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Abstract

This thesis studies questions in innovation, optimal policy, and aggregate fluctu-

ations, partially with the help of methods from machine learning and artificial

intelligence.

Chapter 1 is concerned with innovation in patents. With tools from natural

language processing, we represent around 4.6 million patents as high dimensional

numerical vectors and find a rich underlying geometry. We measure economy

wide and field specific trends and detect patents which anticipated such trends or

widened existing ideas. These patents have on average higher citations and their

firms tend to make higher profits.

Chapter 2 discusses an application of reinforcement learning to study outcomes

from causal experiments. We model individuals who lost their jobs and arrive se-

quentially at a policy maker’s office to register as unemployed. After paying a cost

to provide job training to an individual, the policy maker observes an individual

treatment effect estimate which we obtain from RCT data. Due to a limited bud-

get, she cannot provide training to all individuals. We use reinforcement learning

to solve for the optimal policy in this dynamic problem.

Chapter 3 turns to the analysis of macroeconomic fluctuations. It introduces

a mechanism through which perpetual cycles in aggregate output can result en-

dogenously. Individuals share sentiments similarly to diseases in models of disease

transmission. Consumption of optimistic consumers is biased upwards and con-

sumption of pessimistic consumers downwards. In a behavioural New Keynesian

model, recurring waves of optimism and pessimism lead to cyclical aggregate

output as an inherent feature of this economy.

Chapter 4 concludes with a brief empirical investigation of newspaper sentiments

and their co-movement with aggregate variables. Here the focus is not on conta-

gion, but on the measurement of historical business and economic sentiment since

around 1850. Using the archive of the New York Times, I build an indicator and

discuss its properties.
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Chapter 1

A Geometry of Innovation

1.1 Introduction

In this paper we represent millions of US patents as numerical vectors in high
dimensional space and find a rich underlying geometry. We explore this geome-
try of innovation to think about three economic questions through one common
approach. First, can we identify macro and field-specific trends in innovation and
are patents anticipating such trends more successful? Second, can we use the
space of patents to define and identify patents that seem to widen the knowledge
base by venturing into new areas? Third, can the spatial representation of patent
content be helpful to think about patents that relate to diverse technological
fields, akin to general purpose technologies?

Using methods from machine learning and natural language processing (NLP) we
transform each patent’s text into a numerical vector representation, also called
embedding. The structures in this space of vector representations allow us to
characterise the technological landscape. Patents of similar textual content are
close or similar to each other in vector space. Armed with these vector repre-
sentations, we can identify trends in innovation at the macro and technological
field levels. Specifically, we analyse the similarity of a patent’s content to existing
patents and topics (i) at the time when it is filed, and (ii) 10 years later. We then
test whether patents dissimilar to existing patents when they are filed yet similar
to subsequent patents 10 years later are successful innovations, where success is
measured in terms of citations, private economic value and effects on firm-level
measures of output and profitability. After a refinement of our patent score, we
call patents whose content is novel at the time of filing and popular subsequently
widening patents. This label appeals to the intuitive sense that such patents
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widened the scope of knowledge by successfully venturing into unexplored areas
of the space. Last, we outline a method to measure heterogeneity in content of
neighbouring patents closest to a given patent. We discuss these findings in the
light of General Purpose Technologies (GPT), yet, conclude that our concept of
neighbourhood heterogeneity is not able to identify GTPs.

Data and methodology Our data consists of approximately 4.6 million util-
ity patents granted by the United States Patent and Trademark Office (USPTO)
over the years 1975-2017, a subset of which is linked to firms from the Compustat
database. After building a document term matrix from their texts, we employ
truncated singular value decomposition on it (also often referred to as LSA, Deer-
wester et al., 1990) to obtain vector representations better manageable in terms
of computing power. This allows us to compute three key metrics based on the
location of each patent within the technological space over time. The first score
is based on what we name centroid patents, which are imaginary mean patents
in a given technological space. Specifically, a centroid score is computed for each
patent by taking a ratio of its distance to the centroid 10 years after the filing date
and that to the centroid at the time of filing. A high score implies that a patent
was dissimilar to the mean patent when filed, yet similar to subsequent patents.
It anticipated a trend in the economy or a specific industry. The second metric
— that we call no-centroid score — is a refinement of the idea above, where the
similarity to centroids is replaced by the average similarity to a patent’s closest
neighbours. The third metric, forward neighbourhood heterogeneity, is a measure
of how diverse — in terms of technology fields — close neighbours of a patents
are, 10 years after it has been filed. To visualise the spatial geometry of patents,
we additionally use a recent t-Distributed Stochastic Neighbor Embedding (t-
SNE) variant by Linderman et al. (2019) from RNA sequencing visualisation in
genetics (see also Maaten and Hinton, 2008, for the first paper on this method).
t-SNE is a tool for visualisation which preserves structures from high dimensional
space also in lower dimensional representations, e.g. in 2D or 3D. Applied to our
patent representations, it allows us to see clusters and neighborhoods that relate
to different technological fields and it visually guides our subsequent analysis.

Findings In our analysis, we find that patents which anticipated economy-wide
and field-specific shifts are cited more, and have higher private economic value.
At the firm level, firms which were granted patents that anticipated shifts in their
field tend to grow faster and to be more profitable, although our analysis does
not allow us to claim any causal links between the specific patent we identify and
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firm outcomes. However, we show that it is possible to identify innovative firms,
which also seem to make higher profits, based purely on the language content of
patents. Due to the persistence of R&D quality in firms, these firms also have
been performing better than their peers some years before we identified some of
their patents.

Patents which we identify as widening innovations also tend to be cited more
and have a higher private value. Similarly to patents anticipating more systemic
shifts, firms that patent these inventions tend to have higher growth in profits
and output, as well as capital. Again, firms that we identify as innovative based
on their patents’ spatial properties also grew faster than other firms a few years
prior to filing the identified patents. It it reassuring to see that the inventions
our methods pick among close to 3 million patents are the output of fast-growing,
successful firms. We also analyse how heterogeneous the neighbourhood of a
patent is in space and find that patents which have neighbourhoods consisting of
patents from many different International Patent Classification (IPC) codes have
significantly lower citations than more specialised patents.

In a subsequent discussion, we argue that methods like ours largely pick up the
evolution of technology over the past 30 years and in particular the information
technology (IT) revolution, which we know has significantly shaped the economy.
The IT revolution is identified by two of the scores: It resulted in an economy-
wide and field-specific shift in the content of innovation, and early IT patents
in the 1990s appeared in a completely empty part of our representation of the
technological space. We find that IT is responsible for a considerable share of
the results we present in this paper, yet the results qualitatively survive in a
sub-sample dropping the most IT-related fields.

Relation to the literature This paper relates to several strands of the liter-
ature. First, it contributes to the extensive literature that applies NLP methods
to patents to characterise technological progress. Balsmeier et al. (2018) and
Packalen and Bhattacharya (2015) identify novel inventions based on the first
appearance on words in the patent corpus. Bowen, Frésard and Hoberg (2018)
construct a measure of ex-ante technological disruptive potential of patents based
on their use of new or fast-growing words across contemporaneous patent appli-
cations. The closest paper to the present work is a very recent working paper by
Kelly, Papanikolaou, Seru and Taddy (2018), who develop a conceptually iden-
tical method to ours to identify significant inventions, based on their similarity
to previous and subsequent patents. Our paper’s no-centroid scores which we
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use to identify widening patents are almost the same as their score, however, we
develop the notion of a centroid patent and introduce scores based on centroids or
on another concept we call forward neighbourhood heterogeneity. Centroids also
allow us to visualise patent content and trends in words usage. In general, our
approach is a very visual one and we are able to discuss many findings graphically
through different dimension reduction techniques such Linderman et al. (2019)
or through word frequencies.

This work also relates to the literature on innovation and economic growth. First,
it contributes to attempts at evaluating the economic importance of inventions.
This is a difficult task only imperfectly measured by citations, which tend to re-
flect scientific importance — which is however related to economic value (Hall,
Jaffe and Trajtenberg, 2005; Nicholas, 2008). Kogan, Papanikolaou, Seru and
Stoffman (2017) provide a measure of private economic value based on the stock
market response to news about patent publications.1 Our measure of the impor-
tance of patents is correlated to both citations and private economic values, but
provides additional insights as to what features of inventions create value.

First, our concept of widening inventions relates to the notion that an innovation
can deepen the specialised knowledge of a given narrowly defined technological
field, or widen the scope of knowledge by creating a yet nonexistent technol-
ogy. This notion is related to the Schumpeterian patterns of innovation, whereby
innovation by new firms has been called widening and innovation by existing inno-
vators is referred to as deepening (Breschi, Malerba and Orsenigo, 2000; Malerba
and Orsenigo, 1995). It also relates to endogenous growth models in the tradition
of Klette and Kortum (2004), where innovations can either replace existing prod-
ucts or create new ones. Our measure of widening patents tentatively provides
a tangible quantification of the concepts underlying these theories.2 Second, by
looking at the distribution of technological fields of the patents most closely re-
lated to an invention, our work relates to the identification of GPTs, landmark
technologies that are pervasive — they are used across most sectors — and spawn
innovation, i.e. trigger further innovations (Bresnahan, 2010; Helpman, 1998).
Examples of notable GPTs include the steam engine (Crafts, 2004; Rosenberg
and Trajtenberg, 2004) and electricity and computers (Jovanovic and Rousseau,
2005).3

1This measure is extended by Kline et al. (2019) to a larger sample of US firms.
2Other work measuring the technological breadth and depth of sectors, firms or patents

include Katila and Ahuja (2002); Ozman (2007); Moorthy and Polley (2010); Lodh and Battag-
gion (2014), who base their measures on the diversity and intensity with which technological
sub-fields are related to each other. Our measure is purely based on the text of patents.

3The printer may also have been a GPT, although it is difficult to assess given how early it
was invented (Dittmar, 2011).
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Structure of the paper The paper is structured as follows. Section 1.2 de-
scribes the data. Details of the methodology are given in section 1.3. Section 1.4
presents the results, followed by a discussion in Section 1.5. Section 1.6 concludes.
Additional tables and figures can be found in the Appendix.

1.2 Data

This section contains details on the data used in this project. Data on patents
is from the United States Patent and Trademark Office (USPTO). Firm-level
data is from the CRSP/Compustat Merged Database, and data on the economic
importance of patents is from Kogan et al. (2017).

1.2.1 Patents

The USPTO provides data on all patents that have been granted in the US, both
by US and foreign entities. We restrict the sample to utility patents granted by
the USPTO over the years 1976-2017, for which detailed information in machine-
readable format is available. There are some cases where two or more patents
have the exact same abstract. This happens when an original patent is followed
by continuing applications that either change claims or focus on a subset of claims
from the original application.4 Since these applications refer to the same inven-
tion, we only keep the patent that was first granted.

For each patent, the following information is available: the full texts of the ab-
stract, the description of the invention and the claims; the filing and grant dates;
the IPC classification, which indicates to which areas of technology a patent per-
tains; information on the filing and beneficiary entities (which can differ); and
data on forward citations by subsequent patents. The final sample consists of
about 4.6 million patents granted over the years 1976-2017. Out of these, a sub-
set of around 1.2 million patents in years 1976-2010 is matched to firms from
Compustat, using the matches publicly provided by Kogan et al. (2017).5 An es-
timate of the economic value as calculated by Kogan et al. (2017) is also available
for most of these patents.

The final sample of patents for which a score can be computed consists of around
2.8 million patents over the years 1985-2008 — as the score can only be calculated

4See section 201 of the USPTO manual, for exact definitions.
5The data can be found here. Last accessed on 30/07/2019.
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Table 1.1: Descriptive statistics of patent citations

N Mean Sd Min p25 Median p75 p90 Max
5-year citations 4,633,305 3 7.1 0 0 1 3 7 1431
10-year citations 4,633,305 6.4 16 0 0 2 6 15 2801
15-year citations 4,633,305 8.9 24 0 0 3 8 21 2801
Citations as of 2017 4,633,305 12 32 0 0 3 11 28 3997

Note: Descriptive statistics of the number of citations of patents at different horizons after their
grant dates.

for patents with 10 years of data before and after their filing date, see Section
1.3 for details on the methodology. Out of these 2.8 million patents, around 1
million can be matched to Compustat firms. Figure 1.17 plots the number of
patents filed and granted in the sample over time, and the coverage in terms of
scores and linkage to firms. In Panel (a), note that the number of filed patents
decreases dramatically in the later years. This is because the data only contains
patents that have been granted and most patents filed in recent years have not
been granted yet. On average, a patent is granted 2.5 years after it was filed. In
the whole sample, patents are cited 9 times on average in the 10 years following
their publication. The distributions of forward citations is skewed to the left:
50% of patents get 2 or less citations over 10 years — descriptive statistics of the
number of citations at different time horizons can be found in Table 1.1.

1.2.2 Firms

Firm-level data comes from the Compustat database. The sample covers listed
firms in the US and provides financial and accounting data at the firm level.
Following Kogan et al. (2017), we restrict the sample to observations where values
of SIC (Standard industrial classification of economic activities) codes and book
assets are not missing. We omit industries that never patent, as well firms from
the financial and utilities sectors (SIC codes 6000 to 6799 and 1900 to 1949,
respectively). The final sample consists of around 120,000 firm-year observations
over the years 1985-2008. Around 26% of firm-year observations filed at least
one patent over the sample period. The variables of interest at the firm level are
profits — defined as sales minus costs of goods solds — output — defined as sales
plus inventories — employment and capital (property, plants and equipment).
All variables are expressed in real terms — profits and output are deflated using
the CPI, whereas capital is deflated using the equipment implicit price deflator
from the National Income and Product Accounts (NIPA). All firm-level variables
are winsorised at the 1% percent level yearly.
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Table 1.2: Descriptive statistics of the firm sample

N Mean Sd Min p25 Median p75 p90 Max
# patents granted 119,836 8.3 77 0 0 0 1 5 4207
# patents filed 119,836 9.1 86 0 0 0 1 6 4422
1-y gr. rate: capital 107,436 .13 .46 -12 .024 .097 .22 .45 10
1-y gr. rate: profits 98,192 .072 .5 -9.7 -.083 .061 .22 .48 7.8
1-y gr. rate: output 106,319 .082 .51 -10 -.06 .056 .2 .44 9.4
1-y gr. rate: employment 102,799 .05 .41 -8.8 -.062 .029 .15 .35 8.6

Note: # patents granted and filed: number of patents granted and filed for a firm in a given
year; 1-y gr. rates: 1-year growth rates of firm outcomes as defined in the text.

Table 1.2 provides summary statistics for the main variables. The distributions
of number of patents filed and granted are very skewed to the left: While most
firms do not file a patent, few firms innovate massively, filing in excess of 4000
patents in a given year. The big innovators — in terms of patent filed — are large
firms like IMB, Microsoft or Sony, to name a few. Firms in this sample tend to
be large (they are all listed companies) and also tend to grow fast. For instance,
the average yearly growth rate of ouput is 8.2%.

1.3 Methodology

The following sections introduce the methodology of this paper. In Section 1.3.1.1
we describe how we build patent representations, illustrate their matching quality
and their visualisation. We then continue with describing with illustrative exam-
ples how to compute the scores per patent that this paper uses. Section 1.3.2
then proceeds with introducing the regression frameswork for citation as well as
firm level outcomes.

1.3.1 Patent representations

1.3.1.1 Derivation

Document term matrix This section explains how we obtain vector repre-
sentations of documents. Suppose the entire corpus consists of four patents.
Patent one’s full text reads “Invention!”, patent two reads “A good invention.”,
patent three “A better invention.”, and patent four “A last good invention.” When
analysing the USTPO database, we concatenate the text of the abstract, brief
description, and claims. After deleting punctuation, numbers, and converting

21



everything to lowercase letters, the resulting document term matrix (dtm) would
have the following form storing word counts for m = 4 documents and n = 5

terms:

a invention better good last

0 1 0 0 0

1 1 0 1 0

Ã
4×5

= 1 1 1 0 0

1 1 0 1 1

Each row vector is a 5 dimensional patent representation. As already visible in
this example, dtms are usually sparse, i.e. contain large numbers of zero ele-
ments. In our application, we create vector representations for m = 4, 633, 363

unique patents from 1976 to 2017. To reduce noise and irrelevant information, we
delete those words which are not at least contained in 5 documents. Furthermore,
we also delete all words which are contained in 15% or more of the documents.6

Without this, each row vector/document would seem similar because of sharing
very common words (’the’, ’invention’, etc.) which have little signal for the tech-
nical content of a patent. Note that we abstract from this step in the exemplary
dtm discussed here (otherwise we would e.g. delete the column for ’invention’).
Both steps very substantially decrease the number of columns, however, we are
still left with n = 765, 149 columns/words in our final dtm which is therefore of
dimension 4, 633, 363×765, 149. To make documents comparable despite different
lengths, we divide each row by its total word count. In the example above, we
would divide the respective rows by (1, 3, 3, 4)′. Unlike related work such as Kelly
et al. (2018), we do not employ additional inverse document frequency (idf) steps
but rather delete too common words with the measures discussed above across all
years. They also introduce a concept they call “backward-IDF” which makes the
idf term weighting based only on patents filed previously (see Kelly et al., 2018,
for full details). In contrast, we build the patent dtm using all years of the dataset
in one go, and later select those rows which correspond to certain years whenever
needed. In our example above, normalising by word counts would imply a dtm
of:

6We furthermore delete stopwords such as ’the’, ’a’, etc., however, this should already be
taken care of through the step of deleting words which are contained in 15% or more of the
documents.
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a invention better good last

0 1 0 0 0

1/3 1/3 0 1/3 0

A
4×5

= 1/3 1/3 1/3 0 0

1/4 1/4 0 1/4 1/4

Centroids This matrix now also allows to illustrate a concept which we use
to direct our thinking in this paper. It is the mean patent vector of (potentially
a subset of) the dtm or its counter parts in reduced dimensions (see next para-
graph). We call this imaginary mean patent centroid. In the above example the
centroid patent vector would be centroidA = (11/48, 23/48, 1/12, 7/48, 1/16).
Different times and different industries (i.e. subsets of rows) have different cen-
troids.

Dimension reduction with truncated SVD In a next step, we reduce the
dimensionality (columns) of the dtm A. On the one hand this yields a more man-
ageable patent dimension for computing millions of similarities between vectors,
on the other it allows parts of the graphical analysis of Section 1.4 which is based
on low dimensional representations. We use truncated singular value decompo-
sition (tSVD) on the dtm to obtain these representations and store them in a
matrix Z. To continue with our example, we run tSVD on our exemplary 4 × 5

dtm A with three components. It yields:

z1 z2 z3

0.9377 0.3453 −0.0387

0.4621 −0.3002 −0.1103

Z
4×3

= 0.4390 −0.1909 0.3223

0.3626 −0.2791 −0.1496

Each column of Z is an eigenvector of AAT multiplied by the associated singu-
lar value σi of A, starting with the largest. For a discussion of the technique,
see for example Strang (2016). If we had subtracted column means in A before
applying the SVD, the vectors in Z would be the often used Principal Compo-
nents. The truncated version of the SVD computes only those vectors associated
with the largest N singular values. This makes running this method feasible
when considering very large matrices such as our true dtm which is of dimension
4, 633, 363×765, 149, i.e. has trillions of cells. We choose the first 300 components
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from the tSVD to represent our documents in reduced dimensions. The matrix
Z is therefore of dimension 4, 633, 363× 300. Each component/column is a linear
combination of words. Each row is a depiction of a patent’s textual content in
a common space. Vectors of patents with similar content should have a similar
angle. Running such a dimension reduction on a dtm and using it for analysis is
often called Latent Semantic Analysis (Deerwester et al., 1990). In fact, a sys-
tem using it for information retrieval was actually patented in the USTPO under
patent number 4839853 from 1988 but it is now expired!7

Dimension reduction with t-SNE We use the vectors obtained from the
tSVD for computations. These computations should be faster with 300 dimen-
sional vectors than with the 765149 dimensional counterparts in the dtm. Yet,
to visualise the patent geometry, we would need representations in two or three
dimensions. Taking only the first 2 or 3 columns from the SVD, however, would
not preserve enough meaningful geometric information. This leaves the question
whether we could still have a glimpse into the structures of high dimensional
space. The method of t-distributed stochastic neighbour embedding (t-SNE) by
Maaten and Hinton (2008) tries to achieve exactly this. It preserves cluster and
structures from high dimensional space and separates clusters of vectors also in
low dimensional space. This makes groups and structures of observations visible.
We employ a very recent faster variant of t-SNE developed by Linderman et al.
(2019) that the authors used for visualising single-cell RNA sequences in genet-
ics. This fast interpolation-based t-SNE (FIt-SNE) creates a good approximation
and is feasible even for matrices of very large dimensions like our patent repre-
sentation matrix containing around 4.6 million patents/rows. In detail, we use
their method to reduce the pre-reduced dimension of the patent representations
contained in Z further to only two columns:

Z
4,633,363×300

→ Zt-SNE
4,633,363×2

Again, each row in this new matrix is a patent, just that every patent can now
(for visualisation only) be represented by only two values. We can therefore plot
its position in a plane. In terms of parametrisation, we use 20, 000 iteration and
a learning rate 386113 which depends on the amount of rows in our matrix.8

7See https://en.wikipedia.org/wiki/Latent_semantic_analysis
8We are grateful to the author George Linderman for his explanations and the recommen-

dation of the paper Kobak and Berens (2019) which, among others, discusses hyper-parameter
settings for t-SNE. We use their recommendation for the learning rate as M/12, however, leave
all other hyper-parameters at FIt-SNE’s default except for using 20, 000 iterations.
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Computing similarities between patents The main purpose of our patent
representation is to compute similarities between patents. Patents of similar
content should have similar patent vectors. Instead of the row vectors contained
in A, we use those in Z to compute these similarities. We could not, however,
use row vectors contained in Zt-SNE. These vectors are only used for graphical
illustrations as, in particular, the distance between clusters in 2D are distorted.
When thinking about similar patents it might first seem most natural to think of
Euclidean distance: Vectors which are close in space should have similar content.
This works, however, only if we standardise all vectors by the L2 norm to force
them have unit length and lie on a unit N-sphere. The reason is that similar
documents, i.e. rows in Z, might otherwise still have different lengths. A method
which does not need the standardisation (albeit it can still sometimes benefit
from it a bit) is cosine similarity. Instead of the distances between between
vectors, it looks at the angle between them. The angle of vectors that point into
the same direction is zero, even if these vectors have different length. Cosine
similarity is usually the standard used in the NLP literature as rows in the dtm
can be distorted by different document lengths if not normalised. We use cosine
similarity on the Z matrix and do not standardise vectors. Cosine similarity is
given by:

cosine similarity(x, y) =

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

∈ [−1, 1] (1.1)

Going back to our example, patent number 2 “A good invention” has the following
cosine similarities with the other patents:

cosine similarity(z2, zi) : (0.5941, 1, 0.69251, 0.9900).

The patent’s similarity with itself is 1. And despite using the reduced dimension
in Z, the most similar patent is indeed patent 4 “A good last invention.”. Vector
representations of similar documents also have similar angles.

1.3.1.2 Illustrations

Illustrating match quality Once we have computed Z, each row vector is the
representation of a patent. As discussed above, picking one row, computing its
similarity with each other row, and then sorting the array allows to find the most
similar patents. Table 1.3 illustrates a few examples of the most similar patent
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found. Often, the very closest match is a patent which seems to be a small
perturbation of the original (see e.g. Example 3 in the table). Yet, we also show
cases where our tools returns a most similar patent which is a less close match.
Match quality seems very good given that such a method only has information on
the bag of words that a document contains. In fact, Latent Semantic Analysis has
also been proposed for patent examination support (Elman, 2007). Only Example
4 in the table seems to be a somewhat odd match. Yet, we add the full abstracts,
descriptions, and claims text into Appendix 1.7.1. In fact, both technologies
are much more similar than visible from the abstract and can e.g. be used for
earthquake detection. This emphasises why we concatenate the texts of abstract,
brief description, and claims instead of just e.g. using one of them. The exemplary
text also shows that, despite their overall very good match quality, methods like
ours will also still be biased by things such as common headers, names contained
in the patents, etc. To alleviate this problem, we delete large parts of words (e.g.
those that are in 15% of documents) or one could alternatively do weighting such
in an idf step. Yet, headers or other common structures contained in only small
subsets of patents from e.g. similar firms will also always make them, everything
else equal, more likely to be matched. This is a limitation of these methods. As
it is not trivial to distinguish common content in a small set of patents that is
e.g. a common header versus content that is about innovations, this is an area
where more sophisticated methods could be helpful in future research.

Illustrating t-SNE How do the two dimensional patent representations in
the t-SNE matrix look like when plotted? Could we not just use the two first
components from the tSVD or the two first principal components also for our
visual analysis? 300 components are an excellent representation of a document,
but just two of those unfortunately do not contain enough visual information
for seeing any interesting structures from high dimensional space in just two
dimensions. Figure 1.1 illustrates this. It contains all patents (each being a point
in the plane) from 1976 to 1985 represented by their first two vectors from the
tSVD. Most vectors sit in very similar areas.

Figure 1.2 depicts the same patents as the previous one, however, now it uses two
t-SNE dimensions. The difference is very stark as t-SNE was built to separate
cluster structures from higher dimensions also in lower dimensional representa-
tions. We can immediately see that our high dimensional space must contain very
rich structures. This rich information is the graphical intuition behind the good
match quality we saw before.
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Table 1.3: Exemplary patent matches

Reference
patent

Beginning of abstract Closest
match

Beginning of abstract

9475668
(2013)

A modular element for a creel
includes a structure having
at least one support for sup-
porting a package or bobbin
of yarn; the structure be-
ing modularly couplable with
other similar structures to al-
low the feeding of multiple
yarns to a textile machine; ...

4753064
(1986)

The spinning or twisting ma-
chine comprises a plurality of
drafting rolls, a plurality of
associated spindles and posi-
tioned between them a plu-
rality of yarn breaking de-
vices pivotable between an up-
right spinning machine op-
erating position into a yarn
breaking position. ...

4900994
(1988)

An automatic window glass el-
evating apparatus for moving
a motor normally or reversely
by drive control by a switch
actuation to move a window
glass in a closing or opening
direction which has a resistor
connected in series with the
motor, ...

4746845
(1986)

An automatic window regu-
lator for automobiles includes
a drive motor for lifting and
lowering the window glass,
and a detector for detecting
when there is a foreign object
jammed between the window
glass as it is lifted or lowered
and a window frame. ...

4640147
(1987)

A gear assembly comprising
two gears and a spring in the
form of a C-shaped clip inter-
connecting the two gears. Two
pins are provided on one of
the two gears and the spring
has two holes, one in each end
thereof, whereby the spring
can be carried by one gear in
a pretressed state by means of
the pin-and-hole connection.
...

4745823
(1988)

A gear assembly comprising
two gears and a spring in the
form of a C-shaped clip for
applying a resilient force be-
tween the gears. Two pins
are provided on the respective
side surfaces of the gears to
receive the spring which has
concave end surfaces to be re-
ceived by the pins. ...

8919201
(2012)

An acceleration measuring ap-
paratus that can easily detect
acceleration with high accu-
racy is provided. In the ap-
paratus, positional displace-
ment of a swingable pendulum
member is detected, feedback
control is performed to main-
tain the pendulum member in
a stationary state using an ac-
tuator, ...

8677828
(2012)

Provided is a device capa-
ble of easily and accurately
detecting a vibration period
when, for example, an earth-
quake occurs. When a quartz-
crystal plate bends upon ap-
plication of a force, capaci-
tance between a movable elec-
trode provided at its tip por-
tion and a fixed electrode pro-
vided on a vessel to face the
movable electrode changes, ...
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Figure 1.1: The two first components obtained from truncated SVD

Each dot represents a patent filed from 1976 to 1985.

Figure 1.2: The two first components obtained from t-SNE

Each dot represents a patent filed from 1976 to 1985.
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1.3.1.3 Computing scores

The empirical analysis of this paper uses a range of different scores which try to
proxy the inventiveness of a patent. Continuing the example from before, this
section describes how they are computed.

Before we can compute the three scores of the paper, we first have to introduce a
concept we refer to as backward and forward spaces. Their key feature is that they
are subsets of our matrix Z. Hence, we first obtained the patent representations in
Z containing all year and all patents from 1976 to 2017 in one computation based
on the full dtm. Afterwards, we repeatedly use different subsets of rows from this
matrix Z when we compute different forward and backward spaces. Both our
backward and forward time interval consists of 10 years. Backward and forward
intervals thereby always include the year of the patent currently considered. Say
a patent is from 1995, then its backward interval would be {1986, 1987, . . . , 1995}
and its forward interval would be {1995, 1996, . . . , 2004}. The intersection of the
two sets is {1995}. Going back to our example, say the 4 patents in Z are from
1976, 1989, 1995, and 2004:

z1 z2 z3

0.9377 0.3453 −0.0387 (1976)
0.4621 −0.3002 −0.1103 (1989)

Z
4×3

= 0.4390 −0.1909 0.3223 (1995)

0.3626 −0.2791 −0.1496 (2004)

Then for patent number three from 1995 we have the following backward and
forward space:

z1 z2 z3

0.4621 −0.3002 −0.1103 (1989)
Z

2×3

1995 backward = 0.4390 −0.1909 0.3223 (1995)

z1 z2 z3

0.4390 −0.1909 0.3223 (1995)
Z

2×3

1995 forward = 0.3626 −0.2791 −0.1496 (2004)

Backward and forward spaces always include the base year and patents from that
year. If we have many patents from 1995 like in our actual data, note that each
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patent from a given year has the same forward and backward spaces. These two
spaces can easily contain hundred thousands of patents - all patents filed in a
10 year interval around and including 1995. Taking a constant 10 year interval
around a given year makes computations comparable across patents. Yet, the 10
year interval prevents us from computing scores for any patent filed before 1985
and after 2008 since the available data ranges from 1976 to 2017.

Next we discuss how we use these concepts to compute scores for each patent that
try to proxy its innovativeness. One type of score is based on centroids, another
type is independent of these mean vectors.

1. Centroid based scores For centroid based scores we first compute the
centroid (i.e. the mean vector) of the backward and forward space respectively.
We use centroids to proxy both macro and micro trends in innovation, however,
they can also be used to assign innovativeness scores to individual patents. In
the following we will show how. Continuing with the example, the backward and
forward centroids are given by:

z1995 backward
centroid = (0.4506,−0.2456, 0.1060)

z1995 forward
centroid = (0.4008,−0.2350, 0.0864)

Now the idea of centroid based scores is to see whether a patent, in our example
patent three, anticipated the move in the centroid in the economy or an industry.
For this we compute its similarity to the backward centroid and its similarity to
the forward centroid. Here these are given by:

backward similarity patent 3 centroid based = cosine similarity(z3, z
1995 backward
centroid ) = 0.9221

forward similarity patent 3 centroid based = cosine similarity(z3, z
1995 forward
centroid ) = 0.9117

Following Kelly et al. (2018), we name similarities to patents in the past and
future backward and forward similarities. If a patent is dissimilar to its backward
centroid and similar to its forward centroid, we conjecture it is innovative and we
would like it to have a high score. Like Kelly et al. (2018), we use the fraction of
two similarities as the final score (albeit our scores in this paragraph are based
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on centroids):

final score patent 3 centroid based =
forward similarity patent 3 centroid based

backward similarity patent 3 centroid based =
0.9117

0.9221
= 0.9887

Lastly, note that depending on which subsets we take from Z, the backward and
forward spaces can contain all patents of the whole economy or only patents from
certain IPC codes, e.g. at the IPC3 level. We call centroids of the first kind macro
centroids and centroids of the second kind micro centroids. Each can be used as
a reference point when computing different scores for patents: How well did a
patent anticipate economy wide trends, how well did it anticipate field specific
trends.

2. No-centroid scores We can also compute scores for each patent without
the use of centroids. Rather than computing the patent’s similarity to only a
centroid vector, we now compute its similarity to each individual patent in its full
backward and forward spaces. Afterwards we sort the similarities, and compute
its mean similarity to the closest 100 patents. This no centroid score now is
almost the same as used in Kelly et al. (2018), however, they take the sum of
all similarities in the spaces. By focusing on the mean similarity to the top 100
closest patents (excluding itself), we try to emphasise whether a patent went into
an empty part of space. Again with our example:

backward similarities patent 3 no-centroid = cosine similarity(z3, Z
1995 backward) = (0.6925, 1)

forward similarities patent 3 no-centroid = cosine similarity(z3, Z
1995 forward) = (1, 0.5912)

Strictly speaking, the cosine similarity was now applied repeatedly between z3

and each row of the Z matrices. Next each list will be sorted: (1, 0.6925) and
(1, 0.5912). Here our toy example reaches its limit as the backward and forward
space only contain two patents each. The backward and forward spaces in our
application consist of very large amounts of patents, and so these two lists can
contain several hundred thousand similarities. We sort them, pick the top 100
most similar values and exclude the first (which is 1 always as the patent itself
is contained in both backward and forward space), then we compute their mean.
Here these two means are given by:

backward similarity patent 3 no-centroid = 0.6925

forward similarity patent 3 no-centroid = 0.5912
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Again the hypothesis is that a patent that was dissimilar to patents in the pasts
and similar to patents in the future should be innovative and have a high score.
We compute the final no centroid score as:

final score patent 3 no-centroid =
forward similarity patent 3 no-centroid

backward similarity patent 3 no-centroid =
0.5912

0.6925
= 0.8537

The difference of this score to the centroid based scores is that it compares patent
three to all patents contained in the backward and in the forward spaces. The
centroid based scores proxy the state of the backward and forward space just
by their respective mean patent and take only one similarity to each of them.
Centroid based scores are therefore also much less computationally costly. Yet,
no-centroid scores should have a better chance to find out which parts of space
are still relatively empty as the patent is compared to all other individual patents
in these spaces.

3. Forward neighbourhood heterogeneity For the last score we intro-
duce, we take a patent and identify the 100 most similar patents in the forward
space only. Different to the no-centroid score, we then look at their composi-
tion instead of taking a mean over their similarities. This is easily explained,
however, we have to move away from our illustrative example used so far. In
the data, there are 8 unique IPC 1 codes (see Table 1.9 in the Appendix for de-
tails) which classify the technological area of a patent. We then store how many
of the most similar 100 patents belong to which IPC code. Say we consider a
patent with a patent neighbourhood of p = (60/100, 10, 0, 0, 0, 0, 0, 30/100) over
the IPC codes (A, B, C, D, E, F, G, H). Then we take an Euclidean distance
d(p, q) =

√∑
(pi − qi)2 to a uniform vector q = (1

8
, . . . , 1

8
)′. The uniform vector

(1
8
, . . . , 1

8
)′ represents an imaginary reference neighbourhood with all IPC codes

in equal proportion, i.e. a neighbourhood that is as heterogenous as possible in
this setting. Next, note that the maximum Euclidean distance in our setting is
given when a patent has a neighbourhood with 100 patents from a single IPC
code, e.g. p = (100/100, 0, 0, 0, 0, 0, 0, 0)′. In that case, we have an Euclidean
distance of d

(
p = (1, 0, 0, 0, 0, 0, 0, 0)′, q = (1

8
, . . . , 1

8
)′
)

= 0.9354. As our score is
meant to measure heterogeneity not specialisation, however, we then define it as:

forward neighbourhood heterogeneity of p = 0.9354− d(p, q = (
1

8
, . . . ,

1

8
)′)

A patent’s value for forward neighbourhood heterogeneity is highest if its neigh-
bourhood in the next 10 years is most heterogenous, i.e. if contains an equal mix
of all 8 IPC 1 codes.
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The next section continues with introducing how we use these scores in regressions
on citations and firm level outcomes.

1.3.2 Regression frameworks

This section details the regressions that are estimated at the patent and firm
levels. The regressions will be run with both centroid and no-centroid scores.
In this section, we therefore us a generic term score in the regressions and the
descriptions for exposition purposes.

1.3.2.1 Citations

The aim is to check whether our scores are associated with forward citations.
Strictly speaking, the exercise is not a prediction exercise, as information available
several years after the filing date is used to compute the scores. Regressions of
the following form will be estimated:

citationspjf,t+h = β score standardisedpjf,t + FE + εpjf,t, (1.2)

where the dependent variable is the number of times a patent p from IPC code j
owned by firm f — when this information is available — is cited by other patents
h years after its grant year t, where h ∈ {5, 10}. The variable score standardised is
the score of the patent, as defined above, standardised to unit standard deviation
to make the interpretation of regression coefficients easier. FE is a set of fixed
effects that varies depending on the exact specification. Combinations of filing
year, IPC codes at different levels and firm fixed effects are included. Standard
errors are clustered at the filing year level. An alternative specification in logs
will also be estimated for robustness, as follows

log(1+citationspjf,t+h) = β̃ log(scorepjf,t) + FE + εpjf,t, (1.3)

where the score variable is not standardised to unit standard deviation, and
the remaining variables are defined above. β̃ can therefore be interpreted as
an elasticity. The coefficients of interest are β and β̃, which we expect to be
positive, i.e. a high score is predicted to be associated with more forward citations.
This is the hypothesis that will be tested. The regressions above will also be
estimated using the private economic value of patents as dependent variable,
another measure of importance of a patent. Note that the citations are counted
from the grant date of a patent, yet the scores are computed using the filing year
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of a patent as the time of reference for determining the technological landscape
at the time of innovation.

1.3.2.2 Firm level outcomes

At the firm level, the aim is to estimate the effect of filing patents with a high
score on firm-level outcomes in the following years. We choose the filing date as
opposed to the grant date to define the event, because a firm may start using
a patented invention before the patent is granted. The firm-level outcomes of
interest are output, profits, capital and employment. Patent-level information
must be aggregated at the firm level. One firm may file several patents in a given
year — especially in this sample of large firms. Patents with a high score are
typically rare and filed only by few firm-year observations. We define high-score
patents as patents whose scores are in the top 5% of the overall score distribution
net of year fixed effects.9 The variable of interest at the firm level is a dummy
denoted Dfi,t that takes value 1 if firm f from industry i — defined as the 3-digit
SIC code — filed such a patent in year t. We consider a dummy as opposed to the
number of top patents since firm-year observations that file a top patent typically
represent a small fraction of the observations, and observations with more than
one top patent are even rarer. See Kelly et al. (2018, p. 29) for a discussion of
this choice.

The generic specification of interest at the firm level closely follows that in Kelly
et al. (2018, Equation 19) and reads as follows:

log

[
1

| h |

h∑
τ=1

Yfi,t+τ

]
− log Yfi,t = βhDfi,t + γZfi,t + FEit + εfi,t+h, (1.4)

where Yfi,t is either output, profits, capital or employment of firm f from industry
i in year t, Zfi,t is a vector of controls and Dfi,t is defined above.10 The left-hand
side of the regression is the growth in the average of outcome variable Y between
t and t+h relative to year t.11 Following Kelly et al. (2018), we consider horizons
between -5 and +10, i.e. from 5 years before and up to 10 years after the filing
date.12 In all these regressions, we control for the log of total assets, the age of
the firm since its entry into the data, a dummy for whether the firm filed a patent

9The results are also estimated for a threshold of 1% for robustness, and are available upon
request.

10This specification is also similar to Equation (12) in Kogan et al. (2017).
11The coefficients for h < 0 are therefore the growth rate between t + h and h, taking t as

the base year. A negative βh therefore means a positive growth rate if h < 0.
12Kelly et al. (2018) also use the filing year as the event date.
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in that year, the log of (1+) the number of filed patents in that year, a dummy
for whether the firm is in the top percentile(s) in terms of number of patents filed
in that year, the share of top patents among filed patents in that year (for that
firm), as well as in the stock of patents up to t− 1 (for that firm). The lag of the
level of the outcome variable — whose growth rate is the dependent variable — is
also included in all regressions. By including year-industry fixed effects, the aim
is to compare how a firm that files a top patent fares relative to other firms in
that industry, at that time. Standard errors are clustered at the firm-year level.13

The coefficients of interest are the sequence of βh. This specification allows to
test for the absence of pre-trends: βh ∀h < 0 should not be significantly different
from 0, otherwise that firm may already be on a different trend before the filing
date, and this may be unrelated to the invention. This dynamic specification also
allows to study the effect of filing a top patent over time, as it is not obvious
when — if at all — the effects should be apparent.

It should be noted that the dependent variable in Equation (1.4) is very smooth
over time for a given firm, i.e. it will vary little and especially so in the later years.
This is because the average profits over longer horizons is not very sensitive to
the last data point added to the average. Furthermore, a stance needs to be
taken relative to missing data points as it is unclear what should the value of
the average growth rate be if a value (or more) is missing at some point of time
within the horizon of interest, which is not uncommon given the unbalanced
nature of the panel. For robustness and transparency, we drop any observation
which has a missing or more at any given horizon — for a given firm. This
changes the composition of the sample over h whereby the effects for large h are
estimated based on firms that survive at least for that long. However, firms with
missing data are not kept in the sample when they are actually not observed.14

As a last robustness check, we also estimate Equation (1.4) with the growth
rate of firms outcomes over the whole horizon as dependent variable, namely
log Yfi,t+h − log Yfi,t as used by Kogan et al. (2017).

13Autocorrelation-consistent standard errors were also used (in conjunction with clustering)
for robustness as the dependent variable is likely to be auto-correlated over time. The resulting
standard errors are usually much smaller. We chose to err on the side of caution and report
the main results with the regular clustered standard errors.

14The results generally look stronger and the sequence of βh is smoother when keeping
observations with missing data points, but we feel it is partly artificially driven.
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1.4 Results

1.4.1 Micro and macro trends in innovation

The first question we think about is whether we can visualise economy wide macro
and IPC-specific micro trends in innovation and see whether patents anticipating
these trends have higher citations and benefit the filing firms. For this we use the
concept of centroids which was introduced and discussed in Sections 1.3.1.1 and
1.3.1.3.

1.4.1.1 Geometry

First recall that a centroid is the mean vector of a set of patents. This set
of patents is some subset of Z. For a macro centroid, it is the subset of all
patents in the economy filed in a range of years. For a micro centroid, it is
the subset of all patents with a given IPC code filed in a range of years. Put
differently, centroids are imaginary mean patents which can be thought of as an
approximate centre of gravity at a given time, either of the whole economy or
of some field. Centroids also move over time. Their movement is substantial
and meaningful if we consider the change in the mean of the full 300 dimensional
patent representations. Yet, to illustrate the concept intuitively, let us look at the
movement of the first two components of the tSVD. This is depicted in Figure
1.3. As already noted in Section 1.3.1.2 the spatial information contained in
the two first component is very limited. We could not use the t-SNE plots to
compute centroids, however, as t-SNE is a tool only for visualisation and the
distances between clusters are distorted. Hence computing some mean point in
between t-SNE clusters is infeasible. For all computations we therefore use the
components obtained via the tSVD. In the graphical analysis of this section, we
always compare the same two time frames: All patents filed 1976 to 1985 vs. all
patents filed 2006 to 2015. In all our computations, however, we analyse smaller
movements with a 10 year backward and a 10 year forward interval (see Section
1.3.1.3 for all details). This works very well for computations, but to make the
visual analysis more pronounced we visualise the 30 year time span between the
edges of our sample in the figures of this section. Figure 1.3 shows a move in
centroid vectors. The actual distance moved is moderate visually if we only
consider the two components (although the x dimension changes by roughly 50

percent), but it hopefully carries the intuition of what such changes in centroids
mean.
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Figure 1.3: Economy wide macro centroids (first two SVD components)

(a) All patents filed from 1976 to 1985

(b) All patents filed from 2006 to 2015
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Figure 1.4: Economy wide macro centroids

(a) Words in 1976 to 1985 macro centroid

(b) Words in 2006 to 2015 macro centroid

Can we visualise the changes in centroids also differently or are all meaningful
changes hidden in high dimensions? A great particularity of centroids is that we
can look “into” their language content. For this we compute the same centroid,
but instead of using the Z matrix we use the corresponding rows in the dtm (in
which columns are words) and for each column take the mean over rows which
yields mean word frequencies. Hence we can change between numerical points in
our 300 dimensional space and the words approximately contained in these points
(subject to some approximation error). Recomputing the same two centroids but
now with the dtm makes clear that the centroid movements have been indeed very
substantial over this time. Figure 1.4 illustrates that whereas the economy wide
or macro centroid 1976-1985 prominently features words from chemistry such
as acid or gas, the more current macro centroid from 2006-2015 shows words
such as memory, semiconductor, or network. The macro centroid movement, i.e.
the movement of the imaginary mean patent for the whole economy, intuitively
depicts the development of the computing age.

The same methodology also allows to look into trends in innovation at an almost
arbitrarily small IPC code level. First note that for many IPC 3 codes the move-

38



ment in word is surprisingly stable - at least at the approximate visual level via
word clouds.15 We therefore illustrate the movement in centroids for two IPC 3
levels with relatively clear trends. The first movement of IPC 3 centroids is that of
“H04: Electric communication technique” depicted in Figure 1.5. The movement
in centroid content immediately reveals the emergence of wireless communication
technologies. The word network was hardly mentioned before, telephone became
mobile. The second IPC 3 level micro centroid movement we show as an illus-
tration is “C01: Inorganic chemistry” depicted in Figure 1.6. Besides others, the
trend depicted indicates that chemistry patents with acids lost in importance
whereas carbon and gas rose in popularity within the inorganic chemistry area.
Equipped with the knowledge of this quick view into the centroid, one could now
easily analyse the contents of patents that contain these specific words in depth.
Note also that IPC 3 codes are still relatively aggregated. To be consistent with
the subsequent regression analysis which is based on scores computed with macro
centroids and IPC 3 centroids, we depicted word clouds at an economy wide level
and at an IPC 3 level of aggregation. Yet, the same concept of centroid visuali-
sation could still be used in further research to make developments in innovation
visible in an automated way at say an IPC 8 level or a specific granularity of
interest.

Centroids are very handy for a quick visualisation of macro as well as poten-
tially very small grain micro trends in innovation. But the geometric intuition of
their movement through space turns out to also have strong links with citations
and with some firm level outcomes. Patents and firms which anticipated these
movements in macro as well as micro trends, have higher citations and firms that
own these patents tend to maker higher profits. Section 1.4.1.2 illustrates these
findings.

1.4.1.2 Regressions

The existence of macro and micro trends suggest that the timing and content
of firms’ innovative output may matter for how successful their patents are, and
ultimately for their economic performance. Specifically, a firm that anticipates
or starts a major shift in the technological landscape may reap the benefits of
being the first to do so. This idea applies both at the macro level — an invention
in the IT sector in the 1990s may be very influential — and at the micro level

15In general, world cloud visualisations provides a good first idea idea, however, font size
does not only relate to frequency but also e.g. to the method trying to position large amount of
words in a rectangular shape. Depending on the random seed chosen they can give somewhat
different impressions.
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Figure 1.5: Industry specific centroids for “H04: Electric communication technique”

(a) Words in 1976 to 1985 H04 micro centroid

(b) Words in 2006 to 2015 H04 micro centroid
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Figure 1.6: Industry specific centroids for “C01: Inorganic chemistry”

(a) Words in 1976 to 1985 C01 micro centroid

(b) Words in 2006 to 2015 C01 micro centroid
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Figure 1.7: Scores versus citations
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Note: Binned scatter of scores against 10-year forward citations. Number of bins in each plot
is 100.

within a narrowly defined technological field. Analysing how far a patent is to the
relevant centroid when it is filed and how close it is to the new centroid 10 year
later may be indicative of how topical a patent is. In the following sections, we
study whether such patents have higher citations, and whether they are associated
with better performance at the firm level. The scores in this section are centroid
based scores as described in detail in Section 1.3.1.3. The macro centroid scores
is computed with backward and forward spaces that contain all patents (their
mean patent is a macro centroid) and the IPC 3 centroid score is computed with
backward and forward spaces that only contain patents of the same IPC 3 level
as those for which the score is computed (the mean of this set of patents is the
micro centroid).

Citations Both macro and IPC 3 scores are positively associated with patent
citations, as depicted in Figure 1.7.16 Patenting an invention far from the centroid
at the time of filing yet close to the new centroid 10 years later is associated with
higher citations. To formalise the results, Equation (1.2) is estimated using both
the macro and IPC 3 scores. The results can be found in columns (1), (2) and
(3) of Tables 1.4 and 1.5, respectively. The relation between scores and citations
is statistically significant and economically large. In the specification including
filing year and IPC 3 fixed effects, a one standard deviation increase in the macro
score is associated with an increase of 4 citations, more than half of the mean
citations (see Table 1.1). Similarly, a one standard deviation increase in the IPC
3 score is associated with an increase of 3 citations — half of the mean citations

16Since binned scatter plots sometimes hide relevant heterogeneity in the raw data, binned
scatter plots with varying number of bins are provided in Figures 1.20 and 1.21 for the macro
and IPC 3 scores, and scatter plots of the raw data are provided in Figure 1.23.

42



Table 1.4: 10-year citations and macro score

Dependent variable: 10-year citations
Whole sample Until 2000

(1) (2) (3) (4) (5) (6)
Macro score, standardised 3.976*** 4.425*** 3.870*** 4.517*** 4.474*** 4.002***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant -17.16*** -19.60***
(0.000) (0.000)

Year FE X X X X

IPC 3 FE X X

Firm FE X X

Adjusted R2 0.043 0.079 0.163 0.086 0.122 0.222
Within R2 0.028 0.026 0.042 0.042
Observations 2896300 2896013 1025243 1545952 1545675 602117

Notes: *: p<0.1, **: p<0.05, ***: p<0.01. P-values from standard errors clustered at the filing
year level in parenthesis.

in the sample.17 Higher IPC 3 scores are also associated with a higher economic
value as measured by Kogan et al. (2017), whereas it is not the case for macro
scores — see Tables 1.14 and 1.15 in the Appendix. All the results above remain
qualitatively unchanged using citations 5 or 15 years after grant date.

It should be noted that the association between citations and scores is somewhat
weaker in the last decade of our sample. Columns (4), (5) and (6) of Tables 1.4
and 1.5 present the results of the same regressions as above, limiting the sample
to the years up to 2000. Although the coefficients have similar magnitudes, the R-
squared are significantly higher. It is unclear why this is the case. Tentatively, it
could be due to the increase in the number of patents filed in the later years, which
results in a more crowded space in the vector representation and prevents our
method from identifying successful patents. This issue will be further discussed
in Section 1.5.

It is interesting that the relationship with citations is strong both at the macro
and the IPC 3 levels. At the macro level, it is likely to reflect the advantage of
being an early innovator in a field that will become important for the economy as
a whole. Given the illustrations of the previous section, it seems that the macro
scores may actually capture the IT revolution, a field that was near nonexistent
in the 1980s and that came to dominate the technological landscape in the 1990s
and 2000s. Indeed, most of the patents with high macro scores are from IT-
related sectors. This is also true for IPC 3 scores, which perhaps indicates that

17The results using specification (1.3) can be found in the Appendix, in Tables 1.12 and 1.13.
The results are similar.
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Table 1.5: 10-year citations and IPC 3 score

Dependent variable: 10-year citations
Whole sample Until 2000

(1) (2) (3) (4) (5) (6)
IPC 3 score, standardised 3.071*** 2.999*** 2.704*** 3.584*** 3.417*** 2.842***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant -13.78*** -16.27***
(0.000) (0.000)

Year FE X X X X

IPC 3 FE X X

Firm FE X X

Adjusted R2 0.025 0.075 0.157 0.048 0.124 0.212
Within R2 0.024 0.019 0.047 0.030
Observations 2745260 2745260 993767 1448555 1448555 580505

Notes: *: p<0.1, **: p<0.05, ***: p<0.01. P-values from standard errors clustered at the filing
year level in parenthesis.

IT is the sector whose centroid moved the most over time.

Firm level performance A firm that files a patent with a high score may
benefit from such an invention. In order to test whether this is the case, Equation
(1.4) is estimated for both the macro and the IPC 3 scores. The treatment
variable is a dummy that indicates whether a firm filed a patent in the top 5% of
the chosen score distribution, which we call a high-score patent.18 The results are
shown graphically in Figures 1.8 and 1.9, which depict the sequence of estimated
βh for profits, output, capital and employment.19

The results suggest that filing a top patent in terms of IPC 3 scores is generally
associated with higher subsequent growth in output and capital for the filing
firm relative to other firms in that industry and year, although the effects are
not strongly significant. Profits seem to be on an upward trajectory even before
the event date. These pre-trends suggest that those firms that file a high-score
patent are already growing faster than other firms before the innovation happens.
It is therefore impossible to identify the causal effect of patenting a high-score
invention on profits. Instead, our method, despite being based only on language,
seems to identify some firms which are generally innovative. Since innovative

18As mentioned in Section 1.3.2, we consider top patents in the distribution of scores remov-
ing year fixed effects, which means that high score patents are those with the highest scores
among the patents filed in the same year. We also ran the regressions using the top patents
in the overall distribution without removing year fixed effects, and the effects are similar. The
results are also similar when classifying the top 1% patents as high-score patents.

19The results estimated using the alternative specification of (1.4) with log Yfi,t+h− log Yfi,t
as dependent variable can be found in Figures 1.24 and 1.25.
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Figure 1.8: Top macro patents and firms dynamics
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Note: Estimates from Equation (1.4) using the macro score to qualify top patents. 95% confi-
dence intervals are depicted.

output is highly persistent, it is perhaps not surprising that high-score patents are
produced by firms that have a consistently high level of innovation and that grow
faster than other firms on average. Filing a top patent in terms of the macro score
does not result in any statistically significant effect on profits, output, capital or
employment for the filing firm.

1.4.2 Widening existing ideas

The second economic question we explore is whether we can use our geometrical
approach to define a group of patents that widened knowledge by venturing into
unexplored parts of the technological space.

1.4.2.1 Geometry

As widening innovation can mean very different things in different contexts, let
us begin with a definition of what we mean when we refer to widening patents in
our context:

Widening patent When filed, a patent which we call widening was dissimilar
to its closest neighbours of the past 10 years, but its closest neighbours of the then
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Figure 1.9: Top IPC 3 patents and firms dynamics
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Note: Estimates from Equation (1.4) using the IPC 3 score to qualify top patents. 95% confi-
dence intervals are depicted.

following 10 years became very similar to it. In other word, a widening patents
entered a region with few similar patents in the backward backward space and
lies in a region with many similar patents in the forward space.

Can we just stick to our previously computed centroid based scores with some
IPC level and then say that patents with a high score widened their field? For
this question, the t-SNE visualisations come very handy. They allow us to have a
look into our high dimensional patent space. In particular, they shows how mixed
some topics seem to be across IPC classes. Consider Figure 1.10 which shows the
universe of patents which have been filed from 1976 to 1985, each dot being a
patent. Importantly, when we created our patent vectors, the method had no
information about which IPC code a patent belonged to. Only afterwards we
colour-code each dot according to its IPC 1 level (see Table 1.9 in the Appendix
for a description of each IPC 1 code). Now we use t-SNE to visualise in two
dimensions how our 300 dimensional tSVD representation space looks like. And
in fact, the tSVD must have autonomously arranged large relatively separated
clouds of chemistry patents (C) and of electronics and physics (G and H) without
knowledge they belonged to what we call the same IPC codes. Other groups,
however, such as Human Necessities (A), Textiles (D), or Fixed Constructions
(E) are much less clustered and seem to spread across many topic areas of the
language space. We later find the same computationally in Section 1.4.3. There
seem to be distinct areas in the space of innovation, e.g. around coordinates
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(-150, 50), which seem to share content from a lot of different IPC classes.

This is very helpful information. If we were to rely on IPC classes for centroids,
we could in fact not accurately identify whether a patent satisfies our definition of
widening: a patent might be surrounded by many patents from other fields than
its own. The t-SNE visualisation indicated that if we want to talk about widening
innovation in the way we defined it, centroid scores may not be accurate.

We therefore move to the no-centroid score described in Section 1.3.1.3. For this
score, we compare a patent to every patent in its backward space (i.e. patents
of the past 10 years) and its forward space (i.e. patents of the next 10 years),
not just a single IPC-based centroid or mean vector. No-centroid scores lack the
convenient notion of a trend or centre of gravity of innovation, but have a better
chance at giving good proxies of empty parts of space irrespective of IPC classes.
We say that patents with a high no-centroid score are on average widening topics:
They should have been dissimilar to their neighbourhood in the backward space
and similar to their neighbourhood in the forward space. Note hereby that our
score is very similar to the one proposed very recently in Kelly et al. (2018), with
the difference that we take means of the closest patents’ similarities only whereas
they use the sum of all individual similarities in the backward and forward space.

Besides emphasising the need for a different score which we analyse in the fol-
lowing section, there are also a few other interesting points to see in the t-SNE
visualisation. These become clear particularly when looking at Figure 1.10 and
Figure 1.11 together. The areas of space for Physics (G) and Electricity (H) in
2006 to 2015 are very crowded, in line with what we would expect from the IT
revolution. This part of space was also largely empty before, as visible in Figure
1.10. Of course this is exaggerated by our large illustration time interval between
the two plots. But also with the 10 year intervals in the score computations this
will most likely be exactly the area where we will find a lot of patents that have
high scores and meet our definition of widening. We confirm this later in the dis-
cussion in Section 1.5, but the dominance of classes G & H as widening patents
can already be seen intuitively in the plots here. They are in the regions with
most empty areas early and crowded areas later. It remains a key question for
which technology this will be true next. As of now patents from fields such quan-
tum computing and artificial intelligence might still be more similar to existing
patents than was the case for the IT revolution.

We can also use the two t-SNE plots to see the birth and death of certain areas of
ideas. For example a subfield of chemistry strongly linked with human necessities
was born around the coordinates (-200,-300): It is not visible in Figure 1.10, but
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appears in Figure 1.11. Another subfield of chemistry at the southern border
around coordinates (0, - 300) in contrast disappeared over the last decades.

A key question is whether these geometric observations also translate into eco-
nomically more tangible quantities like citations and firm outcomes. The next
sections shows that this seems to be the case.

1.4.2.2 Regressions

Armed with the no-centroid scores computed as described in Section 1.3.1.3, we
analyse whether high-score patents — which we call widening patents — are
successful patents in terms of citations and private value, and whether the firms
from which the inventions originate benefit and perform better relative to their
peers. The no-centroid scores allow for a neater narrative and a finer analysis
than the centroid scores, where the score of a patent was obtained by comparing
its content to economy-wide or sector-specific average content at different points
in time. A patent with a high no-centroid score is a patent that was distant to its
closest neighbours when filed and that got new close neighbours in the subsequent
10 years. The neighbours need not be from the same sector or field of technology.

Citations High no-centroid scores are associated with more citations: a one
standard deviation increase in the score is associated with slightly more than 3
additional citations over 10 years — an increase representing about 50% of the
mean citations over 10 years in the sample. The results can be found in Table
1.6 — and Table 1.16 for the specification in logs. Both the effects and goodness
of fit are similar to the results obtained using macro and IPC 3 scores, which is
somewhat surprising since the definitions of the scores differ. Widening patents
are also associated with higher private values — as reported in Table 1.17 — and
the correlation is higher than in the case of IPC 3 scores. All the results above
remain qualitatively unchanged using citations 5 or 15 years after grant date.
Note again the decrease in the goodness-of-fit of these regressions in the years
after 2000 — columns (1)-(3) versus (4)-(6) in Tables 1.6 and 1.16.

A high score could in principle be the result of a high forward similarity and a
low backward similarity — our definition of widening patents — but could also
be driven by a very low backward similarity and a low forward similarity. In that
case, the patent would be dissimilar at the time of filing, and yet remain fairly
dissimilar 10 years later, although less so. The case that this type of patents are
wideners would be less strong. To confirm that the positive association between

48



Figure 1.10: IPC 1 coloured t-SNE representation of patents from 1976 to 1985
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Figure 1.11: IPC 1 coloured t-SNE representation of patents from 2006 to 2015
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Table 1.6: 10-year citations and no-centroid score

Dependent variable: 10-year citations
Whole sample Until 2000

(1) (2) (3) (4) (5) (6)
No-centroid core, standardised 4.026*** 3.395*** 3.429*** 4.334*** 3.488*** 3.368***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant -133.9*** -145.1***
(0.000) (0.000)

Year FE X X X X

IPC 3 FE X X

Firm FE X X

Adjusted R2 0.044 0.075 0.163 0.067 0.119 0.219
Within R2 0.024 0.026 0.038 0.039
Observations 2896300 2896013 1025243 1545952 1545675 602117

Notes: *: p<0.1, **: p<0.05, ***: p<0.01. P-values from standard errors clustered at the filing
year level in parenthesis.

citations and no-centroid scores is driven by wideners, Figure 1.12 reports the
average citations for patents in different quintiles of the distributions of back-
ward and forward similarities. Citations increase as a patent is dissimilar in the
backward space, and similar in the forward space.

Firm level performance The results can be found in Figure 1.13.20 Firms that
file a high-score patent see their profits, output and capital grow faster than their
peers within the same industry and years. There is however very strong evidence
of existing pre-trends, as suggested by significantly negative coefficients before the
event date (the filing of the high-score patent). This means that those firms were
on a differential trend before the invention came out. As mentioned earlier, this
renders causal statements about the effect of filing a high-score patent impossible.
It seems that we identify fast-growing firms that innovate and continue to grow
quickly relative to other firms after the patent has been filed. It is however
reassuring that the effects seem to be stronger than when high-score patents
are identified using macro and IPC 3 scores, since the no-centroid scores are
identifying widening patents, which may be rarer inventions, whereas the other
two scores merely identify patents that anticipated a general trend in innovation.
However, the firms with high no-centroid scores are often IT firms. Table 1.11
lists the firms with most top patents in the overall distribution of no-centroid
scores. They are all IT-related.

20The results estimated using the alternative specification of (1.4) with log Yfi,t+h− log Yfi,t
as dependent variable can be found in Figure 1.26
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Figure 1.12: Mean citations per decile of backward and forward no-centroid similarity
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Figure 1.13: No-centroid patents and firms dynamics
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Note: Estimates from Equation (1.4) using the no-centroid score to qualify top patents. 95%
confidence intervals are depicted.
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It is interesting to note that differential pre-trends can also be observed when con-
sidering the filing of top patents in terms of citations and private value. Specif-
ically, estimating Equation (1.4) classifying top patents as being in the top 5%
of the private value distribution or in the top 0.1% of the citations distributions
yield pre-trends in both cases (especially marked in the case of private value) as
reported in Figures 1.30 and 1.31. This problem in estimating the causal effect
of top patents — irrespective of the criteria used to qualify them — seems to be
a recurrent issue.

1.4.3 Heterogenous areas of innovation and general pur-

pose technologies

Given that we have seen how mixed patent content is in some areas of the space,
it seems natural to try using such a methodology to think about general purpose
technologies (GPTs). Do GPT-type of patents lie in very diverse areas of language
spaces, surrounded by patents from many different IPC codes?

1.4.3.1 Geometry

The t-SNE visualisations in Figures 1.10 and 1.11 indicate that there exist some
areas in high dimensional space which are shared by many patent classes. Patents
in these areas therefore very likely use similar language. Building on the visual
intuition, we now try to compute numerical counterparts of this observation.
For a given patent, we again look at the top 100 most similar patents 0-9 years
after its publication and we measure from how many different IPC classes these
most similar patents come (see the description in Section 1.3.1.3 for full details).
To remain consistent with our two exemplary t-SNE plots, we look at patents
published in 1985 and in 2006. These are years contained in the two plots,
however, they are also years for which we have full 10 year forward and backward
intervals of data and hence can compute scores as well (our patent data range
from 1976 to 2017).21

The following two heatmap tables in Figure 1.14 show the key results of our
computation. Each row is an IPC 1 class of a patent for which we compute
the top 100 most similar patents. The columns indicate the average amount of
patents from different IPC classes among these top 100 most similar patents. For

21In principle, the forward neighbourhood heterogeneity scores can be computed for every
patent in our sample. We plan to do so in the future.
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example, the cell in row 3 column 7 of the 1985 patents indicates that on average,
3.48 patents in the most similar 100 patents around a chemistry patent came
from electronics. A few outcomes are particularly noticeable. First, all but D &
E have maximum values on the diagonal. Hence, on average the majority of their
100 most similar patents comes from their own IPC 1 code. Second, however, the
top 100 neighbourhoods are much more diverse than what one might intuitively
expect. Yet, they also resemble what the t-SNE suggested: A, B, D, E, and F have
more diverse patent classes in their surrounding. Chemistry (C) and technology
patents (H and G) are more insular. The time dimension from 1985 to 2008 is
also interesting. IPC classes which contain technology patents in fact became
more specialised over time - the distributions of H and G have more weight on
their own class in 2006 than in 1985.

Equipped with the findings from describing neighbourhoods for average patents,
we include this information into our regressions on citations as well — although
we only have two years of data as of now. For this we first need to compute one
value summarising the neighbourhood of each patent, because citations are at the
patent level too. We use the approach introduced in Section 1.3.1.3, i.e. forward
neighbourhood heterogeneity. A score of 0 means that the patents neighbourhood
only consists of 100 patents from a single IPC 1 code - the patent is likely about a
very specialised topic. A score of 0.9354 means that the patent’s neighbourhood
includes patents from all 8 IPC 1 codes in exactly the same proportions. We
compute this value for every patent in 1985 and 2006. Table 1.10 in the Appendix
shows this score averaged for patents in the two years. Again the outcomes are
supporting the graphical intuition. Chemistry and electronics are more specialised
than the other IPC 1 codes (their forward neighbourhood heterogeneity is lower)
and electronics even became more specialised over the years contrary to some
other classes.

The next section adds this new variable to our regressions. Now that we can
measure the heterogeneity in the neighbourhood of a patent, we are interested in
whether a heterogeneous language neighbourhood correlates positively or nega-
tively with citations.

1.4.3.2 Regressions

This section shows regression results on citations including the forward neigh-
bourhood heterogeneity of a patent. In summary, a patent’s neighbourhood het-
erogeneity is consistently negatively associated with citations, not just in more
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Figure 1.14: Average patent neighbourhood heterogeneity for each IPC 1 code
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Table 1.7: Forward neighbourhood heterogeneity score and citations, 1985 and 2006

(1) (2)
10-year citations Log(1+10-year citations)

No-cent. score, std 1.781***
(0.000)

For. Het. score, std -0.607***
(0.000)

Log(no-cent. score) 6.934***
(0.000)

Log(For. Het. score) -0.0576***
(0.000)

Year FE X X
IPC 3 FE X X
Adjusted R2 0.021 0.064
Within R2 0.009 0.025
Observations 203432 199422

Notes: *: p<0.1, **: p<0.05, ***: p<0.01. P-values from robust standard errors in parenthesis.
Standard errors can not be clustered at the filing year level since there are only two years in
the data underlying this regression.

specialised areas such as Chemistry and Electronics, but across all IPC codes.
Patents in more heterogeneous neighbourhoods are cited significantly less. See
Tables 1.7 for the results across IPCs, and Tables 1.18 and 1.19 for IPC 1-specific
regressions. On average, one standard deviation increase in neighbourhood het-
erogeneity yields 0.6 less citations. On average, it seems to pay off to be in a
highly specialised area of space, although the effect is not large — for instance
compared to the coefficient on the no-centroid scores.22 The insight that areas of
space which use words shared by all 8 fields tend to have lower citations is inter-
esting in itself and not obvious ex ante. With lower citations, however, patents
in heterogenous neighbourhoods can hardly be key technologies such as GPTs.
Being in a part of space with words shared by many IPC codes might rather
mean that topics can be imprecise or irrelevant. In any case, it is not a sufficient
condition to identify GPTs.

Ideas for future research Language and word linkages applied in the right
way might nonetheless offer some interesting clues towards identifying GPTs:
Hardly anyone would cite Nash’s original paper, but the Nash equilibrium is
arguably as close to a GPT in economics as it gets and the words are mentioned
in many papers. This could complement methods that use citations to qualify

22The regressions have also been run without including the no-centroid score, and the esti-
mated coefficients on the forward neighbourhood heterogeneity score are unchanged.

56



the generality of a patent.23 Yet, giving patents the highest scores which have
neighbourhoods consisting of all 8 IPC codes in equal proportions might not be
the most accurate measure. In future research, it could be interesting to identify
areas consisting of only e.g. 3 out of 8 IPC codes and then to look into the patents
in those areas that have the highest amounts of citations. Other avenues for
research into this direction would be to look at smaller grain neighbourhoods. For
example, if we were to look into neighbourhoods only within electronics patents
and detect patents which have neighbours from many electronics sub-fieds, could
these inventions in fact serve a more general purpose?24 One could also study
trends in the specialization of inventions over time and check whether modern
inventions are more specialised than in the past.

1.4.4 Relationships between different scores

With Section 1.4.1 using centroid-based scores (global and IPC3) and Sections
1.4.2 and 1.4.3 using no centroid scores, we conclude the results part with some
comparisons between scores (we leave out the heterogeneity scores because we
only computed them for 1985 and 2006). Recall that macro, IPC and no-centroid
scores are calculated for every patent in our sample between 1985 and 2008.
As explained in Section 1.3.1.3, the scores are the ratio of a forward similarity
and a backward similarity, which are essentially similarities to a reference point
capturing the existing technological states at different point in time. Scores are
obtained by dividing the forward similarity by the backward similarity. A patent
dissimilar to existing patents at the time of filing and similar 10 years later will
have a high score.

Table 1.8 reports some descriptive statistics. First note that both the mean and
the median scores are close to 1, which means that on average the position of a
patent in the backward and forward spaces is very similar. Forward and backward
similarities are indeed very highly correlated — see Figure 1.18. The scores are
positively correlated with each other with correlations ranging from 0.33 to 0.46.
A correlogram of the scores containing the histograms of each score distribution
and scatter plots of the scores against each other can be found in Figure 1.19.
Even though all these scores capture similar notions, they differ markedly from

23For instance, Moser and Nicholas (2004) use the diversity of the technological fields of
citing patents as a measure of generality and find that electricity was not a GPT according to
this definition.

24Those would not be General Purpose Technologies as defined in the literature however,
since GPTs must spread and spawn innovation from most or all broadly defined sectors of the
economy.
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Table 1.8: Descriptive statistics of innovation scores

N Mean Sd Min p25 Median p75 p90 Max
Macro score 2896300 .994 .152 .093 .887 .966 1.08 1.19 3.06
IPC 3 score 2745260 .997 .135 .0899 .927 .993 1.06 1.14 4.74
No-centroid score 2896300 1.01 .0286 .551 .998 1.01 1.02 1.05 2.36

Figure 1.15: Citations
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1.5 Discussion

An approach which identifies patents as innovative that are dissimilar to past
language but similar to future language will tend to give highest scores to those
patents which were in very empty parts of the space when they got released.
A key question is therefore which industries we identify as being particularly
innovative. Our t-SNE driven intuition suggests that patents with high scores
will come in large proportions from electronics and physics fields as these areas
have been the emptiest in the early space of innovation. The heatmaps in Figures
1.15 and 1.16 confirm this intuition. The former shows citations per year-IPC 1
combination and the latter displays their no-centroid scores. As expected, our
no-centroid score is highest in IT-related areas, which is where the space must
have been the emptiest.

Figures 1.32, 1.33, and 1.34 in the Appendix show the same for macro and IPC 3
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Figure 1.16: No centroid scores

A B C D E F G H
IPC 1

1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008

Ye
ar

s

1.0178 1.0159 1.0073 1.0095 1.0095 1.0099 1.0327 1.0280
1.0193 1.0172 1.0083 1.0107 1.0107 1.0110 1.0346 1.0296
1.0208 1.0173 1.0080 1.0122 1.0120 1.0124 1.0367 1.0318
1.0216 1.0184 1.0086 1.0109 1.0134 1.0133 1.0361 1.0345
1.0213 1.0174 1.0083 1.0117 1.0134 1.0132 1.0356 1.0358
1.0216 1.0168 1.0069 1.0149 1.0149 1.0134 1.0354 1.0381
1.0243 1.0208 1.0093 1.0190 1.0178 1.0180 1.0395 1.0424
1.0259 1.0212 1.0093 1.0182 1.0190 1.0196 1.0399 1.0435
1.0252 1.0216 1.0098 1.0181 1.0209 1.0202 1.0406 1.0438
1.0231 1.0211 1.0097 1.0142 1.0206 1.0206 1.0393 1.0437
1.0200 1.0203 1.0071 1.0154 1.0213 1.0203 1.0383 1.0417
1.0198 1.0192 1.0060 1.0154 1.0209 1.0194 1.0369 1.0388
1.0171 1.0173 1.0035 1.0128 1.0187 1.0184 1.0331 1.0339
1.0155 1.0156 1.0019 1.0086 1.0167 1.0183 1.0308 1.0306
1.0136 1.0139 1.0010 1.0076 1.0154 1.0172 1.0286 1.0271
1.0102 1.0090 1.0015 1.0063 1.0105 1.0118 1.0224 1.0207
1.0065 1.0025 0.9996 1.0055 1.0066 1.0068 1.0158 1.0141
1.0042 1.0004 0.9977 0.9993 1.0038 1.0045 1.0124 1.0114
1.0034 0.9996 0.9976 1.0028 1.0025 1.0036 1.0103 1.0092
1.0025 0.9994 0.9972 1.0057 1.0022 1.0031 1.0087 1.0077
1.0011 0.9974 0.9965 1.0023 1.0005 1.0012 1.0062 1.0060
0.9986 0.9950 0.9948 1.0004 0.9983 0.9983 1.0034 1.0032
0.9947 0.9909 0.9922 0.9904 0.9942 0.9935 0.9990 0.9992
0.9906 0.9857 0.9882 0.9839 0.9886 0.9879 0.9938 0.9943

0.99

1.00

1.01

1.02

1.03

1.04

scores, as well as depict the number of patent per cell. For the macro centroids,
IT patents have even more pronounced scores reflecting that the economy moved
to exactly this macro technology over the time span we considered. For IPC 3
centroids on the other side, scores are more balanced as each IPC code now has
its own reference point. To conclude, it seems that methods such as the ones
discussed in this — as well as other related papers, in all likelihood — identify
the IT revolution. We see a decline in how well we fit citations in the more recent
years from 2000 onwards. This might be driven by the fact that as of now also
the IT space is crowded and a method like ours has less bite than before.

The importance of IT One possible worry is that most of the results are
driven by patents relating to the IT sector. At the macro level, IT is one impor-
tant sector that was nascent in the 1980s, and became central in the subsequent
decades. At the IPC level, IPC G and H — Physics and Electricity, the IPC
seemingly most related to IT — account for over 50% of granted patents in our
sample. Regarding widening patents, we also find that large IT firms dispro-
portionately file high-score patents — see Table 1.11. It is therefore natural to
wonder whether the results are robust to excluding patents from these techno-
logical areas. We do so by dropping all patents from IPC codes G and H once
the scores have been computed, and re-estimate all our results.25 In general, the

25We do not, however, re-estimate the vector representation of patents dropping IPC codes
G and H, i.e. we use the same score as in the main text, simply omitting patents from those
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results are qualitatively unchanged, although in most cases the magnitudes of
the effects are smaller — they sometimes as much as halve. The patent-level
regression results can be found in Tables 1.20, 1.21 and 1.22 for macro, IPC 3
and no-centroid scores, respectively. The decrease in magnitude is strongest for
the macro scores: in the citations regressions, both coefficients and r-squared
decrease by around 50%. For results based on IPC 3 and no-centroid scores, the
decrease in magnitude is smaller. At the firm level, the estimated effects of filing
a top patent are generally smaller and less significant, but qualitatively similar
as can be seen in Figures 1.27, 1.28 and 1.29.26 One marked difference is the
relationship between private value and scores, which is most cases becomes nega-
tive. It is unclear why that is so: It seems that the positive relationship between
scores and private value was solely driven by patents from IPC codes G and H —
it is not the case that these patents have systematically higher values than those
in other fields, however. Overall, it seems that IT alone is indeed responsible for
some, yet not all of the results presented.

Construction of the scores The no-centroid scores are built using the prox-
imity of patents to their 100 most similar neighbours in space. This cutoff is
arbitrary and entails a trade-off. On the one hand, taking the distance to more
patents, e.g. 500, might dilute the information that we attempt to capture about
the proximity of the closest inventions by taking the average distance over too
many patents. On the other hand, choosing too few patents, e.g. 10, may also
give a misleading idea of the position of a patent relative to its neighbours —
e.g. if the 10 are very close and filed by the same firm, and the 11th is really
far. We chose 100 as it seemed to have the best fit with citations, but the results
are similar when using alternative thresholds.27 Furthermore, it is not obvious
that this threshold must remain constant over time. Since the space becomes
increasingly crowded over time as the volume of patents increases, the closest 100
to a patent in 1985 may be further away than the closest 100 to a patent in 2008.
An alternative could be to let the threshold change over time proportionally to
the size of the corpus in each year. Yet, in turn this would give many degrees
of freedom and introduce some problems of over-fitting the data. Irrespective of
which amount of neighbours is chosen, however, it seems likely that the increased
crowdedness of space due to many more patents being published in more recent
years mechanically influences the results.

IPC codes.
26The differential pre-trend issue is also less severe.
27We tried 50, 100, 200 and 500.
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1.6 Conclusion

In this paper, we apply methods from natural language processing and machine
learning to analyse the innovative content of patents based on their text. Numer-
ical representations of patents as high dimensional vectors allow us to compute
similarities between documents at a large scale. We structure our thoughts around
the idea that a patent that is dissimilar to the state of knowledge when it is filed,
yet similar to it subsequently, could be successful. Our measures of success are a
patent’s citations, its private value and its effect on the filing firm’s performance
indicators. We find that patents which anticipate trends in the economy or within
a narrow technological field are more successful, as are those that widen areas in
the knowledge space. The causal interpretation of the effect of filing such patents
on firm’s outcomes is rendered difficult due to the existence of differential pre-
trends: Based only on the language of patents, we identify successful firms, and
these firms also have been successful some years before. Furthermore, we find
that patents which are surrounded by other inventions from diverse technological
fields tend to have less citations than specialised patents. We conclude by arguing
that methods such as ours capture the IT revolution.
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1.7 Appendix

1.7.1 Exemplary full patent text

#############################################
## Reference patent : 8919201 from 2012
#############################################

## Abstact

An a c c e l e r a t i o n measuring apparatus that can e a s i l y de t e c t
a c c e l e r a t i o n with high accuracy i s provided . In the

apparatus , p o s i t i o n a l d i sp lacement o f a swingable
pendulum member i s detected , feedback con t r o l i s
performed to maintain the pendulum member in a
s t a t i ona ry s t a t e us ing an actuator , and a c c e l e r a t i o n i s
measured by measuring the output o f the actuator at

t h i s time . A movable e l e c t r o d e i s provided to the
pendulum member , and a loop i s formed in which a f i x ed
e l e c t r od e provided to oppose the movable e l e c t r ode , and
an o s c i l l a t i n g c i r c u i t , a c r y s t a l unit , and the

movable e l e c t r o d e are e l e c t r i c a l l y connected in s e r i e s .
By measuring an o s c i l l a t i n g f requency o f the
o s c i l l a t i n g c i r c u i t at t h i s time , a change in the s i z e
o f a v a r i ab l e capac i tance formed between the movable
e l e c t r od e and the f i x ed e l e c t r o d e i s detected , and
thereby the p o s i t i o n a l d i sp lacement o f the pendulum
member i s detec ted .

## Br i e f d e s c r i p t i o n

CROSS−REFERENCE TO RELATED APPLICATION
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This app l i c a t i o n c la ims the p r i o r i t y b en e f i t o f Japanese
app l i c a t i o n s e r i a l no . 2011−127644 , f i l e d Jun . 7 , 2011 .
The en t i r e t y o f the above−mentioned patent
app l i c a t i o n s i s hereby inco rpora ted by r e f e r e n c e he r e in
and made a part o f s p e c i f i c a t i o n .

BACKGROUND OF THE INVENTION
1 . F i e ld o f the Invent ion
The pre sent invent i on r e l a t e s to a technology f o r

d e t e c t i ng a c c e l e r a t i o n based on an o s c i l l a t i n g
f requency us ing a p i e z o e l e c t r i c p l a t e such as a c r y s t a l
p l a t e .

2 . De sc r ip t i on o f Related Art
In order to measure an earthquake or the l i k e , one

important i s s u e i s d e t e c t i ng weak and low frequency
a c c e l e r a t i o n . I t i s d e s i r a b l e to measure with high
accuracy us ing a s t r u c tu r e that i s as s imple as
p o s s i b l e when ca r ry ing out t h i s kind o f measurement . As
a senso r f o r d e t e c t i ng weak and low frequency

a c c e l e r a t i on , a servo−type a c c e l e r a t i o n measuring
apparatus i s o f t en used .

In genera l , a servo−type a c c e l e r a t i o n measuring apparatus
i s c on s t i t u t ed by a pendulum , a pendulum po s i t i o n
detector , an actuator that app l i e s a f o r c e to the
pendulum , and a r e gu l a t i n g un i t that c on t r o l s the
actuator based on a de t e c t i on r e s u l t by the pendulum
po s i t i o n de t e c t o r . The pendulum i s c on s t i t u t ed by a
sp ind l e and a spr ing . One end o f the spr ing i s f i x ed to
a conta ine r o f the a c c e l e r a t i o n measuring apparatus ,

and the po s i t i o n o f the sp i nd l e i s d i sp l a c ed r e l a t i v e
to the conta ine r by the ac t i on o f an i n e r t i a l f o r c e
when a c c e l e r a t i o n i s exer ted on the a c c e l e r a t i o n
measuring apparatus . A resonance f requency o f the
pendulum i s s e t extremely low , and even a s l i g h t
a c c e l e r a t i o n l a r g e l y d i s p l a c e s the pendulum . The
disp lacement o f the pendulum r e l a t i v e to the conta ine r
i s p ropo r t i ona l to the exer ted a c c e l e r a t i o n in a
f requency range that i s lower than the resonance
f requency o f the pendulum . The pendulum po s i t i o n
de t e c t o r i s a s enso r that d e t e c t s p o s i t i o n a l
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disp lacement o f the pendulum r e l a t i v e to the conta ine r .
The actuator c o n s i s t s o f a c o i l provided to the

pendulum and a magnetic c i r c u i t provided to the
conta ine r . The po s i t i o n o f the pendulum can be
d i sp l a c ed by an e l e c t romagne t i c f o r c e that i s generated
when a cur rent i s app l i ed to the c o i l . The r e gu l a t i n g
un i t i s f o r apply ing a cur r ent to the c o i l o f the
actuator based on p o s i t i o n a l d i sp lacement data o f the
pendulum obtained by the pendulum po s i t i o n de t e c t o r .

I f a c c e l e r a t i o n from an out s id e f o r c e i s exer ted on the
a c c e l e r a t i o n measuring apparatus , the po s i t i o n o f the
pendulum i s d i sp l a c ed by an i n e r t i a l f o r c e . At t h i s
time , a cur r ent i s app l i ed to the actuator from the
r e gu l a t i n g unit , and by exe r t i ng an e l e c t r omagne t i c
f o r c e that i s the same s i z e as the i n e r t i a l f o r c e but
i s in the oppos i t e d i r e c t i o n on the pendulum , the
pendulum can be maintained in a s t a t i ona ry s t a t e .
Therefore , by de t e c t i ng the p o s i t i o n a l d i sp lacement o f
the pendulum with the pendulum po s i t i o n de t e c t o r and
then operat ing the actuator so that the p o s i t i o n a l
d i sp lacement i s zero , the p o s i t i o n a l d i sp lacement o f
the pendulum can be feedback c on t r o l l e d . By measuring
the output o f the actuator at t h i s time , f o r example by
measuring the cur rent value app l i ed to the c o i l , the

a c c e l e r a t i o n o f the out s id e f o r c e can be measured . This
kind o f servo−type a c c e l e r a t i o n measuring apparatus

has c h a r a c t e r i s t i c s o f high accuracy and high
r e s o l u t i o n and i s capable o f measuring f r e qu en c i e s o f
about 0 to 400 Hz .

As a method f o r de t e c t i ng the po s i t i o n o f the pendulum in
a servo mechanism o f a servo−type a c c e l e r a t i o n
measuring apparatus , an op t i c a l method and a capac i t o r
method are mainly used . Among these , an op t i c a l−type
pendulum po s i t i o n de t e c t o r uses a l a s e r diode , a two−
element segmented photodiode , and a l en s . As a method
f o r de t e c t i on us ing an op t i c a l−type pendulum po s i t i o n
detector , a type o f d i f f e r e n t i a l method i s employed .
However , an op t i c a l−type pendulum po s i t i o n de t e c t o r
p r e s en t s problems in that i t has a complex s t r u c tu r e
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and the l i f e o f the photodiode i s shor t . A capac i to r−
type pendulum po s i t i o n de t e c t o r has a s t r u c tu r e in
which a capac i tance i s formed such that i t changes by
the p o s i t i o n a l d i sp lacement o f the pendulum , and the
pendulum po s i t i o n i s detec ted by de t e c t i ng the change
in capac i tance . However , the i n f l u e n c e o f no i s e cannot
be e l iminated , and thus i t i s d i f f i c u l t to de t e c t the
a c c e l e r a t i o n with high accuracy .

Patent Document 1 d i s c l o s e s an a c c e l e r a t i o n senso r in
which a constant cur r ent i s made to f low through a
movable e l e c t r ode , and a c c e l e r a t i o n i s detec ted by
de t e c t i ng the number o f pu l s e s o f an induced cur rent
generated in a f i x ed e l e c t r od e that opposes the movable
e l e c t r od e . However , t h i s a c c e l e r a t i o n senso r i s

d i f f e r e n t from the pre sent invent i on . Patent Document 2
d i s c l o s e s a capac i tance change detec t i on−type

a c c e l e r a t i o n sensor , in which two va r i ab l e capac i t ance s
are formed between a movable c en te r p l a t e and f i x ed

p l a t e s provided on both s i d e s o f the movable c en t e r
p late , and ant iphase pu l s e vo l t ag e s are r e s p e c t i v e l y
app l i ed to the two f i x ed p l a t e s . Both va r i ab l e
capac i t ance s change when the po s i t i o n o f the cen te r
p l a t e i s d i sp l a c ed due to the gene ra t i on o f
a c c e l e r a t i on , and the a c c e l e r a t i o n i s detec ted at t h i s
time by de t e c t i ng a s h i f t in the pu l s e phase o f the
vo l tage app l i ed from the f i x ed p l a t e s to the cen te r
p l a t e . However , t h i s capac i tance change detec t i on−type
a c c e l e r a t i o n senso r i s d i f f e r e n t from the pre sent
invent i on .

[ Patent Document 1 ] Japanese Patent Appl i ca t ion Laid−Open
(JP−A) No . H7−167885

[ Patent Document 2 ] Japanese Patent Appl i ca t ion Laid−Open
(JP−A) No . 2004−198310

SUMMARY OF THE INVENTION
The pre sent invent i on was c rea ted in l i g h t o f the above−

des c r ib ed background , and an ob j e c t i v e t h e r e o f i s to
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prov ide an a c c e l e r a t i o n measuring apparatus that can
e a s i l y de t e c t a c c e l e r a t i o n with high accuracy .

The a c c e l e r a t i o n measuring apparatus o f the pre sent
invent i on de t e c t s a d isp lacement from a r e f e r e n c e
po s i t i o n o f a pendulum member that i s about to swing
due to an i n e r t i a l f o r c e , a pp l i e s an ex t e rna l f o r c e to
the pendulum member by an operat ing un i t based on a
de t e c t i on r e s u l t o f the d isp lacement to immobi l i ze the
pendulum member in the r e f e r e n c e po s i t i on , and
eva lua t e s an a c c e l e r a t i o n ac t ing on the pendulum member
based on a s i z e o f the ex t e rna l f o r c e at t h i s time ,

the apparatus compris ing :
a p i e z o e l e c t r i c p l a t e ;
a f i r s t d r i v e e l e c t r o d e and a second dr ive e l e c t r od e

provided r e s p e c t i v e l y on a f i r s t s u r f a c e s i d e and a
second su r f a c e s i d e o f the p i e z o e l e c t r i c p l a t e in order
to v ib r a t e the p i e z o e l e c t r i c p l a t e ;

an o s c i l l a t i n g c i r c u i t that i s e l e c t r i c a l l y connected to
the f i r s t d r i v e e l e c t r o d e ;

a movable e l e c t r o d e f o r forming a va r i a b l e capac i tance
that i s provided on the pendulum member and the movable
e l e c t r od e being e l e c t r i c a l l y connected to the second

dr iv e e l e c t r o d e ;
a f i x ed e l e c t r o d e separated from the pendulum member ,

provided so as to oppose the movable e l e c t r ode , and
connected to the o s c i l l a t i n g c i r c u i t , the f i x ed
e l e c t r od e forming a va r i ab l e capac i tance upon a change
in capac i tance between the f i x ed e l e c t r o d e and the
movable e l e c t r o d e due to swinging o f the pendulum
member ; and

a f requency in fo rmat ion de t e c t i ng un i t f o r d e t e c t i ng a
s i g n a l that i s f requency in fo rmat ion cor re spond ing to
an o s c i l l a t i n g f requency o f the o s c i l l a t i n g c i r c u i t ,

wherein an o s c i l l a t i o n loop i s formed beg inning from the
o s c i l l a t i n g c i r c u i t , pas s ing through the f i r s t d r i v e
e l e c t r ode , the second dr iv e e l e c t r ode , the movable
e l e c t r ode , and the f i x ed e l e c t r ode , and then re tu rn ing
to the o s c i l l a t i n g c i r c u i t , and
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the f requency in fo rmat ion detec ted by the f requency
in fo rmat ion de t e c t i ng un i t i s f o r eva lua t ing the
disp lacement from the disp lacement po s i t i o n o f the
pendulum member .

Further , in the a c c e l e r a t i o n measuring apparatus o f the
pre sent invent ion ,

the movable e l e c t r o d e i n c l ud e s a f i r s t movable e l e c t r o d e
and a second movable e l e c t r o d e provided so as to
sandwich the pendulum member and oppose each other in a
d i r e c t i o n in which the i n e r t i a l f o r c e ac t s ;

the f i x ed e l e c t r o d e i n c l ud e s a f i r s t f i x ed e l e c t r o d e and a
second f i x ed e l e c t r o d e provided so as to be separated

from the pendulum member and r e s p e c t i v e l y oppose the
f i r s t movable e l e c t r o d e and the second movable
e l e c t r od e ;

a sw i t ch ing un i t i s f u r t h e r provided , wherein the
swi t ch ing un i t i s capable o f sw i t ch ing an e l e c t r i c a l
connect ion d e s t i n a t i on o f the o s c i l l a t i n g c i r c u i t
between a f i r s t v a r i a b l e capac i tance between the f i r s t
movable e l e c t r o d e and the f i r s t f i x ed e l e c t r o d e and a
second va r i ab l e capac i tance between the second movable
e l e c t r od e and the second f i x ed e l e c t r o d e ; and

the f requency in fo rmat ion de t e c t i ng un i t c a l c u l a t e s
in fo rmat ion cor re spond ing to a d i f f e r e n c e between an
o s c i l l a t i n g f requency corre spond ing to the f i r s t
v a r i ab l e capac i tance and another o s c i l l a t i n g f requency
cor re spond ing to the second va r i ab l e capac i tance that
are time−d iv ided by the swi tch ing un i t .

In addit ion , the pendulum member can be c an t i l e v e r e d at
one end th e r e o f by a support ing un i t . Also , the
pendulum member can be the p i e z o e l e c t r i c p late , or can
inc lude the p i e z o e l e c t r i c p l a t e in a por t i on th e r e o f .

The pre sent invent i on captures the disp lacement when the
pendulum member i s d i sp l a c ed from a r e f e r e n c e po s i t i o n
upon swinging due to a c c e l e r a t i o n as a change in the
o s c i l l a t i n g f requency o f the p i e z o e l e c t r i c p l a t e v ia a
change in a capac i tance between the movable e l e c t r o d e
o f the pendulum member and the f i x ed e l e c t r o d e that
opposes the movable e l e c t r o d e . Therefore , the
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a c c e l e r a t i o n can be e a s i l y detec ted with high accuracy .
Further , by forming a va r i a b l e capac i tance on both

s i d e s r e l a t i v e to the d i r e c t i o n in which the pendulum
swings , a d i f f e r e n t i a l method can be app l i ed when
measuring a change in the o s c i l l a t i n g f requency . Thus ,
the i n f l u e n c e o f no i s e and temperature c h a r a c t e r i s t i c s
can be suppressed , and the a c c e l e r a t i o n can be detec ted
with even h igher accuracy .

## Claims text

1 . An a c c e l e r a t i o n measuring apparatus compris ing :
a pendulum member , extending in a v e r t i c a l d i r e c t i on ,

wherein an upper end o f the pendulum member i s
supported ;

a p i e z o e l e c t r i c r e sona to r compr is ing a p i e z o e l e c t r i c p l a t e
and a f i r s t d r i v e e l e c t r o d e and a second dr ive
e l e c t r od e provided r e s p e c t i v e l y on a f i r s t s u r f a c e s i d e
and a second su r f a c e s i d e o f the p i e z o e l e c t r i c p l a t e

in order to v ib ra t e the p i e z o e l e c t r i c p l a t e ;
an o s c i l l a t i n g c i r c u i t , c on f i gu r ed to o s c i l l a t e the

p i e z o e l e c t r i c r e sona to r ;
a f i r s t movable e l e c t r o d e and a second movable e l e c t r o d e

each r e s p e c t i v e l y d i sposed on oppos i t e s u r f a c e s o f the
pendulum member in a ho r i z on t a l d i r e c t i on , con f i gu r ed
to form va r i ab l e capac i t ance s ;

a f i r s t f i x e d e l e c t r o d e separated from the pendulum member
, provided so as to oppose the f i r s t movable e l e c t r ode ,
con f i gu r ed to form a f i r s t v a r i a b l e capac i tance upon a
change in capac i tance between the f i r s t f i x ed

e l e c t r od e and the f i r s t movable e l e c t r od e due to
swinging o f the pendulum member ;

a second f i x ed e l e c t r o d e separated from the pendulum
member , provided so as to oppose the second movable
e l e c t r ode , con f i gu r ed to form a second va r i ab l e
capac i tance upon a change in capac i tance between the
second f i x ed e l e c t r o d e and the second movable e l e c t r o d e
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due to swinging o f the pendulum member ;
a sw i t ch ing unit , c on f i gu r ed to a l t e r n a t e l y switch the

connect ion o f the f i r s t v a r i ab l e capac i tance and the
second va r i ab l e capac i tance with an o s c i l l a t i o n loop
compris ing the o s c i l l a t i n g c i r c u i t and the
p i e z o e l e c t r i c r e sona to r ;

a f requency in fo rmat ion de t e c t i ng unit , c on f i gu r ed to
c a l c u l a t e s f requency in fo rmat ion corre spond ing to a
d i f f e r e n c e between an o s c i l l a t i n g f requency
cor re spond ing to the f i r s t v a r i ab l e capac i tance and
another o s c i l l a t i n g f requency cor re spond ing to the
second va r i ab l e capac i tance that are time−d iv ided by
the swi tch ing un i t ; and

an operat ing unit , c on f i gu r ed to apply an ex t e rna l f o r c e
to the pendulum member to immobi l i ze the pendulum
member in a r e f e r e n c e po s i t i o n based on the f requency
in fo rmat ion detec ted by the f requency in fo rmat ion
de t e c t i ng unit , the r e f e r e n c e po s i t i o n i s a s t a t i ona ry
s t a t e in a v e r t i c a l posture , and wherein an
a c c e l e r a t i o n ac t ing on a pendulum member i s eva luated
based on a s i z e o f the ex t e rna l f o r c e .

2 . The a c c e l e r a t i o n measuring apparatus accord ing to
c la im 1 , wherein the pendulum member i s the
p i e z o e l e c t r i c p late , or i n c l ud e s the p i e z o e l e c t r i c
p l a t e in a por t i on th e r e o f .

#############################################
## Clo s t e s t match : 8677828 from 2012
#############################################

## Abstact
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Provided i s a dev i ce capable o f e a s i l y and ac cu ra t e l y
de t e c t i ng a v ib r a t i on per iod when , f o r example , an
earthquake occurs . When a quartz−c r y s t a l p l a t e bends
upon app l i c a t i o n o f a fo r ce , capac i tance between a
movable e l e c t r o d e provided at i t s t i p por t i on and a
f i x ed e l e c t r o d e provided on a v e s s e l to f a c e the
movable e l e c t r o d e changes , so that an o s c i l l a t i o n
f requency o f the quartz−c r y s t a l p l a t e changes accord ing
to t h i s capac i tance . Therefore , when the v e s s e l i s

v ibrated , the re appear a f i r s t s t a t e where the quartz−
c r y s t a l p l a t e ends to approach the f i x ed e l e c t r o d e and
a second s t a t e where the quartz−c r y s t a l p l a t e i s in an
o r i g i n a l s t a t e or bends to be apart from the f i x ed
e l e c t r o d e . Accordingly , an o s c i l l a t i o n f requency
cor re spond ing to the f i r s t s t a t e and correspond ing to
the second s t a t e a l t e r n a t e l y appear , and the r e f o r e , i t
i s p o s s i b l e to f i nd the per iod ( f requency ) o f the
v i b r a t i on .

## Br i e f d e s c r i p t i o n

BACKGROUND OF THE INVENTION
1 . F i e ld o f the Invent ion
The pre sent invent i on r e l a t e s to a t e c hn i c a l f i e l d f o r

d e t e c t i ng a v ib r a t i on per iod by us ing a quartz−c r y s t a l
r e sona to r .

2 . De sc r ip t i on o f the Related Art
There sometimes a r i s e s a need f o r d e t e c t i ng a per iod (

f requency ) o f v i b r a t i on app l i ed to an ob j e c t . For
example , quick warning i s necessary , f o r example , when
an earthquake occurs . When the s c a l e o f the earthquake
i s l a rge , i t s v i b r a t i on f requency i s about 0 .01 Hz to
about 30 Hz and i s lower than v ib r a t i on caused by da i l y
l i f e v ib ra t i on , and the r e f o r e , i f i t s v i b r a t i on

f requency can be detected , i t i s p o s s i b l e to
d i s c r im ina t e the earthquake from the da i l y l i f e
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v ib r a t i on . However , d e t e c t i ng such a low frequency i s
d i f f i c u l t .

An ob j e c t o f the format ion o f capac i tance in Patent
Document 1 i s to s t a b i l i z e an o s c i l l a t i o n f requency o f
a quartz−c r y s t a l r e sona to r and i s d i f f e r e n t from an
ob j e c t o f the pre sent invent i on .

Patent Document 1 : Japanese Patent App l i ca t ion Laid−open
No . Hei 07−131279

SUMMARY OF THE INVENTION
The pre sent invent i on was made under such c i rcumstances

and has an ob j e c t to prov ide a dev i ce capable o f e a s i l y
and ac cu ra t e l y de t e c t i ng a v ib r a t i on per iod ( v i b r a t i on
f requency ) .

The pre sent invent i on i s a dev i c e de t e c t i ng a per iod o f
v i b r a t i on o f an ob j e c t and an ex t e rna l f o r c e , i n c l ud ing
:

a p i e z o e l e c t r i c p l a t e ;
a f i r s t e x c i t a t i o n e l e c t r o d e and a second e x c i t a t i o n

e l e c t r od e provided on one su r f a c e and another s u r f a c e
o f the p i e z o e l e c t r i c p l a t e r e s p e c t i v e l y to v ib r a t e the
p i e z o e l e c t r i c p l a t e ;

an o s c i l l a t o r c i r c u i t e l e c t r i c a l l y connected to the f i r s t
e x c i t a t i o n e l e c t r o d e ;

a p late−shaped member provided in a v e s s e l and having one
end supported in a c a n t i l e v e r manner ;

a movable e l e c t r o d e f o r v a r i ab l e capac i tance format ion
provided at another end o f the p late−shaped member and
e l e c t r i c a l l y connected to the second e x c i t a t i o n
e l e c t r od e ;

a f i x ed e l e c t r o d e provided in the v e s s e l to f a c e the
movable e l e c t r ode , connected to the o s c i l l a t o r c i r c u i t ,
and forming va r i ab l e capac i tance when capac i tance

between the f i x ed e l e c t r o d e and the movable e l e c t r o d e
i s var i ed due to bending o f the p late−shaped member ;
and
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a f requency in fo rmat ion de t e c t i ng part d e t e c t i ng a s i g n a l
be ing f requency in fo rmat ion corre spond ing to an
o s c i l l a t i o n f requency o f the o s c i l l a t o r c i r c u i t ,

wherein an o s c i l l a t i o n loop i s formed from the o s c i l l a t o r
c i r c u i t back to the o s c i l l a t o r c i r c u i t through the
f i r s t e x c i t a t i o n e l e c t r ode , the second e x c i t a t i o n
e l e c t r ode , the movable e l e c t r ode , and the f i x ed
e l e c t r ode , and

wherein v i b r a t i on o f the v e s s e l produces a f i r s t s t a t e
where the p late−shaped member bends toward the f i x ed
e l e c t r o d e to approach the f i x ed e l e c t r o d e and a second
s t a t e where the p late−shaped member i s more apart from
the f i x ed e l e c t r o d e than in the f i r s t s ta te , and the
f requency in fo rmat ion i s used f o r f i nd i n g a per iod o f
the v i b r a t i on by u t i l i z i n g a f a c t that an o s c i l l a t i o n
f requency cor re spond ing to the f i r s t s t a t e and an
o s c i l l a t i o n f requency corre spond ing to the second s t a t e
a l t e r n a t e l y appear .

One form o f t h i s invent i on may be a s t r u c tu r e where the
p late−shaped member a l s o s e r v e s as the p i e z o e l e c t r i c
p l a t e .

Further , another form may be
a s t r u c tu r e where , in the p late−shaped member , a por t i on

where the movable e l e c t r o d e i s provided i s l a r g e r in
th i c kne s s than a por t i on sandwiched by the f i r s t
e x c i t a t i o n e l e c t r o d e and the second e x c i t a t i o n
e l e c t r ode , or

a s t r u c tu r e where , in the p late−shaped member , a por t i on
between a por t i on that the f i r s t e x c i t a t i o n e l e c t r o d e
and the second e x c i t a t i o n e l e c t r od e sandwich and the
movable e l e c t r o d e i s sma l l e r in th i ckne s s than the
sandwiched por t i on .

In the pre sent invent ion , the v i b r a t i on o f the v e s s e l
produces the f i r s t s t a t e where the quartz−c r y s t a l p l a t e
bends toward the f i x ed e l e c t r o d e to approach the f i x ed
e l e c t r od e and the second s t a t e where the quartz−

c r y s t a l p l a t e i s more apart from the f i x ed e l e c t r o d e
than in the f i r s t s ta te , and the o s c i l l a t i o n f requency
cor re spond ing to the f i r s t s t a t e and the o s c i l l a t i o n
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f r equency cor re spond ing to the second s t a t e a l t e r n a t e l y
appear . Therefore , i t i s p o s s i b l e to f i nd the per iod (

f requency ) o f the v i b r a t i on based on a change between
these o s c i l l a t i o n f r e qu en c i e s .

## Claims text

1 . A v ib r a t i on de t e c t i ng dev i c e de t e c t i ng a per iod o f
v i b r a t i on o f an ob j e c t and an ex t e rna l f o r c e ,
compris ing :

a p i e z o e l e c t r i c p l a t e ;
a f i r s t e x c i t a t i o n e l e c t r o d e and a second e x c i t a t i o n

e l e c t r o d e provided on one su r f a c e and another s u r f a c e
o f the p i e z o e l e c t r i c p l a t e r e s p e c t i v e l y to v ib r a t e the
p i e z o e l e c t r i c p l a t e ;

an o s c i l l a t o r c i r c u i t e l e c t r i c a l l y connected to the f i r s t
e x c i t a t i o n e l e c t r o d e ;

a p late−shaped member provided in a v e s s e l and having one
end supported in a c a n t i l e v e r manner ;

a movable e l e c t r o d e f o r v a r i ab l e capac i tance format ion
provided at another end o f the p late−shaped member and
e l e c t r i c a l l y connected to the i s second e x c i t a t i o n
e l e c t r o d e ;

a f i x ed e l e c t r o d e provided in the v e s s e l to f a c e the
movable e l e c t r ode , connected to the o s c i l l a t o r c i r c u i t ,
and forming va r i ab l e capac i tance when capac i tance

between the f i x ed e l e c t r o d e and the movable e l e c t r o d e
i s var i ed due to bending o f the p late−shaped member ;
and

a f requency in fo rmat ion de t e c t i ng part d e t e c t i ng a s i g n a l
be ing f requency in fo rmat ion corre spond ing to an
o s c i l l a t i o n f requency o f the o s c i l l a t o r c i r c u i t ,

wherein an o s c i l l a t i o n loop i s formed from the o s c i l l a t o r
c i r c u i t back to the o s c i l l a t o r c i r c u i t through the
f i r s t e x c i t a t i o n e l e c t r ode , the second e x c i t a t i o n
e l e c t r ode , the movable e l e c t r ode , and the f i x ed
e l e c t r ode , and
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wherein v i b r a t i on o f the v e s s e l produces a f i r s t s t a t e
where the p late−shaped member bends toward the f i x ed
e l e c t r od e to approach the f i x ed e l e c t r o d e and a second
s t a t e where the p late−shaped member i s more apart from
the f i x ed e l e c t r o d e than in the f i r s t s ta te , and the
f requency in fo rmat ion i s used f o r f i nd i n g a per iod o f
the v i b r a t i on by u t i l i z i n g a f a c t that an o s c i l l a t i o n
f requency cor re spond ing to the f i r s t s t a t e and an
o s c i l l a t i o n f requency corre spond ing to the second s t a t e
a l t e r n a t e l y appear .

2 . The v i b r a t i on de t e c t i ng dev i ce accord ing to c la im 1 ,
wherein the p late−shaped member a l s o s e r v e s as the
p i e z o e l e c t r i c p l a t e .

3 . The v i b r a t i on de t e c t i ng dev i ce accord ing to c la im 1 ,
wherein , in the p late−shaped member , a por t i on where
the movable e l e c t r o d e i s provided i s l a r g e r in
th i c kne s s than a por t i on sandwiched by the f i r s t
e x c i t a t i o n e l e c t r o d e and the second e x c i t a t i o n
e l e c t r od e .

4 . The v i b r a t i on de t e c t i ng dev i ce accord ing to c la im 1 ,
wherein , in the p late−shaped member , a por t i on between
a por t i on that the f i r s t e x c i t a t i o n e l e c t r o d e and the
second e x c i t a t i o n e l e c t r o d e sandwich and the movable
e l e c t r od e i s sma l l e r in th i ckne s s than the sandwiched
por t i on .

5 . The v i b r a t i on de t e c t i ng dev i ce accord ing to c la im 1 ,
f u r t h e r compris ing

on an i n t e r n a l wa l l part on a s i d e where the f i x ed
e l e c t r od e i s provided in the conta iner , a p r o j e c t i n g
part a l l ow ing a contact o f a por t i on s h i f t e d toward one

76



end s i d e from the other end s i d e o f the p late−shaped
member to r e s t r i c t bending o f t h i s por t i on when the
p late−shaped member bends ex c e s s i v e l y , thereby avo id ing
c o l l i s i o n o f the other end o f the p late−shaped member

with the inner wa l l part o f the conta ine r .

6 . The v i b r a t i on de t e c t i ng dev i ce accord ing to c la im 5 ,
wherein

with r e sp e c t to a f a c e o f the p r o j e c t i n g part which f a c e s
the p late−shaped member , a v e r t i c a l c ros s−s e c t i o n a l
shape in a l ength d i r e c t i o n o f the p i e z o e l e c t r i c p i e c e
i s a mound shape .
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1.7.2 Figures

Figure 1.17: Number of patents over time
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(a) Filed and granted patents
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(b) Score and firm coverage
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Note: Panel (a): number of patents filed and granted per year. Panel (b) number of patents
for which a score is available, and that can be linked to firms in Compustat.

Figure 1.18: Backward versus forward similarities
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(a) Macro score
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(b) IPC 3 score
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(c) No-centroid score

Note: Scatter plots of backward and forward similarities for each score type: macro, IPC3 and
no-centroid. Each dot is a patent.
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Figure 1.19: Correlogram of scores

Note: The histograms of the scores are displayed on the diagonal, and scatter plots of scores
against each other are displayed off the diagronal. Each dot is a patent.
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Figure 1.20: Macro scores versus citations

Note: Binned scatter of scores against 10-year forward citations, with varying number of bins.
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Figure 1.21: IPC 3 scores versus citations

Note: Binned scatter of scores against 10-year forward citations, with varying number of bins.
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Figure 1.22: No-centroid scores versus citations

Note: Binned scatter of scores against 10-year forward citations, with varying number of bins.
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Figure 1.23: Scatter plots of raw data: macro, IPC 3 and no-centroid scores against
citations
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Figure 1.24: Top macro patents and firms dynamics (2)
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Note: Estimates from Equation (1.4) with alternative definition of growth rate using the macro
score to qualify top patents. Dependent variable is log Yfi,t+h − log Yfi,t, i.e. the growth rate
of the outcome value between time 0 and h. 95% confidence intervals are depicted.

Figure 1.25: Top IPC 3 patents and firms dynamics (2)
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Note: Estimates from Equation (1.4) with alternative definition of growth rate using the IPC
3 score to qualify top patents. Dependent variable is log Yfi,t+h− log Yfi,t, i.e. the growth rate
of the outcome value between time 0 and h. 95% confidence intervals are depicted.
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Figure 1.26: No-centroid patents and firms dynamics (2)
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Note: Estimates from Equation (1.4) with alternative definition of growth rate using the no-
centroid score to qualify top patents. Dependent variable is log Yfi,t+h − log Yfi,t, i.e. the
growth rate of the outcome value between time 0 and h. 95% confidence intervals are depicted.

Figure 1.27: Top macro patents and firms dynamics: without IT
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Note: Estimates from Equation (1.4) using the macro score to qualify top patents. 95% confi-
dence intervals are depicted. The sample excludes patents from IPC 1 codes G and H.
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Figure 1.28: Top IPC 3 patents and firms dynamics: without IT
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Note: Estimates from Equation (1.4) using the IPC 3 score to qualify top patents. 95% confi-
dence intervals are depicted. The sample excludes patents from IPC 1 codes G and H.

Figure 1.29: Top no-centroid patents and firms dynamics: without IT
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Note: Estimates from Equation (1.4) using the no-centroid score to qualify top patents. 95%
confidence intervals are depicted. The sample excludes patents from IPC 1 codes G and H.
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Figure 1.30: Top private value patents and firms dynamics

4 2 0 2 4 6 8 10
Horizon (h)

0

20

40

G
ro

w
th

 r
at

e 
ov

er
 h

 (%
) Profits

4 2 0 2 4 6 8 10
Horizon (h)

0

20

40

G
ro

w
th

 r
at

e 
ov

er
 h

 (%
) Output

4 2 0 2 4 6 8 10
Horizon (h)

0

20

40

G
ro

w
th

 r
at

e 
ov

er
 h

 (%
) Capital

4 2 0 2 4 6 8 10
Horizon (h)

0

20

40

G
ro

w
th

 r
at

e 
ov

er
 h

 (%
) Employment

Note: Estimates from Equation (1.4) using private value from Kogan et al. (2017) to qualify
top patents. A top patent is one in the top 5% of the private value distribution (controlling for
year fixed effects). 95% confidence intervals are depicted.

Figure 1.31: Top patents in terms of citations and firms dynamics
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Note: Estimates from Equation (1.4) using citations at the 10-year horizon to qualify top
patents. A top patent is one in the top 0.1% of the citations distribution (controlling for year
fixed effects). 95% confidence intervals are depicted.
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Figure 1.32: Macro scores
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Figure 1.33: IPC 3 scores
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Figure 1.34: Observations (Total: 2, 745, 260)
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1.7.3 Tables

Table 1.9: One digit IPC codes

Code Name
A Human necessities
B Performing operations; transporting
C Chemistry; metallurgy
D Textiles; paper
E Fixed constructions
F Mechanical engineering; lighting; heating; weapons; blasting
G Physics
H Electricity

Table 1.10: One digit IPC codes and forward space heterogeneity scores

Year A B C D E F G H
1985 0.385218 0.385403 0.255063 0.438129 0.483908 0.379408 0.311440 0.293972
2006 0.328542 0.385600 0.301386 0.448159 0.485887 0.380327 0.231544 0.230153

Larger values imply a higher heterogeneity in the forward space.
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Table 1.11: Firms with most top patents, no-centroid score

Company name # of patents # of top patents top in % of top in % of
all top patents all own patents

INTL BUSINESS MACHINES CORP 62612 7751 5.4 12
MOTOROLA SOLUTIONS INC 18888 3400 2.3 18
HITACHI LTD 51050 3034 2.1 5.9
NEC CORP 27621 2780 1.9 10
CANON INC 40927 2712 1.9 6.6
PANASONIC CORP 37779 2131 1.5 5.6
SONY CORP 31085 2097 1.4 6.7
HP INC 21909 2011 1.4 9.2
AT&T CORP 12316 1864 1.3 15
INTEL CORP 19925 1725 1.2 8.7
MICROSOFT CORP 14967 1511 1 10
LUCENT TECHNOLOGIES INC 9373 1405 .97 15
GENERAL ELECTRIC CO 31605 1313 .91 4.2
TEXAS INSTRUMENTS INC 16239 1257 .87 7.7
SUN MICROSYSTEMS INC 7503 1080 .75 14
EASTMAN KODAK CO 19728 1058 .73 5.4
XEROX HOLDINGS CORP 16064 987 .68 6.1
MICRON TECHNOLOGY INC 18466 878 .61 4.8
NORTEL NETWORKS CORP 6291 860 .59 14
TELEFONAKTIEBOLAGET LM ERICS 5527 843 .58 15

Notes: List of firms owning the highest number of top patents, ranked using the no-centroid
score. The second column indicates the number of patent belonging to that firm, the third
column indicates that of top patents belonging to that firm (patents whose score ranks in the
top 5% of the overall score distribution, not controlling for year fixed effects); the forth and
fifth columns contain the fractions of top patents accruing to that firm (i) out of all the top
patents and (ii) out of all the patents of that firm.

Table 1.12: 10-year citations and macro score: log specification

Dependent variable: Log( 1+10-year citations)
Whole sample Until 2000

(1) (2) (3) (4) (5) (6)
Log(macro score) 1.991*** 2.032*** 1.790*** 2.194*** 1.976*** 1.776***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 1.623*** 1.828***
(0.000) (0.000)

Year FE X X X X

IPC 3 FE X X

Firm FE X X

Adjusted R2 0.069 0.167 0.214 0.117 0.163 0.223
Within R2 0.040 0.043 0.048 0.053
Observations 2896300 2896013 1025243 1545952 1545675 602117

Notes: *: p<0.1, **: p<0.05, ***: p<0.01. P-values from standard errors clustered at the filing
year level in parenthesis.
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Table 1.13: 10-year citations and IPC 3 score: log specification

Dependent variable: Log( 1+10-year citations)
Whole sample Until 2000

(1) (2) (3) (4) (5) (6)
Log(IPC 3 score) 1.378*** 1.434*** 1.171*** 1.572*** 1.589*** 1.171***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 1.618*** 1.837***
(0.000) (0.000)

Year FE X X X X

IPC 3 FE X X

Firm FE X X

Adjusted R2 0.027 0.162 0.200 0.046 0.163 0.204
Within R2 0.033 0.025 0.052 0.030
Observations 2745260 2745260 993767 1448555 1448555 580505

Notes: *: p<0.1, **: p<0.05, ***: p<0.01. P-values from standard errors clustered at the filing
year level in parenthesis.

Table 1.14: Private value and macro score

Dependent variable: Log(private value)
Whole sample Until 2000

(1) (2) (3) (4) (5) (6)
Log(macro score) -0.717** 0.217 0.0851 -1.123*** 0.324 -0.188

(0.018) (0.392) (0.510) (0.006) (0.334) (0.231)

Constant 0.743*** 0.942***
(0.000) (0.000)

Year FE X X X X

IPC 3 FE X X

Firm FE X X

Adjusted R2 0.002 0.107 0.893 0.007 0.105 0.906
Within R2 0.000 0.000 0.000 0.001
Observations 948577 948384 947558 557831 557657 556925

Notes: *: p<0.1, **: p<0.05, ***: p<0.01. P-values from standard errors clustered at the filing
year level in parenthesis.
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Table 1.15: Private value and IPC 3 score

Dependent variable: Log(private value)
Whole sample Until 2000

(1) (2) (3) (4) (5) (6)
Log(IPC 3 score) 1.056*** 0.681*** 0.177*** 1.149*** 0.933*** 0.0510

(0.000) (0.000) (0.001) (0.000) (0.000) (0.207)

Constant 0.724*** 0.904***
(0.000) (0.000)

Year FE X X X X

IPC 3 FE X X

Firm FE X X

Adjusted R2 0.004 0.109 0.893 0.005 0.108 0.907
Within R2 0.002 0.001 0.004 0.000
Observations 919686 919686 918708 538095 538095 537221

Notes: *: p<0.1, **: p<0.05, ***: p<0.01. P-values from standard errors clustered at the filing
year level in parenthesis.

Table 1.16: 10-year citations and no-centroid score: log specification

Dependent variable: Log( 1+10-year citations)
Whole sample Until 2000

(1) (2) (3) (4) (5) (6)
Log(no-centroid score) 12.51*** 8.176*** 7.853*** 11.27*** 8.324*** 7.628***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 1.425*** 1.536***
(0.000) (0.000)

Year FE X X X X

IPC 3 FE X X

Firm FE X X

Adjusted R2 0.097 0.162 0.212 0.092 0.162 0.220
Within R2 0.035 0.041 0.046 0.049
Observations 2896300 2896013 1025243 1545952 1545675 602117

Notes: *: p<0.1, **: p<0.05, ***: p<0.01. P-values from standard errors clustered at the filing
year level in parenthesis.
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Table 1.17: Private value and no-centroid score

Dependent variable: Log(private value)
Whole sample Until 2000

(1) (2) (3) (4) (5) (6)
Log(no-centroid score) 3.518** 3.346*** 0.991*** 0.0969 4.230*** 0.243

(0.016) (0.000) (0.003) (0.941) (0.000) (0.380)

Constant 0.668*** 0.909***
(0.000) (0.000)

Year FE X X X X

IPC 3 FE X X

Firm FE X X

Adjusted R2 0.002 0.109 0.893 -0.000 0.107 0.906
Within R2 0.002 0.001 0.003 0.000
Observations 948577 948384 947558 557831 557657 556925

Notes: *: p<0.1, **: p<0.05, ***: p<0.01. P-values from standard errors clustered at the filing
year level in parenthesis.
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Table 1.20: Citations, private value and macro score: without IT

(1) (2) (3) (4)
10-year citations Log(1+10-year citations) Private value Log(private value)

Macro score, std. 2.277*** -3.224***
(0.000) (0.000)

Log(macro score) 1.799*** -1.430***
(0.000) (0.000)

Year FE X X X X
IPC 3 FE X X X X
Adjusted R2 0.067 0.120 0.086 0.107
Within R2 0.015 0.027 0.006 0.004
Observations 1402076 1402076 350304 350304

Notes: *: p<0.1, **: p<0.05, ***: p<0.01. P-values from standard errors clustered at the filing
year level in parenthesis.

Table 1.21: Citations, private value and IPC 3 score: without IT

(1) (2) (3) (4)
10-year citations Log(1+10-year citations) Private value Log(private value)

IPC 3 score, std. 2.499*** -1.886***
(0.000) (0.002)

Log(IPC 3 score) 1.595*** -0.954***
(0.000) (0.000)

Year FE X X X X
IPC 3 FE X X X X
Adjusted R2 0.072 0.125 0.081 0.107
Within R2 0.022 0.031 0.002 0.003
Observations 1260360 1260360 323789 323789

Notes: *: p<0.1, **: p<0.05, ***: p<0.01. P-values from standard errors clustered at the filing
year level in parenthesis.

Table 1.22: Citations, private value and no-centroid score: without IT

(1) (2) (3) (4)
10-year citations Log(1+10-year citations) Private value Log(private value)

No-centroid score, std. 2.553*** -0.962**
(0.000) (0.026)

Log(no-centroid score) 8.388*** -1.733***
(0.000) (0.001)

Year FE X X X X
IPC 3 FE X X X X
Adjusted R2 0.071 0.120 0.081 0.103
Within R2 0.020 0.027 0.001 0.000
Observations 1402076 1402076 350304 350304

Notes: *: p<0.1, **: p<0.05, ***: p<0.01. P-values from standard errors clustered at the filing
year level in parenthesis.
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Chapter 2

Dynamically Optimal Treatment
Allocation using Reinforcement
Learning - Empirical Application

2.1 Introduction

Consider a situation where a stream of individuals arrive sequentially - e.g. when
they get unemployed - to a social planner. Once each individual arrives, our
planner needs to decide on an action, i.e a treatment assignment for the individual
- e.g. whether or not to offer free job training - taking into account the individual’s
characteristics and various institutional constraints such as limited budget. The
decision on the treatment is to be taken instantaneously. It is taken without
knowledge of the characteristics of future individuals, though the planner can,
and should, form expectations over these future characteristics. Once an action
is taken, the individual is assigned a specific treatment, leading to a reward,
i.e a change in the utility for that individual. The planner does not observe
these rewards directly since they may be only realized much later, but she can
observe an estimate of them using data for example from randomised control trials
(RCTs). At the same time, the action of the planner generates an observed change
to the institutional variable, such as a reduced budget. The planner takes note
of these changes, and waits for the next individual to arrive. This process ends
e.g. when her budget is depleted. Expanding Kitagawa and Tetenov (2018) to a
dynamic setting, we model such a problem based on the Job Training Partnership
Act (JTPA) RCT dataset. We then propose a reinforcement learning algorithm
to try to obtain the welfare maximizing treatment allocation rule for this dynamic
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setting.

Reinforcement learning is the tool behind many of the most noticed recent ad-
vances in artificial intelligence, from applications like autonomously learning to
play Atari games from their screen input (Mnih et al., 2015), beating the best hu-
mans at the game of Go (Silver et al., 2017), learning and mastering chess, shogi,
and Go without human knowledge (Silver et al., 2018), or mastering robotic tasks
such as learning to fly artistic manoeuvres with a model helicopter (Abbeel et
al., 2007).1 All these problems share a common structure: There is a dynamic
environment in which a point in time can be summarised as a state. An agent ob-
serves this states, takes an action, then observes an associated reward, finds itself
in the new state that resulted from its action and other forces, and so on. Many
dynamic problems in economics have the same structure and reinforcement learn-
ing can in principle be applied to them. While the descriptions of these current
methods from artificial intelligence are sometimes vague, reinforcement learning
is in essence a powerful solution technique to obtain good policy functions for very
complicated dynamic problems. Other than some more frequently used methods
in economics such as policy iteration, it obtains this policy function by solving
dynamic problems in a “forward” manner: An agent wanders through the state
space in episodes, initially taking entirely random actions, observing resulting
rewards, and then reinforcing behaviour which led to high rewards.

In some cases, reinforcement learning can become very interesting as a solution
technique for problems in economics, e.g. if state spaces are so large that tradi-
tional methods become infeasible or if policy classes have to be restricted. This is
the motivation for our application: Many if not most real world dynamic problems
that economic policy makers could realistically face involve taking into account
very large amounts of state variables from covariates of individuals, to institu-
tional constraints, etc. This application discusses one such policy problem. The
provision of job training to those unemployed individuals that can benefit most
from it if resources of the state are limited and individuals arrive sequentially.2

To stay comparable to Kitagawa and Tetenov (2018), we focus on the JTPA and
model sequential arrival of unemployed individuals as well as their treatment ef-
fects with this dataset. Yet, as the methods scale to problems with much larger
state spaces, they could offer ways to improve welfare in other economic policy
problems when scarce resources need to be allocated in very complicated dynamic

1Many of such examples today also additionally make use of deep neural networks for
approximation of policy and value functions. We stick to a logistic policy function and a linear
value function with additional nonlinear transformation of state variables.

2This chapter is the empirical section of the paper Adusumilli et al. (2019) with further
explanations.
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settings. Their availability might also create an incentive to run larger observa-
tional studies with more covariates to generate data to train such algorithms.
Lastly, as the rewards in our environment are estimated individual treatment
effects, we also give an example from economics of how to apply reinforcement
learning to outcomes from causal inference.

Importantly, the paper follows a two step approach: In a first step, we use the
full RCT dataset to estimate treatment effects (which we use as rewards for the
agent) and arrival rates. Afterwards we take these estimates as given, construct
our environment with them, and then let our reinforcement learning agent solve
for the optimal policy given these estimates. This optimal policy function maps
the current state variables of observed characteristics and institutional constraints
to probabilities over the set of actions the agent or policy maker. We treat the
class of policy functions as given. Then for any policy from that class, we can
write down a dynamic programming problem (or in more general contexts, a
Partial Differential Equation, see Adusumilli et al., 2019), that characterizes the
expected value function under that policy, where the expectation is taken over
the distribution of the individual covariates. Using the data, we can similarly
write down a sample version of the dynamic programming problem that provides
estimates of these value functions. The estimated policy rule is the one that tries
to maximize the estimated value function at the start of the program.

One particularity of the algorithm we use is that it solves the optimum within
a pre-specified policy class, e.g. for a softmax function as policy function. As
explained by Kitagawa and Tetenov (2018), one may wish to restrict the policy
class for computational or legal reasons. Another reason is incentive compatibil-
ity, e.g. the planner may want the policy to change slowly with time to prevent
individuals from manipulating arrival times. The key assumption that we do im-
pose is that the environment, i.e the arrival rates and distribution of individuals,
is not affected by the policy. This is a reasonable assumption in many contexts,
especially in settings like unemployment, arrivals to emergency rooms, childbirth
(e.g. for provision of daycare) etc., where either the time of arrival is not in com-
plete control of the individual, or where it is determined by factors exogenous to
the provision of treatment. In addition, even where this assumption is suspect,
we could try to build a model of responses to the agent’s actions and include it
into the environment.

If the dynamic aspect can be ignored, there exist a number of methods to estimate
an optimal policy function that maximizes social welfare, starting from the sem-
inal contribution of Manski (2004), and further extended by Hirano and Porter
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(2009), Stoye (2009) and Stoye (2012), Chamberlain (2011), Bhattacharya and
Dupas (2012) and Tetenov (2012), among others. More recently, Kitagawa and
Tetenov (2018), and Athey and Wager (2018) proposed using Empirical Welfare
Maximization (EWM) in this context. While these papers address the question of
optimal treatment allocation under co-variate heterogeneity, the resulting treat-
ment rule is static in that it is determined ex-ante, before observing the data on
which it will be applied. It does not change with time, nor with current values
of institutional constraints. In fact, in our application the EWM is not even
applicable. This is so even if we restricted ourselves to using a static policy.
For instance, with budget constraints, the EWM rule requires one to specify the
fraction of population that can be treated, but in our dynamic environment the
number of individuals the planner faces is endogenous to the policy.

There also exist a number of methods for estimating the optimal treatment assign-
ment policy using ‘online’ data. This is known as the contextual bandit problem,
and there is a large literature on this, see e.g. Dudik et al. (2011), Agarwal et al.
(2014), Russo and Van Roy (2016) and Dimakopoulou et al. (2017). Yet, bandit
algorithms do not have a forward looking nature; the eventual policy function
that is learnt is still static in that it does not take into account the effect of
current actions on future states or rewards. By contrast, our primary goal in
this paper is to use ‘offline’, i.e historical data, to estimate a policy rule that is
optimal under such inter-temporal trade-offs. This policy function could then be
applied to new data from the same distribution. Yet, methods like algorithms can
also be applied in a completely offline manner in infinite-horizon Markov Decision
Process settings, where the usual bandit algorithms do not apply. See Sutton and
Barto (2018) Chapter 3 on the difference between Markov Decision and bandit
problems.

Another set of results close to our work is from the literature on Dynamic Treat-
ment Regimes (DTRs). We refer to Laber et al. (2014) and Chakraborty and
Murphy (2014) for an overview. Some of the papers reviewed use tools from rein-
forcement learning such as e.g. Murphy (2005) which uses a variant of Q learning.
DTRs consist of a sequence of individualized treatment decisions for health re-
lated interventions. These are typically estimated from sequential randomized
trials, e.g. Murphy (2005) and Lei et al. (2012), where participants move through
different stages of treatment, which is randomized in each stage. By contrast,
we only make use of a single set of observational data, and this data itself does
not come in a dynamic form. Each individual in our setup is only exposed to
treatment once. The dynamics are faced not by the individual, but by the social
planner. Additionally, in DTRs the number of stages or decision points is quite
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small, typically between 1 and 3. By contrast, the number of decision points, i.e
the rate of arrivals, in our setting is high.

Previous work in economics on dynamic programming has often used Generalised
Policy Iteration, e.g. Benitez-Silva et al. (2000). While this method works well
with discrete states, there are three main drawbacks: First, it might not allow
for restricting the solution to a pre-specified class of policy rules. Second, the
algorithm can become cumbersome even with a few continuous states and a few
thousand decision points. Continuous states may be handled through discreti-
sation or parametric policy iteration. The former is typically slower and suffers
from a strong curse of dimensionality, see Section 2.5 of Benitez-Silva et al. (2000);
while the latter requires numerical integration which is also very demanding with
more than a few states. Third, it cannot be directly applied to our setup without
incorporating a regularization parameter to avoid over-fitting the value function
(and it is not obvious how such a regularization may be employed). This is be-
cause standard reward estimates (inverse propensity weighting, doubly robust,
etc.) are direct functions of the outcome variables from the observational data.
Hence the usual policy iteration algorithm could overfit the estimate of the value
function to this data. In this paper, we discuss a modified reinforcement learn-
ing (RL) algorithm that tries to improve on these problems. We refer to Sutton
and Barto (2018) for a detailed comparison of recent RL algorithms with policy
iteration. We adapt the Actor-Critic algorithm, e.g. Sutton et al. (2000) and
Bhatnagar et al. (2009), that has been applied recently to great effect in appli-
cations as diverse as playing Atari games Mnih et al. (2016), image classification
Mnih et al. (2014) and machine translation Bahdanau et al. (2016). Our algo-
rithm improves the over-fitting issue by working with the expected value function
that integrates over the rewards at each step. The integration is implicit since we
use stochastic gradient descent, so the computational complexity is not affected.

The paper is structured as follows: Section 2.2 briefly summaries the optimisa-
tion problem with discrete arrivals, Section 2.3 describes how we build the world
from RCT data in which our reinforcement learning agent lives, Section 2.4 illus-
trates the algorithm and pseudocode, Section 2.5 describe how we parametrise
environment and algorithm, Section 2.6 discusses the results, and Section 3.4
concludes.
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2.2 The problem

Recall that a social planner or government employee faces the following problem:
Individuals who lost their jobs sequentially arrive at her office to register as un-
employed. She can provide job training to individuals which is free for them but
costly for her. Due to a limited budget, however, she cannot provide training
to all individuals that arrive. To maximise welfare, she therefore has to solve
a challenging dynamic optimisation problem. She has to understand the likely
welfare benefit of treatment (here: earnings after job training) from some infor-
mation about an individual (e.g. their previous earnings, age, etc.). Furthermore,
she has to form expectations over future arrivals of newly unemployed to avoid
depleting her budget too quickly when she could have used her resources more
efficiently.

True problem We begin by stating the problem assuming we knew everything
about the world such as distributions, rewards, and arrival rates.

Let x denote the vector of characteristics of an individual, based on which the
planner makes a decision on whether to provide training (a = 1) or not (a = 0).
The current budget is denoted by z. Once an action, a, has been chosen, the
planner affects an increase in social welfare by the quantity Y (a) that is equivalent
to the potential outcome of the individual under action a. We shall assume that
Y (a) is affected by the covariates x but not the budget. Define r(x, a) = E[Y (a)|x]

as the expected (instantaneous) reward for the social planner when the planner
chooses action a for an individual with characteristics x. Since we only consider
additive welfare criteria in this paper, we may normalize r(x, 0) = 0, and set
r(x, 1) = E[Y (1) − Y (0)|x]. Note that we can accommodate various welfare
criteria, as long as they are utilitarian, by redefining the potential outcomes.

If the planner takes action a=1, her budget is decreased by c, otherwise it stays
the same. The next individual arrives after a waiting time ∆t given by an expo-
nential distribution Exp(λ(t)). Each time a new individual arrives, the covariates
for the individual are assumed to be drawn from a distribution F that is fixed
but unknown. The utility from treating successive individuals is discounted ex-
ponentially by e−β∆t .

To simplify matters, we shall assume for this section that time t is not a state
variable. This is reasonable if we assume λ(t) is independent of t. The inclusion
of time as a state variable creates some technical difficulties, which are taken care
of in our companion paper Adusumilli et al. (2019).
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The planner chooses a policy function πθ(a|x, z; θ), indexed by θ that maps the
current state variables x, z to a probabilistic choice over the set of actions:

π(.|x, z; θ) : (x, z) −→ [0, 1].

The aim of the social planner is to determine a policy rule that maximizes ex-
pected welfare after discounting. In other words, our agent would solve the fol-
lowing stochastic dynamic optimisation problem:

max
θ

E

[
∞∑
i=1

e−βTi π(a = 1|xi, zi; θ) r(xi, a = 1) I{zi ≥ c}

]
(2.1)

s.t. zi+1 = zi − ac (2.2)

z1 = z̄ (2.3)

where the expectation is joint over the times of arrival Ti of each individual,
covariates x ∼ F and zi which evolves according to the distribution of x and
the randomization of the policy π(.). The solution to this problem would yield
optimal parameters θ∗.

From the point of view of estimation, it is more convenient to write the above in
a value function form, which gives another way to characterize θ∗. Let vθ(x, z)
denote the value function under parameter θ, defined as the expected welfare
from implementing policy π(·|x, z; θ) starting from the state (x, z). This can be
represented in a recursive form as the fixed point to the equations:

vθ(x, z) = r(x, 1)π(1|x, z; θ)+
(

1− β̃
)
Ex′∼F [vθ (x′, z − c) π(1|x, z; θ) + vθ(x

′, z)π(0|x, z; θ)] ,

in conjunction with the terminal condition vθ(0, t) = 0, and where β̃ = 1 −
E[e−β∆t]. To obtain a more insightful expression, we can integrate out x. This
motivates the integrated value function:

hθ(z) := Ex∼F [vθ(x, z)].

Define π̄(a|z; θ) = Ex∼F [πθ(a|x, z; θ)] and r̄(z; θ) = Ex∼F [r(x, 1)π(1|x, z; θ)] . We
can then characterize hθ(.) as the solution to the recursive equations

hθ(z) = r̄(z; θ) +
(

1− β̃
)
{hθ (z − c) π̄(1|z; θ) + hθ(z)π̄(0|z; θ)} ,

together with the terminal condition hθ(0) = 0.

The social planner’s decision problem is to choose the optimal θ∗ that maximizes
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the ex-ante expected welfare hθ(z̄):

θ∗ = argmax
θ
hθ(z̄).

Estimated problem Our agent does not solve this problem, however, as we
cannot model the true distribution of individual, rewards, or arrival rates. We
therefore employ a two step procedure: In the first step, we build the agent’s
environment. We proxy the true distribution F with an empirical distribution
Fn using an RCT dataset. Based on this full dataset, we estimate rewards r̂ and
arrival rates λ̂(t) (we can estimate λ̂(t) as our dataset stores information about
the date individuals became unemployed). Only in a second step, our agent then
solves for the optimal policy given this estimated world:

max
θ

En

[
∞∑
i=1

e−βT̂i π(a = 1|xi, zi; θ) r̂(xi, a = 1) I{zi ≥ c}

]
(2.4)

s.t. zi+1 = zi − ac (2.5)

z1 = z̄ (2.6)

where En[·] is the joint expectation over the times of arrival Ti of each individual,
covariates x ∼ Fn and zi which evolves according to the distribution of x and the
randomization of the policy π(.). The solution to this problem now is an optimal
policy parameter vector θ̂.

As before, we can rewrite the computation of θ̂ in a recursive form. Define
π̂(a|z; θ) = Ex∼Fn [π(a|x, z; θ)] and r̂(z; θ) = Ex∼Fn [r(x, 1)π(1|x, z; θ)] . Based on
the knowledge of r̂(.) and Fn, we can calculate a sample estimate of the integrated
value function as the solution to

ĥθ(z) = r̂(z; θ) +
(

1− β̃
){

ĥθ (z − c) π̂(1|z; θ) + ĥθ(z)π̂(0|z; θ)
}
,

together with the terminal condition ĥθ(0) = 0. Using ĥθ(.) we can solve a sample
version of the social planner’s problem:

θ̂ = arg max
θ
ĥθ(z̄).

As θ̂ is a function of estimated rewards, arrival rates, etc., it contains the original
uncertainty of our sample and we refer refer to it as an estimate in itself.

In Adusumilli et al. (2019) we show that the difference in welfare from using θ̂
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instead of θ∗, i.e the difference hθ(z̄)−hθ̂(z̄), decays to 0 at the rate of n−1/2, where
n is the number of observations in the RCT. Thus we get arbitrarily close to the
optimal welfare as long as the dataset is sufficiently large. Note that this doesn’t
by itself imply θ̂ is consistent for θ∗, only that the welfare difference between the
two is small.

Given θ, one could solve for ĥθ by backward induction starting from z = 0 using
the recursive formulation. In this simple example this is feasible as long as the
number of decision points is not too large, but note that one would still need to
calculate the summations Ex∼Fn [πθ(a|x, z)] and Ex∼Fn [r(x, 1)πθ(1|x, z)], i.e av-
erages of the order n, for all possible values of z. And even where solving for
ĥθ(z̄) is feasible, we yet have to maximize this over θ. Such a strategy is compu-
tationally too demanding. Therefore in this paper we advocate a reinforcement
learning algorithm that directly ascends along the gradient of ĥθ(z̄) and simul-
taneously calculates ĥθ(z̄) in the same series of steps. This makes the algorithm
quite efficient.

Our agent now solves the problem for a certain policy function class, e.g. a
logistic function. To describe the policy function we use, first define a vector of
basis functions f(xi, zi, ti) of dimension k over the space of (x, z, t). These can be
transformations e.g. interactions of the states in x, z, and t. Using this vector
of transformed states, we define the policy function as a logistic function or a
softmax with binary actions:

π(a = 1|xi, zi, ti; θ) =
exp(θ′f(xi, zi, ti))

1 + exp(θ′f(xi, zi, ti))

The reinforcement learning agent will learn these parameters θ ∈ Rk while ex-
ploring the problem and trying out (decreasingly) random actions. Her process
of learning the policy function is faster if an estimate of the value function is
used as a baseline or “critic” (see Section 2.4 for details). This value function
approximator uses a different vector of basis functions φ(zi, ti), containing only
transformations of budget and time, and has a parameter vector ν ∈ Rm which
the agent learns as well while exploring the environment. Note hereby that we
define a value function h(·) solely depending on budget and time with individual
covariates integrated out.3 We approximate the integrated value function with

3In computer game applications with such methods, rewards e.g. are the true score of the
game. In our case we also have to estimate rewards coming from an RCT which introduced
additional noise. We found this formulation of the value function without the individual co-
variates useful because it reduced the dimension of the problem. The advantage actor critic
algorithm uses this value function in the parameter updates when learning the optimal policy
function, see Section 2.4 for full details.
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its basis functions and an additively linear form (the basis function can contain
squares, interactions, etc.):

Ex [v(xi, zi, ti)] = h(zi, ti) ≈ ν ′φ(zi, ti)

For an in depth discussion of the theoretical setup written in continuous time and
Hamilton-Jacobi-Bellman type PDEs, and with extensions not considered in the
application, see Adusumilli et al. (2019).

2.3 Building the environment

Recall that our environment describes individuals who became unemployed and
arrive sequentially at a policy maker’s office to request training. After providing
training, she observes an estimates of the treatment effect. To begin with, what
exactly does a reinforcement learning “environment” mean? In a nutshell, it is
given by possible actions, rewards, and transition rules between states. Living
in the environment, a reinforcement learning agent learns optimal behaviour by
repeatedly observing the current state s, picking an action a, and observing the
resulting reward r and the next state s′. In the Atari games in Mnih et al. (2015),
the state is the screen image, the actions are buttons, and the rewards are changes
in the score. For us the state is given by s = (x, z, t), i.e. the covariates x of
the currently arriving individual which we sample from RCT data, the policy
makers remaining budget z, and the time of arrival of the individual at the policy
makers office t. The action a the policy maker can take is to either treat (a = 1)
or not treat (a = 0) the individual. The observed reward r is an individual
treatment effect estimate based on the RCT data. The next state s′ is then given
by (x′, z′, t′): The covariates of the individual arriving next being sampled (with
replacement) from the RCT data, the next remaining budget, and the next time.
And so on.

This section describes two parts that we need to complete modelling our environ-
ment: Rewards and arrivals of individuals at the policy maker’s office. Section
2.3.2 is about how we estimate rewards/individual treatment effects. Section
2.3.3 then describes how we estimate arrival rates of different types of individuals
over the year. This allows us to get transitions between states after the policy
maker decided whether to provide treatment to an individual or not. Before this,
section 2.3.1 briefly introduces the dataset.
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2.3.1 Dataset

We use the popular dataset on randomized training provided under the JTPA,
akin to e.g Kitagawa and Tetenov (2018) or Abadie et al. (2002). During 18
months, applicants who contacted job centers after becoming unemployed were
randomized to either obtain support or not. Local centers could choose to supply
one of the following forms of support: training, job-search assistance, or other
support. Again akin to Kitagawa and Tetenov (2018), we consolidate all forms of
support. Baseline information about the 20601 applicants was collected as well
as their subsequent earnings for 30 months. We follow the sample selection pro-
cedure of Kitagawa and Tetenov (2018) and delete entries with missing earnings
or education variables as well as those that are not in the analysis of the adult
sample of Abadie et al. (2002). This results in 9223 observations for which we
have data on their earnings 30 months later for both treatment and control group.
We also store information on the individuals’ education, previous earnings, age,
and the date at which they took part in the RCT.

2.3.2 Estimating rewards from treatment effects

First we need to construct rewards for our reinforcement learning agent. After
she decides to provide job training to an individual, she observes the estimated
treatment effect of that individual as the reward. We estimate these treatment
effects from the RCT data. In detail, the study recorded earnings Y measured
30 months after random treatment. Let us assume that the RCT consists of an
iid draw of size n from the distribution F. The empirical distribution Fn of these
observations is thus a good proxy for F. Let w ∈ {0, 1} denote the treatment
assignment in the RCT data with w = 0 indicating no treatment and w = 1

indicating treatment.

Standard OLS rewards We run two distinct standard OLS regressions: One
on the control and one on the treatment observations. Each of the models pre-
dicts future earnings Y from the covariates X, i.e. age, previous earnings, and
education: OLS model 1 predicts future earnings of the treated, OLS model
2 predicts future earnings of the untreated. After obtaining fitted values, we
swap the models and predict counterfactual earnings for the respective other
group. Subtracting treated vs. untreated predicted earnings for each individ-
ual gives the estimate treatment effect of providing job training to that individ-
ual. More formally, our regressions fit the conditional expectation function of
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µ(x,w) = E[Y (w)|X = x,W = w]. Hence model 1 yields the estimated linear
function µ̂(x, 1) and model 2 yields µ̂(x, 0). The estimated individual treatment
effect on future earnings for a person with covariates x are given by:

r̂
standard

OLS (x, 1) = µ̂(x, 1)− µ̂(x, 0)

Doubly robust OLS rewards Due to its linear functional form and the lim-
ited amount of covariates available in this RCT, the benchmark treatment effects
estimated with standard OLS are very smooth. This makes learning for our re-
inforcement learning agent relatively easy, however, it likely underestimates the
true heterogeneity in treatment effects. To alleviate this problem, we recommend
a doubly robust method to estimate r(x, 1) (see Athey and Wager, 2018), and
thus estimate a second set of rewards with the following equation:

r̂
doubly robust

OLS (x, 1) = µ̂(x, 1)− µ̂(x, 0) + (2W − 1)
Y − µ̂(x,W )

Wp̂(x) + (1−W )(1− p̂(x))

The propensity score p̂(x) describes the estimated treatment probability of an
individual conditional on his covariates. As we are using RCT data where treat-
ment has been allocated at random to two thirds of participants, we know that
p̂(x) = 2/3 in our case. µ(x,w) remain the linear OLS function approximators
we used before, however, the doubly robust reward procedure adds a third term
to the equation. This term is positive if the individual has been treated and
negative if not. It adds or subtracts a scaled version of the OLS residual to our
previously estimated treatment effect. This allows for significant heterogeneity
in the estimated treatment effects even if µ(·) is linear and/or the information
contained in the available covariates x is limited. In other words, in applications
some people likely have very high or very low treatment effects and our reinforce-
ment learning agent could not adjust to this likely variability if we used rewards
as smooth as the standard OLS rewards. Indeed, while the doubly robust proce-
dure yields consistent estimates, the benchmark standard OLS only does so if the
heterogeneity structure of the true specifications is linear. We therefore expect
different parameters in the policy functions and treatment decisions. Lastly, we
apply our doubly robust procedure cross-fitted to not underestimate the uncer-
tainty: We split the data into N folds, estimate the model µ̂(·) on N-1 folds, and

109



Figure 2.1: Reward histograms
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then employ this to obtain the doubly robust rewards for the remaining fold (see
Athey and Wager, 2018).

Lastly, with an empirical cost of treatment of $774 subtracted, both the doubly
robust and the standard OLS rewards are shown in the histograms in Figure 2.1
with 100 bins (µstandard ols = 451.78, σstandard ols = 577.60, µdoubly robust = 450.35,
σdoubly robust = 33019.26). Doubly robust estimates therefore have much higher
standard deviations and larger tails. In our algorithm we standardise rewards
equalising variances, however, the very different higher order moments still prevail
which makes training harder for doubly robust rewards (see Appendix 2.8.1 for
the standardised rewards used in the algorithm).

2.3.3 Estimating arrival rates

The frequency at which people with given characteristics apply for training at
the policy maker is not constant throughout the year. Individuals with different
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occupations and characteristics have different seasonal patterns of unemployment.
As the JTPA data contains information regarding when participants arrived, we
can estimate Poisson processes that are changing over the course of the year.
For this we first partition the data into clusters using k-median clustering on
education, previous earnings, and age. Given the limited amount of data, the
number of clusters we can reliably estimate is limited too. We chose to use
four clusters. With more data, more clusters and hence a more detailed picture
of differential arrival of applications becomes possible. Prior to the clustering
which relies on comparable distances between observations, we standardize the
variables.

Table 2.1 describes the clusters resulting from the JTPA example. Cluster 1 ap-
pears to contain predominantly candidates with high previous earnings. Cluster
2’s distinguishing factor is the high age, and for cluster 3 it is few years of educa-
tion. Cluster 4 contains young educated candidates with low previous earnings.

Table 2.1: Cluster summary statistics

Cluster 1 Cluster 2 Cluster 3 Cluster 4
Age: Mean 31.8 44.9 31.3 26.9
Age: Min. 22 34 22 22
Age: Max. 63 78 57 34
Prev. Earnings: Mean 8999 1439 1413 1231
Prev. Earnings: Min. 3600 0 0 0
Prev. Earnings: Max. 63000 12000 9076 5130
Education: Mean 12.1 12.1 9.0 12.3
Education: Min. 7 8 7 11
Education: Max. 18 18 10 18
Observations 2278 2198 1698 3049

For each cluster, we then estimate the arrival probabilities. While we assume that
seasonal patterns are constant across years, we allow for variation within a year.
In particular, we specify the following functional form for the cluster-specific
Poisson parameter: λc(t) = exp (β0,c + β1,csin(2πt) + β2,ccos(2πt)), where t is
normalized so that t = 1 corresponds to a year (note that time could still run for
e.g. t = 3.14 years until the budget runs out). For each cluster, we obtain the
estimates βc (and hence λc(t)) using maximum likelihood. Figure 2.2 shows the
estimated dynamic behavior of each cluster. People from cluster 1, for example,
display a less pronounced seasonal pattern regarding their arrival rates than peo-
ple from cluster 2. Our parametrisation of the lambda parameter with sin and
cos, forces smooth arrival rates at the beginning and end of the year, yet, still
allows for fitting quite flexible seasonal shapes within the year. As we assume no
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trend in seasonal patterns, expected arrivals should be the same on 31 December
at end of day as at the beginning 1 January. The functional form furthermore
ensures that multiple years can pass until the agent depleted her budget, as e.g.
cos(0.5) = cos(4.5) will still both refer to the seasonal pattern in the middle of
the year. Without smoothed start and end points, arrival rates could also exhibit
strong jumps which would introduce discontinuities and further noise into the
environment.

Figure 2.2: Clusters-Specific Arrival Rates over Time

2.3.4 An exemplary period

Now that we have built the individual parts, we can put them together and
describe the full environment in which the reinforcement learning agent lives.
The easiest way to understand it, is to go through an exemplary period that she
faces. Recall that for us one period is the same as one arrival of a person, where
the exact arrival time of that person is continuous.

– Say that two individuals have already arrived at the policy maker’s office
in this episode (one episode runs until the budget finishes). The time at
which the third individual arrives is e.g. t3 = 0.003 and the budget available
z3 = 1 − 1c (i.e. one of the first two individuals has been treated). Next,
we have to determine which individual is arriving third.
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– Given the current time t3 = 0.003, first compute the expected amount of
arriving individuals. Using our arrival rate estimates for each cluster from
Section 2.3.3, this is given by their sum λ̂sum(t = 0.003) =

∑4
c=1 λ̂c(t =

0.003).

– Now determine from which cluster c the precise individual arrives. For this,
draw the cluster from a multinominal distribution c ∼ multinomial(p1, . . . , pC)

where pc := λ̂c(t)/λ̂sum(t). Say we draw c = 2, i.e. the individual arrives
from cluster two.

– From those observations contained in the RCT dataset which belong to
cluster two, sample (with replacement) one individual. Store its covariates
x3 about age, previous earnings, and education as well as it’s treatment
effect r̂(x3, a = 1) estimated in Section 2.3.2.

– Using the current estimate of the policy function, let it depict its treatment
vs. non-treatment probabilities for this individual’s characteristics x3 at the
current time t3 and budget z3. Say the policy function π outputs treatment
(a = 1) and non-treatment (a = 0) probabilities of [0.64, 0.36].

– Sample from these action probabilities (sampling ensures exploration and
avoids quickly converging to a bad policy). Say we draw an a = 1, so the
planner decides to treat and she observes the treatment effect r̂(x3, a = 1)

(with a = 0 the observed reward would have been zero).

– Now note that for the update of function approximators, we actually have
to know the next arrival’s time and budget (see Section 2.4 for details
of the TD error). We already know that budget will be z4 = 1 − 2c,
however, we are missing t4. For this, sample the time increment until the
next individual arrives from an exponential function with this mean: ∆t ∼
Exponential(λ̂sum(t = 0.003)). Say the drawn value is ∆t = 0.0012, so
t4 = 0.003 + 0.0012 = 0.0042.

– Using the values for t3, t4, z3, z4, x3, r̂(x3, a = 1), discount rate, and
value function, then update the function approximators for policy and value
functions. This update’s magnitude is influenced by how much the observed
reward for the individual deviated from the value function’s prediction. On
average, an update makes the action more likely if the reward/observed
treatment effect was higher than expected by the value function and less
likely if it was lower.

– Lastly, update cumulative discounting, and restart from above with peri-
od/arrival 4. The episode ends when the policy maker used up her budget,
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i.e. z = 0. Keeping all function approximator parameter estimates, we then
restart with a new episode with fresh budget z1 = 1 and t1 = 0 until the
budget is depleted again. And so on. After many episodes of training in
the environment, her policy and value function estimators should converge.

Equipped with this description of our environment and the timing, the next
section discusses the algorithm’s pseudo-code.

2.4 Algorithm

The reinforcement learning algorithm we use is based on Chapter 13 in Sutton
and Barto (2018) and comes from the class of policy gradient methods in which
function approximators for policy functions are learned directly through training
(for an excellent description see Sutton and Barto, 2018). It is called an actor-
critic method, where, in very short, actor is a metaphor for the policy function
and critic for the value function which serves as the baseline in such algorithms.
These two functions interact in a particular way: If the reward observed after
sampling an action from the policy function (i.e. the actor) is larger than the
current estimate of the state’s value (obtained from the value function, i.e. the
critic), the gradient update makes this action on average more likely in the fu-
ture. This mechanism is represented in the temporal difference (TD) error δ in
Algorithm 1. Recall that our value function approximator is νᵀφz,t with ν being
a parameter vector and φ being the basis function with transformations of states.
The predicted reward of today’s state is given by the current value function es-
timate νᵀφz,t, also named the baseline. After observing the reward R, however,
we have a potentially better estimate of the value of today’s state: The observed
reward plus the discounted value of tomorrows state. The TD error depicts the
difference of these two competing estimates: δ = R + e−β(t′−t)νᵀφz′,t′ − νᵀφz,t.
Both parameter updates for policy and value function are proportional to this
error. If the policy function has chosen an action which achieved a reward that
indicates a lower state value than that of the critic, this action becomes less likely.

After this discussion of its main mechanism, let us now delve into the algorithm’s
pseudo code a bit more deeply. For a detailed derivation and discussion see (Sut-
ton and Barto, 2018, pages 321 - 332) and the paper Adusumilli et al. (2019).
We use the book’s actor critic version (Sutton and Barto, 2018, pages 331 - 332)
and amend it by several features commonly employed in the literature. First,
we add batch updates instead of plain stochastic gradient descent. Particularly
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for the case of doubly robust rewards which are very volatile, this averages out
some erratic updates: Batches sum up all function approximator updates for B
(e.g. 128 or 1024) periods before updating the function approximator only once
- some extreme positive and negative updates will average out before influencing
the update policy. Next, we parallelise the training following Mnih et al. (2016).
In detail, we spawn P parallel processes each with a reinforcement learning agent
living and training in her own environment. Yet, while experiencing different
episodes of training, they all access and update the same global function approxi-
mators for policy and value functions. Despite not using deep neural networks (we
use a logistic function and additively linear function approximation with squares,
interactions, etc.), this is very useful. The parallelisation and decorrelation of
function approximator updates does make training and convergence faster.

In the full Algorithm 1, each process therefore runs its own world with different
people arriving etc., but accesses and updates the the same function approxima-
tors for policy and value functions. Training runs for a total of E (e.g. 20, 000)
episodes with a new training episode starting whenever the budget has been de-
pleted. Each episode consists of periods with one period being one arrival. Each
arrival is associated with an arrival time t (at the end of an episode, t is reset to
0). Hence, while arrivals are discrete, time, at least theoretically, is not.

Algorithm 1’s pseudo code is now in essence a more formal version of the ex-
emplary period described in Section 2.3.4: While there is still budget within an
episode, first draw the amount of individuals expected to arrive at the current
time of the year and then sample a precise cluster and individual from that clus-
ter. Next sample an action using the current policy estimate, store the resulting
estimated treatment effect, draw the arrival time of the next individual and the
budget available then, and with their help compute the TD error. Now one can
compute the function aproximator updates αθIδ∇θπ(a|s;θ)

π(a|s;θ) = αθIδ∇θ lnπ(a|s; θ)
and ανδ∇ν(ν

ᵀφz,t) = ανδφz,t for policy and value functions and store them in the
batch updates (I captures cumulative discounting). After B periods/arrivals, up-
date the function approximators. Once budget is not enough to treat one further
individual, i.e. z < c, terminate the training episode and start a new one.

In the pseudo-code, the term bn represents the approximate amount of individuals
arriving in a year, given our previously estimated arrival rates. Note that we
should normalise the cost of treatment c and the reward r to be of the same
order of magnitude as ∆t. Because we set a value of t = 1 corresponding to one
year, and there are approximately bn people arriving per year, ∆t is of the order
of 1/bn. Hence we should also divide c an r by bn to make them of a comparable
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order of magnitude. Finally, in our implementation, since we estimated arrivals
from daily data, we also have to adjust the exponential draws to be consistent
with our definition of time in years. Appendix 2.8.3 describes these adjustments
in greater detail.

2.5 Parametrisation

2.5.1 Environment

We set the budget such that 1600 people can be treated, which is about a quarter
of the expected number of arrivals in a year (the number of 6400 individuals is
a rough approximation of the yearly arrivals given our estimated Poisson rates
which themselves are approximations of arrival in the data). In our environment
this is achieved by setting z as z1 = 0.25 and the cost of treatment to c = 1/6400.
With approximately 6400 arrivals per year, a budget of 1 would allow to treat
everyone with at this cost, so a budget of 0.25 means that the planner can treat
around 25% of arrivals which equals 1600 individuals. A year is set to have 252

working days and each day is discretised to have 100 time increments. Time
is used such that t = 1 is one year, t = 2.5 are two and a half years, and
so on. Budget could last for many years if the policy maker decided to treat
few arrivals. Besides normalising the cost by 6400 as discussed above, we use
normalisations for expected arrivals and time increments (see Appendix 2.8.3
for an in detail explanation of these normalisations). We also use a discount
factor of β = − log(0.9), which implies an annualised discount rate of around
10% (since t=1 corresponds to an year). The episode terminates when all budget
is used up. Individual characteristics that our policy maker observes for each
arriving individual are x = (age, education, previous earnings)’. Instead of t
we use cos(2πt) in the function approximation. As it can take multiple years
until the budget is used up, this periodic form ensures that the policy maker
always knows at which time of the year she is (and hence can implicitly take
into account the arrival rates at that time). We use these covariates as well as
interactions to construct the following basis functions for the value and policy
function approximators:

Policy basis function: f(x, z, t) =
(

1, x′, z, cos(2πt), zx′, cos(2πt)x′
)′

Value basis function: φ(z, t) =
(
z, z sin(2πt), z cos(2πt), z2 cos(2πt), z2, z3, z4

)′
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Algorithm 1: Parallel Actor-Critic with clusters
Initialise policy parameter weights θ ← 0
Initialise value function weights ν ← 0
Batch size B
Clusters c = 1, 2, . . . , C
Cluster specific arrival rates λc(t)

For p = 1, 2, . . . processes, launched in parallel, each using and updating the
same global parameters θ and ν:

Repeat for E training episodes:

Reset budget: z ← z0

Reset time: t← t0
I ← 1

While z > c:

batch_policy_upates← 0

batch_value_upates← 0

For b = 1, 2, ..., B:

λ(t)←
∑

c λc(t) (Calculate arrival rate for next individual)

c ∼ multinomial(p1, . . . , pC) (where pc := λ̂c(t)/λ̂(t))

x ∼ Fn,c (Draw new covariate at random from data cluster c)

a ∼ π(a|s; θ) (Draw action, note: s = f(x, z, t))

R← r̂(x, a)/bn (with R = 0 if a = 0)

∆t ∼ Exponential(λ(t)) (Sample time increment until next
arrival)

t′ ← t+ ∆t

z′ ← z − I{a = 1}c/bn
δ ← R + I{z′ > c}e−β(t′−t)νᵀφz′,t′ − νᵀφz,t (TD error)

batch_policy_updates←
batch_policy_updates + αθIδ∇θ ln π(a|s; θ)
batch_value_updates← batch_value_updates + ανδφz,t

z ← z′

t← t′

I ← e−β(t′−t)I

If z < c, break the batch For

Globally update: ν ← ν + batch_value_updates
Globally update: θ ← θ + batch_policy_updates
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2.5.2 Algorithm

Our implementation has 23 reinforcement learning agents training in parallel. For
the standard OLS rewards, we set the policy function learning rate to αθ = 0.3,
the value function learning rate to αν = 0.6, the batch size to B = 1024, and
training depicted here ran for a bit over E = 10, 000 episodes. Due to the much
larger tails in the doubly robust rewards, the agent has to train longer. Here
we again set the policy function learning rate to αθ = 0.3, the value function
learning rate to αν = 0.6, the batch size to B = 1024, and training depicted
here ran for a bit over E = 40, 000 episodes. When evaluating the current policy
every approximately 500 episodes, we fix the parameters and compute the average
return achieved over 500 evaluation episodes. This means that each point in
Figure 2.9 is an average over 500 evaluation episodes. For standard OLS rewards,
the figure would already look as steady if we took an average over many fewer
evaluation episodes for each point. Yet, the large tails of the doubly robust
rewards require an average over 500 episodes for each evaluation step / point
in the figure. Taking this average over evaluation periods smooths the reward
trajectory and makes the learning visible. In both cases we normalise average
cumulative welfare per episode so that following a random policy would yield an
average episode welfare of one.4

2.6 Results

Equipped with the descriptions in Section 2.5, we can now proceed directly to the
main results. After experiencing the environment for a few thousand episodes and
understanding its dynamics, the agent relatively quickly figures out a policy that
yields a reward of around 2.75 to 3.25 times higher than the random benchmark
reward. Figure 2.9 shows these reward trajectories over 40, 000 (doubly robust
rewards) and 10, 000 (standard OLS rewards) episodes of training.

Welfare (average cumulative reward achieved per episode) begins to stabilise after
some initial training episodes, particularly in the OLS case. For coefficients on
the other hand, there might be multiple combinations leading to the same welfare.
Yet, judging from Figure 2.4, also coefficient paths depict generally decreasing
slopes over the case of learning.

4We estimated the reward for this benchmark random welfare by running the algorithm for
100000 episodes with a 50/50 policy and take a mean over episode welfare achieved.
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Figure 2.3: Reward trajectories obtained with doubly robust and standard OLS reward
over the course of training
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(a) Doubly robust rewards
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(b) Standard OLS rewards
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Figure 2.4: Policy function parameters over the course of training

(a) Doubly robust rewards

(b) Standard OLS rewards

120



The key result of running this algorithm is a policy function estimate. This policy
function represents the optimal treatment probabilities for candidates conditional
on characteristics. Since it is a function for actions in a dynamic context, time and
budget affect how the characteristics affect the treatment decision. Specifically,
if we slightly change the notation of the θ subscripts such that log( π

1−π ) = θ0 +

θA1age+θA2age∗z+θA3age∗cos(2πt)+ ..., then age affects the treatment decision
with the parameter θAge(z, t) = θA1 + θA2z + θA3cos(2πt). Figure 2.5 illustrate
how θAge(z, t) and the analogously θEducation(z, t) and θPrev.Education(z, t) vary with
budget and time.

Note that time is periodic, so a low budget indicates that the end of an episode
is near, while time reflects differences in seasonal patterns related to the non-
constant arrival rates. An episode lasts for approximately three years in the case
with standard OLS reward estimates, and around one year with doubly robust
rewards. Consequently, the typical path in the left panel of Figure 2.5 is from the
top-left to bottom-right. In the right panel, it also starts top-left, but horizontally
crosses the figure three times until terminating bottom-right. The heat structure
of the plots indicates how large the coefficient value is, i.e. how strongly this
variable influences the decision of treatment. For example, in the case of doubly
robust rewards older individuals are more likely to be treated in summer (the
middle of the figure), although the difference in coefficients (−1.44 vs −1.60) is
small. Looking at plot (d) as another example (now with standard OLS rewards),
it indicates that people with higher education are more likely to be treated when
there is still relatively much budget available.

In order to further interpret the resulting (final) policy function, we use that
function in 100 evaluation episodes and record the treated candidates to create
additional figures below. As a measure of selectivity, we record how many candi-
dates were declined before one was treated. Figure 2.7 illustrates for each treated
person in the 100 episodes how many candidates were declined since the last
treatment, plotted against the remaining budget. In the case of standard OLS
rewards, the algorithm becomes more selective when the budget is scarce. This
is in line with economic considerations due to discounting. The inter-temporal
trade-off is between treating a person now versus treating a person at the end
of the budget. If the remaining budget is large, the reward from treating a per-
son at the end of the budget is discounted more heavily compared to the case
where the remaining budget is small. In the case of doubly robust rewards, this
trade-off does not seem to be important and the selectivity appears to be quite
constant. There are 160,000 points depicted in Figure 2.7. Figure 2.8 simplifies
this illustration by imposing a linear/quadratic structure.
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Table 2.2 shows again the correlation between the number of declined candidates
with the remaining budget, but also with cos(2πt). For the standard OLS re-
wards, the correlation with cos(2πt) is low: The depletion of budget appears to
be the main driver of increased selectivity. For the doubly robust rewards, the
correlations are almost zero - again selectivity appears to be constant.

Figure 2.6 provides further illustration of the policy function’s behaviour through-
out the year. For the standard OLS rewards, an increasing number of rejections
over the year is observable. As seasonality has mechanically been smoothed
across seasons using the cosine function, the sharp difference between December
and January in Figure 2.6 is further evidence against the effect of seasonality. It
does support the notion of increased selectivity with depleted budget as every
episode starts on January 1st with a complete budget - i.e. months later in the
year are generally months with less budget.

For the doubly robust rewards, the picture resembles Figure 2.7. It depicts hardly
any changes in selectivity - except possibly a slight seasonality-effect.

The differences between the optimal policy for doubly robust and standard OLS
rewards appear to be large – after all, they are entirely different distributions. We
offer the following interpretation. There are considerably more outliers for dou-
bly robust rewards. Consequently, it appears optimal for these rewards to focus
entirely on avoiding negative outliers - which can imply mild seasonality as the
relative cluster-arrival rates change slightly over the year (e.g. how many cluster-
1-candidates arrive per cluster-2-candidate). Considerations regarding discount-
ing (within the 11-12 months until budget runs out) appear to be overpowered
by this focus. Hunting positive outliers, most pronounced with the DR rewards,
might be part of the explanation too, but given that the algorithm is not very
selective (treating every fourth person), at this stage of training it does not seem
to be the main task. Yet, training the algorithm for more periods or with differ-
ent starting values, can imply, due to the tails in the DR rewards, that the agent
would reach higher welfare when only treating outlier individuals in the right tail
and waiting for many years.5 For OLS rewards, outliers play a much smaller role,
so increased selectivity with depleted budget (see above) is more important.

5In a future version of Adusumilli et al. (2019), we alleviate this concern by adding a time
constraint forcing the agent to spend all budget within e.g. a year rather than potentially
making it optimal to wait for outliers. Another option could be to set a larger discount rate.
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Figure 2.5: Coefficient interactions in the resulting policy function

(a) Age (doubly robust rewards) (b) Age (standard OLS rewards)

(c) Education (doubly robust rewards) (d) Education (standard OLS rewards)

(e) Previous earnings (doubly robust rewards) (f) Previous earnings (standard OLS rewards)

Table 2.2: Correlation of the average number of rejected individuals prior to a treat-
ment with time and budget of the policy functions

Doubly Robust Rewards Standard OLS Rewards
Remaining Budget 0.008 -0.353
cos(2πt) 0.005 -0.003
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Figure 2.6: Seasonal differences in the average number of rejected individuals prior to
a treatment

(a) Doubly robust reward estimates (b) Standard OLS reward estimates

Figure 2.7: Remaining Budget and Average Number of Rejected Individuals Prior to
a Treatment across 100 Simulations

(a) Doubly robust reward estimates (b) Standard OLS reward estimates

Figure 2.8: Effect of Remaining Budget on Average Number of Rejected Individuals
Prior to a Treatment (first and second order)

(a) Doubly robust reward estimates (b) Standard OLS reward estimates
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2.7 Conclusion

This paper gives an example of how methods from artificial intelligence and re-
inforcement learning can try to improve the allocation of scarce resources when
economic policy makers face complicated dynamic problems. Through the use
of RCT data on job trainings, we model an environment in which unemployed
individuals arrive sequentially at a social planner’s office. With a limited budget
and some knowledge about the individuals, she picks an allocation to maximise
average welfare. For this the planner also has to understand the dynamics of
the environment. As the rewards she observes are estimates of individual level
treatment effects from the RCT, we also provide an example of how to link rein-
forcement learning with causal inference in an economic context.

An assumption we make is that individuals do not strategically influence their
unemployment. Strategic behaviour on the side of the treated would have to be
modelled additionally. In this case, individuals would have to form beliefs over
the actions of the reinforcement learning agent / policy maker. Another limita-
tion is that these algorithms are able to find very good solutions but typically not
globally optimal ones as they can get stuck on saddle paths or in local optima.
Yet, arguably their main appeal is that they can find these very good solutions
to problems otherwise out of reach due to vast state spaces. A principal reason
why we chose these methods is this scalability which would allow to apply them
to real world settings and RCT datasets with very large amounts of covariates/s-
tates in the future. Lastly, in Section 2.6, we have seen that cumulative welfare
achieved unambiguously rises through training, however, that the reasons for the
agent’s decisions can be difficult to understand. This points to a limitation of our
approach that many methods from reinforcement learning or deep learning share.
It can be ambiguous why an algorithm makes decisions. Any implementation
of such algorithms in practise would therefore require significant governance and
raise difficult questions: Do we understand its decisions well enough and could
e.g. biased training data lead to algorithm bias? Who supervises the algorithm
and who is eventually responsible for its actions? Once trained, the method is also
much more scalable than the decisions of one human being. It therefore requires
substantial scrutiny before and during implementation. If applied carefully in
very well controlled environments, comparable methods might some day be able
to assist policy makers to achieve higher welfare in very complicated dynamic
problems and to make more consistent decisions across individuals.
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2.8 Appendix

2.8.1 Standardised rewards

Both rewards are now normalised by their standard deviation and an additional
normalising factor of 1/6400 with 6400 being a rough approximation of individuals
arriving each year given our lambda estimates. When normalising the second
moment, the rewards still show very different patterns in higher moments.

Figure 2.9: Reward histograms standardised
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2.8.2 Basic algorithm

This pseudo-code describes a basic version of our algorithm. It does not include
parallel processes, arrivals from different clusters, or batch updates.

Algorithm 2: Actor-critic
Initialise policy parameter weights θ ← 0

Initialise value function weights ν ← 0

Repeat for E training episodes:

Reset budget: z ← z0

Reset time: t← t0

I ← 1

While z > c:

x ∼ Fn (Draw new covariate at random from data)

a ∼ π(a|s; θ) (Draw action, note: s = f(x, z, t))

R← r̂(x, a)/bn (with R = 0 if a = 0)

∆t ∼ Exponential(λ(t)) (Draw time increment)

t′ ← t+ ∆t

z′ ← z − I{a = 1}c/bn

δ ← R + I{z′ > c}e−β(t′−t)νᵀφz′,t′ − νᵀφz,t (Temporal-Difference error)

θ ← θ + αθIδ∇θ ln π(a|s; θ) (Update policy parameter)

ν ← ν + ανδφz,t (Update value parameter)

z ← z′

t← t′

I ← e−β(t′−t)I

2.8.3 Normalisations used in the implementation

Both rewards and costs are normalised by bn = 6400, a rough approximation
of people arriving in a year given our estimated arrival rates. Time increments
require a few additional adjustments. Arrival rates are estimated from daily data,
however our unit of measure of time is in years. So to make them comparable,
we first divide the day into 100 time parts. Thus the exponential draws are now
measured in one-hundreds of days. To give an example, we might for example
draw a value of 50 for an exponential draw: Fifty hundreds of a day until the next
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person arrives, or half a day. As our time t however runs in years, we need to
divide these increments by (100× 252) (i.e. dividing the draw by 100 increments
per day to first bring it down to daily time and then by 252 to eventually match
yearly time). It would then take 50/25200 years until the next individual arrives.
With t = 1 being one year, the correct division for the exponential draws is 25200.

131



Chapter 3

Emotional Dynamics

3.1 Introduction

“Even apart from the instability due to speculation, there is the instability due to
the characteristic of human nature that a large proportion of our positive activities
depend on spontaneous optimism rather than mathematical expectations, whether
moral or hedonistic or economic. Most, probably, of our decisions to do something
positive, the full consequences of which will be drawn out over many days to come,
can only be taken as the result of animal spirits - a spontaneous urge to action
rather than inaction, and not as the outcome of a weighted average of quantitative
benefits multiplied by quantitative probabilities.” (Keynes, 1936, pp.161-162)

This essay introduces a mechanism through which perpetual business cycles can
result and be maintained endogenously. Individuals share economic sentiments
similarly to diseases in a stylised model of disease transmission. Two opposing
sentiments, optimism and pessimism, alternately expand and contract through
a population in waves. Both sentiments change aggregate demand as optimistic
consumers have a bias to increase current consumption and pessimistic consumers
have a bias to decrease current consumption relative to optimal levels. While the
mechanism is more general, I illustrate it in a simple New Keynesian model with
boundedly rational agents which are unaware of the consumer’s sentiment bias.
As the model has a representative consumer, I use the network structure as a
computational tool to approximate an average sentiment bias for the economy.
The sentiment sharing on the network can endogenously generate cyclical motion
in short term aggregate output as an inherent feature of such a economy. To be
put into motion, the model only requires some initial distribution of optimistic or
pessimistic nodes. In addition, the pattern of macroeconomic sentiment fluctua-
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tions can also be maintained and made more realistic with additional, but small,
exogenous real output variations every period.

Figure 3.1 motivates this essay and emphasises the heterogeneity present in con-
sumer sentiments. Rather than one aggregate index of sentiments, I depict the
distinct shares of optimistic, pessimistic, and neutral answers to one question
from the Michigan Index of Consumer sentiment and match them with percent-
age changes of aggregate US consumption. The movement in shares fits the con-
jectured mechanism outlined before well. The correlation between the optimistic
share and the changes in aggregate consumption is 0.765, the correlation between
the pessimistic share and changes in aggregate consumption is −0.783. Replacing
aggregate consumption with aggregate output yields a very similar picture (pro-
vided in Appendix 3.5.1). Co-movements, however, are more pronounced here
because the figure depicts yearly values.1 Yet, arguably more interesting is the
significant heterogeneity in sentiments shares. Also in dire economic times, a
considerable share of positive sentiments seems to remain and the reverse. The
model introduced in this essay in essence tries to develop a mechanism behind
such shares.

I try to stick closely to Keynes’s original notion of animal spirits as psycholog-
ical phenomena which make people deviate from probabilistic decision making.
In the model used here, a sentiment induced bias leads to temporarily upward
or downward distorted consumption choices. Resulting changes in aggregate de-
mand also change aggregate output as not all producers can adjust their price
instantaneously. If aggregate output is currently on an upward trajectory, op-
timism is shared with relatively higher probability, if aggregate output is on a
downward trajectory, pessimism is shared with relatively higher probability. This
creates a rich feedback mechanisms between the sharing of sentiments and the
resulting macroeconomic fluctuations. Consumer sentiment impacts aggregate
demand and aggregate demand then changes aggregate output. Yet, in reverse
aggregate output also impacts the sharing of consumer sentiments: Changes in
the aggregate output trajectory determine which sentiment is shared more easily.

With its features of epidemiological sentiment sharing, the framework is con-
nected to recent work by Shiller (2017) on the spreading of narratives. Contrary
to other models of consumer sentiments, such as e.g. Angeletos and La’O (2013),
its mechanism is simpler without the need for concepts such as higher order be-
liefs or sunspot equilibria. Yet, it also requires considerably stronger assumptions.

1These correlations are lower if quarterly values for both the sentiment questions and con-
sumption/output are used. To be precise, note that the model in this essay is calibrated at the
quarterly level.
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Figure 3.1: Yearly movements in aggregate consumption and the shares of optimistic,
pessimistic, and neutral answers

The shares represent answers to the questions “Now turning to business conditions in the country
as a whole - do you think that during the next 12 months we’ll have good times financially
or bad times or what?”. I counted people who replied “Good times” as optimistic, people who
replied “Bad times” as pessimistic, and people who answered “Don’t know” or “Uncertain” as
having a neutral sentiment. The US aggregate consumption and GDP changes time series are
from St. Louis FRED. Data depicted runs from 1961 to 2015.
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Agents are forward looking, however, are assumed not to form expectations or
correctly optimise over one key variable: the sentiment bias of consumers. Un-
like research such as e.g. Benhabib et al. (2015) the model therefore does not
satisfy rational expectations. Yet, the agents depicted here also do not use adap-
tive rules as e.g. in De Grauwe and Ji (2019). As individual sentiment states
and actions depend on the infection levels of neighbours, a related strand of lit-
erature is also that of threshold models, see e.g. Granovetter (1978). Lastly,
given that perpetual cyclical motion in output is a fundamental property of the
economy developed here, it also relates to recent research such as e.g. Beaudry
et al. (2019) who discuss an endogenous propagation mechanism based on other
features (strategic complementary and financial frictions), or to other models of
endogenous fluctuations such as e.g Aymanns et al. (2016).

The paper is structured as follows: Section 3.2 first introduces the broad frame-
work of economic sentiment sharining. It then continues with providing an ex-
ample of this framework by applying it to a boundedly rational version of the
New Keynesian Model. Section 3.3 discusses simulation outcomes and Section
3.4 concludes.

3.2 Model

3.2.1 A framework of population sentiment dynamics in a

macroeconomy

In this paper, an Erdős–Rényi random graph of the form G(n, p) is used to model
how economic sentiments move through a society. The parameter n describes the
size of the population, i.e. the number of nodes. A link between any two nodes
is formed independently with probability 0 < p < 1 in this class of networks.
The expected degree, i.e. the mean number of connections that each node has,
has the convenient form d = np (see e.g. Jackson, 2008, for discussion of these
models). Once formed, all links between individuals are characterised in the
so called adjacency matrix A, which is of dimension n × n. An element aij
characterises the link of individual i with individual j. Links in the G(n, p)

network are unweighted, i.e. a link can only exist or not (aij ∈ {0, 1}) and they
are undirected, i.e. aij = aji∀i, j (the adjacency matrix A is symmetric). To
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illustrate this with a simple example, consider:

A
n×n

=

 0 1 1

1 0 0

1 0 0



This adjacency matrix would represent a network with n = 3 individuals, in
which links exist between individuals 1 and 2, and between individuals 1 and 3.

All consumers living in this world have one of three possible states of mind re-
garding the economy: They are optimistic, pessimistic, or neutral. Somewhat
similarly to diseases in a simple model of disease transmission they can share
their sentiments with their neighbours in the network. Continuing the exam-
ple above, assume that consumer one is neutral, consumers two and three are
optimistic, and none of them is pessimistic. For a given point in time, I store
sentiment states in a second matrix:

Et
n×2

=

 0 0

1 0

1 0


The first column refers to optimism, the second column to pessimism. Thus
Et ∈ {0, 1}n×2 with a value of 1 meaning that an individual is infected with
the column’s associated sentiment. At any point in time t it holds that @i for
which ei,1,t = ei,2,t = 1. In other words, no individual can have both sentiments
simultaneously. Cases in which an individual has coincidentally been infected by
both optimism and pessimism in one period are decided by a coin flip.

Optimistic individuals consume more, pessimistic individuals less than neutral
individuals. Depending on which of the two sentiments dominates a population,
aggregate demand is above or below its hypothetical neutral level (in which all
individuals were to have a neutral sentiment). In combination with frictions such
as price rigidities, these sentiment driven changes in aggregate demand move
aggregate output yt (temporarily) above or below the hypothetical fundamental
output level yneutralt . A second possible sources of fluctuations are (very small)
changes in aggregate output due to real disturbances at = ρaat−t + εt, εt

i.i.d.∼
N(0, σ2

ε). Sentiment sharing in itself creates an underlying perpetual motion in
the economy. Yet, the feedback mechanism between sentiment cycles and other
disturbances makes output shapes more realistic.
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The sentiment state of individuals can change through two distinct ways:

1. Sentiment sharing: Each period, optimistic or pessimistic individuals
share their sentiment with the nodes directly linked to them with a certain
probability.

2. Healing: At the beginning of each period, sentiments of infected individ-
uals “heal” back to neutral with a probability h.

In the following, the first point is explained in more detail. Sentiments are shared
with certain probabilities, and they are shared more likely if they are in line with
the current aggregate economic development: If aggregate output is rising, then
optimism is the supporting sentiment and shared with a higher probability than
pessimism. If output is declining, then pessimism is the supporting sentiment and
transmitted relatively more easily. For this, first define an aggregate momentum
variable momentumt ≡ yt−1 − yt−2. If momentumt ≥ 0, optimism is the sup-
porting sentiment and pessimism is the opposing sentiment, and reverse. Each
optimistic or pessimistic individual can share its sentiment once per period with
its immediate neighbours (i.e. nodes directly linked to them). A supporting sen-
timent is shared with probability qsupporting and an opposing sentiment is shared
with probability qopposing. It seems natural that qsupporting > qopposing, i.e. that
the sentiment which fits the most recent development in output well (optimism
if output has been rising and pessimism if output has been falling) is shared
relatively more easily.

Next define a third matrix Bt which stores the amount of neighbours of each
node which are currently infected with one the two sentiments: Bt ∈ Nn×2

0 where
N0 = N ∪ {0}. This matrix can be computed as:

Bt
n×2

= A · Et (3.1)

Each row refers to an individual. The first column refers to optimistic neighbours
that this individual has, the second to pessimistic neighbours. A cell in the matrix
is denoted by bi,j,t. In the example used here, Bt would have the values:

Bt
n×2

=

 2 0

0 0

0 0
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Individual one has two neighbours who are optimistic: b1,1,t = 2. No other
individual has any optimistic or pessimistic neighbours. With this information
about neighbours, it is now possible to compute the probability for each individual
to be infected with a sentiment in a given period. Assume that in this example the
economy is in a boom phase of a cycle, i.e. optimism is the supporting sentiment
and pessimism is the opposing sentiment. The probabilities for individual i to be
infected with optimism/pessimism in period t are then:

Pr(infectioni,t = optimism) = 1− (1− qsupporting)bi,1,t (3.2)

Pr(infectioni,t = pessimism) = 1− (1− qopposing)bi,2,t (3.3)

In the simple example above, this would imply that individual 1 is infected with
optimism with probability 1− (1− qsupporting)2.

This concludes the summary of how sentiments move through society. The per-
sistence of sentiment infections is balanced by healing.

Exemplary period Putting these pieces together allows to describe the timing
within one period. This also provides a good summary of the interplay of forces.

1. All infected nodes from period t− 1 heal with probability h.

2. Momentum is computed with the two most recent output levelsmomentumt =

yt−1−yt−2. Say output was on an upward trend, then momentumt > 0 and
optimism is the supporting sentiment which transmits more easily than the
opposing sentiment pessimism, qsupporting > qopposing.

3. Next, sentiment sharing determines the sentiment bias currently present in
the economy. All infected nodes share their sentiments with neighbouring
nodes. Each node is infected with optimism with probability Pr(infectioni,t =

optimism) = 1 − (1 − qsupporting)bi,1,t and with pessimism with probability
Pr(infectioni,t = pessimism) = 1− (1− qopposing)bi,2,t . If a node has been
infected with both sentiments in the same period, a coin is flipped to decide
between them.

4. Ceteris paribus, optimistic individuals consume more than neutral individ-
uals who consume more than pessimistic individuals. Depending on which
sentiment currently gained traction relative to the last period, aggregate
demand rises or falls.
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5. Output yt rises or falls, e.g. through a New Keynesian type of demand
effect (abstracting from additional real disturbances in this example). This
concludes the current period and the next one begins.

Why do cycles turn? It might not be apparent from the exemplary period,
how aggregate output turns again. Say that we are currently in an upward move-
ment and momentum is positive. The majority of individuals is optimistic, has an
upward biased consumption, and pushes up output through their demand effect.
Yet, at some point the supporting sentiment (currently optimism) will approach
its maximum infection potential in the population. The size of that level is shaped
by the relative sizes of transmission probabilities qsupporting and qopposing, by the
healing probability h, and other specifications of the model. Given an exemplary
parametrisation, say the maximum potential for a sentiment is to infect 80% of
nodes. Once around this maximum, each period a fraction of consumers h heals,
both sentiments are shared, and the model ends up at almost exactly 80% of opti-
mistic consumers again. This will go on for a while, but at some point, by chance
a few less people will become infected and the share of optimistic people might
now be say 79.9%. This drops aggregate demand slightly, and therefore makes
aggregate output decline. As a consequence, however, next period’s momentum
momentumt+1 = yt − yt−1 will now be negative, and hence sharing probabilities
are switched between the sentiments: Pessimism becomes the supporting senti-
ment and optimism becomes the opposing sentiment. Thus, pessimism is now
shared more easily and the cycle starts to move downwards and only stops again
when pessimism reaches its maximum infection potential. Again, at some point a
few more people than before became optimists by chance after sentiment sharing,
demand rises a little, output rises a little, momentum and transmission prob-
abilities revert, and the cycles turns upwards again. Note that to make turns
less predictable, one could e.g. easily switch momentum (and thereby sharing
probabilities) only with a certain probability once output changes. Yet, once a
certain waves gains traction, it is very hard to stop. This mechanism already
gives perpetual motion in output without additional exogenous real variations in
output, however, cycles are too regular to be realistic. The cyclical shape becomes
much more realistic and irregular if the mechanism is included in a world with
small real disturbances of other sources, e.g. financial, productivity, etc. These
disturbances can now unexpectedly switch momentum and thereby make cycles
revert.

The next section discusses a stylised example of this mechanism in a modified
New Keynesian model.
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3.2.2 Perpetual motion in a behavioural New Keynesian

model

Consider the canonical New Keynesian model presented in Galí (2015) Chapters
2 and 3. The households solves the problem:

max
{Ct,Nt,Bt}∞t=0

E0

[
∞∑
t=0

βt
(
C1−σ
t

1− σ
− N1+ϕ

t

1 + ϕ

)
Zt

]
(3.4)

s.t. PtCt +QtBt ≤ Bt−1 +WtNt +Dt (3.5)

B−1 given (3.6)

where Ct denotes consumption, Zt a preference shifter, Nt hours worked, Pt the
price level, Qt the price per unit bonds, Bt bond holdings, Wt wages, and Dt

dividends from firm ownership. The Euler euqation for this problem is given by:

ZtC
−σ
t

Pt
Qt = βEt

[
Zt+1C

−σ
t+1

Pt+1

]
∀t (3.7)

Next define it ≡ −log(Qt), ρ ≡ −log(β), zt = log(Zt), and πt+1 ≡ pt+1 − pt.
Log linearisation around the steady state yields the log linearised Euler equation
(Galí, 2015, page 44):

ct = Et [ct+1]− 1

σ
(it − Et [πt+1]− ρ) +

1

σ
(zt − Et[zt]) (3.8)

Galí (2015) continues with assuming this preference shifter follows an exogenous
AR1 process. In contrast, I assume that it originates from endogenously evolving
consumer sentiments. If optimism dominates the population, the aggregate con-
sumer has zt > 0. If pessimism dominates the population, it leads to zt < 0. A
key assumption that I make is that the boundeldy rational agents in this economy
are unaware of the consumer’s sentiment bias and form no expectations over it.
This assumption yields Et[zt+1] = 0. In essence, the term becomes an endogenous
recurrent, however repeatedly unexpected, preference shock. The consumer’s and
firm’s inability to notice the sentiment bias and form expectations over it makes
their sentiment influenced actions sub-optimal.
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ct = Et [ct+1]− 1

σ
(it − Et [πt+1]− ρ) +

1

σ
zt (3.9)

Otherwise following Galí (2015) Chapter 3, this yields the following dynamic IS
equation after market clearing ct = yt:

ỹt = Et[ỹy + 1]− 1

σ
(it − Et[πt+1]− rnt ) (3.10)

with the natural rate rnt = ρ−σ(1−ρa)ψyaat+zt and ψya = 1+ϕ
σ(1−α)+ϕ+α

where 1−α
is the exponent of labour in the production function.2 Given the assumptions
made, the New Keynesian Phillips curve stays the same as in the textbook.3

The model is completed with an interest rate rule (abstracting from additional
monetary policy shocks):

πt = δEt [πt+1] + κỹt (3.11)

it = ρ+ φππt + φy(yt − y) (3.12)

Here κ ≡ λ(σ + ϕ+α
1−α ) is computed with λ ≡ (1−θ)(1−βθ)

θ
Θ and Θ ≡ 1−α

1−α+αε
, where

θ denotes price stickiness and ε the demand elasticity. These three equations can
be condensed into a systems of two equations

(
ỹt

πt

)
= AT

(
Et[ỹt+1]

Et[πt+1]

)
+ BTut (3.13)

where

AT =
1

σ + φy + κφπ

(
σ 1− δφπ
σκ κ+ δ(σ + φy)

)
and BT =

1

σ + φy + κφπ

(
1

κ

)

and
ut = −ψya(φy + σ(1− ρa))at + zt

For full explanations of the original model’s equations see Galí (2015) Chapters 2

2In the book this equation is rnt = ρ − σ(1 − ρa)ψyaat + (1 − ρz)zt as the AR1 implies an
expectation Et[zt+1] = ρzzt

3Firms are also assumed not to build expectations over the bias factor in their optimisation
and discounting.
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and 3 which are the basis of this section4, or the very helpful Bergholt (2012) for
more details. As I assume here that agents are behavioural and unaware of the
introduced sentiment bias, technology at remains the only state variable on which
they optimise. The system is solved with the method of undetermined coefficients
where the stationary solution is conjectured to have the form ỹt = ψyut and πt =

ψπut with Et[ỹt+1] = ρaψyut and Et[πt+1] = ρaψπut. Note that these expectations
would only be correct if ut contained only the term with at, but instead reflect
that agents form wrong expectations with the behavioural modifications made in
this paper, because the compound state ut in fact also contains the endogenous
sentiment bias zt and therefore does not follow an AR1 process. With this, rewrite
the system as:

(
ỹt

πt

)
=

(
ψy

ψπ

)
ut = AT

(
Et[ỹt+1]

Et[πt+1]

)
+ BTut = AT

(
ψy

ψπ

)
ρaut + BTut

(3.14)

and solve for the coefficients:

(
ψy

ψπ

)
= [I− ρaAT]−1BT (3.15)

Which yields:

(
ỹt

πt

)
=

(
ψy

ψπ

)
ut (3.16)

In the simulations in Section 3.3, I depict output rather than output gab and
therefore add natural (flexible price) output back to output gap.5 The key equa-
tion is therefore given by:

(
yt

πt

)
=

(
ỹt

πt

)
+

(
ynt

0

)
=

(
ψy

ψπ

)
(−ψya(φy+σ(1−ρa))at+zt)+

(
ψyaat

0

)
(3.17)

4See particularly Galí (2015), pages 65-66 and 71-74, for the following derivations.
5This drops the constant depicted in Equation 20 on page 62 of Galí (2015): ynt = ψyaat −

(1−α)(µ−log(1−α))
σ(1−α)+ϕ+α and sets natural output to only ynt = ψyaat. It centers the later plots around

zero and furthermore tries to replicate the second equation on page 72 of Galí (2015) where
actual output is also zero in absence of technology shocks.
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As a reference point, the neutral sentiment output and inflation without the
behavioural bias is given by:

(
yt

πt

)
=

(
ỹt

πt

)
+

(
ynt

0

)
=

(
ψy

ψπ

)
(−ψya(φy + σ(1− ρa))at) +

(
ψyaat

0

)
(3.18)

Dynamics of zt A key question remains how the sentiment bias of the rep-
resentative consumer is computed. The framework introduced in 3.2.1 naturally
fits heterogenous agent models, but in this application I use the network as a
computational tool to approximate the nontrivial time series of an average bias
factor zt. Say that depending on their infection state, each node on the net-
work has one of three bias terms: zoptimistic, zpessimistic, and zneutral = 0 with
zoptimistic > 0 > zpessimistic. At each point in time, the share of each of the three
groups is given by the number of nodes with a respective state divided by the total
number of nodes in the network: αoptimistict =

noptimistict

ntotal
, αpessimistict =

npessimistict

ntotal
,

and αneutralt = 1− noptimistict +npessimistict

ntotal
. The sentiment bias of the aggregate house-

holds is assumed to be approximated by zt = αoptimistict ×zoptimistic+αneutralt ×0+

αpessimistict × zpessimistic. In other words, the network works as a numerical tool to
compute the latent non-linear two functions αoptimistict (·) and αpessimistict (·).6

Exemplary period To illustrate the feedback mechanisms between network
and New Keynesian model as well as the intra period timing, consider again an
exemplary period.

1. All infected nodes from period t− 1 heal with probability h.

2. Momentum is computed with the two most recent output levelsmomentumt =

yt−1−yt−2. Say output was now on a downward trend, thenmomentumt < 0

and pessimism is the supporting sentiment which transmits more easily than
the opposing sentiment optimising, qsupporting > qopposing.

3. Next, sentiment sharing determines the sentiment bias currently present
in the economy. All infected nodes share their sentiments with neigh-
bouring nodes. Each node is infected with pessimism with probability

6Another option could e.g. be a modified and discretised compartmental SEIS model. Yet,
to be similar it would have to be built containing two mutually exclusive diseases and such that
also infected shares are susceptible to the other disease.
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Pr(infectioni,t = pessimism) = 1− (1− qsupporting)bi,2,t and with optimism
with probability Pr(infectioni,t = optimism) = 1− (1− qopposing)bi,1,t . If a
node has been infected with both sentiments in the same period, a coin is
flipped to decide between them.

4. Given the network’s state after sentiment sharing, the aggregate bias is
approximated with zt = αoptimistict × zoptimistic + αneutralt × 0 + αpessimistict ×
zpessimistic.

5. With this zt and an additional exogenous real shock at (if any), compute
actual output yt and inflation πt with Equation 3.17. A hypothetical neutral
sentiment output can be computed as a benchmark with Equation 3.18 and
only depends on at. Proceed with the next period.

Assumptions made To achieve the simple form introduced above, I make
several assumptions in addition to those of the standard model. First, I need
to assume that the average bias factor of nodes is a good approximation of the
representative agent’s aggregate bias. Questions of aggregation are non-trivial
and this omits several effects present in the complex system of interactions in
a heterogeneous agent model and can lead to considerable approximation error.
Second, I assume that consumers make mistakes relatively to fully dynamically
consistent decisions and that these mistakes depend on their sentiment state of
mind. Third, no agent in the economy forms expectations over these sentiment
biases or considers zt correctly in their optimisation. This assumption is partially
motivated by research such as Tversky and Kahneman (1974) and the large liter-
ature that studies biases of which individuals are often unaware. Here, however,
I require a stronger assumption that agents do not form expectations or optimise
over sentiment preference shifts despite their recurring nature.

Section 3.3 proceeds with simulations of the model.

3.3 Simulations

For the full parametrisation of the model used in the simulations, see Appendix
3.5.3. Figure 3.2 shows the perpetual motion created by the mechanism without
exogenous shocks. As the model depicts a world in which sentiment states are
always present when there is output, the only requirement is to set an initial
allocation of sentiments. For this, I exemplarily set approximately 30% of nodes to
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be optimistic and approximately 5% of nodes to be pessimistic.7 As the change in
output was constant, initial momentum is assumed to be positive. Motion would
also start, however, if momentum was set to negative and a relatively larger share
of pessimistic individuals was created. Due to the high relative infectiousness of
the supporting sentiment and the high degree on the network, the model picks
up movements for a wide range of initial allocations.

Due to the lack of exogenous shocks, the neutral sentiment benchmark output
(in grey) is flat. Note also that despite its strong regularity, the motion depicted
in Figure 3.2 is not deterministic. The reason is that sentiment sharing on the
network is probabilistic. Yet, due to the large size of the network, infection
dynamics in each cycles are highly similar. Whereas the underlying mechanism
of sentiment sharing creates an economy which is always in motion, it therefore
by itself cannot generate the irregular shapes we see in data.

Figure 3.2 shows, however, that it only requires relatively small real disturbances
(without own persistence) to make output look more realistic. The reason is that
already small shocks can revert momentum if the current trajectory in output is
slowing down. This reversion then switches which sentiment is more infectious
and subsequently leads to sentiment dynamics which make the cycle turn. In
this example, the disturbances depict technology shocks, but they could also be
other real disturbances such as supply shocks, financial shocks etc. The sharing
of consumer sentiments is just a layer on top of other mechanisms, but leads to
the cyclical shape of output. For the dynamics of the aggregate bias factor zt and
inflation πt see Figures 3.5 and 3.6 in the Appendix.

Discussion Both output and sentiments influence each other in a feedback
mechanism. Sentiments induce demand changes which then change output. Changes
in output, however, set momentum and thereby influence which of the two sen-
timent is more infectious. Exogenous real disturbances make these reversions
in momentum and sentiment cycles irregular in contrast to the stylised example
with no exogenous shocks. The model’s inherent motion thereby relates to the
literature of nonlinear dynamical systems where state variables can perpetually
move on sets like limit cycles or attractors rather than sitting at a fixed point or
steady state as default. This notion can be helpful to structure thinking about
economies in motion and is used in work such as e.g. Beaudry et al. (2019) or
Aymanns et al. (2016).

7In detail, each node is set to optimistic with probability 0.3 and to pessimistic with prob-
ability 0.05 in the initialisation. Note that there can thereby be double infections in the initial-
isation period.
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Figure 3.2: Output with sentiment initialisation only

The first model output is computed in period 3. In period 2, a random share of approximately
30% of nodes is set to optimistic and a random share of approximately 5% to pessimistic.
These sentiment states are carried over to period 3, partially “healed” with probability h at the
beginning of the new period, and then begin to transmit.
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Figure 3.3: Output with sentiment initialisation and real disturbances
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While this paper develops a general mechanism of an always present movement
in an economy through sentiment dynamics, it would be interesting in further
research to relax some of its partly strong assumptions. First, the problems of
aggregation could be addressed by embedding the mechanism into a heteroge-
nous agent model. Each node on a network could have an own sentiment bias,
optimisation problem, income, momentum, etc. Second, it would be very inter-
esting to develop a formulation of bounded rationality with which agents are at
least partially aware of the sentiment bias and form expectations over it. In both
simulations here, agents assume no persistence through the parameter ρa = 0,
although the sentiment term zt is very persistent. A key challenge for both ex-
tensions, heterogeneity and rigorous bounded rationality, would be to keep track
of the states which would become very large as soon as agents took (parts of) the
rich network structure into account.

The following Section 3.4 concludes the paper.

3.4 Conclusion

This paper describes a mechanism of sentiment dynamics which generates a per-
petual cyclical pattern in output. Two opposing sentiments, optimism and pes-
simism, are shared between individuals on a network similarly to diseases in
a stylised model of disease transmission. A behavioural bias shifts preferences
of boundedly rational consumers who deviate from original consumption levels.
Optimistic individuals consume too much and pessimistic consumers too little
relative to optimal levels. Depending on which sentiment currently dominates in
the economy, aggregate demand is upward or downward biased. I incorporate
this general mechanism into a New Keynesian model in which I approximate the
aggregate consumer’s bias by a weighted average on the network. In this model
not all producers can immediately adjust their prices, so changes in aggregate
demand also change short term real aggregate output. In reverse, output also
influences sentiments. Depending on whether output has been rising or falling,
optimism or pessimism transmit with higher probability. The interplay of these
forces creates perpetual waves of optimism and pessimism and thereby perpet-
ual fluctuations in output. Areas for future research would be to embed such
a mechanism into a full heterogenous agent model and to make the expectation
formation and optimisation of boundedly rational agents more sophisticated.
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3.5 Appendix

3.5.1 Aggregate output and sentiments

Figure 3.4: Yearly movements in aggregate output and the shares of optimistic, pes-
simistic, and neutral answers
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3.5.2 Calibration of the New Keynesian model and network

Calibration of the New Keynesian model (following Galí (2015), pages 67-68,
except for ρa and σε):

1. β = 0.99 (geometric discount rate)

2. σ = 1 (implies log utility)

3. ϕ = 5 (implies a Frisch elasticity of 0.2)

4. α = 0.25 (the exponent of labour in the labour only production function is
1− α)

5. ε = 9 (implyingM = 1.125, a steady state markup of 12.5%)

6. µ ≡ log(M) (log of desired gross markup)

7. η = 4 (semi-elasticity of money demand)

8. θ = 3/4 (implying an average price duration of 4 quarters)

9. φπ = 1.5 and φy = 0.5/4 (Taylor rule coefficients)

10. ρa = 0

11. In Figures 3.3 and 3.6 with exogenous shocks: σε = 0.005

Calibration of the network:

1. There are n = 100, 000 nodes/consumers in the population. This large
number of nodes is chosen to smooth the random factors in the model

2. Average expected degree np = 50, i.e. everyone has on average 50 neigh-
bours

3. Supporting sentiments are shared with probability qsupporting = 0.04

4. Opposing sentiments are shared with probability qopposing = 0.02

5. sentiments heal with probability h = 0.33 each period

6. The bias of optimistic individuals is depicted by zoptimistic = 0.025

7. The bias of pessimistic individuals is depicted by zpessimistic = −0.025

3.5.3 Inflation and bias
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Figure 3.5: Inflation and bias with sentiment initialisation only
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Figure 3.6: Inflation and bias with sentiment initialisation and real disturbances
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Chapter 4

Textual Business Indicators

4.1 Introduction

This short paper discusses an approach to estimate business and economics sen-
timent indicators from historical newspaper data for times where commonly used
indicators were not available. While current indicators largely rely on polling
a limited set of firms, similar textual methods also allow to compute business
sentiment indicators potentially in real time from large amounts of textual data
available today.

Using the New York Times (NYT) archive of article lead paragraphs and snippets
since 1851, I compute a long run indicator of business and economic sentiments.
This is done with a two-step approach. First a classifier is trained on a subset
of articles which are known to be about business topics. This classifier is then
applied backwards to predict which articles prior to 1980 have been about business
topics when this information is missing. In a second step, a dictionary/word list
is constructed to detect negative business conditions and it is applied to the
predicted business articles. The resulting index is then compared to aggregate
economic variables and to existing business sentiment indicators. Lastly, articles
identified as being about negative business topics are analysed for trending terms
in a stylised way.

This paper relates to a strand of literature that constructs indicators based on
newspaper data. In the prominent paper Baker et al. (2016), the authors use
newspaper data to quantify economic policy uncertainty. Several other papers
have recently used newspaper texts to detect macroeconomic and financial sen-
timents. For example, Püttmann (2018) builds an indicator of financial stress
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ranging back to 1889. He analyses a larger dataset (based on several newspa-
pers) than the one here also with a sentiment word list, but uses words instead
of a classifier model to detect business articles and looks at headlines. Tuckett
and Nyman (2017) employ a sentiment dictionary based on a theory of decision
making and apply it to news data ranging back to 1996. A recent paper which
uses more advanced methods to analyses a wide range of newspaper topics and
their predictive ability for and comovement with economic variables is Bybee
et al. (2019), however, the focus is on more recent data since the 1980s. Simi-
larly, Larsen and Thorsrud (2019) detect narratives with topic modelling since
1990. In other recent work, Hassan et al. (2019), while discussing political risk,
also detect business sentiments in transcripts of company calls using word lists
by Loughran and McDonald (2011). This emphasises that the possible scope of
texts for the detection of business and economic sentiments today is much wider
than exclusively news.

The paper is structured as follows: Section 4.2 describes the data, Section 4.3
discusses how the index is constructed, Section 4.4 presents the main results,
Section 4.5 discusses extensions with trending words within negative business
articles, and Section 4.6 concludes.

4.2 Data

The analysis of this paper is based on the archive of NYT lead paragraphs and
snippets since 1851 which is publicly available via their Application Programming
Interface (API).1 This API allows to download and process large amounts of
newspaper information in digitalised form. Data comes in JavaScript Object
Notation (JSON) format. The public version of the API, however, only contains
shortened texts at the lead paragraphs or snippet lengths. Furthermore, the data
downloaded includes a large range of materials in addition to standard articles,
such as e.g. birth announcements, obituaries, or in newer years multi media
content. Table 4.5 in the Appendix gives an overview of available material in
some of the more common categories over the decades. I use article texts only
from three classes:2 “Article”, “News”, and “Front Page”. Out of these, the first
two store very similar information in different years and the last one stores (until
1980) those articles that were on the front pages. In particular, the available

1https://developer.nytimes.com/apis; accessed 30.09.2019; I thank Hubert Mandeville
from the NYT for his kind help with the access.

2The key in the JSON files under which these classes, among other examples shown in Table
4.5, are stored in the archive is “types_of_material”.
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Figure 4.1: Yearly articles after cleaning
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information changes substantially from 1980 onwards, when e.g. data on sections
of articles becomes available. The main articles of the newspaper until 1980 are
stored as “Article” (with the exception of 1964; see Figure 4.9 in the Appendix),
and from 1981 onwards stored as “News”. Yet, for the year 1980, there seem
to exist materials for both classes “Article” and “News” which is also visible in
Figure 4.9. I use the material from both these classes in 1980, however, this leads
to a spike in this year e.g. visible in counts or articles visible in Table 4.6 in
Appendix 4.7.3.3 The effect on the index is probably relatively small as this spike
in articles only affects one year and in the index the counts of sentiment signal
words are normalised by the total amounts of words. For these and some other
particularities of the archive that might be useful to other users see Appendix
4.7.2. In general it has to be kept in mind that working with such historical
archive data always bears the possibility that some outcomes are driven by data
structure particularities.

After cleaning relevant texts to remove punctuation, numbers, etc., I combine
available information in one text. In detail, I concatenate (if available) headline,
abstract, and (depending on what exists and is longer) lead paragraph or snippet.
Abstract and lead paragraph/snippet can be identical resulting in duplicated
words, however, the effect should be alleviated as sentiment signal words are
divided by total words later. All combined texts which still have less than three
words are deleted. In the following I refer to these concatenated texts in short
simply as articles. Figure 4.1 shows the counts of cleaned articles over the years
since around 1850. There is significant decline in articles, potentially driven by

3Judging from the time series in each of these two categories, the correct one for 1980 might
be “Article” which would lead to numbers of articles in that year more consistent with other
years.
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Figure 4.2: Words contained in concatenated cleaned articles
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the decline in printed content and by particularities in the archive. Figure 4.2
depicts mean and median length of article texts. It emphasises the importance of
dividing detected sentiment words by the total amount of words rather than the
total amount of articles. In later years, articles are longer and hence have a higher
chance to contain keywords (in earlier years articles e.g. more often include only
headlines).

Equipped with these cleaned and concatenated texts, the next section continues
with how their content is used to build the sentiment index.

4.3 Building the index

The index is constructed with a two-step approach. First, I use a classifier model
to estimate which historical articles are likely about business content. Using
these predicted business articles for earlier years, I then approximate negative
sentiments with a word list.

4.3.1 Detecting business articles

A particularity of the NYT archive is that from 1980 onwards it contains informa-
tion on the News Desk or Section of an article. I label all articles whose news desk
or section names contain one of the strings “financ”, “econ”, “business”, or “money”
as being about business and economics content. Using the data from 1981, this
yields 355, 954 articles. Next, I randomly sample an identical amount of non
business articles. In combination this leads to a dataset of 711, 908 observations.
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Using these observations, I build a document term matrix (dtm) X. Such dtms
have as many rows as there are documents, and as many columns as there are
terms contained in the documents after some adjustments. Each cell in X is the
count of a word in the given document. In the application here, I ignore all words
which are not at least in two documents. This reduces the amount of columns in
X substantially. The resulting dtm has has 711, 908 rows (one for each article)
and 142, 112 columns (one for each remaining term). Due to the differences in
available article lengths in the public API data visible in Figure 4.2, I divide all
row vectors in the dtm by the total count of words in the document.

As it is known for each of these articles whether they discuss as business topic
or not, this information is stored in an associated vector y (containing 1’s for
business articles and 0’s for others). This vector is of dimension 711, 908× 1. X
and y could now e.g. be used in a (regularised) logistic regression. Such a model
maps rows of the dtm (X) into article classes (y): X 7→ y. Applied to new article
data, the model can then predict whether articles are likely about business topics.
As the variable y is not metric but categorical, these models are referred to as
classifiers in machine learning. Instead of a logistic regression, I use a random
forest which usually perform well in classifications tasks with high dimensional
data (the dtm matrix X has 142, 112 columns each of which is conceptually a
variable). Like in several other parts of this thesis, this uses the Python package
scikit-learn, see Pedregosa et al. (2011). For an in depth discussion of tree based
methods see for example James et al. (2013) or Hastie et al. (2005).

To obtain an approximate idea of how well such a classifier works, I first split the
data into training and test samples. The training dataset is a random sample
of 70% of the labelled articles after 1985. I also construct two test samples:
One test dataset being the remaining 30% of labelled observations from years
after 1985, and the other test dataset being all labelled observations from 1981
to 1985. The second test dataset tries to get a very rough idea of whether the
model becomes worse if it is applied to earlier articles than the ones on which it is
trained. Tables 4.1 and 4.2 show the results of these evaluations and Table 4.7 in
the Appendix depicts the same for the training data itself. The predictions on the
training data depicted in Appendix 4.7 are almost 100% accurate and emphasise
the importance of training and test splits to evaluate these very flexible models.
Yet, the classifier generally seems to work well, also on the test data.4 It achieves

4To be very precise, note hereby that the dtm was built on the full sample. While words
contained in the training but not in the test set should still have zero column values, this
creation of the dtm in one go might influence which infrequent words are or are not deleted.
It might thereby make the predictions better than when dtms were created for the samples
separately as it would be truly out of sample.
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Table 4.1: Confusion matrix for articles classifier (test data from same years as training
data)

Predicted: Business and finance Predicted: Other

True: Business and finance 82037 6196
True: Other 8046 81797

Test accuracy of approximately 0.92. N = 178, 076 test observations.

Table 4.2: Confusion matrix for article classifier (early test data 1981-1985)

Predicted: Business and finance Predicted: Other

True: Business and finance 59215 2553
True: Other 4971 51582

Training accuracy of approximately 0.9364. N = 118, 321 test observations.

high accuracy both when applied to test data from the same years as the training
data and when applied to test data from some earlier years. Of course this has
to be taken with a grain of salt. Language e.g. changes over the decades and the
classifier will perform less well in very early years of the sample which contain
words unknown to it. In summary, although likely worse on the full corpus due to
this and other particularities, the model’s performance on the test data and some
manual readings of its classifications for early years in the sample are generally
encouraging.

After the evaluation, I then train a new random forest model now on the full
711, 908 observations. With this model I predict which articles prior to 1981 were
about business and economics topics. Figure 4.3 depicts the time series of all
cleaned articles and newly predicted business articles. Except for the irregularities
around 1980 also mentioned in Section 4.2 and some other outliers in the cleaned
dataset, the predicted business article count series progresses relatively smoothly
also during decades prior to 1981 (for data from 1981 onwards, the figure depicts
when available the true business articles).

4.3.2 Detecting sentiment

The second step is to detect negative sentiments in these business articles. This
detection of sentiments within predicted business article classes is done with dic-
tionary approaches. In detail, I use three different word lists of only negative
sentiment keywords which generally seem more correlated with economic vari-
ables than their positive counterparts. First, I use the negative part of the senti-

160



Figure 4.3: Cleaned articles and business articles
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ment word lists by Wilson et al. (2005) (hereafter: MPQA) which counts 4, 154

unique terms. In addition, I use the negative sentiment terms by Loughran and
McDonald (2011) (hereafter: LM) which was created to fit financial texts and
contains 2, 355 terms. Lastly, I use an own list of negative sentiment terms which
is substantially shorter (it contains 64 terms) and is tailored towards content in
newspaper business articles. This list is the result of hand reading some articles
which word lists had classified and of some trial and error. It has to be noted
that any such word list creation is prone to over-fitting and has to stand the test
truly out of sample. For the sample considered here, the reduced word list shows
that already a relatively small amount of reasonable words might be carrying
a substantial fractions of the signal. A full lists of the words contained in this
reduced word list is provided in Appendix 4.7.5. In future research, it would be
interesting to, instead of using word lists, also train a second classifier model to
detect negative articles. Yet, one option would require to first manually label
many business articles into “negative” or “not negative” to then train a model on
them.

4.4 Results

For each word list, I compute an index by dividing the number of negative words
in a given month by the total amount of words contained in all articles. This
allows to create 6 indices: For each word list, an index based on all articles and
an index based on only (predicted) business articles.
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Figure 4.4: Correlations with GDP

N = 289 observations from Q2 1947 to Q2 2019. The indices are used in levels (i.e. the share
of their words). Monthly values are then averaged to obtain quarterly values. GDP in quarterly
percentage differences.

A first question is whether the classification into business articles can help to
increase correlation of such indicators with aggregate variables.5 The table shown
in Figure 4.4 seems to indicate this is the case. All three word lists in fact have
higher correlations (in absolute value) with GDP since 1947 if only the business
articles are considered. In the correlations presented in this paper, indices are in
levels (monthly values averaged to obtain quarterly ones), GDP and investment
are in quarterly percentage differences.

As particularly the MPQA based index seems to trend in the last years (depicted
in Appendix 4.7.7), I also compute the same table for index values which have
been divided by their mean level over a rolling window of 20 years in Appendix
4.7.6. The order of correlations still looks similar. I therefore choose the reduced
word list on business articles as the primary index in this paper. Its resulting
index of business and economic sentiments since 1852 is depicted in Figure 4.5.

Several crises over the 20th century are well visible, for example the Great Depres-
sion at the end of the 1920s or the Great Recession 2007-2009. In addition to this
index, I also provide yearly Figures of the MPQA and LM indices in Appendix
4.7.7.

Another key question is how such an index compares to existing business sen-
timent indicators. For this I compute correlations of the index with GDP and
investment and compare it to historical data of the “Manufacturing Business Out-

5GDP and investment figures have been obtained from Federal Reserve Economic Data by
the St. Louis Fed.

162



Figure 4.5: NYT sentiment index
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look Survey” from the Philadelphia Fed over the same time period.6 Outcomes
are shown in Table 4.3, for the full correlations between indices see Appendix
4.7.8.

Table 4.3: Correlations with Philadelphia Fed index since Q3 1968

GDP Investment

Philadelphia Fed index 0.669646 0.641193
NYT business index -0.446995 -0.339248

“Philadelphia Fed index” refers to “Manufacturing Business Outlook Survey”. N = 204 quarterly
observations from Q3 1968 to Q2 2019

A similar table depicts the newspaper index against a frequently used current
indicator, the Purchasing Manager Index (PMI): In detail, I use the “US Man-
ufacturing Output Index”. Correlations are from 2007 onwards when the PMI
data was available.7 Sample sizes are too short to draw strong conclusions and
outcomes also depend on the word list in use. Yet, it seems that comparable
approaches applied to richer business news data could yield interesting results.

Table 4.4: Correlations with PMI and Philadelphia Fed index since Q2 2007

GDP Investment

PMI Manufacturing index 0.759394 0.789468
Philadelphia Fed index 0.698511 0.613373
NYT business index -0.720211 -0.585184

“PMI” refers to the “PMI US Manufacturing Output Index”. N = 49 quarterly observations
from Q2 2007 to Q2 2019

4.5 Extensions

A key feature of sentiment indices obtained from textual data is that they con-
tain much wider information then just the index value itself. In the following, I
provide a stylised example of this by looking into words which trended in only

6For this data see https://www.philadelphiafed.org/research-and-data/
regional-economy/business-outlook-survey/historical-data; I use ’gacdfsa’, the
seasonally adjusted monthly general activity diffusion index; accessed 30.09.2019

7I am grateful to IHS Markit for sharing the US PMI data with me for this research project.
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negative business articles during recessions.8 This is done with the following
simple approach: In the subset of business articles detected as having negative
sentiment in a given recession, I compute the frequencies of words. Then I do
the same for all negative sentiment business articles 10 years prior to the crisis of
interest. The difference in the two word frequency distributions during crisis and
reference period allows to detect terms which trended in the crisis. I then delete
all words except for nouns and names.9 Furthermore, I delete all words from the
sentiment list (these are contained in the articles by construction) and I delete
a further list of frequent terms with limited information. See Appendix 4.7.9 for
these terms and a discussion. Finally, the words corresponding to the remaining
100 highest frequency differences are depicted in a word cloud.

The shape of these clouds changes with the assumptions made and the approach
can only give a rough overview. Yet, outcomes look reasonable across several
recessions. Figure 4.6 shows the set of trending words in negative business articles
in the Great Depression. The cloud emphasises a world wide crisis with significant
banking component. Further illustrations of the approach are Figure 4.7 which
indicates that the 1973-1975 recession must have been an energy crisis, or Figure
4.8 which is in line with expected terms for the Great Recession such as “credit”,
“bank”, or “mortgage”. For completeness, I add such trend clouds for all NBER
recessions starting from 1865 in Appendix 4.7.9. For the crisis in 1907-1908 for
example, the plot suggest that it was a banking crisis (Figure 4.16 (a)). In fact
this particular recession is referred to as the “Bankers’ Panic” or “Knickerbocker
Crisis”. The trend clouds for earlier years, however, are less clear. Besides worse
data quality for earlier years, one key reason is likely that word clouds only
depict content from negative business articles and only few of the shorter articles
in earlier years are both predicted to be about business topics and also contain
at least one of the negative sentiment keywords from the short list. The early
word clouds are therefore based on particularly little data. Related methodologies
could also be used today rolling forward to quickly visualise newly trending terms
in negative business content at high frequency.

8Negative business articles here are defined as those articles which have a (predicted) busi-
ness label and contain at least one negative sentiment word from the short reduced word list.

9To be precise, I delete all words which are not nouns or “unknown” after checking them
with NLTK’s wordnet in Python, so e.g. names that are the same as verbs or adjectives will
be deleted and some other errors will likely result through this automation.

165



Figure 4.6: Trending words in negative articles - Great Depression

Figure 4.7: Trending words in negative articles - NBER recession 1973 to 1975

Figure 4.8: Trending words in negative articles - Great Recession
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4.6 Conclusion

This paper discussed how data from historical newspapers can be used to ap-
proximate business sentiment indicators for times where such indicators were not
available. Using a textual classifier, I first estimated which articles where likely
about business topics. A word list with negative sentiment terms then approx-
imated the sentiment in these articles. Correlations of the resulting index with
aggregate variables and other indicators were discussed. In addition, stylised ev-
idence of trending content present during crises in business articles with negative
sentiments was presented. Similar methods can also be used to detect sentiments
in real time when applied to data today, e.g. when it is unknown which texts
cover business content. Approaches such as the short negative sentiment word
list used here, are thereby more vulnerable to over-fitting than other approaches.
In future research it could be particularly interesting to extend the methodology
of this short paper to study sector specific long run historical sentiments. It could
also be helpful to train a second classifier to learn predicting sentiments instead
of using dictionaries (e.g. trained on a large database of business articles hand
assigned to sentiments). All methods discussed here would also likely benefit from
larger amounts of newspaper data than the short article snippets available in the
public archive of only the NYT. Yet, as of now, other major newspapers have not
provided comparable free databases. With large amounts of data and potentially
based on sentiment classifiers, related approaches could be interesting to further
study long run historical economic sentiments since the nineteenth century.
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4.7 Appendix

4.7.1 NYT archive common materials

Table 4.5: Common material in the NYT archive over decades
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page indicators from 1980 onwards are, among others, also stored in the section information
available the archive from then. 170



4.7.2 Archive caveats

Figure 4.9: Counts in categories that store main articles
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The main class which contains articles switches from the 1980s onwards, however, also for one
year before.

Figure 4.10: Duplicates
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In the data downloaded from the API, there seem to be substantial duplicates in irregular inter-
vals.
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Figure 4.11: Front page
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Until 1980 there is a category in type of material which indicates front pages, however, it stops
to exist. In subsequent years this information can be found in the section information. Yet, for
the most recent years it also seems to disappear from there.
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4.7.3 Cleaned article counts

Table 4.6: Cleaned overall articles and (predicted) business articles

All articles Business articles

1852 12902 1096
1853 14817 1346
1854 13855 1270
1855 12472 982
1856 12718 1164
1857 12931 1505
1858 12202 1178
1859 10312 901
1860 14405 1721
1861 20927 2214
1862 19368 1729
1863 15527 1330
1864 14916 1334
1865 16573 1794
1866 16663 1588
1867 17907 1912
1868 19529 1716
1869 25785 3100
1870 23049 2615
1871 23915 2798
1872 26101 2822
1873 27552 3686
1874 32595 3790
1875 30956 3664
1876 31715 3568
1877 35262 4588
1878 39041 5033
1879 40660 4787
1880 36852 3823
1881 39117 4401
1882 40918 5144
1883 48892 6209
1884 51565 6918
1885 50233 6553
1886 50356 6533
1887 49589 6941
1888 51401 7374
1889 50228 6975
1890 34045 4130
1891 35822 4468
1892 40689 4650
1893 38734 6109
1894 38959 5698
1895 54104 5571
1896 42841 5100
1897 48874 6447
1898 51358 6297
1899 51474 6783
1900 55560 8077
1901 52201 9312
1902 50430 9586
1903 50681 9619
1904 40824 6241
1905 39314 6143
1906 37663 6834
1907 44814 7616
1908 43806 6832
1909 44122 6733
1910 52157 9230
1911 49239 7434
1912 54169 8936
1913 53749 9027
1914 58067 9752
1915 58977 9813
1916 51423 8803
1917 64434 12969
1918 63237 12841
1919 68403 13517
1920 78259 16741
1921 91188 22203
1922 96967 23492
1923 69616 15797
1924 71891 16207
1925 81508 18391
1926 104911 23677
1927 134244 32067
1928 147395 33702
1929 153072 36897
1930 152170 34934
1931 148543 36319
1932 115005 28609
1933 125223 34190
1934 131748 34410
1935 132219 34081

All articles Business articles
1936 135854 33237
1937 161444 38033
1938 149268 37036
1939 146343 35298
1940 141941 33556
1941 133493 32095
1942 117799 27126
1943 105512 25335
1944 99616 23918
1945 113708 27376
1946 130312 31605
1947 121921 30823
1948 117610 28138
1949 119986 29557
1950 141642 32217
1951 142973 32191
1952 120500 27219
1953 114932 25594
1954 112024 25678
1955 111401 26145
1956 129162 27464
1957 127703 26235
1958 110631 24374
1959 112390 25211
1960 115081 25222
1961 110434 24848
1962 125122 25151
1963 103775 21767
1964 105231 22142
1965 95388 20888
1966 118732 23531
1967 110892 21618
1968 92761 18800
1969 84469 17266
1970 91625 17269
1971 74701 16425
1972 77734 15521
1973 92523 17146
1974 91679 19342
1975 85305 17761
1976 80835 15216
1977 79910 15494
1978 58403 11945
1979 72031 16534
1980 109289 24971
1981 68518 13435
1982 62899 11953
1983 61514 11739
1984 64362 12426
1985 62508 12215
1986 65498 12630
1987 61582 11718
1988 61568 12936
1989 58044 12539
1990 56157 12179
1991 51136 10976
1992 44235 7888
1993 42644 6954
1994 41132 6838
1995 44588 7840
1996 49102 9775
1997 43551 5998
1998 46417 6718
1999 47457 8111
2000 51459 9143
2001 54898 9869
2002 57107 9956
2003 54911 9330
2004 52270 8191
2005 50209 7856
2006 65015 10086
2007 63190 11710
2008 55218 10654
2009 50795 9492
2010 47933 9001
2011 47903 8799
2012 44783 7611
2013 38131 6674
2014 40896 6958
2015 41507 7648
2016 42273 7022
2017 37123 5095
2018 32528 3715
2019 21445 2275
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4.7.4 Confusion matrix training data

Table 4.7: Training data confusion matrix for random forest business article classifier

Predicted: Business and finance Predicted: Other

True: Business and finance 205951 2
True: Other 9 209549

Training accuracy of approximately 1. N = 415, 511 training observations.

4.7.5 Reduced word list

Short business sentiment word list consisting of 64 terms.

’alarming’, ’bad’, ’bankrupt’, ’bankruptcy’, ’concerned’, ’concerning’, ’concerns’,
’crises’, ’crisis’, ’depressed’, ’depression’, ’deteriorate’, ’deteriorated’, ’deterio-
rates’, ’deterioration’, ’dire’, ’disappoint’, ’disappointed’, ’disappointing’, ’disap-
points’, ’downturn’, ’fail’, ’failed’, ’failing’, ’failings’, ’fails’, ’failure’, ’failures’, ’in-
solvency’, ’insolvent’, ’layoff’, ’loss’, ’losses’, ’pessimistic’, ’recession’, ’recession-
ary’, ’recessions’, ’slowdown’, ’slowdowns’, ’sluggish’, ’slump’, ’stagnate’, ’stag-
nated’, ’stagnates’, ’stagnating’, ’stagnation’, ’struggle’, ’struggled’, ’struggles’,
’struggling’, ’troubled’, ’weak’, ’weaken’, ’weakened’, ’weakening’, ’weaker’, ’weak-
est’, ’worried’, ’worries’, ’worry’, ’worrying’, ’worse’, ’worsen’, ’worsening’

4.7.6 Heatmap normalised values

Figure 4.12: Correlations with GDP

N = 289 observations from Q2 1947 to Q2 2019. Index values have been normalised by the
mean of the last 20 years.
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4.7.7 Indices of different word lists

Figure 4.13: Yearly NYT index based on the MPQA negative word list
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Figure 4.14: Yearly NYT index based on the LM negative word list
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4.7.8 Correlations with business indicators

Table 4.8: Correlations with Philadelphia Fed index since Q3 1968

Phil. Fed Index GDP Investment NYT business index

Phil. Fed Index 1.000000 0.669646 0.641193 -0.486263
GDP 0.669646 1.000000 0.817478 -0.446995
Investment 0.641193 0.817478 1.000000 -0.339248
NYT business index -0.486263 -0.446995 -0.339248 1.000000

“Philadelphia Fed index” refers to “Manufacturing Business Outlook Survey”. N = 204 quarterly
observations from Q3 1968 to Q2 2019.
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Table 4.9: Correlations with PMI and Philadelphia Fed index since Q2 2007

PMI GDP Investment NYT index Phil. Fed index

PMI 1.000000 0.759394 0.789468 -0.772415 0.746871
GDP 0.759394 1.000000 0.818107 -0.720211 0.698511
Investment 0.789468 0.818107 1.000000 -0.585184 0.613373
NYT index -0.772415 -0.720211 -0.585184 1.000000 -0.833448
Phil. Fed index 0.746871 0.698511 0.613373 -0.833448 1.000000

“PMI” refers to the “PMI US Manufacturing Output Index”. N = 49 quarterly observations
from Q2 2007 to Q2 2019.

4.7.9 Trending words in NBER recessions

All words from the sentiment list are omitted from the following word clouds as
by definition all articles contain them. Furthermore, I mute a list of words which
have arguably relatively low information content, however are very frequently
trending, e.g. because of referring to dates or quantities. I also exclude some other
frequently trending words such as e.g. those related to firms such as “company”.
Unlike “bank” (which I do not exclude) “company” has arguably much lower
information as in almost all recessions firms make lower profits, however, only
some recessions are banking crises. The full list of additionally excluded words is
(with the only exception being 2001 where some additional terms related to the
9/11 attacks are excluded to make the business content of the recession visible):

[’january’, ’februray’, ’march’, ’april’, ’may’, ’june’, ’july’, ’august’, ’septem-
ber’, ’october’, ’november’, ’december’, ’jan’, ’feb’, ’ap’, ’may’, ’jun’, ’jul’, ’aug’,
’sep’, ’sept’, ’oct’, ’nov’, ’dec’, ’two’, ’three’, ’four’, ’five’, ’six’, ’seven’, ’eight’,
’nine’, ’ten’, ’first’, ’second’, ’third’, ’fourth’, ’fith’, ’sixth’, ’seventh’, ’eight’,
’ninth’, ’tenth’, ’percent’, ’percentage’, ’million’, ’billion’, ’today’, ’yesterday’,
’day’, ’week’, ’month’, ’quarter’, ’quarters’, ’year’, ’monday’, ’tuesday’, ’wednes-
day’, ’thursday’, ’friday’, ’saturday’, ’sunday’, ’fell’, ’rose’, ’raise’, ’reports’, ’rept’,
’briefing’, ’point’, ’points’, ’says’, ’cent’, ’cents’, ’mr’, ’mrs’, ’ms’, ’profit’, ’sales’,
’revenue’, ’prices’, ’price’, ’business’, ’company’, ’firm’]
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Figure 4.15: Trending words in negative business articles - NBER recessions (I/III)

(a) 1865 to 1867 (b) 1869 to 1870

(c) 1873 to 1879 (d) 1882 to 1885

(e) 1887 to 1888 (f) 1890 to 1891

(g) 1893 to 1894 (h) 1895 to 1897

(i) 1899 to 1900 (j) 1902 to 1904
a

aFor start and end months of the word clouds, see the NBER US Business Cycle Expansions
and Contractions list https://www.nber.org/cycles.html.
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Figure 4.16: Trending words in negative business articles - NBER recessions (II/III)

(a) 1907 to 1908 (b) 1910 to 1912

(c) 1913 to 1914 (d) 1918 to 1919

(e) 1920 to 1921 (f) 1923 to 1924

(g) 1926 to 1927 (h) 1937 to 1938

(i) 1945 to 1945 (j) 1948 to 1949
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Figure 4.17: Trending words in negative business articles - NBER recessions (III/III)

(a) 1953 to 1954 (b) 1957 to 1958

(c) 1960 to 1961 (d) 1969 to 1970

(e) 1980 to 1980 (f) 1981 to 1982

(g) 1990 to 1991 (h) 2001 to 2001
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