Comparative Methods of Computing Maximum Likelihood Estimates

for Non-Linear Econometric Systems

by

Yock Yoon CHONG
B.Sc.(Sci.), M.sc. (Comp. Sci.)

1981

Thesis submitted for the
Degree of Doctor of Philosophy
at the
London School of Economics

University of lLondon



To
My Mother
and the Fond Memory of

My Dear Father



ACKNOWLEDGEMENTS

I wish to thank my supervisor, Professor J.D. Sargan, for
his continuous help, advice and encouragement throughout this study.
The undertaking of this research would not have been possible
without his constant supervision.

I would also like to thank Professor D.F. Hendry for his
invaluable comments and suggestions, though his demand for clarity
is not always met, and to Dr. H.R, Wills for many helpful discussions and
suggestions on the computer programs development.

I am also grateful to the Queen Mary College DAP Support Unit
for advice with the computing aspects of the DAP programs, and to
the Social Science Research Council for the financial support which
made this work possible.



ABSTRACT

. This. research is mainly concerned with numerical optimisation
techniques applied to general non-linear econometric simultaneous
equations systems. The method of estimation used is maximum
likelihood. An estimation program which applies gradient-~type
procedures, specifically the Berndt-Hall-Hall-Hausman and Gill-Murray-
Pitfield methods, is developed. This program allows the estimation
of a general small-to-medium size model which is non-linear in
parameters, variables or both. 1In the course of program development,
a general differentiation program is written which will differentiate
a set of econometric equations and thus provide the analytical
gradients for the optimisation procedures. A comparative study has
been made of the relative efficiency of the two methods by running
a set of simulated non-linear models and also using a small macro-
economic model of the British Economy specified by David F. Hendry.
To improve the efficiency of the estimation program in terms of
computing time, the Berndt-Hall-Hall-Hausman method was implemented
on the ICL Distributed Array Processor (DAP) which employs parallel
computations. The DAP runs show that for a model with a large sample
size, the DAP is approximately 30 times faster than the conventional
computer CDC 7600, but that for the present algorithm, the latter
is a more efficient alternative for small sample sizes.
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CHAPTER 1

SURVEY AND LITERATURE

1. ‘Introduction

This research is concerned with the estimation of general non-
linear simultaneous equations econometric models by the method of

maximum likelihood.

A computer program called Non-Linear Maximum Likelihood
‘Estimation (NLMLE)_}S specifically developed for this purpose. This
program allows the estimation of a quite general non-linear model by
the method of Berndt-Hall-Hall-Hausman (BHHH, 1974) or~
alternatively by the use of the Gill-Murray-Pitfield (GMP, 1972)
algorithm (with or without derivatives) from the NAG library. 1In the
course of program development, a differentiation program is developed
which will differentiate a set of functions defined by éeneral FORTRAN
specifications to any order (Sargan and Chong (1980)). After developing
the main estimation program, wherg much effort has been concentrated oﬁ
finding an efficient line search algorithm by the use of quadratic
interpolation (Po;ell, 19645, comparison has been made of the relative
efficiency of the two methods (BHHH and GMP) by applying these to -
simulated data from a representative set of models. A more realistic
model (Hendry, 1974) has also been studied. At this stage is
appeared clear that the BHHH method provides generally a better

optimisation algorithm when the number of parameters in the model is

greater than 8 and the sample size is greater than 50,

The program is written in FORTRAN IV and the serial version has

been implemented on CDC 7600 and ICL 2980 computer systems. For DAP

-



(Distributed Array Processor) application using parallel processing,

a few subroutines from the existing program have been reorganised and
reprogrammed in DAPFORTRAN. Due to the storage restrictions of the

DAP (2 Mbyte), the program is restricted to the estimation models

with no more than 5 equations and 30 parameters but up to 4096
observations. It became clear that the use of DAP will be advantageous
when the sample size is large, ideally close to 4096 observations.

To increase the degree of parallelism and extend the program size

will require further research which is beyond the scope of the

present studies.

As the program (the serial version) is written in FORTRAN 1V,

it is fairly portable; one would expect without much difficulty to

implement it on other computer systems.

In the following sections, we will briefly review the literature
on maximum likelihood estimators, on numerical methods applied to
non-linear econometric models and, lastly, formula manipulation and

symbolic differentiation on a computer.

1.1 Maximum Iikelihood Estimator for Non-linear Econometric

Systems

The usual method of formulating a model which is generally non-
linear in both the variables and the parameters in a form suitable_
for maximum likelihood estimation is that suggested initially by ”
Eisenpress and Greenstadt (1966). For a later discussion, see Chow
(1973). The full-information maximum likelihood estimates of the
k-vector of unknown parameters 0 can be obtained as the parameter 6

that maximises the concentrated log-likelihood function of simultaneous

equations systems that are non-linear in the parameters and/or variables.
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Each equation of the simultaneous equation system is specified by
expressing the error on the equation as a general function of the
variables and the parameters, and it is then assumed that the errors

are jointly normally distributed.

The Eisenpress and Greenstadt procedure is to estimate each.
equation in a non-linear system by ordinary least squares, and then
to use these results as the initial approximation to a full-information
solution. However, the problem of identificqtion in non-linear systems
is not treéted and provision has to be made ultimately to avoid
working with under-identified equations and systems. In Eisenpress

and Greenstadt's work, they define a given equation in the form

Yie 93 Wopr woer Y1, 67 Yigg,¢r oo Ve

th, evey ZMtI el’ eevyg 6K) + uit (l-l)

where one endogenous variable yi is an arbitrary function 9
of the other endogenous variables, the predetermined variables zm,

and.the parameters © subject to a random disturbance u

Xk i ?hen

least squares or maximum likelihood estimation (if the u, are

i

assumed normal) is applied to the T observations on the 'y's and

z's, to estimate the 0's, under the assumption that

E(w,) = 0, t=1, euu, T
_ 0 t#t
C =
OV Yy User) 52 £ = £
vi

The estimates of the 6's will, in general, be inconsistent, but this
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calculation is able to provide a first guess for use in the techniques

that follow.

To obtain the least-squares estimates of the 6's, the function

is minimised with respect to the 6's, using the modified Newton
method which requires the first and second derivatives of L' with

respect to 6.

On more general assumptions, the full-information maximum

likelihood estimates are obtained by defining the set of equations as

EieWer 200 0) 2 £, (Wgr ooon Yiger 200 weer Zpyd
el’ oo sy eK) = uit (102)
i=l' o 0oy N;t=l' evey T
where uit are the random disturbances of these relations. The f's

are assumed to have derivatives up to third order.
The concentrated log-likelihood function of (1.2) is

L*(8) = const - %‘-logdet (s) + Zlog I’det(Jt)l (1.3)
. t

where

ft is the NX1 vector with elements fit'

s =8(0) = (.l,r-zfit(e)fjt(e)).
. t '
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and J is the NXN Jacobian matrix,

Jt(e) - t°t t .

Byt

[ <]
1]

To maximise L*(8), the gradient method or modified Newton
method is used. These both make use of the first and second derivatives
of L*(6) with respect tothe 6's. As in many iterative procedures,
the first approximation and the conditioning of various matrices
(e.g. the Hessian):are important in determining theAspeéd of convergence.
Usually any arbitrary first guess for 6 will be accepted by the

.algorithms, but a good first guess may speed up convergence substantially,

Chow (1973) generalises the modified Newton method for the
computation of full-information maximum likelihood estimates of para-
meters of a system of linear structural equations to the case of a
system of non-linear structural equations. The main differences of

Chow's approach to that of Eisenpress and Greenstadt are:

(1) Eisenpress' and Greenstadt'sfﬁasic'férmulation is more general,
assuming that éll parameters in the system may appear in every
equation (see equation 1.2), whereas Chow assumes as the basic
set-up that there is a distinct set of parameters belonging to
each equation. His basic formulation is as follows: |
Let the gth function

fgt(ylt,...,yNt; Bg)

of the G dependent variables and K = N - G predetermined

variables at period t and of the row vector

Yygerooo oYyt

g

dgt (g}é:l,...,G)g

B of Ng unknown parameters to be equated to a residual
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Assume ugt is normally distributed with means zero and

3 = ; .. For T observations, the
covariances E(ugtuhs) Gts gh P

concentrated log-likelihood function L 1is proportional to

T
log lsl + I log |B:| '
t=1

N3

where
s = (s ') = ( 1-2 u .u )
- “gh T . gt ht
and
: ' du
B® = (8% ) = | =&
t gh,t ayht

(2) Partly because of his formulation, Chow obtains simpler and

more explicit expressions for the derivatives of the likelihood

functions.

- (3) Agaiﬁ, partly because of his formulation, the problem of linear
restriction on the parameters in the same equation or in

' different equations can be conveniently dealt with by Chow.

(4) Chow's paper features the treatments of identities in the
system and of residuals which may follow an autoregressive

scheme, ‘
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An extensive derivation of the estimation equations for non-
linear systems is given under the assumptions that each structural
equation contains a distinct set of parameters, that the parameters
ére not subject to any linear restrictions, and that the (additivé)
residuals are serially uncorrelated. It also pro§ides the treatment
of the special case when some equations are linear, and contrasts

this case with the non-linear case.

Berndt-Hall-Hall-Hausman (1974) propose an ingenious idea of
using the statistical relation that the covariance matrix of the
maximum likelihood estimator is equal to the inverse of the covariance
matrix of the gradient of the log-likelihood function, which in its
turn is equal to minus the (inverse) Hessian matrix of the log-
likelihood function, Their algorithm requires much less computation
than previous algorithms and unlike previous algorithms is less likely
to fail from instability of the iterative procedure. We will con-
centrate our studies on the BHHH method and will derive the estimation

equétions in Chapter 3.

Amemiya (1977) proves the consistency and the asymptotic normality
of the maximum likelihood estimator in the general non-linear simulta-
necus equation model. The proof depends on the assumption that the
errors are normally distributed which is not necessary for simultaneous
equation models which are linear in the variables. It is also proved
that the maximum liklihood estimatar is asymptotically more efficient

than the non-linear three stage least squares estimator providing
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the specification is correct. However, the latter has the advantage

of being consistent even when the normality assumption is removed.

Hataﬁaka (1978) proposes a full-information estimation method
for macro-economic models which are generally non-linear in variables.
The method is shown to pe asymptotiéally efficient and feasible in
terms of computer computations, and hopefully it méy be appiied to
the undersized sample éase. The idea of the BHHH method may be applied
to replace the Hessian of the two-step scoring estimator which is

asymptotically equivalent to the maximum likelihood estimator.

1.2 Numerical Optimisation Applied to Non-linear Econometric Models

Bard (1970) investigates several of the best known gradient
methods, and the performance of these methods is compared in the solution
of somé least squares maximum likelihood, and Bayesian estimation
problems. He concludes that modifications of-.the Gauss method
(inclﬁding Marquafdt's) performed best, followed by v§r;able metric
rank oﬁe and Davidon-Fletcher-Powell methods, in that order. ‘There
appeared to be no need to locate the optimum precisely in the one-
dimensiénal searches, but the matrix inversion metﬁod used with the

Gauss algorithm must guarantee a positive definite inverse.

Sargan and Sylwestrowicz (1976) develop a specialised numerical
optimisation computer program for the estimation of simultaneous
equation econometric models, in.the hope that it would be more efficient
than the alternative computing methods. The methods are compared by

"estimating a small macro-economic model of the British economy as

specified by Heﬁdry (1974) with five different sets of assumptions
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as to the stochastic procésses generating the errors of the equations.
All the assumptions involve separate single'equation autoregressive
equations, explaining the current error on each equation in terms of
the previous error on the same equation. This was chosen as giving
experience of the use of the optimisation program on a fepresentative
problem, from the point of view of time and complication in computing
the required function, and with a number of parameters to be estimated
which is reasonably large as most econometric ﬁodels involve a large

number of parameters.

To maximise the likelihood function appropriate to a simultaneous
linear equations model, a subroutine is provided to calculate the
likelihood function and use this with a general optimisation routine
not requiring analytical derivatives, such as the Powell conjugate
directions method, It is also possible to use the Davidon-Fletcher-Powell
type of quasi-Newton method, providing it with a subroutine to
calculate the likelihood function and its first derivatives; and finally
a special generalised Gauss-Newton program was written for use with

the non-linear simultaneous equation likelihood functions.

The extensive results presented in the paper indicate that the
Gill-Murray-Pitfield optimisation routine, making use of analytic
first derivatives, is the most efficient method with most of the

models.

Belsley (1980) examines some important elements in caléulating
the non-linear full-information maximum likelihood estimator which
produce substantial reductions in computational cost. The choice
of optimiser, method of Hessian approximation, choice of convergence

criterion and exploitation of sparsity of matrices are all investigated.
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It is concluded that the Newton-Raphson algorithm employing an
analytical computed Hessian is computationally much more efficient
than Davidon-Fletcher-Powell. The weighted gradient stopping criterion

is recommended, that is,

-g'H—lg < ¢

. where

g is the gradient of the likelihood of function L(6),
H is the Hessian matrix of L(8),
¢ is the tolerance level of accuracy.
Exploiting the sparsity of J (the Jacobian) and the efficient

calculation of the components that make up the analytic Hessian are

also investigated for large models.

1.3 Specific Application Program

In ordexr to implement a general optimisation procédure of the
BHHH kind on the computer, we need to be able to specify the general

functions

8) =
Bie Wer2ee®) = vy
in a suitable computer code form so that we can differentiate these

functions twice analytically w.r.t.8, that is, 3fi(yt,zt,e)/86

d 2 / '

It is of considerable importance that the resulting form of

function specification should lead to efficient evaluation of both
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functions and their derivatives. It is not necessary that the
derivatives should be presented in the most logical form from the
point of view of mathematical interpretation, but unnecessary

repetitive computing should be avoided in the course of their evaluation.

Obviously it would be a bad strategy to differentiate the set
of functions explicitly and then input the derivatives to the computer

for evaluation for the following reasons:

'

1. The functions can be very complex.

2. There exists a high probability of differentiation and

programming €rrors.

3. For each model, we need to differentiate and program the
functions and derivatives. The volume of arithmetic involved
could be very intense, for example, it takes several function

evaluations in the line search just to reduce the function value.

Therefore an automatic differentiation program is necessary to compute
the set of econometric functions and their derivatives. Most programs
for automatic differentiation are embedded in general computer

packages for symbol manipulation, for example, sysfems such as MACSYMA
and REDUCE (see references). These are u§ed for performing symbolic as
well as numerical mathematical manipulations. With such computer
'packages, it is possible to differentiate, integrate, take limits,
solve éystems of linear or polynomial equations, factor polynomials,
expand functions in Taylor series, solve differential equations and

perform many other operations.

Since it is'intended that the differentiations of the set of

econometric functions is to be carried out on the computer in order that
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. complicated functions are differentiated.aécurately with results which
are easy to understand and compute numerically, and to avoid
unnecessary repetitive computation in the process, systems as
comprehensive as MACSYMA and REDUCE would not be appropriate for

this application. Moreover, it is necessary to have a compact set of
derivatives of the concentrated log-likelihood function for our
estimation procedures, it would be difficult to extract the necessary

subrountines from these packages in order to perform the same task.

However, we are very much influenced by the function
specifications and data structures of these systems, and have decided
to develop our own differentiation program (see Chapter 4) with the
specific application of differentiating and evaluating non-linear

econometric functions.

This program is written in FORTRAN IV and is machine portable.
It permiis natural mathematical notation in FORTRAN definitions and
can differentiate a set of functions with respect to ; given sét of
variables up to ahy order. Only numer%cal values of the functions
and derivatives are printed instead of the symbolic form of the -
expression in mathematical notation. It is hoped that it could be
easily implemented with any non-linéar econometric estimation programs
written in FORTRAN IV. The program was specifically written so that
it could be developed on the CDC 7600 computer, and then transferred
with minimal rewriting onto the ICL 2980 system with the Distributed

Array Processor (DAP).
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CHAPTER 2

NUMERICAL OPTIMISATION TECHNIQUES FOR

NON-LINEAR ECONOMETRIC MODELS

2. Numerical Optimisation

Many issues arise in the practical task of optimising a non-
linear function.. A general description of these may be found in
Goldfeld . and Quandt (1972), Jacoby et al. (1972), Murray (1972), and
Bard (1970). In this chapter, we examine two issues that are among
the more important and interesting in the optimisation of the con-
centrated log-likelihood function, relevant to the non-linear full-
information maximum 1ikelihoqd (NLFIML) estimator, namely, the choice

of the optimisation method and the method of approximating the Hessian.

2.1 Optimisation Methods

Two different optimisation algorithms are compared in separate
runs for the various models. fhe gradient~type method (e.g. BHHH)
and the quasi-Newton method (e.g. GMP). Each of these algorithms is
a Newton-like procedure in that its step in the parameter space at

each iteration could be a Newton-like step,

dg(k) = glktl) _ gk) _ (k) [H(k)(g)]—lg(k) (8) (2.1)

vhere

A(k) = a scalar, the step-length along the search direction
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(k) ' . 32L* ()
H (8) a KxK matrix; the Hessian ———="
g=g (¥

JHR

th .
or approximate Hessian at the k iteration.

g(k)(e) = a K-vector; the gradient of L*(8) evaluated at
aL*(8)
the kth iteration, _
20 Jo_ok)

There are, of course, many ingenious non-Newton optimisation techniques
that require no first or second derivatives. Such algorithms have

been developed to handle general optimisation problems. However, when

a specific functional form for the objective function is known, as is
the case here in the concentrated log-likelihood function, it is
generally concluded that it is beneficial to exploit this information.
Thus, we examine closely méthods that use at least gradient information.
We also examine methods that use numerical approximation to the gradient

to see how relatively inefficient they may be.

The Hessian H of (2.1) plays two impoftant roles in maximum-
likelihood estimation, and the méans for its calculation or approxi-
mation can affect both. First, the Hessian is used nﬁmerically.

" Either the Hessian or its appro&imation is used at each iteration of
a Newton-like optimisationalgorithm to determine the next step in (2.1).
Second, the Hessian is used statistically. At the maximum-likelihood
solution, the negative of the inverse Hessian provides an estimate of

the asymptotic variance-covariance matrix of 6.
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2.2 Minimisation with Derivatives

We use the notation ¢(9) = _L*(g) defined as the concentrated
log-likelihood function whose least value is to be calculated, where

6 1is a vector whose components are the variables which are to be

adjusted automatically by a minimisation algorithm. Let n be the
number of components of 6. To define ¢(8) for a minimisation

algorithm, the user must provide a subroutine that calculates ¢(0)

for any 8. He must also provide a starting vector Q(o), say,

and perhaps some other information, for example, step-lengths and the

accuracy required. Then most algorithms automatically construct a

sequence of points (k) (k

[ Kool

=1, 2, ... ), which should converge to

the required vector of variables.

The algorimthms that we consider are iterative, and we let g(k)

be the . starting point of the kth iteration. Théy include safeguards
which force the inequality

(k+1)

pe )y < ™) | (2.2)

to be satisfied.

We assume that the function ¢(8) has continuous first and
second derivatives. In this case it is almost always best to select
the ﬁinimisation algorithm from the general methods that are designed
to work particularly well when ¢(6) is a quadratic function. The

(k+1)

reason is that if the steps {8 - Q(k)} become small, then

usually the local behaviour of ¢(9) is similar to that of a quadratic

function, so the algorithm should work well; and if the steps
k+
{9( 1)

- g(k)} are large then usually good progress is being made

anyway.
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Some very useful algorithms of this type are described in the

books by Brent (1973) and Kowalik and Osborne (1968).

2.2.1 The Newton-Raphson Method

(k)

(k) (g) = [H(k) (g)]‘l' where H

Wwhen G is the exact
Hessian matrix at g(k), we have the Newton-Raphson method which is

described in the following algorithm.

(a) Algorithm 2.1

(o)

It is assumed that an initial estimate of the optimum

point 6* is known.
Step O: Set k=0

(k) (k)

Step 1: Compute g (6), and H (8) from
3¢ (6)
g (k)(g) - -
38 -Q=§(k)
324 (8)
1™ (o) ‘
9698° | - (k)
Step 2: Compute E(k) by solving the system of linear equations
T )
Step 3: Compute Q(k+l) from
ﬁ(k+l) Q(k) + p(k)
Step 4: If convergence has been attained, stop, else set

k = k+1 '‘and go to Step 1l.
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(b) Safeguarding the Method of Newton-Raphson

The sequence '{g(k)} generated from Algorithm 2.1 will converge
to a critical point 6* of ¢ which is a strong local minimiser of
¢ if g(o) is sufficiently close to 6*, and the order of convergence

is guadratic. Unfortunately, however, a sufficiently good initial

(o)

estimate 9 of g* is often not available. 1In order to make

Newton's method more satisfactory for practical use, devices must be
incorporated into Algorithm 2.1 which reduce the probability of
divergence. We shall consider the principal causes of failure in

Newton's method.

(k)

We have the descent direction P defined by

-1
™ =~ a™ (91 g™ (o) (2.3)

(k)

where H g(k)

(8) and (8) are the Hessian matrix and gradient

vector respectively for the function ¢ at Q(k),

(k)

1r (8% (017" extsts, then ¢ () = (8™ (@] 7! is positive

R k
definite if and only if H(k)(g) is positive definite. 1If G( )(e)

is positive definite then

k ]
g( ) (k)

(8)p - g% @re™ e i@ < o

(k) (k)

so that p is downhill for ¢ at @ . If, however, ¢ is not

well approximated by a quadratic function, in the neighbourhood of

g(k)' (k) e(k+l_)

then the step p to may be too large, in that

¢(Q(k+l)) > ¢(g(k)) and the minimisation has not progressed smoothly.
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(k)

1f [H (9)]'_l exists but is not positive definite it may be

k
that although the Newton step g( )

' k
g(k)(e)p(k) = O. In this case although g( ) is not actually uphill

(k) (k+1)

is well defined, we have

for ¢ at © we cannot be sure that ¢(8 ) < ¢(§(k)),

1t g™ ' ©p™® > o, then p™) is uphill for ¢ at ¥,

and no step in the direction p(k) can help the minimisation.

(k)

(8)] "1 oes not exist then p is not even defined,

1f [H(k)

so that if further progress’is to be made we need an alternative

(k) (k)

method for constructing p when G (8) is singular,

It is clear that the Newton sequence {g(k)},

if it converges at
all,.it converges to a critical point of ¢. But the sequence

{2(5)} may converge to a saddle point or to a maximiser of ¢ instead

(o)

of a minimiser, although this does not usually happen if 6 is

sufficiently close to a minimiser of ¢.

We may conclude from the above discussion that Newton's method
is subject to the following causes of failure during the (k + l)th

iteration.

)

o k .
1. G(k)(g) exists and is positive definite but E( is too large

Q(k+1) Q(k)L

cand ¢ ( )y > ¢(

(k) (k)

2. The direction p is orthogonal to g " (6).

(k)

3. G (6) - exists but is not positive definite.

(k)

4, G (g) does not exist.

To reduce the probability of failure due to the causes above,

we consider the following strategies.
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( (x)

£ (6% (6)] is positive definite then p is downhill for

$ at Q(k) and there exists X > O sufficiently small such

that

)

s6% + p®) ¢ ™). - (2.4)

(k)

If the length of p is so small that ¢ is well approximated

by a quadratic function throughout the range of g(k) to g(k+1)
then it is likely that

50 1+ p00) ¢ e

1f, however,

2™ L p0y L ™),

then a value of A(k)e(o,l) must be found such that

¢(9(k) + >‘(k)r_)(k) (k)

) < ) (2.5)

. k '
A simple strategy for computing a value of A( ) which
satisfies (2.5) is given in the following algorithm,

(k)

Notice that if A is beéoming very small and (2.5) is not

satisfied, the algorithm then terminates.
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Algorithm 2.2

1. Set A =1,

(k) .

2. Compute ¢ from ¢ = ¢(9(k) + Ap
3. If ¢ < ¢(Q(k)) go to 6.

-5
4. If A<10° go to 7.

N >

5. Set A = and go to 2.

6. Set A(k) = X, and $(8

Gebl)y _ o

- Return to Newton-Raphson routine.

7. Stop.

An alternative, and perhaps more natural strategy is to compute

k k k
(k) (k) P()

A by performing a line search along p if is

known to be downhill for ¢ at g(k). The introduction of the

(k)

parameter A computed accordihg to Algorithm 2.2 or by

performing a line search (see section 2.4) safeguards Newton's

me thod against cause 1 of failure.

(k) (k)

2, Consider now if p is orthogonal to g

(6) and no progress

k . s
can be made by performing a line search along p( ). This illustrates

cause 2 of failure. 1In pracfice, owing to rounding error, effective

(k)

orthogonality of p and g(k)(ﬁ) is decided by determining whether

|?(ky(g)2(k)l <e llg(k)(g)lléng(k)nz, where € > 0 is a given small

number relative to unity. One strategy for safeguarding Newton's method

k
against cause 2 of failure is to replace .g(k) with - g(_)

|g®

(6) if

(Q)g(k)l < e||g‘k)(§)”2|IE(k)”2 and perform a line search
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along the new p(k). Thus if g(k)(g) and [G(k)(g)]g(k)(g) are

effectively orthogonal, we take a steepest descent step.

G(k) (k)

3. If (8) is not positive definite,.then p is not
necessarily downhill and the existence of A(k) > O which satisfies
(2.5) cannot be guaranteed.
' K -
If g(k) g(k) > 0, then p(k) is uphill at g( ) and - E(k)
' k
therefore downhill. 1In this case we replace g( )_ defined by (2.3)

with - B(k) and the existence of A > O such that ¢(X) < ¢(0) |is

®) ien - p®)

guaranteed. It is a better strategy to replace p
k)' (k) (x
q P )

if

> O than rejecting p altogether and taking a

steepest'descent step, This strategy therefore safeguards Newton's

method against cause 3 of failure.

(k) (k)

4. ;f H (8) is singular, then p given by (2.4) is not

defined. A simple strategy for overcoming this difficulty is to

k .
(k) with - g(k)(g) and take a steepest descent step,

replace p
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thus safeguarding Newton's method against cause 4 of failure.

From the preceding discussion, we obtain the following

algorithm.

Algorithm 2.3

(o)

It is assumed that an estimate 6 of a minimiser g* of

and € > O are given.

Step O: Set k=0.
Step 1:. Compute g(k) (6), and H(k) (6) from
9¢ (6)
g @ = —
& lg=p™
324 (9)
Sy
838" o o)
Step 2: If H(k)(g) is singular, go to Step 10.
Step 3: Compute E(k) from
-1 (k
E(k) - - [H(k) (@] g( )(9)
' . (k a0 (k
seep 4: 12 g™ 0 2™ | < e [¢® @I, le" ||, then o to
Step 10.
Step 5: 1f g(k)(_e_) g(k) > & '||g(k)(g)i|2 HL_D(k) ”2. then go to

Step 12,
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(k)

Step 6: Compute A by repeated bisection (Algorithm 2,.2) or

by performing a line search (section 2.4).

e(k+l)

Step 7: | Set (k) +_A(k)g(k).

=
Step 8: If convergence is attained, go to Step 13.

Step 9: Set k =k + 1, go to Step l.

Step 10: Set p(k) = = g(k)(g).

Step 11: Perform a line search along E(k) to obtain A(k), and
go to Step 7.
Step 12: Set g(k) = - g(k) and go to Step 6.

Step 13: Set 08* =

Step 14: Stop.

(c) Objections to. Newton-Raphson Method

There are a number of objections to Newton's method as a compu-

tational procedure, the most important of which are as follows,

(k)

1. In order to evaluate H (8), we must compute n{n+1)/2
324 (8)
. function values EFE e=90().' This means that n(n + 1)/2

partial derivatives must be calculated analytically and
programmed, with consequent probability of analytical and

Programming error. Also storage space must be allocated in
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the computer for n(n+1)/2 numbers, and for a subprogram
which is required in order to computé them. And the time
required for these calculations may be very large (especially

when estimating econometric models).

[H(k) 1

2. At each iteration, (gﬂ - must be computed. This requires
0(n3) arithmetic operations. Also a subprogram for inverting

matrices is required.

(x)

3. It may be that H ' (8) is singular for some k so that the

method breaks down.,

4. The method is not guaranteed to converge unless g(o) is
sufficiently close to §*,
Note : We have in fact safeguarded objections 3 and 4.
These objections frequently make Newton's method unsuitable for
ngmerical calculation, but if a sufficiently good initial estimﬁte
6(0) of 6% is known, and if the.first and second partial éerivatives

of ¢ are easy to program and to compute, then the method is among

(o) is far from

the best which is available. On the other hand, if ~g
86*, then there is no reason to believe that in the first few iterations

the method has any advantages over;icomparatively crude algorithm which

takes much less time than the Newton-Raphson.

Objection 1 may to some extent be overcome by using a numerical

differentiation formula in order to estimate the Hessian matrix, but

(k)

n additional evaluations of g (8) are required for the computation

of H(k)(g). The use of a numerical differentiation formula may be
inefficient if n is large or if the computational labour required for

k) (k)

the evaluation of g( (8) is large and also g (6) could be inaccurate.

The preceding considerations provide a motive for constructing

methods for minimising ¢ in which it is not necessary to compute



W
L)
1

. k
or invert H( )(9), but which have superlinearlconvergence, since

they ultimately find a value of H(k)(g) which approximates the

exact Hessian when 6 is close to 6%*,

2.2.2 Variable=Metric Methods

-1
In these methods, the matrix [H(k)(g)] is replaced by a

Ky
positive definite symmetric matrix G( )(e_) calculated from currently

(k) g(k).(g)’ €_)(k-l)' and g(k-l)(e)

available quantities such as 8 ’
- -t
to compute §(k+l) from
k+1 k
gltl) o gl G0 gy K gy . (2.6)

(k) k) ) (k)

®g
(k)

If G ' (8) 4is positive definite (vk > 0), then -

is downhill for ¢ at g(k), because - g(k)'(e)c(k)

k \ k
( )(g) # 0. Therefore if G( )(Q) is positive definite and
(6) # 0O, there exists A(k)

(6)
(8)g " (8) <o
if g

k
g( ) > O such that

50 - A 6% (6158 (g)) < 410

A method for overcoming to some extent objection 4 to Newton's method
: k
therefore consists of generating {g( )} from (2.6).

The use of (2.6) also overcomes objection 3 to Newton's method

. (k+1)
because even though the Hessian is singular, G (g) can be

defined so that it not only exists but is positive definite.

The following algorithm is a general variable metric method for

minimising ¢.

It may be possible to make statements about the rate of convergence
that occurs. Let 6* to be the local minimum point. Define the
error

e(k) - Q(k) - .

(k)

If e + 0, that means convergence. For instance, if

k+l .
||e( )ll/lle(k)ll + a, then the rate of convergence is said to
be linear or first order if a » O, and Superlinear if a = O,
Clearly it is desirable to have a as small as possible, In some

cases it is possible to show that ]le(k+l)l|/||e(k)l|2 +a in .
which case the rate is said to be quadratic or second order. Thig
is even more rapid since the error decreases as the square of the
previous error.. . .
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Algorithm 2.4

)

o
and G( are given.

It is assumed that g(o)

Step O: . Set k = 0,
Step 1: Compute ¢(k)(§) and g(k)(g) from
8™ @ = ™)
(k)(e) = Q(Q(k))
Step 2: Compute g(k) = - G(k)(g)g(k)(g).
(k)
Step 3: Compute ) such that
k k
¢(§(k) + A(k)g( )y = min ¢(9( ) 4 lg(k))
A
Step 4: Compute g(k+l) from
k
e(k+l) -9 (k) + >‘(k)r_)( )

k k
Step 5: Compute g(k+l)(g), g( ) and y( ) from
g(k+l)(§) - g(g(k+l)>
§(k) _ g(k+1) _ g(k)
and

y(k) - g(k+l)(g) _
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(k+1)

Step 6: Compute G (6) from
k+ k) (k)' '
G( 1)(g) G(k)(g) + le( )z( ) + sz(k)w(k)
where z(k), w(k) are nx1l vectors and Hl, H2 are -
scalars. The exact values of these variables, which are
. +
functions of g(k)(g), g(k) and g(k l)(9), will

depend upon the modification rule used.

Therefore Algorithm 2.4 contains a class of methods rather than
a single variable-metric method. . Many updating formulae of the type in
Step 6 have been proppged since Davidon . (1959) described the first
variable-metric method. In this chapter some of the most successful

variable-metric methods will be described.

2.2.3 General Gradient Method

' . th |
At the beginning of the k iteration, we possess a current

(k) and we seek a new 6(k+l) using the formula

yalue of g

Utl) | g0 _ 3 ()G gy () gy (2.7
where

g(k)(g) is the gradient vectorof ¢(8)at 6 = Q(k)

X(k) is a scalar that minimi#es ¢(9(k) - XG(k)(e)g(k)(g)),
and G(k)(g) is a positive definite matrix which guarantees that if

k
g( )(9) # O, then for sufficiently small positive A(k), we have

satisfied the condition (2.2).

(k)

G "(8) should be some approximation to {H

(k)(g)]—l, where

H(k)ﬁé) is the Hessian matrix of ¢ at 6 =0"".



2.2.4 The Method of'Fletcher and Powell (DFP)

The method of Fletcher and Powell (1963) is an improved version
of a method due to Davidon (1959). It is still one of the best
methods for unconstrained minimisation in which only the gradient

vector of the objective function is required.

The matrix G(k+l)(g) is given by the updating formula
A(k)p(k)p(k)“ G(k)(e)y(k)z(k)'c(k)(e)
e = Mgy —— = - —— ~ e
. ] kl
,E(k) z(k) Z( ) G(k)(é)z(k)

We now show that (2.8) does correspond to the general algorithm as defined

above,

I1f Householder's (1964) rank-one modification rule is applied

first'to
(k) _(k)_(k)*
Ap
E(k)(g) - G(k)(g) +
k)' (k
E( )X( )
and then to
(+1) - (k) ™) gy Myt g™ (8)
" = ¢ - ,
Y(k) G(k)(g)z(k)

the corresponding recurrence relation for the approximate Hessian

matrix is obtained

H(k+l)

(8)

n) (k)
--z)z Y +

01y 4 y ) g0V (g ) (2.9)

o~

where
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and

k) (k
Y( )t (k)

. k+1)' k .
If an exact line search is made then g( )(Q)p( ) < O, but since

this cannot be guaranteed in practice, § is taken as

k+1)'
g( )

(e)p’ - n

To show how equation (2.9) can be written as a particular form

of the equation defined in Step 6, define

_ (k) 1l (k)
t = ug (8) + R

where | 1is an undetermined constant. Then

(k)* (k)

(8)y ry gk g)) + p2g™

(k)*

v = L
tt 3 (8)g (8) +

1 k) (x)!
¥_( )X( )

This formula can be used with (2.9) to give

(k+1) (x) 1 on 1 ] (k) (k)"
H = —_ - -
@ = %+ (- &)
tt' - u? (k)(e) ) (8)
Now the coefficient of z(k)z(k)' can be made equal to zero by

choosing u to safisfy

§ - An

.or -
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A

' k
® _oor g™ ep™

ST 6

Thus we get the recurrence relation

(k+1) (k) 1 - 2 (k) (k)"
= H + tt' - (8)g (6) (2.10)
H ——2-“26 t ueg 9)g 8
where
T = w2 - 1ng™ @+ g% .

2.2.5 The ComplementaryIET’Updating Formula (CompDFP)

This updating scheme is given by Broyden (1970) and Fletcher

(1970), where the formula for theAapproximate inverse Hessian is

given by
l .
k k ' !
6! +1)(g) ¢! )(9) AT {pp(k)p(k) - p(k)y(k) c™ ()
(k)' (k) - = = = -
R ¥
k '
- %) gy Yy (2.11)
where
' k
o Z(k) S (9)1_'( )
p = A +
' (k
E(k) z()

k
This formula is the complementary DFP formula, that is, when y( )

k
and A( )g(k) are interchanged, equation (2.8) corresponds to the

G(k+l)

above (6), that is,

(k) (k)°* (k) (k)*

(e) G(k)(e) + - + : ¢
vy = -2 K) ' (k k)' (k
A(k)p( ) z( ) p( ) g( )

G(k+l)

The complementary‘DFP formula in particular has been found to work well

.

in practice, perhaps even better than the DFP formula. It has usually

been implemented in Eonjunction with low accuracy line searches,
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2.2.6 Gill-Murray-Pitfield Method (GMP)

In the variable-metric methods which we described in the preceding

sections, the approximation G(k+l)

(k+1)

(g) to the inverse Hessian of the

is obtained by adding either a

i k
matrix of rank 1 or a matrix of rank 2 to G( )(g). But for some k,

(k)

objective function ¢ at 6

G (9) may not be positive definite (due to rounding error), so

(k)

a special method must be employed to ensure that the matrix G (6)

is positive definite for all values of k. By resetting G(k)(g)

to the unit matrix whenever ¢ cannot be decreased by searching
(k)

along p is not a wholly desirable strategy, because in dis-

(k)

carding G (g) we throw away the only knowledge about the curvature

of ¢ which is available for use in the algorithm.

However, Gill, Murray gnd Pitfield (1972) have described an
implementation of variable-metric methods which has several advantages
over the traditional implementations. Inthis method, the current
estimate of the Hessian matrix is updated, rather than the current

(k)

-estimate G (6) of the inverse Hessian.

(a)° The Basic Iteration of GMP

Algorithm 2.5

Step O: Given g(k) and g(k)(gf, calculate g(k) by solving
the set of equations
G000 ;g(k) ©.
The matrix H(k) is recurred in the form
g _ L(k)D(k)L(k.)'.
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where L(k) is a unit-lower triangular matrix, and
(k) . ’ (k)
D a diagonal matrix. The vector p can be found

by solving successively

L'V = ~g ' (6)
and

(k)" (k) (k)2
L e = D “Y

More explicitly, we have

i-1 ‘
vi = =g, %@ -z o My,
1 j=l 1]
and
b0V L Vi o g g, 00
i TR TP R L e

2

which require n multiplications and n divisions. .

Step 1: Set ka+l) = g(k) +'A(k)g(k)
and
g(k+l)(§) _ (Q(k+1))
and A(k) is a scalar such that

k k
0@ L ALy iy g6 ) 4 ap®).
Step 2: Modify the triangular factors of H(k) so that
,H(k+1) (k) z(k)z(k)' + 1 m(k)m(k)'

=g +T[l 2
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(k) (k)

where 2z s W are nXxl vectors and Hl, i are

2
scalars.

Consquently, this revised algorithm uses a formula similar

to the recurrence formula (2.10).

(b) Maintenance of Positive Definiteness

We consider the matrix

gkt k) k) (k)

(k)

where ¢ is a scalar and z . an nX1l column vector. The modifi-
cation to the Cholesky factorisation (Appendix A) is performed as

follows:

Rewrite the above equation as

gD o 005 gy p R ) (2.12)
where

L e (k)
Equation (2.12) is then factorised into the form

) Wy o oWyt g
by writing

L {
(1) o
[0} = -

1+ (1 + v'v)&
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The matrix L(k)D(k)H(I - c(l)vv') is factorised into the product
. ' (k+1)
of a lower triangular and an orthogonal matrix. If H is
k+l
0(1) (k+1)

indefinite, is not real, and H must be replaced by a

positive definite matrix H to guarantee a downhill direction of

search. H is obtained by redefining’ or(l) as

' -0
c(1)

1+ (1+ |of viy)

by the nature of factorisation (2.13) (see Appendix A), H will be
positive definite and this property cannot be affected by cumulative

rounding errors (as happened with earlier algorithms).

2.2.7 The BHHH Hessian Approximation

The BHHH (1974) Hessian approximation is based on the fact that
for correctly specified models-the Hessian matrix of the likelihood
function at the minimising value-of 6 1is equal to the variance-covariance
matrix of the gradient of the likelihood function. The result can |
be used to give a computationally efficient approximation based on
the information needed to calculate the gradient, ayoiding both the
third derivatives réquired by the analytic Hessian and the repeated
function evaluations required by numerical approximation. The approx-
imation-used is posiﬁive definite almost always, and so should not
suffer from the errors associated with the inversion of an ill-

conditioned matrix. 1Its drawbacks are:

(i) that its approximation need not be very good in small samples

or for misspecified models, and
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(ii) that it provides a consistent estimate of the Hessian only
at the true value of g, but in so far as the maximum
likelihood estimator is consistent, it can be expected for

large samples to provide a good approximation in some neigh-

bourhood of the maximum likelihood estimate.

The BHHH method is an example of a general class (the Gauss-
Newton class) of optimisation methods which make use of the

statistical properties of the likelihood function and its derivatives,

Briefly, at the kth iteration, the BHHH Hessian matrix is

approximated by

(k) gy - | L[230] [3&]
HE ) = [T[ag) [a@] l,(k)

. k
where T 1s the sample size and Q( ) is the current estimate of

- ]
the true value 6. Let _g(k)(g) = (5%!J + then the iterative
= (k)
8

algorithm is:

() (oo o G-

T | %8

and the basic Newton step becomes:

(k+1) _ (k) , , (k) (k) ;nyy =1 (k)
8 =" 42 l:(u N~ g (g)-Je=e“‘)J

Q(k) + >‘(k) E(k)

A detailed description of the BHHH method and algorithm is given

in Chapter 3.



- as -

2.3 Minimisation Without Derivatives

We now describe the two most common optimisation techniques
for minimisation without derivatives, and also discuss the disadvantages

of such methods in our optimisation problem.

2.3.1 Conjugate Direction Methods

In order to define conjugate directions clearly, we begiﬁ by
Supposing that ¢(6) is a homogeneous positive definite quadratic
function, whose second derivative gatrix is H(g). Then the n non-
zero directions p; (i=1, 2, ..., n) . are mutually conjugate if and

only if the equations

giu(g)gj = 0, i#3 (2.14)

hold.

Conjugate directions are important to minimisation algorithms,

because, in the above quadratic case, the following construction calculates
one vector of variables that minimises ¢(8). Let 8 = be any

starting vector. For i =1, 2, -.., n, we let 91 be the vector

8 = i1t B (2.13)
where A(i) is the value of A that minimises the function of that
variable

A =
Fi( ) ¢(§i_l + Agi). (2.16)

Then gn is the point at which $(68) is least.



In a conjugate direction method for minimising a general

, th . X
function without calculating derivatives, we begin the k iteration

k
g(k) (k)

at the point , Wwith search directions Py (i =1, 2, ..., Nn).

Initially these directions are the co-ordinate directions, but they are
modified on each iteration by some method that should tend to make
them mutually conjugaée with respect to the Hessian matrix

. th | .
at the solution, 6* say. The main operation of the k iteration

. (k)
is to let gék) = g(k), and for i =1, 2, ..., n to define @,

to be the point

(k) _ (k) (k) (k) S (2.17)
8 8.1 * A BT

(k)

where again A, is determined by a line search to minimise
B §

k+1 (k)
¢(9;k) + AEFk)) with respect to ). We then set 6( ) = Qn *
- . i : =
Thus if e(k) is close to §*, and if the search directions are

. (k+1)
almost mutually conjugate, we expect §

9(k)

to be much better than

as an estimate of 6*. However, this description omits the steps required

th X <
to modify the Qik). To do this the k iteration obtains the

(k+1)

directions p, (1=1 2, ..., n), which may involve some more
=1

values of the objective function. Then a few extra function values

(k+1)
may be needed to fix g(k+l). Usually the value of ¢ (6

) is
the least calculated value of the objective function, and always

(k+1) (k)

satisfies the inequality ¢ (8 ) £ (877

For example, most versions of pPowell's (1964) algorithm use

the formulae

(k+1 k _
Py - ;+; v i=1, 2, cees D=1
n
pth g ) pfk) . (2.18)
-n 4o 1 £i ' . 7



k+ Ak . .
and 'Q( b is obtained by a line search from 9; ) in the direction

k+
P( l). Provided )\(k)

Ph 1 is non-zero for all values of k, it may be

broved that this method obtains the least value of a quadratic

function in at most n iterations.

The conjugate direction methods avoid the two main drawbacks of

the variable-metric methods, for they do not require values of
k
g( )(9) (k =1, 2, ....), and most function values are applied to

reducing the ocbjective function. However, they too have some dis-

advantages.

One is that it is sometimes awkward to ensure that for all k

the directions pfk)

(i =1, 2, ..., n) have good linear independence

k
properties. For example, if A( )

1
Aik) (i =2, 3, ..., n), then equation (2.18) requires modification.

is small in comparison with

In this case Powell's (1964) algorithm makes the search direction
gék+l) equal to E{k), although this change weakens the quadratic
termination properties of the method, which often loses efficiency,

particularly when n is greater than about ten.

To avoid . this difficulty, Brent (1973) suggests a different
modification to Powell's algorithm, which reqﬁires the gigenvalues and
eigenvectorsof an nxn symmetric matrix to be calculated after
évery n iterations. The extra work of the eigen problems can caﬁse
the total computing time to be greater than befo?e, if each evaluation
of ¢(0) requires comparativelyllittle time. However, it usually
gives a worthwhile reduction in the number of function vglues needed
for the whole minimisation calculation, so Brent's method is recommended

for serious problems, where the calculation of $(6) is quite long.

Another disadvantage is that conjugate directions may not be
well-determined for certain non-quadratic functions. For such ill-

conditioned funétions, 1f the second derivative matrix of ¢(8) at

K
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certain points is almost singular, it is usual to have a line of such
points near tﬁe bottom of a curved valley. Therefore it is calamitous
that minimisation algorithms often generate sequencesof points g(k)

(k = 1, 2, ...) that follow curved valleys. Thus the aim of

trying to obtain linearly independent conjugate directions, inclﬁding
search directions which allow méves along the floors of any valley,
makes the criterion for the choice of new conjugate directions
ambiguous. These remarks make the justification for conjugate direction

methods with such difficult functions rather uncertain, except in

regions of 6-space where ¢(6) satisfies a strict convexity condition.

2.3.2 variable-Metric Methods

The other optimisation technique for minimisation without
derivatives is that developed by Gill-Murray-Pitfield (GMP), this
method is essentially the same as that of 2.2.6 except for

. th
the estimation of the gradient vector. At the beginning of the k

iteration (k =1, 2, ...) of a wariable-metric method, we require a

k .
starting point e(k’,‘ a vector g( )(Q) and a symmetric matrix

H(k)(g). The vector g(k)(g) is an estimate of the gradient of

$(8) at g(k), and the matrix H(k)(g) is an estimate of the

Hessian matrix of ¢(8) at g(k)'

(k)

(8) are quite large. For example,

k
in many useful algorithms it is advantageous to force H( )(Q) to be

Sometimes the errors in H

positive definite, even though the true second derivatives may have

negative eigenvalues at e(k). To simplify the description, we

(k)

suppose in this section that H (6) is positive definite on every

iteration.

The derivative estimates provide the quadratic approximation

k V .
_¢(g( by 8) = ¢(g(k)) (8) + %g'n(k)(g)é (2.19)
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The value of & that minimises the right-hand side of (2.19)

satisfies the eguation

g(k)(g) + H(k)(g)g = 0 (2.20)

" Therefore some variable-metric methods define e(k+l) by the equation

g (K+1) o™ _ 1™ ()]

155 (e, (2.21)

However, because this choice of 6(k+1)

¢(3(k+1)

may conflict with inequality

(k+1)

) < ¢(§(k)), it is usual to let 8 be the vector

e(k+l)

() _ 5 k) (KD gy =2 00

0 ' ()1 @ (2.22)

where k(k) is a scalar which is chosen to enforce the above condition,

. k+1l
and possibly another condition also to ensure that H( )(9)

is
positive definite. To determine the value of A(k), we seek a good
estimate of the least value of the function

-1 (k)
g

roy = ¢ - a1 (8)) (2.23)

by calculating only a few actual values of F(A). A description of

a suitable method for adjusting A is given in section 2.4.

Next the gradient of ¢(8) at the point.g(k+1) is estimated.
Usually in non-derivative algorithms,either forward or central
differences are employed, the ith component of g(k+l)(§)(i =1, 2, ...)
being defined by the equation

(k+1)

(k+1)
+ hoe) - ¢(8 )}/B (2.24)

or by the equation
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k+1 k+1
gf +1) (k+1)

e(k+l)
i v

- h,e )}/2h. , (2.25)
i-i i

) = {48 +hye;) - 6

. .th .
where ei is the i co-ordinate vector.

An important and valuable feature of the methods used to

define H(k+l)(6) is that they require no more values of the objective

. k+ .
function. The successful choices of H( l)(_01) satisfy the equation

1 3
because, when ¢(g) is a quadratic function, this equation is also

satisfied by the true Hessian matrix. One of the,most

useful choices of H(k+l)(§) is that given by the Broyden-Fletcher-Shanno
formula
k ]
o 0 P @88 n
H (6) HU(8) - +
§(k)'H(K)(§)§(k)
(k)_(k)'
Y X
e — ‘ (2.27)
I(k)'Q(k)
where §(k) and I(k) afe the differences
) _ U)o '
(2.28)
(k "
A S T L

Thus the data that is needed to begih the next iteration is already calculated.

The extensive numerical results given by Gill-Murray-Pitfield
(1972) indicate that the class of variable-metric methods contains the
beSt.Qf the available algorithﬁs for minimisation without derivatives.

However, each iteration of a variable-metric method uses at least n,

4



function values to estimate first derivatives, but it uses only
about three or four function values in the line search that seeks the

minimum of the function (2.23). Thus in large problems only a small

proportion of the function evaluations are applied directly to the
main problem of reducing the objective function. This is a poor

strategy unless ¢(§) is almost quadratic.

Another deficiency of variable-metric methods is that usually

the search direction - [H(k)(g)]_lg(k)(g) in expression (2.22)

. ’ k
gives fast convergence. only if the direction of g( )(Q) is a good

approximation to the direction of the true gradient of ¢(8) at

(k)
0 . However, the true gradient should tend to zero as k

increases, so the difficulties of calculating a suitable vector

(k)

g (6) Dbecome more and more severe. Therefore many algorithms

switch from formula (2.24) to formula (2.25) when g(k)

(8) becomes
small, in order to obtain higher accuracy at the cost of almost doubling
the number of function values per iteration. Thus the precision of

the calculated values of $(8) is very important. To avoid these

extra function values, Cullum (1972) suggest the formula

{(k+1)

: (k+1)
9y = {oce

(kt1), 1 o (k)

) -3 i ii (e)}/h (2.29)

+he) - (8

. ' th
instead of equation (2.25), where H(k)(g) is the 1 diagonal

ii
% 0.

element of H

Another way of obtaining better accuracy in the differences
(2.24) and (2.25) is to avoid the use of adaptive methods in the
calculation of $(8). For example, if ¢(8) is a definite integral
which is calculated bya numerical quadrature formula, and if the weights
of the quadrature formula are held constant, then the leading error
term of the quadrature formula usually cancels out when the difference

(2.24) or (2.25) is formed.



‘The choice of the step-length’ hi in equation (2.24) and (2.25)
also causes problems. The earliest variable-metric method (Stewart,‘
1967) includes a technique that chooses hi automatically, and numerical
results show that it works quite well. However, Gill and Murray (1972)
suggest that it is better to keep hi (i=1, 2, ..., n) constant
throughout the calculation, in order that the leading error terms in
g(k)(g) and g(k+l)(9) cancel when x(k) is calculated from
expression (2.28). 1In our opinion, it is preferable if the step-
lengths are adjusted automatically, so that people who do not under-
stand the difficulties of numerical differentiation can apply the
mini@isation subroutines successfully, without expert advice on the

choice of h,.
i

2.3.3 Comments Regarding Minimisation Without Derivatives

Although the most successful algorithms now for minimisation
without derivatives are variable-metric and conjugate direction methods,
we have noted maﬁor disadvantages in both these classes of methods.
Difficulties occur in variable-metric methods bécause of the strong
dependence on accurate first'derivatives, and in conjugate direction
vmethods the revision of the conjugate direétions can be a very poorly
defined problem. However, the.estimation of second derivatives in a
vériable-metricAmethod seldom impairs efficiency, and the fact that
conjugate direction methods usually search along n independent
directions on every iteration helps to avoid jamming away from.the
Solution. But finding a good algorithm which may retain the advantages
and lose the disadvantages of current algorithms may take a long time,
bParticularly because comparisons should be made with current methods

that have been designed and programmed carefully. Therefore, in this
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study, we concentrate our effort on minimisation methods with
analytic derivatives, and we will implement the BHHH and GMP methods
in our computer program to estimate the parameters of the concentrated

log-likelihood function.

2.4 Choice of Line Search

An important part of all these minimisation algorithms is the

(k) (k)

choice of the step-length A along the direction p .

Although some algorithms have been suggested which generally
(k)

accept Ak 1, it is usual to require that A is chosen to

(k+1) (k))

ensure that ¢ (9 , Wwhich gives a minimal stability

)< $(8
in the iteration. Although it may cost relatively little in

(k)

computing time to ensure that A is chosen so as to minimise

pe® 4 ap™y,

this may be relatively wasteful of computer time when the cost of
' computing ¢(§) 4is high, or if n is so large that in the early .
iterations, when the direction P(k) is relatively arbitrary, there
. . (k) i
is no great advantage in searching along the direction p . It is
necessary to balance the time taken in searching along the Qirection
k . (k+1)
E( ’ with the time taken to choose a more suitable direction p .
This balance is clearly dependent on the properties of the function

¢(9). and is usally decided on the basis of experience with a

variety of functions.
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2.4.1 Quadratic Interpolation

Powell (1964) published a simple algorithm for determining
the minimising value of A, using quadratic interpolation. This
algorithm forms part of Powell's more general method of finding the
minimum value of a function .¢(g) without calculating derivatives.
However, it may also be used in conjunction with any gradient
method, or more generally, with any optimisation technique which

requires a one-dimensional search.
To find the minimum on a line, we must provide the following:

(i) a set of points (or a point) on.the line, 8,
(1i) the direction of the line p,
(iii) an upper bound to the length of step along the line, m,

(iv) an order of magnitude of the .length of step along the line,

h, assumed to be less than m, and

(v) the accuracy to which the minimum’is required, e.

The method of minimisation must be such as to find the minimum
of a quadratic form, so it is primarily based on the quadratic defined

by three function values.

Initially ¢(8) and ¢(B + hp) are calculated,, and then
eithér ¢(g - hp) or ¢(g + Zhg)‘is worked out depending on whether
$(6) is less than or greater than ¢(8 + hp). These three function
values are now used in the general formula which predicts the turning
value of the quadratic defined by {a, ¢(8 + ap)}, {b, ¢(8 + bp) },

and {c, ¢(8 + cp)} to be at (6+Ap), where
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(p2-c2)¢_+ (c2 - aZ)p, + (a2 - b2} |
. a b <. (2.30)
(b - c)¢a + (¢ - a)¢b + (a - b)q>c

>
]
LY

It is a minimum if

(b - c)¢a + (c--a)¢b + (a - b)¢c

< 0. - (2.31)
(a =b)(b =-c)(c - a)

If the turning value is predicted to be a maximum, or if the value

of A is such that to calculate ¢(6 +Ap) a step greater than m
must be taken, the maximum allowed step is taken in the direction of
decreasing ¢, and the function value at the point which is furthest

from (¢ + Ap). is discarded, so the prediction may be repeated.

Otherwise A is compared with a, b, ¢, and, if it is within
the required accuracy of one of them, that point is chosen as the
minimug.‘ If it is not, ¢(8 + Ap) is calculatea so that the
quadratic pfediction nmay be repeated; the function value which is
throwh away out of ¢(§ + ap), ¢(8 ; bp) and ¢(6 + cp) .is normally
the greatest, but it is not if rejecting a smaller one can yield a

definite bracket on a minimum, which would not be obtained otherwise.

In order to reduce the number of times ¢(61, 62, cess Gn)
has to be calculated, advantage may be taken of the fact that three

function values are sufficient to predict

92
" {¢(6 + a*p)}. (2.32)
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The p;eaiction of the second derivative is

(b~-clé_ + (c -a)p, + (a~-Db)¢
I =-2- a b < (2.33)
(a -b)(b - c)(c - a)

So, if after finding the minimum in the direction p the
Components of p are scaled by 1/,/"_, the next time a minimum is
Sought in the same direction the unit second derivative may be used.
In this case just ¢(8) and ¢(6 + hp) are sufficient to predict '

the minimum to be at (8 + Ap),

1 ¢(8 + hp) - $(8)
A = 5h - — . (2.34)
h

Choice of h

It is important to héve a method of adjusting the step-length
h before entering'the line search procedure to ensure that a definite
bracket on a minimum is located without too many function evaluations.
Assumé we have the initial step A = 1, and during each iteration a

*
- new step A is obtained, we can then set

*

D= |lef], *a
and define
A = min {max (}/,, 2D), 21}

that is,
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if X s D3 >‘/4 , reset X\, = 2D,

if A/4 >D, reset A, = 7‘/2 .

This will ensure that A/Z < A‘s 2.

We then set

= mi by
h = min (1, /”PIIZ)

as our starting step-length 1n‘the line search algorithm.

A simple method for choosing h is described in the following

steps:
Within the optimisation routine: (X =1, is assumed initially)

1. Compute d = Ilgﬂz .

2., Set h = min (1, 3/3).

3. Call line search to locate a new step-length A¥.
4. Compute D = d * A*,

5. Reset A= min{max (A/2, 2D), 2i}.

6. Return to the optimisation routine.

Consequently, our estimation program for the non-linear
econometric system uses the above procedures for the line search

and adjusting the step~length h.
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2.4.2 Cubic Interpolation

The line search given in the GMP procedure is that suggested

by Davidon (1959). Given two points Al and A2 with function

Values ¢, and ¢, and derivatives g, = g(§"') and g, = Q(Q(z)),

a stationary point A* of the third order polynomial passing through

these two points and having the specified derivative values is

‘given by

o= O, = M)A (g, -y =/, - g t+2Y) (2.35)
where

}
= 2 .

y = (n glgz)
and

n o= 34 - $,0/(xy = X)) + g, + g,

The stationary point defined above is the one which lies in the

(k) lies in this

interval (A;rX,) 1if the minimum of ¢(6) along p
interval. Assuming Al < A2 then the minimum lies in the interval

Iklr %2) if g; < O and g, > 0.

In the non-derivative case, quadratic interpolation is applied.
The stationary point A* of the second order polynomial passing

through three points is given by equation (2.30).
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2.4.3 Bard Line Search

An alternative method of choosing A(k) is given by Bard (1970).

Define

(k) -1 (k)

B (D) e @17g™ e,

$(9

(k) (k)

where g (8) is the gradient vector and H (8) is the approximate

Hessian matrix,

= bound on .o
Amax upper Al
Bard considers the case where there are inequality constraints and in
this case, Amax is determined as the minimum positive A such that

6+ A[H(g)]-lg(g) is on a constraint.

wWhen there is no inequality, Amax is set to an arbitrary

large number.

At the start of the kth iteration, we possess the value

Fk(O) = ¢(8 ")
and
daF '
' ! -1 (k
rior = £ g™ ra™ 17'¢™ (.
dax
A=
RE) th
is assumed given at the start of the k iteration and
define F'© = Fk(A(o)).
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The Basic Algorithm

Step O: Compute F(o). If F(o) < Fk(o) accept )«(k) = ),(0)'

otherwise continue.

Step 1: Determine the second degree polynomial in X which agrees

ﬁO)

with Fk()\) at A=0 and A= , and whose slope

1
at A= 0 agrees with F];(o). Let )»() be the point

at which this polynomial is stationary, that is, define
* = 0) + F/! 2
_Fk()\) Fk( ) Fk(O)A + Q)

where a 1is chosen so that

(@), _ (o) L (0)2
FLO) = F(0) + F(0)A + o)

Then we have

F (X ()

Y ) = F,_(0) = F! (O

2
A(O)

The stationary value is given by

Fﬁ(O) + 20X = O,  and
1 F'(O)
Av( ) __ 'k
2aq,
. (0)2
Fp (O)A

(o) (o) }

- - F'(0
2{Fk(l ) Fk(O) Fk( )A
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5 (1) th

Step 2:  If this is the first calculated for the k

iteration go to Step 3, otherwise define

A(2) (o) (o)' A(l))],

= max[ 0.251'°7, nmin(0.75X

(o) (1) (o)

that is, if 0.252%9 < A" < 0.750(%), set (2 -, (D

if A S o950 see A3 L g 95a (@)
if A1) ¢ .50 @) , set A3 g 25209
, - ’
Replace A0 it A2 and return to Step O.

Step 3: Define X(3) = min(}\(l), 0.75) ).
max

Step 4: if |X(3) - X(o)l < O.ll(o) or A(l) < 0.25l(°),

& A (k) (0

accep , otherwise continue.
Step 5: Compute F(3) = Fk(k(3)). Take A(k) = A(3) or X(k) = A(o)
X (3) (o)
depending on whether F or F " 1s the smaller{

Bard line search is different from other methods because it
' (k) (k)

considers the problem whether ¢(8 +Ap ') is on a constraint.,

2,4.4 The BHHH Line Search

To choose Aik), Berndt-Hall-Hall-Hausman (1974) suggest that

an arbitrary &6 is chosen, O < § < k.

The BHHH procedure is then to take A =1 if

(k) (k)

¢ +p7) - ¢(g(k)) > 8p (p) (2.36)

and otherwise choose. X(k) such that



- 61 -

Gk(k)g(k) 'g(k) (8) (k) (k)g(k)

y - ¢

1A

$(8 + A

k)' (k
PSP MU

A

(1 (6). (2.37)

Now ifcondition(2.36)_is not satisfied,

(k) (k)

s + 0™ - 00" < ap™ g™ (o)

for A just less than 1, and

(k)

o™ +2p™) - 00" 1/p% g™ gy 21 as Ao,

(x)

Thus by reducing A from 1, we can find a A satisfying equation

(2.37). Unfortunately this may be a time-wasting prbcedure, since

we often find that it is necessary to consider several values of )\

2 (K)

before a suitable is found.

2.4.5 Efficiency and Termination

The four possible line search procedures have been programmed. Each
of these has been tested in separate runs on a set of simulated non-linear

simultaneous models.

From the results, it became clear that procedures Bard and
BHHH are relatively time wasting compared with quadratic and cubic
interpolations because we have to compute several -Ai before we can
locate a suitable AA(k). It is expensive in terms of computing time

to compute many function evaluations as the objective function ¢ can

be very complex. These extra function values required in each line search
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are not compensated for by finding a lower value of F(}), nor do
the theoretically better convergence properties show up in our
comparisons, Hence more iterations are needed in the iterative

procedures for the model to achieve convergence.

Cubic interpolation again has a drawback because it is relatively

expensive to compute the gradient of ¢ at A but it is a more

2’

efficient method compared with Bard and BHHH.
We would recommend the use of quadratic interpolation as a

. line search procedure. Since the step-length h is adjusted during

(k)

each iteration, we have a good projection of A for a start and
hence reduce the possibility of searching too many Ai on'the line
¢(9-kkig). The average number of function evaluations in this pro-
cedure is between 1 to 2. Since we can locate a good estimate of

3 K

with a smaller number of function evaluations, we are not only
reducing the computing time for function evaluations, but also the

time taken to optimise the model.

2.5. Choice of Stopping Criterion

Determining when to stop the iterations that lead to a minimum
of ¢ is a problem of great préctical interest: stopping short of
the mark has its obvious costs in the quality of the estimates;

going too far involves unecessary costs in computer time.

2.5.1 The Gradient Stopping Criterion

In principle there seems little problem determing when to stop:

at the minimum the gradient is zero. Thus it is common practice to
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5

choose somearbitrérily'small €, such as 10~ or 10 » and to
stop when the largest gradient (in absolute value) is less thén €.
This stopping criterion, called the gradient criterion, can also be
effected by stopping when the square length of g (where g = g(k)gg))

is small, that is, when

llgll2 < e

The gradient criterion has two majot weaknesses, First, it is scale-
sensitive. Changes in the units in which the data are measured can
cause the scale of specific parameters and their gradients to be

made arbitrarily large or émall. In econometric problems, parameters
that are naturally small will tend to have relatively large gradients
tha; can keep the optimiser seeking a minimum long after it is close
enough for practical purposes. Simila;ly, large coefficients (some
constant terms) may have relatively small gradients that can be
ignored by this criterion evén when they should not be. 1In practice,
the gradient stopping criterion ‘'is very conservative, tending to
drive the optimiser beyond the point of diminishing returns in terms
of parameter estimates. It tends, thefefore,.to be a good criterion

when we wish to be sure to go far enough.

A second weakness of the gradient criterion is that it ignores
the statistical context of likelihood estimation and treats all
pérameters alike - whether they are significant or not. It is quite
possible for a 1a£ge gradient. in the direction of a wholly insigni-
ficant pParameter estimate fo force the continuation of the optimisaﬁion
process even though those parameters that are estimated with significance

are changing little.
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2.5.2 The Weighted-Gradient Stopping Criterion

Here the weighted-gradient stopping criterion is introduced,
that is,

-1 k
-g'H g < g where H = H( )

(&)
This criterion equals zero (assuming H_l is negative definite) if

and only if g =0, and it is scale-invariant. If H is ill-conditioned
- g'H_lg could be large even if g is small. This characteristic

is in fact an advantage of the weighted-gradient criterion in the

NLFIML context, for, near the maximum likelihood solution, the negative

- of the Hessian estimates the variance-covariance matrix of g. An
ill-conditioned Hessian occurs when some element of 6 has a high
variance and|the corresponding element of g has a small variance.

Thus, this criterion incorporates a weighting scheme that, near the
solution, takes into account the precision with which the gradient
components are known: gradients with large variances are appropriately
downweighted or conversely. Therefore the weighted-gradient criterion
would'seem to have value as a stopping criterion. However, in practice
we found criteria of this kind tended to stop earlier than other
criteria, and we preferred to make use of criteria which were not so
directly related to the statistical properties of our estimators,

but rather to the numerical properties of the errors in the parameters

or derivatives.

For our stopping criteria in the estimation program, we would

use:
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(a) ”g”z < el
6i(k) _ ei(k-l)
(b) < €y
e(k-l)
i
¢(Q(k+l)) - ¢(§(k))
(c) - < 5;3
o0 )

where ¢ €, and €, are prescribed tolerance levels. If any two

ll
of the above stopping criteria are satisfied, we will then terminate

the iterative procedure.
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CHAPTER 3

CHARACTERISTICS OF ECONOMETRIC ESTIMATION PROBLEMS

3. The Model

We are concerned with estimation in the multivariate model

fi(yt; zt; e) fi(yltl soeyp ynt; th, e oy th; el' ceey ex)

=u.. i=1, ..., n
t=1, ..., T (3.1)
-— L} 2 . *
where u = (ult' ooy unt) is the vector of normally distributed,

serially independent disturbances with mean zero and a symmetric
positive definite variance covariance matrix §, 6 is the vector
of K unknown parameters, fi(.;.;.) is a twice continuously

differentiable function, y, is an (nx1l) vector of jointly

t

dependent variables and zt is an (mx1l) vector of predetermined

variables.

»

We now set up a likelihood function based on a multivariate
normal distribution for the uit' Noting that the joint probability

density function for u, is

) n
(2m) 2 |Q|-&exp {- —2— ulQ lut},

the joint probability for the T observations (v ; z_; t =1, ...,

is:
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nT ‘ T o
LN - 1 .
@p = (21) 2 (det Q) ? [ I |det Jtﬂ *exp {-3 I £, 07f Yav
- . it jt
t=1 ijt
(3.2)
where
T - .
av. = I (dyy,, dy,es «ees Gy )
t=1
fit = .f, (yt; z i 8)

det Jt is the Jacobian determinant (i.e. the determinant of first

derivatives w.r.t. yt) with

0f; (yyi 27 O (3.3)

¢

and Q"3 is the ijth element of Q_l. The logarithm of the

likelihood is then
: n T -1
L(B, Q) = - == 1l0og 2T + = log (det @ ") + L log [(det J |
2 2 € t

1 ij
- = . 3.4
7 L O£ e (3.4)
The Maximum Likelihood (ML) estimator of 6 and Q is implicitly
defined as a solution to the following necessary first order conditions
for the maximum of the log-liklihood function L(8, Q):

AL(B, Q) i=1, ..., n

— = o (3.5)
anJ j = l' .'.' i
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oL(8, Q)

= 0 a=1, ..., K, (3.6)

aea
Finding the ML estimator involves solving these equations for
K +11h1+l))2 unknown parameters. The dimentionality (and quite
possibly the computational expense) of this problem can be reduced
considerably by noting that the elements of  are unrestricted
(e*cept that Q 1is symmetric and positive definite). Hence Q can
be eliminated from the log-liklihood function by concentrating it out,

that is, by solving the ML estimator of Q in (3.5) analytically

and substituting Q by its ML estimator in (3.4).

Because is symmetric,
3 log (det @ 0) 8  iF 1=
,_ - (3.7a)
st 20 if 1 #3
i)
and so
T 1
3L(8, Q) 7% "3 et
AN | : (3.7b)
antd
T, - i £iefse -

Setting the derivatives in (3.7b) equal to zero as in (3.5) gives the
ML estimator of Qij (i, 3 =1, «cep n):
izf £ {(3.8)
T it7jt ° )
t
Upon substituting this into the log-likelihood function in (3.4), the

last term of that equation is
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1 ij 1 ij ' 1 ij
-= £, 0% = -z’ czIf £, = - I Q°TQ,
i y - t 2,
2 i3t it it 2 i3 ¢ itj ij ij
= - T @™o
nT
= -= . (3.9)

Hence the last term in equation (3.4) is a constant. The non-constant

part of L(8) is

%‘-log (Get @4) + I log |det 3. | . (3.10)
t
- t
Thus the concentrated log-likelihood function is
£ . £
_ T it7jt

L*(8) = ¢ + I log |det . > log [det [z ]] (3.11)

. t t
where ¢ 1is the constant -nz—T-logT - 222 log (21 - -I—;?- . L*(8) is

a function of 6 only (and not ). Further the ML estimator for 6
and @ obtained from (3.5) and (3.6) is identical to £hat obtained
by solving for aL*(e)/aea =0 a=1, ..., K, and using (3.8) as
the ML estimator of Qij' Working with the concéntrated log-likelihood
for L*(8) gives a simple analytic expression for the ML estimator of
¢ and reduces the number of parameters which.need to be estimated by
iterative techniques from K + n(n+1)/2 to K, thereby saving on '

computational costs.
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3.1 The BHHH Method of Estimation and Inference by Maximum Likelihood

Maximum likelihood estimates are assumed to be generally
statistically efficient in large samples. Berndt-Hall-Hall-Hausman (BEHH,
1974) have developed a practical approach to maximum likelihoodestimation
within the framework of gradient methods. Their approach has two
advantages over the application of Newton's method (Eisenpress and
Greenstadt (1966), Chow (1973)). First, its convergence is more
likely since unlike Newton's method which uses a Hessian matrix that méy_
not be positive definite, it confines the direction vector to the
gradient halfspace. Second, the BHHH method requires the evaluation
of derivatives of the functions £, up to second only, while Newton's

it

method requires certain third derivatives of functions fit'

We need to maximise L*(0) the concentrated log-likelihood function

defined in equation (3.11).

Differentiating (3.11) w.r.t. 6, the gradient of the log-

likelihood function is:

£ . £
1A T 2 itje
T i 8 log |det I > 38 log [éet(z T j]
- p-gq, say, (3.12)
T BL: T
or X = - .
L (p, - q)
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The variance-covariance matrix of the gradient is given by:

aL*) (aL*}*
El_a—e}[ﬁ]] = Elp--9']. (3.13)

Define

d
— log |det I |

e T o,
k
aJ
-1 t,i,j
= L3 a’e, (3.14)
1,] "k
2
where 8 ft/aekay is the square matrix with typical element
2%t . _
tl/aekayj , i=1, ..., n, 3 =1, ..., n, and
afT £ £ Y1
T -
. k]
Q. = tl]g AbXE £, (3.15)
\ BG.J t:l T J d
i
2. %
] Lt
Let Qt = and
a630"'
T - -1
Q = I 9, Q=TT
t=1
Then
2
- 1 CL*
Q__ = ;IT
0 9838" f3_5

~where 6 -is the true value of 8, has the property

) - e (5]

8
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E (éé) is the information matrix which indicates the amount of
informatioﬁ from the data on the éa;ameters which we are estimating.

Also the inverse of the information matrix is the variance of the estimator.
The proof is omitted since it involves detailed manipulation of the
derivatives pf the concentrated log-likelihood function, and the use

of the identity for ﬁhe information matrik (see, é.g., Kendall and

Stuart (1961, Chapter 18) and Theil (1973, Section 8.4)).

Let
H = E(ég)
and define

l(pt - qt) (pt - qt) '. (3.16)

R =

™3

t

1 1
Then plim TR = lim E (E'(P - q)(p - q)'),
To0 ‘
thus R provides a consistent positive definite estimator of -y, which

can be used in a quasi-Newton optimisation algorithmif and only if

u is independently identically normally distributed.

The basic algorithm is:

: (x) _ ()

til.(pt - q,) (p, - q,) 'AB -2 (p-q = O
that is

plr*l) | glm) () [R_l(p - q) ]

6(r)
= olT) 4\ (B)4(x), (3.17)
where ATV g chosen to max L* (e(r)+ aat®) (é(r))) by a
A

line searﬁh.
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R must be positi&e definite, but there is a possibility that
R may approach a singular matrix as the piocess iterates. Thus,

we need to restrict R.

We let a be a prescribed positive constant less than one. Then

at each iteration, we require

p = — >a, oO<oa<1 (3.18)

where g=p - q,

this will ensure the algorithm moving downhill. It p drops below «
on a parituclar iteration, we whould replace R by a matrix with larger

diagonal elements.

All.gradient methods require a line search to determine the
scalar A after calculating the direction, d. Given that A is chosen
by such a line search algorithm (section 2.4), together with the
restriction on R, and given that L*(8) is twice continuously differ-

entiable, we can now state the convergence theoremn.

Consider the sequence -

where

(r) ,(x)

d

and
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(r)y (r)

If R obeys the restriction (3.18) and A is chosen to satisfy
L*(e(r) + A(r)d(r)) 5 L,,(e(x:))' then lim g(r) - o.
. oo

Not every critical point of L*(6) is a local maximum since
saddle -points can occur. If the iterative process chooses a value of
8 where L*(0) has a saddle point, the iterative process will stall,

as g = O at such points. However it is more likely that the process

will find a local maximum which is not a global maximum. To safeguard

against the possibility of accepting convergence to a local maximum

that is not a global maximum, we choose several initial values of
8. If they do not all lead to convergence to the same point, then
we might investigate the actual shape of the function with more care

until the global maximum is located.

3.2 The BHHH Algorithm

The basic interation is:

.Step O: For each i, j, k and ¢t; i, J

C te:
ompute v fit' ijt
£, f
s = (S..) = [z _12_12]
~ ~1ij £ T
-1 _ i3
s (s™)
- ij
yit z s fjt
3
H ., = -1



Step 1:

Compute:

of 3Ji.
_— J for each t
36, 30,
aJij

Pee © iz. Hije 0

J k ‘t

. 3F,,
e T 1 58 it
k

Mee = Pre T %e

Repeat Steps O and 1 for all t and k.

Step 2:

Compute:

Step 3:

Step 4:

(1)

T
g = I W, k = 1,
£=1 kt
T
R,. = Z M., H.,.r irj=
ij t=1 it"jt

Compute new direction

(r) -1

Check for convergence:

Idi(r)l
max < €
i max (1, le(r)l)

1

1,

LI Y n
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(ii) ]Ig”2 < €,

e(r) _ e(r—l)
‘s i i
i :
(1ii) D) €y, for all i
i
L“e(r)) _ L*(e(r—l))
(iv) < €
L*(e(r)) - 4
If any of the conditions is statisfied, go to Step 6.
Step 5:
(a) Search for A(r) using a line search procedure to ensure
that
L+ (o (¥) +}\(r)d(r)) N L,,,(e(r))
(b) Update p (¥ by setting

e(r+1) - 6(r) + A(r)d(r)
(c) Return to Step O.
Step 6: If convergence is achieved, report parameter estimates 8
. . . . . -1
and its estimated variance-covariance matrix (R, .) .

ij

The BHHH algorithm is implemented in the computer programs

described in Chapter 5.
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CHAPTER 4

A METHOD OF SPECIFICATION, DIFFERENTIATION AND COMPUTATION

FOR SETS OF GENERAL FUNCTIONS

4. A Differentiation Program

To estimate non-linear simultaneous equations systems by the
method of maximum likelihqod, it is necessary to compute the gradient
of the log-likelihood function either analytically or by the use of
numerical approximation. It was decided to implement the BHHH method
and the Gill-Murray-Pitfield algorithm in our estimation program;
both methods employ analytical gradient, hence a specific differen~

tiation program is written for such purpose (Sargan and Chong (1980)).

4.1 Organisation of the Differentiation Program

The differentiation program may be divided into three parts:

1. To read in a specification of a set of functions and code it

in a form easily translated and implemented in computer memory.

2, To differentiate such a set of functions, and to hold the

specifications of the derivatives in computer memory.

3. To calculate the values of the functions and derivatives for

given values of the variables.
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The organisation of the differentiation program is shown in

Figure 4.1.

The set of non-linear functions is first read into the computer
memory - in  FORTRAN IV definitions. The definitions are then en-
coded into a list of integers representing-the appropriate input
symbols. A formula processor subroutine is called to process the
list of integers into function specifications in a machine internal code and
these are then stored permanently. When all input functions have been
processed, differentiation can begin. Each of the components of
function specifications are considered in turh and applied the appro-
priate differentiation rule. The resﬁltant derivatives.are defined
as functions in the same internal code as function specifications,

When all functions have been differentiated, an evaluation routine

is called to decode the internal code and then compute.. the functions
and derivatives values. The output from the differentiation program

prints only the numerical values, not the functions in normal FORTRAN

expressions.

4.2 General Considerations and Function Specifications

If we follow the usual FORTRAN conventions as to the definitions
of a function with "*" and "/" having priority over "+" and
"-*, we will find our more complicated expressions having brackets
whenever a factor in a product is the sum of a series of terms. Thus
we will simplify our computing and differentiating by introducing a NEW

function NFUNC corresponding to the contents of the brackets, whenever

brackets are used in the definition of the function.
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In addition to -“*“, w/n, Ban, w_w_ ywe wish to introduce

"k¥M, "LOG", “EXP", "SIN", "COS" and "ATAN". These will be

called SPECIAL FUNCTIONS and denoted by Fk.

We then define a set of "defined functions" as follows:

i, (4.1)

I
£ = I c, I ¢
i=1l j=1

i3
where the ¢ij are described as FACTORS and the products of the
" factors are defined as TERMS. (Of course, more correctly, every I,

Jd., c., ¢,. should have a suffix s.)
1j

The ci are real constants, and should be chosen from a store

or list of constants created as the definitions are read into memory.
The factors ¢ij are of three types:
. = (v \P
(1) ¢ij v (xk)
where kk is some variable in the set of variables;

(11) ¢, ='(fk)p

3

where fk is some function previously defined;

113 = p 1P,
(iii) ¢ij (Fk(xt)) or (Fk(ft})
In all three cases, p is an exponent (which corresponds to a

"**" in the original input).
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fhe specifications of the functions are held as a set of
integers, one after the other, éo that space is not wastea.
Also the definitions follow one another in the order in which the
definitions are read in, not in the order in which they will need
to be. computed. To'compute any function in the correct entry, it
would be necessary to have an array of pointers for the order of
computation. This array need. only list the functions in priority

of computations or perhaps contain the addresses of the start of

each function specification.

Suppose we discriminate between indices relating to variables
by saying that:
(a)  integers < 1000 refer to variables.
(b) integer i > 1000 that i -1000 is the index of the
cﬁrresponding function.
(c) However, each factor may be a sbecial function, so we allocate

the first five integers (1 to 5) to indicate special functions:

that is, LOG = 1
EXP = 2
SIN = 3
cos = 4
ATAN = 5

Note that we do not allow a special function of a special function

- unless this is done by using a defined function.



4.3

(1)

(ii)
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Sets of Conventions for Defining a Function

Constant Indices

We have set up a set of conventions for constants as follows:

(a) An integer one means there is no constant for the current
term or function, that is, c, = 1.0, for example, Exp X
becomes 1.0 * Exp X; -
(b) Positive sign means plus, with an INDEX corresponding to
the order in a vector of constant CONS. The value of the

constant can be found in element (INDEX-1) of vector CONS.

For example, value of CS' can be found in CONS (5-1).
{c) Negative sign means minus with the constéht held as (b)
above.

(d) If the number of factors is zero, then the term only

consists of a constant. This constant is defined in the same

way as above.

Specifications of a Function

As we have suggested earlier, we use integers to represent a

set of functional symbols. For all integers less than or equal to

1000, they represent variables and any integer i > 1000 then

i - 1000 is the index of the corresponding function. We have

allowed integers 1 to 5 to represent special functions such as

LOG, EXP, SIN, COS and ATAN. ‘Thus if i < 1000, we take i -5

to be the index of a variable,
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‘Now we suggest that the actual list of integers required for
a given specification be as follows:
1, Number of function (i.e. defining order in list of functions).

2. Number of terms in function. In term of formula 4.1, this is 1I.
Then for each term we need to define:

(2a) Number of factors in the current term (which 'is _Ji for each ii.

(2b) Index of constant at the start of each term (i.e. index of ¢y

and the constants are stored in a list).

(2c)  For each factor, an integer defining whether it is a variable,

a special function, or a defined function.

(2d) For each special function a following index saying whether the

function depends on a variable or a defined function.

(2e) A negative integer which occurs only if an exponent is used.

(iii) Function of a Function

A function can refer to another function Qith a separate
definition provided that whenever this happens, we can arrange that
the second function is computed earlier. There will be incorrect
results if it is not possible to arrange a consistent order of

computation.

(a) Functions with Bracket-Contents

We treat any bracket-contents of a function as a new function (NFUNC).
When an open bracket is encountered on read in, a new function is
immediately éefined and the specification of this new function is
stored in the definition list. The advantage of doing this is that

it enables a function specification including brackets to be interpreted
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consecutively without providing temporary storage for brackgt-contents
definition, and has the advantage that in differentiation and
numerical evaluation the contents of the bracket are differentiated
or computed only once, rather than computed each time it occurs. ip
the definition of the various order derivatives; A lower priority
inde# is allocated to this new function in the order of computation,
that is, a new function is placed in the front of the priority queue.
We choose to use this convention so as to allow definitions of
original functions to be non-consecutive (this corresponds to an
unconditionél jump in an ordinary program). We need to jump over
the ne% function specification list and continue from there as we
compute Qr differentiate the original function. As an example we

have the sequence,
l1o0lo, =-16, 477

which would mean function flo then jumps to address 477 in the

specification list and continues from address 477.

We ﬁse the integer -16 to mean this UNCONDITIONAL .jump whenever
. a bracket-contents is defined as a new function and the following

integer gi&es the address of the NEXT integer in the specification.

On reading in a specifiéation, when brackets have been encountered,
£o yould be the'contents of the brackets, and in fact the speci-
fication £, Would immediately follow in the specification list.
in implementation; it would be arranged that flo was computed and
differéntiated first. Theb"unconditional jump®™ would be used, so
that in then computing the original function thé»program could jump

to the next factor or term.
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We also note that the advantage of having the number of terms,
and factors of each term specified, is that we can use a simple

"DO" loop on implementation.

(b) Treatment of NFUNC

We need to have markers for the new functions that we defined
as bracket-contents as we go along. But also the definitions are
going to define a set of functions, which are numbered by the

expression

"fi = ......" where i = function number
" as the start of the definition. Note also that we are going to define
functions by taking derivatives. Suppose that we assume our largest

model is written in the form
e = £, 20 8

and the maximum value of n is 20, and Yo is an l1xn vector of
endogenous variables (also of maximum dimension 20). Suppose also

that in setting up the definitions of the f£ we use n* intermediate

i,
or defined functions fI (bracket-contents), so that the total
functions defined in this way is n+n*. Suppose that n* < 20. It

is suggested that we should permanently store the definition of

fi i=ll o-'ln
f; l=1, sy n*

and also the definitions of



b
i

3fi 1, ..., n

Syj J=1, ¢ceey n

of ¥ i=1, ..., n*
1

Byj _ j=1, «vup n

Now if we wish to compute its derivatives with respect to 6 (suppose

0 was of dimension m < 50), we need to compute

of of *
1 1
4
BGk aek
32f, 32f* i=1, ..., n
1 1 .
— i=1, «c., n
o790, 3y, 90, k=1, «.o, m

Thus at each iteration (of the optimisation program), we need to compute
(n+n*) (n+1)(m+1) functions. On this basis, if we store all
functional speéifications,>we would have up to 40 x 21 x 51 = 40,000
specifications, and if we allow up to 20 indices per specification, this
means that the specification list (NLIST) would require 800,000 words
which seems to be very unreasonable. So it is suggested that we should

modify this.

’ ‘s , * af,
Suppose we store the specification of fi' fi v 1/ayj,

2
AT Af* 3£,
i /ayj permanently, and then store afi/aek, i/aek, l/ayjaek:

d2£* ‘
i /3Yj39k only temporarily, so for each k, we work out the
specifications of these derivatives, then compute their numerical

values for all t. 'Then move on to (k+1) writing the specifications

for the derivatives with respect to‘ ek+l over those for ek.
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In this way it is only necessary to store the‘specifications for
2(n+n*)(l+n) functions at the time, fhat is 1680 specifications
(say up to 30,000 words). We might reduce this to 25,000 words on
the grounds that not all n, n* and the number of words per specifi-

cation would take their maxima in any one model.

Now what this means directly for_NFUNC is thét we reserve the
function values 1 to n (where n is £he number of equations in the
model) for the explicitly defined functions, and then start the
implicitly defined.functipns (the bracket-contents) consecutively
from n+l1 to 2(n+n*)(n+1l). Each time we define a new function
either as the antents'of the bracket, or as a derivative of one
existing function, we increase NFUNC by one. At the end of the
differentiation w.r.t. yt) NFUNC should have reached n+n* + n(n+nf),
and at the end of that round of differentiations we take note of the
corresponding NFUNC, that is set MAXF = NFUNC, Then after differén—
tiating w.r.t. ek and computing the resulting derivatives, we
reset NFUNC = MAXF, the address for storing derivative specifi;ations
back to the address'corresponding to function NFUNC, and we then

write the new specifications over the old specifications.

(c) Priority Ordering

The most diffiéult_aspect of this ‘procedure is to ensureAthat
functions ére defined in an approriate order of computation. We choose the
usual éonvention that the lower index function in a pfiority list is
CO@PUted earlier. To compute'the function ana to obtain the form of
derivative functions it is necessary to ensure that we order the

+ computations so that the value of function "B" is computed befo?e
function "A" which depends on function "B"., Thus if we have an index
of computing priority, then we must ensure that function "B" has a

-iowe; index thgn function "A" if "A"™ depends on "B".
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We find'it convenient to keep two lists:

(1) NPRIOR (j) shows the order inwhich fj is computed;
NPRIOR (1) = j shows fj is computed first, NPRIOR (2) =k
shows that fk is computed second and so on.

(ii) We also invert this ordering by élso listing NPRS (3j)
which shows for‘éach j, the number of the function which is

J in the priority ordering.

Each time a function is defined, it is taken next in the prior;ty
ordering. Now each time the definition of a function i refers to
function 3, it is checked that j occurs first in the ordering by
comparing NPRIOR (i) and NPRIOR (j). The test should be passed if ]
is always defined before i. But if there is a misorder then first
j 1is checked, by considering the NPRIOR for each function occurring
in its definition, so that NPRIOR (j) is set at the greatest of these

plus one. Then NPRIOR (i) is set at NPRIOR (j) +1l. Note that in

6rder to do this it will be necessary to increase the priorities
attached to all functions with priorities betweenthe earlier NPRIOR (i)
and NPRIOﬁ-(j) by one, but these can be located easily by using NPRS.
NPRS must then be reallocated by using NPRS (NPRIOR (1)) =1i. This-
procedure of checking the order of functions should be repeated if

any reordering has been done.

(iv) Exponent

To introduce "**" operation, we treat "/" as "**_1v It
seems worthwhile from the computing point of view to treat separately
the cases where the exponent is a small positive or negative integer
from other exponents, and to ensure that we do not waste space by
adding unnecessary indices to the specification list when generally

no exponent is necessary. In particular we need xz, x3, x* ete.
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to be in a form when the computer can easily recognise that, for example,

32 4
d

.5;7'(x3) = 6x with no exponent on the x, or é%—(xz) = 2x and
SO on.

Thus it is suggested that the exponent be held immediately

following the factor to which it refers as a negative number. .Thus

in computing the value of the function on differentiating, we test
after each factor to see whether the next integer in the specification
list is negative. If so we realise therg is an exponent, and we can
then interpret thé index to get the exponent. Care must be taken here
as we come to functions defined implicitly by brackets, we need to
test whether this negative integer "belongs" to the innef function

or the outer function by means of the address of the unconditional

- Jump.

From the computing point of view, there is no point in distinguishing

large integers, and it is suggested that we take p the exponent only if

(i) it is an integer
and
(ii) =-15 < p < 10 this allows, for the fact that if we differ-

. C, ~15
entiate five times x O’ we end up with x 1 .

It is suggested that if the integer in the specification is
~J, and Jj < 26, then we take p = j-16 as the exponent, but if
j > 26 th = .
J ' en we take p c(j-26)

Note that in the case j > 26, we would be in fact computing

|x|?
or

|£]®

since we would use exp(plog |x|)."
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An Example
Consider the following sequence of integerst

24, 3, 2, 5, 10, 1036, 3, -3, 1, 10, 6, 1010, 2, 1, 2, 6, 1005

Here

24" shows” that this is f24 specification.

"an shows that it has three terms.

nav shows that the first term has two factors.

wgw shows that it starts with constant C,.

"1o" corresponds to Xg

"1036" corresponds to f367

"3 shows that the second term has three factors.

"-3" chows a minus sign at the start of the term, that is, the
term is -c, * (e) ().

" shows special function LOG.

"1io" corresponds to Xg-

"g" - corresponds to .xl-

"1010"% cqrresponds to flO'

" shows the third term has two factors.

"1 shows that there is no constant for this term.

"2 shows the special function EXP.

"e" corresponds to X

"1005" corresponds to f5'
Thus we can translate this sequence into

= - 3 + E x, * £
£,4 Cy * xs.* f36 c, * Log Xg * Xy ¥ £10 XpP X4y 5

For expressions having exponents, we consider the example below:

= £ T ;
£ Cp g ¥ EfRg T Cg M Ey TR

e
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vhich is translated as
20' 2, 3' 5' 12, 1010, 14' ‘_15' 2, 7' loll, -18, 6'

 where -15 indicates a "**-1" that is "/" and -18 .is an

exponent of **2 (i.e. p=-j-16). If

f10 = % ** g

then the sequence of integers would be
lo, 1, 1, 1, 12, -32,

- c .
where -32 corresponds to ® (-3-26)

Note that when the exponent is not an integer, we are in fact

taking the modulus of the variable, function or defined function.

(v}  Reading in a Specification

The difference between our computer specification and reading
a general FORTRAN function is that we allowed no brackets (except
for the brackets that are always used in connection with special
functions). All .that is needed is to reaa in a more complicated
function with brackets to.define a new function when brackets occur.
Thus, as soon as opening brackets "(" occur on the read in, é
new function NFUNC is defined, and a jump (-16) is inserted over

the definitionof this function..
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As an example, we have

2
J— * *
(a) £ = ¢ + c {c + C xlO)

16 10 11 12 13

Then this would be translated as

—_ * * T
fle = 0% 11 ¥ fios T B £
with
= * **x
£105 C1p G5 F Xy T2
= *
£106 €4 ¥ £
or another exampie
= *
(b) f16 Exp (c17 + c18 (c19 + f12)
then
f16 = EXp le
= * ok
£ €1, tCyg * Eyy T2
and
£0 = 9t 1y,

* Exp (014 * f12)

* 2)

Note that when a bracket has been opened, when the close bracket ")"

is reached it would be checked whether the name of a variable or

function or special function following variable or function is all

that is in the bracket, if so the brackét is ignored (unless two

consecutive special functions would be created by removing the

bracket).
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Example (b) is the one where brackets are nested. There is
no problem with this provided enough information is stored to resume

after the bracket.

The most important information is the address of the jump
address, so that when the close bracket ")" is reached, the address
of the next instruction entry can be found and stored after the

integer -16 in the specification list.

Thus in reading, we need an index say NDEPTH of the level of

nested brackets:

NDEPTH

]
o]

meaning we have no brackets
= 1 we have a function arising from a bracket

= 2 we have a function arising from 2 nested brackets.

Then we need an array JUMPAD(I,J)' for the jump address

connected with brackets of depth J with function I.
The important points to be remembered are:

(a) the number of terms that have already been read in the
functions outside the bracket;
(b) the number of factors that have already been read in the
current term;
" (c) whether the previous operator was "/" (meaning that it will

be necessary to insert **-1 later as exponent).

Thus we need three temporary lists to keep the intermediate

values of (a) ~ (¢) generated on reading in the function.

As a function is read in, two indices are held: NTERM and

NFACT to indicate the number of térms and number of facfors
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respectively. NTERM starts as 1 and is increased by 1 after reading

"+" or “-", NFACT is stored in the appropriate address of the
specification list when "+" or "-" is read, it is thenset to

zero, and increased by one whenever "*" or "“/" 1is read.

It is necessary to remember which function is being defined
(outside the bracket). We use NFUNC as the number of functions
currently being processed and increase NFUNC by one for each bracket
J. Similarly we need to reﬁember the address in the specification
list of the number of factors in the current term, this is the address
where NFACT will be stored at the next "+" or "-". Note that
.each time a closing bracket is .found, NDEPTH is decreased by one,
the definition of the function in the bracket is completed, and the

definition of the lower level function is resumed.

(vi) Characters for Input

The following is a list of characters which can only be used

to construct a set of equations:

List 1 2 3 4 5 6 7 8 9 10 11

Character v F * / + - (o] 1 2 3 4

List 12 13 14 15 16 17 18 19 20 21 22

Character 5 6 7 8 9 . ) = L E S

List 23 24 25 26 27 28 29 30 31 32 33

Character C A N G X P I 0] R T (

To input any equation, users may construct any functional form of

the equation from these 33 characters.
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Some Remarks

1.

4.4

‘A variable is represented by the character V, for example,

\ V. ..

1’ "10

Equation name is represented by F, for example,
Fl1 is equation 1
F2 1is equation 2

Operators are +, -, *, /, **.

Digits are O to 9.

Decimal is "“.",

Brackets are used to define intermediate functions, for example,

* *
Vlo/((vl v, + v3) Exp V6).

enables an expression to be read more easily, for example,

= * *
F2 vl v2+1/2 \'

3

Characters are

L, E, s, C, A, N, G, X, P, I, O, R, T.

These enable us to set up special functions such as LOG, EXP,

SIN, COS, ATAN. Also these may be used to construct the key

word "NEXT" for the continuation of an equation on a second card.

Differentiation

When differentiating it is assumed that we wish to store a

similar specification for the derivative. This may not be necess-

ary if we require - the derivative to be calculated for

various values of the variables. 1In thié case it is assumed that

the specification of an appropriate set of derivatives is stored

temporarily in public storage, and a calculation subroutine then

interprets these specifications to get the numerical values for

given X (the data matrix).
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;n cases where it is necessary to calculate second or higher
order derivatives, it will be necessary to be able to trace which
specification gives the first derivative of which function w.r.t.
vhich variable. Thus, we prepare a one-dimensional
array NADR(I) which stores addresses at the start of function I and
a two-dimensional array NDER{I,J) which stores the function NFUNC of

the derivative of function I w.r.t. variable J.

. 2
Thus to find the address'ofqa f-:t/.ax,j'éxk we would first locate
NFUNC . of .afi/axj in array NDER(I,J), then look up NFUNC of NDER(I,J)

differentieated w.r.t. variable %y 0 and the corresponding new

. . -32f
NFUNC and its address will lead to the derivative function i/axjaxk.

The specification of derivative is based on the formula:

Py Ky 24 pp BV (4.2)

for a function of the form:

Py
¢ = L, 1 [; (f i]
i l.j _k a

Note that the total number of terms may be equal to the total number

of factors. (It will be less whenever a variable occurs rather than

a defined function.)

In the most general case, in each term of the derivative (Ji-l) of the
factors are the same as z(Ji-l),factors of the corresponding term of the
function. The simplest treatment is to copy the specification of
Fhe term until we reach factor k, and then insert the terms that

corre;pond to the derivatives. We then copy the remaining factors



- 97 -~

in the original term. Note that if the factor doés not contain a
special function we can omit the factor aFk/afa. If a special
function is a function of a variable then we check whether this is
the variable with respect to which we are differentiating. If not |
we omit this term from the derivative (by not increasing our running
count of the number of terms.in the aerivatives and increase k by
one immediately, that is, go on to the next value of k). If the
variables are the same, then we omit this factor. from the term, that
is, set afa/axs = 1. Finally if there is no exponent, then we can

omit the last factor of equation (4.2) from the derivative function.

' afa/axs is a defined function) aFk/afa is»another,special

function of £, except in two cases:

(i) for 1log £, we insert l/f, that is, we have a factor £

followed by the exponent "**-1",;

(11) for ATANf .(i.e. tan—l f), we need to insert l/(l-l-fz)."I'he
way to do this is to define a new function li-fz, while ensuring

that 1+#£2 is computed before the derivative function,

~

As each term in the derivative function is generated, the bomputer must

remember the address where the number of factors is stored. Then as
it looks at each factor it keeps a count of the number of factors so
that at the end of the specification of that termit can insert the
number of factors into the right palce‘in the specification list.
Similarly itkeeps a running count of the number of terms in the
derivatives, which at the end of generating the tétal specification
can be inserted into the second place in the specification.list of
that function. Notice that using these rules a term which is linear
in a var}able, may end up with a constant, and there is no need to
take special heed, provided that we agree that a constant can occur

as a term in any order in a function. -
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4.5 sSimplification

Ultimately it must be stressed that it is worthwhile simplifying the

vfunctibns and derivatives to avoid repetitive calculation.

(1) Eliminating Surplus Functions
lAs a new function is defined either on reaching outside speci-
fications or by differentiation, .the definitions of. the existing
function are scanned, and if an existing function is found to have

exactly the same definition, then the new function -is cancelled.

(i1) Cancelling Repeated Factors in Differentiating

In differentiating a special function factor such as EXP, LOG,
SIN, COS, or ATAN; - in each case there is the possibility that ..
one of the other factors in this term is the same as the derivative '
of this factor. So each time we dlfferentiate a factor of this type,
we run through all the other factors in the term and if they are
the same as the derivative factor, we increase the exponent of this

factor by one.

(iii) Replacement of Simple Functions.

The basic idea is that in the case where the derivative of a
function is a single term, and where that function is used as a factor
‘in defiﬂing a second function (as the contents of a bracket), then
in differentiating‘the second function, we replace the derivative of

the factor by its definition as a product of factors.

4.6. Numerical EvaluationAbf Function and Derivative Values

To evaluate function values, we need to compute all functions with

lower indices in the priority list first. Intermediate functions
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such as bracket-contents and derivative functions generated by the
process of differentiation can be picked up easily from the speci-
fication lists as the indices of the head address of all function

specifications are stored in an array of pointers.

To calculate the function and derivative valges for a set ofv
given values, X, the computer interprets each function specification
as a mathematical expression and then evaluates the function value.
All function specifications must have their priorities checked before

any function evaluation to get the right order of computation.

Intermediate function values are held in a temporary list

~ pointed by the function number NFUNC. When an original function
aépends ‘on  the intermediate function NFUNC, it only needs to
compute the original function value, then pick up the numerical value
of NFUNC from temporary storage and then update the original function
value with the value of NFUNC. Hence it does not have to recompute

the same NFUNC value whenever any function refers to it.

4.7 Example
Consider the following example with two equations

(a)  (log (x; + %, % x3)) **2 = ¢

2

(b) X, +x, * log (xl + x3) = f

2 2

If we call equation (a) ,fl and equation (b) fz, then on

reading in the first equation, the program will translate equation (a)

as follows:
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fl = flOO **x 2 - (we take 100 as an arbitrary number)
f100 = log £

= %9 o,

= %*
flol xl + x2 ) x3

h i _ .
where flOO is the outer bracket-contents and f101 is the inner
bracket- . - int diate

acket-contents floo and flol are defined as intermedia
functions.
Since fl depends on flOO and flOO depends on

f101 ‘the priority ordering of function fl in the priority list
’ . . . .

would be:
index 1 |101 Where £,0; has a lower index than
2 100 floo and fl'
3 1 Therefore we need to compute f101,
E 5 then £ - and finally £, in this
ordering..

For the treatmént of a new function number NFUNC, whenever a new function
such as bracket-contents is defined implicitly, we increase the value

of NFUNC by one. Also deri#ative functions are considered as new
functions .and hence NFUNC would have to be increased by one each time

when a new function is generated by the differentiation.

In equation (a)

NFUNC

100 means log flOl

NFUNC = . *
101 means xl + x2 x3
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Note that if there is only one structural equétion in this example,
then NFUNC = 102 would be the derivative function differentiated
w.r.t, any of the variables. Since we have two structural equations
here, we need to let the following consecutive NFUNC value denote
the bracket-contents of the second equation unless all the following

structural equations are independent (i.e., non-nested) functions.

For example, in equation (b), we have

Hh
]
X

+ x, * log £

lo2

Hh
n
»
+
]

Now f102 has a lower index in priority list than f2' which means
f102 must be computed or differentiated before f2.

The priority list for £ and f2 would be

1l

index 1l lOl_

2 100

3 1l

4 102

5 2
that is, NPRIOR (1) = 101

NPRIOR (2) = 100

"NPRIOR (3) = 1
NPRIOR (4) = 102

NPRIOR (5) = 2
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and the reverse ordering of all functions would be

NPRS (101) = 1
NPRS (100) = 2
NPRS (1) = 3
NPRS = (102) = 4
NPRS (2) = 5

that is, function 101 is the first function to be differentiated and

computed, then function 100 and so on.

Now for the derivative function NFUNC (from 103 onwards) would
be increased by one each time when a new derivative function is
generated, therefore each value of NFUNC would represent an equation

for the derivative function.

To compute function values, we have to pick up NFUNC from the
priority list to get the correct order of function to be computed.

But to compute the derivative values, we compute each derivative

function NFUNC by setting
NFUNC = NDER (I,J)

where NDER is a two-dimensional array to store the derivative of
function I differentiated w.r.t. variable J . Again NFUNC must

have its priority checked before any numerical evaluation.
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CHAPTER 5

A COMPUTER PROGRAM FOR THE ESTIMATION OF GENERAL NON-LINEAR

ECONOMETRIC MODELS

5. An Estimation Program

In this chapter, we describe a computer program called NLMLE
(Non-Linear Maximum Likelihood Estimation) which estimates a small to

medium size non-linear econometric model by the method of maximum likelihood.

The numerical techniques applied to the program are:

(1) The BHHH method.

(ii) The variable-metric method of Gill-Murray-Pitfield.

Both methods employ analytical derivatives for the computation of

the gradient of the concentrated log-likelihood function.

Generally, non-linear econometric models are either
non~linear in parameters,variables or both. When non-linear in
' af
the variables y , that is, when J_ (where Je = t/ayé) varies

3
over t, there will be substantial computation to calculate 3 t/ayé.

NLMLE is designed to tackle this kind of highly non-linear
model with complex econometric functions. It enables users to define
the set of simultaneous equations. in functional form. The equations
are input to the computer together with the attached data, the choice
of optimisation technique and line search procedure, a tolerance
level for the accuracy of the es£imates and a maximum number of

iterations for the model to run.
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The output from the program comprises the computed parameter
estimates, their standard errors and the T-ratios, the residual sum
of squares matrix and the asymptotic variance-covariance matrix of the

parameter estimates.

5.1 Organisation of the Estimation Program

The estimation program is divided into three major parts:

(i) The differentiation program.
(1) The optimisation procedures and line search.

(111) Some supporting routines for a convergence test, the initialis-
ation of a new step-size for each iteration and for calculation

- of output statistics.
Figure 5.1 illustrates the flow of the estimation program.

After input, the differentiation program is loaded to differ-
entiate the set of equations. The analytic gradient and Hessian matrix
are then sét up. (The Hessian matrix depends on the choice of the
optimisation procedure.) The optimisation method then maximises the

likelihood function of ihe set of equations.

1f convergence has been achieved, the procedure terminates and
the suéporting routines will print out relevant statistics. If
ccnveréence has not been achieved, then the program updates the current
value of parameter éstimates with the new step-size calculated from a
iine search procedure. It then repeats the process until it has
satisfied the convergence criterion or it has reached the maximum

number of iterations.
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5.2 Functional Definitions

We define the set of equations according to the function
specifications described in Chapter 4. It is important that all
equations must be specified according to the conventions set up in the

previous chapter.

Usually, users need not be concerned with the internal workings
of the differentiation program, but some knowledge of the representation
of expressions and the way they are defined should be acquired in order

to use NLMLE more easily, efficiently, and effectively.
We differentiate the set of equations in the following steps:

(1) differentiate with respect to the endogenous variables Y. to

get the Jacobian, that is aft/ayt': ;

(ii) differentiate with respect to the parameter ek, that is
o0 s '

(iii) diffgrentiate the Jacobian with respect to parameter Gk,
that is azft/aekayé .

Repeat (ii) and (iii) for all k, k=1, ..., K.

Following the functions being differentiated, an evaluation
routine is called td evaluate the numerical values of the derivative
functions. when the evaluatof sees a factor, it checks to see whether
the factor has a value assigned to it, if there is a value, it updates
the function value., If it sees a function as an argument, again it
checks the function and updates the current function value. If there
is a special function attached to the factor or function, it applie;

the special function to the evaluated argument. If it is division
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or exponentiation, the same treatment is applied as with the special

function.

The evaluator scans each function term by term and factor by

factor. It returns the final value of each function.

A packing routine is then loaded to pick up all the derivative
values and put them in a compact form as the gradient of the

concentrated log-likelihood function, that is,

9 Log L*(8) yifedy L,
g = = ZEZ[JijJ Lal -
38 ijt 9
-1
of 1 £,
E.z t] g it jt £ (5.1)
2 ¢ aeJ t T t
9J .
where (J ), 1.3, and | I it Jjt are all nxn matrices,
t 06 t T

5.3 Estimation Methods

A gradient method and a variable metric method by Gill-Murray-
Pitfield are provided. The two methods offer different choices for the
Hessian matrix. The first (METHOD = BHHH) is that described in
Chapterb3. The second method offered (METHOD = GMP with analytical
derivatives) differs from the first only in the calculation of the

Hessian matrix. For this method, the updating rule is described in

Chapter 2.
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The BHHH routine is specially programmed and implemented in
NLMLE. For GMP, NLMLE uses a routine from the NAG library for the

optimization.

5.4  Program Composition

The program is written in FORTRAN IV and was developed on both
CDC 7600 and ICL 2980 computers. The DAP versions applying parallel pro-

cessing will be described in Chapter 6.

The two serial versions comprise a main section and 18 sub-

routines,

FIMLX the main section.

INPUT reads in data decks and sets up any lags required.

DATALT allows a variety of data traﬁsformations to be performed.

RDCARD reads in equations.

FRML formula processo? to process the input equations into
machine internal code.

NUMBER reads in cénstants, variable and function indices and
vexponentiation of the input equations.

DIFF differentiates equations.

BHHH Brendt-Hall-Hall-Hausman estimation procedure.

DIFIML sets up equations for differentiation.

DIEVAL packing routine for derivative functions.

EVAL evaluation routines for original and derivative functions.

GCHECK gradient check routine using finite differences,
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FUNML routine to calculate log-likelihood function.

GSTEP line search.

BARD line search by BARD,

INVERT . matrix inversion routine‘using Gauss-Jordan full pivoting.
PRIOR checks priority ordering of function.

PQEVAL evaluation of gradient.

Input to NLMLE

.0 ' method

= BHHH
IMETH =4 1. method = GMP (analytic derivatives)
2 method = GMP (finite differences)
oz - { O Jinear search - oo
IMAX maximum number of iterations.
X v data matrix.
N the number of parameters 6,
v a lxn array containing an estimate of the position of
the best available initial value L*(0).
TOLB tolerance level for the termination criterion.
NSQZ .number of iterations in linear search.
NB number of stochastic equations in the system.
NINTF number of intermediate functions.
NVAR number of variables (yt and zt).
NT ‘ number of observations.
NL number of lags
NI . number of identities
NY number of endogenous variables (yt)
NZ number of predetermined variables (zt)

The overall input is terminated by four dollar signs, that is, $3$3%.

A user's guide to NLMLE is given in Appendix C.
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Output of NLMLE

(a)

(1)

At each iteration, option to print:

old and new function values, new step-size and number of

function calls for that iteration;

. . -1
(ii) gradient and gradient norm; weighted-gradient, i.e. g'H g;
. . i
(iii) direction vector g( );
. . (1)
(iv) parameter estimates 6 ;
(b) At the end of the iterative procedure, information regarding:
(i) whether the program converged and the number of iterations
“used;
(ii) maximum number of function calls;
(iii) the log-likelihood function value;
(iv) the final parameter estimates;’
(v) the estimated asymptotic variance-covariance matrix of the
parameters §;
(vi) the standardlerrors and T-ratios;
(vii) the residual sum of squares matrix.
Limitations
The following apply to the CDC 7600 version of the program:
(1) A maximum of 20 equations.
(i) A maximum of 30 parameters.

(1iii) A maximum of 100 observations.

(iv)

A maximum of 50 variables.

The version on the ICL 2980 can estimate a larger model of up

to 100 parameters and >> 100 observations.
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The three parallel DAP versions are restricted to five-equation
models with a maximum of 20 parameters and 3O variables but up to

4096 observations.

The program listing is given in Appendix B, and an example of

the output in Appendix D.
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CHAPTER 6

NON-LINEAR ECONCMETRIC MODELLING

ON A PARALLEL PROCESSOR

6.1 Potential Role of the Distributed Array Processor for Research

in Economics

The ICL Distributed Array Processor (DAP) is a 64 x 64 array of micro-
processors embedded in the store of a host computer, each processor being
associated with 4K bits of semi-~conductor store (which can be accessed
"by the host iq‘the DAP is not in use). Clearly, taking the procesor to
the data (rather than vice-versa) avoids the time usually required to

route information.

Conventional computers use sequential operating procedures and
upper limits exist for the speed of calculation possible using such an
approach. Miniaturisation and micro-circuits are part of an effort

to resolve such problems.

However, a DAP presents a radically different potential sélution,
using parallel computation; moreover, while the DAP is operating, the
host is free to carry out other tasks. Thus to add two 64 X 64 matrices
on a 64 x 64 DAP takes the same time as adding two scalars and any task
which can be tackled in 64 parallel streams on a 64 cell array takes

-1 , : .
64 = of the time for 64 sequential operations.

Users of the DAP will have to learn new ways of. conceptualising
their objectives. The main idea can be seen by considering the
multiplication of two NxN matrices A and B. In conventional FORTRAN

thé algorithm would be a programmed version of:
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N

. Za,b .
ij k=1 ik7kj

which can be rewritten as the inner product

ij - —ei ._j.

where A' = (a

ll"'l E'N)' B = (Pl.'oac' ‘b‘N').

In the DAP, parallel computation would exploit the outer product

from:

Each micro-processor does N multiplicationsiin sequence and
cumulates the total. Similar reformulations apply to matrix

inversion, etec.

Research in Economics is invariably multivariate and hgnge is
intensive in'the use of matrix operatiohs. For example, economgtric
estimation usually entails maximising a scalar function of matrices,
with prolificvuse of inversion and multiplication of larée dimensional
matrices. Similarly, recent advances in comﬁuting econcomic equilibria
require massive array calculations which consume a considerable
amount of ' cpu time; Monte-Carlo simulation is intensively
used by econometricians both to study the properties of econometric
estimators and to model the behaviour of economic systems with a large
number of participants. Finally, investigating the finite sample
distributions of procedures for system estimation does create major

demands for time on available computer systems,
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Large-scale econometric models are generally non-linear in both
the variables used in estimationand the parameters of the likelihood
function. Few systems of this kind have been appropriately estimated
because the computational time required is very large. With the
introduction of array processors that are capable of executing a large
number of iﬁstructions simultaneously, the computational time can be

substantially reduced.

In order to estimate the system-of equations, L*(8)
(3.11) has to be maximised with respect to 6, which is a formidable
task for large values of n and k, where n {is the number of equations
in the system and k is the number of parame;ers. Also if T 1is
large, it is equally difficult to compute tZilog (abletl) due to
the excessive amount of cpu time needed. )

Many special cases of eguation (3.11) have been investigated, and
efficient methods for optimising the relevant likelihood function
have been extensively programmed, for example, Hendry (1976), Hendry
and Srba (1980), Hendry and Tremayne (1976) . Many of the numerical

optimisation methods are strongly oriented towards implementatiop on

serial computers.

However, the Distributed Array Processor presents the pqssibility of a
different solution. The power of the DAP is based on its high degree of parallel
operation; hence a specially desiQned algorithm is essential so that

the DAP can be fﬁlly exploited.



- 115 -

6.2 The Distributed Array Processor (DAP)

The basic concept of a parallel processor which can execute
the same instruction on many data items has been known for many years.
There ﬁave been several processors of this type built, most notably,
‘STARAN and ILLIAC IV (Thurber and Wald (1975)).' Although the DAP is

similar in concept to these machines, it has two important differences:

(i) the number of processing elements (PEs): the DAP has 4096 as

opposed to 256 and 64 for the STARAN and ILLIAC IV, respectively;

(11) the simplicity of the processing elements (PEs): the PEs in
the DAP are one bit processors which means that all operations

other than bit manipulations are done in software.

6.3 Architecture

The DAP is a 64 x 64 two-dimensional grid of PEs each with 4096
bits of local memory (tﬁe fact that there are 4096 PEs and 4096 bits
of local memory is only coinéidence). Each PE can perform two basic

operations: one bit addition and one bit broadcast of data to one of its

four neighbouring PEs (Gostick 1979, 1981; Parkinson 1976 (Nov.),1977 (Nowv), 1980).

For the purpose of computation, we can describe the DAP as

consisting of:
(1) 4096 store planes containing 64 x 64 bits.

(i1) The activity plane (A plane) of 64x64 bits. The setting of a
particular bit in the A plane to 1 (that is, .TRUE.) allows
£he corresponding PE to perform a given instruction; that is,
the A plane acts as a 'MASK' as to whether an instruction is

executed in a particular PE or not.
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(1ii) A 64 x64 array of PEs that are each connected to their four

nearest neighbours.

6.4 Programming the DAP

The DAP has two programming languages: APAL and DAPFORTRAN.
APAL is a low level assembly language (ICL (1979)). DAPFORTRAN is
an extension of standard FORTRAN. The DAP will execute all standard
FORTRAN statements except for formatted READ/WRITE commands
(ICL (1981)). .The additional facilities of DAPFORTRAN are basically
two extra variable modes: vector and matrix together with a generaiised
indexing syntax to allow efficient use to be made of them. The three

modes can be declared as follows:

INTEGER SCALAR INTEGER, SCALAR INTEGER ARRAY (100)
INTEGER VECTOR( ), SET OF _INTEGER_VECTORS (, 10)

INTEGER_MATRIX(,), SET_OF_INTEGER MATRICES(,,15)

Note that ICL FORTRAN has always regarded the limitation of the length
of variable names to 6 characters as beihg unnecessarily restrictive,
and permits up to 32 characters for all names in a program. DAPFORTRAN
follows this convention, thus permitting avmuch more sensible naming

of variables, routines, etc., and hence giving more readable programs,
Since gpaces are not permitted within DAPFORTRAN names, it is desirable
to have some alternative method for breaking up long names. For this
purpose the underscore character _ may be used (as in 2900 system

Control Language). - This character is ignored by the compiler.,

By the declaration VECTOR()) we mean a vector with 64 components

and, by MATRIX(,), a matrix of 64 x 64 components. Also sets of vectors
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and matrices can be declared as shown above. Similar declarations

can be made for REAL, LOGICAL and CHARACTER variables.

All the normal arithmetic and logical operations are defined
element by element for vector and matrix modes. For example, if A,

B and C are REAL matrices, then

means that A is the element by element sum of B and C. In standard

serial FORTRAN the above statement is:

DO 10 I =1, 64
DO 10 J =1, 64
10 A(1,J3) = B(I,J) + C(I1,J)

Moreover, arithmetic and logical operations can be performed on
variables of different modes if there is no ambiguity. For example,

if A and B are real matrices and C 1is a REAL scalar, then

means that A is the element by element product of the matrix B and

a matrix consisting of 4096 componentsallwith the same value C.

The other significant feature of DAPFORTRAN is masked (or
logical) assignment; that is, the assignment of one matrix to another.
can be 'masked' with a LOGICAL matrix. For example, if A and B

are INTEGER matrices and MASK is the LOGICAL matrix defined by
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MASK = A .GT. B

(i.e. an element of MASK is .TRUE. when the corresponding element of

A is greater than the corresponding element of B).

Then
A(MASK) = B

means that the element by element assignment only takes place when

the corresponding element of MASK is .TRUE.

The equivalent FORTRAN code for this statement is

DO 10 I

1, 64
DO 10 J =1, 64
IF (A(I,J).GT.B(I,J))A(I,J) = B(I,J)

10 CONTINUE

which is very inefficient on a serial processor whereas there is no

difference in efficiency between A =B and A(MASK) =B on the DAP,

6.5 Examples

élearly DAPFORTRAN is an ideal programming language when
considering 64*64 matrices oi matrices that can be partitioned into
64*64 submatrices. This does not mean that it is inflexible and
cannot be used on problems of different dimensions; for example, we
consider the problem of multiplying two N*N matrices A anﬁ B

where N < 64. The following method is used:



- 119 -

' b.. b
31 21211P12 Pi2 a7 2] 1P11 Pia) P12 %12 21 P22
= * + *
. b b b b
21 32} |Pa1 P22 31 2 11 Pi2f (%22 222 21 P22
a;, byyoa;y Pyl (252 Por 35 Py
= +
b
ay; byy 35 Piof {222 Par 222 Pa
+ a b
a1 Pip * %2 P P2t fa2 P22
} , |
b + a b
ay P11 *oay Py @ P2 T %22 P22

(the operations * and + are element by element multiplication

and addition, respectively).

The DAPFORTRAN code is:

SUBROUTINE MATRIX MULTIPLY (C,A,B,N)

C
C ‘This is a_subroutine to multiply two NXN matrices A an@ B
(o] where Ne {1, ..., 64} and place the result in C.
C We assume that the contents of A and B are undefined
C except for the N'X N submatrix of values in the top left corner
Cc of A and B.
C
REAL A(,), B(,), C(,)
'LOGICAL MASK(,) .
MASK = ROWS (N+1, 64) .OR. COLS (N+1, 64)
C

c ROWS (N+1, 64) is a LOGICAL MATRIX FUNCTION that creates a
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c LOGICAL matrix which has its f;rst N rows set to .FALSE. and
C the remaining rows set to .TRUE. .COLS (N+l, 64) has the same
C definition, mutatis.mutandis, with respect to columns.
Cc

C = 0.0

A (MASK) = 0.0

B (MASK) = 0.0

DOl1OK=1, N

10 C = C + MATC (A(,K)) * MATR (B(K,))

C
C MATC (REAL_YECTOR) is a REAL MATRIX EUNCTION that creates a
C REAL matrix all of whose columns are equal to REAL_yECTOR-
c MATR (REAL VECTOR) has the same definition, mutatis mutandis, with
C respect to rows.
C
RETURN
END
A second example is the calculation of C, = A, * B,

i i i

i=1, ..., 4096, where A,, By and C, areall 5x5 (say)

matrices. The appropriate segment of DAPFORTRAN code is:

REAL A(,, 5,5), B(,, 5,5), C(,s 5,5)

DO 10 I

]

l, 5

DO 10 J

l, 5
c(,,1,J3) = 0.0
DOlIOK=1, 5

10 C(IIIIJ).= C(IIIIJ) + A(‘IIIIK) * B(I'KIJ)

This is identical to the equivalent code for a serial processor, except
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that, in every reference to a vector or array, the first subscript
is preceded by two commas to indicate that the procedure is to be

carried out in every processor simultaneously.

Thé.corresponding FORTRAN code would be:

REAL A(4096,5,5), B(4096,5,5), C(4096,5,5)

DO 10 L = 1, 4096
DO20I =1, 5
DO20J =1, 5

c(L,I,J) = 0.0
DO 20K =1, 5
20 c¢(L,1,J) = c(L,I,J) + A(L,I,K) * B(L,K,J)

10 CONTINUE

6.6 Estimation Procedure and Implementation

The BHHH method is of a form suitable for parallel computation

(see Chapter 3).

Three versions of the program were implemented:

(3) A parallel version on the DAP for models of up to 4096
observations. .

(B) A parallel version on the DAP for between 65 and 128 observations.

(&) A parallel version on the DAP for models of up to 64

observations.

In the serial version (NLMLE, Chapter 5), we evaluate all the
(i)

functions and derivatives at 6 for each of the observations.

Clearly, this is not the most efficient method. In version (A), the
architecture of the DAP allows us to evaluate the functions of up to

4096 observations simultaheously.

0
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In versions (B) and (C), we evaluate simultaneously

(1) +_A‘d(i)) for 32 or 64 values of ,Xa, respectively. This

L*(6 N

is because we are able to 'partition' the DAP into 32 or 64 'parallel
processors' according to the number of observations. This allows
(1) (1) '

us to find the optimal value of L*(8 " + A,d

o ) in our test models

with a grid search procedure in only one step.

To evaluate the log-likelihood function- requires the

following calculations:

T
(a) Eliﬁﬁjt , for i,3=1, ..., n
-1
(b) (Jt) R for t=1, ..., 7T
T .
c) I log|det I,
t=1

On the DAP these calculations are performed very efficiently.
The inner products (a) can be evaluated for a given i and j in
two steps: firstly, we calculate fitfjt’ t=1, ..., T simulta-

enously and, secondly, we find the summation in one operation.
‘The DAPFORTRAN code is:

REAL F(,,N), INNER_PRODUCTS (N,N)

c
DO 10I =1, N
DO 10J=1, N
10 INNER_PRODUCTS (I,J) = SUM (F(,,1) * F(,,J))
(SUM is an in-built DAPFORTRAN function that computes ILA for

i3
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a 64 x64 matrix (a,.)).
i)

Similarly for (b), the inversion of up to 4096 n*n matrices
Jt can be performed in parallel on the DAP using Gaussian elimination

and column pivoting. At the same time we obtain the determinant of

J, .
-t

The DAPFORTRAN code for the inversion routine is shown in

"Appendix H. -

Lastly, (c) can be written as one line of DAPFORTRAN

‘ REAL DET_JT (,), SUM_LOG_DETJT

SUM_LOG_DETJT = SUM (LOG(DET_JT))

Versions (B) and (C) are similar to the above except that a
separate summation in (a) and (c¢) is required for each Au‘ For

example, the DAPFORTRAN code for (a) is:

REAL F(,,N), INNER PRODUCTS (N,N,L)

LOGICAL ALPHA MASKS (,,L)

c

o , L IS THE NUMBER OF GRID POINTS ON THE LINE
DOoloI=1, N
DO10J =1, N
DOlOK=1, L

10 INNER PRODUCTS (I,J,K) = SUM (MERGE (F(,,I) * F(,,J), 0.0,

+ALPHA MASKS (,,K)))
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(MERGE (REAL_MATRIX_A, REAL_MATRIX_?, LOGICAL_MATRIX_yASK) is an
in-bﬁilt DAPFORTRAN function that produces a REAL matrix whose
elements are the same as REAL MATRIX A if the corresponding element
of LOGICAL MATRIX MASK is .TRUE., and equal to the corresponding

element of REAL MATRIX B otherwise.)

In versions (B) and (C), we can now determine the optimum Aa

by evaluating L*(8‘) « 2 ,a™) for a1l A, simultaneously.

*
To compute the gradient oL /30 consists essentially of
matrix multiplication and taking the trace of a matrix. The DAP can
do both of these operations very efficiently. Finally we evaluate

the Hessian matrix which is again a matrix product.

We have chosen a set of test models (Model (iii), Chapter 7)
for our DAP programs. The timings and results are described in

section 7.7.
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CHAPTER 7

A SET OF NON-LINEAR MODELS

7. Non-linear Models Simulation

To test the NLMLE estimation program, we need to define sets of

models which are simple to specify and graded by:

(i) size of the model with respect to the number of equations, n;
variables, m; unknown parameters, k; and Obse;vations. T.

(i1) non-linearity (i.e. high, little, none) with respect to the
unknown parametefé, variables/or both .

(1ii) properties of data (i.e. inter-correlation)

(iv) white noise (i.e. random errors).

It is of great difficulty to obtain a realistic model with the
above representation and structure because model building on such a
system takes a long time to construct and collect the data. Thus we
have decided to derive our non-linear system by Monte-Carlo simulation.
An example'of such typical non-linear model is a cross-section p?oductién
model with large sample size, large parameter set, high non-linearity in
the variables, moderate correlation of the daté set and automatically

white noise if we are sampling the data from a distribution.

It was decided to only generate the data of the model approximately
to the true data by a Data Generation Process and then applied a Newton-
type‘iterative solution to the system. We can vary the number of
parameters by using the same model, but prespecify some of the parameters

at fixed values to reduce the number of parameters requiring estimation.
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Notice that by sampling a population X ,...,XT with the sample

1

parameter 5, the error of ) and its estimate O is of order T_H,

i.e.

we have the distribution of the samp%e population
D(xl,...fxT|§),

and if we apply the maximgm likelihood estimation to the sample values
mgx L (e]xl,...,xT) =6

~ - 1
then (6-6)=0p[/—i;],

where

Op is the order in probability.

Hence when T is small, the error could be very large, but as

long as the estimator is consistent, we would expect ) converge

asymptotically to the true value of the sample 8.

7.1  Modelling Considerations

1

Suppose @e take n=2 and n =5 as the two different non-linear
simultaneous systems, and that we use a combination of linear functions
and arctangent to introduce variabie non-linearity with respect to the
endogenous variables. Notice that arctangent has the advantage that it
ié incieasing for all values of X, and combined with a linear term is
not likely to introduce multiple solutions. It would be appropriate to-
construct the model so that the function is a quadratic in the parameters

and the variables raised to the power.
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7.2 Model Specification

It was decided to specify:

for the n = 2 sgsystem:

1.0 0.5

0.5 1.0

and for the n =5 system:

1.0 0.5 0.0 0.0 0.5)

0.0 0.0 0.5 1.0 -0.5

0.5 0.0 0.0 -0.5 1.0

The model was chosen to be of a manageable size and generality. It
was appropriate that the model be fully non-linear in the variables,
and particularly that the Jacobians in each time period should bg
functions of both variables and parameters. It was decided to select
the variables, so that the equations of the model could be eaéily

solved for yt as a function of u (so yielding the path of yt

t

for given ut) by a Newton iterative solution method, starting from

the path Y. defined as the path corresponding to u_ =0, or

such that
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Since the zt are determined once and for all, and are fixed
in repeated simulations, and since it is usual for there to be at

least as many variables zt as equations in the model (i.e. m > n),

it was decided to introduce a set of Zigr such that Z: ¢ occurs

only in fi(yot' z

e ) =0, i=1, ..., n. It was then possible to

first determine Yo i=11, ..., n, and z, i=n+l, ..., m,

&’ t’
using any simple procedure, and then to solve the above equation to

obtain 2z i=1, ..., n. This provides an initial solution

it!
path Yoo 'which serves as the starting value for a Newton iteration

to solve the more general equations. The model is of the form:

- i=1, ..., n
Uit EieWer 20 O L g, .., T

We define some intermediate functions,
£¥(y.) = vy, tan “(a,y..) + I B, .Y, (7.1)
i“t i i‘it P ij” It

In (7.1), all or most of the coefficients can be fixed a priori,
for example, we could take Yi = 0.1 and Bij = 0 except Bii = l.

A better alternative, which introduces a further non-linearity in

fit(yt' Zt. 8) as a function of 8, is to write
B, = B +B, 0 +B8 .0 (7.2)
ij oij 1ij 'k 2ij k e
where the model contains only one or two parameters Gk, and each
Bij is written as a quadratic in 6,, or 0,0 with Boij' Blij

and Bzij fixed a priori.
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Now we write

$

) .
SRS IR

. =1, eeey N
(ki)t

( i
t = 1, eerys T

u = z +
it ;4%

(7.3)

where ki depends on i, so that each equation contains two exogenous

variables. For example, when n = 2, we take k; =3 and k, = 4.

We generate the data with negligible error by using a Newton-
type iterative solution method to solve the equations for a random
u s starting the iteration from values of Yie that correspond

to = some values
| u, 0. 1If Ny # 0, we can set the Yie at Yoit

and calculate gIt = f;(yot) and u,, = 0, and then set z(ki)t

at some equally arbitrary values, and then solve
| 8, S
R T N Ny (7.4)

z. Z g
it Ny (ki)t it

At this stage the Y i¢ are the solutions of the equations
(7.3) when u,, = O, for all i and t. We can compute Zi once

and for all for a given model.

To generate N replications for a given model, we solve
equation (7.3) only approximately. We generate u, = as jointly

normal, and then add this into

yIt = - (n ) ) - (7.5)

(r)

£ for the rth iterate with

Now we write y

(o)
yt yot
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and

-1
Ayér) - ér) _ yér )

Then we use a Newton-type iteration for the solution of

t
| i . o, N
and yér) = yér Vog (y‘(__r 1))/fi"(yér M
AE ' ‘ - : e
it {r) _ - (r-1) » 7.6
-[ay] -y e = Ui - fiwe DI (7.6)
VYT

where wu, and y} are computed with r = O, We repeat the

iteration, until 1]yér)'~ yér-l)" is sufficiently small.

7.3 Data Generation Process

In order to consider a set of different models we take a basic

model for n=2 and n =5 and then vary one parameter at a time.

Suppose we generate each z for k. > n independently
‘ M (ki)t i

(once for all) using the following equation:

z - Az
ﬁ} k két—l)

7.7
uk + Ukt : ( )

vhere the U are independently distributed as ~ N(O, 1).

For the n = 2 case, we take only one k, and set k1.= 3,

A3 = 0.5, W = 1.0.

For the n =5 case, we take k1.= 6 and k2 = 7, and set

AG = 0,5, _17 = 0,7, Mg =My = l.0.

We then generate the values of Yoit using ;he‘same form of equations

(7.7) by using y instead of z.



Now for n = 2,

ol using A

o2t using A

In addition when

Yy

o3t using A
yo4t using A
yoSt using A

Now for the values of Bij

for all models.

For n = 2, we take one parameter 6

1l o}

o) - o 1
1

(BZij) e* 1

For n =5, we set

- 131 -

we generate:

n =5, we generate:

= 0.5, u=-1,0;

]
O
.
~J
-
=

i

-1.0;

k

in equation (7.2), we take Boij =



where € = 0.1, and we also set a, = 1 for all i.

Postulation

For thé two systems and for all i, we fix the values of the

parameters to be:

Ny T 5
61 =1
Yy = 0.3
a, = 1l
ei =1.

We also fix 02 =0,5 and T = 20.

With these quantities, we can proceed the Data Generation Process .

according to the specification of our models.

7.4 Sets of Models

It is proposed to generate one set of data for n =5 models,

and consider three values for the number of parameters Pp.

n=95

1) p=18

i
unknown 61' and B

We assume o, = ¢ is eve unknown, that .Bij' i=1, 2, 3 depends on th
i3’ i = 4, 5 depends on the unknown 62, and take
'Yi'..nii' Gi : all gnknown for L =1, e 5. Th?s gives a.

total of 18 unkn