms of 2012 and 2016. In the

regression analysis I only use observations between April 2012 and December 2015,

to avoid periods of policy uncertainty and instability in the solar market, and be-

cause there were no changes in the FIT rate before 2012. On top of the quantitative

data described in the next paragraphs, the analysis and interpretation of results in

this paper is informed by qualitative evidence from in-depth interviews conducted

within the ENABLE.EU project and described in Standal et al. (2018) and Standal

et al. (2020).
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Figure 2.2: Cumulative installed capacity in the UK (kW), by month. Own calculation on
Ofgem data.

Figure 2.3: Number of installations in the UK, by month. Own calculation on Ofgem data.
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2.4.1 LSOAs and distribution of the PVs

The units of analysis for the empirical speci�cation are the Lower Layer Super Out-

put Areas (LSOAs) as de�ned in the 2001 Census. The choice of LSOAs as aggrega-

tion level is driven on one side by the availability of geographic information for PV

installations which could not be obtained at a more disaggregated level, but at the

same time is preferred over post code district (the other available unit) due to the

way they are constructed. In fact, the LSOAs are statistical units purposedly built

to insure within-homogeneity and between-comparability in the context of Neigh-

bourhood Statistics and Census data collection. Each LSOA contains typically four

to six Output Areas so to be roughly comparable to the others in terms of resident

population, with a minimum of 1,000 residents and an average of 1,500 (equivalent

to 650 households). Geographic proximity and information on the prevalent type of

dwelling, tenure, etc. are also used to ensure a compact shape and socio-demographic

homogeneity4. These are all desirable properties for an areal unit in spatial analysis,

given that the exact coordinates of the installations are not available. Nevertheless,

we must be aware of the Modi�able Areal Unit Problem which comes with such

aggregations, and an extension of the present work may check the robustness of the

results when other speci�cations are chosen (e.g. MSOAs or postcode district. See

Briant et al., 2010 for the general issue and Flowerdew, 2011 for the speci�c case of

UK Census data).

The �nal dataset consists of a panel of monthly observations for the 34,378

LSOAs in England and Wales, according to the 2001 de�nition.5 Some LSOAs were

merged or split in 2011, due to changes in their composition, however, only 2.5 per

cent of 2001 LSOAs were a�ected.

Data on residential PV installations are retrieved from the Ofgem databank

of Feed-In-Tari� recipients. Each installation record contains among other pieces of

information the LSOA and the commissioned date. I restrict the analysis to focus on

solar PV systems classi�ed as residential and up to 4kW of declared capacity, as this

is the size that receives the highest FIT rate and does not require an authorization to

be installed and connected to the grid. As seen in the previous section, this is by far

the largest share of installations under 5MW in the country, both in terms of number

4The o�cial de�nition and methodology are provided by the Neighbourhood Statistics division
of the O�ce for National Statistics (ONS).

5No comparable units exist for Scotland and Northern Ireland.
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and in terms of installed capacity. The total stock of PV systems in each LSOA

is presented in Figure 2.4 for 2011 and 2017. Consistent with the literature, the

installations are mainly concentrated in rural and less dense regions, while the major

cities - London in particular - display a substantially lower installed base. Although

income is often considered as a determinant of PV adoption, both directly, because

of the investment required, and indirectly, as higher-income households are more

likely to live in a house rather than in a �at and to be owners rather than tenants �

both characteristics that economic theory would predict to be linked with increased

adoption of solar PVs � there does not seem to be a visible positive correlation

between the two variables, as the wealthy South-East has a relatively low number of

adoptions, while the South-West and part of Wales have the highest installed base in

the country, despite not being rich areas. At the same time the area around Leeds is

relatively wealthy and rich in residential PVs, and the northernmost parts of Wales

and Yorkshire are neither. Solar irradiation is another potentially relevant variable,

as it is the key determinant of PV electricity yield. Again, if compared with the PV

distribution maps, it can be seen that although some areas, such as the South-West,

have a consistent positive relationship between insolation and PV adoption, the

situation in other areas is more puzzling, with the South-East showing substantial

unexploited potential for solar power, while adoption is higher at the border with

Scotland despite receiving considerably less solar radiation.

The main outcome variable considered in the paper is the count of new instal-

lations in an LSOA in a given month. To check the robustness of the results and

investigate additional hypotheses on how peer e�ects may work, in the regression

analysis I consider alternative speci�cations using the total new installed capacity

and the average size installed (both in kW) in an LSOA-month. Characteristics of

the LSOAs, including mid-year population estimates and age distribution, and the

number of houses (as opposed to apartments) inhabited by their owners are obtained

from the 2011 Census and related databases. Summary statistics are presented in

Table B.1.

2.4.2 FIT payments

To capture the e�ect of the monetary incentives o�ered for the adoption of micro-

generation technologies, I need a measure of the potential revenues that can be
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(a) 2011 (b) 2017

Figure 2.4: Geographical distribution or residential solar PV systems in England and
Wales.

expected from the production and export tari� provided by the FIT scheme. I

construct this variables in the same way as I did in the previous Chapter of this

dissertation, but using data at the LSOA level instead of the larger MSOA level.

In particular, I obtain data on the estimated annual electricity output for a

solar module of 1kW capacity situated at the population-weighted centroid of each

LSOA, for each year between 2009 and 2016. This dataset is constructed using the

Photovoltaic Geographical Information System (PVGIS) of the EU Joint Research

Centre Institute for Energy and Transport (PVGIS European Communities, 2001-

2017).6 Details on the methodology and the dataset can be found in Huld and

Amillo (2015) and Huld et al. (2012). Estimation are based on the solar irradiation

of the location and the actual climatic and meteorologic conditions of the location

during the year, assuming standard values for the tilt, azimuth and direction of the

roofs.. I average these estimates through the available years to obtain a measure

of �expected generation� per kW of installed capacity for each LSOA. The resulting

distribution of average or expected generation over England and Wales is presented

in Figure 2.5. I consider this to be the generation amount that households living in

the LSOA consider when making their decisions to purchase solar panels or not.

6Data were obtained from the European Commission Joint Research Centre in Ispra. Values
are based on the PVGIS SARAH database. More information on the data and methodology can
be found at https://ec.europa.eu/jrc/en/PVGIS/docs/methods.
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The average annual generation for each LSOA is then multiplied for the FIT rate

in force in each month, to obtain the average annual subsidy a household installing

in that LSOA and in that month can expect to receive in each of the 20 years covered

by the FIT scheme. In particular, the owner of the system is paid a production rate

for the electricity generated, and an export rate for 50% of the total generation,

which utilities assume to be the quantity exported to the grid, as the actual exports

are not metered. In this way, I obtain a panel dataset of expected or average annual

subsidy per kW of installed power that varies in both space and time. This variation

is exploited to identify how households' react to changes in subsidy.

Summary statistics are presented in Table B.1. The average subsidy varies from

more than 1200 GBP per year for an average system of 3kW at the start of the

scheme, to between 450-600 GBP after the reforms in 2012, to only around 195 GBP

after the 2016 reform. In terms of variation in space, households in LSOA with the

worst solar generation potential could expect to receive 1184 GBP per year for a

3kW system, while households in LSOA with the highest expected generation could

expect 1893 GBP per year for the same system. The range of the potential revenues

for each month are presented in Figure 2.6, together with the trend in adoptions

around the country. It is easy to see how installations drop in correspondence with

cuts in the subsidies.

2.4.3 Investment cost to adopt solar

For the cost of the system, I use data at the postcode distric per month level as

constructed in the previous Chapter of this dissertation. Namely, I requested and

obtained data on the median cost per residential installations under 4kW (the sub-

set of installation I focus on in this paper) from the Micro Certi�cation Scheme

(MCS), a registry to which FIT-eligible micro-generation system must apply. Data

were provided per postcode area per quarter, as the most disaggregated level the

registry was willing to share. These data are provided per installation, and I con-

vert them into cost per kW using information on the median installed system in

the corresponding area in that given period. To check for consistency and obtain

monthly variation, the monthly average and median costs per kW installed for the

whole country were obtained from DECC (2017), for years between 2013 and 2017,

and from Green Business Watch (2017) for years between 2010 and 2013.
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Figure 2.5: Annual electricity generation of residential solar PV systems, kWh/year for kW
of installed power. The value is an average of estimates for 2009-2016. Own elaboration
on Photovoltaic Geographical Information System (PVGIS) data.
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The main issue to address to use this data in the analysis is the problem of

missing values, due to cases in which the cost was not reported or simply there was

no installation in the area and period considered. I therefore interpolate missing

values within each area by using observations for periods before and after the missing

observation in that same area, to �ll the gaps in the time series. To convert these data

from postcode areas into MSOA, I record for each MSOA the cost of the postcode

area in which it is contained, or the average of di�erent postcode areas if the MSOA

crosses the postcode boundaries. For areas with missing data throughout the period,

and for the months before the �rst recorded cost and after the last one, I impute the

cost by using the average value for the administrative region7 to which the MSOA

belongs. To support the choice of this type of imputation, I consider evidence from

several installers' websites and interviews with households who installed solar panels

that con�rmed that installers have large catchment areas, and given the margin of

pro�ts available on the service and the fact that some components need to be shipped

from other countries or storehouses anyway, are willing to carry out installations

even in areas quite far from their main location In addition to this, supermarket

chains such as Tesco and later Ikea have been o�ering solar systems and installation

services around the country, which should have insured a level of competition among

suppliers, making the price required of customers more homogeneous.

As a last step, to obtain monthly data I �rst assign to each month the observation

from the quarter it is in, and then replace it with the average over the two months

before and two months after, using a moving average approach. In this way I

smooth the trends and avoid having large changes from one quarter to the next and

no changes within each quarter. Box-plots for the resulting variable is presented in

Figure 2.7 and summary statistics are presented in Table B.1. The average costs

obtained with this methods are very close to the o�cial data on the monthly average

for the country. Due to the measurement issues with this variable, I only use it as

a control in the analysis and not as a regressor of interest. I conduct robustness

checks dropping the cost variable and therefore implicitly assuming that the e�ect

of the cost is captured in the time-varying �xed-e�ect component, and the results

are not a�ected.
7England and Wales are divided into 10 administrative regions; this is therefore a higher level

of aggregation with respect to either postcode areas or MSOAs.
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Figure 2.6: Expected annual revenues for kW of installed power, according to month of
installation and location (left axis; average value highlighted), and number of residential
PV installations in each month (right axis). Own calculation on Photovoltaic Geographical
Information System (PVGIS) data and Ofgem data.

Figure 2.7: Trend in the cost of residential solar PV systems. Own elaboration on data
from MCS.
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2.4.4 Spatial patterns

Getis-Ord hot-spot analysis

To con�rm the presence of clusters of installations, or `hot spots', I use the Optimised

Getis-Ord method devised by Getis and Ord (1992) and Ord and Getis (1995), where

the parameter for the threshold is determined within the system so to optimize the

balance between the observation size and the statistical signi�cance of the method.

The results for spatial correlation of the installed base (stock variable) are presented

in the top row of Figure 2.8 for the year 2011, 2013 and 2016. Clusters in the di�usion

of PV systems appears to be pervasive throughout the period, with large hot spot

areas in the South-West of England, and in central and south Wales, and clusters

in the central-eastern part of the country that become increasingly more important

as time passes. Cold spots are also present, although in smaller quantities, and are

located in correspondence with the big cities. A possible explanation of such pattern

is that urban areas have fewer buildings which are suitable for PV installations, for

example due to shading from nearby buildings, and more tenants rather than owner-

occupied dwellings, creating a split-incentive issue that acts as a barrier to adoption.

The pattern is consistent with that identi�ed by Graziano and Gillingham (2015) in

Connecticut, where the di�usion of residential solar appears to be driven by rural

areas, with lower population density.

I repeat the hot-spot analysis on the number of yearly adoption in di�erent years

(�ow variable) and the results are presented in the bottom row of Figure 2.8. The

hot spots now identify the areas where high adoption rates are correlated with high

adoption rates in the neighbouring areas. This time the picture changes substantially

over the years. While there is strong evidence of clustering of adoption rates in 2011,

this becomes weaker in 2013 for most of the country, with the exception of the north-

east and extreme south-west, and by 2016 there is almost no correlation left. The

evolution of cold spots is also particularly interesting, as these coincide with the

major urban centres in 2011, but disappear almost everywhere by 2016, with the

exception of London.

Moran's I and Local Moran's I

To further analyse whether there is any pattern of spatial auto-correlation and where

they are located, global and local Moran's Is are computed, following Anselin (1995)
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(a) installed base, 2011 (b) installed base, 2013 (c) installed base, 2016

(d) new installations, 2011 (e) new installations, 2013 (f) new installations, 2016

Figure 2.8: Optimised hot spot analysis, Getis-Ord Gi∗ index.

and Rey and Montouri (1999). These statistics rely on the covariances between

neighbouring adoption of PVs and identify whether the adoptions are correlated in

space rather than occurring at random locations. Spatial lags are obtained using

the contiguity weight matrix. As in the hot-spot analysis, I repeat the analysis

for di�erent years so to check for persistence of the clusters, and apply it to both

the stock variable and to the �ow in new adoption in the year (i.e. the di�erence

between the total installed base in one year and the total installed base in the year

before) so to remove the e�ects of time-invariant variables and gain more insights

on whether the clusterization can be attributed to spillover e�ects.

The global Moran's Is are presented in Table 2.1, where it can be immediately

seen that a strong positive spatial correlation exists in the di�usion of PVs and is

persistent in time. Focusing on the annual growth in adoption, the Moran's I is
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practically the same for the 2011-2012 period, while it becomes slightly smaller in

2014-2015.

To identify the sources of the correlation, the Local Moran's Is are computed and

mapped in Figure 2.9. The clusterization in the di�usion of PV systems appears

to be pervasive, with large clusters of High-High adoption in part of Wales and

the South-West (hot spots). Low-Low (or cold spots) are also present, although in

fewer quantities, in the London area, South Wales, and around the big cities of the

centre and north of England (Liverpool, Manchester, Newcastle, etc.), con�rming

the results of the Getis-Ord analysis.

Focusing on the annual adoption rate, the clusterization in 2011-2012 appears to

be driven mainly by time-variant variables, as removing the �xed e�ects makes no

di�erence in the Local Moran's Is, an evidence in favour of spillover e�ects. Di�erent

is instead the picture for 2014-2015, as the High-High clusters are still present but

have shrunk to few areas in the South-West and in the East. This means that

spillovers are now weaker and the underlying characteristics of the areas and of the

individuals are becoming more important.

Table 2.1: Global Moran's I statistics.

(Global) Moran's I

2012 2015 2011-12 2014-15

contiguity weights 0.464 0.521 0.442 0.359

Signi�cance maps are also generated using Montecarlo simulations to obtain 99

random permutations from which the expected random distribution of PVs adoption

is derived so to obtain the p-values and con�rm that the results are highly signi�cant.
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(a) 2012 (b) 2012

(c) 2015 (d) 2015

(e) 2011-2012 (f) 2011-2012

(g) 2014-2015 (h) 2014-2015

Figure 2.9: Local Moran's I, contiguity weights
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Discussion

The evolution of the clusters is consistent with the hypothesis of peer e�ects that

change over time, and suggests in particular that the e�ect becomes progressively

weaker, consistent with the social learning channel described in the model.

As the technology was not widespread in the early years and households were

less familiar with its functioning and the FIT scheme, the exchange of information

between individuals may have had a leading role in the di�usion at this stage; on

the contrary, when information becomes more widely spread, localised information

sharing loses importance. Nevertheless, as time passes the subsidy is also being

reduced, so that the diminished strength of the peer e�ect could also be associated

to a lower subsidy, which would be consistent with both the social learning channel

with information becoming more and more redundant the larger the installed base

is, and with the social utility channel with monetary and social payo� perceived as

complements. To obtain further insights on the issue, in the next Sections I therefore

move to regression analysis.

2.5 Regression analysis

2.5.1 Identi�cation of peer e�ects and estimation strategy

For the empirical estimation using regression analysis, I consider a reduced form

equation for the problem of adopting residential PVs. Following Richter (2014), I

use a linear estimation model:

Ql,t = α + βNl,t−s + γ′Xl,t + ul,t (2.14)

where the error term is speci�ed as:

ul,t = ηl,q + εl,t (2.15)

Ql,t is the outcome variable, measuring new installations in location l during month

t; Xl,t contains covariates, including the economic regressors of interest, namely

potential revenues from the adoption and the cost of the installation; and Nl,t−s

includes the neighbouring installations that have already been completed at the time

129



in which the decision to adopt the new installations is made. The time lag between

the decision to adopt and the actual completion of the installation is a technology-

speci�c feature, due to the need to complete the purchase and the relative paperwork

and bureaucratic procedures, and to schedule and complete the physical installation

of the system on the rooftop. I assume the lag to be of three months s = 3. This

assumption is also used in Richter (2014) for installation of PVs in the UK, and

is consistent with qualitative evidence collected by the author. Peer e�ects are

captured by the coe�cient β. The error term ul,t contains a location-quarter �xed

e�ect ηl,q, due to unobservable characteristics of each location, that may change over

time, although we assume that the changes are slow and therefore negligible within

each quarter, and a zero-mean i.i.d. component εl,t, such that E(Nl,t−3εl,t) = 0.

The identi�cation of peer e�ects and the direction of causality present several

challenges. First of all, the three issues highlighted by Manski (1993) and Gib-

bons et al. (2015) � re�ection, self-selection into a peer group, and the problem of

correlated unobservables � need to be addressed. Spatial sorting, also known as

homophily, occurs as agents self-select into neighbourhoods. If characteristics and

events related to the spatial sorting are also correlated with adoptions of PVs, there

is a problem of endogeneity in the model that would bias the estimator if not prop-

erly addressed. The same goes if there are correlated unobservables that a�ect the

rate of adoption in time � for example country-wide changes in the policy, or other

macroeconomic trends � and/or in speci�c places � such as local programmes or

marketing strategies. In the case of homophily and correlated unobservables, neigh-

bouring installations are correlated with the unobservable error term, violating the

exogeneity assumption required for consistent estimation of the peer e�ect β:

E(Nl,t−3ul,t) = E(Nl,t−3ηl,q) + E(Nl,t−3εl,t) = E(Nl,t−3ηl,q) 6= 0

Hartmann et al. (2008) show how these issues can be controlled for using time and

area-speci�c �xed e�ects. To have a consistent estimate of the parameter of interest,

I therefore control for unobservables using a �exible speci�cation of the location �xed

e�ect ηl,q that allows the unobservables to be location-speci�c and time-varying,

although I assume that they only change slowly over time, and changes are negligible

within a quarter. Finally, if the e�ect of a peer relationship is bi-directional and

contemporaneous, that is if agents can a�ect their peers and be a�ected at the
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same time, the simultaneity or `re�ection' issue challenges the identi�cation of the

parameter. The problem of simultaneity can be seen by thinking that the choice of

agent i is being a�ected by a peer j, while a�ecting their choice at the same time.

In this case we have that:

Qi,t = α + βNi,t + εi,t with Ni,t = Qj,t

Qj,t = α + βNj,t + εj,t with Nj,t = Qi,t

Taking the expected value:

E(Qi,t) = E(α + βQj,t + εi,t) =

= α + βE((α + βNj,t + εj,t)) =

= α + βE((α + βQi,t + εj,t)) =

= (1 + β)α + β2E(Qi,t)

So that:

E(Qi,t) =
α

1− β

and the di�erent parameters α and β cannot be separately identi�ed. In the speci�c

case of solar PV adoption, there is a lag between when a household decides to

purchase, and when the panels are actually installed on the roof, therefore becoming

visible to others and starting generating electricity. I assume that households may

only be a�ected by peer installations up to the moment they make their choice, but

they only start a�ecting others once their panels are installed, i.e. once they are

visible and the household has some experience and information to share, so that

simultaneity is not a problem. This is the key identifying assumption used in the

estimation strategy, which follows Bollinger and Gillingham (2012). According to

qualitative evidence collected by the author, this assumption appears to be realistic

for the case of residential PVs in the UK.

In addition to these identi�cation challenges, using the installed base to identify

peer e�ects might incur in the Nickell's bias if the parameters are estimated using

the usual �xed e�ect within-group estimator. In fact, as the installed base e�ec-

tively consists of the lags of the outcome variable, the de-meaned installed base is

correlated with the de-meaned error term (Nickell, 1981). The within-group estima-
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tor is therefore inconsistent, as the strict exogeneity assumption does not hold, as

shown by Narayanan and Nair (2013). A similar issue applies to the random-e�ect

estimator, as the random e�ect and the installed base are correlated by construction

as they share the same random component, therefore violating the orthogonality as-

sumption and resulting in inconsistent estimators. Bollinger and Gillingham (2012)

and Richter (2014) provide proof that under some conditions on the order of auto-

correlation of the errors, consistent estimates for the linear model speci�ed above

can be achieved using an adjusted �rst-di�erence estimator and a within-group es-

timator where the mean is de�ned at the area-quarter level. These estimators are

presented in the next paragraph.

A �nal issue to consider is the incidental parameter problem, as location-speci�c

�xed e�ects cannot be used in non-linear models such as the negative binomial,

which might be a better �t for count data with several zeros and over-dispersion,

such as those used to describe the uptake of a technology. To avoid this problem

I only use linear models, while acknowledging the limitations of this speci�cation

when used with count data.

2.5.2 Estimators

As suggested by Gibbons and Overman (2012), the applied regression analysis of

this Chapter is based on a quasi-experimental framework, which uses purposedly

constructed �rst-di�erence and within-group estimators to identify the parameters

of interests, and is used to test the propositions derived from a theoretical model

based on the sign of coe�cients, rather than trying to achieve model �t. The

sources of exogenous variation in the regressors that are exploited for identi�cation

are changes in the subsidy decided by the government, di�erences in solar generation

potential among locations due to geography, weather and climatic conditions, and

changes in the cost of purchasing and installing solar panels, determined by the

international market.

To test the hypotheses formulated in the previous sections, I adapt the estimation

procedure presented by Richter (2014), using the identi�cation strategy introduced

by Bollinger and Gillingham (2012). The equation for the model is the one described
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in the previous section:

Ql,t = α + βNl,t−3 + γ′Xl,t + ul,t where ul,t = ηl,q + εl,t (2.16)

As previously mentioned, the model includes LSOA-quarter unobservable �xed ef-

fects ηi,q to control for self-selection of peers (homophily, or spatial sorting) and

correlated unobservables. The main identi�cation problem to address is the fact

that the number of existing installations in the neighbourhood might be correlated

with the �xed e�ect, and therefore with the error term of the model ul,t. This hap-

pens if E(Nl,t−3ul,t) 6= 0, which might be the case if installations included in Nl,t−3

occurred in the same location and in the same quarter as the outcome variable, so

that they share the same �xed-e�ect ηl,q.

To address this issue, I use two di�erent estimators constructed following Richter

(2014). Both of them are used in the regression analysis, to check robustness of the

results. The �rst estimator is a within-group estimator (WG) , where each term of

the model in (2.16) is de-meaned using the average over the corresponding LSOA-

quarter. As the unobservable �xed-e�ect is constant within each quarter, it cancels

out. Because of the 3 months window considered in constructing the reference peer

group, Nl,t−3 only includes installations up to the previous quarter, and is therefore

not correlated with the error term ul,t , which refers to the current quarter only.

Ql,t − Q̄l,q = β(Nl,t−3 − N̄l,q−1) + γ′(Xl,t − X̄l,q) + (εl,t − ε̄l,q) (2.17)

with

t ∈ q and t− 3 ∈ q − 1

This model can then be estimated as a pooled OLS.

The second estimator is an adjusted �rst-di�erence estimator (FD). After taking

the di�erence of each term with its �rst lag, observations for the �rst month of

each quarter are dropped and the model is estimated only for the remaining sample.

In this way the LSOA-quarter �xed e�ect ηl,q cancels out, and the �rst-di�erenced

model can again be estimated as a pooled OLS:

Ql,t −Ql,t−1 = β(Nl,t−3 −Nl,t−4) + γ′(Xl,t −Xl,t−1) + (εl,t − εl,t−1) (2.18)

133



with

t, t− 1 ∈ q and t− 3, t− 4 ∈ q − 1

Richter (2014) and Bollinger and Gillingham (2012) provide a proof for the con-

sistency of these estimators under certain conditions. The key requirement is that

the order of autocorrelation must be less than 1 plus the number of months in the

time window between the choice to adopt and the moment when the the adoption

starts a�ecting others, which in this paper is set to be 3 months. As discussed by

Richter (2014), the �rst-di�erence estimator is consistent under weaker assumptions

than the within-group estimator, so the former will be my preferred estimator.

An important di�erence with respect to the empirical approach used by Richter

(2014), is that the reference peer group is not de�ned simply as the installed base of

the LSOA, but rather by constructing di�erent types of bu�ers that are not restricted

to the area's borders. The construction of the bu�ers and of the peer installation

variable is presented in more detail in the next paragraph. Moreover, peer installa-

tions include all the solar systems classi�ed as residential, as well as commercial and

industrial systems up to 10kW of installed capacity, while the outcome variable is

restricted to residential systems below 4kW, as these are the systems that receive the

highest FIT rate and do not require previous authorisations for installation. Di�er-

ent model speci�cations and de�nitions of the outcome and neighbour variables are

considered to investigate further features of the e�ects of interest and as robustness

checks.

2.5.3 De�nition of neighbourhood and measures of peers' in-

stallations

The main de�nition of `neighbourhood' I use in this paper is based on a proportional

bu�er. For each LSOA, I obtain data on the surface area and calculate the radius

that would generate a circle of the same area. I then construct a bu�er of radius three

times the reference radius, centred on the LSOA's population-weighted centroid. For

example, the bu�er of the average LSOA (surface area 4.4 km2) is constructed using

a radius of 3.55 km, while the bu�er of the median LSOA (surface area 0.48 km2) has

a radius of 1.17 km. For each LSOA-month combination, all systems in the LSOAs

with population-weighted centroids within the bu�er are considered as belonging to

the `neighbourhood'. Those systems registered more than three months prior to the
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reference month are then summed together and constitute the peer group Nl,t−3.

This de�nition of neighbourhood constructed using a proportional radius has the

advantage of taking into consideration larger bu�ers for areas that are sparse and

less densely populated, where residents are therefore more likely to travel further

away in their daily routines, and smaller bu�ers for urban and dense areas, where

residents can access most service nearby and are less likely to own a car or travel

further away.

While the outcome variable only considers residential systems with capacity up

to 4kW � as these are the ones receiving the highest tari� rate, do not require an

authorization and are the most commonly used by households � the peer group

also includes commercial and industrial systems up to 10kW, as a household who is

considering solar panels might not necessarily be able to distinguish those systems

from a residential one, and even if they can they might still be a�ected and obtain

information from them, as they are still small scale and very similar to the one they

are likely to be considering.8

Graziano and Gillingham (2015) and Baranzini et al. (2017) �nd evidence that

peer e�ects are stronger not only the closer in space peer systems are, but also the

more recently the installation occurred. To test the latter, in a set of speci�cations of

the regression model I use the registration dates of systems in the neighbourhood to

classify them into whether they had been purchased within the previous 6 months

(N<6−month
l,t−3 ), between 6 and 12 months prior (N6−12−month

l,t−3 ), and over 12 months

prior (N>12−month
l,t−3 ). As in all the other speci�cations, only installations purchased

at least 3 months prior are considered � as this is key to the identi�cation of the

model. In another speci�cation, I split the bu�er into three concentric rings of

radius 1.5, 2, and 3 times the reference radius. The innermost ring represents

the immediate neighbourhood, while the second and third rings are used to check

how far the in�uence of neighbours extend, in case the inner circle is too small to

capture the full e�ect. All installations that occurred in an LSOA whose population-

weighted centroid lies within a ring are assigned to that ring. For each observation,

all installations older than three months prior to the reference month and assigned

to one of the three rings are summed into the peer installation variable N ring1
l,t−3 , N

ring2
l,t−3

and N ring3
l,t−3 . For reference, the bu�ers for the average LSOA (surface area 4.4 km2)

8The share of systems between 4 and 10kW is nonetheless quite small compared to those up to
4 kW, as shown in the previous section.

135



have radius of 1.78, 2.37 and 3.55 km; for the median LSOA (surface area 0.48 km2)

the radii are 0.59, 0.78 and 1.17 km.

In the main analysis, I use the number of solar PV systems as unit of measure for

the outcome variable and peers' installations. Results are presented in Section 2.6.

To investigate whether larger installations produce larger spillover e�ects, another

speci�cation uses the installed capacity (in kw) rather than the count, as in Bollinger

and Gillingham (2012) and Baranzini et al. (2017). This speci�cation is nonetheless

unable on its own to distinguish between a large number of small installations and

a small number of large installation. To further investigate the e�ect of size, I

therefore estimate yet another speci�cation with the average newly installed capacity

(obtained as newly installed capacity over the number of newly installed systems)

as dependent variable, and the average installed capacity in the neighbourhood as

regressor. Results using total capacity and average size are presented in Section

2.6.3.

Given the lack of information on the exact location of PVs within each LSOA, and

given how the LSOAs are constructed to ensure within-homogeneity and between-

comparability, the proportional bu�er speci�cation is preferred to a �xed-radius one.

Nonetheless, I investigate two variants of the neighbourhood speci�cation among

the various robustness checks performed. First, I re-de�ne the neighbourhoods as

circular bu�ers of �xed radius 2km, around the population-weighted centroid of each

LSOA (N<2km
l,t−3 ). Again, given the lack of information on the exact location of solar

PVs within each LSOA, the number of peer installations are calculated by including

the total number of installations of each LSOA whose population-weighted centroid

lies in the bu�er.

To make sure that the results are robust to the simplifying assumption that

all solar panels are concentrated in the centroid, I re-calculate the value of the

spatial lag N<2km
l,t−3 , assuming that the PV systems are uniformly distributed over

the LSOA. The new peer group is then constructed as the `expected number' of

completed installations in the bu�er, that is a weighted sum of the number of nearby

installations, where the weight is given by the probability that each installation

belongs to the section of the LSOA that intersects the bu�er:

Nunif distr
l,t−3 =

J∑
j

(wlj ·
t−3∑
τ

Qj,τ )
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where Qj,τ are the installations in LSOA j registered up to month t− 3, and wlj is

the weight. Under the hypothesis that the PVs are uniformly distributed over the

LSOA, the probability that each system lies in the intersection between the LSOA

and the bu�er is nothing else than the surface area of the intersection, over the area

of the LSOA:

wij =
area(i ∩ j)
areaj

Due to the computation intensity of constructing these variables, these alterna-

tive measures of the reference group are obtained for a randomly extracted sample of

10% of the total LSOAs, that is 3,438 locations, rather than for the total population

of LSOAs. The total population of observations is still used to calculate how many

installations there are in each bu�er, but the bu�ers are only constructed around

the sampled LSOAs. Results using these alternative de�nitions of neighbourhood

are presented in Section 2.6.3.

2.6 Results

2.6.1 Peer e�ects and their interaction with monetary incen-

tives

Tables 2.2 and 2.3 present the results of di�erent model speci�cations using a within-

group and �rst-di�erence estimator, respectively. The outcome variable Ql,t is de-

�ned as the count of newly installed residential solar PV systems in each LSOA-

month (PV count), and the nearby installations Nl,t−3 as the count of small-scale

systems in the neighbourhood with registration date before the 3-month window

period. The `neighbourhood' is identi�ed using the proportional-radius bu�er def-

inition. Results from the two estimators are very close for the coe�cients of the

economic variables and almost identical for peer e�ects. Note that sample sizes are

di�erent as the �rst month of every quarter is excluded when using the �rst-di�erence

estimator, to insure consistency.

Model (1) only includes the economic variables � the expected annual subsidy

and the cost of purchasing and installing the system. The signs are as expected,

positive for the subsidy and negative for the cost. Model (2), on the contrary,

only includes the number of installations in the neighbourhood; the sign is positive,
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suggesting peer e�ects are present and operating as a bandwagon e�ect, with more

existing installations triggering more new installations. Model (3) includes both the

economic variables and peers' installations, and suggests that the coe�cients of the

economic variables are slightly underestimated in the �rst model, where peer e�ects

are not taken into consideration. Similarly, peer e�ects appear to be underestimated

in the second model, where the monetary dimension is not accounted for.

According to the estimates, a cut in the FIT rate that results in a reduction

of 1 GBP per year per kW installed,9 would lead to 0.008 fewer new installation

per LSOA, equivalent to 275 fewer installations throughout England and Wales.

As reference, consider that the expected annual subsidy decreased by almost 50

GBP/year/kW on average when the FIT was reduced in August 2012 � the largest

cut in the time frame considered � and by around 4 GBP/year/kW on average when

the FIT was cut in January 2014 � the smallest cut for the period under analysis. On

the other side, a reduction of 10 GBP in the upfront cost of purchasing and installing

the system,10 would result in about 0.002 additional installations per LSOA, or 82

for all of England and Wales.

The coe�cient of existing installations in the neighbourhood indicates that one

additional system in the peer group is associated with 0.004 new adoptions in the

reference LSOA. According to the coe�cients of the economic variables just pre-

sented, the peer in�uence of one additional installation is therefore equivalent to a

0.5 GBP increase in the annual subsidy per kW installed � that is 1.75 GBP per

year for the median system of 3.5kW � and a 17 GBP reduction in the upfront

cost per kW installed � or 60 GBP for the median system. The e�ect is therefore

economically signi�cant, and is consistent with peer e�ects being a relevant driver

of adoptions, but does not say anything with respect to the mechanism. A placebo

test and robustness checks presented in Section 2.6.3 con�rm this result. Having

rejected the null hypothesis of no or negative e�ect, I can then move on to test the

remaining two hypotheses and look for evidence on the dominant channel through

which peer e�ects operate.

Model (4) extends the previous speci�cation by including the squared term of

existing nearby installations. The coe�cient of Nl,t−3 is now larger than in the

9The average subsidy in the period under analysis is around 200 GBP per year per kW of
capacity (Table B.1).

10The average cost of purchasing and installing a system in the period under analysis is around
1,850 GBP per kW of capacity (Table B.1)
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Table 2.2: Regression table, proportional-area bu�ers, within-group estimator.

(1) (2) (3) (4) (5)
within-group estimator PVcount PVcount PVcount PVcount PVcount

subsidy (100GBP/kW/year) 0.783∗∗∗ 0.799∗∗∗ 0.802∗∗∗ 0.564∗∗∗

(0.006) (0.006) (0.006) (0.007)

pvcost (1000GBP/kW) -0.267∗∗∗ -0.237∗∗∗ -0.234∗∗∗ -0.265∗∗∗

(0.010) (0.010) (0.010) (0.010)

N 0.003∗∗∗ 0.004∗∗∗ 0.005∗∗∗ -0.008∗∗∗

(0.000) (0.000) (0.000) (0.000)

N squared -0.000∗∗∗

(0.000)

subsidy X N 0.006∗∗∗

(0.000)

N 1546605 1546605 1546605 1546605 1546605
F 7888.632 527.229 5661.044 4345.467 4402.957
p 0.000 0.000 0.000 0.000 0.000

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: X represents an interaction between variables (here peer installations and subsidy).

Table 2.3: Regression table, proportional-area bu�ers, �rst-di�erence estimator.

(1) (2) (3) (4) (5)
�rst-di�erence estimator PVcount PVcount PVcount PVcount PVcount

subsidy (100GBP/kW/year) 0.812∗∗∗ 0.821∗∗∗ 0.823∗∗∗ 0.582∗∗∗

(0.009) (0.009) (0.009) (0.010)

pvcost (1000GBP/kW) -0.268∗∗∗ -0.239∗∗∗ -0.235∗∗∗ -0.268∗∗∗

(0.016) (0.016) (0.016) (0.016)

N 0.003∗∗∗ 0.004∗∗∗ 0.005∗∗∗ -0.009∗∗∗

(0.000) (0.000) (0.000) (0.001)

N squared -0.000∗∗∗

(0.000)

subsidy X N 0.006∗∗∗

(0.000)

N 1031070 1031070 1031070 1031070 1031070
F 4188.325 240.258 2957.656 2250.623 2323.075
p 0.000 0.000 0.000 0.000 0.000

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: X represents an interaction between variables (here peer installations and subsidy).
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previous speci�cation, while the coe�cient for (Nl,t−3)2 is negative. This suggests

that the in�uence of one additional system has a diminishing e�ect on the outcome

the more systems there already are in the neighbourhood. That is to say, peer

in�uence is concave in the number of existing installations, and have diminishing

marginal e�ect. The magnitude of the coe�cients is nonetheless very small, so that

the e�ect decreases only slowly. The sign is consistent with the literature on the UK,

as Richter (2014) �nds a decreasing e�ect of the installed base, which she interprets

as potential evidence of satiation within post-code districts. Conversely, Bollinger

and Gillingham (2012) �nd that the e�ect of the installed base in California is

increasing in the number of installations, i.e. peer e�ects become stronger as more

peers adopt the technology.

Finally, model (5), extends the speci�cation in (3) by including an interaction

term between the number of nearby installations and the level of expected annual

subsidy. The coe�cient of the interaction term is positive, meaning that peer e�ects

are stronger when the subsidy level is higher; or equivalently, households are more

responsive to changes in the subsidy if there are more installations nearby. In fact,

the positive e�ect of nearby installations appears to be mainly driven by this inter-

action e�ect, as the coe�cient for the remaining Nl,t−3 term is negative, meaning

that when the subsidy is low, peer in�uence tends to die out or even have an overall

negative e�ect on new installations. Given that the FIT is being progressively cut,

a positive coe�cient for the interaction term suggests that adoptions in areas with

a larger installed base drop faster after a cut in the subsidy than areas with lower

installed base. Taken together, these results help explain the �nding from the hot-

spot analysis conducted above that adoption rates are progressively less correlated

in space. On one side, the increase in peer installations pushes new adoptions up,

but at the same time periodic cuts in the subsidies push adoptions in the areas with

larger installed capacity further down than in other areas, so that the two e�ects

counter-balance each other.

This speci�cation allows me to test the second proposition of the model, and

I reject the null hypothesis of no interaction between adoption in the peer group

and subsidy level. In particular, I �nd that this interaction is positive. This result

does not provide evidence on which is the dominant channel, as it is consistent with

both the social utility channel when the social payo� and the monetary payo� are

complements (although this case is less intuitive in the setting under analysis than
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the substitute case, as discussed in the model Section), and with the social learning

channel in the case in which more peer installations mean that information travel

faster.

2.6.2 The evolution of peer e�ects

Finally, I investigate whether and how peer e�ects change over time, to test the

last hypothesis of the model. To do this, I estimate the magnitude of peer e�ects

separately by year, using the speci�cation in model (3) in the previous Tables, in

which peer e�ects enter linearly and subsidy and cost are controlled for. Estimating

the model year by year has the advantage of allowing the responsiveness to subsidies

and cost to change over time as well, and is therefore more �exible than interacting

peer e�ects with a year dummy within the same model. For this analysis, I use data

from January 2011 to December 2016.

The coe�cients are obtained using the �rst-di�erence estimator. The results

provide evidence against the null hypothesis that peer e�ects are constant over time.

In particular, peer in�uence becomes weaker over time (Figure 2.10), as previously

found by Richter (2014) for the UK, and Baranzini et al. (2017) for Switzerland.

Peer e�ects appear to be strongest in 2011, then decrease steadily in the following

two years, and plateau in the years 2013-2015 (coe�cients for the three years are not

statistically di�erent from each other at 1% signi�cance level), to then drop again

in 2016. The coe�cient for the latter year is not signi�cantly di�erent from 0 (point

estimate of 0.00026, with a standard error of 0.00026).

This pattern is consistent with the information-sharing channel described in the

model, in which peer e�ects weaken over time as households build-up their stock

of private information that becomes more easily accessible over the years, and do

not need to rely on localised social learning. This channel would also explain why

peer e�ects drop to zero in the last year, as the the FIT policy was suspended at

the end of 2015 and then a heavily reformed FIT scheme with a new queue system

was re-instated in 2016, so that information from peers who installed before this

date are less relevant to understand the new system. The social utility channel

predicts instead the opposite result. Social learning through information-sharing

appears therefore to be the dominant channel through which peer e�ects in�uence

residential solar PV adoption.
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Figure 2.10: Year by year estimates of the peer e�ect coe�cient. Bars represent the 95%
con�dence interval.

2.6.3 Robustness checks and further analysis

Placebo test with random assignment of neighbours

To further corroborate the �nding of positive and statistically signi�cant peer ef-

fects, a placebo test is performed. The placebo test is constructed by randomly

re-assigning `neighbourhoods', and is therefore similar in spirit to the placebo test

in Di Falco et al. (2020). In particular, I randomly re-assign the number of neigh-

bouring PV installations (Nl,t−3) or their �rst di�erence to the di�erent LSOAs,

and the model is then re-estimated using the �rst-di�erence estimator. The same

procedure is repeated 100 times, obtaining 100 estimates of `placebo' coe�cients.

The distribution of the resulting estimates is shown in Figure 2.11, together

with the original estimate of the coe�cient (red line). In the top histogram, the

random re-assignment was conducted through the entire sample, so that the �rst

di�erence of each Nl,t−3 could end up being matched with the �rst di�erence in new

installations of any LSOA and any month in the sample. The middle and bottom

histograms are instead obtained by constraining the re-assignment within the same

month, for a stronger test. In this case, the number of Nl,t−3 (bottom graph) or their

�rst di�erence (middle graph) could be matched with any LSOA, but would always
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refer to month t. Randomly re-assigning within the same month means that the

country-wide change in the number of solar PV installed is preserved at each point

in time, therefore preserving any country-wide time trend in the rate of installation,

such as seasonal e�ects, changes in the national policy, and macroeconomic events.

In the �rst version of the test (top graph), the �rst di�erence is re-assigned

throughout the sample and the placebo coe�cients are distributed almost sym-

metrically around a zero mean, and their values are well below the value of the

estimated coe�cient. In the second version (middle graph), the �rst di�erence is

re-assigned within the same month and the placebo coe�cients are positive and

of larger magnitudes than in the previous case, but still substantially lower than

the peer e�ect coe�cient, providing further evidence of `contagion' at the localised

level. At the same time, the fact that the placebo coe�cients are positive and

signi�cantly di�erent from zero might suggest the existence of a more generalised

and country-wide e�ect, where the increase in the number of installations anywhere

in the country contribute to boost new adoptions even in regions that are further

away. Several mechanisms could explain this e�ect. A larger installed base might

contribute to construct and reinforce the social norm around residential solar PV

systems throughout the country, as well as generate useful information that can be

accessed and shared through the national media, social media, online forums and

other types of networks that are not constrained by physical proximity. While this

test still supports a positive and signi�cant localised peer e�ect, it would suggests

that its magnitude might be over-estimated.

The same test was then repeated by re-assigning the number of neighbouring

PVs rather than the �rst di�erences, both throughout the sample (not presented)

and constrained to the same month (bottom graph). Results are the same as in the

top graph, with a distribution of the placebo coe�cients around zero and orders of

magnitude smaller than the peer e�ect estimate. The placebo tests overall reinforce

the conclusion that peer e�ects are a signi�cant driver of new adoptions.

Distance in time and space

In this paragraphs I present further analysis to corroborate the results obtained so

far and test other hypotheses advanced in the literature. Tables with results for

these analyses are included in Appendix B.
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Figure 2.11: Distribution of coe�cients estimated in the placebo tests, as compared to
the original coe�cient estimate (red line). First-di�erence of N is re-assigned at random
throughout the sample (top) and within each month (middle); level of N is re-assigned at
random within each month (bottom).

144



Graziano and Gillingham (2015) and Baranzini et al. (2017) �nd evidence that

peer e�ects are stronger the closest in time the installations are. To investigate this

hypothesis, in Table B.2 the peer variable is divided into three temporal intervals:

systems completed within the past 6 months, between the past 6 and 12 months, and

over 12 months prior. As in all the other speci�cations, only installations completed

at least 3 months prior are considered � as this is key to the identi�cation of the

model. Estimates provided by the two estimators are very close, and the coe�cients

for the subsidy and PV cost are robust to this di�erent speci�cation. The coe�cients

for N<6−month
l,t−3 , N6−12−month

l,t−3 , and N>12−month
l,t−3 are not statistically di�erent from each

other in speci�cation (1). The same holds when the interaction term is included, in

speci�cation (2). This suggest that one additional installation in the neighbourhood

has on average the same e�ects on the number of new adoptions, whether it was

completed recently or more than one year prior. This could be the result of two

forces pushing in opposite direction and therefore counteracting each other; on one

hand, more recently installed system should be linked to more relevant information

and therefore have a stronger e�ect, but older systems are more likely to have been

noticed, as they have been around for longer and there is therefore a higher chance

that the household passed by them even if they are not in their routine path.

In Table B.3 the neighbourhood is instead divided into three concentric rings,

as detailed in Section 2.5.3, to investigate how far peer in�uence extends. Results

from the two estimators are almost identical for peer e�ects, and the coe�cients for

subsidy and cost of purchasing and installing the system are close to the estimates

in the previous Tables. Peer e�ects decrease when moving from the inner ring to

the outer ones, con�rming that in�uence becomes weaker when peers are further

away. The coe�cients for the outer rings are still positive and signi�cant, and of

economically relevant magnitude. This con�rms that peer in�uence extends further

away than the borders of the LSOA, and possibly even of the contiguous LSOAs.

This is consistent with the fact that households are likely to communicate and be

aware of adoptions by family, colleagues and friends that may not be their immediate

neighbours but still live nearby, and that they might be a�ected by systems seen

during their daily commute to work, which in England is on average 15 km (Le Vine

et al., 2017).

The fact that the third ring's coe�cient appears to be larger than that of the

second one is counter-intuitive and might be due to the simplifying assumption used
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to construct the bu�ers � namely, that all installations in a LSOA are concentrated in

the population-weighted centroid, and are therefore assigned to a ring if the centroid

is within it. This means that some installations that are actually further away from

the reference point might end up being classi�ed as closer than they really are, and

vice versa. This is a downside of the data, as the exact coordinates of the systems

are not available.

To test for the robustness of results without this assumption, in one of the next

paragraphs I use a di�erent measure of peers' installations obtained by assuming that

the installations are uniformly distributed in the LSOA, rather than concentrated

in the centroid, and results are not only con�rmed, but peer e�ects appear to be

even stronger. Overall, the fact that peer e�ects appear to be signi�cant through

the three rings suggests that their in�uence extend outside the border of the LSOA,

and possibly even further than the contiguous LSOAs. As the bu�ers used here

are based on a radius whose length depends on the surface area of the LSOA of

reference, one of the next paragraphs presents results using �xed-radius bu�ers for

more insights into this issue.

Results for the installed capacity

To check the robustness of the results discussed so far and investigate additional hy-

potheses on how peer e�ects may work, the model was re-estimated using di�erent

de�nitions of the outcome and peer installation variable � namely using the installed

capacity and the average size of the systems, in place of the count. As before, each

speci�cation is estimated using the within-group estimator and the �rst-di�erence

estimator. Using capacity measures allows me to investigate whether larger instal-

lations produce larger spillover e�ects, as in Bollinger and Gillingham (2012) and

Baranzini et al. (2017). Moreover, capacity has the advantage of making the out-

come variable continuous, providing additional support for the choice of a linear

model speci�cation. While the outcome is still bounded at zero, a limitation that

needs to be taken into account, the linear model has several advantages in terms of

controlling for unobservables and correlated e�ects, and the properties of the two

estimators used in this analysis are not easy to replicate in a non-linear model. With

this caveat in mind, Table B.4 in Appendix B presents the results for each estimator.

Again, the estimated coe�cients are very close in the two cases, a good sign for the
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robustness of the results.

Column (1) and (2) use the total newly installed capacity in a LSOA-month as

the outcome variable, and overall installed capacity in the neighbourhood (up to the

previous quarter) as the peer variable. The main results from the previous Tables

are replicated, as the more installed capacity there is in the neighbourhood the more

new capacity is likely to be installed in the LSOA. The interaction e�ects estimated

in column (2) are still positive, con�rming the �nding that households in areas with

a larger installed base are more reactive to changes in the subsidies.

The e�ects of the economic variables have the expected sign in both speci�ca-

tions, but the coe�cients are about three times larger in magnitudes than in the

speci�cation using the count of installations, consistent with the fact that the av-

erage size of installation is 3.25 kW. The coe�cients of the peer variable are also

slightly larger than in the count model. One additional kW installed in the neigh-

bourhood leads to 0.006 new kW being installed; while one additional installation

leads to 0.004 new installations. This suggests that larger peer installations have

a slightly stronger e�ect on the newly installed capacity, although this speci�ca-

tion is unable to distinguish whether this e�ect leads to larger installations or more

installations.

To further investigate the e�ect of size, model (1) and (2) of Tables B.5 use the

average newly installed capacity as dependent variable, and the average installed

capacity in the neighbourhood as regressor. These are measures of the average size

of the systems being installed, and are calculated as installed capacity over the

number of systems when the number is positive. The dataset is therefore restricted

to LSOA-month observations with a positive number of new installations and at least

one nearby installation, to see whether new installations tend to follow the average

size of installations in the neighbourhood. The coe�cients for peer installations in

model (3) and of both the peer installations and the interaction terms in model (4)

are not signi�cantly di�erent from zero, with the only exception of the coe�cient

in the �rst speci�cation estimated by within-group estimator, which is nonetheless

only marginally signi�cant.

These results suggest that when installations do occur, the size chosen is not

a�ected by peers. This is consistent with qualitative evidence collected through

interviews, as households did mention that their decision to adopt was a�ected by

neighbours, family and friends who already had solar panels, but that the size of
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the system is mainly constrained by the available space on the roof, and by the 4kW

threshold to obtain the highest FIT rate and avoid having to request authorisation

for the installation and connection to the grid.

Larger subsidy per kW installed and a lower cost per kW installed appear in-

stead to drive households to install larger systems. As the size of the annual subsidy

depends on the generation potential of the area, this suggests that households living

in area with better solar irradiation and a climate more favourable for solar gen-

eration tend to install larger systems. On the other side, the fact that lower cost

per kW results in larger installations might suggest that households have liquidity

constraints or a mental cap on the total amount they want to spend for solar panels,

even after controlling for the returns they can get on their investment. In fact, the

interviewed households stressed that they decided to install solar panels because

they had available liquidity, and many explicitly mentioned that they did not want

to take a loan to �nance the installation. Overall, comparing the results from the

count and capacity speci�cations, suggest that larger installations in the neighbour-

hood trigger more adoption rather than larger installations, as the size of the new

adoptions is not a�ected by the average size of peers' installations.

Alternative `neighbourhood' de�nitions

As a further robustness check, Table B.6 and Table B.7 in Appendix B use the

two estimators to re-estimate the model using the count, capacity and average size

of the installations, but with di�erent de�nitions of the reference neighbourhoods,

constructed using a 2km bu�er for all the LSOAs, rather than bu�ers proportional

to each LSOA size as in the previous models. Models (1), (3), and (5) impute

systems to a neighbourhood assuming they are all concentrated in the population-

weighted centroid of their LSOA. Models (2), (4) and (6) remove this assumption

and instead consider that systems are uniformly distributed over the LSOA. Details

on how the bu�er and the variables are constructed were provided in Section 2.5.3.

As speci�ed in the same Section, this analysis is restricted to a random sample of

the total LSOAs, due to computational reasons.

Results are again very similar to each other whether they are estimated with

the within-group estimator (Table B.6) or the �rst-di�erence estimator (Table B.7).

Estimated coe�cients for subsidy and cost are almost identical to the ones obtained
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in the previous Tables, suggesting that restricting the analysis to a random sample

is not a�ecting the �nal results. The general results on the existence of peer e�ects

found in the previous Tables are con�rmed, with peer e�ects being positive and

signi�cant. The estimated coe�cient for peers' installations is even larger when

estimated assuming that peer installations are uniformly distributed within their

LSOA. As before, for households who adopt in areas where there is already at least

one installation in the neighbourhood, the average size of the existing systems does

not appear to have a signi�cant e�ect on the size chosen for the new systems.

2.7 Conclusion

The present work contributes to the literature on the di�usion of residential solar

PV systems, and the role peer e�ects play in it. While the literature on the topic has

grown considerably in the last years, this paper adds more theoretical background

to the analysis, to investigate the dominant mechanisms behind peer e�ects. As

well as con�rming that peer e�ects play a role in the di�usion of the technology, in

this Chapter I also investigated how peer e�ects interact with monetary incentives

and how peer e�ects evolve over time, and modelled the channels that may explain

these patterns, a question that has not been investigated in depth in the literature,

yet. Finally, I tested �ndings from existing papers based on di�erent locations �

mainly the US and Switzerland � in the case of the UK, which has a di�erent policy

to support residential solar PV systems.

The theoretical framework set up in the paper provides the motivation for the

empirical analysis. In the baseline, a simple static model is set up to formalise how

households are a�ected by economic variables on which policy makers have a lever-

age, namely monetary incentives for the adoption of micro-generation technologies,

and the cost of investing in these technologies. The model is then extended to in-

clude peer e�ects triggered by existing solar panels in the neighbourhood. This is

achieved by modelling the two main mechanisms through which this in�uence may

arise: the social utility channel, in which households obtain a non-monetary `social

payo�' from conforming with the neighbours and �keeping up with the Joneses�; and

the social learning channel, in which households obtain information from neighbours

who have already installed, through localised information-sharing.

This model provides a set of hypotheses on how peer e�ects should a�ect the pat-
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terns of adoption over the country, how they interact with the elasticity to monetary

incentives, and how their strength evolve over time, depending on what mechanism

is dominant. In particular, both channels are consistent with peer e�ects that are

positive and signi�cant, are not constant over time, and interact with the monetary

incentive, although they predict di�erent patterns of evolution over time. These hy-

potheses are then compared with patterns identi�ed in the data using a optimised

hot-spot analysis with the Getis-Ord Gi* statistics, spatial correlation analysis using

global and local Moran's I statistics, and regression analysis.

To overcome the di�erent challenges of identifying peer e�ects, I have adapted the

identi�cation strategies and estimators presented by Richter (2014) and Bollinger

and Gillingham (2012), and constructed di�erent de�nitions of peer installations

and neighbourhoods to check robustness of the results. The results of the empirical

analysis robustly point towards the existence of positive and signi�cant peer e�ects,

with evidence that the in�uence of peers' decisions to adopt solar panels extends

further than the boundaries of the LSOAs. Peer e�ects also appear to interact

positively with the level of annual subsidy a household can expect to receive. This

means that when the FIT rate is cut, areas with larger installed base experience

larger drops in the number of new installations if compared to areas with lower

installed base.

Finally, I �nd evidence that the strength of peer e�ects is not constant, but

decreases over the years. This result suggests that information-sharing at the local

level is the dominant channel through which the adoptions of peers tend to a�ect

new installations in the neighbourhood. Taken together with results for the other

hypotheses, this would suggest that information regarding cuts to the FIT rate

spreads faster the more existing installations there are in the area, resulting in

fewer installations than it would be the case in areas with a smaller installed base.

Nevertheless, the e�ect of peers' decisions appears to fade out with time, possibly

because households can obtain more and more up-to-date information from other

sources so that localised social learning loses importance.

This is an important result in terms of policy implication, as it provides an addi-

tional motivation for subsidising residential solar panels and avoiding unpredictable

and drastic cuts, especially in the early years of the scheme, as well as an addi-

tional element to take into consideration when setting the level and schedule of the

subsidy. In fact, subsidies in the early years can `buy' the boosting e�ect of peer
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in�uence and trigger a domino's e�ect in adoption, but when the subsidy is cut,

the interaction e�ects between this variable and peer e�ects pushes in the opposite

direction, slowing down new adoptions.

Another implication that can be derived for policy design is the importance of

providing accessible information on the new technologies and the existing support

schemes for their adoption, as well as visible and possibly trialable examples of them.

In fact, if information-sharing is a relevant mechanism for peer e�ects, then areas in

which social learning is not possible � because of the lack of peers who have already

adopted � would experience a sub-optimal pattern of adoption than it would be the

case in absence of imperfect and missing information. Given the strong evidence

in the literature that inertia, default bias, and risk and uncertainty aversion make

adoption of lower-carbon energy technologies slower than it would be optimal, this

paper suggests that informational interventions and peer e�ects could be e�ective

tools to help remove these barriers.
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Chapter 3

Demand for `improved' cookstoves or

demand for improvements? Evidence

from refugee settlements in

Sub-Saharan Africa

3.1 Introduction

With almost 69 million individuals (UNHCR, 2016), if the forcibly displaced were

a country, they would be the 21st largest country in the world by population, and

one of the top countries for population growth. In fact, political and economic

instability, wars, extreme climate events and changing environmental conditions

continue to fuel displacement and migratory processes, adding to the victims of

economic and political crises, new tides of climate and environmental refugees. Sub-

Saharan Africa, where the refugee settlements studied in this Chapter are situated,

is particularly hit by these trends, as the number of forcibly displaced people and the

duration of the crises have kept growing in the last decades (Verwimp and Maystadt,

2015; Adepoju, 2019). In this context, actors involved in humanitarian responses are

coming to the realisation that sustainable and clean energy provision is essential not

only for the administration of the settlements, but above all to ensure the welfare

of their inhabitants (Lahn and Grafham, 2015; Huber and Mach, 2019).

In fact, fuel e�ciency and indoor air pollution are critical issues in developing

countries, and are intimately related to the broader issues of poverty alleviation, en-
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vironmental protection, and sustainable development. Cooking, in particular, is one

of the main energy-consuming activities in households' everyday life, and can take

up a substantial share of time and resources in developing countries. In refugee set-

tlements, the problems linked to traditional forms of cooking are further exacerbated

by the di�culties of humanitarian emergencies and displacement, in particular with

respect to resource scarcity, potentially hostile host communities, high population

density, and a large number of vulnerable individuals, such as children, women, the

elderly and the in�rm, and improvements are therefore even more urgent. Cook-

stoves are mentioned among the main energy challenges and solutions for refugee

settlements in Lyytinen (2009).

At the same time, refugee settlements can provide interesting opportunities to

introduce and develop new technological and organisational solutions (see for exam-

ple Bellanca, 2014; Gunning, 2014; Lahn and Grafham, 2015; Grafham et al., 2016;

Lehne et al., 2016; Vianello, 2016, for a review of cooking solutions and pilot pro-

grammes for refugee settlements and humanitarian settings). The bene�ts of these

programmes could even spill over to the host communities and to family members

in the countries of origin, triggering broader transition processes in both the receiv-

ing and sending countries (Alix-Garcia et al., 2018; Maystadt and Duranton, 2018).

Moreover, refugee settlements are contexts where the provision and allocation of

very scarce resources are a crucial issue and where central management and policy

interventions are pervasive, making it an interesting setting for economic analysis

and program evaluation.

Yet, economic and energy issues in these contexts are still under-researched �

especially from a quantitative perspective � due to the di�culties in accessing the

settlements to collect data and because the settlements are understood as temporary

arrangements (Lahn and Grafham, 2015). To overcome the �rst hurdle, I rely on

the e�ort of the recently formed Moving Energy Initiative (MEI) � a consortium

of governmental and non-governmental organisations active in the energy and hu-

manitarian spectrum � to close this knowledge gap. To this purpose a survey has

been administered to representative samples in the Goudoubo settlement, in Burkina

Faso, and in the Kakuma sub-camp one, a sector of the bigger Kakuma settlement,

in Kenya, focusing on the current status of energy access and management, as well

as the needs and priorities of households, enterprises and facilities on the ground.

This survey provides the main information and data for the analyses in this Chap-
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ter. As for the temporary nature of the settlements, this is often more of a political

label than a description of the actual situation. In fact, evidence cited by Vianello

(2016) suggests that displaced people spend an average of 17 years as refugees, and

UNHCR (2016) reports that �the average duration of the 32 protracted refugee sit-

uations at the end of 2015 is estimated at about 26 years�. Consistently, the median

arrival date in Kakuma for respondents in my sample is 2004, with several house-

holds having lived in the camp since the early 1990s, when the settlement was �rst

established. The Goudoubo camp was opened in 2012; more than half of my sample

reported living in the settlements since that year, suggesting that they might have

already been living as refugees in the country before the camp was established. At

the same time, about 5% of respondents in each settlement had arrived less than a

year before the survey was conducted, evidence that the situations in the countries

of origin had not yet been resolved � and in fact are still ongoing at the time of

writing.

Despite evidence that there is much to be gained in improving cooking condi-

tions for households in least developed contexts, the willingness to pay (WTP) for

non-traditional stoves appear to be low, both in absolute and in relative terms (Mo-

barak et al., 2012; Whittington, 2010), and so is the take-up even when o�ered for

free (Hanna et al., 2016). This result seems to be robust in rural and urban areas,

although this has not been studied in the context of refugee settlements, yet. To

understand the reasons behind this results, in the �rst part of this Chapter I in-

vestigate whether low WTP for non-traditional cookstoves1 found in the data and

more broadly in the literature, might be linked to the failure of these systems to live

up to expectations, and more speci�cally to a mismatch between the performance

of the stove and the features the user is interested in, such as fuel savings, smoke

reductions, or compliance with traditions and habits. Using characteristic-demand

theory I test two competing interpretations:

1. Households have low WTP for (i.e. low valuation of) the improved features

(referred to as the `characteristics' of the stoves, in the rest of the Chapter).

1For the purpose of this Chapter I refer to non-traditional stoves to indicate stoves that are
di�erent from the traditional three-stone �re. Whether a non-traditional cookstove constitute an
improvement with respect to the traditional one, and what kind of improvements they provide,
is an empirical question. For a similar argument, see Mobarak et al. (2012). I use the acronym
biomass ICS (improved cookstoves) to indicate non-traditional cookstoves using solid fuels, such
as �rewood or charcoal, as this is the common name used to indicate these types of stoves.
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2. Households value the improved features but do not think that non-traditional

stoves provide them.

To do this, I use stated preferences for a set of seven di�erent non-traditional cooking

technology � basic solid-fuel ICS, enhanced �rewood-ICS, enhanced charcoal-ICS,

solar cookers, biogas stoves, LPG stoves, and electric stoves � and information on

respondents' perceptions (or expectations) in terms of the characteristics of each

cooking technology. I fact, di�erent respondents have di�erent perceptions of the

characteristics of each type of cooking technology � for example because of hetero-

geneity of the stoves, or asymmetric information � and in the analysis I attempt

to disentangle the premium respondents are willing to pay for each characteristics,

from the technology-speci�c premium.

As a further re�nement, I control for heterogeneity in priorities regarding the

features of a cooking system. To see why this is important, consider for example that

according to World Health Organization (2015) signi�cant health improvements can

only be achieved by moving away from solid fuel and switching to clean fuel such as

LPG, biogas, and electric cooking. Respondents concerned with health issues might

thus be expected to have a low valuation for solid-fuel non-traditional cookstoves, as

they do not match with the respondents' priorities. Information is also obtained on

whether the respondent has any previous experience with each technology. Given the

setting and the technologies considered, this is often determined by participation in

pilot schemes or donation programmes, rather than being the results of respondents'

purchases in the private market.

In the second part of the Chapter, I use the same dataset to look at whether

moving away from three-stone �res has delivered any signi�cant improvements in

each of four di�erent dimensions of welfare - fuel e�ciency, health and safety, time

use, and the workload burden on women and children. The setting can be considered

as a quasi-experiment, as non-traditional cookstoves have been mainly introduced

in the camp through donation programs, and are not easily found in the local mar-

kets (neither within the settlement nor in the nearest towns). Finally, I conclude

by bridging the results from the two analysis looking at the correlation between

the predicted bene�ts provided by non-traditional cooking systems and the stated

preferences. To do this I use household-speci�c estimates of the e�ect of using a

non-traditional cookstove on di�erent outcomes, and interact it with the gender of
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the respondent. The latter is used to see whether men or women are relatively

better at factoring the gains into their valuation, and whether that depends on the

outcome considered. In fact, it could be the case that the valuation increases more if

the respondent is appropriating the bene�ts directly � which in the case of cooking

means that women may be more responsive than men to improvements in health

and safety and time savings, as they are the ones mainly a�ected.

The novelty of this research is two-fold. First, for its e�ort to bridge valuation

of hypothetical products and improvements with estimates of actual improvements

from the non-traditional cookstoves distributed in the camps. This is made possible

thanks to the extensive scope of the survey data collected by the Moving Energy Ini-

tiative in terms of current level of access, multi-dimensional well-being information

and valuation modules. Answering these questions with the same dataset provides

interesting insights on whether a mismatch exists between the improvements sup-

plied by the cookstoves actually deployed on the ground, and the improvements

demanded by the users. To my knowledge, only one other study has focused explic-

itly on this connection so far, namely Berkouwer and Dean (2019)'s RCT in Nairobi,

Kenya.

The second contribution, and key di�erence with respect to the above-mentioned

work, is the focus on refugee settlements in developing countries. These are highly

managed settings in which centralised interventions are pervasive and improvements

in service provision are particularly urgent. Lessons can therefore be derived from

past and current e�orts, and be used as input in the design of future programmes,

contributing to improve the life of a particularly vulnerable segment of the world

population.

The questions investigated in this Chapter are meant to inform the more general

question of whether low willingness to pay for non-traditional cookstoves found in

the data and more broadly in the literature2, might be linked to the failure of these

systems to live up to expectations - consistent with the results by Mueller et al.

(2011), Yu (2011), Hanna et al. (2016), and with the World Health Organization

(2015) guidelines, stating that signi�cant health improvements can only be achieved

by moving away from solid fuel and switching to clean fuel such as LPG, biogas,

and electric cooking.

This Chapter also contribute to the broader issue of economic and behavioural

2See for example (Mobarak et al., 2012; Beltramo et al., 2015).
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drivers of adoption of low-carbon energy technologies in developing regions, and

of the welfare e�ects that the low-carbon energy transition entails. At the same

time, they are meant to shed light on the energy situation, needs, and demand of

households in refugee settlements, as well as on energy-related welfare aspects of the

everyday life of refugees. Both these topics are still under-researched � especially

from a quantitative perspective. For this reason, while I acknowledge the limitation

of cross-sectional survey data, I believe this is an important �rst step to start a

conversation and inform future research on the topic.

3.2 Background and literature review

3.2.1 Willingness to pay and technology adoption

Low rate of adoptions and low WTP for technologies that are supposed to provide

high returns and substantial improvements in the quality of life, are a puzzling result

in the literature on energy e�ciency and clean energy, in low and middle-income

countries as well as in high-income countries. These results are especially robust

in the case of biomass-fuelled non-traditional cookstoves, and has been found both

in rural and urban contexts � see for example Mobarak et al. (2012); Whittington

(2010); Beltramo et al. (2015).

Berkouwer and Dean (2019) conducted a randomised �eld experiment in Nairobi,

Kenya's capital, in which they �rst con�rm that the energy e�cient cookstove being

o�ered does in fact result in substantial fuel savings. Despite the high returns, they

observe under-adoption and low WTP for the technology, and test for inattention

to future savings and for credit constraints as potential explanations. While the

former does not appear to be an important channel, the WTP is more than doubled

when households have access to credit and the possibility to convert a large upfront

payment into smaller instalments.

While low ability to pay is one of the key barriers to adoption, priorities and at-

titudes, experience, and expectations are other relevant factors. In the literature on

determinants of WTP for clean energy and low-carbon technologies in general, Guo

et al. (2014) �nd signi�cant e�ects of knowledge and attitudes towards renewable en-

ergy in China, while Batley et al. (2000) document the e�ect of experience on WTP

for renewable energy in the UK, and Claudy et al. (2011) shows how subjective

157



consumer perception of product characteristics a�ects WTP for electricity micro-

generation technologies in Ireland. Compliance with habits, traditions and cultural

norms is another relevant factor that has been found to a�ect technology uptake

in the global South, especially in the case of cookstove. Convenience of use, food

taste and traditional food preparation have been cited as barriers to switch to non-

traditional cookstoves (Sesan, 2012; Jeuland and Pattanayak, 2012), and e�orts are

now being put to design culturally appropriate and context-speci�c non-traditional

stoves (Bensch et al., 2013).

Moreover, not all non-traditional cookstoves are created equal, and huge hetero-

geneity exists in terms of what type of improvement each stove provides, and whether

they provide any improvement at all. If Berkouwer and Dean (2019) found that their

cookstove e�ectively reduced charcoal use, Mueller et al. (2011), Yu (2011), Hanna

et al. (2016) provide further evidence of interventions in China � the former two �

and India � the latter � in which non-traditional cookstoves have failed to deliver

on their promises of substantial health and fuel savings e�ects.

Hanna et al. (2016) is especially interesting, as they analyse an RCT conducted

in rural Odisha, India, where the construction of a �xed non-traditional cookstove

was o�ered at a highly subsidised cost, so to be almost free for the household. The

stove was similar to the traditional one, in terms of materials and general design,

but included a base for the fuel, so that it would burn more e�ciently and contain

the smoke into the fuel chamber, and a chimney to disperse the smoke away from

the user. While some health improvements were found in the �rst year of use,

the bene�ts faded away in the following period, due to lack of maintenance and

correct utilisation. They also found that uptake was far from universal, even though

the stove was o�ered for less than one dollar, and households often kept using their

traditional stove side-by-side the new one � a practice known as stove or fuel stacking

� and even abandoned the latter completely as time passed.

While non-traditional cookstoves have the potential to deliver important social

bene�ts, especially in terms of environmental conservation, pollution and health,

as discussed below, Jeuland and Pattanayak (2012) illustrate how the net e�ects

of non-traditional cookstoves are far from certain, especially when focusing on the

private and appropriable bene�ts and costs.

The problems of returns' uncertainty are compounded when quality of the prod-

uct is not easily observable, and sub-standard or counterfeit models are present in
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the market, as Bensch et al. (2015) found in the case of non-traditional cookstoves in

Burkina Faso, where a labelling scheme has been introduced for quality certi�cation.

This makes it more di�cult for households to experiment and learn about the new

technology and might even result in a generalised lack of trust in the product and

its suppliers, as discussed by Bold et al. (2017) in the case of fertilizer and hybrid

seeds.

Finally, even if non-traditional cookstoves e�ectively deliver improvements, these

might be in areas users are less interested in, as a mismatch has often been re-

ported between the solutions development organisations o�er, and the priorities of

the households they are targeting (Sesan, 2012). A similar mismatch might exist

within the household, between the decision-making members and the members that

are most likely to bene�t from improved cooking conditions. In fact, in patriarchal

societies women may lack the power or resources to make purchasing decisions, es-

pecially for durables and more expensive item, and men may overlook the health

gains and time savings of non-traditional cookstoves as they are not the ones directly

appropriating those bene�ts, as documented by Miller and Mobarak (2013).

3.2.2 Welfare improvements

Non-traditional cookstoves may be designed to achieve improved performance on a

variety of dimensions, such as fuel e�ciency and/or reduction in smoke emissions.3

For the purpose of this Chapter I refer to non-traditional or `improved' stoves as

stoves that are di�erent from the three-stone �res traditionally used in the regions

under analysis. Fuel e�ciency and indoor air pollution are especially relevant issues

in developing countries, and are intimately related to the broader issues of poverty

alleviation, environmental protection, and sustainable development. At the same

time, cooking is one of the key activities in households' everyday life, and one that

might take up a substantial share of time and resources � especially women's � in

least developed contexts, and even more so in refugee settlements. As a consequence,

various authors have studied the welfare e�ects of di�erent cooking technologies in

rural and urban settings in developing countries, but less research has been done

3Consider for example (Vianello, 2016) de�nition: � `improved' denotes positive changes in the
e�ciency, emissions, safety, durability, user acceptance, cost, fuel sustainability or other bene�cial
attributes that a new cooking system can o�er. An `improved cooking system' may use any type of
fuel and may include options that meet internationally agreed standards for emissions and safety,
as well as options that o�er measurable bene�ts relative to traditional forms of cooking but do not
necessarily meet internationally de�ned benchmarks.�
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on refugee settlements. I am speci�cally interested in the e�ects over the following

dimensions: (i) fuel e�ciency and environmental issues such as deforestation and

environmental degradation, (ii) health and safety, (iii) time use, and (iv) gender

issues.

Health and safety

Indoor (or household) air pollution (IAP) is at the moment one of the leading

environmental causes of death, estimated to kill every year around 2 million people

� roughly as many people as malaria and tuberculosis combined (World Health

Organization, 2009; Martin et al., 2011). Medical studies have shown links between

IAP and several health conditions, from acute respiratory infections and chronic

lung disfunctions, to asthma, tuberculosis and several types of cancer. Most of the

literature on the welfare e�ects of non-traditional stoves comes in fact from medical

and health studies, some relevant examples being Diaz et al. (2007); Pennise et al.

(2009); Gordon et al. (2014); Bruce et al. (2000). More recent literature focuses

on health measurements conducted within randomised controlled trial (RCT), to

minimise the e�ects of confounders.

In the �agship RESPIRE study, in Guatemala, for example, non-traditional

cookstoves were provided to a random sample of households, and carbon monox-

ide exposure and health indices between the treated and untreated groups were

compared. The results showed reduction in pollution exposure, linked to improve-

ments in terms of eye issues, headaches and back pain (Diaz et al., 2007), women

and children's respiratory issues (Smith-Sivertsen et al., 2009; Smith et al., 2011), as

well as in a number of other health dimensions, although not always to a signi�cant

level. Du�o et al. (2008), Pattanayak et al. (2018) and Jeuland et al. (2015b) bridge

the literature on air pollution and health e�ects with economics and development

policies, through a survey of the evidence from the literature.

In absence of experimental data, as in the setting analysed in this Chapter, a

few studies have applied quasi-experimental methods or statistical matching with

observational survey data to evaluate the impact of non-traditional cookstoves in de-

veloping countries, but as far as I know, none in the context of refugee settlements.

Importantly, Mueller et al. (2011) focus on the bias in health impact evaluation due

to lack of control for health-relevant covariates (age, wealth, kitchen ventilation),
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which may a�ect who receives non-traditional stoves and who does not, as well as the

outcome. Using Chinese data, they show that while simple di�erence-in-means esti-

mators show no health improvements for the households with non-traditional stoves

compared to those without, a positive e�ect is found when propensity score match-

ing on health-relevant variables is used. In fact, households who use non-traditional

cookstoves appear to be poorer and with worse kitchen ventilation, factors which

bias the health e�ects if not adequately controlled for. Mueller et al. (2013) focus

on bias caused by lack of controls for the heterogeneity between households who get

the treatment - either through a donation or by purchasing non-traditional stoves

themselves - and those who do not, using Chinese household survey data.

Yu (2011) uses data from various indoor air pollution reduction programs in rural

China to evaluate the e�ects of stove improvements and behavioural interventions

on children respiratory health, concluding that behavioural interventions are more

cost e�ective, and no signi�cant marginal bene�ts from the use of non-traditional

cookstoves are found. In this case the assignment to di�erent treatment was ran-

domised and data were collected before and after treatment. The treatment groups

consisted of subsidised stove and behavioural intervention, behavioural intervention

only (stoves are available for purchase at full price, and in fact almost half of the

households in this treatment group undertook some form of stove or ventilation

improvement), and control. Nevertheless randomisation was not entirely successful

in balancing pre-intervention di�erences (e.g. households in treatment group are

poorer, larger, and in poorer health), and matching was therefore use to correct for

this problem. Quansah et al. (2017) provide a meta-analysis of studies on the e�ects

of traditional and non-traditional cooking systems on health and pollution exposure.

Further health and safety concerns are linked to �rewood collection, as accidents

are common, for example due to exhaustion and dehydration, attacks from wild

animals, gender-based violence, and con�icts with neighbours, just to mention some.

These issues are further exacerbated in refugee settlements, as refugees are less

familiar with the surrounding environment, relations with the host communities are

often tense, and camps are often located in resource-poor areas. Crisp (2000) for

example mentions violence linked to �rewood collection in the Dadaab and Kakuma

refugee settlements in Kenya, where the host population increasingly attempts to

prevent the refugees from accessing lands and forests outside the settlements, and

Mulumba (2011) reports similar issues for refugee, especially women, in Uganda.
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The refugee population also tends to comprise more vulnerable people, such as

women, children, the elderly and individual with health conditions, making health

and safety an even higher priority.

Context is relevant. In the sample, almost no accidents with the cookstoves

were reported in Goudoubo and smoke is reported as a less severe issue, as almost

all the households cook outside and exposure to air pollution is therefore lower, as

documented by Langbein et al. (2017). Smoke and accidents are instead widely

reported in Kakuma, where more than half of the respondents cook indoor.

Energy e�ciency and fuel savings

The issue of fuel use, has attracted the interest of environmental economists and con-

servationists, as collection of �rewood for cooking is leading to unsustainable forest

exploitation and deforestation in some areas of the globe. On this matter, I cite

Wallmo and Jacobson (1998) on fuel e�ciency and conservation in Uganda, Tucker

(1999) on solar cooking, and Bensch and Peters (2013) on reduction of deforesta-

tion in Senegal, thanks to charcoal savings induced by non-traditional cookstoves.

This topic has also become popular - together with the health perspective - with

international organizations and development banks (World Bank, 2011).

Adkins et al. (2010) conducted tests with di�erent models of improved cookstoves

in rural Uganda and rural Tanzania, and �nd that the non-traditional cookstoves

have lower fuel requirements for the preparation of a standardised dish, in compar-

ison with the traditional cookstove. Blu�stone et al. (2017) found similar results in

Ethiopia, and attribute them mainly to the engineering of the stoves, as the results

were not a�ected by the level of experience the cook had with the new stove.

The link between e�ciency and fuel savings is nevertheless less straightforward

than it might initially seem. Even when non-traditional cookstove are indeed more

e�cient than the traditional ones, this might not necessarily translate in an over-

all reduction of fuel used. In fact, as the more e�cient cookstove uses less fuel to

cook the same meal, it lowers the marginal cost of cooking, so that the new optimal

level of cooking increases. In the new optimum, the household may end up consum-

ing as much or even more fuel overall than they did with the traditional stove, a

phenomenon known as `rebound e�ect'. Evidence of this e�ect has been found for

fuel-e�cient cars and other appliances and energy services.
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In the case of cookstove, evidence of rebound e�ect has been documented for

example by Bensch and Peters (2013), using data on day-to-day cooking behaviours

in urban Senegal, to verify whether the fuel savings obtained under laboratory con-

ditions are replicated in a real world context. Their result is 25% charcoal savings

thanks to ICS, less than in laboratory testing (where the savings were estimated to

be around 40%). Following the same analytical design, Bensch et al. (2013) conduct

an impact evaluation of a non-traditional stove designed to improve fuel e�ciency

(not designed to curb smoke emissions) in Burkina Faso. They rely on a cross-

sectional dataset of survey data, and use propensity score matching and propensity

score weighting to estimate the e�ect of ownership of a non-traditional cookstove.

Energy e�ciency and fuel savings are particularly relevant issues for refugee

camps in developing countries, as these are often set up in areas with very scarce

resources or access to the local resources might be opposed by the host communities.

The two settlements analysed in this Chapter are good examples of these issues.

Goudoubo is situated in the dry and arid Sahel region, and lack of forested areas is

a big problem for the host community as well as for the residents of the settlement,

so much so that the �rewood distributed to refugee households by humanitarian

agencies is actually sourced from regions over 100km away from the settlement.4 Fuel

e�ciency has become an even more urgent priority since free �rewood distribution

was discontinued at the beginning of 2017 (Vianello and Corbyn, 2018). Although

resource availability is less dire in the area around Kakuma, the size of the refugee

population and con�icts with the host communities over access to lands and forests

outside the camp make the needs for fuel savings equally urgent (Crisp, 2000).

Scarce supply of fuel suggests that binding availability constraint might be an

issue in the camps � simply improving the e�ciency of the stoves might not change

the amount of �rewood consumed, because households may use all the fuel they have

access to and still be short of the quantity they consider optimal given their utility

function and budget constraints. In support of this hypothesis, insu�ciency of fuel to

cover the households' basic cooking needs is one of the main complaint by residents

of both camps, and in both camps at least some respondents reported having to

exchange foods to obtain fuel. Importantly, a large share of the food available in the

camp cannot be consumed raw and require cooking, such as dry beans and grains. In

Kakuma households receive 10kg of �rewood for every member � equivalent to 60kg

4This was reported during key informant interviews in Goudoubo.
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for the average 6-person household � every two months, while in Goudoubo the same

amount is distributed every month (Vianello and Corbyn, 2018); according to focus

groups and informants' interviews, this supply rarely lasts for the intended time

and often only for half of it. Focus group participants in Kakuma, where charcoal

is also commonly used (although �rewood is still predominant), stressed that this

fuel is subject to seasonal availability and price might even double when there are

shortages. These circumstances make the refugee settings particularly interesting

and important to look at.

Time use

On the importance of time saving and how freed-up time can be re-allocated to

productive or leisure activities, I refer to Devoto et al. (2012). This aspect of the

problem as related to cooking more speci�cally, has been investigated by Tinker

(1987), focusing on time use of women. The use of non-traditional cookstoves may

free up time by reducing cooking time itself, or by reducing the amount of fuel

needed and therefore the time spent collecting it.

Referring again to Adkins et al. (2010) tests, the authors found the overall cook-

ing time for a standardised dish tended to be longer for the non-traditional cook-

stoves when compared with the traditional one. Blu�stone et al. (2017) found similar

results when the cooks were not familiar with the new stoves, but they report lower

cooking time after the cook has gained more experience. On the second aspect,

Lewis et al. (2016) document a reduction in time spent collecting �rewood linked to

the use of non-traditional cookstoves in rural India.

The e�ect on fuel purchase and fuel preparation time is even more ambiguous,

as non-traditional cookstoves often require purposedly prepared fuel and/or fuel

di�erent from �rewood that cannot simply be harvested and prepared by household

members but has to be purchased. For example wood sticks might need to be cut

and chipped into a smaller size, transformed into charcoal, or processed into pellets

and briquettes. In this case households using non-traditional cookstove would have

to dedicate more time to these activities.

164



Intra-household distribution of workload

Finally, it is to be noted that the consequences of unsustainable and unhealthy

cooking practices, are likely not to a�ect every member of the household in the same

way. In fact, women and children spend disproportionately more time indoor and in

the vicinity of the stoves, and it is mainly on their shoulder that the responsibilities

of �rewood collection rest (Ryan, 2014; Batliwala and Reddy, 2003; Shailaja, 2000).

Dankelman and Davidson (2013) provide a broader perspective on this topic as

related to development, environment, and gender issues. A relevant issue in this

context is the `genderisation' of fuels and the gendered division of labour in the

household (Matinga et al., 2016; Munro et al., 2017). Qualitative research in Sub-

Saharan Africa has documented how �rewood tend to be associated with women,

and therefore activities related to it are perceived as being women's responsibilities.

Charcoal and other modern fuel such as LPG tend instead to be perceived as more

neutral or even associated with men (Troconis, 2017). Moreover, the introduction

of a new technology in the household might trigger a process of re-negotiation and

re-de�nition of gender division of tasks (Standal et al., 2020).

3.2.3 Context and dataset

Survey data collected by the Moving Energy Initiative provide the main dataset for

the analyses in this Chapter. The surveys were conducted between the end of 2016

and the beginning of 2017 in the refugee settlements of Goudoubo, in Burkina Faso,

and Kakuma sub-camp one, in Kenya. Goudoubo is situated in the Sahel region of

northern Burkina Faso, in West Africa. The refugee settlement was established in

2012 to host Tuareg and other refugees from Mali that were previously hosted in the

camps of Fererio, Gandafabou and Deou and had to be relocated further away from

the Malian border to comply with international regulation (UNHCR, 2013). As the

situation in Mali has not been resolved yet, new in�ows of refugees have kept arriving

in the camp since then. Kakuma is instead located in East Africa, in Turkana

County, north west Kenya. Settlement of refugees started in 1992, to host forcibly

displaced people from Sudan, and grew to assist refugees �eeing from con�icts and

persecutions in various neighbouring countries, including the Democratic Republic of

the Congo, the Central African Republic, and the new country of South Sudan. The
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two settlements are among the largest5 and most important in the respective country,

and have a population of around 11,000 and over 190,000 (considering all of Kakuma

camp and Kalobeyei Integrated Settlement), respectively. Participants have been

selected at random trying to ensure that the sample is representative, following

a strati�cation procedure based on socio-economic clusters and housing blocks in

the settlements. The sample size of completed questionnaires is 129 households in

Goudoubo and 231 in Kakuma. In 70% of the cases, the questionnaire was answered

by the head of the household.6 Background information about the questionnaires

and the data can be found in Vianello and Corbyn (2018).

These data are of particular interest for several reasons. Firstly, they come from

two settlements that span di�erent political, social and economic conditions, both

in terms of the refugee and the host communities, allowing for comparisons and

consistency checks of the results of the analyses. Secondly, the data are particu-

larly relevant due to the speci�c focus on energy access and demand. The dataset

compiled from the survey has a very rich set of variables on the current and desired

energy situation of the participants, on their needs and priorities in terms of energy

services, and their attitudes and experience with cooking technologies. Micro-data

from refugee settlements are generally rare, and even more so micro-data on en-

ergy consumption, so that energy needs and energy preferences end up being often

overlooked in the context of humanitarian interventions (Lahn and Grafham, 2015;

Beogo et al., 2018). Lastly, the survey includes modules to elicit respondents' stated

preferences in the form of ranking and willingness to pay for a large set of energy

technologies for electricity access and for cooking. This Chapter focuses on the lat-

ter domain, where 10 di�erent cooking options were considered � basic ICS (with

and without fuel), enhanced ICS using wood (with and without fuel), enhanced ICS

using charcoal (with and without fuel), solar cooker, biogas stove, LPG stove, and

electric cooker. The ranking exercise includes the traditional three-stone �re as ad-

ditional option � WTP for this cooking system was not asked, as it is e�ectively

available for free.
5∼ 1.26km2 Goudoubo; ∼ 4.17km2 Kakuma sub-camp 1, and 15km2 for the entire Kakuma

complex.
6Note that several households identify one woman and one man as joint heads of the households.
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Use of traditional and non-traditional cookstoves in the camps

People living in the refugee settlements under study rely on a mix of traditional

and non-traditional cookstoves to meet their cooking needs. In both settlements,

most of the non-traditional cookstoves have been received as donations, with only

a small share being purchased by the households themselves. Three-stone �res are

built by household members themselves, as no particular skills or materials are

required. Table C.1 shows the penetration of traditional three-stone �res, biomass-

based non-traditional cookstoves, and cleaner solar and LPG stoves. Summary

statistics are also reported on whether the household cooks indoor and whether

they use a chimney, the type of fuel used, fuel consumption, and reference prices

for the basic biomass ICS used in the settlements. Photos of three-stone �res and

the most common non-traditional cookstoves used in the camps are included in

Appendix C.1.

As it is often the case in rural areas of developing countries, fuel and stove stack-

ing are pervasive � households may use wood or charcoal depending on the type

of food they are preparing, and often continue to use a traditional three-stone �re

side by side a non-traditional cookstove. For instance, Malian refugees in Goudoubo

use primarily �rewood to prepare food, but switch to charcoal to make the tradi-

tional tea. At the time of the survey, 80% of the respondents in Goudoubo used a

non-traditional stove, mostly some version of biomass-fuelled ICS, with only about

5% having LPG and 5% having a solar cooker (Blazing Tube, see Figure C.5 in

Appendix C.1). The latter were introduced in refugee camps in Burkina Faso as a

trial programme, but did not prove particularly successful, as they are very large

and impractical to use, tend to break easily, and make it di�cult to regulate the

temperature and cook the food according to the household's habits and tastes �

refugee women even reported receiving divorce threats from their spouses because

of this issue (Troconis, 2017). The share of households using a three-stone �re as

primary or secondary system is nevertheless still high, at 40%. Notably, almost none

of the respondents cook indoor.

The share of households using biomass ICS in Kakuma is similarly 80%, but the

level of stove stacking is lower � although still relevant � and only 28% of households

still use a three-stone �re. No LPG or solar cookers were reported in the sample.

The use of charcoal as main cooking fuel is more common in Kakuma than it is in
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Goudoubo, as it is the use of chimneys or hoods to remove smoke from the cooking

space. This is linked to the fact that over half of the households cook indoors (either

in their dwelling or in a separate building), to avoid the strong winds of the region.

These trends regarding the prevalence of outdoor and indoor cooking are con-

sistent with the general cooking habits of Burkina Faso and Kenya, as documented

by Langbein et al. (2017). As measured by the same author, indoor cooking is

linked with higher exposure to smoke and air pollution. Consistently, almost 70%

of respondents from Kakuma reported experiencing smoke problems and more than

60% reported accidents, while the corresponding share are only 29% and 4% in

Goudoubo. Information on these variables, as well as other characteristics of the

households and their cooking habits and priorities are presented in Table C.2.

3.3 Part 1: WTP for non-traditional stoves and

their characteristics

3.3.1 Theoretical framework: From the WTP for a product

to the characteristics' premiums

Individual demand

To analyse the choices of the households, I use the characteristic-space framework,

introduced by Lancaster (1966) and used for example in hedonic pricing models

(Rosen, 1974). According to this theory, each product can be represented as a bundle

of characteristics, and the utility of the agents depends on those characteristics,

rather than on the product per se. I therefore de�ne households' utility as a function

of the `improved' cooking service and of z, denoting any other good or service. The

price of z is normalised to be 1 (pz = 1). Each household decides how much of

their income (M) to allocate to gain access to the cooking service, and how much

to all the other goods and services. The `improved' cooking service can be accessed

by purchasing one of J di�erent stoves, or not accessed at all - i.e. households

can always choose to use a traditional three-stone �re which can be put together

for free. Following the set up of the questionnaire used to produce the dataset I

will use in the next Sections, I assume that only one of the J stoves will be made

available. The choice of the household therefore simpli�es to whether they want to
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buy stove j or not, if that is the only non-traditional stove available, rather than

choosing which one to buy, i.e. xj = {0, 1} with j = 1, ..., J , where 0 means not

buying, and 1 means buying. Each stove j can then be represented by a vector of K

di�erent characteristics, such as improved safety, convenience of use, reliability, etc:

xj = x(cj1...cjK). Again following the set up of the questionnaire, the characteristics

are introduced as dummies, i.e. they are either present or not present cjk = {0, 1},

with k = 1, ..., K. The consumer choice problem for each i is to choose xj, so to

maximise their utility:

U = U(x(cj1...cjK), z) = U(cj1...cjK , z)

subject to the budget constraint:

pjxj + z ≤M

The usual axiomatic characterisation of consumer's preferences is assumed, namely

completeness, transitivity, monotonicity, and convexity of the indi�erence curves.

Consistently, the utility function is non-decreasing in its arguments (U(xj = 1) ≥

U(xj = 0); ∂U
∂z
≥ 0). Given the local non-satiation assumption, in the optimum the

agents will allocate the entire budget, so that the constraint becomes an equation,

and I can rearrange it as:

z = M − pjxj(cj1, ..., cjK)

Note that the quantity of stove purchased is either 0 or 1, so that the above translates

into z = M − pj if the stove is purchased, and z = M if not. De�ne the utility in

the latter case as the outside option, or reference point Ū :

U(0,M) = Ū

The demand for cookstove j in the optimum can therefore be written as:

x∗j =

1 if U(cj1...cjK ,M − pj) ≥ Ū

0 if U(cj1...cjK ,M − pj) < Ū
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That is, the consumer will buy the product as long as the utility they can get is no

less than the utility obtained by spending that portion of the income on the other

available goods and services. In this context, the WTP for product j is therefore

nothing else that the price at which household i is indi�erent between buying product

j or spending the income on other things, that is they will buy the product as long

as the price is lower or equal their maximum WTP, and will not buy if the price is

higher:

maxWTP j = {pj : U(cj1...cjK ,M − pj) = Ū}

So that I can re-write the demand for the product in a more familiar form, as a

function of price :

x∗j(pj) =

1 if pj ≤ maxWTP j

0 if pj > maxWTP j

Aggregate demand

Once the consumer choice problem for household i has been set up, it is easy to

repeat the same process for each household and obtain the aggregate demand curve

as the horizontal summation of each individual demand curve. When I extend the

consumer problem to more than one household, I allow households to di�er in the

`perception' of each stove's characteristics, and in their priorities with respect to

the cooking experience. These elements allow to control for relevant household

heterogeneity, together with observed households' characteristics such as income.

The `perceived' or `expected' characteristics of each stove vary by households xij =

x(cij1, ..., cijK); this variation is what allows the identi�cation of the premiums the

households are willing to pay for each characteristic, that is the quantity of interest.

Finally, households have heterogeneous priorities in � or attitude towards � cooking,

which I de�ne to be represented by a vector ωi so that Ui(.) = U(ωi). These

priorities are captured in the questionnaire by asking respondents �Which attributes

of a cooking system are most important to you?�.

Characteristics' premiums

Given that households' utility depends on the bundle of characteristics they can

gain access to through the purchase of j, I am interested in the premium consumers

attribute to each characteristic, i.e. whether and how the presence or absence of each
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characteristic a�ects the valuation of the cookstove in which they are embedded, all

else equal. To do this, I start by setting up the conditional indirect utility function,

or the highest utility level that can be achieved given the budget constraint. Starting

with one consumer only:

Ūi = U(cij1...cijK ,Mi −maxWTP ij) ∀i, j

where maxWTP ij represents the highest amount consumer i is willing to bid to

obtain product j with characteristics cij1...cijK in order to keep their utility at least

at level Ū . Each characteristic a�ects the utility level, which means that consumers

might be willing to pay more or less for a cookstove if they believe characteristic ck

to be present, as opposed to missing. I de�ne this additional amount as the premium

associated with characteristic ck. This is similar to the concept of indi�erence curve

(but for a discrete 0-1 good), as it represents the trade-o� between money and

characteristic ck, that maintains the utility at a given level. Inverting the utility

function, holding all characteristics constant but ck, I can write:

maxWTP ij = f(cij,k,Mi | cij,−k, Ūi) ∀i, j

where−k means all the characteristics other than k. The premium for characteristics

k is:

premiumijk = f(1,Mi | cij,−k, Ūi)− f(0,Mi | cij,−k, Ūi)

= maxWTP ij|cij,k=1 −maxWTP ij|cijk=0 ∀i, j, k (3.1)

For estimation purposes, I assume a functional form for f(.) that allows each charac-

teristic to increase the WTP incrementally, more speci�cally I consider the following

linear model:

maxWTP ij = β0 +
∑
k

βkcijk + µi(Mi) + ηj + εij (3.2)

Given that each household provides a stated WTP and expectations on the charac-

teristics for each product, I can rely on a within-subject framework for the analysis.

The data for each household-product combinations are stacked, so to create a panel

dataset over the two dimensions of households (indexed i) and products (indexed
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j). When considering multiple individuals, the willingness to pay for each prod-

uct (maxWTP ij), as well as the `perceived' characteristics (cijk), are household- as

well as product-speci�c. Di�erences in households characteristics (both observable

and unobservable) are captured by the household �xed-e�ects µi. These characteris-

tics are household-speci�c and do not change depending on the product. Cookstoves

�xed-e�ects (or alternative-speci�c constants) ηj are also introduced to capture char-

acteristics of the products that are not already accounted for in the model, assuming

that they are the same for every household. Observed households' priorities regard-

ing cooking, ωi, are captured by the household �xed-e�ects, if we assume that every

cookstove satisfy each priority in the same way. Alternatively, priorities can be in-

teracted with the cookstoves or with speci�c characteristics, generating the variable

ωij, so that households with di�erent priorities are allowed to value cookstoves and

relevant characteristics di�erently. As an example, households who consider compli-

ance with habits and traditions as a priority, might value cookstoves that are more

similar to the traditional one (such as biomass-fuelled cookstoves) more than house-

holds who do not consider this to be a priority. Similarly, households who consider

safety or smoke reduction as a priority, might be willing to pay a higher premium

for the characteristic �health and safety�. In some speci�cations I further distinguish

the alternative-speci�c constant according to whether the household has had pre-

vious experience with that particular technology. εij is the error component of the

model, and assumptions on its distribution are made to ensure the consistency of the

estimators for the various βk which constitute the estimates of interest, according

to the model speci�cation used. The average premium for each characteristic ck can

therefore be obtained as:

premiumk = maxWTP ij(cijk = 1|...)−maxWTP ij(cijk = 0|...) = βk (3.3)

3.3.2 Data: WTP elicitation and descriptive statistics

Together with information on the current cooking situation, the questionnaire elicited

the stated willingness to pay for di�erent cooking technologies, using open-ended

contingent valuation. Note that this Chapter uses secondary data and the survey was

designed with the needs of the NGOs involved in mind, namely to gauge respondents'

interest for a wide range of energy-access options, in the two domains of cooking, and
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electricity access and lighting.7 In this respect, the open-ended contingent valuation

has an advantage over auction-types elicitation methods recommended in the liter-

ature on valuation of private goods, such as the Becker-DeGroot-Marschak (BDM)

auction, in terms of time and resource requirements and logistics. With respect

to dichotomous choice questions, another methodology commonly recommended in

the literature, there is evidence that for the valuation of a private good providing a

service respondents are familiar with (such as cooking) the open-ended contingent

valuation can perform as well, if not better (Loomis, 1990; Kealy and Turner, 1993;

Frew et al., 2003; Whynes et al., 2005; Vossler and Holladay, 2018). The open-ended

questions were designed following recommendations and best-practice from the lit-

erature, as described in this Section and further discussed in Section 3.3.3. In the

latter I discuss the validity of the responses through a scope test comparing the

stated WTP for cookstoves o�ered with and without the fuel, and through com-

parisons between the stated WTP and households' expenditures, stated WTP and

estimates market price for the stoves, and between stated WTP in the two camps.

In terms of questionnaire design, the WTP module starts with a presentation

of the scenario and the payment vehicle, and includes `cheap talk' to reduce hy-

pothetical bias. To allow for comparisons between stoves that use di�erent fuels,

respondents were asked to state a WTP for an all-inclusive service, including in-

stalments to repay the cookstove and periodic supply of the necessary fuel. The

payment vehicle used is explained carefully and with examples. A per day charge is

used, as periodic payments tend to be preferable over upfront payments for people in

poor and liquidity constrained situations. Moreover, in both camps under analysis,

buying at credit to then repay periodically is common. Collecting or buying fuel

periodically, often daily, is also common. The payment vehicle is therefore chosen to

be consistent with payment arrangements and a temporal interval respondents are

already familiar with. For each technology, an information card was �rst presented

and respondents were encouraged to ask questions and clari�cations. They were

then asked what they liked and disliked about it, to make sure they were focusing

on that speci�c stove. A reminder of the scenario, payment vehicle and `cheap talk'

7In this case, 17 di�erent WTP questions were asked, consisting of 10 di�erent cooking options
� basic ICS (with and without fuel), enhanced ICS using wood (with and without fuel), enhanced
ICS using charcoal (with and without fuel), solar cooker, biogas stove, LPG stove, electric cooker
� as well as six di�erent electricity access options � basic solar lantern, system with multiple
solar lanterns and connections, solar home system, and basic, medium, and high quality minigrid
connections � and WTP for public street lighting.
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were then repeated in the actual WTP question:

�Assume that this technology is the only one that is made available.

Given the bene�ts that this option would bring to your household, what

is the highest price you would be willing to pay for it per day? Please

think carefully and give an honest and realistic answer.�

The possible options provided were �I would pay nothing for it and therefore not

receive it�, or, if the respondent was interested in the technology, an open-ended

space to enter the monetary amount in local currency.8 The option �I don't know�

was also allowed. Responses have then been converted in USD per month for the

present analysis. Given the peculiarity of refugee settlements, the valuation of non-

traditional stoves in these settings has some commonalities with the valuation of

non-market goods. In particular, there is hardly any supply chain and therefore

market for most of the non-traditional stoves I consider in this analysis (in partic-

ular enhanced ICS, LPG, biogas systems, electric cookers, or solar cookers). For

this reason, this Chapter focuses on stated preferences. While I acknowledge the

limitations of this type of data as far as the cardinal values are concerned, what I

am really interested in are the ordering and the trade-o�s between di�erent types of

cooking technology and between attributes. Section 3.3.3 provides a discussion on

the validity of the elicitation method in this speci�c context.

Regression analysis using the stated WTP is presented in Section 3.3.4. As

a robustness check, and to gain further insights into respondents preferences, in

Section 3.3.5 I apply regression analysis to the responses in the ranking exercise,

conducted after the WTP elicitation module. Respondents were asked �If all these

forms of energy access were available in what order of preference would you rank

them?�, and the alternatives to be ranked included the seven technologies for which

WTP was elicited plus the traditional three-stone �re.9 The ranking variable is

therefore constructed so that the solution ranked as top has the highest score (i.e.

8), while the solution ranked last has a score of 1. Some households did not rank all

the solutions, possibly because they had no interest in those they chose to leave out.

These are given a score of 0 and considered as the least preferred options.10 The

8West African CFA Franc in Goudoubo, and Kenyan Shilling in Kakuma.
9The three-stone �re can be assembled for free by members of the household, so WTP for this

technology would not asked.
10I check the robustness of the results to this assumption, by repeating the test treating those

observations as missing, and I �nd no signi�cant di�erences in the results.
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main di�erence between the scenarios presented in the willingness to pay module

and in the ranking module is that in the former respondents were asked to answer

considering a scenario in which the technology o�ered was the only type of stove

available; in the latter they are asked to rank the options if all of them were available

at the same time. The questionnaire also asked which stoves they would actually

buy, if all were available. This question has a large share of missing values and

respondents saying yes to all or none to all, so I do not use it as an outcome variable,

but I use it to do consistency checks with the answers to the ranking question, as

both are elicited with the same scenario. Answers to this latter question were used

to construct a dummy for each solution, which takes the value 1 if the respondent

chose that option among those they would buy, and zero otherwise. I then perform

a t-test on the mean di�erence of the ranking position between households who are

interested in buying the technology and those who are not. The mean ranking of

households interested in buying the solution is always signi�cantly higher than the

mean ranking for those who would not buy it, with the exception of the basic non-

traditional cookstove, where there is no signi�cant di�erence in the ranking between

the two groups. I checked the two settlements separately, and the results for this

technology do not change. Possible explanations for this are that some households

might be able to build this type of stove by themselves, and would therefore not

be willing to buy one, even if they rank it high - or alternatively, that they already

have a basic non-traditional cookstove, or are used to it being donated rather than

purchased.

To avoid outliers skewing the results of the analysis, WTP responses for each

technology are winsorised at 5% and 95%, that is values below the 5th percentile and

above the 95th percentile are replaced with the value at the 5th and 95th percentile

respectively. This is a common practice to deal with outlier in stated preferences

studies (see for example Kahneman and Ritov, 1994; Halasa et al., 2014; Kirwan

and Roberts, 2016; Moon and Nelson, 2019). This process only a�ects the top part

of the distribution, as the values at and below the 5th percentile are zero for all

technology, so no replacement occurs in this case. Summary statistics for the stated

WTP are presented in Table 3.1. Reassuringly, the data do not show any apparent

inconsistency. Willingness to pay for biomass-fuelled stoves is always greater when

the fuel is included as compared to the case where only the stove is o�ered (a formal

test is conducted in Section 3.3.3). In both settlements, the willingness to pay for
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a biomass stove including fuel averages around 5-6 USD per month, with charcoal

being valued slightly more in both settlements. The respondents who are interested

in more modern form of cooking such as biogas and LPG, appear to be willing to

pay a 50-100% higher price for them. Electric cooking is valued even higher in

Kakuma, while it attracts almost no interest in Goudoubo. Finally, the willingness

to pay for solar cookers is rather low in both settlements, but it should be considered

that this is potentially a very cheap technology, especially when the fuel is taken

into consideration. More interesting in this regard is the share of respondents who

show some interest in the technology. This is very low in Goudoubo, while it is

comparable to the other non-biomass technology in Kakuma.

Table 3.1: Summary statistics for the observations with a positive willingness to pay for
di�erent cooking technologies in the two settlements (USD/month). WTP observations
for each technology are winsorised at the 5th and 95th percentiles.

WTP for cookstoves in Goudoubo (USD/month)

WTP > 0 Mean SD p25 p50 p75

basic ICS (stove only) 50% 3.52 4.06 1.27 2.54 4.45
basic ICS (with fuel) 41% 5.36 4.23 2.54 5.08 5.08
enhanced ICS, wood (stove only) 46% 4.43 4.15 1.53 2.54 5.08
enhanced ICS, wood (with fuel) 42% 6.21 5.00 2.54 5.08 7.63
enhanced ICS, charcoal (stove only) 52% 3.91 3.45 1.27 2.54 5.08
enhanced ICS, charcoal (with fuel) 45% 6.00 4.56 2.54 5.08 7.63
solar 8% 5.26 3.76 1.27 5.08 7.63
biogas 20% 14.8 9.97 7.63 10.2 25.4
LPG stove 47% 18.1 23.9 5.08 7.63 25.4
electric stove 6% 10.9 12.4 3.18 6.36 16.5

WTP for cookstoves in Kakuma (USD/month)

WTP > 0 Mean SD p25 p50 p75

basic ICS (stove only) 52% 4.13 5.62 0.45 3 4.50
basic ICS (with fuel) 44% 7.93 7.30 3 4.50 10.5
enhanced ICS, wood (stove only) 42% 5.57 6.10 3 3.60 5.40
enhanced ICS, wood (with fuel) 40% 8.11 7.77 3 5.10 10.5
enhanced ICS, charcoal (stove only) 47% 4.82 5.83 1.80 3 4.50
enhanced ICS, charcoal (with fuel) 42% 8.76 7.66 3 6 11.1
solar 37% 4.15 4.00 2.10 3 6
biogas 31% 11.0 11.2 3 6 22.5
LPG stove 42% 35.1 37.8 3 15 63
electric stove 40% 25.3 23.7 3 15 58.5

Figure 3.1 shows a comparison of the aggregate demand curves for the di�erent

technologies, separately by settlement. Aggregate demand curves have been plot-

176



ted so that the x axis shows the share of the respondents willing to pay at least a

certain price. In both settlements, the demand curve for LPG is dominant, while

solar cookers attracts very low willingness to pay. The demand curves for biogas

and biomass stoves are somewhere in between, with biogas eliciting higher will-

ingness to pay from a smaller group of household in comparison with the biomass

non-traditional-cookstoves. The demand curves for the two type of biomass non-

traditional-cookstoves, wood-fuelled and charcoal-fuelled, follow each other very

closely in both settlements. The biggest di�erence between the two settlements is in

the demand for electric cookers, which is the lowest demand curve in Goudoubo on

a par with solar cookers, and one of the highest demand curve in Kakuma, following

closely the demand curve for LPG.

Figure 3.1: Aggregate demand curves for each technology.

As discussed in more details in Section 3.3.3, for a large share of respondents

the willingness to pay is much lower than the cost of the technologies. But even

more alarming is the �nding that many are not interested in the non-traditional

technologies no matter the price. This would not only predict a low take-up of the

new systems if they were ever to be o�ered at market prices, but possibly a far

from universal take-up even if they were to be distributed for free. As it has been
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frequently noted in the literature and in direct experiences on the ground, cultural

acceptability and habits might be forces as strong as budget constraints in preventing

the transition to cleaner cooking solutions. Another possible explanation, though,

is that households do not believe the supposedly `improved' systems actually deliver

the promised improvements, or at least not to a level that would justify the high

premium required for their purchase - as well as the cognitive e�ort of adopting

them. In a similar vein, there might be a mismatch between the improvements the

new stove provides, and the improvements the users are looking for.

To investigate these hypotheses, I look at the characteristics that respondents ex-

pect to �nd in each product. For each cookstove type households were asked �What

do you like about this option?� and could choose more than one answer among the

following list: �System capacity: which pots can be used�, �Duration of energy sup-

ply�, �Reliability�, �Robustness�, �Health and safety�, �Convenience�, or the outside

option �No opinion�. The list of characteristics was designed from responses from

previous questionnaires administered by the same NGO in refugee camps and rural

communities in di�erent Asian and African countries, in which the question was left

open-ended. As can be seen from Table 3.2, there is substantial heterogeneity in the

perceived characteristics of each technology, providing the variation to estimate each

characteristic's premium according to the characteristic-space framework developed

in the previous section.

In fact, if households derive their utility from the characteristics of the product,

rather than directly from the product itself, they will be willing to pay a di�er-

ent price depending on whether they believe the product to provide or not provide

those characteristics. It is to be noted that characteristics of the cookstoves are

self-reported perceptions, rather than exogenously controlled as in a discrete-choice

experiment; endogeneity of perceptions might therefore be an issue and all results

are to be interpreted as partial correlation. A similar caveat applies for whether

respondents have previous experience with the technology, as in a normal situation

this would be the result of households' deliberate decisions, and experienced and

inexperienced households might therefore be di�erent in some unobservable charac-

teristics that might also a�ect the dependent variable. Nevertheless, in the refugee

settlements under analysis previous experience is more often determined by partic-

ipation in pilot schemes or donation programmes, rather than being the results of

respondents' purchases in the private market, as the technologies considered are not

178



easily found in the local markets, nor in the country of origins, especially if refugees

come from rural areas. Despite these limitations of the data, the main purpose of

this Chapter is to provide a �rst analysis of the situation in refugee settlements to

better pinpoint the most relevant issues and knowledge gaps, and encourage further

research and data collection e�orts.
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Table 3.2: Share of respondents who perceive the characteristics to be present in the technology.

Goudoubo
(ics basic) (ics wood) (ics char) (solar) (biogas) (LPG) (electr)

convenience 45% 55% 53% 15% 22% 50% 9%
duration 2% 3% 2% 0% 4% 12% 1%
health 14% 16% 15% 2% 10% 19% 2%
reliability 4% 2% 5% 0% 11% 14% 2%
robustness 4% 9% 5% 1% 11% 23% 2%
capacity 12% 10% 8% 3% 11% 18% 6%
N 129 129 129 129 129 129 129

Kakuma
(ics basic) (ics wood) (ics char) (solar) (biogas) (LPG) (electr)

convenience 35% 32% 32% 35% 23% 25% 26%
duration 23% 23% 23% 23% 21% 32% 30%
health 34% 34% 31% 41% 28% 35% 34%
reliability 42% 48% 49% 37% 33% 45% 39%
robustness 17% 14% 16% 10% 13% 18% 18%
capacity 8% 8% 9% 7% 7% 14% 20%
N 231 231 231 231 231 231 231

180



Finally, I include in the analysis the priorities expressed by the respondents in the

multiple-answer question �Which attributes of a cooking system are most important

to you? Rank at least three�. Looking at the attributes ranked as top priority, the

two settlements show di�erent distributions. In Goudoubo, the greatest concern is

to �save fuel� (21% of the respondents ranked it �rst), followed by �fast preparation

of food� (13%), �suits our cooking habits� (11%), �stove is locally available� (10%),

�less smoke� (9%), �easy to handle� (7%), �stove is easily transportable� and �can

be used with di�erent pot sizes� (6%), �safe to use� (4%), �traditional and familiar

stove�, �good taste of food� and �comfortable size of the stove� (3%), �a�ordable

price� and �easy to repair� (2%). In Kakuma, the greatest concern is to have a stove

that produces �less smoke� (18% of the respondents ranked it �rst), followed by �save

fuel� and �fast preparation of food� (12%), �traditional and familiar stove� (10%),

�safe to use� (9%), �a�ordable price� and �stove is locally available� (7%), �easy to

handle� (6%), �comfortable size of the stove� (5%), �easy to repair� and �can be used

with di�erent pot sizes� (4%), �suits our cooking habits� (3%), �good taste of food�

(2%), and �stove is easily transportable� (1%).

In both settlements, energy e�ciency is in high demand - in line with the result

from Mobarak et al. (2012), where most of the respondents listed reduced fuel cost

and cooking time as the most valued characteristics � but health and safety concerns

are not too far behind, especially in Kakuma, where indoor cooking increases the

exposure to smoke and the risk of burns and other accidents. Compliance with habits

and traditions, considered to include the two options �suits our cooking habits� and

�traditional and familiar stove�, appears also to be important for a share of the

population, while less so the a�ordability of the stove. A possible explanation for

the latter is that respondents value the quality of the stove and are therefore willing

to pay more for a better service - but this could also be linked to the hope of receiving

the stove for free or at a subsidised price, as it is common practice in the settlements.

In the regression analysis I consider more speci�cally the respondents' priorities with

respect to safety, reduced smoke emissions, reduced fuel use, cheap cooking, fast

cooking, as these represent the type of improvements non-traditional cookstoves are

designed to deliver. I also include compliance with habits and traditions, as this

might be a barrier to adoption and might lead respondents to prefer biomass-fuelled

stoves, that use the traditional fuels, rather than more modern and clean options.
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3.3.3 Validity

The use of open-ended contingent valuation to elicit WTP for cookstoves

This section discusses the validity of stated preferences to infer information on

households valuation of the cookstoves and their likely behaviour if they were to

be provided for real, as well as the use of open-ended contingent valuation as a valid

elicitation mechanism for stated preference.

On the �rst question, Gri�n et al. (1995)'s study on piped water connections

in India, compare stated preferences elicited from contingent valuation with actual

behaviour once the service was provided, and �nd that the hypothetical responses

are reliable predictors. Whittington (2010) similarly remarks that, although the

literature is still scarce and mainly focused on industrialized countries, there is

evidence that stated and revealed preference estimates for WTP tent to be similar.

Divergence between the two has mainly been reported when voluntary contri-

butions are used as payment vehicle, which is mainly related to public goods, and

in the case of laboratory experiments, as questions tend to be purely hypothetical

and consequentiality is less credible. Neither of these concerns apply to my con-

text. He further discusses how familiarity with the good or service being o�ered and

cheap talk have been shown to reduce hypothetical bias, while dichotomous take-

it-or-leave-it questions tend to result in overstated values because of a yes-saying

bias. Moreover, in developing countries and for poorer segments of the population,

liquidity constraints and low disposable income make large upfront payments less

preferable, and this should be taken in consideration when choosing the payment

vehicle for the valuation.

This provides further support for the validity of the valuation responses used

in my analysis, which were obtained using open-ended questions rather than di-

chotomous choices, included cheap talk11, focused on a familiar and salient aspect

of refugees' everyday life, cooking, and used a periodic fee � presented as install-

ment payments or repayments on a loans, which the respondents are familiar with

� rather than a one-o� price. The payment vehicle in particular is explained care-

fully and with examples, and respondents are reminded that they are asked for their

11`Cheap talk' is used in the presentation of the scenario, as respondents are asked to �please, try
to think carefully and give an honest and realistic answer. Honest answers are really valuable and
important for us�, and then again every time the willingness to pay question is asked, reminding
to �please think carefully and give an honest and realistic answer�.
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willingness to pay as a daily charge in every question. In the speci�c contexts under

analysis, buying at credit to then repay periodically is common, consistent with

the presence of liquidity constraint and lack of disposable income. Collecting and

buying fuel periodically, often daily, is also common.

On the use of open-ended contingent valuation, Vossler and Holladay (2018) �nd

that this format tends to result in lower estimates than the more widely recom-

mended single binary-choice referendum, and this seems to be because respondents

are less likely to view the open-ended questions as consequential. The two tend to

converge if consequentiality is made more credible, and their �ndings support the

claim that open-ended contingent valuation do not require as large samples as other

valuation methods.

The authors also identify four conditions under which open-ended questions are

incentive compatible. First, the good or service o�ered need to be relevant and of

interest to the respondents � which is the case with cooking technologies in refugee

settlements, as households spend a substantial share of their resources and time to

collect, purchase and prepare fuel, and to cook meals. Before providing their will-

ingness to pay, respondents are asked what they like and dislike about the option

o�ered, encouraged to ask questions and clari�cations, and shown an information

card with a photograph of the cookstove, and asked to think of the bene�ts that that

particular cookstove would have for their household. This is to increase the con-

creteness and saliency of the good being o�ered, and to make respondents consider

the costs and bene�ts of the o�er.

Second, the payment must be credibly enforceable � households in the settle-

ments are used to see non-traditional cookstoves as a market good (as opposed to

the traditional three-stone �re, which is mostly built in-house) and to pay for any

purchase they make, in kind if not using money; in both settlements, buying at

credit and then repaying over time is also a common practice. A concern in the

context of refugee settlements might be the expectation of receiving the cookstoves

or the fuel as donations and free handouts, but in both camps and in the humani-

tarian sector more generally, the tendency is now to provide vouchers, rations and

periodic allowances instead, so that residents can make decisions on what they want

to purchase and in what quantity, theoretically improving the feeling of ownership

and self-su�ciency over that of dependence.

Consequentiality is a further condition, that is respondents should believe that
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the proposed service is more or less likely to be implemented depending on how

much interest it attracts, or in other words, they should believe that their answers

matter in whether the project is realised or not.

The �nal condition, is that the answers should only a�ect whether the proposal

is implemented or not, but not the price the respondent would have to pay, which

should be communicated as being still uncertain but eventually determined by the

actual cost of the implementation � and therefore exogenous to the valuation ex-

ercise. This is crucial to avoid strategic bias in responses, and can be e�ectively

achieved using a BDM auction. This option was not feasible in the survey used for

this Chapter, but as non-traditional cookstoves are a market good and would there-

fore be sold in the market, it is reasonable to believe that their price would indeed

depend on the actual costs of providing the good, as it is the case for any market

good, and not a�ected by the value stated in the valuation questions. To reinforce

this view, organisations in the camps tend to support the creation of supply chains

and help local businesses supply products rather than being directly involved in the

sales, consistent with the approach to humanitarian intervention described above.

In line with these two �nal conditions, the valuation scenario was introduced as:

�Discussions are being made on which energy sources could be of interest

for people in the camp. We would therefore like to know, if each of these

energy sources could be made available in the camp, whether you would

be willing to pay something to have it, and how much you would be

willing to pay�

stressing that the aim of the questions are to gauge the interest in the di�erent

technologies, rather than establishing a price for them.

Carson and Hanemann (2005) recognise that simple open-ended questions are the

easiest to explain to respondents and provide more precise and readily interpretable

information than dichotomous choice formats. Most of the critiques they review

for this type of elicitation apply to the valuation of public goods, and are less of a

concern for private goods.

A relevant downside of open-ended contingent valuation is the large rate of non-

responses and zero answers. Large non-response rates are nevertheless less likely to

occur with private goods and payment vehicles respondents are familiar with and

that have tangible and salient costs and bene�ts for the respondents, as in the case
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of cookstoves. Moreover, in the survey in case of an �I do not know� answer, the

respondents were then asked two or three dichotomous take-it-or-leave-it questions

using a reasonable estimate of what the cookstove price might be in the camp, to

be able to still gain some information on their willingness to pay. The large share of

zero answers is consistent with the evidence that open-ended contingent valuation

tend to produce lower estimates compared to other elicitation methods, although

this would counteract the tendency to provide over-in�ated estimates due to the

hypothetical bias, as remarked by Whynes et al. (2005).

One issue that a�ects speci�cally private goods, is the incentive to behave strate-

gically rather than reveal the true willingness to pay. If the respondents believe their

answers would make it more or less likely than the good is produced and o�ered

in the market, they might have an incentive to over-state their interest just to get

the good as a further option in the market, and they can then decide whether they

are indeed willing to pay its price or not once it is actually o�ered. Conversely, if

they believe the aim of the survey is to determine the price of the good, then the

incentive is to under-state the real willingness to pay, to try and make it cheaper.

Nevertheless, this concern a�ects mainly the credibility of the cardinal WTP,

but the ordinal values between technologies and the trade-o� between the di�er-

ent stoves and the di�erent characteristics should not be a�ected � which is what

matters for this Chapter's analysis. Strategic behaviour should moreover be atten-

uated by the `cheap talk' used in the questionnaire. Additional discussion on the

credibility of the cardinal values elicited in the survey is presented in the following

paragraphs. Other concerns raised by the authors regard incentive-compatibility,

consequentiality, plausibility and saliency of the good o�ered, and payment vehicle

� already addressed above � and the use of dichotomous rather than open-ended

questions.

On this latter issue, Kealy and Turner (1993) compare open-ended and closed-

ended contingent valuation for a private and a public good, and �nd no di�erence

in results for the private good. They remark that incentives for strategic behaviour

are less of a concern for private goods, and that valuation is more likely to be stable

across elicitation methods the more familiarity and previous experience the respon-

dent has with the good and the payment vehicle, and the more tangible and salient

the good is � characteristics that apply to the cookstoves and the refugee settle-

ments considered in this Chapter. Similar results on the reliability and convergence
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of values from open-ended and dichotomous choice questions have been obtained by

Loomis (1990) using a test-retest procedure for the valuation of water quality in a

lake.

Tests comparing di�erent valuation methods have also been conducted in the

health literature. Frew et al. (2003) show that open-ended valuation questions and

payment scale questions result in similar answers, while valuations using dichoto-

mous choices are signi�cantly higher, possibly because of yes-saying and anchoring

bias in the latter method. Whynes et al. (2005) compare valuation answers and the

resulting demand curves elicited using open-ended contingent valuation, short and

long payment scales, and dichotomous choice questions. They �nd that the di�erent

methods provide di�erent results, with the answers to open-ended questions being

the most conservative. As hypothetical bias would induce overstated WTP, and

decision-makers tend to be risk averse, they choose the more conservative valua-

tion from open-ended questions as their preferred one. Onwujekwe and Uzochukwu

(2004) elicit WTP using binary with follow-up elicitation and open-ended ques-

tions, and compare them to respondents' actual behaviour once the payment is due.

Again, they conclude that open-ended contingent valuation performs better than

dichotomous choice, based on construct and criterion validity.

Scope test: WTP for stove only v. fuel included

To gather evidence in support of the validity of the answers, I compare the stated

WTP when only the cookstove was o�ered, with the WTP for that same cookstove

when a supply of fuel was also included. Each respondent was asked for their WTP

in both of these scenario for the three di�erent types of biomass cookstoves - basic

ICS, enhanced ICS using wood, and enhanced ICS using charcoal. Firewood is

sometimes framed as a `free' fuel, as households can collect it from the surrounding

of the settlement without paying any monetary price. A similar narrative applies

to charcoal, as some households make their own using the �rewood collected. Free

distributions of �rewood for cooking also occur periodically in the camps. At the

same time, harvesting �rewood can be a time consuming and dangerous activity,

as vegetation around the camps becomes increasingly scarce - especially in the arid

Sahel region, where Goudoubo camp is located - and accidents are common, for

example due to exhaustion and dehydration, attacks from wild animals, gender-
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based violence, and con�icts with the host community, just to mention some. These

questions were therefore added to gain insights on whether respondents see �rewood

and charcoal as `free' resources, but can also be used to perform a scope test, to make

sure that the `larger' bundles - the cookstoves plus fuel supply - elicit a valuation

higher or at least as high as the `smaller' bundles - the cookstove alone. A t-test on

the di�erence in mean for each technology, under the two di�erent scenarios, con�rms

that the scope test has been passed, as the null hypothesis that the larger bundle is

on average valued the same or less than the smaller bundle is always rejected with

a con�dence level of at least 90%. The results are reported in Table 3.3. Figure 3.2

plot the di�erence between the WTP under the cookstove plus fuel and cookstove

only scenario for each respondent that expressed interest in that cookstove (that

is, that was willing to pay at least something for it). All the respondents with the

exception of a handful, reported a WTP for the cookstove plus fuel bundle that is

at least as high as that for the cookstove only.

Table 3.3: T-test for the di�erence in mean between the WTP for cookstove with fuel
supply, as opposed to cookstove only. The WTP for the two scenarios was only elicited for
biomass cookstoves. All other cookstoves were presented as including fuel.

Goudoubo

Mean w fuel Mean w/o fuel Di�.
(USD/month) (USD/month) (USD/month)

WTP for basic ICS 3.23 2.23 +1.00**
WTP for enhanced ICS, wood 3.73 2.72 +1.00*
WTP for enhanced ICS, charcoal 3.91 2.62 +1.29**

*** p<0.01, ** p<0.05, * p<0.1; p-value based on one-sided test

Kakuma

Mean w fuel Mean w/o fuel Di�.
(USD/month) (USD/month) (USD/month)

WTP for basic ICS 4.99 2.79 +2.20***
WTP for enhanced ICS, wood 4.96 3.52 +1.44**
WTP for enhanced ICS, charcoal 5.29 3.07 +2.22***

*** p<0.01, ** p<0.05, * p<0.1; p-value based on one-sided test

Comparison between WTP and current expenditures

As additional evidence that the WTP values elicited are reasonable, Figure 3.3 com-

pares the stated WTP per month with the reported total monthly expenditures for

the household. In Goudoubo the valuations provided are all well below the house-
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Figure 3.2: Distribution of the di�erence between each respondent's WTP for cookstove
plus fuel, as opposed to cookstove only. Positive values mean that the respondent is willing
to pay more when the fuel is included. Only respondents interested in buying the stove
(i.e. with positive WTP) are included in this �gure.

hold expenditures, used as proxy for the disposable income. Summary statistics for

the WTP for each cookstove as a ratio of the total reported household expenditures

are presented in Table 3.4. These statistics only include observations with positive

WTP and expenditures. The current expenditures in energy for cooking � calculated

as the sum of spending in �rewood, charcoal, briquettes, LPG � as a ratio of total

expenditures is also included for comparisons. Most ratios in Goudoubo are less

than 10%, and comparable with what households currently spend in cooking fuels.

Ratios for LPG and biogas are higher, but still within the household disposable

income � this is consistent with the fact that those cookstoves and LPG re�lls are

more expensive, and at the same time much cleaner than biomass cookstoves. In

Goudoubo the median WTP for biomass cookstoves not including fuel is between

2.6 and 5% of the total monthly expenditures, rising to 6 to 7.6% for the same

cookstoves including fuel, solar cookers, and electric cookers. The median WTP for

biogas and LPG cookstoves is higher, at 18 and 12% respectively. In Kakuma this is

not true for the whole sample, but it is to be noted that NGOs working in the camp
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remarked that the income and expenditures values reported by our respondents in

Kakuma are much lower than expected. This is con�rmed by other reports and

surveys conducted in Kakuma in the last few years, which report a median income

per household of between 30 and 50 USD per month, and a mean household income

of between 50 and 70 USD per month (Guyatt et al., 2016; Samuel Hall, 2016; Betts

et al., 2018; World Bank, 2018). Guyatt et al. (2016), who report speci�cally on

expenditures in Kakuma sub-camp one, found a median expenditure of 20 USD per

month, and a mean of 45 USD per month. This is compared to a median of 10

and mean of 35 for the same variable in my sample. As further evidence that the

WTP values are within a reasonable range, but the total household expenditures

in Kakuma are under-reported, the WTP to total expenditures ratios presented in

Table 3.4 are mostly comparable with what households currently spend in cooking

fuels, with the only exception of the cleaner and more expensive LPG and electric

cookers, which elicit a higher WTP. Comparing the stated WTP with the current

expenditures in cooking fuels in absolute terms in each camp (Table 3.5), it can

be seen that the WTP for biomass cookstoves tend to be even lower than what

households already spend for cooking. This is additional evidence that the stated

WTP values are reasonable and within the respondents' ability to pay, and may

even underestimate the actual demand � at least for the biomass cookstoves.
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Table 3.4: Summary statistics of the WTP as share of total reported expenditures, for
observations with a positive WTP.

WTP as share of total reported expenditures, Goudoubo

N Mean SD p25 p50 p75

basic ICS (stove only) 62 0.08 0.17 0.01 0.03 0.10
enhanced ICS, wood (stove only) 57 0.07 0.08 0.02 0.05 0.09
enhanced ICS, charcoal (stove only) 64 0.06 0.09 0.01 0.03 0.08
basic ICS (with fuel) 53 0.11 0.21 0.02 0.06 0.12
enhanced ICS, wood (with fuel) 54 0.10 0.11 0.03 0.08 0.13
enhanced ICS, charcoal (with fuel) 58 0.10 0.12 0.02 0.06 0.13
solar 10 0.07 0.05 0.02 0.07 0.09
biogas 26 0.24 0.17 0.10 0.18 0.38
LPG stove 60 0.24 0.39 0.04 0.12 0.32
electric stove 8 0.09 0.07 0.03 0.06 0.15

current expend. in cooking fuels 105 0.14 0.15 0.05 0.10 0.17

WTP as share of total reported expenditures1, Kakuma

N Mean SD p25 p50 p75

basic ICS (stove only) 45 0.34 0.66 0.06 0.09 0.30
enhanced ICS, wood (stove only) 43 0.48 0.75 0.05 0.14 0.68
enhanced ICS, charcoal (stove only) 47 0.44 0.75 0.04 0.14 0.54
basic ICS (with fuel) 44 0.59 0.77 0.11 0.23 0.91
enhanced ICS, wood (with fuel) 44 0.77 1.22 0.09 0.24 0.93
enhanced ICS, charcoal (with fuel) 46 0.84 1.45 0.07 0.23 1.00
solar 29 0.57 0.94 0.04 0.11 0.56
biogas 32 0.91 1.19 0.03 0.26 1.58
LPG stove 41 3.69 5.61 0.24 0.63 5.17
electric stove 39 2.56 3.55 0.08 0.60 4.88

current expend. in cooking fuels 64 0.59 0.76 0.11 0.26 0.78
1Note: reported expenditures in Kakuma appears to be understated according to

NGOs working in the camps, reports and other surveys.
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(a)

(b)

Figure 3.3: Comparison between WTP for cookstoves and current expenditures. Note:
current expenditures are likely to be under-reported in Kakuma, according to other reports,
surveys, and personnel working in the area.
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Comparison between reported WTP and estimated market price

Vianello and Corbyn (2018) provide estimates for the levelised cost of energy (LCOE)

of di�erent cooking technologies, that is the monthly cost of cooking based on the

price of the stove spread over its lifespan, and the price of the fuel required to

obtain a given amount of energy. Actual market prices for fuels, materials, etc.

in the two settlements and nearest towns are used for the estimates. Table 3.5

compares those estimates with the respondents' stated WTP. The authors note that

the average price of wood and charcoal is similar across the two camps, although

it is subject to seasonal variations, and can change depending on the quantity and

quality purchased. The market price of LPG is instead very di�erent, as at the time

of the study the fuel is subsidised in Burkina Faso, but not in Kenya. The LCOE

takes into account the fuel e�ciency of the di�erent technologies and types of fuel to

make the alternatives comparable despite the di�erences in upfront costs, fuel costs,

and amount of fuel required. For this reason, the three-stone �re is one of the most

expensive alternative, even though the upfront cost for the stove is basically zero.

Most of the stated WTP are too low to cover the full cost of purchasing and operating

any of the cookstove � with the exception of solar cookers, which are relatively cheap

due to the basically null cost of fuel (although not many respondents are interested

in this technology, no matter the price). Even the relatively high WTP for LPG

cookstoves are low in absolute terms if compared to the technology's LCOE � only

the top quartile of the interested respondents state a su�cient WTP.

Another source of reference market prices for non-traditional cookstoves and fuels

in Sub-Saharan Africa, is Kammila et al. (2014). They estimate:

� Traditional three-stone �re: basically no upfront cost, but over 20 USD/month

in operating costs;

� Basic ICS: range of 5�10 USD in upfront capital cost, plus 12�17 USD/month

in operating costs;

� More enhanced ICS: range of 20�45 USD in upfront capital cost, plus 8�12

USD/month in operating costs;

� LPG: around 50 USD upfront capital cost, plus 17 USD/month in operating

costs;
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Table 3.5: Levelised cost of energy (LCOE) estimates and stated WTP.

LCOE and WTP Goudoubo (USD/month)

LCOE(a) Stated WTP
Mean SD p25 p50 p75

three-stone �re 27 - - - - -
basic ICS 9 5.36 4.23 2.54 5.08 5.08
enhanced ICS, wood 10.5 6.21 5.00 2.54 5.08 7.63
enhanced ICS, charcoal 9 6.00 4.56 2.54 5.08 7.63
solar 3 5.26 3.76 1.27 5.08 7.63
biogas - 14.8 9.97 7.63 10.2 25.4
LPG stove 24(b) 18.1 23.9 5.08 7.63 25.4
electric stove - 10.9 12.4 3.18 6.36 16.5

current expend. in cooking fuels 8.02 5.79 3.69 6.86 11.10

LCOE and WTP in Kakuma (USD/month)

LCOE(a) Stated WTP
Mean SD p25 p50 p75

three-stone �re 27 - - - - -
basic ICS 9 7.93 7.30 3 4.50 10.5
enhanced ICS, wood 10.5 8.11 7.77 3 5.10 10.5
enhanced ICS, charcoal 10.5 8.76 7.66 3 6 11.1
solar 3 4.15 4.00 2.10 3 6
biogas - 11.0 11.2 3 6 22.5
LPG stove 60(b) 35.1 37.8 3 15 63
electric stove - 25.3 23.7 3 15 58.5

current expend. in cooking fueld 7.84 5.00 4.50 7.00 10.00
(a)LCOE estimates from Vianello and Corbyn (2018).
(b)LPG is subsidised in Burkina Faso, but not in Kenya.

� Electric cooking: around 30 USD upfront capital cost, plus 25 USD/month,

although this is highly variable depending on the cost and quality of electricity

in the speci�c context.

These estimates remark once again that the stated WTP are generally low compared

to the market prices, and a large share of the values are even below the operating

costs, suggesting that respondents might be unable or unwilling to consistently use

the cookstoves even if the cookstoves themselves were provided for free.

Comparison of answers between camps

Figure 3.4 compares the demand of each technology in the two settlements. In-

terestingly, the demand for biomass non-traditional cookstoves and biogas stoves �
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the technologies with which the respondents are more familiar � are very similar

in the two settlements, despite the di�erences in context (East versus West Africa,

heterogeneity versus homogeneity of countries of origin and ethnicity, size of the set-

tlements, geography, etc.). As for LPG, Kakuma appears to have a smaller share of

respondents willing to pay higher prices with respect to Goudoubo, where instead a

higher share is willing to pay at least something. The demand for solar cooking and

electric cooking in Goudoubo are much lower than in Kakuma. A possible explana-

tion is that Goudoubo hosted some not very successful trials with solar cooking that

have made the technology unpopular in the settlement, while the low demand for

electric cooking might be attributed to the nomadic lifestyle of a large part of the

population in Goudoubo, meaning that they might be less likely to have had past

experience with electric cooking or might consider it as not �tting with a nomadic

lifestyle.

Figure 3.4: Comparison of WTP answers between camps.
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3.3.4 Regression analysis

Estimation strategy

Exploiting the within-subject design of the WTP module, in which each respondent

is asked the same question for each cooking technology, I stack each respondent's

answers to create a panel dataset over the two dimensions of households (indexed i)

and cooking technologies (indexed j). Each observation in the dataset is therefore a

household-cookstove combination. The dependent variable is the (winsorised) stated

WTP, and is therefore continuous, which allows me to use the linear �xed-e�ect

model.

Following eq. 3.2, I estimate the coe�cients of interest βk using a linear �xed-

e�ect within group estimator, with robust standard errors. Using a linear speci�-

cation allows me to use technology �xed-e�ects (or alternative-speci�c constants,

ASC) and household �xed-e�ects to control for `objective' product characteristics

that are the same for every household and are not explicitly captured by the `per-

ceived' characteristics, and for characteristics of the households that do not change

with the cookstove considered (income, household size, etc.). Results are presented

in Table 3.6 for Goudoubo and Table 3.8 for Kakuma.

One criticism towards the use of a linear model on the whole dataset could

nonetheless be advanced, as the dependent variable is bounded at zero and there

is a relevant share of zero answers (already presented in Table 3.1 and Figure 3.1),

that is respondents who state they are not interested in the technology and would

pay nothing for it. A �rst concern is that the outcome variable is not continuous

but rather censored at zero, as negative responses are not allowed, although they

could still represent valid preferences, for example in the case of respondents that

would accept a stove they dislike in exchange for a monetary incentive � in fact,

programmes that provide monetary incentive to switch to cleaner cookstoves are

not hard to imagine (see for example Atkinson et al., 2004; Hanley et al., 2009, for

the case of environmental amenities and disamenities). In fact, the distribution of

the responses is not only strictly non-negative, but also skewed towards lower values,

with a spike at zero.

A second criticism is that zeros in the dataset may be the results of a di�erent

data-generating process than the rest of the responses, as respondents may �rst

decide whether they are interested in the technology or not, and only in the former
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case specify how much they are willing to pay for it (Martínez-Espiñeira, 2006). Zero

answers might also include a mixture of respondents who have a `true' zero valuation

for the stove or respondents who have very low valuation, and `protest' respondents

who reject some element of the valuation process (Meyerho� and Liebe, 2010 and

Fonta et al., 2010 provide a review of the issue of protest zero in environmental

valuation and healthcare valuation, respectively; Atkinson et al., 2012 discusses

how to address the issue in the design of the questionnaire).12

To address these issues and provide a robustness check on the results of the

linear model, I re-run the analysis using non-linear model speci�cations and two-

stage models as suggested in the literature; the complication in this case is to select

or adapt models so that they can still exploit the panel structure of the dataset

and take into consideration the correlation between answers provided by the same

respondent while avoiding the incidental parameter problem (Colin Cameron and

Trivedi, 2010; Silva et al., 2015; Drukker, 2017). For this reason, I implement a

random-e�ects tobit model, a �xed-e�ects Poisson model (quasi-maximum likelihood

estimator), a zero-in�ated Poisson model, and a double-hurdle regression model

(bootstrap estimator).13

The random-e�ects tobit model extends the cross-sectional tobit model to ac-

count for the panel structure of the data through a respondent-speci�c random

stochastic component in the error term, while addressing the fact that the outcome

variable is left-censored at zero. The model considers the observed outcome vari-

able as a censored version of the true but latent WTP of the respondents, that is

observed above the censoring threshold, and unobserved below it. The tobit model

still allows for only one type of zero observations, so does not address the problem

of protest zeros.

The �xed-e�ects Poisson model estimated using a quasi-maximum likelihood es-

timator and robust standard error is becoming an increasingly popular option for

modelling non-negative skewed outcome instead of using a logarithmic transforma-

tion of the dependent variable, as common in the past. While both approaches

constrain the outcome to be non-negative and account for a skewed distribution

towards smaller values, the �rst obvious advantage of a Poisson model over the use

12Note that the likelihood of this possibility should be smaller, as respondents could select �I
don't know� as an answer instead of providing a speci�c amount.

13These regression models are implemented in Stata 15 using the commands xttobit, xtpoisson,
zip and bootdhreg written by Engel and Mo�att (2014).
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of a logarithmic transformation is that the latter does not admit zero responses,

as the logarithm of zero is not de�ned. This application of the Poisson model to

continuous censored data is encouraged for example by Silva and Tenreyro (2006);

as speci�ed by Nichols (2010) the model is equivalent to a generalised linear model

using a logarithmic link and a Poisson-family distribution, and no assumptions are

needed on the variance of the distribution.

In fact, an important advantage of the Poisson speci�cation is that it requires rel-

atively weak assumptions to ensures consistency and can accommodate �xed-e�ects

without incurring in the incidental parameter problem, contrarily to other non-linear

and two-stage models such as the hurdle or zero-in�ated Poisson (Colin Cameron

and Trivedi, 2010). Similar to the tobit speci�cation, this model considers only

one data-generating process and one type of zeros. One additional disadvantage

of this model is that households who have a zero valuation for all the technologies

are dropped from the sample (this explains the lower sample size for this model

speci�cation in the Tables).

To address this issue, the zero in�ated Poisson (ZIP) model considers two stages

in the decision-making process. First, each observation is considered to have a

probability p of being zero (i.e. the probability of WTP = 0), and a probability

of 1 − p of coming from a Poisson distribution. In the latter case, the response is

constrained to be non-negative, but can still be a zero. This speci�cation therefore

allows for two type of zeros, distinguishing between the uninterested respondents

and the low valuation respondents. Di�erent regressors can be speci�ed for the

two parts of the models, one set to explain the probability p of being a zero-type,

and one set to explain the realisation of the Poisson random variable. For the

�rst component, I include a household wealth index, the size of the household,

the respondent age, whether the respondent is a woman, household priority cooking

concerns, and whether any of the stove the household has was received as a donation.

As mentioned above, �xed-e�ects or random-e�ects cannot be included in this model,

as the incidental parameter problem would make the estimator inconsistent. I cluster

the standard error at the respondent level to capture correlation between choices

made by the same person, although this does not eliminate the limitation of this

estimator when applied to a panel dataset.

Finally, the double-hurdle speci�cation was introduced by Cragg (1971) mod-

els the decision-making problem in two steps. The �rst hurdle distinguish between
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respondents who are uninterested and would therefore not pay for any of the cook-

stoves (zero-type respondents), and respondents who are interested and therefore

potentially willing to pay. Conditional on being in the latter group, the second hur-

dle determines how much the respondent is willing to pay for a speci�c technology

or not. Again, the result of the second hurdle can be a zero, but with a di�erent

meaning than the zeros resulting from the �rst hurdle. The �rst hurdle is modelled

as a probit on whetherWTP = 0 or not; the second hurdle is modelled as a tobit, to

account for the censoring at zero. Di�erent set of covariates can be used to explain

the outcome of each hurdle; I use the same as described for ZIP model. To adapt

the estimator to the panel structure of the data, standard errors are estimated as

standard deviation of bootstrapped coe�cients, considering respondents as clusters

and sampling a set of responses from each of them, therefore allowing for correlation

between choices made by the same respondents. Bootstrap is performed with re-

placement and allows to estimate the model non-parametrically and therefore with

fewer assumptions on the structure of the error term (Engel and Mo�att, 2014).

Results for these four non-linear estimators are presented in Table 3.7 for Goudoubo

and Table 3.9 for Kakuma. Comparing the estimates of the di�erent models speci�-

cations provide an indication of which results are sensitive to di�erent assumptions

on the data-generating process and which ones are robust. Overall, I consider the

linear within group estimator the preferred one for my analysis, due to its small-

sample properties, better control over respondent-speci�c �xed-e�ects and ease of

interpretation of the resulting estimates.

Detailed results for the models are presented below, while Section 3.3.5 intro-

duces the analysis and results from the ranking exercise, and broader patterns and

implications from the WTP and ranking analyses are discussed in Section 3.3.6.

Results

Goudoubo

After illustrating the estimation strategy, I now discuss the results for each camp

in more details. Starting with Goudoubo, Table 3.6 presents the results from the

linear �xed-e�ects within estimator. The speci�cation in column (1) includes only

the alternative-speci�c constants � that is the technology-speci�c �xed e�ects �

and their interaction with the gender of the respondent, as well as the respondent-
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speci�c �xed e�ects. The baseline technology is the basic biomass ICS. Column

(2) extends the �rst speci�cation including interactions between technologies and

level of experience (note that there are some technologies for which fewer than two

respondents have experience; interactions are therefore not included for these cook-

stove types). Column (3) excludes the experience interaction and includes instead

the perceived characteristics of each cookstove, together with an interaction between

whether the household's top priority is smoke reduction14 and the cookstove is per-

ceived as having health-improving characteristics (healthXtop1lesssmoke) and an

interaction between whether habits and tradition compliance is the top priority and

the cookstove considered is a non-biomass cookstove (top1tradXnon−biomasstech).

Further interactions between priorities and technologies are included as controls. Fi-

nally, column (4) includes the experience interaction as well.

The estimates suggest that households are willing to pay an average premium

of about 10 USD/month for a LPG stove (including fuel supply), and this is robust

through all the di�erent speci�cations. While solar and electric cookers seem to

attract a negative premiums when characteristics are not controlled for, this result

disappears once the latter are introduced, suggesting that respondents do not dislike

these technologies per se but rather have a negative perception of their character-

istics. In fact, once characteristics are controlled for, women appear to be willing

to pay a positive premium for this technology (consistent with qualitative evidence

that men are the main opponents to this technology). There are no other signi�cant

di�erences between men and women respondents in terms of technology-speci�c pre-

miums. The coe�cient for biogas is also positive once characteristics are accounted

for. Households who have previous experience with charcoal ICS appear to be will-

ing to pay a premium for this cookstove, although this result disappears once the

perceived characteristics are controlled for, in the last column; again, this suggests

that having experience with charcoal improves the perception of the characteristics

of the stove, rather than creating a favouritism for the technology per se. With

respect to characteristics, convenience and capacity appears to be the most relevant

ones, each associated with a premium of ∼5 USD/month. Health attracts a similar

premium of about 6 USD/month, but only among households whose top priority is

smoke reduction (this result is only marginally signi�cant though). The remaining

14Whether safety is a priority is not included in the speci�cation for Goudoubo as only very few
respondents chose it.
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characteristics have positive coe�cients, as predicted by the theory, but the null

hypothesis that the coe�cients are equal to zero cannot be rejected at conventional

signi�cance levels. Finally, as predicted, households who consider habits and tra-

dition compliance as the top priority have lower WTP for non-biomass technology

compared to households who have di�erent priorities.

As a robustness check, I compare these results with estimates from the non-linear

regression models for Goudoubo, presented in Table 3.7. Note that the magnitude

of coe�cients from the Poisson models (�xed-e�ects and zero-in�ated) cannot be

directly compared to the estimates in the linear model, as they have a di�erent

meaning, but the sign still give the average direction of the e�ect; Tobit model and

the second-hurdle of the double-hurdle model can instead be directly interpreted as

premiums, in the same way as the linear model. Overall, the results from the linear

model are con�rmed. I �nd once again a strong premium for LPG, here estimated at

around 6-8 USD/month, quite close to the estimate in the linear model. The results

also provide further evidence for the presence of a negative premium for electric

cooking and, only among male respondents, for solar.

The two Poisson models detect a large negative premium for solar among re-

spondents who have previous experience with the technology � the sign of this e�ect

is consistent throughout all the linear and non-linear speci�cations15 although not

signi�cant in any of the others. As in the previous table, all the characteristics

have positive coe�cients, and convenience and capacity have the strongest e�ects,

all else equal, followed by reliability. Again, there is some evidence that households

whose top priority is smoke reduction value stoves perceived to be healthy and safe

more than the rest of the sample, on average, although the coe�cient is not always

signi�cant.

Kakuma

The speci�cations included in Table 3.8 for Kakuma are the same as previously de-

scribed for Goudoubo, with the only di�erences being the addition of an interaction

between whether the household's top priority is safety and the cookstove is perceived

as having health-improving characteristics (healthXtop1safe). A very limited num-

15The interaction terms experienceXsolarcooker, experienceXLPG and
healthXtop1lesssmoke are dropped in the double-hurdle model as convergence could not
be achieved when they were included.
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Table 3.6: Regression table, �xed-e�ects model. Outcome is (winsorized) WTP. Goudoubo
camp.

Goudoubo (1) Goudoubo (2) Goudoubo (3) Goudoubo (4)
linear,fe linear,fe linear,fe linear,fe

2.tech (wood ics) -0.28 -0.27 -0.24 -0.19
(0.593) (0.593) (0.950) (0.893)

" X female respond 1.76 1.75 1.81 1.77
(1.255) (1.259) (1.192) (1.171)

3.tech (charcoal ics) 0.19 -1.97 -0.47 -0.43
(0.558) (1.347) (0.739) (1.065)

" X female respond 0.98 1.01 1.77 1.62
(1.072) (1.092) (1.172) (1.111)

4.tech (solar) -3.01∗∗∗ -3.83∗∗∗ -0.45 -0.41
(0.651) (1.063) (1.184) (1.243)

" X female respond 0.26 -0.12 2.72∗ 2.46∗

(0.972) (1.065) (1.049) (1.071)
5.tech (biogas) 0.53 -0.30 2.91∗ 2.53∗

(1.143) (1.260) (1.212) (1.269)
" X female respond 0.97 0.64 -0.22 -0.13

(1.817) (1.869) (1.364) (1.305)
6.tech (LPG) 10.17∗∗ 9.42∗∗ 10.50∗ 10.62∗

(3.275) (2.893) (4.820) (4.398)
" X female respond -1.68 -1.61 -0.07 -0.05

(5.185) (5.521) (4.115) (4.432)
7.tech (electric) -2.86∗∗∗ -3.69∗∗∗ 0.03 -0.37

(0.601) (0.982) (1.288) (1.292)
" X female respond 0.01 -0.32 0.55 0.69

(0.943) (1.004) (1.096) (1.113)
experience X non-charcoal ics -1.66 -0.13

(1.486) (0.985)
experience X charcoal ics 3.05∗∗ 0.00

(1.140) (1.057)
experience X solar cooker -0.09 -1.58

(1.846) (1.743)
experience X LPG -4.67 -3.47

(4.316) (5.126)
convenience 5.05∗∗ 5.05∗∗

(1.835) (1.855)
duration 4.05 4.25

(3.344) (3.428)
reliability 4.49 4.70+

(2.713) (2.695)
robustness 1.67 1.56

(2.187) (2.197)
capacity 5.79∗ 5.67∗

(2.875) (2.837)
health -0.20 -0.19

(1.953) (1.961)
" X top1 less smoke 6.16+ 5.78

(3.632) (3.704)
top1 trad. X non-biomass tech -3.18+ -2.95+

(1.617) (1.504)

Other cooking priorities X tech No No Yes Yes

N 624 624 624 624
R2 0.163 0.168 0.355 0.354
adj. R2 0.146 0.147 0.299 0.300

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3.7: Regression table, non-linear models. Outcome is (winsorized) WTP. Goudoubo
camp.

Goudoubo (1) Goudoubo (2) Goudoubo(3) Goudoubo (4)
xttobit xtpoisson zip double-hurdle

2.tech (wood ics) -1.49 -0.19 0.01 0.51
(2.958) (0.212) (0.140) (2.656)

" X female respond 5.48 0.54+ 0.27 0.65
(4.631) (0.293) (0.215) (3.907)

3.tech (charcoal ics) 1.16 0.19 0.41 4.04
(3.694) (0.394) (0.270) (3.245)

" X female respond 2.04 0.35 0.59∗∗ -3.41
(4.721) (0.276) (0.224) (4.135)

4.tech (solar) -12.79∗∗ -1.96∗∗ -1.34 -9.42∗

(4.652) (0.609) (1.386) (3.982)
" X female respond 14.02∗ 2.05∗∗ 1.29 7.46

(6.523) (0.708) (1.434) (5.564)
5.tech (biogas) -3.02 -0.19 1.10∗∗∗ 1.05

(3.813) (0.472) (0.260) (3.195)
" X female respond 2.94 0.80+ 0.14 -7.93

(5.320) (0.446) (0.286) (5.042)
6.tech (LPG) 7.24∗ 0.58 1.43∗∗∗ 6.43∗

(3.272) (0.398) (0.324) (2.859)
" X female respond 2.03 0.37 0.22 -8.46∗

(4.776) (0.411) (0.383) (4.221)
7.tech (electric) -12.03∗ -1.83∗∗ -1.79+ -5.94

(4.708) (0.618) (0.992) (3.891)
" X female respond 6.03 1.09 0.94 -5.93

(6.835) (0.769) (1.505) (6.702)
experience X non-charcoal ics 1.94 0.14 0.56∗ 3.67+

(2.811) (0.316) (0.233) (2.226)
experience X charcoal ics 0.36 -0.24 -0.18 0.04

(3.392) (0.217) (0.178) (3.059)
experience X solar cooker -50.78 -13.05∗∗∗ -15.28∗∗∗

(1287.478) (0.617) (1.050)
experience X lpg -4.32 0.44 -1.07∗∗

(7.102) (0.467) (0.347)
convenience 16.75∗∗∗ 1.82∗∗∗ -0.33 11.20∗∗∗

(2.032) (0.313) (0.221) (1.530)
duration 2.69 0.05 0.03 1.23

(3.134) (0.240) (0.232) (2.612)
reliability 9.12∗∗∗ 0.30 0.21 13.97∗∗∗

(2.471) (0.199) (0.262) (2.272)
robustness 4.09+ 0.19 0.05 3.33+

(2.249) (0.165) (0.171) (1.935)
capacity 11.57∗∗∗ 1.22∗∗∗ 0.65∗∗ 9.42∗∗∗

(2.419) (0.349) (0.199) (1.829)
health 3.49 0.47∗ -0.31+ 2.25

(2.162) (0.227) (0.189) (1.621)
" X top1 less smoke 14.23 1.25 0.97∗∗∗

(10.558) (1.238) (0.280)
top1 trad. X non-biomass 0.22 -0.08 0.21 -0.64

(3.117) (0.343) (0.147) (2.631)

N 624 607 624 569
AIC 2425.20 2007.32 3440.29 1934.08
BIC 2549.41 2113.12 3604.43 2086.12

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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bers of respondents had previous experience with any of the non-biomass stoves, so

only interactions between experience and biomass ICS are included.

Again, households appear to be willing to pay an average premium of 8 USD/month

for a LPG stove (including fuel supply), and have instead a negative WTP for solar

cookers of 3 USD/month. Both are robust through all the di�erent speci�cations.

In the �rst two speci�cations biogas appears to be associated with a negative pre-

mium, which disappears when characteristics are considered. The opposite occurs

for electric cookstoves, which are associated with a positive premium only in the last

two columns. This suggests that households do not perceive these two technologies

to have many positive characteristics, but when the characteristics are held constant

the valuation for these technologies increases. There are no signi�cant di�erences be-

tween men and women respondents in terms of technology-speci�c premiums, while

households who already have experience with charcoal are willing to pay a premium

of about 2 USD/month on average for this technology.

In terms of characteristics, health attracts the highest premium, at 4.5 USD/month,

and this becomes three times larger for households whose top priority is safety;

households whose top priority is smoke reduction do not appear to have a higher

valuation for the health characteristics than the rest of the respondents. The pre-

mium for capacity is also positive and signi�cant, at about 4 USD/month, as are the

premiums for robustness, reliability and convenient, at about 2 USD/month. Re-

spondents who prioritise habits and tradition in cooking tend to value non-biomass

stoves 2-3 USD/month less than the rest of the sample, although the coe�cients are

not signi�cantly di�erent from zero even at 10% signi�cance level.

Comparing these results with the coe�cients estimates in Table 3.9 con�rm the

�ndings from the linear model. The non-linear regression models con�rm the pres-

ence of a strong positive premium for LPG, estimated here at 12-14 USD/month and

not signi�cantly di�erent from the estimates in the linear model. The estimates for

the negative premium for solar and the positive premium for electricity are also very

close to the linear model, although only signi�cant in the two Poisson speci�cations.

Similarly, biogas does not appear to su�er any negative premium if characteristics

are controlled for. As in the previous model, I �nd that the alternative-speci�c

constants are no signi�cantly di�erent between men and women, while respondents

who are familiar with charcoal ICS are willing to pay a positive premium for it,

and households who prioritise habits and traditions have a lower valuation for non-
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Table 3.8: Regression table, �xed-e�ects model. Outcome is (winsorized) WTP. Kakuma
camp.

Kakuma (1) Kakuma (2) Kakuma (3) Kakuma (4)
linear,fe linear,fe linear,fe linear,fe

2.tech (wood ics) 0.78 0.77 0.81 0.82
(0.556) (0.556) (0.833) (0.837)

" X female respond 0.26 0.27 -0.80 -0.80
(0.810) (0.807) (0.943) (0.946)

3.tech (charcoal ics) 1.13 0.56 1.28 0.66
(0.815) (0.769) (0.999) (0.985)

" X female respond 0.35 0.40 0.26 0.36
(0.986) (0.997) (1.026) (1.036)

4.tech (solar) -3.12∗∗ -2.99∗∗ -3.69∗ -3.49∗

(0.962) (1.034) (1.462) (1.386)
" X female respond 1.07 1.06 1.35 1.32

(1.184) (1.194) (1.246) (1.244)
5.tech (biogas) -2.41+ -2.28+ 0.85 1.08

(1.349) (1.359) (1.507) (1.366)
" X female respond -0.96 -0.96 -1.28 -1.30

(1.625) (1.626) (1.342) (1.339)
6.tech (LPG) 8.78∗∗ 8.92∗∗∗ 8.23∗ 8.48∗∗

(2.737) (2.636) (3.246) (3.078)
" X female respond -1.01 -1.03 -0.54 -0.57

(3.363) (3.369) (3.154) (3.149)
7.tech (electric) 1.73 1.86 4.42+ 4.66∗

(1.743) (1.703) (2.411) (2.294)
" X female respond 0.42 0.41 0.35 0.33

(2.201) (2.204) (2.147) (2.141)
experience X non-charcoal ics 0.25 0.36

(1.070) (1.043)
experience X charcoal ics 1.75 2.27∗

(1.154) (1.047)
convenience 2.28∗ 2.41∗

(1.088) (1.087)
duration 1.20 1.24

(0.965) (0.972)
reliability 2.52∗∗ 2.50∗∗

(0.804) (0.817)
robustness 2.14+ 2.17∗

(1.097) (1.099)
capacity 4.34∗ 4.34∗

(1.839) (1.841)
health 4.52∗∗ 4.50∗∗

(1.557) (1.555)
" X top1 safe 11.80+ 11.88+

(6.299) (6.336)
" X top1 less smoke -0.41 -0.31

(2.590) (2.580)
top1 trad. X non-biomass tech -2.49 -2.60

(1.866) (1.831)

Other cooking priorities X tech No No Yes Yes

N 1155 1155 1155 1155
R2 0.139 0.140 0.252 0.254
adj. R2 0.130 0.129 0.218 0.218

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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biomass stove, although the latter is only signi�cant in some speci�cations.

In terms of characteristics, health is again one of the most-valued ones, and the

Tobit and double-hurdle models con�rm that respondents who prioritise safety have

an even larger valuation for this characteristics; this latter result is not replicated

in the two Poisson models. Results for the other characteristics are also broadly

con�rmed, with capacity being among the most valued, followed by robustness,

reliability and convenience.

3.3.5 Ranking exercise

To analyse the responses to the ranking exercise, I use a rank-ordered logistic (ROL)

regression model (also known as the Plackett-Luce model or the exploded logit

model) and estimate the coe�cients using the maximum likelihood estimator intro-

duced by Beggs et al. (1981).16 This model can be seen as an extension of McFadden

(1981) conditional logit model, where the characteristics of each alternative on o�er

explain the decision of which alternative is selected as the preferred one, but rather

than using the preferred option as outcome it uses the position in the preference

ranking. As in the conditional logit model, an idiosyncratic additive random e�ect

is included to capture preference heterogeneity between individuals. The ranking

position of each cookstove is therefore a function of its characteristics, for simplicity

assumed to be linear (similar to the way the maximum WTP was de�ned in eq. 3.2)

and the stochastic random term εij:

rij =
K∑
k=1

βkcijk + εij

where rij is the ranking position of technology j according to respondent i. Following

the set-up of the conditional logit, if εij are independent and identically distributed

(i.i.d.) following a type 1 extreme value distribution, then the probability that

alternative j is ranked higher than any other can be expressed using the conditional

logistic function:

Pr[rij = 1] =
exp(

∑K
k=1 βkcijk)∑J

l=1 exp(
∑K

k=1 βkcilk)

16I perform the rank-ordered logistic regression in Stata 15, using command rologit. See Fok
et al. (2012) for an example of application of the technique.
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Table 3.9: Regression table, non-linear models. Outcome is (winsorized) WTP. Kakuma
camp.

Kakuma (1) Kakuma (2) Kakuma (3) Kakuma (4)
xttobit xtpoisson zip double-hurdle

2.tech (wood ics) 2.37 0.21 0.03 0.39
(2.911) (0.129) (0.145) (3.726)

" X female respond -1.81 -0.07 0.04 0.08
(3.492) (0.156) (0.171) (4.789)

3.tech (charcoal ics) 1.77 0.14 -0.05 -0.89
(3.214) (0.158) (0.164) (4.252)

" X female respond -0.31 0.04 0.21 -0.18
(3.477) (0.188) (0.160) (4.794)

4.tech (solar) -3.77 -0.80∗∗∗ -0.75∗∗∗ -1.42
(3.132) (0.213) (0.206) (3.959)

" X female respond -0.29 0.17 0.32+ -3.43
(3.506) (0.226) (0.192) (4.804)

5.tech (biogas) -2.10 -0.00 0.25 -0.46
(3.287) (0.183) (0.210) (4.142)

" X female respond -2.68 -0.23 0.14 1.18
(3.701) (0.206) (0.210) (4.859)

6.tech (LPG) 14.03∗∗∗ 0.95∗∗∗ 1.34∗∗∗ 12.20∗∗

(3.027) (0.222) (0.245) (3.896)
" X female respond -3.04 -0.05 0.06 10.10∗

(3.364) (0.250) (0.251) (4.551)
7.tech (electric) 4.93 0.55∗ 1.12∗∗∗ 4.47

(3.095) (0.218) (0.200) (3.983)
" X female respond -2.89 -0.10 -0.09 6.05

(3.481) (0.252) (0.225) (4.700)
experience X non-charcoal ics 2.37 0.19 0.08 3.12

(1.926) (0.172) (0.184) (2.403)
experience X charcoal ics 5.72∗ 0.45∗∗ 0.19 6.13+

(2.544) (0.168) (0.175) (3.479)
convenience 5.14∗∗∗ 0.20∗ -0.30∗ 5.67∗∗∗

(1.338) (0.102) (0.142) (1.357)
duration 3.34∗∗ -0.03 0.01 3.33∗

(1.267) (0.074) (0.108) (1.380)
reliability 6.82∗∗∗ 0.23∗∗ 0.20 9.01∗∗∗

(1.188) (0.086) (0.124) (1.300)
robustness 6.06∗∗∗ 0.19+ 0.49∗∗∗ 11.86∗∗∗

(1.605) (0.106) (0.130) (1.687)
capacity 8.14∗∗∗ 0.14 0.63∗∗∗ 24.12∗∗∗

(1.805) (0.114) (0.121) (2.105)
health 7.43∗∗∗ 0.40∗∗ 0.42∗∗ 2.11

(1.587) (0.147) (0.141) (1.500)
" X top1 safe 14.09∗∗ -0.21 -0.11 17.66∗∗

(4.921) (0.191) (0.168) (5.883)
" X top1 less smoke 2.31 -0.03 0.09 7.29∗

(4.124) (0.183) (0.180) (3.420)
top1 trad. X non-biomass -3.11 -0.21 -0.41∗ -5.60∗

(2.287) (0.198) (0.207) (2.565)

N 1155 855 1155 1249
AIC 5793.61 4409.65 10515.46 7229.29
BIC 5930.01 4518.92 10702.38 7429.36

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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After the top-ranked cookstove has been selected, the second-ranked stove is nothing

else than the preferred among the remaining options, and so on in a sequential

way. The probability of observing a given ranking sequence is therefore the product

of the probability of each rank position, that is the product of conditional logit

probabilities17:

Pr[{ri1, ...riJ}] =
J−1∏
j=1

exp(
∑K

k=1 βkcirijk)∑J
l=j exp(

∑K
k=1 βkcirilk)

(3.4)

The coe�cients of interest β1...βK can then be estimated using maximum likelihood.

Results are presented in Table 3.10 for Goudoubo, and Table 3.11 for Kakuma.

As remarked in the data Section above, the three-stone �re is now included among

the cookstove alternatives household are asked to rank.

Column (1) of each table estimate the model including the traditional three-

stone �re. This speci�cation does not include perceived cookstove characteristics

as these were not asked for the traditional stove, but introduces an additional in-

teraction term between whether the alternative is a traditional three-stone �re and

whether the respondent selected tradition and habits compliance as their top prior-

ity (top1tradXtradstove). Column (2) excludes the three-stone �re and includes the

perceived cookstove characteristics and the interaction between the health charac-

teristic and dummies identifying whether the household chose less smoke and safety

as their top priority.

Both models include alternative-speci�c constants (ASCs), interactions between

ASCs and the gender of the respondent, and between ASCs and the experience level,

and the interaction on whether the alternative being considered is a non-biomass

cookstove and the respondent selected tradition and habits compliance as their top

priority. According to the model speci�cation, only regressors and interaction terms

that vary by cookstove enter the model, while respondent's speci�c characteristics

that are constant over the di�erent alternatives are dropped.

Goudoubo

Results for Goudoubo (Table 3.10) show that enhanced �rewood ICS tend to be

the preferred cookstove type, followed by the enhanced charcoal ICS, and basic

ICS (reference technology). The higher preference for charcoal with respect to the

17Notation is adapted from Fok et al. (2012).
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basic ICS becomes close to zero for women respondents, con�rming that charcoal

is a fuel that attracts men preferences, as documented by qualitative research on

genderisation of fuel.

The only clean technology that has an average ranking as high as the basic

ICS is LPG, while all the other clean technologies have higher probabilities to be

ranked below the biomass cookstoves. In particular, electric cookers and biogas are

associated with the lowest ranking positions, while solar performs slightly better,

especially once the perceived characteristics of the stoves are controlled for.

Interestingly, the traditional three-stone �re tends to be ranked below the biomass

ICS and LPG, but still above the rest of the options, and women tend to rank it

lower than men. This supports the �nding of studies on intra-household preferences

and decision-making such as Miller and Mobarak (2013) that women tend to be

more interested in non-traditional stoves than men, but they may lack the agency

to make decisions for the household and resources to purchase the new cookstove.

In terms of previous experience, respondents who are familiar with non-charcoal

ICS tend to rank these technologies lower, while those who have experience with

charcoal ICS rank it higher. The coe�cients for the interaction between experience

and solar cookers, and experience and LPG are similarly positive, but not signi�cant.

Consistently with what would be expected, perceived positive characteristics

are on average positively (or at most insigni�cantly) associated with an improved

ranking of a cooking solution. The strongest e�ect is achieved when stoves are

perceived to be `convenient' to use � interestingly, this was the characteristic with

the largest coe�cient in the WTP analysis, as well.

As for priorities, respondents who want smoke reduction do not seem to rank

stoves they perceive to deliver �health and safety� higher than other respondents �

the sign of the coe�cient is even negative in this case. Respondents whose priority

is habits and tradition compliance do not appear to rank biomass and non-biomass

technologies di�erently from other respondents.

Kakuma

Table 3.11 presents the results for Kakuma. Again, enhanced �rewood ICS is associ-

ated with higher ranks, followed by enhanced charcoal ICS, the basic ICS (reference

technology), solar cookers and LPG, with no signi�cant di�erence in average rank-
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Table 3.10: Regression table, rank-ordered logit. Outcome is ranking position of each
cooking technology. Goudoubo camp.

Goudoubo (1) Goudoubo (2)
rank-ordered logit rank-ordered logit

2.tech (wood ics) 1.14∗∗∗ (0.178) 1.32∗∗∗ (0.212)
" X female respond 0.02 (0.260) -0.14 (0.315)

3.tech (charcoal ics) 0.73∗∗ (0.232) 0.82∗∗ (0.262)
" X female respond -0.55∗ (0.276) -0.70∗ (0.321)

4.tech (solar) -1.48∗∗∗ (0.334) -0.92∗∗ (0.336)
" X female respond -0.58 (0.410) -0.62 (0.435)

5.tech (biogas) -1.77∗∗∗ (0.321) -1.31∗∗∗ (0.312)
" X female respond 0.57 (0.437) 0.37 (0.434)

6.tech (LPG) -0.17 (0.272) -0.17 (0.293)
" X female respond -0.47 (0.313) -0.54 (0.358)

7.tech (electric) -1.81∗∗∗ (0.308) -1.29∗∗∗ (0.331)
" X female respond -0.43 (0.464) -0.59 (0.512)

8.tech (traditional) -1.09∗∗∗ (0.232)
" X female respond -0.55+ (0.298)

experience X non-charcoal ics -0.39+ (0.202) -0.47∗ (0.228)
experience X charcoal ics 0.56+ (0.324) 0.59∗ (0.293)
experience X solar cooker 0.25 (0.451) 0.11 (0.462)
experience X LPG 1.23 (0.837) 1.07 (1.047)
convenience 1.05∗∗∗ (0.197)
duration 0.85+ (0.504)
reliability 0.59+ (0.338)
robustness 0.15 (0.271)
capacity 0.51 (0.331)
health 0.02 (0.256)
" X top1 less smoke -0.85∗ (0.380)

top1 trad. X non-biomass tech 0.34 (0.395) 0.02 (0.353)
top1 trad. X trad stove 0.14 (0.397)

N 1032 903
pseudo R2 0.205 0.269
AIC 1890.73 1444.56
BIC 1989.51 1559.90

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
X in the name of a regressor indicates interactions between variables.
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ing among these technologies. As before, the alternative-speci�c constant for the

traditional three-stone �re is negative, indicating that this stove tends to be ranked

below the basic ICS and the other stoves mentioned above, and women tend to rank

this stove lower than men, although the di�erence in this case is not signi�cantly

di�erent from zero at conventional signi�cance level. Biogas and electric stoves tend

to have the lowest ranking.

Households who have previous experience with non-charcoal biomass ICS tend

to rank these technology lower than households who have no experience, suggesting

that experience has not been satisfactory and might have created skepticism towards

this type of cookstoves.

In terms of characteristics, all the coe�cients are positive and signi�cant, with

the strongest being convenience and reliability, followed by health, robustness and

capacity, and duration of energy supply. Results on the signi�cance of the di�erent

characteristics con�rm the results from the valuation analysis. Contrarily to the

valuation analysis though, in the ranking exercise households who prioritise safety

and smoke reduction do not rank stove perceived to match these characteristics any

higher than households with di�erent priorities. Finally, consistent with expecta-

tions, households whose priority is habits and tradition compliance tend to rank the

three-stone �re higher and the non-biomass clean cookstoves lower than households

with di�erent priorities.

3.3.6 Discussion of results

Overall, these results con�rm the same qualitative pattern as the valuation anal-

ysis, with several similarities between the two camps. My �ndings point towards

a preference for good quality enhanced biomass-ICS, that can be used with the

fuel households are familiar with, but also for LPG, that emerges as a technology

households value and are interested in in all the analyses. Nevertheless, it might

be more di�cult to trigger the switch to cleaner cookstoves and fuels in households

who value habits and traditions, as this appear to have a signi�cant negative e�ect

on households preferences for non-traditional stoves.

Despite the evidence for a certain willingness to pay a premium for LPG in the

previous section, here I found no statistically signi�cant di�erence in the ranking for

LPG stoves if compared to basic ICS. The two facts can be reconciled by looking at
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Table 3.11: Regression table, rank-ordered logit. Outcome is ranking position of each
cooking technology. Kakuma camp.

Kakuma (1) Kakuma (2)
rank-ordered logit rank-ordered logit

2.tech (wood ics) 0.37∗∗∗ (0.108) 0.44∗∗∗ (0.128)
" X female respond 0.02 (0.134) -0.01 (0.158)

3.tech (charcoal ics) 0.35+ (0.178) 0.32 (0.221)
" X female respond 0.03 (0.173) -0.08 (0.204)

4.tech (solar) -0.25 (0.196) -0.34 (0.240)
" X female respond -0.06 (0.219) -0.03 (0.254)

5.tech (biogas) -1.38∗∗∗ (0.299) -1.28∗∗∗ (0.336)
" X female respond -0.43 (0.368) -0.44 (0.397)

6.tech (LPG) -0.42 (0.282) -0.50 (0.313)
" X female respond -0.03 (0.318) 0.06 (0.337)

7.tech (electric) -1.18∗∗∗ (0.305) -1.11∗∗ (0.342)
" X female respond 0.02 (0.355) -0.08 (0.376)

8.tech (traditional) -0.78∗∗∗ (0.173)
" X female respond -0.08 (0.182)

experience X non-charcoal ics -0.24 (0.148) -0.61∗∗ (0.198)
experience X charcoal ics -0.07 (0.138) -0.17 (0.170)
convenience 0.71∗∗∗ (0.105)
duration 0.38∗∗ (0.126)
reliability 0.63∗∗∗ (0.106)
robustness 0.49∗∗∗ (0.140)
capacity 0.48∗∗ (0.164)
health 0.48∗∗∗ (0.125)
" X top1 safe -0.01 (0.475)
" X top1 less smoke 0.17 (0.340)

top1 trad. X non-biomass tech -0.61∗ (0.239) -0.79∗∗ (0.270)
top1 trad. X trad stove 1.01∗∗ (0.350)

N 1800 1575
pseudo R2 0.095 0.134
AIC 3826.99 3004.54
BIC 3925.91 3127.87

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
X in the name of a regressor indicates interactions between variables.
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the di�erent scenarios they refer to and at the practice of stove stacking. In fact,

households appear on average to be willing to pay a premium for LPG when this is

the only technology available, but if they are asked to consider a scenario in which

all the products are available, they tend to rank LPG below the enhanced biomass

ICS.

Yet, stove stacking, as well as fuel stacking, are a common practice in the set-

tlements (in Goudoubo, more than 30% of the respondents have used at least one

secondary stove in the past year, while this is slightly less than 20% in Kakuma), as

well as in the global South in general, so that households preferred solution might

well be to have both a biomass and an LPG stove, especially if supply of LPG is

unreliable.

Another possibility is that this di�erence between the two analysis is the result of

a trade-o� between higher-value but more expensive stoves, such as LPG, and more

a�ordable biomass ICS that deliver less improvements. The WTP analysis con�rm

that households recognise and value the bene�ts of LPG stoves, but the ranking

exercise suggests that if they have the choice they might opt for more a�ordable and

more familiar options instead, highlighting how lack of resources and purchasing

power might be a strong issue.

A possible explanation for the strong LPG premium in both camps is that there

are other characteristics associated with LPG stoves that raise their values and are

not controlled for in the model - for example LPG might be considered as a `status'

or aspirational good, as in Lee et al. (2016), following Veblen's theory of conspicuous

consumption, or it could be the result of the use of dummies variable to de�ne the

characteristics rather than a continuous measure.

The striking di�erence in the importance of health between the two settings can

instead be explained looking at the speci�c context of the two settlements, as well

as to the perceptions of respondents about the urgency of the health consequences

of cooking � households in Kakuma cooking indoor and reporting more issues with

smoke and accidents, while households in Goudoubo tend to cook outdoor and report

fewer problems.

Overall, respondents appear to value perceived characteristics and low valuation

for a stove is explained by the perceived absence of those characteristics. I found

no signi�cant di�erences between men and women in their preferences for speci�c

technology type, with the exception of men appearing to like charcoal ICS and
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traditional three-stone �re slightly more than women in Goudoubo.

In both camps, households with experience with �rewood ICS tend to rank them

lower than households who have no experience. This might suggest that cookstove

models introduced in the camp have failed to meet household expectations and

needs, and have created skepticism towards this technology among the households

who have used them. There are evidence that the opposite occurred for charcoal ICS,

as households with experience value them more. To investigate this latter evidence

in more details, in the next part of the Chapter I assess the performance of the

non-traditional cookstoves already used in the camps over the di�erent dimensions

of fuel savings, health and safety, time use, and women and children workload.

3.4 Part 2: Bene�ts of non-traditional cookstoves

3.4.1 The promised land: hypotheses on the bene�ts of non-

traditional cookstoves

In the second part of the Chapter, I look for evidence that the non-traditional

cookstoves in use in the camps are e�ectively associated with improvements in the

lives of their users, with respect to the traditional (and free) alternative of the three-

stone �re. Information on the cookstoves used by respondents in the sample have

been provided in Section 3.2.3, Table C.1 and photographs in Appendix C.1. Most

of the non-traditional stoves used by respondents in the sample are basic ICS models

which can accommodate both charcoal and �rewood, although the latter tend to be

by far the most popular fuel for cooking meals in both camps. Following the main

research questions explored in the literature on cookstove bene�ts, I consider four

dimensions of welfare � namely, energy e�ciency and environmental gains, health

and safety, time use, and the workload burden on women and children. As informed

by the existing literature on the topic, I formulate the following sets of hypotheses:

HP1: Energy e�ciency Do households who use non-traditional stoves con-

sume less �rewood? Given that almost all of the stoves in the sample are biomass-

fuelled, this question is really related to whether the non-traditional cookstoves

use the fuel more e�ciently. In addressing this question I take into consideration

two issues. On one side, the main complaint by residents of both settlements is

the insu�ciency of �rewood to cover for their basic needs, meaning that binding
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availability-constraints might be an issue. There may be no di�erence in quantity

consumed by households using di�erent stoves, simply because households may con-

sume all the fuel they have access to and still be short of the amount they would

consider optimal, given their utility and budget. On the other side, more e�cient

stoves would make cooking cheaper at the margin, and may push households to use

the stove for longer hours and cook more, triggering a `rebound e�ect'. To account

for these possibilities, I test two hypotheses: (i) households who use non-traditional

stoves consume less �rewood overall, and (ii) consume less �rewood per hour of use

of the stove. Evidence on the rebound e�ect is further investigated under the time

use hypothesis.

HP2: Health and safety Are households who use non-traditional stoves less

exposed to health and safety hazard? In particular, I check whether these households

are less likely to report accidents related to stove use and problems with smoke than

households who use a three-stone �re.

HP3: Time use Do households who use non-traditional stoves spend less time

in cooking-related activities (cooking, and fuel collection, purchase and prepara-

tion)? As mentioned in the literature review, a few issues should be accounted for

in this case. On one side, improved energy e�ciency could make the actual cooking

of a meal faster, and therefore reduce the number of hours a stove is used. Yet, if a

rebound e�ect were present, the sign of the relationship might be reverted, as house-

holds might decide to cook more food or cook for longer in the new optimum. At

the extreme, if the rebound e�ect results in even more fuel being used than before,

households might need to spend more time �nding �rewood to collect or purchase.

Longer times might also result from the need to prepare the fuel in speci�c ways (for

example making wood chips and cutting the wood at the appropriate size for the

stove, or make charcoal out of wood) or procure fuel that is more di�cult to �nd

in the local markets (such as briquettes and pellets, or charcoal), depending on the

cookstoves requirements. Moreover, in some cases longer times have been reported

to cook the same meal with a non-traditional stove, as documented for example by

Adkins et al. (2010).

HP4: Gender and children workloadWomen and children are the ones most

a�ected by e�ciency and health gains, as they are the ones who traditionally spend

more time carrying out cooking-related activities and �rewood collection. A part

from the e�ciency and health channels, the introduction of a technological innova-
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tion such as a non-traditional stove, may shift the gender balance of cooking-related

activities. For example, preparing and purchasing the fuel for non-traditional stoves

may be perceived as activities that require a di�erent set of skills, and may there-

fore entice a greater involvement of men than it would be the case with traditional

stoves and traditional fuel. The `genderisation' of fuel, with �rewood associated with

women, and charcoal and LPG being more neutral or even associated with men, is

documented in the literature.

3.4.2 Estimation strategies

To investigate these hypotheses, I refer to the potential outcome framework and

Rubin's Causal Model (Rubin, 1974; Holland, 1986). Following the notation and

terminology of Angrist et al. (1996), I de�ne the exclusive use of non-traditional

cookstoves as my treatment indicator (Di), and various indicators for energy e�-

ciency, health and safety, time use, and women and children workload as the realised

and observed outcome (Yi). Every observation unit can then be thought of as having

two potential outcomes, Y0i and Y1i, indicating respectively the outcome if the unit

were not subject to the treatment, and the outcome if they were. In this case, Y0i

represents the outcome if the household were using a non-traditional cookstove and

Y1i as the outcome if the same household were instead using the traditional three-

stone �re. The e�ect of the treatment on that household can then be obtained as

the di�erence in potential outcomes:

αi = Y1i − Y0i. (3.5)

Of course, for each household only one of the potential outcomes can be observed,

i.e. the realised outcome Yi, and the problem of estimating the e�ects of the treat-

ment becomes one of correcting for these `missing' or unobservable counterfactual

observations - the `fundamental problem of causal inference'. Under speci�c iden-

ti�cation assumptions, I can still estimate the Average Treatment E�ect (ATE) by

comparing the outcomes of treated and untreated units:

αATE = E[Y1 − Y0]. (3.6)

The gold standard for this type of causal inference analysis is to conduct a
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Randomised Controlled Trials (RCTs), in which treatment is assigned at random:

(Y1, Y0) ⊥⊥ D

Random assignment (i.e. independence of assignments) may then be used as an iden-

ti�cation assumption to prove that the ATE can be estimated as a simple di�erence

in means between the treated and untreated groups:

E[Y |D = 1]− E[Y |D = 0] = αATE. (3.7)

and a simple OLS estimator can be used:

Yi = β0 + βDDi + εi

When RCT-like studies are unfeasible and only observational data are available

� as in my case � the identi�cation assumption is likely to be violated and a di�er-

ence in means may result in biased estimates. The main threat to identi�cation is

sample-selection, as households that decide to purchase a non-traditional cookstove

are e�ectively self-selecting themselves into the treatment sample, and some of the

characteristics that make them want to have a non-traditional cookstove might then

a�ect the outcome as well.

As an example, households concerned with health issues or who already su�er

from respiratory problems might be more interested in purchasing a non-traditional

cookstove, but they might also use the cookstove more carefully or adopt other

behavioural adjustments to reduce smoke exposure and accidents no matter what

the stove is, and therefore a�ect the outcome. In this case, the results of a simple

OLS, unconditional and conditional on covariates, should be interpreted as simple

correlations, unless it can sensibly be argued that the allocation of traditional and

non-traditional cookstoves among the households in the settlement is as good as

random - or only determined by characteristics that are orthogonal to the outcome.

This might not be the case in the context under analysis, as the type of stove used by

a household (D) is the result of purchase decisions, product availability, households'

preferences and characteristics, and budget constraints. This means that treated

and untreated households are not directly comparable groups.

I therefore have a problem of endogeneity and sample-selection, and the main
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task of this Section is to present ways to address this problem and how ignoring it

would lead to misleading conclusions for the analysis. A number of methodologies

have been proposed in the literature to achieve this purpose, and Greenstone and

Gayer (2009) and Mueller et al. (2011) in particular present a survey of the most

relevant ones in the �elds of environmental economics � the former � and health

bene�ts linked to stove use � the latter.

Given that my dataset consists of cross-sectional survey data, I am not able to

track households over time nor to use pre- and post-intervention observations for

the same households. I therefore cannot use panel data analysis and the di�erence-

in-di�erence methodology to control for unobservables confounders such as the id-

iosyncratic characteristics of each households, but I have to rely mainly on selection

on observables to indirectly control for them. To do this, I rely on a wide set of

relevant socio-demographic and economic characteristics and household-speci�c in-

formation on cooking-related activities to make the treated and untreated groups

more comparable, at least with respect to their observable characteristics. I also use

free cookstove distribution programs that happened in the past and information on

whether the stoves were received as a donation, possibly at random, as instrument

to predict the treatment and correct for sample-selection, following an instrumental

variable (IV) approach.

Nevertheless, I acknowledge the limitation of the dataset to identify causal e�ects

and results should therefore be considered as exploratory. I believe that given the

rarity of datasets on energy-related issues in refugee settlements, this analysis can

still provide interesting insights in an understudied context, but I encourage further

research on the topic and hope that future data collection e�orts in refugee camps

will adopt a design better suited to perform causal inference.

With this caveat in mind, I now show how an instrumental variable approach

and treatment-e�ects estimators based on observation re-weighting can address the

issue of sample-selection, and what assumptions need to hold.

Instrumental variable approach using cookstove distribution programmes

as instrument

Even though the purchase of non-traditional cookstoves is hardly random, receiv-

ing one as part of a distribution program in the context of refugee settlements
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might be as good as random, if every household has the same likelihood of receiving

one. Receiving a non-traditional cookstove as donation18 could therefore be used as

the exogenous instrument in an IV regression model. Following the notation and

methodology in Angrist et al. (1996), I de�ne the instrumental variable as Z or `en-

couragement', and de�ne Dz as the potential treatment status given the realisation

of the encouragement, i.e. D0 if the household does not have a donated stove, and

D1 if they have. I estimate this model using a 2-stage least squares (2SLS) estimator

and using the indices versions of the treatment variable, as described in the data

section. A continuous treatment is better suited for this type of models as the both

stages in a 2SLS are estimated using linear models.

The validity of the instrumental variable approach relies on three assumptions:

the exclusion restriction, or independence assumption; the �rst-stage or relevant-

instrument assumption; and the monotonicity assumption (Angrist et al., 1996).

The assumption that donations are as good as random and all households are as

likely to receive one corresponds to the independence of the instrument, or `ignor-

ability' assumption required for identi�cation of the estimator. The assumption

of independence of the instrument implies `exclusion restriction', i.e. the excluded

instrument Z can have no e�ect on Y except through D, which is to say that do-

nations of a cleaner stove can only a�ect the welfare outcome Y through the actual

utilization of the stove, which - although untestable - is clearly a sensible assumption

to make. As a consequence, any correlation between stove donations (Z) and the

welfare outcome (Y ) can be attributed to the use of the stove (the actual treatment,

D):

(Y0, Y1, D0, D1) ⊥⊥ Z

The �rst stage or relevance of the instrument assumption require that the instrument

must induce variation in the treatment:

0 < P (Z = 1) < 1 and P (D1 = 1) 6= P (D0 = 1)

Monotonicity implies absence of `de�ers', individuals that would not use a cleaner

stove if donated one, but would use it if they were not donated one (D0 = 1 and

18In practice, I use data on whether the household has a primary or secondary stove that was
donated. I acknowledge that this is not ideal, as this indicator does not include households who
received a stove donation but are not using it for whatever reason. Unfortunately, I have no data
on the latter.
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D1 = 0, thereforeD1 < D0). Although not testable, this seems a sensible assumption

in this setting:

D1 ≥ D0

The �rst-stage assumption can be tested by regressing the treatment on the

instruments. Nevertheless, even if the excluded instrument is signi�cantly correlated

with the treatment, the instrument might be weak, i.e. the instrument might explain

only a small proportion of the variation in the treatment. This might indeed be the

case in the setting considered in this Chapter as many NGOs and agencies active

in the settlements have moved from donation-based to market-based interventions,

and as a consequence donations might not be a dominant driver of the adoption of

non-traditional cookstoves.

As a rule of thumb, this problem can be diagnosed if the F-statistic of the

excluded instrument obtained in the �rst stage of a 2SLS estimator is less than 10

(Stock et al., 2002). If the instrument is weak the con�dence intervals for the IV

estimator might then be unreliable and the variance too large. To address this issue,

I test the null hypothesis that the treatment coe�cient is not signi�cantly di�erent

from zero using Anderson-Rubin (AR) test statistic (robust to weak instruments,

see Finlay and Magnusson, 2009), and report the corresponding p-value19 (indicated

as weak IV - robust p-value) below the p-value of the Wald test.

The exclusion restriction requires that donations of a cleaner stove can only a�ect

the welfare outcomes through the actual utilization of the stove, which - although

untestable - seems a sensible assumption to make. Nevertheless the exclusion re-

striction may be violated if households who received the donated stove were also

provided with health and safety information, and other type of training or educa-

tion which might a�ect the outcome independently from the stove used. If so, it

would be impossible to attribute the welfare e�ects to the phasing out of three-stone

stoves rather than to these additional features. This assumption is not testable.

The independence of the instrument may also not hold if donations are not

random, for instance if they are targeted on characteristics that might a�ect the

outcome as well. In this case, endogeneity would bias the estimator.

19The AR test is conducted in Stata 15 using the command weakiv written by Finlay et al.
(2013) and based on Finlay and Magnusson (2009).
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Double-robust treatment-e�ects estimators

Without more detailed information on the donation programmes, I cannot exclude

that donations were targeted, for example by giving priorities to households with a

female head, or with higher dependency ratio, or larger household size. To control

for these possibilities, I estimate the average treatment e�ect using two `double-

robust' treatment-e�ects estimators for observational data: the inverse-probability

weighting regression-adjusted (IPWRA) estimator, introduced by Wooldridge (2007,

2010) and the augmented inverse-probability weighting (AIPW) estimator, based on

Robins et al. (1995). Treatment-e�ects estimators are designed for binary, or at most

categorical, treatment variables.

These estimators combine two models, one to predict the treatment status of

each household and one to predict the potential outcome under the treatment and

under the control scenario for each household. A convenient property of IPWRA

and AIPW estimators is that they are `doubly robust', meaning that they provide

correct estimates of the treatment e�ect as long as at least one of the two models

is correctly speci�ed. Or equivalently, they are robust to misspeci�cation in one of

the two models (as long as the other one is correct).

Estimation of the ATE follows a three-step approach. First, the treatment model

is estimated using a a logistic regression and the predicted probability of being in the

treatment group (or propensity score) is used to construct the inverse-probability

weights. The following steps include estimating the regression model for the poten-

tial outcomes in each treatment status, conditioned on covariates, and then com-

paring the mean predicted outcome under treatment with the mean under control

to obtain the ATE. These two steps are di�erent depending on the estimator used

(StataCorp, 2014).

The inverse-probability weighting component of both estimators helps address

the endogeneity issue introduced by the problem of sample selection of households

into the treatment. The intuition is that after conditioning on covariates in both

models, the treatment and the potential outcomes should be independent from each

other, the assumption required for identi�cation of the ATE. It is e�ective as long

as participation in the programme is induced by `observable' characteristics of the

households, such as in the example of donations targeted to large households, and

as far as the observables considered in the analysis can control or proxy for relevant
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unobservable confounders (Rosenbaum and Rubin, 1983; Dehejia and Wahba, 2002).

Similar to matching estimators, the main identi�cation assumptions for the iden-

ti�cation of the ATE rely on conditional independence or selection on observables:

(Y1, Y0) ⊥⊥ D|X

and on the common-support, or overlap assumption, stating that every household

has a positive probability of being selected in the treatment group, or in the control

group:

0 < Pr(D = 1|X) < 1 for (almost all) X

To select the covariates and the functional form for the treatment model, I use

a Bayesian information criterion (BIC) minimisation procedure, as suggested by

Cattaneo et al. (2013) in the context of treatment-e�ects estimators. I consider

polynomials including di�erent combinations of covariates and interaction terms up

to the second order, and use the one with the minimum BIC as preferred speci�cation

for the treatment model. I specify the treatment model as a logit, and the outcome

model as a linear, logit or fractional logit speci�cations depending on whether the

outcome is continuous, binary or fractional. The overall model is estimated using

moment conditions on estimating equations and a GMM estimator, and a robust

sandwich estimator for the standard errors, corrected for the three-step procedure.

As a diagnostic tool for the overlap assumption, I plot the densities of the esti-

mated probability of being in the treatment or control group, as estimated in the

treatment model component of the regression. The resulting plots are shown in

Figure 3.5 and do not raise concerns against the validity of the overlap assump-

tion. To con�rm that the inverse-probability weighting is successful in balancing

the distribution of the covariates between the treatment and control group, I run

the overidenti�cation test for covariance balance, introduced by Imai and Ratkovic

(2014).

Endogenous treatment-e�ects estimator

As a further robustness check, I use an endogenous treatment-e�ects estimator that

accounts for the endogeneity of the treatment using a control-function approach

(Wooldridge, 2010). Similar to the other estimators described in this Section, this
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estimator consists of a treatment model to estimate the likelihood of belonging to the

treatment group, using a probit model; and an outcome model to explain the �nal

outcome under treatment and control condition, estimated using a linear, probit

or fractional regression depending on whether the outcome is continuous, binary, or

fractional. Applying the control-function approach, the residuals from the treatment

model are included in the outcome model as additional regressors. In this way the

model controls for the correlation between unobservables included in the error term

of the treatment model and the unobservables included in the error term of the

outcome model. This correlation is what causes the endogeneity problem discussed

above.

Under the control-function approach, an endogeneity test can be performed by

checking if the correlation between the unobservables in the two models � estimated

as an auxiliary parameter in the regression � is signi�cant.20 The null hypothesis

is that the correlation is not signi�cant, and there is therefore no endogeneity. In

this case, the results from the double-robust treatment-e�ects estimators are to be

preferred. The χ2 statistics and the p-value of the endogeneity test are included in

the Tables presented below.

Adjustment for multiple hypothesis testing

Because I test the e�ect of using a non-traditional cookstove on multiple outcomes,

signi�cant e�ects may be found simply due to chance; for example, at a 10% signif-

icance level, I can expect to mistakenly reject one null-hypothesis21 out of every ten

hypotheses I test. To address this issue, I correct the p-values of my tests to control

for the false discovery rate (FDR). Compared with other type of adjustments, such

as the Bonferroni correction, FDR-corrections do not reduce dramatically the power

of the test, which is important in my setting, due to the small sample size.

More speci�cally, I follow Anderson (2008) and Baird et al. (2019) and use the

two-stage q-values introduced by Benjamini et al. (2006). The procedure is a �sharp-

ened� version of the FDR correction in Benjamini and Hochberg (1995), and is

implemented using the code provided by Michael Anderson, as used in Anderson

(2008). The sharpened q-value is included in the Tables with estimates of the ATE,

20The endogenous treatment-e�ects estimator and the endogeneity test are implemented in Stata
15 using the command ete�ects and the corresponding post-estimation options.

21The null hypothesis is that the treatment has no e�ect on the outcome.
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below the p-value.

3.4.3 Data: outcomes, `treatment' and covariates

To test the hypotheses listed in the previous section, I construct a set of outcome

indicators, twof for each welfare dimension considered: total quantity of �rewood

consumed per month and quantity of �rewood consumed per hour of use of the stove

for energy e�ciency; whether smoke problems were reported and whether cooking-

related accidents were reported22 to explore health and safety bene�ts; how many

hours per day the stove is on and the total time spent in cooking-related activities

by all the members of the household (including cooking and fuel collection, purchase

and preparation) to investigate time savings; and �nally the share of the total time

that is contributed by female members of the household, and whether children are

involved in �rewood collection for the last dimension.

The main treatment (treatment) is an indicator of whether the respondent reports

their cookstove to be di�erent from the three-stone �re. For households that use a

secondary stove, the treatment is an indicator of whether both stoves are di�erent

from the three-stone �re. Due to the heterogeneity of the stoves and fuels used in

the camp, and the di�culty of identifying the quality tier of the products from just

one question, I use further information on the material of the stove and how it was

produced, the fuel used, whether the household cooks indoor and whether a chimney

is used, to construct three other versions of the treatment, and use them to assess

the robustness of the results. More speci�cally, I construct another binary indicator

that reassigns stoves of lower quality (for example artisanal and self-built) to the

control group (treatment adjusted), and two continuous indices, the �rst one as a

summative index that assigns a +1 score for characteristics associated with higher

quality and -1 for indicators of lower quality (treatment index ), and the second one

as a weighted average of the quality scores determined using factor analysis and

extracting the �rst factor using the Bartlett method (treatment pca)

To account for sample-selection into the treatment group using an instrumental

variable approach, I use whether the cookstove was received as a donation as instru-

ment. Detailed de�nitions of the treatment and outcome variables and how they

are constructed are provided in Appendix C.3, while summary statistics for these

22Almost no accidents were reported in Goudoubo, so this outcome is only analysed for Kakuma.
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variables and other characteristics of the sample are presented in Table C.2.

Several covariates representing households' characteristics such as wealth, demo-

graphics, decision-power and priority concerns around cooking, are used as controls

to model either the outcome or selection into the treatment. Due to the small sam-

ple size, I use factor analysis to synthesize information on the economic situation of

the household, and on the level of female empowerment, into indices.

The female empowerment index is constructed using information on whether

the head of the household is a woman, whether women in the household go out at

night, work outside the house, are studying, or their main activity is housekeeping,

whether large purchase decisions are responsibility of the woman or the man, whether

everyday purchases are responsibility of the woman or the man, and the gender-ratio

in the household.

The wealth index is constructed using information on the natural logarithm of

the per capita income of the household23, share of adults in the household who are

working, whether the household has a radio, tv, and lighting, how many mobile

phones per capita they have, whether they have a solar lamp or solar-home system

they purchased themselves (not received as donations).

The variables used for these indices are a mix of continuous and categorical

variables, so a matrix of polychoric correlation is constructed before running factor

analysis. After applying factor analysis, the �rst factor for each group of variables is

extracted using the Bartlett method. The wealth and female empowerment indices

are then constructed as weighted sums of the original variables, according to the

loading factors obtained.

3.4.4 Estimations of the average treatment e�ects

In this Section I present the results of the estimations of ATEs (average treatment

e�ects) using the estimation strategies presented in Section 3.4.2. Consistent with

the design of the di�erent estimators, I use the binary versions of the treatment with

the IPWRA, AIPW and endogenous treatment-e�ects estimator, and the continuous

indices in the IV and OLS speci�cations, the latter presented for comparison. I

use the di�erent de�nitions of the treatment de�ned above as robustness checks.

Estimated ATEs and potential outcome under no treatment, obtained with the

23The income is only used in Goudoubo, as the variable has many missing values in Kakuma
and has been found to be under-reported.
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treatment-e�ects estimators, are presented in Tables 3.12 to 3.15 for Goudoubo and

3.16 to 3.19 for Kakuma, including both the regular p-value and the sharpened

q-value adjusted for multiple-hypotheses testing in brackets.

The Chi square statistics and p-value for the endogeneity test when using the

endogenous treatment-e�ects estimator are also included in the Table. I fail to reject

the null hypothesis that the treatment is not endogenous at 10% signi�cance level

in all cases, and in all but one case at the 5% signi�cance level. The IPWRA and

AIPW are therefore my preferred estimators and I discuss those results in more

details for each camp; for all outcomes, results estimated with the IPWRA and the

AIPW estimators are very close. Figure 3.5 shows the overlap plots as a diagnostics

in favour of the validity of the overlap assumption.

Finally, Tables C.3 and C.8 show results for the �rst stage of the 2SLS used for

the IV speci�cation, for Goudoubo and Kakuma respectively, while Tables C.4 to C.7

present the results of the second stage (only the coe�cient for treatment index) for

Goudoubo and C.9 to C.12 for Kakuma, including also results from an OLS model

for comparison. Although the �rst-stage regressions support the relevance of the

instrument (stove donation is a positive and signi�cant predictor of the treatment

index), the F-statistics for the excluded instruments is small and less than 10 in both

camps, suggesting that the 2SLS estimates su�er from a weak instrument problem.

The result Tables therefore include a weak-instrument-robust p-value obtained from

the Anderson-Rubin (AR) test, and the sharpened q-values are calculated based

on these values rather than the Wald-test p-values. Due to the weak instrument

problem, these results are presented as a robustness check, and the IPWRA and

AIPW are con�rmed as the preferred speci�cations for the analysis.

Goudoubo

In Goudoubo, the use of non-traditional cookstoves appears to be associated with

signi�cant improvements in energy e�ciency, both in terms of total �rewood use, and

of �rewood per hour of use of the cookstove. Results estimated with the IPWRA and

the AIPW estimators are very close, and they are signi�cant even after correcting for

multiple-hypothesis testing with the sharpened q-values. Households who still cook

on a traditional cookstove are estimated to use on average around 130 kg of �rewood

per month and around 0.8 kg per hour when the stove is in use, while households who
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Figure 3.5: Plots of the estimated density of the probability of belonging to the treatment
group and to the control group.

only use non-traditional cookstoves save on average 48 kg of �rewood per month, and

0.25 kg per hour of stove use (Table 3.12). The savings are even larger when only

higher quality non-traditional stoves are considered as treatment (the treatment,

adjusted variable). These savings are equivalent to a 30-40% reduction in fuel use;

this is still shorter than the 40-60% decrease24 that the most common metallic

biomass ICS introduced in the camp was supposed to deliver.

In terms of health and safety, I only test the e�ect of the treatment on the like-

lihood of reporting smoke problems, as almost no accidents were reported in the

survey, and using non-traditional stoves is again signi�cantly associated with im-

provements in this dimension, with a sharpened q-value smaller than 0.01 (Table

3.13). Households cooking with a traditional cookstove are estimated to have on

average a 50% chance to have reported smoke problems, while this is only 20% on

average for households using non-traditional cookstoves. Again, the bene�ts are esti-

24According to key informant interviews conducted by the Moving Energy Initiative.
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Table 3.12: Estimated ATE on energy e�ciency, Goudoubo.

ipwra aipw ete�ects
tot �rewood qty treat. tr. adj. treat. tr. adj. treat. tr. adj.

ATE -47.92∗ -63.81∗∗ -47.61∗ -60.72∗ -9.30 -21.23
(20.889) (20.885) (24.002) (24.237) (73.550) (58.421)

p-value [0.022] [0.002] [0.047] [0.012] [0.899] [0.716]
sharp.d q-value [0.038] [0.004] [0.086] [0.016] [1.000] [1.000]

POmean (t=0) 129.99∗∗∗ 135.57∗∗∗ 124.92∗∗∗ 127.47∗∗∗ 131.79∗ 107.68∗

(18.557) (19.229) (20.357) (21.557) (58.958) (48.673)

N 104 104 104 104 104 104
endog. chi2 [p-value] 1.17 [0.56] 0.88 [0.64]

ipwra aipw ete�ects
�rewood per hour treat. tr. adj. treat. tr. adj. treat. tr. adj.

ATE -0.26∗ -0.43∗∗ -0.25+ -0.40∗ 0.11 -0.05
(0.120) (0.151) (0.137) (0.156) (0.455) (0.333)

p-value [0.031] [0.005] [0.068] [0.010] [0.805] [0.884]
sharp.d q-value [0.041] [0.006] [0.093] [0.016] [1.000] [1.000]

POmean (t=0) 0.76∗∗∗ 0.84∗∗∗ 0.73∗∗∗ 0.79∗∗∗ 0.72∗ 0.58∗

(0.082) (0.137) (0.096) (0.137) (0.311) (0.263)

N 104 104 104 104 104 104
endog. chi2 [p-value] 1.38 [0.50] 1.36 [0.51]

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

mated to be even larger when only higher-quality stoves are considered as treatment,

and results are almost identical between the IPWRA and AIPW estimator.

Table 3.13: Estimated ATE on health and safety, Goudoubo.

ipwra aipw ete�ects
smoke problems treat. tr. adj. treat. tr. adj. treat. tr. adj.

ATE -0.31∗∗∗ -0.34∗∗∗ -0.31∗∗∗ -0.33∗∗∗ -0.26 -0.26
(0.075) (0.061) (0.067) (0.065) (0.203) (0.204)

p-value [0.000] [0.000] [0.000] [0.000] [0.198] [0.194]
sharp.d q-value [0.001] [0.001] [0.001] [0.001] [0.495] [0.830]

POmean (t=0) 0.51∗∗∗ 0.51∗∗∗ 0.51∗∗∗ 0.51∗∗∗ 0.46∗ 0.37+

(0.064) (0.057) (0.057) (0.060) (0.193) (0.195)

N 126 126 126 126 126 126
endog. chi2 [p-value] 0.07 [0.97] 0.44 [0.80]

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The results are less encouraging with respect to time savings and share of the

workload shouldered by women, while further bene�ts appear in terms of children

involvement in �rewood collection (Tables 3.14 and 3.15). The estimators detect a

reduction of a little more than 1 hour in the number of hours per day the stove is in

use, from an estimated baseline of almost 7 hours per day for traditional cookstoves,

but the di�erence is only marginally signi�cant (p-values and sharpened q-values
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are all close to or slightly above 0.1). Di�erences in the tot amount of time spent

in cooking-related activities are not statistically signi�cant, although the sign of the

ATE is again negative, consistent with time savings; the total amount of time spent

by all household members in these activities is estimated to be 50 hours per week.

Results in the following Table con�rm that this workload is not shared equally

among the members, as on average 75% of these hours are inputted by female

members � note that on average 52% of the household members are female, and

the median household has exactly the same number of female and male members.

This outcome does not appear to change depending on the type of stove used. The

likelihood that children participate in �rewood collection is instead signi�cantly

lower in households that use non-traditional cookstoves (sharpened q-values < 0.5),

possibly related to the fuel savings found above. For households using traditional

stoves there is a 40% probability that children are involved in �rewood collection;

this is less than 20% in households using non-traditional cookstoves. Again, the

bene�ts are slightly larger when considering the adjusted treatment.

Table 3.14: Estimated ATE on time use, Goudoubo.

ipwra aipw ete�ects
hours of stove use treat. tr. adj. treat. tr. adj. treat. tr. adj.

ATE -1.19+ -1.16+ -1.46 -1.51 2.95+ 2.43
(0.668) (0.665) (0.913) (0.965) (1.721) (1.544)

p-value [0.075] [0.080] [0.109] [0.118] [0.086] [0.115]
sharp.d q-value [0.058] [0.051] [0.123] [0.076] [0.431] [0.830]

POmean (t=0) 6.61∗∗∗ 6.58∗∗∗ 6.84∗∗∗ 6.86∗∗∗ 2.16 2.58+

(0.571) (0.569) (0.832) (0.887) (1.684) (1.480)

N 126 126 126 126 126 126
endog. chi2 [p-value] 4.51 [0.11] 4.24 [0.12]

ipwra aipw ete�ects
tot time treat. tr. adj. treat. tr. adj. treat. tr. adj.

ATE
r1vs0.treat -1.99 -4.35 -1.38 -4.19 15.55 14.40

(5.983) (5.900) (6.265) (6.311) (14.718) (15.080)
p-value [0.739] [0.461] [0.825] [0.507] [0.291] [0.340]
sharp.d q-value [0.268] [0.152] [0.309] [0.197] [0.571] [0.830]

POmean (t=0) 49.71∗∗∗ 50.80∗∗∗ 48.65∗∗∗ 50.04∗∗∗ 32.14∗∗ 31.00∗

(5.516) (5.393) (5.684) (5.567) (12.268) (12.444)

N 125 125 125 125 125 125
endog. chi2 [p-value] 1.55 [0.46] 2.06 [0.36]

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

None of the estimated ATE is signi�cant when using the endogenous treatment-

e�ects estimator, but given that the endogeneity test in this model fails to reject
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Table 3.15: Estimated ATE on women and children workload, Goudoubo.

ipwra aipw ete�ects
female share of work treat. tr. adj. treat. tr. adj. treat. tr. adj.

ATE 0.05 0.05 0.04 0.06 -0.15+ -0.12
(0.045) (0.044) (0.058) (0.056) (0.082) (0.085)

p-value [0.300] [0.234] [0.482] [0.314] [0.062] [0.145]
sharp.d q-value [0.118] [0.127] [0.192] [0.187] [0.431] [0.830]

POmean (t=0) 0.75∗∗∗ 0.74∗∗∗ 0.76∗∗∗ 0.75∗∗∗ 0.90∗∗∗ 0.88∗∗∗

(0.037) (0.035) (0.052) (0.049) (0.040) (0.042)

N 124 124 124 124 124 124
endog. chi2 [p-value] 4.49 [0.11] 4.63 [0.10]

ipwra aipw ete�ects
children involv. treat. tr. adj. treat. tr. adj. treat. tr. adj.

ATE -0.22∗∗ -0.26∗∗∗ -0.24∗∗ -0.29∗∗ 0.02 -0.01
(0.073) (0.072) (0.091) (0.095) (0.225) (0.214)

p-value [0.003] [0.000] [0.007] [0.002] [0.937] [0.956]
sharp.d q-value [0.010] [0.001] [0.023] [0.007] [1.000] [1.000]

POmean (t=0) 0.39∗∗∗ 0.42∗∗∗ 0.41∗∗∗ 0.45∗∗∗ 0.18 0.16
(0.067) (0.067) (0.088) (0.093) (0.202) (0.188)

N 126 126 126 126 126 126
endog. chi2 [p-value] 0.84 [0.66] 1.44 [0.49]

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

the null hypothesis of non-endogeneity of the treatment, I consider the IPWRA and

AIPW as preferred estimators. As a robustness check, I compare these results with

estimates from a simple OLS model and a 2SLS model for IV using the indices

representing the quality of the cooking system. The magnitude of the estimates are

not directly comparable with the results in the previous tables, as the treatment

here is a continuous index and not a binary indicator, but I can compare the sign

and signi�cance of the results. The general results obtained in the previous analysis

are con�rmed by both the OLS and the 2SLS estimators, but none of the treatment

coe�cients in the IV models is signi�cant, especially after correcting for multiple-

hypothesis testing with the sharpened q-values (Table C.4-C.7).

Kakuma

The average �rewood consumption in Kakuma is much lower than in the other camp,

with household cooking on a traditional three-stone �re estimated to use around 40

kg of �rewood per month and 0.20 kg per hour of use of the cookstove (Table 3.16).

This di�erence is possibly due to a larger use of charcoal in Kakuma.

Contrary to the results in Goudoubo, in Kakuma I �nd no signi�cant di�erences
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in terms of the total �rewood consumed in a month, and even �nd an increase of

about 100 grams in the amount of �rewood needed to fuel the stove for one hour,

although the latter is only marginally signi�cant, especially when considering the

sharpened q-values.

As discussed in the hypothesis Section, these results do not necessarily mean lack

of improvement in energy e�ciency, although this is certainly one of the potential

explanation. In fact, households already consume much smaller amounts of �rewood

compared to the other camp (although this is partly due to the larger use of charcoal

in Kakuma) and given the large number of reported accidents and smoke problems in

Kakuma, camp administrators might have prioritised the introduction of cooksoves

that improve health and safety issues rather than fuel e�ciency.

Another possible explanation is that there are constraints to the availability of

�rewood and households optimal choice would be to consume more if there was

more available; in this case, even if the non-traditional stoves are more e�cient, the

households would still consume all the fuel they can get access to, and there would be

no di�erence in the total amount of fuel used. In support of this explanation, focus

group participants have been very vocal in complaining that �rewood distributed

in the camp is insu�cient to cover basic needs, and that the host community is

preventing �rewood collection in the local forests.25

The increase in �rewood used per hour may be reconciled with the lack of dif-

ferences in the overall amount of �rewood used if the non-traditional stoves cook

faster than the traditional ones and are therefore used for fewer hours. At the same

time, if there are binding availability constraint and the non-traditional cookstoves

burn the fuel faster, then the households have no choice but to use the stoves for

a shorter time. Without further information on the amount of food cooked and

whether households cannot purchase more fuel even if they want to, I cannot draw

any conclusion on energy e�ciency.26

In terms of health and safety, non-traditional cookstoves are associated with a

smaller probability of smoke problems � from about 70-80% for households using a

three-stone �re to 60% for households in the treatment group � but no signi�cant

di�erences in the probability of accidents � around 60-70% for all the households

(Table 3.17).

25From focus group discussions conducted by the Moving Energy Initiative.
26The fact that charcoal is often used instead of �rewood adds an additional nuance to the issue,
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Table 3.16: Estimated ATE on energy e�ciency, Kakuma.

ipwra aipw ete�ects
tot �rewood qty treat. tr. adj. treat. tr. adj. treat. tr. adj.

ATE -2.95 1.68 -4.80 3.58 -38.16 1.97
(7.261) (5.727) (7.683) (7.298) (28.079) (16.526)

p-value [0.684] [0.769] [0.532] [0.624] [0.174] [0.905]
sharp.d q-value [0.416] [0.478] [0.438] [0.368] [0.685] [1.000]

POmean (t=0) 42.07∗∗∗ 36.86∗∗∗ 43.87∗∗∗ 35.51∗∗∗ 84.21∗∗ 50.27∗∗∗

(6.289) (3.990) (6.617) (5.679) (27.322) (14.359)

N 175 175 175 175 175 175
endog. chi2 [p-value] 3.40 [0.18] 3.71 [0.16]

ipwra aipw ete�ects
�rewood per hour treat. tr. adj. treat. tr. adj. treat. tr. adj.

ATE 0.12∗ 0.13∗ 0.09 0.12+ -0.14 -0.01
(0.056) (0.055) (0.060) (0.066) (0.258) (0.151)

p-value [0.029] [0.023] [0.115] [0.058] [0.584] [0.949]
sharp.d q-value [0.038] [0.074] [0.168] [0.133] [1.000] [1.000]

POmean (t=0) 0.19∗∗∗ 0.20∗∗∗ 0.22∗∗∗ 0.21∗∗∗ 0.49+ 0.33∗∗

(0.041) (0.031) (0.045) (0.043) (0.248) (0.110)

N 175 175 175 175 175 175
endog. chi2 [p-value] 1.73 [0.42] 1.80 [0.41]

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 3.17: Estimated ATE on health and safety, Kakuma.

ipwra aipw ete�ects
smoke problems treat. tr. adj. treat. tr. adj. treat. tr. adj.

ATE -0.19∗∗ -0.03 -0.19∗∗ -0.01 -0.04 -0.14
(0.071) (0.068) (0.072) (0.081) (0.191) (0.174)

p-value [0.007] [0.652] [0.010] [0.859] [0.854] [0.435]
sharp.d q-value [0.015] [0.478] [0.021] [0.476] [1.000] [1.000]

POmean (t=0) 0.83∗∗∗ 0.67∗∗∗ 0.83∗∗∗ 0.67∗∗∗ 0.56∗∗ 0.60∗∗∗

(0.058) (0.051) (0.060) (0.065) (0.194) (0.138)

N 213 213 213 213 213 213
endog. chi2 [p-value] 3.22 [0.20] 1.97 [0.37]

ipwra aipw ete�ects
accidents treat. tr. adj. treat. tr. adj. treat. tr. adj.

ATE -0.08 0.09 -0.07 0.11 -0.17 -0.19
(0.065) (0.070) (0.075) (0.081) (0.127) (0.134)

p-value [0.231] [0.202] [0.366] [0.168] [0.171] [0.165]
sharp.d q-value [0.182] [0.193] [0.355] [0.202] [0.685] [1.000]

POmean (t=0) 0.70∗∗∗ 0.58∗∗∗ 0.69∗∗∗ 0.57∗∗∗ 0.79∗∗∗ 0.72∗∗∗

(0.051) (0.057) (0.063) (0.067) (0.105) (0.071)

N 213 213 213 213 213 213
endog. chi2 [p-value] 0.44 [0.80] 3.11 [0.21]

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Estimates of the ATEs for the time use outcome, in Table 3.18 con�rm that

non-traditional cookstoves are indeed used for shorter time: around 9 hours per day

against the 10-14 hours per day of the traditional stoves. The di�erence is smaller

and only marginally signi�cant when using the adjusted treatment, suggesting that

the cookstoves that have been re-assigned to the control group in this treatment

de�nition might actually be of good quality.

In terms of overall time spent in cooking-related activities, the sign of the es-

timated ATE is negative, but the e�ects are not signi�cant, and much smaller in

magnitude than would be predicted by the reduction in hours of stove use found

above. To further investigate the issue I repeat the analysis for each cooking-related

activity separately � cooking, �rewood collection, fuel purchase and fuel prepara-

tion � and �nd that while cooking time decreases slightly, fuel purchase and fuel

preparation for non-traditional cookstoves take up more time if the household uses

a non-traditional cookstove (tables not presented due to space constraints). This

is consistent with the fact that some non-traditional cookstoves use charcoal or

specially-prepared �rewood.

Table 3.18: Estimated ATE on time use, Kakuma.

ipwra aipw ete�ects
hours of stove use treat. tr. adj. treat. tr. adj. treat. tr. adj.

ATE -4.96∗∗∗ -1.75+ -4.78∗∗∗ -1.64 -2.97 -2.95
(0.969) (0.978) (1.056) (1.019) (4.431) (2.673)

p-value [0.000] [0.073] [0.000] [0.108] [0.503] [0.269]
sharp.d q-value [0.001] [0.102] [0.001] [0.185] [1.000] [1.000]

POmean (t=0) 13.66∗∗∗ 10.50∗∗∗ 13.53∗∗∗ 10.37∗∗∗ 11.73∗∗ 12.31∗∗∗

(0.840) (0.813) (0.936) (0.834) (4.201) (2.164)

N 213 213 213 213 213 213
endog. chi2 [p-value] 0.20 [0.91] 1.02 [0.60]

ipwra aipw ete�ects
tot time treat. tr. adj. treat. tr. adj. treat. tr. adj.

ATE -1.28 -1.48 -2.60 -5.90 -0.17 3.76
(5.112) (3.719) (5.213) (5.127) (20.671) (12.695)

p-value [0.803] [0.690] [0.619] [0.250] [0.993] [0.767]
sharp.d q-value [0.431] [0.478] [0.448] [0.263] [1.000] [1.000]

POmean (t=0) 24.27∗∗∗ 25.42∗∗∗ 25.52∗∗∗ 29.63∗∗∗ 31.68 27.29∗∗

(4.721) (3.121) (4.840) (4.729) (19.381) (10.419)

N 200 200 200 200 200 200
endog. chi2 [p-value] 3.07 [0.22] 1.62 [0.44]

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The share of the total time shouldered by women is again 70-80%, although in

which I do not explore in this Chapter.
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Kakuma as well as in Goudoubo the median household has exactly the same number

of female and male members, and on average women and girls represent 52% of the

household members; when using the adjusted treatment, there are some evidence

that men contribute more in households with non-traditional cookstoves, but this is

only marginally signi�cant when considering the sharpened q-value. Signi�cant and

robust improvements are instead found in terms of children involvement in �rewood

collection � from a 50% probability of participating in households using three-stone

�res, to 20-25% in households with non-traditional cookstoves (Table 3.19).

Table 3.19: Estimated ATE on women and children workload, Kakuma.

ipwra aipw ete�ects
female share of work treat. tr. adj. treat. tr. adj. treat. tr. adj.

ATE 0.09 -0.08∗ 0.06 -0.09∗ 0.45∗∗ 0.13
(0.059) (0.039) (0.067) (0.039) (0.154) (0.106)

p-value [0.131] [0.030] [0.392] [0.023] [0.004] [0.212]
sharp.d q-value [0.118] [0.074] [0.355] [0.086] [0.030] [1.000]

POmean (t=0) 0.66∗∗∗ 0.81∗∗∗ 0.69∗∗∗ 0.81∗∗∗ 0.29+ 0.65∗∗∗

(0.054) (0.033) (0.063) (0.034) (0.149) (0.102)

N 192 192 192 192 192 192
endog. chi2 [p-value] 2.48 [0.29] 5.19 [0.07]

ipwra aipw ete�ects
children involv. treat. tr. adj. treat. tr. adj. treat. tr. adj.

ATE -0.29∗∗∗ -0.27∗∗∗ -0.25∗∗∗ -0.25∗∗∗ -0.06 -0.02
(0.065) (0.057) (0.071) (0.064) (0.202) (0.151)

p-value [0.000] [0.000] [0.000] [0.000] [0.757] [0.891]
sharp.d q-value [0.001] [0.001] [0.002] [0.001] [1.000] [1.000]

POmean (t=0) 0.50∗∗∗ 0.46∗∗∗ 0.47∗∗∗ 0.47∗∗∗ 0.31+ 0.28∗

(0.054) (0.043) (0.060) (0.049) (0.183) (0.116)

N 213 213 213 213 213 213
endog. chi2 [p-value] 0.89 [0.64] 2.75 [0.25]

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Again, none of the estimated ATEs is signi�cant when using the endogenous

treatment-e�ects estimator, but the endogeneity test in this model fails to reject

the null hypothesis of non-endogeneity of the treatment, supporting the use of the

IPWRA and AIPW as preferred estimators. Similarly, none of the estimated treat-

ment coe�cients is signi�cant when using an IV model in Tables C.9-C.12 (the only

exception is for the children outcome, but becomes insigni�cant too when correcting

for multiple-hypothesis testing). The OLS model con�rms that non-traditional cook-

stoves are associated with signi�cantly fewer hours of stove use, smaller probability

of children participation in �rewood collection, and less smoke problems (the latter

only marginally signi�cant) but �nds no signi�cant e�ects on the other outcomes
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(using the sharpened q-values as reference for signi�cance).

3.5 Part 3: Linking stated preferences and predicted

bene�ts

In this last Section, I bridge the results on the predicted bene�ts � or lack thereof

� of using non-traditional cookstoves with the stated preferences for hypothetical

improvements. To do this, I use the estimates from Wooldridge's double-robust

IPWRA estimator to predict the treatment e�ect for each household in the various

outcomes. The distributions of the bene�ts across the two samples are plotted in

Figure 3.6. Notably, there is some variation in whether transitioning to the non-

traditional cookstoves results in gains or losses.

I then test whether respondents from households who are predicted to have the

most to gain from moving away from the three-stone �res are also the ones who

have higher willingness to pay for non-traditional cookstoves. I limit the analysis

to the WTP for biomass-fuelled ICS (basic; enhanced using wood; enhanced using

charcoal) as these represent the non-traditional cookstoves on which the treatment

e�ects estimates are based. To obtain the partial correlation coe�cients, I use an

OLS regression with WTP as the dependent variable and the predicted outcomes

as regressors. Given that the total quantity of �rewood used in a month and the

amount of �rewood per hour of stove use are highly correlated, I only use the lat-

ter to avoid collinearity problems. For the same reason, I only use the predicted

e�ect on total time use and exclude the number of hours the stove is used for. The

predicted outcomes are interacted with the gender of the respondent, to investigate

whether men or women are better at factoring the predicted gains into their val-

uation, especially considering that some outcomes a�ect each gender di�erently �

women would bene�ts more directly from reduction in smoke exposure and cooking

time, while men may bene�ts more directly from reductions in fuel expenditures. As

additional controls, the regressions include the wealth index, the size of the house-

hold in adult-equivalent term (with children weighted as 0.5 adults and the elderly

as 0.8), the respondent's age and gender, an interaction between whether the respon-

dents is a woman and the female empowerment index, and the cooking priorities of

the household.
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Figure 3.6: Distribution of the predicted gains for households in each camp.

In Goudoubo (Table 3.20) women's WTP for each stove tend to be higher when

there are larger predicted reductions in �rewood use, probability of smoke prob-

lems and time spent in cooking-related activities, although these coe�cients are
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ony signi�cant for the enhanced �rewood-ICS. The coe�cients for smoke problems

and time use even switch sign for men, suggesting that they are less successful at

predicting the improvements and factoring them in their valuation. Similarly, in

Kakuma (Table 3.21) women's WTP for all three cookstoves are signi�cantly cor-

related with predicted reductions in �rewood use, smoke problems, and accidents

(the latter only marginally signi�cant). Again, the sign of the same coe�cients are

switched for men.

3.6 Conclusion

While cultural acceptability and budget constraints have often be mentioned in the

literature as the main hurdles to transition towards cleaner energy solutions, low

expectations regarding the performances of the new systems contribute to explain

low willingness to pay and low take-up. On one side, the innovations currently

marketed might not actually deliver the improvements they promise, or at least

not to a level that would justify the high premium required for their purchase � as

well as the cognitive e�ort of adjusting habits and behaviours. On the other side,

even if they do deliver on their promises, the improvements and features of the new

technologies might not match households' priorities and preferences.

In this Chapter, I investigate these issues in a context where resources are par-

ticularly scarce, and transitioning to a cleaner energy system is especially urgent,

namely refugee camps in Sub-Saharan Africa. Given the substantial amount of time

and resources refugees spend on cooking, the essential services cooking provide to

everyday life, and the range of negative impacts linked to the use of three-stone

�res and biomass-fuelled cookstoves, the technological innovations I focus on are

non-traditional cookstoves. To this purpose, I use a novel dataset based on a sur-

vey administered in Goudoubo camp (Burkina Faso) and Kakuma camp (Kenya),

which includes modules to elicit respondents' stated preferences for a range of non-

traditional cooking systems: LPG, biogas, solar cooker, electric cooker, and di�erent

types of biomass-based ICS.

Analysing respondents' valuation of these technologies, I �nd a strong interest

for LPG in both camps, while any favouritism or dislike for the other technologies

tend to fade away once the perceived characteristics of the system are accounted for.

I further �nd that priority heterogeneity a�ects the valuation of speci�c technologies
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Table 3.20: Partial correlations between predicted bene�ts and (winsorized) WTP for non-
traditional biomass cookstoves (OLS model). Goudoubo.

Goudoubo (1) Goudoubo (2) Goudoubo (3)
Basic ICS Enhanced ICS, wood Enhanced ICS, coal

pred. e�ect on wood per hour -7.53 -1.91 1.21
(5.364) (3.828) (1.977)

" X female respond -4.05 -1.59 -1.81
(3.884) (2.018) (2.666)

pred. e�ect on smoke 0.47 5.80∗ 0.88
(1.527) (2.760) (1.480)

" X female respond -0.48 -6.75∗ -2.08
(2.853) (3.193) (2.656)

pred. e�ect on tot time 0.16 0.08 0.10
(0.110) (0.091) (0.070)

" X female respond -0.13 -0.35∗ -0.05
(0.119) (0.153) (0.109)

pred. e�ect on children involv. 13.02 4.71 -5.64
(14.230) (10.457) (5.671)

" X female respond 6.49 13.02∗ 3.33
(8.664) (6.412) (7.084)

pred. e�ect on fem. share of work -1.59 3.19 -3.65
(4.369) (4.194) (2.195)

" X female respond 4.97 0.21 3.60
(4.440) (5.256) (4.360)

wealth index -0.83 -0.96 0.37
(1.536) (1.369) (1.125)

adult-equiv size 1.32+ -0.22 0.01
(0.757) (0.751) (0.355)

respondent's age -0.12 -0.08 0.01
(0.084) (0.057) (0.033)

female respondent -0.30 -5.79 0.78
(2.860) (4.092) (2.076)

" X fem empower index 15.97 9.47 -0.31
(12.958) (8.352) (7.321)

top safe -2.11 -2.84 0.90
(1.828) (2.208) (1.671)

top less smoke 0.91 -0.80 1.59+

(1.215) (1.189) (0.919)
top cook fast 0.44 3.89 -2.53

(3.108) (3.124) (1.643)
top traditions & habits -0.32 1.35 0.05

(0.923) (0.923) (1.006)
top less fuel -10.47∗ 0.85 -0.72

(5.175) (4.534) (2.908)

N 101 96 100
r2 0.25 0.30 0.14
r2_a 0.06 0.11 -0.08

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3.21: Partial correlations between predicted bene�ts and (winsorized) WTP for non-
traditional biomass cookstoves (OLS model). Kakuma.

Kakuma (1) Kakuma (2) Kakuma (3)
Basic ICS Enhanced ICS, wood Enhanced ICS, coal

pred. e�ect on wood per hour 5.91 6.71 6.56
(7.290) (7.174) (6.885)

" X female respond -15.52∗∗ -18.01∗∗ -16.08∗

(5.677) (6.131) (6.235)
pred. e�ect on smoke 16.36∗ 21.12∗∗∗ 19.12∗∗

(6.335) (5.827) (5.937)
" X female respond -11.91∗ -12.76∗ -10.77∗

(4.610) (5.059) (4.876)
pred. e�ect on accidents -0.94 1.61 -0.09

(2.375) (2.535) (2.536)
" X female respond -0.38 -4.44+ -2.79

(2.310) (2.601) (2.495)
pred. e�ect on tot time -0.08 -0.08 -0.09

(0.064) (0.078) (0.077)
" X female respond 0.06 0.07 0.08

(0.077) (0.095) (0.092)
pred. e�ect on children involv. -0.89 -0.12 -0.91

(4.682) (5.117) (4.575)
" X female respond 0.09 -0.81 -0.95

(4.622) (5.153) (4.580)
pred. e�ect on fem. share of work 13.53∗∗ 16.03∗∗∗ 14.34∗∗

(4.710) (4.340) (4.382)
" X female respond -7.34 -4.76 -3.75

(5.197) (5.870) (5.714)
wealth index -0.29 -0.11 1.15

(2.176) (2.267) (2.177)
adult-equiv size 1.73∗ 2.32∗∗∗ 1.94∗∗

(0.730) (0.657) (0.713)
respondent's age -0.07+ -0.13∗∗ -0.10∗

(0.042) (0.047) (0.042)
female respondent -5.31+ -5.91∗ -5.45+

(3.168) (2.970) (2.998)
" X fem empower index 8.16∗ 10.00∗∗ 8.11∗

(3.335) (3.758) (3.646)
top safe 1.42 2.52 1.63

(2.529) (2.269) (2.401)
top less smoke 5.07∗ 8.23∗∗∗ 7.39∗∗

(2.385) (2.114) (2.343)
top cook fast 0.91 1.34 0.67

(1.834) (1.910) (1.933)
top traditions & habits 2.27∗ 3.33∗∗ 2.37∗

(0.981) (1.118) (1.012)
top less fuel -3.87∗ -4.32∗ -4.12∗

(1.697) (1.906) (1.902)

N 174 150 166
r2 0.27 0.39 0.34
r2_a 0.17 0.29 0.24

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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and characteristics, with households prioritising smoke reductions and safety having

higher valuation for related characteristics, and households prioritising habits and

traditions having lower valuation for non-biomass cookstoves than the rest of the

sample. This also holds in terms of broader priorities of the two settings, with house-

holds in Kakuma displaying a stronger interest for health and safety improvements

than households in Goudoubo, consistent with the di�erence between the two camps

in terms of indoor cooking and prevalence of smoke problems and cooking-related

accidents. Previous experience with a technology is not necessarily associated with

higher valuation, and the coe�cient is even negative for some technologies, suggest-

ing that unsuccessful trials and the introduction of cookstoves that do not perform

as expected might have deleterious e�ects and induce even more skepticism towards

related products.

In the second part, I then estimate how the supposedly `improved' cooking sys-

tems currently used in the two locations perform compared to the traditional three-

stone �res in terms of energy e�ciency, health and safety, household time use, and

women and children workload. I �nd that the use of (mostly biomass-fuelled) non-

traditional cookstoves in Goudoubo is associated with lower �rewood use, lower

incidence of smoke problems and smaller likelihood of children participating in �re-

wood collection. In Kakuma I �nd some improvements in terms of smoke problems,

shorter use of the cookstove, and less involvement of children in �rewood collec-

tion for households using non-traditional cookstoves, but no evidence of fuel savings

or smaller incidence of accidents, and possibly even an increase in the time spent

preparing and procuring fuel.

In the last part of the Chapter, I link the results on the estimated bene�ts of

using non-traditional cookstoves with the stated preferences for hypothetical im-

provements, and look at whether the households who are predicted to have more to

gain from the non-traditional stoves introduced in the camps are also the ones who

value them higher. I �nd that women seem to be on average better than men at fac-

toring the bene�ts into their valuation. This is especially true for smoke reduction

and time savings for women in Goudoubo, and smoke and accident reductions and

fuel savings for women in Kakuma. This is consistent with the fact that women are

the one shouldering most of the responsibilities of cooking and fuel collection and

that their time use and health are impacted more directly.

While this research provides some initial insights on the energy situation, needs
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and preferences in humanitarian settings, I acknowledge the limitation of the data

available to draw any general conclusion. To better understand these issues, more

research is needed on preferences and performances of non-traditional stoves in the

�eld, especially in understudied but vulnerable settings such as refugee camps, as

well as more rigorous evaluation of the interventions being trialled. With this caveat

in mind, in terms of policy implications the results of this Chapter point towards

a need for better quality controls, information, and hand-on experience with non-

traditional stoves, to �ght skepticism towards the new technologies; but also towards

the importance of considering heterogeneity in individual preferences and priorities.

On the latter aspect, it should be acknowledged that mismatches often exist between

who has the resources and decision-making power � often men and adults of the

family � and who su�ers more directly from the use of traditional cookstoves � often

women and the younger members, whose preferences may remain unrevealed and

unsatis�ed.

A more participatory approach to the design and provision of new technological

solutions would therefore make sure that the products that reach the households

and the local markets are compatible with the local circumstances and o�er vari-

ety rather than a one-size-�ts-all solution. At the same time, access to information

and �rst-hand trialling of the stoves would help make informed decisions, but in

contexts where resources and purchasing power are extremely tight, as it is often

the case among refugees, �nancial arrangements and subsidies would still be needed

if households are even to consider switching to modern cookstoves and fuels, es-

pecially for systems that generate positive externalities such as the more modern

and cleaner non-biomass stoves. Finally, more and more evidence is being found

that intra-household dynamics are an important dimension of the low-carbon en-

ergy transition, and that negotiation, decision-making power and �nancial resource

access for the members who are su�ering the most from the use of traditional and

biomass cookstoves are crucial to make sure their voices are heard and they have the

means to choose according to their needs and priorities. Ultimately, these comple-

mentary steps might prove key to make sure that non-traditional technologies are

accepted, understood and used correctly, and that sustained welfare improvements

are therefore achieved.
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Chapter 4

Preferences for cooking with biogas

in rural India: the role of positive

and negative experience

4.1 Introduction1

Burning fuelwood and other solid biomass, such as dung or crop residues, in in-

e�cient stoves with no ventilation systems is still a common practice worldwide,

especially among rural populations in lower income countries. This persistent and

pernicious trend has negative consequences on several dimensions, from the health

and safety of the household members (Gordon et al., 2014; Jeuland et al., 2015b;

Lewis et al., 2016), and the expending of scarce time and resources to �nd fuel

(Tinker, 1987; Lewis et al., 2016), to negative environmental externalities such as

deforestation (Bensch and Peters, 2013), local pollution and climate change (Jeuland

and Pattanayak, 2012; Pant et al., 2014). Policy interventions and campaigns to en-

courage households to adopt cleaner cookstoves and correct negative externalities

through subsidies are therefore underway in several countries. India, as one of the

world hot-spot for biomass burning and persistent use of traditional and ine�cient

1The research presented in this Chapter is the result of a collaboration with Subhrendu K. Pat-
tanayak and Ipsita Das (Sanford School of Public Policy, Duke University, United States), Jessica
Lewis (World Health Organization, Geneva, Switzerland), and Ashok Kumar Singha (CTRAN
Consulting, Bhubaneswar, India), with support from SANDEE (the South Asian Network for
Development and Environmental Economics). My contribution consisted of specifying the re-
search question together with Subhrendu Pattanayak, analysing the data and writing the paper.
Subhrendu Pattanayak, Ipsita Das, Jessica Lewis, and Ashok Kumar Singha contributed to de�ne
the broader research project of which this study is part (together with Somnath et al., 2014 and
Lewis et al., 2016) and led the data collection.
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cookstoves, has long been at the forefront of action, with the national and local

governments and several NGOs and international organisations providing generous

incentives for cleaner fuels such as LPG, kerosene, and biogas, as well as information

and awareness campaigns.

Yet, improvements often fail to materialise, both in terms of uptake of the cleaner

technologies, and in terms of results once they enter the house (Whittington, 2010;

Mobarak et al., 2012; Jeuland and Pattanayak, 2012). On the latter issue, recent

studies have highlighted how households tend to keep using the traditional cook-

stoves side by side the new ones rather than switching completely, a practice de�ned

as fuel-stacking (Jeuland et al., 2015a). In some cases the use of the cleaner cook-

stove has even been seen to decline over time, often due to loss of functionality

because of lack of proper maintenance or repair services, supply-constraints on the

fuel, or just loss of interest and negative perception of the taste of food cooked with

the new systems (Hanna et al., 2016).

The continuous use of ine�cient and polluting cookstoves and solid biomass fuel,

even if only for a share of total cooking, is still enough to generate harmful indoor

air pollution, and consequent health problems (World Health Organization, 2015).

In fact, indoor air pollution is currently one of the main health problems in the

developing world (World Health Organization, 2009).

On the issue of low uptake and low willingness to pay (WTP) for non-traditional

cookstoves, studies have pointed towards a�ordability and credit constraints, lack of

awareness of the negative impacts of traditional cooking, supply-side constraints and

therefore unavailability of clean fuels and clean cookstoves, as well as the fact that

some of the technologies o�ered are not appropriate for the context in which they are

introduced, for example in terms of households' needs and size, cultural background,

and type of food cooked (Beltramo et al., 2015; Bensch et al., 2015; Miller and

Mobarak, 2015). Another understudied issue that compounds these challenges, is

that households have heterogeneous preferences for cooking and cookstoves, even

within relatively homogeneous population such as that of a village. So one-size-�ts-

all solutions are unlikely to exist and care must be used to understand the speci�c

needs, tastes and situations on the ground (Pant et al., 2014).

In this study, we focus in particular on heterogeneity in terms of previous positive

and negative experience (or no experience) with the cooking technology o�ered,

risk aversion, time preferences and perceived credit constrains. Relevant studies in
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this respect are Atmadja et al. (2017), who analyse the relationship between time

discount and the adoption of environmental and health-related behaviours, including

fuel choice, and Jeuland et al. (2015a) and Jeuland et al. (2019), who compare stated

and revealed preferences for di�erent types of improved cookstoves, looking at the

role played by risk aversion, time preferences, gender, and other socio-economic

characteristics of the respondents; all these studies use data from India.

The main contribution of this Chapter is twofold. First, we use a strati�ed ran-

dom sample to classify households according to the type of experience they already

have with the technology of interest, biogas for cooking. In particular, we look at

households who have had a positive experience, as their system has never broken

down, households who have had a negative experience, in the form of malfunctions

and failures, and �nally households who have no experience with the technology. We

then look at how the di�erent levels of experience correlate with the valuation of the

technology, and how the level of experience interacts with risk aversion, impatience

and perceived credit constraints, to test whether familiarity with the technology

attenuates the negative impact of these variables. While this interaction has been

suggested in other studies, we are not aware of any that test it explicitly. The asym-

metric role of positive and negative past experience is similarly an understudied

topic, and complements the literature on asymmetries in the e�ect of positive and

negative information derived from peer adopters, as studied by Miller and Mobarak

(2015).

Second, while most of the literature on clean cookstoves tend to focus on im-

proved fuelwood-�red cookstoves and LPG, we focus on household biogas for cooking

(household `self-produced' biogas), a technology with the potential to deliver impor-

tant co-bene�ts and positive externalities. Biogas digesters are used to transform

livestock manure and other agricultural waste into gas for cooking, which can then

be used in the same way as LPG and burnt without producing smoke emissions.

Biogas has been shown to deliver substantial bene�ts in rural contexts with a hot

and humid climate, such as many parts of India, not only in terms of reduced smoke

emissions from cooking, cheaper energy and reduction in the use of fuelwood, but

also in terms of waste disposal (and therefore sanitation) and high-quality fertiliser

for agriculture as a byproduct of the anaerobic digestion (Brown, 2006; Chen et al.,

2010; Somnath et al., 2014; Insam et al., 2015; Lewis et al., 2016). An important

advantage with respect to LPG is that biogas does not use fossil fuel, and is therefore
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not a�ected by the price of oil nor its supply chains, and can instead contribute to

mitigate climate change.

Relevant studies on the bene�ts of the use of biogas for cooking, and variables

associated with its adoption are Pant et al. (2014), Somanathan and Blu�stone

(2015), and Meeks et al. (2019), all with a focus on Nepal. Bond and Templeton

(2011) provide an overview on the use of domestic biogas plants in the developing

world, with details on the case of India and China and the policies introduced by

the respective governments to support their uptake. Yet, the existing studies on

biogas tend to pay limited attention to household preferences for speci�c attributes

of the biogas systems, and even less to how those preferences might vary even within

seemingly homogeneous populations, as remarked above for the cookstove literature

in general.

To address these gaps in the literature, we use stated preferences elicited via

a discrete choice experiment (DCE), using a similar design as in Jeuland et al.

(2015a) and Jeuland et al. (2019). The DCE consisted of a series of choice cards, in

which respondents were presented with three alternative options: a biogas plant for

cooking, an improved �rewood cookstove, and a traditional Chulha as the outside

option. Each alternative came with a speci�ed price, and level of maintenance

assistance, smoke emissions, and fuel requirements, which varied in each choice card.

On this basis, respondents were asked to select their preferred option in each set

presented. The DCE was conducted with 503 households in rural Odisha in India

(more information on the survey and the context are presented in Somnath et al.,

2014), and used sample strati�cation to obtain information from households with

di�erent types of experience.

The Chapter develops as follows: Section 4.2 presents the theoretical framework

for the analysis and details on the estimation models used; Section 4.3 provides

information on the study area, the sample strati�cation, the design of the DCE and

the modules to elicit risk aversion and time preferences; while Section 4.4 provides

a descriptive analysis of what factors and characteristics are associated with type of

experience with biogas, and ownership and use of cookstoves. Section 4.5 discusses

the results of the regression analysis for the DCE, and translate them into willingness

to pay (WTP) for di�erent attributes of the cookstove, and for biogas in particular,

for di�erent `types' of households. Section 4.6 concludes with the main takeaways

from the Chapter and practical implications of the results.
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4.2 Theoretical framework

4.2.1 Research question

The research question we investigate in this Chapter is how preferences for clean

cooking varies (i) depending on the attributes the cookstove has, in particular in

terms of price, maintenance assistance, smoke emissions, and fuel requirements; (ii)

according to the type of technology o�ered, i.e. traditional, improved fuelwood

cookstove (ICS) or biogas; and (iii) by the level of experience the respondent has

with the technology, namely positive, negative or no experience2.

We also formulate the hypothesis that familiarity with a technology mitigates

uncertainty concerning its value, and test it by examining how valuation of a tech-

nology is a�ected by risk aversion, impatience, and perceived credit constraints,

separately by level of experience. Finally, we test whether the price paid for a bio-

gas plant (in the case of households who already have one) has an `anchoring' e�ect

on valuation, making biogas more or less likely to be chosen in the DCE depending

on whether the price attribute presented is below or above this reference point.

4.2.2 The random utility model

The design of the experiment follows Jeuland et al. (2015a) and Jeuland et al. (2019),

who conducted a DCE to elicit preferences for fuelwood ICS in Northern India, with

the key di�erences being the introduction of biogas as an alternative, and the use

of maintenance assistance as an attribute in place of number of burners. In fact,

while focus groups conducted for those two studies suggested that maintenance is

not among the major determinants of fuelwood cookstove choice, in our case focus

groups' discussions highlighted the importance of conducting proper maintenance

and having repair services for biogas plants. The analysis is similarly based on

Jeuland et al. (2015a), as well as on the literature on best practices for DCE in

general (Hauber et al., 2016; Johnston et al., 2017; Lancsar et al., 2017).

The theoretical framework of reference is a random utility model (Manski, 1977),

where household i's utility can be decomposed into a non-stochastic indirect utility

component Vi(.), and a stochastic term εi that captures how the idiosyncratic tastes

2Heterogeneity in terms of experience level is only analysed in the case of biogas, as less than
1% of the sample own a fuelwood improved ICS, and no information on previous experience or
perception of the technology was collected.
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of each i di�er from the average household.3 We then consider the good to be

valuated as a bundle of attributes, each of which contributes to the household utility,

following Lancaster (1966):

Uijt = V (Xjt, βi) + εijt (4.1)

In particular, we assume that the indirect utility of each stove o�ered (jt, that

is technology j in choice-card t) is a function of observable characteristics of the

stove � in this case the price, the level of the other attributes included in the card

(maintenance, smoke emissions, and fuel requirements) and the type of technology

(biogas, fuelwood ICS, and traditional cookstove) � included in vector Xjt, and βi,

the vector of parameters to be estimated, representing the marginal utility of each

attribute and the alternative-speci�c premiums.

4.2.3 Estimation models: conditional logit and random pa-

rameter logit

McFadden (1981) shows that when the stochastic term follows an i.i.d. type 1

extreme-value error distribution and households choose the alternative that max-

imises their utility in each choice-task, the probability that alternative k is chosen

among all the J alternatives in a given choice-task t is given by the conditional logit

model (CL):

Pr(choice j = k by i in task t) = Pr(Uikt > Uijt ∀j 6= k) =
eV (Xikt,β)∑J
j=1 e

V (Xijt,β)
(4.2)

i.e. the probability of choosing an alternative over the others is a function of the

characteristics of the alternative itself, but also of the characteristics of all the other

available alternatives. In this case, j = {biogas, fuelwoodICS, traditionalstove}.

This model can be estimated using maximum likelihood.

While the conditional logit has important advantages in terms of ease of inter-

pretation and estimation, it relies on two particularly restrictive assumptions: i.i.d.

error terms, and independence of irrelevant alternatives (IIA). The latter has of-

ten been found to be violated when tested in real-life decision-making situations,

while the former is especially unrealistic when the same respondent makes repeated

3Notation is largely based on Hole et al. (2013).
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choices, as in the DCE analysed in this Chapter, and decisions are therefore likely

to be correlated (Lancsar et al., 2017). For this reason, we relax these assumptions

and use a random parameter logit (RPL, also called mixed logit, introduced by

Revelt and Train, 1998) model instead, as common in the analysis of DCE data,

such as Greene and Hensher (2003) in the �eld of transportation, Hole (2008) in

health economics, and MacKerron et al. (2009) in payments for carbon o�sets in

environmental economics.

In this model, di�erent households are allowed to have di�erent preferences by

modelling β as random parameters with density function f(β|θ), rather than as

�xed parameters. To obtain an expression for the probability of each choice, the

previous expression needs to be integrated over the distribution of the unknown

random parameter:

Pr(choice j by i in task t) =

∫
eV (Xijt , β)∑J
j=1 e

V (Xijt,β)
f(β|θ) dβ (4.3)

This expression cannot be solved analytically to obtain an explicit likelihood function

to maximise. We use maximum simulated likelihood, as detailed in Train (2009).4

This model is better suited to capture heterogeneity of preferences across respon-

dents, as parameters (either some or all) are allowed to be randomly distributed

across households according to a given continuous distribution (in our case we as-

sume a normal distribution), rather than being constrained into a single value, as

in the CL model. The model can also take into account the panel structure of the

data, by considering the probability that an individual makes a sequence of choices,

rather than the probability of a single choice:

Si =

∫ T∏
t=1

J∏
j=1

[
eV (Xijt , β)∑J
j=1 e

V (Xijt,β)

]Iijt(k=j)

f(β|θ) dβ (4.4)

where Iijt(k = j) is an indicator function that equals 1 if household i selected

alternative k = j in choice task t, and 0 otherwise. Note that in the CL model,

error terms are assumed to be independent and the parameters are �xed, so that

there would be no need to integrate over the distribution of β and the probability

of a sequence of choices would simply be equal to the product of the probability

4All the models in the Chapter are estimated in Stata. RPL models are estimated using the
mixlogit package developed by Hole (2007).
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of each choice. This means that the likelihood function for repeated choices by the

same respondents would be the same as for independent single choices by di�erent

respondents, and the resulting estimate is therefore not taking into consideration

the panel structure of the data.

In the empirical analysis, we start by comparing two basic speci�cation of CL

models and RPL models, to assess their di�erences. Standard errors for the CL

models are calculated clustering at the household-level; in the RPL models, stan-

dard errors are clustered at the village-level, as the model acknowledges the panel

structure of the data and already takes into consideration the correlation between

decisions made by the same respondent. The regression models estimated are all

linear in the parameters (Lancsar et al., 2017). Under this assumption, the coe�-

cients of the attributes represent their marginal utility, and provide a measure of

how much the utility of the respondents changes (on average) for a one-unit increase

in the value of the attribute.

The coe�cients can then be translated into a monetary measure of the marginal

willingness to pay (WTP) for the attribute by dividing them for the coe�cient of the

price (i.e. the marginal utility of money). Standard errors are computed using the

delta method. The same can be done for the alternative-speci�c constants (ASC),

to obtain the premium respondents are (on average) willing to pay for the speci�c

technology (as opposed to the outside option), when the attributes o�ered by all

the alternatives are the same. In the RPL speci�cations, when the coe�cients of

the attributes or the ASCs are modelled as random and normally distributed, the

mean marginal WTP is obtained by using the mean of the parameter estimate. The

price coe�cient is modelled as a �xed parameter unless otherwise speci�ed, for ease

of interpretations and of deriving the WTP.5

4.3 Background and data

4.3.1 Dataset and data collection

Data for this Chapter come from a survey administered in 42 villages in 8 di�erent

districts of Odisha, in eastern India. The survey was conducted between Novem-

5Robustness checks are conducted assuming the price coe�cient to be a random parameter with
a normal and log-normal distribution of the negative of the price � the latter to insure that the
sign of the marginal utility of the price is always negative. Results are robust to these changes in
the speci�cation.
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ber 2011 and February 2012. The household sample was strati�ed in four groups,

according to the type of stoves the household has: group 1 and 2 include house-

holds with working and broken biogas plants respectively; households in group 3 use

clean stoves di�erent from biogas; and group 4 represents households who only have

traditional cookstoves. The enumerators were asked to interview 3 households for

each group in each village, although this was not always possible. The �nal sample

includes 503 households, of which 133 in group 1 (working biogas plant), 120 in

group 2 (broken biogas plant), 121 in group 3 (other clean stoves) and 129 in group

4 (traditional stoves). Whenever possible, the interview was conducted with the

head of the household. The survey, strati�cation and sampling strategy, and sample

characteristics are described in more details in Somnath et al. (2014).

The part of the dataset used for this research project contains information on

socio-economic characteristics of the households � including assets, land and live-

stock ownership, community engagement, and access to credit � and details on their

energy use and cooking habits, especially the di�erent types of biomass and cleaner

fuel used, the types of cookstoves owned and how often and for how long they are

used, where in the house is the cooking done, ventilation systems (including simply

opening windows while cooking), and the amount of expenditures and subsidies re-

ceived for cookstoves and cooking fuel. Households in sample group 1 and 2 (i.e.

with working or broken biogas plant) are asked detailed information about their bio-

gas plant and the reasons they considered when deciding to install it. Households in

sample group 3 and 4 are asked whether they are planning to install a biogas plant

(variable plan biogas). A description of the characteristics of the households and of

the biogas plants is provided in Appendix D.2, highlighting the main elements of

interest for the Chapter; descriptive statistics are presented in Tables D.1, D.2 and

D.3, in Appendix D.2.6

4.3.2 Time preference and risk aversion elicitation

The data also include the results from a risk aversion and a time preference elicitation

exercise, using two hypothetical dichotomous choices for each module. In both

modules, a scenario is presented and the respondent is asked to imagine someone

is o�ering them a gift in the form of an amount of money, remarking that there

6Tests of di�erence-in-means (t-tests and tests of proportions) between the strati�cation groups
are available from the authors upon request.
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are no right or wrong answers but it is only a matter of personal preferences. In

the time preference module, the respondent is �rst asked to choose whether they

would prefer a smaller amount of money (1,000 INR, equivalent to about 19 USD

at the time of the survey7) tomorrow or wait for 12 months to receive double that

amount (2,000 INR, or 38 USD). For reference, consider that the median monthly

expenditures excluding food, a proxy for the household disposable income, is 1,350

INR (26 USD), so the amount o�ered is substantial. If they choose the smaller

amount tomorrow, they are asked the question again increasing the amount after

12 months to 2,500 INR (48 USD). If they choose to wait in the �rst question, they

are asked the question again, but decreasing the amount to be received after 12

months to 1,500 INR (29 USD). Using the responses, I create an impatience index

with value 1 if the respondent chooses to wait in both questions (low impatience); 2

if they choose to wait in the �rst question but prefer to receive the money sooner in

the second question; 3 if they choose the smaller amount sooner in the �rst question,

but would rather wait in the second question; and 4 if they prefer the smaller amount

sooner in both questions (high level of impatience).

The risk aversion module �rst asks the respondent to choose between a smaller

but certain amount now (500 INR, or 9.6 USD), or to �ip a coin and receive a larger

amount (1,200 INR, or 23 USD) if it is head and nothing at all if it is tail (the

expected value of this option is therefore 600 INR, or 11.5 USD), again to be paid

out immediately. If they prefer the safer option, they are then asked the question

with the option to have again 500 INR (9.6 USD) as a certain amount, or to �ip

the coin to receive 1,250 INR (24 USD) if it is head or only 250 INR (5 USD) if it

is tail (the expected value is 750 INR, or 14 USD). If they instead prefer the riskier

option in the �rst question, they are then asked to choose between the certain 500

INR (9.6 USD), or to �ip a coin for a 1,000 INR (19 USD) if head, and nothing

at all if tail (the expected value is 500 INR, the same as the certain amount). The

responses were then used to create a risk averse index, in the same way detailed in

the previous case. Households were also asked to self-assess their risk aversion and

impatience before the elicitation modules, and robustness checks for the analyses in

the following sections are conducted using these self-reported measures in place of

the elicited ones.
7The conversion rate used in the Chapter is 52 INR for 1 USD, the approximate rate in e�ect

during the study period November 2011 and February 2012.
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4.3.3 The discrete choice experiment

Finally, and the core component of this Chapter, the dataset includes responses from

a discrete choice experiment (DCE) to assess households' preferences for di�erent

cookstoves' attributes and technologies. The technologies we were interested to test

are the biogas plant and a biomass-fuelled improved cookstove (ICS), while the most

commonly used traditional cookstove (biomass-fuelled) was used as outside option.

Before the survey, focus groups on the key obstacles to biogas adoption and use

were conducted in the study area (Somnath et al., 2014). The main issues stressed

by participants concerned the lack of quality assurance and the lack of adequate

repair and maintenance services; a�ordability, as the upfront construction costs are

still too high for the lower income households, even after factoring in the available

subsidies; alternative uses of dung as fertiliser or dung-cake to be burnt for energy,

which although less e�cient than a biogas digester, require less time and upfront

expenses to make; and �nally the fact that the biogas plants commonly used in the

area and the amount of dung available to a household are usually insu�cient to

cover the cooking energy needs of the family, so that households usually continue

to use traditional stoves as well. Information from the focus groups were used to

design the DCE.

The DCE consisted of 5 hypothetical decision scenarios, each presented through

a choice-card. The 3 alternatives in each choice-card are `labelled' using the names of

the most common cookstove available in the sample area for each type: Rocket Stove

(biomass-fuelled ICS), Gobar Gas (biogas plant), and the outside-option Chulha

(traditional biomass cookstove). Each alternative is presented with a picture of

the stove, followed by its price as a number and in pictures, and pictures for the

maintenance assistance, smoke emissions, and fuel requirement (4 attributes). Each

stove and each attribute is explained in details using information cards complete

with pictures, before the DCE module is started.

The attributes for the traditional stove (Chulha) are �xed for all the decisions and

are set to low maintenance, high smoke emissions, medium fuel requirements and a

price of 100 INR (1.9 USD). The attributes and attribute levels used are summarised

in Table 4.1, while the script and choice-cards used in the DCE are included in the

Appendix D.1 (in both English and Odia). A total of 25 combinations of attributes

for the ICS (Rocket Stove) and biogas plant (Gobar Gas) are obtained using an

251



e�cient fractional factorial design. The 25 choice cards are grouped into 5 sets of

5 cards each, and respondents in each strati�cation group are randomised into a

choice set. The �nal dataset consists of 503 respondents, each presented with 5

choice cards, resulting in 2,515 choices.

Table 4.1: Attributes and attribute levels used in the discrete choice experiment (DCE).

Attributes Levels for biogas/ICS Reference level (traditional stove)

Price 4,000 / 7,000 / 10,000 INR 100 INR
(77 / 135 / 192 USD) (1.92 USD)

Maintenance Low / High Low
Smoke Low / High High
Fuel requirement Low / Medium / High Medium

In the empirical analysis, attributes are dummy-coded as being lower or higher

than the baseline attributes of the traditional stove (i.e. alternative 3: low mainte-

nance, high smoke, medium fuel use), which are �xed across all questions. Price is

considered a continuous variable.8

The outcome variable is the alternative chosen among the Gobar Biogas, the

Rocket Stove, or the traditional Chulha. After the respondent selects their pre-

ferred alternative for a choice card, they are asked to con�rm whether they would

indeed purchase that cookstove at the proposed price9, and in 73% of the cases the

respondent answers a�rmatively. Most of the no answers are in cases in which the

respondent selected the biogas plant but already has a working one, or when the

selected option is the Rocket stove. As a robustness check, the analysis is repeated

including the intention to purchase. In particular, we repeat the analysis excluding

the choices for which intention to purchase is not con�rmed, and results are robust

in terms of coe�cients and WTP for the biogas stoves, while WTP for attributes

are between 20-40% lower. Tables available on request.

4.3.4 Levels of experience

We use the sample strati�cation together with information from the survey to classify

households in three di�erent levels of experience with biogas. Households who have

8As a robustness check, we run additional regressions using price as a categorical variable, as
suggested by Lancsar et al. (2017), and �nd that the coe�cients respond close to linearly. For this
reason, in the main speci�cations presented in the Chapter price enters the models linearly and as
a continuous variable.

9�Would you purchase the alternative you have chosen at the given price?�.
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experienced malfunctions in the biogas plant � i.e. all the households in group

2, whose biogas plant is currently broken, plus the households in group 1 that

experienced malfunctions in the past � are classi�ed as bad experience, while the

remaining households in group 1, who have a biogas plant that has never broken

down, are considered as good experience. Households in group 3 and 4 are classi�ed

as having no experience; in some speci�cations and robustness checks this sample is

further divided by sample group (no experience, group 3; and no experience, group

4), or by intentions to install biogas in the future (no experience, plan to install; no

experience, no plan to install).

4.4 Cookstoves' ownership and use, experience with

biogas, and intention to adopt

This section provides a descriptive analysis of what factors and characteristics are

associated with the type of experience a household has with biogas. In particular,

we look at the type of cookstove owned and their use, fuel-stacking behaviour, plans

to install a biogas plant (for the households who do not already have one), and

functionality of the existing biogas plants (for the households who already have

one). The insights obtained provide helpful guidance to interpret the results of the

DCE analysis.

4.4.1 Factors associated with types of cookstove owned and

their use

Type of stove used

To parse out the role of each characteristic when considered together with the others,

I use multivariate regression analysis. In all the regressions that follow, errors are

clustered at the village level. First of all, I use a multinomial logit regression to

assess which observable characteristics are associated with the likelihood of having

a biogas plant (sample group 1 and 2) as opposed to other types of clean stove

(group 3) or traditional stove only (group 4). This is a categorical outcome variable

with three categories; having a biogas plant is used as the baseline. Model (1) in

Table D.4, Appendix D.3, reports the results of this analysis.
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The main variables correlated with the type of cooking system owned are wealth

and income, and the count of large animals. Predictably, the more large animals

the household has, the more likely it is to have a biogas plant as opposed to other

clean cookstoves, and as opposed to traditional cookstoves only. This makes sense,

as large animals provide the `fuel' needed to feed the biogas plant and are therefore

a de facto prerequisite for adoption. In fact, dung availability is cited as one the

leading motivations for adoptions among households using biogas.

A larger disposable income, measured by the natural log of non-food expenditures

in a year, is positively correlated with the odds of having other clean cookstoves

rather than having biogas. Smaller wealth, as measured by the asset ownership

index, is an indication that the household is more likely to only have traditional

cookstoves, as opposed to biogas. This suggests that biogas is more likely to be used

by households in the lower and middle part of the income and wealth distribution,

while higher income households tend to use LPG, kerosene and electric cookstoves.

Results are robust to using self-assessed risk aversion and impatience instead of the

elicited index � the coe�cients of these variables are not signi�cant in either case.

Fuel-stacking

Next, I investigate fuel-stacking behaviour in the sample, looking at what charac-

teristics are associated with the likelihood of having only one type of cookstove, two

di�erent types, or three or more. Note that cookstove types correspond to di�erent

fuels, namely fuelwood, biogas, kerosene, LPG and electricity. I �rst consider the

outcome as categorical and use a multinomial logit regression, where having one type

of cookstove is the baseline. The odds of having two stove types rather than one

and the odds of having three or more rather than one are both strongly associated

with the asset ownership index and the index for the quality of housing materials.

The magnitude of the coe�cients for these variables are double when comparing

one stove to three or more, than they are when comparing one stove to two. For

this reason, I choose to use an ordinal logit as the preferred speci�cation for the

analysis, as it is more e�cient and should not sacri�ce on insights on the dynamics

of fuel stacking, given the results from the multinomial logit. Results are presented

as Model (2) in Table D.4, Appendix D.3. Wealthier households appear to be more

likely to stack di�erent types of stove, as indicated by the positive coe�cient of
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the asset ownership index, and negative coe�cient for low quality housing material.

Households who live closer to the village centre are also more likely to engage in

stove (and fuel) stacking, possibly because proximity to the market provides better

access to di�erent stoves and fuels. These results could suggest that households

who do not engage in stove and fuel stacking do so because they are constrained by

a�ordability and access to di�erent options.

For further insights on this hypothesis, I investigate fuel stacking behaviour

in households who have at least one clean cookstove. To do this, I estimate the

multinomial logit model excluding households in sample group 4 (households who

only have a traditional cookstove), and �nd that the probability of using only one

type of cookstove rather than two is strongly associated with having di�culty in

accessing credit, while the probability of having three or more types of cookstoves

rather than two is again positively associated with asset ownership and negatively

associated with low quality housing material and distance to the village center.10

This is consistent with the above hypothesis.

Intention to install biogas

Model (3) in Table D.5, Appendix D.3, only considers the sample of households

without a biogas plant (group 3 and group 4) and shows what characteristics of

the households are associated with the likelihood that the household is planning to

install a biogas plant, using a logistic regression. In general, none of the variables

is signi�cant at the 1% signi�cance level, so the households are quite similar along

the observable characteristics considered. Households that are planning to adopt

biogas appear to be less credit-constrained than those who are not, and to be less

impatient (although the latter is only signi�cant when using a 5% signi�cance level).

Robustness checks are conducted using self-assessed risk aversion and impatience

instead of the elicited variables, ownership of each type of cookstove, and number

of stove types owned, and results are robust to the di�erent speci�cations.

Time stoves are used

Finally, Table D.6, Appendix D.3, show the results of regressions for the total time

of use (in minutes per day) of all the stoves for the entire sample (4a), for time of use

10Table not reported, but available from the authors upon request.
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disaggregated by clean stoves (4b) and biomass stoves (4c), and for the share of time

clean stoves are used rather than biomass stoves (4d). The size of the households

(more exactly the number of people to be cooked for everyday, adjusted so that

children count for half a adult) only a�ects the amount of time biomass stoves are

used (and through that channel, the time of use of all stoves, which is the sum of

biomass and clean stoves), while it has no e�ect on the use of clean stoves.

This suggests that biomass stoves are used as `residual' cookstoves, to comple-

ment clean stoves when they are insu�cient to cover the entire energy demand of

the household. The use of clean stoves therefore appear to be determined by con-

straints, possibly the availability of fuel, as it was highlighted by focus groups in the

case of biogas. This hypothesis is supported by the fact that having a traditional

biomass cookstove per se does not a�ect the amount of time clean cookstoves are

used, while on the other side having clean cookstoves substantially decreases the

amount of time traditional stoves are used.

The fact that economic variables do not seem to be substantially correlated with

the time or the share of use of clean stoves, once the cookstove types are controlled

for, further suggests that in this case constrained fuel availability might play a larger

role than fuel a�ordability in the decision of what cookstoves to use and for how

long. This would also provide an explanation for fuel stacking. The other covariates

associated with the outcomes are of course the type of cookstoves the household has,

represented by ownership of cookstoves types and by the sample group (because of

the way strati�cation was conducted).

4.4.2 Factors associated with biogas functionality

In model (5a) of Table D.7, Appendix D.3, I restrict the sample to households who

already have a biogas plant and use a logistic regression for the probability that

the plant is broken. I include the same characteristics of the households as in the

previous models, and add variables on the characteristics of the plant, its use, and

the motivations for installing.

The main variable associated with a working biogas plant are a more recent

installation year, larger plant size, more time spent feeding the dung into the plant

and cleaning the plant, and less time spent collecting the dung. If the model is run

using the overall time spent in the three activities as one aggregated variable, this
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is not signi�cant any more (results not reported), suggesting that while households

spend on average the same overall time in activities related to the plant, those who

now have a broken biogas plant tended to spend relatively more time collecting dung

and less in actually operating and maintaining the plant.

The price paid by the household and the amount of subsidy are not signi�cant,

once the other covariates are controlled for; while having a higher livestock counts,

mainly small animals, are positively correlated with having a working plant. A

higher disposable income (as measured by the natural log of yearly expenditures in

non-food items) and smaller distance to the village centre are also associated with

a working biogas plant, which might suggest that it is easier for these households to

have the plant repaired or serviced, or it might be an indication of higher quality

of the plant, as better materials and better installers might have been hired for the

same price.

Although lack of data on servicing, other type of maintenance and direct mea-

sures of the quality of the plant prevents looking at these channels in more details,

further investigations go against the hypothesis that income and proximity to the vil-

lage centre are associated with the likelihood of having the system repaired rather

than experiencing malfunctions in the �rst place. Firstly, column (5b) looks at

whether the biogas plant ever broke down, rather than whether it is not working

at the moment. The results are substantially unchanged, possibly because only 8

households in the sample ever experienced a break down and repaired it, with the

exception of the coe�cient of the time spent cleaning the plant, which is now signif-

icantly larger in magnitude, suggesting that proper maintenance is the main driver

of plant functionality.

I then restrict the sample to the households whose biogas plant has ever been

broken and regress whether it has been repaired or not on the log of the expen-

ditures and distance to the village (alone and with covariates). The former has a

positive correlation with the likelihood of the system being repaired, while the latter

a negative one, but none of the coe�cient is signi�cant at conventional signi�cance

level (results not reported); these results should be taken with caution due to the

very small number of cases of repaired plants.

Overall, the households with a broken biogas plant and households with a func-

tioning one appear to be quite similar along the observable characteristics consid-

ered, and the age of the plant and the time spent cleaning it seem to be the main
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driver of malfunctions. These are the only variables that are still signi�cant at the

more conservative signi�cance level of 0.1%. It should be noted that all the results

in this section are correlations, rather than causal e�ects, as data are observational.

They nonetheless provide interesting insights on the issue, and could be a start-

ing point for designing an experimental or quasi-experimental investigation on the

causal e�ects at play.

4.5 Preferences for biogas, biomass-ICS and tradi-

tional cookstoves: results from a discrete choice

experiment

4.5.1 Results

This Section presents results on the DCE analysis, using random parameter logit

models (RPL). Conditional logit (CL) speci�cations are presented for comparisons.

The estimated coe�cients are then translated into WTP amount for each attribute

and technology, by di�erent `types' of households, in the following Section.

Valuation of attributes and stove-speci�c premiums: strong interest in

lower emissions, fuel savings, and biogas

Table 4.2 compares estimates from conditional logit (CL) models (1 and 3) and

random parameter logit (RPL) models (2 and 4). The RPL speci�cations model

the alternative-speci�c constants (ASC) and the coe�cients of the attributes, with

the exception of price, as random normally distributed parameters; for the random

parameters, both the mean of the coe�cient and the standard deviation are pre-

sented. The likelihood ratio chi-square test comparing the log-likelihood value of

the CL model with that of the `empty' model without covariates (ll(0)) rejects the

null hypothesis that the two models are not signi�cantly di�erent. This holds for

all the speci�cations. Comparing the log-likelihood of the CL with that of the RPL

model with the same regressors, further suggests that the latter is to be preferred

(Greene and Hensher, 2003).

The �rst speci�cation (columns 1 and 2) looks at how di�erent values of the at-

tributes a�ect the likelihood of choosing a cookstove over the other two alternatives,
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while the alternative-speci�c constants (ASC) represent cookstove-speci�c tastes,

after controlling for the attributes. In the second speci�cation (columns 3 and 4)

each attribute is interacted with whether the cookstove chosen is the biogas plant,

to investigate whether households are willing to pay a larger or smaller premium for

each attribute, depending on the fuel (i.e. biogas as opposed to fuelwood, used in

the ICS Rocket Stove and in the traditional stove).

The signs of the attribute coe�cients are as expected, negative for higher prices

and higher fuel requirements, and positive for maintenance service, lower smoke

emissions, and lower fuel consumption. There is nonetheless heterogeneity in the

valuation of each attribute, as indicated by signi�cant estimates for the standard de-

viations. The distributions of the coe�cients in model (2), estimated using Epanech-

nikov kernel density, are plotted in Figure 4.1 � for the attributes. The ASC for the

Rocket stove is signi�cantly negative, suggesting that the traditional stove (baseline)

is strongly preferred to the fuelwood ICS. Biogas on the contrary, attracts a strong

positive valuation. Again, there is substantial heterogeneity in tastes regarding the

di�erent technologies, as indicated by the the standard deviation of the coe�cient

on the ASC.

In the second speci�cation (3 and 4) households are willing to pay extra for main-

tenance services only in the case of biogas, as only the coe�cient for the interaction

term is signi�cant. In fact, other DCEs and preparatory focus groups conducted

in India suggests that maintenance is not strongly relevant to respondents, at least

in the case of fuelwood stoves (e.g. Jeuland et al., 2015a), while focus groups in

our study area highlighted that maintenance is a key factor for biogas. None of the

other interactions is signi�cant, suggesting that smoke emissions and fuel savings

are valued independently from the speci�c stove.

Negative experience corresponds to less enthusiastic preferences for bio-

gas; households who intend to install a biogas plant have similar prefer-

ences to households with positive experience

We next investigate whether previous experience with biogas, either positive or

negative, contribute to explain households' preferences for biogas. In Table 4.3 the

attributes' coe�cients and stove-speci�c constants are estimated separately depend-

ing on whether the alternative chosen is the biogas stove or not, and when it is the
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(a) (b)

(c) (d)

Figure 4.1: Distributions of the estimated parameters for the maintenance (a), smoke (b)
and fuel (c, d) attributes, estimated in the random parameter logit.

biogas stove it is further interacted with the type of experience with biogas the

household has had: positive, negative, or no experience. The model in column (2)

extends this speci�cation by splitting the households in the no experience group

according to whether they plan to install a biogas plant or not, while in column (3)

they are further distinguished by strati�cation group, that is whether they have a

clean cookstove or only traditional ones.
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Table 4.2: Regression table for the DCE. Baseline speci�cations, with attributes and ASCs.
Conditional logit (1 and 3) and random parameters logit (2 and 4).

(1) (2) (3) (4)
outcome outcome outcome outcome
outcome Mean SD outcome Mean SD

price_thousands -0.13∗∗∗ -0.27∗∗∗ -0.13∗∗∗ -0.26∗∗∗

(0.01) (0.03) (0.02) (0.03)
maint_higher 0.23∗∗∗ 0.32∗ 1.35∗∗∗ 0.02 0.01 1.40∗∗∗

(0.07) (0.15) (0.22) (0.11) (0.20) (0.25)
" Xbiogas 0.33∗ 0.59∗ 1.61∗∗∗

(0.13) (0.25) (0.26)
smoke_lower 0.90∗∗∗ 1.70∗∗∗ 1.72∗∗∗ 1.06∗∗∗ 1.69∗∗∗ 1.53∗∗∗

(0.07) (0.17) (0.23) (0.12) (0.28) (0.21)
" Xbiogas -0.21 -0.02 -0.15

(0.15) (0.25) (0.22)
fuel_lower 1.00∗∗∗ 1.92∗∗∗ 1.13∗∗∗ 0.93∗∗∗ 1.64∗∗∗ 1.56∗∗∗

(0.08) (0.14) (0.19) (0.12) (0.26) (0.23)
" Xbiogas 0.13 0.53 -0.28

(0.15) (0.35) (0.31)
fuel_higher -0.30∗∗∗ -0.65∗∗∗ 1.35∗∗∗ -0.28∗ -0.45∗ 0.91∗∗

(0.08) (0.17) (0.25) (0.14) (0.21) (0.31)
" Xbiogas -0.03 -0.18 0.05

(0.16) (0.26) (0.20)
ICS ASC -0.71∗∗∗ -1.19∗∗∗ 2.04∗∗∗ -0.67∗∗∗ -0.98∗ 1.77∗∗∗

(0.14) (0.30) (0.27) (0.17) (0.44) (0.36)
biogas ASC 0.51∗∗∗ 1.09∗∗∗ 1.96∗∗∗ 0.46∗∗∗ 0.81∗∗ 1.85∗∗∗

(0.13) (0.27) (0.26) (0.14) (0.27) (0.26)

N 2515 2515 2515 2515
r2_p 0.18 0.18
ll -2274.49 -1998.91 -2270.53 -2001.33
ll_0 -2763.01 -2763.01
p 0.00 0.00 0.00 0.00
aic 4562.99 4023.83 4563.06 4044.67
bic 4611.49 4113.90 4639.27 4190.17

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: " Xbiogas means the attribute in the previous row has been interacted with the

biogas dummy, representing whether the alternative from the choice card is labelled as

a biogas stove.
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Table 4.3: Regression table for the DCE. Interactions with prior experience. Random parameters logit.

(1) (2) (3)
Mean SD Mean SD Mean SD

price_thousands -0.27∗∗∗ (0.04) -0.26∗∗∗ (0.03) -0.26∗∗∗ (0.03)
maint_higher 0.04 (0.19) 1.21∗∗∗ (0.29) 0.03 (0.16) 1.18∗∗∗ (0.20) 0.05 (0.20) 1.30∗∗∗ (0.21)
" XbiogasXgoodexper 0.69∗ (0.35) 0.71 (0.45) 0.61 (0.37) 1.03 (0.65) 0.64 (0.33)
" XbiogasXbadexper 1.11∗∗ (0.36) 1.02 (0.52) 1.05∗∗ (0.34) 1.56∗ (0.67) 0.98∗∗ (0.33)
" XbiogasXnoexper 0.27 (0.38) 1.40 (0.80) 0.52 (0.33) 1.27∗∗ (0.46) 0.35 (0.32)
smoke_lower 1.58∗∗∗ (0.22) 1.45∗∗∗ (0.35) 1.38∗∗∗ (0.18) 1.67∗∗∗ (0.26) 1.72∗∗∗ (0.27) 1.17∗∗∗ (0.21)
" XbiogasXgoodexper 0.23 (0.39) 0.75 (0.46) 0.64 (0.47) 1.05 (0.81) -0.15 (0.36)
" XbiogasXbadexper 0.20 (0.39) -0.12 (0.47) 0.25 (0.34) -0.81∗ (0.41) -0.17 (0.38)
" XbiogasXnoexper 0.18 (0.29) 0.41 (0.75) 0.55∗ (0.27) -0.53 (0.43) 0.03 (0.28)
fuel_lower 1.54∗∗∗ (0.32) 1.63∗∗∗ (0.20) 1.40 (.) 1.44∗∗∗ (0.20) 1.44∗∗∗ (0.25) -1.34∗∗∗ (0.29)
" XbiogasXgoodexper 0.81 (0.44) -0.37 (0.29) 0.90∗ (0.41) -0.71 (0.43) 0.64 (0.43)
" XbiogasXbadexper 1.44∗∗ (0.49) -0.70 (0.38) 1.50∗∗ (0.46) 0.37 (0.39) 1.24∗∗ (0.41)
" XbiogasXnoexper 0.28 (0.44) -0.24 (0.29) 0.56 (0.36) 0.85∗ (0.36) 0.14 (0.35)
fuel_higher -0.41 (0.22) -0.61∗∗ (0.21) -0.33 (0.24) -0.83∗∗ (0.29) -0.49∗ (0.22) 1.13∗ (0.45)
" XbiogasXgoodexpe -0.15 (0.39) -0.52 (0.43) -0.19 (0.32) -0.87∗ (0.41) 0.09 (0.30)
" XbiogasXbadexper -0.23 (0.46) 0.26 (0.77) -0.26 (0.46) -0.45 (0.80) -0.04 (0.41)
" XbiogasXnoexper -0.35 (0.28) -0.44 (0.30) -0.45 (0.29) 0.16 (0.26) -0.33 (0.29)
ICS ASC -0.60 (0.42) -1.63∗∗∗ (0.31) -0.25 (0.31) -0.83∗ (0.38) 1.82∗∗∗ (0.34)
biogas ASC 1.66∗∗∗ (0.37) 1.96∗∗∗ (0.52) 1.51∗∗∗ (0.40) 1.69∗∗∗ (0.26) 1.66∗∗∗ (0.40) 1.38∗∗∗ (0.29)
" Xbadexper -1.03∗ (0.52) -0.14 (0.24) -0.96 (0.53) 0.06 (0.54) -1.01∗ (0.50) 0.35 (0.44)
" Xnoexper -1.20 (0.64) 0.77 (1.77)
" Xplanbg -0.22 (0.37) 1.52∗∗∗ (0.37)
" Xotherclean 0.44 (0.41) -1.18∗ (0.55)
" Xtradonly -0.42 (0.47) -1.06∗∗ (0.34)

" Xnoplanbg -2.74∗∗∗ (0.62) 1.83∗∗∗ (0.39)
" Xotherclean -1.69∗∗∗ (0.50) -1.62∗∗∗ (0.44)
" Xtradonly -3.19∗∗∗ (0.69) -1.20∗ (0.51)

N 2515 2515 2515
aic 4002.76 4019.16 3933.52
bic 4286.83 4303.23 4176.02

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001. Note: " X[dummy] : variable in previous row is interacted with [dummy].
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While the interactions between attributes and experience are not signi�cant for

the smoke and higher fuel requirement attributes (and their valuation is similar

to the estimates in the previous table), they provide interesting insights regarding

the preferences for maintenance services and fuel savings. Households who already

have experience with the biogas plant are willing to pay more for maintenance of

the biogas stove, and the amount is even larger for households who had a negative

experience, suggesting that households who own a biogas plant realise how important

careful and frequent maintenance is for the correct functioning of the plant. In

the case of the biogas stove for households who have no experience with biogas

the valuation of maintenance is still positive, but not as high as for experienced

respondents, while in the case of the fuelwood stoves (the baseline category) the

valuation of the maintenance attribute is very close to zero.

Households who have experience with biogas also have larger coe�cients for

fuel savings from a biogas plant, compared to the other categories, with negative

experience playing once again a larger role than positive experience.

Finally, negative experience with the technology appears to be associated with

less enthusiastic preferences for biogas, compared to households with positive ex-

perience (the baseline category). In fact, in model (1) households who have not

experienced malfunctions are willing to pay a larger premium for the technology, as

compared to households with negative experience or no experience at all.

Model (2) and (3) shows that this result is nonetheless more nuanced, as house-

holds who have no experience with biogas but are planning to adopt it are willing

to pay a premium for biogas almost as large as households who have it and have

had a positive experience. Among the former, this result is driven in particular by

households who have a clean cookstove di�erent from biogas, rather than house-

holds who are currently only using traditional stoves. Yet, all the households who

have no experience but are planning to install biogas, independently of what stoves

they currently use, have more enthusiastic preferences for biogas than households

who experienced malfunctions. Finally, households who have no experience and no

intentions to install have the lowest willingness to pay for a biogas-speci�c premium,

with the valuation for households who have other clean stoves close to zero, and the

valuation for households who are only using traditional stoves even reverting the

sign to negative.

This set of results suggests that in general households who are cooking with

263



clean cookstoves (biogas or other) have a stronger dislike for the traditional stove

(the outside option), and are willing to pay more to avoid choosing that option

� consistent with their revealed preferences. Yet, the intention to install is more

strongly associated with stated preferences for biogas than it is whether households

have a clean cookstove di�erent from biogas or are only using traditional stoves at

the time of the survey. This �nding is corroborated by a robustness check in which

the model is �rst estimated splitting the households with no experience according

to their strati�cation group.11

Across the speci�cations, it is a robust result that households who have no experi-

ence but are planning to adopt display similar preferences to those who have already

adopted and had no malfunctions, while households who experienced malfunctions

have less enthusiastic preferences than either of them. This �nding suggests that

negative and positive experience � as de�ned in this Chapter � might have asymmet-

ric e�ects on the preferences for biogas. Or similarly, households who are planning to

install might be optimistic about the technology, so that a smooth experience largely

con�rms their expectations, while a negative experience leads them to update their

preferences downward. This explanation is consistent and complements results from

the �eld experiment on improved cookstoves in rural Bangladesh by Miller and Mo-

barak (2015), who �nd that households are asymmetrically a�ected by the positive

and negative information received from their social network, with only the latter

playing a signi�cant role. It is to be noted that, due to the nature of the data, our

results are partial correlations rather than causal e�ects, and we cannot rule out

that households who experienced plants malfunctions had systematically di�erent

preferences for biogas to start with, or that a more pessimistic opinion about the

technology is what led to the malfunctions in the �rst place. More research is needed

to understand the direction of causality between these variables.

Experience (positive and negative) counteracts risk aversion, impatience

and concerns on access to credit

In Table 4.4 we investigate the role of risk aversion, time preference, and perceived

credit constraints on households' stated preferences, as very little evidence exists

in the literature on these regards. To do this, we interact the attributes and each

cookstove-speci�c constant with a risk aversion dummy (column 1), an impatience

11Results from this speci�cation not shown.
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dummy (column 2), and a perceived credit constraint dummy (column 3). Risk

aversion and time preference elicitation are described in Section 4.3. The credit

constraint dummy is based on a self-assessment of how di�cult it would be for the

respondent to obtain a 5,000 Rupees loan through formal channels, that is excluding

borrowing from family or friends: �If you have to borrow Rs. 5000 (from a money

lender or micro-�nance groups, not from the family member and friends) for one

month, would this be possible?�, with possible answers (1) yes, quite easy, (2) yes,

but not easy, (3) may be not sure, (4) not possible; 2 is the average and median

response in the sample. We classify households who answered 3 or 4 as credit-

constrained. To delve deeper in the role of experience, the biogas-speci�c constant

is further interacted with the type of experience, in all three models.

The results from model (1), (2) and (3) suggest that while risk aversion, im-

patience and concerns regarding access to credit are all negatively correlated with

preferences for biogas, experience of any kind counterbalances these e�ects. The

result is even stronger for positive experience, which reduces the di�erence to very

close to zero. In fact, in model (1) the biogas-speci�c constant is lower but not signif-

icantly di�erent from zero for more risk averse respondents in the case of households

who have had positive experience and in the case of households who have had neg-

ative experience, while risk averse households who have had no experience have a

substantially lower biogas-speci�c constant than their less risk averse counterparts

with no experience. The same occurs when considering impatience in model (2),

and perceived credit constraints in model (3); these characteristics are all associated

with a smaller biogas premium, but the e�ect is much larger and signi�cant (at 5%

signi�cance level) only in the case of households with no experience.

Finally, more impatient households have on average a stronger dislike for the

Rocket stove than those who are more patient, and the same occurs for more risk

averse households and for households who have more concerns with credit access,

although the di�erences in these cases are smaller and not signi�cantly di�erent

from zero, at conventional levels. None of the interactions with the attribute are

signi�cant at the 5% signi�cance level in any of the three models.
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Table 4.4: Regression table for the DCE. Interactions with risk aversion, impatience and perceived credit constraints. Random parameters logit.

(1) (2) (3)
Mean SD Mean SD Mean SD

price_thousands -0.17∗∗∗ (0.02) -0.17∗∗∗ (0.02) -0.18∗∗∗ (0.02)
maint_higher 0.24 (0.15) 0.70∗ (0.30) 0.08 (0.14) 0.50 (0.29) 0.32∗ (0.14) 0.92∗∗∗ (0.27)
" Xriskaverse 0.02 (0.18) 1.03∗∗ (0.34)
" Ximpatient 0.28 (0.17) 1.19∗∗∗ (0.22)
" Xcreditconstr -0.11 (0.23) 0.95∗ (0.40)
smoke_lower 1.17∗∗∗ (0.14) 0.86∗∗ (0.27) 1.08∗∗∗ (0.10) 0.80∗∗ (0.26) 1.06∗∗∗ (0.14) 1.28∗∗∗ (0.13)
" Xriskaverse -0.02 (0.22) 1.26∗∗ (0.42)
" Ximpatient 0.16 (0.19) 1.35∗∗∗ (0.35)
" Xcreditconstr -0.10 (0.35) 1.64∗∗∗ (0.27)
fuel_lower 1.29∗∗∗ (0.19) 0.99∗∗∗ (0.20) 1.30∗∗∗ (0.21) 0.86∗∗∗ (0.24) 1.39∗∗∗ (0.15) 1.30∗∗∗ (0.14)
" Xriskaverse 0.18 (0.25) 0.98∗ (0.43)
" Ximpatient 0.13 (0.25) 1.16∗∗∗ (0.33)
" Xcreditconstr -0.45 (0.23) 0.41 (0.52)
fuel_higher -0.47∗∗ (0.18) 0.92∗∗∗ (0.24) -0.68∗∗∗ (0.20) 1.06∗∗∗ (0.26) -0.46∗∗ (0.14) 1.07∗∗∗ (0.19)
" Xriskaverse 0.04 (0.22) -0.90∗∗ (0.30)
" Ximpatient 0.35 (0.21) -0.63 (0.37)
" Xcreditconstr -0.43 (0.33) -1.35 (0.82)
ICS ASC -0.51 (0.30) -0.21 (0.27) -0.39 (0.37)
" Xriskaverse -0.37 (0.36)
" Ximpatient -0.88∗∗ (0.34)
" Xcreditconstr -0.16 (0.35)
biogas ASC X goodexpe 1.50∗∗∗ (0.24) 1.45∗∗∗ (0.33) 1.51∗∗∗ (0.27)
" Xriskaverse -0.08 (0.29)
" Ximpatient -0.04 (0.39)
" Xcreditconstr -0.02 (0.37)
biogas ASC X badexper 1.09∗∗∗ (0.27) 1.28∗∗∗ (0.29) 1.05∗∗∗ (0.22)
" Xriskaverse -0.22 (0.28)
" Ximpatient -0.56 (0.31)
" Xcreditconstr -0.12 (0.37)
biogas ASC X noexp 0.77∗∗ (0.26) 0.91∗∗ (0.31) 0.90∗∗∗ (0.24)
" Xriskaverse -0.49∗ (0.25)
" Ximpatient -0.73∗ (0.34)
" Xcreditconstr -1.22∗∗∗ (0.31)

N 2515 2515 2515
aic 4308.75 4296.76 4239.57
bic 4481.97 4469.97 4412.78

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001 Note: " X[dummy] : variable in previous row is interacted with [dummy].
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No evidence of `anchoring' valuation to the price of existing biogas plant

In our �nal speci�cations, we test whether for households who already have a biogas

plant the price they paid for their plant has an �anchoring� e�ect (or reference-

dependent e�ect) on their choices in the DCE, and therefore on their valuation of

biogas.12 In particular, we test whether the biogas alternative is less likely to be

selected in the DCE when the price presented is above the price the household paid

for their own biogas plant, after controlling for the general e�ect of price (as higher

prices already have a negative e�ect on the probability of choosing an alternative).

To do this, the baseline model speci�cation with attributes and ASCs is modi�ed

as follows. The biogas ASC is interacted with the type of experience, and for house-

holds with positive and negative experience it is further interacted with whether the

price attribute is above the price the household paid for their existing plant. The

same is done for the price attribute, after interacting it with whether the alternative

is biogas. In this speci�cation, the coe�cient for price is modelled as a random

parameter to allow for unobserved heterogeneity. Results are presented in Table 4.5

� model (1) uses the price actually paid by the household (pricepaid) as reference,

while model (2) uses the price inclusive of subsidies (pricetot) as reference.

Whether the price in the choice-card is above or below the price originally paid

appears to be insigni�cant, when controlling for the general price e�ect, the rest of

the attributes, and experience level. The result is robust if only the price interactions

are introduced in the model or if only the interactions with the biogas ASC are

included (results not shown). We therefore �nd no evidence that the price of the

household's own biogas plant anchor the valuation of biogas in the DCE.

12See Maniadis et al. (2014); Fudenberg et al. (2012) for a review on anchoring e�ect and
reference-dependent preferences, and recent results from testing anchoring e�ect in stated pref-
erences experiments.
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Table 4.5: Regression table for the DCE. Testing for price `anchoring', using the price paid as reference (1) and the total price � price paid plus subsidies
� as reference (2). Random parameters logit.

(1) (2)
Mean SD Mean SD

price_thousands -0.25∗∗∗ (0.05) 0.24∗∗∗ (0.03) -0.25∗∗∗ (0.05) 0.26∗∗∗ (0.03)
" Xifbiogas Xgoodexper -0.46 (0.29) 0.22∗∗∗ (0.05) 0.02 (0.26) 0.14 (0.10)
" Xabovepricepaid 0.54 (0.28) 0.09∗ (0.04)
" Xabovpricetot -0.07 (0.13) 0.14∗ (0.06)

" Xifbiogas Xbadexper 0.10 (0.38) 0.04 (0.02) 0.10 (0.15) 0.07 (0.04)
" Xabovepricepaid -0.11 (0.38) -0.05 (0.03)
" Xabovpricetot -0.10 (0.10) -0.02 (0.03)

" Xifbiogas Xnoexper -0.00 (0.06) 0.09∗∗ (0.03) -0.02 (0.07) 0.10 (0.06)
maint_higher 0.37∗∗ (0.14) 0.69∗ (0.31) 0.38∗∗ (0.14) -0.72 (0.47)
smoke_lower 1.58∗∗∗ (0.16) 1.15∗∗∗ (0.19) 1.55∗∗∗ (0.15) 1.18∗∗∗ (0.21)
fuel_lower 1.76∗∗∗ (0.13) 0.10 (0.34) 1.77∗∗∗ (0.13) 0.01 (0.72)
fuel_higher -0.50∗∗∗ (0.14) -1.02∗∗ (0.35) -0.56∗∗∗ (0.15) -1.19∗∗∗ (0.28)
ICS ASC -0.82∗ (0.38) 1.20∗∗∗ (0.29) -0.77∗ (0.38) 1.05∗∗∗ (0.26)
biogas ASC Xgoodexper 4.29∗∗ (1.31) -0.87∗∗ (0.27) 1.87∗ (0.89) -1.21∗∗ (0.45)
" Xabovepricepaid -3.10∗ (1.31) -0.04 (0.37)
" Xabovepricetot 0.49 (1.05) -1.73 (0.98)
biogas ASC Xbadexper 1.09 (1.67) 0.61∗ (0.30) 1.19∗ (0.48) 0.66 (0.38)
" Xabovepricepaid 0.11 (1.75) 0.06 (0.16)
" Xabovepricetot -0.26 (0.36) -0.40 (0.53)
biogas ASC Xnoexper Xplanbg 1.52∗∗∗ (0.41) 1.52∗∗∗ (0.29) 1.63∗∗∗ (0.45) 1.49∗∗∗ (0.38)
biogas ASC Xnoexper Xnoplanbg -0.53 (0.39) -1.58∗∗∗ (0.33) -0.63 (0.40) -1.65∗∗∗ (0.31)

N 2515 2515
aic 3933.30 3933.44
bic 4168.88 4169.01

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
Note: " X[dummy] : variable in previous row is interacted with [dummy].
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4.5.2 Estimates of the WTP for changes in the attributes and

technology-speci�c premiums

To understand the magnitude of the estimates and convert them into monetary

measures, we calculate the WTP for a one-unit change in each attribute, and for

moving from the traditional cookstove to each of the non-traditional technology.

When the coe�cient of references are modelled as random, the measure provided is

the mean WTP. Results are reported in Tables 4.6, 4.7, and 4.8, in 1,000 Rupees.

Note that when conducting the robustness check and excluding the observations for

which the choice was not validated in the follow-up question on whether they would

indeed purchase that cookstove at that price (28% of the cases), the estimated WTP

for the attributes tend to be between 20% and 40% lower than the estimates for the

whole sample, while estimates for the biogas-speci�c premiums are more similar,

mostly within a +/-10% interval. Except for this di�erence, the general results

discussed in this and the previous section are robust.

Households appear to be willing to pay for more frequent maintenance services

only for the biogas stove, in the amount of 2,300 Rupees, on average (column (4)

in Table 4.6). As can be seen in the models with interaction terms with experience

level (Table 4.7), this result is mainly driven by households who already have expe-

rience with the technology, and in particular those who experienced malfunctions �

the latter are willing to pay 4,200 Rupees on average for the more frequent service.

This suggests that households who are not familiar with the technology might un-

derestimate the level of work required for operating and maintaining a biogas plant.

In terms of respondents' characteristics, maintenance service tend to be of interest

to more impatient and less credit-constrained households (Table 4.8).

WTP for smoke reduction is even larger, at 6,250 Rupees, and is less dependent

on the type of fuel, level of experience, risk aversion, time preference, or perceived

credit constraints. As seen in the previous section, there is nonetheless unobserved

heterogeneity in the estimate, although not along the lines analysed in this Chapter.

As an extension, estimates for this attribute could be obtained by health status of

the household, in particular in terms of respiratory issues, and by households' beliefs

of how harmful indoor pollution is, as in Jeuland et al. (2015a, 2019).
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Table 4.6: WTP estimates (in 1,000 Rupees, ∼19 USD) for the models in Table 4.2.

(1) (2) (3) (4)

maintXhigher 1.84∗∗∗ 1.17∗

(0.55) (0.55)
mainthigherXwood 0.14 0.02

(0.85) (0.77)
mainthigherXbiogas 2.70∗∗∗ 2.33∗∗

(0.68) (0.74)
smokeXlower 7.07∗∗∗ 6.25∗∗∗

(0.98) (0.96)
smokelowerXwood 8.28∗∗∗ 6.58∗∗∗

(1.30) (1.46)
smokelowerXbiogas 6.63∗∗∗ 6.49∗∗∗

(1.02) (1.07)
fuelXlower 7.87∗∗∗ 7.06∗∗∗

(1.05) (0.85)
fuellowerXwood 7.28∗∗∗ 6.40∗∗∗

(1.31) (1.30)
fuellowerXbiogas 8.31∗∗∗ 8.47∗∗∗

(1.12) (1.15)
fuelXhigher -2.39∗∗∗ -2.41∗∗∗

(0.68) (0.66)
fuelhigherXwood -2.17∗ -1.76∗

(1.07) (0.86)
fuelhigherXbiogas -2.43∗∗ -2.45∗∗

(0.78) (0.80)
ICS ASC -5.60∗∗∗ -4.37∗∗ -5.29∗∗ -3.82

(1.60) (1.48) (1.76) (2.01)
biogas ASC 3.97∗∗∗ 4.03∗∗∗ 3.62∗∗∗ 3.18∗∗∗

(0.77) (0.70) (0.88) (0.84)

N 2515 2515 2515 2515

Standard errors in parenthese; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4.7: WTP estimates (in 1,000 Rupees, ∼19 USD) for the models in Table 4.3.

(1) (2) (3)
outcome outcome outcome

mainthigherXwood 0.16 (0.72) 0.12 (0.63) 0.18 (0.77)
mainthigherXbiogasXgoodexper 2.70∗ (1.25) 2.46 (1.34) 2.64∗ (1.29)
mainthigherXbiogasXbadexper 4.27∗∗∗ (1.20) 4.17∗∗∗ (1.22) 3.96∗∗ (1.20)
mainthigherXbiogasXnoexper 1.15 (1.17) 2.13 (1.10) 1.55 (1.05)
smokelowerXwood 5.87∗∗∗ (1.21) 5.34∗∗∗ (1.00) 6.66∗∗∗ (1.30)
smokelowerXbiogasXgoodexper 6.71∗∗∗ (1.73) 7.82∗∗∗ (2.30) 6.07∗∗∗ (1.43)
smokelowerXbiogasXbadexper 6.61∗∗∗ (1.62) 6.32∗∗∗ (1.58) 6.02∗∗∗ (1.43)
smokelowerXbiogasXnoexper 6.55∗∗∗ (1.14) 7.46∗∗∗ (1.26) 6.78∗∗∗ (1.17)
fuellowerXwood 5.69∗∗∗ (1.34) 5.41∗∗∗ (0.64) 5.56∗∗∗ (1.12)
fuellowerXbiogasXgoodexper 8.67∗∗∗ (1.04) 8.90∗∗∗ (1.57) 8.04∗∗∗ (1.29)
fuellowerXbiogasXbadexper 11.02∗∗∗ (1.89) 11.21∗∗∗ (2.02) 10.38∗∗∗ (1.48)
fuellowerXbiogasXnoexper 6.72∗∗∗ (1.19) 7.58∗∗∗ (1.58) 6.12∗∗∗ (1.22)
fuelhigherXwood -1.51 (0.86) -1.29 (0.94) -1.90∗ (0.87)
fuelhigherXbiogasXgoodexper -2.08 (1.27) -2.02 (1.14) -1.54 (1.00)
fuelhigherXbiogasXbadexper -2.35 (1.46) -2.28 (1.52) -2.04 (1.43)
fuelhigherXbiogasXnoexper -2.81∗∗ (1.02) -3.05∗∗ (1.11) -3.16∗∗ (0.99)
ICS ASC -2.22 (1.71) -0.99 (1.28) -3.23 (1.69)
biogas ASC X goodexperience 6.16∗∗∗ (1.29) 5.84∗∗∗ (1.36) 6.42∗∗∗ (1.30)
biogas ASC X badexperience 2.35 (1.53) 2.14 (1.59) 2.49 (1.45)
biogas ASC X noexperience 1.71 (1.84)
biogas ASC X noexp X planbg 5.00∗∗∗ (1.25)
biogas ASC X noexp X planbg X otherclean 8.14∗∗∗ (1.70)
biogas ASC X noexp X planbg X tradonly 4.80∗∗ (1.69)
biogas ASC X noexp X noplanbg -4.75∗ (1.91)
biogas ASC X noexp X noplanbg X otherclean -0.12 (1.96)
biogas ASC X noexp X noplanbg X tradonly -5.91∗∗ (2.20)

N 2515 2515 2515

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 4.8: WTP estimates (in 1,000 Rupees, ∼19 USD) for the models in Table 4.4.

(1) (2) (3)

mainthigherXlessriskaverse 1.40 (0.81)
mainthigherXriskaverse 1.50 (0.81)
mainthigherXpatient 0.45 (0.78)
mainthigherXimpatient 2.06∗∗ (0.77)
mainthigherXunconstrain 1.73∗ (0.69)
mainthigherXcreditconstr 1.14 (1.04)
smokelowerXlessriskaverse 6.74∗∗∗ (1.08)
smokelowerXriskaverse 6.61∗∗∗ (1.46)
smokelowerXpatient 6.24∗∗∗ (0.94)
smokelowerXimpatient 7.17∗∗∗ (1.56)
smokelowerXunconstrain 6.42∗∗∗ (1.08)
smokelowerXcreditconstr 5.87∗∗ (2.09)
fuellowerXlessriskaverse 7.39∗∗∗ (1.27)
fuellowerXriskaverse 8.40∗∗∗ (1.37)
fuellowerXpatient 7.57∗∗∗ (1.51)
fuellowerXimpatient 8.34∗∗∗ (1.26)
fuellowerXunconstrain 8.29∗∗∗ (1.13)
fuellowerXcreditconstr 5.84∗∗∗ (1.29)
fuelhigherXlessriskaverse -2.71∗ (1.12)
fuelhigherXriskaverse -2.47∗∗ (0.91)
fuelhigherXpatient -3.93∗∗ (1.33)
fuelhigherXimpatient -1.92∗ (0.87)
fuelhigherXunconstrain -1.99∗ (0.88)
fuelhigherXcreditconstr -4.31∗∗ (1.45)
ICS ASC Xlessriskaverse -2.92 (1.83)
ICS ASC Xriskaverse -5.03∗∗ (1.93)
ICS ASC Xpatient -1.20 (1.59)
ICS ASC Ximpatient -6.32∗∗ (2.14)
ICS ASC Xunconstrain -3.38∗ (1.50)
ICS ASC Xcreditconstr -4.23 (2.20)
biogas ASC XgoodexpXlessriskaverse 8.60∗∗∗ (1.53)
biogas ASC XgoodexpXriskav 8.12∗∗∗ (1.44)
biogas ASC XgoodexpXpatient 8.39∗∗∗ (1.98)
biogas ASC XgoodexpXimpatient 8.19∗∗∗ (1.46)
biogas ASC XgoodexpXunconstr 8.24∗∗∗ (1.36)
biogas ASC XgoodexpXcreditcstr 8.14∗∗∗ (1.57)
biogas ASC XbadexpXlessriskaverse 6.24∗∗∗ (1.46)
biogas ASC XbadexpXriskav 4.99∗∗∗ (1.14)
biogas ASC XbadexpXpatient 7.45∗∗∗ (1.63)
biogas ASC XbadexpXimpatient 4.22∗∗∗ (1.15)
biogas ASC XbadexpXunconstr 5.71∗∗∗ (1.06)
biogas ASC XbadexpXcreditcstr 5.05∗∗ (1.87)
biogas ASC XnoexpXlessriskaverse 4.45∗∗∗ (1.30)
biogas ASC XnoexpXriskav 1.66 (1.14)
biogas ASC XnoexpXpatient 5.27∗∗ (1.68)
biogas ASC XnoexpXimpatient 1.05 (1.17)
biogas ASC XnoexpXunconstr 4.90∗∗∗ (1.04)
biogas ASC XnoexpXcreditcstr -1.77 (1.37)

N 2515 2515 2515

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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In terms of fuel savings, the WTP appears to change non-linearly, as a reduction

in fuel requirements elicit a much larger coe�cient than an increase in the attribute

(in absolute value). In the former case, the average household is willing to pay

around 7,000 Rupees on average for a one-unit decrease in fuel (equivalent to a

33% reduction in the total), while the mean negative WTP for a one-unit increase

is only 2,400 Rupees (Table 4.6). Again, as noted in the previous section results

are not signi�cantly di�erent by fuel, level of experience or any of the respondents'

characteristics considered, with the exception of households who had a negative

experience with biogas, who are willing to pay 50% more for a reduction in fuel

requirements. An interpretation for this result is that households might consider it

an indicator of higher e�ciency of the stove and therefore higher quality.

Finally, in terms of technology-premiums, households' dislike for the fuelwood

ICS translates into a negative WTP of between 0 and -6,000 Rupees to be convinced

to move from a traditional cookstove to the ICS, with the more negative values

associated with more risk averse and more impatient households (Table 4.8). Lack

of interest for fuelwood ICS, especially when compared to cleaner fuel stoves such

as LPG or electric, has emerged in several studies using either stated or revealed

preferences, especially in India (Hanna et al., 2016; Jeuland et al., 2019, 2015a).

As highlighted by the estimates for the standard deviations, presented in the

previous section, there is substantial unobserved heterogeneity in the taste for ICS.

Given the results we obtained regarding the importance of experience in the val-

uation of biogas plants, it would be interesting to see if the same applies to ICS.

Unfortunately, we could not explore this hypothesis in the present work as less than

1% of the sample households had a fuelwood ICS at the time of the survey and no

information was collected on previous experience with the technology.

Although, interest appears to be much higher for biogas, this result actually

masks substantial heterogeneity. Households who have had a smooth experience

with their biogas plant have an estimated WTP of 6,000 Rupees more, on average,

than for the traditional cookstove, after controlling for attributes (Table 4.7). A

slightly lower value of 5,000 Rupees is elicited for the households who have no expe-

rience with biogas but plan to install it. The WTP goes down to 2,000 Rupees for

households who have had a negative experience (although a valuation of 0 is within

the con�dence interval at 5% signi�cance level), and becomes strongly negative for

households with no experience and no intention to adopt the technology.
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This suggests that households with experience and households with no experience

but a pre-existing interest in the technology are aware of the additional co-bene�ts of

biogas that are not captured by the attributes presented in the DCE, such as waste

disposal and fertiliser as a by-product of gasi�cation � although the fact that only a

small share of the households with biogas actively use the slurry as fertiliser suggests

that these co-bene�ts might still be not fully utilised and therefore undervalued. This

positive e�ect appears to be counteracted by the negative e�ect of malfunctions and

failures of the systems, suggesting that it is very important to insure that the plants

are of good quality and that repair and maintenance services are available, in order to

avoid discontent and abandonment of the technology. In fact, 16% of the households

who have experienced malfunctions stated that they have no interest in repairing

the plant.

Further heterogeneity in the taste for biogas exists at the level of household

characteristics. Larger risk aversion, impatience and perceived credit constraints

are associated with lower WTP (Table 4.8). Nevertheless, this di�erence appears

to be signi�cant only in the case of households with no experience, suggesting that

familiarity with the technology, even when malfunctions occur, mitigates the scep-

ticism associated with these variables.

4.6 Conclusion

In this Chapter, we use a discrete choice experiment to understand household pref-

erences for `clean' cookstoves. On average, respondents' WTP for a biogas-premium

is quite high, depending on the group considered, showing that there is substantial

interest in the technology and appreciation for the co-bene�ts it brings. Although

some heterogeneity exists, interest in rocket stoves (an alternative promoted by the

private sector) is instead much lower, with households tending to prefer the tra-

ditional stove. In terms of attributes, households appear to assign a high value

to smoke reduction and fuel savings, two dimensions on which biogas can deliver

substantial improvements.

Nevertheless, these general results hide substantial heterogeneity in the taste for

speci�c technologies, especially with respect to the type of experience the household

has had with the stove. Households who are planning to build biogas appear to

have a valuation of the technology that is almost as high as the households who
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already have a plant (this is in contrast with those who do not have nor plan to

have biogas). However, �already having clean cookstoves� rather than �only using

traditional stoves� is not correlated with the outcome of the choice experiment, once

intentions to install are controlled for. This suggests that households who only

have traditional cookstoves, do not have a idiosyncratic preference for those types

of stoves, or fuelwood-based stoves in general, once the attributes � and especially

the price � are controlled for, but might be instead constrained by availability, and

budget and credit constraints, as emerges from the analysis in Section 4.4.

Preference for biogas is substantially lower for households who experienced mal-

functions (all other attributes held constant). This result suggests that a negative

experience is reducing the interest in the technology. In fact, negative experience

might even lead to abandonment, as several respondents stated they have no inter-

est in repairing their broken plant. Households who have had a smooth experience,

on the contrary, have a more favourable opinion of the technology with respect to

households with no experience, although the di�erence with households who are

planning to adopt is less marked.

The asymmetric e�ect of positive and negative information is consistent with

results from other works in the cookstove literature, especially on social learning

and marketing messages, and in general with prospect theory and loss aversion

in behavioural economics. This suggests that it is very important to insure that

the plants are of good quality, that they are appropriate for the context and the

household-speci�c needs, and that repair and maintenance services are available,

in order to avoid discontent with the technology, and ultimately abandonment and

lower uptake if negative opinions spread.

Finally, experience of any kind, either good or bad, appears to counterbalance

the negative e�ects of risk aversion, impatience and concerns regarding access to

credit on preferences for biogas. These results suggest that monetary incentives for

adoption of biogas could be successfully complemented with information schemes to

raise awareness on the co-bene�ts of the technology and schemes that allow house-

holds to gain experience with the technology and trial it before committing.

Regarding the existing situation on the ground, the type of cookstove owned

appear to be driven mainly by economic characteristics such as disposable income,

wealth and credit constraints; plus, in the case of biogas, having cattle. Fuel stack-

ing is pervasive, and there is evidence to suggest that clean cookstoves and clean
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fuels available, including biogas, are not su�cient to cover the full energy need of

the households, so that the vast majority of households continue to use traditional

cookstoves for at least some of the cooking. Malfunctions of the biogas plants seem

to be linked to age and quality of the plant and less time spent maintaining them.

Overall, the Chapter contributes to the literature on cookstove adoption and use,

providing insights on preferences for biogas and on the role of previous positive and

negative experience with the technology being o�ered, two elements on which not

much research has been done. While the results presented are mainly correlational,

they provide an important �rst step for designing causal studies and formulating

hypotheses to test.

Biogas has the potential to deliver important bene�ts in rural contexts with a

hot and humid climate, which often tend to be the hotspot for biomass burning,

especially in India. The main takeaway of the Chapter is that while interest in

such a technology is signi�cant in the study area, its penetration could be improved

by complementing the existing subsidy schemes with information campaigns and

above all trials of the technology, as experience appears to mitigate risk aversion,

present-oriented time preferences, and concerns regarding access to credit. Yet,

these are unlikely to substitute for monetary incentives, as the elicited WTP are still

often short of the total cost of installing a biogas plant, and the upfront payment

is likely to be too burdensome for many households. The results of our analysis

further suggest that attention should be paid to ensure positive experiences with

the technology if its use is to be sustained, as malfunctions and failures might cause

discontent and abandonment. In particular, good quality of the biogas systems,

detailed instructions on how to operate and maintain it, and accessible and a�ordable

repair services, are key elements in this direction.
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Appendix A

Appendix to Chapter 1

A.1 Robustness checks

Table A.1: Regression table, Tobit and Tobit with IV.

(1) (2) (3) (4)
Tobit Tobit Tobit,IV Tobit,IV

Subsidy (100GBP/kW) 2.305∗∗∗ 2.222∗∗∗ 5.245∗∗∗ 5.461∗∗∗

(0.0450) (0.0428) (0.150) (0.148)

Install. cost (1,000GBP/kW) -0.410∗∗∗ -0.0713∗ -6.227∗∗∗ -8.412∗∗∗

(0.0468) (0.0378) (0.213) (0.277)

Covariates Short Long Short Long
Local authority No No No No
Year Yes Yes Yes Yes
Month of the year Yes Yes Yes Yes

Var. instrumented Subsidy Subsidy
Install. cost Install. cost

N 503580 503580 503580 503580
F 168.1 127.0

Impl.discount rate 10.2% 14.3%

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.2: Regression table, models for fractional outcome variable.

(1) (2) (3) (4) (5) (6) (7) (8)
FracLogit FracProbit FracProbit,HET FracLogit FracProbit FracProbit,HET ZeroIn�Beta ZeroIn�Beta

Subsidy (100GBP/kW) 0.000272∗∗∗ 0.000286∗∗∗ 0.000303∗∗∗ 0.000238∗∗∗ 0.000263∗∗∗ 0.000142∗∗∗ 0.000233∗∗∗ 0.000347∗∗∗

(0.00000265) (0.00000294) (0.00000330) (0.00000529) (0.00000573) (0.00000640) (0.00000152) (0.00000310)

Install. cost (1,000GBP/kW) -0.000404∗∗∗ -0.000431∗∗∗ -0.000461∗∗∗ 0.00000466 0.00000006 -0.0000169∗∗ -0.000432∗∗∗ -0.00000480
(0.00000407) (0.00000452) (0.00000508) (0.00000517) (0.00000562) (0.00000674) (0.00000289) (0.00000355)

Covariates No No No Yes Yes Yes No Yes
Local authority No No No No No No No No
Year No No No Yes Yes Yes No Yes
Month of the year No No No Yes Yes Yes No Yes

N 503580 503580 503580 503580 503580 503580 503580 503580

mean values:

Fraction of houses installing PV 0.00052 0.00052 0.00052 0.00052 0.00052 0.00052 0.00052 0.00052

Subsidy (100GBP/kW) 2.53 2.53 2.53 2.53 2.53 2.53 2.53 2.53

Install. cost (1,000GBP/kW) 2.23 2.23 2.23 2.23 2.23 2.23 2.23 2.23

partial elasticities:

Subs.elasticity 1.466∗∗∗ 1.541∗∗∗ 1.623∗∗∗ 1.750∗∗∗ 1.894∗∗∗ 1.165∗∗∗ 1.163∗∗∗ 1.982∗∗∗

(0.0136) (0.0152) (0.0171) (0.0443) (0.0470) (0.0515) (0.00762) (0.0177)

Cost elasticity -1.919∗∗∗ -2.043∗∗∗ -2.173∗∗∗ 0.0302 0.000393 -0.122∗∗ -1.902∗∗∗ -0.0241
(0.0210) (0.0233) (0.0258) (0.0336) (0.0357) (0.0484) (0.0130) (0.0178)

Impl.discount rate 13.7% 13.9% 14.1% 17.8%

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
The coe�cients represent the average marginal e�ects calculated at the mean. Elasticities are calculated at the mean.
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Table A.3: Robustness checks on choice of instruments.

(1) (2) (3)
�rst stage second stage �rst stage second stage �rst stage second stage

Subsidy Install. cost PV count Subsidy Install. cost PV count Subsidy Install. cost PV count

Subsidy (100GBP/kW) 1.962∗∗∗ 0.966∗∗∗ 0.866∗∗∗

(0.014) (0.004) (0.010)

Install. cost (1,000GBP/kW) -4.194∗∗∗ -4.031∗∗∗ -4.110∗∗∗

(0.031) (0.030) (0.030)

FIT production rate, 1-5MW -0.0355∗∗∗ -0.00519∗∗∗

(0.000) (0.000)

FIT production rate, 0-4kW 0.0725∗∗∗ 0.00378∗∗∗

(0.000) (0.000)

2010 Pre-announced FIT rate, 0-4kW 0.351∗∗∗ -0.00223
(0.000) (0.001)

Wind production FIT rate, 0-2kW 0.00179∗∗∗ -0.0183∗∗∗ -0.00255∗∗∗ -0.0179∗∗∗ -0.00346∗∗∗ -0.0173∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Latitude -0.191∗∗∗ -0.0483∗ -0.192∗∗∗ -0.0484∗ -0.191∗∗∗ -0.0483∗

(0.014) (0.024) (0.014) (0.024) (0.014) (0.024)

Longitude 0.0250∗ 0.0185 0.0248∗ 0.0185 0.0250∗ 0.0185
(0.010) (0.017) (0.010) (0.017) (0.010) (0.017)

Chinese PV price index 2.157∗∗∗ 0.803∗∗∗ -0.0172∗∗∗ 0.524∗∗∗ 1.830∗∗∗ 0.536∗∗∗

(0.002) (0.005) (0.000) (0.005) (0.001) (0.008)

Wage electric sector (residuals) -0.0594∗∗∗ 0.114∗∗∗ -0.0599∗∗∗ 0.114∗∗∗ -0.0595∗∗∗ 0.114∗∗∗

(0.002) (0.009) (0.002) (0.009) (0.002) (0.009)

N 503580 503580 503580 503580 503580 503580 503580 503580 503580
R2 0.94 0.86 1.00 0.86 0.95 0.86
adj. R2 0.94 0.86 1.00 0.86 0.95 0.86
pseudo R2 0.33 0.33 0.33
χ2 605517.9 605732.1 604741.0

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

302



A.2 Heterogeneous e�ects

In this section, I investigate the possibility that responsiveness to changes in the

subsidy and costs of installing PV systems is heterogeneous over time, as found by

Hughes and Podolefsky (2015), or depends on the existing installed base due to

the presence of peer e�ects, which have been detected by Bollinger and Gillingham

(2012); Richter (2014); Müller and Rode (2013); Graziano and Gillingham (2015);

Rode and Weber (2016); Baranzini et al. (2017). I formulate and test the following

hypotheses regarding how responsiveness to economic incentives and costs changes

over time, and how they interact with peer e�ects. These e�ects and the underlying

mechanisms are investigated in more details in the next Chapter, addressing concerns

of endogeneity and spatial correlation.

Heterogeneous e�ects over time:

[H0] The responsiveness parameters are constant over time, all else equal;

[H1] Responsiveness to subsidy and/or system costs changes over time, all else

equal.

Heterogeneous e�ects depending on the neighbourhood's installed base:

[H0] No interaction between responsiveness to incentives and costs, and the existing

installed base;

[H1] Responsiveness to changes in the subsidy and/or responsiveness to changes in

the costs are heterogeneous depending on the number of previous installations

in the neighbourhood.

Results are presented in Table A.4 and A.5. To investigate the �rst hypothesis, I

construct an indicator for three di�erent time periods, so that each period contains

four reforms to the FIT production rate, and the time between consecutive rate

changes that belong to di�erent time periods are evenly split between the two. This

results in the following subdivision: period 1, from April 2010 to February 2013;

period 2, from March 2013 to February 2015; and period 3, from March 2015 to

January 2016. I then interact the time period indicator with the subsidy and with

the cost and run the regression analysis using a Poisson model with the main set of

�xed e�ects, to see whether the responsiveness coe�cients are stable over the three

periods (model (1) in Table A.4).
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Hughes and Podolefsky (2015) �nd that responsiveness to rebate rates in Califor-

nia decreases over time. Similarly, I found that the coe�cient for the annual subsidy

decreases substantially from period 1 to period 2, but there are no signi�cant dif-

ferences between the coe�cients for period 2 and 3. The opposite occurs for the

cost coe�cient, which is smaller and not signi�cantly di�erent from zero in the �rst

and second period, and becomes larger and signi�cantly negative in the last period.

This result does not depend on the fact that subsidies and costs were much smaller

in later time and so were changes in their absolute levels; in fact, the same result

emerges when calculating the elasticities at the mean for each time period (model

(1) in Table A.5). This suggests that subsidies were the main driving force behind

adoption in the early time of the policy, while in the later stages costs reductions

and subsidies were both important.

To investigate the second hypothesis, I �rst check for evidence that peer e�ects

are at play. For every observation, i.e. for every MSOA-month combination, I

calculate how many PV systems had been installed up to that point and use this as an

additional regressor in the equation. 1 Consistent with the literature on peer e�ects

in the adoption of residential solar PV, in column (2) I �nd that the existing installed

base has a positive coe�cient. I therefore construct a new indicator for whether each

MSOA at the end of 2011 � before any change in the FIT rate had occurred � had

more or fewer installations than the median area. The indicator is interacted with

the subsidy and the installation cost in the regression model presented in column

(3). I �nd that responsiveness to the subsidy is higher in areas with higher existing

installed base, while the opposite happens for costs, as responsiveness is higher in

areas with lower existing installed base and is not statistically di�erent from zero in

areas with higher installed base. This suggests that peer e�ects help move the focus

from the upfront cost to the future bene�ts provided by the subsidies.

1This analysis is only exploratory, as I am not addressing endogeneity and spatial correlation
issues (see for example Manski, 1993; Bollinger and Gillingham, 2012; Richter, 2014), which are
discussed in the next Chapter.
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Table A.4: Heterogeneous e�ects over time and by installed base (as a measure for peer
e�ects). Poisson model, no IVs.

(1) (2) (3)
PV count Poisson Poisson Poisson

Subsidy (100GBP/kW), 0.735∗∗∗

� period1 (0.008)

Subsidy (100GBP/kW), 0.372∗∗∗

� period2 (0.045)

Subsidy (100GBP/kW), 0.358∗∗∗

� period3 (0.057)

Subsidy (100GBP/kW) 0.721∗∗∗

(0.007)

Subsidy (100GBP/kW), 0.651∗∗∗

� low installed base (0.014)

Subsidy (100GBP/kW), 0.711∗∗∗

� high installed base (0.008)

Install. cost (1,000GBP/kW), -0.0266
� period1 (0.014)

Install. cost (1,000GBP/kW), -0.0384
� period2 (0.034)

Install. cost (1,000GBP/kW), -0.286∗∗∗

� period3 (0.044)

Install. cost (1,000GBP/kW) 0.0177
(0.015)

Install. cost (1,000GBP/kW), -0.145∗∗∗

� low installed base (0.021)

Install. cost (1,000GBP/kW), -0.0246
� high installed base (0.013)

Existing installed base 0.00604∗∗∗

(0.000)

N 503580 503580 503580
pseudo R2 0.31 0.33 0.32

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table A.5: Heterogeneous e�ects over time and by installed base (as a measure for peer
e�ects). Poisson model, no IVs. Estimates of the partial elasticities at the mean.

(1) (2) (3)
PV count Poisson Poisson Poisson

mean values:

PV count 1.01 1.01 1.01

Subsidy (100GBP/kW) 2.53 2.53 2.53

Install. cost (1,000GBP/kW) 2.23 2.23 2.23

partial elasticities:

Subs.elasticity, period 1 2.59∗∗∗

(0.027)
Subs.elasticity, period 2 0.61∗∗∗

(0.733)
Subs.elasticity, period 3 0.53∗∗∗

(0.084)
Subs.elasticity 1.82∗∗∗

(0.019)
Subs.elasticity, low installed base 1.63∗∗∗

(0.034)
Subs.elasticity, high installed base 1.81∗∗∗

(0.019)

Cost elasticity, period 1 -0.07
(0.039)

Cost elasticity, period 2 -0.07
(0.063)

Cost elasticity, period 3 -0.47∗∗∗

(0.071)
Cost elasticity 0.04

(0.032)
Cost elasticity, low installed base -0.33∗∗∗

(0.048)
Cost elasticity, high installed base -0.05

(0.030)

Installed base elasticity 0.23∗∗∗

(0.007)

Standard errors in parentheses. ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Elasticities are calculated at the mean.
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Appendix B

Appendix to Chapter 2

Table B.1: Summary statistics, LSOA-level.

mean sd median (p50)
number of new PV/LSOA/month 0.19 0.69 0
new capacity installed kW/LSOA/month 0.60 2.01 0.00
average capacity of installations kW 3.25 0.76 3.50
system cost GBP/kW 1,852 289 1,820
subsidy GBP/kW/year 206 75 187
existing installed base in the LSOA 0.70 4.01 0
owner occupied houses 401 165 414
LSOA surface area km2 4.40 14.82 0.48
population 1631 383 1565
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Table B.2: Regression table, proportional-area bu�ers, within-group (WG) and �rst-
di�erence (FD) estimator. Peer installations are divided according to how recently they
had been installed.

(1,WG) (2,WG) (1,FD) (2,FD)
PVcount PVcount PVcount PVcount

subsidy (100GBP/kW/year) 0.798∗∗∗ 0.565∗∗∗ 0.817∗∗∗ 0.581∗∗∗

(0.006) (0.007) (0.009) (0.010)

pvcost (1000GBP/kW) -0.231∗∗∗ -0.224∗∗∗ -0.232∗∗∗ -0.225∗∗∗

(0.010) (0.010) (0.016) (0.016)

N_<6m_ring 0.004∗∗∗ -0.012∗∗∗ 0.004∗∗∗ -0.010∗∗∗

(0.000) (0.001) (0.000) (0.001)

N_6-12m_ring 0.004∗∗∗ -0.010∗∗∗ 0.004∗∗∗ -0.010∗∗∗

(0.000) (0.000) (0.000) (0.001)

N_>12m_ring 0.004∗∗∗ -0.009∗∗∗ 0.004∗∗∗ -0.011∗∗∗

(0.000) (0.001) (0.000) (0.001)

subsidyXN_<6m_ring 0.007∗∗∗ 0.006∗∗∗

(0.000) (0.000)

subsidyXN_6-12m_ring 0.007∗∗∗ 0.007∗∗∗

(0.000) (0.000)

subsidyXN_>12m_ring 0.007∗∗∗ 0.008∗∗∗

(0.001) (0.000)

N 1546605 1546605 1031070 1031070
F 3501.763 2299.088 1833.013 1206.502
p 0.000 0.000 0.000 0.000

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: X represents an interaction between variables.
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Table B.3: Regression table, proportional-area bu�ers, within-group (WG) and �rst-
di�erence (FD) estimator. Peer installations are divided in three concentric rings.

(1,WG) (2,WG) (1,FD) (2,FD)
PVcount PVcount PVcount PVcount

subsidy (100GBP/kW/year) 0.800∗∗∗ 0.544∗∗∗ 0.822∗∗∗ 0.560∗∗∗

(0.006) (0.007) (0.009) (0.010)

pvcost (1000GBP/kW) -0.237∗∗∗ -0.268∗∗∗ -0.238∗∗∗ -0.271∗∗∗

(0.010) (0.010) (0.016) (0.016)

N_ring1 0.005∗∗∗ -0.019∗∗∗ 0.005∗∗∗ -0.020∗∗∗

(0.000) (0.001) (0.001) (0.002)

N_ring2 0.003∗∗∗ -0.003∗ 0.003∗∗∗ -0.003
(0.000) (0.001) (0.001) (0.002)

N_ring3 0.004∗∗∗ -0.006∗∗∗ 0.004∗∗∗ -0.006∗∗∗

(0.000) (0.001) (0.000) (0.001)

subsidyXN_ring1 0.012∗∗∗ 0.012∗∗∗

(0.001) (0.001)

subsidyXN_ring2 0.003∗∗∗ 0.003∗∗∗

(0.001) (0.001)

subsidyXN_ring3 0.005∗∗∗ 0.005∗∗∗

(0.001) (0.000)

N 1546605 1546605 1031070 1031070
F 3401.468 2217.043 1777.633 1169.755
p 0.000 0.000 0.000 0.000

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: X represents an interaction between variables.

Table B.4: Regression table, proportional-area bu�ers, within-group (WG) and �rst-
di�erence (FD) estimator. Installations are measured in kW rather than count.

(1,WG) (2,WG) (1,FD) (2,FD)
PVtot_kw PVtot_kw PVtot_kw PVtot_kw

subsidy (100GBP/kW/year) 2.647∗∗∗ 1.794∗∗∗ 2.716∗∗∗ 1.848∗∗∗

(0.021) (0.027) (0.030) (0.040)

pvcost (1000GBP/kW) -0.834∗∗∗ -0.945∗∗∗ -0.839∗∗∗ -0.956∗∗∗

(0.034) (0.034) (0.054) (0.054)

N_ring 0.005∗∗∗ -0.009∗∗∗ 0.005∗∗∗ -0.010∗∗∗

(0.000) (0.000) (0.000) (0.001)

subsidyXN_ring 0.007∗∗∗ 0.007∗∗∗

(0.000) (0.000)

N 1546605 1546605 1031070 1031070
F 5668.853 4492.498 2930.601 2347.854
p 0.000 0.000 0.000 0.000

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: X represents an interaction between variables.
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Table B.5: Regression table, proportional-area bu�ers, within-group (WG) and �rst-
di�erence (FD) estimator. Installations are measured in average kW installed rather than
count, to investigate the e�ect of size.

(1,WG) (2,WG) (1,FD) (2,FD)
PVav_kw PVav_kw PVav_kw PVav_kw

subsidy (100GBP/kW/year) 0.070∗∗∗ 0.068∗∗∗ 0.719∗∗∗ 0.923∗∗∗

(0.007) (0.013) (0.091) (0.173)

pvcost (1000GBP/kW) -0.190∗∗∗ -0.190∗∗∗ -0.847∗∗∗ -0.843∗∗∗

(0.026) (0.026) (0.217) (0.217)

N_ring 0.008∗ 0.006 -0.076 0.074
(0.004) (0.010) (0.069) (0.126)

subsidyXN_ring 0.001 -0.065
(0.004) (0.043)

N 200970 200970 28303 28303
F 52.667 39.552 25.686 19.337
p 0.000 0.000 0.000 0.000

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: X represents an interaction between variables.
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Table B.6: Regression table, �xed-radius bu�ers, withing-group (WG) estimator. Di�erent speci�cations of the installations measures (count, total kW
and average kW) and di�erent assumptions on distribution of systems in neighbourhood. Analysis is conducted on a random sample of total observations.

(1) (2) (3) (4) (5) (6)
within-group estimator PVcount PVcount PVtot_kw PVtot_kw PVav_kw PVav_kw

subsidy (100GBP/kW/year) 0.824∗∗∗ 0.867∗∗∗ 2.739∗∗∗ 2.834∗∗∗ 0.115∗∗∗ 0.114∗∗∗

(0.020) (0.020) (0.068) (0.069) (0.021) (0.021)

pvcost (1000GBP/kW) -0.254∗∗∗ -0.151∗∗∗ -0.823∗∗∗ -0.543∗∗∗ -0.101 -0.080
(0.033) (0.033) (0.108) (0.109) (0.082) (0.082)

N_<2km 0.005∗∗∗ 0.008∗∗∗ 0.008
(0.001) (0.001) (0.007)

N_<2km_unifdistr 0.024∗∗∗ 0.023∗∗∗ 0.270
(0.001) (0.001) (0.138)

N 154710 154710 154710 154710 20381 20381
F 597.421 711.772 596.163 677.681 10.933 11.624
p 0.000 0.000 0.000 0.000 0.000 0.000

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: X represents an interaction between variables.
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Table B.7: Regression table, �xed-radius bu�ers, �rst-di�erence (FD) estimator. Di�erent speci�cations of the installations measures (count, total kW and
average kW) and di�erent assumptions on distribution of systems in neighbourhood. Analysis is conducted on a random sample of total observations.

(1) (2) (3) (4) (5) (6)
�rst-di�erence estimator PVcount PVcount PVtot_kw PVtot_kw PVav_kw PVav_kw

subsidy (100GBP/kW/year) 0.854∗∗∗ 0.877∗∗∗ 2.825∗∗∗ 2.885∗∗∗ 0.832∗ 0.870∗∗∗

(0.029) (0.029) (0.097) (0.097) (0.259) (0.261)

pvcost (1000GBP/kW) -0.259∗∗∗ -0.176∗∗∗ -0.845∗∗∗ -0.661∗∗∗ -0.681 -0.602
(0.052) (0.053) (0.174) (0.175) (0.670) (0.674)

N_<2km 0.004∗∗ 0.007∗∗∗ 0.053
(0.001) (0.001) (0.122)

N_2km_unifdistr 0.020∗∗∗ 0.017∗∗∗ 0.715
(0.002) (0.002) (0.646)

N 103140 103140 103140 103140 1357 2960
F 314.847 348.845 307.946 324.379 3.697 4.051
p 0.000 0.000 0.000 0.000 0.011 0.007

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: X represents an interaction between variables.
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Appendix C

Appendix to Chapter 3

C.1 Examples of stoves from the settlements

Figure C.1: Example of a three-stone stove (in the background) and a portable metallic
improved cookstove (ICS) in the forefront. Source: Practical Action, Moving Energy
Initiative.
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Figure C.2: Example of �xed outdoor cookstove, self-built by a refugee household in
Goudoubo. Source: Practical Action, Moving Energy Initiative.

Figure C.3: Example of metallic portable improved cookstove (ICS) fuelled with �rewood,
manufactured by blacksmiths in Goudoubo. Source: Practical Action, Moving Energy
Initiative.
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Figure C.4: Example of portable improved cookstove (ICS) fuelled with �rewood, Kakuma.
Source: Practical Action, Moving Energy Initiative.

Figure C.5: Example of Blazing Tube (solar cooker) trialled in Saag-Nioniogo
Camp, Burkina Faso. The same model was also trialled in Goudoubo. Source:
UNHCR via Clean Cooking Alliance; accessed on February 10, 2020 at the
link: https://www.cleancookingalliance.org/about/news/10-20-2015-blazing-tube-solar-
cookers-in-burkina-faso-refugee-camps.html.
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C.2 Willingness to pay and valuation

Table C.1: Summary statistics of cooking-related variables. Prices, consumption quantities
and expenditures statistics are calculated only for households reporting positive and non-
missing values.

Goudoubo

count mean sd p25 p50 p75

has a three-stone (0/1) 126 0.38 . . . .
has a biomass ICS (�xed) (0/1) 126 0.18 . . . .
has a biomass ICS (portable) (0/1) 126 0.61 . . . .
has a solar cooker (0/1) 126 0.05 . . . .
has a LPG stove (0/1) 126 0.05 . . . .
has a purchased stove (0/1) 126 0.15 . . . .
has a donated stove (0/1) 126 0.71 . . . .
uses �rewood (0/1) 126 0.94 . . . .
uses charcoal (0/1) 126 0.08 . . . .
cooks indoor (0/1) 126 0.03 . . . .
uses chimney (0/1) 126 0.01 . . . .
�rewood used (kg/month) 91 89.71 115.04 23.00 39.50 150.00
charcoal used (kg/month) 27 34.70 33.40 10.00 25.00 30.00
�rewood expenditures (USD/month) 99 7.79 7.69 4.24 6.78 8.47
charcoal expenditures (USD/month) 39 3.70 2.09 1.69 3.39 5.08
briquettes expenditures (USD/month) 38 0.50 0.41 0.17 0.34 0.85
tot. expend. in cooking fuels (USD/month) 112 8.02 5.79 3.69 6.86 11.10
basic ICS's price (USD) 16 5.30 2.33 3.39 4.24 8.47
tot. household expend. (USD/month) 120 91.20 66.00 42.40 72.00 123.70

Kakuma

count mean sd p25 p50 p75

has a three-stone (0/1) 223 0.28 . . . .
has a biomass ICS (�xed) (0/1) 223 0.05 . . . .
has a biomass ICS (portable) (0/1) 223 0.75 . . . .
has a purchased stove (0/1) 223 0.20 . . . .
has a donated stove (0/1) 223 0.70 . . . .
uses �rewood (0/1) 223 0.80 . . . .
uses charcoal (0/1) 223 0.32 . . . .
cooks indoor (0/1) 223 0.56 . . . .
uses chimney (0/1) 223 0.16 . . . .
�rewood used (kg/month) 159 46.60 45.50 10.00 25.00 80.00
charcoal used (kg/month) 71 33.80 26.20 2.00 45.00 50.00
�rewood expenditures (USD/month) 38 3.94 3.55 2.00 2.75 5.00
charcoal expenditures (USD/month) 78 7.25 3.94 5.00 7.00 9.50
tot. expend. in cooking fuels (USD/month) 93 7.84 5.00 4.50 7.00 10.00
basic ICS's price (USD) 36 4.10 2.25 3.00 4.00 5.00
tot. household expend. (USD/month)∗ 94 40.70 54.40 7.00 18.50 49.00
∗ Note: Household expenditures in Kakuma are likely under-reported according to other data sources, reports,

and private conversation with personnel in the �eld.
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C.3 E�ects of stove use

Treatment

� treatment - dummy that takes the value 1 if only non-traditional cookstoves are

used, and 0 if three-stone �re is used for cooking (either as primary or secondary

cooking system, or both).

� treatment adjusted - same as above, but cookstoves that are artisanal or self-built

are reclassi�ed as traditional three-stone �res.

� treatment index - summative index constructed by assigning a score of +1 for each

characteristic associated with an improved cooking system (any of the primary or

secondary stove is a �xed ICS, a portable ICS, a non-biomass stove, manufactured,

branded, purchased, the household uses charcoal as a cooking fuel, cooks outdoor,

uses a chimney to remove smoke), and -1 for each characteristic associated with tra-

ditional cookstoves and indoor pollution (any of the primary or secondary stove is a

three-stone �re, is artisanal, is self-built, the household uses �rewood as a cooking

fuel, cooks indoor). The index can therefore take values from -5 to +9.

� treatment pca - index constructed by using factor analysis on the same dummies

used for treatment index and extracting the �rst factor using the Bartlett method.

Instrument

� stove donated - whether the primary or secondary cookstove was received as a

donation.

Outcome variables

Energy e�ciency:

� firewood(kg/month) - quantity of �rewood consumed per month, using responses

to the question �How much does your household consume in a typical month on

the following fuels for the cookstoves? FIREWOOD�. The question distinguishes

between the amount purchased, donated, and collected, and the three have been

aggregated for the purpose of this analysis.

� firewood(kg/hour of cooking) - quantity of �rewood consumed per hour, com-

puted as the ratio between the quantity of �rewood consumed per month divided by

30 to obtain the average daily consumption, over the number of hours the primary

and secondary stove are lit per day. This measure allows to investigate the fuel ef-
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�ciency of the stoves without being a�ected by binding availability constraints and

the rebound e�ect. Nevertheless, this measure misses some aspects of fuel e�ciency

such as shorter time required to warm up the stove. Some information on the latter

can be obtained by looking at the time use outcomes.

Health and safety:

� smoke problems (dummy) - dummy that takes the value 1 if any smoke issue was

reported related to any of the primary or secondary stove (stove �caused a lot of

smoke�) or to the fuel used for cooking (�chest infections/lung disease, due to indoor

air pollution� and �eye infections, smoke-related�).

� accidents (dummy) - dummy that takes the value 1 if any accident was reported

related to any of the primary or secondary stove (stove �caused unintended �re�,

�damaged home�, �caused burns�, �caused permanent physical damage to any person

in the household�) or to the fuel used for cooking (�burns�).

Time use:

� hours/day of stove use - number of hours the primary cookstove is lit per day,

plus the hours the secondary cookstove is lit per day (using responses to the question

�In the last 7 days, how many hours per day on average was the primary/secondary

cookstove lit?�).

� total time (hours/week) - sum of the time spent by all the members of the

household in all cooking-related activities (�In a normal week, how many hours does

each household member spend cooking (food, tea, boiling water) / collecting or

gathering fuel / purchasing fuel - including travel time / producing and preparing

fuel?�, hours for all the members are summed).

Workload burden on women and children:

� children involved - dummy that takes the value 0 if the household reports that

children are �never involved� in fuelwood collection, and 1 otherwise.

� female share of total work measures the percentage of the total time dedicated to

cooking-related activities (cooking, fuel collection, fuel purchase and preparations)

that is contributed by female members of the household.
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Table C.2: Summary statistics for variables used in the estimation of the bene�ts of using
non-traditional cookstoves.

Goudoubo Kakuma

mean sd mean sd
� treatment �
treatm. (non-trad stove) 0.62 0.49 0.72 0.45
treatm. adjusted 0.60 0.49 0.61 0.49
treatm. index 0.92 2.42 0.94 2.61
treatm. pca 0.66 0.43 0.71 0.44
� instrument �
stove donated 0.69 0.46 0.68 0.47
� outcomes �
fuelwood(kg/month) 108.79 151.21 40.94 45.32
fuelwood(kg)/hour cooking 0.62 0.83 0.28 0.41
smoke (dummy) 0.29 0.46 0.66 0.487
accidents (dummy) 0.04 0.19 0.61 0.49
hours/day stoves are on 5.61 2.71 9.87 8.20
hours/week cooking activities 46.52 32.24 22.78 26.03
female/tot cooking activities 0.82 0.21 0.74 0.36
children involv. 0.25 0.43 0.32 0.47
� other variables �
female respond. 0.43 0.50 0.67 0.47
female head of h. 0.35 0.48 0.58 0.49
respond. age 42.09 14.47 31.08 12.88
head of h. age 42.99 14.52 34.20 13.16
hh size 5.50 3.37 6.04 2.84
hh size, female 2.79 1.81 3.12 1.90
hh size, male 2.71 2.15 2.73 1.83
mobile dummy 0.81 0.40 0.88 0.32
radio or tv dummy 0.20 0.40 0.24 0.43
expend. (usd/month) 91.93 68.43 36.30 66.58
top priority safe 0.14 0.35 0.13 0.33
top priority less smoke 0.21 0.41 0.12 0.32
top priority less fuel 0.09 0.28 0.17 0.38
top priority cook cheap 0.04 0.19 0.08 0.28
top priority cook fast 0.13 0.34 0.11 0.32
top priority trad. & habits 0.02 0.15 0.07 0.25

N 129 231
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C.3.1 Robustness checks - Goudoubo

Table C.3: First stage of the 2SLS IV estimator; stove donated is the instrument.

Goudoubo (1) Goudoubo (2)
treatm. index treatm. pca

stove donated 2.15∗∗∗ (0.558) 0.24∗ (0.094)
wealth index 1.22∗ (0.490) 0.15+ (0.079)
adult-equiv. size 0.16 (0.391) -0.03 (0.067)
adult-equiv. size2 -0.02 (0.026) -0.00 (0.004)
number of children -0.03 (0.176) 0.00 (0.031)
head's age -0.01 (0.014) -0.00 (0.003)
fem empower index 2.87∗ (1.446) 0.60∗ (0.287)
female respondent -0.50 (0.497) -0.07 (0.092)
" X fem empower index -1.32 (1.653) -0.37 (0.326)

top safe -0.14 (0.586) 0.03 (0.107)
top less smoke -0.97∗ (0.431) -0.20∗ (0.078)
top less fuel -0.68 (0.442) -0.11 (0.077)
top cheap -0.68 (0.637) -0.07 (0.129)
top cook fast -0.23 (0.459) -0.10 (0.088)
top traditions & habits -0.18 (0.495) -0.06 (0.091)
_cons -0.77 (0.958) 0.78∗∗∗ (0.181)

N 129 129
F 3.46 4.43
p 0.00 0.00
r2 0.29 0.29
r2_a 0.19 0.20

Standard errors in parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table C.4: Estimates of treatment e�ects on energy e�ciency, Goudoubo.

OLS IV,2sls
tot �rewood qty (treatm. index) (treatm. pca) (treatm. index) (treatm. pca)

treatment -11.44∗∗ -91.57∗∗∗ -7.35 -60.50
(4.321) (24.762) (10.654) (88.312)

p-value [0.010] [0.000] [0.490] [0.493]
" weak IV-robust [0.505] [0.505]
sharpened q-value [0.073] [0.003] [0.674] [0.674]

N 104 104 104 104
r2 0.50 0.52 0.49 0.52
r2_a 0.41 0.44 0.41 0.43

OLS IV,2sls
�rewood per hour (treatm. index) (treatm. pca) (treatm. index) (treatm. pca)

treatment -0.06∗ -0.46∗∗∗ -0.02 -0.16
(0.025) (0.133) (0.063) (0.518)

p-value [0.032] [0.001] [0.752] [0.751]
" weak IV-robust [0.758] [0.758]
sharpened q-value [0.105] [0.003] [0.674] [0.674]

N 104 104 104 104
r2 0.36 0.38 0.35 0.36
r2_a 0.25 0.27 0.24 0.25

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table C.5: Estimates of treatment e�ects on health and safety, Goudoubo.

OLS IV,2sls
smoke problems (treatm. index) (treatm. pca) (treatm. index) (treatm. pca)

treatment -0.05∗∗ -0.43∗∗∗ -0.07+ -0.59+

(0.016) (0.095) (0.037) (0.329)
p-value [0.002] [0.000] [0.076] [0.073]
" weak IV-robust [0.105] [0.106]
sharpened q-value [0.014] [0.001] [0.590] [0.590]

N 129 129 129 129
r2 0.35 0.41 0.35 0.39
r2_a 0.27 0.33 0.26 0.31

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table C.6: Estimates of treatment e�ects on time use, Goudoubo.

OLS IV,2sls
hours of stove use (treatm. index) (treatm. pca) (treatm. index) (treatm. pca)

treatment -0.11 -1.16 0.26 2.15
(0.117) (0.794) (0.223) (1.979)

p-value [0.337] [0.148] [0.248] [0.278]
" weak IV-robust [0.230] [0.230]
sharpened q-value [0.410] [0.227] [0.590] [0.590]

N 126 126 126 126
r2 0.15 0.17 0.06 .
r2_a 0.03 0.05 -0.07 .

OLS IV,2sls
tot time (treatm. index) (treatm. pca) (treatm. index) (treatm. pca)

treatment -0.33 -2.37 1.16 9.88
(1.079) (5.776) (2.418) (20.638)

p-value [0.760] [0.683] [0.630] [0.632]
" weak IV-robust [0.633] [0.633]
sharpened q-value [0.484] [0.519] [0.674] [0.674]

N 125 125 125 125
r2 0.35 0.35 0.34 0.33
r2_a 0.26 0.26 0.25 0.24

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table C.7: Estimates of treatment e�ects on women and children workload, Goudoubo.

OLS IV,2sls
female share of work (treatm. index) (treatm. pca) (treatm. index) (treatm. pca)

treatment -0.01 -0.01 -0.04+ -0.30
(0.008) (0.049) (0.020) (0.189)

p-value [0.268] [0.878] [0.080] [0.112]
" weak IV-robust [0.076] [0.076]
sharpened q-value [0.192] [0.336] [0.590] [0.590]

N 124 124 124 124
r2 0.28 0.27 0.20 .
r2_a 0.18 0.17 0.09 .

OLS IV,2sls
children involv. (treatm. index) (treatm. pca) (treatm. index) (treatm. pca)

treatment -0.03∗ -0.17∗ -0.04 -0.37
(0.014) (0.086) (0.032) (0.299)

p-value [0.031] [0.050] [0.205] [0.221]
" weak IV-robust [0.195] [0.195]
sharpened q-value [0.042] [0.053] [0.590] [0.590]

N 129 129 129 129
r2 0.32 0.32 0.32 0.29
r2_a 0.23 0.23 0.23 0.20

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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C.3.2 Robustness checks - Kakuma

Table C.8: First stage of the 2SLS IV estimator; stove donated is the instrument.

Kakuma (1) Kakuma (2)
treatm. index treatm. pca

stove donated 1.30∗∗ (0.428) 0.34∗∗∗ (0.064)
wealth index -0.86 (0.534) -0.13 (0.080)
adult-equiv. size 0.11 (0.475) 0.03 (0.068)
adult-equiv. size2 -0.03 (0.044) -0.01 (0.007)
number of children -0.04 (0.114) 0.02 (0.018)
head's age -0.00 (0.015) -0.00 (0.002)
fem empower index -1.11 (0.761) -0.17 (0.131)
female respondent 0.34 (0.524) 0.04 (0.082)
" X fem empower index 0.39 (0.963) 0.03 (0.159)

top safe -0.08 (0.387) -0.02 (0.062)
top less smoke -0.68+ (0.409) -0.12∗ (0.063)
top less fuel 0.66+ (0.356) 0.06 (0.063)
top cheap 0.14 (0.428) -0.00 (0.070)
top cook fast 0.18 (0.460) -0.06 (0.073)
top traditions & habits -0.05 (0.404) -0.06 (0.063)
central_africa (baseline) . .
eastern_africa -0.07 (0.789) 0.06 (0.158)
somalia 1.45∗ (0.704) 0.30∗∗ (0.108)
south_sudan 0.57 (0.655) 0.16 (0.111)
sudan -1.20+ (0.638) -0.09 (0.107)

N 214 214
F 4.80 6.48
p 0.00 0.00
r2 0.25 0.30
r2_a 0.17 0.23

Standard errors in parentheses
+ p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table C.9: Estimates of treatment e�ects on energy e�ciency, Kakuma.

OLS IV,2sls
tot �rewood qty (treatm. index) (treatm. pca) (treatm. index) (treatm. pca)

treatment -0.90 2.48 15.78 47.88+

(1.504) (7.645) (11.711) (26.117)
p-value [0.551] [0.746] [0.035] [0.067]
" weak IV-robust [0.035] [0.035]
sharpened q-value [0.649] [0.511] [0.256] [0.256]

N 175 175 175 175
r2 0.26 0.26 . 0.10
r2_a 0.17 0.17 . -0.01

OLS IV,2sls
�rewood per hour (treatm. index) (treatm. pca) (treatm. index) (treatm. pca)

treatment 0.01 0.13+ 0.01 0.02
(0.015) (0.071) (0.071) (0.215)

p-value [0.629] [0.060] [0.936] [0.936]
" weak IV-robust [0.936] [0.936]
sharpened q-value [0.649] [0.136] [0.650] [0.650]

N 175 175 175 175
r2 0.22 0.24 0.22 0.23
r2_a 0.13 0.15 0.13 0.13

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table C.10: Estimates of treatment e�ects on health and safety, Kakuma.

OLS IV,2sls
smoke problems (treatm. index) (treatm. pca) (treatm. index) (treatm. pca)

treatment -0.03+ -0.09 0.02 0.07
(0.014) (0.077) (0.054) (0.203)

p-value [0.053] [0.258] [0.738] [0.735]
" weak IV-robust [0.731] [0.731]
sharpened q-value [0.140] [0.275] [0.650] [0.650]

N 214 214 214 214
r2 0.18 0.17 0.13 0.15
r2_a 0.10 0.09 0.05 0.07

OLS IV,2sls
accidents (treatm. index) (treatm. pca) (treatm. index) (treatm. pca)

treatment 0.02 0.09 -0.04 -0.17
(0.014) (0.077) (0.055) (0.202)

p-value [0.212] [0.230] [0.427] [0.414]
" weak IV-robust [0.409] [0.409]
sharpened q-value [0.362] [0.275] [0.650] [0.650]

N 214 214 214 214
r2 0.16 0.16 0.07 0.11
r2_a 0.07 0.07 -0.02 0.02

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table C.11: Estimates of treatment e�ects on time use, Kakuma.

(1) (2) (3) (4)
OLS IV,2sls

hours of stove use (treatm. index) (treatm. pca) (treatm. index) (treatm. pca)

treatment -0.44∗ -2.89∗ 0.97 3.55
(0.211) (1.157) (0.955) (3.281)

p-value [0.038] [0.013] [0.311] [0.279]
" weak IV-robust [0.246] [0.246]
sharpened q-value [0.113] [0.05] [0.420] [0.420]

N 213 213 213 213
r2 0.34 0.35 0.19 0.25
r2_a 0.28 0.28 0.11 0.17

OLS IV,2sls
tot time (treatm. index) (treatm. pca) (treatm. index) (treatm. pca)

treatment 1.15 0.65 -8.08 -22.30
(1.055) (5.055) (7.114) (16.294)

p-value [0.277] [0.897] [0.256] [0.171]
" weak IV-robust [0.155] [0.155]
sharpened q-value [0.383] [0.511] [0.420] [0.420]

N 200 200 200 200
r2 0.16 0.15 . 0.03
r2_a 0.07 0.06 . -0.07

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table C.12: Estimates of treatment e�ects on women and children workload, Kakuma.

OLS IV,2sls
female share of work (treatm. index) (treatm. pca) (treatm. index) (treatm. pca)

treatment -0.01 -0.06 0.07 0.17
(0.009) (0.050) (0.068) (0.146)

p-value [0.413] [0.215] [0.321] [0.253]
" weak IV-robust [0.224] [0.224]
sharpened q-value [0.525] [0.275] [0.420] [0.420]

N 192 192 192 192
r2 0.46 0.47 0.25 0.40
r2_a 0.40 0.41 0.17 0.34

OLS IV,2sls
children involv. (treatm. index) (treatm. pca) (treatm. index) (treatm. pca)

treatment -0.04∗∗ -0.26∗∗∗ -0.10+ -0.38∗

(0.013) (0.072) (0.055) (0.191)
p-value [0.006] [0.000] [0.069] [0.045]
" weak IV-robust [0.051] [0.051]
sharpened q-value [0.055] [0.004] [0.256] [0.256]

N 214 214 214 214
r2 0.21 0.23 0.11 0.22
r2_a 0.14 0.16 0.02 0.14

Standard errors in parentheses; + p < 0.1, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Appendix D

Appendix to Chapter 4

D.1 Discrete-choice experiment material

Figure D.1: Example of choice-card used in the discrete-choice experiment.
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Figure D.2: Script used to introduce the discrete-choice experiment, in English and Odia.
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D.2 Description of the sample

D.2.1 Characteristics of the respondents

Table D.1 shows descriptive statistics for the demographic and socio-economic char-

acteristics of the respondents, community engagement, safety nets, risk aversion and

impatience, cookstove and fuel use, and cooking behaviours. As a general descrip-

tion of the sample, respondents (whenever possible the survey was conducted with

the head of the household) are on average 43 years old, with half the sample between

32 and 53, and less than a third are women.

Most households cook for 4-5 members every day (hhsize_cookedfor), live in

houses with an estimated value between 50,000 and 200,000 INR (∼600-2500 GBP)

and 2 to 4 rooms. The caste composition of the sample is 8% scheduled castes, 12%

scheduled tribes, 63% other backward castes, and 17% open or general. 40% of the

households are below the poverty line. Further information on the wealth of the

household are provided by an asset-ownership index (constructed as the number of

di�erent types of assets the household owns in a given list, which includes di�erent

electrical appliances, transportation means, phones and television sets, di�erent

pieces of furniture, etc.) and low quality of housing material index (higher value

means lower quality materials are used; the index is constructed using information

on the materials used for the �oor, walls, and roof of the kitchen and of the living

area).

Expenditures in non-food items, a proxy for disposable income, are on average

27,000 INR (340 GBP) per year, with a median of 16,200 INR (200 GBP) denoting

a skewed distribution; expenditures for electricity and/or fuels for lighting are on

average 1,800 INR (23 GBP) per year, and 86% of households in the sample have

electric lighting. The credit constraint index measures how di�cult it is for house-

holds to access credit, and is constructed using answers to the question �If you have

to borrow Rs. 5000 (from a money lender or micro-�nance groups, not from the

family member and friends) for one month, would this be possible?�, with values (1)

yes, quite easy, (2) yes, but not easy, (3) may be not sure, (4) not possible, and 2

being the average and median response in the sample.

30% of the households are members of a self-help group and 28% participate in

community or neighbourhood cleaning activities, a signal of community engagement
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and awareness of hygiene and health issues. Most households live within a 3-10

minute walk from the center of their village, 1-10 minute from the nearest all-

weather road, and 5-20 minute from a mason or plumber. 23% of the respondents

reported cooking inside the living areas (i.e. the kitchen and living rooms are the

same, with or without a partition to separate them, but no walls). Fuel-stacking

behaviour is pervasive; details on the combination of cookstove technologies used by

sample households are presented in Table D.2. Values for cooking and fuel-related

variables are described by sample group in the next sub-section, as they are related

to the way the strati�cation groups are de�ned.

D.2.2 Characteristics and use of the existing biogas plants

Table D.3 presents descriptive statistics for variables related to the biogas plant and

the motivations for its adoption, for households in the sample groups with working

and broken biogas. All the biogas plants are �xed-dome (Deenbandhu model); with

a capacity of either 1 m3 (15% of the households) or a larger 2 m3 (85% of the

households; the variable biogasplantsize is coded 1 for the larger size, and 0 for

the smaller size). Most plants were installed between 2004 and 2010, with some

going back as far as the 1980s. On average, households paid 3,500 INR (44 GBP)

out of their own pockets for the plant, while the average subsidy was around 3,700

INR (47 GBP). Everyone in the sample received subsidies for the construction of

the plant, ranging from 17% to 82% of the overall cost; the vast majority (91%)

received them from OREDA, and the remaining 9% from other support schemes

from the government of Odisha. OREDA also played an important role in spreading

awareness about the subsidy scheme, as 72% of the households heard about the

program from them, while 22% found out through the person who installed the

plant and and 6% through family or friends.

On operation and maintenance, households with a broken biogas plant were

asked to answer with reference to when the plant was working properly. Households

spend between 2 and 6 hours each week (equivalent to about 15-50 minutes a day)

operating and maintaining the plant, of which 0.5-2 hours collecting the dung, 0.5-

2.5 hours feeding it into the plant, and 1-1.5 hours cleaning. Only one household

in the whole sample reported having to purchase dung for the biogas plant, while

the others have dung available that only needs to be collected (not reported in the
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table). One of the important co-bene�ts of using biogas, is that the slurry resulting

from the gasi�cation process can be used as fertiliser in agriculture, and in fact this is

often of higher quality than the fertilisers available at the local markets or undigested

manure (Insam et al., 2015; Chen et al., 2010; Brown, 2006). 83% of the respondents

say they have noticed that agricultural yield increases with the slurry if compared

to purchased fertilisers or animal manure, while the remaining has either noticed

no di�erence or has no experience to makes the comparison; only one respondent

claimed that the yield decreases compared to the other fertiliser options. Yet, only

14% purposefully use the slurry as fertiliser, while most households (82%) simply

dump it in the �eld. 9% of the respondents make it into cakes to be burned as fuel

for cooking or other energy purposes1.

Finally, households with a biogas plant were asked what factors they had consid-

ered when deciding to install a biogas plant, and to rank the relevant ones in order

of importance. Table D.3 reports those that are listed as the top three. The most

cited factor is dung availability (88% of respondents), followed closely by saving

on fuelwood (80%). Important is also the cost factor, cited by about half of the

respondents (48%). Maintenance costs and health bene�ts were considered as top 3

motivations by 24% of respondents each, while air quality and credit availability by

11% and 10% respectively.

D.3 Additional tables

1Households were allowed to select more than one option, and 7.5% selected both dump it in
the �eld and make it into cakes for fuel, which is why percentages add up to more than 100
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Table D.1: Summary statistics of the sample of 503 households.

mean sd min p25 p50 p75 max

age_respondent 43.38 14.19 16 32 42 53 85
female_respondent 0.30 0.46 0 0 0 1 1
hhsize_cookedfor 4.62 1.25 1 4 5 5 9
children_cookedfor 0.70 0.94 0 0 0 1 4
general_caste 0.17 0.38 0 0 0 0 1
OBC_caste 0.63 0.48 0 0 1 1 1
SCST_caste 0.20 0.40 0 0 0 0 1
belowpovertyline 0.40 0.49 0 0 0 1 1
lowqltyhousematerial (index) 26.09 10.87 8 17 26 36 44
assetsownership (index) 9.19 3.98 2 6 9 12 21
housevalue (1,000 INR) 154.83 144.81 10.00 50.00 100.00 200.00 800.00
numberrooms 3.00 1.30 1 2 3 4 7
expenditures (1,000 INR/year) 26.97 31.30 2.55 8.90 16.21 32.69 343.00
electrnlightexp (1,000 INR/year) 1.79 0.95 0 1.10 1.68 2.30 4.90
electriclight (dummy) 0.86 0.34 0 1 1 1 1
receivelpgsubs (dummy) 0.09 0.28 0 0 0 0 1
receivekerosubs (dummy) 0.92 0.28 0 1 1 1 1
receivefoodsubs (dummy) 0.41 0.49 0 0 0 1 1
receiveemploymsubs (dummy) 0.09 0.29 0 0 0 0 1
creditconstr (index) 2.16 1.02 1 1 2 3 4
shg_member (dummy) 0.30 0.46 0 0 0 1 1
cleancommunity (dummy) 0.28 0.45 0 0 0 1 1
distancevillagecentre (min. walking) 6.46 5.24 0 3 5 10 31
distanceroad (min. walking) 7.41 8.24 0 1 5 10 45
distancemason (min. walking) 15.71 18.83 0 5 10 20 130
plotarea (1,000 sq foot) 1.87 1.70 0.16 0.80 1.20 2.20 9.00
livestockqty_small 1.53 4.75 0 0 0 0 45
livestockqty_big 2.98 3.22 0 0 2 4 25
selreportriskaverse 2.76 1.34 0 2 3 4 5
riskaverse 3.28 1.10 1 3 4 4 4
selfreportimpatient 2.18 1.24 0 1 2 3 5
impatient 3.34 1.08 1 3 4 4 4
numberstovetypes 1.87 0.75 1 1 2 2 5
hastraditional (dummy) 0.91 0.28 0 1 1 1 1
haskerosene (dummy) 0.18 0.39 0 0 0 0 1
haslpg (dummy) 0.20 0.40 0 0 0 0 1
haselectric (dummy) 0.07 0.26 0 0 0 0 1
timeuseallstove (minutes/day) 237.34 77.13 0 180 240 280 910
timeusebiomassstove (minutes/day) 147.71 87.48 0 60 150 210 445
timeusecleanstove (minutes/day) 89.62 82.44 0 0 90 150 610
ventilqty (index) 0.93 0.52 0 1 1 1 4
cookinlivingareas (dummy) 0.23 0.42 0 0 0 0 1
believesmokeunhealthy (index) 2.23 0.85 1 2 2 3 5
woodqtyused (kg/week) 30.50 15.88 0 20 30 40 80
collectwood (dummy) 0.74 0.44 0 0 1 1 1
qtywoodcollect (kg/year) 1414.36 1559.89 0 0 1200 2250 12800
woodhardto�nd (dummy) 0.67 0.47 0 0 1 1 1
usedailywood (dummy) 0.69 0.46 0 0 1 1 1
usedailylpg (dummy) 0.11 0.31 0 0 0 0 1
usedailykeros (dummy) 0.04 0.20 0 0 0 0 1
usedailyelectr (dummy) 0.04 0.19 0 0 0 0 1

N 503
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Table D.2: Fuel-stacking: combination of cookstove technologies for the full sample (503
households).

group include traditional clean only
# stove types

group 1
1 biogas (11%)

2 trad+biogas (66%) LPG+biogas (4%)
electric+biogas (1%)

3+ trad+biogas+keros (7%) keros+LPG+biogas (1.5%)
trad+biogas+LPG (3%)
trad+biogas+electric(1.5%)
trad+biogas+keros+LPG (3%)
trad+biogas+keros+LPG+electric (2%)

group 2
1 biogas (2%)

2 trad+biogas (78%) LPG+biogas (4%)
keros+biogas (1%)

3+ trad+biogas+keros (7%) LPG+electric+biogas (1%)
trad+biogas+LPG (5%)
trad+biogas+keros+LPG+electric (2%)

group 3
1 LPG (3%)

kerosene (1%)

2 trad+LPG (31%) keros+LPG (2%)
trad+keros (25%) LPG+electric (1%)
trad+electric (10%)
trad+ICS (2%)

3+ trad+keros+LPG (11.5%) keros+LPG+electric (2%)
trad+keros+electric (6.5%)
trad+LPG+electric (1%)
trad+ICS+keros (1%)
trad+keros+LPG+electric (3%)

group 4
1 trad. (100%)

total 91% 9%
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Table D.3: Summary statistics of the variables related to the existing biogas plants in the
sample (253 households).

mean sd min p25 p50 p75 max

installationyear 2005.74 6.36 1982 2004 2009 2010 2011
biogasplantsize_large 0.85 0.35 0 1 1 1 1
price_paidbyhh1 (INR) 3506.50 1746.31 580 2170 3225 4000 12000
subsidies1 (INR) 3731.61 1437.65 1300 2750 3510 4500 8000
subspriceratio (%) 0.52 0.14 0.17 0.46 0.50 0.59 0.82
time_total (hours/week) 4.34 0.97 2.10 3.50 4.50 5.00 6.00
time_collectdung (hours/week) 1.40 0.51 0.50 1.00 1.50 2.00 2.00
time_feedplant (hours/week) 1.46 0.62 0.50 1.00 1.00 2.00 2.50
time_cleaning (hours/week) 1.49 0.06 1.00 1.50 1.50 1.50 1.50
slurry_dumpin�eld 0.82 0.39 0 1 1 1 1
slurry_fertilize 0.14 0.35 0 0 0 0 1
slurry_cakeforenergy 0.09 0.29 0 0 0 0 1
increased yield 0.83 0.37 0 1 1 1 1
top3_dungavailability 0.88 0.32 0 1 1 1 1
top3_woodsavings 0.80 0.40 0 1 1 1 1
top3_cost 0.48 0.50 0 0 0 1 1
top3_maintenancecost 0.24 0.43 0 0 0 0 1
top3_health 0.24 0.43 0 0 0 0 1
top3_airquality 0.11 0.32 0 0 0 0 1
top3_creditavailability 0.10 0.30 0 0 0 0 1

N 253
1 Subsidies are de�ned as additional to the price paid by the household. The total price is therefore

the price paid by the household plus the subsidy.
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Table D.4: Regression table. Model (1) is a multinomial logit with outcome �having a
biogas plant� (baseline), �other clean stoves� and �traditional only�; model (2) is an ordinal
logit model for whether the household has only one type of cookstove, two types, or three
or more.

(1) (2)
stovegroup stovestacking

other clean traditional only stovestacking

age_respondent 0.004 0.004 -0.011
(0.009) (0.010) (0.006)

female_respondent -0.087 0.152 -0.394∗

(0.277) (0.246) (0.171)
distance_roadallweather -0.006 -0.019 -0.009

(0.015) (0.013) (0.011)
OBC_caste 0.725∗ 0.736 -0.123

(0.319) (0.404) (0.337)
SCST_caste 0.021 0.506 -0.034

(0.528) (0.509) (0.484)
belowpovertyline -0.235 0.149 -0.070

(0.355) (0.272) (0.250)
healthbelief -0.057 0.126 0.005

(0.184) (0.190) (0.144)
hhsize_adj_cookedfor -0.269 0.143 -0.137

(0.153) (0.141) (0.091)
children_cookedfor 0.082 0.001 0.040

(0.159) (0.130) (0.088)
assetsownership 0.030 -0.188∗∗ 0.141∗∗∗

(0.058) (0.058) (0.042)
numberrooms 0.116 -0.039 0.122

(0.126) (0.131) (0.086)
lowqltyhousematerial -0.029 0.027 -0.036∗∗

(0.016) (0.016) (0.012)
lnyearexp 0.851∗∗ 0.243 0.103

(0.266) (0.220) (0.175)
creditconstr 0.305 0.116 -0.128

(0.159) (0.134) (0.098)
shg_member 0.040 0.153 -0.013

(0.294) (0.279) (0.255)
cleancommunity -0.146 -0.195 0.352

(0.377) (0.283) (0.182)
distancevillagecentre -0.046 0.003 -0.043∗∗

(0.026) (0.024) (0.016)
plotarea -0.000 -0.000 -0.000

(0.000) (0.000) (0.000)
livestockqty_small -0.040 -0.028 0.031

(0.028) (0.022) (0.022)
livestockqty_big -0.393∗∗∗ -0.268∗ 0.054

(0.090) (0.110) (0.029)
riskaverse -0.266∗ 0.057 -0.036

(0.133) (0.147) (0.113)
impatient 0.081 -0.094 0.008

(0.156) (0.163) (0.106)
_cons -7.004∗∗ -3.078

(2.602) (2.262)

N 503 503
pseudo R2 0.23 0.13

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

335



Table D.5: Regression table. Logit estimates for the likelihood of �planning to build a
biogas plant�, for households who do not currently have biogas.

(3)
plan to install biogas

plan_biogas
group4 (trad. only) 0.360 (0.358)
age_respondent 0.002 (0.014)
female_respondent -0.378 (0.384)
distance_roadallweather 0.014 (0.025)
OBC_caste 0.015 (0.508)
SCST_caste 0.217 (0.585)
belowpovertyline 0.451 (0.338)
healthbelief -0.218 (0.171)
hhsize_adj_cookedfor -0.012 (0.142)
children_cookedfor 0.066 (0.150)
assetsownership 0.043 (0.069)
numberrooms 0.266 (0.153)
lowqltyhousematerial -0.026 (0.015)
lnyearexp -0.073 (0.264)
creditconstr -0.351∗ (0.145)
shg_member 0.474 (0.358)
cleancommunity -0.198 (0.330)
distancevillagecentre -0.032 (0.024)
plotarea 0.000 (0.000)
livestockqty_small 0.064 (0.087)
livestockqty_big 0.103 (0.103)
riskaverse 0.053 (0.135)
impatient -0.232 (0.146)
_cons 1.437 (2.852)

N 250
pseudo R2 0.14

Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table D.6: Regression table. OLS estimates for time and share of time stoves are used.

(4a) (4b) (4c) (4d)
time, all stoves time, clean time, biomass share, clean

2.samplegroup 31.0∗∗ (11.02) -48.2∗∗∗ (11.33) 79.2∗∗∗ (8.32) -0.3∗∗∗ (0.04)
3.samplegroup -35.0∗ (16.28) -78.1∗∗∗ (13.17) 43.1∗∗∗ (9.63) -0.2∗∗∗ (0.03)
4.samplegroup -8.4 (9.35) -128.4∗∗∗ (7.58) 120.0∗∗∗ (9.25) -0.5∗∗∗ (0.03)
hastraditional 38.5∗ (16.35) -15.7 (13.71) 54.2∗∗∗ (10.69) -0.2∗∗∗ (0.04)
haskerosene 36.5∗∗ (11.21) 29.1∗∗ (9.27) 7.5 (7.00) 0.0 (0.02)
haslpg 13.8 (13.78) 54.8∗∗∗ (10.96) -41.0∗∗∗ (10.02) 0.2∗∗∗ (0.03)
haselectric 1.9 (21.80) 31.4∗ (15.02) -29.5∗ (11.69) 0.1∗∗∗ (0.03)
age_respondent 0.2 (0.27) 0.1 (0.20) 0.2 (0.18) -0.0 (0.00)
female_respondent -5.8 (7.07) 1.6 (4.90) -7.4 (5.42) 0.0 (0.02)
distance_roadallweather 0.0 (0.48) 0.4 (0.34) -0.4 (0.29) 0.0 (0.00)
OBC_caste -2.6 (9.26) 7.4 (8.43) -10.0 (8.05) 0.0 (0.03)
SCST_caste 6.0 (9.91) 14.3 (9.80) -8.3 (9.43) 0.0 (0.04)
belowpovertyline 6.3 (7.58) 5.8 (5.62) 0.5 (7.15) 0.0 (0.02)
healthbelief -2.7 (3.75) -0.0 (3.42) -2.7 (3.37) 0.0 (0.01)
hhsize_adj_cookedfor 17.0∗∗∗ (3.31) 2.9 (2.82) 14.0∗∗∗ (2.86) -0.0 (0.01)
children_cookedfor 0.0 (2.84) -2.1 (2.80) 2.1 (3.19) -0.0 (0.01)
assetsownership 3.1∗ (1.46) 1.9 (1.18) 1.2 (1.22) 0.0 (0.00)
numberrooms 0.2 (4.10) 1.3 (3.12) -1.1 (2.44) 0.0 (0.01)
lowqltyhousematerial 0.4 (0.33) -0.3 (0.34) 0.7∗ (0.32) -0.0 (0.00)
ln yearly expenditures -10.4 (5.48) 0.2 (3.70) -10.6 (5.69) 0.0 (0.02)
creditconstr 2.4 (3.53) -0.7 (2.32) 3.1 (3.20) -0.0 (0.01)
shg_member -8.9 (9.41) -7.6 (6.53) -1.3 (7.73) -0.0 (0.02)
cleancommunity 9.3 (6.11) -6.0 (5.35) 15.3∗ (6.38) -0.0 (0.02)
distancevillagecentre -1.7∗ (0.76) -1.0 (0.49) -0.8 (0.58) -0.0 (0.00)
plotarea 0.0 (0.00) -0.0 (0.00) 0.0 (0.00) -0.0 (0.00)
livestockqty_small -0.6 (0.71) -0.5 (0.41) -0.1 (0.62) -0.0 (0.00)
livestockqty_big -1.6 (1.29) -0.8 (0.92) -0.7 (0.86) -0.0 (0.00)
riskaverse -3.0 (2.99) 0.0 (2.39) -3.1 (2.48) 0.0 (0.01)
impatient -2.8 (3.74) -0.0 (2.70) -2.8 (3.12) 0.0 (0.01)

N 503 503 503 498
adj. R2 0.16 0.56 0.54 0.69

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table D.7: Regression table. Logit estimates for the likelihood of having a working biogas
plant, as opposed to broken (baseline).

(5a) (5b)
working biogas never broken

v. broken (baseline) v. has broken (baseline)

age_respondent 0.002 (0.011) 0.009 (0.011)
female_respondent 0.327 (0.354) 0.530 (0.360)
OBC_caste 0.654 (0.519) 0.893 (0.463)
SCST_caste 0.093 (0.760) 0.161 (0.646)
belowpovertyline 0.227 (0.344) 0.199 (0.296)
hhsize_adj_cookedfor -0.089 (0.170) -0.113 (0.160)
children_cookedfor -0.007 (0.230) 0.003 (0.212)
assetsownership -0.044 (0.054) -0.048 (0.057)
numberrooms -0.283∗ (0.132) -0.305∗ (0.139)
lowqltyhousematerial -0.026 (0.022) -0.023 (0.021)
lnyearexp 0.815∗∗ (0.308) 0.789∗∗ (0.304)
creditconstr -0.258 (0.227) -0.240 (0.190)
shg_member -0.443 (0.560) -0.508 (0.549)
cleancommunity 0.720 (0.496) 0.559 (0.466)
distancevillagecentre -0.082∗∗ (0.028) -0.062∗ (0.024)
distance_roadallweather -0.008 (0.019) 0.002 (0.020)
plotarea 0.000 (0.000) -0.000 (0.000)
livestockqty_small 0.077∗∗ (0.025) 0.081∗∗ (0.026)
livestockqty_big 0.075 (0.052) 0.057 (0.047)
healthbelief 0.341 (0.237) 0.433∗ (0.218)
riskaverse -0.483 (0.250) -0.429 (0.243)
impatient 0.280 (0.217) 0.294 (0.242)
top3_cost -0.400 (0.463) -0.418 (0.433)
top3_maintcost 0.405 (0.469) 0.117 (0.409)
top3_dungavailab 1.059 (0.562) 0.945 (0.533)
top3_creditavail -0.193 (0.746) -0.293 (0.736)
top3_woodsaving 0.671 (0.501) 0.423 (0.500)
top3_health 0.157 (0.410) 0.011 (0.426)
top3_airqlty 0.029 (0.528) 0.283 (0.466)
slurry_fertilize -1.079∗∗ (0.379) -1.188∗∗ (0.395)
slurry_cakeforenergy 1.091 (0.698) 1.181 (0.642)
noteyieldsup -0.610 (0.606) -0.548 (0.601)
biogasplantsize_large 1.460∗∗ (0.535) 1.213∗ (0.497)
totbiogasprice_imputed -0.000 (0.000) -0.000 (0.000)
totbiogassubs_imputed 0.000 (0.000) 0.000 (0.000)
subspriceratio_adj -2.105 (5.605) 0.719 (5.810)
timebiogas_collectdung_imputed -1.574∗∗∗ (0.409) -1.385∗∗∗ (0.377)
timebiogas_feedplant_imputed 0.845∗∗ (0.325) 0.834∗ (0.338)
timebiogas_cleaning_imputed 7.086∗∗∗ (2.140) 12.882∗∗∗ (2.344)
installationyear 0.154∗∗∗ (0.040) 0.133∗∗∗ (0.033)

N 253 253
pseudo R2 0.33 0.30

Standard errors in parentheses; ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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