
Optimal prediction problems and the last
zero of spectrally negative Lévy processes.
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Abstract

In recent years the study of Lévy processes has received considerable attention in the litera-

ture. In particular, spectrally negative Lévy processes have applications in insurance, finance,

reliability and risk theory. For instance, in risk theory, the capital of an insurance company

over time is studied. A key quantity of interest is the moment of ruin, which is classically

defined as the first passage time below zero. Consider instead the situation where after the

moment of ruin the company may have funds to endure a negative capital for some time. In

that case, the last time below zero becomes an important quantity to be studied.

An important characteristic of last passage times is that they are random times which

are not stopping times. This means that the information available at any time is not enough

to determine its value and only with the whole realisation of the process that it can be

determined. On the other hand, stopping times are random times such that its realisation

can be derived only with the past information. Suppose that at any time period there is a

need to know the value of a last passage time for some appropriate actions to be taken. It is

then clear that an alternative to this problem is to approximate the last passage time with a

stopping time such that they are close in some sense.

In this work, we consider the optimal prediction to the last zero of a spectrally negative

Lévy process. This is equivalent to find a stopping time that minimises its distance with

respect to the last time the process goes below zero. In order to fulfil this goal, we also study

the last zero before at any fixed time and its dynamics as a process. Moreover, having in

mind some applications in the insurance sector, we study the joint distribution of the number

of downcrossings by jump and the local time before an exponential time.
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Introduction

Every decision we make in daily life has a certain degree of risk associated with it. Since

taking on risk is an integral part of our lives, it is therefore indisputable that selecting the

best time to stop and act is essential. A decision-maker who observes a process evolving

in time that involves some randomness, arrives at a strategy to either maximise reward or

minimise cost based only on what is known.

The optimal stopping theory is concerned with the problem of choosing a time to take

a given action based on sequentially observed random variables in order to maximise an ex-

pected pay-off or to minimise an expected cost. Problems of this type have many applications,

particularly in the following areas:

1. Statistics: The action to test a hypothesis or to find a parameter as quickly and accu-

rately as possible.

2. Quickest detection problem: When a natural phenomenon threatens to destroy a town,

one needs to decide when to send out an alarm to avoid disaster based on observable

data.

3. Operation research: One has to decide when it is optimal to replace a machine, hire a

secretary, or reorder stock.

4. Finance: The non-arbitrage price of an American option has to be established.

For an overview of the general theory of optimal stopping, the reader can refer to Peskir

and Shiryaev (2006) and Shiryaev (2007) or Hill (2009) for recreational reading. In this

work, we deal with optimal prediction problems. These problems can be described as opti-

mal stopping problems for which the gain process depends on the future (hence, standard

techniques of the optimal stopping theory cannot be applied directly). Problems of this kind
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are becoming of increasing interest to many sectors, especially financial engineering. Indeed,

suppose that we have a random variable that depends on the realisation of the whole process

X, up to some time T ≥ 0, and that we are interested to know its value at any time t < T

so some decisions can be taken with that information. Hence, given that stopping times are

random times such that their realisation is determined with the present and past information,

it becomes natural to approximate random times by stopping times in some sense. In the

present literature, we can find two main ways of doing that, the first being in space and the

second in time. That is, optimal prediction problems are of the form:

V = inf
τ∈TT

E(ϕ(H,Xτ )) and V ∗ = inf
τ∈TT

E(d(Θ, τ)),

where ϕ and d are functions to be determined and H and Θ are random variables determined

by the information at time T taking values in R and [0,∞), respectively.

In what follows, we give a short review of some optimal prediction problems studied in the

literature together with a short description of the methodology used to find their solutions.

We denote X as a stochastic process, Xt = sup0≤s≤tXs and Xt = inf0≤s≤tXs its running

supremum and its running infimum, respectively. We also denote Tt as the set of stopping

times bounded by t ≥ 0 and the random times

θT = inf{0 ≤ t ≤ T : Xt = XT }

θT = inf{0 ≤ t ≤ T : Xt = XT }

ξT = sup{0 ≤ t ≤ T : Xt = 0}.

Graversen et al. (2001) predicted the value of the ultimate maximum of a standard Brow-

nian motion at a time 1, where the prediction is made by using a mean-square distance, that

is,

inf
τ∈T1

E
(
(Xτ −X1)2

)
,

where X is a standard Brownian motion. They solved this problem by relying on a stochastic

integral representation of the ultimate maximum so that the optimal prediction problem is

equivalent to an optimal stopping problem. The latter is then solved by using time-change
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arguments and finding the solution to a free boundary problem. Lastly, this aforementioned

solution is formally verified to be the value function and the optimal stopping time of the

optimal stopping problem

Pedersen (2003) generalises the problem above by predicting the position of the ultimate

maximum by a q-mean distance and a probability distance. That is, for fixed q > 0 and

ε > 0,

inf
τ∈T1

E
(
(Xτ −X1)q

)
,

inf
τ∈T1

P
(
X1 −Xτ ≤ ε

)
,

where X is a standard Brownian motion. It is shown that both optimal prediction problems

are equivalent to optimal stopping problems. The former is further simplified by using the

fact that the Brownian motion reflected in its maximum has the same law as the reflected

Brownian motion. This optimal stopping problem is then solved by using a deterministic

change of time, solving a free boundary problem and a verification approach. The optimal

stopping problem associated with the probability distance problem is solved by guessing the

solution by heuristic arguments based on the smooth fit property and the verification theorem.

Shiryaev (2002) proposed that instead of using the closeness of X1 with Xτ , the closeness

of τ with θ could be used. For example,

inf
τ∈T1

E(|τ − θ1|p)

or more generally,

inf
τ∈T1

E[G1((τ − θ1)+) +G2((τ − θ1)−)],

for some risk functions G1 and G2.

Urusov (2005) showed that the optimal prediction problem in Graversen et al. (2001)

is equivalent to predicting the time of the ultimate maximum of the Brownian motion by
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stopping times using a L1 distance. That is,

inf
τ∈T1

E
(
(Xτ −X1)2

)
= inf

τ∈T1
E(|τ − θ1|) + 1/2.

Moreover, two additional optimal prediction problems were solved:

inf
τ∈Mα

E((τ − θ1)+) and inf
τ∈Nα

E((τ − θ1)−),

where Mα and Nα are subclasses of T1 such that the penalty of stopping too late and

stopping prematurely, respectively, are bounded by α. The methods of solution rely on using

a “Lagrange multiplier method” and finding equivalent optimal stopping problems which are

solved by a deterministic time-change and the solution of a free boundary problem followed

by a verification method argument.

du Toit and Peskir (2007) predicted the position of the ultimate maximum with drift in

a mean-square sense for a Brownian motion with drift and in a finite horizon setting, that is,

inf
τ∈TT

E((Xτ −XT )2)

where X is a Brownian motion with drift µ. This problem generalised the work of Graversen

et al. (2001), but the method of time change cannot be extended to the case µ 6= 0. The

optimal prediction problem is reduced to an equivalent optimal stopping problem in terms

of time and the process reflected at its maximum. Hence, by deriving some properties of the

value function, the shape of the stopping set D is deduced (being in terms of two boundaries

dependent on time) and, with that, a parabolic free boundary problem for the value function

is stated. Thus, by using local time-space calculus, a coupled system of nonlinear Volterra

integral equations is derived, a system that characterises uniquely the two boundaries and

determines an optimal stopping time.

In du Toit and Peskir (2008) and du Toit et al. (2008), the time of the ultimate maximum

at a time 1 and the time of the last zero before time 1, respectively, were predicted (in a L1
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sense) for a Brownian motion with drift µ 6= 0, that is,

inf
τ∈T1

E(|θ1 − τ |) and inf
τ∈T1

E(|ξ1 − τ |).

The first problem is equivalent to an optimal stopping problem in terms of time and the

Brownian motion (with drift) reflected at its maximum whereas the second is equivalent to

an optimal stopping problem in terms of time and the Brownian motion with drift. The

method of solution of both problems is similar to the one described above for du Toit and

Peskir (2007).

Shiryaev et al. (2008) predicted the ultimate supremum of a geometric Brownian motion

X using an approach different from the most of existing literature at the moment. That is,

sup
τ∈TT

E
(
Xτ

XT

)
.

After finding an equivalent optimal stopping problem dependent on the reflected Brownian

motion at its maximum, a trivial solution was found by using a direct probability approach

for some cases depending on the parameters of the process, while the rest of the cases were

tackled by du Toit and Peskir (2009).

Shiryaev (2009) focused on the last time of the attainment of the ultimate maximum of a

(driftless) Brownian motion and proceeded to show that it is equivalent to predicting the last

zero of the process in this setting. Moreover, the optimal predicting problems were focused

on minimising the positive part of the difference of the ultimate maximum within the class

of stopping times for which the probability of early stopping is below a fixed value α , i.e.

inf
τ∈Mα

E((τ − θ1)+) and inf
τ∈M′α

E((τ − ξ1)+),

whereMα andM′α are sub-family of stopping times bounded by 1 such that the probability

of stopping early is bounded by α. The method of solution is based on finding and equiv-

alent optimal stopping problem, by using a “Lagrange multipliers method”, performing a

deterministic time-change and finding the solution of a free boundary problem.

In du Toit and Peskir (2009), a similar approach as the one in Shiryaev et al. (2008) was

used to predict the ultimate maximum of a geometric Brownian motion X, with drift µ and
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volatility σ > 0. That is, the proposed optimal prediction problem is

inf
τ∈TT

E
(
XT

Xτ

)
.

Using standard arguments, they find an equivalent optimal stopping problem in terms of a

Brownian motion with drift reflected at its maximum. Then the optimal stopping problem

is solved by deducing the shape of D. It is found that the optimal stopping time is trivial

for some choices of the parameters whereas, in the remaining cases, it is shown that the

optimal stopping is in terms of a moving boundary. The latter case is solved, with the help

of the local-time space calculus, by characterising the boundary as the unique solution to a

nonlinear Volterra integral equation.

Bernyk et al. (2011) predicted the ultimate supremum of a stable spectrally positive Lévy

process of index α ∈ (1, 2) in an Lp sense, that is,

inf
τ∈Tt

E((Xτ −XT )p),

where p ∈ (1, α). Using standard arguments, they find an equivalent two-dimensional optimal

stopping problem driven by time and the process reflected at its maximum. The problem is

then solved by using a deterministic time-change thus reducing (and solving explicitly) the

problem to a free boundary problem given in terms of an integro-diferential equation.

Glover et al. (2013) predicted the time of the ultimate minimum (in an infinite horizon

setting) of a mean reverting diffusion that drifts to infinity, that is,

inf
τ∈T

E(|θ − τ | − θ).

The method of the solution relies on guessing the shape of the stopping set, restricting the

analysis to a subclass of stopping times. Hence, together with the free boundary problem,

they are able to generate a set of candidate solutions to the value function for which a

condition of optimality can be extracted by invoking the subharmonic characterization of the

value function.

Baurdoux and van Schaik (2014) predicted the time of the ultimate maximum (in an
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infinite horizon setting) for a general Lévy process drifting to infinity, that is

inf
τ∈T

E(|θ − τ |).

Using standard methods, they show that the optimal prediction problem is equivalent to

an infinite horizon optimal stopping problem driven by the Lévy process reflected at its

maximum. Then the problems were solved by using a direct probability approach where the

shape of the stopping set is deduced from properties of the value function. Moreover, an

explicit characterisation is given in the spectrally negative case and the smooth (continuous)

pasting property of V when the process is of infinite (finite) variation.

Glover and Hulley (2014) predicted the last time a transient diffusion hits a level z > 0. By

using standard arguments, the optimal prediction problem is reduced to an optimal stopping

problem. By analysing the value function, a solution of a restricted optimal stopping problem

is first solved (by using a semi-explicit expression in terms of the scale function and speed

measure so the problem can be easily minimised). Finally, by using a verification argument,

it is shown that the solution of the restricted problem is also the solution of the original

optimal stopping problem.

Baurdoux et al. (2016) predicted the time of the ultimate maximum and the time of the

ultimate minimum of a positive self-similar Markov process in a infinite horizon setting. That

is, they solved the problems

inf
τ∈T

E(|θ − τ | − θ) and inf
τ∈T

E(|θ − τ | − θ).

Using standard arguments, both problems are found to be equivalent to optimal stopping

problems which are further reduced, via a time change, to optimal stopping problems in

terms of spectrally negative Lévy processes reflected on its maximum. These optimal stopping

problems are then solved by finding optimal stopping times that minimise a restricted problem

within a subfamily of stopping times. Then, by using a verification argument, they showed

that the solution of the restricted problem is also the solution of the unrestricted problem.

Finally, Baurdoux and Pedraza (2020b) predicted the last zero of a spectrally negative

Lévy process in an infinite horizon setting. Using standard arguments, it is shown that the

optimal prediction problem is equivalent to an optimal stopping problem. This is then solved
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by deducing the shape of the stopping set D (from properties of the value function) and hence

restricting the minimisation problem to a subclass of stopping times. The restricted optimal

stopping problem is then solved by obtaining a semi-explicit form of the value function

in terms of the scale functions for spectrally negative Lévy processes and using standard

techniques of calculus to solve the problem.

Note that, as mentioned above, every optimal prediction problem is equivalent to an op-

timal stopping problem, in other words, optimal prediction problems and optimal stopping

problems are intimately related.

On the other hand, Lévy processes are stochastic processes with independent and station-

ary increments. They can be seen as the continuous-time version of random walks and they

form a wide class of stochastic processes that includes some known processes such as Brown-

ian motion, Poisson processes and stable processes. Their applications appear in many areas

of classical and modern stochastic processes, including storage models, renewal processes,

insurance risk models, optimal stopping problems and mathematical finance. For a detailed

overview of Lévy processes, the reader can refer to Bertoin (1998), Sato (1999), Doney (2007),

Applebaum (2009) or Kyprianou (2014).

In particular, a special class of Lévy processes called the spectrally negative Lévy pro-

cesses, which is a subclass of Lévy processes with only negative jumps and non-monotone

paths, plays a central role in applied probability such as risk theory, degradation models,

queuing theory, finance, etc. This is fundamentally due to the existence of the so-called scale

functions and the fact that many fluctuation identities are derived in terms of them since

spectrally negative processes can only move upwards in a continuous way.

For instance, the classical risk process (also known as the Cramér–Lundberg process)

which consists of a deterministic, positive drift plus a compound Poisson process with only

negative jumps, is used to model the capital of an insurance company. The drift can be

viewed as a premium rate that is continuously collected and the compound Poisson process

represents the claims made to the insurance company. A quantity of interest is the moment

of ruin, i.e. the first time that the company has negative capital. Instead of going bankrupt

when the risk process becomes negative, suppose that the company has funds to support
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the negative capital for a while. Then another quantity of interest is the last time that the

process is below level zero, that is, the final recovery time in which after the company will

have only a positive capital. Indeed Chiu and Yin (2005) proposes the following situation:

suppose that the insurance company has many portfolios, so then, when any of them has a

negative capital, the others will allow the insurance company to avoid bankruptcy with the

hope that, in the long term, such portfolio will have a positive capital. In their work, Chiu

and Yin (2005), find (among other things) the Laplace transform of the last time a spectrally

negative Lévy process is below any level x. Moreover, as an application to risk theory, they

find the joint Laplace transform of the difference of the first and last passage time and their

difference for the classical risk process perturbed by a Brownian motion. This approach can

be extended to include a general spectrally negative Lévy process.

For the past several decades, degradation data have been used to understand the ageing

of a device alongside failure data. Lévy processes turn out to be useful tools for degradation

models (see Figure 1). In particular, three models are mainly used: Brownian motion with

positive drift, gamma process and compound Poisson process (see Park and Padgett (2005)).

More generally, we can consider a spectrally positive Lévy process. The failure time of a

component or system can traditionally be derived from a degradation model by considering

the first hitting time of a critical level. Recent findings see a new approach being considered

as a failure time (see Barker and Newby (2009) and Paroissin and Rabehasaina (2013)) by

taking the last passage time below a pre-determined critical level.

The examples mentioned above suggest that the last passage time plays an important role

in the applications of spectrally negative Lévy processes. It is however a challenging task to

determine the value of the last passage time as it is necessary to be able to observe the whole

process. In contrast, stopping times are random times such that the decision of whether to

stop or not depends only on the past and present information. It is therefore of interest to

predict the last passage times using stopping times. This can be done by finding a stopping

time that is as close as possible (in some sense) to the last passage time.

Let us define gt as the last time a spectrally negative Lévy process X is below the level
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Figure 1: Aging of a Device.

zero before time t ≥ 0, i.e.

gt = sup{0 ≤ s ≤ t : Xs ≤ 0},

where we understand that sup ∅ = 0. There are some work in the literature related to this

last passage time. For example, to mention a few: Chiu and Yin (2005) found the Laplace

transform of g∞ when X drifts to infinity; Baurdoux (2009) generalised the latter result by

finding the Laplace transform of the last exit time before an independent exponential time;

Li et al. (2017) found the joint Laplace transforms involving the last exit time (from a semi-

infinite interval), the value of the process at the last exit time, and the associated occupation

time; Cai and Li (2018) derived the Laplace transform of occupation times of intervals until

last passage times for spectrally negative Lévy processes. A similar version of gt is studied in

Revuz and Yor (1999) (see Chapter XII.3), namely the last hitting time at zero of a Brownian

motion, before any time t ≥ 0, to describe excursions straddling at a given time. It is also

shown that this random time at time t = 1 follows the arcsine distribution. The last-hitting

time to zero has some applications in the study of Azéma’s martingale (see Azéma and Yor
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(1989)). In Salminen (1988) the distribution of the last hitting time of a moving boundary

is found.

But, what can we say about the dynamics of the process {gt, t ≥ 0}? It turns out (see

Chapter 3) that the three dimensional process (t, gt, Xt) preserves the Markovian structure

of X and it is a semi-martingale. Hence, there is a known (general) expression for the Itô

formula (see e.g. Protter (2005), Theorem 33) and its infinitesimal generator (see Dynkin

(1965)). However, given the strong dependence between the processes {gt, t ≥ 0} and X,

more explicit formulas can be obtained in terms of the dynamics of X. Moreover, it is also of

mathematical interest and in applications to find formulas involving Ut = t − gt, the length

of the current positive excursion, such as the joint Laplace transform of (U,X) (before an

exponential time) and the joint q-potential measure.

Let eθ be an independent exponential random variable with parameter θ ≥ 0 (here we

understand that eθ is infinity when θ = 0). It is of interest to know the value of geθ at

any given time t ≥ 0, so some early decisions can be taken with that information. However,

to know the value of the random variable geθ , we need to know the entire trajectory of

the stochastic process X. Hence, there is a need to approximate or predict geθ with the

information available at any moment in time. On the other hand, stopping times are random

times such that their realisation can be determined with past and present information. Hence,

it becomes natural to predict geθ with stopping times in some sense. Indeed, for any p ≥ 1,

we can predict the random variable geθ in an Lp sense with stopping times, that is, we aim

to find a stopping time that attains the infimum in

V∗ = inf
τ∈T

E(|geθ − τ |
p), (1)

where T is the set of all stopping times of X. In Baurdoux and Pedraza (2020b), where the

case for p = 1 and θ = 0 when X drifts to infinity is solved. It is shown that the stopping

time that minimises the L1 distance with respect to the last zero is the first time the process

crosses above a fixed level a∗ > 0. This value is characterised as a solution to a non-linear

equation involving the cumulative distribution function of the overall infimum of the process.

The aim of this study is to solve two more particular cases of this general optimal prediction

problem. It is important to note that, to the best of our knowledge, the case p > 1 or θ > 0
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was never studied before. In Chapters 2 and 4, we dedicate our attention to solve the cases

when p = 1 and θ > 0; and p > 1 and θ = 0, respectively. The main methods of proofs are

based on the work of du Toit et al. (2008) and du Toit et al. (2008) (where the underlying

process is a Brownian motion with drift) in which the shape of the stopping set is deduced by

deriving properties of the value function and then the optimal boundaries are characterised

by a system of Volterra integral equations. However, it is important to mention that adding

jumps to the underlying process adds an important level of difficulty. For example, in our

study, the system of integral equations incorporates a term in which the value function itself

is included.

This thesis is divided into 5 chapters. We give a short description of each below:

Chapter 1: In this chapter we list known results related to Spectrally negative Lévy

process and Optimal stopping that are needed throughout the thesis. This chapter does not

contain any new result and is included to make this a self-contained work.

Chapter 2: In this Chapter, we solve the optimal prediction problem (1) for the case

p = 1 where we predict the last time, before an exponential time, a spectrally negative Lévy

process is below level zero. We show that the optimal prediction problem is equivalent to an

optimal stopping problem driven by the two-dimensional process {(t,Xt), t ≥ 0}. We then

show that the optimal stopping time is the first time the process crosses above a non-negative,

continuous and non-decreasing curve that depends on time. We show that there is smooth

pasting on the points for which the curve is strictly positive. Moreover, the aforementioned

curve and the value function of the optimal stopping problem are then characterised as the

only solutions to a system of non-linear integral equations within a certain family of functions

(see Theorem 2.3.13).

Chapter 3: The study in this chapter is mainly aimed at developing the necessary tools

to solve the optimal prediction problem in Chapter 4. We derive some important properties

of the three-dimensional process {(t, gt, Xt), t ≥ 0}. In particular, we derive a version of Itô

formula and its infinitesimal generator. Moreover, considering the length of the current pos-

itive excursion, Ut = t− gt, we obtain a formula for a functional that depends on the whole

path of the two dimensional process (U,X) = {(Ut, Xt), t ≥ 0}. As a direct consequence,
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we find the Laplace transform of (Ueq , Xeq), where eq is an independent exponential random

variable and a formula for the density of the q-potential measure of (U,X). The method of

proof of the aforementioned results relies on a perturbation method for Lévy process (inspired

by the work of Dassios and Wu (2011)) which makes the set of zeros of the perturbed Lévy

process a countable set.

Chapter 4: The main contribution of this thesis is presented in this Chapter. We

solve the optimal prediction problem (1) for the case in which θ = 0 and p > 1 where X

drifts to infinity, i.e, we find the stopping time that minimises the Lp distance with the

last zero of a spectrally negative Lévy process. We show that the optimal prediction prob-

lem is equivalent to an optimal stopping problem driven by the two-dimensional process

(U,X) = {(Ut, Xt), t ≥ 0} (see Lemma 4.3.1), where Ut = t − gt is the length of the current

positive excursion away from zero at time t ≥ 0. We show that there exists a continuous,

non-increasing and non-negative function b such that the optimal stopping time is given by

τD = inf{t ≥ 0 : Xt ≥ b(Ut)}. The function b is such that it is infinity at zero and tends to

zero at infinity. Thus, it is optimal to stop when we have a sufficiently large positive excursion

and the “clock” restarts when the process visits the negative half-line. This feature tells us

that it is also important to characterise the value function at the origin, V (0, 0). We show

that there is a smooth fit at the boundary for those values where the function b is strictly

positive. Moreover, in Theorem 4.4.23 we uniquely characterise the value function V , the

curve b and the value function at the origin as the solution of a system of non-linear integral

equations within a special class of functions. It is worth mentioning that, to the best of our

knowledge, this optimal prediction problem has never been studied before.

Chapter 5: In this Chapter, we use the same perturbation method as in Chapter 3 to

find the joint distribution of the number of downcrossings below level zero by a jump from

the positive half-line and the local time at zero before an independent exponential time (see

Theorem 5.2.1). As a direct result, we are able to calculate the joint Laplace transform of

the time of the i-th downcrossing by jump and its overshot. Considering a Lévy insurance

risk process, we use these results to calculate the expected present value of all the economic

costs from all the downcrossing by jump before an exponential time.
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Chapter 1

Preliminaries

1.1 Spectrally negative Lévy processes

A Lévy process X = {Xt, t ≥ 0} is an almost surely càdlàg process that has independent

and stationary increments such that P(X0 = 0) = 1. We take it to be defined on a filtered

probability space (Ω,F ,F,P) where F = {Ft, t ≥ 0} is the filtration generated by X which

is naturally enlarged (see Definition 1.3.38 of Bichteler (2002)) From the stationary and

independent increments property the law of X is characterised by the distribution of X1.

We hence define the characteristic exponent of X, Ψ(θ) := − log(E(eiθX1)), θ ∈ R. The

Lévy–Khintchine formula guarantees the existence of constants, µ ∈ R, σ ≥ 0 and a measure

Π concentrated in R \ {0} with the property that
∫
R(1 ∧ x2)Π(dx) < ∞ (called the Lévy

measure) such that for any θ ∈ R,

Ψ(θ) = iµθ +
1

2
σ2θ2 −

∫
R

(eiθy − 1− iθyI{|y|<1})Π(dy).

Moreover, from the Lévy–Itô decomposition we can write

Xt = σBt − µt+

∫
[0,t]

∫
(−∞,−1)

xN(ds× dx) +

∫
[0,t]

∫
(−1,0)

x(N(ds× dx)− dsΠ(dx)), (1.1)

where B is a standard Brownian motion and N is an independent Poisson random measure

on R+ × R with intensity dt × Π(dx). We state now some properties and facts about Lévy

processes. The reader can refer, for example, to Bertoin (1998), Sato (1999) and Kyprianou

(2014) for more details. Every Lévy process X is also a strong Markov F-adapted process.
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For all x ∈ R, denote Px as the law of X when started at the point x ∈ R, that is, Ex(·) =

E(·|X0 = x). Due to the spatial homogeneity of Lévy processes, the law of X under Px is the

same as that of X + x under P.

The process X is a spectrally negative Lévy process if it has no negative jumps (Π(0,∞) =

0) with no monotone paths. We state now some important properties and fluctuation iden-

tities of spectrally negative Lévy processes which will be of use to us later in this paper. We

refer to Chapter 8 in Kyprianou (2014) or Chapter VII in Bertoin (1998) for details.

Due to the absence of positive jumps, we can define the Laplace transform of X1. We

denote ψ(β) as the Laplace exponent of the process, that is, ψ(β) = log(E(eβX1)) for β ≥ 0.

For such β we have that

ψ(β) = −µβ +
1

2
σ2β2 +

∫
(−∞,0)

(eβy − 1− βyI{y>−1})Π(dy).

The function ψ is infinitely often differentiable and strictly convex function on (0,∞) with

ψ(∞) = ∞. In particular, ψ′(0+) = E(X1) ∈ [−∞,∞) determines the behaviour of X

at infinity. When ψ′(0+) > 0 the process X drifts to infinity, i.e., limt→∞Xt = ∞; when

ψ′(0+) < 0, X drifts to minus infinity and the condition ψ′(0+) = 0 implies that X oscillates,

that is, lim supt→∞Xt = − lim inft→∞Xt =∞. We denote by Φ the right-inverse of ψ, i.e.

Φ(q) = sup{β ≥ 0 : ψ(β) = q}, q ≥ 0.

In the particular case that X drifts to infinity, we have that ψ′(0+) > 0 which implies that

ψ is strictly increasing and then Φ is the usual inverse with Φ(0) = 0.

The path variation of any Lévy process can be determined by σ and the Lévy measure Π.

Indeed, the process X has paths of finite variation if and only if σ = 0 and
∫

(−1,0) |x|Π(dx) <

∞, otherwise X has paths of infinite variation. If X is of finite variation we can rewrite (1.1)

as

Xt = δt+

∫
[0,t]

∫
(−∞,0)

xN(ds× dx),
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where

δ := −µ−
∫

(−1,0)
xΠ(dx) (1.2)

Note that processes with monotone paths are excluded from the definition of spectrally neg-

ative Lévy processes, so we assume that δ > 0 when X is of finite variation.

Denote by τ+
a the first passage time above the level a > 0,

τ+
a = inf{t > 0 : Xt > a}.

The Laplace transform of τ+
a is given by

E(e−qτ
+
a ) = e−Φ(q)a a > 0. (1.3)

An important family of functions for spectrally negative Lévy processes consists of the scale

functions, usually denoted by W (q) and Z(q). There are many fluctuation identities in terms of

these functions. The reader can refer for example to Bertoin (1998) (Chapter VII), Kuznetsov

et al. (2013),Kyprianou (2014) (Chapter 8) and Avram et al. (2019) for an extensive review

of them. We mention those identities which will be useful in forthcoming chapters.

For all q ≥ 0, the scale function W (q) : R 7→ R+ is such that W (q)(x) = 0 for all x < 0 and

it is characterised on the interval (0,∞) as the strictly and continuous function with Laplace

transform given by

∫ ∞
0

e−βxW (q)(x)dx =
1

ψ(β)− q
, for β > Φ(q). (1.4)

The function Z(q) is defined for all q ≥ 0 by

Z(q)(x) := 1 + q

∫ x

0
W (q)(y)dy, for x ∈ R.

For the case q = 0 we simply denote W = W (0). The behaviour of W (q) at infinity is the
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following. For q ≥ 0, we have

lim
x→∞

e−Φ(q)xW (q)(x) = Φ′(q).

For all q ≥ 0, the function W (q) has left and right derivatives. Moreover, from Kuznetsov

et al. (2013) (Theorem 3.10) we know that if σ2 > 0, W (q) ∈ C2(0,∞). When X is of finite

variation W (q) ∈ C1(0,∞) when Π has no atoms. For all q ≥ 0, the values of W (q) in the

neighbourhood of zero can be deduced from (1.4):

W (q)(0) =


1
δ if X is of finite variation

0 if X is of infinite variation

.

The equation above implies that W (q) is continuous on R when X has paths of infinite

variation. The right derivative at the origin is

W (q)′(0+) =


Π(−∞,0)+q

δ2 if X is of finite variation

2
σ2 if X is of infinite variation

, (1.5)

where we understand 1/∞ = 0 when σ = 0. Moreover, the second right-derivative at zero of

W (q) can be found (see e.g. Avram et al. (2019)). In particular, when σ > 0, we have that

W (q)′′(0+) = −δ
(

2

σ2

)2

(1.6)

where δ is defined in (1.2) and we understand that δ =∞ when the jumps of X are of infinite

variation.

For each x ≥ 0 and q ≥ 0, W (q) has the following alternative representation

W (q)(x) =

∞∑
k=0

qkW ∗(k+1)(x), (1.7)

where W ∗(k+1) is the (k + 1)-th convolution of W with itself. Various fluctuation identities

for spectrally negative Lévy processes have been found in terms of the scale functions. Here

we list some that will be useful in later chapters. Denote by τ−x the first passage time below
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the level x ≤ 0, i.e.,

τ−x = inf{t > 0 : Xt < x}.

Then for any q ≥ 0 and x ≤ a we have

Ex
(
e−qτ

+
a I{τ−0 >τ+

a }

)
=
W (q)(x)

W (q)(a)
. (1.8)

For any x ∈ R and q ≥ 0,

Ex(e−qτ
−
0 I{τ−0 <∞}) = Z(q)(x)− q

Φ(q)
W (q)(x), (1.9)

where we understand q/Φ(q) in the limiting sense when q = 0 so that

Px(τ−0 <∞) =

 1− ψ′(0+)W (x) if ψ′(0+) ≥ 0

1 if ψ′(0+) < 0
. (1.10)

More generally, the joint Laplace transform of τ−0 and Xτ−0
is

Ex(e
−qτ−0 +βX

τ−0 I{τ−0 <∞}) = eβxI(q,β)(x) (1.11)

for all x ∈ R and q > ψ(β) ∨ 0, where the function I(q,β) is given by

I(q,β)(x) := 1 + (q − ψ(β))

∫ x

0
e−βyW (q)(y)dy − q − ψ(β)

Φ(q)− β
e−βxW (q)(x) x ∈ R. (1.12)

In particular, for any p ≥ 0, taking β = Φ(p) and q = p + h and letting h ↓ 0 (here we use

that ψ(Φ(p)) = p), we obtain that for any x ∈ R,

Ex(e
−pτ−0 +Φ(p)X

τ−0 I{τ−0 <∞}) = eΦ(p)xI(q,Φ(q))(x) = eΦ(p)x(1− ψ′(Φ(p))e−Φ(p)xW (p)(x)).

(1.13)

Since X has only negative jumps we have that the process X creeps upwards, that is

P(Xτ+
x

= x|τ+
x <∞) = 1.
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Moreover, X creeps downwards if and only if σ > 0. The latter fact can be easily deduced

from the Laplace transform of τ−0 (see Theorem 2.6 in Kuznetsov et al. (2013)) in the event

of creeping:

Ex(e−pτ
−
0 I{X

τ−0
=0}) = C(p)(x), (1.14)

where for all p ≥ 0 the function C(p) is given by

C(p)(x) :=
σ2

2
{W (p)′(x)− Φ(p)W (p)(x)}, x ∈ R. (1.15)

In particular we have that for any x ∈ R,

Px(Xτ−0
= 0, τ−0 <∞) =

σ2

2

[
W ′(x)− Φ(0)W (x)

]
. (1.16)

Denote by Xt = inf0≤s≤tXs and Xt = sup0≤s≤tXs the running infimum and running

maximum of the process X up to time t > 0, respectively. For q ≥ 0, let eq be an exponential

random variable with mean 1/q independent of X, where we understand that eq =∞ almost

surely when q = 0. Then Xeq is exponentially distributed with parameter Φ(q) and the

Laplace transform of Xeq is given by (see e.g. equation (8.4) in Kyprianou (2014), pp 233)

E(e
βXeq ) =

q

Φ(q)

Φ(q)− β
q − ψ(β)

, β ≥ 0. (1.17)

Moreover, it turns out that the density of the random variable −Xeq can be written in terms

of the scale function W (q) (see e.g. equation (8.24) in Kyprianou (2014), pp 239). Indeed,

for all x ≥ 0,

P(−Xeq ∈ dx) =
q

Φ(q)
W (q)(dx)− qW (q)dx.

Then, given the continuity of W on (0,∞), we have that the cumulative distribution function

of the random variable −Xeq is continuous on (0,∞); with a possible discontinuity at 0 when

X is of finite variation (due to the discontinuity of W (q) at zero in this case).
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Denote by σ−x the first time the process X is below or equal to the level x, i.e.

σ−x = inf{t > 0 : Xt ≤ x}.

It is easy to show that the mapping x 7→ σ−x is non-increasing, right-continuous with left

limits. The left limit is given by limh↓0 σ
−
x−h = τ−x for all x ∈ R. Moreover, it is easy to show

that σ−x and τ−x have the same distribution for all x < 0. Indeed, for any q ≥ 0 and x < 0 we

have that

E(e−qσ
−
x I{σ−x <∞}) = P(σ−x < eq) = P(−Xeq ≥ −x) = P(−Xeq > −x) = E(e−qτ

−
x I{σ−x <∞}),

where we used the fact that the distribution function of −Xeq is continuous on (0,∞). When

X is of infinite variation, X enters instantly to the set (−∞, 0) whilst in the finite variation

case there is a positive time before the process enters it. That implies that in the infinite

variation case τ−0 = σ−0 = 0 a.s. whereas in the finite variation case, σ−0 = 0 and τ−0 > 0.

Let q > 0 and a ∈ R. The q-potential measure of X killed on exiting [0, a] is absolutely

continuous with respect to Lebesgue measure and it has a density given by

∫ ∞
0

e−qtPx(Xt ∈ dy, t < τ+
a ∧ τ−0 )dt =

W (q)(x)W (q)(a− y)

W (q)(a)
−W (q)(x− y) x, y ∈ [0, a].

(1.18)

The q-potential measure of X killed on exiting [0,∞) is absolutely continuous with respect

to Lebesgue measure and it has a density given by

∫ ∞
0

e−qtPx(Xt ∈ dy, t < τ−0 )dt = e−Φ(q)yW (q)(x)−W (q)(x− y) x, y ≥ 0. (1.19)

Similarly, the q-potential measure of X killed on exiting (−∞, a] and the q-potential measure

of X are absolutely continuous with respect to Lebesgue measure with a density given by

∫ ∞
0

e−qtPx(Xt ∈ dy, t < τ+
a )dt = e−Φ(q)(a−x)W (q)(a− y)−W (q)(x− y), x, y ≤ a,

(1.20)
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and

∫ ∞
0

e−qtPx(Xt ∈ dy)dt = Φ′(q)e−Φ(q)(y−x) −W (q)(x− y), x, y ∈ R, (1.21)

respectively. In the case when X drifts to infinity these expression are also valid for q = 0.

Let β ≥ 0, the process given by {eβXt−ψ(β)t, t ≥ 0} is a martingale. Then for each such

β, we can define a change of measure given by

dPβ

dP

∣∣∣∣
Ft

= eβXt−ψ(β)t. (1.22)

Under the measure Pβ, X is a Lévy process with Laplace exponent given by ψβ(λ) = ψ(λ+

β) − ψ(β) for λ ≥ −β and hence Φβ(q) := sup{λ ≥ −β : ψβ(λ) = q} = Φ(q + ψ(β)) − β for

q ≥ −ψ(β). In other words, under Pβ, X has Lévy triplet

(
µ− σ2β −

∫
(−1,0)

y(eβy − 1)Π(dy), σ2, eβyΠ(dy)

)
.

In the particular case when β = Φ(q) for q ≥ 0 we have that ψΦ(q)(λ) = ψ(λ + Φ(q)) − q.

That implies that for any q > 0, ψ′Φ(q)(0+) = ψ′(Φ(q)) ≥ 0 and then the process X drifts

to infinity under the measure PΦ(q). Moreover, denote WΦ(q) the 0-scale function under the

measure PΦ(q), we have that W (q)(x) = eΦ(q)xWΦ(q)(x) for all x ∈ R and q > 0.

Note that by a change of measure we can show that for all x < 0, the vector (τ−x , Xτ−x
)

has the same distribution as (σ−x , Xσ−x
) under the measure P. Indeed take q > ψ(β)∨ 0, then

we have that

E
(
e
−qσ−x +βX

σ−x I{σ−x <∞}

)
= Eβ

(
e−(q−ψ(β))σ−x I{σ−x <∞}

)
= Eβ

(
e−(q−ψ(β))τ−x I{τ−x <∞}

)
= E

(
e
−qτ−x +βX

τ−x I{τ−x <∞}

)
.

The assertion then follows. Another important family of martingales is the following. Let

27



q ≥ 0, then the process

{e−q(t∧τ
−
0 )W (q)(Xt∧τ−0

), t ≥ 0}

is a Px-martingale for all x ∈ R. Having the above martingale in mind, we are able to define

the process conditioned to stay positive (see Bertoin (1998), Section VII.3). For any x > 0,

we can define the probability measure P↑x by

P↑x(A) =
1

W (x)
Ex
(
W (Xt)IA∩{t<τ−0 }

)
(1.23)

for any A ∈ Ft and t > 0. It is shown that, for any x > 0, X is a Markov process under P↑x

and that

P↑x(Xt ∈ dy) =
W (y)

W (x)
Px(Xt ∈ dy, t < τ−0 )

for any y ∈ R and t > 0. Moreover, it is shown that (see Bertoin (1998), Proposition VII.3.14)

that the probability P↑x converges as x ↓ 0 in the sense of finite-dimensional to distribution

to a limit which is defined as P↑0 = P↑ and that X is a Markov process under P↑. Moreover,

we have the following formula

P↑(Xt ∈ dy) =
yW (y)

t
P(Xt ∈ dy) (1.24)

for any x, t > 0. Furthermore, (see Corollary VII.4.19) in Bertoin (1998)) we have that for

any x > 0, the process {Xg(x)+t − x, t ≥ 0} has law P↑, where

g(x) = sup{t > 0 : Xt ≤ 0}.

Next, we state the compensation formula for Poisson random measures which is valid for any

Lévy process X with Poisson random measure N with intensity dt × Π(dx). Suppose that

φ : [0,∞)×R×Ω 7→ [0,∞) is a function such that (t, x, ω) 7→ φ(t, x)(ω) is B([0,∞))×B(R)×F

measurable, for each fixed t ≥ 0, the function (x, ω) 7→ φ(t, x)(ω) is B(R) × Ft measurable

and for any x ∈ R, the process {φ(t, x), t ≥ 0} is almost surely a left-continuous process.
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Then for any t ≥ 0 holds that

E
(∫ t

0

∫
R
φ(s, x)N(ds, dx)

)
= E

(∫ t

0

∫
R
φ(s, x)dsΠ(dx)

)
. (1.25)

In particular, if the right hand side of the equation above is finite we have that the process

{Mt, t ≥ 0} is martingale, where

Mt = E
(∫ t

0

∫
R
φ(s, x)N(ds, dx)

)
− E

(∫ t

0

∫
R
φ(s, x)dsΠ(dx)

)
.

It can be easily seen from the Lévy Itô decomposition that Lévy processes are semimartingales

and hence the Itô formula is well known (see e.g. Protter (2005), Theorem 32 pp 78). In

particular, for the spectrally negative case, takes the form

f(t,Xt) = f(0, Xt) +

∫ t

0

∂f

∂t
(s,Xs)ds+

∫ t

0

∂f

∂x
(s,Xs−)dXs +

1

2
σ2

∫ t

0

∂2f

∂x2
(s,Xs)ds

+

∫ t

0

∫
(−∞,0)

[
f(s,Xs− + y)− f(s,Xs−)− y∂f

∂x
(s,Xs−)

]
N(ds, dy)

for any f ∈ C1,2(R+×R). The infinitesimal generator of the process X (see e.g. Applebaum

(2009), Theorem 3.3.3) takes the form

AX(f)(t, x) = −µ ∂

∂x
f(t, x) +

1

2
σ2 ∂

2

∂x2
f(t, x)

+

∫
(−∞,0)

(
f(t, x+ y)− f(t, x)− yI{y>−1}

∂

∂x
f(t, x)

)
Π(dy). (1.26)

where f ∈ C1,2
b (R+ × R), the set of all bounded C1,2(R+ × R) functions with bounded

derivatives. It is also well known that a continuous version of the local time can be defined

(see Protter (2005), Section IV.7). Specifically, there exists an adapted, right continuous and

increasing process {Aat , t ≥ 0} such that the following equation is satisfied:

|Xt − a| = |X0 − a|+
∫ t

0
sign(Xs− − a)dXs +Aat

for all t ≥ 0, where the sign function is given by

sign(x) =

 1 if x > 0

−1 if x ≤ 0
.
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The local time at the level a, {Lat , t ≥ 0}, is defined as the continuous part of {Aat , t ≥ 0}, i.e.

Lat = Aat −
∑

0<s≤t
{|Xs − a| − |Xs− − a| − sign(Xs− − a)∆Xs}.

The measure dLat is carried by the set {t > 0 : Xt− = Xt = a}. Moreover, we have the

occupation time density formula given by

∫ ∞
−∞

Lat g(a)da = σ2

∫ t

0
g(Xs)ds

for all t ≥ 0. Then it can be shown (see Bertoin (1998) Proposition V.2) that

Lat = σ2 lim
ε↓0

1

2ε

∫ t

0
I{|Xs−a|<ε}ds

uniformly on compact intervals of time in L2. Furthermore, for each stopping time τ such

that Xτ = 0 a.s. on {τ < ∞}, the process (Xτ+t, Lτ+t − Lτ ) is independent of Fτ and has

the same law as (X,L). For ease of notation, we simply denote L = {Lt, t ≥ 0} as the local

time at zero, i.e., Lt = L0
t for all t ≥ 0.

1.2 Optimal stopping

The theory of optimal stopping is concerned with the problem of choosing a time to take

a given action based on sequentially observed random variables in order to maximise an

expected payoff or to minimise an expected cost. Problems of this type are found in the area

of statistics, where the action taken may be to test a hypothesis or to estimate a parameter,

in the area of operations research, where the action may be to replace a machine, hire a

secretary, or reorder stock and in applications to finance, valuation of American options.

The aim of the present section is to introduce basic results of general theory of optimal

stopping. First we study the martingale approach in continuous time and then the Markovian

approach, both only in an infinite horizon of time. This section is mainly based on Peskir

and Shiryaev (2006).
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1.2.1 Essential Supremum

Recall that if we take the supremum over an uncountable set of random variables then this

does not necessarily defines a measurable function. To overcome this difficulty the concept of

essential supremum proves to be useful. Let {Zα, α ∈ I} be a collection of real-valued random

variables in a probability space (Ω,F ,P), with I an arbitrary index set. Then there exists a

countable subset J ⊆ I such that the random variable Z∗ : Ω 7→ R ∪ {−∞,∞} defined by

Z∗ = sup
α∈J

Zα, (1.27)

satisfies

i) P(Zα ≤ Z∗) = 1 for all α ∈ I.

ii) If Y : Ω 7→ R ∪ {−∞,∞} is another random variable satisfying i) then,

P(Z∗ ≤ Y ) = 1.

We call Z∗ the essential supremum of {Zα, α ∈ I}, and write

Z∗ = ess sup
α∈I

Zα.

It is defined uniquely P-almost surely.

Moreover, if the family {Zα, α ∈ I} is upwards directed, that is, for any α, β ∈ I there exists

γ ∈ I such that

Zα ∨ Zβ ≤ Zγ P-a.s.

Then there exists a countable set J = {αn, n ≥ 1} such that Zαn ≤ Zαn+1 for any n ≥ 1 and

Z∗ = lim
n→∞

Zαn P-a.s.

1.2.2 Martingale Approach

Let G = {Gt, t ≥ 0} a stochastic process defined on a filtered probability space (Ω,F ,F,P)

where F = {Ft, t ≥ 0} is a filtration of F . Suppose that the filtration F satisfies the natural
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conditions (see Definition 1.3.38 of Bichteler (2002)), also assume that G is adapted to the

filtration F . We interpret Gt as the gain if the observation of G is stopped at time t.

We will assume that the process G is right-continuous and left-continuous over stopping

times (if τn and τ are stopping times such that τn → τ as n → ∞ then Gτn → Gτ P-a.s. as

n→∞). We will also assume that the following condition is satisfied,

E
(

sup
t≥0
|Gt|

)
<∞. (1.28)

Define for all t ≥ 0,

Tt = {τ ≥ t : τ is stopping time},

the set of all stopping times greater or equal to t. For simplicity we only write T instead of

T0, i.e. we denote by T the set of all stopping times.

Consider the optimal stopping problem

Vt = sup
τ∈Tt

E(Gτ ). (1.29)

To solve the problem (1.29), consider the process S = {St, t ≥ 0} defined as follows:

St = ess sup
τ∈Tt

E(Gτ |Ft), (1.30)

the process S is often called the Snell envelope of G. Note that by the definition of St we

have that if we take τ = t then St ≥ Gt P-a.s. Consider the following stopping time for t ≥ 0

τt = inf{s ≥ t : Ss = Gs},

where we define inf ∅ = ∞. It turns out that the process {St, t ≥ 0} defined in (1.30) is a

supermartingale and admits a càdlàg modification. Moreover, the following relation holds,

E(St) = Vt. (1.31)
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If P(τt <∞) = 1 for all t ≥ 0 we have,

St ≥ E(Gτ |Ft) for each stopping time τ ∈ Tt (1.32)

St = E(Gτt |Ft). (1.33)

Moreover, if t ≥ 0 is given and fixed, we have:

i) The stopping time τt is optimal in (1.29).

ii) If τ∗ is an optimal stopping time in (1.29) then τt ≤ τ∗ P-a.s.

iii) The process {Ss, s ≥ t} is the smallest right-continuous supermartingale which domi-

nates {Gs, s ≥ t} .

iv) The stopped process {Ss∧τt , s ≥ t} is a right-continuous martingale.

1.2.3 Markovian Approach

In this subsection we will consider a strong Markov process X = {Xt, t ≥ 0} defined on a

filtered probability space (Ω,F ,F,Px) and taking values in (E,B) = (R,B(R)). It is assumed

that the process X starts at x under the probability measure Px for x ∈ R and the sample

paths of X are right-continuous and left-continuous over stopping times. It is also assumed

that the filtration F = {Ft, t ≥ 0} satisfies the natural conditions. In addition, it is assumed

that the mapping x 7→ Px(F ) is measurable for each F ∈ F . Finally, without loss of generality

we will assume that (Ω,F) is equal to the canonical space (E[0,∞)),B[0,∞)) so that the shift op-

erator θt : Ω 7→ Ω is well defined by θt(ω)(s) = ω(t+s) for ω = {ω(s), s ≥ 0} ∈ Ω and s, t ≥ 0.

Suppose that G : E 7→ R is a measurable function which satisfies the condition

Ex
(

sup
t≥0
|G(Xt)|

)
<∞, (1.34)

where Ex is the expectation under the measure Px and x ∈ E. We consider the optimal

stopping problem

V (x) = sup
τ∈T

Ex(G(Xτ )), (1.35)
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where x ∈ E and T is the set of all stopping times of F. The function V is called the value

function and G is called the gain function. Solving the optimal stopping problem (1.35)

means two things. Firstly, we need to find an optimal stopping time, i.e. a stopping time τ∗

at which the supremum is attained. Secondly, we need to compute the value V (x) for x ∈ E

as explicitly as possible.

Note that if we take τ ≡ 0 we have that from definition of V given in (1.35),

V (x) ≥ Ex(G(X0)) = G(x) (1.36)

The Markovian structure of X means that the process always starts afresh. Then for a fixed

sample path we shall be able to decide whether to continue with the observation or to stop

it. Thinking in this way we split the set E into two disjoint subsets, the continuation set C

and the stopping set D = E \ C. It follows that as soon as the process enters into D, the

observation should be stopped and an optimal stopping time is obtained. It turns out that

the continuation set is given by

C = {x ∈ E : V (x) > G(x)} (1.37)

and the stopping set

D = {x ∈ E : V (x) = G(x)}. (1.38)

Formally, we define the process {Gt, t ≥ 0} where

Gt = G(Xt), t ≥ 0.

Then the Snell envelope process of {Gt, t ≥ 0} under the measure Px for x ∈ E is given by
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{St, t ≥ 0} where

St = ess sup
τ∈Tt

Ex(G(Xτ )|Ft)

= ess sup
τ∈T

Ex(G(Xτ+t)|Ft)

= ess sup
τ∈T

EXt(G(Xτ ))

= V (Xt).

Hence an optimal stopping time is given by

τ∗0 = inf{t ≥ 0 : St = Gt}

= inf{t ≥ 0 : V (Xt) = G(Xt)}

= inf{t ≥ 0 : Xt ∈ D}.

Proving that we have to stop when the process enters for the first time into the set D and

continue otherwise. Let f : E 7→ R be a function and take c ∈ E. The function f is said to

be upper semi-continuous at a point c when

f(c) ≥ lim sup
x→c

f(x).

It is said to be upper semi-continuous (usc) on E if it is upper semi-continuous at every point

of E. In a similar way, f is said to be lower semi-continuous at a point c when

f(c) ≤ lim inf
x→c

f(x).

It is said to be lower semi-continuous (lsc) on E if it is lower semi-continuous at every point

of E. When E = R upper semi-continuity in c ∈ E can be written in the following way. For

all ε > 0 there exists δ > 0 such that for all x such that |x − c| < δ then f(x) ≤ f(c) + ε.

Lower semi-continuity can be written, for all ε > 0 exists δ > 0 such that for all x such that

|x− c| < δ then f(x) ≥ f(c)− ε. It can be shown that if V is lower semi-continuous and G

upper semi-continuous then C is open and D is closed. Introduce the first entry time τD of
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X into D by setting

τD = inf{t ≥ 0 : Xt ∈ D}. (1.39)

Let us assume that there exists an optimal stopping time τ∗ in (1.35), i.e.,

V (x) = Ex(G(Xτ∗))

for all x ∈ E. Then we have that if V is lsc and G is usc, then

ii) The process {V (Xt), t ≥ 0} is a right-continuous supermartingale.

iii) The stopping time τD satisfies τD ≤ τ∗ Px-a.s. for all x ∈ E and is optimal in (1.35).

iv) The stopped process {V (Xt∧τD), t ≥ 0} is a right-continuous martingale under Px for

every x ∈ E.

The following result (extracted from Peskir and Shiryaev (2006), Corollary 2.9) is a very

useful result when we are able to prove directly that V is lsc.

Consider the optimal stopping problem (1.35) upon assuming that the condi-

tion (1.34) is satisfied. Suppose that V is lsc and G is usc. If Px(τD < ∞) = 1

for all x ∈ E, then τD is optimal in (1.35).

In this thesis we consider optimal stopping problems of the form

Vt = inf
τ∈Tt

E(Gτ ).

The theory studied in this chapter also applies for these problems. We only have to consider

the process G′ = {G′t, t ≥ 0} where G′t = −Gt for all t ≥ 0.
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Chapter 2

Predicting the Last Zero before an

exponential time of a Spectrally

Negative Lévy Process

Abstract

Given a spectrally negative Lévy process, we predict, in a L1 sense, the last

passage time of the process below zero before an independent exponential time.

Using a similar argument as that in Urusov (2005), we show that this optimal

prediction problem is equivalent to solving an optimal prediction problem in a

finite horizon setting. The optimal stopping time is the first time the process

crosses above a non-negative, continuous and non-increasing curve depending

on time. This curve and the value function are characterised as a solution

of a system of non-linear integral equations which can be understood as a

generalisation of the free boundary equations (see e.g. Peskir and Shiryaev

(2006) Chapter IV.14.1) in the presence of jumps.

2.1 Introduction

The study of last exit times has received much attention in several areas of applied probability,

e.g. risk theory, finance and reliability in the past few years. Consider the Cramér–Lundberg

process, a process consisting of a deterministic drift and a compound Poisson process with

only negative jumps (see Figure 2.1), which is typically used to model the capital of an

insurance company. Of particular interest is the moment of ruin, τ0 which is defined to

37



refer to the first moment when the process becomes negative. Within the framework of the

insurance company having sufficient funds to endure negative capital for a considerale amount

of time, another quantity of interest is the last time, g that the process is below zero. In

a more general setting, we can consider a spectrally negative Lévy process instead of the

classical risk process. Several studies, for example Baurdoux (2009) and Chiu and Yin (2005)

studied the Laplace transform of the last time before an exponential time that a spectrally

negative Lévy process is below some given level.
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Figure 2.1: Cramér–Lundberg process with τ0, the moment of ruin and g, the last zero.

Last passage time is increasingly becoming a vital factor in financial modeling as shown

in Madan et al. (2008a) and Madan et al. (2008b) where the authors concludes that the price

of a European put and call options, modelled by non-negative and continuous martingales

that vanish at infinity, can be expressed in terms of the probability distributions of some last

passage times.

Another application of last passage times is in degradation models. Paroissin and Rabeha-

saina (2013) propose a spectrally positive Lévy process to model the ageing of a device in

which they consider a subordinator perturbed by an independent Brownian motion. A moti-

vation for considering this model is that the presence of a Brownian motion can model small

repairs of the device and the jumps represent major deterioration. In the literature, the

failure time of a device is defined as the first hitting time of a critical level b. An alternative

approach is to consider instead, the last time that the process is under the level b since the

paths of this process are not necessarily monotone and this allows the process to return below

the level b after it goes above b.
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The aim of this work is to predict the last time a spectrally negative Lévy process is below

zero before an independent exponential time where the terms ”to predict” are understood to

mean to find a stopping time that is closest (in L1 sense) to this random time. This problem

is an example of the optimal prediction problems which have been widely investigated by

many. Graversen et al. (2001) predicted the value of the ultimate maximum of a Brownian

motion in a finite horizon setting whereas Shiryaev (2009) focused on the last time of the

attainment of the ultimate maximum of a (driftless) Brownian motion and proceeded to show

that it is equivalent to predicting the last zero of the process in this setting. The work of

the latter was generalised by du Toit et al. (2008) for a linear Brownian motion. Bernyk

et al. (2011) studied the time at which a stable spectrally negative Lévy process attains its

ultimate supremum in a finite horizon of time and this was later generalised by Baurdoux

and van Schaik (2014) for any Lévy process in infinite horizon of time. Investigations on the

time of the ultimate minimum and the last zero of a transient diffusion process were carried

out by Glover et al. (2013) and Glover and Hulley (2014) respectively. More recent studies by

Baurdoux and Pedraza (2020b) predicted the last zero of a spectrally negative Lévy process

in a infinite horizon setting. It can be shown that the aforementioned problems are equiva-

lent to optimal stopping problems, in other words, optimal prediction problems and optimal

stopping problems are intimately related.

This chapter is organised as follows. In Section 2.2 we formulate the optimal prediction

problem and we prove that it is equivalent to an optimal stopping problem. Section 2.3 is

dedicated to the solution of the optimal stopping problem. The main result of this paper

is stated in Theorem 2.3.13 and its proof is detailed in Section 2.4. The last section makes

use of Theorem 2.3.13 to find numerical solution of the optimal stopping problem for the

Brownian motion with drift case.

2.2 Formulation of the Problem

Throughout this chapter we use the notation and the preliminary results presented in Sec-

tion 1.1. Let X be a spectrally negative Lévy process, that is, a Lévy process starting

from 0 with only negative jumps and non-monotone paths, defined on a filtered probability
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space (Ω,F ,F,P) where F = {Ft, t ≥ 0} is the filtration generated by X which is naturally

enlarged (see Definition 1.3.38 in Bichteler (2002)). We suppose that X has Lévy triplet

(µ, σ,Π) where µ ∈ R, σ ≥ 0 and Π is a measure (Lévy measure) concentrated on (−∞, 0)

satisfying
∫

(−∞,0)(1 ∧ x
2)Π(dx) <∞.

Let gθ be the last passage time below zero before an exponential time, i.e.

gθ = sup{0 ≤ t ≤ ẽθ : Xt ≤ 0}, (2.1)

where ẽ is an exponential random variable with parameter θ ≥ 0. Here, we use the convention

that an exponential random variable with parameter 0 is taken to be infinite with probability

1. In the case of θ = 0, we simply denote g = g0.

Note that gθ ≤ ẽθ <∞ P-a.s. for all θ > 0. However, in the case where θ = 0, g could be

infinite. Therefore, we assume that θ > 0 throughout this paper. Moreover, we have that gθ

has finite moments for all θ > 0.

Remark 2.2.1. Since X is a spectrally negative Lévy process, we can exclude the case of a

compound Poisson process and hence the only way of exiting the set (−∞, 0] is by creeping

upwards. This tells us that Xgθ− = Xgθ = 0 in the event of {gθ < ẽθ} and that gθ = sup{0 ≤

t ≤ ẽθ : Xt < 0} holds P-a.s.

Clearly, up to any time t ≥ 0 the value of gθ is unknown (unless X is trivial), and it is

only with the realisation of the whole process that we know that the last passage time below

0 has occurred. However, this is often too late: typically, at any time t ≥ 0, we would like to

know how close we are to the time gθ so we can take some actions based on this information.

We search for a stopping time τ∗ of X that is as “close” as possible to gθ. Consider the

optimal prediction problem

V∗ = inf
τ∈T

E(|gθ − τ |), (2.2)

where T is the set of all stopping times.

We state an equivalence between the optimal prediction problem (2.2) and an optimal

stopping problem. This equivalence is mainly based on the work of Urusov (2005).

Lemma 2.2.2. Suppose that {Xt, t ≥ 0} is a spectrally negative Lévy process. Let gθ be the
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last time that X is below the level zero before an exponential time ẽθ with θ > 0, as defined

in (2.1). Consider the optimal stopping problem given by

V = inf
τ∈T

E
(∫ τ

0
G(θ)(s,Xs)ds

)
, (2.3)

where the function G(θ) is given by G(θ)(s, x) = 1 + 2e−θs
[

θ
Φ(θ)W

(θ)(x)− Z(θ)(x)
]

for all

x ∈ R. Then the stopping time which minimises (2.2) is the same which minimises (2.3). In

particular,

V∗ = V + E(gθ). (2.4)

Proof. Fix any stopping time τ ∈ T . We have that

|gθ − τ | =
∫ τ

0
[2I{gθ≤s} − 1]ds+ gθ.

From Fubini’s theorem and the tower property of conditional expectations, we obtain

E
[∫ τ

0
I{gθ≤s}ds

]
= E

[∫ ∞
0

I{s<τ}E[I{gθ≤s}|Fs]ds
]

= E
[∫ τ

0
P(gθ ≤ s|Fs)ds

]
.

Note that in the event of {ẽθ ≤ s}, we have gθ ≤ s so that

P(gθ ≤ s|Fs) = 1− e−θs + P(gθ ≤ s, ẽθ > s|Fs).

On the other hand for {ẽθ > s}, as a consequence of Remark 2.2.1, the event {gθ ≤ s} is

equal to {Xu ≥ 0 for all u ∈ [s, ẽθ]} (up to a P-null set). Hence, we get that for all s ≥ 0 that

P(gθ ≤ s, ẽθ > s|Fs) = P(Xu ≥ 0 for all u ∈ [s, ẽθ], ẽθ > s|Fs)

= P
(

inf
0≤u≤ẽθ−s

Xu+s ≥ 0, ẽθ > s|Fs
)

= e−θsPXs
(
X ẽθ
≥ 0
)
,

where the last equality follows from the lack of memory property of the exponential distri-
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bution and the Markov property for Lévy process. Hence, we have that

P(gθ ≤ s, ẽθ > s|Fs) = e−θsF (θ)(Xs),

where for all x ∈ R, F (θ)(x) = Px(X ẽθ
≥ 0). Then, since ẽθ is independent of X, we have

that for x ∈ R,

F (θ)(x) = Px(X ẽθ
≥ 0)

= Px(ẽθ < τ−0 )

= 1− Ex(e−θτ
−
0 I{τ−0 <∞})

=
θ

Φ(θ)
W (θ)(x)− Z(θ)(x) + 1,

where the last equality follows from equation (1.9). Thus,

P(gθ ≤ s|Fs) = 1− e−θs + e−θs
[

θ

Φ(θ)
W (θ)(Xs)− Z(θ)(Xs) + 1

]
= 1 + e−θs

[
θ

Φ(θ)
W (θ)(Xs)− Z(θ)(Xs)

]
.

Therefore,

V∗ = inf
τ∈T

E(|gθ − τ |)

= E(gθ) + inf
τ∈T

E
(∫ τ

0
[2P(gθ ≤ s|Fs)− 1]ds

)
= E(gθ) + inf

τ∈T
E
(∫ τ

0

(
1 + 2e−θs

[
θ

Φ(θ)
W (θ)(Xs)− Z(θ)(Xs)

])
ds

)
.

The conclusion holds.

2.3 Optimal stopping problem

In order to find the solution to the optimal stopping problem (2.3), we extend its definition to

Lévy process (and hence strong Markov process) {(t,Xt), t ≥ 0} in the following way. Define
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the function V : R+ × R 7→ R as

V (θ)(t, x) = inf
τ∈T

Et,x
(∫ τ

0
G(θ)(s+ t,Xs+t)ds

)
= inf

τ∈T
E
(∫ τ

0
G(θ)(s+ t,Xs + x)ds

)
. (2.5)

So that

V∗ = V (θ)(0, 0) + E(gθ).

Remark 2.3.1. We can see from the proof above that G(θ) can be written as,

G(θ)(s, x) = 1 + 2e−θs[F (θ)(x)− 1],

where F (θ) is the distribution function of the positive random variable −X ẽθ
given by

F (θ)(x) =
θ

Φ(θ)
W (θ)(x)− Z(θ)(x) + 1. (2.6)

Moreover, evaluating θ = 0, the function G(0) coincides with the gain function found in

Baurdoux and Pedraza (2020b) (see Lemma 3.2 and Remark 3.3).

Now we give some intuitions about the function G(θ). Recall that for all θ ≥ 0, W θ and

Z(θ) are continuous and strictly increasing functions on [0,∞) such that W (θ)(x) = 0 and

Z(θ)(x) = 1 for x ∈ (−∞, 0). From the above, equation (2.6) and from the fact that F (θ) is

a distribution function, we have that for a fixed t ≥ 0, the function x 7→ G(θ)(t, x) is strictly

increasing and continuous in [0,∞) with a possible discontinuity at 0 depending on the path

variation of X. Moreover, we have that limx→∞G
(θ)(t, x) = 1 for all t ≥ 0. For x < 0 and

t ≥ 0, we have that the function G(θ) takes the form G(θ)(t, x) = 1 − 2e−θs. Similarly, from

the fact that F (θ)(x) − 1 ≤ 0 for all x ∈ R, we have that for a fixed x ∈ R the function

t 7→ G(θ)(t, x) is continuous and strictly increasing on [0,∞). Furthermore, from the fact

that 0 ≤ F (θ)(x) ≤ 1, we have that the function G is bounded by

1− 2e−θt ≤ G(θ)(x, t) ≤ 1 (2.7)

which implies that |G(θ)| ≤ 1. Define the value mθ as the median of the random variable ẽθ,
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in other words, mθ is given by

mθ =
log(2)

θ
.

Hence from (2.7) we have that G(θ)(t, x) ≥ 0 for all x ∈ R and t ≥ mθ. The above observations

tell us that, to solve the optimal stopping problem (2.5), we are interested in a stopping time

such that before stopping, the process X spends most of its time in the region where G(θ) is

negative, taking into account that (t,X) can live in the set {(s, x) ∈ R+×R : G(θ)(s, x) > 0}

and then return back to the set {(s, x) ∈ R+ × R : G(θ)(s, x) ≤ 0}. The only restriction that

applies is that if a considerable amount of time has passed, then {x ∈ R : G(θ)(s, x) > 0} = R

for all s ≥ mθ.

We then define the function h(θ) : R+ 7→ R as

h(θ)(t) := inf{x ∈ R : G(θ)(x, t) ≥ 0} = inf{x ∈ R : F (θ)(x) ≥ 1− 1

2
eθt},

for all t ≥ 0. Hence, we can see that the function h(θ) is a non-increasing continuous function

on [0,mθ) such that limt↑mθ h
(θ)(t) = 0 and h(θ)(t) = −∞ for t ∈ [mθ,∞). Moreover, from

the fact that G(θ)(t, x) < 0 for (t, x) ∈ [0,mθ) × (−∞, 0), we have that h(θ)(t) ≥ 0 for all

t ∈ [0,mθ).

In order to characterise the stopping time that minimises (2.5), we first derive some

properties of the function V (θ).

Lemma 2.3.2. Let θ > 0. The function V (θ) is non-drecreasing in each argument. Moreover,

V (θ)(t, x) ∈ (−mθ, 0] for all x ∈ R and t ≥ 0. In particular, V (θ)(t, x) < 0 for any t ≥ 0 with

x < h(θ)(t) and V (θ)(t, x) = 0 for all (t, x) ∈ [mθ,∞)× R.

Proof. First, note that V (θ)(t, x) ≤ 0 for all (t, x) ∈ R+ × R. Indeed, if we take the stopping

time τ ≡ 0, we obtain that

V (θ)(t, x) = inf
τ∈T

Et,x
(∫ τ

0
G(θ)(s+ t,Xs+t)ds

)
≤ 0.

Now take (t, x) ∈ [mθ,∞) × R, then for any r ≥ 0, we have that G(θ)(r + t,Xr + x) ≥ 0,
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which implies that for any τ ∈ T

0 ≤ E
(∫ τ

0
G(θ)(r + t,Xr + x)dr

)

and hence V (θ)(t, x) = 0.

The fact that V (θ) is non-decreasing in each argument follows from the non-decreasing

property of the functions t 7→ G(θ)(t, x) and x 7→ G(θ)(t, x) as well as the monotonicity of the

expectation. Moreover, we have that {(t, x) ∈ R+ × R : x < h(θ)(t)} = {(t, x) ∈ R+ × R :

G(θ)(t, x) < 0} ⊂ {(t, x) ∈ R+ × R : V (θ)(t, x) < 0}. Indeed, let (s, y) ∈ R+ × R such that

s < h(y) and take U ⊂ {(t, x) ∈ R+ × R : G(θ)(t, x) < 0} be any neighbourhood of (s, y).

Define the stopping time τU as the first exit time from the set U , that is

τU = inf{r ≥ 0 : (r,Xr) /∈ U}.

Then we have that τU > 0 a.s. and

V (θ)(s, y) ≤ Es,y
(∫ τU

0
G(θ)(r + s,Xr+s)dr

)
< 0,

where the strict inequality follows since (r,Xr) ∈ {(t, x) ∈ R+ × R : G(θ)(t, x) < 0} for all

r < τU .

Next we will show that V (θ)(t, x) > −∞ for all (t, x) ∈ [0,mθ)×R and for all θ > 0. Note

that t < mθ if and only if 1− 2e−θt < 0. Then for all (s, x) ∈ R+ × R we have that

G(θ)(s, x) ≥ 1− 2e−θs ≥ (1− 2e−θs)I{s<mθ}.

Hence, for all x ∈ R and t < mθ

V (θ)(t, x) = inf
τ∈T

E
(∫ τ

0
G(θ)(s+ t,Xs + x)ds

)
≥ inf

τ∈T
E
(∫ τ

0
(1− 2e−θ(s+t))I{t+s<mθ}ds

)
= − sup

τ∈T
E
(∫ τ

0
(2e−θ(s+t) − 1)I{t+s<mθ}ds

)
.
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The term in the last integral is non-negative, so we obtain for all t < mθ and x ∈ R that

V (θ)(t, x) ≥ −
(∫ ∞

0
(2e−θ(s+t) − 1)I{t+s<mθ}ds

)
= −

(∫ mθ−t

0
(2e−θ(s+t) − 1)ds

)
> −mθ.

In the next lemma we use the general theory of optimal stopping to find an optimal

stopping time for (2.3).

Lemma 2.3.3. For any θ > 0 we have that an optimal stopping time for (2.5) is given by

τD = inf{t ≥ 0 : (t,Xt) ∈ D}, (2.8)

where D = {(t, x) ∈ R+ × R : V (θ)(t, x) = 0}.

Proof. As a consequence of the fact that V (θ) vanishes on the set [mθ,∞) × R (see Lemma

2.3.2) we have that for any (t, x) ∈ [0,mθ)× R,

V (θ)(t, x) = inf
τ∈Tmθ−t

Et,x
(∫ τ

0
G(θ)(s+ t,Xs+t)ds

)
,

where Tmθ−t is the set of stopping times bounded by mθ − t. Indeed, since Tmθ−t ⊂ T we

have the inequality,

V (θ)(t, x) ≤ inf
τ∈Tmθ−t

Et,x
(∫ τ

0
G(θ)(s+ t,Xs+t)ds

)
.

On the other hand, for any (t, x) ∈ [0,mθ] × R we have that from the Markov property at
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time mθ,

V (θ)(t, x) = inf
τ∈T

[
Et,x

(
I{τ<mθ−t}

∫ τ

0
G(θ)(s+ t,Xs+t)ds

)
+Et,x

(
I{τ≥mθ−t}

∫ τ

0
G(θ)(s+ t,Xs+t)ds

)]
= inf

τ∈T

[
Et,x

(∫ τ∧(mθ−t)

0
G(θ)(s+ t,Xs+t)ds

)

+Et,x
(
I{τ≥mθ−t}Emθ,Xmθ

(∫ τ

0
G(θ)(s+mθ, Xs+mθ)ds

))]
≥ inf

τ∈T

[
Et,x

(∫ τ∧(mθ−t)

0
G(θ)(s+ t,Xs+t)ds+ I{τ≥mθ−t}V (mθ, Xmθ)

)]

= inf
τ∈T

Et,x

(∫ τ∧(mθ−t)

0
G(θ)(s+ t,Xs+t)ds

)
,

where the inequality follows from the definition of V (θ) and the last equality holds since

V (θ)(mθ, x) = 0 for all x ∈ R. Then the assertion holds.

Hence, since |G(θ)| ≤ 1 we have that for all t ≥ 0 and x ∈ R,

Et,x

(
sup
s≥0

∣∣∣∣∣
∫ s∧(mθ−t)

0
G(θ)(r + t,Xr+t)dr

∣∣∣∣∣
)
<∞

Next, we show that the function V (θ) is upper semi-continuous. Recall that the function F (θ)

is strictly increasing and continuous on [0,∞) such that F (θ) = 0 for x < 0. This implies

that F (θ) is upper semi-continuous and then the function G(θ) is upper semi-continuous (since

t 7→ G(θ)(t, x) is continuous for all x ∈ R). Hence for any stopping time τ , by using Fatou’s

lemma (since G(θ) is bounded), we have that for any (t0, x0) ∈ R+ × R,

lim sup
(t,x)→(t0,x0)

E
[∫ τ

0
G(θ)(s+ t,Xs + x)ds

]
≤ E

[∫ τ

0
lim sup

(t,x)→(t0,x0)
G(θ)(s+ t,Xs + x)ds

]

≤ E
[∫ τ

0
G(θ)(s+ t0, Xs + x0)ds

]
.

Showing that for any τ ∈ T , the mapping (t, x) 7→ E
[∫ τ

0 G
(θ)(s+ t,Xs + x)ds

]
is upper

semi-continuous. Hence, V (θ) is upper semi-continuous (since V (θ) is the infimum of upper

semi-continuous functions).
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Therefore, by general results of optimal stopping (see Peskir and Shiryaev (2006) Corollary

2.9 or Section 1.2.3) we conclude that an optimal stopping time for (2.5) exists and is given

by (2.8).

Hence, from Lemma 2.3.2, we derive that D = {(t, x) ∈ R+ × R : x ≥ b(θ)(t)}, where the

function b(θ) : R+ 7→ R is given by

b(θ)(t) = inf{x ∈ R : (t, x) ∈ D},

for each t ≥ 0. It follows from Lemma 2.3.2 that b(θ) is non-increasing and b(θ)(t) ≥ h(θ)(t) ≥ 0

for all t ≥ 0. Moreover, b(θ)(t) = −∞ for t ∈ [mθ,∞), since V (θ)(t, x) = 0 for all t ≥ mθ and

x ∈ R, giving us τD ≤ mθ. In the case that t < mθ, we have that b(θ)(t) is finitely valued as

we will prove in the following Lemma.

Lemma 2.3.4. Let θ > 0. The function b(θ) is finitely valued for all t ∈ [0,mθ).

Proof. For any θ > 0 and fix t ≥ 0, consider the optimal stopping problem,

V(θ)
t (x) = inf

τ∈Tmθ−t
Ex
(∫ τ

0
[1 + 2e−θt(F (θ)(Xs)− 1)]ds

)
, x ∈ R,

where Tmθ−t is the set of all stopping times bounded by mθ − t. From the fact that for all

s ≥ 0 and x ∈ R, G(s+ t, x) ≥ 1 + 2e−θt(F (θ)(x)− 1) and that τD ∈ Tmθ−t (under Pt,x for all

x ∈ R), we have that

V (θ)(t, x) ≥ V(θ)
t (x) (2.9)

for all x ∈ R. Hence it suffices to show that there exists x̃t (finite) sufficiently large such

that V(θ)
t (x) = 0 for all x ≥ x̃t. Since F (θ) is a distribution function, it can be easily

shown that V(θ)
t is a non-decreasing function and that for all x ∈ R, V(θ)

t (x) ∈ (−mθ, 0].

Moreover, an optimal stopping time for V(θ)
t is τDt , the first entry time before mθ − t to the

set Dt = {x ∈ R : V(θ)
t (x) = 0}. We proceed by contradiction, assume that Dt = ∅, then

τDt = mθ − t and

V(θ)
t (x) = Ex

(∫ mθ−t

0
[1 + 2e−θt(F (θ)(Xs)− 1)]ds

)
.
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Hence, by the dominated convergence theorem and the spatial homogeneity of Lévy processes

we have that

0 ≥ lim
x→∞

V(θ)
t (x) = E

(∫ mθ−t

0
lim
x→∞

[1 + 2e−θt(F (θ)(Xs + x)− 1)]ds

)
= mθ − t > 0

which is a contradiction. Therefore, we conclude that for each t ≥ 0, there exists a finite

value x̃t such that b(θ)(t) ≤ x̃t.

Remark 2.3.5. From the proof of Lemma 2.3.4, we find an upper bound of the boundary

b(θ). Define, for each t ∈ [0,mθ), u
(θ)(t) = inf{x ∈ R : V(θ)

t (x) = 0}. Then it follows that

u(θ) is a non-increasing finite function such that

u(θ)(t) ≥ b(θ)(t)

for all t ∈ [0,mθ).

Next we show that the function V (θ) is continuous.

Lemma 2.3.6. The function V (θ) is continuous. Moreover, for each x ∈ R, t 7→ V (θ)(t, x)

is Lipschitz on R+ and for every t ∈ R+, x 7→ V (θ)(t, x) is Lipschitz on R.

Proof. First, we are showing that, for a fixed t ≥ 0, the function x 7→ V (θ)(t, x) is Lipschitz

on R. Note that if t ≥ mθ, then we have that V (θ)(t, x) = 0 for all x ∈ R. Suppose that

t < mθ. Let x, y ∈ R and define τ∗x = τD(t,x) = inf{s ≥ 0 : Xs + x ≥ b(θ)(s+ t)}. Since τ∗x is

optimal in V (θ)(t, x) (under P) we have that

V (θ)(t, y)− V (θ)(t, x) ≤ E

(∫ τ∗x

0
G(θ)(s+ t,Xs + y)ds

)
− E

(∫ τ∗x

0
G(θ)(s+ t,Xs + x)ds

)

= E

(∫ τ∗x

0
2e−θ(s+t)[F (θ)(Xs + y)− F (θ)(Xs + x)]ds

)
.

Define the stopping time

τ+
b(0)−x = inf{t ≥ 0 : Xt ≥ b(θ)(0)− x}.

Then we have that τ∗x ≤ τ+
b(θ)(0)−x (since b(θ) is a non-increasing function). From the fact that
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F (θ) is non-decreasing, we obtain that for b(θ)(0) ≥ y ≥ x,

V (θ)(t, y)− V (θ)(t, x) ≤ 2E

(∫ τ∗x

0
e−θs[F (θ)(Xs + y)− F (θ)(Xs + x)]ds

)

≤ 2E

(∫ τ+
b(0)−x

0
e−θs[F (θ)(Xs + y)− F (θ)(Xs + x)]ds

)
.

Using Fubini’s theorem and a density of the potential measure of the process killed upon

exiting (−∞, b(θ)(0)] (see equation (1.20)) we get that

V (θ)(t, y)− V (θ)(t, x)

≤ 2

∫ b(θ)(0)

−∞
[F (θ)(z + y − x)− F (θ)(z)]

∫ ∞
0

e−θsPx(Xs ∈ dz, τ+
b(0) > s)ds

= 2

∫ b(θ)(0)

−∞
[F (θ)(z + y − x)− F (θ)(z)]

[
e−Φ(θ)(b(θ)(0)−x)W (θ)(b(θ)(0)− z)−W (θ)(x− z)

]
dz

≤ 2e−Φ(θ)(b(θ)(0)−x)W (θ)(b(θ)(0)− x+ y)

∫ b(θ)(0)

x−y
[F (θ)(z + y − x)− F (θ)(z)]dz,

where in the last inequality, we used the fact that W (θ) is strictly increasing and non-negative

and that F (θ) vanishes at (−∞, 0). By an integration by parts argument, we obtain that

∫ b(θ)(0)

x−y
[F (θ)(z + y − x)− F (θ)(z)]dz = (y − x)F (θ)(b(θ)(0) + y − x).

Moreover, it can be checked that (see Kuznetsov et al. (2013) lemma 3.3) the function z 7→

e−Φ(θ)(z)W (θ)(z) is a continuous function in the interval [0,∞) such that

lim
z→∞

e−Φ(θ)(z)W (θ)(z) =
1

ψ′(Φ(θ))
<∞.

This implies that there exist a constant M > 0 such that for every z ∈ R, we have the

inequality 0 ≤ e−Φ(θ)(z)W (θ)(z) < M . Then we obtain that for all x ≤ y ≤ b(θ)(0),

0 ≤ V (θ)(t, y)− V (θ)(t, x) ≤ 2M(y − x)eΦ(θ)y ≤ 2M(y − x)eΦ(θ)b(θ)(0).

On the other hand, since b(θ)(0) ≥ b(θ)(t) for all t ∈ [0,mθ) we have that for all (t, x) ∈
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[0,mθ)× [b(θ)(0),∞), V (θ)(t, x) = 0. Hence we obtain that for all x, y ∈ R and t ≥ 0,

|V (θ)(t, y)− V (θ)(t, x)| ≤ 2M |y − x|eΦ(θ)b(θ)(0). (2.10)

Therefore we conclude that for a fixed t ≥ 0, the function x 7→ V (θ)(t, x) is Lipschitz on R.

It remains to show that t 7→ V (θ)(t, x) is Lipschitz on [0,∞) for every x ∈ R. We know

that for all x ∈ R, V (θ)(t, x) = 0 for all t ≥ mθ so t 7→ V (t, x) is Lipschitz on [mθ,∞) for

all x ∈ R. On the other hand, recall that the function t 7→ e−θt is Lipschitz continuous on

[0,∞). Indeed, using the fact that e−θt ≤ 1 for all t ≥ 0 we have that for all s, t ∈ [0,∞),

∣∣∣e−θs − e−θt∣∣∣ =

∣∣∣∣∫ t

s
θe−θudu

∣∣∣∣ ≤ θ|t− s|.
Take s, t ∈ [0,mθ] and suppose without loss of generality that s ≥ t. Then, since τD(t,x) is

optimal for V (θ)(t, x), we have that for all x ∈ R,

0 ≤ V (θ)(s, x)− V (θ)(t, x)

≤ E
(∫ τD(t,x)

0
G(θ)(r + s,Xr + x)dr

)
− E

(∫ τD(t,x)

0
G(θ)(r + t,Xr + x)dr

)
≤ E

(∫ τD(t,x)

0
2[e−θ(r+t) − e−θ(r+s)]dr

)
≤ 2θ(s− t)mθ,

where the second inequality follows from the fact that 0 ≤ F (θ) ≤ 1 and the last inequality

results from τD(t,x) ≤ mθ − t ≤ mθ. Therefore we conclude that

|V (θ)(s, x)− V (θ)(t, x)| ≤ 2θmθ|s− t|

and therefore t 7→ V (θ)(t, x) is Lipschitz continuous for all x ∈ R.

In order to derive more properties of the boundary b(θ), we first state some auxiliary

results. Recall that if f ∈ C1,2
b (R+ × R), the set of real bounded C1,2 functions on R+ × R
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with bounded derivatives, the infinitesimal generator of (t,X) is given by

A(t,X)(f)(t, x) =
∂

∂t
f(t, x)− µ ∂

∂x
f(t, x) +

1

2
σ2 ∂

2

∂x2
f(t, x)

+

∫
(−∞,0)

[f(t, x+ y)− f(t, x)− yI{y>−1}
∂

∂x
f(t, x)]Π(dy). (2.11)

However, sometimes is not easy to show that f has continuous derivatives and then a definition

of the generator in a broader sense is needed. It turns out that the generator of a Lévy process

can be defined in the sense of distributions. Indeed, it is shown in Lamberton and Mikou

(2008) that when f is a bounded continuous function, the generator can be defined in the

sense of distributions (see Proposition 2.1 and Remark 2.2). The reader can also refer to the

Appendix A for further details on this. In particular, we show that, if f is a locally integrable

function R+ × R such that (u, x) 7→
∫

(−∞,−1) |f(u, x+ y)|Π(dy) is locally integrable, we can

define the distribution A(t,X)(f) by A(t,X)(f) = AX(f) + ∂
∂tf , where

〈AX(f), ψ〉 =

∫
R+

∫
R
f(t, x)

[
µ
∂

∂x
ϕ(t, x) +

1

2
σ2 ∂

2

∂x2
ϕ(t, x)

]
dxdt

+

∫
R+

∫
R
f(t, x)B∗X(ϕ)(t, x)dxdt

〈 ∂
∂t
f, ψ〉 = −

∫
R+

∫
R
f(t, x)

∂

∂t
ϕ(t, x)dxdt,

for any ϕ ∈ C∞ function with compact support on R+ × R and

B∗X(ϕ)(t, x) =

∫
(−∞,0)

[ϕ(t, x− y)− ϕ(t, x) + y
∂

∂x
ϕ(t, x)I{y>−1}]Π(dy).

Let C = R+ × R \ D = {(t, x) ∈ R+ × R : x < b(θ)(t)} be the continuation region.

Then we have that the value function V (θ) satisfies a variational inequality in the sense of

distributions. The proof is analogous to the one presented in Lamberton and Mikou (2008)

(see Proposition 2.5).

Lemma 2.3.7. Fix θ > 0. The distribution A(t,X)V
(θ) + G(θ) is non-negative on R+ × R.

Moreover, we have that A(t,X)V
(θ) +G(θ) = 0 on C.

Proof. By means of Proposition A.6 the result follows since for all (t, x) ∈ R+ × R that the

process {Zs, s ≥ 0} is a Pt,x-submartingale and {Zs∧τD , s ≥ 0} is Pt,x-martingale, where for
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any s ≥ 0,

Zs = V (θ)(t+ s,Xt+s) +

∫ s

0
G(θ)(r + t,Xr+t)dr.

Indeed, it is a consequence of the fact that, under the measure Pt,x, the Snell envelope of

the process {
∫ s

0 G
(θ)(r+ t,Xr+t)dr, s ≥ 0} is given by Zs (due to the Markovian structure of

(t,X), see Section 1.2.3 or Theorem 2.2 of Peskir and Shiryaev (2006)).

We define a special function which is useful to prove the left-continuity of the boundary

b(θ). For θ > 0, let

ϕ(θ)(t, x) =

[∫
(−∞,0)

V (θ)(t, x+ y)Π(dy) +G(θ)(t, x)

]
I{x>b(θ)(t)}, (t, x) ∈ R+ × R.

(2.12)

Provided that ϕ(θ) is locally integrable, we can define the distribution ϕ(θ) by

〈ϕ(θ), φ〉 =

∫
R+

∫
R
ϕ(θ)(t, x)φ(t, x)dxdt

for any φ ∈ C∞ with compact support in R+ × R. The next Lemma states some properties

of ϕ(θ).

Lemma 2.3.8. On the interior of D, the function ϕ(θ) is strictly increasing on each argu-

ment, strictly positive and continuous whereas, on C, it vanishes. Moreover, we have that

A(t,X)(V
(θ)) +G(θ) = ϕ(θ) on the interior of D in the sense of distributions.

Proof. Let t ∈ [0,mθ) and x ∈ R. Note that if x > b(θ)(t), we have that for all y ∈

(b(θ)(t)−x, 0), V (θ)(t, x+y) = 0. Then from the fact that V (θ) is bounded (see Lemma 2.3.2)

and |G| ≤ 1, we obtain that

|ϕ(θ)(t, x)| =

∣∣∣∣∣
∫

(−∞,b(θ)(t)−x)
V (θ)(t, x+ y)Π(dy) +G(θ)(t, x)

∣∣∣∣∣
≤
∫

(−∞,b(θ)(t)−x)

∣∣∣V (θ)(t, x+ y)
∣∣∣Π(dy) + |G(θ)(t, x)|

≤
∫

(−∞,b(θ)(t)−x)
mθΠ(dy) + 1

<∞,
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where the last inequality follows from the fact that Π is a finite measure on the interval

(−∞,−ε), for all ε > 0. Then ϕ(θ)(t, x) is finite for all t ≥ 0 and x ∈ R. Recall that the

function G(θ) is continuous and strictly increasing in each argument on the set R+ × (0,∞).

Then from the fact that b(θ) is non-negative, V (θ) is continuous and non-decreasing in each

argument (see Lemmas 2.3.2 and 2.3.6) and the dominated convergence theorem, we conclude

that ϕ(θ) is continuous and strictly increasing on D. Then ϕ(θ) is locally integrable and hence

ϕ(θ) can be defined as a distribution.

Next, we show that A(t,X)(V
(θ)) +G(θ) = ϕ(θ) on the interior of D in the sense of distri-

butions. Take φ ∈ C∞ with compact support on the interior of D, then

〈A(t,X)(V
(θ)), φ〉 =

∫
R+

∫
R
V (θ)(t, x)B∗X(φ)(t, x)dxdt

=

∫ ∞
0

∫ b(θ)(t)

−∞
V (θ)(t, x)

∫
(−∞,0)

φ(t, x− y)Π(dy)dxdt

=

∫ ∞
0

∫ ∞
b(θ)(t)

φ(t, x)

∫
(−∞,0)

V (θ)(t, x+ y)Π(dy)dxdt.

Then we conclude that A(t,X)(V
(θ)) +G(θ) = ϕ(θ) holds on D in the sense of distributions.

Lastly, we show that ϕ(θ) is strictly positive on D. From Lemma 2.3.7, we have that ϕ is

a non-negative distribution. Then by continuity, we have that ϕ(θ)(t, x) ≥ 0 for all (t, x) ∈ D.

Indeed, assume that there exists (t0, x0) such that ϕ(θ)(t0, x0) < 0. By continuity we have

that there exists an open set A, such that (t0, x0) ∈ A and ϕ(θ)(t, x) < 0 for all (t, x) ∈ A.

Then, if we take any non-negative function φ ∈ C∞ with compact support in A we have that

〈ϕ(θ), φ〉 =

∫
R+

∫
R
ϕ(θ)(t, x)φ(t, x)dxdt < 0

which contradicts the fact that ϕ(θ) is a non-negative distribution. Fix t ∈ [0,mθ) and suppose

that there exists y > b(θ)(t) such that ϕ(θ)(t, y) = 0. Let x ∈ (b(θ)(t), y) then since ϕ(θ) is

strictly increasing in each argument, we have

0 = ϕ(θ)(t, y) > ϕ(θ)(t, x) ≥ 0
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which is a contradiction. Then ϕ(θ) is strictly positive on the interior of D.

Now we are ready to show that the optimal boundary is continuous on the set [0,mθ).

The method proof is based on Lamberton and Mikou (2008) (see Theorem 4.2) where the

continuity of the boundary is shown in the American option context.

Lemma 2.3.9. The function b(θ) is continuous on [0,mθ).

Proof. From the continuity of V (θ), we deduce that the set D is closed. Let t ∈ [0,mθ) and

let {tn}n≥0 be a sequence of numbers such that tn ↓ t, and consider the limit b(θ)(t+) =

limn→∞ b
(θ)(tn) (which exists since b(θ) is non-increasing). Note that from the fact that

b(θ) is non-increasing, we have that b(θ)(t) ≥ b(θ)(t+). On the other hand, we have that

(b(θ)(tn), tn) ∈ D and from the fact that D is closed, limn→∞(tn, b
(θ)(tn)) = (t, b(θ)(t+)) ∈ D.

Hence we conclude that b(θ)(t) ≤ b(θ)(t+) and therefore b(θ) is right-continuous.

We now show that b(θ) is left-continuous. For this, suppose that there exists some td ∈

(0,mθ) such that limh↓0 b
(θ)(td − h) =: b(θ)(td−) > b(θ)(td) and choose any (s, x) ∈ [0, td) ×

(b(θ)(td), b
(θ)(td−)). We then have that x < b(θ)(td−) ≤ b(θ)(s), so that V (θ)(s, x) < 0 and then

[0, td)× (b(θ)(td), b
(θ)(td−)) ⊂ C. From Lemma 2.3.7, we deduce that A(t,X)(V

(θ)) +G(θ) = 0

on (0, td)× (b(θ)(td), b
(θ)(td−)). Then, if we take any non-negative function φ ∈ C∞ we have

that

〈AX(V (θ)) +G(θ), φ〉 =

∫
R+

∫
R
V (θ)(t, x)

∂

∂t
φ(t, x)dxdt = −

∫
R+

∫
R
V (θ)(dt, x)φ(t, x)dx ≤ 0,

where the last inequality follows from the fact for all x ∈ R, t 7→ V (θ)(t, x) is non-decreasing

and then for any x ∈ R, the measure V (θ)(dt, x) is well defined. Note that the equation above

means that AX(V (θ)) + G(θ) is a non positive distribution. By continuity, we have that for

any t ∈ (0, td), the distribution AX(V (θ))(t, ·) + G(θ)(t, ·) is a non positive distribution on

(b(θ)(td), b
(θ)(td−)). Indeed, suppose that there exists t0 ∈ (0, td) and a non-negative function

φ ∈ C∞ with compact support on (b(θ)(td), b
(θ)(td−)) such that

∫
R
V (θ)(t0, x)

[
µ
∂

∂x
φ(x) +

1

2
σ2 ∂

2

∂x2
φ(x) +B∗X(φ)(x)

]
dx+

∫
R
G(θ)(t0, x)φ(x)dx > 0

Then by the continuity of the functions t 7→ V (θ)(t, x) and t 7→ G(θ)(t, x) (for any x > 0), we
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have that there exists an open set A ⊂ (0, td) such that for any nonnegative function ϕ ∈ C∞

with compact support on A,

∫
R+

∫
R
V (θ)(t, x)

[
µ
∂

∂x
φ(x)ϕ(t) +

1

2
σ2 ∂

2

∂x2
φ(x)ϕ(t) +B∗X(φ · ϕ)(t, x)

]
dxdt

+

∫
R+

∫
R
G(θ)(t, x)φ(x)ϕ(t)dxdt > 0.

Note that the equation above contradicts the fact that AX(V (θ)) + G(θ) is a non positive

distribution on (0, td) × (b(θ)(td), b
(θ)(td−)). Hence, for any t ∈ (0, td), the distribution

AX(V (θ))(t, ·) + G(θ)(t, ·) non positive on (b(θ)(td), b
(θ)(td−)). Then, once again by con-

tinuity, we have that for any non-negative function φ ∈ C∞ with compact support on

(b(θ)(td), b
(θ)(td−)),

0 ≥ lim
t↑td
〈AX(V (θ))(t, ·) +G(θ)(t, ·), φ〉

= lim
t↑td

{∫
R
V (θ)(t, x)

[
µ
∂

∂x
φ(x) +

1

2
σ2 ∂

2

∂x2
φ(x) +B∗X(φ)(x)

]
dx+

∫
R
G(θ)(t, x)φ(x)dx

}
=

∫
R
V (θ)(td, x)

[
µ
∂

∂x
φ(x) +

1

2
σ2 ∂

2

∂x2
φ(x) +B∗X(φ)(x)

]
dx+

∫
R
G(θ)(td, x)φ(x)dx

=

∫ b(θ)(td)

−∞
V (θ)(td, x)

∫
(−∞,0)

φ(x− y)Π(dy)dx+

∫
R
G(θ)(td, x)φ(x)dx

= 〈ϕ(θ), φ〉,

where the second last equality follows from the fact that V (θ)(td, ·) vanishes on the set

(b(θ)(td), b
(θ)(td−)). Note that that the equation above contradicts the fact that ϕ(θ))(td, ·) is

a strictly positive function on (b(θ)(td), b
(θ)(td−)) (see Lemma 2.3.8). Therefore we conclude

that b(θ) is also left-continuous and the proof is complete.

Recall that we have that b(θ)(t) = −∞ for t ∈ [mθ,∞). The next Lemma describes the

limit behaviour of b(θ) around mθ.

Lemma 2.3.10. We have that limt↑mθ b
(θ)(t) = 0.

Proof. Define b(θ)(mθ−) := limt↑mθ b
(θ)(t). We obtain b(θ)(mθ−) ≥ 0 since b(θ)(t) ≥ h(θ)(t) ≥

0 for all t ∈ [0,mθ). The proof is by contradiction so we assume that b(θ)(mθ−) > 0.
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Note that for all x ∈ R, we have that V (θ)(mθ, 0) = 0 and

G(θ)(mθ, x) = 1 + 2e−θ
log(2)
θ [F (θ)(x)− 1] = F (θ)(x).

Moreover, following an analogous argument as in Lemma 2.3.9 we have that,

AX(V (θ)) +G(θ) = −∂tV (θ) ≤ 0

in the sense of distributions on (0,mθ)× (0, b(θ)(mθ−)). Hence by continuity, we can derive,

for t ∈ [0,mθ), that AX(V (θ))(t, ·) + G(θ)(t, ·) ≤ 0 on the interval (0, b(θ)(mθ−)). Hence, for

any non-negative function φ ∈ C∞ with compact support on (0, b(θ)(mθ−)), we have that

0 ≥ lim
t↑mθ
〈AX(V (θ))(t, ·) +G(θ)(t, ·), φ〉

= lim
t↑mθ

{∫
R
V (θ)(t, x)

[
µ
∂

∂x
φ(x) +

1

2
σ2 ∂

2

∂x2
φ(x) +B∗X(φ)(x)

]
dx+

∫
R
G(θ)(t, x)φ(x)dx

}
=

∫
R
F (θ)(x)φ(x)dx

> 0,

where we used in third equality we used the continuity of V (θ) and G(θ) on the first argument

and the fact that V (θ)(mθ, x) = 0 for all x ∈ R and in the last inequality we used that

F (θ)(x) > 0 for all x > 0. Note that we have got a contradiction and we conclude that

b(θ)(mθ) = 0.

Define the value

tb := inf{t ≥ 0 : b(θ)(t) ≤ 0}. (2.13)

Note that in the case where X is a process of infinite variation, we have that the distribution

function of −X ẽθ
, F (θ) is continuous in R, strictly increasing and strictly positive in the open

set (0,∞) with F (θ)(0) = 0. This fact implies that the inverse function of F (θ) exists on
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(0,∞) and then function h(θ) can be written for t ∈ [0,mθ) as

h(θ)(t) = (F (θ))−1

(
1− 1

2
eθt
)
.

Hence we conclude that h(θ)(t) > 0 for all t ∈ [0,mθ). Therefore, when X is a process of

infinite variation, we have b(θ)(t) > 0 for all t ∈ [0,mθ) and hence tb = mθ. For the case of

finite variation, we have that tb ∈ [0,mθ) which implies that b(θ)(t) = 0 for all t ∈ [tb,mθ)

and b(θ)(t) > 0 for all t ∈ [0, tb). In the next lemma, we characterise its value.

Lemma 2.3.11. Let θ > 0 and X be a process of finite variation. We have that for all t ≥ 0

and x ∈ R,

∫
(−∞,0)

[V (θ)(t, x+ y)− V (θ)(t, x)]Π(dy) > −∞.

Moreover, for any Lévy process, tb is given by

tb = inf

{
t ∈ [0,mθ] :

∫
(−∞,0)

V
(θ)
B (t, y)Π(dy) +G(θ)(t, 0) ≥ 0

}
, (2.14)

where V
(θ)
B is given by

V
(θ)
B (t, y) = Ey(τ+

0 ∧ (mθ − t))−
2

θ
e−θt[1− Ey(e−θ(τ

+
0 ∧(mθ−t)))]

for all t ∈ [0,mθ) and y ∈ R.

Proof. Assume that X is a process of finite variation. We first show that

∫
(−∞,0)

[V (θ)(t, x+ y)− V (θ)(t, x)]Π(dy) > −∞

for all t ≥ 0 and x ∈ R. The case t ≥ mθ is straightforward since V (θ)(t, x) = 0 for all x ∈ R.

Assuming that t ∈ [0,mθ), if x > b(θ)(0) ≥ b(θ)(t), we have V (θ)(t, x) = 0 resulting in

∫
(−∞,0)

[V (θ)(t, x+ y)− V (θ)(t, x)]Π(dy) =

∫
(−∞,b(θ)(t)−x)

V (θ)(t, x+ y)Π(dy)

≥ −(mθ − t)Π(−∞, b(θ)(t)− x)

> −∞,
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where the last equality follows since |V (θ)| ≤ mθ − t and Π is finite on intervals away from

zero. If x ≤ b(θ)(0), we have by equation (2.10) that

∫
(−∞,0)

[V (θ)(t, x+ y)− V (θ)(t, x)]Π(dy)

=

∫
(−1,0)

[V (θ)(t, x+ y)− V (θ)(t, x)]Π(dy) +

∫
(−∞,−1)

[V (θ)(t, x+ y)− V (θ)(t, x)]Π(dy)

≥ 2MeΦ(θ)b(θ)(0)

∫
(−1,0)

yΠ(dy)− (mθ − t)Π(−∞,−1)

> −∞,

where the last quantity is finite since X is of finite variation and then
∫

(−1,0) yΠ(dy) > −∞.

Moreover, from Lemma 2.3.7, we obtain that

∫
(−∞,0)

[V (θ)(t, x+ y)− V (θ)(t, x)]Π(dy) +G(θ)(t, x) = − ∂

∂t
V (θ)(t, x)− δ ∂

∂x
V (θ)(t, x) ≤ 0

on C in the sense of distributions, where the last inequality follows since V (θ) is non-decreasing

in each argument and δ > 0. Next, we show that the set {t ∈ [0,mθ) : b(θ)(t) = 0} is non

empty. We proceed by contradiction, assume that b(θ)(t) > 0 for all t ∈ [0,mθ). Then by

continuity of the functions t 7→ V (θ)(t, y) for all y ≤ 0 and t 7→ G(θ)(t, 0), we can derive

∫
(−∞,0)

[V (θ)(t, y)− V (θ)(t, 0)]Π(dy) +G(θ)(t, 0) ≤ 0 (2.15)

for all t ∈ [0,mθ). Taking t ↑ mθ and applying dominated convergence theorem, we obtain

that

0 ≥ lim
t↑mθ

{∫
(−∞,0)

[V (θ)(t, y)− V (θ)(t, 0)]Π(dy) +G(θ)(t, 0)

}
= G(θ)(mθ, 0) = F (θ)(0) > 0,

where the strict inequality follows from F (θ)(0) = θ
Φ(θ)W

(θ)(0) = θ
δΦ(θ) > 0 since X is of finite

variation. Therefore, we observe a contradiction which shows that {t ∈ [0,mθ) : b(θ)(t) =

0} 6= ∅. Moreover, by the definition, we have that tb = inf{t ∈ [0,mθ) : b(θ)(t) = 0}.

Next we find an expression for V (θ) for x ∈ (−∞, 0). Take any t ∈ (0,mθ) and x < 0.
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Since b(θ)(t) ≥ 0 for all t ∈ [0,mθ), we have that

V (θ)(t, x) = Ex

(∫ τ+
0 ∧(mθ−t)

0
(1− 2e−θ(t+s))ds

)
+ Ex

(
I{τ+

0 <mθ−t}
V (θ)(t+ τ+

0 , 0)
)

= Ex(τ+
0 ∧ (mθ − t))−

2

θ
e−θt[1− Ex(e−θ(τ

+
0 ∧(mθ−t)))]

+ Ex
(
I{τ+

0 <mθ−t}
V (θ)(t+ τ+

0 , 0)
)

= V
(θ)
B (t, x) + Ex

(
I{τ+

0 <mθ−t}
V (θ)(t+ τ+

0 , 0)
)
, (2.16)

where the first equality follows since Xs ≤ 0 for all s ≤ τ+
0 and G(t, x) = 1 − 2e−θt for all

x < 0. Hence, in particular, we have that V (θ)(t, x) = V
(θ)
B (t, x) for all t ∈ [tb,mθ) and x ∈ R.

We show that (2.14) holds. By Lemma 2.3.8, we obtain that

∫
(−∞,0)

V (θ)(t, x+ y)Π(dy) +G(θ)(t, x) ≥ 0

for all x > 0 and t ≥ tb. Then by taking x ↓ 0, making use of the right continuity of

x 7→ G(t, x), continuity of V (θ) (see Lemma 2.3.6) and applying dominated convergence

theorem, we derive that

∫
(−∞,0)

V (θ)(tb, y)Π(dy) +G(θ)(tb, 0) ≥ 0.

In particular, if tb = 0, (2.14) holds since V (θ)(t, 0) and G(θ)(t, 0) are non-decreasing functions.

If tb > 0, taking t ↑ tb in (2.15) gives us

∫
(−∞,0)

V (θ)(tb, y)Π(dy) +G(θ)(t, 0) ≤ 0.

Hence, we have that
∫

(−∞,0) V
(θ)
B (tb, y)Π(dy) +G(θ)(tb, 0) = 0 with (2.14) becoming clear due

to the fact that t 7→ V
(θ)
B (t, x) is non-decreasing. If X is a process of infinite variation, we

have that h(θ)(t) > 0 for all t ∈ [0,mθ) and therefore G(θ)(t, x) < 0 for all t ∈ [0,mθ) and

x ≤ 0 which implies that

tb = mθ = inf

{
t ∈ [0,mθ] :

∫
(−∞,0)

V
(θ)
B (t, y)Π(dy) +G(θ)(t, 0) ≥ 0

}
.
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Now we prove that the partial derivatives of V are equal to zero on the curve b(θ) for

those values for which b(θ) is strictly positive.

Lemma 2.3.12. For all t ∈ [0, tb), the partial derivatives of V (θ)(t, x) at the point (t, b(θ)(t))

exist and are equal to zero, i.e.,

∂

∂t
V (θ)(t, b(θ)(t)) = 0 and

∂

∂x
V (θ)(t, b(θ)(t)) = 0.

Proof. First, we prove that the assertion in the first argument. Using a similar idea as in

Lemma 2.3.6, we have that for any t < tb, x ∈ R and h > 0,

0 ≤ V (θ)(t, b(θ)(t))− V (θ)(t− h, b(θ)(t))
h

≤ 2Eb(θ)(t)

(∫ τ∗h

0

[e−θ(r+t−h) − e−θ(r+t)]
h

dr

)

≤ 2Eb(θ)(t)

(∫ τ+

b(θ)(t−h)

0

[e−θ(r+t−h) − e−θ(r+t)]
h

dr

)

=
2

θ

e−θ(t−h) − e−θt

h
Eb(θ)(t)

(
1− e

−θτ+

b(θ)(t−h)I{τ+

b(θ)(t−h)
<∞}

)
=

2

θ

e−θ(t−h) − e−θt

h
[1− e−Φ(θ)[b(θ)(t−h)−b(θ)(t)]],

where τ∗h = inf{r ∈ [0,mθ − t + h] : Xr ≥ b(θ)(r + t − h)} is the optimal stopping time for

V (θ)(t− h, x), the second inequality follows since b is non increasing and the last equality by

equation (1.3). Since b(θ) is continuous, we have that b(θ)(t− h) ↓ b(θ)(t) when h ↓ 0. Hence,

we obtain that

lim
h↓0

V (θ)(t, b(θ)(t))− V (θ)(t− h, b(θ)(t))
h

= 0.

Now we show that the partial derivative of the second argument exists at b(θ)(t) and is equal

to zero. Fix any time t ∈ [0, tb), ε > 0 and x ≤ b(θ)(t) (without loss of generality, we assume
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that ε < x). By a similar argument as in Lemma 2.3.6, we obtain that

V (θ)(t, x)− V (θ)(t, x− ε)

≤ 2

∫ b(θ)(t)

−∞
[F (θ)(z + ε)− F (θ)(z)]

[
e−Φ(θ)(b(θ)(t)−x+ε)W (θ)(b(θ)(t)− z)−W (θ)(x− ε− z)

]
dz

= 2e−Φ(θ)(b(θ)(t)−x+ε)

∫ b(θ)(t)

x−ε
[F (θ)(z + ε)− F (θ)(z)]W (θ)(b(θ)(t)− z)dz

+ 2

∫ x−ε

0
[F (θ)(z + ε)− F (θ)(z)]

[
e−Φ(θ)(b(θ)(t)−x+ε)W (θ)(b(θ)(t)− z)−W (θ)(x− ε− z)

]
dz

+ 2

∫ 0

−ε
F (θ)(z + ε)

[
e−Φ(θ)(b(θ)(t)−x+ε)W (θ)(b(θ)(t)− z)−W (θ)(x− ε− z)

]
dz.

Dividing by ε, we have that for t ∈ [0, tb) and ε < x that

0 ≤ V (θ)(t, x)− V (θ)(t, x− ε)
ε

≤ R(ε)
1 (t, x) +R

(ε)
2 (t, x) +R

(ε)
3 (t, x),

where

R
(ε)
1 (t, x) = 2e−Φ(θ)(b(θ)(t)−x+ε) 1

ε

∫ b(θ)(t)

x−ε
[F (θ)(z + ε)− F (θ)(z)]W (θ)(b(θ)(t)− z)dz,

R
(ε)
2 (t, x) = 2

1

ε

∫ x−ε

0
[F (θ)(z + ε)− F (θ)(z)]

×
[
e−Φ(θ)(b(θ)(t)−x+ε)W (θ)(b(θ)(t)− z)−W (θ)(x− ε− z)

]
dz,

R
(ε)
3 (t, x) = 2

1

ε

∫ 0

−ε
F (θ)(z + ε)

[
e−Φ(θ)(b(θ)(t)−x+ε)W (θ)(b(θ)(t)− z)−W (θ)(x− ε− z)

]
dz.

Then we show that for t ∈ [0, tb), limε↓0R
(ε)
i (t, b(θ)(t)) = 0 for each i = 1, 2, 3. Using the fact

that W and F are non-decreasing, we derive that

0 ≤ lim
ε↓0

R
(ε)
1 (t, b(θ)(t)) ≤ lim

ε↓0
2e−Φ(θ)εW (θ)(b(θ)(t))

1

ε

∫ b(θ)(t)

b(θ)(t)−ε
[F (θ)(z + ε)− F (θ)(z)]dz

≤ lim
ε↓0

2e−Φ(θ)εW (θ)(b(θ)(t))[F (b(θ)(t) + ε)− F (b(θ)(t)− ε)]

= 0,

where in the last equality, we used the fact that b(θ)(t) > 0 and that F (θ) is continuous on
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(0,∞). In a similar way, we obtain that

0 ≤ lim
ε↓0
R

(ε)
3 (t, b(θ)(t))

= lim
ε↓0

2
1

ε

∫ 0

−ε
F (θ)(z + ε)

[
e−Φ(θ)εW (θ)(b(θ)(t)− z)−W (θ)(b(θ)(t)− ε− z)

]
dz

≤ lim
ε↓0

2F (θ)(ε)
[
W (θ)(b(θ)(t) + ε)−W (θ)(b(θ)(t)− ε)

]
= 0.

To show that limεR
(ε)
2 (t, b(θ)(t)) = 0, we first note that for all z ∈ (0, b(θ)(t)),

[F (θ)(z + ε)− F (θ)(z)]
[
e−Φ(θ)(b(θ)(t)−x+ε)W (θ)(b(θ)(t)− z)−W (θ)(x− ε− z)

]
≤W (θ)(b(θ)(t))[F (θ)(z + ε)− F (θ)(z)].

Moreover, using Fubini’s theorem, it can be shown that

∫ b(θ)(t)

0
[F (θ)(z + ε)− F (θ)(z)]dz ≤ ε[F (θ)(b(θ)(t) + ε)− F (θ)(0)].

Using the dominated convergence theorem, we get

lim
ε↓0
R

(θ)
2 (t, b(θ)(t))

≤ 2e−θt
∫ b(θ)(t)−ε

0
lim
ε↓0

F (θ)(z + ε)− F (θ)(z)

ε

×
[
e−Φ(θ)εW (θ)(b(θ)(t)− z)−W (θ)(b(θ)(t)− ε− z)

]
dz

= 0,

where we used the fact that W (θ) is left continuous on R and

lim
ε↓0

F (θ)(z + ε)− F (θ)(z)

ε
= (F (θ))′+(z) <∞

where (F (θ))′+ is the right derivative of F (θ) which exists since W (θ) has right and left deriva-
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tives. We can then conclude that

lim
ε↓0

V (θ)(t, b(θ)(t))− V (θ)(t, b(θ)(t)− ε)
ε

= 0

proving that x 7→ V (θ)(x, t) is differentiable at b(θ)(t) with ∂/∂xV (θ)(t, b(θ)(t)) = 0 for t ∈

[0, tb).

The next theorem looks at how the value function V (θ) and the curve b(θ) can be char-

acterised as a solution of non-linear integral equations within a certain family of functions.

These equations are in fact generalisations of the free boundary equation (see e.g. Peskir and

Shiryaev (2006) Section 14.1 in a diffusion setting) in the presence of jumps. It is important

to mention that the proof of Theorem 2.3.13 is mainly inspired by the ideas of du Toit et al.

(2008) with some extensions to allow for the presence of jumps.

Theorem 2.3.13. Let X be a spectrally negative Lévy process and let tb be as characterised

in (2.14). For all t ∈ [0, tb) and x ∈ R, we have that

V (θ)(t, x) = Ex
(∫ mθ−t

0
G(θ)(r + t,Xr)I{Xr<b(θ)(r+t)}dr

)
− Ex

(∫ mθ−t

0

∫
(−∞,b(θ)(r+t)−Xr)

V (θ)(r + t,Xr + y)Π(dy)I{Xr>b(θ)(r+t)}dr

)
(2.17)

and b(θ)(t) solves the equation

0 = Eb(θ)(t)

(∫ mθ−t

0
G(θ)(r + t,Xr)I{Xr<b(θ)(r+t)}dr

)
− Eb(θ)(t)

(∫ mθ−t

0

∫
(−∞,b(θ)(r+t)−Xr)

V (θ)(r + t,Xr + y)Π(dy)I{Xr>b(θ)(r+t)}dr

)
.

(2.18)

If t ∈ [tb,mθ), we have that b(θ)(t) = 0 and

V (θ)(t, x) = Ex(τ+
0 ∧ (mθ − t))−

2

θ
e−θt[1− Ex(e−θ(τ

+
0 ∧(mθ−t)))] (2.19)

for all x ∈ R. Moreover, the pair (V (θ), b(θ)) is uniquely characterised as the solutions to

equations (2.17)-(2.19) in the class of continuous functions in R+ × R and R+, respectively,
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such that b(θ) ≥ h(θ), V (θ) ≤ 0 and
∫

(−∞,0) V
(θ)(t, x+y)Π(dy)+G(θ)(t, x) ≥ 0 for all t ∈ [0, tb)

and x ≥ b(θ)(t).

2.4 Proof of Theorem 2.3.13

Since the proof of Theorem 2.3.13 is rather long, we split it into a series of Lemmas. This

section is entirely dedicated for this purpose. With the help of Itô formula and following

an analogous argument as in Lamberton and Mikou (2013) (in the infinite variation case),

we prove that V (θ) and b(θ) are solutions to the integral equations listed above. The finite

variation case is proved using an argument that considers the consecutive times in which X

hits the curve b(θ).

Lemma 2.4.1. The pair (V (θ), b(θ)) are solutions to the equations (2.17)-(2.19).

Proof. Recall from Lemma 2.3.11 that, when tb < mθ, the value function V (θ) satisfies equa-

tion (2.19). We also have that equation (2.18) follows from (2.17) by letting x = b(θ)(t) and

using that V (θ)(t, b(θ)(t)) = 0.

We proceed to show that (V (θ), b(θ)) solves equation (2.17). First, we assume that X

is a process of infinite variation. We follow an analogous argument as Lamberton and

Mikou (2013) (see Theorem 3.2). Let ρ be a positive C∞ function with support in [0, 1] ×

[0, 1] and
∫∞

0

∫∞
0 ρ(v, y)dvdy = 1. For each n ≥ 1, define ρn(v, y) = n2ρ(nv, ny). Then

ρn is a non-negative C∞(R+ × R) function with support in [0, 1/n] × [0, 1/n] such that∫∞
0

∫∞
0 ρn(s, y)dsdy = 1. For every n ≥ 1, define the function V

(θ)
n by

V (θ)
n (t, x) = (V (θ) ∗ ρn)(t, x) =

∫ ∞
0

∫ ∞
0

V (θ)(t− s, x− y)ρn(s, y)dsdy.

for any (t, x) ∈ [−1/n,∞) × R. Then for each n ≥ 1, the function V
(θ)
n is a C1,2(R+ × R)

bounded function (since V (θ) is bounded) with bounded derivatives. Moreover, we have that

V
(θ)
n (t, x) ≤ Vn+1(t, x) for all (t, x) ∈ [1/n,∞) × R and V

(θ)
n ↑ V on R+ × R when n → ∞.

Indeed, take (t, x) ∈ [1/n,∞)× R, we have that
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V (θ)
n (t, x) =

∫ ∞
0

∫ ∞
0

V (θ)(t− s, x− y)n2ρ(ns, ny)dsdy

=

∫ ∞
0

∫ ∞
0

V (θ)(t− s/n, x− y/n)ρ(s, y)dsdy

≤
∫ ∞

0

∫ ∞
0

V (θ)(t− s/(n+ 1), x− y/(n+ 1))ρ(s, y)dsdy

=

∫ ∞
0

∫ ∞
0

V (θ)(t− s, x− y)(n+ 1)2ρ((n+ 1)s, (n+ 1)y)dsdy

= V
(θ)
n+1(t, x),

where in the inequality we used that s, y ≥ 0 and that V (θ) is non-decreasing in each argument.

The convergence of V
(θ)
n to V (θ) follows from

|V (θ)
n (t, x)− V (θ)(t, x)| ≤

∫ ∞
0

∫ ∞
0
|V (θ)(t− s, x− y)− V (θ)(t, x)|ρn(s, y)dsdy

≤ sup
s,y∈[0,1/n]

|V (θ)(t− s, x− y)− V (θ)(t, x)|,

where we used the fact that the integral of ρn is equal to 1. Taking n → ∞ we obtain the

desired convergence by using the fact that V (θ) is continuous. Furthermore, using a similar

argument as in Lamberton and Mikou (2008) (see the proof of Proposition 2.5) we have that

for a fixed n ≥ 1,

∂

∂t
V (θ)
n (t, x) +AX(V (θ)

n )(t, x) = −(G(θ) ∗ ρn)(u, x) for all (t, x) ∈ (1/n,∞)× R ∩ C,

(2.20)

where AX is the infinitesimal generator of X given in (2.11) and C = R+ × R \D. Indeed,

take ϕ a non-negative C∞ function with compact support in [(1/n,∞)×R]∩C then we have

that the function ϕ ∗ ρ̌n is C∞ and has compact support in C, where ρ̌(v, y) = ρn(−v,−y)

for all (v, y) ∈ R× R. Hence, from Proposition A.5 we get that

〈 ∂
∂t
V (θ)
n +AX(V (θ)

n ) +G(θ) ∗ ρn, ϕ〉 = 〈 ∂
∂t
V (θ) +AX(V (θ)) +G(θ), ϕ ∗ ρ̌n〉 = 0,

where the last equality follows from Lemma 2.3.7. Therefore we have that by integration by
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parts formula and Lemma A.4 that

∫
R+

∫
R

[
∂

∂t
V (θ)
n (t, x) +AX(V (θ)

n )(t, x) +G(θ) ∗ ρn(t, x)

]
ϕ(t, x)dxdt = 0

for any ϕ non-negative and C∞ function with compact support in [(1/n,∞)×R]∩C. There-

fore (2.20) follows by continuity. On the other hand, note that if (t, x) ∈ D we have that

V (θ)(t, x) = 0 and hence V
(θ)
n (t, x) = 0 for n ≥ 1 sufficiently large. Hence,

∂

∂t
V (θ)
n (t, x) +AX(V (θ)

n )(t, x) =

∫
(−∞,0)

V (θ)
n (t, x+ y)Π(dy).

Therefore, by the dominated convergence theorem we have that,

lim
n→∞

[
∂

∂t
V (θ)
n (t, x) +AX(V (θ)

n )(t, x)

]
=

∫
(−∞,0)

V (θ)(t, x+ y)Π(dy).

for any (t, x) ∈ D.

Let t ∈ (0, tb], m > 0 such that t > 1/m and x ∈ R, applying Itô formula to V
(θ)
n (t +

s,Xs + x), for s ∈ [0,mθ − t], we obtain that for any n ≥ m,

V (θ)
n (s+ t,Xs + x) = V (θ)

n (t, x) +M t,n
s

+

∫ s

0

[
∂

∂t
V (θ)
n (r + t,Xr + x) +AX(V (θ)

n )(r + t,Xr + x)

]
dr,

where {M t,n
s , t ≥ 0} is a zero mean martingale (see Lemma A.2). Hence, taking expectations

and using (2.20), we derive that

E(V (θ)
n (s+ t,Xs + x))

= V (θ)
n (t, x) + E

(∫ s

0

[
∂

∂t
V (θ)
n (r + t,Xr + x) +AX(V (θ)

n )(r + t,Xr + x)

]
dr

)
= V (θ)

n (t, x)− E
(∫ s

0
(G(θ) ∗ ρn)(r + t,Xr + x)I{Xr<b(θ)(r+t)}dr

)
+ E

(∫ s

0

[
∂

∂t
V (θ)
n (r + t,Xr + x) +AX(V (θ)

n )(r + t,Xr + x)

]
I{Xr>b(θ)(r+t)}dr

)
,

where we used the fact that b(θ)(s) is finite for all s ≥ 0 and that P(Xs + x = b(t + s)) = 0

for all s > 0 and x ∈ R when X is of infinite variation (see Sato (1999)). Taking s = mθ − t,
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using the fact that V (θ)(mθ, x) = 0 for all x ∈ R and letting n → ∞ (by the dominated

convergence theorem), we obtain that (2.17) holds for any (t, x) ∈ (0, tb)×R. The case when

t = 0 follows by continuity.

For the finite variation case, we define the auxiliary function

R(θ)(t, x) = Ex
(∫ mθ−t

0
G(θ)(r + t,Xr)I{Xr<b(θ)(r+t)}dr

)
− Ex

(∫ mθ−t

0

∫
(−∞,0)

V (θ)(r + t,Xr + y)Π(dy)I{Xr>b(θ)(r+t)}dr

)

for all (t, x) ∈ [0,mθ] × R. We then prove that R(θ) = V (θ). First, note that from Lemma

2.3.8 we have that
∫

(−∞,0) V
(θ)(t, x+ y) +G(θ)(t, x) ≥ 0 for all (t, x) ∈ D. Then we have that

for all (t, x) ∈ [0,mθ]× R,

|R(θ)(t, x)| ≤ Ex
(∫ mθ−t

0
|G(θ)(r + t,Xr)|I{Xr<b(θ)(r+t)}dr

)
− Ex

(∫ mθ−t

0

∫
(−∞,0)

V (θ)(r + t,Xr + y)Π(dy)I{Xr>b(θ)(r+t)}dr

)

≤ Ex
(∫ mθ−t

0
|G(θ)(r + t,Xr)|dr

)
≤ mθ − t, (2.21)

where we used the triangle inequality and the fact that V (θ) ≤ 0 in the first inequality and

that |G(θ)| ≤ 1 in the last. For each (t, x) ∈ [0,mθ] × R, we define the times at which the

process X hits the curve b(θ). Let τ
(1)
b = inf{s ∈ [0,mθ − t] : Xs ≥ b(θ)(s+ t)} and for k ≥ 1,

σ
(k)
b = inf{s ∈ [τkb ,mθ − t] : Xs < b(θ)(s+ t)}

τ
(k+1)
b = inf{s ∈ [σkb ,mθ − t] : Xs ≥ b(θ)(s+ t)},

where in this context, we understand that inf ∅ = mθ − t. Taking t ∈ [0,mθ] and x > b(θ)(t)

gives us
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R(θ)(t, x) = −Ex

(∫ σ
(1)
b

0

∫
(−∞,0)

V (θ)(r + t,Xr + y)Π(dy)dr

)

+ Ex

(
I{σ(1)

b <mθ−t}

∫ τ
(2)
b

σ
(1)
b

G(θ)(r + t,Xr)dr

)

+ Ex

(
I{τ (2)

b <mθ−t}

∫ mθ−t

τ
(2)
b

G(θ)(r + t,Xr)I{Xr<b(θ)(r+t)}dr

)

− Ex

(
I{τ (2)

b <mθ−t}

∫ mθ−t

τ
(2)
b

∫
(−∞,0)

V (θ)(r + t,Xr + y)Π(dy)I{Xr>b(θ)(r+t)}dr

)

= −Ex

(∫ σ
(1)
b

0

∫
(−∞,0)

V (θ)(r + t,Xr + y)Π(dy)dr

)
+ Ex(V (θ)(t+ σ

(1)
b , X

σ
(1)
b

)I{σ(1)
b <mθ−t}

)

+ Ex(R(θ)(t+ τ
(2)
b , X

τ
(2)
b

)I{τ (2)
b <mθ−t}

),

where the last equality follows from the strong Markov property applied at time σ
(1)
b and

τ
(2)
b , respectively, and the fact that τD is optimal for V (θ). Using the compensation formula

for Poisson random measures (see (1.25)), it can be shown that

Ex

(∫ σ
(1)
b

0

∫
(−∞,0)

V (θ)(r + t,Xr + y)Π(dy)dr

)
= Ex(V (θ)(t+ σ

(1)
b , X

σ
(1)
b

)I{σ(1)
b <mθ−t}

).

Hence, for all (t, x) ∈ D, we have that

R(θ)(t, x) = Ex(R(θ)(t+ τ
(2)
b , X

τ
(2)
b

)I{τ (2)
b <mθ−t}

).

Using an induction argument, it can be shown that for all (t, x) ∈ D and n ≥ 2,

R(θ)(t, x) = Ex(R(θ)(t+ τ
(n)
b , X

τ
(n)
b

)I{τ (n)
b <mθ−t}

) = Ex(R(θ)(t+ τ
(n)
b , X

τ
(n)
b

)), (2.22)

where the last equality follows since R(θ)(mθ, x) = 0 for all x ∈ R. We next show that

limn→∞ τ
(n)
b = mθ − t Px-a.s. First, note that for any n ≥ 2 and x ∈ R, under the measure
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Px,

σ
(n)
b − τ (n)

b = inf{s ∈ [τ
(n)
b ,mθ − t] : Xs < b(θ)(s+ t)} − τ (n)

b

= inf{s ∈ [0,mθ − t− τ
(n)
b ] : X

s+τ
(n)
b

< b(θ)(s+ τ
(n)
b + t)}

≥ inf{s ∈ [0,mθ − t− τ
(n)
b ] : X

s+τ
(n)
b

< b(θ)(τ
(n)
b + t)}

= inf{s ∈ [0,mθ − t− τ
(n)
b ] : X

s+τ
(n)
b

−X
s+τ

(n)
b

+ x < x}

= τ̃−x ∧ (mθ − t− τ
(n)
b ),

where τ̃−x (due to the strong Markov property of Lévy processes) is a copy of τ−x , under Px,

independent of F
τ

(n)
b

. Hence, we obtain that for any n ≥ 2,

Px(σ
(n)
b < mθ − t) = Px(σ

(n)
b − τ (n)

b < mθ − t− τ
(n)
b , τ

(n)
b < mθ − t)

≤ Px(τ̃−x ∧ (mθ − t− τ
(n)
b ) < mθ − t− τ

(n)
b , τ

(n)
b < mθ − t)

= Px(τ̃−x < mθ − t− τ
(n)
b , τ

(n)
b < mθ − t)

≤ Px(τ̃−x < mθ − t, τ
(n)
b < mθ − t)

= P(τ−0 < mθ − t)Px(τ
(n)
b < mθ − t)

≤ P(τ−0 < mθ − t)Px(σ
(n−1)
b < mθ − t),

where in the last equality we used the fact that σ
(n−1)
b ≤ τ

(n)
b . Therefore, by an induction

argument we obtain that for any x ∈ R and n ≥ 1,

Px(σ
(n)
b < mθ − t) ≤

[
P(τ−0 < mθ − t)

]n−1 Px(σ
(1)
b < mθ − t).

Since X is of finite variation we have that P(τ−0 < mθ − t) ∈ (0, 1). Taking n → ∞ in the

equation above, we see that σ
(n)
b converges in distribution (under the measure Px) to mθ − t.

Moreover, since mθ − t is a constant, we have that the convergence also holds in probability.

Furthermore, the sequence {σ(n)
b , n ≥ 1} is non decreasing implying that limn→∞ σ

(n)
b = mθ−t

Px- a.s. From the fact that for each n ≥ 1, σ
(n)
b ≤ τ (n+1)

b , the convergence for τ
(n)
b also holds.

Therefore, taking n→∞ in (2.22), we conclude that for all (t, x) ∈ D,

|R(θ)(t, x)| ≤ lim
n→∞

Ex
(
|R(θ)(t+ τ

(n)
b , X

τ
(n)
b

)|
)
≤ lim

n→∞
Ex(mθ − t− τ

(n)
b ) = 0,
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where the second inequality follows from (2.21) and the last equality from the dominated

convergence theorem. On the other hand, if we take t ∈ [0,mθ] and x < b(θ)(t) we have, by

the strong Markov property applied to the filtration at time τ
(1)
b , that

R(θ)(t, x) = Ex

(∫ τ
(1)
b

0
G(θ)(r + t,Xr)dr

)
+ Ex(R(θ)(t+ τ

(1)
b , X

τ
(1)
b

)) = V (θ)(t, x),

where we used the fact that τ
(1)
b is an optimal stopping time for V (θ) and that R(θ) vanishes

on D. So then (2.17) also holds in the finite variation case.

Next we proceed to show the uniqueness result. Suppose that there exist a non-positive

continuous function U (θ) : [0,mθ] × R 7→ (−∞, 0] and a continuous function c(θ) on [0,mθ)

such that c(θ) ≥ h(θ) and c(θ)(t) = 0 for all t ∈ [tb,mθ). We assume that the pair (U (θ), c(θ))

solves the equations

U (θ)(t, x) = Ex
(∫ mθ−t

0
G(θ)(r + t,Xr)I{Xr<c(θ)(r+t)}dr

)
− Ex

(∫ mθ−t

0

∫
(−∞,c(θ)(r+t)−Xr)

U (θ)(r + t,Xr + y)Π(dy)I{Xr>c(θ)(r+t)}dr

)
(2.23)

and

0 = Ec(θ)(t)

(∫ mθ−t

0
G(θ)(r + t,Xr)I{Xr<c(θ)(r+t)}dr

)
− Ec(θ)(t)

(∫ mθ−t

0

∫
(−∞,c(θ)(r+t)−Xr)

U (θ)(r + t,Xr + y)Π(dy)I{Xr>c(θ)(r+t)}dr

)
(2.24)

when t ∈ [0, tb) and x ∈ R. For t ∈ [tb,mθ) and x ∈ R, we assume that

U (θ)(t, x) = Ex(τ+
0 ∧ (mθ − t))−

2

θ
e−θt[1− Ex(e−θ(τ

+
0 ∧(mθ−t)))]. (2.25)

71



In addition, we assume that

∫
(−∞,c(θ)(t)−x)

U (θ)(t, x+ y)Π(dy) +G(θ)(t, x) ≥ 0 for all t ∈ [0, tb) and x > c(θ)(t).

(2.26)

Note that (U (θ), c(θ)) solving the above equations means that U (θ)(t, c(θ)(t)) = 0 for all t ∈

[0,mθ) and U (θ)(mθ, x) = 0 for all x ∈ R. Denote Dc as the “stopping region” under the curve

c(θ), i.e., Dc = {(t, x) ∈ [0,mθ] × R : x ≥ c(θ)(t)} and recall that D = {(t, x) ∈ [0,mθ] × R :

x ≥ b(θ)(t)} is the “stopping region” under the curve b(θ). We show that U (θ) vanishes on Dc

in the next Lemma.

Lemma 2.4.2. We have that U (θ)(t, x) = 0 for all (t, x) ∈ Dc.

Proof. Since the statement is clear for (t, x) ∈ [tb,mθ) × [0,∞), we take t ∈ [0, tb) and

x ≥ c(θ)(t). Define σc to be the first time that the process is outside Dc before time mθ − t,

i.e.,

σc = inf{0 ≤ s ≤ mθ − t : Xs < c(θ)(t+ s)},

where in this context, we understand that inf ∅ = mθ− t. From the fact that Xr ≥ c(θ)(t+ r)

for all r < σc and the strong Markov property at time σc, we obtain that

U (θ)(t, x) = Ex
(∫ mθ−t

0
G(θ)(r + t,Xr)I{Xr<c(θ)(r+t)}dr

)
− Ex

(∫ mθ−t

0

∫
(−∞,c(θ)(r+t)−Xr)

U (θ)(r + t,Xr + y)Π(dy)I{Xr>c(θ)(r+t)}dr

)

= Ex(U (θ)(t+ σc, Xσc))− Ex

(∫ σc

0

∫
(−∞,c(θ)(r+t)−Xr)

U (θ)(r + t,Xr + y)Π(dy)dr

)
= Ex(U (θ)(t+ σc, Xσc)I{σc<mθ−t,Xσc<c(θ)(t+σc)})

− Ex

(∫ σc

0

∫
(−∞,c(θ)(r+t)−Xr)

U (θ)(r + t,Xr + y)Π(dy)dr

)
,

where the last equality follows since U (θ)(mθ, x) = 0 for all x ∈ R and U (θ)(t, c(θ)(t)) = 0

for all t ∈ [0, tb). Then, since U (θ) ≤ 0 and applying the compensation formula for Poisson

random measures (see equation (1.25)) we get
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Ex(U (θ)(t+ σc, Xσc)I{σc<mθ−t,Xσc<c(θ)(t+σc)})

= Ex

(∫ mθ−t

0

∫
(−∞,0)

I{Xu≥c(θ)(t+u) for all u<r,Xr−+y<c(θ)(t+r)}U
(θ)(t+ r,Xr− + y)N(dr, dy)

)

= Ex

(∫ mθ−t

0

∫
(−∞,0)

I{Xu≥c(θ)(t+u) for all u<r}I{Xr+y<c(θ)(t+r)}U
(θ)(t+ r,Xr + y)Π(dy)dr

)

= Ex

(∫ σc

0

∫
(−∞,c(θ)(t+r)−Xt+r)

U (θ)(t+ r,Xr + y)Π(dy)dr

)
.

Hence U (θ)(t, x) = 0 for all (t, x) ∈ Dc as we claimed.

The next lemma shows that U (θ) can be expressed as an integral involving only the gain

function G(θ) stopped at the first time the process enters the set Dc. As a consequence, U (θ)

dominates the function V (θ).

Lemma 2.4.3. We have that U (θ)(t, x) ≥ V (θ)(t, x) for all (x, t) ∈ R× [0,mθ],

Proof. Note that we can assume that t ∈ [0, tb) because for (t, x) ∈ Dc, we have that

U (θ)(t, x) = 0 ≥ V (θ)(t, x) and for t ∈ [tb,mθ), U
(θ)(t, x) = V (θ)(t, x) for all x ∈ R. Consider

the stopping time

τc = inf{s ∈ [0,mθ − t] : Xs ≥ c(θ)(t+ s)}.

Let x ≤ c(θ)(t), using the fact that Xr < c(θ)(t + r) for all r ≤ τc and the strong Markov

property at time τc, we obtain that

U (θ)(t, x) = Ex
(∫ τc

0
G(θ)(r + t,Xr)dr

)
+ Ex(U (θ)(t+ τc, Xτc))

= Ex
(∫ τc

0
G(θ)(r + t,Xr)dr

)
, (2.27)

where the second equality follows since X creeps upwards and therefore Xτc = c(θ)(t+ τc) for

{τc < mθ− t} and U (θ)(mθ, x) = 0 for all x ∈ R. Then from the definition of V (θ) (see (2.5)),

we have that

U (θ)(t, x) ≥ inf
τ∈T

Et,x
(∫ τ

0
G(θ)(Xt+r, t+ r)dr

)
= V (θ)(t, x).
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Therefore U (θ) ≥ V (θ) on [0,mθ]× R.

We proceed by showing that the function c(θ) is dominated by b(θ). In the upcoming

lemmas, we show that equality indeed holds.

Lemma 2.4.4. We have that b(θ)(t) ≥ c(θ)(t) for all t ∈ [0,mθ).

Proof. The statement is clear for t ∈ [tb,mθ). We prove the statement by contradiction.

Suppose that there exists a value t0 ∈ [0, tb) such that b(θ)(t0) < c(θ)(t0) and take x ∈

(b(θ)(t0), c(θ)(t0)). Consider the stopping time

σb = inf{s ∈ [0,mθ − t0] : Xs < b(θ)(t0 + s)}.

Applying the strong Markov property to the filtration at time σb, we obtain that

U (θ)(t0, x) = Ex(U (θ)(t0 + σb, Xσb)) + Ex
(∫ σb

0
G(θ)(t0 + r,Xr)I{Xr<c(θ)(t0+r)}dr

)
− Ex

(∫ σb

0

∫
(−∞,0)

U (θ)(t+ r,Xr + y)Π(dy)I{Xr>c(θ)(t0+r)}dr

)
,

where we used the fact that U (θ)(t, x) = 0 for all (t, x) ∈ Dc. From Lemma 2.4.3 and the fact

that U (θ) ≤ 0 (by assumption), we have that for all t ∈ [0,mθ) and x > b(θ)(t), U (θ)(t, x) = 0.

Then,

Ex(U (θ)(t0 + σb, Xσb)) = Ex(U (θ)(t0 + σb, Xσb)I{σb<mθ−t,Xσb<b(θ)(t0+σb)})

= Ex

(∫ ∞
0

∫
(−∞,0)

U (θ)(t0 + r,Xr + y)I{r<σb}N(dr, dy)

)

Hence, by the compensation formula for Poisson random measures (see equation (1.25)), we

obtain that

Ex(U (θ)(t0 + σb, Xσb)) = Ex

(∫ σb

0

∫
(−∞,0)

U (θ)(t0 + r,Xr + y)Π(dy)dr

)
.
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Therefore,

0 ≥ U (θ)(t0, x)

= Ex

(∫ σb

0

∫
(−∞,0)

U (θ)(t0 + r,Xr + y)Π(dy)dr

)

+ Ex
(∫ σb

0
G(θ)(t0 + r,Xr)I{Xr<c(θ)(t0+r)}dr

)
− Ex

(∫ σb

0

∫
(−∞,0)

U (θ)(t+ r,Xr + y)Π(dy)I{Xr>c(θ)(t0+r)}dr

)

= Ex

(∫ σb

0

[∫
(−∞,0)

U (θ)(t0 + r,Xr + y)Π(dy) +G(θ)(t0 + r,Xr)

]
I{Xr<c(θ)(t0+r)}dr

)
.

Recall from Lemma 2.3.8 that the function ϕ
(θ)
t is strictly positive on D. Hence, we obtain

that for all (t, x) ∈ D,

∫
(−∞,0)

U (θ)(t, x+ y)Π(dy) +G(θ)(t, x) ≥
∫

(−∞,0)
V (θ)(t, x+ y)Π(dy) +G(θ)(t, x)

= ϕ
(θ)
t (t, x)

> 0.

The assumption that b(θ)(t0) < c(θ)(t0) together with the continuity of the functions b(θ)

and c(θ) mean that there exists s0 ∈ (t0,mθ) such that b(θ)(r) < c(θ)(r) for all r ∈ [t0, s0].

Consequently, the Px probability of X spending a strictly positive amount of time (with

respect to Lebesgue measure) in this region is strictly positive. We can then conclude that

0 ≥ Ex

(∫ σb

0

[∫
(−∞,0)

U (θ)(t0 + r,Xr + y)Π(dy) +G(θ)(t0 + r,Xr)

]
I{Xr<c(θ)(t0+r)}dr

)
> 0.

This is a contradiction and therefore we conclude that b(θ)(t) ≥ c(θ)(t) for all t ∈ [0,mθ).

Note that the definition of U (θ) on [tb,mθ)×R (see equation (2.25)) together with condition

(2.26) imply that

∫
(−∞,0)

U (θ)(t, x+ y)Π(dy) +G(θ)(t, x) ≥ 0

for all t ∈ [0,mθ) and x > c(θ)(t). The next Lemma shows that U (θ) and V (θ) coincide.
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Lemma 2.4.5. We have that b(θ)(t) = c(θ)(t) for all t ≥ 0 and hence V (θ) = U (θ).

Proof. We prove that b(θ) = c(θ) by contradiction. Assume that there exists s0 such that

b(θ)(s0) > c(θ)(s0). Since c(θ)(t) = b(θ)(t) = 0 for all t ∈ [tb,mθ), we deduce that s0 ∈ [0, tb).

Let τb be the stopping time

τb = inf{t ≥ 0 : Xs ≥ b(θ)(s0 + t)}.

With the Markov property applied to the filtration at time τb, we obtain that for any x ∈

(c(θ)(s0), b(θ)(s0))

Ex(U (θ)(s0 + τb, Xτb)) = U (θ)(s0, x)− Ex
(∫ τb

0
G(θ)(r + s0, Xr)I{Xr<c(θ)(r+s0)}dr

)
+ Ex

(∫ τb

0

∫
(−∞,0)

U (θ)(r + s0, Xr + y)I{Xr>c(θ)(r+s0)}Π(dy)dr

)

≥ V (θ)(s0, x)− Ex
(∫ τb

0
G(θ)(r + s0, Xr)I{Xr<c(θ)(r+s0)}dr

)
+ Ex

(∫ τb

0

∫
(−∞,0)

U (θ)(r + s0, Xr + y)I{Xr>c(θ)(r+s0)}Π(dy)dr

)

= Ex
(∫ τb

0
G(θ)(r + s0, Xr)I{Xr≥c(θ)(r+s0)}dr

)
+ Ex

(∫ τb

0

∫
(−∞,0)

U (θ)(r + s0, Xr + y)I{Xr>c(θ)(r+s0)}Π(dy)dr

)
,

where the second inequality follows from the fact that U (θ) ≥ V (θ) (see Lemma 2.4.3) and

the last equality follows as τb is the optimal stopping time for V (θ)(s0, x). Note that since X

creeps upwards, we have that U (θ)(s0 + τb, Xτb) = U (θ)(s0 + τb, b
(θ)(s0 + τb)) = 0. Hence,

Ex
(∫ τb

0
G(θ)(r + s0, Xr)I{Xr≥c(θ)(r+s0)}dr

)
+ Ex

(∫ τb

0

∫
(−∞,0)

U (θ)(r + s0, Xr + y)I{Xr>c(θ)(r+s0)}Π(dy)dr

)
≤ 0.

However, the continuity of the functions b(θ) and c(θ) gives the existence of s1 ∈ (s0,mθ) such

that c(θ)(r) < b(θ)(r) for all r ∈ [s0, s1]. Hence, together with the fact that
∫

(−∞,0) U
(θ)(x +

y, t)Π(dy) +G(θ)(x, t) > 0 for all (t, x) ∈ Dc we can conclude that
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Ex
(∫ τb

0
G(θ)(r + s0, Xr)I{Xr≥c(θ)(r+s0)}dr

)
+ Ex

(∫ τb

0

∫
(−∞,0)

U (θ)(r + s0, Xr + y)I{Xr>c(θ)(r+s0)}Π(dy)dr

)
> 0,

which shows a contradiction.

2.5 Examples

2.5.1 Brownian motion with drift

Suppose that X = {Xt, t ≥ 0} is a Brownian motion with drift. That is for any t ≥ 0,

Xt = µt+ σBt, where σ > 0 and µ ∈ R. In this case, we have that

ψ(β) = µβ +
1

2
σ2β2

for all β ≥ 0. Then

Φ(q) =
1

σ2

[√
µ2 + 2σ2q − µ

]
.

It is well known that −X ẽθ
has exponential distribution (see e.g. Borodin and Salminen

(2002) pp251 or Kyprianou (2014) pp 233) with distribution function given by

F (θ)(x) = 1− exp
(
− x

σ2

[√
µ2 + 2σ2θ + µ

])
for x > 0.

Denote Φ(x; a, b2) as the distribution function of a Normal random variable with mean a ∈ R

and variance b2, i.e., for any x ∈ R,

Φ(x; a, b2) =

∫ x

−∞

1√
2πb2

e−
1

2b2
(y−a)2

dy.

For any b, s, t ≥ 0 and x ∈ R, define the function

K(t, x, s, b) = E
(
G(θ)(s+ t,Xs + x)I{Xs+x≤b}

)
.
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Then it can be easily shown that

K(t, x,s, b)

= Φ(b− x;µs, σ2s)− 2e−θ(s+t)Φ(−x;µs, σ2s)− 2e−θt exp
(
− x

σ2

[√
µ2 + 2σ2θ + µ

])
×
[
Φ(b− x,−s

√
µ2 + 2σ2θ, sσ2)− Φ(−x,−s

√
µ2 + 2σ2θ, sσ2)

]
.

Thus, we have that b(θ) satisfies the non-linear integral equation

∫ mθ−t

0
K(t, b(t)(t), s, b(θ)(t+ s))ds = 0

for all t ∈ [0,mθ) and the value function V (θ) is given by

V (θ)(t, x) =

∫ mθ−t

0
K(t, x, s, b(θ)(t+ s))ds

for all (t, x) ∈ R+ ×R. Note that we can approximate the integrals above by Riemann sums

so a numerical approximation can be implement. Indeed, take n ∈ Z+ sufficiently large and

define h = mθ/n. For each k ∈ {0, 1, 2, . . . , n}, we define tk = kh. Then the sequence of

times {tk, k = 0, 1, . . . , n} is a partition of the interval [0,mθ]. Then, for any x ∈ R and

t ∈ [tk, tk+1) for k ∈ {0, 1, . . . , n− 1} we approximate V (θ)(t, x) by

V
(θ)
h (tk, x) =

n−1∑
i=k

K(tk, x, ti−k+1, bi)h,

where the sequence {bk, k = 0, 1, . . . , n− 1} is a solution to

n−1∑
i=k

K(tk, x, ti−k+1, bi) = 0

for each k ∈ {0, 1, . . . , n − 1}. Note that the sequence {bk, k = 0, 1, . . . , n} is a numerical

approximation to the sequence {b(θ)(tk), k = 0, 1, . . . , n − 1} (for n sufficiently large) and

can be calculated by using backwards induction. In the Figure 2.2, we show a numerical

calculation of the equations above. The parameters used are µ = 2 and σ = 1, whereas we

chose mθ = 10.
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Figure 2.2: Brownian motion with drift µ = 2 and σ = 1. Left hand side: Optimal boundary;
Right hand side: Value function fixing t = 1.

2.5.2 Brownian motion with exponential jumps

Let X = {Xt, t ≥ 0} be a compound Poisson process perturbed by a Brownian motion, that

is

Xt = σBt + µt−
Nt∑
i=1

Yi, (2.28)

where B = {Bt, t ≥ 0} is a standard Brownian motion, N = {Nt, t ≥ 0} is Poisson process

with rate λ independent of B, µ ∈ R, σ > 0 and the sequence {Y1, Y2, . . .} is a sequence of

independent random variables exponentially distributed with mean 1/ρ > 0. Then in this

case, the Laplace exponent is derived as

ϕ(β) =
σ2

2
β2 + µβ − λβ

ρ+ β
.

Its Lévy measure, given by Π(dy) = λρeρyI{y<0}dy is a finite measure and X is a process

of infinite variation. According to Kuznetsov et al. (2013), the scale function in this case is

given for q ≥ 0 and x ≥ 0 by,

W (q)(x) =
eΦ(q)x

ψ′(Φ(q))
+

eζ1(q)x

ψ′(ζ1(q))
+

eζ2(q)x

ψ′(ζ2(q))
,
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where ζ2(q), ζ1(q) and Φ(q) are the three real solutions to the equation ψ(β) = q, which

satisfy ζ2(q) < −ρ < ζ1(q) < 0 < Φ(q). The second scale function, Z(q), takes the form

Z(q)(x) = 1 + q

[
eΦ(q)x − 1

Φ(q)ψ′(Φ(q))
+

eζ1(q)x − 1

ζ1(q)ψ′(ζ1(q))
+

eζ2(q)x − 1

ζ2(q)ψ′(ζ2(q))

]
.

Note that since we have exponential jumps (and hence Π(dy) = λρeρyI{y<0}, we have that

for all t ∈ [0,mθ) and x > 0,

∫
(−∞,−x)

V (θ)(t, b(θ)(t) + x+ y)Π(dy) = e−ρx
∫

(−∞,0)
V (θ)(t, b(θ)(t) + y)Π(dy).

Then, for any (t, x) ∈ [0,mθ]× R, equation (2.17) reads as

V (θ)(t, x) = Ex
(∫ mθ−t

0
G(θ)(r + t,Xr)I{Xr<b(θ)(r+t)}dr

)
− Ex

(∫ mθ−t

0
e−ρ(Xr−b(θ)(r+t))V(r + t)I{Xr>b(θ)(r+t)}dr

)

where for any r, s ∈ [0,mθ), b ≥ 0 and x ∈ R,

V(t) =

∫
(−∞,0)

V (θ)(t, b(θ)(t) + y)Π(dy).

Note that the equation above suggest that in order to find a numerical value of b(θ) using

Theorem 2.3.13 we only need to know the values of the function V and not the values of∫
(−∞,0) V

(θ)(t, x + y)Π(dy) for all t ∈ [0,mθ] and x > b(θ)(t). Note that using Fubini’s

theorem, we can write

V (θ)(t, x) =

∫ mθ−t

0
K1(t, x, r, b(θ)(r + t))dr −

∫ mθ−t

0
V(r + t)K2(x, r, b(θ)(r + t))dr,

where for any r, s ∈ [0,mθ), b ≥ 0 and x ∈ R,

V(t) =

∫
(−∞,0)

V (θ)(t, b(θ)(t) + y)Π(dy)

K1(t, x, s, b) = E
(
G(θ)(s+ t,Xs + x)I{Xs<b−x}

)
K2(x, s, b) = E

(
e−ρ(Xs+x−b)I{Xs>b−x}

)
.
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Then we have that V (θ) and b(θ) and satisfy the equations

V (θ)(t, x) =

∫ mθ−t

0
K1(t, x, r, b(θ)(r + t))dr −

∫ mθ−t

0
V(r + t)K2(x, r, b(θ)(r + t))dr,

0 =

∫ mθ−t

0
K1(t, b(θ)(t), r, b(θ)(r + t))dr −

∫ mθ−t

0
V(r + t)K2(b(θ)(t), r, b(θ)(r + t))dr,

for all t ∈ [0,mθ] and x ∈ R. We can approximate the integrals above by Riemann sums

so a numerical approximation can be implement. Indeed, take n ∈ Z+ sufficiently large and

define h = mθ/n. For each k ∈ {0, 1, 2, . . . , n}, we define tk = kh. Then the sequence of

times {tk, k = 0, 1, . . . , n} is a partition of the interval [0,mθ]. Then, for any x ∈ R and

t ∈ [tk, tk+1) for k ∈ {0, 1, . . . , n− 1} we approximate V (θ)(t, x) by

Vh(uk, x) =

n−1∑
i=k

[K1(ti−k+1, x, tk, bi)− Vh(ti+1)K2(x, ti−k+1, bi)]h,

where V(tn) = 0 and

Vh(ti) =

bbi/hc∑
j=−N

Vh(ti, jh)λρeρjhh

for any i ∈ {1, 2, . . . , n − 1} and N sufficiently large. The sequence {bk, k = 1, . . . , n − 1} is

solution to

n−1∑
i=k

[K1(ti−k+1, bk, tk, bi)− Vh(ti+1)F2(bk, ti−k+1, bi)]h = 0 (2.29)

for each k ∈ {0, 1, . . . , n− 1}. The functions K1 and K2 can be estimated by simulating the

process {Xt, t ≥ 0} (see e.g. Kuznetsov et al. (2011), Theorem 4 and Remark 3). Note that,

for n sufficiently large, the sequence {bk, k = 1, . . . , n} is a numerical approximation to the

sequence {b(tk), k = 1, . . . , n}, provided that Vh ≤ 0 and V(ti) + G(θ)(tk, bk) ≥ 0, and can

be calculated by using backwards induction. Indeed, using the condition V(tn, bn) = 0 , we

can first obtain bn−1 using equation (2.29). This allows us to compute Vh(tn−1, x) which in

turn gives us Vh(tn−1). We can then finally obtain bn−2,Vh(tn−2), bn−3,Vh(tn−3), . . . , b1 by

repeating the aforementioned steps.
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2.6 Conclusions

In this chapter, we have managed to solve the problem of predicting the last zero of a spec-

trally negative Lévy process before an exponential time in a L1 sense. It is shown that this

optimal prediction problem is equivalent to an optimal stopping problem which means that

finding an optimal stopping time that solves (2.5) also solves (2.2) (taking t = x = 0). The

rest of this chapter is focused on solving such optimal stopping problem.

The first important finding of this problem is that it is always optimal to stop when the

elapsed time (if we have not stopped) has reached the value mθ, the median of the exponential

random variable. This is most likely due to the fact that when Xep ≤ 0 we have that gep = ep

and thus the best predictor of ep is its median. Therefore, the optimal stopping problem (2.5)

can be treated as a finite horizon problem.

In contrast to Baurdoux and Pedraza (2020b) (where the last zero in an infinite horizon

is predicted for a spectrally negative Lévy process) in which an optimal stopping is given

as the first time the process crosses below a level a∗ > 0. It is shown that an optimal

stopping time for (2.5) is the first time the process crosses above a non-increasing, non-

negative and continuous curve which depends on time. The curve and the value function are

characterised as in Theorem 4.4.23 as a solution of non-linear integral equations in a special

class of functions. These equations can be regarded as a generalisation of the free boundary

equations (see Peskir and Shiryaev (2006) Chapter IV.14). We have presented the proof of

the uniqueness part of Theorem 4.4.23 using the inequality

∫
(−∞,0)

V (θ)(t, x+ y) +G(t, x) ≥ 0, (t, x) ∈ D.

However, we believe that in the presence of a Brownian component (σ > 0), such an as-

sumption regarding the inequality can be removed. This conjecture will be explored in future

research.

Therefore, we conclude that the stopping time that minimises the L1 distance with respect

to gep is given by

τD = inf{t ∈ [0,mθ] : Xt ≥ b(θ)(t)},
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where the curve b(θ) is as characterised in Theorem 4.4.23. That is,

V∗ = E(|τD − gep |).

A drawback of this solution is that, since b(θ) is non-negative, at the moment of stopping by

hitting the curve b(θ) the value of the process can be away from zero which implies that τD

and gep can never take the same value.
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Chapter 3

On the last zero process of a

spectrally negative Lévy process

Abstract

Let X be a spectrally negative Lévy process and consider gt the last time X

is below the level zero before time t ≥ 0. We derive an Itô formula for the three

dimensional process {(gt, t,Xt), t ≥ 0} and its infinitesimal generator using a

perturbation method for Lévy processes. We also find an explicit formula for

calculating functionals that include the whole path of the length of current

positive excursion at time t ≥ 0, Ut := t − gt. These results are applied to

optimal prediction problems for the last zero g := limt→∞ gt, when X drifts

to infinity. Moreover, the joint Laplace transform of (Ueq
, Xeq

), where eq is

an independent exponential time is found, and a formula for a density of the

q-potential measure of the process {(Ut, Xt, ), t ≥ 0} is derived.

3.1 Introduction

Last passage times have received considerable attention in the recent literature. For instance,

in the classic ruin theory (which describes the capital of an insurance company), the moment

of ruin is considered as the first time the process is below the level zero. However, in more

recent literature the last passage time below zero is treated as the moment of ruin and the

Cramér–Lundberg has been generalised to spectrally negative Lévy processes (see e.g. Chiu

and Yin (2005)). Moreover, in Paroissin and Rabehasaina (2013) spectrally positive Lévy

processes are considered as degradation models and the last passage time above a certain
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fixed boundary is considered as the failure time.

Let X be a spectrally negative Lévy process. For any t ≥ 0 and x ∈ R, we define as g
(x)
t

as the last time that the process is below x before time t, i.e.,

g
(x)
t = sup{0 ≤ s ≤ t : Xs ≤ x},

with the convention sup ∅ = 0. We simply denote gt := g
(0)
t for all t ≥ 0. Note that

A similar version of this random time is studied in Revuz and Yor (1999) (see Chapter

XII.3), namely the last hitting time at zero, before any time t ≥ 0, to describe excursions

straddling at a given time. It is also shown that this random time at time t = 1 follows

the arcsine distribution. The last hitting time to zero has some applications in the study of

Azéma’s martingale (see Azéma and Yor (1989)). In Salminen (1988) the distribution of the

the last hitting time of a moving boundary is found.

Note that the process {gt, t ≥ 0} is non-decreasing and hence is a process of finite variation

implying that belongs to the class of semi-martingales. Then Itô formula for the process

{(gt, t,Xt), t ≥ 0} is well known (see e.g. Protter (2005), Theorem 33) and is given for any

function F in C1,1,i(Eg), where i = 2 if X is of infinite variation and i = 1 otherwise, by

F (gt, t,Xt)

= F (g0, 0, X0) +

∫ t

0

∂

∂γ
F (gs−, s,Xs−)dgs +

∫ t

0

∂

∂t
F (gs, s,Xs)ds

+

∫ t

0

∂

∂x
F (gs−, s,Xs−)dXs +

1

2
σ2

∫ t

0

∂2

∂x2
F (gs, s,Xs)ds

+
∑

0<s≤t

(
F (gs, s,Xs)− F (gs−, s,Xs−)− ∂

∂γ
F (gs−, s,Xs−)∆gs −

∂

∂x
F (gs−, s,Xs−)∆Xs

)
.

Note that the formula above is given in terms of the jumps of the process {gt, t ≥ 0} and

it does not reflect the connection on its behaviour with the process X. Indeed, note that

some of the jumps of {gt, t ≥ 0} occur when X jumps to (−∞, 0) from the positive half

line. Moreover, when a Brownian motion component is included in the dynamics of X, the

stochastic process {gt, t ≥ 0} has infinity many (small) number of jumps as a consequence
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of creeping to the level zero from the positive half line. These facts imply that, in order to

obtain a more explicit version of Itô formula, a careful study of the trajectory of t 7→ gt needs

to be done in terms of the excursions of X .

On the other hand, it turns out that {(gt, t,Xt), t ≥ 0} belongs to the family of strong

Markov processes (see Proposition 3.2.1) and then a general form of its infinitesimal generator

is known. For instance, from the general theory of Markov processes (see Dynkin (1965)),

we know that if Z is a strong Markov process in Rd, with d a positive integer. Then for any

relative compact set B ⊂ Rd, there exist functions σij , bi and c on B and a kernel ν such

that for any function F ∈ C2 with compact support and z ∈ B,

AZF (z) = c(z)F (z) +

d∑
i=1

bi(z)
∂

∂zi
F (z) +

d∑
i,j=1

σij(z)
∂2

∂zi∂zj
F (z)

+

∫
Rd\{0}

(
F (y)− F (z)−

d∑
i=1

(yi − zi)
∂

∂zi
F (z)

)
ν(z, dy).

However, in applications (for example, in optimal stopping and free boundary problems) an

explicit expression for Itô formula and the infinitesimal generator are required in terms of the

dynamics of X. In this work (see Theorem 3.2.3 and Corollary 3.2.5) we give and expression

for Itô formula and the infinitesimal generator of the process {(t, gt, Xt), t ≥ 0} in terms of

the dynamics of X only.

We also consider, for any t ≥ 0, the random variable Ut = t− gt, the time of the positive

current positive excursion away from zero. Having in mind the derivation of expressions for

the potential measure of (U,X)) = {(Ut, Xt), t ≥ 0} and its join Laplace transform at an

exponential time, we also derive an explicit formulae for additive functionals of the process

(U,X) of the form

Eu,x
(∫ ∞

0
e−qrK(Ur, Xr)dr

)
,

for some function K, where q ≥ 0 and Pu,x is the measure for which (U0, X0) = (u, x) in

views of the Markov property of (U,X).

This Chapter is organised as follows. Section 3.2 is dedicated to the definition of the last

zero process in which basic properties of this process are shown. Moreover, a derivation of
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Itô formula, infinitesimal generator and formula for the expectation of a functional of Ut are

the main results of this section (see Theorems 3.2.3 and 3.2.6 and Corollary 3.2.5). Then

the aforementioned results are applied to find formulas for the joint Laplace transform of

(U,X) at an exponential time and the q-potential measures are found. Lastly, Section 3.3 is

exclusively dedicated to introduce a perturbated Lévy process and Theorems 3.2.3 and 3.2.6

are proven.

3.2 The last zero process

Throughout this chapter we use the notation and the preliminary results presented in Sec-

tion 1.1. Let X be a spectrally negative Lévy process, that is, a Lévy process starting

from 0 with only negative jumps and non-monotone paths, defined on a filtered probability

space (Ω,F ,F,P) where F = {Ft, t ≥ 0} is the filtration generated by X which is naturally

enlarged (see Definition 1.3.38 in Bichteler (2002)). We suppose that X has Lévy triplet

(µ, σ,Π) where µ ∈ R, σ ≥ 0 and Π is a measure (Lévy measure) concentrated on (−∞, 0)

satisfying
∫

(−∞,0)(1 ∧ x
2)Π(dx) <∞.

Recall that g
(x)
t is the last time that the process is below x before time t, i.e.,

g
(x)
t = sup{0 ≤ s ≤ t : Xs ≤ x},

with the convention sup ∅ = 0. We simply denote gt := g
(0)
t for all t ≥ 0. For any stopping

time τ , the random variable g
(x)
τ is Fτ measurable. In particular we get that {g(x)

t , t ≥ 0} is

adapted to the filtration {Ft, t ≥ 0}. Moroever, It is easy to show that for a fixed x ∈ R, the

stochastic process {gt, t ≥ 0} is non-decreasing, right-continuous with left limits. Similarly,

for a fixed t ≥ 0 the mapping x 7→ g
(x)
t is non-decreasing and almost surely right-continuous

with left limits.

It turns out that for all x ∈ R the process {g(x)
t , t ≥ 0} is not a Markov process, in partic-

ular not Lévy process. However, the strong Markov property holds for the three dimensional

process {(gt, t,Xt), t ≥ 0}.
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Proposition 3.2.1. The process {(gt, t,Xt), t ≥ 0} is a strong Markov process with respect

to the filtration {Ft, t ≥ 0} with state space given by Eg = {(γ, t, x) : 0 ≤ γ < t and x >

0} ∪ {(γ, t, x) : 0 ≤ γ = t and x ≤ 0}.

Proof. From the definition of gt it easy to note that for all t ≥ 0 we have that Xt ≤ 0 if

and only if gt = t from which we obtain that (gt, t,Xt) can take only values in Eg. Now

we proceed to show the strong Markov property. Consider a measurable positive function

h : R+ × R+ × R 7→ R. Then we have for any stopping time τ and s ≥ 0,

E(h(gτ+s, τ + s,Xτ+s)|Fτ )

= E(h(gτ ∨ sup{r ∈ [τ, s+ τ ] : Xr ≤ 0}, τ + s,Xτ+s)|Fτ )

= E(h(gτ ∨ sup{r ∈ [τ, s+ τ ] : X̃r−τ +Xτ ≤ 0}, τ + s, X̃s +Xτ )|Fτ ),

where X̃u = Xu+τ−Xτ for any u ≥ 0 and a∨b := max(a, b) for any a, b ∈ R. From the strong

Markov property of Lévy processes we deduce that the process X̃ is independent of Fτ and

has the same law as of X. Then, together with the fact that gτ and Xτ are Fτ measurable,

we obtain that

E(h(gτ+s, τ + s,Xτ+s)|Fτ ) = fs(gτ , τ,Xτ ),

where for any x ∈ R and 0 ≤ γ ≤ t, the function fs is given by

fs(γ, t, x) = E(h(γ ∨ sup{r ∈ [t, s+ t] : Xr−t + x ≤ 0}, t+ s,Xs + x)).

Note that in the event {σ−0 > s} we have that the set {r ∈ [t, s + t] : Xr−t + x ≤ 0} = ∅ so

then γ ∨ sup{r ∈ [t, s+ t] : Xr−t + x ≤ 0} = γ, where we used the convention that sup ∅ = 0.

Otherwise, in the event {σ−0 ≤ s}, we have that {r ∈ [t, s+ t] : Xr−t + x ≤ 0} 6= ∅ and then

sup{r ∈ [t, s+ t] : Xr−t + x ≤ 0} ≥ t ≥ γ. Hence,

γ ∨ sup{r ∈ [t, s+ t] : Xr−t + x ≤ 0} = sup{r ∈ [t, s+ t] : Xr−t + x ≤ 0}

= t+ sup{r ∈ [0, s] : Xr + x ≤ 0}

= t+ gs.
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Therefore, for any x ∈ R and 0 ≤ γ ≤ t, fs takes the form

fs(γ, t, x) = Ex(h(γ, t+ s,Xs)I{σ−0 >s}) + Ex(h(gs + t, t+ s,Xs)I{σ−0 ≤s}). (3.1)

On the other hand, similar calculations lead us to

E(h(gτ+s, τ + s,Xτ+s)|σ(gτ , τ,Xτ )) = fs(gτ , τ,Xτ ).

Hence, for any measurable positive function h we obtain

E(h(gτ+s, τ + s,Xτ+s)|Fτ ) = E(h(gτ+s, τ + s,Xτ+s)|σ(gτ , τ,Xτ )).

Therefore the process {(gt, t,Xt), t ≥ 0} is a strong Markov process.

In the spirit of the above Proposition we define for all (γ, t, x) ∈ Eg the probability

measure Pγ,t,x in the following way: for every measurable and positive function h we define

Eγ,t,x(h(gt+s, t+ s,Xt+s)) := E
(
h(gt+s, t+ s,Xt+s)

∣∣∣∣(gt, t,Xt) = (γ, t, x)

)
= fs(γ, t, x),

where fs is given in (3.1). Then we can write Pγ,t,x in terms of Px by

Eγ,t,x(h(gt+s, t+ s,Xt+s)) = Ex(h(γ, t+ s,Xs)I{σ−0 >s}) + Ex(h(gs + t, t+ s,Xs)I{σ−0 ≤s}).

(3.2)

Define Ut = t − gt as the length of the current excursion above the level zero. As a direct

consequence we have that the process {(Ut, Xt), t ≥ 0} is also a strong Markov process with

state space given by E = {(u, x) ∈ R+ × R+ : u > 0 and x > 0} ∪ {(0, x) ∈ R2 : x ≤ 0}. We

hence can define a probability measure Pu,x, for all (u, x) ∈ E, by

Eu,x(f(Ut, Xt)) = Ex(f(u+ t,Xt)I{σ−0 >t}) + Ex(f(Ut, Xt)I{σ−0 ≤t}). (3.3)

for any positive and measurable function f .

Remark 3.2.2. We know that for any x ∈ R, g
(x)
t is a non-decreasing process. That directly

implies that g
(x)
t is a process of finite variation and then it has a countable number of jumps.

Moreover, with a close inspection to the definition of g
(x)
t we notice that g

(x)
t = t on the set
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{t ≥ 0 : Xt ≤ x}, it is flat when X is in the set (x,∞) and it has a jump when X enters the

set (−∞, x]. Moreover, if X is a process of infinite variation we know that the set of times

in which X visits the level x from above is infinite. That implies that when X is of infinite

variation, t 7→ g
(x)
t has an infinite number of arbitrary small jumps.

Note that the process (gt, t,Xt) is a semi-martingale so its Itô formula is well known (see

e.g. Protter (2005), Theorem 33). In the next Theorem we give a more explicit expression

for the Itô formula for the process (gt, t,Xt) in terms of the random measure N . Note that

this formula will be useful later to derive the infinitesimal generator of (gt, t,Xt). The proof

can be found in Section 3.3.2.

Theorem 3.2.3 (Itô formula). Let X be any spectrally negative and F a C1,1,i(Eg) real-

valued function, where i = 2 if X is of infinite variation and i = 1 otherwise. In addition, in

the case that σ > 0, assume that limh↓0 F (γ, t, h) = F (t, t, 0) for all γ ≤ t. Then we have the

following version of Itô formula for the three dimensional process {(gt, t,Xt), t ≥ 0}.

F (gt, t,Xt)

= F (g0, 0, X0) +

∫ t

0

∂

∂γ
F (gs, s,Xs)I{Xs≤0}ds+

∫ t

0

∂

∂t
F (gs, s,Xs)ds

+

∫ t

0

∂

∂x
F (gs−, s,Xs−)dXs +

1

2
σ2

∫ t

0

∂2

∂x2
F (gs, s,Xs)ds

+

∫
[0,t]

∫
(−∞,0)

(
F (gs, s,Xs− + y)− F (gs−, s,Xs−)− y ∂

∂x
F (gs−, s,Xs−)

)
N(ds× dy).

Remark 3.2.4. When σ > 0, the Brownian motion part of X implies that X can visit

the interval (−∞, 0] by creeping. That implies that t 7→ gt has two types of jumps: those

as a consequence of X jumping from the positive half line to (−∞, 0) which is finite (since

Π(−∞,−ε) < ∞ for all ε > 0) and those as a consequence of creeping. The limit condition

imposed for F (when σ > 0) ensures that the jumps due to the Brownian component vanish,

otherwise a more careful analysis involving the local time needs to be done.

Now that we have an Itô’s formula for the three dimensional process (gt, t,Xt) in terms

of the Poisson random measure N , we are ready to state an explicit formula for its infinites-

imal generator. Denote by C1,1,2
b (Eg) the set of bounded C1,1,2(Eg) functions with bounded

derivatives. We have the following Corollary which proof follows directly from equation (3.16)

and using standard arguments so it is omitted.
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Corollary 3.2.5. Let X be any spectrally negative Lévy process and F a C1,1,2
b (Eg) function

such that when σ > 0, limh↓0 F (γ, t, h) = F (t, t, 0) for all γ ≤ t. Then the infinitesimal

generator AZ of the process Zt = (gt, t,Xt) satisfies

AZF (γ, t, x)

=
∂

∂γ
F (γ, t, x)I{x≤0} +

∂

∂t
F (γ, t, x)− µ ∂

∂x
F (γ, t, x) +

1

2
σ2 ∂

2

∂x2
F (γ, t, x)

+

∫
(−∞,0)

(
F (γ, t, x+ y)− F (γ, t, x)− yI{y>−1}

∂

∂x
F (γ, t, x)

)
I{x+y>0}Π(dy)

+

∫
(−∞,0)

(
F (t, t, x+ y)− F (t, t, x)− yI{y>−1}

∂

∂x
F (t, t, x)

)
I{x≤0}Π(dy)

+

∫
(−∞,0)

(
F (t, t, x+ y)− F (γ, t, x)− yI{y>−1}

∂

∂x
F (γ, t, x)

)
I{x>0}I{x+y<0}Π(dy)

(3.4)

Recall from Remark 3.2.2 that the behaviour of gt and then Ut can be determined from

the excursions of X away from zero. Then, using that fact, we are able to derive a formula for

a functional that involves the whole trajectory of the process Ut. The next theorem provides

a formula to calculate an integral involving the process {(Ut, Xt), t ≥ 0} with respect of time

in terms of the excursions of X above and below zero.

Theorem 3.2.6. Let q ≥ 0 and X be a spectrally negative Lévy process and K : E 7→ R a

left-continuous function in each argument. Assume that there exists a non-negative function

C : R+ × R 7→ R such that u 7→ C(u, x) is a monotone function for all x ∈ R, |K(u, x)| ≤

C(u, x) and Eu,x
(∫∞

0 e−qrC(Ur, Xr + y)dr
)
<∞ for all (u, x) ∈ E and y ∈ R. Then we have

that for any (u, x) ∈ E that

Eu,x
(∫ ∞

0
e−qrK(Ur, Xr)dr

)
= K+(u, x) +

∫ 0

−∞
K(0, y)

[
eΦ(q)(x−y)Φ′(q)−W (q)(x− y)

]
dy

+ eΦ(q)x
[
1− ψ′(Φ(q)+)e−Φ(q)xW (q)(x)

]
lim
ε↓0

K+(0, ε)

ψ′(Φ(q)+)W (q)(ε)
, (3.5)

where K+ is given by

K+(u, x) = Ex

(∫ τ−0

0
e−qrK(u+ r,Xr)dr

)
, (u, x) ∈ E.
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In particular, when u = x = 0 we have that

E
(∫ ∞

0
e−qrK(Ur, Xr)dr

)
=

∫ 0

−∞
K(0, y)

[
e−Φ(q)yΦ′(q)−W (q)(−y)

]
dy

+ lim
ε↓0

K+(0, ε)

ψ′(Φ(q)+)W (q)(ε)
.

Remark 3.2.7. Note that from the proof of Theorem 3.2.6 we can find an alternative rep-

resentation for formula (3.5) as a limit in terms of excursions of X above and below zero

divided by a normalisation term. Indeed, for (u, x) ∈ E,

Eu,x
(∫ ∞

0
e−qrK(Ur, Xr)dr

)
= K+(u, x) + lim

ε↓0
Ex
(
I{τ−0 <∞}e

−qτ−0 K−(Xτ−0
− ε)

)
+ eΦ(q)x

[
1− ψ′(Φ(q)+)e−Φ(q)xW (q)(x)

]
lim
ε↓0

Eε
(
I{τ−0 <∞}e

−qτ−0 K−(Xτ−0
− ε)

)
+K+(0, ε)

ψ′(Φ(q)+)W (q)(ε)
,

(3.6)

where K− is given by

K−(x) = Ex

(∫ τ+
0

0
e−qrK(0, Xr)dr

)
,

for all x ∈ R.

3.2.1 Applications of Theorem 3.2.6

In this section we consider applications of Theorem (3.2.6). We first calculate the joint Laplace

transform of (Ueq , Xeq) where eq is an exponential time with parameter q > 0 independent

of X.

Corollary 3.2.8. Let X be a spectrally negative Lévy process. Let q > 0 and α ∈ R, β ≥ 0
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such that q > ψ(β) ∨ (ψ(β)− α). We have that for all (u, x) ∈ E,

Eu,x
(
e−αUeq+βXeq

)
=

qeβx

q − ψ(β)
+ eΦ(q)xΦ′(q)

[
q

Φ(q + α)− β
− q

Φ(q)− β

]
+ eβxq

∫ x

0
e−βy[W (q)(y)− e−αuW (q+α)(y)]dy

+
q

Φ(q + α)− β

[
e−αuW (q+α)(x)−W (q)(x)

]
. (3.7)

Proof. Consider the function K(u, x) = e−αu+βx for all (u, x) ∈ E. We have that K is a

continuous function and K(u, x) ≤ e−(α∧0)u+βx for all (u, x) ∈ E. Moreover we have for all

q > 0 such that q > ψ(β) ∨ (ψ(β)− α) = ψ(β)− (α ∧ 0) that

Ex
(∫ ∞

0
e−qre−(α∧0)r+βXrdr

)
= eβx

∫ ∞
0

e−(q+(α∧0)−ψ(β))rdr =
eβx

q + (α ∧ 0)− ψ(β)
<∞

for all x ∈ R. Then for all u > 0 and x > 0 we have, by Fubini’s theorem and from equation

(1.19), that

K+(u, x) = Ex

(∫ τ−0

0
e−qre−α(u+r)+βXrdr

)

= e−αu
∫

(0,∞)
eβy
∫ ∞

0
e−(q+α)rPx(Xr ∈ dy, r < τ−0 )dr

= e−αu
∫ ∞

0
eβy
[
e−Φ(q+α)yW (q+α)(x)−W (q+α)(x− y)

]
dy

=
e−αuW (q+α)(x)

Φ(q + α)− β
− e−αueβx

∫ x

0
e−βyW (q+α)(y)dy.

Similarly, we calculate for any x ∈ R

∫ 0

−∞
eβy
[
eΦ(q)(x−y)Φ′(q)−W (q)(x− y)

]
dy

= Φ′(q)eΦ(q)x

∫ ∞
0

e−(β−Φ(q))ydy − eβx
∫ ∞
x

e−βyW (q)(y)dy

=
Φ′(q)eΦ(q)x

β − Φ(q)
− eβx

ψ(β)− q
+ eβx

∫ x

0
e−βyW (q)(y)dy,

where the last equality follows from equation (1.4) and the last integral is understood like 0
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when x < 0. Then from (3.5) we get that for all (u, x) ∈ E,

Eu,x
(∫ ∞

0
e−qre−αUr+βXrdr

)
=
e−αuW (q+α)(x)

Φ(q + α)− β
− e−αueβx

∫ x

0
e−βyW (q+α)(y)dy

+
Φ′(q)eΦ(q)x

β − Φ(q)
− eβx

ψ(β)− q
+ eβx

∫ x

0
e−βyW (q)(y)dy

+ eΦ(q)xI(q,Φ(q))(x) lim
ε↓0

1

ψ′(Φ(q)+)W (q)(ε)

[
W (q+α)(ε)

Φ(q + α)− β
− eβε

∫ ε

0
e−βyW (q+α)(y)dy

]

=
e−αuW (q+α)(x)

Φ(q + α)− β
− e−αueβx

∫ x

0
e−βyW (q+α)(y)dy

+
Φ′(q)eΦ(q)x

β − Φ(q)
− eβx

ψ(β)− q
+ eβx

∫ x

0
e−βyW (q)(y)dy

+ eΦ(q)x
[
1− ψ′(Φ(q)+)e−Φ(q)xW (q)(x)

] Φ′(q)

Φ(q + α)− β
,

where in the last equality we used the fact that Φ′(q) = 1/ψ′(Φ(q)+), W (q)(x) is non-negative

and strictly increasing on [0,∞) for all q ≥ 0 and that

lim
ε↓0

W (q+α)(ε)

W (q)(ε)
= 1

for all α, q ≥ 0. The latter fact follows from the representation W (q)(x) =
∑∞

k=0 q
kW ∗(k+1)(x)

and the estimate W ∗(k+1)(x) ≤ xk/k!W (x)k+1 (see equations (8.28) and (8.29) in Kyprianou

(2014), pp 241-242). Rearranging the terms and using the fact that

Eu,x
(
e−αUeq+βXeq

)
= qEu,x

(∫ ∞
0

e−qre−αUr+βXrdr

)

for all (u, x) ∈ E, we obtain the desired result.

Remark 3.2.9. Note that from formula (3.7) we can recover some known expressions for

Lévy processes. If we take α = 0 we obtain for all β ≥ 0 and q > ψ(β) ∨ 0 and x ∈ R,

Ex(eβXeq ) =
qeβx

q − ψ(β)
.
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On the other for any θ ≥ 0, q ≥ 0 and x ∈ R we have that

Ex(e−θgeq ) =

∫ ∞
0

qe−qtEx(e−θgt)dt =

∫ ∞
0

qe−(q+θ)tEx(eθUt)dt =
q

q + θ
Ex(eθUeq+θ ),

where eq+θ is an exponential random variable with parameter q + θ. This result coincides

with the one found in Baurdoux (2009) (see Theorem 2).

Let q > 0 we consider the q-potential measure of (U,X) given by

∫ ∞
0

e−qrPu,x(Ur ∈ dv,Xr ∈ dy)dr

for (u, x), (v, y) ∈ E. From the fact that for all t > 0, Ut = 0 if and only if Xt ≤ 0 we have

that for any (u, x) ∈ E and y ≤ 0

∫ ∞
0

e−qrPu,x(Ur = 0, Xr ∈ dy)dr =

∫ ∞
0

e−qrPx(Xr ∈ dy)dr

In the next corollary we find the an expression for a density when v, x > 0.

Corollary 3.2.10. Let q > 0. The q-potential measure of (U,X) has a density given by

∫ ∞
0

e−qrPu,x(Ur ∈ dv,Xr ∈ dy)dr = e−q(v−u)Px(Xv−u ∈ dy, v − u < τ−0 )I{v>u}dv

+
[
eΦ(q)xΦ′(q)−W (q)(x)

] y
v
e−qvP(Xv ∈ dy)dv

(3.8)

for all (u, x) ∈ E and v, y > 0. In particular, when u = x = 0 we have that

∫ ∞
0

e−qrP(Ur ∈ dv,Xr ∈ dy)dr = eΦ(q)xΦ′(q)
y

v
e−qvP(Xv ∈ dy)dv (3.9)

Proof. Let 0 < u1 < u2 and 0 < x1 < x2 and define the sets A = (u1, u2] and Y = (x1, x2].

Then the function K(u, x) = I{u∈A,x∈Y } is left-continuous and bounded by above by C(x) =

I{x∈Y }. Moreover, we have that for all q > 0 and x ∈ R,

Ex
(∫ ∞

0
e−qrI{Xr∈Y }dr

)
<∞.
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First we calculate for all u, x > 0 such that u < u1,

K+(u, x) = Eu,x

(∫ τ−0

0
e−qrI{Ur∈A,Xr∈Y }dr

)
=

∫
A

∫
Y
e−q(r−u)Px(Xr−u ∈ dy, r − u < τ−0 )dr

and for every x ≤ 0 we have that

K−(x) = Eu,x

(∫ τ+
0

0
e−qrI{Ur∈A,Xr∈Y }dr

)
= 0

Hence, for all (u, x) ∈ E we obtain that

Eu,x
(∫ ∞

0
e−qrI{Ur∈A,Xr∈Y }dr

)
=

∫
A

∫
Y
e−q(r−u)Px(Xr−u ∈ dy, r − u < τ−0 )dr

+ eΦ(q)x
[
1− ψ′(Φ(q)+)e−Φ(q)xW (q)(x)

]
lim
ε↓0

∫
A

∫
Y

e−qrPε(Xr ∈ dy, r < τ−0 )

ψ′(Φ(q)+)W (q)(ε)
dr.

We calculate the limit on the right-hand side of the equation above. Denote P↑ε as the law of

X starting from ε conditioned to stay positive (see (1.23)). We have that for all x ∈ R and

y > 0 that

lim
ε↓0

∫
A

∫
Y

e−qrPε(Xr ∈ dy, r < τ−0 )

ψ′(Φ(q)+)W (q)(ε)
dr =

W (ε)

ψ′(Φ(q)+)W (q)(ε)
lim
ε↓0

∫
A

∫
Y

e−qrP↑ε(Xr ∈ dy)

W (y)
dr

=
1

ψ′(Φ(q)+)

∫
A

∫
Y

e−qrP↑(Xr ∈ dy)

W (y)
dr,

where the first equality follows from the definition of P↑ε and the last equality follows since

limε↓0W (ε)/W (q)(ε) = 1 and P↑ε converges to P↑ in the sense of finite-dimensional distribu-

tions (see Proposition VII.3.14 in Bertoin (1998)). Therefore from (1.24) we have that for all

(u, x) ∈ E,

Eu,x
(∫ ∞

0
e−qrI{Ur∈A,Xr∈Y }dr

)
=

∫
A

∫
Y
e−q(r−u)Px(Xr−u ∈ dy, r − u < τ−0 )dr

+
[
Φ′(q)eΦ(q)x −W (q)(x)

] ∫
A

∫
Y

y

r
e−qrP(Xr ∈ dy)dr,

where we also used the fact that Φ′(q) = 1/ψ′(Φ(q)+). Using the same arguments one can
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easily see that when X is of finite variation

∫
A

∫
Y
e−q(r−u)P(Xr−u ∈ dy, r − u < τ−0 )dr = W (q)(0)

∫
A

∫
Y

y

r
e−qrP(Xr ∈ dy)dr.

The proof is now complete.

Remark 3.2.11. Bingham (1975) showed that the q-potential measure of X has a density

that is absolutely continuous with respect to the Lebesgue measure. This can be shown moving

the killing barrier on the q-potential measure killed on entering the set (−∞, 0] (see (1.19))

and taking limits. Alternatively, it can deduced taking limits on (3.5). Moreover, Corollary

3.2.10 provides an alternative method for finding the aforementioned density. For this, we

use Kendall’s identity (see e.g. Bertoin (1998), Corollary VII.3) given by

rP(τ+
z ∈ dr)dz = zP(Xr ∈ dz)dr (3.10)

for all r, z ≥ 0. Indeed, let u, y > 0 and x ∈ R, integrating (3.8) with respect to the variable

v, we obtain that

∫ ∞
0

e−qrPx(Xr ∈ dy)dr =

∫
(0,∞)

∫ ∞
0

e−qrPu,x(Ur ∈ dv,Xr ∈ dy)dr

=

∫ ∞
0

e−qvPx(Xv ∈ dy, v < τ−0 )dv

+

∫ ∞
0

[
eΦ(q)xΦ′(q)−W (q)(x)

] y
v
e−qvP(Xv ∈ dy)dv

= [e−Φ(q)yW (q)(x)−W (q)(x− y)]dy

+
[
eΦ(q)xΦ′(q)−W (q)(x)

] ∫ ∞
0

e−qvP(τ+
y ∈ dv)dy,

where the last equality follows from (1.19) and (3.10). Hence, using the formula for the

Laplace transform of τ+
y (see equation (1.3)) we have that

∫ ∞
0

e−qrPx(Xr ∈ dy)dr =
(
eΦ(q)(x−y)Φ′(q)−W (q)(x− y)

)
dy.
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3.3 Main proofs

Suppose that X is a spectrally negative Lévy process of finite variation. Then with positive

probability it takes a positive amount of time to cross below 0, i.e. τ−0 > 0 P-a.s. Hence,

stopping at the consecutive times in which X is below zero and the ideas mentioned in Re-

mark 3.2.2 we can fully describe the behaviour of gt and then derive the results mentioned in

Theorems 3.2.3 and 3.2.6. However, in the case X is of infinite variation it is well known that

the closed zero set of X is perfect and nowhere dense and the mentioned approach proves to

be no longer useful (since we have that τ−0 = 0 a.s). Therefore, in order to exploit the idea ap-

plicable for finite variation processes we make use of a perturbation method. This method is

mainly based on the work of Dassios and Wu (2011) and Revuz and Yor (1999) (see Theorem

VI.1.10) which consists in construct a new “perturbed” process X(ε) (for ε sufficiently small)

that approximates X with the property that X(ε) visits the level zero a finite number of times

before any time t ≥ 0. Then we approximate gt by the corresponding last zero process of X(ε).

3.3.1 Perturbed Lévy process

We describe formally the construction of the “perturbed” process X(ε). Let ε > 0, define the

stopping times σ−1,ε = 0 and for any k ≥ 1,

σ+
k,ε := inf{t > σ−k,ε : Xt ≥ ε}

σ−k+1,ε := inf{t > σ+
k,ε : Xt < 0}

and define the auxiliary process X(ε) = {X(ε)
t , t ≥ 0} where

X
(ε)
t =

 Xt − ε if σ−k,ε ≤ t < σ+
k,ε

Xt if σ+
k,ε ≤ t < σ−k+1,ε.

In Figure 3.1 we include a sample path of the process X(ε) compared with the original process

X.

Lemma 3.3.1. We have that X
(ε)
r < 0 if and only if there exists k ≥ 1 such that r ∈

[σ−k,ε, σ
+
k,ε). Moreover, for each t ≥ 0, X

(ε)
t increases when ε ↓ 0 and X(ε) converges uniformly

to X when ε ↓ 0, that is,
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Lévy process

Time

X
t

ε

Perturbed Lévy process

Time

X
t(ε

)

ε

−ε

Figure 3.1: Left: Sample path of X. Right: Sample path of the perturbed process X(ε). The
lightblue vertical lines correspond to the sequence of stopping times {σ−k,ε, k ≥ 1}, whereas

the gray vertical lines correspond to {σ+
k,ε, k ≥ 1}.

lim
ε↓0

sup
t≥0
|X(ε)

t −Xt| = 0.

Proof. From the definition of the stopping times σ−k,ε and σ+
k,ε we have that for some k ≥ 1,

if r ∈ [σ−k,ε, σ
+
k,ε), then X

(ε)
r < 0 whereas if r ∈ [σ+

k,ε, σ
−
k+1,ε), then X

(ε)
r ≥ 0 . Moreover. it is

easy to see that for all t ≥ 0

Xt − ε ≤ X(ε)
t ≤ Xt. (3.11)

We deduce that supt≥0 |X
(ε)
t −Xt| < ε and hence

lim
ε↓0

sup
t≥0
|X(ε)

t −Xt| = 0.

It is only left to show that for 0 < ε1 ≤ ε2 and all t ≥ 0 that X
(ε2)
t ≤ X

(ε1)
t . By the

definition of X
(ε)
t , we have to check the cases in which X

(εi)
t = Xt or X

(εi)
t = Xt − εi for
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i = 1, 2. Thus, since ε1 ≤ ε2, it suffices to prove that is not possible that t ∈ [σ−i,ε1 , σ
+
i,ε1

)

and t ∈ [σ+
j,ε2

, σ−j+1,ε2
) for some i, j ≥ 1. Indeed, suppose that there exists j ≥ 1 such that

t ∈ [σ+
j,ε2

, σ−j+1,ε2
) and define i := max{k ≥ 1 : σ−k,ε1 < σ+

j,ε2
}. Since ε1 ≤ ε2, we have

that σ+
i,ε1

< σ+
j,ε2

. Moreover, from the definition of i, we have that σ−i+1,ε1
> σ+

j,ε2
which

implies that Xr ≥ 0 for all r ∈ [σ+
j,ε2

, σ−i+1,ε1
) and hence σ−i+1,ε1

= σ−j,ε2 . We conclude that if

t ∈ [σ+
j,ε2

, σ−j+1,ε2
) for some j ≥ 1, there exists i ≥ 1 such that t ∈ [σ+

i,ε1
, σ−i+1,ε1

) and the proof

is complete.

In addition we define the last zero process gε,t associated to the process X(ε), i.e.

gε,t = sup{0 ≤ s ≤ t : X(ε)
s ≤ 0}.

The inequality gt ≤ gε,t ≤ g
(ε)
t holds for all t ≥ 0. Taking ε ↓ 0 and by right continu-

ity of x 7→ gxt we obtain that gε,t ↓ gt when ε ↓ 0 for all t ≥ 0. Therefore we have that

t− Uε,t =: Uε,t ↑ Ut when ε ↓ 0 for all t ≥ 0.

Recall that the local time at zero, L = {Lt, t ≥ 0}, is a continuous process defined in

terms of the Itô–Tanaka formula (see Protter (2005) Chapter IV) and its measure dLt is

carried by the set {s ≥ 0 : Xs− = Xs = 0}.

Denote M
(ε)
t as the number of downcrossings of the level zero at time t ≥ 0 of the process

X
(ε)
t , i.e.

M
(ε)
t =

∞∑
k=1

I{σ−k,ε<t}. (3.12)

We simply denote M (ε) = limt→∞M
(ε)
t for all ε > 0. It turns out that M

(ε)
t works as an

approximation of the local time at zero in some sense. We have the following lemma; its

proof follows an analogous argument than Revuz and Yor (1999) (see Exercise VI.1.19).

Lemma 3.3.2. Suppose that X is a spectrally negative Lévy process. Then for all t ≥ 0,

lim
ε↓0

εM
(ε)
t =

1

2
Lt a.s.

Proof. Using the Meyer–Itô formula (see Protter (2005) Theorem 70), we have for any t ≥ 0
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that

X+
t = X+

0 +

∫
(0,t]

I{Xs−>0}dXs +

∫
(0,t]

∫
(−∞,0)

(Xs− + y)−I{Xs−>0}N(ds× dy) +
1

2
Lt,

where x+ and x− are the positive and negative parts, respectively, of x defined by x+ =

max{x, 0} and x− = −min{x, 0}. Hence, for all 1 ≤ k ≤M (ε)
t ,

X+

σ+
k,ε∧t

−X+

σ−k,ε

=

∫
(σ−k,ε,σ

+
k,ε∧t]

I{Xs−>0}dXs +

∫
(σ−k,ε,σ

+
k,ε∧t]

∫
(−∞,0)

(Xs− + y)−I{Xs−>0}N(ds× dy)

+
1

2
(Lσ+

k,ε∧t
− Lσ−k,ε).

From the definition of the stopping times {σ−k,ε, k ≥ 1}, we have that for every k ≥ 1, Xr > 0

for all r ∈ [σ+
k,ε, σ

−
k+1,ε) and since L is continuous and only charge points in the set of zeros of

X, we have that Lσ+
k,ε

= Lσ−k+1,ε
and Lt∧σ+

M
(ε)
t ,ε

= Lt. Hence, we have that using a telescopic

sum and the fact that X
(ε)
r− ≤ 0 if and only if r ∈ (σ−k,ε, σ

+
k,ε] for some k ≥ 1,

X+

t∧σ+

M
(ε)
t ,ε

−X+

σ−

M
(ε)
t ,ε

+

M
(ε)
t −1∑
k=1

X+

σ+
k,ε

−X+

σ−k,ε

=

∫
(0,t]

I{X(ε)
s−≤0}I{Xs−>0}dXs

+

∫
(0,t]

∫
(−∞,0)

(Xs− + y)−I{X(ε)
s−≤0}I{Xs−>0}N(ds× dy) +

1

2
Lt.

Thus, using the fact that Xσ−k,ε
≤ 0 and Xσ+

k,ε
= ε for all k ≥ 1, we obtain

X+

t∧σ+

M
(ε)
t ,ε

+ ε(M
(ε)
t − 1)

=

∫
(0,t]

I{X(ε)
s−≤0}I{Xs−>0}dXs

+

∫
(0,t]

∫
(−∞,0)

(Xs− + y)−I{X(ε)
s−≤0}I{Xs−>0}N(ds× dy) +

1

2
Lt.

Note that 0 ≤ X+

t∧σ+

M
(ε)
t ,ε

≤ ε and then limε↓0X
+

t∧σ+

M
(ε)
t ,ε

= 0. Moreover, from the dominated

convergence theorem for stochastic integrals (see for example Theorem 32 Chapter IV of
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Protter (2005)), we have that the first term in the right hand side of the equation above

converges to 0 uniformly on compacts in probability, i.e. for all t > 0,

sup
0≤s≤t

∣∣∣∣∣
∫

(0,s]
I{X(ε)

r−≤0}I{Xr−>0}dXr

∣∣∣∣∣
converges to 0 in probability. Note that for all s ≥ 0, (Xs−+ y)−I{X(ε)

s−≤0}I{Xs−>0} ≤ (Xs−+

y)−I{Xs−>0} and

∫
(0,t]

∫
(−∞,0)

(Xs− + y)−I{Xs−>0}N(ds× dy) <∞.

Then, by the dominated convergence theorem

lim
ε↓0

∫
(0,t]

∫
(−∞,0)

(Xs− + y)−I{X(ε)
s−≤0}I{Xs−>0}N(ds× dy) = 0.

Hence, we have that εM
(ε)
t converges to Lt/2 in probability when ε ↓ 0. We know that there

exists a subsequence {εn, n ≥ 1} converging to 0 such that limn→∞ εnM
(εn)
t = Lt/2 a.s. From

the fact that M
(ε)
t increases when ε decreases, we have that for each ε ∈ [εn+1, εn]

εn+1M
(εn)
t ≤ εM (ε)

t ≤ εnM (εn+1)
t

and we conclude that limε↓0 εM
(ε)
t = Lt/2 a.s. as claimed.

In the next Lemma we calculate explicitly the probability mass function of the random

variable Mep .

Lemma 3.3.3. Let ep an independent exponential random variable with parameter p ≥ 0.

For all ε > 0 we have that the probability mass function of the random variable M
(ε)
ep is given

by

Px(M
(ε)
ep = n) =

 1− I(p,0)(ε)e−Φ(p)(ε−x) n = 1

I(p,0)(ε)e−Φ(p)(ε−x)[I(p,Φ(p))(ε)]n−2[1− I(p,Φ(p))(ε)] n ≥ 2
(3.13)

for all x < ε.

Proof. We calculate the probability of the event {M (ε)
ep ≥ n} for n ≥ 2 which happens if and
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only if {σ−n,ε < ep}. First, for any x < ε we calculate

Px(M
(ε)
ep ≥ 2) = Px(σ−2,ε < ep)

= Ex(Px(σ−2,ε < ep, σ
+
1,ε < ep|Fσ+

1,ε
))

= Eε(e−pτ
−
0 I{τ−0 <∞})Ex(e−pτ

+
ε I{τ+

ε <∞})

= I(p,0)(ε)e−Φ(p)(ε−x),

where the second last equality follows from the strong Markov property and the lack of

memory property of the exponential distribution, the last by equations (1.3) and (1.11).

Next assume that n ≥ 3, we have that for any x < ε

Px(M
(ε)
ep ≥ n) = Px(σ−n,ε < ep)

= Ex(Px(σ−n,ε < ep, σ
+
n−1,ε < ep|Fσ+

n−1,ε
))

= Eε(e−pτ
−
0 I{τ−0 <∞})Ex(e−pσ

+
n−1,εI{σ+

n−1,ε<∞}
)

= I(p,0)(ε)Ex(e−pσ
+
n−1,εI{σ+

n−1,ε<∞}
), (3.14)

where the third equality follows from the strong Markov property and the lack of memory

property of the exponential distribution and the last equality by equation (1.11). Applying

the strong Markov property at the stopping time σ−n−1,ε we get

Px(M
(ε)
ep ≥ n) = I(p,0)(ε)Ex(e−pσ

+
n−1,εI{σ+

n−1,ε<∞}
)

= I(p,0)(ε)Ex(e−pσ
−
n−1,εI{σ−n−1,ε<∞}

EX
σ−n−1,ε

(e−pτ
+
ε I{τ+

0 <∞}
))

= I(p,0)e−Φ(p)ε(ε)Ex(e
−pσ−n−1,ε+Φ(p)X

σ−n−1,ε I{σ−n−1,ε<∞}
),

where the last equality follows from equation (1.3). We apply the strong Markov property

at σ+
n−2,ε and we use the fact that for all k ≥ 2, Xσ+

k,ε
= ε on the event {0 < σ+

k,ε < ∞} to
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deduce for all n ≥ 3 that

Px(M
(ε)
ep ≥ n) = I(p,0)(ε)e−Φ(p)εEε(e

−pτ−0 +Φ(p)X
τ−0 I{τ−0 <∞})Ex(e−pσ

+
n−2,εI{σ+

n−2,ε<∞}
)

= I(p,Φ(p))(ε)Px(M
(ε)
ep ≥ n− 1),

where last equality follows from equations (1.11) and (3.14). Then by an induction argument

we get that for all n ≥ 2 and x < ε

Px(M
(ε)
ep ≥ n) = I(p,0)(ε)e−Φ(p)(ε−x)[I(p,Φ(p))(ε)]n−2. (3.15)

Remark 3.3.4. For all ε > 0 we can describe the paths of the process {gε,t, t ≥ 0} in terms

of the stopping times {(σ−k,ε, σ
+
k,ε), k ≥ 1}. When X

(ε)
t ≤ 0 we have that σ−k,ε ≤ t < σ+

k,ε

for some k ≥ 1 and then gε,t = t. Similarly, when X
(ε)
t > 0 there exists k ≥ 1 such that

σ+
k,ε ≤ t < σ−k+1,ε and hence gε,t = σ+

k,ε. The reader can refer to Figure 3.1 for a graphical

representation of this fact.

3.3.2 Proof of Theorem 3.2.3

Suppose that Xt > 0 and choose ε < Xt. For any function F ∈ C1,1,2(R+×R+×R) we have

that

F (gε,t, t,X
(ε)
t ) = F (gε,0, 0, X

(ε)
0 ) +

M
(ε)
t∑

k=1

[F (gε,(σ+
k,ε)−

, σ+
k,ε, X

(ε)

(σ+
k,ε)−

)− F (gε,σ−k,ε
, σ−k,ε, X

(ε)

σ−k,ε
)]

+

M
(ε)
t∑

k=1

[F (gε,σ+
k,ε
, σ+

k,ε, X
(ε)

σ+
k,ε

)− F (gε,(σ+
k,ε)−

, σ+
k,ε, X

(ε)

(σ+
k,ε)−

)]

+

M
(ε)
t −1∑
k=1

[F (gε,(σ−k+1,ε)−
, σ−k+1,ε, X

(ε)

(σ−k+1,ε)−
)− F (gε,σ+

k,ε
, σ+

k,ε, X
(ε)

σ+
k,ε

)]

+

M
(ε)
t −1∑
k=1

[F (gε,σ−k+1,ε
, σ−k+1,ε, X

(ε)

σ−k+1,ε

)− F (gε,(σ−k+1,ε)−
, σ−k+1,ε, X

(ε)

(σ−k+1,ε)−
)]

+ [F (gε,t, t,X
(ε)
t )− F (gε,σ+

M
(ε)
t ,ε

, σ+

M
(ε)
t ,ε

, X
(ε)

σ+

M
(ε)
t ,ε

)].
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Note that gε,(σ−k+1,ε)
− = σ+

k,ε, gε,σ−k,ε
= σ−k,ε and gε,(σ+

k,ε)
− = σ+

k,ε for all k ≥ 1. Thus,

F (gε,t, t,X
(ε)
t ) = F (gε,0, 0, X

(ε)
0 ) +

M
(ε)
t∑

k=1

[F (σ+
k,ε, σ

+
k,ε, Xσ+

k,ε
− ε)− F (σ−k,ε, σ

−
k,ε, Xσ−k,ε

− ε)]

+

M
(ε)
t∑

k=1

[F (σ+
k,ε, σ

+
k,ε, Xσ+

k,ε
)− F (σ+

k,ε, σ
+
k,ε, Xσ+

k,ε
− ε)]

+

M
(ε)
t −1∑
k=1

[F (σ+
k,ε, σ

−
k+1,ε, X(σ−k+1,ε)

−)− F (σ+
k,ε, σ

+
k,ε, Xσ+

k,ε
)]

+

M
(ε)
t −1∑
k=1

[F (σ−k+1,ε, σ
−
k+1,ε, Xσ−k+1,ε

− ε)− F (σ+
k,ε, σ

−
k+1,ε, X(σ−k+1,ε)

−)]

+ [F (σ+

M
(ε)
t ,ε

, t,Xt)− F (σ+

M
(ε)
t ,ε

, σ+

M
(ε)
t ,ε

, Xσ+

M
(ε)
t ,ε

)],

where we also used that X
(ε)
s = Xs when s ∈ [σ+

k,ε, σ
−
k+1,ε) and X

(ε)
s = Xs − ε when s ∈

[σ−k,ε, σ
+
k,ε) for all k ≥ 1. Applying Itô formula on intervals of the form (σ−k,ε, σ

+
k,ε] for k ≥ 1
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we have that

M
(ε)
t∑

k=1

[F (σ+
k,ε, σ

+
k,ε, Xσ+

k,ε
− ε)− F (σ−k,ε, σ

−
k,ε, Xσ−k,ε

− ε)]

=

M
(ε)
t∑

k=1

[∫ σ+
k,ε

σ−k,ε

∂

∂γ
F (s, s,Xs − ε)ds+

∫ σ+
k,ε

σ−k,ε

∂

∂t
F (s, s,Xs − ε)ds

]

+

M
(ε)
t∑

k=1

[
1

2
σ2

∫ σ+
k,ε

σ−k,ε

∂2

∂x2
F (s, s,Xs − ε)ds+

∫
(σ−k,ε,σ

+
k,ε]

∂

∂x
F (s, s,Xs− − ε)dXs

]

+

M
(ε)
t∑

k=1

∫
(σ−k,ε,σ

+
k,ε]

∫
(−∞,0)

N(ds× dy)

×
(
F (s, s,Xs− + y − ε)− F (s, s,Xs− − ε)− y

∂

∂x
F (s, s,Xs− − ε)

)
=

∫ t

0

∂

∂γ
F (gε,s, s,X

(ε)
s )I{X(ε)

s ≤0}ds+

∫ t

0

∂

∂t
F (gε,s, s,X

(ε)
s )I{X(ε)

s ≤0}ds

+
1

2
σ2

∫ t

0

∂2

∂x2
F (gε,s, s,X

(ε)
s )I{X(ε)

s ≤0}ds+

∫
[0,t]

∂

∂x
F (gε,s−, s,X

(ε)
s− )I{X(ε)

s ≤0}dXs

−
∫

[0,t]
y
∂

∂x
F (gε,s−, s,X

(ε)
s− )I{X(ε)

s−>0}I{X(ε)
s−+y<0}N(ds× dy)

+

∫
[0,t]

∫
(−∞,0)

I{X(ε)
s−≤0}N(ds× dy)

×
(
F (gε,s−, s,X

(ε)
s− + y)− F (gε,s−, s,X

(ε)
s− )− y ∂

∂x
F (gε,s−, s,X

(ε)
s− )

)
,

where the last equality follows since X
(ε)
s ≤ 0 if and only if s ∈ [σ−k,ε, σ

+
k,ε) for some k ≥ 1

(and hence gε,s = s), X has a jump at time s on the event {X(ε)
s− > 0}∩{X(ε)

s < 0} and there

are no jumps at time σ+
k,ε for all k ≥ 1. Similarly, applying Itô formula on intervals of the

form (σ+
k,ε, σ

−
k+1) for k ≥ 1, there are no jumps at time σ+

k,ε for all k ≥ 1 and the fact that

X
(ε)
s > 0 if and only if s ∈ [σ+

k,ε, σ
−
k+1,ε) for some k ≥ 1 (and hence gε,s = gε,s− = σ+

k,ε) we
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have that

M
(ε)
t −1∑
k=1

[F (σ+
k,ε, σ

−
k+1,ε, X(σ−k+1,ε)

−)− F (σ+
k,ε, σ

+
k,ε, Xσ+

k,ε
)]

+ [F (σ+

M
(ε)
t ,ε

, t,Xt)− F (σ+

M
(ε)
t ,ε

, σ+

M
(ε)
t ,ε

, Xσ+

M
(ε)
t ,ε

)]

=

∫ t

0

∂

∂t
F (gε,s, s,X

(ε)
s )I{X(ε)

s >0}ds

+
1

2
σ2

∫ t

0

∂2

∂x2
F (gε,s, s,X

(ε)
s )I{X(ε)

s >0}ds+

∫
[0,t]

∂

∂x
F (gε,s−, s,X

(ε)
s− )I{X(ε)

s >0}dXs

+

∫
[0,t]

∫
(−∞,0)

I{X(ε)
s >0}N(ds× dy)

×
(
F (gε,s−, s,X

(ε)
s− + y)− F (gε,s−, s,X

(ε)
s− )− y ∂

∂x
F (gε,s−, s,X

(ε)
s− )

)
.

Hence, we obtain that

F (gε,t, t,X
(ε)
t ) = F (gε,0, 0, X

(ε)
0 ) +

∫ t

0

∂

∂γ
F (gε,s, s,X

(ε)
s )I{X(ε)

s ≤0}ds+

∫ t

0

∂

∂t
F (gε,s, s,X

(ε)
s )ds

+
1

2
σ2

∫ t

0

∂2

∂x2
F (gε,s, s,X

(ε)
s )ds+

∫ t

0

∂

∂x
F (gε,s−, s,X

(ε)
s− )dXs

−
∫

[0,t]

∫
(−∞,0)

y
∂

∂x
F (gε,s−, s,X

(ε)
s− )I{X(ε)

s−>0}I{X(ε)
s−+y<0}N(ds× dy)

+

∫
[0,t]

∫
(−∞,0)

I{X(ε)
s >0}N(ds× dy)

×
(
F (gε,s−, s,X

(ε)
s− + y)− F (gε,s−, s,X

(ε)
s− )− y ∂

∂x
F (gε,s−, s,X

(ε)
s− )

)
+

∫
[0,t]

∫
(−∞,0)

I{X(ε)
s−≤0}N(ds× dy)

×
(
F (gε,s−, s,X

(ε)
s− + y)− F (gε,s−, s,X

(ε)
s− )− y ∂

∂x
F (gε,s−, s,X

(ε)
s− )

)

+

M
(ε)
t∑

k=1

[F (σ+
k,ε, σ

+
k,ε, Xσ+

k,ε
)− F (σ+

k,ε, σ
+
k,ε, Xσ+

k,ε
− ε)]

+

M
(ε)
t −1∑
k=1

[F (σ−k+1,ε, σ
−
k+1,ε, Xσ−k+1,ε

− ε)− F (σ+
k,ε, σ

−
k+1,ε, X(σ−k+1,ε)

−)].

Since Xσ+
k,ε

= ε and that X can cross below 0 either by creeping or by a jump we have that

the last two terms in the expression above become
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M
(ε)
t∑

k=1

[F (σ+
k,ε, σ

+
k,ε, ε)− F (σ+

k,ε, σ
+
k,ε, 0)]

+

M
(ε)
t −1∑
k=1

[F (σ−k+1,ε, σ
−
k+1,ε, Xσ−k+1,ε

− ε)− F (σ+
k,ε, σ

−
k+1,ε, X(σ−k+1,ε)

−)]

=

M
(ε)
t −1∑
k=1

[F (σ+
k+1,ε, σ

+
k+1,ε, ε)− F (σ+

k+1,ε, σ
+
k+1,ε, 0)] + F (σ+

1,ε, σ
+
1,ε, ε)− F (σ+

1,ε, σ
+
1,ε, 0)

+

M
(ε)
t −1∑
k=1

[F (σ−k+1,ε, σ
−
k+1,ε,−ε)− F (σ−k+1,ε, σ

−
k+1,ε, 0)]I{X

σ−
k+1,ε

=0}

+

∫
[0,t]

∫
(−∞,0)

[F (s, s,Xs− + y − ε)− F (gε,s−, s,Xs−)]I{X(ε)
s−>0}I{X(ε)

s−+y≤0}N(ds× dy),

where we used the fact that when σ > 0, limh↓0 F (γ, t, h) = F (t, t, 0) for all 0 ≤ γ ≤ t by

assumption, F is continuous and that X(σ−k+1,ε)
− = 0 on the event of creeping. Without loss

of generality assume that ε < 1. By the mean value theorem we have that, for each k ≥ 1,

there exist c1,k ∈ (0, ε) and c2,k ∈ (−ε, 0) such that

∣∣∣∣∣∣∣
M

(ε)
t −1∑
k=1

[F (σ+
k+1,ε, σ

+
k+1,ε, ε)− F (σ+

k+1,ε, σ
+
k+1,ε, 0)]

+

M
(ε)
t −1∑
k=1

[F (σ−k+1,ε, σ
−
k+1,ε,−ε)− F (σ−k+1,ε, σ

−
k+1,ε, 0)]I{X

σ−
k+1,ε

=0}

∣∣∣∣∣∣∣
≤

M
(ε)
t −1∑
k=1

∣∣∣∣ ∂∂xF (σ+
k,ε, σ

+
k,ε, c1,k)−

∂

∂x
F (σ−k+1,ε, σ

−
k+1,ε, c2,k)I{X

σ−
k+1,ε

=0}

∣∣∣∣ ε
≤ 2Ktε(M

(ε)
t − 1),

where we used the fact that F is at least C1,1,1(Eg) and then (s, x) 7→ | ∂∂xF (s, s, x)| is bounded

in the set [0, t]×[−1, 1] by a constant, namely Kt > 0. Moreover, we know that εM
(ε)
t → Lt/2

a.s. when ε ↓ 0 (see Lemma 3.3.2). Hence, using the dominated convergence and the mean

value theorem we deduce that
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lim
ε↓0

∣∣∣∣∣∣∣
M

(ε)
t −1∑
k=1

[F (σ+
k+1,ε, σ

+
k+1,ε, ε)− F (σ+

k+1,ε, σ
+
k+1,ε, 0)]

+

M
(ε)
t −1∑
k=1

[F (σ−k+1,ε, σ
−
k+1,ε,−ε)− F (σ−k+1,ε, σ

−
k+1,ε, 0)]I{X

σ−
k+1,ε

=0}

∣∣∣∣∣∣∣
≤
∞∑
k=1

lim
ε↓0

∣∣∣F (σ+
k+1,ε, σ

+
k+1,ε, ε)− F (σ+

k+1,ε, σ
+
k+1,ε, 0)]

∣∣∣ I{k<M(ε)
t }

+
∞∑
k=1

lim
ε↓0

∣∣∣[F (σ−k+1,ε, σ
−
k+1,ε,−ε)− F (σ−k+1,ε, σ

−
k+1,ε, 0)]

∣∣∣ I{X
σ−
k+1,ε

=0}I{k<M(ε)
t }

≤
∞∑
k=1

lim
ε↓0

ε

[∣∣∣∣ ∂∂xF (σ+
k+1,ε, σ

+
k+1,ε, c1,k)

∣∣∣∣+

∣∣∣∣ ∂∂xF (σ−k+1,ε, σ
−
k+1,ε, c2,k)

∣∣∣∣]

≤
∞∑
k=1

lim
ε↓0

ε2Kt

= 0,

almost surely. Therefore, by the dominated convergence theorem for stochastic integrals, we

deduce that

F (gt,t,Xt) = F (g0, 0, X0) +

∫ t

0

∂

∂γ
F (gs, s,Xs)I{Xs≤0}ds+

∫ t

0

∂

∂t
F (gs, s,Xs)ds

+

∫ t

0

∂

∂x
F (gs−, s,Xs−)dXs +

1

2
σ2

∫ t

0

∂2

∂x2
F (gs, s,Xs)ds

+

∫
[0,t]

∫
(−∞,0)

I{Xs>0}N(ds× dy)

×
(
F (gs−, s,Xs− + y)− F (gs−, s,Xs−)− y ∂

∂x
F (gs−, s,Xs−)

)
+

∫
[0,t]

∫
(−∞,0)

I{Xs−≤0}N(ds× dy)

×
(
F (gs−, s,Xs− + y)− F (gs−, s,Xs−)− y ∂

∂x
F (gs−, s,Xs−)

)
+

∫
[0,t]

∫
(−∞,0)

I{0<Xs−<−y}N(ds× dy)

×
(
F (s, s,Xs− + y)− F (gs−, s,Xs−)− y ∂

∂x
F (gs−, s,Xs−)

)
. (3.16)
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From the fact that gt is continuous in the set {t ≥ 0 : Xt > 0 or Xt− ≤ 0} we obtain the

desired result. The case when Xt ≤ 0 is similar and proof is omitted.

3.3.3 Proof of Theorem 3.2.6

Note that, since |K(Us, Xs)| ≤ C(Us, Xs) for all s ≥ 0 and Eu,x
(∫∞

0 e−qrC(Ur, Xr + y)dr
)
<

∞ for all (u, x) ∈ E and y ∈ R, we have that K+ and K− are finite. Moreover, since

u 7→ C(u, x) is monotone for all x ∈ R and non-negative we have that for all r ≥ 0 and ε > 0,

|K(Uε,r, X
(ε)
r )| ≤ C(Uε,r, X

(ε)
r )

≤ C(Ur, Xr) + C(Ur, Xr − ε) + C(U (ε)
r , Xr) + C(U (ε)

r , Xr − ε),

where U
(ε)
r = r − g

(ε)
t = r − sup{0 ≤ s ≤ r : Xs ≤ ε}. It follows from integrability of

e−qrC(Ur, Xr+y) with respect to the product measure Pu,x×dr for all x, y ∈ R, by dominated

convergence theorem and left-continuity in each argument of K that for all (u, x) ∈ E,

Eu,x
(∫ ∞

0
e−qrK(Ur, Xr)dr

)
= lim

ε↓0
Eu,x

(∫ ∞
0

e−qrK(Uε,r, X
(ε)
r )dr

)
.

Then we calculate the right-hand side of the equation above. Fix ε > 0, using the fact that

{M (ε) = n} = {σ−n,ε <∞} ∩ {σ−n+1,ε =∞} for n = 1, 2, . . . , we have for any x ≤ 0 that

Ex
(∫ ∞

0
e−qrK(Uε,r, X

(ε)
r )dr

)
=

∞∑
n=1

Ex
(
I{M(ε)=n}

∫ ∞
0

e−qrK(Uε,r, X
(ε)
r )dr

)

=
∞∑
n=1

n∑
k=1

Ex

(
I{σ−n,ε<∞}I{σ−n+1,ε=∞}

∫ σ+
k,ε

σ−k,ε

e−qrK(0, X(ε)
r )dr

)

+

∞∑
n=2

n−1∑
k=1

Ex

(
I{σ−n,ε<∞}I{σ−n+1,ε=∞}

∫ σ−k+1,ε

σ+
k,ε

e−qrK(r − σ+
k,ε, X

(ε)
r )dr

)

+

∞∑
n=1

Ex

(
I{σ+

n,ε<∞}I{σ−n+1,ε=∞}

∫ σ−n+1,ε

σ+
n,ε

e−qrK(r − σ+
n,ε, X

(ε)
r )dr

)
,

where the last equality follows from the fact that gε,r = r when r ∈ [σ−k,ε, σ
+
k,ε] and gε,r = σ+

k,ε

when r ∈ [σ+
k,ε, σ

−
k+1,ε) for some k ≥ 1. We first analyse the first double sum on the right
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hand side of the expression above. Conditioning with respect to the filtration at the stopping

time σ+
k,ε, the strong Markov property and the fact that X creeps upwards we get

∞∑
n=1

n∑
k=1

Ex

(
I{σ−n,ε<∞}I{σ−n+1,ε=∞}

∫ σ+
k,ε

σ−k,ε

e−qrK(0, X(ε)
r )dr

)

=

∞∑
n=2

n−1∑
k=1

E

(
I{σ+

k,ε<∞}

∫ σ+
k,ε

σ−k,ε

e−qrK(0, X(ε)
r )dr · P(σ−n,ε <∞, σ−n+1,ε =∞|Fσ+

k,ε
)

)

+
∞∑
n=1

Ex

(
I{σ−n,ε<∞}I{σ−n+1,ε=∞}

∫ σ+
n,ε

σ−n,ε

e−qrK(0, X(ε)
r )dr

)

=
∞∑
n=2

n−1∑
k=1

Ex

(
I{σ+

k,ε<∞}

∫ σ+
k,ε

σ−k,ε

e−qrK(0, X(ε)
r )dr

)
Pε(M (ε) = n− k + 1)

+
∞∑
n=1

Ex

(
I{σ−n,ε<∞}I{σ+

n,ε=∞}

∫ σ+
n,ε

σ−n,ε

e−qrK(0, X(ε)
r )dr

)

+

∞∑
n=1

Ex

(
I{σ+

n,ε<∞}

∫ σ+
n,ε

σ−n,ε

e−qrK(0, X(ε)
r )dr · P(σ−n+1,ε =∞|σ+

n,ε)

)

=
∞∑
n=1

Ex

(
I{σ+

1,ε<∞}

∫ σ+
1,ε

0
e−qrK(0, X(ε)

r )dr

)
Pε(M (ε) = n)

+ Ex

(
I{σ+

1,ε=∞}

∫ σ+
1,ε

0
e−qrK(0, X(ε)

r )dr

)

+
∞∑
n=3

n−1∑
k=2

Ex

(
I{σ+

k,ε<∞}

∫ σ+
k,ε

σ−k,ε

e−qrK(0, X(ε)
r )dr

)
Pε(M (ε) = n− k + 1)

+
∞∑
n=2

Ex

(
I{σ−n,ε<∞}I{σ+

n,ε=∞}

∫ σ+
n,ε

σ−n,ε

e−qrK(0, X(ε)
r )dr

)

+

∞∑
n=2

Ex

(
I{σ+

n,ε<∞}

∫ σ+
n,ε

σ−n,ε

e−qrK(0, X(ε)
r )dr

)
Pε(M (ε) = 1)

= K−(x− ε) +

∞∑
n=3

n−1∑
k=2

Ex

(
I{σ+

k,ε<∞}

∫ σ+
k,ε

σ−k,ε

e−qrK(0, Xr − ε)dr

)
Pε(M (ε) = n− k + 1)

+
∞∑
n=2

Ex

(
I{σ−n,ε<∞}I{σ+

n,ε=∞}

∫ σ+
n,ε

σ−n,ε

e−qrK(0, Xr − ε)dr

)

+

∞∑
n=2

Ex

(
I{σ+

n,ε<∞}

∫ σ+
n,ε

σ−n,ε

e−qrK(0, Xr − ε)dr

)
Pε(M (ε) = 1),

where the second equality follows from splitting the second summation on the cases where

σ+
n,ε is finite and infinity; the first term in the last equality corresponds to the first excursion
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of X(ε) below zero (case k = 1) and we also used the fact that X
(ε)
r = Xr−ε for r ∈ [σ−k,ε, σ

+
k,ε]

for any k ≥ 1. We define the auxiliary functions

K−(x) := Ex

(∫ τ+
0

0
e−qrK(0, Xr)dr

)
,

K−1 (x) := Ex

(
I{τ+

0 <∞}

∫ τ+
0

0
e−qrK(0, Xr)dr

)
,

K−2 (x) := Ex

(
I{τ+

0 =∞}

∫ τ+
0

0
e−qrK(0, Xr)dr

)

for all x ∈ R. Then we have that K−(x) = K−1 (x) +K−2 (x) for all x ∈ R. Conditioning again

with respect to the filtration at time σ−k,ε (resp. σ−n,ε) we have

∞∑
n=1

n∑
k=1

Ex

(
I{σ−n,ε<∞}I{σ−n+1,ε=∞}

∫ σ+
k,ε

σ−k,ε

e−qrK(0, X(ε)
r )dr

)

= K−(x− ε) +
∞∑
n=3

n−1∑
k=2

Ex
(
I{σ−k,ε<∞}e

−qσ−k,εK−1 (Xσ−k,ε
− ε)

)
Pε(M (ε) = n− k + 1)

+
∞∑
n=2

Ex
(
I{σ−n,ε<∞}e

−qσ−n,εK−2 (Xσ−k,ε
− ε)

)
+
∞∑
n=2

Ex
(
I{σ−n,ε<∞}e

−qσ−n,εK−1 (Xσ−k,ε
− ε)

)
Pε(M (ε) = 1)

= K−(x− ε) +
∞∑
n=3

n−1∑
k=2

Eε(I{τ−0 <∞}e
−qτ−0 K−1 (Xτ−0

− ε))

× Ex
(
I{σ+

k−1,ε<∞}
e−qσ

+
k−1,ε

)
Pε(M (ε) = n− k + 1)

+

∞∑
n=2

Eε
(
I{τ−0 <∞}e

−qτ−0 K−2 (Xτ−0
− ε)

)
Ex
(
I{σ+

n−1,ε<∞}
e−qσ

+
n−1,ε

)
+
∞∑
n=2

Eε
(
I{τ−0 <∞}e

−qτ−0 K−1 (Xτ−0
− ε)

)
Ex
(
I{σ+

n−1,ε<∞}
e−qσ

+
n−1,ε

)
Pε(M (ε) = 1)

= K−(x− ε) +
∞∑
n=3

n−1∑
k=2

Eε(I{τ−0 <∞}e
−qτ−0 K−1 (Xτ−0

− ε))
Px(M

(ε)
eq ≥ k)

I(q,0)(ε)
Pε(M (ε) = n− k + 1)

+

∞∑
n=2

Eε
(
I{τ−0 <∞}e

−qτ−0 K−2 (Xτ−0
− ε)

) Px(M
(ε)
eq ≥ n)

I(q,0)(ε)

+
∞∑
n=2

Eε
(
I{τ−0 <∞}e

−qτ−0 K−1 (Xτ−0
− ε)

) Px(M
(ε)
eq ≥ n)

I(q,0)(ε)
Pε(M (ε) = 1),
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where the second equality follows from conditioning with respect to time σ+
k−1,ε (resp. σ+

n−1,ε)

and the Markov property of X and the last from equation (3.14). From Lemma 3.3.3 and

solving the corresponding series we get

∞∑
n=1

n∑
k=1

Ex

(
I{σ−n,ε<∞}I{σ−n+1,ε=∞}

∫ σ+
k,ε

σ−k,ε

e−qrK(0, X(ε)
r )dr

)

= K−(x− ε) + Eε
(
I{τ−0 <∞}e

−qτ−0 K−(Xτ−0
− ε)

) e−Φ(q)(ε−x)

1− I(q,Φ(q))(ε)
.

Using similar arguments we have, from the strong Markov property, the fact that X creeps

upwards, equation (1.11) and Lemma 3.3.3, that

∞∑
n=2

n−1∑
k=1

Ex

(
I{σ−n,ε<∞}I{σ−n+1,ε=∞}

∫ σ−k+1,ε

σ+
k,ε

e−qrK(r − σ+
k,ε, X

(ε)
r )dr

)

+
∞∑
n=1

Ex

(
I{σ+

n,ε<∞}I{σ−n+1,ε=∞}

∫ σ−n+1,ε

σ+
n,ε

e−qrK(r − σ+
n,ε, X

(ε)
r )dr

)

= K+(0, ε)
e−Φ(q)(ε−x)

1− I(q,Φ(q))(ε)
.

Therefore, by the dominated convergence theorem we have that for all x ≤ 0

Ex
(∫ ∞

0
e−qrK(Ur, Xr)dr

)
= lim

ε↓0

{
K−(x− ε) +

e−Φ(q)(ε−x)

1− I(q,Φ(q))(ε)

[
Eε
(
I{τ−0 <∞}e

−qτ−0 K−(Xτ−0
− ε)

)
+K+(0, ε)

]}
.

When u, x > 0 we have that

Eu,x
(∫ ∞

0
e−qrK(Ur, Xr)dr

)
= Ex

(∫ τ−0

0
e−qrK(u+ r,Xr)dr

)
+ Ex

(
I{τ−0 <∞}

∫ ∞
τ−0

e−qrK(Ur, Xr)dr

)
= K+(u, x) + lim

ε↓0
Ex
(
I{τ−0 <∞}e

−qτ−0 K−(Xτ−0
− ε)

)
+ eΦ(q)xI(q,Φ(q))(x) lim

ε↓0

e−Φ(q)ε

1− I(q,Φ(q))(ε)

[
Eε
(
I{τ−0 <∞}e

−qτ−0 K−(Xτ−0
− ε)

)
+K+(0, ε)

]
,

(3.17)
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where the last equality follows from conditioning at time τ−0 and the strong Markov property.

Using Fubini’s theorem and equation (1.20) we have that for all x < 0,

K−(x) =

∫
(−∞,0)

K(0, y)

∫ ∞
0

e−qrPx(Xr ∈ dy, r < τ+
0 )dr

=

∫ 0

−∞
K(0, y)[eΦ(q)xW (q)(−y)−W (q)(x− y)]dy

Then for any x, ε > 0 we have that by Fubini’s theorem and equation (1.11),

Ex
(
I{τ−0 <∞}e

−qτ−0 K−(Xτ−0
− ε)

)
= eΦ(q)(x−ε)I(q,Φ(q))(x)

∫ 0

−ε
K(0, y)W (q)(−y)dy

+

∫ −ε
−∞

K(0, y)

×
[
eΦ(q)(x−ε)I(q,Φ(q))(x)W (q)(−y)− Ex

(
I{τ−0 <∞}e

−qτ−0 W (q)(Xτ−0
− ε− y)

)]
dy.

Let x, ε > 0 and y < −ε, using a change of measure (see equation (1.22)) we obtain that

Ex
(
I{τ−0 =∞}e

−qτ−0 W (q)(Xτ−0
− ε− y)

)
= eΦ(q)(x−ε−y)EΦ(q)

x

(
I{τ−0 =∞}e

−Φ(q)(X
τ−0
−ε−y)

W (q)(Xτ−0
− ε− y)

)
= eΦ(q)(x−ε−y)Φ′(q)PΦ(q)

x (τ−0 =∞)

= e−Φ(q)(ε+y)W (q)(x),

where in the second equality we used that fact that X drifts to infinity under the measure

PΦ(q) and the last follows from equation (1.11). Then from the fact that e−q(t∧τ
−
0 )W (q)(Xt∧τ−0

)

is a martingale and since τ−−ε−y < τ−0 we have that

Ex
(
I{τ−0 <∞}e

−qτ−0 W (q)(Xτ−0
− ε− y)

)
= Ex

(
e−qτ

−
0 W (q)(Xτ−0

− ε− y)
)
− Ex

(
I{τ−0 =∞}e

−qτ−0 W (q)(Xτ−0
− ε− y)

)
= W (q)(x− ε− y)− e−Φ(q)(ε+y)W (q)(x).
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Hence we obtain that for any x > 0,

Ex
(
I{τ−0 <∞}e

−qτ−0 K−(Xτ−0
− ε)

)
= eΦ(q)(x−ε)I(q,Φ(q))(x)

∫ 0

−ε
K(0, y)W (q)(−y)dy

+

∫ −ε
−∞

K(0, y)

×
[
eΦ(q)(x−ε)I(q,Φ(q))(x)W (q)(−y)−W (q)(x− ε− y) + e−Φ(q)(ε+y)W (q)(x)

]
dy.

Substituting the expression above in (3.17) and taking limits we obtain that for all u, x > 0,

Eu,x
(∫ ∞

0
e−qrK(Ur, Xr)dr

)
= K+(u, x) +

∫ 0

−∞
K(0, y)

[
eΦ(q)(x−y)Φ′(q)−W (q)(x− y)

]
dy

+ eΦ(q)x
[
1− ψ′(Φ(q)+)e−Φ(q)xW (q)(x)

]
lim
ε↓0

K+(0, ε)

ψ′(Φ(q)+)W (q)(ε)
.

The result follows from equation (1.11). The case when x ≤ 0 is similar and the proof is

omitted.

3.4 Conclusions

The focus of this chapter is on the study of the dynamics of the last zero before any fixed time

which is denoted by gt. We have derived some important identities of the three dimensional

process (t, gt, Xt) which will be useful in the next Chapter. For instance, we have computed

a version of the Itô formula and its infinitesimal generator (see Theorem 3.2.3 and Corollary

3.2.5). They are particularly challenging to compute due to the infinite number of jumps of

the process {gt, t ≥ 0} in the infinite variation case. Indeed, the jumps of t 7→ gt can occur

when X crosses below the level zero which can happen either by a jump or by creeping (when

σ > 0). The latter implies that there is an infinite number of jumps since the set of zeroes of

X is perfect and nowhere dense (note that the limit condition on F on Theorem 3.2.3 makes

these kind of jumps vanish).

The proof of Theorem 3.2.3 is based on a perturbation approach first presented by Dassios
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and Wu (2011) in which a perturbed version of X is proposed. An interesting feature of this

process is that it visits the level zero a finite number of times and then its corresponding

last zero process has only a finite number of jumps. Therefore, we can easily derive an Itô

formula for the perturbed process and conclude via a limit argument.

Using the same approach, we have also derived a formula to calculate a functional that

depends on the whole path of U = {Ut, t ≥ 0} (see Theorem 3.2.6), where Ut is the length of

the current excursion above the level zero at time t ≥ 0. This formula is then used to find

the joint Laplace transform of (Uep , Xep), where ep is an independent exponential time, and

to compute the q-potential measure of (U,X) without killing. Moreover, the formula (3.6) is

derived and we will learn how useful this is in the next chapter.
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Chapter 4

Lp optimal prediction of the last

zero of a spectrally negative Lévy

process

Abstract

Given a spectrally negative Lévy process X drifting to infinity, we are interested

in finding a stopping time which minimises the Lp distance (p > 1) with g, the

last time X is negative. The solution is substantially more difficult compared

to the p = 1 case for which it was shown in Baurdoux and Pedraza (2020b)

that it is optimal to stop as soon as X exceeds a constant barrier. In the case

of p > 1 treated here, we prove that solving this optimal prediction problem is

equivalent to solving an optimal stopping problem in terms of a two-dimensional

strong Markov process which incorporates the length of the current excursion

away from 0. We show that an optimal stopping time is now given by the first

time that X exceeds a non-increasing and non-negative curve depending on the

length of the current excursion away from 0. We also show that the derivatives

of the value function exist and are zero at the boundary.

4.1 Introduction

In recent years last passage times have received a considerable attention in the literature.

For instance, in risk theory, the capital of an insurance company over time is studied. In

the classical risk theory this is modelled by the Cramér–Lundberg process, defined as a com-
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pound Poisson process with drift. In more recent literature, this process has been replaced

by a more general spectrally negative Lévy process. A key quantity of interest is the moment

of ruin, which is classically defined as the first passage time below zero. Consider instead the

situation where after the moment of ruin the company may have funds to endure a negative

capital for some time. In that case, the last passage time below zero becomes an important

quantity to be studied. In this framework, in Chiu and Yin (2005) the Laplace transform of

the last passage time is derived.

Secondly, Paroissin and Rabehasaina (2013) consider spectrally positive Lévy processes as a

degradation model. In a traditional setting, the failure time of a device is the first time the

model hits a certain critical level b. However, another approach has been considered in the

literature. For example, in Barker and Newby (2009) they considered the failure time as a

last passage time. After the last passage time the process can never go back to this level

meaning that the device is “beyond repair”.

Thirdly, Egami and Kevkhishvili (2020) studied the last passage time of a general time-

homogeneous transient diffusion with applications to credit risk management. They proposed

the leverage process (the ratio of a company asset process over its debt) as a geometric Brow-

nian motion over a process that grows at a risk free rate. It is shown there that the last

passage time of the leverage ratio is equivalent to a last passage time of a Brownian motion

with drift. In this setting the last passage represents the situation where the company cannot

recover to normal business conditions after this time has occurred.

An important feature of last passage times is that they are random times which are not

stopping times. In the recent literature the problem of finding a stopping time that approx-

imates last passage times has been solved in various. There are for example various papers

in which the approximation is in L1 sense. To mention a few: du Toit et al. (2008) predicted

the last zero of a Brownian motion with drift in a finite horizon setting; du Toit and Peskir

(2008) predicted the time of the ultimate maximum at time t = 1 for a Brownian motion

with drift is attained; Glover et al. (2013) predicted the time in which a transient difussion

attains its ultimate minimum; Glover and Hulley (2014) predicted the last passage time of a

level z > 0 for an arbitrary nonnegative time-homogeneous transient diffusion; Baurdoux and

van Schaik (2014) predicted the time at which a Lévy process attains its ultimate supremum

and Baurdoux et al. (2016) predicted when a positive self-similar Markov process attain its

pathwise global supremum or infimum before hitting zero for the first time and Baurdoux
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and Pedraza (2020b) predicted the last zero of a spectrally negative Lévy process.

In this paper we consider the problem in an Lp sense, i.e. we are interested in solving

inf
τ∈T

E(|τ − g|p)

where g = sup{t ≥ 0 : Xt ≤ 0} is the last time a spectrally negative Lévy process drifting to

infinity is below the level zero and p > 1. The case when p = 1 was solved in Baurdoux and

Pedraza (2020b) for the spectrally negative case. An optimal stopping time in this case is

the first time the process crosses above a fixed level a∗ > 0 which is characterised in terms of

the distribution function of the infimum of the process. The case p > 1 is substantially more

complex, as an optimal stopping time now depends on the length of the current excursion

above the level zero given by Ut = t− sup{0 ≤ s ≤ t : Xs ≤ 0}. Recall that Ut is the length

of the current positive excursion which implies that Ut = 0 if and only if Xt ≤ 0 and Ut

has linear behaviour when Xt > 0. Moreover, as seen in Chapter 2, the process (U,X) is a

Markov process taking values in E = [(0,∞)× (0,∞)] ∪ [{0} × (−∞, 0)].

In this chapter, we show that an optimal stopping time (when p > 1) is given by

τD = inf{t > 0 : (Ut, Xt) ∈ D} = inf{t ≥ 0 : Xt ≥ b(Ut)}, where b is a non-negative,

non-increasing and continuous curve. That is, is not optimal to stop when (U,X) is in the

(continuation) set C := E \D whilst we should stop as soon as the process enters the (stop-

ping) set D (see Figure 4.1). In other words, given the strong dependence of U on X, the

latter has the following interpretation in terms of the sample paths of X: It is optimal to

stop when X is sufficiently large or has stayed for a sufficiently large period of time above

zero and we will never stop when X is in the negative half line (see Figure 4.1).
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C

D

U

X

Figure 4.1: Stopping and continuation set in the (U,X) plane

In the figure below we include a plot of a sample path of Xt and b(Ut), where we calcu-

lated numerically the function b for the Brownian motion with drift case (see Section 4.5.1

and Figure 4.3).

Figure 4.2: Black line: t 7→ Xt; Blue line: t 7→ b(Ut).
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This chapter is organised as follows. Section 4.2 gives a short overview of some results

obtained in Chapter 3 but applied to the process Ut = t − gt. We also state and derive

some technical results related to the last zero of a Lévy processes drifting to infinite that

will be useful in later sections. In Section 4.3 we formulate the optimal prediction problem

and we show that it is equivalent to an optimal stopping problem which is solved in Section

4.4. In particular, we show an optimal stopping time is given by the first time X exceeds

a boundary b which depends on the length of the current excursion above zero. We derive

various properties of b. For example, in Lemma 4.4.20 we show that b is continuous and in

Theorem 4.4.22 we show that the derivatives of the the value function exist and vanish at

the boundary. The main result, Theorem 4.4.23, provides a characterisation of b and the

value function of the optimal stopping problem. In Section 4.5 we provide two numerical

examples: Firstly, when X is a Brownian motion with drift, and secondly when X is a

Brownian motion with exponential jumps. Finally, some of the more technical proofs are

deferred to the Appendix.

4.2 Length of the current positive excursion and the last zero

Throughout this chapter we use the notation and the preliminary results presented in Sec-

tion 1.1. Let X be a spectrally negative Lévy process, that is, a Lévy process starting

from 0 with only negative jumps and non-monotone paths, defined on a filtered probability

space (Ω,F ,F,P) where F = {Ft, t ≥ 0} is the filtration generated by X which is naturally

enlarged (see Definition 1.3.38 in Bichteler (2002)). We suppose that X has Lévy triplet

(µ, σ,Π) where µ ∈ R, σ ≥ 0 and Π is a measure (Lévy measure) concentrated on (−∞, 0)

satisfying
∫

(−∞,0)(1∧ x
2)Π(dx) <∞. We will assume that, when X is of finite variation, the

Lévy measure Π has no atoms

For any t ≥ 0 and x ∈ R, we denote by g
(x)
t the last time that the process is below x

before time t, i.e.,

g
(x)
t = sup{0 ≤ s ≤ t : Xs ≤ x}, (4.1)

with the convention sup ∅ = 0. We simply denote gt := g
(0)
t for all t ≥ 0. We also define, for
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each t ≥ 0, U
(x)
t as the time spent by X above the level zero before time t since the last visit

to the interval (−∞, x], i.e.

U
(x)
t := t− g(x)

t t ≥ 0.

It turns out that in roder to solve our optimal prediction problem (see Section 4.3 below)

the process Ut = U
(0)
t plays a vital role so then we list a number of results from Chapter 3

applied to the process U .

Note the process U is not a Markov process. However, the strong Markov property holds

for the two dimensional process {(Ut, Xt), t ≥ 0} (see Proposition 3.2.1) with respect to the

filtration {Ft, t ≥ 0} and state space given by

E = {(u, x) : u > 0 and x > 0} ∪ {(u, x) : u = 0 and x ≤ 0}.

Then there exists a family of probability measures {Pu,x, (u, x) ∈ E} such that for any

A ∈ B(E), Borel set of E, we have that Pu,x((Uτ+s, Xτ+s) ∈ A|Fτ ) = PUτ ,Xτ ((Us, Xs) ∈ A).

For each (u, x) ∈ E, Pu,x can be written in terms of Px via

Eu,x(h(Us, Xs)) := Ex(h(u+ s,Xs)I{σ−0 >s}) + Ex(h(Us, Xs)I{σ−0 ≤s}), (4.2)

for any positive measurable function h. Let F a C1,2(E) real-valued function. In addition,

in the case that σ > 0 assume that limh↓0 F (u, h) = F (0, 0) for all u > 0. Then we have the

following version of Itô formula (see Theorem 3.2.3)

F (Ut, Xt) = F (U0, X0)

+

∫ t

0

∂

∂u
F (Us, Xs)I{Xs>0}ds+

∫ t

0

∂

∂x
F (Us−, Xs−)dXs +

1

2
σ2

∫ t

0

∂2

∂x2
F (Us, Xs)ds

+

∫
[0,t]

∫
(−∞,0)

(
F (Us, Xs− + y)− F (Us−, Xs−)− y ∂

∂x
F (Us−, Xs−)

)
N(ds× dy)

(4.3)
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Moreover, if f is a C1,2(E) bounded function with bounded derivatives, the infinitesimal

generator AU,X of the process (U,X) (see Corollary 3.2.5) is given by

AU,X(f)(u, x) =
∂

∂u
f(u, x)I{x>0} − µ

∂

∂x
f(u, x) +

1

2
σ2 ∂

2

∂x2
f(u, x)

+

∫
(−∞,0)

(
f(u, x+ y)− f(u, x)− yI{y>−1}

∂

∂x
f(u, x)

)
I{x+y>0}Π(dy)

+

∫
(−∞,0)

(
f(0, x+ y)− f(0, x)− yI{y>−1}

∂

∂x
f(0, x)

)
I{x≤0}Π(dy)

+

∫
(−∞,0)

(
f(0, x+ y)− f(u, x)− yI{y>−1}

∂

∂x
f(u, x)

)
I{0<x<−y}Π(dy)

Note that the equation above can be simplified by introducing the following notation. For

any (u, x) ∈ E we define,

f̃(u, x) =


f(u, x) u > 0 and x > 0,

f(0, x) u ≥ 0 and x ≤ 0,

f(0, 0) u = 0 and x > 0.

(4.4)

Note that f̃ extends the function f (defined only on E) to the set R+ × R and is such that

∂f/∂uf̃(u, x) = 0 when x ≤ 0. Then the generator A(U,X) applied to f can be written as

AU,X(f)(u, x) =
∂

∂u
f̃(u, x)− µ ∂

∂x
f̃(u, x) +

1

2
σ2 ∂

2

∂x2
f̃(u, x)

+

∫
(−∞,0)

(
f̃(u, x+ y)− f̃(u, x)− yI{y>−1}

∂

∂x
f̃(u, x)

)
Π(dy)

=
∂

∂u
f̃(u, x) +AX(f̃), (4.5)

where AX is the infinitesimal generator of the process X. Note that the representation above

tells us that the process (U,X) behaves (locally) as the process (t,X) when X is in the set

(0,∞) and as (0, X) when X is in the set (−∞, 0).

We conclude this section by collecting some additional results about the last passage time

g = g∞ = sup{t ≥ 0 : Xt ≤ 0}. (4.6)
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The Laplace transform of g was found in Chiu and Yin (2005) as

Ex(e−qg) = eΦ(q)xΦ′(q)ψ′(0+) + ψ′(0+)(W (x)−W (q)(x)), q ≥ 0. (4.7)

The distribution function of g under Px is found by observing that

Px(g ≤ γ) = Px(Xu+γ > 0 for all u ∈ (0,∞))

= Ex(Px(Xu+γ > 0 for all u ∈ (0,∞)|Fγ))

= Ex(PXγ (τ−0 =∞))

= Ex(ψ′(0+)W (Xγ)), (4.8)

where we used the tower property of conditional expectation in the second equality, the

Markov property of Lévy processes in the third equality and equation (1.10) in the last. Note

that the law of g under Px may have an atom at zero given by

Px(g = 0) = Px(τ−0 =∞) = ψ′(0+)W (x).

For our optimal prediction problem we require the p-th moment of g to be finite.The following

result is from Doney and Maller (2004) (see Theorem 1, Theorem 4, Theorem 5 and Remark

(ii)).

Lemma 4.2.1. Let X be a spectrally negative Lévy process drifting to infinity. Then for a

fixed p > 0 the following are equivalent.

1. Ex(gp) <∞ for some (hence every) x ≤ 0.

2.
∫

(−∞,−1) |x|
1+pΠ(dx) <∞.

3. E((−X∞)p) <∞.

4. Ex((τ+
0 )p+1) <∞ for some (hence every) x ≤ 0.

5. Ex((τ−0 )pI{τ−0 <∞}) <∞ for some (hence every) x ≥ 0.

The next lemma states that when τ+
0 has finite p-th moment under Px, then the function

Ex((τ+
0 )p) has a polynomial bound in x. It will be of use later to deduce a lower bound for

our optimal prediction problem.
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Lemma 4.2.2. Let p > 0 and suppose Ex((τ+
0 )p+1) < ∞ for some x ≤ 0. Then for each

0 ≤ r ≤ p there exist non-negative constants Ar and Cr such that

Ex((τ+
0 )r) ≤ Ar + Cr|x|r and Ex(gr) ≤ 2r[E(gr) +Ar] + 2rCr|x|r, x ≤ 0.

Here bpc denotes the integer part of p.

Proof. From equation (1.3) we know that

F (θ, x) := Ex(e−θτ
+
0 ) = eΦ(θ)x, x ≤ 0.

Then using Faà di Bruno’s formula (see for example Spindler (2005)) we have that for any

n ≥ 1,

∂n

∂θn
F (θ, x) =

n∑
k=1

eΦ(θ)xxk
∑

k1+···+kn=k,
k1+···+nkn=n

n!

k1!k2! · · · kn!

(
Φ′(θ)

1!

)k1
(

Φ′′(θ)

2!

)k2

· · ·

(
Φ(n)(θ)

n!

)kn
.

Then evaluating at zero the above equation, using Φ(0) = 0 and the fact that Φ(i)(0) < ∞

for i = 1, . . . , bpc + 1, we can find constants Ar, Cr ≥ 0 such that Ex((τ+
0 )r) ≤ Ar + Cr|x|r

for any r ∈ {1, . . . , bpc+ 1}. For any non integer r < bpc+ 1 we can use Hölder’s inequality

to obtain

Ex((τ+
0 )r) ≤ [Ex((τ+

0 )brc+1)]
r

brc+1 ≤ (Abrc+1 + Cbrc+1|x|brc+1)
r

brc+1 .

The result follows from the inequality (a+ b)q ≤ 2q(aq + bq) which is true for any q > 0 and

a, b > 0. Now we show that the second inequality holds. From the strong Markov property

we get that for any x < 0

Ex(gr) ≤ 2rE(gr) + 2rEx((τ+
0 )r) ≤ 2r[E(gr) +Ar] + 2rCr|x|r.

In the next lemma we give some properties of the function x 7→ Ex(gp).
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Lemma 4.2.3. Let p > 0 and assume that
∫

(−∞,−1) |x|
p+1Π(dx) < ∞. Then x 7→ Ex(gp) is

a non-increasing, non-negative and continuous function. Moreover,

lim
x→−∞

Ex(gp) =∞ and lim
x→∞

Ex(gp) = 0.

Proof. It follows from the definition of g that x 7→ Ex(gp) = E(g(−x)) is non-negative and

non-increasing. In order to check continuity notice that by integration by parts we get

Ex(gp) = p

∫ ∞
0

sp−1Px(g > s)ds

= p

∫ ∞
0

sp−1Ex(1− ψ′(0+)W (Xs))ds

where the last equality follows from (4.8). Take x ∈ R and δ ∈ R. Then using the equation

above we have that

|Ex(gp)− Ex+δ(g
p)| ≤ pψ′(0+)E

(∫ ∞
0

sp−1|W (Xs + x+ δ)−W (Xs + x)|ds
)
. (4.9)

First, suppose that X is of infinite variation and thus W is continuous on R. From the

fact that X drifts to ∞ we know that W (∞) = 1/ψ′(0+) and therefore it follows that

sp−1(1 − ψ′(0+)W (Xs)) is integrable with respect to the product measure Px × λ([0,∞)),

where λ denotes Lebesgue measure. We can now invoke the dominated convergence theorem

to deduce that x 7→ Ex(gp) is continuous.

Next, in the case that X is of finite variation we have that W has a discontinuity at zero.

However, the set {s ≥ 0 : Xs = x} is almost surely countable and thus has Lebesgue measure

zero. We can again use the dominated convergence theorem to conclude that continuity also

holds in this case.

We prove now the asymptotic behaviour of Ex(gp). Note that when x tends to −∞ the

random variable g(−x) →∞. Then using Fatou’s lemma

lim inf
x→−∞

Ex(gp) ≥ E(lim inf
x→−∞

(g(−x))p) =∞
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Therefore, limx→−∞ Ex(gp) =∞. In the other hand, note that for x > 0

Px(gp = 0) = Px(g = 0) = Px(τ−0 =∞) = ψ′(0+)W (x)
x→∞−−−→ 1. (4.10)

Hence we deduce that the sequence {(g(−n))p}n≥1 converges in probability to 0 (under the

measure P) when n tends to infinity. Moreover, since the sequence {E((g−n)p)}n≥1 is a

non-increasing sequence of positive numbers we get that

sup
n≥1

E((g−n)p) ≤ E(gp) <∞,

where the last inequality holds due to Lemma 4.2.1 and assumption. Then {(g(−n))p}n≥1 is

an uniformly integrable family of random variables. The latter together with the convergence

in probability allows us to conclude that Ex(gp)→ 0 when x→∞ as claimed.

We conclude this section with a technical result extracted from Baurdoux and van Schaik

(2014) (see Lemma 5) related to optimal stopping that will be useful later.

Lemma 4.2.4. Let X be any Lévy process drifting to −∞. Denote T+(0) = inf{t ≥ 0 : Xt ≥

0} Consider, for a > 0 and b < 0, the optimal stopping problem

P (x) = inf
τ∈T

Ex[aτ + I{τ≥T+(0)}b] for x ∈ R.

Then there is an x0 ∈ (−∞, 0) so that P (x) = 0 for all x ≤ x0.

4.3 Optimal prediction problem

Denote by V∗ the value of the optimal prediction problem, i.e.

V∗ = inf
τ∈T

E(|τ − g|p), (4.11)

where T is the set of all stopping times with respect to F, p > 1 and g is the last zero of X

given in (4.6). Since g is only F measurable standard techniques of optimal stopping times
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are not directly applicable. However, there is an equivalence between the optimal prediction

problem (4.11) and an optimal stopping problem. The next lemma, inspired in the work of

Urusov (2005), states such equivalence.

Lemma 4.3.1. Let p > 1 and let X be a spectrally negative Lévy process drifting to infinity

such that
∫

(−∞,−1) |x|
p+1Π(dx) <∞. Consider the optimal stopping problem

V = inf
τ∈T

E
(∫ τ

0
G(s− gs, Xs)ds

)
, (4.12)

where the function G is given by

G(u, x) = up−1ψ′(0+)W (x)− Ex(gp−1),

for u ≥ 0 and x ∈ R. Then we have that V∗ = pV + E(gp) and a stopping time minimises

(4.11) if and only if it minimises (4.12).

Proof. Let τ ∈ T . Then the following equality holds

|τ − g|p =

∫ τ

0
%(s− g)ds+ gp, (4.13)

where the function % is defined by

%(x) = p

[
(−x)p

x
I{x<0} + xp−1I{x≥0}

]
.

Taking expectations in equation (4.13) and then using Fubini’s theorem and the tower prop-

erty for conditional expectation we obtain
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E(|τ − g|p) =

∫ ∞
0

E
(
%(s− g)I{s≤τ}ds

)
+ E(gp)

=

∫ ∞
0

E
[
I{s≤τ}E (%(s− g)|Fs) ds

]
+ E(gp)

= E
(∫ τ

0
E (%(s− g)|Fs) ds

)
+ E(gp).

To evaluate the conditional expectation inside the last integral, note that for all t ≥ 0 we can

write the the time g as

g = gt ∨ sup{s ∈ (t,∞) : Xs ≤ 0, }

recalling that gt = g
(0)
t defined in (4.1). Hence, using the Markov property for Lévy processes

and the fact that gs is Fs measurable we have that

E(%(s− g)|Fs) = E (% (s− [gs ∨ sup{r ∈ (s,∞) : Xr ≤ 0}]) |Fs)

= %(s− gs)E(I{Xr>0 for all r∈(s,∞)}|Fs)

+ E(%(s− sup{r ∈ (s,∞) : Xr ≤ 0})I{Xr≤0 for some r∈(s,∞)}|Fs)

= %(s− gs)PXs(g = 0) + EXs(%(−g)I{g>0})

= p(s− gs)p−1ψ′(0+)W (Xs)− pEXs(gp−1).

Then we have that

E(|τ − g|p) = pE
(∫ τ

0
G(s− gs, Xs)ds

)
+ E(gp)

Remark 4.3.2. A close inspection of the proof of Lemma 4.3.1 tells us that the function

% corresponds to the right derivative of the function f(x) = |x|p. Therefore, using similar

arguments we can actually extend the result to any convex function d : R+×R+ 7→ R+. That
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is, under the assumption that E(d(0, g)) <∞, the optimal prediction problem

Vd = inf
τ∈T

E(d(τ, g))

is equivalent to the optimal stopping problem

inf
τ∈T

E
[∫ τ

0
Gd(gs, s,Xs)ds

]

where Gd(γ, t, x) = %d(s, γ)ψ′(0+)W (x) +Ex(%d(s, g+ s)I{g>0}) and %d is the right derivative

with respect the first argument of d.

4.4 Solution to the optimal stopping problem

In order to solve the optimal stopping problem (4.12) using the general theory of optimal

stopping (see e.g. Peskir and Shiryaev (2006) or Section 1.2.3) we have to extend it to an

optimal stopping problem driven by a strong Markov process. For every (u, x) ∈ E, we define

the optimal stopping problem

V (u, x) = inf
τ∈T

Eu,x
[∫ τ

0
G(Us, Xs)ds

]
, (4.14)

where the function G is given by G(u, x) = up−1ψ′(0+)W (x) − Ex(gp−1) for any u ≥ 0 and

x ∈ R. Therefore we have that V∗ = pV (0, 0) + E(gp). Note that using the definition of Eu,x

we have that (4.14) takes the form

V (u, x) = inf
τ∈T

Ex
(∫ τ

0

{
G(u+ s,Xs)I{σ−0 >s} +G(Us, Xs)I{σ−0 ≤s}

}
ds

)
. (4.15)

The optimal stopping problem (4.14) is given in terms of a function G which involves

the function x 7→ Ex(gp−1). Recall that for a fixed p > 1, the function G is given by

G(u, x) = up−1ψ′(0+)W (x)− Ex(gp−1) for all (u, x) ∈ E. Then as a consequence of Lemma

4.2.3 we have the following behaviour. For all x ∈ R, the function u 7→ G(u, x) is non-

decreasing. In particular when x < 0, u 7→ G(u, x) = −Ex(gp−1) is a strictly negative

constant. For fixed u ≥ 0, x 7→ G(u, x) is a non-decreasing right-continuous function which is

continuous everywhere apart from possibly at x = 0 (since W is discontinuous at zero when
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X is of finite variation) such that for all u ≥ 0,

lim
x→−∞

G(u, x) = −∞ and lim
x→∞

G(u, x) = up−1 ≥ 0,

where we used that limx→∞ Ex(gp−1) = 0 (see Lemma 4.2.3) and limx→∞ ψ(0+)W (x) =

limx→∞ Px(τ−0 = ∞) = limx→∞ P(−X∞ < x) = 1, where X∞ = inft≥0Xt. Moreover, we

have that limu→∞G(u, x) = ∞ and G(0, x) = −Ex(gp−1) < 0 for all x ≥ 0. We then define

the function

h(u) = inf{x ∈ R : G(u, x) ≥ 0}. (4.16)

From the description of G above we have that h is a non-negative and non-increasing function

such that h(u) < ∞ for all u ∈ (0,∞), h(0) = ∞ and limu→∞ h(u) = 0. Moreover, since W

is strictly increasing on (0,∞), the function

T (x) =
Ex(gp−1)

ψ′(0+)W (x)

is continuous and strictly decreasing on [0,∞). Then there exists an inverse function T−1

which is continuous and strictly decreasing on (0, u∗h] with

u∗h :=
E(gp−1)

ψ′(0+)W (0)
, (4.17)

where we understand 1/0 =∞ when X is of infinite variation. Hence we can write

h(u) =

 T−1(up−1) u < (u∗h)
1
p−1

0 u ≥ (u∗h)
1
p−1

.

Therefore, since T−1(u∗h−) = 0, we conclude that h is a continuous function on [0,∞). From

the definition of h we clearly have that G(u, x) ≥ 0 if and only if x ≥ h(u).

The latter facts about give us some intuition about the optimal stopping rule for the

optimal stopping problem (4.14). Since we are dealing with a minimisation problem, before
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stopping we want the process (U,X) to be in the set in which G is negative as much as

possible. Then the fact that G(Ut, Xt) is strictly negative when Xt < h(Ut) suggests that it

is never optimal to stop on this region. When Xt > h(Ut) we have that G(Ut, Xt) ≥ 0 but

with strictly positive probability (U,X) can enter the set in which G is negative. Moreover,

t 7→ Ut is strictly increasing when X is in the positive half line and then t 7→ h(Ut) gets

closer to zero when the current excursion away from (−∞, 0] is sufficiently large and then

G(Ut, Xt) ≥ 0 even when Xt is relatively close to zero. That implies that it is optimal to

stop when the current excursion away from (−∞, 0] is large and X takes a sufficiently large

values. That suggest the existence of a non-negative curve b ≥ h such that it is optimal to

stop when X crosses above b(Ut). We will formally show in the next Lemmas the existence

of such boundary.

Note that if there exists a stopping time τ for which the expectation of the right hand side

of (4.14) is minus infinity then V would also be minus infinity. The next Lemma provides

the finiteness of a lower bound of V that will ensure that V only takes finite values, its proof

is included in the Appendix.

Lemma 4.4.1. Let p > 1 and X be a spectrally negative Lévy process drifting to infinity.

Assume that
∫

(−∞,−1) |x|
p+1Π(dx) <∞. Then

0 ≤ Ex
(∫ ∞

0
EXs(gp−1)ds

)
<∞ for all x ∈ R.

We now prove the finiteness of the function V .

Lemma 4.4.2. Let p > 1. For every (u, x) ∈ E we have that V (u, x) ∈ (−∞, 0]. In particular

V (u, x) < 0 for (u, x) ∈ B := {(u, x) ∈ E : x < h(u)}, where h is defined in (4.16).

Proof. Taking the stopping time τ = 0 we deduce that for all (u, x) ∈ E, V (u, x) ≤ 0. In

order to check that V (u, x) > −∞ we use that G(u, x) ≥ −Ex(gp−1) to get

V (u, x) = inf
τ∈T

Eu,x
[∫ τ

0
G(Us, Xs)ds

]
≥ − sup

τ∈T
Ex
[∫ τ

0
EXs(gp−1)ds

]
,
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for all (u, x) ∈ E. Hence by Lemma 4.4.1 we have that

V (u, x) ≥ −Ex
[∫ ∞

0
EXs(gp−1)ds

]
> −∞, (u, x) ∈ E. (4.18)

Now we prove that V (u, x) < 0 when (u, x) ∈ B. Since h is continuous we have that B is an

open set. Morever, from the definition of h we have that if (u, x) ∈ B then G(u, x) < 0. Take

(u, x) ∈ B and consider the stopping time

τB∗ := inf{t ≥ 0 : (Ut, Xt) ∈ E \B}.

Note that under the measure Pu,x, τB∗ > 0. Then for all s < τB∗ , (Us, Xs) ∈ B which implies

that G(Us, Xs) < 0. Hence, by the definition of V , we have that

V (u, x) ≤ Eu,x
[∫ τB∗

0
G(Us, Xs)ds

]
< 0.

Remark 4.4.3. Note that we have that h(0) = ∞ which implies that (0, 0) ∈ B and then,

from the Lemma above, V (0, 0) < 0. Moreover, from Lemma 4.3.1 we have that pV (0, 0) +

E(gp−1) = V∗ ≥ 0 which implies that

−E(gp−1)

p
≤ V (0, 0) < 0.

Now we prove some basic properties of V .

Lemma 4.4.4. Let p > 1. We have the following monotonicity property of V . For all

(u, x), (v, y) ∈ E such that u ≤ v and x ≤ y we have that V (u, x) ≤ V (v, y).

Proof. From equation (4.15) we have that

V (u, x) = inf
τ∈T

Ex
(∫ τ

0

{
G(u+ s,Xs)I{σ−0 >s} +G(Us, Xs)I{σ−0 ≤s}

}
ds

)
= inf

τ∈T
E
(∫ τ

0

{
G(u+ s,Xs + x)I{σ−−x>s} +G(U (−x)

s , Xs + x)I{σ−−x≤s}
}

ds

)
,

where σ−−x = inf{t ≥ 0 : Xt ≤ −x} and U
(−x)
s = s− sup{t ≥ 0 : Xt ≤ −x}. Recall that for all

s ≥ 0, x 7→ U
(−x)
s and x 7→ σ−−x are non-decreasing and that the function G is non-decreasing
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in each argument. Define the function

G∗(u, x) := G(u+ s,Xs + x)I{σ−−x>s} +G(U (−x)
s , Xs + x)I{σ−−x≤s}.

We show by cases that the function G∗ is non-decreasing in each argument. Take x ≤ y and

0 ≤ u ≤ v. First we suppose that ω ∈ {σ−−x > s} ⊂ {σ−−y > s}. Since G is non-decreasing in

each argument we then have

G∗(u, x)(ω) = G(u+ s,Xs(ω) + x) ≤ G(v + s,Xs(ω) + y) = G∗(v, y)(ω).

Similarly, if ω ∈ {σ−−x ≤ s} ∩ {σ−−y ≤ s} we have that

G∗(u, x)(ω) = G(U (−x)
s (ω), Xs(ω) + x) ≤ G(U (−y)

s (ω), Xs(ω) + y) = G∗(v, y)(ω).

Lastly, take ω ∈ {σ−−x ≤ s}∩{σ−−y > s}. Then using the fact that U
(−x)
s = s−g(−x)

s ≤ s ≤ v+s

and the monotonicity of G we get

G∗(u, x)(ω) = G(U (−x)
s (ω), Xs(ω) + x) ≤ G(v + s,Xs(ω) + y) = G∗(v, y)(ω).

All this together implies that the function G∗(u, x) is non-decreasing in each argument for

all u ≥ 0 and x ∈ R, in particular for all (u, x) ∈ E and hence the claim on V holds.

In the next Lemma we give an expression for V (0, x) when x < 0 in terms of V (0, 0) and

we use it to give a lower bound for V .

Lemma 4.4.5. Let p > 1. For any x ≤ 0 we have that

V (0, x) = Ex

(∫ τ+
0

0
G(0, Xs)ds

)
+ V (0, 0) = −

∫ −x
0

∫
[0,∞)

E−u−z(gp−1)W (du)dz + V (0, 0).

(4.19)

Moreover, for all (u, x) ∈ E we have that there exist non-negative constants A′p−1 and C ′p−1

such that

V (u, x) ≥ −A′p−1 − C ′p−1|x|p + V (0, 0). (4.20)
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Proof. Let x < 0 and take τ ∈ T . Then we have that

V (0, x) ≤ Ex

(∫ τ◦θ
τ+
0

+τ+
0

0
G(0, Xs)ds

)

= Ex

(∫ τ+
0

0
G(0, Xs)ds+

∫ τ◦θ
τ+
0

0
G(Us+τ+

0
, Xs+τ+

0
)ds

)

= Ex

(∫ τ+
0

0
G(0, Xs)ds

)
+ E

(∫ τ

0
G(Us, Xs)ds

)
,

where θt is the shift operator and the last equality follows from the strong Markov property

at time τ+
0 . Taking infimum over all τ ∈ T we get that,

V (0, x) ≤ Ex

(∫ τ+
0

0
G(0, Xs)ds

)
+ V (0, 0).

Similarly, by the strong Markov property we have that for any τ ∈ T and for any x < 0,

Ex
(∫ τ

0
G(0, Xs)ds

)
= Ex

(∫ τ∧τ+
0

0
G(0, Xs)ds+ I{τ+

0 <τ}

∫ τ

τ+
0

G(Us, Xs)ds

)

= Ex

(∫ τ∧τ+
0

0
G(0, Xs)ds

)
+ Ex

(
I{τ+

0 <τ}
E
(∫ τ

0
G(Us, Xs)ds

))

≥ Ex

(∫ τ∧τ+
0

0
G(0, Xs)ds

)
+ Ex

(
I{τ+

0 <τ}
V (0, 0)

)
≥ Ex

(∫ τ+
0

0
G(0, Xs)ds

)
+ V (0, 0),

where the second last equality follows from the definition of V and the last follows since

G(0, x) ≤ 0 for all x ≤ 0 and V (0, 0) ≤ 0 and hence the infimum is attained for any τ ≥ τ+
0 .

Taking infimum over all stopping times in the equation above we conclude that

V (0, x) = Ex

(∫ τ+
0

0
G(0, Xs)ds

)
+ V (0, 0).
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Using the fact that G(0, x) = −Ex(gp−1) for all x < 0 and Fubini’s theorem we get that

V (0, x) = −Ex

(∫ τ+
0

0
EXs(gp−1)ds

)
+ V (0, 0)

= −
∫

(−∞,0)
Ez(gp−1)

∫ ∞
0

Px(Xs ∈ dz, s < τ+
0 )ds+ V (0, 0)

Using the 0-potential measure of X killed on exiting the interval (−∞, 0] (see equation (1.20))

and Fubini’s theorem we obtain that

V (0, x) = −
∫ ∞

0
E−z(gp−1)[W (z)−W (x+ z)]dz + V (0, 0)

= −
∫ ∞

0
E−z(gp−1)

∫
(x+z,z]

W (du)dz + V (0, 0)

= −
∫

[0,∞)
W (du)

∫ u−x

u
E−z(gp−1)dz + V (0, 0)

= −
∫ −x

0

∫
[0,∞)

E−u−z(gp−1)W (du)dz + V (0, 0).

From equation (4.19) and the fact that x 7→ Ex(gp−1) is is non-increasing and bounded from

above by a polynomial (see Lemmas 4.2.2 and 4.2.3) we have the inequalities for x < 0,

V (0, x) ≥ x
∫

[0,∞]
Ex−u(gp−1)W (du) + V (0, 0)

≥ 1

ψ′(0+)
2p−1[E(gp−1) +Ap−1]x+

1

ψ′(0+)
2p−1Cp−1xE(|x+X∞|p−1) + V (0, 0)

≥ 1

ψ′(0+)
2p−1[E(gp−1) +Ap−1 + 2p−1Cp−1E((−X∞)p−1)]x

− 1

ψ′(0+)
2p−1Cp−1|x|p + V (0, 0).

Hence (4.20) follows for x < 0. The general statement holds since V is non-decreasing in

each argument.

Define the set D := {(u, x) ∈ E : V (u, x) = 0}. From Lemma 4.4.2 we know that

V (u, x) < 0 for all (u, x) ∈ E such that x < h(u). Hence if (u, x) ∈ D we have that

x ≥ h(u) ≥ 0. We then define the function b : (0,∞) 7→ R by

b(u) = inf{x > 0 : V (u, x) = 0},
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where inf ∅ = ∞ and inf(0,∞) = 0. Then it directly follows that b(u) ≥ h(u) ≥ 0 for all

u > 0. Moreover, since h(0) = ∞ we have that limu↓0 b(u) = ∞. Furthermore, since V is

monotone in each argument we deduce that u 7→ b(u) is non-increasing and V (u, x) = 0 for

all x > b(u). We then have the following Lemma.

Lemma 4.4.6. The function b : R+ 7→ R is non-increasing with 0 ≤ h(u) ≤ b(u). We have

that limu↓0 b(u) =∞ and b(u) <∞ for all u > 0.

Proof. We show that for each u > 0, b(u) <∞. Fix u > 0 and take x > y > 0. By using the

strong Markov property and the definition of V we have that

V (u, x) = inf
τ∈T

Eu,x
(∫ τ

0
G(Us, Xs)ds

)
= inf

τ∈T
Eu,x

(∫ τ∧σ−y

0
G(Us, Xs)ds+ I{σ−y <τ}Eu,x

(∫ τ

σ−y

G(Us, Xs)ds

∣∣∣∣Fσ−y
))

= inf
τ∈T

Eu,x

(∫ τ∧σ−y

0
G(Us, Xs)ds+ I{σ−y <τ}EUσ−y ,Xσ−y

(∫ τ

0
G(Us, Xs)ds

))

≥ inf
τ∈T

Eu,x

(∫ τ∧σ−y

0
G(u+ s,Xs)ds+ I{σ−y <τ}V (Uσ−y , Xσ−y

)

)

≥ inf
τ∈T

Ex

(∫ τ∧σ−y

0
G(u+ s,Xs)ds+ I{σ−y <τ}V (0, 0) + I{σ−y <τ,Xσ−y <0}V (0, Xσ−y

)

)
,

where the last inequality follows since V is non-positive and non decreasing. By the compen-

sation formula for Poisson random measures (see (1.25)) we have that for any stopping time

τ (we assume without loss of generality that τ <∞ a.s.),

Ex
(
I{σ−y <τ,Xσ−y <0}V (0, Xσ−y

)

)
= Ex

(∫ ∞
0

∫
(−∞,0)

V (0, Xs− + z)I{Xs−+z<0}I{s<τ∧σ−y }N(ds, dz)

)

= Ex

(∫ τ∧σ−y

0

∫
(−∞,0)

V (0, Xs + z)I{Xs+z<0}Π(dz)ds)

)
.

Hence, from the equation above, since G and V are non-decreasing in each argument, V ≤ 0

and Xs ≥ y for all s ≥ σ−y we have that

0 ≥ V (u, x) ≥ inf
τ∈T

Ex

(
(τ ∧ σ−y )

[
G(u, y) +

∫
(−∞,−y)

V (0, z)Π(dz)

]
+ I{σ−y <τ}V (0, 0)

)
.
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Note that from equation (4.20) and Lemma 4.2.1 the integral with respect to Π(dz) above is

finite so we can take y sufficiently large such that a := G(u, y) +
∫

(−∞,−y) V (0, z)Π(dz) ≥ 0.

Then from Lemma 4.2.4 we have that (since V (0, 0) ≤ 0 and −X drifts to −∞) there

exists a value x0(u) < 0 such that the right hand side of the equation above vanishes for all

y − x ≤ x0(u). Hence, we have that V (u, x) = 0 for all x ≥ y − x0(u) and then b(u) <∞.

Let (u, x) ∈ E. We define, under the measure Pu,x, the stopping times

τD = inf{t ≥ 0 : (Ut, Xt) ∈ D} = inf{t ≥ 0 : Xt ≥ b(Ut)},

τv,yb = inf{t > 0 : Xt + y ≥ b(v + t)} v ≥ 0 and y ∈ R, (4.21)

and for any x ∈ R, under the measure Px, the stopping time

τ g,yb = inf{t > 0 : Xt + y ≥ b(U (−y)
t )} y ∈ R. (4.22)

Note that for any y ∈ R and v ≥ 0, the stopping time τv,yb does not depend on the process

U and hence for any measurable function f , we have that Eu,x(f(τv,yb )) = Ex(f(τv,yb )). The

following lemma allows to write the stopping time τD in terms of the measure Px.

Lemma 4.4.7. For any (u, x) ∈ E and any measurable function f we have that

Eu,x(f(τD)) = Ex(f(τu,0b )I{τu,0b ≤σ
−
0 }

) + Ex(f(τ g,0b )I{τu,0b >σ−0 }
).

Proof. We have that

Eu,x(f(τD)) = Eu,x(f(τD)I{τu,0b ≤σ
−
0 }

) + Eu,x(f(τD)I{τu,0b >σ−0 }
).

Recall that under the measure Pu,x, for any u, x > 0, we have that if s < σ−0 , then Us = u+s.

Hence, under the measure Pu,x,

τD = inf{t ≥ 0 : Xt ≥ b(Ut)}

= inf{0 ≤ t ≤ σ−0 : Xt ≥ b(Ut)} ∧ inf{t ≥ σ−0 : Xt ≥ b(Ut)}

= τu,0b ∧ inf{t ≥ σ−0 : Xt ≥ b(Ut)}.
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That implies that

Eu,x(f(τD)I{τu,0b ≤σ
−
0 }

) = Ex(f(τu,0b )I{τu,0b ≤σ
−
0 }

)

and

Eu,x(f(τD)I{τu,0b >σ−0 }
) = Eu,x(f(inf{t ≥ σ−0 : Xt ≥ b(Ut)})I{τu,0b >σ−0 }

)

= Ex(f(inf{t ≥ σ−0 : Xt ≥ b(Ut)})I{τu,0b >σ−0 }
)

= Ex(f(τ g,0b )I{τu,0b >σ−0 }
),

where in the last equality we used that under the measure Px, τu,0b ≤ τ g,0b and then {0 ≤ t ≤

σ−0 : Xt ≥ b(Ut)} = ∅ on the event {τu,0b > σ−0 }. The result holds.

Now we introduce a series of technical lemmas in order to show that the stopping time

τD is optimal for V , their proof can be found in the Appendix 4.6. We first show that τD has

moments of order p.

Lemma 4.4.8. Let p > 1 and assume that
∫

(−∞,0) |x|
p+1Π(dx). Then for all (u, x) ∈ E,

Eu,x((τD)p) <∞.

The next lemma contains a technical result related to convergence involving the stopping

time σ−x .

Lemma 4.4.9. Let X be any spectrally negative. Then for any x < 0 we have that

lim
h→0

σ−x+h = σ−x a.s. and lim
h→0

Xσ−x+h
= Xσ−x

a.s.

We show that the dynamic programming principle is satisfied for the stopping time σ−0 .

That is, we give an alternative expression for V .

Lemma 4.4.10. For all (u, x) ∈ E, we have that

V (u, x) = inf
τ∈T ′

Eu,x

(∫ τ∧σ−0

0
G(Us, Xs)ds+ I{σ−0 <τ}V (0, Xσ−0

)

)
,

where T ′ is the family of finite stopping times of X.
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Now we are ready to show (using the general theory of optimal stopping) that τD is an

optimal stopping time for (4.14) in terms of the set D.

Lemma 4.4.11. For any p > 1 assume that
∫

(−∞,0) |x|
p+1Π(dx). Then we have that an

optimal stopping time for (4.14) is given by τD, the first entrance of (U,X) to the closed set

D, i.e.

τD = inf{t ≥ 0 : (Ut, Xt) ∈ D}.

Then the function V takes the form

V (u, x) = Eu,x
(∫ τD

0
G(Us, Xs)ds

)
, (u, x) ∈ E.

Proof. Note that it follows from Lemma 4.4.8 that Pu,x(τD < ∞) = 1 for all (u, x) ∈ E.

Moreover, from the strong Markov property and the definition of V we obtain that

V (u, x) = inf
τ∈T

Eu,x
(∫ τ

0
G(Us, Xs)ds

)
= inf

τ∈T
Eu,x

(∫ τ∧τD

0
G(Us, Xs)ds+ I{τD<τ}

∫ τ

τD

G(Us, Xs)ds

)
≥ inf

τ∈T
Eu,x

(∫ τ∧τD

0
G(Us, Xs)ds+ I{τD<τ}V (UτD , XτD)

)
= inf

τ∈T
Eu,x

(∫ τ∧τD

0
G(Us, Xs)ds

)
,

where in the last equality we used that V (u, x) = 0 on D. On the other hand we have that

V (u, x) ≤ inf
τ∈T

Eu,x
(∫ τ∧τD

0
G(Us, Xs)ds

)
,

since the inequality follows since the infimum of the right hand side is taken over all the

stopping times τ ≤ τD. Hence, we conclude that for any (u, x) ∈ E that

V (u, x) = inf
τ∈T

Eu,x
(∫ τ∧τD

0
G(Us, Xs)ds

)
.

Since W (x) ≤ 1/ψ′(0+) for all x ∈ R we have that |G(u, x)| ≤ up−1 + Ex(gp−1). Then for
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any (u, x) ∈ E we deduce that

Eu,x
[
sup
t≥0

∣∣∣∣∫ t∧τD

0
G(Us, Xs)

∣∣∣∣ ds] ≤ Eu,x
[∫ τD

0
[(Us)

p−1 + EXs(gp−1)ds

]
≤ Eu,x

(∫ τD

0
(u+ s)p−1ds

)
+ Eu,x

(∫ τD

0
EXs(gp−1)ds

)
≤ 2p−1[up−1 +

1

p
Eu,x[(τD)p]] + Ex

(∫ ∞
0

EXs(gp−1)ds

)
<∞,

where the last equality follows from Lemmas 4.4.1 and 4.4.8.

Next we show that the function V is upper semi-continuous. Note that from equation (4.19)

we have that V is continuous (and hence upper semi-continuous) on (−∞, 0]. Now we show

that V is upper semi-continuous on (0,∞)× (0,∞). From Lemma 4.4.10 we know that that

for any u > 0 and x > 0,

V (u, x) = inf
τ∈T

E

(∫ τ∧σ−−x

0
G(u+ s,Xs + x)ds+ I{σ−−x<τ}V (0, Xσ−−x

+ x)

)
.

Take any stopping time τ and u > 0 and x > 0, then by Fatou’s lemma we have that

lim sup
(v,y)→(u,x)

V (v, y) ≤ lim sup
(v,y)→(u,x)

E

(∫ τ∧σ−−y

0
G(v + s,Xs + y)ds+ I{σ−−y<τ}V (0, Xσ−−y

+ y)

)

= E

(∫ τ

0
lim sup

(v,y)→(u,x)
G(v + s,Xs + y)I{s<σ−−y}ds

+ lim sup
(v,y)→(u,x)

I{σ−−y<τ}V (0, Xσ−−y
+ y)

)

≤ E

(∫ τ∧σ−−x

0
G(u+ s,Xs + x)ds+ I{σ−−x<τ}V (0, Xσ−−x

+ x)

)
,

where in the last equality we used Lemma 4.4.9, the fact that the function s 7→ I{s<τ}
is a right continuous function, that I{σ−x <τ} ≤ I{σ−x ≤τ}, V is non-positive and the conti-

nuity of V (0, x) on the set (−∞, 0]. Since the above inequality holds for any stopping

time, we have that lim sup(v,y)→(u,x) V (v, y) ≤ V (u, x). Note that if X is of infinite vari-

ation (and hence limh↓0 σ
−
−h = τ−0 = 0 a.s.) the same method used above shows that

lim sup(v,y)↓(0,0) V (v, y) ≤ V (0, 0).
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If X is of finite variation we have that, τ−0 > 0 and P(Xτ−0
= 0) = 0 so we have (under

P) that for any s < τ−0 , Us = s. Hence, using an identical argument as the one used in the

proof of Lemma 4.4.10 we obtain that

V (0, 0) = inf
τ∈T

E

(∫ τ∧τ−0

0
G(s,Xs)ds+ I{τ−0 <τ}V (0, Xτ−0

)

)
.

Then for any stopping time τ ,

lim sup
(u,h)↓(0,0)

V (u, h) ≤ lim sup
(u,h)↓(0,0)

E

(∫ τ∧σ−−h

0
G(u+ s,Xs + h)ds+ I{σ−−h<τ}V (0, Xσ−−h

+ h)

)

≤ E

(∫ τ∧τ−0

0
G(s,Xs)ds+ I{τ−0 <τ}V (0, Xτ−0

)

)
.

Since the above equality is true for any stopping time τ we have that by the definition of

infimum that lim sup(u,h)↓(0,0) V (u, h) ≤ V (0, 0). Therefore the function V is upper semi-

continuous (hence D is a closed set) and from general results of optimal stopping (see Corol-

lary 2.9 in Peskir and Shiryaev (2006) or Section 1.2.3) we have that τD is an optimal stopping

time for V and the proof is complete.

Using the fact that τD is optimal, and following the ideas as in Lemma 4.4.7 we can then

give a representation of V in terms of the measure P and the stopping times τu,xb and τ g,xb

defined in (4.21) and (4.22), respectively.

V (u, x) = Eu,x
(∫ τD

0
G(Us, Xs)ds

)
= E

(∫ σ−−x∧τ
u,x
b

0
G(u+ s,Xs + x)ds+ I{σ−−x≤τu,xb }

∫ τg,xb

σ−−x

G(U (−x)
s , Xs + x)ds

)

= E

(∫ σ−−x∧τ
u,x
b

0
G(u+ s,Xs + x)ds+ I{σ−−x≤τu,xb }V (0, Xσ−−x

+ x)

)
. (4.23)

Note that in the last equation we do not longer have explicitly the process {U (−x)
t , t ≥ 0}.

So this alternative representation of V in terms of the original measure P will be useful to

prove further properties of b and V .

The next lemma describes the limit behaviour of the function b.
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Lemma 4.4.12. We have that

lim
u→∞

b(u) = 0.

Proof. Note that, since b is non-increasing and it is bounded from below by limu→∞ h(u) = 0,

the limit b∗ := limu→∞ b(u) exists and b∗ ≥ 0. We prove by contradiction that b∗ = 0.

Suppose b∗ > 0, define the stopping time

σ∗ = inf{t ≥ 0 : Xt /∈ (0, b∗)}.

Take u > 0 and x ∈ (0, b∗). From the fact that b(u) ≥ b∗ > 0 we have that σ∗ ≤ τD ∧ σ−0
under Pu,x. Then we have that

V (u, x) = Eu,x
(∫ τD

0
G(Us, Xs)ds

)
= Ex

(∫ σ∗

0
G(u+ s,Xs)ds

)
+ Eu,x (V (Uσ∗ , Xσ∗))

= Ex
(∫ σ∗

0
G(u+ s,Xs)ds

)
+ Ex

(
V (u+ σ∗, Xσ∗)I{Xσ∗>0}

)
+ Ex

(
V (0, Xσ∗)I{Xσ∗≤0}

)
, (4.24)

where in the last equality we used the Markov property of the two dimensional process

{(Ut, Xt), t ≥ 0}. For a fixed x ∈ R, the function u 7→ V (u, x) is non-decreasing and bounded

from above by zero, thus we have that limu→∞ V (u, x) exists and −∞ < limu→∞ V (u, x) ≤

0 for all x ∈ R. By the dominated convergence theorem we also conclude that −∞ <

limu→∞ Ex
(
V (u+ σ∗, Xσ∗)I{Xσ∗>0}

)
≤ 0. Moreover, using the general version of Fatou’s

lemma and the fact that limu→∞G(u, x) =∞ we have that

lim
u→∞

Ex
(∫ σ∗

0
G(u+ s,Xs)ds

)
=∞.

Therefore, taking u→∞ in (4.24) we get that
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lim
u→∞

V (u, x) =∞.

Which yields the desired contradiction. Therefore we conclude that b∗ = 0.

Now we prove right continuity of b. The proof follows an standard argument (see e.g.

du Toit et al. (2008)) but it is included for completeness. It turns out that b is continuous,

the proof of this fact makes use of a variational inequality and will be proved later.

Lemma 4.4.13. The function b is right-continuous.

Proof. Take u ≥ 0 and consider for any n ≥ 1, un = t+ 1/n. Note that since the function b

is non-increasing and bounded by below by zero, we have that the limit limn→∞ b(un) exists

and

0 ≤ lim
n→∞

b(un) ≤ b(u).

On the other hand, recall from Lemma 4.4.11 that the set D is closed. Since (un, b(un)) ∈ D

for all n ≥ 1, we have that (u, limn→∞ b(un)) ∈ D. Hence, from the definition of b(u) we have

that b(u) ≤ limn→∞ b(un). Therefore we have that for any u ≥ 0, limn→∞ b(u+ 1/n) = b(u)

and then b is right-continuous.

In order to prove continuity of the value function V we are in need of a technical result

regarding convergence of the stopping time τu,xb . The proof can be found in the Appendix

4.6.

Lemma 4.4.14. For any u ≥ 0 and x ∈ R we have that

lim
h→0

τu,x+h
b = τu,xb a.s.

Moreover, we have that

lim
(h1,h2)→(0,0)+

τu+h1,x+h2

b = τu,xb a.s.

for all u ≥ 0 and x ∈ R.
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Now we show the continuity of the value function V .

Lemma 4.4.15. The function V is continuous on E. Moreover, in the case that X is of

infinite variation we have that

lim
h↓0

V (u, h) = V (0, 0)

for all u > 0.

Proof. First, we show that the function u 7→ V (u, x) is continuous for all x > 0 fixed.

Take u1, u2 > 0 and x > 0, then since the stopping time τ∗(u1,x) := τu1,x
b I{τu1,x

b <σ−−x}
+

τ g,xb I{τu1,x
b ≥σ−−x}

is optimal for V (u1, x) (under P) we have that

V (θ)(u1, x) = E

(∫ σ−−x∧τ
u1,x
b

0
G(u1 + s,Xs + x)ds+ I{τu1,x

b ≥σ−−x}
V (0, Xσ−−x

+ x)

)

= Ex

(∫ σ−0 ∧τ
u1,0
b

0
G(u1 + s,Xs)ds+ I{τu1,0

b ≥σ−0 }
V (0, Xσ−0

)

)
.

On the other hand, from (4.15) we get

V (u2, x) ≤ E

(∫ τ∗
(u1,x)

0

{
G(u2 + s,Xs + x)I{σ−−x>s} +G(U (−x)

s , Xs + x)I{σ−−x≤s}
}

ds

)

= Ex

(
I{τu1,0

b <σ−0 }

∫ τ
u1,0
b

0

{
G(u2 + s,Xs)I{σ−0 >s} +G(Us, Xs)I{σ−0 ≤s}

}
ds

)

+ Ex

(
I{τu1,0

b ≥σ−0 }

∫ τg,0b

0

{
G(u2 + s,Xs)I{σ−0 >s} +G(Us, Xs)I{σ−0 ≤s}

}
ds

)

= Ex

(∫ τ
u1,0
b ∧σ−0

0
G(u2 + s,Xs)ds

)
+ Ex

(
I{τu1,0

b ≥σ−0 }

∫ τg,0b

σ−0

G(Us, Xs)ds

)

= Ex

(∫ τ
u1,0
b ∧σ−0

0
G(u2 + s,Xs)ds

)
+ Ex

(
I{τu1,0

b ≥σ−0 }
V (0, Xσ−0

)
)
,

where in the first equality we used the definition of τ∗(u1,x) given above, in the second equality

that τu1,0
b ≤ τ g,0b and the last equality follows from the strong Markov property applied at

time σ−0 and since for any x ≤ 0, the stopping time τ g,0b is optimal for V (0, x) (under Px).
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Hence, we have that for any x > 0 fixed and u1, u2 > 0,

|V (u2, x)− V (u1, x)| ≤ Ex

(∫ σ−0 ∧τ
u1,0
b

0
|G(u2 + s,Xs)−G(u1 + s,Xs)|ds

)

≤ Ex

(∫ τ+
b(u1)

0
|G(u2 + s,Xs)−G(u1 + s,Xs)|ds

)

≤ E

(∫ τ+
b(u1)

0
|(u2 + s)p−1 − (u1 + s)p−1|ds

)
=

1

p
|E((τ+

b(u1) + u2)p)− E((τ+
b(u1) + u1)p)− [up2 − u

p
1]|

where τ+
b(u1) = inf{t ≥ 0 : Xt > b(u1)}. Thus tending u2 7→ u1, with the dominated conver-

gence theorem and the fact that E((τ+
a + u)p) <∞ for all u, a ≥ 0 we get that u 7→ V (u, x)

is continuous uniformly over all x > 0.

Now we show that x 7→ V (u, x) is continuous. From equation (4.19) we easily deduce

that x 7→ V (0, x) is a continuous function on (−∞, 0]. Next, suppose that u > 0 and x > 0.

Recall from equation (4.23) that we can write

V (u, x) = E

(∫ σ−−x∧τ
u,x
b

0
G(u+ s,Xs + x)ds

)
+ E(V (0, Xσ−−x

+ x)I{σ−−x≤τu,xb }).

Note that for all s ≤ τu,xb ∧ σ−−x, it holds that 0 < Xs + x ≤ b(u+ s) ≤ b(u) and for all x ∈ R

(see equation (4.20)), V (0, Xσ−−x
+ x)I{σ−−x≤τu,xb } ≥ V (0, X∞ + x) ≥ −A′p−1 − C ′p−1|X∞ +

x|p + V (0, 0), where the latter expression is integrable from Lemma 4.2.1. Moreover, from

Lemmas 4.4.9 and 4.4.14 we know that for any x > 0 we have that limh→0 σ
−
x+h = σ−x a.s.

and limh→0 τ
u,x+h
b = τu,xb a.s. Then by the dominated convergence theorem and the fact

that V is continuous on (−∞, 0] and x 7→ G(u, x) is continuous on (0,∞) we conclude that

x 7→ V (u, x) is continuous on (0,∞) for all u > 0. Note that when X is of infinite variation,

limh↓0 σ
−
−h = τ−0 = 0 a.s. and the latter argument also tells us that for all u > 0,

lim
h↓0

V (u, h) = V (0, 0).
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Note that the limit above implies that lim(u,x)→(0,0)+ V (u, x) = V (0, 0) in the infinite variation

case. Then we proceed to prove that this also holds when X is of finite variation. In this

case we know that σ−0 = 0 and τ−0 > 0. Due to the strong Markov property,

V (0, 0) = E

(∫ τ0,0
b ∧τ

−
0

0
G(s,Xs)ds

)
+ E(I{τ−0 <τ0,0

b }
V (0, Xτ−0

)),

where τ0,0
b = inf{t > 0 : Xt ≥ b(s)}. Taking limits in (4.23) we have from the dominated

convergence theorem,

lim
(u,x)→(0,0)+

V (u, x) = lim
(u,x)→(0,0)+

E

(∫ σ−−x∧τ
u,x
b

0
G(u+ s,Xs + x)ds

)
+ lim

(u,x)→(0,0)+
E(V (0, Xσ−−x

+ x)I{σ−−x≤τu,xb })

= E

(∫ τ0,0
b ∧τ

−
0

0
G(s,Xs)ds

)
+ E(I{τ−0 <τ0,0

b }
V (0, Xτ−0

))

= V (0, 0),

where we used that limx↓0 σ
−
−x = τ−0 (see proof of Lemma 4.4.9) and lim(u,x)→(0,0)+ τ

u,x
b = τ0,0

b

a.s. (see Lemma 4.4.14). Therefore V is continuous on the set E.

We know from Lemma 4.4.15 that the function b is a right-continuous function. In order

to show left continuity we make use of a variational inequality that is satisfied by the value

function V . The oncoming paragraphs will be dedicated on introducing that.

It is well known that for every optimal stopping problem there is a free boundary problem

which is stated in terms of the infinitesimal generator (see e.g. Peskir and Shiryaev (2006)

Chapter III). In this particular case, provided that the value function is smooth enough, we

have that V solves the Dirichlet/Poisson problem. That is,

AU,X(V ) =
∂

∂u
Ṽ +AX(Ṽ ) = −G in E \D,

where AU,X and AX correspond to the infinitesimal generator of the process (U,X) and X,

respectively, given in (4.5) and (1.26) whereas Ṽ is the extension of V to the set R+×R given
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by

Ṽ (u, x) =


V (u, x) u > 0 and x > 0,

V (0, x) u ≥ 0 and x ≤ 0,

V (0, 0) u = 0 and x > 0.

(4.25)

However, in our setting turns out to be challenging to show that V is a C1,2 function.

Lamberton and Mikou (2008) showed that we can state an analogous (in)equality in the

sense of distributions (see in particular section 2 for its definition). The reader can also refer

to Appendix A for more details on how to define the infinitesimal generator of the process

(t,X) in the sense of the distributions. In particular, since V is continuous on E we have

that Ṽ is a locally integrable function in R+×R (note that Ṽ may be discontinuous at points

of the form (u, 0) for u > 0 when X is of finite variation) so we can define Ṽ as a distribution

in any open set O ⊂ R+ × R via

〈Ṽ , ϕ〉 =

∫
R+

∫
R
Ṽ (u, x)ϕ(u, x)dxdu

for any test function ϕ with compact support in O. Then the derivatives of the distribution

Ṽ are defined as

〈 ∂i+j

∂ui∂xj
Ṽ , ϕ〉 = (−1)i+j

∫
R+

∫
R
Ṽ (u, x)

∂i+j

∂ui∂xj
ϕ(u, x)dxdu.

Moreover, provided that the function (u, x) 7→
∫

(−∞,−1) Ṽ (u, x+y)Π(dy) is locally integrable

in R+ × R the operator BX , defined for any test function ϕ, with compact support in O, by

〈BX(Ṽ ), ϕ〉 =

∫
R+

∫
R
Ṽ (u, x)B∗X(ϕ)(u, x)dxdy,

defines a distribution on O (see Lemma A.4), where

B∗X(ϕ)(u, x) =

∫
(−∞,0)

[ϕ(u, x− y)− ϕ(u, x) + y
∂

∂x
ϕ(u, x)I{y>−1}]Π(dy).

We have the following Lemma that ensures that the integrability conditions for Ṽ are satisfied

so then BX(Ṽ ) is indeed a distribution.
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Lemma 4.4.16. The function

(u, x) 7→
∫

(−∞,−1)
Ṽ (u, x+ y)Π(dy)

is locally integrable in R+ × R.

Proof. First note that from equation (4.20) we have that for any x ≤ 0,

∫
(−∞,−1)

V (0, x+ y)Π(dy) ≥ −A′p−1Π(−∞,−1]− C ′p−1

∫
(−∞,−1)

|x+ y|pΠ(dy)

+ V (0, 0)Π(−∞,−1)

> −∞,

where we used the fact that Π(−∞,−1) < ∞ and Lemma 4.2.1. Moreover, since V is non-

decreasing in each argument we have that for any u > 0 and x > 0 that

∫
(−∞,−1)

Ṽ (u, x+ y)Π(dy) ≥
∫

(−∞,−1)
V (0, y)Π(dy) > −∞.

Hence we conclude that
∫

(−∞,−1) Ṽ (u, x+y)Π(dy) > −∞ for any (u, x) ∈ R+×R. Since V is

continuous on E and the definition of Ṽ we have that the mapping (u, x) 7→
∫

(−∞,−1) Ṽ (u, x+

y)Π(dy) is locally integrable.

Hence, we can define the operator AX in the sense of distributions by

AX(Ṽ ) = −µ ∂

∂x
Ṽ +

1

2
σ2 ∂

2

∂x2
Ṽ +BX(Ṽ ).

The next lemma is an extension of Proposition 2.5 in Lamberton and Mikou (2008).

Lemma 4.4.17. The distribution ∂
∂u Ṽ +AX(Ṽ )+G is a non-negative distribution on (0,∞)×

(0,∞). Moreover, we have ∂
∂u Ṽ +AX(Ṽ )+G = 0 on the set C+ := {(u, x) ∈ (0,∞)×(0,∞) :

0 < x < b(u)} and AX(V (0, ·)) +G(0, ·) = 0 on (−∞, 0) in the sense of distributions.

Proof. From the general theory of optimal stopping we have that (see Peskir and Shiryaev

(2006), Theorem 2.4 or Section 1.2.3) for every (u, x) ∈ E, the stochastic process {Zt, t ≥ 0}
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is a sub-martingale under the measure Pu,x, where

Zt = V (Ut, Xt) +

∫ t

0
G(Us, Xs)ds.

Moreover, we have that the stopped process {Zt∧τD , t ≥ 0} is a martingale under Pu,x for all

(u, x) ∈ E. Then from Doob’s stopping time theorem we have that for every (u, x) ∈ E, the

process {Zt∧σ−0 , t ≥ 0} is a sub-martingale and {Zt∧τD∧σ−0 , t ≥ 0} is a martingale under Pu,x.

From the fact that Ut = 0 if and only if Xt ≤ 0 we have that under Pu,x,

Zt∧σ−0
= V (Ut∧σ−0

, Xt∧σ−0
) +

∫ t∧σ−0

0
G(Us, Xs)ds

= V (u+ t,Xt)I{t<σ−0 } + V (0, Xσ−0
)I{σ−0 ≤t} +

∫ t∧σ−0

0
G(u+ s,Xs)ds

= Ṽ (u+ t,Xt)I{t<σ−0 } + Ṽ (u+ σ−0 , Xσ−0
)I{σ−0 ≤t} +

∫ t∧σ−0

0
G(u+ s,Xs)ds

= Ṽ (u+ t ∧ σ−0 , Xt∧σ−0
) +

∫ t∧σ−0

0
G(u+ s,Xs)ds

for every u > 0 and x > 0. Hence from Proposition A.6 we have that ∂
∂u Ṽ +AX(Ṽ ) + G is

a non-negative distribution on (0,∞) × (0,∞). Similarly, we have that for any u > 0 and

x > 0 such that x < b(u),

Zt∧σ−0 ∧τD
= Ṽ (u+ t ∧ σ−0 ∧ τD, Xt∧σ−0 ∧τD

) +

∫ t∧σ−0 ∧τD

0
G(u+ s,Xs)ds.

Therefore, we have that (from Proposition A.6) that ∂
∂u Ṽ + AX(Ṽ ) + G = 0 on C+ in the

sense of distributions. Lastly, since b is non-negative we have that τ+
0 ≤ τD. Hence, under

the measure P0,x, for any x < 0, we have that {Zt∧τ+
0
, t ≥ 0} is a martingale. Moreover, we

since Xt ≤ 0 for all t < τ+
0 we have that

Zt∧τ+
0

= V (0, Xt∧τ+
0

) +

∫ t∧τ+
0

0
G(0, Xs)ds.

Then from Proposition A.6 we have that AX(V (0, ·))+G(0, ·) = 0 in the sense of distributions

on the set (−∞, 0).

Remark 4.4.18. i) In Lamberton and Mikou (2008) the definition of the infinitesimal
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generator in the sense of distributions assumes that the value function is a bounded

Borel measurable function. In our setting such condition can be relaxed by the fact that

(u, x) 7→
∫

(−∞,−1) |Ṽ (u, x+ y)|Π(dy) is a locally integrable function on R+ × R.

ii) We note that similar as in (4.5) the infinitesimal generator of (U,X) can be defined as

AU,X(V ) := ∂/∂uṼ + AX(Ṽ ) in the sense of distributions, where AX corresponds to

the infinitesimal generator of X (seen as a distribution).

For the proof of left-continuity of b we define an auxiliary function. For (u, x) ∈ E,

Λ(u, x) :=


∫

(−∞,0) Ṽ (u, x+ y)Π(dy) +G(u, x) x > b(u)

0 x ≤ b(u).

The next lemma states some basic properties of the function Λ.

Lemma 4.4.19. The function Λ is a non-decreasing (in each argument) function such that

0 < Λ(u, x) < ∞ for all x > b(u). Moreover, is strictly increasing in each argument and

continuous in the interior of the set D. Furthermore, Λ = ∂
∂u Ṽ +AX(Ṽ ) +G on the interior

of D in the sense of distributions.

Proof. It follows from Lemma 4.4.16 and the fact that V vanishes in D that |Λ(u, x)| < ∞

for all (u, x) ∈ E. The fact that Λ is continuous on D follows from the continuity of V and

G, the dominated convergence theorem and the fact that Π has no atoms. Moreover, Λ is

strictly increasing in each argument on D since V is non-decreasing in each argument and G

is strictly increasing in each argument on D. Then we show that ∂/∂uṼ +AX(Ṽ ) +G = Λ

on in the interior of D. Let ϕ be a C∞ function with compact support on the interior of D.
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Since V vanishes on D (and then also Ṽ ), we have that

〈 ∂
∂u
Ṽ +AX(Ṽ ) +G,ϕ〉 =

∫ ∞
0

∫ b(u)

−∞
Ṽ (u, x)

∫
(−∞,0)

ϕ(u, x− y)Π(dy)dxdu

+

∫ ∞
0

∫ ∞
b(u)

G(u, x)ϕ(u, x)dxdu

=

∫ ∞
0

∫ ∞
b(u)

ϕ(u, x)

∫
(−∞,0)

Ṽ (u, x+ y)Π(dy)dxdu

+

∫ ∞
0

∫ ∞
b(u)

G(u, x)ϕ(u, x)dxdu

=

∫ ∞
0

∫ ∞
b(u)

Λ(u, x)ϕ(u, x)dxdu

= 〈Λ, ϕ〉

Then we have that ∂/∂uṼ +AX(Ṽ ) +G = Λ on in the interior of D.. Moreover from Lemma

4.4.17 and continuity of Λ we conclude that Λ(u, x) ≥ 0 for all (u, x) ∈ E. In particular is

strictly positive in the interior of D since it is strictly increasing in that set.

Now we are ready to show that the function b is continuous, the proof is based on the

ideas of Lamberton and Mikou (2008) (Theorem 4.2). We include the proof for completeness.

Lemma 4.4.20. The function b is continuous.

Proof. From Lemma 4.4.13 we already know that b is right continuous. We then show left

continuity of b. We proceed by contradiction. Suppose there is a point u∗ > 0 such that

b(u∗−) := limh↓0 b(u∗ − h) > b(u∗). Then since b is non-decreasing we have for all (u, x) ∈

(0, u∗) × (b(u∗), b(u∗−)) that V (u, x) < 0. Thus, (0, u∗) × (b(u∗), b(u∗−)) ⊂ C+. From

Lemma 4.4.17 we obtain that ∂
∂u Ṽ +AX(Ṽ ) +G = 0 in (0, u∗)× (b(u∗), b(u∗−)). Hence, for

any non-negative C∞ function ϕ with compact support in (0, u∗) × (b(u∗), b(u∗−)) we have

that

〈AX(Ṽ ) +G,ϕ〉 = −〈 ∂
∂u
Ṽ , ϕ〉

=

∫
R

∫
(0,∞)

Ṽ (u, x)
∂

∂u
ϕ(u, x)dudx

= −
∫
R

∫
(0,∞)

Ṽ (du, x)ϕ(u, x)dx

≤ 0,
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where we used the fact that for each x > 0, u 7→ Ṽ (u, x) = V (u, x) is non-decreasing. Hence,

we conclude that AX(Ṽ )+G is a non-positive distribution on (0, u∗)× (b(u∗), b(u∗−)). Thus,

by continuity of Ṽ = V and G on (0,∞) × (0,∞) we have that for any u ∈ (0, u∗) and any

non-negative test function ψ with compact support in (b(u∗), b(u∗−))

∫
R

{
Ṽ (u, x)

[
−µ ∂

∂x
ψ(x) +

1

2
σ2 ∂

2

∂x2
ψ(x) +B∗X(ψ)(x)

]
+G(u, x)ψ(x)

}
dx ≤ 0,

where B∗X(ψ)(x) =
∫

(−∞,0)(ψ(x − y) − ψ(x) + y d
dxψ(x)I{|y|≤1})Π(dy). Taking u ↑ u∗ in the

equation above, using the fact that Ṽ (u∗, x) = 0 for all x ≥ b(u∗) and since ψ has compact

support in (b(u∗), b(u∗−)) we get that

0 ≥ lim
u↑u∗

∫
R

{
Ṽ (u, x)

[
−µ ∂

∂x
ψ(x) +

1

2
σ2 ∂

2

∂x2
ψ(x) +B∗X(ψ)(x)

]
+G(u, x)ψ(x)

}
dx

=

∫ b(u∗)

−∞
Ṽ (u∗, x)

∫
(−∞,0)

ψ(x− y)Π(dy)dx+

∫ b(u∗−)

b(u∗)
G(u∗, x)ψ(x)dx

=

∫ b(u∗−)

b(u∗)
ψ(x)

∫
(−∞,0)

Ṽ (u∗, x+ y)Π(dy)dx+

∫ b(u∗−)

b(u∗)
G(u∗, x)ψ(x)dx

=

∫ b(u∗−)

b(u∗)
ψ(x)Λ(u∗, x)dx

> 0,

where the strict inequality follows from the fact that Λ is strictly positive in each argument

in D (see Lemma 4.4.19). Hence we have got a contradiction and b(u−) = b(u) for all u > 0.

Therefore b is a continuous function.

From Lemma 4.4.6 we know that b and h converge at the same limit when u tends to

infinity. Moreover, from the discussion about h after Lemma 4.2.3 we know that in case that

X is of finite variation there exists a value u∗h < ∞ for which h(u) = 0 for all u ≥ u∗h. That

suggests a similar behaviour for b, the next lemma addresses that conjecture.

Lemma 4.4.21. Denote as ub = inf{u > 0 : b(u) = 0}. If X is of infinite variation or finite

variation and infinite activity we have that ub = ∞. Otherwise ub = u∗, where u∗ is the

unique solution to

G(u, 0) +

∫
(−∞,0)

V (0, y)Π(dy) = 0. (4.26)
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Proof. From the fact that h(u) > 0 for all u > 0 when X is of infinite variation and inequality

b(u) ≥ h(u) we have that assertion is true for this case. Suppose that X has finite variation

with infinite activity, that is Π(−∞, 0) = ∞, and assume that ub < ∞. Then since b is

non-increasing we have that b(u) = 0 for all u > ub and then V (u, x) = 0 for all x > 0 and

u > ub. From Lemma 4.4.19 we have that

G(u, x) +

∫
(−∞,−x)

V (0, x+ y)Π(dy) ≥ 0 for all x > 0

for all u > ub. Taking x ↓ 0 in the equation above and using the expression for V (0, z) for

z < 0 given in (4.19) we have that for any u > ub,

0 ≤ G(u, 0)− lim
x↓0

∫
(−∞,0)

∫ −x+y

0

∫
[0,∞)

E−u−z(gp−1)W (du)dzΠ(dy) + lim
x↓0

V (0, 0)Π(−∞,−x)

= −∞

which is a contradiction and then ub = ∞. Now assume that X has finite variation with

Π(−∞, 0) < ∞. Assume that b(u∗) > 0, then V (u∗, x) < 0 for x ∈ (0, b(u∗)). Moreover,

since V ≤ 0 and using the compensation formula for Poisson random measures (see equation

(1.25)) we have that for all u > 0 and x < b(u),

Eu,x(V (0, Xτ−0
)I{τ−0 <τD})

= Eu,x

(∫
[0,∞)

∫
(−∞,0)

V (0, Xs− + y)I{Xs−>0}I{Xs−+y<0}I{Xr≤b(Ur) for all r<s}N(ds, dy)

)

= Eu,x

(∫ ∞
0

∫
(−∞,0)

V (0, Xs + y)I{Xs−>0}I{Xs+y<0}I{Xr≤b(Ur) for all r<s}Π(dy)ds

)

= Eu,x

(∫ τ−0 ∧τD

0

∫
(−∞,0)

V (0, Xs + y)I{Xs+y<0}Π(dy)ds

)
.
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Then from the Markov property we have that for all x < b(u∗)

V (u∗, x) = Eu∗,x

(∫ τD∧τ−0

0
G(u∗ + s,Xs)ds

)
+ Eu∗,x(V (0, Xτ−0

)I{τ−0 <τD})

= Eu∗,x

(∫ τD∧τ−0

0

[
G(u∗ + s,Xs) +

∫
(−∞,0)

V (0, Xs + y)I{Xs+y<0}Π(dy)

]
ds

)
> 0,

where the strict inequality follows from the fact that that X is of finite variation and then

τD ∧ τ−0 > 0, the definition of u∗ and the fact that G and V are non-decreasing in each

argument. Then we are contradicting the fact that V (u∗, x) < 0 and we conclude that

b(u∗) = 0 and ub ≤ u∗. Moreover, from Lemma 4.4.19 we know that for all u > ub

G(u, x) +

∫
(−∞,−x)

V (0, x+ y)Π(dy) ≥ 0 for all x > 0.

Taking x ↓ 0 we get that for all u ≥ ub, G(u, 0)+
∫

(−∞,0) V (0, y)Π(dy) ≥ 0. The latter implies

that u∗ ≤ ub (since u 7→ G(u, 0) is strictly increasing). Therefore we conclude that u∗ = ub

and the proof is complete.

As we mentioned before it is challenging to prove the existence of the derivatives of V .

However, it is possible to show that the derivatives of V at the boundary exist and are equal

to zero. Recall from Lemma 4.4.21 that when X is of infinite variation or finite variation

with infinite activity we have that b(u) > 0 for all u > 0. In the case that X is of finite

variation we have that b(u) > 0 only if u < ub where ub is the solution to (4.26). In such

cases we can guarantee that the derivatives of V exist at the boundary and are equal to zero

which is proven in the following Theorem. Since the proof is rather long and technical it can

be found in the Appendix.

Theorem 4.4.22. Suppose that u > 0 is such that b(u) > 0. Then the first partial derivatives

of V (u, x) exist at the point x = b(u) and

∂

∂x
V (u, b(u)) = 0 and

∂

∂u
V (u, b(u)) = 0.
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Recall from equation (4.19) that when x < 0,

V (0, x) = −
∫ −x

0

∫
[0,∞)

E−u−z(gp−1)W (du)dz + V (0, 0).

Note that the first term on the right-hand side of the equation above does not depend on

the boundary b. Then, for x < 0, the value function V (0, x) is characterised by the value

V (0, 0). Moreover, from Lemma 4.4.21 we know that when X is of finite variation with

Π(−∞, 0) <∞, the value ub is the unique solution to

G(u, 0)−
∫

(−∞,0)

∫ −y
0

∫
[0,∞)

E−u−z(gp−1)W (du)dzΠ(dy) + V (0, 0)Π(−∞, 0) = 0.

Otherwise, ub =∞. Then if X is of finite variation with finite activty, ub is also characterised

by the value V (0, 0), where we know from Remark 4.4.3 that

−E(gp−1)

p
≤ V (0, 0) < 0.

The next theorem gives a characterisation of the value function V on the set (0,∞) ×

(0,∞), the boundary b and the values V (0, 0) and ub as unique solutions of a system of non-

linear integral equations. The method of proof is deeply inspired on the ideas of du Toit et al.

(2008). However, the presence of jumps adds an important level of difficulty. In particular,

when Π 6= 0, the inequality

G(u, x) +

∫
(−∞,0)

Ṽ (u, x+ y)Π(dy) > 0

for all (u, x) ∈ D is a necessary condition for the process {V (Ut, Xt) +
∫ t

0 G(Us, Xs)ds, t ≥ 0}

to be a submartingale.

Theorem 4.4.23. Let p > 1 and X be a spectrally negative Lévy process drifting to infinity

such that
∫

(−∞,−1) |x|
p+1Π(dx) <∞. For all u > 0 and x > 0, the function V can be written
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as

V (u, x)

= V (0, 0)
σ2

2
W ′(x)

− Ex

(∫ τ−0

0

∫
(−∞,0)

V (u+ s,Xs + y)I{0<Xs+y<b(u+s)}Π(dy)I{Xs>b(u+s)}ds

)

+ Ex

(∫ τ−0

0

[
G(u+ s,Xs) +

∫
(−∞,0)

V (0, Xs + y)I{Xs+y<0}Π(dy)

]
I{Xs<b(u+s)}ds

)
,

(4.27)

the value V (0, 0) satisfies

V (0, 0) = − 1

ψ′(0+)

∫ ∞
0

E−z(gp−1)[1− ψ′(0+)W (z)]dz

+
1

ψ′(0+)
E
(∫ ∞

0
G(s,Xs)

Xs

s
I{0<Xs<b(s)}ds

)
− 1

ψ′(0+)
E

(∫ ∞
0

∫
(−∞,0)

V (s,Xs + y)I{0<Xs+y<b(s)}Π(dy)
Xs

s
I{Xs>b(s)}ds

)

− 1

ψ′(0+)
E

(∫ ∞
0

∫
(−∞,0)

V (0, Xs + y)I{Xs+y≤0}Π(dy)
Xs

s
I{Xs>b(s)}ds

)
, (4.28)

whilst the curve b satisfies the equation

0 = V (0, 0)
σ2

2
W ′(b(u))

− Eb(u)

(∫ τ−0

0

∫
(−∞,0)

V (u+ s,Xs + y)I{0<Xs+y<b(u+s)}Π(dy)I{Xs>b(u+s)}ds

)

+ Eb(u)

(∫ τ−0

0

[
G(u+ s,Xs) +

∫
(−∞,0)

V (0, Xs + y)I{Xs+y≤0}Π(dy)

]
I{Xs<b(u+s)}ds

)
(4.29)

for all u < ub, where for x ≤ 0, the function V (0, x) depends on V (0, 0) via (4.19). For

u ≥ ub we have b(u) = 0, where ub = ∞ in the case X is of infinite variation or finite

variation with Π(−∞, 0) =∞. Otherwise ub is the unique solution to

G(u, 0)−
∫

(−∞,0)

∫ −y
0

∫
[0,∞)

E−u−z(gp−1)W (du)dzΠ(dy) + V (0, 0)Π(−∞, 0) = 0. (4.30)
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Moreover, in the case that there is a Brownian motion component (i.e. σ > 0) we have that

(4.28) is equivalent to

∂

∂x
V+(0, 0) =

∂

∂x
V−(0, 0), (4.31)

where ∂
∂xV+(u, 0) and ∂

∂xV−(0, 0) are the right and left derivatives of x 7→ V (u, x) and

x 7→ V (0, x) at zero, respectively and ∂
∂xV+(0, 0) = limu↓0

∂
∂xV+(u, 0).

Furthermore, the quadruplet (V, b, V (0, 0), ub) is uniquely characterised by the equations

above, where V is considered in the class of non-positive continuous functions such that

∫
(−x−b(u),−x)

V (u, b(u) + x+ y)Π(dy)

+

∫
(−∞,−x−b(u)]

V (0, b(u) + x+ y)Π(dy) +G(u, x+ b(u)) ≥ 0 (4.32)

for all u < ub and x > 0 and b is considered in the class of non-increasing functions with

b ≥ h whereas −1
pE(gp) ≤ V (0, 0) < 0.

Since the proof of Theorem 4.4.23 is rather long we break it in a series of Lemmas. Next

subsection is entirely dedicated to that purpose.

4.4.1 Proof of Theorem 4.4.23

First, we show that the relevant quantities are integrable.

Lemma 4.4.24. We have that for all (u, x) ∈ E,

Eu,x
(∫ ∞

0
|G(Us, Xs)|I{Xs<b(Us)}ds

)
<∞, (4.33)

Eu,x

(∫ ∞
0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)I{Xs>b(Us)}

)
> −∞. (4.34)
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Moreover, we have that

lim
u,x→∞

Eu,x
(∫ ∞

0
G(Us, Xs)I{Xs<b(Us)}ds

)
= 0, (4.35)

lim
u,x→∞

Eu,x

(∫ ∞
0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)I{Xs>b(Us)}

)
= 0. (4.36)

Proof. Let (u, x) ∈ E, we first show that (4.33) is satisfied. Indeed, using that |G(u, x)| <

up−1 − Ex(gp−1) and that Us ≤ s we have that

Eu,x
(∫ ∞

0
|G(Us, Xs)|I{Xs<b(Us)}ds

)
≤ Eu,x

(∫ ∞
0

[Up−1
s + EXs(gp−1)]I{Xs<b(Us)}ds

)
≤ Eu,x

(∫ ∞
0

sp−1I{Xs<b(Us)}ds
)

+ Ex
(∫ ∞

0
EXs(gp−1)ds

)
.

From Lemma 4.4.1 we know that the second integral above is finite. Now we check that

the first integral above is also finite. Consider δ > 0 and consider g(b(δ)), the last time X is

below the level b(δ), then g(b(δ)) ≥ g and Xs+g(b(δ))+δ ≥ b(δ) for all s ≥ 0. Hence, since b is

non-increasing we get

Eu,x
(∫ ∞

0
sp−1I{Xs<b(Us)}ds

)
= Ex

(∫ g(b(δ))+δ

0
sp−1I{Xs<b(Us)}ds

)

≤ Ex((g(b(δ)) + δ)p) + Ex
(∫ ∞

0
EXs(gp−1)ds

)
<∞,

where the last expectation is finite by Lemma 4.2.1. Therefore we conclude that (4.33) holds.

Moreover, from the fact that x 7→ Ex(gp) is non increasing, the fact that limx→∞ Ex(gp) = 0
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(see Lemma 4.2.3) and the dominated convergence theorem that

lim
u,x→∞

∣∣∣∣Eu,x(∫ ∞
0

G(Us, Xs)I{Xs<b(Us)}ds
)∣∣∣∣

≤ lim
u,x→∞

Eu,x
(∫ ∞

0
|G(Us, Xs)|I{Xs<b(Us)}ds

)
≤ lim

x→∞
Ex((g(b(δ)) + δ)p) + lim

x→∞
Ex
(∫ ∞

0
EXs(gp−1)ds

)
= δp

for any δ > 0. Hence we conclude that

lim
u,x→∞

Eu,x
(∫ ∞

0
G(Us, Xs)I{Xs<b(Us)}ds

)
= 0.

Next we prove that (4.34) also holds. Since V is non-decreasing in each argument we

have that is enough to show that (4.34) holds for u = 0 and x ≤ 0. Let N > 0 any positive

number, then we have that

Ex

(∫ ∞
0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)I{Xs>b(Us)}ds

)

= Ex

(∫ ∞
0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)I{Us≤N}I{Xs>b(Us)}ds

)

+ Ex

(∫ ∞
0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)I{Us>N}I{Xs>b(N)}ds

)

+ Ex

(∫ ∞
0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)I{Us>N}I{b(N)≥Xs>b(Us)}ds

)
.

Hence, we next show that the three expectations above are finite. Using the fact that∫
(−∞,0) V (u, x + y)Π(dy) + G(u, x) ≥ 0 for all u > 0 and x > b(u) (see Lemma 4.4.19),
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that G(u, x) ≤ up−1 for all (u, x) ∈ E and that b is non increasing we get that

Ex

(∫ ∞
0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)I{Us≤N}I{Xs>b(Us)}ds

)

≥ −Ex
(∫ ∞

0
G(Us, Xs)I{Us≤N,Xs>b(Us)}ds

)
≥ −Np−1Ex

(∫ ∞
0

I{Us≤N}ds
)

≥ −Np−1[Ex(g) +N ]

> −∞,

where in the second last inequality we used the fact that Us > N for all s ≥ g + N . In a

similar way we have that

Ex

(∫ ∞
0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)I{Us>N}I{b(N)≥Xs>b(Us)}ds

)

≥ −E
(∫ ∞

0
sp−1I{Us>N}I{b(N)≥Xs>b(Us)}ds

)
= −E

(∫ g(b(N))

0
sp−1I{Us>N}I{b(N)≥Xs>b(Us)}ds

)
≥ −1

p
E((g(b(N)))p)

> −∞,

where we used that Us ≤ s and that g(b(N)) = sup{t ≥ 0 : Xt ≤ b(N)} has moments of

order p (see Lemma 4.2.1). Lastly, since V is non increasing in each argument and b is non

decreasing we have that by Fubini’s theorem that

Ex

(∫ ∞
0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)I{Us>N}I{Xs>b(N)}ds

)

≥ Ex

(∫ ∞
0

∫
(−∞,0)

Ṽ (N,Xs + y)Π(dy)I{Xs>b(N)}ds

)

=

∫
(b(N),∞)

∫
(−∞,0)

Ṽ (N, z + y)Π(dy)

∫ ∞
0

Px(Xs ∈ dz)ds

= Φ′(0)

∫ ∞
b(N)

∫
(−∞,0)

Ṽ (N, z + y)Π(dy)dz,
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where in the last equality we used a density of the 0-potential measure of X without killing

(see (1.21)) and the fact that W vanishes on (−∞, 0). From Fubini’s theorem and since V is

non-decreasing function in each argument that vanishes on D we obtain that

Ex

(∫ ∞
0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)I{Us>N}I{Xs>b(N)}ds

)

≥ Φ′(0)

∫ b(N)+1

b(N)

∫
(−∞,0)

Ṽ (N, z + y)Π(dy)dz + Φ′(0)

∫ ∞
b(N)+1

∫
(−∞,0)

Ṽ (N, z + y)Π(dy)dz

≥ Φ′(0)

∫
(−∞,0)

Ṽ (N, b(N) + y)Π(dy) + Φ′(0)

∫
(−∞,−1)

∫ b(N)−y

b(N)+1
Ṽ (N, z + y)dzΠ(dy)

≥ Φ′(0)

∫
(−∞,0)

Ṽ (N, b(N) + y)Π(dy)− Φ′(0)

∫
(−∞,−1)

(y + 1)Ṽ (0, y)Π(dy)

> −∞,

where the finiteness of the last integrals follow from Lemmas 4.2.1 and 4.4.19 and equation

(4.20). Moreover, from the dominated convergence theorem we have that

lim
u,x→∞

Eu,x

(∫ ∞
0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)I{Xs>b(Us)}

)

= lim
u,x→∞

E

(∫ ∞
0

∫
(−∞,0)

Ṽ (u+ s,Xs + x+ y)Π(dy)I{Xs+x>b(u+s)}I{s<σ−−x}

)

+ lim
x→∞

E

(∫ ∞
0

∫
(−∞,0)

Ṽ (U (−x)
s , Xs + x+ y)Π(dy)I{Xs+x>b(U(−x)

s )}I{s≥σ−−x}

)

≥ E

(∫ ∞
0

∫
(−∞,0)

lim
u,x→∞

Ṽ (u+ s,Xs + x+ y)Π(dy)I{Xs+x>b(u+s)}

)

+ E

(∫ ∞
0

∫
(−∞,0)

lim
x→∞

Ṽ (U (−x)
s , Xs + x+ y)Π(dy)I{Xs+x>b(U(−x)

s )}

)
.

Note that b is a decreasing function and then limu,x→∞ V (u, x) = 0 and limx→∞ V (u, x) = 0

for any u > 0. Moreover, for any s ≥ 0, x 7→ U
(−x)
s is increasing and bounded so then

limx→∞ U
(−x)
s exists. Then we have that

lim
u,x→∞

Eu,x

(∫ ∞
0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)I{Xs>b(Us)}

)
= 0

as claimed.
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Next, we show that V satisfies the alternative representation mentioned in the infinite

variation case.

Lemma 4.4.25. Suppose that X is of infinite variation. Then we have that V and b satisfy

equations (4.27) and (4.29).

Proof. We first prove that V satisfies equation (4.27) for the infinite variation case. Recall

that V is continuous on E and, in this case, (see Lemma 4.4.15) we have that for any

u > 0, limx↓0 V (u, x) = V (0, 0) implying that Ṽ is continuous on R+ × R. We follow an

analogous argument as Lamberton and Mikou (2013) (see Theorem 3.2). Let ρ be a positive

C∞ function with support in [0, 1] × [0, 1] and
∫∞

0

∫∞
0 ρ(v, y)dvdy = 1. For n ≥ 1, define

ρn(v, y) = n2ρ(nv, ny), then ρn is C∞ and has compact support in [0, 1/n] × [0, 1/n] and

Ṽn(u, x) := (Ṽ ∗ ρn)(u, x) =
∫∞

0

∫∞
0 Ṽ (u− v, x− y)ρn(v, y)dvdy is a C1,2(R+ × R) function.

Recall that since V is non-decreasing in each argument we have that 0 ≥ Ṽ (u, x) = V (u, x) ≥

V (0,−1) for all u > 0 and x > 0. Hence we have that for any u > 0 and x > 0,

∣∣∣∣ ∂i+j

∂ui∂xj
Ṽn(u, x)

∣∣∣∣ ≤ ∫ ∞
0

∫ ∞
0

∣∣∣Ṽ (u− v, x− y)
∣∣∣ ∣∣∣∣ ∂i+j

∂ui∂xj
ρn(v, y)

∣∣∣∣dvdy

≤ −V (0,−1)

∫ ∞
0

∫ ∞
0

∣∣∣∣ ∂i+j

∂ui∂xj
n2ρ(nv, ny)

∣∣∣∣ dvdy

= −V (0,−1)

∫ ∞
0

∫ ∞
0

∣∣∣∣ ∂i+j

∂ui∂xj
ρ(v, y)

∣∣∣∣dvdy

for any i, j = {0, 1, 2, . . .}. Moreover, we have that

∫
(−∞,−1)

Ṽn(u, x+ y)Π(dy) ≥
∫

(−∞,−1)
Ṽ (u− 1/n, x− 1/n+ y)Π(dy)

≥
∫

(−∞,−1)
V (0, y − 1)Π(dy)

> −∞

for all u > 0 and x > 0, where the last inequality follows from Lemma 4.4.16. Hence, we

conclude that the derivatives of Ṽn and the function (u, x) 7→
∫

(−∞,−1) Ṽn(u, x+ y)Π(dy) are

bounded in the set R+ × R. Furthermore, we that Ṽn ↑ Ṽ on R+ × R when n→∞. Indeed,

for any n ≥ 1 and (u, x) ∈ R+ × R we have that
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Ṽn(u, x) =

∫ ∞
0

∫ ∞
0

Ṽ (u− v, x− y)n2ρ(nv, ny)dvdy

=

∫ ∞
0

∫ ∞
0

Ṽ (u− v/n, x− y/n)ρ(v, y)dvdy

≤
∫ ∞

0

∫ ∞
0

Ṽ (u− v/(n+ 1), x− y/(n+ 1))ρ(v, y)dvdy

=

∫ ∞
0

∫ ∞
0

Ṽ (u− v, x− y)(n+ 1)2ρ((n+ 1)v, (n+ 1)y)dvdy

= Vn+1(u, x),

where in the inequality we used that v, y ≥ 0 and that V is non-decreasing in each argument.

The convergence of Ṽn to Ṽ in R+ × R follows from the inequality

|Ṽn(u, x)− Ṽ (u, x)| ≤
∫ ∞

0

∫ ∞
0
|Ṽ (u− v, x− y)− Ṽ (u, x)|ρn(v, y)dvdy

≤ sup
v,y∈[0,1/n]

|Ṽ (u− v, x− y)− Ṽ (u, x)|,

which is valid for any (u, x) ∈ R+×R, where we used the fact that the integral of ρn is equal

to 1. Taking n→∞ we obtain the desired convergence by using the fact that Ṽ is continuous

on R+ × R.

Next, we show (similar as in Lamberton and Mikou (2008), proof of Proposition 2.5) that

for all (u, x) ∈ [(1/n,∞)× (1/n,∞)] ∩ C+,

∂

∂u
Ṽn(u, x) +AX(Ṽn)(u, x) = −(G ∗ ρn)(u, x), (4.37)

where AX is the infinitesimal generator of the process X. Indeed, take ϕ a non-negative

C∞ function with compact support in [(1/n,∞) × (1/n,∞)] ∩ C+ then we have that the

function ϕ ∗ ρ̌n is C∞ and has compact support in C+, where ρ̌(v, y) = ρn(−v,−y) for all

(v, y) ∈ R× R. Hence, from Proposition A.5 we get that

〈 ∂
∂t
Ṽn +AX(Ṽn) +G ∗ ρn, ϕ〉 = 〈 ∂

∂t
Ṽ +AX(Ṽ ) +G,ϕ ∗ ρ̌n〉 = 0,

where the last equality follows from Lemma 4.4.17. Therefore we have that by integration
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by parts formula and Lemma A.4 that

∫
R+

∫
R

[
∂

∂t
Ṽn(u, x) +AX(Ṽn)(u, x) +G ∗ ρn(u, x)

]
ϕ(u, x)dxdu = 0

for any ϕ non-negative and C∞ function with compact support in [(1/n,∞)×(1/n,∞)]∩C+.

Therefore (4.37) follows by continuity. On the other hand, note that if (u, x) ∈ D we have

that V (u, x) = 0 and hence Ṽn(u, x) = 0 for n sufficiently large. Hence,

∂

∂u
Ṽn(u, x) +AX(Ṽn)(u, x) =

∫
(−∞,0)

Ṽn(u, x+ y)Π(dy).

Therefore, by the dominated convergence theorem we have that,

lim
n→∞

[
∂

∂u
Ṽn(u, x) +AX(Ṽn)(u, x)

]
=

∫
(−∞,0)

Ṽ (u, x+ y)Π(dy).

for any (u, x) ∈ D.

Next, let u > 0 and x > 0 fixed and take n > 0 and k > 0 such that u > 1/n > 0 and

x > k ≥ 1/n > 0. We apply Itô formula to Ṽn(u+ t ∧ τ−k−x, Xt∧τ−k−x
+ x) to get that

Ṽn(u+ t ∧ τ−k−x, Xt∧τ−k−x
+ x) = Ṽn(u, x) +Mt

+

∫ t∧τ−k−x

0

[
∂

∂u
Ṽn(u+ s,Xs + x) +AX(Ṽn)(u+ s,Xs + x)

]
ds,

where {Mt, t ≥ 0} is a zero mean martingale (see Lemma A.2). Taking expectations we get

that

Ex
(
Ṽn(u+ t ∧ τ−k , Xt∧τ−k

)
)

= Ṽn(u, x) + Ex

(∫ t∧τ−k

0

[
∂

∂u
Ṽn(u+ s,Xs) +AX(Ṽn)(u+ s,Xs)

]
ds

)

= Ṽn(u, x)− Ex

(∫ t∧τ−k

0
(G ∗ ρn)(u+ s,Xs)I{Xs<b(u+s)}ds

)

+ Ex

(∫ t∧τ−k

0

[
∂

∂u
Ṽn(u+ s,Xs) +AX(Ṽn)(u+ s,Xs)

]
I{Xs>b(u+s)}ds

)
,
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where we used the fact that b is finite for all u > 0 and that Px(Xs = b(u + s)) = 0 for all

s > 0 and x ∈ R when X is of infinite variation (see Sato (1999)). Note that, since Xt ≥ X∞
for all t > 0 and V is non-decreasing in each argument, we have that

0 ≥ Ex
(
Ṽn(u+ t ∧ τ−k , Xt∧τ−k

)
)
≥ −A′p−1 − C ′p−1Ex−1((−X∞)p) + V (0, 0) > −∞,

where the second inequality follows from equation (4.20) and the last quantity is finite by

Lemma 4.2.1. Therefore by the dominated convergence theorem we have that letting n, t→∞

and k ↓ 0,

Ex
(
Ṽ (u+ τ−0 , Xτ−0

)
)

= V (u, x)− Ex

(∫ τ−0

0
G(u+ s,Xs)I{Xs<b(u+s)}ds

)

+ Ex

(∫ τ−0

0

∫
(−∞,0)

Ṽ (u+ s,Xs + y)Π(dy)I{Xs>b(u+s)}ds

)
(4.38)

for all u > 0 and x > 0. Note that, since limu→∞ b(u) = 0, we have that limu,x→∞ Ṽ (u, x) =

V (u, x) = 0. Hence, since Ṽ (u, x) = V (0, x) for any u ≥ 0 and x ≤ 0 and X drifts to infinity

we get that

Ex
(
Ṽ (u+ τ−0 , Xτ−0

)
)

= Ex
(
V (0, Xτ−0

)I{τ−0 <∞}
)

= V (0, 0)Px(Xτ−0
= 0, τ−0 <∞) + Ex

(
V (0, Xτ−0

)I{X
τ−0
<0}

)
= V (0, 0)

σ2

2
W ′(x) + Ex

(∫ τ−0

0
V (0, Xs− + y)I{Xs−+y<0}N(ds, dy)

)

= V (0, 0)
σ2

2
W ′(x) + Ex

(∫ τ−0

0
V (0, Xs + y)I{Xs+y<0}dsΠ(dy)

)
,

where in the second last equality we used the probability of creeping given in (1.16) (note

that Φ(0) = 0 since X drifts to infinity) and in the last the compensation formula for Poisson

random measures (see equation (1.25)). Recall that for any u > 0 and x > 0,

∫
(−∞,0)

Ṽ (u, x+ y)Π(dy) =

∫
(−∞,0)

V (u, x+ y)I{x+y>0}Π(dy)

+

∫
(−∞,0)

V (0, x+ y)I{x+y≤0}Π(dy).
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Then from above and equation (4.38) we see that

V (u, x)

= Ex
(
Ṽ (u+ τ−0 , Xτ−0

)
)

+ Ex

(∫ τ−0

0
G(u+ s,Xs)I{Xs<b(u+s)}ds

)

− Ex

(∫ τ−0

0

∫
(−∞,0)

Ṽ (u+ x,Xs + y)Π(dy)I{Xs>b(u+s)}ds

)

= V (0, 0)
σ2

2
W ′(x) + Ex

(∫ τ−0

0
V (0, Xs + y)I{Xs+y<0}dsΠ(dy)

)

+ Ex

(∫ τ−0

0
G(u+ s,Xs)I{Xs<b(u+s)}ds

)

− Ex

(∫ τ−0

0

∫
(−∞,0)

V (u+ s,Xs + y)I{Xs+y>0}Π(dy)I{Xs>b(u+s)}ds

)

− Ex

(∫ τ−0

0

∫
(−∞,0)

V (0, Xs + y)I{Xs+y<0}Π(dy)I{Xs>b(u+s)}ds

)

= V (0, 0)
σ2

2
W ′(x)

− Ex

(∫ τ−0

0

∫
(−∞,0)

V (u+ s,Xs + y)I{0<Xs+y<b(u+s)}Π(dy)I{Xs>b(u+s)}ds

)

+ Ex

(∫ τ−0

0

[
G(u+ s,Xs) +

∫
(−∞,0)

V (0, Xs + y)I{Xs+y<0}Π(dy)

]
I{Xs<b(u+s)}ds

)
,

where in the last equality we used that V (u + s,Xs + y) = 0 when Xs + y ≥ b(u + s).

Moreover, we have that (4.29) follows directly from the equation above since V (u, b(u)) = 0

for all u > 0.

We define an auxiliary function. For all (u, x) ∈ E, we define

R(u, x) = Eu,x
(∫ ∞

0
G(Us, Xs)I{Xs<b(Us)}ds

)
− Eu,x

(∫ ∞
0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)I{Xs>b(Us)}ds

)
.

Note from Lemma 4.4.24 that R is well defined and

lim
u,x→∞

R(u, x) = 0.
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Lemma 4.4.26. For any (u, x) ∈ E we have that

V (u, x) = R(u, x)

= Eu,x
(∫ ∞

0
G(Us, Xs)I{Xs<b(Us)}ds

)
− Eu,x

(∫ ∞
0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)I{Xs>b(Us)}ds

)
. (4.39)

Proof. First, we assume that X is of infinite variation. Let (u, x) ∈ E, from the Markov

property applied to the stopping time τ+
0 , the fact that b is non-negative and equation (4.19)

we get that for all x < 0,

R(0, x) = Ex

(∫ τ+
0

0
G(0, Xs)ds

)
+R(0, 0) = V (0, x) +R(0, 0)− V (0, 0).

Similarly, using the Markov property at time τ−0 we get that for any u > 0 and x > 0 that

R(u, x) = Ex(R(0, Xτ−0
)I{τ−0 <∞}) + Ex

(∫ τ−0

0
G(u+ s,Xs)I{Xs<b(u+s)}ds

)

− Ex

(∫ τ−0

0

∫
(−∞,0)

Ṽ (u+ s,Xs + y)Π(dy)I{Xs>b(u+s)}ds

)
= V (u, x) + Ex([R(0, Xτ−0

)− V (0, Xτ−0
)]I{τ−0 <∞})

= V (u, x) + [R(0, 0)− V (0, 0)]Px(τ−0 <∞),

where the second equality follows from equation (4.38) and the last from the expression for

R(u, x) deduced above. Then applying the strong Markov property at time τD, the fact that

for any s < τD we have that Xs < b(Us) and the equation above we get that for u ≥ 0 and

x < b(u)

R(u, x) = Eu,x
(∫ τD

0
G(Us, Xs)ds

)
+ Eu,x(R(UτD , XτD))

= V (u, x) + Eu,x(R(UτD , XτD))

= V (u, x) + [R(0, 0)− V (0, 0)]Eu,x(PXτD (τ−0 <∞)),

where in the first equality we used that τD is optimal for V and in the last we used that V
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vanishes on D. Taking u = 0 and x = 0 we conclude that

0 = [R(0, 0)− V (0, 0)]E(PXτD (τ−0 =∞)).

Since b(u) > 0 for all u > 0 and Px(τ−0 = ∞) > 0 for all x > 0, the equation above implies

that R(0, 0) = V (0, 0) and then V (u, x) = R(u, x) in the infinite variation case. For the finite

variation case consider the sequence of stopping times,

τ
(1)
b = inf{t ≥ 0 : Xt ≥ b(Ut)}

and for k = 1, 2, . . .

σ
(k)
b = inf{t ≥ τ (k)

b : Xt < b(Ut)}

τ
(k+1)
b = inf{t ≥ σ(k)

b : Xt ≥ b(Ut)}.

Since X is of finite variation we have that τ
(k)
b < σ

(k)
b < τ

(k+1)
b for all k = 1, 2, . . .. Let u > 0

and x ≥ b(u), by the Markov property applied to time τ
(2)
b we get that

R(u, x) = −Eu,x

(∫ σ
(1)
b

0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)ds

)

+ Eu,x

(
I{σ(1)

b <∞}

∫ τ
(2)
b

σ
(1)
b

G(Us, Xs)ds

)
+ Eu,x(R(U

τ
(2)
b

, X
τ

(2)
b

)I{τ (2)
b <∞})

= −Eu,x

(∫ σ
(1)
b

0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)ds

)
+ Eu,x

(
I{σ(1)

b <∞}V (U
σ

(1)
b

, X
σ

(1)
b

)
)

+ Eu,x(R(U
τ

(2)
b

, X
τ

(2)
b

)I{τ (2)
b <∞})

= Eu,x(R(U
τ

(2)
b

, X
τ

(2)
b

)I{τ (2)
b <∞}),

where in the second inequality we used the Markov property at time σ
(1)
b , the definition

of V in terms of the stopping time τD and in the last equality we used the compensation

formula for Poisson random measures. Using an induction argument we can verify that for

all x ≥ b(u) and n ≥ 1,

R(u, x) = Eu,x(R(U
τ

(n)
b

, X
τ

(n)
b

)I{τ (n)
b <∞}).

169



Next, we show that for any (u, x) ∈ E, limn→∞ τ
(n)
b = ∞ Pu,x-a.s. First, note that since

b is a non-negative function we have that for all (u, x) ∈ D, under the measure Pu,x,

σ
(1)
b = inf{s ≥ τ (1)

b : Xs < b(Us)} = inf{s ≥ 0 : Xs < b(Us)} ≤ τ−0

Hence, we obtain that under the measure Pu,x, for any (u, x) ∈ D that

σ
(1)
b = inf{s ≥ 0 : Xs < b(u+ s)} ≥ inf{s ≥ 0 : Xs < b(u)} = τ−b(u)

Thus, for any n ≥ 2, conditioning at time τ
(n)
b and the strong Markov property and using

the fact that X creeps upwards we get that

Pu,x(σ
(n)
b <∞) = Pu,x(τ

(n)
b <∞, σ(n)

b <∞)

= Eu,x(I{τ (n)
b <∞}Pu,x(σ

(n)
b − τ (n)

b <∞|F
τ

(n)
b

)

= Ex(I{τ (n)
b <∞}PUτb(n),Xτ

b
(n)

(σ
(1)
b <∞))

≤ Ex(I{τ (n)
b <∞}f(Uτb(n))),

where f(u) = Pb(u)(τ
−
b(u) <∞) = P(τ−0 <∞). Therefore we have that for any n ≥ 2,

Pu,x(σ
(n)
b <∞) ≤ Pu,x(τ

(n)
b <∞)P(τ−0 <∞) ≤ Pu,x(σ

(n−1)
b <∞)P(τ−0 <∞),

where in the last inequality we used the fact that σ
(n−1)
b ≤ τ

(n)
b . Therefore, by an induction

argument we obtain that for any x ∈ R and n ≥ 1,

Pu,x(σ
(n)
b <∞) ≤

[
P(τ−0 <∞)

]n−1 Pu,x(σ
(1)
b <∞).

Since X is of finite variation and drifts to infinity we have that P(τ−0 < ∞) ∈ (0, 1). Then

we have that for any K > 0,

∞∑
n=1

Pu,x(σ
(n)
b < K) ≤

∞∑
n=1

Pu,x(σ
(n)
b <∞) ≤ Pu,x(σ

(1)
b <∞)

∞∑
n=1

[
P(τ−0 <∞)

]n−1
<∞.
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Hence, by the Borel–Cantelli Lemma we have that for all K > 0

Pu,x(lim sup
n→∞

{σ(n)
b < K}) = 0

which implies that limn→∞ σ
(n)
b = ∞, Pu,x-a.s. for all (u, x) ∈ E. Hence, by the domi-

nated convergence theorem, the fact that limu,x→∞R(u, x) = 0 (see (4.35) and (4.36)), that

limt→∞ Ut = t− gt ≥ limt→∞ t− g =∞ and that X drifts to infinity we get that

R(u, x) = lim
n→∞

Eu,x(R(U
τ

(n)
b

, X
τ

(n)
b

)I{τ (n)
b <∞}) = 0,

for all u > 0 and x ≥ b(u). Now take x < b(u), applying the strong Markov property and

using that τ
(1)
b is optimal for V we get that

R(u, x) = Eu,x

(∫ τ
(1)
b

0
G(Us, Xs)ds

)
+ Eu,x(R(U

τ
(1)
b

, X
τ

(1)
b

)) = V (u, x).

Hence, we conclude that for all (u, x) ∈ E,

V (u, x) = R(u, x).

Lemma 4.4.27. The quadruplet (V, b, V (0, 0), ub) satisfy equations (4.27)-(4.30) and equa-

tion (4.32).

Proof. We know from Lemma 4.4.25 that equations (4.27) and (4.29) hold in the infinite vari-

ation case. Then suppose that X is of finite variation. The strong Markov property applied

at time τ−0 in (4.39) imply that (4.38) also holds in the finite variation case. Then proceeding

as in Lemma 4.4.25 (see argument below equation (4.38)) we see that equations (4.27) and

(4.29) also hold in the finite variation case. Moreover, the assertions about ub and equation

(4.30) follow from Lemma 4.4.21, the lower bound for V (0, 0) follows from Remark 4.4.3 and

(4.32) holds due to Lemma 4.4.19.

We now proceed to show that (4.28) is satisfied for V (0, 0). Taking u = x = 0 in (4.39)
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and using Fubini’s theorem we have that

V (0, 0)

= E
(∫ ∞

0
G(Us, Xs)I{Xs<b(Us)}ds

)
− E

(∫ ∞
0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)I{Xs>b(Us)}ds

)

= E
(∫ ∞

0
G(0, Xs)I{Xs≤0}ds

)
+ E

(∫ ∞
0

G(Us, Xs)I{0<Xs<b(Us)}ds
)

− E

(∫ ∞
0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)I{Xs>b(Us)}ds

)

=

∫
(−∞,0]

G(0, z)

∫ ∞
0

P(Xs ∈ dz)ds+

∫
(0,∞)

∫
(0,b(u))

G(u, z)

∫ ∞
0

P(Us ∈ du,Xs ∈ dz)ds

−
∫

(0,∞)

∫
(b(u),∞)

∫
(−∞,0)

Ṽ (u, z + y)Π(dy)

∫ ∞
0

P(Us ∈ du,Xs ∈ dz)ds,

where in the second equality we used the fact that b is non-negative and that Us = 0 if and

only if Xs ≤ 0. From (1.21) we know that 0-potential measure without killing is given by

∫ ∞
0

P(Xs ∈ dz)ds =
1

ψ′(0+)
−W (−z) =

1

ψ′(0+)

[
1− ψ′(0+)W (−z)

]
for any z ≤ 0, where we used the Φ′(0+) = 1/ψ′(0+). Hence, since G(0, z) = −Ez(gp−1) for

any z < 0 and the formula for the 0-potential density of (U,X) (see equation (3.9)) we have

that

V (0, 0)

=

∫
(−∞,0]

G(0, z)

∫ ∞
0

P(Xs ∈ dz)ds+

∫
(0,∞)

∫
(0,b(u))

G(u, z)

∫ ∞
0

P(Us ∈ du,Xs ∈ dz)ds

−
∫

(0,∞)

∫
(b(u),∞)

∫
(−∞,0)

Ṽ (u, z + y)Π(dy)

∫ ∞
0

P(Us ∈ du,Xs ∈ dz)ds

= − 1

ψ′(0+)

∫ ∞
0

E−z(gp−1)[1− ψ′(0+)W (z)]dz +
1

ψ′(0+)

∫ ∞
0

∫
(0,b(s))

G(s, z)
z

s
P(Xs ∈ dz)ds

− 1

ψ′(0+)

∫ ∞
0

∫
(b(s),∞)

∫
(−∞,0)

Ṽ (s, z + y)Π(dy)
z

s
P(Xs ∈ dz)ds

= − 1

ψ′(0+)

∫ ∞
0

E−z(gp−1)[1− ψ′(0+)W (z)]dz

+
1

ψ′(0+)
E
(∫ ∞

0
G(s,Xs)

Xs

s
I{0<Xs<b(s)}ds

)
− 1

ψ′(0+)
E

(∫ ∞
0

∫
(−∞,0)

Ṽ (s,Xs + y)Π(dy)
Xs

s
I{Xs>b(s)}ds

)
.
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Then equation (4.28) holds by recalling that Ṽ (u, x) = V (u, x) when u > 0 and x > 0 and

Ṽ (u, x) = V (0, x) when x ≤ 0 for any u ≥ 0.

We finish the first part of the proof by showing that the derivative of V at (0, 0) exists

when there is a Brownian motion component.

Lemma 4.4.28. The function V satisfies equation (4.31) when σ > 0

Proof. Lastly we proceed to show that equation (4.31) holds when σ > 0. From equation

(4.39) and the dominated convergence theorem we obtain that

V (0, 0) = E
(∫ ∞

0
G(Us, Xs)I{Xs<b(Us)}ds

)
− E

(∫ ∞
0

∫
(−∞,0)

Ṽ (Us, Xs + y)Π(dy)I{Xs>b(Us)}ds

)

= lim
δ↓0

{
E
(∫ ∞

0
K1(Us + δ,Xs)ds

)
− E

(∫ ∞
0

K2(Us + δ,Xs)ds

)}
,

where K1(u, x) := G(u, x)I{x<b(u)} and K2(u, x) :=
∫

(−∞,0) Ṽ (u, x + y)Π(dy)I{x>b(u)} for all

(u, x) ∈ E. Note since b is non-increasing we have that u 7→ K2(u, x) is non-decreasing for all

x ∈ R and δ > 0 and |K1(u+ δ, x)| ≤ (u+ δ)p−1I{u<b(δ)} + Ex(gp−1). Hence, from equations

(4.33) and (4.34) and Theorem 3.2.6 applied to the functions K1 and K2 above we get that

V (0, 0) = lim
δ↓0

lim
ε↓0

Eε
(
I{τ−0 <∞}K

−(δ,Xτ−0
− ε)

)
+K+(δ, ε)

ψ′(0+)W (ε)
,

where for all δ > 0 and x ≤ 0,

K−(δ, x) = Ex

(∫ τ+
0

0
[K1(δ,Xr)−K2(δ,Xr)]dr

)

and for all δ, x > 0,

K+(δ, x) = Ex

(∫ τ−0

0
[K1(δ + s,Xr)−K2(δ + s,Xr)]dr

)
.

Using the fact that b is non-negative and W (x) = 0 for all x < 0 (and then G(δ, x) = G(0, x)
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for all x < 0) we have that for all x < 0

K−(δ, x) = Ex

(∫ τ+
0

0
G(δ,Xs)ds

)
= V (0, x)− V (0, 0),

where the last equality follows from the expression of V in terms of the stopping time τD.

Moreover for all δ > 0 and x > 0 we have that from equation (4.38) that

K+(δ, ε) = V (δ, ε)− Eε(V (0, Xτ−0
)I{τ−0 <∞}).

Hence, rearranging the terms and by dominated convergence theorem we have that

V (0, 0) = lim
δ↓0

lim
ε↓0

E(V (0, Xτ−−ε
)I{τ−−ε<∞})− E(V (0, Xτ−−ε

+ ε)I{τ−−ε<∞})

ψ′(0+)W (ε)

+ lim
δ↓0

lim
ε↓0

V (δ, ε)− V (0, 0)Pε(τ−0 <∞)

ψ′(0+)W (ε)

=
σ2

2ψ′(0+)

[
− ∂

∂x
V−(0, 0) +

∂

∂x
V+(0, 0)

]
+ V (0, 0),

where in the last equality we used that Pε(τ−0 < ∞) = 1− ψ′(0+)W (ε) (see equation (1.9))

and the fact that W ′(0) = 2/σ2. Therefore we conclude that (4.31) holds. The proof is now

complete.

Now we show the uniqueness claim. Suppose that there exist continuous functions H and

c on E and R+, respectively, and real numbers H0 < 0 and uH > 0 such that the conclusions

of the theorem hold. Specifically, suppose that H is a non-positive continuous real valued

function on E, c is a continuous real valued function on (0,∞) such that c ≥ h ≥ 0 and

H0 ∈ (−1
pE(gp), 0) such that equations (4.27)-(4.29) hold. That is, we assume that H, H0
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and c are solutions to the equations

H(u, x)

= H0
σ2

2
W ′(x)

− Ex

(∫ τ−0

0

∫
(−∞,0)

H(u+ s,Xs + y)I{0<Xs+y<b(u+s)}Π(dy)I{Xs>c(u+s)}ds

)

+ Ex

(∫ τ−0

0

[
G(u+ s,Xs) +

∫
(−∞,0)

H(0, Xs + y)I{Xs+y<0}Π(dy)

]
I{Xs<c(u+s)}ds

)
,

(4.40)

for u > 0 and x > 0,

H0 = − 1

ψ′(0+)

∫ ∞
0

E−z(gp−1)[1− ψ′(0+)W (z)]dz

+
1

ψ′(0+)
E
(∫ ∞

0
G(s,Xs)

Xs

s
I{0<Xs<c(s)}ds

)
− 1

ψ′(0+)
E

(∫ ∞
0

∫
(−∞,0)

H(s,Xs + y)I{0<Xs+y<c(s)}Π(dy)
Xs

s
I{Xs>c(s)}ds

)

− 1

ψ′(0+)
E

(∫ ∞
0

∫
(−∞,0)

H(0, Xs + y)I{Xs+y≤0)}Π(dy)
Xs

s
I{Xs>c(s)}ds

)
, (4.41)

and

0 = H0
σ2

2
W ′(c(u))

− Ec(u)

(∫ τ−0

0

∫
(−∞,0)

H(u+ s,Xs + y)I{0<Xs+y<c(u+s)}Π(dy)I{Xs>c(u+s)}ds

)

+ Ec(u)

(∫ τ−0

0

[
G(u+ s,Xs) +

∫
(−∞,0)

H(0, Xs + y)I{Xs+y<0}Π(dy)

]
I{Xs<c(u+s)}ds

)
,

(4.42)

for u < uH , where for any x ≤ 0,

H(0, x) = −
∫ −x

0

∫
[0,∞]

E−u−z(gp−1)W (du)dz +H0. (4.43)

The value uH is such that uH =∞ when X is of infinite variation or X is of finite variation

175



with infinite activity. Otherwise, let uH be the solution of equation (4.30), that is,

G(u, 0)−
∫

(−∞,0)

∫ −y
0

∫
[0,∞]

E−u−z(gp−1)W (du)dzΠ(dy) +H0Π(−∞, 0) = 0. (4.44)

Moreover, assume that c(u) > 0 for all u < uH and c(u) = 0 for all u ≥ uH and that

∫
(−∞,−x)

H̃(u, x+ c(u) + y)Π(dy) +G(u, c(u) + x) ≥ 0 (4.45)

for all u < uH and x > 0, where H̃ is the extension of H to the set R+ ×R as in (4.4). That

is,

H̃(u, x) =


H(u, x) u > 0 and x > 0,

H(0, x) u ≥ 0 and x ≤ 0,

H(0, 0) u = 0 and x > 0.

(4.46)

Note that using the exact same arguments as the ones used in Lemma 4.4.25 (see argument

below equation (4.38)) that (4.40) and (4.42) are equivalent to

H(u, x) = Ex(H(0, Xτ−0
)I{τ−0 <∞}) + Ex

(∫ τ−0

0
G(u+ s,Xs)I{Xs<c(u+s)}ds

)

− Ex

(∫ τ−0

0

∫
(−∞,0)

H̃(u+ s,Xs + y)I{Xs+y<c(u+s)}Π(dy)I{Xs>c(u+s)}ds

)
(4.47)

for all (u, x) ∈ E and

Ec(u)(H(0, Xτ−0
)I{τ−0 <∞}) + Ec(u)

(∫ τ−0

0
G(u+ s,Xs)I{Xs<c(u+s)}ds

)

= Ec(u)

(∫ τ−0

0

∫
(−∞,0)

H̃(u+ s,Xs + y)I{Xs+y<c(u+s)}Π(dy)I{Xs>c(u+s)}ds

)
(4.48)

for any u < uH . Following a similar proof than du Toit and Peskir (2008) we are going to

show that c = b which implies that H = V , H0 = V (0, 0) and uH = ub.

176



First, we show that H has an alternative representation.

Lemma 4.4.29. For all (u, x) ∈ E we have that

H(u, x) = Eu,x
(∫ ∞

0
G(Us, Xs)I{Xs<c(Us)}ds

)
− Eu,x

(∫ ∞
0

∫
(−∞,0)

H̃(Us, Xs + y)I{Xs+y<c(Us)}Π(dy)I{Xs>c(Us)}ds

)
. (4.49)

Moreover, the same conclusion holds if, in the case that σ > 0, instead of (4.41) we assume

that

∂

∂x
H+(0, 0) =

∂

∂x
H−(0, 0), (4.50)

where ∂
∂xH+(u, 0) and ∂

∂xH−(0, 0) are the right and left derivatives of x 7→ H(u, x) and

x 7→ H(0, x) at zero, respectively and ∂
∂xH+(0, 0) = limu↓0

∂
∂xH+(u, 0).

Proof. Define for all (u, x) ∈ E the function

K(u, x) = Eu,x
(∫ ∞

0
G(Us, Xs)I{Xs<c(Us)}ds

)
− Eu,x

(∫ ∞
0

∫
(−∞,0)

H̃(Us, Xs + y)I{Xs+y<c(Us)}Π(dy)I{Xs>c(Us)}ds

)
.

In a analogous way than Lemma 4.4.27, from (3.9) and (1.21) and we have that for any

spectrally negative Lévy process X,
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K(0, 0) = E
(∫ ∞

0
G(Us, Xs)I{Xs<c(Us)}ds

)
− Eu,x

(∫ ∞
0

∫
(−∞,0)

H̃(Us, Xs + y)I{Xs+y<c(Us)}Π(dy)I{Xs>c(Us)}ds

)

=
1

ψ′(0+)

∫ ∞
0

E−z(gp−1)[1− ψ′(0+)W (z)]dz

+
1

ψ′(0+)
E
(∫ ∞

0
G(s,Xs)

Xs

s
I{0<Xs<c(s)}ds

)
− 1

ψ′(0+)
E

(∫ ∞
0

∫
(−∞,0)

H̃(s,Xs + y)I{Xs+y<c(s)}Π(dy)
Xs

s
I{Xs>c(s)}ds

)
= H0

= H(0, 0).

Moreover, for u = 0 and x < 0 we have that by the Markov property, the fact that X creeps

upwards, c is a nonnegative curve and the definition of H(0, x) for x < 0 (see (4.43)) that

K(0, x) = Ex

(∫ τ+
0

0
G(Us, Xs)ds

)
+K(0, 0) = H(0, x). (4.51)

Then, taking u > 0 and x > 0, by the strong Markov property at time τ−0 and equation

(4.47),

K(u, x) = Ex(K(0, Xτ−0
)I{τ−0 <∞}) + Ex

(∫ τ−0

0
G(u+ s,Xs)I{Xs<c(u+s)}ds

)

− Ex

(∫ τ−0

0

∫
(−∞,0)

H̃(u+ s,Xs + y)I{Xs+y<c(u+s)}Π(dy)I{Xs>c(u+s)}ds

)
= H(u, x).

If in the case that σ > 0 we assume that H and c satisfy equations (4.43), (4.47), (4.48) and

(4.50). From formula (3.6) (in a similar way than Lemma 4.4.27) we obtain that

K(0, 0) =
σ2

2ψ′(0+)

[
− ∂

∂x
H−(0, 0) +

∂

∂x
H+(0, 0)

]
+H(0, 0)

= H(0, 0).
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The rest of the proof remains unchanged.

Define the set Dc = {(u, x) ∈ E : x ≥ c(u)}. We show in the following lemma that H

vanishes in Dc so that Dc corresponds to the “stopping set” of H.

Lemma 4.4.30. We have that H(u, x) = 0 for all (u, t) ∈ Dc.

Proof. Note that from equations (4.47) and (4.48) we know that H(u, c(u)) = 0 for all

u ∈ (0, uH). Let (u, x) ∈ Dc such that x > c(u) and define σc as the first time that (U,X)

exits Dc, i.e.

σc = inf{s ≥ 0 : Xs < c(Us)}.

From the fact that Xr ≥ c(Ur) for all r < σc we have that from the Markov property and

representation (4.49) of H,

H(u, x) = Eu,x(H(Uσc , Xσc)I{σc<∞}) + Eu,x
(∫ σc

0
G(Us, Xs)I{Xs<c(Us)}ds

)
− Eu,x

(∫ σc

0

∫
(−∞,0)

H̃(Us, Xs + y)I{Xs+y<c(Us)}Π(dy)I{Xs>c(Us)}ds

)
= Eu,x(H(Uσc , Xσc)I{σc<∞,Xσc<c(Us)})

− Eu,x

(∫ σc

0

∫
(−∞,0)

H̃(Us, Xs + y)I{Xs+y<c(Us)}Π(dy)ds

)
,

where the last equality follows from the fact that Px(Xσc = c(u+ σc)) > 0 only when σ > 0

and then U(u, c(u)) = 0 for all u > 0 (since uH = ∞). Then, since H ≤ 0, applying the

compensation formula for Poisson random measures (see equation (1.25)) and the fact that

σc ≤ τ−0 (since c(u) ≥ 0 for all u > 0) we get

Eu,x(H(Uσc , Xσc)I{σc<∞}I{Xσc<c(Us)})

= Ex

(∫ ∞
0

∫
(−∞,0)

I{Xr≥c(u+s) for all r<s}I{Xs−+y<c(u+s)}H̃(u+ s,Xs− + y)N(ds, dy)

)

= Ex

(∫ ∞
0

∫
(−∞,0)

I{Xr≥c(u+s) for all r<s}I{Xs−+y<c(u+s)}H̃(u+ s,Xs− + y)Π(dy)ds

)

= Eu,x

(∫ σc

0

∫
(−∞,0)

H̃(Us, Xs + y)I{Xs<c(Us)}Π(dy)ds

)
.
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Hence we have that H(u, x) = 0 for all (u, x) ∈ Dc as claimed.

The following Lemma states that H dominates the value function V . That suggest that H

is the largest function with H ≤ 0 that makes the process {H(Ut, Xt)+
∫ t

0 G(Us, Xs)ds, t ≥ 0}

a Pu,x-submartingale. The latter assertion will be shown indirectly on the upcoming lemmas.

Lemma 4.4.31. We have that H(u, x) ≥ V (u, x) for all (u, x) ∈ E.

Proof. If (u, x) ∈ Dc we have the inequality

H(u, x) = 0 ≥ V (u, x).

Now we show that the inequality also holds in E \Dc. Consider the stopping time

τc = inf{s ≥ 0 : Xs ≥ c(Us)}.

Then using the Markov property and equation (4.49) we get that for all (u, x) ∈ E with

x < c(u) (here we take c(0) := limu↓0 c(u) ≥ limu↓0 h(u) =∞),

H(u, x) = Eu,x (H(Uτc , Xτc)) + Eu,x
(∫ τc

0
G(Us, Xs)I{Xs<c(Us)}ds

)
− Eu,x

(∫ τc

0

∫
(−∞,0)

H̃(Us, Xs + y)Π(dy)I{Xs>c(Us)}ds

)

= Eu,x (H(Uτc , c(Uτc))) + Eu,x
(∫ τc

0
G(Us, Xs)ds

)
,

where in the second equality we used the fact X creeps upwards and τc <∞. Note that since

Xt > 0 if and only if Ut > 0 for all t > 0 and that c(u) > 0 for all u sufficiently small we have

that c(Uτc) > 0 and hence H(Uτc , c(Uτc)) = 0. Therefore

H(u, x) = Eu,x
(∫ τc

0
G(Us, Xs)ds

)
≥ V (u, x),

where the inequality follows from the definition of V as per (4.14).
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It turns out that the fact that H dominates V implies that b dominates the curve c. This

fact is shown in the following Lemma.

Lemma 4.4.32. We have that b(u) ≥ c(u) for all u > 0.

Proof. Note that in the case that X is of finite variation with Π(−∞, 0) < ∞ we have

that c(u) = 0 ≤ b(u) for all u > uH . We proceed by contradiction. Suppose that there

exists u0 > 0 such that b(u0) < c(u0). Then in the case that X is of finite variation with

Π(−∞, 0) <∞, it holds that u0 < uH . Take x > c(u0) and consider the stopping time

σb = inf{s > 0 : Xs < b(Us)}.

Then from the Markov property and the representation of H given in (4.49) we have that

H(u0, x) = Eu0,x

(
H(Uσ−b

, Xσ−b
)
)

+ Eu0,x

(∫ σ−b

0
G(Us, Xs)I{Xs<c(Us)}ds

)

− Eu0,x

(∫ σ−b

0

∫
(−∞,0)

H̃(Us, Xs + y)Π(dy)I{Xs>c(Us)}ds

)
.

Moreover, since V (u, x) = 0 for (u, x) ∈ D and 0 ≥ H ≥ V we have that

Eu0,x

(
H(Uσ−b

, Xσ−b
)
)

= Eu0,x

(
H(Uσ−b

, Xσ−b
)I{X

σ−
b
<b(U

σ−
b

)}

)
= Eu0,x

(∫ σ−b

0

∫
(−∞,0)

H̃(Us, Xs + y)I{Xs+y≤b(Us)}Π(dy)ds

)

= Eu0,x

(∫ σ−b

0

∫
(−∞,0)

H̃(Us, Xs + y)Π(dy)ds

)
,

where the second equality follows from the compensation formula for Poisson random mea-

sures. Hence, combining the two equations above and from the fact that x > c(u0) and then

H(u0, x) = 0 we get

0 = Eu0,x

(∫ σ−b

0

[
G(Us, Xs) +

∫
(−∞,0)

H̃(Us, Xs + y)Π(dy)

]
I{Xs<c(Us)}ds

)
.

Due to the continuity of b and c we have that there exists a value u1 sufficiently small such
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that c(v) > b(v) for all v ∈ [u0, u1). Thus, from Lemma 4.4.19, the fact that u 7→ G(u, x) is

strictly increasing when x > 0 and the inequality U ≥ V (see Lemma 4.4.31) we have that

for all u > 0 and x > b(u),

G(u, x) +

∫
(−∞,0)

H̃(u, x+ y)Π(dy) ≥ G(u, x) +

∫
(−∞,0)

Ṽ (u, x+ y)Π(dy) > 0,

where the strict inequality follows from Lemma 4.4.19. Note that taking x sufficiently big we

have that, under the measure Pu0,x, X spends a positive amount of time between the curves

b(u) and c(u) for u ∈ [u0, u1] with positive probability. Thus, since σc < τ−0 the above facts

imply that

0 = Eu0,x

(∫ σ−b

0

[
G(Us, Xs) +

∫
(−∞,0)

H̃(Us, Xs + y)Π(dy)

]
I{Xs<c(Us)}ds

)
> 0,

which is a contradiction and then we have that c(u) ≤ b(u) for all u > 0.

Note that (4.45) and the definition of uH given in (4.44) imply the inequality G(u, x) +∫
(−∞,0) H̃(u, x+y)Π(dy) ≥ 0 for all u > 0 and x > c(u). It can be shown that such inequality

guarantees that the process {H(Ut, Xt) +
∫ t

0 G(Us, Xs)ds, t ≥ 0} is a Pu,x-submartingale for

all (u, x) ∈ E. We finish the proof showing that indeed c corresponds to b.

Lemma 4.4.33. We have that then c(u) = b(u) for all u > 0 and V (u, x) = H(u, x) for all

(u, x) ∈ E.

Proof. Suppose that there exists u > 0 such that c(u) < b(u) and take x ∈ (c(u), b(u)). Then

we have by the Markov property and representation (4.49) that

H(u, x) = Eu,x (H(UτD , XτD)) + Eu,x
(∫ τD

0
G(Us, Xs)I{Xs<c(Us)}ds

)
− Eu,x

(∫ τD

0

∫
(−∞,0)

H̃(Us, Xs + y)Π(dy)I{Xs>c(Us)}ds

)
,

where τD = inf{t > 0 : Xt ≥ b(Ut)}. On the other hand, we have that
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V (u, x) = Eu,x
(∫ τD

0
G(Us, Xs)ds

)
.

Hence, since XτD = b(UτD) ≥ c(UτD) and Lemma 4.4.30 we have that H(UτD , XτD) = 0.

Moreover, using the inequality H ≥ V (see Lemma 4.4.31) we obtain that

0 ≥ Eu,x

(∫ τD

0

[
G(Us, Xs) +

∫
(−∞,0)

H̃(Us, Xs + y)Π(dy)

]
I{Xs>c(Us)}ds

)
> 0,

where the strict inequality follows by the inequality (4.45) and the continuity of b and c. This

contradiction allows us to conclude that c(u) = b(u) for all u > 0 and H(u, x) = V (u, x) for

all (u, x) ∈ E.

Remark 4.4.34. A close inspection of the proof tells us that the assumptions that H ≤ 0

can be dropped when Π ≡ 0.

4.5 Examples

4.5.1 Brownian Motion with drift example

Suppose that Xt is given by

Xt = µt+ σBt,

where µ > 0, σ > 0 and B = {Bt, t ≥ 0} is a standard Brownian motion. Here, we consider

the case p = 2. Then

G(u, x) = uψ′(0+)W (x)− Ex(g).

It is well known that for β ≥ 0 and q ≥ 0,

ψ(β) =
σ2

2
β2 + µβ and Φ(q) =

1

σ2

[√
µ2 + 2σ2q − µ

]
.
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Thus, ψ′(0+) = µ, Φ′(0) = 1
µ , Φ′′(0) = −σ2

µ3 and Φ′′′(0) = 3σ4/µ5. The scale function is (see

e.g. Kuznetsov et al. (2013), pp 102) given by

W (x) =
1

µ
(1− exp(−2µx/σ2)), x ≥ 0.

An easy calculation shows that W ∗(2) is given by

W ∗(2)(x) =
1

µ2
x[1 + exp(−2µ/σ2x)]− σ2

µ2

1

µ
(1− exp(−2µ/σ2x)), x ≥ 0.

For all x ∈ R, the value Ex(g) can be calculated from (4.7) via differentiation to have

Ex(g) = −ψ′(0+)[Φ′′(0+) + xΦ′(0)2] + ψ′(0+)W ∗2(x)

=

 σ2

µ2 − x
µ x < 0

σ2

µ2 exp(−2µ/σ2x) + x
µ exp(−2µ/σ2x) x ≥ 0

.

and E(g2) = Φ′′′(0)ψ′(0+) = 3(σ/µ)4. Moreover, we know that Xr ∼ N(µr, σ2r) and for any

x ≥ y and z ∈ R that (see e.g. Salminen (1988), pp 154) that

Px
(
B(a)
r ∈ dz, inf

0≤s≤r
B(a)
s ≤ y

)
=

1√
2πr

ea(z−x)−a2r/2−(|z−y|+x−y)2/(2r)dz,

where B
(a)
t = at+Bt. Hence by noticing that Xt+x = σ [µ/σt+Bt + x/σ] = σ[B

(µ/σ)
t +x/σ]

for any t ≥ 0, we obtain that for any x ≥ 0 and z ≥ 0,

Px(Xr ∈ dz,Xr ≤ 0) = Px/σ(σB
(µ/σ)
t ∈ dz, σB(µ/σ)

r ≤ 0)

=
1√

2πσ2r
e

(
µ

σ2

)
(z−x)−(µσ )

2
r/2−(z+x)2/(2σ2r)

dz

=
1√

2πσ2r
e−

2µ

σ2 xe

(
µ

σ2

)
(z+x)−(µσ )

2
r/2−(z+x)2/(2σ2r)

dz

= e−
2µ

σ2 x
1√
σ2r

φ

(
z + x− µr√

σ2r

)
dz,

where φ is the density of a standard normal distribution. Hence we have that for any x ≥ 0

and z ≥ 0,

Px(Xr ∈ dz,Xr ≥ 0) =
1√
σ2r

[
φ

(
z − x− µr√

σ2r

)
− e−

2µ

σ2 xφ

(
z + x− µr√

σ2r

)]
dz.
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Then we calculate for any u > 0

Ex

(∫ τ−0

0
[(r + u)ψ′(0+)W (Xr)− EXr(g)]I{Xr<b(r+u)}dr

)

=

∫ ∞
0

∫ b(r+u)

0
[(r + u)ψ′(0+)W (z)− Ez(g)]Px(Xr ∈ dz,Xr ≥ 0)dr

=

∫ ∞
0

{
H(r, u, x, b(r + u))− e−2µ/σ2xH(r, u,−x, b(r + u))

}
dr,

where a lengthy but straightforward calculation gives

H(r, t, x, b) =

∫ b

0
[(r + t)ψ′(0+)W (z)− Ez(g)]

1√
σ2r

φ

(
z − x− µr√

σ2r

)
dz

= (r + t)

[
Ψ

(
b− x− µr

σ
√
r

)
−Ψ

(
−x− µr
σ
√
r

)]
−
[
x

µ
+ t+

σ2

µ2

]
e−2µ/σ2x

[
Ψ

(
b− x+ µr

σ
√
r

)
−Ψ

(
−x+ µr

σ
√
r

)]
+
σ
√
r

µ
e−2µ/σ2x

[
φ

(
b− x+ µr

σ
√
r

)
− φ

(
−x+ µr

σ
√
r

)]
.

From formula (4.19) we know that

V (0, x) = −
∫ −x

0

∫
[0,∞)

E−u−z(g)W (du)dz + V (0, 0)

=
3σ2

2µ3
x− 1

2µ2
x2 + V (0, 0).

Then,

∂

∂x
V−(0, 0) =

3σ2

2µ3
.

From Theorem 4.4.23 we have that for u > 0 and x > 0,

V (u, x) = V (0, 0)[1− ψ′(0+)W (x)]

+

∫ ∞
0

{
H(r, u, x, b(r + u))− e−2µ/σ2xH(r, u,−x, b(r + u))

}
dr.
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Therefore the curve b(u) and V (0, 0) satisfy the equations

∫ ∞
0

{
H(r, u, x, b(r + u))− e−2µ/σ2xH(r, u,−x, b(r + u))

}
dr

+V (0, 0)[1− ψ′(0+)W (b(u))] = 0,

3σ2

2µ3
− ∂

∂x
V+(0, 0) = 0,

for all u > 0, where

−3

2

σ4

µ4
≤ V (0, 0) < 0.

Note that ∂
∂xV+(0, 0) can be estimated via [V (h0, h0)− V (0, 0)]/h0 for h0 sufficiently small.

We can approximate the integrals above by Riemann sums so a numerical approximation

can be implement. Indeed, take n ∈ Z+ and T > 0 sufficiently large such that h = T/n

is small. For each k ∈ {0, 1, 2, . . . , n}, we define uk = kh. Then the sequence of times

{uk, k = 0, 1, . . . , n} is a partition of the interval [0, T ]. For any x ∈ R and u ∈ [uk, uk+1), we

approximate V (u, x) by

Vh(uk, x) = V0[1− ψ′(0+)W (x)] +

n−1∑
i=k

[H(ui−k+1, uk, x, bi)− e−2µ/σ2xH(ui−k+1, uk,−x, bi)]h,

where the sequence {bk, k = 0, 1, . . . , n− 1} and V0 are solutions to

V0[1− ψ′(0+)W (bk)] +

n−1∑
i=k

[H(ui−k+1, uk, bk, bi)− e−2µ/σ2xH(ui−k+1, uk,−bk, bi)]h = 0

3σ2

2µ3
− Vh(h0, h0)− V0

h0
= 0

for each k ∈ {0, 1, . . . , n − 1}. Note that, for T and n sufficiently large such that h is

sufficiently small, the sequence {bk, k = 0, 1, . . . , n} is a numerical approximation to the

sequence {b(tk), k = 0, 1, . . . , n} and can be calculated by using backwards for a fixed value

V0. Indeed, a method for solving the system is: fix V0 and calculate the sequence {bV0
k , k =

0, 1, . . . , n} by using the first equation above. If the curve obtained and the value V0 satisfy

the second equation above then we have that V0 = V (0, 0) and {bV0
k , k = 0, 1, . . . , n} =
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{bk, k = 0, 1, . . . , n}. Otherwise, vary the quantity V0 and recalculate until both equations

are satisfied. We show in Figure 4.3 a numerical calculation of the optimal boundary and the

value function using the equations above. The case considered is when µ = 1/2 and σ = 1.

0 5 10 15 20 25 30 35

1
2

3
4

5
6

7

Optimising curve BM µ=0.5,  σ=1

u

b(
u)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−
15

−
10

−
5

0

Value function BM µ=0.5,  σ=1

x

V
(3

,x
)

Figure 4.3: Numeric calculation of the optimal boundary and value function V for the Brow-
nian motion with drift case.

4.5.2 Brownian motion with exponential jumps example

Consider the case in which p = 2 and X a Brownian motion with drift and exponential jumps,

this is, X = {Xt, t ≥ 0} with

Xt = µt+ σBt −
Nt∑
i=1

Yi, t ≥ 0,

where σ > 0, µ > 0, B = {Bt, t ≥ 0} is a standard Brownian motion, N = {Nt, t ≥ 0} is an

independent Poisson process with rate λ > 0 and {Yi, i ≥ 1} is a sequence of independent

exponential distributed random variables with parameter ρ > 0 independent of B and N .

We further assume that µρ > λ so X drifts to infinity. The Laplace exponent is given for

β ≥ 0 by

ψ(β) = µβ +
σ2

2
β2 − λβ

ρ+ β
,
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where µ is a positive constant. In this case the Lévy measure is given by Π(dx) = λρeρxdx

for all x < 0. An easy calculation leads to ψ′(0+) = µ− λ/ρ,

Φ′(0+) =
ρ

µρ− λ
and Φ′′(0+) = −σ

2ρ3 + 2λρ

[µρ− λ]3
.

It is know that (see e.g. Kuznetsov et al. (2013), pp 101) the scale function W is given by

W (x) =
1

ψ′(0+)
+

eζ1x

ψ′(ζ1)
+

eζ2x

ψ′(ζ2)

for x ≥ 0, where

ζ1 =
−
(
σ2

2 ρ+ µ
)

+

√(
σ2

2 ρ− µ
)2

+ 2σ2λ

σ2

and

ζ2 =
−
(
σ2

2 ρ+ µ
)
−
√(

σ2

2 ρ− µ
)2

+ 2σ2λ

σ2
.

Then differentiating (4.7) we have that

Ex(g) = −ψ′(0+)[Φ′′(0) + xΦ′(0)2] + ψ′(0+)W ∗2(x)

=


σ2ρ2+2λ

[µρ−λ]2
− ρ

µρ−λx x < 0

σ2ρ2+2λ

[µρ−λ]2
− ρ

µρ−λx+ (µ− λ/ρ)W ∗2(x) x ≥ 0
.

For x < 0 the value function is then given by

V (0, x) = −
∫ −x

0

∫
[0,∞)

E−u−z(g)W (du)dz + V (0, 0)

=

∫ −x
0

∫
[0,∞)

[
Φ′′(0+) + Φ′(0)2(−u− z)

]
ψ′(0+)W (du)dz + V (0, 0)

=
[
Φ′′(0)(−x) + Φ′(0)2E(X∞)(−x)− Φ′(0)2x2/2

]
+ V (0, 0),

where in the last equality we used that ψ(0+)W (x) = Px(τ−0 = ∞) = P(−X∞ ≤ x) and

hence ψ′(0+)W (du) is the density function of the random variable X∞. From (1.17) we
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know that for any β ≥ 0,

E(eβX∞) = ψ′(0+)
β

ψ(β)
.

Hence, by differentiating and using the fact that Φ′(q) = 1/ψ′(Φ(q)) we can see that

E(X∞) =
Φ′′(0)

2Φ′(0)2
.

Hence,

V (0, x) = −
[

3

2
Φ′′(0)x+ Φ′(0)2x2/2

]
+ V (0, 0)

for any x < 0. Next, we calculate for any x > 0,

∫
(−∞,0)

V (0, x+ y)I{x+y<0}Π(dy)

=

∫ −x
−∞

[
−3

2
Φ′′(0)(x+ y)− Φ′(0)2(x+ y)2/2 + V (0, 0)

]
λρeρydy

= λe−ρx
∫ 0

−∞

[
−3

2
Φ′′(0)y − Φ′(0)2y2/2 + V (0, 0)

]
ρeρydy

= λe−ρx
[

3Φ′′(0)

2ρ
− Φ′(0)2

ρ2
+ V (0, 0)

]
.

Similarly, we have that for all u > 0 and x > b(u),

∫
(−∞,0)

V (u, x+ y)I{0<x+y<b(u)}Π(dy) = e−ρx
∫ b(u)

0
V (u, y)λρeρydy

= e−ρ(x−b(u))

∫
(−b(u),0)

V (u, y + b(u))Π(dy).
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Hence, we have that for any u, x > 0, (4.27) reads as

V (u, x)

= V (0, 0)
σ2

2
W ′(x)

− Ex

(∫ τ−0

0
e−ρ(Xs−b(u+s))I{Xs>b(u+s)}

∫
(−b(u+s),0)

V (u+ s, y + b(u+ s))Π(dy)ds

)

+ Ex

(∫ τ−0

0

[
G(u+ s,Xs) +

∫
(−∞,0)

V (0, Xs + y)I{Xs+y<0}Π(dy)

]
I{Xs<b(u+s)}ds

)

= V (0, 0)
σ2

2
W ′(x)

−
∫ ∞

0

∫
(−b(u+s),0)

V (u+ s, y + b(u+ s))Π(dy)Ex
(
e−ρ(Xs−b(u+s))I{Xs>b(u+s),Xs≥0}

)
ds

+

∫ ∞
0

Ex

([
G(u+ s,Xs) +

∫
(−∞,0)

V (0, Xs + y)I{Xs+y<0}Π(dy)

]
I{Xs<b(u+s),Xs≥0}ds

)

= V (0, 0)
σ2

2
W ′(x)−

∫ ∞
0
V(u+ s, b(u+ s))F2(s, x, b(u+ s))ds

+

∫ ∞
0

F1(s, u, x, b(u+ s))ds,

where for any s, u, x, b > 0

F1(s, u, x, b) = E
(
G(u+ s,Xs + x)I{Xs+x<b,Xs+x≥0}

)
+ E

(
λe−ρ(Xs+x))

[
3Φ′′(0)

2ρ
− Φ′(0)2

ρ2
+ V (0, 0)

]
I{Xs+x<b,Xs+x≥0}

)
,

F2(s, x, b) = E
(
e−ρ(Xs+x−b)I{Xs+x>b,Xs+x≥0}

)
,

V(u, b) =

∫
(−b,0)

V (u, y + b)Π(dy).
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Then we have that V , b and V (0, 0) satisfy the equations

V (u, x) = V (0, 0)
σ2

2
W ′(x) +

∫ ∞
0

F1(s, u, x, b(u+ s))ds

−
∫ ∞

0
V(u+ s, b(u+ s))F2(s, x, b(u+ s))ds,

0 = V (0, 0)
σ2

2
W ′(b(u)) +

∫ ∞
0

F1(s, u, b(u), b(u+ s))ds

−
∫ ∞

0
V(u+ s, b(u+ s))F2(s, b(u), b(u+ s))ds,

0 =
3

2
Φ′′(0) +

∂

∂x
V+(0, 0)

for all u, x > 0, where for any b, s, u > 0 and x ∈ R,

We can approximate the integrals above by Riemann sums so a numerical approximation

can be implement. Indeed, take n ∈ Z+ and T > 0 sufficiently large such that h = T/n

is small. For each k ∈ {0, 1, 2, . . . , n}, we define uk = kh. Then the sequence of times

{uk, k = 0, 1, . . . , n} is a partition of the interval [0, T ]. For any x ∈ R and u ∈ [uk, uk+1), we

approximate V (u, x) by

Vh(uk, x) = V0
σ2

2
W ′(x) +

n−1∑
i=k

[F1(ui−k+1, uk, x, bi)− Vh(ui+1, bi+1)F2(ui−k+1, x, bi)]h,

where V(un, bn) = 0 and

Vh(ui, bi) =

bbi/hc∑
j=1

Vh(ui, jh)λρeρjhh

for any i ∈ {1, 2, . . . , n− 1}. The sequence {bk, k = 1, . . . , n− 1} and V0 are solutions to

V0
σ2

2
W ′(bk) +

n−1∑
i=k

[F1(ui−k+1, uk, bk, bi)− Vh(ui+1, bi+1)F2(ui−k+1, bk, bi)]h = 0 (4.52)

3

2
Φ′′(0) +

Vh(h0, h0)− V0

h0
= 0 (4.53)

for each k ∈ {0, 1, . . . , n − 1}. The functions F1 and F2 can be estimated by simulating

the process {(Xt, Xt), t ≥ 0)} (see e.g. Kuznetsov et al. (2011), Theorem 4 and Remark

3). Note that, for n and T sufficiently large, the sequence {bk, k = 1, . . . , n} is a numerical

approximation to the sequence {b(tk), k = 1, . . . , n} and can be calculated by using backwards
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induction. Indeed, with a fixed value V0 and the condition V(un, bn) = 0 , we can first obtain

bn−1 using equation (4.52). This allows us to compute Vh(un−1, x) which in turn gives us

Vh(un−1, bn−1). We can then finally obtain bn−2,Vh(un−2, bn−2), bn−3,Vh(un−3, bn−3), . . . , b1

by repeating the aforementioned steps. With these values, we can calculate Vh(h0, h0) and

repeat the procedure for different values of V0 until (4.53) is satisfied.
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4.6 Appendix

Proof of Lemma 4.4.1. First, notice that due to the spatial homogeneity of Lévy processes

and that x 7→ Ex(gp−1) is non-increasing it suffices to prove the assertion for x ≤ 0. Using

Fubini’s theorem we have that for all x ≤ 0,

Ex
(∫ ∞

0
EXs(gp−1)ds

)
=

∫
(−∞,∞)

Ez(gp−1)

∫ ∞
0

Px(Xs ∈ dz).

Since X drifts to infinity we can use the density for the 0-potential measure of X without

killing (see equation (1.21)) to obtain

Ex
(∫ ∞

0
EXs(gp−1)ds

)
=

∫ ∞
−∞

Ez(gp−1)

[
1

ψ′(0+)
−W (x− z)

]
dz

=
1

ψ′(0+)

∫ x

−∞
Ez(gp−1)

[
1− ψ′(0+)W (x− z)

]
dz

+
1

ψ′(0+)

∫ ∞
x

Ez(gp−1)dz. (4.54)

Now we prove that the above two integrals are finite for all x ≤ 0. From the fact that

z 7→ Ez(gp−1) is continuous on R and W is continuous on (0,∞) we can assume without of

loss of generality that x = 0.

First, we show that the first integral on the right hand side of (4.54) is finite. From

Lemma 4.2.2 we have that

∫ ∞
0

E−z(gp−1)
[
1− ψ′(0+)W (z)

]
dz

≤ 2p−1E(−X∞)[E(gp−1) +Ap−1] +
2p−1

p
Cp−1E((−X∞)p),

where Ap−1 and Cp−1 are non-negative constants. In the equality above we relied on the fact

that z 7→ ψ(0+)W (z) corresponds to the distribution function of the random variable −X∞.

We conclude from Lemma 4.2.1 that
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∫ ∞
0

E−z(gp−1)
[
1− ψ′(0+)W (z)

]
dz <∞.

Now we proceed to check the finiteness of the second integral in (4.54) when x = 0. Using

the strong Markov property we have that

∫ ∞
0

Ez(gp−1)dz =

∫ ∞
0

Ez(gp−1I{τ−0 <∞})dz

≤ 2p−1

∫ ∞
0

Ez((τ−0 )p−1I{τ−0 <∞})dz + 2p−1

∫ ∞
0

Ez(EX
τ−0

(gp−1)I{τ−0 <∞})dz

≤ 2p−1

∫ ∞
0

Ez((τ−0 )p−1I{τ−0 <∞})dz + 2p−1

∫ ∞
0

Ez(EX∞(gp−1)I{X∞<0})dz

where in the last inequality we used the fact that X∞ ≤ Xτ−0
and that x 7→ Ex(gp−1) is a

non-increasing function. Using Fubini’s theorem we have that

∫ ∞
0

Ez(EX∞(gp−1)I{X∞<0})dz =

∫ ∞
0

∫
(−∞,0)

Ey(gp−1)Pz(X∞ ∈ dy)dz

=

∫
(−∞,0)

Ey(gp−1)

∫ ∞
0

Pz(X∞ ∈ dy)dz

=

∫ ∞
0

E−y(gp−1)[1− ψ′(0+)W (y)]dy

<∞.

It thus only remains to show that

∫ ∞
0

Ez((τ−0 )p−1I{τ−0 <∞})dz <∞.

For this, define the function F1(q) :=
∫∞

0 Ez(e−qτ
−
0 I{τ−0 <∞})dz. Differentiating with respect

to β the equation (1.17) and evaluating at zero we obtain that

F1(q) =

∫ ∞
0

P(−Xeq > z)dz = E(−Xeq) =
1

Φ(q)
− ψ′(0+)

q
,
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where eq is an independent exponential random variable with parameter q > 0. On the other

hand, define the function F2(q) =
∫∞

0 E−z(e−qτ
+
0 )[1− ψ′(0+)W (z)]dz. Using the expression

for the Laplace transform of τ+
0 the definition of W , we have that

F2(q) =

∫ ∞
0

e−Φ(q)z[1− ψ′(0+)W (z)]dz =
1

Φ(q)
− ψ′(0+)

q
= F1(q).

The fact that F2 = F1 implies that, when α is a natural number, we can take derivatives of

order α (with the help of the dominated convergence theorem), at q = 0 and conclude that

∫ ∞
0

Ez((τ−0 )αI{τ−0 <∞})dz <∞ if and only if

∫ ∞
0

E−z((τ+
0 )α)[1− ψ′(0+)W (z)]dz <∞.

Furthermore, if α = k + λ, with k a positive integer and 0 < λ < 1, we can draw the same

conclusion using the Marchaud derivative (see e.g. Laue (1980)). Using Lemma 4.2.2 we have

that

∫ ∞
0

E−z((τ+
0 )p−1)[1− ψ′(0+)W (z)]dz <∞.

and the proof is complete.

Proof of Lemma 4.4.8. Let x < 0 and take δ > 0. Then

E0,x((τD)p) = Ex((τ g,0b )p)

≤ Ex((τ g,0b )pI{g+δ<τg,0b }
) + Ex((g + δ)pI{g+δ>τg,0b }

)

= E((τ g,xb )pI{g(−x)+δ<τg,xb }
) + E((g(−x) + δ)pI{g(−x)+δ>τg,xb }

).

Note that on the event {g(−x) + δ < τ g,xb } we have that

τ g,xb = inf{t > g(−x) + δ : Xt + x ≥ b(U (−x)
t )}

= inf{t > 0 : Xt+g(−x)+δ + x ≥ b(t+ δ)}+ g(−x) + δ

≤ inf{t > 0 : Xt+g(−x)+δ ≥ b(δ)}+ g(−x) + δ,
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where the second equality follows from the fact that after g(−x), the process X never goes

back below −x and the last inequality holds since b is non-increasing. We have that the law

of the process {Xt+g(−x) + x, t ≥ 0} is the same as that of P↑ where P↑ = P↑0 is the limit of

P↑x when x ↓ 0 (see (1.23) for the definition of P↑x and the lines below for the result stated).

Using the Markov property and equation (1.24) we get

Ex((τ g,0b )p) ≤ 2pE↑(E↑Xδ [(τ
+
b(δ))

p]) + (2p + 1)Ex((g + δ)p)

= 2pE↑
(
W (b(δ))

W (Xδ)
EXδ [(τ

+
b(δ))

pI{τ−0 >τ+
b(δ)
}]

)
+ (2p + 1)Ex((g + δ)p)

≤ 2pE[(τ+
b(δ))

p]E↑
(
W (b(δ))

W (Xδ)

)
+ (2p + 1)Ex((g + δ)p)

= 2pE[(τ+
b(δ))

p]

∫
(0,∞)

W (b(δ))

W (z)
P↑(Xδ ∈ dz) + (2p + 1)Ex((g + δ)p),

where the second inequality follows from the fact that Ex[(τ+
a )p] ≤ E[(τ+

a )p] for all 0 ≤ x ≤ a

and Xδ > 0 under P↑. Thus, using (1.24) we have that

Ex((τ g,0b )p) ≤ 2pE[(τ+
b(δ))

p]

∫
(0,∞)

W (b(δ))

W (z)
P↑(Xδ ∈ dz) + (2p + 1)Ex((g + δ)p)

= 2pE[(τ+
b(δ))

p]
W (b(δ))

δ
E(X+

δ ) + 2p(2p + 1)δp + 2p(2p + 1)Ex((g)p), (4.55)

where X+
δ is the positive part of Xδ. Thus from Lemma 4.2.1 we have that Ex((τ g,0b )p) is finite

for any x < 0. Note that from the definition of τ g,xb we have that for any x < 0, τ g,0b ≤ τ g,xb

(since Ut ≥ U (−x)
t for any t > 0 and b is non increasing) and hence

E((τD)p) = E((τ g,0b )p) ≤ E((τ g,xb )p) = E0,x((τD)p) <∞

Next, we show that Eu,x((τD)p) <∞ when u, x > 0. From the Markov property of Lévy

processes we have that

Eu,x((τD)p) = Ex((τu,0b )pI{τu,0b <σ−0 }
) + Ex((τ g,0b )pI{τu,0b >σ−0 }

)

≤ Ex((τ+
b(u))

p) + 2pEx((σ−0 )pI{σ−0 <∞}) + Ex(I{σ−0 <∞}EXσ−0
[(τ g,0b )p]).

Using (4.55), the inequality |Xσ−0
| ≤ |X∞| under the event {σ−0 <∞} and Lemmas 4.2.1 and
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4.2.2 we deduce that Eu,x((τD)p) <∞ and the proof is complete.

Proof of Lemma 4.4.9. For any x ≤ 0, we first show that limh↓0 σ
−
x+h = σ−x and limh↓0 σ

−
x−h =

τ−x . Since x 7→ σ−x has non-increasing paths it follows that has right and left limits. Moreover,

due the monotonicity property we can see that

lim
h↓0

σ−x+h ≤ σ
−
x .

From the definition of σ−x we have that for all x ≤ 0, under the event {σ−x < ∞}, Xσ−x
≤ x.

Then from the fact that X has only negative jumps we have that under {σ−x <∞},

Xlimh↓0 σ
−
x+h
≤ lim

h↓0
Xσ−x+h

≤ x

which implies (from the definition of σ−x ) that σ−x ≤ limh↓0 σ
−
x+h and then limh↓0 σ

−
x+h = σ−x

when {σ−x <∞}. If ω ∈ {σ−x =∞} we have that X∞(ω) = inft≥0Xt(ω) > x and then there

exists h0(ω) sufficiently small such that X∞(ω) > x + h for all h < h0(ω). That directly

implies that

lim
h↓0

σ−x+h =∞ = σ−x under {σ−x =∞}.

Now we prove that limh↓0 σ
−
x−h = τ−x for all x ≤ 0. From the definition of τ−x we can see that

for all x ≤ 0, τ−x ≤ limh↓0 σ
−
x−h. Then if τ−x =∞ the result follows. Take ω ∈ {τ−x <∞} and

assume that τ−x (ω) < limh↓0 σ
−
x−h(ω). Note that for any h > 0 we have that limh↓0 σ

−
x−h(ω) ≤

σ−x−h(ω), implying that for all s ∈ [0, limh↓0 σ
−
x−h(ω)), Xs > x − h for all h > 0. Hence we

conclude that Xs ≥ x for all s ∈ [0, limh↓0 σ
−
x−h), in particular holds for s = τ−x (ω) which is

a contradiction. Thus,

lim
h↓0

σ−x−h = τ−x

Next, we show that for any x < 0, τ−x = σ−x a.s. Using the fact that σ−x ≤ τ−x and the strong
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Markov property we obtain that

P(τ−x > σ−x ) = E
(
I{σ−x <∞}PXσ−x

(τ−x > 0)
)

= E
(
I{σ−x <∞}I{Xσ−x =0}PX

σ−x
(τ−x > 0)

)
+ E

(
I{σ−x <∞}I{Xσ−x <0}PX

σ−x
(τ−x > 0)

)
= P(σ−x <∞, Xσ−x

= 0)Px(τ−x > 0).

Note that if X is of infinite variation we have that Px(τ−x > 0) = 0, otherwise P(σ−x <

∞, Xσ−x
= x) = P(τ−x < ∞, Xτ−x

= x) = 0, where we used the fact that the random vectors

(τ−x , Xτ−0
) and (σ−x , Xσ−x

) have the same distribution and that X can only keep downwards

when σ > 0 (see (1.14)). Hence P(τ−x > σ−x ) = 0 for any x < 0. That implies that

limh→0 σ
−
x+h = σ−x a.s.

Now we proceed to show the second statement. Recall that x 7→ σ−x is non increasing, by

the right continuity of Xt we have that for any x < 0,

lim
h↓0

Xσ−x−h
= Xlimh↓0 σ

−
x−h

= Xσ−x
a.s..

Moreover, since σ−x+h ↑ σ
−
x a.s. when h ↓ 0 we have by quasi-left continuity that for any

x < 0,

lim
h↓0

Xσ−x+h
= Xσ−x

a.s.

The proof is now complete.

Proof of Lemma 4.4.10. First note that from Lemmas 4.2.1 and 4.20 we have that for any

x ∈ R,

Ex
(
V (0, Xσ−0

)I{σ−0 <∞}
)
≥ Eu,x (V (0, X∞)) ≥ −A′p−1 − C ′p−1Ex(|X∞|p) + V (0, 0) >∞,

where X∞ = inft≥0Xt. Next, since σ−0 = 0 under the measure Px, for any x ≤ 0, the

assertion is satisfied for V (0, x) when x ≤ 0.

Assume that u > 0 and x > 0 and let τ ∈ T , and assume that τ <∞ Pu,x-a.s. Then we have
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that by the strong Markov property that

Eu,x
(∫ τ

0
G(Us, Xs)ds

)
= Eu,x

(∫ τ∧σ−0

0
G(Us, Xs)ds+ I{σ−0 <τ}

∫ τ

σ−0

G(Us, Xs)ds

)

= Eu,x

(∫ τ∧σ−0

0
G(Us, Xs)ds+ I{σ−0 <τ}EXσ−0

(∫ τ

0
G(Us, Xs)ds

))

≥ Eu,x

(∫ τ∧σ−0

0
G(Us, Xs)ds+ I{σ−0 <τ}V (0, Xσ−0

)

)
,

where in the last inequality we used the definition of V . Hence, taking infimum over all

τ ∈ T ′, we have that for any (u, x) ∈ E,

inf
τ∈T

Eu,x

(∫ τ∧σ−0

0
G(Us, Xs)ds+ I{σ−0 <τ}V (0, Xσ−0

)

)
≤ V (u, x).

On the other hand, from the definition of V , we obtain that for any τ ∈ T ′ and u, x > 0 that

Eu,x

(∫ τ∧σ−0

0
G(Us, Xs)ds+ I{σ−0 <τ}V (0, Xσ−0

)

)

Eu,x

(∫ τ∧σ−0

0
G(Us, Xs)ds+ I{σ−0 <τ} inf

τ ′∈T
EX

σ−0

(∫ τ ′

0
G(Us, Xs)ds

))

= Eu,x

(∫ τ∧σ−0

0
G(Us, Xs)ds+ I{σ<τ} ess inf

τ ′∈T
Eu,x

(∫ τ ′◦σ−0 +σ−0

0
G(Us, Xs)ds

∣∣∣∣Fσ−0
))

= Eu,x

(∫ τ∧σ−0

0
G(Us, Xs)ds+ I{σ<τ} ess inf

τ ′≥σ−0
Eu,x

(∫ τ ′

σ
G(Us, Xs)ds

∣∣∣∣Fσ
))

= Eu,x

(
I{σ−0 >τ}

∫ τ

0
G(Us, Xs)ds+ I{σ−0 <τ} ess inf

τ ′≥σ−0
Eu,x

(∫ τ ′

0
G(Us, Xs)ds

∣∣∣∣Fσ−0
))

,

where the second last equality follows since for any stopping time τ ∈ T ′, we have that

τ ′ ◦ σ−0 + σ−0 ≥ σ−0 and the last since the term I{σ−0 <τ}
∫ σ−0

0 G(Us, Xs)ds is Fσ−0 measurable

and does not depend on τ ′. By using the definition of the essential infimum we have that for

any stopping times τ and τ ′ ≥ σ−0 ,

∫ τ

0
G(Us, Xs)ds ≥ ess inf

τ ′∈T ′

∫ τ

0
G(Us, Xs)ds
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and

ess inf
τ ′≥σ−0

Eu,x

(∫ τ ′

0
G(Us, Xs)ds

∣∣∣∣Fσ−0
)
≥ Eu,x

(
ess inf
τ ′∈T ′

∫ τ ′

0
G(Us, Xs)ds

∣∣∣∣Fσ−0
)
.

Hence, we deduce that for any stopping time τ and any u > 0 and x > 0 that

Eu,x

(∫ τ∧σ−0

0
G(Us, Xs)ds+ I{σ−0 <τ}V (0, Xσ−0

)

)

≥ Eu,x

(
I{σ−0 >τ}

∫ τ

0
G(Us, Xs)ds+ I{σ−0 <τ}Eu,x

(
ess inf
τ ′∈T

∫ τ ′

0
G(Us, Xs)ds

∣∣∣∣Fσ−0
))

= Eu,x

(
I{σ−0 >τ}

∫ τ

0
G(Us, Xs)ds+ I{σ−0 <τ} ess inf

τ ′∈T

∫ τ ′

0
G(Us, Xs)ds

)

≥ Eu,x

(
ess inf
τ ′∈T ′

∫ τ ′

0
G(Us, Xs)ds

)
,

where in the equality we used the fact that for any stopping time the random variable

I{σ−0 >τ}
∫ τ

0 G(Us, Xs)ds is Fσ−0 measurable. It is easy to show that the family of random vari-

ables {−
∫ τ ′

0 G(Us, Xs)ds, τ
′ ∈ T ′} is upwards directed (see for example Peskir and Shiryaev

(2006), pp 29) so that (see e.g. Peskir and Shiryaev (2006), Lemma 1.3 or Section 1.2.1)

there exists a sequence of stopping times {τk : k ≥ 1} such that

ess sup
τ ′∈T ′

[
−
∫ τ ′

0
G(Us, Xs)ds

]
= lim

n→∞

[
−
∫ τk

0
G(Us, Xs)ds

]

with −
∫ τk

0 G(Us, Xs)ds ≤ −
∫ τk+1

0 G(Us, Xs)ds for all k ≥ 1. Hence, by the monotone con-

vergence theorem we have that

Eu,x

(
ess inf
τ ′∈T ′

∫ τ ′

0
G(Us, Xs)ds

)
= −Eu,x

(
ess sup
τ ′∈T ′

[
−
∫ τ ′

0
G(Us, Xs)ds

])

= −Eu,x
(

lim
k→∞

[
−
∫ τk

0
G(Us, Xs)ds

])
= lim

k→∞
Eu,x

(∫ τk

0
G(Us, Xs)ds

)
≥ V (u, x).
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Therefore we deduce that for any u > 0 and x > 0 and for any τ ∈ T ′,

Eu,x

(∫ τ∧σ−0

0
G(Us, Xs)ds+ I{σ−0 <τ}V (0, Xσ−0

)

)
≥ V (u, x)

which implies that

inf
τ∈T ′

Eu,x

(∫ τ∧σ−0

0
G(Us, Xs)ds+ I{σ−0 <τ}V (0, Xσ−0

)

)
≥ V (u, x)

for any u > 0 and x > 0. The proof is now complete.

Proof of Lemma 4.4.14. Let u ≥ 0 fixed. First we note that x 7→ τu,xb is non-increasing. That

implies that for any x ∈ R the limits limh↓0 τ
u,x+h
b and limh↓0 τ

u,x−h
b exist and

lim
h↓0

τu,x+h
b ≤ τu,xb ≤ σu,xb ≤ lim

h↓0
τu,x−hb ,

where σu,xb = inf{t > 0 : Xt + x > b(u+ t)}.

First we show that for any x ∈ R, limh↓0 τ
u,x−h
b = σu,xb . Note that the assertion is clear when

x > b(u), so we assume that x ≤ b(u). From the right continuity of X and the fact that

τu,x−hb decreases when h ↓ 0 we have that

X
limh↓0 τ

u,x−h
b

= lim
h↓0

X
τu,x−hb

= lim
h↓0

[b(u+ τu,x−hb )− x+ h] ≤ b(u+ lim
h↓0

τu,x−hb )− x,

where the last equality follows since b is non increasing. Moreover, we have that for all

s < limh↓0 τ
u,x−h
b and h > 0, Xs < b(u + s) − x + h. The above facts imply that for all

s ∈ [0, limh↓0Xτu,x−hb
], Xs ≤ b(u + s) − x and then limh↓0Xτu,x−hb

≤ σu,xb establishing the

claim. Furthermore, using the fact that τu,xb ≤ σu,xb and the strong Markov property, we have

that

P(τu,xb < σu,xb ) = E(f(u+ τu,xb , Xτu,xb
)) = E(f(u+ τu,xb , b(u+ τu,xb ))),

where f(v, y) = Py(σv,0b > 0). Since b is non increasing we have that σv,0b ≤ τ+
b(v), where

τ+
b(v) = inf{t > 0 : Xt > b(v)} so then for any v ≥ 0 and y ≥ 0, f(v, y) ≤ Py(τ+

b(v) > 0).

Therefore, since 0 is a regular point for (0,∞), we obtain that f(v, b(v)) ≤ Pb(v)(τ
+
b(v) > 0) = 0
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for any v > 0 and hence

P(τu,xb < σu,xb ) = 0.

Therefore we conclude that

lim
h↓0

τu,x−hb = σu,xb = τu,xb a.s.

Now we proceed to show that for any u ≥ 0 and x ∈ R, lim(h1,h2)→(0,0)+ τ
u+h1,x+h2

b = τu,xb .

Take u ≥ 0 and x ∈ R fixed values. Note that since b is non-increasing we have for any

0 ≤ h1 < h and 0 ≤ h2 < h and t ≥ 0 that,

b(u+ h+ t)− h ≤ b(u+ h1 + t)− h2 ≤ b(u+ t).

Then we have that for 0 ≤ h1 < h and 0 ≤ h2 < h,

τu+h,x+h
b ≤ τu+h1,x+h2

b ≤ τu,xb .

So it is enough to show that limh↓0 τ
u+h,x+h
b = τu,xb . Note that τu+h,x+h

b increases when h

decreases so the limit exists and

lim
h↓0

τu+h,x+h
b ≤ τu,xb .

Moreover, limh↓0 τ
u+h,x+h
b = supn≥0 τ

u+1/n,x+1/n
b is a stopping time. Then by quasi-left

continuity property of Lévy processes we have that

X
limh↓0 τ

u+h,x+h
b

= lim
h↓0

X
τu+h,x+h
b

a.s.

= lim
h↓0

[b(u+ h+ τu,x+h
b )− x− h]

≥ lim
h↓0

b(u+ h+ lim
h↓0

τu,x+h
b )− x

= b(u+ lim
h↓0

τu,x+h
b )− x,

where in the inequality we used the fact that b is non-increasing and that for any h > 0,

τu+h,x+h
b ≤ limh↓0 τ

u+h,x+h
b and in the last equality that b is right-continuous. Hence we have
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that limh↓0 τ
u+h,x+h
b ∈ {t > 0 : Xt + x ≥ b(u+ t)} almost surely and then limh↓0 τ

u+h,x+h
b ≥

τu,xb a.s. Hence, we conclude that for any u ≥ 0 and x ∈ R

lim
(h1,h2)→(0,0)+

τu+h1,x+h2

b = τu,xb a.s.

In particular we have that limh↓0 τ
u,x+h
b = τu,xb a.s. for any u ≥ 0 and x ∈ R and then

limh→0 τ
u,x+h
b = τu,xb a.s. holds.

Before proving Theorem 4.4.22 we first consider a technical lemma involving the derivative

of the potential measure. More specifically, for fixed a > 0, x ∈ (0, a) and r ∈ N∪{0} denote

by Ur(a, x,dy) as the measure

Ur(a, x,dy) =

∫ ∞
0

trPx(Xt ∈ dy, t < σ−0 ∧ τ
+
a )dt.

Lemma 4.6.1. Let q ∈ N∪{0} such that
∫

(−∞,−1) |x|
qΠ(dx) <∞. Fix a > 0 and 0 ≤ x ≤ a.

We have that for all r ∈ {0, 1, . . . , q} the measure Ur(a, x,dy) is absolutely continuous with

respect to the Lebesgue measure. It has a density ur(a, x, y) given by

ur(a, x, y) = lim
q↓0

(−1)r
∂r

∂qr

[
W (q)(x)W (q)(a− y)

W (a)(a)
−W (q)(x− y)

]
,

for y ∈ (0, a]. Moreover, for a fixed a > 0 the functions x 7→ Ex((τ+
a )rI{σ−0 <τ+

a }) and x 7→

ur(a, x, y) are differentiable on (0, a) and have finite left derivative at x = a for all y ∈ (0, a)

and r ∈ {0, 1, . . . , q}.

Proof. Let a > 0 and x ∈ (0, a). First we show that for all r ∈ {0, 1, . . . , q} the measure

Ur(a, x,dy) is absolutely continuous with respect to the Lebesgue measure. Take any mea-

surable set A ⊂ (0, a), thus by Fubini’s theorem

∫
A
Ur(a, x,dy) =

∫ ∞
0

trPx(Xt ∈ A, t < σ−0 ∧ τ
+
a )dt

= Ex

(∫ τ+
a ∧σ−0

0
trI{Xt∈A}dt

)
.
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From Lemma 4.2.1 we know that Ex((τ+
a )r) <∞ for all r ∈ {0, 1, . . . , q}. Then by dominated

convergence theorem we have that

∫
A
Ur(a, x,dy) = lim

q↓0
Ex

(∫ τ+
a ∧σ−0

0
tre−qtI{Xt∈A}dt

)

=

∫
A

lim
q↓0

(−1)r
∂r

∂qr

[
W (q)(x)W (q)(a− y)

W (a)(a)
−W (q)(x− y)

]
dy,

where the last equality follows from (1.18). From the convolution representation of W (q)

(see equation (1.7)) the derivatives in the last equation above exist and indeed ur(a, x, y)

is a density of Ur(a, x,dy) for all y ∈ (0, a). Now we proceed to show the differentiation

statements. Note that from equations (1.3) and (1.8) we have that

fx(q) := Ex(e−qτ
+
a I{σ−0 <τ+

a }) = eΦ(q)(x−a) − W (q)(x)

W (q)(a)
,

for any x ∈ (0, a). Since W is differentiable, the proof follows by induction and implicit

differentiation. A similar argument works for the function x 7→ ur(a, x, y).

We also need a technical lemma regarding the convergence of the stopping time τ g,yb

(defined in (4.22)). Recall that in this context we understand b(0) as infinity.

Lemma 4.6.2. For all y ∈ R we have that

lim
h↓0

τ g,y−hb = τ g,yb a.s.

Proof. Recall that for all t ≥ 0, the mapping x 7→ U
(x)
t is non-increasing. Then we have that,

for any y1 ≤ y2 and fixed t ≥ 0, U
(−y1)
t ≤ U (−y2)

t so that b(U
(−y1)
t ) ≥ b(U (−y2)

t ). Thus for any

y1 ≤ y2 we see that

{t > 0 : Xt ≥ b(U (−y1)
t )− y1} ⊂ {t > 0 : Xt ≥ b(U (−y2)

t )− y2}.

Therefore we conclude that τ g,y2

b ≤ τ g,y1

b when y1 ≤ y2. That implies that for all y ∈ R,

limh↓0 τ
g,y−h
b exists and

σg,yb ≤ lim
h↓0

τ g,y−hb ,
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where σg,yb = inf{t > 0 : Xt > b(U
(−y)
t ) − y}. Note that since the sequence τ g,y−hb decreases

when h ↓ 0 we have that for all s ∈ [0, limh↓0 τ
g,y−h
b ) that Xs < b(U

(−y+h)
s ) − y + h for all

h > 0. By taking h ↓ 0 and by right-continuity of the mapping x 7→ U
(x)
t and the continuity

of b we conclude that Xs ≤ b(U (−y)
s )− y for all s ∈ [0, limh↓0 τ

g,y−h
b ). Therefore we have that

limh↓0 τ
g,y−h
b = σg,yb .

Hence it is only left to show that τ g,yb = σg,yb a.s. Note that we have the inequality

τ g,yb ≤ σg,yb , then by the strong Markov property applied to the time τ g,yb we have that

P(τ g,yb < σg,yb ) = Ey(P(τ g,0b < σg,0b |τ
g,0
b ))

= Ey(f(U
τg,0b

, b(U
τg,0b

)),

where f(u, x) = Pu,x(σg,0b > 0). Note that for any u > 0 and x > 0,

Pu,x(σg,0b > 0) = Pu,x(σg,0b > 0, σu,0b ≤ σ−0 ) + Pu,x(σg,0b > 0, σu,0b > σ−0 )

= Px(σu,0b > 0, σu,0b ≤ σ−0 ) + Pu,x(σg,0b > 0, σu,0b > σ−0 )

≤ Px(σu,0b > 0) + Px(σu,0b > σ−0 )

≤ Px(τ+
b(u) > 0) + Px(τ+

b(u) > σ−0 )

where σu,0b = inf{t > 0 : Xt > b(u + t)} and the last inequality follows since b is non-

increasing and then σu,0b ≤ τ+
b(u). Hence, since 0 is a regular point for (0,∞), we have

that for any u > 0 such that b(u) > 0, Pu,b(u)(σ
g,0
b > 0) = 0. Then we conclude that

P(τ g,yb < σg,yb ) = E(f(U
τg,0b

, b(U
τg,0b

)) = 0, where we used that b(U
τg,0b

) > 0. The proof is then

complete.

Hence, we are ready to proof that the partial derivatives of V at (u, b(u)) exist and are

equal to zero.

Proof of Theorem 4.4.22. We first show that for all u > 0 such that b(u) > 0,

∂

∂u
V (u, b(u)) = 0.
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From the proof of Lemma 4.4.15 we know that for any h > 0

0 ≤ V (u, b(u))− V (u− h, b(u))

h
≤ Eb(u)

(∫ τ+
b(u−h)

0

[(u+ s)p−1 − (u− h+ s)p−1]

h
ds

)
.

The result then follows taking h ↓ 0 and from the fact that the function u 7→ up is differ-

entiable on [0,∞) for all p > 1, the dominated convergence theorem and the fact that b is

continuous.

Next we proceed to show that derivative on the spatial argument exists and is zero, i.e.

∂

∂x
V (u, b(u)) = 0.

Let x > 0, u > 0 and 0 < ε < 1 such that x− ε > 0 and b(u) > 0. From equation (4.23) we

know that

V (u, x− ε)

= E

(∫ τu,x−εb ∧σ−ε−x

0
G(u+ s,Xs + x− ε)ds

)

+ E

(
I{σ−ε−x<τu,x−εb }

∫ τg,x−εb

σ−ε−x

G(U (ε−x)
s , Xs + x− ε)ds

)

= Ex

(∫ τu,−εb ∧σ−ε

0
G(u+ s,Xs − ε)ds

)
+ Ex

(
I{σ−ε <τu,−εb }

∫ τg,−εb

σ−ε

G(U (ε)
s , Xs − ε)ds

)

= Ex

(∫ τu,−εb ∧σ−ε

0
G(u+ s,Xs − ε)ds

)
+ Ex

(
I{σ−ε <τu,−εb }

∫ τg,−εb ∧σ−0

σ−ε

G(U (ε)
s , Xs − ε)ds

)

+ Ex

(
I{σ−0 <τg,−εb }I{σ−ε <τu,−εb }

∫ τg,−εb

σ−0

G(U (ε)
s , Xs − ε)ds

)
,

where in the last inequality we used that σε < σ−0 under the measure Px. On the other hand,

define the stopping time τ∗ := τu,−εb I{σ−ε >τu,−εb } + τ g,−εb I{σ−ε <τu,−εb }. From equation (4.15) we

206



have that

V (u, x) ≤ Ex

(∫ τ∗∧σ−0

0
G(u+ s,Xs)ds

)
+ Ex

(
I{σ−0 <τ∗}

∫ τ∗

σ−0

G(Us, Xs)ds

)

= Ex

(∫ τu,−εb ∧σ−ε

0
G(u+ s,Xs)ds

)
+ Ex

(
I{σ−ε <τu,−εb }

∫ τg,−εb ∧σ−0

σ−ε

G(u+ s,Xs)ds

)

+ Ex

(
I{σ−0 <τg,−εb }I{σ−ε <τu,−εb }

∫ τg,−εb

σ−0

G(Us, Xs)ds

)
,

where we again used that σ−ε ≤ σ−0 . Hence for any u > 0, 0 < x ≤ b(u) and 0 < ε < 1 such

that x− ε > 0 and b(u) > 0,

0 ≤ V (u, x)− V (u, x− ε)
ε

≤ R(ε)
1 (u, x) +R

(ε)
2 (u, x) +R

(ε)
3 (u, x),

where

R
(ε)
1 (u, x) :=

1

ε
Ex

(∫ τu,−εb ∧σ−ε

0
[G(u+ s,Xs)−G(u+ s,Xs − ε)]ds

)
≥ 0,

R
(ε)
2 (u, x) :=

1

ε
Ex

(
I{σ−ε <τu,−εb }

∫ τg,−εb ∧σ−0

σ−ε

[G(u+ s,Xs)−G(U (ε)
s , Xs − ε)]ds

)
≥ 0,

R
(ε)
3 (u, x) :=

1

ε
Ex

(
I{σ−0 <τg,−εb }I{σ−ε <τu,−εb }

∫ τg,−εb

σ−0

[G(Us, Xs)−G(U (ε)
s , Xs − ε)]ds

)
≥ 0.

We will show that limε↓0R
(ε)
i (u, x) = 0 for i = 1, 2, 3. From the fact that b is non-increasing

we have that τu,−εb ≤ τ+
b(u)+ε and then for all u > 0 and x = b(u) we have that

R
(ε)
1 (u, b(u)) ≤ 1

ε
Eb(u)

(∫ τ+
b(u)+ε

∧σ−ε

0
(u+ s)p−1ψ′(0+)[W (Xs)−W (Xs − ε)]ds

)

− 1

ε
Eb(u)−ε

(∫ τ+
b(u)
∧σ−0

0
[EXs+ε(gp−1)− EXs(gp−1)]ds

)

=
1

ε
Eb(u)

(∫ τ+
b(u)+ε

∧σ−ε

0
(u+ s)p−1ψ′(0+)[W (Xs)−W (Xs − ε)]ds

)

− 1

ε

∫
(0,b(u))

[Ez+ε(gp−1)− Ez(gp−1)]

∫ ∞
0

Pb(u)−ε(Xs ∈ dz, t < τ+
b(u) ∧ σ

−
0 )ds
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Using the density of the 0-potential measure of X exiting the interval [0, b(u)] given in equa-

tion (1.18) we obtain that

R
(ε)
1 (u, b(u))

≤ Eb(u)

(∫ τ+
b(u)+ε

∧σ−ε

0
(u+ s)p−1ψ′(0+)

W (Xs)−W (Xs − ε)
ε

ds

)

−
∫ b(u)−ε

0
[Ez+ε(gp−1)− Ez(gp−1)]

1

ε

[
W (b(u)− ε)W (b(u)− z)

W (b(u))
−W (b(u)− ε− z)

]
dz

− 1

ε

∫ b(u)

b(u)−ε
[Ez+ε(gp−1)− Ez(gp−1)]

[
W (b(u)− ε)W (b(u)− z)

W (b(u))

]
dz.

Note that for all s < τ+
b(u)+ε ∧ σ

−
ε , we have Xs ∈ (ε, b(u) + ε). Then using the fact that

W ∈ C1((0,∞)), the function z 7→ Ez(gp−1) is continuous, limε↓0 τ
+
b(u)+ε∧σ

−
ε = τ+

b(u)∧σ
−
0 = 0

a.s. under Pb(u) and the dominated convergence theorem we conclude that

lim
ε↓0

R
(ε)
1 (u, b(u)) = 0.

Now we show that limε↓0R
(ε)
2 (u, b(u)) = 0. Take 0 < x ≤ b(u). Then using the inequal-

ity G(u, x) ≤ up−1, the fact that for s < σ−0 , Xs > 0 (then −E−1(gp−1) = G(0,−1) ≤

G(U
(ε)
s , Xs − ε)) and the strong Markov property at time σ−ε we get that

R
(ε)
2 (u, x) ≤ 1

ε
Ex
(
I{σ−ε <τu,−εb }[τ

g,−ε
b ∧ σ−0 − σ

+
ε ][(u+ τ g,−εb ∧ σ−0 )p−1 + E−1(gp−1)]

)
≤ 1

ε
Ex
(
I{σ−ε <τ+

b(u)+ε
}f(σ−ε , Xσ−ε

)

)
,

where f is given for all t ≥ 0 and x ∈ R by

f(t, x) := [2p−1(u+ t)p−1 + E−1(gp−1)]Ex(τ g,−εb ∧ σ−0 ) + 2p−1Ex((τ g,−εb ∧ σ−0 )p) <∞,

due to Lemma 4.4.8. Note that Ex(τ g,−εb ∧ σ−0 ) = Ex((τ g,−εb ∧ σ−0 )p) = 0 for all x ≤ 0. Thus,

from (4.55) there exists M > 0 such that

max{Ex(τ g,−εb ∧ σ−0 ),Ex((τ g,−εb ∧ σ−0 )p)} ≤M

for all x ≤ ε. Hence from the compensation formula for Poisson random measures we get
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that

R
(ε)
2 (u, x)

≤ max{Eε(τ g,−εb ∧ σ−0 ),Eε((τ g,−εb ∧ σ−0 )p)}

× 1

ε
Ex
(
I{σ−ε <τ+

b(u)+ε
}[2

p−1(u+ τ+
b(u)+ε)

p−1 + E−1(gp−1) + 2p−1]

)
+M

1

ε
Ex
(
I{σ−ε <τ+

b(u)+ε
}[2

p−1(u+ σ−ε )p−1 + E−1(gp−1) + 2p−1]I{0<X
σ−ε

<ε}

)
= max{Eε(τ g,−εb ∧ σ−0 ),Eε((τ g,−εb ∧ σ−0 )p)}

× 1

ε
Ex
(
I{σ−ε <τ+

b(u)+ε
}[2

p−1(u+ τ+
b(u)+ε)

p−1 + E−1(gp−1) + 2p−1]

)
+
M

ε
Ex−ε

(∫ τ+
b(u)
∧σ−0

0

∫
(−∞,0)

[2p−1(u+ t)p−1 −G(0,−1) + 2p−1]I{−ε<Xt+y<0}Π(dy)dt

)
= max{Eε(τ g,−εb ∧ σ−0 ),Eε((τ g,−εb ∧ σ−0 )p)}

× 1

ε
Ex
(
I{σ−ε <τ+

b(u)+ε
}[2

p−1(u+ τ+
b(u)+ε)

p−1 + E−1(gp−1) + 2p−1]

)
+

∫ b(u)

0

∫
(−ε−z,−z)

M

ε

∫ ∞
0

[2p−1(u+ t)p−1 + E−1(gp−1) + 2p−1]

× Px−ε(Xt ∈ dz, t < τ+
b(u) ∧ σ

−
0 )dtΠ(dy).

Letting x = b(u) and tending ε ↓ 0 we get from Lemma 4.6.1 that

lim
ε↓0

R
(ε)
2 (u, b(u)) = 0.

Lastly, using the Markov property at time σ−0 and the fact that τ g,0b ≤ τ g,−εb we get that

R
(ε)
3 (u, x) =

1

ε
Ex

(
I{σ−0 <τg,−εb }I{σ−ε <τu,−εb }EXσ−0

[∫ τg,−εb

0
[G(Us, Xs)−G(U (ε)

s , Xs − ε)]ds

])
=

1

ε
Ex
(
I{σ−0 <τg,−εb }I{σ−ε <τu,−εb }[V (0, Xσ−0

)− V (0, Xσ−0
− ε)]

)
+

1

ε
Ex

(
I{σ−0 <τg,−εb }I{σ−ε <τu,−εb }EXσ−0

[∫ τg,−εb

τg,0b

G(Us, Xs)ds

])
≤ 1

ε
Ex
(
I{σ−ε <τu,−εb }[V (0, Xσ−0

)− V (0, Xσ−0
− ε)]

)
+

1

ε
Ex
(
I{σ−0 <τg,−εb }I{σ−ε <τu,−εb }EXσ−0

(
[τ g,−εb − τ g,0b ](τ g,−εb )p−1

))
,
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where we used the fact that G(Us, Xs) ≤ sp−1 ≤ (τ g,−εb )p−1 for all s ∈ [τ g,0b , τ g,−εb ]. We can

easily deduce from (4.19) that for any x < 0,

0 ≤ ∂

∂x
V (0, x) =

∫
[0,∞)

Ex−u(gp−1)W (du).

Then for all x < 0, x 7→ V (0, x) is differentiable and has left derivative at zero. Using Lemma

4.2.2 and the fact that P(−X∞ ∈ du) = ψ′(0+)W (du) we get that for all x < 0,

∂

∂x
V (0, x) ≤ 2p−1[E(gp−1) +Ap−1] + 4p−1Cp−1E((−X∞)p−1)

ψ′(0+)
+

4p−1Cp−1

ψ′(0+)
|x|p−1.

Thus since |Xσ−0
| ≤ |X∞| and Ex((−X∞)p−1) <∞ for all x ∈ R (see Lemma 4.2.1) we have

that Ex( ∂
∂xV (0, Xσ−0

)) is locally bounded. Moreover, by the dominated convergence theorem

we can also conclude that for each x < 0, ∂
∂xV (0, x) is continuous. Hence, by the dominated

convergence theorem and the right continuity of b we have that

lim
ε↓0

1

ε
Ex
(
I{σ−ε <τu,−εb }[V (0, Xσ−0

)− V (0, Xσ−0
− ε)]

)
= Ex

(
I{σ−0 <τu,0b }

∂

∂x
V (0, Xσ−0

)

)
.

In particular taking x = b(u) we have that equation above is equal to zero. On the other

hand, conditioning on σ−ε we have that

1

ε
Ex
(
I{σ−0 <τg,−εb }I{σ−ε <τu,−εb }EXσ−0

(
[τ g,−εb − τ g,0b ](τ g,−εb )p−1

))
=

1

ε
Ex
(
I{σ−ε <τu,−εb }f2(ε,Xσ−ε

)
)
,

where

0 ≤ f2(ε, x) = Ex
(
I{σ−0 <τg,−εb }EXσ−0

(
[τ g,−εb − τ g,0b ](τ g,−εb )p−1

))
.

We show that f2 is finite function. For all y ≤ 0 we have that conditioning with respect to

τ+
0 and the strong Markov property of Lévy processes

Ey
(

[τ g,−εb − τ g,0b ](τ g,−εb )p−1
)
≤ 2pE((τ g,−εb )p) + 2pEy((τ+

0 )p)

≤ 2pE((τ g,−εb )p) + 2pAp + 2pCp|y|p.
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where the last inequality follows from Lemma 4.2.2. Hence, since |Xσ−0
| ≤ |X∞| under the

event {σ−0 <∞} we have that

f2(ε, x) ≤

 2pE((τ g,−εb )p) + 2pAp + 2pCpEx(|X∞|p) x > 0,

2pE((τ g,−εb )p) + 2pAp + 2pCp|x|p x ≤ 0.
(4.56)

From Lemmas 4.2.1 and 4.4.8 we conclude that f2(ε, x) is a finite function. Moreover from the

fact that b is continuous and x 7→ U
(x)
t is right continuous we deduce from Lemma 4.6.2 that

limε↓0 τ
g,−ε
b = τ g,0b a.s. and then by the dominated convergence theorem, limε↓0 f2(ε, x) = 0

for all x ∈ R. Moreover, using the compensation formula for Poisson random measures we

get that

1

ε
Ex
(
I{σ−ε <τu,−εb }f2(ε,Xσ−ε

)
)

=
1

ε
Ex
(
I{σ−ε <τ+

b(u)+ε
}f2(ε,Xσ−ε

)

)
= f2(ε, ε)

Px(σ−ε < τ+
b(u)+ε, Xσ−ε

= ε)

ε

+
1

ε
Ex

(∫
[0,∞)

∫
(−∞,0)

f2(ε,Xt− + y)I{Xt−<b(u)+ε}I{Xt−>ε}I{Xt−+y≤ε}N(dt,dy)

)

≤ f2(ε, ε)
Px(σ−ε < τ+

b(u)+ε)

ε

+
1

ε
Ex−ε

(∫ ∞
0

∫
(−∞,0)

f2(ε,Xt + ε+ y)I{t<τ+
b(u)
∧σ−0 }

I{Xt+y≤0}Π(dy)dt

)
.

From the 0-potential density of the process killed on exiting [0, b(u)] (see equation (1.18))
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and from equation (1.8) we obtain that for x ≥ ε,

1

ε
Ex
(
I{σ−ε <τu,−εb }f2(ε,Xσ−ε

)
)

≤ f2(ε, ε)
W (b(u))−W (x− ε)

εW (b(u))

+
1

ε

∫
(0,b(u))

∫
(−∞,0)

f2(ε, z + ε+ y)I{z+y≤0}Π(dy)

∫ ∞
0

Px−ε(Xt ∈ dz, t < τ+
b(u) ∧ σ

−
0 )dt

= f2(ε, ε)
W (b(u))−W (x− ε)

εW (b(u))

+
1

ε

∫ x−ε

0

[
W (x− ε)W (b(u)− z)

W (b(u))
−W (x− ε− z)

] ∫
(−∞,−z)

f2(ε, z + ε+ y)Π(dy)dz

+
1

ε

∫ b(u)

x−ε

W (x− ε)W (b(u)− z)
W (b(u))

∫
(−∞,−z)

f2(ε, z + ε+ y)Π(dy)dz

Note that since Π is finite on sets of the form (−∞,−δ) for all δ > 0, Lemma 4.2.1 and

equation (4.56) we have that the integrals above with respect to Π are finite and bounded.

Hence, taking x = b(u) and from the dominated convergence theorem we conclude that

lim
ε↓0

1

ε
Eb(u)

(
I{σ−ε <τu,−εb }g(ε,Xσ−ε

)
)
≤ 0.

Hence, we also have that

lim
ε↓0

R3(ε)(u, b(u)) = 0

and the conclusion of the Lemma holds.

4.7 Conclusions

The aim of this chapter is to predict the last zero, g, of a spectrally negative Lévy process

drifting to infinity in a more general sense than the one studied in Baurdoux and Pedraza

(2020b). For any p > 1, we have shown that a stopping time that minimises the Lp distance

to g depends on Ut = t − gt, the current excursion above the level zero at time t ≥ 0, as

studied in Chapter 2. That is, we have showed that

V∗ = E (|τD − g|p) ,
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where τD = inf{t ≥ 0 : Xt ≥ b(Ut)} and b is a non-increasing, non-negative and continuous

function as characterised in Theorem 4.4.23. Moreover, the function b is infinity at the origin

and tends to zero at infinity. Note that since Ut = 0 when Xt ≤ 0, this means that the length

of the current positive excursion keeps restarting whenever X visits the negative half line

until there is a sufficiently large positive excursion. As we have in Chapter 1, an important

drawback of this prediction is that XτD > 0 (since b is non-negative), implying that τD and

g can never coincide in value.

A key feature of the optimal stopping problem (4.14) is that, since the process U restarts

when X visits the set (−∞, 0), the value V (0, 0) plays an important role in its solution.

Similarly of what we have in Chapter 1, (V, b, V (0, 0), ub) is uniquely characterised by a

system of non linear integral equations within a certain family of functions. For instance, the

inequality

∫
(−∞,0)

Ṽ (u, x+ y)Π(dy) +G(u, x) ≥ 0 on D

is crucial for the submartingale property of the process {V (Ut, Xt) +
∫ t

0 G(Us, Xs)ds, t ≥ 0}

to be satisfied. When X corresponds to a Brownian motion with drift (then Π = 0), such

inequality is trivially satisfied. We have the conjecture that when σ > 0, such inequality can

be disregarded for the uniqueness part of Theorem 4.4.23. This is left for future research.
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Chapter 5

On the downcrossings by jump to

the negative half line for spectrally

negative Lévy processes

Abstract

For a spectrally negative Lévy process, using perturbation argument for

Lévy processes (see Dassios and Wu (2011)), we find the joint Laplace transform

of the local time at zero and the number of times that the process crosses below

the level zero by a jump from the positive half line before an exponential time.

We then find the joint Laplace transform of the i-th downcrossing by jump

and its overshoot. For Lévy insurance risk processes, we use this result to find

a formula for the expected present value of the total economic costs of the

downcrossings by jump before an exponential time.

5.1 Introduction

Spectrally negative Lévy processes are popular in risk theory. In particular, they are used

to model the capital of an insurance company. The Cramér–Lundberg model used in the

classical risk theory assumes that the insurance company collects premium constantly at

rate c > 0, the number of claims are modelled by a Poisson process N = {Nt, t ≥ 0} with

rate λ > 0 whereas the size of the claims are modelled by a sequence of independent and

identically distributed random variables {Yi, i ≥ 0} which are independent of N . The capital
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of the insurance company at any time t ≥ 0 is then given by

Xt = x+ ct−
Nt∑
i=1

Yi,

where x ∈ R is the initial capital. More general models also include a stochastic perturbation

modelled by a Brownian motion or processes that belong to the class of spectrally negative

Lévy processes (see Section 2.7.1 in Kyprianou (2014)).

In the classical risk theory, the study of the first moment of ruin τ−0 , i.e. the first time the

process becomes negative is of interest. If we assume that the process has both a diffusion

component and jumps, one question that arises naturally, is whether the moment of ruin

is made by crossing the boundary continuously or as a consequence of a sufficiently large

jump from the positive half line. The first event can happen as a consequence of an insuf-

ficient premium rate or a small initial capital whereas the second can be understood as an

“unexpected” ruin which may be caused by a big claim or a catastrophic event. Moreover,

assuming that the insurance company can support a negative capital for a while, then the

insurance company can return rapidly to have solvency when the ruin occurs due to continu-

ous crossing of the boundary and it is when the ruin occurs due to big jump that the process

takes a strictly positive amount of time to have a positive capital. It is then useful study

the distribution of the number of times the ruin occurs as a consequence of a sufficiently big

jump in a finite time horizon.

A function that is of interest in the literature is the Gerber–Shiu function (see Gerber

and Shiu (1997) and Gerber and Shiu (1998)) which is given by

Ex
(
e−rτ

−
0 ω(−Xτ−0

, Xτ−0 −
)I{τ−0 <∞}

)
,

where r > 0 is the force of interest, the term −Xτ−0
is the deficit at ruin and Xτ−0 −

:=

limh↓0Xτ−0 −h
is the wealth prior ruin. The function ω is a measurable non-negative function

chosen such that ω(−Xτ−0
, Xτ−0 −

) represents the economics costs of the insurer at the moment

of ruin. Formulas for calculating this function have been derived in the literature for several
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models (see Asmussen and Albrecher (2010) for a review of them). For the spectrally negative

case, Biffis and Morales (2010) derived a formula for the generalised penalty function which

includes the last minimum before ruin. Cai et al. (2009) considered the expectation of the

total discounted claim costs up to the time of ruin in a Poisson process with drift setting.

Motivated by the latter, we derive a formula for the expected present value of the total

economic costs of all the downcrossing by jumps below the level zero before an independent

exponential time, i.e.

Ex

Jep∑
i=1

e−rκiω(Xκi , Xκi−)

 ,

where Jt is the number of downcrossings by jump below the level zero at time t ≥ 0, {κi, i ≥ 1}

are the consecutive times in which the downcrossing by jumps occur and ep is an exponential

distribution with parameter p ≥ 0 independent of X.

The main contribution of this paper is the derivation the Laplace transform of the random

variable Jep (see Theorem 5.2.1) for a spectrally negative Lévy process X of finite variation.

In order to count the number of downcrossing by jumps, we can define a sequence of stopping

times at which the process has positive and negative excursions away from zero. With the

help of the Markov property, the fact that X creeps upwards and the lack of memory property

of the exponential distribution, we can derive the distribution of Jep . However, when X is a

process of infinite variation, this method is no longer useful. Using a perturbation method as

in Dassios and Wu (2011), we can “perturb” the process X in such a way that the number of

zeroes is at most countable. We can then evaluate the distribution of Jep by a limit argument.

It turns out that Jep is only finite when the jumps are of finite variation and its distribution

can be studied as the product of a Bernoulli random variable and an independent geometric

distribution (see Remark 5.2.2).

This chapter is organised as follows. In section 5.2, we define formally Jt as the number

of downcrossing by jumps to the negative half line of a spectrally negative Lévy process in

terms of the Poisson random measure. We then derive the joint Laplace transform of the

local time at 0 and the number of downcrossings at an independent exponential time (see
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Theorem 5.2.1). We then derive in Corollary 5.2.3, the joint Laplace transform of the i-th

downcrossing and its overshoot. In Section 5.3, we derive a formula for the expected presented

value of the total economic costs of all the downcrossing by jumps below the level zero before

an independent exponential time (see Corollaries 5.3.1 and 5.3.2). The proof of Theorem

5.2.1 uses the perturbation method for Lévy processes that was studied in Section 3.3.1.

We finish this section by introducing some additional notations.

5.2 Downcrossings by jumps

Throughout this chapter we use the notation and the preliminary results presented in Chap-

ter 1.1. Let X be a spectrally negative Lévy process, that is, a Lévy process starting from

0 with only negative jumps and non-monotone paths, defined on a filtered probability space

(Ω,F ,F,P) where F = {Ft, t ≥ 0} is the filtration generated by X which is naturally enlarged

(see Definition 1.3.38 in Bichteler (2002)). We suppose that X has Lévy triplet (µ, σ,Π)

where µ ∈ R, σ ≥ 0 and Π is a measure (Lévy measure) concentrated on (−∞, 0) satisfying∫
(−∞,0)(1 ∧ x

2)Π(dx) <∞.

For any p, β ≥ 0 we define

θ(p)(β) =
δ − p−ψ(β)

Φ(p)−β + σ2

2 (Φ(p) + β)

δ + σ2Φ(p)
, (5.1)

where δ is defined in (1.2). When p = ψ(β) or δ = ∞, the above quantity is understood in

the limiting sense, i.e. when δ =∞, θ(p)(β) = 1 for all p, β ≥ 0 and

θ(p)(Φ(p)) =
δ − ψ′(Φ(p)) + σ2Φ(p)

δ + σ2Φ(p)

for any p ≥ 0.

We denote by Jt the number of downcrossings below the level zero of the process made

by jumps , i.e.
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Jt :=

∫
[0,t]

∫
(−∞,0)

I{Xs−>0}I{Xs−+y<0}N(ds× dy). (5.2)

Clearly Jt = 0 a.s. for all t ≥ 0 when Π = 0. Henceforth, we will assume that Π 6= 0.

Moreover, from the fact that N takes values in {0, 1, 2, . . .} and from the strong Markov

property of X, we can easily deduce that Jt ∈ {0, 1, 2, . . .}. In the next Theorem, we find the

joint Laplace transform of the local time at zero and the number of downcrossings by jump

at an exponential time. For ease of reading, the proof is presented in Section 5.4.

Theorem 5.2.1. Let X be a spectrally negative Lévy process. Then the joint the Laplace

transform of the local time and the number of downcrossings by jump at an exponential time

is given for all α, β ≥ 0 and x ≤ 0 by

Ex(e−αLep−βJep ) = 1 + eΦ(p)x
(e−β − 1)

(
δ + Φ(p)σ

2

2 −
p

Φ(p)

)
− ασ2

ασ2 + ψ′(Φ(p)) + (e−β − 1) [ψ′(Φ(p))− Φ(p)σ2 − δ]
(5.3)

and for x > 0,

Ex(e−αLep−βJep ) = 1− I(p,0)(x) + e−β
[
I(p,0)(x)− eΦ(p)xI(p,Φ(p))(x)

]
+
[
e−β[eΦ(p)xI(p,Φ(p))(x)− C(p)(x)] + C(p)(x)

]
E(e−αLep−βJep ), (5.4)

where ep is an exponential random variable with parameter p ≥ 0 and the functions I and

C are given in (1.12) and (1.15) respectively. The terms δ and σ should be understood in

the limiting sense when X has jumps of infinite variation or in the absence of Brownian

component.

Remark 5.2.2. From the proof of Theorem 5.2.1, we can simplify formulas (5.3) and (5.4)

for specific cases depending on the characteristics of X. For instance, if X is of finite varia-

tion, we have that Lt = 0 for all t ≥ 0 and

Ex(e−βJep ) =

 1 + (e−β − 1)I(p,0)(x) + e−βeΦ(p)xI(p,Φ(p))(x)
(e−β−1)

(
δ− p

Φ(p)

)
δ−e−β [δ−ψ′(Φ(p))]

, x > 0

1 + eΦ(p)x
(e−β−1)

(
δ− p

Φ(p)

)
δ−e−β [δ−ψ′(Φ(p))]

, x ≤ 0

.
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When X has jumps of infinite variation, we have that δ =∞ so that when β > 0,

Ex(e−βJep ) =

 1− I(p,0)(x) + e−β
[
I(p,0)(x)− eΦ(p)xI(p,Φ(p))(x)

]
, x > 0

1− eΦ(p)x, x ≤ 0
.

which implies that

Px(Jep =∞) =

 eΦ(p)xI(p,Φ(p))(x), x > 0

eΦ(p)x, x ≤ 0
.

Moreover, when we take α = 0, we can rewrite equation (5.3) as

Ex(e−βJep ) = 1 + eΦ(p)x (e−β − 1)θ(p)(0)

1− e−βθ(p)(Φ(p))
,

where the function θ(p) is given in (5.1). A close inspection of the formula above tells us

that, under the measure P, the random variable Jep can be seen as the product of a Bernoulli

random variable with success probability πB := θ(p)(0) and an independent geometric random

variable with support on the set {1, 2, . . .} and success probability πG := 1 − θ(p)(Φ(p)), that

is,

P(Jep = 0) = 1− πB =
Φ(p)σ

2

2 + p
Φ(p)

Φ(p)σ2 + δ

P(Jep = n) = πBπG[1− πG]n−1

=

δ + Φ(p)σ
2

2 −
p

Φ(p)

Φ(p)σ2 + δ

[ ψ′(Φ(p))

Φ(p)σ2 + δ

] [
Φ(p)σ2 + δ − ψ′(Φ(p))

Φ(p)σ2 + δ

]n−1

, n ≥ 1.

In any case, we have that for any x ∈ R and α ≥ 0,

Ex(e−αLep ) = 1− eΦ(p)xI(p,Φ(p))(x)
ασ2

ασ2 + ψ′(Φ(p))
.

Note that the result above agreess with the one derived in Li and Zhou (2020) (see Corollary

3.4) up to a multiplicative constant.

Now we proceed to study the Laplace transform of i-th time that the process X makes

a downcrossing by jump below the level zero from the interval [0,∞), i.e. we study the

distribution of the random time

219



κi := inf{t ≥ 0 : Jt ≥ i},

for i ∈ {0, 1, 2, . . .}, where as usual inf ∅ =∞.

Recall t 7→ Jt is non negative and non decreasing. We then have that κ0 = 0 and κi ≤ κi+1

for all i ≥ 0. Moreover, it is easy to show that for each t ≥ 0, Jt is Ft measurable and a

right-continuous process. These facts imply that for each i ≥ 0, the random variable κi is a

stopping time with respect to the filtration {Ft, t ≥ 0}.

We calculate joint Laplace transform of the random vector (κi, Xκi). The method is

mainly based on an exponential change of measure technique and the result derived in The-

orem 5.2.1.

Corollary 5.2.3. Let X be any spectrally negative Lévy process. Then for any p ≥ 0 and

β ≥ 0,

Ex(e−pκ1+βXκ1 I{κ1<∞}) =

 θ(p)(β)eΦ(p)x x ≤ 0

eβxI(p,β)(x)− C(p)(x)[1− θ(p)(β)] x > 0
. (5.5)

Moreover, for i ≥ 2, we have that for any p ≥ 0 and β ≥ 0,

Ex(e−pκi+βXκi I{κi<∞})

= θ(p)(β)θ(p)(Φ(p))i−2Ex(e−pκ1+Φ(p)Xκ1 I{κ1<∞})

=

 θ(p)(β)θ(p)(Φ(p))i−1eΦ(p)x x ≤ 0

θ(p)(β)θ(p)(Φ(p))i−2
[
eΦ(p)xI(p,Φ(p))(x)− C(p)(x)[1− θ(p)(Φ(p))]

]
x > 0

,

where the functions I, C and θ are given in (1.12), (1.15) and (5.1) respectively.

Remark 5.2.4. Note that when X has jumps of infinite variation, we have that δ =∞ and

then θ(p)(β) = 1 for all p, β ≥ 0. We then have that for all p ≥ 0 and β ≥ 0

Ex(e−pκ1+βXκ1 I{κ1<∞}) =

 eΦ(p)x x ≤ 0

eβxI(p,β)(x) x > 0
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and

Ex(e−pκi+βXκi I{κi<∞}) = Ex(e−pκ1+Φ(p)Xκ1 I{κ1<∞}).

for all i ≥ 2. This agrees with the fact that when X has jumps of infinite variation, τ−0 = 0

P-a.s. even when there is no Brownian motion component and then κi
d
= τ1 for all i ≥ 2,

where τ1 = inf{t ≥ κ1 : Xt > 0}.

Proof. Let p ≥ 0 and ep be an independent exponential random variable with parameter p.

Note that the event {κ1 < ep} is equivalent to {Jep ≥ 1}. Then for all x ∈ R, we have that

Ex(e−pκ1I{κ1<∞}) = Px(κ1 < ep)

= 1− Px(Jep = 0).

Taking α = 0 and β →∞ on equation (5.3), we obtain that

Ex(e−pκ1I{κ1<∞}) =

 eΦ(p)xθ(p)(0) x ≤ 0

I(p,0)(x)− C(p)(x)[1− θ(p)(0)] x > 0
. (5.6)

Take β ≥ 0, using an exponential change of measure, we get

Ex(e−pκ1+βXκ1 I{κ1<∞}) = Ex(e−ψ(β)κ1+βXκ1e−(p−ψ(β))κ1I{κ1<∞})

= eβxEβx(e−(p−ψ(β))κ1I{κ1<∞}),

where Pβ is defined in (1.22). Recall that under Pβ, X has Lévy triplet

(
µ− σ2β −

∫
(−1,0)

y(eβy − 1)Π(dy), σ2, eβyΠ(dy)

)
.

and then Φβ(q) = Φ(q + ψ(β)) − β for all q ≥ −ψ(β)). Moreover, it can be shown that

θ
(q)
β (λ) = θ(q+ψ(β))(λ+β) for all q ≥ −ψ(β) and λ ≥ 0. Hence, using (5.6) under Pβx, we have
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that for x ≤ 0,

Ex(e−pκ1+βXκ1 I{κ1<∞}) = eβxEβx(e−(p−ψ(β))κ1I{κ1<∞})

= eβxeΦβ(p−ψ(β))xθ
(p−ψ(β))
β (0)

= eΦ(p)xθ(p)(β).

Similarly, for x > 0, we obtain from equation (5.6) under Pβx and the definition of I and C

(see equations (1.12) and (1.15)) that

Ex(e−pκ1+βXκ1 I{κ1<∞})

= eβxEβx(e−(p−ψ(β))κ1I{κ1<∞})

= eβxZ
(p−ψ(β))
β (x)− eβx p− ψ(β)

Φ(p)− β
W

(p−ψ(β))
β (x)

− eβxσ
2

2
{W (p−ψ(β))′

β (x)− (Φ(p)− β)W
(p−ψ(β))
β (x)}[1− θ(p−ψ(β))

β (0)],

where W
(q)
β and Z

(q)
β are the scale functions of X under the measure Pβ. Computing the

Laplace transform of W
(p−ψ(β))
β , we can easily show that W

(p−ψ(β))
β (x) = e−βxW (p)(x) for all

x ∈ R. Thus, for all β, p ≥ 0 and x > 0,

Ex(e−pκ1+βXκ1 I{κ1<∞}) = eβx + (p− ψ(β))

∫ x

0
eβ(x−y)W (p)(y)dy − p− ψ(β)

Φ(p)− β
W (p)(x)

+ C(p)(x)[θ(p)(β)− 1]

= eβxI(p,β)(x)− C(p)(x)[1− θ(p)(β)].

Now we assume that i ≥ 2. Conditioning with respect to the filtration at time κi−1, we get

that for any p ≥ 0 and β ≥ 0

Ex(e−pκi+βXκi I{κi<∞}) = Ex(e−pκi−1I{κi−1<∞}Ex(e−p(κi−κi−1)+βXκi I{κi<∞}|Fκi−1))

= Ex(e−pκi−1I{κi−1<∞}EXκi−1
(e−pκ1+βXκ1 I{κ1<∞}))

where we used the strong Markov property for Lévy processes in the last equality. Using the
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fact that Xκj ≤ 0 for all j ≥ 1, we obtain from formula (5.5) that

Ex(e−pκi+βXκi I{κi<∞}) = θ(p)(β)Ex(e−pκi−1+Φ(p)Xκi−1 I{κi−1<∞}).

Thus, by an induction argument, we conclude that for i ≥ 2,

Ex(e−pκi+βXκi I{κi<∞}) = θ(p)(β)θ(p)(Φ(p))i−2Ex(e−pκ1+Φ(p)Xκ1 I{κ1<∞}).

The proof is now complete.

Remark 5.2.5. From the fact that for all i ≥ 1, Jep ≥ i if and only if κi < ep, we can

easily deduce the probability function of Jep in terms of the Laplace transform the variables

κi. Indeed, for all p ≥ 0 and x ∈ R,

Px(Jep ≥ i) = Px(κi < ep) = Ex(e−pκiI{κi<∞}).

5.3 Applications

In this section, we consider that X is a Lévy risk process so that the capital of an insurance

company is modelled by X with initial capital x ∈ R. We further assume that X is a

spectrally negative Lévy process with jumps of finite variation. In the classical risk theory,

we consider the moment of ruin as the first time the risk process crosses below zero. If we

assume that there is a Brownian motion component (σ > 0), the moment of ruin can occur

either by creeping or by a jump below the level zero. Note that if the time of ruin is made by

creeping, with probability one, the process is above the level zero instantly. Thus, it is also

of interest to consider the time of ruin as the first downcrossing by jump below the negative

half line. Inspired by the Gerber–Shiu function (see Gerber and Shiu (1997) and Gerber and

Shiu (1998)), we define the expected present value of the economic cost of the insurer of the

first downcrossing by jump below the level zero as

Ex(e−rκ1ω(Xκ1 , Xκ1−)I{κ1<∞}),

where r > 0 is the force of interest and ω : (−∞, 0) × (0,∞) 7→ R is a measurable function

representing the cost of the ruin by jump as a function of the capital before and after such
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moment of ruin. The value above can be calculated as

Ex(e−rκ1ω(Xκ1 , Xκ1−)I{κ1<∞}) =

∫
(−∞,0)

∫
(0,∞)

ω(y, z)f (r)
x (dy,dz),

where for any y < 0 and z > 0, the measure f (r)(dy,dz) is such that for any set A ⊂ (−∞, 0)

and B ⊂ [0,∞),

Ex
(
e−rκ1I{κ1<∞,Xκ1∈A,Xκ1∈B}

)
=

∫
A

∫
B
f (r)
x (dy,dz)

It turns out that the measure f (r) is absolutely continuous with respect to the Lebesgue

measure. As a direct consequence of Corollary 5.2.3, we derive a formula for the density in

terms of the scale functions.

Corollary 5.3.1. Let X be a spectrally negative Lévy process with jumps of finite variation.

For all r > 0, the function f (r) satisfies

f (r)
x (dy,dz)

= Π(dy − z)
(

Φ′(r)e−Φ(r)z
[
eΦ(r)x − Ex

(
I{κ1<∞}e

−rκ1+Φ(r)Xκ1

)]
−W (r)(x− z)

)
dz

for all x ∈ R, y < 0 and z > 0.

Proof. Let A ⊂ (−∞, 0) and B ⊂ [0,∞). Since Jt = 0 if and only if κ1 > t and the

compensation formula for Poisson random measures (see (1.25)), we have that

Ex(e−rκ1I{κ1<∞,Xκ1∈A,Xκ1−∈B})

= Ex

(∫ ∞
0

∫
(−∞,0)

e−rtI{Xt−+y∈A,Xt−∈B}I{Jt−=0}I{Xt−>0}I{Xt−+y<0}N(dt,dy)

)

= Ex

(∫ ∞
0

∫
(−∞,0)

e−rtI{Xt+y∈A,Xt∈B}I{Jt=0}I{Xt>0}I{Xt+y<0}Π(dy)dt

)

= Ex
(∫ ∞

0
e−rtΠ(A−Xt)I{Xt∈B}I{Jt=0}dt

)
=

∫
A

∫
B

Π(dy − z)
∫ ∞

0
e−rtPx(Xt ∈ dz, κ1 > t)dt,

where the last equality follows from Fubini’s theorem. Conditioning with respect to the

filtration at time κ1 and from the strong Markov property, we obtain that
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∫ ∞
0

e−rtPx(Xt ∈ dz, κ1 > t)dt

=

∫ ∞
0

e−rtPx(Xt ∈ dz)dt−
∫ ∞

0
e−rtPx(Xt ∈ dz, κ1 < t)dt

=

∫ ∞
0

e−rtPx(Xt ∈ dz)dt− Ex
(
I{κ1<∞}e

−rκ1EXκ1

(∫ ∞
0

e−rtI{Xt∈dz}dt

))
=
[
Φ′(r)e−Φ(r)(z−x) −W (r)(x− z)

]
dz

− Ex
(
I{κ1<∞}e

−rκ1

[
Φ′(r)e−Φ(r)(z−Xκ1 ) −W (r)(Xκ1 − z)

])
dz

=
[
Φ′(r)e−Φ(r)(z−x) −W (r)(x− z)

]
dz

− Φ′(r)e−Φ(r)zEx
(
e−rκ1+Φ(r)Xκ1 I{κ1<∞}

)
dz,

where the third equality follows from equation (1.21) and the last is due to Xκ1 < 0 and

z > 0. We can then conclude that

Ex(e−rκ1I{κ1<∞,Xκi∈A,Xκi−∈B})

=

∫
A

∫
B

Π(dy − z)
[
Φ′(r)e−Φ(r)z

[
eΦ(r)x − Ex

(
e−rκ1+Φ(r)Xκ1 I{κ1<∞}

)]
−W (r)(x− z)

]
dz.

Assume that the insurance company can endure a negative capital for a while so it can

go back to having positive capital. An important quantity to consider in this setting is the

expected present value of the total economic costs of all the downcrossing by jumps below

the level zero before an exponential time, that is,

R(p, r, x) = Ex

Jep∑
i=1

e−rκiω(Xκi , Xκi−)


for r, p > 0 and x ∈ R. Using Corollary 5.2.3, we give a formula to calculate the value of R.

Corollary 5.3.2. Let X be a spectrally negative Lévy process with finite variation jumps.

For any r, p > 0 and x ∈ R, we have that
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R(p, r, x) = Ex
(
e−(r+p)κ1ω(Xκ1 , Xκ1−)I{κ1<∞}

)
+

Ex(e−(r+p)κ1+Φ(r+p)Xκ1 I{κ1<∞})E
(
e−(r+p)κ1ω(Xκ1 , Xκ1−)I{κ1<∞}

)
1− θ(r+p)(Φ(r + p))

,

where the function θ is given in (5.1).

Proof. Let p > 0 and r > 0. Since ep is independent of X, we have that

Ex

Jep∑
i=1

e−rκiω(Xκi , Xκi−)

 =

∞∑
n=1

Ex

(
n∑
i=1

e−rκiω(Xκi , Xκi−)I{Jep=n}

)

=
∞∑
n=1

n∑
i=1

Ex
(
e−rκiω(Xκi , Xκi−)I{κn<ep<κn+1}

)
=
∞∑
n=1

n∑
i=1

Ex
(
e−rκiω(Xκi , Xκi−)[e−pκn − e−pκn+1 ]

)
.

Using Fubini’s theorem, we obtain that

Ex

Jep∑
i=1

e−rκiω(Xκi , Xκi−)

 =
∞∑
i=1

Ex

(
e−rκiω(Xκi , Xκi−)

∞∑
n=i

[e−pκn − e−pκn+1 ]

)

=
∞∑
i=1

Ex
(
e−(r+p)κiω(Xκi , Xκi−)I{κi<∞}

)
.

For each i ≥ 1, define the stopping time

τi = inf{t ≥ κi : Xt ≥ 0}.

Then, for every i ≥ 2, conditioning with respect to the filtration at time τi−1 and the strong

Markov property, we obtain that

Ex
(
e−(r+p)κiω(Xκi , Xκi−)I{κi<∞}

)
= Ex

(
Ex
(
e−(r+p)κiω(Xκn , Xκi−)I{κi<∞}|Fτi−1

))
= Ex

(
e−(r+p)τi−1I{τi−1<∞}

)
E
(
e−(r+p)κ1ω(Xκ1 , Xκ1−)I{κ1<∞}

)
,
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where in the last equality we used the fact that X creeps upwards. Conditioning the first

expectation above with respect to the filtration at time κi−1, we obtain that

Ex
(
e−(r+p)κiω(Xκi , Xκi−)I{κi<∞}

)
= Ex

(
e−(r+p)κi−1I{κi−1<∞}EXκi−1

(
e−(r+p)τ+

0 I{τ+
0 <∞}

))
E
(
e−(r+p)κ1ω(Xκ1 , Xκ1−)I{κ1<∞}

)
= Ex

(
e−(r+p)κi−1I{κi−1<∞}e

Φ(r+p)Xκi−1

)
E
(
e−(r+p)κ1ω(Xκ1 , Xκ1−)I{κ1<∞}

)
= θ(r+p)(Φ(r + p))i−2Ex(e−(r+p)κ1+Φ(r+p)Xκ1 I{κ1<∞})E

(
e−(r+p)κ1ω(Xκ1 , Xκ1−)I{κ1<∞}

)
,

where the second equality follows from equation (1.3) and the last by Corollary 5.2.3. Hence,

using the geometric series formula, we obtain that

Ex

Jep∑
i=1

e−rκiω(Xκi , Xκi−)


= Ex

(
e−(r+p)κ1ω(Xκ1 , Xκ1−)I{κ1<∞}

)
+

Ex(e−(r+p)κ1+Φ(r+p)Xκ1 I{κ1<∞})E
(
e−(r+p)κ1ω(Xκ1 , Xκ1−)I{κ1<∞}

)
1− θ(r+p)(Φ(r + p))

.

The proof is now complete.

5.4 Proof of Theorem 5.2.1

Suppose that X is a spectrally negative Lévy process of finite variation. Starting from zero,

it takes a positive amount of time to enter the set (−∞, 0), that is, τ−0 > 0 P-a.s. Hence,

stopping at the sequence of times in which X enters the set (−∞, 0) after visiting the level

zero, using the strong Markov property for Lévy process and the lack of memory property

of the exponential distribution, we can find directly the distribution of Jep . However, in the

case where X is of infinite variation, it is well known that the closed zero set of X is perfect

and nowhere dense, rendering the latter approach unhelpful (since we have that τ−0 = 0 a.s).

Therefore, in order to exploit the idea applicable for finite variation processes to help us

prove Theorem 5.2.1, we make use of the perturbation method used in Section 3.3.1. This

method is mainly based on the works of Dassios and Wu (2011) and Revuz and Yor (1999)

(see Theorem VI.1.10) which consist of the construction of a new “perturbed” process X(ε)

(for ε sufficiently small) that approximates X with the property that X(ε) visits the level
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zero a finite number of times before any time t ≥ 0. We then approximate Jt by the number

of downcrossing by jumps of X(ε).

Recall that for ε > 0,

X
(ε)
t =

 Xt − ε if σ−k,ε ≤ t < σ+
k,ε

Xt if σ+
k,ε ≤ t < σ−k+1,ε,

where

σ+
k,ε = inf{t > σ−k,ε : Xt ≥ ε}

σ−k+1,ε = inf{t > σ+
k,ε : Xt < 0}.

For ε > 0, we defined in Section 3.3.1 the random variable M
(ε)
t as the number of times

the process X
(ε)
t is below the level zero at time t ≥ 0 (see (3.12) for its definition). Moreover,

in Lemma 3.3.3 the distribution of M (ε) at an independent exponential time is found. We

have the following remark about its distribution.

Remark 5.4.1. From the proof of Lemma 3.3.3, we can give a probabilistic interpretation

to the functions I(p,0) and I(p,Φ(p)). The function I(p,0)(x) corresponds to the probability of

visiting the interval (−∞, 0), starting from the level x, before an exponential time of parameter

p. The function I(p,Φ(p))(x) corresponds to the probability that, given X starts from x, there

is a visit to the interval (−∞, 0) and then again a visit to the point x, before an exponential

time. Whilst for all x < ε, the term e−Φ(p)(ε−x) corresponds to the visit of the point ε, starting

from x before an exponential time of parameter p.

Hence, formula (3.13) has the following interpretation: given that X(ε) starts from x < ε,

to have n − 1 visits to the interval (−∞, 0] before an exponential time, we need to have a

first visit to the point ε (with probability eΦ(p)(x−ε)) then n − 2 excursions before ep (with

probability I(p,Φ(p))(ε)n−2) and a last visit to the interval (−∞, 0) (with probability I(p,0)(ε))

with no excursions afterwards (with probability 1− I(p,Φ(p))(ε)).

From the definition of X
(ε)
t and from the fact that X creeps upwards we have that between

any two times the process X(ε) is below zero there is an intermediate time in which the process

X has to be at exactly at level ε. This fact together with the Strong Markov property of Lévy
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processes let us prove that conditioned to {M (ε)
ep = n} the random variables {Xσ−k,ε

, 2 ≤ k ≤ n}

are independent.

Lemma 5.4.2. Suppose that X is a spectrally negative Lévy process. Let ε > 0 and p ≥ 0,

then for any x ∈ R, n ≥ 3 and β2, . . . , βn ≥ 0, we have that

Ex

(
n∏
k=2

e
−βkXσ−

k,ε |M (ε)
ep = n

)
=

n∏
k=2

Ex(e
−βkXσ−

k,ε |M (ε)
ep = n).

Proof. Let n ≥ 3. We calculate for x ∈ R and β2, . . . , βn ≥ 0,

Ex

(
n∏
k=2

e
−βkXσ−

k,ε |M (ε)
ep = n

)
=

Ex
(∏n

k=2 e
−βkXσ−

k,ε I{σ−n,ε<ep}I{σ−n+1,ε>ep}

)
Px(σ−n,ε < ep, σ

−
n+1,ε > ep)

.

Conditioning with respect to Fσ+
n−1,ε

, we have that from the Markov property for Lévy process

and the fact that X can only creep upwards, i.e. Xσ+
n−1,ε

= ε,

Ex

(
n∏
k=2

e
−βkXσ−

k,ε |M (ε)
ep = n

)

=

Ex
(∏n−1

k=2 e
−βkXσ−

k,εEx(e
−βnXσ−n,ε I{σ−n,ε<ep}I{σ−n+1,ε>ep}|Fσ+

n−1,ε
)

)
Ex(Px(σ−n,ε < ep, σ

−
n+1,ε > ep|Fσ+

n−1,ε
))

=

Ex
(∏n−1

k=2 e
−βkXσ−

k,εe−pσ
+
n−1,εI{σ+

n−1,ε<∞}

)
Eε(e

−βnXσ−2,ε I{σ−2,ε<ep}I{σ−3,ε>ep})

Ex(e−pσ
+
n−1,εI{σ+

n−1,ε<∞}
)Pε(σ−2,ε < ep, σ

−
3,ε > ep)

=

Ex
(∏n−1

k=2 e
−βkXσ−

k,εe−pσ
+
n−1,εI{σ+

n−1,ε<∞}

)
Ex(e−pσ

+
n−1,εI{σ+

n−1,ε<∞}
)

Eε(e
−βnXσ−2,ε |M (ε)

ep = 2),

where in the second equality we used the loss of memory property of the exponential distri-

bution. Taking βk = 0 for all k ∈ {2, . . . , n− 1} in the above calculation, we get that for all

n ≥ 3 and x ∈ R,

Ex
(
e
−βnXσ−n,ε |M (ε)

ep = n
)

= Eε(e
−βnXσ−2,ε |M (ε)

ep = 2).
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Hence, we conclude that

Ex

(
n∏
k=2

e
−βkXσ−

k,ε |M (ε)
ep = n

)

=

Ex
(∏n−1

k=2 e
−βkXσ−

k,εe−pσ
+
n−1,εI{σ+

n−1,ε<∞}

)
Ex(e−pσ

+
n−1,εI{σ+

n−1,ε<∞}
)

Ex
(
e
−βnXσ−n,ε |M (ε)

ep = n
)
. (5.7)

Moreover, for every k ∈ {2, . . . , n− 1}, setting βi = 0 for all i 6= k in (5.7), we obtain that

Ex
(
e
−βkXσ−

k,ε |M (ε)
ep = n

)
=

Ex
(
e
−βkXσ−

k,εe−pσ
+
n−1,εI{σ+

n−1,ε<∞}

)
Ex(e−pσ

+
n−1,εI{σ+

n−1,ε<∞}
)

. (5.8)

Similarly, conditioning with respect to the filtration at time σ+
n−2,ε and by an induction

argument, we have that for all n ≥ 3 and x ∈ R,

Ex
(∏n−1

k=2 e
−βkXσ−

k,εe−pσ
+
n−1,εI{σ+

n−1,ε<∞}

)
Ex(e−pσ

+
n−1,εI{σ+

n−1,ε<∞}
)

=
Ex(e

−β2Xσ−2,εe−pσ
+
2,εI{σ+

2,ε<∞}
)

Ex(e−pσ
+
2,εI{σ+

2,ε<∞}
)

n−1∏
k=3

Eε(e
−βkXσ−2,εe−pσ

+
2,εI{σ+

2,ε<∞}
)

Eε(e−pσ
+
2,εI{σ+

2,ε<∞}
)

,

where we understand that
∏n−1
k=3 = 1 when n − 1 < 3. Hence, for any k ∈ {2, . . . , n − 1},

taking βi = 0 for all i 6= k in the equation above and using the result given in equation (5.8),

we obtain that

Ex(e
−βkXσ−

k,ε |M (ε)
ep = n) =

Eε(e
−βkXσ−2,εe−pσ

+
2,εI{σ+

2,ε<∞}
)

Eε(e−pσ
+
2,εI{σ+

2,ε<∞}
)

.

Therefore from above and equation (5.7), we have just proved that for all n ≥ 3, x ∈ R and

β1, . . . , βn ≥ 0,

Ex

(
n∏
k=2

e
−βkXσ−

k,ε |M (ε)
ep = n

)
=

n∏
k=2

Ex(e
−βkXσ−

k,ε |M (ε)
ep = n).

The proof is complete.
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Note that the event {M (ε)
ep = n} means that the process enters the interval (−∞, 0) a

total of n− 1 times either by creeping or by a jump. Hence, in the event {Mep = n}, we find

the probability that the k-th visit to the interval (−∞, 0) is made by creeping. For any p ≥ 0

and x ∈ R, we define the auxiliary functions

ρ(x, p) := 1− σ2/2{W (p)′(x)− Φ(p)W (p)(x)}
eΦ(p)x(1− ψ′(Φ(p))e−Φ(p)xW (p)(x))

= 1− C(p)(x)

eΦ(p)xI(p,Φ(p))(x)
, (5.9)

%ε(x, p) := 1− [1− e−Φ(p)εI(p,0)(ε)]C(p)(x)

I(p,0)(x)− I(p,0)(ε)e−Φ(p)(ε−x)I(p,Φ(p))(x)
, (5.10)

where we understand that ρ(x, p) = %ε(x, p) = 1 for all x ∈ R when σ = 0.

Lemma 5.4.3. Let ε > 0 and p ≥ 0. We have for all n ≥ 2 and x < ε that

Px(Xσ−n,ε
< 0|M (ε)

ep = n) = %ε(ε, p)

and for any 2 ≤ k < n,

Px(Xσ−k,ε
< 0|M (ε)

ep = n) = ρ(ε, p).

Proof. For 2 ≤ k < n and x < ε, we have

Px(Xσ−k,ε
= 0|M (ε)

ep = n) =
Px(Xσ−k,ε

= 0, σ−n,ε < ep, σ
−
n+1,ε > ep)

Px(σ−n,ε < ep, σ
−
n+1,ε > ep)

=
Px(Xσ−k,ε

= 0, σ+
k,ε < ep, σ

−
n,ε < ep, σ

−
n+1,ε > ep)

Px(σ+
k,ε < ep, σ

−
n,ε < ep, σ

−
n+1,ε > ep)

,

where the last equality follows since σ+
k,ε < σ−n,ε. Conditioning with respect to the filtration at

time σ+
k,ε for both the numerator and the denominator and from the lack of memory property

of the exponential distribution, we get

Px(Xσ−k,ε
= 0|M (ε)

ep = n) =

Ex(I{X
σ−
k,ε

=0}e
−pσ+

k,εI{σ+
k,ε<∞}

)

Ex(e−pσ
+
k,εI{σ+

k,ε<∞}
)

.

Conditioning the above with respect to the filtration at time σ−k,ε and using the strong Markov
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property, we obtain that

Px(Xσ−k,ε
= 0|M (ε)

ep = n) =

Ex(I{X
σ−
k,ε

=0}I{σ−k,ε<∞}e
−pσ−k,εEX

σ−
k,ε

(e−pτ
+
ε I{τ+

ε <∞}))

Ex(e−pσ
−
k,εI{σ−k,ε<∞}EXσ−k,ε

(e−pτ
+
ε I{τ+

ε <∞})

=

Ex(I{X
σ−
k,ε

=0}I{σ−k,ε<∞}e
−pσ−k,εe−Φ(p)ε)

Ex(e
−pσ−k,ε+Φ(p)(X

σ−
k,ε
−ε)

I{σ−k,ε<∞})
,

where in the last equality we used the formula for the Laplace transform of τ+
0 given in

(1.3) and the event of {Xσ−k,ε
= 0} in the numerator. Then, conditioning with respect to

the filtration at time σ+
k−1, using the strong Markov property and the fact that X creeps

upwards, we get

Px(Xσ−k,ε
= 0|M (ε)

ep = n) =

Ex(I{X
σ−
k,ε

=0}I{σ−k,ε<∞}e
−pσ−k,εe−Φ(p)ε)

Ex(e
−pσ−k,ε+Φ(p)(X

σ−
k,ε
−ε)

I{σ−k,ε<∞})

=
Ex(e−σ

+
k,εI{σ+

k,ε<∞}
)Eε(e−pτ

−
0 I{X

τ−0
=0}I{τ−0 <∞})

Ex(e−σ
+
k,εI{σ+

k,ε<∞}
)Eε(e

−pτ−0 +Φ(p)X
τ−0 I{τ−0 <∞})

= 1− ρ(ε, p),

where the last equation follows from and (1.11) and (1.14) and the definition of ρ given in

(5.9). On the other hand, take n ≥ 2 and x < ε. Conditioning with respect to the filtration

at time σ+
n−1,ε and from the lack of memory property of the exponential distribution, we get

that

Px(Xσ−n,ε
= 0|M (ε)

ep = n) =
Px(Xσ−n,ε

= 0, σ−n,ε < ep, σ
−
n+1,ε > ep)

Px(σ−n,ε < ep, σ
−
n+1,ε > ep)

=
Ex(e−pσ

+
n−1,εI{σ+

n−1,ε<∞}
Pε(Xσ−2,ε

= 0, σ−2,ε < ep, σ
−
3,ε > ep))

Ex(e−pσ
+
n−1,εI{σ+

n−1,ε<∞}
Pε(σ−2,ε < ep, σ

−
3,ε > ep))

=
Pε(Xσ−2,ε

= 0, σ−2,ε < ep, σ
−
3,ε > ep)

Pε(σ−2,ε < ep, σ
−
3,ε > ep)

,

where in the second equality we used the fact that Xσ+
n−1

= ε. In a similar way, conditioning
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with respect to the time σ−2,ε and using the lack of memory property of the exponential

distribution, we get

Px(Xσ−n,ε
= 0|M (ε)

ep = n) =

Eε(e−pσ
−
2,εI{X

σ−2,ε
=0}PX

σ−2,ε
(Mep = 1))

Eε(e−pσ
−
2,εI{σ−2,ε<∞}PXσ−2,ε

(Mep = 1))

=

Eε(e−pσ
−
2,εI{X

σ−2,ε
=0}[1− I(p,0)(ε)e−Φ(p)ε])

Eε(e−pσ
−
2,εI{σ−2,ε<∞}[1− I

(p,0)(ε)e
−Φ(p)(ε−X

σ−2,ε
)
])

,

where the last equality follows from formula (3.13). We then obtain that for x ≥ ε,

Px(Xσ−2,ε
= 0|M (ε)

ep = 2) =
[1− e−Φ(p)εI(p,0)(ε)]Eε(e−pτ

−
0 I{X

τ−0
=0}I{τ−0 <∞})

Eε(e−pτ
−
0 I{τ−0 <∞})− I

(p,0)(ε)e−Φ(p)εEε(e
−pτ−0 +Φ(p)X

τ−0 I{τ−0 <∞})

= 1− %ε(ε, p),

where the last equality follows from equation (1.11) and the definition of %ε (see equation

(5.9)). The proof is now complete.

For all t ≥ 0 and ε > 0, we define the random variable

J
(ε)
t =

∞∑
k=2

I{σ−k,ε<t}I{X(ε)

σ−
k,ε

<−ε} =

∫
[0,t]

∫
(−∞,0)

I{X(ε)
s−>0}I{X(ε)

s−+y<−ε}N(ds× dy).

We prove in the following Lemma that the random variable J
(ε)
t converges to Jt for all t ≥ 0

when ε ↓ 0.

Lemma 5.4.4. For each t ≥ 0, J
(ε)
t ↑ Jt when ε ↓ 0, where Jt is defined by (5.2).

Proof. For a fixed t ≥ 0, we first prove that the mapping ε 7→ J
(ε)
t increases when ε ↓ 0.

Indeed, from Lemma 3.3.1, we know that for all s ≥ 0, X
(ε)
s ↑ Xs when ε ↓ 0. Hence, for a

fixed s ≥ 0 and for 0 < ε1 ≤ ε2, we have that X
(ε2)
s ≤ X

(ε1)
s ≤ Xs which we can easily take

limits to conclude that X
(ε2)
s− ≤ X

(ε1)
s− ≤ Xs−. This fact implies that {X(ε2)

s− > 0} ⊂ {X(ε1)
s− >

0} ⊂ {Xs− > 0}. Moreover, from Lemma 3.3.1, we have that if s ≥ 0 is such that X
(ε)
s > 0,

then there exists a value k ≥ 0 such that s ∈ [σ+
k,ε, σ

−
k+1,ε) and then X

(ε)
s = Xs. Thus, we
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have for all y ∈ (−∞, 0) that

{X(ε2)
s− > 0} ∩ {X(ε2)

s− + y < −ε2} = {X(ε2)
s− > 0} ∩ {Xs− + y < −ε2}

⊂ {X(ε1)
s− > 0} ∩ {Xs− + y < −ε1}

= {X(ε1)
s− > 0} ∩ {X(ε1)

s− + y < −ε1}.

Similarly, we have that

{X(ε2)
s− > 0} ∩ {X(ε2)

s− + y < −ε2} ⊂ {Xs− > 0} ∩ {Xs− + y < 0}.

Hence, we have that for all t ≥ 0,

J
(ε2)
t ≤ J (ε1)

t ≤ Jt.

We have just proved that the sequence {J (1/n)
t , n ≥ 1} is a positive increasing sequence

bounded by Jt. Thus, the limit exist and limn→∞ J
(1/n)
t ≤ Jt. On the other hand, using

Fatou’s Lemma, and the fact that X
(1/n)
s− = Xs− in the event {X(1/n)

s− > 0}, we obtain that

lim inf
n→∞

J
(1/n)
t = lim inf

n→∞

∫
[0,t]

∫
(−∞,0)

I{X(1/n)
s− >0}I{X(1/n)

s− +y<−1/n}N(ds× dy)

≥
∫

[0,t]

∫
(−∞,0)

lim inf
n→∞

I{X(1/n)
s− >0}I{Xs−+y+1/n<}N(ds× dy)

=

∫
[0,t]

∫
(−∞,0)

I{Xs−>0}I{Xs−+y<0}N(ds× dy)

= Jt,

where the second last equality follows since X
(1/n)
s− ↑ Xs− when n → ∞, the function x 7→

I{x>0} is left-continuous and x 7→ I{x<0} is right-continuous. Therefore, we have that for all

t ≥ 0, J
(ε)
t ↑ Jt when ε ↓ 0.

Similar to Revuz and Yor (1999) (Chapter VI, Theorem 1.10), it turns out that M
(ε)
t are

approximations to Lt in some sense. Now we are ready to prove Theorem 5.2.1. For a fixed

ε > 0, with the help of Lemmas 5.4.2 and 5.4.3, we calculate the joint Laplace transform of

(2εM
(ε)
ep , J

(ε)
ep ). Then, taking ε ↓ 0, from Lemmas 3.3.2 and 5.4.4 and using the dominated

convergence theorem, we find the Laplace transform of (Lep , Jep).
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Proof of Theorem 5.2.1. First, consider the case when x ≤ 0. From Lemmas 5.4.2 and 5.4.3,

we have that given {M (ε)
ep = n}, with n ≥ 2, the random variable J

(ε)
ep can be seen as a sum

of a binomial random variable with parameters (n− 2, ρ(ε, p)) and an independent Bernoulli

random variable with parameter %ε(ε, p). Hence, conditioning with respect to the number of

downcrossings of X(ε), we have that for all β ≥ 0 and x ≤ 0,

Ex(e−2αεM
(ε)
ep −βJ

(ε)
ep )

=
∞∑
n=1

e−2αεnEx(e−βJ
(ε)
ep |M (ε)

ep = n)Px(M
(ε)
ep = n)

= e−2αεPx(M
(ε)
ep = 1)

+
∞∑
n=2

e−2αεn[e−βρ(ε, p) + 1− ρ(ε, p)]n−2[e−β%ε(ε, p) + 1− %ε(ε, p)]Px(M
(ε)
ep = n).

Then, using the formulas for the distribution of Mep derived in equation (3.13), we have that

Ex(e−2αεM
(ε)
ep −βJ

(ε)
ep )

= e−2αε[1− I(p,0)(ε)e−Φ(p)(ε−x)]

+ e−4αε[e−β%ε(ε, p) + 1− %ε(ε, p)]I(p,0)(ε)e−Φ(p)(ε−x)[1− I(p,Φ(p))(ε)]

×
∞∑
n=2

e−2αε(n−2)[e−βρ(ε, p) + 1− ρ(ε, p)]n−2[I(p,Φ(p))(ε)]n−2

= e−2αε[1− I(p,0)(ε)e−Φ(p)(ε−x)]

+
e−4αε[e−β%ε(ε, p) + 1− %ε(ε, p)]I(p,0)(ε)e−Φ(p)(ε−x)[1− I(p,Φ(p))(ε)]

1− e−2αε[e−βρ(ε, p) + 1− ρ(ε, p)][I(p,Φ(p))(ε)]

= e−2αε + e−2αεe−Φ(p)(ε−x)I(p,0)(ε)

× e−2αε(e−β − 1)%ε(ε, p)[1− I(p,Φ(p))(ε)] + e−2αε(e−β − 1)ρ(ε, p)[I(p,Φ(p))(ε)] + e−2αε − 1

1− e−2αεI(p,Φ(p))(ε)− e−2αε(e−β − 1)ρ(ε, p)I(p,Φ(p))(ε)
,

where the second equality follows from the geometric sum. From the definition of ρ and %ε

(see equations (5.9) and (5.10)), we have that

Ex(e−2αεM
(ε)
ep −βJ

(ε)
ep )

= e−2αε +
e−2αεe−Φ(p)(ε−x)

[
e−2αε(e−β − 1)

(
I(p,0)(ε)− C(p)(ε)

)
+ e−2αε − 1

]
1− e−2αεI(p,Φ(p))(ε)− e−2αε(e−β − 1)[I(p,Φ(p))(ε)− C(p)(ε)e−Φ(p)ε]

. (5.11)
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Suppose that X is a process of finite variation. Then σ2 = 0, C(p)(x) = 0 for all x ∈ R,

lim
ε↓0
I(p,0)(ε) = 1− p

Φ(p)δ
and lim

ε↓0
I(p,Φ(p))(ε) = 1− ψ′(Φ(p))

δ
.

Thus, by the dominated convergence theorem and Lemmas 5.4.4 and 3.3.2, we have that for

all x ≤ 0,

Ex(e−αLep−βJep ) = lim
ε↓0

Ex(e−2αεM
(ε)
ep −βJ

(ε)
ep )

= 1 + eΦ(p)x
(e−β − 1)

(
δ − p

Φ(p)

)
δ − e−β[δ − ψ′(Φ(p))]

.

Using the fact that σ2 = 0, we can see that the equation above corresponds to (5.3).

For the case in which X is of infinite variation with no Gaussian component, i.e. σ2 = 0

and
∫

(−1,0) yΠ(dy) = −∞, we have also that C(p)(x) = 0 for all x ∈ R and

lim
ε↓0
I(p,0)(ε) = 1 and lim

ε↓0
I(p,Φ(p))(ε) = 1.

Hence, taking ε ↓ 0 in (5.11), we obtain that

Ex(e−αLep−βJep ) = 1− eΦ(p)x.

From the fact that δ = ∞, it is easy to see that (5.3) also holds in this case. Lastly, we

assume that σ2 > 0. For this case, we have that for all p ≥ 0,

lim
ε↓0
I(p,0)(ε) = lim

ε↓0
I(p,Φ(p))(ε) = lim

ε↓0
C(p)(ε) = 1.

Then, the joint Laplace transform of (Lep , Jep) under the measure Px, for x ≤ 0, is given by

Ex(e−αLep−βJep )

= lim
ε↓0

Ex(e−αεM
(ε)
ep −βJ

(ε)
ep )

= 1 + eΦ(p)x lim
ε↓0

e−2αε(e−β − 1)
(
I(p,0)(ε)− C(p)(ε)

)
+ e−2αε − 1

1− e−2αεI(p,Φ(p))(ε)− e−2αε(e−β − 1)[I(p,Φ(p))(ε)− C(p)(ε)e−Φ(p)ε]
.
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Using L’Hopital’s rule, we obtain that

Ex(e−αLep−βJep ) = 1 + eΦ(p)x
(e−β − 1)

(
δ 2
σ2 + Φ(p)− p

Φ(p)
2
σ2

)
− 2α

2α+ 2
σ2ψ′(Φ(p)) + (e−β − 1)

[
2
σ2ψ′(Φ(p))− 2Φ(p)− δ 2

σ2

]
= 1 + eΦ(p)x

(e−β − 1)
(
δ + Φ(p)σ

2

2 −
p

Φ(p)

)
− ασ2

ασ2 + ψ′(Φ(p)) + (e−β − 1) [ψ′(Φ(p))− Φ(p)σ2 − δ]
,

where we used equations (1.5) and (1.6) so that

lim
ε↓0

∂

∂x
I(p,0)(ε) = − p

Φ(p)

2

σ2

lim
ε↓0

∂

∂x
I(p,Φ(p))(ε) = − 2

σ2
ψ′(Φ(p))

lim
ε↓0

∂

∂x
C(p)(ε) = −δ 2

σ2
− Φ(p).

Note that when X has jumps of infinite variation, we understand δ =∞ in the limiting sense

and then, in this case, we have that

Ex(e−αLep−βJep ) = 1− eΦ(p)x.

Now we consider the case where x > 0. Define the stopping time

T0 = inf{t > 0 : Xt = 0}.

Then, we have that

Ex(e−αLep−βJep ) = Ex(e−αLep−βJep I{T0>ep}) + Ex(e−αLep−βJep I{T0<ep}).

Note that since X starts from x > 0, it can reach the level 0 either by creeping downwards

or upwards. In view of the negative jumps, the second case happens if and only if there is

a jump below the level zero and the process creeps upwards to zero after that. Using the

fact that Lep = 0 on {T0 > ep} and that Jep = 0 on the event {τ−0 > ep} and Jep = 1 on
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{τ−0 < ep, T0 > ep}, we have that the first term on the equation above becomes

Ex(e−αLep−βJep I{T0>ep}) = Ex(e−βJep I{τ−0 <ep}I{T0>ep})) + Ex(e−βJep I{τ−0 >ep})

= e−βEx
(
e−pτ

−
0 I{X

τ−0
<0}PX

τ−0
(τ+

0 > ep)

)
+ Px(τ−0 > ep)

= e−βEx
(
e−pτ

−
0 I{X

τ−0
<0}

)
− e−βEx

(
e
−pτ−0 +Φ(p)X

τ−0 I{X
τ−0
<0}

)
+ 1− Ex(e−pτ

−
0 I{τ−0 <∞})

= e−β[I(p,0)(x)− eΦ(p)xI(p,Φ(p))(x)] + 1− I(p,0)(x),

where in the second equality we used the strong Markov property applied at the filtration

at time τ−0 and the lack of memory property of the exponential random variable, the third

follows from the Laplace transform of τ+
0 given in(1.3) and the last from equations (1.11) and

(1.14). Similarly, conditioning with respect to the filtration at time T0, we get that

Ex(e−αLep−βJep I{T0<ep}) = Ex(e−βJT0Ex(e−α(Lep−LT0
)−β(Jep−JT0 )I{T0<ep}|FT0))

= Ex(e−pT0−βJT0 I{T0<∞})E(e−αLep−βJep ),

where we used the fact that (LT0+t − LT0 , Xt+T0) is independent of FT0 and has the same

law as (Lt, Xt) for all t ≥ 0, LT0 = 0 by continuity of L and the lack of memory property

of the exponential distribution. Conditioning with respect to Fτ−0 , using the strong Markov

property and the fact that since Jτ−0
= 0 if Xτ−0

= 0 and Jτ−0
= 1 otherwise, we have that

Ex(e−pT0−βJT0 I{T0<∞}) = Ex(e
−βJ

τ−0 I{τ−0 <∞}Ex(e−pT0I{T0<∞}|Fτ−0 ))

= Ex(e
−βJ

τ−0 e
−pτ−0 +Φ(p)X

τ−0 I{τ−0 <∞})

= e−β[eΦ(p)xI(p,Φ(p))(x)− C(p)(x)] + C(p)(x).

Therefore for all x > 0, we have that

Ex(e−αLep−βJep ) = 1− I(p,0)(x) + e−β[I(p,0)(x)− eΦ(p)xI(p,Φ(p))(x)]

+
(
e−β[eΦ(p)xI(p,Φ(p))(x)− C(p)(x)] + C(p)(x)

)
E(e−αLep−βJep ).
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The proof is now complete.

5.5 Conclusions

Using the same perturbation method as presented in Chapter 2, we have studied the joint

Laplace transform of the local time at zero and the number of crosses below the level zero as

a consequence of a jump before an exponential time. The main difficulty of the study of this

random variable is that in the infinite variation case, (starting from zero) the process enters

the set (−∞, 0) immediately, making it a difficult task to count the number of downcrossings

by a jump. In the proof of Theorem 5.2.1, we have used the fact that the perturbed Lévy

process, X(ε), has a finite number of downcrossings. We have first shown that for X(ε), con-

ditional on the total number of downcrosings before an exponential time, the total number

of downcrossing by jumps follows a Binomial random variable plus a Bernoulli random vari-

able (that represents the last downcrossing) which depends on the probability of crossing the

level zero by creeping, whereas the local time is approximated using the weighted number of

downcrossings of X(ε). The final result then follows by a limit argument.

From the Laplace transform of Jep derived in Theorem 5.2.1, we are able to draw some

conclusions about its distribution (see Remark 5.2.2). When X has jumps of infinite varia-

tion, the random variable Jep is degenerate where it takes only the value of infinity (under

the measure P). This agrees with the fact that X visits the level zero an infinite number of

times (regardles of the value of σ) and hence by the lack of memory property of the exponen-

tial distribution, we have an infinite number of (small) downcrossings by jump. When the

jumps of X are of finite variation, the distribution of X coincides with the distribution of a

geometric distribution multiplied by a Bernoulli random variable whose parameters depend

on the function θ(p).

A key point in the derivation of the results presented in this Chapter is that spectrally

negative Lévy processes have no positive jumps and therefore they can only creep upwards.

This property allows the process to start afresh or regenerate whenever a visit to level zero

happens, making all the calculations tractable. For instance, the derivation of the Laplace

transform of the i-th downcrossing by jump uses the fact that there is always a visit to the
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level zero made by creeping in between two consecutive times {κi, i ≥ 1} . This fact allows us

to write all the formulas as derived in Section 5.3 in terms of the time of the first downcrossing

by jump and its overshoot, (κ1, Xκ1).
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Appendix A

Variational inequalities for

spectrally negative Lévy processes

Let X be a spectrally negative Lévy process with the following representation:

Xt = −µt+ σBt +

∫ t

0

∫
(−∞,−1)

xN(ds, dx) +

∫ t

0

∫
(−1,0)

x(N(ds, dx)− dsΠ(dx)),

where µ ∈ R, σ ≥ 0 {Bt, t ≥ 0} is a standard Brownian motion, N is a Poisson random

measure on R+×R{0} with intensity dt×Π(dy) where Π is a Lévy measure, i.e., Π satisfies

∫
R

(1 ∧ |x|2)Π(dx) <∞.

Fix f ∈ C1,2
b (R+ × R), the set of all bounded C1,2(R+ × R) functions with bounded

derivatives. By applying Itô formula, we obtain the following decomposition

f(t,Xt) = f(0, X0) +Mt +

∫ t

0
A(t,X)(f)(s,Xs)ds,

where M is a martingale starting at zero and A(t,X)(f) is the infinitesimal generator of (t,X)

applied to f given by

A(t,X)(f)(t, x) =
∂

∂t
f(t, x)− µ ∂

∂x
f(t, x) +

1

2
σ2 ∂

2

∂x2
f(t, x) +BX(f)(t, x),
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where

BX(f)(t, x) =

∫
(−∞,0)

(
f(t, x+ y)− f(t, x)− yI{y>−1}

∂

∂x
f(t, x)

)
Π(dy).

Note that in order to the derivatives in the operator A(t,X) to be defined it is only needed

that f ∈ C1,2(R+ × R). In the next Lemma we show that BX can be defined in a subset

B ⊂ R+ × R provided that some conditions are met in the set B.

Lemma A.1. Let B ⊂ R+ ×R an open set. Assume that f is a C1,2(R+ ×R) function and

that

∫
(−∞,−1)

|f(t, x+ y)|Π(dy) <∞

for all (x, y) ∈ B. Then we have that |BX(f)(t, x)| <∞ for all (t, x) ∈ B. Moreover if f , its

derivatives and (t, x) 7→
∫

(−∞,−1) |f(t, x+ y)|Π(dy) are bounded functions in B we have that

BX(f) is bounded in B ∩ [0, T ]× R for any T > 0 and continuous in B.

Proof. Take (t, x) ∈ B. By Taylor’s theorem we know that for each y ∈ (−1, 0) there exists

cy ∈ [x+ y, x] ⊂ [x− 1, x] such that

f(t, x+ y)− f(t, x)− y ∂
∂x
f(t, x) = y2 1

2

∂2

∂x2
f(t, cy)

Hence, we have that for any (t, x) ∈ B that

|BX(f)(t, x)| =

∣∣∣∣∣
∫

(−1,0)

(
f(t, x+ y)− f(t, x)− y ∂

∂x
f(t, x)

)
Π(dy)

+

∫
(−∞,−1]

(f(t, x+ y)− f(t, x)) Π(dy)

∣∣∣∣∣
≤
∫

(−1,0)
y2 1

2

∣∣∣∣ ∂2

∂x2
f(t, cy)

∣∣∣∣Π(dy) +

∫
(−∞,−1]

|f(t, x+ y)− f(t, x)|Π(dy)

≤ sup
z∈[x−1,x]

1

2

∣∣∣∣ ∂2

∂x2
f(t, z)

∣∣∣∣ ∫
(−1,0)

y2Π(dy) +

∫
(−∞,−1]

|f(t, x+ y)|Π(dy)

+ |f(t, x)|Π(−∞,−1]

<∞,

where we used that Π is a Lévy measure and is finite on any set away from zero and that
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the derivatives of f are continuous on B and then bounded on compact sets. The second

assertion follows by the fact that the second derivative is continuous and bounded on the

compact set containing the set B̃ = {(t, x−1) ∈ [0, T ]×R : (t, x) ∈ B and (t, x−1) /∈ B} and

since f and (t, x) 7→
∫

(−∞,−1) |f(t, x+ y)|Π(dy) are bounded in B. The continuity of BX(f)

in B follows from the fact that f is continuous and the dominated convergence theorem.

Consider the stopping time τB as the first time the process (t,X) is outside the open set

B, i.e.,

τ
(s,x)
B = inf{t ≥ 0 : (s+ t,Xt + x) /∈ B}.

Lemma A.2. Let B ⊂ R+×R an open set. Assume that f is a C1,2(R+×R) function such

that f , its derivatives and (t, x) 7→
∫

(−∞,−1) |f(t, x + y)|Π(dy) are bounded in B. Then we

have the following decomposition

f(u+ t ∧ τ (u.x)
B , X

t∧τ (u.x)
B

+ x) = f(u, x) +Mt +

∫ t∧τ (u.x)
B

0
A(t,X)(u+ s,Xs + x)ds, (A.1)

where {Mt, t ≥ 0} is a P-martingale.

Proof. Let (s, x) ∈ B. Since f is a C1,2(R+ × R) function we have by Itô formula that

f(u+ t,Xt + x)− f(u, x)

=

∫ t

0

∂f

∂t
(u+ s,Xs + x)ds+

∫ t

0

∂f

∂x
(u+ s,Xs− + x)dXs +

1

2
σ2

∫ t

0

∂2f

∂x2
(u+ s,Xs + x)ds

+

∫ t

0

∫
(−∞,0)

[
f(u+ s,Xs− + x+ y)− f(u+ s,Xs− + x)− y∂f

∂x
(u+ s,Xs− + x)

]
N(ds, dy)

=

∫ t

0

∂f

∂t
(u+ s,Xs + x)ds− µ

∫ t

0

∂f

∂x
(u+ s,Xs− + x)dt+

1

2
σ2

∫ t

0

∂2f

∂x2
(u+ s,Xs + x)ds

+ σ

∫ t

0

∂f

∂x
(u+ s,Xs− + x)dBs +

∫ t

0

∫
(−∞,−1)

y
∂f

∂x
(u+ s,Xs− + x)N(ds, dx)

+

∫ t

0

∫
(−1,0)

y
∂f

∂x
(u+ s,Xs− + x)Ñ(ds, dx)

+

∫ t

0

∫
(−∞,0)

[
f(u+ s,Xs− + x+ y)− f(u+ s,Xs− + x)− y∂f

∂x
(u+ s,Xs− + x)

]
N(ds, dy)

= M
(1)
t +M

(2)
t +

∫ t

0
A(t,X)(u+ s,Xs + x)ds,
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where

M
(1)
t = σ

∫ t

0

∂f

∂x
(u+ s,Xs− + x)dBs +

∫ t

0

∫
(−1,0)

y
∂f

∂x
(u+ s,Xs− + x)Ñ(ds, dx)

and

M
(2)
t =

∫ t

0

∫
(−∞,0)

[
f(u+ s,Xs− + x+ y)− f(u+ s,Xs− + x)

− yI{y>−1}
∂f

∂x
(u+ s,Xs− + x)

]
Ñ(ds, dy).

Note that for any s < τ
(u,x)
B we have that (u+ s,Xs + x) ∈ B. Hence, since ∂f

∂x is bounded in

the set B have that the stopped process {M (1)

t∧τ (u,x)
B

, t ≥ 0} is a martingale. Moreover, from

Lemma A.1 we have that BX(f) is a bounded function on [0, t]× R ∩B so we have that

E

(∫ t∧τ (u,x)
B

0
BX(u+ s,Xs + x)ds

)
<∞

for all t ≥ 0. Then the process {M (2)

t∧τ (u,x)
B

, t ≥ 0} is also a martingale.

Let G be a right-continuous function. Define the process Z(s,x) = {Z(s,x)
t , t ≥ 0}, where

Z
(s,x)
t = f(s+ t,Xt + x) +

∫ t

0
G(r + s,Xr + x)dr, t ≥ 0.

We have the following proposition.

Proposition A.3. Let B ⊂ R+ ×R an open set. Assume that f is a C1,2(R+ ×R) function

such that f , its derivatives and (t, x) 7→
∫

(−∞,−1) |f(t, x + y)|Π(dy) are bounded in B and

G : R+ × R 7→ R a continuous function. Then for all (s, x) ∈ B the process {Z(s,x)

t∧τ (s,x)
B

, t ≥ 0}

is a submartingale if and only if for all (s, x) ∈ B, A(t,X)(f)(s, x) +G(s, x) ≥ 0.

Proof. Suppose that {Z(s,x)

t∧τ (s,x)
B

, t ≥ 0} is a submartingale for all (s, x) ∈ B. We prove that

A(t,X)(f)(s, x) + G(s, x) ≥ 0 for all (s, x) ∈ B. Fix (s, x) ∈ B, since {Z(s,x)

t∧τ (s,x)
B

, t ≥ 0} is a

submartingale we have, for every t ≥ 0, that

E
[

1

t
(Z

(s,x)

t∧τ (s,x)
B

− Z(s,x)
0 )

]
≥ 0
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which implies that

E
[

1

t
[f(s+ t ∧ τ (s,x)

B , X
t∧τ (s,x)

B

+ x)− f(s, x)]

]
+ E

[
1

t

∫ t∧τ (s,x)
B

0
G(s+ r,Xr + x)dr

]
≥ 0

So, by the decomposition (A.1) we get

E

[
1

t

∫ t∧τ (s,x)
B

0
A(t,X)(f)(s+ r,Xr + x)ds

]
+ E

[
1

t

∫ t∧τ (s,x)
B

0
G(s+ r,Xr + x)dr

]
≥ 0.

Note that, due to the right continuity of (t,X) and since B is open, we have τ
(s,x)
B > 0

almost surely. Therefore, tending t to zero in the above inequality, by Fubini’s theorem and

fundamental theorem of calculus (since r 7→ Xr is right continuous and G is continuous) we

deduce that

A(t,X)(f)(s, x) +G(s, x) ≥ 0.

Now we prove the “only if” statement. Suppose that for all (s, x) ∈ B, A(t,X)(f)(s, x) +

G(s, x) ≥ 0. We show that the process {Z(s,x)

t∧τ (s,x)
B

, t ≥ 0} is a submartingale. By the semi-

martingale decomposition (A.1) and since A(t,X) is bounded in B (see Lemma 4.4.16) we have

that E(|Z(s,x)

t∧τ (s,x)
B

|) <∞ for all t ≥ 0. Moreover, we have, for any (s, x) ∈ B and 0 ≤ r ≤ t,

E(Z
(s,x)

t∧τ (s,x)
B

|Fr) = E

[
f(s, x) +M

t∧τ (s,x)
B

+

∫ t∧τ (s,x)
B

0
A(t,X)(f)(v + s,Xv + x)dv

∣∣∣∣Fr
]

+ E

[∫ t∧τ (s,x)
B

0
G(v + s,Xv + x)dv

∣∣∣∣Fr
]

= Z
(s,x)

r∧τ (s,x)
B

+ E

[∫ t∧τ (s,x)
B

r∧τ (s,x)
B

A(t,X)(f)(v + s,Xv + x)dv

∣∣∣∣Fr
]

+ E

[∫ t∧τ (s,x)
B

r∧τ (s,x)
B

G(v + s,Xv + x)dv

∣∣∣∣Fr
]

≥ Z(s,x)

s∧τ (s,x)
B

,

where the last inequality follows from the fact that (v + s,Xv + x) ∈ B for all v ∈ (r ∧
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τ
(s,x)
B , t∧ τ (s,x)

B ) and that A(t,X)(f)(s, x) +G(s, x) ≥ 0 in B. Therefore the process Z
(s,x)
t∧τB is a

submartingale.

It turns out that the above proposition can be extended to a more general class of func-

tions, provided that the inequality A(t,X)(f) + G ≥ 0 is taken in the sense of distributions.

For this recall some facts and notation from the theory of distributions (see e.g. Friedlander

et al. (1998) for further details). We introduce the multi-index notation. A multi-index is a

n-tuplet α = (α1, . . . , αn) of non-negative integers with order |α| = α1 + · · · + αn. Then we

set the notation

∂αf =
∂|α|

∂xα1
1 · · · ∂x

αn
n
.

If O is an open subset of Rd, we denote by D(O) the set of all C∞ functions with compact

support in O and by D′(O) the space of distributions on O. That is, D′(O) is the space of

linear forms u in D(O) such that for every compact set K ⊂ O, there is a real number C ≥ 0

and a nonnegative integer N such that

|〈u, ψ〉| ≤ C
∑
|α|≤N

sup |∂αψ|

for all ψ ∈ D(O), where 〈u, ϕ〉 denotes the evaluation on the test function ϕ of the distribution

u. Inspired by the integration by parts formula, the derivative of the distribution u is defined

by

〈∂αu, ϕ〉 = (−1)|α|〈u, ∂αϕ〉, ϕ ∈ D(Rd).

If u is a locally integrable function on O (u is a measurable function and
∫
K |u(x)|dx < ∞

for any compact set K ⊂ O) we can define the distribution

〈u, ϕ〉 =

∫
u(x)ϕ(x)dx, ϕ ∈ D(O).

Which is usually identified only with the function u. Hence, if g is a locally integrable function

on (0,∞)× R, the differential operator, A0
(t,X)(g), given by

246



A0
(t,X)(g)(u, x) :=

∂

∂t
g(t, x)− µ ∂

∂x
g(t, x) +

1

2
σ2 ∂

2

∂x2
g(t, x)

can be defined in the sense of distributions. For any test function ϕ with compact support

in O ⊂ R+ × R, we define

〈A0
(t,X)(g), ϕ〉 :=

∫
R+

∫
R
g(t, x)

[
− ∂

∂t
ϕ(t, x) + µ

∂

∂x
ϕ(t, x) +

1

2
σ2 ∂

2

∂x2
ϕ(t, x)

]
dxdt. (A.2)

Moreover, Lamberton and Mikou (2008) showed (see Proposition 2.1) that the operator de-

fined by

BX(g)(t, x) :=

∫
(−∞,0)

(g(t, x+ y)− g(t, x)− y ∂
∂x
g(t, x)I{y>−1})Π(dy)

can be also defined in the sense of distributions when g is a bounded Borel measurable

function. For ϕ ∈ D((0,∞)× R), consider the operator B∗X given by

B∗X(ϕ)(t, x) =

∫
(−∞,0)

[ϕ(t, x− y)− ϕ(t, x) + y
∂

∂x
ϕ(t, x)I{y>−1}]Π(dy), (A.3)

for any (t, x) ∈ (0,∞) × R. Then from Proposition 2.1 in Lamberton and Mikou (2008) we

know that B∗X(ϕ) is continuous and integrable on (0,∞)× R and the operator

〈BX(g), ϕ〉 =

∫
R+

∫
R
g(u, x)B∗X(ϕ)(u, x)dxdu, (A.4)

defines a distribution. In the next lemma we show that the boundedness condition of g can

be relaxed.

Lemma A.4. Let g be a locally integrable function in R+ × R such that

(u, x) 7→
∫

(−∞,−1)
|g(u, x+ y)|Π(dy) (A.5)

is locally integrable. The linear operator BX(g) defined in (A.4) defines a distribution on any

open set O ⊂ R+×R. Moreover, if in addition we suppose that g is a C1,2(R+×R) function
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we have that

∫
R+

∫
R
BX(g)(t, x)ϕ(t, x)dxdt =

∫
R+

∫
R
g(t, x)B∗X(ϕ)(t, x)dxdt

for any ϕ ∈ R+ × R.

Proof. It is clear that the operator defined in (A.4) is linear. Take a test function ϕ with

support in a compact set H ×K ⊂ R+ × R. We have

|〈BX(g), ϕ〉| ≤
∫
R+

∫
R
|g(u, x)||B∗X(ϕ)(u, x)|dxdu

≤
∫
H

∫
R
|g(u, x)|

∫
(−1,0)

|ϕ(u, x− y)− ϕ(u, x) + y
∂

∂x
ϕ(u, x)|Π(dy)dxdu

+

∫
H

∫
R
|g(u, x)|

∫
(−∞,−1)

|ϕ(u, x− y)− ϕ(u, x)|Π(dy)dxdu.

Note that if x /∈ K + (−1, 0] we have that x /∈ K (if we assume that x ∈ K then x = x+ 0 ∈

K + (−1, 0] which is a contradiction) and x − y /∈ K for all y ∈ (−1, 0) (if z = x − y ∈ K

then x = z + y ∈ K + (−1, 0) ⊂ K + (−1, 0] then we have got a contradiction), then

ϕ(u, x− y)− ϕ(u, x) + y ∂
∂xϕ(u, x) = 0. Denote k∗ = inf K, since x 7→ ϕ(u, x) has support in

K and using Taylor’s formula we obtain

|〈BX(g), ϕ〉| ≤
∫
H

∫
K+(−1,0]

|g(u, x)|
∫

(−1,0)
|ϕ(u, x− y)− ϕ(u, x) + y

∂

∂x
ϕ(u, x)|Π(dy)dxdu

+

∫
H

∫
K
|g(u, x)|

∫
(−∞,−1)

|ϕ(u, x− y)− ϕ(u, x)|Π(dy)dxdu

+

∫
H

∫ k∗

−∞
|g(u, x)|

∫
(−∞,−1)

|ϕ(u, x− y)|Π(dy)dxdu

≤ 1

2
sup | ∂

2

∂x2
ϕ|
∫

(−1,0)
y2Π(dy)

∫
H

∫
K+(−1,0]

|g(u, x)|dxdu

+ 2 sup |ϕ|Π((−∞,−1))

∫
H

∫
K
|g(u, x)|dxdu

+ sup |ϕ|
∫
H

∫
K

∫
(−∞,−1)

|g(u, x+ y)|Π(dy)dxdu,

which proves the assertion since Π is a Lévy measure and (u, x) 7→
∫

(−∞,−1) |g(u, x+y)|Π(dy)

is locally integrable by assumption. The last assertion follows by the same argument as in

Lamberton and Mikou (2008) (see Proposition 2.1) so the proof is omitted.
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Therefore, if g is a locally integrable function in R+ × R such that the function defined

in (A.5) is locally integrable, we can define the distribution A(t,X)(g) = A0
(t,X)(g) +BX(g) in

the set R+ × R.

Let u a distribution and θ ∈ D(R+ × R). Then the function

(θ ∗ u)(t, x) = 〈u(s, y), θ(t− s, x− y)〉

is a member of C∞(R+ × R) and defines a distribution given by

〈θ ∗ u, φ〉 =

∫
R+

∫
R
〈u(s, y), θ(t− s, x− y)〉φ(t, x)dxdt

for any φ ∈ D(R+ × R).

It turns out that Proposition 2.3 in Lamberton and Mikou (2008) can also be extended

to this case. The proof remains is very similar but it is included for completeness.

Proposition A.5. Let g be a Borel and locally integrable function in R+ × R such that the

function
∫

(−∞,−1) |g(u, x+ y)|Π(dy) is locally integrable. We have that for every θ and ϕ in

D(R+ × R),

〈A(t,X)(g ∗ θ), ϕ〉 = 〈A(t,X)(g), ϕ ∗ θ̌〉 = 〈A(t,X)(g) ∗ θ, ϕ〉,

where θ̌(u, x) = θ(−u,−x) for any (u, x) ∈ R+ × R.

Proof. Take a ϕ, θ ∈ D(R+ × R). Then by the definition of convolution we have that

〈BX(g ∗ θ), ϕ〉 =

∫
R+

∫
R

(g ∗ θ)(u, x)B∗X(ϕ)(u, x)dxdu

=

∫
R+

∫
R

∫
R+

∫
R
g(u− v, x− y)θ(v, y)B∗X(ϕ)(u, x)dvdydxdu

=

∫
R+

∫
R
g(u, x)

∫
R+

∫
R
θ(v, y)B∗X(ϕ)(u+ v, x+ y)dvdydxdu.

Now, by Fubini’s theorem and the definition of BX(ϕ) we have that
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∫
R+

∫
R
θ(v, y)B∗X(ϕ)(u+ v, x+ y)dvdy

=

∫
(−∞,0)

Π(dz)

∫
R+

∫
R
θ(v, y)

× [ϕ(u+ v, x+ y − z)− ϕ(u+ v, x+ y) + zI{z>−1}
∂

∂x
ϕ(u+ v, x+ y)]dvdy

=

∫
(−∞,0)

Π(dz)[(ϕ ∗ θ̌)(u, x− z)− (ϕ ∗ θ̌)(u, x) + zI{z>−1}
∂

∂x
(ϕ ∗ θ̌)(u, x)]dvdy

= B∗X(ϕ ∗ θ̌)(u, x),

where θ̌(u, x) = θ(−u,−x). Hence,

〈BX(g ∗ θ), ϕ〉 =

∫
R+

∫
R
g(u, x)B∗X(ϕ ∗ θ̌)(u, x)dxdu = 〈BX(g), ϕ ∗ θ̌〉.

On the other hand, using Fubini’s theorem and a change of variable we obtain that

〈A0
(t,X)(g ∗ θ), ϕ〉

=

∫
R+

∫
R

(g ∗ θ)(u, x)

[
− ∂

∂u
ϕ(u, x) + µ

∂

∂x
ϕ(u, x) +

1

2
σ2 ∂

2

∂x2
ϕ(u, x)

]
dxdu

=

∫
R+

∫
R

∫
R+

∫
R
g(u− v, x− y)θ(v, y)dvdy

×
[
− ∂

∂u
ϕ(u, x) + µ

∂

∂x
ϕ(u, x) +

1

2
σ2 ∂

2

∂x2
ϕ(u, x)

]
dxdu

=

∫
R+

∫
R
g(u, x)

∫
R+

∫
R
θ(v, y)dvdy

×
[
− ∂

∂u
ϕ(u+ v, x+ y) + µ

∂

∂x
ϕ(u+ v, x+ y) +

1

2
σ2 ∂

2

∂x2
ϕ(u+ v, x+ y)

]
dxdu

=

∫
R+

∫
R
g(u, x)

[
− ∂

∂u
(ϕ ∗ θ̌)(u, x) + µ

∂

∂x
(ϕ ∗ θ̌)(u, x) +

1

2
σ2 ∂

2

∂x2
(ϕ ∗ θ̌)(u, x)

]
dxdu

= 〈A0
(t,X)(g), ϕ ∗ θ̌〉
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Therefore we have that

〈A0
(t,X)(g ∗ θ), ϕ〉 = 〈A0

(t,X)(g), ϕ ∗ θ̌〉

=

〈
A0

(t,X)(g)(s, y),

∫
R+

∫
R
θ(t− s, x− y)ϕ(t, x)dxdt

〉
=

∫
R+

∫
R
〈A0

(t,X)(g)(s, y), θ(t− s, x− y)〉ϕ(t, x)dxdt

= 〈A0
(t,X)(g) ∗ θ, ϕ〉.

The proof is now complete.

Let u a distribution in O, we say that u is non-negative if for any non-negative test

function ϕ ∈ D(O),

〈u, ϕ〉 ≥ 0.

The next result is an extension of Proposition 2.5 in Lamberton and Mikou (2008). The proof

is essentially the same but we include it for completeness.

Proposition A.6. Let B be an open set in R+ × R. Suppose that f : R+ × R 7→ R is such

that f and (u, x) 7→
∫

(−∞,−1) |f(u, x + y)|Π(dy) are locally integrable functions in R+ × R

and bounded in B and that G : R+ × R 7→ R is a locally integrable function. Assume

that the process {Z(s,x)

t∧τ (s,x)
B

, t ≥ 0} is a submartingale for every (s, x) ∈ B, where Z
(s,x)
t =

f(s + t,Xt + x) +
∫ t

0 G(s + r,Xr + x)dr and τ
(s,x)
B = inf{t ≥ 0 : (t + s,Xt + x) /∈ B}. Then

A(t,X)(f) +G is a non-negative distribution on B.

Proof. Take z0 = (u0, x0) ∈ B and choose a > 0 such that B(z0, 2a) ⊂ B, where B(z0, 2a) is

the open ball with center z0 and radius 2a. We define the stopping time

τB = inf{t ≥ 0 : there exists z ∈ B(z0, a) such that z + (t,Xt) /∈ B}.

Note that for every (u, x) ∈ B(z0, a/2) and (v, y) ∈ B(0, a/2) we have that (u − v, x −

y) ∈ B(z0, a) ⊂ B and then τB ≤ τ
(u−v,x−y)
B . Hence, the process {Z(u−v,x−y)

t∧τB , t ≥ 0} is a

submartingale and then

251



E
(
f(u− v + t ∧ τB, Xt∧τB + x− y) +

∫ t∧τB

0
G(u− v + r,Xr + x− y)dr

)
≥ f(u− v, x− y).

Next, we consider a sequence of even nonnegative functions {ρn, n ≥ 1} in C∞ such that

for each n ≥ 1, the support of ρn is in B(0, a/(2n)) and
∫
R2 ρn(v, y)dvdy = 1. Then by

integrating the equation above with respect to ρn and due tu Fubini’s theorem we get that

E ((f ∗ ρn)(u+ t ∧ τB, Xt∧τB + x)) + E
(∫ t∧τB

0
(G ∗ ρn)(u+ r,Xr + x)dr

)
≥ (f ∗ ρn)(u, x)

(A.6)

Fix (u, x) ∈ B(z0, a/2). Note that since f is bounded we have that for all n ≥ 1, the function

(s, w) 7→ f ∗ ρn(u + s, w + x) is C∞(R+ × R) and has bounded derivatives in the open set

B̃ = {(s, w) ∈ R+ × R : z + (s, w) ∈ B for all z ∈ B(z0, a)}. Indeed, for any (s, w) ∈ B̃ and

any (v, y) ∈ B(0, a/(2n)) we have that (u+ s− v, w + x− y) ∈ B and then

∣∣∣∣ ∂i+j

∂ui∂xj
(f ∗ ρn)(u+ s, w + x)

∣∣∣∣
≤
∫ ∫

B(0,a/(2n))
|f(u+ s− v, w + x− y)|

∣∣∣∣ ∂i+j

∂ui∂xj
ρn(v, y)

∣∣∣∣dvdy

≤ sup
(u′,x′)∈B

|f(u′, x′)|
∫ ∫

B(0,a/(2n))

∣∣∣∣ ∂i+j

∂ui∂xj
ρn(v, y)

∣∣∣∣dvdy

for any i, j ∈ {0, 1, 2, . . .}. Moreover, by Fubini’s theorem we have that∣∣∣∣∣
∫

(−∞,−1)
(f ∗ ρn)(u+ s, w + x+ y)Π(dy)

∣∣∣∣∣
≤
∫ ∫

B(0,a/(2n))

∣∣∣∣∣
∫

(−∞,−1)
f(u+ s− v, w + x− v + y)Π(dy)

∣∣∣∣∣ ρn(v, y)dvdy

≤ sup
(u′,x′)∈B

∣∣∣∣∣
∫

(−∞,−1)
f(u′, x′ + y)Π(dy)

∣∣∣∣∣ .
Hence, the function (s, w) 7→

∫
(−∞,−1)(f ∗ ρn)(u+ s, w+x+ y)Π(dy) is bounded in B̃. Thus,

252



since τB is the first exit time of (s,Xs) from the set B̃, we get from Lemma A.2 that

(f ∗ ρn)(u+ t∧τB, Xt∧τB + x)

= (f ∗ ρn)(u, x) +M
(u,x)
t +

∫ t∧τB

0
A(t,X)(f ∗ ρn)(u+ s,Xs + x)ds,

where {M (u,x)
t , t ≥ 0} is a martingale. Therefore equation (A.6) reads

E
(∫ t∧τB

0

[
A(t,X)(f ∗ ρn)(u+ r,Xr + x) + (G ∗ ρn)(u+ r,Xr + x)

]
dr

)
≥ 0.

Note that τB > 0 a.s. (since B(0, a) ⊂ B̃) so the dividing by t > 0 the equation above

and taking t ↓ 0 we obtain that A(t,X)(f ∗ ρn)(u, x) + (G ∗ ρn)(u, x) ≥ 0 for all n ≥ 1 and

(u, x) ∈ B(z0, a/2). That implies that for any test function ψ in B(z0, a/2)

〈A(t,x)(f ∗ ρn) +G ∗ ρn, ψ〉 ≥ 0.

Then from Proposition A.5 we conclude that A(t,X)(f) ∗ ρn + G ∗ ρn ≥ 0 in the sense of

distributions on B(Z0, a/2). By letting n go to infinity, we conclude that A(t,X)(f) +G ≥ 0

on B(z0, a/2). Since z0 is any arbitrary point in B, using a partition of unity argument, we

conclude that A(t,X)(f) +G ≥ 0 in the sense of distributions on B.
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pages 33–35.

Urusov, M. A. (2005). On a Property of the Moment at Which Brownian Motion Attains Its

Maximum and Some Optimal Stopping Problems. Theory of Probability & Its Applica-

tions, 49(1):169–176.

258


	Introduction
	Preliminaries
	Spectrally negative Lévy processes
	Optimal stopping
	Essential Supremum
	Martingale Approach
	Markovian Approach


	Predicting the Last Zero before an exponential time of a Spectrally Negative Lévy Process
	Introduction
	Formulation of the Problem
	Optimal stopping problem
	Proof of Theorem 2.3.13
	Examples
	Brownian motion with drift
	Brownian motion with exponential jumps

	Conclusions

	On the last zero process of a spectrally negative Lévy process
	Introduction
	The last zero process
	Applications of Theorem 3.2.6

	Main proofs
	Perturbed Lévy process
	Proof of Theorem 3.2.3
	Proof of Theorem 3.2.6

	Conclusions

	Lp optimal prediction of the last zero of a spectrally negative Lévy process
	Introduction
	Length of the current positive excursion and the last zero
	Optimal prediction problem
	Solution to the optimal stopping problem
	Proof of Theorem 4.4.23

	Examples
	Brownian Motion with drift example
	Brownian motion with exponential jumps example

	Appendix
	Conclusions

	On the downcrossings by jump to the negative half line for spectrally negative Lévy processes
	Introduction
	Downcrossings by jumps
	Applications
	Proof of Theorem 5.2.1
	Conclusions

	Variational inequalities for spectrally negative Lévy processes
	References

