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Abstract

In this thesis, we study a variety of different extremal graph colouring and tiling
problems in finite and infinite graphs.

Confirming a conjecture of Gyárfás, we show that for all :, A ∈ N there is a
constant � > 0 such that the vertices of every A-edge-coloured complete :-uniform
hypergraph can be partitioned into a collection of at most � monochromatic tight
cycles. We shall say that the family of tight cycles has finite A-colour tiling number.
We further prove that, for all natural numbers : , ? and A, the family of ?-th powers
of :-uniform tight cycles has finite A-colour tiling number. The case where : = 2
settles a problem of Elekes, Soukup, Soukup and Szentmiklóssy. We then show
that for all natural numbers Δ, A, every family F = {�1, �2, . . .} of graphs with
E(�=) = = and Δ(�=) ≤ Δ for every = ∈ N has finite A-colour tiling number. This
makes progress on a conjecture of Grinshpun and Sárközy.

We study Ramsey problems for infinite graphs and prove that in every 2-edge-
colouring of N, the countably infinite complete graph, there exists amonochromatic
infinite path % such that+ (%) has upper density at least (12 +

√
8)/17 ≈ 0.87226 and

further show that this is best possible. This settles a problem of Erdős and Galvin.
We study similar problems for many other graphs including trees and graphs of
bounded degree or degeneracy and prove analogues of many results concerning
graphs with linear Ramsey number in finite Ramsey theory.

We also study a different sort of tiling problemwhich combines classical problems
from extremal and probabilistic graph theory, the Corrádi–Hajnal theorem and (a
special case of) the Johansson–Kahn–Vu theorem. We prove that there is some
constant � > 0 such that the following is true for every = ∈ 3N and every ? ≥
�=−2/3(log =)1/3. If � is a graph on = vertices with minimum degree at least 2=/3,
then � ? (the random subgraph of � obtained by keeping every edge independently
with probability ?) contains a triangle tiling with high probability.
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1
Introduction

Extremal graph theory seeks to answer questions of the following form: what is the
largest or smallest value of some graph parameter among all graphs of a given class?
The possibly first result in this area determines howmany edges a triangle-free graph
can have.

Theorem 1.0.1 (Mantel [9494]). Every graph with = vertices and more than =2/4
edges contains a triangle. Furthermore, the complete bipartite graph with parts of
size d=/2e and b=/2c contains b=2/4c edges and is triangle-free.

Another classical example of extremal graph theory is the study of Ramsey num-
bers. The Ramsey number of a graph �, denoted by R(�), is the smallest integer #
such that in every two-colouring of the edges of the complete graph on # vertices
 # , we can find a monochromatic copy of � (that is a subgraph of  # which is
isomorphic to � and all its edges receive the same colour). Ramsey numbers are
named after Ramsey, who proved the following result.

Theorem 1.0.2 (Ramsey [100100]). R( =) < ∞ for every = ∈ N.

It immediately follows from Ramsey’s theorem that Ramsey numbers of all finite
graphs are finite and there has been a lot of work in determining and estimating
them. One topic of interest is to classify which graphs have small, i.e. linear,
Ramsey number. To be more precise, define a sequence of graphs to be a family
of graphs F = {�1, �2, . . .} where �= has = vertices for every = ∈ N. Such F
is said to have linear Ramsey number if there exists a constant � > 0 such that
R(�=) ≤ �= for every = ∈ N. Looking at the problem from the inverse perspective,



1 Introduction

it follows directly from the definition that if F has linear Ramsey number, it is
possible to cover a linearly large part of every 2-edge-coloured  = using only one
monochromatic copy from F .

Observation 1.0.3. For every sequence of graphs F with linear Ramsey number,
there is a constant 2 = 2(F ) > 0, such that every two-edge-coloured  = contains a
monochromatic copy of some � ∈ F with at least 2= vertices.

By greedily applying Observation 1.0.31.0.3 to the set of remaining vertices, we can
actually cover most of  = using only “few” monochromatic copies from F .11

Observation 1.0.4. For every Y > 0 and every sequence of graphs F with linear
Ramsey number, there is a constant � = � (F , Y) such that the following is true
for every two-edge-coloured  =. There is a collection of at most � vertex-disjoint
monochromatic copies from F whose union covers at least (1 − Y)= vertices.

In other words, Observation 1.0.41.0.4 asserts that it is possible to cover almost all
vertices of every two-edge coloured  = by vertex-disjoint monochromatic copies
from F whose average size is linearly large. It is natural to ask for which families
F we can extend Observation 1.0.41.0.4 to cover all the vertices of  =. Such problems
are called graph tiling problems and we shall discuss some of them in Chapter 33.

Ramsey’s theorem further implies that every two-edge-coloured N (the countably
infinite complete graph) contains a monochromatic copy of  N.22 Therefore, there
is no direct extensions of Ramsey numbers to infinite graphs. It is possible however
to generalise the concept of graphs with linear Ramsey number to infinite graphs
using a density formulation similar as in Observation 1.0.31.0.3. The upper density of a
set � ⊆ N is defined as d(�) := lim sup=→∞ |� ∩ [=] | /=. It is not hard to see that
there exist 2-edge-colourings of  N such that the vertex-set of every monochromatic
copy of  N has upper density 0 (e.g., a random colouring). In Chapter 44 we will
discuss infinite graphs for which this is not the case and prove infinite analogues of
many results about graphs with linear Ramsey number.

1This was first observed by Erdős, Gyárfás and Pyber [4242] to the best of the author’s knowledge.
2In fact, this is how the theorem was originally stated.
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1 Introduction

We will also study a different sort of graph tiling problems in random graphs.
The binomial random graph � (=, ?) is the random subgraph of  = in which every
edge of  = is present independently with probably ?. This random graph was first
introduced by Gilbert [5656], while Erdős and Rényi [4444] independently introduced
the related random graph � (=, <). Erdős and Rényi then initiated the systematic
study of both types of random graphs in a series of papers [4545, 4646, 4747, 4848] and it
has been a very active research topic ever since. One of the central questions in the
theory of random graphs is to determine threshold probabilities for certain graph
properties. A classical example of this is the following theorem, which determines
when � (=, ?) is connected.

Theorem 1.0.5 (Gilbert [5656]). Let C= denote the set of all connected graphs on =
vertices. Then, for every Y > 0, we have

lim
=→∞
P [� (=, ?(=)) ∈ C=] =


0 if ?(=) ≤ (1 − Y) log(=)/= for all = ∈ N,

1 if ?(=) ≥ (1 + Y) log(=)/= for all = ∈ N.

We will study similar questions regarding the existence of a triangle tiling in
random subgraphs of certain deterministic graphs in Chapter 55.

1.1 Notation

1.1.1 Elementary Notation

We denote by R the set of real numbers, by R≥0 the set of non-negative real numbers
and by R+ the set of positive real numbers. We denote by N := {1, 2, . . .} the set of
positive integers and by N0 := {0, 1, 2, . . .} the set of non-negative integers.
Given a set + , we denote by 2+ the set of all subsets of + and, given : ∈ N0,

we denote by
(+
:

)
the set of all :-element subsets of + . For integers 0 ≤ C ≤ =, we

define =!C to be the number of ways to select a list of C distinct numbers from [=].
That is, =!C := =!

(=−C)! = = · (= − 1) · · · (= − C + 1).
Given : ∈ N0, we denote by [:] := {1, . . . , :} the set of the first : positive

integers. Given : ∈ N0, we denote by [:]0 := {0, . . . , :} the set of the first : + 1

10



1 Introduction

non-negative integers. Given : ≤ ℓ ∈ N0, we denote by [:, ℓ] := {:, . . . , ℓ} the set
of all integers I with : ≤ I ≤ ℓ. Given 0 ≤ 1 ∈ R, we denote by [0, 1]R the set of
all reals G with 0 ≤ G ≤ 1. Given 0, 1 ∈ R, we denote by (0, 1) = (0, 1)R the set of
all reals G with 0 < G < 1.

We denote by exp the exponential function with base 4 and, for : ∈ N, by exp:

the :-th composition of the exponential function. We denote by log the natural
logarithm, that is, the logarithm with base 4.

In this thesis we will frequently break long proofs into smaller claims. We denote
by � the end of the proof of such a claim and by the end of the main proof.

1.1.2 O-Notation

Let 5 , 6 : N→ R be functions taking non-negative values. We say that

• 5 = $ (6) if there is some � > 0 such that 5 (=) ≤ � · 6(=) for all sufficiently
large = ∈ N.

• 5 = Ω(6) if 6 = $ ( 5 ).

• 5 = Θ(6) if 5 = $ (6) and 6 = $ ( 5 ).

• 5 = >(6) if for all Y > 0, there is some =0 > 0 so that 5 (=) < Y · 6(=) for all
= ≥ =0.

• 5 = l(6) if 6 = >( 5 ).

If the functions 5 , 6 depend on more than one variable, we shall indicate the
parameter tending to infinity in the subscript and consider all other variables as
constant. For example, =2 + <3 = >= (=3 + <2) and =2 + <3 = l< (=3 + <2).

Furthermore, given real numbers 0, 1, 2, we say 0 = 1 ± 2 if |0 − 1 | ≤ |2 |, and we
will frequently use the following slightly informal notation: Given reals Y, X > 0,
we say X � Y if X can be chosen arbitrarily small in terms of Y. This shall replace
the quantification “for all Y > 0 there exists some X0 > 0 such that for all 0 < X ≤ X0

. . . ” when we have a long list of such quantifications.

11



1 Introduction

1.1.3 Graphs

We use standard notation from graph theory. A graph � = (+, �) is a tuple
consisting of a set + , called the vertices of �, and a set � ⊆

(+
2
)
, called the edges

of �. We write + (�) to refer to the vertex-set of � and � (�) to refer to the
edge-set of + . We further denote the sizes of + (�) and � (�) by E(�) := |+ (�) |
and 4(�) := |� (�) |. Note that + (�) and � (�) are possibly infinite. We will often
abbreviate an edge {D, E} ∈ � (�) as DE.

Definition 1.1.1 (Neighbourhoods and degrees). Given a graph �, a vertex
E ∈ + (�) and a set * ⊆ + (�), we define the neighbourhood of E in * by
#� (E,*) := {D ∈ * : DE ∈ � (�)}. Furthermore, the degree of E in * is
given by deg� (E,*) := |#� (E,*) |. Given a set of vertices + ⊆ + (�), we
define the common neighbourhood of + in * by #� (+ ;*) :=

⋂
E∈+ #� (E,*)

and deg� (+ ;*) := |#� (+ ;*) |. Given two vertices E1, E2 ∈ + (�), we write
#� (E1, E2;*) for #� ({E1, E2};*), and similarly we write deg� (E1, E2;*) for
deg� ({E1, E2};*). If * = + (�), we simply write #� (E), deg� (E), #� (+) and
deg� (+) and if � is clear from context we drop the subscript.

Definition 1.1.2 (Families and sequences of graphs). A family of graphs F is an
infinite set of graphs. A sequence of graphs is a family of graphs F = {�1, �2, . . .}
with E(�=) = = for all = ∈ N.

Definition 1.1.3 (Maximum and minimum degree). The maximum degree of �
is defined by Δ(�) := supE∈+ (�) deg(E) and the minimum degree is defined by
X(�) := minE∈+ (�) deg(E). The maximum degree of a family of graphs F is given
by Δ(F ) := sup�∈F Δ(�).

Definition 1.1.4 (Degeneracy). A graph � is called 3-degenerate for some 3 ∈ N if
there is a linear order < of+ (�) such that |# (E)∩{D ∈ + (�) : D < E}| ≤ 3 for every
E ∈ + (�). We denote by degen(�) the smallest 3 ∈ N such that � is 3-degenerate.
The degeneracy of a family of graphs F is given by degen(F ) := sup�∈F degen(�).

Note that we have degen(�) ≤ Δ(�) and j(�) ≤ degen(�) + 1 for every graph
�. Furthermore, there are families with finite degeneracy but infinite maximum
degree (for example, the family of all stars).

12
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Definition 1.1.5 (Subgraphs). A graph � is called a subgraph of a graph � if
+ (�) ⊆ + (�) and � (�) ⊆ � (�). We call � spanning if + (�) = + (�). If
* ⊆ + (�), we define� [*] to be the subgraph of� induced by*, i.e.+ (� [*]) = *
and � (� [*]) = {4 ∈ � (�) : 4 ⊆ *}.

Definition 1.1.6 (Independent sets). A set � ⊆ + (�) is called independent if there
is no edge 4 ∈ � (�) with 4 ⊆ �. The independence number of � is given by
U(�) := sup{|� | : � ∈ I(�)}, where I(�) denotes the set of all independent sets
in �. Given a partition P of + (�), we say that � is P-partite if every * ∈ P is an
independent set. A graph� is C-partite if it isP-partite for some partitionP of+ (�)
with C parts. The minimum C ∈ N such that � is C-partite is called the chromatic
number of � and is denoted by j(�). If � is not P-partite for any partition P into
finitely many parts, we set j(�) := ∞.

Definition 1.1.7 (Complete (partite) graphs). We define  (+) := (+,
(+

2
)
) to be the

complete graph on the vertex-set + and we write  = :=  ( [=]). Given a collection
disjoint sets P = {+1, . . . , +C}, we denote by  (P) =  (+1, . . . , +C) the complete C-
partite graph with parts+1, . . . , +C , i.e. the graph with vertex-set+ (�) = +1∪ . . .∪+C
and edge-set � (�) = {4 ∈

(+
2
)

: |4 ∩ +8 | ≤ 1 for all 8 ∈ [C]}. Given a graph � and
disjoint sets*1, . . . ,*C , we denote by� [*1, . . . ,*C] the C-partite subgraph of� with
vertex-set*1 ∪ . . . ∪*C and edge-set � = {4 ∈ � (�) : |4 ∩+8 | ≤ 1 for all 8 ∈ [C]}.

Definition 1.1.8 ((Partial) Embeddings). A partial function 5 : - → . is a function
5 ′ : -′→ . for some -′ ⊆ - . We define the range of 5 by rg 5 := {H ∈ . : 5 (G) =
H for some G ∈ -} and the domain of 5 , denoted by dom 5 , as the set of all G ∈ -
for which 5 (G) is defined. A (partial) embedding of a graph � into another graph
� is a (partial) injective function 5 : + (�) → + (�) such that 5 (D) 5 (E) ∈ � (�)
whenever DE ∈ � (�).

Definition 1.1.9 (Orderings). A linear order on a set - is a binary relation ≤ on -
such that, for all G, H ∈ - , we have

(i) G ≤ H or H ≤ G,

(ii) G ≤ H and H ≤ G if and only if G = H, and

13
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(iii) if G ≤ H and H ≤ I, then G ≤ I.

Observe that every linear order on a finite set - induces an enumeration - =

{G1, G2, . . .} so that G1 < G2 < . . ., where we write G < H if G ≤ H and G ≠ H.

We will now define the graphs which will appear frequently in this thesis.

Definition 1.1.10 (Paths). For = ≥ 0, we define the path %= as the graph with = + 1
vertices E1, . . . , E=+1 and = edges E1E2, E2E3, . . . , E=E=+1.

Definition 1.1.11 (Cycles). For = ≥ 3, we define the cycle �= as the graph obtained
from %=−1 by adding the edge E=E1. For technical reasons, we shall consider a single
vertex and a single edge as degenerate cycles �1 and �2.

Definition 1.1.12 (Trees). A graph ) is called a tree if it does not contain any finite
cycles of length at least 3 as subgraphs. A rooted tree is a tuple (), A) where ) is
a tree and A ∈ + ()). Given a rooted tree (), A) and B, C ∈ + ()), we say that C is a
child of C (and B is the parent of C) if BC ∈ � ()) and B is on the unique path from C

to A. Observe that every vertex other than the root has a unique parent but possibly
many or no children.

Definition 1.1.13 (Powers of graphs). The distance of two vertices D, E in a graph
�, is the length of the shortest path from D to E in �. If no such path exists, the
distance of D and E is infinite. The :-th (distance) power of a graph �, denoted by
�: , is the graph obtained from � by adding an edge between any two vertices of
distance at most : in �. Popular examples of this are powers of paths and powers
of cycles.

1.1.4 Hypergraphs

Given an integer : ≥ 2, a :-uniform hypergraph (for short :-graph) � = (+, �) is
a tuple consisting of a set + , called the vertices of �, and a set � ⊆

(+
:

)
, called the

edges of �. We write + (�) to refer to the vertex-set of � and � (�) to refer to the
edge-set of �. We further denote the sizes of + (�) and � (�) by E(�) := |+ (�) |
and 4(�) := |� (�) |.

14
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Definition 1.1.14 (Degree). Given some 4 ⊆ + (�) with |4 | ∈ [: − 1], the degree
of 4 is given by deg� (4) := | 5 ∈ � (�) : 4 ⊆ 5 |. If 4 = {E} for some E ∈ + (�)
we simply write deg� (E) for deg� ({E}) and if |4 | = : − 1 we also call deg� (4)
co-degree. If � is clear from context, we drop the subscript.

Definition 1.1.15 (Subgraphs). A :-graph � is called a sub-:-graph of a :-graph
� if + (�) ⊆ + (�) and � (�) ⊆ � (�). We call � spanning if + (�) = + (�). If
* ⊆ + (�), we define� [*] to be the subgraph of� induced by*, i.e.+ (� [*]) = *
and � (� [*]) = {4 ∈ � (�) : 4 ⊆ *}.

Definition 1.1.16 (Independent sets). A set � ⊆ + (�) is called independent if there
is no edge 4 ∈ � (�) with 4 ⊆ �. The independence number of�, denoted by U(�),
is the size of the largest independent set in �. Given a :-graph � and a partition
P = {+1, . . . , +C} of + (�), we say that � is P-partite if |4 ∩ +8 | ≤ 1 for every
4 ∈ � (�) and every 8 ∈ [C]. � is called C-partite if it is P-partite for some partition
P of + with C parts.

Definition 1.1.17 (Complete (partite) graphs). We define  (:) (+) := (+,
(+
:

)
) to be

the complete :-graph on the vertex-set + and we write  (:)= :=  (:) ( [=]). Given a
collection disjoint sets P = {+1, . . . , +C}, we denote by  (:) (P) =  (:) (+1, . . . , +C)
the complete C-partite :-graph with parts +1, . . . , +C , i.e. the :-graph with vertex-set
+ (�) = +1 ∪ . . . ∪ +C and edge-set � (�) = {4 ∈

(+
:

)
: |4 ∩ +8 | ≤ 1 for all 8 ∈ [C]}.

Given a :-graph � and disjoint sets *1, . . . ,*C , we denote by � [*1, . . . ,*C] the
C-partite subgraph of � with vertex-set*1 ∪ . . . ∪*C and edge-set � = {4 ∈ � (�) :
|4 ∩ +8 | ≤ 1 for all 8 ∈ [C]}. Given some 2 ≤ 9 ≤ : − 1 and a 9-graph �, we define
 (:) (�) to be the set of all :-cliques in � ( 9) , seen as a :-graph on + .

Definition 1.1.18 (Link graphs and (more) degrees). Given a :-graph � and some
4 = {E1, . . . , Eℓ} ⊆ + (�) with ℓ ∈ [: − 1], we define the link-graph Lk� (4) as the
(: − ℓ)-graph with vertex-set+ (�) and edge-set { 5 ∈

(+ (�)
:−ℓ

)
: 4∪ 5 ∈ � (�)}. Note

that deg� (4) = | Lk� (4) |. If in addition we are given disjoint sets +1, . . . , +:−ℓ ⊆
+ (�) \ 4, we denote by Lk� (E1, . . . , Eℓ;+1, . . . , +:−ℓ) the (: − ℓ)-partite (: −
ℓ)-graph with parts +1, . . . , +:−ℓ and edge-set {4 ∈  (:−ℓ) (+1, . . . , +:−ℓ) : 4 ∪
{E1, . . . , Eℓ} ∈ � (�)}. Furthermore, we define deg� (E1, . . . , Eℓ;+1, . . . , +:−ℓ) :=
| Lk� (E1, . . . , Eℓ;+1, . . . , +:−ℓ) |. If � is clear from context, we drop the subscript.
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Definition 1.1.19 (Loose path). The loose :-uniform path of length < ≥ 1 is the
:-graph consisting of <(: − 1) + 1 distinct linearly ordered vertices and < edges,
each of which is formed of : consecutive vertices so that consecutive edges intersect
in exactly one vertex. More precisely, its vertex-set is {E1, . . . , E<(:−1)+1} and its
edge-set is {E1, . . . , E: }, {E: , . . . , E2:−1}, . . . , {E (<−1) (:−1)+1, . . . , E<(:−1)+1}. We
consider a single vertex as a loose path of length 0.

Definition 1.1.20 (Loose cycle). The loose :-uniform cycle of length < ≥ 3 is the
:-graph consisting of <(: − 1) distinct cyclically ordered vertices and < edges,
each of which formed of : consecutive vertices so that consecutive edges intersect
in exactly one vertex. More precisely, its vertex-set is {E1, . . . , E<(:−1)} and its
edge-set is {E1, . . . , E: }, {E: , . . . , E2:−1}, . . . , {E (<−1) (:−1)+1, . . . , E1}. We consider
a single vertex as a loose cycle of length 1 and a single edge as a loose cycle of
length 2.

Definition 1.1.21 (Tight path). The tight :-uniform path of length < ≥ 1 is the
:-graph with < + : − 1 distinct linearly ordered vertices in which any : consecutive
vertices form an edge. More precisely, its vertex-set is {E1, . . . , E<+:−1} and its
edges are {E1, . . . , E: }, {E2, . . . , E:+1}, . . . , {E<, . . . , E<+:−1}. For 8 ∈ [: − 1], we
consider an independent set of size 8 a tight path (all of length 0).

Definition 1.1.22 (Tight cycle). The tight :-uniform cycle of length < ≥ 1 is the
:-graph with < distinct cyclically ordered vertices in which any : consecutive
vertices form an edge. More precisely, its vertex-set is {E1, . . . , E<} and its edges
are {E1, . . . , E: }, {E2, . . . , E:+1}, . . . , {E<, . . . , E:−1}. Note that, for < ∈ [: − 1],
the tight cycle of length < has no edges and the tight cycle of length : is a single
edge.

Definition 1.1.23 (Powers of paths and cycles). The ?-th power of a :-uniform tight
path (cycle) is the :-graph obtained by replacing every edge of the (: + ? − 1)-
uniform tight path (cycle) by the complete :-graph on : + ? − 1 vertices (on the
same vertex-set). For : = 2 this coincides with Definition 1.1.131.1.13 for paths (cycles).
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1.1.5 Edge Colourings and Ramsey Numbers

Since a graph is precisely a 2-graph, we will only define the following concepts for
hypergraphs. Given a :-graph � and a positive integer A ∈ N, an A-edge-colouring
of � is an assignment of colours from a list of A colours to each edge of �. More
formally, an A-edge-colouring of � is a function j : � (�) → (, where ( is a set of
size A (usually ( = {red, blue} if A = 2 and ( = [A] if A ≥ 3). An A-edge-coloured
:-graph is a tuple (�, j) of a :-graph � and an A-edge-colouring j of �. We will
frequently abuse notation and write A-edge-coloured :-graph �.
Two :-graphs � and � are isomorphic if there is a bijection 5 : + (�) → + (�)

such that 4 ∈ � (�) if and only if 5 (4) := { 5 (E) : E ∈ 4} ∈ � (�). Given an
A-edge-coloured :-graph � and a :-graph �, a monochromatic copy of � in � is
a (not necessarily induced) subgraph �′ of � such that �′ is isomorphic to � and
every edge of �′ receives the same colour.

Definition 1.1.24. The A-colour :-uniform Ramsey number of a :-graph�, denoted
by R(:)A (�), is the smallest integer # such that every A-coloured  (:)

#
contains a

monochromatic copy of �. If : = 2, we drop the superscript (:) and simply say
A-colour Ramsey number of �. If A = 2, we drop the subscript A and simply say :-
uniform Ramsey number of �. If A = : = 2, we drop both superscript and subscript
and simply say Ramsey number of �.

We will make the following definition only for ordinary graphs (i.e. for :=2).

Definition 1.1.25 (Coloured subgraphs, neighbourhoods and degrees). Given an
edge-coloured graph � and a colour 8, we define �8 to be the spanning subgraph
of � with all edges of colour 8. If � is clear from context and we are given
a vertex E ∈ + (�) and a set * ⊆ + (�), we write #8 (E,*) := #�8 (E,*) and
deg8 (E,*) := deg�8 (E,*). If* = + (�), we simply write #8 (E) and deg8 (E).

1.1.6 Infinite Graph Theory

Definition 1.1.26 (Upper and lower density). The upper density of a set � ⊆ N is
defined as

d(�) = lim sup
C→∞

|� ∩ [C] |
C

17
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and the upper density of a graph � with + (�) ⊆ N is given by the upper density of
its vertex-set, i.e. d(�) := d(+ (�)). The lower density d(�) (or d(�)) is defined
similarly in terms of the infimum and we speak of the density, whenever lower and
upper density coincide.

Definition 1.1.27 (Ramsey upper density). The A-colour Ramsey upper density of�,
denoted by RdA (�), is the supremum over all 3 ≥ 0 such that every A-edge-coloured
 N contains a monochromatic copy of � with d(�) ≥ 3. If A = 2, we drop the
subscript.

We will now define the infinite graphs which will appear frequently in this thesis.

Definition 1.1.28 (Infinite path). The infinite path %∞ is the graph with vertex-set
+ (%) = {E8 : 8 ∈ N} and edge-set � (%) = {E8E8+1 : 8 ∈ N}. %∞ is sometimes called
one-way infinite path. The two-way infinite path �∞ is the graph with vertex-set
+ (%) = {E8 : 8 ∈ Z} and edge-set � (%) = {E8E8+1 : 8 ∈ Z}. �∞ can be seen as the
infinite analogue of a cycle.

1.1.7 Random Graphs

A (finite) probability space is a tuple (Ω, P) of a finite set Ω and a probability
function, that is a function P : 2Ω → [0, 1]R with P [∅] = 0, P [Ω] = 1 and
P [� ∪ �] = P [�] + P [�] for all disjoint sets �, � ⊆ Ω. Note that P is uniquely
determined by the values of P [G] := P [{G}] for all G ∈ Ω.

Definition 1.1.29 (Conditional Probability). Given a finite probability space (Ω, P)
and events �, � ⊆ Ω with P [�] > 0, we define the conditional probability of �
given � as P [�|�] := P[�∩�]P[�] .

Definition 1.1.30 (With high probability). For each = ∈ # , let �= be an event in
some probability space (Ω=, P=). We say that the event � = (�=)=∈N holds with high
probability (w.h.p.) if lim=→∞ P [�=] = 1.

A random variable is a function - : Ω→ ( for some set (. If ( ⊆ R, we denote
the expected value of - by

E [-] :=
∑
G∈Ω
P [G] · - (G) =

∑
H∈(
P [- = H] · H,
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wherewe denoteP [- = H] := P [{G ∈ Ω : - (G) = H}]. The distribution of a random
variable is the probability function P- : 2( → [0, 1]R, where P- is induced by
P- (H) := P [- = H]. On the other hand, given a probability space ((, P), the
random variable - : ( → ( defined by - (H) = H has distribution P. Therefore,
when the original probability space is not important, we often identify a random
variable with its distribution. A random graph is a random variable taking values
in a set of graphs. We will usually only be interested in its distribution. We will be
dealing with the following random graphs in this thesis. Here, given a (hyper-)graph
�, we denote by G� the set of all spanning subgraphs of � and we write G= := G =
and G (:)= := G

 
(:)
=
, and we denote by G=,< the set of all spanning subgraphs of  =

with exactly < edges.

Definition 1.1.31 (Random graphs). Let = ∈ N and let ? ∈ [0, 1]R.

• � (=, ?) is the random spanning subgraph of  = in which every edge of  = is
present independently with probability ?. Its distribution P : 2G= → [0, 1]R
is induced by P [� (=, ?) = �] = ?4(�) (1 − ?)4( =)−4(�) for � ∈ G=.

• Given< ∈ Nwith 0 ≤ < ≤
(=
2
)
, we define� (=, <) to be the random spanning

subgraph of  = which is chosen uniformly from all spanning subgraphs of
 = with exactly < edges. Its distribution P : 2G=,< → [0, 1]R is induced by
P [� (=, <) = �] = 1/

(4( =)
<

)
for � ∈ G=,<.

• Given : ∈ N, we define � (:) (=, ?) to be the random spanning subgraph of
 
(:)
= in which every edge of  (:)= is present independently with probability
?. Its distribution P : 2G

(:)
= → [0, 1]R is induced by P

[
� (:) (=, ?) = �

]
=

?4(�) (1 − ?)4( 
(:)
= )−4(�) for � ∈ G (:)= .

• Given a graph �, we define � ? to be the random spanning subgraph of
� in which every edge of � is present independently with probability ?.
Its distribution P : 2G� → [0, 1]R is induced by P

[
� ? = �

]
= ?4(�) (1 −

?)4(�)−4(�) for � ∈ G� .

Definition 1.1.32 (Graph properties and threshold probabilities). A graph property
P is a set of graphs. We say that a graph � has property P if � ∈ P. Let now P
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be a graph property whose members are subgraphs of  = for some = ∈ N and let
?0 : N→ [0, 1]R be a function.

• ?0 is called a coarse threshold probability for P if

lim
=→∞
P [� (=, ?(=)) ∈ P] =


0 if ? = >(?0),

1 if ? = l(?0).

• ?0 is called a sharp threshold probability for P if for every Y > 0, we have

lim
=→∞
P [� (=, ?(=)) ∈ P] =


0 if ?(=) ≤ (1 − Y)?0(=) for all = ∈ N,

1 if ?(=) ≥ (1 + Y)?0(=) for all = ∈ N.

Note that threshold probabilities do not necessarily exist for all graph properties.
However, Bollobás and Thomason [1212] proved that coarse thresholds exist for all
monotone graph properties (P is monotone if � ∈ P and � ⊆ � implies � ∈ P).

1.2 Graphs with Linear Ramsey Number

Investigating graphs with linear Ramsey number has been one of the most studied
topics in Ramsey Theory, motivated particularly by a series of conjectures of Burr
and Erdős [1616, 1717]. A lot of work presented in this thesis was inspired by results
from this area, and hence we will start with a brief introduction to it.

A sequence of graphs F = {�1, �2, . . .}33 is said to have linear A-colour Ramsey
number if we have RA (�=) = $ (=). If A = 2, we will simply say F has linear Ramsey
number. The following observation shows that graphs with linear Ramsey number
must be quite “sparse”.

Observation 1.2.1. If F = {�1, �2, . . .} is a sequence of graphs with linear Ramsey
number, then we have 4(�=) = $ (= log(=)).

3Recall that F = {�1, �2, . . .} is a sequence of graphs if �= is a graph with = vertices for every
= ∈ N.
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Proof. Since F has linear Ramsey number, there is some constant � ∈ N such that
R(�=) ≤ �= for all = ∈ N. We will show that 3 (�=) ≤ 2 log2(�=) + 2/=. Fix some
= ∈ N and let # := �=. Colour the edges of  # uniformly at random with 2 colours
and let �= be the event that there is a monochromatic copy of �=. Since # ≥ R(�=),
we have P [�=] = 1. On the other hand we have P [�=] ≤ 2 · #= · 2−4(�=) . We
conclude that 4(�=) ≤ log2(2#=) = 1 + = log2(�=), concluding the proof.

1.2.1 Paths and Cycles

Paths and cycles are two of the most elementary examples of graphs with linear
Ramsey number. While it is not hard to see that paths have linear Ramsey number,
there has been a lot of work in trying to determine their Ramsey numbers exactly.
For two colours, Gerencsér and Gyárfás [5555] proved the following result.

Theorem 1.2.2 (Gerencsér–Gyárfás [5555]). We have R(%=−1) = b3=/2−1c for every
= ≥ 2.

Confirming a conjecture of Faudree andSchelp [5050] for large =, Gyárfás, Ruszinkó,
Sárközy and Szemerédi [6565] proved that

R3(%=−1) =


2= − 2 if = is even

2= − 1 if = is odd.

for every large enough = ∈ N. For more than three colours, less is known. It easily
follows from a result of Erdős and Gallai [3838] that RA (%=−1) ≤ A= and Bierbrauer
and Gyárfás [1010] proved that RA (%=−1) ≥ (A − 1 − >(1))=. Recently, there has been
a lot of work on this problem and, after progress by Sárközy [109109], and Davies,
Jenssen and Roberts [3232], the currently best known upper bound is due to Knierim
and Su [7979], who proved that RA (%=−1) ≤ (A − 1/2 + >(1))=.

Clearly we have RA (�=) ≥ RA (%=−1) for all =, A ≥ 2 since �= contains %=−1 and it
turns out the two numbers are very similar for even cycles. Faudree and Schelp [4949]
and independently Rosta [103103] showed that R(�=) = 3=/2 − 1 for all even = ≥ 6
and Benevides and Skokan [88] showed that R3(�=) = 2= for all sufficiently large
even =. For multiple colours, Łuczak, Simonovits and Skokan [9393] proved that
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RA (�=) ≤ (A + >(1))= and all recent result about paths above ([3232, 7979, 109109]) came
with extensions to even cycles, in particular we have RA (�=) ≤ (A − 1/2 + >(1))=.
Interestingly, the problem is very different for odd cycles. Bondy and Erdős [1313]

showed that R(�=) = 2=−1 for all odd = ≥ 5 and, confirming a conjecture of Bondy
and Erdős, Jenssen and Skokan [7474] showed that RA (�=) = 2A−1(= − 1) + 1 for all
sufficiently large odd =.

1.2.2 Trees

Trees are another well-studied family of graphs in Ramsey theory. It is again easy
to show that trees have linear A-colour Ramsey number. Indeed, let us prove that
RA ()) ≤ 2A (=− 1) + 1 for every tree ) with = vertices. Let # = 2A (=− 1) + 1 and let
 # be edge-coloured with A colours. By the pigeonhole principle, one colour (say
blue) appears at least

(#
2
)
/A times and hence the average degree of the blue subgraph

is at least (# − 1)/A. Therefore, there is a blue subgraph with minimum degree at
least (# − 1)/(2A) ≥ = − 1.44 It is now easy to greedily embed ) into this subgraph.
A famous conjecture of Burr and Erdős [1717], which was solved for sufficiently

large = by Zhao [117117], states that this can be improved roughly by a factor of 2 in
the case of two colours.

Conjecture 1.2.3 (Burr–Erdős [1717]). For every tree) on = vertices, we haveR()) ≤
2= − 2 if = is even and R()) ≤ 2= − 3 if = is odd.

1.2.3 Graphs with Bounded Degree

Burr and Erdős also studied Ramsey numbers of graphs with bounded degree and
made the following conjecture, which states that every sequence of graphs with
bounded degree has linear Ramsey number.

Conjecture 1.2.4 (Burr–Erdős [1616]). For all Δ ≥ 1, there exists some 2 = 2(Δ) > 0
such that R(�) ≤ 2= for every graph � on = vertices with maximum degree at most
Δ.

4It is a well-known combinatorial fact that every graph of average degree 3 has a subgraph of
minimum degree at least 3/2.
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Conjecture 1.2.41.2.4 was solved by Chvatál, Rödl, Szemerédi, Trotter [2121] in an early
application of the regularity lemma. Since then, there has been many improvements
to the constant 2(Δ). After an improvement of Eaton [3636], Graham, Rödl and
Ruciński [5757] came close to settling the problem by showing that the constant can
be chosen to be 2(Δ) = 2$ (Δ log2 (Δ)) and providing the following lower bound.

Theorem 1.2.5 (Graham–Rödl–Ruciński [5757]). There is a sequence of bipartite
graphs F = {�1, �2, . . .} with R(�=) = 2Ω(Δ)=.

The currently best known upper bound is due to Conlon, Fox and Sudakov [2626].

Theorem 1.2.6 (Conlon–Fox–Sudakov [2626]). There is some constant 2 > 0 such
that R(�) ≤ 22Δ log(Δ)= for every graph � on = vertices with maximum degree at
most Δ.

Furthermore, Conlon [2323], and independently Fox and Sudakov [5252] were able to
remove the extra log(Δ)-factor in the exponent for bipartite graphs with maximum
degree at most Δ. Allen, Brightwell and Skokan [55] showed that the constant in
Theorem 1.2.61.2.6 can be significantly improved to for a wide range of graphs. The
bandwidth of a graph �, denoted by bw(�), is the smallest integer : for which
there is a bijection 5 : + (�) → [E(�)] such that | 5 (D) − 5 (E) | ≤ : for every edge
DE ∈ � (�).

Theorem 1.2.7 (Allen–Brightwell–Skokan [55]). For every Δ ∈ N, there are con-
stants V > 0 and =0 ∈ N such that R(�) ≤ (2j(�) + 4)= for every graph � with
= ≥ =0 vertices, maximum degree at most Δ and bandwidth at most V=.

Finally, let us mention another famous conjecture of Burr and Erdős regarding
graphs with bounded degeneracy.

Conjecture 1.2.8 (Burr–Erdős [1616]). For all 3 ≥ 1, there exists some� = � (3) > 0
such that R(�) ≤ �= for every 3-degenerate graph � on = vertices.

Conjecture 1.2.81.2.8 was recently confirmed in a breakthrough result of Lee [9090].
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1.3 Monochromatic Graph Tiling Problems

1.3.1 History

The first result in this area is due to Gerencsér and Gyárfás [5555]. Recall that single
vertices and edges are considered (degenerate) paths and cycles in this thesis.

Theorem 1.3.1 (Gerencsér–Gyárfás [5555]). The vertices of every 2-edge-coloured
complete graph on = vertices can be partitioned into two monochromatic paths, one
of each colour.

A conjecture of Lehel (which first appeared in the PhD thesis of Ayel [77] in 1979,
where it was also proved for some special types of colourings of  =) states that the
same should be true for cycles instead of paths. Almost 20 years later, in 1998,
Łuczak, Rödl and Szemerédi [9292] proved Lehel’s conjecture for all sufficiently large
= using the regularity method. In [22], Allen gave an alternative proof, which gave
a better bound on =. Finally, Bessy and Thomassé [99] proved Lehel’s conjecture for
all integers = ≥ 1.

Theorem 1.3.2 (Bessy–Thomassé [99]). The vertices of every 2-edge-coloured com-
plete graph on = vertices can be partitioned into two monochromatic cycles, one of
each colour.

The problem was soon extended to multiple colours.

Theorem 1.3.3 (Gyárfás [5959]). The vertices of every A-edge-coloured complete
graph on = vertices can be covered by $ (A4) monochromatic paths.

Theorem 1.3.4 (Erdős–Gyárfás–Pyber [4242]). The vertices of every A-edge-coloured
complete graph on = vertices can be partitioned into $ (A2 log A) monochromatic
cycles.

It is a major open problem to determine cp(A), the smallest number of cycles
needed in Theorem 1.3.41.3.4. More precisely, cp(A) is the smallest integer C such that
the vertices of every A-edge-coloured  = can be partitioned into a collection of at
most C vertex-disjoint monochromatic cycles. Note that (without Theorem 1.3.41.3.4)
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it is not clear at all whether cp(A) is finite (i.e. independent of =, the size of the
host-graph).

Problem 1.3.5. What is cp(A)?

It was further conjectured in [4242] that cp(A) = A for all A ∈ N. This conjecture
was refuted however by Pokrovskiy [9595], who showed that cp(A) > A for every
A ≥ 3. Gyárfás, Ruszinkó, Sárközy and Szemerédi [6262] showed that $ (A log A)
cycles suffice for all sufficiently large =.
Pokrovskiy proposed the following slightly weaker conjecture.

Conjecture 1.3.6 (Pokrovskiy [9595]). For every positive integer A, there is some
constant 2 = 2(A), such that in every A-edge-coloured  =, there is a collection of A
vertex-disjoint monochromatic cycles covering all but at most 2 vertices.

It is still possible that A monochromatic paths suffice.

Conjecture 1.3.7 (Gyárfás [5959]). The vertices of every A-edge-coloured complete
graph on = vertices can be partitioned into A monochromatic paths.

1.3.2 New Results
Hypergraph Cycles

It is natural to ask if cycle partition problems like Theorem 1.3.41.3.4 can be generalised
to hypergraphs. Such questions were first studied by Gyárfás and Sárközy [6464] who
proved the following result about loose cycles.

Theorem 1.3.8 (Gyárfás–Sárközy). For every : , A ∈ N, there is some 2 = 2(:, A)
such that the vertices of every A-edge-coloured complete :-graph can be partitioned
into a collection of at most 2 loose cycles.

Later, Sárközy [107107] showed that 2(:, A) can be be chosen to be 50A: log(A:).
Gyárfás [6060] conjectured that a similar result can be obtained for tight cycles (again,
a single vertex is considered a tight cycle here).

Conjecture 1.3.9 (Gyárfás [6060]). For every :, A ∈ N, there is some 2 = 2(:, A) so
that the vertices of every A-edge-coloured complete :-graph can be partitioned into
at most 2 monochromatic tight cycles.
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We prove this conjecture and a generalisation in which we allow the host-
hypergraph to be any :-graph with bounded independence number (the main moti-
vation of this generalisation is an interesting application discussed below).

Theorem 1.3.10 (Bustamante–Corsten–Frankl–Pokrovskiy–Skokan [1818]). For ev-
ery :, A, U ∈ N, there is some 2 = 2(:, A, U) such that the vertices of every A-edge-
coloured :-graph � with independence number U(�) ≤ U can be partitioned into
at most 2 monochromatic tight cycles.

The proof of Theorem 1.3.101.3.10, which is based on the absorption method and the
hypergraph regularity method, will be presented in Section 3.13.1.

Tiling Number of Sequences of Graphs

We turn our attention back to graphs now considering other “tiles” than cycles. We
investigate problems in which we are given a sequence of graphs F and an edge-
coloured complete graph  = and our goal is to partition + ( =) into few monochro-
matic copies of graphs from F . An F -tiling T of a graph � is a collection of
vertex-disjoint copies of graphs from F in � with + (�) = ⋃

)∈T + ()). If � is
edge-coloured, we say that T is monochromatic if every ) ∈ T is monochromatic
(not necessarily in the same colour). Using this notation, Theorem 1.3.41.3.4 states that
in every A-edge coloured  =, we can find a monochromatic C-tiling of size at most
$ (A2 log A), where C is the family of all cycles (including a single vertex and a single
edge).

Definition 1.3.11 (Tiling number). Let gA (F , =) be the minimum C ∈ N such that in
every A-edge-coloured  = there is a monochromatic F -tiling of size at most C. We
call gA (F ) = sup=∈N gA (F , =) the A-colour tiling number of F . If A = 2, we simply
write g(F , =) and g(F ), and simply say tiling number.

The results of Pokrovskiy and of Erdős, Gyárfás and Pyber above imply that, for
all A ≥ 3,

A + 1 ≤ gA (C) ≤ $ (A2 log A).

Note that, in general, it is not clear at all that gA (F ) is finite and it is a natural
question to ask for which families this is the case. The study of such tiling problems
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for more general families of graphs was initiated by Grinshpun and Sárközy [5858]
who proved the following result. LetFΔ be the collection of all sequences of graphs
F with Δ(F ) ≤ Δ.

Theorem 1.3.12 (Grinshpun–Sárközy [5858]). We have g2(F ) ≤ 2$ (Δ logΔ) for all
F ∈ FΔ. In particular, g2(F ) is finite whenever Δ(F ) is finite.

Grinshpun and Sárközy also proved that g2(F ) ≤ 2$ (Δ) for every sequence of
bipartite graphs F of maximum degree Δ and showed that this is best possible up
to the implicit constant (see Theorem 1.3.191.3.19). Sárközy [108108] further proved that the
constant in Theorem 1.3.121.3.12 can be improved a lot for the special case of powers of
cycles.

For more than two colours not much is known. Elekes, D. Soukup, L. Soukup
and Szentmiklóssy [3737, Problem 6.4] asked the following problem after proving a
similar statement for infinite graphs.55

Problem 1.3.13 (Elekes et al. [3737]). Prove that for every A, ? ∈ N, there is some
2 = 2(A, ?) such that the vertices of every A-edge-coloured complete graph can be
partitioned into at most 2 monochromatic ?-th powers of cycles.

We answer this problem positively. In fact, we obtain the following generalisation
to hypergraphs and host-graphs with bounded independence number as a corollary
of Theorem 1.3.101.3.10.

Theorem 1.3.14 (Bustamante–Corsten–Frankl–Pokrovskiy–Skokan [1818]). For ev-
ery :, A, ?, U ∈ N, there is some 2 = 2(:, A, ?, U) such that the vertices of every
A-edge-coloured :-graph � with U(�) ≤ U can be partitioned into at most 2
monochromatic ?-th powers of tight cycles.

Grinshpun and Sárközy [5858] conjectured that their Theorem 1.3.121.3.12 should extend
to A colours as well.

Conjecture 1.3.15 (Grinshpun–Sárközy [5858]). For every A ∈ N, there is some 2A > 0
so that gA (F ) ≤ 2Δ2A for all Δ ≥ 1 and all F ∈ FΔ.
5The problem is phrased differently in [3737] but this version is stronger, as Elekes et al. explain below
the problem.
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Note that it is still open to decide whether gA (F ) is finite for such families. We
show that this is the case and make progress towards Conjecture 1.3.151.3.15. Recall that
exp: denotes the :-th composition of the exponential function.

Theorem 1.3.16 (Corsten–Mendonça). There is an absolute constant  > 0 such
that for all integers A,Δ ≥ 2 and all F ∈ FΔ, we have gA (F ) ≤ exp3 (

 A2Δ3) . In
particular, gA (F ) < ∞ whenever Δ(F ) < ∞.

Theorem 1.3.161.3.16 also provides a positive answer to Problem 1.3.131.3.13 and the bound
is much better than the implicit bound in Theorem 1.3.141.3.14. The proof of Theo-
rem 1.3.161.3.16, which is based on the absorption method and the regularity method, will
be presented in Section 3.23.2.

Lower Bounds and Graphs with Linear Ramsey Number

Sequences of graphs with finite tiling number are closely related to sequences with
linear Ramsey number. Observe that a sequence of graphs F = {�1, �2, . . .} has
linear A-colour Ramsey number if and only if there exists some d > 0 such that
every A-edge-coloured  = contains a monochromatic copy of �< for every < ≤ d=.
A slightly weaker condition (in which we require only one monochromatic copy
of �< for some < ≥ X=) is a necessary condition to have finite tiling number:
given a sequence of graphs F , it follows from the pigeonhole principle that every
A-edge-coloured  = contains a monochromatic copy from F of size at least =/gA (F ).
Define dA (F ) to be the supremum over all d ≥ 0 such that every A-edge coloured  =
contains a monochromatic copy from F of size at least d=. The above application
of the pigeonhole principle gives the following observation.

Observation 1.3.17. We have gA (F ) ≥ 1/dA (F ) for every sequence of graphs F .

Note that dA (F ) > 0 for every family F with linear A-colour Ramsey number but
the converse is not always true.66 It is however true if F is an increasing family of
graphs (i.e. if �= ⊆ �=+1 for every = ∈ N), in which case we have

dA (F ) = inf
=∈N
(=/RA (�=)) (1.3.1)

6For example, consider the sequence F = {�1, �2, . . .} where �= is an independent set for all even
= and a clique for all odd =.
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and thus, using Observation 1.3.171.3.17,

gA (F ) ≥ sup
=∈N
(RA (�=)/=) . (1.3.2)

This relationship can be used to translate existing lower bounds for Ramsey numbers
of sequences of graphs to lower bounds for their tiling number. While (1.3.21.3.2) can only
be directly applied to increasing sequences of graphs, Grinshpun and Sárközy [5858]
observed that one can modify sequences of bounded degree to avoid this problem.

Observation 1.3.18. For every sequence of graphs F = {�1, �2, . . .} with maximum
degree at most Δ and R(�=) ≥ �= for every = ∈ N, there is an increasing sequence
of graphs F̃ = {�̃1, �̃2, . . .} with maximum degree Δ and R(�̃=) ≥ �=/4 for every
= ∈ N.

Combining this with Theorem 1.2.51.2.5 of Graham, Rödl and Ruciński and (1.3.21.3.2)
immediately gives the following lower bound, which almostmatches the upper bound
in Theorem 1.3.121.3.12.

Theorem 1.3.19 (Grinshpun–Sárközy [5858]). There is a sequence of graphs F ∈ FΔ

with g2(F ) ≥ 2Ω(Δ) .

Observation 1.3.171.3.17 further implies that dA (F ) > 0 (or having linear A-colour
Ramsey number if F is increasing) is a necessary condition for F to have finite
tiling number. In the other direction, we have gA (F , =) ≤ log(=)/dA (F ) (this
follows by greedily taking the largest monochromatic copy from F among the
uncovered vertices until all vertices are covered). The following example, which
was provided by Alexey Pokrovskiy (personal communication), shows that this is
essentially tight and therefore the above necessary condition is not sufficient. Let (=
be a star with = vertices and let S = {(1, (2, . . .} be the family of stars. It follows
readily from the pigeonhole principle that 'A ((=) ≤ A (= − 2) + 2 for every = ∈ N
and thus dA (S) ≥ 1/A. However, gA (S) = ∞ for every A ≥ 2.

Example 1.3.20. For every A ≥ 2, we have gA (S, =) ≥ A · log =/8 for all sufficiently
large =.
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Proof. Let g = A log =/8 and colour � ( =) uniformly at random with A colours.
Given a vertex E ∈ [=] and a colour 2, let (2 (E) be the star centred at E formed by
all the edges of colour 2 incident on E. Note that there is a monochromatic S-tiling
of size at most g if and only if there are distinct vertices E1, . . . , Eg and colours
21, . . . , 2g ∈ [A] such that

⋃
8∈[g] + ((28 (E8)) = [=].

Fix distinct vertices E1, . . . , Eg ∈ [=] and colours 21, . . . , 2g ∈ [A]. Let * be
the random set * =

⋃
8∈[g] + ((28 (E8)). Notice that the events {E ∈ *}, E ∈

[=]\{E1, . . . , Eg}, are independent and each has probability 1−(1−1/A)g. Therefore,
using 4−G/(1−G) ≤ 1 − G ≤ 4G for all G ≤ 1, we get

P [* = [=]] = (1 − (1 − 1/A)g)=−g ≤ exp (−(= − g) (1 − 1/A)g)

≤ exp
(
−=(1 − 1/A)g+1

)
≤ exp (−= exp (−4g/A))
≤ exp

(
−
√
=
)
.

Taking a union bound over all choices of E1, . . . , Eg and 21, . . . , 2g, we conclude that
the probability that there is a monochromatic S-tiling of size g is at most

(A=)−g · 4−
√
= < 1

for all sufficiently large =. Hence, there exists an A-colouring of � ( =) without a
monochromatic S-tiling of size at most g, finishing the proof.

Recall that Lee [9090] proved that sequences of graphs with bounded degeneracy
have linear Ramsey number. Since every star has degeneracy 1, Example 1.3.201.3.20
further shows that it is not possible to extend this to a tiling result. Nevertheless, it
may be possible to allow unbounded degrees in this case.

Question 1.3.21. Is there a function l : N→ ∞ with lim=→∞ l(=) = ∞, such that
the following is true for all integers A, 3 ≥ 2? If F = {�1, �2, . . .} is a sequence
of 3-degenerate graphs with E(�=) = = and Δ(�=) ≤ l(=) for all = ∈ N, then
gA (F ) < ∞.
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It is possible to obtain such a result for graphs of bounded arrangeability (a concept
in between bounded degree and bounded degeneracy) as explained in Section 3.2.53.2.5.

1.4 Ramsey Problems for Infinite Graphs

1.4.1 Infinite Paths

Theorem 1.2.21.2.2 implies that that every 2-edge-coloured = contains amonochromatic
path with b(2= + 1)/3c vertices. In Section 4.14.1 we will investigate a similar problem
concerning the infinite path %∞, where, given a 2-edge-coloured  N, we try to find a
monochromatic infinite path with the largest possible upper density. Since this path
does not need to respect the order of N, we cannot easily infer any bounds from the
finite case. Due to the following result of Erdős and Galvin [3939], we will restrict our
attention to upper densities.

Theorem 1.4.1 (Erdős–Galvin [3939]). There is a 2-edge-colouring of  N in which
every monochromatic infinite path has lower density 0.

Recall the definition of Ramsey upper density, Definition 1.1.271.1.27. Probably the
first result in this direction is due to Rado [9999].

Theorem 1.4.2 (Rado [9999]). Every A-edge-coloured  N contains a collection of at
most A vertex-disjoint monochromatic paths covering all vertices. In particular, one
of them has upper density at least 1/A.

Interestingly, this gives a positive answer of an infinite analogue of Conjec-
ture 1.3.71.3.7. For two colours, this further implies that we can always find a monochro-
matic path of upper density at least 1/2. Erdős and Galvin [3939] improved this special
case.

Theorem 1.4.3 (Erdős–Galvin [3939]). We have 2/3 ≤ Rd(%∞) ≤ 8/9.

DeBiasio and McKenney [3333] recently improved the lower bound to 3/4 and
conjectured the correct value to be 8/9. Progress towards this conjecture was
made by Lo, Sanhueza-Matamala and Wang [9191], who raised the lower bound
to (9 +

√
17)/16 ≈ 0.82019. We settle the problem of determining the Ramsey
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upper density of the infinite path by proving that the correct value is Rd(%∞) =
(12 +

√
8)/17 ≈ 0.87226.

Theorem 1.4.4 (Corsten–DeBiasio–Lamaison–Lang [3030]). There exists a 2-edge-
colouring of  N such that every monochromatic path has upper density at most
(12 +

√
8)/17.

Theorem 1.4.5 (Corsten–DeBiasio–Lamaison–Lang [3030]). Suppose the edges of N
are coloured with two colours. Then, there exists a monochromatic path with upper
density at least (12 +

√
8)/17.

Note that the problem of determining the A-colour Ramsey upper density remains
open and it would be very interesting to make any improvement on Rado’s lower
bound of 1/A for A ≥ 3 colours (see [3333, Corollary 3.5] for the best known upper
bound). In particular for three colours, the correct value is between 1/3 and 1/2.

Question 1.4.6. What is RdA (%∞) for A ≥ 3?

The proof of Theorems 1.4.41.4.4 and 1.4.51.4.5, which is based on a mix of the regularity
method and novel yet elementary combinatorial arguments, will be presented in
Section 4.14.1.

Bipartite Ramsey densities

In Section 4.2.54.2.5 we will briefly discuss a bipartite version of Theorem 1.4.51.4.5. Gyárfás
and Lehel [6161] and independently Faudree and Schelp [5151] proved that every 2-edge-
coloured  =,= contains a monochromatic path with at least 2b=/2c + 1 vertices (that
is, roughly half the vertices of the graph). They further proved that this is best
possible. We will prove an analogue of this for infinite graphs. Here,  N,N is the
infinite complete bipartite graph with one part being all even positive integers and
the other part being all odd positive integers.

Theorem 1.4.7 (Corsten–DeBiasio–McKenney). Every 2-coloured  N,N contains
a monochromatic path of upper density at least 1/2.
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Pokrovskiy [9595] proved that the vertices of every 2-edge-coloured complete bi-
partite graph  =,= can be partitioned into three monochromatic paths. Soukup [112112]
proved an analogue of this for infinite graphs which holds for multiple colours: the
vertices of every A-edge-coloured  N,N can be partitioned into 2A−1monochromatic
paths. He also presents an example where this is best possible. However, in his
example all but finitely many vertices can be covered by A monochromatic paths.
Our next result shows that this is always possible in the case of two colours.

Theorem 1.4.8 (Corsten–DeBiasio–McKenney). The vertices of every 2-edge-
coloured  N,N can be partitioned into a finite set and at most two monochromatic
paths.

Theorem 1.4.71.4.7 is an immediate consequence of Theorem 1.4.81.4.8. We will provide
an example which demonstrates that Theorems 1.4.71.4.7 and 1.4.81.4.8 are best possible (see
Example 4.2.94.2.9). We believe that a similar statement is true for multiple colours.

Conjecture 1.4.9 (Corsten–DeBiasio–McKenney). The vertices of every A-edge-
coloured  N,N can be partitioned into a finite set and at most A monochromatic
paths.

Example 4.2.94.2.9 further shows that Conjecture 1.4.91.4.9 is best possible, if true.

1.4.2 Infinite Trees

In Section 4.2.64.2.6 we will present an analogue of Conjecture 1.2.31.2.3 (which implies that
every 2-edge-coloured  = contains a monochromatic copy of every tree on =/2 + 1
vertices) for infinite trees.

Theorem 1.4.10 (Corsten–DeBiasio–McKenney). Rd()) ≥ 1/2 for every infinite
tree ) .

There are a couple of examples showing that this is best possible. For example,
we have Rd((∞) = 1/2, where (∞ is the infinite star (that is the infinite tree in
which one vertex has infinitely many neighbours of degree 1). This can be seen by
colouring the edges of N uniformly at randomwith red and blue (seeRado colouring
Section 4.2.24.2.2). Another such example is )∞, the infinite tree in which every vertex
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has infinite degree (see Example 4.2.84.2.8). Furthermore, there is a locally finite (that
is, every vertex has finite degree) tree ) with Rd()) = 1/2 (see Example 4.2.84.2.8).

1.4.3 Infinite Graphs with “Linear Ramsey Number”

In the finite case, the study of graphs with linear Ramsey number has received a lot
of attention and we will now study possible analogues for infinite graphs. Recall
that a sequence of graphs F = {�1, �2, . . .} has linear A-colour Ramsey number
if and only if there is some X > 0 such that every A-edge-coloured  = contains a
monochromatic copy of �< for every < ≤ X=. There are two natural analogues of
this for infinite graphs. One is the class of infinite graphs with positive Ramsey
upper density, that is, those graphs � for which there is some X > 0 such that every
2-edge-coloured  N contains a monochromatic copy of � with upper density at
least X. For example %∞ has positive Ramsey upper density as seen above. Another
natural analogue is the class of infinite graphs� for which every 2-edge coloured  N
contains amonochromatic copy of� with positive upper density (we call such graphs
Ramsey-dense). Note that this density depends on the colouring and therefore, since
there are infinitely many colourings, a Ramsey-dense graph does not necessarily
have positive Ramsey upper density. On the other hand, every infinite graph � with
positive Ramsey upper density is Ramsey-dense. The Rado graph is an example of
a Ramsey-dense graph with Ramsey upper density 0 (see Corollary 1.4.171.4.17 below).

Graphs with positive Ramsey upper density

Wewill now investigate an analogue of Conjecture 1.2.41.2.4 (which states that sequences
of graphs with bounded degree have linear Ramsey number) for infinite graphs.
Given some integer : ≥ 2, we say that an infinite graph � is one-way :-locally
finite if there exists a partition of + (�) into : independent sets +1, . . . , +: with
∞ = |+1 | ≥ . . . ≥ |+: | such that for all 1 ≤ 8 < 9 ≤ : and all E ∈ + 9 , we have
3 (E,+8) < ∞. Note that every vertex in +: has finite degree, but it is possible for
any vertex in +1 ∪ · · · ∪ +:−1 to have infinite degree. Further note that one-way
:-locally finite graphs have chromatic number at most : and, if � is locally finite
with j(�) < ∞, then � is one-way j(�)-locally finite.
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Theorem 1.4.11 (Corsten–DeBiasio–McKenney). Let A, : ≥ 2 be integers and let
� be a one-way :-locally finite graph.

(i) If : = 2, then RdA (�) ≥ 1/A.

(ii) If : ≥ 3, then Rd(�) ≥ 1/(2(: − 1)).

(iii) If : ≥ 3, then RdA (�) ≥
(∑(:−2)A+1

8=0 (A − 1)8
)−1

= (1 + >: (1))A−(:−2)A−1.

As a consequence, we obtain the following corollary about graphs with bounded
degree. The two-colour case of this answers a question from [3333] and has been
independently proven by Lamaison [8989].

Corollary 1.4.12 (Corsten–DeBiasio–McKenney). If � is an infinite graph with
maximum-degree Δ for some Δ ∈ N, then Rd(�) ≥ 1/(2Δ) and RdA (�) ≥ A−ΔA for
every A ≥ 3.

Interestingly, the constant 1/(2Δ) in the two-colour case is much better than
expected: for finite graphs, we cannot hope for anything better than 2−Θ(Δ) by The-
orem 1.2.51.2.5. However, note that the constant is very similar to that in Theorem 1.2.71.2.7.
Recall that for finite graphs, Theorem 1.2.61.2.6 can be extended to a tiling result

(Theorems 1.3.121.3.12 and 1.3.161.3.16). Our proof of Theorem 1.4.111.4.11 actually gives the
following stronger result of a similar form.

Theorem 1.4.13 (Corsten–DeBiasio–McKenney). Let A, : ≥ 2 be integers and let
� be a one-way :-locally finite graph. Then, in every A-edge-coloured  N, there
exists a collection of at most

5 (A, :) =


A if : = 2

2(: − 1) if A = 2∑(:−2)A+1
8=0 (A − 1)8 if : ≥ 3

vertex-disjoint, monochromatic copies of� whose union covers all but finitely many
vertices.
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This generalises a result of Elekes, D. Soukup, L. Soukup, and Szentmiklóssy [3737]
who proved a similar statement for powers of cycles.

Wewill present the proof of Theorems 1.4.111.4.11 and 1.4.131.4.13 in Section 4.2.74.2.7. It would
be very interesting to prove an analogue of Conjecture 1.2.81.2.8 for infinite graphs of
bounded degeneracy.

Question 1.4.14 (Corsten–DeBiasio–McKenney). Do we have Rd(�) > 0 for every
infinite graph � with finite degeneracy?

Ramsey-dense graphs

We call an infinite graph� A-Ramsey-dense if in every A-edge-colouring of  N there
is a monochromatic copy of � with positive upper density. If A = 2, we drop the
prefix and just say � is Ramsey-dense. We will describe a simple property that is
sufficient to guarantee that a graph is Ramsey-dense and then we show that every
Ramsey-dense graph is not far from having this property.

A set - ⊆ + (�) is called dominating if every vertex E ∈ + (�) \- has a neighbour
in - . We call a set - ⊆ + (�) ruling if - is finite and all but finitely many vertices
E ∈ + (�) \ - have a neighbour in - . We say that an infinite graph � is C-ruled if
there are at most C disjoint minimal ruling sets. The ruling number of a graph �,
denoted by rul(�), is the smallest C ∈ N such that� is C-ruled and rul(�) := ∞ if no
such C exists. Equivalently, rul(�) is the matching number of the hypergraph whose
edges are all minimal ruling sets. Note that a graph is 0-ruled if and only if there is
no finite dominating set and finitely-ruled (i.e. C-ruled for some C ∈ N0) if and only
if there is a finite set ( ⊆ + (�) such that � [N \ (] has no finite dominating sets.

Theorem 1.4.15 (Corsten–DeBiasio–McKenney). If � is an infinite graph with
finite ruling number, then � is A-Ramsey-dense for every A ∈ N.

Theorem 1.4.151.4.15 has a couple of interesting corollaries. For example, it implies
that every infinite graph with finite degeneracy is Ramsey-dense.

Corollary 1.4.16 (Corsten–DeBiasio–McKenney). If � is an infinite graph with
finite degeneracy, then � is A-Ramsey-dense for every A ∈ N.
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Proof. By Theorem 1.4.151.4.15, it suffices to show that every 3-degenerate infinite graph
� is 3-ruled. Suppose for contradiction, there is a 3-degenerate infinite graph �
with rul(�) > 3 for some 3 ∈ N. Let (1, . . . , (3+1 be disjoint minimal ruling sets
and let (0 ⊆ + (�) \ ((1 ∪ . . . ∪ (3+1) be the set of vertices which do not have a
neighbour in some (8. Note that ( := (0 ∪ (1 ∪ . . . ∪ (3+1 is finite. Therefore, there
is a vertex D ∈ N \ ( which comes after all vertices in ( in a 3-degenerate ordering
of + (�) and hence deg(D, () ≤ 3. However, by construction, D has a neighbour in
each of (1, . . . , (3+1, a contradiction.

Another corollary concerns the well-studied Rado graph. The Rado graph R is
the graph with vertex-set N defined by placing an edge between < < = if and only
if the <th digit in the binary expansion of = is 1 (starting with the least significant
bit). It is easy to verify that the Rado graph does not have any finite dominating sets
and hence rul(R) = 0.

Corollary 1.4.17 (Corsten–DeBiasio–McKenney). The Rado graph R is A-Ramsey-
dense for every A ∈ N.

Wewill see later that theRado graph hasRamsey upper density 0 (Corollary 4.2.74.2.7),
showing that not every Ramsey-dense graph has positive Ramsey upper density.

We do not know if the converse of Theorem 1.4.151.4.15 holds:

Question 1.4.18 (Corsten–DeBiasio–McKenney). Is there a Ramsey-dense graph
� with infinite ruling number?

If the answer is no, then we have a complete characterisation of Ramsey-dense
graphs. The following result shows that if � has infinite ruling number and ad-
ditionally the sizes of the minimal ruling sets do not grow too fast, then � is not
Ramsey-dense.

Theorem 1.4.19 (Corsten–DeBiasio–McKenney). Let � be an infinite graph with
disjoint ruling sets �1, �2, . . . satisfying |�= | ≤ log2(=) for all sufficiently large =.
Then � is not Ramsey-dense.

The proof of Theorems 1.4.151.4.15 and 1.4.191.4.19 will be presented in Section 4.2.84.2.8.
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1.5 Robust Triangle Tilings in Random Graphs

1.5.1 Shamir’s Problem

A perfect matching in a :-graph � is a collection of disjoint edges covering all
vertices. The following classical result of Erdős and Rényi [4646] determines the
threshold probability for the existence of a perfect matching in � (=, ?).

Theorem 1.5.1 (Erdős–Rényi [4646]). Let Y > 0, = ≥ 2 be an even integer andM=

be the set of all =-vertex graphs containing a perfect matching. Then,

lim
=→∞
P [� (=, ?) ∈ M=] =


0 if ? ≤ (1 − Y) log(=)/=,

1 if ? ≥ (1 + Y) log(=)/=.

Shamir’s problem, which first appeared in [4141] (where Erdős attributes it to
Shamir) asks the analogous question for hypergraphs.

Problem 1.5.2 (Shamir’s problem). For : ≥ 3, what is the threshold probability for
the existence of a perfect matching in � (:) (=, ?) (when = is divisible by :)?

Given two graphs � and �, an �-tiling in � is a collection of vertex-disjoint
copies of � in � covering all vertices of �. In this thesis, we shall be mostly
interested in the following tiling version of Shamir’s problem (which was first raised
by Ruciński [105105] for : = 3).

Problem 1.5.3 (Shamir’s problem - tiling version). For : ≥ 3, what is the threshold
probability for the existence of a  : -tiling in � (=, ?) (when = is divisible by :)?

An obvious necessary condition for Problem 1.5.21.5.2 is that there are no isolated
vertices (that is, vertices of degree 0). It is not hard to see that the (sharp) threshold
for� (:) (=, ?) not to have isolated vertices is ?< (=, :) := (log =)/

(=−1
:−1

)
(that is, when

the expected degree of each vertex is log =). The analogous necessary condition for
Problem 1.5.31.5.3 is that every vertex must be in at least one copy of  : . It is well
known (see [7373, Theorem 3.22]) that the (sharp) threshold probability for this is

?C (=, :) := (log =)1/(
:
2)

(
= − 1
: − 1

)−1/(:2)
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(that is, when we expect exactly log = copies of  : containing a given vertex).
Problems 1.5.21.5.2 and 1.5.31.5.3 have received a lot of attention, but proved to be very

challenging. After some progress in [66, 5353, 7878, 8585, 104104, 110110], Johansson, Kahn
and Vu [7575] completely solved both problems in an unexpected breakthrough by
showing that ?< and ?C are already the (coarse) thresholds for Shamir’s problem.
In fact, their result does not only hold for  : -tilings but many more graphs and
hypergraphs (so-called strictly balanced graphs). We will state the theorem only in
the case of Problem 1.5.31.5.3.

Theorem 1.5.4 (Johansson–Kahn–Vu [7575]). For every : ∈ N, there is a constant
� > 0 such that for all = ∈ N divisible by : and ? ≥ � (log =)1/(:2)=−2/: , � (=, ?)
has a  : -tiling w.h.p.

By the above discussion, Theorem 1.5.41.5.4 is best possible up to the constant �.
Recently, Kahn [7676] determined the asymptotics completely for Problem 1.5.21.5.2 by
showing that ?< (=) is a sharp threshold as well. Further recent results of Rior-
dan [101101] and Heckel [6868] which ‘couple’ the two problems show that this implies
that ?C is a sharp threshold for Problem 1.5.31.5.3 as well.

1.5.2 Robustness

A Hamilton cycle in a graph � is a cycle in � spanning all its vertices and a graph
is called Hamiltonian if it has a Hamilton cycle. A classical theorem of Dirac [3434]
gives a sufficient condition for a graph to be Hamiltonian.

Theorem 1.5.5 (Dirac [3434]). If � is an =-vertex graph with X(�) ≥ =/2, then � is
Hamiltonian.

Considering the complete bipartite graph with parts of size b=/2c+1 and d=/2e−1
shows that this result is best possible. Another classical result, independently proven
byKorshunov [8484] and by Pósa [9696], determines the probability threshold for� (=, ?)
to be Hamiltonian.

Theorem 1.5.6 (Korshunov [8484], Pósa [9696]). There is a constant � > 0 such that
for all = ∈ N and all ? ≥ � log(=)/=, � (=, ?) is Hamiltonian w.h.p.
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Since every Hamiltonian graph is connected, Theorem 1.0.51.0.5 implies that this is
best possible up to the implicit constant. A more exact window for the transition
phase in Theorem 1.5.61.5.6 was proved independently by Bollobás [1111] and by Komlós
and Szemerédi [8383]. Krivelevich, Lee and Sudakov [8686] proved a remarkable
common generalisation of Theorems 1.5.51.5.5 and 1.5.61.5.6.

Theorem 1.5.7 (Krivelevich–Lee–Sudakov [8686]). There is a constant � > 0 such
that for all = ∈ N, ? ≥ � log(=)/= and all =-vertex graphs � with X(�) ≥ =/2, � ?

is Hamiltonian w.h.p.

Observe that, by choosing ? = 1, we obtain Theorem 1.5.51.5.5, and by choosing
� =  = we obtain Theorem 1.5.61.5.6. Therefore, both the minimum degree condition
and the lower bound on ? (up to the constant �) are best possible. This can be seen
as a robust version of Theorem 1.5.51.5.5: the conclusion even holds if we randomly
remove most edges.

New Results

We shall prove a similar result for triangle tilings. The classical Corrádi–Hajnal
theorem [2828] gives a sufficient condition for the existence of a triangle tiling in
terms of the minimum degree.

Theorem 1.5.8 (Corrádi–Hajnal [2828]). If� is an =-vertex graph for some = divisible
by 3 with X(�) ≥ 2=/3, then � contains a triangle tiling.

We will prove a common generalisation of Theorem 1.5.81.5.8 and of Theorem 1.5.41.5.4
for : = 3.

Theorem 1.5.9 (Allen et al. [33]). There is a constant � > 0 such that for all = ∈ N
divisible by 3, all ? ≥ � (log =)1/3=−2/3 and all =-vertex graphs� with X(�) ≥ 2=/3,
� ? has a triangle tiling w.h.p.

Similarly as above, we obtain Theorem 1.5.81.5.8 by choosing ? = 1, and Theo-
rem 1.5.41.5.4 for : = 3 by choosing � =  =. Therefore, both the minimum degree
condition and the lower bound on ? (up to the constant �) are best possible. We
will present the proof of Theorem 1.5.91.5.9 in Chapter 55. The main tool in our proof
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is the entropy method and, while many ideas are similar to those in [7575], the proof
strategy actually follows an alternative proof of Problem 1.5.21.5.2, which was given by
Allen, Böttcher, Davies, Jenssen, Kohayakawa and Roberts [44].
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2.1 The Absorption Method

The absorption method, introduced by Erdős, Gyárfás and Pyber in [4242] to prove
Theorem 1.3.41.3.4 below, has become a standard tool in graph tiling problems and has
been applied to many problems in the area. We shall make use of it in the proofs of
Theorems 1.3.101.3.10 and 1.3.161.3.16 and we will briefly sketch the proof of Theorem 1.3.41.3.4
in this section in order to introduce the method.

Theorem 1.3.4 (Erdős–Gyárfás–Pyber [4242]). The vertices of every A-edge-coloured
complete graph on = vertices can be partitioned into $ (A2 log A) monochromatic
cycles.

For sake of clarity, we will not make an effort to calculate the exact constants and
only show that $= (1) cycles suffice (i.e. the number of cycles will be a function
independent of =). At the heart of the proof are so called absorbers.

Definition 2.1.1. A pair (�, �) of a graph � and a set � ⊆ + (�) is called an
absorber if � [+ (�) \ -] contains a Hamilton cycle for every - ⊆ �.

Note that this definition is specific to cycles and will be different for other graphs.
It is vital for the proof that we can find large absorbers.

Lemma 2.1.2. For every A ≥ 2, there is some constant 2 = 2(A) ∈ (0, 1/4), such
that every A-edge-coloured  = contains a monochromatic absorber (�, �) with
|�| = |+ (�) \ �| = 2=.
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We will further need the following approximate version of the theorem.

Lemma 2.1.3. For every A ≥ 2 and Y > 0, there is some constant � = � (A, Y) such
that every A-edge-colouring of  = contains a collection of at most � vertex-disjoint
monochromatic cycles covering all but at most Y= vertices.

Lemma 2.1.32.1.3 follows from the fact the cycles have linear A-colour Ramsey number
(see Section 1.2.11.2.1) by greedily taking out the largest monochromatic cycle disjoint
from all previous cycles, one at a time. The key part of the proof is the following
Absorption Lemma.

Lemma 2.1.4 (Absorption Lemma for cycles). For every A ≥ 2, there exist constants
Y = Y(A) > 0 and � = � (A) > 0 such that the following holds. Let +1, +2 be sets
with |+1 | ≤ Y |+2 | and let � be an A-edge-coloured complete bipartite graph with
parts +1, +2. Then, there is a collection of at most � vertex-disjoint monochromatic
cycles in � covering +1.

The proofs of Lemmas 2.1.22.1.2 to 2.1.42.1.4 are not essential to understand the method
and therefore we will not present it here (see [4242] for the proofs).

Proof of Theorem 1.3.41.3.4. Fix A, = ∈ N and an A-edge-coloured  = for the rest of
this proof. Let 21 be the constant from Lemma 2.1.22.1.2, �2(Y) be the constant from
Lemma 2.1.32.1.3, and �3 and Y3 be the constants from Lemma 2.1.42.1.4.

By Lemma 2.1.22.1.2, there is a monochromatic absorber (�, �) with |�| =
|+ (�) \ �| = 21 · =. We apply now Lemma 2.1.32.1.3 with input A and Y3 · 21 to
find a collection of at most �2(Y3 · 21) vertex-disjoint monochromatic cycles in
+ ( =) \+ (�) such that the set of leftover vertices ' satisfies

|' | ≤ Y3 · 21(= − |+ (�) |) ≤ Y3 · |�| .

Hence, we can apply Lemma 2.1.42.1.4 with input -1 = ' and -2 = � to find a collection
of at most �3 vertex-disjoint cycles covering ' and a set '′ ⊆ �.
We have covered + ( =) \ (+ (�) \ '′) so far, and we can cover + (�) \ '′ with

one monochromatic cycle using the absorption property of �. We thus covered all
vertices with 5 (A) = �2(Y3 · 21) + �3 + 1 monochromatic cycles.11
1Carrying out the exact calculations leads to 5 (A) = $ (A2 log(A)), see [4242].
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2.2 Graph Regularity

The graph regularity method has become one of the most powerful tools in extremal
graph theory since its first use in Szemerédi’s theorem [114114, 116116].22 It is centred
around Szemerédi’s Regularity Lemma, whichwas first explicitly stated in its current
form in [115115] and there has been a lot of work developing this method ever since,
see [8282] for a survey on the topic. We will use results from this area in every chapter
of thesis and therefore give a brief introduction, and then list all applications and
related results we shall make use of in this thesis.

2.2.1 Definitions and Basic Properties

Let � = (+, �) be a graph and � and � be non-empty, disjoint subsets of + . We
write 4� (�, �) to denote the number of edges in � with one vertex in � and one in
� and we define the density of the pair (�, �) to be 3� (�, �) = 4� (�, �)/(|�| |� |).
If� is clear from context, we drop the subscript. The pair (�, �) is called Y-regular
(in �) if we have |3� (�′, �′) − 3� (�, �) | ≤ Y for all �′ ⊆ � with |�′| ≥ Y |�| and
�′ ⊆ � with |�′| ≥ Y |� |. The pair (�, �) is called (Y, 3)-regular if it is Y-regular
and 3� (�, �) = 3.

We will often require an even stronger condition than Y-regularity in which we
have control over the degrees of all vertices. A pair (�, �) of disjoint subsets of
+ (�) is called (Y, 3, X)-super-regular (in �) if

(i) (�, �) is (Y, 3)-regular in �,

(ii) deg(E,+3−8) ≥ X |+8 | for all E ∈ +8 and 8 = 1, 2.

We call (�, �) (Y, 3+, X)-super-regular if it is (Y, 3′, X)-super-regular for some
3′ ≥ 3 and (Y, 3+)-super-regular if it is (Y, 3+, 3)-super-regular.
We begin with some simple facts about (super-)regular pairs. The first one is

known as slicing lemma and roughly says that if we shrink a dense regular pair we
still get a dense regular pair. Its proof is straight forward from the definition of
regular pair.
2Szemerédi’s theorem states that every set � ⊆ N with positive upper density contains infinitely
many arithmetic progressions of length : for every : ∈ N.
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Lemma 2.2.1 (Slicing lemma). Let V > Y > 0, and let (+1, +2) be an Y-regular pair.
Then any pair (*1,*2) with |*8 | ≥ V |+8 | and *8 ⊆ +8, 8 = 1, 2, is Y′-regular with
Y′ = max{Y/V, 2Y}.

The following lemma essentially says that after removing few vertices from a
super-regular pair and adding few new vertices with large degree, we still have a
super-regular pair.

Lemma 2.2.2. Let 0 < Y < 1/2 and let 3, X ∈ [0, 1] so that X ≥ 4Y. Let (+1, +2)
be an (Y, 3+, X)-super-regular pair in a graph �. Let -8 ⊆ +8 for 8 ∈ [2], and let
.1, .2 be disjoint subsets of + (�) \ (+1 ∪ +2). Suppose that for each 8 ∈ [2] we
have |-8 |, |.8 | ≤ Y2 |+8 | and deg(H,+8) ≥ X |+8 | for every H ∈ .3−8. Then the pair
((+1 \ -1) ∪ .1, (+2 \ -2) ∪ .2) is (8Y, (3 − 8Y)+, X/2)-super-regular.

Proof. Let *8 = (+8 \ -8) ∪ .8 for 8 ∈ [2]. We will show that (*1,*2) is (8Y, 3 −
8Y, X/2)-super-regular. Let now /8 ⊆ *8 with |/8 | ≥ 8Y |*8 |, and let /′8 = /8 \.8 and
/′′
8
= /8 ∩ .8 for 8 ∈ [2]. Note that we have

|/8 | ≥ 8Y |*8 | ≥ Y |+8 |,
|/′′8 | ≤ |.8 | ≤ Y2 |+8 | ≤ Y |/8 | and
|/′8 | = |/8 | − |/′′8 | ≥ (1 − Y) |/8 |

for both 8 ∈ [2]. We therefore have

4(/1, /2) ≤ 4(/′1, /
′
2) + 4(/

′′
1 , /2) + 4(/1, /

′′
2 ) ≤ 4(/

′
1, /
′
2) + 2Y |/1 | |/2 |

and thus
3 (/1, /2) ≤ 3 (/′1, /

′
2) + 2Y.

On the other hand, we have

3 (/1, /2) =
4(/1, /2)
|/1 | |/2 |

≥
4(/′1, /

′
2)

|/′1 | |/
′
2 |
·
|/′1 | |/

′
2 |

|/1 | |/2 |
≥ 3 (/′1, /

′
2) (1 − Y)

2 ≥ 3 (/′1, /
′
2) − 2Y
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2 Preliminaries

and hence 3 (/1, /2) = 3 (/′1, /
′
2) ± 2Y. Furthermore, by Y-regularity of (+1, +2), we

have 3 (/′1, /
′
2) = 3 (+1, +2) ± Y and we conclude

3 (/1, /2) = 3 (+1, +2) ± 3Y.

This holds in particular for /1 = *1 and /2 = *2 and therefore the pair (*1,*2) is
(8Y, (3 − 8Y)+, 0)-super-regular.
Let D1 ∈ *1 now. By assumption, we have deg(D1, +2) ≥ X |+2 | and therefore

deg(D1,*2) ≥ deg(D1, +2 \ -2) ≥ (X − Y2) |+2 |
≥ (X − Y2) |*2 | ≥ X/2 · |*2 |.

A similar statement is true for every D2 ∈ *2 finishing the proof.

Given disjoint sets of vertices +1, . . . , +: ⊆ + (�), we call / = (+1, . . . , +: ) a
:-cylinder and often identify it with the induced :-partite subgraph � [+1, . . . , +: ].
We write +8 (/) = +8 for every 8 ∈ [:]. We say that / is Y-balanced if

max
8∈[:]
|+8 (/) | ≤ (1 + Y) min

8∈[:]
|+8 (/) |

and balanced if it is 0-balanced. Furthermore, we say that / is Y-regular if all the(:
2
)
pairs (+8, + 9 ) are Y-regular and we define (Y, 3+, X)-super-regular cylinders and

(Y, 3+)-super-regular cylinders similarly.

Lemma 2.2.3. Let : be a positive integer and 3, Y > 0 with Y ≤ 1/(2:). If
/ = (+1, . . . , +: ) is an Y-regular :-cylinder and 3 (+8, + 9 ) ≥ 3 for all 1 ≤ 8 < 9 ≤ : ,
then there is some W ≥ 1− :Y and sets +̃1 ⊆ +1, . . . , +̃: ⊆ +: with |+̃8 | = d(1−W) |+8 |e
for all 8 ∈ [:] so that the :-cylinder /̃ = (+̃1, . . . , +̃: ) is (2Y, (3 − :Y)+)-super-
regular.

Proof. For 8 ≠ 9 ∈ [:], let �8, 9 := {E ∈ +8 : deg(E,+ 9 ) < (3−Y) |+ 9 |}. By definition
of Y-regularity, we have

���8, 9 �� < Y |+8 | for every 8 ≠ 9 ∈ [:]. For each 8 ∈ [:], let
�8 =

⋃
9∈[:]\{8} �8, 9 . Clearly |�8 | < (: − 1)Y |+8 | for every 8 ∈ [:], so we can add

arbitrary vertices from +8 \ �8 to �8 until |�8 | = b(: − 1)Y |+8 |c for every 8 ∈ [:].
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Let now +̃8 = +8 \ �̃8 for every 8 ∈ [:] and let /̃ = (+̃1, . . . , +̃: ). Observe that
|+̃8 | = (1 − W) |+8 | for all 8 ∈ [:], where W = (: − 1)Y. It follows from Lemma 2.2.12.2.1
and definition of �8 that /̃ is (2Y, (3 − Y)+, 3 − :Y)-super-regular.

The following lemma further allows us to control the exact density of a super-
regular pair by deleting edges if necessary.

Lemma 2.2.4. For all Y > 0, there is some =0 > 0, such that the following is true for
every = ≥ =0 and every bipartite graph Γ with parts +1, +2 of size =. Suppose that
(+1, +2) is (Y2, 3, X)-super-regular for some 3 ≥ X ≥ 4Y. Then there is a spanning
subgraph Γ′ ⊆ Γ so that (+1, +2) is (4Y, X, X − Y)-super-regular in Γ′.

For the proof, we will need the hypergeometric distribution: A random variable
- : Ω→ N0 is hypergeometrically distributed with parameters # ∈ N,  ∈ [0, #]
and C ∈ N0 if P [- = :] is the probability that when drawing C balls from a set of #
balls ( of which are blue and # −  red) without replacement, exactly : are blue.
That is,

P [- = :] =
( 
:

) (#− 
C−:

)(#
C

) .

We will use the following concentration inequality, which Chvátal [2222] deduced
from the so-called Hoeffding’s inequality [6969].

Lemma 2.2.5. Let - be hypergeometrically distributed with parameters # ∈ N,
 ∈ [0, #] and C ∈ N0 and let ` := E [-] = C /# . Then, for all _ > 0, we have

P [|- − ` | > _`] ≤ 24−2_2 ( /#)·` .

Proof of Lemma 2.2.42.2.4. For 8 ∈ [2], let .8 := {E ∈ +8 : deg(E,+3−8) ≤ (3 − Y)=}
and observe that by Y2-regularity of (+1, +2), we have |.8 | ≤ Y2= for both 8 ∈ [2].
Let �. ⊆ � (Γ) be the set of edges with at least one vertex in . := .1 ∪ .2 and
let � := � (Γ) \ �. . Let < := |�. | ≤ 2Y2=2. Let ? := X=2−<

|� (Γ) | =
X±Y2

3
. Let �′

be a uniformly random subset of � of size exactly ? |� | and let Γ′ be the spanning
subgraph of Γ with edge-set �′ ∪ �. . By construction, we have 3Γ′ (+1, +2) = X; we
will show that (+1, +2) is (4Y, X, X − Y)-super-regular in Γ′ w.h.p.
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Let �8 ⊆ +8 with �8 ≥ 4Y=, and let �8 = �8 \ .8 and �′8 = �8 \ �8 for both
8 ∈ [2]. By Y2-regularity in Γ, we have . := |�Γ(�1, �2) | = (3 ± Y2) |�1 | |�2 |. Let
now - := |�Γ′ (�1, �2) |. Then - is hypergeometrically distributed with parameters
# = |� |,  = ., C = ? |� | and thus ` := E [-] = ? · . = (X ± 2Y) |�1 | |�2 |. Since
` ≥ 8Y3=2, it follows from Lemma 2.2.52.2.5 that

P [|- − ` | > Y · `] ≤ 24−2Y2 /# ·` ≤ 24−Y
8=2
.

In particular, we haveP [3 (�1, �2) = X ± 4Y] ≥ 1−24−Y8=2 . By taking a union bound
over all choices of -1, -2, we deduce that (+1, +2) is 2Y-regular with probability
at least 1 − 242=−Y8=2 . Similarly, we deduce that degΓ′ (E8, +3−8) ≥ (X − Y)= for
each 8 ∈ [2] and E8 ∈ +8 with probability at least 1 − 4=4−Y8=. (Note that this
is automatically true for all E ∈ . as we fixed their neighbours.) Hence, taking
another union bound, it follows that (+1, +2) is (4Y, X, X − Y)-super-regular in Γ′

w.h.p. Therefore, for all large enough =, there is a suitable choice for �′.

The following lemma states that every regular :-cylinder contains roughly the
‘right amount’ of :-cliques. Given a graph �, let  (:) (�) be the set of cliques of
size : .

Lemma 2.2.6. Let : ∈ N, Y > 0 and let Γ be a :-partite graph with parts+1, . . . , +: ,
such that, for all 1 ≤ 8 < 9 ≤ : , (+8, + 9 ) is (Y, 38, 9 )-regular for some 38, 9 > 0. Then,
for all -1 ⊆ +1, . . . -: ⊆ +: , we have��� (:) (Γ[-1, . . . , -: ])

��� = (∏
1≤8< 9≤:

38, 9

)
|-1 | · · · |-: | ± :2Y · =: .

Proof. Wewill only prove the lower bound as the upper bound is similar. We proceed
by induction on : . The statement is trivial for : = 1 (here the empty product is 1).
So let : ≥ 2 and assume the statement is true for : − 1. First note that the statement
is trivially true if -8 < Y= for some 8 ∈ [:]; hence we may assume that |-8 | ≥ Y=
for all 8 ∈ [:]. For 8 ∈ [2, :], let �8 := {E1 ∈ +1 : deg(E1, -8) < (31,8 − Y) |-8 |}.
By (Y, 31,8)-regularity of (+1, +8), we have |�8 | ≤ Y= for all 8 ∈ [2, :] and thus
|�| := |⋃8∈[2,:] �8 | ≤ (: − 1)Y=.
Fix some G1 ∈ -1 \ � now and let �8 := # (G1, -8) for all 8 ∈ [2, :]. By choice
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of G1 we have |�8 | ≥ (31,8 − Y) |-8 | for all 8 ∈ [2, :]. Using the induction hypothesis
with �2, . . . , �: in the cylinder (+2, . . . , +: ), we deduce��� (:−1) (Γ[�2, . . . , �: ])

��� ≥ (∏
2≤8< 9≤:

38, 9

)
|�2 | · · · |�: | ± (: − 1)2Y=:−1

≥
(∏

1≤8< 9≤:
38, 9

)
|-2 | · · · |-: | ± : (: − 1)Y=:−1.

Finally, since every such clique extends to a clique in  (:) (Γ[-1, . . . , -: ]) with G1

and since |-1 \ �| ≥ |-1 | − (: − 1)Y=, we deduce��� (:) (Γ[-1, . . . , -: ])
��� ≥ (|-1 | − (: − 1)Y=)

��� (:−1) (Γ[�2, . . . , �: ])
���

≥
(∏

1≤8< 9≤:
38, 9

)
|-1 | · · · |-: | − :2Y · =: ,

as claimed.

We will frequently use the following immediate corollary for (Y, 3)-regular 3-
cylinders.

Lemma 2.2.7. Let 3, Y > 0 and let Γ be a 3-partite graph with parts +1, +2, +3 such
that (+1, +2, +3) is (Y, 3)-regular. Then, for all -1 ⊆ +1, -2 ⊆ +2, -3 ⊆ +3, we have��� (3) (Γ[-1, -2, -3])

��� = 33 |-1 | |-2 | |-3 | ± 10Y · =3.

2.2.2 The Regularity Lemma

In order to state the regularity lemma, we will first define regular partitions.

Definition 2.2.8 (Y-regular partition). Given a graph �, a partition + (�) = +0 ∪
+1 ∪ . . . ∪+A is called an Y-regular partition if

• |+1 | = . . . = |+A |,

• |+0 | ≤ Y=, and

• All but at most YA2 pairs (+8, + 9 ) with 1 ≤ 8 < 9 ≤ A are Y-regular.

We call +0, +1, . . . , +A clusters and +0 the garbage set.
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Theorem 2.2.9 (Regularity Lemma [115115]). For all<, Y > 0 there exists" > 0 such
that the following holds. Every graph � with at least " vertices has an Y-regular
partition + (�) = +0 ∪+1 ∪ · · · ∪+A for some < ≤ A ≤ " .

Note that some of the regular pairs in a regular partition can have very small
density (even 0), which can make certain applications difficult. We will define a
graph with vertex-set {+1, . . . , +A} whose edges are regular pairs that behave nicely.

Definition 2.2.10 (Reduced graph). Let 3, Y > 0, � be a graph and + (�) = +0 ∪
+1 ∪ . . . ∪+A be an Y-regular partition. The (Y, 3)-reduced graph ' is the graph on
{+1, . . . , +A} with +8+ 9 ∈ � (') if (+8, + 9 ) is an Y-regular pair with 3 (+8, + 9 ) ≥ 3.

The following version of the regularity lemma (see [8888, Proposition 9]) shows
that ' inherits minimum degree properties of �.

Theorem 2.2.11 (Regularity Lemma - degree version). For all <0, Y, 3, W with
0 < Y < 3 < W < 1 there is some " > 0 such that every graph � on = ≥ " vertices
withminimumdegree X(�) ≥ W= has an Y-regular partition+ (�) = +0∪+1∪. . .∪+A
for some < ≤ A ≤ " and the (Y, 3)-reduced graph ' satisfies X(') ≥ (W − 3 − Y)A.

In Chapter 44, we will make use of a version of the regularity lemma for edge-
coloured graphs which works for all colour classes simultaneously (see [8282, Theo-
rem 1.18]). Additionally, we require more control over the produced partition. A
family of disjoint subsets {+8}8∈[A] of a set + is said to refine a partition {, 9 } 9∈[ℓ]
of + if, for all 8 ∈ [A], there is some 9 ∈ [ℓ] with +8 ⊆ , 9 . For convenience later
on, we will state this version without reduced graphs and Y-regular partitions, and
instead consider a subgraph of� in which we remove edges between pairs of cluster
which do not behave nicely.

Theorem 2.2.12 (Regularity Lemma - coloured version). For all 3 ≥ Y > 0 and
<0, ℓ ≥ 1 there exists some " > 0 such that the following holds. Let � be a graph
on = ≥ " vertices whose edges are coloured in red and blue and let {,8}8∈[ℓ] be a
partition of + (�). Then there exists a partition + (�) = +0 ∪ +1 ∪ . . . ∪ +< and a
subgraph � of � with vertex-set + (�) \+0 such that the following holds:

(i) <0 ≤ < ≤ " ,
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(ii) {+8}8∈[<] refines {,8 ∩+ (�)}8∈[ℓ] ,

(iii) |+0 | ≤ Y= and |+1 | = · · · = |+< | ≤ dY=e,

(iv) deg� (E) ≥ deg� (E) − (3 + Y)= for each E ∈ + (�) \+0,

(v) � [+8] has no edges for 8 ∈ [<],

(vi) all pairs (+8, + 9 ) are Y-regular with density either 0 or at least 3 in each colour
in �.

2.2.3 Finding Large Regular Cylinders

In Section 3.23.2 we will use super-regular cylinders as absorbers and only require one
such cylinder instead of a partition as in the regularity lemma. This allows us to find
larger clusters than guaranteed by the regularity lemma.

Given : disjoint sets +1, . . . , +: , we call a cylinder (*1, . . . ,*: ) relatively bal-
anced (w.r.t. (+1, . . . , +: )) if there exists some W > 0 such that *8 ⊆ +8 with
|*8 | = bW |+8 |c for every 8 ∈ [:]. We say that a partition K of +1 × · · · × +: is
cylindrical if each partition class is of the form,1 × · · · ×,: (which we associate
with the :-cylinder / = (,1, . . . ,,: )) with, 9 ⊆ + 9 for every 9 ∈ [:]. Finally, we
say that K = {/1, . . . , /# } is Y-regular if

(i) K is a cylindrical partition,

(ii) /8 is a relatively balanced for every 8 ∈ [:], and

(iii) all but an Y-fraction of the :-tuples (E1, . . . , E: ) ∈ +1×· · ·×+: are in Y-regular
cylinders.

For technical reasons, we will allow that some of the +8 are empty. In this case
(�, ∅) is considered Y-regular for every set � and Y > 0. If � is an A-edge-coloured
graph and 8 ∈ [A], we say that a cylinder / is Y-regular in colour 8 if is Y-regular in
�8 (the graph on + (�) with all edges of colour 8). We define (Y, 3, X)-super-regular
in colour 8 and Y-regular partitions in colour 8 similarly.

In [2424], Conlon and Fox used the weak regularity lemma of Duke, Lefmann and
Rödl [3535] to find a reasonably large balanced :-cylinder in a :-partite graph. In order
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to prove a coloured version of Conlon and Fox’s result, we will need the following
coloured version of the weak regularity lemma of Duke, Lefmann and Rödl, which
further allows for parts of not necessarily equal sizes.

Theorem 2.2.13 (Duke–Lefmann–Rödl [3535]). Let 0 < Y < 1/2, :, A ∈ N and let
V = YA:

2Y−5 . Let � be an A-edge-coloured :-partite graph with parts +1, . . . , +: .
Then there exist some # ≤ V−: , sets '1 ⊆ +1, . . . , ': ⊆ +: with |'8 | ≤ V−1 and a
partition K = {/1, . . . , /# } of (+1 \ '1) × · · · × (+: \ ': ) so that K is Y-regular in
every colour and +8 (/ 9 ) ≥ bV |+8 |c for every 8 ∈ [:] and 9 ∈ [#].

The proof of Duke, Lefmann and Rödl [3535, Proposition 2.1] only has to be adapted
slightly to obtain this version, so we will not include it here. As a corollary, we
obtain the following lemma, which extends Lemma 2 in [5858] to multiple colours.

Lemma 2.2.14. Let :, A ≥ 2, 0 < Y < 1/(A:) and W = YA
8A :Y−5 . Then every A-

edge-coloured complete graph on = ≥ 1/W vertices contains, in one of the colours,
a balanced (Y, (1/2A)+)-super-regular :-cylinder / = (*1, . . . ,*: ) with parts of
size at least W=.

Proof. Let :, A ≥ 2, 0 < Y < 1/(A:) and W = YA8A :Y−5 . Let = ≥ 1/W and suppose
we are given an A-edge coloured  =. Let :̃ = AA: and let +1, . . . , +:̃ ⊆ [=] be
disjoint sets of size b=/:̃c and let � be the :̃-partite subgraph of  = induced by
+1, . . . , +:̃ (inheriting the colouring). Let Ỹ = Y/2 and V = ỸA

2A :+1Ỹ−5 . We apply
Theorem 2.2.132.2.13 to get some # ≤ V−:̃ , sets '1 ⊆ +1, . . . , ':̃ ⊆ +:̃ each of which of
size at most V−1 and a partition K = {/1, . . . , /# } of (+1 \ '8) × · · · × (+:̃ \ ':̃ )
which is Ỹ-regular in every colour, and with +8 (/ 9 ) ≥ bV |+8 |c ≥ 2W= for every
8 ∈ [ :̃] and 9 ∈ [#]. Note that one of the cylinders (say /1) must be Ỹ-regular
in every colour and, since (+1, . . . , +: ) is balanced, so is /1. We consider now
the complete graph with vertex-set {+1(/1), . . . , +:̃ (/1)} and colour every edge
+8 (/1)+ 9 (/1), 1 ≤ 8 < 9 ≤ :̃ , with a colour 2 ∈ [A] so that the density of the
pair (+8 (/1), + 9 (/1)) in colour 2 is at least 1/A. By Ramsey’s theorem [4040, 100100],
there is a colour, say 1, and : parts (say +1(/1), . . . , +: (/1)) so that the cylinder
(+1(/1), . . . , +: (/1)) is (Ỹ, (1/A)+, 0)-regular in colour 1. By Lemma 2.2.32.2.3, there
is an (Y, (1/(2A))+)-super-regular balanced subcylinder /̃1 with parts of size at least
W=.
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The following lemma further guarantees that this remains possible as long as the
host-graph has many :-cliques.

Lemma 2.2.15. Let : ≥ 2, and let 0 < Y < 1/2 and 2:Y ≤ 3 ≤ 1. Let W = Y:2Y−12 .
Suppose that � is a :-partite graph with parts +1, . . . , +: with at least 3 |+1 | · · · |+: |
cliques of size : . Then there is some W′ ≥ W and an (Y, (3/2)+)-super-regular
:-cylinder / = (*1, . . . ,*: ) in� with*8 ⊆ +8 and |*8 | = bW′|+8 |c for every 8 ∈ [:].

Proof. Let : ≥ 2, and let 3, Y > 0 with 2:Y ≤ 3 ≤ 1. Let W = Y:2Y−12 and let �
be a :-partite graph with parts +1, . . . , +: . Let Ỹ = Y/2 and V = Ỹ:2Ỹ−5 . We may
assume that |+8 | ≥ 1/W for every 8 ∈ [:] (otherwise we set *8 := ∅ for all 8 ∈ [:]
with |+8 | < 1/W). In particular, we have |+8 | ≥ :/(ỸV) for all 8 ∈ [:].

We apply Theorem 2.2.132.2.13 (with A = 1) to get some # ≤ V−: , sets '1 ⊆
+1, . . . , ': ⊆ +: , each of which of size at most V−1, and an Ỹ-regular partition
K = {/1, . . . , /# } of (+1 \ '1) × · · · × (+: \ ': ) with +8 (/ 9 ) ≥ bV |+8 |c for every
8 ∈ [:] and 9 ∈ [#].

Note that the number of cliques of size : incident to ' = '1 ∪ . . . ∪ ': is at most

:∑
8=1

V−1
∏

9∈[:]\{8}
|+ 9 | ≤ Ỹ |+1 | · · · |+: |.

Furthermore, there are at most Ỹ |+1 | · · · |+: | cliques of size : in cylinders of K
which are not Y-regular. By the pigeonhole principle, there is a cylinder /̃ among
the remaining cylinders which contains at least (3−2Ỹ) |+1(/̃) | · · · |+: (/̃) | cliques of
size : . In particular, /̃ is (Ỹ, (3−2Ỹ)+, 0)-super-regular and relatively balanced with
parts of size at least bV |+8 |c. Finally, we apply Lemma 2.2.32.2.3 (and possibly delete
a single vertex from some parts) to get a relatively balanced (Y, (3 − (: + 2)Ỹ)+)-
super-regular :-cylinder / with parts of size at least V2 |+8 | ≥ W |+8 |. This completes
the proof since (: + 2)Ỹ ≤ :Y ≤ 3/2.

2.2.4 The Blow-up Lemma

The blow-up lemma [8080, 8181] of Komlós, Sárközy and Szemerédi is very useful to
find spanning copies of graphs with bounded degree in regular cylinders. It is the
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key tool that allows us to use super-regular cylinders as absorbers in Section 3.23.2.
We will need the following quantitative version of Sárközy [106106].

Theorem 2.2.16 (Blow-up lemma, [106106]). There is a constant ��! > 0, such that
for all 0 < 3, X ≤ 1/2, all Δ, A ∈ N and all 0 < Y <

(
X3Δ/A

)��! , the following
is true. Let # ∈ N and let +1, . . . , +A disjoint sets of size # . Let ' be a graph
on {+1, . . . , +A}. We will define two graphs �3 (#) and �B (#) on +1 ∪ . . . ∪ +A as
follows. The graph �3 (#) is obtained by replacing each edge of ' with a copy of
 #,# and �B (#) is obtained by replacing each edge of ' by an (Y, 3+, X)-super-
regular pair. Then, if a graph � with Δ(�) ≤ Δ is embeddable into �3 (#), it is
already embeddable into �B (#).

Grinshpun and Sárközy [5858, Lemma 6] used of the Hajnal–Szemerédi theo-
rem [6666] below in order to turn the blow-up lemma into a tiling result which qualifies
Y-balanced super-regular cylinders as absorbers.

Theorem 2.2.17 (Hajnal–Szemerédi). Every graph � with Δ(�) ≤ Δ is (Δ + 1)-
partite and the parts can be chosen so that their sizes differ by at most 1.

Theorem 2.2.18 (Grinshpun–Sárközy [5858]). There is a constant  , such that for all
0 ≤ X ≤ 3 ≤ 1/2, Δ ∈ N, : = Δ + 2, 0 < Y ≤ (X3Δ) , and F ∈ FΔ, the following is
true for every (Y, 3+, X)-super-regular :-cylinder / = (+1, . . . , +: ).

(i) If / is Y-balanced, then its vertices can be partitioned into at most Δ+2 copies
of graphs from F .

(ii) If |+8 | ≥ |+1 | for all 8 = 2, . . . , : , then there is a copy of a graph from F
covering +1 and at most |+1 | vertices of each of +2, . . . , +: .

The proof of Theorem 2.2.182.2.18 is simple: First we fix a partition of every � ∈ F
into : −1 parts as guaranteed by Theorem 2.2.172.2.17. For (8), we apply Theorem 2.2.162.2.16
a total of Δ + 2 times. In the first application, we work in the cylinder induced by
all parts but the second-largest and find a copy � ∈ F which has the correct size
to make the first two parts have equal sizes. We iterate this process until all parts
have equal sizes and then apply Theorem 2.2.162.2.16 a final time. For (88), we only need
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to apply Theorem 2.2.162.2.16 once with the graph from F with (: − 1) |+1 | vertices (in
which all parts have size |+1 |).

A graph � is called 0-arrangeable for some 0 ∈ N if its vertices can be ordered
in such a way that the neighbours to the right of any vertex E ∈ + (�) have at most
0 neighbours to the left of E in total. Böttcher, Kohayakawa and Taraz [1414] proved
an extension of the blow-up lemma to graphs � of bounded arrangeability with
Δ(�) ≤

√
=/log(=). As a consequence we obtain the following result similar to

Theorem 2.2.182.2.18.

Theorem 2.2.19. For all 3, X > 0 and all 0 ∈ N, there is some Y > 0 such that the
following is true for all sequences of 0-arrangeable graphs F = {�1, �2, . . .} such
that, for all = ∈ N, Δ(�=) ≤

√
=/log(=) and �= is (0+2)-partite and the parts can be

chosen so that their sizes differ by at most 1. Let : = 0 + 3 and let / = (+1, . . . , +: )
be an (Y, 3+, X)-super-regular :-cylinder.

(i) If / is Y-balanced, then its vertices can be partitioned into at most 0+3 copies
of graphs from F .

(ii) If |+8 | ≥ |+1 | for all 8 = 2, . . . , : , then there is a copy of a graph from F
covering +1 and at most |+1 | vertices of each of +2, . . . , +: .

The vertices of every Y-balanced, (Y, 3+, X)-super-regular (0 + 3)-cylinder / can
be partitioned into at most 0 + 3 copies from F .

Note here that we cannot use the Hajnal-Szemeredi theorem here and therefore
had to adjust the statement accordingly.

2.3 Hypergraph Regularity

The goal of this section is to prove the following Lemma 2.3.12.3.1, which allows us to
find in any dense :-graph�, a dense subgraph� ⊆ � in which any two non-isolated
(: − 1)-sets are connected by a short path of a given prescribed length. The lemma
follows easily from the hypergraph regularity method, which we shall introduce
before proving the lemma. The reader may use Lemma 2.3.12.3.1 as a black box if they
would like to avoid hypergraph regularity.
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Before stating the lemma, we need to introduce some notation. Fix some : ≥ 2
and a partitionP = {+1, . . . , +: } of a set+ . We call a tight path in (:) (P) positively
oriented if its vertex sequence (D1, . . . , D<) travels through P in cyclic order, i.e.
there is some 9 ∈ [:] such that D8 ∈ +8+ 9 for every 8 ∈ [<], where we identify
: + 1 ≡ 1. In this section, we will only consider positively oriented tight cycles. In
particular, given some 4 ∈  (:−1) (P), the ordering of 4 in a tight path starting at 4
is uniquely determined.

Lemma 2.3.1. For every 3 > 0, there are constants X = X(3) > 0 and W = W(3) > 0,
such that the following is true for every partition P = {+1, . . . , +: } and every P-
partite :-graph � of density at least 3. There is a P-partite sub-:-graph � ⊆ � of
density at least X such that for every set ( = (1∪. . .∪(: with (8 ⊆ +8 and |(8 | ≤ W |+8 |
and any two 4, 5 ∈  (:−1) (P) with positive co-degree, there is a positively oriented
tight path of length ℓ ∈ {: + 2, . . . , 2: + 1} in � which starts at 4, ends at 5 and
avoids ( \ (4 ∪ 5 ).

Note that the length of the cycle in Lemma 2.3.12.3.1 is uniquely determined by the
types of 4 and 5 . The type of 4 ∈  (:−1) (P), denoted by tp (4), is the unique index
8 ∈ [:] such that 4 ∩ +8 = ∅. Given two (: − 1)-sets 4, 5 ∈  (:−1) (P), the type of
(4, 5 ) is given by tp (4, 5 ) := tp ( 5 ) − tp (4) (mod :). It is easy to see that every
tight path in  (:) (P) which starts at 4 and ends at 5 has length ℓ: + tp (4, 5 ) for
some ℓ ≥ 0. In particular, in Lemma 2.3.12.3.1, we have ℓ = : + tp (4, 5 ) if tp (4, 5 ) ≥ 2
and ℓ = 2: + tp (4, 5 ) otherwise.

Wewill now introduce the basic concepts of hypergraph regularity in order to state
a simple consequence of the strong hypergraph regularity lemma which guarantees
a dense regular complex in every large enough :-graph.

For technical reasons, we define a 1-graph on some vertex-set+ as a partition of+
inwhat follows. In particular, given a 1-graph� (1) and some : ≥ 2, (:) (� (1)) is the
complete� (1)-partite :-graph. We callH (:) = (� (1) , . . . , � (:)) a :-complex if� ( 9)

is a 9-graph for every 9 ∈ [:] and � ( 9) underlies � ( 9+1) , i.e. � ( 9+1) ⊆  ( 9+1) (� ( 9))
for every 9 ∈ [: − 1]. Note that, in particular, � ( 9) is � (1)-partite for every 9 ∈ [:].
We callH (:) B-partite if � (1) consists of B parts.

Now, given some 9-graph � ( 9) and some underlying ( 9 − 1)-graph � ( 9−1) , we
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define the density of � ( 9) w.r.t. � ( 9−1) by

d
(
� ( 9) |� ( 9−1)

)
=

��� ( 9) ∩  ( 9) (� ( 9−1))
���� ( 9) (� ( 9−1))

�� .

We are now ready to define regularity.

Definition 2.3.2. • Let A, 9 ∈ N with 9 ≥ 2, Y, 3 9 > 0, and � ( 9) be a 9-partite
9-graph and � ( 9−1) be an underlying ( 9-partite) ( 9 − 1)-graph. We call � ( 9)

(Y, 3 9 , A)-regular w.r.t. � ( 9−1) if for all & ( 9−1)
1 , . . . , &

( 9−1)
A ⊆ � (� ( 9−1)), we

have ���⋃
8∈[A]

 ( 9)
(
&
( 9−1)
8

)��� ≥ Y ��� ( 9) (� ( 9−1)
)���

=⇒
���d (

� ( 9)
���⋃

8∈[A]
&
( 9−1)
8

)
− 3 9

��� ≤ Y.
We say (Y, ∗, A)-regular for (Y, d

(
� ( 9) |� ( 9−1)

)
, A)-regular and (Y, 3)-regular

for (Y, 3, 1)-regular.

• Let 9 , B ∈ N with B ≥ 9 ≥ 2, Y, 3 9 > 0, and � ( 9) be an B-partite 9-graph
and � ( 9−1) be an underlying (B-partite) ( 9 − 1)-graph. The graph � ( 9) is
called (Y, 3 9 )-regular w.r.t. � ( 9−1) if � ( 9) [+1, . . . , + 9 ] is (Y, 3 9 )-regular w.r.t.
� ( 9−1) [+81 , . . . , +8 9 ] for all 1 ≤ 81 < . . . < 8 9 ≤ B, where {+1, . . . , +B} is the
vertex partition of + (� ( 9)).

• Let :, A ∈ N, Y, Y: , 32, . . . , 3: > 0, andH (:) = (�1, . . . , �: ) be a :-partite :-
complex. We callH (:) (32, . . . , 3: , Y, Y: , A)-regular, if � ( 9) is (Y, 3 9 )-regular
with respect to � ( 9−1) for every 9 = 2, . . . , :−1 and � (:) is (Y: , 3: , A)-regular
w.r.t. � (:−1) .

The following theorem is a direct consequence of the strong hypergraph regularity
lemma as stated in [102102] (with the exception that we allow for an initial partition of
not necessarily equal sizes).

Theorem 2.3.3. For all integers : ≥ 2, constants Y: > 0, and functions Y :
(0, 1) → (0, 1) and A : (0, 1) → N, there exists some X = X(:, Y, Y: , A) > 0 such
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that the following is true. For every partition P = {+1, . . . , +: } of some set +
and every P-partite :-graph � (:) of density 3 ≥ 2Y: , there are sets *8 ⊆ +8 with
|*8 | ≥ X |+8 | for every 8 ∈ [:] and constants 32, . . . , 3:−1 ≥ X and 3: ≥ 3/2 for
which there exists some (32, . . . , 3: , Y(X), Y: , A (X))-regular :-complexH (:) , so that
� (1) = {*1, . . . ,*: }.

We will use the following special case of the extension lemma in [2727, Lemma 5]
to find short tight paths between almost any two (: − 1)-sets in a regular complex.
Fix a (32, . . . , 3: , Y, Y: )-regular complex � (:) = (P, � (2) , . . . , � (:)), where P =

{+1, . . . , +: }. Let � (:−1)
8

⊆ � (:−1) denote the edges of type 8 and note that the dense
counting lemma for complexes [2727, Lemma 6] implies that

���� (:−1)
80

��� = (1 ± Y) :−1∏
9=2

3
(:−1
9 )

9

∏
8∈[:]\80

|+8 | .

Given some V > 0, we call a pair (4, 5 ) ∈ � (:−1)
81

× � (:−1)
82

V-typical for H (:) if
the number of tight paths of length ℓ := : + tp (81, 82) in � (:) which start at 4 and
end at 5 is

(1 ± V)
:∏
9=2

3
ℓ(:−1

9−1)−(:−1
9 )

9

∏
8∈{81,...,82}

|+8 | ,

where {81, . . . , 82} is understood in cyclic ordering. Note here that the number
of 9-sets in a :-uniform tight path of length ℓ which are contained in an edge is
ℓ
(:−1
9−1

)
+

(:−1
9

)
. However, 2

(:−1
9

)
of these are contained in 4 (the first : − 1 vertices)

or 5 (the last : − 1 vertices), which are already fixed in our example.

Lemma 2.3.4. Let :, A, =0 ∈ N, V, 32, . . . , 3: , Y, Y: > 0 and suppose that

1/=0 � 1/A, Y � min{Y: , 32, . . . , 3:−1} ≤ Y: � V, 3: , 1/:.

Then the following is true for all integers = ≥ =0, for all indices 81, 82 ∈ [:] and
every (32, . . . , 3: , Y, Y: , A)-regular complexH (:) =

(
� (1) , . . . , � (:)

)
with |+8 | ≥ =0

for all 8 ∈ [:], where � (1) = {+1, . . . , +: }. All but at most V
���� (:−1)
81

��� ���� (:−1)
82

��� pairs
(4, 5 ) ∈ � (:−1)

81
× � (:−1)

82
are V-typical forH (:) .
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Combining Theorem 2.3.32.3.3 and Lemma 2.3.42.3.4 gives Lemma 2.3.12.3.1.

Proof-sketch of Lemma 2.3.12.3.1. Apply Theorem 2.3.32.3.3 with suitable constants and
delete all 4 ∈ � (:−1) of small co-degree. Let 4 ∈ � (:−1)

81
and 5 ∈ � (:−1)

82
for

some 81, 82 ∈ [:] and define

- =

{
6(:−1) ∈ � (:−1)

81+1 : 4 ∪ 6(:−1) ∈ � (:)
}
and

. =

{
6(:−1) ∈ � (:−1)

82−1 : 5 ∪ 6(:−1) ∈ � (:)
}
.

Let -̃ ⊆ - and .̃ ⊆ . be the sets of all those edges in - and . avoiding (. By
Lemma 2.3.42.3.4 at least one pair in -̃ × .̃ must be typical and by a counting argument
not all of the promised paths can touch (.

2.4 Probabilistic Tools

In Chapter 55, we will frequently use the following concentration inequalities for
random variables. The first such inequality, Chernoff’s inequality [2020], deals with
the case of binomial random variables.

Lemma 2.4.1 (Chernoff’s concentration inequality). Let -1, . . . , -= be independent
random variables, each of which is 1 with probability ? and 0 otherwise. Let
- = -1 + . . . + -= and let _ := E [-] = =?. Then, for every Y ∈ (0, 1), we have

P [|- − _ | ≥ Y_] ≤ exp
(
−Y2_/3

)
.

Given a subgraph � ⊆ � (�) of � (given by its edge-set), we denote by �� the
indicator random variables which is 1 if � is present in � ? and 0 otherwise. Cher-
noff’s inequality is particularly useful to give sharp bounds on random variables of
the form - =

∑
�∈F �� , where F ⊆ 2� (�) is a collection of edge-disjoint subgraphs

of �. However, when F consists of not-necessarily edge disjoint subgraphs of �,
the situation becomes more complicated, since the random variables {��}�∈F are
not necessarily independent. Janson’s inequality [7272] provides a bound for the lower
tail in this case.
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Lemma 2.4.2 (Janson’s concentration inequality). Let� be a graph and F ⊆ 2� (�)

be a collection of subgraphs of� and let ? ∈ [0, 1]. Let - = ∑
�∈F �� , let _ = E [-]

and let
Δ̄ =

∑
(�,� ′)∈F 2: �∩� ′≠∅

E [�� �� ′] .

Then, for every Y ∈ (0, 1), we have

P [- ≤ (1 − Y)_] ≤ exp
(
−Y

2_2

2Δ̄

)
.

If we additionally require a bound for the upper tail, we will use the Kim-Vu
inequality [7777]. Let - =

∑
�∈F �� as above. Given an edge 4 ∈ � (�), we write C4

for �{4}. Then, - is as a polynomial with variables C4, - =
∑
�∈F

∏
4∈� C4. Given

some � ⊆ � (�), we obtain -� from - by deleting all summands corresponding to
� ∈ F which are disjoint from � and replacing every C4 with 4 ∈ � by 1. That is,

-� =
∑

�∈F : �∩�≠∅

∏
4∈�\�

C4 .

In other words, -� is the the number of � ∈ F which are not disjoint from � and
are present in � ?.

Lemma 2.4.3 (Kim-Vu polynomial concentration). For every : ∈ N, there is a
constant 2 = 2(:) > 0 such that the following is true. Let � be a graph and
F ⊆ 2� (�) be a collection of subgraphs of �, each with at most : edges. Let
- =

∑
�∈F �� and _ = E [-] as above. For 8 ∈ [:], define �8 := max{E [-�] : � ⊆

� (�), |�| = 8}. Further define �′ := max8∈[:] �8 and � = max{_, �′}. Then, for
every ` > 0, we have

P
[
|. − _ | > 2 · (��′)1/2`:

]
≤ 24(�):−14−` .

2.5 Entropy

In this section, we will explain basic definitions and properties of the entropy
function, which will play a central role in Chapter 55. We will be following closely
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the notes of Galvin [5454] and all proofs we do not include here can be found in [5454].
Throughout this subsection, we will fix a finite probability space (Ω, P).

Let - : Ω→ ( be a random variable. Given G ∈ (, we denote ?(G) := P [- = G].
We define the entropy of - by

ℎ(-) :=
∑
G∈(
−?(G) log ?(G).

Entropy can be interpreted as the uncertainty of a random variable, or as how much
information is gained by revealing - . The following lemma shows that the entropy
is maximised when - is uniform. Intuitively, this makes sense as the outcome of a
uniform random variable is most uncertain to us. Define the range of - as the set of
values which - takes with positive probability, that is rg(-) = {G ∈ ( : ?(G) > 0}.

Lemma 2.5.1 (Maximality of the uniform). For every random variable - : Ω→ (,
we have ℎ(-) ≤ log( | rg(-) |) ≤ log( |( |) with equality if and only if ?(G) = 1/|( |
for all G ∈ (.

Given random variables -8 : Ω→ (8 for 8 ∈ [=], we denote the entropy of the ran-
dom vector (-1, . . . , -=) : Ω→ (1× . . .×(= by ℎ(-1, . . . , -=) := ℎ((-1, . . . , -=)).
The entropy function has the following subadditivity property.

Lemma 2.5.2 (Subadditivity). Given random variables -8 : Ω → (8, 8 ∈ [=], we
have

ℎ(-1, . . . , -=) ≤
=∑
8=1

ℎ(-8)

with equality if and only if the -8 are jointly independent.

Intuitively, this means that revealing a random vector cannot give us more infor-
mation than revealing each component separately. If � ⊆ Ω is an event which has
positive probability, we define the conditional entropy given the event as

ℎ(- |�) :=
∑
G∈(
−?(G |�) log ?(G |�),

where ?(G |�) = P [{- = G}|�]. Note that ℎ(- |�) is the entropy of the random
variable / = - |� : � → ( whose distribution is given by P [/ = G] = P [- = G |�].
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Given two random variables - : Ω→ (- and . : Ω→ (. , the conditional entropy
of - given . is defined as

ℎ(- |. ) := E. [ℎ(- |. = H)] =
∑
H∈(.

?(H)ℎ(- |. = H) (2.5.1)

=
∑
l∈Ω
P [l] ℎ(- |. = . (l)), (2.5.2)

where ?(H) = P [{. = H}]. As conditioning on an event or another random variable
only gives us more information, we have the following inequality. Here, we say a
random variable . : Ω → (. determines another random variable . ′ : Ω → (. ′ if
the outcome of . ′ is completely determined by . . For example if . is the outcome
of rolling a regular six-sided die and . ′ is 1 if this outcome is even, and 0 otherwise,
then . determines . ′.

Lemma 2.5.3 (Dropping conditioning). Given random variables - : Ω→ (- and
. : Ω→ (. , and an event � ⊆ Ω which has positive probability, we have

ℎ(- |. ) ≤ ℎ(-) and ℎ(-) ≥ P [�] · ℎ(- |�).

Furthermore, if . ′ : Ω→ (. ′ is another random variable and . determines . ′, then

ℎ(- |. ) ≤ ℎ(- |. ′).

The following chain rule strengthens Lemma 2.5.22.5.2.

Lemma 2.5.4 (Chain rule). Given random variables - : Ω→ (- and . : Ω→ (. ,
we have

ℎ(-,. ) = ℎ(-) + ℎ(. |-)

and more generally, for random variables -8 : Ω→ (8, 8 ∈ [=], we have

ℎ(-1, . . . , -=) =
=∑
8=1

ℎ(-8 |-1, . . . , -8−1).

If - : Ω→ (- and . : Ω→ (. are random variables, we say that - determines
. if there is a function 5 : (- → (. such that . (l) = 5 (- (l)) for all l ∈ Ω. If -
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determines . , then . does not bring any new information after revealing - . This is
formalised in the following lemma.

Lemma 2.5.5 (Redundancy). If - : Ω→ (- and. : Ω→ (. are random variables
and - determines . , then

ℎ(-) = ℎ(-,. ).

Lemmas 2.5.12.5.1, 2.5.22.5.2 and 2.5.42.5.4 have the following conditional versions. Given a
random variable - : Ω→ (- and an event � ⊆ Ω, we define the conditional range
of - given � by rg(- |�) = {G ∈ (- : ?(G |�) > 0}.

Lemma 2.5.6 (Conditional maximality of the uniform). For every random variable
- : Ω→ (, we have

ℎ(- |�) ≤ log ( |rg(- |�) |) .

Lemma 2.5.7 (Conditional subadditivity). Given random variables -8 : Ω → (8,
8 ∈ [=], and . : Ω→ (. , we have

ℎ(-1, . . . , -= |. ) ≤
=∑
8=1

ℎ(-8 |. )

with equality if and only if the -8 are jointly independent conditioned on . .

Lemma 2.5.8 (Conditional chain rule). Given random variables -8 : Ω → (8,
8 ∈ [=], and . : Ω→ (. , we have

ℎ(-1, . . . , -= |. ) =
=∑
8=1

ℎ(-8 |-1, . . . , -8−1, . ).

The following lemmawill play an essential role in the main proof. It states that if a
random variable has almost maximal entropy, then it must be close to uniform. This
can be seen as a stability result for Lemma 2.5.12.5.1. Given a fucntion Z : ( → [0,∞)
and a random variable - : Ω→ (, we say that the distribution of - follows Z if

P [- = G] = Z (G)∑
H∈( Z (H)

for all G ∈ (. We shall call Z a weight function.
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Lemma 2.5.9. For all V > 0, there is some V′ > 0 such that the following is true for
every finite set ( with weight function Z : ( → [0,∞) and every random variable
- : Ω → ( whose distribution follows Z . If ℎ(-) ≥ log ( − V′, then there is some
0 ≥ 0, such that for � = Z−1 ( [(1 − V)0, (1 + V)0]), we have

|� | ≥ (1 − V) |( | and
∑
H∈�

Z (H) ≥ (1 − V)
∑
H∈(

Z (H). (2.5.3)

Proof. We may assume that V < 1/10. Furthermore, it suffices to prove the lemma
for all functions Z : ( → [0,∞) with∑

H∈( Z (H) = 1 (to see this, divide all necessary
parameters by

∑
H∈( Z (H)). Let now � := {Z ∈ [0, 1]( :

∑
H∈( ZH = 1} be the set of

all such functions (seen as vectors) and define ℎ : � → [0,∞) by

ℎ(Z) = ℎ((ZH)H∈() :=
∑
H∈(
−ZH log(ZH).

Note that ℎ(Z) = ℎ(-) if - is a random variable whose distribution follows Z . We
make the following easy but important observation.

Observation 2.5.10. If G ≠ G′ ∈ ( and Z, Z̃ ∈ � with ZH = Z̃H for all H ∈ ( \ {G, G′}
and ZG ≤ Z̃G ≤ Z̃G ′ ≤ ZG ′, then we have ℎ(Z) ≤ ℎ( Z̃).

In words, if we push two parameters closer together, this will increase the entropy.
To prove Observation 2.5.102.5.10, fix all but two parameters and take the first derivative
with respect to one of the remaining parameters (noting that the last one is determined
from that).

Fix now some Z ∈ � and let 0 := 1
|( | be its average. Let V > 0 be given and let

V′ = V3/1000. Let - : Ω → ( be a random variable whose distribution follows
Z . Assume that ℎ(-) ≥ log( |( |) − V′. Let �+ = {H ∈ ( : ZH > (1 + V/4)0},
�− = {H ∈ ( : ZH < (1 − V/4)0} and � = Z−1 ( [(1 − V)0, (1 + V)0]). Note that
|� | ≥ |( | − (|�+ | + |�− |).

Claim 2.1. We have |�+ | ≤ V/4|( |.

Proof. Choose W ≤ V/4 so that W |( | = bV/4|( |c. Assume for contradiction that
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|�+ | > W |( | and let �̃+ ⊆ �+ be a set of size exactly W |( |. Define Z+ by

Z+H =


(1 + W)0 if B ∈ �̃+

(1 − b)0 if B ∉ �̃+,

where b = W2

1−W is chosen so that
∑
H∈( Z

+
H = 1. Let -+ : Ω→ ( be a random variable

whose distribution follows Z+. Let . = 1 if -+ ∈ �̃+ and 0 otherwise. It follows
from (multiple applications of) Observation 2.5.102.5.10 that

ℎ(-) ≤ ℎ(-+, . ) = ℎ(-+ |. = 1)P [. = 1] + ℎ(-+ |. = 0)P [. = 0] + ℎ(. ),

where we used Lemma 2.5.52.5.5 and the chain rule (Lemma 2.5.42.5.4) and the definition of
conditional entropy. Note that P [. = 1] = W(1 + W) and

ℎ(. ) = −W(1 + W) log (W(1 + W)) − (1 − W(1 + W)) log (1 − (W(1 + W))) .

Therefore (and using Lemma 2.5.62.5.6), we get

ℎ(-) ≤ log (W |( |) W(1 + W) + log ((1 − W) |( |) (1 − W(1 + W)) + ℎ(. )
= log ( |( |) + log(W)W(1 + W) + log(1 − W) (1 − W(1 + W)) + ℎ(. )
= log ( |( |) + W(1 + W) (log(W) − log(W(1 + W)))

+ (1 − W(1 + W)) (log(1 − W) − log(1 − W(1 + W)))

= log ( |( |) − (W + W2) log(1 + W) + (1 − W − W2) log
(

1−W
1−W−W2

)
(∗)
≤ log ( |( |) − W2(1 + W) (1 − W/2) + (1 − W − W2) W2

1−W−W2

= log ( |( |) − W2 − W3/2 + W4 + W2

≤ log ( |( |) − W3/4
≤ log ( |( |) − V′,

a contradiction. Here we used the approximation G − G2/2 ≤ log(1 + G) ≤ G for
all G ∈ (0, 1) for (∗), which gives log(1 + W) ≥ W(1 − W/2) and log

(
1−W

1−W−W2

)
=
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log
(
1 + W2

1−W−W2

)
≤ W2

1−W−W2 . �

Similarly, we can show that |�− | ≤ V/4 · |( | and we conclude that |� | ≥ |( | −
(|�+ | + |�− |) ≥ (1 − V) |( |. Furthermore, we have∑

H∈�
Z (H) ≥ (1 − V/2) |( | (1 − V/4)0

≥ (1 − V)
= (1 − V)

∑
H∈(

Z (H).

This completes the proof.
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3
Monochromatic Graph Tiling
Problems

3.1 Tiling Coloured Hypergraphs with Tight Cycles

3.1.1 Overview

In this section, we are going to prove the following two results mentioned in the
introduction.

Theorem 1.3.10 (Bustamante–Corsten–Frankl–Pokrovskiy–Skokan [1818]). For ev-
ery :, A, U ∈ N, there is some 2 = 2(:, A, U) such that the vertices of every A-edge-
coloured :-graph � with independence number U(�) ≤ U can be partitioned into
at most 2 monochromatic tight cycles.

Theorem 1.3.14 (Bustamante–Corsten–Frankl–Pokrovskiy–Skokan [1818]). For ev-
ery :, A, ?, U ∈ N, there is some 2 = 2(:, A, ?, U) such that the vertices of every
A-edge-coloured :-graph � with U(�) ≤ U can be partitioned into at most 2
monochromatic ?-th powers of tight cycles.

Since Theorem 1.3.141.3.14 follows easily from Theorem 1.3.101.3.10, we present its short
proof here.

Proof of Theorem 1.3.141.3.14. Let 5 (:, A, U) be the smallest 2 for which Theorem 1.3.101.3.10
is true and let 6(:, A, ?, U) be the smallest 2 for which Theorem 1.3.141.3.14 is
true. We will show that 6(:, A, ?, U) ≤ 5 (: + ? − 1, A, Ũ), where Ũ =
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'
(:)
A+1 (: + ? − 1, . . . , : + ? − 1, U + 1) − 1. (Recall that '(:)A (B1, . . . , BA) is the A-

colour Ramsey number for :-graphs, i.e. the smallest positive integer =, so that in
every A-colouring of the complete :-graph on = vertices, there is some 8 ∈ [A] and B8
distinct vertices which induce a monochromatic clique in colour 8.) Suppose nowwe
are given an A-edge-coloured :-graph� with U(�) ≤ U. Define a (: + ?−1)-graph
� on the same vertex-set whose edges are themonochromatic cliques of size :+?−1
in �. By construction we have U(�) ≤ Ũ and thus, by Theorem 1.3.101.3.10, there are at
most 5 (: + ?−1, A, Ũ) monochromatic tight cycles partitioning+ (�). To conclude,
note that a tight cycle in � corresponds to a ?-th power of a tight cycle in �.

The proof of Theorem 1.3.101.3.10 combines the absorption method and the hypergraph
regularity method. If the host :-graph � is complete, the proof of Theorem 1.3.101.3.10
can be summarised as follows.

First, we find a monochromatic :-graph �0 ⊆ � with the following special
property: There is some � ⊆ + (�0), so that for every �′ ⊆ � there is a tight cycle
in �0 with vertices+ (�0) \ �′. This is explained in Section 3.1.23.1.2. We then greedily
remove vertex-disjoint monochromatic tight cycles from + (�) \+ (�0) until the set
of leftover vertices ' is very small in comparison to �. Finally, in Section 3.1.33.1.3, we
show that the leftover vertices can be absorbed by �0. More precisely, we show that
there are constantly many vertex-disjoint tight cycles with vertices in ' ∪ � which
cover all of '.

In order to prove the main theorem for host :-graphs with bounded independence
number, we need to iterate the above process a few times. Here the main difficulty
is to show that the iteration process stops after constantly many steps. This will be
shown in Section 3.1.43.1.4.

3.1.2 Absorption Method for Hypergraphs

The idea of the absorption method is to first cover almost every vertex by vertex-
disjoint monochromatic tight cycles and then absorb the leftover using a suitable
absorption lemma.

Lemma 3.1.1. For all :, A, U ∈ N and every W > 0, there is some 2 = 2(:, A, U, W)
so that the following is true for every A-coloured :-graph � on = vertices with
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U(�) ≤ U. There is a collection of at most 2 vertex-disjoint monochromatic tight
cycles whose vertices cover all but at most W= vertices.

Definition 3.1.2. Let� be a hypergraph, j be a colouring of � (�) and �, � ⊆ + (�)
disjoint subsets. Then � is called an absorber for � if there is a monochromatic
tight cycle with vertices � ∪ �′ for every �′ ⊆ �.

Lemma 3.1.3. For every :, A, U ∈ N, there is some V = V(:, A, U) > 0 such that the
following is true for every :-graph � with U(�) ≤ U. In every A-colouring of � (�)
there are disjoint sets �, � ⊆ + (�) with |� | ≥ V |+ (�) | such that � absorbs �.

The following hypergraphwill function as our absorber. Avery similar hypergraph
was used by Gyárfás and Sárközy to absorb loose cycles [6363, 6464]. See Figure 3.13.1
for an example.

Definition 3.1.4. The (:-uniform) crown of order C, ) (:)C , is a tight cycle with
= = C (: − 1) vertices E0, . . . , E=−1 (the base) and additional vertices D0, . . . , DC−1

(the rim). Furthermore, for each 8 = 0, . . . , C − 1, we add the : edges
{D8, E (:−1)8+ 9 , . . . , E (:−1)8+ 9+:−2}, 9 = 0, . . . , : − 1.

It is easy to see that the base of a crown is an absorber for the rim. To prove
Lemma 3.1.33.1.3, we therefore only need to show that we can always findmonochromatic
crowns of linear size. Both this and Lemma 3.1.13.1.1 are consequences of the following
theorem of Cooley, Fountoulakis, Kühn, and Osthus [2727] (see also [7171] and [2525]).

Theorem 3.1.5. For every A, :,Δ ∈ N, there is some � = � (A, :,Δ) > 0 so that the
following is true for all k-graphs �1, . . . , �A with at most = vertices and maximum
degree at most Δ, and every # ≥ �=. In every edge-colouring of  (:)

#
with colours

21, . . . , 2A , there is some 8 ∈ [A] for which there is a 28-monochromatic copy of �8.

Proof of Lemma 3.1.33.1.3. Suppose :, A, U and � are given as in the theorem and that
� (�) is coloured with A colours. Let # = |+ (�) |, Δ := max

{
2:,

( U
:−1

)}
and

2 = 1/((: −1)�) where� = � (A +1, :,Δ) is given by Theorem 3.1.53.1.5. Furthermore,
let = =

���+ () (:)2#
)
��� = #/�. Consider now the (A + 1)-colouring of �

(
 
(:)
#

)
in which

every edge in � (�) receives the same colour as in � and every other edge receives
colour A + 1. Let �A+1 =  (:)U+1 and �8 = )

(:)
2#

for all 8 ∈ [C], and note that Δ(�8) ≤ Δ
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Figure 3.1: A 3-uniform crown of order 4. The edges of the tight cycle are red and
the remaining edges are blue.

for all 8 ∈ [A + 1]. By choice of Δ, there is no monochromatic �A+1 in colour
A + 1 and hence, since # ≥ �=, there is a monochromatic copy of �8 for some
8 ∈ [A]. Therefore, there is a monochromatic crown of size 2 |+ (�) | and its base is
an absorber for its rim.

Proof of Lemma 3.1.13.1.1. ApplyingTheorem3.1.53.1.5with A+1 colours, uniformity : ,Δ =
max{:,

( U
:−1

)
}, and �1 = . . . = �A being tight cycles on =/(�)ℎ< 3.1.53.1.5(A + 1, :,Δ))

vertices and �A+1 =  
(:)
U+1 gives the following. There exist some Y = Y(A, :, U)

so that in every A-coloured :-graph � on = vertices with U(�) ≤ U, there is a
monochromatic tight cycle on at least Y= vertices.11 By iterating this process 8
times, we find 8 vertex-disjoint monochromatic tight cycles covering all but (1−Y)8=
vertices. This finishes the proof, since (1 − Y)8 → 0 as 8 →∞.

3.1.3 Absorption Lemma

In this section we prove a suitable absorption lemma for our approach.

1Here, we treat non-edges as colour A + 1 again.
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Lemma 3.1.6. For every Y > 0 and :, A ∈ N, there is some W = W(:, A, Y) > 0
and some 2 = 2(:, A, Y) such that the following is true. Let � be a :-partite
:-graph with parts �1, . . . , �: such that |�1 | ≥ . . . ≥ |�:−1 | ≥ |�: |/W and
| Lk(E; �1, . . . , �:−1) | ≥ Y |�1 | · · · |�:−1 | for every E ∈ �: . Then, in every A-
colouring of � (�), there are 2 vertex-disjoint monochromatic tight cycles covering
�: .

Note that it is enough to cover all but a bounded number of vertices, since we
allow single vertices as tight cycles. We will make use of this in the proof and
frequently remove few vertices.

We will use the following theorem of Pósa [9797].

Theorem 3.1.7 (Pósa). In every graph �, there is a collection of at most U(�)
cycles whose vertices partition + (�).

We further need the following simple but quite technical lemma, which states
that, given a ground set - and a collection F of subsets of - of linear size, we can
group almost all of these subsets into groups of size 4 which have a large common
intersection. We will apply this lemma when - is the edge-set of a hypergraph �
and F is a collection of subgraphs of �.

Lemma 3.1.8. For every Y > 0 there are X = X(Y) > 0 and � = � (Y) > 0 such that
the following is true for every < ∈ N. Let - be set of size < and F ⊆ 2- be a family
of subsets such that |� | ≥ Y< for every � ∈ F . Then there is some G ⊆ F of size
|G| ≤ � and a partition P of F \ G into sets of size 4 such that

��⋂4
8=1 �8

�� ≥ X< for
every {�1, �2, �3, �4} ∈ P.

We will prove the lemma with X(Y) = 44/26 and � (Y) = 8/Y2 + 2/Y.

Proof. Define a graph � on F by {�1, �2} ∈ � (�) if and only if |�1 ∩ �2 | ≥
(Y/2)2<. We claim that U(�) ≤ 2/Y. Suppose for contradiction that there is an
independent set � of size 2/Y+1. Then we have |�0 \

⋃
�∈�\{�0} � | ≥ Y</2 for every

�0 ∈ � and hence |
⋃
�∈� � | > <, a contradiction.

Since every graph has a matching of size at least E(�) −U(�), we find a matching
P1 in� of all but atmost 2/Y vertices of� (i.e. � ∈ F ). LetG1 = F \+ (P1) and note
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thatP1 is a partition of F \G1 into sets of size 2. Let F1 = {�1 ∩ �2 : {�1, �2} ∈ P1}
and iterate the process once more.

�1 �2 �3

�1,1 �1,2 �2,1 �2,2 �3,1 �3,2 �1,1 �1,2

(a) Link graphs

�1 �2 �3

�1,1 �1,2 �2,1 �2,2 �3,1 �3,2 �1,1 �1,2

(b) Tight Cycle

Figure 3.2: A sketch of Observation 3.1.93.1.9 for : = C = 3. Figure (a) shows the
link graphs of E1 (blue), E2 (red) and E3 (green). The colours are
for demonstration purposes only and are not related to the given edge-
colouring. Figure (b) shows the resulting tight cycle. In both figures, we
identify the ends (D1,1 and D1,2) to simplify the drawing.

Proof of Lemma 3.1.63.1.6. By choosing W sufficiently small, we may assume that
|�1 |, . . . , |�:−1 | are sufficiently large for the following arguments. First we claim that
it suffices to prove the lemma for A = 1. Indeed, partition �: = �:,1∪. . .∪�:,A so that
for each 8 ∈ [A] and E ∈ �:,8, we have | Lk8 (E; �1, . . . , �:−1) | ≥ Y/A · |�1 | · · · |�:−1 |
and delete all edges containing E whose colour is not 8. (Here we denote by Lk8 (·)
the link graph with respect to �8, the graph with all edges of colour 8.) Next, for
each 9 ∈ [: − 1], partition � 9 = � 9 ,1 ∪ . . . ∪ � 9 ,A into sets of equal sizes so that
| Lk8 (E; �1,8, . . . , �:−1,8) | ≥ Y/(2A) · |�1,8 | · · · |�:−1,8 |. Such a partition can be found
for example by choosing one uniformly at random and applying the probabilistic
method). Finally, we can apply the one-colour result (with Y′ = Y/(2A)) for each
8 ∈ [A].
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Fix Y > 0, : ≥ 2 and a :-partite :-graph � with parts �1, . . . , �: as in the
statement of the lemma. Choose constants W, X1, X2, X3 > 0 so that 0 < W � X3 �
X2 � X1 � Y, 1/: . We begin with a simple but important observation.

Observation 3.1.9. Let E1, . . . , EC ∈ �: be distinct vertices and C be a tight cycle in
 (:−1) (�1, . . . , �:−1) with vertex-sequence (D1,1, . . . , D1,:−1, . . . , DC,1, . . . , DC,:−1).
Denote by 4B,8 the edge in � starting at DB,8 and suppose that

(i) 4B,8 ∈ Lk (EB; �1, . . . , �:−1) for every B ∈ [C] and every 8 ∈ [: − 1] and

(ii) 4B,1 ∈ Lk (EB−1; �1, . . . , �:−1) for every B ∈ [C] (here E0 := EC).

Then, (D1,1, . . . , D1,:−1, E1, . . . , DC,1, . . . , DC,:−1, EC) is the vertex-sequence of a tight
cycle in �.

The proof of Observation 3.1.93.1.9 follows readily from the definition of the link
graphs. See Figure 3.23.2 for an overview. We will now proceed in three steps. For
simplicity, we write �E := Lk� (E; �1, . . . , �:−1) for E ∈ �: .

Step 1 (Divide into blocks). By Lemma 3.1.83.1.8, there is some � = � (Y) ∈ N and
a partition P of all but � graphs from {�E : E ∈ �: } into blocks H of size 4
with 4(H) := |⋂�∈H � (�) | ≥ X1 |�1 | · · · |�:−1 | for every H ∈ P. Remove the �
leftover vertices from �: .

Think of every blockH now as a (:−1)-graph with edges � (H) :=
⋂
�∈H � (�).

By applying Lemma 2.3.12.3.1 (with : − 1 instead of :), for each H ∈ P, we find a
subgraph H ′ ⊆ H such that 4(H ′) ≥ X2 |�1 | · · · |�:−1 | with the same property as
in Lemma 2.3.12.3.1. By deleting all the edges ofH \H ′ we may assume thatH itself
has this property.

Step 2 (Cover blocks by paths). Define an auxiliary graph � with + (�) = P and
{H1,H2} ∈ � (�) if and only if 4(H1 ∩ H2) ≥ X3 |�1 | · · · |�:−1 |. Similarly as in
the proof of Lemma 3.1.83.1.8, we conclude that U(�) ≤ 2/X2, and hence + (�) can be
covered by 2/X2 vertex-disjoint paths using Theorem 3.1.73.1.7.

Step 3 (Lift to tight cycles). This step is the crucial part of the argument. To make
it easier to follow the proof, Figure 3.33.3 provides an example for : = C = 4.
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(b) Edge sequence of the auxiliary 3-uniform tight cycle.
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(c) Vertex sequence of the resulting tight cycle.

Figure 3.3: Finding a tight cycle in a path of blocks when : = C = 4. In Figure (c),
∗ represents an internal vertex of a some path %8 or &8.

We will show now how to find in each path of blocks an auxiliary tight cycle
in  (:−1) (�1, . . . , �:−1) of the desired form to apply Observation 3.1.93.1.9. Let P =

(H1, . . . ,HC) be one of the paths. Choose disjoint edges 40 =
{
G
(0)
1 , . . . , G

(0)
:−1

}
∈

� (H1) and 4C =
{
G
(C)
1 , . . . , G

(C)
:−1

}
∈ � (HC). For each B ∈ [C − 1], further choose

two edges 4B =
{
G
(B)
1 , . . . , G

(B)
:−1

}
∈ � (HB) ∩ � (HB+1) and 4′B =

{
H
(B)
1 , . . . , H

(B)
:−1

}
∈

� (HB) ∩ � (HB+1) so that all chosen edges are pairwise disjoint. We identify
G
(0)
8
= H
(0)
8

and G (B)
8
= H
(B)
8

for every 8 ∈ [: − 1], and 40 = 4
′
0 and 4C = 4′C . Assume

without loss of generality, that G (B)
8
∈ �8 for every 8 ∈ [: − 1] and all B = 0, . . . , C.

By construction, every block H has the property guaranteed in Lemma 2.3.12.3.1.
Therefore, for every B ∈ [C], there is a tight path %B ⊆ HB of length 2: − 3
which starts at (G (B−1)

2 , . . . , G
(B−1)
:−1 ), ends at (G

(B)
1 , . . . , G

(B)
:−2) and (internally) avoids
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all previously used vertices. Indeed, we can choose these paths one at a time,
applying Lemma 2.3.12.3.1 with ( 9 ⊆ + 9 being the set of previously used vertices in + 9 .
(Since every tight cycle in � uses the same number of vertices from each part, we
have |( 9 | ≤ |+: | ≤ W |+ 9 | for every 9 ∈ [: − 1].) Similarly, for every B ∈ [C], there is
a tight path &B ⊆ HB of length 2: − 3 which starts at and (H (B)1 , . . . , H

(B)
:−2), ends at

(H (B−1)
2 , . . . , H

(B−1)
:−1 ) and (internally) avoids all previously used vertices.

Let* ⊆ �: be the set of vertices E for which �E ∈ H8 for some 8 ∈ [C]. To finish
the proof, we want to apply Observation 3.1.93.1.9 to cover *. Label * = {E1, . . . , E4C}
so that �E28+1 , �E28+2 , �E4C−28 , �E4C−28−1 ∈ H8 for all 8 = 0, . . . , C − 1. Consider now the
tight cycle C in  :−1 (�1, . . . , �:−1) with edge sequence

4′0 = 40, %1, 41, %2, 42, . . . , %C , 4C = 4
′
C , &C , . . . , 41, &1, 4

′
0 = 40 (3.1.1)

and relabel + (C) so that it’s vertex sequence is

(D1,1, . . . , D1,:−1, . . . , DC,1, . . . , D4C,:−1)

(i.e. D1,8 = G
(0)
8

for 8 ∈ [: − 1], D2,1, . . . , D2,:−1 are the internal vertices of %1
22,

D3,8 = G
(1)
8

for all 8 ∈ [3] and so on). By construction, C has the desired properties
to apply Observation 3.1.93.1.9, finishing the proof. Note that it is important here that
every blockH8 has size 4 since we cover 2 vertices of every block “going forwards”
and 2 vertices “going backwards”.

3.1.4 Proof of Theorem 1.3.101.3.10.

Fix U, A, = ∈ N and a :-graph � with U(�) ≤ U. Choose constants 0 < V, W, Y �
max{U, A, :}−1 so that W = W(A, Y) works for Lemma 3.1.63.1.6 and V = V(U, A) works
for Lemma 3.1.33.1.3. The proof proceeds in U steps (the initial : − 1 steps are done at
the same time). No effort is made to calculate the exact number of cycles we use,
we only care that it is bounded (i.e. independent of =).

Step 1, . . . , k-1. By Lemma 3.1.33.1.3, there is some � ⊆ [=] of size V= with an
absorber �:−1 ⊆ [=]. Partition � into : − 1 sets �(:−1)

1 , . . . , �
(:−1)
:−1 of equal sizes.

2Note that all %8 and &8 have 3: − 5 vertices and hence : − 1 internal vertices.
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By Lemma 3.1.13.1.1, there is a bounded number of vertex-disjoint monochromatic
tight cycles in [=] \ (� ∪ �:−1) so that the set ':−1 of uncovered vertices in
[=] \ (� ∪ �:−1) satisfies |':−1 | ≤ W |�(:−1)

1 |. Let '′
:−1 ⊆ ':−1 be the set of

vertices E with | Lk(E; �(:−1)
1 , . . . , �

(:−1)
:−1 ) | < Y |�(:−1)

1 | · · · |�(:−1)
:−1 | and let '′′

:−1 =

':−1\'′:−1. By Lemma 3.1.63.1.6we can find a bounded number of vertex-disjoint cycles
in �(:−1)

1 ∪ . . . ∪ �(:−1)
:−1 ∪ '

′′
:−1 covering '

′′
:−1. Remove them and let �(:)

8
⊆ �(:−1)

8

be the set of leftover vertices for every 8 ∈ [: − 1].

Step j ( 9 = :, . . . , U). In each step 9 , we will define disjoint sets �( 9+1)1 , . . . ,
�
( 9+1)
9

, '′
9+1, � 9 . Fix some 9 ∈ {:, . . . , U} now and suppose we have built disjoint

sets �( 9)1 , . . . , �
( 9)
9−1, '

′
9
and absorbers �2, . . . , � 9−1. By Lemma 3.1.33.1.3 there is some

�
( 9)
9
⊆ '′

9
of size V |'′

9
| with an absorber � 9 ⊆ '′

9
. By Lemma 3.1.13.1.1, there is

a bounded number of monochromatic tight cycles in '′
9
\ (� 9 ∪ �( 9)9 ) so that the

set ' 9+1 of uncovered vertices in '′
9
\ (� 9 ∪ �( 9)9 ) satisfies |' 9+1 | ≤ W |�

( 9)
9
|. Let

'′
9+1 ⊆ ' 9+1 be the set of vertices E with

| Lk(E; �( 9)C1 , . . . , �
( 9)
C:−1
) | < Y

����( 9)C1 ��� · · · ����( 9)C:−1

���
for all 1 ≤ C1 < . . . < C:−1 ≤ 9 and let '′′

9+1 = ' 9+1 \ '
′
9+1. By (

( 9
:

)
applications of)

Lemma 3.1.63.1.6 we can find a bounded number of vertex-disjoint cycles in �( 9)1 ∪ . . .∪
�
( 9)
9
∪ '′′

9
covering '′′

9
. Remove them and let �( 9+1)

8
⊆ �( 9)

8
be the set of leftover

vertices for every 8 ∈ [ 9].

In the end we have disjoint sets �1 := �(U+1)1 , . . . , �U := �(U+1)U , �U+1 := '′
U+1 and

corresponding absorbers �:−1, . . . , �U (�:−1 absorbs �(U+1)1 , . . . , �
(U+1)
:−1 ). All other

vertices are covered by a bounded number of cycles.
We will show now that '′

U+1 = ∅, which finishes the proof. In order to do so,
we assume the contrary and find an independent set of size U + 1. Note that every
vertex in �( 9)

9
\ � 9 must be part of a tight cycle of our disjoint collection of tight

cycles with one part in ' 9+1 and hence
����( 9)9 \ � 9 ��� ≤ ��' 9+1�� ≤ W ����( 9)9 ���. It follows
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that
��� 9 �� ≥ (1 − W) ����(8)9 ��� for every 1 ≤ 9 ≤ 8 ≤ U and we conclude

Lk
(
E; �81 , . . . , �8:−1

)
≤ Lk

(
E; �(8−1)

81
, . . . , �

(8−1)
8:−1

)
≤ Y

����(8−1)
81

��� · · · ����(8−1)
8:−1

���
≤ Y(1 − W)−(:−1) ���81 �� · · · ���8:−1

��
≤ 2Y

���81 �� · · · ���8:−1

��
for every 8 ∈ {:, . . . , U + 1}, 1 ≤ 81 < . . . < 8:−1 < 8 and E ∈ �8. By the following
lemma, there is an independent set of size U + 1, a contradiction.

Lemma 3.1.10. Let : and # be positive integers and let � be a :-uniform hyper-
graph. Suppose that �1, . . . , �# ⊆ + (�) are non-empty disjoint sets such that for
every 1 ≤ 81 < · · · < 8: ≤ # we have

deg� (E, �82 , . . . , �8: ) <
(
#

:

)−1
|�82 | · · · |�8: |

for all E ∈ �81 . Then, there exists an independent set {E1, . . . , E# } with E8 ∈ �8, for
each 8 ∈ [#].

Instead of the original proof given in [1818], we will include the more elegant proof
of the same lemma given in [3131].

Proof. For each 8 ∈ [#], let E8 be chosen uniformly at random from �8. Let
� = {E1, . . . , E# }. Then, the probability that � is an independent set is∑

1≤81<···<8:≤#
P

[
{E81 , . . . , E8: } ∈ � (H)

]
=

∑
1≤81<···<8:≤#

1
|�81 |

∑
E∈�1

P
[
{E81 , . . . , E8: } ∈ � (H) | E81 = E

]
=

∑
1≤81<···<8:≤#

1
|�81 |

∑
E∈�1

degH (E, �82 , . . . , �8: )
|�82 | · · · |�8: |

<
∑

1≤81<···<8:≤#

(
#

:

)−1
= 1.
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Therefore, there exists an independent set {E1, . . . , E# } with E8 ∈ �8, for each
8 ∈ [#].

3.2 Tiling Coloured Graphs with Graphs of Bounded
Degree

3.2.1 Overview

In this section we are going to prove the following result.

Theorem 1.3.16 (Corsten–Mendonça). There is an absolute constant  > 0 such
that for all integers A,Δ ≥ 2 and all F ∈ FΔ, we have gA (F ) ≤ exp3 (

 A2Δ3) . In
particular, gA (F ) < ∞ whenever Δ(F ) < ∞.

The proof of Theorem 1.3.161.3.16 combines ideas from the absorption method as in
the original paper of Erdős, Gyárfás and Pyber [4242] with some modern approaches
involving the blow-up lemma and the weak regularity lemma. We will be follow-
ing closely the framework of the proof of the two-colour result of Grinshpun and
Sárközy [5858]. Our absorption lemma (Lemma 3.2.43.2.4) states that if we have : := Δ+2
disjoint sets of vertices+1, . . . , +: with |+8 | ≥ 2|+1 | for all 8 = 2, . . . , : such that every
vertex in +1 belongs to at least X |+2 | · · · |+: | monochromatic :-cliques transversal33

in (+1, . . . , +: ), then it is possible to cover the vertices in +1 with a constant number
(depending on X, A and Δ) of monochromatic vertex disjoint copies of graphs from
F . Furthermore, we can choose such a covering using no more than |+1 | vertices in
each +2, . . . , +: .
To deduce Theorem 1.3.161.3.16 from the absorption lemma, we proceed similar as in

Section 3.13.1: First, using theweak regularity lemma ofDuke, Lefmann andRödl [3535],
we can find : − 1 monochromatic super-regular cylinders /1, . . . , /:−1 covering a
positive proportion of the vertices of  = (see Lemma 2.2.142.2.14). We then apply a result
of Fox and Sudakov [5252] to cover greedily all but a small proportion of the vertices
in + ( =) \ (/1 ∪ · · · ∪ /:−1) with a bounded number of disjoint monochromatic
copies of graphs from F (Proposition 3.2.23.2.2).

3A :-clique is transversal in (+1, . . . , +: ) if it contains one vertex in each one of the sets+1, . . . , +: .

78



3 Monochromatic Graph Tiling Problems

Let us denote by ' the set of uncovered vertices in+ ( =) \ (/1 ∪ · · · ∪ /:−1). We
split ' into two sets: the set '1 of vertices in ' belonging to at least X |/1 | · · · |/:−1 |
monochromatic :-cliques transversal in (', /1, . . . , /:−1), and the set '2 = ' \ '1.
Using our absorption lemma we can cover the vertices in '1 using no more than
|'1 | vertices of each of the cylinders /1, . . . , /:−1. For each 8 = 1, . . . , : − 1, let /′

8

be the set of vertices in /8 that has not been used to cover '1. It follows from the
slicing lemma that each /′

8
remains super-regular. Now, if the set '2 was empty, then

we would be done. Indeed, a consequence of the blow-up lemma (Theorem 2.2.162.2.16)
guarantees that we can cover each of the cylinders /′1, . . . , /

′
:−1 with : + 1 copies of

vertex disjoint monochromatic graphs from F .
So let us consider the case where '2 is non-empty. In this case, we repeat the

process above. This time we first find a reasonably large regular cylinder /: in '2,
then cover most of the vertices in '2 \ /: greedily and apply the absorption lemma
to those vertices that have not yet been covered and belong to many monochromatic
:-cliques transversal in '2 and : − 1 of the cylinders /′1, . . . , /

′
:−1, /: . The set of

leftover vertices, which we denote by '3, is either empty (and in this case we are
done, as above) or is non-empty, in which case we repeat the process to cover '3.
We can show using Ramsey’s theorem that this process must stop after 'A (:) many
iterations.

In order to prove the absorption lemma, we employ a density increment argument.
This is the most difficult part of the proof and the key new idea in this proof. First,
we partition +1 into A sets + (1)1 , . . . , +

(A)
1 so that for every 2 ∈ [A], every E ∈ + (2)

8

is incident to at least 3/A · |+2 | · · · |+: | monochromatic cliques of colour 2 which
are transversal in (+1, . . . , +: ). We will cover each of these sets separately, making
sure not to repeat vertices. Let us show how to cover + (1)1 . We start by finding a
large :-cylinder / = (*1, . . . ,*: ) with *1 ⊆ + (1)1 ,*2 ⊆ +2, . . . *: ⊆ +: which is
super-regular in colour 1. We shall use / as an absorber at the end of the proof
to cover a small proportion of vertices in + (1)1 , +2, . . . , +: . Next, we greedily cover
most of + (1)1 \*1 by monochromatic copies of F until the set of uncovered vertices
' has size much smaller then |*1 |. To cover the set ', we will find a partition
' = (1 ∪ )2 ∪ . . . ∪ ): , where each vertex in (1 belongs to many monochromatic
:-cliques of colour 1 which are transversal in ((1,*2, . . . ,*: ) (allowing (1 to be
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absorbed into the cylinder / at the end of the proof) and each vertex in )8, for
8 ∈ {2, . . . , :}, belongs to at least (X + [) |+2 | · · · |+8−1 | |*8 | · · · |*: | monochromatic
:-cliques transversal in ()8, +2, . . . , +8,*8+1, . . . ,*: ), for some [ � X.
To cover the vertices in )8, for 8 ∈ {2, . . . , :}, we repeat the argument with
(+1, . . . , +: ) replaced by ()8, +2, . . . , +8,*8+1, . . . ,*: ) and X replaced by X + [. Be-
cause we are always increasing X by at least [ and the density cannot be larger than
1, we only need to repeat this argument 1/[ times.44 While covering each of the sets
)2, . . . , ): , we shall guarantee that the set of vertices -8 ⊆ *8 that we use to cover
them has size much smaller than |*8 | for all 8 = 2, . . . , : . This way, the cylinder
/′ = (*1 ∪ (1,*2 \ -2, . . . ,*: \ -: ) will be super-regular in colour 1 and thus
we can cover *1 ∪ (1 using the blow-up lemma. Repeating this for every colour
2 ∈ [A], we get a covering of+1 with$X,A,Δ(1) many monochromatic disjoint copies
of graphs from F .

3.2.2 Tools for the Absorption Method

In the proof, we will use the following theorem of Fox and Sudakov [5252] about
A-colour Ramsey numbers of bounded-degree graphs.

Theorem 3.2.1 ([5252, Theorem 4.3]). Let :,Δ, A, = ∈ N with A ≥ 2 and let
�1, . . . , �A be :-partite graphs with = vertices and maximum degree at most Δ.
Then '(�1, . . . , �A) ≤ A2A:Δ=.

LetF:,Δ ⊆ FΔ denote the family of :-partite sequences of graphs with maximum
degree at most Δ. The following consequence of the previous theorem shows that
we can cover almost all the vertices of  = with constantly many (i.e. independent of
=) monochromatic copies of graphs from a family F ∈ F:,Δ.

Proposition 3.2.2. Let Δ, :, A ∈ N, let W > 0 and let � = A2A:Δ log(1/W). Then, for
every F ∈ F:,Δ and every A-edge-coloured  =, there are vertex-disjoint monochro-
matic copies �1, . . . , �� of graphs in F so that |+ ( =) \

⋃
8 + (�8) | ≤ W=.

Proof. Let F = {�1, �2, . . .}, 2 = A−2A:X and +0 = [=]. For every 8 = 1, . . . , �, by
Theorem 3.2.13.2.1, there is a monochromatic copy of �2 |+8−1 | in +8−1. Call it �8 and let
4Technically [ depends on 3, but we will see that this is not a problem.
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+8 = +8−1 \+ (�8). We then have

|+� | = (1 − 2)�= ≤ 4−2·�= = W=,

as claimed.

In particular, by choosing W = 1/(2=), we get the following corollary.

Corollary 3.2.3. Let Δ, :, A ∈ N and let� = 2A2A:Δ log =. Then, for every F ∈ F:,Δ

and every A-edge-coloured =, there is a collection of atmost� vertex-disjoint copies
from F whose vertex-sets partition + (�).

3.2.3 The Absorption Lemma

Given a graph �, a partition + (�) = +1 ∪ . . . ∪+: into : parts and some E ∈ +1, let

deg� (E,+2, . . . , +: ) = |{(E2, . . . , E: ) ∈ +2 × · · · ×+: : {E, E2, · · · , E: } is a clique}|

denote the clique-degree of E and let

cd� (E,+2, . . . , +: ) :=
deg� (E,+2, . . . , +: )
|+2 | · · · |+: |

.

denote the clique-density of E. If, additionally, we are given a colouring j : � (�) →
[A] of � (�), then we denote deg�,8 (E,+2, . . . , +: ) = deg�8 (E,+2, . . . , +: ), where
�8 is the graph with vertex set + (�) consisting of the edges of � with colour
8. We define cd�,8 (E,+2, . . . , +: ) similarly and denote cd�,[A] (E,+2, . . . , +: ) :=∑A
8=1 cd�,8 (E,+2, . . . , +: ). If the graph � is clear from context, we may drop the �

in the subscript.
Let � =  (+1) ∪  (+1, . . . , +: ) and let H be a collection of subgraphs of �.

We denote by ∪H the graph with edge set
⋃
�∈H � (�) and vertex set + (H) :=⋃

�∈H + (�). We say thatH canonically covers +1 if +1 ⊆ + (H) and

|+ (H) ∩+8 | ≤ |+ (H) ∩+1 |

for all 8 ∈ [2, :]. The following lemma is the key ingredient of the main proof.
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Lemma 3.2.4 (Absorption Lemma). There is some absolute constant  > 0, such
that the following is true for all 3 > 0, all integers Δ, A ≥ 2, � = exp2 (

(A/3) Δ
)

and for every F ∈ FΔ. Let : = Δ + 2, let +1, . . . , +: be disjoint sets with |+8 | ≥ 2|+1 |
for all 8 ∈ [2, :] and let � =  (+1) ∪  (+1, . . . , +: ). Let j : � (�) → [A] be a
colouring in which for every E ∈ +1 we have cd[A] (E,+2, . . . , +: ) ≥ 3. Then, there
is a collection of at most � vertex-disjoint monochromatic copies of graphs from F
in � which canonically covers +1.

The edges inside +1 will only be used to find copies from F which lie entirely
in +1 in order to greedily cover most vertices of +1. The difficult part is finding
monochromatic copies in  (+1, . . . , +: ) covering the remaining vertices. To do so,
we will reduce the problem to only one colour within  (+1, . . . , +: ) and then deduce
Lemma 3.2.43.2.4 from the following lemma.

Lemma 3.2.5. There is some absolute constant  > 0, such that the following is
true for all 3 > 0, all integers Δ, A ≥ 2, � = exp2 (

(A/3) Δ
)
and for every F ∈ FΔ.

Let : = Δ + 2 and let +1, . . . , +: be disjoint sets with |+8 | ≥ 2|+1 | for all 8 ∈ [:].
Let � ⊆  (+1, . . . , +: ) be a graph with cd� (E,+2, . . . , +: ) ≥ 3 for every E ∈ +1

and let � =  (+1) ∪ �. Let j : � (�) → [A] be an A-colouring in which every
edge of � receives colour 1. Then, there is a collection of at most � vertex-disjoint
monochromatic copies of graphs from F in � which canonically covers +1 and at
most 3/(2A) · |+8 | vertices of +8 for each 8 ∈ [2, :].

Lemma 3.2.43.2.4 follows routinely from Lemma 3.2.53.2.5.

Proof of Lemma 3.2.43.2.4. Let  ′ be the absolute constant from Lemma 3.2.53.2.5 and let
�′ := exp2 (

(2A2/3) ′Δ
)
. Let 3′ = 3/(2A) and partition+1 = +

(1)
1 ∪ . . .∪+

(A)
1 so that

cd 9 (E,+2, . . . , +: ) ≥ 23′ for every 9 ∈ [A] and E ∈ + ( 9)1 . We apply Lemma 3.2.53.2.5
(with 3′) to �1 := � [+ (1)1 ∪ +2 ∪ . . . ∪ +: ] to get a collection H1 of at most
�′ monochromatic copies from F in �1 canonically covering + (8)1 and at most
3′/(2A) · |+8 | = 3/(4A2) · |+8 | vertices of+8 for each 8 ∈ [2, :]. Let+ ′8 := +8\+ (H1) for
every 8 ∈ [:], and observe that |+8 | ≥ 2|+ ′1 | for all 8 ∈ [:] and cd 9 (E,+ ′2, . . . , +

′
:
) ≥ 3′

for every 9 ∈ [A] and E ∈ + ( 9)1 . We proceed like this to canonically cover each
+
( 9)
1 with vertex-disjoint monochromatic copies from F . In total, we use at most
A�′ ≤ exp2 (

(A/3)4 ′Δ
)
copies, finishing the proof.
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The proof of Lemma 3.2.53.2.5 is quite long and technical, see Section 3.2.13.2.1 for a
sketch.

Proof of Lemma 3.2.53.2.5. Let Δ and A be given positive integers and F ∈ FΔ. For
each 3 > 0, let � (3) be the smallest integer � ≥ 0 such that the following holds:

(★) Let +1, . . . , +: be disjoint sets with |+8 | ≥ 2|+1 | for all 8 ∈ [:],
let � ⊆  (+1, . . . , +: ) be a graph with cd(E,+2, . . . , +: ) ≥ 3 for every
E ∈ +1 and � =  (+1) ∪ �. Let j : � (�) → [A] be a colouring such
that every edge in � (�) receives colour 1. Then, there is a collection
H of at most � vertex-disjoint monochromatic copies of graphs from
F contained in � that canonically covers +1 and at most 3/(2A) · |+8 |
vertices of +8 for each 8 ∈ [2, :].

Notice that this minimum is attained since it is taken over non-negative integers.
Furthermore, � (3) is a decreasing function in 3, and � (3) = 0 for every 3 > 1 ((★)
trivially holds for all � ≥ 0 in this case). Our goal is to show that � (3) is finite for
every 3 > 0. We will do this by establishing a recursive upper bound (see (3.2.13.2.1)).
Let us first define all relevant constants used in the proof. Let  ′ be the universal

constant given by Theorem 2.2.162.2.16 and fix some 0 < 3 ≤ 1. Define

Y =

(
3

100

)2 ′Δ
, W = 1

A
· Y:2Y−12

and [ =
3W:

2
.

It might be of benefit for the reader to have in mind that those constants obey the
following hierarchy:

1 ≥ 3 � Y � W � [ > 0.

Furthermore, define

%(3) := A4A:2
log(2/[2) + 1.

Note that, since A and : are fixed, [ depends only on 3 and thus % is indeed a function
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of 3. We will prove that for every 3′ ≥ 3 we have

� (3′) ≤ %(3) + :� (3′ + [) . (3.2.1)

Since � (3′) = 0 if 3′ > 1, it follows by iterating that � (3) ≤ (2:)2/[%(3).
Furthermore, we have

2/[ ≤ W−2: ≤ Y−2A:3Y−12 ≤ exp
(
AY−20

)
≤ exp

(
(A/3)400 ′Δ

)
.

It follows that

� (3) ≤ exp2
(
(A/3)500 ′Δ

)
%(3) ≤ exp2

(
(A/3)1000 ′Δ

)
concluding the proof of Lemma 3.2.53.2.5.
It remains to prove (3.2.13.2.1). Let 3′ ≥ 3 be fixed now and let +1, . . . , +: , � and

j : � (�) → [A] be as in (★) (with 3′ playing the role of 3). By assumption,
there are at least 3 |+1 | |+2 | · · · |+: | cliques of size : in � [+1, +2, . . . , +: ] each of
which is monochromatic in colour 1. Since W = Y:

2Y−12 and 3 ≥ 2:Y, we can
apply Lemma 2.2.152.2.15 to get some W′ ≥ W and a :-cylinder / = (*1, . . . ,*: ) which
is (Y, (3/2)+)-super-regular with *8 ⊆ +8 and |*8 | = bW′|+8 |c for every 8 ∈ [:].
Without loss of generality we may assume that W |+8 | is an integer for every 8 ∈ [:]
and that we have W′ = W. By Proposition 3.2.23.2.2, there is a collection H' of at most
A4A:2 log(2/[2) vertex-disjoint monochromatic copies of graphs from F contained
in  (+1 \*1) covering all vertices in +1 \*1 except for a set ' with |' | ≤ [2 |+1 |.
We remark here that

|' | ≤ [/(4:) · |*1 | ≤ Y2 |*1 |. (3.2.2)

It remains now to cover the vertices in '. For each 8 ∈ [:], let

38 =
1 − W8
1 − W:

· 3′ (3.2.3)

and notice that (1 − W)3′ ≤ 31 ≤ · · · ≤ 3: = 3′. For 8 ∈ [2, :], let +̃8 = +8 \*8 and
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define

(8 = {E ∈ ' : cd(E,+2, . . . , +8−1, +8,*8+1, . . . ,*: ) ≥ 38},
)8 = {E ∈ ' : cd(E,+2, . . . , +8−1, +̃8,*8+1, . . . ,*: ) > 3′ + 2[}.

We will prove (3.2.13.2.1) using a series of claims, which we shall prove at the end.

Claim 3.1. We have ' = (1 ∪ )2 ∪ . . . ∪ ): .

Without loss of generality, wemay assume that (1, )2, . . . , ): are pairwise disjoint
(more formally, we can define ) ′

8
:= )8 \ ((1 ∪ )2 ∪ . . . ∪ )8−1) for all 8 ∈ [2, :]

and continue the proof with these sets.) Our goal now is to cover each of the sets
(1, )2, . . . , ): one by one using the following claims.

Claim 3.2. For every 8 ∈ [2, :] and every set � ⊆ + (�) \)8 with |�∩+B | ≤ |' | for
all B ∈ [2, :], there is a collection H8 of at most � (3′ + [) monochromatic disjoint
copies of graphs from F in �, such that

(i) + (H8) ∩+1 = )8,

(ii) + (H8) ∩ � = ∅, and

(iii)
��+ (H8) ∩+ 9 �� ≤ |)8 | for all 9 ∈ [2, :].

Claim 3.3. For every set � ⊆ + (�) \ ((1∪*1) with |�∩+B | ≤ |' | for all B ∈ [2, :],
there is a monochromatic copy �1 of a graph from F in �, such that

(i) + (�1) ∩+1 = (1 ∪*1,

(ii) + (�1) ∩ � = ∅ and

(iii)
��+ (�1) ∩+ 9

�� ≤ |(1 ∪*1 | for all 9 ∈ [2, :].

With these claims at hand, we can now prove (3.2.13.2.1). First, we apply Claim 3.23.2
repeatedly to get collections H2, . . . ,H: of monochromatic copies from F as fol-
lows. Let 8 ∈ {2, . . . , :} and suppose we have constructed H2, . . . ,H8−1. Let
�8 := + (H2) ∪ . . . ∪ + (H8−1) and note that |�8 ∩ +B | ≤ |)2 | + · · · + |)8−1 | ≤ |' | for
all B ∈ [2, :]. Apply now Claim 3.23.2 for 8 and � = �8 to get the desired collection
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H8. Next, we apply Claim 3.33.3 with � = + (H2) ∪ . . . ∪ + (H: ) to get a copy �1 of
a graph from F with the desired properties. Note that, similarly as above, we have
|� ∩ +B | ≤ |' | for all B ∈ [2, :]. By construction + (�1), + (H2), . . . , + (H: ) and
+ (H') are disjoint and cover +1. Moreover, for every B ∈ [2, :], we have

| (+ (�1) ∪ . . . ∪+ (H: ) ∪+ (H')) ∩+B | ≤ |(1 ∪*1 | + |'1 | + |)2 | + · · · + |): |
≤ |*1 ∪ ' | ≤ 3/(2A) · |+1 |.

Hence, {�1}∪ . . .∪H: ∪H' canonically covers+1 and at most 3/(2A) · |+8 | vertices
of every 8 ∈ [2, :]. Finally, we have |{�1} ∪ . . . ∪H: ∪H' | ≤ %(3) + :�

(
3′ + [

)
,

proving (3.2.13.2.1). It remains now to prove Claims 3.13.1 to 3.33.3.

Proof of Claim 3.13.1. Since (: = ', it suffices to show (8 ⊆ (8−1 ∪ )8 for each
8 ∈ [2, :]. Let 8 ∈ [2, :] and let E ∈ (8 \ (8−1. We have

deg(E,+2, . . . , +8−1, +̃8,*8+1, . . . ,*: ) = deg(E,+2, . . . , +8−1, +8,*8+1, . . . ,*: )
− deg(E,+2, . . . , +8−1,*8,*8+1, . . . ,*: ).

Therefore,

cd(E,+2, . . . , +8−1, +̃8,*8+1, . . . ,*: ) = cd(E,+2, . . . , +8−1, +8,*8+1, . . . ,*: )
|+8 |
|+̃8 |

− cd(E,+2, . . . , +8−1,*8,*8+1, . . . ,*: )
|*8 |
|+̃8 |

> 38
|+8 |
|+̃8 |
− 38−1

|*8 |
|+̃8 |

=
38 − W38−1

1 − W

=
(1 − W8)3′ − W(1 − W8−1)3′

(1 − W) (1 − W: )

=
3′

1 − W:
≥ 3′ + 2[,

where we use (3.2.33.2.3) and the definition of [ to obtain the last identities. Thus E ∈ )8
and hence (8 ⊆ (8−1 ∪ )8. �
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Proof of Claim 3.23.2. Let+ ′B := +B\� for all B ∈ [2, 8−1], +̃ ′
8

:= +̃8\� and*′B := *B\�
for all B ∈ [8 + 1, :]. Then, by (3.2.23.2.2), we have

|+ ′B | ≥ |+B | − |' | ≥
(
1 − [

4:
)
|+B | ≥

|+B |
2
, for B = 2, . . . , 8 − 1,

|+̃ ′8 | ≥ |+̃8 | − |' | ≥
(
1 − [

4:
)
|+̃8 | ≥

|+̃8 |
2
, and

|*′B | ≥ |*B | − |' | ≥
(
1 − [

4:
)
|*B | ≥

|* 9 |
2
, for B = 8 + 1, . . . , : .

In particular, it follows that

|+B \+ ′B | ≤ |' | ≤
[

4:
|+B | ≤

[

2:
|+ ′B |, for B = 2, . . . , 8 − 1,

|+8 \+ ′8 | ≤ |' | ≤
[

4:
|+8 | ≤

[

2:
|+ ′8 |, and

|*B \*′B | ≤ |' | ≤
[

4:
|*B | ≤

[

2:
|*′B |, for B = 8 + 1, . . . , : .

Therefore, for every E ∈ )8, we have

cd(E,+ ′2, . . . , +
′
8−1, +̃

′
8 ,*

′
8+1, . . . ,*

′
: )

≥ 3′ + 2[ −
8−1∑
B=2

|+B \+ ′B |
|+ ′B |

−
|+̃8 \ +̃ ′8 |
|+̃ ′
8
|
−

:∑
B=8+1

|*B \*′B |
|*′B |

≥ 3′ + 2[ − (: − 1) [
2:
≥ 3′ + [.

Hence, by definition of � (3′ + [) (see (★)), there exists a collection H8 of at most
� (3′ + [) monochromatic copies of graphs from F which canonically covers )8 in
the graph  ()8)∪ ()8, + ′2, . . . , +

′
8−1, +̃

′
8
,*′

8+1, . . . ,*
′
:
). By construction,H8 satisfies

the requirements of the claim ((888) holds sinceH8 is a canonical covering). �

Proof of Claim 3.33.3. Let .1 = (1 and, for each 8 ∈ [2, :], let -8 = *8 ∩ �. Observe
that |.1 | ≤ |' | ≤ Y2 |*1 | and |-8 | ≤ |' | ≤ Y2 |*8 | for all 8 ∈ [2, :]. Let*′1 = *1 ∪.1

and, for each 8 ∈ [2, :], let *′
8

:= *8 \ -8. We now consider the cylinder /′ :=
(*′1, . . . ,*

′
:
). By definition of (1, we have cd(E,*2, . . . ,*: ) ≥ 31 ≥ 3/2 and in

particular deg(E,*8) ≥ 3/2 · |*8 | for all E ∈ .1 and 8 ∈ [2, :].
Hence, by Lemma 2.2.22.2.2, /′ is (8Y, (3/4)+)-super-regular. Furthermore, we have
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|*′1 | ≤ |*
′
8
| for all 8 ∈ [:]. Thus, by Theorem 2.2.162.2.16, there is a monochromatic

copy �1 of a graph from F in / that covers*′1 = *1 ∪ (1 and at most |*′1 | vertices
from each of *′2, . . . ,*

′
:
. By construction, this copy satisfies the requirements of

the claim. �

This finishes the proof of Lemma 3.2.53.2.5.

3.2.4 Proof of Theorem 1.3.161.3.16

In this section, we will use Lemma 3.2.43.2.4 to finish the proof of Theorem 1.3.161.3.16. We
will follow the same proof technique as in Section 3.1.43.1.4. In particular, we will make
use of Lemma 3.1.103.1.10 which we will restate here for convenience.

Lemma 3.1.10. Let : and # be positive integers and let � be a :-uniform hyper-
graph. Suppose that �1, . . . , �# ⊆ + (�) are non-empty disjoint sets such that for
every 1 ≤ 81 < · · · < 8: ≤ # we have

deg� (E, �82 , . . . , �8: ) <
(
#

:

)−1
|�82 | · · · |�8: |

for all E ∈ �81 . Then, there exists an independent set {E1, . . . , E# } with E8 ∈ �8, for
each 8 ∈ [#].

We are now able to prove Theorem 1.3.161.3.16. The main idea is to find reasonably
large cylinders that are super-regular for one of the colours, greedily covermost of the
remaining vertices using Proposition 3.2.23.2.2 and then apply the Absorption Lemma
(Lemma 3.2.43.2.4) to the set of remaining vertices that share many monochromatic
cliques with the cylinders. We then iterate this process until no vertices remain.
Using Lemma 3.1.103.1.10, we will show that a bounded number of iterations suffices.

Proof of Theorem 1.3.161.3.16. Fix A,Δ ≥ 2, F ∈ FΔ. Let � be an A-edge-coloured
complete graph on = vertices. Let

: = Δ + 2, # = AA: , X = #−: and 3 =
1
2A
.
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In order to use Theorem 2.2.162.2.16 and Lemma 2.2.142.2.14, respectively, consider the con-
stants

Y = (X3Δ)2 
′

and W = YA
8A :Y−5

,

where  ′ is the universal constant given by Theorem 2.2.162.2.16. Consider also the
constants

U = Y2 and �1 = A
2A:Δ log

(
4
UW

)
in order to use Proposition 3.2.23.2.2. Finally, let

�2 = exp2((2A/X) ̃Δ) ≤ exp2
(
A16 ̃AΔ3

)
≤ exp3

(
16 ̃A2Δ3

)
,

where  ̃ is the universal constant from Lemma 3.2.43.2.4, and let  = 20 ̃ .
We will build a framework consisting of many :-cylinders working as absorbers

and small sets which can be absorbed by them. More precisely, our goal is to define
sets with the following properties.

Framework. There are sets /1, . . . , /# , (:−1, . . . , (# , ': , . . . , '#+1, '′: , . . . , '
′
#+1

with the following properties.

(F.1) + (�) = ⋃#
8=1 /8 ∪

⋃#
8=:−1 (8 ∪

⋃#+1
8=: '

′
8
is a partition.

(F.2) /1, . . . , /# are the vertex-sets of :-cylinders which are (Y, 3+)-super-regular
in one of the colours (or empty).

(F.3) (:−1, . . . , (# are sets of vertices which we will cover greedily by monochro-
matic copies of graphs from F .

(F.4) For each 8 ∈ [:, # + 1], '′
8
can be partitioned into sets '′

8,�
for all � ∈

([8−1]
:−1

)
,

such that, for each � = {81, . . . , 8:−1} ⊆ [8], we have cd[A] (D, /81 , . . . , /8:−1) ≥
X for all D ∈ '′

8+1,� .

(F.5) For each : ≤ 8 < 9 ≤ # + 1, we have ( 9 , / 9 , '′9 ⊆ '8 and |'8 | ≤ U |/8−1 |.

Figure 3.43.4 should help the reader to understand the structure of those sets as we
define them. First, if = < 1/4W, then Corollary 3.2.33.2.3 gives a covering with at most
�2 monochromatic vertex-disjoint copies of graphs from F . Therefore we may
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+ (�)

/1

...

/:−1

(:−1

':

'′
:

/:

(:

':+1

'′
:+1

/:+1

(:+1

· · ·

'#

'′
#

/#

(#

'#+1

'′
#+1

+#+1

Figure 3.4: A partition of + (�). Each set in the picture is much smaller than the
closest cylinder /8 to the left.

assume that = ≥ 1/4W. Hence, by applying Lemma 2.2.142.2.14 multiple times, we find
:−1 vertex-disjoint :-cylinders /1, . . . , /:−1 such that each of them is (Y, 3+)-super-
regular in some colour (not necessarily the same) and |/1 | ≥ · · · ≥ |/:−1 | ≥ W=/2.
Let+:−1 = + (�) \ (/1∪ · · · ∪ /:−1). By Proposition 3.2.23.2.2, there is a collection of at
most �1 monochromatic vertex-disjoint copies from F in +:−1 covering a set (:−1

such that the leftover vertices ': = +:−1 \ (:−1 satisfies |': | ≤ UW=/2 ≤ U |/:−1 |.
Let '′

:
⊆ ': be the set of vertices D ∈ ': with cd[A] (D, /1, . . . , /:−1) ≥ X. Let

'′
:,[:−1] = '

′
:
and +: = ': \ '′: .

Inductively, for each 8 = :, . . . , # , we do the following. If |+8 | < 1/4W, we
use Corollary 3.2.33.2.3 to cover +8 using at most �2 monochromatic vertex-disjoint
copies from F and let /8 = (8 = '8+1 = '′

8+1 = +8+1 = ∅. Otherwise, we apply
Lemma 2.2.142.2.14 to find a monochromatic (Y, 3+)-super-regular :-cylinder /8 con-
tained in +8 with |/8 | ≥ W |+8 |. By Proposition 3.2.23.2.2, there is a collection of at most
�1 monochromatic, vertex-disjoint copies from F in +8 \ /8 covering a set (8 ⊆ +8,
so that the set of leftover vertices '8+1 = +8 \ (8 has size at most UW |+8 | ≤ U |/8 |.
Let '′

8+1 be the set of vertices D in '8+1 for which there is a set � = {81, . . . , 8:−1} ⊆
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[8] such that cd[A] (D, /81 , . . . , /8:−1) ≥ X. Let

'′8+1 =
⋃

�∈( [8 ]:−1)
'′8+1,�

be a partition of '′
8+1 so that, for each � = {81, . . . , 8:−1} ⊆ [8], we have

cd[A] (D, /81 , . . . , /8:−1) ≥ X for all D ∈ '′
8+1,� . Finally, let +8+1 = '8+1 \ '′8+1.

The following claim implies (F.1)(F.1).

Claim 3.4. The set +#+1 is empty.

Proof. Define a :-uniform hypergraphH with vertex set* = /1 ∪ . . .∪ /# ∪+#+1
and hyperedges corresponding to monochromatic :-cliques in� [*]. If+#+1 is non-
empty, then so are /1, . . . , /# . Since for each 8 = :, . . . , # we have /8 ⊆ '8 \ '′8 ,
it follows that H satisfies the hypothesis of Lemma 3.1.103.1.10. Therefore, there is
an independent set {E1, . . . , E#+1} in H of size # + 1. On the other hand, since
# ≥ 'A ( : ), it follows that the set {E1, . . . , E#+1} has a monochromatic :-clique in
� [*], which is a contradiction. �

The vertices in (:−1 ∪ · · · ∪ (# are already covered by monochromatic copies of
graphs from F . Our goal now is to cover the sets '′

:
, . . . , '′

#+1 using Lemma 3.2.43.2.4
without using too many vertices from the cylinders /1, . . . , /# . This way, we can
cover the remaining vertices in /1 ∪ · · · ∪ /# using Theorem 2.2.162.2.16.

Claim 3.5. Let 8 ∈ {:, . . . , #+1} and � = {82, . . . , 8: } ⊆ [8−1]. Let � ⊆ + (�) \'8,�
be a set with

��� ∩ / 9 �� ≤ U ��/ 9 �� for each 9 ∈ �. Then there is a collection of at most
�2 monochromatic vertex-disjoint copies of graphs from F in

�′ =  ('′8,�) ∪  ('′8,� , /82 , . . . , /8: )

which are disjoint from � and canonically cover '′
8,�
.

Proof. Let +̃1 = '
′
8,�

and for 9 ∈ [:] \ {1}, let +̃ 9 = /8 9 \ �. Note that |+̃ 9 | ≥ 2|+̃1 |
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for every 9 ∈ [:] \ {1} and

deg[A] (E, +̃2, . . . , +̃: ) ≥ deg[A] (E, /82 , . . . , /8: ) − :U |/82 | · · · |/8: |
≥(X − :U) |/82 | · · · |/8: |
≥X/2 · |/82 | · · · |/8: |

for every E ∈ +̃1. Hence, by Lemma 3.2.43.2.4, there is a collection of at most �2

vertex-disjoint copies from F in +̃1∪ . . .∪+̃: which canonically covers +̃1, finishing
the proof. �

We will use Claim 3.53.5 now to cover
⋃#+1
8=: '

′
8
. Let ≺ be a linear order on

I :=
{
(8, �) : 8 ∈ [:, # + 1], � ∈

([8−1]
:−1

)}
. Let (8, �) ∈ I and suppose that, for

all (8′, �′) ∈ I with (8′, �′) ≺ (8, �), we have already constructed a family H8′.� ′
of monochromatic copies of graphs from F which canonically covers '′

8′,� ′ in
 ('′

8′,� ′) ∪  ('′8′,� ′, /8′2 , . . . , /8′: ), where �
′ = {8′2, . . . , 8

′
:
}.

Let � =
⋃
(8′,� ′)≺(8,�) + (H8′,� ′) be the set of already covered vertices. We claim

that ��� ∩ / 9 �� ≤ |' 9+1 | ≤ U |/ 9 | (3.2.4)

for each 9 ∈ [#]. Indeed, given some 9 ∈ [#], we have + (H8′,� ′) ∩ / 9 = ∅ for all
(8′, �′) ∈ I with 8′ ≤ 9 , and

��+ (H8′,� ′) ∩ / 9 �� ≤ |'′8′,� ′ | for all (8′, �′) ∈ I with 8 > 9

sinceH8,� is canonical. This implies (3.2.43.2.4), since the sets {'′
8′,� ′ : (8′, �′) ∈ I, 8 > 9}

are disjoint subsets of ' 9+1. In particular, by Claim 3.53.5, there is a collection
H8,� of monochromatic copies of graphs from F which canonically covers '′

8,�
in

 ('′
8,�
) ∪  ('′

8,�
, /82 , . . . , /8: ), where � = {82, . . . , 8: }.

It remains to cover
⋃#
8=1 /8. Let � :=

⋃
(8,�)∈I + (H8,�) be the set of vertices

covered in the previous step. Note that, similarly as in (3.2.43.2.4), we have |� ∩ / 9 | ≤
|' 9 | ≤ U |/ 9 | for all 9 ∈ [#]. Therefore, by Lemma 2.2.22.2.2, the cylinder /̃ 9 obtained
from / 9 by removing all vertices in � is (8Y, (3/2)+)-super-regular and Y-balanced
for every 9 ∈ [#]. It follows from Theorem 2.2.162.2.16 that, for every 9 ∈ [#], there
is a collectionH 9 of at most Δ + 3 monochromatic vertex-disjoint copies of graphs
from F contained in / 9 covering + (/ 9 ).
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In total, the number of monochromatic copies we used to cover + (�) is at most

# · �1 + # : · �2 + # · (Δ + 3) ≤ 2# :�2

≤ 2AA:
2 · exp3

(
16 ̃A2Δ3

)
≤ exp3

(
 A2Δ3

)
.

This concludes the proof of Theorem 1.3.161.3.16.

3.2.5 Concluding Remarks

Recall that a graph � is called 0-arrangeable for some 0 ∈ N if its vertices can be
ordered in such a way that the neighbours to the right of any vertex E ∈ + (�) have
at most 0 neighbours to the left of E in total. Using an extension of the blow-up
lemma by Böttcher, Kohayakawa and Taraz [1414], we obtain the following theorem.

Theorem 3.2.6. For all integers A, 0 ≥ 2 and all sequences of 0-arrangeable graphs
F = {�1, �2, . . .} with Δ(�=) ≤

√
=/log(=) for all = ∈ N, we have gA (F ) < ∞.

The proof is almost identical, with the following two differences. First, instead
of Theorem 2.2.182.2.18, we will use Theorem 2.2.192.2.19. In order to do so, we show
that it suffices to prove Theorem 3.2.63.2.6 for graphs with balanced (0 + 2)-partitions.
Indeed, given a sequence F = {�1, �2, . . .} of 0-arrangeable graphs with Δ(�=) ≤√
=/log(=) for every = ∈ N, we define another sequence of graphs F̃ = {�̃1, �̃2, . . . }

as follows. Since every 0-arrangeable graph is (0 + 2)-colourable, we can fix a
partition of + (�=) = +1(�=) ∪ . . . ∪+: (�=) into independent sets, where : = 0 + 2.
Then, for every 9 ∈ N, we define �̃9 : to be the disjoint union of : copies of �9 .
Note that each �̃9 : has a :-partition into parts of equal sizes (by rotating each copy
around). Finally, for each 9 ∈ N ∪ {0} and every 8 ∈ [: − 1], we define �̃9 :+8 to
be the disjoint union of �̃9 : and 8 isolated vertices (here �̃0 is the empty graph).
Observe that all �̃= have :-partitions into parts of almost equal sizes. Furthermore,
every F̃ -tiling T corresponds to an F -tiling T̃ of size at most (2: − 1) |T |.

Second, we need to replace Theorem 3.2.13.2.1 with a similar theorem for 0-
arrangeable graphs � with Δ(�) ≤

√
=/log(=), where = = E(�). For two colours,
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such a theorem was proved by Chen and Schelp [1919]. For more than two colours,
this was (to the best of the author’s knowledge) never explicitly stated, but is easy to
obtain using modern tools (for example, by applying the above mentioned blow-up
lemma for 0-arrangeable graphs).
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4
Ramsey Problems for Infinite Graphs

4.1 Ramsey Upper Density of Paths

4.1.1 Overview

In this section, we are going to prove the following two results.

Theorem 1.4.4 (Corsten–DeBiasio–Lamaison–Lang [3030]). There exists a 2-edge-
colouring of  N such that every monochromatic path has upper density at most
(12 +

√
8)/17.

Theorem 1.4.5 (Corsten–DeBiasio–Lamaison–Lang [3030]). Suppose the edges of N
are coloured with two colours. Then, there exists a monochromatic path with upper
density at least (12 +

√
8)/17.

Erdős and Galvin [3939] constructed a 2-edge-colouring of  N in which every
monochromatic path has upper density at most 8/9. It turns out that this can be
improved by using the very same colouring but reordering the vertices. The proof
of Theorem 1.4.41.4.4 is based on this observation.

In their proof of Theorem 1.4.31.4.3, Erdős and Galvin introduced an auxiliary vertex-
colouring on top of the given edge-colouring and reduced the problem to finding a
monochromatic path forest (i.e. a graph � with Δ(�) ≤ 2 which does not contain
any finite cycles and all edges, leaves and isolated vertices receive the same colour).
In order to prove Theorem 1.4.51.4.5, we use the regularity method to further reduce the
problem to finding what we call a monochromatic simple forest (a union of edges
and isolated vertices in which every edge, every isolated vertex and at least one of
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the endpoints of each edge receive the same colour). The key part of the proof is
finding such a monochromatic simple forest of large upper density.

Throughout the proof, given a function 5 and a set - ⊆ dom 5 , we denote
5 (-) := { 5 (G) : G ∈ -}. Furthermore, given a graph �, a matching " ⊆ � and a
set of vertices - ⊆ + (�), we say that " saturates - if - ⊆ + (") :=

⋃
" .

4.1.2 Proof of Theorem 1.4.41.4.4

Let @ > 1 be a real number, whose exact value will be chosen later on. We start by
defining a colouring of the edges of the infinite complete graph. Let �0, �1, . . . be
a partition of N, such that every element of �8 precedes every element of �8+1 and
|�8 | = b@8c. We colour the edges of� =  N such that every edge DE with D ∈ �8 and
E ∈ � 9 is red if min{8, 9} is odd, and blue if it is even. A straightforward calculation
shows that for @ = 2, every monochromatic path % in � satisfies 3̄ (%) ≤ 8/9 (see
Theorem 1.5 in [3939]). We will improve this bound by reordering the vertices of �
and then optimizing the value of @.
For convenience, we will say that the vertex E ∈ �8 is red if 8 is odd and blue if 8 is

even. We also denote by � the set of blue vertices and by ' be the set of red vertices.
Let 18 and A8 denote the 8-th blue vertex and the 8-th red vertex, respectively. We
define a monochromatic red matching "A by forming a matching between �28−1 and
the first |�28−1 | vertices of �28 for each 8 ≥ 1. Similarly, we define a monochromatic
blue matching "1 by forming a matching between �28 and the first |�28 | vertices of
�28+1 for each 8 ≥ 0.

b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 b16

r1 r2 r3 r4 r5 r6 r7 r8 r9 r10

b∗1 b∗2 b∗3

r∗1 r∗2 r∗3 r∗4 r∗5

b∗4 b∗5 b∗6

1

2 3

4 5 6

7 8 9 10 11

12

13

14 15 16 17 18 19 20 21 22

23

24

25

26

blue vertices

special blue vertices

reordering by f

reordering by f

special red vertices

red vertices

A0

A1

A2

A3

A4

. . .

. . .

. . .

Figure 4.1: The colouring for @ = 2 and the reordering by 5 .

Next, let us define a bijection 5 : N→ + (�), which will serve as a reordering of
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�. Let A∗C denote the C-th red vertex not in "1, and 1∗C denote the C-th blue vertex not
in "A . The function 5 is defined as follows. We start enumerating blue vertices, in
their order, until we reach 1∗1. Then we enumerate red vertices, in their order, until
we reach A∗1. Then we enumerate blue vertices again until we reach 1∗2. We continue
enumerating vertices in this way, changing colours whenever we find an A∗C or a 1∗C .
(See Figure 4.14.1.) Finally, for every � ⊆ �, we define

3̄ (�; 5 ) = lim sup
C→∞

|+ (�) ∩ 5 ( [C]) |
C

.

Note that 3̄ (�; 5 ) is the upper density of � in the reordered graph 5 −1(�).

Claim 4.1. Let %A and %1 be infinite monochromatic red and blue paths in �,
respectively. Then 3̄ (%A ; 5 ) ≤ 3̄ ("A ; 5 ) and 3̄ (%1; 5 ) ≤ 3̄ ("1; 5 ).

Claim 4.2. We have

3̄ ("A ; 5 ), 3̄ ("1; 5 ) ≤ @
2 + 2@ − 1
@2 + 3@ − 2

.

We can easily derive Theorem 1.4.41.4.4 from these two claims. Note that the rational
function in Claim 4.24.2 evaluates to (12 +

√
8)/17 at @ B

√
2 + 1. It then follows

from Claim 4.14.1 and 4.24.2, that every monochromatic path % in � satisfies 3̄ (%; 5 ) ≤
(12 +

√
8)/17. Thus we can define the desired colouring of  N, by colouring each

edge 8 9 with the colour of the edge 5 (8) 5 ( 9) in �.
It remains to prove Claim 4.14.1 and 4.24.2. The intuition behind Claim 4.14.1 is that in

every monochromatic red path %A there is a red matching with the same vertex set,
and that "A has the largest upper density among all red matchings, as it contains
every red vertex and has the largest possible upper density of blue vertices. Note
that the proof of Claim 4.14.1 only uses the property that 5 preserves the order of the
vertices inside ' and inside �.

Proof of Claim 4.14.1. We will show 3̄ (%A ; 5 ) ≤ 3̄ ("A ; 5 ). (The other case is anal-
ogous.) We prove that, for every positive integer : , we have |+ (%A) ∩ 5 ( [:]) | ≤
|+ ("A) ∩ 5 ( [:]) |. Assume, for contradiction, that this is not the case and let :
be the minimum positive integer for which the inequality does not hold. Every red
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vertex is saturated by "A , so |+ (%A) ∩ 5 ( [:]) ∩ � | > |+ ("A) ∩ 5 ( [:]) ∩ � |. By the
minimality of : , 5 (:) must be in %A but not in "A , and in particular it must be blue.

Let 5 (:) ∈ �28. Since 5 (:) ∉ "A , we know that 5 (:) is not among the first
|�28−1 | vertices of �28. Therefore, since 5 preserves the order of the vertices inside
�, the first |�28−1 | blue vertices in �28 are contained in 5 ( [:]), and hence

|+ (%A) ∩ 5 ( [:]) ∩ � | > |+ ("A) ∩ 5 ( [:]) ∩ � | =
8∑
9=1
|�2 9−1 |. (4.1.1)

On the other hand, every edge between two blue vertices is blue, so the successor
of every blue vertex in %A is red, and in particular there is a red matching between
+ (%A)∩� and ' saturating+ (%A)∩�. By (4.1.14.1.1), this implies that the number of red
neighbours of + (%A) ∩ 5 ( [:]) ∩ � is at least |+ (%A) ∩ 5 ( [:]) ∩ � | >

∑8
9=1 |�2 9−1 |.

Observe that by the definition of 5 , we have + (%A) ∩ 5 ( [:]) ∩ � ⊆ ⋃8
9=0 �2 9 .

Hence the red neighbourhood of + (%A) ∩ 5 ( [:]) ∩ � is contained in
⋃8
9=1 �2 9−1, a

contradiction.

Proof of Claim 4.24.2. Let ℓA (C) and ℓ1 (C) denote the position of A∗C among the red
vertices and of 1∗C among the blue vertices, respectively. In other words, let ℓA (C) = 8
where A∗C = A8 and ℓ1 (C) = 9 where 1∗C = 1 9 (so for example in Figure 4.14.1, ℓA (4) = 9
and ℓ1 (4) = 14). We claim that 5 (ℓ1 (C) + ℓA (C)) = A∗C . Indeed, by definition of
5 , at G = ℓ1 (C) + ℓA (C) we switched exactly C times from enumerating blue vertices
to red vertices and C − 1 times vice-versa. Hence, for ℓ1 (C − 1) + ℓA (C − 1) ≤ : ≤
ℓ1 (C) + ℓA (C) − 1, the set 5 ( [:]) contains exactly C − 1 vertices outside of "1 and at
least C − 1 vertices outside of "A . As a consequence, we obtain

3̄ ("A ; 5 ), 3̄ ("1; 5 ) ≤ lim sup
:→∞

(1 − ℎ(:))

= lim sup
C→∞

(
1 − C − 1

ℓA (C) + ℓ1 (C) − 1

)
, (4.1.2)

where ℎ(:) = (C − 1)/: if ℓ1 (C − 1) + ℓA (C − 1) ≤ : ≤ ℓ1 (C) + ℓA (C) − 1. It is easy to
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see that

ℓA (C) = C +
8∑
9=0
|�2 9 | if

8−1∑
9=0
|�2 9+1 | − |�2 9 | < C ≤

8∑
9=0
|�2 9+1 | − |�2 9 |, and

ℓ1 (C) = C +
8∑
9=1
|�2 9−1 | if

8−1∑
9=1
|�2 9 | − |�2 9−1 | < C − |�0 | ≤

8∑
9=1
|�2 9 | − |�2 9−1 |.

Note that ℓA (C) − C and ℓ1 (C) − C are piecewise constant and non-decreasing. We
claim that, in order to compute the right hand side of (4.1.24.1.2), it suffices to consider
values of C for which ℓA (C) − C > ℓA (C − 1) − (C − 1) or ℓ1 (C) − C > ℓ1 (C − 1) − (C − 1).
This is because we can write

1 − C − 1
ℓA (C) + ℓ1 (C) − 1

=
1
2
+ (ℓA (C) − C) + (ℓ1 (C) − C) + 1

2(ℓA (C) + ℓ1 (C) − 1) .

In this expression, the second fraction has a positive, piecewise constant numerator
and a positive increasing denominator. Therefore, the local maxima are attained
precisely at the values for which the numerator increases. Wewill do the calculations
for the case when ℓA (C) − C > ℓA (C − 1) − (C − 1) (the other case is similar), in which
we have

C = 1 +
8−1∑
9=0
( |�2 9+1 | − |�2 9 |) = 1 +

8−1∑
9=0
(1 + >(1))@2 9 (@ − 1) = (1 + >(1)) @

28

@+1 ,

ℓA (C) = C +
8∑
9=0
|�2 9 | = (1 + >(1))

©­« @
28

@+1 +
8∑
9=0
@2 9ª®¬ = (1 + >(1)) (@

2+@−1)@28

@2−1 ,

ℓ1 (C) = C +
8∑
9=1
|�2 9−1 | = (1 + >(1))

©­« @
28

@+1 +
8∑
9=1
@2 9−1ª®¬ = (1 + >(1)) (2@−1)@28

@2−1 .

Plugging this into (4.1.24.1.2) gives the desired result.

4.1.3 Proof of Theorem 1.4.51.4.5

This section is dedicated to the proof of Theorem 1.4.51.4.5. A total colouring of a graph
� is a colouring of the vertices and edges of �. Due to an argument of Erdős and
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Galvin, the problem of bounding the upper density of monochromatic paths in edge
coloured graphs can be reduced to the problem of bounding the upper density of
monochromatic path forests in totally coloured graphs.

Definition 4.1.1 (Monochromatic path forest). Given a totally coloured graph �, a
forest � ⊆ � is said to be a monochromatic path forest if Δ(�) ≤ 2 and there is a
colour 2 such that all leaves, isolated vertices, and edges of � receive colour 2.

Lemma 4.1.2. For every W > 0 and : ∈ N, there is some =0 = =0(:, W) so
that the following is true for every = ≥ =0. For every total 2-colouring of  =,
there is an integer C ∈ [:, =] and a monochromatic path forest � with 3 (�, C) ≥
(12 +

√
8)/17 − W.

Some standard machinery related to Szemerédi’s regularity lemma, adapted to the
ordered setting, will allow us to reduce the problem of bounding the upper density
of monochromatic path forests to the problem of bounding the upper density of
monochromatic simple forests.

Definition 4.1.3 (Monochromatic simple forest). Given a totally coloured graph �,
a forest � ⊆ � is said to be a monochromatic simple forest if Δ(�) ≤ 1 and there is
a colour 2 such that all edges and isolated vertices of � receive colour 2 and at least
one endpoint of each edge of � receives colour 2.

Lemma 4.1.4. For every W > 0, there exists :0, # ∈ N and U > 0 such that the
following holds for every integer : ≥ :0. Let � be a totally 2-coloured graph
on :# vertices with minimum degree at least (1 − U):# . Then there exists an
integer C ∈ [:/8, :#] and a monochromatic simple forest � such that 3 (�, C) ≥
(12 +

√
8)/17 − W.

The heart of the proof is Lemma 4.1.44.1.4, which we shall prove in Section 4.1.64.1.6.
But first, in the next two sections, we show how to deduce Theorem 1.4.51.4.5 from
Lemmas 4.1.24.1.2 and 4.1.44.1.4.

4.1.4 From Path Forests to Paths

In this section we use Lemma 4.1.24.1.2 to prove Theorem 1.4.51.4.5. Our exposition follows
that of Theorem 1.6 in [3333].
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Proof of Theorem 1.4.51.4.5. Fix a 2-colouring of the edges of  N in red and blue. We
define a 2-colouring of the vertices by colouring = ∈ N red if there are infinitely
many < ∈ N such that the edge =< is red and blue otherwise.
Case 1. Suppose there are vertices G and H of the same colour, say red, and a

finite set ( ⊆ N such that there is no red path disjoint from ( which connects G to H.
We partition N \ ( into sets -,., / , where G′ ∈ - if and only if there is a red

path, disjoint from (, which connects G′ to G and H′ ∈ . if and only if there is a red
path disjoint from ( which connects H to H′. Note that every edge from - ∪ . to /
is blue. Since G and H are coloured red, both - and . are infinite, and by choice of
G and H all edges in the bipartite graph between - and . ∪ / are blue. Hence there
is a blue path with vertex set - ∪ . ∪ / = N \ (.

Case 2. Suppose that for every pair of vertices G and H of the same colour 2, and
every finite set ( ⊆ N, there is a path from G to H of colour 2 which is disjoint from
(.
Let W= be a sequence of positive reals tending to zero, and let 0= and := be

increasing sequences of integers such that

0= ≥ =0(:=, W=) and :=/(01 + · · · + 0=−1 + :=) → 1,

where =0(:, W) is as in Lemma 4.1.24.1.2. Let N = (�8) be a partition of N into
consecutive intervals with |�= | = 0=. By Lemma 4.1.24.1.2 there are monochromatic
path forests �= with + (�=) ⊆ �= and initial segments �= ⊆ �= of length at least :=
such that

|+ (�=) ∩ �= | ≥
(

12 +
√

8
17

− W=

)
|�= |.

It follows that for any � ⊆  N containing infinitely many �=’s we have

3̄ (�) ≥ lim sup
=→∞

|+ (�=) ∩ �= |
01 + · · · + 0=−1 + |�= |

≥ lim sup
=→∞

12 +
√

8
17

− W= =
12 +
√

8
17

.

By the pigeonhole principle, there are infinitely many �=’s of the same colour,
say blue. We will recursively construct a blue path % which contains infinitely many
of these �=’s. To see how this is done, suppose we have constructed a finite initial
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segment ? of %. We will assume as an inductive hypothesis that ? ends at a blue
vertex E. Let = be large enough that min(�=) is greater than every vertex in ?, and
�= is blue. Let �= = {%1, . . . , %B} for some B ∈ N and let F8, F′8 be the endpoints
of the path %8 (note that F8 and F′8 could be equal) for every 8 ∈ [B]. By the case
assumption, there is a blue path @1 connecting E to F1, such that @1 is disjoint from
�1 ∪ · · · ∪ �=. Similarly, there is a blue path @2 connecting F′1 to F2, such that @2

is disjoint from �1 ∪ · · · ∪ �= ∪ {@1}. Continuing in this fashion, we find disjoint
blue paths @3, . . . , @B such that @8 connects F′8−1 to F8. Hence, we can extend ? to a
path ?′ which contains all of the vertices of �= and ends at a blue vertex.

4.1.5 From Simple Forests to Path Forests

In this section we use Lemma 4.1.44.1.4 to prove Lemma 4.1.24.1.2. The proof is based on
Szemerédi’s Regularity Lemma, which we already introduced in Section 2.22.2. The
main difference to standard applications of the Regularity Lemma is that we have to
define an ordering of the reduced graph, which approximately preserves densities.
This is done by choosing a suitable initial partition. It is well-known (see for instance
[6767]) that dense regular pairs contain almost spanning paths. We include a proof of
this fact for completeness.

Lemma 4.1.5. For 0 < Y < 1/4 and 3 ≥ 2
√
Y + Y, every Y-regular pair (�, �)

with |�| = |� | and density at least 3 contains a path with both endpoints in � and
covering all but at most 2

√
Y |�| vertices of � ∪ �.

Proof. We will construct a path %: = (0111 . . . 0: ) for every : = 1, . . . , d(1 −
√
Y) |�|e such that �: B # (0: ) \ + (%: ) has size at least Y |�|. As 3 ≥ Y, this

is easy for : = 1. Assume now that we have constructed %: for some 1 ≤ : <

(1 −
√
Y) |�|. We will show how to extend %: to %:+1. By Y-regularity of (�, �),

the set
⋃
1∈�: # (1) has size at least (1 − Y) |�|. So �′ B

⋃
1∈�: # (1) \ + (%: ) has

size at least (
√
Y − Y) |�| ≥ Y |�|. Let �′ = � \ + (%: ) and note that |�′| ≥

√
Y |� | as

: < (1 −
√
Y) |�| and |�| = |� |. By Y-regularity of (�, �), there exists 0:+1 ∈ �′

with at least (3 − Y) |�′| ≥ 2Y |�| neighbours in �′. Thus we can define %:+1 =
(0111 . . . 0:1:0:+1), where 1: ∈ �: ∩ # (0:+1).
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Before we start with the proof of Lemma 4.1.24.1.2, we will briefly describe the setup
and proof strategy. Consider a totally 2-coloured complete graph � =  =. Denote
the sets of red and blue vertices by ' and �, respectively. For ℓ ≥ 4, let {, 9 } 9∈[ℓ]
be a partition of [=] such that each, 9 consists of at most d=/ℓe subsequent vertices.
The partition {,′

9
} 9∈[2ℓ] , with parts of the form ,8 ∩ ' and ,8 ∩ �, refines both

{, 9 } 9∈[ℓ] and {', �}. Suppose that +0 ∪ · · · ∪ +< is a partition obtained from
Lemma 2.2.122.2.12 applied to � and {,′

9
} 9∈[2ℓ] with parameters Y, <0, 2ℓ and 3. We

define the (Y, 3)-reduced graph �′ to be the graph with vertex set + (�′) = [<]
where 8 9 is an edge of �′ if and only if if (+8, + 9 ) is an Y-regular pair of density at
least 3 in the red subgraph of � or in the blue subgraph of �. Furthermore, we
colour 8 9 red if (+8, + 9 ) is an Y-regular pair of density at least 3 in the red subgraph
of �, otherwise we colour 8 9 blue. As {+8}8∈[<] refines {', �}, we can extend this
to a total 2-colouring of �′ by colouring each vertex 8 red, if +8 ⊆ ', and blue
otherwise. By relabelling the clusters, we can furthermore assume that 8 < 9 if and
only if max(+8) < max(+ 9 ). Note that, by choice of {, 9 } 9∈[ℓ] , any two vertices in
+8 differ by at most =/ℓ. Moreover, a simple calculation (see [8787, Proposition 42])
shows that �′ has minimum degree at least (1 − 3 − 3Y)<.

Given this setup, our strategy to prove Lemma 4.1.24.1.2 goes as follows. First, we
apply Lemma 4.1.44.1.4 to obtain C′ ∈ [<] and a, red say, simple forest �′ ⊆ �′ with
3 (�′, C′) ≈ (12 +

√
8)/17. Next, we turn �′ into a red path forest � ⊆ �. For

every isolated vertex 8 ∈ + (�′), this is straightforward as +8 ⊆ ' by the refinement
property. For every edge 8 9 ∈ � (�′) with 8 ∈ ', we apply Lemma 4.1.54.1.5 to obtain a
red path that almost spans (+8, + 9 ) and has both ends in +8. So the union �′ of these
paths and vertices is indeed a red path forest. Since the vertices in each +8 do not
differ too much, it will follow that 3 (�, C) ≈ (12 +

√
8)/17 for C = max(+C ′).

Proof of Lemma 4.1.24.1.2. Suppose we are given W > 0 and : ∈ N as input. Let
:0, # ∈ N and U > 0 be as in Lemma 4.1.44.1.4 with input W/4. We choose constants
3, Y > 0 and ℓ, <0 ∈ N satisfying

2
√
Y + Y ≤ 1/ℓ, 3 ≤ U/8 and <0 ≥ 4#/3, 2:0# .

Weobtain" fromLemma2.2.122.2.12with input Y, <0 and 2ℓ. Finally, set =0 = 16:ℓ"# .
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Now let = ≥ =0 and suppose that  = is an ordered complete graph on vertex set
[=] and with a total 2-colouring in red and blue. We have to show that there is
an integer C ∈ [:, =] and a monochromatic path forest � such that |+ (�) ∩ [C] | ≥
((12 +

√
8)/17 − W)C.

Denote the red and blue vertices by ' and �, respectively. Let {,′
9
} 9∈[ℓ] refine

{', �} as explained in the above setting. Let {+0, . . . , +<} be a partition of [=]
with respect to � =  = and {,′

9
} 9∈[ℓ] as detailed in Lemma 2.2.122.2.12 with totally

2-coloured (Y, 3)-reduced graph �′′ of minimum degree X(�′′) ≥ (1 − 43)<. Set
:′ = b</#c ≥ :0 and observe that the subgraph�′ induced by�′′ in [:′#] satisfies
X(�′) ≥ (1 − 83)< ≥ (1 − U)< as < ≥ 4#/3. Thus we can apply Lemma 4.1.44.1.4
with input �′, :′, W/4 to obtain an integer C′ ∈ [:′/8, :′#] and a monochromatic
(say red) simple forest �′ ⊆ �′ such that 3 (�′, C′) ≥ (12 +

√
8)/17 − W/4.

Set C = max(+C ′). We have that +C ′ ⊆ , 9 for some 9 ∈ [ℓ]. Recall that 8 < 9 if
and only if max(+8) < max(+ 9 ) for any 8, 9 ∈ [<]. It follows that +8 ⊆ [C] for all
8 ≤ C′. Hence

C ≥ C′|+1 | ≥
:′

8
|+1 | ≥

⌊<
#

⌋ (1 − Y)=
8<

≥ =

16#
. (4.1.3)

This implies C ≥ : by choice of =0. Since [C] is covered by +0 ∪, 9 ∪
⋃
8∈[C ′] +8, it

follows that

C′|+1 | ≥ C − |+0 | − |, 9 |

≥
(
1 − Y=

C
− 4
ℓ

=

C

)
C

≥
(
1 − 16Y# − 64#

ℓ

)
C (by (4.1.34.1.3))

≥
(
1 − W

2

)
C. (4.1.4)

For every edge 8 9 ∈ � (�′) with +8 ⊆ ', we apply Lemma 4.1.54.1.5 to choose a path
%8 9 which starts and ends in +8 and covers all but at most 2

√
Y |+1 | vertices of each +8

and + 9 . We denote the isolated vertices of �′ by �′. For each 8 ∈ �′ we have +8 ⊆ '.
Hence the red path forest � B

⋃
8∈� ′ +8 ∪

⋃
8 9∈� (� ′) %8 9 ⊆  = satisfies
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|+ (�) ∩ [C] | =
∑
8∈� ′
|+8 ∩ [C] | +

∑
8 9∈� (� ′)

|+ (%8 9 ) ∩ [C] |

≥
∑

8∈� ′∩[C ′]
|+8 | +

∑
8∈+ (� ′−� ′)∩[C ′],

( |+8 | − 2
√
Y |+1 |)

≥ (1 − 2
√
Y) |+1 | |+ (�′) ∩ [C′] |

≥ (1 − 2
√
Y)

(
12 +
√

8
17

− W
4

)
C′|+1 |

(4.1.44.1.4)
≥

(
12 +
√

8
17

− W
)
C

as desired.

4.1.6 Upper Density of Simple Forests

In this section we prove Lemma 4.1.44.1.4. For a better overview, we shall define all
necessary constants here. Suppose we are given W′ > 0 as input and set W = W′/4.
Fix a positive integer # = # (W) and let 0 < U ≤ W/(8#). The exact value of # will
be determined later on. Let :0 = d8/We and fix a positive integer : ≥ :0. Consider
a totally 2-coloured graph �′ on = = :# vertices with minimum degree at least
(1 − U)=.
Denote the sets of red and blue vertices by ' and �, respectively. As it turns out, we

will not need the edges inside ' and �. So let � be the spanning bipartite subgraph,
obtained from �′ by deleting all edges within ' and �. For each red vertex E, let
31 (E) be the number of blue edges incident to E in �. Let 01 ≤ · · · ≤ 0 |' | denote
the degree sequence taken by {31 (E) : E ∈ '}. The whole proof of Lemma 4.1.44.1.4
revolves around analysing this sequence.

Fix an integer C = C (W, #, :) and subsets '′ ⊆ ', �′ ⊆ �. The value of C and
nature of '′, �′will be determined later ('′ and �′will be chosen as initial segments
of ' and �). The following two observations explain our interest in the sequence
01 ≤ · · · ≤ 0 |' |.
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Claim 4.3. If 0 9 > 9 − C for all 1 ≤ 9 ≤ |'′| − 1, then there is a blue simple forest
covering all but at most C vertices of '′ ∪ �.

Proof. We write '′ = {E1, . . . , E |'′ |} so that 31 (E8) ≤ 31 (E 9 ) for every 1 ≤ 8 ≤ 9 ≤
|'′|. By assumption, we have 31 (E 9 ) ≥ 0 9 > 9 − C for all 1 ≤ 9 ≤ |'′| − 1. Thus we
can greedily select a blue matching containing {EC , EC+1, . . . , E |'′ |−1}, which covers
all but C vertices of '′. Together with the rest of �, this forms the desired blue simple
forest.

Claim 4.4. If 08 < 8 + C for all 1 ≤ 8 ≤ |�′| − C, then there is a red simple forest
covering all but at most C + U= vertices of ' ∪ �′.

Proof. Let -′ be a minimum vertex cover of the red edges in the subgraph of �
induced by ' ∪ �′. If |-′| ≥ |�′| − C − U=, then by König’s theorem there exists a
red matching covering at least |�′| − C − U= vertices of �′. This together with the
vertices in ' yields the desired red simple forest.

Suppose now that |-′| < |�′| − C − U=. Since every edge between ' \ (-′ ∩ ')
and �′ \ (-′ ∩ �′) is blue, we have for every vertex E in ' \ (-′ ∩ '),

31 (E) ≥ |�′| − |-′ ∩ �′| − U= = |-′ ∩ ' | + |�′| − |-′| − U= > |-′ ∩ ' | + C.

Here, we used that |-′∩�′| = |-′|− |-′∩' | in the second step and |�′|− |-′|−U= > C
in the last step. In particular, this implies 08 ≥ 8 + C for 8 = |-′ ∩ ' | + 1. Since

|-′ ∩ ' | + 1 ≤ |-′| + 1 < |�′| − C − U= + 1,

we have |-′ ∩ ' | + 1 ≤ |�′| − C, contradicting the assumption.

Motivated by this, we introduce the following definitions.

Definition 4.1.6 (Oscillation, ℓ+(C), ℓ−(C)). Let 01, . . . , 0= be a non-decreasing
sequence of non-negative real numbers. We define its oscillation as the maximum
value ) , for which there exist indices 8, 9 ∈ [=] with 08 − 8 ≥ ) and 9 − 0 9 ≥ ) . For
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all 0 < C ≤ ) , set

ℓ+(C) = min{8 ∈ [=] : 08 ≥ 8 + C},
ℓ−(C) = min{ 9 ∈ [=] : 0 9 ≤ 9 − C}.

Suppose that the degree sequence 01, . . . , 0 |' | has oscillation ) and fix some
positive integer C ≤ ) . We define ℓ = ℓ(C) and _ = _(C) by

ℓ = ℓ+(C) + ℓ−(C) = _C. (4.1.5)

The next claim combinesClaims 4.34.3 and 4.44.4 into a density bound of amonochromatic
simple forest in terms of the ratio ℓ/C = _. (Note that, in practice, the term U= will
be of negligible size.)

Claim 4.5. There is a monochromatic simple forest � ⊆ � with

3 (�, ℓ + C) ≥ ℓ − U=
ℓ + C =

_C − U=
(1 + _)C .

Proof. Let '′ = '∩[ℓ+C] and �′ = �∩[ℓ+C] so that ℓ+(C)+ℓ−(C) = ℓ = |'′|+|�′|−C.
Thus we have either ℓ−(C) ≥ |'′| or ℓ+(C) > |�′| − C. If ℓ−(C) ≥ |'′|, then 0 9 > 9 − C
for every 1 ≤ 9 ≤ |'′| − 1. Thus Claim 4.34.3 provides a blue simple forest � covering
all but at most C vertices of [ℓ + C]. On the other hand, if ℓ+(C) > |�′| − C, then
08 < 8 + C for every 1 ≤ 8 ≤ |�′| − C. In this case Claim 4.44.4 yields a red simple forest
� covering all but at most C + U= vertices of [ℓ + C].

Claim 4.54.5 essentially reduces the problem of finding a dense simple forest to a
problem about bounding the ratio ℓ/C in integer sequences. It is, for instance, not
hard to see that we always have ℓ ≥ 2C (which, together with the methods of the
previous two subsections, would imply the bound 3̄ (%) ≥ 2/3 of Erdős and Galvin).
The following lemma provides an essentially optimal lower bound on ℓ/C = _. Note
that for _ = 4 +

√
8, we have _

_+1 = (12 +
√

8)/17.

Lemma 4.1.7. For all W ∈ R+, there exists # ∈ N such that, for all : ∈ R+ and all
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sequences with oscillation at least :# , there exists a real number C ∈ [:, :#] with

ℓ := ℓ+(C) + ℓ−(C) ≥
(
4 +
√

8 − W
)
C.

The proof of Lemma 4.1.74.1.7 is deferred to the next subsection. We now finish the
proof of Lemma 4.1.44.1.4. Set # = # (W) to be the integer returned by Lemma 4.1.74.1.7
with input W (recall that W = W′/4). In order to use Lemma 4.1.74.1.7, we have to bound
the oscillation of 01, . . . , 0 |' |:

Claim 4.6. The degree sequence 01, . . . , 0 |' | has oscillation ) ≥ :#/8 or there is
a monochromatic simple forest � ⊆ � with 3 (�, =) ≥ (12 +

√
8)/17 − W.

Before we prove Claim 4.64.6, let us see how this implies Lemma 4.1.44.1.4.

Proof of Lemma 4.1.44.1.4. By Claim 4.64.6, we may assume that the sequence 01, . . . , 0 |' |

has oscillation at least :#/8. By Lemma 4.1.74.1.7, there is a real number C′ ∈
[:/8, :#/8] with

ℓ = ℓ+(C′) + ℓ−(C′) ≥ (4 +
√

8 − W)C′.

Let C = C (W, #, :) = dC′e. Since the 08’s are all integers, we have ℓ+(C) = ℓ+(C′)
and ℓ−(C) = ℓ−(C′). Let � ⊆ � be the monochromatic simple forest obtained from
Claim 4.54.5. As = = :# , ℓ ≥ C′ ≥ :/8 ≥ 1/W, U ≤ W/(8#), and by (4.1.54.1.5), it follows
that

3 (�, ℓ + C) ≥ ℓ − U=
ℓ + C =

1 − U=/ℓ
1 + C

ℓ

≥ 1 − 8U#
1 + C ′

ℓ
+1
ℓ

≥ 1
1 + C ′

ℓ

−2W

≥ 1
1 + 1

4+
√

8−W

− 2W =
4 +
√

8 − W
5 +
√

8 − W
− 2W

≥ 4 +
√

8
5 +
√

8
− 4W =

12 +
√

8
17

− W′,

as desired.

To finish, it remains to show Claim 4.64.6. The proof uses König’s theorem and is
similar to the proof of Claim 4.44.4.
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Proof of Claim 4.64.6. Let - be a minimum vertex cover of the red edges. If |- | ≥
|� | − (1/8+U)=, then König’s theorem implies that there is a red matching covering
all but at most (1/8 + U)= blue vertices. Thus adding the red vertices, we obtain
a red simple forest � with 3 (�, :#) ≥ 7/8 − U ≥ (12 +

√
8)/17 − W. Therefore,

we may assume that |- | < |� | − (1/8 + U)=. Every edge between ' \ (- ∩ ') and
� \ (- ∩ �) is blue. So there are at least |' | − |- ∩ ' | red vertices E with

31 (E) ≥ |� | − |- ∩ �| − U= = |- ∩ ' | + |� | − |- | − U= > |- ∩ ' | + =/8.

This implies that 08 ≥ 8 + =/8 for 8 = |- ∩ ' | + 1. (See Figure 4.24.2.)

|X ∩R|+ 1 |R| − |Y ∩R|

i− n/8

i+ n/8 i

a|X∩R|+1

a|R|−|Y ∩R|

Figure 4.2: The sequence 01, . . . , 0 |' | has oscillation at least :#/8.

Let . be a minimum vertex cover of the blue edges. Using König’s theorem as
above, we can assume that |. | ≤ |' | − =/8. Every edge between ' \ (. ∩ ') and
� \ (. ∩ �) is red. It follows that there are at least |' | − |. ∩ ' | red vertices E with

31 (E) ≤ |. ∩ � | = |. | − |. ∩ ' | ≤ |' | − |. ∩ ' | −
=

8
.

This implies that 0 9 ≤ 9 −=/8 for 9 = |' | − |. ∩' |. Thus 01, . . . , 0 |' | has oscillation
at least =/8 = :#/8.
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4.1.7 Sequences and Oscillation

We now present the quite technical proof of Lemma 4.1.74.1.7. We will use the following
definition and related lemma in order to describe the oscillation from the diagonal.

Definition 4.1.8 (:-good, Do(:), De(:)). Let 01, . . . , 0= be a sequence of non-
negative real numbers and let : be a positive real number. We say that the sequence
is :-good if there exists an odd 8 and an even 9 such that 08 ≥ : and 0 9 ≥ : . If the
sequence is :-good, we define for all 0 < C ≤ :

Do(C) = 01 + · · · + 08>−1 where 8> = min{8 : 08 ≥ C, 8 odd},
De(C) = 01 + · · · + 084−1 where 84 = min{8 : 08 ≥ C, 8 even}.

Lemma 4.1.9. For all W ∈ R+ there exists # ∈ N such that for all : ∈ R+ and all
(:#)-good sequences, there exists a real number C ∈ [:, :#] with

Do(C) + De(C) ≥
(
3 +
√

8 − W
)
C.

First we use Lemma 4.1.94.1.9 to prove Lemma 4.1.74.1.7.

Proof of Lemma 4.1.74.1.7. Given W > 0, let # be obtained from Lemma 4.1.94.1.9. Let
: ∈ R+ and 01, . . . , 0= be a sequence with oscillation at least :# . Suppose first
that 01 ≥ 1. Partition [=] into a family of non-empty intervals �1, . . . , �A with the
following properties:

• For every odd 8 and every 9 ∈ �8, we have 0 9 ≥ 9 .

• For every even 8 and every 9 ∈ �8, we have 0 9 < 9 .

Define B8 = max
{
|0 9 − 9 | : 9 ∈ �8

}
. Intuitively, this is saying that the values in the

odd indexed intervals are “above the diagonal” and the values in the even indexed
intervals are “below the diagonal” and B8 is the largest gap between sequence values
and the “diagonal” in each interval.

Since 01, . . . , 0= has oscillation at least :# , the sequence B1, . . . , BA is (:#)-good
and thus by Lemma 4.1.94.1.9, there exists C ∈ [:, :#] such that

Do(C) + De(C) ≥
(
3 +
√

8 − W
)
C. (4.1.6)
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Since the sequence 01, 02, . . . , 0= is non-decreasing, 0 9 − 9 can decrease by at most
one in each step and thus we have |�8 | ≥ B8 for every 8 ∈ [A − 1]. Moreover, we can
find bounds on ℓ+(C) and ℓ−(C) in terms of the B8:

• ℓ+(C) must lie in the interval �8 with the smallest odd index 8> such that B8> ≥ C,
therefore ℓ+(C) ≥ B1 + · · · + B8>−1 = Do(C).

• ℓ−(C) must lie in the interval � 9 with the smallest even index 84 such that
B84 ≥ C. Moreover, it must be at least the C-th element in this interval, therefore
ℓ−(C) ≥ B1 + · · · + B84−1 + C = De(C) + C.

Combining the previous two observations with (4.1.64.1.6) gives

ℓ+(C) + ℓ−(C) ≥ Do(C) + De(C) + C ≥
(
4 +
√

8 − W
)
C,

as desired.
If 0 ≤ 01 < 1, we start by partitioning [=] into a family of non-empty intervals

�1, . . . , �A with the following properties:

• For every even 8 and every 9 ∈ �8, we have 0 9 ≥ 9 .

• For every odd 8 and every 9 ∈ �8, we have 0 9 < 9 .

From this point, the proof is analogous.

Finally, it remains to prove Lemma 4.1.94.1.9. The proof is by contradiction and
the main strategy is to find a subsequence with certain properties which force the
sequence to become negative eventually.

Proof of Lemma 4.1.94.1.9. Let d = 3 +
√

8 − W and let < := <(d) be a positive integer
which will be specified later. Suppose that the statement of the lemma is false for
# = 6 ·4< and let 01, . . . , 0= be an (#:)-good sequence without C as in the statement.
We first show that 08 has a long strictly increasing subsequence. Set

� = {8 : 08 ≥ :, 08 > 0 9 for all 9 < 8},
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denote the elements of � by 81 ≤ 82 ≤ · · · ≤ 8A and let 0′
9
= 08 9 . Consider any

9 ∈ [A − 1] and suppose without loss of generality that 8 9+1 is odd. For X small
enough, this implies Do(0′9 + X) = 01 + · · · + 08 9+1−1 ≥ 0′1 + · · · + 0

′
9
, and De(0′9 + X) ≥

01 + · · · + 08 9+1 ≥ 0′1 + · · · + 0
′
9+1. By assumption we have Do(0′9 + X) + De(0′9 + X) <

d · (0′
9
+ X). Hence, letting X→ 0 we obtain 2

(
0′1 + · · · + 0

′
9

)
+ 0′

9+1 ≤ d0
′
9
, which

rearranges to
0′9+1 ≤ (d − 2)0′9 − 2

(
0′1 + · · · + 0

′
9−1

)
. (4.1.7)

In particular, this implies 0′
9+1 ≤ (d − 2)0′

9
< 40′

9
. Moreover, we have 0′1 ≤ Do(:)

if 81 is even and 0′1 ≤ De(:) if 81 is odd. Therefore,

6: · 4< = :# ≤ 0′A < 4A · 0′1
≤ 4A max{Do(:), De(:)}
≤ 4A (Do(:) + De(:))
< 4A · d:
< 6: · 4A

and thus A ≥ <.
Finally, we show that any sequence of reals satisfying (4.1.74.1.7), will eventually

become negative, but since 0′
8
is non-negative this will be a contradiction.

We start by defining the sequence 11, 12, . . . recursively by 11 = 1 and 18+1 =
(d − 2)18 − 2(11 + · · · + 18−1). Note that

18+1 = (d − 2)18 − 2(11 + · · · + 18−1)
= (d − 1)18 − 18 − 2(11 + · · · + 18−1)
= (d − 1)18 − ((d − 2)18−1 − 2(11 + · · · + 18−2)) − 2(11 + · · · + 18−1)
= (d − 1)18 − d18−1

So equivalently the sequence is defined by,

11 = 1, 12 = d − 2, and 18+1 = (d − 1)18 − d18−1 for 8 ≥ 2.
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It is known that a second order linear recurrence relation whose characteristic
polynomial has non-real roots will eventually become negative (see [1515]). Indeed,
the characteristic polynomial G2 − (d − 1)G + d has discriminant d2 − 6d + 1 < 0
and so its roots U, Ū are non-real.11 Hence the above recursively defined sequence
has the closed form of 18 = IU8 + ĪŪ8 = 2Re

(
IU8

)
for some complex number I. By

expressing IU8 in polar form we can see that 1< < 0 for some positive integer <.
Note that the calculation of < only depends on d.

We will be done if we can show that 0′
9
≤ 0′11 9 for all 9 ∈ [<] and every sequence

0′1, . . . , 0
′
< of non-negative reals satisfying (4.1.74.1.7); so suppose this is false. Let

{0′
9
}<
9=1 be a counterexample which coincides with {0′11 9 }

<
9=1 on the longest initial

subsequence among all counterexamples. By assumption, there is some B ∈ [<]
such that 0′B > 0′11B. Let ? be the minimum value such that 0′? ≠ 0′11?. Clearly
? > 1. Applying (4.1.74.1.7) to 9 = ? − 1 we see that

0′? ≤ (d − 2)0′?−1 − 2(0′1 + · · · + 0
′
?−2)

= (d − 2)0′11?−1 − 2(0′111 + · · · + 0′11?−2)
= 0′1((d − 2)1?−1 − 2(11 + · · · + 1?−2))
= 0′11?

and thus 0′? < 0′11?.
Let V = (0′11? − 0

′
?)/0′1 > 0. Now consider the sequence 0′′

9
where 0′′

9
= 0′

9
for

9 < ? and 0′′
9
= 0′

9
+ V0′

9−?+1 for 9 ≥ ?. Then 0
′′
? = 0

′
11? = 0

′′
11?. Clearly, this new

sequence satisfies (4.1.74.1.7) for every 9 < ?. Furthermore, we have

0′′?+ 9 = 0
′
?+ 9 + V0′9+1

≤ (d − 2)0′?+ 9−1 − 2(0′1 + . . . + 0
′
?+ 9−2) + V(d − 2)0′9 − 2V(0′1 + . . . + 0

′
9−1)

= (d − 2)0′′?+ 9−1 − 2(0′′1 + . . . + 0
′′
?+ 9−2)

for every 9 ≥ 0. Hence, the whole sequence satisfies (4.1.74.1.7). We also have
0′′B ≥ 0′B > 0′11B = 0

′′
11B. This contradicts the fact that 0

′
9
is a counterexample which

1Note that 3 +
√

8 is the positive root of G2 − 6G, which is the reason why we chose d := 3 +
√

8− W.
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coincides with 0′11 9 on the longest initial subsequence.

4.2 Upper Density of Monochromatic Subgraphs

4.2.1 Overview

In this section, we are going to prove a number of different results concerning
Ramsey densities of infinite graphs. In Sections 4.2.24.2.2 and 4.2.34.2.3 we start with a
collection of constructions and examples. We move on to Section 4.2.44.2.4, where we
introduce the concept of ultrafilters and prove a couple of results which demonstrate
how they can be used to embed infinite graphs.

In Section 4.2.54.2.5 we move on to bipartite Ramsey densities and prove the following
two results.

Theorem 1.4.7 (Corsten–DeBiasio–McKenney). Every 2-coloured  N,N contains
a monochromatic path of upper density at least 1/2.

Theorem 1.4.8 (Corsten–DeBiasio–McKenney). The vertices of every 2-edge-
coloured  N,N can be partitioned into a finite set and at most two monochromatic
paths.

Recall that Example 4.2.94.2.9 shows that both are best possible. The idea of the proof
is to partition the vertices of a 2-edge-coloured graph into a finite set and two sets
+1, +2 with the following property: for all 8 ∈ [2], there is a colour 28 such that any
two vertices D, E ∈ +8 are the endpoints of infinitely many internally disjoint finite
paths which are monochromatic in colour 28. It is then easy to cover each of +1 and
+2 with a monochromatic infinite path.

In Section 4.2.64.2.6 we discuss Ramsey densities of infinite trees and prove the
following result.

Theorem 1.4.10 (Corsten–DeBiasio–McKenney). Rd()) ≥ 1/2 for every infinite
tree ) .

Wewill prove Theorem 1.4.101.4.10 separately for trees with a vertex of infinite degree,
and for trees with a path of infinite length. In the first case we will show that every
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2-edge-coloured  N contains a monochromatic subgraph � of density at least 1/2
in which one vertex is adjacent to every other vertex and every vertex has infinite
degree. We then describe an embedding algorithm to surjectively embed any tree
with a vertex of infinite degree in �. In the second case we will show that every
2-edge-coloured  N contains a monochromatic subgraph � of density at least 1/2
which is infinitely connected (that is, it remains connected after deleting any finite
set of vertices). We then describe an embedding algorithm to surjectively embed
any tree with a path of infinite length in �.
In Section 4.2.74.2.7 we will discuss Ramsey densities of graphs with bounded chro-

matic number and prove the following result.

Theorem 1.4.11 (Corsten–DeBiasio–McKenney). Let A, : ≥ 2 be integers and let
� be a one-way :-locally finite graph.

(i) If : = 2, then RdA (�) ≥ 1/A.

(ii) If : ≥ 3, then Rd(�) ≥ 1/(2(: − 1)).

(iii) If : ≥ 3, then RdA (�) ≥
(∑(:−2)A+1

8=0 (A − 1)8
)−1

= (1 + >: (1))A−(:−2)A−1.

The proof of Theorem 1.4.111.4.11 is quite technical and relies heavily on ultrafilters
Section 4.2.44.2.4. Finally, in Section 4.2.84.2.8, we will discuss Ramsey-dense graphs and
prove the following result.

Theorem 1.4.15 (Corsten–DeBiasio–McKenney). If � is an infinite graph with
finite ruling number, then � is A-Ramsey-dense for every A ∈ N.

The proof of Theorem 1.4.151.4.15 also relies on ultrafilters but is less technical. We
further use the Rado colouring (see Section 4.2.24.2.2) to prove the following partial
converse.

Theorem 1.4.19 (Corsten–DeBiasio–McKenney). Let � be an infinite graph with
disjoint ruling sets �1, �2, . . . satisfying |�= | ≤ log2(=) for all sufficiently large =.
Then � is not Ramsey-dense.
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4.2.2 Preliminaries
Properties of upper density

In this subsection, we collect some basic properties of upper densities.

Proposition 4.2.1.

(i) If �1, �2 ⊆ N, then d(�1 ∪ �2) ≤ d(�1) + d(�2).

(ii) If �1, �2 ⊆ N are disjoint, then d(�1 ∪ �2) ≥ d(�1) + d(�2).

(iii) If �1, �2 ⊆ N, then d(�1 ∪ �2) ≤ d(�1) + d(�2).

(iv) If �1, �2 ⊆ N are disjoint, then d(�1 ∪ �2) ≥ d(�1) + d(�2).

The Rado Graph

Recall that the Rado graph R is the graph with vertex-set N with <= ∈ � (R) for
some< < = if and only if the<th digit in the binary expansion of = is 1 (starting with
the least significant bit). The Rado graph first appeared in work of Ackermann [11]
and was more systematically studied by Erdős and Rényi [4343], and by Rado [9898].
We say that an infinite � graph has the extension property if for every pair of

disjoint finite sets �, �′ ⊆ + (�), there is a vertex E ∈ + (�) \ (� ∪ �′) such that E is
adjacent to every F ∈ � and not adjacent to any F′ ∈ �′. The following well-known
theorem shows why this property is useful.

Theorem 4.2.2. Any two infinite graphs satisfying the extension property are iso-
morphic.

Furthermore, it is not hard to see that the Rado graphR and, with probability 1, the
infinite random graph (the graph on N in which every edge is present independently
with probability 1/2) both satisfy the extension property. Hence, with probability
1, the infinite random graph is isomorphic to the Rado graph.
Recall that an infinite graph� is 0-ruled if it has no finite dominating set. Observe

that � is 0-ruled if and only if � satisfies the “non-adjacency” half of the extension
property above, i.e. if for every finite �′ ⊆ + (�) there is a vertex E ∈ + (�) \ �′

such that E is not adjacent to any F′ ∈ �′. We will call � 0-coruled if � satisfies
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only the “adjacency” half of extension property, i.e. for every finite � ⊆ + (�) there
is a E ∈ + (�) \ � such that E is adjacent to every F ∈ �. Using this, it is easy
(and very similar to the proof of Theorem 4.2.24.2.2) to prove the following proposition.
Here, given graphs � and �, we write � � � if � is isomorphic to a spanning
subgraph of �.

Proposition 4.2.3. � is 0-ruled if and only if � � R. On the other hand, � is
0-coruled if and only if R � �.

We note that there exist graphs which are both 0-ruled and 0-coruled, but not
isomorphic to R (for example, the half-graph discussed below).

The bipartite Rado graph R2 is the bipartite graph with biparts + = {E0, E1, . . .}
and * = {D0, D1, . . .} with D8E 9 , E8D 9 ∈ � (R2) for some 8 < 9 if the 8th digit in the
binary expansion of 9 is 1 (starting with the least significant bit). The bipartite Rado
graph has similar properties as the Rado graph. In particular, with probability 1,
R2 is isomorphic to the random subgraph of  N,N in which every edge of  N,N is
present independently with probability 1/2.

The Rado Colouring

The Rado colouring d : � ( N) → {0, 1} is the 2-edge-colouring of  N defined as
follows: given < < =, define d({<, =}) to be the value of the <th digit in the binary
expansion of = (starting with the least significant bit). Note that the graphs induced
by taking all edges of colour 0 or 1 are both isomorphic to the Rado graph. The
Rado colouring further has the following simple but important property.

Observation 4.2.4. For every � ⊆ N and 8 ∈ {0, 1}, we have

3

(⋂
E∈�

#8 (E)
)
= 2−|� |, (4.2.1)

where #8 (E) denotes the set of vertices D ∈ N with d(DE) = 8.

The Half-Graph

The (infinite) half-graphH is the bipartite graph on N (with one part being the even
numbers and the other part being the odd numbers) defined as follows: Given an
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even number 8 ∈ N and an odd number 9 ∈ N, we have 8 9 ∈ � (H) if and only if
8 > 9 . This graph has the very interesting property that every even vertex has finite
degree and every odd vertex has cofinite degree.

Relationship of Important Graph Parameters

Wewill present some examples here to get a better understanding of how the different
properties discussed in this section are related.

Example 4.2.5.

(i) There is an infinite graph � with rul(�) = 0, but j(�) = ∞ (Rado graph).

(ii) There is an infinite graph � with j(�) = 2, but rul(�) = ∞ (complete
bipartite graph).

(iii) There is an infinite graph� with rul(�) = 0 and j(�) = 2, but degen(�) = ∞
(bipartite Rado graph, half-graph).

(iv) There is a locally finite infinite graph � with j(�) = ∞ (infinite collection of
finite cliques of increasing size).

Section 4.2.24.2.2 gives an overview of these examples and some results from the
introduction.

4.2.3 Constructions

In this subsection we will construct some colourings in order to give upper bounds
on upper densities.

Example 4.2.6. We have Rd(�) ≤ 1/(j(�) − 1) for every connected graph �.

Proof. Suppose first that j(�) is finite and let : = j(�) − 1. Partition N into :
sets +1, . . . , +: , each of which has density 1/: (for example, using residues modulo
:). Colour an edge red if it is inside one of the sets +1, . . . , +: and blue otherwise.
Since the blue subgraph is :-partite, there is no blue copy of �. Furthermore, since
� is connected, every red copy of � must lie entirely in +8 for some 8 ∈ [:] and
therefore its upper density is at most 1/: .
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1 ≤ rul(G) ≤ d

rul(G) = 0

rul(G) =∞

KN,N

Rado graph

degen(G) ≤ d Rado +Kd

Kd,N

bipartite half graph

bipartite Rado + Kd

⋃
i≥1Ki

∞-many KN’s

KN

bipartite Rado

one-way locally finite

half graph

χ(G) ≤ d+ 1

infinite trees

∆(G) ≤ d

K1,N

P∞

Figure 4.3: The lightly shaded area represents graphs which are Ramsey-dense. The
blue text represents graphs � for which Rd(�) > 0. The red text
represents graphs � which are Ramsey-dense, but Rd(�) = 0.

If j(�) is infinite, then the above example shows that Rd(�) ≤ 1/: for every
: ∈ N and thus Rd(�) = 0.

This result implies that the Rado graph has Ramsey upper density 0. Recall
however, that the Rado graph is A-Ramsey-dense for every A ∈ N.

Corollary 4.2.7. The Rado graph R has Ramsey upper density 0.

Proof. By Observation 4.2.44.2.4, every infinite independent set in R has density 0 and
therefore j(R) = ∞. Therefore, the result follows from Example 4.2.64.2.6.

Example 4.2.8. Let A ∈ N.

(i) If ) is a �-ary tree for � ≥ 2, then RdA ()) ≤ 1
A
(1 + 1

�
).

(ii) We have RdA ()∞) ≤ 1/A.22

(iii) There exists a locally finite tree ) with RdA ()) ≤ 1/A.

2Recall that )∞ is the infinite tree in which every vertex has infinite degree.
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Proof. PartitionN by residues mod A, that isN = '1∪ . . .∪'A where '8 is the set of
all = ∈ N with = ≡ 8 (mod A). We define an A-edge-colouring as follows: if < ∈ '8
and = > <, colour the edge <= with colour 8. Note that if = . 8 (mod A), then = has
exactly b(= − 1)/Ac neighbours of colour 8 and all of them are in [= − 1].
(8) Let ) be a �-ary tree and suppose we have a copy of ) of colour 8. For

all = > 0, let + ′= be the set of vertices in + ()) ∩ [=] which are not congruent to
8 (mod A) and let C= = |+ ′= |. Since any vertex < ∈ + ′= can only have neighbours (of
colour 8) in '8 ∩ [= − 1], we must have � · C= ≤ (= − 1)/A. So

|+ ()) ∩ [=] |
=

≤
⌈
=
A

⌉
+ C=
=

≤
⌈
=
A

⌉
+ =−1

A�

=

=→∞−−−−→ 1
A
(1 + 1

�
).

(88) Suppose * ⊆ N is the vertex-set of a copy of )∞ in colour 8 ∈ [A]. Since
every vertex in N \ '8 has only finitely many neighbours in colour 8, we have* ⊆ '8
and thus d(*) ≤ 1/A.
(888) Let 0 < 31 < 32 < . . . be an increasing sequence. Let � be a tree in which

every vertex on level 8 has degree 38. We can repeat the argument from case (i),
except now we have C=/=→ 0 as =→∞.

Example 4.2.9. There is an A-edge-colouring of N,N inwhich everymonochromatic
path has upper density at most 1/A. In particular, it is not possible to cover all but
finitely many vertices with less than A monochromatic paths.

Proof. Let � and � be the parts of  N,N (that is, � consists of all odd numbers and �
consists of all even numbers) and partition both of them into A parts �1, . . . , �A and
�1, . . . , �A , each of density 1/(2A). For all 8, 9 ∈ [A], colour every edge between
�8 and � 9 by (8 − 9) mod A. It is easy to see that every part is incident to exactly
one other part of each colour and therefore, every monochromatic path can cover at
most two parts, finishing the proof.

Proposition 4.2.10. Let  be a countably infinite complete multipartite graph.

(i) If  has at least two infinite parts, or infinitely many vertices in finite parts,
then  is not Ramsey-dense.

120



4 Ramsey Problems for Infinite Graphs

(ii) If  has exactly one infinite part and exactly = vertices in finite parts, then

1
22=−1 ≤ Rd( ) ≤ 1

2=
.

Proof. Colour the edges of  N with the Rado colouring. If  has at least two
infinite parts, or infinitely many vertices in finite parts, then  contains a spanning
copy of  N,N; let (�, �) be such a spanning copy of  N,N. Let 01, 02, . . . be the
elements of �. Then � is contained in the neighbourhood of 01, . . . , 0=, and hence,
by Observation 4.2.44.2.4, has density at most 2−=, for each =. Hence �must have density
0. Repeating the argument the other way around shows that � has density 0, too.
Suppose now that  has exactly one infinite part and exactly = vertices in finite

parts. Then by Observation 4.2.44.2.4, we have Rd( ) ≤ 1
2= .

To see Rd( ) ≥ 1
22=−1 , assume that we are given an arbitrary 2-edge-colouring

of  N. We will proceed similarly as in a well-known proof of Ramsey’s theorem.
Let E1 ∈ N be an arbitrary vertex. By Proposition 4.2.14.2.1, there is a colour 21 such
that +2 := #21 (E) satisfies d(#8 (E)) ≥ 1/2. Now do the following recursively for all
9 ∈ [2, 2=− 1]. Let E 9 ∈ + 9 be an arbitrary vertex. It follows from Proposition 4.2.14.2.1
that there exists a colour 2 9 ∈ [2] such that + 9+1 := #2 9 (E 9 ;+ 9 ) satisfies d(+ 9+1) ≥
d(+ 9 )/2 ≥ 2− 9 . By the pigeonhole principle, there is some a set � = { 91, . . . , 9=} ⊆
[2= − 1] of size = such that 2 9 is constant on �. Hence, E 91 , . . . , E 9= , +2= induce
a monochromatic copy of  1,...,1,N with upper density d(+2=) ≥ 2−2=+1. Clearly
 1,...,1,N contains a spanning copy of  , finishing the proof.

4.2.4 Ultrafilters and Embedding

The concept of ultrafilters will play a very important role in this section.

Definition 4.2.11. Given a set - , a set system U ⊆ 2- is called an ultrafilter if the
following properties hold.

(i) - ∈ U and ∅ ∉ U .

(ii) If � ∈ U and � ⊆ � ⊆ - , then � ∈ U .

(iii) If �, � ∈ U , then � ∩ � ∈ U .
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(iv) For all � ⊆ - , either � ∈ U or - \ � ∈ U , or

(iv)′ U is maximal among all families satisfying (8) - (888).

A family satisfying (8)-(888) is called a filter. Conditions (8E) and (8E)′ are
equivalent for filters (see [7070, Chapter 11, Lemma 2.3]) and we will make use
whichever is more convenient for the current application. Let us list some additional
properties of ultrafilters.

Proposition 4.2.12. If U is an ultrafilter on - , then the following is true.

(i) if �1, . . . , �= ∈ U , then �1 ∩ . . . ∩ �= ∈ U .

(ii) If �1 ∪ . . . ∪ �= ∈ U are pairwise disjoint, then there is exactly one 8 ∈ [=]
with �8 ∈ U .

Informally, we think of sets � ∈ U as “large” sets. A common example of an
ultrafilter are the so called trivial ultrafilters UG := {� ⊆ - : G ∈ �} for G ∈ - . It is
not hard to see that an ultrafilter is trivial if and only if it contains a finite set.

We say that an ultrafilterU on # is positive if every set � ∈ U has positive upper
density. Positive ultrafilters play a crucial role in the rest of this section.

Proposition 4.2.13. If - ⊆ N is infinite, then there exists a non-trivial ultrafilter U

on - . Furthermore, there exists a positive ultrafilter U on N.

Proof. To prove the first part of the theorem, let F0 ⊆ 2- be the set of all cofinite
subsets of - and apply Zorn’s lemma to

{F ⊆ 2- : F0 ⊆ F and F satisfies (i) - (iii) in Definition 4.2.114.2.11}

to get a maximal such family U , which must be an ultrafilter. Finally, if � is finite,
U contains the cofinite set �2 and hence � ∉ U .

To prove the second part, let F1 ⊆ 2N be the set of all sets of lower density 1 and
apply Zorn’s lemma to

{F ⊆ 2N : F1 ⊆ F and F satisfies (i) - (iii) in Definition 4.2.114.2.11}
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to get a maximal such familyU , which must be an ultrafilter. Furthermore, if � ⊆ -
has upper density 0, then - \ � has lower density 1 and consequently � ∉ U .

Definition 4.2.14 (Vertex-colouring induced by U ). Let A ≥ 2 and suppose the
edges of an infinite graph � are coloured with A colours. Let U be a non-trivial
ultrafilter on + (�). Define a colouring 2U : + (�) → [A] where 2U (E) = 8 if
and only if #8 (E) ∈ U . Since + (�) \ {E} ∈ U for all E ∈ + (�), it follows from
Proposition 4.2.124.2.12 (ii) that 2U is well defined. We call 2U the vertex-colouring
induced by U .

The following propositions allow us to use ultrafilters to embed the desired sub-
graphs in the proof of Theorem 1.4.111.4.11 and Theorem 1.4.151.4.15.

Proposition 4.2.15. Let : ≥ 2, let � be a one-way :-locally finite graph and let �
be graph such that {*1, . . . ,*: } is a partition of + (�) with |*1 | = · · · = |*: | = ∞
and, for every 8 ∈ [:] and every finite subset, ⊆ *1∪ · · ·∪*8−1, the set of common
neighbours of , in *8 is infinite. Then, there is an embedding 5 of � into � with
*1 ⊆ rg 5 .

Proposition 4.2.16. Let � be an infinite 0-ruled graph and let � be a graph having
the property that for every finite set of vertices , ⊆ + (�), the set of common
neighbours of, is infinite. Then we can embed � surjectively into �.

Given a :-partite graph � with parts +1, . . . , +: and a set ( ⊆ + (�), the left
neighbourhood cascade of ( is the tuple ((1, . . . , (: ), where (: = ( ∩ +: , and for
all 1 ≤ 8 ≤ : − 1, (8 = (( ∪

⋃:
9=8+1 # (( 9 )) ∩+8.

Proof. Let +1 ∪ +2 ∪ · · · ∪ +: be a partition of + (�) into independent sets which
witness the fact that � is one-way :-locally-finite (in particular +1 is infinite). We
will assume that + (�) = N and that it is ordered with the natural ordering. We
will construct an embedding 5 iteratively in finite pieces. Initially, 5 is the empty
embedding. Then, for each = ∈ N, we will proceed as follows: let

(= = {min(+8 \ dom 5 ) : 8 ∈ [:] with +8 \ dom 5 ≠ ∅}.
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That is, (= contains the smallest not yet embedded vertex of each +8 which is not
completely embedded yet. Let ()1,=, . . . , ):,=) be left neighbourhood cascade of (=
in �. We will now extend 5 to cover

⋃
8∈[:] )8,=. Observe that )8,= is disjoint from

dom 5 for all 8 ∈ [:] since we embedded the whole left neighbourhood cascade in
every previous step. Since +1 is infinite, )1,= is non-empty. Let ) ′1,= ⊆ *1 \ rg 5
be the set of |)1,= | smallest vertices in *1 \ rg 5 and extend 5 by embedding )1,=

into ) ′1,= arbitrarily. By assumption ) ′1,= has infinitely many common neighbours in
*2. Since rg 5 is finite, we can select a set ) ′2,= ⊆ (*2 ∩ #∩() ′1,=)) \ rg 5 of size
|)2,= |. Extend 5 by embedding )2,= into ) ′2,= arbitrarily. Similarly, we can extend 5
by embedding )8,= into appropriate sets ) ′8,= for all 8 = 3, . . . , : .

Since we maintain a partial embedding of � into � throughout the process and
every vertex of � will eventually be embedded (by choice of (= which contains
the smallest not yet embedded vertex of + (�)), the resulting function 5 defines an
embedding of � into �. Since we cover the smallest not-yet covered vertex of *1

in each step, we further have*1 ⊆ rg 5 .

Proof of Proposition 4.2.164.2.16. Let E1, E2, . . . be an enumeration of + (�) and let
D1, D2, . . . be an enumeration of + (�). Suppose we have already embedded
{E1, . . . , E=−1} (and no vertex E8 with 8 ≥ =) into � for some = ∈ N. Call the partial
embedding 5 ,33 and let D8= be the vertex of smallest index in+ (�)\ 5 ({E1, . . . , E=−1}).
Since � is 0-ruled, there exists a vertex E? ∈ + (�) with ? ≥ = such that E? has no
neighbours in {E1, . . . , E=−1}. We set 5 (E?) = D8= and we embed all vertices from
{E=, . . . , E?−1} into � one at a time (using the property that every finite subset of
+ (�) has infinitely many common neighbours). Continuing in this way, we clearly
obtain an embedding of� into �. Since we embed the vertex of lowest index among
the remaining vertices in every step, this embedding is surjective.

4.2.5 Bipartite Ramsey Densities

In this section we prove Theorem 1.4.81.4.8. An infinite graph � is said to be infinitely
connected if � remains connected after removing any finite set of vertices. Note
that every vertex of an infinitely connected graph has infinite degree. Given some

3We will update 5 in every step.
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set of vertices ( ⊆ + (�), we say that ( is infinitely connected if � [(] is infinitely
connected. Similarly, we call a set ( ⊆ + (�) infinitely linked if for all distinct
D, E ∈ (, there are infinitely many internally vertex-disjoint paths in � from D to E
(note that the internal vertices of these paths need not be contained in the set ().
Note that every infinitely connected set is also infinitely linked but the converse is
not true (for example, both parts of  N,N are infinitely linked but not connected).
Further note that if (1, . . . , (: are sets, each of which is infinitely linked, then there
are disjoint paths %1, . . . , %: such that %1 ∪ . . . ∪ %: covers (1 ∪ . . . ∪ (: .
If� is a coloured graph and 2 is a colour, we say that� is infinitely connected in 2

if�2 (the spanning subgraph of� with all edges of colour 2) is infinitely connected.
A set ( ⊆ + (�) is infinitely connected in colour 2 (infinitely linked in colour 2)
if ( is infinitely connected (infinitely linked) when restricted to �2. ( is called
monochromatic infinitely connected (infinitely linked) if it is infinitely connected in
some colour 2.
The following proposition easily implies Theorem 1.4.81.4.8.

Proposition 4.2.17. Every 2-edge-coloured  N,N can be partitioned into a finite set
and two monochromatic infinitely linked sets - and . .

Proof of Proposition 4.2.174.2.17. Let +1, +2 be the parts of the bipartite graph and let
U1,U2 be non-trivial ultrafilters on +1 and +2. For 8 = 1, 2, let �8 ⊆ +8 be the blue
vertices in the induced vertex-colouring and let '8 = +8 \ �8 be the red vertices.
Case 1 (|'1 | = |'2 | = |�1 | = |�2 | = ∞). If there is an infinite red matching

" between '1 and '2, then - := '1 ∪ '2 is infinitely linked in red. Indeed, if
E1, E2 ∈ '1 or E1, E2 ∈ '2, then they have infinitely many common red neighbours
using properties of the ultrafilter. If E1 ∈ '1 and E2 ∈ '2, we will construct infinitely
many internally disjoint paths of length 5 between G0 := E1 and G5 := E2 as follows:
let G2G3 ∈ � (") so that G2 ∈ '1 and G3 ∈ '2, and let G1 be a common red neighbour
of G0 and G2 (of which we have infinitely many as above) and G4 be a common
neighbour of G3 and G5. It is clear that G0, . . . , G5 defines a red path and that we can
construct infinitely many internally disjoint paths like this. If there is no infinite red
matching between '1 and '2, then there is a finite set ( so that - := ('1 ∪ '2) \ (
induces a complete blue bipartite graph with parts of infinite size and hence is
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infinitely linked in blue. Similarly, there is a set . ⊆ �1 ∪ �2 which is co-finite in
�1 ∪ �2 and infinitely linked in red or infinitely linked in blue.
Case 2. Suppose without loss of generality that '1 is finite. It is easy to verify that

- = �1 ∪ �2 is infinitely linked in blue and . := '2 is infinitely linked in red.

The following corollary might be useful to make progress on Question 1.4.61.4.6.

Corollary 4.2.18. Suppose the edges of  N are 3-coloured and that there is some
colour U such that all but finitely many vertices have infinite degree in colour U.
Then, there is a monochromatic copy of %∞ with upper density at least 1/2.

Proof. Let �U be the spanning subgraph induced by all edges of colour U. By
deleting vertices if necessary we may assume that every vertex in �U has infinite
degree. We separate two cases.

Case 1 (�U is infinitely connected). In this case �U contains a spanning path by
Lemma 4.2.204.2.20 below.

Case 2 (�U is not infinitely connected). In this case there is a finite set ( so
that �U [N \ (] is disconnected. Let +1 be one component and +2 := N \ (( ∪ +1).
Then +1 and +2 induce a 2-edge-coloured bipartite graph and both +1 and +2 are
infinite since every vertex has infinite degree in �U. Thus the result follows from
Theorem 1.4.81.4.8.

4.2.6 Trees

In this subsection, we will deduce Theorem 1.4.101.4.10 from the following four lemmas.

Lemma 4.2.19. For any 2-edge-colouring of  N, there are sets ' and ( such that

(i) ' ∪ ( is cofinite,

(ii) if ' is infinite, then it is infinitely connected in red, and

(iii) if ( is infinite, then it is infinitely connected in one of the colours.

Lemma 4.2.20. Let ) be an infinite tree which contains an infinite path. If � is an
infinitely connected graph, then � contains a spanning copy of ) .
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Lemma 4.2.21. Let � be a 2-edge-coloured  N. There exists a set � ⊆ N, a vertex
E ∈ �, and a colour 2 such that every vertex in � := �2 [�] has infinite degree and
d(#� (E)) ≥ 1/2.

Lemma 4.2.22. Let ) be an infinite tree with at least one vertex of infinite degree.
If � is a graph in which every vertex has infinite degree, then for all E ∈ + (�), �
contains a copy of ) covering #� (E).

It is now easy to prove Theorem 1.4.101.4.10.

Proof of Theorem 1.4.101.4.10. Suppose the edges of  N are coloured with two colours.
If ) does not have an infinite path, it must have one vertex of infinite degree and
therefore the theorem follows immediately from Lemmas 4.2.214.2.21 and 4.2.224.2.22. So
suppose ) has an infinite path. By Lemma 4.2.194.2.19, there is an infinite set � with
d(�) ≥ 1/2 and a colour 2, so that the induced subgraph on � is infinitely connected
in 2. By Lemma 4.2.204.2.20, there is a monochromatic copy of ) spanning � and we are
done.

It remains to prove the four lemmas. We will use basic properties of ordinals, see
[7070, Chapter 6] for an introduction.

Proof of Lemma 4.2.194.2.19. Fix a 2-edge-colouring of  N. We define a sequence of
sets 'U, (U, for all ordinals U, as follows. Let (0 = N. For each U, we define 'U to
be the set of vertices in (U whose blue neighbourhood has finite intersection with
(U, and we set (U+1 = (U \ 'U. If _ is a limit ordinal, then we define (_ to be the
intersection of the sets (U, for U < _.
Note that the sets 'U are pairwise disjoint, and hence there is some countable

ordinal W such that 'U = ∅ for all U ≥ W. Let W∗ be the minimal ordinal such that
'W∗ is finite; it follows then that 'V = ∅ for all V > W∗. Set

' =
⋃
{'U : U < W∗}.

(Note that W∗ may be 0, in which case ' = ∅.)
Suppose that ' is infinite. Then W∗ > 0 and 'U is infinite for all U < W∗. Let

D, E ∈ ' with D ∈ 'U and E ∈ 'V for some U ≤ V < W∗. It follows that the red
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neighbourhoods of both D and E are cofinite in 'V. Since 'V is infinite, this implies
that there is a red path of length 2 connecting D and E, even after removing a finite
set of vertices. Hence ' is infinitely connected in red.

Set ( = (W∗+1. Then ' ∪ ( = N \ 'W∗ , so ' ∪ ( is cofinite. Moreover, since
'W∗+1 = ∅, it follows that for every E ∈ (, the blue neighbourhood of E has infinite
intersection with (. Now suppose that ( is not infinitely connected in blue. Then
there is a finite set � ⊆ ( and a partition ( \ � = - ∪ . such that - and . are both
nonempty, and every edge between - and . is red. Note that - and . must both be
infinite, since if G0 ∈ - and H0 ∈ . then - ∪ � and . ∪ � must contain the blue
neighbourhoods of G0 and H0 (both of which are infinite) respectively. But then the
red graph restricted to - ∪ . = ( \ � is infinitely connected.

Proof of Lemma 4.2.204.2.20. Let C1 ∈ + ()) and E1 ∈ + (�) (we think of C1 as being
the root of the tree and E1 as the embedding of the root in �). We will build an
embedding 5 of ) into � recursively, in finite pieces, at each stage ensuring that we
add the first vertices of + ()) \ dom 5 and + (�) \ rg 5 into the domain and range of
5 respectively. Initially, let 5 (C1) = E1 and E;0BC = E1. Since ) has an infinite path,
it has an infinite path starting at C1. Denote by %) such a path. We will proceed as
described by the following Algorithm 11.

Algorithm 1
1: while True do
2: Let E=4GC := min(+ (�) \ rg 5 ).
3: Let &=4GC ⊆ � be a finite path from E;0BC to E=4GC which is internally disjoint

from rg 5 .
4: Let )=4GC ⊆ + ()) be the next |+ (&=4GC) | − 1 vertices of %) \ dom 5 .
5: Extend 5 by embedding + ()=4GC) \ {E;0BC} into + (&=4GC).
6: Update E;0BC := E=4GC .
7: Let - ⊆ dom 5 be the set of C ∈ dom 5 for which (C := #) (C) \ dom 5 ≠ ∅.
8: for C ∈ ( do
9: Embed min(() into an arbitrary vertex in #� ( 5 (C)) \ rg 5 .

First, note that we can always follow lines 3 and 9 of Algorithm 11 since � is
infinitely connected and in particular every vertex has infinite degree. Let 5 :
+ ()) → + (�) be the function produced by Algorithm 11. We need to prove that 5
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is well-defined, surjective and an embedding of ) .
Clearly, every vertex on the path %) will be eventually embedded. Furthermore,

since we always embed the smallest not yet embedded neighbour of every previously
embedded C ∈ + ()) in line 9, every other vertex will be embedded eventually as
well. Therefore, 5 is well defined. Since in line 2 we choose the smallest not yet
covered vertex E=4GC and later embed a vertex into E=4GC , 5 is surjective. Finally,
by construction of 5 , it defines an embedding of ) into � (whenever a new vertex
C ∈ ) is embedded, its parent C′ is already embedded and we make sure that 5 (C) is
adjacent to 5 (C′)).

Proof of Lemma 4.2.214.2.21. Fix a 2-edge-colouring of  N. We claim that there are sets
'U, �U, (U for all ordinals U with the following properties.

(i) There is a unique ordinal W∗ such that 'U ∪ �U is infinite for all U < W∗,
finite for U = W∗ and empty for all U > W∗. We denote ' =

⋃
U<W∗ 'U and

� =
⋃
U<W∗ �U.

(ii) (U = (U′ for all ordinals U, U′ > W∗. We denote ( = (W∗+1.

(iii) ', �, ( are pairwise disjoint and ' ∪ � ∪ ( is cofinite.

(iv) If E ∈ 'W for some ordinal W, then E has finitely many blue neighbours in
( ∪⋃

U≥W 'U.

(v) If E ∈ �W for some ordinal W, then E has finitely many red neighbours in
( ∪⋃

U≥W �U.

(vi) Every E ∈ ( has infinitely many neighbours of both colours in (.

Indeed, we can proceed similarly as in Lemma 4.2.194.2.19: Let (0 = N. For each
U, we define 'U to be the set of vertices in (U whose blue neighbourhood has
finite intersection with (U, and �U to be the set of vertices in (U \ 'U whose red
neighbourhood has finite intersectionwith (U\'U. We then set (U+1 = (U\('U∪�U).
Observe that, if 'U ∪ �U is finite, then 'U+1 ∪ �U+1 is empty. Hence, the rest of the
construction is analogous.
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If ' ∪ � is empty, then let � = ( and choose an arbitrary vertex E ∈ (. Since � is
cofinite in N, either the blue or the red neighbourhood of E in � has upper density at
least 1/2. Since every vertex in � has infinite degree in both colours, we are done.

If ' ∪ � is non-empty it must be infinite (by the way ' and � are defined). Since
' ∪ �∪ ( = (' ∪ () ∪ (�∪ () is cofinite, we may assume without loss of generality
that ' is non-empty and d(' ∪ () ≥ 1/2. Let � = ' ∪ ( and let E ∈ '0 be arbitrary
(if ' is non-empty, then '0 must be infinite). Clearly every vertex in � has infinite
red degree in � and since E has only finitely many blue neighbours in �, we are
done.

Proof of Lemma 4.2.224.2.22. Let C1 ∈ + ()) be a vertex of infinite degree and let E1 = E

from the statement of the theorem (again we think of C1 as being the root of the
tree and E1 as the embedding of the root in �). We will build an embedding 5 of
) into � recursively, in finite pieces, at each stage adding one more child of every
previously embedded C ∈ ) (unless all children have been embedded already). The
embedding strategy is very similar to that in the proof of Lemma 4.2.204.2.20. Initially,
let 5 (C1) = E1. We will use the following Algorithm 22.

Algorithm 2
1: while True do
2: for C ∈ dom 5 do
3: if ( := #) (C) \ dom 5 is non-empty then
4: Embed min(() into min(#� ( 5 (C)) \ rg 5 ).

First, note that we can always follow line 4 of Algorithm 11 since every vertex
in � has infinite degree. Let 5 : + ()) → + (�) be the function produced by
Algorithm 22. We need to prove that 5 is well-defined, an embedding of ) and that
#� (E) ⊆ dom 5 .
Since we always embed the smallest not yet embedded neighbour of every previ-

ously embedded C ∈ + ()) in line 4, every other vertex will be embedded eventually
as well. Therefore, 5 is well defined. Furthermore, by construction of 5 , it defines
an embedding of ) into � (whenever a new vertex C ∈ ) is embedded, its parent
C′ is already embedded and we make sure that 5 (C) is adjacent to 5 (C′)). Finally
note that we are infinitely often in line 4 when C = C1 since #) (C1) is infinite.
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Since we always choose the smallest available vertex in #� (E) \ rg 5 , it follows that
#� (E) ⊆ rg 5 .

4.2.7 Graphs of Bounded Chromatic Number

In this section we will prove Theorem 1.4.111.4.11.

Proof of Theorem 1.4.111.4.11. (8). Let A ≥ 2 and let � be a one-way 2-locally finite
graph. Suppose the edges of  N are coloured with A colours and let U be a non-
trivial ultrafilter on N. Let 2U be the vertex-colouring induced by U and for all
8 ∈ [A], let �8 be the set of vertices receiving colour 8. Without loss of generality,
suppose that d(�1) ≥ 1/A. If �8 ∉ U , then �21 ∈ U and therefore every finite set
( ⊆ �1 has infinitely many common neighbours of colour 1 in �21. Hence, using
Proposition 4.2.154.2.15 with *1 = �1 and *2 = �21, we can find a monochromatic (in
colour 1) copy of � containing �1. If �1 ∈ U , then every finite set ( ⊆ �1 has
infinitely many common neighbours of colour 1 in �1. Hence, since every one-way
:-locally finite graph is 0-ruled, we can use 4.2.164.2.16 to find a monochromatic copy of
� (in colour 1) covering �1. Since d(�1) ≥ 1/A, this finishes the proof.
(88). Let : ≥ 2 and let � be a one-way :-locally finite graph. Suppose the

edges of  N are coloured with 2 colours and let U1 be a non-trivial ultrafilter on
N. Let 2U1 be the vertex-colouring induced by U1 and for all 8 ∈ [2], let �1,8 be
the set of vertices receiving colour 8. Choose 81 ∈ [2] so that �1,81 ∈ U1 and let
8′1 = 3 − 81. Now let U2 be a non-trivial ultrafilter on +2 = �1,8′1 and let 2U2 be the
vertex-colouring of+2 induced byU2 (unless+2 is finite, in this case we will stop the
iteration). For all 8 ∈ [2], let �2,8 be the set of vertices receiving colour 8. Choose
82 so that �2,82 ∈ U2 and let 8′2 = 3 − 82. Let +3 := �2,8′2 and continue in this manner
until the point at which there exist C ∈ N so that +C is finite or there are 9 ∈ [2],
and a set � ⊆ [C] with |� | = : − 1 and �8, 9 ∈ U8 for all 8 ∈ �. Note that, by the
pigeonhole principle, C ≤ 2: − 3 and suppose without loss of generality that 9 = 1.
Set +C+1 := +C \ �C,1. One of the sets �1,81 , �2,82 , . . . , �C,8C , +C+1 has upper density
at least 1/(C + 1) ≥ 1/(2: − 2). If, say, d(�ℓ,8ℓ ) ≥ 1/(2: − 2) for some ℓ ∈ [C],
then applying Proposition 4.2.164.2.16 with colour 8ℓ gives a monochromatic copy of �
covering �ℓ,8ℓ . Otherwise, we have d(+C+1) ≥ 1/(2: − 2) (and in particular we did
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not stop because +C is finite). Set*1 = +C+1, and let {*2, . . . ,*: } = {�8,1 : 8 ∈ �} in
reverse order (that is *2 corresponds to max(�) and so on). Then, using properties
of our ultrafilters, for every B ∈ [: −1], every finite set ( ⊆ *1∪ . . . *B has infinitely
many common neighbours of colour 2 in *B+1. Hence, applying Proposition 4.2.154.2.15
with colour 2 gives a monochromatic copy of � covering +C+1.
(888). We will use the following notation. Given 81, 82 ∈ N0, and !1 ∈ N81 and

!2 ∈ N82 , we write !1 ≺ !2 if !1 is an initial segment of !2. Furthermore, given
! = ( 91, . . . , 98) ∈ N8 for some 8 ∈ N, we define !− := ( 91, . . . , 98−1).
The process is very similar to (88) but more technical. Suppose the edges of

 N are coloured with A colours and let @ = (: − 2)A + 1. We will define sets �!
for ! ∈ ⋃@

8=0 [A − 1]8 and colourings j1 : {�! : ! ∈ ⋃@−1
8=0 [A − 1]8} → [A] and

j2 :
⋃@

8=1 [A − 1]8 → [A] with the following properties.

(a) The sets �! , ! ∈
⋃@

8=0 [A −1]8, are pairwise disjoint and their union is cofinite.

(b) For every ! ∈ ⋃@

8=1 [A − 1]8, �! is empty or every finite set ( ⊆ �! has
infinitely many common neighbours of colour j1(�!) in �! .

(c) For every ! ∈ ⋃@

8=1 [A −1]8, �! is empty or every finite set ( ⊆ ⋃
!≺! ′ �! ′ has

infinitely many common neighbours of colour j2(!) in �!− .

We will construct these sets and colourings recursively. In the process, we will also
construct sets �! and ultrafilters U! on �! for every ! ∈

⋃@

8=0 [A − 1]8.
Let �() = N and let U() be a non-trivial ultrafilter on �() , where () denotes the

empty sequence. Let 2U() be the vertex-colouring induced by U() . Let 2 be the
colour so that �() , the set of vertices of colour 2, is in U() and let j1(�()) = 2. Let
[A] \ {2} = { 91, . . . , 9A−1} and, for 8 ∈ [A −1], let �(8) be the set of vertices receiving
colour 98 and let let j2((8)) = 98.

In the next step, we proceed as follows for every 80 ∈ [A − 1]. If �(80) is finite,
let �(80) = �(80,8) = ∅ for every 8 ∈ [A − 1]. Otherwise, let U(80) be a non-trivial
ultrafilter on �(80) and let 2U(80)

be the vertex-colouring induced byU(80) . Let 2 be the
colour so that �(80) , the set of vertices of colour 2, is in U(80) and let j1(�(80)) = 2.
Let [A] \ {2} = { 91, . . . , 9A−1} and, for 8 ∈ [A − 1], let �(80,8) be the set of vertices
receiving colour 98 and let let j2((80, 8)) = 98.
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We proceed like this until we defined the sets �! for every ! ∈ [A − 1]@ and let
�! := �! for all ! ∈ [A − 1]@. It is easy to see from the ultrafilter properties that the
above properties hold.

Therefore, for every ! ∈ ⋃@−1
8=0 [A − 1]8, �! is empty or can be covered by a

monochromatic copy of � by Proposition 4.2.164.2.16 (since every one-way :-locally
finite graph is 0-ruled). Furthermore, for every ! ∈ [A − 1]@ for which �!

is non-empty, we find : − 1 sets !1 ≺ . . . ≺ !:−1 ≺ ! of the same colour
w.r.t. j2 by pigeonhole principle. Therefore, applying Proposition 4.2.154.2.15 to
*: := �!−1 , . . . ,*2 := �!−

:−1
,*1 := �! , we find a monochromatic copy of �

covering �! . Since, there are � :=
∑@

8=0(A − 1)8 sets �! , one of them has upper
density at least 1/�.

The above proof immediately shows that for every one-way :-locally finite graph�
and every A-edge-coloured N, there is a collection of atmost 5 (A, :)monochromatic
copies of � covering a cofinite subset of N, where 5 (A, :) is as in the statement
of Theorem 1.4.131.4.13. In order to obtain Theorem 1.4.131.4.13, we need to guarantee
that these copies can be chosen to be disjoint. To do so, instead of applying
Propositions 4.2.154.2.15 and 4.2.164.2.16, we will embed the graphs simultaneously doing one
step of the embedding algorithms of Propositions 4.2.154.2.15 and 4.2.164.2.16 at a time always
making sure not to repeat vertices (which is possible since we have infinitely many
choices in every step but only finitely many embedded vertices). Otherwise, the
proof is exactly the same and therefore we will omit it.

4.2.8 Graphs of Bounded Ruling Number

In this section, we will prove Theorems 1.4.151.4.15 and 1.4.191.4.19.

Proof of Theorem 1.4.151.4.15. Let � be a finitely ruled graph and suppose the edges of
 N are coloured with A colours. Let U be a positive ultrafilter on N and, for 8 ∈ [A],
denote by �8 be the set of vertices of colour 8 in the induced vertex-colouring by U .
Suppose without loss of generality that �1 ∈ U . Since � is finitely ruled, there is
a finite set ( such that � [(2] does not have finite dominating sets and in particular
� [(2] is 0-ruled.
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We will now construct the embedding 5 : + (�) → N. First embed ( into an
arbitrary monochromatic clique in �1 of colour 1 and size |( | (such a clique can be
found easily since �1 ∈ U guarantees that every finite set � ⊆ �1 has infinitely
many common neighbours in colour 1). Let �′1 be the common neighbourhood in
colour 1 of 5 (() restricted to �1 and note that �′1 ∈ U and hence satisfies the
assumptions of Proposition 4.2.164.2.16. Therefore, � [(2] can be surjectively embedded
into �′1, and we can extend 5 to an embedding of�. SinceU is a positive ultrafilter,
�′1 ⊆ 5 (+ (�)) has positive upper density, and we are done.

Proof of Theorem 1.4.191.4.19. Colour the edges of  N using the Rado colouring. Sup-
pose now that + is the vertex set of a monochromatic copy of �, say in colour
8 ∈ [2]. Then for each # ∈ N, we have

+ ⊆∗
#⋂
==1

⋃
E∈�=

#8 (E),

where we write � ⊆∗ � if � \ � is finite. It follows from Observation 4.2.44.2.4 that
3

(⋃
E∈�= #8 (E)

)
= 1 − 3

(⋂
E∈�= #3−8 (E)

)
= 1 − 2−|�= | for every = ∈ N. Therefore,

we have

d

(
#⋂
==1

⋃
E∈�=

#8 (E)
)
≤

#∏
==1
(1 − 2−|�= |)

and hence

d(+) ≤
∞∏
==1
(1 − 2−|�= |) ≤

∞∏
==1

exp
(
−2−|�= |

)
.

It is well-known that an infinite product
∏∞
==1 U=, with U= ∈ (0, 1), converges to 0 if

and only if
∞∑
==1

log(U=) = −∞.

Since |�= | ≤ log2(=) for all sufficiently large =, we have

log
(
exp

(
−2−|�= |

))
≤ −1/=.

By the limit comparison test and the divergence of the harmonic series, it follows
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that 3 (+) = 0.
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5
Robust Triangle Tilings

5.1 Overview

In this chapter, we are going to prove the following result.

Theorem 1.5.9 (Allen et al. [33]). There is a constant � > 0 such that for all = ∈ N
divisible by 3, all ? ≥ � (log =)1/3=−2/3 and all =-vertex graphs� with X(�) ≥ 2=/3,
� ? has a triangle tiling w.h.p.

In fact we shall prove the following similar theorem with a super-regular host-
graph, which might be of independent interest.

Theorem 5.1.1. For every 3 > 0 there exist constants Y > 0 and � > 0 such that
the following is true for every = ∈ N and ? ≥ � (log =)1/3=−2/3. If Γ is a tripartite
graph with parts +1, +2, +3 of size = so that Γ is (Y, 3+, 3)-super-regular, then Γ?
contains a triangle tiling w.h.p.

We will deduce Theorem 1.5.91.5.9 from Theorem 5.1.15.1.1 in Section 5.55.5. The proof is
quite technical and long, but uses standard methods in extremal graph theory. The
proof of Theorem 5.1.15.1.1 is the main challenge and will span several sections. We
will describe the general set-up and proof outline here.

5.1.1 Set-up

Constants: There are a few constants which we shall use repeatedly throughout
this chapter. We will define all of them here for convenience and they remain fixed
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throughout the proof. They will obey the following hierarchy

0 < Y, 1/� � Y′ � [ � [′ � U � 3 < 1. (5.1.1)

By this we mean that given some 3 as in the statement of Theorem 5.1.15.1.1, we can
choose the remaining constants from right to left such that if we choose each constant
sufficiently small (in terms of some function of the already chosen constants), then
all the required inequalities between the constants in the proof will hold. In more
technical proofs, we sometimes require the use of other constants and we will always
explicitly state their relation to the constants above. The complete list of constants
we will use obeys the following hierarchy

0 < Y, 1/� � Y′ � [ � [′ � V′′ � W � V′ � V � U � 3 < 1. (5.1.2)

The host-graph Γ: By Lemma 2.2.42.2.4, it suffices to prove Theorem 5.1.15.1.1 for
(Y, 3, 3 − Y)-super regular 3-cylinders (that is, all pairs have density exactly 3).
Throughout the rest of this chapter, we will fix some = ∈ N, disjoint vertex-sets
+1, +2 and+3of size =, and a tripartite (Y, 3, 3− Y)-super-regular graph Γwith parts
+1, +2, +3. We will assume that = is sufficiently large in terms of all fixed constants
whenever necessary.

(Very) high probability: We further fix some probability ? ≥ � (log =)1/3=−2/3

throughout the chapter. As Y and � feature at the bottom of our constant hierarchy
(5.1.15.1.1), we can always push Y as small and � as large as we want, as long as they
are independent of =. Therefore, for brevity, we will say ‘w.h.p. ...’ as shorthand
for ‘there exist � > 0 and Y > 0 such that w.h.p. ...’ throughout the rest of this
chapter. Note that if we have two events �1, �2 which hold w.h.p., then by taking a
union bound, it follows that �1 ∩ �2 holds w.h.p. However, we can only iterate this
constantly many times (i.e. 5 (Y′, [, [′, U, 3) many times for some function 5 ) and
we sometimes need to take larger union bounds. We will also say that an event holds
with very high probability (w.v.h.p.) if for any  > 0, there exists a large enough
� > 0 and a small enough Y > 0 such that the probability that the event holds in
Γ? is at least 1 − =− . This allows us to take union bounds over polynomially many
events. E.g., given events �1, . . . , �=3 which hold w.v.h.p., �1 ∩ . . . ∩ �=3 holds
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w.v.h.p. as well.
Special vertex-sets and induced subgraphs: LetV := {∅} ∪+1 ∪ (+1 ×+2) ∪
(+1 ×+2 ×+3). That is, an element D ∈ V is a vector of some length 0 ≤ ℓ(D) ≤ 3
such that for each 8 ≤ ℓ(D), we have that D contains exactly one vertex from + 8.
Now given D = (D1, . . . , Dℓ) ∈ V for some ℓ ∈ [3]0, let

+ 8D :=

+ 8 \ {D8} for 1 ≤ 8 ≤ ℓ

+ 8 for ℓ + 1 ≤ 8 ≤ 3,
(5.1.3)

denote the vertex-sets after removing the vertices which feature in D. We will also
at times want to consider the subsets which leave out not only the vertices in D but
also some extra vertices which lie in +ℓ+1, say D and E. We define + 8D, D, E := + 8D for
all 8 ≠ ℓ + 1 and +ℓ+1D, D, E := +ℓ+1 \ {D, E}.

Given some D ∈ V, we consider the graph induced after removing the vertices of
D, that is

ΓD := Γ
[⋃

8∈[3]
+ 8D

]
.

Similarly, given D of length ℓ and a pair of vertices D and E in +ℓ+1, ΓD, D, E denotes
the graph induced on the vertex-sets + 8D, D, E as above.

Triangles: For a graph �, Tr(�) denotes the set of triangles in �, for a vertex
E ∈ + (�), TrE (�) denotes the set of pairs in � which form a triangle with E.
Embeddings of partial triangle tilings: We will be concerned with embedding

partial triangle tilings in a given host graph. For C ∈ [=], we therefore define �C to be
the graph on vertex-set [C] × {3}, whose edges consist of the edges {{(B, 8), (B, 9)} :
B ∈ [C], 8 ≠ 9 ∈ [3]}. Thus �C simply consists of C labelled vertex disjoint triangles.
Given a graph � on +1 ∪ +2 ∪ +3 (usually � = Γ?), we define ΦC (�) to be the

collection of labelled embeddings of �C into �, which map [C] × {8} to a subset of
+ 8 for 8 ∈ [3]. We will be interested in embeddings that fix certain vertices to be
isolated.

Given D = (D1, . . . , Dℓ) ∈ V of length ℓ ≤ 3 and C ∈ [= − 1], we define
ΦCD (�) ⊆ ΦC (�) to be those q ∈ ΦC (�) for which q((B, 8)) ≠ D8 for all 8 ∈ [ℓ] and
B ∈ [C] (that is, we fix the ℓ vertices in D to be isolated in the embedding of �C).
Note that if D = ∅, then ΦCD (�) = ΦC (�).
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5.1.2 Proof Outline

We will deduce Theorem 5.1.15.1.1 from the following two propositions. The first
proposition counts ‘almost-tilings’.

Proposition 5.1.2. W.v.h.p., we have��ΦC (Γ?)�� ≥ (1 − [)C (?3)3C (=!C)3 . (5.1.4)

for all C ≤ (1 − [)=.

In order to go beyond Proposition 5.1.25.1.2, we need different techniques. The
second proposition allows us to extend incomplete triangle tilings by embedding
further triangles one by one.

Proposition 5.1.3. W.v.h.p., the following is true for every integer (1 − [)= ≤ C < =
and every g = g(=) ≥ (1 − [′/2)=. If��ΦC (Γ?)�� ≥ g(?3)3C (=!C)3

then ��ΦC+1(Γ?)�� ≥ Ug(?3)3(C+1) (=!(C+1))3.

The proof of Proposition 5.1.35.1.3 is the main difficulty of this chapter and is techni-
cally involved. In order to count embeddings of partial triangle tilings in ΦC+1(Γ?),
we will first count how many candidates there are in ΦC (Γ?) (by fixing certain ver-
tices to be isolated). If there are many triples of vertices which are isolated in many
embeddings then we can argue that many of these triples actually host triangles and
thus extend to embeddings inΦC+1(Γ?). When considering embeddings which leave
certain vertices isolated we also do this in steps, growing our set of isolated vertices
one vertex at a time. The key step is captured by the following lemma.

Lemma 5.1.4 (Local distribution Lemma). W.v.h.p., the following holds for all
ℓ ∈ [3], all integers (1 − [)= ≤ C < = and all D = (D1 . . . , Dℓ−1) ∈ V. If
g = g(=) ≥ (1 − [′)= and���ΦCD (Γ?)��� ≥ g(?3)3C ((= − 1)!C)ℓ−1(=!C)4−ℓ,
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5 Robust Triangle Tilings

then for all but at most U= vertices Dℓ ∈ +ℓ���ΦCD′ (Γ?)��� ≥ (
3

10

)2
g(?3)3C ((= − 1)!C)ℓ (=!C)3−ℓ, (5.1.5)

where D′ = (D, Dℓ) ∈ V.

In Section 5.25.2, we will provide some results on triangle counts in Γ?, which will
be useful in the remaining proofs. In Section 5.35.3, we will prove Proposition 5.1.35.1.3
(using Lemma 5.1.45.1.4 as a blackbox for now) and Proposition 5.1.25.1.2, and deduce
Theorem 5.1.15.1.1. In Section 5.45.4, we will prove Lemma 5.1.45.1.4 with a delicate argument
using entropy.

5.2 Counting Triangles in Γ?
The purpose of this section is to prove that certain properties of Γ? hold with high
probability. These properties regard triangle counts in Γ? and their proofs use the
properties of regular tuples given in Section 2.22.2 and the probabilistic tools outlined
in Section 2.42.4.

Lemma 5.2.1. W.v.h.p., we have��Tr(Γ? [-1 ∪ -2 ∪ -3])
�� = (?3)3 |-1 | |-2 | |-3 | ± 1000Y(?3)3=3 (5.2.1)

for all -1 ⊆ +1, -2 ⊆ +2 and -3 ⊆ +3.

We will frequently replace 1000Y by Y′ in the above equation, which we can do
since Y � Y′.

Proof. We first show that the lower bound holds w.v.h.p. using Janson’s inequality.

Claim 5.1. W.v.h.p., we have��Tr(Γ? [-1 ∪ -2 ∪ -3])
�� ≥ (?3)3 |-1 | |-2 | |-3 | − 100Y(?3)3=3 (5.2.2)

for all -1 ⊆ +1, -2 ⊆ +2 and -3 ⊆ +3.
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Proof. Fix -1 ⊆ +1, -2 ⊆ +2 and -3 ⊆ +3 and let . := Tr(Γ[-1 ∪ -2 ∪ -3]). We
may assume that

|-1 | |-2 | |-3 | ≥ 100Y=3 (5.2.3)

for otherwise (5.2.25.2.2) is trivially true. In particular, we have |-8 | ≥ Y= for all 8 ∈ [3]
and thus Lemma 2.2.72.2.7 implies

|. | ≥ 33 |-1 | |-2 | |-3 | − 10Y=3. (5.2.4)

Consider now the random variable

- := | Tr(Γ? [-1 ∪ -2 ∪ -3]) | =
∑
�∈S

��,

where S = {�) : ) ∈ . } and �) is the event that the triangle ) ∈ . is present in Γ?.
Let

_ := E [-] = ?3 · |. | ≥ (?3)3 |-1 | |-2 | |-3 | − 10Y?3=3. (5.2.5)

which in combination with (5.2.35.2.3) implies

_ ≥ Y′?3=3. (5.2.6)

Furthermore, we define

Δ̄ :=
∑

),) ′∈. : )∩) ′≠∅
E

[
��) ��) ′

]
≤ ?5 · |. | · 3= + ?3 · |. | (5.2.7)

= _(3=?2 + 1). (5.2.8)

where the inequality in (5.2.75.2.7) follows from the fact that there are at most |. | · 3=
pairs of triangles intersecting in exactly one edge, no pairs intersecting in exactly
two edges and |. | pairs intersecting in three edges. Hence Janson’s inequality
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(Lemma 2.4.22.4.2) implies

P [- ≤ (1 − Y)_] ≤ exp
(
−Y

2_2

2Δ̄

)
(5.2.9)

≤ exp
(
−Y3?3=3 · 2_/Δ̄

)
(5.2.10)

≤ exp
(
−Y3?3=3 · 1/(3=?2)

)
+ exp

(
−Y3?3=3

)
(5.2.11)

≤ exp (−10=) (5.2.12)

for all large enough =. Here, we used (5.2.65.2.6) in (5.2.105.2.10), and (5.2.75.2.7) in (5.2.115.2.11)
(more precisely, we used that (5.2.75.2.7) implies that Δ̄ ≤ 6_=?2 or Δ̄ ≤ 2_).
By (5.2.55.2.5), we have (1− Y)_ ≥ (?3)3 |-1 | |-2 | |-3 | −100Y(?3)3=3. Hence, taking

a union bound over all choices of -1 ⊆ +1, -2 ⊆ +2, -3 ⊆ +3, we deduce that,
(5.2.25.2.2) holds w.v.h.p. for all -1 ⊆ +1, -2 ⊆ +2, -3 ⊆ +3. �

We now show that the upper bound holds w.v.h.p. in the case when -8 = + 8 for all
8 ∈ [3].

Claim 5.2. W.v.h.p., we have��Tr(Γ?)
�� ≤ (?3)3=3 + 100Y(?3)3=3. (5.2.13)

Proof. Let . = Tr(Γ) and let - = | Tr(Γ?) | =
∑
)∈. �) . By Lemma 2.2.72.2.7, we have

|. | = 33=3 ± 10Y=3. (5.2.14)

It follows that
_ := E [-] = (?3)3=3 ± 10Y?3=3. (5.2.15)

Using notations from the Kim-Vu inequality (Lemma 2.4.32.4.3), we have �1 = =?2,
�2 = ? and �3 = 1. Hence �′ = max{1, =?2} ≤ _1/2 and � = _. Let ` = _1/16 and
let 2 = 2(3) be the constant from Lemma 2.4.32.4.3. Then, for large enough =,

2 · (��′)1/2`3 ≤ 2_3/4 · _3/16 ≤ Y_.
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Hence, we have

P [- ≥ (1 + Y)_] ≤ 102=4 · 4−` ≤ 4−=1/16

for all large enough =. Here, the last inequality follows from (5.2.155.2.15) which implies
_ ≥ = log =. This finishes the proof of the claim. �

We now conclude the proof of the lemma. W.v.h.p., both claims above hold
simultaneously. Suppose now both claims hold and fix -1 ⊆ +1, -2 ⊆ +2, -3 ⊆
+3. LetU =

(
{-1, +

1 \ -1} × {-2, +
2 \ -2} × {-3, +

3 \ -3}
)
\ {(-1, -2, -3)} and

observe that��Tr(Γ? [-1 ∪ -2 ∪ -3])
�� = ��Tr(Γ?)

�� − ∑
(*1,*2,*3)∈U

��Tr(Γ? [*1 ∪*2 ∪*3])
��

≤ (?3)3 |-1 | |-2 | |-3 | + 800Y(?3)3=3.

Here we used (5.2.135.2.13) to bound
��Tr(Γ?)

�� and (5.2.25.2.2) to bound each term of the form��Tr(Γ? [*1 ∪*2 ∪*3])
��. This completes the proof.

Corollary 5.2.2. W.v.h.p., we have��TrE (Γ?)
�� = (1 ± Y′) (?3)3=2

for all but at most Y′= vertices E ∈ + (Γ).

Proof. Let Ỹ = 1000Y and let � ⊆ Γ be any graph with

|Tr(� [-1 ∪ -2 ∪ -3]) | = (?3)3 |-1 | |-2 | |-3 | ± Ỹ(?3)3=3 (5.2.16)

for all -1 ⊆ +1, -2 ⊆ +2 and -3 ⊆ +3. Since (by Lemma 5.2.15.2.1) this is satisfied by
Γ? w.v.h.p., it suffices to show that� satisfies the conclusion of Corollary 5.2.25.2.2. For
8 ∈ [3], let -8 be the set of vertices E ∈ + 8 with |TrE (�) | ≤ (1 − Y′) (?3)3=2, and let
let .8 be the set of vertices E ∈ + 8 with |TrE (�) | ≥ (1 + Y′) (?3)3=2. We claim that
|-1 | ≤ Y′/10 · =. Indeed, assuming the contrary, we have��Tr(� [-1 ∪+2 ∪+3])

�� < (?3)3 |-1 | |+2 | |+3 | − Ỹ(?3)3=3,
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contradicting (5.2.165.2.16). Using a similar argument, we can bound the sizes of -2 and
-3, and .1, .2 and .3, completing the proof.

Sometimes, we need an upper bound on | TrE (Γ?) | which works for all E ∈ + (Γ).
For this we simply upper bound this quantity by the number of triangles in � (3=, ?)
containing a specific vertex using a result of Spencer [113113].

Lemma 5.2.3. W.v.h.p., we have��TrE (Γ?)
�� ≤ 10?3=2

for all vertices E ∈ + (Γ).

In the remainder of this section we prove some more technical properties of Γ?
which will come in useful in the proof of Lemma 5.1.45.1.4 (more specifically, in the
proof of Lemma 5.4.15.4.1).

Definition 5.2.4. For ℓ ∈ [3], D = (D1, . . . , Dℓ−1) ∈ V, D, E ∈ +ℓ and � = { 91, 92} :=
[3] \ {ℓ}, we define the following sets.

(i) �D (D) := {(H1, H2) ∈ + 91
D ×+ 92

D : DH1, DH2 ∈ � (Γ), H1H2 ∈ � (Γ?)}.

(ii) �D (D, E) := {(H1, H2) ∈ + 91
D × + 92

D : DH1, DH2, EH1, EH2 ∈ � (Γ), H1H2 ∈
� (Γ?)}.

(iii) (D (D) := {(H1, H2) ∈ + 91
D ×+ 92

D : DH1, DH2, H1H2 ∈ � (Γ?)}.

We will show that �D (D, E) is large for most pairs of vertices D, E.

Lemma 5.2.5. W.v.h.p., the following holds for every ℓ ∈ [3], every choice of
D = (D1, . . . , Dℓ−1) ∈ V and every D ∈ +ℓ. We have���D (D, E)�� ≥ 35?=2/4

for all but at most Y′= vertices E ∈ +ℓ.

Proof. Fix some ℓ ∈ [3], D = (D1, . . . , Dℓ−1) ∈ V and D ∈ +ℓ. We first use
regularity to show that there are many edges in the deterministic graph.
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Claim 5.3. We have ����Γ(#ΓD (D, E))��� ≥ 35=2/2 (5.2.17)

for all but at most 2Y= vertices E ∈ +ℓ.

Proof. Assume w.l.o.g. that ℓ = 3. For 8 ∈ [2], let -8 = #Γ(D;+ 8) and for E ∈
+3 \ {D}, let .8 (E) = #Γ(D, E;+ 8) ⊆ -8. Since Γ is (Y, 3, 3 − Y)-super-regular, we
have |-8 | ≥ (3 − Y)= for both 8 ∈ [2]. For 8 ∈ [2], let '8 ⊆ +3 bet the set of
vertices E ∈ +3 for which |.8 (E) | < (3 − Y)2= and let ' = '1 ∪ '2. It follows from
the Y-regularity of (+8, +3), that |'8 | ≤ Y= for both 8 ∈ [2] and hence |' | ≤ 2Y=.
Furthermore, for every E ∈ +3 \ ', it follows from the Y-regularity of the pair
(+2, +3) that |�Γ(.1(E) ∪ .2(E)) | ≥ (3 − Y)5=2. This completes the proof. �

Observe now that each edge in �Γ(#ΓD (D, E)) is present independently in Γ? and
hence it follows from Chernoff’s inequality that, w.v.h.p., we have���D (D, E)�� ≥ 35?=2/4

for all but at most 2Y= vertices E ∈ +3. Taking a union bound over all ℓ ∈ [3],
D = (D1, . . . , Dℓ−1) ∈ V and D ∈ +ℓ completes the proof.

An application of Janson’s inequality shows that, w.v.h.p., (D (D) is large for
all choices of (D, D) ∈ V. We will require a slightly stronger and more technical
statement than this, showing that (D (D) has large intersectionwith a given, reasonably
large set � ⊆ �D (D).

Lemma 5.2.6. Let ℓ ∈ [3], D = (D1, . . . , Dℓ−1) ∈ V and D ∈ +ℓ. Let { 91, 92} =
[3] \ {ℓ}. Let � ⊆ �D (D) be a possibly random set which is independent from
{4 ∈ � (Γ?) : 4 ∩ {D} ≠ ∅}11 and assume |� | ≥ U?=2. Then, w.v.h.p., we have��� ∩ (D (D)�� ≥ ?2 |� |/2.

Proof. Fix ℓ ∈ [3], C ∈ [=], D = (D1, . . . , Dℓ−1) ∈ V and D, E ∈ +ℓ. Let �D ⊆ Γ? be
the graph on + (Γ) consisting of all edges in � (Γ?) which are incident to D and let

1In other words, � is completely determined by revealing all edges which are not incident to D.
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�2
D = Γ? \ �D. Reveal �2

D and assume that Δ(�2
D) ≤ 4?= (a simple application of

Chernoff’s bound (Lemma 2.4.12.4.1) shows that this holds w.v.h.p.).
Let F = {{DG1, DG2} : G1G2 ∈ �}. We will now use Janson’s inequality to show

that many pairs of edges in F are present in �D (we can treat F as a fixed set here
since �2

D is revealed).

Claim 5.4. W.v.h.p. (in �D), we have��� ∩ (D (D)�� ≥ ?2 |� |/2.

Proof. Note that |F | = |� | ≥ U?=2. Let

- =
��� ∩ (D (D)�� = ∑

�∈F
��

and note that we only need to reveal �D in order to determine �� . Let

_ := E [-] = ?2 |F | (5.2.18)

≥ U?3=2 (5.2.19)

≥ �2 log =. (5.2.20)

Furthermore, let

Δ̄ :=
∑

(�,�′)∈F 2: �∩�′≠∅
E [����′] (5.2.21)

≤ 8?4 |F |= + ?2 |F | (5.2.22)

= _(1 + 8?2=). (5.2.23)

Here, (5.2.225.2.22) follows from the fact that there are at most |F | · Δ(�2
D) = |F | · 8?=

pairs (�, �′) ∈ F 2 intersecting in exactly one edge, and F pairs intersecting in two
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edges. Hence Janson’s inequality (Lemma 2.4.22.4.2) implies

P [- ≤ 1/2 · _] ≤ exp
(
− _

2

8Δ̄

)
(5.2.24)

≤ exp
(
−_/(8(1 + 8?=2))

)
(5.2.25)

≤ exp (−_/16) + exp
(
−_/(128?=2)

)
(5.2.26)

≤ =−� + 4−=1/3
(5.2.27)

for all large enough =. Here, we used (5.2.235.2.23) in (5.2.255.2.25), the fact that 1+8?=2 ≤ 2 or
1 + 8?=2 ≤ 16?=2 in (5.2.265.2.26), and (5.2.195.2.19) and (5.2.205.2.20) in (5.2.275.2.27). This completes
the proof of the claim. �

5.3 Embedding (Partial) Triangle Tilings

5.3.1 Counting Almost Triangle Tilings

Here we prove Proposition 5.1.25.1.2.

Proof of Proposition 5.1.25.1.2. By Lemma 5.2.15.2.1, we have w.v.h.p.��Tr(Γ? [-1 ∪ -2 ∪ -3])
�� = (?3)3 |-1 | |-2 | |-3 | ± Y′(?3)3=3 (5.3.1)

for all -1 ⊆ +1, -2 ⊆ +2 and -3 ⊆ +3. We will show by induction on C that if Γ?
satisfies (5.3.15.3.1), then it satisfies��ΦC (Γ?)�� ≥ (1 − [)C (?3)3C (=!C)3 (5.3.2)

for all integers C ≤ (1 − [)=, as claimed. (5.3.25.3.2) is trivial for C = 0. Suppose now
(5.3.25.3.2) holds for some integer 0 ≤ C ≤ (1 − [)=. Fix some q ∈ ΦC (Γ?) and let
-8 ⊆ + 8, 8 ∈ [3], be the sets of vertices which are not in q(�C). Note that |-8 | = =− C
for all 8 ∈ [3]. Now the number of triangles which extend q to an embedding in
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ΦC+1(Γ?) is precisely
��Tr(Γ? [-1 ∪ -2 ∪ -3])

�� and by (5.3.15.3.1), we have��Tr(Γ? [-1 ∪ -2 ∪ -3])
�� ≥ (?3)3 |-1 | |-2 | |-3 | − Y′(?3)3=3

≥ (?3)3(= − C)3 − Y′/[3 · (?3)3(= − C)3

≥ (1 − [) (?3)3(= − C)3.

It follows from the induction hypothesis that��ΦC+1(Γ?)�� ≥ ��ΦC (Γ?)�� · (1 − [) (?3)3(= − C)3
≥ (1 − [)C+1(?3)3(C+1) (=!C+1)3 ,

finishing the proof.

5.3.2 Extending Almost Triangle Tilings

In this subsection, we will prove Proposition 5.1.35.1.3 using the local distribution
lemma (Lemma 5.1.45.1.4) as a blackbox for now. The main difficulty of this proof lies
in the following lemma. Here, given a graph � ⊆ Γ, a vertex E ∈ +1 and some
C ∈ N0, we denote by ΦCE (�) ⊆ ΦC (�) the set of embeddings q ∈ ΦC (�) for which
q((1, 1)) = E.

Lemma 5.3.1. W.v.h.p., the following is true for every g ≥ (1 − [′)= and every
integer (1 − [)= ≤ C < =. For all E ∈ +1, if��ΦCE (Γ?)�� ≥ g(?3)3C (= − 1)!C (=!C)2,

then ��ΦC+1E (Γ?)�� ≥ √Ug(?3)3(C+1) (= − 1)!C (=!C+1)2.

We first show how Proposition 5.1.35.1.3 follows from this.

Proof of Proposition 5.1.35.1.3. Let (1 − [)= ≤ C < = and choose g0 so that��ΦC (Γ?)�� = g0(?3)3C (=!C)3.
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If g > g0, there is nothing to prove, hence it is sufficient to prove the proposition for
all (1 − [′/2)= ≤ g ≤ g0. Let*1 ⊆ +1 be the set of vertices D1 ∈ +1 for which��ΦCD1 (Γ?)

�� ≥ 32g0/100 · (?3)3C (= − 1)!C (=!C)2.

It follows from Lemma 5.1.45.1.4 (with ℓ = 1) that, w.v.h.p., we have |*1 | ≥ =/2. It
further follows from Lemma 5.3.15.3.1 that, w.v.h.p., we have��ΦC+1D1 (Γ?)

�� ≥ √U32g0/100 · (?3)3(C+1) (= − 1)!C (=!C+1)2.

for every D1 ∈ *1. Therefore, w.v.h.p., we have��ΦC+1(�)�� ≥ ∑
D1∈*1

��ΦC+1D1 (Γ?)
��

≥ = ·
√
U32g0/200 · (?3)3(C+1) (= − 1)!C (=!C+1)2

≥ Ug0 · (?3)3(C+1) (=)!C (=!C+1)2

≥ Ug · (?3)3(C+1) (=)!C (=!C+1)2

for every g ≤ g0. Taking a union bound over all (1 − [)= ≤ C < = finishes the
proof.

It remains to prove Lemma 5.3.15.3.1.

Proof of Lemma 5.3.15.3.1. Let  ≥ 100 and let Ũ = U1/5. Let � = Γ? and fix some
E1 ∈ +1. Let (1 − U)= ≤ C < = and choose g0 so that��ΦCE1 (Γ?)

�� = g0(?3)3C (= − 1)!C (=!C)2.

If g > g0, there is nothing to prove, hence it is sufficient to prove the proposition for
all (1 − [′)= ≤ g ≤ g0.
Given some 8 ∈ [3], we call a sequence of vertices D = (D1, . . . , D8) ∈ +1× . . .×+ 8

good if ���ΦCD (�)��� ≥ Ũ8−1g0(?3)3C ((= − 1)!C)8 (=!C)3−8 .
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Note that (E1) is good by definition. Let -2(E1) ⊆ #Γ(E1;+2) be the set of vertices
D2 ∈ #Γ(E1;+2) such that (E1, D2) is good and degΓ(E1, D2) ≥ 32=/2.

Step 1. With probability at least 1 − =−8 , we have |-2(E1) | ≥ 3=/2.

Given E2 ∈ +2, let -3(E1, E2) ⊆ #Γ(E1, E2;+3) be the set of vertices D3 ∈
#Γ(E1, E2;+3) such that {E1, E2, D3} is good. Furthermore, let .3(E1, E2) ⊆
-3(E1, E2) be the set of those D3 such that E2D3 ∈ � (�).

Step 2. With probability at least 1 − =−8 the following is true for every E2 ∈ +2. If
E2 ∈ -2(E1), then we have |.3(E1, E2) | ≥ ?32=/8.

Let now /′ = /′(E1) =
{
(D2, D3) ∈ +2 ×+3 : D2 ∈ -2(E1), D3 ∈ .3(E1, D2)

}
and

/ = / (E1) = {(D2, D3) ∈ /′ : {E1, D2, D3} is a triangle in �}. We will use Steps 11
and 22 to deduce the following.

Step 3. With probability 1 − =−4 , we have |/′| ≥ ?33=2/16 and Δ(�) ≤ 4?=.

Step 4. With probability at least 1 − =−4 , the following is true in �. If |/′| ≥
?33=2/16 and Δ(�) ≤ 4?=, then we have |/ | ≥ (?3)3=2/32.

Before we prove the claims in Steps 11 to 44, let us deduce the lemma. Combining
Steps 33 and 44, we have |/ | ≥ (?3)3=2/32 with probability at least 1 − =−2 .
Furthermore, for all (D2, D3) ∈ / , the vector (E1, D2, D3) is good and hence���ΦC(E1, D2, D3) (�)

��� ≥ Ũ2g0(?3)3C ((= − 1)!C)3. Therefore,��ΦC+1E1 (�)
�� ≥ ∑

(D2,D3)∈/

���ΦC(E1, D2, D3) (�)
���

≥ (?3)3=2/32 · Ũ2g0(?3)3C ((= − 1)!C)3

≥
√
Ug(?3)3(C+1) (= − 1)!C (=!C+1)2

for all g ≤ g0. Taking a union bound over all E1 ∈ +1 and all (1 − U)= ≤ C < =

shows that the claimed result holds with probability at least =− , finishing the proof.
It remains to prove Steps 11 to 44.

Proof of Step 11. For 8 = 2, 3, let �8 := # (E1;+ 8). Furthermore, let �′2 ⊆ +
2 be the

set of vertices D2 ∈ +2 forwhich (E1, D2) is good and let �′′2 ⊆ +
2 be the set of vertices
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D2 ∈ +2 for which deg(E1, D2;+3) ≥ 32=/2. Note that -2(E1) = �2∩�′2∩�
′′
2 . Since

(+1, + 8) is (Y, 3, 3 − Y)-super-regular, we have |�8 | ≥ (3 − Y)= for 8 = 2, 3. Since
(+2, +3) is Y-regular, we have |�′′2 | ≥ (1−Y)=. Finally, it follows from Lemma 5.1.45.1.4,
that |�′2 | ≥ (1 − U)= with probability at least 1 − =−8 and hence

|-2(E1) | =
���2 ∩ �′2 ∩ �

′′
2
�� ≥ 3=/2,

as claimed. �

Proof of Step 22. Fix some E2 ∈ +2. We may assume that E2 ∈ -2(E1), otherwise we
are done. In particular, we have E1E2 ∈ � (Γ) and degΓ(E1, E2;+3) ≥ 32=/2. Let
-3 = -3(E1, E2) and .3 = .3(E1, E2) ⊆ -3. It follows from Lemma 5.1.45.1.4 that

P
[
|-3 | < 32=/4

]
≤ =−10 . (5.3.3)

For D3 ∈ +3, let .D3 be the indicator random variable which is one if and only
if E2D3 ∈ � (�). Then |.3 | =

∑
D3∈-3 .D3 . Note that, in order to determine -3,

we do not need to reveal edges adjacent to E2. Therefore, -3 is independent from
{.D3 : D3 ∈ +3}22 and we have by Chernoff’s bound (Lemma 2.4.12.4.1)

P [.3 ≤ ? |-3 |/2] ≤ 4−? |-3 |/8. (5.3.4)

Furthermore, if |-3 | ≥ 32=/4, we have

? |-3 | ≥ ?32=/4 ≥ 100 log = (5.3.5)

for all large enough =. Hence, taking a union bound over (5.3.35.3.3) and (5.3.45.3.4), we
have

|.3 | ≥ ? |-3 |/2 ≥ ?32=/8

with probability at least 1 − =−10 − 4? |- |/8 ≥ 1 − 2=−10 . Taking another union
bound over all E2 ∈ +2 completes the proof. �

2One can see this as a two-step process: first we reveal edges not incident to E2 to determine -3,
and then we consider -3 as a fixed deterministic set.
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Proof of Step 33. By Steps 11 and 22

|/′| =
∑

D2∈-2 (E1)
|.3(E1, D2) | ≥ 3=/2 · ?32=/8 = ?33=2/16

holds with probability at least 1 − 2=−8 . Furthermore, by Chernoff’s bound
(Lemma 2.4.12.4.1), we have Δ(�) ≤ 4?= with probability at least 1 − =−8 . Hence the
claimed result follows from another union bound. �

Proof of Step 44. Let �1 = � [+ (�) \ {E1}] and let �2 = � \�1 (i.e. the graph with
all edges incident to E1). Note that � = �1 ∪ �2. Call an edge D2D3 with D2 ∈ +2

and D3 ∈ +3 nice if E1D2, E1D3 ∈ � (�). Observe that in order to determine /′,
we only need to reveal �1 and in order to determine the events {D2D3 is nice}, we
only need to reveal �2. Therefore, we can treat /′ as a fixed set in the following
application of Janson’s inequality (Lemma 2.4.22.4.2). Furthermore, we may assume
that |/′| ≥ ?33=2/16 and Δ(�) ≤ 4?=, otherwise there is nothing to prove. In
order to apply Janson’s inequality, define

_ = E [|/ |] = ?2 |/′| ≥ (?3)3=2/16 ≥ �2 · log =

and

Δ :=
∑

4, 5 ∈/ ′: 4∩ 5≠∅
P [4, 5 are both nice] ≤ ?2 |/′| + ?3 |/′|8?=

= ?2 |/′| (1 + 8?2=) ≤ 2_.

Here, we used in the first inequality that there are ?2 |/′| pairs (4, 5 ) sharing two
vertices and at most |/′|8?= pairs (4, 5 ) sharing exactly one vertex (using Δ(�) ≤
4?=). Thus, by Lemma 2.4.22.4.2, we have

P [|/ | ≤ _/2] ≤ 4−_2/8Δ ≤ 4−_/16 ≤ =−�2/16 ≤ =−4 , (5.3.6)

finishing the proof. �
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5.3.3 Completing Triangle Tilings

With Proposition 5.1.25.1.2 and Proposition 5.1.35.1.3 in hand the proof of Theorem 5.1.15.1.1
follows easily.

Proof of Theorem 5.1.15.1.1. First note that, w.v.h.p., both the conclusions of Proposi-
tions 5.1.25.1.2 and 5.1.35.1.3 hold simultaneously. We will now assume they hold and show
that this implies ��ΦC (Γ?)�� ≥ (1 − [)=UC−(1−[)= (?3)3C (=!C)3 (5.3.7)

for all (1 − [)= ≤ C ≤ =. Indeed, for C = (1 − [)=, (5.3.75.3.7) readily follows from
(the assumed conclusion of) Proposition 5.1.25.1.2. Assume now (5.3.75.3.7) holds for some
(1 − [)= ≤ C < =. Since [ � [′ � U, we have

g := (1 − [)=UC−(1−[)= ≥ (1 − [)=U[=

≥ (1 − [)=4− log(1/U)[=

≥ (1 − [)= (1 − log(1/U)[)=

≥ (1 − [′)=.

It follows from (the assumed conclusion of) Proposition 5.1.35.1.3 that (5.3.75.3.7) holds for
C + 1. In particular, we have��Φ= (Γ?)�� ≥ (1 − [)=U[= (?3)3C (=!)3 ≥ 1,

completing the proof.

5.4 Proof of the Local Distribution Lemma

5.4.1 A Simplification

Given some some C, ℓ and D = (D1, . . . , Dℓ−1) as in the statement of Lemma 5.1.45.1.4,
we aim to prove a lower bound on the size of ΦC(D, Dℓ ) for almost all of the Dℓ ∈ +ℓ.
Given that ΦCD is large, a simple averaging argument shows that (5.1.55.1.5) is true ‘on
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average’ (i.e. if we take the average of
���ΦC(D, Dℓ ) (Γ?)��� over all Dℓ ∈ +ℓ). The challenge

comes in proving that (5.1.55.1.5) holds for almost all choices of Dℓ. In order to do this,
we compare the difference in the sizes of ΦC(D, Dℓ ) for different choices of Dℓ ∈ +

ℓ.
The key step is given in the following lemma.

Lemma 5.4.1. W.v.h.p., the following holds for all ℓ ∈ [3], (1 − [)= ≤ C < =,
D = (D1 . . . , Dℓ−1) ∈ V and D ∈ +ℓ. If���ΦC(D, D) (Γ?)��� ≥ (1 − [′)= (?3)3C ((= − 1)!C)ℓ (=!C)3−ℓ,

then ���ΦC(D, E) (Γ?)��� ≥ (
3

10

)2
·
���ΦC(D, D) (Γ?)��� .

for at least (1 − U)= vertices E ∈ +ℓ.

Indeed, with Lemma 5.4.15.4.1 in hand, Lemma 5.1.45.1.4 follows easily.

Proof of Lemma 5.1.45.1.4. Assume that the conclusion of Lemma 5.4.15.4.1 holds in Γ?.
Fix ℓ ∈ [3], (1 − [)= ≤ C < =, D = (D1 . . . , Dℓ−1) ∈ V and g = g(=) ≥ (1 − [′)=.
We may assume that ���ΦCD (�)��� ≥ g(?3)3C ((= − 1)!C)ℓ−1(=!C)4−ℓ,

otherwise there is nothing to prove. Now, for each q ∈ ΦCD (�), we have q ∈
ΦC(D, Dℓ ) (�) for exactly = − C choices of Dℓ ∈ +

ℓ. Therefore, we have that∑
D∈+ℓ

���ΦC(D, D) (�)��� = (= − C) ���ΦCD (�)���
≥ g(?3)3C ((= − 1)!C)ℓ−1(=!C)4−ℓ (= − C)
= g(?3)3C ((= − 1)!C)ℓ−1(=!C+1) (=!C)3−ℓ .
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Therefore, by averaging, there must be some D∗ ∈ +ℓ such that���ΦC(D, D∗) (�)��� ≥ 1
=

(
g(?3)3C ((= − 1)!C)ℓ−1(=!C+1) (=!C)3−ℓ

)
= g(?3)3C ((= − 1)!C)ℓ (=!C)3−ℓ .

The result now follows from applying the conclusion of Lemma 5.4.15.4.1 with D∗ playing
the role of D.

5.4.2 Entropy lemma

Let us fix constants V, V′, V′′, W > 0 satisfying [′ � V′′ � W � V′ � V � U for
this section. We start with a few definitions. Given some ℓ ∈ [3], C ∈ [=] and some
q ∈ ΦC (Γ), we define �ℓ (q) ⊆ +ℓ to be the vertices in +ℓ which are isolated in the
embedded subgraph q(�C) (that is, �ℓ (q) := +ℓ \ rg q). If ℓ is clear from context,
we will drop the superscript. If we are further given some E ∈ +ℓ, we define

qE =


∅ if E ∈ � (q),(

#
9

q(�C ) (E) : 9 ∈ �
)

if E ∉ � (q),

where � = [3] \ {ℓ}. So qE either returns an empty set, indicating that the vertex
E is isolated in q(�C), or it returns the pair of vertices which are contained in the
triangle containing E in q(�C). We also define the function

.E (q) = 1[{qE ≠ ∅}] =


1 if qE ≠ ∅,

0 if qE = ∅,

which returns 1 if E ∉ � (q) and 0 otherwise. If the input q of.E is clear from context
then we simply denote .E (q) by .E. Note that the set {qE : E ∈ +ℓ} completely
determines the subgraph q(�C).

For a fixed E ∈ +ℓ \ {D}, we will be interested in the distribution of qE if q is
chosen randomly among a set of embeddings we wish to extend. In order to analyse
this, we use entropy. See Section 2.52.5 for the definition and basic properties. We
remark that there will be two independent stages of randomness in the argument.
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First, there is the random subgraph Γ? ⊆ Γ, and second, there will be a randomly
chosen q∗ ∈ ΦC (Γ?). In particular, the values of the entropy function ℎ(q∗), ℎ(q∗E)
are random variables themselves. However, once we reveal a particular instance
� = Γ?, these values are deterministic. We proceed with the following important
definition.

Definition 5.4.2. Let ℎ̂ = ℎ̂(=) := log
(
(?3)3 · =2) .

The relevance of this definition comes in the form of the following observation.

Observation 5.4.3. W.v.h.p., the following is true for all ℓ ∈ [3], (1 − [)= ≤ C < =,
D = (D1 . . . , Dℓ−1) ∈ V and D ∈ +ℓ. Let D′ := (D, D) and let q∗ be chosen uniformly
from ΦC

D′ (Γ?). Then, ℎ(q∗E |.E = 1) ≤ ℎ̂ + Y′ for all but at most Y′= vertices E ∈ +ℓ.

Proof. Let � = Γ? be revealed. By Corollary 5.2.25.2.2, we have w.v.h.p.

|TrE (�) | = (1 ± Y′) (?3)3=2

and in partcular log |(D (E) | ≤ ℎ̂+Y′ for all but at most Y′= vertices E ∈ +ℓ. Therefore,
by Lemma 2.5.12.5.1, we have ℎ(q∗ |.E = 1) ≤ ℎ̂ + Y′.

The purpose of this section is to prove the following lemma, which provides a
partial converse to the above observation, showing that for almost all vertices E ∈ +ℓ,
ℎ̂ is a good approximation for the entropy ℎ(q∗E |.E = 1).

Lemma 5.4.4 (Entropy lemma). W.v.h.p., the following is true for all ℓ ∈ [3],
(1 − [)= ≤ C < =, D = (D1 . . . , Dℓ−1) ∈ V and D ∈ +ℓ. Let D′ := (D, D) and let q∗ be
chosen uniformly from ΦC

D′ (Γ?). Then, if���ΦCD′ (Γ?)��� ≥ (1 − [′)= (?3)3C ((= − 1)!C)ℓ (=!C)3−ℓ,

we have ℎ(q∗E |.E = 1) ≥ ℎ̂ − V′ for all but at most V′= vertices E ∈ +ℓ.

In the remainder of this section, we will prove Lemma 5.4.45.4.4. Recall that + (Γ) =
+ (Γ?) = +1∪+2∪+3. As above, for an embedding q ∈ Φ(Γ) and some ℓ ∈ [3], we
denote by � (q) = �ℓ (q) the vertices in +ℓ which are not contained in the subgraph
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q(�C). In the proof, we will describe q by revealing the status of qE one by one for
each E ∈ +ℓ according to some linear order f of +ℓ for some ℓ ∈ [3]. In order to do
so, we need to make a couple of definitions. Given some ℓ ∈ [3], an ordering f of
+ℓ, some 9 ∈ [3] \ {ℓ}, some E ∈ +ℓ and some D ∈ V, we define

�
9
E (q, f, D) :=

0 ∈ + 9
D : 0 ∉

⋃
F∈+ℓ : F<fE

#q(�C ) (F)


and �E (q, f, D) :=
⋃
9∈� �

9
E (q, f, D), wehre � := [3] \ {ℓ}. We think of these

vertices as being ‘alive’ at the point we reveal qE. By ‘alive’, we mean that it is still
possible that qE reveals that 0 ∈ � 9E (q, f, D) is in a triangle with E. All other vertices
0 ∈ + 9 \ � 9E (q, f, D) are already embedded in triangles with vertices F ∈ +ℓ which
come before E in the ordering f.

Triangles with alive vertices

In this subsection, we will prove that most vertices E ∈ +ℓ are in the expected number
of triangles with the other two vertices still being ‘alive’. This will be useful in the
proof of Lemma 5.4.45.4.4.

Lemma 5.4.5. W.v.h.p., the following is true for all ℓ ∈ [3], C ∈ [= − 1], D =
(D1 . . . , Dℓ−1) ∈ V, Dℓ ∈ +ℓ, q ∈ ΦC(D, Dℓ ) (Γ?) and every ordering f of +ℓ. There
are at most Y′= vertices E ∈ +ℓ for which��TrE (Γ? [�E (q, f, D)])

�� > (?3)3 ∏
9∈�

���� 9E (q, f, D)��� + Y′(?3)3=2, (5.4.1)

where, as above, � = [3] \ {ℓ}.

Proof. Let � ⊆ Γ be any graph satisfying

|Tr(� [-1 ∪ -2 ∪ -3]) | ≤ (?3)3 |-1 | |-2 | |-3 | + 1000Y(?3)3=3 (5.4.2)

for all -1 ⊆ +1, -2 ⊆ +2, -3 ⊆ +3 and note that Γ? satisfies (5.4.25.4.2) w.v.h.p. by
Lemma 5.2.15.2.1. We will show that� already satisfies the conclusion of Lemma 5.4.55.4.5.
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Let ℓ ∈ [3], C ∈ [= − 1], D = (D1 . . . , Dℓ−1) ∈ V, Dℓ ∈ +ℓ, q ∈ ΦC(D, Dℓ ) (Γ?) and
let f be an ordering of +ℓ. Enumerate +ℓ = {Eℓ1, . . . , E

ℓ
=} according to the ordering

f, that is in such a way that Eℓ1 <f . . . <f Eℓ=. Define * ⊆ +ℓ to be the set of
vertices satisfying (5.4.15.4.1). We will show that |* | < Y′=. We split +ℓ into intervals
as follows. Let Y′′ = Y′/4 and for : = 1, . . . , 1/Y′′, let

,: = {Eℓ8 : 1 + (: − 1) · Y′′= ≤ 8 < 1 + : · Y′′=}

and*: := * ∩,: . Fix some : ∈ [4/Y′] and let 8: := 1+ (: − 1) · Y′′= and F: := Eℓ
8:

(that is, F: is the first vertex in ,: ). Let -ℓ = *: and - 9 = �
9
F: (q, f, D) for

9 ∈ � = [3] \ {ℓ}. It follows that, for any D ∈ *: ,��TrD (� [∪8∈[3]-8])
�� ≥ ��TrD (� [�D (q, f, D)])

�� (5.4.3)

≥ (?3)3
∏
9∈�

���� 9D (q, f, D)��� + Y′(?3)3=2. (5.4.4)

≥ (?3)3
∏
9∈�

(��- 9 �� − Y′′=) + Y′(?3)3=2 (5.4.5)

≥ (?3)3
∏
9∈�

��- 9 �� + Y′(?3)3=2/2. (5.4.6)

Here, (5.4.35.4.3) follows from the fact that D >f F: and thus �D (q, f, D) ⊆ �F: (q, f, D)
for every D ∈ *: . Furthermore, (5.4.45.4.4) follows from D ∈ * and (5.4.55.4.5) from the fact
that |� 9D (q, f, D) | ≥ |� 9F: (q, f, D) | − Y′′= for all D ∈ *: since D and F: are close in
the ordering f. By summing over all D ∈ *: , it follows that

|Tr(� [-1 ∪ -2 ∪ -3]) | ≥ (?3)3 |-1 | |-2 | |-3 | + Y′(?3)3 |-ℓ |=2/2.

Combining this with (5.4.25.4.2) gives |*: | = |-ℓ | ≤ 2000Y
Y′ = <

Y′2

4 =. It follows that
|* | = ∑1/Y′′

:=1 |*: | < Y
′=, as claimed.

Proof of entropy lemma

Here, we will prove Lemma 5.4.45.4.4. The proof is quite technical and long, so we will
break it up in smaller claims along the way.
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Proof of Lemma 5.4.45.4.4. Assume � ⊆ Γ is a subgraph of Γ with + (�) = + (Γ)
which satisfies the following properties for all ℓ ∈ [3], (1 − [)= ≤ C < =, D =
(D1 . . . , Dℓ−1) ∈ V, D ∈ +ℓ, q ∈ ΦC(D, D) (�) and every ordering f of +ℓ.

(P.1) For all vertices E ∈ + (�), we have.

|TrE (�) | ≤ 10?3=2.

(P.2) There are at most Y′= vertices E ∈ +ℓ for which��TrE (� [�E (q, f, D)])
�� > (?3)3 ∏

9∈[3]\{ℓ}

���� 9E (q, f, D)��� + Y′(?3)3=2.

By Lemmas 5.2.35.2.3 and 5.4.55.4.5, � satisfies those properties w.v.h.p. and therefore it
suffices to show that � satisfies the conclusion of Lemma 5.4.45.4.4.
Fix now ℓ ∈ [3], (1 − [)= ≤ C < =, D = (D1 . . . , Dℓ−1) ∈ V and D ∈ +ℓ. Let

D′ := (D, D) and let Φ := ΦC
D′ (�). Let q∗ be chosen uniformly from Φ. We may

assume that
|Φ| ≥ (1 − [′)= (?3)3C ((= − 1)!C)ℓ (=!C)3−ℓ, (5.4.7)

otherwise there is nothing to prove. In particular, by Lemma 2.5.12.5.1, we have

ℎ(q∗) ≥ = log(1 − [′) + 3C log(?3) + 3 log(=!C) − 2 log(=) (5.4.8)

≥ 3C log(?3) + 3 log(=!C) − V′′=, (5.4.9)

where we used [′ � V′′ and that = is large enough in the last step.
Assume for a contradiction that there are at least V′= vertices E ∈ +ℓ such that

ℎ(q∗E |.E = 1) < ℎ̂ − V′ and let * ⊆ +ℓ be a set of these exceptional vertices of size
|* | = W=. We will derive an upper bound on ℎ(q∗) which contradicts (5.4.95.4.9). Recall
that � (q) = �ℓ (q) ⊆ +ℓ is the set of vertices which are isolated in q(�C). We begin
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as follows

ℎ(q∗) = ℎ
(
q∗, {q∗E}E∈+ℓ , � (q∗)

)
(5.4.10)

= ℎ
(
{q∗E}E∈+ℓ , � (q∗)

)
+ ℎ

(
q∗ |{q∗E}E∈+ℓ , � (q∗)

)
(5.4.11)

≤ ℎ
(
{q∗E}E∈+ℓ , � (q∗)

)
+ log(C!) (5.4.12)

= ℎ
(
{q∗E}E∈+ℓ |� (q∗)

)
+ ℎ (� (q∗)) + log(C!) (5.4.13)

≤ ℎ
(
{q∗E}E∈+ℓ |� (q∗)

)
+ log(C!) + log

((
=

C

))
(5.4.14)

= ℎ
(
{q∗E}E∈+ℓ |� (q∗)

)
+ log(=!C). (5.4.15)

Here, we used Lemma 2.5.52.5.5 in (5.4.105.4.10) and the chain rule (Lemma 2.5.42.5.4) in (5.4.115.4.11)
and (5.4.135.4.13). In (5.4.125.4.12), we used Lemma 2.5.62.5.6 and that the set {qE}E∈+ℓ completely
determines the subgraph q(�C) and there are C! embeddings q ∈ Φ which map to
the same subgraph q(�C), namely one for each choice of ordering of the triangles.
Finally, in (5.4.145.4.14) we used Lemma 2.5.12.5.1.

Now, in order to estimate this sum further, we fix some ordering f of+ℓ in which
the vertices in* come first, that is F <f F

′ for all F ∈ * and F′ ∈ +ℓ \*. We then
reveal vertices in that order and apply the conditional chain rule (Lemma 2.5.82.5.8).
That is,

ℎ
(
{q∗E}E∈+ℓ |� (q∗)

)
=

∑
E∈+ℓ

ℎ
(
q∗E |{q∗D : D <f E}, � (q∗)

)
(5.4.16)

≤
∑
E∈*

ℎ
(
q∗E |� (q∗)

)
+

∑
E∈+ℓ\*

ℎ
(
q∗E |{q∗D : D <f E}, � (q∗)

)
,

(5.4.17)

where we applied Lemma 2.5.32.5.3 in the second step. We treat the vertices in *
separately to those in +ℓ \*. To ease notation, we make the following definition.
For q ∈ Φ, and E ∈ +ℓ, we let CE (q) denote the number of vertices D ∈ +ℓ such that
D <f E and D ∉ � (q). Let us first address the vertices in*.
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Claim 5.5. For all E ∈ *, we have that

ℎ(q∗E |� (q∗)) ≤
1
|Φ|

∑
q∈Φ

1[E ∉ � (q)]
(
log

(
(?3)3(= − CE (q))2

)
− V

′

2

)
(5.4.18)

Proof. To ease notation as before, we let.E = .E (q∗). Now, for each E ∈ *, we have

ℎ(q∗E |� (q∗)) ≤ ℎ(q∗E |.E) (5.4.19)

= P [.E = 1] ℎ(q∗E |{.E = 1}) + P [.E = 0] ℎ(q∗E |{.E = 0}) (5.4.20)

≤ P [.E = 1] ( ℎ̂ − V′) (5.4.21)

=
1
|Φ|

∑
q∈Φ

1 [E ∉ � (q)] ( ℎ̂ − V′). (5.4.22)

Here we used Lemma 2.5.32.5.3 in (5.4.195.4.19), and the definition of conditional entropy
(2.5.12.5.1) in (5.4.205.4.20), and the definition of * in (5.4.215.4.21). Furthermore, we have
CE (q) ≤ W= for all E ∈ * and q ∈ Φ since * comes at the beginning of the ordering
f. Therefore,

log
(
(?3)3(= − CE (q))2

)
≥ log

(
(?3)3(1 − W)2=2

)
= ℎ̂ + 2 log(1 − W)
≥ ℎ̂ − 4W

≥ ℎ̂ − V′/2.

This completes the proof of the claim. �

We will now deal with the vertices outside*. Given E ∈ +ℓ and q ∈ Φ, we write

ℎ′(E, q) := ℎ
(
q∗E |{� (q∗) = � (q), {q∗D = qD}D<fE}

)
.

Claim 5.6. The following is true for all q ∈ Φ.
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(i) For all E ∈ +ℓ, we have

ℎ′(E, q) ≤ log
(
(?3)3(= − CE (q))2

)
+ log

(
10/33

)
+ log

(
=2

(= − CE (q))2

)
.

(ii) There exists a set �(q) ⊆ +ℓ with |�(q) | ≤ V′′=, such that for all E ∈ +ℓ\�(q),
we have

ℎ′(E, q) ≤ log
(
(?3)3(= − CE (q))2

)
+ V′′.

Proof. The first inequality follows from (P.1)(P.1) and Lemma 2.5.62.5.6. Indeed, for all
E ∈ +ℓ, we have

ℎ′(E, q) ≤ log ( |TrE (�) |)
≤ log(10?3=2)

= log
(
(?3)3(= − CE (q))2

)
+ log

(
10/33

)
+ log

(
=2

(= − CE (q))2

)
.

For the second inequality, we will use (P.2)(P.2) in combination with Lemma 2.5.62.5.6. We
have that for all but at most Y′= vertices,

ℎ′(E, q) ≤ log
(��TrE (� [�E (q, f, D)])

��) (5.4.23)

≤ log

(
(?3)3

∏
9∈�

���� 9E (q, f, D)��� + Y′(?3)3=2

)
(5.4.24)

≤ log
(
(?3)3(= − CE (q))2 + Y′(?3)3=2

)
. (5.4.25)

Observe that CE (q) ≤ (1 − V′′/2)= for all but at most V′′=/2 vertices E ∈ +ℓ. In
particular, we have

(= − CE (q))2 ≥ (V′′=)2/4 ≥ (V′′)2/(4Y′) · Y′=2 ≥ 1/V′′ · Y′=2

for all but at most V′′=/2 vertices E ∈ +ℓ. (We used that Y′ � V′′ here). Plugging
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this back into (5.4.255.4.25), we get

ℎ′(E, q) ≤ log
(
(1 + V′′) · (?3)3(= − CE (q))2

)
≤ V′′ + log

(
(?3)3(= − CE (q))2

)
for all but at most V′′= vertices E ∈ +ℓ. �

We will now use Claims 5.55.5 and 5.65.6 to finish the proof. Indeed, it follows from
Claim 5.55.5 that∑

E∈*
ℎ(q∗E |� (q∗)) ≤

1
|Φ|

∑
q∈Φ

∑
E∈*

1[E ∉ � (q)]
(
log

(
(?3)3(= − CE (q))2

)
− V

′

2

)
.

(5.4.26)
Furthermore, using Claim 5.65.6 and the definition of conditional entropy, (2.5.22.5.2), we
have∑
E∈+ℓ\*

ℎ
(
q∗E |{q∗D : D <f E}, � (q∗)

)
=

∑
E∈+ℓ\*

1
|Φ|

∑
q∈Φ

1[E ∉ � (q)]ℎ′(E, q) (5.4.27)

≤ 1
|Φ|

∑
q∈Φ

©­«V′′= + #1(q) +
∑

E∈+ℓ\*
1[E ∉ � (q)] log

(
(?3)3(= − CE (q))2

)ª®¬ ,
(5.4.28)

where

#1(q) =
∑
E∈�(q)

1[E ∉ � (q)]
(
log

(
10/33

)
+ 2 log

(
=

= − CE (q)

))
.

Let now

" (q) :=
∑
E∈+ℓ

1[E ∉ � (q)] log
(
(?3)3(= − CE (q))2

)
, and

#2(q) :=
∑
E∈*

1[E ∉ � (q)] · V′/2.
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Then, combining (5.4.175.4.17), (5.4.265.4.26) and (5.4.285.4.28), we get

ℎ
(
{q∗E}E∈+ℓ |� (q∗)

)
≤ 1
|Φ|

∑
q∈Φ
(" (q) + #1(q) + V′′= − #2(q)) . (5.4.29)

We will bound each of these terms one by one.

Claim 5.7. For all q ∈ Φ, we have

" (q) ≤ 3C log(?3) + 2 log(=!C),
#1(q) ≤

√
V′′= and

#2(q) ≥ W2 · =.

Before we prove the claim, let us finish the main proof. Combining the claim with
(5.4.295.4.29), we get (using V′′ � W)

ℎ
(
{q∗E}E∈+ℓ |� (q∗)

)
≤ 3C log(?3) + 2 log(=!C) + (V′′ +

√
V′′ − W2)=

≤ 3C log(?3) + 2 log(=!C) − 2V′′=.

Plugging this back into (5.4.155.4.15), we get

ℎ(q∗) ≤ 3C log(?3) + 3 log(=!C) − 2V′′=,

contradicting (5.4.95.4.9). Hence it remains to prove Claim 5.75.7.

Proof. Let q ∈ Φ and observe that {CE (q) : E ∈ +ℓ \ � (q)} = [C − 1]0. Thus

" (q) =
∑

E∈+ℓ\� (q)
log

(
(?3)3(= − CE (q))2

)
=

C−1∑
:=0

log
(
(?3)3(= − :)2

)
= 3C log(?3) + 2 log(=!C).

Let �′ = �(q) \ � (q) and observe that |�′| ≤ |�(q) | ≤ V′′=. Let  = {CE (q) :
E ∈ �′}. Enumerate  = {:1, . . . , : |�′ |} so that :1 > . . . > : |�′ | and observe that
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:8 ≤ = − 8 for all 8 ∈ [|�′|] and hence

#1(q) =
∑
E∈�′

1[E ∉ � (q)]
(
log

(
10/33

)
+ 2 log

(
=

(= − CE (q))

))
≤ V′′= log(10/33) +

V′′=∑
:=1

2 log (=/:)

≤ V′′= log(10/33) + 2V′′= log(=) − 2 log((V′′=)!)
≤ V′′= log(10/33) + 2V′′= (log(=) − log(V′′=/4))
≤

√
V′′ · =,

where we used (W=)! ≥ (W=/4)W= in the second to last line. Finally, let*′ = * \ � (q)
and observe that, since [ � W, we have |*′| ≥ W=/2. Therefore,

#2(q) =
∑
E∈* ′

V′/2 ≥ W2=,

as claimed. �

5.4.3 Counting via Comparison

In this subsection, we will prove Lemma 5.4.15.4.1. The idea is, given D, E ∈ +3 (say),
to define a appropriate weight function Z on pairs of vertices (H1, H2) ∈ +1 × +2

which encodes howmany partial triangle tilings there are which leave D, E, H1 and H2

isolated. We then apply Lemmas 5.4.45.4.4 and 2.5.92.5.9 to show that this weight function
is approximately constant and use this to bound the number of triangles tilings
which leave D isolated but not E and vice-versa. The reader might want to recall
Definition 5.2.45.2.4 before the proof.

Proof of Lemma 5.4.15.4.1. Let ℓ ∈ [3], (1 − U)= ≤ C < =, D = (D1 . . . , Dℓ−1) ∈ V and
D ∈ +ℓ. We write � := [3] \ {ℓ} and choose 91, 92 ∈ [3] so that � = { 91, 92}.

Let � = Γ? and reveal all edges which are not incident to D. Let q be chosen
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uniformly from ΦC(D, D) (�). Define

/1 := {E ∈ +ℓ : ℎ(qE |.E = 1) ≥ ℎ̂ − V}

and note that, by Lemma 5.4.45.4.4, we have |/1 | ≥ (1 − V)= w.v.h.p. Furthermore,
define

/2 :=
{
E ∈ +ℓ : |TrE (�) | = (1 ± Y′) (?3)3=2} ,

/3 := {E ∈ +ℓ :
���D (D, E)�� ≥ 35?=2/4}.

It follows from Lemmas 5.4.45.4.4 and 5.2.55.2.5 and Corollary 5.2.25.2.2 that / := /1 ∩ /2 ∩ /3

satisfies |/ | ≥ (1 − V − 2Y′)= ≥ (1 − 2V)= w.v.h.p. Let us fix some vertex E ∈ / .
We will show that E satisfies the conclusion of Lemma 5.4.15.4.1. Define

ΦDE := ΦC(D, D) (�) ∩Φ
C
(D, E) (�),

ΦED := ΦC(D, D) (�) \ΦDE and

ΦDE := ΦC(D, E) (�) \ΦDE .

In words,ΦDE consists of those embeddings which leave both D and E isolated whilst
embeddings in ΦED leave D isolated but have E contained in a triangle, and similarly
for ΦDE. Clearly, we have���ΦC(D, D) (�)��� = |ΦDE | + |ΦED | , and���ΦC(D, E) (�)��� = |ΦDE | + |ΦDE | .
If |ΦDE | ≥ (3/10)2

���ΦC(D, D) (�)���, we are done and so we may assume that

|ΦED | ≥ (1 − (3/10)2)
���ΦC(D, D) (�)��� ≥ 1

2

���ΦC(D, D) (�)��� . (5.4.30)

Inwhat remains, wewill compare the sizes ofΦED andΦDE. For (F1, F2) ∈ + 91
D ×+ 92

D ,
define Z (F1, F2) to be C times the number of labelled embeddings of�C−1 into�D, D, E
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in which both F1 and F2 are isolated vertices. That is

Z (F1, F2) := C ·
���ΦC−1
(F1, F2)

(
�D, D, E

) ��� . (5.4.31)

Note that Z is independent from all edges incident to D or E. Observe that

|ΦED | =
∑

(H1,H2)∈(D (E)
Z (H1, H2), and

|ΦED | =
∑

(H1,H2)∈(D (D)
Z (H1, H2).

Since qE |{.E = 1} is a random variable taking values in (D (E) and E ∈ /1, we can
apply Lemma 2.5.92.5.9 to get some set,∗ ⊆ (D (E) with the following properties:

(i)
∑

(F1,F2)∈,∗
Z (F1, F2) ≥ (1 − V) |ΦED |;

(ii) There exists some value Z̄ such that for each (F1, F2) ∈ ,∗, we have that

Z (F1, F2) = (1 ± V) Z̄ ;

(iii) We have (1 − V) |(D (E) | ≤ |,∗ | ≤ |(D (E) |.

Therefore we can estimate the size of ΦED using (i)(i) to (iii)(iii) in that order.

|ΦED | ≤
(

1
1 − V

) ∑
(F1,F2)∈,∗

Z (F1, F2) (5.4.32)

≤
(

1 + V
1 − V

)
|,∗ | Z̄ (5.4.33)

≤
(

1 + V
1 − V

)
|(D (E) | Z̄ (5.4.34)

≤ 2Z̄ (?3)3=2. (5.4.35)

In the last inequality, we used that |(D (E) | = (1 ± 2Y′) (?3)3=2 since E ∈ /2.
We are now going to lower bound ΦED in a similar way. However, so far we only

know that Z is ‘well-behaved’ on (D (E) but nothing about (D (D). UsingLemma5.2.65.2.6,
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we can infer though that Z is ‘well-behaved’ on a large part of �D (D, E). To do so,
partition �D (D, E) into two sets �(, �! of equal size so that Z (H1, H2) ≤ Z (I1, I2) for
all (H1, H2) ∈ �( and (I1, I2) ∈ �! . Since Z is independent from all edges adjacent to
D or E, so are �( and �! . Furthermore, since E ∈ /3, we have |�( | = |�! | ≥ 35?=2/4.
Hence, we can use Lemma 5.2.65.2.6 with �( and �! . We will assume for the rest of
the proof that its conclusion holds in �, both with input ℓ, D, D, �( and with input
ℓ, D, E, �! .

Claim 5.8. We have Z (H1, H2) ≥ (1 − V) Z̄ for all (H1, H2) ∈ �! .

Proof. The conclusion of Lemma 5.2.65.2.6 (with input D and �() implies that��(D (E) ∩ �(�� ≥ ?2 |�( |/2 ≥ 35?3=2/8.

Furthermore, it follows from (iii)(iii) and E ∈ /2(D), that��(D (E) \,∗�� ≤ V ��(D (E)�� ≤ 2V(?3)3=2.

Hence, as V � 3, we can conclude that,∗ ∩ � C
(
≠ ∅ and so

(1 − V) Z̄ ≤ min
(H1,H2)∈,∗

Z (H1, H2) ≤ max
(H1,H2)∈�(

Z (H1, H2) ≤ min
(H1,H2)∈�!

Z (H1, H2),

using (ii)(ii) in the first inequality. �

We now use the conclusion of Lemma 5.2.65.2.6 again (with input E and �!) to lower
bound the size of ΦDE as follows.

|ΦDE | =
∑

(H1,H2)∈(D (D)
Z (H1, H2) (5.4.36)

≥
∑

(H1,H2)∈(D (D)∩�!

Z (H1, H2) (5.4.37)

≥ (1 − V) Z̄
��(D (D) ∩ �! �� (5.4.38)

≥ Z̄ 35?3=2/20, (5.4.39)

168



5 Robust Triangle Tilings

where (5.4.385.4.38) follows from Claim 5.85.8. Putting (5.4.305.4.30), (5.4.355.4.35) and (5.4.395.4.39)
together, we get that ���ΦC(D, E) (�)��� ≥ |ΦDE |

≥ Z̄ 3
5?3=2

20

≥ 3
2

40
|ΦED |

≥ 3
2

80

���ΦC(D, D) (�)��� ,
as required.

5.5 Reducing to Regular Triples

Here we show how Theorem 1.5.91.5.9 follows from Theorem 5.1.15.1.1. The proof mainly
relies on fairly standard though somewhat involved extremal graph theory. We will
collect a number of lemmas in the following subsection and then proceed to the main
proof.

5.5.1 Preparation
Fractional Stability for the Hajnal–Szemerédi Theorem

Recall the Hajnal-Szemerédi Theorem (Theorem 2.2.172.2.17), which states that any graph
with maximum degree Δ has an equitable colouring with Δ + 1 colours (that is, a
colouring where the colour classes differ in size by at most one). Applying this to
the complement of�, which has maximum degree =−1−X(�), we find a collection
of =− X(�) vertex-disjoint cliques in� whose sizes differ by at most one and which
cover �. We will make use of the following corollary.

Theorem 5.5.1 (Hajnal–Szemerédi [6666]). Let =, : ≥ 2 be integers and let 0 ≤ G < 1.
Suppose that � is an =-vertex graph with X(�) ≥ ( :−1

:
− G)=. Then � contains

(1 − (: − 1):G) b =
:
c vertex-disjoint cliques of size : .
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This statement is often used in extremal graph theory, and in particular the case
G = 0, which gives the best possible minimum degree condition for containing
a spanning  : -tiling. We require the following result, a stability statement for
a fractional version of the Hajnal-Szemerédi theorem, which is of independent
interest.

Theorem 5.5.2. For every integer : ≥ 2 and every X > 0, there is some W > 0
such that the following is true for all = ∈ N. Let � be an =-vertex graph with
X(�) ≥

(
:−1
:
− W

)
= and U(�) <

( 1
:
− X

)
=. Let _ : + (�) → N be a weight function

with _(D) = (1±W) 1
=

∑
E∈+ (�) _(E) for all D ∈ + (�). Then there is a weight function

l :  : (�) → R≥0 such that
∑
 ∈ : (�,D) l( ) = _(D) for all D ∈ + (�), where

 : (�, D) denotes the set of unlabelled copies of  : in � containing D.

Proof. First, we claim that it suffices to prove the theorem for the function _ which
gives weight 1 to every vertex. Indeed, let :, X, � and _ as in the statement and
let W ≤ X be small enough to apply the result with weight function _ ≡ 1 and
input X/2. We define an auxiliary graph � by blowing-up every E ∈ + (�) to an
independent set of size _(E) (that is, every edge is replaced by a complete bipartite
graph). Then, with # := E(�) = ∑

E∈+ (�) _(E), we have X(�) ≥ ( :
:−1 − 2W)# and

U(�) ≤ (1/: − X/2)# . Hence, we can apply the theorem to � (with _ ≡ 1 and
X/2) and obtain a weight function l� :  : (�) → R≥0 with the desired properties.
We define l :  : (�) → R≥0 by l( ) =

∑
 ′∈ : (� [ ]) l� ( ′), where � [ ] is the

subgraph of � induced by the blown-up vertices of  .
Hence, we may assume that _(E) = 1 for all E ∈ + (�). We will prove this case

of the theorem for W = X

8: (:!)2 . Observe that the existence of the claimed weight
function is the same as saying that the value of the following packing linear program
is =

:
. We ask for non-negative real weights on the elements of  : (�) with maximum

sum, subject to the condition that the total weight on copies of  : at any given
vertex is at most 1. The dual of this is the covering linear program in which we
place nonnegative weights on the vertices of �, with minimum sum, subject to the
constraint that the total weight on the vertices of each element of  : (�) is at least
1. The duality theorem for linear programs (see [111111, Corollary 7.1g]) implies that
these two linear programs have the same value. So it is enough to show that the
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latter linear program has value =
:
, which we do inductively. In other words, we want

to prove the following claim by induction on : . We define I2 = 3 and inductively
I: = 8:2I:−1 for : ≥ 3.

Claim 5.9. Given any : ≥ 2 and W > 0, suppose that � is an =-vertex graph with
minimum degree at least

(
:−1
:
− W

)
= and no independent set of size

( 1
:
− I:W

)
=.

Suppose 2 : + (�) → [0, 1] is any weight function such that for each & ∈  : (�)
we have

∑
E∈& 2(E) ≥ 1. Then

∑
E∈+ (�) 2(E) ≥ =

:
.

Proof. It is convenient to let the vertices of � be E1, . . . , E= in order of decreasing
weight, i.e. 2(E8) ≥ 2(E 9 ) if 8 ≤ 9 . If

∑
8∈[=] 2(E8) ≥ =

:
there is nothing to prove, so

we can assume the sum is less than =
:
. If 2(E=) > 0, then we can define a new weight

function by 2′(E8) := 1
:
+ U

(
2(E8) − 1

:

)
for all 8 ∈ [=], where U > 1 is chosen so that

2′(E=) = 0. We have∑
8∈[=]

2′(E8) = =/: + U
∑
8∈[=]
(2(E8) − 1/:)

=
∑
8∈[=]

2(E8) + (U − 1)
(∑

8∈[=]
2(E8) − =/:

)
<

∑
8∈[=]

2(E8).

However, for every & ∈  : (�),∑
E∈&

2′(E) =
∑
E∈&

(
1
:
+ U

(
2(E8) − 1

:

) )
= 1 + U

(∑
E∈&

2(E) − 1
)
≥ 1.

Therefore, 2′ also satisfies the condition of Claim 5.95.9 and we can assume 2(E=) = 0.
We are now in a position to prove the base case : = 2. Since E= has at least( 1

2 − W
)
= neighbours, and 2(E=) = 0, we see that for each 8 such that E8E= ∈ � (�),

we have 2(E8) = 1. In particular, 2(E8) = 1 for each 8 ≤
( 1

2 − W
)
=. Furthermore, the

vertices {E8 : 8 ≥ =
2 +2W=} do not form an independent set, so there is an edge within

this set; at least one endpoint of this edge has weight at least 1
2 , and in particular

each vertex E8 with =
2 − W= < 8 <

=
2 + 2W= has weight at least 1

2 . Summing, we obtain
weight at least =2 as desired.
Next, we prove the induction step; let : ≥ 3. We build a copy of  : containing

E= as follows: we take D1 = E=, and then for each 2 ≤ 8 ≤ : − 2 in succession, we
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take D8 to be the common neighbour of D1, . . . , D8−1 with smallest weight. From the
minimum degree condition, when we choose D8 there are at least = − (8 − 1)

( 1
:
+ W

)
common neighbours to choose from; in particular, we always choose a vertex E 9 with
9 ≥ 3=

:
− (: − 3)W=, and the common neighbourhood of all : − 2 vertices we choose

has size at least 2=
:
− (: − 2)W=. Now consider the last

( 1
:
− : (: − 1)W

)
= of these

common neighbours. Since I: ≥ : (: − 1), they do not form an independent set, so
contain an edge D:−1D: . Since

∑:
8=1 2(D8) ≥ 1, and 2(D1) = 0, one of these vertices

has weight at least 1
:−1 . In particular, 2(E8) ≥

1
:−1 whenever 8 ≤

( 1
:
+ (: − 1)2W

)
=.

Now let 2∗ := 2(E=/:−(:−1)W=), and let �′ denote the subgraph of � induced by
vertices E8 with 8 ≥

( 1
:
+ (: − 1)2W

)
=. If 2∗ = 1 then we have∑

8∈[=]
2(E8) ≥ =

:
− (: − 1)W= + 1

:−1 · : (: − 1)W= > =
:

and we are done; so we can assume 2∗ < 1. If & is any copy of  :−1 in �′, then
& has a common neighbourhood in � of size at least =

:
− (: − 1)W=, and so in

particular & extends to a copy of  : in � by adding a vertex whose weight is at
most 2∗. Thus the function 2′(D) := 1

1−2∗ 2(D) on + (�
′) is a weight function on

+ (�′) taking values in [0, 1] and such that
∑
D∈& 2(D) ≥ 1 for each & ∈  :−1(�′).

Furthermore every vertex in �′ has at most =
:
+ W= non-neighbours in �, at most all

of which are in�′, so the minimum degree of�′ is at least (:−2)=
:
− ((: −1)2 +1)W=.

Since E(�′) = (:−1)=
:
− (: − 1)2W=, we have X(�′) ≥ :−2

:−1E(�
′) − W′E(�′) where

W′ := 2:2W. Furthermore �′ has no independent set of size

1
:
= − I:W= = 1

:
= − 4I:−1W

′= ≤ 1
:−1E(�

′) − I:−1W
′E(�′) .

We are therefore in a position to apply the induction hypothesis (that is, Claim 5.95.9
for : − 1) to �′, with W′ replacing W. We conclude that∑

D∈+ (� ′)
2′(D) ≥ 1

:−1E(�
′) ≥ (1 − 1/: − (: − 1)2W)=

: − 1
= ( 1

:
− (: − 1)W)=
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and so∑
8∈[=]

2(E8) ≥ 2∗
( 1
:
− (: − 1)W

)
= + 1

:−1 · : (: − 1)W= + (1 − 2∗) · ( 1
:
− (: − 1)W)=

=
(
1/: − (: − 1)W

)
= + :W= > =

:
,

as desired. �

This completes the proof by LP-duality.

Note that we obtain from this proof a little more: the unique optimal cover is
the uniform cover (since after assuming 2(E=) < 1

:
we eventually conclude the total

weight is strictly bigger than =
:
). However we will not need this fact. We will also

need only the : = 2 and : = 3 cases, but for future use give the general result.
We will further show that we can find an integer-valued weight-function if _ is
sufficiently large.

Lemma 5.5.3. For every integer : ≥ 2 and every X > 0, there is some W > 0 such
that the following is true for all = ∈ N. Let � be a connected33 =-vertex graph
with X(�) ≥

(
:−1
:
− W

)
= and U(�) <

( 1
:
− X

)
=. Let _ : + (�) → N be a weight

function such that _(D) = (1 ± X) 1
=

∑
E∈+ (�) _(E), _(D) ≥ =2: for all D ∈ + (�) and

: divides
∑
E∈+ (�) _(E). Then there is a weight function l :  : (�) → N0 such

that
∑
 ∈ : (�,D) l( ) = _(D) for all D ∈ + (�), where  : (�, D) denotes the set of

unlabelled copies of  : in � containing D.

Proof. We will construct l in three steps. Define _′ : + (�) → N by _′(D) =
_(D) − | : (�, D) |=: ≥ 0. By Theorem 5.5.25.5.2, there is some weight function l′ :
 : (�) → R≥0 such that

∑
 ∈ : (�,D) l

′( ) = _′(D) for all D ∈ + (�). We define
l′′ : + (�) → N0 such that, for each  ∈  : (�),

(i) l′′( ) ∈
{
bl′( ) + :=:c, dl′( ) + :=:e

}
, and

(ii) :
∑
 ∈ : (�) l

′′( ) = ∑
E∈+ (�) _(E).

3Note that, if : ≥ 3, this is already implied by the minimum degree condition.
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Note that this is possible since by construction the unrounded sum satisfies (88)
and since : divides

∑
E∈+ (�) _(E). Furthermore, for each D ∈ + (�), we have∑

 ∈ : (�,D) l
′′( ) = _(D) ±=:−1 (since the unrounded sumwould be exactly correct

and | : (�, D) | ≤ =:−1).
Finally, we obtain l from l′′ via the following iterative process. As long as

possible, we identify pairs D, E ∈ + (�) such that
∑
 ∈ : (�,D) l

′′( ) > _(D) and∑
 ∈ : (�,E) l

′′( ) < _(E). If : ≥ 3, we claim that there is a clique of size : − 1 in
the common neighbourhood of D and E. Indeed, since X(�) ≥

(
:−1
:
− W

)
=, we can

iteratively find a clique with vertices D2, . . . , D:−2 in the common neighbourhood
of D and E and the common neighbourhood of D, E, D2, . . . , D:−2 has size at least
( 1
:
− (: − 1)W))= > ( 1

:
− X)=. In particular, there is an edge D:−1D: in there,

completing the clique. Let  D = {D, D2, . . . , D: } and  E = {E, D2, . . . , D: }, and
decrease the weight of  D by 1 and increase the weight of  E by 1. If : = 2, we do
the following: Since U(�) < =/2,� is not bipartite and hence contains an odd cycle.
Since � is connected, this implies that there is a trail (that is a path with possibly
repeated vertices but no repeated edges) from D to E of even length (even number of
edges). We decrease the weight of the edge at D and then alternate increasing and
decreasing the weight of the edges along the path. Note that in both cases the total
weight at D decreases by 1 and the total weight at E increases by 1, and the total
weight at any other vertex remains unchanged.

Note that
∑
E∈+ (�)

��_(E) −∑
 ∈ : (E,�) l( )

�� decreases by 2 in every step. So
this process finishes after at most =: steps. Clearly, at this time, we have∑
 ∈ : (E,�) l( ) = _(E) for all E ∈ + (�) and l( ) ≥ l′′( ) − =: ≥ 0 for

all  ∈  : (�), completing the proof.

Probabilistic lemmas

We need a few probabilistic lemmas which allow us to find a collection of vertex-
disjoint triangles in � ? with specified properties. In this section we write + (T ) for
the set of vertices covered by a collection of triangles T . The first lemma allows us
to find a large collection of triangles in � ? if � contains many triangles.

Lemma 5.5.4. For all ` > 0 there exists � > 0 such that the following holds for all
large enough = ∈ N. Let : > 0, ? ≥ �=−2/3 and let � be an =-vertex graph.
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(i) Assume that for every set - ⊆ + (�) with |- | ≥ 3: , � [-] contains at
least `=3 triangles. Then, w.h.p., � ? contains a collection of at least =3 − :
vertex-disjoint triangles.

(ii) Assume that + (�) = +1 ∪+2 ∪+3 is a partition into sets of size at least =0 so
that for every -8 ⊆ +8 with |-8 | ≥ : for all 8 ∈ [3], � [-1, -2, -3] contains at
least `=3 triangles. Then, w.h.p., � ? contains a collection of at least =0

3 − :
vertex-disjoint triangles.

Proof. Let ` > 0 and set � = 50`−2. Let ?, :, � be given as in the statement. We
will deduce the lemma from the following claim.

Claim 5.10. The following holds w.h.p. for all - ⊆ + (�). If� [-] contains at least
C ≥ `=3 copies of  3, then the number of triangles in � ? [-] is at least 1

2 ?
3C.

Proof. This is a straightforward application of Janson’s inequality and the union
bound. Note that the total number of choices of - is at most 2=. Fix one such
choice. The expected number of triangles in � ? [-] is ?3C ≥ `?3=3, and we have
Δ̄ ≤ max(?5=4, ?3=3). Hence Janson’s inequality tells us that the probability of
having less than 1

2 ?
3C triangles is at most

exp
(
− `2?6=6

8 max(?5=4,?3=3)

)
≤ exp

(
− `2

8 min(?=2, ?3=3)
)
≤ exp

(
− �`2

8 =
)

and by choice of � and the union bound the lemma statement follows. �

We only prove (8) as (88) is similar. Suppose that T is a maximal collection of
vertex-disjoint triangles with |T | < =

3 − : . Then - := + (�) \+ (T ) has size at least
3: but � ? [-] does not contain a triangle. Thus, the claimed result follows from the
above claim.

The next lemma allows us to find triangles which cover a given small set of
vertices, using edges in specified places.

Lemma 5.5.5. For any 0 < ` < 1/100 there exists � > 0 such that the following
holds for every = ∈ N and ? ≥ �=−2/3(log =)1/3. Let � be an =-vertex graph,
and let E1, . . . , Eℓ ∈ + (�) be distinct vertices with ℓ ≤ `2=. For each 8 ∈ [ℓ],
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let �8 ⊆ � (�) be a set of edges with |�8 | ≥ `=2 such that E84 is a triangle of �
for each 4 ∈ �8. Let �1, . . . , �C ⊆ + (�) \ {E1, . . . , Eℓ} be disjoint sets for some
C ∈ N0. Then, w.h.p., there is a set T = {)1, . . . , )ℓ} of vertex-disjoint triangles in
� ? such that for each 8 ∈ [ℓ] the triangle )8 consists of E8 joined to an edge of �8
and |�8 ∩+ (T )| ≤ 12` |�8 | + 1 for all 8 ∈ [C].

Proof. Given 0 < ` < 1/100, we set � = 1000`−1. Given =, we can assume
? = �=−2/3(log =)1/3, since the probability of any given collection of triangles of �
appearing in � ? is monotone increasing in ?.
We use a careful step-by-step revealing argument and choose )1, . . . , )ℓ one

at a time. Given : ∈ [C] and 8 ∈ [ℓ], say that �: is full at time 8 if
|�: ∩+ ({)1, . . . , )8−1}) | ≥ 12` |�: |. Let -8 be the set of vertices in some set
�: which is full at time 8. For each step 8 ∈ [ℓ] in succession, we will reveal certain
edges of � ? and then choose a triangle )8 among the edges revealed. Specifically,
we reveal first the edges (8 of � ? at E8 which do not go to E1, . . . , Eℓ, -8 or a vertex
of )1, . . . , )8−1. We then reveal all edges of �8 surviving in� ? which form a triangle
using two edges of (8 and which were not previously revealed. From these edges we
pick any triangle )8, and move on to the next 8.

Observe that by definition we do not reveal any edge of � ? twice; and if we
successfully choose a triangle at each step we indeed obtain the desired collection
of vertex-disjoint triangles. To begin with, we argue that when we come to E8, most
edges of �8 are still available to choose from. Note that we cannot use an edge of
�8 which is adjacent to any E 9 or )9 ; there are at most 3`2= such vertices, which are
adjacent to at most 3`2=2 edges of �8. We also cannot use an edge adjacent to -8; we
have |-8 | ≤ 3ℓ

12` ≤
`

4= and hence there are at most `4=
2 edges adjacent to -8. We also

cannot use an edge of �8 which was previously revealed. When we reveal edges at
some E 9 , we reveal by Chernoff’s inequality w.v.h.p. at most 2?= = 2�=1/3(log =)1/3

edges, and hence we reveal at most 4�2=2/3 log2/3 = edges of �8 in this step. Since
there are at most `2= steps, in total we reveal less than =7/4 edges. Putting this
together, w.v.h.p., for each 8 there remain at least 1

2`=
2 edges of �8 which we could

use to make triangles with E8. Let �8 denote the set of edges of �8 which remain
usable at the beginning of step 8.

When we reveal edges at E8, for each edge of �8 by definition we keep the edges
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from E8 to the endpoints of �8 with probability ?2, and so the expected number
of edges of �8 whose ends are both adjacent to E8 is ?2 |�8 | ≥ 1

2 ?
2`=2. Applying

Janson’s inequality, we have Δ̄ ≤ ?3=3, which is tiny compared to the square of the
expectation, so w.v.h.p. at least 1

4 ?
2`=2 edges of �8 are revealed to be neighbours

of E8. We now reveal which of these edges survive in � ?; by Chernoff’s inequality
and by choice of �, with probability at least 1 − =−2, at least 1

8 ?
3`=2 of these edges

survive in � ?, and in particular )8 exists.
Taking a union bound, the probability of failure at any step is >(1).

The last lemma allows us to find a reasonably large collection of vertex-disjoint
triangles using a possibly sparse set of edges each ofwhich extends tomany triangles;
we will use this to deal with nearly independent sets which have size larger than 1

3=.
Here we denote by deg� (4, -) the size of the common neighbourhood of an edge 4
inside a set - and, given a set of edges � , we will sometimes think of � as the graph
�� := (⋃ �, �) and use notation like te X(�) := X(�� ) or deg� (E) := deg�� (E).

Lemma 5.5.6. For any 0 < ` < 1
1000 there exists� > 0 such that the following holds

for all =, X, X1, X2 ∈ N, every =-vertex graph � and every ? ≥ �=−2/3(log =)1/3.

(i) Let -1, -2, -3 ⊆ + (�) be disjoint sets of size at least =/10, and let � ⊆
� (� [-1]) be a set of edges such that deg� (E) ≥ X for all E ∈ -1 and
deg� (4, -8) ≥ `= for all 4 ∈ � and 8 = 2, 3. Let =2, =3 be non-negative
integers with =2 + =3 ≤ min(X, `5=). Then, w.h.p., there is a set )1, . . . , )=2+=3

of vertex-disjoint triangles in� ?, =8 of which consist of an edge 4 ∈ � together
with a vertex of -8 for each 8 = 2, 3.

(ii) Let -1, -2 ⊆ + (�) be disjoint sets of size at least =/10. Let �8 ⊆ � [� [-8]]
be sets of edges such that deg�8 (E) ≥ X8 for all E ∈ -8 and deg(4, -3−8) ≥ `=
for all 4 ∈ �8 and 8 ∈ [2]. Let =8 ≤ min(X8, `5=) be non-negative integers
for each 8 ∈ [2]. Then, w.h.p., there is a set )1, . . . , )=1+=2 of vertex-disjoint
triangles in � ?, =8 of which consist of an edge 4 ∈ �8 together with a vertex of
-3−8 for each 8 ∈ [2].

Observe that, unlike other lemmas in this section, both cases of this lemma are very
tight and we can’t even guarantee more vertex-disjoint triangles in the underlying
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graph �. If the edges � have small maximum degree however, the situation is
somewhat easier and we will make use of this in the proof of Lemma 5.5.65.5.6:

Lemma 5.5.7. For all ` > 0 there exists � > 0 such that the following holds for
all = ∈ N, every =-vertex graph � and every ? ≥ �=−2/3(log =)1/3. Suppose that
� is a subset of � (�) with Δ(�) ≤ `= and `= ≤ |� | ≤ `2=2. Suppose in addition
that for each edge 4 ∈ � there is a given set -4 of size |-4 | ≥ `= consisting of
vertices E ∈ + (�) \ ⋃ � with E4 ∈ Tr(�). Then, w.h.p., there is a set )1, . . . , )ℓ

of vertex-disjoint triangles in � ?, where each )8 consists of an edge 4 ∈ � together
with a vertex of -4, such that ℓ ≥ |� |

10`= .

Proof. Let 0 < 1/� � `. We may assume that ? = �=−2/3(log =)1/3 and that =
is large enough for the following arguments. We will deduce the lemma from the
following claim.

Claim 5.11. W.h.p. the following is true for all - ⊆ + (�) with |- | ≤ |� |
`=
. If

|� \
(-

2
)
| ≥ |� |/2 and |-4 \ - | ≥ `=/2 for all 4 ∈ � , then there is a triangle in

� ? [+ (�) \ -] consisting of an edge 4 ∈ � together with a vertex of -4.

Proof. This is a straightforward application of Janson’s inequality and the union
bound. Note that the total number of choices of - is at most =|� |/(`=) . Fix
one such choice. Let . denote the number of triangles in � ? [+ (�) \ -]
and note that _ := E [. ] ≥ ?3` |� |=

4 ≥ �2 log(=) |� |
=
. Furthermore, we have

Δ̄ ≤ max(?5 |� |=2, _) ≤ max(?2= 4_
`
, _) ≤ _. Hence, by Janson’s inequality (see

Lemma 2.4.22.4.2), the probability of having less than _/2 triangles is at most

exp
(
− _

2

8Δ̄

)
≤ =−� |� |/=.

The claim now follows by taking a union bound and noting � � 1/`. �

Assume now the high probability event in the claim occurs and let )1, . . . , )ℓ

be a maximal collection of triangles as guaranteed by the statement. Suppose for
contradiction that ℓ < |� |

10`= and let - be the set of vertices covered by )1, . . . , )ℓ.
We have |� \

(-
2
)
| ≥ |� | − |- |`= ≥ |� |/2 and |-4 \ - | ≥ `= − 3|� |

10`= ≥ `=/2 for all
4 ∈ � , and hence there is a triangle in � ? [+ (�) \ -], a contradiction.

178



5 Robust Triangle Tilings

We are now ready to prove Lemma 5.5.65.5.6. We will only prove (8) as both proofs
are very similar.

Proof. Let 0 < 1/� � ` and let `′ = `/2. We may assume that X ≤ `5= and that =
is large enough for the following arguments. Let�1, �2, �3 be (independent copies)
of � ?/3. Observe that �1 ∪ �2 ∪ �3 is distributed like � ?′ for some ?′ ≤ ? and
therefore it suffices to show that �1 ∪�2 ∪�3 satisfies the desired properties w.h.p.
Wewill reveal�1, �2 and�3 at different stages andmake use of their independence.
Let � := {E ∈ -1 : deg� (E, -1) ≥ `′=}, and let �′ := -1 \ � and �′ = {4 ∈

� : 4 ⊆ �}. If |�| ≥ X, let T1 = T2 = ∅ and move to the next stage. Otherwise, in
a first and second round of probability (�1 and �2), we will find for each 8 ∈ [2]
collections T8 of at least =′8+1 := min(10(X − |�|), =8+1) triangles in �8 with two
endpoints in �′ and one in -8+1, so that all triangles in T1 ∪ T2 are vertex disjoint.
Indeed, since Δ(�′) ≤ `′= and deg(4, -2) ≥ `= ≥ `′= for all 4 ∈ �′, we can apply
Lemma 5.5.75.5.7 to get a collection of such triangles of size at least

|�′|
10`′=

≥ |�
′| (X − |�|)
10`′=

≥
( =10 − X) (X − |�|)

10`′=
≥ 10(X − |�|)

and we can pick a subset T1 of the desired size. We can repeat this process to get
the desired collection T2, making sure these copies are vertex-disjoint (since we
removed at most 3=1 ≤ 3`5= vertices, all inequalities still hold). Let =′′

8
= =8 − =′8

and pick disjoint subsets �8 ⊆ � \ (+ (T1 ∪ T2)) of size =′′8 for each 8 = 2, 3. Since
=′′2 + =

′′
3 ≤ `

5=, it follows from Lemma 5.5.55.5.5, that w.h.p. there is a collection T3 of
=′′2 + =

′′
3 vertex-disjoint triangles in �3 − + (T1 ∪ T2) consisting of =′′

8
triangles with

two vertices in -1 and one in -8 for each 8 = 2, 3.

5.5.2 Reduction

We are now in a position to prove Theorem 1.5.91.5.9, assuming Theorem 5.1.15.1.1. Before
giving the details, let us briefly sketch the approach. Given � with = ∈ 3N vertices
and minimum degree at least 2

3=, we separate three cases.
First, there is no set ( of about =3 vertices such that � [(] has small maximum

degree. In this case, we apply the Regularity Lemma and observe that the (Y, 3)-
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reduced graph ' has no large independent set. By the Hajnal–Szemerédi Theorem,
we find a large collection T ∗ of vertex disjoint triangles in ', and make the cor-
responding pairs of clusters super-regular by removing a few vertices to obtain a
subgraph ) of �. If ) were spanning in �, and the clusters were balanced, we
would be done by Theorem 5.1.15.1.1. In order to fix this, we need to remove a few more
triangles covering the vertices outside ) (which we do using Lemma 5.5.55.5.5) and then
further triangles to balance the clusters of ) (using Lemma 5.5.45.5.4). For the latter we
use the : = 3 case of Theorem 5.5.25.5.2 to find a fractional triangle tiling which tells
us where to remove triangles: this is the point where we use the fact that � has no
large sparse set. We obtain the following lemma (whose proof we defer to later).

Lemma 5.5.8 (No large sparse set). For each ` > 0 there are constants �, 3 > 0
such that the following holds. Let = ∈ 3N, ? ≥ �=−2/3(log =)1/3 and suppose � is
an =-vertex graph with X(�) ≥ ( 23 −

3
2 )= such that there is no ( ⊆ + (�) of size at

least
( 1

3 − 2`
)
= with Δ

(
� [(]

)
≤ 23=. Then w.h.p. � ? contains a triangle tiling.

Second, there is a set ( of about =3 vertices such that � [(] has maximum degree
at most 23=, but there is no second such set in � − (. The idea here is that we will
remove a few triangles from � in order to obtain a subgraph of � which can be
partitioned into sets -1, -2 of size |-2 | = 2|-1 | ≈ 2=

3 , such that all vertices of -1 are
adjacent to almost all vertices of -2 and vice versa (here Lemma 5.5.65.5.6 will be very
useful). Note that, with this degree condition, -2 can be very close to the union of
two cliques of size about 1

3=; this leads to a ‘parity case’ in which we have to be
very careful, which is something of a complication. If we can arrange for the correct
parities however, it will be easy to split -1 into two sets, each of which induces a
super-regular triple with one of the ‘near-cliques’ and apply our Theorem 5.1.15.1.1. If
we are not in the parity case, we will apply the Regularity Lemma to -2 and find
an almost-spanning matchingM∗ in the reduced graph '. We proceed similarly as
in the previous case, making these pairs super-regular, removing ‘atypical’ vertices
and then balance the pairs. Here, we make sure that every triangle we remove has
two vertices in -2 and one in -1 to keep the right balance between the two parts.
Finally we can partition -1 into smaller sets and form balanced super-regular triples
with the edges ofM∗ in order to apply our Theorem 5.1.15.1.1. We obtain the following
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lemma (whose proof we defer to later).

Lemma 5.5.9 (One large sparse set). For each ` > 0 there are �, g, 3 > 0 such that
the following holds for all = ∈ 3N and ? ≥ �=−2/3(log =)1/3. Suppose � is an =-
vertex graph with X(�) ≥ 2

3=, and suppose ( is a subset of+ (�) with |( | ≥
( 1

3 − g)=
and Δ(� [(]) ≤ g=. Suppose that there is no (′ ⊆ + (�) \( of size at least

( 1
3 −2`

)
=

with Δ
(
� [(]

)
≤ 23=. Then w.h.p. � ? contains a triangle tiling.

Third, there are two vertex-disjoint sets (1, (2 each of size about =3 in �, each of
which has small maximum degree. In this case � must be very close to a balanced
complete tripartite graph. We start by partitioning + (�) into sets -1, -2 and -3 of
size around =/3, so that (-1, -2, -3) is a (Y, 3+, X)-super-regular triple, where 3 is
close to 1, but X can be quite small (we need X � Y in order to apply Theorem 5.1.15.1.1).
We remove some carefully chosen vertex-disjoint triangles in order to balance the
-8 and to remove some ‘atypical’ vertices. This leaves us with a balanced (Y, 3+, 3)-
super-regular triple for some 3 close to 1, and Theorem 5.1.15.1.1 finds the required
triangle tiling, giving the following.

Lemma 5.5.10 (Two large sparse sets). There are �, g > 0 such that the following
holds for all = ∈ 3N and ? ≥ �=−2/3(log =)1/3. Suppose� is an =-vertex graph with
X(�) ≥ 2

3=, and suppose (1 and (2 are disjoint subsets of+ (�) with |(8 | ≥
( 1

3 − g)=
and Δ(� [(8]) ≤ g= for each 8. Then w.h.p. � ? contains a triangle tiling.

Before we give proofs of these three lemmas, we show how they imply Theo-
rem 1.5.91.5.9.

Proof of Theorem 1.5.91.5.9. Let 0 < 1/� � 31 � `1 � g2, 32 � `2 � g3 � 1, let
= ∈ 3N and let ? ≥ �=−2/3(log =)1/3. Suppose that � is an =-vertex graph with
X(�) ≥ 2=

3 .
If � contains no subset of size at least

( 1
3 − 2`1

)
= vertices with maximum degree

at most 231=, then by Lemma 5.5.85.5.8, � ? contains a triangle tiling w.h.p. We may
therefore suppose � contains a subset (1 of vertices of size at least

( 1
3 − 2`1

)
= ≥( 1

3 −g2
)
=with maximum degree at most 231= ≤ g2=. If there is no (2 ⊆ + (�) \(1 of

size at least
( 1

3 − 2`2
)
= with maximum degree at most 232=, then by Lemma 5.5.95.5.9,

� ? contains a triangle tiling w.h.p. We can therefore suppose that � contains a
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subset (2 disjoint from (1 of size at least
( 1

3 − 2`2
)
= ≥

( 1
3 − g3

)
= with maximum

degree at most 232= ≤ g3=. So by Lemma 5.5.105.5.10, � ? contains a triangle tiling
w.h.p.

We now give the proofs of the three lemmas.

Proof of Lemma 5.5.85.5.8. Suppose that 0 < 1/<0 � Y � 3, 1/� � ` � 1. Let
" ≥ <0 be returned by Theorem 2.2.112.2.11 with input <0, Y, 3 and W = 2

3 . Assume that
= � " . Let ? and � as in the statement. Let �1, �2, �3 be (independent copies)
of � ?/3; we will show that �1 ∪ �2 ∪ �3 satisfies the desired properties w.h.p.

We apply Theorem 2.2.112.2.11 to�, and obtain an (Y, 3)-reduced graph ' on A vertices
with <0 ≤ A ≤ " and minimum degree at least

( 2
3 −

3
2 − 3 − Y

)
A ≥

( 2
3 − 23

)
A. We

will see ' as a graph on [A] in the obvious way.

Claim 5.12. We have U(') <
( 1

3 − `
)
A.

Proof. Suppose for contradiction that ' contains an independent set � of size
( 1

3 −
`
)
A . Then in

⋃
8∈� +8 there must exist at least 1

2`= vertices each of whose degree
into

⋃
8∈� +8 exceeds 23=, otherwise removing these we would have a set ( whose

existence is forbidden in the lemma statement. By averaging, there is some 8 ∈ �
such that 1

2` |+8 | of these vertices +
′
8
are in +8. Now vertices of +8 can have at most

|+8 | neighbours in +8, and at most YA= neighbours in sets + 9 such that 9 ∈ � and
(+8, + 9 ) is not Y-regular. So the vertices of + ′

8
all have at least 3

23= neighbours in
total in sets + 9 such that 9 ∈ �, 9 ≠ 8 and (+8, + 9 ) is Y-regular. By averaging, there is
one of these sets+ 9 such that the density between+ ′8 and+ 9 exceeds

3
23. But (+8, + 9 )

is Y-regular and has density less than 3; this is a contradiction. �

We apply the Hajnal-Szemerédi Theorem (Theorem 5.5.15.5.1) to ', which gives us a
collection T ∗ of vertex-disjoint triangles in ' covering at least (1 − 123)A vertices.
We denote by )∗ := + (T ∗) the set of indices in triangles of T ∗. By Lemma 2.2.32.2.3,
there are+ ′

8
⊆ +8 for each 8 ∈ )∗ such that |+ ′8 | = d(1−4Y) |+8 |e and, for every triangle

8 9 : ∈ T ∗, the triple (+ ′
8
, + ′

9
, + ′

:
) is (2Y, (3 − 4Y)+)-super-regular. Let ) = ⋃

8∈)∗ +
′
8

be the set of vertices in � which are in a cluster + ′
8
corresponding to a triangle of

T ∗. Let - = + (�) \ ) . Observe that |- | ≤ 4Y= + Y= + 123= ≤ 163=. Let, ⊆ )
be a set such that
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(i)
��, ∩+ ′

8

�� = ( 12 ± 1
4 )
=
A
for each 8 ∈ )∗,

(ii) deg� (E,,) ≥ 3
5 |, | for each E ∈ + (�), and

(iii) deg� (E,+ ′8 ∩,) = (
1
2 ±

1
4 ) deg� (E,+ ′8 ) for each 8 ∈ )∗ and E ∈ + (�) with

deg� (E,+ ′8 ) ≥ Y |+ ′8 |.

(Such a set , can be found by choosing each vertex of ) independently with
probability 1

2 and applying Chernoff’s inequality and a union bound.)
We will start by covering - . We will not touch vertices outside of, in order to

maintain super-regularity properties.

Claim 5.13. W.h.p. in�1, there is a set of vertex-disjoint triangles T1 ⊆ Tr(�1 [, ∪
-]) so that - ⊆ + (T1) and

��+ (T1) ∩+ ′8 �� ≤ 20
√
3 |+ ′

8
| for all 8 ∈ )∗.

Proof. Let ˜̀ := 4
√
3 and enumerate - = {E1, . . . , Eℓ} and note that ℓ ≤ ˜̀2=.

For each 8 ∈ [ℓ], let �8 := {4 ∈ � (� [,]) : 4E ∈ Tr(�)}. Note that, since
deg(E,,) ≥ 3

5 |, | for all E ∈ + (�), we have |�8 | ≥ ˜̀=2 for all 8 ∈ [ℓ]. Finally, let
�8 = +

′
8
for each 8 ∈ )∗. The claim now follows readily from Lemma 5.5.55.5.5. �

Let now + ′′
8
= + ′

8
\ + (T1) for each 8 ∈ )∗. We would like to apply Theorem 5.1.15.1.1

to the super-regular triples (+ ′′
8
, + ′′

9
, + ′′

:
) for each 8 9 : ∈ T ∗. However, these triples

are not necessarily balanced, but we can correct this.

Claim 5.14. W.h.p. in �2, there is a set of vertex-disjoint triangles T2 ⊆ Tr(�2 [, \
+ (T1)]) so that |+ ′′8 \+ (T2) | = b0.9

=
A
c for all 8 ∈ )∗.

Proof. Let '′ = '[)∗] and let _ : )∗ → N be given by _(8) = |+ ′′
8
| − b0.9=

A
c. Note

that (0.1−30
√
3) =

A
≤ _(8) ≤ d0.1=

A
e, and that∑8∈)∗ _(8) = =−3 |T1 |−3 |T ∗ | b0.9=

A
c is

divisible by 3. Hence, by Lemma 5.5.35.5.3, there is a weight function l : Tr('′) → N0

such that for each 8 ∈ )∗ we have
∑
C∈Tr8 ('′) l(C) = _(8). We claim that we can

remove l(8 9 :) triangles from�2 [+ ′′8 ∩,,+ ′′9 ∩,,+ ′′: ∩,] for each triangle 8 9 : of
'′, making sure that all our choices are vertex-disjoint. Indeed, observe that the triple
(+ ′′
8
∩,,+ ′′

9
∩,,+ ′′

:
∩,) is (10Y, (3/2)+, 3/10)-super-regular for each 8 9 : ∈ Tr('′)

by the slicing lemma (see Lemma 2.2.12.2.1) and the choice of, . Furthermore, observe
that |+ ′′

8
∩ , | ≥ 1

5 ·
=
A
. Hence, Lemma 5.5.45.5.4 implies that w.h.p. there are 1

6 ·
=
A
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vertex-disjoint triangles in �2 [+ ′′8 ∩,,+ ′′9 ∩,,+ ′′: ∩,] for each 8 9 : ∈ Tr('′), so
we can select the desired amount of triangles for each C ∈ Tr('′) one at a time. �

Let now+ ′′′
8
= + ′′

8
\+ (T2) for all 8 ∈ )∗ and observe thatwe have covered all vertices

except for those in
⋃
8∈)∗ +

′′′
8
. We claim that (+ ′′′

8
, + ′′′

9
, + ′′′

:
) is (8Y, (3/2)+, 3/8)-

super-regular for all 8 9 : ∈ T ∗. Indeed, this follows from the slicing lemma, and
from deg(E,+ ′′′

9
) ≥ deg(E,+ ′

9
\ ,) ≥ 1

4 deg� (E,+ ′9 ) ≥
3
8 |+
′
9
| and the analogous

inequalities for other pairs. Finally, we apply Theorem 5.1.15.1.1 to each of these triples
individually in �3 to obtain (w.h.p.) a collection T3 of vertex-disjoint triangles
covering exactly

⋃
8∈)∗ +

′′′
8
.

Next, we deal with the case when � has two large sparse sets; i.e. it looks similar
to the extremal complete tripartite graph. This is the easiest case; we will not need
the Regularity Lemma.

Proof of Lemma 5.5.105.5.10. Suppose that 0 < g, 1/� � 1 and let d := g1/8. Let
= ∈ 3N be large enough for the following arguments and let ? ≥ �=−2/3(log =)1/3.
Let � and sparse sets (1 and (2 be given as in the statement. Let �1, . . . , �4 be
independent copies of � ?/5. We will find a triangle tiling in �1 ∪ . . . ∪ �4.

Claim 5.15. There is a partition + (�) = -1 ∪ -2 ∪ -3 such that

(i) |-8 | = (1/3 ± d6)= for all 8 ∈ [3],

(ii) deg(E, - 9 ) ≥ d= for all 8 ≠ 9 ∈ [3] and E ∈ -8,

(iii) 3 (-8, - 9 ) ≥ 1 − d6 for all 1 ≤ 8 < 9 ≤ 3.

(iv) For each 8 ∈ [3], if |-8 | ≥ =
3 , then deg(E, - 9 ) ≥ |- 9 | − 4d= for all E ∈ -8 and

9 ∈ [3] \ {8}.

Proof. For 8 ∈ [2], let /8 = {E ∈ + (�) \ ((1 ∪ (2) : deg(E, (8) ≤ d=}. Let
-′
8
= (8 ∪ /8 for 8 ∈ [2] and -′3 = {E ∈ + (�) : deg(E, (8) ≥ ( 13 − 2d)= for each 8 ∈

[2]}. Note that, since X(�) ≥ 2
3=, /1 and /2 are disjoint and hence -′1 and

-′2 are disjoint as well. Furthermore, by definition, -′3 is disjoint from -′1 and
-′2. Let /′ := + (�) \ (-′1 ∪ -

′
2 ∪ -

′
3) be the set of remaining vertices. Partition

/′ = /′1 ∪ /
′
2 ∪ /

′
3 so that /

′
8
= ∅ if |-′

8
| ≥ =

3 and |-′
8
| + |/′

8
| ≤ =

3 otherwise. Finally,
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let and -8 = -′
8
∪ /′

8
for all 8 ∈ [3]. Note that + (�) = -1 ∪ -2 ∪ -3 is indeed a

partition.
We will show now that the sets /1, /2 and /′ are small. Let 8 ∈ [2]. Since
|(8 | ≥

( 1
3 − d

8)=, each vertex of (8 has at least
( 1

3 − 2d8)= non-neighbours in (8,
and so at most 2d8= non-neighbours outside (8. Therefore, the total number of
non-edges between (8 and + (�) \ (8 is at most d8=2. Since every E ∈ /8 has at
least =/4 non-neighbours in (8, this implies |/8 | ≤ 4d8=. Moreover, the number
of non-edges between -′1 ∪ -

′
2 and /′ is at most 2d8=2 + (|/1 | + |/2 |)= ≤ 10d8=2.

Observe that every E ∈ /′ has at least d= non-neighbours in -′1 ∪ -
′
2 (otherwise it

would be in -′3), and therefore |/
′| ≤ 10d7=. In particular, (8) holds.

Furthermore, for each E ∈ /′, we have deg(E, (8) ≥ d= since E ∉ /8 for 8 ∈ [2], and
deg(E, -′3) ≥ d= for otherwise E would be in -′3. Clearly, we have deg(E, - 9 ) ≥ d=
for all 8 ∈ [2], 9 ∈ [3] \ {8} and E ∈ /8. Therefore, (88) holds.

Moreover, we have deg(E, -8) ≥ |-8 | − d7= for all G ∈ (1 and 8 = 2, 3. Since
|/1 ∪ /′1 | ≤ d

7=, this implies 3 (-1, -8) ≥ 1− d6 for 8 = 2, 3. Similarly 3 (-2, -3) ≥
1 − d6.

Finally, let 8, 9 ∈ [3] be distinct. If |-8 | ≥ =/3, then -8 ∩ /′ = ∅ by construction
and therefore deg(E, - 9 ) ≥ =

3 − 2d= ≥ |- 9 | − 4d= for all E ∈ -8. �

We now perform a stage of removing some vertex-disjoint triangles in order to
obtain a balanced tripartite graph.

Claim 5.16. W.h.p. in �1, there is a set of triangles T1 ⊆ Tr(�1) so that
|-1 \+ (T1) | = |-2 \+ (T1) | = |-3 \+ (T1) | ≥ ( 13 − d

4)=.

Proof. If all three sets -1, -2, -3 have size exactly =
3 , we are done. Otherwise, one

or two of these sets have size exceeding =
3 .

Case 1. Assume first that only one set exceeds =
3 in size and, without loss of

generality, this set is -1. Let =2 := =
3 − |-3 | and =3 := =

3 − |-2 |, and let � =

� (� [-1]). Observe that X(�) ≥ |-1 | − =
3 = =1 + =2. Furthermore, we have

deg(4, -8) ≥ |-8 | − 10d= ≥ =
4 for both 8 = 2, 3. Therefore, by Lemma 5.5.65.5.6 (8),

there is a collection T1 of =2 + =3 vertex-disjoint triangles in �1 with two vertices in
-1, =2 of which have the third vertex in -2, and =3 of which have the third vertex in
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-3. Clearly, we have |-1 \ )1 | = |-2 \ )1 | = |-3 \ )1 | = 2=
3 − |-1 | ≥ ( 13 − 5d6)=, as

claimed.
Case 2.Assumenow that there are two sets (say -1 and -2) exceeding =

3 in size. For
8 ∈ [2], let =8 := |-8 | − =

3 and �8 = � (� [-8]). Observe that, for 8 ∈ [2], X(�8) ≥ =8
and deg(4, -3−8) ≥ |-3−8 | − 10d= ≥ =

4 for all 4 ∈ �8. Therefore, by Lemma 5.5.65.5.6
(88), there is a collection T1 of =1 + =2 vertex disjoint triangles in �1, =1 of which
have two vertices in -1 and one in -2, and =2 of which have two vertices in -2 and
one in -1. Clearly, we have |-1 \ )1 | = |-2 \ )1 | = |-3 \ )1 | = |-3 | ≥ ( 13 − d

6)=, as
claimed. �

Let now -′
8
= -8 \+ (T1) and observe that |-′1 | = |-

′
2 | = |-

′
3 |. Define

. ′8 := {E ∈ -′8 : deg(E, -′9 ) ≤ (1 − d/2) |-′9 | for some 9 ∈ [3] \ {8}}.

Since 3 (-′
8
, -′

9
) ≥ 1 − 2d6 for all 1 ≤ 8 < 9 ≤ 3, we have

��. ′
8

�� ≤ 10d5= for each
8 ∈ [3]. Furthermore, each vertex E ∈ . ′1 ∪.

′
2 ∪.

′
3 is in at least

1
4d

2=2 triangles of �
with one vertex in each -′

8
. By applying Lemma 5.5.55.5.5 (with C = 0), w.h.p. in �2, we

can find a setT2 ⊆ Tr(�2) of vertex-disjoint triangles using one vertex from each part
with . ′1 ∪.

′
2 ∪.

′
3 ⊆ + (T2) ⊆ -

′
1 ∪ -

′
2 ∪ -

′
3 and |+ (T2) | ≤ 3( |. ′1 | + |.

′
2 | + |.

′
3 |) ≤ d

4=.
Let now -′′

8
:= -′

8
\+ (T2) for each 8 ∈ [3] and observe that |-′′1 | = |-

′′
2 | = |-

′′
3 | ≥

( 13 − 2d4)=. Furthermore, (-′′1 , -
′′
2 , -

′′
3 ) is (d, (1 − d)

+)-super-regular. Hence, by
Theorem 5.1.15.1.1, there is a triangle tiling T3 in �3 covering it.

Finally, we deal with the second case in the above sketch; we will use several of
the ideas from the previous two lemmas, so we abbreviate the details.

Proof of Lemma 5.5.95.5.9. Suppose that 0 < 1/<0 � Y � 3, 1/� � ` � 1. Let
" ≥ <0 be returned by Theorem 2.2.112.2.11 with input <0, Y, 3 and W = 2

3 . Let
0 < g � 1/" and d = g1/8. Assume that = ∈ 3N is large enough for the following
arguments. Let ?, � and ( be as in the statement of the lemma. Let �1, . . . , �5 be
(independent copies) of � ?/5. We will show that �1 ∪ . . . ∪ �5 contains a triangle
tiling w.h.p.

We begin with a claim that gives us a lot of structure. We will call a set - ⊆ + (�)
Y-strongly connected if 4(-′, - \-′) ≤ |- |

2

4 −Y=
2 for all -′ ⊆ - , where we denote by
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4(-,. ) = |- | |. |−4(-,. ) the number of non-edges between - and. .44 Furthermore,
we say that - is Y-close to complete if 4(� [-]) ≥ ( 12 − Y) |- |

2.

Claim 5.17. There is a collection T1 of vertex disjoint triangles in �1 ∪ �2 and
disjoint sets -1, -2 ⊆ + (�) so that

(i) -1 ∪ -2 = + (�) \+ (T1) and |-1 | = |-2 |/2 = ( 13 ± d=).

(ii) deg(E, -3−8) ≥ (1 − 4d) |-3−8 | for all 8 ∈ [2] and E ∈ -8,

(iii) -2 is 103-strongly connected or there is a partition -2 = -2,1 ∪ -2,2 so that
|-2,8 | ≥ =

4 is even and 503-close to complete for both 8 ∈ [2].

Proof. Let .1 = {E ∈ + (�) \ ( : deg(E, () ≤ d=}. Let -′1 = ( ∪ .1 and -′2 =
+ (�) \ -′1. Observe that, similar to the proof of Claim 5.155.15, we have

(P1) deg(E, -′2) ≥ |-
′
2 | − 2d= for all E ∈ -′1 and deg(E, -′1) ≥ d= for all E ∈ -

′
2,

(P2) |-′1 | = (
1
3 ± d

6)= and |-′2 | = (
2
3 ± d

6)=, and

(P3) 3 (-′1, -
′
2) ≥ 1 − d6.

Let f = 103 and let -′2 = -′2,1 ∪ -
′
2,2 be the partition of -′2 which maximises

4(-′2,1 ∪ -
′
2,2). Throughout this proof, we will have to distinguish between two

cases: either -′2 is f-strongly-connected (this we will call the connected case from
now on) or 4(-′2,1 ∪ -

′
2,2) ≥

|-2 |2
4 − f=

2. Although the process is very similar for
both, we will handle them separately, starting with the disconnected case.

The disconnected case. We claim that

(Q1) |-′2,8 | = (
1
3 ± 2f)= and 4(-′2,8) ≥

1
2 |-
′
2,8 |

2 − 2f=2 for both 8 ∈ [2], and

(Q2) deg(E, -′2,8) ≥
=
10 for all 8 ∈ [2] and E ∈ -′2,8.

Indeed, (Q1)(Q1) follows from the case assumption and X(�) ≥ 2=
3 , and (Q2)(Q2) since

-′2,1, -
′
2,1 are chosen to maximise non-edges in between (otherwise, moving a vertex

violating (Q2)(Q2) to the other set increases the count).
4This definition might appear somewhat strange now but will assure that the reduced graph in this
proof is connected.
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In a first round of probability (�1), our goal is to balance the sizes. Assume
first that |-′1 | >

=
3 . Let =2 = 0 if -′2,1 is even and =2 = 1 otherwise, and let

=3 = |-′1 | −
=
3 − =2. Let � = � (� [-′1]), and observe that X(�) ≥ =2 + =3.

Furthermore, we have deg(4, -′2,8) ≥ |-
′
2,8 | − 10d= ≥ =

4 for both 8 ∈ [2] by (P1)(P1) and
(Q1)(Q1). Therefore, by Lemma 5.5.65.5.6, w.h.p. there is a collection T ′1 of exactly |-′1 | −

=
3

vertex-disjoint triangles in �1 with two vertices in -′1 and one vertex in -′2. Let
-′′
8
= -′

8
\ + (T ′1 ) and -

′′
2,8 = -′2,8 \ + (T

′
1 ) for 8 ∈ [2]. By construction, we have

|-′′2 | = 2|-′′1 | =
4=
3 − 2|-′1 | ≥ 2( 13 − d

5)= and -′′2,8 is even for both 8 ∈ [2].
Assume now that |-′2 | ≥

2=
3 . Observe that for each 8 ∈ [2] and - ⊆ -

′
2,8 of size

|- | ≥ 1
2 |-
′
2,8 | ≥

=
8 , we have Tr(� [-]) ≥ =3

1000 by (Q1)(Q1). Thus, by Lemma 5.5.45.5.4,
there are collections of =/8 vertex-disjoint triangles in each of �1 [-′2,8] w.h.p.
Thus, we can pick a collection T ′1 of exactly =

3 − |-
′
1 | from these, again taking

either one or no triangle in -′2,1 depending on its parity. By construction, we have
|-′′2 | = 2|-′′1 | = 2|-′1 | ≥ 2( 13 − d

5)= and -′′2,8 is even for both 8 ∈ [2] (where -
′′
8
and

-′′2,8 are defined as above).
In a second round of probability (�2), we will remove ‘atypical’ vertices in -′′2 .

From this point onwards, wewill only remove triangleswith one vertex in -′′1 and two
vertices in -′′2,8 for some 8 ∈ [2], thus maintaining the right balance between -′′1 and
-′′2 and the parity of -′′2,1 and -′′2,2. For 8 ∈ [2], let .2,8 := {E ∈ -′′2,8 : deg(E, -′′1 ) ≤
|-′′1 |−

d=

2 } and for each E ∈ .2,8 let�E := {D1D2 : D1 ∈ -′′2,8, D2 ∈ -′′2 , ED1D2 ∈ Tr(�)}.
It follows from (P3)(P3) (and counting non-edges between -′1 and -

′
2) that |.2,8 | ≤ 2d5=

for both 8 ∈ [2]. Furthermore, this implies that |�E | ≥ ( 1
10 − 2d5)= · (d− d

2 )= ≥ d
2=

for all E ∈ .2,1 ∪ .2,2. Thus, by Lemma 5.5.55.5.5, w.h.p. there is a collection T ′′1 of
at most 4d5= vertex-disjoint triangles in �2 [-′′1 ∪ -

′′
2 ] of the desired form (one

vertex in -′′1 and two vertices in -′′2,8 for some 8 ∈ [2]). Let -8 = -′′8 \ + (T ′′1 ) and
-2,8 = -

′′
2,8 \ + (T

′′
1 ) for each 8 ∈ [2]. Let T1 = T

′
1 ∪ T

′′
1 , and -8 = -′′8 \ + (T ′′1 ) and

-2,8 = -′′2,8 \ + (T
′′

1 ) for each 8 ∈ [2]. It is easy to see that these sets have all the
desired properties.

The connected case. This case is very similar but less technical since we do not
have to worry about the sets -′2,1 and -

′
2,2. We will therefore skip some details.

In a first round of probability (�1), our goal is to balance the sizes. The case
|-′1 | >

=
3 is completely analogous to the disconnected case and we find a collection
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of T ′1 of exactly |-′1 | −
=
3 vertex-disjoint triangles in �1 with two vertices in -′1

and one vertex in -′2. Let -
′′
8
= -′

8
\ + (T ′1 ) for 8 ∈ [2]. By construction, we have

|-′′2 | = 2|-′′1 | =
4=
3 − 2|-′1 | ≥ 2( 13 − d

5)=.
Assume now that |-′2 | ≥

2=
3 . Observe that for every set / ⊆ -′2 with |/ | ≤ 3=

and every E ∈ -′2 \ / , we have deg(E, -′2 \ /) ≥ (
1
3 − 3)= and thus there are at

least 3= edges in # (E, -′2) (since there is no set (′ ⊆ -2 with Δ(� [(′]) ≤ 23=
by assumption). Thus there at least 3

10=
3 triangles in � [-′2 \ /]. It follows from

Lemma 5.5.45.5.4 that w.h.p. there are at least 3=/3 vertex-disjoint triangles in �1 [-′2].
Let T ′1 be a collection of exactly =

3 − |-
′
1 | of these. By construction, we have

|-′′2 | = 2|-′′1 | = 2|-′1 | ≥ 2( 13 − d
5)=.

The process of removing atypical vertices in -′′2 is analogous to the connected
case and we will omit the details. �

From here on, the disconnected case is very simple: Let us first remove more
atypical vertices of our near cliques. For 8 ∈ [2], let /2,8 := {E ∈ -2,8 : deg(E, -2,8) ≤
|-2,8 | −

√
3=}. Observe that, since -2,8 is 503-close to complete, we have |/2,8 | ≤

100
√
3=. Since any two vertices in -2 have at least =

4 common neighbours in
-1, it follows from Lemma 5.5.55.5.5 that w.h.p. (in �3) there is a collection T2 of at
most 200

√
3= vertex-disjoint triangles in �3 [-1 ∪ -2] with one vertex in -1 and

two vertices in -2 (both of which are in the same -2,8) covering /2,1 ∪ /2,2. Let
-′
8
= -8 \ + (T2) and -′2,8 = -2,8 \ + (T2) for each 8 ∈ [2]. Let -′1 = -

′
1,1 ∪ -

′
2,2 be

a partition such that |-′1,8 | =
1
2 |-
′
2,8 | for each 8 ∈ [2] (note that here the parity of

|-′2,8 | is important). Now, -′1,8 ∪ -
′
2,8 induces a (3

1/3, 0.99+)-super-regular triple for
both 8 ∈ [2] (after splitting -′2,8 arbitrarily in two sets of equal sizes). Therefore, by
Theorem5.1.15.1.1, w.h.p. there are vertex-disjoint triangles in�4 covering the remaining
vertices.

Thus, we may assume that -2 is 103-strongly connected. This case is very similar
to the proof of Lemma 5.5.85.5.8. Let =8 := |-8 | for both 8 ∈ [2] and recall that =2 = 2=1.
We apply Theorem 2.2.112.2.11 to � [-2] with input <0, Y, 3 to get an Y-regular partition
-2 = +0 ∪ +1 ∪ . . . ∪ +A for some <0 ≤ A ≤ " . Let ' be the corresponding (Y, 3)-
reduced graph (seen as a graph on [A]) and observe that we have X(') ≥

( 1
2 − 23

)
A

and, as in the proof of Lemma 5.5.85.5.8, we have U(') <
( 1

2 − `
)
A . It is well-
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known that every graph � contains a matching of size min{X(�), b E(�)2 c}.
55 Thus

' contains a matchingM∗ of size
( 1

2 − 23
)
A; let '′ be the subgraph of ' induced

by "∗ := + (M∗). Note that X('′) ≥ ( 12 − 63)A and we claim that '′ is connected.
Indeed, if not, there is a set -' ⊆ + ('′) such that 4(-', + ('′) \ -') = 0. Observe
that |-' |, |+ ('′) \' | ≥ X('′) ≥ ( 12 −63)A. Let now -′ :=

⋃
8∈-' +8 and observe that

|-′| = ( 12 ± 203) |-2 |. Furthermore, we have 4(-′, -2 \ -′) ≤ (3 + 43 + Y)3=2 and
consequently 4(-′, -2 \ -′) ≥ |-′| |-2 \ -′| − 63=2 > |-2 |2

4 − 103=2, contradicting
the fact that -2 is 103-strongly connected.
By Lemma 2.2.32.2.3, there are+ ′

8
⊆ +8 for each 8 ∈ "∗ such that |+ ′8 | = d(1−4Y) |+8 |e

and, for every triangle 8 9 ∈ M∗, the pair (+ ′
8
, + ′

9
) is (2Y, (3 − 4Y)+)-super-regular.

Let . = -2 \
⋃
8∈"∗ +

′
8
be the set of vertices in -2 which are not in a cluster + ′

8

corresponding to an edge ofM∗. Observe that |. | ≤ 4Y= + Y= + 43= ≤ 53=. Let
, ⊆ -2 \ . be a set such that

(i)
��, ∩+ ′

8

�� = ( 12 ± 1
4 )
=2
A
for each 8 ∈ "∗,

(ii) deg� (E,,) ≥ 1
3 |, | for each E ∈ -2, and

(iii) deg� (E,+ ′8 ∩ ,) = (
1
2 ±

1
4 ) deg� (E,+ ′8 ) for each 8 ∈ "∗ and E ∈ -2 with

deg� (E,+ ′8 ) ≥ Y |+ ′8 |.

(Such a set , can be found by choosing each vertex of -2 \ . independently with
probability 1

2 and applying Chernoff’s inequality and a union bound.)
We will start by covering . . We will not touch vertices outside of, in order to

maintain super-regularity properties.

Claim 5.18. W.h.p. in �3, there is a set of vertex-disjoint triangles T2 ⊆ Tr(�1)
each of which has two vertices in, ∪. ⊆ -2 and one in -1, so that . ⊆ + (T2) and��+ (T2) ∩+ ′8 �� ≤ 20

√
3 |+ ′

8
| for all 8 ∈ "∗.

The proof is very similar to the proof of Claim 5.135.13 and we will omit the details.
Let now -′′

8
= -8 \ + (T2) for each 8 ∈ [2] and let + ′′

8
= + ′

8
\ + (T2) for each 8 ∈ "∗.

We will now balance the sizes.

5If E(�) is even, this is the : = 2 case of Theorem 5.5.15.5.1.
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5 Robust Triangle Tilings

Claim 5.19. W.h.p. in �4, there is a set of vertex-disjoint triangles T3 ⊆ Tr(�4)
with one vertex in -′′1 and two vertices in, , so that |+ ′′

8
\ + (T3) | = b0.9=2

A
c for all

8 ∈ "∗.

Proof. Let _ : "∗ → N be given by _(8) = |+ ′′
8
| − b0.9=

A
c. Note that we have (0.1−

30
√
3) =2

A
≤ _(8) ≤ d0.1=2

A
e, and that∑8∈"∗ _(8) = =2−2 |T2 |−2 |M∗ | b0.9=

A
c is even.

Hence, by applyingLemma5.5.35.5.3 to the connected graph '′, there is aweight function
l : � ('′) → N0 such that for each 8 ∈ "∗wehave

∑
9∈#'′ (8) l(8 9) = _(8). We claim

that we can removel(8 9) triangles from�2 [-′′1 , +
′′
8
∩,,+ ′′

9
∩,] for each edge 8 9 of

'′, making sure that all our choices are vertex-disjoint. Indeed, let .1, . . . , .A ⊆ -′′1
be disjoint sets of size at least 1

5 · d
=2
A
e and observe that deg(E, -′′3−1) ≥ |-

′′
3−8 | − 4d=

for each E ∈ -′′
8
by Claim 5.175.17. Since d � 1/A � Y, this implies that, for

each : ∈ [A] and 8 ∈ "∗, the pair (.: , + ′′8 ) is (Y, (1 − Y)+)-super-regular. It
further follows from the slicing lemma (see Lemma 2.2.12.2.1) and the choice of, that
(+ ′′
8
∩,,+ ′′

9
∩,) is (10Y, (3/10)+)-super-regular for each 8 9 ∈ � ('′). Hence the

triple (.: , + ′′8 ∩,,+ ′′9 ∩,) is (10Y, (3/10)+)-super-regular for each 8 9 ∈ � ('′) and
: ∈ [A]. Furthermore, we have |+ ′′

8
∩, | ≥ 1

5 ·
=2
A
. Hence, Lemma 5.5.45.5.4 implies that

w.h.p., there are 1
6 ·

=2
A
vertex-disjoint triangles in �4 [.: , + ′′8 ∩,,+ ′′9 ∩,] for each

8 9 ∈ � ('′) and : ∈ [A]. Thus we can select the desired amount of triangles for each
4 ∈ � ('′) one at a time. �

Let now -′′′
8
= -′′

8
\ + (T3) for each 8 ∈ [2] and + ′′′8 = + ′′

8
\ + (T3) for all 8 ∈ "∗

and observe that we have covered all vertices except for those in -′′′1 ∪ -
′′′
2 . Since

|-′′′1 | =
1
2 |-
′′′
2 |, we can partition -′′′1 =

⋃
4∈M∗ -

′′′
4 into |M∗ | sets of size exactly

b0.9=2
A
c. Observe that deg(E, -′′′2 ) ≥ |-

′′′
2 | − 4d= for each E ∈ -′′′1 and vice versa by

Claim 5.175.17. Since d � 1/A � Y, this implies that, for each 4 ∈ M∗ and 8 ∈ "∗,
the pair (-′′′4 , + ′′′8 ) is (Y, (1− Y)+)-super-regular. Furthermore, the pair (+ ′′′

8
, + ′′′

9
) is

(8Y, (3/8)+)-super-regular for each 8 9 ∈ M∗ by the slicing lemma (Lemma 2.2.12.2.1)
and since deg(E,+ ′′′

9
) ≥ deg(E,+ ′

9
\,) ≥ 1

4 deg� (E,+ ′9 ) ≥
3
8 |+
′
9
| for all E ∈ + ′′′

8
and

vice-versa. Therefore, (-′′′
8 9
, + ′′′
8
, + ′′′

9
) is (8Y, (3/8)+)-super-regular for all 8 9 ∈ M∗.

Finally, we apply Theorem 5.1.15.1.1 to each of these triples individually in �5 to obtain
(w.h.p.) a collection T4 of vertex-disjoint triangles covering exactly -′′′1 ∪ -

′′′
2 .
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