
Comparative Methods of Computing Maximum Likelihood Estimates

for Non-Linear Econometric Systems

by

Yock Yoon CHONG
B.Sc.(Sci.), M.Sc.(Comp. Sci.)

1981

Thesis submitted for the

Degree of Doctor of Philosophy

at the

London School of Economics

University of London

- 2 -

To

My Mother

and the Fond Memory of

My Dear Father

- 3 -

ACKNOWLEDGEMENTS

I wish to thank my supervisor, Professor J.D. Sargan, for
his continuous help, advice and encouragement throughout this study.
The undertaking of this research would not have been possible
without his constant supervision.

I would also like to thank Professor D.F. Hendry for his
invaluable comments and suggestions, though his demand for clarity
is not always met, and to Dr. H.R. wills for many helpful discussions and
suggestions on the computer programs development.

I am also grateful to the Queen Mary College DAP Support Unit
for advice with the computing aspects of the DAP programs, and to
the Social Science Research Council for the financial support which
made this work possible.

4

ABSTRACT

This research is mainly concerned with numerical optimisation
techniques applied to general non-linear econometric simultaneous
equations systems. The method of estimation used is maximum
likelihood. An estimation program which applies gradient-type
procedures, specifically the Berndt-Hall-Hall-Hausman and Gill-Murray'
Pitfield methods, is developed. This program allows the estimation
of a general small-to-medium size model which is non-linear in
parameters, variables or both. In the course of program development,
a general differentiation program is written which will differentiate
a set of econometric equations and thus provide the analytical
gradients for the optimisation procedures. A comparative study has
been made of the relative efficiency of the two methods by running
a set of simulated non-linear models and also using a small macro-
economic model of the British Economy specified by David F. Hendry.
To improve the efficiency of the estimation program in terms of
computing time, the Berndt-Hall-Hall-Hausman method was implemented
on the ICL Distributed Array Processor (DAP)’ which employs parallel
computations. The DAP runs show that for a model with a large sample
size, the DAP is approximately 30 times faster than the conventional
computer CDC 7600, but that for the present algorithm, the latter
is a more efficient alternative for small sample sizes.

5

CONTENTS

Acknowledgements .. 3

Abstract .. ^

Chapter 1 Survey and Literature ®

1.0 Introduction 9

1.1 Maximum liikelihood Estimator for Non-Linear
Econometric Systems 1®

1.2 Numerical Optimisation Applied to Non-Linear
Econometric Models 16

1.3 Specific Application Program 18

Chapter 2 Numerical Optimisation Techniques For Non-Linear
Econometric Models 21

2.0 Numerical Optimisation 21

2.1 Optimisation Methods 21

2.2 Minimisation With Derivatives 23
2.2.1 The Newton-Raphson Method 24
2.2.2 Variable-me trie. Methods 33
2.2.3 General Gradient Method 35
2.2.4 The Method of Fletcher and Powell (DFP) .. 36
2.2.5 The Complementary EFP Updating Formula

(CompDFP) 38
2.2.6 Gill-Murray-Pitfield Method (GMP) 39
2.2.7 The BHHH Hessian Approximation 42

2.3 Minimisation Without Derivatives 44
2.3.1 Conjugate Direction Methods 44
2.3.2 Variable-metric Methods 47
2.3.3 Comments Regarding Minimisation Without

Derivatives 51

6

2.4 Choice of Line Search ■ 52
2.4.1 Quadratic Interpolation 53
2.4.2 Cubic Interpolation 57
2.4.3 Bard Line Search 58
2.4.4 The BHHH Line Search 60
2.4.5 Efficiency and Termination 61

2.5 Choice of Stopping Criterion 62
2.5.1 The Gradient Stopping Criterion 62
2.5.2 The Weighted-Gradient Stopping Criterion . 64

Chapter 3 Characteristics of Econometric Estimation Problems 66
3.0 The Model 66

3.1 The BHHH Method of Estimation and Inference by
Maximum Likelihood 70

3.2 The BHHH Algorithm 74

Chapter 4 A Method of Specification, Differentiation and
Computation for Sets of General Functions 77

4.0 A Differentiation Program 77
4.1 Organisation of the Differentiation Program 77
4.2 General Considerations and Function Specifications 78

4.3 Sets of Conventions for Defining A Function 82

4.4 Differentiation 95

4.5 Simplification 98

4.6 Numerical Evaluation of Function and Derivative
Values .. 98

4.7 Example ... 99

Chapter 5 A Computer Program For The Estimation of
General Non-Linear Econometric Models 103

5.0 An Estimation Program 103

5.1 Organisation of the Estimation Program 104

5.2 Functional Definitions -.................. 106

5.3 Estimation Methods 107
5.4 Program Composition '........ I08

7

Chapter 6 Non-Linear Econometric Modelling on a Parallel
Processor 112

6.1 Potential Role of the Distributed Array Processor for
Research in Economics 112

6.2 The Distributed Array Processor (DAP) 115

6.3 Architecture 115

6.4 Programming the DAP 115
6.5 Examples. .. 118

6.6 Estimation Procedure and Implementation 121
(Timings and Results in Section 7.7)

Chapter 7 A Set of Non-Linear Models 8.25

7..0 Non-Linear Models Simulations 125

7.1 Modelling Considerations 126

7.2 Model Specification 127

7.3 Data Generation Process 130

7.4 Sets of Models 182

7.5 Alternative Values of Parameters 135

7.6 Estimation Results and Computer Timings 137
7.7 Results and Timings for Models (iii) on the

Distributed Array Processor 153

Chapter 8 An Aggregate Demand Model for the United Kingdom,
1957-1967 157

8.0 A Demand Model 157

8.1 The Model (Linear Form) 157
8.2 Transformation of Model (Non-Linear Form) 159

8.3 Treatment of Coefficients for Equation u^ and
Constants for all equations 171

8.4 Deseasonised Data Series 174

8.5 NLMLE Specification of Model 176

8.6 Results ... 177

Chapter 9 General Conclusion 182

Appendix A Cholesky Factorisation 186

Appendix B NLMLE Listing 193

Appendix C A User's Guide to NLMLE 244

Appendix D Program Output - A Typical Run From Model (iii) . 246

Appendix E A.Parallel Inversion Routine 252

Appendix F Sets of Non-Linear. Models '......... 256
References .. 259

- 8 -

9

CHAPTER 1

SURVEY AND LITERATURE

1. Introduction

This research is concerned with the estimation of general non­

linear simultaneous equations econometric models by the method of

maximum likelihood.

A computer program called Non-Linear Maximum Likelihood

Estimation (NLMLE) is specifically developed for this purpose. This

program allows the estimation of a quite general non-linear model by

the method of Berndt-Hall-Hall-Hausman (BHHH, 1974) or

alternatively by the use of the Gill-Murray-Pitfield (GMP, 1972)

algorithm (with or without derivatives) from the NAG library. In the

course of program development, a differentiation program is developed

which will differentiate a set of functions defined by general FORTRAN

specifications to any order (Sargan and Chong (1980)). After developing

the main estimation program, where much effort has been concentrated on

finding an efficient line search algorithm by the use of quadratic

interpolation (Powell, 1964), comparison has been made of the relative

efficiency of the two methods (BHHH and GMP) by applying these to

simulated data from a representative set of models. A more realistic

model (Hendry, 1974) has also been studied. At this stage is

appeared clear that the BHHH method provides generally a better

optimisation algorithm when the number of parameters in the model is

greater than 8 and the sample size is greater than 50.

The program is written in FORTRAN IV and the serial version has
been implemented on CDC 7600 and ICL 2980 computer systems. For DAP

10

(Distributed Array Processor) application using parallel processing,

a few subroutines from the existing program have been reorganised and

reprogrammed in DAPFORTRAN. Due to the storage restrictions of the

DAP (2 Mbyte), the program is restricted to the estimation models

with no more than 5 equations and 30 parameters but up to 4096

observations. It became clear that the use of DAP will be advantageous

when the sample size is large, ideally close to 4096 observations.

To increase the degree of parallelism and extend the program size

will require further research which is beyond the scope of the
present studies.

As the program (the serial version) is written in FORTRAN IV,

it is fairly portable; one would expect without much difficulty to

implement it on other computer systems.

In the following sections, we will briefly review the literature

on maximum likelihood estimators, on numerical methods applied to

non-linear econometric models and, lastly, formula manipulation and

symbolic differentiation on a computer.

1.1 Maximum Likelihood Estimator for Non-linear Econometric

Systems

The usual method of formulating a model which is generally non­

linear in both the variables and the parameters in a form suitable

for maximum likelihood estimation is that suggested initially by

Eisenpress and Greenstadt (1966). For a later discussion, see Chow

(1973). The full-information maximum likelihood estimates of the

k-vector of unknown parameters 0 can be obtained as the parameter 0
that maximises the concentrated log-likelihood function of simultaneous

equations systems that are non-linear in the parameters and/or variables.

11

Each equation of the simultaneous equation system is specified by

expressing the error on the equation as a general function of the

variables and the parameters, and it is then assumed that the errors

are jointly normally distributed.

The Eisenpress and Greenstadt procedure is to estimate each

equation in a non-linear system by ordinary least squares, and then

to use these results as the initial approximation to a full-information

solution. However, the problem of identification in non-linear systems

is not treated and provision has to be made ultimately to avoid

working with under-identified equations and systems. In Eisenpress

and Greenstadt's work, they define a given equation in the form

yit " gi {ylt' yi-l,t' yi+l,t' **" yNt'

Zlt' ZMt' V V + Uit (1.1)

where one endogenous variable y^ is an arbitrary function g^
of the other endogenous variables, the predetermined variables

and the parameters 0fc subject to a random disturbance u^. Then
least squares or maximum likelihood estimation (if the u^ are

assumed normal) is applied to the T observations on the y's and

z's, to estimate the 0's, under the assumption that

t = 1, ..., T

t i f

t = t'

The estimates of the 0's will, in general, be inconsistent, but this

E(ult) = 0 ,

C° v(ui t ui f > -

12

calculation is able to provide a first guess for use in the techniques

that follow.

To obtain the least-squares estimates of the 0's, the function

L ' ■ £ (yit - 3i>2

is minimised with respect to the 0's, using the modified Newton

method which requires the first and second derivatives of L' with
respect to 0.

On more general assumptions, the full-information maximum

likelihood estimates are obtained by defining'the set of equations as

V 61 = fit(yit.............. / 2. , « . • , Z JNt' It Mt*

V V = uit (1 .2)

i = 1, . .., N; t = l , . .., T

where u. are the random disturbances of these relations. The f's it
are assumed to have derivatives up to third order.

The concentrated log-likelihood function of (1.2) is

L* (0) = const - y logdet (S) + E log |det(J) | (1.3)
1 t

where

f is the N x 1 vector with elements f ,

S H S(0) = (I Ef (0)f.. (0)),
. t J

13

and is the N x N Jacobian matrix,

Jt = Jt (9) = 9ft (V V 6) 1

To maximise L*(0), the gradient method or modified Newton

method is used. These both make use of the first and second derivatives

of L*(0) with respect to the 0's. As in many iterative procedures,
the first approximation and the conditioning of various matrices

(e.g. the Hessian) are important in determining the speed of convergence.

Usually any arbitrary first guess for 0 will be accepted by the

algorithms, but a good first guess may speed up convergence substantially.

Chow (1973) generalises the modified Newton method for the

computation of full-information maximum likelihood estimates of para­

meters of a system of linear structural equations to the case of a

system of non-linear structural equations. The main differences of

Chow's approach to that of Eisenpress and Greenstadt are:

(1) Eisenpress' and Greenstadt's.¿asic formulation is more general,
assuming that all parameters in the system may appear in every

equation (see equation 1.2), whereas Chow assumes as the basic

set-up that there is a distinct set of parameters belonging to

each equation. His basic formulation is as follows:

Let the gtl1 function

yNt; B)gtw it*

of the G dependent variables and K = N - G predetermined

variables y2_t'***'^Nt at Per^°^ an<̂ row vector
3^ of N^ unknown parameters to be equated to a residual
u t (g » 1,...,G),

14

Assume u is normally distributed with means zero and gt
covariances E(u .u.) = 6. o for T observations, thegt hs ts gh
concentrated log-likelihood function L is proportional to

- 7 log Is| + T log |b°| ,
t=l

where

s 5 < v - < ? l v v

and

3ug t

ht

(2) Partly because of his formulation, Chow obtains simpler and

more explicit egressions for the derivatives of the likelihood
functions.

(3) Again, partly because of his formulation, the problem of linear

restriction on the parameters in the same equation or in

different equations can be conveniently dealt with by Chow.

(4) Chow's paper features the treatments of identities in the

system and of residuals which may follow an autoregressive

scheme.

15

An extensive derivation of the estimation equations for non­

linear systems is given under the assumptions that each structural

equation contains a distinct set of parameters, that the parameters

are not subject to any linear restrictions, and that the (additive)

residuals are serially uncorrelated. It also provides the treatment

of the special case when some equations are linear, and contrasts

this case with the non-linear case.

Berndt-Hall-Hall-Hausman (1974) propose an ingenious idea of

using the statistical relation that the covariance matrix of the

maximum likelihood estimator is equal to the inverse of the covariance

matrix of the gradient of the log-likelihood function, which in its

turn is equal to minus the (inverse) Hessian matrix of the log-

likelihood function. Their algorithm requires much less computation

than previous algorithms and unlike previous algorithms is less likely

to fail from instability of the iterative procedure. We will con­

centrate our studies on the BHHH method and will derive the estimation

equations in Chapter 3.

Amemiya (1977) proves the consistency and the asymptotic normality

of the maximum likelihood estimator in the general non-linear simulta­

neous equation model. The proof depends on the assumption that the

errors are normally distributed which is not necessary for simultaneous

equation models which are linear in the variables. It is also proved

that the maximum liklihood estimator is asymptotically more efficient

than the non-linear three stage least squares estimator providing

16

the specification is correct. However, the latter has the advantage

of being consistent even when the normality assumption is removed.

Hatanaka (1978) proposes a full-information estimation method

for macro-economic models which are generally non-linear in variables.

The method is shown to be asymptotically efficient and feasible in

terms of computer computations, and hopefully it may be applied to

the undersized sample case. The idea of the BHHH method may be applied
to replace the Hessian of the two-step scoring estimator which is

asymptotically equivalent to the maximum likelihood estimator.

1.2 Numerical Optimisation Applied to Non-linear Econometric Models

Bard (1970) investigates several of the best known gradient

methods, and the performance of these methods is compared in the solution
of some least squares maximum likelihood, and Bayesian estimation

problems. He concludes that modifications of-the Gauss method
(including Marquardt's) performed best, followed by variable metric

rank one and Davidon-Fletcher-Powell methods, in that order. There

appeared to be no need to locate the optimum precisely in the one­

dimensional searches, but the matrix inversion method used with the

Gauss algorithm must guarantee a positive definite inverse.

Sargan and Sylwestrowicz (1976) develop a specialised numerical

optimisation computer program for the estimation of simultaneous

equation econometric models, in.the hope that it would be more efficient

than the alternative computing methods. The methods are compared by
estimating a small macro-economic model of the British economy as

specified by Hendry (1974) with five different sets of assumptions

17

as to the stochastic processes generating the errors of the equations.

All the assumptions involve separate single equation autoregressive

equations, explaining the current error on each equation in terms of

the previous error on the same equation. This was chosen as giving

experience of the use of the optimisation program on a representative

problem, from the point of view of time and complication in computing

the required function, and with a number of parameters to be estimated

which is reasonably large as most econometric models involve a large

number of parameters.

To maximise the likelihood function appropriate to a simultaneous

linear equations model, a subroutine is provided to calculate the

likelihood function and use this with a general optimisation routine

not requiring analytical derivatives,such as the Powell conjugate

directions method. It is also possible to use the Davidon-Fletcher-Powell

type of quasi-Newton, method, providing it with a subroutine to

calculate the likelihood function and its first derivatives; and finally

a special generalised Gauss-Newton program was written for use with

the non-linear simultaneous equation likelihood functions.

The extensive results presented in the paper indicate that the

Gill-Murray-Pitfield optimisation routine, making use of analytic

first derivatives, is the most efficient method with most of the

models.

Belsley (1980) examines some important elements in calculating

the non-linear full-information maximum likelihood estimator which

produce substantial reductions in computational cost. The choice
of optimiser, method of Hessian approximation, choice of convergence

criterion and exploitation of sparsity of matrices are all investigated.

18

It is concluded that the Newton-Raphson algorithm employing an

analytical computed Hessian is computationally much more efficient

than Davidon-Fletcher-Powell. The weighted gradient stopping criterion

is recommended, that is,

-g'H_1g < e

. where

g is the gradient of the likelihood of function L(0),

H is the Hessian matrix of L(0),

e is the tolerance level of accuracy.

Exploiting the sparsity of (the Jacobian) and the efficient

calculation of the components that make up the analytic Hessian are

also investigated for large models.

1. 3 Specific Application Program

In order to implement a general optimisation procedure of the

BHHH kind on the computer, we need to be able to specify the general

functions

fit < W 0) = h t

in a suitable computer code form so that we can differentiate these

functions twice analytically w.r.t.0, that is, 3f^(yt,zfc,0)/30
and 32fi (yt,zt,0)/3030'.

It is of considerable importance that the resulting form of

function specification should lead to efficient evaluation of both

19

functions and their derivatives. It is not necessary that thè

derivatives should be presented in the most logical form from the

point of view of mathematical interpretation, but unnecessary

repetitive computing should be avoided in the course of their evaluation.

Obviously it would be a bad strategy to differentiate the set

of functions explicitly and then input the derivatives to the computer

for evaluation for the following reasons:
I

1. The functions can be very complex.

2. There exists a high probability of differentiation and

programming errors.

3. For each model, we need to differentiate and program the

functions and derivatives. The volume of arithmetic involved

could be very intense, for example, it takes several function

evaluations in the line search just to reduce the function value.

Therefore an automatic differentiation program is necessary to compute

the set of econometric functions and their derivatives. Most programs .

for automatic differentiation are embedded in general computer

packages for symbol manipulation, for example, systems such as MACSYMA

and REDUCE (see references). These are used for performing symbolic as

well as numerical mathematical manipulations. With such computer

packages, it is possible to differentiate, integrate, take limits,

solve systems of linear or polynomial equations, factor polynomials,

expand functions in Taylor series, solve differential equations and

perform many other operations.

Since it is intended that the differentiations of the set of

econometric functions is to be carried out on the computer in order that

20

complicated functions are differentiated .accurately with results which

are easy to understand and compute numerically, and to avoid

unnecessary repetitive computation in the process, systems as

comprehensive as MACSYMA and REDUCE would not be appropriate for

this application. Moreover, it is necessary to have a compact set of

derivatives of the concentrated log-likelihood function for our

estimation procedures, it would be difficult to extract the necessary

subrountines from these packages in order to perform the same task.

However, we are very much influenced by the function

specifications and data structures of these systems, and have decided

to develop our own differentiation program (see Chapter 4) with the

specific application of differentiating and evaluating non-linear

econometric functions.

This program is written in FORTRAN IV and is machine portable.

It permits natural mathematical notation in FORTRAN definitions and

can differentiate a set of functions with respect to a given set of
variables up to any order. Only numerical values of the functions
and derivatives are printed instead of the symbolic form of the

expression in mathematical notation. It is hoped that it could be

easily implemented with any non-linear econometric estimation programs

written in FORTRAN IV. The program was specifically written so that
it could be developed on the CDC 7600 computer, and then transferred
with minimal rewriting onto the ICL 2980 system with the Distributed

Array Processor (DAP).

21

CHAPTER 2

NUMERICAL OPTIMISATION TECHNIQUES FOR

NON-LINEAR ECONOMETRIC MODELS

2. Numerical Optimisation

Many issues arise in the practical task of optimising a non­
linear function. A general description of these may be found in

Goldfeld . and Quandt (1972), Jacoby et al. (1972), Murray (1972), and

Bard (1970). In this chapter, we examine two issues that are among

the more important and interesting in the optimisation of the con­

centrated log-likelihood function, relevant to the non-linear full-

information maximum likelihood (NLFIML) estimator, namely, the choice

of the optimisation method and the method of approximating the Hessian.

2.1 Optimisation Methods

Two different optimisation algorithms are compared in separate

runs for the various models. The gradient-type method (e.g. BHHH)

and the quasi-Newton method (e.g. GMP). Each of these algorithms is

a Newton-like procedure in that its step in the parameter space at

each iteration could be a Newton-like step,

d0(k) = 0(k+1) - 0(k) = -X(k)[H(k)(0)]-1g (k)(0) (2.1)

where

(k)A = a scalar, the step-length along the search direction

22

(k)H (0) a Kx k matrix; the Hessian 32L*(6)
Je=e(k)

or approximate Hessian at the k iteration

(k\g (0) = a K-vector; the gradient Of L*(0) evaluated at

the kth iteration 3L*(0)
J9_e <k>

There are, of course, many ingenious non-Newton optimisation techniques

that require no first or second derivatives. Such algorithms have

been developed to handle general optimisation problems. However, when

a specific functional form for the objective function is known, as is

the case here in the concentrated log-likelihood function, it is

generally concluded that it is beneficial to exploit this information.

Thus, we examine closely methods that use at least gradient information.

We also examine methods that use numerical approximation to the gradient
(

to see how relatively inefficient they may be.

The Hessian H of (2.1) plays two important roles in maximum-

likelihood estimation, and the means for its calculation or approxi­

mation can affect both. First, the Hessian is used numerically.

Either the Hessian or its approximation is used at each iteration of

a Newton-like optimisation algorithm to determine the next step in (2.1).

Second, the Hessian is used statistically. At the maximum-likelihood

solution, the negative of the inverse Hessian provides an estimate of

the asymptotic variance-covariance matrix of 0.

23

2.2 Minimisation with Derivatives

We use the notation 4>(0) = -L*(0) defined as the concentrated

log-likelihood function whose least value is to be calculated, where

0 is a vector whose components are the variables which are to be

adjusted automatically by a minimisation algorithm. Let n be the

number of components of 0. To define $(0) f°r a minimisation
algorithm, the user must provide a subroutine that calculates <j>(0)
for any 0. He must also provide a starting vector 0 ̂ , say,

and perhaps some other information, for example, step-lengths and the

accuracy required. Then most algorithms automatically construct a
(k)sequence of points 0 (k=l, 2, ...), which should converge to

the required vector of variables.

(k)The algorimthms that we consider are iterative, and we let 0

be the starting point of the k ^ iteration. They include safeguards

which force the inequality

<J> (0 (k+1>) < <J> (0 (k>) (2.2)

to be satisfied.

We assume that the function <|>(9) has continuous first and

second derivatives. In this case it is almost always best to select

the minimisation algorithm from the general methods that are designed

to work particularly well when $(0) is a quadratic function. The

reason is that if the steps {0 k̂+1 ̂ - 0^ } become small, then

usually the local behaviour of $(0) is similar to that of a quadratic

function, so the algorithm should work well, and if the steps

{0 - 0V ' } are large then usually good progress is being made
anyway.

24

Some very useful algorithms of this type are described in the

books by Brent (1973) and Kowalik and Osborne (1968).

2.2.1 The Newton-Raphson Method

When ̂(9) = [H^ ̂(6)] where H^k ̂ is the exact
(k)Hessian matrix at 0 , we have the Newton-Raphson method which is

described in the following algorithm.

(a) Algorithm 2.1

It is assumed that an initial estimate 0 ̂ of the optimum

point 0* is known.

Step 0: Set k = 0

Step 1: Compute £^(0) , and (0) from

(k) 3<n 0)g (0) = ---H_
30 •— • —I 0 s=0

(k)

H (k)<0) =
a2* (£)

• W _i0s=e (k)

(k)Step 2: Compute p by solving the system of linear equations

H (k)(0)p(k) = - 2 (k)(6)

Step 3: _ „ a (k+1) _Compute 0_ from
j (k+1) - e (k) + P (k)

If convergence has been attained, stop, else set
k = k + 1 and go to Step 1.

Step 4:

25

(b) Safeguarding the Method of Newton-Raphson

(k)The sequence {0V j generated from Algorithm 2.1 will converge

to a critical point 0* of which is a strong local minimiser of

$ if 0^ is sufficiently close to 0*, and the order of convergence

is quadratic. Unfortunately, however, a sufficiently good initial

estimate 0 ̂ of 0* is often not available. In order to make

Newton's method more satisfactory for practical use, devices must be

incorporated into Algorithm 2.1 which reduce the probability of

divergence. We shall consider the principal causes of failure in

Newton's method.

(k)We have the descent direction p defined by

p (k) = - [H(k) (0)] ■1g (k) (0) (2.3)

(k) (k)where H (0) and g ' (0) are the Hessian matrix and gradient
(k)vector respectively for the function $ at 0 ,

If [H^k^(0)] 1 exists, then G*k*(0) = [H^k^(6)] 1 is positive
(k) (k)definite if and only if H (0) is positive definite. If G (6)

is positive definite then

(8)[G(k>(e>l9lk| (e) < 0

(k) (k)so that p ' is downhill for $ at 0 . If, however, $ is not

well approximated by a quadratic function, in the neighbourhood of

6^ # then the step p ^ to 0 ̂k+1 ̂ may be too large, in that
$ (0 ̂k+D) > (J>(8^) and the minimisation has not progressed smoothly.

26

(k) -1If [h ' (0)] exists but is not positive definite it may be
(k)that although the Newton step p is well defined, we have

ikV fk) (k)2 ; (6)p = O. In this case although p is not actually uphill

for (fi at 0^ we cannot be sure that <f>(0 k̂+^) < $(0^) .

If g*k*'(0)p^ > 0, then p*k* is uphill for <J> at 0 ^ ,
(k)and no step in the direction p can help the minimisation.

(k) ~1 (k)If [H ' ' (0)] does not exist then p is not even defined,

so that if further progress is to be made we need an alternative
(k) (k)method for constructing p when G v 1 (0) is singular.

(k)It is clear that the Newton sequence {0 }, if it converges at• *
all,..it converges to a critical point of <j>. But the sequence

(k){0 '} may converge to a saddle point or to a maximiser of <j> instead

of a minimiser, although this does not usually happen if 0^ is

sufficiently close to a minimiser of <|>.

We may conclude from the above discussion that Newton's method

is subject to the following causes of failure during the (k + l)^1
iteration.

1. G (k)(0) exists and is positive definite but g (k) is too large

and <j>(0(k+1)) > <|>(0(k)).

2. The direction p ^ is orthogonal to (0) .

(k)3. G (0) exists but is not positive definite.

(k)4. G ' (0) does not exist.

To reduce the probability of failure due to the causes above,

we consider the following strategies.

27

(k) (k)1. If [G (0)] is positive definite then p is downhill for
(k)<j> at 0 and there exists X > 0 sufficiently small such

that

4»(8(k) AP (k)) $ (0 (1°)
(2.4)

(k)If the length of p is so small that <J> is well approximated
(k) fk+1)by a quadratic function throughout the range of 6 to 6

then it is likely that

<f> (9 <k> + P (k)) 4>(0(k))

If, however,

*(0 (k) + p (k)) ♦(0W >

then a value of A(k)e(o,l) must be found such that

<M0(k) i (k) (k)A p) <J>(0 (k)) (25)

(k)A simple strategy for computing a value of X which

satisfies (2.5) is given in the following algorithm.

(k)Notice that if X is becoming very small and (2.5) is not

satisfied, the algorithm then terminates.

28

Algorithm 2.2

1. Set A = 1.

2. Compute <J> from $ = tf>(0^ + A p ^) .

3. If <j> < <|>(0^) go to 6.

4. If -5A < 10 go to 7.

5. Set , AA = ^ and go to 2.

6. Set A (k) = A, and <H0(k+1)) = <J).

Return to Newton-Raphson routine.

7. Stop.

An alternative, and perhaps more natural strategy is to compute
A ^ by performing a line search along p ^ if p ^ is

(k)known to be downhill for <}> at 6 . The introduction of the
(k)parameter A computed according to Algorithm 2.2 or by

performing a line search (see section 2.4) safeguards Newton's

method against cause 1 of failure.

(k) (k)2. Consider now if p is orthogonal to g (0) and no progress
(k)can be made by performing a line search along p . This illustrates

cause 2 of failure. In practice, owing to rounding error, effective
(k) (k)orthogonality of p and g (£.) is decided by determining whether

1? ^ (0) £ ^ I 1 e llg(k> (0) ||2l|p(k) ll2' where e > 0 is a given small
number relative to unity. One strategy for safeguarding Newton's method

(k) (k)against cause 2 of failure is to replace p with - g (0) if
|g(k> (0) £ ^ | < e ||g^ (6) || ||p^ Iĵ and perform a line search

- 29

along the new p ^ . Thus if g ^ (0) and [G ^ (0)] g ^ (0) are

effectively orthogonal, we take a steepest descent step.

3. If (0) is not positive definite,•then p ^ is not
(k)necessarily downhill and the existence of A > 0 which satisfies

(2.5) cannot be guaranteed.

If 2 (k),E'k) > 0, then p (k) is uphill at 6 00 and - p (k)
(k)therefore downhill. In this case we replace p defined by (2.3)

/v\with - £ and the existence of A > 0 such that <|>(X) < <}> (0) is
(k) (k)guaranteed. It is a better strategy to replace p with - p

if g ^ > o than rejecting p ^ altogether and taking a

steepest descent step. This strategy therefore safeguards Newton's

method against cause 3 of failure.

(k) (k)4. If H (0) is singular, then p v given by (2.4) is not

defined. A simple strategy for overcoming this difficulty is to
(k) (k)replace p with - g (6) and take a steepest descent step,

30 -

thus safeguarding Newton's method against cause 4 of failure.

From the preceding discussion, we obtain the following

algorithm.

Algorithm 2.3

It is assumed that an estimate 0^°^ of a minimiser 0* of <p
and e > O are given.

Step 0: Set k = 0 .

(k) {v\Step 1: Compute g (0), and H 7 (0) from

2 <k)(6)

H (k) (0)

3*(0)
39- ■ja*0

32<M0)

(k)

3636*- - —10*0 (k)

(k)Step 2: If H (0) is singular, go to Step 10.

(k) _Step 3: Compute £ from

p (k) = - [H (k> (0)]'Vk)(9)

Step 4: if |2(k)'(§) P (k> I < e !| 2 (k) (fi) || 2lle<k> ll2' then go to
Step 10.

Step 5: If g {k)'(0) p (k) > e ||g(k> (fi> \ | ||P<k) |L» then go to
Step 12.

31

(k)

by performing a line search (section 2.4).
Step 6: Compute A by repeated bisection (Algorithm 2.2) or

7 co* f l(k+ 1> - f l(k) . , (k) (k)Step 7 1 Set o — 0 + À P

Step 8: If convergence is attained, go to Step 13.

Step 9: Set k = k + 1, go to Step 1.

Step 10: Set p (k) = - g (k)(0) .

• (k) (k)Step 11: Perform a line search along p to obtain A , and

go to Step 7.

(k) (k)Step 12: Set p = - p and go to Step 6.

Step 13: Set 0* = 0(k+1).

Step 14s Stop.

(c) Objections to Newton-Raphson Method

There are a number of objections to Newton's method as a compu

tational procedure, the most important of which are as follows.

1. (k)In order to evaluate H (0) , we must compute n(n + l)/2
32«M0)

function values 3036* ,(k) * This means that n(n + l)/2
- - —*0=0

partial derivatives must be calculated analytically and

programmed, with consequent probability of analytical and
programming error. Also storage space must be allocated in

32

the computer for n(n + l)/2 numbers, and for a subprogram

which is required in order to compute them. And the time

required for these calculations may be very large (especially

when estimating econometric models).

(k) -12. At each iteration, [H (0)] must be computed. This requires

0(n3) arithmetic operations. Also a subprogram for inverting

matrices is required.

(k)3. It may be that H (0) is singular for some k so that the

method breaks down.

4. The method is not guaranteed to converge unless 0 ̂ is

sufficiently close to 0*.
Note : We have in fact safeguarded objections 3 and 4.

These objections frequently make Newton's method unsuitable for

numerical calculation, but if a sufficiently good initial estimate

0 °̂̂ of 0* is known, and if the-first and second partial derivatives

of <|> are easy to program and to compute, then the method is among

the best which is available. On the other hand, if 0 ^ is far from

0*, then there is no reason to believe that in the first few iterations
the method has any advantages over a comparatively crude algorithm which

takes much less time than the Newton-Raphson.

Objection 1 may to some extent be overcome by using a numerical ,

differentiation formula in order to estimate the Hessian matrix, but
(k)n additional evaluations of g (0) are required for the computation (k)

(k)of H (0). The use of a numerical differentiation formula may be
inefficient if n is large or if the computational labour required for

the evaluation of g^^ (0) is large and also g^^ (0) could be inaccurate

The preceding considerations provide a motive for constructing

methods for minimising $ in which it is not necessary to compute

(k) 1or invert H (0), but which have superlinear convergence, since
(k)they ultimately find a value of H (0) which approximates the

exact Hessian when 0 is close to 0*.

2.2.2 Variable-Metric Methods

In these methods, the matrix

positive definite symmetric matrix
(k)available quantities such as 0 ,

. Q(k+1) _to compute 0 from

fk) -1[Hv ' (0)] is replaced by a
(k)G (0) calculated from currently
g (k)(0), 0(k-1) and g (k"1)(6)<

gOc+D = g(k) _ x (k)c (k) (0) a (k) (0) (2 .6)

If G^k ̂(0) is positive definite (vk > 0), then - (0)cĵ k* (0)

is downhill for <|> at 0(k), because - 2 (k)' (0)G(k) (0) (0) < O
(k) (k)if g (0) ^ 0. Therefore if G (0) is positive definite and

(k) (k)2 (0) ^ 0, there exists A > O such that

<j,(6(k) - X(k>G(k> (6)g(k) (0)) < <j>(0(k))

A method for overcoming to some extent objection 4 to Newton's method
(k)therefore consists of generating {0 } from (2.6).

The use of (2.6) also overcomes objection 3 to Newton's method

because even though the Hessian is singular, G (0) can be

defined so that it not only exists but is positive definite.

The following algorithm is a general variable metric method for

minimising <}>.

1 It may be possible to make statements about the rate of convergence
that occurs,
error

Let
(k) 0

£
(k)

to be the local.minimum point. Define the

- 0 ’

If e -»■ 0, that means convergence. For instance, if
| |e^k+^̂ ||/||e^|| -»-a, then the rate of convergence is said to
be linear or first order if a > O, and Superlinear if a ■ 0.
Clearly it is desirable to have a as small as possible. In some
cases it is possible to show that | |e 11/| |e ̂ | ■+ a in
which case the rate is said to be quadratic or second order. This"
is even more rapid since the error decreases as the square of the
previous error.

34

Step

Step

Step

Step

Step

Step

Algorithm 2.4

It is assumed that 9^°^ and are given.

0: Set k = 0.

(JO no1: Compute <j> (6) and g v (0) from

$(k)(0) = <J>(0(k))

2(k)(0) = g(0(k))

2: Compute p ^ = - (0) g ^ (0)

(k)3: Compute \ such that

Af0(k) 4. ,<k> J k>i4>(0 + \ p) min <j>(0*k) + Xp(k))

4: Compute 9 ̂k+D from

e*+1> = e (k) + x<k,p (k)

c (k+1) , , (k) , (k)5: Compute g (0), s and y from

(k+1), . . (k+1).
2 (0) = g(0)

B (k> = 0(k+1) - 0(k)

and

(k) (k+1) , . (k) ...y = g (0) - g (0)

35

Step 6: Compute G^k+^ (0) from

G (k+1)(0) = G * (k)(6) + n1z (k)z (k)' + n / kV k)

_ (k) (k) , _ ttwhere z , u) are n x 1 vectors and 11̂ , 11̂ are
scalars. The exact values of these variables, which are

functions of g ^ (0), and c/k+1* (0), will

depend upon the modification rule used.

Therefore Algorithm 2.4 contains a class of methods rather than

a single variable-metric method. . Many updating formulae of the type in

Step 6 have been proposed since Davidon : (1959) described th.e first

variable-me trie method. In this chapter some of the most successful

variable-metric methods will be described.

2.2.3 General Gradient Method

thAt the beginning of the k iteration, we possess a current
(k) (k+1)value of 0' ' and we seek a new 0 using the formula

0(k+1) = 0(k) - A <k)G lk> (0)g(k)(9) . (2.7)

where

iki (k)g 10) is the gradient vector of $(£)at 0 = 0

A ^ is a scalar that minimises <j>(0^ - Ag ^ (0) g ^ (0)),

(k)and G (0) is a positive definite matrix which guarantees that if
(k) (k)g (0) y* 0, then for sufficiently small positive A , we have

satisfied the condition (2.2).

(k) (k)G (0) should be some approximation to { H v ' (0)]
(ki * (klh ' ' (6) is the Hessian matrix of <p at 0 = 0 .

9 where

2.2.4 The Method of Fletcher and Powell (DFP)

The method of Fletcher and Powell (1963) is an improved version

of a method due to Davidon (1959). It is still one of the best

methods for unconstrained minimisation in which only the gradient

vector of the objective function is required.

The matrix G^k+^ (0) ps given by the updating formula

(k) (k) (k)1’ (k) (ew(k)v(k),r (lc) ifli(k+D (k) x p p G Y G(0) = G W (0) + --------------------------------------- (2.
_ (k) ' (k) Ê Y y (k)*G(k)(6)y(k)

We now show that (2.8) does correspond to the general algorithm as defined

above.

If Householder's (1964) rank-one modification rule is applied

first to

(k) (k) (k)'
G (k) (6) = G <k)<6> + ------------

p ‘k > V k)

and then to

G (k+!)(Q) _ 5(k)(e) _ G (k) (0)y(k)y (k) *G(k) (0)

y (k),G (k)(0)y(k)

the corresponding recurrence relation for the approximate Hessian

matrix is obtained

H (k+1)(0) = H (k)(0) + 1 n
l«T'

00^00' +

y [g (k) (0)y(k)'+ y (k)g (k),(6)) (2.9)

where

37

and

6 - y (k)V k)

(k+1)1 (k)If an exact line search is made then g (6)p = 0» but since
this cannot be guaranteed in practice, 6 is taken as

_ (k+1)' (k)o = g (0)p - n

To show how equation (2.9) can be written as a particular form

of the equation defined in Step 6, define

t - pg(k)iei + ¿ - x 00

where' y is an undetermined constant. Then

t f - T (g (k) (0) y (k) ' + y (k>2 (k) ' (0)) + p2g (k) (0) g (k) ' (6) +

1 (k) (k)

This formula can be used with (2.9) to give

« ‘ k+1> - ■ «»< ■ > ♦ (à - Ê - p f e r)
(k) (k) • ^

z y +

tt* - y2g (k)(6)g(k)' (0)

(k) (k) 'Now the coefficient of y y can be made equal to zero by

choosing y to satisfy

,2 =
6 - An

or

38

,2 _

,(k+1),(9)P<1‘).- U ♦ l)g(k,'(6)plkl

Thus we get the recurrence relation

.(k+1) = H (k) 272yz6 tt' - y2g (k> (0)g(k)'(0) (2 . 10)

where

t = (y26 - 1)g (k) (0). g (k+1)(0)

2.2.5 The Complementary DFP Updating Formula (CompDFP)

This updating scheme is given by Broyden (1970) and Fletcher

(1970), where the formula for the approximate inverse Hessian is

given by

G (k+!)(Q) = G (k>(0) + r (k) (k)' (k) (k)' (k)
"(k) y k) {pe e - e y G

- G (k)(0)y(k)P (k)'} (2.11)

where

p = X +
(k) ' (k) (k)

(k) X G {Q-)y-

p (k) *y (k)

This formula is the complementary DFP formula, that is, when y (k)

(JO (k)and X p are interchanged, equation (2.8) corresponds to the
(k+1) ,above G (0), that is.

;(k+1)<0> - G (k)(0) +
(k) (k) '

Y. Y
x(k)p(k)yk7

(k) (k) '2 2
” (k) ' (k)Ê 2

The complementary DFP formula in particular has been found to work well
in practice, perhaps even better than the DFP formula. It has usually

been implemented in conjunction with low accuracy line searches.

39

2.2.6 Gill-Murray-Pitfield Method (GMP)

In the variable-metric methods which we described in the preceding
sections, the approximation q ^ + 1) (0) to the inverse Hessian of the

objective function $ at g^+l) is obtained by adding either a
(k)matrix of rank 1 or a matrix of rank 2 to G (0). But for some k ,

(k)G (0) may not be positive definite (due to rounding error), so
a special method must be employed to ensure that the matrix G (k>(0)

(k)is positive definite for all values of k. By resetting G (0)

to the unit matrix whenever $ cannot be decreased by searching
(k)along p is not a wholly desirable strategy, because in dis-

(k)carding G (0) we throw away the only knowledge about the curvature
of $ which is available for use in the algorithm.

However, Gill, Murray and Pitfield (1972) have described an

implementation of variable-metric methods which has several advantages

over the traditional implementations. In this method, the current

estimate of the Hessian matrix is updated, rather than the current
(k)estimate G (0) of the inverse Hessian.

(a)' The Basic Iteration of GMP

Algorithm 2.5

Step 0: Given 0 ^ and g ^ (0) » calculate by solving

the set of equations

H % (k) = - J (k) (6)

(k)The matrix H is recurred in the form

H (k) = L (k)D (k)L (k)’

40

Step 1:

(k)where L is a unit-lower triangular matrix, and
(k) (k)D ' a diagonal matrix. The vector g can be found

by solving successively

L(k)V = - g ‘k)<8)

and

L (k , y k) .

More explicitly, we have

v. =i
„ (k) .g. _ i:1 . (k)g. (0) “ £ *.. v.,

j=l 13 j

and

(k) n
pi ^i/ iki _ v o (k) (k)

, 4 +i j i

which require nz multiplications and n divisions.

Set e.(k+1> - e (k> ♦ * % * >

and

g (k+1)(6) = 2 (6 (k+1))

ik)and A is a scalar such that

$(6 lk> + A(k)p (k)) = m i n n e (k) t l j «) .
A

(k)Modify the triangular factors of H so that

H lk+1> = H (k> + . j . « , 1« ' + V <k)i)(k)'

Step 2;

41

(k) (k)where z , u> are n * l vectors and 1̂ , U 2 are
scalars.

Consquently, this revised algorithm uses a formula similar

to the recurrence formula (2.10).

(b) Maintenance of Positive Definiteness

We consider the matrix

« (k+D = H Ck, + a z (k)z (k)-

(k)where a is a scalar and z an n * l column vector. The modifi­

cation to the Cholesky factorisation (Appendix A) is performed as

follows :

Rewrite the above equation as

,<*+!> = LW DW , Î (I + W ') D (k)V k) (2. 12)

where

.(k)D {k),V = (k)

Equation (2.12) is then factorised into the form

H (k+1) = L(k)D(k)l î (I - ff(1 , W ') (I - a (1>VV')D(k),SLÎk) ' (2 .13)

by writing

(1)
1 + (1 + V'V)

42

(k) (k) *3 (1)The matrix L D . (I - a W') is factorised into the product

of a lower triangular and an orthogonal matrix. If is

indefinite, is not real, and ^ must be replaced by a

positive definite matrix H to guarantee a downhill direction of

search. H is obtained by redefining as

(1) - a

l + (l + |cr| v 'v)

by the nature of factorisation (2.13) (see Appendix A), H will be

positive definite and this property cannot be affected by cumulative

rounding errors (as happened.with earlier algorithms).

2.2.7 The BHHH Hessian Approximation

The BHHH (1974) Hessian approximation is based on the fact that

for correctly specified models-the Hessian matrix of the likelihood

function at the minimising value of 6 is equal to the variance-covariance
matrix of the gradient of the likelihood function. The result can

be used to give a computationally efficient approximation based on

the information needed to calculate the gradient, avoiding both the

third derivatives required by the analytic Hessian and the repeated

function evaluations required by numerical approximation. The approx­

imation used is positive definite almost always, and so should not

suffer from the errors associated with the inversion of an ill-

conditioned matrix. Its drawbacks are:

(i) that its approximation need not be very good in small samples

or for misspecified models, and

43

(ii) that it provides a consistent estimate of the Hessian only

at the true value of 0, but in so far as the maximum

likelihood estimator is consistent, it can be expected for

large samples to provide a good approximation in some neigh­

bourhood of the maximum likelihood estimate.

The BHHH method is an example of a general class (the Gauss-

Newton class) of optimisation methods which make use of the

statistical properties of the likelihood function and its derivatives.
Briefly, at the k ^ iteration, the BHHH Hessian matrix is

approximated by

hw <5 > ■ o &] (n r] a

where T is the sample size and
- (k)the true value 6. Let g (6) =

algorithm is:

(k)

(k)S. is the current estimate of

, then the iterative
0 <k)

1_
T 0

and the basic Newton step becomes :

5(k+1> =a(k) + x'k> I (H(k> (e)[, H (k)(a»'1 a (k,(â) J ^ lk)

. 2<k> ♦ x(k> £(k)

A detailed description of the BHHH method and algorithm is given
in Chapter 3.

2.3 Minimisation Without Derivatives

We now describe the two most common optimisation techniques

for minimisation without derivatives, and also discuss the disadvantages

of such methods in our optimisation problem.

«

2.3.1 Conjugate Direction Methods

In order to define conjugate directions clearly, we begin by

supposing that $(0) is a homogeneous positive definite quadratic

function, whose second derivative matrix is H(0). Then the n non­

zero directions p^ (1 = 1, 2, ..., n) are mutually conjugate if and

only if the equations

because, in the above quadratic case, the following construction calculates

one vector of variables that minimises <j>(0)* Let 0q be any

starting vector. For i = 1, 2, n, we let 0^ be the vector

P^iîieîPj 0 , (2.14)

hold

Conjugate directions are important to minimisation algorithms,

0 .-i (2.15)

where X (i) is the value of X that minimises the function of that
variable

F± (X) = * (0 ^ + Xg.) . (2.16)

Then 0^ is the point at which <j>(0) is least.

- -is -

In a conjugate direction method for minimising a general

function without calculating derivatives, we begin the iteration
(k) (k)at the point 0V , with search directions (i = 1, 2, ..., n) .

Initially these directions are the co-ordinate directions, but they are

modified on each iteration by some method that should tend to make

them mutually conjugate with respect to the Hessian matrix
that the solution, 6* say. The main operation of the k iteration

is to let 6^ = e(k) , and for i = 1, 2, ..., n to define 0̂(k)-o
to be the point

e.(kl - e.(k> ♦Af’p f 1 '-1 -1-1 1 -1
(2.17)

(k) • • •where again X. is determined by a line search to minimise
(k+1) _ „00<j>(9^ + Xpfk)̂ with respect to X- We then set - §n

Thus if 0 ^ is close to 0*, and if the search directions are

almost mutually conjugate, we expect 8
,(k)

(k+1) to be much better than

0'“' as an estimate of 0*. However, this description omits the steps required

to modify the gfk) . To do this the k**1 iteration obtains the

directions p (k+1) (i - 1, 2, ..., n), which may involve some more

values of the objective function. Then a few extra function values

may be needed to fix 0(k+1). Usually the value of <M6(k+1)) is

the least calculated value of the objective function, and always
. . ,. if„(k+l). *satisfies the inequality <(> (§.) * 9 '2. ' *

For example, most versions of Powell's (1964) algorithm use

the formulae

p (k+l)-i
(k)

Pi+i V i — 1r 2 , •••/ n—1

n (k+l) ? .(k) (k)P = I X . p .-n . . i -ii=l
(2*18)

#

46

(k+1) (k)an^ 9 is obtained by a line search from 0- -n
(k+u

-n

in the direction

Provided X^“' is non-zero for all values of k, it may be(k)

proved that this method obtains the least value of a quadratic

function in at most n iterations.

The conjugate direction methods avoid the two main drawbacks of

the variable-metric methods, for they do not require values of
(k)g (6) (k = 1, 2, and most function values are applied to ■

reducing the objective function. However, they too have some dis­

advantages.

One is that it is sometimes awkward to ensure that for all k
(k)the directions p^ (i = 1, 2, ..., n) have good linear independence

(k)properties. For example, if X^ is small in comparison with
(k)X± (i = 2, 3, ..., n) , then equation (2.18) requires modification.

In this case Powell's (1964) algorithm makes the search direction
(k+1) (k)equal to p^ , although this change weakens the quadratic

termination properties of the method, which often loses efficiency,

particularly when n is greater than about ten.

To avoid . this difficulty, Brent (1973) suggests a different

modification to Powell's algorithm, which requires the eigenvalues and

eigenvectors of an n * n symmetric matrix to be calculated after

every n iterations. The extra work of the eigen problems can cause

the total computing time to be greater than before, if each evaluation

of <J>(0) requires comparatively little time. However, it usually

gives a worthwhile reduction in the number of function values needed

for the whole minimisation calculation, so Brent's method is recommended

for serious problems, where the calculation of <j>(0) is quite long.

Another disadvantage is that conjugate directions may not be

well-determined for certain non-quadratic functions. For such ill-

conditioned functions, if the second derivative matrix of ij>(0) at

certain points is almost singular, it is usual to have a line of such
points near the bottom of a curved valley. Therefore it is calamitous

(fc)that minimisation algorithms often generate sequences of points 9

(k = 1, 2, ...) that follow curved valleys. Thus the aim of

trying to obtain linearly independent conjugate directions, including

search directions which allow moves along the floors of any valley,

makes the criterion for the choice of new conjugate directions

ambiguous. These remarks make the justification for conjugate direction

methods with such difficult functions rather uncertain, except in

regions of 0-space where <J>(0) satisfies a strict convexity condition.

2.3.2 Variable-Metric Methods

The other optimisation technique for minimisation without

derivatives is that developed by Gill-Murray-Pitfield (GMP) , this

method is essentially the same as that of 2.2.6 except for
, . , ththe estimation of the gradient vector. At the beginning ox tne k

iteration (k = 1, 2, ...) of a variable-metric method, we require a

starting point 0 ̂ , a vector g ^ (0) and a symmetric matrix
H^ ̂(0)t The vector g^ ^(0) is an estimate of the gradient of

<j> (0) at 0(k), and the matrix H (k) (0) is an estimate of the
(k)Hessian matrix of <f>(0) a*- 2

(k)Sometimes the errors in H (0) are quite large. For example,
(k)in many useful algorithms it is advantageous to force H (0) to be

positive definite, even though the true second derivatives may have

negative eigenvalues at 0^k^. To simplify the description, we
(k)suppose in this section that H (0) is positive definite on every

iteration.

The derivative estimates provide the quadratic approximation

4>(e(k) +§) s <|>(0(k)) + 6'g(k)(e) + j « ' H (k)(8)6

- -VI -

<2.19)

- 4ft -

The value of 6 that minimises the right-hand side of (2.19)

satisfies the equation

(k)(A) + H (k)(8)6 = 0 (2.20)

„(k+1) ^9 by the equation

(2 . 21)

However, because this choice of 6^ ^ may conflict with inequality

<j>(0(k+1)) < <M6(k)), it is usual to let 6(k+1) be the vector

0(k+l) = 0(k) _ X<k)tH(k)(e)] - y k)(e) (2.22)

' 'T '

Therefore some variable-metric methods define

(k+!) = e(k) - [H(k) (0)] "1g (k) (0).

(k)where A is a scalar which is chosen to enforce
and possibly another condition also to ensure that

(k)positive definite. To determine the value of Av

estimate of the least value of the function

the above condition,

H (k+1)(0) is

, we seek a good

FU) = <M0(k) - AtH<k)(e >] - y k)<e)) (2.23)

by c a l c u l a t i n g o n ly a few a c t u a l v a lu e s o f F (A) . A d e s c r i p t i o n o f
a s u i t a b l e m eth o d f o r a d j u s t i n g A i s g iv e n i n s e c t i o n 2 .4 .

Next the gradient of *(0) at the point 0<k+1> is estimated.

Usually in non-derivative algorithms,either forward or central

differences are employed, the i component of g (j)) (i i/ 2,

being defined by the equation

(k+D
(9) {<H9 (k+1) + h.e) i —i - <{>(6(k+1))}/h< (2.24)

or by the equation

g f +1)(0) = {4> (8 (k+1) + h ^) - (H0(k+1) - h±ei) }/2h± # (2.25)

where e. is the i*"*1 co-ordinate vector, -l

An important and valuable feature of the methods used to

define H^k+1^(0) is that they require no more values of the objective

function. The successful choices of H^k+^ (0) satisfy the equation

h (1c+1) (6)[e(k+1) - e(k)] = [g (k + 1) (6) - g (k) (0)] (2.26)

because, when (0) is a quadratic function, this equation is also

satisfied by the true Hessian matrix. One of the most

useful choices of H^k+1^(0) is that given by the Broyden-Fletcher-Shanno
formula

H (k+1)(0) = H (k)(0) -
H (k) (0)6 (k) 6 (k) V k) (0)

6 (k),H (k)(0)6(k)

1 (k)I W

Y<k > V k)
(2.27)

(k) (k}where 6 and y are the differences

6 (k) = 0<k+1> _ e(k)

y (k) = 2 (k+1)(0) - g (k)(0)

(2.28)

Thus the data that is needed to begin the next iteration is already calculated.

The extensive numerical results given by Gill-Murray-Pitfield

(1972) indicate that the class of variable-metric methods contains the
best of the available algorithms for minimisation without derivatives.

However, each iteration of a variable-metric method uses at least n.

50

function values to estimate first derivatives, but it uses only

about three or four function values in the line search that seeks the

minimum of the function (2.23). Thus in large problems only a small

proportion of the function evaluations are applied directly to the

main problem of reducing the objective function. This is a poor

strategy unless (0) is almost quadratic.

Another deficiency of variable-metric methods is that usually
the search direction - (0)] (0) in expression (2.22) .

(k)gives fast convergence only if the direction of g (6) is a good

approximation to the direction of the true gradient of <j>(0) at
(k)0 . However, the true gradient should tend to zero as k

increases, so the difficulties of calculating a suitable vector
(k)g (0) become more and more severe. Therefore many algorithms

(k)switch from formula (2.24) to formula (2.25) when g (£) becomes

small, in order to obtain higher accuracy at the cost of almost doubling

the number of function values per iteration. Thus the precision of

the calculated values of <H0) is very important. To avoid these

extra function values, Cullum (1972) suggest the formula

r(k+l) = {*(0 (k+1)
+ hiSi> ‘ <M0 (k+l)) " t©))/h± (2.29)

instead of equation (2.25), where (0) is the i diagonal
element of (0) .

Another way of obtaining better accuracy in the differences

(2.24) and (2.25) is to avoid the use of adaptive methods in the

calculation of <)>(0). For example, if <|>(0) is a definite integra
which is calculated by a numerical quadrature formula, and if the weights

of the quadrature formula are held constant, then the leading error

term of the quadrature formula usually cancels.out when the difference
(2.24) or (2.25) is formed.

51

The choice of the step-length h^ in equation (2.24) and (2.25)
also causes problems. The earliest variable-metric method (Stewart,

1967) includes a technique that chooses h automatically, and numerical

results show that it works quite well. However, Gill and Murray (1972)

suggest that it is better to keep h^ (i = 1, 2, ..., n) constant
throughout the calculation, in order that the leading error terms in

g (k)(0) and 2 (k+1)(0) cancel when ^ (k) is calculated from

expression (2.28). In our opinion, it is preferable if the step-

lengths are adjusted automatically, so that people who do not under­

stand the difficulties of numerical differentiation can apply the

minimisation subroutines successfully, without expert advice on the
choice of h ..i

2.3.3 Comments Regarding Minimisation Without Derivatives

Although the most successful algorithms now for minimisation

without derivatives are variable-metric and conjugate direction methods,
we have noted major disadvantages in both these classes of methods.

Difficulties occur in variable-metric methods because of the strong
dependence on accurate first derivatives, and in conjugate direction

methods the revision of the conjugate directions can be a very poorly

defined problem. However, the estimation of second derivatives in a

variable-metric.method seldom impairs efficiency, and the fact that
conjugate direction methods usually search along n independent

directions on every iteration helps to avoid jamming away from.the

solution. But finding a good algorithm which may retain the advantages

and lose the disadvantages of current algorithms may take a long time,

particularly because comparisons should be made with current methods

that have been designed and programmed carefully. Therefore, in this

52

study, we concentrate our effort on minimisation methods with
analytic derivatives, and we will implement the BHHH and GMP methods

in our computer program to estimate the parameters of the concentrated

log-likelihood function.

2.4 Choice of Line Search

An important part of all these minimisation algorithms is the

choice of the step-length A ^ along the direction .

Although some algorithms have been suggested which generally
(k) (k)a c c e p t A ' = 1 , i t i s u s u a l t o r e q u i r e t h a t A i s c h o s e n t o

ensure that (j> (0(k+1)) < <J>(0(k)), which gives a minimal stability

in the iteration. Although it may cost relatively little in
(k\ . . .computing time to ensure that A is chosen so as to minimise

<M6 (k) 9

this may be relatively wasteful of computer time when the cost of

computing ij>(0) is high, or if n is so large that in the early
iterations, when the direction p^k ̂ is relatively arbitrary, there

(k)is no great advantage in searching along the direction p . It is

necessary to balance the time taken in searching along the direction

P^ ̂ with the time taken to choose a more suitable direction p

This balance is clearly dependent on the properties of the function

$ (9)» and is usally decided on the basis of experience with a

variety of functions.

53

Powell (1964) published a simple algorithm for determining

the minimising value of A, using quadratic interpolation. This

algorithm forms part of Powell's more general method of finding the

minimum value of a function <J> C9) without calculating derivatives.
However, it may also be used in conjunction with any gradient

method, or more generally, with any optimisation technique which

requires a one-dimensional search.

To find the minimum on a line, we must provide the following:

(i) a set of points (or a point) on the line, 6,

(ii) the direction of the line p,

(iii) an upper bound to the length of step along the line, m,

(iv) an order of magnitude of the „length of step along the line,
h, assumed to be less than m, and

(v) the accuracy to which the minimum’is required, e.

The method of minimisation must be such as to find the minimum
of a quadratic form, so it is primarily based on the quadratic defined

by three function values.

Initially <J>(0) and <|>(0 + hp) are calculated,., and then
either <J>(0 - hp) or <f>(0 + 2hp) is worked out depending on whether

4) (0) is less than or greater than <J>(9 + hp). These three function

values are now used in the general formula which predicts the turning

value of the quadratic defined by {a, <|>(0 + aP) }, {h, ^(0 + hp) },
and {c, <f> (0 + Cp)} to be at (6 + Ap), where

2.4.1 Quadratic Interpolation

54

A 1
2

(b^-c2)<J> + (c^ - â)4>, + (a^ - b^)cl D C (2.30)
(b - c)$ + (c - a) <}>. + (a - b) $a b . c

It is a minimum if

(b - c)<(> + (c - a) + (a - b)d>a b c < 0. (2.31)
(a - b) (b - c) (c - a)

If the turning value is predicted to be a maximum, or if the value

of A is such that to calculate <j>(0 + Ap) a step greater than m

must be taken, the maximum allowed step is taken in the direction of

decreasing <t>, and the function value at the point which is furthest

from (£ + Ap) is discarded, so the prediction may be repeated.

Otherwise A is compared with a, b, c, and, if it is within

the required accuracy of one of them, that point is chosen as the

minimum. if ft is not, $(0 + ^£) is calculated so that the

quadratic prediction may be repeated; the function value which is

thrown away out of <J>(0 + ap), <|>(0 + bp) and <j>(6 + cp) .is normally
the greatest, but it is not if rejecting a smaller one can yield a

definite bracket on a minimum, which would not be obtained otherwise.

In order to reduce the number of times $(0., 0O, ..., 0)l n
has to be calculated, advantage may be taken of the fact that three

function values are sufficient to' predict

(2.32)

55

The prediction of the second derivative is

(b - c)<J> + (c - a) + (a - b) <f>
C = - 2 --------------------- ------------- (2.33)

(a - b) (b - c) (c - a)

So, if after finding the minimum in the direction p the

components of p are scaled by the next time a minimum is

sought in the same direction the unit second derivative may be used.

In this case just (¡>(6) and 4* (̂ + bp) are sufficient to predict

the minimum to be at (0 + Ap),

• <j>(§ + hp) - <j>(0)
A = ±-h------------------ . (2.34)

Z h

Choice of h

It is important to have a method of adjusting the step-length
h before entering the line search procedure to ensure that a definite

bracket on a minimum is located without too many function evaluations.
Assume we have the initial step A ■ 1, and during each iteration a

*new step A is obtained, we can then set

and define

A = min {max (ty2, 2D), 2A}

that is,

56

if X > D > V 4 » reset X, = 2D ,

if V 4 D , reset X, = V 2 •

This will ensure that < X(4 2X.

We then set

h = min d . X/f[p||2 >

as our starting step-length in the line search algorithm.

A simple method for choosing h is described in the following

steps:

Within the optimisation routine: (X = 1, is assumed initially)

1. Compute d = ||p||2 .

2. Set h = min (1, Vd) •

3. Call line search to locate a new step-length X*.

4. Compute D = d * X*.

5. Reset X = minimax X^/2» 2D) , 2X}.

6. Return to the optimisation routine.

Consequently, our estimation program for the non-linear

econometric system uses the above procedures for the line search

and adjusting the step-length h.

57

The line search given in the GMP procedure is that suggested

2.4.2 Cubic Interpolation

by Davidon (1959). Given two points Xx and X2 with function
values <f>̂ and <j>2 and derivatives 2l = g(0(1)) and 92 = 9(e(2)),
a stationary point A* of the third order polynomial passing through
these two points and having the specified derivative values is
given by

X* = (X2 “ d “ (g2 ~ y ~ n)/(g2 " 2i + (2.35)

where

i 2Y = (n - g 12 2 >

and

n = 3 ^ - <f>2>/ ^ 2 ~ 'V + 2p + S 2 *

The stationary point defined above is the one which lies in the
(k)interval (A^ X2) if the minimum of ij>(0) along p lies in this

interval. Assuming A. < X 0 then the minimum lies in the interval

X2) if g < O and g2 > 0.

In the non-derivative case, quadratic interpolation is applied.

The stationary point X* of the second order polynomial passing

through three points is given by equation (2.30).

58

2.4.3 Bard Line Search

An alternative method of choosing A1« is given by Bard (1970).

Define

Fk U) = $(0(k) + X[H(k) (6)]"1g (k) (0)),

(k) (k)where g (0) is the gradient vector and H (0) is the approximate
Hessian matrix #

X = upper bound on . max i

Bard considers the case where there are inequality constraints and in

this case. X is determined as the minimum positive X such that max c

0 + X[H(0)] ^g(0) is on a constraint.

When there is no inequality, X is set to an arbitrarymax
large number.

At the start of the k^1 iteration, we possess the value

V °> *(6 <k>)

and

Ü k
dX

= g (k)' (0)[H(k) (0)]"Vk) (0)
J X=0

1 is assumed given at the start of the k1̂ iteration and

(0) = F k U (0)).define F

59

The Basic Algorithm

Step O: Compute F ̂ . If < Fk (o) accept ^ ̂ ,

otherwise continue.

-Step 1: Determine the second degree polynomial in X which agrees

with Fk (A) at X = o and A= A*°^, and whose slope

at X = o agrees with F ' (0) . Let A ^ be the point
at which this polynomial is stationary, that is, define

Fk (X) = Fk (0) + Fk (°)X + a x 2

where a is chosen so that

Fk<X(0)) = Fk (0) + F^(0)X(0) + aX(°)2.

Then we have

Fk (X(0)) - Fk (0) - F^(0)X(O) ‘
a = — -— ----------------------- •

X (°>2

The stationary value is given by

F£(0) + 2dX = 0, and

x(1) - F^ (Q) •
2a

F,' (0) A k
(o)

2{Fk (A(0)) - Fk (0) -F^(0)Xvw'}(o)

60 -

Step 2: if this is the. first A ^ calculated for the

iteration go to Step 3, otherwise define

A ^ = max[0.25A^°\ min(0.75A ̂ , A ^)] ,

t h a t i s , i f 0 .2 5 A (0) < A(1) < 0 .7 5 A (o) , s e t a (2) = A(1)

i f A(1) > 0 .7 5 A <O) , s e t A<2> = 0 .75A

i f A(1) < 0 .2 5 A (o) s e t a (2) = 0 .25A

(o)

(o)

Replace Â ̂ with A^2 ̂ and return to Step 0.

S te p 3 : D e f in e A(3) = m in (A (1) , 0 .75A)max

Step 4: If |A(3) - A(o)| < 0.lA(o) or A(1) < 0.25A(o),

accept A ^ = A ^ , otherwise continue.

Step 5: Compute F (3) = F k (A(3>). Take A<k> = A < 3> ,(k) .(o)or a sb a

depending on whether F^3 ̂ or F̂ °̂ - is the smaller.

Bard line search is different from other methods because it
(k) (k)considers the problem whether <|> (0 + Ap) is on a constraint

2.4.4 The BHHH Line Search

ik)To choose A,; , Berndt-Hall-Hall-Hausman (1974) suggest that

an arbitrary S is chosen, 0 < 6 < *s.

The BHHH procedure is then to take A = 1 if

♦<0(k) ♦ p (k>) - * (e (k)> > ip<k)'g<k)(0) (2.36)

and otherwise choose. A(k) such that

61

(k) (k)' (k) , (k) (k) (k) ,,„(k)0 A p g (9) < <p (0 + A p) - 9(0)

< (l - 5U % (W '2 <kl(6). (2.37)

Now if condition (2.36) is not satisfied,

<t> (6(k) , (k),Ap) - * (e % <5Ap(k) V k>«*,

for A just less than 1, and

;{<M0(k) + Ap(k)) - <M0(k))}/Ap(k) 'g (k) (0) ->1 as A O.

(k)Ihus by reducing A from 1, we can find a A satisfying equation

(2.37). Unfortunately this may be a time-wasting procedure, since

we often find that it is necessary to consider several values of A
(k)before a suitable A is found.

2.4.5 Efficiency and Termination

The four possible line search procedures have been programmed. Each

of these has been.tested in separate runs on a set of simulated non-linear

simultaneous models.

From the results, it became clear that procedures Bard and

BHHH are relatively time wasting compared with quadratic and cubic

interpolations because we have to compute several A^ before we can
(k)locate a suitable A v . It is expensive in terms of computing time

to compute many function evaluations as the objective function can

be very complex. These extra function values required in each line search

62

are not compensated for by finding a lower value of F (A), nor do

the theoretically better convergence properties show up in our

comparisons. Hence more iterations are needed in the iterative

procedures for the model to achieve convergence.

Cubic interpolation again has a drawback because it is relatively

expensive to compute the gradient of <j> at ^ut ^ is a more

efficient method compared with Bard and BHHH.

We would recommend the use of quadratic interpolation as a

line search procedure. Since the step-length h is adjusted during
I V)each iteration, we have a good projection of A for a start and

hence reduce the possibility of searching too many ^ on the line

<J>(0 + A^p). The average number of function evaluations in this pro­

cedure is between 1 to 2. Since we can locate a good estimate of
(k)A with a smaller number of function evaluations, we are not only

reducing the computing time for function evaluations, but also the

time taken to optimise the model.

2.5. Choice of Stopping Criterion

Determining when to stop the iterations that lead to a minimum
of <|> is a problem of great practical interest: stopping short of

the mark has its obvious costs in the quality of the estimates;

going too far involves unecessary costs in computer time.

2.5.1 The Gradient Stopping Criterion

In principle there seems little problem determing when to stop:

at the minimum the gradient is zero. Thus it is common practice to

- 63 -

choose some arbitrarily small e, such as 10 or lO , and to

stop when the largest gradient (in absolute value) is less than e.

This stopping criterion, called the gradient criterion, can also be
00effected by stopping when the square length of g (where g = g (0))

is small, that is, when

The gradient criterion has two major weaknesses. First, it is scale-

sensitive. Changes in the units in which the data are measured can

cause the scale of specific parameters and their gradients to be

made arbitrarily large or small. in econometric problems, parameters

that are naturally small will tend to have relatively large gradients

that can keep the optimiser seeking a minimum long after it is close

enough for practical purposes. Similarly, large coefficients (some

constant terms) may have relatively small gradients that can be

ignored by this criterion even when they should not be. In practice,

the gradient stopping criterion is very conservative, tending to

drive the optimiser beyond the point of diminishing returns in terms
of parameter estimates. It tends, therefore, to be a good criterion

when we wish to be sure to go far enough.

A second weakness of the gradient criterion is that it ignores

the statistical context of likelihood estimation and treats all

parameters alike - whether they are significant or not. It is quite

possible for a large gradient in the direction of .a wholly insigni­

ficant parameter estimate to force the continuation of the optimisation

process even though those parameters that are estimated with significance

are changing little.

64

2.5.2 The Weighted-Gradient Stopping Criterion

Here the weighted-gradient stopping criterion is introduced,
that is,

2'H ^g < where H = H ^ (0)

This criterion equals zero (assuming H ̂ is negative definite) if

and only if g = 0, and it is scale-invariant. If H is ill-conditioned
- g'H could be large even if g is small. This characteristic

is in fact an advantage of the weighted-gradient criterion in the

NLFIML context, for, near the maximum likelihood solution, the negative

of the Hessian estimates the variance-covariance matrix of g. An

ill-conditioned Hessian occurs when some element of 0 has a high
I

variance and the corresponding element of g has a small variance.

Thus, this criterion incorporates a weighting scheme that, near the

solution, takes into account the precision with which the gradient

components are known: gradients with large variances are appropriately
downweighted or conversely. Therefore the weighted-gradient criterion

would seem to have value as a stopping criterion. However, in practice

we found criteria of this kind tended to stop earlier than other

criteria, and we preferred to make use of criteria which were not so
directly related to the statistical properties of our estimators,

but rather to the numerical properties of the errors in the parameters

or derivatives.

For our stopping criteria in the estimation program, we would
use:

65

(a) Hill < e!

(b)
e{k) - e (k"1) 1 i

(k-1)
< e2fV±

(c)
<j> (6(lc+1)) - <M0(k))

<M0(k))
< e.

where e^, anĉ e3 are prescribed tolerance levels. If any two
of the above stopping criteria are satisfied, we will then terminate

the iterative procedure.

66

CHAPTER 3

CHARACTERISTICS OF ECONOMETRIC ESTIMATION PROBLEMS

3. The Model

We are concerned with estimation in the multivariate model

Ei (yt’ V 6> 5 £i (yit'

= uit 1 — I# • • • i n
t = 1, T (3.1)

where u = (u , ..., u)’ is the vector of normally distributed, u x u nx*
serially independent disturbances with mean zero and a symmetric

positive definite variance covariance matrix fi, 0 is the vector

of K unknown parameters, f^ is a twice continuously

differentiable function, y is an (n x 1) vector of jointly

dependent variables and is an (m*l) vector of predetermined

variables.

We now set up a likelihood function based on a multivariate

normal distribution for the u^t* Noting that the joint probability

density function for ufc is

(2ir)
n"T 4 / 1exp { - 2

the joint probability for the T observations (yt? zfc; t = 1, ..., T)
is:

67

dnp =
nT

(2ir) 2 (det ft)
T

~2 ' Tn Idet J | * exp {-— L £ ft^f } dv
U=1 t J 2 m - lfc1 - ijt

(3.2)

where

av - t ^ < a y l t , <Jy2 t dyn t >

f i t ' f i (yt ! V 61

det is the Jacobian determinant (i.e. the determinant of first

derivatives w.r.t. y) with

r3f i t (yt ; V e>Ll ft II

3yit

^ is the . .th ID

(3.3)

and &

likelihood is then

element of ft The logarithm of the

L(0, ft) = - ~ log 2ir + £ log (det ft”1) + E log |det J |
2 2 t C

T *iDt
(3.4)

The Maximum Likelihood (ML) estimator of 0 and ft is implicitly

defined as a solution to the following necessary first order conditions

for the maximum of the log-liklihood function L(0, ft):

3L(0, ft)

3ftJ-D
= O

i •= 1 , . . . , n
j = 1» • • •» i

(3.5)

68

9L (0, Q)

30
= O a = 1, ..., K. (3.6)

Finding the ML estimator involves solving these equations for

K + n(n + l)/2 unknown parameters. The dimentionality (and quite

possibly the computational expense) of this problem can be reduced

considerably by noting that the elements of (2 are unrestricted
(except that £2 is symmetric and positive definite) . Hence £2 can

be eliminated from the log-liklihood function by concentrating it out,

that is, by solving the ML estimator of £2 in (3.5)

and substituting £2 by its ML estimator in (3.4).

Because £2 ̂ is symmetric,

3 log (det £2~1) ' fiii if i = j

3£2ij 2 £2. .
1 *0 if i * j

(3.7a)

and so

3L(6, £2)

3£2

T 1•=• £2. . - f. . f. .2 n 2 it it

T£2 - Z f..f..ij t it]t

(3.7b)

Setting the derivatives in (3.7b) equal to zero as in (3.5) gives the

ML estimator of £2^ (i, j = 1, ..., n) :

* l fitfjt • (3.8)

Upon substituting this into the log-likelihood function in (3.4), the

last term of that equation is

69

1
2 E f. ft13^ . .. it }t 3 . j t

Z ftlj z f . f ..
2 ij ' t Xt

- | E ftljTft. .
2 ij ^

T -1= ■ - j trill ft)

nT
T (3.9)

Hence the last term in equation (3.4) is a constant. The non-constant

part of L(0) is

ylog (det ft)̂ + Z log |det J | .
2 t ^

(3.10)

Thus the concentrated log-likelihood function is

f / f f , N N
L* (0) = c + E log I det J | - ^ log det E ,,t t 2 lt T)) VJ*ID

where c is the constant — log T --— log (2xr) — — . L*(0) is

a function of 0 only (and not ft) . Further the ML estimator for 0
and ft obtained from (3.5) and (3.6) is identical to that obtained
by solving for 3L*(0)/30a = 0 a = 1, ..., K, and using (3.8) as

the ML estimator of ft. .. Working with the concentrated log-likelihood

for L* (0) gives a simple analytic eospression for the ML estimator of

ft and reduces the number of parameters which need to be estimated by

iterative techniques from K + n(n + l)/2 to K, thereby saving on

computational costs.

70

3.1 The BHHH Method of Estimation and Inference by Maximum Likelihood

Maximum likelihood estimates are assumed to be generally

statistically efficient in large samples. Berndt-Hall-Hall-Hausman (BHHH,
1974) have developed a practical approach to maximum likelihood estimation

within the framework of gradient methods. Their approach has two

advantages over the application of Newton's method (Eisenpress and

Greenstadt (1966), Chow (1973)). First, its convergence is more

likely since unlike Newton's method which uses a Hessian matrix that may
not be positive definite, it confines the direction vector to the

gradient halfspace. Second, the BHHH method requires the evaluation

of derivatives of the functions f up to second only, while Newton's

method requires certain third derivatives of functions f^ .

We need to maximise L*(0) the concentrated log-likelihood function

defined in equation (3.11).

Differentiating (3.11) w.r.t. 0, the gradient of the log-

likelihood function is:

W = £ ^ io g id e t j t i - f w i og [d e t ^ - —)]

= P - q, say, (3.12)

T 3L*
or Z — -

t=l 38
T
Z
t=l

- q^.

71

The variance-covariance matrix of the gradient is given by:

T 9L*' 9L* l~
l30 [90 J = E Q p - q) (p - q) Q

Define

Pkt 90,
log |det Jfc|

1 3J4. •1 t f i t
1 (JJ, •i,j tlf-3 96

9zfwhere t/90, 9y is the square matrix with typical element
9zf,.ti/90 9y . , i = 1, ..., n, j = 1 , --, n, and* 3

*ti

/ V3f * T f . f v Jt - Dt k t
90.

L
t=l T \ ✓

Let Q
9ZL*
9099

and

Q = 2 /
t=l ^ Q = T_1Q.

Then

92L*

9090' 0=0

e (5q) =

true value o f 0,

f t y_ p 1[9L* J 9L* 1
T 1 30 ̂ V > 1 30\ J J0=0

(3.13)

.14)

(3.15)

72

E (Qg) is the information matrix which indicates the amount of

information from the data on the parameters which we are estimating.

Also the inverse of the information matrix is the variance of the estimator

The proof is omitted since it involves detailed manipulation of the

derivatives of the concentrated log-likelihood function, and the use

of the identity for the information matrix (see, é.g., Kendall and

Stuart (1961, Chapter 18) and Theil (1973, Section 8.4)).

Let

H = e (q s)

and define

R = I (p - q) (p - q) '
t=l

(3.16)

Then plim ̂ R = lim E (p - q) (p - q) '),
T-Xa

thus R provides a consistent positive definite estimator of _h, which

can be used in a quasi-Newton optimisation algorithm if and only if

ufc is independently identically normally distributed.

The basic algorithm is:

T
Z
t=l (Pt - qt > (pt - V A6(r) - X(r)(p -q) O

that is

<rtl) = 6 (r) t Q f h p - q)](r)

= e (r) + J (r) a (r>' (3.17)

where X^ ̂ is chosen to max L* + Xd^r ̂ ̂)) .by a
X

line sear'ch.

73

R must be positive definite, but there is a possibility that

R may approach a singular matrix as the process iterates. Thus

we need to restrict R.

We let a be a prescribed positive constant less than one. Then

at each iteration, we require

where g = p - q,

this will ensure the algorithm moving downhill. It p drops below a

on a parituclar iteration, we whould replace R by a matrix with larger
diagonal elements.

All gradient methods require a line search to determine the

scalar X after calculating the direction, d. Given that X is chosen

by such a line search algorithm (Section 2.4), together with the

restriction on R, and given that L*(0) is twice continuously differ­
entiable, we can now state the convergence theorem.

Consider the sequence

d'g
P > a O < a < 1 (3.18)

d'd

e (1) , 0 < 2 >/ • • • f

where

e <r+i) e (r) + x (r) d lr)
and

d (r)

74

Not every critical point of L*(0) is a local maximum since

saddle points can occur. If the iterative process chooses a value of

0 where L*(0) has a saddle point, the iterative process will stall,

as g = 0 at such points. However it is more likely that the process

will find a local maximum which is not a global maximum. To safeguard
against the possibility of accepting convergence to a local maximum

that is not a global maximum, we choose several initial values of

0. If they do not all lead to convergence to the same point, then

we might investigate the actual shape of the function with more care

until the global maximum is located.

3.2 The BHHH Algorithm

The basic interation is:

.Step 0: For each i, j, k and t; i, j = 1, ..., n
k = 1, . • •, K

T

Compute: f , jit ijt

S-1

H. -1
ijt

75

Step 1:

9f.
Compute : ---

30k

9J. .
— — for each t
30k

p. t = I H. .. kt . . ritID

9J. . __Ü
96.

*kt = Z
3fit

il a0k
yit

ykt Pkt ” qkt

Repeat Steps 0 and 1 for all t and k.

Step 2:

Compute : g
T
Z
t=l ykt' k = 1, . K

R. .ID
T
Z
t=l

y.ityjt' if j = 1» r n

Step 3: Compute new direction

d (r) = (R..) xg

Step 4: Check for convergence:

max ---------- — — < e 1
i max (1, |)

(i)

76

(ii) H g 2 < e2

(üi)
6 (r) - 0*r-1 ̂i i

0 (r-1)
< for ail i

(iv)
L*(6(r)) - L*(0(r 1))

(r)L*(Û)
< e,

If any of the conditions is statisfied, go to Step 6,

Step 5:

(x)(a) Search for A using a line search procedure to ensure

that

L*(0(r) + A (r)d (r)) > L*(0(r))

(r)(b) Update 0 by setting

e (r+1) = 0(r) + A(r)d (r)

(c) Return to Step 0.

Step 6: If convergence is achieved, report parameter estimates 0

and its estimated variance-covariance matrix (R^)

The BHHH algorithm is implemented in the computer programs

described in Chapter 5.

77

CHAPTER 4

A METHOD OF SPECIFICATION, DIFFERENTIATION AND COMPUTATION

FOR SETS OF GENERAL FUNCTIONS

4. A Differentiation Program

To estimate non-linear simultaneous equations systems by the

method of maximum likelihood, it is necessary to compute the gradient
of the log-likelihood function either analytically or by the use of

numerical approximation. It was decided to implement the BHHH method

and the Gill-Murray-Pitfield algorithm in our estimation program;

both methods employ analytical gradient, hence a specific differen­

tiation program is written for such purpose (Sargan and Chong (1980)).

4.1 Organisation of the Differentiation Program

The differentiation program may be divided into three parts:

1. To read in a specification of a set of functions and code it

in a form easily translated and implemented in computer memory.

2. To differentiate such a set of functions, and to hold the

specifications of the derivatives in computer memory.

3. To calculate the values of the functions and derivatives for

given values of the variables.

78

The organisation of the differentiation program is shown in
Figure 4.1.

The set of non-linear functions is first read into the computer
memory in FORTRAN IV definitions. The definitions are then en­

coded into a list of integers representing the appropriate input

symbols. A formula processor subroutine is called to process the

list of integers into function specifications in a machine internal code and

these are then stored permanently. When all input functions have been
processed, differentiation can begin. Each of the components of
function specifications are considered in turn and applied the appro­

priate differentiation rule. The resultant derivatives are defined

as functions in the same internal code as function specifications.

When all functions have been differentiated, an evaluation routine

is called to decode the internal code and then compute, the functions

and derivatives values. The output from the differentiation program

prints only the numerical values, not the functions in normal FORTRAN

expressions.

4.2 General Considerations and Function Specifications

If we follow the usual FORTRAN conventions as to the definitions

of a function with and "/" having priority over "+" and

, we will find our more complicated expressions having brackets

whenever a factor in a product is the sum of a series of terms. Thus

we will simplify our computing and differentiating by introducing a NEW

function NFUNC corresponding to the contents of the brackets, whenever

brackets are used in the definition of the function.

79

Figure 4.1

80

In addition to we wish to introduce

"LOG", "EXP", "SIN", "COS" and "ATAN”. These will be

called SPECIAL FUNCTIONS and denoted by F .----------------- 1 k

We then define a set of "defined functions" as follows:

I Ji
f = S e n <j> (4.1)
S i=l 1 j=l

where the <p^ are described as FACTORS and the products of the

factors are defined as TERMS. (Of course, more correctly, every I,

J±, c., <J>̂ should have a suffix s.)

The c^ are real constants, and should be chosen from a store

or list of constants created as the definitions are read into memory.

The factors $ are of three types:

u) ti} - < v p

where is some variable in the set of variables;

ai> = (fk)p

whejre f is some function previously defined;

(iii) <J,jLj = (Fk (xt))P or (Fk (ft))P.

In all three cases, p is an exponent (which corresponds to a

in the original input).n**ii

81

The specifications of the functions are held as a set of

integers, one after the other, so that space is not wasted.

Also the definitions follow one another in the order in which the

definitions are read in, not in the order in which they will need

to be. computed. To compute any function in the correct entry, it

would be necessary to have an array of pointers for the order of

computation. This array need- only list the functions in priority
o p computations or perhaps contain the addresses of the start of
each function specification.

Suppose we discriminate between indices relating to variables

by saying that:

(a) integers < 1000 refer to variables.

(b) integer i > 1000 that i - 1000 is the index of the

corresponding function.

(c) However, each factor may be a special function, so we allocate

the first five integers (1 to 5) to indicate special functions:

that is, LOG = 1

EXP = 2
SIN = 3

COS = 4
ATAN = 5

Note that we do not allow a special function of a special function

unless this is done by using a defined function.

82

4.3 Sets of Conventions for Defining a Function

(i) Constant Indices
We have set up a set of conventions for constants as follows:

(a) An integer one means there is no constant for the current

term or function, that is, c = 1.0, for example, Exp x^

becomes .1.0 * Exp x^.

(b) Positive sign means plus, with an INDEX corresponding to
the order in a vector of constant CONS. The value of the

constant can be found in element (INDEX-1) of vector CONS.

For example, value of c,_ can be found in CONS (5-1).

(c) Negative sign means minus with the constant held as (b)

above.

(d) If the number of factors is zero, then the term only

consists of a constant. This constant is defined in the same

way as above.

(ii) Specifications of a Function

As we have suggested earlier, we use integers to represent a

set of functional symbols. For all integers less than or equal to

100°, they represent variables and any integer i > 1000 then

i - 100O is the index of the corresponding function. We have

allowed integers 1 to 5 to represent special functions such as

LOG, EXP, SIN, COS and ATAN. Thus if i < 1000, we take i - 5
to be the index of a variable.

83

Now we suggest that the actual list of integers required for

a given specification be as follows:

1. Number of function (i.e. defining order in list of functions).

2. Number of terms in function. In term of formula 4.1, this is I.

Then for each term we need to define:

(2a) Number of factors in the current term (which is for each i).

(2b) Index of constant at the start of each term (i.e. index of

and the constants are stored in a list).

(2c) For each factor, an integer defining whether it is a variable,

a special function, or a defined function.

(2d) For each special function a following index saying'whether the

function depends on a variable or a defined function.

(2e) A negative integer which occurs only if an exponent is used.

(iii) Function of a Function

A function can refer to another function with a separate
definition provided that whenever this happens, we can arrange that

the second function is computed earlier. There will be incorrect

results if it is not possible to arrange a consistent order of
computation.

(a) Functions with Bracket-Contents

We treat any bracket-contents of a function as a new function (NFUNC).

When an open bracket is encountered on read in, a new function is

immediately defined and the specification of this new function is

stored in the definition list. The advantage of doing this is that

it enables a function specification including brackets to be interpreted

84

consecutively without providing temporary storage for bracket-contents

definition, and has the advantage that in differentiation and

numerical evaluation the contents of the bracket are differentiated

or computed only once, rather than computed each time it occurs, in

the definition of the various order derivatives. A lower priority

index is allocated to this new function in the order of computation,

that is, a new function is placed in the front of the priority queue.

We choose to use this convention so as to allow definitions of
original functions to be non-consecutive (this corresponds to an

unconditional jump in an ordinary program) . We need to jump over

the new function specification list and continue from there as we

compute or differentiate the original function. As an example we

have the sequence,

1010, -16, 477

which would mean function f^Q then jumps to address 477 in the

specification list and continues from address 477.

We use the integer-16 to mean this UNCONDITIONAL jump whenever

a bracket-contents is defined as a new function and the following
integer gives the address of the NEXT integer in the specification.

On reading in a specification, when brackets have been encountered,

f would be the contents of the brackets, and in fact the speci­

fication f would immediately follow in the specification list.

In implementation, it would be arranged that f^Q was computed and

differentiated first. The "unconditional jump" would be used, so

that in then computing the original function the program could jump

to the next factor or term.

85

We also note that the advantage of having the number of terms,

and factors of each term specified, is that we can use a simple

"DO" loop on implementation.

(b) Treatment of NFUNC
We need to have markers for the new functions that we defined

as bracket-contents as we go along. But also the definitions are

going to define a set of functions, which are numbered by the

expression

"f = " where i = function number

as the start of the definition. Note also that we are going to define

functions by taking derivatives. Suppose that we assume our largest

model is written in the form

uit - fi (V V 01 t == 1 / • • * 9 T

and the maximum value of n is 20, and ŷ . is an 1 x n vector of

endogenous variables (also of maximum dimension 20). Suppose also
that in setting up the definitions of the f±, we use n* intermediate

or defined functions f* (bracket-contents), so that the totali
functions defined in this way is n + n*. Suppose that n* < 20. It

is suggested that we should permanently store the definition of

f.i i = 1, ...» ft

f*i i = 1, , n*

and also the definitions of

86

3f.i
9y.

3f*1
9y.

x 1 f • • « t n

j = 1/ . • •, n

i = 1, ..., n*

j = 1, . n

Now if we wish to compute its derivatives with respect to 6 (suppose

0 was of dimension m < 50), we need to compute

3f.l 3f *Xf

Q? CD * 36k

32f.l 32f*X i = 1, ..., n-Î — 1 ~
3y.30‘, J k ay.ae,

3 k k = 1, m

Thus at each iteration (of the optimisation program), we need to compute

(n + n*) (n+1) (m + 1) functions. On this basis, if we store all

functional specifications, we would have up to 40 x 21 * 51 B 40,000
specifications, and if we allow up to 20 indices per specification, this
means that the specification list (NLIST) would require 800,000 words

which seems to be very unreasonable. So it is suggested that we should
modify this.

ofSuppose we store the specification of f^, f? , i/3y
3f, 3f*ssf* Ci-f 3f* 02f _

i /3y. permanently, and then store i/30^, ^/3yj36jt»
3 f̂ *i /3y,30 only temporarily, so for each k, we work out the D K
specifications of these derivatives, then compute their numerical

values for all t. Then move on to (k + 1) writing the specifications

for the derivatives with respect to 0tk+1 k*over those for 0.

87

In this way it is only necessary to store the specifications for

2(n+n*)(l + n) functions at the time, that is 1680 specifications

(say up to 30,000 words). We might reduce this to 25,000 words on

the grounds that not all n, n* and the number of words per specifi­

cation would take their maxima in any one model.

Now what this means directly for NFUNC is that we reserve the

function values 1 to n (where n is the number of equations in the

model) for the explicitly defined functions, and then start the

implicitly defined functions (the bracket-contents) consecutively

frgm n+1 to 2(n + n*) (n + 1) . Each time we define a new function

either as the contents of the bracket, or as a derivative of one

existing function, we increase NFUNC by one. At the end of the

differentiation w.r.t. yfc, NFUNC should have reached n + n* + n(n+n*) ,

and at the end of that round of differentiations we take note of the

corresponding NFUNC, that is set MAXF = NFUNC. Then after differen­

tiating w.r.t. 0^ and computing the resulting derivatives, we

reset NFUNC = MAXF, the address for storing derivative specifications

back to the address corresponding to function NFUNC, and we then
write the new specifications over the old specifications.

(c) Priority Ordering
The most difficult aspect of this procedure is to ensure that

functions are defined in an approriate order of computation. We choose the

usual convention that the lower index function in a priority list is

computed earlier. To compute the function and to obtain the form of

derivative functions it is necessary to ensure that we order the

* computations so that the value of function "B" is computed before

function "A" which depends on function "B". Thus if we have an index

of computing priority,, then we must ensure that function "B" has a

•lower index than function "A" if "A" depends on "B".

88

We find it convenient to keep two lists:

(i) NPRIOR (j) shows the order in which is computed;
NPRIOR (1) = j shows f_. is computed first, NPRIOR (2) = k

shows that is computed second and so on.

(ii) We also invert this ordering by also listing NPRS (j)

which shows for each j, the number of the function which is

j in the priority ordering.

Each time a function is defined, it is taken next in the priority
ordering. Now each time the definition of a function i refers to

function j, it is checked that j occurs first in the ordering by

comparing NPRIOR (i) and NPRIOR (j) . The test should be passed if j

is always defined before i. But if there is a misorder then first

j is checked, by considering the NPRIOR for each function occurring

in its definition, so that NPRIOR (j) is set at the greatest of these

plus one. Then NPRIOR (i) is set at NPRIOR (j) +1. Note that in

order to do this it will' be necessary to increase the priorities

attached to all functions with priorities between±he earlier NPRIOR (i)

and NPRIOR (j) by one, but these can be located easily by using NPRS.

NPRS must then be reallocated by using NPRS (NPRIOR (i)) =i. This

procedure of checking the order of functions should be repeated if
any reordering has been done.

(iv) Exponent
To introduce "**" operation, we treat "/" as "**-i". it

seems worthwhile from the computing point of view to treat separately

the cases where the exponent is a small positive or negative integer

from other exponents, and to ensure that we do not waste space by

adding unnecessary indices to the specification list when generally

no exponent is necessary. In particular we need x2, x2. x1* etc.

89

to be in a form when the computer can easily recognise that,for example,

dx
so on

(x3) = 6x with no e>q?onent on the x, or — (x2) = 2x and

Thus it is suggested that the exponent be held immediately

following the factor to which it refers as a negative number. Thus

in computing the value of the function on differentiating, we test

after each factor to see whether the next integer in the specification
list is negative. If so we realise there is an exponent, and we can
then interpret the index to get the exponent. Care must be taken here

as we come to functions defined implicitly by brackets, we need to

test whether this negative integer "belongs" to the inner function

or the outer function by means of the address of the unconditional

jump.

From the computing point of view, there is no point in distinguishing
large integers, and it is suggested that we take p the exponent only if

(i) it is an integer
and

(ii) -15 < p < 10 this allows, for the fact that if we differ-
-10 , . - 1 5entiate five times x , we end up wrth x .

—j t

j >

It is suggested that if the integer in the specification is

and j < 26, then we take p = j - 16 as the exponent, but if

26, then we take p = c ,, ._..(3-26)

Note that in the case j > 26, we would be in fact computing

or

since we would use exp (p log x).

90

An Example

Consider the following sequence of integers*.

24, 3, 2, 5, 10, 1036, 3, -3, 1, 10, 6, 1010, 2, 1, 2, 6, 1005

Here

"24" shows'that this is f24 specification.

h 2 » shows that it has three terms.

"2" shows that the first term has two factors.

«5 » shows that it starts with constant c^.

"10" corresponds to x^-

"1036" corresponds to fjg.
«2 » shows that the second term has three factors.

n_2" • „ „+• tha cfart of the term, that is, the shows a minus sign at the scare o

term i s - C j * ^ * ^ * ^ *
« 2_ »» shows special function LOG.

"10" corresponds to x^.

"6" corresponds to x^.

"1010” corresponds to f-̂ Q-

"2" shows the third term has two factors.
»1̂11 shows that there is no constant for this term.

"2" shows the special function EXP.

"6" corresponds to x^.

"1005" corresponds to f^.

Thus we can translate this sequence into

f24 = c4 * x5 * *36 - =2 * *5 * *1 * 5-° + EXP X1 * ^

For expressions having exponents, we consider the example below

£20 ■ c 4 ’ *7 * f 10/ x 9 + ° 6 * £ 11 ** 2 * X1 '

91

which is translated as

20, 2, 3, 5, 12, 1010, 14, -15, 2, 7, 1011, -18, 6,

that is "/" and -18 is an

p = - j - 16) . If

then the sequence of integers would be

10, i, 1, 1, 12, -32,

where -15 indicates a

exponent of **2 (i.e.

£10 = *7 ** V

where -32 corresponds to

Note that when the exponent is not an integer, we are in fact

taking the modulus of the variable, function or defined function.

(v) Reading in a Specification

The difference between our computer specification and reading

a general FORTRAN function is that we allowed no brackets (except

for the brackets that are always used in connection with special

functions). All .that is needed is to read in a more complicated

function with brackets to define a new function when brackets occur.

Thus, as soon as opening brackets "(" occur on the read in, a

new function NFUNC is defined, and a jump (-16) is inserted over

the definition of this function.

92

As an example, we have

(a) 16 C10 + c n (C12 + C13 * x2)10' ExP ĉ14 * f) Z 1 2 ’

Then this would be translated as

f 16 ~ C10 + C11 * f 105 * EXP f 106

with

£105 ‘ =12 + °13 * V ** 2

f = c * f 106 14 12

or another example

(b) f16 = Exp (c17 + c18 * (c19 + fl2) ** 2)

then

f 16 “ Exp f 21

f = n + n * f ** 221 C17 18 22

and

f 22 C19 + f 12

Note that when a bracket has been opened, when the close bracket ") "

is reached it would be checked whether the name of a variable or

function or special function following variable or function is all

that is in the bracket, if so the bracket is ignored (unless two

consecutive special functions would be created by removing the
bracket).

93

Example (b) is the one where brackets are nested. There is

no problem with this provided enough information is stored to resume

after the bracket.

The most important information is the address of the jump

address, so that when the close bracket ")" is reached, the address

of the next instruction entry can be found and stored after the

integer -16 in the specification list.

Thus in reading, we need an index say NDEPTH of the level of

nested brackets:

NDEPTH = O meaning we have no brackets

= 1 we have a function arising from a bracket

= 2 we have a function arising from 2 nested brackets.

Then we need an array JUMPAD(I,J) for the jump address

connected with brackets of depth J with function I.

The important points to be remembered are:

(a) the number of terms that have already been read in the

functions outside the bracket;

(b) the number of factors that have already been read in the

current term;

(c) whether the previous operator was "/" (meaning that it will

be necessary to insert **-l later as exponent).

Thus we need three temporary lists to keep the intermediate

values of (a) - (c) generated on reading in the function.

As a function is read in, two indices are held: NTERM and

NFACT to indicate the number of terms and number of factors

94

respectively. NTERM starts as 1 and is increased by 1 after reading

"+" or NFACT is stored in the appropriate address of the

specification list when "+" or is read, it is then set to

zero, and increased by one whenever or "/" is read.

It is necessary to remember which function is being defined

(outside the bracket). We use NFUNC as the number of functions

currently being processed and increase NFUNC by one for each bracket

J. Similarly we need to remember the address in the specification
list of the number of factors in the current terra, this is the address

where NFACT will be stored at the next "+" or Note that

each time a closing bracket is .found, NDEPTH is decreased by one,

the definition of the function in the bracket is completed, and the

definition of the lower level function is resumed.

(vi) Characters for Input

The following is a list of characters which can only be used
to construct a set of equations:

List 1 2 3 4 5 6 7 8 9 10 11
Character V F * / + - 0 1 2 3 4

List 12 13 14 15 16 17 18 19 20 21 22
Character 5 6 7 8 9 •) = L E S

List 23 24 25 26 27 28 29 30 31 32 33
Character C A N G X P I 0 R T (

To input any equation, users may construct any functional form of
the equation from these 33 characters.

95

Some Remarks

1. A variable is represented by the character V, for example,

V V10*
2. Equation name is represented by F, for example,

FI is equation 1

F2 is equation 2

3. Operators are +, -, *, /, **.

4. Digits are 0 to 9.

5. Decimal is

6. Brackets are used to define intermediate functions, for example,

V10/((V1 * V2 + V3} * Exp V *
7. "=" enables an expression to be read more easily, for example,

F2 = V1 * V2 + 1/2 * V3

8. Characters are

L, E, S, C, A, N, G, X, P, I, 0, R, T.

These enable us to set up special functions such as LOG, EXP,

SIN, COS, ATAN. Also these may be used to construct the key

word "NEXT" for the continuation of an equation on a second card.

4.4 Differentiation

When differentiating it is assumed that we wish to store a

similar specification for the derivative. This may not be necess­
ary if we require ' the derivative to be calculated for

various values of the variables. In this case it is assumed that

the specification of an appropriate set of derivatives is stored

temporarily in public storage, and a calculation subroutine then

interprets these specifications to get the numerical values for
given X (the data matrix).

96

In cases where it is necessary to calculate second or higher

order derivatives, it will be necessary to be able to trace which

specification gives the first derivative of which function w.r.t.

which variable. Thus, we prepare a one-dimensional

array NADR(I) which stores addresses at the start of function I and

a two-dimensional array NDER(I, J) which stores the function NFUNC of

the derivative of function I w.r.t. variable J.

Thus to find the address of 3 we would first locate

NFUNC. of .3fi/3x.j in array NDER(I,J) , then look up NFUNC of NDER(I,J)

differentieated w.r.t. variable x^, and the corresponding new
• g2f

NFUNC and its address will lead to the derivative function i/ax^Sx^

The specification of derivative is based on the formula:

a<f>
3x

1 1 C. *
i k 1

B (F) P 3 * ! ! ì L , ! k . V k !Pk-»
3 * 3 3fa 9xs

(4.2)

for a function of the form:

♦ - * c± 5 [v£.>]Pk
Note that the total number of terms may be equal to the total number

of factors. (it will be less whenever a variable occurs rather than

a defined function.)

In the most general case, in each term of the derivative (- 1) of the

factors are the same as 1 (j - 1) factors of the corresponding term of the

function. The simplest treatment is to copy the specification of

the term until we reach factor k, and then insert the terms that

correspond to the derivatives. We then copy the remaining factors

97

in the original term. Note that if the factor does not contain a
gpspecial function we can omit the factor k/3f . If a specialcl

function is a function of a variable then we check whether this is

the variable with respect to which we are differentiating. If not

we omit this term from the derivative (by not increasing our running

count of the number of terms in the derivatives and increase k by

one immediately, that is, go on to the next value of k). If the

variables are the same, then we omit this factor from the term, that
is, set a/3xg = Finally if there is no exponent, then we can

omit the last factor of equation (4.2) from the derivative function.

g £ • 3Fa/9x is a defined function, k/3f is another, special s . a
function of f, except in two cases:

(i) for log f, we insert ^/f, that is, we have a factor f

followed by the exponent "**-l".;

(ii) for ATAN f . (i.e. tan ^ f) , we need to insert ^/(1 + f^). The
way to do this is to define a new function 1 + f*, while ensuring

that 1 + f2 is computed before the derivative function.

•v
As each term in the derivative function is generated, the computer must

remember the address where the numberof factors is stored. Then as

it looks at each factor it keeps a count of the number of factors so

that at the end of the specification of that term it can insert the

number of factors into the right palce in the specification list.

Similarly it keeps a running count of the number of terms in the

derivatives, which at the end of generating the total specification

can be inserted into the second place in the specification list of

that function. Notice that using these rules a term which is linear

in a variable, may end up with a constant, and there is no need to

take special heed, provided that we agree that a constant can occur

as a' term in any order in a function.

98

4.5 Simplification

Ultimately it must be stressed that it is worthwhile simplifying the

functions and derivatives to avoid repetitive calculation.

(i) Eliminating Surplus Functions
As a new function is defined either on reaching outside speci­

fications or by differentiation, the definitions of the existing

function are scanned, and if an existing function is found to have

exactly the same definition, then the new function is cancelled.

(ii) Cancelling Repeated Factors in Differentiating
In differentiating a special function factor such as EXP, LOG,

sin:, COS, or ATAN; in each case there is the possibility that

one of the other factors in this term is the same as the derivative

of this factor. So each time we differentiate a factor of this type,

we run through all the other factors in the term and if they are
the same as the derivative factor, we increase the exponent of this

factor by one.

(iii) Replacement of Simple Functions
The basic idea is that in the case where the derivative of a

function is a single term, and where that function is used as a factor

in defining a second function (as the contents of a bracket), then

in differentiating the second function, we replace the derivative of

the factor by its definition as a product of factors.

4.6 Numerical Evaluation of Function and Derivative Values

To evaluate function values, we need to compute all functions with

lower indices in the priority list first. Intermediate functions

99

such as bracket-contents and derivative functions generated by the

process of differentiation can be picked up easily from the speci­

fication lists as the indices of the head address of all function

specifications are stored in an array of pointers.

To calculate the function and derivative values for a set of

given values, X, the computer interprets each function specification
as a mathematical expression and then evaluates the function value.

All function specifications must have their priorities checked before

any function evaluation to get the right order of computation.

Intermediate function values are held in a temporary list

pointed by the function number NFUNC. When an original function

depends on the intermediate function NFUNC, it only needs to

compute the original function value, then pick up the numerical value

of NFUNC from temporary storage and then update the original function

value with the value of NFUNC. Hence it does not have to recompute

the same NFUNC value whenever any function refers to it.

4.7 Example

Consider the following example with two equations

(a) (log (x.̂ + x2 * x3)) ** 2 = f

(b) + x2 * log (x1 + x3) = f2

If we call equation (a) f ana equation (bj f,, then on
reading in the first equation, the program will translate equation (a)

as follows:

loo

■1 = f1 0 0 * * 2 (we take 100 as an arbitrary number)

100 = log f101

101 = xx + x2 * X3

f 100 is the outer bracket-contents and f^Q ̂ is the inner

Since depends on f an<3 depends on

101,
would be:

index

the priority ordering of function f^ in the priority list

1

2
3

101

100

Where f has a lower index than

f loo and V
Therefore we need to compute f101'

then f and finally f., in this .LOO X
ordering.

For the treatment of a new function number NFUNC, whenever a new function

such as bracket-contents is defined implicitly, we increase the value

of NFUNC by one. Also derivative functions are considered as new

functions and hence NFUNC would have to be increased by one each time
when a new function is generated by the differentiation.

In equation (a)

NFUNC = 100 means log

NFUNC = 101 means + x2 * x3

101

Note that if there is only one structural equation in this example,
then NFUNC = 102 would be the derivative function differentiated

w.r.t. any of the variables. Since we have two structural equations

here, we need to let the following consecutive NFUNC value denote

the bracket-contents of the second equation unless all the following

structural equations are independent (i.e., non-nested) functions.

For example, in equation (b), we have

f2 = X1 + X2 * log f102

f102 = X1 + X3

Now f has a lower index in priority list than f^ which means

^102 must ke computed or differentiated before f

The priority list for f^ and f^ would be

index 1

2
3
4

5

101

loo
1

102

2

NPRIOR (1) = 101

NPRIOR (2) = 100

NPRIOR (3) es 1
NPRIOR (4) = 102
NPRIOR (5) = 2

102

and the reverse ordering of all functions would be

NPRS (101) = 1

NPRS (100) = 2

NPRS (1) = 3

NPRS (102) = 4

NPRS (2) = 5

that is, function 101 is the first function to be differentiated and

computed, then function 100 and so on.

Now for the derivative function NFUNC (from 103 onwards) would

be increased by one each time when a new derivative function is

generated, therefore each value of NFUNC would represent an equation

for the derivative function.

To compute function values, we have to pick up NFUNC from the

priority list to get the correct order of function to be computed.

But to compute the derivative values, we compute each derivative
function NFUNC by setting

NFUNC = NDER (I,J)

where NDER is a two-dimensional array to store the derivative of

function I differentiated w.r.t. variable J . Again NFUNC must

have its priority checked before any numerical evaluation.

103

A COMPUTER PROGRAM FOR THE ESTIMATION OF GENERAL NON-LINEAR

ECONOMETRIC MODELS

CHAPTER 5

5. An Estimation Program

In this chapter, we describe a computer program called NLMLE
(Non-Linear Maximum Likelihood Estimation) which estimates a small to
medium size non-linear econometric model by the method of maximum likelihood

The numerical techniques applied to the program are.

(i) The BHHH method.
(ii) The variable-metric method of Gill-Murray-Pitfield.

Both methods employ analytical derivatives for the computation of

the gradient of the concentrated log-likelihood function.

Generally, non-linear econometric models are either

non-linear in parameters,variables or both. When non linear in
9fthe variables y , that is, when (where - t/Sy^) varies

3fover t, there will be substantial computation to calculate

NLMLE is designed to tackle this kind of highly non-linear
model with complex econometric functions. It enables users to define

the set of simultaneous equations.in functional form. The equations

are input to the computer together with the attached data, the choice

of optimisation technique and line search procedure, a tolerance

level for the accuracy of the estimates and a maximum number of

iterations for the model to run.

104

The output from the program comprises the computed parameter

estimates, their standard errors and the T-ratios, the residual sum

of squares matrix and the asymptotic variance-covariance matrix of the
parameter estimates.

5.1 Organisation of the Estimation Program

The estimation program is divided into three major parts:

(i) The differentiation program.

(ii) The optimisation procedures and line search.

(iii) Some supporting routines for a convergence test, the initialis­

ation of a new step-size for each iteration and for calculation

of output statistics.

Figure 5.1 illustrates the flow of the estimation program.

After input, the differentiation program is loaded to differ­

entiate the set of equations. The analytic gradient and Hessian matrix

are then set up. (The Hessian matrix depends on the choice of the
optimisation procedure.) The optimisation method then maximises the

likelihood function of the set of equations.

If convergence has been achieved, the procedure terminates and

the supporting routines will print out relevant statistics. If
convergence has not been achieved, then the program updates the current

value of parameter estimates with the new step-size calculated from a

line search procedure. It then repeats the process until it has

satisfied the convergence criterion or it has reached the maximum

number of iterations.

105

Figure 5.1

106

5.2 Functional Definitions

We define the set of equations according to the function

specifications described in Chapter 4. It is important that all

equations must be specified according to the conventions set up in the

previous chapter.

Usually, users need not be concerned with the internal workings

of the differentiation program, but some knowledge of the representation

of expressions and the way they are defined should be acquired in order

to use NLMLE more easily, efficiently, and effectively.

We differentiate the set of equations in the following steps;

differentiate with respect to the endogenous variables y^ to
3fget the Jacobian, that is t/3y£ ;

differentiate with respect to the parameter 0^, that is

3ft/36^ ;

differentiate the Jacobian with respect to parameter 0^,
3 2 -fthat is 0 t/30 3y' .Jv

Repeat (ii) and (iii) for all k, k = l, ..., K.

Following the functions being differentiated, an evaluation
routine is called to evaluate the numerical values of the derivative

functions. When the evaluator sees a factor, it checks to see whether

the factor has a value assigned to it, if there is a value, it updates

the function value. If it sees a function as an argument, again it

checks the function and updates the current function value. If there

is a special function attached to the factor or function, it applies

the special function to the evaluated argument. If it is division

(i)

(ii)

(iii)

107

or exponentiation, the same treatment is applied as with the special

function.

The evaluator scans each function term by term and factor by

factor. It returns the final value of each function.

A packing routine is then loaded to pick up all the derivative

values and put them in a compact form as the gradient of the

concentrated log-likelihood function, that is,

g =
9 Log L*(0)

96
Z Z Z
i j t

■ Y-l f \3J, ,
J i » 3 r t

l i j t j . 30 .

9f * i f, f. 1t z i f c 3 t
96V. J [t T

1
(5.1)

9 J] i f . f .]where (j fc) , irlft and z
[86 J U T J

are all n * n matrices.

5.3 Estimation Methods

A gradient method and a variable metric method by Gill-Murray-

Pitfield are provided. The two methods offer different choices for the

Hessian matrix. The first (METHOD = BHHH) is that described in

Chapter 3. The second method offered (METHOD = GMP with analytical

derivatives) differs from the first only in the calculation of the

Hessian matrix. For this method, the updating rule is described in
Chapter 2.

103

The BHHH routine is specially programmed and implemented in

NLMLE. For GMP, NLMLE uses a routine from the NAG library for the

optimization.

5.4 Program Composition

The program is written in FORTRAN IV and was developed on both

CDC 7600 and ICL 2980 computers. The DAP versions applying parallel pro­
cessing will be described in Chapter 6.

The two serial versions comprise a main section and 18 sub­
routines.

FIMLX
INPUT

DATALT

RDCARD
FRML

NUMBER

DIFF

BHHH

DIFIML

DIEVAL

EVAL

the main section.

reads in data decks and sets up any lags required,

allows a variety of data transformations to be performed,
reads in equations.

formula processor to process the input equations into
machine internal code.

reads in constants, variable and function indices and

exponentiation of the input equations,

differentiates equations.

Brendt-Hall-Hall-Hausman estimation procedure.

sets up equations for differentiation.

packing routine for derivative functions.

evaluation routines for original and derivative functions.

gradient check routine using finite differences.GCHECK

109

FUNML routine to calculate log-likelihood function.

GSTEP line search.

BARD line search by BARD.
INVERT matrix inversion routine using Gauss-Jordan full pivoting

PRIOR checks priority ordering of function.

PQEVAL evaluation of gradient.

Input to KLMLE

IMETH =
0 method = BHHH

■ 1 . method = GMP (analytic derivatives)
2 method = GMP (finite differences)

ISTEP = f 0 linear search = GSTEP
\ 1 linear search = BARD

IMAX maximum number of iterations.

X data matrix.
N the number of parameters 0.

V a 1 x n array containing an estimate of the position of

the best available initial value L*(0).

TOLB tolerance level for the termination criterion.

NSQZ number of iterations in linear search.

NB number of stochastic equations in the system.

NINTF number of intermediate functions.

NVAR number of variables (yfc and z^).
NT number of observations.

NL number of lags
NI number of identities
NY number of endogenous variables (ŷ .)
NZ number of predetermined variables (ẑ)
The overall input is terminated by four dollar signs, that is, $$$$

A user's guide to NLMLE is given in Appendix C.

110

Output of NLMLE

(a) At each iteration, option to print:

(i) old and new function values, new step-size and number of

function calls for that iteration;
(ii) gradient and gradient norm; weighted-gradient, i.e. g'H g;

(iii) direction vector d ^ ;

(iv) parameter estimates 0 ̂ ;

(b) At the end of the iterative procedure, information regarding:

(i) whether the program converged and the number of iterations

used;

(ii) maximum number of function calls;

(iii) .the log-likelihood function value;

(iv) the final parameter estimates;
(v) the estimated asymptotic variance-covariance matrix of the

parameters 0;

(vi) the standard errors and T-ratios;

(vii) the residual sum of squares matrix.

Limitations

The following apply to the CDC 7600 version of the program:

(i) A maximum of 20 equations.

(ii) A maximum of 30 parameters.

(iii) A maximum of 100 observations.

(iv) A maximum of 50 variables.

The version on the ICL 2980 can estimate a larger model of up

to 100 parameters and >> 100 observations

Ill

The three parallel DAP versions are restricted to five-equation

models with a maximum of 20 parameters and 30 variables but up to

4096 observations.

The program listing is given in Appendix B , and an example of

the output in Appendix D.

112

CHAPTER 6

NON-LINEAR ECONOMETRIC MODELLING

ON A PARALLEL PROCESSOR

6.1 Potential Role of the Distributed Array Processor for Research

in Economics

The ICL Distributed Array Processor (DAP) is a 64 x 64 array of micro
processors embedded in the store of a host computer, each processor being

associated with 4K bits of semi-conductor store (which can be accessed

by the host if the DAP is not in use) . Clearly, taking the procesor to

the data (rather than vice-versa) avoids the time usually required to
route information.

Conventional computers use sequential operating procedures and

upper limits exist for the speed of calculation possible using such an

approach. Miniaturisation and micro-circuits are part of an effort
to resolve such problems.

However, a DAP presents a radically different potential solution,
using parallel computation; moreover, while the DAP is operating, the

host is free to carry out other tasks. Thus to add two 64 * 64 matrices
on a 64 * 64 DAP takes the same time as adding two scalars and any task

which can be tackled in 64 parallel streams on a 64 cell array takes

64 of the time for 64 sequential operations.

Users of the DAP will have to learn new ways of conceptualising

their objectives. The main idea can be seen by considering the

multiplication of two N * N matrices A and B. In conventional FORTRAN

thé algorithm would be a programmed version of:

113

N
C = AB *=> C. .il

which can be rewritten as the inner product

C. .13

where A' = (a-•1 B r • • • r

In the DAP, parallel computation would exploit the outer product
from:

Each micro-processor does N multiplications in sequence and

cumulates the total. Similar reformulations apply to matrix

inversion, etc.

Research in Economics is invariably multivariate and hence is
intensive in the use of matrix operations. For example, econometric

estimation usually entails maximising a scalar function of matrices,
with prolific use of inversion and multiplication of large dimensional

matrices. Similarly, recent advances in computing economic equilibria
require massive array calculations which consume a considerable
amount of cpu time. Monte-Carlo simulation is intensively

used by econometricians both to study the properties of econometric

estimators and to model the behaviour of economic systems with a large

number of participants. Finally, investigating the finite sample

distributions of procedures for system estimation does create major

demands for time on available computer systems.

N
C

114

Large-scale econometric models are generally non-linear in both

the variables used in estimation and the parameters of the likelihood

function. Few systems of this kind have been appropriately estimated

because the computational time required is very large. With the

introduction of array processors that are capable of executing a large

number of instructions simultaneously, the computational time can be

substantially reduced.

In order to estimate the system of equations, L*(0)
(3.11) has to be maximised with respect to 0, which is a formidable

task for large values of n and k, where n is the number of equatio

in the system and k is the number of parameters. Also if T is
T I 1large, it is equally difficult to compute Z log (abslJj) due to
t=l

the excessive amount of cpu time needed.

Many special cases of equation (3.11) have been investigated, and

efficient methods for optimising the relevant likelihood function

have been extensively programmed, for example, Hendry (1976), Hendry

and Srba (1980), Hendry and Treraayne (1976). Many of the numerical
optimisation methods are strongly oriented towards implementation on

serial computers.

However, the Distributed Array Processor presents the possibility of a
different solution. The power of the DAP is based cn its high degree of parallel

operation; hence a specially designed algorithm is essential so that

the DAP can be fully exploited.

115

6.2 The Distributed Array Processor (DAP)

The basic concept of a parallel processor which can execute

the same instruction on many data items has been known for many years.

There have been several processors of this type built, most notably,

STARAN and ILLIAC IV (Thurber and Wald (1975)). Although the DAP is

similar in concept to these machines, it has two important differences:

(i) the number of processing elements (PEs): the DAP has 4096 as
opposed to 256 and 64 for the STARAN and ILLIAC IV, respectively;

(ii) the simplicity of the processing elements (PEs): the PEs in

the DAP are one bit processors which means that 3-11 operations

other than bit manipulations are done in software.

6.3 Architecture

The DAP is a 64 * 64 two-dimensional grid of PEs each with 4096

bits of local memory (the fact that there are 4096 PEs and 4096 bits

of local memory is only coincidence). Each PE can perform two basic
operations: one bit addition and one bit broadcast of data to one of its
four neighbouring PEs (Gostick 1979, 1981; Parkinson 1976 (Nov.),1977 (Nov,), 1980).

For the purpose of computation, we can describe the DAP as

consisting of:

(i) 4096 store planes containing 64 x64 bits.

(ii) The activity plane (A plane) of 64 x 64 bits. The setting of a

particular bit in the A plane to 1 (that is, .TRUE.) allows

the corresponding PE to perform a given instruction; that is,

the A plane acts as a 'MASK* as to whether an instruction is

executed in a particular PE or not.

116

(iii) A 64 x 64 array of PEs that are each connected to their four
nearest neighbours.

6.4 Programming the DAP

The DAP has two programming languages: APAL and DAPFORTRAN.
APAL is a low level assembly language (ICL (1979)). DAPFORTRAN is

an extension of standard FORTRAN. The DAP will execute all standard
FORTRAN statements except for formatted READ/WRITE commands

(ICL (1981)). ..The additional facilities of DAPFORTRAN are basically

two extra variable modes: vector and matrix together with a generalised

indexing syntax to allow efficient use to be made of them. Tne three
modes can be declared as follows:

INTEGER SCALAR__INTEGER, SCALAR_INTEGER_ARRAY(100)

INTEGER_VECTOR(), SET_OF_INTEGER_VECTORS (, 10)
INTEGER_MATRIX(,) , SET_OF_INTEGER_MATRICES(, , 1 5)

Note that ICL FORTRAN has always regarded the limitation of the length

of variable names to 6 characters as being unnecessarily restrictive,
and permits up to 32 characters for all names in a program. DAPFORTRAN

follows this convention, thus permitting a much more sensible naming

of variables, routines, etc., and hence giving more readable programs.
Since spaces are not permitted within DAPFORTRAN names, it is desirable

to have some alternative method for breaking up long names. For this

purpose the underscore character may be used (as in 2900 system

Control Language). • This character is ignored by the compiler.

By the declaration VECTOR(;■) we mean a vector with 64 components

and, by MATRIX(,), a matrix of 64 x 64 components. Also sets of vectors

117

and matrices can be declared as shown above. Similar declarations

can be made for REAL, LOGICAL and CHARACTER variables.

All the normal arithmetic and logical operations are defined

element by element for vector and matrix modes. For example, if A,

B and C are REAL matrices, then

A = B + C

means that A is the element by element sum of B and C.

serial FORTRAN the above statement is:

In standard

DO 10 I = 1, 64

DO 10 J = 1, 64

10 A(I,J) = B(I,J) + C(I,J)

Moreover, arithmetic and logical operations can be performed on

variables of different modes if there is no ambiguity. For example,

if A and B are real matrices and C is a REAL scalar, then

A = B * C

means that A is the element by element product of the matrix B and

a matrix consisting of 4096 components all with the same value C.

The other significant feature of DAPFORTRAN is masked (or

logical) assignment; that is, the assignment of one matrix to another

can be 'masked' with a LOGICAL matrix. For example, if A and B

are INTEGER matrices and MASK is the LOGICAL matrix defined by

110

MASK = A .GT. B

(i.e. an element of MASK is .TRUE, when the corresponding element of

A is greater than the corresponding element of B).

Then

A(MASK) = B

means that the element by element assignment only takes place when

the corresponding element of MASK is .TRUE.

The equivalent FORTRAN code for this statement is

DO 10 1 = 1, 64

DO lo J = 1, 64

IF (A(I,J).GT.B(I,J))A(I,J) - B(I,J)

10 CONTINUE

which is very inefficient on a serial processor whereas there is no

difference in efficiency between A = B and A(MASK) = B on the DAP »

6.5 Examples

Clearly DAPFORTRAN is an ideal programming language when

considering 64*64 matrices or matrices that can be partitioned into

64*64 submatrices. This does not mean that it is inflexible and

cannot be used on problems of different dimensions; for example, we

consider the problem of multiplying two N*N matrices A and B

where N < 64. The following method is used:

119

fa a J rb b11 12 11 12

a b b21 22
\ J [21 22j

all an * bn b12

> a2i bn V

all bn an bl2'

*21 bn S21 V

an bn
+ al2 b21

a21 bn
+ a22 b22

a12 al2 * b21 b22

a22 a22 b21 b22

al2 b21 S12 b22

a22 b21 a22 b22/

all bl2 + ai2 b22

a21 b12 + a22 b22/

(the operations * and + are element by element multiplication

and addition, respectively) .

The DAPFORTRAN code is:

SUBROUTINE MATRIX_MULTIPLY (C,A,B,N)

C
C This is a subroutine to multiply two N X M matrices A and B
C where N e {1, 64} and place the result in C.

C We assume that the contents of A and B are undefined
C except for the N * N submatrix of values in the top left corner

C of A and B.
C

REAL A(,) , B (,} , C(,)

LOGICAL MASK(,)

MASK = ROWS (N+l, 64) .OR. COLS (N+l, 64)
C

C ROWS (N+l, 64) is a LOGICAL MATRIX FUNCTION that creates a

120

C LOGICAL matrix which has its first N rows set to .FALSE, and
C the remaining rows set to .TRUE. .COLS (N+l, 64) has the same

C definition, mutatis mutandis, with respect to columns.
C

C = 0.0

A (MASK) =0.0

B (MASK) =0.0

DO 10 K = 1, N
10 C = C + MATC (A (, K)) * MATR (B (K,))

C

C MATC (REAL_VECTOR) is a REAL MATRIX FUNCTION that creates a

C REAL matrix all of whose columns are equal to REAL_VECTOR.

C MATR (REAL_yECTOR) has the same definition, mutatis mutandis, with

C respect to rows.
C

RETURN

END

A second example is the calculation of C^ = A^ * B^,
1 = 1» ..., 4096, where A±, B± and C± are all 5x5 (say)
matrices. The appropriate segment of DAPFORTRAN code is:

REAL A (,, 5,5), B (,, 5,5), C(,, 5,5)

DO 10 I = 1, 5
DO 10 J = 1, 5

C(,,I,J) = o.O

DO 10 K = 1, 5
10 C(,,I,J). = C(,,I,J) + A(,,I,K) * B(,,K,J)

This is identical to the equivalent code for a serial processor, except

121

that, in every reference to a vector or array, the first subscript

is preceded by two commas to indicate that the procedure is to be

carried out in every processor simultaneously.

The corresponding FORTRAN code would be:

REAL A (4096,5,5), B(4096,5,5), 0(4096,5,5)

DO 10 L = 1, 4096

DO 20 I = 1, 5

DO 20 J = 1, 5

C(L,I,J) = 0.0

DO 20 K = 1, 5

20 C(L,I,J) = C(L,I,J) + A(L,I,K) * B(L,K,J)

10 CONTINUE

6.6 Estimation Procedure and Implementation

The BHHH method is of a form suitable for parallel computation
(see Chapter 3) . •

Three versions of the program were implemented.

(A) A parallel version on the DAP for models of up to 4096

observations.
(B) A parallel version on the DAP for between 65 and 128 observations.

(C) A parallel version on the DAP for models of up to 64

observations.

In the serial version (NLMLE, Chapter 5), we evaluate all the

functions and derivatives at 6 ^ for each of the observations.

Clearly, this is not the most efficient method. In version (A), the

architecture of the DAP allows us to evaluate the functions of up to

4096 observations simultaheously.

122

In versions (B) and (C), we evaluate simultaneously
L * (0 ^ + for 32 or 64 values of Aa , respectively. This

is because we are able to 'partition' the DAP into 32 or 64 'parallel

processors' according to the number of observations. This allows

us to find the optimal value of L*(0^' + Aad ^) in our test models

with a grid search procedure in only one step.

To evaluate the log-likelihood function- requires the

following calculations:

(a) Z f,J. • for ~ 1/ **•' n
t=l

(b) (J j"1 , for t = 1, ..., T

T
(c) Z log|det J |

t=l Z

On the DAP these calculations are performed very efficiently.

The inner products (a) can be evaluated for a given i and j in

two steps: firstly, we calculate t = 1» •••' T
enously and, secondly, we find the summation in one operation.

The DAPFORTRAN code is:

REAL F (,,N), INNER_PRODUCTS (N, N)

C

DO 10 I = 1, N

DO 10 J = 1, N

10 INNER_PRODUCTS (I,J) = SUM (F(,,I) * F(,,J))

(SUM is an in-built DAPFORTRAN function that computes IZ.A
ij 3

for

123

a 64 x 64 matrix (A, .)).
3-D

Similarly for (b), the inversion of up to 4096 n * n matrices

Jfc can be performed in parallel on the DAP using Gaussian elimination

and column pivoting. At the same time we obtain the determinant of

The DAPFORTRAN code for the inversion routine is shown in

Appendix H. -

Lastly, (c) can be written as one line of DAPFORTRAN

REAL DET_JT(,), SUM_LOG_DETJT

C

SUM_LOG_DETJT = SUM (LOG(DET_JT))

Versions (B) and (C) are similar to the above except that a

separate summation in (a) and (c) is required for each For

example, the DAPFORTRAN code for (a) is:

REAL F(,,N), INNER_PR0DUCTS (N,N,L)

LOGICAL ALPHA_MASKS (,,L)
C
C L IS THE NUMBER OF GRID POINTS ON THE LINE

DO lO I = 1, N

DO 10 J = 1, N

DO 10 K = 1, L
10 INNER_PR0DUCTS (I,J,K) = SUM (MERGE (F(,,I) * F(,,J), 0.0,

+ALPHA_MASKS (,,K)))

124

(MERGE (REAL_MATRIX_A, REAL_MATRIX_B, LOGICAL_MATRIX_MASK) is an

in-built DAPFORTRAN function that produces a REAL matrix whose

elements are the same as REAL_MATRIX_A if the corresponding element

of LOGICAL_MATRIX_MASK is .TRUE., and equal to the corresponding

element of REAL_MATRIX_B otherwise.)

In versions (B) and (C), we can now determine the optimum

by evaluating L*(0(l) + Xad (1)) for all \a simultaneously.

To compute the gradient /30 consists essentially of

matrix multiplication and taking the trace of a matrix. The DAP can

do both of these operations very efficiently. Finally we evaluate

the Hessian matrix which is again a matrix product.

We have chosen a set of test models (Model (iii), Chapter 7)

for our DAP programs. The timings and results are described in

section 7.7.

125

CHAPTER 7

A SET OF NON-LINEAR MODELS

7. Non-linear Models Simulation

To test the NLMLE estimation program, we need to define sets of

models which are simple to specify and graded by:

(i) size of the model with respect to the number of equations, n;

variables, m; unknown parameters, k; and observations, T.

(ii) non-linearity (i.e. high, little, none) with respect to the

unknown parameters, variables/or both
(iii) properties of data (i.e. inter-correlation)

(iv) white noise (i.e. random errors).

It is of great difficulty to obtain a realistic model with the

above representation and structure because model building on such a

system takes a long time to construct and collect the data. Thus we

have decided to derive our non—linear system by Monte-Carlo simulation.
An example of such typical non-linear model is a cross-section production
model with large sample size, large parameter set, high non-linearity in

the variables, moderate correlation of the data set and automatically

white noise if we are sampling the data from a distribution.

It was decided to only generate the data of the model approximately

to the true data by a Data Generation Process and then applied a Newton-

type iterative solution to the system. We can vary the number of

parameters by using the same model, but prespecify some of the parameters

at fixed values to reduce the number of parameters requiring estimation.

126

Notice that by sampling a population X̂ »...,X,j, with the sample

parameter 6, the error of 5 and its estimate 0 is of order T ,
i.e.

we have the distribution of the sample population

D(Xlf...,XT |0),

and if we apply the maximum likelihood estimation to the sample values

max L (0|x.,...,x) « 6
0 x
„ - 1 'ithen (0 - 6) - 0^ ,

where

0p is the order in probability.

Hence when T is small» the error could be very large, but as
Along as the estimator is consistent, we would expect 0 converge

asymptotically to the true value of the sample 0.

7.1 Modelling Considerations

Suppose we take n = 2 and n = 5 as the two different non-linear

simultaneous systems, and that we use a combination of linear functions
and arctangent to introduce variable non-linearity with respect to the

endogenous variables. Notice that arctangent has the advantage that it

is increasing for all values of X, and combined with a linear term is
not likely to introduce multiple solutions. It would be appropriate to

construct the model so that the function is a quadratic in the parameters
and the variables raised to the power.

127

7.2 Model Specification

It was decided to specify:

for the n = 2 system:

Q = o2 u
1.0 0.5

0.5 1.0

and for the n = 5 system:

£1 = a ‘u

1.0 0.5 0.0 0.0 0.5

0.5 1.0 -0.5 0.0 0.0

0.0 -0.5 1.0 0.5 0.0

0.0 0.0 0.5 1.0 -0.5

0.5 0.0 0.0 -0.5 1.0

The model was chosen to be of a manageable size and generality. It

was appropriate that the model be fully non-linear in the variables,
and particularly that the Jacobians in each time period should be
functions of both variables and parameters. It was decided to select

the variables, so that the equations of the model could be easily

solved for y as a function of u. (so yielding the path of y t t
for given u^) by a Newton iterative solution method, starting from

the path y defined as the path corresponding to u = O, or
such that

f(yot' V Q) = O.

12B

Since the z^ are determined once and for all, and are fixed

in repeated simulations, and since it is usual for there to be at

least as many variables ẑ_ as equations in the model (i.e. m > n),

it was decided to introduce a set of z.. , such that z occursit it
only in f .(y , z , 6) = 0 , i = 1 , ___ n. It was then possible toi ot t
first determine y i = 1, n, and z.., i = n+lf ..., m,oit ' it
using any simple procedure, and then to solve the above equation to

obtain z^, i = 1, ..., n. This provides an initial solution
path y , which serves as the starting value for a Newton iteration

to solve the more general equations. The model is of the form:

uit f i t ‘V V e) '
1 = 1, — , n
t = 1, T

We define some intermediate functions,

f * (y t) y. tan"1(a.yit) + I B^y.,. (7.1)

In (7.1), all or most of the coefficients can be fixed a priori,

for example, we could take yi = 0.1 and = O except = 1.
A better alternative, which introduces a further non-linearity in

f it (yt. v 0) as a function of 6, is to write

B = B . . + B, . .9, + B_. .6. ij 013 Ü 3 k 213 k (7 .2)

where the model contains only one or two parameters 0^,

B ^ is written as a quadratic in 0^» or with

and B^^j fixed a priori.

and each

Boij' Blij

129

Now we write

uit (n..z.. +xi xt (X > t >
6 .
") + £i(yt)r 1 = 1»

t = 1»
» n
» T (7.3)

where k^ depends on i, so that each equation contains two exogenous

variables. For example, when n = 2, we take k^ = 3 and k2 = 4.

We generate the data with negligible error by using a Newton- .

type iterative solution method to solve the equations for a random

U^t» starting the iteration from values of y. that correspond

uit = 0 . If ni i ^ O, we can set the y at some values yQ^

and calculate g* = f*(y) and u., =0, and then set z .Xt- X ot it t
at some equally arbitrary values, and then solve

it *itJ (7.4)

At this stage the y are the solutions of the equations

(7.3) when u = 0, for all i and t. We can compute z±fc once

and for all for a given model.

To generate N replications for a given model, we solve

equation (7.3) only approximately. We generate as jointly

normal, and then add this into

y*yit
, , 2 , i,- <nu zit +)

Now we write y^r ̂ for the iterate with

(7.5)

y (o)
t yot

130 -

and

Ay (r)t - y
(r-l)
t

Then we use a Newton-type iteration for the solution of

f± (y<r,> - o

(r) (r-l) ,„<r-l)wj*./#..(r-l)and y ~ = y ~ f, (y^ ^ '>

(3f

8y.

*

t) ^ t r> = (y i t " f i (y£r ’ 1 >) } + ui t
yt=yt

(r-l)
(7 .6)

where u and y* are computed with r = O. We repeat the it it
iteration, until jjy^ - y £ ~ U || is sufficiently small.

7.3 Data Generation Process

In order to consider a set of different models we take a basic

model for n = 2 and n = '5 and then vary one parameter at a time.

Suppose we generate each z . . for k > n independentlyl^/ ̂ 1
(once for all) using the following equation:

V " V k ^ t - D " Vk + Ukt V /. /)

where the U are independently distributed as ^ N(0, kt 1) .

For the n = 2 case, we take only one k, and set X II 3,

X3 = 0.5, \ - 1.0.

For the n = 5 case, we take = 6 and = 7, and set

X 6 = °*5' X7 = 0.7, p6 = ii7 = l.o.

We then generate the values of y ±fc using the same form of equations

(7.7) by using y instead of z.

131
Now for n = 2, we generate:

yolt using X = 0.5, li = 2.0;

yo2t using X = 0.7, y = 2.0.

In addition when n = 5, we gener

yo3t using X = 0.5, M = -1.0;

yo4t using X = 0.7, y = -1.0;

Yo5t using X = 0.5, y = 0.0.

Now for the values of in equation (7.2), we take
for all models.

For n = 2, we take one parameter 0 = 0 , and setJC

K i j) ■
l o

0 1

-
1 1

-1 1

where e = o.5.

For n = 5, we set

K i3> *

1 0

0 1

o o

0 o

0 o

0 o o

0 0 0

1 0 0

0 1 0

• 0 0 1

132

(B2i3) = e

0 1 o o o

1 O 0 o o

0 - 1 1 o o

0 0 1 - 1 0

0 1 0 1 0

where e = 0.1, and we also set a. = 1 for all i.i
Postulation

For the two systems and for all i, we fix the values of the

parameters to be:

nu = 5
- 1

^ = 0.3

“i = 1
0 i = ! .

We also fix o * = 0.5 and T = 20.

With these quantities, we can proceed the Data Generation Process

according to the specification of our models.

7.4 Sets of Models

It is proposed to generate one set of data for n = 5 models,

and consider three values for the number of parameters p.

n = 5

(i) p - 18

We
unknown

assume = o
Ql t and B^,

is one unknown, that V l - 1' 2' 3
i = 4, 5 depends on the unknown 0^,

depends on
and take

Yi' nii' 6i a11 unknowI* for i = 5* gives a,
total of 18 unknown parameters. .

133

Now the model becomes:

Y1 t a n ' V y ^) + 0 ^ + 0.1 * 0 ^

f2(yt) y2 tan-1(ay2t) + 0.1 * 0 ^ lt + 0 ^

f ‘ (y t) Y3 tan 1(°‘y3t) “ 0.1 * 0̂ y2t + (0L + O*1 * ei)y3t

f4*(yt) r4 tan V y 4t) + 0.1 * 0^y3t + (02 " 0,1 * 92)y4t

f 5 (yt} = Y5 tan_1(ay5t) + 0.1 * 0 ^ + 0.1 * 0‘y4t + 02y5t

and

It (”llZlt + (z6t> X) + fi (yt’

2 {2
U2t " <"22Z2t + (Z6t’ 1 + f2 (yt>

2 53
U3t ' (n33Z3t + (Z7t^ 1 + £3 yt

2 54
U4t * ln44Z4t + <Z7t> 1 + £4 (yt>

2 ^5
U5t - (,155Z5t + (Z7t) > + £5 (yt>

The unknown parameters are

Y.r n..r 6., i = 1, 5,* one a; one 0 and one 0 .i . li i A A

with 5 endogenous variables y » y_. an<̂ 7 exogenous variablesIt h t

Zltr z7t*

134

(ü) p = 12

We assume the same model as in (i) but set 0^ « ®2 and =

This reduces the number of parameters by 6, that is, we have y^,

nijL, i = 1, ..., 5, one a and one 0.

The model is in Appendix F.-

Uii) P = 6

In addition to (ii), assume y^ = y for all i and nil ^33
= rj, this reduces the number of parameters by another 6, that

is, we have y, a, 6, n, n22 and n44*

The model is shown in Appendix F.

Thus from the set of generated data, we get three different,

optimisation problems.

n = 2

<iv) p = 9

Assuming only one 6, we have a maximum of 9 parameters,

that is, 2 each of a^, y^, nii» ^ and one 0.

Thus we have the following model:

f*(yfc) = tan"1 + (6 + 02jyit + 02y2t

f2(yt} = y2 tan“1« * ^) - 92ylt + (9 + 62>y2t

135

and

uIt "'ll2!! + iZ3t’ ^ + fi(yt’

u2t • (n 22Z2t + (Z3t} 2) + f2 (ytJ

(v) p = 6

We constrain = a, y^ = y r 6^ = 6» an<̂ so ^eave ^

parameters, that is, a, y, 6, n^, h2 2 an<̂

The model is shown in Appendix F .

(vl) p = 4

Finally, in addition to (v) , if we take = H and ̂ =

we get a 4-parameter model, that is, y, a, 0 and n.

Again the model is shown in Appendix F.

If we take the 6-parameter model (f®r n 0 2) as standard, we can then

vary the level of the parameters one at a time from their correct

values.

7.5 Alternative Values of Parameters

We considered the following alternative values for the sets of

non-linear models:

(i) T = 50

(ii) a 2 = 0.1

(iii) y L = 0.5

136

(iv) e = 1.0
(v) 6. = 0.7i

Each of these values has a describable general tendency:

(i) increased sample size;

(ii) reduced error variance;
(iii) reduced non-linearity of f as a function of endogenous

variables;
(iv) increased non-linearity with respect to parameters affecting

the determination of the endogenous variables;

(v) reduced non-linearity with respect to exogenous variables

parameters.

We start by generating data for standard n = 2 model with

T = 50, where the first 20 observations give us the sampl® fot
T = 20. we then take this data for T = 20, and the standard 6-parameter model

and try NPOINT ■ 10 starting points. The first are all the parameters

at their correct values, and the remainder are chosen so that for

any parameter, for example,

Y = Y U + h),

where h is chosen at random from the interval (-0.5, +0.5). After

we have seen what computing time is reguird for this experiment, we

can then decide whether to use NPOINT ■ 10 for the other models.

Note that we have:

3 models of n = 5 with different values of p.

3 models of n = 2 with different values of p.

5 non-standard models of n = 2 with p = 6.

137

Using 10 starting points for all models, yields a total of
11 models x lo = H O models.

Note that for each run, not only is a new starting point chosen

but new values of u are generated. But we can calculate

once and for all, and then for a given model calculate g*fc, an<̂
keep these values unchanged for different runs. The actual ŷ _

used can be retained constant, and the same data used for models
differing only by p.

7.6 Estimation Results and Computer Timings

We present some numerical results for particular runs of

models (i) to (vi) estimated by the methods of BHHH and GMP with

analytical derivatives. GMP (with numerical approximation to the

derivatives) was used in various models and model (iil)• Since there

were only six unknown parameters in model (iii) it was worth trying

this method for the n = 5 system because the number of

function evaluations to approximate‘the gradient was relatively
smaller than for models (i) and (ii). Model (iii) was also used to

test the DAP program and the results from the DAP runs will be discussed
in section 7.7.

Since the run time for each model starting with the true values

was rather long, we were unable to test all the models with 10

different starting points except for model (v) where we varied the

parameter y (Table 11). However, for other models, we estimated

with the true starting values and also shifted 0.05 unit away from
the true values except for model (i), in this case we only shifted

0.025 unit away. Also a2 was chosen to be small (although previously

138

we suggested a2 = 0.5) so that the models might converge more quickly.

To test the sensitivity of the methods to a2, we tested models (iv)

to (vi) by varying 02 from 0.1 to 0.5, and the results of these

runs are shown in Tables 4-6. Tables 10a and 10b show the efficiency

of the methods when T is small.

We now present the results from models (i) to (iii) , with

n = 5, T = 50, a 2 = 0.01, e = 0.1, = 0.3, a = 1.0 and 6̂ ̂= 1.0

(a-i) Model (i), p = 18

Initial values = True values of parameters

Table la Final Estimates of Parameters

.Parameters Initial
Values

BHHH 1
(Old Line
Search)

(2)BHHH
(Modified Line

Search)

GMP
(Analytical
Derivatives)

Y1 0.3 0.3035 0.3035 0.3045
‘ Y2 0.3 0.3410 0.3410 0.3410
Y3 0.3 0.3081 0.3081 0.3080
Y4 0.3 0.3031 0.3031 0.3032

Y5 0.3 0.2993 0.2993 0.2993
a 1.0 0.9725 0.9725 0.9726
h 1.0 1.0001 1.0001 1.0001
62. 1.0 0.9992 0.9992 0.9992

^ 1 5.0 5.0132 5.0132 5.0133

CMCM 5.0 5.0287 5.0287 5.0288

n33 5.0 5.0012 5.0012 5.0012
n44 5.0 5.0020 5.0020 5.0020

1 n55 5.0 4.9994 4.9994 4.9994
6i 1.0 1.0021 1.0021 1.0021
S2 1.0 1.0023 1.0023 1.0023
{3 1.0 .1.0001 1.0001 1.0001
54 1.0 1.0001 . 1.0001 1.0001
*5 1.0 0.9990 0.9990 0.9990

139

Table lb Details of Iterative Convergence

Method No. of
Iterations

No. of f
Function

Evaluations

Initial
Value of
Log L*.

Final
Value of
Log L*

CPU Time
(CDC 7600)
seconds

58 108 -940.897488 -950.924755 434.6

b h h h(2) 38 61 -940.897488 -950.924748 229.0

GMP 25 68 -94Ò.897488 -950.924769 601.9

Note;

Old line search where the initial step-size is fixed to one.
/ 2 \

Modified line search where the initial step-size is adjusted
using algorithm 2.4.1 of Chapter 2.

t Number of function calls is the total number of function evaluations
in the iterative procedure.

The log-likelihood function values are set to 6 decimal places due
to the flatness of L*. ■

140

(a-ii) Model (i), p = 18

Initial values = Shifted true values of parameters

Table lc Final Estimates of Parameters

Parameters Shifted
Initial
Values

(Old Line
Search)

(2)BHHH
(Modified Line

Search)

GMP
(Analytical
Derivatives)

Y1 0.275 0.3035 0.3035 O.3035
Y2 0.275 0.3410 0.3410 0.3410
Y3 0.275 0.3081 0.3081 0.3080
Y4 0.275 0.3031 0.3031 0.3031
Y5 0.275 0.2993 0.2993 0.2993
a 0.975 0.9726 0.9725 0.9725
ei 0.975 1.0001 1.0001 1.0001
62 0.975 0.9992 0.9992 0.9992
nu 4.975 5.0132 5.0132 5.0133
n22 4.975 5.0287 5.0287 5.0288
n33 4.975 5.0012 5.0012 5.0012
n44 4.975 5.0020 5.0020 5.0020
n55 4.975 4.9994 4.9994 4.9994
«1 0.975 1.0021 1.0021 1.0021
*2 0.975 1.0023 1.0023 1.0023
63 0.975 1.0001 1.0001 1.0001
64 0.975 1.0001 1.0001 1.0001
65 0.975 0.9999 0.9999 0.9999

141

Table ld Details of Iterative Convergence

Method No. of
Iterations

No. of
Function

Evaluations

Initial
Value of
Log L*

Final
Value of
Log L*

CPU Time
(CDC 7600)
seconds

BUH H ^ 111 235 -447.747959 -950.924767 877.1

96 186 -447.747957 -950.924762 703.7

GMP 57 108 -447.747957 -950.924769 861.1

Note:

Model (a-i) was also estimated with the initial values shifted 0.05

unit away from the true values. None of the above methods converged

to the final estimates of the parameters. It was realised that the

model was badly identified with the y's. So a set of linear

restrictions was introduced, that is, by setting

Y4 = 0.6 - y3

and

Y5 - 1- r2 - Y3

and the model was re-estimated wtih its true values and the shifted

values (0.05 away). From these two runs, both the GMP and BHHH failed

to converge after a substantial amount of CPU times (800 seconds and

1200 seconds respectively). The GMP method failed to achieve

convergence for this model with starting values of parameters shifted

away by 0.05 because the initial setting of the function value was

142

unreliable. And for the BHHH, because the starting values were
badly approximated to the final estimates, the method would not converge
at all.

To ensure that model (a-i) converged to the same optimum points

apart from starting from the true values, we decided to re-shift

the parameters 0.025 unit away from the true values and estimated

the model again. The results from these runs are shown in Tables
lc and Id.

NOTE: SLOPE SHOWS TIME PER ITERATION.

Figure 7.1

143

Tables 1 (a and b) illustrate the estimated parameters and

CPU times for model (i). The BHHH procedure with the modified line

search seems to be a more efficient method in terms of CPU time. It

is faster than the GMP (with analytical derivatives) by a factor

of 2h and converged to the same set of optimum values•

The modified line search has reduced the number of iterations

and function evaluations substantially (Table lb), in this respect,

the CPU time was reduced by half (BHHH(2>) due to the more accurate

line search during the iterative procedure.

Figure 7.1 shows the iteration numbers against the CPU times

for the three estimation procedures for model (a-i) to achieve

convergence. Clearly B H H H ^ is the most satisfactory optimisation

technique for this application.

GMP (with numerical approximation to the derivatives) method

was also used but the model failed to converge after a substantial

amount of CPU time (1200 seconds). This procedure is not recommended

for such models unless the analytical derivatives of the likelihood

function cannot be obtained easily.

144

(b-i) Model (ii) , p = 12

Initial values = True values of parameters

Table 2a Final Estimates of Parameters

Parameters Initial
Values

b h h hî;l)
(Old Line
Search)

(2)BHHH
(Modified Line

Search)

GMP
(Analytical
Derivatives)

0.3 0.2914 0.2914 0.2913

Y2 0.3 0.3201 0.3201 0.3201

Y3 0.3 0.3189 0.3189 0.3189

•Y4 0.3 0.3066 0.3066 0.3066

Y5 0.3 0.3058 0.3058 0.3058
a 1.0 0.9592 0.9592 0.9593
6 1.0 0.9975 0.9975 0.9975

nll 5.0 4.9884 4.9884 4.9884

n22 5.0 4.9996 4.9996 4.9996

n33 5.0 4.9999 4.9999 4.9999

n44 5.0 5.0002 5.0002 5.0002

n55 5.0 5.0009 5.0009 5.0009

Table 2b Details of Iterative Convergence

Method No. of
Iterations

No. Of
Function

Evaluations

Initial
Value of
Log L*

Final
Value of
Log L*

CPU Time
(CDC 7600)
seconds

BHHH(1^ 17 25 -940.897488 -948.419153 59.8

(2)BHHH 18 26 -940.897488 -948.419157 63.0

GMP 19 45 -940.897488 -948.419164 249.4

145

(b-ii) Model (ii), p = 12

Initial vlaues = Shifted true values of parameters

Table 2c Final Estimates of Parameters

Parameters
Shifted
Initial
Values

BHHH 1
(Old Line
Search) •

b h h h (2)
(Modified Line

Search)

GMP
(Analytical
Derivatives)

*1 0.25 0.2913 0.2913 0.2913
y2 0.25 0.3201 0.3201 0.3201
Y3 0.25 0.3189 0.3189 0.3189
*4 0.25 • 0.3066 0.3066 0.3066
^5 0.25 0.3058 0.3058 0.3058
a 0.95 0.9593 0.9593 0.9593
6 0.95 4.9975 4.9975 4.9975
*11 4.95 4.9884 4.9884 4.9884
n22 4.95 4.9996 4.9996 4.9996
n33 4.95 4.9999 4.9999 4.9999
n44 4.95 5.0002 5.0002 5.0002
n55 4.95 5.0009 5.0009 5.0009

Table 2d Details of Iterative Convergence

Method No. of
Iterations

No. of
Function

Evaluations

Initial
Value of
Log L*

Final
Value of
Log L*

CPU Time
(CDC 7600)
seconds

BHHH(1) 46 233 -524.748891 -948.419160 553.8

b h h h12> 36 105 -524.748891 -948.419161 253.3

GMP 41 84 -524.748891 -948.419164 430.4

14ó

NOTE: SLOPE SHOWS TIME PER ITERATION.

Figure 7.2

In Table 2b, BHHH(1) performs best, this is the only case
where the old line search with step-size fixed to one works better

than the modified line search. GMP seems to be slow for this model.

Tables 2c and 2d present very similar results except the CPU

times for each method; notice that they have increased substantially.

Figure 7.2 shows the differences in terms of CPU times for the

three methods with the true initial values.

147

(c) Model (iii), p = 6

Table 3a Final Estimates of Parameters

Parameters Initial
Values

BHHH 2
(Modified Line

Search)

(1)GMP
(Analytic

Derivatives)

g m p (2)
(Finite

Differences)

Y 0.3 0.2973 0.2972 0.2972
a 1.0 0.9726 0.9728 0.9728
6 1.0 1.0010 1.0010 1.0010
n 5.0 5.0012 5.0012 5.0012
n22 5.0 4.9896 4.9896 4.9896
n44 5.0 5.0000 4.9999 4.9999

Table 3b Details of Iterative Convergence

Method No. of
Iterations

No. of
Function

Evaluations

Initial
Value of
Log L*

Final
Value of
Log L*

CPU Time
(CDC 7600)
seconds

b h h h(2) 10 12 -798.450121 -805.136759 16.8

GMP(1) 12 26 -798.450121 -805.136993 90.7

g m p (2) 18 229 -798.450121 -805.136993 227.0

140

NOTE: SLOPE SHOWS TIME PER ITERATION.

Figure 7.3

In Tables 3a and 3b, the estimated parameters and log L*

seemed to agree with each other. But there are vast differences in

CPU times. Again BHHH(2) is the best procedure and is faster than

GMP(1) by a factor of 2*5 to 3. Although GMP*2) converged to the

same optimum, it is a highly inefficient method.

Figure 7.3 gives the CPU times against iteration numbers for

the three estimation methods.

149

Note;

The above models were also tested with a2 = 0.5, the CPU
time for each model was sufficiently large (> 600 seconds), yet the

models did not seem to converge. Because of the huge CPU time

further experimentation with large values of a2 for these three

models is not feasible.

n = 2

For the n = 2 system, we present results for models (iv) to

(vi) with T = 50, e = 1.0, = 0.5, 6 = 0.7 and varying c2
from 0.1 to 0.5. Only BHHH with modified line search and GMP

with analytical derivatives were considered for such experiments.

(<3) Model (iv) , p = 9

Table 4a Final Estimates of Parameters

Parameters Initial
Values

a2 = 0 . 1 a2 = 0.2 a2 = 0.3 il

CMO 0.5

BHHH GMP BHHH GMP BHHH+ GMP+ ++BHHH GMP

* 1 0.5 0.9628 0.9628 1.2953 1.2952 1.5669 1.5661 2.0013 1.9866
y 2 0.5 1.2352 1.2350 1.6225 1.6220 1.9466 1.9410 2.5182 2.4789
al 1 . 0 0.4627 0.4628 0.3919 0.3919 0.3627 0.3630 0.3367 0.3387
a2 1 . 0 0.3794 0.3794 0.3298 0.3299 0.3053 0.3059 0.2775 0.2799
0 1.0 0.9412 0.9412 0.9141 0.9140 0.8927 0.8920 0.8597 0.8563
S 1 0.7 0.6737 0.6737 0.6665 0.6664 0.6621 0.6619 0.6572 0.6560
S2 0.7 0.6816 0.6816 0.6763 0.6763 0,6732 0.6729 0.6708 0.6689
nll 5.0 4.6762 4.6760 4.5643 4.5639 4.4835 4.4788 4.3696 4.3450 -
n22 5.0 5.0389 5.0387 5.0725 5.0721 5.1063 5.1008 5.1853 5.1538

150

Table 4b Details of Iterative Convergence

Method a2 No. of
Iterations

No. of
Function

Evaluations

Initial
Value of
Log L*

Final
Value of
Log L*

CPU Time
(CDC 7600)
Seconds

BHHH 0.1 51 112A -210.671923 -218.982182 76.8
GMP 55 81 -210.671923 -218.982182 112.0

BHHH 0.2 89 155A -176.010432 -184.440556 106.4
GMP 54 79 -176.010432 -184.440556 112.2

BHHH+
+ 0.3 87 166A -155.734175 -164.257193 120.0+

GMP 52 75 -155.734175 -164.257211 120.0

++BHHH 0.5 92 204A -130.188433 -138.861748 155.0++
GMP 59 82 -130.188433 -138.862082 120.8

Notes : Notations used for models (iv) to (vi)

++ non-convergence after ÎOO iterations.

+ non-convergence after 120 seconds.

A number of function calls including the number of function
evaluations in gradient check by numerical approximation.

151

(e) Model (v), p = 6

Table 5a Final Estimates of Parameters

Parameters Initial
Values

o2 » 0 . 1 a2 * 0.2 HCMD 0.3 a2 ■ 0.5

BI1HH GMP BHHH GMP BHHH GMP BHHH GMP

Y 0.5 1.0534 1.0534 1.3346 1.3346 1.5578 1.5569 1.9148 1.9134
a 1 . 0 0.4528 0.4528 0.3957 0.3958 0.3692 0.3693 0.3423 0.3424
e 1 . 0 0.9361 0.9361 0.9101 0.9100 0.8896 0.8894 0.8565 0.8562
6 0.7 0.6755 0.6755 0.6680 0.6680 0.6629 0.6629 0.6559 0.6558

nil 5.0 4.6689 4.6689 4.5529 4.5530 4.4660 4 .4646 4.3304 4.3284
n22 5.0 4.9437 4.9437 4.9449 4.9449 4.9479 4.9466 4.9527 4.9508

Table 5b Details of Iterative Convergence

Method a2 No. Of
Iterations

No. of
Function

Evaluations

Initial
Value of
Log L*

Final
Value of
Log L*

CPU Time
(CDC 7600)
Seconds

BHHH 0.1 45 70A -210.671923 -218.947553 34.0
GMP 26 38 -210.671923 -218.947553 44.0

BHHH 0.2 100 121A -176.010432 -184.409121 59.4
GMP 27 40 -176.010432 -184.409122 46.5

BHHH 0.3 52 774 -155.734175 -164.223673 37.9
GMP 26 39 -155.734175 -164.223674 47.5

BHHH 0.5 61 96A -130.188433 -138.820730 47.1
GMP 29 43 -130.188433 -138.820732 51.4

152

(f) Model (vi), p = 4

Table 6a Final Estimates of Parameters

Parameters Initial
Values

IICMD 0.1 a2- = 0.2 IICMD 0.3 uCMO 0.5

BHHH GMP BHHH GMP BHHH GMP BHHH GMP

Y 0.5 0.9036 0.9036 1.0702 1.0702 1.1924 1.1923 1.3886 1.3887
a 1.0 0.3694 0.3694 0.3282 0.3282 0.3128 0.3128 0.2997 0.2996
e 1.0 1.0471 1.0471 1.0651 1.0651 1.0784 1.0784 1.0996 1.0996
n 5.0 5.4046 5.4046 5.5691 5.5691 5.6950 5.6950 5.9013 5.9014

Table 6b Details of Iterative Convergence

Method O2 No. of
Iterations

No. of
Function

Evaluations

Initial
Value of
Log L*

Final
Value of
Log L*

CPU Time
(CDC 7600)
Seconds

BHHH 0.1 20 34A -210.671923 -217.132402 11.6
GMP 18 27 -210.671923 -217.132402 23.9

BHHH 0.2 25 76A -176.010432 -182.350609 25.6
GMP 19 34 -176.010432 -182.350609 30.0

BHHH 0.3 21 58A -155.734175 -161.997569 19.6
GMP 18 25 -155.734175 -161.997569 23.6

BHHH 0.5 23 69A -130.188433 -136.368487 23.3
GMP 20 39 -130.188433 -136.368487 30.6

15 3

Tables 4-6 show that the BHHH method is a more efficient

procedure for the above models. When o2 is small (Tables 4a and

4b), the method works well but when a2 is increased to 0.5, then

the GMP procedure performs better. In the case where o =0.3,

both methods fail to converge because the model is badly identified.

In Tables 5a and 5b, again BHHH is a better procedure for this

set of models. Again in Tables 6a and 6b, BHHH performs best.

From the above experiments, the evidence is that BHHH is a

better procedure for complicated models providing cr2 is small. If

we have a large a2, the procedure tends to be slow to locate the

maximum of the likelihood function. For simple models (Tables 6a and

6b), both methods perform well but BHHH seems to be more efficient.

We now present some results of estimating models (iv) to (vi)

by shifting the starting values of parameters and we take 0^ = 0.1.

154

(g) n = 2, p = 9, T = 50, shifted initial values from true values.

Table 7a Final Estimates of Parameters

Parameters
Shifted
Initial
Values

+BHHH
(Modified Line

Search)

GMP
(Analytical
Derivatives)

Y1 0.45 12.8520 0.9628
Y2 0.45 57.5570 - 1.2350

“l 0.95 0.0794 0.4628

a2 0.95 0.0506 0.3794
e 0.95 1.4448 0.9412

6i 0.65 0.8379 0.6737

Ô2 0.65 0.9728 0.6816
nll 4.95 9.9421 4.6760

n22 4.95 15.3090 5.0387

Table 7b Details of Iterative Convergence

Method No. of
Iterations

No. of
Function

Evaluations

Initial
Value of
Log L*

Final
Value of
Log L*

CPU Time
(CDC 7600)
Seconds

BHHH+ 81 163A -133.414671 -197.331094 120.8+

GMP 49 68 -133.414671 -218.982182 101.8

Note_: Compare with Table 4a for o2 = 0.1, GMP tends to work well

although the starting values are not close to the true

values, in fact the run time is less than the case where

we started the model with its true values. For BHHH it

155

tends to locate a local maximum rather than the global maximum if
the starting values are not close to the final estimate 0* for this
particular model.

(h) n = 2, p = 6, T = 50, shifted initial values from true values.

Table 8a Final Estimates of Parameters

Parameters
Shifted
Initial
Values

BHHH
(Modified Line

Search)

■ GMP
(Analytical
Derivatives)

Y 0.45 1.0535
9

1.0534
a 0.95 0.4530 0.4528
e 0.95 0.9361 0.9361
6 0.65 0.6756 0.6755

"ll 4.95 4.6689 4.6689

n22 4.95 4.9438 4.9437

Table 8b Details of Iterative Convergence

Method No. of
Iterations

No. of
Function

Evaluations

Initial
Value of
Log L*

Final
Value of
Log L*

CPU Time
(CDC 7600)
'Seconds

BHHH 52 , aJ ^ 140 -1331414671 -218.947550 62.6

GMP 23 36 -133.414671 -218.947553 42.6

Note: Compare with Tables 5a and 5b for c2 = 0.1, GMP is more

efficient in locating the maximum of the likelihood function

156

although the starting values are shifted away from the true values.
On the other hand, BHHH takes twice as long to converge compared

with its previous CPU time.

(i) n = 2, p = 4, T = 50, shifted initial values from true values.

Table 9a Final Estimates of Parameters

Parameters
Shifted
Initial
Values

BHHH
(Modified Line

Search)

GMP
(Analytical
Derivatives)

Y 0.45 0.9036 0.9036
a 0.95 0.3694 0.3694
0 0.95 1.0471 1.0471
n 4.95 5.4046 5.4046

Table 9b Details of Iterative Convergence

Method No. of
Iterations

No. of
Function

Evaluations

Initial
Value of
Log L*

Final
Value of
Log L*

CPU Time
(CDC 7600)
Seconds

BHHH 27 76A -135.783150 -217.132402 25.6

GMP 20 31 -135.783150 -217.132402 25.9

Note; Compare Table 9b with Table 6b for cr̂ = 0.1, the BHHH

procedure takes twice as long to locate the same maximum when

the starting values of the parameters are not close to the

true values, but GMP works well althouth we have shifted

the parameters

157

The above experiments have provided us some evidence

that the BHHH is sensitive over the starting values of the parameters.

If the starting values of any models that are not close to the final

estimates, it would be appropriate to use GMP and then go to BHHH.

To test the effect of sample size, we estimate model (ii) with

T = 20. Tables 10a and lob present the result from these runs.

Table 10a Final estimates of the Parameters

Parameters Initial
Values

BHHH
(Modified line Search)

GMP
(Analytical
derivatives)

Y1 0.3 0.3041 0.3042
*2 0.3 0.3516 0.3516
Y3 0.3 0.3334 0.3334
^4 0.3 0.3153 0.3153

0.3 0.3223 0.3223
a 1.0 0.9055 0.9054
6 1.0 0.9942 0.9942
nll 5.0 ' 4.9816 4.9816
n22 5.0 5.0018 5.0018
n33 5.0 5.0053 5.0053
n44 5.0 5.0028 5.0028
n55 5.0 5.0015 5.0015

Table 10b Details of Iterative Convergence

Method No. of
Iterations

No. of
Function

Evaluations

Initial
Value of
Log L*

Final
Value of
Log L*

CPU Time
(CDC 7600)
Seconds

BHHH 44- 69 -373.153883 -378.556694 66.5
GMP 25 53 -373.153883 -378.556694 112.1

158

If we compare Tables 10a and lob with Tables 2a and 2b, the
CPU time for BHHH method does not change much although we have

reduced the sample size T from 50 to 20. But for GMP, the CPU

time for T = 20 model has reduced substantially, this may indicate

that the BHHH method will tend only to gain an advantage in time
over the GMP when T is large.

Figures 7.4 and 7.5 show the time taken for each method against

the number of parameters for models (i) to (iii) and (iv) to (vi)

respectively, in all these cases (except model (ii)), BHHH with

modified line search performs best, it is clearly more efficient

when p > 12 (Figure 7.4). GMP (with numerical approximation to the

derivatives) is not recommended vhen p > 6 (Figure 7.5).

Generally, BHHH seems to work well for this class of models,

the drawback is that if û_ is not independently identically normally

distributed, or if the form of the model is misspecified, which implies
R (equation 3.16) is not a consistent positive definite estimator of
the Hessian matrix H, then the method may not be efficient. But we

need to stress that all methods are model dependent, and that it is
difficult to predict their relative efficiencies. Both methods can

be expected to obtain a relative maximum of the likelihood function

if they converge. As a safeguard against lack of convergence it is
suggested that the BHHH algorithm is tried with a limit on the

number of iterations. If the method fails to converge, then the GMP

algorithm is started from the final values achieved by the BHHH
algorithm.

TO
TA

L
TI

ME
 (

SE
CO
ND
S)

159

number of parameters p

-----------p - 18
---------- p - 12
..............p « 6
B H H H ^ ----► OLD LINE SEARCH(2)BHHH --- > MODIFIED LINE SEARCH
GMP(1) --- > ANALYTICAL DERIVATIVES
GMP^2 ̂--- > NUMERICAL APPROXIMATION

Figure 7 . 4 .

TO
TA

L
TI

ME
 (

SE
CO
ND
S)

160

NUMBER OF PARAMETERS P

p - 9
- P - 6

p - 4
BHHH ■
GMP
GMP (2)

MODIFIED LINE SEARCH
ANALYTICAL DERIVATIVES
NUMERICAL APPROXIMATION

• Figure 7.5

161

Non-Standard Models

The following table presents the results for model (v) by

varying the parameter y, » 0.005.

We first choose y' = y(l + h) where h = (-0.5, +0.5) and

set y = 0.5. We then generate the data series by using the true

value of y = 0.5 and set the initial values of y ' as defined

above.

For 10 different starting points, we now have

Y* = {.25, .30, .35, .40, .45, .55, .60, .65, .70, 75}

and the parameter list beomces:

6° = (Yf <*, 6» 5/ ni;Lf r\22i

Thus we have .10 models with n = 2, p *= 6 and T * 50, each of

these has a different starting value of y 1. The starting values
of {a, 0, 6, are fixed at their true values, that is,

{1.0, 1.0, 1.0, 5.0, 5.0} respectively.

From Table 11, it can be seen that the CPU time for each run

is large and hence we do not carry out the experiment further by

varying the rest of the parameters.

Again we have found that BELHH works better except in the

case y' = 0.45.

Tabi« 11
F in a l E s t im a t e » o f P a r a w a t e r « and P e t a l i » o f I t e r a t i v e C o n v e rg e n c e

MSTHCDS V 1 a e 6
nn n21

L o g L * IT E H o . PUN EVALS. CPU T I *

BHHH 0 .4 0 2 6 0 .5 6 6 3 0 .9 7 8 9 0 .6 9 0 9 4 .8 7 9 0 4 .9 6 6 6 -3 3 3 .1 9 6 1 8 6 21 52 2 6 .4
GMP * ̂ 0 .4 0 2 5 0 .5 6 6 0 0 .9 7 8 9 0 .6 9 0 9 4 .8 7 9 1 4 .9 6 6 5 -3 3 3 .1 9 6 2 2 0 19 30 3 9 .2
GM p(2) 0 .4 0 2 5 0 .5 6 6 0 0 .9 7 8 9 0 .6 9 0 9 4 .8 7 9 1 4 .9 6 6 5 -3 3 3 .1 9 6 2 2 0 22 216 95 .3

BHHH 0 .4 5 0 1 0 .6 0 2 9 0 .9 7 8 6 0 .6 9 0 8 4 .8772 4 .9 6 4 6 -3 3 3 .3 2 6 9 8 5 22 52 2 6 .5
0 .4 5 0 1 0 .6 0 2 7 0 .9 7 8 6 0 .6 9 0 8 4 .8 7 7 1 4 .9 6 4 5 -3 3 3 .3 2 6 9 9 3 18 29 3 9 .7

0 5 . (2) 0 .4 5 0 1 0 .6 0 2 7 0 .9 7 8 6 0 .6 9 0 8 4 .8 7 7 1 4 .9 6 4 5 -3 3 3 .3 2 6 9 9 3 19 183 8 1 .8

BHHH 0 .4 9 8 4 0 .6 3 3 3 0 .9 7 8 4 0 .6 9 0 8 4 .8 7 5 6 4 .9 6 3 0 -3 3 3 .4 5 5 2 6 4 18 45 2 2 .9
GMP(1) 0 .4 9 8 4 0 .6 3 3 4 0 .9 7 8 3 0 .6 9 0 7 4 .8 7 5 4 4 .9 6 2 9 -3 3 3 .4 5 5 2 8 2 19 30 4 2 .2
O tp (2) 0 .4 9 8 4 0 .6 3 3 4 0 .9 7 8 3 0 .6 9 0 7 4 .8 7 5 4 4 .9 6 2 9 -3 3 3 .4 5 5 2 8 2 23 225 9 7 .5

BHHH 0 .5 4 7 0 0.6591 0 .9 7 0 1 0 .6 9 0 7 4 .8 7 4 2 4 .9 6 1 6 -3 3 3 .5 8 1 8 9 2 17 44 2 2 .4
0 .5 4 7 1 0 .6 5 9 4 0 .9 7 8 1 0 .6 9 0 7 4 .8 7 4 0 4 .9 6 1 5 -3 3 3 .5 8 1 9 5 6 18 31 3 8 .7

0 0 *1 2) 0 .5 471 0 .6 5 9 4 0 .9 7 8 1 0 .6 9 0 7 4 .8 7 4 0 4 .9 6 1 5 -3 3 3 .5 8 1 9 5 6 18 174 7 8 .4

BHHH 0 .5 9 6 2 0 .6B 18 0 .9 7 7 8 0 .6 9 0 6 4 .8 7 2 5 4 .9 6 0 1 -3 3 3 .7 0 7 4 7 0 17 40 4 1 .7
GMP <11 0 .5 9 6 2 0 .6 8 1 7 0 .9 7 7 9 0 .6 9 0 6 4 .8 7 2 7 4 .9 6 0 3 -3 3 3 .7 0 7 4 7 6 18 3 0 2 0 .4
CMP121 0 .5 9 6 2 0 .6 8 1 7 0 .9 7 7 9 0 .6 9 0 6 4 .8 7 2 7 4 .C '0 3 -3 3 3 .7 0 7 4 7 6 20 195 8 7 .0

BHHH 0 .6 9 4 9 0 .7 1 7 5 0 .9 7 7 5 0 .6 9 0 6 4 .8 7 0 8 4 .9 5 8 5 -3 3 3 .9 5 5 9 8 0 17 41 2 0 .9
C H p ll) 0 .6 9 4 8 0 .7 1 7 6 0.977.5 0 .6 9 0 6 4 .8 7 0 8 4 .9 5 6 5 -3 3 3 .9 5 5 9 8 4 17 29 4 1 .2
CMP Í2) 0 .6 9 4 8 0 .7 1 7 6 0 .9 7 7 5 0 .6 9 0 6 4 .6 7 0 8 4 .9 5 8 5 -3 3 3 .9 5 5 9 8 4 19 188 84 .4

BHT1R 0 .7 4 4 3 0 .7 3 2 5 0 .9 7 7 3 0 .6 9 0 5 4 .6 0 9 9 4 ,9 5 7 6 -3 3 4 .0 7 9 1 9 8 13 34 1 7 .4
GKP*1* 0 .7 4 4 3 0 .7 3 2 4 0 .9 7 7 4 0 .6 9 0 5 4 .8701 4 .9 5 7 8 -3 3 4 .0 7 9 2 2 3 17 29 3 6 .7

GMP Í2* 0 .7 4 4 3 0 .7 3 2 4 0 .9 7 7 4 0 .6 9 0 5 4 .8701 4 ,9 5 7 8 -3 3 4 .0 7 9 2 2 3 21 211 9 2 .6

BHHR 0 .7 9 4 0 0 .7 4 5 3 0 .9 7 7 3 0 .6 9 0 5 4 .8 6 9 8 4 .9 5 7 4 -3 3 4 .2 0 1 8 7 3 15 40 2 0 .4

CM P*11 0 .7 9 4 0 0 .7 4 5 4 0 .9 7 7 2 0 .6 9 0 5 4 .8 6 9 5 4 .9 5 7 2 -3 3 4 .2 0 1 8 7 9 18 30 3 7 .7

GMP*2* 0 .7 9 4 0 0 .7 454 0 .9 7 7 2 0 .6 9 0 5 4 .e 6 9 S 4 .9 5 7 2 -3 3 4 .2 0 1 8 7 9 18 177 7 9 .9

BHHH 0 .8 4 4 0 0 .7 571 0 .9 7 7 0 0 .6 9 0 5 4 .8 6 8 2 4 .9 5 6 3 -3 3 3 .3 2 3 9 6 7 14 35 1 7 .8

GMP O) 0 .8 4 3 7 0 .7 5 7 0 0 .9 7 7 1 0 .6 9 0 5 4 .6 6 9 0 4 .9 5 6 7 -3 3 3 .3 2 3 9 9 6 17 3 0 3 7 .6

O J l!1 0 .8 4 3 7 0 .7 5 7 0 0 .9 7 7 1 0 .6 9 0 5 4 .8 6 9 0 4 .9 5 6 7 -3 3 3 .3 2 3 9 9 6 2 0 200 8 9 .6

BHHH 0 .8 9 3 7 0 .7 6 7 6 0 .9 7 7 0 0 .6 9 0 5 4 .8 6 8 6 4 .9 5 6 4 -3 3 4 .4 4 5 5 3 3 10 28 1 4 .4

G K »(l > 0 .8 9 3 4 0 .7 6 7 5 0 .9 7 7 0 0 .6 9 0 5 4 .8 6 8 6 4 .9 5 6 2 -3 3 4 .4 4 5 6 0 2 17 I 30 3 7 .7

CHP*2* 0 .8 5 3 4 0 .7 675 0 .9 7 7 0 0 .6 9 0 5 4 .8 0 0 6 4 .9 5 6 2 -3 3 4 .4 4 5 6 0 2 19 IB S 8 4 .4

W o te i BHHH w i t h o l d l i n e s e a rc h
ran**1 * w i t h a n a l y t i c a l d e r i v a t i v e s

CMp(2> w i t h f i n i t e d i f f e r e n c e s
CPU t i n e i s CDC 7600 t i n s

162

1 6 3

7.7 Results and Timings for Model (iii) on the Distributed Array

Processor

Five sets of model (iii) were tested. The model had 4096

observations. Due to its size it was not possible to run it on the

CDC 7600 and ICL 2980 computers.

To provide a comparison with the DAP program, version (A), we

ran the serial version (NLMLE) for 64, 128, 256, 512, 1024 and 2048

observations, respectively, and based on these timings we estimated

the time for NLMLE on the 4096 observations.

Table 12 presents the. timings of one function call for the

above model with different sample sizes.

Table 12

T ICL 2980
(Seconds)

CDC 7600
(Seconds)

64 5.444 1.196
128 11.248 2.370
256 19.737 4.698
512 38.384 9.311
1024 78.327 19.010
2048 174.691 42.401
4096 389.609* 93.691*

* Estimated Times

164

For each of version (B) and (C), we ran two models, the first

having the starting values of the parameters as the true values, and

the second having the starting values scaled by 2%. Table 13

presents the timings for all the mqdels.

Table 13

Model T SYSTEM NO. OF.
ITERATIONS

NO. OF.
FUNCTION
CALLS

TIME PER
ITERATION
(SECONDS)

TOTAL
CPU TIKE
(SECONDS)

DAP 2 2 3.067 6.134
1 4096 ICL 2980 • - - 389.609* -

CDC 7600 - - 93.691*

DAP 2 2 3.981 7.962
2 128 ICL 2980 4 4 11.248 44.992

CDC 7600 4 4 2.370 9.480

DAP 4 4 3.999 15.996
3 +128 ICL 2980 • 8 10 11.747 117.470

CDC 7600 8 10 2.851 28.510

DAP 6 6 4.245 25.470
4 64 ICL 2980 9 10 5.444 55.440

CDC 7600 9 10 1.196 11.960

DAP 5 5 4.251 21.255
5 64+ ICL 2980 17 CM 6.255 125.100Û

CDC 7600 17 CM 1.518 30.360A

+ Scaled starting values of Parameters
* Estimates Times
A Non-convergence

If the timing is expressed graphically in Figure 7.6, we see

that the DAP version (A) is faster than the serial version, on the

CDC 7600, when T > 179,and, on the ICL 2980, when T > ’48. Also

in Figure 7.6, DAP versions (B) and (C) are slower than all the other

versions for a single function call. However, during each function

call in version (B) and (C), we are doing 64 and 32 simultaneous

function evaluations respectively in the grid search procedure.
In fact,from Table 13, the DAP versions (B) and (C) are more efficient

at finding the optimum values of the parameters when the starting

values are . furthest from the true values.

Our conclusions based on the DAP programs are limited by the

fact that the data for our comparisons was generated artificially.

However, we would expect that the results for real data to be very

similar. Figure 7.6 shows that DAP version (A) is very efficient

for large sample models. Consequently, we would expect that the

DAP would be appropriate for cross-section data models.

The application of a grid-search procedure in DAP versions (B)

and (C) produced significant improvements for scaled starting values

of the parameters. Thus we would expect similar improvements for

real data sets.

Lastly, we would like to make some general remarks concerning

the DAP. Clearly, the DAP should only be considered for a particular

computation when the ability to do that computation on a serial computer

is limited by the size of the data sets and the basic speed of the

serial processor. For any particular computation there is no

certainty that the DAP can provide a significant speed-up over a

serial processor because the computation could be highly non-parallel.

166

In this section of the research, we have shown that non-linear
optimisation does contain a signficant amount of parallel computation

and hence the DAP should be seriously considered for this type of

computation. To use the DAP rather than a serial computer requires

the user to learn DAPFORTRAN. Since DAPFORTRAN is an extension of

standard FORTRAN, this was a lot easier than learning a completely

new language. Moreover, DAPFORTRAN was found to be more powerful

and concise than standard FORTRAN. In fact, the conciseness of

DAPFORTRAN enhanced the comprehension of the code and shortened the

development time.

Figure 7.6

167

CHAPTER 8

AN AGGREGATE DEMAND MODEL FOR THE

UNITED KINGDOM, 1957-1967

8. A Demand Model

A more realistic model used was a small macroeconomic model

of the British Economy specified by David F. Hendry (1974). The model

consists of eight equations, two of which are identities, and 18
.f

unknown coefficients in its structural equations. ■

8.1 The Model (linear form)

In Hendry’s specification, only equations linear in both variables

and parameters are considred. The behavioural equations explain

consumers' expenditure on durable goods (Cd) and all other goods

and services (Cn), gross domestic fixed capital formation (I),

inventory investment (Iv), and imports of goods and services (M) .

Gross domestic product (Y) is determined by the usual accounting
identiy, and the model is closed by an empirical relation to determine

disposable income (Yd). G is real current government expendtiure,

X is real exports, T is real net indirect taxes, Pm is an index of

relative import prices and N is a dummy variable related to the

change in the timing of automobile licencing. Dummy variables for a

constant term and three seasonal shift factors are included in every

equation.

168

The F1ML estimates are as follows:

(i) Cd

(ii) Cn

(iii) I

(iv) Iv

(v) M

(vi) Yd

Y

AY

0.0816 Yd + 57.0921 N + 0.6530 Cd-ĵ - 0.1898 Cd2 + u

0.1458 Yd + 0.7733 Cr^ + u2

- 0.0690 AY + 0.7439 I + 0.1042 AY^ + 0.2584 I2 + u3

0.1299 AY + 0.4417 Iv + 0.2644 Iv2 + u4

0.5004 Iv - 4.8623 Pm + 0.2338

• /
0.2294 Y + 0.7127 Yd, +1 6

Cd + Cn + I + IV + G + X - T - M

The suffix is used to denote a corresponding lag» for example.

Cd„ = Cd2 (t-2)

Briefly, equation (i) is derived from a stock-adjustment,

expected (or permanent) income model, and includes a dummy variable

(N) for the annual vehicle registration letter. Equation (ii) is a

transformed permanent income equation. Equations (iii) and (iv) are

derived from flexible accelerator-capital stock adjustment models.

Equation (v) assumes linear price, income, and stock building effects,

and (vi) is a transformed distributed lag relationship.

169

It was decided as an exercise in estimating non-linear models

to change only the first equation so that it is linear in the logarithms

of the corresponding variables. In order to ensure that the model

has, in fact, a predominantly non-linear form it was decided to use

as its basic variables the logarithms of the economic variables.

8.2 Transformation of Model (non-linear form)

To transform the set of equations into non-linear form, we first

transform the variable to logarithemic time series (except those

variables with negative data) and then apply the exponential function

to the transformed variables again. Hence we have a new set of equations

that would correspond to equations (i) and (vi) but non-linear in both

parameters and variables. To eliminate the tv© identities, we sub­

stitute both the variables Y and AY in the stochastic equations
(i) to (vi).

Let the set of endogenous variables be:

yl = log Cd

y2 = log Yd

y3 = log Cn

y4 = log I

y5 = Iv

y6 = log M

and the set of exogenous variables be:

170

z4

z5

z6

z7

10

11

'12

'13

log Cd1

log C«^

N

log Cn^

log I1

log I2

IV1

log Pm

log Yd^

G + X - T

Now the model becomes:

(» » j . - - e 12v 2 - y u z i - y 12* 2 - y 13z3 - y 10

(ii) u2 = exp y3 - Q22 exp y2 - y 24 exP z4 " Y2o

(iiiJ u3 = exp y4 - B38iexP Y 1 + “ P y3 + exP y4 + y5 " exp y6 + Z10

" Zll} " Y35 eXP Z5 * Y36 GXP Z6 " y 3(12)Z12 _ Y30

171

(iv) u4 = y5 - 648*exP yL + exp y3 + exp y4 + y5 " exp y6 + Z10 " Z11J

Y47Z7 “ Y4(13)Z13 “ Y40

(v) u5 = expy6 - ^55y5 ” y58 exp z8 - y5 (3.1) ZL1 ~ Y50

(vi) u& = exp Y 2 ~ e67^exp yi + exp y3 + exp y4 + y5 “ exp y6 + Z10*

~ Y6(9)Z9 “ Y60

We have a total of 24 unknown parameters (18 coefficients plus 6

constants) to be estimated in this transformed model.

8.3 Treatment of Coefficients for Equation u^ and Constants for all

Equations

Let Ÿ = Cd
ZCd ZYd

and Y = Yd where Cd = ~— and Yd = --- •
1 T T

Then to obtain starting values for the parameters we linearise
the first equation in terms of the logarithmic variables by taking

a first order Taylor series expansion of the FIML estimates equation

in the form:

exp y1 = 0.0816 exp y2 + 52.091 + 0.6530 exp z^

- 0.1898 exp z2 + u^.

' V
12 P12

VY1
Tftis gives 9

172

where 8 is the FIML estimate of Yd in equation (i), that is, 12
012 = 0.0816-

Let z1 = Cd^ , Cd2 , where Cd^
fed!
-— and Cd2
T

ICd2

T

then y ^

Y12

and

again Yu / Y12» Y13 are the FIML estimates of Cd^ Cd2 and N

respectively.

The Hendry model includes seasonal dummies in each equation,

which contributes 18 coefficients to the total of 36 parameters whic

he estimates. It was considered that 36 parameters were too many to

estimate with the program in a full non-linear model, so that to
reduce the number of parameters to 18 it would be better to deseasonali

the data, and omit the seasonal dummies from the equations. This

required an adjustment to the starting values of the constant terms

on the equations which were computed as follows:

Let W x = y x - B12 Y 2 " *11Z1 - y 12Z2 ’ Y13Z3

and now calculate the quarterly means of

173

W^(l) = first quarter mean of

W^(2) = second quarter mean of

W^(3) = third quarter mean of

(4) = forth quarter mean of

and then take as initial values,

Yl(14)

Yl(15)

Y1(16)

W1(4)

Wj^d) - ^(4)

Wl (2) - Wx(4)

”l(3) ~ ^1(4)'

Now we have the following starting values of all the constant

coefficients:

For all the equations except equation (i) , we have

Yio = Yi0 + \ <yi(14) + Yi(15) + V i d e) 5'

where . y , i = l, 6 are the values of constants from the FIML

estimates.

For equation (i), we calculate as before but now take

Yi0 = Arithmetic mean of for the whole sample.

174

For the other unknown coefficients, the corresponding FIML estiamtes

are taken as their starting values.

8.4 Deseasonised Data Series

Let X = log x = oj + a t ̂ t o

We choose the dummy variables to be

A t + a2Q2t

Clt' Q 2t

+ °3e3t + Vt *

and Q-. where; 3t

and t = 1,

Then the ai

Now let

T.

are determined by multiple regression.

X* = x. a o - a 0 - a Ql*lt 2v 2 t 3v3t

and

175

Z*

1 3 - 1 - 1
1 - 1 3 - 1
1 - 1 - 1 3
1 -1 -1 -1

1 3 - 1 - 1

where the last three columns of Z* are i^t an<̂ ^3t
then

a = (Z*'Z*)_1(Z*'X),

where X is the data matrix.

Define

*1 *
‘2 *

3 *

and Z ^lt ®2t ^3t

then we have the adjusted data series of

= X - Z+a+

respectively.

176

8.5 NLMLE Specifications of the Model

(i) parameter list

coefficients B12 B22 B38 B48 P55 *67

NLMLE variables V1 V2 V3 V4 V5 V6

coefficients Y11 Y12 Y13 Y24 Y35 Y36

NLMLE variables V7 V8 V9 V10 V11 V12

coefficients Y3(12) Y47 Y4 (13) Y58 Y5 (11) Y69

NLMLE variables V13 V14 V15 V16 V17 V18

coefficients Y10 Y20 Y30 Y40 Y50 Y60

NLMLE variables V19 V20 V21 y22 V23 V24

endogenous variables Y1 y2 y3 y4 y5 y6
NLMLE variables V25 v26 V27 V28 •^29 V30

exogenous variables Z1 Z2 Z3 Z4 z5 Z6 Z7

NLMLE variables V31 V32 V33 V34 V35 V36 v37

exogenous variables Z8 Z9 zio Z11 Z12 Z13
NLMLE variables v38 v39 v40 V41 y42 v43

Stochastic equations U1 U2 U3 U4 U5 U6
NLMLE equations F1 F2 F3 F4 F5 F6

177

(ii) Equations

The transformed stochastic equations become:

F _ = v„_ — v. * v -v * v “ V * v — v * v — v1 25 1 v26 / V31 8 V32 9 33 19

F2 - EXP v 27 - V2 * EXP v 26 - V K> * EXP V34 * V20

F3 - EXP v23 - v3 • (EXP v25 + EXP v2, + EXP v28 + v29 - EXP

+ v40 - V41> - V11 * Exp v35 - V12 * EXP v36 ’ V13 * v42 " V21

F4 - v29 - v4 * (EXP v 25 - EXP v 27 + ^ ^28 + v 29 ' EXP V 30 + v 40

" v,.) ■ V * v — V * v — V 4l' 14 37 V15 43 22

F — EXP v_ — v * v — v * EXP v - v * v - v 5 30 5 v29 V16 v38 V17 41 23

F6 ‘ EXP v26 ' v6 * (EXP v25 + EXP v27 + EXP V28 + V 29 " EXP V30 + V4o’

- vis * EXP v39 - v24

8.6 Results

For the BHHH procedure, the model converged after 116 iterations
with 222 function evaluations (Tables la and lb).

log-likelihood function = - 639.6143

CPU time 743 seconds (CDC 7600)

173

Table la

Coefficients Starting
Values

Parameter
Estimates

Standard
Errors T-Ratios

612 0.9432 0.6417 0.6947 0.9237

CMCM
CÛ 0.1458 0.1276 0.0750 1.7016

B38 -0.0690 -0.0796 0.1416 -0.5621
P48 0.1299 0.0092 0.0292 0.3148
*55 0.5004 0.4491 0.1629 2.7574

CÛ. 0.2294 0.3503 0.1467 2.3881
Y 1 1 0.6484 0.7271 0.2101 3.4609

Y12 -0.1872 -0.1279 0.3822 -0.3345

Y13 0.1374 0.1115 0.0566 1.9703
Y24 0.7733 0.8061 0.1160 6.9483
Y35 0.7439 0.7855 0.3609 2.1762
Y36 0.2584 0.1974 0.3520 0.5607
Y3(12) 0.1042 0.1104 0.1320 0.8361
^ 4 7 0.4417 0.3360 0.2349 1.4302
Y4 (13) 0.2644 0.3580 0.2592 1.3814
v s e -4.8623 -4.6153 5.0589 -0.9123
Y5(ll) 0.2338 0.2420 . . 0.0442 5.4709
^69 0.7127 0.5673 0.1587 3.5742 .

Table lb

Constants Starting
Values

Estimated
Values

Y10 2.2292 -3.0199

Y20 235.5893 191.2679

Y30 16.0904 36.7463

Y40 13.5268 96.1541

Y50 483.5083 417.2354

Y60 58.2551 48.3693

179

NLMLE Estimates of the model are:

uL = log Cd - 0.6417 log Yd - 0.7271 log Cd̂ ̂+ 0.1279 log Cd2

- 0.115 N + 3.0199

u2 = exp (log Cn) - 0.1276 exp(log Yd) - 0.8061 exp(log Ci^) - 191.2679

U3 = expdog I) + 0.0796[exp(log Cd) + expdog Cn) + expdog I)

+ Iv - expdog M) + (G + X - T) - Ŷ j - 0.7855 expdog 1̂)

- 0.1974 expdog I2) - 0.1104 (Y^ - Y2) - 36.7463

U4 = Iv - 0.0092 [exp (log Cd) + exp (log Cn) + exp (log I) + IV

- expdog (M) + (G + X - T) - Yj - 0.3360

- 0.3580 Iv2 - 96.1541

u 5 = expdog M) - 0.4491 Iv + 4.6153 expdog Pm) - 0.2420 Y^

- 417.2354

u6 = expdog Yd) - 0.3503 [exp (log Cd) + exp (log Cn) + expdog I)

+ Iv - expdog M) + (G + X - T)J - 0.5673 expdog Yd^

- 48.3693

180 -

For the method of GMP with analytical derivatives (NAG), the
model converged after 242 iterations with 284 function evaluations.

log-likelihood function = - 639.6141

CPU time = 2068 seconds (CDC 7600)

The estimated parameters (with the same starting values as BHHH)

are shown in Table 2a and the estimated constants in Table 2b.

Table 2a

Coefficients Parameter
Estimates

12
*22
*38
3 48
*55
*67
Y11
Y12
Y13
Y24
Y35
'36
Y3 (12)
Y47
Y4 (13)
Y58
Y5 (11)

Y69

0.6401
0.1268

- 0 .0803
0.0092
0.4468
0.3523
0.7275
-0.1272
0.1114
0.8074
0.7864
0.1966
0.1105
0.3365
0.3568
-4.6243
0.2420
0.5659

181

Table 2b

Constants Estimated
Values

Y -3.0168Y10
^20 190.2829
Y 36.5368r30
Y 96.2071'40
Y50 418.3268
y ^ 43.3531'60

From the results, if we compare the CPU tiroes, the BHHH procedure

seems to be a more efficient method than GMP. For this particular

model, it is faster than GMP by a factor of 2h in terms of computational

time.

The log-likelihood function values and the parameter estimates

of the two methods are reasonably close and give evidence that the

model does converge to a strong local optimum. The time taken to
converge for this model is sufficiently large as to discourage much

experimentation with models of this size.

182

CHAPTER 9

GENERAL CONCLUSION

In this research, we have successfully developed a general

differentiation program and applied it to non-linear econometric

models. In particular, an estimation program (NLMLE) was written to

estimate non-linear simultaneous equation systems. A serial version

of this program was implemented on the CDC 7600 and ICL 2980 computers.

In order to improve the efficiency and decrease the computational

time, a parallel version of the BHHH method was developed on the ICL DAP.

In the course of this, three versions of the estimation program were

designed which exploited the DAP architecture and at the same time

improved the efficiency compared with the serial version. The three

parallel versions were:

(i) A matrix mode implementation for models with up to 4096

observations.

(ii) A vector mode implementation for models up to 64 observations.

(iii) A matrix and vector modes implementation for models with

between 65 and 128 observations.

For versions (ii) and (iii), the DAP.was 'partitioned* into 64

and 32 'parallel processors', respectively, according to the number

of observations. The advantage of doing this was to allow us to evaluate

multiple step-sizes simultaneously in the line search during the

optimisation porcedure. Hence the number of function calls was only

one per interation; the algorithm also determines the best likelihood

function value with the optimum step-size in one function call.

183

We have demonstrated that the DAP i? relatiyely .more efficient

when the sample size of the model increases. The optimum performance

was for models having close to 4096 observations. For this the DAP

was approximately 30 times faster than the CDC 7600 and 127, times

faster than the ICL 2980 computers. The most suitable application

for such classes of models are panel data with large numbers of

members of the sample in each cross-section.

Although inversions (ii) and (iii) , the DAP time per function

call was longer than the serial version, we were able to evaluate

multiple step-sizes in the line search simultaneously. This meant

we were able to reduce the number of iterations required for the model

to converge since we could always locate the optimum step-size with

the least function value (minimisation). If a model is not well behaved

or the starting values of the parameter estimates are too far from

the optimum, then it may take many iterations and function evaluations

to converge, but on the DAP we showed that the time on each iteration

could be much reduced by using multiple steps.

The serial version of the program worked well on the class of

non-linear econometric models used to test the method. The function
specification of the differentiation program enabled us to define any

econometric functions whether they were non-linear in parameters,

variables, or both. Arithmetic functions such as LOG, EXP, SINE,

COSINE and ARC-TANGENT were provided. Thus it avoided the task of

data transformation or parameter mapping.

The differentiation program provided analytic derivatives of the

log-likelihood function which could be applied in a gradient—type or

quasi-Newton type optimisation procedure. Also the modified one­

dimensional line search procedure was very efficient compared with

104

other methods (see Chapter 2) and the various gradient stopping

criteria helped to improve the efficiency of the estimation program.

We have also demonstrated that the BHHH method was relatively

more efficient for the class of models we have tested. When the

size of the model increased and the model became more complex, the

BHHH method performed better than the GMP (analytical derivatives).

So the BHHH method generally worked well when:

(i) the sample size was large;

(ii) the error variance was relatively small;

(iii) the model was complex and the parameter set was reasonably

large;

(iv). the model was correctly specified;

(v) the starting values 0^°^ must be close to §*•

Generally, for this class of models, the BHHH performed best,

the GMP (with analytic derivatives) came second and GMP with numerical

approximation to the derivatives performed worst. We recommend using
BHHH or GMP if the analytic gradient of the log-likelihood function

can be obtained easily. When the model is complex, BHHH would be a

better choice.

Lastly, as we expected the BHHH method worked equally as well

for other classes of model (see Chapter 8).

Thus we have written an efficient estimation program for general

non-linear econometric models.

To improve the performance and efficiency of this program (perhaps

for future research), we would suggest simplifying some derivative

185

functions generated from the differentation program. This will

avoid unnecessary repetitive calculations. Although we have done

some simplification, these were relatively simple and trivial cases.

A good, general and effective simplification routine would help to

reduce the computational time substantially.

Another suggestion for the improvement is by using random

directions in the DAP program. DAP is efficient at locating the

optimum direction with the optimum step to give the optimum function

value. All these could be done in parallel.

One final suggestion is to derive a completely

new estimation procedure that would 'increase the degree

of parallelism on the DAP. Research of this kind has been going on,

especially on a variable-metric method.

It is our hope that ICL will build a 8 Mbyte DAP in the future.

If this were done we could estimate a wider range of non-linear models,

and perhaps by then, we could do more parallel computations on this

kind of application. ' •

It is also hoped that we can extend the present serial version

of the estimation program, for example, by inserting some statistical

tests. It might be worthwhile to program other parametric estimators

such as non-linear three stage least squares.

186

APPENDIX A

Cholesky Factorisation

Consider the Cholesky factors of a modified matrix H
given by

(k+1)

H <lwl> - H (k> + n1z lk)z (k) ' + n2ulklu (k- (Al)

We consider the case using the modification

H (k+D _ (k) (k) (k) '« = H + a z . z

_ y (k) (k) (k) ' _ (k) (k) '— li D L + Oz z (A2)

The diagonal elements of D will be denoted by d^, ..., d^.

Given that the initial estimate of H is positive definite,

then the succeeding estimates are ‘also positive definite regardless

of the rounding error incurred. Two points must be emphasised:

(a) Unless is positive definite the Cholesky factorisation
need not exist.

(b) Even if the Cholesky factorisation does not exist the numerical

stability of any algorithm for modifying the triangular factors

cannot be guaranteed when is indefinite. Thus it is

generally unsatisfactory to modify the Cholesky factors and

then alter any negative elements a-posteriori since the accuracy

of the factorisation could be in doubt.

I

187

Equation (A2) could be written as:

,o«i> , (A3)

where

L (k)D(k),V = z(k)

To avoid the calculation of square roots, a new V is defined by the

solution of the system of equations

L (k)V = Z (k)

so that

V = D (k)l*V

Equation (A3) can further be written in the form

(Ml

where

A (1> = . - . W

Define as the (n-j+1) * 1 vector of the last n - j + 1

elements of V (V ^ = V). This implies that

.(1) _ 1 i (1 + ov'v)1*
V'V

provided the square root is real. The negative sign is always chosen

since A ^ is then positive definite. The equation o can be

188

equivalently written as

a (1)
a

1 + (1 + av'l D(k)] _1V)is
(A5)

In the next n - 1 steps A ^ is reduced to lower-triangular form

by a sequence of orthogonal matrices w ^ , J - l , 2, n - 1 , such

that

Î00 »<1>H (1>U (2> r/j (n “1)L = A W W , . . . , W

where L is a lower-triangular . matrix. Such a reduction can be

achieved by the use of elementary Hermitian matrices of the form

W (̂ = I -
0 ' ! „(3) ’

— — —“ 0 J u

1 c. u. -

with u (” an (n-j+1) x 1 vector and

T<j> -

For a general matrix A, with elements a^, the first stage of the

reduction process is defined by the equations

u(1> - (aL1 ± r l l) ' ai2' a13' **" ain}

where

.(1)' n
L a?.
3-1 13

and hence

189

x,u - (,'1 , 2 t , 11,.11i-1

The first row of A W ^ is then of the form (± y ^ , 0, 0) .

If these results are applied to the special case of the matrix A^^

under consideration, the first stage of the desired reduction process
is

T(1> = i T (1)" ± Y(1, e (1, r 1

where

,U) . ' (1) 2 1 - a

and

,<1>4 (i)2 2 ; 2 (l)2c v E v. + 0-
1 j=2 3

_ (1)~2 -1 * _-l. . fl(l)2= a v.d, E d. v. + 6
1 1 j-2 > 3

The elements of u^^ are by definition

l(1) = e (1) ±

u.
3
(1) a (1)Vlv. 1 3

j = 2, 3, n

The sign before y ^ is always chosen to be the same as that of 0 ^

so as to' minimise rounding error.

190 -

A ^ ' W ^ is of the form:

A (1)W (1)
*-ïal

■ -

0
Lr
1 *C2)1 A J

where

a <2) = I , - o (2)v(2)v(2)'n-1

with

. o(2> =. 0 (1>{ i + v (1) o (1>(v1 + v (i) ’ u(1 ,)J

- . « . W i n , 111!

Similarly can be shown to be

■ < 1 > + +

= V !1)'u(1)o (2)

? 2 (1 - Y)
± Y,v1 1

which can be written as

ß(1) =

Note C D _that if = 0 then equation (A6) implies that $ — 0
Also note that u. is an element of u. 3

(A6)

191

During the algorithm only 3 ^ need be calculated. Post­

multiplication by , j = 2, . n, leaves the first row and column

of unaltered. Extending the definitions of 3 ^ and

Y ^ to 3 ^ and y ̂ respectively, can be written as

i<k+1) ,

where

£00

—
i

1+

•
■< p 0 0

1

±y 12)

i
i
iii
l, - i- .. . ' “ '

11
1

iii
1
1

d - ^ a y s i I a ^ 5 (2 , v (3)
|

i
i
iii
ii

(

1
11
1

ii
ii U (n)

1 1 ^,

which leads to

(kJ'sfOOD b

i ! o.................... 01
1

i r
i i

! 1 !
1
1
1
1

e (1> v (2 > j

I
1
1

B (2) v (3) !
YU)d1 j

11
|

v ‘ 2> a 2 j
j c>

111
1 1
1 1
1 • • • 1

1

1 1 —

± y (1)d j

±v(2)d^

-Y

0
(n)

192

This will be written as

D lk>V k) . £<k»D!k+1)‘’

Then

H(k+n . L(k)£ (k)D(kti)f;(k)'L (k)'

so that the required is given by

L (k+1) = L (k)£(k)

The general i/k ̂ and l/k ̂ are dense lower-triangular matrices and- .

straightforward multiplication would require n^/6 + 0(n) multipli­

cations. The method described above requires 3n^/2 + 0(n) multipli-

cations to obtain the modified factors.

It is clear that the matrix H^k+^ will be positive definite

unless given by equation (A5) is imaginary. In this case two

possible strategies can be followed to give a positive definite of
(k+1)H :

(i) The parameter a can be made less negative.

(ii) The size of the diagonal elements of D can be increased.

A convenient modification of the formula for amount to

alter H (k+1) using (i) and (ii) can be determined from the expression

0(1) ________________ a___________
1 + (1 + aV'[D^k)] -1 V)1*

o
o

o
o

o
o

o
o

191 -

APPENDIX B
NLMLE Listing
PR OG R A M FIMLX '
LO GIC AL IEND
LO GI CA L I R E C . L T H E T A , J A C O B
LO GI CA L D E R I V . D E R C U V , S U C C E S S
INT EG ER *8 ITIME ;
IN TEG ER I I F L A G , I R E S U L T
COMMON x (1o o ,5 0) :
CO MMO N / A 1 / N L I S T (4 0 0 0) , N P R I 0 R (3 O O) , N P R S (3 0 0) ,N D E R (3 0 0 , 6 0) , N A DR (3 00

I) , L I S T E N (2 0) , J U M P A D (2 0 , 5) ,J C (2 0) ,C O N S (200) J
COMMON /A2/ V M U (1 0 0 , 5 0) , R (5 0 , 5 0) , D (5 0) , T E M P (5 0)
COMMON /A3/ L T M A X . L M A X F , J T M A X F , L T F U N C (5 0) , J M A X F , J F U N C (5 0) ,

I I C O U N T , D E T F . D E T J T I
COMMON /A4/ N Q . N B . N I ,M F U N ,N T ,K ,K V A R ,K F U N C , K P A R A M , I M E T H , I S T E P , N I N T F ;
COMMON /A5/ L T H E T A , J A C O B ,I R E C ,M A X A D ,M A X F ,M A X C O N ,I V E C T (7 0) ,IADC, \

I I A D C D , I F U N C , N F U N C , I T A N , N T A N , N F L A G ,L D I F F ,I C O N (4) '
COMMON I k S l V L F (3 0 0 ,1 0 0) , N D E R S (2 0 , 5 0) , N D E R J (3 0 0 , 6 0) , N D E R J S (2 0 , 2 0) ;
COMMON /A7/ N D J (1 0 , 5 0,10)
COMMON /A8/ R E S (20,20)
COMMON /N AMES/ N A M E (2 0) I
REAL N D E R S ,N D E R J S !
DI M E N S I O N V (2 4) , V M U S (2 4)
DIMENSION DELTA(50) ,HESL(276),HESD(50),W(1 45) ,GR(50)
D I M E N S I O N ITEXT(80)
DI M E N S I O N I S Y M (200)
E X T ER NA L B H H H ,E0 4 E A Z
EXT ER NA L F U N M L ,F U N S E T ,M O N I T
LO GIC AL LOADLD
IIFLAG=0

IMETH = 0 BHHH
IMETH = 1 GMP A N A L Y T I C A L D E R I V A T E S
IMETH = 2 GMP N U M E R I C A L A P P R O X I M A T I O N

ISTEP = 0 G S T E P
ISTEP - 1 BARD

CALL Q M C M I L L T I M E (I I F L A G ,I T I M E ,IRESULT)
R E A D (5 » 10) I M E T H , I S T E P

10 F O R M A T (2014)
MAXF=0
NFUNC=0
KC = 0
IADC=1
IRAN=0
MAXC 0N = 0
LTH ET A= .FALSE.
JA CO B=. FALSE.
R E A D (5,11) N B , N I , N I N T F , N Y , N Z , N P A R A M . N T . N L , N R , N T R A N

11 F O R M A T (2014)
R E A D (5,151) (N A M E (j) , J = 1 . N P A R A M)

151 F O R M A T (20A4)
NQ=NB+ NI
NA *N T- NL
N0AP1=NL+1
CALL I N P U T (N A ,N 0 A P 1 ,N V A R ,N R ,NTRAN)
W R I T E (6,100) N Q . N A . N L , N P A R A M

100 FORMAT(1 HO,14,’ EQUATIONS' ,18,' OBSERVATIONS',18,' LAGS',18,’ PARA
IMETERS')

o
o

o
o

194 -

IMETERS')

READ IN I N I T I A L V A L U E S OF P A R A M E T E R S
PUT P A R A M E T E R S , E N D O G E N O U S V A R I A B L E S IN V E C T O R

R E A D (5,12) (V (I) ,1 = 1 .NPARAM)
12 F 0 R M A T (8 F 1 0.4)

I P A R A M = N P A R A M + N Y
DO 105 1 = 1 ,IPARAM

105 IV EC T (l) = I
W R I T E (6,107) (v(l) ,1=1 ,NPARAM)

107 F O R M A T (1 H O , ' C O E F F I C I E N T S */1HO , (8 F 1 6.5))
IF(NQ .LE. 20) N F U N C * 2 0
N A D M A X = 1
N S= NQ
I F (N I N T F .NE. 0) N S = N Q + N I N T F
DO 106 N= 1 ,NS
C AL L R D C A R D (I T E X T)
C A L L F R M L (I T E X T , N F U N C , N , I A D C ,I E N D ,M A X C O N ,M A X F ,KC,ISYM)
I K = I A D C - 1
L I S T E N (N) = I K
¥ R I T E (6,200) (N L I S T (j) ,J = N A D M A X ,IK)

200 F O R M A T (1H ,3014)
N A D M A X = I A D C
IF(KC .EQ. 0) GO TO 104
JC (N) *KC
KC = 0
GO TO 106

104 J C (N) =0
KC = 0

106 C O N T I N U E
I C O N (1)= M A X C O N
NS =NQ
I F (N I N T F .NE. 0) N S = N Q + N I N T F
max ad=l i s ten(n s)
I F (l M E T H , G T . 0) GO TO 405
CA L L Q M C M I L L T I M E (I I F L A G , I T I M E , I R E S U L T)
W R I T E (6 ,99) ITIME
CA LL B H H H (N P A R A M , V , V M U S)
CA LL Q M C M I L L T I M E (I I F L A G , I T I M E , I R E S U L T)
vri te(6 ,gg) itime
stop

405 N = N P A R A M
S M A L L = S Q R T (X 0 2 A A F (X T O L))
DO 410 1 = 1 .NPARAM

410 D E L T A (I) = S M A L L
IC0UNT=1
IFAIL=0
L O A D L D = . T R U E .
X T 0 L = 0 .001
E T A = 0 .9
S T P M A X = 1.0
I L = N * (N - 1) / 2

195

I W = 7 * N + 1
I¥¥=6*N+1
M A X C A L = 5 0 0
I P R I N T = 1
CALL Q M C M I L L T I M E (I I F L A G ,I T I M E ,IRESULT)
¥ R I T E (6,99) ITIME

99 F 0 R M A T (1 H 0 , 'TIME = ’ ,120)
CALL F U N M L (N P A R A M , V , F U N)
IC OU NT= ICOUNT+1
F U N = F U N - 0 . 8 * (A B S (F U N))
IF(I ME TH .GT. 1) CALL E 0 4 C D F (N P A R A M ,V ,F U N ,G R ,H E S L ,I L ,H E S D ,L O A D L D ,

I X T O L , D E L T A , E T A , S T P M A X , ¥ , I W ,F U N M L ,F U N S E T ,M O N I T ,I P R I N T ,M A X C A L ,
IIFAIL)
I F (I M E T H .EQ. 1) CALL E 0 4 D D F (N P A R A M ,V ,F U N ,V M U S ,H E S L ,I L ,H E S D ,

L L O A D L D , X T 0 L , E O 4 E A Z , E T A , S T P M A X ,¥,I ¥ ¥ ,F U N M L ,B H H H ,M O N I T ,I P R I N T ,
L M A X C A L ,IFAIL)
CALL Q M C M I L L T I M E (I I F L A G ,I T I M E ,IRESULT)
¥ R I T E (6,99) ITIME
I F (I M E T H .GT. 1) ¥ R I T E (6 , 4 3 0) (G R (I), 1 = 1 , NPARAM)

43 0 F O R M A T (1 H O , ’D E R I V A T I V E F R O M G - M ' / 1 X ,12F1 0.6)
I F (I F A I L .EQ. 0) GO TO 43 6
¥RITE(6,431)

431 F 0 R M A T (/ / , 1 X , 'ERROR E X I T S F R O M NAG ROUT I N E BECAUSE')
GO 1 0 (4 1 5 , 4 1 6 , 4 1 7 , 4 1 8) , I F A I L

415 ¥ R I T E (6 , 4 3 2)
43 2 F O R M A T (1 H O ,'A P A R A M E T E R IS O U T S I D E 1ST E X P E C T E D RANGE')

GO TO 436
416 ¥RITE(6,433)
433 F O R M A T (1 H O , 'M A X I M U M N U M B E R OF ITERA T I O N S EXCEEDED')

GO TO 436
417 ¥ R I T E (6,434)
434 F 0 R M A T (1 H O , ’THE A L G O R I T H M DOES NOT SEEM TO BE C O N V E RGING')

GO TO 436
418 ¥ R I T E (6 ,435)
435 F O R M A T (1 H O ,'INITIAL S E T T I N G OF F U N C T I O N SEEMS U N R E L I A B L E ’)
436 ¥RITE(6,437) (V (I),1 = 1 ,N P A R A M)
437 F O R M A T (' P A R A M E T E R E S T I M A T E S '/(8 X ,10 F 1 2.6))

•. ¥ R I T E (6,438) FUN
438 F O R M A T (1 H O , 'LOG L I K E L I H O O D F U N C T I O N = ',F12.6)

STOP
END

S U B R O U T I N E F U N S E T (N P A R A M , V ,S TEPC,FVEC)
D I M E N S I O N V (N P A R A M) ,F V E C (N P A R A M) ,S T E P C (NPARAM)
DO 20 1 = 1 .NPARAM
S T O R E = V (I)
V (I) = V (I) + S T E P C (I)
C A L L F U N M L (N P A R A M , V , F U N)
F V E C (l) = F U N
V (I)=S T O R E

20 C O N T I N U E
RE T U R N
END

196

SU BR O U T I N E M O N I T (N P A R A M ,V ,F U N ,G R ,H E S ,I L ,H E D ,NCALL)
D I ME NS IO N V (NPARAM) ,GR(NPARAM) ,HED(NPARAM) ,HES(lL)
IF (NC ALL .EQ. 0) GO TO 10
W R I T E (6,2) N C A L L

2 F O R M A T (1 H O ,* A F T E R ’ , 1 5 , ’ F U N C T I O N C A L L S ’)
GO TO 20

10 W R I T E (6,1)
1 -F O R M A T (1 H O ,' F I N A L S O L U T I O N IS ’)

20 WR ITE (6, 3) (V (I) ,1=1 ,NP ARAM)
3 F 0 R M A T (1 H 0 , ’ P A R A M E T E R E S T I M A T E S ' / (8 X , 1 0 F 1 0 . 6))

G N O R M = 0 .0
BIG = HED(1)
SMA LL =B IG
DO 30 1 = 1 .NPARAM
Dl-HED(I)
g n o r m = g n o r m + g r (i) * g r (i)
IF(D1 .GT. BIG) BIG=D1
IF(D1 ,LT. SMALL) S M A L L = D 1

30 CO NT IN UE
g n o r m =*s q r t (g n o r m)

• ¥RI TE (6 ,3 5) G N O R M , B I G , S M A L L
35 F O R M A T d H O . ' G R A D I E N T N O R M ' fF10.4,2X,' AND C O N D I T I O N N U M B E R ’ ,

+E 10 .4 , 3 X , E 1 0 . 4)
W R I T E (6,4) FUN

4 F O R M A T (1 H O ,’ F U N C T I O N V A L U E = ’ ,F12.6/)
RE TUR N
END

O
 O

 O

O
 O

 O

O
 O

 O

O
 O

 O
197 -

SU BR O U T I N E B H H H (N P A R A M ,V ,V M U S) i
LO GI CA L I R E C , L T H E T A , J A C O B j
LO GIC AL D E R I V , D E R C U V , S U C C E S S J
LO GI CA L I F OK
c o m m o n x (1o o ,5 0) :
CO MMO N / A 1 / N L I S T (4 0 0 0) , N P R I 0 R (3 0 0) , N P R S (3 0 0) ,N D E R (3 0 0 ,60) ,NADR(300

I) , L I S T E N (2 0) ,J U M P A D (2 0 , 5) , JC(20) , C O N S (200) ;
COM MON /A2/ V M U (1 0 0 , 5 0) , R (5 0 , 5 0) , D (5 0) , T E M P (5 0) ;
COM MON /A3/ L T M A X . L M A X F , J T M A X F ,L T F U N C (5 0) , J M A X F , J F U N C (5 0) ,

I I C O U N T , D E T F , D E T J T
COM MON / H l N Q , N B , N I , M F U N , N T , K , K V A R , K F U N C , K P A R A M , I M E T H , I S T E P , N I N T F '
CO MMO N /A5/ L T H E T A , J A C O B , I R E C ,M A X A D ,M A X F ,M A X C O N ,I V E C T (7 0) ,IADC,

I I A D C D , I F U N C . N F U N C ,I T A N ,N T A N ,N F L A G ,L D I F F ,I C O N (4)
COMMON / k S / V L F (3 0 0 , 1 0 0) ,NDERS(20,50) , N D E R J (3 0 0 , 6 0) , N D E R J S (2 0 , 2 0) î
CO MMO N / k l / NDJ(1 0,50,1 0) !-
COM MO N /A8/ R E S (2 0 , 2 0) !
COM MO N /N AMES/ NAME(2 0)
REAL N D E R S ,N D E R J S J
E X T ER NA L FUNML t
D I M E N S I O N V (N P A R A M) , V M U S (N P A R A M) î
D I M E N S I O N S E R (5 0) , T R A (5 0) i
E E = 1 . E - 1 0
IM AX= 300
S T E P = 1.0
T O L = 1 . E-3
L T H E T A = .FALSE. ■
JA CO B * . F A L S E . ■;
MFU N= 0 ì
M A X S Q Z = 1 0 î
JSQZ=0
S U C C E S S * . F A L S E .
K P A R A M * N P A R A M + N Q :
I F (IM ET H .GT. 0 .AND. IC O U N T .GT. 1) GO TO 999 |

D I F F E R E N T I A T E W.R.T.

CA LL D I F I M L C n PARAM,V)
IF(NQ .GT. 10 .OR. K P A R A M

D I F F E R E N T I A T E ¥,R.T.

DO 150 K 1= 1 .NPARAM
K*K1
LT HE TA *. TR UE.
CALL D I F I M L (N P A R A M . V)

E N D O G E N O U S V A R I A B L E S TO GET J A C O B I A N

.GT. 50) GO TO 999

PARA M E T E R S

I»
;

D I F F E R E N T I A T E J A C O B I A N W.R.T. P A R A M E T E R

JAC OB* .T RU E.
CAL L D I F I M L (N P A R A M , v)
JAC OB* .F ALSE.

150 C O N TI NU E

E V A L U A T E ALL D E R I V A T I V E S AND E Q U A T I O N S AT EACH TIME PERIOD

999 DO 1000 I T E * 1 , IMAX

o
 o

 a
198 -

I F (I M E T H .GT. 0) GO TO 158
ICOUNT=ITE
¥ R I T E (6 ,1001) ITE

1001 F 0 R M A T (1 H O ,'I T E R A T I O N N U M B E R ’ ,13)
I F (ITE .GT. 1) GO TO 175

158' C A L L F U N M L (N P A R A M , V , F V)
F U N = F V
GO TO 176

175 FUN=FUNNEW
176 DO 170 K 1 = 1 .NPARAM

S U M = 0 .
DO 180 IT = 1 ,NT

180 S U M = S U M + V M U (l T , K 1)
V M U S (K 1) = SUM

170 C O N T I N U E
I F (I M E T H .GT. 0) R E T U R N
W R I T E (6 ,800)

800 F O R M A T (1 H O , 'G R A D I E N T VM U S ')
W R I T E (6 ,801) (V M U S (J), J = 1 . N P A R A M)

801 F 0 R M A T (1 H ,8(El 2 . 6 , 2X))
V N 0 R M = 0 .0
DO 288 1 * 1 .NPARAM

288 V N O R M = V N O R M + V M U S (l) * V M U S (i)
vno rm*sqr t(vno rm)
W R I T E (6 , 2 8 9) V N O R M ' *

289 F 0 R M A T (1 H 0 , 'G R A D I E N T N O R M * ',F12.6)
I F (V N O R M .LE. 1.E-4) GO TO 1200
I F (I T E .EQ. 1 . A N D . N P A R A M .LE. 10) CALL G C H E C K (N P A R A M ,V ,F U N ,F U N M L

CO MP U T E R I J = V M U (P R I M E)VMU

D D = 0 .
DO 195 1 = 1 .NPARAM
DO 190 J * 1 . N P A R A M
SU M=0 .
DO 185 M= 1,NT

185 S U M = S U M + V M U (M , I) * V M U (M , J)
R (I , J) = S U M

190 C O N T I N U E
195 C O N T I N U E

I F (N P A R A M .GT. 10) GO TO 501
¥ R I T E (6 ,802)

802 F O R M A T (1 H O , ' H E S S I A N M A T R I X RIJ')
DO 302 1 = 1 .NPARAM
¥ R I T E (6 , 1 0 9) (R (I , J) ,J = 1 ,1)

109 F O R M A T (1H ,8(E12 . 6 , 2X))
302 CONTINUE
501 C A L L I N V E R T (R , N P A R A M , D E T)

I F (N P A R A M .GT. 10) GO TO 502
• ¥ R I T E (6 ,804)

80 4 F O R M A T (1 H O ,'RIJ (I N V E R S E) ’)
DO 303 1 = 1 , N P A R A M
¥ R I T E (6 , 1 0 9) .(R(l, J) ,J=1 ,1)

303 C O N T I N U E
C
c C O M P U T E D I R E C T I O N D

o
n
n

o
n
o

199-

502 DO 200 1 = 1 ,NPARAM
SUM=0.
DO 210 J=1,NPARAM

210 SUM=SUM+R(l,j)*VMUS(j)
D(l)=SUM
dd=d d+d (i)*d (i)

200 CONTINUE
DD=SQRT(DD)

TEST FOR CONVERGENCE OF PARAMETER VECTOR THETA
DO 270 1=1.NPARAM
IF(ABS(D(I)) .GT. TOL*(ABS(V(I))+T0L*10.)) GO TO 600

270 CONTINUE
SUCCESS3 .TRUE.
IF(ISTEP ,EQ. 1) GO TO 700
GO TO 685

CONVERGENCE NOT ACHIEVED,DO LINEAR STEPSIZE SEARCH USING
B+ALAMB*D VECTOR

600 ALAMB=AMIN1(1.0,STEP/DD)
DO 275 1 = 1 .NPARAM
TEMP(I)=V(I)

275 CONTINUE
GRAD=0.
DO 280 1=1.NPARAM
GRAD=GRAD+D(I)*VMUS(I)

280 CONTINUE
IF(ISTEP .EQ. 0) GO TO 680
CALL BARD(FUN,FUNNEW,GRAD,ALAMB,MAXSQZ,IFOK,NSQZ,JSQZ , V,
INPARAM.FUNML)

700 WRITE(6 ,2000) FUN,FUNNEW,NSQZ,ALAMB,GRAD
2000 FORMATC FUN=' ,F12.5,4X, ' FUNNEW3' ,FI 2.5,4X,'NSQZ=’ ,14,'STEPSIZE-'

I,E12.5.4X,'GRAD=',E12.5)
GO TO 690

680 CALL GSTEP(FUN,FUNNEW,GRAD,ALAMB,NPARAM,V,FUNML,IFOK)
685 ¥RITE(6 ,1999) FUN,FUNNEW,ALAMB,GRAD,MFUN
1999 FORMAT(' FUN= ,,F12.6,4X,, FUNNEW3' ,F12.6 ,4X,' STEPSIZE3' ,E12 . 6 ,

+4X, ' GRAD3 ',E12.6,4X,' MFUN=',I4)
DD=ALAMB*DD
SN=AMAX1(STEP/2.0,2.0*DD)
STEP=AMIN1(SN,2.0*STEP)

690 WRITE(6 ,2001) (D(I), 1 = 1 ,NPARAM)
2001 FORMAT(’ DIRECTION'/(8 X ,10E12.5))

WRITE(6 ,2002) (V(I), 1 = 1 ,NPARAM)
2002 FORMATC PARAMETER ESTIMATES'/(8 X,10E12.5))

IF(SUCCESS)G0 TO 1200
if(.NOT. IFOK) GO TO 1 500 -
IF(ISTEP .EQ. 0) GO TO 1000
DO 710 1 = 1 .NPARAM

7 1 0 v (i)=te m p(i)-alamb*d (i)
1000 CONTINUE

WRITE(6 ,2003) ITE
2003 FORMAT(/' CONVERGENCE NOT ACHIEVED AFTER',14,’ ITERATIONS.'/)GO TO 1026

o
 o

 o

o

o

a

o

n
o

n
200 -

C O N V E R G E N C E]
1

1200 W R I T E (6 ,2004) ITE
2004 F O R M A T C C O N V E R G E N C E A C H I E V E D A F T E R ’ ,1 4 , ’ I T E R A T I O N S . ’/)
1026 ¥ R I T E (6 ,2005) M F U N
2005 F O R M A T C N U M B E R OF F U N C T I O N E V A L U A T I O N S - ’ ,15/)

IF(ITE .GT. 1) F U N = F U N N E ¥
¥ R I T E (6 ,2006) FUN

2006 F O R M A T C LOG L I K E L I H O O D F U N C T I O N = ' , F 1 5 -7/)

CO MP UTE S T D - E R R O R S AN D T - R ATIOS
OUTPUT S T A T I S T I C S

DO 3080 J= 1 ,N P A R A M
ser(j)=sqrt(r (j ,j))
IF(. N O T . IFOK) V(J) = T E M P (j)
tra(j)*v (j)/s e r(j)

3080 CONTINU E
¥R ITE (6, 3100)

3100 F O R M A T (1 H O , 5 X , ' P A R A M E T E R S ' , 1 O X ,'S T D - E R R O R S ’,1 O X ,'T - R A T I O S ')
¥RITE(6 ,31 10)

311 0 F 0 RM AT (1 H , 5X , ’------------- ’ , 1 O X , ’............. ' ,10X, ’...........’//)
DO 3 1 1 5 • J=1 ,N P A R A M
¥ R I T E (6 ,31 20) N A M E (J) , V (J) , S E R (j) , T R A (J)

3 1 2 0 F0R MA T(1H , A 4 , 2 X , F 1 2 . 6 , 8 X , F 1 2 . 6 , 7 X , F 1 2 . 6)
3115 CO NTI NUE

¥ R I T E (6 ,3225)
3225 FORMAT(///' R E S I D U A L SUM OF S Q U A R E S ’)

¥ R I T E (6 ,3226)
3226 F0 RMA T(1 H , 1 OX , '...... - --'//)

DO 3227 1 = 1 ,NB ■
¥ R I T E (6,3228) (R E S (I ,J) , J= 1 ,1)

3 2 2 8 F 0 R MA T(1H ,5 X ,10 F 1 0.4)
322 7 CONTINUE

¥ R I T E (6 ,3311)
33.11 FORMAT(/// ’ VARIANCE-rCOVARIANCE M A T R I X ’)

¥ R I T E (6 ,3312)
3 3 1 2 F 0 R MA T(1H , 1 OX, ’------------- ---------------------- •//)

DO 3313 1 = 1 ,N P A R A M
¥ R I T E (6 ,331 4) (R(l,J) ,J=1 ,l)

3 3 U FORMAT(1 H , 1 0F1 2.6)
3 3 1 3 CONTINUE

RETURN

FAILURE TO I M P R O V E F U N C T I O N V A L U E

1 50 0 ¥ R I T E (6 ,2007) ITE
2 0 0 7 FORMAT(/' F A I L U R E TO I M P R O V E L I K E L I H O O D F U N C T I O N A F T E R ’ , 1 4 IT E R A T

1I O N S .’/)
GO TO 1026
END

201 -

S U B R O U T I N E B A R D (F U N ,F O ,G R A D ,R M ,M A X S Q Z ,I F O K ,N S Q Z ,J S Q Z ,V ,N P A R A M , !
IFUNCT)
CO MMO N X (100,50)
CO M M O N / A 1 / N L I S T (4 0 0 0) , N P R I 0 R (3 O O) , N P R S (3 0 0) , N D E R (3 0 0 , 6 0) ,

IN A D R (3 0 0) , L I S T E N (2 0) , J U M P A D (2 0 , 5) ,J C (2 0) , C 0 N S (2 O O)
CO MM ON /A2/ V M U (1 0 0 , 5 0) ,R(50,50) ,D(50) ,TEMP(50) \
CO MM ON /A3/ L T M A X . L M A X F , J T M A X F , L T F U N C (5 0) ,J M A X F , J F U N C (5 0) , <

I I C O U N T , D E T F , D E T J T]
CO MMO N / A4/ N Q ,N B , N I ,M F U N ,N T ,K ,K V A R ,K F U N C ,K P A R A M ,I M E T H , I S T E P , NINTF,
CO MMO N /A5/ L T H E T A , J A C O B , I R E C ,M A X A D ,M A X F ,M A X C O N , I V E C T (7 0) , I A D C , I

IIADCD , I F U N C , N F U N C ,I T A N ,N T A N ,N F L A G ,L D I F F ,I C O N (4) '
CO MM ON / A6/ V L F (3 0 0 f1 0 0) , N D E R S (20,50), N D E R J (3 0 0 , 6 0) , N D E R J S (20,20) *
CO MM ON /A7/ N D J (1 0 , 5 0 , 1 0) t
REAL N D E R S ,N D E R J S {
E X T E R N A L F U N C T <
D I M E N S I O N V(N P A R A M) \
L O G I C A L L T H E T A , J A C O B , I F O K
I F O K = .T R U E . !
RMA X= 1. E2
KF LA G = 0 i
IFLAG* 0
NS Q Z = 0 1
R0 = 1 .0

2 ST EP =R O ■ i
DO 140 J = 1 ,N P A R A M !

140 V (J) = T E M P (J) - S T E P * D (J) i
CALL F U N C T (N P A R A M , V , F V) \
I F (K F L A G ,EQ. 1) GO TO 13 :
I F (I FLA G .EQ. 1) GO TO 15
FO=FV !
R 1 = - G R A D * R 0 * * 2 / (2 . * F 0 - 2 . * F U N - 2 . * G R A D * R 0) *
¥ R I T E (6 ,9000) G R A D ,R O ,F O ,R1 t

9 0 0 0 F O R M A T C G R ADIENT*' , F 1 2 . 7 , ’ OLD S T E P S I Z E * ',E 1 5.7,' O L D F * ’ ,E15.7, j
I' N E W S T E P S I Z E * ',E 1 5.7) !
IF(FO .LT. FUN .AND. NSQZ .EQ. 0) GO TO 10
IF(FO .LT. FUN) GO TO 13
R 0 = A M A X 1 (. 2 5 * R O , A M I N 1 (. 7 5 * R 0 , R 1)) :
N S Q Z = N S Q Z + 1 ii
JSQZ*JSQZ+1)
IF (NS QZ .LE. MA XSQZ) GO TO 2 1
IFO K*. FA LSE. :!
RM =RO I
R E T U R N J

10 r r = r o ;;
R 3 = A M I N 1 (R 1 , .75*RMAX)
IF(ABS (R 3-R0) .LE. .1*R0 .OR. R1 .LE. .25*R0) GO TO 11
KF LA G = 0
R0 = R3
I F L A G * 1
GO TO 2 ;

15 F3=FV !
NSQZ=NSQZ+1
JSQZ*JSQZ+1
IF(F3 .LT. FO) GO TO 12

11 RO = RR
IFLAG=0
KFLAG=1
GO TO 2

13 RM=RO
FO = FV
RETURN

12 RM=R3
FO = F3
RETURN
END

o
o
o
o

203

S U B R O U T I N E D I F I M L (N P A R A M ,V) .
LO GI CA L I R E C , L T H E T A , J A C O B
L O G I C A L D E R I V . D E R C U V » S U C C E S S

COM M O N / A 1 / N L I S T (4 0 0 0) , N P R I 0 R (3 0 0) , N P R S (3 0 0) ,N D E R (3 0 0 , 6 0) ,NADR(300
I) , L I S T E N (2 0) ,J U M P A D (2 0 , 5) »J C (2 0) , C 0 N S (2 O O)
COMMON /A2/ VMU(100,50),R(50,50),D(50),TEMP(50)
CO MMO N /A3/ L T M A X , L M A X F , J T M A X F ,L T F U N C (5 0) , J M A X F , J F U N C (5 0) ,

TI CO UN T DFTF DETJTC O M M O N V a 4 / ’n Q , N B , N I , M F U N , N T , K , K V A R , K F U N C , K P A R A M , I M E T H , I S T E P , N I N T F
CO MMO N /A5/ L T H E T A , J A C O B , I R E C , M A X A D ,M A X F ,M A X C O N , I V E C T (7 0) , I A D C ,

I I A D C D , I F U N C , N F U N C , I T A N , N T A N , N F L A G , L D I F F , I C 0 N (4)
COM MON /A6/ V L F (3 0 0 , 1 0 0) , N D E R S (2 0 , 5 0) , N D E R J (3 0 0 , 6 0) , N D E R J S (2 0 , 2 0)
COM M O N /A7/ N D J (1 0 , 5 0 , 1 0)
REA L N D E R S ,N D E R J S
D I M E N S I O N V (N PARAM)
L* 1
NDI FF =0
NNF=0
ITAN-0
LDI FF* 0
IF(.N0T. LTHETA) N T A N = 0
LF LA G= 0
IF(.NOT. LTHETA) N F L A G = 0

JACOB IS TRUE F O R D I F F E R E N T I A T I N G J A C O B I A N W.R. T. P A R A M E T E R
LT H E T A IS T R U E F O R D I F F E R E N T I A T I N G W.R.T. P A R A M E T E R
L T H E T A = F A L S E FOR D I F F E R E N T I A T I N G W.R.T. E N D O G E N O U S V A R I A B L E

IF(JACOB) GO TO 300
NS = NQ
IF (N IN TF .NE. 0) N S = N Q + N I N T F
N J=NS
IF (NF LAG .EQ. 1 .AND. LT HETA) N S * N S + N T A N
DO 185 1 = 1 ,NS ,
I F (L T H E T A .AND. N F L A G .EQ. 1 .AND. I .GT. NJ) GO TO 190
I F (ICOUNT .GT. 1) GO TO 194
N A D M A X = L I S T E N (I)
W R I T E (6 ,195) I , (N L I S T (J) ,J =L,NADMAX)

195 F O R M A T (1 H O E Q U A T I O N * ,I4,/2 0I4) .
194 CA LL P R I O R (N L I S T , I , L , N P R I O R , N P R S , I R E C , I F U N C , N D I F F , I C T)

i f (l t h e t a) g o t o 190
198 IA DC = N A D R (I F U N C) + 1

DO 222 I D I F F = 1 ,N D I F F
DO 225 I V A L = 1,NQ
IF(LTH ETA) GO TO 224
I V A R = I V E C T (N P A R A M + I V A L)

224 I A D C D = M A X A D + 1
NFU NC= NFUNC+1
M A X F = M A X F + 1
N P R I O R (M A X F) * N F U N C
N P R S (N F U N C) = M A X F
N D E R (I F U N C ,I V A R) = N F U N C + 1 000
n a d r (n f u n c)=»i a d c d
CAL L DIF F(IVAR.I)
IF(LT HET A) GO TO 265
IF (I T A N .EQ. 0) GO TO 250

o
o

o
o

- 204 -

L F L A G = 1
IF(.N0T. L T H E T A .AND. L F L A G .EQ. 1) N F L A G = L F L A G
N P O I N T = N P R S (N S) + N T A N
n m o v = (m a x f - n p o i n t)+n t a n
JP= MAXF
DO 246 J J = 1 ,NMOV
n p t = n p r i o r (j p)
N P R I O R (J P + 1)=NPT
JP=JP-1
N P R S (N P T) = N P R S (N P T) + 1

246 C O N T I N U E
M A X F = M A X F + 1
N P R I O R (J P + 1)=NF U N C
N P R S (NFU NC)=JP+1
ITAN=0

250 I A D C = N A D R (I F U N C) + 1
225 C O N T I N U E
265 IF(.NOT. IREC) GO TO 270

ICT=ICT+1
i f u n c = n p r i o r (i c t)
i a d c = n a d r (i f u n c) + i

222 C O N T I N U E

C O M P L E T E D I F F E R E N T I A T I N G A L L R E C U R S I V E F U N C T I O N S ,
NOW R E T U R N TO D I F F E R E N T I A T E F U N CTION I

10 .OR.
1) GO TO

GO1) TO

GO TO 197

I R E C = . F A L S E
IFUNC=I
GO TO 198

190 IF(NQ .LE.
IF(K .GT.
IF(l .GT.
L T M A X F = M A X F
L T M A X = M A X A D
L M A X F = N F U N C
L T C O N C = M A X C O N
GO TO 197

196 IF(l .GT. 1)
M A X A D = L T M A X
M A X F = L T M A X F
N F U N C = L M A X F
M A X C O N * L T C O N C
GO TO 197

193 I F (I .GT. 1) GO
l t f u n c (k)= n f u n c

197 i v a r = i v e c t (k)
GO TO 198

27 0 I F (L T H E T A .AND.
L=LIS TEN (I)+1
GO TO 272

271 NNF*NNF+1
I F (NNF .GT. N T A N)
n p i = n p r s (n j)
i f u n c = n p r i o r (n p i + n n f)
l = n a d r (i f u n c) + i
IRE C=. FA LSE.

K P A R A M
1 96
197

.LE. 50) GO TO 193

TO 1 97

N F L A G .EQ. 1 .AND. I .GE. NJ) GO TO 271

R E T U R N

o
o

o
o

o
o

205

LDIFF=1
NDIFF=1
GO TO 273

272 ND IF F= 0
273 NB B = N B

I F (N I N T F .HE. 0) N B B = N B + N I N T F
I F (N F L A G .EQ. 1) N B B = N B B + N T A N
I F (L T H E T A .AND. I .EQ. NBB) RE T U R N

185 C O N T I N U E
I F (.N O T . LTHETA) I C O N (2) = M A X C O N
IF (L T H E T A) I C 0 N (3) = M A X C 0 N
R E T U R N

N O W D I F F E R E N T I A T E JT W.R.T. THETA

300 IF (NQ .LE. 10 .OR. K P A R A M .LE. 50) GO TO 301
J T M A X F = N F U N C
J M A X F = M A X F
GO TO 302

301 J F U N C (K) = N F U N C

GET D E R I V A T I V E F U N C T I O N AND ITS HEAD ADDRESS

302 N D I F F = 0
K D I F F - 0
L*1
I F (N F L A G .EQ. 1) N B B = N B B - N T A N
DO 31 0 1 = 1 , N B B
K F L A G = 0
C A L L P R I 0 r (N L I S T , I ,L ,N P R I O R ,N P R S ,I R E C , I F U N C ,N D I F F ,ICT)
IF (IR EC) KFLAG=1
N P 0 I N T = I C T
K D I F F = N D I F F
DO 32 0 J = 1 , N Q
N D I F F = N D I F F + 1
DO 315 I D I F F = 1 ,N DIFF
i v a r = i v e c t (n P a r a m + j)
k f u n c = n d e r (I F U N C ,IVAR)
I F C k FUNC .LE. 1000) GO TO 325
K F U N C = K F U N C - 1 000
I A D C = N A D R (K F U N C) + 1
I A D C D = M A X A D + 1
N F U N C = N F U N C + 1
M AX F= MA XF+1
N P R I O R (M A X F) = N F U N C
n p r s (n f u n c) = m a x f
n a d r (n f u n c) = i a d c d
I F (IREC) N D E R (K F U N C , K) = N F U N C + 1 000
I F (. N O T . IREC .AND. N F L A G .EQ. 1 .AND. I .LE. NINTF) NDER(K F U N C ,

+ = N F U N C + 1 0 0 0
IF(l .LE. NINTF) N D E R (K F U N C ,K)= N F U N C +1000
N D E R j (I F U N C ,J) = N F U N C + 1 000
IF ((N Q .LE. 10 .OR. K P A R A M .LE. 50) .AND. IFUNC .EQ. I)

+ N D J (l , K , j) = N F U N C + 1 000
i v a r = i v e c t (k)
KV AR= J

206

CALL DI F F (I V A R , I)
I F (.NOT. IREC) GO TO 340
GO TO 330

325 IF(.NOT. IREC) GO TO 335
IF(NQ .LE. 10 .OR. K P A R A M .LE. 50) GO TO 321

330 N D E R j (l F U N C , j) = 0
321 ICT=ICT+1

I F U N C = N P R I O R (l C T)
IF (I DI FF .EQ. KDIFF) I R E C = . F A L S E .

315 C O N T I N U E
GO TO 340

335 IF(NQ .LE. 10 .OR. K P A R A M .LE. 50) GO TO 322
N D E R j (l F U N C , j) = 0
GO TO 340 #

3 2 2 N D J (I ,K ,J)=0
340 I C T = N P O I N T

N D I F F = K D I F F
i f u n c = n p r i o r (i c t)
I F (KF LA G .EQ. 1) I R E C = •T R U E .

320 C O N T I N U E
L= LI STE N(l)+1

• ND IF F= 0
K D I F F = 0

31 0 C O N T I N U E
I C 0 N (4) = M A X C 0 N
R E T U R N
END

o
o

o
n

o
n

207 -
(
i.

4

S U B R O U T I N E D I E V A L (N P A R A M ,V)
L O G I C A L I R E C , L T H E T A , J A C O B •
L O G I C A L D E R I V . D E R C U V , S U C C E S S '
C O M M O N X (100,50) •
C O M M O N / A 1/ N L I S T (4 0 0 0) , N P R I 0 R (3 O 0) , N P R S (3 0 0) ,N D E R (3 0 0 , 6 0) ,NADR(300;

I) , L I S T E N (2 0) ,J U M P A D (2 0 , 5) , J C (2 0) , C O N S (200) ;
C O M M O N /A2/ V M U (1 0 0 , 5 0) , R (5 0 , 5 0) , D (5 0) , T E M P (5 0)
CO M M O N /A3/ L T M A X . L M A X F , J T M A X F , L T F U N C (5 0) ,J M A X F , J F U N C (5 0) ,

I I C O U N T , D E T F , D E T J T I
C O M M O N /A4/ N Q , N B , N I , M F U N , N T , K , K V A R , K F U N C , K P A R A M fI M E T H , I S T E P , N I N T P
C O M M O N /A5/ L T H E T A , J A C O B , I R E C ,M A X A D ,M A X F ,M A X C O N ,I V E C T (7 0) , I A D C , ;

I I A D C D . I F U N C , N F U N C ,I T A N ,N T A N ,L D I F F ,IC0N(4)
C O M M O N /A6/ V L F (3 0 0 , 1 0 0) ,N D E R S (2 0 ,50),N D E R J (3 0 0 , 6 0) , N D E R J S (20,20) '
C O M M O N /A7/ N D J (1 0 , 5 0 , 1 0)
R E A L N D E R S ,NDERJS
D I M E N S I O N V(NPARAM)
D I M E N S I O N VFLIST (2 0 0) j

It
»

CO MP U T E F AND F (P R I M E) F !
DO 380 IT = 1 ,NT J
L-1 I
N D I F F = 0 [
NS = NB
I F (N I N T F .NE. 0) N S = N B + N I N T F
DO 400 1 = 1 , NS
C AL L P R I O R (N L I S T , I , L , N P R I O R , N P R S , I R E C , I F U N C , N D I F F , I C T)
VF UN C= 0.

410 I A D C = N A D R (I F U N C) + 1 \
IF(IRE C) GO TO 420 {
C A L L E V A L (I A D C , I , I F U N C , V F U N C , I T , M A X A D , N P A R A M , V . V F L I S T) \
v f l i s t (i f u n c)=v f u n c j
v l f (i ,i t)=v f u n c j
GO TO 430 }

42 0 DO 425 J = 1 ,NDIFF
C A L L E V A L (I A D C ,I ,I F U N C , V F U N C ,I T ,M A X A D ,N P A R A M , V . V F L I S T)
v f l i s t (i f u n c)=v f u n c '!
V F U N C = 0 . ;
ICT=ICT+1 !
I F U N C = N P R I 0 R (I C T) '
I A D C = N A D R (l F U N C) + 1 ’

425 C O N T I N U E j
I R E C = .F AL SE. i
IF UNC =I ;
GO TO 410 !

430 L* LIS TEN (l)+1
N D I F F = 0

400 C O N T I N U E ;

NOV COMP U T E J T ,GET F U N C T I O N AND ITS HEAD A D D R E S S

'IF (NTA N ,EQ. 0) GO TO 440
VFUNC= 0.
IC T= NPR S(NS)+1
DO 442 1 = 1 , NTAN
I F U N C = N P R I O R (I C T)

U o

208 -

IA DC =N AD R (I F U N C) + 1 x
CALL E V A L (I A D C ,1,I F U N C ,V F U N C ,I T ,M A X A D ,N P A R A M ,V ,VF LIST)
v f l i s t (i f u n c)= v f u n c
VFUNC=0.
I C T = I C T + 1

442 CONTINU E
440 NS = NQ

IF (NI NTF .NE. O) N S = N Q + N I N T F
ICT=N PRS (NS)
IF (N TA N .GT. 0) I C T = I C T + N T A N
I F U N C = N P R I 0 R (l C T + 1)
L T H E T A = . FALSE.
J A C O B » . FALSE.
I H E C - . FALSE.
DO 450 1 = 1 ,NS

452 DO 455 J = 1 ,NQ
V F U N C = 0 .
I V A R = I V E C T (N P A R A M + J)
N F U N C = N D E R (l , I V A R)
IF (NF UNC .LE. 1000) GO TO 480
NF UN C=N FUN C-1 000

460 IF(IFUNC .EQ. N F U N C) GO TO 465
I C T = I C T + 1
I R E C = .T R U E •
IA DC = N A D R (I F U N C) + 1
GO TO 470

465 IREC- .FA LSE.
IA DC = N A D R (I F U N C) + 1
ICT=ICT+1

47 0 CALL E V A L (l A D C , I fI F U N C , V F U N C , I T fM A X A D , N P A R A M , V , V F L I S T)
V F L I S T (I F U N C) = V F U N C
IF(IREC) GO TO 490
v l f (i f u n c ,i t)= v f u n c
I F U N C = N P R I 0 R (I C T + 1)
GO TO 455

49 0 I F U N C = N P R I 0 R (I C T + 1)
VFUNC = 0 .
GO TO 460

48 0 IF(NFU NC .EQ. 0) V F U N C = 0 .
I F (NFUN C .EQ. 1) VFUNC - 1 .
IF(NFUNC .EQ. -1) V F U N C = - 1 .
IF(NFUNC .GT. 1) GO TO 485
I F (NFUNC .LT. -1) GO TO 486
GO TO 487

485 V F U N C = C 0 N S (N F U N C - 1)
GO TO 487

486 VFUNC = - C O N S (I A B S (N F U N C)-1)
487 N D E R S (I , I V A R) = V F U N C
455 C O N TI NU E

I F (.NOT. IREC) GO TO 450
I F U N C = N P R I O R (I C T + 1)
GO TO 452

450 CO NTI NUE
I F (IMETH .GT. 1) GO TO 580

E V A L U A T E P A R T I A L D (F I) / D (T H E T A (K))

O
O

209

GET FUNCTION NUMBER AND ITS HEAD ADDRESS
IF(NQ .LE. 10 .OR. K P A R A M .LE. 50) GO TO 505
I C T= NP RS (LMAXF+1)
GO TO 507

505 I C T = N P R S (L T F U N C (K) + 1)
507 I F U N C = N P R I O R (I C T)

L T H E T A = .T R U E .
J A C O B = .F A L S E .
NS = NB
I F (NI NT F .NE. 0) N S = N B + N I N T F
DO 500 1 = 1 , NS
D E R C U V = . F A L S E .
V F U N C = 0 •
N F U N C = N D E R (I , K)
IVAR=K
I F (NFUNC .LE. 1000) GO TO 526
N F U N C - N F U N C - 1 000

508 I F (IFUNC .EQ. N F U N C) GO TO 510
IRE C= .T RU E.
IF (IC T .EQ. MAXF) GO TO 509
IC = N P R I 0 R (I C T)
I C N = N P R I 0 R (I C T + 1)
IF(IC .GT. ICN) GO TO 566

509 I A D C = N A D R (I F U N C) + 1
GO TO 520

566 I A D C = N A D R (I F U N C) + 1
D E R C U V = . T R U E .

510 IRE C=. FA LSE.
IA DC = N A D R (I F U N C) + 1

52 0 CA L L E V A L (l A D C , I , I F U N C , V F U N C , I T ,M A X A D , N P A R A M , V ,VFLIST)
IF(.NOT. D E R C U V) GO TO 567
vfl ist(ifunc)=vfunc
V F U N C = 0 .
ICT=ICT+1
I F U N C = N P R I O R (I C T)
D E R C U V = . F A L S E .
I A D C = N A D R (I F U N C) + 1
GO TO 520

567 IF(IREC) GO TO 525
V F L I S T (I F U N C) = V F U N C
V L F (I F U N C ,I T) = V F U N C
IF(ICT .GT. MAXF) GO TO 500
ICT=ICT+1
I F U N C = N P R I O R (I C T)
GO TO 500

525 V F L I S T (I F U N C) = V F U N C
V F U N C = 0 .
ICT=ICT+1
I F U N C = N P R I O R (I C T)
IA DC = N A D R (I F U N C) + 1
GO TO 508

526 IF(NFU NC .EQ. 0) V F U N C = 0 .
I F (NFUNC .EQ. 1) V F U N C = 1 .
IF(NFUNC .EQ. -1) V F U N C = - 1 •
IF(NFUNC .GT. 1) GO TO 527

O
O

O
O

210 -

IF (NF UNC .LT. -1) GO TO 528
GO TO 530

527 VF UNC = C0 NS(NFUNC-1)
GO TO 530

528 V F U N C - - C O N S (I A B S (N F U N C)-1)
530 N D E R S (l ,I V A R) =VFUNC
500 C O N T I N U E

I F (N F L A G .EQ. 0) GO TO 544
IC T = N P R S (N S)
N S = N S + N T A N
DO 540 1 = 1 , NTAN
VF UNC =0.
ICT=ICT+1
I F U N C = N P R I O R (l C T)
n f u n c = n d e r (i f u n c ,K)
IF (N F U N C .GT. 1000) GO TO 543
GO TO 540

543 N F U N C = N F U N C - 1 000
I A D C = N A D R (N F U N C) + 1
C AL L E V A L (l A D C , I , I F U N C , V F U N C , I T ,M A X A D ,N P A R A M ,V ,VFLIST)

V F L I S T (N F U N C) - V F U N C
540 C O N T I N U E
544 C O N T I N U E

NOW E V A L U A T E C R O S S P A R T I A L D E R I V A T I V E OF JT W.R.T.
GET F U N C T I O N N U M B E R AN D ITS HEAD ADDRESS

IF(NQ .LE. 10 .OR. K P A R A M .LE. 50) GO TO 545
I F (J M A X F .EQ. MAXF) GO TO 551
ICT = N P R S (JTMAXF+1)
I F U N C - N P R I O R (I C T)
GO TO 551

545 IF(K .EQ. NPARAM) GO TO 553
J F - L T F U N C (K) +1
GO TO 554

553 I F (N P R S (J F U N C (K)) .EQ. MAXF) GO TO 551
JF= LTF UN C(K)+1

554 IF (JF .EQ. J F U N C (K)) GO TO 551
ICT = N P R S (J F U N C (K) + 1)
I F U N C - N P R I O R (I C T)

551 L T H E T A - . F A L S E .
J A C O B ». TR UE.
I F (N F L A G .EQ. 1) N S - N S - N T A N
DO 550 1 = 1 , NS
IR EC -. FA LSE.

552 DO 560 J = 1 ,NQ
V F U N C - 0 .
IF(NQ .LE. 10 .OR. K P A R A M .LE. 5.0) GO TO 556
N F U N C = N D E R j (l , j)
GO TO 557

556 N F U N C - N D J (I ,K ,J)
557 IF (N FU NC .LE. 1000) GO TO 580

N F U N C - N F U N C - 1 000
555 I F (IFUNC .EQ. NFUNC) GO TO 565

IR EC- .TR UE.

T H E T A

211 -

IA DC = N A D R (I F U N C) + 1
GO TO 570

565 IH EC -.F ALSE.
I A D C = NA DR (lFUNC)+1

570 CA LL E V A L (I A D C , I , I F U N C ,V F U N C , IT ,
V F L I S T (I F U N C) = V F U N C
i f (i r e c)g o TO 575
V L F (I F U N C , I T) = V F U N C
IF(ICT .EQ. MAXF) GO TO 560
ICT=ICT+1
I F U N C = N P R I O R (l C T)
GO TO 560

575 I C T = I C T + 1
I F U N C = N P R I O R (l C T)
VFUNC =0.
GO TO 555

580 IFC NF UN C .EQ.
IF (NF UNC .EQ.
IF (NF UNC .EQ.
IF (NF UNC .GT.
i f (n f u n c .l t .
GO TO 586

582 V F U N C = C 0 N S (N F U N C - 1)
GO TO 586

585 V F U N C = - C 0 N S (I A B S (N F U N C) - 1)
586 N D E R J S (l , j) = V F U N C
560 C O N T I N U E

I F (.NOT. IREC) GO TO 550
IFUNC = N P R I O R (I C T + 1)
GO TO 552

550 C O N TI NU E
380 C O N T I N U E

RE TU RN
END

0) V F U N C = 0 .
1) V F U N C = 1 .
-1) V F U N C = -1 .
1) GO TO 582
-1) GO TO 585

M A X A D ,N P A R A M , .VFLIST)

o
o
o

o
o

o
- 212 -

S U B R O U T I N E P Q E V A L (N P A R A M ,V)
LOG IC AL I R E C . L T H E T A , J A C O B i
LOG IC AL D E R I V . D E R C U V , S U C C E S S
CO MM ON X (100,50)
COM MO N / A1 / N L I S T (4 0 0 0) , N P R I 0 R (3 O 0) , N P R S (3 0 0) ,N D E R (3 0 0 , 6 0) , N A D R (3 0 0 ‘

I) . L I S T E N (2 0) , J U M P A D (2 0 , 5) , J C (2 0) , C 0 N S (2 0 0) ?
COMM ON / A2/ V M U (1 0 0 , 5 0) , R (5 0 , 5 0) , D (5 0) , T E M P (5 0) ;
COM MO N /A3/ L T M A X . L M A X F , J T M A X F , L T F U N C (5 0) , J M A X F , J F U N C (5 0) ,

I I C O U N T . D E T F , D E T J T »■
COM MO N /A4/ N Q . N B . N I . M F U N . N T . K . K V A R . K F U N C . K P A R A M . I M E T H . I S T E P . N I N T F j
CO MM ON /A5/ L T H E T A . J A C O B ,I R E C ,M A X A D ,M A X F ,M A X C O N , I V E C T (7 0) ,IADC, j

I I A D C D , I F U N C , N F U N C , I T A N , N T A N , N F L A G , L D I F F , I C 0 N (4) i
CO MMO N /A6/ V L F (3 0 0 , 1 0 0) ,N D E R S (2 0 , 5 0) , N D E R J (3 0 0 , 6 0) , N D E R J S (20,20) \
CO M M O N /A7/ NDJ(1 0 , 5 0 , 1 0) .]
CO MMO N /A8/ R E S (2 0 , 2 0) ;
R EA L N D E R S , N D E R J S 5
D I M E N S I O N V (NPARAM) '
D I M E N S I O N F (1 0 0 , 2 0) , S (5 0 , 5 0) , H (5 0 , 5 0) , D J (5 0 , 5 0) , P M (5 0 , 5 0) *
D I M E N S I O N Q M (5 0 , 5 0) , G (5 0) , D T (5 0)
D E T J T = 0 . |

GET F , FORM F H F AND INVERT F"F I

DO 600 I T ” 1, NT
IF(K .GT. 1) GO TO 618 ?
DO 610 1 = 1 ,NB '
IF(NI NT F .EQ. 0) GO TO 605 . !.
F (I T , I) = V L F (N I N T F + I , I T) ’i
GO TO 610

605 F (I T , I) = V L F (I , I T) w
610 C O N T I N U E
600 C O N T I N U E l

C AL L F P R I M E (S , F , N B , N T) •
DO 801 1 = 1 ,NB
DO 801 J = 1 ,NB
R E S (I ,J) = S (I , J)

801 C O N TI NU E
CA L L I N V E R T (S , N B , D E T F) ^

GET JT AND I N V E R T j

61 8 DO 615 IT = 1 ,NT *
DO 620 1 = 1 ,NQ .i
DO 630 J=1,NQ
I V A R = I V E C T (N P A R A M + J)]
N F U N C = N D E R (I ,i v a r) ;
i f (n i n t f .n e . 0) n f u n c = n d e r (n i n t f + i , i v a r) j
IF(NFU NC .LE. 1000) GO TO 625 3
N F U N C = N F U N C - 1 0 0 0 *
h (i ,j)=v l f (n f u n c .i t)
GO TO 630

•625 H (I , J) = N D E R S (I , I V A R)
i f (n i n t f .n e . o) h (i ,j) = n d e r s (n i n t f + i ,i v a r) l

630 C O N T I N U E {.
62 0 C O N TI NU E

CA LL I N V E R T (H , N B , D E T J)

o
 o

 o

o
 n

 o

o

o
 o

 o
213 -

d e t = a l o g (a b s (d e t j))
D E T J T = D E T J T + D E T
I F (I ME TH .GT. 1) GO TO 615

GET P A R T I A L D (J (I j))/ D (T H E T A (K)) MATRIX

DO 640 1 = 1 , NB
DO 650 J= 1,NQ
IF(NQ .LE. 10 .OR. K P A R A M .LE. 50) GO TO 643
N F U N C = N D E R J (I ,J)
I F (N I N T F .NE. 0) N F U N C = N D E R j (N I N T F + I , J)
GO TO 644

643 N F U N C = N D j (I ,K ,j)
I F (N I N T F .NE. o) n f u n c = n d j (n i n t f + i ,k ,j)

644 I F (N F U N C .LE. 1000) GO TO 645
N F U N C = N F U N C - 1 0 0 0
d j (i ,j)= v l f (n f u n c ,i t)
GO TO 650

645 D J (I , j) = N D E R J S (l , J)
i f (n i n t f .n e . o) d j (i ,j)= n d e r j s (n i n t f + i ,j)

650 C O N T I N U E
640 C O N T I N U E

C O M P U T E P
DO 660 1 = 1 , NB
DO 670 J = 1 ,NB
P S U M = 0 .
DO 680 M = 1, NB

680 PSUM=PSUM+H(l,M)*Dj(M,j)
P M (I , J) = P S U M

670 C O N T I N U E
660 C O N T I N U E

P = 0.
DO 690 1 = 1 ,NB
DO 690 J = 1 ,NB
IF(I .NE. J) GO TO 690
P - P + P M (I ,J)

690 C O N T I N U E

C O M P U T E G (I T) = F " F (I N V E R S E) * F " (T)

DO 70 0 1 = 1 ,NB
P S U M = 0 .
DO 710 J = 1 ,NB'

710 psum=ps u m+s(i ,j)*f (i t ,j)
G (I) = PS UM

700 C O N T I N U E

GET P A R T I A L D (F I)/ D (T H E T A K) VECTOR

DO 720 1 = 1 ,NB
NFUNC=NDER(I,K)
i f (n i n t f .n e . o) n f u n c = n d e r (n i n t f + i ,k)
IF(NFUNC .LE. 1000) GO TO 715
NFUNC=NFUNC- 1 000
d t (i)=v l f (n f u n c ,i t)
GO TO 720

o
o
o

214

715 D T (l) = N D E R S (l , K)
if(nintf .h e . o) d t(i)=n d e r s(nin tf+i ,k)

720 C O N T I N U E

C O M P U T E Q

Q = 0.
DO 73 0 1 = 1 , NB
Q = Q + D T (l) * G (l)

730 C O N T I N U E
C S T O R E (P-Q)

V M U (I T , K) = Q - P
615 C O N T I N U E

R E T U R N
END

S U B R O U T I N E F P R I M E (S ,F ,N B ,NT)
D I M E N S I O N S (5 0 , 5 0) , F (100,20;
DO 220 1 = 1 , NB
DO 225 J = 1 ,NB
SUM=0.
DO 230 M = 1,NT

230 S U M = S U M + F (M , I) * F (M , J)
S(I, J) = SUM/F.LOAT(NT)

225 C O N T I N U E
220 C O N T I N U E

R E T U R N
END

o
 o

o

 a

- 215 -

SUBROUTINE PRIOR(NLIST,I,L,NPRIOR,NPRS,IREC,IFUNC,NDIFF,ICT)
LOGICAL IREC
DI M E N S I O N N L I S T (4 0 0 0) , N P R I 0 R (3 O O) , N P R S (3 0 0)

THIS S U B R O U T I N E IS TO C HECK P R I O R I T Y O R D E R I N G OF F U N C T I O N S
F U N C T I O N IN I NNER B R A C K E T IS ALL O C A T E D WIT H H I G H E R P R I O R I T Y
THAN F U N C T I O N IN O U T E R B R A C K E T

IC-NLIST(L)
I C T - N P R S (IC)
IF(ICT .EQ. I) GO TO 210
IC=ICT
N P O I N T = I C T
I R E C = .T R U E .

200 ICT=ICT-1
IF(ICT .EQ. 0) GO TO 220
i p r - n p r i o r (i c t)
I F (IPR .LT. I) GO TO 220
IR- NPRS(IPR)
IF(IR-IC) 205,201,201

201 W R I T E (6 ,202) IC
202 F O R M A T (1 H O , ' F U N C T I O N * ,13,' HAS THE WRONG PRIORITY')

RE TUR N
205 IC-IR

GO TO 200
210 IREC- .FA LSE.

IFUNC-I
RETURN

215 IREC-.FALSE.
NDIFF-1
IF UN C- NP R I O R (I C T)
RE TUR N

22 0 I C T - I C T + 1
IF(ICT .EQ. NPOINT) GO TO 215
N D I F F - N P O I N T - I C T
i f u n c - n p r i o r (i c t)
RE TUR N
END

o
o
o

o
o

216

S U B R O U T I N E I N V E R T (A ,N ,D)
D I M E N S I O N A (5 0 , 5 0) , L (5 0),M(50)

THE INVERSE OF TH E M A T R I X IS C A L C U L A T E D U S I N G G A U S S J O R D A N
WI TH C O M P L A T E P I V O T I N G . T H E INVERSE R E P L A C E S THE O R I G I N A L
M A T R I X . L AND M A R E W O R K VECT O R S OF L E N G T H N .THE D E T E R M I N A N T
D IS C A L C U L A T E D

. D=1 .0
DO 190 K = 1 ,N
L(K)= K
M(K) =K
B I G = A (K ,K)
DO 20 I = K ,N
DO 20 J = K , N
I F (A B S (B I G) - A B S (A (I , J))) 10 ,20,20

10 B I G = A (I ,j)
l (k) = i
M(K) = J

20 C O N T I N U E
C CHECK FOR S I N G U L A R I T Y

IF(BIG) 4 0 , 30,40
30 D = 0 .0

R E T U R N
C I N T E R C H A N G E ROW S ' ’

40 I=L(K)
IF(I-K) 50,70 , 5 0

50 DO 60 J=1 ,N
T E M P = - A (K ,J)
A(K, J) - A (I , J)

60 A (I , J) = T E M P
C I N T E R C H A N G E C O L U M N S

70 J = M (K)
IF(J-K) 8 0 , 1 0 0 , 8 0

80 DO 90 1 = 1 ,N
t e m p = - a (i ,k)
a (i ,k)= a (i ,J)

90 A (I ,J)=TEM P
C DI VID E C O L U M N BY M I N U S PIVOT

100 DO 120 1=1 ,N
IF(I-K) 11 0 , 1 2 0 , 1 1 0

1 1 0 a(i ,k)=a (i,k)/(-b i g)
120 C O N T I N U E

C RE DU CE MATRIX
DO 160 1 = 1 , N
IF(I-K) 130 ,160,130

130 t e m p = a (i ,k)
DO 150 J=1,N
IF(J-K) 1 4 0 , 1 5 0 , 1 4 0

140 a (I ,J)= t e m p * a (k ,j)+ a (i ,j)
150 CONTINUE
160 CONTINUE

C DI V I D E ROW BY P I V O T
DO 180 J = 1 ,N
IF(J-K) 1 7 0 , 1 8 0 , 1 7 0

1 7 0 a (k ,j)=a (k ,j)/big
180 CONTINUE

217

C C A L C U L A T E D E T E R M I N A N T
D=D * B I G

C TAKE R E C I P R O C A L
190 A (K , K) = 1 . O / B I G

C BACK S U B S T I T U T I O N
N M 1 = N - 1
IF(NM1) 2 0 0 , 2 7 0 , 2 0 0

200 DO 260 KK = 1 ,NM1
K = N - K K
j = l (k)
IF(J-K) 2 1 0 , 2 3 0 , 2 1 0

210 DO 220 1 = 1 ,N
T EM P= A(I, K)
A (I , K) = - A (I , J)

220 A (I ,J) =T E M P
230 I=M(K)

IF(I-K) 2 4 0 , 2 6 0 , 2 4 0
240 DO 250 J = 1 ,N

T E M P = A (K ,J)
a (k ,J) = - A (I ,j)

250 A (I ,J) =T E M P
260 C O N T I N U E
270 R E T U R N

END

S U B R O U T I N E R D C A R D (I T E X T)
D I M E N S I O N I T E X T (80)
R E A D (5 , 1 0 0 0) (I T E X T (I) ,1=1,80)

1000 F O R M A T (8 0 A 1)
¥ R I T E (6 ,1001) (ITEXT(I) ,1 = 1 ,80)

1001 F0RMAT(1 H 0 , 2 X , 4 0 A 1 / 1 H O ,2 X ,4 0 A 1)
RE TUR N
END

o
o

o
o

o
o

o
o

o

 a
 a

a

 a

o

- 218 -

S U B R O U T I N E F R M L (I T E X T ,N F U N C ,N ,I A D C ,I E N D ,M A X C O N ,M A X F ,K C ,ISYM)

F O R M U L A P R O C E S S O R

CO MM ON / A 1 / N L I S T (4 0 0 0) , N P R I 0 R (3 0 0) , N P R S (3 0 0) ,N D E R (3 0 0 , 6 0) ,NADR(300
I) ,L I S T E N (2 0) , J U M P A D (2 0 , 5) ,J C (2 0) , C O N S (200)
D I M E N S I O N I R E P S (2 0) , N A N T S (2 0) , N T E R S (2 0) , N A N F S (2 0) , N F A C S (2 0)
D I M E N S I O N L S Y M (3 3) , I T E X T (8 0)
D I M E N S I O N I S Y M (200)
L O G I C A L IEND
DA TA L S Y M / 1H V ,1H F ,1H * ,1H/ , 1H + ,1H - ,1 H O ,1H 1 ,1H 2 ,1H 3 ,1H 4 ,1H 5 ,1H 6 ,

I 1 H 7 , 1 H 8 , 1 H 9 . 1 H . , 1 H) ,1H = ,1H L ,1 H E ,1H S ,1H C ,1 H A , 1 H N , 1 H G , 1 H X , 1 H P ,
I 1 H I , 1 H 0 , 1 H R , 1 H T , 1 H (/
DA TA J B L A N K / 1 H /
DATA JD /1 HS/

I N I T I A L I Z A T I O N

IEND= .FALSE.
JC 0U N T = 0
N D E P T H = 0
NS YM =0
ISIGN=1
IREP=0
ISET=0
IS PEC =0
K=0

1 I C 0 U N T = 0

INPUT F O R M U L A W I T H SYMBOLS
COUNT N U M B E R OF S Y M B O L S AND PUT A D D R E S S OF EACH
S Y M B O L IN N LIST
NS Y M IS N U M B E R OF S Y M B O L S IN EACH E X P R E S S I O N
IC O U N T T E S T S END OF EACH F U N C T I O N D E F I N I T I O N
JC O U N T IS T E R M I N A T O R OF INPUT

2 DO 10 1= 1 , 8 0 '‘
J X= IT EX T(T)
DO 12 J = 1 , 3 3
IF(JX .NE. LSYM(J)) GO TO 12
IC 0UN T=O
K=K + 1
GO TO 15

12 CO NT I N U E
I F (JX .EQ. JBLANK) GO TO 13
I F (JX .EQ. JD) GO TO 18
W R I T E (6 ,9) J X ,I

9 F O R M A T (1 H O , ’I L L E G A L C H A R A C T E R ' ,A1,'F0UNT AT S Y M B O L ' , 13)
RE TUR N

15 IS YM(K)= J
N S Y M = N S Y M + 1
GO TO 14

13 IC0 UN T= IC 0UNT+1
14 I F (I C O U N T .GE. 3) GO TO 16

GO TO 10
18 JCO UN T= JC OUNT+1

o
o
o

219

IF (j C O U N T .NE. 4) GO TO 10
IEND= .TR UE.
RE T U R N

10 CO NT I N U E
I F (I C O U N T .GE. 3) GO TO 16
CAL L R D C A R D (I T E X T)
GO TO 2

16 I S Y M (N S Y M + 1) =18
C
C I N I T I A L I Z E N U M B E R R O U T I N E TO GET INDEX OF F U N C T I O N V A RIABL E,
C P OV ER OR C O N S T A N T
C ISWTT =1 AND 2 I N T E G E R , 3 AND 4 REA L NUMBER
C IDEC =0 A FTER "." AND I N C R E A S E BY ONE TO COUNT N U M B E R
C OF D E C I M A L P L A C E S
C ID IS THE NEXT I N T E G E R IN THE S Y M B O L LIST
C

I L I S T = 1
i c = i s y m (i l i s t)
IF(IC .NE. 2) GO TO 100
ISWIT=1
IDEC=-1
IC=»1
ILIST= 2
NUM=0
CA L L N U M B E R (I S Y M , I C , N , I L I S T , I D E C , I S V I T . N U M , C O N S , M A X C O N , I D , I R E P ,

I C O N C ,NFNUM)
GO TO (2 7 , 4 1 , 5 6 , 3 2) ,ISWIT

27 N L I S T (l A D C) = N U M
N F N U M = N U M
N A D R (N F N U M) = I A D C
MAXF=MAXF+1
N P R I O R (M A X F) = N F N U M
N P R S (N F N U M) = M A X F

C NFACT=-1 SHOWS C O N S T A N T HAS NOT YET READ
NADNT =IA DC+1
NADNF =NA DNT+1
I A D C = N A D N F + 2
N F A C T = - 1
N T E R M = 1

C SY M B O L IS " = ” ,SKIP TO NEXT I N T E G E R IN ISYM
I F (ID .NE. 12) GO TO 100

28 ILIST =IL IST+1
I C = IS YM (I LIST)

")" NOT A L L O W E D
TEST FOR

IF(IC .EQ. 18) GO TO 100
I F (IC .NE. 6) GO TO 31

29 I S I G N = - 1
30 ILI ST= ILIST+1

i c = i s y m (i l i s t)
C IF TEST IS TRU E E X P E C T S "V" OR " F ”

31 IF(IC .LE. 6) GO TO 40
ID=IC-7

C IF TEST IS TRUE E X P E C T S S P E C I A L F U N C T I O N S
IF(ID .G E . 11) GO TO 45

O
 O

 O
 O

O

 O

O
 O

 O
220 -

C ST ART P R O C E S S I N G C O N S T A N T
ISWIT=4
I C = IL IS T
NUM=0
I D E C = - 1
I P (ID .LT. 10) GO TO 21
IDEC=0

22 CALL NUMBER(ISYM,IC,N,ILIST,IDEC,ISWIT,NUM,CONS,MAXCON,ID,IREP,
ICONC.NFNUM)
GO TO 32

21 N U M = 1 0 * N U M + I D
GO TO 22

32 I F (N F A C T .EQ. -1) GO TO 34
I C = N L I S T (N A D N F + 1)
IF(IC .GT. 0) GO TO 33
I S I G N - - I S I G N
IC=-IC

33 IC=IC-1
I F (IC .GT. 0) GO TO 35

34 I D T = M A X C O N + 1
I F (I S I G N .LT. 0) I D T - - I D T
N L I S T (N A D N F + 1) = I D T
I F (N F A C T .EQ. -1) N F A C T - 0 . .
ISPEC' O
GO TO 37

35 C O N S (l C) = C O N C * C O N S (l C)
M A X C O N = M A X C O N - 1
IC=IC+1
I F (I S I G N .LT. 0) IC--IC
N L I S T (N A D N F + 1) = I C

37 I S I G N = 1
I F (ID .EQ. 11) GO TO 75
IF(ID .EQ. 12) GO TO 100

IF TES T IS T R U E , E X P E C T S "+" OR."-"
EL S E IF ID=-3 T H E N E X P E C T S " / "

IF(ID .GT. -3) GO TO 39
IF(ID .NE. -3) GO TO 38
I R E P - - 1 5
GO TO 28

38 IF (ID .LT. -4) GO TO 100

TEST FOR "**"
IF(ISY M(ILIST+1) .EQ. 3) GO TO 55
IREP=0
GO TO 28

C O M P L E T E S D E S C R I P T I O N OF PR EVIOUS TERM
SET UP P A R A M E T E R S FO R NEXT TERM

5 9 n l î s t £ n a d n f)= n f a c t

N A DN F* IA DC
NTERM =NT ERM+1
I A D C =N AD NF+2
N F A C T = - 1

I D = - 1 E X P E C T S
ID = -2 E X P E C T S "+"

IF(ID .EQ. -1) GO TO 29
GO TO 30

S E C T I O N FOR "V" A N D "F"
40 IF(IC .GT. 2) GO TO 100

IF (NF ACT .GE. 0) GO TO 42
NLIST (I AD C-1) = I S I G N
ISIGN=1
NF ACT =0

42 N F A C T = N F A C T + 1
I F (IS IG N .LT. 0) GO TO 100
ISPEC=0

SE T UP N U M B E R R O U T I N E FOR V OR F
S T O R E V OR F IN A P P R O P R I A T E ADDR E S S OF NLIST

IDEC--1
IFC-IC

. IC-ILI ST
ILIST=ILIST+1
NUM=0
ISWIT=2
CALL NUMBER(ISYM,IC,N,ILIST,IDEC,ISWIT,NUM,CONS,MAXCON,ID,IREP
ICONC,NFNUM)

41 NUM =N UM +5
IF(IFC .EQ. 2) N U M = N U M + 9 9 5
N L I S T (I A D C) = N U M
IADC=IADC+1
IF(IREP .EQ. 0) GO TO 37
N L I S T (l A D C) = - 1 5
IADC=IADC+1
GO TO 37

S E C T I O N FOR S P E C I A L F U N C T I O N S
1 = LOG
2 = EXP
3 = SIN
4 = COS
5 - A R C T A N

45 IF(NF AC T .GE. 0) GO TO 44
N L I S T (I A D C - 1) = I S I G N
ISIGN-1
NF ACT =0

IF TES T IS T R U E , E X P E C T S "("
44 IF(ID .EQ. 26) GO TO 70

IF(lD .GE. 19) GO TO 100
IF(ISP EC .EQ. 1) GO TO 100
I S P E C = 1
I D D = I D - 12
GO TO (4 6 , 4 7 , 4 8 , 4 9 , 5 0 , 5 1) ,IDD

TEST FOR "LOG"
46 ILIST=ILIST+1

IF (l S Y M (I L I S T) .NE. 30) GO TO 100

O
O

O
O

O
O

222

ILI ST= ILIST+1
IF (I SY M (I L I S T)
n l i s t (I A D C)=1
IADC=IADC+1
GO TO 30

c TEST FOR
47 ILI ST= ILIST+1

i f (i s y m (i l i s t)
I L I S T = I L I S T + 1
I F (I S Y M (I L I S T)
N L I S T (I A D C) = 2
IADC=IADC+1
GO TO 30

C TEST FOR
48 I L I S T = I L I S T + 1

I F (I S Ï M (I L I S T)
ILI ST= ILIST+1
I F (i s y m (i l i s t)
N L I S T (I A D C) = 3
IADC=IADC+1
GO TO 30

C TEST FOR
49 I L I S T = I L I S T + 1

I F (I S Y M (I L I S T)
ILIST =IL IST+1
IF (I S Y M (I L I S T)
N L I S T (I A D C) = 4
IADC = IADC +1
GO TO 30

C TEST FOR
50 ILI ST= IL IS T+1

I F (IS YM(ILIST)
I L I S T = I L I S T + 1
I F (I SY M(ILIST)
ILI ST= ILIST+1
I F (I S Y M (I L I S T)
N L I S T (I A D C)=5
IADC=IADC+1
GO TO 30

.NE. 2 6) GO TO 100

"EXP"

.NE. 27) GO TO 100

.NE. 28) GO TO 100

SIN"

.NE. 29) GO TO 100

.NE. 25) GO TO 100

COS"

.NE. 30) GO TO 100

.NE. 22) GO TO 100

A R C T " FOR A R C T A N G E N T

.NE. 32) GO TO 100

.NE. 24) GO TO 100

.NE. 25) GO TO 100

NEXT"S E C T I O N FOR KEY W O R D

51 ILIST= ILI ST+1
I F (I S Y M (I L I S T) .NE. 21) GO TO 100
ILIST =ILIST+1
IF (I S Y M (I L I S T) .NE. 27) GO TO 100
ILIST =ILIST+1
IF (I SY M (I L I S T) .NE. 32) GO TO 100
CAL L R D C A R D (I T E X T)
GO TO 1

SE CT I O N FOR "**"

55 NUM*0
ISWIT=3
IC=ILIST+1

o
o
o

o
o

223. -

IL IST -IC +1
I S E T = I R E P
I D = I S Y M (l L I S T) - 7
I F (I D .NE. -1) GO TO 54
I R E P = I R E P - 15
I C - I L I S T
IL IS T - I L I S T + 1

54 C A L L N U M B E R (I S Y M , I C , N , I L I S T , I D E C ,I S W I T ,N U M ,C O N S , M A X C O N , I D , I R E P ,
I C O N C ,NFNUM)

56 I F (I D E C .GT. 0) GO TO 57
C IF P R E V I O U S O P E R A T O R WAS "/" T H E N INSERT "**-1"

I F (I R E P .EQ. 0) GO TO 58
I F (I R E P .EQ. -15) N U M = - N U M
IRE P= 0
I F (I S E T .EQ. -15) I A D C = I A D C - 1

58 I F (N U M .GT. 10) GO TO 57
I F (N U M .LT. -15) GO TO 57
N U M = - N U M - 1 6
GO TO 59

57 I F (I R E P .EQ. 0) GO TO 60
I F (I SET .EQ. -15) IADC-IADC-1
I F (I REP .LT. -15) C O N C = - C O N C
IRE P = 0
C O N S (M A X C O N) - - C C N C

60 N U M = - 2 6 - M A X C 0 N
59 N L I S T (l A D C)=NUM

IADC = IADC + 1 .
GO TO 37

S E C T I O N FOR " (" , E X P E C T S NEW F U N C T I O N AND U N C O N D I T I O N A L JUMP
I N C R E A S E DEPTH OF N E S T E D F U N C T I O N
S T O R E P A R A M E T E R S F O R OUTER F U N C T I O N

70 IAD C- I A D C + 1
N L I S T (l A D C) = - 1 6
KC-KC+1
j u m p a d (n ,k c) * i a d c
I A D C - I A D C + 2
N D E P T H * N D E P T H + 1
I R E P S (N D E P T H) * I R E P
N A N T S (N D E P T H) = N A D N T
N F A C T - N F A C T + 1
N F A C S (N D E P T H) * N F A C T
n t e r s (n d e p t h)=n t e r m
n a n f s (n d e p t h)= n a d n f
M A X F = M A X F + 1
N F U N C * N F U N C + 1
N L I S T (I A D C - 3) * N F U N C + 1 0 0 0
n l i s t (i a d c)=n f u n c
n a d r (n f u n c) » i a d c

c- s e t u p p r i o r i t y o r d e r i n g a n d r e v e r s e o r d e r i n g o f f u n c t i o n s
I C = N L I S T (N A D N T - 1)
I C T - N P R S (I C)
N M O V - M A X F - I C T
I C T = M A X F
DO 71 I C * 1 ,NMOV

o
o

o
o
o
o

o
o

o
o
o

- 224 -

N P T = N P R I O R (I C T - 1)
n p r i o r (i c t)= n p t
ICT=ICT-1
N P R S (N P T) = N P R S (N P T) + 1

71 C O N T I N U E
n p r i o r (i c t)= n f u n c
n p r s (n f u n c)= i c t

C .SET UP P A R A M E T E R S FO R INNER F U N C T I O N
NA DN T* IA DC +1
N A D N F = N A D N T + 1 !
I A D C * N A D N F + 2 ;
IREP =0 :
NFACT*-1 ;
NTERM*1 ;
GO TO 28 !

S E C T I O N FOR ")"

75 I F (I L I S T .GT. NSYM) GO TO 91
I F (N D E P T H .GT. 0) GO TO 76 !

74 ¥ R I T E (6 , 1 5 0) N F N U M , I L I S T !
150 F0RMAT(1 HO, ' D E F I N I T I O N OF F U N C T I O N 13 HAS A SURP L U S R I G H T BRACKE:

IT AT S Y M B O L ' ,13) !
ILI ST * I L I S T + 1 ' i
I D - I S Y M (I L I S T) - 7
GO TO 37

t

PUT A D D R E S S FOR JUMP FRO M O P E N I N G BRACKER
CL EAR UP END OF I N N E R F U N C T I O N \
RE SE T V A L U E S FOR O U T E R F U N C T I O N

76 I C = N A D N T - 2 ;
N L I S T (I C) = I A D C
n l i s t (n a d n t)= n t e r m
N L I S T (N A D N F) = N F A C T
n t e r m = n t e r s (n d e p t h)
n a d n t = n a n t s (n d e p t h) ;
n f a c t * n f a c s (n d e p t h)
n a d n f * n a n f s (n d e p t h)
i r e p - i r e p s (n d e p t h)
n d e p t h - n d e p t h -1 :

TEST W H E T H E R B R A C K E T S ARE U N N E C E S S A R Y
I D - I A D C - I C
I F(ID .GT. 6) GO TO 78
I F (ID .LT. 6) RETURN
I D = N L I S T (l C - 2)
I F(ID .NE. 1) GO TO 78 \
N L I S T (I C - 2) = N L I S T (I A D C - 1)
IADC-IC-1
I L I S T * I L I S T + 1 i
I D * I S Y M (l L I S T) - 7
GO TO 37

JUMP IS U N N E C E S S A R Y B E C A U S E O UTER AND INNER F U N C T I O N S I
END T O G E T H E R !

78 IL IS T * I L I S T + 1
id*isy m(ili st)-7

- 225 T

I F (ID .EQ. 1 1) GO TO 72
I F (l R E P .EQ. 0) GO TO 37 t
NL I S T (l A D C) = -1 5
IADC=IADC+1
IR EP= 0
GO TO 37 ?

72 i f (I LIS T .GT. NSYM) GO TO 73 ;
I F (N D E P T H .EQ. 0) GO TO 74 !

73 N L I S T (I C — 1)-IREP i
N L I S T (I C) = 0 {
IR EP= 0 I
DO 82 J Z - 1 ,KC ¡
I F (J U M P A D (N , J Z) .EQ. IC-1) J U M P A D (N ,J Z) =0

82 C O N T I N U E
GO TO 75

C END OF F U N C T I O N S P E C I F I C A T I O N
91 n l i s t (n a d n t)=n t e r m I

N L I S T (N A D N F) = N F A C T)
I F (N D E P T H .EQ. 0) R E T U R N \
¥ R I T E (6 , 9 4) N F N U M 1

94 F O R M A T (1 H O , 'D E F I N I T I O N OF F U N C T I O N 1 3 HAS TOO FEW L E F T H A N D BRACÍ
I K E T S ') {
I C - N A D N T - 3 I
N L I S T (I C) = I R E P S (N D E P T H) i
N L I S T (I C + 1)*0 V
N T E R M - N T E R S (N D E P T H) [
N F A C T = N F A C S (N D E P T H) I
n a d n t - n a n t s (n d e p t h) ' »
n a d n f = n a n f s (n d e p t h) l
N D E P T H = ND EPTH-1 '
GO TO 91

100 W R I T E (6 , 1 0 1) N F N U M , I L I S T I
101 F 0 R M A T (1 H O , 'E R R O R IN THE D E F I N I T I O N OF F U N C T I O N ', 1 3 , ' AT SYMBOL' , |

I I 3 , ' S H O U L D NOT O C C U R ’) !
R E T U R N
END

o
o

o
o

226

S U B R O U T I N E N U M B E R (I S Y M ,I C ,N ,I L I S T ,I D E C ,I S W I T ,N U M ,C O N S ,M A X C O N ,I D ,
I I R E P , C O N C ,NFNUM)
D I M E N S I O N C 0 N S (2 0 0) , I S Y M (2 0 0)

19 IC-IC+1
I D » I S Y M (I C)-7

ID N E G A T I V E I N D I C A T E S END OF NU MBERS
ID G R E A T E R THAN 10 I N D I C A T E S ")" OR " = F O L L O W S NU M B E R

I F (ID .LT. 0) GO TO 23
I F (ID .GT. 12) GO TO 100
I F (ID .GT. 10) GO TO 23
IF (I DE C .GE. 0) GO TO 20
I F (ID .LT. 10) GO TO 21
ID EC =0
GO TO 19

20 IDEC-I DEC +1
21 N U M = 1 0 * N U M + I D

GO TO 19
23 I F (I L I S T .EQ. IC) GO TO 100

I L I S T - I C
I F (I S W I T .GT. 2) GO TO 24
IF (I D E C .GT. 0) GO TO 102
R E T U R N

24 C O N C - F L O A T (N U M)
I F (I S W I T .EQ. 3 .AND. IDEC .LE. 0) R E T U R N
IF(I D E C .LE. 0) GO TO 26 5
SC ALE= 1 . ij
DO 25 1 = 1 , IDEC)

25 S C A L E = 1 0 . » S C A L E s
C O N C = C O N C / S C A L E i

26 I C - I S W I T + I R E P j
IF(IC .NE. -11) GO TO 17 *
IREP=0
C 0 N C * 1 .0 / CONC "

17 M A X C 0 N = M A X C 0 N + 1
C O N S (M A X C O N) = C O N C
R E T U R N

100 W R I T E (6,101) N F N U M , I L I S T
101 F O R M A T (1 H O , 'E R R O R IN THE D E F I N I T I O N OF FUNCTION* , 1 3 AT SYMBOL*, !

1 1 3 , 'S HO U L D NOT OCCUR')
R E T U R N

102 W R I T E (6 , 1 0 3) N F N U M , I L I S T]
103 F 0 R M A T (1 H O , 'D E C I M A L P O I N T IN THE D E F I N I T I O N F U N C T I O N ’ 1 3 , 'AT S Y M B O ;

IL* ,13, ’ SH O U L D NOT O C C U R *) ::
R E T U R N v
END |

s

o
o
o
o

o
o
o

o
o

o
o
o

1- 227 -

S U B R O U T I N E D I F F (l V A R , l)

D I F F E R E N T I A T I O N S U B R O U T I N E f

CO M M O N / A 1 / N L I S T (4 0 0 0) , N P R I 0 R (3 0 0) , N P R S (3 0 0) ,N D E R (3 0 0 , 6 0) ,NADR(300-
I) . L I S T E N (2 0) , J U M P A D (2 0 , 5) ,JC(20) , C O N S (200)
CO M M O N /A3/ L T M A X . L M A X F , J T M A X F ,L T F U N C (5 0) , J M A X F , J F U N C (5 0) ,

I I C O U N T . D E T F , D E T J T
CO M M O N /A 4/ N Q ,N B ,N I ,M F U N ,N T ,K ,K V A R ,K F U N C , K P A R A M , I M E T H , I S T E P ,N I N T F
C O M M O N /A5/ L T H E T A . J A C O B . I R E C , M A X A D ,M A X F , M A X C 0 N , I V E C T (7 0) , I A D C ,

I I A D C D , I F U N C , N F U N C , I T A N , N T A N , N F L A G , L D I F F , I C 0 N (4) j-
C O M M O N /A6/ V L F (3 0 0 , 1 0 0) ,N D E R S (20,50) ,N D E R j (300,60) , NDER JS (20,20) 'f!
C O M M O N /A7/ N D J (1 0 , 50,10) ;
REAL N D E R S , N D E R J S ;
L O G I C A L J A C O B !

. L O G I C A L IREC '
L O G I C A L S K I P j
L O G I C A L L JUMP j
L O G I C A L L T H E T A j.
N T E R M D = 0 l
N L I S T (I A D C D) * N F U N C *
L - I A D C D • Lt
I A D C D - I A D C D + 2 |
N T E R M - N L I S T (l A D C) |i
I AD C- IA DC +1 i:

D I F F E R E N T I A T E TER M BY TERM 1
I C L I S T IS C O N S T A N T IN C U R R E N T TERM !
IT RAN G IVES START OF D E S C R I P T I O N OF F A C T E R IN CU RRENT TERM i

t

DO 100 1 1 = 1 , N T E R M \
SKIP* . TR UE •
N F A C T = N L I S T (I A D C)
I A D C = I A D C + 1 *
I F (N F A C T .EQ. 0) GO TO 96 i
I C L I S T = N L I S T (I A D C)
I T R A N = I A D C +1
GO TO 95

96 IA DC- IAD C+1
GO TO 100

D I F F E R E N T I A T E U SING P R O D U C T F O R M U L A E
W I T H ONE TERM FOR E ACH FACTOR

95 DO 97 J = 1 ,N F A C T \
L J U M P - . F A L S E . j.
IA DC -I AD C+ 1 I
I C O P - I A D C *
I D - N L I S T (I A D C) |
IF (ID .GT. .5) GO TO 1 (

• IAD C- IA DC +1 (
I D I - N L I S T (I A D C)
IDNT-1 i
GO TO 2 J

1 I D 1 - I D i
IDNT-0

CJ
 o

 o
 o

 o
228 -

TO
TO

ID2 IS USED TO T EST FOR E X P O N E N T
2 ID2 = N L I S T(IADC+1)

I F (ID2 .6E. 0) GO TO 3
IADC-I ADC +1
I F (ID2 .EQ. -16) GO
I F (L D I F F .EQ. 1) GO
IP W R = I A D C
IF (JC (I) .EQ. 0) GO TO 3
K K = JC (I)
I F ((K K .EQ. 1) .AND. (J U M P A D (I ,K K) .EQ. 0)) GO TO 3
DO 93 J K = 1 , KK
K C = J U M P A D (l ,JK)
IF(KC .EQ. 0) GO TO 93
K C = N L I S T (K C + 1)
I F (KC .EQ. IP¥R) GO TO 99

93 C O N T I N U E
GO TO 3

99 IF(LJ UM P) GO TO 3
ID2-0

3 I F (ID1 .GT. 1000) GO TO 4
IDN T-I DNT -1
I C = I D 1 - I V A R
IF(I C .NE. 5) GO TO 97
GO TO 40

4 I F (N D E R (l D 1 - 1 0 0 0 , I V A R)
GO TO 40

40 S K I P - . F A L S E .
I F A C C * I A D C D
IADC D= IFA C C + 1
N L I S T (I A D C D) = I C L I S T
I A D C D * I A D C D + 1
I F A C T = 0
IF(J .EQ. 1) GO TO 9
IC C= IT R A N
IS WI T = 0
I F L A G = 0

EQ. 0) GO TO 97

T R A N S F E R I N I T I A L A N D F INAL N O N - D I F F E R E N T I A T E D F A C T O R S
TO THE D E R I V A T I V E
OM ITS JUMPS FROM THE D E R I V A T I V E

'73

8

. EQ .

.NE.

.NE.

.NE.

1)
0
0
0

I C = N L I S T (I C C)
I F (IC .GT. 5)
ICC*ICC+1
i f (IFLAG
I F (ISWIT
I F (ISWIT
I F (I S W I T
I F (IC .NE. -16)
I C C “N L IS T(ICC)
GO TO 6
L J U M P * .T R U E .
I A D C “N L I S T (I A D C + 1) - 1
GO TO 2
N L I S T (I A D C D) * I C
I A D C D “ IADCD+1

I F A C T * I F A C T + 1

GO TO 73
.AND.
.AND.
.AND.
GO TO

N L I S T (I C C) .LT.
IC .GT. 0 .AND.
N L I S T (I C C) .EQ.
5

0) I C 0 P “ IC0P+1
IC ,LE. 5) ICOP-ICOP+1
-16) IC0P=NLIS T (l C 0 P) + 1

o
o
o
o

o
o
o

o
o
o

oo
- 229 -

6 I F (I F L A G .EQ. 1) GO TO 74
I F (IC C .NE. ICOP) GO TO 7

74 I F (I S W I T .EQ. l) GO TO 43
GO TO 44

43 I F L A G * 1
I F (I F A C T .LT. NFACT) GO TO 7

44 I F (I S V I T .EQ. 1) GO TO 31
9 IF (ID .GT. 5) GO TO 16

GO TO (10,11 , 1 2 , 1 3 , 1 4) ,ID
C D E R I V A T I V E HAS T H E F O R M X**-1 OR F**-1

10 n l i s t (i a d c d)= i d i
IA DC D= IA DC D+1
N L I S T (I A D C D) = - 1 5
I A D C D * I A D C D + 1
GO TO 16

D E R I V A T I V E HAS T H E F O R M EXP(X) OR EXP(F)
11 N L I S T (l A D C D) = 2

GO TO 15

D E R I V A T I V E HAS THE F O R M COS(X) OR COS(F)

12 N L I S T (I A D C D) = 4
GO TO 15

D E R I V A T I V E HAS TH E F O R M -SIN(X) OR -SIN(F)

13 N L I S T (I A D C D) * 3
I C L I S T * - I C L I S T
I F (I C L I S T .EQ. 0) I C LIST*-1
N L I S T (l F A C C + 1) = I C L I S T
GO TO 15

FOR ARCTAN D E F INE A NEW F U N C T I O N AS 1+X**2 OF 1+F**2
INVERT THE F U N C T I O N

14 ‘ N F U N C * N F U N C + 1
I F (L T H E T A . O R . .J A C 0 B) M A X F - M A X F + 1
N L I S T (I A D C D) * N F U N C + 1 000
n a d r (n f u n c)= i a d c d
IAD CD= IAD CD+1
N L I S T (l A D C D) = - 1 6
I A D C D* IA DC D+1
N L I S T (I A D C D) = I A D C D + 9
I A D C D * I A D C D + 1
N L I S T (I A D C D) = N F U N C
n a d r (n f u n c)= i a d c d
IAD CD= IAD CD+ 1
N L I S T (I A D C D) * 2
I A D C D * I A D C D + 1
N L I S T (l A D C D) - 0
IA DC D-I ADC D+1
n l i s t (I A D C D) *1
I A D C D * I A D C D + 1
NL IS T(I A D C D) * 1
I A D C D * I A D C D + 1

- 230 -

C

C

C

C

C

48

15

16

41

17
42

18

NL IS T(IA DC D)=1
IA DC D-I ADC D+1
n l i s t (i a d c d)= i d i
I A D C D * I A D C D + 1
N L I S T (l A D C D) = - 1 8
I A D C D = I A D C D + 1
N L I S T (l A D C D) * - 1 5
I A D C D = I A D C D + 1
IF(.NOT. LTHETA) GO TO 48
N P R I 0 R (M A X F - 1) = N F U N C
N P R S (N F U N C - 1) = m a x f
N P R I 0 R (M A X F) = N F U N C - 1
N P R S (N F U N C) = M A X F - 1
I F (L T H E T A .OR. JACOB) GO TO 16
I T A N = 1
N T A N * N T A N + 1
GO TO 16
I A D C D = I A D C D + 1
n l i s t (i a d c d)= i d i
I A D C D = I A D C D + 1

GO TO 41

F U N C T I O N C O R R E S P O N D S TO P A R T I A L D (FJ)/D(Xl)
IF(ID1 .LE. 1000) GO TO 17
I C * I D 1 - 10 00
i c c * n l e r (i c ,i v a r)
IF(ICC .GT. 1000)
IDNT- IDN T-1
GO TO 35
N L I S T (I A D C D) » I C C
IAL CD= IA DC D+1

IN SE RT EXTRA
I F (ID2 .GE. 0) GO
IF(ID .GT. 5) GO
n l i s t (i a d c d)= i d
IA DC D= IA DC D+1

R E P E A T S S P E C I F I C A T I O N OF FK
N L I S T (I A D C D) = I D 1
IDN T*IDNT+1
IAD CD= IA DC D+1

T ERM FOR
TO 25

TO 18

THE EX PONENT

I F (ID2 .GE. -26) GO TO 19
M A X C 0 N = M A X C 0 N + 1
IC=*-ID2-26

(PJ-1) IS HEL D AS A NEW C O N S T A N T
C 0 N S (M A X C 0 N) = C 0 N 3 (I C) - 1 .0
C O N S T * C O N S (l C)
NLIST(IADCD)»=-26-MAXC0N
IAD CD =I AD CD+1
GO TO 20

IF X**2 NO E X P O N E N T IN D E R I V A T I V E
19 N L I S T (I A D C D) * I D 2 + 1

I A D C D * I A D C D + 1
I F (ID2 .EQ. -18) I A D C D * I A D C D - 1
I C - - I D 2 - 1 6
C O N S T - F L O A T (I C)

20 M A X C O N - M A X C O N + 1
I F (I C L I S T .GT. 1) GO TO 24
I F (l C L I S T .LT. -1) GO TO 22

U o o

- 231 -

I F U C L I S T .EQ. -1) C O N S T = - C O N S T
GO TO 23

22 I C L I S T = - I C L I S T
C O N S T = C O N S T * (- C O N S (I C L I S T - 1))
GO TO 23

24 C O N S T = C O N S T * C O N S (ICLIST-1)
C NEW C O N S T A N T C I*PJ

23 c o n s (m a x c o n) = c o n s t
N L I S T (I F A C C + 1) = M A X C O N + 1

S I M P L I F Y IF C O N S T A N T ONLY FOR D E R I V A T I V E FA C T O R

25 IF(J .EQ. NFACT) GO TO 31
I F (ID1 .LE. 1000) GO TO 39
IF(ICC .GT. 1000) GO TO 39

35 IF(ICC .GT. 1) GO TO 33
IF (I CC .LT. -1) GO TO 32
I F (IC C .EQ. 1) C0NST=1 .0
IF(ICC .EQ. -1) C O N S T * - 1.0
GO TO 34

33 C 0 N S T * C 0 N S (l C C - 1)
GO TO 34

32 I C C =- IC C
C 0 N S T * - C 0 N S (l C C - 1)

34 M A X C 0 N = M A X C 0 N + 1
I F (I C L I S T < . G T . 1) GO TO 37
I F (I C L I S T .LT. -1) GO TO 36
I F (I C L I S T .EQ. -1) C O N S T = - C O N S T
GO TO 38

36 I C L I S T * - I C L I S T
C O N S T = C O N S T * (- C O N S (I C L I S T - 1))
GO TO 38

37 C O N S T * C O N S T * C O N S (I C L I S T - 1)
38 C O N S (M A X C O N) = C O N S T

N L I S T (I F A C C + 1)=MAXC 0 N + 1
ICL I S T = M A X C 0 N + 1
IF(ID2 .LT. 0) GO T O - 42

39 IF (J .EQ. NFACT) GO TO 31
I S W I T * 1
ICC*IADC+1
IMAX*ICC+1
ICO P * I M A X
IC*1
L J U M P * . F A L S E .
IF(J .GT. -1) GO TO 47
I D * N L I S T (I C C)
GO TO 27

47 IFAC T*J
IFLA G*0
GO TO 7

27 IF(ID .GT. 5) GO TO 26
ICC*ICC+1
N L I S T (I A D C D) = I D
I A D C D * I A D C D + 1
I D * N L I S T (I C C)

26 IC*IC+1

O
o

232 -

N L I S T (I A D C D) = I D
ICC=ICC+1
I A D C D = I A D C D + 1

2 9 . I D = N L I S T (I C C)
I P (ID .GE. 0) GO TO 30
ICC=ICC+1
I F (I D .NE. -16) GO TO 28
L J U M P = . T R U E .
I C C = N L I S T (I C C)
GO TO 29

28 IPW R=ICC-1
I F (J C (I) .EQ. 0) GO TO 87
K K = J C (I)
I F ((K K .EQ. 1) .AND. (J U M P A D (I ,KK) .EQ. 0)) GO TO 87
DO 94 JK = 1,KK
k c = j u m p a d (i ,j k)
IF (KC .EQ. 0) GO TO 94
K C = N L I S T (K C + 1)
I F (KC .EQ. IPWH) GO TO 89

94 C O N T I N U E
GO TO 87

89 I F (L J U M P) GO TO 87
GO TO 30

87 n l i s t (i a d c d)= i d
IA DC D - I A D C D + 1
I D = N L I S T (I C C)

30 IF (IC .LT. NFACT) GO TO 27
I M A X - I C C

31 I F (SK IP) GO TO 97
N T E R M D - N T E R M D + 1
N F A C T D = N F A C T + I D N T
N L I S T (I F A C C) = N F A C T D

97 C O N T I N U E
IAD C= IA DC +1

100 C O N T I N U E

CHECK IF D E R I V A T I V E IS C O N S T A N T OR ZERO .
C

I F (N T E R M D .EQ. 0) GO TO 102
I F ((N T E R M D .EQ. 1) .AND. (NFACTD .EQ. 0)) GO TO 103
GO TO 101 •

102 N F U N C - N F U N C - 1
MA X F = M A X F - 1
i f (j a c o b) GO TO 107

106 n d e r (i f u n c ,i v a r)= o
108 IADCD=*IADCD-2

i f (I C O U N T .GT. 1) r e t u r n
W R I T E (6,401) I F U N C . I V A R

401 F 0 R M A T (1 H 0 , ' D F ' , 1 2 , ' / D X ' , 1 1 - 0')
GO TO 105

107 I F (.NOT. IREC) IFUNC-I
I F (N Q .GT. 10- .OR. K P A R A M .GT. 50) GO TO 125
N D J (l , I V A R , K V A R) - 0
IF(.N OT . IREC .AND. N F L A G .EQ. 1 .AND. I .LE. N I N T F)

+ N D E R (K F U N C , I V A R) = 0
I F (I .LE. NINTF) N D E R (K F U N C ,IVAR)-0

233

I V A R = K V A R
GO TO 126

125 I V A R = K V A R
n d e r j (i f u n c ,i v a r)=o

126 IF(IREC) N D E R (K F U N C , K) = 0
GO TO 108

103 N F U N C = N F U N C - 1
M A X F = M A X F - 1
IF (JA COB) GO TO 120

121 I C L I S T = N L I S T (I A D C D - 1)
IF (J A C O B) GO TO 122
n d e r (i f u n c ,i v a r)= i c l i s t
GO TO 123

122 IF (NQ .GT. 10 .OR. K P A R A M .GT. 50) N D E R J (I F U N C ,I V A R) = I C L I S T
IF (I .LE. NINTF) N D E R (K F U N C ,K) = ICLIST
IF (IR EC) N D E R (K F U N C , K) = I C L I S T

123 I A D C D - I A D C D - 4
I F (I C L I S T .EQ. 1) GO TO 110
I F (I C L I S T .EQ. -1) GO TO 109
I F (I C L I S T .GT. 1) GO TO 111
I F (I C L I S T .LT. -1) GO TO 112

109 C 0 N S T = - 1 .0
GO TO 115

110 C 0 N S T = 1 .0
GO TO 115 '

111 C 0 N S T = C 0 N S (l C L I S T - 1)
GO TO 115

112 I C L I S T = - I C L I S T
C 0 N S T = - C 0 N S (l C L I S T - 1)

115 I F (I C O U N T .GT. 1) R E T U R N
W R I T E (6, 40 2) I F U N C , I V A R , C O N S T

402 F O R M A T (1 H 0 , 'D F ' ,12,'/ D X ’ ,11,' = ',F8.4)
GO TO 105

120 IF (.NOT . IREC) IFUNC = I
IF(N Q .GT. 10 .OR. K P A R A M .GT. 50) GO TO 127
n d j (i ,i v a r ,k v a r)= n l i s t (i a d c d - i)
IF'C.NOT. IREC .AND. N F L A G . E Q . 1 .AND. I .LE. NINTF)

+ N D E R (K F U N C , I V A R) = N L I S T (I A D C D - 1)
127 I V A R = K V A R

GO TO 121
101 N L I S T (M A X A D + 2) - N T E R M D

M A X A D * I A D C D - 1
I F (I C O U N T .GT. 1) R E T U R N
W R I T E (6,400) I F U N C , I V A R , (N L I S T (J) , J = L , M A X A D)

400 F 0 R M A T (1 H 0 , ’D F ' , 1 2 , ’/DX* ,11 ,2X,20I4)
W R I T E (6,550) M A X F . N F U N C , N F U N C , M A X F

550 F 0 R M A T (1 H 0 , ‘N P R I O R (’ ,12, ') = ' ,12,5 X , 1N P R S (' , 12 , ') - ',12)
105 R E T U R N

END

234

S U B R O U T I N E E V A L (I A D C ,I ,I F U N C ,V F U N C ,I T ,M A X A D ,N P A R A M ,V ,V F L I S T) ?
CO MM ON X(1 0 0 , 5 0) ;
CO MM ON / A 1 / N L I S T (4 0 0 0) , N P R I 0 R (3 O O) , N P R S (3 0 0) , U D E N D O , 6 0) . M A D R E O .

I) , L I S T E N (2 0) , J U M P A D (2 0 , 5) ,J C (2 0) , C 0 N S (2 0 0)
COMMON / A6/ V L F (3 0 0 , 1 0 0) fN D E R S (2 0 , 5 0) , N D E R J (3 0 0 , 6 0) , N D E R J S (20,20)
REAL N D E R S , N D E R J S ;
D I M E N S I O N V(NPARAM)
D I M E N S I O N V F L I 3 T (2 0 0)
L O G I C A L LJ UMP
L J U M P = . F A L S E . '
N T E R M = N L I S T (l A D C) I
I F (N T E R M .EQ.O) R E T U R N
IAD C=IADC+1 !
DO 100 1 1 = 1 , N T E R M
V T E R M = 1 .
> N F A C T = N L I S T (I A D C)
IAD C=IADC+1
I C L I S T = N L I S T (I A D C)
I F (N F A C T .EQ. 0) GO TO 96 ;
GO TO 95

96 IAD C-IADC+1
I F (I C L I S T .GE. 0) GO TO 80
I F (I C L I S T .EQ. -1) GO TO 82
I C L I S T = - I C L I S T
V F U N C * V F U N C - C O N S (I C L I S T - 1)
GO TO 100

82 V F U N C = - 1 . +VFUNC
GO TO 100

80 I F (I C L I S T .GT. 1) GO TO 81
V F U N C = 1 .+V FUNC
GO TO 100

81 V F U N C = V F U N C + C O N S (I C L I S T - 1)
GO TO 100

95 DO 97 J = 1 ,NFACT
IADC = IADC + 1
I D = N L I S T (I A D C)
IF(ID .GT. 5) GO TO 1
IADC=IADC+1
I D 1 = N L I S T (I A D C)
GO TO 2

1 ID1- ID
2 I F (IADC .EQ. MAXAD) GO TO 84

I D 2 = N L I S T (I A D C + 1)
I F (ID2 .GE. 0) GO TO 3
IADC=IADC+1
I F (ID2 .EQ. -16) GO TO 8
I P W R= IA DC
IF(JC(I) .EQ. 0) GO TO 3
KK= J C (I)
I F ((KK .EQ. 1) .AND. (J U M P A D (I ,XK) .EQ. 0)) GO TO 3
DO 93 J K = 1 , KK
K C = J U M P A D (I , J K)
IF(KC .EQ. 0) GO TO 93
K C = N L I S T (K C + 1)
IF (KC .EQ. IPWR) GO TO 91

93 C O N T I N U E

- 235

GO TO 3
91 I P (L JUMP) GO TO 3
84 ID2 = 0
3 IF(ID1 .GT. 1000) GO TO 4

I C = I D 1 -5
I F (IG .LE. UPARAN) GO TO 86
V F A C T = X (I T , I C - N P A R A M)
GO TO 94

86 V F A C T = V (I C)
GO TO 94

4 N F U N C = I D 1 -1000
V F A C T ~ V F L I S T (N F U N C)
GO TO 94

8 L J U M P = .T R U E .
I A D C = N L I S T (I A D C + 1) - 1
GO TO 2

9 I F (I D .GT. 5) GO TO 99
GO T O (1 0 , 1 1 , 1 2 , 1 3 , 1 4) , ID

10 v f a c t = a l o g (v f a c t)
GO TO 99

11 v f a c t = e x p (v f a c t)
GO TO 99

12 v f a c t = s i n (v f a c t)
GO TO 99

13 VFACT=COS(VFACT)
GO TO 99

14 V F A C T = A T A N (V F ACT)
GO TO 99

94 T p i ID2 .GE. 0) GO TO 9
IF (I D2 . E Q . -15) GO TO 93
IF (I D2 .GE. -26) GO TO 19
I C 0 N S T = - I D 2 - 2 6
c o n s t = c o n s (i c o n s t)
V F A C T = V F A C T * * I C O N S T
GO TO 9

19 I C - - I D 2 - 1 6
C 0 N S T = F L 0 A T (I C)
I F (IC .GT. 0) GO TO 2 0 0 ‘
IC--IC
V F A C T = 1./ V F A C T * * I C
GO TO 9

200 V F A C T = V F A C T * * I C
GO TO 9

C TEST D I V I S I O N S Y M B O L BE LONGS TO CURR E N T F U N C T I O N
98 VF AC T = 1 ./VF A C T

GO TO 9
99 V T E R M = V T E R M * V F A C T
97 C O N T I N U E

I F (I C L I S T .GE. 0) GO TO 21
I R C I C L I S T .EQ. -1) GO TO 21
I C L I S T - - I C L I S T
C O N S T = - C O N S (I C L I S T - 1)
GO TO 22

21 C 0 N S T = F L 0 A T (I C L I S T)
I F ((IC L I S T .EQ. 1) .OR. (I CLIST .EQ. -1)) GO TO 22
C O N S T * C O N S (I C L I S T - 1)

22 V F U N C * V F U N C + V T E R M * C O N S T
IADC- IAD C+1

100 C O N T I N U E
R E T U R N
END

- 236 -

S U B R O U T I N E I N P U T (N ,N L ,N V A R ,N R ,N T R A N)
D I M E N S I O N XL(6,60)
D I M E N S I O N N A M E (100)
C O M M O N X (100,50)
N V A R = N L * N R
NA=N+N L-1
DO 45 1 = 1 ,NA
R E A D (5 » 50) (X(I,J) ,J=1 ,NR)

50 F 0 R M A T (8 F 1 0.4)
45 C O N T I N U E

I F (N T R A N .EQ. 0) GO TO 10
C A L L D A T A L T (N , N R , N V A R , N A M E)

10 IF(NL-1 .LE. 0) GO TO 14
DO 6 1 = 1 , NL
DO 6 J = 1 ,NVAR

6 X L (I , J) = X (I , J)
MK = 0
DO 7 1 = 1 ,N
DO 7 J= 1, NR
IJ-I+NL-1

7 X (I , J) - X (I J , J)
DO 13 K = 2 ,NL
M K = M K + N R
N C = N - K + 1
DO 11 1 = 1 , NC
DO 11 J = 1 ,NR
IK=I + K - 1
I J = J + M K
K 1= K - 1
DO 12 I N = 1 ,K1
I T = N L - K + I N

12 X (I N , I J) = X L (I T , J)
11 X (I K , I J) = X (I , J)
13 C O N T I N U E
14 W R I T E (6,15)
15 F 0 R M A T (1 H 1 , 1 0 X , ' D A T A ' / / /)

DO 52 1=1 , N
W R I T E (6,27) (X (I ,j) ,J = 1 , NVAR)

27 F O R M A T (1H , 10 F 1 0.4)
52 C O N T I N U E

R E T U R N
END

- 237

S U B R O U T I N E D A T A L T (N ,N R ,N V A R ,N A M E)
D I M E N S I O N NAME(IOO)
C O M M O N X (100,50)
R E A D (5 ,888) K D ,IDA

888 F O R M A T (2014)
R E A D (5 , 1 0) (N A M E (l) , 1 * 1 ,KD)

10 F 0 R M A T (2 0 A 4)
DO 15 J = 1 ,IDA
READ(5 » 11) NOP,NA,NB,NC,VAL

11 F 0 R M A T (4 I 4 , F 8 . 4)
I F (N O P .NE. 10) GO TO 40
I V A L = I F I X (V A L)
ND-NC-1
CALL ALMLAG(ND,N,NB,IVAL,NA)
GO TO 15

40 I F(NB .NE. 0) ¥ R I T E (6,7) N O P ,N A ,N A M E (N A),N B ,N A M E (N B) ,N C ,N A M E (N C)
I F (N B .EQ. 0) V R I T E (6,18) N O P ,N A ,N A M E (N A),N C ,N A M E (N C)
IF(NO P .EQ. 6 .OR. NOP .E Q . 7) X (1 ,NC)=VAL
I F (NO P .EQ. 3 .AND. V A L .EQ. 0.) VAL=1 .
IF(NO P .EQ. 4 .AND. VA L .EQ. 0.) VAL=1.
DO 301*1 , N
SP=0.
SQ*1 .
GO TO (1 , 2 , 3 , 4 , 5 , 6 , 6 , 8 , 9) ,NOP

1 I F (N B .NE. 0) SP=X (I,NB)
X (l , N C) * X (I , N A) + S P + V A L
GO TO 30

2 x (i ,n c)*x (i ,n a)- x (i ,n b)+ v a l
GO TO 30

3 IF(N B .NE. 0) SQ=X (I,NB)
X (l , N C) = X (I , N A) * S Q * V A L
GO TO 30

4 I F (X (I ,N B) .EQ. 0) W R I T E (6 , 2 5) N O P . N B
IF(X(l, NB) .EQ. 0.) GO TO 15
X (I , N C) - X (I , N A) * V A L / X (I , N B)
GO TO 30

5 IF(X'(I,NA) .LE. 0.) ¥ R I T E (6,25) NO P , N A
i f (x (i ,n a) .g t . o) x (i ,n c) * a l o g (x (i ,n a))
GO TO 30

6 X (1 + 1 ,N C)= X (I ,N A)
W R I T E (6,25) N O P ,NA
IF (N O P .NE. 7) GO TO 30
X (I , N B) * X (I , N A) - X (I , N C)
GO TO 30

8 X (I ,N C)= E X P (X (I ,N A))
GO TO 30

9 I F (X (I , N A) .LE. 0.) ¥ R I T E (6 , 2 5) NOP , N A
i f (x (i ,n a) .GT. 0.) x (i ,n c)* s q r t (x (i ,n a))

30 C O N T I N U E
15 C O N T I N U E
25 F O R M A T (1 H O , ' ILLE G A L O P E R A T I O N FOR ' , 1 4 , 2 X , ' ON V A R I A B L E ',14)
7 FO RMA T(1 HO , ' OPER ATION' ,14, ’ P E R F O R M E D ON- V A R I A B L E S ’ , 14 , ' (’ ,
I A 4 ,’) AND ',14,' (',A4,') TO CR E A T E V A R I A B L E ' , 1 4 , ’ C , A 4 ,
I ’)')

18 F O R M A T (1 H O ,' OPERATION' ,14, ' P E R F O R M E D ON V A R I A B L E ',14,' C , A 4 ,
I') TO CR E A T E V A R I A B L E ', 14 , ' (' ,A4,')')
N V A R = K D
R E T U R N
END

- 238 -

S U B R O U T I N E A L M L A G (N D ,N ,N B ,I V A L ,N A)
CO M M O N X (100,50)
I T N E W = N - N B
L0PP=IVAL+1
ML1= NB + 1
DO 1 1 = 1 , ITNEW
IMA X L = I + N B
DO 2 J = 1 ,LOPP
NJ = ND + J
J0=J-1
S=0.
DO 3 K = 1 , ML1
K O = K - 1

3 S=S+X(IMAXL-K0,NA)*(ML1-K0)#*J0
2 X (I M A X L ,N J)=S
1 C O N T I N U E

N = N + L O P P
R E T U R N
END

- 239

*f
S U B R O U T I N E F U N M L (N P A R A M ,V ,F V) 'I
CO M M O N X (100,50) ;
CO M M O N / A 1 / N L I S T (4 0 0 0) ,NPRI0R(300) ,NPRS(300) ,NDER(300,60) , i1

I N A D R (3 0 0) , L I S T E N (2 0) ,J U M P A D (2 0 , 5) , J C (2 0) , C 0 N S (2 0 0)
CO MM ON / A 2 / V M U (1 0 0 , 5 0) , R (5 0 , 5 0) , D (5 0) , T E M P (5 0)
COMMON /A3/ LTMAX.LMAXF,JTMAXF,LTFUNC (50),JMAXF,JFUNC(50), j

IICOUNT,DETF,DETJT j
COMMON /A4/ N Q ,N B ,N I ,M F U N ,N T ,K ,KVAR,KFUNC,KPARAM,IMETH,I S T E P . N I N T f"
COMMON /A5/ LTHETA,JACOB,IREC,MAXAD,MAXF, MAXCON,IVECT(70),IADC, i

IIADCD,IFUNC,NFUNC,ITAN,NTAN,NFLAG,LDIFF,IC0N(4) •
COMMON /A6/ VLF(300,100) ,NDERS(20,50),NDERJ(300,60),NDERJS(20,20) j
COMMON /A7/ N D J (10,50,10)
RE AL N D E R S ,N D E R J S
D I M E N S I O N V (N P A R A M)
L O G I C A L L T H E T A , J A C O B
I F (I C 0 U N T .GT. 1 . A N D . (N Q .LE. 10 .OR. K P A R A M .LE. 50)) GO TO 151 ■
IF (I ME TH .EQ. 0 .AND. (NQ .LE. 10 .OR. KP A R A M .LE. 50)) GO TO 151
I F (I MET H .EQ. 0) GO TO 152 i
L T H E T A = . F A L S E . !
J A C O B = . F A L S E . i

. C A L L D I F I M L (N P A R A M . V)
152 DO 155 K1-1 ,N P A R A M

K=K1
L T H E T A ® . T R U E . !
C A L L D I F I M L (N P A R A M . V) !'
JAC OB ®. TR UE .
CAL L D I F I M L (N P A R A M , V) |
J A C O B ® . F A L S E .

155 C O N T I N U E
151 DO 150 K 1 = 1 .NPARAM

K=K 1 |
CAL L D I E V A L (N P A R A M . V)
CALL P Q E V A L (N P A R A M . V)

150 C O N T I N U E
f v = - (d e t j t - o .5* f l o a t (n t)* a l o g (d e t f))
M F U N = M F U N + 1 |
R E T U R N • ;
END !

iI»I
I
1

- 240 -

S U B R O U T I N E G C H E C K (N P A R A M ,V ,F U N ,F U N C T) *
C O M M O N X (100,50) i
C O M M O N / A 1/ N L I S T (4 0 0 0) , N P R I 0 R (3 O O) , N P R S (3 0 0) , N D E R (3 0 0 , 6 0) , !

IN AD R (3 0 0) ,LISTEN(20) ,J U M P A D (2 0 , 5) ,J C (2 0) , C 0 N S (2 O O)
C O M M O N /A2/ V M U (1 0 0 , 5 0) , R (5 0 , 5 0) , D (5 0) ,TEMP(50) ;
C O M M O N /A 3/ L T M A X ,L M A X F ,J T M A X F ,LTFUNC (5 0) , J M A X F ,J F U N C (50),

I I C O U N T , D E T F , D E T J T !
C O M M O N /A4/ N Q , N B , N I , M F U N , N T , K , K V A R , K F U N C , K P A R A M , I M E T H , I S T E P , N I N T F '
C O M M O N /A5/ L T H E T A , J A C O B , I R E C , M A X A D , M A X F , M A X C O N , I V E C T (7 0) , I A D C , ■

I I A D C D , I F U N C , N F U N C ,I T A N ,N T A N ,N F L A G ,L D I F F ,I C O N (4)
C O M M O N /A7/ ND J (10, 50,10) :
R E A L N D E R S ,NDERJS
D I M E N S I O N V(NPARAM)
D I M E N S I O N ST0RE(5O)
E X T E R N A L F U N C T
D A T A E P S / 1 .E-3/
DO 10 1 - 1 , N P A R A M 5
V (l) = V (l) + E P S /
CAL L F U N C T (N P A R A M , V , F V) j
F H I - F V - F U N I
F P L U S - F V j
V (l) = V (l) - E P S * 2 .
CAL L F U N C T (N P A R A M , V , F V)
F L O - F U N - F V
F M U S - F V
V (I)- V (I)+EPS \
S T 0 R E (l) = (F P L U S - F M U S) / (2 . * E P S) I

10 C O N T I N U E !
W R I T E (6 ,9002) (S T O R E (I) , 1 - 1 .NPARAM) !

9002 F 0 R M A T (1 H 0 , ' A P P R O X I M A T E G R A D I E N T ',10 F 1 0.4) '
R E T U R N !
END ' I

o
o

o
241 -

S U B R O U T I N E G S T E P (F U N ,F V ,G R A D ,S C ,N P A R A M ,V ,F U N C T ,I F O K) j
CO M M O N X (100,50) i
CO M M O N / A 1/ N L I S T (4 0 0 0) , N P R I 0 R (3 O O) , N P R S (3 0 0) , N D E R (3 0 0 , 6 0) , j

I N A D R (3 0 0) . L I S T E N (2 0) , J U M P A D (2 0 , 5) ,J C (2 0) . C O N S (200) \
CO M M O N / A2/ V M U (1 0 0 , 5 0) , R (5 0 , 5 0) ,D(50),T EMP(50)
C O M M O N /A 3/ L T M A X . L M A X F , J T M A X F ,L T F U N C (5 0) , J M A X F , J F U N C (5 0) ,

I I C O U N T . D E T F . L E T J T '
COM M O N /A4/ N Q . N B . N I . M F U N . N T . K . K V A R . K F U N C . K P A R A M , I M E T H , I S T E P . N I N T F
C O M M O N /A5/ L T H E T A , J A C O B , I R E C ,M A X A D ,M A X F ,M A X C O N , I V E C T (7 0) , I A D C , i

I I A D C D , I F U N C . N F U N C , I T A N , N T A N . N F L A G , L D I F F , I C 0 N (4)
C O M M O N / A6/ V L F (3 0 0 , 1 0 0) , N D E R S (2 0 ,50) , NDER J (300,60) , NDER JS (20,20) j;
C O M M O N /A 7/ N D J (1 0 , 5 0 , 1 0) !
R EA L N D E R S . N L E R J S }
E X T E R N A L F U N C T '
D I M E N S I O N V(NPARAM)
L O G I C A L L T H E T A , J A C O B , I F O K ;
I F O K = .T R U E . i
IDC=0 |
IQ-1 i
P R B C - .5 E- 11 ’
E1 = . 01 i
E2-. 7 >
S L = 0 . |
DL= 1 . . . " t
F L = F U N]
d f = p r e c * (a b s (f l) + p r e c) t
IKT= 0 i
F V - F U N ̂ |
DO 1 1 = 1 , N P A R A M |

1 v (i) = t e m p (i) - s c * d (i) ;
CAL L F U N C T (N P A R A M , V , F V) \
I F(FV .GT. FUN) GO TO 94 j

E X T R A P O L A T E TO B R A C K E T M I N I M U M

93 IKT-IKT+1
F O = - S C * G R A D •
d d = (f v - (f u n + f o)) / f o + i . 0 ;
I F(DD .LE. E 2) GO TO 3 j
I F (FV .GE. FL) GO TO 3 ;
IF(IK T .GT. 1 .AND. A B S (l . O - D D) .GE. E 1) GO TO 3
SL=S C |
D L = D D ;
F L- FV |
IF(I KT .GT. 5) GO TO 13 !
IF(D D .GE. .9 5) S C = 1 0 . 0 * S C
IF (DD .LT. .9 5) S C = . 5 * S C / (1 .O-DD)
DO 2 1 = 1 .N PARAM j

2 V (l) = T E M P (l) - S C * D (l)
CALL F U N C T (N P A R A M ,V ,F V)
GO TO 93

3 I F(DD .GE. E 1) GO TO 14
IF(ABS(1 .O-DL) .GE. E1) GO TO 13
GO TO 4

C
C M I N I M U M B R A C K E T E D

ca
ca

ca
no

n
oo

o
ca

ca
o

242

94 F O - - S C * G R A D
D D = (F V - (F U N + F O)) / F 0 + 1 .0
IF(D D .LT. E1) GO TO 4
I F (A B S (1 .0-DD) .GE. E1) GO TO 14
SL-SC
DL-DD
FL-FV
IF(IQ .EQ. 0) GO TO 7
GO TO 5

4 SR-SC
DR-DD
FR-FV
I F (A B S (S C * G R A D) .LE. DF) GO TO 7

CHECK SIZE OF B R A C K E T

5 I F ((SR-SL) .LE. PR EC*SR) GO TO 13
S C - S L + (S R - S L) * A M A X 1 (. 0 0 1 , (.5-DL)/(DR-DL))
IQ-0
DO 6 1 - 1 , NP A R A M

6 V (l) « T E M P (l) - S C * D (l)
CAL L F U N C T (N P A R A M , V , F V)
GO TO 94

USE M I D P O I N T OF I N T E R V A L IF QUA D R A T I C I N T E R P O L A T I O N FAILS

7 S C * . 5 * (S R + S L)
DO 8 1 - 1 , NPARAM

8 V (I) - T E M P (I) - S C * D (I)
CA LL F U H C T (N P A R A M . V . F V)
IF(FV .LT. FUN) GO TO 9
I F (A B S (S R * G R A D) .GT. DF) GO TO 9

R E C A L C U L A T E P R O J E C T E D G R A D I E N T

I F(SL .GT. 0) GO TO 13
I F (IDC .EQ. 1) GO TO 13
IDC-1
G D L - G R A D
G R A D - - (4 . 0 * F V - F R - 3 . 0 * F U N) / S R
I F (G R A D .LE. 0) GO TO 10
D R - D R * G D L / G R A D

9 IQ-1
GO TO 94

E X P L O R E R E V E R S E S E A R C H D I R E C T I O N

10 IF(GR AD .EQ. 0) GO TO 13
DO 11 1 - 1 .NPARAM

11 V (I)- T E M P (l) + S C * D (l)
CA L L F U N C T (N P A R A M . V . F T)
I F (FT .GE. FUN) GO TO 13
DO 12 1 - 1 .NPARAM

12 D(I) - - D (I)
g r a d - (f v - f t)/ s c

o
o

o
c

- 243 -

DL = 1 .0
SL=0.0
FV-FT
FL-FUN
IKT-0
GO TO 93

EXIT WHEN TERMINATION CONDITION NOT MET AT SC

13 SC-SL
FV-FL

14 DO 15 1-1,NPARAM
15 V(I)-TEMP(I)-SC*D(I)

IF(FV .GE. FUN) IFOK-.FALSE.
RETURN
END

244

APPENDIX C

A User's Guide to NLMLE

To illustrate how to use NLMLE with the specifications defined in

Chapter 5, consider the following model:

*lt- (9l93 - ^ 2 t + e 7 yl,t-l + 263 2lt

♦ e3e4z2t + Ult

y2t = V l t + V a t + U2t

Assume we have 60 observations in the data and the starting values of

the coefficients are also given.

Rewrite model as:

V “ ylt ' (0163 * i V y2t ‘ 97 yl,t-l " 2S3 zlt “ 634 S4Z2t

U2t " y2t ' 64ylt - 65Z3t

Now transform all the equations and variables into NLMLE specifications

1. Equations:

2. Parameters set: ^0l ,02'03,04'05^ **’ v̂l'v2'v3'v4'v5^
{ul'U2} * iFl'F2}

3.'" Endogenous variables: {ylt,y2t} -*■ iv6,v7}

4. Predetermined variables: *zit ,Z2t'Z3t'yl,t-l* * *V8,V9'V10'V11*'

The transformed model now becomes:

FI - vg - (vx * v3 - J * v2) * v? - (Vĵ /Vj) * v1]L
- 2 * v3 * v3 * vQ - v3 * v4 * vg

245

Notice that powers can be expressed as e.g. 0^ as ** 2.

Input Instructions

(1) BHHH

0

GSTEP

0

(214)

(2) IMAX TOLB (I4,F10.4)

50 0.0001

(3) NB NI NINTF NY NZ N NT NL NVAR (2014)

2 0 0 2 4 5 60 1 6

(4) Names of Variables (2ÖÄ4)

ylt y2t Zlt Z2t Z3t yltA.

(5) Data series, input ordering as (4) by variables (8F10.4) i.e

the X matrix.

(6) Starting values of parameters (8F10.4) i.e. {0^,...,0g} i.e

the V vector.

(7) Equations: Fl =
F2 -

as above.

(8)

246

APPENDIX D

Program Output - A Typical Run From Model (iii)

NONLINEAR ARCTANGENT MODEL:

METHOD = BHHH

STEP = GSTEP (MODIFIED LINE SEARCH)

MAXIMUM NUMBER OF ITERATIONS = 50
TOLERANCE LEVEL FOR CONVERGENCE = 0.001

5 EQUATIONS 50 OBSERVATIONS 6 PARAMETERS

COEFFICIENTS

.3 1.0 1.0 5.0 5.0 5.0

INPUT FUNCTIONS:''

Fl = VI * ATAN (V2 * V7) + V3 * V7 + .1 + V3 ** 2 * V8

F2 = VI * ATAN (V2 * V9) + .1 * V3 ** 2 * V7 + V3 * V8

F3 = VI * ATAN (V2 ★ V9) - .1 * V3 ** 2 ★ V8 + (V3 + .

* V9

F4 = VI * ATAN (V2 * V10) + .1 * V3 ** 2 * V9 + (V3 - .1 * V3 ** 2)
F5 = VI * ATAN (V2 * Vll) + .1 * V3 ** 2 * V8 + .1 * V3 ** 2 * VIO

+ V3 * Vll
F6 = (V4 * V12 + V17 ★ ★ 2) + Fl
F7 = (V5 ★ VI3 + V17 ** 2) + F2
F8 = (V4 * V14 + V18 *★ 2) + F3
F9 * (V6 * V15 + V18 ** 2) + F4
FlO = (V4 * V16 + V18 ** 2) + V5

* V10

247

PARAMETERS: VI V2 V3 V4 V5 V6

ENDOGENOUS VARIABLES: V7 V8 V9 VIO Vll

EXOGENOUS VARIABLES: V12 V13 V14 V15 V16 V17 V18

START TIME = 8.1430

ITERATION NUMBER 1

GRADIENT

-.379390E+03 .212810E+02 -.200745E+04 -.293029E+04 .657361E+03 -.749687E+03

GRADIENT NORM = 3708.817889

FUN = -940.897488 FUNNEW = -943.141208.

STEPSIZE = . lOOOOOE + 01 GRAD = .493929E + 01

NCALL = 2

DIRECTION

-.47345E-02 .44575E-01 .52228E-03 -.92267E-03 .11082E-02 .25493E-03

PARAMETER ESTIMATES ‘ •

.30473E+00 .95543E+0O .99948E+0O .50009E+01 .49989E+01 .49997E+01

ITERATION NUMBER 2

GRADIENT

-.760862E+02 .15O458E+0O -.746201E+03 .881762E+03 .241066E+03 -.484311E+03

GRADIENT NORM = 1277.802584

FUN = -943.141288 FUNNEW = -943.445479

STEPSIZE « .441979E+00 GRAD = .136577E+01

NCALL = 4

248

DIRECTION

.98958E-02 35333E-01 -.21791E-02 .22932E-03 -.82251E-03 -.10201E-02

PARAMETER ESTIMATES

.30036E+00 .97104E+OO .10004E+01 .50008E+01 .49993E+01 .50002E+01

ITERATION NUMBER 3

GRADIENT

-.260989E+02 .776491E+00 -.157761E+03 -.225522E+02 -.102499E+03 -.354972E+02

GRADIENT NORM = 194.537814

FUN = -943.445479 FUNNEW = -943.459954

STEPSIZE = .lOOOOOE+Ol GRAD = .275175E-01

NCALL = 5

DIRECTION '

-.16085E-03 .96259E-03 .77717E-04 -.25802E-04 .33775E-03 .10365E-04

PARAMETER ESTIMATES'
.30052E+00 .97008E+00 .10004E+01 .50008E+01 .49989E+01 .50002E+01

ITERATION NUMBER 4

GRADIENT

-.588064E+01 -.899695E+00 -.363169E+02 .268113E+01 .128140E+02 -.563097E+01

GRADIENT NORM = 39.463905

FUN = -943.459954 FUNNEW = -943.460528

STEPSIZE = .453732E+00 GRAD = .253337E+02

249

NCALL = 7

DIRECTION

•44748E-03 -.18953E-02 -.93841E-04 .52135E-05 -.14690E-04 -.40123E-04

PARAMETER ESTIMATES

.30032E+00 .97094E+0O .10004E+Ol'.50008E+Ol .49989E+01 .50O02E+01

ITERATION NUMBER 5 '

GRADIENT
-.146527E+01 348852E+00 -.654604E+01 -.175159E+02 .587007E+01 .110445E+02

GRADIENT NORM = 22.546955

FUN = -943.460428 FUNNEW = -943.460633

STEPSIZE = .lOOOOOE+Ol GRAD = .346181E-03

NCALL = 8

DIRECTION

-.48335E-04 .80070E-04 .15275E-04 -.46903E-05 .32733E-04 .11678E-04

PARAMETER ESTIMATES
•30037E+00 .97086E+00 .10004E+01 .50008E+01 .49989E+01 .50002E+01

ITERATION NUMBER 6

GRADIENT

-.146241E+01 -.891401E-01 -.984296E+01 .129665E+02 .300475E+01 -.757161E+01

GRADIENT NORM = 18.262456

250 -

FUN = -943.460633 FUNNEW = -943.460688

STEPSIZE = .375083E+00 GRAD = .297599E-03

NCALL = 1 0

DIRECTION

.14706E-03 -.58491E-03 -.31749E-04 .43311E-05 -.12071E-04 -.16921E-04

PARAMETER ESTIMATES
.30031E+00 .97108E+00 .10004E+01 .50008E+01 .49989E+01 .50002E+01

ITERATION 7

GRADIENT
-.269233E+00 -.181003E+01 -.127856E+01 .465367E+00 .107269E+01 .395240E-01

GRADIENT NORM = 1.753947

FUN = -943.460688 FUNNEW = -943.460688

STEPSIZE = .375083+00 GRAD = .297599E-03

NCALL » 10

DIRECTION
-.29042E-05 -.53806E-O6 .14347E-05 -.62081E-08 .43648E-05 .42346E-06

PARAMETER ESTIMTES

.30031E+00 .97108E+00 .10004E+01 .50008E+01 .49989E+01 .50002E+01

CONVERGENCE ACHIEVED AFTER 7 ITERATIONS.

NUMBER OF FUNCTION EVALUATIONS = 1 0

LOG LIKELIHOOD FUNCTION = -943.460688

251

INVERSE HESSIAN MATRIX

.000099
-.000363 .001705
-.000021 .000072 .000005
.000001 -.000007 -.000000 .oooooo

-.000009 .000025 .000003 -.oooooo .000006
-.000009 .000032 .000002 -.oooooo .OOOOOl .000001

PARAMETERS STD -ERRORS T-RATIOS

.300312 .009934 30.230912

.971079 .041293 23.516612
1.000402 .002251 • 444.500513
5.000848 " ..000504 9921.666183
4.998896 .002478 2017.202929
5.000198 .001148 4346.444014

END TIME 21.0350

252

APPENDIX E

À Parallel Inversion Routine

REAL JT(, ,N, N) , UNIT_MATRIX (,, N,N) , DET_JT(,) , PIVOTJELEMENT (,) ,

+COLUMN_PIVOT (,,N), SIGMA (,), TEMP (,), AA(,), ATEMP (,),

+BETEMP (,)

LOGICAL SWAP (,), SIGN_CHANGE (,)

EQUIVALENCE (AA, TEMP), (PIVOT_ELEMENT, ATEMP, BETEMP)

C -

C INITIALISE UNIT MATRIX

C

DET_JT = 1.0

DO 10 I = l'/ N

DO 10 J = 1, N

UNIT_MATRIX (,,I,J) = 0.0

IF(I.EQ.J) UNIT_MATRIX (,,I,I) = 1.0

10 CONTINUE
C

C SELECT PIVOT COLUMN AND PIVOT ELEMENT
C

DO 90 K = 1, N-l

COLUMN_PIVOT (,,K) = K
PIVOT_ELEMENT = JT(,,K,K)
Kl = K + 1

DO 30 I = Kl, N

SWAP = ABS(PIVOT_ELEMENT) - ABS(JT(,,I,K)).LT.0.0
PIVOT_ELEMENT (SWAP) = JT(,,I,K)

30 COLUMN PIVOT (SWAP,K) = I

253

C

C CHECK FOR SINGULARITY

C

IF (ALL(PIVOT_ELEMENT.NE.O .O)) GO. TO 40

DET_JT(PIVOT_ELEMENT.EQ.O.O) =0.0

RETURN
C

C INTERCHANGE COLUMNS
C

40 DO 50 I = Kl, N

SWAP = COLUMN_PIVOT (, , K) . EQ. I

IF (.NOT.ANY(SWAP)) GO TO 50

DO 45 J = 1, N

TEMP = JT(, , K, J)

JT(SWAP,K,J) = JT(,,I,J)

JT(SWAP, I,J) = TEMP

TEMP = UNIT_MATRIX (,,K,J)

UNIT_MATRIX (SWAP,K,J) = UNIT_MATRIX (,,I,J)

45 UNIT_MATRIX (SWAP,I,J) = TEMP

50 CONTINUE
C

c DIVIDE COLUMN BY PIVOT
C ’ •

DO 60 J = 1, N
JT(,,K,J) = JT(,,K,J)/PIVOT_ELEMENT

60 UNIT_MATRIX (,,K,J) = UNIT_MATRIX (,,K,J)/PIVOT_ELEMENT
C

C REDUCE MATRIX

C

254

DO 80 I = Kl, N

AA = JT(,,I,K)

DO 65 J = K, N

65 JT(,,1, J) = JT(,,I,J) - AA * JT(,,K,J)

DO 70 J = 1, N

70 UNIT_KATRIX = UNIT_MATRIX (,,I,J) - AA * UNIT_MATRIX (,,K,J)

80 CONTINUE

C

c CALCULATE DETERMINENT
C

SIGN_CHANGE = .FALSE.

DO 85 I = Kl, N

85 SIGN_CHANGE = SIGN_CHANGE .OR. (COLUMN_PIVOT (,,I).EQ.I)

PIVOT_ELEMENT (SIGN_CHANGE) = - PIVOT_ELEMENT

90 DET_JT = DET_JT * PIVOT_ELEMENT

DET_JT = DET_JT + JT(,,N,N)

C

C BACK SUBSTITUTION

C

ATEMP = JT(,,N,N)

DO 95 J = 1, N
95 JT(,,n ,J) = UNIT_MATRIX (,,N,J)/ATEMP

DO 120 I = 2, N
II = N+l - I

IIP1 = 1 1 + 1
AA = JT(,,II, II)

DO 100 J = IIP1, N

100 UNIT_MATRIX (,,N,J). • JT(,,II,J)
DO 110 J = 1, N

255

SIGMA =0.0

DO 105 K = IIPl, N

105 SIGMA = SIGMA + UNIT_MATRIX (,,N,K) * JT(,,K,J)

110 JT(,,11/J) = (UNIT MATRIX (,,II,J) - SIGMA)/AA

120 CONTINUE

256

APPENDIX F

Sets of Non-linear Models

(a) Model (11), n = 5, p = 12

The model is;

fi<yt> yi tan'hw) + 01ylt + 0.1 * ejy2t

(yt’ Y2 tan 1iny2t> + 0.1 * 6^ylt + eiy2t

£ | (y t) = Y3 t a n _ 1 (a y 2 t) - 0 . 1 * e £y 2 t t (9r t 0 . 1 * e ^ y 3 t

fjly,.) = Y4 tan~l(ay4t) + 0.1 * ^ Y 3t + I31 - 0.1 * 81)'74t

£ |(y t) Y5 tan'1(ay5t) t 0.1 * ejy^ + 0.1 * ejy4t + 0^ ^

and

It <"llzlt + z6t’ + £Í (yt>

U2t - <n 22Z2t + Z6t> + £2 (yt’

“3t ■ <133Z3t + z7t> + f3(yt>

U4t * <n44z4t * *7t> + £J (yt>

u5t (n55ZSt + z7t) + f5 (ytJ

257

(b) Model (iii), n = 5, p = 6

The model is:

f£(yfc) = Y tan + eylt + 0.1 * &2

f2 (ŷ) = Y tan 1(ay2t) + 0.1 * 02ylfc + 0y2t

f^(yt) = Y tan-1(ay3t) - 0.1 * 02y2t +- + °*1 * ®2,y3t

-1 2 2 f|(yt) = y tan (ay4t) + °*i * 6 y3t + (0 - °*i * 0)y4t

f*(yt) = Y tan_1(ay5t) + O.l*02y2t + 0.1 * 02y4t + 6y5t

and

ult " <nzlt + z6t’ +

u2t = CV 2 t + z6t> + f2(yt>

U3t (nz3t + z7t> + £3lV

U4t * (n44Z4t + Z7t> + £4<yt’

l5t ~ (nz5t + Z7t} + f5(ytJ

258

(c) Model (v), n = 2, p = 6

The model is:

f Ï (yt) 51 y ta n 1(°‘y l t) + (0 + e2) y l t + e2y 2 t

f2(yt) = Y tan_1 (ay2t) - 02ylt + (0 + 02)y2t

and

Ult ” (nllzlt + <z3t’ * + £í (yt>

V = (n22z2t + <Z3t,5) + f2(ït)

(d) Model (vi) n = 2, p = 4

The model is;

f*(yfc) = Ï tan"1(aylt) + (0 + 02)ylt + 02y2t

f2(yt} = Y tan_1(ay2t) " + (6 * ®2)y2t

and

uit " (nz, ̂ + 2oJ + f?(y«.)lt 3t 1

U2t ' <nz2t + z3t> + f2(ytr

259

REFERENCES

Amemiya, T. (1974), "The Nonlinear Two-stage Least Squares Estimators"
Journal of Econometrics, 2, pp. 105-110.

■________ (1977), "The Maximum Likelihood and the Nonlinear Three-
stage Least Squares Estimator in the General Nonlinear Simultaneous
Equation Model", Econometrica, 45, pp. 955-968.

Bard, Y. (1970), "Comparison of Gradient Methods for the Solution of
Nonlinear Parameter Estimation Problems", SIAM Journal of
Numerical Analysis, 7, pp. 157-186.

Belsley, D.A. (1980), "On the Efficient Computation of the Nonlinear
Full-information Maximum Likelihood Estimator", Journal of
Econometrics, 14f pp. 203-225.

Berndt, E.K., Hall, B.H., Hall, R.E., and Hausman, J.A. (1974),
"Estimation and Inference in Nonlinear Structural Models",
Annals of Economic and Social Measurement, 3/4, pp. 653-666.

Brent, R.P. (1973), Algorithms for Minimization with Derivatives,
Prentice-Hall Inc., Englewood Cliffs, N.J.

Broyden, C.G. (1970), "The Convergence of a Class of Double-rank
Minimization Algorithms.. 2. The New Algorithm", Journal of the
Institute of Mathematics and Applications, 6, pp. 222-231.

Brundy, J.M., and Jorgenson, D.W. (1974), "The Relative Efficiency
of Instrumental Variables Estimators of Systems of Simultaneous
Equations",’ Annals of Economic and Social Measurement, 3/4,
pp. 679-699.

Byron, R.p. (1977)f "Efficient Estimation and Inference in Large
Econometric Systems", Econometrica, 45, pp. 1499-1515.

Chow, G.C. (1973), "On the Computation of Full-information Maximum
Likelihood Estimates for Nonlinear Equation Systems", Review of
Economics and Statistics. 55, pp. 104-109.

Cullum, J. (1972), "Modified Rank-One-No-Derivative Unconstrained
Optimization Method (m r i n d)", IBM Technical Disclosure Bulletin,
14, pp. 3732-3733. ------------------------- --------

260

Davidon, W.C. (1959), "Variable Metric Method for Minimization",
A.E.C. R. & D. Report ANL-5990, Argonne National Laboratory.

_______ (1975), "Optimally Conditioned Optimization Algorithms
Without Line Searches", Mathematical Programming, 9, pp. 1-30.

Dixon, L.W.C. (1972), "Nonlinear Optimization", English Universities
Press, London.

_______ (1973), "Conjugate Directions Without Linear Searches",
Journal of Mathematics and its Applications, 11, pp. 317-328.

Eisenpress, H., and Greenstadt, J. (1966), "The Estimation of Non-
Linear Econometric Systems", Econometrica, 34, pp. 851-861.

Flanders, P.M., Hunt, D.J. Reddaway, and Parkinson, D. (1977),
"Efficient High-Speed Computing with the Distributed Array
Processor", paper presented at symposium on high-speed computer
and algorithm organization, Illinois.

Fletcher, R., and Powell, M.J.D. (1963), "A Rapidly Convergent Descent
Method for Minimization", The Computer Journal, 6, pp. 163-168.

Fletcher, R., and Reeves, C.M. (1964), "Function Minimization by
Conjugate Gradients", The Computer Journal, 7, pp. 149-153.

Fletcher, R. (1970), "A New Approach to Variable Metric Algorithms",
The'Computer Journal, 13, pp. 317-322.

Gill, P.E., and Murray, W. (1972), "Quasi-Newton Methods for
Unconstrained Optimization", Journal of the Institute of
Mathematics and its Applications, 9, pp. 91-108.

Gill, P.E., Murray, W., and Pitfield, R.A. (1972), "The Implementation
of Two Revised Quasi-Newton Algorithms for Unconstrained
Optimization", NPL DNAC Report, No. 11.

Goldfarb, D. (1970), "a Family of Variable Metric Methods Derived by
Variational Means", Mathematics of Computation, 24, pp. 23-26.

Goldfeld, S.M., and Quandt, R.E. (1972), Nonlinear Methods in
Econometrics, North Holland, Amsterdam.

Gostick, R.W. (1979), "Software and Algorithms for the Distributed
Array Processor", ICL Technical Journal, 1, pp. 116-135.

261

Gostick, R.W. (1981), "DAP Technical Reports", DAP Unit, Marketing
Division, ICL.

Greenstadt, J. (1972), "A Quasi-Newton Method with no Derivatives",
Mathematics of Computation, 26, pp. 145-166.

Hanson, J.W., Cariness, J.S., and Joseph, C. (1962), "Analytical
Differentiation by Computer", Communication of the ACM, 5,
pp. 349-355.

Hatanaka, M. (1978), "On the Efficient Estimation Methods for the
Macro-economic Models Nonlinear in Variables", Journal of
Econometrics, 8, pp. 323-356.

Hausman, J.A. (1975), "An Instrumental Variable Approach to Full
Information Estimators for Linear and Certain Nonlinear
Econometric Models", Econometrica, 43, pp. 727-738.

Hearn, A.C. (1976), "A new REDUCE Model for Algebraic Simplification",
Proc. 1976 ACM Symposium on Symbolic and Algebraic Manipulation,
ACM, N.Y., p. 46-54.

Hendry, D.F. (1971), "Maximum Likelihood Estimation of Systems of
Simultaneous Regression Equations with Errors Geneiated by a
Vector Autoregressive Process", International Economic Review,
12, pp. 257-271.

(1974), "Stochastic Specification in an Aggregate Demand
Model of the United Kingdom", Econometrica, 42, pp. 559-577.

■ _______ (1976), "The Structure of Simultaneous Equations Estimators",
Journal of Econometrics, 4, pp. 51-88.

Hendry, D.F., and Tremayne, A.R. (1976), "Estimating Systems of
Dynamic Reduced Form Equations with Vector Autoregressive Errors",
International Economic Review, 17, pp. 463-471.

Hendry, D.F., and Srba, F. (1980),•"AUTOREG: A Computer Library for
Dynamic Econometric Models with Autoregressive Errors", Journal
of Econometrics. 12, pp. 85-102.

Householder, A.S. (1964), The Thoery of Matrices in Numerical
Analysis, Blaisdell Publishing Co., New York.

ICL (1979), DAP: APAL Language.

262

ICL (1981), DAP: FORTRAN Language.

Jacoby, S.L.S., Kowalik, J.S., and Pizzo, J.T. (1972), Iterative
Methods for Nonlinear Optimization Problems, Prentice Hall,
Englewood Cliffs, NJ.

Kendall, M.G., and Stuart, A. (1961), The Advanced Theory of
Statistics, Vol. 2, Chapter 18, pp. 37-77, Charles Griffin &
Co. Ltd., London.

Knuth, E. (1969), The Art of Computer Programming, Vol. 1, Addison-
Wesley Publishing Co., Reading, Mass.

Kowalik, J., and Osborne, M.R. (1968), Methods for Unconstrained
Optimization Problems, Elsevier Publishing Co. Inc., N.Y.

Lesk, A.M. (1967), "Dynamic Computation of Derivations", Communications
of the ACM, 10, pp. 571-572.

MACSYMA Reference Manual, The Marhlab Group, Laboratory for Computer
Science, MIT, Version 9, 1977.

Mifflin, R. (1974), "A Superlinearly Convergent Algorithm of
Minimization Without Evaluating Derivatives", Report No. 65,
Administrative Sciences, Yale University.

Murray, W. (1972), Numerical Methods for Unconstrained Optimization,
Academic Press, London.

Parkinson, D. (June 1976), "Computer by the Thousand", New Scientist,
17, pp. 626-627.

_______ (Nov. 1976), "Technical Description of the Distributed
Array Processor", ICL Report AP2.

_______ (Nov. 1977), An Introduction to Array Processors. Systems
International.

________ (1980), "Practical Parallel Processors and Their Uses",
Technical Report, Queen Mary College DAP Support Unit.

Powell, M.J.D. (1964), "An Efficient Method of Finding the Minimum
of a Function of Several Variables Without Calculating Derivatives",
The Computer Journal. 7, pp. 155-162.

263

Powell, M.J.D. (1971), "Recent Advances in Unconstrained Optimization",
Mathematical Programming, 1, pp. 26-57.

______________ (1977), "Restart Procedures for the Conjugate
Method", Mathematical Programming, 12, pp. 241-254.

REDUCE Reference Manual, University of Utah Computer Physics

Gradient

Group.

Sammet, J.E. (1966), "Survey of Formula Manipulation", Communications
of the ACM, 9, pp. 555-569.

Sargan, J.D., and Sylwestrowicz, J.D. (1976), "A Comparison of
Alternative Methods of Numerical Optimization in Estimating
Simultaneous Equation Econometric Models", SSRC Discussion Paper.

Sargan, J.D., and Chong, Y.Y. (1980), "A General Differentiation
Program With Particular Application to the. Estimation of
Econometric Models", SSRC Discussion Paper.

Smith, P.J. (1965), "Symbolic Derivatives Without List Processing,
Subroutines, or Recursion", Communications of the ACM, 8,
pp. 494-496.'

Stewart, G.W. (1967), "Modification of Davidon's Minimization Method
to Accept Difference Approximations to Derivatives", Journal of
the Association of Computer Machinery, 14, pp. 72-83.

Theil, H. (1971), Principles of Econometrics, Section 8.4, pp. 384-391,
John Vliley & Sons, New York.

Thurber, K.J., and Wald, L.D. (1975), "Associative and Parallel Processors",
Computing Surveys, 7, pp. 215-255.

Wessgert, r .e . (1964), "A Simple Automatic Derivative Evaluation
Program", Communications of the ACM, 7, pp. 463-464.

Wolfe, M.A. (1978), Numerical Methods for Unconstrained Optimization,
Van Nostrand Reinhold Co., New York.

