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Abstract

This thesis consists of three chapters on the industrial organization of financial intermedia-

tion.

The first chapter, which is co-authored with Jamie Coen, considers the interbank market
and how it should be regulated. The interbank network, in which banks compete with
each other to supply and demand financial products, creates surplus but may also result in
risk propagation. We examine this trade-off by setting out a model in which banks form
interbank network links endogenously, taking into account the effect of links on default risk.
We estimate this model based on novel, granular data on aggregate exposures between banks.
We find that the decentralised interbank network is not efficient, primarily because banks do
not fully internalise a network externality in which their interbank links affect the default risk
of other banks. A social planner would be able to increase surplus on the interbank network
by 13% without increasing mean bank default risk or decrease mean bank default risk by 4%
without decreasing interbank surplus. We propose two novel regulatory interventions (caps

on aggregate exposures and pairwise capital requirements) that result in efficiency gains.

The second chapter considers the effect of the business cycle on outcomes in the mutual
fund industry. The business cycle induces turnover in mutual funds: they exit in recessions
and enter in recoveries. The effect of this firm turnover on welfare depends on a key trade-
off: on the one hand, the business cycle “cleanses” the market of low quality exiting funds
and replaces them with entrants that may on average be higher quality. On the other
hand, the entrants have no returns history and so investors have less precise beliefs about
their ability, where this “information loss” leads to misallocation that harms welfare. 1
examine this trade-off by estimating a structural model in which rational investors form and
update beliefs about competing mutual funds that endogenously choose to enter and exit
the market. I estimate this model using data on US mutual funds. I find that the business
cycle has material, persistent effects that are negative in the short-term but turn positive as

the effect of information loss decays over time.

The third chapter considers local competition between mutual funds. Mutual funds with
similar investment strategies compete with each other for investment opportunities. I set out
a model of demand for mutual funds in which (i) funds are located within a network depend-
ing on similarities in their investment strategies and (ii) funds impose negative spillovers on

each other through this network. I structurally estimate this model using data on US equity



mutual funds. I identify these network spillovers based on how investors in a given mutual
fund respond to the returns performance of its competitors. I find that local competition
has a material impact on fund size, in that absent competition the median fund would be
20% bigger, and on cross-sectional variation in size. I perform counterfactual simulations in
which I demonstrate that luck can play an important role even when funds are skilled and
investors are rational: I find that luck accounts for 9% of cross-sectional variation in mutual

fund size.
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Chapter 1:
A structural model of interbank network formation and

contagion

with Jamie Coen.!

The interbank network, in which banks compete with each other to supply and demand
financial products, creates surplus but may also result in risk propagation. We examine this
trade-off by setting out a model in which banks form interbank network links endogenously,
taking into account the effect of links on default risk. We estimate this model based on
novel, granular data on aggregate exposures between banks. We find that the decentralised
interbank network is not efficient, primarily because banks do not fully internalise a network
externality in which their interbank links affect the default risk of other banks. A social plan-
ner would be able to increase surplus on the interbank network by 13% without increasing
mean bank default risk or decrease mean bank default risk by 4% without decreasing inter-
bank surplus. We propose two novel regulatory interventions (caps on aggregate exposures

and pairwise capital requirements) that result in efficiency gains.

!The views in this paper are those of the authors, and not necessarily those of the Bank of England or
its committees. We are particularly grateful to Alessandro Gavazza and Christian Julliard for many helpful
discussions. We are also grateful for comments by seminar participants at the Bank of England, the Federal
Reserve Bank of New York, the London School of Economics, Princeton, Stanford, the Toulouse School of
Economics, Universidad Pompeu Fabra, Queen Mary University of London, and conference participants at
the RES Junior Symposium 2019 and EARIE 2019. We are grateful to the Bank of England for providing
the data. Both authors acknowledge the financial support of the Economic and Social Research Council.
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1.1 Introduction

Direct interconnections between banks are important in two ways. First, these intercon-
nections fulfill a function, in that there are gains to trade. The interconnection could, for
example, involve providing liquidity or acting as the other party in a hedging transaction,
which may result in surplus on both sides of the trade. Second, interconnections can open
up at least one side of the transaction to counterparty risk: a lender, for example, runs the
risk that the borrowing bank will not pay it back. Both sides of this trade-off were important
during the financial crisis and remain important today, and consequently there is significant

debate about optimal regulation in this context (Yellen, 2013).

We consider the following fundamental economic questions. How does the network of
direct interconnections between banks, which we term the interbank network,? affect systemic
risk? How do banks form the interbank network, given the effect of such exposures on
their risk? What inefficiencies exist in network formation? The answers to these economic
questions then lead us to two questions about regulation. Given equilibrium responses by
banks, is regulation effective in reducing default risk? If it does reduce default risk, does it
do so efficiently in a way that preserves interbank surplus? Understanding the equilibrium
effect of prospective regulation on outcomes in this market is of first-order importance, but

is a difficult problem because banks respond endogenously to any changes in regulation.

We answer these questions by estimating a structural equilibrium model in which banks
form the interbank network endogenously, taking into account the effect of their choices
on their default risk. The key mechanism in this model is that when a bank takes on an
exposure through the interbank network it earns a return, but it may also become riskier,
which endogenously increases its funding costs. We estimate this model based on novel, rich
Bank of England data on interbank exposures, and show that the model fits the data well

both in and out of sample.

We are the first, to our knowledge, to estimate a structural model of the trade-off between
surplus on the interbank network and the causal effect of the network on bank default risk.
This allows us to make the following contributions: (1) we show how standard measures of
bank systemic importance are biased, (2) we quantify the inefficiency of interbank network
formation and (3) we examine the equilibrium effects of regulation, and propose alternative

regulation that is more efficient.

2The “interbank market” is often used to describe short-term (often overnight) lending between banks.
We use the “interbank network” more generally to cover any form of direct interconnection between banks.
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The starting point for our work is Bank of England data on interbank exposures. These
data are collected by the Bank of England through periodic regulatory surveys of 18 global
banks from 2012 to 2018, in which they report the exposures they have to their most im-
portant banking counterparties. The data are novel, relative to the data commonly used in
this literature, in two ways that are important for our context: (1) the data include a broad
range of instruments, making them a reasonable proxy for a bank’s total exposure to another
bank and (2) the data contain rich detail on the types and characteristics of the instruments
that make up each exposure. We set out various empirical facts about the network that
inform our work, the most important of which is that there is significant variation in the size
of exposures between banks, but not much variation in the presence of exposures: in other

words, the network is dense but heterogeneous.

The features of our data and the empirical facts we observe guide our modelling choices
in the following ways. First, the breadth of the data allows us to specify and estimate an
empirical model of the effect of exposures on default risk, in a way which would not be feasible
if we only observed exposures relating to a single instrument that is only a small subset of
total exposures. Second, the fact that we observe a dense, heterogeneous network leads us to
consider heterogeneity in marginal cost, in contrast to those parts of the empirical networks
literature that seek to explain sparse network structures using fized costs (Craig and Ma,
2019). Finally, the granularity of our data allows us to specify and then estimate a rich
model of network formation, with a focus on allowing for as much observed and unobserved

heterogeneity as possible.

With this general guidance in mind, we set out a model consisting of three parts: (1) the
default risk process that relates the default risk of a bank to that of other banks and the
exposures between them, (2) the demand for interbank financial products and (3) their

supply, where demand and supply together determine network formation.

We model the default risk process as being spatially autocorrelated, such that bank i’s
default risk depends on its fundamentals and on its interbank exposures. These interbank
exposures can have a hedging effect that reduces default risk, but also a contagion effect that
increases default risk, where the net effect depends on the characteristics of the exposure
and the counterparties involved. We generalise a standard spatially autocorrelated regression
by allowing the strength of the contagion effect to vary across pairs: in other words, some
links are inherently more risky than others, holding all other things (including exposure
size and the default risk of both counterparties) constant. There are various reasons why

this could be the case, the most important of which is risk-sharing: an exposure held by
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bank i to bank j is likely to be particularly risky if the fundamentals of i and j are strongly
positively correlated. This heterogeneous contagion intensity is an important part of our
model. We refer to links with relatively low contagion intensity as “inherently safe” and links
with relatively high contagion intensity as “inherently risky”. The structure of this spatial
autocorrelation is such that in equilibrium a bank’s default risk depends on its exposures,
but also the exposures of its counterparties and of its counterparties’ counterparties (and so

on).

Banks demand interbank financial products to maximise profits from heterogeneous tech-
nologies that take these differentiated interbank products as inputs. Banks supplying finan-
cial products receive a return, but also incur a cost because regulatory capital requirements
mandate that they raise a certain amount of capital for the exposure that they take on when
they supply. The key mechanism in this part of our model is that the cost of capital a bank
incurs is an increasing function of its default risk. This default risk, per the default risk pro-
cess we describe above, is a function of the bank’s exposures, meaning that a bank supplying
financial products endogenously changes its cost of capital when it does so. Heterogeneous
contagion intensity means that this marginal cost varies across pairs: inherently risky links

involve higher marginal cost.

Equilibrium trades and prices depend in an intuitive way on the key parameters of the
model: (1) variation in contagion intensity is a key driver of link formation: inherently safe
links are less costly and therefore more likely to be large, (2) risky banks pay more to be
supplied financial products because contagion means it is more costly to supply them and
(3) risky banks supply less, as their funding costs are higher. The most important source
of market failure is network externalities, in which banks do not fully internalise the effect
that their exposure choices have on the risk (and therefore also the funding cost) of their
counterparties. We show that our model is consistent with the key empirical facts in our

data, as well as some additional stylised facts from the financial crisis.

We estimate our model by matching two groups of moments: moments related to data on
bank default risk and moments related to data on interbank exposures. To represent bank
fundamentals we use, amongst other data, variation in regional equity indices: for example,
we take a shock to a Japanese equity index as a shock that affects Japanese banks more than
European banks. We then use these fundamentals to identify the key parts of our network
formation model and the default risk process. The effect of counterparty risk in the default
risk process depends on equilibrium exposures, which are endogenous. We address this

endogeneity by using insights from the network formation part of our model: the default risk
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process is, by assumption, linear in the fundamentals of banks, but our network formation
game shows that equilibrium network links are non-linear functions of bank fundamentals.
We therefore use non-linear variation in bank fundamentals as instruments for equilibrium

links in the default risk process.

We estimate our model and show that it fits the data well in sample, before testing internal
and external consistency in two ways. Our primary motivation for heterogeneous contagion
intensity is based on risk-sharing, which implies a relationship between the parameters in our
default risk process: links between banks whose fundamentals are closely correlated should
be relatively high risk. We do not impose this relationship in estimation, but instead estimate
these parameters freely and test the relationship post-estimation. We find evidence for risk-
sharing, which we view as evidence of internal consistency. To test external consistency,
we run an out of sample test: we use our model to simulate default risk for 2009 to 2011
and compare it to actual bank default risk, and show that (1) our model replicates some
key patterns in the data and (2) our model outperforms the out of sample fit of a linear

regression of default risk on fundamentals, in a way that the model would predict.

Our results imply that contagion through the interbank network is responsible for, on
average, 9.8% of a bank’s total default risk. We find significant variation in pairwise contagion
intensity: the inherently riskiest links in the network are 50% riskier than the inherently

safest links, holding all other things equal.

We then use our estimated results to answer the key questions set out above. We first
describe two results relating to how the interbank network affects systemic risk. Our first
result is that the overall effect of the interbank network depends on the economic climate:
when bank fundamentals are good, then the hedging effect dominates the contagion effect,
and the interbank network reduces systemic risk. When bank fundamentals are bad, the
opposite is true: the contagion effect dominates the hedging effect and the interbank network

increases systemic risk.

Our second result regarding systemic risk is that heterogeneity in contagion intensity
has an important implication for the identification of systemically important banks within
our network, which in our context means the banks that contribute most to bank default
risk. There are various measures of systemic importance, but in general terms a bank is
deemed systemically important if it has large exposures to other systemically important
banks. Heterogeneous contagion intensity and endogenous network formation together show

why this approach is likely to be flawed: some links are large because they are inherently
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safe. Banks with large links like these would be incorrectly characterised as systemically
important using standard network centrality measures based on unweighted network data.
We propose an alternative measure of systemic importance based on network data that is
weighted by the heterogeneous network effect parameters: an inherently risky (safe) link is
scaled up (down). This weighted centrality measure implies materially different centrality
rankings among banks: the bank that is most systemically important in our sample based
on the unweighted network is only the 5th most systemically important bank based on our

alternative risk-weighted centrality measure.

We then consider the efficiency of the decentralised interbank network, which we do by
deriving an efficient frontier that shows the optimal trade-off between interbank surplus and
bank default risk. We find that the decentralised interbank network is not on the frontier: a
social planner would be able to increase interbank surplus by 13.2% without increasing mean
bank default risk or decrease mean bank default risk by 4.3% without decreasing interbank
surplus. This result is driven by the fact that our empirical results indicate that network
externalities are significant. The social planner internalises the externality by considering
the effect that a given link has on the risk of other banks, with the result that the social
planner would (i) reduce aggregate exposures and (ii) reduce inherently risky exposures by

relatively more than inherently safe exposures.

We then use our model to simulate the equilibrium effects of various forms of regulation,
including a cap on individual exposures (Basel Committee, 2014b, 2018b) and an increase in
regulatory capital requirements (Basel Committee, 2018a). We find that a cap on individual
links is relatively ineffective: it has only a small effect on mean bank default risk, as in
equilibrium banks shift their supply to uncapped links. Furthermore, a cap on individual
links is inefficient, in that it has a large negative effect on interbank surplus, because it
penalises large links that in equilibrium are more likely to be inherently safe. We instead
propose capping aggregate exposures held by each bank, rather than individual exposures:
an aggregate cap is more effective (because it prevents a bank moving capped supply to
another bank) and more efficient (because in equilibrium banks respond to a cap on aggregate
exposures by reducing relatively risky exposures by more than less risky exposures). Our
results suggest that a social planner would strictly prefer our proposed cap on aggregate

exposures to a cap on individual exposures.

We find that a general increase in capital requirements that applies equally across ex-
posures to all banks is effective but inefficient: it decreases mean bank default risk, but at

the cost of reduced interbank surplus. We instead propose a pairwise adjustment to cap-
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ital requirements based on their heterogeneous contagion intensity: we give links that are
inherently risky (inherently safe) greater (lower) capital requirements. In other words, we
propose directly risk-weighting interbank exposures based on contagion intensity, as this tar-
gets regulatory intervention more closely at the network externalities that are the key driver
of inefficiency in our model. Our results suggest that a social planner would strictly prefer

our proposed pairwise capital requirement to a homogenous capital requirement.

We discuss related literature below. In Section 2, we introduce the institutional setting
and describe our data. In Section 3, we set out our model. In Section 4, we describe our
approach to estimation. In Section 5, we set out our identification strategy. In Section 6,
we set out our results. In Section 7, we undertake counterfactual analyses. In Section 8, we

conclude.

1.1.1 Related literature

Our work is related to three strands of literature: (i) the effects of network structure on
outcomes in financial markets, (ii) endogenous network formation in financial markets and

(iii) optimal regulation in financial markets.

There is an extensive literature on the effect of network structure on outcomes in finan-
cial markets, both theoretical (Acemoglu et al., 2015; Ballester et al., 2006; Elliott et al.,
2014) and empirical (Denbee et al., 2017; Eisfeldt et al., 2018; Gofman, 2017; Iyer and Pey-
dro, 2011). Our primary innovation is that we connect this empirical literature with the
literature on network formation, by estimating a model of the effect of network structure
on outcomes (default risk, in our case) simultaneously with a model of network formation.
This allows us to make three contributions. First, using insights from our network formation
model, we are able to directly address the endogeneity of the network when we estimate
network effects, in contrast to large parts of the empirical literature.® Second, it allows us
to consider equilibrium effects in counterfactual scenarios, taking into account how the net-
work would respond endogenously.* Third, by combining a model of network formation with
heterogeneous contagion intensity, we are able to show how existing measures of systemic

importance are biased.

3See De Paula (2017) for a summary.

4Various papers (Eisfeldt et al. (2018) and Gofman (2017), for example) adjust the network arbitrar-
ily (usually by simulating a failure) and show the impact on market outcomes holding network structure
otherwise fixed. In our model, network structure responds endogenously to a counterfactual change.
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There is a growing theoretical literature on network formation in financial markets
(Babus, 2016; Farboodi, 2017; Chang and Zhang, 2018; Acharya and Bisin, 2014; Rahi and
Zigrand, 2013), but little empirical work (Cohen-Cole et al., 2010; Craig and Ma, 2019;
Blasques et al., 2018). Our contribution is that we are the first, to our knowledge, to struc-
turally estimate a model of network formation in which banks trade off gains to interbank
trade against contagion. Importantly, this allows us to quantify the extent of inefficiency in

the market, and to study the implications of network structure for systemic risk.

We also contribute to the literature regarding optimal regulation in financial markets
(Duffie, 2017; Baker and Wurgler, 2015; Greenwood et al., 2017; Batiz-Zuk et al., 2016).
Our primary contribution is that by considering bank default risk we are able to evaluate
bank regulation comprehensively. Various papers consider the effect of bank regulation
on outcomes in specific markets,> but without considering bank default risk (which was
arguably the primary focus of much recent banking regulation) it is not possible to draw any
conclusions about whether regulation is optimal. Furthermore, our network formation model
allows us to assess the equilibrium effects of regulation, taking into account the endogenous

response of the network.

1.2 Institutional setting and data

We first describe the institutional setting of our work, including the relevant regulation. We
then describe our data. We then use this data to set out some empirical facts that will guide

our approach to modelling.

1.2.1 Institutional setting

Direct connections between banks fulfill an important function: “there is little doubt that
some degree of interconnectedness is vital to the functioning of our financial system” (Yellen,
2013). Debt and securities financing transactions between banks are an important part
of liquidity management, and derivatives transactions play a role in hedging. There is,
however, widespread consensus that direct connections can also increase counterparty risk,
with implications for the risk of the system as a whole (see, for example, Acemoglu et al.

(2015)). This can be thought of, in loose terms, as a classic risk/reward trade-off. The

®Including Kashyap et al. (2010) on bank lending, Kotidis and Van Horen (2018) on the repo market
and Bessembinder et al. (2018) and Adrian et al. (2017) on the bond market.
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importance of both sides of this trade-off is such that direct interconnections between banks
are the subject of extensive regulatory and policy-making scrutiny, whose aim is to: “preserve
the benefits of interconnectedness in financial markets while managing the potentially harmful
side effects” (Yellen, 2013).

After the 2008 financial crisis, a broad range of regulation was imposed on these markets.
In this paper, we focus on two in particular: (1) caps on large exposures and (2) increases in
capital requirements. We focus on these two because we think they are most relevant to our
underlying economic research question, which is to examine the efficiency with which this

risk /reward trade-off is balanced.

1.2.1.1 Large exposures cap

In 2014 the Basel Committee on Banking Supervision (BCBS) set out new standards for the
regulatory treatment of banks’ large exposures (Basel Committee, 2014b, 2018b). The new
regulation, which came into force in January 2019, introduces a cap on banks’ exposures: a
bank can have no single bilateral exposure greater than 25% of its capital.’. For exposures

held between two “globally systemic institutions”, as defined in the regulation, this cap is
15%.

These requirements represent a tightening of previous rules, where they existed. For
example, in the EU exposures were previously measured relative to a more generous measure
of capital and there was no special rule for systemically important banks (AFME, 2017;
European Council, 2018).

1.2.1.2 Capital requirements

Banks are subject to capital requirements, which mandate that their equity (where the
precise definition of capital, Common Equity Tier 1, is set out in the regulation) exceeds a
given proportion of their risk-weighted assets. Additional equity in principle makes the bank
more robust to a reduction in the value of its assets, and so less risky. The total amount of
capital E;; that bank ¢ is required to raise to cover asset j is the product of the value of the

asset A;, its risk-weighting p;; and the capital requirement per unit of risk-weighted asset \;:

Eij = pijhiA;

SWhere the precise definition of capital, in this case “Tier 1 capital”, is set out in the regulation
(Basel Committee, 2014b, 2018b)
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The risk-weights, p;;, can be calculated using banks’ internal models or based on a stan-
dardised approach set out by regulators. Whilst risk-weights from banks’ internal models
are likely to vary by counterparty, the standardised approach is based on the credit rating
relevant to the asset, and for the significant majority of interbank transactions between ma-
jor banks this will be AAA or AA, the highest credit rating. In other words, for interbank

transactions the standardised approach involves very little variation across i or j.”

In 2013 all banks in our sample faced the same capital requirement per risk-weighted unit,
\i, which was 3.5%.% Since then, regulators have changed capital requirements in three ways.
First, and most importantly, the common minimum requirement that applies to all banks
has increased significantly. Second, capital requirements vary across banks, as systemically
important banks face slightly higher capital requirements than non-systemically important
banks. Third, capital requirements vary countercylically, in that in times of financial distress
they are slightly lower (Basel Committee, 2018a). The result of these changes is that mean
capital requirements for the banks in our sample has increased significantly, from 3.5%
to over 9% in 2019. There have also been changes to the definition of capital and the
measurement of risk-weighted assets, with the general effect of making capital requirements

more conservative.

1.2.2 Data

1.2.2.1 Exposures

We define in general terms the exposure of bank i to bank j at time t as the immediate
loss that i would bear if j were to default, as estimated at time t. The way in which this is
calculated varies from instrument to instrument, but in general terms this can be thought
of as (1) the value of the instrument, (2) less collateral, (3) less any regulatory adjustments
intended to represent counterfactual variations to value or collateral in the event of default
(for example, regulation typically requires a “haircut” to collateral when calculating expo-
sures, as in the event of default any financial instruments provided as collateral are likely to

be worth less).

"Banks are also subject to a leverage ratio requirement (Basel Committee, 2014a) which does not weight
exposures according to risk.

8We use the minimum capital requirements as published by Basel Committee (2011) as the minimum
requirements for banks. National supervisors can add discretionary buffers on top of these requirements,
which we do not include in our empirical work.
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We use regulatory data on bilateral interbank exposures, collected by the Bank of Eng-
land. The dataset offers a unique combination of breadth and detail in measuring exposures.
Much of the existing literature (such as Denbee et al. (2017)) on empirical banking networks
relies on data from payment systems. This is only a small portion of the activities that
banks undertake with each other and is unlikely to adequately reflect the extent of interbank

activity or the risk this entails.

18 of the largest global banks operating in the UK report their top 20 exposures to banks
over the period 2011 to 2018. Banks in our sample report their exposures every six months
from 2011 to 2014, and quarterly thereafter. They report exposures across debt instruments,
securities financing transactions and derivative contracts. The data are censored: we only
see each bank’s top 20 exposures, and only if they exceed £5 million. The data include
granular breakdowns of each of their exposures: by type (e.g. they break down derivatives
into interest rate derivatives, credit derivatives etc.), currency, maturity and, where relevant,

collateral type.

We use this dataset to construct a series of snapshots of the interbank network between
these 18 banks. We calculate the total exposure of bank i to bank j at time t, which we denote
Cijt, as the sum of exposures across all types of instrument in our sample. We winsorize
exposures at the 99th percentile. The result is a panel of N = 18 banks over T' = 21 periods
from 2011 to 2018 Q2, resulting in N(N — 1)T" = 6,426 observations. For each Cjj;, we use
the granular breakdowns to calculate underlying “exposure characteristics” that summarise
the type of financial instrument that make up the total exposure. These 8 characteristics,

which we denote d;j;, relate to exposure type, currency, maturity and collateral type.

Although the dataset includes most of the world’s largest banks, it omits banks that do
not have a subsidiary in the UK.? Furthermore, for the non-UK banks that are included in
our dataset, we observe only the exposures of the local sub-unit, and not the group. For

non-European banks, this sub-unit is typically the European trading business.

1.2.2.2 Default risk

We follow Hull et al. (2009) and Allen et al. (2011) in calculating the (risk-neutral) probability
of bank default implied by the spreads on publicly traded credit default swaps (data obtained

from Bloomberg). This represents the market’s estimate of bank default risk, as well as wider

9This is particularly relevant for some major European investment banks, who operate branches rather
than subsidiaries in the UK, and hence do not appear in our dataset.
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effects that are unrelated to the default risk of an individual bank (notably variations in the

risk premium):

Prob(De faultyr) = 100(1 — (1 + (CDS;r/10000)(1/rr)) T

where rr is the assumed recovery rate, T" is the period covered by the swap and C'DS;r

is the spread.

1.2.2.3 Other data

We supplement our core data with the following:

e Geographic source of revenues for each bank from Bloomberg. Bloomberg summarises
information from banks’ financial statements about the proportion of their revenues
that come from particular geographies, typically by continent, but in some cases by

country.

e Macro-economic variables from the World Bank Global Economic Monitor, a panel of

348 macro series from a range of countries.

e Commodity prices from the World Bank “Pink Sheet”, which is a panel of 74 com-

modity prices.

e S&P regional equity indices for US, Canada, UK, Europe, Japan, Asia, Latin America.

1.2.3 Summary statistics

The data reveal certain empirical observations about exposures and how they vary cross-
sectionally and inter-temporally in our sample: (1) exposures in our data are large, (2) our
observed network is dense and reciprocal, (3) network links are heterogeneous in intensity
and characteristics and (4) the network has become more concentrated over our sample

period. We discuss below how we use these empirical observations to guide our modelling.

Empirical fact 1: Exposures are large

The primary advantage of our data, relative to others used in the literature, is that it is

intended to capture a bank’s total exposures. The largest single exposure in our sample is
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Figure 1.1: The aggregate network in H1 2015
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Note: This is the network of aggregate exposures between banks in H1 2015. Each node is a
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GBP 7,682m, the largest total exposures to other banks in a given period is GBP 26, 367m.
The mean exposure is GBP 285m and the mean total exposure to other banks in a given
period is GBP 4,851m.

In this respect, our data has two important advantages over many of the data used in the
literature. First, our dataset is the closest available representation of total exposures, when
most other empirical assessments of interbank connections rely on a single instrument, such
as CDS (Eisfeldt et al., 2018) or overnight loans (Denbee et al., 2017). Second, our data are
on exposures, rather than simply market value, in that when banks report their exposures
they account for collateral and regulatory adjustments. Data based solely on market value

is a representation of bank activity, rather than counterparty risk.

Empirical fact 2: The network is dense and reciprocal

Figure 1.1 shows the network of exposures between banks in 2015 Q2. Our sample is limited
to the core of the banking network, and does not include its periphery. Our observed network
is, therefore, dense: of the N(N — 1)T links we observe in total, only approximately 30% are
0. One implication of the density of the network is that it is reciprocal: of the N(N —1)7T"/2
possible bilateral relationships in our sample, 55% are reciprocal, in that they involve a
strictly positive exposure in each direction (that is, bank i has an exposure to bank j and

bank j has an exposure to bank 1i).

Empirical fact 3: The network is heterogeneous in intensity and characteristics

Although the network is dense and so not particularly heterogeneous in terms of the presence
of links, it is heterogeneous in the intensity of those links (that is, the size of the exposure),
as shown in Figure 1.1. We further demonstrate this in Table 1.1, which contains the results
of a regression of our observed exposures C' on fixed effects. The R? from a regression on it
fixed effects is 0.43: if all of bank i’s exposures in a given time period were the same, then
this would be 1.00. In other words, the low R? indicates that there is significant variation

in the size of exposures.

There is significant persistence in exposures, as set out in Table 1.1, in which we show
that the R? for a regression of Cj;; on pairwise ij fixed effects is 0.67. In other words, a large

proportion of the variation in exposures is between pairs rather than across time.

There is significant variation in product characteristics across banks, in that the average
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Table 1.1: Variation and persistence in network

it jt 1]
Cijt R? = 0.43 0.16 0.67
No. obs 6,426 6,426 6,426

Note: This table shows the R? obtained from regressing observed exposures Cj;; from bank
1 to bank j at time ¢ on dummy variables. jt, for example, indicates that the regressors are
dummy variables for each combination of j and t.

product supplied by each bank varies according to currency, maturity and type. For example,
between 60% and 80% of the exposures held by most banks in our sample relate to derivatives.

For one bank, however, this figure is 95%, and for another it is 15%.

Empirical fact 4: The network has increased in concentration over time

Even though the network is persistent, there is still inter-temporal variation. In particular,
concentration in the interbank network has increased over time, in that the Herfindahl-
Hirshmann index!® over exposure supply has increased, as set out in Figure 1.2. In Figure
1.2, we show that the HHI index and regulatory capital requirements are closely correlated.
It is obviously not possible to draw any causal conclusions from such a graph, but the
relationship between concentration and capital requirements will be an important part of

our model and identification.

Empirical fact 5: Bank default risk has decreased

Our sample runs from 2011 to 2018, and therefore earlier periods feature the end of the
European debt crisis. Bank default risk has broadly reduced across all banks, as we set
out in Figure 1.3. Importantly, though, there is cross-sectional variation across banks, and
inter-temporal variation in that cross-sectional variation. We show this in Figure 1.3, in
which we highlight the default risk of two specific banks. Bank 1 (Bank 2) was in the top
(bottom) quartile by bank default risk in 2011, but the bottom (top) quartile by 2018.

OHHI, = % Zj > sfj, where s;; is the share of bank i in the total supply to bank j: s;; = %
Larger HHI indicates greater concentration. Because of the group-to-unit measurement issue we describe
above, we weight exposures in our calculation of HHI by (ﬁ Do Zj C,j+)~!'. In this sense our measure of
HHI is concentration within the i-bank.
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Figure 1.2: Increased concentration
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Figure 1.3: Inter-temporal and cross-sectional variation in default risk
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banks in our sample, before becoming relatively low risk. The green solid line shows a bank
that went from being relatively low risk to relatively high risk.

26



1.2.4 Stylised facts

Our sample starts in 2011, it does not feature the financial crisis that began in 2008. We
note three features that were observed on the interbank network during the 2008 crisis, on
the basis that a good model of interbank network formation should be able to replicate
what happened during the crisis. First, risky banks were not supplied; in other words, they
experienced lockout (Welfens, 2011). Second, risky banks did not supply, which we loosely
term liquidity hoarding (Gale and Yorulmazer, 2013). Third, in the worst periods of the
financial crisis there was effectively market shutdown in markets for certain instruments, in
that very few banks were supplied anything on the interbank network (Allen et al., 2009;
Afonso et al., 2011).

1.3 Model

We first introduce the setup of the model and notation. We then describe each of the three
parts of the model in turn: the default risk process, demand for financial products and
supply. We then set out the equilibrium of our model. Finally, we consider the implications

of this model for optimal networks.

1.3.1 Setup and notation

There are N banks. At time ¢, the interbank network consists of an N x N directed adjacency
matrix of total exposures, Cy. Cjj; is the element in row i and column j of C¢, and indicates
the total exposure of bank i to bank j at time t. Cy is directed in that it is not symmetric:
bank i can have an exposure to bank j, and bank j can have a (different) exposure to bank
i. For each bank i, d; is an L x 1 vector of product characteristics for the exposures that it

supplies.

pt is an N x 1 vector of bank default risks: the element in position i is the probability
of default of bank i. p¢ is a function of C; and an N x K matrix of bank fundamentals,
which we denote X¢, and which update over time according to some exogenous process. This
function is the default risk process, and the effect of Cy on py represents “contagion”, as we

will define more formally below.

Ciji results in profits to bank i (we term this supply of exposures) and to bank j (demand
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for exposures). These profits depend on bank default risk, in a way we will formalise below.
The equilibrium interbank network C; is formed endogenously based on the supply- and
demand-sides, such that markets clear. Banks choose their supply and demand decisions
simultaneously. For simplicity, there is no friction between changes in bank fundamentals and
the formation of the network: once fundamentals change, the equilibrium network changes

immediately.!!

1.3.2 Default risk process

Understanding the effect of exposures on default risk is a key part of our research question. In
our approach to modelling this default risk process, we are guided by the summary statistics

we set out above in three important ways:

e First, in our dataset the ezposures are large and complete (empirical fact 1), which
means that the exposures could reasonably have an impact on the default risk of the
banks that hold these exposures, in contrast to papers in the literature that observe
exposures relating to a single instrument type (Denbee et al., 2017; Gofman, 2017). In
other words, the size of our observed exposures leads us to consider financial contagion

on default risk through these exposures.

e Second, there is cross-sectional variation in exposure characteristics (empirical fact 3):
in other words, firms are trading different financial products. Some financial products
may not impact default risk in the same way as others: as a trivial example, holding
GBP 100m of senior debt of bank j may have a smaller effect on the default risk of
bank i than holding GBP 100m of junior debt. This empirical fact means that we need

to take a flexible approach to modelling contagion that accounts for this heterogeneity.

e Third, there is cross-sectional variation in bank default risk (empirical fact 5). There
is a broad theoretical literature on the importance of such cross-sectional variation
for financial contagion: the effect of an exposure to bank j on bank i’s default risk is

likely to depend on the extent to which their underlying fundamentals are correlated

1Tt is straightforward to introduce some friction in the timing, such that the network does not update
immediately once fundamentals change. This would allow more detailed consideration of shock propagation
in the short-run, which we define as the interval in which the network has not updated. We consider
these short-run effects in further work, and consider in this paper only the long-run effects of changes in
fundamentals.
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(Glasserman and Young, 2015; Elliott et al., 2018). Our model of contagion, therefore,

needs to be sufficiently flexible to account for this heterogeneity:.

We model a bank’s default risk process as the sum of two components: a set of funda-
mentals and a spatially autocorrelated component whereby bank i’s default risk depends on

its aggregate exposure to bank j, Cjj, and bank j’s default risk, p;;. In matrix form:

Pt = Xt/B —thL—th(I‘oCt)pt—ke?

~ = M= Y—,—,

Default Funda- Hedging Counterparty
risk mentals risk

where p¢ is a N x 1 vector of bank default risks, C; is a N x N directed adjacency
matrix of aggregate pairwise exposures, 3 is a K x 1 vector that represents each bank’s
loadings on a N x K matrix of fundamentals X, ¢ is a N x 1 vector of ones, w > 0 is a scalar
parameter that determines the effect of exposures on default risk through hedging, I' > 0 is
a N x N matrix of parameters that determine the effect of exposures on default risk through
counterparty risk, 7; is a scalar that allows the effect of counterparty risk to vary across time

and o signifies the Hadamard product.

In broad terms, in this model a bank’s default risk depends on its fundamentals and on its
interbank network exposures. The interbank network can decrease bank default risk through
hedging: many lending or derivatives transactions between banks are expressly intended to
hedge risk. The interbank network can also increase bank default risk through counterparty
risk: when a banks takes on an exposure to another bank it runs the risk that the other

bank will default.

More specifically, this is a spatially autocorrelated regression, as is commonly used in
network econometrics (De Paula, 2017), with a generalisation: the parameter governing the
size of counterparty risk, I';;, is allowed to be heterogeneous across bank pairs. Before we
explain the effect of this generalisation, we first define contagion from bank j to bank i as
the partial equilibrium effect that % > 0: that is, the default risk of bank j has a causal
ggz = 1,1';;C}jt, such that the strength
of contagion depends on the size of the exposure and this parameter I';;.

impact on the default risk of bank i. In our model,

I' can be thought of as contagion intensity in that I';y > Ty, implies that % > %
for any common Cj; = Cj,,,. That is, bank i’s default risk is more sensitive to exposures
to bank k than to bank m, holding exposures and fundamentals constant. We refer to links

with relatively low contagion intensity as “inherently safe” and links with relatively high
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contagion intensity as “inherently risky”.

This heterogeneity in contagion intensity could come from three sources. First, it could be
a result of correlations in the underlying fundamentals, as described above, whereby if bank
i and k (m) have fundamentals that are positively (negatively) correlated then exposure Cj
(Cim) is particularly harmful (benign). This implies a relationship between the fundamentals
processes and I';; which we leave open for now, but consider in our empirical analysis. Second,
it could be a result of variations in product characteristics, as described above. This difference
across products could be modelled using a richer default risk process that separately includes
exposures matrices for each instrument type with differing contagion intensities, but this
would introduce an infeasible number of parameters to take to data. Third, it could be a
result of some other relevant pairwise variation that is unrelated to fundamentals or product,
such as geographic location. It could be, for example, that recovery rates in the event of
default are lower if bank i and bank j are headquartered in different jurisdictions, making

cross-border exposures riskier than within-border exposures.

We allow for contagion intensity to vary across time via 7; because there are, in principle,
things that could affect contagion intensity. One of the purposes of the increase in capital
requirement, for example, was to make holding a given exposure Cjj; safer, in the sense of
Modigliani and Miller (1958) (because it means bank i has a greater equity buffer if bank j
defaults). We do not make any assumptions about the relationship between 7, and capital

requirements A at this stage, but consider it in estimation.

As well as resulting in contagion, the interbank network can reduce default risk by al-

lowing banks to hedge. The partial equilibrium net effect of an exposure Cjj; is as follows:

Opi
9C:j0

= —w+ nlypj

An exposure Cjj; is more likely to increase the default risk of bank i if hedging is less
important (because w is small), the counterparty is particularly risky (p;: is large) or the

link is particularly risky (I';; is large).

To find equilibrium default risk we solve for a fixed point in pg. Subject to standard
regularity conditions on I' and C this spatially autocorrelated process can be inverted and

expanded as a Neumann series as follows, which we term the Default Risk Process (“DRP”):

o0

pe = (I— 7T 0Cy) (X8 —wCit +ef) =) (7T 0 Cy)*(XeB — wCit + €f)

s=0
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We motivate our approach further in Appendix A, in which we set out a more primitive
model of default risk, along the lines of Eisenberg and Noe (2001). In this model, a bank’s
value is the sum of its fundamentals and its interbank holdings, and it fails if this value
falls below some critical value. Once a bank fails, it defaults on its interbank obligations
and so reduces the values of its counterparties, resulting in a cascade of bank failures. By
drawing repeatedly from the stochastic process that governs bank fundamentals, it is possible
to calculate default risk as simply the proportion of draws in which bank i fails. In this
model we allow for variations in the correlations of fundamentals across banks, variations
in product riskiness and variations in recovery rates at the pairwise level, each of which we

describe above.

This model is arguably a more natural model of a default risk process, but it is not suitable
for our purposes in two ways: (i) it does not have an analytical solution, which makes it
difficult to combine with a model of network formation in which firms take into account the
effect of their network choices on their default risk and (ii) it is not easily taken to data, in
that we could not separately identify each of these sources of heterogeneity or the critical
values at which bank failures occur. Instead, what we do is simulate data from this model,
and fit our proposed spatial autoregression. We use the results of this exercise to show that
(i) a spatial autoregression fits relatively well and (ii) heterogeneity in contagion intensity
I';; is important. In this sense, our proposed approach can be thought of as a reduced form
representation of this underlying more fundamental model, and I';; can be thought of as a

reduced form representation of these underlying sources of pairwise heterogeneity.

We run alternative specifications of the default risk process as robustness checks to our
results. In particular, we consider an alternative default risk process in which common fun-

damentals (intended to represent the risk premium) do not propagate through the network.

1.3.3 Demand

In our approach to modelling demand we are guided by one important empirical fact: product
characteristics are heterogeneous across banks (empirical fact 3). In other words, banks are

supplying and demanding different financial products. This has two important implications:

e First, this heterogeneity has implications for the specificity with which we model the
payoffs to demanding financial products. For example, if our empirical exposures

were uniquely debt, then we would be able to include a standard model of liquidity
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management on the demand-side (as in Denbee et al. (2017)). If instead our empirical
exposures were uniquely CDS contracts, then we would be able to include a model of
credit risk management (as in Eisfeldt et al. (2018)). Instead, we need to model the
demand-side in a general way that is applicable across the range of financial products

that feature in our data.

e Second, this heterogeneity has implications for how we model competition between
banks. In particular, this heterogeneity means we need to consider the extent to which
exposures supplied by one bank are substitutable for those supplied by another bank

(product differentiation, in other words).

Each j-bank has a technology that maps inputs into gross profit, from which the cost
of inputs is subtracted to get net profits. Inputs are funding received from other banks
Cij,Vi # j and an outside option Cj; designed to capture funding from banks outside our

sample and non-bank sources. Net profits are given by:

N
H][Z = (QJ + 6jt + 6575) Z Cijt

1=0

1 N N N
_5 <B ; ijt + 2 Z Z eikcijtckjt>

i=0 k#i
N
- E 7t Cijt
i=0

where (;; and d;; represent heterogeneity in the sensitivity of the j-bank’s technology to
product i, B governs diminishing returns to scale and 6;; governs the substitutability of
product i and k. Before we motivate our choices about functional form in more detail, it is
helpful to set out what this implies for the j-bank’s optimal actions. Bank j chooses Cgt to
maximise net profit taking interest rates as given, resulting in optimal Cil]?t such that inverse
demand is as follows:

ril])'t = Qj + 5jt — BCijt - Zeikckjt + eocojt + egt

k#1
—— —— ——"
Technology =~ Own-effect Cross-effect Out.Op.

In other words, our functional form assumptions imply that the bank demanding expo-

sures has linear inverse demand.
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We assume that the j-bank has an increasing but concave objective function in the funding
that it receives. We justify its concavity on the basis that the j-bank undertakes its most
profitable projects first (or conversely, if its funding is restricted for whatever reason, it
terminates its least profitable projects rather that its most profitable projects). Concavity
also means that the returns to receiving funding decrease, in that the j-bank only has a

limited number of opportunities for which it needs funding.

The intercept is comprised of three parts: 6, (;; and egt. ;1 ensures that the returns
that the j-bank gets from funding are time-varying. This time variation is left general,
although it could be related to the j-bank’s fundamentals. It could be, for example, that
when the j-bank’s fundamentals are bad then the payoff to receiving funding is greater, in
that the projects being funded are more important (if, for example, it needs this funding
to undertake non-discretionary, essential projects or to meet margin calls on other funding).
This is intended to allow for the importance of the interbank network in times of distress.
The technologies possessed by each j-bank vary by (;;, which governs the importance of the
i-bank’s product to the j-bank’s technology. We allow this technology to be heterogeneous
across pairs. egt is an iid shock to the returns that bank j gets from receiving funding from
bank i.

We also allow for product differentiation, in that the product supplied by bank i may not
be a perfect substitute for the product supplied by bank k. We parameterise this product

differentiation in parameters we denote ;.

1.3.4 Supply

In our approach to modelling the supply side, we are guided by the following empirical
observations: the network we are seeking to model is dense with heterogeneous intensities
(empirical facts 2 and 3). Much of the literature focuses on explaining sparse core-periphery
structures, which are often rationalised by fized costs to link formation (Craig and Ma
(2019), for example, have a fixed cost of link formation relating to monitoring costs). Vari-
ation in fixed cost cannot explain heterogeneity in link intensity, however, so this empirical

observations leads us to focus on heterogeneity in marginal cost instead.

Bank i has an endowment F;; that it can either supply to another bank or to an outside
option. When it supplies its product to bank j it receives return r;;; and incurs a per-unit
cost puc;;. We model this per-unit cost as the cost of the equity that the bank has to raise

to satisfy its capital requirements; that is, when bank i supplies bank j it pays a certain
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rate to raise the necessary equity. We parameterise the cost of equity as a linear function of
the bank’s default risk: c§, = ¢pi: + €5, where €}, is the remaining part of the bank’s cost
of equity that is unrelated to its default risk. The riskier a bank is, the higher the cost of

raising equity:

PUCijr = Nijt  Ciyp = Nijt (dpit + €5y)
—— ~

Per-unit cost Reg’'n Cost of K

where \;j; is the equity bank i needs to raise per-unit of exposure to bank j,'? ¢, is the
cost of raising that equity, p;; is the default risk of bank i, ef, is an error term and ¢ is a

parameter governing the relationship between default risk and cost of equity.

This simple parameterisation has three important implications. First, p;; is endogenously
dependent on bank i’s supply decisions, via the default risk process that we define above. In
other words, when bank i supplies bank j, it takes into account the fact that doing so makes
it riskier and so makes it costlier to raise capital. Second, p; is endogenously dependent on
the supply decisions of other banks, via the default risk process that we define above. In
other words, there are network cost externalities. Third, p; is endogenously dependent on
regulation A;j; through the default risk process described above. In other words, in the spirit
of Modigliani and Miller (1958), an increase in \;j; has two effects on the total cost of capital
for firm i: it increases the amount of capital that the i bank needs to raise, but makes the

bank safer and so makes the cost of a given unit of capital lower.
Bank i’s problem in period t is to choose {C};;}; to maximise the following, taking py;
as given:
I = 115, + 117;

= Z Cijlrije — pucije + efjt] + (B — Z Cije)rioe + I}

J J

J/ (.

Vv Vv
Interbank supply Supply to Out.Op.

such that Cj;; > 0, £ — Zj Cijt > 0 and pucijy = Nije (Opir + €5)-

12For ease of exposition we have collapsed the risk-weighting (p, using the notation from Section 2) and
the capital required per risk-weighted assets (\) into a single parameter, A.
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For interior solutions the first order condition is as follows:

oy Opuci, oL op;
wt + L ==—Cijt = pucj + Z LOpy — = L re

aCZ]t 807,]15 8pzt aCijt
~ ~~ A ~~ o ~~~
MB A Aggregate K cost A D-side cost Out.Op.

The left-hand side is the marginal benefit to i of supplying bank j. The right-hand side is
the marginal cost, which consists of four parts (i) the per-unit cost it pays, (ii) the marginal
change in the per-unit cost, (ii) the marginal change in i’s payoff from demanding interbank

products and (iv) the outside option.

Bank i, when choosing to supply C;;;, therefore balances the return it gets from supplying
against the effect of its supply on its default risk, via the default risk process described above.
Being riskier harms bank i by increasing the price it pays to access capital in two ways. First,
it increases the marginal cost bank i pays when supplying interbank exposures (the second
term in the preceding equation, labelled ‘A Aggregate K cost’). Second, being riskier means
that bank i pays higher interest rates when demanding exposures (the third term in the

preceding equation, labelled ‘A D-side cost’).

1.3.5 Equilibrium

Before considering equilibrium, we summarise what our model implies for the definition of
a bank. In our model, bank i is the following tuple: (Ey,d;;, 6X;, i, I'i): respectively, an
endowment, a set of product characteristics, a set of loadings on fundamentals, a technology
and a set of contagion intensities. In other words, although the model is heavily parame-

terised, it allows for rich heterogeneity among banks.
Definition 1 In this context we define a Nash equilibrium in each period t as: an N X N
matriz of exposures C; and N x 1 vector of default risks py such that markets clear and

every bank chooses its links optimally given the equilibrium actions of other banks.

For interior solutions where Cj;; > 0, market clearing requires that supply and demand

are equal, such that the following equilibrium condition holds, which we term the Equilibrium
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Condition (“EQC”):
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We show our calculations in Appendix C. Note that a bank’s default risk is a function of

Cy, as we set out in the default risk process, which we repeat here for convenience:

o

pi = (I — 7T o Cy) (X8 —wCit +€f) = Z(Ttl" 0 C;)’(X¢B — wCit + €})

s=0

Substituting p out of EQC using DRP gives a system of equations in C*. The form of
DRP is such that the EQC become a system of infinite-length series of polynomials, such
that in general no analytical solution exists. Instead, we solve these equilibrium conditions
numerically. We make no general claims about uniqueness or existence at this stage, but
confirm numerically that our estimated results are an equilibrium that is, based on numerical

simulations, unique.

We demonstrate how the model works by arguing that our model is consistent with: (1)
with the empirical facts we set out above and (2) the stylised facts we set out above regarding

how direct interbank connections behaved during the financial crisis.

1.3.5.1 The model is consistent with our empirical facts

We set out certain empirical facts above that we used to guide our modelling. In this sub-
section, we explain in more detail how exactly the model is consistent with these empirical

facts.

First, our empirical network is heterogeneous in the intensity of links. There are three
main sources of such heterogeneity in our model: (i) firms have heterogeneous technologies
(;; that require differing inputs from other firms, (ii) contagion intensity I';; is heterogeneous,

such that some links are intense because they are less risky and (iii) firms have heterogeneous
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fundamentals Xj;, such that some links are intense because the banks involved have good

fundamentals.

Second, our empirical network is persistent over time. Each of the sources of heterogeneity
discussed above is also a source of persistence: (;; and I';; are by assumption fixed over time,

and X;; vary over time but may be persistent.

Third, we observe increased concentration in our data. In our model this results from
the increase in capital requirements across our sample. Consider bank i’s decision to supply
bank j and/or bank k, where bank k’s fundamentals are worse than bank j. For a given
level of capital requirement A, the fact that bank k is riskier means that ceteris paribus
bank i supplies more to bank j than bank k. An increase in A then makes supplying bank k
relatively more costly compared to supplying bank j. In other words, an increase in capital
requirements penalises risky links that are already likely to be small, resulting in an increase

in concentration.

1.3.5.2 The model is consistent with our stylised facts

We also set out above three stylised facts from the crisis. Our model can match each of these

stylised facts.

First, risky banks may choose to supply less total exposures, which we loosely term
liquidity hoarding. All other things being equal, if a bank experiences a negative shock to its
fundamentals it supplies less, as it is riskier and so its cost of capital is higher. This is not
strictly liquidity hoarding in a structural sense, in that the bank is not lending less because
it needs to preserve liquidity for the future, but the effect is the same. In that sense, this

mechanism can be thought of as a reduced form for liquidity hoarding.

Second, risky banks may be supplied less, which we term market lockout. A shock to the
fundamentals of bank j makes supplying it more risky and therefore more costly. This is
true holding fixed d;;, which are fixed effects governing inter-temporal variation in demand.

If this is related to Xj;, then the effect of variations in fundamentals is more complicated.

Third, when all banks are risky, liquidity hoarding and market lockout combine to result
in market shutdown, where no bank is supplied anything at all. This follows in our model as

the combination of the two previous effects.
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1.3.6 Optimal networks

There are three immediate potential sources of inefficiency in our model (plus a fourth one

we will define later):

1. Network externalities
2. Market power

3. Ineflicient cost allocations

First, there are externalities within the interbank network, as bank k’s default risk pg;
is affected by C}j; provided that bank k has a chain of strictly positive exposures to i. If
Clit > 0 then this is trivially true, but it is also true if bank k has a strictly positive exposure
to another bank that has a strictly positive exposure to i, and so on. Banks i and j do not
fully account for the effect on py; when they transact bilaterally, such that this negative
externality implies that exposures are too large relative to the social optimum. Second, the
banks supplying financial products may have market power, such that exposures are too
small relative to the social optimum. Third, equilibrium allocations among suppliers may
not be efficient, given differing marginal costs. In equilibrium high cost suppliers might
supply positive quantities when it would be more efficient for low cost suppliers to increase

their supply instead.

These inefficiencies mean that aggregate interbank surplus may not be maximised in
equilibrium, where we define aggregate interbank surplus as the sum of aggregate surplus
on the demand-side and aggregate surplus on the supply-side across all N banks. In other
words, a social planner could specify an exposure network that increased aggregate interbank

surplus.

In this context, however, it is insufficient to consider aggregate surplus within the inter-
bank network. A bank’s default risk can impact agents outside of the interbank network,
such as its depositors, creditors, debtors and various other forms of counterparty. A crisis
in the interbank network could, in principle, lead to a wider crisis with implications for the
“real” economy. In other words, a social planner would not set exposures and default risk
solely to maximise surplus in the interbank network, but instead to maximise total surplus
in the economy, including aggregate interbank surplus and real surplus, which we define as

follows.
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Definition 2 : Real surplus : We define “real surplus” as surplus outside of the interbank

network, and denote it by R;.

The relationship between bank default risk and real surplus is important, as if there is such

a relationship then it reveals a fourth possible inefficiency:

4. Real externalities: Banks do not take this into account the effect of their network

formation decisions on real surplus.

Characterising the relationship between real surplus and default risk, or estimating it empir-
ically, is not straightforward. We do not model or estimate this relationship, but only make

the following directional assumption:

Assumption 1 Suppose real surplus R; is a function of the mean default risk of banks p;:

Ry =r(p:). We assume that Ry is strictly decreasing in py.

This assumption is clearly an approximation of what is likely to be a complex relationship
between real surplus and bank default risk. It may not always hold; it may be, for example,
that when bank default risk is very low, some additional bank default risk increases real
surplus. It could also be that mean bank default risk is not the only thing that is important,
but also some measure of dispersion or the minimum or maximum. Nevertheless, we think
that this assumption reasonably represents the fundamental, local trade-off that regulators
face when intervening in these markets: the trade-off between default risk and surplus in the

market.

In particular, this assumption allows us to think about optimal default risk and interbank
surplus in the sense of Pareto-optimality. That is, denote total surplus in the interbank
network by 7'S; (where the I subscript emphasises that this is total surplus in the interbank
network only) and mean default probability by p, and suppose T'SH¥ > T'SE and p? > pl.
Assumption 1 implies that (T'SH, pl) =5 (T'SE, p!), where =5 denotes the social planner’s
preferences, but it does not allow us to rank (T'SH,pf) and (T'SE, p), as we illustrate in

Figure 1.4.
It is helpful to think about the trade-off between T'S; and p in terms of constrained

maximisation of interbank surplus subject to a default risk constraint.

Definition 3 : Efficient frontier : For an arbitrary, exogenous value of mean default risk,
p", define TST = maxc T'S;(C) st p(C) = p''. We define the efficient frontier as the locus

traced out in (p*', TSE) space as p* is varied.
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In other words, the efficient frontier is agnostic about the scale of externalities outside of
the interbank network. It requires only that there is no feasible alternative (7S, p) that
is a Pareto-improvement in the sense that (i) 757 > T'SF and p*" < p? or (ii) T'S7 > T'SF
and pf < pA. If such a Pareto-improvement existed, we can conclude from Assumption 1
that (T'S#, pA) =5F (T'SF, p"). The extent to which a given point is inefficient can then be
loosely characterised by its vertical or horizontal distance from the frontier, as we set out in
the definitions below. Figure 1.4 shows the frontier and illustrates what conclusions we can

draw using this model about different outcomes.

Definition 4 : p inefficiency : The default risk inefficiency of some allocation (T'Sy,p) is
the percentage decrease in p that could be obtained without decreasing T'S;. In other words,

it is the vertical distance in percentage terms from the frontier.

Definition 5 : TS inefficiency : The total surplus inefficiency of some allocation (T'Sy, p)
15 the percentage increase in T'Sy that could be obtained without increasing p. In other words,

it is the horizontal distance in percentage terms from the frontier.

Finally, we note that although it is straightforward to consider efficient allocations, it is

much more difficult to calculate optimal regulation (in our model, the capital regulations Afjf
that a social planner would choose) that fully implements efficient allocations. We consider
feasible regulations that are efficiency improvements over the perfectly decentralised market

in the section below on counterfactual analysis.

1.4 Estimation

We first describe the data we use to model bank fundamentals and the structure of our
estimation approach. We then describe the parameterisations that we make when we take
this model to data.

1.4.1 Modelling fundamentals

To represent bank fundamentals X we use bank-specific and common data.

For bank-specific variation, we take the relevant equity index to be a bank-specific
weighted average of global equity indices from S&P, where the weightings are the propor-
tion of the bank’s revenues that come from that geography (data provided annually by
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Figure 1.4: Stylised example: Interbank surplus and default risk
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Note: Point + dominates any point in the red area but is dominated by any point in the
green area. For example, x =% 4+ =5F x but we cannot rank o relative to the other
points. We cannot even rank o relative to x despite X being on the efficient frontier: the
social planner’s preferences over x and o depend on the scale of externalities outside of
the interbank network, which we leave open. The extent of inefficiency of point o can be
expressed as the vertical distance south to the efficient frontier and the horizontal distance
east to the frontier.

Bloomberg, based on corporate accounts). For example, suppose that at time t bank k ob-
tained 70% of its revenues from the US and the remaining 30% from Japan. In this case,
Z7, = 0.7 x S&P500; + 0.3 x S&PJapan,. Absolute index values are not meaningful, so we
normalise each S&P index by its value on 1 June 2019. Although this is clearly an imperfect
measure of the bank’s fundamentals, we argue it has informative value: this bank k would
plausibly be more affected by a slowdown in Japan than some other bank with no Japanese

revenues. The S&P indices we use are for the US, Canada, the UK, Europe, Japan, Asia
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and Latin America.

In our robustness tests, we test whether our results are sensitive to an alternative measure
of bank fundamentals: weighted average consumption growth (where the weighting is bank

revenues by jurisdiction, as above).

To capture common variation in bank fundamentals, we use a broad panel of macroe-
conomic and commodity data from the World Bank. We calculate the first three principal
components of this panel, which collectively account for more than 99% of total variation,
and include these three variables in X. We also include the Chicago Board Options Exchange
Volatility Index, more commonly known as “VIX” which represents expected variation in

option prices, and the Morgan Stanley World Index.

1.4.2 Estimation structure

The parameters we seek to estimate are @ = (f‘,T, wB3,6,¢ ,0~, ¢); respectively, contagion
intensities, time-variation in contagion intensities, hedging effect, fundamentals, demand
intercept variation, pairwise technology importance, characteristic-based product differen-
tiation, and the cost multiplier. Our estimation process involves two loops. In the inner
loop, we solve our model numerically to calculate the network links and default risks implied
by a given parameter vector; respectively, () and p(©). In the outer loop, we search
over parameter vectors © to minimise two sets of moments, where the relevant instruments
are set out in the following section: (1) network formation: E[Z/(C(©) — C)] = 0 and (2)

contagion: E[Z'(p(©) — p)] = 0. We express p in logs.

1.4.3 Parameterisations

We impose four parameterisations to feasibly take this model to our data. The first parame-
terisation we make is with respect to I';;. General symmetric I';; consists of N(N—1)/2 = 153
elements. These are individually identifiable, as we will show below, but because the length
of our panel is limited we cannot estimate them with reasonable power. For this reason, our

baseline estimation approach imposes the following structure on I';;:

Fij = fzf]

42



where T is an N x 1 vector of parameters. This parameterisation is significantly more
parsimonious but retains variation at the 75 level. It does result in some loss of generality, in
that loosely speaking it implies that if I';5 and '3 are high, then I';3 must also be high. This
kind of structure is broadly consistent with each of the three motivations for heterogeneous

I';; that we introduce above.

The second parameterisation we make relates to 7;. We include 7; to allow for time-
variation in contagion intensity because higher capital requirements are intended to make
a given exposure safer. General 73, with a different multiplicative parameter for each time
period, is in principle identifiable. In practice, we parameterise 7; based on capital require-
ments:

T = e—T()\t—)q)

where \; is the mean capital requirement at time t, A; is the mean capital requirement in
the first period of our sample, 2011, and 7 is a scalar parameter. Thus 7 = 1, but 75,
can be lower depending on the size of 7. If 7 = 0 then 7 = 1 for V¢ and there is no time-
variation in contagion intensity, if 7 is large then there is significant time-variation. This is
a more parsimonious approach that directly addresses the underlying reason why allowing

for time-variation in contagion is important.

The third parameterisation we make relates to 6;,, which governs the extent to which the
products supplied by bank ¢ are substitutes for those supplied by bank k. General 6;;, cannot
be reasonably estimated from our dataset; instead we parameterise it as being a logistic
function of certain product characteristics, including maturity, currency and instrument-

type.

exp (9 — S0 0(diy — dk,z)2)
1+ exp (é - ZZL 0i(di; — dk,l)Q)

O =

where d;; denotes the value for characteristic { of bank ¢ and él > ( is a parameter that
determines the importance of characteristic [ to the substitutability of different products.
For instrument type, for example, d; ;—pe is the proportion of i’s product that is derivatives.
If banks i and k have very different product characteristics, then 6, is small and the two
are not close substitutes. If, on the other hand, banks i and k have very similar product
characteristics then 6;;, is large and the two are close substitutes. This parameterisation

replaces 0y, (which across all pairs has dimension N?) with 6; (which has dimension L + 1).

The fourth parameterisation we make relates to the structure of our data, and in par-
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ticular the fact that, as described in Section 1.2, for non-British banks we only observe

local-unit-to-group exposures, under-estimating their total exposure. We assume that:

Cije = (L +a;) Gy

where we denote local-unit-to-group exposures by C’ijt and group-to-group (that is, total)
exposures by Cjj;, and a; are bank-specific parameters that we estimate. These parameters
a; are identified given that (i) some variables, such as X;; and p;;, enter the EQC with non-
bank-specific coefficients and (ii) for the British banks we know a = 0. In principle, a finer
disaggregation is identifiable in this way, but we restrict variation to a; to preserve degrees

of freedom.

1.5 Identification

We consider identification of the network formation game and of the default risk process. We
then return to our research question, and discuss in intuitive terms the empirical variation
that we use to identify each of the key parameters that determine our answer to this research

question.

1.5.1 Network formation

The EQC and DRP allow us to solve for equilibrium C and p as a function of A\, X and the
jt and it fixed effects described above. In other words, identification is significantly easier
when we solve for equilibrium exposures, because the endogenous exposures of other banks

and endogenous default risks are substituted out of our empirical specification.

We assume bank fundamentals, as defined above, are exogenous. Treating this as ex-
ogenous assumes that a bank’s revenue distribution and the equity indices themselves are
independent of pairwise structural errors in the interbank network. We emphasise that the
fact that we are able to include it and jt fixed effects means that the only remaining unob-
servable variation is pair-specific. We think it is a reasonable assumption that, for example,
HSBC, which has deep roots in Asia, would not shift its geographic revenue base in response
to pair-specific shocks in the interbank network. Similarly, we think it is a reasonable as-
sumption that the equity indices that form the basis of our bank-specific fundamentals are

independent of pair-specific shocks in the interbank network.
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We treat product characteristics as exogenous, in keeping with the literature on demand
estimation in characteristic space. We treat A\, regulatory capital requirements, as exogenous,
in keeping with the literature on the empirical analysis of bank capital requirements (Robles-
Garcia, 2018; Benetton, 2018). It is informative to consider how we are able to separately
identify the effect of common time variation in capital requirements from the it and jt fixed
effects. This relates to Figure 1.2, in which we show the correlation between concentration
in the interbank network over time and changes in capital requirements. In our model the
effect of the common increases in capital requirements on equilibrium exposures depends
on the fundamentals of the banks supplying and demanding the exposures: in other words,
although the changes in capital requirements are common across all banks, their effect on

exposures is pair-specific.

B is not separately identifiable from the other parameters. We normalise B = 1 on the
basis that in models of quantity competition what matters for market power is 6/B, not the

absolute value of B.

1.5.2 Default risk process

We repeat DRP for convenience:

o0

pe = (I-7l o Cy) (XS —wCit +ef) = > (nl'o C)* (X8 — wCie + €f)

s=0

The advantage of explicitly considering network formation is that we can account for the
endogeneity of the network in our spatial DRP model. The key insight to our identification
strategy is that DRP is a linear function of bank fundamentals X¢, but equilibrium exposures
C; are a non-linear function of X;. We therefore use non-linear variation in Xy as pair-
specific, time-varying instruments for the network. We motivate this more clearly in three
steps. First, we show that equilibrium exposures are indeed non-linear in bank fundamentals.
Second, we show that this gives us the pair-specific variation that we need. Third, we set

out exactly which variables we use as instruments.

The fact that equilibrium exposures are non-linear in bank fundamentals comes from
the non-linearity of the cost function. The key intuition for this is that the cost function
is convex in Cjj;, provided that w is small, such that in equilibrium Cjj; would never grow

linearly with fundamentals as that would lead to marginal cost becoming very large. Consider
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a simple example with three banks, 1, 2 and 3, and suppose, for the sake of simplicity, that
in equilibrium every network link between those banks is strictly positive. In equilibrium
(5, is such that the marginal cost of supplying exposures is equal to the marginal benefit.
The marginal benefit is linear in C'j5, whereas the marginal cost is convex in C}s, as set out
in Figure 1.5. Suppose the fundamentals of banks 1, 2 and 3 improve, worsen and remain
unchanged, respectively. In these circumstances, we show in Figure 1.5 that 5 changes
non-linearly relative to the size of these. In Appendix C we show, for a simplified version
of our model for which an analytical solution exists, that equilibrium C' are a non-linear

function of X.

Having shown that exposures are non-linear in fundamentals, it is straightforward, using
the same simple example, to show that changes in fundamentals then give us the pair-
specific variation that we need for them to be instruments for Cj;;. Assume again that
the fundamentals of banks 1, 2 and 3 improve, worsen and remain unchanged, respectively.
This causes links between banks 1 and 3 to increase (because the improvement in bank 1’s
fundamentals mean that the marginal cost to bank 1 of supplying bank 3 has gone down, and
the marginal cost to bank 3 supplying bank 1 has gone down). For analogous, but opposite,
reasons, links between bank 2 and bank 3 decrease. For links between banks 1 and 2 it is
not possible to sign the effect, as some elements of marginal cost have gone up and some
have gone down. In summary, provided there is reasonable cross-sectional variation in bank
fundamentals (which we show in Figure 1.3), then that variation has differing exogenous

implications for each of the pairs.

We define )N(Z-jt = ﬁ >k i Xkt (that is, average fundamentals of other banks). As
ijt, Xt/ X, Xit/j(ijt...], as well as these terms in-

teracted with A;;; to leverage its time variation. We show the results of first stage regressions

instruments for Cjj; we use [X7, X7,
in the appendix. Assuming these bank fundamentals are orthogonal to unobserved shocks
to bank default risk is more restrictive than in the case of the network formation data, as we
have fewer fixed effects available to use. We assume that the equity indices on which we rely
are independent of unobserved bank default risk. We justify this on the basis that, although

the banks in our sample are large, none are a material proportion of these equity indices.

We then use the GMM moments suggested in a spatial context by Kelejian and Prucha
(1998) and Kelejian and Prucha (1999).
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Figure 1.5: Non-linear bank fundamentals as instruments for C

(a) Non-linear effect of X on C (b) Pairwise variation

Note to Figure 1.5: Suppose the fundamentals of bank 1, 2 and 3 improve, worse and do
not change, respectively. In part (a) we show that equilibrium exposures are non-linear with
respect to this variation in fundamentals. In part (b) we show that this this has differing
pairwise effects on equilibrium link intensity, where link intensity between 1 and 2 increases,
link intensity between 2 and 3 decreases and link intensity between 1 and 2 does not change.
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1.5.3 Identification: Back to the research question

Having described our approach to identification, we summarise by considering how iden-
tification relates to our core research question regarding the inefficiency of the interbank
network. There are three sources of inefficiency in our model, and each is determined by

certain parameters in the model:

e Network externalities: The extent of network externalities depends on the size of I';;. If
these parameters are large, then network effects are large, and so network externalities

are large.

e Market power: The extent of market power depends on the size of 6;;. If these are
large, then small differences in product characteristics lead to large differences in sub-

stitutability, and market power is large.

o Inefficient cost allocations: The extent to which high cost links inefficiently receive
equilibrium allocations depends on the dispersion in I';;. If these parameters are very

dispersed, then cost variations are greater and the resulting inefficiency is greater.

Having argued that these parameters are the key parameters in our model, we summarise
the key variation that identifies each of these parameters in Table 1.2. This is important for
the robustness with which we answer our research question, as it shows that our answers to

these questions are guided by the data rather than by our modelling assumptions.

Table 1.2: Key variation

Key parameter Key variation
1] Size of 0, Cov(Cije, Xyt | di — dy,)
2] Sizeof I'y; Cov(Cije, Xj1),
Cov(pz Jt| z]t)

3] Dispersion in I';; Cov(sije, At)

Note: s;;; denotes proportion of bank i’s total supply that is to bank j. All other notation
as previously defined.

0;;. determines how closely banks i and banks k compete. We identify the size of 0

by the covariance between Cj;; and Xy, which is an exogenous measure of bank k’s cost,
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conditional on the extent to which the two banks have similar product characteristics. If

this covariance is high, then 6, is high.

I';; determines the contagion intensity from j to i. There are two sources of empirical
variation for this: from the network formation data and from the default risk data. On the
network formation side, I';; is identified by the covariance between Cj;; and Xj. If Cjj is
sensitive to the fundamentals of bank j, then in the context of our model this means that I';;
is large. On the default risk side, I';; is identified by the covariance between bank i’s default
risk and the fundamentals of bank j, conditional on the instruments we describe above for
the size of Cj. If this conditional covariance is large, then this means that bank i’s default
risk is particularly sensitive to bank j’s default risk, which in the context of our model means

that I';; is large.

Finally, we describe a further source of variation that helps identify the dispersion in I';;.
We set out above how a general increase in capital requirements leads to concentration, as
it affects high and low marginal cost links differentially. I';; is a key determinant of which
links are high and low marginal cost. If, following an increase in capital requirements, bank

i supplies relatively less to bank j, then this concentration indicates that I';; is high.

1.6 Results

We set out our results in Table 1.3. We find that the model fits the data well, with R? of
0.85 and 0.83 for network data and default risk data, respectively. Parameter estimates are

of the expected sign and mostly significantly different from zero.

We draw the following immediate implications for contagion intensity from our results:

e Contagion is material: on average 9.8% of mean bank default risk is due to interbank
contagion, with the remainder due to bank fundamentals.'®> This can be thought of as
an aggregate representation of the network effect. We also re-run our estimation taking
the network as exogenous in our estimation of the default risk process (that is, without
using the instruments for the endogenous network that are implied by our network
formation game). This results in parameter estimates that imply 8.0% of mean bank
default risk is due to interbank contagion. In other words, incorrectly assuming that

the network is exogenous biases our estimation of the network effect downwards.

13We calculate this by calculating mean bank default based solely on fundamentals, p; = X3, and
comparing it to actual bank default risk.
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Table 1.3: Results

1]
¢ 1.84%**
(2.39)
T 9.26***
(6.03)
b1 -0.02%*
(1.70)
w 0.04%**
(8.80)
Min Median Max
T, 0.15%%* 0.24%%%* 0.51%%*
(5.59) (3.43) (5.07)
0 4.71%¥ 5.21% 27.69%**
(1.97) (1.70) (8.46)
a; 0.01 0.69 5.53**
(0.06) (1.01) (2.03)
Network
FE ij, it, jt
R? 0.85
No. obs 6,426
Default risk
FE i
Controls Y
R? 0.83
No. obs 378

Notes: SEs clustered at bank level. Figures in parentheses are t-stats. *** ** *indicate different
from 0 at 1%, 5% and 10% significance, respectively. For the heterogeneous parameters we report
estimates and t-stats for the minimum, median and maximum, and plot the full distribution below.
Notation: ¢ is the sensitivity of cost of equity to default risk, 7 is the extent to which contagion
intensity varies over time, i is the effect of bank-specific fundamentals, w is the effect of hedging,
I; is contagion intensity, 0 governs product differentiation based on characteristics and a; scales
exposures for non-UK banks. Controls in the default risk process are VIX, MSWI and macro data.
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e Contagion is heterogeneous: there is substantial pairwise variation in contagion
intensity I';;: some links are nearly twice as costly as others, in terms of their effect on
default risk. We plot the estimated distribution of I';; in Figure 1.6.

e Contagion is time-varying: there is evidence that contagion intensity has decreased
across our sample, in line with increasing capital requirements. Estimated 7 implies
that mean contagion intensity decreased by 36% between 2011 and 2018, as we plot in
Figure 1.6. This is consistent with a significant improvement in bank default risk in

response to the banks becoming better capitalised.

e The effect of the network on default risk is time-varying: in our model in-
terbank exposures can decrease default risk through hedging or increase it through
counterparty risk. When bank fundamentals are bad earlier in our sample, then the
effect of counterparty risk dominates the effect of hedging, as set out in Figure 1.7.

When bank fundamentals are good later in our sample, then the reverse is true.

Our results also have implications for the form of competition between banks. We plot
our estimated @-j in Figure 1.6, and show that there is significant product differentiation
based on product characteristics. Generally, most @j are small, indicating that only pairs
producing very similar products are substitutes. The most important product characteristics
in determining substitutability are (i) the proportion of total exposures that is denominated

in EUR and (ii) the proportion of exposures with maturity greater than 1 year.

1.6.1 Robustness

We run two alternative specifications as robustness tests, both of which test how sensitive
our results are to how we treat time-variation in risk premium. In the first robustness test,
we use alternative measures of bank default risk and bank-specific fundamentals that exclude
the risk premium, but otherwise estimate our baseline specification. In the second robustness
test, we use the same data as in our baseline results but amend the default risk process so
that common time-variation in the risk premium does not propagate through the interbank
network. We describe these tests in more detail and set out the results in Appendix D. In

both cases, the results are quantitatively and qualitatively similar to our baseline results.
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Figure 1.6: Distributions of parameter estimates
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Note: These figures show the distribution of our estimated parameters. Panel (a) shows
that there is material variation in the intensity of contagion. Panel (b) shows that
contagion intensity has decreased over time. Panels (c) and (d) show that there is variation
in product differentiation, based on exposure characteristics.
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Figure 1.7: Time-varying effect of the network
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Note: We define the effect of the network as the difference between actual mean bank default
risk and simulated mean bank default risk in which every interbank exposure is set to 0. A
value of 0.1 means that actual mean bank default risk is 10% higher than if there were no
interbank exposures. In our model interbank exposures can decrease default risk through
hedging or increase it through counterparty risk. When bank fundamentals are bad earlier
in our sample, then the effect of counterparty risk dominates the effect of hedging. When
bank fundamentals are good later in our sample, then the reverse is true.

1.6.2 Cross-checks of our results

We run two cross-checks of our results, to test the extent to which they are reasonable. First,
we show that the heterogeneity in contagion intensity that we estimate is consistent with

risk-sharing. Second, we show that the model fits well out of sample.
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1.6.2.1 Cross-check 1: Contagion is related to risk sharing

The first cross-check is a test of internal consistency: we set out above various motivations
for why contagion intensity I';; could be heterogeneous. One of these motivations is hetero-
geneity in the extent to which bank fundamentals are correlated; risk sharing, in other words.
This implies a relationship between fundamentals, which we estimate as X 3, and contagion
intensity I';;. We do not impose this relationship in estimation, but estimate general I';;
and test the existence of such a relationship post-estimation. These post-estimation tests,
which we describe in Appendix E, support risk-sharing: where banks i and j are in the same
jurisdiction, I';; is higher when the fundamentals of banks i and j are more closely positive
correlated. We view this as an important test of the consistency of our model and empirical

approach.

1.6.2.2 Cross-check 2: The model fits well out of sample

The second cross-check we run relates to external consistency, in that we test the fit of our
model out of sample. We do this in two ways: (1) using publicly available historical data on
default risk data and (2) using stylised facts about what happens to interbank exposures in

times of financial stress.

We do not have access to historical data on interbank exposures. We do, however, have
access to historical CDS premia (bank default risk p) and macro-economic variables (bank
fundamentals X), meaning that we can simulate interbank exposures and model-implied
default risk backwards. We do this for 2009 to 2011, and compare the predicted default risk
values with actual observed default risk. As set out in Figure 1.8, we find that the model
fits out of sample variation in the mean and dispersion in bank default risk reasonably well.
Some of this fit is driven by our choice of fundamentals, rather than our network formation
model per se. We test the extent of this by also showing the out of sample fit of a linear
model solely on bank fundamentals (that is, py = X{B). We find that (1) the out of sample
fit of the linear model is materially worse than the full model (the mean square error out
of sample of the linear model is 18% greater than that of the full model and (2) the linear
model is biased upwards relative to the full model, particularly when bank fundamentals are

relatively good (as in 2010 in Figure 1.8).

We cannot compare simulated interbank exposures to actual historical interbank expo-

sures, because we do not have the data. We do, however, have certain stylised facts about
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how interbank exposures behaved during the financial crisis, as we describe in Section 1.2
above: we know that during the financial crisis some parts of the interbank network froze, in
that no transactions occured. We forward simulate a generic recession by arbitrarily varying
bank fundamentals and show the implications for bank default risk and network exposures
in Figure 1.9 below. We find that the simulated interbank network dries up at a level of bank
fundamentals that is broadly consistent with what we know about what happened during
the financial crisis. This is in this sense a pseudo out of sample test in which we match a

stylised fact rather than data.

1.6.3 Implications of our results

Having described our results and the cross-checks we run, we now discuss two important
implications of our results regarding (1) forward simulation of recessions using our model

and (2) the identification of systemically important banks.

1.6.3.1 Forward simulation

In Figure 1.9 below we simulate the effect of a recession on the interbank network and default
risk. We do this by simulating an arbitrary increase (deterioration) in bank fundamentals.
As the shock increases in severity the network shrinks and, when the recession is sufficiently
severe, dries up. This is an important cross-check of our work, as we describe above. One
implication of this is that bank default risk is convex with respect to bank fundamentals:
as fundamentals deteriorate, the endogenously declining network dampens the effect of the
change on fundamentals on default risk. There is, however, a zero lower bound, such that
once the network has dried up then it cannot dampen the response to fundamentals. In

other words, bank default risk is more sensitive to fundamentals in severe recessions.

This fact also has implications for predicting the impact of recessions. Suppose, for ex-
ample, that when modelling the response of default risk p to fundamentals X the endogenous
network was ignored, and instead p was simply regressed on X. Because severe recessions
are very infrequently observed, a regression of p on X in normal times would understate the
extent to which p would respond to X in a severe recession. We show true simulated default
risk (the black solid line) and such a naively estimated default risk (the red dashed line) in

Figure 1.9, and show that this bias can be material.

In Figure 1.8 above we show out of sample fit, and show that during periods in which
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Figure 1.8: Out of sample fit: Bank default risk

(a) Actual variation in default risk (b) Default risk (mean)

= == 10th percentile — Actual
= Mean . = = Simulated: Full model
12k \ = = 90th percentile ’ 1 12 e Simulated: Linear model

o
o

Default risk (normalised)
&

Default risk (normalised)
o
=

o
IS

0.4

2009 2010 2011

(c) Default risk (90th percentile) (d) Default risk (10th percentile)

= Actual = Actual
\ = = Simulated: Full model = = Simulated: Full model
120 . Simulated: Linear model q 120 e Simulated: Linear model

Default risk (normalised)
&

Default risk (normalised)
)
=]

0.2

2009 2010 2011 2009 2010 2011

Note: These figures show the out of sample fit of our model. The black lines show the 10th
percentile, mean and 90th percentile of actual historical default risk. The dashed blue line
shows the out of sample fit of our estimated network formation and contagion model. The
blue dotted line shows the out of sample fit of a linear model that ignores the interbank
network and simply regresses default risk on fundamentals. This test shows that our model
is robust in three ways: (1) our model fits well out of sample, (2) our model outperforms
the simple linear model and (3) the performance of the simple linear model (and notably
the fact that the linear model performs badly in the middle of the out-of-sample period
when fundamentals were relatively good) is consistent with the predictions of our model, as
we show below in Figure 1.9.
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bank fundamentals were moderate (as in 2010), the bias goes the other way: estimated
bank default risk using this linear model overstates true bank default risk. We explain this
feature using the simulated recession set out in Figure 1.9, in which estimated default risk
also overstates simulated true default risk in moderate fundamentals (such as in period 5):
the bias arises from the difficulties a linear model has fitting an inherently non-linear process.
In other words, our model predicts the shape of how a linear model should perform out of
sample, and this indeed the shape we observe in the data. This is, therefore, an additional

element to our robustness test.

1.6.3.2 Systemic importance

The second implication of our results relates to systemic importance. A recurring issue in the
network literature is the identification of “important” nodes. We have an equilibrium process
that relates an outcome (bank default risk, in our case) to a network, and it is reasonable to
ask which node in the network contributes most to the outcome in which we are interested.
Understanding this communicates important information about this equilibrium process, but
may also have implications for regulation (as we describe above, large parts of the banking
regulatory framework are stricter for banks that are judged to be “systemically important”
(Basel Committee, 2014b)). Various measures of systemic importance, or centrality, exist,
where the most appropriate measure depends on the context and on the way in which nodes
interact with each other (Bloch et al., 2017). Our contribution to this literature is not
about the most appropriate measure, but instead about how any such measure should be

calculated: it must account for the heterogeneity in contagion intensity I';;.

We illustrate this by reference to one of the simplest measures of centrality: Eigenvector
Centrality. Broadly speaking, node n’s centrality score is the n’th entry in the eigenvector
associated with the maximal eigenvalue of the adjacency matrix C;. A central node using
this measure is close to other nodes that are central: this measure of centrality is in this
sense self-referential. Nodes that have many large links to other nodes that have many large

links are more central.

Applying this centrality measure to the network C} therefore gives a ranking of which
banks are most systemically important in driving bank default risk. If contagion intensity is
homogenous, I';; = I, then the level of I" has no impact on this relative ranking. If, however,
contagion intensity is heterogeneous, then accounting for this heterogeneity is important

when assessing centrality: a more reasonable measure of centrality would be based on the
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Figure 1.9: Simulated recession
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Note: We simulate a recession by arbitrarily inflating (where an increase is a deterioration)
bank fundamentals by an increasing factor (the dotted black line). As fundamentals deterio-
rate, the interbank network (the black dashed line) contracts and eventually dries up. Mean
bank default risk (the solid black line) increases, but is convex because the network contrac-
tion dampens the effect of fundamentals. The red dashed line shows the results of observing
a limited set of data (the red shared area) and fitting a linear regression of default risk on
bank fundamentals: ignoring endogenous network formation understates how bank default
risk changes with fundamentals in (infrequently observed) recessions. This is consistent with
the findings of our out of sample test, as set out in Figure 1.8.

weighted adjacency matrix I'o C;. Importantly, the effect of this weighting on the ranking of
systemic importance is not random noise, because the equilibrium network depends on this
weighting. More specifically, links C;; where I';; is low (high) are inherently safe (uinherently

risky) and so are more likely to be large (small), all other things being equal. In other words,
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assessing centrality based on the raw, unweighted exposures matrix is biased and likely to
overstate the centrality of more central nodes and understate the centrality of less central
nodes. This holds only when holding other things equal: in our model of network formation,
links can be large even if they are not safe (if they are technologically important through

(;j, for example).

In Figure 1.10, we show that calculating Eigenvector Centrality based on unweighted
C; and weighted I' o C; lead to quite different rankings of systemic importance. Bank
18, for example, would be identified as the most systemically important node based on the
unweighted network. Based on the weighted network, however, 4 other banks are most
systemically important than Bank 18: in other words, Bank 18’s links are large because its
links are relatively safe. Bank 5’s centrality, on the other hand, is significantly understated
when looking solely at the unweighted network: in other words, Bank 5’s links are small
because its links are relatively unsafe. We do this for Eigenvector Centrality, but the same

point applies to other measures (including, for example, Katz-Bonacich centrality).

1.7 Counterfactual Analysis

In our counterfactual analyses, we first consider the social planner’s solution, and show what
that implies for efficiency. We then consider two broad forms of regulation: caps on exposures

and capital ratios.

Before we describe the counterfactual analyses in detail, we describe two uses of our model
that play an important role in each of these counterfactual analyses. Our model, together
with the parameters we have estimated, allow us to do two things. First, the estimated
model provides a mapping from any arbitrary network of exposures Cy to (i) bank default
risk and (ii) interbank surplus. Second, the estimated model provides a mapping from the
exogenous parts of the model (fundamentals, regulation, etc) to decentralised equilibrium
exposures C;. Together, these two uses of our model and results allow us to quantify surplus

and default risk in counterfactual equilibria.

1.7.1 Efficiency

We describe above how our model implies a trade-off between mean bank default risk and

interbank surplus, and how there is an efficient frontier on which this trade-off is optimised.
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Figure 1.10: Identifying systemic nodes
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Note: This figure plots the relative centrality of each of the 18 banks in our sample using
Eigenvector Centrality. The black diamonds show relative centrality based on the unweighted
network of observed exposures: banks with large exposures are more central. The white cir-
cles show relative centrality based on observed exposures weighted by their relative contagion
intensities: relatively risky links are given a higher weighting. The blue lines show a 95% con-
fidence interval around this weighted measure. Taking into account heterogeneous contagion
intensity materially changes the relative systemic importance of banks: bank 18 is the most
central bank based on the unweighted network, but only the 5th most central bank based on
the weighted network. This is because in our network formation model banks endogenously
choose large (small) exposures where those links inherently safe (inherently risky).

We use our estimated model to derive this frontier, by choosing Cy to maximise interbank

surplus, subject to mean bank default risk being less than some critical value. We then vary

60



this critical value to trace out the efficient frontier. As described above, we do not know
what allocations a social planner that was maximising aggregate surplus would choose, as
we do not directly model the relationship between bank default risk and real surplus. We
do know that this optimal allocation would be somewhere along the efficient frontier. The
distance to the frontier in either direction is in this sense an estimate of inefficiency, as we

describe above when we define p inefficiency and TS inefficiency.

We find that the decentralised interbank network is not on the efficient frontier: a social
planner would be able to increase interbank surplus by 13.2% without increasing mean
bank default risk or decrease mean bank default risk by 4.3% without decreasing interbank
surplus, as set out in Figure 1.11. This result comes primarily from the fact that contagion
(and thus network externalities) is significant. Exposure allocations on the frontier are more

concentrated in favour of inherently safe links than actual observed exposures.

1.7.1.1 Comparative statics for efficiency

We emphasise that our conclusions on efficiency are driven by the data, rather than our
modelling choices. We demonstrate this by undertaking comparative statics and showing
how the extent of inefficiency varies according to the parameters chosen. We set out the

results of these simulations in Table 1.4.

Table 1.4: Comparative statics

A B C D)
Baseline L mean(0;;) T var(Ly) T mean(I';;)
p inefficiency 4.3% 5.4% 6.0% 8.7%
TS inefficiency  13.2% 15.6% 14.6% 14.2%

Note: [A] is our baseline results set out above; [B] is the baseline, with every §,; multiplied
by a factor of 0.8; [C] is the baseline, with a mean-preserving spread of I';; such that its
variance increases by a factor of 1.5; [D] is the baseline, with every I';; multiplied by a factor
of 1.5.

First, market power is determined by 60;;, which governs the extent of product differenti-
ation. If 6;; is large (small), then products i and j are close substitutes and market power is
low (high). We illustrate the impact of increased market power by multiplying every 6;; by
a factor of 0.5 (Column B in Table 1.4). As set out in Table 1.4, this increases the distance
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Figure 1.11: Decentralised inefficiency
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Note: This figure shows that the decentralised outcome in the interbank network is inefficient.
The + sign shows the mean bank default risk and interbank surplus that our model implies
for actual exposures, both normalised to 1. The white circles show what a social planner
who chooses the entire interbank network could achieve by (1) minimising mean default risk
without decreasing interbank surplus and (2) maximising interbank surplus without increas-
ing mean default risk. The dotted line shows the efficient possibility frontier of combinations
of surplus and risk.

between the decentralised outcome and the efficient frontier.

Second, the efficiency of decentralised cost allocations is driven by the extent of variation
in marginal cost across banks. If marginal cost is the same for all banks, then decentralised
cost allocations are not inefficient. If marginal cost is highly variable, then the decentralised

equilibrium will inefficiently involve some high cost links being positive. The extent of
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variation in marginal cost across banks is driven primarily by the extent of variation in
contagion intensity I';;. We illustrate this by applying a mean-preserving spread to I';; such
that its variance increases by a factor of 2 (Column C in Table 1.4). This increases the

distance between the decentralised outcome and the efficient frontier.

Third, the extent of externalities depends on the scale of network effects, which in our
model is the size of I';;. If these are large, then there are significant externalities and the
decentralised equilibrium is more likely to be inefficient. We illustrate this by increasing every
I';; by a factor of 2. This also increases the distance between the decentralised outcome and

the efficient frontier.

1.7.2 Caps on exposures

As discussed in Section 1.2, in 2019 a cap on individual exposures came into force: a bank
can have no single bilateral exposure greater than 25% of its capital.!* For exposures held

between two “globally systemic institutions”!® this cap is 15%.

We evaluate the effects of a cap on individual exposures by simulating new equilibrium
exposures C’g under a generic cap, using our estimated parameters and assuming that fun-

damentals are unchanged. We consider a generic, binding cap at the i-bank level:

In other words, we assume that any exposure held by bank i has to be less than or equal
to 90% of its largest exposure. This cap is stylised, in that it is defined relative to observed
exposures, rather than relative to its capital. This avoids issues about measuring capital
appropriately and measuring total exposures (our exposures do not include every possible
financial instrument), while still showing the economic effect of a cap in general. We simulate
the effect of this cap in Figure 1.12 below, and find that such a cap has a very small impact on
default risk, for two reasons. First, a cap on individual exposures binds on the bank’s largest
exposures, which are more likely to be relatively safe (that is, they have low I';;). Second, a
cap on individual links creates excess supply and unmet demand that causes other uncapped

links in the network to increase. That is, the network topology changes endogenously.

We propose an alternative form of regulation in which total exposures held by bank i are

4\Where the precise definition of capital, “Tier 1 capital”, is set out in the regulation.
15 As defined in the regulation.
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capped, rather than individual exposures:
> CGi09) Cu
J J

A cap on total exposures held by bank i prevents other parts of the network from increas-
ing in response to a capped link. A cap on total exposures also causes bank i to inherently
risky (high I';;) exposures by relatively more than inherently safe (low I';;) exposures. In
other words, a cap on individual exposures targets inherently safe exposures, whereas a cap
on total exposures targets inherently risky exposures. We simulate the effect of this cap in
Figure 1.12, and find that it reduces mean default risk by significantly more than an indi-
vidual cap and actually increases interbank surplus. Our results suggest a social planner

therefore would strictly prefer a cap on total exposures to a cap on individual exposures.

1.7.3 Capital ratios

The second form of regulation we consider is a minimum capital requirement, as applied by
regulators since the crisis. As described in Section 1.2, there is very little variation in risk-
weights for exposures to banks under the standardised approach to risk-weighting. To assess
the effect of a stylised risk-insensitive capital requirements, we simulate a further increase in

Ait by up to 2% holding bank fundamentals constant, as set out in Figure 1.13.

We propose a pairwise adjustment (that is, we allow \;;; to vary at the pair level) to
capital ratios that is more closely targeted at network externalities. The key parameter in
our model is I';;, contagion intensity: links where this is high are particularly costly in terms
of their effect on default risk. We propose increasing the capital requirements for any link
with T';; > median(I') (“high risk links”) by some value b (where we increase the value b
from 0% to 10% in Figure 1.13). For any link where I';; is less than the 20th percentile of the
distribution (“low risk links”), we propose decreasing the associated capital requirements by
b+ 1.5%.1% Our results suggest a social planner would strictly prefer this targeted change in

capital ratios to a risk-insensitive increase in capital ratios.

16 Any spread like this is an improvement over homogeneous capital requirements, this particular spread
is one we have chosen arbitrarily as one that produces good results.
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Figure 1.12: Counterfactual analysis of caps
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on aggregate exposures to a cap on individual exposures.
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Figure 1.13: Counterfactual analysis of capital requirements
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Note: This figure starts with actual normalised default risk and interbank surplus (the black
diamond). We then plot the effect of (i) homogenous increases in capital requirements for all
banks up to an additional 2% (the dashed line) and (ii) heterogeneous adjustments to capital
requirements, as we describe in the text (the solid line). Heterogeneous capital requirements
can reduce bank default risk by the same amount as homogeneous capital requirements,

whilst materially increasing interbank surplus.

1.8 Conclusion

In this paper we structurally estimate a model of network formation and contagion. In

contrast to much of the literature on financial networks, our model of network formation
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is in the spirit of the wider industrial organisation literature in two ways. First, we model
network formation as the interaction of demand for financial products and their supply,
with a focus on identifying the relevant underlying cost function. Second, in specifying our
model and taking it to data we pay particular attention to the role of unobserved firm- and
pair-level heterogeneity. In particular, the core of this paper is heterogeneity in contagion
intensity, including (i) why one might reasonably expect contagion intensity to be heteroge-
neous, (ii) how this heterogeneity can be identified empirically and (iii) what implications
this heterogeneity has for strategic interactions between firms and their regulation. The
primary message of this paper is that this heterogeneity in contagion intensity has material

implications for systemic importance, efficiency and optimal regulation.
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A An underlying model of default risk

We set out above a default risk process, which we repeat here for convenience:

Pt = Xt,@ —CL)Ct L+Tt(r O Ct)pt + e?

~— e N N——
Default Funda- Hedging Counterparty
risk mentals risk

Our proposed default risk process is a reduced form for an underlying, more fundamental,
default risk process. This underlying model is more fundamental in that the relationship
between default risk and fundamentals is structurally grounded in a balance-sheet based

model of contagion. It is not, however, feasible to take this underlying model to data.

In this appendix, we first describe this underlying model. We then use this underlying
model to simulate data, and estimate our default risk process using this simulated data. We
show that (i) our proposed default risk process fits the simulated data well and (ii) contagion

intensity I';; is heterogeneous.

A.1 Underlying model

This model builds on Eisenberg and Noe (2001), where the variation is to allow for some het-
erogeneity at the bank- and pair-level. There are N banks. These banks have fundamentals
F, an N x 1 vector whose i’th element denotes the fundamentals of bank i. Banks trade P
products, resulting in N by N directed adjacency matrices CP for p € {1, ..., P}, where ij is
the exposure of 7 to j relating to product p. For the purposes of this example, these matrices

are exogenous; we are interested in their effect on bank default risk, not their formation.

Fundamentals update according to a random walk, F* = F + e, where e ~ N (0,3). Each

bank has value V;, which is the sum of its fundamentals and its interbank holdings:
Vi=F +ZZC” [6; + (1= 8;)rr]}]

where ¢; = 1 if bank i is solvent, and 0; = 0 otherwise, and rrj; is the recovery rate of CY,
in the event of default. In other words, bank i’s value is the sum of its fundamentals and
its impaired interbank holdings, where the impairment relates to losses on any interbank

exposures to insolvent banks.
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The recovery rate is exogenous, and varies according to the product and the banks in-
volved. There are G groups, and each bank is a member of a single group. Recovery rate

varies as follows:

P _ 1 _ ,.9,.Dp
rrij—l i

where 77 € [0,1] for V p and 7' < r* < ... < rP. In other words, recovery rate varies by
product: this is a simple representation of some products being riskier than others. 79 € [0, 1]
for V g, where g = 1 if i and j are in the same group and 0 otherwise, and 79=! < r9=9,
This is a simple representation of pairwise variation in riskiness; for example, banks with
headquarters/histories in different countries may involve a lower recovery rate. G generally
covers any relevant pairwise variation that is not directly related to the banks’ risk profile

or exposures matrix.

A bank defaults if its value V; falls below some critical value V. In that sense, § is a
function of V), such that the problem is simply finding a fixed point in V. Eisenberg and

Noe (2001) propose the following iterative algorithm, for a given draw of e:

1. Set initial 67=" = 1 for Vj.

2. Calculate V™=0 = f(§™=0 F).

3. For any bank where V;-mzo <V, set 5;-”:1 = 0.
4. Calculate V=1 = f(§™=1 F').

5. Tterate until 6™ converges.

In other words, we propose embedding three sources of pair-wise heterogeneity (apart
from obvious heterogeneity in aggregate exposures) in a simple model of bank default risk.
The first source of heterogeneity is in 3: the fundamentals of some banks may be positively
correlated, some may be negatively correlated. The second source of heterogeneity is in the
product-type of the exposures matrix: some pairs may have larger exposures in riskier types.
The third source of heterogeneity is in groups: some banks belong to the same group, and

so are less risky.
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A.2 Simulated fit

We use this underlying model to simulate data. We specify distributions for each of the
primitives, including an exogenous network, and randomly draw realisations. We then sample
repeatedly from the distribution of e, and calculate default risk of bank i as simply the
proportion of the draws in which each bank fails. This gives us a panel of exogenous bank

fundamentals and network exposures and endogenous bank default risk.

We then fit our proposed default risk model, as described above, to this simulated data.
We set out the results in Table 1.5.

Table 1.5: Results

[1] 2] [3]

Min 0.149
-)
Iy Median 0.1447%%* 0.178
(12.96) (-)
Max 0.205
-)
6] -0.026 1%+ 0.0395%+* 0.0468
(-45.73) (7.76) (93.96)
FE t t t
R? 0.77 0.79 0.83
No. obs 2,000 2,000 2,000

Note: Figures in parentheses are t-statistics. *** ** * indicate different from 0 at 1%, 5%
and 10% significance, respectively.

We find that (1) a spatial autoregression fits the simulated data well, (2) heterogeneity
in contagion intensity is important (the fit is materially better in column [3] than in column
[2]) and (3) contagion intensity is related to pairwise covariance in fundamentals, as set
out in Figure 1.14. In this sense, our proposed default risk process can be thought of as a
reduced form representation of this underlying more fundamental model, and heterogeneous
contagion intensity can be thought of as a reduced form representation of underlying sources

of pairwise heterogeneity related to risk sharing, jurisdiction effects and exposure type.
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Figure 1.14: Estimation results

(a) Fit (b) Risk sharing
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of i and j.
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B First stage regression results

Table 1.6: First stage: Default risk

Pit
X1 -0.827%**
(-2.61)
FE i
Other X Y
R? 0.82
No. obs 378

Note: Figures in parentheses are t-statistics. ***, ** * indicate different from 0 at 1%, 5%
and 10% significance, respectively. X} is a revenue-weighted average of stock market indices
and the other fundamentals include the Morgan Stanley World Index, VIX and the first two

principal components of World Bank macroeconomic data, as we describe in the text.
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Table 1.7: First-stage

: Network formation results

Estimate t statistic
Xt -0.57HH* -3.73
Xt 0.22 1.51
Xkt 0.35%** 11.90
X2 0.01 0.18
X]?t 0.28%* 1.88
Xz -0.39%** -10.05
Xt/ X 0.01 1.42
Xt/ Xt -0.46 -0.55
Xit/ Xyt -1.44%* -1.69
Nie Xt 13.86%*** 7.31
it Xt -2.94 -1.57
it Xkt -10.69%*** -13.64
Nt X2 -0.27 -0.35
)\ithQt 9. 24K -5.38
Nt X2, 11.70%%* 8.84
Nt Xt/ X -0.192%** -2.05
Nt Xt ) Xt 10.32 0.93
it Xit ) Xkt -21.27* -1.89
FE ij
R? 0.70
No. obs 6,426
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C Mathematical appendix

C.1 EQC

In this appendix, we derive the equilibrium quantity condition, EQC. The first order supply

condition is:

87”ijt Opit Opucip ony Opit

Tijt = —=~—Cijt + pucijt + ot — + 7ot + €5

ijt acijt ijt buc;;t 8Cijt - 8]9%,: ikt apzt acijt 10t ijt

It follows immediately from DRP that ;g?ft = 7:';jpj¢, from our assumed cost function that
ij

dpucy; Ari; oriL . )

% = ¢1 ¢ and from our demand model that W’; = —B and T =~ > %7;; Clrit:

Opit O it
8Cijt - Opi

rijt = BCije + 1 Mijpie + ¢ [ —w+ Ttrijpjt] Z NimtCimt + Chit + Tiot + efjt

For ease of exposition we then repeat the same equation for supply from bank k to bank i:

Oprt O ikt

Crnkt + Trot + €3
OCkit — apkt it

Trit = BCrit + Or Miubre + 01 [ — w + 7l kipie Z Akt Comt +

When bank i considers how much to supply to bank j, it takes into account the impact of
the resulting increase in p; on its profits from being supplied exposures. That is, it takes
into account the effect of its supply on ry;;. We assume that bank i takes the interest rates

of transactions involving other parties as given, such that:

OTkit
Opi

= O17lki Z Nemt Clemt

Substitute this and the equation for demand into supply, and we obtain the EQC:

N
0 = dpu+G+ th — 2BCj — Z 0i Crje + efjt
ki
N
—AijtP1pit — P1 [ —w+t TtFijpjt} Z Cikt Nikt — Tiot
ki

— P17 [ —w+ Ttrijpjt} Z Critl ki Z Clmt Nemt
k m
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C.2 Equilibrium links are non-linear in fundamentals

Consider a simplified version of the model in which banks do not consider the impact of
their supply decisions on II”; that is, they consider the impact on their funding costs when
supplying on the interbank network, but not on their funding costs when demanding from
the interbank network. This means that the EQC is linear in C'. Furthermore, for simplicity
of exposition (and without loss of generality regarding the form of equilibrium C') suppose
(=w=el=e"=ry=0,2B=¢; =\=1,0; =0, T;; =T for all banks and parameters

are such that all equilibrium exposures are strictly positive. The EQC is then as follows:

N N
0=06; —Cijr — 0 Z Crjt — pit — I'pje Z Cikt
ki ki
In this case an analytical expression for equilibrium exposures exists, where C' is a N(N —
1) x 1 vector of endogenous exposures, p is a N X 1 vector of default probabilities, X is
a N x 1 vector of fundamentals, M;, M;, My ; and My~ ; are matrices that select and
sum the appropriate elements in C' and p and . and o signify matrix multiplication and the

Hadamard product, respectively:
—1

Given that p is a linear function of X, as set out in the DRP, it follows that equilibrium C

is a non-linear function of X.
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D Robustness tests

We run two alternative specifications as robustness tests, both of which test how sensitive
our results are to how we treat time-variation in the risk premium. In the first robustness
test, we use alternative measures of bank default risk and bank-specific fundamentals that
exclude the risk premium, but otherwise estimate our baseline specification. In the second
robustness test, we use the same data as in our baseline results but amend the default risk
process so that common time-variation in the risk premium does not propagate through the
interbank network. In both cases, the results are quantitatively and qualitatively similar to

our baseline results.

D.1 Robustness: Removing the effect of the risk premium

We attempt to remove the effect of the risk premium by using different data. For bank default
risk, we use a proprietary Bloomberg estimate of bank default risk (DRISK), excluding the
risk premium, based on market data about the bank. For bank-specific fundamentals, we
calculate the weighted average consumption growth in various geographic regions, where
the weighting is the proportion of a bank’s revenues that came from that region. We plot
some summary statistics in Figure 1.15. Our estimation procedure is otherwise the same as
our baseline specification. In Table 1.8 we set out our results, which are quantitatively and

qualitatively similar to our baseline results.

D.2 Robustness: Preventing the risk premium from propagating

through the network

In this robustness test, we amend the default risk process. As in our baseline specification,
let p, signify the default risk implied by Credit Default swap premia, X ¢ signify the matrix
of bank-specific equity indices and Xj, signify the Morgan Stanley World Index, which we
use to control for common variation in the risk premium. In the following specification, we
amend the default risk process so that the risk premium does not propagate through the

interbank network.
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Table 1.8: Results: Robustness check 1

[1]
¢ 2.16
(1.04)
T 7.64%F*
(4.32)
051 -0.04***
(-3.07)
w 0.03***
(7.91)
Min Median Maxzx
T, 0.15%%* 0.19%** 0.74%%%*
(12.23) (8.10) (18.65)
05 5.24 7.07* 31.22%**
(0.37) (1.80) (11.96)
a; 0.04 0.71 5.53%**
(0.21) (1.47) (2.55)
Network
FE ij, it, jt
R? 0.85
No. obs 6,426
Default risk
FE i
Controls Y
R? 0.85
No. obs 378

Notes: SEs clustered at bank level. Figures in parentheses are t-stats. *** ** *indicate different
from 0 at 1%, 5% and 10% significance, respectively. For the heterogeneous parameters we report
estimates and t-stats for the minimum, median and maximum, and plot the full distribution below.
Notation: ¢ is the sensitivity of cost of equity to default risk, 7 is the extent to which contagion
intensity varies over time, i is the effect of bank-specific fundamentals, w is the effect of hedging,
I; is contagion intensity, 0 governs product differentiation based on characteristics and a; scales
exposures for non-UK banks. Controls in the default risk process are VIX, MSWI and macro data.
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Figure 1.15: Removing the effect of the risk premium

(a) Default risk excluding risk premium (b) Revenue-weighted consumption growth
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Note: Panel (a) shows a Bloomberg measure of default risk that excludes the risk premium.
Panel (b) shows a bank-specific fundamental measure that is the weighted average consump-
tion growth in various geographic regions, where the weighting is the proportion of a bank’s
revenues that came from that region (normalized by a negative number for ease of comparison
with panel (a)).

Pt = Xt/B + (I — TtF (e] Ct)X27t/32 —th L+Tt(r O Ct)pt + ef

~— ~—~ N —~ —_—— ——
Default Funda- Risk Hedging Counterparty
risk mentals premium risk

Re-arranging for equilibrium py:

pt = X002 + Z(TJ‘ 0 Cy)*(X¢B — wCit + €})
s=0
This allows bank default risk and therefore their cost of equity to vary with the risk
premium, but the effect of the risk premium on bank default risk does not depend on the
interbank network. We set out our results below in Table 1.8, and find that our results are

quantitatively and qualitatively similar to our baseline results.
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Table 1.9: Results: Robustness check 2

1]
10) 1.89%**
(4.43)
T 7.60%**
(4.15)
051 -0.98***
(-3.28)
w 0.04***
(7.51)
Min Median Max
T, 0.15%%* 0.21%%* 0.52%%*
(9.86) (10.16) (3.86)
0y 5.20 6.98%*** 31.06%**
(0.57) (5.43) (8.70)
a; 0.04 1.28%* 5.53***
(0.21) (1.93) (2.54)
Network
FE ij, it, jt
R? 0.85
No. obs 6,426
Default risk
FE i
Controls Y
R? 0.82
No. obs 378

Notes: SEs clustered at bank level. Figures in parentheses are t-stats. *** ** *indicate different
from 0 at 1%, 5% and 10% significance, respectively. For the heterogeneous parameters we report
estimates and t-stats for the minimum, median and maximum, and plot the full distribution below.
Notation: ¢ is the sensitivity of cost of equity to default risk, 7 is the extent to which contagion
intensity varies over time, i is the effect of bank-specific fundamentals, w is the effect of hedging,
I; is contagion intensity, 0 governs product differentiation based on characteristics and a; scales
exposures for non-UK banks. Controls in the default risk process are VIX, MSWI and macro data.
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E Additional post-estimation tests

E.1 Default risk and cost of equity

In this sub-section, we show test our parameterisation of a bank’s cost of equity as a function
of its default risk is reasonable. We run a linear regression of a bank’s cost of equity, taken

from Bloomberg and based on a simple CAPM model, on its default risk.

& = ¢py + FE; + FE, + ¢,

As we set out below, we find that the relationship between the two is positive and
significant, as expected. Riskier banks face a higher cost of capital, even when controlling

for time fixed effects.

Table 1.10: Cost of equity and default risk

Cit
Dit 1.31%%%
(2.94)
FE Lt
R? 0.69
No. obs 346

Note: Figures in parentheses are t-statistics. *** ** * indicate different from 0 at 1%, 5%
and 10% significance, respectively.

E.2 Testing heterogeneous contagion intensity

We set out above three motivations for heterogeneous contagion intensity I';;: (1) correla-
tions in fundamentals (risk sharing, in other words), (2) variations in product and (3) other
pairwise variations, including common jurisdiction. We estimate general I';; without im-
posing any of these motivations in estimation, meaning we can test them post-estimation.
In particular, risk sharing implies a relationship between X3 and I';;, which we test in the

following way.
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As bank-specific fundamentals we use equity indices weighted by the geographic revenues
of each bank, as we describe above. This implies that banks that get their revenues from
the same geographic areas will have positively correlated fundamentals, and banks that have
differing geographic revenue profiles will have less correlated fundamentals. For each pair of

banks we calculate the empirical correlation coeflicient as p;;; = Corr(Xitﬁ, thﬁ).

We then divide our bank pairs into two groups, “more correlated” and “less correlated”,
by defining the dummy variable 1, = 1 if p;; > median(p;;) and 1,,, = 0 otherwise. We
divide bank pairs similarly regarding I';;, into “safe links” and “risky links”, by defining the
dummy variable 1p,, = 1 if fij > median(ﬁ»j) and 1p,, = 0 otherwise. Risk sharing implies
that safe links should be less correlated, and risky links should be more correlated. Risk
sharing is, however, difficult to separately identify from other motivations for heterogeneous
contagion intensity. In particular, less correlated links are more likely to go across jurisdic-
tions than more correlated links, where going across jurisdictions may make links less safe.
We test this by identifying the home jurisdiction of each of the N = 18 banks in our sample
and classifying each as being in the UK, North America, Europe or Asia. We then define the
dummy variable 15 = 1 if they share the same home jurisdiction, and 0 otherwise. We do not
attempt to test the effect of product variations, as there are many product characteristics

and we do not have a clear ranking of their relative riskiness.

We run the following linear regression:

11"”. = agp + Oéllpij + 05210 + Oégl(;lpij + ef

The coefficient on the interaction term is positive and significant: where banks are in the
same jurisdiction, then more correlated links are less safe. We interpret this as evidence in
support of a risk sharing motivation for heterogeneous contagion intensity. The coefficient
on 1lg is the right sign (indicating that links within the same jurisdiction are safer), but
insignificant. The coefficient on 1, is negative and significant: this suggests that when links
go across jurisdictions, less correlated links are actually less safe. This could still be because
of confounding jurisdictional effects: within the set of links that cross jurisdictions, more

distant links will be riskier but also less correlated.
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Table 1.11: Drivers of heterogeneous contagion intensity

[1]

Lo, -0.280%%*
(-4.44)
1o -0.204
(-1.61)
Laly, 0.600%*+
(3.96)
No. obs 153

Note: Figures in parentheses are t-statistics. *** ** * indicate different from 0 at 1%, 5%
and 10% significance, respectively.
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Chapter 2:

Information loss over the business cycle

The business cycle induces turnover in mutual funds: they exit in recessions and enter in
recoveries. The effect of this firm turnover on welfare depends on a key trade-off: on the
one hand, the business cycle “cleanses” the market of low quality exiting funds and replaces
them with entrants that may on average be higher quality. On the other hand, the entrants
have no returns history and so investors have less precise beliefs about their ability, where
this “information loss” leads to misallocation that harms welfare. I examine this trade-
off by estimating a structural model in which rational investors form and update beliefs
about competing mutual funds that endogenously choose to enter and exit the market. I
estimate this model using data on US mutual funds. I find that the business cycle has
material, persistent effects that are negative in the short-term but turn positive as the effect

of information loss decays over time.
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2.1 Introduction

The business cycle induces firm turnover: firms exit in recessions, and enter in recoveries.
What impact does this firm turnover have on outcomes post-recovery? How persistent is

this impact? How does the impact vary with the characteristics of the business cycle?

I seek to answer these questions by exploring a key trade-off that underpins them. On
the one hand, the business cycle can improve outcomes by “cleansing” the market of low
quality firms: replacing low quality firms that exit during the recession with higher quality
firms that enter during the subsequent recovery. On the other hand, the firms that exit have
a track record of performance, whereas the entrants that replace them do not. To the extent
that this information was valuable and had an impact on outcomes, this “information loss”

could harm outcomes.

This trade-off between cleansing and information loss is important in the wide class of
markets in which unobserved quality is important for outcomes and past performance is
informative about quality. The mutual fund industry is such a market, and is a natural
setting in which to study this trade-off for the following reasons. First, there is a broad
literature exploring whether quality or ability is important for mutual funds. Second, there

is clear evidence that investors in mutual funds respond to past returns.

I evaluate this trade-off by estimating a structural equilibrium model of investor and
mutual fund behaviour. I estimate this model, and I use the results to run counterfactuals
in which I simulate business cycles of varying types and quantify the impact of the resulting
firm turnover. This allows me to draw novel conclusions about the size and persistence of
business cycle shocks. This paper is the first, to my knowledge, to structurally estimate the

impact of cleansing and information loss over the business cycle.

The model consists of two parts. On the demand side, rational investors invest in mutual
funds based on their beliefs about the heterogeneous abilities of funds to generate excess
returns, and update those beliefs over time as they observe fund performance, following
Berk and Green (2004). The ability of a given mutual fund to generate excess returns is
decreasing in the total size of the mutual fund industry (which in the spirit of Pastor and
Stambaugh (2012) is the way in which I model competition between mutual funds) and
also varies with a macro-economic factor. The aggregate surplus generated by a fund is the
total payout to the fund managers and to investors. This aggregate surplus is increasing

and convex in fund ability, and is also increasing in the precision of investor beliefs: if these
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beliefs are imprecise, then there is misallocation (over-investment in low ability funds or

under-investment in high ability funds) that harms surplus.

On the supply side, funds make dynamic decisions to exit and enter. Funds take the size
of the mutual fund industry as given, and form beliefs about how its size varies with the
macro-economic factor. If a fund exits it receives a scrap value that represents the use of its
human capital elsewhere. If a fund enters it incurs a fixed entry cost and randomly draws

ability from the population distribution.

I take the size of the mutual fund market as given, and instead focus on compositional
inefficiencies regarding the types of funds that make up the market: incumbent funds do not
take into account that if they exit then new funds could enter, which may improve aggregate
surplus depending on their relative characteristics. A business cycle (which I model as a
negative shock to the macro-economic factor, followed by a recovery) results in exactly this
exchange of funds: during the recession funds exit, which reduces competition and allows

funds to enter during the subsequent recovery.

The impact of this firm turnover depends on two countervailing effects. Low ability funds
are smaller and are more likely to exit during the recession, whereas the firms that replace
them are of average, and therefore higher, ability. Surplus is increasing and convex in ability,
whereas fund size is increasing and linear in ability. This means that although the aggregate
size of the exiting and entering funds is the same, the surplus generated by the higher ability
entering funds is higher. This is the cleansing effect. The entering funds, however, have
no returns history, meaning that investors have less precise beliefs about their ability. This
results in more misallocation in equilibrium, which is bad for aggregate surplus. This is the
information loss effect. Cleansing is about the first moment in ability (entrants are higher
ability on average), whereas information loss is about the second moment (there is greater

uncertainty about the ability of entrants).

The model allows me to formalise the key parameters that determine the relative strength
of these two countervailing effects. The strength of the cleansing effect depends on the
dispersion in the distribution of fund abilities, the differing extents to which low and high
ability funds exit and the convexity of a fund’s surplus with respect to its ability. The
strength of the information loss effect depends on the informational content of returns and

the age of exiting funds.

I estimate both parts of this model using data on US Equity mutual funds. I fit the

demand-side to data on mutual fund size, taking into account fund returns. I do not identify
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the ability of funds directly, but I do identify the beliefs of investors about ability from the
size of the fund: the model implies that bigger funds, all else being equal, are believed to
be higher ability. I identify the value of information from the rate at which investors adjust
their holdings in response to past performance: a returns history is valuable if investors are

responsive to returns.

I fit the supply-side to data on fund entry and exit. In doing so, I allow the scrap value
to vary according to the state and the type of the fund for two reasons. First, it allows
me to more accurately capture exit dynamics: it stands to reason that funds of different
types have differing outside options. Second, it ensures model consistency: in my analysis
I observe and hold fixed the equilibrium relationship between the total size of the mutual
fund industry and the macroeconomic factor. State-type variation in scrap values means I
can ensure in my estimation that the equilibrium fund-specific exit dynamics implied by my
model are consistent with these aggregate dynamics. In the extreme case in which I estimate
a different scrap value for each state-type combination, I am able to perfectly match observed

exit rates.

I find that the model fits well on both the demand- and supply-side. I find that investors
are relatively slow to respond to past returns: the estimated signal-to-noise ratio implies
that investors consider the informational content in their priors to be roughly equivalent to
4 years of returns data. I also find that scrap values vary in intuitive ways with the state
and type of the fund: funds have better outside options when the macro-economic factor is

good and when they are believed to be high ability.

I use my results to counterfactually simulate a business cycle of varying depths, where
deeper business cycles result in more firm turnover. I then compare the surplus generated by
the exiting funds and the entering funds at various points post-recovery to reach two main

conclusions.

First, I find that the business cycle harms surplus in the short-term and improves surplus
in the long-term. The information loss effect dominates the cleansing effect in the short-term,
such that the firm turnover harms aggregate surplus. Post-recovery, both the exiting and
entering funds age and so benefit from additional returns information: the benefit of this
extra information is greater for the entering funds who started with no information, and so
over time the information loss effect decays. There is a “switching point” at 27 months, by
which time information loss effect decays to the point where it is dominated by the cleansing

effect. From this point onward, aggregate surplus is higher due to the cleansing effect.
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Second, I find that deeper business cycle have bigger persistent effects in the short-term
and the long-term. For the deepest business cycle I model (which is roughly equivalent to the
financial crisis), the aggregate surplus of entering funds is 20% less than the aggregate surplus
of the exiting funds in the first month after the recovery. By month 80, the information loss
has decayed to the point where the aggregate surplus of entering funds is 30% greater than
that of exiting funds. The impact on total surplus in the market is small but material: the
short-term harm from the information loss is 0.5% of total surplus in the market (including
funds that neither exited nor entered) and the long-term benefit from the cleansing effect
is 0.9%. The switching point at which the cleansing effect dominates the information loss
effect is around 27 months regardless of the depth of the business cycle. I also model the
cumulative impact of the firm turnover over time,! taking into account the one-off costs
incurred by entering firms. I find that it takes 75 months for the cumulative impact to

become positive.

The persistent effects of the business cycle have been extensively studied in macroe-
conomic contexts, but less so in market-specific contexts. The main contribution of this
paper is to develop an under-explored implication of business cycles: the information loss
that results from firm turnover. I explore the conditions under which this information loss

dominates the cleansing effect, and I quantify how this trade-off changes over time.

I review the literature below. In Section 2, I introduce the data and set out some guiding
empirical facts. In Section 3, I set out my model. In Section 4, I describe my empirical
approach. In Section 5, I report my results. In Section 6, I undertake counterfactual analyses.

In Section 7, I conclude.

2.1.1 Related literature

This paper is related to three broad strands of literature.

First, this paper is related to the literature on cleansing that goes back to Schumpeter
et al. (1939), and is featured more recently in Caballero and Hammour (1996) and Castillo-
Martimez (2018). In this paper, I document and measure cleansing in the context of mutual
funds. I also show how cleansing may bring first-moment benefits but second-moment costs
in the form of information loss. This loss of information over the business cycle has not been

studied extensively. Relatedly, Hale (2012) set out reduced form evidence that recessions

"Where the cumulative impact at time ¢ is the sum of the impacts in all previous periods.
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affect connections between firms and banks which, in a relationship banking context, could

have implications for the extent of information asymmetry.

Second, this paper is related to the literature on mutual funds generally (Berk and Green,
2004; Berk and Van Binsbergen, 2015; Pastor and Stambaugh, 2012; Pollet and Wilson, 2008;
Fama and French, 2010) and more specifically the effect of the business cycle on mutual
fund outcomes (Kosowski, 2011; Glode, 2011; Kacperczyk et al., 2014, 2016). There is a
more limited literature that estimates structural models related to mutual funds, including
Roussanov et al. (2018) and Gavazza (2011). I introduce information loss over the business
cycle as a new consideration within this literature, and quantify its importance in a structural

econometric context.

Third, this paper is related to the literature on exit and entry, and in particular the
estimation of such models (Hotz and Miller, 1993; Rust, 1987). I estimate such a model in
the context of mutual funds in which I argue that funds take as given the aggregate size of
the industry and form beliefs over its future dynamics. I then show how estimating state-

type-specific opportunity costs allows me to consistently match those beliefs in equilibrium.

2.2 Data

I first describe how I select funds and calculate excess returns. I then describe the key

empirical facts that motivate my research question and guide my modelling.

2.2.1 Sample selection

I obtain data on mutual fund characteristics and their monthly returns and assets from the
database maintained by the Center for Research in Security Prices (CRSP), The University
of Chicago Booth School of Business. I select data from January 1990 to December 2016.
I limit my sample to actively managed US Equity funds that (i) are never smaller than
USD 1m in size, (ii) have at least 12 months of returns data and (iii) have data on their
expense ratio. This is the standard approach in the literature (see for example Berk and
Van Binsbergen (2015) for an overview of mutual fund selection), but with slightly looser size
and history thresholds: this is important because propensity to exit is likely to be correlated
with data availability. In other words, the standard thresholds exclude many of the funds I
am seeking to study. I am left with a sample of 3,420 funds and a total of 452,222 month-fund
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observations.

2.2.2 Calculating excess returns

I calculate excess returns following Berk and Van Binsbergen (2015). I regress returns in
excess of the risk-free rate (R;;) on a set of 11 common factors (Fy) which are the returns
to the main index funds operated by Vanguard, which I list in the table below. The fund’s

excess return, «;; is the residual in this regression:
Ry = BiF¢ + oy (1)

This is a more reasonable benchmark for mutual funds than, for example, a benchmark
involving momentum investing returns that would be prohibitively costly to implement in

practice. See Berk and Van Binsbergen (2015) for a fuller discussion

Table 2.1: Benchmark

Fund Name Ticker Asset Class

S&P 500 Index VFINX  Large-Cap Blend
Extended Market Index VEXMX Mid-Cap Blend
Small-Cap Index NAESX  Small-Cap Blend
European Stock Index VEURX International
Pacific Stock Index VPACX International
Value Index VVIAX  Large-Cap Value
Balanced Index VBINX  Balanced
Emerging Markets Stock Index VEIEX  International
Mid-Cap Index VIMSX  Mid-Cap Blend
Small-Cap Growth Index VISGX  Small-Cap Growth
Small-Cap Value Index VISVX  Small-Cap Value

2.2.3 Empirical facts

I set out four empirical facts:

1. Heterogeneity in fund size. Funds vary significantly in size at the point of entry

and over their lifetime, as I show in Figure 2.1. This is true even controlling for the
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macro-economic conditions at the time of entry: in other words, this is cross-sectional

variation not inter-temporal variation.

2. Exit is correlated with size. Smaller funds are significantly more likely to exit in

any given period than bigger funds.

3. Exit is counter-cyclical. Funds are more likely to exit when the S&P500 (which I

denote macro-economic factor M;) is low than when it is high, as I show in Figure 2.2.

4. The size of the mutual fund industry is pro-cyclical. There is, unsurprisingly,
a close relationship between the S&P500 and the aggregate size of the mutual fund
industry, which I denote ;. I show this graphically in Figure 2.3 and in the regression
results in Table 2.2. The R? of a regression of Q; on M, is 0.75, rising to 0.9 if I include

a structural break in the financial crisis.

To these empirical facts I add that investors respond to past returns, on which there is
a large literature (see, for example, Chevalier and Ellison (1997)). These facts combined
naturally give rise to my research question: given that exiting funds are observably different
from the average fund, what impact does this exit have on aggregate outcomes? Given that
investors clearly attach some value to past returns, what impact does the absence of past
returns have on entrants? The macro-economic factor clearly has an impact on aggregate

trends in the mutual fund industry, but what about on its composition?
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Figure 2.1: Heterogeneity in fund size
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Note: Panel (a) shows the distribution of fund size in the first period of its life, excluding
the top 5% of funds by size. Panel (b) shows the distribution of the natural log of initial
size. Panel (c) conditions on M, the level of the SP500 in the period in which the fund

entered. Panel (d) shows the log of the maximum size the fund attains during my sample.
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Figure 2.2: Exiting funds and the S&P500
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Table 2.2: Relationship between (); and M;

[1] 2] 3]
AQ; Q1 Q1
Intercept 0.001 7.38 x 107*** -3.62 x 107***
(0.007) (7.36 x 10%) (1.22 x 10%)
1 post2008 1.10 x 100+
(1.38 x 10°)
M, 843.82%** 1826.8"**
(51.35) (100.94)
M; 1 posi2008 -1022.1
(108.6)
AM, 0.466"**
(0.117)
R? 0.15 0.75 0.90
No. obs 90 91 91

Note: Figures in parentheses are standard errors. *** ** *indicate different from 0 at 1%,
5% and 10% significance, respectively. @ is the size of the mutual fund industry, M; is the
SP500 index and 1 p,g200s is @ dummy variable that is one after 2008. The dataset is from
2001 to 2016, at a frequency of 2 months.
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Figure 2.3: The relationship between Q and S&P500
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Note: @), is aggregate assets under management across funds in my sample in period t.

2.3 Model

The model consists of two parts: (1) a model of demand by rational investors for mutual
funds and (2) a model of supply by mutual funds. I describe each part of the model, before
considering the implications of the model for aggregate surplus, efficiency and the role of the

business cycle.

2.3.1 Demand

The model of demand is based on Berk and Green (2004), in that it shares the following two

core components. First, there are decreasing returns to scale in the ability of funds to earn
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excess returns. Bigger funds, all else being equal, earn lower returns because their ability
to gather and exploit information is diluted or because of price effects or execution costs.
Second, ability is unobserved, but investors learn as they observe past returns. These two
core components in combination mean that rational investors form beliefs about the ability
of funds and invest up to the point where, given decreasing returns to scale, those returns
are competed away. As investors observe past returns of the fund, they update their beliefs
about the ability of the fund and adjust their holdings.

To these core components I add the following to suit my research question and to allow
the model to be reasonably taken to data. First, following Péstor and Stambaugh (2012),
I model competition between mutual funds by allowing the returns earned by funds to be
decreasing in the total size of the mutual fund industry: a mutual fund earns lower excess
returns, all other things being equal, if there are many other mutual funds trying to earn
excess returns from the same set of investment opportunities. Second, I include a role for
the business cycle by allowing the ability of funds to earn excess returns to vary according

to a macro-economic factor that varies exogenously over time.

More formally, I follow Berk and Green (2004) and draw a distinction between the net
excess return that investors actually earn, and the gross excess return the fund would have
earned on a single dollar of investment (that is, before the effect of decreasing returns to
scale). The total risk-adjusted payout in dollar terms to investors from investing ¢;; in mutual

fund ¢ with gross return of, and fee rate f; is:
TPy = quody, — C(qi) — quefi

where C'(g;;) is a cost function representing the decreasing returns to scale in the ability to
earn excess returns. I parameterise the cost function as C(q;) = ¢:q% where ¢; > 0, such
that when ¢ > 0: C(q) >0, C'(q) > 0, C"(q) > 0, C(0) = 0 and lim, ,~, C(q) = co. The net
af' excess return is what investors actually earn, and is simply this payout divided by the

size of the investment:

n TP C(qit)

W= —— =)y — ———= — [i=a}, — iqi — i (2)
dit dit

I disaggregate the fund’s gross excess return into three components. First, the fund’s

true ability to generate excess returns «;, where a; ~ N (ui,Tifl). Second, a fund-specific

iid shock €;;, where ¢;; ~ N(0, 7, 1) and a; L €;. Third, common variation in ability across

» Mie
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funds ¢;:
Oégt =y + €+ (515 (3)

I then disaggregate the common variation into a further three components: an age effect

da(it), the effect of macro-economic factor M, and the effect of industry size Q:
0¢ = Oa(it) + M, + 00, (4)

I estimate unrestricted age effects 0,1y, macro-effects 3 and industry-size-effects 6 in my
empirical analysis, as described below. A natural interpretation at this stage, however, is
that > 0and 6 < 0. 8 > 0 implies that funds are more able to earn excess returns when the
macro-economic factor is good. 6 < 0 represents competition, in that a larger mutual fund
industry means more competition for the same investment opportunities, reducing excess

returns.

Investors choose ¢;; before €;; is realised. Furthermore, investors do not know the true
ability of the fund «;, but form expectations based on the information available to them at
the point of investment, which I denote I;_;. I define these expectations as e; = Elay | I;_1].

All other components of the return are known to the investor, including ¢; and &;.

Investors supply capital with infinite elasticity to any fund with positive expected net
returns «f;, taking aggregate investment ¢; in the fund as given. In equilibrium, ¢; is then
such that E[a, | I;_1] = 0. Substituting in Equations 2 and 4, this means that:

e + 0y — [i

="y (5)

Investor demand for mutual fund ¢ is therefore increasing in its expected ability ey,
increasing in its scalability ¢;, decreasing in its fee rate f; and subject to common variation
0;. Note that for ease of reference I refer to e; as “ability” and ¢; as “scalability”, but in

some sense both are fund-specific measures of the ability to generate excess returns on g;;.

To complete the model of demand, I need to characterise the expectations formation
process behind e;;. Investors observe past net excess returns, ;. _, and from this can infer
gross returns «f,. Investors cannot separately identify a; from €5, but can extract a signal

about «; given their relative distributions.

Given these distributional assumptions, there are simple closed-form expressions for how

investors form and update their posterior beliefs about «a; in responses to these signals.
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Defining the signal-to-noise ratio A = = and s(\,t) = 14 (¢ — 1)\:

1,0

_ 1 Hi R 9
qlt_a 5t_fl+S(A7t) +S(}\7t) azm:| (6)

m=1

I leave implicit the lower bound of zero. I repeatedly substitute in Equation 2 to solve
forward for optimal ¢;; in terms of net returns (which are observed by the econometrician),
instead of gross returns (which are not directly observed by the econometrician):

O[an B fl

Gt (7

«s(A,m+1)

t—1
it =

%[Hi—fi+5t+)\
m

I add an error term, uf,, that represents shocks to ¢;; beyond this expectations formation
process. This could include, for example, noise traders. I leave further discussion of this error
term and its distribution to the section below on my empirical analysis. This Equation 7
characterises equilibrium investor demand for fund . In what follows I define the “observable

type” of mutual fund i as ©; = (u;, ¢, 0%, 0¢, f;) and its “unobservable type” as «;.

2.3.2 Supply

On the supply-side, firms make three decisions: (1) they choose to enter or not to enter,
(2) they set a single fee at the start of their life and (3) they choose to exit or not to exit.
Before modelling these three choices, I describe firm beliefs about the evolution of industry

size, which will be important for each choice.

2.3.2.1 Firm beliefs about industry size

The payoff to a mutual fund depends on macroeconomic factor M; and competition through
the size of the mutual fund industry @, as I set out in equation 4. I set out in Figure 2.3 and
in Table 2.2 how closely M, and Q,; co-move, with a R? value of 0.75 in a linear regression
of Q; on M;.

The key assumption on the supply-side is that funds take aggregate industry size ); as

given, and form beliefs about its dynamics based on its co-movement with M;:
Q= g(M;) = 738 4+ 0.844 M, (8)
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I argue that this assumption is reasonable given that there are a very large number of funds,
the vast majority of which are a very small proportion of total );. There are admittedly a
small number of very large mutual funds for which this assumption may not be reasonable:
these, however, are mostly established, older funds that are very unlikely to exit. That is,
this is a reasonable assumption to make when studying, as I am, the entry and exit of mutual

funds.

I assume that M, develops according to some exogenous Markov process. This means that
(); does too, such that firms have expectations about how industry size will develop over time,
regardless of their own decisions or those of their competitors. This assumption has obvious
computational benefits: the modelling environment is not a game, but a series of individual
decisions by each mutual fund. The remaining complication, which I consider below, is
ensuring that the individual decisions result in aggregate dynamics that are consistent with

the firm beliefs set out in Equation 8.

2.3.2.2 Exit

In each period, a mutual fund can choose to exit and obtain a scrap value, which is intended
to capture the use of its human capital elsewhere. This decision is dynamic, and depends
on (1) the type of the mutual fund and (2) the state, including investor beliefs about the

mutual fund ey, the age of the mutual fund a;; and the macro-economic factor M;:

a

[} Type: @i - (/'L'w gbia g, Jyje’ fl)
o State: Sy = (e, ay, My)

e Action: z; = 0 if exit, z;; = 1 if do not exit.

Firms take expectations over (1) the development of beliefs about their ability e; and (2)
changes in M;. Their age and the precision of investor beliefs about their ability update
deterministically. As is standard in the literature on exit (see for example Hotz and Miller
(1993)) funds receive an action-specific shock 7(z;;) that is distributed Type-1 extreme value.

In recursive Bellman form:

Vit(Se; ©;) = max 2 fiqie(Se; ©s) + (1 — i)W (S¢; ©1) + n(2it) + 2it BE[Vies1(Ser1; ©1)] (9)

Zit
I allow the scrap value W (Sy; ©;) to be state- and type-specific. This assumption has an
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intuitive justification: mutual funds are more likely to have good outside options if they are

good funds and/ or if the macro-economic state is good.

To illustrate the equilibrium exit decisions resulting from this model, I solve for z*(Sg; ©;)
under various combinations of ability beliefs e;;, macroeconomic states m; and parameter
values in Figure 2.4 below, ignoring the action-specific shock 7(z;). These numerical results
indicate a cutoff rule: funds exit when they are perceived to be bad or when the macroeco-

nomic state is bad, or some convex combination thereof.

Figure 2.4: Exit decisions
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Note: The area under the curve shows the combinations of ability belief (e;;) and business
cycle state (m;) in which a fund exits: funds exit when they are perceived to be bad or when
the macroeconomic state is bad, or some convex combination thereof. Funds are less likely
to exit when returns are less informative (\ is low) and/or when their ability scales up easily

(¢ is low).
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2.3.2.3 Entry

Firms decide to enter without knowing their observable type ©;. Once they enter, they
are randomly allocated a type (excluding the fee rate f;, which they choose) from some
distribution he,. Firms choose to enter if the expected value of entry, taking expectations

over Bj, exceeds an entry cost that is constant across firms but can vary over time:

/Vz‘t(st; @i) do,; > Ftemry (10)

After deciding to enter, firms learn their observable type ®;. Firms then choose f; to

maximise their initial value, given their observable type ©®; and the prevailing state M;:

f; = arg max V((84:y) (11)

This generates cross-sectional variation in fee rates through the random allocation of
types: funds that are given a better random type charge a higher fee. This also generates
inter-temporal variation in fee rates through variation in the macro-economic factor M;:

funds that enter in good times charge a higher fee.

2.3.3 Equilibrium

In equilibrium, (1) investors invest in any fund with positive expected excess returns, as per
Equation 7; (2) mutual funds choose to enter, set fees and exit optimally, given their type,
the state, investor behaviour and their beliefs about future competition, as per Equations
9, 10 and 11; and (3) mutual fund beliefs about the dynamics of future competition are

consistent with optimal mutual fund behaviour.

Expanding on the third of these equilibrium requirements: the entry and exit rules,
conditional on g(.), induce dynamics in @y, which we call i(.,g(.)). Equilibrium is a fixed
point such that ¢*(.) = h(.,¢*(.)). In other words, in equilibrium the entry and exit rules

induce fund behaviour that is consistent with the overall dynamics in Q).

I do not solve for this equilibrium function. Instead, in the empirical analysis below, I
observe and estimate this equilibrium function and hold it constant in the counterfactuals I
run. This clearly places restrictions on the counterfactuals in which this equilibrium function

could plausibly be held constant, which I discuss below.
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2.3.4 Aggregate surplus

I follow Berk and Van Binsbergen (2015) in defining the surplus (or value-added, in the
words of Berk and Van Binsbergen (2015)) generated by a given fund i as the dollar return

to fund and investors:
Sit = fiQit + 0G4t (12)

Aggregate surplus is then the sum of individual fund surplus: AS; = ). si. si depends
on unknown true ability «;: taking expectations gives E[s;; | I;_1] = figi. That is, in
expectation mutual funds are the only ones to receive positive payoff because investors
compete away their payoff. The model I set out above has two important implications

for how s;; varies across funds.

First, the surplus generated by a given fund ¢ is increasing and convex in true unknown
ability «;, as set out in Figure 2.5. The convexity comes from the fact that both equilibrium
fee rate f* and mutual fund size ¢;; are increasing in «;. Intuitively, the market power of
fund 7 is increasing in «;, and thus so is surplus because investor payoff is competed away in

any case.

Second, conditional on true «;, the surplus generated by a given fund is typically in-
creasing in the precision of investor beliefs. The general intuition for this is straightfor-
ward: investor beliefs are correct in expectation, but in particular realisations investors can
think a particular fund is good when it is bad, and vice versa. This uncertainty results in
mis-allocation (investing too much (little) in bad (good) funds) that harms surplus. More
formally, substitute Equations 2 and 5 into Equation 12 for surplus and assume for ease of

exposition that f; = 0:
1

R

Let e;; = o + €5, where €, denotes the error in investor beliefs for fund i. It follows that

(afy — exr)es (13)

Sit i

si is decreasing in this error: mis-allocation is harmful to surplus.

The primary determinant of the precision of investor beliefs is the age of the mutual
fund. Older mutual funds have a returns history that is a signal of their ability, and so
allows investors to form more precise beliefs. As the age of a fund goes to infinity, the error
term €5, goes to zero. In Figure 2.5, I set out an example of how the surplus of a given fund

is typically increasing in its age.

I caveat above that additional information as a fund ages typically increases surplus.
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Figure 2.5: The effect of age and ability on surplus

(a) The effect of ability on surplus (b) The effect of age on surplus
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Note: Panel (a) shows how expected surplus varies with investor beliefs about ability e;: it
is increasing and convex. The size of the mutual fund ¢;; is also increasing in ability e; and
convex, but to a lesser degree. Panel (b) shows how surplus is typically increasing in age,
because as funds age investor beliefs become more precise as they observe returns.

Whether this is always the case depends on the age of the fund and the fee rate f;: when f;
is set too low or too high relative to the fund’s true ability, then this introduces a distortion.
This distortion can interact with the effect of aging in a way that means that, beyond a
certain age, surplus is no longer increasing in age. I discuss this in more detail in Figure
2.16 in the appendix. For the purposes of my research question, it suffices to say that funds
with no returns history have lower surplus than those that have a returns history, all other

things being equal.

2.3.4.1 Efficiency

I consider the choices of a social planner without additional information: that is, the social
planner does not know true fund ability «; or have any more information than investors or

funds.

There are various inefficiencies on the supply-side: mutual fund i’s choices over entry,
fee-setting and exit all affect ); and, through the effect of competition, the payoffs of other

mutual funds. Mutual fund 7 does not account for any of these externalities.

My research question, however, is about how the business cycle affects the types of mutual
fund in the industry. In other words, I am interested in the composition of the mutual fund

industry, rather than its size. That is, I consider the second-best problem of optimising the
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composition of mutual funds, whilst taking as given the aggregate size of the mutual fund

industry ; and its dynamics.

I illustrate a compositional inefficiency by considering the mutual fund industry in equi-
librium, in which no incumbent fund wishes to exit and and no potential entrant wishes to
enter, given the prevailing macro-economic state M; and the size of the industry @Q;. I ask
whether the social planner would be willing to swap some number n incumbent funds of

exiter

a particular type and size ¢ for a single randomly drawn new entrant of expected size

ge™rant - To focus on composition only, n, the size of the exiting fund and the expected size of
the new entrant must be such that the overall mutual fund industry size (J; does not change.
y g

: exiter __ ,entrant
That is, ng =q .

To see that such a compositional inefficiency is feasible in practice, suppose that the social
planner chooses exiting funds of the worst expected ability type, and replaces them with a
new entrant of average expected ability. Both the surplus generated by a given fund and its
size are increasing and convex in true ability, as described above in Figure 2.5. Importantly,
surplus is significantly more convex than fund size, meaning that s > n 5% the new
entrant generates greater aggregate surplus than the exiting funds. This surplus-improving
swap need not occur in the decentralised equilibrium because the incumbent funds have no

incentive to exit so that the better fund can enter.

I consider the social planner’s preferences to illustrate the inefficiencies in the model. 1
do not, however, formally model the social planner’s choices over composition, but instead

consider the social planner’s preferences over business cycles.

2.3.5 The role of the business cycle

I discuss above whether the social planner would be willing to swap some bad funds for an

average entrant. This type of swap is exactly what results from a business cycle in my model.

Suppose the mutual fund industry is currently in equilibrium at time 0 at (Qo, My).
Potential new entrants are indifferent between entering or not. At the start of period 1,
there is a shock to the macro-economic factor, in that M; < M,. This downward shock
causes existing funds to shrink (as per Equation 7) and causes some funds to exit (as per
the exit rule set out in Figure 2.4), such that @)1 < Qo. At the start of period 2, there
is a recovery and M, = M,. The existing funds increase in size and new entrants face an

incentive to enter, up to the point that ()2 = Q.
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I emphasise, though, that a business cycle is not necessary for exit and replacement to
occur in my model. Even without any change in macro-economic factor M; funds would
still exit when they get a negative shock to their expected ability e;; or when they draw a
negative shock to their profits n;;. In that sense, a business cycle accelerates firm turnover,

but is not necessary for firm turnover.

The effect of this firm turnover on aggregate surplus depends on two countervailing effects:

1. The cleansing effect. Exiting funds are more likely to be low expected ability,
as illustrated in Figure 2.4. Entrants are randomly allocated true ability from the
population distribution and so are, on average, better than exiting funds. Higher
ability funds result in more surplus, as set out in Figure 2.5, giving rise to a cleansing
effect that increases surplus. The strength of this effect depends on the size of the
ability differential between exiters and entrants, which in turn depends on: (i) the
dispersion of the distribution in abilities and (ii) the extent to which exit rates are

greater for low ability funds than for high ability funds.

2. The information loss effect. Exiting funds have a returns history, whereas entrants
do not: it is in this sense that the business cycle results in information loss. Investors
therefore have more precise beliefs about the ability of the exiting fund, which holding
all other things equal results in greater surplus, as set out in Figure 2.5. The strength
of this effect depends on the value of the information contained in past returns, as

measured by the signal-to-noise ratio .

Cleansing, then, is about the first moment in ability (entrants are higher ability on
average), whereas information loss is about the second moment (there is significantly greater

uncertainty about the ability of entrants).

As I set out above, the strength of each of the effects depends on the parameters of the
model: if, for example, returns are not particularly informative about ability, fund abilities
are highly dispersed and low ability funds are significantly more likely to exit, then the
cleansing effect is more likely to dominate the information loss effect. The model, therefore,
cannot provide a general answer about the effect of the business cycle on outcomes: it is an

empirical question.
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2.4 Empirical approach

There are three aspects to my empirical approach: (1) I estimate some exogenous processes
that are outside the model, (2) I calibrate some parameters and (3) I estimate the remaining
parameters by matching observed quantities, entry and exit decisions. I discuss each of these

in turn, before considering identification.

2.4.1 Exogenous processes

I model two exogenous processes outside the model. The first is the dynamics of macro-
economic factor M;, which in my empirical analysis is the S&P500 index. I assume that the

index follows a random walk, with an iid error term:
Mt = Mt,1 + Ei\/[ (14)

where e ~ N(0,0M). 1 recover an estimate of o™ from the time-series of M;. In my

simulations I impose an upper and lower bound on M,, M and M, respectively.

The second exogenous process is the relationship between ); and M;. I use the results

set out in column 3 of Table 2.2.

2.4.2 Calibration

On the supply-side, I set the discount factor to 0.99. On the demand-side, all of the param-
eters in Equation 7 are separately identifiable, including ¢; and p;. In practice, to keep the
number of parameters to be estimated down, I calibrate ¢; and u; based on how ¢;; evolves

over time.

I set ¢; to be the inverse of the maximum size that fund ¢ reaches in my sample: ¢ =

di,mazx )

where ¢; mq, = max; ¢;;. This is effectively a fund-specific normalisation such that the product
qir®; € [0, 1] for any i. This means that I do not use the cross-sectional variation in the size
of the funds to identify the other parameters, but only the variation over time. In other
words, I assume that Vanguard’s largest funds are not large relative to other funds because
they earned very large returns early in their life, they are large for fund-specific reasons that

I effectively encode and leave fixed in ¢;.

I infer p; from the size of fund ¢ in the first period of its life. Setting ¢ = 1 in Equation
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7 and re-arranging: p; = ¢;; — 0;1. This results in computational benefits, relative to simply
estimating pu; as a fixed effect, as it can be done outside of the main estimation loop. It also
better matches the interpretation of u; as an initial prior belief about fund ability at the
start of its life.

Implementing these calibrations in Equation 7 for demand, re-arranging and defining the

within-style transformation 0 = 0 — Oiy:

t—1

qit — qi1 N
B —4n 5 1\ 1 15
Qi,ma:v ! * 1 S( , M + ]- un ( )

m=

2.4.3 Estimation

I estimate the demand-side and the supply-side separately for tractability. From the supply-
side T need to estimate the entry cost Ff™¥ and the scrap values W (S;; ©;). I estimate all

remaining parameters from the demand side.

On the demand-side, I run non-linear least squares on Equation 15, where the only

non-linear parameter is A. Given estimates of the parameters in Equation 15, it is then

straightforward to infer estimates of o, from Equation 2, and from that 7; ' = var(af,) and
—1_ -1
Tia = AMTie

On the supply-side, I undertake a nested-fixed point estimation in which I match observed
probabilities of exit with model-implied probabilities. I discretise the state-space into 8
buckets for e;;, 8 buckets for M; and 4 buckets for the fund’s age. I do this for 3 types of ¢,
meaning [ have a total of 768 state-type combinations. The estimates of the demand-side
and the first-stage estimates relating to the evolution of M, allow me to model transition
probabilities between each of these buckets. I show in Figure 2.14 in the appendix the exit
rules implied by this coarser state space: it matches the key characteristics of the exit rules
implied by the finer state space in Figure 9. For each state-type bucket, I calculate the
observed exit probabilities over 8 years between 2005 and 2012, Pr(z = 1 | Sg; ©;).

To calculate model-implied probabilities, I first set out the following mean choice-specific

utilities, averaging across funds in the same state-type buckets:

(Z =1,5:;0 ) f'LQZt(Sta i) + ﬂE[WtJrl(StJrl; @i)]
Ut(Z =0, S¢; @i) = W(St; @i)
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Given the assumed distribution of 7(z;;), the probability of exit is then a function of the

scrap values:

exp(W (S; ©4))
exp(ve(S; ©5)) + exp(W (S; ©5))

Pr(z=1|8;;0;) =

I then choose T (Sy; ©;) to minimise the difference between observed Pr(z = 1| S; ©;)
and model-implied Pr(z = 1 | S¢;©;), solving the model for each iteration. This nested
fixed point iteration is more efficient than the methodology proposed by Hotz and Miller
(1993) that avoids solving the model. With state-type-specific scrap values W (Sy; ©;) the
number of unknowns and the number of observations is the same. The scrap values are just

identified, and fit the observed exit probabilities exactly.

As well as estimating individual scrap values for each state-type combination, I estimate
two more parsimonious variants. First, I set the scrap value to be the same for all state-type
combinations: W (Sg; ©;) = W. Second, I parameterise W (Sy; ©;) as a function of states and
types: that is, as a function of e;, ¢;, age;; and M;. 1 describe the exact parameterisation of

this function in the results section below, chosen to imitate my results for state-type specific

A

To estimate F™"Y 1 sample observed funds randomly to take expectations over ®;, and
use the demand-side parameter estimates to calculate E[V ((Sg; ©;))] = Ff™™ in equation
10. T do this for each year: in other words, Ff™"¥ is effectively a residual that ensures that

entrants are indifferent between entering and staying out in any given year.

2.4.4 Identification

The primary challenge in identification is the role of unobserved shocks to mutual fund size.
In the context of the model, the error term u, represents investment in the fund that is
unrelated to beliefs of investors about the ability of the fund: noise traders, in other words.
Correlations in noise trading across funds and across time create challenges in identification

in two ways.

First, ); is endogenous in the presence of unobserved shocks that are common across
funds. If, for example, the mutual fund industry is popular with noise traders in time ¢,
then both ¢ and ) would be large: this would bias our estimate of the effect of () on ¢ away
from zero. Second, of;_; is a function of ¢;—1 and so of u}, ;: this means that historical

returns are endogenous in the presence of serially correlated unobserved noise trading. If,
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for example, firm i is popular among noise traders for two consecutive periods, then returns
are low and the fund is big: this would bias our estimate of the responsiveness of rational

investors to past returns A downwards.

We control for unobserved noise trading by controlling for the size of “similar” funds,
where we define a similar fund as one that has similar 3, as in Equation 1. If funds follow
similar investment strategies, then it is likely that 3; ~ 3;. We define the following distance

measure on K x 1 vectors 3:

dij =] Bi = By ||

We define group g¢(i)t as the 10 closest funds to i in terms of d;; at time t (where
time variation in the group comes from the composition of funds, not the constant distance
measure d;;). We then define g ;), as the mean size within this group, and include this as a

control within our estimation.

To demonstrate the role of this control more formally, I disaggregate wy,, the unobserved

shocks to fund i, into three parts:

¢ _
Uiy = Up + Ug(iyt + Uit

uy is common to every mutual fund, uy;) is common to every fund in group g(i) and u;
is idiosyncratic to fund i. g,;, controls for u; and g, such that the remaining identitying
assumption is that (1) @ is independent of idiosyncratic, fund-specific shocks e;, which
requires that u; and u;; are not correlated, and (2) «f,_; is independent of u;;, which requires
that u; and w;_; are not serially correlated. In other words, identification requires that
the unobserved component of g;; is iid across ¢ and ¢: including g,;), as a control makes
this assumption more reasonable, as it limits the unobserved component to fund-specific

unobservables.

2.5 Results

I set out the results of my estimation in Tables 2.3 and 2.4 and Figures 2.6 to 2.9.

On the demand-side, the results have the following implications:

1. The role of past returns: I estimate A to be 0.0193. This means that investors

respond to returns, but relatively slowly. It implies, for example, that the investor’s
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priors about a fund are as important to the investor as 52 months of returns history.

2. The role of competition. The coefficient on @); is negative and significant, indicating
that competition between mutual funds plays a role. Furthermore, this parameter
estimate is sensitive to the inclusion of the control gy, in the way one would expect:

failing to control for common shocks understates the importance of competition.

3. The role of the business cycle. The coefficient on M, is positive and significant:
funds are larger when the macro-economic factor is good. As well as this direct effect,
M; has an indirect effect on ¢;; via @);. The net effect of M;, taking into account both
the direct and indirect effect, is positive: when the macro-economic factor is good, Q)¢
is higher (which has a negative impact on ¢;; because of the impact of competition),
but not to the extent that it dominates the direct effect.

On the supply-side, the key implications of the results are as follows:

1. Variation in exit rates. Based on the results from the demand-side, I allocate each
fund to the state-type buckets described above, and calculate the exit rates in those
buckets. As set out in Figure 2.6, I find that funds are more likely to exit when my

model indicates that they are low expected ability (e; is low) or do not scale up well
(¢; is high).

2. Variation in scrap value. I estimate state-type specific scrap values, and show their
estimated distribution in Figure 2.7. In Figure 2.8 I show that these scrap values vary
across types and states in an intuitive way. Scrap value co-moves closely with the
expected ability of the fund e;; and with its scalability ¢;: funds have better outside
options external to the mutual fund industry if they are higher ability and/ or are
able to scale that ability up easily. Scrap value also co-moves weakly with the macro-
economic factor in the way one would expect, in that outside options are slightly better

when the macro-economic factor M; is good.

I emphasise two important benefits to estimating state-type specific scrap values. First,
it allows me to more accurately model exit dynamics: it stands to reason that better
funds have better outside options, and imposing a single homogeneous scrap value
would miss this. Second, it helps ensure model consistency. In my model, funds assume
a particular equilibrium relationship between aggregate @; and M; (Equation 8) when

they decide to exit. State-type-specific scrap values allows my model to perfectly match
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observed exit rates, meaning that the behaviour of individual funds is consistent with

this equilibrium relationship between @Q; and M;.

3. Variation in entry cost. The expected value of entering is greater when the macro-
economic factor M, is good. Given that I assume that new entrants are always indif-
ferent between entering or not, this means that the fixed cost of entry F™¥ is also
increasing in M, as I set out in Figure 2.9. The effect is limited as F™"¥ does not

vary by more than 6%.

2.5.1 Alternative specifications

As well as estimating individual scrap values for each state-type space, I estimate two more
parsimonious variants. First, I set the scrap value to be the same for all state-type combi-
nations: W (S¢; ©;) = W. I set out the results in Table 2.4, and show that this specification
does not perform well: the R? is only 0.19, meaning that there is significant unexplained

variation in observed exit rates.

Second, I parameterise W (Sy; ©;) as a function of states and types. As described above
and set out in Figure 2.8, when I estimate state-type specific scrap values I find that they
are sensitive to expected ability e; and scalability ¢;, but less sensitive to macro-economic

factor M; and age. I therefore parameterise scrap values as follows:

WP(St; 0;) = wy + wiey + w2€?t + w3p; + w4¢? + wseud; + e’ (16)

I choose parameters wq, wy, we, W3, Wy, ws to minimise the distance between model-implied
and observed exit probabilities. I set out the results of this parameterisation in Table 2.4
and show that it performs better than constant scrap values, in that it explains 44% of
the variation in observed exit probabilities. I use this parameterised scrap value in my
counterfactuals below instead of fully state-type specific scrap values for two reasons. First,
it is less sensitive to noise in observed state-type exit rates. Second, it allows me to extend

my analysis to counterfactual states and types that are not observed in the data.
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Table 2.3: Demand-side results

1] 2] 3]
dit it it
A 0.019*** 0.019***
(0.003) (0.003)
M, 2.03** 2.22%** 2.29***
(3.52 x 1072) (3.59 x 1072) (3.53 x 1072)
Q: -3.08"* -6.57 -6.82"*
(2.07 x 1071) (2.22 x 1071) (2.18 x 1071)
i 1.76* 1.727
(3.51 x 1072) (3.45 x 1072)
it 0.311 0.311 0.311
bit 0.037 0.037 0.037
Age FE Y Y Y
R? 0.69 0.75 0.77
No. obs 226111 226,111 226,111

Note: Figures in parentheses are standard errors. *** ** * indicate different from 0 at
1%, 5% and 10% significance, respectively. ¢;; is the size of mutual fund i at time t, A
is sensitivity to past returns, (); is the size of the mutual fund industry, g;, is the mean
size of local funds to fund i and M; is the SP500 index. Specification [3] is my baseline
specification, specifications [2] and [3] show the role of A and g, respectively. I calibrate

fund-specific priors u;; and scalability ¢; and report the mean across funds here.
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Table 2.4: Supply-side results

1]

Pr(Ezit | Sg; 6;)

2]

Pr(Ezit | Sg; ©;)

Intercept 6.44 11.77
€t 9.50

e -457.33
o 4.08

? -6.41
Direit -763.56
R? 0.19 0.44
No. obs 768 768

Note: I parameterise state-type scrap costs according to Equation 16 and choose the coeffi-

cients to fit the implied exit probabilities to observed exit probabilities.
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Figure 2.6: Observed firm exit by state and type
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Note: I calculate the observed probability of exit in a year for each state-type bucket. In
this figure I show how these observed probabilities vary on average with states and types.

Note that the ability of a fund to scale up in size is decreasing in ¢;.
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Figure 2.7: The distribution of state-type-specific scrap values
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Note: In this figure I plot the distribution of estimated state-type-specific scrap values.
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Figure 2.8: State-type-specific scrap values
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Note: I estimate scrap values for each state-type combination. In this figure I show how
these scrap values vary according to the state and type of the fund. Funds have better
scrap values when they have higher expected ability (panel (a)), when the macro-economic

factor is good (panel (b)), when they scale well (panel (c)) and are relatively younger
(panel (d)).
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Figure 2.9: Variation in the fixed cost of entry over time
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Note: In this figure I plot how the estimated fixed cost of entry Ff™"Y varies over time (black
line). The cost of entry is correlated with the macro-economic factor M; (the red line), but
the effect is relatively weak: the maximum entry cost is only 6% greater than the minimum

entry cost.

2.6 Counterfactual analysis

I am interested in the effect of the depth of the business cycle on outcomes post-recovery.
To assess this, I simulate a business cycle (that is, a recession, followed by a recovery) in
the macro-economic factor M; of varying depths, model the resulting counterfactual firm

turnover, and then set out the effect on aggregate surplus.
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Based on this counterfactual analysis, I draw two main conclusions:

1. The business cycle harms surplus in the short-term and improves surplus

in the long-term.

2. Deeper business cycles have bigger, persistent effects in the short-term and

long-term.

I set out the impact on firm turnover in Figure 2.10. The number of exiting firms, the
number of entering firms and the ratio of entering firms to exiting firms are all increasing in
the depth of the recession. The ratio responds in this way because the mean size of exiting
funds is bigger in deeper recessions (in which medium-sized firms to exit as well as small

firms).

In assessing the impact of this firm turnover, I hold the set of entering and exiting funds
fixed: that is, I do not simulate further entry or exit, but only compare these two sets of
funds. I compare the annual surplus of these two sets of funds immediately after the recovery,
and then at various points in time subsequent to the recovery. As funds age post-recovery,

they obtain a returns history and the precision of investor beliefs improves.

In Figure 2.11, I show the net effect of firm turnover on aggregate surplus per-period.
It is initially negative, indicating that the information loss effect dominates the cleansing
effect. Over time, as the funds age, the information loss effect decays, such that there
is a “switching point” in month 27 when the effect of the firm turnover is reversed: the
cleansing effect dominates the information loss effect, and per-period aggregate surplus is
higher. Deeper business cycles have larger short-term and long-term effects, but the same
switching point. In other words, the strength of the information loss effect and the strength
of the cleansing effect are both increasing in the depth of the business cycle, but their relative

strength is not.

The magnitudes of both the short-term and long-term effects are material and are in-
creasing in the depth of the business cycle, and are material. For the deepest business cycle
I model (which is roughly equivalent to the financial crisis), the aggregate surplus of entering
funds is 20% less than the aggregate surplus of the exiting funds in the first month after the
recovery. By month 80, the information loss has decayed to the point where the aggregate
surplus of entering funds is 30% greater than that of exiting funds. The effects on total
surplus in the market (including funds that did not exit) are small but material, ranging

between -0.5% and 0.9% of total mutual fund surplus for the deepest business cycles.
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As well as these per-period effects, the business cycle also triggers one-off entry costs.
Given these one-off costs, and the fact that the per-period effect of the business cycle starts
negative and turns positive over time, it is natural to ask at what point the cumulative
impact of the business cycle becomes positive.? I show this in Figure 2.12 and 2.13: the
cumulative effect of the business cycle is negative and downward sloping until month 27.
At this point it turns upwards, and becomes positive in month 75. As with the per-period

effects, deeper business cycles have stronger persistent impacts but the same switching point.

In Figure 2.12 I also demonstrate the importance of allowing the exiting funds to age
counterfactually absent the firm turnover. In other words, had the funds not exited they
too would have extended their returns history and improved the precision of investor beliefs.
Because the exiting funds are older, however, the marginal improvement in investor precision
over time is much smaller than for the new entrant funds. An extra datapoint is more valuable
for funds with few datapoints. In other words, the decay of the information loss effect over
time is not about the change in the absolute precision of investor beliefs about entrants, but

instead about the change in their precision relative to the precision about exiting funds.

2The cumulative impact of the business cycle in period j is the sum of the impacts in all previous periods,
Nentv‘ant,s entrants Nea:iters

including the fixed entry cost: cum; =Y 1| [Y 1, se -3 sgpiters] _ yentrants pentry
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Figure 2.10: Firm turnover over the business cycle
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Note: I simulate a business cycle of various depths, and show the number of exiting funds
during the recession (red bars), the number of entering funds during the recovery (blue bars)
and the ratio of entrants to exiters (grey line). A deeper business cycle results in more firm
turnover but also a larger marginal exiting firm, meaning that the ratio of entrants to exiters

is greater than in a shallow business cycle.
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Figure 2.11: The effect of the business cycle on aggregate surplus
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Note: Deeper recessions and subsequent recoveries result in greater firm turnover. In this
figure 1 plot the net effect of this firm turnover on per-period aggregate surplus over time.
Immediately after the recession, aggregate surplus in the mutual fund industry is up to 0.5%
lower: the information loss dominates the cleansing effect. As the entrants age, investors
obtain a returns history and the information loss effect decays: 27 months after the recovery
the cleansing effect dominates the information loss effect and the firm turnover improves
aggregate surplus. By 80 months the firm turnover improves aggregate surplus by up to
0.9%. The depth of the recession affects the magnitude of both the information loss effect

and the cleansing effect, but not the point at which their net effect switches.
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Figure 2.12: The effect of the business cycle on cumulative aggregate surplus
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Note: As set in previous figure, firm turnover harms per-period aggregate surplus in the
short-term and improves it in the long-term. In this figure I plot the effect of the firm
turnover on cumulative aggregate surplus over time, expressed as a proportion of per-period
aggregate surplus. In the first month after the recovery the impact of the firm turnover is
negative because of the firm turnover costs and the role of the information loss effect. Over
time the information loss effect decays and the per-period effect becomes positive in month
27 (when this graph turns upwards) and the cumulative effect becomes positive in month 75
(when it crosses zero). Holding the exiting funds fixed (the dashed line) results in the net
effect becoming positive faster than if the exiting funds are allowed to counterfactually age

absent the firm turnover (the solid line).
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Figure 2.13: The effect of the business cycle on cumulative aggregate surplus

0.5

Moderate business cycle
04} Deep business cycle
0 line

031

0.2

Effect on cumulative aggregate surplus, %

-0.2 1 I I ]
0 50 100 150 200

Months after recovery

Note: In this figure I show how the depth of the business cycle affects the cumulative impact
of firm turnover over time. Deeper business cycles (the red line) have stronger short-term
and long-term impacts than moderate business cycles (the blue line), but the point at which

the net effect becomes positive does not depend on the depth of the cycle.

2.7 Conclusion

The persistent effects of the business cycle have been extensively studied in macroeconomic
contexts, but less so in market-specific contexts. The main contribution of this paper is to
develop an under-explored implication of business cycles: the information loss that results
from firm turnover. I explore the conditions under which this information loss dominates

the cleansing effect, and I quantify how this trade-off changes over time.
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A Additional figures

Figure 2.14: Exit decisions
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Note: The area under the curve shows the combinations of ability belief (e;;) and business
cycle state (m;) in which a fund exits: funds exit when they are perceived to be bad or when
the macroeconomic state is bad, or some convex combination thereof. This figure is the same

as figure 2.4, but with a coarser state space.
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Figure 2.15: The effect of fund age on fund size
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Note: This figure plots the age dummy that I estimate on the demand-side. On average,

young funds grow quickly, peak at age 100 months, and then decline as they age further.

127



Figure 2.16: The effect of age on value-added
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Note: Suppose that for a given fund true a = 0.1 and other parameters are such that
optimal fund size ¢* = 5. If investors priors are incorrect, u # o and ¢ # ¢*. ¢ is a function
of investor beliefs about ability (which converge to true « as the funds ages and investors
observe returns) and the fee rate f (which is fixed). This means that ¢ converges to ¢* only
if f is ex-post optimal, which in this example means f* = «/2. In panels (a) and (b) u < «
and f = a/2 = f* such that ¢ converges to ¢*, with noise in the signal (panel (a)) and with
the noise in the signal turned off (panel (b)). In panel (¢) p < o and f = /2 < f*, which
means that ¢ initially converges to ¢* (the blue area), but then overshoots and moves away
from ¢* (the red area). In other words, fund value-added does not increase monotonically

with age, but is n-shaped, as in panel (d). The same is true if p > « and so f > f*.
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Chapter 3:
A structural model of local competition between mutual

funds

Mutual funds with similar investment strategies compete with each other for investment
opportunities. I set out a model of demand for mutual funds in which (i) funds are located
within a network depending on similarities in their investment strategies and (ii) funds
impose negative spillovers on each other through this network. I structurally estimate this
model using data on US equity mutual funds. I identify these network spillovers based on
how investors in a given mutual fund respond to the returns performance of its competitors.
I find that local competition has a material impact on fund size, in that absent competition
the median fund would be 20% bigger, and on cross-sectional variation in size. I perform
counterfactual simulations in which I demonstrate that luck can play an important role
even when funds are skilled and investors are rational: I find that luck accounts for 9% of

cross-sectional variation in mutual fund size.
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3.1 Introduction

There is significant cross-sectional variation in size amongst mutual funds. I examine two of
the many potential drivers of this variation that have been put forward in the literature: local

U and luck.? My contribution is that by building and structurally estimating a

competition
model with a role for local competition and luck I am able to quantify their impact on mutual

fund outcomes in a way that, to my knowledge, has not been done before.

The starting point for my assessment of local competition is the extent of investment
strategy overlap, in that funds with similar strategies are competing for the same investment
opportunities. I proxy for investment strategy overlap between a given pair of funds by
estimating the distance between their respective betas: two funds with very similar (different)
investment strategies will have similar (different) betas. I combine these pairwise distance
measures into a network summarising the relative locations of all funds. I then show that
this network has a core-periphery structure, in that most funds either have many closely
located funds (the core) or very few (the periphery). This empirical observation motivates
my primary research question: how does a fund’s location within this network affect its

outcomes?

To answer this question, I set out a model based on Berk and Green (2004) in which
funds draw individual unknown ability to generate excess returns (“ability” henceforth). I
incorporate a role for local competition by assuming that there are spillovers across funds
along this network: all other things being equal, a large, closely located competitor makes it
harder for a given fund to earn excess returns. Demand for mutual funds is a spatially auto-
correlated process in which the effect of competition depends on a fund’s location within
the network and a parameter that governs the intensity of spillovers along that network. In
Berk and Green (2004) a fund’s size changes over time as investors observe its returns and
update their beliefs about its ability. In my model, these network spillovers mean that the
size of a given fund depends on investor beliefs about that fund, but also on investor beliefs
about that fund’s competitors. Consequently the size of a given fund changes in response to

the returns of that fund and the returns of its competitors.

I estimate this spatially auto-correlated demand model using data on US Equity funds
between 1990 and 2016. The challenge with identification is that the spatial structure implies

that the size of a given fund and the size of its competitors are endogenously co-determined

!Wahal and Wang (2011), Hoberg et al. (2018).
2Berk and Van Binsbergen (2015), Fama and French (2010).
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in equilibrium. This means that estimating the spillover parameter based on the extent to
which fund sizes co-move is likely to under-estimate the true competitive effect. Instead I
instrument for the size of a competing fund using the past excess returns earned by that fund.
Relevance follows from the long-established empirical observation that investors respond to
past performance (see, for example, Chevalier and Ellison (1997)). Validity is implied by
investor rationality in the model: past returns must be uncorrelated with contemporaneous
shocks to fund size, otherwise investors would have an incentive to change their holdings in
mutual funds. I allocate each fund to one of 10 clusters, and include time fixed effects for
each cluster to capture local variation in mutual fund outcomes. I include age fixed effects
to account for the fact that on average mutual funds grow over their lifetime irrespective of

their returns.

I find that the model fits the data well. The network spillover parameter is significant
and negative, indicating that there is a role for local competition in mutual fund outcomes.
This estimated spatially autocorrelated process gives me an intuitive, tractable model of

demand for use in counterfactuals.

I run two sets of counterfactual simulations. These are partial equilibrium only, in that
I model how demand changes in response to a counterfactual change, but hold fixed supply-
side choices by funds regarding entry, exit and fees. The first simulation quantifies the role of
competition: I turn off competition across funds by setting the network spillover parameter
to zero. I find that the median fund would be 20% bigger in this counterfactual scenario. I
also find that local competition is an important determinant of cross-sectional variation, in
that there is significant heterogeneity across funds depending on their location within the
network. Funds in the core are much more sensitive to local competition that funds in the

periphery. In other words, local competition has material effects on mutual fund outcomes.

The second set of simulations I run relates to the role of luck. There is an extensive
literature on whether successful mutual funds are skilled at producing excess returns or just
lucky and, relatedly, whether the investors in these mutual funds are rational or not. I
do not address this question directly, but instead I use these counterfactual simulations to
demonstrate that there is a role for luck even in a model in which funds are skilled and

investors are rational.

Specifically, by “luck” I mean two stochastic aspects of my model: the error in investor
priors (for example, when investors believe a fund is high ability when it is in fact low ability)

and the noise in fund returns (returns are only a noisy signal of true fund ability). These
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forms of luck must even out across funds (in other words, on average half the funds are
lucky and half are unlucky) and decay over time (in the limit investors observe a long set
of fund returns and develop precise beliefs about fund ability regardless of these particular
stochastic realisations). Nevertheless, the way in which investors form beliefs means that
these stochastic realisations can have persistent effects across time: the impact of a positive
prior draw or a positive return shock on investor beliefs only decays to zero as investors
observe an infinitely long returns history. Luck can have permanent effects even in the limit

if being unlucky results in a fund exiting.

To understand the role of luck in prior formation, I simulate investor demand replacing
their actual prior about that fund with their posterior having observed the fund’s returns.
A fund that is unlucky in this sense is one that investors initially thought was low ability, but
subsequently revised their beliefs upwards over time. Absent this error in prior formation, the
fund would have been bigger. To understand the role of luck in returns shocks, I simulate
investor demand turning off all inter-temporal variation in the signal that the investors

extract from excess returns.

This allows me to quantify the impact of luck for each fund. It averages out to zero
across funds, but can have material effects on individual funds: the median absolute impact
of luck on fund size is 9%, of which about 5% is due to priors and about 4% is due to return
shocks. In other words, even in a model with rational investors and skilled funds, luck is

responsible for a material proportion of observed cross-sectional variation in funds.

I also find that the impact of luck varies between funds that exited during my sample
period and funds that did not exit. Exiting funds were (i) more likely to experience unlucky
returns shocks towards the end of their life, (ii) more likely to experience lucky prior draws
which they subsquently under-performed (indicating that the trajectory of investor beliefs
is important for exit, as well as simply the level of those beliefs) and (iii) more likely to
experience extreme good or bad luck (indicating that the extent or wolatility of luck is

important for exit, as well the particular realisation of luck).

In this paper I show that local competition between funds can be captured in a tractable,
estimable network model of demand. I use this estimated model to make two primary
contributions, in that I am able to quantify the impact of competition and the impact of

luck in a way that, to my knowledge, has not been done before.

I discuss the related literature below. In Section 2, I introduce the data and set out

some guiding empirical facts. In Section 3, I set out my model. In Section 4, I describe my
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empirical approach. In Section 5, I report my results. In Section 6, I undertake counterfactual

analyses. In Section 7, I conclude.

3.1.1 Related literature

This paper is related to two strands of literature regarding (i) competition amongst mutual

funds and (ii) the role of luck in mutual fund outcomes.

Pastor and Stambaugh (2012) set out a model in which there is homogeneous competition
amongst funds depending on the aggregate size of the industry. Wahal and Wang (2011)
and Hoberg et al. (2018) set out reduced form evidence that there is a local component to
competition that depends on the extent of investment overlap. There are a small number of
papers that analyse mutual fund competition in a structural econometric setting, including
Gavazza (2011) (which focuses on the role of the broader fund family) and Roussanov et al.
(2018) (which focuses on the role of marketing). The contribution of this paper is that it
considers local competition in a structural econometric setting, which ultimately allows me

to quantify the effect of local competition through counterfactual analysis.

There is a very large literature on mutual fund outcomes (Elton et al., 1993; Carhart,
1997; Busse et al., 2010; Bollen and Busse, 2005; Kosowski et al., 2006; Cremers and Petajisto,
2009; Kacperczyk et al., 2014; Chen et al., 2004; Pastor et al., 2015; Pollet and Wilson, 2008;
Kacperczyk et al., 2016; Kacperczyk and Seru, 2007; Huang et al., 2011) and in particular
whether these outcomes are the result of luck or skill (see, for example, Berk and Green
(2004), Berk and Van Binsbergen (2015), Fama and French (2010)). I structurally estimate
a model based on Berk and Green (2004) and use it to show that there is a role for luck even
in a model in which funds are skilled and investors are rational. Furthermore, I am able to
use my estimated model in counterfactual analysis to quantify the role of luck in a novel

way.

3.2 Data

I first describe how I select funds and calculate excess returns. I then describe the key

empirical facts that motivate my research question and guide my modelling.
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3.2.1 Sample selection

I obtain data on mutual fund characteristics and their monthly returns and assets from the
database maintained by the Center for Research in Security Prices (CRSP), The University
of Chicago Booth School of Business. I select data from January 1990 to December 2016. I
limit my sample to actively managed US Equity funds that (i) are never smaller than USD
1m in size, (ii) have at least 12 months of returns data and (iii) have data on their expense
ratio. This is broadly the standard approach in the literature (see for example Berk and
Van Binsbergen (2015) for an overview of mutual fund selection). I am left with a sample
of 3,420 funds and a total of 452,222 month-fund observations.

3.2.2 Calculating excess returns

I calculate excess returns following Berk and Van Binsbergen (2015). I regress returns in
excess of the risk-free rate (R;;) on a set of 11 common factors (Fy) which are the returns to
the main index funds operated by Vanguard (listed in the table below).?> The fund’s excess

return, ay; is the residual in this regression:

Ry = BiF¢ + oy (1)

3This is a more reasonable benchmark for mutual funds than, for example, a benchmark involving
momentum investing returns that would be prohibitively costly to implement in practice. I refer to Berk
and Van Binsbergen (2015) for a fuller discussion.
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Table 3.1: Benchmark

Fund Name Ticker Asset Class

S&P 500 Index VFINX  Large-Cap Blend
Extended Market Index VEXMX Mid-Cap Blend
Small-Cap Index NAESX  Small-Cap Blend
European Stock Index VEURX International
Pacific Stock Index VPACX International
Value Index VVIAX  Large-Cap Value
Balanced Index VBINX  Balanced
Emerging Markets Stock Index VEIEX  International
Mid-Cap Index VIMSX  Mid-Cap Blend
Small-Cap Growth Index VISGX  Small-Cap Growth
Small-Cap Value Index VISVX  Small-Cap Value

3.2.3 Empirical facts
I set out four empirical facts:

1. Heterogeneity across funds in size at start of life: There is significant variation
in the initial size of a fund at the start of its life, as I show in Figure 3.1, even controlling

for the state of the economy at the time of entry.

2. Variation over time in relative fund size: The cross-sectional heterogeneity in
fund size is not fixed over time, in that the relative ranking of funds changes over time.
I show this for 5 representative funds in Figure 3.2: the biggest of these funds at the
start of their lives is only the 4th biggest 6 years later.

3. Heterogeneity across funds in excess return variability: Excess returns are more

volatile for some funds than for other funds. I show this heterogeneity in Figure 3.3.

4. Heterogeneity across funds in their location in g-space: I summarise hetero-
geneity in fund investment strategies by calculating the distance between the betas of

each pair of funds:

dij = || Bi — B; || (2)
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This measure d;; is a proxy for the similarity in the investment strategies of funds ¢ and
j: if they have similar investment strategies, then it is likely that they also have similar
betas. I show the distribution of d;; in Figure 3.4, and show that there is significant
variation in this figure across pairs. This distance measure can also be thought of as
representing a fund’s location within the network. I summarise the number of close
connections each fund has in in Figure 3.5, and show that there is evidence of a core-
periphery structure in -space: some funds have lots of close connections (the core),

and some funds have very few (the periphery).

These empirical facts are the basis for my research question. Figure 3.5 shows that there
are observable differences in where funds are located in the network: what impact does this
have on competition between funds? To the extent that size represents investor beliefs about
fund skill, then Figure 3.1 shows that there is significant variation in investor priors about
funds at the start of their lives: how persistent are the effects of these priors? Figure 3.2
shows that investors updated these priors over time, in that some funds turned out to be
better or worse than initially believed: what is the impact of this error in prior formation?

These are the questions I seek to answer in this paper.
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Figure 3.1: Heterogeneity in fund size
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Note: Panel (a) shows the distribution of fund size in the first period of its life, excluding
the top 5% of funds by size. Panel (b) shows the distribution of the natural log of initial
size. Panel (c) conditions on M, the level of the SP500 in the period in which the fund

entered. Panel (d) shows the log of the maximum size the fund attains during my sample.
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Figure 3.2: Relative variation in fund size
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Note: This graph tracks the growth of 5 individual representative mutual funds that entered
in 2002 over the 6 years after their entry. The funds chosen are the 10th, 30th, 50th, 70th
and 90th percentiles by size at the time of entry. The relative ranking of these funds changes
materially over the course of this period: the largest of these funds, for example, is only the

4th largest after 6 years. Note that the median fund exits in its third year.
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Figure 3.3: Heterogeneity in excess return variability
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Note: For each fund ¢, I calculate the mean excess return over the fund’s life y; and the
standard deviation in excess return o;. I report their ratio, which is the inverse of the
fund-specific coefficient of variation, in order to show that (1) there is significant variation

in excess returns and (2) there is significant heterogeneity across funds in the extent of this

variation.
Figure 3.4: Heterogeneity in $-space
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Note: d;; is a measure of distance between funds 7 and j in S-space. That is, d;; is low

when 3; and §; are similar.
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Figure 3.5: Core-periphery structure in g-space

0.35 T T T T T T

0.3 i

0.25 -

0.2 -

Proportion

011 -

0.05

—
0 1 [ —F T 1 | I

0 500 1000 1500 2000 2500
Histogram of C; = >, 1(d; < median(dy;))

Note: d;; is the distance in S-space between funds ¢ and j, as per Equation 2. For every fund,
I count the number of funds within a certain distance (the median of all d;;) as a measure of
local competition. The distribution is bi-modal: some funds have lots of close competitors

(the core), some funds have very few (the periphery).

3.3 Model

I first set out a model of demand for mutual funds. I then discuss the role for luck in this

model.
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3.3.1 Demand

The model of demand is based on Berk and Green (2004), in that there are decreasing
returns to scale in the ability of a mutual fund to earn excess returns. To this model I add
an element of local competition, in that the ability of a fund is decreasing in the size of other

mutual funds as well as in its own size.

Mutual fund i earns gross excess return of,: this is not the actual return that investors
receive, but is instead a notional return that the fund would earn on the first dollar of
investment before the impact of decreasing returns to scale. I define the total risk-adjusted
payout in dollar terms to investors from investing ¢;; in mutual fund ¢ with gross return o,
and fee rate f; as:

TPy = Qit%gt - C(Qit) — i fi

where C(g;) is a cost function representing the decreasing returns to scale in the ability to
earn excess returns. I parameterise the cost function as C(qi) = ¢:q% where ¢; > 0, such
that when ¢ > 0: C(q) > 0, C'(q) > 0, C"(q) > 0, C(0) = 0 and lim, o C(q) = co. The
net o excess return is what investors actually earn after the impact of decreasing returns

to scale, and is simply this payout divided by the size of the investment:

TP Clait)
Qg = =af,———— — fi=0af, — i — [i (3)
dit dit

To meaningfully take this model to data, I need to capture some of the ways in which
the ability of a fund to earn excess returns can vary intertemporally and in the cross-section.

To that end, I disaggregate the fund’s gross excess return into five components:

o, = o + € + Oa@ry + 0 + Z 05t (4)
J

where:

e «; represents the fund’s true ability to generate returns. I allow it to vary across funds
but keep it fixed across time. This is a simple way of allowing some funds to be higher
ability than others.

e ¢;; represents a fund-specific shock to ability at time ¢.

® 0,4(;1) represents an age effect. I denote the age of fund ¢ at time ¢ as a(it), and I allow
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ability to vary with age. This captures, in a simple way, the possibility of learning
by doing. More practically, this variation will allow me to account for the empirical
observation in Figure 3.2 that funds tend to grow, at least initially, regardless of their

net returns.

e §; is a common time effect across all funds. In Coen (2020), for example, I show that

the size of funds varies with the business cycle.

e 0;;q;: represents the effect on mutual fund ¢ of competition from mutual fund j. If
0;; < 0 and mutual fund j is large then, all other things being equal, fund ¢ finds it
harder to earn excess returns because there is more competition for the same investment

opportunities. 6;; varies across pairs and captures the intensity of this effect.

This specification nests that of Coen (2020). In that paper, I model specific types of
intertemporal variation in ability, whereas in this paper I leave the intertemporal variation
in ability as some general §;. In that paper I impose homogeneous competition between funds
(0;; = 0 for Vi, j), whereas here I allow for the effects of competition to be heterogeneous

across pairs according to 6;;.

Investors choose ¢;; before €; is realised. Investors do not know the true ability of the
fund «;, but form expectations based on the information available to them at the point of
investment, which I denote I;_;. I define these expectations as e; = E[a; | I;_1]. All other

components of the return are known to the investor.

Investors supply capital with infinite elasticity to any fund with positive expected net

returns o, taking aggregate investment ¢, in the fund as given. In equilibrium, ¢; is then

it

such that E[a, | I;_1] = 0. Substituting in Equations 3, this means that:

eit + Oa(ity + 0t + D, 0ijq5e — [
i

(5)

qit =

Investor demand for mutual fund 7 is therefore increasing in its expected ability e;,
increasing in its scalability ¢;, decreasing in its fee rate f; and decreasing in the extent of

local competition.

To complete the model of demand, I need to characterise the expectations formation

process behind investor beliefs e;;. To do this, I make the following assumptions about the
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distribution of fund abilities:

e Ability draw: Funds draw ability from a normal distribution: «; ~ N(m,7,'). This

type is not observed by investors or the funds themselves.

e Prior formation: At the start of the fund’s life, funds and investors observe an initial

#
7

signal a;o about the true ability of fund i: a;o = ay + v!', where v!' is the error in the
prior. I assume that v/ ~ N(0,07) and v} L «;. Given this signal, investors form
fund-specific prior beliefs a; | o ~ N (15, 7,'). Note that I allow the precision of the
prior error o¥ (and thus the precision of the updated beliefs 7;.!) to be heterogeneous

across funds: investors are more uncertain about some funds than others.

e Return shocks: Return shocks are independent of true ability and also normally

distributed: €; ~ N(0,7;.'). The precision of these return shocks is also fund-specific,

’ Ni.e
but the relationship between the precision of return shocks and of the prior formation
Ti,e
Ti,o :

In other words, investors are more uncertain about some funds than others, but this

is constant across funds: I define the homogeneous signal-to-noise ratio as A =

greater uncertainty is equally true of both the funds’ priors and the funds’ return

signals.

Investors observe past net excess returns, of,_, and from this can infer gross returns aJ,.
Investors cannot separately identify «; from €;,, but can extract a signal about «; given their

relative distributions.

Given these distributional assumptions, there are simple closed-form expressions for how

investors form and update their posterior beliefs about «; in responses to these signals. I

define the function g(A;; \) = S02) - ﬁ(;ﬁ) 5 and express mutual fund demand as follows:

1

el fiF bagiy + 0t + > 05t + g( A )\)] + ufy (6)
‘ j

I add an error term, uf,, that represents shocks to ¢;; beyond this expectations formation

process. This could include, for example, noise traders. I leave further discussion of this

error term and its distribution to the section below on my empirical analysis.

This equation contains endogenous mutual fund sizes on both sides. To solve for equilib-
rium fund size, I express the same equation in matrix notation. A bold variable indicates an

N x 1 vector stacking the non-bold variable (such that, for example, g is an N x 1 vector
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stacking p;) and I' is an N x N matrix with ¢; in position (7,7) on the diagonal and §;; in

position (i, j) off-diagonal. It is then straightforward to invert Equation 6:

@ =T""[p—f+8c+06+3g(AN) + u (7)

This allows me to characterise the equilibrium effects of local competition. It implies that
the size of mutual fund 7, g;; is increasing in beliefs about the ability of fund ¢ and decreasing
in beliefs about the ability of fund j, where the intensity of the competitive cross-effects

depends on ¢;; and the relative positions in the network of ¢ and j. If fund j receives a

n

positive shock to beliefs about its ability, af, > 0, then all other things being equal this

causes fund ¢ to shrink in equilibrium.

3.3.2 The role of luck

I examine four stochastic elements of mutual fund size which I shall call “luck”.

e First, the size of a given mutual fund is sensitive to its random draw of an investor prior.
Two otherwise identical (including in true ability) mutual funds can draw different

priors and, as per Equation 7 this has a persistent impact on their size.

e Second, the size of a given mutual fund is sensitive to the random draw of investor
priors for its close competitors. Two otherwise identical funds can have their nearest
competitor draw differing priors and this would also have a persistent impact on their

size.

e Third, the size of a given mutual fund is sensitive to return shocks. These return
shocks impact the expectations formation process of investors and so have persistent
effects. Two otherwise identical funds that received a positive and a negative shock,
respectively, would have persistent differences in size. The timing of shocks matters as
well as their sign: consider a mutual fund A (mutual fund B) that receives a positive
(negative) returns shock at time ¢ and a negative (positive) returns shock at time ¢’ > ¢.
Mutual fund A will be bigger than mutual fund B between ¢ and ¢'.

e Fourth, the size of a given mutual fund is sensitive to return shocks of local competitors,

in an analogous way to above. A fund is unlucky if its closest competitor is lucky.
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I exclude quantity shocks: they are random and a form of luck, but they do not have

persistent effects.

Conditional on the fund surviving, these four forms of luck have persistent but not
permanent effects: in the limit, the investor observes enough fund returns to learn their true
ability. In other words, differences between funds brought about luck decay to zero over
time. The speed of this decay depends critically on A, the signal-to-noise ratio of observed
returns. If this ratio is high, then returns are informative and random variation in investor
priors decay in importance quickly. If returns are informative, then the immediate impact

of returns shocks is bigger but that impact decays quickly.

Luck can, however, have permanent effects through its impact on firm failure. I do not
model the decision of mutual funds to exit, but the zero lower bound implicit in Equation
6 implies exit if investor beliefs are too low. If investor beliefs are such that fund ¢ is not
expected to produce positive net returns even if g;; is arbitrarily small (such that decreasing
returns to scale have no impact), then investors will invest nothing and the fund exits
permanently. Luck can in this way have a permanent effect if a fund exits because it drew

a poor prior or a negative returns shock early in its life.

The timing of returns shocks is particularly important in this context: a fund is more
likely to exit if it draws a negative returns shock in a ‘bad’ period in which §; is low. For
example, consider if fund A and fund B are identical and each draw a negative return shock,
but fund A draws a negative shock in bad times (J; is low) and exits, whereas fund B draws

it in good times and so does not exit.

The extent of this random variation varies across funds, because the variance of the
returns shock and the prior error varies across funds. Empirically, I set out in Figure 3.3
that excess returns are more variable for some funds than others. In other words, there is a

bigger role for luck for some funds than other funds.

The effect of luck therefore depends on (i) the specific realisations and timing of these
fund-specific random draws, (ii) the fund-specific volatility of these random draws and
(iii) the signal-to-noise ratio A. The effect of luck depends on the values of these parameters

and is, therefore, an empirical question.

Finally, I emphasise that these elements are random within the context of the model. In
taking this model to the data, it is worth considering the impact of potential model mis-
specification on this definition of luck. If, for example, the fund can affect its prior or its

excess return volatility then, to a certain extent, what I am calling luck reflects these choices.
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3.4 Empirical approach

There are three aspects to my empirical approach: (1) I calibrate some parameters, (2) I
impose parametric restrictions on parameters relating to competition and (3) I estimate the

remaining parameters by matching observed quantities. I discuss each of these in turn.

3.4.1 Calibration

I follow Coen (2020) and calibrate ¢; and p; based on how g;; evolves over time. I set ¢;

1
di,mazx

Qimaz = Maxyqy. This is effectively a fund-specific normalisation such that the product

to be the inverse of the maximum size that fund i reaches in my sample: ¢ = , where
¢i¢; € [0, 1] for any ¢. This means that I do not use the cross-sectional variation in the size
of the funds to identify the other parameters, but only the variation over time. In other
words, I assume that Vanguard’s largest funds are not large relative to other funds because
they earned very large returns early in their life, they are large for fund-specific reasons that

I effectively encode and leave fixed in ¢;.

I infer p; from the size of fund ¢ in the first period of its life. Setting ¢ = 1 in Equation
6 and re-arranging: p; = ¢;1 — ;1. This results in computational benefits, relative to simply
estimating p; as a fixed effect, as it can be done outside of the main estimation loop. It also
better matches the interpretation of u; as an initial prior belief about fund ability at the

start of its life.

3.4.2 Parameterisation

Competition is heterogeneous according to ¢;;. It would not be feasible to estimate all of
these parameters, so I follow the industrial organization literature by parameterising these
cross-effects by reference to characteristics rather than by reference to funds. The variation
in 0;; is intended to capture local variation in the extent to which funds are competing for
the same investment opportunities. The key characteristic I am seeking to measure therefore
is what Wahal and Wang (2011) refer to as overlap: the extent to which mutual funds have

the same holdings.

I use the distance in [S-space, d;; in Equation x, as a proxy for overlap, on the basis that
funds with similar holdings will have similar betas. If d;; is large, then funds ¢ and j do not

have similar holdings and 6;; is likely to be low. I define d;; = In(1/d;;) and parameterise
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0;; as follows:

0;; = 0d;; (8)

Let D be the matrix with row-normalized dij at coordinate (i, 7) and 0 on the diagonal
and let ® be a diagonal matrix with ¢; in position (i,4) on the diagonal and 0 off-diagonal.
D is in effect a network, and the location of a fund within this network determines the extent

of local competition it faces. Equation 6 for fund size can then be expressed as follows:

Sqg=p—f+8.+ + g(A;\)+0Dgq; + e (9)

Rearranging for equilibrium gy:

@ =[®—0D] ' [p—f+d.+0+g(A; ) + e (10)

In other words, mutual fund size is a spatially autocorrelated process where the measure
of spatial proximity between funds is in S-space. The effect of competition on fund ¢ depends
on its location within the network relative to other funds and on the intensity of the spillovers

governed by 6.

3.4.3 Estimation

I estimate this spatially autocorrelated process by GMM. I calculate D by estimating a
fund’s [ over its entire life and calculating distance as per Equation 2. 1 assume that the
fund’s location in §-space is exogenous to contemporaneous shocks to fund size. The spatial
structure implies that g;; is endogenous in Equation 9: an unobserved positive size shock to

fund ¢ means that fund j is small all else being equal.

I instrument for g;; using the returns of fund j and its initial size, in the following first
stage:
Git = w1 9(Ai; A) + wa qin + Nt (11)

g(Ai; M), as defined above, is a weighted average of past returns aj; ;. In other words,
I identify the competitive effect of fund j on fund 7 by looking at how g¢;; responds to the
returns of fund j, of,_;, conditional on the distance between them in S-space, JZ] I include

g1 as a pre-determined proxy for fund size. I use these instruments to construct moments
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and estimate the parameters in Equation 9 by GMM.

The identifying assumption is that oj;_; is independent of the unobserved size shock
uj,. Within the context of the model u}, represents noise investors, and investor rationality
requires that this cannot be serially correlated: if noise trader error uj, were predictable
using time ¢ — 1 information then rational investors would alter their holdings to account for
this.

In this sense identification comes from the model. It is worth, however, examining the
ways in which identification would fail if the model is mis-specified and so the residual
comprises more than just the impact of noise traders. In particular, the model implies that
@j;_q has an impact on g;; only through g;;. Suppose instead there was a local, unobserved
component to excess returns that affected both fund 7 and fund j. In this case, aj;,_; would
be a signal of this local, unobserved component and so ¢; would respond to this signal

directly. This would result in me underestimating the true impact of competition 6;;.

I try and account for the effect of any such mis-specification on identification by including
additional time dummy variables. I use statistical clustering tools to allocate each fund to one
of 10 clusters in B-space, where the kmeans++ algorithm that I use chooses the boundaries
of each cluster to minimise the total distance of each fund from the cluster centre. I then
include a separate time dummy for each cluster to account for local shocks within that

cluster.

Once I have estimated the parameters in Equation 9, it is then straightforward to infer
estimates of af; from Equation 3, and from that 7, ' = std(@%). That is, I calculate the
return uncertainty for each fund from the observed variation in the fund’s excess returns.
From this, I can infer the fund-specific uncertainty in the prior: Tz_al = XTiTel. That is, I am
able to observe the fund-specific noise in returns and also how quickly investors respond to
those returns: given that investors respond to returns based on their signal-to-noise ratio X,

this tells me the fund-specific uncertainty in the investors’ prior about the fund.

3.5 Results

I set out the results of my estimation in Table 3.2. I find that the model fits the data well. In
particular, allowing for local competition results in materially improved fit over the nested
model in which there is no local competition. I find that the parameter governing network

spillovers, 6, is significant and negative as expected.
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Table 3.2: Estimation results

1] 2]

qit qit
A 0.088***

(0.002)

0 -0.150*** -0.067***

(0.014) (0.016)
it 0.311 0.311
it 0.037 0.037
Age FE Y Y
Timex Cluster FE Y Y
R? 0.70 0.74
No. obs 226,111 226,111

Note: Figures in parentheses are standard errors. *** ** * indicate different from 0 at 1%,
5% and 10% significance, respectively. g;; is the size of mutual fund i at time t, A is sensitivity
to past returns and 6 governs the impact of local competition. I calibrate fund-specific priors

wir and scalability ¢; and report the mean across funds here.

3.6 Counterfactual analysis

I run four counterfactual simulations. In the first counterfactual 1 quantify the role of
competition by comparing actual outcomes with counterfactual outcomes in which there is

no local competition.

The remaining counterfactuals relate to the role of luck, which as defined above I use
to mean errors in investor prior formation and return shocks. I do not observe true fund
ability and so cannot entirely remove the error in the investors’ prior about ability. My
model does, however, allow me to infer investor beliefs about a fund’s ability from the size of

the fund. This means that I can observe investors’ posterior beliefs taking into account its
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lifetime returns performance. To understand the role of luck in prior formation, for example,
I simulate investor demand replacing their actual prior about that fund with their posterior
having observed the fund’s returns. A fund that is unlucky in this sense is one that investors
initially thought was low ability, but subsequently revised their beliefs upwards over time.
Absent this error in prior formation, the fund would have been bigger. To understand the role
of luck in returns shocks, I simulate investor demand turning off all inter-temporal variation

in the signal that the investors extract from excess returns.

To describe these simulations more formally it is helpful to characterise my model for
g+ as a function of, amongst other things, three things: (1) the effect of local competition

T;

governed by 6, (2) investor priors about that fund pu;, (3) fund returns {af,};*,. In each

counterfactual I compare actual g; (6, us, {a?,}71,) with counterfactual ¢ in which I vary

one of these three elements.

1. The effect of competition: I assess the effect of competition by comparing actual
fund sizes with counterfactual fund sizes absent competition, which I simulate by set-
ting § = 0. That is, I calculate q;,(6 = 0, us, {aZ,}12)).

2. The effect of incorrect priors: Over time, investors observe fund returns and update

their initial priors to the following:

M + AZZ_IO(gs
I+(E—1DA 14 (t—-1)A

(12)

€it =

I correct priors by setting the prior investor belief u; equal to the posterior given the

T

fund’s returns over its lifetime. That is, I calculate g (6, u; = eir,, {ad, }oiy)-

3. The effect of random return shocks: o, consists of true fund ability a; and an
idiosyncratic return shock. I switch off these return shocks by setting af, = e;7, for V¢.
That is, I calculate g (6, i, {esr, }22)).

4. The effect of incorrect priors and random return shocks: I correct priors and
remove random return shocks simultaneously, as I do individually in the previous two

counterfactuals. That is, I calculate (6, p1; = eir, {€in }10)).

In the figures and table that follow, I summarise along various dimensions the percentage
difference between this counterfactual quantity and actual quantity. If, for example, a fund’s
prior pu; is lower than its posterior e;r,, then this number is positive and the fund was

“unlucky” with the draw of its prior.
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From these counterfactual simulations I draw three main conclusions. First, the effect
of competition is significant and heterogeneous. I summarise the effect of competition
in panel (a) of Figure 3.6. The median increase in fund size absent competition is 20.0%,
but there is significant variation across funds: for funds in the periphery this number is close

to zero, for funds in the core it can be closer to 50%.

Second, the effect of luck is significant and heterogeneous: [ summarise the impact
of prior formation and return shocks in panels (b), (c¢) and (d) of Figure 3.6. Luck averages
out across funds, but not within funds: the average size of some funds over their lifetime is
materially affected by their priors and returns shocks. The median absolute impact of luck

across funds is 9%, of which about 5% is due to priors and 4% is due to return shocks.

Third, luck is related to exit. In Table 3.3 and Figure 3.7 I show the impact of luck

conditioning on whether a fund exited during my sample period or survived.

e [ find that exit is related to return shocks in an intuitive way, in that exiting funds
were unluckier in the sense that they were more likely to experience negative return

shocks in the last few months of their lives than surviving funds.

e Exiting funds were luckier than surviving funds, however, in their prior draw. In other
words, exiting funds were more likely to under-perform an initial overoptimistic prior.
This suggests that the trajectory of investor beliefs is important for exit, as well as
simply the absolute level of those beliefs. Consider, for example, if investors had the
same posterior beliefs about fund A and fund B, but the investors’ prior beliefs at fund
entry were higher for A than for B. This counterfactual simulation indicates that A

would be more likely to exit than B.

e Exiting funds experienced more extreme good luck and bad luck than surviving funds.
In other words, the fund-specific volatility of luck seems to matter for exit as well as

the specific realisation of luck.
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Figure 3.6: The effect of competition and luck on mutual fund size
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Note: I show the fund-specific percentage change in fund size resulting from a
counterfactual change. In panel (a), I remove the effect of local competition and show that
funds would be significantly bigger, to varying degrees, without local competition. In
panels (b), (c¢) and (d), I show the impact of correcting for various forms of luck, where a
positive (negative) number indicates the fund was unlucky (lucky) because correcting for
luck makes the fund bigger (smaller). In panel (b) I correct investor priors about funds, in
panel (c) I remove return shocks and in panel (d) I correct priors and remove return

shocks.
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Table 3.3: Differences between exiting and surviving funds

1 2
%NAq Exiting funds Surviving funds
Correcting priors
Mean value 0.083 0.102
Median value 0.008 0.026
Mean absolute value 0.357 0.189
Median abs. value 0.213 0.123
Removing return shocks
Mean value 0.011 0.001
Median value 0.011 0.004
Mean absolute value 0.119 0.033
Median abs. value 0.056 0.015

Note: I summarise the percentage change in mutual fund size resulting from (1) correcting
priors and (2) removing return shocks, where the bigger the number the more unlucky the
fund. I do this for funds that exited during my sample period and funds that survived. I find
that on average exiting funds were luckier than surviving funds in their draw of investor prior
beliefs, but unluckier in their return shocks. Exiting funds were more affected by luck in

absolute terms than surviving funds, indicating their priors and returns were more volatile.
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Figure 3.7: Differences between surviving and exiting funds
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Note: This figure shows the cumulative distribution functions corresponding to panels (b)
and (c) of Figure 3.6, but conditioning on whether the fund exited during my sample
period or survived. As described in Figure 3.6, a positive (negative) number on the x-axis
indicates the fund was unlucky (lucky). Exiting funds had more extreme lucky and unlucky

outcomes.

3.7 Conclusion

I estimate a network of investment strategy overlap and show that a given fund’s location
within this network has a material impact on its size. I then build and use structural model
of demand to show quantitatively how luck can have persistent and in some cases permanent

effects on mutual fund outcomes even when funds are skilled and investors are rational.

To more fully understand local competition between mutual funds it is necessary to
consider two further issues. First, I consider only the demand-side behaviour of investors,
not the supply-side behaviour of funds when they decide to enter, exit or set fees. Modelling
the supply-side is challenging in this context in which funds are heterogeneously located in
the network, as it involves forming expectations over the dynamics of every other fund. It
would, however, permit analysis of the equilibrium effects of counterfactual changes. Second,
I take a fund’s location within the network as given, but a natural starting point for further
work would be to endogenise a fund’s location choice (or, in other words, to consider network

formation as well as network spillovers).
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