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Abstract

This thesis consists of three chapters on the industrial organization of financial intermedia-

tion.

The first chapter, which is co-authored with Jamie Coen, considers the interbank market

and how it should be regulated. The interbank network, in which banks compete with

each other to supply and demand financial products, creates surplus but may also result in

risk propagation. We examine this trade-off by setting out a model in which banks form

interbank network links endogenously, taking into account the effect of links on default risk.

We estimate this model based on novel, granular data on aggregate exposures between banks.

We find that the decentralised interbank network is not efficient, primarily because banks do

not fully internalise a network externality in which their interbank links affect the default risk

of other banks. A social planner would be able to increase surplus on the interbank network

by 13% without increasing mean bank default risk or decrease mean bank default risk by 4%

without decreasing interbank surplus. We propose two novel regulatory interventions (caps

on aggregate exposures and pairwise capital requirements) that result in efficiency gains.

The second chapter considers the effect of the business cycle on outcomes in the mutual

fund industry. The business cycle induces turnover in mutual funds: they exit in recessions

and enter in recoveries. The effect of this firm turnover on welfare depends on a key trade-

off: on the one hand, the business cycle “cleanses” the market of low quality exiting funds

and replaces them with entrants that may on average be higher quality. On the other

hand, the entrants have no returns history and so investors have less precise beliefs about

their ability, where this “information loss” leads to misallocation that harms welfare. I

examine this trade-off by estimating a structural model in which rational investors form and

update beliefs about competing mutual funds that endogenously choose to enter and exit

the market. I estimate this model using data on US mutual funds. I find that the business

cycle has material, persistent effects that are negative in the short-term but turn positive as

the effect of information loss decays over time.

The third chapter considers local competition between mutual funds. Mutual funds with

similar investment strategies compete with each other for investment opportunities. I set out

a model of demand for mutual funds in which (i) funds are located within a network depend-

ing on similarities in their investment strategies and (ii) funds impose negative spillovers on

each other through this network. I structurally estimate this model using data on US equity
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mutual funds. I identify these network spillovers based on how investors in a given mutual

fund respond to the returns performance of its competitors. I find that local competition

has a material impact on fund size, in that absent competition the median fund would be

20% bigger, and on cross-sectional variation in size. I perform counterfactual simulations in

which I demonstrate that luck can play an important role even when funds are skilled and

investors are rational: I find that luck accounts for 9% of cross-sectional variation in mutual

fund size.
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Chapter 1:

A structural model of interbank network formation and

contagion

with Jamie Coen.1

The interbank network, in which banks compete with each other to supply and demand

financial products, creates surplus but may also result in risk propagation. We examine this

trade-off by setting out a model in which banks form interbank network links endogenously,

taking into account the effect of links on default risk. We estimate this model based on

novel, granular data on aggregate exposures between banks. We find that the decentralised

interbank network is not efficient, primarily because banks do not fully internalise a network

externality in which their interbank links affect the default risk of other banks. A social plan-

ner would be able to increase surplus on the interbank network by 13% without increasing

mean bank default risk or decrease mean bank default risk by 4% without decreasing inter-

bank surplus. We propose two novel regulatory interventions (caps on aggregate exposures

and pairwise capital requirements) that result in efficiency gains.

1The views in this paper are those of the authors, and not necessarily those of the Bank of England or
its committees. We are particularly grateful to Alessandro Gavazza and Christian Julliard for many helpful
discussions. We are also grateful for comments by seminar participants at the Bank of England, the Federal
Reserve Bank of New York, the London School of Economics, Princeton, Stanford, the Toulouse School of
Economics, Universidad Pompeu Fabra, Queen Mary University of London, and conference participants at
the RES Junior Symposium 2019 and EARIE 2019. We are grateful to the Bank of England for providing
the data. Both authors acknowledge the financial support of the Economic and Social Research Council.
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1.1 Introduction

Direct interconnections between banks are important in two ways. First, these intercon-

nections fulfill a function, in that there are gains to trade. The interconnection could, for

example, involve providing liquidity or acting as the other party in a hedging transaction,

which may result in surplus on both sides of the trade. Second, interconnections can open

up at least one side of the transaction to counterparty risk: a lender, for example, runs the

risk that the borrowing bank will not pay it back. Both sides of this trade-off were important

during the financial crisis and remain important today, and consequently there is significant

debate about optimal regulation in this context (Yellen, 2013).

We consider the following fundamental economic questions. How does the network of

direct interconnections between banks, which we term the interbank network,2 affect systemic

risk? How do banks form the interbank network, given the effect of such exposures on

their risk? What inefficiencies exist in network formation? The answers to these economic

questions then lead us to two questions about regulation. Given equilibrium responses by

banks, is regulation effective in reducing default risk? If it does reduce default risk, does it

do so efficiently in a way that preserves interbank surplus? Understanding the equilibrium

effect of prospective regulation on outcomes in this market is of first-order importance, but

is a difficult problem because banks respond endogenously to any changes in regulation.

We answer these questions by estimating a structural equilibrium model in which banks

form the interbank network endogenously, taking into account the effect of their choices

on their default risk. The key mechanism in this model is that when a bank takes on an

exposure through the interbank network it earns a return, but it may also become riskier,

which endogenously increases its funding costs. We estimate this model based on novel, rich

Bank of England data on interbank exposures, and show that the model fits the data well

both in and out of sample.

We are the first, to our knowledge, to estimate a structural model of the trade-off between

surplus on the interbank network and the causal effect of the network on bank default risk.

This allows us to make the following contributions: (1) we show how standard measures of

bank systemic importance are biased, (2) we quantify the inefficiency of interbank network

formation and (3) we examine the equilibrium effects of regulation, and propose alternative

regulation that is more efficient.

2The “interbank market” is often used to describe short-term (often overnight) lending between banks.
We use the “interbank network” more generally to cover any form of direct interconnection between banks.
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The starting point for our work is Bank of England data on interbank exposures. These

data are collected by the Bank of England through periodic regulatory surveys of 18 global

banks from 2012 to 2018, in which they report the exposures they have to their most im-

portant banking counterparties. The data are novel, relative to the data commonly used in

this literature, in two ways that are important for our context: (1) the data include a broad

range of instruments, making them a reasonable proxy for a bank’s total exposure to another

bank and (2) the data contain rich detail on the types and characteristics of the instruments

that make up each exposure. We set out various empirical facts about the network that

inform our work, the most important of which is that there is significant variation in the size

of exposures between banks, but not much variation in the presence of exposures: in other

words, the network is dense but heterogeneous.

The features of our data and the empirical facts we observe guide our modelling choices

in the following ways. First, the breadth of the data allows us to specify and estimate an

empirical model of the effect of exposures on default risk, in a way which would not be feasible

if we only observed exposures relating to a single instrument that is only a small subset of

total exposures. Second, the fact that we observe a dense, heterogeneous network leads us to

consider heterogeneity in marginal cost, in contrast to those parts of the empirical networks

literature that seek to explain sparse network structures using fixed costs (Craig and Ma,

2019). Finally, the granularity of our data allows us to specify and then estimate a rich

model of network formation, with a focus on allowing for as much observed and unobserved

heterogeneity as possible.

With this general guidance in mind, we set out a model consisting of three parts: (1) the

default risk process that relates the default risk of a bank to that of other banks and the

exposures between them, (2) the demand for interbank financial products and (3) their

supply, where demand and supply together determine network formation.

We model the default risk process as being spatially autocorrelated, such that bank i’s

default risk depends on its fundamentals and on its interbank exposures. These interbank

exposures can have a hedging effect that reduces default risk, but also a contagion effect that

increases default risk, where the net effect depends on the characteristics of the exposure

and the counterparties involved. We generalise a standard spatially autocorrelated regression

by allowing the strength of the contagion effect to vary across pairs: in other words, some

links are inherently more risky than others, holding all other things (including exposure

size and the default risk of both counterparties) constant. There are various reasons why

this could be the case, the most important of which is risk-sharing : an exposure held by
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bank i to bank j is likely to be particularly risky if the fundamentals of i and j are strongly

positively correlated. This heterogeneous contagion intensity is an important part of our

model. We refer to links with relatively low contagion intensity as “inherently safe” and links

with relatively high contagion intensity as “inherently risky”. The structure of this spatial

autocorrelation is such that in equilibrium a bank’s default risk depends on its exposures,

but also the exposures of its counterparties and of its counterparties’ counterparties (and so

on).

Banks demand interbank financial products to maximise profits from heterogeneous tech-

nologies that take these differentiated interbank products as inputs. Banks supplying finan-

cial products receive a return, but also incur a cost because regulatory capital requirements

mandate that they raise a certain amount of capital for the exposure that they take on when

they supply. The key mechanism in this part of our model is that the cost of capital a bank

incurs is an increasing function of its default risk. This default risk, per the default risk pro-

cess we describe above, is a function of the bank’s exposures, meaning that a bank supplying

financial products endogenously changes its cost of capital when it does so. Heterogeneous

contagion intensity means that this marginal cost varies across pairs: inherently risky links

involve higher marginal cost.

Equilibrium trades and prices depend in an intuitive way on the key parameters of the

model: (1) variation in contagion intensity is a key driver of link formation: inherently safe

links are less costly and therefore more likely to be large, (2) risky banks pay more to be

supplied financial products because contagion means it is more costly to supply them and

(3) risky banks supply less, as their funding costs are higher. The most important source

of market failure is network externalities, in which banks do not fully internalise the effect

that their exposure choices have on the risk (and therefore also the funding cost) of their

counterparties. We show that our model is consistent with the key empirical facts in our

data, as well as some additional stylised facts from the financial crisis.

We estimate our model by matching two groups of moments: moments related to data on

bank default risk and moments related to data on interbank exposures. To represent bank

fundamentals we use, amongst other data, variation in regional equity indices: for example,

we take a shock to a Japanese equity index as a shock that affects Japanese banks more than

European banks. We then use these fundamentals to identify the key parts of our network

formation model and the default risk process. The effect of counterparty risk in the default

risk process depends on equilibrium exposures, which are endogenous. We address this

endogeneity by using insights from the network formation part of our model: the default risk
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process is, by assumption, linear in the fundamentals of banks, but our network formation

game shows that equilibrium network links are non-linear functions of bank fundamentals.

We therefore use non-linear variation in bank fundamentals as instruments for equilibrium

links in the default risk process.

We estimate our model and show that it fits the data well in sample, before testing internal

and external consistency in two ways. Our primary motivation for heterogeneous contagion

intensity is based on risk-sharing, which implies a relationship between the parameters in our

default risk process: links between banks whose fundamentals are closely correlated should

be relatively high risk. We do not impose this relationship in estimation, but instead estimate

these parameters freely and test the relationship post-estimation. We find evidence for risk-

sharing, which we view as evidence of internal consistency. To test external consistency,

we run an out of sample test: we use our model to simulate default risk for 2009 to 2011

and compare it to actual bank default risk, and show that (1) our model replicates some

key patterns in the data and (2) our model outperforms the out of sample fit of a linear

regression of default risk on fundamentals, in a way that the model would predict.

Our results imply that contagion through the interbank network is responsible for, on

average, 9.8% of a bank’s total default risk. We find significant variation in pairwise contagion

intensity: the inherently riskiest links in the network are 50% riskier than the inherently

safest links, holding all other things equal.

We then use our estimated results to answer the key questions set out above. We first

describe two results relating to how the interbank network affects systemic risk. Our first

result is that the overall effect of the interbank network depends on the economic climate:

when bank fundamentals are good, then the hedging effect dominates the contagion effect,

and the interbank network reduces systemic risk. When bank fundamentals are bad, the

opposite is true: the contagion effect dominates the hedging effect and the interbank network

increases systemic risk.

Our second result regarding systemic risk is that heterogeneity in contagion intensity

has an important implication for the identification of systemically important banks within

our network, which in our context means the banks that contribute most to bank default

risk. There are various measures of systemic importance, but in general terms a bank is

deemed systemically important if it has large exposures to other systemically important

banks. Heterogeneous contagion intensity and endogenous network formation together show

why this approach is likely to be flawed: some links are large because they are inherently
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safe. Banks with large links like these would be incorrectly characterised as systemically

important using standard network centrality measures based on unweighted network data.

We propose an alternative measure of systemic importance based on network data that is

weighted by the heterogeneous network effect parameters: an inherently risky (safe) link is

scaled up (down). This weighted centrality measure implies materially different centrality

rankings among banks: the bank that is most systemically important in our sample based

on the unweighted network is only the 5th most systemically important bank based on our

alternative risk-weighted centrality measure.

We then consider the efficiency of the decentralised interbank network, which we do by

deriving an efficient frontier that shows the optimal trade-off between interbank surplus and

bank default risk. We find that the decentralised interbank network is not on the frontier: a

social planner would be able to increase interbank surplus by 13.2% without increasing mean

bank default risk or decrease mean bank default risk by 4.3% without decreasing interbank

surplus. This result is driven by the fact that our empirical results indicate that network

externalities are significant. The social planner internalises the externality by considering

the effect that a given link has on the risk of other banks, with the result that the social

planner would (i) reduce aggregate exposures and (ii) reduce inherently risky exposures by

relatively more than inherently safe exposures.

We then use our model to simulate the equilibrium effects of various forms of regulation,

including a cap on individual exposures (Basel Committee, 2014b, 2018b) and an increase in

regulatory capital requirements (Basel Committee, 2018a). We find that a cap on individual

links is relatively ineffective: it has only a small effect on mean bank default risk, as in

equilibrium banks shift their supply to uncapped links. Furthermore, a cap on individual

links is inefficient, in that it has a large negative effect on interbank surplus, because it

penalises large links that in equilibrium are more likely to be inherently safe. We instead

propose capping aggregate exposures held by each bank, rather than individual exposures:

an aggregate cap is more effective (because it prevents a bank moving capped supply to

another bank) and more efficient (because in equilibrium banks respond to a cap on aggregate

exposures by reducing relatively risky exposures by more than less risky exposures). Our

results suggest that a social planner would strictly prefer our proposed cap on aggregate

exposures to a cap on individual exposures.

We find that a general increase in capital requirements that applies equally across ex-

posures to all banks is effective but inefficient: it decreases mean bank default risk, but at

the cost of reduced interbank surplus. We instead propose a pairwise adjustment to cap-
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ital requirements based on their heterogeneous contagion intensity: we give links that are

inherently risky (inherently safe) greater (lower) capital requirements. In other words, we

propose directly risk-weighting interbank exposures based on contagion intensity, as this tar-

gets regulatory intervention more closely at the network externalities that are the key driver

of inefficiency in our model. Our results suggest that a social planner would strictly prefer

our proposed pairwise capital requirement to a homogenous capital requirement.

We discuss related literature below. In Section 2, we introduce the institutional setting

and describe our data. In Section 3, we set out our model. In Section 4, we describe our

approach to estimation. In Section 5, we set out our identification strategy. In Section 6,

we set out our results. In Section 7, we undertake counterfactual analyses. In Section 8, we

conclude.

1.1.1 Related literature

Our work is related to three strands of literature: (i) the effects of network structure on

outcomes in financial markets, (ii) endogenous network formation in financial markets and

(iii) optimal regulation in financial markets.

There is an extensive literature on the effect of network structure on outcomes in finan-

cial markets, both theoretical (Acemoglu et al., 2015; Ballester et al., 2006; Elliott et al.,

2014) and empirical (Denbee et al., 2017; Eisfeldt et al., 2018; Gofman, 2017; Iyer and Pey-

dro, 2011). Our primary innovation is that we connect this empirical literature with the

literature on network formation, by estimating a model of the effect of network structure

on outcomes (default risk, in our case) simultaneously with a model of network formation.

This allows us to make three contributions. First, using insights from our network formation

model, we are able to directly address the endogeneity of the network when we estimate

network effects, in contrast to large parts of the empirical literature.3 Second, it allows us

to consider equilibrium effects in counterfactual scenarios, taking into account how the net-

work would respond endogenously.4 Third, by combining a model of network formation with

heterogeneous contagion intensity, we are able to show how existing measures of systemic

importance are biased.

3See De Paula (2017) for a summary.
4Various papers (Eisfeldt et al. (2018) and Gofman (2017), for example) adjust the network arbitrar-

ily (usually by simulating a failure) and show the impact on market outcomes holding network structure
otherwise fixed. In our model, network structure responds endogenously to a counterfactual change.
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There is a growing theoretical literature on network formation in financial markets

(Babus, 2016; Farboodi, 2017; Chang and Zhang, 2018; Acharya and Bisin, 2014; Rahi and

Zigrand, 2013), but little empirical work (Cohen-Cole et al., 2010; Craig and Ma, 2019;

Blasques et al., 2018). Our contribution is that we are the first, to our knowledge, to struc-

turally estimate a model of network formation in which banks trade off gains to interbank

trade against contagion. Importantly, this allows us to quantify the extent of inefficiency in

the market, and to study the implications of network structure for systemic risk.

We also contribute to the literature regarding optimal regulation in financial markets

(Duffie, 2017; Baker and Wurgler, 2015; Greenwood et al., 2017; Batiz-Zuk et al., 2016).

Our primary contribution is that by considering bank default risk we are able to evaluate

bank regulation comprehensively. Various papers consider the effect of bank regulation

on outcomes in specific markets,5 but without considering bank default risk (which was

arguably the primary focus of much recent banking regulation) it is not possible to draw any

conclusions about whether regulation is optimal. Furthermore, our network formation model

allows us to assess the equilibrium effects of regulation, taking into account the endogenous

response of the network.

1.2 Institutional setting and data

We first describe the institutional setting of our work, including the relevant regulation. We

then describe our data. We then use this data to set out some empirical facts that will guide

our approach to modelling.

1.2.1 Institutional setting

Direct connections between banks fulfill an important function: “there is little doubt that

some degree of interconnectedness is vital to the functioning of our financial system” (Yellen,

2013). Debt and securities financing transactions between banks are an important part

of liquidity management, and derivatives transactions play a role in hedging. There is,

however, widespread consensus that direct connections can also increase counterparty risk,

with implications for the risk of the system as a whole (see, for example, Acemoglu et al.

(2015)). This can be thought of, in loose terms, as a classic risk/reward trade-off. The

5Including Kashyap et al. (2010) on bank lending, Kotidis and Van Horen (2018) on the repo market
and Bessembinder et al. (2018) and Adrian et al. (2017) on the bond market.
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importance of both sides of this trade-off is such that direct interconnections between banks

are the subject of extensive regulatory and policy-making scrutiny, whose aim is to: “preserve

the benefits of interconnectedness in financial markets while managing the potentially harmful

side effects” (Yellen, 2013).

After the 2008 financial crisis, a broad range of regulation was imposed on these markets.

In this paper, we focus on two in particular: (1) caps on large exposures and (2) increases in

capital requirements. We focus on these two because we think they are most relevant to our

underlying economic research question, which is to examine the efficiency with which this

risk/reward trade-off is balanced.

1.2.1.1 Large exposures cap

In 2014 the Basel Committee on Banking Supervision (BCBS) set out new standards for the

regulatory treatment of banks’ large exposures (Basel Committee, 2014b, 2018b). The new

regulation, which came into force in January 2019, introduces a cap on banks’ exposures: a

bank can have no single bilateral exposure greater than 25% of its capital.6. For exposures

held between two “globally systemic institutions”, as defined in the regulation, this cap is

15%.

These requirements represent a tightening of previous rules, where they existed. For

example, in the EU exposures were previously measured relative to a more generous measure

of capital and there was no special rule for systemically important banks (AFME, 2017;

European Council, 2018).

1.2.1.2 Capital requirements

Banks are subject to capital requirements, which mandate that their equity (where the

precise definition of capital, Common Equity Tier 1, is set out in the regulation) exceeds a

given proportion of their risk-weighted assets. Additional equity in principle makes the bank

more robust to a reduction in the value of its assets, and so less risky. The total amount of

capital Eij that bank i is required to raise to cover asset j is the product of the value of the

asset Aj, its risk-weighting ρij and the capital requirement per unit of risk-weighted asset λi:

Eij = ρijλiAj

6Where the precise definition of capital, in this case “Tier 1 capital”, is set out in the regulation
(Basel Committee, 2014b, 2018b)
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The risk-weights, ρij, can be calculated using banks’ internal models or based on a stan-

dardised approach set out by regulators. Whilst risk-weights from banks’ internal models

are likely to vary by counterparty, the standardised approach is based on the credit rating

relevant to the asset, and for the significant majority of interbank transactions between ma-

jor banks this will be AAA or AA, the highest credit rating. In other words, for interbank

transactions the standardised approach involves very little variation across i or j.7

In 2013 all banks in our sample faced the same capital requirement per risk-weighted unit,

λi, which was 3.5%.8 Since then, regulators have changed capital requirements in three ways.

First, and most importantly, the common minimum requirement that applies to all banks

has increased significantly. Second, capital requirements vary across banks, as systemically

important banks face slightly higher capital requirements than non-systemically important

banks. Third, capital requirements vary countercylically, in that in times of financial distress

they are slightly lower (Basel Committee, 2018a). The result of these changes is that mean

capital requirements for the banks in our sample has increased significantly, from 3.5%

to over 9% in 2019. There have also been changes to the definition of capital and the

measurement of risk-weighted assets, with the general effect of making capital requirements

more conservative.

1.2.2 Data

1.2.2.1 Exposures

We define in general terms the exposure of bank i to bank j at time t as the immediate

loss that i would bear if j were to default, as estimated at time t. The way in which this is

calculated varies from instrument to instrument, but in general terms this can be thought

of as (1) the value of the instrument, (2) less collateral, (3) less any regulatory adjustments

intended to represent counterfactual variations to value or collateral in the event of default

(for example, regulation typically requires a “haircut” to collateral when calculating expo-

sures, as in the event of default any financial instruments provided as collateral are likely to

be worth less).

7Banks are also subject to a leverage ratio requirement (Basel Committee, 2014a) which does not weight
exposures according to risk.

8We use the minimum capital requirements as published by Basel Committee (2011) as the minimum
requirements for banks. National supervisors can add discretionary buffers on top of these requirements,
which we do not include in our empirical work.
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We use regulatory data on bilateral interbank exposures, collected by the Bank of Eng-

land. The dataset offers a unique combination of breadth and detail in measuring exposures.

Much of the existing literature (such as Denbee et al. (2017)) on empirical banking networks

relies on data from payment systems. This is only a small portion of the activities that

banks undertake with each other and is unlikely to adequately reflect the extent of interbank

activity or the risk this entails.

18 of the largest global banks operating in the UK report their top 20 exposures to banks

over the period 2011 to 2018. Banks in our sample report their exposures every six months

from 2011 to 2014, and quarterly thereafter. They report exposures across debt instruments,

securities financing transactions and derivative contracts. The data are censored: we only

see each bank’s top 20 exposures, and only if they exceed £5 million. The data include

granular breakdowns of each of their exposures: by type (e.g. they break down derivatives

into interest rate derivatives, credit derivatives etc.), currency, maturity and, where relevant,

collateral type.

We use this dataset to construct a series of snapshots of the interbank network between

these 18 banks. We calculate the total exposure of bank i to bank j at time t, which we denote

Cijt, as the sum of exposures across all types of instrument in our sample. We winsorize

exposures at the 99th percentile. The result is a panel of N = 18 banks over T = 21 periods

from 2011 to 2018 Q2, resulting in N(N − 1)T = 6, 426 observations. For each Cijt, we use

the granular breakdowns to calculate underlying “exposure characteristics” that summarise

the type of financial instrument that make up the total exposure. These 8 characteristics,

which we denote dijt, relate to exposure type, currency, maturity and collateral type.

Although the dataset includes most of the world’s largest banks, it omits banks that do

not have a subsidiary in the UK.9 Furthermore, for the non-UK banks that are included in

our dataset, we observe only the exposures of the local sub-unit, and not the group. For

non-European banks, this sub-unit is typically the European trading business.

1.2.2.2 Default risk

We follow Hull et al. (2009) and Allen et al. (2011) in calculating the (risk-neutral) probability

of bank default implied by the spreads on publicly traded credit default swaps (data obtained

from Bloomberg). This represents the market’s estimate of bank default risk, as well as wider

9This is particularly relevant for some major European investment banks, who operate branches rather
than subsidiaries in the UK, and hence do not appear in our dataset.
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effects that are unrelated to the default risk of an individual bank (notably variations in the

risk premium):

Prob(DefaultitT ) = 100(1− (1 + (CDSitT/10000)(1/rr))−T

where rr is the assumed recovery rate, T is the period covered by the swap and CDSitT

is the spread.

1.2.2.3 Other data

We supplement our core data with the following:

• Geographic source of revenues for each bank from Bloomberg. Bloomberg summarises

information from banks’ financial statements about the proportion of their revenues

that come from particular geographies, typically by continent, but in some cases by

country.

• Macro-economic variables from the World Bank Global Economic Monitor, a panel of

348 macro series from a range of countries.

• Commodity prices from the World Bank “Pink Sheet”, which is a panel of 74 com-

modity prices.

• S&P regional equity indices for US, Canada, UK, Europe, Japan, Asia, Latin America.

1.2.3 Summary statistics

The data reveal certain empirical observations about exposures and how they vary cross-

sectionally and inter-temporally in our sample: (1) exposures in our data are large, (2) our

observed network is dense and reciprocal, (3) network links are heterogeneous in intensity

and characteristics and (4) the network has become more concentrated over our sample

period. We discuss below how we use these empirical observations to guide our modelling.

Empirical fact 1: Exposures are large

The primary advantage of our data, relative to others used in the literature, is that it is

intended to capture a bank’s total exposures. The largest single exposure in our sample is

21



Figure 1.1: The aggregate network in H1 2015

Exposure reciprocated Not reciprocated

Note: This is the network of aggregate exposures between banks in H1 2015. Each node is a
bank in our sample. A solid line between two nodes shows a reciprocated exposure (each bank
has an exposure to the other) and a dashed lines shows an unreciprocated exposure (that goes
in one direction only). The line width is proportional to the size of the exposure. The size
of the node is proportional to its total outgoings. The network is dense but heterogeneous
in the size of individual exposures.
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GBP 7, 682m, the largest total exposures to other banks in a given period is GBP 26, 367m.

The mean exposure is GBP 285m and the mean total exposure to other banks in a given

period is GBP 4, 851m.

In this respect, our data has two important advantages over many of the data used in the

literature. First, our dataset is the closest available representation of total exposures, when

most other empirical assessments of interbank connections rely on a single instrument, such

as CDS (Eisfeldt et al., 2018) or overnight loans (Denbee et al., 2017). Second, our data are

on exposures, rather than simply market value, in that when banks report their exposures

they account for collateral and regulatory adjustments. Data based solely on market value

is a representation of bank activity, rather than counterparty risk.

Empirical fact 2: The network is dense and reciprocal

Figure 1.1 shows the network of exposures between banks in 2015 Q2. Our sample is limited

to the core of the banking network, and does not include its periphery. Our observed network

is, therefore, dense: of the N(N −1)T links we observe in total, only approximately 30% are

0. One implication of the density of the network is that it is reciprocal: of the N(N − 1)T/2

possible bilateral relationships in our sample, 55% are reciprocal, in that they involve a

strictly positive exposure in each direction (that is, bank i has an exposure to bank j and

bank j has an exposure to bank i).

Empirical fact 3: The network is heterogeneous in intensity and characteristics

Although the network is dense and so not particularly heterogeneous in terms of the presence

of links, it is heterogeneous in the intensity of those links (that is, the size of the exposure),

as shown in Figure 1.1. We further demonstrate this in Table 1.1, which contains the results

of a regression of our observed exposures C on fixed effects. The R2 from a regression on it

fixed effects is 0.43: if all of bank i’s exposures in a given time period were the same, then

this would be 1.00. In other words, the low R2 indicates that there is significant variation

in the size of exposures.

There is significant persistence in exposures, as set out in Table 1.1, in which we show

that the R2 for a regression of Cijt on pairwise ij fixed effects is 0.67. In other words, a large

proportion of the variation in exposures is between pairs rather than across time.

There is significant variation in product characteristics across banks, in that the average
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Table 1.1: Variation and persistence in network

it jt ij

Cijt R2 = 0.43 0.16 0.67

No. obs 6,426 6,426 6,426

Note: This table shows the R2 obtained from regressing observed exposures Cijt from bank
i to bank j at time t on dummy variables. jt, for example, indicates that the regressors are
dummy variables for each combination of j and t.

product supplied by each bank varies according to currency, maturity and type. For example,

between 60% and 80% of the exposures held by most banks in our sample relate to derivatives.

For one bank, however, this figure is 95%, and for another it is 15%.

Empirical fact 4: The network has increased in concentration over time

Even though the network is persistent, there is still inter-temporal variation. In particular,

concentration in the interbank network has increased over time, in that the Herfindahl-

Hirshmann index10 over exposure supply has increased, as set out in Figure 1.2. In Figure

1.2, we show that the HHI index and regulatory capital requirements are closely correlated.

It is obviously not possible to draw any causal conclusions from such a graph, but the

relationship between concentration and capital requirements will be an important part of

our model and identification.

Empirical fact 5: Bank default risk has decreased

Our sample runs from 2011 to 2018, and therefore earlier periods feature the end of the

European debt crisis. Bank default risk has broadly reduced across all banks, as we set

out in Figure 1.3. Importantly, though, there is cross-sectional variation across banks, and

inter-temporal variation in that cross-sectional variation. We show this in Figure 1.3, in

which we highlight the default risk of two specific banks. Bank 1 (Bank 2) was in the top

(bottom) quartile by bank default risk in 2011, but the bottom (top) quartile by 2018.

10HHIt = 1
N

∑
j

∑
i s

2
ij , where sij is the share of bank i in the total supply to bank j: sij =

Cij∑
i Cij

.

Larger HHI indicates greater concentration. Because of the group-to-unit measurement issue we describe
above, we weight exposures in our calculation of HHI by ( 1

NT

∑
t

∑
j Cijt)

−1. In this sense our measure of
HHI is concentration within the i-bank.
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Figure 1.2: Increased concentration

Note: The dashed line is a measure of concentration in exposures. The solid line is the
mean capital requirement. There was a change in the way our data was collected that mean
comparing concentration before and after 2014 is not meaningful, so we restrict our sample
to 2014 onwards.
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Figure 1.3: Inter-temporal and cross-sectional variation in default risk

Note: The black dashed lines show the 25th and 75th percentiles of bank default risk over
time. The red dotted line and green solid line show how cross-sectional variation changed
over time. The red dotted line is a bank that was initially high risk relative to the other
banks in our sample, before becoming relatively low risk. The green solid line shows a bank
that went from being relatively low risk to relatively high risk.
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1.2.4 Stylised facts

Our sample starts in 2011, it does not feature the financial crisis that began in 2008. We

note three features that were observed on the interbank network during the 2008 crisis, on

the basis that a good model of interbank network formation should be able to replicate

what happened during the crisis. First, risky banks were not supplied; in other words, they

experienced lockout (Welfens, 2011). Second, risky banks did not supply, which we loosely

term liquidity hoarding (Gale and Yorulmazer, 2013). Third, in the worst periods of the

financial crisis there was effectively market shutdown in markets for certain instruments, in

that very few banks were supplied anything on the interbank network (Allen et al., 2009;

Afonso et al., 2011).

1.3 Model

We first introduce the setup of the model and notation. We then describe each of the three

parts of the model in turn: the default risk process, demand for financial products and

supply. We then set out the equilibrium of our model. Finally, we consider the implications

of this model for optimal networks.

1.3.1 Setup and notation

There are N banks. At time t, the interbank network consists of an N×N directed adjacency

matrix of total exposures, Ct. Cijt is the element in row i and column j of Ct, and indicates

the total exposure of bank i to bank j at time t. Ct is directed in that it is not symmetric:

bank i can have an exposure to bank j, and bank j can have a (different) exposure to bank

i. For each bank i, di is an L× 1 vector of product characteristics for the exposures that it

supplies.

pt is an N × 1 vector of bank default risks: the element in position i is the probability

of default of bank i. pt is a function of Ct and an N × K matrix of bank fundamentals,

which we denote Xt, and which update over time according to some exogenous process. This

function is the default risk process, and the effect of Ct on pt represents “contagion”, as we

will define more formally below.

Cijt results in profits to bank i (we term this supply of exposures) and to bank j (demand
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for exposures). These profits depend on bank default risk, in a way we will formalise below.

The equilibrium interbank network Ct is formed endogenously based on the supply- and

demand-sides, such that markets clear. Banks choose their supply and demand decisions

simultaneously. For simplicity, there is no friction between changes in bank fundamentals and

the formation of the network: once fundamentals change, the equilibrium network changes

immediately.11

1.3.2 Default risk process

Understanding the effect of exposures on default risk is a key part of our research question. In

our approach to modelling this default risk process, we are guided by the summary statistics

we set out above in three important ways:

• First, in our dataset the exposures are large and complete (empirical fact 1), which

means that the exposures could reasonably have an impact on the default risk of the

banks that hold these exposures, in contrast to papers in the literature that observe

exposures relating to a single instrument type (Denbee et al., 2017; Gofman, 2017). In

other words, the size of our observed exposures leads us to consider financial contagion

on default risk through these exposures.

• Second, there is cross-sectional variation in exposure characteristics (empirical fact 3):

in other words, firms are trading different financial products. Some financial products

may not impact default risk in the same way as others: as a trivial example, holding

GBP 100m of senior debt of bank j may have a smaller effect on the default risk of

bank i than holding GBP 100m of junior debt. This empirical fact means that we need

to take a flexible approach to modelling contagion that accounts for this heterogeneity.

• Third, there is cross-sectional variation in bank default risk (empirical fact 5). There

is a broad theoretical literature on the importance of such cross-sectional variation

for financial contagion: the effect of an exposure to bank j on bank i’s default risk is

likely to depend on the extent to which their underlying fundamentals are correlated

11It is straightforward to introduce some friction in the timing, such that the network does not update
immediately once fundamentals change. This would allow more detailed consideration of shock propagation
in the short-run, which we define as the interval in which the network has not updated. We consider
these short-run effects in further work, and consider in this paper only the long-run effects of changes in
fundamentals.
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(Glasserman and Young, 2015; Elliott et al., 2018). Our model of contagion, therefore,

needs to be sufficiently flexible to account for this heterogeneity.

We model a bank’s default risk process as the sum of two components: a set of funda-

mentals and a spatially autocorrelated component whereby bank i’s default risk depends on

its aggregate exposure to bank j, Cijt, and bank j’s default risk, pjt. In matrix form:

pt︸︷︷︸
Default

risk

= Xtβ︸︷︷︸
Funda-
mentals

−ωCt ι︸ ︷︷ ︸
Hedging

+ τt(Γ ◦Ct)pt︸ ︷︷ ︸
Counterparty

risk

+ ep
t

where pt is a N × 1 vector of bank default risks, Ct is a N × N directed adjacency

matrix of aggregate pairwise exposures, β is a K × 1 vector that represents each bank’s

loadings on a N ×K matrix of fundamentals X, ι is a N ×1 vector of ones, ω > 0 is a scalar

parameter that determines the effect of exposures on default risk through hedging, Γ > 0 is

a N ×N matrix of parameters that determine the effect of exposures on default risk through

counterparty risk, τt is a scalar that allows the effect of counterparty risk to vary across time

and ◦ signifies the Hadamard product.

In broad terms, in this model a bank’s default risk depends on its fundamentals and on its

interbank network exposures. The interbank network can decrease bank default risk through

hedging : many lending or derivatives transactions between banks are expressly intended to

hedge risk. The interbank network can also increase bank default risk through counterparty

risk : when a banks takes on an exposure to another bank it runs the risk that the other

bank will default.

More specifically, this is a spatially autocorrelated regression, as is commonly used in

network econometrics (De Paula, 2017), with a generalisation: the parameter governing the

size of counterparty risk, Γij, is allowed to be heterogeneous across bank pairs. Before we

explain the effect of this generalisation, we first define contagion from bank j to bank i as

the partial equilibrium effect that ∂pit
∂pjt

> 0: that is, the default risk of bank j has a causal

impact on the default risk of bank i. In our model, ∂pit
∂pjt

= τtΓijCijt, such that the strength

of contagion depends on the size of the exposure and this parameter Γij.

Γ can be thought of as contagion intensity in that Γik > Γim implies that ∂pit
∂pkt

> ∂pit
∂pmt

for any common Cikt = Cimt. That is, bank i’s default risk is more sensitive to exposures

to bank k than to bank m, holding exposures and fundamentals constant. We refer to links

with relatively low contagion intensity as “inherently safe” and links with relatively high

29



contagion intensity as “inherently risky”.

This heterogeneity in contagion intensity could come from three sources. First, it could be

a result of correlations in the underlying fundamentals, as described above, whereby if bank

i and k (m) have fundamentals that are positively (negatively) correlated then exposure Cik

(Cim) is particularly harmful (benign). This implies a relationship between the fundamentals

processes and Γij which we leave open for now, but consider in our empirical analysis. Second,

it could be a result of variations in product characteristics, as described above. This difference

across products could be modelled using a richer default risk process that separately includes

exposures matrices for each instrument type with differing contagion intensities, but this

would introduce an infeasible number of parameters to take to data. Third, it could be a

result of some other relevant pairwise variation that is unrelated to fundamentals or product,

such as geographic location. It could be, for example, that recovery rates in the event of

default are lower if bank i and bank j are headquartered in different jurisdictions, making

cross-border exposures riskier than within-border exposures.

We allow for contagion intensity to vary across time via τt because there are, in principle,

things that could affect contagion intensity. One of the purposes of the increase in capital

requirement, for example, was to make holding a given exposure Cijt safer, in the sense of

Modigliani and Miller (1958) (because it means bank i has a greater equity buffer if bank j

defaults). We do not make any assumptions about the relationship between τt and capital

requirements λ at this stage, but consider it in estimation.

As well as resulting in contagion, the interbank network can reduce default risk by al-

lowing banks to hedge. The partial equilibrium net effect of an exposure Cijt is as follows:

∂pit
∂Cijt

= −ω + τtΓijpjt

An exposure Cijt is more likely to increase the default risk of bank i if hedging is less

important (because ω is small), the counterparty is particularly risky (pjt is large) or the

link is particularly risky (Γij is large).

To find equilibrium default risk we solve for a fixed point in pt. Subject to standard

regularity conditions on Γ and C this spatially autocorrelated process can be inverted and

expanded as a Neumann series as follows, which we term the Default Risk Process (“DRP”):

pt = (I− τtΓ ◦Ct)
−1(Xtβ − ωCtι+ ep

t ) =
∞∑
s=0

(τtΓ ◦Ct)
s(Xtβ − ωCtι+ ep

t )
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We motivate our approach further in Appendix A, in which we set out a more primitive

model of default risk, along the lines of Eisenberg and Noe (2001). In this model, a bank’s

value is the sum of its fundamentals and its interbank holdings, and it fails if this value

falls below some critical value. Once a bank fails, it defaults on its interbank obligations

and so reduces the values of its counterparties, resulting in a cascade of bank failures. By

drawing repeatedly from the stochastic process that governs bank fundamentals, it is possible

to calculate default risk as simply the proportion of draws in which bank i fails. In this

model we allow for variations in the correlations of fundamentals across banks, variations

in product riskiness and variations in recovery rates at the pairwise level, each of which we

describe above.

This model is arguably a more natural model of a default risk process, but it is not suitable

for our purposes in two ways: (i) it does not have an analytical solution, which makes it

difficult to combine with a model of network formation in which firms take into account the

effect of their network choices on their default risk and (ii) it is not easily taken to data, in

that we could not separately identify each of these sources of heterogeneity or the critical

values at which bank failures occur. Instead, what we do is simulate data from this model,

and fit our proposed spatial autoregression. We use the results of this exercise to show that

(i) a spatial autoregression fits relatively well and (ii) heterogeneity in contagion intensity

Γij is important. In this sense, our proposed approach can be thought of as a reduced form

representation of this underlying more fundamental model, and Γij can be thought of as a

reduced form representation of these underlying sources of pairwise heterogeneity.

We run alternative specifications of the default risk process as robustness checks to our

results. In particular, we consider an alternative default risk process in which common fun-

damentals (intended to represent the risk premium) do not propagate through the network.

1.3.3 Demand

In our approach to modelling demand we are guided by one important empirical fact: product

characteristics are heterogeneous across banks (empirical fact 3). In other words, banks are

supplying and demanding different financial products. This has two important implications:

• First, this heterogeneity has implications for the specificity with which we model the

payoffs to demanding financial products. For example, if our empirical exposures

were uniquely debt, then we would be able to include a standard model of liquidity
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management on the demand-side (as in Denbee et al. (2017)). If instead our empirical

exposures were uniquely CDS contracts, then we would be able to include a model of

credit risk management (as in Eisfeldt et al. (2018)). Instead, we need to model the

demand-side in a general way that is applicable across the range of financial products

that feature in our data.

• Second, this heterogeneity has implications for how we model competition between

banks. In particular, this heterogeneity means we need to consider the extent to which

exposures supplied by one bank are substitutable for those supplied by another bank

(product differentiation, in other words).

Each j-bank has a technology that maps inputs into gross profit, from which the cost

of inputs is subtracted to get net profits. Inputs are funding received from other banks

Cij,∀i 6= j and an outside option C0j designed to capture funding from banks outside our

sample and non-bank sources. Net profits are given by:

ΠD
jt = (ζij + δjt + eDijt)

N∑
i=0

Cijt

−1

2

(
B

N∑
i=0

C2
ijt + 2

N∑
i=0

N∑
k 6=i

θikCijtCkjt

)

−
N∑
i=0

rijtCijt

where ζij and δjt represent heterogeneity in the sensitivity of the j-bank’s technology to

product i, B governs diminishing returns to scale and θik governs the substitutability of

product i and k. Before we motivate our choices about functional form in more detail, it is

helpful to set out what this implies for the j-bank’s optimal actions. Bank j chooses CD
ijt to

maximise net profit taking interest rates as given, resulting in optimal CD
ijt such that inverse

demand is as follows:

rDijt = ζij + δjt︸ ︷︷ ︸
Technology

− BCijt︸ ︷︷ ︸
Own-effect

−
∑
k 6=i

θikCkjt︸ ︷︷ ︸
Cross-effect

+ θ0C0jt︸ ︷︷ ︸
Out.Op.

+ eDijt

In other words, our functional form assumptions imply that the bank demanding expo-

sures has linear inverse demand.
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We assume that the j-bank has an increasing but concave objective function in the funding

that it receives. We justify its concavity on the basis that the j-bank undertakes its most

profitable projects first (or conversely, if its funding is restricted for whatever reason, it

terminates its least profitable projects rather that its most profitable projects). Concavity

also means that the returns to receiving funding decrease, in that the j-bank only has a

limited number of opportunities for which it needs funding.

The intercept is comprised of three parts: δjt, ζij and eDijt. δjt ensures that the returns

that the j-bank gets from funding are time-varying. This time variation is left general,

although it could be related to the j-bank’s fundamentals. It could be, for example, that

when the j-bank’s fundamentals are bad then the payoff to receiving funding is greater, in

that the projects being funded are more important (if, for example, it needs this funding

to undertake non-discretionary, essential projects or to meet margin calls on other funding).

This is intended to allow for the importance of the interbank network in times of distress.

The technologies possessed by each j-bank vary by ζij, which governs the importance of the

i-bank’s product to the j-bank’s technology. We allow this technology to be heterogeneous

across pairs. eDijt is an iid shock to the returns that bank j gets from receiving funding from

bank i.

We also allow for product differentiation, in that the product supplied by bank i may not

be a perfect substitute for the product supplied by bank k. We parameterise this product

differentiation in parameters we denote θik.

1.3.4 Supply

In our approach to modelling the supply side, we are guided by the following empirical

observations: the network we are seeking to model is dense with heterogeneous intensities

(empirical facts 2 and 3). Much of the literature focuses on explaining sparse core-periphery

structures, which are often rationalised by fixed costs to link formation (Craig and Ma

(2019), for example, have a fixed cost of link formation relating to monitoring costs). Vari-

ation in fixed cost cannot explain heterogeneity in link intensity, however, so this empirical

observations leads us to focus on heterogeneity in marginal cost instead.

Bank i has an endowment Eit that it can either supply to another bank or to an outside

option. When it supplies its product to bank j it receives return rijt and incurs a per-unit

cost pucijt. We model this per-unit cost as the cost of the equity that the bank has to raise

to satisfy its capital requirements; that is, when bank i supplies bank j it pays a certain
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rate to raise the necessary equity. We parameterise the cost of equity as a linear function of

the bank’s default risk: ceit = φpit + ecit, where ecit is the remaining part of the bank’s cost

of equity that is unrelated to its default risk. The riskier a bank is, the higher the cost of

raising equity:

pucijt︸ ︷︷ ︸
Per-unit cost

= λijt︸︷︷︸
Reg’n

ceit︸︷︷︸
Cost of K

= λijt (φpit + ecit)

where λijt is the equity bank i needs to raise per-unit of exposure to bank j,12 ceit is the

cost of raising that equity, pit is the default risk of bank i, ecit is an error term and φ is a

parameter governing the relationship between default risk and cost of equity.

This simple parameterisation has three important implications. First, pit is endogenously

dependent on bank i’s supply decisions, via the default risk process that we define above. In

other words, when bank i supplies bank j, it takes into account the fact that doing so makes

it riskier and so makes it costlier to raise capital. Second, pit is endogenously dependent on

the supply decisions of other banks, via the default risk process that we define above. In

other words, there are network cost externalities. Third, pit is endogenously dependent on

regulation λijt through the default risk process described above. In other words, in the spirit

of Modigliani and Miller (1958), an increase in λijt has two effects on the total cost of capital

for firm i: it increases the amount of capital that the i bank needs to raise, but makes the

bank safer and so makes the cost of a given unit of capital lower.

Bank i’s problem in period t is to choose {Cijt}j to maximise the following, taking pk 6=i,t

as given:

Πit = ΠS
it + ΠD

it

=
∑
j

Cijt[rijt − pucijt + eSijt]︸ ︷︷ ︸
Interbank supply

+ (Eit −
∑
j

Cijt)ri0t︸ ︷︷ ︸
Supply to Out.Op.

+ ΠD
it

such that Cijt ≥ 0, Eit −
∑

j Cijt ≥ 0 and pucijt = λijt (φpit + ecit).

12For ease of exposition we have collapsed the risk-weighting (ρ, using the notation from Section 2) and
the capital required per risk-weighted assets (λ) into a single parameter, λ.
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For interior solutions the first order condition is as follows:

rSijt +
∂rSijt
∂Cijt

Cijt︸ ︷︷ ︸
MB

= pucijt +
∑
k

∂pucikt
∂Cijt

Cikt︸ ︷︷ ︸
∆ Aggregate K cost

− ∂ΠD
it

∂pit

∂pit
∂Cijt︸ ︷︷ ︸

∆ D-side cost

− ri0t︸︷︷︸
Out.Op.

The left-hand side is the marginal benefit to i of supplying bank j. The right-hand side is

the marginal cost, which consists of four parts (i) the per-unit cost it pays, (ii) the marginal

change in the per-unit cost, (ii) the marginal change in i’s payoff from demanding interbank

products and (iv) the outside option.

Bank i, when choosing to supply Cijt, therefore balances the return it gets from supplying

against the effect of its supply on its default risk, via the default risk process described above.

Being riskier harms bank i by increasing the price it pays to access capital in two ways. First,

it increases the marginal cost bank i pays when supplying interbank exposures (the second

term in the preceding equation, labelled ‘∆ Aggregate K cost’). Second, being riskier means

that bank i pays higher interest rates when demanding exposures (the third term in the

preceding equation, labelled ‘∆ D-side cost’).

1.3.5 Equilibrium

Before considering equilibrium, we summarise what our model implies for the definition of

a bank. In our model, bank i is the following tuple: (Eit, di,l, βXi, ζi,Γi): respectively, an

endowment, a set of product characteristics, a set of loadings on fundamentals, a technology

and a set of contagion intensities. In other words, although the model is heavily parame-

terised, it allows for rich heterogeneity among banks.

Definition 1 In this context we define a Nash equilibrium in each period t as: an N × N
matrix of exposures C∗t and N × 1 vector of default risks p∗t such that markets clear and

every bank chooses its links optimally given the equilibrium actions of other banks.

For interior solutions where Cijt > 0, market clearing requires that supply and demand

are equal, such that the following equilibrium condition holds, which we term the Equilibrium

35



Condition (“EQC”):

0 = δjt + ζij + eDijt − 2BCijt −
N∑
k 6=i

θikCkjt + eSijt

−λijtφ1pit(Ct)− φ1

[
− ω + τtΓijpjt(Ct)

] N∑
k 6=i

Ciktλikt − ri0t

−φ1τt
[
− ω + τtΓijpjt(Ct)

]∑
k

CkitΓki
∑
m

Ckmtλkmt

We show our calculations in Appendix C. Note that a bank’s default risk is a function of

Ct, as we set out in the default risk process, which we repeat here for convenience:

pt = (I− τtΓ ◦Ct)
−1(Xtβ − ωCtι+ ep

t ) =
∞∑
s=0

(τtΓ ◦Ct)
s(Xtβ − ωCtι+ ep

t )

Substituting p out of EQC using DRP gives a system of equations in C∗. The form of

DRP is such that the EQC become a system of infinite-length series of polynomials, such

that in general no analytical solution exists. Instead, we solve these equilibrium conditions

numerically. We make no general claims about uniqueness or existence at this stage, but

confirm numerically that our estimated results are an equilibrium that is, based on numerical

simulations, unique.

We demonstrate how the model works by arguing that our model is consistent with: (1)

with the empirical facts we set out above and (2) the stylised facts we set out above regarding

how direct interbank connections behaved during the financial crisis.

1.3.5.1 The model is consistent with our empirical facts

We set out certain empirical facts above that we used to guide our modelling. In this sub-

section, we explain in more detail how exactly the model is consistent with these empirical

facts.

First, our empirical network is heterogeneous in the intensity of links. There are three

main sources of such heterogeneity in our model: (i) firms have heterogeneous technologies

ζij that require differing inputs from other firms, (ii) contagion intensity Γij is heterogeneous,

such that some links are intense because they are less risky and (iii) firms have heterogeneous
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fundamentals Xit, such that some links are intense because the banks involved have good

fundamentals.

Second, our empirical network is persistent over time. Each of the sources of heterogeneity

discussed above is also a source of persistence: ζij and Γij are by assumption fixed over time,

and Xit vary over time but may be persistent.

Third, we observe increased concentration in our data. In our model this results from

the increase in capital requirements across our sample. Consider bank i’s decision to supply

bank j and/or bank k, where bank k’s fundamentals are worse than bank j. For a given

level of capital requirement λ, the fact that bank k is riskier means that ceteris paribus

bank i supplies more to bank j than bank k. An increase in λ then makes supplying bank k

relatively more costly compared to supplying bank j. In other words, an increase in capital

requirements penalises risky links that are already likely to be small, resulting in an increase

in concentration.

1.3.5.2 The model is consistent with our stylised facts

We also set out above three stylised facts from the crisis. Our model can match each of these

stylised facts.

First, risky banks may choose to supply less total exposures, which we loosely term

liquidity hoarding. All other things being equal, if a bank experiences a negative shock to its

fundamentals it supplies less, as it is riskier and so its cost of capital is higher. This is not

strictly liquidity hoarding in a structural sense, in that the bank is not lending less because

it needs to preserve liquidity for the future, but the effect is the same. In that sense, this

mechanism can be thought of as a reduced form for liquidity hoarding.

Second, risky banks may be supplied less, which we term market lockout. A shock to the

fundamentals of bank j makes supplying it more risky and therefore more costly. This is

true holding fixed δjt, which are fixed effects governing inter-temporal variation in demand.

If this is related to Xjt, then the effect of variations in fundamentals is more complicated.

Third, when all banks are risky, liquidity hoarding and market lockout combine to result

in market shutdown, where no bank is supplied anything at all. This follows in our model as

the combination of the two previous effects.
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1.3.6 Optimal networks

There are three immediate potential sources of inefficiency in our model (plus a fourth one

we will define later):

1. Network externalities

2. Market power

3. Inefficient cost allocations

First, there are externalities within the interbank network, as bank k’s default risk pkt

is affected by Cijt provided that bank k has a chain of strictly positive exposures to i. If

Ckit > 0 then this is trivially true, but it is also true if bank k has a strictly positive exposure

to another bank that has a strictly positive exposure to i, and so on. Banks i and j do not

fully account for the effect on pkt when they transact bilaterally, such that this negative

externality implies that exposures are too large relative to the social optimum. Second, the

banks supplying financial products may have market power, such that exposures are too

small relative to the social optimum. Third, equilibrium allocations among suppliers may

not be efficient, given differing marginal costs. In equilibrium high cost suppliers might

supply positive quantities when it would be more efficient for low cost suppliers to increase

their supply instead.

These inefficiencies mean that aggregate interbank surplus may not be maximised in

equilibrium, where we define aggregate interbank surplus as the sum of aggregate surplus

on the demand-side and aggregate surplus on the supply-side across all N banks. In other

words, a social planner could specify an exposure network that increased aggregate interbank

surplus.

In this context, however, it is insufficient to consider aggregate surplus within the inter-

bank network. A bank’s default risk can impact agents outside of the interbank network,

such as its depositors, creditors, debtors and various other forms of counterparty. A crisis

in the interbank network could, in principle, lead to a wider crisis with implications for the

“real” economy. In other words, a social planner would not set exposures and default risk

solely to maximise surplus in the interbank network, but instead to maximise total surplus

in the economy, including aggregate interbank surplus and real surplus, which we define as

follows.
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Definition 2 : Real surplus : We define “real surplus” as surplus outside of the interbank

network, and denote it by Rt.

The relationship between bank default risk and real surplus is important, as if there is such

a relationship then it reveals a fourth possible inefficiency:

4. Real externalities: Banks do not take this into account the effect of their network

formation decisions on real surplus.

Characterising the relationship between real surplus and default risk, or estimating it empir-

ically, is not straightforward. We do not model or estimate this relationship, but only make

the following directional assumption:

Assumption 1 Suppose real surplus Rt is a function of the mean default risk of banks p̄t:

Rt = r(p̄t). We assume that Rt is strictly decreasing in p̄t.

This assumption is clearly an approximation of what is likely to be a complex relationship

between real surplus and bank default risk. It may not always hold; it may be, for example,

that when bank default risk is very low, some additional bank default risk increases real

surplus. It could also be that mean bank default risk is not the only thing that is important,

but also some measure of dispersion or the minimum or maximum. Nevertheless, we think

that this assumption reasonably represents the fundamental, local trade-off that regulators

face when intervening in these markets: the trade-off between default risk and surplus in the

market.

In particular, this assumption allows us to think about optimal default risk and interbank

surplus in the sense of Pareto-optimality. That is, denote total surplus in the interbank

network by TSI (where the I subscript emphasises that this is total surplus in the interbank

network only) and mean default probability by p̄, and suppose TSHI > TSLI and p̄H > p̄L.

Assumption 1 implies that (TSHI , p̄
L) �SP (TSLI , p̄

H), where �SP denotes the social planner’s

preferences, but it does not allow us to rank (TSHI , p̄
H) and (TSLI , p̄

L), as we illustrate in

Figure 1.4.

It is helpful to think about the trade-off between TSI and p̄ in terms of constrained

maximisation of interbank surplus subject to a default risk constraint.

Definition 3 : Efficient frontier : For an arbitrary, exogenous value of mean default risk,

p̄F , define TSFI = maxC TSI(C) st p̄(C) = p̄F . We define the efficient frontier as the locus

traced out in (p̄F , TSFI ) space as p̄F is varied.
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In other words, the efficient frontier is agnostic about the scale of externalities outside of

the interbank network. It requires only that there is no feasible alternative (TSAI , p̄
A) that

is a Pareto-improvement in the sense that (i) TSAI > TSFI and p̄F ≤ p̄A or (ii) TSAI ≥ TSFI
and p̄F < p̄A. If such a Pareto-improvement existed, we can conclude from Assumption 1

that (TSAI , p̄
A) �SP (TSFI , p̄

F ). The extent to which a given point is inefficient can then be

loosely characterised by its vertical or horizontal distance from the frontier, as we set out in

the definitions below. Figure 1.4 shows the frontier and illustrates what conclusions we can

draw using this model about different outcomes.

Definition 4 : p inefficiency : The default risk inefficiency of some allocation (TSI , p̄) is

the percentage decrease in p̄ that could be obtained without decreasing TSI . In other words,

it is the vertical distance in percentage terms from the frontier.

Definition 5 : TS inefficiency : The total surplus inefficiency of some allocation (TSI , p̄)

is the percentage increase in TSI that could be obtained without increasing p̄. In other words,

it is the horizontal distance in percentage terms from the frontier.

Finally, we note that although it is straightforward to consider efficient allocations, it is

much more difficult to calculate optimal regulation (in our model, the capital regulations λSPijt

that a social planner would choose) that fully implements efficient allocations. We consider

feasible regulations that are efficiency improvements over the perfectly decentralised market

in the section below on counterfactual analysis.

1.4 Estimation

We first describe the data we use to model bank fundamentals and the structure of our

estimation approach. We then describe the parameterisations that we make when we take

this model to data.

1.4.1 Modelling fundamentals

To represent bank fundamentals X we use bank-specific and common data.

For bank-specific variation, we take the relevant equity index to be a bank-specific

weighted average of global equity indices from S&P, where the weightings are the propor-

tion of the bank’s revenues that come from that geography (data provided annually by

40



Figure 1.4: Stylised example: Interbank surplus and default risk

Note: Point + dominates any point in the red area but is dominated by any point in the
green area. For example, × �SP + �SP ∗, but we cannot rank ◦ relative to the other
points. We cannot even rank ◦ relative to × despite × being on the efficient frontier: the
social planner’s preferences over × and ◦ depend on the scale of externalities outside of
the interbank network, which we leave open. The extent of inefficiency of point ◦ can be
expressed as the vertical distance south to the efficient frontier and the horizontal distance
east to the frontier.

Bloomberg, based on corporate accounts). For example, suppose that at time t bank k ob-

tained 70% of its revenues from the US and the remaining 30% from Japan. In this case,

Zp
kt = 0.7× S&P500t + 0.3× S&PJapant. Absolute index values are not meaningful, so we

normalise each S&P index by its value on 1 June 2019. Although this is clearly an imperfect

measure of the bank’s fundamentals, we argue it has informative value: this bank k would

plausibly be more affected by a slowdown in Japan than some other bank with no Japanese

revenues. The S&P indices we use are for the US, Canada, the UK, Europe, Japan, Asia
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and Latin America.

In our robustness tests, we test whether our results are sensitive to an alternative measure

of bank fundamentals: weighted average consumption growth (where the weighting is bank

revenues by jurisdiction, as above).

To capture common variation in bank fundamentals, we use a broad panel of macroe-

conomic and commodity data from the World Bank. We calculate the first three principal

components of this panel, which collectively account for more than 99% of total variation,

and include these three variables in X. We also include the Chicago Board Options Exchange

Volatility Index, more commonly known as “VIX”, which represents expected variation in

option prices, and the Morgan Stanley World Index.

1.4.2 Estimation structure

The parameters we seek to estimate are Θ = (Γ̃, τ, ωβ, δ, ζ, θ̃, φ); respectively, contagion

intensities, time-variation in contagion intensities, hedging effect, fundamentals, demand

intercept variation, pairwise technology importance, characteristic-based product differen-

tiation, and the cost multiplier. Our estimation process involves two loops. In the inner

loop, we solve our model numerically to calculate the network links and default risks implied

by a given parameter vector; respectively, Ĉ(Θ) and p̂(Θ). In the outer loop, we search

over parameter vectors Θ to minimise two sets of moments, where the relevant instruments

are set out in the following section: (1) network formation: E[Z′(Ĉ(Θ)−C)] = 0 and (2)

contagion: E[Z′(p̂(Θ)− p)] = 0. We express p in logs.

1.4.3 Parameterisations

We impose four parameterisations to feasibly take this model to our data. The first parame-

terisation we make is with respect to Γij. General symmetric Γij consists of N(N−1)/2 = 153

elements. These are individually identifiable, as we will show below, but because the length

of our panel is limited we cannot estimate them with reasonable power. For this reason, our

baseline estimation approach imposes the following structure on Γij:

Γij = Γ̃iΓ̃j
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where Γ̃ is an N × 1 vector of parameters. This parameterisation is significantly more

parsimonious but retains variation at the ij level. It does result in some loss of generality, in

that loosely speaking it implies that if Γ12 and Γ23 are high, then Γ13 must also be high. This

kind of structure is broadly consistent with each of the three motivations for heterogeneous

Γij that we introduce above.

The second parameterisation we make relates to τt. We include τt to allow for time-

variation in contagion intensity because higher capital requirements are intended to make

a given exposure safer. General τt, with a different multiplicative parameter for each time

period, is in principle identifiable. In practice, we parameterise τt based on capital require-

ments:

τt = e−τ(λt−λ1)

where λt is the mean capital requirement at time t, λ1 is the mean capital requirement in

the first period of our sample, 2011, and τ is a scalar parameter. Thus τ1 = 1, but τt>1

can be lower depending on the size of τ . If τ = 0 then τt = 1 for ∀t and there is no time-

variation in contagion intensity, if τ is large then there is significant time-variation. This is

a more parsimonious approach that directly addresses the underlying reason why allowing

for time-variation in contagion is important.

The third parameterisation we make relates to θik, which governs the extent to which the

products supplied by bank i are substitutes for those supplied by bank k. General θik cannot

be reasonably estimated from our dataset; instead we parameterise it as being a logistic

function of certain product characteristics, including maturity, currency and instrument-

type.

θik =

exp

(
θ̃ −

∑L
l θ̃l(di,l − dk,l)2

)
1 + exp

(
θ̃ −

∑L
l θ̃l(di,l − dk,l)2

)
where di,l denotes the value for characteristic l of bank i and θ̃l > 0 is a parameter that

determines the importance of characteristic l to the substitutability of different products.

For instrument type, for example, di,l=type is the proportion of i’s product that is derivatives.

If banks i and k have very different product characteristics, then θik is small and the two

are not close substitutes. If, on the other hand, banks i and k have very similar product

characteristics then θik is large and the two are close substitutes. This parameterisation

replaces θik (which across all pairs has dimension N2) with θ̃l (which has dimension L+ 1).

The fourth parameterisation we make relates to the structure of our data, and in par-
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ticular the fact that, as described in Section 1.2, for non-British banks we only observe

local-unit-to-group exposures, under-estimating their total exposure. We assume that:

Cijt = (1 + ai) C̃ij

where we denote local-unit-to-group exposures by C̃ijt and group-to-group (that is, total)

exposures by Cijt, and ai are bank-specific parameters that we estimate. These parameters

ai are identified given that (i) some variables, such as Xjt and pit, enter the EQC with non-

bank-specific coefficients and (ii) for the British banks we know a = 0. In principle, a finer

disaggregation is identifiable in this way, but we restrict variation to ai to preserve degrees

of freedom.

1.5 Identification

We consider identification of the network formation game and of the default risk process. We

then return to our research question, and discuss in intuitive terms the empirical variation

that we use to identify each of the key parameters that determine our answer to this research

question.

1.5.1 Network formation

The EQC and DRP allow us to solve for equilibrium C and p as a function of λ, X and the

jt and it fixed effects described above. In other words, identification is significantly easier

when we solve for equilibrium exposures, because the endogenous exposures of other banks

and endogenous default risks are substituted out of our empirical specification.

We assume bank fundamentals, as defined above, are exogenous. Treating this as ex-

ogenous assumes that a bank’s revenue distribution and the equity indices themselves are

independent of pairwise structural errors in the interbank network. We emphasise that the

fact that we are able to include it and jt fixed effects means that the only remaining unob-

servable variation is pair-specific. We think it is a reasonable assumption that, for example,

HSBC, which has deep roots in Asia, would not shift its geographic revenue base in response

to pair-specific shocks in the interbank network. Similarly, we think it is a reasonable as-

sumption that the equity indices that form the basis of our bank-specific fundamentals are

independent of pair-specific shocks in the interbank network.
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We treat product characteristics as exogenous, in keeping with the literature on demand

estimation in characteristic space. We treat λ, regulatory capital requirements, as exogenous,

in keeping with the literature on the empirical analysis of bank capital requirements (Robles-

Garcia, 2018; Benetton, 2018). It is informative to consider how we are able to separately

identify the effect of common time variation in capital requirements from the it and jt fixed

effects. This relates to Figure 1.2, in which we show the correlation between concentration

in the interbank network over time and changes in capital requirements. In our model the

effect of the common increases in capital requirements on equilibrium exposures depends

on the fundamentals of the banks supplying and demanding the exposures: in other words,

although the changes in capital requirements are common across all banks, their effect on

exposures is pair-specific.

B is not separately identifiable from the other parameters. We normalise B = 1 on the

basis that in models of quantity competition what matters for market power is θ/B, not the

absolute value of B.

1.5.2 Default risk process

We repeat DRP for convenience:

pt = (I− τtΓ ◦Ct)
−1(Xtβ − ωCtι+ ep

t ) =
∞∑
s=0

(τtΓ ◦Ct)
s(Xtβ − ωCtι+ ep

t )

The advantage of explicitly considering network formation is that we can account for the

endogeneity of the network in our spatial DRP model. The key insight to our identification

strategy is that DRP is a linear function of bank fundamentals Xt, but equilibrium exposures

Ct are a non-linear function of Xt. We therefore use non-linear variation in Xt as pair-

specific, time-varying instruments for the network. We motivate this more clearly in three

steps. First, we show that equilibrium exposures are indeed non-linear in bank fundamentals.

Second, we show that this gives us the pair-specific variation that we need. Third, we set

out exactly which variables we use as instruments.

The fact that equilibrium exposures are non-linear in bank fundamentals comes from

the non-linearity of the cost function. The key intuition for this is that the cost function

is convex in Cijt, provided that ω is small, such that in equilibrium Cijt would never grow

linearly with fundamentals as that would lead to marginal cost becoming very large. Consider
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a simple example with three banks, 1, 2 and 3, and suppose, for the sake of simplicity, that

in equilibrium every network link between those banks is strictly positive. In equilibrium

C∗12 is such that the marginal cost of supplying exposures is equal to the marginal benefit.

The marginal benefit is linear in C12, whereas the marginal cost is convex in C12, as set out

in Figure 1.5. Suppose the fundamentals of banks 1, 2 and 3 improve, worsen and remain

unchanged, respectively. In these circumstances, we show in Figure 1.5 that C12 changes

non-linearly relative to the size of these. In Appendix C we show, for a simplified version

of our model for which an analytical solution exists, that equilibrium C are a non-linear

function of X.

Having shown that exposures are non-linear in fundamentals, it is straightforward, using

the same simple example, to show that changes in fundamentals then give us the pair-

specific variation that we need for them to be instruments for Cijt. Assume again that

the fundamentals of banks 1, 2 and 3 improve, worsen and remain unchanged, respectively.

This causes links between banks 1 and 3 to increase (because the improvement in bank 1’s

fundamentals mean that the marginal cost to bank 1 of supplying bank 3 has gone down, and

the marginal cost to bank 3 supplying bank 1 has gone down). For analogous, but opposite,

reasons, links between bank 2 and bank 3 decrease. For links between banks 1 and 2 it is

not possible to sign the effect, as some elements of marginal cost have gone up and some

have gone down. In summary, provided there is reasonable cross-sectional variation in bank

fundamentals (which we show in Figure 1.3), then that variation has differing exogenous

implications for each of the pairs.

We define X̃ijt = 1
N−2

∑
k 6=i,j Xkt (that is, average fundamentals of other banks). As

instruments for Cijt we use [X2
it, X

2
jt, X̃

2
ijt, Xit/Xjt, Xit/X̃ijt...], as well as these terms in-

teracted with λijt to leverage its time variation. We show the results of first stage regressions

in the appendix. Assuming these bank fundamentals are orthogonal to unobserved shocks

to bank default risk is more restrictive than in the case of the network formation data, as we

have fewer fixed effects available to use. We assume that the equity indices on which we rely

are independent of unobserved bank default risk. We justify this on the basis that, although

the banks in our sample are large, none are a material proportion of these equity indices.

We then use the GMM moments suggested in a spatial context by Kelejian and Prucha

(1998) and Kelejian and Prucha (1999).
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Figure 1.5: Non-linear bank fundamentals as instruments for C

(a) Non-linear effect of X on C
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Note to Figure 1.5: Suppose the fundamentals of bank 1, 2 and 3 improve, worse and do
not change, respectively. In part (a) we show that equilibrium exposures are non-linear with
respect to this variation in fundamentals. In part (b) we show that this this has differing
pairwise effects on equilibrium link intensity, where link intensity between 1 and 2 increases,
link intensity between 2 and 3 decreases and link intensity between 1 and 2 does not change.
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1.5.3 Identification: Back to the research question

Having described our approach to identification, we summarise by considering how iden-

tification relates to our core research question regarding the inefficiency of the interbank

network. There are three sources of inefficiency in our model, and each is determined by

certain parameters in the model:

• Network externalities: The extent of network externalities depends on the size of Γij. If

these parameters are large, then network effects are large, and so network externalities

are large.

• Market power: The extent of market power depends on the size of θij. If these are

large, then small differences in product characteristics lead to large differences in sub-

stitutability, and market power is large.

• Inefficient cost allocations: The extent to which high cost links inefficiently receive

equilibrium allocations depends on the dispersion in Γij. If these parameters are very

dispersed, then cost variations are greater and the resulting inefficiency is greater.

Having argued that these parameters are the key parameters in our model, we summarise

the key variation that identifies each of these parameters in Table 1.2. This is important for

the robustness with which we answer our research question, as it shows that our answers to

these questions are guided by the data rather than by our modelling assumptions.

Table 1.2: Key variation

Key parameter Key variation

[1] Size of θik Cov(Cijt, Xkt | di − dk)

[2] Size of Γij Cov(Cijt, Xjt),
Cov(pit, Xjt|ZC

ijt)

[3] Dispersion in Γij Cov(sijt, λt)

Note: sijt denotes proportion of bank i’s total supply that is to bank j. All other notation
as previously defined.

θik determines how closely banks i and banks k compete. We identify the size of θik

by the covariance between Cijt and Xkt, which is an exogenous measure of bank k’s cost,
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conditional on the extent to which the two banks have similar product characteristics. If

this covariance is high, then θik is high.

Γij determines the contagion intensity from j to i. There are two sources of empirical

variation for this: from the network formation data and from the default risk data. On the

network formation side, Γij is identified by the covariance between Cijt and Xjt. If Cijt is

sensitive to the fundamentals of bank j, then in the context of our model this means that Γij

is large. On the default risk side, Γij is identified by the covariance between bank i’s default

risk and the fundamentals of bank j, conditional on the instruments we describe above for

the size of Cijt. If this conditional covariance is large, then this means that bank i’s default

risk is particularly sensitive to bank j’s default risk, which in the context of our model means

that Γij is large.

Finally, we describe a further source of variation that helps identify the dispersion in Γij.

We set out above how a general increase in capital requirements leads to concentration, as

it affects high and low marginal cost links differentially. Γij is a key determinant of which

links are high and low marginal cost. If, following an increase in capital requirements, bank

i supplies relatively less to bank j, then this concentration indicates that Γij is high.

1.6 Results

We set out our results in Table 1.3. We find that the model fits the data well, with R2 of

0.85 and 0.83 for network data and default risk data, respectively. Parameter estimates are

of the expected sign and mostly significantly different from zero.

We draw the following immediate implications for contagion intensity from our results:

• Contagion is material: on average 9.8% of mean bank default risk is due to interbank

contagion, with the remainder due to bank fundamentals.13 This can be thought of as

an aggregate representation of the network effect. We also re-run our estimation taking

the network as exogenous in our estimation of the default risk process (that is, without

using the instruments for the endogenous network that are implied by our network

formation game). This results in parameter estimates that imply 8.0% of mean bank

default risk is due to interbank contagion. In other words, incorrectly assuming that

the network is exogenous biases our estimation of the network effect downwards.

13We calculate this by calculating mean bank default based solely on fundamentals, pit = Xitβ, and
comparing it to actual bank default risk.

49



Table 1.3: Results

[1]

φ 1.84***

(2.39)

τ 9.26***

(6.03)

β1 -0.02**

(1.70)

ω 0.04***

(8.80)

Min Median Max

Γ̃i 0.15*** 0.24*** 0.51***

(5.59) (3.43) (5.07)

θ̃k 4.71** 5.21* 27.69***

(1.97) (1.70) (8.46)

ai 0.01 0.69 5.53**

(0.06) (1.01) (2.03)

Network

FE ij, it, jt

R2 0.85

No. obs 6,426

Default risk

FE i

Controls Y

R2 0.83

No. obs 378

Notes: SEs clustered at bank level. Figures in parentheses are t-stats. ***, **, * indicate different
from 0 at 1%, 5% and 10% significance, respectively. For the heterogeneous parameters we report
estimates and t-stats for the minimum, median and maximum, and plot the full distribution below.
Notation: φ is the sensitivity of cost of equity to default risk, τ is the extent to which contagion
intensity varies over time, β1 is the effect of bank-specific fundamentals, ω is the effect of hedging,
Γ̃i is contagion intensity, θ̃k governs product differentiation based on characteristics and ai scales
exposures for non-UK banks. Controls in the default risk process are VIX, MSWI and macro data.
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• Contagion is heterogeneous: there is substantial pairwise variation in contagion

intensity Γij: some links are nearly twice as costly as others, in terms of their effect on

default risk. We plot the estimated distribution of Γij in Figure 1.6.

• Contagion is time-varying: there is evidence that contagion intensity has decreased

across our sample, in line with increasing capital requirements. Estimated τ implies

that mean contagion intensity decreased by 36% between 2011 and 2018, as we plot in

Figure 1.6. This is consistent with a significant improvement in bank default risk in

response to the banks becoming better capitalised.

• The effect of the network on default risk is time-varying: in our model in-

terbank exposures can decrease default risk through hedging or increase it through

counterparty risk. When bank fundamentals are bad earlier in our sample, then the

effect of counterparty risk dominates the effect of hedging, as set out in Figure 1.7.

When bank fundamentals are good later in our sample, then the reverse is true.

Our results also have implications for the form of competition between banks. We plot

our estimated θ̂ij in Figure 1.6, and show that there is significant product differentiation

based on product characteristics. Generally, most θ̂ij are small, indicating that only pairs

producing very similar products are substitutes. The most important product characteristics

in determining substitutability are (i) the proportion of total exposures that is denominated

in EUR and (ii) the proportion of exposures with maturity greater than 1 year.

1.6.1 Robustness

We run two alternative specifications as robustness tests, both of which test how sensitive

our results are to how we treat time-variation in risk premium. In the first robustness test,

we use alternative measures of bank default risk and bank-specific fundamentals that exclude

the risk premium, but otherwise estimate our baseline specification. In the second robustness

test, we use the same data as in our baseline results but amend the default risk process so

that common time-variation in the risk premium does not propagate through the interbank

network. We describe these tests in more detail and set out the results in Appendix D. In

both cases, the results are quantitatively and qualitatively similar to our baseline results.
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Figure 1.6: Distributions of parameter estimates

(a) Heterogeneous contagion intensity (b) Time variation in contagion intensity

(c) Product differentiation (d) Product differentiation (in logs)

Note: These figures show the distribution of our estimated parameters. Panel (a) shows
that there is material variation in the intensity of contagion. Panel (b) shows that
contagion intensity has decreased over time. Panels (c) and (d) show that there is variation
in product differentiation, based on exposure characteristics.
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Figure 1.7: Time-varying effect of the network

Note: We define the effect of the network as the difference between actual mean bank default
risk and simulated mean bank default risk in which every interbank exposure is set to 0. A
value of 0.1 means that actual mean bank default risk is 10% higher than if there were no
interbank exposures. In our model interbank exposures can decrease default risk through
hedging or increase it through counterparty risk. When bank fundamentals are bad earlier
in our sample, then the effect of counterparty risk dominates the effect of hedging. When
bank fundamentals are good later in our sample, then the reverse is true.

1.6.2 Cross-checks of our results

We run two cross-checks of our results, to test the extent to which they are reasonable. First,

we show that the heterogeneity in contagion intensity that we estimate is consistent with

risk-sharing. Second, we show that the model fits well out of sample.
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1.6.2.1 Cross-check 1: Contagion is related to risk sharing

The first cross-check is a test of internal consistency: we set out above various motivations

for why contagion intensity Γij could be heterogeneous. One of these motivations is hetero-

geneity in the extent to which bank fundamentals are correlated; risk sharing, in other words.

This implies a relationship between fundamentals, which we estimate as Xβ, and contagion

intensity Γij. We do not impose this relationship in estimation, but estimate general Γij

and test the existence of such a relationship post-estimation. These post-estimation tests,

which we describe in Appendix E, support risk-sharing: where banks i and j are in the same

jurisdiction, Γij is higher when the fundamentals of banks i and j are more closely positive

correlated. We view this as an important test of the consistency of our model and empirical

approach.

1.6.2.2 Cross-check 2: The model fits well out of sample

The second cross-check we run relates to external consistency, in that we test the fit of our

model out of sample. We do this in two ways: (1) using publicly available historical data on

default risk data and (2) using stylised facts about what happens to interbank exposures in

times of financial stress.

We do not have access to historical data on interbank exposures. We do, however, have

access to historical CDS premia (bank default risk p) and macro-economic variables (bank

fundamentals X), meaning that we can simulate interbank exposures and model-implied

default risk backwards. We do this for 2009 to 2011, and compare the predicted default risk

values with actual observed default risk. As set out in Figure 1.8, we find that the model

fits out of sample variation in the mean and dispersion in bank default risk reasonably well.

Some of this fit is driven by our choice of fundamentals, rather than our network formation

model per se. We test the extent of this by also showing the out of sample fit of a linear

model solely on bank fundamentals (that is, pt = XtB). We find that (1) the out of sample

fit of the linear model is materially worse than the full model (the mean square error out

of sample of the linear model is 18% greater than that of the full model and (2) the linear

model is biased upwards relative to the full model, particularly when bank fundamentals are

relatively good (as in 2010 in Figure 1.8).

We cannot compare simulated interbank exposures to actual historical interbank expo-

sures, because we do not have the data. We do, however, have certain stylised facts about
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how interbank exposures behaved during the financial crisis, as we describe in Section 1.2

above: we know that during the financial crisis some parts of the interbank network froze, in

that no transactions occured. We forward simulate a generic recession by arbitrarily varying

bank fundamentals and show the implications for bank default risk and network exposures

in Figure 1.9 below. We find that the simulated interbank network dries up at a level of bank

fundamentals that is broadly consistent with what we know about what happened during

the financial crisis. This is in this sense a pseudo out of sample test in which we match a

stylised fact rather than data.

1.6.3 Implications of our results

Having described our results and the cross-checks we run, we now discuss two important

implications of our results regarding (1) forward simulation of recessions using our model

and (2) the identification of systemically important banks.

1.6.3.1 Forward simulation

In Figure 1.9 below we simulate the effect of a recession on the interbank network and default

risk. We do this by simulating an arbitrary increase (deterioration) in bank fundamentals.

As the shock increases in severity the network shrinks and, when the recession is sufficiently

severe, dries up. This is an important cross-check of our work, as we describe above. One

implication of this is that bank default risk is convex with respect to bank fundamentals:

as fundamentals deteriorate, the endogenously declining network dampens the effect of the

change on fundamentals on default risk. There is, however, a zero lower bound, such that

once the network has dried up then it cannot dampen the response to fundamentals. In

other words, bank default risk is more sensitive to fundamentals in severe recessions.

This fact also has implications for predicting the impact of recessions. Suppose, for ex-

ample, that when modelling the response of default risk p to fundamentals X the endogenous

network was ignored, and instead p was simply regressed on X. Because severe recessions

are very infrequently observed, a regression of p on X in normal times would understate the

extent to which p would respond to X in a severe recession. We show true simulated default

risk (the black solid line) and such a naively estimated default risk (the red dashed line) in

Figure 1.9, and show that this bias can be material.

In Figure 1.8 above we show out of sample fit, and show that during periods in which

55



Figure 1.8: Out of sample fit: Bank default risk

(a) Actual variation in default risk (b) Default risk (mean)

(c) Default risk (90th percentile) (d) Default risk (10th percentile)

Note: These figures show the out of sample fit of our model. The black lines show the 10th
percentile, mean and 90th percentile of actual historical default risk. The dashed blue line
shows the out of sample fit of our estimated network formation and contagion model. The
blue dotted line shows the out of sample fit of a linear model that ignores the interbank
network and simply regresses default risk on fundamentals. This test shows that our model
is robust in three ways: (1) our model fits well out of sample, (2) our model outperforms
the simple linear model and (3) the performance of the simple linear model (and notably
the fact that the linear model performs badly in the middle of the out-of-sample period
when fundamentals were relatively good) is consistent with the predictions of our model, as
we show below in Figure 1.9.
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bank fundamentals were moderate (as in 2010), the bias goes the other way: estimated

bank default risk using this linear model overstates true bank default risk. We explain this

feature using the simulated recession set out in Figure 1.9, in which estimated default risk

also overstates simulated true default risk in moderate fundamentals (such as in period 5):

the bias arises from the difficulties a linear model has fitting an inherently non-linear process.

In other words, our model predicts the shape of how a linear model should perform out of

sample, and this indeed the shape we observe in the data. This is, therefore, an additional

element to our robustness test.

1.6.3.2 Systemic importance

The second implication of our results relates to systemic importance. A recurring issue in the

network literature is the identification of “important” nodes. We have an equilibrium process

that relates an outcome (bank default risk, in our case) to a network, and it is reasonable to

ask which node in the network contributes most to the outcome in which we are interested.

Understanding this communicates important information about this equilibrium process, but

may also have implications for regulation (as we describe above, large parts of the banking

regulatory framework are stricter for banks that are judged to be “systemically important”

(Basel Committee, 2014b)). Various measures of systemic importance, or centrality, exist,

where the most appropriate measure depends on the context and on the way in which nodes

interact with each other (Bloch et al., 2017). Our contribution to this literature is not

about the most appropriate measure, but instead about how any such measure should be

calculated: it must account for the heterogeneity in contagion intensity Γij.

We illustrate this by reference to one of the simplest measures of centrality: Eigenvector

Centrality. Broadly speaking, node n’s centrality score is the n’th entry in the eigenvector

associated with the maximal eigenvalue of the adjacency matrix Ct. A central node using

this measure is close to other nodes that are central: this measure of centrality is in this

sense self-referential. Nodes that have many large links to other nodes that have many large

links are more central.

Applying this centrality measure to the network Ct therefore gives a ranking of which

banks are most systemically important in driving bank default risk. If contagion intensity is

homogenous, Γij = Γ, then the level of Γ has no impact on this relative ranking. If, however,

contagion intensity is heterogeneous, then accounting for this heterogeneity is important

when assessing centrality: a more reasonable measure of centrality would be based on the
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Figure 1.9: Simulated recession

Note: We simulate a recession by arbitrarily inflating (where an increase is a deterioration)
bank fundamentals by an increasing factor (the dotted black line). As fundamentals deterio-
rate, the interbank network (the black dashed line) contracts and eventually dries up. Mean
bank default risk (the solid black line) increases, but is convex because the network contrac-
tion dampens the effect of fundamentals. The red dashed line shows the results of observing
a limited set of data (the red shared area) and fitting a linear regression of default risk on
bank fundamentals: ignoring endogenous network formation understates how bank default
risk changes with fundamentals in (infrequently observed) recessions. This is consistent with
the findings of our out of sample test, as set out in Figure 1.8.

weighted adjacency matrix Γ◦Ct. Importantly, the effect of this weighting on the ranking of

systemic importance is not random noise, because the equilibrium network depends on this

weighting. More specifically, links Cij where Γij is low (high) are inherently safe (uinherently

risky) and so are more likely to be large (small), all other things being equal. In other words,
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assessing centrality based on the raw, unweighted exposures matrix is biased and likely to

overstate the centrality of more central nodes and understate the centrality of less central

nodes. This holds only when holding other things equal: in our model of network formation,

links can be large even if they are not safe (if they are technologically important through

ζij, for example).

In Figure 1.10, we show that calculating Eigenvector Centrality based on unweighted

Ct and weighted Γ ◦ Ct lead to quite different rankings of systemic importance. Bank

18, for example, would be identified as the most systemically important node based on the

unweighted network. Based on the weighted network, however, 4 other banks are most

systemically important than Bank 18: in other words, Bank 18’s links are large because its

links are relatively safe. Bank 5’s centrality, on the other hand, is significantly understated

when looking solely at the unweighted network: in other words, Bank 5’s links are small

because its links are relatively unsafe. We do this for Eigenvector Centrality, but the same

point applies to other measures (including, for example, Katz-Bonacich centrality).

1.7 Counterfactual Analysis

In our counterfactual analyses, we first consider the social planner’s solution, and show what

that implies for efficiency. We then consider two broad forms of regulation: caps on exposures

and capital ratios.

Before we describe the counterfactual analyses in detail, we describe two uses of our model

that play an important role in each of these counterfactual analyses. Our model, together

with the parameters we have estimated, allow us to do two things. First, the estimated

model provides a mapping from any arbitrary network of exposures Ct to (i) bank default

risk and (ii) interbank surplus. Second, the estimated model provides a mapping from the

exogenous parts of the model (fundamentals, regulation, etc) to decentralised equilibrium

exposures Ct. Together, these two uses of our model and results allow us to quantify surplus

and default risk in counterfactual equilibria.

1.7.1 Efficiency

We describe above how our model implies a trade-off between mean bank default risk and

interbank surplus, and how there is an efficient frontier on which this trade-off is optimised.
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Figure 1.10: Identifying systemic nodes

Note: This figure plots the relative centrality of each of the 18 banks in our sample using
Eigenvector Centrality. The black diamonds show relative centrality based on the unweighted
network of observed exposures: banks with large exposures are more central. The white cir-
cles show relative centrality based on observed exposures weighted by their relative contagion
intensities: relatively risky links are given a higher weighting. The blue lines show a 95% con-
fidence interval around this weighted measure. Taking into account heterogeneous contagion
intensity materially changes the relative systemic importance of banks: bank 18 is the most
central bank based on the unweighted network, but only the 5th most central bank based on
the weighted network. This is because in our network formation model banks endogenously
choose large (small) exposures where those links inherently safe (inherently risky).

We use our estimated model to derive this frontier, by choosing Ct to maximise interbank

surplus, subject to mean bank default risk being less than some critical value. We then vary
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this critical value to trace out the efficient frontier. As described above, we do not know

what allocations a social planner that was maximising aggregate surplus would choose, as

we do not directly model the relationship between bank default risk and real surplus. We

do know that this optimal allocation would be somewhere along the efficient frontier. The

distance to the frontier in either direction is in this sense an estimate of inefficiency, as we

describe above when we define p inefficiency and TS inefficiency.

We find that the decentralised interbank network is not on the efficient frontier: a social

planner would be able to increase interbank surplus by 13.2% without increasing mean

bank default risk or decrease mean bank default risk by 4.3% without decreasing interbank

surplus, as set out in Figure 1.11. This result comes primarily from the fact that contagion

(and thus network externalities) is significant. Exposure allocations on the frontier are more

concentrated in favour of inherently safe links than actual observed exposures.

1.7.1.1 Comparative statics for efficiency

We emphasise that our conclusions on efficiency are driven by the data, rather than our

modelling choices. We demonstrate this by undertaking comparative statics and showing

how the extent of inefficiency varies according to the parameters chosen. We set out the

results of these simulations in Table 1.4.

Table 1.4: Comparative statics

[A] [B] [C] [D]

Baseline ↓ mean(θij) ↑ var(Γij) ↑ mean(Γij)

p inefficiency 4.3% 5.4% 6.0% 8.7%

TS inefficiency 13.2% 15.6% 14.6% 14.2%

Note: [A] is our baseline results set out above; [B] is the baseline, with every θij multiplied
by a factor of 0.8; [C] is the baseline, with a mean-preserving spread of Γij such that its
variance increases by a factor of 1.5; [D] is the baseline, with every Γij multiplied by a factor
of 1.5.

First, market power is determined by θij, which governs the extent of product differenti-

ation. If θij is large (small), then products i and j are close substitutes and market power is

low (high). We illustrate the impact of increased market power by multiplying every θij by

a factor of 0.5 (Column B in Table 1.4). As set out in Table 1.4, this increases the distance
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Figure 1.11: Decentralised inefficiency

Note: This figure shows that the decentralised outcome in the interbank network is inefficient.
The + sign shows the mean bank default risk and interbank surplus that our model implies
for actual exposures, both normalised to 1. The white circles show what a social planner
who chooses the entire interbank network could achieve by (1) minimising mean default risk
without decreasing interbank surplus and (2) maximising interbank surplus without increas-
ing mean default risk. The dotted line shows the efficient possibility frontier of combinations
of surplus and risk.

between the decentralised outcome and the efficient frontier.

Second, the efficiency of decentralised cost allocations is driven by the extent of variation

in marginal cost across banks. If marginal cost is the same for all banks, then decentralised

cost allocations are not inefficient. If marginal cost is highly variable, then the decentralised

equilibrium will inefficiently involve some high cost links being positive. The extent of
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variation in marginal cost across banks is driven primarily by the extent of variation in

contagion intensity Γij. We illustrate this by applying a mean-preserving spread to Γij such

that its variance increases by a factor of 2 (Column C in Table 1.4). This increases the

distance between the decentralised outcome and the efficient frontier.

Third, the extent of externalities depends on the scale of network effects, which in our

model is the size of Γij. If these are large, then there are significant externalities and the

decentralised equilibrium is more likely to be inefficient. We illustrate this by increasing every

Γij by a factor of 2. This also increases the distance between the decentralised outcome and

the efficient frontier.

1.7.2 Caps on exposures

As discussed in Section 1.2, in 2019 a cap on individual exposures came into force: a bank

can have no single bilateral exposure greater than 25% of its capital.14 For exposures held

between two “globally systemic institutions”15 this cap is 15%.

We evaluate the effects of a cap on individual exposures by simulating new equilibrium

exposures CC
ij under a generic cap, using our estimated parameters and assuming that fun-

damentals are unchanged. We consider a generic, binding cap at the i-bank level:

CC
ij ≤ 0.9 ·maxj{Cij}

In other words, we assume that any exposure held by bank i has to be less than or equal

to 90% of its largest exposure. This cap is stylised, in that it is defined relative to observed

exposures, rather than relative to its capital. This avoids issues about measuring capital

appropriately and measuring total exposures (our exposures do not include every possible

financial instrument), while still showing the economic effect of a cap in general. We simulate

the effect of this cap in Figure 1.12 below, and find that such a cap has a very small impact on

default risk, for two reasons. First, a cap on individual exposures binds on the bank’s largest

exposures, which are more likely to be relatively safe (that is, they have low Γij). Second, a

cap on individual links creates excess supply and unmet demand that causes other uncapped

links in the network to increase. That is, the network topology changes endogenously.

We propose an alternative form of regulation in which total exposures held by bank i are

14Where the precise definition of capital, “Tier 1 capital”, is set out in the regulation.
15As defined in the regulation.
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capped, rather than individual exposures:∑
j

CC
ijt ≤ 0.9

∑
j

Cijt

A cap on total exposures held by bank i prevents other parts of the network from increas-

ing in response to a capped link. A cap on total exposures also causes bank i to inherently

risky (high Γij) exposures by relatively more than inherently safe (low Γij) exposures. In

other words, a cap on individual exposures targets inherently safe exposures, whereas a cap

on total exposures targets inherently risky exposures. We simulate the effect of this cap in

Figure 1.12, and find that it reduces mean default risk by significantly more than an indi-

vidual cap and actually increases interbank surplus. Our results suggest a social planner

therefore would strictly prefer a cap on total exposures to a cap on individual exposures.

1.7.3 Capital ratios

The second form of regulation we consider is a minimum capital requirement, as applied by

regulators since the crisis. As described in Section 1.2, there is very little variation in risk-

weights for exposures to banks under the standardised approach to risk-weighting. To assess

the effect of a stylised risk-insensitive capital requirements, we simulate a further increase in

λit by up to 2% holding bank fundamentals constant, as set out in Figure 1.13.

We propose a pairwise adjustment (that is, we allow λijt to vary at the pair level) to

capital ratios that is more closely targeted at network externalities. The key parameter in

our model is Γij, contagion intensity: links where this is high are particularly costly in terms

of their effect on default risk. We propose increasing the capital requirements for any link

with Γij > median(Γ) (“high risk links”) by some value b (where we increase the value b

from 0% to 10% in Figure 1.13). For any link where Γij is less than the 20th percentile of the

distribution (“low risk links”), we propose decreasing the associated capital requirements by

b+ 1.5%.16 Our results suggest a social planner would strictly prefer this targeted change in

capital ratios to a risk-insensitive increase in capital ratios.

16Any spread like this is an improvement over homogeneous capital requirements, this particular spread
is one we have chosen arbitrarily as one that produces good results.
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Figure 1.12: Counterfactual analysis of caps

Note: The + sign indicates actual normalised default risk and interbank surplus. The black
diamond simulates a cap on individual exposures, Cij. The white diamond simulates a cap
on each bank’s aggregate exposures,

∑
j Cij. The social planner would strictly prefer a cap

on aggregate exposures to a cap on individual exposures.
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Figure 1.13: Counterfactual analysis of capital requirements

Note: This figure starts with actual normalised default risk and interbank surplus (the black

diamond). We then plot the effect of (i) homogenous increases in capital requirements for all

banks up to an additional 2% (the dashed line) and (ii) heterogeneous adjustments to capital

requirements, as we describe in the text (the solid line). Heterogeneous capital requirements

can reduce bank default risk by the same amount as homogeneous capital requirements,

whilst materially increasing interbank surplus.

1.8 Conclusion

In this paper we structurally estimate a model of network formation and contagion. In

contrast to much of the literature on financial networks, our model of network formation
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is in the spirit of the wider industrial organisation literature in two ways. First, we model

network formation as the interaction of demand for financial products and their supply,

with a focus on identifying the relevant underlying cost function. Second, in specifying our

model and taking it to data we pay particular attention to the role of unobserved firm- and

pair-level heterogeneity. In particular, the core of this paper is heterogeneity in contagion

intensity, including (i) why one might reasonably expect contagion intensity to be heteroge-

neous, (ii) how this heterogeneity can be identified empirically and (iii) what implications

this heterogeneity has for strategic interactions between firms and their regulation. The

primary message of this paper is that this heterogeneity in contagion intensity has material

implications for systemic importance, efficiency and optimal regulation.
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Blasques, F., Bräuning, F., and Van Lelyveld, I. (2018). A dynamic network model of

the unsecured interbank lending market. Journal of Economic Dynamics and Control,

90:310–342.

Bloch, F., Jackson, M. O., and Tebaldi, P. (2017). Centrality measures in networks.

Chang, B. and Zhang, S. (2018). Endogenous market making and network formation.

Cohen-Cole, E., Patacchini, E., and Zenou, Y. (2010). Systemic risk and network formation

in the interbank market.

Craig, B. and Ma, Y. (2019). Intermediation in the interbank lending market. Manuscript,

Stanford Graduate School of Business.

De Paula, A. (2017). Econometrics of network models. In Advances in Economics and Econo-

metrics: Theory and Applications, Eleventh World Congress, pages 268–323. Cambridge

University Press Cambridge.

Denbee, E., Julliard, C., Li, Y., and Yuan, K. (2017). Network risk and key players: A

structural analysis of interbank liquidity.

Duffie, D. (2017). Financial regulatory reform after the crisis: An assessment. Management

Science, 64(10):4835–4857.

Eisenberg, L. and Noe, T. H. (2001). Systemic risk in financial systems. Management

68



Science, 47(2):236–249.

Eisfeldt, A. L., Herskovic, B., Rajan, S., and Siriwardane, E. (2018). OTC intermediaries.

Elliott, M., Golub, B., and Jackson, M. O. (2014). Financial networks and contagion.

American Economic Review, 104(10):3115–53.

Elliott, M., Hazell, J., and Georg, C.-P. (2018). Systemic risk-shifting in financial networks.

European Council (2018). Banking: Council agreement on measures to reduce risk. Technical

report, European Council.

Farboodi, M. (2017). Intermediation and voluntary exposure to counterparty risk.

Gale, D. and Yorulmazer, T. (2013). Liquidity hoarding. Theoretical Economics, 8(2):291–

324.

Glasserman, P. and Young, H. P. (2015). How likely is contagion in financial networks?

Journal of Banking & Finance, 50:383–399.

Gofman, M. (2017). Efficiency and stability of a financial architecture with too-

interconnected-to-fail institutions. Journal of Financial Economics, 124(1):113–146.

Greenwood, R., Stein, J. C., Hanson, S. G., and Sunderam, A. (2017). Strengthen-

ing and streamlining bank capital regulation. Brookings Papers on Economic Activity,

2017(2):479–565.

Hull, J. et al. (2009). Options, futures and other derivatives/John C. Hull. Upper Saddle

River, NJ: Prentice Hall,.

Iyer, R. and Peydro, J.-L. (2011). Interbank contagion at work: Evidence from a natural

experiment. The Review of Financial Studies, 24(4):1337–1377.

Kashyap, A. K., Stein, J. C., and Hanson, S. (2010). An analysis of the impact of ‘sub-

stantially heightened’ capital requirements on large financial institutions. Booth School of

Business, University of Chicago, mimeo, 2.

Kelejian, H. H. and Prucha, I. R. (1998). A generalized spatial two-stage least squares

procedure for estimating a spatial autoregressive model with autoregressive disturbances.

The Journal of Real Estate Finance and Economics, 17(1):99–121.

Kelejian, H. H. and Prucha, I. R. (1999). A generalized moments estimator for the autore-

gressive parameter in a spatial model. International economic review, 40(2):509–533.

Kotidis, A. and Van Horen, N. (2018). Repo market functioning: The role of capital regu-

lation.

Modigliani, F. and Miller, M. H. (1958). The cost of capital, corporation finance and the

theory of investment. The American, 1:3.

Rahi, R. and Zigrand, J.-P. (2013). Arbitrage networks. Available at SSRN 1430560.

Robles-Garcia, C. (2018). Competition and incentives in mortgage markets: The role of

69



brokers.

Welfens, P. J. (2011). The transatlantic banking crisis: lessons, EU reforms and G20 issues.

In Financial Market Integration and Growth, pages 49–126. Springer.

Yellen, J. (2013). Interconnectedness and systemic risk: Lessons from the financial crisis and

policy implications. Board of Governors of the Federal Reserve System, Washington, DC.

70



A An underlying model of default risk

We set out above a default risk process, which we repeat here for convenience:

pt︸︷︷︸
Default

risk

= Xtβ︸︷︷︸
Funda-
mentals

−ωCt ι︸ ︷︷ ︸
Hedging

+ τt(Γ ◦Ct)pt︸ ︷︷ ︸
Counterparty

risk

+ ep
t

Our proposed default risk process is a reduced form for an underlying, more fundamental,

default risk process. This underlying model is more fundamental in that the relationship

between default risk and fundamentals is structurally grounded in a balance-sheet based

model of contagion. It is not, however, feasible to take this underlying model to data.

In this appendix, we first describe this underlying model. We then use this underlying

model to simulate data, and estimate our default risk process using this simulated data. We

show that (i) our proposed default risk process fits the simulated data well and (ii) contagion

intensity Γij is heterogeneous.

A.1 Underlying model

This model builds on Eisenberg and Noe (2001), where the variation is to allow for some het-

erogeneity at the bank- and pair-level. There are N banks. These banks have fundamentals

F, an N × 1 vector whose i’th element denotes the fundamentals of bank i. Banks trade P

products, resulting in N by N directed adjacency matrices Cp for p ∈ {1, ..., P}, where Cp
ij is

the exposure of i to j relating to product p. For the purposes of this example, these matrices

are exogenous; we are interested in their effect on bank default risk, not their formation.

Fundamentals update according to a random walk, F
′
= F + e, where e ∼ N(0,Σ). Each

bank has value Vi, which is the sum of its fundamentals and its interbank holdings:

Vi = F
′

i +
∑
p

∑
j

Cp
ij[δj + (1− δj)rrpij]

where δi = 1 if bank i is solvent, and δi = 0 otherwise, and rrpij is the recovery rate of Cp
ij

in the event of default. In other words, bank i’s value is the sum of its fundamentals and

its impaired interbank holdings, where the impairment relates to losses on any interbank

exposures to insolvent banks.
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The recovery rate is exogenous, and varies according to the product and the banks in-

volved. There are G groups, and each bank is a member of a single group. Recovery rate

varies as follows:

rrpij = 1− rg̃ijrp

where rp ∈ [0, 1] for ∀ p and r1 < r2 < ... < rp. In other words, recovery rate varies by

product: this is a simple representation of some products being riskier than others. rg̃ ∈ [0, 1]

for ∀ g̃, where g̃ = 1 if i and j are in the same group and 0 otherwise, and rg̃=1 < rg̃=0.

This is a simple representation of pairwise variation in riskiness; for example, banks with

headquarters/histories in different countries may involve a lower recovery rate. G generally

covers any relevant pairwise variation that is not directly related to the banks’ risk profile

or exposures matrix.

A bank defaults if its value Vi falls below some critical value V̄i. In that sense, δ is a

function of V), such that the problem is simply finding a fixed point in V. Eisenberg and

Noe (2001) propose the following iterative algorithm, for a given draw of e:

1. Set initial δm=0
j = 1 for ∀j.

2. Calculate Vm=0 = f(δm=0,F
′
).

3. For any bank where V m=0
j < V̄j, set δm=1

j = 0.

4. Calculate Vm=1 = f(δm=1,F
′
).

5. Iterate until δm converges.

In other words, we propose embedding three sources of pair-wise heterogeneity (apart

from obvious heterogeneity in aggregate exposures) in a simple model of bank default risk.

The first source of heterogeneity is in Σ: the fundamentals of some banks may be positively

correlated, some may be negatively correlated. The second source of heterogeneity is in the

product-type of the exposures matrix: some pairs may have larger exposures in riskier types.

The third source of heterogeneity is in groups: some banks belong to the same group, and

so are less risky.
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A.2 Simulated fit

We use this underlying model to simulate data. We specify distributions for each of the

primitives, including an exogenous network, and randomly draw realisations. We then sample

repeatedly from the distribution of e, and calculate default risk of bank i as simply the

proportion of the draws in which each bank fails. This gives us a panel of exogenous bank

fundamentals and network exposures and endogenous bank default risk.

We then fit our proposed default risk model, as described above, to this simulated data.

We set out the results in Table 1.5.

Table 1.5: Results

[1] [2] [3]

Min 0.149

(-)

Γi Median 0.144*** 0.178

(12.96) (-)

Max 0.205

(-)

β -0.0261*** 0.0395*** 0.0468

(-45.73) (7.76) (93.96)

FE t t t

R2 0.77 0.79 0.83

No. obs 2,000 2,000 2,000

Note: Figures in parentheses are t-statistics. ***, **, * indicate different from 0 at 1%, 5%
and 10% significance, respectively.

We find that (1) a spatial autoregression fits the simulated data well, (2) heterogeneity

in contagion intensity is important (the fit is materially better in column [3] than in column

[2]) and (3) contagion intensity is related to pairwise covariance in fundamentals, as set

out in Figure 1.14. In this sense, our proposed default risk process can be thought of as a

reduced form representation of this underlying more fundamental model, and heterogeneous

contagion intensity can be thought of as a reduced form representation of underlying sources

of pairwise heterogeneity related to risk sharing, jurisdiction effects and exposure type.
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Figure 1.14: Estimation results

(a) Fit (b) Risk sharing

Note: Panel (a) shows simulated true default risk and fitted default risk. Panel (b) shows a
positive relationshiop between contagion intensity Γij and the covariance in the fundamentals
of i and j.
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B First stage regression results

Table 1.6: First stage: Default risk

pit

X1
it -0.82***

(-2.61)

FE i

Other X Y

R2 0.82

No. obs 378

Note: Figures in parentheses are t-statistics. ***, **, * indicate different from 0 at 1%, 5%

and 10% significance, respectively. X1
it is a revenue-weighted average of stock market indices

and the other fundamentals include the Morgan Stanley World Index, VIX and the first two

principal components of World Bank macroeconomic data, as we describe in the text.
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Table 1.7: First-stage: Network formation results

Estimate t statistic

Xit -0.57*** -3.73

Xjt -0.22 -1.51

Xkt -0.35*** -11.90

X2
it -0.01 -0.18

X2
jt -0.28* -1.88

X2
kt -0.39*** -10.05

Xjt/Xit -0.01 -1.42

Xjt/Xkt -0.46 -0.55

Xit/Xkt -1.44* -1.69

λitXit -13.86*** -7.31

λitXjt -2.94 -1.57

λitXkt -10.69*** -13.64

λitX
2
it -0.27 -0.35

λitX
2
jt -9.24*** -5.38

λitX
2
kt -11.70*** -8.84

λitXjt/Xit -0.192** -2.05

λitXjt/Xkt -10.32 -0.93

λitXit/Xkt -21.27* -1.89

FE ij

R2 0.70

No. obs 6,426
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C Mathematical appendix

C.1 EQC

In this appendix, we derive the equilibrium quantity condition, EQC. The first order supply

condition is:

rijt = − ∂rijt
∂Cijt

Cijt + pucijt +
∂pit
∂Cijt

∑
k

∂pucikt
∂pit

Cikt −
∂ΠD

it

∂pit

∂pit
∂Cijt

+ ri0t + eSijt

It follows immediately from DRP that ∂pit
∂Cijt

= τtΓijpjt, from our assumed cost function that
∂puckjt
∂pit

= φ1λkjt and from our demand model that
∂rijt
∂Cijt

= −B and
∂ΠD

it

∂pit
= −

∑
k
∂rkit
∂pit

Ckit:

rijt = BCijt + φ1λijtpit + φ1

[
− ω + τtΓijpjt

]∑
m

λimtCimt +
∂pit
∂Cijt

∑
m

∂rmit
∂pit

Cmit + ri0t + eSijt

For ease of exposition we then repeat the same equation for supply from bank k to bank i:

rkit = BCkit +φ1λkitpkt +φ1

[
−ω+ τtΓkipit

]∑
m

λkmtCkmt +
∂pkt
∂Ckit

∑
m

∂rmkt
∂pkt

Cmkt + rk0t + eSkit

When bank i considers how much to supply to bank j, it takes into account the impact of

the resulting increase in pit on its profits from being supplied exposures. That is, it takes

into account the effect of its supply on rkit. We assume that bank i takes the interest rates

of transactions involving other parties as given, such that:

∂rkit
∂pit

= φ1τtΓki
∑
m

λkmtCkmt

Substitute this and the equation for demand into supply, and we obtain the EQC:

0 = δjt + ζij + eDijt − 2BCijt −
N∑
k 6=i

θikCkjt + eSijt

−λijtφ1pit − φ1

[
− ω + τtΓijpjt

] N∑
k 6=i

Ciktλikt − ri0t

−φ1τt
[
− ω + τtΓijpjt

]∑
k

CkitΓki
∑
m

Ckmtλkmt
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C.2 Equilibrium links are non-linear in fundamentals

Consider a simplified version of the model in which banks do not consider the impact of

their supply decisions on ΠD; that is, they consider the impact on their funding costs when

supplying on the interbank network, but not on their funding costs when demanding from

the interbank network. This means that the EQC is linear in C. Furthermore, for simplicity

of exposition (and without loss of generality regarding the form of equilibrium C) suppose

ζ = ω = eD = eS = r0 = 0, 2B = φ1 = λ = 1, θij = θ, Γij = Γ for all banks and parameters

are such that all equilibrium exposures are strictly positive. The EQC is then as follows:

0 = δjt − Cijt − θ
N∑
k 6=i

Ckjt − pit − Γpjt

N∑
k 6=i

Cikt

In this case an analytical expression for equilibrium exposures exists, where C is a N(N −
1) × 1 vector of endogenous exposures, p is a N × 1 vector of default probabilities, X is

a N × 1 vector of fundamentals, Mi, Mj , M∑
i and M∑

j are matrices that select and

sum the appropriate elements in C and p and . and ◦ signify matrix multiplication and the

Hadamard product, respectively:

C =

[
I + θM∑

j + (Mj .p) ◦M∑
i

]−1[
Mj .δ −Mi.p

]
Given that p is a linear function of X, as set out in the DRP, it follows that equilibrium C

is a non-linear function of X.

78



D Robustness tests

We run two alternative specifications as robustness tests, both of which test how sensitive

our results are to how we treat time-variation in the risk premium. In the first robustness

test, we use alternative measures of bank default risk and bank-specific fundamentals that

exclude the risk premium, but otherwise estimate our baseline specification. In the second

robustness test, we use the same data as in our baseline results but amend the default risk

process so that common time-variation in the risk premium does not propagate through the

interbank network. In both cases, the results are quantitatively and qualitatively similar to

our baseline results.

D.1 Robustness: Removing the effect of the risk premium

We attempt to remove the effect of the risk premium by using different data. For bank default

risk, we use a proprietary Bloomberg estimate of bank default risk (DRISK), excluding the

risk premium, based on market data about the bank. For bank-specific fundamentals, we

calculate the weighted average consumption growth in various geographic regions, where

the weighting is the proportion of a bank’s revenues that came from that region. We plot

some summary statistics in Figure 1.15. Our estimation procedure is otherwise the same as

our baseline specification. In Table 1.8 we set out our results, which are quantitatively and

qualitatively similar to our baseline results.

D.2 Robustness: Preventing the risk premium from propagating

through the network

In this robustness test, we amend the default risk process. As in our baseline specification,

let pt signify the default risk implied by Credit Default swap premia, X1,t signify the matrix

of bank-specific equity indices and X2,t signify the Morgan Stanley World Index, which we

use to control for common variation in the risk premium. In the following specification, we

amend the default risk process so that the risk premium does not propagate through the

interbank network.
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Table 1.8: Results: Robustness check 1

[1]

φ 2.16

(1.04)

τ 7.64***

(4.32)

β1 -0.04***

(-3.07)

ω 0.03***

(7.91)

Min Median Max

Γ̃i 0.15*** 0.19*** 0.74***

(12.23) (8.10) (18.65)

θ̃k 5.24 7.07* 31.22***

(0.37) (1.80) (11.96)

ai 0.04 0.71 5.53***

(0.21) (1.47) (2.55)

Network

FE ij, it, jt

R2 0.85

No. obs 6,426

Default risk

FE i

Controls Y

R2 0.85

No. obs 378

Notes: SEs clustered at bank level. Figures in parentheses are t-stats. ***, **, * indicate different
from 0 at 1%, 5% and 10% significance, respectively. For the heterogeneous parameters we report
estimates and t-stats for the minimum, median and maximum, and plot the full distribution below.
Notation: φ is the sensitivity of cost of equity to default risk, τ is the extent to which contagion
intensity varies over time, β1 is the effect of bank-specific fundamentals, ω is the effect of hedging,
Γ̃i is contagion intensity, θ̃k governs product differentiation based on characteristics and ai scales
exposures for non-UK banks. Controls in the default risk process are VIX, MSWI and macro data.
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Figure 1.15: Removing the effect of the risk premium

(a) Default risk excluding risk premium (b) Revenue-weighted consumption growth

Note: Panel (a) shows a Bloomberg measure of default risk that excludes the risk premium.
Panel (b) shows a bank-specific fundamental measure that is the weighted average consump-
tion growth in various geographic regions, where the weighting is the proportion of a bank’s
revenues that came from that region (normalized by a negative number for ease of comparison
with panel (a)).

pt︸︷︷︸
Default

risk

= Xtβ︸︷︷︸
Funda-
mentals

+ (I− τtΓ ◦Ct)X2,tβ2︸ ︷︷ ︸
Risk

premium

−ωCt ι︸ ︷︷ ︸
Hedging

+ τt(Γ ◦Ct)pt︸ ︷︷ ︸
Counterparty

risk

+ ep
t

Re-arranging for equilibrium pt:

pt = X2,tβ2 +
∞∑
s=0

(τtΓ ◦Ct)
s(Xtβ − ωCtι+ ep

t )

This allows bank default risk and therefore their cost of equity to vary with the risk

premium, but the effect of the risk premium on bank default risk does not depend on the

interbank network. We set out our results below in Table 1.8, and find that our results are

quantitatively and qualitatively similar to our baseline results.
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Table 1.9: Results: Robustness check 2

[1]

φ 1.89***

(4.43)

τ 7.60***

(4.15)

β1 -0.98***

(-3.28)

ω 0.04***

(7.51)

Min Median Max

Γ̃i 0.15*** 0.21*** 0.52***

(9.86) (10.16) (3.86)

θ̃k 5.20 6.98*** 31.06***

(0.57) (5.43) (8.70)

ai 0.04 1.28** 5.53***

(0.21) (1.93) (2.54)

Network

FE ij, it, jt

R2 0.85

No. obs 6,426

Default risk

FE i

Controls Y

R2 0.82

No. obs 378

Notes: SEs clustered at bank level. Figures in parentheses are t-stats. ***, **, * indicate different
from 0 at 1%, 5% and 10% significance, respectively. For the heterogeneous parameters we report
estimates and t-stats for the minimum, median and maximum, and plot the full distribution below.
Notation: φ is the sensitivity of cost of equity to default risk, τ is the extent to which contagion
intensity varies over time, β1 is the effect of bank-specific fundamentals, ω is the effect of hedging,
Γ̃i is contagion intensity, θ̃k governs product differentiation based on characteristics and ai scales
exposures for non-UK banks. Controls in the default risk process are VIX, MSWI and macro data.
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E Additional post-estimation tests

E.1 Default risk and cost of equity

In this sub-section, we show test our parameterisation of a bank’s cost of equity as a function

of its default risk is reasonable. We run a linear regression of a bank’s cost of equity, taken

from Bloomberg and based on a simple CAPM model, on its default risk.

ceit = φpit + FEi + FEt + eeit

As we set out below, we find that the relationship between the two is positive and

significant, as expected. Riskier banks face a higher cost of capital, even when controlling

for time fixed effects.

Table 1.10: Cost of equity and default risk

ceit

pit 1.31***

(2.94)

FE i,t

R2 0.69

No. obs 346

Note: Figures in parentheses are t-statistics. ***, **, * indicate different from 0 at 1%, 5%
and 10% significance, respectively.

E.2 Testing heterogeneous contagion intensity

We set out above three motivations for heterogeneous contagion intensity Γij: (1) correla-

tions in fundamentals (risk sharing, in other words), (2) variations in product and (3) other

pairwise variations, including common jurisdiction. We estimate general Γij without im-

posing any of these motivations in estimation, meaning we can test them post-estimation.

In particular, risk sharing implies a relationship between Xβ and Γij, which we test in the

following way.
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As bank-specific fundamentals we use equity indices weighted by the geographic revenues

of each bank, as we describe above. This implies that banks that get their revenues from

the same geographic areas will have positively correlated fundamentals, and banks that have

differing geographic revenue profiles will have less correlated fundamentals. For each pair of

banks we calculate the empirical correlation coefficient as ρ̂ijt = Corr(Xitβ̂,Xjtβ̂).

We then divide our bank pairs into two groups, “more correlated” and “less correlated”,

by defining the dummy variable 1ρij = 1 if ρ̂ij > median(ρ̂ij) and 1ρij = 0 otherwise. We

divide bank pairs similarly regarding Γij, into “safe links” and “risky links”, by defining the

dummy variable 1Γij
= 1 if Γ̂ij > median(Γ̂ij) and 1Γij

= 0 otherwise. Risk sharing implies

that safe links should be less correlated, and risky links should be more correlated. Risk

sharing is, however, difficult to separately identify from other motivations for heterogeneous

contagion intensity. In particular, less correlated links are more likely to go across jurisdic-

tions than more correlated links, where going across jurisdictions may make links less safe.

We test this by identifying the home jurisdiction of each of the N = 18 banks in our sample

and classifying each as being in the UK, North America, Europe or Asia. We then define the

dummy variable 1G = 1 if they share the same home jurisdiction, and 0 otherwise. We do not

attempt to test the effect of product variations, as there are many product characteristics

and we do not have a clear ranking of their relative riskiness.

We run the following linear regression:

1Γij
= α0 + α11ρij + α21G + α31G1ρij + eαt

The coefficient on the interaction term is positive and significant: where banks are in the

same jurisdiction, then more correlated links are less safe. We interpret this as evidence in

support of a risk sharing motivation for heterogeneous contagion intensity. The coefficient

on 1G is the right sign (indicating that links within the same jurisdiction are safer), but

insignificant. The coefficient on 1ρij is negative and significant: this suggests that when links

go across jurisdictions, less correlated links are actually less safe. This could still be because

of confounding jurisdictional effects: within the set of links that cross jurisdictions, more

distant links will be riskier but also less correlated.
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Table 1.11: Drivers of heterogeneous contagion intensity

[1]

1ρij -0.280***

(-4.44)

1G -0.204

(-1.61)

1G1ρij 0.600***

(3.96)

R2 0.09

No. obs 153

Note: Figures in parentheses are t-statistics. ***, **, * indicate different from 0 at 1%, 5%
and 10% significance, respectively.
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Chapter 2:

Information loss over the business cycle

The business cycle induces turnover in mutual funds: they exit in recessions and enter in

recoveries. The effect of this firm turnover on welfare depends on a key trade-off: on the

one hand, the business cycle “cleanses” the market of low quality exiting funds and replaces

them with entrants that may on average be higher quality. On the other hand, the entrants

have no returns history and so investors have less precise beliefs about their ability, where

this “information loss” leads to misallocation that harms welfare. I examine this trade-

off by estimating a structural model in which rational investors form and update beliefs

about competing mutual funds that endogenously choose to enter and exit the market. I

estimate this model using data on US mutual funds. I find that the business cycle has

material, persistent effects that are negative in the short-term but turn positive as the effect

of information loss decays over time.
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2.1 Introduction

The business cycle induces firm turnover: firms exit in recessions, and enter in recoveries.

What impact does this firm turnover have on outcomes post-recovery? How persistent is

this impact? How does the impact vary with the characteristics of the business cycle?

I seek to answer these questions by exploring a key trade-off that underpins them. On

the one hand, the business cycle can improve outcomes by “cleansing” the market of low

quality firms: replacing low quality firms that exit during the recession with higher quality

firms that enter during the subsequent recovery. On the other hand, the firms that exit have

a track record of performance, whereas the entrants that replace them do not. To the extent

that this information was valuable and had an impact on outcomes, this “information loss”

could harm outcomes.

This trade-off between cleansing and information loss is important in the wide class of

markets in which unobserved quality is important for outcomes and past performance is

informative about quality. The mutual fund industry is such a market, and is a natural

setting in which to study this trade-off for the following reasons. First, there is a broad

literature exploring whether quality or ability is important for mutual funds. Second, there

is clear evidence that investors in mutual funds respond to past returns.

I evaluate this trade-off by estimating a structural equilibrium model of investor and

mutual fund behaviour. I estimate this model, and I use the results to run counterfactuals

in which I simulate business cycles of varying types and quantify the impact of the resulting

firm turnover. This allows me to draw novel conclusions about the size and persistence of

business cycle shocks. This paper is the first, to my knowledge, to structurally estimate the

impact of cleansing and information loss over the business cycle.

The model consists of two parts. On the demand side, rational investors invest in mutual

funds based on their beliefs about the heterogeneous abilities of funds to generate excess

returns, and update those beliefs over time as they observe fund performance, following

Berk and Green (2004). The ability of a given mutual fund to generate excess returns is

decreasing in the total size of the mutual fund industry (which in the spirit of Pástor and

Stambaugh (2012) is the way in which I model competition between mutual funds) and

also varies with a macro-economic factor. The aggregate surplus generated by a fund is the

total payout to the fund managers and to investors. This aggregate surplus is increasing

and convex in fund ability, and is also increasing in the precision of investor beliefs: if these
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beliefs are imprecise, then there is misallocation (over-investment in low ability funds or

under-investment in high ability funds) that harms surplus.

On the supply side, funds make dynamic decisions to exit and enter. Funds take the size

of the mutual fund industry as given, and form beliefs about how its size varies with the

macro-economic factor. If a fund exits it receives a scrap value that represents the use of its

human capital elsewhere. If a fund enters it incurs a fixed entry cost and randomly draws

ability from the population distribution.

I take the size of the mutual fund market as given, and instead focus on compositional

inefficiencies regarding the types of funds that make up the market: incumbent funds do not

take into account that if they exit then new funds could enter, which may improve aggregate

surplus depending on their relative characteristics. A business cycle (which I model as a

negative shock to the macro-economic factor, followed by a recovery) results in exactly this

exchange of funds: during the recession funds exit, which reduces competition and allows

funds to enter during the subsequent recovery.

The impact of this firm turnover depends on two countervailing effects. Low ability funds

are smaller and are more likely to exit during the recession, whereas the firms that replace

them are of average, and therefore higher, ability. Surplus is increasing and convex in ability,

whereas fund size is increasing and linear in ability. This means that although the aggregate

size of the exiting and entering funds is the same, the surplus generated by the higher ability

entering funds is higher. This is the cleansing effect. The entering funds, however, have

no returns history, meaning that investors have less precise beliefs about their ability. This

results in more misallocation in equilibrium, which is bad for aggregate surplus. This is the

information loss effect. Cleansing is about the first moment in ability (entrants are higher

ability on average), whereas information loss is about the second moment (there is greater

uncertainty about the ability of entrants).

The model allows me to formalise the key parameters that determine the relative strength

of these two countervailing effects. The strength of the cleansing effect depends on the

dispersion in the distribution of fund abilities, the differing extents to which low and high

ability funds exit and the convexity of a fund’s surplus with respect to its ability. The

strength of the information loss effect depends on the informational content of returns and

the age of exiting funds.

I estimate both parts of this model using data on US Equity mutual funds. I fit the

demand-side to data on mutual fund size, taking into account fund returns. I do not identify
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the ability of funds directly, but I do identify the beliefs of investors about ability from the

size of the fund: the model implies that bigger funds, all else being equal, are believed to

be higher ability. I identify the value of information from the rate at which investors adjust

their holdings in response to past performance: a returns history is valuable if investors are

responsive to returns.

I fit the supply-side to data on fund entry and exit. In doing so, I allow the scrap value

to vary according to the state and the type of the fund for two reasons. First, it allows

me to more accurately capture exit dynamics: it stands to reason that funds of different

types have differing outside options. Second, it ensures model consistency: in my analysis

I observe and hold fixed the equilibrium relationship between the total size of the mutual

fund industry and the macroeconomic factor. State-type variation in scrap values means I

can ensure in my estimation that the equilibrium fund-specific exit dynamics implied by my

model are consistent with these aggregate dynamics. In the extreme case in which I estimate

a different scrap value for each state-type combination, I am able to perfectly match observed

exit rates.

I find that the model fits well on both the demand- and supply-side. I find that investors

are relatively slow to respond to past returns: the estimated signal-to-noise ratio implies

that investors consider the informational content in their priors to be roughly equivalent to

4 years of returns data. I also find that scrap values vary in intuitive ways with the state

and type of the fund: funds have better outside options when the macro-economic factor is

good and when they are believed to be high ability.

I use my results to counterfactually simulate a business cycle of varying depths, where

deeper business cycles result in more firm turnover. I then compare the surplus generated by

the exiting funds and the entering funds at various points post-recovery to reach two main

conclusions.

First, I find that the business cycle harms surplus in the short-term and improves surplus

in the long-term. The information loss effect dominates the cleansing effect in the short-term,

such that the firm turnover harms aggregate surplus. Post-recovery, both the exiting and

entering funds age and so benefit from additional returns information: the benefit of this

extra information is greater for the entering funds who started with no information, and so

over time the information loss effect decays. There is a “switching point” at 27 months, by

which time information loss effect decays to the point where it is dominated by the cleansing

effect. From this point onward, aggregate surplus is higher due to the cleansing effect.
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Second, I find that deeper business cycle have bigger persistent effects in the short-term

and the long-term. For the deepest business cycle I model (which is roughly equivalent to the

financial crisis), the aggregate surplus of entering funds is 20% less than the aggregate surplus

of the exiting funds in the first month after the recovery. By month 80, the information loss

has decayed to the point where the aggregate surplus of entering funds is 30% greater than

that of exiting funds. The impact on total surplus in the market is small but material: the

short-term harm from the information loss is 0.5% of total surplus in the market (including

funds that neither exited nor entered) and the long-term benefit from the cleansing effect

is 0.9%. The switching point at which the cleansing effect dominates the information loss

effect is around 27 months regardless of the depth of the business cycle. I also model the

cumulative impact of the firm turnover over time,1 taking into account the one-off costs

incurred by entering firms. I find that it takes 75 months for the cumulative impact to

become positive.

The persistent effects of the business cycle have been extensively studied in macroe-

conomic contexts, but less so in market-specific contexts. The main contribution of this

paper is to develop an under-explored implication of business cycles: the information loss

that results from firm turnover. I explore the conditions under which this information loss

dominates the cleansing effect, and I quantify how this trade-off changes over time.

I review the literature below. In Section 2, I introduce the data and set out some guiding

empirical facts. In Section 3, I set out my model. In Section 4, I describe my empirical

approach. In Section 5, I report my results. In Section 6, I undertake counterfactual analyses.

In Section 7, I conclude.

2.1.1 Related literature

This paper is related to three broad strands of literature.

First, this paper is related to the literature on cleansing that goes back to Schumpeter

et al. (1939), and is featured more recently in Caballero and Hammour (1996) and Castillo-

Martınez (2018). In this paper, I document and measure cleansing in the context of mutual

funds. I also show how cleansing may bring first-moment benefits but second-moment costs

in the form of information loss. This loss of information over the business cycle has not been

studied extensively. Relatedly, Hale (2012) set out reduced form evidence that recessions

1Where the cumulative impact at time t is the sum of the impacts in all previous periods.
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affect connections between firms and banks which, in a relationship banking context, could

have implications for the extent of information asymmetry.

Second, this paper is related to the literature on mutual funds generally (Berk and Green,

2004; Berk and Van Binsbergen, 2015; Pástor and Stambaugh, 2012; Pollet and Wilson, 2008;

Fama and French, 2010) and more specifically the effect of the business cycle on mutual

fund outcomes (Kosowski, 2011; Glode, 2011; Kacperczyk et al., 2014, 2016). There is a

more limited literature that estimates structural models related to mutual funds, including

Roussanov et al. (2018) and Gavazza (2011). I introduce information loss over the business

cycle as a new consideration within this literature, and quantify its importance in a structural

econometric context.

Third, this paper is related to the literature on exit and entry, and in particular the

estimation of such models (Hotz and Miller, 1993; Rust, 1987). I estimate such a model in

the context of mutual funds in which I argue that funds take as given the aggregate size of

the industry and form beliefs over its future dynamics. I then show how estimating state-

type-specific opportunity costs allows me to consistently match those beliefs in equilibrium.

2.2 Data

I first describe how I select funds and calculate excess returns. I then describe the key

empirical facts that motivate my research question and guide my modelling.

2.2.1 Sample selection

I obtain data on mutual fund characteristics and their monthly returns and assets from the

database maintained by the Center for Research in Security Prices (CRSP), The University

of Chicago Booth School of Business. I select data from January 1990 to December 2016.

I limit my sample to actively managed US Equity funds that (i) are never smaller than

USD 1m in size, (ii) have at least 12 months of returns data and (iii) have data on their

expense ratio. This is the standard approach in the literature (see for example Berk and

Van Binsbergen (2015) for an overview of mutual fund selection), but with slightly looser size

and history thresholds: this is important because propensity to exit is likely to be correlated

with data availability. In other words, the standard thresholds exclude many of the funds I

am seeking to study. I am left with a sample of 3,420 funds and a total of 452,222 month-fund
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observations.

2.2.2 Calculating excess returns

I calculate excess returns following Berk and Van Binsbergen (2015). I regress returns in

excess of the risk-free rate (Rit) on a set of 11 common factors (Ft) which are the returns

to the main index funds operated by Vanguard, which I list in the table below. The fund’s

excess return, αit is the residual in this regression:

Rit = βiFt + αit (1)

This is a more reasonable benchmark for mutual funds than, for example, a benchmark

involving momentum investing returns that would be prohibitively costly to implement in

practice. See Berk and Van Binsbergen (2015) for a fuller discussion

Table 2.1: Benchmark

Fund Name Ticker Asset Class

S&P 500 Index VFINX Large-Cap Blend

Extended Market Index VEXMX Mid-Cap Blend

Small-Cap Index NAESX Small-Cap Blend

European Stock Index VEURX International

Pacific Stock Index VPACX International

Value Index VVIAX Large-Cap Value

Balanced Index VBINX Balanced

Emerging Markets Stock Index VEIEX International

Mid-Cap Index VIMSX Mid-Cap Blend

Small-Cap Growth Index VISGX Small-Cap Growth

Small-Cap Value Index VISVX Small-Cap Value

2.2.3 Empirical facts

I set out four empirical facts:

1. Heterogeneity in fund size. Funds vary significantly in size at the point of entry

and over their lifetime, as I show in Figure 2.1. This is true even controlling for the
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macro-economic conditions at the time of entry: in other words, this is cross-sectional

variation not inter-temporal variation.

2. Exit is correlated with size. Smaller funds are significantly more likely to exit in

any given period than bigger funds.

3. Exit is counter-cyclical. Funds are more likely to exit when the S&P500 (which I

denote macro-economic factor Mt) is low than when it is high, as I show in Figure 2.2.

4. The size of the mutual fund industry is pro-cyclical. There is, unsurprisingly,

a close relationship between the S&P500 and the aggregate size of the mutual fund

industry, which I denote Qt. I show this graphically in Figure 2.3 and in the regression

results in Table 2.2. The R2 of a regression of Qt on Mt is 0.75, rising to 0.9 if I include

a structural break in the financial crisis.

To these empirical facts I add that investors respond to past returns, on which there is

a large literature (see, for example, Chevalier and Ellison (1997)). These facts combined

naturally give rise to my research question: given that exiting funds are observably different

from the average fund, what impact does this exit have on aggregate outcomes? Given that

investors clearly attach some value to past returns, what impact does the absence of past

returns have on entrants? The macro-economic factor clearly has an impact on aggregate

trends in the mutual fund industry, but what about on its composition?
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Figure 2.1: Heterogeneity in fund size

(a) Initial size (b) Log initial size

(c) Log initial size conditional on M1 (d) Log maximum size

Note: Panel (a) shows the distribution of fund size in the first period of its life, excluding

the top 5% of funds by size. Panel (b) shows the distribution of the natural log of initial

size. Panel (c) conditions on M1, the level of the SP500 in the period in which the fund

entered. Panel (d) shows the log of the maximum size the fund attains during my sample.
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Figure 2.2: Exiting funds and the S&P500
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Table 2.2: Relationship between Qt and Mt

[1] [2] [3]

∆Qt Qt Qt

Intercept 0.001 7.38 x 105∗∗∗ -3.62 x 105∗∗∗

(0.007) (7.36 x 104) (1.22 x 105)

1Post2008 1.10 x 106∗∗∗

(1.38 x 105)

Mt 843.82∗∗∗ 1826.8∗∗∗

(51.35) (100.94)

Mt 1Post2008 -1022.1∗∗∗

(108.6)

∆Mt 0.466∗∗∗

(0.117)

R2 0.15 0.75 0.90

No. obs 90 91 91

Note: Figures in parentheses are standard errors. ***, **, * indicate different from 0 at 1%,

5% and 10% significance, respectively. Qt is the size of the mutual fund industry, Mt is the

SP500 index and 1Post2008 is a dummy variable that is one after 2008. The dataset is from

2001 to 2016, at a frequency of 2 months.
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Figure 2.3: The relationship between Q and S&P500

Note: Qt is aggregate assets under management across funds in my sample in period t.

2.3 Model

The model consists of two parts: (1) a model of demand by rational investors for mutual

funds and (2) a model of supply by mutual funds. I describe each part of the model, before

considering the implications of the model for aggregate surplus, efficiency and the role of the

business cycle.

2.3.1 Demand

The model of demand is based on Berk and Green (2004), in that it shares the following two

core components. First, there are decreasing returns to scale in the ability of funds to earn
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excess returns. Bigger funds, all else being equal, earn lower returns because their ability

to gather and exploit information is diluted or because of price effects or execution costs.

Second, ability is unobserved, but investors learn as they observe past returns. These two

core components in combination mean that rational investors form beliefs about the ability

of funds and invest up to the point where, given decreasing returns to scale, those returns

are competed away. As investors observe past returns of the fund, they update their beliefs

about the ability of the fund and adjust their holdings.

To these core components I add the following to suit my research question and to allow

the model to be reasonably taken to data. First, following Pástor and Stambaugh (2012),

I model competition between mutual funds by allowing the returns earned by funds to be

decreasing in the total size of the mutual fund industry: a mutual fund earns lower excess

returns, all other things being equal, if there are many other mutual funds trying to earn

excess returns from the same set of investment opportunities. Second, I include a role for

the business cycle by allowing the ability of funds to earn excess returns to vary according

to a macro-economic factor that varies exogenously over time.

More formally, I follow Berk and Green (2004) and draw a distinction between the net

excess return that investors actually earn, and the gross excess return the fund would have

earned on a single dollar of investment (that is, before the effect of decreasing returns to

scale). The total risk-adjusted payout in dollar terms to investors from investing qit in mutual

fund i with gross return αgit and fee rate fi is:

TPit = qitα
g
it − C(qit)− qitfi

where C(qit) is a cost function representing the decreasing returns to scale in the ability to

earn excess returns. I parameterise the cost function as C(qit) = φiq
2
it where φi > 0, such

that when q > 0: C(q) > 0, C ′(q) > 0, C ′′(q) > 0, C(0) = 0 and limq→∞C(q) =∞. The net

αni excess return is what investors actually earn, and is simply this payout divided by the

size of the investment:

αnit =
TPt+1

qit
= αgit −

C(qit)

qit
− fi = αgit − φiqit − fi (2)

I disaggregate the fund’s gross excess return into three components. First, the fund’s

true ability to generate excess returns αi, where αi ∼ N(µi, τ
−1
i,α ). Second, a fund-specific

iid shock εit, where εit ∼ N(0, τ−1i,e ) and αi ⊥⊥ εit. Third, common variation in ability across
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funds δt:

αgit = αi + εit + δt (3)

I then disaggregate the common variation into a further three components: an age effect

δa(it), the effect of macro-economic factor Mt and the effect of industry size Qt:

δt = δa(it) + βMt + θQt (4)

I estimate unrestricted age effects δa(it), macro-effects β and industry-size-effects θ in my

empirical analysis, as described below. A natural interpretation at this stage, however, is

that β > 0 and θ < 0. β > 0 implies that funds are more able to earn excess returns when the

macro-economic factor is good. θ < 0 represents competition, in that a larger mutual fund

industry means more competition for the same investment opportunities, reducing excess

returns.

Investors choose qit before εit is realised. Furthermore, investors do not know the true

ability of the fund αi, but form expectations based on the information available to them at

the point of investment, which I denote It−1. I define these expectations as eit ≡ E[αi | It−1].
All other components of the return are known to the investor, including φi and δt.

Investors supply capital with infinite elasticity to any fund with positive expected net

returns αnit, taking aggregate investment qt in the fund as given. In equilibrium, qt is then

such that E[αnit | It−1] = 0. Substituting in Equations 2 and 4, this means that:

qit =
eit + δt − fi

φi
(5)

Investor demand for mutual fund i is therefore increasing in its expected ability eit,

increasing in its scalability φi, decreasing in its fee rate fi and subject to common variation

δt. Note that for ease of reference I refer to eit as “ability” and φi as “scalability”, but in

some sense both are fund-specific measures of the ability to generate excess returns on qit.

To complete the model of demand, I need to characterise the expectations formation

process behind eit. Investors observe past net excess returns, αnis<t and from this can infer

gross returns αgis. Investors cannot separately identify αi from εis, but can extract a signal

about αi given their relative distributions.

Given these distributional assumptions, there are simple closed-form expressions for how

investors form and update their posterior beliefs about αi in responses to these signals.
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Defining the signal-to-noise ratio λ =
τi,e
τi,α

and s(λ, t) = 1 + (t− 1)λ:

qit =
1

φi

[
δt − fi +

µi
s(λ, t)

+
λ

s(λ, t)

t−1∑
m=1

αgim

]
(6)

I leave implicit the lower bound of zero. I repeatedly substitute in Equation 2 to solve

forward for optimal qit in terms of net returns (which are observed by the econometrician),

instead of gross returns (which are not directly observed by the econometrician):

qit =
1

φi

[
µi − fi + δt + λ

t−1∑
m=1

αnim − fi
s(λ,m+ 1)

]
+ uqit (7)

I add an error term, uqit, that represents shocks to qit beyond this expectations formation

process. This could include, for example, noise traders. I leave further discussion of this error

term and its distribution to the section below on my empirical analysis. This Equation 7

characterises equilibrium investor demand for fund i. In what follows I define the “observable

type” of mutual fund i as Θi = (µi, φi, σ
a
i , σ

e
i , fi) and its “unobservable type” as αi.

2.3.2 Supply

On the supply-side, firms make three decisions: (1) they choose to enter or not to enter,

(2) they set a single fee at the start of their life and (3) they choose to exit or not to exit.

Before modelling these three choices, I describe firm beliefs about the evolution of industry

size, which will be important for each choice.

2.3.2.1 Firm beliefs about industry size

The payoff to a mutual fund depends on macroeconomic factor Mt and competition through

the size of the mutual fund industry Qt, as I set out in equation 4. I set out in Figure 2.3 and

in Table 2.2 how closely Mt and Qt co-move, with a R2 value of 0.75 in a linear regression

of Qt on Mt.

The key assumption on the supply-side is that funds take aggregate industry size Qt as

given, and form beliefs about its dynamics based on its co-movement with Mt:

Qt = g(Mt) = 738 + 0.844 Mt (8)
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I argue that this assumption is reasonable given that there are a very large number of funds,

the vast majority of which are a very small proportion of total Qt. There are admittedly a

small number of very large mutual funds for which this assumption may not be reasonable:

these, however, are mostly established, older funds that are very unlikely to exit. That is,

this is a reasonable assumption to make when studying, as I am, the entry and exit of mutual

funds.

I assume that Mt develops according to some exogenous Markov process. This means that

Qt does too, such that firms have expectations about how industry size will develop over time,

regardless of their own decisions or those of their competitors. This assumption has obvious

computational benefits: the modelling environment is not a game, but a series of individual

decisions by each mutual fund. The remaining complication, which I consider below, is

ensuring that the individual decisions result in aggregate dynamics that are consistent with

the firm beliefs set out in Equation 8.

2.3.2.2 Exit

In each period, a mutual fund can choose to exit and obtain a scrap value, which is intended

to capture the use of its human capital elsewhere. This decision is dynamic, and depends

on (1) the type of the mutual fund and (2) the state, including investor beliefs about the

mutual fund eit, the age of the mutual fund ait and the macro-economic factor Mt:

• Type: Θi = (µi, φi, σ
a
i , σ

e
i , fi)

• State: St = (eit, ait,Mt)

• Action: zit = 0 if exit, zit = 1 if do not exit.

Firms take expectations over (1) the development of beliefs about their ability eit and (2)

changes in Mt. Their age and the precision of investor beliefs about their ability update

deterministically. As is standard in the literature on exit (see for example Hotz and Miller

(1993)) funds receive an action-specific shock η(zit) that is distributed Type-1 extreme value.

In recursive Bellman form:

Vit(St; Θi) = max
zit

zitfiqit(St; Θi) + (1− zit)W (St; Θi) + η(zit) + zitβE[Vit+1(St+1; Θi)] (9)

I allow the scrap value W (St; Θi) to be state- and type-specific. This assumption has an
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intuitive justification: mutual funds are more likely to have good outside options if they are

good funds and/ or if the macro-economic state is good.

To illustrate the equilibrium exit decisions resulting from this model, I solve for z∗(St; Θi)

under various combinations of ability beliefs eit, macroeconomic states mt and parameter

values in Figure 2.4 below, ignoring the action-specific shock η(zit). These numerical results

indicate a cutoff rule: funds exit when they are perceived to be bad or when the macroeco-

nomic state is bad, or some convex combination thereof.

Figure 2.4: Exit decisions

Note: The area under the curve shows the combinations of ability belief (eit) and business
cycle state (mt) in which a fund exits: funds exit when they are perceived to be bad or when
the macroeconomic state is bad, or some convex combination thereof. Funds are less likely
to exit when returns are less informative (λ is low) and/or when their ability scales up easily
(φ is low).
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2.3.2.3 Entry

Firms decide to enter without knowing their observable type Θi. Once they enter, they

are randomly allocated a type (excluding the fee rate fi, which they choose) from some

distribution hΘi
. Firms choose to enter if the expected value of entry, taking expectations

over Θi, exceeds an entry cost that is constant across firms but can vary over time:

∫
Vit(St; Θi) dΘi ≥ F entry

t (10)

After deciding to enter, firms learn their observable type Θi. Firms then choose fi to

maximise their initial value, given their observable type Θi and the prevailing state Mt:

f ∗i = arg max
fi

V ((St; Θi)) (11)

This generates cross-sectional variation in fee rates through the random allocation of

types: funds that are given a better random type charge a higher fee. This also generates

inter-temporal variation in fee rates through variation in the macro-economic factor Mt:

funds that enter in good times charge a higher fee.

2.3.3 Equilibrium

In equilibrium, (1) investors invest in any fund with positive expected excess returns, as per

Equation 7; (2) mutual funds choose to enter, set fees and exit optimally, given their type,

the state, investor behaviour and their beliefs about future competition, as per Equations

9, 10 and 11; and (3) mutual fund beliefs about the dynamics of future competition are

consistent with optimal mutual fund behaviour.

Expanding on the third of these equilibrium requirements: the entry and exit rules,

conditional on g(.), induce dynamics in Qt, which we call h(., g(.)). Equilibrium is a fixed

point such that g∗(.) = h(., g∗(.)). In other words, in equilibrium the entry and exit rules

induce fund behaviour that is consistent with the overall dynamics in Qt.

I do not solve for this equilibrium function. Instead, in the empirical analysis below, I

observe and estimate this equilibrium function and hold it constant in the counterfactuals I

run. This clearly places restrictions on the counterfactuals in which this equilibrium function

could plausibly be held constant, which I discuss below.
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2.3.4 Aggregate surplus

I follow Berk and Van Binsbergen (2015) in defining the surplus (or value-added, in the

words of Berk and Van Binsbergen (2015)) generated by a given fund i as the dollar return

to fund and investors:

sit = fiqit + αnitqit (12)

Aggregate surplus is then the sum of individual fund surplus: ASt =
∑

i sit. sit depends

on unknown true ability αi: taking expectations gives E[sit | It−1] = fiqit. That is, in

expectation mutual funds are the only ones to receive positive payoff because investors

compete away their payoff. The model I set out above has two important implications

for how sit varies across funds.

First, the surplus generated by a given fund i is increasing and convex in true unknown

ability αi, as set out in Figure 2.5. The convexity comes from the fact that both equilibrium

fee rate f ∗i and mutual fund size qit are increasing in αi. Intuitively, the market power of

fund i is increasing in αi, and thus so is surplus because investor payoff is competed away in

any case.

Second, conditional on true αi, the surplus generated by a given fund is typically in-

creasing in the precision of investor beliefs. The general intuition for this is straightfor-

ward: investor beliefs are correct in expectation, but in particular realisations investors can

think a particular fund is good when it is bad, and vice versa. This uncertainty results in

mis-allocation (investing too much (little) in bad (good) funds) that harms surplus. More

formally, substitute Equations 2 and 5 into Equation 12 for surplus and assume for ease of

exposition that fi = 0:

sit =
1

φi
(αgit − eit)eit (13)

Let eit = αi + εeit, where εeit denotes the error in investor beliefs for fund i. It follows that

sit is decreasing in this error: mis-allocation is harmful to surplus.

The primary determinant of the precision of investor beliefs is the age of the mutual

fund. Older mutual funds have a returns history that is a signal of their ability, and so

allows investors to form more precise beliefs. As the age of a fund goes to infinity, the error

term εeit goes to zero. In Figure 2.5, I set out an example of how the surplus of a given fund

is typically increasing in its age.

I caveat above that additional information as a fund ages typically increases surplus.
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Figure 2.5: The effect of age and ability on surplus

(a) The effect of ability on surplus (b) The effect of age on surplus

Note: Panel (a) shows how expected surplus varies with investor beliefs about ability eit: it
is increasing and convex. The size of the mutual fund qit is also increasing in ability eit and
convex, but to a lesser degree. Panel (b) shows how surplus is typically increasing in age,
because as funds age investor beliefs become more precise as they observe returns.

Whether this is always the case depends on the age of the fund and the fee rate fi: when fi

is set too low or too high relative to the fund’s true ability, then this introduces a distortion.

This distortion can interact with the effect of aging in a way that means that, beyond a

certain age, surplus is no longer increasing in age. I discuss this in more detail in Figure

2.16 in the appendix. For the purposes of my research question, it suffices to say that funds

with no returns history have lower surplus than those that have a returns history, all other

things being equal.

2.3.4.1 Efficiency

I consider the choices of a social planner without additional information: that is, the social

planner does not know true fund ability αi or have any more information than investors or

funds.

There are various inefficiencies on the supply-side: mutual fund i’s choices over entry,

fee-setting and exit all affect Qt and, through the effect of competition, the payoffs of other

mutual funds. Mutual fund i does not account for any of these externalities.

My research question, however, is about how the business cycle affects the types of mutual

fund in the industry. In other words, I am interested in the composition of the mutual fund

industry, rather than its size. That is, I consider the second-best problem of optimising the
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composition of mutual funds, whilst taking as given the aggregate size of the mutual fund

industry Qt and its dynamics.

I illustrate a compositional inefficiency by considering the mutual fund industry in equi-

librium, in which no incumbent fund wishes to exit and and no potential entrant wishes to

enter, given the prevailing macro-economic state Mt and the size of the industry Qt. I ask

whether the social planner would be willing to swap some number n incumbent funds of

a particular type and size qexiter for a single randomly drawn new entrant of expected size

qentrant. To focus on composition only, n, the size of the exiting fund and the expected size of

the new entrant must be such that the overall mutual fund industry size Qt does not change.

That is, nqexiter = qentrant.

To see that such a compositional inefficiency is feasible in practice, suppose that the social

planner chooses exiting funds of the worst expected ability type, and replaces them with a

new entrant of average expected ability. Both the surplus generated by a given fund and its

size are increasing and convex in true ability, as described above in Figure 2.5. Importantly,

surplus is significantly more convex than fund size, meaning that sentrant > n sexiter: the new

entrant generates greater aggregate surplus than the exiting funds. This surplus-improving

swap need not occur in the decentralised equilibrium because the incumbent funds have no

incentive to exit so that the better fund can enter.

I consider the social planner’s preferences to illustrate the inefficiencies in the model. I

do not, however, formally model the social planner’s choices over composition, but instead

consider the social planner’s preferences over business cycles.

2.3.5 The role of the business cycle

I discuss above whether the social planner would be willing to swap some bad funds for an

average entrant. This type of swap is exactly what results from a business cycle in my model.

Suppose the mutual fund industry is currently in equilibrium at time 0 at (Q0,M0).

Potential new entrants are indifferent between entering or not. At the start of period 1,

there is a shock to the macro-economic factor, in that M1 < M0. This downward shock

causes existing funds to shrink (as per Equation 7) and causes some funds to exit (as per

the exit rule set out in Figure 2.4), such that Q1 < Q0. At the start of period 2, there

is a recovery and M2 = M0. The existing funds increase in size and new entrants face an

incentive to enter, up to the point that Q2 = Q0.
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I emphasise, though, that a business cycle is not necessary for exit and replacement to

occur in my model. Even without any change in macro-economic factor Mt funds would

still exit when they get a negative shock to their expected ability eit or when they draw a

negative shock to their profits ηit. In that sense, a business cycle accelerates firm turnover,

but is not necessary for firm turnover.

The effect of this firm turnover on aggregate surplus depends on two countervailing effects:

1. The cleansing effect. Exiting funds are more likely to be low expected ability,

as illustrated in Figure 2.4. Entrants are randomly allocated true ability from the

population distribution and so are, on average, better than exiting funds. Higher

ability funds result in more surplus, as set out in Figure 2.5, giving rise to a cleansing

effect that increases surplus. The strength of this effect depends on the size of the

ability differential between exiters and entrants, which in turn depends on: (i) the

dispersion of the distribution in abilities and (ii) the extent to which exit rates are

greater for low ability funds than for high ability funds.

2. The information loss effect. Exiting funds have a returns history, whereas entrants

do not: it is in this sense that the business cycle results in information loss. Investors

therefore have more precise beliefs about the ability of the exiting fund, which holding

all other things equal results in greater surplus, as set out in Figure 2.5. The strength

of this effect depends on the value of the information contained in past returns, as

measured by the signal-to-noise ratio λ.

Cleansing, then, is about the first moment in ability (entrants are higher ability on

average), whereas information loss is about the second moment (there is significantly greater

uncertainty about the ability of entrants).

As I set out above, the strength of each of the effects depends on the parameters of the

model: if, for example, returns are not particularly informative about ability, fund abilities

are highly dispersed and low ability funds are significantly more likely to exit, then the

cleansing effect is more likely to dominate the information loss effect. The model, therefore,

cannot provide a general answer about the effect of the business cycle on outcomes: it is an

empirical question.
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2.4 Empirical approach

There are three aspects to my empirical approach: (1) I estimate some exogenous processes

that are outside the model, (2) I calibrate some parameters and (3) I estimate the remaining

parameters by matching observed quantities, entry and exit decisions. I discuss each of these

in turn, before considering identification.

2.4.1 Exogenous processes

I model two exogenous processes outside the model. The first is the dynamics of macro-

economic factor Mt, which in my empirical analysis is the S&P500 index. I assume that the

index follows a random walk, with an iid error term:

Mt = Mt−1 + eMt (14)

where eMt ∼ N(0, σM). I recover an estimate of σM from the time-series of Mt. In my

simulations I impose an upper and lower bound on Mt, M and M , respectively.

The second exogenous process is the relationship between Qt and Mt. I use the results

set out in column 3 of Table 2.2.

2.4.2 Calibration

On the supply-side, I set the discount factor to 0.99. On the demand-side, all of the param-

eters in Equation 7 are separately identifiable, including φi and µi. In practice, to keep the

number of parameters to be estimated down, I calibrate φi and µi based on how qit evolves

over time.

I set φi to be the inverse of the maximum size that fund i reaches in my sample: φ = 1
qi,max

,

where qi,max = maxt qit. This is effectively a fund-specific normalisation such that the product

qitφi ∈ [0, 1] for any i. This means that I do not use the cross-sectional variation in the size

of the funds to identify the other parameters, but only the variation over time. In other

words, I assume that Vanguard’s largest funds are not large relative to other funds because

they earned very large returns early in their life, they are large for fund-specific reasons that

I effectively encode and leave fixed in φi.

I infer µi from the size of fund i in the first period of its life. Setting t = 1 in Equation
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7 and re-arranging: µi = qi1 − δi1. This results in computational benefits, relative to simply

estimating µi as a fixed effect, as it can be done outside of the main estimation loop. It also

better matches the interpretation of µi as an initial prior belief about fund ability at the

start of its life.

Implementing these calibrations in Equation 7 for demand, re-arranging and defining the

within-style transformation δ̃t = δt − δi1:

qit − qi1
qi,max

= δ̃it + λ

t−1∑
m=1

αnim − fi
s(λ,m+ 1)

+ uqit (15)

2.4.3 Estimation

I estimate the demand-side and the supply-side separately for tractability. From the supply-

side I need to estimate the entry cost F entry
t and the scrap values W (St; Θi). I estimate all

remaining parameters from the demand side.

On the demand-side, I run non-linear least squares on Equation 15, where the only

non-linear parameter is λ. Given estimates of the parameters in Equation 15, it is then

straightforward to infer estimates of αgit from Equation 2, and from that τ−1i,e = var(αgit) and

τ−1i,α = λτ−1i,e .

On the supply-side, I undertake a nested-fixed point estimation in which I match observed

probabilities of exit with model-implied probabilities. I discretise the state-space into 8

buckets for eit, 8 buckets for Mt and 4 buckets for the fund’s age. I do this for 3 types of φi,

meaning I have a total of 768 state-type combinations. The estimates of the demand-side

and the first-stage estimates relating to the evolution of Mt allow me to model transition

probabilities between each of these buckets. I show in Figure 2.14 in the appendix the exit

rules implied by this coarser state space: it matches the key characteristics of the exit rules

implied by the finer state space in Figure 9. For each state-type bucket, I calculate the

observed exit probabilities over 8 years between 2005 and 2012, P̂ r(z = 1 | St; Θi).

To calculate model-implied probabilities, I first set out the following mean choice-specific

utilities, averaging across funds in the same state-type buckets:

vt(z = 1,St; Θi) = fiqit(St; Θi) + βE[Vit+1(St+1; Θi)]

vt(z = 0,St; Θi) = W (St; Θi)
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Given the assumed distribution of η(zit), the probability of exit is then a function of the

scrap values:

Pr(z = 1 | St; Θi) =
exp(W (St; Θi))

exp(vt(St; Θi)) + exp(W (St; Θi))

I then choose Ŵ (St; Θi) to minimise the difference between observed P̂ r(z = 1 | St; Θi)

and model-implied Pr(z = 1 | St; Θi), solving the model for each iteration. This nested

fixed point iteration is more efficient than the methodology proposed by Hotz and Miller

(1993) that avoids solving the model. With state-type-specific scrap values W (St; Θi) the

number of unknowns and the number of observations is the same. The scrap values are just

identified, and fit the observed exit probabilities exactly.

As well as estimating individual scrap values for each state-type combination, I estimate

two more parsimonious variants. First, I set the scrap value to be the same for all state-type

combinations: W (St; Θi) = W . Second, I parameterise W (St; Θi) as a function of states and

types: that is, as a function of eit, φi, ageit and Mt. I describe the exact parameterisation of

this function in the results section below, chosen to imitate my results for state-type specific

Ŵ (St; Θi).

To estimate F entry
t , I sample observed funds randomly to take expectations over Θi, and

use the demand-side parameter estimates to calculate E[V ((St; Θi))] = F̂ entry
t in equation

10. I do this for each year: in other words, F entry
t is effectively a residual that ensures that

entrants are indifferent between entering and staying out in any given year.

2.4.4 Identification

The primary challenge in identification is the role of unobserved shocks to mutual fund size.

In the context of the model, the error term uqit represents investment in the fund that is

unrelated to beliefs of investors about the ability of the fund: noise traders, in other words.

Correlations in noise trading across funds and across time create challenges in identification

in two ways.

First, Qt is endogenous in the presence of unobserved shocks that are common across

funds. If, for example, the mutual fund industry is popular with noise traders in time t,

then both q and Q would be large: this would bias our estimate of the effect of Q on q away

from zero. Second, αnit−1 is a function of qit−1 and so of uqit−1: this means that historical

returns are endogenous in the presence of serially correlated unobserved noise trading. If,
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for example, firm i is popular among noise traders for two consecutive periods, then returns

are low and the fund is big: this would bias our estimate of the responsiveness of rational

investors to past returns λ downwards.

We control for unobserved noise trading by controlling for the size of “similar” funds,

where we define a similar fund as one that has similar β, as in Equation 1. If funds follow

similar investment strategies, then it is likely that βi ≈ βj . We define the following distance

measure on K × 1 vectors β:

dij = || βi − βj ||

We define group g(i)t as the 10 closest funds to i in terms of dij at time t (where

time variation in the group comes from the composition of funds, not the constant distance

measure dij). We then define qg(i)t as the mean size within this group, and include this as a

control within our estimation.

To demonstrate the role of this control more formally, I disaggregate uqit, the unobserved

shocks to fund i, into three parts:

uqit = ut + ug(i)t + uit

ut is common to every mutual fund, ug(i)t is common to every fund in group g(i) and uit

is idiosyncratic to fund i. qg(i)t controls for ut and ug(i)t, such that the remaining identifying

assumption is that (1) Qt is independent of idiosyncratic, fund-specific shocks eit, which

requires that uit and ujt are not correlated, and (2) αnit−1 is independent of uit, which requires

that uit and uit−1 are not serially correlated. In other words, identification requires that

the unobserved component of qit is iid across i and t: including qg(i)t as a control makes

this assumption more reasonable, as it limits the unobserved component to fund-specific

unobservables.

2.5 Results

I set out the results of my estimation in Tables 2.3 and 2.4 and Figures 2.6 to 2.9.

On the demand-side, the results have the following implications:

1. The role of past returns: I estimate λ to be 0.0193. This means that investors

respond to returns, but relatively slowly. It implies, for example, that the investor’s
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priors about a fund are as important to the investor as 52 months of returns history.

2. The role of competition. The coefficient on Qt is negative and significant, indicating

that competition between mutual funds plays a role. Furthermore, this parameter

estimate is sensitive to the inclusion of the control qg(i)t in the way one would expect:

failing to control for common shocks understates the importance of competition.

3. The role of the business cycle. The coefficient on Mt is positive and significant:

funds are larger when the macro-economic factor is good. As well as this direct effect,

Mt has an indirect effect on qit via Qt. The net effect of Mt, taking into account both

the direct and indirect effect, is positive: when the macro-economic factor is good, Qt

is higher (which has a negative impact on qit because of the impact of competition),

but not to the extent that it dominates the direct effect.

On the supply-side, the key implications of the results are as follows:

1. Variation in exit rates. Based on the results from the demand-side, I allocate each

fund to the state-type buckets described above, and calculate the exit rates in those

buckets. As set out in Figure 2.6, I find that funds are more likely to exit when my

model indicates that they are low expected ability (eit is low) or do not scale up well

(φi is high).

2. Variation in scrap value. I estimate state-type specific scrap values, and show their

estimated distribution in Figure 2.7. In Figure 2.8 I show that these scrap values vary

across types and states in an intuitive way. Scrap value co-moves closely with the

expected ability of the fund eit and with its scalability φi: funds have better outside

options external to the mutual fund industry if they are higher ability and/ or are

able to scale that ability up easily. Scrap value also co-moves weakly with the macro-

economic factor in the way one would expect, in that outside options are slightly better

when the macro-economic factor Mt is good.

I emphasise two important benefits to estimating state-type specific scrap values. First,

it allows me to more accurately model exit dynamics: it stands to reason that better

funds have better outside options, and imposing a single homogeneous scrap value

would miss this. Second, it helps ensure model consistency. In my model, funds assume

a particular equilibrium relationship between aggregate Qt and Mt (Equation 8) when

they decide to exit. State-type-specific scrap values allows my model to perfectly match
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observed exit rates, meaning that the behaviour of individual funds is consistent with

this equilibrium relationship between Qt and Mt.

3. Variation in entry cost. The expected value of entering is greater when the macro-

economic factor Mt is good. Given that I assume that new entrants are always indif-

ferent between entering or not, this means that the fixed cost of entry F entry
t is also

increasing in Mt, as I set out in Figure 2.9. The effect is limited as F entry
t does not

vary by more than 6%.

2.5.1 Alternative specifications

As well as estimating individual scrap values for each state-type space, I estimate two more

parsimonious variants. First, I set the scrap value to be the same for all state-type combi-

nations: W (St; Θi) = W . I set out the results in Table 2.4, and show that this specification

does not perform well: the R2 is only 0.19, meaning that there is significant unexplained

variation in observed exit rates.

Second, I parameterise W (St; Θi) as a function of states and types. As described above

and set out in Figure 2.8, when I estimate state-type specific scrap values I find that they

are sensitive to expected ability eit and scalability φi, but less sensitive to macro-economic

factor Mt and age. I therefore parameterise scrap values as follows:

W P (St; Θi) = w0 + w1eit + w2e
2
it + w3φi + w4φ

2
i + w5eitφi + ew (16)

I choose parameters w0, w1, w2, w3, w4, w5 to minimise the distance between model-implied

and observed exit probabilities. I set out the results of this parameterisation in Table 2.4

and show that it performs better than constant scrap values, in that it explains 44% of

the variation in observed exit probabilities. I use this parameterised scrap value in my

counterfactuals below instead of fully state-type specific scrap values for two reasons. First,

it is less sensitive to noise in observed state-type exit rates. Second, it allows me to extend

my analysis to counterfactual states and types that are not observed in the data.

113



Table 2.3: Demand-side results

[1] [2] [3]

qit qit qit

λ 0.019∗∗∗ 0.019∗∗∗

(0.003) (0.003)

Mt 2.03∗∗∗ 2.22∗∗∗ 2.29∗∗∗

(3.52 x 10−2) (3.59 x 10−2) (3.53 x 10−2)

Qt -3.08∗∗∗ -6.57∗∗∗ -6.82∗∗∗

(2.07 x 10−1) (2.22 x 10−1) (2.18 x 10−1)

qit 1.76∗∗∗ 1.72∗∗∗

(3.51 x 10−2) (3.45 x 10−2)

µit 0.311 0.311 0.311

φit 0.037 0.037 0.037

Age FE Y Y Y

R2 0.69 0.75 0.77

No. obs 226111 226,111 226,111

Note: Figures in parentheses are standard errors. ***, **, * indicate different from 0 at

1%, 5% and 10% significance, respectively. qit is the size of mutual fund i at time t, λ

is sensitivity to past returns, Qt is the size of the mutual fund industry, qit is the mean

size of local funds to fund i and Mt is the SP500 index. Specification [3] is my baseline

specification, specifications [2] and [3] show the role of λ and qit, respectively. I calibrate

fund-specific priors µit and scalability φi and report the mean across funds here.
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Table 2.4: Supply-side results

[1] [2]

P̂ r(Exit | St; Θi) P̂ r(Exit | St; Θi)

Intercept 6.44 11.77

eit 9.50

e2it -457.33

φi 4.08

φ2
i -6.41

φiteit -763.56

R2 0.19 0.44

No. obs 768 768

Note: I parameterise state-type scrap costs according to Equation 16 and choose the coeffi-

cients to fit the implied exit probabilities to observed exit probabilities.
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Figure 2.6: Observed firm exit by state and type

(a) Ability, eit (b) Conditional ability, eit | φi,Mt, ageit

(c) Fund scalability, φi (d) Age, ageit

Note: I calculate the observed probability of exit in a year for each state-type bucket. In

this figure I show how these observed probabilities vary on average with states and types.

Note that the ability of a fund to scale up in size is decreasing in φi.
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Figure 2.7: The distribution of state-type-specific scrap values

Note: In this figure I plot the distribution of estimated state-type-specific scrap values.
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Figure 2.8: State-type-specific scrap values

(a) Fund ability, eit (b) Macro-economic factor, mt

(c) Fund scalability, φi (d) Fund age, ageit

Note: I estimate scrap values for each state-type combination. In this figure I show how

these scrap values vary according to the state and type of the fund. Funds have better

scrap values when they have higher expected ability (panel (a)), when the macro-economic

factor is good (panel (b)), when they scale well (panel (c)) and are relatively younger

(panel (d)).
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Figure 2.9: Variation in the fixed cost of entry over time

Note: In this figure I plot how the estimated fixed cost of entry F entry
t varies over time (black

line). The cost of entry is correlated with the macro-economic factor Mt (the red line), but

the effect is relatively weak: the maximum entry cost is only 6% greater than the minimum

entry cost.

2.6 Counterfactual analysis

I am interested in the effect of the depth of the business cycle on outcomes post-recovery.

To assess this, I simulate a business cycle (that is, a recession, followed by a recovery) in

the macro-economic factor Mt of varying depths, model the resulting counterfactual firm

turnover, and then set out the effect on aggregate surplus.
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Based on this counterfactual analysis, I draw two main conclusions:

1. The business cycle harms surplus in the short-term and improves surplus

in the long-term.

2. Deeper business cycles have bigger, persistent effects in the short-term and

long-term.

I set out the impact on firm turnover in Figure 2.10. The number of exiting firms, the

number of entering firms and the ratio of entering firms to exiting firms are all increasing in

the depth of the recession. The ratio responds in this way because the mean size of exiting

funds is bigger in deeper recessions (in which medium-sized firms to exit as well as small

firms).

In assessing the impact of this firm turnover, I hold the set of entering and exiting funds

fixed: that is, I do not simulate further entry or exit, but only compare these two sets of

funds. I compare the annual surplus of these two sets of funds immediately after the recovery,

and then at various points in time subsequent to the recovery. As funds age post-recovery,

they obtain a returns history and the precision of investor beliefs improves.

In Figure 2.11, I show the net effect of firm turnover on aggregate surplus per-period.

It is initially negative, indicating that the information loss effect dominates the cleansing

effect. Over time, as the funds age, the information loss effect decays, such that there

is a “switching point” in month 27 when the effect of the firm turnover is reversed: the

cleansing effect dominates the information loss effect, and per-period aggregate surplus is

higher. Deeper business cycles have larger short-term and long-term effects, but the same

switching point. In other words, the strength of the information loss effect and the strength

of the cleansing effect are both increasing in the depth of the business cycle, but their relative

strength is not.

The magnitudes of both the short-term and long-term effects are material and are in-

creasing in the depth of the business cycle, and are material. For the deepest business cycle

I model (which is roughly equivalent to the financial crisis), the aggregate surplus of entering

funds is 20% less than the aggregate surplus of the exiting funds in the first month after the

recovery. By month 80, the information loss has decayed to the point where the aggregate

surplus of entering funds is 30% greater than that of exiting funds. The effects on total

surplus in the market (including funds that did not exit) are small but material, ranging

between -0.5% and 0.9% of total mutual fund surplus for the deepest business cycles.
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As well as these per-period effects, the business cycle also triggers one-off entry costs.

Given these one-off costs, and the fact that the per-period effect of the business cycle starts

negative and turns positive over time, it is natural to ask at what point the cumulative

impact of the business cycle becomes positive.2 I show this in Figure 2.12 and 2.13: the

cumulative effect of the business cycle is negative and downward sloping until month 27.

At this point it turns upwards, and becomes positive in month 75. As with the per-period

effects, deeper business cycles have stronger persistent impacts but the same switching point.

In Figure 2.12 I also demonstrate the importance of allowing the exiting funds to age

counterfactually absent the firm turnover. In other words, had the funds not exited they

too would have extended their returns history and improved the precision of investor beliefs.

Because the exiting funds are older, however, the marginal improvement in investor precision

over time is much smaller than for the new entrant funds. An extra datapoint is more valuable

for funds with few datapoints. In other words, the decay of the information loss effect over

time is not about the change in the absolute precision of investor beliefs about entrants, but

instead about the change in their precision relative to the precision about exiting funds.

2The cumulative impact of the business cycle in period j is the sum of the impacts in all previous periods,

including the fixed entry cost: cumt =
∑j

t=1

[∑Nentrants

k=1 sentrantskt −
∑Nexiters

l=1 sexiterslt

]
−NentrantsF entry.
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Figure 2.10: Firm turnover over the business cycle

Note: I simulate a business cycle of various depths, and show the number of exiting funds

during the recession (red bars), the number of entering funds during the recovery (blue bars)

and the ratio of entrants to exiters (grey line). A deeper business cycle results in more firm

turnover but also a larger marginal exiting firm, meaning that the ratio of entrants to exiters

is greater than in a shallow business cycle.
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Figure 2.11: The effect of the business cycle on aggregate surplus

Note: Deeper recessions and subsequent recoveries result in greater firm turnover. In this

figure I plot the net effect of this firm turnover on per-period aggregate surplus over time.

Immediately after the recession, aggregate surplus in the mutual fund industry is up to 0.5%

lower: the information loss dominates the cleansing effect. As the entrants age, investors

obtain a returns history and the information loss effect decays: 27 months after the recovery

the cleansing effect dominates the information loss effect and the firm turnover improves

aggregate surplus. By 80 months the firm turnover improves aggregate surplus by up to

0.9%. The depth of the recession affects the magnitude of both the information loss effect

and the cleansing effect, but not the point at which their net effect switches.
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Figure 2.12: The effect of the business cycle on cumulative aggregate surplus

Note: As set in previous figure, firm turnover harms per-period aggregate surplus in the

short-term and improves it in the long-term. In this figure I plot the effect of the firm

turnover on cumulative aggregate surplus over time, expressed as a proportion of per-period

aggregate surplus. In the first month after the recovery the impact of the firm turnover is

negative because of the firm turnover costs and the role of the information loss effect. Over

time the information loss effect decays and the per-period effect becomes positive in month

27 (when this graph turns upwards) and the cumulative effect becomes positive in month 75

(when it crosses zero). Holding the exiting funds fixed (the dashed line) results in the net

effect becoming positive faster than if the exiting funds are allowed to counterfactually age

absent the firm turnover (the solid line).
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Figure 2.13: The effect of the business cycle on cumulative aggregate surplus

Note: In this figure I show how the depth of the business cycle affects the cumulative impact

of firm turnover over time. Deeper business cycles (the red line) have stronger short-term

and long-term impacts than moderate business cycles (the blue line), but the point at which

the net effect becomes positive does not depend on the depth of the cycle.

2.7 Conclusion

The persistent effects of the business cycle have been extensively studied in macroeconomic

contexts, but less so in market-specific contexts. The main contribution of this paper is to

develop an under-explored implication of business cycles: the information loss that results

from firm turnover. I explore the conditions under which this information loss dominates

the cleansing effect, and I quantify how this trade-off changes over time.
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A Additional figures

Figure 2.14: Exit decisions

Note: The area under the curve shows the combinations of ability belief (eit) and business

cycle state (mt) in which a fund exits: funds exit when they are perceived to be bad or when

the macroeconomic state is bad, or some convex combination thereof. This figure is the same

as figure 2.4, but with a coarser state space.
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Figure 2.15: The effect of fund age on fund size

Note: This figure plots the age dummy that I estimate on the demand-side. On average,

young funds grow quickly, peak at age 100 months, and then decline as they age further.
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Figure 2.16: The effect of age on value-added

(a) Noisy convergence to optimum (b) Convergence to optimum

(c) Convergence towards and then away from

optimum when fee too low

(d) Convergence towards and then away

from optimum when fee too low

Note: Suppose that for a given fund true α = 0.1 and other parameters are such that

optimal fund size q∗ = 5. If investors priors are incorrect, µ 6= α and q 6= q∗. q is a function

of investor beliefs about ability (which converge to true α as the funds ages and investors

observe returns) and the fee rate f (which is fixed). This means that q converges to q∗ only

if f is ex-post optimal, which in this example means f ∗ = α/2. In panels (a) and (b) µ < α

and f = α/2 = f ∗ such that q converges to q∗, with noise in the signal (panel (a)) and with

the noise in the signal turned off (panel (b)). In panel (c) µ < α and f = µ/2 < f ∗, which

means that q initially converges to q∗ (the blue area), but then overshoots and moves away

from q∗ (the red area). In other words, fund value-added does not increase monotonically

with age, but is n-shaped, as in panel (d). The same is true if µ > α and so f > f ∗.
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Chapter 3:

A structural model of local competition between mutual

funds

Mutual funds with similar investment strategies compete with each other for investment

opportunities. I set out a model of demand for mutual funds in which (i) funds are located

within a network depending on similarities in their investment strategies and (ii) funds

impose negative spillovers on each other through this network. I structurally estimate this

model using data on US equity mutual funds. I identify these network spillovers based on

how investors in a given mutual fund respond to the returns performance of its competitors.

I find that local competition has a material impact on fund size, in that absent competition

the median fund would be 20% bigger, and on cross-sectional variation in size. I perform

counterfactual simulations in which I demonstrate that luck can play an important role

even when funds are skilled and investors are rational: I find that luck accounts for 9% of

cross-sectional variation in mutual fund size.
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3.1 Introduction

There is significant cross-sectional variation in size amongst mutual funds. I examine two of

the many potential drivers of this variation that have been put forward in the literature: local

competition1 and luck.2 My contribution is that by building and structurally estimating a

model with a role for local competition and luck I am able to quantify their impact on mutual

fund outcomes in a way that, to my knowledge, has not been done before.

The starting point for my assessment of local competition is the extent of investment

strategy overlap, in that funds with similar strategies are competing for the same investment

opportunities. I proxy for investment strategy overlap between a given pair of funds by

estimating the distance between their respective betas: two funds with very similar (different)

investment strategies will have similar (different) betas. I combine these pairwise distance

measures into a network summarising the relative locations of all funds. I then show that

this network has a core-periphery structure, in that most funds either have many closely

located funds (the core) or very few (the periphery). This empirical observation motivates

my primary research question: how does a fund’s location within this network affect its

outcomes?

To answer this question, I set out a model based on Berk and Green (2004) in which

funds draw individual unknown ability to generate excess returns (“ability” henceforth). I

incorporate a role for local competition by assuming that there are spillovers across funds

along this network: all other things being equal, a large, closely located competitor makes it

harder for a given fund to earn excess returns. Demand for mutual funds is a spatially auto-

correlated process in which the effect of competition depends on a fund’s location within

the network and a parameter that governs the intensity of spillovers along that network. In

Berk and Green (2004) a fund’s size changes over time as investors observe its returns and

update their beliefs about its ability. In my model, these network spillovers mean that the

size of a given fund depends on investor beliefs about that fund, but also on investor beliefs

about that fund’s competitors. Consequently the size of a given fund changes in response to

the returns of that fund and the returns of its competitors.

I estimate this spatially auto-correlated demand model using data on US Equity funds

between 1990 and 2016. The challenge with identification is that the spatial structure implies

that the size of a given fund and the size of its competitors are endogenously co-determined

1Wahal and Wang (2011), Hoberg et al. (2018).
2Berk and Van Binsbergen (2015), Fama and French (2010).
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in equilibrium. This means that estimating the spillover parameter based on the extent to

which fund sizes co-move is likely to under-estimate the true competitive effect. Instead I

instrument for the size of a competing fund using the past excess returns earned by that fund.

Relevance follows from the long-established empirical observation that investors respond to

past performance (see, for example, Chevalier and Ellison (1997)). Validity is implied by

investor rationality in the model: past returns must be uncorrelated with contemporaneous

shocks to fund size, otherwise investors would have an incentive to change their holdings in

mutual funds. I allocate each fund to one of 10 clusters, and include time fixed effects for

each cluster to capture local variation in mutual fund outcomes. I include age fixed effects

to account for the fact that on average mutual funds grow over their lifetime irrespective of

their returns.

I find that the model fits the data well. The network spillover parameter is significant

and negative, indicating that there is a role for local competition in mutual fund outcomes.

This estimated spatially autocorrelated process gives me an intuitive, tractable model of

demand for use in counterfactuals.

I run two sets of counterfactual simulations. These are partial equilibrium only, in that

I model how demand changes in response to a counterfactual change, but hold fixed supply-

side choices by funds regarding entry, exit and fees. The first simulation quantifies the role of

competition: I turn off competition across funds by setting the network spillover parameter

to zero. I find that the median fund would be 20% bigger in this counterfactual scenario. I

also find that local competition is an important determinant of cross-sectional variation, in

that there is significant heterogeneity across funds depending on their location within the

network. Funds in the core are much more sensitive to local competition that funds in the

periphery. In other words, local competition has material effects on mutual fund outcomes.

The second set of simulations I run relates to the role of luck. There is an extensive

literature on whether successful mutual funds are skilled at producing excess returns or just

lucky and, relatedly, whether the investors in these mutual funds are rational or not. I

do not address this question directly, but instead I use these counterfactual simulations to

demonstrate that there is a role for luck even in a model in which funds are skilled and

investors are rational.

Specifically, by “luck” I mean two stochastic aspects of my model: the error in investor

priors (for example, when investors believe a fund is high ability when it is in fact low ability)

and the noise in fund returns (returns are only a noisy signal of true fund ability). These
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forms of luck must even out across funds (in other words, on average half the funds are

lucky and half are unlucky) and decay over time (in the limit investors observe a long set

of fund returns and develop precise beliefs about fund ability regardless of these particular

stochastic realisations). Nevertheless, the way in which investors form beliefs means that

these stochastic realisations can have persistent effects across time: the impact of a positive

prior draw or a positive return shock on investor beliefs only decays to zero as investors

observe an infinitely long returns history. Luck can have permanent effects even in the limit

if being unlucky results in a fund exiting.

To understand the role of luck in prior formation, I simulate investor demand replacing

their actual prior about that fund with their posterior having observed the fund’s returns.

A fund that is unlucky in this sense is one that investors initially thought was low ability, but

subsequently revised their beliefs upwards over time. Absent this error in prior formation, the

fund would have been bigger. To understand the role of luck in returns shocks, I simulate

investor demand turning off all inter-temporal variation in the signal that the investors

extract from excess returns.

This allows me to quantify the impact of luck for each fund. It averages out to zero

across funds, but can have material effects on individual funds: the median absolute impact

of luck on fund size is 9%, of which about 5% is due to priors and about 4% is due to return

shocks. In other words, even in a model with rational investors and skilled funds, luck is

responsible for a material proportion of observed cross-sectional variation in funds.

I also find that the impact of luck varies between funds that exited during my sample

period and funds that did not exit. Exiting funds were (i) more likely to experience unlucky

returns shocks towards the end of their life, (ii) more likely to experience lucky prior draws

which they subsquently under-performed (indicating that the trajectory of investor beliefs

is important for exit, as well as simply the level of those beliefs) and (iii) more likely to

experience extreme good or bad luck (indicating that the extent or volatility of luck is

important for exit, as well the particular realisation of luck).

In this paper I show that local competition between funds can be captured in a tractable,

estimable network model of demand. I use this estimated model to make two primary

contributions, in that I am able to quantify the impact of competition and the impact of

luck in a way that, to my knowledge, has not been done before.

I discuss the related literature below. In Section 2, I introduce the data and set out

some guiding empirical facts. In Section 3, I set out my model. In Section 4, I describe my
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empirical approach. In Section 5, I report my results. In Section 6, I undertake counterfactual

analyses. In Section 7, I conclude.

3.1.1 Related literature

This paper is related to two strands of literature regarding (i) competition amongst mutual

funds and (ii) the role of luck in mutual fund outcomes.

Pástor and Stambaugh (2012) set out a model in which there is homogeneous competition

amongst funds depending on the aggregate size of the industry. Wahal and Wang (2011)

and Hoberg et al. (2018) set out reduced form evidence that there is a local component to

competition that depends on the extent of investment overlap. There are a small number of

papers that analyse mutual fund competition in a structural econometric setting, including

Gavazza (2011) (which focuses on the role of the broader fund family) and Roussanov et al.

(2018) (which focuses on the role of marketing). The contribution of this paper is that it

considers local competition in a structural econometric setting, which ultimately allows me

to quantify the effect of local competition through counterfactual analysis.

There is a very large literature on mutual fund outcomes (Elton et al., 1993; Carhart,

1997; Busse et al., 2010; Bollen and Busse, 2005; Kosowski et al., 2006; Cremers and Petajisto,

2009; Kacperczyk et al., 2014; Chen et al., 2004; Pástor et al., 2015; Pollet and Wilson, 2008;

Kacperczyk et al., 2016; Kacperczyk and Seru, 2007; Huang et al., 2011) and in particular

whether these outcomes are the result of luck or skill (see, for example, Berk and Green

(2004), Berk and Van Binsbergen (2015), Fama and French (2010)). I structurally estimate

a model based on Berk and Green (2004) and use it to show that there is a role for luck even

in a model in which funds are skilled and investors are rational. Furthermore, I am able to

use my estimated model in counterfactual analysis to quantify the role of luck in a novel

way.

3.2 Data

I first describe how I select funds and calculate excess returns. I then describe the key

empirical facts that motivate my research question and guide my modelling.
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3.2.1 Sample selection

I obtain data on mutual fund characteristics and their monthly returns and assets from the

database maintained by the Center for Research in Security Prices (CRSP), The University

of Chicago Booth School of Business. I select data from January 1990 to December 2016. I

limit my sample to actively managed US Equity funds that (i) are never smaller than USD

1m in size, (ii) have at least 12 months of returns data and (iii) have data on their expense

ratio. This is broadly the standard approach in the literature (see for example Berk and

Van Binsbergen (2015) for an overview of mutual fund selection). I am left with a sample

of 3,420 funds and a total of 452,222 month-fund observations.

3.2.2 Calculating excess returns

I calculate excess returns following Berk and Van Binsbergen (2015). I regress returns in

excess of the risk-free rate (Rit) on a set of 11 common factors (Ft) which are the returns to

the main index funds operated by Vanguard (listed in the table below).3 The fund’s excess

return, αit is the residual in this regression:

Rit = βiFt + αit (1)

3This is a more reasonable benchmark for mutual funds than, for example, a benchmark involving
momentum investing returns that would be prohibitively costly to implement in practice. I refer to Berk
and Van Binsbergen (2015) for a fuller discussion.
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Table 3.1: Benchmark

Fund Name Ticker Asset Class

S&P 500 Index VFINX Large-Cap Blend

Extended Market Index VEXMX Mid-Cap Blend

Small-Cap Index NAESX Small-Cap Blend

European Stock Index VEURX International

Pacific Stock Index VPACX International

Value Index VVIAX Large-Cap Value

Balanced Index VBINX Balanced

Emerging Markets Stock Index VEIEX International

Mid-Cap Index VIMSX Mid-Cap Blend

Small-Cap Growth Index VISGX Small-Cap Growth

Small-Cap Value Index VISVX Small-Cap Value

3.2.3 Empirical facts

I set out four empirical facts:

1. Heterogeneity across funds in size at start of life: There is significant variation

in the initial size of a fund at the start of its life, as I show in Figure 3.1, even controlling

for the state of the economy at the time of entry.

2. Variation over time in relative fund size: The cross-sectional heterogeneity in

fund size is not fixed over time, in that the relative ranking of funds changes over time.

I show this for 5 representative funds in Figure 3.2: the biggest of these funds at the

start of their lives is only the 4th biggest 6 years later.

3. Heterogeneity across funds in excess return variability: Excess returns are more

volatile for some funds than for other funds. I show this heterogeneity in Figure 3.3.

4. Heterogeneity across funds in their location in β-space: I summarise hetero-

geneity in fund investment strategies by calculating the distance between the betas of

each pair of funds:

dij = || βi − βj || (2)
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This measure dij is a proxy for the similarity in the investment strategies of funds i and

j: if they have similar investment strategies, then it is likely that they also have similar

betas. I show the distribution of dij in Figure 3.4, and show that there is significant

variation in this figure across pairs. This distance measure can also be thought of as

representing a fund’s location within the network. I summarise the number of close

connections each fund has in in Figure 3.5, and show that there is evidence of a core-

periphery structure in β-space: some funds have lots of close connections (the core),

and some funds have very few (the periphery).

These empirical facts are the basis for my research question. Figure 3.5 shows that there

are observable differences in where funds are located in the network: what impact does this

have on competition between funds? To the extent that size represents investor beliefs about

fund skill, then Figure 3.1 shows that there is significant variation in investor priors about

funds at the start of their lives: how persistent are the effects of these priors? Figure 3.2

shows that investors updated these priors over time, in that some funds turned out to be

better or worse than initially believed: what is the impact of this error in prior formation?

These are the questions I seek to answer in this paper.
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Figure 3.1: Heterogeneity in fund size

(a) Initial size (b) Log initial size

(c) Log initial size conditional on M1 (d) Log maximum size

Note: Panel (a) shows the distribution of fund size in the first period of its life, excluding

the top 5% of funds by size. Panel (b) shows the distribution of the natural log of initial

size. Panel (c) conditions on M1, the level of the SP500 in the period in which the fund

entered. Panel (d) shows the log of the maximum size the fund attains during my sample.
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Figure 3.2: Relative variation in fund size

Note: This graph tracks the growth of 5 individual representative mutual funds that entered

in 2002 over the 6 years after their entry. The funds chosen are the 10th, 30th, 50th, 70th

and 90th percentiles by size at the time of entry. The relative ranking of these funds changes

materially over the course of this period: the largest of these funds, for example, is only the

4th largest after 6 years. Note that the median fund exits in its third year.
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Figure 3.3: Heterogeneity in excess return variability

(a) Coefficient of variation (b) Log coefficient of variation

Note: For each fund i, I calculate the mean excess return over the fund’s life µi and the

standard deviation in excess return σi. I report their ratio, which is the inverse of the

fund-specific coefficient of variation, in order to show that (1) there is significant variation

in excess returns and (2) there is significant heterogeneity across funds in the extent of this

variation.

Figure 3.4: Heterogeneity in β-space

(a) dij (b) log(dij)

Note: dij is a measure of distance between funds i and j in β-space. That is, dij is low

when βi and βj are similar.
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Figure 3.5: Core-periphery structure in β-space

Note: dij is the distance in β-space between funds i and j, as per Equation 2. For every fund,

I count the number of funds within a certain distance (the median of all dij) as a measure of

local competition. The distribution is bi-modal: some funds have lots of close competitors

(the core), some funds have very few (the periphery).

3.3 Model

I first set out a model of demand for mutual funds. I then discuss the role for luck in this

model.
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3.3.1 Demand

The model of demand is based on Berk and Green (2004), in that there are decreasing

returns to scale in the ability of a mutual fund to earn excess returns. To this model I add

an element of local competition, in that the ability of a fund is decreasing in the size of other

mutual funds as well as in its own size.

Mutual fund i earns gross excess return αgit: this is not the actual return that investors

receive, but is instead a notional return that the fund would earn on the first dollar of

investment before the impact of decreasing returns to scale. I define the total risk-adjusted

payout in dollar terms to investors from investing qit in mutual fund i with gross return αgit
and fee rate fi as:

TPit = qitα
g
it − C(qit)− qitfi

where C(qit) is a cost function representing the decreasing returns to scale in the ability to

earn excess returns. I parameterise the cost function as C(qit) = φiq
2
it where φi > 0, such

that when q > 0: C(q) > 0, C ′(q) > 0, C ′′(q) > 0, C(0) = 0 and limq→∞C(q) = ∞. The

net αni excess return is what investors actually earn after the impact of decreasing returns

to scale, and is simply this payout divided by the size of the investment:

αnit =
TPt+1

qit
= αgit −

C(qit)

qit
− fi = αgit − φiqit − fi (3)

To meaningfully take this model to data, I need to capture some of the ways in which

the ability of a fund to earn excess returns can vary intertemporally and in the cross-section.

To that end, I disaggregate the fund’s gross excess return into five components:

αgit = αi + εit + δa(it) + δt +
∑
j

θijqjt (4)

where:

• αi represents the fund’s true ability to generate returns. I allow it to vary across funds

but keep it fixed across time. This is a simple way of allowing some funds to be higher

ability than others.

• εit represents a fund-specific shock to ability at time t.

• δa(it) represents an age effect. I denote the age of fund i at time t as a(it), and I allow
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ability to vary with age. This captures, in a simple way, the possibility of learning

by doing. More practically, this variation will allow me to account for the empirical

observation in Figure 3.2 that funds tend to grow, at least initially, regardless of their

net returns.

• δt is a common time effect across all funds. In Coen (2020), for example, I show that

the size of funds varies with the business cycle.

• θijqjt represents the effect on mutual fund i of competition from mutual fund j. If

θij < 0 and mutual fund j is large then, all other things being equal, fund i finds it

harder to earn excess returns because there is more competition for the same investment

opportunities. θij varies across pairs and captures the intensity of this effect.

This specification nests that of Coen (2020). In that paper, I model specific types of

intertemporal variation in ability, whereas in this paper I leave the intertemporal variation

in ability as some general δt. In that paper I impose homogeneous competition between funds

(θij = θ for ∀i, j), whereas here I allow for the effects of competition to be heterogeneous

across pairs according to θij.

Investors choose qit before εit is realised. Investors do not know the true ability of the

fund αi, but form expectations based on the information available to them at the point of

investment, which I denote It−1. I define these expectations as eit ≡ E[αi | It−1]. All other

components of the return are known to the investor.

Investors supply capital with infinite elasticity to any fund with positive expected net

returns αnit, taking aggregate investment qt in the fund as given. In equilibrium, qt is then

such that E[αnit | It−1] = 0. Substituting in Equations 3, this means that:

qit =
eit + δa(it) + δt +

∑
j θijqjt − fi

φi
(5)

Investor demand for mutual fund i is therefore increasing in its expected ability eit,

increasing in its scalability φi, decreasing in its fee rate fi and decreasing in the extent of

local competition.

To complete the model of demand, I need to characterise the expectations formation

process behind investor beliefs eit. To do this, I make the following assumptions about the
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distribution of fund abilities:

• Ability draw: Funds draw ability from a normal distribution: αi ∼ N(µ, τ−1α ). This

type is not observed by investors or the funds themselves.

• Prior formation: At the start of the fund’s life, funds and investors observe an initial

signal αi0 about the true ability of fund i: αi0 = αi + vµi , where vµi is the error in the

prior. I assume that vµi ∼ N(0, σvi ) and vµi ⊥⊥ αi. Given this signal, investors form

fund-specific prior beliefs αi | αi0 ∼ N(µi, τ
−1
iα ). Note that I allow the precision of the

prior error σvi (and thus the precision of the updated beliefs τ−1iα ) to be heterogeneous

across funds: investors are more uncertain about some funds than others.

• Return shocks: Return shocks are independent of true ability and also normally

distributed: εit ∼ N(0, τ−1i,e ). The precision of these return shocks is also fund-specific,

but the relationship between the precision of return shocks and of the prior formation

is constant across funds: I define the homogeneous signal-to-noise ratio as λ =
τi,e
τi,α

.

In other words, investors are more uncertain about some funds than others, but this

greater uncertainty is equally true of both the funds’ priors and the funds’ return

signals.

Investors observe past net excess returns, αnis<t and from this can infer gross returns αgis.

Investors cannot separately identify αi from εis, but can extract a signal about αi given their

relative distributions.

Given these distributional assumptions, there are simple closed-form expressions for how

investors form and update their posterior beliefs about αi in responses to these signals. I

define the function g(Ait;λ) =
∑t−1

s=1
λ αnis

1+(s−1)λ and express mutual fund demand as follows:

qit =
1

φi

[
µi − fi + δa(it) + δt +

∑
j

θijqjt + g(Ait;λ)

]
+ uqit (6)

I add an error term, uqit, that represents shocks to qit beyond this expectations formation

process. This could include, for example, noise traders. I leave further discussion of this

error term and its distribution to the section below on my empirical analysis.

This equation contains endogenous mutual fund sizes on both sides. To solve for equilib-

rium fund size, I express the same equation in matrix notation. A bold variable indicates an

N × 1 vector stacking the non-bold variable (such that, for example, µ is an N × 1 vector
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stacking µi) and Γ is an N × N matrix with φi in position (i, i) on the diagonal and θij in

position (i, j) off-diagonal. It is then straightforward to invert Equation 6:

qt = Γ−1
[
µ− f + δa + δt + g(A;λ) + ut] (7)

This allows me to characterise the equilibrium effects of local competition. It implies that

the size of mutual fund i, qit is increasing in beliefs about the ability of fund i and decreasing

in beliefs about the ability of fund j, where the intensity of the competitive cross-effects

depends on θij and the relative positions in the network of i and j. If fund j receives a

positive shock to beliefs about its ability, αnjt > 0, then all other things being equal this

causes fund i to shrink in equilibrium.

3.3.2 The role of luck

I examine four stochastic elements of mutual fund size which I shall call “luck”.

• First, the size of a given mutual fund is sensitive to its random draw of an investor prior.

Two otherwise identical (including in true ability) mutual funds can draw different

priors and, as per Equation 7 this has a persistent impact on their size.

• Second, the size of a given mutual fund is sensitive to the random draw of investor

priors for its close competitors. Two otherwise identical funds can have their nearest

competitor draw differing priors and this would also have a persistent impact on their

size.

• Third, the size of a given mutual fund is sensitive to return shocks. These return

shocks impact the expectations formation process of investors and so have persistent

effects. Two otherwise identical funds that received a positive and a negative shock,

respectively, would have persistent differences in size. The timing of shocks matters as

well as their sign: consider a mutual fund A (mutual fund B) that receives a positive

(negative) returns shock at time t and a negative (positive) returns shock at time t′ > t.

Mutual fund A will be bigger than mutual fund B between t and t′.

• Fourth, the size of a given mutual fund is sensitive to return shocks of local competitors,

in an analogous way to above. A fund is unlucky if its closest competitor is lucky.
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I exclude quantity shocks: they are random and a form of luck, but they do not have

persistent effects.

Conditional on the fund surviving, these four forms of luck have persistent but not

permanent effects: in the limit, the investor observes enough fund returns to learn their true

ability. In other words, differences between funds brought about luck decay to zero over

time. The speed of this decay depends critically on λ, the signal-to-noise ratio of observed

returns. If this ratio is high, then returns are informative and random variation in investor

priors decay in importance quickly. If returns are informative, then the immediate impact

of returns shocks is bigger but that impact decays quickly.

Luck can, however, have permanent effects through its impact on firm failure. I do not

model the decision of mutual funds to exit, but the zero lower bound implicit in Equation

6 implies exit if investor beliefs are too low. If investor beliefs are such that fund i is not

expected to produce positive net returns even if qit is arbitrarily small (such that decreasing

returns to scale have no impact), then investors will invest nothing and the fund exits

permanently. Luck can in this way have a permanent effect if a fund exits because it drew

a poor prior or a negative returns shock early in its life.

The timing of returns shocks is particularly important in this context: a fund is more

likely to exit if it draws a negative returns shock in a ‘bad’ period in which δt is low. For

example, consider if fund A and fund B are identical and each draw a negative return shock,

but fund A draws a negative shock in bad times (δt is low) and exits, whereas fund B draws

it in good times and so does not exit.

The extent of this random variation varies across funds, because the variance of the

returns shock and the prior error varies across funds. Empirically, I set out in Figure 3.3

that excess returns are more variable for some funds than others. In other words, there is a

bigger role for luck for some funds than other funds.

The effect of luck therefore depends on (i) the specific realisations and timing of these

fund-specific random draws, (ii) the fund-specific volatility of these random draws and

(iii) the signal-to-noise ratio λ. The effect of luck depends on the values of these parameters

and is, therefore, an empirical question.

Finally, I emphasise that these elements are random within the context of the model. In

taking this model to the data, it is worth considering the impact of potential model mis-

specification on this definition of luck. If, for example, the fund can affect its prior or its

excess return volatility then, to a certain extent, what I am calling luck reflects these choices.
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3.4 Empirical approach

There are three aspects to my empirical approach: (1) I calibrate some parameters, (2) I

impose parametric restrictions on parameters relating to competition and (3) I estimate the

remaining parameters by matching observed quantities. I discuss each of these in turn.

3.4.1 Calibration

I follow Coen (2020) and calibrate φi and µi based on how qit evolves over time. I set φi

to be the inverse of the maximum size that fund i reaches in my sample: φ = 1
qi,max

, where

qi,max = maxt qit. This is effectively a fund-specific normalisation such that the product

qitφi ∈ [0, 1] for any i. This means that I do not use the cross-sectional variation in the size

of the funds to identify the other parameters, but only the variation over time. In other

words, I assume that Vanguard’s largest funds are not large relative to other funds because

they earned very large returns early in their life, they are large for fund-specific reasons that

I effectively encode and leave fixed in φi.

I infer µi from the size of fund i in the first period of its life. Setting t = 1 in Equation

6 and re-arranging: µi = qi1 − δi1. This results in computational benefits, relative to simply

estimating µi as a fixed effect, as it can be done outside of the main estimation loop. It also

better matches the interpretation of µi as an initial prior belief about fund ability at the

start of its life.

3.4.2 Parameterisation

Competition is heterogeneous according to θij. It would not be feasible to estimate all of

these parameters, so I follow the industrial organization literature by parameterising these

cross-effects by reference to characteristics rather than by reference to funds. The variation

in θij is intended to capture local variation in the extent to which funds are competing for

the same investment opportunities. The key characteristic I am seeking to measure therefore

is what Wahal and Wang (2011) refer to as overlap: the extent to which mutual funds have

the same holdings.

I use the distance in β-space, dij in Equation x, as a proxy for overlap, on the basis that

funds with similar holdings will have similar betas. If dij is large, then funds i and j do not

have similar holdings and θij is likely to be low. I define d̃ij = ln(1/dij) and parameterise
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θij as follows:

θij = θd̃ij (8)

Let D be the matrix with row-normalized d̃ij at coordinate (i, j) and 0 on the diagonal

and let Φ be a diagonal matrix with φi in position (i, i) on the diagonal and 0 off-diagonal.

D is in effect a network, and the location of a fund within this network determines the extent

of local competition it faces. Equation 6 for fund size can then be expressed as follows:

Φ qt = µ− f + δa + δt + g(A;λ)+θDqt + et (9)

Rearranging for equilibrium qt:

qt = [Φ− θD]−1
[
µ− f + δa + δt + g(A;λ) + et] (10)

In other words, mutual fund size is a spatially autocorrelated process where the measure

of spatial proximity between funds is in β-space. The effect of competition on fund i depends

on its location within the network relative to other funds and on the intensity of the spillovers

governed by θ.

3.4.3 Estimation

I estimate this spatially autocorrelated process by GMM. I calculate D by estimating a

fund’s β over its entire life and calculating distance as per Equation 2. I assume that the

fund’s location in β-space is exogenous to contemporaneous shocks to fund size. The spatial

structure implies that qjt is endogenous in Equation 9: an unobserved positive size shock to

fund i means that fund j is small all else being equal.

I instrument for qjt using the returns of fund j and its initial size, in the following first

stage:

qit = ω1 g(Ait;λ) + ω2 qi1 + ηit (11)

g(Ait;λ), as defined above, is a weighted average of past returns αnjt−1. In other words,

I identify the competitive effect of fund j on fund i by looking at how qit responds to the

returns of fund j, αnjt−1, conditional on the distance between them in β-space, d̃ij. I include

qi1 as a pre-determined proxy for fund size. I use these instruments to construct moments
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and estimate the parameters in Equation 9 by GMM.

The identifying assumption is that αnjt−1 is independent of the unobserved size shock

uqit. Within the context of the model uqit represents noise investors, and investor rationality

requires that this cannot be serially correlated: if noise trader error uqit were predictable

using time t− 1 information then rational investors would alter their holdings to account for

this.

In this sense identification comes from the model. It is worth, however, examining the

ways in which identification would fail if the model is mis-specified and so the residual

comprises more than just the impact of noise traders. In particular, the model implies that

αnjt−1 has an impact on qit only through qjt. Suppose instead there was a local, unobserved

component to excess returns that affected both fund i and fund j. In this case, αnjt−1 would

be a signal of this local, unobserved component and so qit would respond to this signal

directly. This would result in me underestimating the true impact of competition θij.

I try and account for the effect of any such mis-specification on identification by including

additional time dummy variables. I use statistical clustering tools to allocate each fund to one

of 10 clusters in β-space, where the kmeans++ algorithm that I use chooses the boundaries

of each cluster to minimise the total distance of each fund from the cluster centre. I then

include a separate time dummy for each cluster to account for local shocks within that

cluster.

Once I have estimated the parameters in Equation 9, it is then straightforward to infer

estimates of αgit from Equation 3, and from that τ−1i,e = std(α̂git). That is, I calculate the

return uncertainty for each fund from the observed variation in the fund’s excess returns.

From this, I can infer the fund-specific uncertainty in the prior: τ−1i,α = λ̂τ−1i,e . That is, I am

able to observe the fund-specific noise in returns and also how quickly investors respond to

those returns: given that investors respond to returns based on their signal-to-noise ratio λ̂,

this tells me the fund-specific uncertainty in the investors’ prior about the fund.

3.5 Results

I set out the results of my estimation in Table 3.2. I find that the model fits the data well. In

particular, allowing for local competition results in materially improved fit over the nested

model in which there is no local competition. I find that the parameter governing network

spillovers, θ, is significant and negative as expected.
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Table 3.2: Estimation results

[1] [2]

qit qit

λ 0.088∗∗∗

(0.002)

θ -0.150∗∗∗ -0.067∗∗∗

(0.014) (0.016)

µit 0.311 0.311

φit 0.037 0.037

Age FE Y Y

Time×Cluster FE Y Y

R2 0.70 0.74

No. obs 226,111 226,111

Note: Figures in parentheses are standard errors. ***, **, * indicate different from 0 at 1%,

5% and 10% significance, respectively. qit is the size of mutual fund i at time t, λ is sensitivity

to past returns and θ governs the impact of local competition. I calibrate fund-specific priors

µit and scalability φi and report the mean across funds here.

3.6 Counterfactual analysis

I run four counterfactual simulations. In the first counterfactual I quantify the role of

competition by comparing actual outcomes with counterfactual outcomes in which there is

no local competition.

The remaining counterfactuals relate to the role of luck, which as defined above I use

to mean errors in investor prior formation and return shocks. I do not observe true fund

ability and so cannot entirely remove the error in the investors’ prior about ability. My

model does, however, allow me to infer investor beliefs about a fund’s ability from the size of

the fund. This means that I can observe investors’ posterior beliefs taking into account its
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lifetime returns performance. To understand the role of luck in prior formation, for example,

I simulate investor demand replacing their actual prior about that fund with their posterior

having observed the fund’s returns. A fund that is unlucky in this sense is one that investors

initially thought was low ability, but subsequently revised their beliefs upwards over time.

Absent this error in prior formation, the fund would have been bigger. To understand the role

of luck in returns shocks, I simulate investor demand turning off all inter-temporal variation

in the signal that the investors extract from excess returns.

To describe these simulations more formally it is helpful to characterise my model for

qit as a function of, amongst other things, three things: (1) the effect of local competition

governed by θ, (2) investor priors about that fund µi, (3) fund returns {αgis}
Ti
s=1. In each

counterfactual I compare actual qit(θ, µi, {αgis}
Ti
s=1) with counterfactual qit in which I vary

one of these three elements.

1. The effect of competition: I assess the effect of competition by comparing actual

fund sizes with counterfactual fund sizes absent competition, which I simulate by set-

ting θ = 0. That is, I calculate qit(θ = 0, µi, {αgis}
Ti
s=1).

2. The effect of incorrect priors: Over time, investors observe fund returns and update

their initial priors to the following:

eit =
µi

1 + (t− 1)λ
+

λ
∑t−1

s αgis
1 + (t− 1)λ

(12)

I correct priors by setting the prior investor belief µi equal to the posterior given the

fund’s returns over its lifetime. That is, I calculate qit(θ, µi = eiTi , {α
g
is}

Ti
s=1).

3. The effect of random return shocks: αgit consists of true fund ability αi and an

idiosyncratic return shock. I switch off these return shocks by setting αgit = eiTi for ∀t.
That is, I calculate qit(θ, µi, {eiTi}

Ti
s=1).

4. The effect of incorrect priors and random return shocks: I correct priors and

remove random return shocks simultaneously, as I do individually in the previous two

counterfactuals. That is, I calculate qit(θ, µi = eiTi , {eiTi}
Ti
s=1).

In the figures and table that follow, I summarise along various dimensions the percentage

difference between this counterfactual quantity and actual quantity. If, for example, a fund’s

prior µi is lower than its posterior eiTi , then this number is positive and the fund was

“unlucky” with the draw of its prior.
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From these counterfactual simulations I draw three main conclusions. First, the effect

of competition is significant and heterogeneous. I summarise the effect of competition

in panel (a) of Figure 3.6. The median increase in fund size absent competition is 20.0%,

but there is significant variation across funds: for funds in the periphery this number is close

to zero, for funds in the core it can be closer to 50%.

Second, the effect of luck is significant and heterogeneous: I summarise the impact

of prior formation and return shocks in panels (b), (c) and (d) of Figure 3.6. Luck averages

out across funds, but not within funds: the average size of some funds over their lifetime is

materially affected by their priors and returns shocks. The median absolute impact of luck

across funds is 9%, of which about 5% is due to priors and 4% is due to return shocks.

Third, luck is related to exit. In Table 3.3 and Figure 3.7 I show the impact of luck

conditioning on whether a fund exited during my sample period or survived.

• I find that exit is related to return shocks in an intuitive way, in that exiting funds

were unluckier in the sense that they were more likely to experience negative return

shocks in the last few months of their lives than surviving funds.

• Exiting funds were luckier than surviving funds, however, in their prior draw. In other

words, exiting funds were more likely to under-perform an initial overoptimistic prior.

This suggests that the trajectory of investor beliefs is important for exit, as well as

simply the absolute level of those beliefs. Consider, for example, if investors had the

same posterior beliefs about fund A and fund B, but the investors’ prior beliefs at fund

entry were higher for A than for B. This counterfactual simulation indicates that A

would be more likely to exit than B.

• Exiting funds experienced more extreme good luck and bad luck than surviving funds.

In other words, the fund-specific volatility of luck seems to matter for exit as well as

the specific realisation of luck.
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Figure 3.6: The effect of competition and luck on mutual fund size

(a) The effect of competition (b) The effect of incorrect priors

(c) The effect of return shocks

(d) The effect of incorrect priors and returns

shocks

Note: I show the fund-specific percentage change in fund size resulting from a

counterfactual change. In panel (a), I remove the effect of local competition and show that

funds would be significantly bigger, to varying degrees, without local competition. In

panels (b), (c) and (d), I show the impact of correcting for various forms of luck, where a

positive (negative) number indicates the fund was unlucky (lucky) because correcting for

luck makes the fund bigger (smaller). In panel (b) I correct investor priors about funds, in

panel (c) I remove return shocks and in panel (d) I correct priors and remove return

shocks.
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Table 3.3: Differences between exiting and surviving funds

[1] [2]

%∆q Exiting funds Surviving funds

Correcting priors

Mean value 0.083 0.102

Median value 0.008 0.026

Mean absolute value 0.357 0.189

Median abs. value 0.213 0.123

Removing return shocks

Mean value 0.011 0.001

Median value 0.011 0.004

Mean absolute value 0.119 0.033

Median abs. value 0.056 0.015

Note: I summarise the percentage change in mutual fund size resulting from (1) correcting

priors and (2) removing return shocks, where the bigger the number the more unlucky the

fund. I do this for funds that exited during my sample period and funds that survived. I find

that on average exiting funds were luckier than surviving funds in their draw of investor prior

beliefs, but unluckier in their return shocks. Exiting funds were more affected by luck in

absolute terms than surviving funds, indicating their priors and returns were more volatile.
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Figure 3.7: Differences between surviving and exiting funds

(a) The effect of incorrect priors (b) The effect of return shocks

Note: This figure shows the cumulative distribution functions corresponding to panels (b)

and (c) of Figure 3.6, but conditioning on whether the fund exited during my sample

period or survived. As described in Figure 3.6, a positive (negative) number on the x-axis

indicates the fund was unlucky (lucky). Exiting funds had more extreme lucky and unlucky

outcomes.

3.7 Conclusion

I estimate a network of investment strategy overlap and show that a given fund’s location

within this network has a material impact on its size. I then build and use structural model

of demand to show quantitatively how luck can have persistent and in some cases permanent

effects on mutual fund outcomes even when funds are skilled and investors are rational.

To more fully understand local competition between mutual funds it is necessary to

consider two further issues. First, I consider only the demand-side behaviour of investors,

not the supply-side behaviour of funds when they decide to enter, exit or set fees. Modelling

the supply-side is challenging in this context in which funds are heterogeneously located in

the network, as it involves forming expectations over the dynamics of every other fund. It

would, however, permit analysis of the equilibrium effects of counterfactual changes. Second,

I take a fund’s location within the network as given, but a natural starting point for further

work would be to endogenise a fund’s location choice (or, in other words, to consider network

formation as well as network spillovers).
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