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Abstract

This thesis is composed of three chapters.

Chapter 1 introduces a statistical framework to study dynamic (S,s) economies.

The proposed framework enables researchers to estimate unit level cumulated

changes in frictionless variables based on a panel of variables for which changes

are intermittent and lumpy. Formally, the estimates are grounded on an ex-

act closed-form solution for the smoothing problem associated with a nonlinear

and non-Gaussian state-space representation of an economy composed of microe-

conomic unit pursuing two-sided (S,s) policies subject to costless adjustment

opportunities. This state-space representation is semi-structural and can accom-

modate some classic problems that have been analysed through the lens of (S,s)

models such as pricing subject to menu costs, cash withdrawals and plant-level

investment and hiring and firing decisions. The resulting unit level estimates

can be used to construct estimates of frictionless aggregate variables and of the

cross-sectional distribution of state gaps for any time period.

Chapter 2 applies the theoretical results developed in chapter 1 to a large micro

price dataset underlying the United Kingdom Consumer Price Index to produce

a novel measure of inflation which I label frictionless inflation. This measure is

theoretically grounded on a random menu cost model and it should be interpreted

as the inflation that would have been observed in a counterfactual world where

menu costs of price adjustment did not exist. I use this measure to answer four

questions. First, what is the importance of menu costs for the aggregate inflation

dynamics? Second, what is the importance of menu costs for the transmission

of monetary policy shocks? Third, what is the relationship between frictionless

inflation and the movements in the output gap? Fourth, can frictionless inflation

be used as a leading indicator for headline inflation?

Chapter 3 studies the estimation of impulse responses functions (IRFs) of dif-

ferent individuals to an aggregate shock. The commonplace approach to this
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problem involves first grouping individuals according to some external classifica-

tion or observable explanatory variables and subsequently estimating the associ-

ated group-specific IRFs. This chapter starts by showing that the IRF estimates

based on this approach are subject a misclassification bias that arises whenever

the grouping of individuals imposed by the researcher groups together individ-

uals that do not react in the same way to aggregate shocks. Motivated by this

results, this chapter introduces an alternative methodology to estimate disag-

gregated IRFs using the C-Lasso framework which asymptotically eliminates the

misclassification bias without the need for the researcher to take a stance on indi-

vidual group membership. The proposed estimator is used to revisit the dynamic

responses of firm-level debt to an aggregate investment specific technology shock.
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Chapter 1

State-Space Modeling of

Dynamic (S,s) Economies

1.1. Introduction

At the microeconomic level many changes can be described as intermittent and

lumpy. Retail prices usually remain unchanged for several months before they

change by large amounts. The same pattern has been documented for several

variables including inventory orders, individual cash-withdrawals, plant-level in-

vestment and firm’s hiring and firing decisions. This empirical pattern led to

the widespread application of (S,s) policies, formally justified by the existence of

fixed adjustment costs, to a variety of economic problems. The fundamental vari-

able driving individual decisions under those policies is the so-called state gap,

understood as the difference between a state variable that determines individual

payoffs and its frictionless counterpart, that is, the value that would maximise

individual payoffs for that time period. The behaviour implied by those policies

consists in adjusting the state variable to bring the state gap to a pre-specified

level when the current state gap is sufficiently large and leaving the state variable

unchanged otherwise.

Even though the intermittent and lumpy changes observed in disaggregated
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data can be rationalised by microeconomic units pursuing (S,s) policies it is a

priori unclear what are implications of those policies for economy-wide outcomes.

Does the adoption of (S,s) policies at the microeconomic level affect the dynam-

ics of aggregate variables? Does it affect their response to shocks? What are the

welfare costs induced by presence of those policies? From an empirical perspec-

tive, the key information to answer these questions is the values of each unit’s

frictionless state variables. These are, by construction, the values that would

have been observed for each unit’s state variable in a counterfactual world where

(S,s) policies were not adopted. Unfortunately these hypothetical values are not

directly observed in the data and, on top of that, the adoption of (S,s) policies

makes inference about these values particularly difficult for outside observers be-

cause periods of inaction act as a store of private information about the unit’s

frictionless state variable values (Caplin and Leahy, 2010).

This paper introduces a statistical framework to study economies that are

composed of microeconomic units adopting (S,s) policies. This framework is

designed to enable researchers to estimate cumulated changes in each unit’s fric-

tionless state variable for any time period based only on data on each unit’s actual

state variable values. The problem researchers face is illustrated in figure 1.A.1.

For a given microeconomic unit, the blue-starred line represents a sequence of

cumulated changes in its frictionless state variable generated from an exogenous

process. Assuming this unit adopts (S,s) policies, the implied path for cumulated

changes in actual state variable is given by the black solid line, which changes

when its distance to the blue starred-line crosses certain thresholds (black dashed

lines) and remains constant otherwise. In actual data researchers only observe a

panel black solid lines. The statistical framework proposed in this paper is de-

signed to enable researchers to go from a panel of observed black lines to a panel

of estimates of the blue-starred lines, which are the ultimate object of interest.

To solve this statistical inversion problem, this paper proceeds in three logical

steps. The first step is to introduce a process that is assumed to generate ac-

tual state variable values in an economy where each microeconomic unit adopts
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a two-sided (S,s) policy subject to costless adjustments opportunities. Build-

ing from the continuous-time literature on (S,s) models, the cumulated changes

in each unit’s frictionless state variable are assumed to evolve according to a

random walk with drift whilst costless adjustment opportunities are assumed

to arrive according to Bernoulli random draws. Combining these two processes

specifying the evolution of the unobserved variables and (S,s) policies to map

these unobserved variables to actual state variable values yields a nonlinear and

non-Gaussian state-space representation of the data generating process. This rep-

resentation is semi-structural and can accommodate some classic problems that

have been analysed through the lens of (S,s) models such as pricing subject to

menu costs, cash-management, plant-level investment and labor hiring and firing

decisions.

The second step consists in devising a procedure that makes possible esti-

mation of unknown parameters that enter the data generating process by using

information on actual state variable values observed by the researcher. In the

literature on (S,s) models it has become commonplace to estimate unknown pa-

rameters based on moment conditions involving changes in observed state vari-

ables. The estimation procedure here proposed follows this tradition but divides

the estimation in two stages. The first-stage uses moment conditions that do

not depend on the initial cross-sectional distribution of state gaps to estimate all

parameters bar unit-specific initial state gaps. In the second-stage, parameters

estimated in the first-stage are kept fixed and a different set of moment condi-

tions is then used to estimate the initial cross-sectional distribution of state gaps.

Given the proposed state-space representation does not admit closed-form solu-

tion for moment conditions involving state variable changes, estimation in both

stages is conducted via Simulated Method of Moments (SMM).

The third step involves solving a smoothing problem, that is, solving for the

probability density function of the latent variables of interest (i.e. cumulated

changes in each unit’s frictionless state variable) conditional on all the state

variable values observed by the researcher and a set of values for the unknown
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parameters. Despite the marked nonlinearities and non-Gaussianity of the data

generating process, this paper explores a local version of the forward-filtering

and backward-smoothing recursion techniques in Kitagawa (1987, 1994, 1996)

to obtain an exact closed-form expression for the smoothed probability density

function. Finally, by setting parameter values equal to their estimates from the

second step, the smoothed estimates of cumulated changes in each unit’s fric-

tionless state variable are obtained by computing expectation of the smoothed

probability density function. These smoothed estimates can then be combined

with the estimated initial cross-sectional distribution of state gaps to produce

estimates of the cross-sectional distribution of state gaps in the economy at any

point in time.

Lastly, the properties of the proposed estimator are illustrated through a

Monte Carlo experiment. Samples of artificial data are generated from the as-

sumed data generating process and, in each of these samples, smoothed estimates

for each unit’s cumulated changes in frictionless state variable are obtained and

compared against the estimates obtained from two alternative estimators. The

first alternative estimator is based on an incomplete expression for the smoothed

probability density function that holds only in a special case. The second al-

ternative estimator does not make use of the information contained in the state

variable values observed in the data. Across a variety of data generating pro-

cess specifications and sample sizes, the calculated mean squared error (MSE)

for smoothed estimates is between 5 and 55% smaller than the MSE of the first

alternative estimator and more than a full order of magnitude smaller than the

MSE of the second alternative estimator.

Relation to the literature. This paper relates and contributes to two strands

of literature. First, it relates broadly to an extensive literature that has employed

(S,s) rules to model individual decisions underlying the intermittent and lumpy

adjustments observed in dissagregated data. In particular, it relates to other

papers that have explicitly attempted to estimate frictionless state variables and

state gaps. In the context of plant-level labor adjustments, Caballero, Engel and
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Haltiwanger (1997) use information on hours worked to recover labor gaps at the

plant level.1 In the context of pricing, Campbell and Eden (2014) and Carvalho

and Kryvstov (2018) use information contained in prices of similar quote-lines to

estimate frictionless prices. In a similar environment to the one considered in the

present paper, Baley and Blanco (2020) provide an analytical mapping between

moments of the cross-sectional distribution of observed state variable adjustments

and moments of the cross-sectional distribution of gaps in steady state. There are

three aspects of the statistical framework here proposed that set it apart from the

existing literature. First, the estimates of cumulated changes in frictionless states

are formally grounded on the theory of filtering and smoothing which contrasts

with alternative estimators that lack any statistical underpinning. Second, the

framework here proposed is semi-structural and can accommodate many problems

that have been analysed through the lens of (S,s) models. Third, the estimator

here introduced produces estimates of cumulated changes in frictionless inflation

for each unit using only information contained in the observed state variable

values.

Second, this paper is relates to a vast and long-standing literature on nonlin-

ear and non-Gaussian filtering and smoothing. The intersection of this literature

with economics is mostly confined to the estimation of nonlinear dynamic stochas-

tic general equilibrium models (Herbst and Schorfheide, 2015), however, it has

been fruitfully applied to tackle a wide range of problems spanning different fields

including GPS tracking, brain imaging, audio signal processing and autonomous

navigation (Chen, 2003; Särkkä, 2013). In linear and Gaussian state-space rep-

resentations exact closed form solutions to the filtering and smoothing problems

are given respectively by the celebrated Kalman filter (Kalman, 1960) and the

Rauch-Tung-Striebel smoother (Rauch, Tung and Striebel, 1965). However, for

nonlinear and/or non-Gaussian state-space representations filtering and smooth-

ing problems in general do not admit closed form solutions and approximate

1For further discussion of this approach refer to Cooper and Willis (2004), Caballero and
Engel (2004), Bayer (2009) and Cooper and Willis (2009).
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solutions have to be obtained numerically.2 This paper contributes to the litera-

ture on nonlinear and non-Gaussian filtering and smoothing by providing exact

closed-form solutions for the filtering and smoothing problems given a state-space

representation of a dynamic (S,s) economy. The fact that closed-form solutions

are derived is particularly important, not just because they are exact, but also

because they allow smoothed estimates to be easily calculated in a setting where

most of the existing smoothing algorithms either do not apply due to the discon-

tinuities in the measurement equation (e.g. smoothers of the “Kalman family”)

or are computationally too expensive to be implemented on a large scale (e.g.

Markov chain Monte Carlo or particle filters).

Structure of the paper. Section 1.2 presents the state-space representation

that is assumed to generate the data that is observed by the researcher. Sec-

tion 1.3 introduces a two-stage estimation procedure to estimate the unknown

parameters that enter the data generating process. Section 1.4 presents the exact

closed-form expression for the smoothed probability density which can be used

to compute smoothed estimates of the cumulated changes in each unit’s friction-

less state variable. Section 1.5 uses a Monte Carlo experiment to illustrate the

properties of the proposed estimator. Section 1.6 concludes and discusses some

promising avenues for future research.

Notation. In all that follows, bold letters are used to denote vectors or matri-

ces and non-bold fonts denote scalars. For a function f : R → R and a matrix

A ∈ Rm×n, the expression B = f ◦ (A) is equivalent to bi,j = f (ai,j), ∀i, j.

The symbol � denotes the Hadamard product, 1m×n and 0m×n denote m × n

matrices of ones and zeros, 1 {·} denotes the indicator function and ‖·‖ denotes

the Euclidean norm. When working with indexed sequences of variables or vec-

tors, Xt is used to denote the t-th element in the sequence and Xt refers to the

subsequence {Xi}ti=0. For any two real numbers a < b, denote by Z[a,b] the set of

2Several algorithms have been proposed in the literature, including: filters and smoothers of
the “Kalman family” (such as extended and unscented Kalman filters and smoother), grid based
approximation methods, sequential Monte Carlo methods or particle filters and smoothers. All
of these alternative algorithms are covered in Särkkä (2013). An excellent survey of particle
filters in particular is Doucet and Johansen (2011).
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all integers in [a, b]. Random variables or vectors are denoted by upper case let-

ters whilst their realisations are denoted by their lower case counterparts. For a

continuous (discrete) random vector X, the notation fX|Y (x|y) is used to denote

its probability density (mass) function evaluated at a specific value x conditional

on the random vector Y taking the value y. The function δ(·) is used to denote

the Dirac delta function whereas the function φ(·) denotes the standard normal

probability density function.

1.2. A state-space representation of dynamic (S,s)

economies

A foundational assumption for the framework developed in this paper is that the

researcher observes a panel of data on state variable values that is generated by

units adopting a two-sided (S,s) policy subject to costless adjustment opportu-

nities. This section formally introduces that assumption, discusses some of its

main aspects and how it can accommodate some well known problems in the

(S,s) literature.

1.2.1. Two-sided (S,s) policies subject to costless adjust-

ment opportunities

Consider an economy composed of n units in which each unit chooses every period

the value of a single state variable that determines its payoffs. Let zi,t denote the

value of unit i’s state variable at time t. It is assumed that zi,t is chosen according

to the following policy function,

zi,t
(
zi,t−1, z

?
i,t, `i,t

)
=


zi,t−1, if di,t

(
zi,t−1, z

?
i,t, `i,t

)
= 1

z?i,t + ci, if di,t
(
zi,t−1, z

?
i,t, `i,t

)
= 0

(1.1)

where,
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di,t
(
zi,t−1, z

?
i,t, `i,t

)
= 1

{
zi,t−1 − z?i,t ∈ (Li, Ui)

}
(1− `i,t)︸ ︷︷ ︸

=1 if state gap at the previous state value
is inside the inaction region and state
variable cannot be changed costlessly

+ 1
{
zi,t−1 − z?i,t = ci

}
`i,t︸ ︷︷ ︸

=1 if state variable can be changed
costlessly but state gap at the current

value is already at the reset value

(1.2)

and z?i,t denotes the frictionless value of unit i’s state variable at time t, that

is, the value of zi,t that would be chosen in the absence of (S,s) rules; the open

interval (Li, Ui) denotes the inaction region; the parameter ci ∈ (Li, Ui) denotes

the reset value and `i,t is a dummy variable equal to one if unit i at time t can

make a costless adjustment.

The state gap, defined as the difference between a state variable and its fric-

tionless counterpart, is the fundamental variable driving each unit’s state variable

choices. Equation (1.1) implies that, at every time period, a unit either leaves its

state variable unchanged or chooses a new value such that its state gap equals

the reset value. In addition, the two terms in the right-hand-side of equation

(1.2) imply that there are two instances where a unit choses not to change its

state variable. The first instance is when it cannot adjust costlessly and by leav-

ing its state variable unchanged the resulting state gap lies within the inaction

region. The second instance is when it can adjust costlessly but by leaving its

state variable unchanged its state gap is equal to the reset value.

Timing. The implicit timing assumption in (1.1) and (1.2) is that each period

starts with the realisation of any exogenous shocks that determine z?i,t and `i,t and

ends with each unit’s state variable choices. This timing convention is common-

place in (S,s) models cast in discrete-time (e.g. Caballero, Engel and Haltiwanger,

1997, p.118).

Microfoundation. In this paper two-sided (S,s) policies subject to random cost-

less adjustment opportunities are taken exogenously and all results presented
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henceforth are independent of the specific reason why individual units would

choose to adopt such rules. Starting with Arrow, Harris and Marschak (1951)

and Scarf (1959) there is a long-standing literature showing that (S,s) policies

tend to arise optimally in situations with three defining features: a state variable

that affects flow payoffs, fixed costs of exerting control over this state variable

and a driving force that causes the state to drift absent control.3,4 Notice however

that, in the spirit of Caballero and Engel (1991), the results here presented also

apply to a broader class of problems where (S,s) rules are not optimal but can

be justified as either simple rules that approximate more complex first best rules

or as arising from nearly rational behavior. Finally, the two-sided (S,s) policies

presented in (1.1) and (1.2) also include costless adjustment opportunities. In the

literature these opportunities have been incorporated into (S,s) models to give

them additional flexibility and, in particular, to allow the size of state variable

adjustments to vary both across units and for the same unit over time as it is

typically observed in the data.5

1.2.2. The data generating process

This subsection defines important variables and notation that will be used through-

out the rest of the paper, then it presents the state-space representation that is

assumed to be generating the data observed by the researcher and discusses some

3In continuous time, Stokey (2009, chapter 7) and Plehn-Dujowich (2005) present environ-
ments in which two-sided (S,s) policies with a single reset point are optimal. In discrete time,
it is in general difficult to analytically characterise the policy function for problems involving
fixed adjustment adjustment costs but there are several precedents in the literature in which
two-sided (S,s) rules with a single reset point are either assumed or derived as an approximate
solution for the original problem. Some examples of such precedents include Caballero and En-
gel (1999) in the context of plant-level investment, Gertler and Leahy (2008) for price setting
subject to menu costs and Elsby and Michaels (2019) for firm’s hiring and firing decisions.

4It is important to notice that the type of two-sided (S,s) policies with a single reset point
as assumed in (1.1) and (1.2) tend to arise optimally when the fixed cost is the only cost of
exerting control. Alternatively, in situations where exerting control over the state involves both
fixed and a proportional components the optimal policy takes the form of a two-sided (S,s)
policy with two reset points. For a formal proof of these type of rule when adjustment involves
both fixed and proportional costs, refer to Harrison, Sellke and Taylor (1983) or Stokey (2009,
chapter 8).

5The costless adjustment opportunities here considered are a special case of a broader class
of (S,s) models, commonly referred to as generalised (S,s) models or second-generation state-
dependent models, in which the fixed costs are allowed to vary both across units and over time.
This type of formulation was originally introduced in the context of plant-level investment by
Caballero and Engel (1999) and in the context of pricing by Dotsey, King and Wolman (1999).
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its most important aspects.

Terminology and notation. First, let the cumulated change in unit i’s state

variable at time t be denoted by Zi,t ≡ zi,t − zi,0 and, likewise, the cumulated

change in unit i’s frictionless state variable at time t be denoted by Z?i,t ≡ z?i,t−z?i,0.

Second, let the re-centered inaction region be denoted by (xi,xi) where xi ≡

Li − ci < 0 and xi ≡ Ui − ci > 0. Lastly, let the re-centered state gap be denoted

by xi,t ≡ zi,t − z?i,t − ci.

Assumption 1.1 The researcher observes a sequence of vectors ZT = {Z1, . . . ,ZT}

generated by the following state-space representation,

Zt = Zt−1 � dt +
(
Z?

t − x0

)
� (1n×1 − dt) (1.3)

dt = 1 ◦
{
Zt−1 − Z?

t + x0 ∈ (x,x)
}
� (1n×1 − `t) + 1 ◦

{
Z?

t = Zt−1 + x0

}
� `t

(1.4)

Z?
t = µ+ Z?

t−1 + εt (1.5)

`t = 1 ◦ {νt 6 λ} (1.6)

where εt ∼ N (0,Σ) with Σ = diag
(
σ2
ε,1, . . . , σ

2
ε,n

)
and iid across time, νt is such

that νi,t ∼ Uniform(0, 1) and iid across units and time and Z0 = Z?
0 = 0n×1.

The vectors x0, x, x, µ, λ ∈ Rn and the matrix Σ ∈ Rn×n contain parameter

values that are unknown to the researcher.

A semi-structural state-space representation. The state-space representa-

tion in assumption 1.1 is semi-structural. Although its form could be rationalised

from an environment where individual units face fixed adjustment costs, the map-

ping between parameters in assumption 1.1 and other deep structural parameters

is left unspecified. There are four reasons why a semi-structural representation is

chosen over a fully structural one. First and foremost, for the main objective of

this paper, which is to introduce an estimator of Z?
t ’s based on observations of

Zt’s, the representation in assumption 1.1 is sufficient. Second, since there exists

more than one environment that can give rise to this representation, a semi-
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structural representation can more easily accommodate different problems that

have been considered in the (S,s) literature. Third, a semi-structural represen-

tation naturally tends to provide a better fit of the data since it does not impose

cross-restrictions on parameters. Fourth, a semi-structural representation greatly

reduces the computational burden of the simulation-based parameter estimation

procedure that will be proposed in section 1.3.6

Representation in cumulated changes instead of levels. Although the data

generating process could be equivalently represented in terms of state variable

levels and their frictionless counterparts, assumption 1.1 expresses it in terms of

cumulated changes in those variables. This representation is chosen over the one

in levels because, in the former, individual reset points do not enter as parame-

ters. This is an advantage due to the difficulties in identifying reset points from

data on state variable adjustments.7 Nonetheless, considering a representation in

terms of cumulated changes implies that, without further assumptions on reset

point values or initial frictionless state variable, this framework only allows the

estimation of the cross-sectional distributions of the re-centered state gaps and

the construction of frictionless aggregates for which the aggregator function could

be written as a function of cumulated changes.8

6The reduction in computational burden comes from the fact that for a given combination
of parameter values, state-space representation in assumption 1.1 can be directly used sim-
ulate data on Zt’s without solving an inter-temporal optimisation problem first. Given the
non-convexities that arise in the presence of fixed adjustment costs, solving this inter-temporal
optimisation problem typically requires the use of global methods such as value function inter-
action which can be costly in terms of computational time.

7In a continuous-time environment, similar to the single product random menu cost model
in Stokey (2009) and Alvarez, Le Bihan and Lippi (2016), it is possible to derive a closed form
expression for the steady state distribution of state variable changes where the inaction region
boundaries enter only in deviation from the reset point, that is, the steady state distribution of
state variable changes is a function of Li−ci and Ui−ci. This implies that, in that environment,
there are no moments of that distribution that could be used to separately identify Li, ci and
Ui. In a version of state-space representation in assumption 1.1 cast in levels it is in general not
possible to derive the implied distribution of state variable changes, but some early attempts
to estimate parameters in that representation where also indicative that the boundaries of
the inaction region and the reset point cannot be separately identified. The impossibility to
separately identify the boundaries of the inaction region and the reset point also appears in the
two-sided (S,s) model of Bonomo, Correa and Medeiros (2013).

8More precisely, consider an aggregate variable that is a function of a sequence of observed
state variables, that is, At = a

(
zt
)

where a (·) is the aggregator function. Working with a
representation in terms of cumulated changes as in assumption 1.1, implies that this framework
would only allow the construction of frictionless aggregates for which the aggregator functions
that could be equivalently represented as a function of observed sequence of cumulated changes
in state variables. For example, in the context of pricing At could be a price index and the
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Frictionless versus reset states. A maintained assumption is that each unit’s

state variable choices are driven by the state gap which is defined as the differ-

ence between each unit’s state variable and its frictionless value (i.e the value

that would be observed if (S,s) policies where permanently removed). In some

specifications of (S,s) models, it is assumed instead that adjustment decisions

are driven by the reset state gap which is defined as the difference between each

unit’s state variable and it’s reset or mandated value (i.e. the value that would

be observed if (S,s) policies where momentarily removed).9 It is important to

notice that, although frictionless and reset values are conceptually different, in

the presence of two-sided (S,s) policies with a single reset point their difference

is constant over time. This implies that for the state-space representation in

assumption 1.1 this difference is immaterial, since Z?
t is equal to the cumulated

change in reset state variable and re-centered state gaps are equal to reset state

gaps.10

Transition equation for frictionless state. In equation (1.5) it is assumed

that Z?
t evolves according to a random walk with drift. There is two reasons

underlying that assumption. First, it is the discrete time analogue of a Brow-

nian motion with drift which is the most commonly assumed process for the

frictionless states in (S,s) models cast in continuous time. Second, assuming a

linear transition equation with normally distributed disturbances makes possible

to obtain exact closed-form solutions for the filtered and smoothed densities of

Z?
t .11 Finally, it is important to notice that, besides the random walk with drift

assumption, it is also assumed that the frictionless states of different units evolve

aggregator function represents the aggregation used by statistical authorities to produce the
index from micro prices. To produce a frictionless price index based on estimates of Z?

t ’s, one
needs to be able to write the aggregator as a function of the sequence of cumulated changes.

9See, for instance, Caballero, Engel and Haltiwanger (1995).
10The reset state variable value is given by zri,t = z?i,t+ ci, that is, the value that would make

state gap in current period equal to its reset value. From that it follows that Z?i,t = Zri,t and
xi,t = zi,t − zri,t. This point was made in the context of pricing by Bonomo et al. (2013).

11It is useful to think of this assumption as a weaker version of the linearity and Gaussian-
ity requirements necessary to obtain the Kalman filter (Kalman, 1960) and the Rauch-Tung-
Striebel smoother (Rauch, Tung and Striebel, 1965) as exact solutions for the filtering and
smoothing problems, respectively. In this paper, closed-form expressions for the filtered and
smoothed probability densities of Z?

t are derived despite the marked non-linearities in (1.3),
(1.4) and (1.6) and the non-Gaussianity of the shocks νt determining the arrival of costless
adjustment opportunities.
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independently of each other.12 The motivation behind this assumption is to keep

the filtering and smoothing problems tractable. In particular, as we shall see in

section 1.4, this assumption allows me the joint filtered and smoothed probability

densities of Z?
t to be obtained by solving the filtering and smoothing problems

for each unit separately which greatly reduces the dimensionality of the problem

at hand.

Transition equation for costless adjustment opportunities. The dummy

vector `t takes the value one for units that can adjust their state variables cost-

lessly in period t and zero for units that cannot. Equation (1.6) determines that

in any given time period, a unit i receives a costless adjustment opportunity with

probability λi. Moreover, as it is commonly done in the literature, it is assumed

that the arrival of such opportunities is independent across individuals and time

and also independent of the state gap.13

The measurement equation. The mapping between the two latent unobserved

variables, cumulated changes in frictionless states and costless adjustment op-

portunities, and cumulated changes in states observed by the econometrician is

provided by equations (1.3) and (1.4). Notice that the i-th element of Zt and

dt is given by (1.1) and (1.2) re-expressed in terms of cumulated changes and

re-centered gaps and inaction regions.14

12This is a strong assumption as it rules out the presence of any shocks that are common
across units. To accommodate the presence of common shocks one would need to consider
a variance-covariance matrix Σ that is symmetric and positive definite but not necessarily
diagonal. I am actively working on the generalization of all the results in this paper under that
weaker assumption.

13In models where the fixed costs are allowed to stochastically vary over time, the common
assumption is that each period units draw a fixed adjustment cost and those draws are indepen-
dent across units and time. See Caballero and Engel (1999) in the context of investment and
Dotsey, King and Wolman (1999) and Costain and Nakov (2011a,b) in the context of pricing
decisions.

14In order to go from (1.1) and (1.2) to (1.3) and (1.4) simply subtract zi,0 on both sides
of (1.1) and note that using the definitions of Zi,t and Z?i,t the re-centered state gap can be
equivalently written as xi,t = Zi,t − Z?i,t + xi,0.
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1.2.3. Applications

This subsection concludes with a discussion of some well known problems in the

(S,s) literature that can be accommodated by the data generating process in

assumption 1.1.

Pricing subject to menu costs. By letting zi,t denote the (log of) nominal

price charged by firm i and z?i,t denote the (log of) nominal frictionless prices (i.e.

the price that would maximize firm i’s flow of profits in period t), the state-space

representation in assumption 1.1 is capable of accommodating some well known

models of pricing under menu costs. First, it can accommodate a single product

random menu cost model of pricing in which firms can draw either a positive or

a zero cost of adjustment as in Alvarez, Le Bihan and Lippi (2016).15 Second,

by imposing x → −∞ and x → ∞ each firm adjusts its prices at random time

intervals as in Calvo (1983) model of staggered price setting. Third, by imposing

λ = 0n×1 each firm adopts a two-sided (S,s) pricing policy like those that arise

in the canonical menu cost model of Golosov and Lucas (2007).16

Cash withdrawals problem. If zi,t denotes the accumulated cash withdrawals

by individual/firm i and z?i,t denotes the accumulated cash expenditures by indi-

vidual/firm i, then the state gap corresponds for individual/firm i current cash

balance and the state-space representation in assumption 1.1 can accommodate

some cash-balance problems. For example, it can represent an economy in which

individuals adopt optimal cash withdrawal policies that arise in Alvarez and Lippi

(2009) model of demand for cash in which individuals receive random opportu-

nities of withdrawing cash for free. Moreover, by imposing λ = 0n×1 each unit

would choose its cash holdings according to a two-sided (S,s) rule like the one

15This type of model is also considered by Stokey (2009), Blanco (2017), Luo and Villar
(2017) and Gautier and Le Bihan (2018) and it can be seen as a special case of the CalvoPlus
model in Nakamura and Steinsson (2010) where firms draw either a low or a high menu cost at
the beginning of each period.

16If in addition to λ = 0n×1, one imposes x→∞ then each firm in this economy follows a
one-sided (S,s) pricing policy as the ones derived in earlier models of pricing subject to menu
costs such as Sheshinski and Weiss (1977, 1983).
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adopted in Miller and Orr (1966) model of demand for money by firms.17

Plant-level investment and labor adjustments. Other settings where (S,s)

policies have been extensively used is plant level investment and labor hiring

and firing decisions. If zi,t denotes the capital/labor stock of plant i and z?i,t its

frictionless counterpart (i.e. the capital/labor stock that would maximize plant

i’s flow of profit in period t), the representation in assumption 1.1 could also

accommodate some well known models of lumpy plant-level investment and hir-

ing and firing decisions. In the context of plant-level investment, assumption 1.1

could be interpreted as the data generating process for the Bernoulli fixed-cost

environment in Baley and Blanco (2020). Moreover, in the special case without

random costless adjustment opportunities (λ = 0n×1) that representation can

accommodate environments with one or two-sided (S,s) rules environments con-

sidered by Bertola and Caballero (1994) and Caballero, Engel and Haltiwanger

(1995), respectively. In the context of hiring and firing decisions two-sided (S,s)

rules without random adjustment opportunities are also adopted by Elsby and

Michaels (2019) and Elsby, Michaels and Ratner (2019).

1.3. Parameter Estimation via Simulated Method

of Moments

For each unit there is a total of six parameters that are unknown to the researcher,

namely, the initial re-centered state-gap (xi,0), the boundaries of the re-centered

inaction region (
¯
xi and x̄i), the drift (µi) and the variance of shocks (σ2

ε,i) in

the transition equation for cumulated changes in frictionless state variable and

the probability of arrival of a costless adjustment opportunity (λi). This section

presents a two-stage procedure that allows the estimation of these parameters

17If in addition to λ = 0n×1, one imposes x → ∞ then individuals/firms adopt one-sided
(S,s) policies like those used in Frenkel and Jovanovic (1980) model of precautionary demand
for money. In the limiting case with one-sided (S,s) policies and with non-stochastic cash
withdrawals (σε,i → 0, ∀i), the state-space representation in assumption 1.1 could also be
interpreted as an economy-wide version of the early-environments considered Baumol (1952)
and Tobin (1956). Obviously, in a non-stochastic environment the problem of estimating Z?t
boils down to the problem of estimating the vector µ from a set of observations ZT .
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based on actual state variable values observed by the researcher. A necessary

requirement to be able to estimate those parameters at the unit level is that a

sufficiently large number of state variable adjustments is observed for that unit

in the data. This section starts by describing the estimation procedure for an

arbitrary unit that is assumed to satisfy that requirement and then discusses how

it can be adapted to situations where that requirement is not satisfied.

Terminology and notation. The variable ∆Zi,t is referred to as a state variable

change regardless of the value it takes. The terminology state variable adjustment

refers specifically to a non-zero state variable change. The vector of unit-specific

parameters is denoted by Θi ≡ {xi,0,Γi} where Γi ≡
{

¯
xi, x̄i, µi, σ

2
ε,i, λi

}
. Denote

by
{

Zsi,t(xi,0,Γi)
}T
t=0

a simulated time-series for unit i generated by the state-

space representation in assumption 1.1 using unit specific parameters equal to

xi,0 and Γi.

1.3.1. A two-stage estimation procedure

The fundamental idea underlying the two-stage procedure is to use different sets

of moment conditions to estimate Γi separately from xi,0. The advantages of

splitting parameter estimation in two stages are twofold. First, it reduces the

dimensionality of the estimation problem at hand. Second, as it will later become

clear, for a given unit this procedure only requires one state variable adjustment

to be observed in the data to the estimate xi,0, even in contexts where the total

number of state variable adjustments observed is not sufficient to estimate all the

parameters at the unit level. Formally, the choice of moment conditions for each

of the stages is grounded on the following result,

Proposition 1.1 Consider a sequence {Zi,t}T
t=0 generated by the data generat-

ing process in assumption 1.1 and assume it contains at least one state variable

adjustment. Let τ 1
i denote the period at which the first adjustment occurs. Then,

the subsequence {∆Zi,t}T
t=τ1

i +1 does not depend on xi,0.
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Proof. See appendix 1.D.

The intuition for this result is illustrated in figure 1.A.2. It formalises the fact

that, under two-sided (S,s) policies, an adjustment period is, by construction, a

period where the re-centered state variable gap is set to zero. From there onwards

the decisions of whether to adjust or not and the respective size of adjustment

are independent of any re-centered state variable gap values before that occurred

before the last adjustment.

Given proposition 1.1, parameter estimation procedure proceeds as follows.

The first-stage uses moment conditions computed from the subsequence {∆Zi,t}T
t=τ1

i +1

to estimate all the parameters except for xi,0. The second-stage uses moment con-

ditions computed from the subsequence {∆Zi,t}τ
1
i
t=1 to estimate xi,0 whilst keeping

the remaining parameters equal their first-stage estimates. Since there is no

closed form solution for the moment conditions implied by the state-space repre-

sentation in assumption 1.1, the estimation in both stages is done via Simulated

Method of Moments (SMM).18

First stage. The vector of parameters Γi is estimated from,

Γ̂i = arg min
Γi

∥∥∥∥∥Ω
1
2

[
g
(
{∆Zi,t}T

t=τ1
i +1

)
− 1

S

S∑
s=1

g
(
{∆Zsi,t(Γi)}T

t=τ1,s
i +1

)] ∥∥∥∥∥
2

(1.7)

where Ω is a positive definite weight matrix and g(·) is a vector-valued function

containing the frequency of state variable adjustments and four or more per-

centiles of the distribution of state-variable adjustments. The summation term

in the above expression is called a simulator and it approximates the unknown

mapping between parameters and the moment conditions chosen for estimation

by averaging moments over S individual time-series simulated from the state-

space representation in assumption 1.1. A distinguishing aspect of this simulator

18See Gouriéroux and Monfort (1996), Adda and Cooper (2003) and Davidson and MacK-
innon (2004).
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is that it does not depend on some parameters that enter the data generating

process, namely, the initial re-centered state variable gap. This follows directly

from proposition 1.1 since the moments are computed based on the subsample of

state variable changes that occur after the first state variable adjustment. For a

given number of simulations, the estimator in (1.7) is consistent as T → ∞ (see

Gouriéroux and Monfort, 1996, proposition 2.3).19

Second stage. Initial re-centered state variable gap estimates can be obtained

from,

x̂i,0 = arg min
xi,0

∥∥∥∥∥ Ω̃
1
2

[
h
(
{∆Zi,t}

τ1
i
t=1

)
− 1

S

S∑
s=1

h
(
{∆Zsi,t(xi,0, Γ̂i)}

τ1,s
i
t=1

)] ∥∥∥∥∥
2

(1.8)

where Ω̃ is a positive definite weight matrix and h(·) is a function containing

the time elapsed until the first state-variable adjustment and the value of that

first adjustment. In contrast with the first-stage, the simulator term in (1.8) does

depend on all the parameters that enter the data generating process because the

moments are computed based on the subsample of state-variable changes that

occur up to the first non-zero state variable change. However, when generating

simulated data to calculate this simulator the values of Γi are kept fixed at their

estimated values from the first-stage. It is important to acknowledge that, al-

though it is expected that the two moments contained in h(·) are informative

about the initial re-centered state variable gap, there is no theoretical guarantee

that the estimator in (1.8) is consistent. This steams from the fact that, regard-

less of sample size, the estimates of xi,0 in the second-stage only use information

from the subsample up to the first non-zero state variable change.20 However, as

19It is important to notice that the estimator is consistent for any positive definite weight ma-
trix Ω. Nonetheless, efficiency gains could be achieved by choosing the weight matrix optimally
(see Gouriéroux and Monfort, 1996, pp.31-34).

20As an analogy, consider the problem of estimating the mean of a random variable X ∼
N (µx, σ

2
x) by taking the first observation from a sample {x1, x2, . . . , xN} of i.i.d observations,

in other words, consider µ̂x = x1 as an estimator for µx. Despite being unbiased (in this
particular case), the estimator µ̂x will not converge in probability to µx as there are no laws of
large numbers that apply for an estimator based on a single observation.
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shown in section 1.5, in artificially generated data the estimates of xi,0 obtained

from (1.8) are on average equal to their true values.

1.3.2. Choice of moment conditions and parameter identi-

fication

Global point identification of the parameters of interest requires that, for a given

choice of moment conditions, the true parameter values are the unique minimizers

of the population counterparts of the SMM objective functions. Although a for-

mal discussion of parameter identification is beyond the scope of this paper, this

subsection provides an informal discussion under what circumstances parameters

are likely to be point identified for the choices of moment condition in (1.7) and

(1.8).21

Parameter identification in the first stage. Given the data generating pro-

cess in assumption 1.1, state variable adjustments can be classified in two classes.

The first class, known as time-dependent adjustments, comprises adjustments

that are triggered by the arrival of costless adjustment opportunities. The sec-

ond class, known as state-dependent adjustments, comprises adjustments trig-

gered by state variable gap lying outside the inaction region. For a given process

governing the evolution of the frictionless state variable, the number of time-

dependent adjustments is determined by the value of λi whereas the number of

upward (downward) state-dependent adjustments is determined by the values of

¯
xi (x̄i). In order for those parameters to be point identified from moments of

the distribution of state-variable adjustments it is crucial that this distribution is

composed by a mixture of time and state-dependent adjustments. Visually this

requirement is equivalent to having a distribution of state variable adjustments

that is either bimodal or trimodal and in which the smallest mode is negative

21In some instances, local parameter identification can be formally shown by checking in-
vertibility of the Hessian of the population counterparts of (1.7) and (1.8) across the parameter
space. This is particularly difficult to do in contexts like the present one where there is no closed
form mapping between the true parameters and the implied moment conditions that enter the
objective function.
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and the largest positive. Some distributions satisfying this requirement are de-

picted in figure 1.A.3. Intuitively, the smallest and largest modes are important

to identify the boundaries of the inaction region whilst the mass of state variable

changes within these two modes is important to identify the probability of arrival

of a costless adjustment opportunity.22 The fact that the exact location of those

peaks matters for parameter identification echoes the fact that, in the present

setting, identification is achieved through the shape of the whole distribution of

state variable adjustments and not from some specific summary statistics. With

this mind, it is recommended to include in g(·) a large number of wide-ranging

percentiles of this distribution.

Parameter identification in the second stage. In terms of parameter iden-

tification in (1.8) the inclusion of the value of the first state variable adjustment

is very important. To understand why notice that, for a given value of other

parameters, the time elapsed until the first state variable adjustment is typically

concave in xi,0 with a maximum achieved at an interior point of the inaction

region.23 In contrast, the value of the first state variable adjustment is typically

strictly decreasing in xi,0. Therefore, the value of the first state variable adjust-

ment is useful to discriminate between the two values of xi,0 that are consistent

with a given time elapsed until the first state variable adjustment.

Diagnosis tests. Since parameter identification cannot be formally tested, fol-

lowing Canova (2007, pp. 207-211) two general diagnosis tests are suggested. The

first one is to check invertibility of the objective function’s Hessian evaluated at

the estimated parameters. The second is to plot the objective functions in (1.7)

and (1.8) around the estimated parameters varying one parameter at the time

and check whether that function is “flat” or not. In case any of these diagnosis

22Other way to understand this requirement is to consider a case where true parameter values
are such that all the state variable adjustments generated from the data generating process in
assumption 1.1 are time-dependent ones. In that case the distribution of state-variable changes
is unimodal and neither the frequency of state-variable adjustments nor the distribution of those
adjustments are affected by the values of

¯
xi and x̄i. In that case, the population counterpart

of (1.7) will be “flat” at the true parameter values and parameters are not point identified.
23For the typical relationship between the initial state-variable gap and the time elapsed

until the first adjustment refer to Stokey (2009, figure 5.3)
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is indicative of lack of parameter identification it is important to investigate the

sensitivity of the final estimates of Z?
t to different parameter values that minimize

the first and second stage objective functions.

1.3.3. Number of state variable adjustments and parameter

heterogeneity

The estimation procedure was described thus far under the assumption that

enough state variable adjustments are observed for the arbitrary unit under con-

sideration. In practice, and specially given the intermittent nature adjustments

in the presence of (S,s) policies, it is likely that in any dataset at least some

units don’t satisfy this requirement. This section briefly discusses how each of

the estimation stages can be adapted to handle this type of situation.

Modified first stage. This stage is the most demanding in terms of number of

state variable adjustments since it requires enough adjustments after the first one

such that one can meaningfully compute four or more percentiles of their distri-

bution.24 In cases where this is not possible, a potential solution lies in imposing

the vector of parameters Γi is common across a group of units and compute

moment conditions using the distribution of state variable changes pooled across

that group of units.25 The fundamental trade-off faced by the researcher in these

situations is between obtaining a sufficiently large number of state variable ad-

justments whilst not missing important dimensions of heterogeneity. In the most

extreme case where the researcher does not observe any other unit characteristics,

parameters could be assumed to be common across all units.

24There is no explicit cutoff or rule of thumb to determine how many state variable changes
are sufficient to compute those percentiles. In practice it is suggested not to use percentiles
that are based on a distribution with less than 20 observations of state variable adjustments. In
simulated data attempts to estimate parameters based on distributions with few observations
led to considerably imprecise estimates.

25The criteria that could be used to classify units in groups for which the parameters are
assumed to be common depends on what additional information is available to the researcher.
For example, in the case of plants it could be assumed that parameters are common across
plants producing a specific type of product or located in a certain region. In the case of prices
it could be assumed parameters are common across quote-lines of narrow (or broadly) defined
product category.
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Modified second stage. Once the vector of first stage parameter is obtained,

the second stage only requires one state variable adjustment in order to be able

to estimate xi,0. Although this requirement is much less demanding than the

first stage one, it is possible that for some units no state variable adjustment is

observed. A potential solution for these cases is to impute values for xi,0 based on

their estimated values for other units. For example, the researcher could either

impose xi,0 = x̂j,0 for some other unit j for which at least one state variable

adjustment is observed or, alternatively, draw a value from the distribution of

estimated initial re-centered state variable gaps for other units.

1.3.4. Model fit

A maintained assumption throughout this paper is that the state variable val-

ues observed by the researcher are generated by the state-space representation in

assumption 1.1. Nonetheless, once parameter estimates are obtained, one could

check whether this is a sensible assumption by comparing how close targeted and

non-targeted moments in simulated data are from their counterparts in actual

data. Some non-targeted moments that could be used for this purpose include

the mean, the variance, skewness and kurtosis of distribution state variable ad-

justments and the adjustment hazard functions. Finally, global specification tests

could also be used (Adda and Cooper, 2003, p. 97).

1.4. Latent variable estimation

This section presents an exact closed-form expression for the probability density

function of the vector of cumulated changes in each unit’s frictionless state vari-

able values conditional on all the cumulated changes observed by the researcher

and a set of values for the unknown parameters. A convenient aspect of the

state-space representation in assumption 1.1 is that the evolution of both ob-

served and latent variables are independent across units. This implies that the

desired smoothed probability density function can be obtained from the product

33



of its marginals.26 More formally, under assumption 1.1 it holds that,

fZ?
t |ZT;Θ

(
z?
t | zT;θ

)
=

n∏
i=1

fZ?i,t|ZT
i ;Θi

(
z?i,t | zT

i ;θ
)

(1.9)

The remainder of this section presents expressions for the filtered and smoothed

probability densities, that is, fZ?i,t|Zti;Θi

(
z?i,t | zti;θi

)
and fZ?i,t|ZT

i ;Θi

(
z?i,t | zT

i ;θi
)
.

Even though the filtered probability density is not directly used to compute

smoothed estimates of the latent variables of interest, its expression is helpful

in grasping some of the intuition behind the smoothed probability function and,

moreover, its expression can be used to evaluate the likelihood of the model or

to perform forecasting which makes it an object of independent interest for any

researcher working with the state-space representation in assumption 1.1. For

expositional purposes separate expressions are presented depending on whether

the time period in consideration is an adjustment or an inaction period.

Terminology and notation. In all that follows, an arbitrary realisation of se-

quence of cumulated state variable changes for a given unit is considered. Without

loss of generality, let K ∈ Z[0,T] denote the number of state variable adjustments

observed in that sequence, τ k denotes the time period at which the k-th adjust-

ment is observed and τ 0 = 0 denotes the initial time period. Moreover, the vector

of unit specific parameters Θi is kept fixed at some arbitrary value θ.27

1.4.1. Filtered and Smoothed probability density for adjust-

ment periods

The following proposition characterises the filtered and smoothed probability den-

sity functions for adjustment periods,

26From (1.5) with a diagonal matrix Σ it follows that Z?i,t’s are independent across units.
From (1.6) with νi,t’s iid across i (and t) it follows that `i,t’s are also independent across units.
Finally, from (1.3) and (1.4) it follows that Zi,t’s depend only on Zi,t−1, Z?i,t and `i,t and,
therefore, Zi,t’s are also independent across units. Under this same independence argument it
also holds that fZ?

t |Z
t;Θ

(
z?t | zt;θ

)
=
∏n
i=1 fZ?

i,t|Z
t
i;Θi

(
z?i,t | zti ;θi

)
.

27This vector could be either the parameter estimates obtained from the two-step procedure
proposed in section 1.3 or any other set of parameter values.
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Proposition 1.2 Consider a sequence {zi,t}T
t=0 generated by the data generating

process in Assumption 1. For k ∈ Z[0,K] define,

cki ≡
(
zi,τk + xi,0

)
1
{
k ∈ Z[1,K]

}
(1.10)

Suppose t = τ k for some k ∈ Z[0,K], then,

fZ?i,t|ZT
i ;Θi

(
z?i,t | zT

i ;θ
)

= fZ?i,t|Zti;Θi

(
z?i,t | zti ;θ

)
= δ

(
z?i,t − cki

)
(1.11)

Proof. See appendix 1.D.

Intuition. This result states that, at the initial period or at any period where

a state variable adjustment is observed, both filtered and smoothed probability

densities are degenerate or, in other words, the value of Z?i,t is known to the

researcher. First, for the initial period this follows by construction since Z?i,t ≡

z?i,t−z?i,0. Otherwise, in any period where a state variable adjustment is observed,

it must be the case that the re-centered state gap is set to zero which occurs if

and only if Z?i,t = zi,τk + xi,0.

1.4.2. Filtered probability density for inaction periods

The following proposition completes the characterisation of the filtered proba-

bility density function by providing an expression that holds for any inaction

period,

Proposition 1.3 Consider a sequence {zi,t}T
t=0 generated by the data generating

process in Assumption 1. Suppose t is an inaction period. Let τ k denote the

largest time period before t such that (1.11) holds and let b ≡ t − τ k denote the

number of periods elapsed since τ k. Define the boundaries of the inaction region

as,
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¯
Zk
i ≡ (xi,0 − x̄i)1 {k = 0}+

(
cki − x̄i

)
1 {k > 0} (1.12)

Z̄k
i ≡ (xi,0 −

¯
xi)1 {k = 0}+

(
cki − ¯

xi
)
1 {k > 0} (1.13)

The function βki,b(·) is defined recursively as,

βki,b (x) ≡ 1 {b = 1}+ 1 {b > 1}

[∫ Z̄ki

¯
Zki

1

σ̃i,b−1

φ

(
y − µ̃ki,b−1(x)

σ̃i,b−1

)
βki,b−1 (y) dy

]
(1.14)

Moreover, define the recursions,

µki,b ≡ bµi + cki (1.15)

σi,b ≡ b
1
2σε,i (1.16)

µ̃ki,b(x) ≡
(
cki + b x

)
/ (b+ 1) (1.17)

σ̃i,b ≡ [b/ (b+ 1)]
1
2 σε,i (1.18)

Then, ignoring terms that are zero almost everywhere,

fZ?i,t|Zti;Θi

(
z?i,t | zti ;θ

)
∝ 1

σi,b
φ

(
z?i,t − µki,b
σi,b

)
βki,b(z

?
i,t) 1

{
z?i,t ∈

(
¯
Zk
i , Z̄

k
i

)}
(1.19)

Proof. See appendix 1.D.

Intuition. The first term in (1.19) is a Gaussian probability density function

with mean equal the last known value of Z?i,t (denoted by cki ) plus a linear in-

crement of µi per period elapsed since τ k and variance equal to the number of

periods elapsed since τ k times σ2
ε,i. Alone, this first term resembles the solution to

the well-known linear Gaussian filtering problem where the filtered distribution

remains Gaussian with parameters obtained from the Kalman filtering recur-

sions (Kalman, 1960). However, the nonlinearities in the measurement equation

36



induced by two-sided (S,s) rules give rise to two extra terms in (1.19) which

deform the Gaussian density from the first term.

To grasp the intuition behind these two extra terms, notice that all periods in

between τ k and t were inaction periods. In the presence of two-sided (S,s) rules

it must be the case that, for those periods, the re-centered state gap was always

within the re-centered inaction region which occurs, if and only if, z?i,j belongs to

the interval
(
¯
Zk
i , Z̄

k
i

)
∀j ∈ Z(τk,t]. The last term in (1.19) simply ensures that zero

probability is assigned to the event Z?i,t /∈
(
¯
Zk
i , Z̄

k
i

)
. The term βki,b(z

?
i,t) reflects

the fact that z?i,t is the last value of a sequence
{

z?i,j
}t
j=τk

that must satisfy three

conditions: (i) starts at value cki , (ii) it is generated by the frictionless state

transition equation (1.5) and (iii) it does not contain any value that does not

belong to the interval
(
¯
Zk
i , Z̄

k
i

)
. Intuitively, the function βki,b(z

?
i,t) yields smaller

values for argument values that are less likely to be the last value of a sequence

satisfying these three conditions, which ultimately results in smaller values of the

filtered probability density function being assigned to those z?i,t values.

1.4.3. Smoothed probability density for inaction periods

The following expression characterises the smoothed probability density for any

inaction period for which some adjustment is observed afterwards,28

Proposition 1.4 Consider a sequence {zi,t}T
t=0 generated by the data generating

process in Assumption 1. Suppose t is an inaction period. Let τ k denote the

largest time period before t such that (1.11) holds and let b ≡ t − τ k denote the

number of periods elapsed since τ k. Suppose further that there exists a period

after t such that (1.11) holds and let τ k+1 denote the smallest of those periods.

Define ∆k ≡ τ k+1 − τ k and the function χki,b (·) is defined recursively as,

28For the hypothetical unit depicted in figure 1.A.1 the expression in proposition 1.4 applies
for t ∈ (0, τ1) ∪ (τ1, τ2).
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χki,b (x) ≡ 1
{
b = ∆k − 1

}
+1
{
b < ∆k − 1

}[∫ Z̄ki

¯
Zki

1

σ̈ki,b+1

φ

(
y − µ̈ki,b+1(x)

σ̈ki,b+1

)
χki,b+1 (y) dy

]
(1.20)

Moreover, define the recursions,

µ̌ki,b ≡
[
bck+1
i + (∆k − b)cki

]
/∆k (1.21)

σ̌ki,b ≡
[
b(∆k − b)/∆k

] 1
2 σε,i (1.22)

µ̈ki,b(x) ≡
[
ck+1
i + (∆k − b)x

]
/
(
∆k − b+ 1

)
(1.23)

σ̈ki,b ≡
[
(∆k − b)/(∆k − b+ 1)

] 1
2 σε,i (1.24)

Then, ignoring terms that are zero almost everywhere,

fZ?i,t|ZT
i ;Θ

(
z?i,t | zT

i ;θ
)
∝ 1

σ̌ki,b
φ

(
z?i,t − µ̌ki,b
σ̌ki,b

)
βki,b(z

?
i,t) χ

k
i,b

(
z?i,t
)
1
{

z?i,t ∈
(
¯
Zk
i , Z̄

k
i

)}
(1.25)

where
¯
Zk
i , Z̄k

i and βki,b(·) are defined in (1.12), (1.13) and (1.14), respectively.

Proof. See appendix 1.D.

Intuition. By definition, the smoothed probability density is conditional on mea-

surements observed over the whole sample. Conditioning on more information

makes the smoothed probability density in (1.25) differ from the filtered prob-

ability density in (1.19) in two ways. First, the first term is still a Gaussian

probability density function but with different parameters. The mean is now

given by the linear interpolation between the last and the next known values of

Z?i,t (denoted by cki and ck+1
i , respectively), whilst the variance is still proportional

to σ2
ε,i but it is maximised at the mid point between the τ k and τ k+1. Second, in

(1.25) there is an additional term given by χki,b
(
z?i,t
)

for which the intuition is sim-

ilar to that of βki,b
(
z?i,t
)

but looking at periods that occur after t. More precisely,

given that all periods in between t and τ k+1 are inaction periods, χki,b
(
z?i,t
)

reflects

the fact that z?i,t is the initial value of a sequence
{

z?i,j
}τk+1

j=t
that must satisfy three
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conditions: (i) the last value is ck+1
i ; (ii) it is generated by the frictionless state

transition equation (1.5) and (iii) it does not contain any value that does not

belong to the interval
(
¯
Zk
i , Z̄

k
i

)
. The function χki,b

(
z?i,t
)

yields smaller values for

z?i,t values that are less likely to be the initial value of a sequence satisfying these

three conditions.

The following proposition completes the characterisation of the smoothed

probability density by considering an inaction period for which no adjustment is

observed afterwards,29

Proposition 1.5 Consider a sequence {zi,t}T
t=0 generated by the data generating

process in Assumption 1. Suppose t is an inaction period. Let τ k denote the

largest time period before t such that (1.11) holds and let b ≡ t − τ k denote the

number of periods elapsed since τ k. Suppose further that there does not exist any

period after t such that (1.11) holds. Define ∆K ≡ T− τ k and the function ιki,b (·)

is defined recursively as,

ιki,b (x) ≡ 1
{
b = ∆K

}
+ 1

{
b < ∆K

}[∫ Z̄ki

¯
Zki

1

σε,i
φ

(
y − (µ+ x)

σε,i

)
ιki,b+1 (y) dy

]
(1.26)

Then, ignoring terms that are zero almost everywhere,

fZ?i,t|ZT
i ;Θ

(
z?i,t | zT

i ;θ
)
∝ 1

σi,b
φ

(
z?i,t − µki,b
σi,b

)
βki,b(z

?
i,t) ι

k
i,b

(
z?i,t
)
1
{

z?i,t ∈
(
¯
Zk
i , Z̄

k
i

)}
(1.27)

where
¯
Zk
i , Z̄k

i , βki,b(·), µi,b and σi,b are defined in (1.12), (1.13), (1.14), (1.15) and

(1.16), respectively.

Proof. See appendix 1.D.

Intuition. The fact that no adjustment is observed before the end of the sample

implies that there is no known value for Z?i,t for any period after t. This affects

29For the hypothetical unit depicted in figure 1.A.1 the expression in proposition 1.5 applies
for t ∈ (τ2,T).
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the expression for the smoothed probability density changes with respect to the

one in (1.25) in two ways. First, and similarly to the filtered probability density

in (1.19), the mean of the Gaussian probability density term is given by a linear

extrapolation starting from cki whereas the variance increases linearly with the

number of periods elapsed since τ k. Second, the χki,b
(
z?i,t
)

term is replaced by

ιki,b
(
z?i,t
)

which, in turn reflects the fact that z?i,t is the initial value of a sequence{
z?i,j
}T
j=t

that instead must satisfy only two conditions: (i) it is generated by the

frictionless state transition equation (1.5) and (ii) it does not contain any value

that does not belong to the interval
(
¯
Zk
i , Z̄

k
i

)
. Similarly to χki,b

(
z?i,t
)
, the function

ιki,b
(
z?i,t
)

yields smaller values for z?i,t values that are less likely to be the initial

value of a sequence satisfying these two conditions.

1.4.4. From probability densities to latent variable point

estimates

The expressions in (1.11), (1.25) and (1.27) and a set of values for Θi can be

used to produce smoothed estimates of Z?i,t by computing the expectations of the

smoothed probability density distributions. However, in order to do that it is

necessary to keep track of all the terms that enter those expressions. The means

and variances of the Gaussian probability density terms are trivial to keep track of

but the integral recursions that give rise to the functions βki,b
(
z?i,t
)
, χki,b

(
z?i,t
)

and

ιki,b
(
z?i,t
)

can be computationally challenging to deal with. Appendix 1.E provides

an algorithm that uses Gauss-Legendre integration to evaluate the smoothed

probability densities in a fast and efficient way.

1.5. Monte Carlo Experiment

This section uses a Monte Carlo experiment to illustrate how the results pre-

sented this far can be used to go from a panel of cumulated state variable changes,

{Zt}T
t=0, to a panel of estimates of cumulated changes in frictionless state vari-

ables, {Ẑt}T
t=0.
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1.5.1. Alternative data generating processes

Samples of artificial data are generated from the state-space representation in

assumption 1.1. Three different sets of parameter values and panel dimensions

are considered. The data generating processes are summarized in table 1.B.1. In

all parameter combinations considered the vector of parameters Γi is assumed to

be common across all units whereas xi,0’s are assumed to be fully heterogeneous.

The key parameter that differs across parameter combinations in table 1.B.1 is

the probability of arrival of costless adjustment opportunities. With everything

else constant, higher probabilities of costless adjustment opportunities are associ-

ated with a larger fraction of time-dependent adjustments which, in turn, affects

the shape of the distribution of state variable adjustments by increasing the pro-

portion of small state variable adjustments as illustrated in figure 1.A.3. For each

combination of parameter values and panel dimensions, a total of 1,000 samples

are generated and, in each of them, parameter and latent variable estimates are

obtained and compared to their true values.

1.5.2. Parameter estimates

For each artificially generated dataset first stage parameters are obtained from

(1.7) with moment conditions calculated from the vector of state variable changes

pooled across all units. The moments used for first stage estimation are the

frequency of state variable adjustments and the 1st, 5th, 10th, . . ., 95th and 99th

percentiles of the distribution of state variable adjustments. Once first stage

parameters are obtained, the x0,i’s are estimated from (1.8) for each unit.30

First stage estimates. Kernel densities of parameter distribution across Monte

Carlo replications are depicted in figure 1.A.4. First and most importantly, as

expected from a consistent estimator all densities becomes more concentrated

around the true parameter values with the increase in total sample size. Second,

and in line with the independence result in proposition 1.1, all the results in fig-

30Computational details for the estimation procedure are available in appendix 1.F.
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ure 1.A.4 were obtained even though the simulated data in (1.7) was generated

assuming xi,0 = 0 for all units whereas the Monte Carlo samples were generated

using linearly spaced xi,0’s. Third, for larger values of the probability of arrival

of costless adjustment opportunities the boundaries of the inaction region are

estimated less precisely. This can be rationalised from the fact that, the larger is

that parameter the smaller is the mass of state variable adjustments concentrated

around those boundaries as can be seen by comparing the left and right panels in

figure 1.A.3. Most importantly, in spite of that decrease in precision, the bound-

ary parameters were estimated without signs of lack of parameter identification.

This is suggestive that the inclusion of extreme percentiles of the distribution of

state variable changes in first stage moment conditions is helpful for parameter

identification, specially in cases where relatively few price changes are triggered

by crossing the boundaries of the inaction region.31

Second stage estimates. For each combination of data generating process and

panel dimensions, figure 1.A.5 presents the kernel density estimates for the dis-

tribution of x̂i,0− xi,0 pooled across units and Monte Carlo replications. First, it

is important to notice that all estimated densities are centered at zero which is

indicative that the two moments used for second stage estimation are informative

about the initial re-centered state variable gap. Nonetheless, and in contrast with

common parameter estimates in figure 1.A.4, the estimates of xi,0 are less precise

and do not become more concentrated around their true parameter values with

the increase in total sample size. As anticipated in section 1.3, the underlying

reason for that is that regardless of the total sample size there can only be one

first state variable adjustment for each individual. In other words, the estimates

of x̂i,0 in (1.8) are based on moments that involve a single realisation of a random

variable and laws of large numbers will not apply. In practice, the imprecisions in

estimated xi,0’s will translate into more imprecise latent variable estimates even

in large samples. This will be illustrated in the next section.

31Some versions of this experiment that did not include extreme percentiles of the distri-
bution of non-zero price changes yielded a non-negligible fraction of extreme estimates for the
boundary parameters, suggesting the lack of parameter identification.
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1.5.3. Latent variable estimates

Lastly, three alternative estimators for Z?i,t’s are considered and their relative

performance is assessed by comparing their respective MSEs.

Three alternative latent variable estimators. The first estimator considered

is the estimator based on the smoothed probability density function derived in

section 1.4. This estimator is given by,

Ẑi,t = E
[
Z?i,t | zT

i ,θ
]

=

∫
x fZ?i,t|ZT

i ;Θi

(
x | zT

i ;θ
)
dx (1.28)

where fZ?i,t|ZT
i ;Θ

(
x | zT

i ;θ
)

is given by the expressions in (1.11), (1.25) and (1.27).

The second estimator considered is given by,

Ži,t =

∫
x f̌Z?i,t|ZT

i ;Θi

(
x | zT

i ;θ
)
dx (1.29)

where f̌Z?i,t|ZT
i ;Θi

(
x | zT

i ;θ
)

is given by (1.11) and the first term on the right-hand

side of (1.25) and (1.27). In other words, for a time period that is in between

two state variable adjustments Ž?i,t is equal to the linear interpolation between

the last and the next known values of Z?i,t. Otherwise, for a time period that is

after the last observed adjustment, Ž?i,t is simply the linear extrapolation starting

from the last known value of Z?i,t. The last estimator considered is given by,

Z̃?i,t = E
[
Z?i,t
]

= t× µi (1.30)

which does not condition on the information contained in cumulated state variable

changes observed in the data.32 Figure 1.A.6 plots estimates obtained from each

of these estimators against the true values of Z?i,t for a given unit in an artificially

generated sample. To investigate the impact of parameter uncertainty on latent

variable estimates, for any given sample estimates based on (1.28), (1.29) and

32Notice that iterating (1.5) backwards and using Z?0 = 0n×1 yields Z?t = µ t+
∑t
k=1 εk and,

therefore, E [Z?t ] = µ t given that E [εk] = 0n×1 from assumption 1.1.
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(1.30) are computed twice: one using the true parameter values and other using

the estimated parameters from the two-stage procedure.

MSE comparisons. The MSEs for different estimators and across different

DGPs are reported in table 1.B.2. There are four conclusions to be drawn from

this table. First, across the different DGP specifications and sample size con-

sidered, Ẑ?i,t always achieves a smaller MSE than Ž?i,t which, in turn, always

achieves a smaller MSE than Z̃?i,t. More precisely, across the different specifi-

cations considered, the MSEs based on Ẑ?i,t are between 5 and 55% smaller than

their counterparts based Ž?i,t and more than a full order of magnitude smaller

than their counterparts based on Z̃?i,t. This first conclusion is not surprising since

Ẑ?i,t not only uses all the information available to the researcher it is also based

on the correct expression for the smoothed probability density function. The

relative performance of alternative estimators could also be anticipated from the

illustration in figure 1.A.6. Second, the MSE difference between Ẑ?i,t and Ž?i,t is

smaller as we move from the first to the third DGP. This is explained by the

associated increase in the relative fraction of time-dependent adjustments. In

the limiting case where all the adjustments are time-dependent ones (that is,

if
¯
xi → −∞, x̄i → ∞, ∀i) the estimators Ẑ?i,t and Ž?i,t are equivalent.33 Third,

for all estimators considered there is an increase in MSE when using estimated

parameters instead of true parameter values and this increase is bigger for Ẑ?i,t

and Ž?i,t than for Z̃?i,t. This bigger increase can be rationalised by the fact that

Z̃?i,t only depends on one estimated parameter whilst Ẑ?i,t and Ž?i,t depend on all

the estimated parameters. Fourth, the difference between the MSEs when using

estimated versus true parameter values is roughly constant across the different

panel dimensions considered. If all parameters were estimated consistently one

would expect this difference to vanish as T → ∞. However, as illustrated in

the previous section, estimates of xi,0’s are not consistent which rationalises the

constant MSE difference across panel dimensions. Overall, the figures reported in

33This result follows from the fact that if
¯
xi → −∞, x̄i → ∞, ∀i then the smoothed

probability densities in (1.25) and (1.27) are equal to the first term on the right-hand-side only.
This is formally stated and proved in corollary 1.1 in appendix 1.D.
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table 1.B.2 indicate that Ẑ?i,t is superior – in MSE terms – to the two alternative

latent variable estimators considered.

1.6. Concluding remarks and future research

This paper introduced a statistical framework designed to enable a researcher

to transform a panel containing variables for which adjustments are intermittent

and lumpy, as implied in presence of (S,s) policies, into a panel of estimated cu-

mulated changes in their frictionless counterparts, that is, the cumulated changes

that would have been observed in a hypothetical world where (S,s) policies were

not in place. This framework is formally grounded on a nonlinear a non-Gaussian

state-space representation of the data generating process of an economy com-

posed of microeconomic units pursuing two-sided (S,s) policies subject to cost-

less adjustment opportunities. Given this representation, this paper introduces

a two-stage simulation-based procedure for parameter estimation and provides

closed-form expressions for the smoothed probability density function. These

two ingredients are then combined to obtain smoothed estimates of cumulated

changes in frictionless state variables for each microeconomic unit at any point

in time.

I conclude by highlighting two promissing avenues for future research mo-

tivated by the present paper. The first of these avenues consists in extending

the results here presented to more general versions of assumption 1.1 and, more

precisely, to more general forms for the transition equation for cumulated changes

in frictionless state variables in (1.6). One of these generalisations would be to

accommodate the possibility of common shocks in the evolution of frictionless

states by allowing Σ to be a non-diagonal matrix. Other generalisations would

be to include nonlinearities and/or non-Gaussian disturbances in (1.6). On the

one hand, introducing such nonlinearities or non-Gaussian disturbances would

most likely make impossible to obtain closed form expressions for the smoothed

probability density function and, therefore, smoothed estimates would need to
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be obtained from algorithm-based approximate solutions for the smoothing prob-

lem. On the other hand, by relaxing those assumptions the transition equation

for frictionless state would allow the proposed state-space representation to ac-

commodate a wider range of microfoundations for the evolution of frictionless

states.

Lastly, given the increasing availability of micro datasets in which variable

changes can be characterised as intermittent and lumpy, the second promising

avenue for future research consists in the applications of the current framework.

By making possible to obtain unit level estimates of cumulated changes in fric-

tionless state variables, the present framework enables researchers to construct

empirical estimates of frictionless aggregate variables and of the cross-sectional

distribution of re-centered state gaps for any time period. These estimates can

be used to shed a new light on some of the most important questions in the (S,s)

literature such as the importance of microeconomic lumpiness for the dynamics

of aggregate variables, the responses of aggregate variables to shocks as well as

the welfare costs of microeconomic adjustment frictions.
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1.A. Figures

Figure 1.A.1: Cumulated changes for observed and frictionless state variables

0 τ
1 t1 τ

2 t2 T

0

Zi,t ≡ zi,t − zi,0

Z
⋆
i,t ≡ z⋆i,t − z⋆i,0

The data underlying this graph is generated from the data generating process specified in
assumption 1.1. As defined in section 1.2, Zi,t denotes the cumulated change in unit i’s actual
state variable and Z?i,t denotes the cumulated change in unit i’s frictionless state variable. The
dashed black lines denote the boundaries of the inaction region for any point in time.
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Figure 1.A.2: Re-centered state variable gaps

0 τ
1
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xi

xi,0

0
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Re-centered state gap (xi,t)

∆Zi,t
′s depends only on Γi

∆Zi,t
′s depend

on both xi,0

and on Γi

This figure plots the paths for the re-centered state gap implied by figure 1.A.1. The annotations
follow from the result in proposition 1.1.

52



Figure 1.A.3: Distribution of state variable adjustments for alternative DGPs
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Distributions of state variable adjustments are obtained from a sample with a balanced panel
with n = 1, 000 and T = 240. The initial re-centred state-variable gaps are equally spaced
points within the inaction region following the same rule as in table 1.B.1.
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Figure 1.A.4: First-stage parameters across Monte Carlo replications
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Each line is a normal kernel density estimate of parameter estimates across 1,000 Monte Carlo
replications. The red dashed line correspond to panels with dimensions n = 100 and T = 60,
the blue dotted line to panels with dimensions n = 100 and T = 240 and the green solid line
to panels with dimensions n = 300 and T = 60. The vertical black solid lines are at the true
parameter values. The alternative data generating processes are described in table 1.B.1.
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Figure 1.A.5: Second-stage parameters across Monte Carlo replications
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For each combination of dgp and panel dimensions, the dashed blue lines are the kernel density
estimates of the distribution of (x̂i,0 − xi,0) pooled across units and Monte Carlo replications.
The vertical solid black lines are the means of the data underlying each kernel density estimate.
The rules used to generate the initial conditions, xi,0, are described in table 1.B.1.
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Figure 1.A.6: Three alternative latent variable estimators
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The data underlying this graph is generated from the data generating process specified in
assumption 1.1. The dashed black lines denote the boundaries of the inaction region for any
point in time. All the latent variable estimators are computed fixing the parameters equal to
their true values. For this particular sample the MSEs of Ẑ?i,t, Ž?i,t, Z̃?i,t are 0.0024, 0.0072,
0.0070, respectively.
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1.B. Tables

Table 1.B.1: Data generating processes in the Monte Carlo experiment

DGP
#

x x µ Σ λ

1 −0.1×1n×1 0.1× 1n×1 0.002×1n×1 (0.05)2×In×n 0.025×1n×1

2 −0.1×1n×1 0.1× 1n×1 0.002×1n×1 (0.05)2×In×n 0.1× 1n×1

3 −0.1×1n×1 0.1× 1n×1 0.002×1n×1 (0.05)2×In×n 0.4× 1n×1

The parameter vector notation is the same as in the state-space representation in Assumption
1.1. For each of the three parameter combinations above, three sample sizes are considered:
(a) n = 100 and T = 60, (b) n = 100 and T = 240 and (c) n = 300 and T = 60. For each
combination of parameter values and sample size, the initial re-centered state variable gaps
equally spaced points within the inaction region, more precisely, each element of the vector x0

os generated according to x0,i = 0.1 + [0.2/(n+ 2)]× i where i = 1, . . . , n.
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Table 1.B.2: Mean Squared Errors for alternative latent variable estimators

DGP

True Parameters Estimated Parameters

Ẑ?i,t Ž?i,t Z̃?i,t Ẑ?i,t Ž?i,t Z̃?i,t

1

(a) 0.0014 0.0031 0.0753 0.0079 0.0094 0.0758

(b) 0.0014 0.0033 0.2979 0.0081 0.0099 0.3004

(c) 0.0014 0.0031 0.0753 0.0078 0.0093 0.0755

2

(a) 0.0012 0.0022 0.0748 0.0066 0.0076 0.0754

(b) 0.0012 0.0023 0.3002 0.0068 0.0079 0.3023

(c) 0.0012 0.0022 0.075 0.0066 0.0075 0.0751

3

(a) 0.0007 0.0009 0.0752 0.004 0.0042 0.0757

(b) 0.0007 0.0009 0.2979 0.0041 0.0043 0.2999

(c) 0.0007 0.0009 0.0753 0.004 0.0042 0.0755

The DGP numbers refer to one of the three parameter combinations summarized in table 1.B.1.
The letters refer to the panel dimensions where (a) n = 100 and T = 60, (b) n = 100 and T =
240 and (c) n = 300 and T = 60. The latent variable estimators Ẑ?i,t, Ž?i,t and Z̃?i,t are described
in section 1.5.3. The columns under “True Parameters”/“Estimated Parameters” are computed
fixing the parameter values equal to their true parameter values/parameter values estimated
from the two-stage procedure. For a given latent variable estimator, the Mean Squared Errors
reported are computed as MSE(x̂) = (1, 000× n× (T + 1))

−1∑1,000
k=1

∑n
i=1

∑T
t=0(x̂i,t,k−Z?i,t,k)2

where k indexes Monte Carlo replications, Z?i,t,k is the true value of cumulated changes in
frictionless state for unit i at time t in Monte Carlo replication k.
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1.C. Proofs of auxiliary results

Notation. The function o (·) : R → R is used to denote any function that is

equal to zero almost everywhere in the real line. For a matrix A ∈ Rm×n let A′

denote the matrix transpose, a∗,j denote the j-th column of the matrix A; ai,∗

to denote the i-th row of A. For matrix operations let ⊗ denote the Kronecker

product, � denote the Hadamard division and the exponent ◦−1 the Hadamard

inverse. The remaining notation is as defined in the main text.

Lemma 1.1 Let x, y, µx, a, c ∈ R, σx, σy ∈ R>0 and µy = ax+ c. Then,

1

σy
φ

(
y − µy
σy

)
× 1

σx
φ

(
x− µx
σx

)
=

1

σ̃y
φ

(
y − µ̃y
σ̃y

)
× 1

σ̃x
φ

(
x− µ̃x
σ̃x

)
(L1.1)

where,

µ̃x ≡
σ2
xa(y − c) + σ2

yµx

σ2
y + a2σ2

x

(L1.2)

σ̃x ≡
σyσx√
σ2
y + a2σ2

x

(L1.3)

µ̃y ≡ aµx + c (L1.4)

σ̃y ≡
√
σ2
y + a2σ2

x (L1.5)

Proof of Lemma 1.1. Using the definition of the standard normal probability den-

sity function:
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1

σy
φ

(
y − µy
σy

)
× 1

σx
φ

(
x− µx
σx

)
=

1

2πσyσx
exp

{
−(y − µy)2

2σ2
y

− (x− µx)2

2σ2
x

}

=
1

2πσyσx
exp

− 1

2σ2
yσ

2
x

[
σ2
x(y − µy)2 + σ2

y(x− µx)2
]︸ ︷︷ ︸

(∗)


(L1.6)

Given that µy = ax+ c, rearrange terms and define µ̃x ≡ (σ2
y + a2σ2

x)
−1(σ2

xa(y −

c) + σ2
yµx) to obtain,

(∗) = σ2
x(y − c)2 + (σ2

xa
2 + σ2

y)
(
x2 − 2xµ̃x

)
+ σ2

yµ
2
x

= σ2
x(y − c)2 + (σ2

xa
2 + σ2

y)
(
x2 − 2xµ̃x + µ̃2

x

)
+ σ2

yµ
2
x − (σ2

xa
2 + σ2

y)µ̃
2
x

= (σ2
xa

2 + σ2
y) (x− µ̃x)2 + σ2

x(y − c)2 + σ2
yµ

2
x − (σ2

xa
2 + σ2

y)µ̃
2
x︸ ︷︷ ︸

(∗∗)

(L1.7)

Using the definition of µ̃x and rearranging terms yields,

(∗∗) = σ2
xσ

2
y(σ

2
xa

2 + σ2
y)
−1
[
(y − c)2 − 2aµx(y − c) + a2µ2

x

]
= σ2

xσ
2
y(σ

2
xa

2 + σ2
y)
−1(y − (aµx + c︸ ︷︷ ︸

≡µ̃y

))2 (L1.8)

Combine (L1.8) and (L1.7) and plug back in (L1.6),

1

σy
φ

(
y − µy
σy

)
× 1

σx
φ

(
x− µx
σx

)
=

1

2πσyσx
exp

{
−1

2

(
(x− µ̃x)2

(σ2
xa

2 + σ2
y)
−1σ2

xσ
2
y

+
(y − µ̃y)2

(σ2
xa

2 + σ2
y)

)}
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Finally, define σ̃x ≡ (σ2
y + a2σ2

x)
− 1

2 (σyσx) and σ̃y ≡ (σ2
y + a2σ2

x)
1
2 and rearrange to

obtain,

1

σy
φ

(
y − µy
σy

)
× 1

σx
φ

(
x− µx
σx

)
=

1

(2π)
1
2 σ̃y

exp

{
−(y − µ̃y)2

2σ̃y

}
︸ ︷︷ ︸

1
σ̃y
φ
(
y−µ̃y
σ̃y

)
1

(2π)
1
2 σ̃x

exp

{
−(x− µ̃x)2

2σ̃2
x

}
︸ ︷︷ ︸

1
σ̃x
φ(x−µ̃xσ̃x

)

This completes the proof.

Lemma 1.2 Consider an arbitrary time period t ∈ Z[0,T]. If t = 0 then,

fZ?i,t|Θ
(
z?i,t | θ

)
= δ

(
z?i,t
)

(L1.2.1)

If t > 0, let τ k denote the largest time period before t such be such that (1.11)

holds and let b ≡ t− τ k denote the number of periods elapsed since τ k, then,

fZ?i,t|Z
t−1
i ;Θ

(
z?i,t | zt−1

i ;θ
)
∝ 1

σi,b
φ

(
z?i,t − µki,b
σi,b

)
βki,b(z

?
i,t) (L1.2.2)

where βki,b(·) is given by (1.14) whereas µki,b and σi,b are given by (1.15) and (1.16).

Proof of Lemma 1.2. For the initial time period (L1.2.1) follows trivially since,

by definition, Z?i,t = z?i,t − z?i,0. For any other time period, use the Chapman-

Kolmogorov equation and the pdf for Z?i,t conditional on Z?i,t to obtain,

fZ?i,t|Z
t−1
i ;Θ

(
z?i,t | zt−1

i ;θ
)

=

∫
1

σε
φ

(
z? − (µ+ z̃?)

σε

)
fZ?i,t−1|Z

t−1
i ;Θ

(
z?i,t−1 | zt−1

i ;θ
)
dz̃?

(L1.3)

It remains to be shown that for any t, the expression for the pdf in (L1.2.2)

satisfies (L1.3). Given the expressions for the filtered pdf in propositions 1.2 and

1.3 there are two cases to be verified depending on whether t−1 is an adjustment
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or an inaction period. First, suppose that t − 1 is an adjustment period and,

hence, the filtered pdf is given by (1.11). Combining the filtered density in (1.11)

with (L1.3) yields,

fZ?i,t|Z
t−1
i ;Θ

(
z?i,t | zt−1

i ;θ
)

=

∫
1

σε,i
φ

(
z?i,t − (µi + z̃?)

σε,i

)
δ(z̃? − cki ) dz̃?

=
1

σε,i
φ

(
z?i,t − (µi + cki )

σε,i

)

=
1

σi,1
φ

(
z?i,t − µki,1
σi,1

)
βki,1(z?i,t) (L1.4)

where: (i) the second equality uses the properties of the Dirac delta function;

(ii) the third equality used the definitions of µki,b and σi,b in (1.15) and (1.16) for

b = 1 and that βki,b(x) = 1 ∀x if b = 1 from (1.14). Second, suppose now t− 1 is

an inaction period and, hence, the filtered pdf is given by (1.19). Combining the

filtered density in (1.19) with (L1.3) yields,

fZ?i,t|Z
t−1
i ;Θ

(
z?i,t | zt−1

i ;θ
)
∝
∫ Z̄ki

¯
Zki

1

σε,i
φ

(
z?i,t − (µi + z̃?)

σε,i

)
1

σi,b−1

φ

(
z̃? − µki,b−1

σi,b−1

)
βki,b−1(z̃?) dz̃?

∝ 1

σi,b
φ

(
z?i,t − µki,b
σi,b

)∫ Z̄ki

¯
Zki

1

σ̃i,b−1

φ

(
z̃? − µ̃ki,b−1(z?i,t)

σ̃i,b−1

)
βki,b−1(z̃?)dz̃?

∝ 1

σi,b
φ

(
z?i,t − µki,b
σi,b

)
βki,b(z

?
i,t) (L1.5)

where: (i) the first line follows from substituting (1.19) in (L1.3) and re-arranging;

(ii) the second line follows from applying lemma 1.1 to combine the two normal

densities; (iii) the third line uses the definition of βki,b(z
?
i,t) in (1.14).
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1.D. Proofs of results in the main text

Proof of Proposition 1.1. For any t it follows from (1.6) that `i,j,t depends only

on parameter λi and realizations of the shock νi,t which is drawn from a Uniform

(0,1), hence, `i,t does not depend on xi,0. Iterating (1.5) backwards and using

Z?i,0 = 0 yields,

Z?i,t = tµi +
t∑

k=1

εi,k (P1.1.1)

Therefore, for any t this depends only on the parameters µi,j and σε,i,j. For any

t > τ 1
i , equation (1.3) implies that Zi,t−1 = Z?

i,τki
− xi,0 where τ ki denotes the last

time period where a price change occurred. Subtract Zi,t−1 on both sides of (1.3)

and use Zi,t−1 = Z?
i,τki
− xi,0 to obtain,

∆Zi,t = (Z?i,t − Z?i,τki
) (1− di,t) (P1.1.2)

Finally, given that Z?i,t is independent of xi,0 for any t, it remains to be shown that

for t > τ 1
i also di,t is independent of xi,0. To see this substitute Zi,t−1 = Z?

i,τki
−xi,0

in (1.4) to obtain:

di,t = 1{Z?i,τki − Z?i,t ∈ (
¯
xi, x̄i)} (1− `i,t) + 1{Z?i,t = Z?i,τki

} `i,t (P1.1.3)

Given that Z?i,t and `i,t do not depend on xi,0, this completes the proof.

Proof of Proposition 1.2. For the initial period, Z?i,t is degenerate at zero since,

by definition, Z?i,t = z?i,t − z?i,0. For any other adjustment period, t = τ k, the

distribution must be degenerate at a value that makes the re-centered state gap

equal to zero. Using the definition of the re-centered state gap,
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xi,t ≡ zi,t − z?i,t − ci

= (zi,t − zi,0)− (z?i,t − z?i,0) + (zi,0 − z?i,0 + ci)

= Zi,t − Z?i,t + xi,0

Therefore, the distribution of Z?
i,τk

must be degenerate at zi,τk + xi,0 ≡ cki .

Proof of Proposition 1.3. To establish (1.19) start from Bayes’ rule,

fZ?i,t|Zti;Θ
(
z?i,t | zti ;θ

)
= fZ?i,t|Zi,t;Z

t−1
i ;Θ

(
z?i,t | zi,t; zt−1

i ;θ
)

=
fZi,t|Z?i,t;Z

t−1
i ;Θ

(
zi,t | z?i,t; zt−1

i ;θ
)
fZ?i,t|Z

t−1
i ;Θ

(
z?i,t | zt−1

i ;θ
)∫

fZi,t|Z?i,t;Z
t−1
i ;Θ

(
zi,t | a; zt−1

i ;θ
)
fZ?i,t|Z

t−1
i ;Θ

(
a | zt−1

i ;θ
)
da

∝ fZi,t|Z?i,t;Z
t−1
i ;Θ

(
zi,t | z?i,t; zt−1

i ;θ
)
fZ?i,t|Z

t−1
i ;Θ

(
z?i,t | zt−1

i ;θ
)

(P1.3.1)

Look only at the first term in (P1.3.1) and use the law of total probability,

fZi,t|Z?i,t;Z
t−1
i ;Θ

(
zi,t | z?i,t; zt−1

i ;θ
)

= fZi,t|`i,t;Z?i,t;Z
t−1
i ;Θ

(
zi,t|0; z?i,t; zt−1

i ;θ
)
f`i,t|Z?i,t;Zt−1

i ;Θ

(
0|z?i,t; zt−1

i ;θ
)

+ fZi,t|`i,t;Z?i,t;Z
t−1
i ;Θ

(
zi,t|1; z?i,t; zt−1

i ;θ
)
f`i,t|Z?i,t;Zt−1

i ;Θ

(
1|z?i,t; zt−1

i ;θ
)

(P1.3.2)

Since t is an inaction period and τ k is the last adjustment period before t, this

implies that zi,t = zi,t−1 = zi,τk . Using the definition of di,t
(
zi,t−1, z

?
i,t, `i,t

)
in (1.2)

and the transition equation for the arrival of costless adjustment opportunities

in (1.6), expression (P1.3.2) can be written as,

fZi,t|Z?i,t;Z
t−1
i ;Θ

(
zi,t | z?i,t; zt−1

i ;θ
)

= 1{z?i,t ∈ (
¯
Zk
i , Z̄

k
i )} (1−λi)+1{z?i,t = zi,τk+xi,0}λi

(P1.3.3)
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where
¯
Zk
i and Z̄k

i are given by (1.12) and (1.13). Substituting (P1.3.3) in (P1.3.1)

and re-arranging yields,

fZ?i,t|Zti;Θ
(
z?i,t | zti ;θ

)
∝ fZ?i,t|Z

t−1
i ;Θ

(
z?i,t | zt−1

i ;θ
)
1{z?i,t ∈ (

¯
Zk
i , Z̄

k
i )}

+
λi

(1− λi)
fZ?i,t|Z

t−1
i ;Θ

(
z?i,t | zt−1

i ;θ
)
1{z?i,t = zi,τk + xi,0}︸ ︷︷ ︸

=o(z?)

(P1.3.4)

Consider now the second term in (P1.3.1) and use the Chapman-Kolmogorov

equation to obtain,

fZ?i,t|Z
t−1
i ;Θ

(
z?i,t|zt−1

i ;θ
)

=

∫
fZ?i,t|Z?i,t−1;Θ(z?i,t|z̃?;θ)fZ?i,t−1|Z

t−1
i ;Θ(z̃?|zt−1

i ;θ) dz̃?

(P1.3.5)

It follows from Assumption 1.1 that,

Z?i,t | Z?i,t−1; Θ ∼ N
(
µi + Z?i,t−1, σ

2
ε,i

)
(P1.3.6)

Finally, combining (P1.3.5) and (P1.3.6) and substitute in (P1.3.4) to obtain,

fZ?i,t|Zti;Θ
(
z?i,t | zti ;θ

)
∝

[∫
1

σε,i
φ

(
z?i,t − (µi + z̃?)

σε,i

)
fZ?i,t−1|Z

t−1
i ;Θ(z̃?|zt−1

i ;θ) dz̃?

]
1{z?i,t ∈ (

¯
Zk
i , Z̄

k
i )}

+ o(z?i,t) (P1.3.7)

This equation is a filtering forward recursion as it expresses the filtered pdf a

given time period as a function of the filtered pdf in previous time period. Filter-

ing forward recursions are commonplace in the nonlinear non-Gaussian filtering

literature.34 It is important to notice that (P1.3.7) is a “local forward filtering

34See, for instance, Kitagawa (1987, equation 2.3) or Särkkä (2013, theorem 4.1).
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recursion”, since it holds only for inaction periods such that τ k is the largest time

period before t such that (1.11) holds. To complete the proof it remains to be

shown that (1.19) satisfies the forward recursion regardless of whether t − 1 is

an adjustment or an inaction period. Consider first the case where t − 1 is an

adjustment period and, in that case, fZ?i,t−1|Z
t−1
i ;Θ(z̃?|zt−1

i ;θ) is given by (1.11) and

(P1.3.7) becomes,

fZ?i,t|Zti;Θ
(
z?i,t | zti ;θ

)
∝

[∫
1

σε,i
φ

(
z?i,t − (µi + z̃?)

σε,i

)
δ(z̃? − cki ) dz̃?

]
1{z?i,t ∈ (

¯
Zk
i , Z̄

k
i )}+ o(z?i,t)

=
1

σε,i
φ

(
z?i,t − (µi + cki )

σε,i

)
1{z?i,t ∈ (

¯
Zk
i , Z̄

k
i )}+ o(z?i,t)

=
1

σi,1
φ

(
z?i,t − µki,1
σi,1

)
βki,1
(
z?i,t
)
1{z?i,t ∈ (

¯
Zk
i , Z̄

k
i )}+ o(z?i,t)

(P1.3.8)

where the first equality uses the properties of the Dirac delta function whereas

the second equality uses the definitions of µki,1 and σi,1 from (1.15) and (1.16)

and βki,1 (x)∀x from (1.14). Therefore, (1.19) satisfies (P1.3.7) if t− 1 is a period

where (1.11) holds. Lastly, consider the case where t − 1 is an inaction period

and fZ?i,t−1|Z
t−1
i ;Θ(z̃?|zt−1

i ;θ) is given by (1.19) lagged by one period. Substituting

that into (P1.3.7) yields,
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fZ?i,t|Zti;Θ
(
z?i,t | zti ;θ

)
∝

[∫ Z̄ki

¯
Zki

1

σε,i
φ

(
z?i,t − (µi + z̃?)

σε,i

)
1

σi,b−1

φ

(
z̃? − µki,b−1

σi,b−1

)
βki,b−1 (z̃?) dz̃?

]

× 1{z?i,t ∈ (
¯
Zk
i , Z̄

k
i )}+ o(z?i,t)

=
1

σi,b
φ

(
z?i,t − µki,b
σi,b

)[∫ Z̄ki

¯
Zki

1

σ̃i,b−1

φ

(
z̃? − µ̃ki,b−1(z?i,t)

σ̃i,b−1

)
βki,b−1 (z̃?) dz̃?

]

× 1{z?i,t ∈ (
¯
Zk
i , Z̄

k
i )}+ o(z?i,t)

=
1

σi,b
φ

(
z?i,t − µki,b
σi,b

)
βki,b
(
z?i,t
)
1{z?i,t ∈ (

¯
Zk
i , Z̄

k
i )}+ o(z?i,t)

(P1.3.9)

where the first line follows from substituting lagged (1.19) in (P1.3.7) and re-

arranging, the second line follows from using Lemma 1.1 to combine the two

normal pdfs inside the integral and the definitions of µ̃ki,b−1(x) and σ̃i,b−1 from

(1.17) and (1.18) and the last line follows from the definition of βki,b (x) in (1.14).

Therefore, (1.19) also satisfies (P1.3.7) when t− 1 is an inaction period.

Proof of Proposition 1.4. To establish (1.25) start from,
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fZ?i,t|ZT
i ;Θ

(
z?i,t|zT

i ;θ
)

=

∫
fZ?i,t,Z

?
i,t+1|ZT

i ;Θ

(
z?i,t, z̃

? | zT
i ;θ

)
dz̃?

=

∫
fZ?i,t+1|ZT

i ;Θ

(
z̃? | zT

i ;θ
)
fZ?i,t|Z?i,t+1;ZT

i ;Θ

(
z?i,t | z̃?; zT

i ;θ
)
dz̃?

=

∫
fZ?i,t+1|ZT

i ;Θ

(
z̃? | zT

i ;θ
)
fZ?i,t|Z?i,t+1;Zti;Θ

(
z?i,t | z̃?; zti ;θ

)
dz̃?

=

∫
fZ?i,t+1|ZT

i ;Θ

(
z̃? | zT

i ;θ
) fZ?i,t+1|Z?i,t;Θ

(
z̃? | z?i,t;θ

)
fZ?i,t|Zti;Θ

(
z?i,t | zti;θ

)
fZ?i,t+1|Zti;Θ (z̃? | zti;θ)

dz̃?

= fZ?i,t|Zti;Θ
(
z?i,t | zti;θ

)∫ fZ?i,t+1|Z?i,t;Θ
(
z̃? | z?i,t;θ

)
fZ?i,t+1|ZT

i ;Θ

(
z̃? | zT

i ;θ
)

fZ?i,t+1|Zti;Θ (z̃? | zti;θ)
dz̃?

(P1.4.1)

This equation is a smoothing backward recursion as it expresses the smoothed

probability density at a given time period as a function of the smoothed prob-

ability density in the next period. Just like the forward filtering recursion in

(P1.3.7), this type of recursion is commonplace in the nonlinear non-Gaussian

filtering and smoothing literature.35 Suppose t is an inaction period and let

τ k denote the the largest time period before t such that (1.11) holds. In that

case, the filtered probability density function fZ?i,t|Zti;Θ
(
z?i,t | zti;θ

)
is given by

(1.19), the denominator term fZ?i,t+1|Zti;Θ (z̃? | zti;θ) is given by (L1.2.2) and Z?i,t+1 |

Z?i,t; Θ ∼ N
(
µi + Z?i,t, σ

2
ε,i

)
from Assumption 1.1. Substituting these three terms

into (P1.4.1) and re-arranging terms yields,

fZ?i,t|ZT
i ;Θ

(
z?i,t|zT

i ;θ
)
∝

∫ 1
σi,b
φ
(

z?i,t−µki,b
σi,b

)
1
σε,i
φ
(
z̃?−(µi+z?i,t)

σε,i

)
fZ?i,t+1|ZT

i ;Θ

(
z̃? | zT

i ;θ
)

1
σi,b+1

φ
(
z̃?−µki,b+1

σi,b+1

)
βki,b+1(z̃?)

dz̃?



× βki,b(z?i,t) 1
{

z?i,t ∈
(
¯
Zk
i , Z̄

k
i

)}
+ o(z?i,t) (P1.4.2)

35See, for instance, Kitagawa (1987, equation 2.4) or Särkkä (2013, theorem 8.1).
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Equation (P1.4.2) is a “local smoothing backward recursion” since it holds only

for inaction periods such that τ k is the largest time period before t such that (1.11)

holds. Since I am assuming there is exists a period after t such that (1.11) holds, to

complete the proof it remains to be shown that (1.25) satisfies (P1.4.2) regardless

of whether t + 1 is an adjustment or an inaction period. Consider first the case

where t + 1 is an adjustment period and, in that case, fZ?i,t+1|ZT
i ;Θ

(
z̃? | zT

i ;θ
)

is

given by (1.11) and b = ∆k − 1 so (P1.4.2) becomes,

fZ?i,t|ZT
i ;Θ

(
z?i,t|zT

i ;θ
)
∝


∫ 1

σ
i,∆k−1

φ

(
z?i,t−µki,∆k−1

σ
i,∆k−1

)
1
σε,i
φ
(
z̃?−(µi+z?i,t)

σε,i

)
δ
(
z̃? − ck+1

i

)
1

σ
i,∆k

φ

(
z̃?−µk

i,∆k

σ
i,∆k

)
βk
i,∆k(z̃?)

dz̃?



× βki,∆k−1(z?i,t) 1
{

z?i,t ∈
(
¯
Zk
i , Z̄

k
i

)}
+ o(z?i,t)

=


1

σ
i,∆k−1

φ

(
z?i,t−µki,∆k−1

σ
i,∆k−1

)
1
σε,i
φ

(
ck+1
i −(µi+z?i,t)

σε,i

)
1

σ
i,∆k

φ

(
ck+1
i −µk

i,∆k

σ
i,∆k

)
βk
i,∆k(c

k+1
i )

 βki,∆k−1(z?i,t)1
{

z?i,t ∈
(
¯
Zk
i , Z̄

k
i

)}
+ o(z?i,t)

=


1

σ̌k
i,∆k−1

φ

(
z?i,t−µ̌ki,∆k−1

σ̌k
i,∆k−1

)
1

σ
i,∆k

φ

(
ck+1
i −µk

i,∆k

σ
i,∆k

)
1

σ
i,∆k

φ

(
ck+1
i −µk

i,∆k

σ
i,∆k

)
βk
i,∆k(c

k+1
i )

 βki,∆k−1(z?i,t)1
{

z?i,t ∈
(
¯
Zk
i , Z̄

k
i

)}
+ o(z?i,t)

∝ 1

σ̌k
i,∆k−1

φ

(
z?i,t − µ̌ki,∆k−1

σ̌k
i,∆k−1

)
βki,∆k−1(z?i,t)χ

k
i,∆k−1(z?i,t)1

{
z?i,t ∈

(
¯
Zk
i , Z̄

k
i

)}
+ o(z?i,t)

(P1.4.3)

where the first equality follows from the properties of the Dirac delta function,

the second equality uses the result in Lemma 1.1 and the last line follows from

noticing that βk
i,∆k(c

k+1
i ) is a constant and χk

i,∆k−1
(x) = 1,∀x from the definition

in (1.20).36 Consider now the case where t+1 is an inaction period, so b < ∆k−1

and fZ?i,t+1|ZT
i ;Θ

(
z̃?|zT

i ;θ
)

is given by (1.25) forwarded by one period. In that case,

(P1.4.2) becomes,

36In the second equality lemma 1.1 is invoked with: y = ck+1
i , x = z?i,t, a = 1, c = µi,

σy = σε,i, σx = σi,∆k−1 and µx = µki,∆k−1.
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fZ?i,t|ZT
i ;Θ

(
z?i,t|zT

i ;θ
)
∝

∫ Z̄ki

¯
Zki

1
σi,b
φ
(

z?i,t−µki,b
σi,b

)
1
σε,i
φ
(
z̃?−(µi+z?i,t)

σε,i

)
1

σ̌ki,b+1
φ
(
z̃?−µ̌ki,b+1

σ̌ki,b+1

)
χki,b+1 (z̃?)

1
σi,b+1

φ
(
z̃?−µki,b+1

σi,b+1

) dz̃?


︸ ︷︷ ︸

[∗]

× βki,b(z?i,t) 1
{

z?i,t ∈
(
¯
Zk
i , Z̄

k
i

)}
+ o(z?i,t) (P1.4.4)

Working with [∗] term only,

[∗] =

∫ Z̄ki

¯
Zki

1
σi,b+1

φ
(
z̃?−µki,b+1

σi,b+1

)
1
σ̃i,b
φ
(

z?i,t−µ̃ki,b(z̃
?)

σ̃i,b

)
1

σ̌ki,b+1
φ
(
z̃?−µ̌ki,b+1

σ̌ki,b+1

)
χki,b+1 (z̃?)

1
σi,b+1

φ
(
z̃?−µki,b+1

σi,b+1

) dz̃?

=

∫ Z̄ki

¯
Zki

1

σ̌ki,b
φ

(
z?i,t − µ̌ki,b
σ̌ki,b

)
1

σ̈ki,b+1

φ

(
z̃? − µ̈ki,b+1(z?i,t)

σ̈ki,b+1

)
χki,b+1 (z̃?) dz̃?

=
1

σ̌ki,b
φ

(
z?i,t − µ̌ki,b
σ̌ki,b

)∫ Z̄ki

¯
Zki

1

σ̈ki,b+1

φ

(
z̃? − µ̈ki,b+1(z?i,t)

σ̈ki,b+1

)
χki,b+1 (z̃?) dz̃?

=
1

σ̌ki,b
φ

(
z?i,t − µ̌ki,b
σ̌ki,b

)
χki,b
(
z?i,t
)

(P1.4.5)

where the first equality follows using Lemma 1.1 to combine the first two normal

densities in the numerator along with the definitions of µ̃ki,b(x) and σ̃i,b in (1.17)

and (1.18), the second equality follows from cancelling out the first term in the

numerator with the denominator and using Lemma 1.1 to combine the remaining

two normal densities, the last equality follows from the definition of χki,b (x) in

(1.20) for b < ∆k − 1.37 Finally, plugging (P1.4.5) back into (P1.4.4) yields,

fZ?i,t|ZT
i ;Θ

(
z?i,t|zT

i ;θ
)
∝ 1

σ̌ki,b
φ

(
z?i,t − µ̌ki,b
σ̌ki,b

)
βki,b
(
z?i,t
)
χki,b
(
z?i,t
)
1
{

z?i,t ∈
(
¯
Zk
i , Z̄

k
i

)}
+o(z?i,t)

(P1.4.6)

37In the first equality, Lemma 1.1 is used with: y = z̃?, x = z?i,t, a = 1, c = µi, σx = σi,b,

σy = σε,i and µx = µkb . In the second equality Lemma 1 is again used but now with: y = z?i,t,

x = z̃?, a = b/(b+ 1), c = cki /(b+ 1), σy = σ̃i,b, σx = σ̌ki,b+1 and µx = µ̌ki,b+1.
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Therefore, (1.25) again satisfies the local smoothing backward recursion in (P1.4.2).

Proof of Proposition 1.5. This proposition refers to the case where there does not

exist any period after t such that (1.11) holds and, hence, t can only be either

the end period (i.e. t = T) or an inaction period. Consider first the case where

t corresponds to the end period. In that case, the smoothed probability density

must coincide with the filtered probability density in (1.19). Start from (1.19)

with b = ∆K ≡ T− τ k,

fZ?i,t|Zti;Θ
(
z?i,t | zti ;θ

)
∝ 1

σi,∆K

φ

(
z?i,t − µki,∆K

σi,∆K

)
βki,∆K (z?i,t)1

{
z?i,t ∈

(
¯
Zk
i , Z̄

k
i

)}
+ o(z?i,t)

=
1

σi,∆K

φ

(
z?i,t − µki,∆K

σi,∆K

)
βki,∆K (z?i,t)ι

k
i,∆K (z?i,t)1

{
z?i,t ∈

(
¯
Zk
i , Z̄

k
i

)}
+ o(z?i,t)

(P1.5.1)

where the equality follows from the fact that ιki,∆K (x) = 1,∀x from the definition

in (1.26). Therefore, (1.27) coincides with the filtered density in (1.19) for the

case where the end period is an inaction period. For the case where t is an

inaction period but not the end period (i.e b < ∆K , the proof is similar to that

of proposition 1.4 since it requires showing that the smoothed density in (1.27)

satisfies the local backward smoothing backward recursion in (P1.4.2). Suppose

fZ?i,t+1|ZT
i ;Θ

(
z̃?|zT

i ;θ
)

is given by (1.27) forwarded by one period and substitute

in (P1.4.2) to obtain,

fZ?i,t|ZT
i ;Θ

(
z?i,t|zT

i ;θ
)
∝

∫ Z̄ki

¯
Zki

1
σi,b
φ
(

z?i,t−µki,b
σi,b

)
1
σε,i
φ
(
z̃?−(µi+z?i,t)

σε,i

)
1

σi,b+1
φ
(
z̃?−µki,b+1

σi,b+1

)
ιki,b+1 (z̃?)

1
σi,b+1

φ
(
z̃?−µki,b+1

σi,b+1

) dz̃?


︸ ︷︷ ︸

[∗∗]

× βki,b(z?i,t) 1
{

z?i,t ∈
(
¯
Zk
i , Z̄

k
i

)}
+ o(z?i,t) (P1.5.2)
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Notice that,

[∗∗] =
1

σi,b
φ

(
z?i,t − µki,b
σi,b

)∫ Z̄ki

¯
Zki

1

σε,i
φ

(
z̃? − (µi + z?i,t)

σε,i

)
dz̃?

=
1

σi,b
φ

(
z?i,t − µki,b
σi,b

)
ιki,b(z

?
i,t) (P1.5.3)

where the first equality follows from cancelling out terms in the numerator in

denominator and taking outside the integral terms that do not depend on z̃?

whereas the second equality follows from the definition of ιki,b(x) in (1.26) with

b < ∆K . Finally, plugging (P1.5.3) back in (P1.5.2) yields,

fZ?i,t|ZT
i ;Θ

(
z?i,t|zT

i ;θ
)
∝ 1

σi,b
φ

(
z?i,t − µki,b
σi,b

)
βki,b(z

?
i,t) ι

k
i,b(z

?
i,t)1

{
z?i,t ∈

(
¯
Zk
i , Z̄

k
i

)}
+o(z?i,t)

(P1.5.4)

Therefore, (1.27) satisfies the local smoothing backward recursion in (P1.4.2).

Corollary 1.1 For a given unit i, suppose t is an inaction period. Let τ k denote

the largest time period before t such that (1.11) holds and let b ≡ t − τ k denote

the number of periods elapsed since τ k. If
¯
xi → −∞ and x̄i →∞ then βki,b(x) =

χki,b(x) = ιki,b = 1, ∀b, k, x.

Proof of Corollary 1.1. From the definitions of
¯
Zk
i and Z̄k

i in (1.12) and (1.13) it

follows that, for any k, if
¯
xi → −∞ then Z̄k

i →∞ and if x̄i →∞ then
¯
Zk
i → −∞.

Using this fact, I now verify by induction that βki,b(x) = 1 satisfies the recursive

definition in (1.14). First, if b = 1 it follows by definition that βki,b(x) = 1. Second,

suppose b > 1 and βki,b−1(x) = 1 then using (1.14) yields,

βki,b(x) =

∫ ∞

−∞

1

σ̃i,b−1

φ

(
y − µ̃ki,b−1(x)

σ̃i,b−1

)
dy = 1 (C1.1.1)

This completes the proof for βki,b(x). Consider now the case of χki,b(x). If b =
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∆k−1 then by definition of (1.20) it follows that χki,b(x) = 1. Otherwise, suppose

b < ∆k − 1 and that χki,b+1(x) = 1, then using (1.20) yields,

χki,b(x) =

∫ ∞

−∞

1

σ̈ki,b+1

φ

(
y − µ̈ki,b+1(x)

σ̈ki,b+1

)
dy = 1 (C1.1.2)

This completes the proof for χki,b(x). Finally, consider the case of ιki,b(x). If b = ∆K

then by definition of (1.26) it follows that ιki,b(x) = 1. Otherwise, suppose b < ∆K

and that ιki,b+1(x) = 1, then using (1.26) yields,

ιki,b(x) =

∫ ∞

−∞

1

σε,i
φ

(
y − (µ+ x)

σε,i

)
dy = 1 (C1.1.3)

This completes the proof.

1.E. Computational details for smoothed proba-

bility densities

This appendix describes how to numerically evaluate the smoothed probability

density functions in propositions (1.25) and (1.27) and how to use them to com-

pute smoothed estimates. The challenging terms to keep track of in those expres-

sions are the integral recursions in (1.14), (1.20) and (1.26). In order to compute

those terms, the integrals are approximated using Gauss-Legendre quadrature

methods.38 In all that follows, let nGL denote the number of Gauss-Legendre

nodes used in those approximations, let zGL be a nGL×1 vector of Gauss-Legendre

nodes in the interval [Zk
i , Z

k

i ] sorted in ascending order and ωGL be the associated

nGL × 1 vector of Gauss-Legendre weights.39

38See, for example, Judd (1998, section 7.2).
39To compute the Gauss-Legendre nodes and associated weights on an arbitrary interval [a, b],

the lgwt function provided by Greg von Winckel on File Exchange and available for download
here is used. The description here presented is for a general number of Gauss-Legendre notes
nGL. For the Monte Carlo experiment in section 1.5 all the computations are based on 100
Gauss-Legendre nodes.
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1.E.1. Computational details for proposition 1.4

Suppose the probability density function is given by expression (1.25) in propo-

sition 1.4. In that case, define µ̌k∗ ≡ [µ̌ki,1, . . . , µ̌
k
i,∆k−1

] and σ̌k∗ ≡ [σ̌ki,1, . . . , σ̌
k
i,∆k−1

].

Moreover, let A be an nGL ×∆k − 1 matrix given by,

A =
[
1nGL×1 ⊗ (σ̌k∗)

◦−1
]
�
[
φ ◦
(

(11×(∆k−1) ⊗ zGL − 1nGL×1 ⊗ µ̌k∗)� (1n×1 ⊗ σ̌k∗)
)]

(C.1)

Moreover, let B and C also be nGL ×∆k − 1 matrices such that b∗,1 = 1n×1 and

c∗,∆k−1 = 1n×1 and the remaining columns are defined recursively according to,

b∗,j =
[

In ⊗ ωGL
′
] [ 1

σ̃i,j−1

× φ ◦
(

1

σ̃i,j−1

(
1n×1 ⊗ zGL − µ̃ki,j ◦ (zGL ⊗ 1n×1)

))
� (1n×1 ⊗ b∗,j−1)

]
(C.2)

c∗,j =
[

In ⊗ ωGL
′
] [ 1

σ̈ki,j+1

× φ ◦

(
1

σ̈ki,j+1

(
1n×1 ⊗ zGL − µ̈ki,j ◦ (zGL ⊗ 1n×1)

))
� (1n×1 ⊗ c∗,j+1)

]
(C.3)

Using these three matrices define,

Fc ≡ [A�B�C]� [ωGL
′
(A�B�C)] (C.4)

The vector containing the probability density function from proposition (1.25)

evaluated at each Gauss-Legendre node is given by:

fZ?i,t|ZT
i ;Θ ◦

(
zGL | zT

i ;θ
)
≈ Fc

∗,b (C.5)

Moreover, for a given function g : R → R one can compute its smoothed expec-
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tations as,

E
[
Z?i,t | zT

i ;θ
]
≈ ωGL′

[
g ◦ (zGL)� Fc

∗,b
]

(C.6)

Finally, the smoothed estimates of Z?i,t at time t are obtained from (C.6) using

g(·) equal to the identity function.

1.E.2. Computational details for proposition 1.5

Suppose now the probability density function is given by expression (1.27) in

proposition 1.5. In that case, define µ∗ = [µi,1, . . . , µi,∆K ] and σ∗ = [σi,1, . . . , σi,∆K ].

Let D be a nGL ×∆K matrix given by,

D =
[
1n×1 ⊗ (σ∗)

◦−1
]
�
[
φ ◦
(

(11×∆K ⊗ zGL − 1n×1 ⊗ µ∗)� (1n×1 ⊗ σ∗)
)]
(C.7)

Let B̃ and E be nGL × ∆K matrices such that b̃∗,1 = 1n×1 and e∗,∆K = 1n×1.

The remaining columns of B̃ are defined recursively according to (C.2) and the

remaining columns of E according to:

e∗,j =
[

In ⊗ ωGL
′
] [ 1

σε,i
× φ ◦

(
1

σ̈ki,j+1

(
1n×1 ⊗ zGL − (µ1n×1 + zGL)⊗ 1n×1

))
� (1n×1 ⊗ e∗,j+1)

]
(C.8)

Using these three matrices define,

Fi ≡ [D� B̃� E]� [ωGL
′
(
D� B̃� E

)
] (C.9)

The vector containing the probability density function from proposition (1.27)
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evaluated at each Gauss-Legendre node is given by:

fZ?i,t|ZT
i ;Θ ◦

(
zGL | zT

i ;θ
)
≈ Fi

∗,b (C.10)

Moreover, for a given function g : R → R one can compute its smoothed expec-

tations as,

E
[
Z?i,t | zT

i ;θ
]
≈ ωGL′

[
g ◦ (zGL)� Fi

∗,b
]

(C.11)

Finally, the smoothed estimates of Z?i,t at time t are obtained from (C.11) using

g(·) equal to the identity function.

1.F. Computational details for parameter estima-

tion

This appendix describes the algorithms used to obtain parameter estimates for

the Monte Carlo experiment in section 1.5. As describes in section 1.3, parameter

estimation is done in two stages.40

1.F.1. Algorithm for first-stage parameter estimation

Since in all the DGPs considered in table 1.B.1, the vector of parameters Γi is

assumed to be common across all units so the simulator is computed from the

distribution of state variable changes after the first adjustment pooled across all

units. Let ∆ZT
t=τ1+1 ≡ {{∆Zi,t}T

τ1
i +1
}ni=1 denote that vector observed in actual

data. The counterpart for this vector in a panel of simulated data is denoted by

∆ZT,s
t=τ1+1 (Γ, ξs) ≡ {{∆Zi,t (Γ, ξsi )}T

τ1,s
i +1
}ni=1 where ξs = {εst ,νst}T

t=1 is a particu-

lar simulation for the two vectors of shocks drawn from their respective distribu-

40All the algorithms described in this appendix are implemented in MATLAB R2015b. Codes
used for parameter estimation and computation of smoothed estimates are available from the
author upon request.
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tions in assumption 1.1.41 Using this notation and given that moment conditions

are equally weighted in the Monte Carlo experiment, estimates for common pa-

rameters are obtained by minimising the following objective function,

G
(

∆ZT
t=τ1+1,Γ, {ξs}

S
s=1

)
=

∥∥∥∥∥ g (∆ZT
t=τ1+1

)
− 1

S

S∑
s=1

g
(

∆ZT,s
t=τ1+1 (Γ, ξs)

)∥∥∥∥∥
2

(D.1)

Algorithm 1. To minimise (D.1) the following algorithm is used,

1. Draw 50 vectors of primitive shocks and denote them by {ξ̃s}50
s=1.

2. Choose an initial value for the vector of parameters, say Γ0.

3. Use a global search algorithm to search for Γ that minimises G
(

∆ZT
t=τ1+1,Γ, {ξ̃s}50

s=1

)
.42

4. The search is subject to the restrictions: x 6 0, x > 0, σε > 0 and λ ∈ [0, 1].

Some points about algorithm 1 above are worth emphasising. First, in step 3

global search methods are preferred over gradient based ones since in prelim-

inary simulations the later failed to converge in many instances. Second, the

vectors of primitive shocks in {ξ̃s}50
s=1 are drawn only once at the beginning of

the algorithm and kept fixed when searching for a minimum in step 3. This is

important as otherwise the algorithm would not numerically converge and the

asymptotic statistical properties would no longer be valid.43 Third, in the Monte

Carlo experiment steps 2, 3 and 4 are performed twice starting different initial

conditions.44 In case the results differ, the value of parameters that yields the

41It is important to notice that the drawings of primitive shocks are done such that in sim-
ulated data, the number of units and their respective starting and end dates exactly match the
structure that is observed in actual data. The general principle in simulated based estimation
is treating real and simulated data as similarly as possible. For an example of the consequences
of not respecting this principle refer to Berger, Caballero and Engel (2018) who show that using
a number of units in simulations that is larger than the number of units in actual data can lead
to underestimate the shock persistence in a Calvo model (see table 1, p. 12).

42In MATLAB R2015b the algorithm patternsearch is used with the default options.
43See, for instance, p. 29 in Gouriéroux and Monfort (1996).
44The first set of initial conditions is designed to be an educated guess for DGP in which

most state variable adjustments are triggered by state gaps leaving the inaction region. In that
case, the initial values for −

¯
x and −x̄ are set to the average values of positive and negative state

variable adjustments changes across all units, respectively, whereas initial value for λ is equal
to 25% of the frequency of state variable adjustments in the data. The second initial condition
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smallest objective function is chosen.

1.F.2. Algorithm for second-stage parameter estimation

For the estimation of unit-specific initial conditions xi,0’s, the minimisation prob-

lem in (1.8) has to be solved once for each unit that has at least one state vari-

able adjustment in the data. Given the large number of such unit in some of the

proposed DGPs performing separate minimisations using global search methods

would be computationally demanding. Instead, given the vector of parameters Γ

is common across units, the minimisation for the second stage is performed on a

grid of possible values of xi,0.

Algorithm 2. To estimate unit-specific initial conditions the following algorithm

is used:

1. Determine the number of panels to be simulated as S = d104/ne.45

2. Generate S vectors of primitive shocks conform with the data template, Ξ =

{ξ1, . . . , ξS}.

3. Create a grid G = [x
(1)
i,0 , . . . , x

(50)
i,0 ], where x

(k)
i,0 = ˆ

¯
x+ k

(50+1)
(ˆ̄x− ˆ

¯
x).

4. Set Γ = Γ̂ and xi,0 = x
(k)
i,0 , ∀i and use assumption 1.1 and Ξ to generate S

panels of data.

5. For a given collection of panels compute f(x
(k)
i,0 ) = (S n)−1

∑S
s=1

∑n
i=1 h({∆Zsi,j(x

(k)
i,0 , Γ̂)}τ

1,s
i
t=1)

6. Repeat steps 4 and 5 for each x
(k)
i,0 ∈ G and store F = {f(x

(k)
i,0 )}50

k=1

7. Create a new grid G̃ = [x̃
(1)
i,0 , . . . , x̃

(50,000)
i,0 ] where x̃

(i)
i,0 = x

(1)
i,0 + (i−1)

(49,999)
(x

(50)
i,0 −x

(1)
i,0 )

8. For each x̃
(k)
i,0 ∈ G̃ use a cubic spline on the values in F to approximate f(x̃

(i)
i,0).46

is designed to be an educated guess for a DGP in which most state variable adjustments are
triggered by the arrival of costless adjustment opportunities. In that case, −

¯
x and −x̄ are set to

the 95th and 5th percentiles of the distribution of state variable changes changes pooled across
all units, respectively, and λ is set to 75% of the frequency of state variable changes observed
in the data.

45This ensures the simulator is based on at least 10 thousand individual price trajectories.
46In MATLAB R2015b this cubic spline is constructed using the function interp1 in with

the option ’spline’.
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9. For each x̃
(k)
i,0 ∈ G̃ compute H̃(∆Zi, x̃

(k)
i,0 , Γ̂) =

∥∥∥(h({∆Zi,t}
τ1
i
t=1)− f(x̃

(k)
i,0 ))� h({∆Zi,t}

τ1
i
t=1)
∥∥∥2

10. For a given unit with at least one state variable adjustment x̂i,0 = arg min
a∈ G̃

H̃({∆Zi,t}
τ1
i
t=1, a, Γ̂)

11. Repeat steps 9 and 10 for each unit with at least one state variable adjustment.

12. For the remaining units set x̂i,0 equal to the average of values in step 11.

Some points about algorithm 2 are worth emphasising. First, in step 9 the devi-

ations of data moments from their simulated counterparts are expressed as per-

centage deviations of the data moments. That normalisation is necessary with

equally weighted moments to ensure that one moment condition does not receive

a disproportional weight simply due to differences in scale. Second, assuming Γ

is common across all units once the grid for the approximation of the moment

conditions is constructed (steps 1 to 8) it can be used as the moment simulator for

other units, in practice, this implies that only steps 9 and 10 need to be repeated

at the quote-line each speeds up the calculations. Third, the initial grid F could

be equivalently generated by simply generating 10,000 separate individual price

trajectories all starting from a given initial condition and computing average over

those. The construction in steps 1 to 6 simply takes advantage of some functions

used to generate simulated data for the estimation of common parameters.
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Chapter 2

Frictionless Inflation

2.1. Introduction

The idea that some form of pricing friction hampers the responses of nominal

prices to changes in economic conditions lies at the heart of the new Keynesian

framework that has emerged as the workhorse for the analysis of monetary policy

and its implications for inflation, economic fluctuations and welfare. One pricing

friction that is commonly used to rationalise the delayed response of prices to

shocks is the existence of menu costs, that is, the existence of costs that have to

be incurred whenever prices are changed, independently of the size of the change.1

In the presence of menu costs, price changes will only occur when the resulting

increase in profits is sufficiently large to outweigh the associated costs. In addition

to their intuitive appeal, so-called menu cost models are also consistent with some

of the stylised facts about price setting observed in micro price data (Klenow and

Malin, 2010; Nakamura and Steinsson, 2008, 2013).

This paper introduces a measure of frictionless inflation designed to estimate

the counterfactual inflation that would have been observed in a hypothetical world

where each price-setter in the economy was exposed to the same environment but

1The classic example of menu costs of price adjustment is the problem of a restaurant owner
that has to print new menus whenever the price of an item is changed. In a broader sense, menu
costs can be thought of as resulting from costs of information, decision and implementation of
a pricing strategy.
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could have changed its prices without incurring in menu costs.2,3 Formally, the

construction of this measure is grounded on a state-space representation of mi-

croeconomic pricing behavior implied by a random menu cost model.4 Given the

form of this representation, the smoother for dynamic (S,s) economies developed

in Bandeira (2020) is applied to over 2.2 million individual quote-lines underlying

the construction of the UK Consumer Price Index (CPI) to produce a time-series

of year-over-year inflation at a monthly frequency spanning the period from 1997

to 2018. This novel time-series of frictionless inflation is then used to address

four questions.

First, what is the quantitative importance of menu costs at the microeco-

nomic level for aggregate inflation dynamics? In the data, over the last two

decades inflation and frictionless inflation co-move positively but not perfectly so

and their difference can be up to 2.29 percentage points in year-over-year terms.

However, in the second half of the sample the difference between the two-series

decreases and their correlation increases. Altogether, the evidence presented is

indicative that menu costs at the microeconomic level matter for aggregate in-

flation dynamics but their importance seems to have decreased over time. Two

explanations that are consistent with this decrease in importance are the increase

2In a very stylised way, suppose it was possible to go back in time and not only collect
the nominal prices of products across different shopping outlets but to also ask the person in
charge of setting that price “what is the price of this product that would maximise your profits
over the next month?”. The answer to this last question is what is referred in this paper as
the frictionless price and the measure of frictionless inflation here presented is designed to
estimate the inflation that would have been observed if price indices were constructed based on
frictionless prices instead of the actual shelf prices.

3The price that maximises firm’s profits in the absence of price adjustment frictions has
received different labels in the literature, such as, frictionless profit-maximising price (Alvarez,
Le Bihan and Lippi, 2016), frictionless optimum (Midrigan, 2011, figure 3) or static desired
price (Nakamura and Steinsson, 2010, figure 4).

4It is important to notice that the interpretation given to a measure frictionless inflation
is necessarily dependent on which frictions are present in the model chosen to characterise
microeconomic pricing decisions. This paper studies price setting decisions as implied by a
random menu cost model in which the only mechanism preventing price adjustment is the
presence of menu costs. Therefore, the notion of frictionless inflation here adopted is with
respect to one particular friction, menu costs, and not to other frictions that have been proposed
in the literature such as sticky-information (Mankiw and Reis, 2002) or information capacity
constraints (Woodford, 2009). Nonetheless, as we shall later see, the random menu cost model
used to construct the frictionless inflation nests as special cases the Calvo (1983) model of
staggered price setting and the canonical menu cost model of Barro (1972) which are two of
the most popular models of nominal rigidities (section 2.2). Moreover, the proposed model can
match most of the key moments observed in micro price data (section 2.3).
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in product competition from Chinese import penetration in early 2000s and a de-

crease in inflation uncertainty generated by the change in inflation target by the

Bank of England in late 2003.

Second, what is the importance of menu costs for the transmission of mon-

etary shocks? More precisely, this paper investigates whether in the data the

responses of inflation and its frictionless counterpart to a monetary policy shock

are line with their model implied behavior from the new Keynesian framework.

First, it is shown that in the basic new Keynesian model from Gaĺı (2008) fric-

tionless inflation should respond more than inflation upon impact of a monetary

policy shock but should respond less in all the subsequent periods. In the data,

however, the constructed time-series of frictionless inflation does not react signif-

icantly to the series of high-frequency identified monetary surprises from Cesa-

Bianchi, Thwaites and Vicondoa (2020). In summary, the empirical evidence

presented is at odds with the monetary policy transmission mechanism in the

basic new Keynesian model.

Third, what is the the relationship between frictionless inflation and the new

Keynesian notion of output gap? Based on the version of basic new Keynesian

model from Gaĺı (2008), this paper shows that the wedge between inflation and its

frictionless counterpart is negatively proportional to the changes in the aggregate

output gap, which is defined as the log deviation between output and its flexible

price counterpart. This relationship is qualitatively supported in the data using

several alternative proxies for the output gap. This result is suggestive that, when

combined with a specification for product demand, the measures of frictionless

inflation could be also used to quantify changes in the output gap at disaggregated

levels where typically measures of output are not available.

Fourth, can the constructed time-series of frictionless inflation be used to

improve headline inflation forecasts? In order to investigate this question, in the

spirit of Blinder and Reis (2005) this paper uses a series of horse-race type re-

gressions in which headline inflation forecasts based on the cumulated headline

inflation over the previous 12 months are compared with the forecasts based on
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the cumulated frictionless inflation over the previous 12 months. At all forecasting

horizons considered, the forecasts based on past frictionless inflation outperform

those based on past headline inflation both in-sample and out-of-sample. The re-

sults here presented are suggestive that the constructed time-series of frictionless

inflation does contain information that can be used to improve headline inflation

forecasts.

Relation to the literature. This paper relates to two strands of literature.

First, it relates with papers that have estimated related measures of inflation,

most notably, the reset price inflation from Bils, Klenow and Malin (2012) and

the frictionless optimal price inflation from Bonomo, Correa and Medeiros (2013).

In a context where price-setters follow two-sided (S, s) pricing rules, as it will be

assumed in section 2.2, all these three measures are theoretically equivalent.5

Having said that, this paper differs and complements Bils, Klenow and Malin

(2012) and Bonomo, Correa and Medeiros (2013) in three dimensions. First,

the methodology used to construct the time-series of frictionless inflation here

presented is diametrically different from the existing ones. Second, this paper uses

micro price data underlying the UK CPI, whilst Bils, Klenow and Malin (2012)

use US CPI micro data and Bonomo, Correa and Medeiros (2013) use Brazilian

CPI micro data. Third, the measures of inflation in Bils, Klenow and Malin

(2012) and Bonomo, Correa and Medeiros (2013) are used to test implications

from different models of price rigidities whereas in in this paper the time-series

frictionless inflation is used not only to test some implications from the basic

new Keynesian model in Gaĺı (2008) but it is also used to evaluate the impact

of menu costs on aggregate inflation dynamics and to improve headline inflation

5My measure of frictionless inflation is conceptually equivalent to the frictionless optimal
price inflation from Bonomo, Correa and Medeiros (2013), that is, the inflation that would be
observed in the counterfactual scenario where all price-setters chose the prices that maximise
their static profits period by period. That measure is conceptually different from the reset price
inflation. In the words of Bils, Klenow and Malin (2012, p. 2803), “[...] new prices need not be
viewed as frictionless spot prices. If future spot prices are expected to differ from the current
spot price, then a newly set price may be influenced by future expected spot prices. Thus, reset
price inflation can deviate from spot price inflation.”. However, if price-setters follow two-sided
(S, s) pricing rules, then frictionless prices and reset prices will differ by a constant and, hence,
frictionless inflation and reset price inflation coincide. This point is also made in Bonomo,
Correa and Medeiros (2013, pp. 19-20).
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forecasts.6

Second, it relates to a literature that aims to quantify the size of price

adjustment costs and their importance for individual pricing decisions (Levy,

Bergen, Dutta and Venable, 1997; Blinder, Canetti, Lebow and Rudd, 1998;

Dutta, Bergen, Levy and Venable, 1999; Zbaracki, Ritson, Levy, Dutta and

Bergen, 2004; Anderson, Jaimovich and Simester, 2015). It contributes to this

literature in two fundamental ways. First, in contrast with previous papers that

have focused on quantifying the costs of price adjustments, this paper focuses

not on the size of menu costs per se but on their influence on aggregate inflation

dynamics. In spirit, this approach is similar to Gorodnicheko and Weber (2016)

who focus on the implications of menu costs for the responses of the stock market

returns of different firms to a monetary policy surprise. The second contribution

is in terms of scope, since the measure of frictionless inflation here presented is

based on prices of hundreds of different products that are representative of the

typical basket of consumer goods and were collected in thousands of outlets across

the UK. This contrasts with the existing literature that relies on very detailed

micro data that covers a limited set of products or store chains.

Structure of the paper. The remainder of the paper is structured as follows.

Section 2.2 describes the methodology used to construct the measure of friction-

less inflation. Section 2.3 describes the micro price data used to construct that

measure and presents parameter estimates. Section 2.4 investigates the impor-

tance of menu costs of price adjustment at the micro level for aggregate inflation

dynamics. Section 2.5 present an empirical test of the monetary transmission

mechanism in the basic new Keynesian model in Gaĺı (2008). Section 2.6 ex-

plores the relationship between frictionless inflation and the movements in the

output gap. Section 2.7 inspects whether the constructed time-series of friction-

less inflation can be used to improve inflation forecasts. Section 2.8 concludes

and discusses some promising avenues for future research.

6The key focus of the methodology introduced in Bonomo, Correa and Medeiros (2013)
is the estimation of strategic complementarities and the measure of frictionless optimal price
inflation and it’s subsequent analysis are produced as a by-product of their main exercise.
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2.2. Constructing a measure of frictionless infla-

tion

In order to produce estimates of frictionless inflation based on micro price data,

this paper proceeds in a sequence of three steps. First, a single product menu

cost model with random costless adjustment opportunities is used to provide a

connection between observed individual prices and their unobserved frictionless

counterparts, which are the ultimate object of interest. Second, the model implied

pricing dynamics are cast in a state-space representation that is assumed to be

the process generating the observed micro price data. Last, given the form of that

state-space representation, the smoother for dynamic (S,s) economies proposed

in Bandeira (2020) is used to obtain frictionless inflation estimates from micro

price data. The following subsections explain each of these steps in detail.

2.2.1. A menu cost model with random costless adjustment

opportunities

Consider the problem of a firm that sells a single product and chooses a pricing

policy to maximise her discounted stream profits net of adjustment costs. Let

p(t) denote the log of the firm’s nominal price with initial value p0 given. Let p?(t)

denote the log of the frictionless price, that is, the price that maximises firm’s

instantaneous flow of profits, and assume it evolves according to a Brownian

motion with drift,

dp?(t) = µdt+ σdW (t) (2.1)

where W (t) is a standard Brownian motion and the initial value p?0 given. To

adjust her nominal prices the firm must pay a menu cost. Following Stokey (2009)

and Alvarez, Le Bihan and Lippi (2016) assume that in a period of length dt this

menu cost amounts to κ with probability 1 − λdt or zero with probability λdt.
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Let x̃(t) denote the price gap defined as the log difference between the firm’s

nominal price and its frictionless counterpart, that is, x̃(t) ≡ p(t)−p?(t). Finally,

assume the firm’s instantaneous flow of profits can be written as f(x̃(t)) with f(·)

is continuous, strictly increasing in (−∞, 0) and strictly decreasing in (0,+∞).7

Formally, the firm chooses a sequence of adjustment times and corresponding

price adjustments to solve the following stochastic impulse control problem,

V(x̃0) = max
{τj ,∆pτj}

∞
j=0

E

[∫ ∞
0

e−ρt f(x̃(t)) dt−
∞∑
j=0

e−ρτjκ(1− `τj) | x̃(0) = x̃0

]
(2.2)

where x̃(t) = x̃(0)−µt−σW (t)+
∑∞

j=0 1{τj < t}∆pτj , the variable `τj is an indi-

cator that takes the value one if the adjustment occurs upon a costless adjustment

opportunity and ρ denotes the firm’s discount factor.

Special cases. On the one hand, in the limiting case without costless adjustment

opportunities (i.e. λ = 0) the problem in (2.2) is a simplified version of the

problem in Golosov and Lucas (2007) and almost identical to those in Barro

(1972) and Alvarez, Beraja, Gonzalez-Rozada and Neumeyer (2019). On the

other hand, if changing prices is infinitely costly (i.e. κ→∞) price adjustments

occur at random time intervals, determined by the arrival of costless adjustment

opportunities, as in the Calvo (1983) model of staggered price setting.

Optimal pricing policy. Given the simple form of the firm’s instantaneous

flow of profits and the assumed law of motion for the log of frictionless prices

in (2.1), it is well-known that the solution to (2.2) takes the form of a two-

sided (S,s) policy.8 Such policy is fully characterised by a triplet of parameters

L < c < U , where the interval (L,U) represents an inaction region and c a reset

point. The implied optimal pricing behavior consists in adjusting nominal prices

when either a costless adjustment opportunity arrives or when the current price

7For a microfounded firm problem that gives rise to instantaneous flow of profits satisfying
these assumptions refer, for example, to Alvarez, Lippi and Paciello (2018).

8For a formal proof refer, for example, to Stokey (2009, chapter 7). For a discussion of
other sufficient conditions for the solution to (2.2) to take the form of a two-sided (S,s) policy
refer to Plehn-Dujowich (2005).
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gap lies outside the inaction region. The size of price adjustments is such that

it makes the price gap equal to the reset point at the adjustment periods. The

optimal pricing behavior implied by two-sided (S,s) policies is illustrated in figure

2.A.1.

2.2.2. A state-space representation of microeconomic pric-

ing dynamics

In the micro price data used to produce the United Kingdom Consumer Price

Index, an individual price quote corresponds to the nominal price of an item

collected in a unique shopping venue at a given month.9 A sequence of monthly

price quotes collected for the same item in the same shopping venue is referred

to as a quote-line. A cornerstone assumption underlying the construction of a

measure of frictionless inflation in this paper is that each quote-line observed in

micro price data is generated by a firm pursuing a discrete-time approximation

of the two-sided (S,s) policies that solve the pricing problem in (2.2). This

subsection formally introduces that assumption and shows how it maps to the

data generating process in Bandeira (2020).

Terminology and notation. Items are indexed by j = 1, . . . , J , shopping

venues at which prices of a given item are collected are indexed by i = 1, . . . , nj

and months indexed by t. The log of an individual price quote is denoted

by pi,j,t and the cumulated inflation for that price quote is defined as Zi,j,t ≡

pi,j,t − pi,j,
¯
ti,j where

¯
ti,j denotes the month the respective quote-line starts being

observed. Similarly, the log of an individual frictionless price quote is denoted

by p?i,j,t and the cumulated frictionless inflation for that price quote is denoted

by Z?i,j,t ≡ p?i,j,t − p?i,j,
¯
ti,j

. The inaction region for that quote-line is denoted by

(Li,j,Ui,j) and the reset point by ci,j. Define the re-centered initial price gap as

9An item is the most disaggregated level that the Office for National Statistics (ONS)
uses for products differentiation for the purposes of price collection. It can be understood as a
narrowly defined product category, but less specific than the barcode classification used in some
scanner micro price datasets. An ONS item description typically does not specify a specific
brand or, in many cases, a weight for the product to be collected. Examples of ONS items
include “Light Bulb” (item id 430524) or “Bottle still water 500ml” (item id 212012).
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xi,j,0 ≡ pi,j,
¯
ti,j − p?i,j,

¯
ti,j
− ci,j, the lower bound of the re-centered inaction region

is defined as
¯
xi,j ≡ Li.j − ci,j < 0 and, analogously, the upper bound of the

re-centered inaction region is defined as x̄i,j ≡ Ui,j − ci,j > 0.

Transition equation for cumulated frictionless inflation. Using a discrete

time approximation to the Brownian motion assumption in (2.1), the log of fric-

tionless prices is assumed to evolve according to a random walk with drift. From

that assumption it follows that cumulated frictionless inflation also evolves ac-

cording to,

Z?i,j,t = µi,j + Z?i,j,t−1 + εi,j,t (2.3)

where εi,j,t ∼ N (0, σε,i,j) and independent and identically distributed across i, j

and t.

Transition equation for the arrival of costless adjustment opportunities.

Let `i,j,t be an indicator variable equal to one if prices for that respective quote-

line in month t can be changed for free. The discrete time counterpart of the

random menu cost assumption in the previous section is given by,

`i,j,t = 1{νi,j,t 6 λi,j} (2.4)

where νi,j,t ∼ Uniform(0, 1) and independent and identically distributed across i,

j and t.

Measurement equation for cumulated inflation. Assuming each quote-line

is generated by a firm pursuing a discrete time approximation of a two-sided (S,s)

policy then cumulated inflation evolves according to,

Zi,j,t = Zi,j,t−1 di,j,t + (Z?i,j,t − xi,j,0)(1− di,j,t) (2.5)

where Z?i,j,t − xi,j,0 is the value of cumulated inflation that closes the re-centered

price gap at time t and di,j,t is an indicator variable when its optimal not to adjust
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prices and evolves according to,

di,j,t = 1{Zi,j,t−1−Z?i,j,t+xi,j,0 ∈ (
¯
xi,j, x̄i,j)}(1−`i,j,t)+1{Z?i,j,t = Zi,j,t−1+xi,j,0}`i,j,t

(2.6)

where the first term on the right-hand-side is equal to one for periods where

adjustment is costly and the price-gap is in the inaction region whilst the second

term in the right-hand-side is equal to one for time periods where adjustment is

costless but at the previous period price the current price gap is already at the

reset point.

2.2.3. From a state-space representation to a measure of

frictionless inflation

Assuming that each quote-line in micro price data is generated by equations

(2.3), (2.4), (2.5) and (2.6) yields the state-space representation of dynamic (S,s)

economies considered in Bandeira (2020). The statistical framework there pro-

posed is used to: (i) estimate unknown parameters that enter in (2.3), (2.4), (2.5)

and (2.6) and (ii) produce smoothed estimates of frictionless inflation for each

individual quote-line.

2.2.3.1. Parameter estimation

For each individual quote-line the vector of unknown parameters is given by

Θi,j = {Γi,j, xi,j,0} where Γi,j ≡ {
¯
xi,j, x̄i,j, µi,j, σε,i,j, λi,j}. To estimate these pa-

rameters the simulation-based two-stage procedure proposed in Bandeira (2020)

is used.

Parameter heterogeneity. Over the last decade with increasing availability of

disaggregated micro price data it has been documented that there is substantial

heterogeneity in pricing practices across different sectors and even across narrowly

defined products within a given sector. To account for this heterogeneity it has

become common practice in the micro price literature to allow for rich parameter
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heterogeneity.10 Following this tradition, in this paper the vector of parameters

Γi,j is assumed to vary at the item level, that is, Γi,j = Γj, ∀i = 1, . . . , nj.
11 The

re-centered initial price gaps, xi,j,0’s, are assumed to vary at the quote-line level.

First-stage. As discussed in Bandeira (2020), the first-stage estimates of Γj

are obtained using moments of the distribution of price changes excluding any

observations before the first price adjustment for each quote-line. The moments

used for estimation in the first-stage are the frequency of price adjustments as well

as the 1st, 5th, 10th, . . ., 90th, 95th and 99th percentiles of the price adjustment

distribution. In the estimation these moment conditions are equally weighted

and, given that Γj is assumed to be common across quote-lines of a given item,

the moment conditions are computed from the distribution of price changes pooled

across all quote-lines of a given item.

Second-stage. In the second-stage, the vector of parameters Γj is kept fixed at

its first-stage estimated value whilst xi,j,0’s are estimated using the time elapsed

until the first price adjustment and the size of the first price adjustment. For any

quote-line for which no price adjustment is observed, the initial re-centered price

gap is imputed by taking the average over all xi,j,0’s for that item.12

2.2.3.2. Smoothed estimates of frictionless inflation

Once the unknown parameters are estimated, the closed-form expression for the

smoothed probability density function presented in Bandeira (2020) is used to ob-

tain the smoothed estimates of Z?i,j,t for each quote-line and, given those, estimates

10Heterogeneity in pricing moments had been documented by several authors. See, for
example, Bunn and Ellis (2012) for the United Kingdom, Nakamura and Steinsson (2008, 2010)
and Klenow and Malin (2010) for the United States and Álvarez et al. (2006). Several papers
have also analysed the implications of this cross-sectional heterogeneity in pricing behaviors
for the transmission of monetary shocks. See, for instance, Carvalho (2006), Nakamura and
Steinsson (2010) and Gautier and Le Bihan (2018).

11As discussed in Bandeira (2020, section 3.3), this assumption is motivated by data con-
straints. At more disaggregated levels, there are typically not enough price adjustments in
the ONS micro price data to meaningfully compute the pricing moments used for parameter
estimation.

12Detailed algorithms used for first and second stage parameter estimation can be found in
appendix D of Bandeira (2020).
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of frictionless inflation for each quote-line are obtained from,

π̂?i,j,t = E
[
Z?i,j,t | {Zi,j,t}

t̄i,j

¯
ti,j , Θ̂i,j

]
− E

[
Z?i,j,t−1 | {Zi,j,t}

t̄i,j

¯
ti,j , Θ̂i,j

]
(2.7)

where Θ̂i,j denotes an estimated parameter value from the two-stage procedure

described in the previous section. Quote-line level estimates from (2.7) can then

be used to construct measures of frictionless inflation at any aggregation level.

2.3. Micro Price Data

This section is divided in three parts. The first part describes the primary micro

price quotes and cleaning procedures used to obtain the final dataset used to pro-

duce measures of frictionless inflation. The second part analyses the item level re-

duced form parameter estimates obtained from the two-stage procedure described

in the previous section. The third and last part assesses whether the proposed

state-space representation of microeconomic pricing dynamics can match some of

the key pricing moments observed in the data.

2.3.1. Price quotes underlying the UK Consumer Price In-

dex

The estimates of frictionless inflation constructed in this paper are based on pub-

licly available data on locally collected price quotes underlying the construction

of the UK Consumer Price Index (CPI). In order to produce the CPI, the Office

for National Statistics (ONS) collects on a monthly basis prices of different goods

and services that are selected to be representative of general consumer expendi-

ture across the whole of the UK.13 There are two price collection methods: central

and local. Central collection is used for goods and services for which the price

13Two major sources of information used to determine the selection of representative items
are the Household Final Monetary Consumption Expenditure (HFMCE) and the ONS Living
Cost and Food Survey (LCF). The CPI coverage excludes housing costs such as council tax,
mortgage interest payments, house depreciation, buildings insurance, ground rent and other
house purchase costs such as estate agents’ and conveyancing fees.
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is the same for all UK residents or the regional price variation can be collected

with no field work, for example, via internet, telephone or e-mail enquiries. Since

some of these price quotes could reveal the identity of the price setter, the ONS

excludes those quotes from the publicly available dataset. For the remaining

goods and services, which account for about 60% of the aggregate CPI by weight,

price collectors on behalf on the ONS visit every month thousands of shops in

over 140 locations spread over the UK to record over 100,000 prices on hand-held

computers.14 The following steps describe how the primary price quotes provided

by the ONS are manipulated to obtain the final dataset that is used to produce

estimates of frictionless inflation.

Non-uniquely identified price quotes. In order to combine different price

quotes over time it is necessary that these quotes possess a unique identifier. In

the ONS internal systems price quotes are uniquely identified by a concatenation

of month, shop code, location and 6-digit item identifier. For confidentiality

reasons, the ONS does not publish the location variable and the variable region is

used instead as a proxy. However, in some instances it happens that price-quotes

are collected in two different locations within the same region and have the same

shop code and, in those cases, the two price trajectories could not be separated.

Any price quotes that cannot be uniquely identified by a concatenation of month,

shop code, region and 6-digit item identifier are excluded from the final sample.

Invalid price quotes. As described in ONS (2014, chapter 6), locally collected

price quotes must pass a series of internal validation procedures to ensure that

prices have been accurately recorded and indicator codes have been used sensi-

bly and correctly. Any price quote that fails to pass these internal validation

procedures is excluded from the final sample and it does not enter the final CPI

14Bunn and Ellis (2012) were the first to have access and document stylised facts about
consumer prices in the UK. Due to its public availability there is a growing number of papers
that use the micro price data provided by the ONS. A non-exhaustive list includes: Chu et al.
(2018), Petrella, Santoro and Simonsen (2018), Carvalho and Kryvstov (2018), Blanco and
Cravino (2019), Kryvstov and Vincent (2019) and Hobijn, Nechio and Shapiro (2019). Since
this is not the first paper to use this dataset, this section focuses on the most important aspects
of the data cleaning used to obtain the final dataset used to produce a measure of frictionless
inflation.
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calculation.

Product substitutions. For each outlet in which prices are collected, price

collectors start by choosing among all products matching the specification of

each item to be priced one product that is representative of what people buy

in the area. Once a product is chosen, the price collector returns to the outlet

every month to collect prices of that same product. However, in some cases

the price collector might be forced to change the product being priced either

because it becomes unavailable or because the producer changed its physical

characteristics such as weight or size. Whenever those forced substitutions occur

the price collector must flag the respective price quote accordingly. To deal with

product substitutions, whenever a substitution flag is present a break in the

original quote-line is generated.

Product sales. The menu cost model with random costless adjustment oppor-

tunities underlying the state-space representation in (2.3), (2.4), (2.5) and (2.6)

does not include temporary sales, hence, that state-space representation should

be interpreted as a data generating process for regular prices. However, the prices

quotes collected by the price collectors are the product shelf-prices which implies

they reflect any temporary sales at the time of collection. In order to have a good

match between the underlying theory and the data those sales should be removed

before constructing a measure of frictionless inflation. If the collected price is a

sale price, the price collectors must flag it with the respective sales indicator and

those sales flags are used to obtain quote lines of regular prices. First, collected

prices that are not on sale are immediately considered as the regular prices for

the period. Second, if the collected price is on sale the last regular price observed

is used as the regular price for that period. If the last regular price change is not

available, the first regular price observed after the current observation is used

instead.15

15If no regular prices are observed before or after the sales observation it is because the
respective quote-line is composed exclusively of sales prices and in those cases the entire quote-
line is excluded from the sample.
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Quote-line gaps. After following the above described steps it is possible that

the resulting quote-line contains gaps, for example, because some price quote in

the middle of the quote-line was not validated internally by the ONS. Since to

produce estimates of the frictionless inflation requires a quote-line of contiguous

observations of regular prices, whenever the resulting quote-line contains gaps

it is split into separate quote-lines of contiguous observations. Moreover, any

resulting singleton quote-line is excluded from the final sample.

An example. To illustrate how to go from the primary price quotes provided

by the ONS to the quote-lines of regular prices used to produces estimates of

frictionless inflation, fictitious price quotes of an item collected in a particular

outlet are considered in figure 2.A.2. Although price quotes are available for a 4

year period, some of them did not pass the ONS internal checks and, because of

that, did not contribute to the CPI in the respective periods. Those price quotes

are excluded from the final sample. Moreover, in one of the periods the price

collector was forced to substitute the product for which prices were being recorded

for another brand and/or variety that also matches the specification of the item

to be priced. Since from that period onwards it is effectively a different product

that is being priced a quote break is created. Finally, during the whole period

the price collector also indicated two episodes of temporary sales and in those

periods regular prices are imputed for sales prices following the procedure above

described. More precisely, for the first sales spell the last regular price observed

is imputed in place of the sales prices whereas for the second sales spell the next

regular price is imputed since the last regular price is not observed. The outcome

of this process are four quote lines of contiguous regular price observations which

include a total of six regular price changes and three regular price changes when

excluding the first. Estimates for the frictionless cumulated inflation are obtained

for each quote line separately.

Items excluded from the final sample. Some research items available in the

primary price quote files but did not enter actual CPI calculations are excluded

from the final sample. Moreover, since the estimation of common parameters is
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conducted at the item level and it is based on the moments of the distribution of

regular price changes excluding the first price adjustment in any quote-line, any

item that has less than 100 such price adjustments is excluded from the sample.

Final Sample. The final sample used to produce frictionless inflation measures

spans the period from 1996m1 to 2018m1 and comprises over 23 million price

quote observations, over 2.2 million quote-lines and 979 unique items.

2.3.2. Reduced form parameter estimates

As expected there is substantial heterogeneity in the estimated reduced form pa-

rameters at the item level (figure 2.A.3 and table 2.B.1). This section investigates

whether this heterogeneity is in line with what one would expect from their theo-

retically implied relationship and key pricing moments of the distribution of price

changes.

Inaction region asymmetry. A dimension of interest is the extent to which

price setters pricing policies are characterised by symmetric inaction region bound-

aries. In terms of estimated parameters, a simple way of measuring the asym-

metry of the inaction region is by taking the sum of the two boundaries, that is,

Aj = ˆ̄xj +
¯
x̂j. In the data, that measure ranges from -171% to 206% and 58%

of the items display negative asymmetry.16 A common explanation for asym-

metric pricing policies is the presence of non-zero trend inflation, since in a pure

menu cost model with positive trend inflation the optimal policy is characterised

by price increases that are larger than price decreases (Ball and Mankiw, 1994).

This explanation is qualitatively in line with the heterogeneity observed in the

cross section of items since the correlation between Aj and the estimated drift of

the frictionless inflation process of -0.41 (figure 2.A.4, top-left panel). Nonethe-

less, that explanation alone is quantitatively insufficient to rationalise all the

heterogeneity in the asymmetry measure across different items. Other poten-

16The measure of asymmetry is computed only for items that have at least one price changed
triggered by crossing the upper bound of the inaction region and one price change triggered by
crossing the lower bound of the inaction region (total of 424 items).
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tial explanations for asymmetric adjustment policies include differences in size of

the menu cost to increase or decrease prices and asymmetries in the profit loss

function.17

Trends in frictionless inflation. The estimated frictionless inflation trend (µ̂j)

across items is typically in the range of -1.4% to 1.2% per month. The median

estimated frictionless inflation trend across products is 0.2% per month which

is consistent with the average monthly CPI inflation for the period analysed of

0.17%. In the data, the correlation across items between estimated frictionless

inflation trend and the average size of price changes is 0.63 (figure 2.A.4, top

right-panel). Moreover, approximately one-fourth of the items have negative

estimated trends. These negative estimated trends can be explained by the fact

that, despite the positive aggregate inflation, some individual items have become

less expensive over time.18

Standard deviation of idiosyncratic shocks. Differences in dispersion of

price changes are mostly accounted by differences in the volatility of idiosyn-

cratic shocks. More precisely, the correlation between the standard deviation of

price changes and the estimated standard deviation of idiosyncratic shocks (σ̂ε,j)

across items is 0.86 (figure 2.A.4, bottom-left panel). The median value of the

estimated standard deviation of the idiosyncratic shocks for the UK micro price

data is 7.2% which is in line with the figures reported in Gautier and Le Bihan

(2018). Estimating a random menu cost model across 227 products underlying

the French CPI, Gautier and Le Bihan (2018) find a median across products for

the unconditional productivity standard deviation to be either 5% (in a model

without strategic complementarities) or 9% (in a model with strategic comple-

mentarities).

17It is relatively common to assume a zero trend inflation and profit flow function that is
quadratic in the price gap. These two assumptions give rise to an optimal symmetric Ss policy
that can be solved in closed form (Dixit, 1991). Despite their analytical convenience, it is
noticeable that these assumptions would be at odds with the pricing behaviour observed for
most items in the UK micro price data.

18Most examples are from items classified as: recreation and culture (e.g personal CD player,
CD radio cassette, computer diskettes etc); furniture, household equipment and maintenance
(e.g automatic washing machine, vacuum cleaners etc) and clothing and footwear (e.g. boy’s
casual short sleeve shirt).
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Arrival of costless adjustment opportunities. The heterogeneity in fre-

quency of price changes across items in the micro price data is mostly accounted

by the estimated probability of a costless adjustment opportunity (λ̂j). Across

all the items in the sample they correlate at 0.91 (figure 2.A.4, bottom-right

panel). This high correlation resounds the fact that, in the UK data, most of

the price changes are estimated to be due to the arrival of costless adjustment

opportunities.

State-dependent versus time-dependent pricing. An interesting feature of

the random menu cost model is that it allows for the occurrence of both time-

dependent and state-dependent price adjustments. A way of measuring which of

these two extremes can better account for the pricing dynamics in the micro data

is to compute the ratio between the number of costless price changes over the

total number of price changes.19 For a given item, a value of this measure closer

to a hundred percent indicates that most of the price changes are triggered by

the arrival of costless adjustment opportunities and, hence, the pricing dynamics

is closer to that implied by the Calvo model. Computing this ratio using all the

price changes in the final sample yields a figure of 88%. For individual items this

measure ranges from 7.5% to 100% with an average value of 87%. Across different

COICOP divisions, this ratio ranges from 66% for restaurants and hotels to 94%

in food and non-alcoholic beverages (figure 2.A.5). The large number of time-

dependent price changes is broadly in line with previous findings in the literature.

For instance, Nakamura and Steinsson (2010, footnote 25) using data underlying

the US CPI find that roughly 75% of price changes occur in the low menu cost

state. Gautier and Le Bihan (2018, tables 5 and 6) find that costless adjustment

opportunities account for 80% of the price changes in micro price data underlying

the French CPI. Moreover, Blanco (2017) using UK CPI micro price data finds

that 93% of all the price changes are due to either free adjustment opportunities

or fat-tailed idiosyncratic shocks.20

19More formally, for each item in the data this statistic is computed as Cj =∑
i

∑
t 1{∆pi,j,t ∈ (−ˆ̄xj , 0) ∪ (0,−

¯
x̂j)}/

∑
i

∑
t 1{∆pi,j,t 6= 0}.

20More precisely, the ratio of free to total price adjustments is only 48% but adding the price
changes after fat-tailed idiosyncratic shocks the figure increases to 93% (p.17). The combination
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2.3.3. Model fit

As described in section 2.2, a cornerstone assumption underlying the construction

the construction of a frictionless inflation measure is that the observed quote-lines

are generated by the state-space representation in (2.3) to (2.6). Figures 2.A.6

to 2.A.11 investigate the extent to which the proposed representation of pricing

dynamics can match some of key moments observed in micro price data. First,

in terms of the moments directly targeted in the first-stage of parameter estima-

tion, the proposed representation of pricing dynamics can in general match the

percentiles of the distribution of non-zero price changes and the model fit tends

to be better at the tails of the distribution (figures 2.A.6 and 2.A.7). Second,

in terms of the non-targeted moments, the worse fit of the middle percentiles of

the distribution of non-zero price changes does not affect the model’s ability to

match some of the moments (e.g. mean or variance of price changes) but it does

imply that for a non-negligible proportion of items the model cannot account for

the values of robust skewness and robust kurtosis observed in the micro price

data (figure 2.A.8). The inability of the single product version of the random

menu cost model to match the kurtosis observed in the micro price data has been

pointed before by Alvarez, Le Bihan and Lippi (2016). It is interesting to notice

that for the micro price data underlying the UK CPI that is also the case for

some individual items but the mismatch almost vanishes when considering the

distribution for the price changes across all items (figure 2.A.9). Third, across all

individual items considered the actual distribution of regular price changes can

take a wide variety of shapes and inevitably the proposed state-space representa-

tion will fit some items better than others. Figures 2.A.10 and 2.A.11 illustrate

of the two cases is a measure of how close the slope of the Phillips curve in the model in Blanco
(2017) is from a Calvo model and that measure is more comparable to the ratio of free price
changes to total price changes reported above. Intuitively, in the state-space representation of
the random menu cost model in (2.3) to (2.6), the boundaries of the inaction region are allowed
to vary freely to account for the extremes in the distribution whereas the arrival of the costless
adjustment opportunities accounts for the “middle” of the distribution. In Blanco (2017) also
the middle of the distribution is accounted by the arrival of costless adjustment opportunities
but the tails are accounted by fat-tailed idiosyncratic shocks. Despite these methodological
differences, it is interesting that we find similar figures in terms of how close the model is from
a pure Calvo model.
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the variety of shapes that the distribution of price changes can take across items

and the model fit for the items with worst and best model fits, respectively.

2.4. Menu costs at the microeconomic level and

aggregate inflation dynamics

This section presents a measure of aggregate frictionless inflation for the UK and

compares it with its regular price counterpart to investigate the importance of

menu costs at the micro level for the aggregate inflation dynamics.

2.4.1. A measure of aggregate frictionless inflation

Estimates of aggregate frictionless inflation are produced by aggregating the

quote-line level estimates of frictionless inflation from (2.7). The aggregation

procedure is described below and it is based on the methodology used by the

ONS to produce the official CPI.

From price quotes to elementary aggregates. The lowest level of aggrega-

tion at which price quotes are aggregated into a price index is at the stratum

level. Each item in the data can be stratified in four different ways, namely, by

region, by shop type, by region and shop type or not stratified.21 For each stra-

tum, individual price quotes are aggregated to produce an elementary aggregate

index. As described in ONS (2014, chapter 2), the method primarily used to

produce elementary aggregates in the CPI is the geometric mean (also known as

the Jevons formula). More precisely, the elementary aggregate for stratum s of

item j in month t with base period
¯
t is given by,

Is,j,t|
¯
t =

Ns,j∏
i=1

Pi,j,t

Pi,j,
¯
t

 1
Ns,j

(2.8)

21There are 12 regions in total (London, Southeast, Southwest, East Anglia, East Midlands,
Yorks and Humber, Northwest, North, Wales, Scotland and Northern Ireland) and two shop
types (multiple if the shop has 10 or more outlets or independent if it has less than 10 outlets).
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where Pi,j,t and Pi,j,
¯
t are the nominal prices of the same product collected in a

particular outlet in period t and in the base period
¯
t and Ns,j is the number

of price quotes in stratum s of item j after using the central shop weights as

a replication factors. Using the previous month as the base period, the above

expression can be equivalently written as,

Is,j,t|t−1 = exp

 1

Ns,j

Ns,j∑
i=1

πi,j,t

 (2.9)

where πi,j,t ≡ log(Pi,j,t)− log(Pi,j,t−1). To obtain regular price elementary aggre-

gates expression (2.9) is used with πi,j,t replaced by πri,j,t ≡ log(Pr
i,j,t)−log(Pr

i,j,t−1)

where Pr
i,j,t denotes the regular nominal prices.22 Similarly, to obtain frictionless

elementary aggregates expression (2.9) is used with πi,j,t replaced by π̂i,j,t obtained

from (2.7).23

From elementary aggregates to higher level indices. Indices for higher

levels of aggregation are weighted averages of the elementary aggregate indices.

First, a weighted average of elementary aggregates indices with stratum weights

yields item level indices. Second, item level indices and the respective item

weights are combined to produces Classification of Individual Consumption by

Purpose (COICOP) indices at the class, group and division levels and the aggre-

gate CPI. The exact same aggregation procedure is done twice, one starting from

the regular price elementary aggregates and other starting from the frictionless

elementary aggregates.24

22That is, the prices obtained after the sales filter described in section 2.3.1 is applied to
each quote-line.

23A key difference between the elementary aggregates produced following (2.9) and the ele-
mentary aggregates underlying the published CPI is that the later uses the previous month of
January as the base period. Because of the breaks in quote-lines created to deal with product
substitutions and quote-line gaps, using the previous January as the base period would require
to either: (i) drop any observations that do not have information for Pi,j,t in the previous
month of January which account for almost half of the total sample or (ii) impute values for
inflation for all the periods between the previous month of January and the period where the
actual quote-line starts being observed in the data. Changing base period and chain-link the
elementary aggregate indices every month is preferred over either of these two options.

24The weights attributed to each item to produce indices at the class level and above are
always relative to the total weight of that category in the final sample used in this paper. For
example, suppose a given class accounts for 10% of the overall CPI and it is composed by items
A, B and C with weights 4%, 4% and 2%, respectively. If item C does not appear in the final
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2.4.2. Aggregate frictionless inflation in the UK: 1997 - 2018

The measure of frictionless inflation for the UK against its regular price counter-

part is presented in figure 2.A.12. In a nutshell, the conclusion to be drawn from

that figure is that menu costs matter for aggregate inflation dynamics but their

importance is decreasing over time period analysed.

Menu costs matter for aggregate inflation dynamics... which comes from

the fact that the two lines do not perfectly overlap over the period analysed.

The correlation between the two-series from 1997 to 2018 is equal to 0.83 and the

difference between regular price inflation and its frictionless counterpart can range

from -0.79 and 2.29 percentage points. On average over the whole period analysed,

frictionless inflation is 0.55 percentage points lower than regular price inflation

and the difference is mostly driven by observations prior to 2004. Moreover,

from figure 2.A.12 it is also the case that the time-series for frictionless inflation

is smoother that its regular price counterpart. More precisely, the historical

standard deviation of the time-series for frictionless inflation is 20% lower than

the standard deviation for the time-series of regular price inflation (0.91 against

1.13), also, the time-series of frictionless inflation exhibits higher persistence as

it is more autocorrelated than regular price inflation at any horizon up to three

years.

...but their importance is decreasing over time. From figure 2.A.12 it is

also clear that the time-series of frictionless inflation is in general closer to its

regular price counterpart after mid-2000s. In particular, considering only the

periods prior to 2004 the correlation between the two time-series is 0.52 against

0.94 in the post-2004 period. Moreover, the average difference between regular

price inflation and frictionless inflation decreases from 1.14 percentage points

prior to 2004 to 0.27 percentage points post 2004.

sample because it is centrally collected, then in the price index computation for that class items
A and B will enter with a weight of 50% each. This “composition effect” affects the comparison
of inflation figures here reported with the official all items CPI inflation, but does not affect the
comparison between regular price inflation and frictionless inflation discussed in this section.
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Potential explanations. Interpreted through the lens of the random menu cost

model that underlies the construction of the frictionless inflation measure, this

change in the correlation of the two-time series can be explained by a narrowing

of the boundaries of the inaction region or by an increase in the rate of costless

adjustment opportunities or by a combination of the two.25 There are two events

that are consistent with a narrowing of the inaction boundaries, namely, the

increase in product competition from import penetration from China around the

early 2000s and the change in inflation target in December 2003 from 2.5% of

the Retail Price Index excluding mortgage payments (RPIX) to 2% of the CPI.

The increase in product competition from imports would make deviations from

the frictionless prices more costly in terms of profit flows and, hence, a smaller

deviation would be enough to trigger the payment of the menu cost resulting

in narrower bands of the inaction region. The decrease in the inflation target

could also rationalise a narrowing of the boundaries of the inaction region if

interpreted as decreasing the uncertainty regarding aggregate inflation rate. It is

more difficult to rationalise an increase in the rate of arrival of costless adjustment

opportunities in terms of specific events, but such increase is consistent with an

increase in the frequency of price changes that is observed for part of the period

between 2005 and 2012 (Petrella, Santoro and Simonsen, 2018, figure 1).

2.5. Frictionless Inflation and the transmission of

monetary policy shocks

At the heart of the new Keynesian paradigm lies the idea that prices react slowly

in response to changes in economic conditions due to the existence of pricing

frictions. More precisely, the basic new Keynesian model presented in Gaĺı (2008,

chapter 3) predicts that inflation should react differently than its frictionless coun-

terpart in response to a monetary policy shock. This section uses the constructed

25On the one hand, the narrowing of the inaction region decreases the range of values that
π̂?i,j,t can take since, by construction, π̂?i,j,t ∈ (−x̄i,j ,−

¯
xi,j). On the other hand, an increase in

the rate of arrival of costless adjustment opportunities would decrease the number of periods
where πri,j,t = 0 and π̂?i,j,t 6= 0. In the limit, if λi,j = 1, then πri,j,t = π̂?i,j,t,∀t > ¯

ti,j .
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time-series of frictionless inflation to empirically test this prediction.

2.5.1. Inflation and frictionless inflation in the basic new

Keynesian model

The following proposition presents the implied relationship between the responses

of inflation and frictionless inflation to a monetary policy shock in the basic new

Keynesian model,

Proposition 2.1 Consider the basic new Keynesian model under an interest rate

rule as presented in Gaĺı (2008, chapter 3). Let π?t denote frictionless inflation

rate obtained under flexible prices, πt denote the inflation rate under Calvo pricing

and εvt denotes a monetary policy shock. Then it holds that,

∂π?t
∂εvt

<
∂πt
∂εvt

< 0 (2.10)

and for any h > 0 it holds that,

∂πt+h
∂εvt

<
π?t+h
∂εvt

(2.11)

Proof. See appendix 2.C.

Intuition. Equations (2.10) and (2.11) state that, in response to a monetary

policy shock, frictionless inflation reacts more on impact than actual inflation

and reacts less in subsequent periods. Figure 2.A.13 illustrates this result by

plotting the model implied impulse responses of inflation and frictionless inflation

to a monetary policy shock.26 To understand the intuition behind the result in

proposition 2.1 consider the case of a monetary tightening that reduces aggregate

demand. On the one hand, in a world without pricing frictions all the firms in

the economy reduce their prices simultaneously on impact and slowly revert as

26Notice that, although the impulse responses in figure 2.A.13 are obtained under the baseline
calibration described in Gaĺı (2008, p.52), the result in proposition 2.1 holds irrespective of
parameter values.
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the initial shock vanishes. On the other hand, in a world with pricing frictions

only a fraction of the firms reduces their prices on impact whilst the remaining

firms keep their prices unchanged, which partially mutes response of aggregate

inflation on impact. In the subsequent periods, despite the vanishing effect of the

monetary shock, some firms that are allowed to re-price their goods choose to

cut their prices since they were stuck with prices that were last set prior to the

monetary shock. These firms that choose to cut their prices in the subsequent

periods makes the response of inflation smaller than frictionless inflation in the

periods after the shock.

2.5.2. An empirical test

To empirically test the predictions in (2.10) and (2.11) the impulse responses of

regular price inflation and frictionless inflation are estimated via local projections

(Jordà, 2005). More precisely, for every horizon h ∈ {0, 1, . . . , 36} the following

regressions are estimated:

πt+h = αh + βh ∆̂it + γh Xt + εt (2.12)

π?t+h = α?h + β?h ∆̂it + γ?h X?
t + ε?t (2.13)

where πt and π?t are year-over-year regular price inflation and frictionless inflation

(i.e. the solid black and blue-starred lines in figure 2.A.12, respectively), ∆̂it

denotes changes in the Bank of England official rate instrumented by the high-

frequency measure monetary policy surprises from Cesa-Bianchi, Thwaites and

Vicondoa (2020), Xt and X?
t are vectors of control variables that include four

lags of regular price inflation and four lags frictionless inflation.27 In terms of the

27For analytical convenience the basic new Keynesian model in Gaĺı (2008) used to derive
the results in proposition 2.1 uses Calvo pricing whereas the empirical measure of π?t used on
the left-hand-side of (2.13) is theoretically grounded on the menu cost model subject to random
costless adjustment probabilities discussed in section 2.2 which corresponds to the Calvo only in
a special case where all the price adjustments are triggered by the arrival of costless adjustment
opportunities. This fact can induces a mismatch between the π?t that the results in proposition
2.1 refer to and the π?t used to estimate the impulse responses in (2.13). Notice, however, that
as discussed in section 2.3 about 90% of the price adjustments observed in the UK micro price
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coefficients in (2.12) and (2.13), the hypotheses to be tested from proposition 2.1

are: (i) β?0 < β0 < 0 and (ii) β?h > βh, ∀h > 0.

Results. The impulse responses for regular price inflation and frictionless infla-

tion to a 1 percent unexpected increase in nominal interest rates are depicted in

figure 2.A.14. The first hypothesis is not supported given that frictionless infla-

tion reacts positively on impact whereas regular inflation is virtually unchanged

and neither of the two responses is statistically significant (see figure 2.A.15). The

second hypothesis is only weakly supported at horizons greater than 21 months

when regular price inflation starts declining.28

To conclude it is important to notice that this is not a test of whether

monetary policy has effects inflation. In fast, from the estimated impulse response

of regular price inflation in figure 2.A.14 it is indeed the case that regular price

inflation declines in response to a monetary tightening albeit with a long delay (i.e

there is a substantial prize puzzle). Instead, the test of proposition 2.1 should be

interpreted instead as a test of the monetary transmission mechanism as implied

by the basic new Keynesian model presented in Gaĺı (2008, chapter 3). In that

model, frictionless inflation should react quickly to a monetary policy shock and

this is at odds with the responses in figure 2.A.14 where frictionless inflation does

not significantly react to a monetary policy shock at any horizon considered.

2.6. Frictionless inflation and movements in the

output gap

In the new Keynesian framework a key variable of interest is the output gap for-

mally defined as “the log deviation of output from its flexible part counterpart”

(Gaĺı, 2008, p.48). This section uncovers a relationship between frictionless infla-

data are trigerred by the arrival of costless adjustment opportunities making this mismatch less
of a concern.

28Local projections in (2.12) and (2.13) were also estimated using: (i) the monetary policy
shocks from Cesa-Bianchi, Thwaites and Vicondoa (2020) directly instead of as an instrument
for ∆it and (ii) under a variety of specifications including more or less lags of inflation and
frictionless inflation in the vector of controls. In all those specifications, the same qualitative
results were obtained.
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tion and the output gap implied by the basic new Keynesian model presented in

Gaĺı (2008, chapter 3) and uses the constructed time-series of frictionless inflation

to empirically test this relationship.

2.6.1. The inflation wedge and output gap in the basic new

Keynesian model

The following proposition presents a relationship between the inflation wedge,

defined as the difference between inflation and its frictionless counterpart, and

the movements in the output gap,

Proposition 2.2 Consider the basic new Keynesian model as presented in Gaĺı

(2008, chapter 3). Let π?t denote frictionless inflation rate obtained under flexible

prices, πt denote the inflation rate under Calvo pricing and ỹt denotes the output

gap. Then it holds that,

πt − π?t = −
(
σ +

ϕ+ α

1− α

)
∆ỹt (2.14)

where α ∈ (0, 1) denotes the returns to scale in the firm’s production function,

ϕ is the inverse Frisch elasticity of labor supply and σ is the elasticity of inter-

temporal substitution.

Proof. See appendix 2.C.

Intuition. The result in (2.14) simply states that whenever prices increase more

than their frictionless counterparts the output falls by less than it frictionless

counterpart, which can be rationalised from the aggregation production decisions

of firms that face a negatively slopped demand curve.
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2.6.2. An empirical test

Using the constructed time-series of frictionless inflation, the prediction in (2.14)

is empirically assessed by a bivariate regression of the form,

πt − π?t = α + β∆ỹt + wt (2.15)

where πt and π?t are the year-over-year regular price inflation and frictionless infla-

tion (i.e. the solid black and blue-starred lines in figure 2.A.12, respectively) and

∆ỹt is a measure of changes in the output gap. A total of six different measures of

the output gap are considered. First, to measure output at the monthly frequency

it is used either the monthly GDP index or industrial production index both pro-

duced by the ONS. Second, the gap is measured by taking the deviations of the log

of these two indices from three different types of trends: a trend extracted from

the Hodrick and Prescott (1997) filter, a cubic trend and a trend extracted from

the Hamilton (2018) filter. In terms of coefficients in (2.15) the hypothesis to be

tested, implied by the relationship in (2.14), is β = −[σ+ (ϕ+α)/(1−α)] < 0.29

Results. The slope estimates from (2.15) for different measures of the output gap

are presented in table 2.B.2. First, notice that all the estimated coefficients are

negative which is qualitatively in line with the relationship in (2.14). Moreover,

in three out of the six specifications considered the slope is also statistically

significant at a 10% significance level. In quantitative terms, the assessment of

(2.14) depends on the parameter values. Using α = 1/3, ϕ = 1 and σ = 1,

which corresponds to the the baseline calibration in Gaĺı (2008, p.52), yields an

approximate value for β of -3. This value is close to the point estimates obtained

by measuring the output gap as a deviation of monthly GDP from an Hamilton

(2018) trend and as a deviation of industrial production from an Hodrick and

Prescott (1997) trend.

29From (2.14) it follows that
Cov(πt−π?

t ,∆ỹt)
V ar(∆ỹt)

= −[σ + (ϕ+ α)/(1− α)].
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Using frictionless inflation to measure movements in the output gap.

Despite the qualitative support (2.14) evidenced by the negative coefficients of

all the coefficients in table 2.B.2, quantitatively these coefficients take on a wide

range of values depending on how the output gap is measured. Indeed, the ỹt

in (2.14) corresponds to the new Keynesian output gap whereas all measures of

ỹt used to estimate (2.15) are proxies that do not necessarily correspond to the

new Keynesian notion of output gap. This suggests an alternative use for the

measures of frictionless inflation computed in this paper: to use them to quantify

movements in the output gap. More precisely, given a specification for product

demand that relates changes in quantities sold to changes in prices, one could

use the estimates of frictionless inflation from (2.7) to quantify changes in the

output gap.30 Such a measure would have two advantages over existing measures

of the output gap. First, it would be, by construction, consistent with the new

Keynesian notion of the output gap. Second, because the approach described in

section 2.2 makes possible the estimation of frictionless inflation at the quote-line

level, this approach could be used to produce measures of changes in output gap

at virtually any aggregation level including levels for which data on output is

typically not available (e.g. item level).

2.7. Frictionless inflation and headline inflation

forecasts

Over the last three decades inflation targeting regimes have become increasingly

popular among Central Banks worlwide. In a nutshell, Central Banks operating

under an inflation targeting regime set short term nominal interest rate with the

aim of keeping inflation as close as possible to a pre-specified inflation target.

In this context, inflation forecasts are of crucial importance for the conduct of

monetary policy. This section investigates whether the constructed time-series of

30More concretely, given a relationship of the form ∆yi,j,t = f(πi,j,t, θi,j) where θi,j,t is a
vector of time-invariant quote-line specific parameters, the changes in the output gap can be
estimated from ∆ỹi,j,t = ∆yi,j,t −∆y?i,j,t = f(πi,j,t, θi,j)− f(π̂?i,j,t, θi,j) where π̂?i,j,t is obtained
from (2.7).
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frictionless inflation can be used to improve inflation forecasts.

2.7.1. Can frictionless inflation improve headline inflation

forecasts?

To understand the rationale underlying the forecasting exercise proposed in this

section, consider an hypothetical quote-line for which prices remains unchanged

for 9 months and in the tenth month they change by 30%. The frictionless coun-

terfactual for that quote-line is a quote-line for which the price changes every

period by small positive amounts to reflect the changes in economic conditions,

say these changes are on average 3% every month. Starting from this disaggre-

gated perspective, the question is whether an aggregate measure based on those

small changes contains useful information to forecast the headline inflation rate

that is calculated based on infrequent and lumpy price adjustments.

A forecasting exercise. In order to assess the relevance of frictionless inflation

to forecast published inflation, the forecasting exercise of Blinder and Reis (2005)

is revisited. In particular, linear regressions of the form are estimated,

πt,t+h = α + Xβ + εt (2.16)

where πt,t+h is the inflation between months t and t+ h calculated based on the

published headline CPI index, X is a vector containing published inflation over the

previous 12 months (πt−12,t) or frictionless inflation over the previous 12 months

(π?t−12,t) or both. Three different measures are used to assess forecasting ability

of past inflation against past frictionless inflation. First, in-sample forecasting

ability is evaluated by estimating the three different specifications of the above

regression and computing the standard error of the regressions. Second, the

out-of-sample forecasting ability is assessed by estimating the above regressions

using data until January 2008 and computing the root mean squared errors from

forecasting inflation from then until the end of the sample. Third, the version
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of the above regression with both πt−12,t and π?t−12,t and the significance of the

coefficients is compared.

Results. The results for the forecasting exercise are presented in table 2.B.3.

First, in terms of in-sample forecasting ability, for all forecasting horizons con-

sidered the specification with frictionless inflation only has a better in-sample fit

than the specification only with headline inflation. Moreover, the gains of includ-

ing both frictionless and headline inflation are small at 6 and 12 month horizons

and inexistent for 24 and 36 month horizons. Second, the message in terms of

out-of-sample forecasting is similar. Again the specification only with friction-

less inflation has better out-of-sample forecasting ability when compared with

the specification with the exception that there are gains from including both the

frictionless and the headline inflation. These gains are larger for longer horizons

specially 24 and 36 months. Finally, in terms of in-sample coefficient significance

only the coefficient on frictionless inflation is significant at any of the horizons

considered and more so for longer horizons.

To conclude the evidence from the forecasting exercise presented in this sec-

tion is suggestive that the constructed time-series of frictionless inflation contains

useful information to forecast the headline inflation. It remains to be investi-

gated whether frictionless inflation can also improve inflation forecasts in more

sophisticated models featuring nonlinearities and richer set of predictor variables.

2.8. Concluding remarks and future research

The existence of menu costs of price adjustment is one of the leading explanations

for the delayed response of prices to changes in economic conditions. This paper

introduced a measure of frictionless inflation that estimates the inflation in a

counterfactual world where menu costs did not exist. Exploring this measure this

paper arrived at four main conclusions. First, menu costs at the microeconomic

level matter for aggregate inflation dynamics but their importance has decreased

over time. Second, the responses of frictionless inflation to a monetary policy
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shock are at odds with the monetary transmission mechanism implied by the basic

new Keynesian model. Third, the inflation wedge is negatively correlated with

changes in the output gap in line with the basic new Keynesian model. Fourth,

the constructed time-series frictionless inflation contains useful information to

forecast headline inflation.

I conclude by highlighting some promising avenues for future research mo-

tivated by the present paper. First, the disaggregated measures of frictionless

inflation can be combined with a specification for individual product to measure

changes in the output gap at disaggregation levels where for which data on output

is typically not available. Second, as discussed in section 2.7, it remains to be

investigated whether frictionless inflation can improve forecasting performance in

more sophisticated models including nonlinearities and richer set of predictors.

Third, the framework here used to construct frictionless inflation could also be

used to produce estimates of the cross-sectional distribution of price gaps at time

period or any aggregation level. This distribution could in turn be used to quan-

tify the welfare costs of pricing frictions or as a key state variable to understand

sign and state-dependent effects of monetary policy.
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2.A. Figures

Figure 2.A.1: Optimal pricing behavior implied by two-sided (S,s) policies
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This figure illustrates the optimal pricing behaviour implied by the random menu cost model
described in section 2.2. At periods τ1 and τ2 the firm adjusts its nominal prices because at the
previous period prices the price gap is outside the inaction region. The size of the adjustments
is such that the price gaps at adjustment periods is equal to the reset point (c).
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Figure 2.A.2: Step-by-step cleaning of an hypothetical quote-line

5 10 15 20 25 30 35 40 45

Time (t)

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

L
og

p
ri
ce
s
(p

i,
j,
t)

Original Quote Line

Price Quotes
Sales
Substitution
Invalid

5 10 15 20 25 30 35 40 45

Time (t)

1

1.05

1.1

1.15

1.2

1.25

1.3

1.35

1.4

1.45

1.5

L
og

p
ri
ce
s
(p

i,
j,
t)

Step 1: Remove Invalid Observations
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Black solid lines represent raw log price quotes. Blue stars indicate observations flagged as sales.
Downward pointing green triangle indicates an observation flagged as a product substitution.
Red crosses indicates observations that did not pass the validity checks. Orange squares indicate
regular prices imputed for sales prices following the procedure described in the main text.
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Figure 2.A.3: Distribution of estimated common parameters at the item level
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Histograms of estimated common parameters over different items. Histogram for the inaction
region lower bound excludes items for which none of the observed price changes is triggered
by crossing the lower bound (358 out of 979 items). Histogram for the inaction region upper
bound excludes items for which none of the observed price changes is triggered by crossing the
upper bound. Solid black and red dashed lines are, respectively, the mean and the median of
estimated parameters calculated from the sample that is used to plot the histogram. Descriptive
statistics across all items available in table 2.B.1.
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Figure 2.A.4: Pricing moments and reduced form parameters
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In all the scatter plots, each grey dot represents a given 6-digit item in the sample. In the first
scatter plot only items for which there is at least one price change triggered by crossing the
upper and the lower boundaries of the inaction region are considered (total of 424 items). In all
the scatter plots, the dashed black line is the best fit line obtained from a bivariate regression
of the variable on the y-axis on the variable on the x-axis.
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Figure 2.A.5: Proportion of costless adjustments by COICOP division

R
es
ta
ur
an
ts
an
d
ho
te
ls

H
ou
sin
g,
wa
te
r,
el
ec
tr
ic
ity
, g
as
an
d
ot
he
r
fu
el
s

Tr
an
sp
or
t

A
lc
oh
ol
ic
be
ve
ra
ge
s
an
d
to
ba
cc
o

M
isc
el
la
ne
ou
s
go
od
s
an
d
se
rv
ic
es

R
ec
re
at
io
n
an
d
cu
ltu
re

H
ea
lth

C
om
m
un
ic
at
io
n

Fu
rn
itu
re
, h
ou
se
ho
ld
eq
ui
pm
en
t
an
d
m
ai
nt
en
an
ce

C
lo
th
in
g
an
d
fo
ot
we
ar

Fo
od

an
d
no
n-
al
co
ho
lic
be
ve
ra
ge
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

#
of

co
st
le
ss

ad
ju
st
m
en
ts

/
#

of
to
ta
l
ad

ju
st
m
en
ts

Each grey dot represents the ratio of costless adjustments over the total number of adjustments
for each of the 979 unique items in the sample. The red downward pointing triangle contains
this ratio computed using all the price changes for that division. The blue upward pointing
triangle contains the (unweighted) average ratio across all items in the division.
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Figure 2.A.6: Data versus model implied targeted moments (1/2)
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Each grey dot represents, for a given 6-digit item in the sample, the value of the moment in
the data (y-axis) against its model implied counterpart (x-axis). The black dashed line is a 45◦

line. The solid blue line is the best fit line obtained from a bivariate regression of data moments
on their model implied counterparts. Both in the data and in simulated data the moments are
computed after excluding the first price change of each quote line. To compute the model
implied moments a set of 50 panels is generated using the common parameter estimates from
the first stage and the same primitive shocks used for the estimation. The model implied
moment is the average of the respective moment across simulated panels.
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Figure 2.A.7: Data versus model implied targeted moments (2/2)
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Each grey dot represents, for a given 6-digit item in the sample, the value of the moment in
the data (y-axis) against its model implied counterpart (x-axis). The black dashed line is a 45◦

line. The solid blue line is the best fit line obtained from a bivariate regression of data moments
on their model implied counterparts. Both in the data and in simulated data the moments are
computed after excluding the first price change of each quote line. To compute the model
implied moments a set of 50 panels is generated using the common parameter estimates from
the first stage and the same primitive shocks used for the estimation. The model implied
moment is the average of the respective moment across simulated panels.
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Figure 2.A.8: Data versus model implied non targeted moments
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Each grey dot represents, for a given 6-digit item in the sample, the value of the moment in
the data (y-axis) against its model implied counterpart (x-axis). The black dashed line is a 45◦

line. The solid blue line is the best fit line obtained from a bivariate regression of data moments
on their model implied counterparts. Both in the data and in simulated data the moments are
computed after excluding the first price change of each quote line. To compute the model implied
moments a set of 50 panels is generated using the common parameter estimates from the first
stage and the same primitive shocks used for the estimation. The robust skewness and robust
kurtosis are computed as in Berger and Vavra (2018, table 1), in particular, Robust-Skew =
(P90 + P10 − 2P50)/(P90 − P10) and Robust-Kurt = (P90 − P62.5 + P37.5 − P10)/(P75 − P25).
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Figure 2.A.9: Model fit for all items
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Blue bars represent the histograms for the distributions of regular price changes observed for the
whole dataset. The black solid line is kernel density estimate of the distribution of price changes
for all items over 50 panels of simulated data. Simulated data is generated by combining data of
separate items and simulating using the the estimated common parameters. When considering
the price changes, the first price change in each quote line is excluded. The histogram excludes
log price changes that are not in the range [−0.7, 0.7]. The excluded observations account for
0.78% of the total number of non-zero price changes.
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Figure 2.A.10: Model fit for worst fitting 9 items
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Blue bars represent the histograms for the distributions of regular price changes observed in the
data for a given item. The black solid lines the kernel density estimates of the distribution of
price changes over 50 panels of simulated data. Each panel was simulated using the estimated
parameter values for the first stage for each item and the same primitive shocks used for
estimation. When considering the price changes, the first price change in each quote line
is excluded. The items chosen are those for which the first-stage SMM objective function
evaluated at the estimated parameters displayed the largest values.
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Figure 2.A.11: Model fit for best fitting items
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Blue bars represent the histograms for the distributions of regular price changes observed in the
data for a given item. The black solid lines the kernel density estimates of the distribution of
price changes over 50 panels of simulated data. Each panel was simulated using the estimated
parameter values for the first stage for each item and the same primitive shocks used for
estimation. When considering the price changes, the first price change in each quote line
is excluded. The items chosen are those for which the first-stage SMM objective function
evaluated at the estimated parameters displayed the smallest values.
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Figure 2.A.12: Regular price versus frictionless inflation in the UK
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Regular price and frictionless price indexes are computed at a monthly frequency from weighted
averages of the elementary aggregates in (2.9). Year over year inflation is computed as the
percentage variation in the index of a given month against the same month of the previous
year. The grey shaded area denotes the great recession.
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Figure 2.A.13: Model implied IRFs to a monetary policy shock
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Impulse responses obtained under the baseline parameter values described in Gaĺı (2008, p.53)
except for the persistence of the monetary policy shock, ρv, that is set to 0.75 (instead of 0.5).
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Figure 2.A.14: Estimated IRFs to a monetary policy shock
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Impulse responses obtained from a local projection of the form yt+h = αh + βh∆̂it + γhXt + εt
for horizons h = 0, 1, . . . , 36. The change in the nominal Bank of England interest rate is
instrumented with the series of high-frequency identified monetary surprises by Cesa-Bianchi,
Thwaites and Vicondoa (2020) and the vector of controls Xt includes four lags of regular price
inflation and frictionless inflation.
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Figure 2.A.15: Significance tests of estimated IRFs to a monetary policy shock
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For a local projection of the form yt+h = αh + βh∆̂it + γhXt + εt this plot contains the t-
statistics for the null hypothesis H0 : βh = 0 over different horizons. For a given horizon if the
line is outside the grey shaded (dashed) area indicates the null can be rejected at the 5% (10%)
against a double sided alternative.
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2.B. Tables

Table 2.B.1: Descriptive statistics for estimated parameters

ˆ
¯
xj ˆ̄xj µ̂j σ̂ε,j λ̂j

Mean -2.691 2.271 0.001 0.09 0.139

Median -0.596 0.568 0.002 0.072 0.114

Std Dev 8.633 6.676 0.011 0.06 0.109

IQR 1.87 1.466 0.004 0.064 0.092

5th Percentile -9.377 0.129 -0.014 0.023 0.024

10th Percentile -5.586 0.194 -0.007 0.032 0.039

25th Percentile -2.104 0.31 0 0.05 0.073

75th Percentile -0.234 1.776 0.004 0.114 0.165

90th Percentile -0.056 4.925 0.008 0.179 0.266

95th Percentile -0.02 8.815 0.012 0.213 0.37

Minimum -130.84 0 -0.137 0.006 0.001

Maximum 0 130.262 0.058 0.4 0.868

N 979 979 979 979 979

Descriptive statistics calculated over different items. All the numbers rounded to three decimal
places and any number smaller than 5× 10−4 is displayed as a zero.
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Table 2.B.2: Inflation wedge and changes in the output gap

Deviation from HP trend Cubic trend
Hamilton

trend

Monthly GDP
-5.52 -10.62? -3.06
(4.56) (5.93) (4.18)

Industrial Production
-3.11 -4.6? -3.77?

(2.44) (2.45) (2.21)

Each cell contains the slope coefficient from a bivariate regression of the form (πt − π?t ) =
α + β∆ỹt + wt. In parenthesis are the Newey and West (1987) HAC standard errors with 12
lags. In all the specifications the dependent variable is computed as the difference between year
over year regular price inflation and its frictionless counterpart (as depicted in figure 2.A.12).
The independent variable varies across specifications: output is measured by either the log of a
monthly GDP index (top panel) or the log of industrial production index (bottom panel) and
the output gap is computed as the log deviation of the given output measure from an HP trend
(second column), from a cubic trend (third column) or from a Hamilton (2018) trend (fourth
column). ? indicates significance at the 10% level, ?? indicates significance at the the 5% level
and ??? indicates significance at the 1% level. All the numbers are rounded to two decimal
places.
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Table 2.B.3: Forecasting Inflation - Frictionless versus Headline

Forecasting
horizon

6 Months 12 Months 24 Months 36 Months

In-sample standard error

Frictionless 0.67 0.95 1.54 2.09

Headline 0.69 0.99 1.78 2.54

Both 0.66 0.94 1.54 2.09

Out-of-sample root mean squared error

Frictionless 0.81 1.16 1.99 2.40

Headline 0.83 1.30 2.79 4.27

Both 0.77 1.09 1.69 2.00

Multivariate regression coefficients

Frictionless 0.26? 0.47? 1.32?? 2.14???

(0.14) (0.25) (0.52) (0.67)

Headline 0.08 0.20 0.08 0.08
(0.12) (0.19) (0.45) (0.69)

Each cell in the table is derived from a regression of the form πt,t+h = α+Xβ+εt where h denotes
a particular forecasting horizon. For each forecasting horizon, X contains headline published
inflation over the previous 12 months (πt−12,t) or frictionless inflation over the previous 12
months (π?t−12,t) or both. The in-sample standard error in the top panel is computed from the
whole sample 1997m2 to 2018m1. The out-of-sample root mean squared error in the second
panel is computed by estimating the regression using data from 1997m2 to 2008m1 and using the
forecasting errors from then to the end of the sample. The third panel reports the regression
coefficients of the multivariate regression containing both πt−12,t and π?t−12,t over the whole
sample 1997m2 to 2018m1. In parenthesis are the respective Newey and West (1987) standard
errors with a lag length choice equal to 12. ? indicates significance at the 10% level, ?? indicates
significance at the the 5% level and ??? indicates significance at the 1% level. All the numbers
are rounded to two decimal places.
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2.C. Proof of results in the main text

This appendix provides the proofs for the two propositions in the main text. For

expositional purposes, the proof of proposition 2.2 is presented first followed by

the proof of proposition 2.1. The underlying model and the associated notation

are identical to the basic new Keynesian model in Gaĺı (2008, chapter 3).

Proof of proposition 2.2. Under monopolistic competition and a demand function

arising from a CES aggregator with elasticity of substitution ε, frictionless prices

satisfy:

P ?
t =Mψt|t (2.17)

where ψt|t are the nominal marginal costs of a firm changing prices at time t and

M≡ ε/(ε− 1) is a constant markup that monopolist would charge at every time

period in the absence of constraints on the frequency of price adjustment, also

referred to as the desired or frictionless markup. Dividing both sides of (2.17)

by Pt and taking logs yields,

p?t − pt = mct −mc (2.18)

where mc = − log(M) is the steady state value of marginal cost and mct is the

log of the economy’s average real marginal cost. Since the log of deviation of real

marginal cost from steady state is proportional to the log deviation of output

from its flexible price counterpart, use equation (20) in Gaĺı (2008, p. 48) to

obtain,

p?t − pt =

(
σ +

ϕ+ α

1− α

)
ỹt (2.19)

where ỹt is the output gap, defined as the log deviation of output from its flexible

part counterpart, σ is the elasticity of intertemporal substitution, ϕ is the Frisch
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elasticity of labor supply and 1 − α ∈ [0, 1] is the exponent of labor in the

production function. Lagging (2.19) by one period and subtracting from (2.19),

π?t − πt =

(
σ +

ϕ+ α

1− α

)
∆ỹt (2.20)

Finally, multiplying both sides of (2.20) by minus one yields the result in (2.14).

Proof of proposition 2.1. I consider the responses of inflation and frictionless in-

flation under an interest rate rule as in Gaĺı (2008, section 3.4.1). The stochastic

component in the interest rate is vt and it is assumed to follow an AR(1) process,

that is, vt = ρvvt−1 + εmt where ρv ∈ [0, 1) and εmt is the monetary policy shock.

From (2.20) and any given horizon h > 0 we have that,

∂π?t+h
∂εvt

− ∂πt+h
∂εmt

=

(
σ +

ϕ+ α

1− α

)
∂∆ỹt+h
∂εmt

(2.21)

Since
(
σ + ϕ+α

1−α

)
> 0 the relationship between the impulse responses of frictionless

inflation and inflation can be inferred from the sign of the impulse response of

the changes in the output gap. Using the method of undetermined coefficients,

the solution for the output gap is given by,

ỹt+h = −(1− βρv) Λv vt+h (2.22)

where β is the representative household discount factor and Λv is a convolution

of structural parameters that and takes only positive values.31 Finally, in terms

of impulse responses it is the case that,

∂∆ỹt+h
∂εmt

= −(1− βρv) Λv

(
∂vt+h
∂εmt

− ∂vt+h−1

∂εmt

)
(2.23)

31For values of structural parameters that ensure equilibrium uniqueness which is maintained
assumption, see Gaĺı (2008, equation 27).
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Note that for the case h = 0, the last term in brackets in (2.23) is equal to one

since ∂vt−1/∂ε
m
t = 0. Since the term (1 − βρv)Λv is positive, it follows that the

expression above is negative and, hence, ∂π?t /∂ε
v
t < ∂πt/∂ε

m
t . Moreover, since

the solution for inflation is given by πt = −κΛv vt where κ > 0 is the slope of the

new Keynesian Phillips curve and, hence, ∂πt/∂ε
m
t < 0. Therefore, (2.10) holds.

Finally, for any h > 0 expression (2.23) simplifies to,

∂∆ỹt+h
∂εmt

= − (1− βρv) Λvρ
h−1
v︸ ︷︷ ︸

>0

(ρv − 1)︸ ︷︷ ︸
<0

> 0 (2.24)

Therefore, ∂π?t+h/∂ε
v
t > ∂πt+h/∂ε

m
t as stated in (2.11). As an endnote, notice

that the sign of πt+h/∂ε
m
t cannot be determined unambiguously. More precisely

using the solutions for πt and ∆ỹt and the relationship in (2.20),

∂π?t+h
∂εvt

= κΛvρ
h−1
v

[
(1− βρv)(1− ρv)

λ
− ρv

]
(2.25)

where λ is a positive constant that is a convolution of structural parameters. The

sign of the last term in square brackets will depend on the specific calibration of

structural parameters.
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Chapter 3

Disaggregated Impulse Responses

via the classifier-Lasso

3.1. Introduction

Ever since the seminal contributions of Frisch (1933) and Slutzky (1937), macroe-

conomists have looked at random shocks as the primary source of business cycle

fluctuations (Ramey, 2016). For most of the twentieth century, the bulk of the

work in empirical macroeconomics was devoted to identification of macroeconomic

shocks and estimation of impulse response functions (IRFs) which summarised

the expected dynamic responses of aggregate variables to those shocks. More re-

cently, with the increasing availability of micro data, the focus of the literature has

gradually shifted towards understanding how different firms and households re-

spond to these aggregate macroeconomic shocks. The estimation of disaggregated

IRFs is important not only to quantify what drives the responses of aggregate

variables but also as a means to empirically test the predictions from alternative

transmission theories.

This paper studies the estimation of disaggregated IRFs in a setting where

there is latent group heterogeneity. This type of setting is characterised by two

main features: (i) each individual belongs to a group within a broadly heteroge-
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neous population and the individual IRFs are the same within a group but differ

between groups and (ii) the researcher has disaggregated data on the outcome of

interest and a strictly exogenous macroeconomic shock, but does not know either

how many groups are in the population or which group each individual belongs to.

This setting is illustrated in figure 3.A.1. The estimated individual-specific IRFs

(grey lines) are obtained from a dataset in which half of the individuals belong

to a group for which the true IRF is given by the green-solid line whilst for the

other half the true IRF is given by the red-solid line. The problem considered in

this paper is that of a researcher that observes a dataset that yields the “cloud”

of grey-lines and, based on that dataset, would like to estimate: (i) the number

of latent groups in the population, (ii) the associated group-specific IRFs and

(iii) which individuals belong to which group.

In the existing literature, the common approach to the estimation of disag-

gregated IRFs involves first grouping individuals in the sample according to some

external classification or observable explanatory variables and subsequently esti-

mating the group-specific IRFs by pooling together individuals that are assumed

to belong to the same group. For example, when studying the responses of con-

sumption expenditures to monetary policy changes households can be grouped

according to their housing tenure status (Cloyne, Ferreira and Surico, 2019) or

according to their relative position in the wealth distribution (Coibion, Gorod-

nichenko, Kueng and Silvia, 2017). This paper shows that, in the presence of

latent group heterogeneity, this ex-ante grouping approach can lead to mislead-

ing conclusions. More precisely, it is shown that there is a bias-variance tradeoff

between the IRF estimates obtained by ex-ante grouping and the IRFs estimated

for each individual separately. The IRF estimates based on the ex-ante grouping

of individuals are more precise but are subject to a form of bias, which is here

labeled misclassification bias, that arises whenever the grouping of individuals

imposed by the researcher pools together individuals that do not react in the

same way to aggregate shocks.

Motivated by this theoretical result, this paper introduces an alternative
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methodology to estimate disaggregated IRFs in the presence of latent group het-

erogeneity. The methodology uses penalized estimation techniques in order to

simultaneously estimate the unknown group-specific IRFs and classify individ-

uals to groups whereas the number of latent groups is subsequently estimated

via a BIC-type information criterion. This methodology is an application of the

classifier-Lasso (C-Lasso) framework developed in Su, Shi and Phillips (2014,

2016) to the estimation of disaggregated IRFs. The theoretical results in Su, Shi

and Phillips (2014, 2016) imply that, under a suitable set of assumptions, the

group-specific IRFs estimator based on the C-Lasso have the same asymptotic

properties as the group-oracle IRFs, that is, the IRF estimates that would result

from an ex-ante grouping of individuals that exactly matches the true unknown

grouping of individuals. Most importantly, and in sharp contrast with ex-ante

grouping approach, the C-Lasso IRF estimator achieve this property in a com-

pletely data-driven way that does not require the researcher to take a stance on

either the number of latent groups or the individual group membership.

To illustrate the finite sample performance of the C-Lasso based classification

and estimation procedure, this paper uses a Monte Carlo experiment in which

artificial datasets are generated from the same DGP used to generate the IRFs

in figure 3.A.1. For each Monte Carlo sample the C-Lasso framework is used to

estimate the IRFs both by estimating the whole moving average representation

directly and by local projections (Jordà, 2005). The results from this Monte

Carlo experiment complement the evidence presented in Su, Shi and Phillips

(2014, 2016) and illustrate the good performance of the C-Lasso in terms of

determination of the number of latent groups, classification of individuals into

different groups and estimation of group-specific IRFs in samples of similar size

than those typically used in the existing literature estimating disaggregated IRFs.

As an empirical application, the C-Lasso framework is used to revisit the

dynamic responses of firm-level debt to an aggregate investment specific technol-

ogy (IST) shock from Drechsel (2020). A theoretical prediction from the model

in Drechsel (2020) is that the debt of firms that tend to borrow against collateral
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should decrease following a positive IST shock whereas the debt of firms that

tend to borrow against their future earnings should increase. When applied to a

subset of the Drechsel (2020) dataset, the C-Lasso framework identifies two latent

groups, one for which the response of firm-level debt to an IST shock is positive

and other for which debt reacts negatively. The group of firms that increase their

debt following an IST shock is composed of firms that are relatively smaller, have

a higher share of intangible assets, tend to be earnings-based borrowers and do

not belong to the consumer staples or utilities sectors. Altogether, these findings

are in line with the theoretical predictions from Drechsel (2020), but also suggest

that, on top of whether a firm tends to borrow against earnings or collateral, the

specific sector that the firm operates also plays a role in determining whether it

will increase or decrease its debt in response to aggregate IST shocks.

Relation to the literature. This paper relates and contributes to two strands

of literature. First and foremost, it relates to the empirical macroeconomics

literature that focuses on the estimation of impulse response functions and, in

particular, to several empirical applications that estimate heterogeneous impulse

responses functions to aggregate shocks (see section 3.2.2 for a review of some of

these applications). This paper contributes to this literature in two ways. First,

by formally showing that there is a bias-variance tradeoff between the estimator

based on ex-ante individual classification and the estimator based on individual-

specific impulse responses. Second, by introducing an alternative methodology

that produces estimates that achieve a smaller mean squared error without the

need to ex-ante take a stance on individual group membership.

Second, it relates to an extensive literature on variable-coefficient models in

panel data (see, for instance, Hsiao, 2014, chapter 6) and, in particular, to panel

structure models where individuals are assumed to belong to a number of ho-

mogeneous groups within a broadly heterogeneous population and the regression

parameters are the same within each group but differ across groups. Differ-

ent approaches have been proposed to determine an unknown group structure in

modeling unobserved slope heterogeneity in panels, including finite mixture mod-
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els (e.g. Sun, 2005; Kasahara and Shimotsu, 2009; Browning and Carro, 2014),

variants of the K-means algorithm (e.g. Lin and Ng, 2012; Sarafidis and Weber,

2015; Bonhomme and Manresa, 2015) and penalized estimation techniques (e.g.

Su, Shi and Phillips, 2014, 2016; Su and Ju, 2018). This paper is the first paper

to apply the methods developed in this literature, and in particular the C-Lasso

framework developed in (Su, Shi and Phillips, 2014, 2016), to the estimation of

impulse response functions.1

Structure of the paper. Section 3.2 introduces the data generating process

and discusses of the some empirical applications it can accommodate. Section

3.3 discusses the statistical properties of the common approach used to estimate

heterogeneous impulse responses in the literature. Section 3.4 introduces a C-

Lasso based methodology to estimate heterogeneous impulse responses in the

presence of latent group heterogeneity and discusses its asymptotic properties.

Section 3.5 uses a Monte Carlo experiment to illustrate the finite sample proper-

ties of the proposed methodology. Section 3.6 applies this methodology to revisit

the Drechsel (2020) IRF estimates of firm level debt to an aggregate IST shock.

Section 3.7 concludes and discusses some promising avenues for future research.

Notation. In all that follows, bold letters are used to denote vectors or matrices

and non-bold fonts denote scalars. For a given matrix A ∈ Rm×n, A′ denotes its

transpose, ai,∗ denotes its i-th row, a∗,j denotes its j-th column and ai,j denotes

its (i, j)-th element. Moreover, 1m×n and 0m×n denote m × n matrices of ones

and zeros, 1 {·} denotes the indicator function, ‖·‖ denotes the Frobenius norm,

⊗ denotes the Kronecker product and ⊕ the direct sum of matrices. For any two

real numbers a < b, denote by Z[a,b] the set of all integers in [a, b].

1The idea of combining some of the methods developed in this literature to estimate het-
erogenous reactions to a common aggregate shock is also present in Lewis, Melcangi and Pilos-
soph (2019), where the authors use a variant of the K-means algorithm to estimate the marginal
propensity to consume from the 2008 tax rebate. Two key differences between Lewis, Melcangi
and Pilossoph (2019) and the present paper are that they focus on the estimation of the on
impact effect of a shock (i.e. the marginal propensity to consume) whilst this paper focuses on
the estimation of the whole impulse response functions and, methodologically, they build from
the K-means algorithm in Bonhomme and Manresa (2015) whereas the present paper builds
from the C-Lasso framework.
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3.2. Impulse response functions under latent group

heterogeneity

This section introduces the process that is assumed to generate the panel data set

observed by the researcher and discusses how it can accommodate some existing

empirical applications that estimate disaggregated IRFs.

3.2.1. The data generating process

In a nutshell, the assumed data generating process can be characterised as a

distributed lag model in which the coefficients are allowed to vary across different

groups of individuals. For expositional purposes, consider first the distributed

lag assumption formalised as follows,

Assumption 3.1 The researcher observes a panel data set {(yi,t,xi,t)} for i =

1, . . . , N and t = 1, . . . , T for which the data generating process can be represented

as,

yi,t = x′i,t βi + εi,t (3.1)

where x′i,t ≡ [xi,t, xi,t−1, . . . , xi,t−H ] and βi = [βi,0, . . . , βi,H ]. Moreover, let Xi =

[xi,1, . . . ,xi,T ]′ and X = {Xi}ni=1 and assume the following three conditions hold:

(a) rank (X′iXi) = H+1, ∀i; (b) E (εi,t | X) = 0, ∀i, t and (c) Cov (εi,s, εj,t | X) =

1{i = j}1{s = t}σ2.

This assumption is a panel version of a distributed lag model.2 For the

macroeconomic applications that are the focus of the present paper, the inde-

pendent variables typically consist of a macroeconomic shock and its lags, for

instance, a monetary policy shock or an aggregate productivity shock, in which

case (3.1) is a finite moving average representation and the vector βi is the im-

2See, for instance, Greene (2003, chapter 19) or Baltagi (2008, chapter 6).
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pulse response function of the i-th individual in the panel to that shock.3 In

that context, it is assumed that the researcher observes a panel containing the

dependent variable of interest for different individuals over time and a time-series

of the macroeconomic shock of interest.4 The error term in (3.1) captures any

other individual-specific factors that affect the dependent variable of interest and

it is assumed those factors are mean independent of the macroeconomic shock

and conditionally homoskedastic.5 In order to ensure the estimators considered in

this paper are well-defined, it is further assumed that the macroeconomic shock

is not perfectly collinear with any of its lags.

In addition to assumption 3.1, the individual impulse response functions to

the macroeconomic shock are assumed to follow a group pattern of the form,

Assumption 3.2 The individual specific coefficients in (3.1) follow a group pat-

tern of the form,

βi =

K0∑
k=1

αk1 {i ∈ Gk} (3.2)

where αj 6= αk for any j 6= k, ∪K0
k=1Gk = {1, 2, . . . , N} and Gj ∩Gk = ∅ for any

j 6= k.

Assumption 3.2 imposes the same form of coefficient heterogeneity that is

assumed in Su, Shi and Phillips (2016) and, in the present context, it can be

3There can be different data generating processes that can be represented by a moving aver-
age representation. For instance, it can arise from the inversion of a panel vector autoregression
or an autoregressive distributed lag model. If that is the case, the implicit assumption in (3.1)
is that the coefficients of the autoregressive component are such that that the process admits a
linear moving average representation in which the moving average coefficients decay sufficiently
fast to ensure that they can be truncated at a finite horizon H.

4Over the last three decades, the empirical macroeconomics literature has come up with
a wide range of methods to identify macroeconomic shocks, including several identification
schemes for structural VARs, narrative identification (e.g., Romer and Romer, 2004) and high-
frequency identification (e.g., Gertler and Karadi, 2015). Different methods of identifying
macroeconomic shocks are surveyed in Ramey (2016).

5For expositional purposes it is useful to focus on the parsimonious moving average rep-
resentation in (3.1). Notice, however, that all the IRF estimators presented in this paper are
either based on OLS or Penalized least squares the discussion could be extended to include addi-
tional independent variables in (3.1) including a constant, individual fixed-effects or time-fixed
effects. In those cases, one would simply need to use residualized versions of the dependent and
independent variables.
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justified by the idea that there is some form of group sparsity in the way differ-

ent individuals react to macroeconomic shocks. Put differently, assumption 3.2

represents a middle-ground between two extreme scenarios. One in which every

single individual reacts in a different way to a macroeconomic shock and other

where all individuals react in the same way to that shock. Instead, according to

(3.2), individuals can belong to one among K0 groups and the impulse responses

differ between groups but are common across individuals within the same group.

In some aspects, assumption 3.2 is flexible since not only it nests the full

heterogeneity and the no heterogeneity scenarios as special cases (when K0 = N

and K0 = 1, respectively) but also it does not impose any particular structure on

the process that determines group membership and, hence, group membership

can be an arbitrary function of both observable or unobservable variables. How-

ever, in other aspects assumption 3.2 is also restrictive, particularly, it imposes

that impulse responses of each group do not vary over time and that individuals

cannot switch between groups over time. It is crucial to notice that from the

researcher’s perspective both the true number of groups and which individuals

belong to which group are unknown and, therefore, the problem of estimating

individual impulse responses and understanding what drives their heterogeneity

is equivalent to estimating the number of groups (K0), the individual group mem-

bership ({G1, . . . , GK0}) and the group specific impulse responses (α1, . . . ,αK0).

3.2.2. Empirical applications

Before turning to the estimation of individual specific impulse responses in the

presence of latent group heterogeneity, it is useful to review some heterogeneity

analysis conducted in the existing literature both to illustrate some of the settings

where the methods developed in this paper could be applied to and to understand

what is the “common approach” in the literature to estimate disaggregated IRFs

to a common aggregate shock.
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Heterogeneous impulse responses to a monetary policy shock. There is

an extensive list of heterogeneity analysis that have been conducted to investigate

to what extent monetary policy shocks have heterogeneous effects across differ-

ent individuals, firms or regions. For instance, Coibion, Gorodnichenko, Kueng

and Silvia (2017) investigate the effects of monetary policy shocks on consump-

tion of individuals depending on their relative position in the wealth distribution,

Wong (2019) investigates whether monetary policy affects differently consump-

tion expenditures of households depending on their age whilst Cloyne, Ferreira

and Surico (2019) analyze the responses of consumption expenditures depending

on whether the household is a home owner, a renter or a mortgagor. Moreover,

some papers have investigated the responses of inflation perceived by different

individuals in the population, for instance, Cravino, Lan and Levchenko (2020)

investigate the effects of monetary policy on the inflation experienced by individ-

uals in different percentiles of the income distribution whereas Clayton, Jaravel

and Schaab (2018) find that monetary policy stabilizes sectors that matter rel-

atively more for college-educated households. Differently, Bernanke and Gertler

(1995) investigate the effects of monetary policy on different components of final

demand, Carlino and Defina (1999) investigate the effects of monetary policy on

the state-level economic activity across US states. Numerous papers have also

looked at the effects of a monetary policy shoc across different types of firms. For

instance, Gertler and Gilchrist (1994) find that small firms account for a signifi-

cantly disproportionate share of the manufacturing declines that follows tighten-

ing of monetary policy, Kashyap, Lamont and Stein (1994) find that during the

1981-82 recession bank-dependent liquidity constrained firms cut their inventories

by significantly more than their nonbank-dependent counterparts. More recently,

Ottonello and Winberry (2020) find that the investment of firms with low default

risk is the most responsive to monetary shocks, Jeenas (2019) finds that are the

firms with fewer liquid assets that tend to reduce investment relative to others

and Cloyne, Ferreira, Froemel and Surico (2020) find that younger firms paying

no-dividends adjust both their capital expenditure and borrowing significantly

145



more than older firms paying dividends in response to a monetary policy shock.

Other shocks. In the same spirit, heterogeneity analysis have been conducted

to understand the reactions of different groups of individuals or firms to other

aggregate shocks. In particular, Drechsel (2020) investigates the effects of an

aggregate investment specific technology shock on firm level debt depending on

whether firms tend to borrow against their collateral or future earnings. This

application will be revisited in section 3.6.

3.3. The common approach to estimation of het-

erogeneous impulse responses

Even though existing heterogeneity analyses focus on different dimensions, method-

ologically they mostly follow an ex-ante classification approach, that is, they first

group individuals according to some external classification or observable explana-

tory variables and then estimate and compare the resulting group specific impulse

responses. This section analyses the properties of the estimator based on this

approach and shows that in the presence of latent group heterogeneity there

is, in general, a bias-variance tradeoff between this estimator and estimating

individual-specific impulse responses.

3.3.1. Ex-ante classification and individual-specific impulse

responses

To introduce the estimator based on the ex-ante classification approach, let a

grouping scheme be denoted by G̃K which stands for any collection of K non-

empty sets satisfying ∪Kk=1G̃k = {1, 2, . . . , N} and G̃i ∩ G̃j = ∅ for any i 6= j. In

practice, the choice of individual group membership might be a function of other

observable variables (e.g. the income distribution decile that the individual be-

longs, the household house-tenure status or whether a firm is a flow or a collateral

borrower). Most importantly, G̃K is a researcher’s choice and both the number of
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groups chosen and the individual classification can differ from the true number

of groups and group membership in assumption 3.2. Given a grouping scheme

G̃K , the impulse response estimator based on the ex-ante classification approach

is defined by,

β̃i(G̃K) =
K∑
k=1

α̃k1
{
i ∈ G̃k

}
(3.3)

where,

(
α̃1(G̃K), . . . , α̃K(G̃K)

)
= arg min

a1,...,aK

1

NT

N∑
i=1

T∑
t=1

(
yi,t − x′i,t

K∑
k=1

ak1{i ∈ G̃k}

)2

(3.4)

The group estimates obtained from (3.4) are nothing more than ordinary

least squares estimates obtained from pooling all the individuals in the panel and

interacting the shock with a dummy variable for group membership. Once the

group estimates are obtained, (3.3) uses the grouping scheme to assign impulse

response estimates to each individual in the panel.

As a benchmark, it will be useful to consider the estimator of impulse re-

sponses that would be obtained if the researcher did not take a stance on the

grouping scheme and instead allowed for complete heterogeneity in the individ-

ual responses to the shock. That estimator is defined by,

(
β̂1, . . . , β̂N

)
= arg min

b1,...,bN

1

NT

N∑
i=1

T∑
t=1

(
yi,t − x′i,tbi

)2
(3.5)

where the individual-specific impulse response estimates obtained from (3.5) are

the same one would obtain by estimating the moving average representation using

the time-series for each individual in the panel separately.
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3.3.2. A bias-variance tradeoff

In the presence of latent group heterogeneity the choice between the estimator

based on the ex-ante classification approach and the estimator allowing for com-

plete heterogeneity entails a bias-variance tradeoff. This tradeoff is formalised by

the following proposition,

Proposition 3.1 Suppose assumptions 3.1 and 3.2 hold. For a given G̃K suppose

i ∈ G̃a ∩Gb for some a ∈ Z[1,K] and b ∈ Z[1,K0]. Let β̃i(G̃K) denote the estimator

obtained from (3.3) and (3.4) and β̂i denote the estimator obtained from (3.5).

Then,

E
(
β̂i

)
= βi (3.6)

E
(
β̃i(G̃K)

)
= ϕa,b βi +

K0∑
k=1
k 6=b

ϕa,kαk (3.7)

where ϕa,b ≡ E
((∑

i∈G̃a X′iXi

)−1∑
i∈G̃a∩Gb X′iXi

)
. Moreover, for any non-zero

H + 1-dimensional vector r it holds that,

r′Var
(
β̂i | X

)
r > r′Var

(
β̃i(G̃K) | X

)
r (3.8)

Proof. See appendix 3.C.

In simple terms, proposition 3.1 states that the researcher faces a fundamen-

tal tradeoff when deciding how to estimate individual impulse response functions

in the presence of latent group heterogeneity. On the one hand, disaggregating too

much could yield a set of estimated IRFs that are largely uninformative because

the variability across individuals reflects not only the latent group heterogeneity

but also a large share of sampling variability. On the other hand, grouping to-

gether individuals that do not share the same responses lead to biased impulse
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response estimates. This tradeoff is illustrated in figure 3.A.1. The estimation of

fully heterogeneous impulse responses yields the “cloud” of grey-lines from which

it is almost impossible to infer the true heterogeneity pattern, which comes from

the fact that half of the individuals in the sample have their true impulse re-

sponses given by the solid-green line whereas the other half have their impulse

response given by the solid-red line. On the other hand, if individuals were incor-

rectly grouped and the ex-ante classification approach was adopter then patterns

of heterogeneity could be mistakenly inferred from the data. For example, if all

individuals where grouped together would yield the wrong conclusion that the

individuals true IRF for all the individuals in the sample is given by the black-

dashed line and the “cloud” of grey-lines is the result of sampling variability and

not the result of heterogeneity in the true impulse responses.

Misclassification bias. For a given individual i, from (3.7) there is only one case

where β̃i(G̃K) is not biased: when all the individuals assigned to the same group

as i by the researcher indeed belong to the same latent group as individual i. This

implies that for the ex-ante classification approach to yield unbiased estimates

for all individuals in the sample requires that the ex-ante grouping of individuals

proposed by the researcher exactly matches the the true individual grouping in

assumption 3.2. Whenever this is not the case, the estimator based on the ex-

ante classification approach suffers from misclassification bias. Expression in (3.7)

states that on average the impulse responses estimated for a given individual are

equal to a matrix weighted average between the impulse response of the group

that individual belongs to and the impulse responses of other groups. For the

case where xi,t is an aggregate shock, expression (3.7) becomes,

E
(
β̃i(G̃K)

)
=
NG̃a∩Gb
NG̃a

βi +
K0∑
k=1
k 6=b

NG̃a∩Gk
NG̃a

αk (3.9)

where NG̃a
denotes the cardinality of the set G̃a and NG̃a∩Gb denotes the cardi-

nality of the set G̃a ∩ Gb. In this case, the weight assigned to each latent group

true impulse response is given by the share of individuals from that group that
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where assigned by the researcher to the same group as individual i.

Scope for efficiency gains. Given the ex-ante classification approach is prone

to suffer from a misclassification bias, a natural question is whether the gains

in precision obtained by ex-ante grouping of individuals are sufficiently large to

outweigh the risk of ending up with biased estimates. According to (3.8) at any

horizon considered the sampling variance of the IRFs obtained from the ex-ante

classification approach have smaller (or equal) variance than their counterparts

obtained from estimating fully heterogeneous IRFs. For the case where xi,t is an

aggregate shock it can be shown that,

Var
(
β̃i(G̃K) | X

)
=

1

NG̃a

Var
(
β̂i | X

)
(3.10)

In other words, by grouping together ten individuals, a relatively small num-

ber relative to the typical cross-sectional dimension in datasets used to estimate

heterogeneous impulse responses, the sampling variance of impulse responses de-

creases by 90% which suggest that, in general, the efficiency gains from pooling

individuals together can be sizable.

3.4. Impulse response estimation via the classifier-

Lasso

Motivated by the bias-variance tradeoff in proposition 3.1, this section introduces

an alternative way to estimate group-specific impulse responses that is designed

to eliminate this tradeoff without the requirement that the researcher correctly

specifies ex-ante the group membership. The estimation is an application of

the classifier-Lasso (C-Lasso) developed in Su, Shi and Phillips (2014, 2016) to

estimate group-specific impulse response functions in the presence of latent het-

erogeneity. The fundamental insight underlying the C-Lasso is that it builds on

penalized techniques to replace ex-ante classification of individuals into groups

by a data-driven way of estimating both the individual group membership and
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the number of latent groups. This section briefly reviews the C-Lasso, showing

how it can be applied to the estimation of heterogeneous impulse responses and

its asymptotic properties.

3.4.1. Determination of individual group membership

Consider the problem of determining individual group membership taking the

number of latent groups as given. First, define the following objective function

(Su, Shi and Phillips, 2014, equation 2.4),

Q(K)
NT,λ1

(b, a) =
1

NT

N∑
i=1

T∑
t=1

(
yi,t − x′i,tbi

)2
+
λ1

N

N∑
i=1

K∏
k=1

‖bi − ak‖ (3.11)

where λ1 is a tunning parameter that converges to zero as (N, T ) → ∞. Notice

that the first term on the right-hand-side of (3.11) is exactly the same objective

function that is used to obtain impulse response estimates under complete indi-

vidual heterogeneity in (3.5). The second-term on the right-had-side of (3.11) is

the distinctive feature of the C-Lasso and its mixed additive-multiplicative form

shrinks the individual impulse responses (bi) to a particular unknown group-level

parameter vector (ak). Minimising (3.11) with respect to b and a produces the

C-Lasso estimates β and α which are henceforth denoted by β̂C-Lasso and α̂C-Lasso.

Given this set of estimates, the C-Lasso group classifier is given by: i ∈ Ĝk if

β̂C-Lasso
i = α̂C-Lasso

k for some k ∈ Z[1,K], otherwise, i ∈ Ĝl for some l ∈ Z[1,K] if

||β̂C-Lasso
i − α̂C-Lasso

l || = { ||β̂C-Lasso
i − α̂C-Lasso

1 || , . . . , ||β̂C-Lasso
i − α̂C-Lasso

K || } and∑K
k=1 1{β̂C-Lasso

i − α̂C-Lasso
k } = 0.6

6This group classifier achieves in large samples the same properties as the simpler classifi-
cation rule Ĝk = {i ∈ Z[1,N ] : β̂C-Lasso

i = α̂C-Lasso
k } for k ∈ Z[1,K]. Nonetheless, the classifier

in the text is preferred since it ensures that all the individuals are classified into one of the K
groups in finite samples (see Su, Shi and Phillips, 2016, remark 2).
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3.4.2. Determination of the number of groups

The C-Lasso estimates from minimising (3.11) are obtained for a given number of

groups (K). In practice, however, the true number of latent groups is unknown

and has to be estimated along with the group membership. Following Su, Shi and

Phillips (2014, 2016) it is assumed that the true number of groups is bounded from

above by a finite integer Kmax and the number of groups is estimated through

an information criterion (IC).7 Making the dependence on K and λ1 explicit,

the group classification implied by the C-Lasso can be written as Ĝ(K,λ1) ={
Ĝ1(K,λ1), . . . , ĜK(K,λ1)

}
. The information criterion used to determine the

number of latent groups is given by Su, Shi and Phillips (2016, equation 2.10),

IC(K,λ1) = ln
(
σ̂2
Ĝ(K,λ1)

)
+ ρNT (H + 1)K (3.12)

where ρNT is a tuning parameter and σ̂2
Ĝ(K,λ1)

= 1
NT

∑K
k=1

∑
i∈Ĝ(K,λ1)

∑T
t=1

(
yi,t − x′i,tα̂Ĝk

)2

with α̂Ĝk =
(∑

i∈Ĝk

∑T
t=1 xi,tx

′
i,t

)−1 (∑
i∈Ĝk

∑T
t=1 xi,tyi,t

)
. Finally, for a given

value of the tunning parameter λ1, the number of groups is chosen such that the

IC in (3.12) is minimized, that is, K̂(λ1) = arg min16k6Kmax IC(k, λ1).

3.4.3. Post-Lasso impulse responses

Given the estimated group classification based on the C-Lasso this paper focuses

on the post-Lasso estimates of the impulse responses. For a given group Ĝk the

post-Lasso group impulse response estimates are given by α̂Ĝk and the post-Lasso

individual impulse responses are given by β̂i,Ĝk =
∑K

k=1 α̂Ĝk1
{
i ∈ Ĝk

}
.

3.4.4. Asymptotic properties

The asymptotic properties of the C-Lasso in the context of linear models are for-

mally shown in Su, Shi and Phillips (2014, 2016). Under a suitable set of assump-

7An alternative way of determining the number of latent groups is to use the residual-based
Lagrange multiplier-type test proposed by Lu and Su (2017).
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tions, the authors show that: (i) the classifier proposed in section 3.4.1 is uni-

formly consistent which, in simple terms, means that the proposed C-Lasso group

classifier classifies each individual to the correct group with probability approach-

ing 1 as (N, T )→∞ (see Su, Shi and Phillips, 2016, theorem 2.2); (ii) the selector

criterion for K proposed in section 3.4.2 is such that P
(
K̂(λ1) = K0

)
→ 1 as

(N, T ) → ∞ (see Su, Shi and Phillips, 2016, theorem 2.6) and (iii) the post-

Lasso estimator of αk defined in section 3.4.3 enjoy the asymptotic oracle prop-

erty, which means that as (N, T )→∞ it achieves the same limiting distribution

as the oracle estimator which is the group IRF estimator one would obtain if the

true group membership was known (see Su, Shi and Phillips, 2016, theorem 2.5).

3.5. Monte Carlo Experiment

This section uses a Monte Carlo experiment to inspect the finite sample perfor-

mance of the classification and estimation procedure introduced in section 3.4

when applied to estimate group-specific impulse responses in the presence of la-

tent group heterogeneity.

3.5.1. Data generating process

Each Monte Carlo sample consist of consists of a panel data {(yi,t,xt)} for i =

1, . . . , N and t = 1, . . . , T that is generated according to,

yi,t =
12∑
h=0

xt−hβi,h + εi,t (3.13)

where xt is an aggregate shock such that xt ∼ N (0, 1) and i.i.d. across t, the

idiosyncratic shocks εi,t ∼ N (0, 1) are i.i.d. across i and t and xt and εi,t are

mutually independent. There are two latent groups (K0 = 2) and the group-

specific impulse responses are parametrised using a Gaussian basis function as in
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Barnichon and Mathes (2018). In particular,

βi,h =


0.15× exp

{
−
(
h−4
25

)2
}
, if i ∈ G1

−0.15× exp
{
−
(
h−4
25

)2
}
, if i ∈ G2

(3.14)

which results in the symmetric impulse responses for groups 1 and 2 depicted in

figure 3.A.1. Individuals are assigned to group 1 if they are indexed by an odd

number and assigned to group 2 if they are indexed by an even number so that,

for each sample generated, half of the individuals belong to each group. Sample

sizes of size N = {100, 200} and time spans T = {40, 80} are considered.8 For

each possible combination of N and T , 250 Monte Carlo samples are generated.

3.5.2. Estimation and Classification

For each Monte Carlo sample generated, two alternative ways of estimating the

impulse responses are considered. The first one is by focusing directly on the

moving average representation and, in that case, the C-Lasso objective function

is given by (3.11) with x′i,t = [xt, xt−1, . . . , xt−H ]. The second way of estimating

impulse responses is trough the use of local projections (Jordà, 2005) which use

a sequence of regressions of yi,t on xi,t−h to estimate the impulse response for

individual i at horizon h. The case of local projections can be accommodated

in the C-Lasso framework described in section 3.4 by replacing (3.11) by the

following modified C-Lasso objective function,

Q̃(K)
NTH,λ1

(b, a) =
1

N(H + 1)T

N∑
i=1

H∑
h=0

T∑
t=1

(yi,t − xi,t−hbh+1,i)
2+
λ̃1

N

N∑
i=1

K∏
k=1

‖bi−ak‖

(3.15)

where bh+1,i is the (h + 1, i)-th element of the matrix b and λ̃1 is a tunning

8Even a value of T = 80 is still relatively small compared to what is typically used in the
literature using local projections to estimate impulse responses. As documented by Herbst and
Johannsen (2020) the median value for T across the 100 “most relevant” papers citing Jordà
(2005) in Google scholar is around 95.
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parameter that tends to zero as (N, T ) → ∞.9 The local projections C-Lasso

estimates of β and α are obtained by minimising (3.15) with respect to b and a.

Given these estimates the individual classification, determination of number of

groups and post-Lasso estimates are obtained in an analogous way as described in

sections 3.4.1 to 3.4.3, except the tunning parameters that are adjusted to reflect

the effective number of observations per cross-sectional unit that is different for

the local projections case.

Estimation of impulse responses through local projections has become in-

creasingly popular over the last decade. Among the advantages of local projec-

tions cited in Jordà (2005) are their flexibility and the fact that they are more

robust to misspecification of the moving average representation if it arises from

the inversion of a misspecified vector autoregression. Notice, however, that in the

present Monte Carlo experiment the moving average representation is not mis-

specified and, hence, it is not expected that the impulse responses estimated from

local projections to display better statistical properties than those estimated di-

rectly from the moving average representation. The purpose of including impulse

response estimation through local projections in the present exercise is simply to

illustrate that they can be accommodated by the C-Lasso framework.

Tuning parameters. Determination of the number of groups and individual

classification requires the researcher to specify the tuning parameters λ1 in (3.11)

and ρNT in (3.12). The assumptions on λ1 and ρNT needed to derive the asymp-

totic properties highlighted in section 3.4.4 are satisfied for any λ1 such that

λ1 ∝ T−a for any a ∈ (0,−1/2) and any ρNT that can be written as ρNT ∝ (NT )−b

for any b ∈ (0, 1). Even though asymptotically the choice of the tuning param-

eters is irrelevant as long as they satisfy these conditions, in finite samples their

choice can be crucial. In this Monte Carlo experiment the values of the tuning

9The modification needed to estimate impulse responses through local projections using
the C-Lasso framework is more easily seen in matrix form. Let Xi be defined as in assump-
tion 1.1 and yi = [yi,1, . . . , yi,T ]′. The first term on the right-hand-side of (3.11) is given by

1
NT

∑N
i=1 (yi −Xibi)

′
(yi −Xibi). Estimation through local projections simply requires re-

placing this term by 1
NT̃

∑N
i=1

(
ỹi − X̃ibi

)′ (
ỹi − X̃ibi

)
where T̃ = (H+ 1)T , ỹi = 1N×1⊗yi

and X̃i = ⊕H+1
j=1 x∗,j and x∗,j denotes the j-th column of Xi.
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parameters used to estimate impulse responses through the moving average repre-

sentation are λ1 = cλs
2
Y T
−1/3 and ρNT = 2

3
(NT )−

2
3 where s2

Y denotes the sample

variance of yi,t and cλ is set equal to 2.10,11 For the estimation via local projections

the tuning parameters are adjusted to reflect the effective number of observations

per cross-sectional unit, that is, λ̃1 = c̃λs
2
Y T̃
−1/3 and ρ̃NT = 2

3
(NT̃ )−

2
3 where c̃λ

is equal to 2 and T̃ = (H + 1)T .

3.5.3. Monte Carlo Results

The results from the Monte Carlo experiment are reported in tables 3.B.1 to 3.B.3

and in figures 3.A.2 and 3.A.3. They can be summarised as follows:

Determination of the number of latent groups. For each DGP considered,

table 3.B.1 shows the frequency that different number of groups is chosen across

Monte Carlo replications. When the number of groups is based on the estimation

of the moving average representation the IC-based group determination procedure

always identifies the correct number of latent groups except in 1% percent of the

samples for N = 100 and T = 40 where the IC picks one latent group. When the

number of groups is based on the estimation of local projections the performance

of the group determination procedure deteriorates, specially for the two DGPs

with T = 40 where the IC selects one latent group more often than two latent

groups. As expected, as N and T increase the frequency that the true number of

latent groups increases and, in particular, for N = 200 and T = 80 the IC selects

the correct number of latent groups in 82% of the Monte Carlo samples.

10Su, Shi and Phillips (2016) use cλ ∈ [0.125, 0.25, 0.5, 1, 2] and select the value of cλ jointly
with the number of latent groups k to minimise the information criterion in (3.12). For a small
number of Monte Carlo replications it was found that jointly determining cλ with the number
of groups did not affect the results whilst substantially increasing the computational costs.
For this reason, in each Monte Carlo replication cλ is kept fixed equal to 2. In the empirical
application in section 3.6, the value of cλ is grid search over the same grid used in Su, Shi
and Phillips (2016) and jointly chosen with the number of groups to minimize the information
criterion.

11For linear models Su, Shi and Phillips (2016) use ρNT = 2
3 (NT )−

1
2 . In numerical ex-

periments, for the DGP here considered I found this value for the tuning parameter tends to
over-select number of groups that is smaller than the true number of groups. I have experi-
mented for values ρNT = c1(NT )−c2 for c1, c2 ∈ (0, 1) and found that ρNT = 2

3 (NT )−
2
3 tends

to select the correct number of groups with a higher frequency.
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Individual classification. The average individual misclassification rates across

Monte Carlo replications for each DGP is reported in figures 3.A.2 and 3.A.3.

This figure consists of the share of individuals that are assigned to a group they

do not belong averaged across Monte Carlo samples. From figure 3.A.2, when

impulse responses are estimated through the moving average representation this

figure is under 4% for T = 40 and under 1% for T = 80 which is suggestive that

the classifier proposed in 3.4.1 tends to classify individuals to the correct group in

finite samples too. From figure 3.A.3, when estimating impulse responses through

local projections are of the order of 30% for T = 40% and of the order of 10%

when T = 80. This inferior performance for the local projections case is justified

by the fact that coefficient estimates from local projection regressions have much

higher sampling variability since the error term in those regressions includes not

only the original error term from the moving average representation (εi,t) but

also all the other leads and lags that are not included.12 With higher sampling

variability the estimated individual impulse responses for individuals from group

1 (group 2) can end up being closer to the impulse response from group 2 (group

1), and in those cases when applying the classifier leads that individual to be

assigned to the wrong group.

Post-Lasso impulse responses. The estimated post-Lasso impulse responses

are plotted against the true group impulse responses in figures 3.A.2 and 3.A.3.

For the case where impulse responses are estimated directly through the mov-

ing average representation (figure 3.A.2) the estimated impulse responses almost

overlap the true impulse responses which indicates the absence of bias. For the

case where T = 40 there is some small discrepancies that can be justified by the

slightly higher misclassification rate than for the T = 80 case. For the case of

impulse responses estimated via local projections (figure 3.A.3), there is some

bias specially for T = 40 where the misclassification rate is of the order of 30%,

12Notice that the true data generating process is given by yi,t =
∑12
h=0 xt−hβi,h + εi,t.

For a given horizon h, the local projection regression is given by yi,t = xt−hβi,h + ε̃i,t where

ε̃i,t = εi,t+
∑12
j 6=h xt−jβi,j . Since the aggregate shocks are mean zero and iid, the fact that they

are omitted does not cause bias or inconsistency in the local projection estimates of impulse
responses but it does increase their sampling variance vis-a-vis the estimates obtained through
the estimation of the moving average representation.
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however, and as expected from (3.9), the bias substantially decreases for the

(N, T ) = (200, 80) case when the average misclassification rate drops to 7%.

Moreover, the difference between the 90th and the 10th percentiles of the sam-

pling distribution is always smaller in figure 3.A.2 than in 3.A.3 which echoes

the fact that the sampling variance of the impulse responses estimated via local

projections is higher than those estimated directly through the moving average

representation (see footnote 12). The analysis of figures 3.A.2 and 3.A.3 is com-

plemented with the figures in tables 3.B.2 and 3.B.3 that compare bias, variance

and mean squared error for the impulse response estimates for the two groups

at horizon h = 4 (i.e. the peak of the impulse responses). The figures in both

tables numerically illustrate the theoretical results from proposition 3.1. The full

heterogeneity estimator has essentially no bias but a higher variance than the

post-Lasso estimator, whilst the post-Lasso estimator has some bias, since in fi-

nite samples it does not achieve perfect classification of individuals into groups,

but a smaller variance. Most importantly, in MSE terms the post-Lasso estimator

is always preferred to the full heterogeneity one. In particular, for the estimation

through the moving average representation the decrease in MSE of the post-Lasso

estimator vis-à-vis the full heterogeneity over one full order of magnitude. For

the estimation through local projection the MSE of the post-Lasso estimator is

one to two thirds smaller than the MSE of the full heterogeneity estimator.

3.6. Aggregate IST shocks and Firm level debt

revisited

This section uses the C-Lasso classification and estimation procedure introduced

in section 3.4 to revisit the estimation of the IRFs of firm-level debt to an aggre-

gate investment specific shock originally studied by Drechsel (2020).
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3.6.1. Background

Motivated by microeconomic evidence on corporate borrowing in the US that

unveals a direct connection between firms’ current earnings and their access to

debt, Drechsel (2020) studies the macroeconomic implications of the so-called

earnings-based borrowing constraints. First, in a prototype business cycle model

the author shows that depending on the type of borrowing constraint used firm-

level debt responds differently to a permanent investment shock. More precisely,

in a setting where firms face a standard collateral constraint their debt decreases

in response to a positive investment investment shock whereas if they face an

earnings constraint their debt increases following that same shock (see Drechsel,

2020, figure 2).

To empirically test this model prediction, the author uses a time-series of

investment specific technology (IST) shocks identified from an SVAR using long-

run restrictions combined with a firm-level panel containing firm characteristics

and information on the types of covenants included in their debt contracts.13 The

baseline specification to test the model predictions is given by,

log (bi,t+h) = αh + βhûIST,t + γXi,t−1

+ βearnh 1i,t,earn × ûIST,t + αearnh 1i,t,earn (3.16)

+ βcollh 1i,t,earn × ûIST,t + αcollh 1i,t,coll + δt+ ηi,t+h

where bi,t is the quarterly level of firms’ debt liabilities, 1i,t,earn and 1i,t,coll are

dummy variables that capture whether the firm is subject to earnings-related

covenants or uses collateral, ûIST,t is the IST shock identified based on long-

run restrictions, t is a linear time trend and Xi,t−1 is vector of controls that

includes log (bi,t−1), 3-digit industry-level fixed effects, firm size, firm-level real

13This panel is obtained by merging the Dealscan dataset with Compustat data. For more
details on the construction of this dataset and which variables are used in which specification
refer to section 4.3.2 in Drechsel (2020).
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sales growth and a variable constructed from SVAR residuals that is meant to

capture macroeconomic shocks other than investment shocks.14 At a given hori-

zon h, the impulse response of an “earnings-based borrower” (“collateral-based

borrower”) is given by the sum of the coefficients βh + βearnh (βh + βcollh ) and,

hence, in terms of regression coefficients the model predictions to be tested are

βh + βearnh > 0 and βh + βcollh < 0.

The results based on (3.16) are presented in Drechsel (2020, figure 7) and

are largely in line with the model implied impulse responses. In the data, across

a wide range of specifications, debt of earnings-based borrowers reacts positively

to an IST shock whereas debt for collateral-based borrowers declines in response

to that same shock.

3.6.2. Revisiting the responses of debt to IST shock

Following the bulk of the existing literature that has conducted heterogeneity

analysis on impulse response functions, Drechsel (2020) adopts the ex-ante clas-

sification approach described in section 3.3. Following the analysis of micro data

on firm-level debt issuances and theoretically grounded by model predictions, the

author groups firms depending on whether they are “earnings-based borrowers”

or “collateral-based borrowers” and estimates the impulse responses to an IST

shocks for each of these two groups of firms based on (3.16). In light of proposition

3.1, this approach can be subject a misclassification bias if the ex-ante grouping

of firms, based on whether their borrow against collateral or earnings, does not

coincide with the true grouping that underlies the heterogeneity firm-level im-

pulse responses observed in the data. To investigate whether this is the case this

section re-estimates the impulse responses of firm level debt to an IST shock using

the C-Lasso classification and estimation procedure proposed in section 3.4. In

14More specifically, 1i,t,earn is equal to 1 if a given firm issues a loan with at least one
earnings covenant and 1i,t,earn is equal to one if the debt issued by the firm is secured by
specific assets.
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order to do so, the following moving average version of (3.16) is considered,

b̃i,t =
H∑
h=0

βi,h ˜̂uIST,t + εi,t (3.17)

where b̃i,t denotes the residuals of a regression of log (bi,t) on a constant and

a linear time trend and, similarly, ˜̂uIST,t denotes the residuals of ûIST,t on a

constant and a linear time trend. The identified IST shock is assumed to be

strictly exogenous. Since all the theoretical results for the C-Lasso are derived

for a balanced panel and all the empirical applications in Su, Shi and Phillips

(2016) are also focused on balanced panels, specification (3.17) is estimated using

the C-Lasso approach based on a balanced version of the Drechsel (2020) dataset.

The final balanced panel contains 746 firms and 76 quarters spanning the period

from 1997Q1 to 2015Q4.15

3.6.3. Results

Number of latent groups and post-Lasso IRFs. As illustrated in figure

3.A.4, the IC-based group determination procedure identifies two-latent groups.

The post-Lasso IRF estimates for each of these groups along with firm-specific

IRFs and the IRF estimated by pooling all the firms are depicted in figure 3.A.5.

In line with the theoretical predictions in Drechsel (2020), one of the two latent

groups responds positively to an IST shocks whilst the second group responds

negatively. In addition, two points are also worth noting from figure 3.A.5. First,

there is significant heterogeneity among individual-specific impulse responses and

without any ex-ante theoretical reason to group individuals it would be difficult

to identify the group pattern identified by the C-Lasso just by looking at the

cloud formed by estimated individual IRFs. Second, despite the differences in

the specifications (3.16) and (3.17) and the sample composition, it is reassuring

15To reach this balanced panel from the original Drechsel (2020) dataset, I first exclude the
12 periods of the dataset that are lost due to the lagging of the IST shock then, on the resulting
sample, I remove all the firms that have missing values of debt for any quarter between 1997Q1
to 2015Q4.
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to see that the pooled IRF in figure 3.A.5 has the same shape as the pooled

impulse responses depicted in figure 6 of Drechsel (2020), in which the response

of debt is increasing up until 2 years after the shock and then starts declining.16

Firm characteristics across the two groups. Despite the two latent groups

and their associated responses being in line with predictions from Drechsel (2020),

the most important aspect to be tested is whether indeed the group that responds

positively to an IST shock contains a disproportionately higher share of earnings-

based borrowers vis-à-vis the group that responds negatively. In total there are

746 firms, 224 of which where classified into the “positive response group” (group

1) whereas the remaining 522 where classified into the “negative response group”

(group 2). Table 3.B.4 looks at four different firm characteristics across these

two groups. Panel A looks at the relative proportions of earnings and collateral

borrowers across the two groups. To compute these proportions a firm is classified

as earnings-based borrower if over the whole sample it has more earnings-based

debt issuances and it is classified as a collateral-based borrower if over the whole

sample it has more collateral-based debt issuances than earnings based ones.17

The majority of firms in both groups are earnings-based borrowers, however,

in line in the theoretical predictions in Drechsel (2020) the share of earnings-

borrowers is larger in the group that responds positively to an IST shock although

the difference is not statistically significant. Panel B looks at the two measures

of the share of the intangible assets as a share of total assets. Theoretically, one

would expect firms that have larger share of intangible assets to borrow more

against earnings since intangible assets cannot be used as collateral and, hence,

16Despite the similar shape of the IRFs there are some differences in terms of magnitudes.
The on impact response from the pooled specification in Drechsel (2020) is zero and the peak
of the response, that occurs 7 quarters after the shock, is around 2.5%. In figure 3.A.5, the on
impact response of debt is roughly -2% whereas the peak response is almost 6%.

17Notice this criteria is slightly different than the one used in Drechsel (2020) since the
dummies 1i,t,earn and 1i,t,coll are only defined for quarters where a debt issuance for firm i
appears in the Dealscan dataset. These dummies are defined relative to a specific debt issuance
and, hence, they can vary over time (e.g. a given firm can very well issue debt against collateral
in a given date and issue another debt contract with earnings covenants in other date). To
compute the shares reported in Panel A of table 3.B.4 a firm is classified as an earnings-
based borrower if

∑T
t=1 1i,t,earn >

∑T
t=1 1i,t,coll and classified as a collateral-based borrower

if
∑T
t=1 1i,t,earn <

∑T
t=1 1i,t,coll. Otherwise, if

∑T
t=1 1i,t,earn =

∑T
t=1 1i,t,coll the firm is not

classified.
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the larger the share of intangible assets the more likely the firm should be to

respond positively to an IST shock. Qualitatively this is indeed the case, as the

average of both measures of intangibility are higher for group 1, yet the difference

is quantitatively small and not statistically significant. Panel C looks at three

different measures of firm size as in Dang, Li and Yang (2018). In theory, one

would expect smaller and younger firms to have less collateral to pledge and,

hence, to borrow more against their future earnings. Again this is confirmed in

the data, since for the three measures considered the average firm size is smaller in

the group 1 and the difference is statistically significant at the 10% level when size

is measured by firm’s total assets. Finally, panel D looks at sectorial composition

of each of the two groups. In this respect, group 1 has a statistically significant

higher share of firms in the materials and industrial sectors whereas group 2 has

a significantly higher share of firms in the consumer staples and utilities sectors.

Explaining group membership. To estimate the impact of each of the vari-

ables in table 3.B.4 on the probability that a given firm belongs to each of the two

groups, a Logit model is estimated using as dependent variable a dummy that is

equal to 1 if the firm belongs to group 1. The average marginal effects of each

variable across different specifications are reported in table 3.B.5. The results in

this table when including each group of explanatory variables at a time (columns

1 to 4) largely corroborate the conclusions based on the analysis of group charac-

teristics in table 3.B.4. The specification in column 5 includes all the covariates

at the same time. In this specification the effects of the first three variables are

quantitatively small and not statistically significant. The only two statistically

significant covariates are the dummies for the consumer staples and utilities sec-

tors. In particular, a firm that is classified as consumer staples (utilities) is, on

average, 40 p.p. (21 p.p.) less likely to belong to the group for which debt in-

creases following an IST shock. In summary, the group that responds positively

to an IST shock is composed by firms that: (i) that are relatively smaller; (ii)

have higher share of intangible assets, (iii) tend to be earnings-based borrowers
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and (iv) do not belong to the consumer staples or utilities sectors.18 This findings

are largely in line with the theoretical predictions in Drechsel (2020), but also

suggest that, on top of whether a firm tends to borrow against earnings or col-

lateral, the specific sector that the firm operates also plays a role in determining

whether it will respond positively or negatively to an aggregate IST shock.19

3.7. Concluding remarks and future research

This paper studied the estimation of heterogeneous impulse responses in the

presence of latent group heterogeneity. It showed that the common approach

to estimate disaggregated IRFs based on the ex-ante grouping of individuals

according to some external criteria or observable explanatory variables can lead

to misleading conclusions. More precisely, the choice between an estimator of

group-specific impulse responses based on an ex-ante grouping of individuals and

estimating individual-specific impulse responses entails a bias-variance tradeoff.

Motivated by this tradeoff, this paper proposed an alternative methodology based

on the C-Lasso to estimate group-specific impulse responses. A Monte Carlo

experiment demonstrated good finite-sample performance of this methodology

both in classification of individuals into different groups and estimation of group

specific impulse responses. An application of this methodology to study firm level

debt responses to an aggregate IST shock based on Drechsel (2020) identified two

latent groups. One group of firms for which firm-level debt responds positively

to an IST shock and other for which the response is negative. The group of

18The type of exercise explaining group membership is in spirit to a principal component
analysis where the data alone selects the orthogonal factors that explain the correlations ob-
served in the data and ex-post the researcher searches for appropriate names for these factors.
In the present context, the C-Lasso approach selects the number of groups, the individual clas-
sification and the group-specific IRFs based solely on the data and it is based on the analysis
of individual characteristics across characteristics that a name for each group is determined.

19In addition to the specification in (3.17), an alternative specification based on local pro-
jections is also estimated. In that specification, the IC-based group determination procedure
identifies only one latent group. Given the superior performance of the moving average rep-
resentation in identifying the correct number of groups in the Monte Carlo experiment, the
discussion in the main text focuses on the moving average representation. Nonetheless, the es-
timates of the local projection specification conditional on two latent groups yields post-Lasso
IRFs that are similar to the post-Lasso IRFs depicted in figure 3.A.5. Moreover, the group clas-
sification based on the local projection specification has an overlap of 91% with the individual
classification based on the moving average representation.
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firms for which debt increases in response to a positive IST shock is composed by

firms that are relatively smaller, have higher share of intangible assets, tend to be

earnings-based borrowers and do not belong to the consumer staples or utilities

sectors.

I conclude by highlighting two dimensions along which the results from the

present paper can be extended and applied. On the methodological side, the

methodology proposed could be extended to include the possibility that the shocks

are used as instruments and a more thorough Monte Carlo study could be con-

ducted to search for values of the fine tuning parameter that improve finite-sample

performance in terms of group determination when using local projections. On

the applications front, the methodology here introduced could be used to either

test alternative transmission channels from aggregate shocks to the cross-section

(in the spirit of the application in section 3.6) or to identify the most impor-

tant dimensions that drive heterogeneous responses to aggregate shocks and use

that information to inform the theoretical modeling of DSGE models featuring

heterogeneity across firms and/or households.
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3.A. Figures

Figure 3.A.1: Heterogeneous IRFs under latent group heterogeneity

0 2 4 6 8 10 12

Horizon (h)

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Im
p
u
ls
e
R
es
p
on

se
F
u
n
ct
io
n
s
(β

i,
h
=

∂
y i

,t
+
h
/∂

x
i,
t)

Estimated individual IRFs
Estimated pooled IRF
True IRF for group 1
True IRF for group 2

The plot is generated based on artificially generated panel data set with 200 individuals and
40 time periods. Half of the individuals have their true impulse responses given by the green
line and the other half by the red line. The grey lines are individual-specific estimated impulse
responses. The dashed-black line is the estimated impulse response obtained by pooling all the
individuals and ignoring coefficient heterogeneity. The data generating process is described in
section 3.5.1.
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Figure 3.A.2: Post-Lasso IRFs based on moving average representation
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The solid lines are the true impulse responses for each group as defined in (3.14). The hol-
low circles represent the means of the sampling distribution of post-Lasso impulse response
computed across Monte Carlo replications. The vertical line contains the interval from the
10th to 90th percentile of the post-Lasso impulse response estimates computed across Monte
Carlo replications. For each Monte Carlo sample the misclassification rate is computed as
1
N

∑N
i=1(1{i ∈ G1 ∩ Ĝ2} + 1{i ∈ G2 ∩ Ĝ1}) and the misclassification rates reported are the

average misclassification rate across Monte Carlo samples.
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Figure 3.A.3: Post-Lasso IRFs based on local projections
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The solid lines are the true impulse responses for each group as defined in (3.14). The hol-
low circles represent the means of the sampling distribution of post-Lasso impulse response
computed across Monte Carlo replications. The vertical line contains the interval from the
10th to 90th percentile of the post-Lasso impulse response estimates computed across Monte
Carlo replications. For each Monte Carlo sample the misclassification rate is computed as
1
N

∑N
i=1(1{i ∈ G1 ∩ Ĝ2} + 1{i ∈ G2 ∩ Ĝ1}) and the misclassification rates reported are the

average misclassification rate across Monte Carlo samples.
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Figure 3.A.4: Group determination for Drechsel (2020) dataset
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Figure 3.A.5: Post-Lasso IRFs of firm-level debt to IST shock
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The solid green and red lines are the estimated post-Lasso impulse responses for the two latent
groups identified in the Drechsel (2020) dataset. The dashed black line plot the impulse response
obtained by pooling all the firms together. Each grey line plots a firm-specific estimated impulse
response function. There is a total of 746 firms of which 224 are classified as belonging to group
1 and 522 are classified as belonging to group 2.
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3.B. Tables

Table 3.B.1: Frequency of selecting K = 1, . . . , 5 when K0 = 2

Moving Average estimation

N T 1 2 3 4 5

100 40 0.01 0.99 0 0 0

100 80 0 1 0 0 0

200 40 0 1 0 0 0

200 80 0 1 0 0 0

Local Projection estimation

N T 1 2 3 4 5

100 40 0.59 0.3 0.11 0 0

100 80 0.3 0.67 0.03 0 0

200 40 0.41 0.29 0.29 0.01 0

200 80 0.1 0.82 0.08 0 0

For each DGP identified by a combination of N and T in the first two columns, this table reports
1

250

∑250
m=1 1{K̂m = k} where K̂m is the number of groups that minimizes the information

criterion defined in (3.12) for the m-th Monte Carlo sample. In the top panel the C-Lasso
estimates are obtained from minimising (3.11) whereas in the bottom panel they are obtained
from minimising (3.15).
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Table 3.B.2: βi,4 estimators based on Moving Average representation

Group 1

DGP Full Heterogeneity Post Lasso Group Oracle

N T Bias Var MSE Bias Var MSE Bias Var MSE

100 40 0.0015 0.0359 0.0361 -0.0084 0.0058 0.0059 0.0015 0.0008 0.0008

100 80 0.0006 0.0152 0.0153 -0.0018 0.0015 0.0015 0.0006 0.0003 0.0003

200 40 -0.0009 0.0379 0.038 -0.0104 0.0055 0.0056 -0.0009 0.0003 0.0004

200 80 0.0003 0.0151 0.0152 -0.0016 0.0012 0.0012 0.0003 0.0002 0.0002

Group 2

DGP Full Heterogeneity Post Lasso Group Oracle

N T Bias Var MSE Bias Var MSE Bias Var MSE

100 40 0.0001 0.0355 0.0357 0.0099 0.0026 0.0027 0.0001 0.0007 0.0007

100 80 0.0022 0.0153 0.0153 0.0045 0.0005 0.0005 0.0022 0.0004 0.0004

200 40 -0.0006 0.0381 0.0383 0.0089 0.0023 0.0024 -0.0006 0.0004 0.0004

200 80 -0.0003 0.0153 0.0154 0.0016 0.0003 0.0003 -0.0003 0.0001 0.0001

The Full Heterogeneity estimator is obtained as the minimizer of (3.5), the Post Lasso estimator is obtained as described in section 3.4.3 and the Group Oracle is

obtained as the ex-ante classification estimator from (3.3) and (3.4) under the true group membership. For a given estimator β̂i,4: (i) the bias column for group j is

computed as 1
NGj

∑
i∈Gj

Bi,4 where Bi,4 = 1
250

∑250
m=1(β̂mi,4 − βi,4) and β̂mi,4 denotes the estimates for βi,4 obtained from the m-th Monte Carlo sample of the respective

DGP; (ii) the variance column for group j is computed as (1/NGj )
∑
i∈Gj

Vi,4 where Vi,4 = (1/250)
∑250
m=1(β̂mi,4 − βi,4)2 where βi,4 = 1

250

∑250
m=1 β̂

m
i,4 and (iii) the MSE

column for group j is computed as (1/NGj
)
∑
i∈Gj

(
B2
i,4 + Vi,4

)
.
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Table 3.B.3: βi,4 estimators based on Local Projections

Group 1

DGP Full Heterogeneity Post Lasso Group Oracle

N T Bias Var MSE Bias Var MSE Bias Var MSE

100 40 0.0003 0.0307 0.0308 -0.0748 0.0094 0.015 0.0003 0.0054 0.0054

100 80 -0.0024 0.0162 0.0162 -0.0335 0.0067 0.0078 -0.0024 0.0034 0.0034

200 40 -0.0001 0.0316 0.0317 -0.0744 0.0096 0.0151 -0.0001 0.0059 0.0059

200 80 0.0131 0.0157 0.0159 -0.0041 0.0057 0.0057 0.0131 0.003 0.0032

Group 2

DGP Full Heterogeneity Post Lasso Group Oracle

N T Bias Var MSE Bias Var MSE Bias Var MSE

100 40 -0.0002 0.0315 0.0316 0.0748 0.0178 0.0234 -0.0002 0.0057 0.0057

100 80 0.0009 0.0161 0.0162 0.0321 0.0101 0.0111 0.0009 0.0033 0.0033

200 40 -0.003 0.0311 0.0312 0.0713 0.0181 0.0232 -0.003 0.0056 0.0056

200 80 -0.0127 0.0155 0.0158 0.0045 0.0077 0.0077 -0.0127 0.0031 0.0033

The Full Heterogeneity estimator is obtained as the minimizer of (3.5), the Post Lasso estimator is obtained as described in section 3.4.3 and the Group Oracle is

obtained as the ex-ante classification estimator from (3.3) and (3.4) under the true group membership. For a given estimator β̂i,4: (i) the bias column for group j is

computed as 1
NGj

∑
i∈Gj

Bi,4 where Bi,4 = 1
250

∑250
m=1(β̂mi,4 − βi,4) and β̂mi,4 denotes the estimates for βi,4 obtained from the m-th Monte Carlo sample of the respective

DGP; (ii) the variance column for group j is computed as (1/NGj
)
∑
i∈Gj

Vi,4 where Vi,4 = (1/250)
∑250
m=1(β̂mi,4 − βi,4)2 where βi,4 = 1

250

∑250
m=1 β̂

m
i,4 and (iii) the MSE

column for group j is computed as (1/NGj
)
∑
i∈Gj

(
B2
i,4 + Vi,4

)
.
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Table 3.B.4: Firm summary statistics for the two IRF groups

Panel A: Share of Collateral and Flow Borrowers

Variable Group 1 Group 2 p-value

Collateral Borrowers 17.05% 22.14% 0.15

Earnings Borrowers 82.95% 77.86% 0.15

Panel B: Average share of Intangible Assets

Variable Group 1 Group 2 p-value

Intangible Assets/Total Assets 17.44% 16.89% 0.67

Goodwill/Total Assets 13.31% 12.43% 0.41

Panel C: Firm Size (in billions USD)

Variable Group 1 Group 2 p-value

Total Assets 6.64 9.85 0.05

Total Sales 1.73 2.01 0.54

Market capitalization 7.86 9.44 0.47

Panel D: Group Composition by GICS Sectors

Sector Group 1 Group 2 p-value

Energy 7.14% 6.32% 0.69

Materials 15.63% 8.24% 0.01

Industrials 30.80% 20.88% 0.01

Consumer Discretionary 16.07% 19.92% 0.20

Consumer Staples 3.57% 9.77% 0.00

Health Care 8.48% 6.13% 0.27

Information Technology 10.71% 8.24% 0.30

Communication Services 0.89% 1.72% 0.33

Utilities 5.80% 18.58% 0.00

The columns Group 1 and Group 2 contain the average value of each variable computed across
firms that are classified as belonging to groups 1 and 2 by the C-Lasso. The p-value column
contains the p-value for the null hypothesis that the mean of a variable in group 1 is equal to
the mean in group 2 against a two-sided alternative. The GICS sectors Financials and Real
Estate were excluded from the table since there is only one firm in the Financial sector and two
firms for real estate in the final sample.
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Table 3.B.5: Average marginal effects on group membership

(1) (2) (3) (4) (5)

Flow Borrower 0.069 0.042

(0.049) (0.049)

Intangibles share 0.000 0.000

(0.001) (0.001)

Total Assets -0.002∗ -0.002

(0.001) (0.002)

Materials 0.085 0.050

(0.073) (0.085)

Industrials 0.035 -0.004

(0.065) (0.077)

Consumer Disc. -0.084 -0.109

(0.069) (0.079)

Consumer Staples -0.240∗∗ -0.396∗∗∗

(0.094) (0.137)

Health Care 0.023 -0.033

(0.081) (0.100)

IT 0.010 -0.047

(0.076) (0.091)

Communication -0.172 -0.076

(0.164) (0.181)

Utilities -0.271∗∗∗ -0.212∗∗

(0.080) (0.093)

N 578 745 746 746 577

Each column reports the estimated average marginal effects for a Logit specification where the
dependent variable is a dummy variable equal to one if the firm belongs to group 1 and 0 if if
belongs to group 2. Standard errors in parenthesis. ∗, ∗∗ and ∗∗∗ denote marginal effects that
are significant at 10%, 5% and 1% significance levels, respectively.
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3.C. Proof of results in the main text

Proof of Proposition 3.1. Consider first the fully heterogeneous estimator,

β̂i = (X′iXi)
−1

X′iyi (3.18)

where yi ≡ [yi,1, . . . , yi,T ]′. The proof of (3.6) is a standard textbook proof

of OLS unbiasedness under the Gauss-Markov assumptions and it follows that

Var
(
β̂i | X

)
= σ2 (X′iXi)

−1.20 The estimator based on the ex-ante group classi-

fication approach defined in (3.3) and (3.4) is given by,

β̃i(G̃K) =

∑
i∈G̃a

X′iXi

−1 ∑
i∈G̃a

X′iyi (3.19)

To derive (3.7) let εi ≡ [εi,1, . . . , εi,T ]′ and use assumptions 1.1 and 3.2 to obtain,

β̃i(G̃K) =

∑
i∈G̃a

X′iXi

−1∑
i∈G̃a

X′i (Xiβi + εi)



=

∑
i∈G̃a

X′iXi

−1∑
i∈G̃a

X′iXiβi +
∑
i∈G̃a

X′iεi



=

∑
i∈G̃a

X′iXi

−1∑
i∈G̃a

K0∑
k=1

X′iXiαk1{i ∈ Gk}+
∑
i∈G̃a

X′iεi



=

∑
i∈G̃a

X′iXi

−1
 ∑
i∈G̃a∩Gb

X′iXiβi +

K0∑
k=1
k 6=b

∑
i∈G̃a∩Gk

X′iXiαk +
∑
i∈G̃a

X′iεi


(3.20)

20See, for instance, Hayashi (2000, section 1.3).
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Define ϕ̃a,b ≡

( ∑
i∈G̃a

X′iXi

)−1( ∑
i∈G̃a∩Gb

X′iXi

)
and simplify (3.20) to obtain,

β̃i(G̃K) = ϕ̃a,b βi +

K0∑
k=1
k 6=b

ϕ̃a,kαk +

∑
i∈G̃a

X′iXi

−1 ∑
i∈G̃a

X′iεi (3.21)

Taking conditional expectations yields,

E
(
β̃i(G̃K) | X

)
= ϕ̃a,b βi +

K0∑
k=1
k 6=b

ϕ̃a,kαk +

∑
i∈G̃a

X′iXi

−1 ∑
i∈G̃a

X′i E (εi | X)

= ϕ̃a,b βi +

K0∑
k=1
k 6=b

ϕ̃a,kαk (3.22)

where the second equality follows from the strict exogeneity in assumption 1.1.

Finally, using the law of iterated expectations we obtain (3.7),

E
(
β̃i(G̃K)

)
= E

(
E
(
β̃i(G̃K) | X

))
= ϕa,b βi +

K0∑
k=1
k 6=b

ϕa,kαk (3.23)

where ϕa,b ≡ E (ϕ̃a,b). Proving (3.8) requires showing that Var
(
β̂i | X

)
−

Var
(
β̃i(G̃K) | X

)
is positive semi-definite. Start by using (3.20) to deriveVar

(
β̃i(G̃K) | X

)
,

Var
(
β̃i(G̃K) | X

)
=

∑
i∈G̃a

X′iXi

−1

Var

∑
i∈G̃a

X′iεi

∑
i∈G̃a

X′iXi

−1

=

∑
i∈G̃a

X′iXi

−1∑
i∈G̃a

X′iVar (εi | X) Xi

∑
i∈G̃a

X′iXi

−1

= σ2

∑
i∈G̃a

X′iXi

−1

(3.24)
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where the second and third equalities follow from the conditional homoskedastic-

ity and no autocorrelation assumption. Combining the expressions forVar
(
β̂i | X

)
and Var

(
β̃i(G̃K) | X

)
yields,

Var
(
β̂i | X

)
−Var

(
β̃i(G̃K) | X

)
= σ2

(
(X′iXi)

−1 −
(∑

i∈G̃a
X′iXi

)−1
)

︸ ︷︷ ︸
[∗]

(3.25)

The term [∗] is positive semi definite if and only if
∑

i∈G̃a X′iXi−X′iXi is positive

semi definite. Finally,

∑
i∈G̃a

X′iXi −X′iXi =
∑

j∈G̃a\{i}
X′jXj (3.26)

If G̃a\{i} = ∅ then
∑

i∈G̃a X′iXi−X′iXi = 0. If G̃a\{i} 6= ∅, then
∑

i∈G̃a X′iXi−

X′iXi is the sum of positive definite matrices and, hence, positive definite. There-

fore, [∗] is positive semi-definite.
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