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Abstract

Roads are instrumental to market access. Electricity is a key technology

for modern production. Both have been widely studied in isolation. In

reality, infrastructure investments are commonly bundled. How such big push

infrastructure investments interact in causing economic development, however,

is not well understood. To this end, I first develop a spatial general equilibrium

model to understand how big push infrastructure investments may differ

from isolated investments. Second, I track the large-scale road and electricity

network expansions in Ethiopia over the last two decades and present causal

reduced-form evidence confirming markedly different patterns: access to an

all-weather road alone increases services employment, at the expense of

manufacturing. In contrast, additionally electrified locations see large reversals

in the manufacturing employment shares. Third, I leverage the model to

structurally estimate the implied welfare effects of big push infrastructure

investments. I find welfare in Ethiopia increased by at least 11% compared to

no investments, while isolated counterfactual road (electrification) investments

would have increased welfare by only 2% (0.7%).
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Chapter 1

Introduction

Economic development is strongly associated with structural transformation

out of agriculture.1 A long literature has studied specific infrastructure

expansions as potential drivers of development and structural transforma-

tion.2 In reality, infrastructure expansions are commonly bundled or tightly

sequenced: famous examples include the New Deal, the Tennessee Valley

Authority (TVA), the Soviet State Commission for Electrification (GOELRO)

or the most recent Chinese Belt and Road Initiative (BRI).3 How such

1Documented by Lewis (1954), Nurkse (1953), Schultz (1953) and Rostow (1960), this
association was confirmed empirically by Kuznets (1973); cf. Figure (8.1) for contemporary
descriptive evidence.

2Krugman (1991) and Krugman and Venables (1995) highlight transport infrastructure as
driver of industrialisation. Contributions on its development effects include Michaels (2008),
Banerjee, Duflo and Qian (2012), Faber (2014), Donaldson (2018) and Asher and Novosad
(forthcoming). Other isolated infrastructure analyses study e.g. electrification (cf. Dinkelman
(2011), Lipscomb, Mobarak and Barham (2013), Rud (2012), Burlig and Preonas (2016), Fried
and Lagakos (2017), Kassem (2018)), schools (cf. Duflo (2001)) or dams (cf. Duflo and Pande
(2007)).

3New Deal: interstate highways, public buildings, tunnels, bridges, airports, rural
electrification; TVA: electrification, dams, roads, canals, libraries; Soviet GOELRO: power
plants, roads, large-scale industrial complexes; Chinese BRI: roads, railroads, ports, electric
supergrids, industrial zones.
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combinations of infrastructure investments interact, however, is not well

understood.4

This paper asks how the interaction of infrastructure investments affects

economic development. I study the large-scale road and electricity network

expansions in Ethiopia over the last two decades – a recent prime example

of rapid big push infrastructure investments in a low income country. I

provide new evidence that the interaction of two particular kinds of large-scale

infrastructure investments matters for structural transformation and welfare in

a low income country.5 Such interactions may be crucial to understand the

contested effects of electrification.

First, I develop a spatial general equilibrium model with many locations

and multiple production sectors and expose the economy to two distinct,

possibly interacted infrastructure investments: road construction (which de-

creases trade costs for all tradeable sectors) and electrification (which only

benefits production of the ‘modern’ sectors, i.e. manufacturing and services).

As shown elsewhere, previously remote locations that gain a new road lose

manufacturing employment (Faber, 2014; Baum-Snow, Henderson, Turner,

Zhang & Brandt, 2018). In contrast, I show how locations’ road connection

combined with electrification allows manufacturing employment to recover.

Therefore, big push infrastructure can exhibit markedly different structural

transformation patterns than isolated infrastructure investments.

4A notable exception is Kline and Moretti’s (2014) study of the long-term implications of
the TVA.

5In line with a long literature in macroeconomics (Herrendorf, Rogerson & Valentinyi,
2014), I define structural transformation as the reallocation of employment across sectors of
the economy.
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Second, in order to test these predictions empirically, I provide new,

geo-identified data on the rapid, big push infrastructure expansion drive in

Ethiopia: over the course of only two decades, the road network quadrupled,

whereas the electric grid doubled in extent.6 I track the roads and electricity

network expansions over time and across space, and link this infrastructure

data with information on local economic activity from country-wide household

surveys. This allows me to analyse how locations’ change in infrastructure

access translates into structural transformation and welfare. I provide evidence

on how roads alone and roads interacted with electrification give rise to

opposing structural transformation patterns in newly connected locations.

Third, I take these reduced-form moments to the model and develop

a structural estimation procedure to estimate the aggregate and welfare

effects of big push infrastructure. I do so by estimating a new elasticity,

i.e. the elasticity of manufacturing and services productivity with respect to

electrification, which I then feed back to the baseline-calibrated model to

estimate counterfactual road and/or electricity investment schemes and their

effects on welfare.

Methodologically, to show how asymmetric infrastructure investments

from roads and electrification can amplify heterogeneity in sectoral em-

ployment across space, my theoretical framework features: Ricardian inter-

regional trade (Eaton & Kortum, 2002), to capture a rich geography of

heterogeneous locations; general equilibrium implications of road investments

6The second-most populous country in Sub-Saharan Africa, Ethiopia currently has a
population of approximately 105 million, covering an area approximately the same as France
and Spain (or: California and Texas) combined. During the period of big push infrastructure
investments, the landlocked country experienced dramatic economic development and poverty
reductions: the share of the population living on less than $1.90 per day (in 2011 PPP) fell from
55% in 1999 to 27% in 2016 (World Bank, 2016).
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via changes in trade costs that lead labour to reallocate (Allen & Arkolakis,

2014; Redding, 2016); general equilibrium implications of electrification via

its differential effect on productivity across sector-location pairs (Bustos,

Caprettini & Ponticelli, 2016); and, finally, changes in sectoral employment

as outcome of interest that captures the underlying infrastructure-induced

effects (Michaels, Rauch & Redding, 2011). Intuitively, the combination of

heterogeneous stochastic productivity draws, consumers’ love of variety for

tradeables and heterogeneous trade links creates a heterogeneous (‘core–

periphery’) allocation of labour across space (Redding, 2016). The interaction

of big push infrastructure investments amplifies this heterogeneity in previ-

ously understudied ways, although such combinations of infrastructure shocks

are empirically common.

A key identification challenge is that infrastructure investments are likely

endogenously allocated with respect to sectoral employment or growth. The

extremely high cost of such investments in low income countries demand

conscious allocation decisions, for example by targeting locations with the

highest growth potential first.7 Therefore, ordinary least squares estimation

of the effects of infrastructure allocation are more likely than not biased.8

Facing two potentially endogenous infrastructure investments with respect

to sectoral employment outcomes across time and space, I develop two instru-

mental variables to overcome these endogeneity concerns: for electrification, I

7For example, a single electric substation required to step down high transmission voltages
to medium and low distribution voltages cost approximately $25m in Ethiopia in 2016. A
single kilometre of 132kV transmission line cost approx. $200k and a single kilometre of two-
lane asphalt road approx. $500k.

8Similarly, one would expect difference-in-differences estimators (where both parallel
trends and stable unit of treatment value assumptions are not unlikely to be violated) to be
biased.
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exploit locations’ proximity to straight transmission lines that connect newly

opening hydropower dams with Addis Abeba.9,10 Intuitively, the electrification

instrumental variable makes use of the fact that the likelihood of a location

getting electrified increases dramatically from the exogenous year of dam

opening onwards if that location happens to lie along a straight line between

major sources of supply and demand.11 For the road network expansion, I

exploit locations’ orthogonal distance to Italian colonial road arteries. These

historic trunk roads were drawn freely by Mussolini himself to conquer and

occupy all of Ethiopia’s ancient kingdoms, starting from Asmara (in today’s

Eritrea) and Mogadishu (in today’s Somalia). Although most of these colonial

roads from the 1930s deteriorated, hundreds of small bridges across streams

and rivers remained, from which reconstruction of the Ethiopian all-weather

road network re-started in the 1990s.12 Temporal variation in the roads

instrument can be generated after realising, firstly, that road construction

falls under the authority of the eleven regional governments in Ethiopia

and, secondly, that regions only had limited resources to build. Therefore,

I construct an algorithm that determines, for each region, all locations’

orthogonal distances to the Italian colonial straight line, calculates regions’

9Dams were historically selected for construction according to their geographic suitability,
not according to which places lie along the, on average several hundred kilometre long, path
to the capital.

10The dam openings employed for my identification strategy constitute approximately 75%
of total generation capacity in 2016, while overall electricity generation in Ethiopia is 98%
hydro-powered. Electricity demand is geographically focused in Addis, which demands in
excess of 80% of electricity supply.

11Akin to many major infrastructure projects, dam commissioning time deviates widely
from plan, with even experts from the managing utility, Ethiopian Electric Power, unable to
predict delays.

12The large number of bridges and crossings was made necessary due to the arbitrary,
several mountain ranges-crossing routing drawn up by Mussolini, which Italian construction
followed remarkably closely despite its apparent disconnect with reality in terms of the adverse
terrain.
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annual budget and then proceeds in building out this budget until the annual

mileage allocation has been reached. First stages are strong and robust

throughout.13

While the reduced-form provides estimates on how changes in infra-

structure relate to changes in structural transformation, the aggregate effects

implied by these causal differences are likewise of interest. To this end, I

inform the spatial general equilibrium model with the reduced-form moments

and structurally estimate the aggregate and welfare effects of big push infra-

structure against counterfactual investments. I develop a five-step structural

estimation procedure: first, to link road investments to changes in trade

costs, a model object, I measure effective, terrain-adjusted distances from each

location to each other in my sample of 689 Ethiopian districts.14 Alluding

to spatial arbitrage, I then estimate trade costs from price gaps between

origin-destination pairs of barcode-level goods, from which I can derive an

elasticity of trade with respect to distance for all goods. Second, I calibrate

the model on baseline observables to obtain baseline sectoral productivities.

Third, I set up a moment condition based on the reduced-form estimates of

how infrastructure investments affect employment across sectors and make a

functional form assumption about how productivities in manufacturing and

services are affected by electrification. Fourth, I numerically solve the baseline-

calibrated model forward until the moment condition holds in terms of the

model’s endogenous variables, such as sectoral employment shares (Faber &

13First stages and 2SLS results using three instruments (roads IV, electricity IV and their
interaction) for the two endogenous variables (roads and the roads and electricity interaction)
are qualitatively similar.

14Districts cover, on average, an area of appox. 40 by 40km with a population of
approx. 150,000.
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Gaubert, 2016). This step allows me to estimate a new object: the elasticity

of manufacturing and services productivity with respect to electrification.

Fifth, I structurally estimate welfare under big push infrastructure. Given the

electrification elasticity, I can also estimate roads-only and electrification-only

counterfactuals.

In the reduced-form, I find starkly different patterns of big push infra-

structure on sectoral employment compared to only road investments: roads

alone cause services employment to increase at the expense of agriculture and,

especially, manufacturing employment. In contrast, the interaction of roads

and electrification causes a strong reversal in manufacturing employment.

This big push infrastructure effect on sectoral employment appears material

since only households in big push infrastructure locations report significantly

increased household expenditure and higher real consumption, as proxies for

income (Deaton, 2003) and economic growth (Young, 2012), respectively.

The structural estimation provides an additional result: that big push

infrastructure investments appear to exhibit aggregate welfare effects that

are approximately an order of magnitude larger than those arrived at by

isolated counterfactual investments of only roads or only electrification. This

finding is particularly interesting in light of recent puzzling evidence in the

electrification literature: whereas studies aimed at estimating aggregate effects

of electrification find large, transformative effects on economic development

(cf. Lipscomb et al. (2013), Rud (2012) and Kassem (2018)), studies aimed at

estimating its microeconomic effects find consistently very small or virtually

zero effects (cf. Lee et al. (2014), Lee, Miguel and Wolfram (2016) and

Burlig and Preonas (2016)). My paper adds a new insight: that interactions
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of infrastructure investments can give rise to potentially large effects on

economic development. In my particular context, the combination of market

access provided by roads infrastructure and the positive productivity effect of

electrification on non-agricultural production is key.

I provide further reduced-form evidence on the underlying channels of

effects with respect to: heterogeneity across space, occupation- and industry-

level patterns of structural transformation, distinct demographic profile changes

in the labour force in big push infrastructure locations, and further suggestive

evidence on the potential underlying modernisation in such locations.

For example, the strong spatial heterogeneity in response to infrastructure

shocks predicted by the model is directly confirmed in the reduced-form: dis-

tricts close to larger towns see the largest adverse manufacturing employment

effects, whereas more remote places appear relatively shielded due to transport

cost remaining high (cf. Behrens, Gaigné, Ottaviano and Thisse (2006)). In line

with the model, it is also the former locations that disproportionately benefit

from electrification.

Closer inspection of the structural estimation results on welfare provides

intuition on why big push infrastructure investments matter: in counterfactuals

without electrification, road-receiving locations almost exclusively belong to

the pool of previously peripheral locations with low manufacturing and ser-

vices productivity vis-à-vis the core, such that welfare gains from integration

are modest. Similarly, electrification alone, under a baseline road network

of late 1990s extent, mostly increases productivity in remote locations with

extremely high transport costs. Hence, although some positive welfare effects

driven by local demand are predicted, electrified locations miss out on other
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regions’ increased import demand for their newly electrified manufacturing

varieties. Only the interaction of infrastructure investments reaps both sources

of welfare gains.

The remainder of this thesis is organised as follows: Chapter 2 develops a

simple spatial general equilibrium model. Chapter 3 introduces the empirical

context in Ethiopia and describes the data. I then present my reduced-

form empirical strategy (Chapter 4) and the reduced-form results (Chapter 5).

Chapter 6 details the structural estimation strategy, provides welfare results

and studies policy counterfactuals. Chapter 7 concludes.
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Chapter 2

Spatial General Equilibrium Model

To guide the empirical analysis throughout this paper, I present a spatial gen-

eral equilibrium model characterised by the following broad features: firstly,

locations differ in their productivity, geography and trade links with each

other, as in a multi-region Ricardian trade setup à la Eaton and Kortum

(2002). Secondly, road investments are assumed to have general equilibrium

effects via trade costs, the reallocation of labour across space and the resulting

changes in trade across (many) locations as in Allen and Arkolakis (2014)

and Redding (2016). Third, electrification investments are assumed to have

general equilibrium effects via productivity, similar to models of differential

productivity shocks across space such as Bustos et al. (2016). Lastly, I assume

the economy to consist of multiple sectors of production such that changes

in sectoral employment across locations (i.e. spatial structural transformation)

capture an outcome of interest as in Michaels et al. (2011) and Eckert and Peters

(2018).
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2.1 Setup

My theoretical framework follows the spatial general equilibrium model of

structural transformation proposed by Michaels et al. (2011), which combines

the canonical Helpman (1998) model with an Eaton and Kortum (2002)

structure of Ricardian inter-regional trade.1 I extend this framework by adding

non-tradeable services as a third sector of the economy, which, as I show below,

captures both a theoretically and empirically relevant aspect of the economy.2

Furthermore, I expose the economy to two distinct, spatially-varying, but

potentially interacted shocks: a trade cost reduction from new roads and a

productivity shock affecting non-agricultural sectors of the economy in newly

electrified locations.

A geography in my setting consists of many locations, n ∈ N, of

varying land size (Hn) and endogenous population (Ln). Consumers value

consumption of agricultural sector final goods, CT, manufacturing sector final

goods, CM, services, CS, and land, h, (which one may call ‘housing’). Utility

of a representative household in location n is assumed to follow an upper tier

Cobb-Douglas functional form over goods and land consumption, scaled by a

location-specific amenity shock ηn:

Un = ηnCα
nh1−α

n (2.1)

I assume 0 < α < 1. The goods consumption index is defined over

consumption of each tradeable sector’s composite good and services:

1Uy, Yi and Zhang (2013) provide a related model of structural change in a setting of
Ricardian international trade.

2Desmet and Rossi-Hansberg (2014), Coşar and Fajgelbaum (2016) and Nagy (2017)
provide alternative two-sector models that likewise address questions of spatial development
and structural change.
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Cn =
[
ψT
(

CT
n

)ρ
+ ψM

(
CM

n

)ρ
+ ψS

(
CS

n

)ρ]1/ρ
(2.2)

I follow a long macroeconomic literature on structural transformation

and assume consumption of sectoral composite goods to be complementary,

i.e. 0 < κ = 1
1−ρ < 1. As highlighted by Michaels et al. (2011), the upper-tier

Cobb-Douglas and middle-tier CES utility formulation admits both prominent

sources of structural transformation proposed in the macroeconomic literat-

ure: differential productivity growth across sectors (cf. Baumol (1967) and Ngai

and Pissarides (2007)) as well as non-homothetic preferences that embody

Engel’s law of an income elasticity of demand below one in food-producing

sectors such as agriculture (cf. Matsuyama (1992), Kongsamut, Rebelo and Xie

(2001) and Herrendorf, Rogerson and Valentinyi (2013)).

Consumers exhibit love of variety for both tradeable sectors’ goods, CT

and CM, which I model in the standard CES fashion, where n denotes the

consumer’s location and i the producer’s location, whereas j is a measure of

varieties. Consumption of each tradeable sector’s good is defined over a fixed

continuum of varieties j ∈ [0, 1]:

CT
n =

[
∑
i∈N

∫ 1

0

(
cT

ni(j)
)ν

dj

] 1
ν

(2.3)

where I assume an elasticity of substitution across varieties, ν, such that

varieties within each sector are substitutes for each other, σ = 1
1−ν > 1.

An equivalent formulation, integrated over a continuum of M-sector varieties
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cM
ni (j), yields manufacturing sector goods consumption, CM

n . Equation (2.4)

provides the classic Dixit-Stiglitz price index over traditional sector goods:3

PT
n =

[
∑
i∈N

∫ 1

0

(
pT

ni(j)
)1−σ

dj

] 1
1−σ

(2.4)

On the production side, firms in a given location and tradeable sector

produce varieties for consumption in (potentially) many other locations.

Production of varieties in both tradeable sectors uses labour and land as inputs

under constant returns to scale subject to stochastic location–sector specific

productivity draws.

YT
n = zT

(
LT

n
µT

)µT (
hT

n
1− µT

)1−µT

(2.5)

YM
n = zM

(
LM

n
µM

)µM (
hM

n
1− µM

)1−µM

(2.6)

where 0 < µT, µM < 1 and, zK denotes the sector-location-specific

realisation of productivity z for variety j in sector K ∈ {T, M} and location

n. Following Eaton and Kortum (2002), locations draw sector-specific idiosyn-

cratic productivities for each variety j from a Fréchet distribution:

FT
n (z

T) = e(−AT
n zT)

−θ

(2.7)

FM
n (zM) = e(−AM

n zM)
−θ

(2.8)

It follows from the properties of the Fréchet distribution that the scale

parameters, AT
n and AM

n , govern the average sectoral productivity in location n

3The manufacturing sector’s Dixit-Stiglitz price index, PM
n , follows an equivalent

formulation integrated over pM
ni (j)
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across all varieties, since, for example, larger values of AK
n decrease FK

n (zK)

and thus increase the probability of higher productivity draws, zK, for all

tradeable sector varieties K ∈ {T, M} in region n. The shape parameter, θ,

determines the variability of productivity draws across varieties in a given

location n, with lower θ values implying greater heterogeneity in a location’s

productivity across varieties. Since the empirical application focuses on sector-

location specific average productivity shocks, I assume the shape parameter, θ,

to be the same across sectors and locations.

Trade in both sectors’ final goods is costly and trade costs are assumed

to follow an iceberg structure: more goods have to be produced at origin

since parts ‘melt away’ during transit to its intended destination location for

consumption. I denote trade costs between locations n and i as dni, such that

quantity dni > 1 has to be produced in i for one unit to arrive in n. By

assumption, within-region consumption of locally produced goods does not

incur trade costs, i.e. dnn = 1. I also assume that trade costs are the same

across sectors (dT
ni = dM

ni ), symmetric (dni = din) and that a triangle inequality

holds between any three regions i, n, o, dni < dnodoi.

Given perfect competition in both production sectors, the price of a given

T-sector variety, pT
ni(j), equals marginal cost, weighted by factor shares, inverse

productivity and trade costs:

pT
ni(j) =

wµT

i r1−µT

i dni

zT
i (j)

(2.9)

Similarly standard, relative factor demand equals inverse, factor share-

weighted, factor prices, where transport cost cancel out due to the symmetric

overuse of factors:
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hT
i

LT
i
=

(1− µT)

µT
wi

ri
(2.10)

Given Fréchet-distributed productivity shocks per variety (and location),

each location (n) will buy a given variety from its minimum-cost supplier

location (i):

pT
ni(j) = min{pT

i (j); i ∈ N} (2.11)

Eaton and Kortum (2002) show how such a characterisation of prices and

origin-destination trade between locations i and n in varieties j gives rise

to a formulation of the share of expenditure destination location n spends

on agricultural sector (and equivalently manufacturing sector) final goods

produced in origin i:

πT
ni =

AT
i

(
wµT

i r1−µT

i dni

)−θ

∑k∈N AT
k

(
wµT

k r1−µT

k dnk

)−θ
(2.12)

In this gravity-style equation, the traditional sector’s shape parameter,

θ, which governs the heterogeneity of within-location productivities across

varieties, determines the elasticity of trade with respect to production and

trade costs.

Production of non-tradeable services also uses labour and land as inputs,

but output is a single homogeneous ‘services good’:

YS
n = AS

n

(
LS

n
µS

)µS (
hS

n
1− µS

)1−µS

(2.13)

Throughout, I assume agriculture to be the most and services the least land-

intensive sector, µT < µM < µS. Without trade in services, the non-tradeable
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services good’s price equals marginal cost:

PS
n =

wµS

n r1−µS

n

AS
n

(2.14)

Within each location, the expenditure share on each tradeable sector’s

varieties and services depends on the relative (local) price of each sector’s

(composite) good:

ξK
n =

(
ψK)κ (PK

n
)1−κ

(ψM)
κ (PM

n
)1−κ

+ (ψT)
κ
(PT

n )
1−κ + (ψS)

κ (PS
n
)1−κ

, K ∈ {T, M, S} (2.15)

Since κ is assumed to lie between zero and one demand between sector

goods is inelastic. Therefore, a sector’s share of (goods) consumption

expenditure is increasing in its relative price index.

Given the properties of the Fréchet distribution of productivities, tradeable

sectoral price indices can be further simplified to arrive at expressions that

only depend on factor prices, productivities and transport cost, as well as

parameters. Equation (2.16) presents the simplified T-sector price index. An

equivalent formulation holds for the M-sector.

PT
n = γ

[
∑

k∈N
AT

k

(
wµT

k r1−µT

k dnk

)−θ
]−1/θ

= γ
(

ΦT
n

)−1/θ
(2.16)

where ΦT
n = ∑k∈N AT

k (w
µT

k r1−µT

k dnk)
−θ and γ = [Γ ((θ + 1− σ)/θ)]

1
1−σ . Γ(·)

denotes the Gamma function and I assume θ + 1− σ > 0 to ensure this function

is defined. The above simplified tradeable sector price indices can in turn be

used to express expenditure shares.
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To arrive at a spatial equilibrium, I provide conditions for land market

clearing, labour market clearing and a labour mobility condition. For an

equilibrium in the land market, total income from land must equal total

expenditure on land, where the latter summarises land expenditure by

consumers, M-sector firms, T-sector firms and S-sector firms. I assume land

is owned by goods-consuming landlords who do not otherwise supply labour.

In the empirical setting of Ethiopia, where land is overwhelmingly owned by

the state, one may think of landlords as equivalent to the local government

which spends its income from land on goods and land consumption itself.

The land market clearing condition can be stated as follows:

rnHn = (1− α) [wnLn + rnHn]

+ ∑
k∈N

πT
knξT

k

(
1− µT

)
α [wkLk + rkHk]

+ ∑
k∈N

πM
knξM

k

(
1− µM

)
α [wkLk + rkHk]

+ πS
nnξS

n

(
1− µS

)
α [wnLn + rnHn]

(2.17)

Similarly, labour market clearing requires that total labour income earned

in one location must equal total labour payments across sectors on goods

purchased from that location everywhere:

wnLn = ∑
k∈N

πT
knξT

k µTα [wkLk + rkHk]

+ ∑
k∈N

πM
knξM

k µMα [wkLk + rkHk]

+πS
nnξS

nµSα [wnLn + rnHn]

(2.18)
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Finally, and to close the model, free mobility of workers across locations

implies that workers will arbitrage away any differences in real wages across

locations, such that real wages across all locations must be equalised in

equilibrium. In other words, the wage earned by workers in a given location

after correcting for land and goods prices, as well as a location’s amenity value,

must be equalised:

Vn = V̄ =
αα(1− α)(1−α)ηnwn

[Pn]
α/(1−κ) r(1−α)

n

, ∀n (2.19)

where Pn =
(
ψM)κ (PM

n
)1−κ

+
(
ψT)κ (PT

n
)1−κ

+
(
ψS)κ (PS

n
)1−κ. Once sec-

toral price indices in the denominator are substituted for with equation (2.16),

the equivalent M-sector formulation and equation (2.14), the labour mobility

condition [eq. (2.19)] can also be expressed only in terms of productivities,

trade costs and factor prices.

2.2 General equilibrium

For each location, and given parameter values (α, κ, µT, µM, µS, θ, σ), a matrix

of trade costs (dni) and vectors of sectoral productivities (AT
n , AM

n , AS
n), the

model admits three equations for the three endogenous variables in each

location: land market clearing [eq. (2.17)], labour market clearing [eq. (2.18)]

and the labour mobility condition [eq. (2.19)] allow to solve for a general

equilibrium of the model in terms of its core endogenous variables wages

(wn), land rental rates (rn) and population (Ln). Michaels et al. (2011) prove

existence and uniqueness for the two-sector version, which follows through to

the three-sector version presented here.
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The endogenous variables of interest for the empirical analysis, sectoral

employment, LT
n , LM

n , LS
n (or sectoral employment shares, λK

n = LK
n /Ln for each

sector K ∈ {T, M, S}, respectively) can be derived from the unique solution

for wages, rental rates and population with the help of sectoral labour market

clearing. Analogous to the labour market clearing condition above, I assume

that each sector’s labour income has to likewise equal total sectoral labour

payments on goods purchased from that location everywhere:

wnLT
n = ∑

k∈N
πT

knξT
k µTα [wkLk + rkHk] (2.20)

wnLM
n = ∑

k∈N
πM

knξM
k µMα [wkLk + rkHk] (2.21)

wnLS
n = πS

nnξS
nµSα [wnLn + rnHn] (2.22)

As described in Section (6) below, the general equilibrium conditions may

also be exploited to back out (empirically unobserved) sectoral productivities

given (empirically observed) population and sectoral employment shares via

calibration of the model. In contrast to Redding’s (2016) hypothetical setting,

I am unable to invert the model to solve for unobserved productivities (and

amenities) since rental rates are generally not available in the Ethiopian context

given the almost exclusively nationalised status of land ownership during my

study period. Therefore, instead of inverting the general equilibrium system

to determine productivities, I have to calibrate the model to back out the

unique combination of sectoral productivities for each location such that the

observable data constitutes a spatial equilibrium.
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2.3 Numerical solution algorithm

To solve this highly non-linear system of equations, I develop an algorithm

that numerically solves for the unique equilibrium values of workers, wages

and rental rates. The algorithm follows an iterative procedure, consisting of

an inner and outer envelope. First, for given initial guesses of workers, Linitial
n ,

in each location, I adjust an initial wage guess, winitial
n to ensure the labour

market clears in each location, while simultaneously adjusting an initial rental

rate guess, rinitial
n to ensure the land market clears in each location. Once

factor prices converge to clear factor markets in each location, I check for

deviations from real wage equalisation (as predicted by the labour mobility

condition under converged factor prices). I then adjust the initial guess of

worker allocation across locations to arbitrage away any potential real wage

deviations from its median until real wages are equalised everywhere.

The numerical solution provides further insights into the drivers of hetero-

geneity in the spatial general equilibrium system: for symmetric productivities

and trade costs across sectors, sectoral employment shares converge to a

constant, independent of location.

In contrast, to achieve a unique equilibrium with heterogeneous sectoral

employment across locations, the above assumption of either heterogeneity in

productivity across sectors within locations, or differential trade costs across

sectors are sufficient. Since I aim to empirically estimate relevant effects of

shocks which manifest themselves in sectoral heterogeneity across locations,

I opt for the empirically more realistic assumption of heterogeneous sectoral

productivities within locations, that is AM
n 6= AT

n 6= AS
n, while trade costs faced

by firms in a given location are the same across (tradeable) sectors.
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2.4 Comparative statics and simulations

For the purposes of studying the effects of infrastructure investments on sec-

toral employment, I assume that investments in the all-weather road network

decrease transport costs between locations and investments in electrification

increase local manufacturing and services sector productivities in electrified

locations.

Since I am interested in structural transformation as a proxy for economic

development, the objects of interest are the partial derivatives of sectoral

employment shares, say λM
k =

LM
k

Lk
, with respect to changes in trade cost,

productivity or both:

∂λk
∂dni

,
∂λk
∂An

and
∂2λk

∂dni∂An
, k ∈ {i, .., N}

In partial equilibrium, as previously autarkic regions gain access to market

(a reduction in the iceberg trade cost dni), the pre-existing employment in the

manufacturing sector (given autarky) suddenly competes with the manufac-

turing sector varieties from larger (and already electrified) agglomerations.

Therefore, unless the initial manufacturing sector productivity draw was high,

the sectoral employment share of the manufacturing sector in the newly road-

connected location would be expected to fall.

However, as productivity in peripheral, road-connected locations improves

following the roll-out of electrification, some manufacturing varieties become

profitable for export, such that the manufacturing employment share may

actually rise.

At least in partial equilibrium for a previously autarkic location, a drop in

transport cost and a drop in transport cost coupled with a positive productivity
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shock have opposing predictions for structural transformation according to the

theoretical framework, but amplify each other in already connected locations

with respect to increases in the manufacturing employment share.

In general equilibrium, however, the above intuition is complicated by

free worker mobility, the effects of transport improvements in one location

on all other locations in the network and the changing nature of comparative

advantage across varieties throughout the network following electrification in

any single location. By means of simulating the numerical solution for various

shocks, I provide further intuition into the general equilibrium predictions of

the model regarding changes in the sectoral employment shares below.

Two graphical results present the core predictions guiding my empirical

analysis below: Figure (8.9) depicts the changes in relative manufacturing

employment shares resulting from a simulated change in transport cost from

new roads built between 2000 and 2016 in Ethiopia, whereas Figure (8.10)

depicts changes in relative manufacturing employment shares as a result of

a simulated combined transport cost and electrification shock.

As highlighted in Figures (8.9) and (8.10), the sign of the change in relative

sectoral employment due to either a road or a road and electrification shock

depends in a highly non-linear fashion on transport-cost adjusted comparative

advantage across locations. Transport-cost adjusted comparative advantage,

though, changes naturally everywhere in response to either shock: if two

locations, A and B, get connected via a new road, a far-away location C may

lose its comparative advantage in supplying location B with a certain variety to

location A. Likewise, electrifying far-away location C may reverse this situation

at the expense of location A again.
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Thus, a decrease in transport cost as simulated in Figure (8.9) affects the

manufacturing sector’s employment share both in districts of Ethiopia that are

simulated to obtain a new road connection and those that are not (or already

have access): the distribution of manufacturing employment changes is widely

dispersed across both groups of locations, although newly connected locations

see a disproportionately larger mass of manufacturing share reductions (at the

expense of previously connected or unconnected locations).

Similarly, a positive productivity shock in addition to the decrease in

transport cost as simulated in Figure (8.10) (akin, empirically, to a road-

connected location also being electrified), also affects sectoral employment in

all locations, not only newly electrified: again, sectoral employment changes in

manufacturing are widely dispersed, but newly electrified locations with road

access are more likely to see increases in their manufacturing employment

share.

The simulation of interacted infrastructure investments in the above theor-

etical framework, under certain parameter settings (discussed in greater detail

in Section (6)), delivers opposing results in terms of the average effects on

sectoral employment shares across locations.

Such opposing simulation results mask three distinct theoretical channels

at work: for a transport cost reduction d′ni < dni in previously remote location i,

the first channel at play under heterogeneity in factor intensities across sectors

(e.g. µM > µT) is Heckscher-Ohlin-type comparative advantage. Since the

price index drop in the smaller location i is larger than the similar drop from

integration to all other locations, location i will see in-migration, which will

specialise in the more labour-intensive sector.
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The second channel at play is a classical Baumol (1967) effect where labour

moves out of the more productive sector everywhere after the trade cost

reduction allowed a given total sectoral demand in the economy to be satisfied

with less labour. Hence, if manufacturing productivity in newly connected

locations is higher than that of agriculture, the manufacturing employment

will decrease in all locations.4

A final channel at play is Ricardian comparative advantage, namely that

a formerly remote location’s relative sectoral productivity will determine if

it will start exporting more varieties of the traditional or the manufacturing

sector, with direct implications on the connected location’s pattern of sectoral

employment, at the expense of the location formerly exporting this variety.

In general, the Heckscher-Ohlin channel will be diluted by greater trade cost

across the geography, since the price index response of connection will be more

muted accordingly. Which of the opposing forces of Baumol-style labour-

saving and Ricardian comparative advantage prevails in determining the

sectoral employment response in road-connected places, however, is a function

of trade cost and productivity levels. The productivity shock of electrification

has similar effects, although the direction of the Ricardian comparative

advantage effect on sectoral employment depends on the magnitude of the

manufacturing sector productivity increase.

4Given the empirically observed low employment shares of manufacturing in Ethiopia as
highlighted in Figure (8.4), such a setting appears empirically likely.
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Chapter 3

Empirical Context and Data

3.1 Why Ethiopia? An (almost) ideal study setting

I study the effects of big push infrastructure investments on structural

transformation and economic development in the context of Ethiopia over

the last two decades. Ethiopia represents a recent, prime example of rapid

infrastructure expansions that, given their large scale and extent, appear

worthy of designation as big push infrastructure investments. Ethiopia

provides an (almost) ideal study setting for several reasons: first, the country

experienced large-scale investments in two separate kinds of infrastructure,

namely all-weather roads and the electricity network. Exploiting differences

in the sequencing of these two infrastructure expansions allows me to study

both the individual effect (of roads) and the interaction effect (of roads and

electricity).

In particular, the all-weather road network expanded roughly fourfold

between the late 1990s and today, from approx. 16,000km to approx. 70,000km.

Figure 8.2 provides a graphical account of this expansion. My focus on all-

weather roads, i.e. roads with either asphalt, bitumen or gravel surface, follows
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an underlying understanding that trade and market access rely on year-round

accessibility (ideally by lorry) of a given location.

Over the same time period, although with a short time lag, the electricity

network doubled in extent from 95 to 191 major electric substations. Figure 8.3

displays this expansion of the electricity network during my sample period.

Electric substations are crucial for electrification since they are required to

step down the high voltages used in long-distance overland transmission

to low voltage levels used for local distribution networks. High voltage

transmission lines efficiently conduct electricity over distances of several

hundred kilometres between major sources of generation (such as hydropower

dams) and concentrations of demand (such as cities). Local low voltage

distribution networks supply individual firms, households and other end users

with electricity.

Second, the almost complete lack of direct infrastructure substitutes in

Ethiopia implies that the all-weather road and electricity network expansions

I track capture genuine extensive margin effects of access to infrastructure. In

particular, Ethiopia is a landlocked country without major navigable rivers

or canals. During my study period, the single existing railway line (to

neighbouring Djibouti and its port) was still out of order.1 Another new

railway project only began construction in 2015.2

With respect to access to energy and substitutes for grid electricity, only

a handful of isolated diesel generators originating from the 1960s operated

1A recently completed, newly built replacement railway to Djibouti was inaugurated in
October 2016. Due to equipment failures, however, commercial operations only started in
January 2018.

2cf. International Rail Journal’s news coverage in February 2015: https://www.railjournal.
com/index.php/africa/work-starts-on-delayed-ethiopian-project.html
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in selected major cities. All of these major cities were grid-electrified before

my study period and, thus, do not feature as compliers in the instrumental

variables strategy below. Self-generated energy from off-grid solar home

systems generated approximately one megawatt of capacity midway through

my sample (GTZ, 2009), compared to total installed grid capacity in 2018 of

4,256 MW (World Bank, 2018). An additional 25,000 solar home system panels

(à 5-10 W each) were purchased by the Ethiopian government for decentralised

installation by 2013.3 Thus, due to both the low penetration and the low voltage

and performance of the existing solar home systems in Ethiopia during my

study period, off-grid solar cannot be regarded as a feasible substitute to

grid electricity access. Other off-grid alternatives (such as mini-hydropower

systems) are not known to have been present beyond isolated cases.

Third, a rich set of household surveys that cover the entire country in

relatively regular intervals since the late 1990s were conducted by Ethiopia’s

Central Statistical Agency. At least two distinct sources of occupational

choice data exist in the case of Ethiopia – both with reasonable spatial

coverage, large survey sample sizes and mostly overlapping in time (see

Subsection 3.2). In total, four rounds of survey data of the high quality

and internationally standardised Demographic & Health Survey (DHS) are

available [2000, 2005, 2011, 2016]. These repeated cross-sections of household-

level (and invidiual-level) data are complemented by three rounds of the

Ethiopian National Labour Force Survey (NLFS) [1999, 2005, 2013], which

yields a decent coverage of my study period of interest from the late 1990s

to the very recent past. An additional survey instrument covering household

3cf. All Africa’s news coverage in August 2013: https://allafrica.com/stories/
201308070099.html
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expenditure and consumption, the Household Consumption and Expenditure

Survey (HCES), is also available for at least four rounds [1999, 2005, 2011,

2016]. The broad spatial coverage and consistent temporal coverage across

different surveys presents unusually rich non-experimental data in a low

income context.4

Based on the above data, Figure 8.4 presents micro-founded descriptives on

macroeconomic structural transformation patterns in Ethiopia that started at

least during the mid-1990s, if not earlier. In particular, the share of employment

in the agricultural sector declined from 89.3 per cent in 1994 to 56.6 per cent

in 2016, despite population growth of approximately two per cent annually,

mostly driven by rural, agrarian areas. Starting from very low levels of

relative employment, services (manufacturing) employment increased from 7.6

(2.3) per cent in 1994 to 33.5 (9.9) per cent in 2016. Hence, most structural

transformation in Ethiopia overall occurred from agriculture to the services

sector. However, a comparison of sectoral employment to sectoral value-added

trends (see Appendix Figure A1) over the same time period highlights a recent

uptick in industry value-added between 2011 and 2016, which does not yet

appear to result in markedly higher relative industry sector employment.

Especially if structural transformation is of a low-level nature, i.e. out

of agriculture into mostly small-scale, informal retail services (see Section 5

below), positive income and welfare effects of such sectoral shifts are not

obvious, neither at the individual level, nor in the aggregate. However, as

shown in Figure 8.5, my study period displays an almost exploding time series

of GDP per capita and a dramatic reduction in headcount poverty, using either
4Censi were conducted in Ethiopia in 1984, 1994 and 2007, with the planned 2017 census

experiencing repeated delays. The crucial census round for my analysis, 2007, saw the
occupational choice question dropped from the questionnaire.
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national or international measures. Hence, even from a purely descriptive

perspective, a study of large-scale infrastructure investments in relation to

structural transformation seems warranted.5 Finally, with a population of

approximately 105 million people, an area roughly the size of France and Spain

combined and the second largest low income country economy in Sub-Saharan

Africa, the study of the Ethiopian big push infrastructure investments and the

resulting structural transformation appears of interest in its own right, with

potential external validity for other low income countries that plan similar

transport and energy infrastructure investments.

3.2 Data

I provide new information on the electricity grid and the road network expan-

sions in Ethiopia as the foundation of my analysis of big push infrastructure

investments since the late 1990s.

Resulting from a close collaboration with Ethiopian Electric Power (EEP),

the state utility charged with electricity generation and transmission, I obtained

confidential information on the exact location, capacity, equipment and

5Common sense may deem the tracking of a large-scale infrastructure expansion in a
country with a centrally located capital city (which also happens to be the country’s largest,
as well as its undisputed administrative, business and industry hub), as a potentially moot
exercise: one could expect that economic activity, in line with population density, decreases
radially from the centre, such that any reasonable least-cost infrastructure network expansion
would also follow a radiating process outwards from the centre. Thus, the location and
timing of expansion investments could be expressed as a function of distance to the centre.
Fortunately, this hypothesis is without foundation in the case of Ethiopia: as highlighted in
Appendix Figure A3, population density in Ethiopia is spread out irregularly, and also does
not interact in a straightforward manner with either elevation (see Appendix Figure A4) or
terrain ruggedness (see Appendix Figure A5). In short, large parts of the Ethiopian population
live in highly rugged, elevated and remote locations, which do not necessarily align with either
favourable natural endowments in terms of agricultural productivity, nor radial distance to the
economic centre.
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commissioning time of each of the electric grid’s substations.6 These records

cover a total of 191 substations which came online before 2018, with the

first isolated substations constructed in 1959. To reconstruct the expansion

of the interconnected system (“grid”), I also obtained information on each

transmission line, its location, connecting nodes, voltage and commissioning

times, as well as further information regarding recent upgrades into stability-

enhancing equipment (e.g. reactors and capacitators) associated with each line.

To inform tentative cost-benefit calculations, I also collected construction cost

estimates from the engineering team with respect to unit costs of transmission

infrastructure and past records of selected actual project expenditures.

Finally, I also collected locations, capacity, operational status and com-

missioning time information on all power plants to track generation. The

Ethiopian electricity supply is mostly provided by hydropower from nine

major dams, as well as at least three wind farms, one geothermal power plant

and by-generation from at least three sugar refineries. Dam openings since

2016 are currently ignored in my analysis due to the lack of outcome variables

spanning this very recent past (see below).

Although the opening of a substation represents a de facto necessary

precondition for electrification of a given location and its surrounding areas,

it does, however, not perfectly capture distribution-level connections at the

neighbourhood- or village-level. Therefore, I also obtained new, previously

undisclosed information from Ethiopian Electric Utility (EEU) on the extent

of distribution networks behind a given substation, for a large subset of sub-

stations. This information has exact geographical information on village- and
6Formerly a single state utility known as Ethiopian Electric Power Corporation (EEPCo),

EEPCo was broken up into two separate entities in 2013: a generation and transmission utility,
Ethiopian Electric Power (EEP), and a distribution utility, Ethiopian Electric Utility (EEU).
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town-level electrification status. Although originally lacking exact information

on the timing of distribution network expansion, I obtained complementary

records on town- and village-level electrification status combined with the

year of electrification. This comprehensive distribution network coverage and

expansion dataset covering villages and towns inside districts is currently used

for robustness of my district-level analysis (see Section 4), given limits to the

spatial identification of the outcome variables.

I obtained information on the expansion of all-weather roads mostly from

the Ethiopian Roads Authority (ERA). In particular, I employ several historical

and present maps and geographic information system (GIS) data from various,

partially undisclosed records. For the years 2006, 2012 and 2016, I have

obtained GIS data and maps, which rely at least partially on actual road

surveys in the period of up to one and a half years before the stated date.

In particular, the final cross-section from 2016 relies on a several weeks-long

on-the-ground data collection effort by ERA that verifiably mapped every

road in the country, recording surface type, quality, width, current state and

GPS markers at regular intervals.7 Earlier maps were supposedly based on

partial road surveys and/or records of road construction projects. However,

I cannot independently verify this claim given the lack of centrally recorded

road construction documentation at the project-level.

7The 2016 ERA road survey also contains estimates of the original year of each road’s
construction, which I use for cross-validation of earlier maps. In contrast, this information
forms the foundation of related papers studying the expansion of the Ethiopian road network
such as Adamopoulos (2018). For their more localised analysis of rural roads, Gebresilasse
(2019) and Kebede (2019) also make use of earth feeder roads from the 2016 ERA survey.
These latter roads are dropped from my analysis due to the explicit focus on ‘all-weather’
(i.e. gravel, asphalt or bitumen surface) roads.
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In addition, I use various other sources for cross-validation and to obtain

better visibility on the pre-sample road network: I use GIS data from Open-

StreetMap for the year 2014 to cross-verify the earlier and later ERA records.

I also use manually digitised historical CIA maps from 1969, 1972, 1976, 1990

to obtain the pre-sample period. The CIA’s 1999 map is used as the first cross-

section in the sample and the 2009 map for cross-validation of ERA records.

Furthermore, I also make use of a biennial, district-level road density dataset

(1996-2012) kindly provided by Shiferaw, Söderbom, Siba and Alemu (2015)

for robustness checks. Changes in district road density correlate highly with

the map-derived measures of district level all-weather road access I employ in

the main analysis.

With respect to the outcome variables of interest, I am first and foremostly

interested in structural transformation, which I interpret in line with the

literature (Herrendorf et al., 2014) as changes in sectoral employment. Thus, I

require information on relative employment, which I derive from two repeated

household- and individual-level surveys: the Demographic & Health Survey

(DHS) for Ethiopia with rounds 2000, 2005, 2011 and 2016, and the Ethiopian

National Labour Force Survey (NLFS) with rounds 1999, 2005 and 2013. In

particular, I use respondents’ answer to questions about their ‘current occu-

pation’, which I then group into three sectors, agriculture, manufacturing and

services according to the International Standard Classification of Occupations

(ISCO), in its ISCO-88 and the more recent ISCO-08 iterations.

Both the DHS and the NLFS are repeated cross-sections of enumeration

areas (EA), with approximately 20 to 30 households enumerated per EA.

Effective sample sizes for the DHS rounds amount to 12,751 individuals in
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2000, 14,052 (2005), 21,080 (2011) and 19,157 (2016), from approximately 650

EAs, which differ per round. The NLFS sample sizes are on average ten times

larger than the DHS, but contain greater measurement error and incomplete

responses. Due to the repeated cross-section nature of the outcome variables, I

aggregate individual responses to the enumeration area and then generate an

(unbalanced) district panel from districts that contain at least two sampled EAs.

Therefore, all of my below analyses using relative employment as dependent

variable are run at the district-year level using only panel districts. Figure

A2 provides an overview of the spatial and temporal coverage of DHS EAs

throughout Ethiopia.

Neither the DHS, nor the NLFS samples are representative at the district

level. However, both surveys’ enumeration areas were sampled randomly

proportional to population size (i.e. the number of households). Therefore,

although results from individual districts cannot be considered representative

of that district, average treatment effects of infrastructure investments are

unbiased as long as deviations from random sampling of enumeration areas

(conditional on population) do not systematically correlate with infrastructure

allocations.8 For example, this orthogonal sampling assumption would be

violated if areas closer to a road were more likely to be drawn for enumeration

due to ease of access for enumerators. Given the centralised process of drawing

samples of enumeration areas by the Central Statistical Agency in Addis Abeba

without any involvement of local enumerators (who would usually not yet be

hired for the design phase), such a violation appears unlikely. In addition,

Appendix Table A1 provides an auxiliary test if new entry into the sample

8Due to the nature of sampling proportional to population size, all of the below
specifications, including first stages, include controls for initial population levels.
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correlates with the build-out of the road and electric grid at the district level.

Results suggest that as infrastructure is rolled out over time, districts that

newly enter the sample in later years (cf. columns 2-4 of Appendix Table A1) do

not statistically significantly correlate with treatments at the district level.9,10

With respect to the geo-identification of enumeration areas (and, thus,

households), two qualifications are due: first, the enumeration area locations

of NLFS EAs are provided in codified form, which is at times only imperfectly

geographically traceable. Missing codebooks at the Ethiopian Central Statist-

ical Agency in combination with missing old maps make cross-referencing of

old codebooks to old district and enumeration area delineations for some cases

close to impossible. Second, even the DHS-provided GPS coordinates for EAs

locations are not perfectly reliable due to the common random displacement

applied to GPS coordinates prior to publication. To ensure survey respondents’

anonymity, DHS EA coordinates of rural (urban) EAs are randomly displaced

within a 0-10km (0-5km) radius.11 Therefore, although I have exact geo-

9Orthogonality between sample entry and treatments at the district level is a necessarily
imperfect test given that the random sampling assumption is designed to hold only at the
level of enumeration areas, not at the level of (significantly larger) districts. However, maps
of census tracts and enumeration areas for samples enumerated before the Census in 2007
(e.g. DHS survey rounds 2000 and 2005, and NLFS survey rounds 1999 and 2005) could not
be retrieved and original paper copies of these enumeration areas may not exist anymore.
Therefore, the above orthogonal sampling test cannot be performed at a finer and higher
resolution than the district.

10Column 1 of Appendix Table A1 highlights how the baseline cross-sectional sample
of districts does correlate highly positively with the presence of district-level infrastructure.
This positive correlation is natural when infrastructure is endogenously allocated to where
economic activity (and therefore population) is concentrated. In other words, column 1
confirms the need for a quasi-experimental identification strategy, which is explained in detail
in Chapter 4 below.

11In principle, these displacements supposedly neither cross zone borders (the second
highest administrative level), nor country borders, although they may cross district borders
(the third highest administrative level). In practice, however, a handful of displacement errors
were corrected manually.
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identified information on infrastructure placement, the finest spatial resolution

the analysis can support is constrained by the available outcome variable data.

Finally, for reduced-form analyses of household expenditure responses to

infrastructure investments, several of the Ethiopian Central Statistical Agency’s

Household Consumption and Expenditure Surveys (HCES) were obtained

– in particular the 1999, 2005, 2011 and 2016 rounds. Of these, at the

current point in time, I can geo-locate the 1999 and 2016 rounds. For 1999

(2016), 1,264 (2,106) enumeration areas were sampled and 17,332 (30,229)

households surveyed, while, as is common for most household surveys in

Ethiopia, the non-sedentary population in Afar and Somali regions were

excluded. From these two geo-located survey rounds I obtain information

on household expenditure per capita, household size and further household

demographics. This information can then be aggregated to enumeration areas.

Repeated draws of enumeration areas from the same district over time allow

creation of a pseudo-panel at the district-survey-level similar to the DHS

and NLFS pseudo-panels described above. In addition, the HCES contain

extremely detailed information on item-by-item consumption quantities and

(local market-verified) prices for all goods consumed by each household in

a four day recall period for non-durables. For durables consumption, the

information was enlisted using both three and twelve month recall periods.

This additional information will further enrich the analysis in the future with

respect to separating price from quantity effects of infrastructure investments

on household consumption, as well as tracing changes in the number of

varieties consumed.
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Chapter 4

Empirical Strategy

4.1 Identification challenges

A key identification challenge in studying the effects of big push infrastructure

on structural transformation is that infrastructure investments are likely

endogenously allocated with respect to the outcomes of interest, such as

changes in sectoral employment or growth. Given the extremely high cost of

infrastructure investments, conscious allocation decisions are to be expected,

for example by targeting high growth potential locations. Ordinary least

squares estimation is more likely than not biased. Likewise, the identification

assumptions underlying difference-in-differences or two-dimensional fixed

effects research designs are most likely violated, i.e. parallel trends between

treatment and control locations, and the stable unit treatment value assump-

tion (SUTVA).

Several aspects of this identification challenge are relevant in the Ethiopian

context: potential spatial targeting of investments across districts, temporal

prioritisation of investments across districts, and natural sequencing of dif-

ferent investments arising from interdependence between road and electricity

network investments.
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A classic endogeneity concern in the allocation of infrastructure invest-

ments is that policymakers make active allocation decisions in which loca-

tions should obtain access and which not. The high cost of transmission

infrastructure implies that spatial targeting of locations to receive access

is an obvious feature of electrification. In particular, existing engineering

guidelines highlight the primary cost driver to be minimised as the length

of transmission lines. Engineers involved in the Ethiopian grid expansion

have also reported privately that in order to minimise cost, during the early

years of electrification only politically demanded locations would obtain

a transmission line connection (and substation), apart from locations that

accidentally happened to lie on a relatively straight line between supply (e.g. a

hydropower plant) and demand (e.g. the major load centre(s)). Despite recent

advances towards rural electrification in Ethiopia, many rural and remote

locations throughout the country will probably remain without electricity

access for the foreseeable future.

Another cause for endogeneity in the allocation of infrastructure in-

vestments across locations could be temporal prioritisation according to

unobservables if all locations eventually obtain infrastructure access. In the

particular case of roads in Ethiopia, for example, the government formulated

an explicit policy to connect all of the more than 689 district capitals with

an all-weather road by 2020 – an objective that was successfully achieved by

2016 already.1 Hence, in my analysis of road network investments, a key

endogeneity concern is the timing of a district’s connection (in contrast to the

above issue of endogenous district selection into treatment and control, since
1In the following, I use district capitals and district centroids interchangeably, where the

latter replaces the former in districts for which information on the district capital is not
available and no obvious administrative center exists.
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all districts obtain road access treatment eventually). Appendix Figure A11

confirms that more densely populated districts were in fact connected to an

all-weather road earlier than more rural, sparsely populated districts, pointing

towards potentially endogenous connection timing.

To provide an overview of potential policy objectives that guided infra-

structure allocations across districts in Ethiopia, Appendix Figure A6 provides

a test of balance across treatment and control districts, which is soundly

rejected: road-connected districts are significantly larger and more likely to

lie in the rugged, low temperature and very fertile highlands. The right panel

of Appendix Figure A6 also shows that electrification was substantially less

targeted at the district level, but that mostly easier to access, less rugged

districts received a connection.

Finally, at the level of transmission lines and substations, these major

infrastructure items also crucially rely on at least some means of transport to

be available for construction. Hence, sequencing of infrastructure investments

appears natural in the context of transport and electrification. Therefore,

translated to the Ethiopian context of big push infrastructure investments,

a possible endogeneity concern arises from the fact that electrification only

reaches previously road-connected places.

Further identification challenges arise from other sources of omitted

variable bias that affect both the infrastructure expansions and structural

transformation (such as natural resource windfalls, global economic cycles,

capital flows, donor funding, etc.), which are entirely plausible in the Ethiopian

context. Likewise, reverse causality in the form of sectoral shifts causing

greater demand for infrastructure investments should also not be ruled out
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ex ante. Finally, measurement error in the right-hand side variable may lead to

attenuation bias, for example due to inaccurate timing information of electric

grid expansion or imprecise historic road maps.

4.2 Instrumental variables

Given the expected violation of identifying assumptions of differences-in-

differences estimators, and in the absence of arbitrary policy rules generating

sharp connection status discontinuities, I resort to employing an instrumental

variables identification strategy.2

Regarding electrification, the instrumental variable (IV) is founded on the

fact that electricity supply must be connected to demand, or in engineering

terms: to the load centre. Translated to the Ethiopian context, electricity

generation originates to 98 per cent of total installed capacity from hydropower

dams in the Ethiopian highlands. The largest load centre, however, is Addis

Abeba, which also hosts the load dispatch center of the interconnected system,

in charge of operations management and system stability.

Therefore, I develop an IV which yields a hypothetical electrification status

and timing for each location based on that location’s proximity to a straight

line corridor from a newly opened hydropower dam in mostly remote parts of

Ethiopia to Addis Abeba. From the year of dam opening onwards, all districts

lying along this straight line connecting the dam to Addis will be considered

hypothetically electrified.

With respect to such an IV’s identifying assumptions, the validity as-

sumption reads that the hypothetical electrification status of districts along

2Unlike, for example, Asher and Novosad (2016) who exploit a dichotomous rural road
targeting policy based on Indian villages’ population size above some idiosyncratic threshold.

50



a straight line from a new dam to Addis does display a statistically significant

relationship with these districts’ actual electrification status and year of

electrification. I draw straight line connection corridors of 25km diameter for

nine dams and two large-scale wind farms.

The random assignment assumption of the IV would imply that a given

district’s exposure to a straight line corridor was spatially and temporally as

good as randomly assigned. In other words, locations that lie between both

of the straight line endpoints, which would usually span several hundred

kilometres, are not systematically different from nearby locations off the

straight line corridor. Appendix Figure A10 provides evidence that districts

which happen to lie under a straight dam-to-Addis line are indeed not

statistically significantly different from neighbouring districts (that lie just next

to the instrumental variable line) across a wide array of observable covariates.3

Likewise, the timing of the high-voltage line coming online due to the

opening of the hydropower dam should also be exogenous. Given frequent

multi-year delays in these large dam construction projects, the assumption of

exogenous final commissioning time appears to have merit in the Ethiopian

context.4

Finally, the exclusion restriction requires that the straight line corridor

from dam to Addis does not affect structural transformation in the years and

3The original instrumental variable line buffer has a width of 25km and districts which lie
underneath this buffer are considered treated according to the instrument. To identify directly
neighbouring districts, a counterfactual buffer of 75km width was drawn. From the resulting
set of 75km buffer districts, the original (25km) districts were removed to arrive at a sample of
neighbouring districts from both sides of the original line buffer. Covariate values are either
time invariant or represent initial values at the beginning of the study period.

4In private conversations with current and former EEPCo and EEP senior engineers in
charge of grid planning and expansion, i.e. local experts with decades of relevant experience,
providing accurate predictions of dam construction delays was described as non-trivial.
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locations exposed to the (now online) hypothetical transmission line, other

than through actual electrification.

In sum, my electrification IV represents a classic ‘inconsequential units’ IV

(cf. Redding and Turner (2014)) brought to the electrification context.5 Figure

8.6 provides a graphical representation of the instrument and how differential

proximity to straight line corridors (and their opening years) generate spatial

and temporal variation in districts’ hypothetical electrification status.

Regarding my instrumental variable for the timing of a district’s road

connection, I construct a hypothetical road expansion based on distance

to straight line arteries drawn up by 1930s Italian colonial plans for road

construction: In order to conquer Eritrea, Ethiopia and Somalia, as well as to

effectively occupy their territory, the Italian invaders initiated a large-scale road

construction effort starting in 1936. Either lacking information about the local

geography and terrain or actively ignoring it, Benito Mussolini himself appears

to have designed at least five major road arteries to connect the capitals of

former ancient kingdoms to each other and to major ports, allowing the Italian

colonial forces in theory to penetrate the hinterland of the conquered territory.

In particular, straight line axes were drawn to connect Addis Abeba, the

capital of the defeated Ethiopian Empire, to both Asmara (then capital of

Italian Eritrea) and Mogadishu (then capital of Italian Somaliland). In addition,

the ancient kingdom capitals (and centres of regional power) of Gonder

(Begemder Kingdom), Dessie (Wollo province), Nekempte (Welega province),

Jimma (Kaffa Kingdom), Yirga Alem (Sidamo Kingdom) and Harar/Jijiga

(Emirat of Harar/Hararghe province), as well as the Red Sea port at Assab

5Examples of similar instrumental variables include Michaels (2008) and Kassem (2018),
who also use exposure to artificial lines to instrument for infrastructure expansions.
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were to be connected either directly to one of the major capitals or on the way.

The resulting straight line arteries are depicted in Figure 8.7.

Starting in 1936, actual Italian road construction followed to a surprising

degree Mussolini’s grand design of unrealistically straight road arteries,

irrespective of the adverse terrain covered. Before their defeat at the hands

of British and allied forces in the Horn of Africa in 1941, Italian colonial

authorities managed to construct at least 4,000 kilometres of paved and 4,400

kilometres of unpaved roads. Appendix Figure A7 provides a historic picture

of the construction efforts during the late 1930s.

On the territory of today’s Ethiopia, approximately 3,378 kilometres of

paved ‘highways’ were constructed, of which at least 1,970 kilometres were

finished including state-of-the-art asphalt surfacing. Importantly, a lasting

feature for future Ethiopian road construction were the 4,448 small and 128

large bridges finished by the Italian colonial authorities, artefacts necessitated

by the idiosyncratic routing through the Ethiopian Highlands mass and

multiple mountain ranges.6

For the purposes of this paper’s roads IV, I exploit the fact that Ethiopian

road construction in the 1990s started reconstruction of its road network from

the former Italian colonial trunk network and subsequently, during the period

of my study from 1999 to 2016 fanned out road access to nearby cities, towns

and settlements, closely following geographic features (i.e. mostly valleys and

ridges). Appendix Figures A8 and A9 provide two exemplary cases of how

Ethiopian road construction connected nearby settlements and districts almost

6Apart from the vast Ethiopian Highlands itself (the ‘roof of Africa’), of the remaining
eight major mountain ranges in Ethiopia, four were crossed: the Ahmar mountains, the Entoto
Mountains, the Mount Afdem range and the Semien Mountains.
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orthogonally starting from the (previously reconstructed) Italian colonial

roads.

I therefore construct a roads instrumental variable in the following way.

Starting from the seven straight-line arteries designed by Mussolini (and

depicted in Figure 8.7), I calculate orthogonal, shortest distances to every

district capital, as the crow flies.7 One should also note that this distance is

calculated from the plausibly exogenous straight lines schematically drawn

by the Italians, not from the actual roads that were subsequently constructed

(and re-constructed) under these designs. Since road construction in the

Federal Democratic Republic of Ethiopia is a politically regional matter, I run

the following algorithm separately and simultaneously for each of the eleven

regions of Ethiopia.8

Given the total length of (straight line) road connections to be built in every

region to connect every district in that region, I calculate the annual mileage

per region of road construction to achieve this goal of universal district road

access by the end of the sample period, i.e. over a seventeen year period (2000-

2016).9 With this annual mileage goal at hand, I allow each region to build

the shortest stretches of (straight line, orthogonal) district connections first

7Districts which contain arteries are considered already ‘treated’ with road access by the
roads IV.

8For the city-regions of Addis Abeba and Harar, in which districts always had access to at
least one all-weather road in 1999, the instrument (inevitably) predicts road connections in 1999
already. For the city-region of Dire Dawa, the instrument predicts both of the city’s districts
to be connected by 2000. The algorithm procedure to generate temporal variation therefore
only generates meaningful variation for the remaining eight major regions of Ethiopia: Afar,
Amhara, Beneshangul Gumuz, Gambela, Oromia, SNNPR, Somali and Tigray. Given the status
of the three city-regions as ‘always takers’ in the frequentist sense, this prediction is expected
and resonates well with empirical reality.

9As confirmed by the maps of the Ethiopian road network in 1999, the reconstruction
and rehabilitation or re-surfacing of the original Italian road network was finished by then.
Therefore, I assume that new construction started from the year 2000 onwards.
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until the goal for a given year has been reached. For every subsequent year, I

then re-calculate the total distance to connect each non-connected district to its

closest Italian artery, derive an annual mileage target and fill this target with

the shortest remaining connections.10

One relevant peculiarity of the above algorithm is that road distances to

connect a given district are never updated: the calculated distance is always

taken as the distance to the nearest Italian artery, which does not vary over

time. This deliberate choice against a continuous-updating algorithm, that

would calculate the shortest distance to either the Italian artery or the nearest

connected district capital, arises from a potential threat to the exclusion

restriction, where short district connections from district capital to district

capital pick up agglomerations of population (and thus smaller district sizes).

Once the district closest to the artery of such an agglomeration would be

connected, the succeeding districts would be connected relatively sooner

compared to an algorithm without continuous distance-updating. Therefore,

to guard against this potential violation of the exclusion restriction, I do not

update distances and always have the algorithm build (relatively less realistic)

connections to the closest Italian artery, irrespective of any districts already

connected in between.

An obvious concern with the temporal variation created according to

the above algorithm (starting from the Italian colonial arteries) would be

that proximity to straight line arteries would also reflect persistent historic

differences in district population density, for example. Hence, closer-to-artery

10This updating of the annual mileage target achieves a more realistic distribution of
construction activity than keeping the initial annual mileage target for all remaining sixteen
years, which leads to a runaway process of road connection that is considerably faster than the
actual build-out observed on the ground.
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districts may be both larger and connected first, violating the instrument’s

exclusion restriction. To defuse this concern, Appendix Figure A12 highlights

that districts which are predicted to get connected according to the instrument

around sample year thresholds (e.g. for the DHS: 2000, 2005, 2011, 2016) are

not statistically significantly different from each other. For example, a district

predicted to be road-connected according to the instrument in 2005 would still

be added to the complier population for the period 2001 (the year after the

first DHS survey) to 2005 (the year of the next survey). In contrast, a district

predicted to be road-connected according to the instrument in 2006 would

be counted as a complier for the subsequent sample period until 2011 (the

year of the third DHS survey). Therefore, random assignment of the road

connection year is especially important around these sample threshold years

(i.e. 2000, 2005, 2011 and 2016 for the DHS, and 1999, 2005 and 2013 for the

NLFS). Appendix Figure A12 confirms that although post-sample threshold

year districts are in fact marginally smaller, further from zone capitals and

hotter, no statistically significant differences (which may foreshadow violations

of the exclusion restriction) can be detected.11

In sum, my Italian artery roads IV provides temporal and spatial variation

in district road access derived from a plausibly exogenous source, namely

orthogonal straight line distance to Italian straight line arteries. The resulting

district-level variation in the predicted arrival year of an all-weather road

connection is also depicted in Figure 8.7.12

11The result in Appendix Figure A12 is not sensitive to pooling across thresholds: it likewise
holds for each individual pre-/post-threshold comparison (e.g. 2000 vs 2001, 2005 vs 2006, etc.).
Results are available upon request.

12Accordingly, the instrument takes a value of one from the district-year in which a given
district got connected (as determined by the regional budget split rule) onwards.
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For additional robustness, I also provide an alternative instrumental

variable for a district’s road connection derived solely from a hypothetical

least-cost network expansion. I construct the least-cost network in the

following way: construction starts from the historic Italian colonial road

network, which provides a plausibly exogenous baseline all-weather road

network cross-section for Ethiopia (see above). I then extend this baseline in a

least-cost fashion by employing common minimum spanning tree algorithms

such as Kruskal’s and Boruvka’s algorithms, following the explicit policy

objective to connect all district capitals by the end of the sample period in

2016.

The algorithms thus provide spatial variation in terms of how each district

will get connected to the network (which vary slightly across Kruskal’s and

Boruvka’s algorithms with respect to their order), but do not yet provide any

temporal variation in districts’ connection timing. Therefore, I additionally

employ a simple budget split rule to the output of the minimum spanning tree

algorithms, such that only a certain amount of new all-weather road mileage

can be built per year, following the order dictated by the least-cost algorithm.

I obtain a hypothetical road network that features both spatial and temporal

variation with respect to which district will get connected to the all-weather

road network in which year. Appendix Figure A13 provides a graphical

representation of the alternative, least-cost road IV’s variation exploited in two-

stage least squares robustness estimation below.
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4.3 First stages and reduced-form specification

My reduced-form empirical strategy builds on two separate instrumental vari-

ables for two potentially endogenous infrastructure investments: the electricity

network expansion and the road network expansion. Due to the nature of

big push infrastructure investments in Ethiopia, a third endogenous variable

is also of key interest, that is the interaction of both roads and electrification

investments.

As shown in Table 9.2, however, my sample does not feature three

genuine, independently identifiable infrastructure investments, i.e. isolated

roads investments, isolated electricity investments and combined roads and

electrification investments. Instead, driven by the sequencing of electrification

in Ethiopia to follow the roads expansion with a short time lag, I do not observe

isolated electricity investments in districts without all-weather road access.13

Therefore, I face a situation of effectively two endogenous variables for which

at least two instrumental variables are required: a roads instrument, and an

instrument for the interaction between roads and electricity investment, which

I construct in a standard fashion by interacting the roads IV with the electricity

IV. To account for this feature, I drop the level effect for electrification in all

results below.

First stage results are presented in Tables 9.3 (for the NLFS sample) and

9.4 (for the DHS sample) and show a strong and statistically significant rela-

tionship between instrumental variables and endogenous regressors. Cragg-

13The roads data appear erroneous for seven isolated district-year observations, for which
electrification supposedly arrived before the road. All of the results below are robust to
excluding these seven district-year cases of measurement error.
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Donald, Sanderson-Windmeijer and classic F-test statistics all indicate non-

weak instruments.14

Both first stages across samples include year fixed effects and a battery of

initial district-level controls. These include initial district temperature mean,

initial district soil quality, log distance to the nearest administrative capital,

log distance to the nearest major agricultural market town, initial district

satellite-derived nightlights and a district’s ruggedness. Since the first stages

are in theory unconstrained by the repeated-cross section sampling of the

outcome variables below, I test for first stages in the full sample of district-

years. Instruments in these complementary first stages (available upon request)

are strong and coefficients are qualitatively unchanged, even when both year

and district fixed effects are included, for which the panelised DHS and NLFS

samples lack power.

For the below reduced-form empirical evidence, the (likely biased, see

above) OLS specification, run on data aggregated to the district-year level,

would be:

Agricultured,t = α + β1Roadindd,t + β2Roadindd,t ∗ Elecindd,t

+ δd + λt + εd,t

(4.1)

However, following the observations in Subsection 4.1 above regarding

the endogeneity concerns associated with this OLS estimator, I instead run

two-stage least squares (2SLS) on the following specifications, with year-fixed

14For multiple endogenous regressors, as in my case, Sanderson and Windmeijer (2016)
provide the most relevant weak instrument F-test statistic. However, the authors explicitly
recommend to report classical F-test and Cragg-Donald test statistics along their Sanderson-
Windmeijer statistic for comparative purposes and robustness. I report all three statistics in
2SLS results throughout.

59



effects and district-level initial values as controls:15

Roadindd,t = η0 + η1RoadIVd,t + η2RoadIVd,t ∗ ElecIVd,t

+ X′dτ1 + ρt + νd,t

(4.2)

Roadindd,t ∗ Elecindd,t = η3 + η4RoadIVd,t + η5RoadIVd,t ∗ ElecIVd,t

+ X′dτ2 + ρt + νd,t

(4.3)

Agricultured,t = α + β2SLS
1

̂Roadindd,t + β2SLS
2

̂Roadindd,t ∗ Elecindd,t

+ X′dγ + λt + εd,t

(4.4)

In the core estimation specification [eq. (4.4)], the possible outcome

variables are Agricultured,t, Servicesd,t, Manu f acturingd,t or Notworkd,t and

represent the share of people reporting an agricultural, services or manufactur-

ing sector occupation, or no current employment in the last week, respectively,

in district d, aggregated from all EA’s (villages) i in that district, in the year of

NLFS, DHS or HCES survey round t.16

Roadindd,t represents a dummy if district d contains an all-weather road in

year t, while Roadindd,t ∗ Elecindd,t captures the interaction of dummies if dis-

trict d was connected to both a road and substation in year t. X′d denotes initial

district-level controls that are either time-invariant (e.g. ruggedness, distance

to market town, distance to administrative zone capital, soil quality) or would

15As mentioned above, the pseudo-panelisation of repeated cross-sectional surveys at the
district level reduces the available sample to an extent that I lack power on the first stages to
estimate 2SLS combined with full two-dimensional fixed effects.

16The sample restriction employed across NLFS, DHS and HCES datasets is that
respondents must have worked at some point during the last twelve months, but are allowed
to be not currently working to enter the sample. An additional age restriction ensures that
only respondents older than eleven or younger than 70 enter the sample.
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constitute bad controls if included as time-varying controls (e.g. nightlights, or

even temperature anomalies).

The coefficients β2SLS
1 capture the effect of access to a road alone on the

different sectoral employment shares, while the different β2SLS
2 coefficients

capture the big push infrastructure interaction term at the heart of this paper.
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Chapter 5

Reduced-form Results

I first estimate local average treatment effects of the two infrastructure

investments outlined above: the effects of roads only and the big push

interaction of roads with electricity access on sectoral employment at the

district-year level. Table 9.5 provides the results from regression equation (4.4)

run on sectoral employment shares from the NLFS repeated cross-sections.

Throughout, standard errors are clustered at the district-level, which is the

level of the treatment.1

I find a strong positive sectoral employment share response in services

(+19.2%) and a strong negative employment share response in manufacturing

(-11.5%) from road access alone. Agricultural employment is weakly negative,

but insignificant due great heterogeneity in responses across districts, as

explained in the results on spatial heterogeneity below.

Districts that obtain road access and electrification, in contrast, see a large

reversal in the manufacturing employment share (+13.1%), such that the inter-

action effect at least fully overcomes the road-induced decrease.2 Agricultural

1In order to also allow for spatial correlation structures beyond arbitrary district borders, I
also test for robustness using Conley standard errors. Results (not reported) are unchanged.

2The p-value of both coeficients combined being indistinguishable from zero is 0.7581, as
reported in Table 9.5.

62



employment in big push infrastructure locations decreases sharply (-20.2%),

whereas services employment increases further, but insignificantly.3

The above results show sectoral employment splits according to ‘major

occupational divisions’ of the International Standard Classification of Occu-

pations (ISCO), which is my preferred definition. In theory, respondents’

occupations may only imperfectly capture in which sector of the economy

they actually work. Therefore, Table 9.6 confirms the above regression

results based on equivalent sectoral classifications derived from first-digit

International Standard Industrial Classification of All Economic Activities

(ISIC) industry groups. Results are remarkedly similar, highlighting that

respondents’ occupations-derived sector of work and their industry-derived

sector of work do not deviate systematically in the sample to explain the core

results.

To understand better which occupational changes drive the above result of

big push infrastructure investments to cause diverging sectoral employment

patterns, I break down sectoral employment into employment by occupational

subgroup. Accordingly, I re-run the two-stage least squares regressions using

employment shares in these occupational subgroups as outcome variables: for

the NLFS, the outcome variables are the first-digit ISCO (or ISIC) subgroups.

For the DHS, the outcome variables are the ‘major occupational groups’. Figure

8.8 presents this occupational breakdown for the NLFS (upper panel) and

DHS (lower panel) samples, where the two regression coefficient bars for each

3Appendix Table A7 provides the same specification run on the NLFS sample excluding
the Somali region in eastern Ethiopia, which was not sampled for the DHS survey. Sparsely
populated and dominated by pastoral tribes, the Somali region is commonly understood as an
outlier along cultural, economic and political lines. Results are statistically slightly stronger,
but qualitatively unchanged.
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occupational subgroup represent a separate regression. Each light orange bar

relates to β2SLS
1 , the road infrastructure effect, whereas each dark bar relates to

β2SLS
2 , the big push infrastructure interaction effect.4

I find that road access especially decreases relative employment for crafts,

i.e. traditional manufacturing occupations, and increases relative employment

for services/sales, i.e. mostly small-scale retail. Thus, the strong positive effect

on services employment reported above is confined to employment in retail

and sales, which is mostly informal in nature.5 In contrast, road access alone

causes manufacturing employment to drop mostly in skilled (i.e. artisanal, craft

and/or handiwork) activities. Anecdotal evidence confirms such supposed

adverse impacts on local manufacturing production in the face of sudden

external competition, either from the economic centre or imports of Chinese

manufactured goods.6

In contrast, when combined with electricity, big push infrastructure invest-

ments cause positive reversals in employment in both crafts and element-

ary occupations, i.e. construction and mining. While both coefficients are

qualitatively similar across NLFS and DHS samples, they are insignificant

in the NLFS but significant in the DHS. Albeit at much lower amplitude,

big push infrastructure also causes employment increases in plant operations

and assembly occupations (i.e. employment associated with modern factory

4In relation to Table 9.5, light orange bars represent results from row 1 and dark orange
bars those from row 2, respectively, in regressions where the three sectoral employment shares
are replaced by each of the nine occupational subgroups’ employment shares.

5Given the aggregate share of small-scale retail and sales employment in overall services
employment in Ethiopia, the infrastructure-induced direction of structural transformation into
services is likewise reflected in the macroeconomic data. Figure 8.4 shows a marked increase
in services employment in Ethiopia during my study period.

6Gunning, Krishnan and Mengistu (2018) provide evidence on the price, income and
variety effects of market integration in the Ethiopian context.
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work). In the services-sector occupational subgroups, sales employment

is insignificantly reduced, whereas employment as clerical and professional

services jobs (e.g. engineers, architects, etc.) increase.7 Finally, (skilled)

agricultural employment decreases sharply in electrified locations across

samples, although only significantly so in the DHS.

To provide additional insights into which industry subgroups are mostly

affected by infrastructure investments, the lower panel of Appendix Figure A14

provides equivalent results for the industry subgroups (ISIC first-digit): roads

cause employment decreases in manufacturing, mining, construction and

administrative industries, while wholesale-retail and education industries see

employment increase. In contrast, big push infrastructure investments lead to

significantly more employment in manufacturing, construction, accommoda-

tion and food, as well as mining, exactly replicating the occupational subgroup

results from above.

One potential concern for the interpretation of results would be if the

construction industry represented exclusively non-tradeable activities, al-

though almost one third of workers in the construction industry are classified

as manufacturing workers (according to their occupations). However, in

the theoretical framework, all manufacturing employment is considered to

produce tradeable varieties. Therefore, Appendix Table A8 reports results

under the most extreme possible re-classification of construction industry

workers: results show that even if all construction industry workers were

hypothetically considered to be part of the non-tradeable services sector,

results remain qualitatively unchanged.

7Due to the extremely low total employment numbers in these occupational subgroups,
results are noisy and only marginally statistically significant.
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Overall, these findings point towards an overall compelling argument that

the market integration from road access leads to reductions in occupational

groups and industries one would expect to face greater import competition

from trade, whereas occupational groups and industries expected to benefit

from cheap imported manufactured goods, i.e. retail sales, increase their

relative employment shares. With electrification, this pattern is reversed, where

additional increases in services occupations mostly arise from jobs usually

associated with white-collar activities and office work. The manufacturing

reversal is likewise driven by increased construction and manufacturing,

where the latter, albeit at low levels, includes newly arising modern plant

employment.

Against the background of the model predictions from Section 2 above,

I can thus confirm the diverging patterns of structural transformation from

isolated against big push infrastructure investments. In addition, the model

does also explicitly predict spatial heterogeneity, such that districts less shiel-

ded by transport costs should experience larger adverse effects from import

competition (and, thus, greater reductions in manufacturing employment).

Likewise, if the interaction of infrastructure matters, those districts with the

larger market access should see greater benefits from electrification than those

with less.

Table 9.8 confirms, firstly, the substantial spatial heterogeneity in structural

transformation outcomes across space. Secondly, the pattern of heterogeneity

matches model predictions: districts closer than the median distance to

the nearest administrative zone capital (which is usually the nearest larger

town or city), suffer heavier employment losses in manufacturing from road
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access, but also reverse this larger effect equally once electrification arrives.

The latter reversal is heavily driven by agricultural employment decreases

(which may have even increased from roads before), which closely confirms

model predictions of locations’ changes in Ricardian comparative advantage

following a road-induced trade cost reduction (for tradeable sectors) and

an additional, electrification-induced productivity shock (for non-agricultural

sectors).8

Quite in contrast, for remote districts (with above median distance to

the nearest city), the employment effects on manufacturing in column (3) of

Table 9.8 are more muted and statistically insignificant. The overall services

employment increase, however, appears predominantly driven by far-from

zone capital districts (+25.8%), which makes sense given the extremely low

services employment share in such locations without roads. In sum, these

results appear to point to structural transformation patterns along districts’

likely comparative advantage, and to shifting agglomerations of employment

across space from big push infrastructure investments.

In line with the above findings, I can also confirm that the demographic

make-up of employment changes significantly in big push infrastructure

locations. Figure 8.11 highlights that these locations experience a concentration

of the labour force around prime-working age, which may point towards

a formalisation of employment. On average, workers are 2.2 years older

8Classic economic geography models (Krugman, 1991; Krugman & Venables, 1995) predict
qualitatively similar spatial heterogeneity to arise from trade cost reductions in a multi-sector
geography, although driven by an alternative mechanism of increasing returns to scale. Allen
and Arkolakis (2014) provide conditions under which different classes of spatial economic
models such as Krugman (1991) or the foundations of my framework, Helpman (1998) and
Eaton and Kortum (2002), become isomorphic.
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than in road-only connected districts (see Appendix Table A12).9 As Figure

8.11 highlights, this effect is mostly driven by a considerable narrowing of

the age distribution in road- and electricity-connected districts around the

prime-working ages from 20-40 years, at the expense of especially teenagers

participating in the labour force in districts with or without roads. This

narrowing of the age pyramid can be confirmed in quantile regression

estimates, as shown in Appendix Figure A15, where electrified districts add

especially workers between the second and sixth decile of the age distribution,

i.e. between ages 18 and 33.10

In order to interpret the shift in big push infrastructure locations’ em-

ployment towards prime working age labour as potential formalisation of

employment, further evidence on the nature of employment relationships is

required: Table 9.9 highlights how big push infrastructure locations experience

statistically significant increases in the share of employed workers, at the

expense of self-employment. Appendix Table A11 breaks down employee

and self-employed categories further and confirms that self-employment

and especially unpaid household work decrease, whereas private sector

employment increases markedly. Government employment reacts positively,

although insignificantly, to both kinds of infrastructure investments.11

9Column 4 of Table A12 also shows how the share of divorced workers increases in
interacted infrastructure districts, which one may interpret as a proxy for the arrival of greater
economic opportunities that decrease the economic value of marriage.

10While the narrowing of the age pyramid appears symmetric across genders, the overall
structural transformation results from infrastructure display a marked heterogeneity across
gender: as I highlight in Appendix Figure A16 and Appendix Table A10, relative decreases in
manufacturing employment at the expense of services due to road access are mostly driven
by females, while the big push infrastructure effect out of agriculture into manufacturing is
mostly driven by males.

11Interestingly, significantly more workers are employed in government parastatal entities
(which dominated the Ethiopian economy before 2000) in road-connected locations, at
the expense of private employment. Parastatal employees mostly work in (in decreasing
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One of the core adjustment mechanisms in the spatial general equilibrium

model is the movement of labour across places to equalise real wages.

Without full migration flows or at least a Census sample with origins, I can

instead only present in-migration results derived from the selective NLFS and

DHS samples. Out-migration to unsampled districts cannot be detected by

construction. Interestingly, no differential migration responses can be detected

for road-connected places, whereas additional electricity connections do lead to

economically meaningful, but only marginally significant positive immigration

responses (see Table 9.10).

To check the robustness of the core reduced-form results discussed above, I

briefly highlight further results regarding education, the selection of migrants

and the labour force composition. With respect to education, the overall

education results (cf. Appendix Table A14 are ambiguous since only road-

connected districts show increases in literacy (column 1), whereas years of

educational attainment only increase insignificantly. A placebo test if these

education effects are indeed driven by infrastructure is provided in Appendix

Table A15: as expected, the educational attainment of only those groups

(teenagers [column 1] and young adults [column 2]) increases, who were

young enough at the time of infrastructure arrival to still increase their

education, either by staying in school or by opting for higher education.

Interestingly, educational attainment by migrants is higher than that of non-

migrants (columns 5 vs 6), pointing towards positive selection of migrants in

road-connected districts.12 Finally, overall labour force participation shows

order): farming, manufacturing, construction, wholesale/retail and food and accommodation
industries, which together represent almost 60% of parastatal employment.

12Taken at face value, the negative coefficient in Table A15, column 5, row 2 would thus
indicate negative selection of migrants into road- and electricity-connected districts. This result
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an insignificant positive effect from roads, and a strong negative effect

from electrification, in line with the age pyramid narrowing highlighted

above: many teenagers opt out of the labour force, either due to lower fertility

(‘missing youths’) or young people staying (longer) in education.

Without accurate measures of sectoral productivity differences, the above

reduced-form results of substantial infrastructure-induced structural trans-

formation may be irrelevant for economic development and growth. Therefore,

and to motivate the structural estimation in Section 6 below, I briefly highlight

reduced-form results on three distinct welfare proxies: household expenditure,

household real consumption of durables (both from micro raw data) and

remotely-sensed proxies for economic development such as nighlights.

Regarding the former, Table 9.11 reports 2SLS results of infrastructure

investments on household consumption. Deaton (2003) recommends the use

of household expenditure as proxy for income in settings with low-quality

data on household incomes or wages, as in the case of Ethiopia.13 Column 1

indicates that only the interaction of infrastructure has significantly positive

effects on household expenditure per capita, and cannot simply be explained

by smaller household sizes. If one takes the above sectoral employment results

in combination with the model seriously, then the insignificant effect of roads

access alone may confirm that while all consumers benefit from lower prices of

may or may not be counterintuitive, depending on the skill requirements of newly arising plant
operations and construction jobs.

13The income schedule was recently removed from the HCES (formerly HICES, including
‘Income’) questionnaires due to the admittedly low quality of income responses. Similarly,
despite its name, the National Labour Force Survey (NLFS) did not collect wage or income
information from respondents.
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imported manufactured goods, some previously local manufacturers may be

harmed substantially.14

Following Young’s (2012) approach, I present results on households’ real

expenditure as proxy for economic growth in Tables 9.12 and 9.13. Results

confirm my interpretation of the structural transformation results: I do not find

statistically significant improvements in real expenditure on either durables

(Table 9.12) or housing (Table 9.13) from road access alone, whereas real

consumption of eight out of twelve categories does markedly increase in

big push infrastructure locations. If higher relative sectoral employment in

manufacturing is in fact indicative of higher aggregate productivity, the above

pattern of real consumption would be expected.

Finally, I attempt to shed light on the likely growth and welfare implications

of the reduced-form results when measured more objectively from remotely-

sensed sources, such as nightlights (Henderson, Storeygard & Weil, 2012).

Table 9.14 reports two-stage least-squares estimates of satellite-derived out-

comes on treatments: I find roads to lead to greater overall population density

in districts, whereas electricity reduces this effect again, most likely due to

fertility responses as districts develop economically. These results are also

in line with the narrowing of the age distribution discussed above, which

indicates that the prime-working age population in treated districts increases,

whereas the overall population (mostly driven by infants and youth) would

fall. Results of satellite-derived nightlights and built-up areas confirm that

14This trade-off resembles the opposing results on consumer and producer surplus in Atkin,
Faber and Gonzalez-Navarro’s (2018) context of foreign retail entry in Mexico, that led small-
scale domestic retailers to exit.
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big push infrastructure investments appear to result in noticeable increases in

economic development.15

15One caveat with the remotely-sensed results, however, is that satellite-derived data
products such as the DMSP-OLS nighlights or GHSL built-up area use nighlights either as
direct signal or as an input to image processing algorithms, such that the resulting outcome
rasters suffer from detection bias: economic growth in unelectrified areas may go entirely
unnoticed.
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Chapter 6

Structural Estimation

Equipped with the reduced-form, causal local average treatment effects of

infrastructure investments on structural transformation in Ethiopia over the

last two decades, as well as a theoretical model to characterise a spatial general

equilibrium, I turn to structurally estimating the aggregate general equilibrium

effects of infrastructure investments on structural transformation and welfare.

I proceed in five steps: first, I measure effective, terrain-adjusted distances

between locations in Ethiopia and, using origin-destination price comparisons,

estimate trade costs according to spatial arbitrage. Second, I calibrate the

model on baseline observables to obtain baseline sectoral productivities. Third,

I leverage the reduced-form results to set up a moment condition of changes

in structural transformation the model should replicate following changes

in infrastructure. This step necessarily involves taking a stance on the

functional form of the relationship between productivities and electrification.

Fourth, I numerically solve the baseline-calibrated model until the moment

condition holds in terms of the model’s endogenous variables. Finally, I

structurally estimate aggregate structural transformation and welfare effects
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of big push infrastructure investments and compare them to counterfactual,

isolated infrastructure investments.

6.1 Step 1: Roads and trade costs

In order to relate changes in roads infrastructure to changes in trade costs,

a model object of central interest (cf. Subsection 2.4), I employ the following

methodology. To start, I assume trade costs between locations to be a (log-

linear) function of distances between locations: dni = (distanceni)
τ. I develop

an algorithm to measure the full matrix of effective distances from each

district capital to each other. Then, I estimate trade costs directly from origin-

destination price gaps for a subset of goods (for which origin locations are

unique and cleanly identifiable), under an assumption of spatial arbitrage. The

latter allows me to back out the elasticity of trade costs with respect to distance,

τ. Finally, I use this elasticity to translate changes in the distance matrix due to

new road construction into changes in trade costs for all locations and goods.1

Regarding the matrix of effective distances between locations, I compute

an exhaustive matrix of district capital to distance capital least-cost distances

by means of an Dijkstra algorithm employed on a tailored cost surface.2 The

algorithm then determines the least-costly route to connect each district capital

to each other, separately. I generate the underlying cost surface from a terrain

raster image overlaid with the year-specific rasterised all-weather road vector

1This procedure builds on the underlying assumption that the relationship between
distance and trade costs is not systematically different across goods. In other words, the
subset of goods with cleanly identifiable origin locations are assumed to be representative of
a universal mapping of distance to trade costs for all traded goods.

2Wherever information on the district capital is not available, I instead use the district
centroid, under the additional geometric constraint that this centroid has to lie inside the
district.
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layers. I then run the algorithm separately for the four years for which

distinct road vector layers are available (i.e. layers for 1999/2000, 2005/2006,

2011/2012/2013 and 2016).

Terrain, or the difficulty in crossing a given pixel (representing a given

stretch of land), is expressed as a terrain ruggedness index value with scores

ranging from zero to 45. The full geography of Ethiopia is represented by

a graph of approximately 12,000 quadratic pixels, each representing an area

of approximately 185 times 185 metres (when measured at the equator). For

pixels without an all-weather road in it, I measure the cost to cross the pixel as

the distance (in kilometres) to traverse the pixel in North-South or East-West

direction times one plus the terrain ruggedness index. For district centroid or

capital pixels and all-weather road pixels, I set the cost to traverse the pixel as

simply the distance covered (i.e. a terrain ruggedness index of zero plus the

normalisation of one). Intuitively, my approach is equivalent to understanding

a given all-weather road in a pixel to virtually level the terrain in trade cost

terms.3

As a sanity check on the modelling choice that road infrastructure invest-

ments decrease trade costs, I test whether the reduced-form measure of access

to an all-weather road indeed feeds through to lower effective distances. I can

3This procedure yields effective district capital to district capital distances that
appear sensible: when benchmarked against state-of-the-art map routing engines such as
OpenRouteService, random distance pairs from my distance matrix are very close to the
OpenRouteService predicted distances travelled between the same locations. This manual
robustness check also works in cases where no all-weather road connects the district capital to
the remaining Ethiopian road network, mostly due to my terrain-avoidance algorithm yielding
similar results to software engines with information on non-gravel, earth roads. Unfortunately,
the underlying map source for OpenRouteService, OpenStreetMap, does not have information
on Ethiopian roads and settlements beyond 2014. In addition to the lack of panel information
in publicly available map engines, my algorithm is also more robust in the sense of employing
a true Dijkstra-frontier recognition procedure.
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confirm this link in the data: Table 9.15 highlights that there is a highly positive

and significant association between the district-level all-weather road indicator

(from the reduced-form above) and the transport cost matrix between district

centroids or capitals from the Dijkstra least-cost algorithm.4 In other words, the

connections between district capitals deemed least-cost by the algorithm turn

out to rely heavily on all-weather roads. An expansion in the road network

is thus directly associated with statistically significant reductions in newly-

connected districts’ transport costs (and thus, up to a transformation described

below, trade costs).5

Regarding the transport cost shock amplitudes, Appendix Figure A17

shows that the long difference in relative changes in Dijkstra algorithm least-

cost distances from the earliest (1999) to the latest point in my sample (2016)

conveys substantial heterogeneity in terms of shock amplitudes across space.

The relative changes in the per district sums of least-cost distances to all other

locations range from −35.16% to −7.18%. Hence, in the structural estimation,

I feed empirically relevant variation in transport cost shocks across districts

over time to the spatial general equilibrium model, where especially remote,

but moderate to heavily populated locations are affected most.6

4Since I am not constrained by gaps in the coverage of outcome variables for either districts
or years in this descriptive exercise, I run both OLS and fixed-effects specifications on the full
panel of all 689 Ethiopian districts at four different points in time, i.e. for each of the four
years for which I have distinct information on the extent of the all-weather road network as
described in Section 3 above. This implies, necessarily, that I also run the Dijkstra least-cost
algorithm four times on distinct cost surfaces.

5As columns (3) and (4) in Table 9.15 show, a district getting connected to the all-weather
road network is associated with a 4% reduction in the sum of that district’s least-cost distances
to all other districts.

6At least seven distinct zones affected by large transport cost shocks emerge from
Appendix Figure A17, in particular in central Amhara (South Wollo, circa 200 km north of
Addis), northern Amhara (Wag Himru, circa 400 km north of Addis), northwestern Oromia
(Horo Guduru, circa 200 km north-west of Addis), western Oromia (Ilubabor, circa 350 km west
of Addis), practically the whole south and south-west of SNNPR (e.g. Kaffa and South Omo,
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To make use of this empirically relevant, full matrix of district capital

distances, I also require information on the elasticity of trade costs with respect

to distance. To this end, I estimate trade costs from price gaps across locations

between selected products from the Ethiopian Central Statistical Authority’s

Retail Price Index (RPI) raw data. This raw price data is available at a monthly

level for 119 markets across Ethiopia from 1998 until at least 2017. Under

the assumption of spatial arbitrage, price gaps across origin and destination

locations reveal trade costs if the origin location of a traded good is unique and

as such identifiable. Similar to Atkin and Donaldson’s (2015) methodology,

unique origin locations for up to 23 distinct goods can be identified at the

barcode-level in the Ethiopian context using RPI raw data.7

Since I know the effective distances between origin-destination market

pairs, the estimated trade costs from price gaps for the above 23 distinct goods

allows to back out the implied elasticity of trade costs with respect to distance,

τ, for this subsample. Finally, I assume this elasticity to be representative

for the relationship between effective distance and trade costs of all traded

goods and locations in Ethiopia. Therefore, I can translate changes in effective

distances due to road construction over time into changes in trade costs,

which are the relevant shock to the general equilibrium system from road

construction.

circa 350-500 km south-southwest of Addis), as well as central Oromia (Arsi, circa 150-250 km
south of Addis) and eastern Oromia (Harerge, circa 300 km west of Addis). For comparison,
Appendix Figure A3 provides the distribution of population in 2015.

7The RPI raw price data employed here have greater temporal coverage and exploit several
more confirmed product origin locations to construct destination-origin price gaps compared
to Atkin and Donaldson’s (2015) data. For simplicity, and in contrast to Atkin and Donaldson
(2015), I do not allow mark-ups to vary across space. Allowing for potentially oligopolistic
intermediaries would further amplify my core results of road investments.
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6.2 Step 2: Calibration of baseline sectoral pro-
ductivities

For the calibration of the model, I follow a similar procedure as Michaels et al.

(2011) of using observable data, a matrix of trade costs and central parameter

values either from the literature or from Ethiopian micro data to calibrate

baseline sectoral productivities. In line with the reduced-form analysis above,

the baseline year refers to the earliest point in time for which survey data is

available, 1999/2000.

In particular, I use observable data on districts’ initial sectoral employment

(derived from shares) {LM
n , LT

n , LS
n}, district land area {Hn}, as well as the trade

cost matrix {dni} from Step 1 in Subsection 6.1 above.8 In addition, Table 9.16

provides parameter values for {α, κ, σ, θ, µM, µT, τ} obtained either from micro

data or from the relevant literature. Together, these model inputs allow me

to pin down baseline sectoral productivities {AM
n , AT

n , AS
n} and (normalised)

wages {wn}.

The calibration procedure solves a system of four equations for each

location for four unknowns for each location. In particular, the three sectoral

labour market clearing conditions [eq. (2.20-2.22)] and one labour mobility

condition [eq. (2.19)] provide the four equations for the three unknown sectoral

productivities and normalised wages.9

8Data sources for the structural estimation are provided in the data appendix, Appendix
Section A.

9As Michaels et al. (2011) show, given the symmetry in sectoral labour market and land
market clearing conditions, rental rates in equilibrium can be expressed as a function of only
observables and wages, such that rental rates are pinned down via wages. In my case, the
rental rate can be expressed as:

rn = wn
1
α

Ln

Hn

[
(1− α) +

(
1− µT

µT

)
LT

n
Ln

+

(
1− µM

µM

)
LM

n
Ln

+

(
1− µS

µS

)
LS

n
Ln

]
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I solve this calibration system by solving several enveloped problems: first,

for given labour-market clearing initial productivity guesses and wage guesses,

I adjust relative productivities in the services sector to ensure sectoral labour

market clearing.10 Given the non-tradeable nature of this sector, relative

services sector productivity has to be increased whenever labour expenditure

on services exceeds labour income from services. Second, for both tradeable

sectors, relative productivities have to be likewise adjusted to ensure sectoral

labour market clearing. However, given the tradeable nature of both sectors,

relative productivity adjustments have to occur in the opposite direction since

the manufacturing productivity in location n will also affect consumption and

production in location i. Finally, I employ the labour mobility condition

to check for real wage equalisation. Adjustments to normalised wages

straightforwardly ensure the allocation of population observed in the data

at baseline, given calibrated, sectoral labour market-clearing productivities,

constitutes a spatial equilibrium.

Uniqueness of the calibrated productivities and normalised wages follows

from the proof for the two-sector model in Michaels et al. (2011). Given the

non-tradeable nature of services and the irrelevance of interacted infrastructure

shocks for the baseline calibration, this proof follows through to the three-

sector version employed in this paper. Reassuringly, the calibration consist-

ently arrives at a unique combination of productivities (under the same wage

normalisation), independent of widely varying initial guesses.

.
10Before calibration of the different envelopes is initiated, I ensure that each location’s

overall labour market clears under the incoming productivity guesses. This bounding
exercise is straightforwardly achieved by adjusting two out of three sectoral productivities
and guarantees stability in the convergence towards the unique calibration solution.
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As a basic robustness check, I feed the four calibrated vectors (i.e. sectoral

productivities and wages) into the numerical solution algorithm described in

Subsection 2.3 under random initial guesses for sectoral employment, wages

and population, to confirm that the numerical solution algorithm will predict

unique values for the endogenous variables that exactly match the observed

data.

6.3 Step 3: Moment conditions from reduced-form

The reduced-form results presented in Section 5 provide estimates of the

differences in structural transformation and growth proxies caused by dif-

ferences in locations’ infrastructure access. However, these results do not

provide insights regarding the implications of big push infrastructure on either

aggregate structural transformation or welfare. In contrast, the spatial general

equilibrium model developed in Section 2 provides a structure that can be

leveraged to learn about these aggregate effects. In particular, given the

knowledge of causally identified differences in outcomes, I can inform the

model to replicate these differences in places receiving roads or big push

infrastructure investments, and then derive welfare and counterfactuals from

structural estimation.11

In my context, the local average treatment effect of infrastructure invest-

ments on structural transformation provides a ‘net’ effect after reallocation

11Faber and Gaubert (2016) follow a related approach which they call ‘model-based indirect
inference’, whereby they leverage the exclusion restriction on their instrumental variable
to identify agglomeration externalities. Ahlfeldt, Redding, Sturm and Wolf (2015) likewise
identify agglomeration effects from reduced-form evidence, although their moment conditions
exploit exogeneous variation from a natural experiment. Finally, Adão, Arkolakis and
Esposito (2019) showcase how quasi-experimental variation can be exploited to derive model-
implied optimal instrumental variable estimators to identify spatial linkages of geography-
wide shocks.
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of factors of production and trade has ensued. Therefore, I can constrain

the spatial general equilibrium model to exactly replicate these changes in

infrastructure-receiving locations. Based on this replication of empirical reality,

I can then leverage the model to learn more about effects not observable in

my reduced-form research design: aggregate sectoral employment responses,

implied welfare and hypothetical welfare results from simulated counterfacutal

infrastructure policies (e.g. isolated roads investments or isolated electrifica-

tion). Regarding the latter, however, one crucial link between the reduced-

form empirics and the model is still missing, namely how electrification access

in a location translates into manufacturing and services sector productivity

changes. Therefore, I also take a stance on the functional form of this

relationship and estimate it structurally below.

The moment conditions below impose that the model-predicted sectoral

employment shares in the manufacturing sector [eq. (6.1)] and in the services

sector [eq. (6.2)] for each location match, in expectation, the predicted values

for locations’ sectoral employment shares from the causal reduced-form results

in Section 5. I therefore effectively constrain the model to replicate the

estimated differences. Minimising this moment condition employs evidence

on the causal effect of road and electricity investments on sectoral employment

patterns across locations, after controlling for time-invariant district and

location-invariant time effects.

E
[(

λM,model
n − λ̂M,2SLS

n

)]
= 0 (6.1)

E
[(

λS,model
n − λ̂S,2SLS

n

)]
= 0 (6.2)
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I use only sectoral employment shares predicted by the two-stage least

squares procedure explained in Subsection 4.3, i.e. the three sectoral variants

of equation (4.4), to isolate the structural estimation from the endogenous com-

ponents in the relationship between infrastructure investments and structural

transformation.12

Before I can structurally estimate the effects of big push infrastructure on

structural estimation, I have to take a stance on the functional form of how

electrification is assumed to affect productivity.13 I assume that changes in

sectoral productivities in manufacturing and services are log-linear in changes

in electrification:

∆lnAM
n = ln

AM,2016
n

AM,2016
− ln

AM,1999
n

AM,1999
= φlog(1 + ∆êlecn) + νn (6.3)

∆lnAS
n = ln

AS,2016
n

AS,2016
− ln

AS,1999
n

AS,1999
= φlog(1 + ∆êlecn) + νn (6.4)

This functional form separates three elements that may drive sectoral

productivity: country-wide productivity changes over time (corrected for via

scaling by the geometric mean), district-specific innate productivity (taken out

by first-differencing) and (causal) electrification (i.e. predicted electrification

status at the district-level according to the electrification IV described in Sub-

12Since instrumental variable and two-stages least squares estimators are conceptually
equivalent, the above conditions can be regarded as representing the two-stage least squares
estimator interpretation of these moment conditions. In contrast, Faber and Gaubert
(2016) employ the equivalent instrumental variable estimator interpretation of their moment
conditions, namely that their instrument, say z, and some innate sectoral productivity are
orthogonal. Both moment condition interpretations have the same objective of ensuring that
the exclusion restriction holds in expectation.

13The equivalent relationship between roads and trade costs is described in Subsection 6.1
above.
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section 4.2).14 Finally, φ captures the elasticity of modern sector productivities

with respect to electrification, which represents the core parameter to be

estimated to minimise the (sample equivalent) of the moment conditins.

The above functional form is directly informed by the empirical context: in

the Ethiopian setting since the late 1990s, the arrival of the electric grid

provides the first constant source of energy supply for the overwhelming

majority of producers. Hence, it is reasonable to understand electrification

in Ethiopia as an extensive margin change with respect to the application

of modern, power-driven means of production.15 It is against this empirical

background that I model electrification as a direct productivity shock for

production in sectors most likely to benefit from such a sharp increase in the

availability of modern production technology.16

Current work in progress expands the above functional form to allow

for electrification-specific agglomeration effects, which makes any potential

complementarity between roads and electrification for welfare more explicit

and estimable. In particular, this extension aims at allowing deviations

from the log-linear relationship between electrification and productivity, such

that road-induced heterogeneity in agglomeration differentially scales an

electrification elasticity otherwise constant across space.

14This formulation is similar in spirit to Ahlfeldt, Redding, Sturm and Wolf’s (2015)
functional form for their ‘adjusted production fundamentals’.

15cf. Fried and Lagakos (2017) in the same empirical context, where the decrease in energy
prices from electrification leads to a discrete jump towards adoption of modern production
technology.

16Since firm competition and trade in the theoretical framework are determined by
Ricardian comparative advantage, it would be qualitatively equivalent to assume that
productivities in agriculture also increase from electrification, but less so than productivities
in the modern sectors.
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6.4 Step 4: Numerically solving for moment condi-
tions

To ensure that the moment conditions hold given the model-predicted en-

dogenous variables (such as sectoral employment shares), I iteratively solve

the numerical solution forward to determine sectoral productivities under big

push infrastructure investments. In particular, for given sectoral productivity

guesses (e.g. baseline calibrated levels {AM,1999
n , AS,1999

n } from Subsection 6.2

above), I solve the model numerically to obtain λK,model
n

(
d′ni, AM,initial

n , AS,initial
n

)
,

i.e. model-predicted employment shares for sectors K ∈ {M, S} as a function

of trade costs (adjusted for new roads construction) and initial productivity

guesses.

I then check how closely the moment conditions hold under the model-

predicted employment shares and employ an algorithm to adjust productivity

guesses until the solution converges in satisfying the moment conditions at an

accuracy of 10−6.

From this iteration through the numerical solution, I obtain model-

consistent sectoral productivities {AM,2016
n , AS,2016

n } that minimise the distance

to the reduced-form moments. Once the moment conditions are minimised, all

objects that determine electricity-affected sectoral productivities [eq. (6.3) and

eq. (6.4)] are observed with the exception of φ. I can therefore estimate this

elasticity of productivity with respect to electrification via standard 2SLS and

find an elasticity of approximately φ̂ ≈ 0.284.

Current work in progress benchmarks the above procedure against a

standard generalised method of moments (GMM) procedure to estimate
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the moment condition-minimising elasticity of productivity with respect to

electrification.

6.5 Step 5: Welfare and counterfactuals

Do big push infrastructure investments matter for welfare? Does the specific

combination of infrastructure investments generate different results than

hypothetical, isolated investment counterfactuals? Based on the endogenous

variables that satisfy the moment condition estimated in Subsection 6.4 above,

Figure 8.12 plots baseline welfare in terms of (equalised) real wages against

different infrastructure scenarios. Expressed in terms of multiples of this

baseline real wage level, the big push infrastructure investments generate more

than 11% higher welfare than the baseline without investments. Interestingly,

a roads only counterfactual achieves only 2% higher welfare, whereas an

electrification only counterfactual achieves a meagre 0.7% welfare increase

from baseline.

Closer inspection of the identities of the counterfactual investment loc-

ations provides further intuition on the result why big push infrastructure

investments matter for welfare, too: in counterfactuals without electrification,

road-receiving locations almost exclusively belong to the pool of previously

peripheral locations with low manufacturing and services productivity vis-

à-vis the core, such that welfare gains from integration are modest. These

places lose manufacturing, with negative agglomeration implications, without

gaining additional agglomeration from additional services or agriculture.

Similarly, electrification alone, under a baseline road network of late 1990s

extent, increases productivity in mostly remote locations with extremely high
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transport costs. Hence, although some positive welfare effects driven by

local demand for now more productive manufacturing varieties are predicted,

electrified locations miss out on the major lever of increased import demand

for these new manufacturing varieties from other regions. Therefore, only the

interaction of infrastructure investments reaps both sources of welfare gains

and amplifies the agglomeration effects of electrification considerably.

A logical next step is to ask if the Ethiopian infrastructure investment

strategy was optimal in the sense of the spatial general equilibrium model.

In light of recent contributions to the literature (Fajgelbaum & Schaal, 2017;

Balboni, 2019) that discuss this notion of optimal infrastructure allocation, the

Ethiopian context gives rise to an additional notion of optimality, namely op-

timal sequencing. Given a constrained budget, which combination of isolated

road, isolated electricity and interacted road and electricity investments would

have maximised aggregate welfare? How about the distributional implications

of such a policy experiment? For example, how many districts that received

at least a road would have not received any infrastructure investments at

all under welfare-optimal sequencing? Given the theoretical framework and

structural estimation procedure developed above at hand, current work in

progress answers these interesting questions to further inform infrastructure

policy in low income countries.
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Chapter 7

Conclusion

This paper presents causal evidence of big push infrastructure investments

and their effects on structural transformation in a low income country,

especially regarding the effect of combining road access and electrification on

manufacturing and services employment.

In line with the predictions from a simple spatial general equilibrium

model, I find that road access alone causes retail services employment to

emerge, at the expense of traditional manufacturing. This adverse effect on

manufacturing employment reverses, however, once locations gain additional

electricity access. I argue that this reversal is driven by improved productivity

via electricity-powered production processes.

As highlighted in the model, this latter finding confirms that big push

infrastructure investments cause qualitatively different patterns of structural

transformation than isolated infrastructure investments. Combining the

reduced-form causal evidence with the structure of the model, results from

a structural estimation procedure confirm that the welfare effects of big

push infrastructure investments are considerably larger than the sum of

its isolated infrastructure parts. I conclude that big push infrastructure
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investments appear to be in fact material to growth and welfare in low

income country settings. Therefore, potential interaction effects of empirically

common bundling or sequencing of infrastructure investments should be taken

seriously, and interaction effects taken into consideration in the planning of

infrastructure investments to maximise their impact.
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Figure 8.1: Kuznets’ Growth Fact: Structural Transformation out of Agriculture
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Figure 8.2: Large-scale Road Network Expansion (2000-2016)
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Figure 8.3: Large-scale Electricity Network Expansion (1990-2016)
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Figure 8.4: Sectoral Employment in Ethiopia (1994-2016)
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Figure 8.5: Poverty Headcounts and GDP per Capita in Ethiopia (1994-2016)
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Figure 8.6: Electrification IV Corridors and Times, Connecting Dams with
Addis Abeba
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Figure 8.7: Road IV (Italian) District Connection Year to All-weather Road
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Figure 8.8: Roads and Roads & Electricity Interaction Coefficients by
Occupational Groups (in NLFS or DHS-R dataset)
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Figure 8.9: Simulated Change in Manufacturing Shares from Trade Cost Shock
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Figure 8.10: Simulated Change in Manufacturing Shares from Combined Trade
Cost and Electrification Shock
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Figure 8.11: Age Distributions by Treatment Complier Status
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Figure 8.12: Welfare Estimates of Big Push Infrastructure
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Chapter 9

Tables

Table 9.1: Roads and Electrification Indicators in NLFS sample (1999-2013)

Road Ind.

0 1 Total

Elec. Ind.

0 328 630 958

1 7 243 250

Total 335 873 1208

Table 9.2: Roads and Electrification Indicators in DHS-R sample (2000-2016)

Road Ind.

0 1 Total

Elec. Ind.

0 239 549 788

1 8 243 251

Total 247 792 1039
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Table 9.3: First Stage: Roads-IV and Elec.-IV int., controls (1999-2013)

Dependent variable:

Roads Ind. Roads*Elec Ind.
NLFS NLFS

(1) (2)

Road IV 0.169∗∗∗ 0.002
(0.040) (0.034)

Road IV*Elec IV 0.086∗∗∗ 0.197∗∗∗

(0.031) (0.047)

Year FE X X
Controls X X
Cragg-Donald F. 9.993 9.993
Windmeijer cond. F. 16.747 13.143
F-test statistic 35.826 36.303
Observations 1,208 1,208
R2 0.248 0.250
Adjusted R2 0.241 0.243

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9.4: First Stage: Roads-IV and Elec.-IV int., controls (2000-2016)

Dependent variable:

Roads Ind. Roads*Elec Ind.
DHS DHS

(1) (2)

Road IV 0.188∗∗∗ −0.037
(0.048) (0.035)

Road IV*Elec IV 0.097∗∗∗ 0.243∗∗∗

(0.025) (0.050)

Year FE X X
Controls X X
Cragg-Donald F. 13.94 13.94
Windmeijer cond. F. 19.613 16.27
F-test statistic 40.998 42.623
Observations 1,039 1,039
R2 0.264 0.272
Adjusted R2 0.258 0.265

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9.5: Occup. Change (NLFS), Roads and Elec. (1999-2013)

Dependent variable:

Agriculture Services Manufacturing

(1) (2) (3)

Road Indicator −0.072 0.192∗∗ −0.115∗

(0.111) (0.088) (0.060)

Road*Elec Ind. −0.202∗ 0.070 0.131∗∗

(0.113) (0.087) (0.059)

Model 2SLS 2SLS 2SLS
Year FE X X X
Controls X X X
Cragg-Donald F. 9.993
Windmeijer cond. F. 16.747 13.143
p-val β1 + β2 = 0 0.007 7e-04 0.7581
Observations 1,208 1,208 1,208

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9.6: Occup. Change (NLFS-ISIC, excl. Somali), Roads and Elec. (1999-
2013)

Dependent variable:

Agr. [isic] Ser. [isic] Man. [isic]

(1) (2) (3)

Road Indicator −0.085 0.216∗∗ −0.125∗∗

(0.110) (0.099) (0.062)

Road*Elec Ind. −0.196 −0.041 0.232∗∗∗

(0.144) (0.126) (0.089)

Model 2SLS 2SLS 2SLS
Year FE X X X
Controls X X X
Cragg-Donald F. 6.052
Windmeijer cond. F. 15.261 10.377
p-val β1 + β2 = 0 0.0066 0.0483 0.1181
Observations 1,188 1,188 1,188

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9.7: Occup. Change (DHS-R), Roads and Elec. (2000-2016)

Dependent variable:

Agriculture Services Manufacturing

(1) (2) (3)

Road Indicator −0.192 0.228∗∗ −0.035
(0.128) (0.105) (0.065)

Road*Elec Ind. −0.223 0.014 0.216∗∗∗

(0.143) (0.105) (0.078)

Model 2SLS 2SLS 2SLS
Year FE X X X
Controls X X X
Cragg-Donald F. 22.328
Windmeijer cond. F. 19.613 16.27
p-val β1 + β2 = 0 0.0051 0.0291 0.0201
Observations 1,039 1,039 1,039

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9.8: Occup. Change (NLFS, zone cap. dist.), Roads and Elec. (1999-2013)

≥ med(zone capital dist.) < med(zone capital dist.)

Agr. Ser. Man. Agr. Ser. Man.

(1) (2) (3) (4) (5) (6)

Road Indicator −0.147 0.255∗ −0.106 0.022 0.134 −0.144
(0.154) (0.131) (0.084) (0.183) (0.129) (0.103)

Road*Elec Ind. 0.154 −0.208 0.045 −0.313∗∗ 0.142 0.169∗∗

(0.290) (0.268) (0.161) (0.138) (0.098) (0.073)

Model 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS
Year FE X X X X X X
Controls X X X X X X
Cragg-Donald F. 3.581 8.805
Windmeijer cond. F. 8.25 2.444 6.17 7.437
p-val β1 + β2 = 0 0.9753 0.837 0.644 0.0571 0.0093 0.7486
Observations 604 604 604 604 604 604

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9.9: Employment Relations (NLFS), Roads and Elec. (1999-2013)

Dependent variable:

Employed Self-Employed

(1) (2)

Road Indicator 0.028 −0.024
(0.067) (0.067)

Road*Elec Ind. 0.241∗∗ −0.240∗∗

(0.097) (0.097)

Model 2SLS 2SLS
Year FE X X
Controls X X
Cragg-Donald F. 6.272
Windmeijer cond. F. 16.334 11.003
p-val β1 + β2 = 0 4e-04 5e-04
Observations 1,208 1,208

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9.10: Migration (NLFS), Roads and Elec. (1999-2013)

Dependent variable:

Mig.<1yr Mig.<2yr Mig.<6yr Mig. ever

(1) (2) (3) (4)

Road Indicator 0.001 −0.010 −0.036 −0.078
(0.015) (0.023) (0.051) (0.102)

Road*Elec Ind. 0.026∗ 0.043∗ 0.111∗∗ 0.197∗

(0.015) (0.024) (0.052) (0.105)

Model 2SLS 2SLS 2SLS 2SLS
Year FE X X X X
Controls X X X X
Cragg-Donald F. 9.993
Windmeijer cond. F. 16.747 13.143
p-val β1 + β2 = 0 0.0425 0.1092 0.0857 0.1948
Observations 1,208 1,208 1,208 1,208

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

112



Table 9.11: Consumption (HCES), Roads and Elec. (2000-2016)

Dependent variable:

HH Exp. (pc) HH Size HH Age

(1) (2) (3)

Road Indicator −641.58 0.51 0.03
(1,448.17) (0.42) (1.60)

Road*Elec Ind. 4,854.19∗ −1.34∗∗ 4.80∗

(2,790.13) (0.61) (2.67)

Model 2SLS 2SLS 2SLS
Year FE X X X
Controls X X X
Cragg-Donald F. 8.241
Windmeijer cond. F. 26.111 10.042
p-val β1 + β2 = 0 0.1116 0.157 0.0713
Observations 572 572 572

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9.12: Durables Exp. (DHS-HR), Roads and Elec. (2000-2016)

Dependent variable:

Radio TV Refrig. Bike Scooter Car Phone

(1) (2) (3) (4) (5) (6) (7)

Road Indicator 0.068 −0.113∗∗ −0.047 0.002 0.002 −0.006 0.005
(0.074) (0.046) (0.058) (0.016) (0.004) (0.006) (0.019)

Road*Elec Ind. 0.171∗ 0.175∗∗ 0.098∗∗ 0.005 −0.013 0.024∗ 0.083∗∗

(0.099) (0.079) (0.048) (0.019) (0.010) (0.012) (0.038)

Model 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS
Cragg-Donald F. 15.257 15.257 5.632 15.257 15.257 15.257 15.257
Windmeijer cond. F. (I) 19.613 19.613 19.613 19.613 19.613 19.613 19.613
Windmeijer cond. F. (II) 16.27 16.27 16.27 16.27 16.27 16.27 16.27
p-val β1 + β2 = 0 0.3832 0.3659 0.714 0.2637 0.1458 0.0163 0.0197
Observations 1,039 1,039 788 1,039 1,039 1,039 1,039

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9.13: Housing Exp. (DHS-HR), Roads and Elec. (2000-2016)

Dependent variable:

Elec. Tap Water Flush Toilet Floor Ln(Rooms pp.)

(1) (2) (3) (4) (5)

Road Indicator 0.042 −0.023 −0.036∗ 0.093 0.051
(0.084) (0.132) (0.021) (0.068) (0.151)

Road*Elec Ind. 0.308∗∗ 0.533∗∗∗ 0.054∗ 0.124 0.087
(0.145) (0.178) (0.030) (0.110) (0.133)

Model 2SLS 2SLS 2SLS 2SLS 2SLS
Cragg-Donald F. 15.257 15.257 15.257 15.257 11.258
Windmeijer cond. F. (I) 19.613 19.613 19.613 19.613 4.813
Windmeijer cond. F. (II) 16.27 16.27 16.27 16.27 12.963
p-val β1 + β2 = 0 0.0197 0.0072 0.4915 0.0438 0.5127
Observations 1,039 1,039 1,039 1,039 540

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9.14: Satellite Outcomes, Roads and Elec. (2000-2016)

Dependent variable:

Log Pop. Built-up Nightlights

(1) (2) (3)

Log Pop. Initial 1.002∗∗∗ 0.089 −0.010
(0.006) (0.076) (0.094)

Nightlights Initial 0.0001 1.194∗∗∗ 1.028∗∗∗

(0.0005) (0.072) (0.027)

Road Indicator 0.057∗∗ −1.626∗∗∗ −1.033∗

(0.023) (0.527) (0.531)

Road*Elec Ind. −0.143∗∗∗ 1.023 2.312∗∗

(0.039) (0.643) (0.980)

Model 2SLS 2SLS 2SLS
Year FE X X X
Controls X X X
Cragg-Donald F. 42.909 30.454 27.263
Windmeijer cond. F. (I) 238.793 105.775 41.396
Windmeijer cond. F. (II) 37.785 24.858 14.465
Observations 2,748 1,374 2,061

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9.15: Full-panel: Roads and Least-Cost Distances (2000-2016)

Dependent variable:

Log(Sum of Least-cost Distances)

(1) (2) (3) (4)

Roads Ind. −0.203∗∗∗ −0.114∗∗∗ −0.045∗∗∗ −0.040∗∗∗

(0.011) (0.007) (0.009) (0.003)

Controls X X
Year FE X X
District FE X
Observations 2,752 2,744 2,744 2,752

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table 9.16: Parameters for Structural Estimation

Parameter Value Source Description

σ 4 Bernard et al. (2003) Elasticity of
substitution
between varieties

1− α 0.25 Data (HCES) Expenditure share
on land/housing

κ 0.5 Ngai & Pissarides (2008) Elasticity of substi-
tution across sec-
tors

µM 0.82 Data (LMMIS) Labour share in M-
production

µT 0.78 Data (AgSS) Labour share in T-
production

µS 0.84 Data (DST) Labour share in S-
production

τ 0.3 Data (RPI) Elasticity of trade
cost with respect to
distance

θ 4 Donaldson (2018) Shape parameter of
productivity distri-
bution across vari-
eties & locations

Note: HCES denotes the Central Statistical Agency’s (CSA) Household
Consumption and Expenditure Surveys; LMMIS denotes the CSA’s Large- and
Medium-Scale Manufacturing Surveys; AgSS denotes the CSA’s Agricultural
Sample Surveys; DST denotes the CSA’s Distributive and Service Trade
Surveys; RPI denotes the CSA’s Retail Price Index’ raw data.
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Appendix A

Appendix: Data

For the structural estimation, I require additional data on model inputs that
were either not required or not of primary interest in the reduced-form
estimation. In particular, I require information on the supply of land and
population information for every district in Ethiopia. I also explain how initial
sectoral employment shares for the baseline calibration are derived from NLFS
and DHS samples. Furthermore, I provide proxy measures for the productivity
in either production sector and wages as additional robustness checks on the
fit of the model.

With respect to land area, I use arable land derived from satellite imagery,
that is land either deemed theoretically inhabitable or suitable for productive
use. This choice of proxy is not without potential issues, given that
in the model housing for consumers and land used in production are
conflated. However, reliable data on the housing stock and its value in
Ethiopia is virtually non-existent since the Ethiopian real estate market remains
monopolised by government ownership of land, essentially a leftover from the
previous, socialist regime in power: all land is owned by the government and
firms or residents only obtain non-permanent permission to use their allocated
land without technically owning it. Hence, I use arable land as one possible
proxy for land supply for which data exists, which appears reasonable given
that land enters all sectors’ production as input and even consumers’ housing
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demand will reflect demand for land given prevailing housing construction
outside of Addis Abeba.

For population data, I employ Census data at the district-level for 2007/2008
in addition to Census-derived, remotely-sensed population estimates for
earlier and later years. Although the NLFS and DHS repeated cross-sections do
not include useable information on district-level population, I can nonetheless
derive information on the share of the working age population and the
labour force participation rate from this data. The latter becomes useful
in scaling population measures, since large parts of the (on average very
young) population are not (yet) active in the labour force. This information
is supplemented by the birth histories from the DHS’ female questionnaire,
which provides useful insights into changes of fertility (and thus population
growth) at the district-level across the country and over time.

Regarding initial sectoral employment shares used in the baseline calibra-
tion, the manufacturing and service sector shares relate one for one to the
manufacturing and services sectors’ employment shares in each district as
of 1999/2000. In particular, to maximise the sample of available initial data
points, I pool both the first National Labour Force Survey (NLFS) round from
1999/2000 and the first Demographic and Health Survey (DHS) round from
2000. Wherever a district contains enumeration areas from both surveys, the
manufacturing share of that district represents the average of enumeration
areas across surveys. Using both unbalanced samples, I obtain 1999/2000
manufacturing employment share data for 475 out of the total 689 districts
used in the analysis. Out of these 475, 181 districts appear only in the NLFS
for the initial period, 58 appear only in the DHS and 236 appear in both. For
the missing 214 districts, I impute initial employment shares by relying on
the fact that both the NLFS and the DHS are representative at the country-
and the regional-level. Hence, any interpolation has to preserve the sample
mean. We propose three different imputation methods and show sensitivity
of my results below: firstly, a naive imputation where every missing district
value is replaced with the sample mean. Secondly, a random permutation
of this sample mean within one standard deviation, while preserving the
overall mean and, thirdly, a more sophisticated regression-based approach that
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predicts (mean-preserving) employment shares based on observable district
characteristics.

Regarding sectoral productivities, I use agricultural yields as a proxy for
traditional sector productivity: as shown in recent applications in the remote-
sensing literature, remotely-sensed organic carbon content at shallow soil
depths (e.g. 5-20cm) performs surprisingly well as a proxy for soil fertility and
agricultural productivity when compared against lab-in-the-field measures of
either, which are obtained by taking physical soil samples or measuring farmer
output.

I can show that district-averages of organic carbon content at five centimetre
depths from remotely-sensed data across Ethiopia appear to fit a Weibull
distribution of yields well (results available upon request). This empirical
finding is particularly interesting given the wide use of extreme value
distribution (such as Fréchet, Weibull or Gumbel) properties in spatial general
equilibrium models like mine. Since the reciprocal of a two-parameter Weibull-
distributed random variable is Fréchet-distributed, one can easily derive the
scale and shape parameters of such a distribution. In particular, if X ∼
Frechet(α, s, m = 0) , then its reciprocal is Weibull-distributed with parameters:
X−1 ∼Weibull(k = α, λ = s−1). In my case, fitting a Weibull distribution to the
yield data by Maximum Likelihood results in estimates for the scale parameter
(AT

n ) of 31.74 (s.e. = 0.4661) and for the shape parameter (θ) of 2.75 (s.e. =

0.0749).
For the modern sector productivity, I lack any country-wide proxies for

it. However, I use crude measures of a TFP residual from the firm-level raw
data of repeated cross-sections of the Central Statistical Agency’s Large and
Medium-Scale Manufacturing and Industry Surveys, as well as the Small-Scale
Manufacturing and Industry Surveys. Since the firms sampled in these surveys
are predominantly located in towns and cities across Ethiopia, I derive the
correlation structure between district-level agricultural yields and survey TFP
proxies, whenever available, to then extrapolate from this for all Ethiopian
locations.

Finally, I can derive wages or proxies thereof from two distinct sources: firstly,
the Retail Price Index raw data contain monthly information on the day
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rate for unskilled labour in 119 markets from 1998 until 2017 (cf. Subsection
6.1 for more information). This represents a very direct measure of wages,
albeit it is only available for the subset of market towns, which may vary
quite dramatically from rural or more remote labour market conditions.
Secondly, I can exploit household expenditure information per capita provided
in the nationally representative HCES surveys (cf. Subsection 3.2 for more
information) for sampled enumeration areas throughout Ethiopia, from which
at least a subset of district wage proxies can be derived. The remaining gaps
in coverage can be filled by small area estimation such as in Balboni (2019).
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Appendix B

Additional Figures

Figure A1: Sectoral Value-Added in Ethiopia (1980-2016)
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Figure A2: DHS Enumeration Area Locations by Survey Round (2000-2016)

Figure A3: Spatial Variation in Population Density across Ethiopia (2015)
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Figure A4: Spatial Variation in Elevation across Ethiopia

Figure A5: Spatial Variation in Terrain Ruggedness across Ethiopia
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Figure A6: Endogeneity of Infrastructure Allocation across Ethiopia

Covariate Densities across Road and Electricity Indicators (all districts, 2016)
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Figure A7: Historic Italian Road Construction in Ethiopia and Eritrea
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Figure A8: Reconstructed Italian Colonial Roads and Orthogonal Feeder Roads
to Nearby Districts around Debre Berhan (along Dessie–Addis Abeba corridor)

Figure A9: Reconstructed Italian Colonial Roads and Orthogonal Feeder Roads
to Nearby Districts around Kulubi (along Harar–Addis Abeba corridor)
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Figure A10: Random Assignment of Electricity Instrument: Covariate Values
of Original Districts under Instrument Line Buffer vs Neighbouring Districts

Covariate Means across Electricity IV Line Buffer and Neighbouring Districts (2016)
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Figure A11: Districts’ Road Access Status as Function of Population Density
(2005-2013)
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Figure A12: Random Assignment of Roads Instrument: Covariate Values of
Pre-Sample Year Districts vs Post-Sample Year Districts

Covariate Means across Road IV Pre− and Post−Sample Threshold Years
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Figure A13: Road IV (Kruskal) District Connection Year to All-Weather Road
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Figure A14: Sectoral Breakdowns (ISCO and ISIC–one digit) of Treatments
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Figure A15: Quintile Treatment Effects by Age
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Figure A16: Sectoral Breakdown of Treatments by Gender
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Figure A17: Relative Dijkstra Algorithm Least-cost Distance Changes across
Districts, Single Long Difference (1999-2016)
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Appendix C

Additional Tables
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Table A1: New Sampling Conditional on Population: Correlation with
Treatments by Year (DHS-R)

Dependent variable:

District Newly Sampled Indicator

(1) (2) (3) (4)

Road Ind. 0.391∗∗∗ −0.042 −0.108 −0.018
(0.131) (0.064) (0.067) (0.073)

Elec. Ind. 0.659∗∗∗ −0.028 −0.003 −0.014
(0.212) (0.102) (0.051) (0.022)

Log Pop. 0.010 0.154∗∗∗ −0.010 −0.003
(0.085) (0.041) (0.022) (0.013)

Year 2000 2005 2011 2016
Controls X X X X
New Sampled 294 114 80 47
Resampled 0 175 228 273
Unsampled 393 398 379 367
Observations 687 687 687 687
R2 0.137 0.038 0.025 0.029
Adjusted R2 0.125 0.025 0.012 0.016

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A6: Occup. Change (DHS-R), Roads and Elec. (2000-2016)

Dependent variable:

Agriculture Services Manufacturing

(1) (2) (3)

Road Indicator −0.192 0.228∗∗ −0.035
(0.128) (0.105) (0.065)

Road*Elec Ind. −0.223 0.014 0.216∗∗∗

(0.143) (0.105) (0.078)

Model 2SLS 2SLS 2SLS
Year FE X X X
Controls X X X
Cragg-Donald F. 22.328
Windmeijer cond. F. 19.613 16.27
p-val β1 + β2 = 0 0.0051 0.0291 0.0201
Observations 1,039 1,039 1,039

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A7: Occup. Change (NLFS, excl. Somali), Roads and Elec. (1999-2013)

Dependent variable:

Agriculture Services Manufacturing

(1) (2) (3)

Road Indicator −0.071 0.196∗∗ −0.119∗∗

(0.110) (0.088) (0.060)

Road*Elec Ind. −0.202∗ 0.060 0.141∗∗

(0.114) (0.089) (0.061)

Model 2SLS 2SLS 2SLS
Year FE X X X
Controls X X X
Cragg-Donald F. 10.327
Windmeijer cond. F. 17.545 13.208
p-val β1 + β2 = 0 0.007 9e-04 0.6813
Observations 1,188 1,188 1,188

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A8: Construction Robustness: Occup. Change (NLFS-ISIC, excl. Somali),
Roads and Elec. (1999-2013)

Dependent variable:

Constr. Ser. [isic] Ser. incl. Constr. Man. [isic] Man. excl. Constr.

(1) (2) (3) (4) (5)

Road Indicator −0.023 0.216∗∗ 0.193∗ −0.125∗∗ −0.102∗∗

(0.018) (0.099) (0.100) (0.062) (0.051)

Road*Elec Ind. 0.055∗ −0.041 0.014 0.232∗∗∗ 0.177∗∗

(0.028) (0.126) (0.128) (0.089) (0.072)

Model 2SLS 2SLS 2SLS 2SLS 2SLS
Year FE X X X X X
Controls X X X X X
Cragg-Donald F. 6.052
Windmeijer cond. F. 15.261 10.377
p-val β1 + β2 = 0 0.1164 0.0483 0.0206 0.1181 0.1664
Observations 1,188 1,188 1,188 1,188 1,188

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A9: Instrument Validity: Initial MA proxy on IVs/Ts (1999-2013)

Dependent variable:

Initial MA proxy MA proxy

(1) (2) (3) (4)

Road IV −0.068 0.008∗∗∗

(0.063) (0.002)

Road IV*Elec IV 0.015 −0.013∗∗∗

(0.076) (0.003)

Road −0.009 −0.002
(0.055) (0.002)

Road*Elec 0.021 0.003
(0.080) (0.003)

Year FE X X X X
Controls X X X X
Observations 1,208 1,208 1,208 1,208
R2 0.016 0.015 0.998 0.998
Adjusted R2 0.007 0.006 0.998 0.998

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A10: Occup. Change (NLFS, gender split), Roads and Elec. (1999-2013)

Female Male

Agr. Ser. Man. Agr. Ser. Man.

(1) (2) (3) (4) (5) (6)

Road Indicator −0.094 0.258∗∗ −0.161 −0.088 0.152∗ −0.055
(0.140) (0.108) (0.100) (0.108) (0.083) (0.048)

Road*Elec Ind. −0.135 0.068 0.071 −0.227∗ 0.060 0.161∗∗∗

(0.133) (0.110) (0.090) (0.117) (0.082) (0.057)

Model 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS
Year FE X X X X X X
Controls X X X X X X
Cragg-Donald F. 9.993
Windmeijer cond. F. 16.747 13.143
p-val β1 + β2 = 0 0.0426 5e-04 0.2234 0.0025 0.0037 0.0278
Observations 1,208 1,208 1,208 1,208 1,208 1,208

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A12: Demographics (NLFS), Roads and Elec. (1999-2013)

Dependent variable:

Age Never Married Married Divorced

(1) (2) (3) (4)

Road Indicator 0.223 0.056 −0.027 −0.033
(0.984) (0.043) (0.043) (0.032)

Road*Elec Ind. 2.162∗ −0.053 −0.052 0.087∗∗∗

(1.272) (0.048) (0.050) (0.033)

Model 2SLS 2SLS 2SLS 2SLS
Year FE X X X X
Controls X X X X
Cragg-Donald F. 9.993
Windmeijer cond. F. 16.747 13.143
p-val β1 + β2 = 0 0.0317 0.9411 0.0473 0.0927
Observations 1,208 1,208 1,208 1,208

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A13: LFP (NLFS), Roads and Elec. (1999-2013)

Dependent variable:

L-Sampled L-Force L-Act. Force LFP rate LFP-S rate Notwork

(1) (2) (3) (4) (5) (6)

Road Indicator 20.138 3.890 4.447 −0.002 0.050 −0.006
(15.343) (9.256) (8.689) (0.029) (0.050) (0.006)

Road*Elec Ind. −37.381∗∗ −11.040 −14.737 0.033 −0.080 0.001
(18.630) (9.723) (9.299) (0.041) (0.059) (0.006)

Model 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS
Year FE X X X X X X
Controls X X X X X X
Cragg-Donald F. 9.993
Windmeijer cond. F. 16.747 13.143
p-val β1 + β2 = 0 0.3146 0.4075 0.2215 0.3441 0.5304 0.3218
Observations 1,208 1,208 1,208 1,208 1,208 1,208

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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Table A14: Education (NLFS), Roads and Elec. (1999-2013)

Dependent variable:

Read/Write Edu. (Years)

(1) (2)

Road Indicator 0.198∗∗ 1.083
(0.094) (0.712)

Road*Elec Ind. −0.119 −0.182
(0.114) (0.956)

Model 2SLS 2SLS
Year FE X X
Controls X X
Cragg-Donald F. 9.993
Windmeijer cond. F. 16.747 13.143
p-val β1 + β2 = 0 0.4228 0.2739
Observations 1,208 1,208

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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