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Abstract

This thesis examines firms in developing countries. The first chapter provides evidence

on the effects of consumer monitoring on tax evasion behaviour of firms along the supply

chain. I study a Mongolian government program, which incentivises consumers to report

their purchases. First, I estimate the effect of the program on corporate income tax

(CIT) and value-added tax (VAT), by comparing retailers who are directly affected, and

wholesalers, who are only indirectly affected. I find that retailers increase their reported

sales, but partly offset this by artificially inflating their costs on CIT returns. As a result,

retailers’ CIT liabilities increase by 11%. In comparison, their VAT liabilities increase

by 31% because VAT is less prone to such cost manipulation. Second, I find that the

program also increases the VAT liabilities of upstream firms by about 15% when they are

more likely to sell to (monitored) retailers, compared to the upstream firms that sell to

firms that are not directly monitored. The program does not, however, affect the upstream

firms’ reported CIT liabilities. My findings highlight the enforcement advantage of VAT

compared to CIT and that consumer monitoring enhances the self-enforcing mechanism in

VAT along the supply chain. The second chapter characterises tax-evading firms using the

same program in Mongolia. In particular, I study the firms that reported an abnormally

large growth in their sales in the year that the program was launched, which suggests that

those firms had previously been evading more taxes. I find that tax evasion was particularly

prevalent among smaller firms, and conditional on firm size it was more common among

older firms. My findings also suggest that tax evasion was more common in the capital city.

The third chapter studies how resources should be allocated across firms. In particular,

I theoretically investigate a trade-off between static and dynamic optimality conditions

in terms of resource allocation across firms in the presence of learning-by-doing (LBD)

effect. As in the standard misallocation literature, the static efficiency requires firms to

have the same marginal revenue products (MRP) within each sector. In contrast, in the

long run, I show that it is optimal to have some degree of dispersion in the MRP when

there is an endogenous productivity growth through LBD mechanism. Then I compare
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the implications from the dynamic and the static models quantitatively by using firm-

level panel data from Indonesia. First, I show that firms’ productivity process exhibits

LBD mechanism. Namely, small and younger firms have lower productivity level but have

higher productivity growth compared to larger and older firms. Second, I simulate both

models and find that the dynamic model increases the aggregate TFP more in the long

run than the static optimality conditions where I remove all dispersion in MRP.
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Chapter 1

Does Consumer Monitoring

Reduce Corporate Tax Evasion

Along the Supply Chain?

Evidence from Mongolia

This paper tracks the effects of consumer monitoring on firms’ tax evasion along the supply

chain. To do so, I study a Mongolian government program, which incentivises consumers

to report their purchases. First, I estimate the effect of the program on corporate income

tax (CIT) and value-added tax (VAT), by comparing retailers who are directly affected, and

wholesalers, who are only indirectly affected. I find that retailers increase their reported

sales, but partly offset this by artificially inflating their costs on CIT returns. As a result,

retailers’ CIT liabilities increase by 11%. In comparison, their VAT liabilities increase by

31% because VAT is less prone to such cost manipulation. Second, I find that the program

also increases the VAT liabilities of upstream firms by about 15% when they are more likely

to sell to (monitored) retailers, compared to the upstream firms that sell to firms that are

not directly monitored. The program does not, however, affect the upstream firms’ reported

CIT liabilities. My findings highlight the enforcement advantage of VAT compared to CIT

and that consumer monitoring enhances the self-enforcing mechanism in VAT along the

supply chain.
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1.1 Introduction

Power to tax lies at the heart of state development, and state capacity, in turn, is an

important factor for economic development. However, it is well known that developing

countries tax very little. Specifically, the tax-to-GDP ratio is positively correlated with

countries’ level of development (Besley and Persson, 2014). Therefore, it is crucial to study

tax enforcement and explore the ways to strengthen it in developing countries. Firms play

a crucial role in taxation in all modern tax systems. They remit the majority of tax

revenues to the government, either with regard to their own tax liabilities or through

the withholding of taxes of employees or other businesses (Kopczuk and Slemrod, 2006;

Slemrod and Valayudhan, 2017).1 Hence, much of the recent literature on tax enforcement

and development has focused on firms.

A growing body of literature has documented that third-party information reporting in

the form of consumer monitoring, whistle-blowers and paper trails could enhance tax

enforcement because tax authorities can use it to verify firms’ tax reporting (for example

Naritomi, 2019; Pomeranz, 2015; Carrillo et al., 2017; Slemrod et al. 2017). In particular,

it is well-known that VAT has a self-enforcing mechanism that creates a paper trail on

transactions between firms, which makes it harder to hide the business-to-business (B2B)

transactions from the authorities. The reason is that each B2B transaction is reported

twice, once by the seller and once by the buyer, which enables the authorities to cross-

check the information and detect any misreporting by the firms. However, this built-in

enforcement mechanism breaks down at the end of the supply chain as final consumers do

not typically report their purchases. This creates an opportunity for the firms at the end

of the supply chain to under-report sales and potentially collude with upstream firms to

evade tax.

This paper tracks the effects of using final consumers as “firms’ sales auditors” on firms’

tax reporting behaviour along the supply chain. To do so, I exploit an anti-tax evasion

program, called E-receipt program, implemented by the Mongolian government in 2016,

where consumers are incentivised to report their purchase.2 Using rich administrative tax

data on firms’ tax returns as well as their trade network that span the period between 2014

and 2018, I study the changes in tax liabilities of firms along the supply chain. Specifically,

I focus on firms’ VAT and CIT liabilities because they are the main taxes that firms remit

1To be specific, firms remit 85% of total tax revenue in OECD countries and India (Slemrod and
Valayudhan, 2017).

2Similar consumer monitoring programs were implemented in many other countries such as Brazil,
Taiwan, Portugal and Slovakia. See Section 1.2.2 for details of the program.
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in most countries.3 More importantly, comparing these taxes in one setting highlights the

importance of third-party information. For CIT, it is known that third-party information

on firms’ sales does not necessarily lead to more tax payments even though it increases

firms’ reported sales. This is because firms take advantage of the fact that costs are

less verifiable for tax authorities and offset the effect on their CIT liabilities by reporting

higher costs. For VAT, as discussed above9, firms’ reported costs on VAT returns are

constrained by the declarations of suppliers. Therefore, it is harder to manipulate costs

on VAT returns.

I start by studying the direct effect of the program on the firms at the end of the supply

chain — retailers — because their sales are directly monitored by final consumers. To

identify the effects on retailers’ CIT and VAT reporting behaviour I use variation in

treatment intensity. I use a difference-in-difference (DiD) estimation method, where I

take retailers as a treatment group and wholesalers as a control group.4 I find that the

program increases retailers’ reported sales on CIT returns by 20%. However, retailers

increase their reported costs by 23% in response to the program, leading to only 11%

increase in their CIT obligations. Using tax audit data, I find that some of the increase

in reported costs is due to increased misreporting. On the other hand, I find stronger

effects on VAT reporting. Retailers’ reported sales on VAT return increase by 42%. Even

though they report higher input costs their VAT liabilities increase by 31%. There are

two potential reasons why I find a larger increase in retailers’ VAT liabilities than CIT

liabilities. First, the composition of the firms used for CIT and VAT analysis is different.

All firms submit CIT returns in Mongolia, but only large firms are liable for VAT. In

other words, firms below the VAT threshold file only CIT returns, but larger firms submit

both CIT and VAT returns. Therefore, to directly compare the CIT and VAT response,

I restrict my sample to the large VAT-liable firms. I still find larger effect on retailers’

VAT than CIT: their VAT and CIT liabilities increase by 25% and 17%, respectively. The

second reason is the fact that it is relatively difficult for firms to over-report their costs

on VAT returns because they could be cross-checked with reported sales of their trading

partners. Consistent with this, the audit data do not produce any sign of increased cost

over-reporting on VAT returns, unlike CIT.

It is important to note that any increase in reported costs of a VAT-liable retailer must

3They constitute more than 40% of the total tax revenue all around the world as shown in Figure A1.
The share is higher for low and middle-income countries. In particular, CIT and VAT together made up
47% of total tax revenue in Mongolia in 2016. In comparison, payroll tax accounted for 15% of the total
tax revenue in Mongolia.

4This estimation method is commonly used to study the effects of similar policies in the literature. For
example, Naritomi, 2019 uses the same DiD estimation strategy to estimate the direct effect of the “NFP”
program in Brazil, which employs consumers as the third-party reporters.
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be associated with an increase in its upstream firms’ sales because of the self-enforcing

mechanism in VAT. This can happen if the retailer had been colluding with its upstream

firms and hiding (some of) the B2B transactions before the intervention. In other words,

any increase in reported input costs of retailers on VAT returns implies collusion along

the supply chain. Clearly such collusion is beneficial for the upstream firms because it

reduces their reported sales and tax liabilities. However it is not straightforward to see

why retailers have an incentive to collude and underreport their costs, but there could

be a number of reasons. For example, it would look suspicious to the tax authorities if

a retailer declares purchasing costs of a good but does not report the sales. By hiding

both purchases and sales of the good, the retailer can keep all the profits to themselves

without paying any tax. Also the retailer would appear smaller on tax returns and hence

could stay off the radar of the tax authorities.5 Once final consumers start reporting their

purchases to the tax authorities the retailers would want to increase their reported costs

and thus stop colluding with upstream firms. This leads to an increase in reported sales

of the upstream firms and potentially their tax liabilities.

Therefore, next, I explore the indirect effects of the program up the supply chain. I

utilise my firm network data that cover periods before and after the intervention. I define

upstream firms as firms that have ever supplied a retailer before the intervention, and

rank them in terms of their share of pre-intervention sales to retailers. Then I use the

DiD estimation approach to estimate the effects on upstream firms, where the treatment

group is the firms, whose average pre-intervention share of sales to retailers is above the

median, and the firms below the median are categorised as the control group. I find no

significant effect on CIT liabilities of upstream firms with above-median sales to retailers

compared to the below-median firms. In contrast, their VAT liabilities are estimated to

increase by at least 15%. As a robustness check, I run transaction-level DiD within each

upstream firm, where I compare its sales to retailers to its sales to non-retail firms. I

find that upstream firms’ sales to retailers increase by at least 22% in contrast to their

sales to other firms. These results suggest that the E-receipt program does not only affect

the firms at the end of the supply chains, but also has a positive indirect effect on their

suppliers.

It is worth noting that both analyses of the direct effect on retailers and the indirect

5Another example is that the retailer could be offered a discount by the upstream firms, the sellers. If
retailers do not report their purchases on their tax returns, the sellers would not have to pay tax on those
sales and transfer some of the gains to the buyer. Therefore, it can be profitable for both the seller and
the buyer to hide their transactions. Alternatively, the retailers could be involved in some underground
activities, such as selling alcohol without a license, hence have an incentive to hide both sales and costs
from tax authorities.
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effect on upstream firms underestimate the true effects of the E-receipt program. The

direct effect analysis uses wholesalers as a control group for retailers. The underlying

assumption for this strategy is that wholesalers would have behaved similarly to retailers

in the absence of the intervention (parallel trend assumption) and that wholesalers are

not affected by the program. The data indicate a reasonable parallel trend in the sales

of retailers and wholesalers before the intervention, which validates the parallel trend

assumption. However, the wholesalers are likely to be affected by the program both

directly and indirectly. Wholesalers are likely to be directly affected because they could

sell to final consumers. Also, not surprisingly, wholesalers are classified as upstream firms,

and I find substantial spillover effect on the upstream firms. Therefore, the estimated

effects are a lower bound of the true direct effects on retailers. To investigate the extent of

underestimation, I run another version of DiD regression, in which I use the wholesalers

that never sell to any retailers as a control group. I identify such wholesalers using the

firm network data. The results suggest a substantial underestimation for both CIT and

VAT analysis. Similarly, the indirect analysis lead to an underestimation because the

upstream firms in the control group sells to retailers to some extent and thus affected by

the program. Acknowledging these limitations of the analysis indicates that the overall

impact of the E-receipt program on tax revenue is even larger.

Lastly, I do a simple cost-benefit analysis of the program. To implement the E-receipt

program the Mongolian government promises 20% of the VAT to the consumers as well

as it holds monthly lottery events. Moreover, it bears some administrative costs such

as expenses associated with installing IT systems and wage costs of the IT engineers.

Considering these costs, I find that a 30.4% increase in VAT payments is needed for the

program to break even.6 As discussed above, I find that retailers’ VAT liabilities increase

by 31%, which is just enough to cover the costs of the program. Hence if one focuses only

on the direct effects on retailers’ VAT liabilities, as in the previous literature, then the

program would appear not being able to increase the total tax revenue for the government.

Once we account for the spillover effect on upstream firms’ VAT liabilities and other tax

6My calculation does not include compliance costs for consumers and firms. The compliance cost for
consumers is negligible because it is very easy to report their purchases to the government. See Section
1.2.2 for details of the program. Any compliance costs for firms should be reflected in their CIT liabilities
and I find that retailers’ CIT liabilities increase by 11%. In this sense, firms’ compliance costs are accounted
for in my analysis. Furthermore, there are other intangible aspects of the program. Firstly, the program
could be changing certain societal norms that may have long-lasting effects even after the program ends.
These changes include people getting used to asking for receipts, an increase in tax awareness, greater
attention to the public expenditure, and more demand for efficient public spending and so on. On the
other hand, the program increases firms’ tax burden of the firms which could also increase the efficiency
costs of the CIT and VAT. Moreover, I do not study any changes in tax incidence or transfer of the tax
burden. Even though these are interesting and important aspects of tax enforcement they are beyond the
scope of this project.
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bases such as CIT, then it is clear that the program leads to larger tax revenue in Mongolia.

Related literature. This paper adopts a holistic approach to study the effects of a

consumer monitoring program, and contributes to the literature on the role of third-party

reporting in tax enforcement in two important ways. First, I show that it is crucial to

include the final consumers into VAT reporting, as this ensures better enforcement along

the whole supply chain. To date, the literature has studied the effects of consumer moni-

toring only on firms at the end of the supply chain (Naritomi, 2019). I extend this further

and document that consumer monitoring does not only affect the downstream firms but

also upstream firms along the VAT chain indirectly. This chain effect in VAT has been

studied in the literature both theoretically (De Paula and Scheinkman, 2010) and empiri-

cally (Pomeranz, 2015). Specifically, Pomeranz, 2015, finds that increased tax enforcement

can have spillover effects on the targeted firms’ trading partners. However, its analysis

focuses on the firms suspected of tax evasion, and the data collection process potentially

entails some attrition and selection bias concerns. I, on the other hand, study the entire

population of firms in the trade sector and their network using official administrative tax

data. Second, I reconcile the different effects of third-party information on CIT and VAT

in the literature by studying these taxes together. In particular, the literature has found

firms’ limited ability to adjust their reported costs for VAT (Naritomi, 2019), but close to

full adjustment of costs for CIT (Carrillo et al. 2017; Slemrod et al. 2017). Also, for CIT,

firms’ reported costs are found to be much more elastic than their reported sales (Bachas

and Soto, 2019). I reconcile these different findings by studying both CIT and VAT in

one setting in the context of consumer monitoring. I find that the built-in enforcement

mechanism in VAT is the driving force of larger effects on firms’ VAT liabilities. On the

other hand, for CIT, I discover that firms are substituting away from under-reporting

sales to over-reporting costs when there is an improvement in sales enforcement. To the

best of my knowledge, this paper is the first to offer direct evidence that firms respond to

improved sales enforcement by increasing cost misreporting on CIT returns.

The remainder of this paper is structured as follows: Section 1.2 provides a background on

the Mongolian tax system and explains the relevant datasets and their summary statistics.

It also describes the policy intervention — the E-receipt program. Section 1.3 describes

the empirical strategy and presents the results. Section 1.4 shows a simple cost-benefit

analysis of the program, and Section 2.4 concludes.

20



1.2 Institutional Background and Policy Intervention

This paper utilises a nationwide anti-tax evasion program in Mongolia to study the effects

of consumer monitoring on tax evasion behaviour of firms along the supply chain. In this

section, first, I briefly describe the institutional background and tax system in Mongolia.

Then I explain the anti-tax evasion program. Lastly, I discuss the datasets and provide

summary statistics.

1.2.1 Mongolian Economy and Tax System

Mongolia is a lower-middle-income country and its GDP per capita (PPP) was around

$12,200 in 2018.7 In this sense, the country’s level of development is similar to Sri Lanka.

However, Mongolia is often compared to Kyrgyzstan because both countries are land-

locked, rich in mineral resources, both were under the influence of the Soviet Union and

have a small population, even though Kyrgyzstan has a lower GDP than Mongolia.

Tax evasion is an indispensable part of the shadow economy, whose measures could indicate

the extent of tax evasion in the economy.8 The size of the shadow economy in Mongolia

between 1999 and 2006 was estimated to be 18% of its GDP, while the average share of

the informal economy for other 88 developing countries the same year was 35% (Schneider

et al., 2010). Therefore, Mongolia is not considered to have a relatively high share of

activities in its unofficial economy.

In this paper, I focus on two taxes — CIT and VAT, which are the main taxes firms remit

in most countries. In particular, together they made up 47% of the total tax revenue

in Mongolia in 2016. For CIT, there is no threshold for eligibility, and hence all firms

submit CIT returns. Hence my CIT dataset contains information on the universe of

formal firms. However, not all firms submit VAT returns. There is a VAT threshold in

Mongolia, whereby firms with sales above the threshold have to register as VAT-liable

firms.9 On average, 30% of the firms in the CIT data are VAT-liable each year. Once a

firm becomes a VAT-liable, it has to submit VAT returns on top of the CIT returns to the

tax authorities. Having firms filing both CIT and VAT returns enables me to compare the

7Worldbank databank website, United Nations “World Economic Situation and Prospects 2018”
8One of the broadest definitions of the shadow economy is “those economic activities and the income

derived from them that circumvent or otherwise avoid government regulation, taxation or observation” as
defined in Schneider, 2012.

9If a firm is caught not having registered for VAT even though its annual sales are above the threshold
there will be penalties. Also, it has to pay the owed VAT for the period it would have been a VAT-liable
firm.
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tax reporting behaviour of firms of these taxes.

Interestingly, there does not seem any systematic cross-checking between the two tax

returns even though both could be submitted by the same firms. Data show a large

discrepancy between, for example, the reported total sales on the two tax returns for

VAT-liable firms.10 This is possibly due to the fact that the submission frequency as

well as the way firms report their sales, costs and tax liabilities on CIT and VAT returns

differ. Specifically, CIT returns are submitted quarterly, and values such as sales and

costs are reported in cumulative terms. That is, in quarter one firms report sales and

costs applicable for only quarter one, but in quarter two firms report the sum of quarter

one and two. In quarter four, firms report their annual revenue and costs. In contrast, VAT

returns are submitted monthly and reported values, such as sales and costs, corresponding

to the respective month. Therefore, firms could take advantage of the fact that it is

not straightforward to compare CIT and VAT returns for tax authorities and respond

differently to changes in tax enforcement.

The tax base for CIT is profit, which is the difference between revenue and total costs.11

On the other hand, the VAT base is the value-added of firms, which is equal to total

sales minus the cost of input purchases.12 In practice, VAT-liable firms collect VAT on

their sales (from the final consumers and other firms) and subtract the value of VAT that

they pay on their intermediate purchase and transfer the difference to the government.

To prove the collected VAT as well as the VAT payment on their purchases, firms submit

VAT invoices, which contain information such as the tax IDs of the trading partners,

both upstream (suppliers) and downstream (buyers) firms, and the relevant transaction

values. Therefore, each B2B transaction ends up being reported twice, once by the seller

and once again by the buyer. This is called the VAT credit-invoice scheme that enables

the tax authorities to verify firms’ self-reported values on VAT returns by cross-checking.

My data suggest reasonable cross-checking between reported values within VAT reporting,

unlike the comparison between CIT and VAT as mentioned before.

Moreover, both CIT and VAT rates are 10% and stayed the same throughout the period

of my analysis.13 In comparison, the world average rate for CIT and VAT in 2017 was

10More than 15% of the firms report different total sales on CIT and VAT returns, where the difference
accounts for 10% of the sales declared on the CIT returns.

11There are some restrictions on the deductible costs. For example, firms are not allowed to deduct
costs associated with paying fines, penalties, VAT and city tax payments.

12The difference between total costs for CIT and input purchasing costs for VAT is that total costs
contain not only input purchasing costs but also wage costs, administrative costs and other costs.

13Actually there are two rates for CIT in Mongolia: 10% if the annual revenue is below 3 billion MNT
(≈ 1,150,000 USD), and 25% if the annual revenue is above 3 billion MNT. I assume the CIT rate is 10%
for the sake of simplicity since most of the firms in the sample have an annual revenue below 3 billion
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25% and 16%, respectively.14

Lastly, I use tax audit data from operational tax audits. Each year the tax authori-

ties calculate firms’ tax evasion risk score using their internal and external (third-party)

information. Based on these scores, they choose which firms to audit. There are also

non-routine tax audits at the requests of third parties such as courts, the police or other

types of whistle-blowers. Subsequently, on average, 10% of the firms are audited each year.

Generally, the tax audits examine the last five years of tax returns and other financial doc-

uments and check for any irregularities and inconsistencies.15 If any tax incompliance is

found, the firm is urged to pay the corresponding tax duties and fines. More importantly,

any discovered misreporting of sales and costs is aggregated to the annual value for each

type of tax return and recorded in the audit reports. Therefore, the tax audit data show if

a firm was found misreporting on its CIT and/or VAT returns, and if so, how much is the

under-report sales and/or over-reported costs is for each audited year. It is worth noting

that audit data are at an annual level, unlike the CIT and VAT returns data.

1.2.2 E-receipt Program

The Mongolian government introduced an anti-tax evasion program, called E-receipt pro-

gram, in January 2016.16 The purpose of the program is to use final consumers as in-

formants about firms’ sales to disincentivise the firms from hiding their revenue. The

program incentivises consumers to report their receipts of purchase in two ways:

• Consumers receive 20% of the VAT that they paid on their purchase if they register

the receipt. The tax rebate is transferred to the consumers’ bank account annually

in January the following year.

• The registered receipt automatically turns into a lottery ticket regardless of the face

value. The tax authorities hold a lottery event every month. The prize amount varies

month to month and ranges from 20 million MNT (≈7700 USD), which is equal to

the current VAT threshold in Mongolia of 500 million MNT (≈190000 USD).

MNT: around 1.5% of the firms have annual sales of more than 3 billion MNT each year.
14Sources: Tax foundation webpage — https://taxfoundation.org/publications/corporate-

tax-rates-around-the-world/; and IMF Tax Policy Assessment Framework (TPAF) —
https://www.imf.org/external/np/fad/tpaf/pages/vat.htm. Both accessed on 31 October 2020.

15The audit coverage period can be less than five years if the firm is established or was audited within
the last five years.

16E-receipt program was put in place at the start of 2016 but the tax authorities already started publi-
cizing it in late 2015. Even though it is possible, in principle, firms started reacting to the announcement
by the end of 2015, as I show later that most of the effects began to appear after 2016.
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By law, all firms have to participate and issue E-receipts whenever they sell to final

consumers. Once an E-receipt is issued by a firm the transaction information is semi-

automatically sent to the tax authorities and the sales value has to be accounted for on

the firm’s tax returns, whether the consumer submits it or not.17 E-receipts have to

satisfy some requirements: they have to contain a unique, system-generated 35-digit code,

a 10-digit lottery code and a QR code in addition to sales details such as the item’s face

value, item details, prices, date, and the tax ID of the firm. Therefore, to be able to issue

E-receipts, firms need to update or buy a new registry system and POS machines (receipt

printing machines) that connect to the system via the Internet. Because of these fixed

costs, there is a gradual enrollment of firms as shown in Figure A2.18 If a firm is found

not to issue E-receipts or if it refuses to issue E-receipts, consumers can report it to the

tax authorities and the firm will be required to pay a penalty and could potentially face

a tax audit.

The role of consumers is to make sure firms issue E-receipts and send them to the E-

receipt system. It is easy for consumers to enrol in the program: they simply sign up

to the E-receipt system via the website or the free mobile application by entering their

details and bank account information.19 Once the account is set up, the consumer can

register receipts at any time using the E-receipt website or the mobile application as long

as they have access to the Internet.20

Tax authorities hold a lottery event every month during which they choose the winners

from that month’s pooled E-receipts. An E-receipt has to be reported by both the seller

firm and the consumer before the lottery event to be a valid receipt for the monthly lottery

event.21 The lottery event takes place in the middle of the month — around the 15th or

16th of each month — a few days after the VAT return submission deadline, which is

the 10th of each month. This is to make sure that the consumers and firms submit their

receipts before the VAT return submission date. If consumers submit their receipts after

the lottery event, then the receipts will not be included in any future lottery event but

17E-receipts are automatically sent to the E-receipt system if the POS machine that issues the receipt is
connected to the Internet. Firms can delay this information transmission for at most three working days.

18It is said that chain supermarkets or large retailers and wholesalers already had relatively modern
registry systems even before the E-receipt program. Therefore, it is sufficient for them to simply update
their system, which is cheaper. If it is not possible or suitable, large firms are in the financial position to
invest in a registry system. On the other hand, for small firms it could be a considerable burden to buy a
new registry system. To decrease the costs for small firms, it is made possible to print the system-generated
receipts from the web-browser or to send them via email. Hence, for small firms with a small consumer
base, it is sufficient to have a computer with Internet access and a printer.

19To be able to receive the VAT refunds and lottery prizes, consumers need to enter their full name,
email address, phone number and government-issued ID number.

20Internet coverage is relatively advanced in Mongolia, and there are many places with free Wi-Fi,
especially in the capital city, Ulaanbaatar.

21In the first three months the authorities held lottery events twice each month to attract more people.
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they will still be eligible for the VAT rebate at the end of the year.

This lottery scheme is adopted to minimise the possibility of collusion between consumers

and firms. However, there is a risk that firms may offer discounts to consumers to persuade

them to collude and hide transactions from the authorities. For example, firms can collude

with consumers by offering them a 10% discount, which is the VAT rate, if they do not

ask for E-receipts. From the consumers’ point of view, they need to choose between the

firm’s offer of a 10% discount now, and the government’s offer of a 2% VAT rebate next

year plus their luck in the lottery. If the consumers are myopic and/or do not believe that

they have a high chance of winning the lottery then they might choose the firm’s offer.

This will attenuate the effects of the E-receipt program.

Lastly, it is noteworthy that the VAT threshold increased five-fold from 10 million MNT

(≈ 3800 USD) to 50 million MNT (≈ 19000 USD) in January 2016, at the same time as

the E-receipt program was initiated. This shift in the VAT threshold could, in general,

affect the estimation of the effects of the E-receipt program, especially in the case of CIT

reporting.22 But, as I show below, the results survive qualitatively even if I restrict my

samples to the firms who have always been VAT-liable suggesting that the VAT threshold

shift does not drive the results.

1.2.3 Datasets

This project uses four (unbalanced) panel datasets, which are CIT and VAT returns data,

VAT invoice data and operational tax audit data. All of them span the period between

2014 and 2018. Since the E-receipt program started in January 2016, the datasets cover

two years before the intervention and three years after the program was initiated.

As discussed before, the CIT data contain information on the universe of formal firms.

The main type of information I use from CIT returns is the firms’ the reported total sales,

total costs and CIT liabilities. Similarly, I use the information on the reported total sales,

purchasing costs and VAT liabilities from VAT returns, but only for VAT-liable firms.

In the main analysis, I focus on firms with strictly positive tax liabilities and summary

statistics of CIT and VAT data are presented in Table 1.1.23 The CIT sample contains

22It is known that firms bunch below the VAT threshold by misreporting their sales and/or restricting
their production or activity. When the threshold increases firms could stop bunching and report larger
revenue sums if misreporting had existed previously. If this is mainly true for retailers then it could result
in over-estimation.

23The main results survive qualitatively if I use the entire sample that contains observations with non-
positive tax liabilities as shown in Appendix A.15.
Also, as mentioned before, on CIT returns firms report their sales, costs and tax liabilities in cumulative
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25,000 firms, of which 6,500 are retailers and 18,500 are wholesalers. For VAT data, there

are 14,900 VAT-liable firms, of which 3,200 are retailers and 11,700 are wholesalers.24

As expected, wholesalers are larger in size than retailers and have larger tax bills. Also,

VAT-liable firms report larger sales and costs.

Table 1.1: Summary statistics - CIT & VAT data

(a) CIT returns

mean sd count

Retailers

Sales 20.68 74.12 71,454
Expenses 19.24 70.47 71,454
CIT liab 0.10 0.48 71,454

Wholesalers

Sales 64.05 137.86 130,684
Expenses 58.88 131.93 130,684
CIT liab 0.40 0.94 130,684

(b) VAT returns

mean sd count

Retailers

Sales 61.52 241.22 32,816
Purchases 43.01 180.30 32,816
VAT liab 1.48 5.79 32,816

Wholesalers

Sales 121.26 318.76 101,136
Purchases 69.84 220.36 101,136
VAT liab 3.96 8.66 101,136

Note: Table 1.1a presents descriptive statistics of the main variables from CIT returns. Sales, Expenses

and CIT liab. are the quarterly gross reported sales, purchases and CIT liabilities of firms. Table 1.1b

presents descriptive statistics of the main variables from VAT returns. Sales, Expenses and VAT liab. are

the quarterly gross reported sales, purchases and VAT liabilities of VAT-liable firms. All nominal values

are in thousand USD (1 MNT = 2600 USD).

Moreover, the VAT invoice data provide information on transactions between all VAT-

liable seller-buyer pairs, which allows me to study the spillover effect of the E-receipt

program on the upstream firms of retailers. I define the upstream firms as the firms that

have ever sold to any retailer before the intervention. A total of 4,600 upstream firms

are identified, most of which belong to trade (wholesale or retail), manufacturing and

professional activities such as consulting sectors as shown in Table 1.2.

Table 1.3 presents descriptive statistics of transaction values from the VAT invoice data. In

particular, I sum the upstream firms’ sales to retailers within each quarter and summarise

it in the part Sales to retailers, and similarly their total quarterly sales to non-trade

sector firms such as hotels and schools as shown in Sales to other firms. On average,

upstream firms sell twice as much (in terms of value of transaction) to non-retail firms as

terms. For example, in quarter two firms report the sum of quarter one and two, and in quarter four firms
report their annual sales, costs and tax liability. Therefore, to calculate the quarterly revenue and costs, I
subtract the previous quarter’s value from the current quarter unless it is quarter one. Because I take the
difference the quarterly sales and costs could result in a negative due to reporting or data quality issues.
I drop such cases in the main analysis.

24It might seem unusual to have more wholesalers than retailers. My definition of retailer and wholesaler
is based on firms’ 4-digit industry classification code (ISIC Rev.2), which is reported on CIT returns. Even
if some retailers are mistakenly classified as wholesalers, this will lead to an underestimation of the effect
of the program.
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Table 1.2: Industries of upstream firms

Frequency Percentage Cum.Percentage

Administrative activities 56 1.22 1.22
Agriculture 46 1.00 2.23
Arts 9 0.20 2.42
Construction 171 3.74 6.16
Education 12 0.26 6.42
Electricity 64 1.40 7.82
Finance 35 0.76 8.58
Health 10 0.22 8.80
Hotel 91 1.99 10.79
IT 141 3.08 13.87
Manufacturing 386 8.43 22.30
Mining 31 0.68 22.98
Other services 35 0.76 23.74
Professional activities 311 6.79 30.54
Public administration 197 4.30 34.84
Real estate 32 0.70 35.54
Trade 2,855 62.36 97.90
Transportation 59 1.29 99.19
Water supply 37 0.81 100.00

Total 4,578 100.00

the transaction values are more than twice as the value of the transaction to retailers.

Table 1.3: Summary statistics - VAT invoice data

mean sd count

Sales to retailers
Trans. Value 20.98 91.96 48,202

Sales to other firms
Trans. Value 46.90 146.03 71,505

Note: Table 1.3 presents descriptive statistics of transaction values from VAT invoice

data. Sales to retailers represents the average upstream firm’s quarterly gross sales

to retailers (summed over all retailers) and Sales to other firms shows its gross sales

to non-retail and non-wholesale firms. All nominal values are in thousand USD (1

MNT = 2600 USD).

Lastly, I use tax audit data that come from operational tax audits. As mentioned before,

tax audits usually cover the last five years of tax returns and other financial documents.

Therefore, I use the firms audited in 2017 or after so that the audited period covers both

pre- and post-intervention periods.25 The audit data contain information on the year of

audit, whether any misreporting was discovered on their CIT and/or VAT returns, and if

so, the value of the under-reported sales and/or over-reported costs for each audited year.

25I drop firms that are audited before 2016 because the audited period will be between 2011 and 2015,
which does not cover the post-intervention period.
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CIT and VAT audit data are summarised in Table 1.4, which report (annual) values of

under-reported sales and their share in firms’ true sales for each type of tax return. The

true sales are calculated as the sum of reported sales and hidden sales. They also provide

summary statistics of (annual) values of over-reported costs, and their share in the true

costs in each type of tax return. The true costs equal the difference between reported

costs and the over-reported costs.

In particular, in CIT audit data, there are in total 4,000 firms audited between 2017 and

2018, of which 1,300 are retailers and 2,700 are wholesalers. The data are unbalanced,

therefore, there are 960 retailers and 1,856 wholesalers in a year. Retailers under-report

2.33% (over-report 1.12%) of the total sales (costs). Wholesalers misreport 2.72% (1.76%)

of the total sales (costs). For VAT audit data, there are fewer firms as expected: 1,060

VAT-liable retailers and 2,308 VAT-liable wholesalers in total. On average, 755 retailers

and 1,566 wholesalers are audited in a year. VAT-liable firms are more likely to under-

report their sales and less likely to over-report their costs on VAT returns compared to

CIT data. In particular, VAT-liable retailers misreport 4.24% (0.63%) of the total sales

(costs) and VAT-liable wholesalers under-report 4.28% (over-report 2.08%) of the total

sales (costs).26

26Firm composition in CIT and VAT data is different because CIT audit data contain not only VAT-
liable firms but also non-VAT-liable firms. Therefore, I compare CIT and VAT audit data for VAT-liable
firms only and summary statistics are reported in Table A1. It shows that VAT-liable firms are more
likely to under-report their sales and less likely to over-report their costs on VAT returns compared to CIT
returns.
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Table 1.4: Summary statistics - Audit data

(a) CIT returns

mean sd count

Retailers

Under.rep.sales ($) 0.72 6.13 4,819
share (%) 2.33 12.00 4,819

Over.rep.costs ($) 0.96 11.90 4,819
share (%) 1.12 5.09 4,819

Wholesalers

Under.rep.sales ($) 3.73 30.34 9,281
share (%) 2.72 15.25 9,281

Over.rep.costs ($) 4.80 27.12 9,281
share (%) 1.76 6.96 9,281

(b) VAT returns

mean sd count

Retailers

Under.rep.sales ($) 1.81 15.60 3,775
share (%) 4.24 21.93 3,775

Over.rep.costs ($) 0.64 8.96 3,775
share (%) 0.63 4.78 3,775

Wholesalers

Under.rep.sales ($) 4.32 29.53 7,831
share (%) 4.28 24.75 7,831

Over.rep.costs ($) 4.12 46.91 7,831
share (%) 2.08 9.30 7,831

Note: Table 1.4a and 1.4b present summary statistics of CIT and VAT audit data, respectively. Specifically,

it summarises (annual) values of under-reported sales and their share in firms’ true sales on each type of tax

returns. The true sales are calculated as the sum of reported sales and hidden sales. Similarly, it provides

summary statistics of (annual) values of over-reported costs, and their share in true costs in each type of

tax return. The true costs are calculated as the difference between reported costs and the over-reported

costs. All nominal values are in thousand USD (1 MNT = 2600 USD).

1.3 Empirical Analysis

This section empirically studies the effects of the E-receipt program on the tax evasion

behaviour of firms along the supply chain. The purpose of the program is to use consumers

as third-party reporters to reduce firms’ sales misreporting. Therefore, firms at the end

of supply chains — retailers — are directly affected by the program. I call the effects of

the program on retailers as the “direct effect” and analyse it in Subsection 1.3.1. Next,

I examine the spillover effects up the supply chain in Subsection 1.3.2, which I call the

“indirect effect” of the program. In particular, I study the changes in tax liabilities of

retailers’ upstream firms.

1.3.1 Direct Effects — Retailers

To identify the direct effect of the program on retailers, I use the difference-in-difference

(DiD) estimation approach, where I take retailers as a treatment group and wholesalers as

a control group. Wholesalers are considered to be a reasonable control group for retailers

because they both belong to the trade sector, and are likely to be affected by the same

macro shocks.27 However, one can think of a few caveats with this approach. First, my

27This identification strategy is commonly found in the literature. For example, Naritomi, 2019 adopts
this strategy to study the effects of a similar consumer monitoring intervention in Brazil.
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analysis is restricted to the trade sector only. More importantly, this estimation approach

underestimates the true direct effect of the program due to two reasons. First, wholesalers

could be directly treated by the E-receipt program if they sell to final consumers. Second,

as I discuss later, there could be a spillover effect of the E-receipt program on the whole-

salers via retailers. To investigate this further, I run another version of DiD regression, in

which I use the wholesalers that never sell to any retailers as a control group. I identify

such wholesalers using the firm network data from the VAT invoices. The results suggest

substantial underestimation. Therefore, it is important to acknowledge these caveats of

the identification strategy.

I am interested in estimating the effects of the program on retailers’ CIT and VAT reporting

behaviour. Below, I analyse them separately because of the following three reasons: First,

the firms that submit the CIT & VAT returns are different. CIT data include all the

firms whereas VAT data include only VAT-liable firms. Second, even though VAT-liable

firms fill out both CIT and VAT returns, the reported values such as total sales and total

costs do not necessarily match one-to-one between the two tax returns. This is because no

systematic cross-checking is done by the authorities between the information on CIT and

VAT returns.28 Third, a more critical difference between CIT & VAT is the credit-invoice

scheme inherent in VAT, which makes sure that VAT-liable trading partners monitor one

another. As I explain later, this difference plays a vital role when interpreting the results.

I start from the CIT data first because they cover all formal firms. Then I move on to

VAT data and discuss the role of the credit-invoice design.

1.3.1.1 CIT

I start by showing that wholesalers are a valid control group, i.e., there is no pre-trend

in reported sales before the intervention. I do this in two ways. First, I make a sector-

level comparison between the retail and wholesale sector. Specifically, I aggregate sales of

retailers each period and standardise it by dividing the sums by the pre-intervention mean

value of the sums.29 I do the same for wholesalers and plot them over time in panel (a)

in Figure 1.1. As we can see from the plot, there is no pre-trend before the policy change,

but total sales of retailers start to increase more compared to wholesalers in 2016. The

gap between sales of retailers and wholesalers starts widening over time, and I attribute

this divergence to the E-receipt program under the assumption that wholesalers are a valid

28It is said that if the tax officers manually cross-check the tax returns, then any unusually large gap
would be noticeable. In that case, they would contact the firm and ask them to justify such disparities.

29The reason I divide the sums by the pre-intervention average sales is to make the visual comparison
easier because wholesalers are larger in general.
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control group.30

Next, to establish the parallel trend I do a firm-level analysis, where I run the following

flexible DiD regression:

ln(Yits) = γi + δQuartert +
11∑

t=−8

βt(Treatis ·Quartert) + uits (1.1)

where subscripts i, t, s represent firm, quarter and 4-digit ISIC Rev.2 industry code

respectively. Treatis equals one if firm i is a retailer, otherwise zero. The left had side

variable ln(Yits) is the log of quarterly revenue of the firms i in sector s in period t. In this

regression I include firm fixed effect γi and quarter fixed effect Quartert. Therefore, my

coefficients of interest are βs. I cluster the error terms by using 4-digit industry code. The

estimated βs are plotted in panel (b) in Figure 1.1 which prove that there is no pre-trend.

In particular, the confidence intervals always include zero before 2016, and the βs after

the intervention are positive and significantly different from zero. This means that the

wholesale sector is a valid control for retailers, and that E-receipt program significantly

increased retailers’ reported sales relative to wholesalers.

Figure 1.1: Pre-trend in CIT data

(a) Sectors’ standardised total sales (b) Coefficients from the flexible DiD regression

Note: Panel (a) displays the changes in the sales of retail and wholesale sectors reported on CIT returns.

Each line is the total sales reported by all firms aggregated by retail or wholesale sectors scaled by the

pre-intervention average quarterly sales each sector group. The graph plots the raw sales. Thus there are

spikes in quarter four each year due to seasonality. The vertical dashed red line represents the start of the

E-receipt program, which is January 1, 2016. Panel (b) plots the coefficients from firm-level regression,

expressed in equation 1.1, using CIT data.

To see the effect of the E-receipt program on other variables such as CIT liabilities reported

30The graph shows spikes in quarter four each year because it plots raw aggregate sales. In Appendix
A.5, I report a version of the graph where I plot aggregate sales of each sector after controlling for quarter-
of-year FEs in Figure A4a. It corrects for the seasonality and still confirms the pre-trend assumption
between retail and wholesale sectors.
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on CIT returns, I run the following simple DiD regression:

ln(Yits) = γi + δPostt + βTreatis · Postt + uits (1.2)

where subscripts i, t, s represent firm, quarter and 4-digit ISIC Rev.2 industry code

respectively. Treatis equals one if firm i is a retailer, otherwise zero. Similarly, Postt

equals one if the quarter falls after January 2016 and zero otherwise. The left-hand side

variable ln(Yits) is the variable of interest such as a log of quarterly revenue, costs or tax

liabilities of the firms. Since I take the log of the dependent variable, the firms with zero

tax liabilities (firms with zero or negative profits) drop out of the sample. Only the firms

with strictly positive profits are included in the analysis. I include firm fixed effect γi in

the regressions and cluster the error terms by using 4-digit industry code. β represents

the average percentage increase in reported sales, costs and liabilities of retailers in the

3-year time period after the intervention compared to wholesalers.

Table 1.5: Direct effects - CIT returns

(1) (2) (3)
Sales Costs CIT

DD coef 0.198∗∗∗ 0.226∗∗∗ 0.114∗∗

(0.0697) (0.0801) (0.0536)

Firm FE Yes Yes Yes
Cluster Industry Industry Industry
Observations 202,138 202,138 202,138
Adjusted R2 0.76 0.74 0.61

Note: This table displays the results from the regression equation 1.2. The variable DD coef is defined

as the interaction between a dummy for retail sectors and a dummy that equals 1 for the periods after

January 2016. The dependent variables are a log of firms’ reported quarterly sales, costs or tax liabilities

on CIT returns. Only the firms with strictly positive profits are included in the analysis because I take

a log of the dependent variable. That is the firms with zero tax liabilities (firms with zero or negative

profits) drop out of the sample. Time and firm fixed effects are included in all regressions. All regressions

are weighted by firms’ average quarterly sales before the intervention and standard errors are clustered at

4-digit industry level. * p < 0.10, ** p < 0.05, *** p < 0.01

The results are presented in Table 1.5.31 All regressions are weighted by firms’ average

quarterly sales before the intervention.32 The dependent variables are a log of firms’

reported quarterly total sales, costs or tax liabilities on CIT returns. Column 1 shows that

the E-receipt program induced retailers to report 20% higher sales relative to wholesalers.

However, in column 2, retailers reported an increase in costs by 22.6%. This increase

in costs partially offsets the effect on CIT liabilities, and thus CIT liabilities increase by

31Parallel trend in costs and CIT liabilities are shown in Figure A6 in Appendix A.6.
32Table A2 in Appendix A.7 shows results from unweighted regressions, which are consistent with Table

1.5.
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11.4% in column 3.

As mentioned before, using wholesalers as a control group leads to an underestimation.

This is because the wholesalers could be directly treated by the E-receipt program if they

also sell to final consumers. Moreover, as I discuss later, there could be a spillover effect

of the E-receipt program on the wholesalers via retailers. To investigate the extent of the

underestimation, I run another version of DiD regression, in which I use the wholesalers

that never sell to any retailers as a control group. I identify such wholesalers using the firm

network data from the VAT invoices. The results are reported in Table A3. The estimated

coefficients of sales and costs are above 60% suggesting a substantial underestimation.

These changes occur on retailers’ CIT returns because consumers started monitoring them.

To see if the program induced any real response, the number of workers and the total value

of wages are analysed. The available payroll data cover the period between quarter one in

2015 to quarter three in 2018 only. Therefore, in Table 1.6, I report not only the changes

in retailers’ reported wages and workers, but also the regression results using the main

variables (sales, costs, CIT) for this period. The first three columns confirm that the

increase in costs offsets the increase in sales and thus leaving no significant increase in

CIT liabilities. The last two columns show that retailers do not report a larger number

of workers and wages after the intervention compared to wholesalers. This suggests that

the increase in reported sales and costs is due to a reporting effect, and there is no actual

increase in production.

Next, I focus on the increase in the reported costs. It has been documented in the liter-

ature that firms and individuals increase their reported costs on CIT returns in response

to increased third-party information on firms’ sales (Slemrod et al. 2017; Carrillo et al.

2017). Specifically, they tend to adjust costs that are more difficult to verify such as

“other administrative costs”. I study this in Table 1.7, where I decompose the increase in

total costs into changes into its components: production, administrative and other costs.

In particular, production costs contain material input costs, transportation, packaging

and shipment costs, insurance costs and labour costs that are associated with produc-

tion procedures. Administrative costs consist of marketing costs, travel expenses, labour

costs of administrative staff etc. Other costs include non-operating costs such as interest

payments, costs from currency exchange and other one-off or unusual costs. On average,

production, administrative and other costs make 70%, 28% and 2% of the total costs,

respectively. The last three columns in Table 1.7 show that the increase in total costs is

mainly driven by an increase in production and administrative costs. The coefficient on
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Table 1.6: No real response by retailers

Main variables Real response

(1) (2) (3) (4) (5)
Sales Costs CIT Wages Workers

DD coef 0.139∗∗∗ 0.151∗∗∗ 0.0181 -0.00455 0.0157
(0.0482) (0.0518) (0.0275) (0.0266) (0.0354)

Firm FE Yes Yes Yes Yes Yes
Cluster Industry Industry Industry Industry Industry
Observations 79,610 79,610 79,610 79,610 79,610
Adjusted R2 0.83 0.82 0.72 0.92 0.91

Note: This table displays the results from the regression equation 1.2. The first three columns take a

log of quarterly sales, costs or tax liabilities as dependent variables. Only the firms with strictly positive

profits are included in the analysis because I take a log of the dependent variable. That is the firms with

zero tax liabilities (firms with zero or negative profits) drop out of the sample. The payroll data covers Q1

in 2015 to Q3 in 2018 only. Therefore, less observation compared to Table 1.5. The dependent variables

in the last two columns are log of total wages and number workers. The variable DD coef is defined as the

interaction between a dummy for retail sectors and a dummy that equals 1 for the periods after January

2016. Time and firm fixed effects are included in all regressions. All regressions are weighted by firms’

average quarterly sales before the intervention and standard errors are clustered at 4-digit industry level.

* p < 0.10, ** p < 0.05, *** p < 0.01

other costs in column 4 is insignificant even though it is positive.33

Table 1.7: Decomposition of total costs reported on CIT returns

(1) (2) (3) (4)
Total costs Production Admin Other

DD coef 0.226∗∗∗ 0.233∗∗∗ 0.131∗∗∗ 0.213
(0.0801) (0.0698) (0.0391) (0.223)

Firm FE Yes Yes Yes Yes
Cluster Industry Industry Industry Industry
Observations 202,138 144,922 171,558 29,262
Adjusted R2 0.74 0.70 0.78 0.40

Note: This table decomposes the total costs in column 1 into production, administrative and other costs,

which are reported in columns 2-4. The variable DD coef is defined as the interaction between a dummy

for retail sectors and a dummy that equals 1 for the periods after January 2016. Time and firm fixed

effects are included in all regressions. All regressions are weighted by firms’ average quarterly sales before

the intervention and standard errors are clustered at 4-digit industry level.

* p < 0.10, ** p < 0.05, *** p < 0.01

These results are slightly different from the findings in the existing literature mentioned

above, namely, that so-called “hard to verify” other costs do not play a role in explaining

total costs. Nevertheless, this does not rule out the possibility of firms artificially inflating

33Some of the firms do not classify the costs accurately and pool all their costs into one category such as
production costs or administrative costs. This is the case for 30% of the sample. I do the same regression
analysis by dropping those firms. The results are reported in Table A5 and they are consistent with the
outcomes in Table 1.5.
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their production and administrative costs to offset the effect of larger sales. In fact, an

increase in the reported total costs could be either legitimate or illegitimate, or both. The

increase is legitimate if the retailers start declaring the costs that are associated with the

final sales that are disclosed by the consumers. This means the retailers used to hide both

sales and costs associated with goods or services sold to the final consumers before the

intervention. It is clear that retailers would have an incentive to hide their sales. However

it is not straightforward to see why retailers have an incentive to hide and underreport

their costs. But, if a retailer declares the purchasing costs of a good but does not report

the sales, it would look suspicious to the tax authorities. Therefore, retailers are willing to

underreport their costs as long as they can hide the corresponding final sales to consumers.

Hiding both sales and costs associated with trading goods and services is beneficial to

retailers. This is because they can keep the profits to themselves without paying any

tax.34 Moreover, there could be other reasons why retailers might want to suppress their

reported costs. For example, they could be offered a discount by the upstream firms, the

sellers. If retailers do not report their purchase on their tax returns, the sellers would not

have to pay tax on those sales and transfer some of the gains to the buyer. Therefore, it can

be profitable for both the seller and the buyer to hide their transactions. Alternatively, the

retailers could be involved in some underground/illegal activities, selling alcohol without

a license, hence hide both sales and costs from tax authorities. In all these cases, once the

E-receipt program forces retailers to report their final sales, they would have an incentive

to declare the previously hidden costs. Hence the increase in reported costs is legitimate.

On the other hand, the increase in reported costs is illegitimate if the retailers artificially

inflate their costs to decrease the CIT liabilities. Since the E-receipt program makes

it harder for firms to hide their sales they might want to substitute away from under-

reporting their sales to over-reporting costs to keep their CIT liabilities small. This is

feasible because the E-receipt program monitors only the sales of the firms, and not costs.

Also, firms’ reported costs on CIT returns are less verifiable for the tax authorities than

sales.

Having a legitimate or illegitimate increase in reported costs has very different implications

on the effectiveness of the E-receipt program to fight with tax evasion and increase tax

revenue for the government. A genuine increase in reported costs result in the intervention

(at least partially) successfully decreasing the size of the shadow economy even though

34Figure A3 in Appendix A.4 illustrates this using an example. A retailer buys a good from a wholesaler
at a price 5 and sells it to a consumer at a price 8, generating a profit of 3. If the retailer declares both
purchase and sales of the good, it has to pay at least the associated income tax. Therefore the gain of
trading the good for the retailer is less than 3. If the retailer hides both its purchase and sales, then gain
is 3.
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the tax liability does not increase much. On the other hand, if firms increase their costs

artificially, then the program is failing in its fight with tax evasion. It is easier for firms to

misreport their sales and costs on CIT returns since there is no credit-invoice scheme as

in VAT. Therefore, we cannot directly tell that the increase in retailers’ reported costs is

legitimate and should be associated with an increase in sales of upstream firms. Therefore,

I investigate this further by using the audit data to shed light on the changes in retailers’

misreporting behaviour.

To see the effect of the E-receipt program on the misreporting behaviour of retailers on

their CIT returns I use firms’ misreported sales and costs that are discovered during the

operational audits. The audited data are summarised in Table 1.4.35 Also, I calculate

shares of misreported sales and costs in firms’ true sales and costs. I define the true

sales as the sum of misreported sales and reported sales, and true costs as the difference

between reported costs and misreported costs. Here I implicitly assume that firms always

want to under-report their sales and over-report their costs.36 Then I run the simple DiD

regression expressed in equation 1.2 and the results are presented in Table 1.8. The first

(last) four columns in Table 1.8 analyse the misreporting of sales (costs). The dependent

variables in columns 1 and 2 are the log of reported sales and calculated true sales. In

column 3, I use the share of misreported sales as a dependent variable, which is the ratio

between discovered hidden sales and true sales. Column 4 uses a log of the misreported

sales. Similarly, in columns 5 and 6, I use a log of reported costs and calculated true costs

as right-hand side variables. Columns 7 and 8 use the share and the (log of) value of

misreported costs. I calculate the share of the misreported costs by dividing the value of

misreported costs by true costs.

Columns 1 to 4 suggest that audited retailers misreport their sales less in the period after

the intervention was initiated. As we can see from columns 1 and 2, retailers’ reported sales

increase more than true sales.37 This is because retailers’ tendency to under-report sales

decrease after the intervention. Column 3 shows that retailers’ share of misreported sales

decreases by 0.7%. Column 4 shows that the value of hidden sales of retailers decreases

by 1.5%, even though the coefficient is not significantly estimated.38 On the other hand,

35As mentioned before, the audited firms are not chosen randomly. However, as long as the criteria
to choose firms have not changed during the sample period the DiD estimation approach should estimate
the effect of the program on audited firms. In contrast, the external validity of the estimated effect of the
program is still questionable if the audited firms are systematically different from the general population
of the firms.

36However, there are some evidence that firms’ misreporting behaviour is not always optimal. For
example, Almunia et al., 2019 shows that 29% of firms misreport own sales and purchases such that their
tax liabilities increase.

37However, the estimated coefficients are not statistically different from one another.
38This lack of statistical significance is potentially due to the smaller sample size used in Column 4.
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Table 1.8: Misreporting on CIT returns (annual values)

Sales Costs

(1) (2) (3) (4) (5) (6) (7) (8)
Reported True Misreport (%) Misreport ($) Reported True Misreport (%) Misreport ($)

DD coeff 0.193∗∗∗ 0.181∗∗∗ -0.705∗ -0.0151 0.199∗∗∗ 0.183∗∗∗ 0.376 0.362∗∗

(0.0385) (0.0399) (0.377) (0.249) (0.0397) (0.0415) (0.268) (0.137)

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster Industry Industry Industry Industry Industry Industry Industry Industry
Observations 14,100 14,100 14,100 2,246 14,100 14,100 14,100 3,091
Adjusted R2 0.74 0.74 0.22 0.68 0.79 0.78 0.23 0.74

Note: This table displays the results from the regression equation 1.2 using CIT audit data. The variable

DD coef is defined as the interaction between a dummy for retail sectors and a dummy that equals 1 for

the periods after January 2016. The first (last) four columns analyses misreporting of sales (costs). The

dependent variables in columns 1 and 2 are the log of reported sales and calculated true sales. I calculate

true sales by adding misreported sales to reported annual sales. In column 3, I use the share of misreported

sales as a dependent variable, which is the ratio between discovered hidden sales and true sales. Column

4 uses a log of the misreported sales. Similarly, in column 5 and 6, I use a log of reported costs and

calculated true costs as right-hand side variables. True costs are calculated by subtracting misreported

costs from reported annual costs. Column 7 and 8 use the share and the (log of) value of misreported costs.

I calculate the share of the misreported costs by dividing the value of misreported costs by true costs. All

regressions are weighted by firms’ average annual sales reported on CIT returns before the intervention.

Time and firm fixed effects are included in all regressions. Standard errors are clustered at 4-digit industry

level. * p < 0.10, ** p < 0.05, *** p < 0.01

columns 5 to 8 imply that retailers misreported their costs more after the intervention.

In particular, reported costs increase by 20% and calculated true costs increase by 18%.39

Column 7 indicates that the share of over-reported costs increases by 0.4% even though

the estimated coefficient is not statistically significant. The value of misreported costs

increases by 36% as shown in column 8.40

These results support the hypothesis that retailers are substituting away from under-

reporting sales to over-reporting costs on their CIT returns. In particular, audit data

shows that retailers artificially increase their reported costs to decrease their tax liabilities

since it is harder for them to hide sales due to the intervention. The estimated coefficients

in columns 5 and 6 imply that at least 2% of the increase in reported costs is due to

illegitimate cost over-reporting.41 To the best of my knowledge, this is the first time

Sample size decreases in Column 4 because the dependent variable is a log of the misreported sales, and
not all audited firms got caught misreporting their sales during the tax audits.

39However, the estimated coefficients are not statistically different from one another.
40Note that the number of observations used in columns 4 and 8 is smaller than the other columns. This

is because some firms do not misreport sales and/or costs in some years and are dropped out because I take
a log of the dependent variable. I use several other measures of misreported values sales and costs in Table
A6. In particular, I use a log of one plus the misreported values and a dummy for positive misreported
sales and costs. The results qualitatively confirm the fact that retailers misreport their sales less but are
more likely to over-report their costs after the intervention.

41It should be noted that this 2% is potentially an underestimate of the actual increase in retailers’
artificial cost over-reporting. It is possible that tax audits do not reveal all misreporting. For example,
tax auditors cannot identify cost misreporting due to their lack of knowledge about the business. Or
tax auditors could be influenced by corruptions and collude with the audited retailers and hide their
misreporting. In these cases, the calculated true costs could still be an overestimate of firms true costs.
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direct evidence is provided showing that firms are over-reporting their costs more on CIT

returns in response to increased enforcement on firms’ sales.

1.3.1.2 VAT

In this subsection, I analyse the VAT data employing the same research strategy used in

the previous subsection 1.3.1.1. First, I establish that VAT-liable wholesalers are a valid

control group for VAT-liable retailers. Panel (a) in Figure 1.2 compares the total sales

of VAT-liable retailers to VAT-liable wholesalers.42. The graph shows that the sales of

VAT-liable retailers and wholesalers move roughly parallel to each other before the policy

change, validating the no pre-trend assumption. Total sales of VAT-liable retailers start

to increase more than VAT-liable wholesalers around the start of the E-receipt program.43

The gap between the sales of retailers and wholesalers widens over time.

Panel (b) in Figure 1.2 plots the estimated βs from equation 1.1, where the dependent

variable is the log of the quarterly reported sales on firms’ VAT returns. The graph

shows that the estimated coefficients before 2016 are not significantly different from zero,

implying that the VAT-wholesalers are a valid control for VAT-retailers. The estimated

βs increase and are significantly different from zero after the introduction of the E-receipt

program, implying the program’s differential effect on retailers’ reported sales.

To see the effect on other variables such as reported costs and VAT liabilities, I run the

simple DiD regression expressed in equation 1.2 using the VAT data. For dependent

variables I use the log of quarterly total sales, purchasing costs and VAT liabilities of the

firms.The results from the weighted regressions, weighted by the mean pre-intervention

sales of firms, are presented in Table 1.9. Column 1 shows that VAT-liable retailers’

reported sales increase by 42%. Even though the reported purchases increase by 38% as

reported in column 2, they do not cancel out the effect on the final VAT liabilities of the

Moreover, since the operational audit data is subject to selection issues in terms of which firms get audited,
these results need to be interpreted with caution.

42I aggregate the sales of retailers each period and standardise it by dividing the sums by the pre-
intervention mean value of the sum. I do the same thing for wholesalers and plot them over time in panel
(a) in Figure 1.2. Since they are raw quarterly sales the lines show spikes in quarter four each year. To
control for this seasonality I regress the aggregate sales on quarter-of-year FEs and analyse the residuals.
The residuals are plotted in Figure A4b in Appendix A.5, and they show a similar pattern as in Figure 1.2
confirming the parallel trend assumption.

43It might seem that the divergence between the sales of retail and wholesale sectors appear in quarter
one in 2015 already. One potential reason for this is the changes in the number of VAT-liable retailers
compared to the number of VAT-liable wholesalers as depicted in Figure A5a in Appendix A.5. This
suggests that the slight increase in the retail sales in quarter one in 2015 is partially due to adjustments
at the extensive margin. A more noticeable gap between retail and wholesale sales emerges at the start of
the E-receipt program in quarter one in 2016. Also, as I discuss next, analysis of firm-level sales in Panel
(b) Figure 1.2 confirms this.
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Figure 1.2: Pre-trend in VAT data

(a) Sectors’ standardised total sales (b) Coefficients from the flexible DiD regression

Note: Panel (a) displays the changes in the sales of retail and wholesale sectors reported on VAT returns.

Each line is the raw sales reported by all firms aggregated by retail or wholesale sectors scaled by the

pre-intervention average quarterly sales each sector group. The graph plots the raw sales. Thus there are

spikes in the last quarter each year due to seasonality. The vertical dashed red line represents the start

of the E-receipt program, which is January 1, 2016. Panel (b) plots the coefficients from equation 1.1

estimated from firm-level regression using firms’ reported sales on VAT returns.

retailers. VAT liabilities increased substantially, by 31%, in column 3.44

Table 1.9: Direct effects - VAT returns

(1) (2) (3)
Sales Purchase VAT

DD coef 0.416∗∗∗ 0.378∗∗∗ 0.312∗∗

(0.0380) (0.0579) (0.124)

Firm FE Yes Yes Yes
Cluster Industry Industry Industry
Observations 130,311 130,311 130,311
Adjusted R2 0.74 0.73 0.62

Note: This table displays the results from the regression equation 1.2 using the VAT data. The variable

DD coef is defined as the interaction between a dummy for retail sectors and a dummy that equals 1

for the periods after January 2016. The dependent variables are a log of firms’ reported quarterly total

sales, purchasing costs or VAT liabilities. Time and firm fixed effects are included in all regressions. All

regressions are weighted by firms’ average quarterly sales before the intervention and standard errors are

clustered at 4-digit industry level. * p < 0.10, ** p < 0.05, *** p < 0.01

In comparison to the CIT analysis reported in Table 1.5 there is a larger effect on retailers’

reported sales, purchasing costs and VAT-liabilities on VAT returns. This could be due

to the following two reasons. First, the samples used in the CIT versus the VAT analysis

44As before, to investigate the extent of underestimation, I run a DiD regression, in which I use the
wholesalers that never sell to any retailers as a control group. I identify such wholesalers using the firm
network data from the VAT invoices. The results are reported in Table A4. The estimated coefficients of
sales, costs and VAT liabilities are above 64% suggesting a substantial underestimation.
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consist of different firms. The VAT sample consists of only VAT-liable firms while the

CIT sample includes both non-VAT-liable and VAT-liable firms. Second, there could be a

genuinely differential effect on values reported on CIT and VAT returns. To disentangle

these effects, I use the same sample of firms (only VAT-liable) for both CIT and VAT

analysis.

The results are reported in Table 1.10.45 The first three columns take a log of quarterly

sales, total costs and CIT liabilities reported on CIT returns as dependent variables. Sim-

ilarly, I use a log of quarterly sales, purchasing costs or VAT reported on VAT returns as

dependent variables for the last three columns. Comparing the first three columns to the

last three, I still find a larger effect on the reported sales and tax liabilities reported on

VAT returns compared to CIT returns. Specifically, the reported sales on VAT returns

increase more compared to CIT returns, as in columns 1 and 4. This might seem surpris-

ing because the reported sales on VAT and CIT returns should be equal to each other.

However, as mentioned before, firms could be taking advantage of the fact that it is not

so straightforward to compare CIT and VAT returns for tax authorities, and thus they

may manipulate their reported values. The comparison of reported quarterly total sales

on CIT and VAT returns are reported in Table A8 and it confirms the large discrepancy

between the two reported sales.46

Unlike reported sales, I cannot directly compare the total costs reported on CIT returns

and purchasing costs on VAT due to their different definitions. Total costs include all

types of costs such as purchasing, labour and administrative costs. Unfortunately, on CIT

returns, total costs are decomposed to only production, administrative and other costs.47

Nevertheless, as shown in columns 2 and 5, the total costs reported on CIT returns increase

more compared to the purchasing costs on VAT returns .48 Moreover, VAT-liable retailers’

VAT liabilities increase more (by 25%) compared to their CIT liabilities, which increase

45The sample size is 81,000, which is smaller than sample used in VAT analysis in Table 1.9. This is
because I match the VAT sample to the CIT sample, where all observations have positive VAT and CIT
liabilities. An observation is dropped if, for example, a firm has positive CIT liabilities but non-positive
VAT liabilities or vice versa.

46There are some legitimate reasons for why reported sales on CIT and VAT returns could differ.
For example, there are different accounting rules such as revenue recognition rules for CIT and VAT.
Unfortunately, the available data are not sufficient to separate how much of the discrepancy is due to these
legitimate rules.

47The production costs contain not only purchasing costs but also labour, transportation and insurance
costs that are associated with production procedures.

48I study the increase in reported purchasing costs on VAT returns further. I decompose the increase
in purchases into its components: total input costs are split into the deductible and non-deductible input
costs. Summary statistics are presented in Table A10 where it can be seen that deductible costs make
99% of the total input costs which equals the total purchasing costs for 90% of the sample. Nonetheless, I
analyse the each component using the equation 1.2 and the results are presented in Table A9. The results
show that both deductible and non-deductible costs increase. It is worth noting that non-deductible input
costs increase more compared to deductible costs even though it does not affect firms’ VAT liabilities.
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by 17%.

Table 1.10: CIT and VAT comparison

CIT returns VAT returns

(1) (2) (3) (4) (5) (6)
Sales Total costs CIT Sales Purchase VAT

DD coef 0.206∗∗∗ 0.256∗∗∗ 0.171∗∗∗ 0.254∗∗∗ 0.237∗∗∗ 0.249∗∗

(0.0548) (0.0639) (0.0368) (0.0626) (0.0810) (0.0977)

Firm FE Yes Yes Yes Yes Yes Yes
Cluster Industry Industry Industry Industry Industry Industry
Observations 81,027 81,027 81,027 81,027 81,027 81,027
Adjusted R2 0.77 0.76 0.59 0.77 0.75 0.68

Note: This table is to compare the effect of the E-receipt program on values reported on CIT and VAT

returns. The first three columns take a log of quarterly sales, total costs or CIT reported on CIT returns as

dependent variables. The last three columns use a log of quarterly sales, purchasing costs or VAT reported

on VAT returns as dependent variables. The sample consists of only VAT-liable firms. The regression is

specified in equation 1.2. The variable DD coef is defined as the interaction between a dummy for retail

sectors and a dummy that equals 1 for the periods after January 2016. Time and firm fixed effects are

included in all regressions. All regressions are weighted using pre-intervention average sales. Standard

errors are clustered at 4-digit industry level. * p < 0.10, ** p < 0.05, *** p < 0.01

One potential explanation for the smaller increase in reported costs but larger increase in

reported tax liabilities on VAT returns compared to CIT returns in Table 1.9 is the credit-

invoice scheme inherent in VAT reporting. The credit-invoice scheme makes it harder

for VAT-liable firms to misreport their costs (and B2B sales) on VAT returns because

the values can be cross-checked with the declarations of firms’ trading partners. That is,

VAT-liable firms do not over-report their input costs on VAT returns, unlike CIT returns,

to the extent that they offset the effect of higher reported sales.49To test this further I

turn to the VAT audit data.

To examine the changes in misreporting behaviour of VAT-liable firms on their VAT

returns I run the regression in equation 1.2. Table 1.11 presents the results and the first

(last) four columns analyse the misreporting of sales (costs). The dependent variables in

columns 1 and 2 are the log of reported sales and calculated true sales, respectively. I

calculate true sales by adding misreported sales to reported annual sales. In column 3,

I use the share of misreported sales as a dependent variable, which is the ratio between

discovered hidden sales and true sales. Column 4 uses a log of the misreported sales.

Similarly, in columns 5 and 6, I use a log of reported costs and calculated true costs as

right-hand side variables. True costs are calculated by subtracting misreported costs from

reported annual costs. Columns 7 and 8 use the share and (log of) value of misreported

49Of course, it is still possible that VAT firms can misreport their B2B transactions if the partner,
especially the buyer, is a non-VAT firms. I discuss this further in section 1.3.2.
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Table 1.11: Misreporting on VAT returns (annual values)

Sales Costs

(1) (2) (3) (4) (5) (6) (7) (8)
Reported True Misreport (%) Misreport ($) Reported True Misreport (%) Misreport ($)

DD coeff 0.324∗∗∗ 0.307∗∗∗ -1.513∗∗ -0.231 0.277∗∗∗ 0.289∗∗∗ -0.700∗∗∗ -0.180
(0.0379) (0.0365) (0.632) (0.149) (0.0435) (0.0433) (0.250) (0.505)

Firm FE Yes Yes Yes Yes Yes Yes Yes Yes
Cluster Industry Industry Industry Industry Industry Industry Industry Industry
Observations 11,606 11,606 11,606 2,174 11,606 11,606 11,606 1,983
Adjusted R2 0.78 0.78 0.22 0.62 0.78 0.77 0.19 0.62

Note: This table displays the results from the regression equation 1.2 using VAT audit data. The variable

DD coef is defined as the interaction between a dummy for retail sectors and a dummy that equals 1 for

the periods after January 2016. The first (last) four columns analyses misreporting of sales (costs). The

dependent variables in columns 1 and 2 are the log of reported sales and calculated true sales. I calculate

true sales by adding misreported sales to reported annual sales. In column 3, I use the share of misreported

sales as a dependent variable, which is the ratio between discovered hidden sales and true sales. Column

4 uses a log of the misreported sales. Similarly, in column 5 and 6, I use a log of reported costs and

calculated true costs as right-hand side variables. True costs are calculated by subtracting misreported

costs from reported annual costs. Column 7 and 8 use share and (log of) value of misreported costs. I

calculate the share of the misreported costs by dividing the value of misreported costs by true costs. All

regressions are weighted by firms’ average annual sales reported on VAT returns before the intervention.

Time and firm fixed effects are included in all regressions. Standard errors are clustered at 4-digit industry

level. * p < 0.10, ** p < 0.05, *** p < 0.01

costs. I calculate the share of the misreported costs by dividing the value of misreported

costs by true costs.

Similar to the CIT audit data analysis in Table 1.8, columns 1 to 4 in Table 1.11 suggest

that audited retailers misreport their sales less after the intervention. In particular, column

3 shows that retailers’ share of misreported sales decreases by 1.5%. Column 4 shows that

the value of hidden sales of retailers decrease by 23%, even though the coefficient is not

significantly estimated. Columns 5 to 8 imply that retailers misreported their costs less

on their VAT returns after the intervention, unlike the case of CIT. Particularly, column 7

indicates that the share of over-reported costs decreases by 0.7%. The value of misreported

costs increases by 18%, even though insignificantly estimated, as shown in column 8.50

These results suggest that the combination of consumer reporting and the credit-invoice

scheme in VAT makes it harder for VAT-liable firms to misreport not only sales but also

their purchasing costs.

A summary of the direct effect analysis

50Note that the number of observations used in columns 4 and 8 is smaller than the other columns. This
is because some firms do not misreport sales and/or costs in some years and are dropped out because I take
a log of the dependent variable. I use several other measures of misreported values sales and costs in Table
A7. In particular, I use a log of one plus the misreported values and a dummy for positive misreported
sales and costs. The results qualitatively confirm the fact that retailers misreport both their sales and
costs on VAT returns after the intervention.
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On CIT returns, I find that retailers declare 20% higher sales after the implementation of

the E-receipt program, and this is due to the pure reporting effect. I do not find any real

effect on retailers’ production, which is proxied by their number of workers. However, this

increase in sales does not directly translate into larger CIT liabilities because of higher

reported costs. I document that the increase in total reported costs is mainly due to

changes in the production and administrative costs of retailers. Moreover, using CIT

audit data I find that some part of the rise (at least 2%) in reported costs is due to

misreporting. This is because of the combination of firms’ incentive to decrease their tax

liabilities and the inability of tax authorities to verify the reported costs. To the best of

my knowledge, this paper is the first to document the fact that firms respond to improved

sales enforcement by increasing cost misreporting on CIT returns.

On the other hand, on VAT returns, VAT-liable retailers’ reported sales, costs and VAT

liabilities all increase more than 30%. More importantly, the increase in input costs does

not offset the increase in sales, and thus VAT liabilities increase by 31%. As discussed

above, one of the reasons for the E-receipt program having a substantial effect on VAT

liabilities compared to CIT liabilities is the existence of the credit-invoice scheme in VAT

reporting.

One thing worth analysing further is the increase in reported input costs of the VAT

liabilities. Because of the credit-invoice scheme, the increase in input purchase should also

mean an increase in the sales of the upstream firms — the suppliers to the VAT-retailers.

This can happen if the upstream firms and retailers were colluding and hiding their trade

from the authorities before the intervention. The E-receipt program forces retailers to

report their sales truthfully. This, in turn, will induce an incentive for retailers to increase

the reported costs; hence collusion with the upstream firms may break. If this hypothesis

is true, then it means that consumer monitoring — the E-receipt program — affects not

only the firms at the end of the supply chain but also the upstream firms. Therefore, the

whole supply chain may well be affected by the E-receipt program. I analyse this in the

next section.

Lastly, it is worth noting that the above results are the lower bounds of the effects of the

E-receipt program. This is because I exploit the variation in the intensity of treatment to

estimate the direct effect of the program on retailers. In particular, I compare retailers’ tax

reporting behaviour to that of wholesalers. The implicit assumption for this identification

strategy is that the wholesalers are not affected by the program. However, in reality, some

wholesalers may sell to final consumers and be affected by the program directly. Also,
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as briefly explained above, the wholesalers could be treated by the program indirectly.

Therefore, my analysis in this subsection underestimates the true direct effects of the

intervention on retailers.

1.3.2 Indirect Effects — Upstream Firms of Retailers

This subsection explores if the E-receipt program has any effect on the upstream firms of

the retailers. To identify the upstream firms, I use VAT invoice data where I observe the

VAT-liable buyer-seller pairs and their volume of transactions at a quarterly frequency.

I define the upstream firms as the firms that have ever sold to any retailer before the

intervention. A total of 4,600 upstream firms are identified and most of them belong to

trade (wholesale or retail), manufacturing and professional activities such as consulting

sectors as shown in Table 1.2. Using these upstream firms, I estimate the spillover effect

in two ways, which are transaction-level within an upstream firm analysis and firm-level

between upstream firm analysis.

I start with the transaction-level within an upstream firm analysis. I adopt a DiD esti-

mation approach where I take the upstream firms’ sales to retailers as a treatment group,

and their sales to buyers in non-trade sectors as a control group.51 In essence, I compare

the change in sales to the retail sector to the change in sales to other sectors within each

upstream firm. Sales to retailers is the treatment group because the retailer is directly

monitored by the consumers. For each seller I calculate the total sales to the retail sec-

tor by aggregating the volume of transaction over retail buyers each quarter. Similarly,

I compute the quarterly total sales to buyers in other sectors.52 Using these transaction

values I run the following DiD regression:

ln(Titr) = γi + σTreatir + δPostt + βTreatir · Postt + uitr (1.3)

where subscripts i and t correspond to (upstream) firm and quarter as before. The sub-

script r represents the industry of the buyers (retail vs non-retail). Variable Treatir equals

one if firm i sells to retail sector r, otherwise zero.53 Postt equals one if the quarter falls

51The non-trade buyers can be, for example, manufacturing, consulting, or construction firms and are
non-retail and non-wholesale buyers.

52Summary statistics of the share of sales to each group of buyers are shown in Table 1.3.
53The main difference between this equation 1.3 and 1.2 is the variable Treat. In equation 1.2 the

variable Treatis is at firm level and equals one if a firm belongs to retail sector, zero otherwise. In
equation 1.3 the variable Treatir is at transaction level and equals one if the buyer is a retailer, zero
otherwise.

44



after January 2016 and zero otherwise. The left-hand side variable ln(Titr) is the log of

firm i’s total sales to sector r in month t. I include firm fixed effect γi and the error terms

are clustered at sellers’ 4-digit industry level.

It is important to recall that, most of the upstream firms belong to the trade sector, either

retailers or wholesalers, as shown in Table 1.2. And we know that retailer and wholesalers

could be directly affected by the E-receipt program as discussed in the previous section.

Including them in the analysis of indirect effects could contaminate the estimation of the

indirect effect of the intervention. Therefore, I run several regressions for robustness by

including and excluding them from the sample.

Table 1.12: Indirect effects — Transaction-level DiD

log(Transaction value)

(1) (2) (3)
All sellers Non-retail Non-trade

DD coef 0.224∗∗ 0.335∗∗∗ 0.397∗∗

(0.113) (0.0885) (0.182)

Buyer Ind.FE Yes Yes Yes
Seller FE Yes Yes Yes
Cluster Industry Industry Industry
Observations 119,053 105,776 44,956
Adjusted R2 0.63 0.63 0.63

Note: This table displays the results from the regression equation 1.3. The variable DD coef is defined

as the interaction between a dummy for time period and a dummy that equals one if a buyer’s sector is

retail, zero otherwise. The dependent variables is a log of firm i ’s sales to sector r in quarter t. The first

column uses all upstream firms regardless of their industry. In columns 2 I drop upstream firms that are

retailer sector. The last column excludes both retailers and wholesalers from the analysis. All regressions

are weighted by suppliers’ average quarterly total sales before the intervention. Time and supplier fixed

effects are included in all regressions. Standard errors are clustered at 4-digit industry level.

* p < 0.10, ** p < 0.05, *** p < 0.01

I expect the coefficient on the cross term to be positive if there is an indirect effect on the

upstream firms. Table 1.12 presents the results. The first column uses all upstream firms

regardless of their industry. In columns 2, I drop the upstream firms that are in the retail

sector from the sample. The last column excludes both retailers and wholesalers from the

analysis. All regressions are weighted by suppliers’ average quarterly total sales before the

intervention.54

Table 1.12 shows that there is a positive effect on upstream firms’ sales to retailers com-

pared to their sales to non-trade buyers. The effect increases as I exclude retailers and

54Table A11 presents results from unweighted regressions. Estimated coefficients are positive even
though they are not significant.
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wholesalers from the analysis. Specifically, in column 1, sales to retailers increase by 22.4%

when I use all upstream firms. The estimated coefficient increases to 33.5% when I drop

retail upstream firms from the sample. In column 3, where I keep only non-trade sellers,

the estimated coefficient is 40%. This means non-trade upstream firms sales to retailers

increase more than their sales to other firms. The main idea behind this result is the

change in retailers’ incentive to collude with upstream firms due to consumer monitoring.

The intuition behind these results is the change in retailers’ incentive to collude with up-

stream firms. Because of the consumer monitoring retailers are forced to disclose their

previously hidden sales. This will induce retailers to break the collusion and report larger

costs to decrease their tax liabilities.

Next, I estimate the firm-level indirect effect on upstream firms. To do so, I rank the

upstream firms and divide them into two groups based on their share of sales to retailers

before the intervention. The firms, whose share of sales to retailers is above the median

are classified as a treatment group and firms below the median are used as a control group.

Since the analysis is at the firm-level, I can examine whether the parallel-trend assumption

holds. As before, for each quarter, I aggregate the reported sales on CIT returns of the

upstream firms in the treatment group and standardise it by dividing the sums by the

pre-intervention mean value of the sums. I do the same for the firms in the control group

and plot them over time in panel (a) in Figure 1.3. Similarly, panel (b) plots the aggregate

sales reported on VAT returns for each group. As we can see from the plots, there is no

pre-trend before the policy change, but total sales of the treatment group start to increase

more compared to the control group in 2016. The gap between them starts widening over

time, and I attribute this divergence to the E-receipt program.55

Then, I run firm-level DiD regressions specified in equation 1.4 to examine the changes in

reported sales further.

ln(YitR) = γi + σTreatiR + δPostt + βTreatiR · Postt + uitR (1.4)

where subscripts i and t correspond to firm and quarter as before. The variable TreatiR

takes one if firm i is above the median in terms of its volume of sales to retailers pre-

intervention, zero otherwise. Postt equals one if the quarter falls after January 2016 and

zero otherwise. The left-hand side variable ln(Yit) is the log of firm i’s quarterly total

55Figure A9 plots the same graphs using CIT and VAT liabilities and it confirms the parallel-trend
assumption as well.
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Figure 1.3: Pre-trend in upstream firms’ sales

(a) Sales on CIT returns (b) Sales on VAT returns

Note: Panel a (b) displays the changes in the total sales of the upstream firms in treatment and control

groups reported on CIT (VAT) returns. Each line is the sum of sales reported by firms in the treatment or

control groups scaled by the pre-intervention average quarterly sales of each group. The graph plots the

raw sales. Thus there are spikes in quarter four each year due to seasonality. The vertical dashed red line

represents the start of the E-receipt program, which is January 1, 2016.

sales in month t. I include firm fixed effect γi and the error terms are clustered at sellers’

4-digit industry level.

Table 1.13: Indirect effects — Firm-level DiD — Sales

Sales on CIT returns Sales on VAT returns

(1) (2) (3) (4) (5) (6)
All sellers Non-retail Non-trade All sellers Non-retail Non-trade

DD coeff 0.258∗∗∗ 0.265∗∗∗ 0.257∗∗∗ 0.298∗∗∗ 0.315∗∗∗ 0.351∗∗∗

(0.0431) (0.0399) (0.0956) (0.0616) (0.0559) (0.134)

Firm FE Yes Yes Yes Yes Yes Yes
Weight Yes Yes Yes Yes Yes Yes
Cluster Industry Industry Industry Industry Industry Industry
Observations 69,314 61,658 26,349 69,314 61,658 26,349
Adjusted R2 0.64 0.63 0.65 0.64 0.63 0.64

Note: This table displays the results from the regression equation 1.4. The variable DD coef is defined as

the interaction between a period (pre- and post-intervention) dummy and a dummy variable, which equals

one if firm i is above the median in terms of its volume of sales to retailers pre-intervention, zero otherwise.

The dependent variables in the firms three columns are a log of firm i ’s quarterly total sales reported on

CIT returns. The last three columns use reported sales on VAT returns as a dependent variable. Columns

1 and 4 include all upstream firms in the analysis regardless of their industry. In columns 2 and 5, I drop

upstream firms that are retailer sector. Columns 3 and 5 exclude both retailers and wholesalers from the

analysis. All regressions are weighted by suppliers’ average quarterly total sales before the intervention.

Period and supplier fixed effects are included in all regressions. Standard errors are clustered at 4-digit

industry level.

* p < 0.10, ** p < 0.05, *** p < 0.01

Table 1.13 presents the results. The first (last) three columns correspond to changes in

sales reported on CIT (VAT) returns. Columns 1 and 4 include all upstream firms in the
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analysis regardless of their industry. In columns 2 and 5, I drop upstream firms that are

in the retail sector. Columns 3 and 5 exclude both retailers and wholesalers from the

analysis. All regressions are weighted by suppliers’ average quarterly total sales before

the intervention. Columns 1, 2, 3 show that reported sales of upstream firms with above-

median sales to retailers increase by 26% compared to those who sell less to retailers. In

contrast, there is a larger effect on reported sales on VAT. Specifically, upstream firms’

reported sales on VAT returns increase by at least 30%. However, it is documented that

this increase in reported sales does not necessarily lead to larger tax liabilities, especially

for CIT. To see this, I study the changes in the upstream firms’ tax liabilities. Table 1.14

shows the results. As shown in columns 1-3, there is no significant effect on CIT liabilities.

By contrast, VAT liabilities increase at least by 15% in columns 4-6. It is worth noting

that these estimates are the lower bound of the true indirect effect since the control group

is affected by the program to some degree. This is because sales of firms with lower rank

are expected to increase to some degree since they also sell to retailers.

Table 1.14: Indirect effects — Firm-level DiD — Tax liabilities

CIT liabilities VAT liabilities

(1) (2) (3) (4) (5) (6)
All sellers Non-retail Non-trade All sellers Non-retail Non-trade

DD coeff 0.0270 0.0172 -0.0232 0.179∗∗∗ 0.151∗∗∗ 0.1771∗∗∗

(0.0395) (0.0424) (0.0910) (0.0315) (0.0312) (0.0448)

Firm FE Yes Yes Yes Yes Yes Yes
Weight Yes Yes Yes Yes Yes Yes
Cluster Industry Industry Industry Industry Industry Industry
Observations 46,727 40,718 16,986 51,741 46,375 20,611
Adjusted R2 0.54 0.53 0.54 0.67 0.65 0.68

Note: This table displays the results from the regression equation 1.4. The variable DD coef is defined as

the interaction between a period (pre- and post-intervention) dummy and a dummy variable, which equals

one if firm i is above the median in terms of its volume of sales to retailers pre-intervention, zero otherwise.

The dependent variables in the firms three columns are a log of firm i ’s quarterly CIT liabilities. The last

three columns use reported VAT liabilities as a dependent variable. Columns 1 and 4 include all upstream

firms in the analysis regardless of their industry. In columns 2 and 5, I drop upstream firms that are

retailer sector. Columns 3 and 5 exclude both retailers and wholesalers from the analysis. All regressions

are weighted by suppliers’ average quarterly total sales before the intervention. Period and supplier fixed

effects are included in all regressions. Standard errors are clustered at 4-digit industry level.

* p < 0.10, ** p < 0.05, *** p < 0.01

These results suggest that the E-receipt program has a positive effect on upstream firms

along the VAT chain for the following reasons: first, retailers are forced to report their

sales truthfully and increase their reported sales because of consumer monitoring. To

decrease VAT liabilities they increase their reported purchasing costs. This, in turn,

is likely to result in less collusion between retailers and their upstream firms and reveal
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previously hidden transactions between them. In other words, because of the credit-invoice

mechanism in VAT, the increase in retailers’ reported purchasing costs has to be associated

with a rise in upstream firms’ sales and VAT liabilities. Hence, consumer monitoring does

not only affect the firms at the end of the supply chain, the retailers, as documented in

the literature; rather, its effects propagate up the VAT chain. Therefore, the total impact

on the economy is larger than previously thought.

1.4 Cost-benefit Analysis

In this section, I show a simple cost-benefit analysis of the E-receipt program. To imple-

ment the program, the government had to bear some costs and it is still not clear whether

the program leads to an increase in tax revenue. First of all, it promises consumers 20%

of the VAT paid on their purchases. Second, a lottery event is held every month and the

lottery prizes get transferred to the winners’ bank account every month. The total money

spent on lottery prizes corresponds to 13.7% of the total VAT rebate costs. Lastly, there

are other costs associated with developing an IT system, preparing the infrastructure of

the E-receipt database, wage salaries of the IT workers, etc. These administrative costs

account for 2.9% of the total VAT rebate costs. These cost estimates correspond to the

Mongolian economy as a whole. Unfortunately, the portion of the costs that correspond

to the trade sector is unknown. Therefore, I assume the same pattern holds for the trade

sector.

To see whether the program pays off, I calculate the percentage increase in VAT revenue

to break even. I define V AT Rev0 as the VAT revenue of the trade sector in the absence

of the E-receipt program. VAT revenue after implementing the program is denoted by

V AT Rev1.

V AT Rev0 = V AT Rev1 ∗ (1 − 0.2︸︷︷︸
rebate

−(0.137︸ ︷︷ ︸
lottery

+ 0.029︸ ︷︷ ︸
admin

) ∗ 0.2)

V AT Rev1

V AT Rev0
− 1 = 0.304

The above calculation shows that a 30.4% increase in VAT payment will generate the

same VAT revenue for the government net of the costs. As we have seen in Section 1.3.1,

retailers’ VAT liability increased by 31.2%, which is just enough to break even. Therefore,
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the previous literature significantly underestimates the effects of the consumer monitoring

program since it does not consider the spillover effect on retailers’ CIT liabilities as well

as the indirect effect of the program on the upstream firms’ VAT liabilities. If we include

them in the calculation, the program is successful for increasing the government’s tax

revenue.

It is worth noting that I did not include firms’ and consumers’ compliance costs into the

calculation. As discussed before, the compliance cost for consumers is negligible because

it is possible to register a receipt as long as consumers have a cell phone. In contrast,

there is a higher cost for firms since some firms have to update or buy a new registry

system. Unfortunately estimates of such costs do not exist.56 Furthermore, there are

other intangible aspects of the program in terms of both benefits and costs. As for the

former, the program may change societal norms that have long-lasting effects even after

the program ends. These changes include people getting used to asking for receipts, an

increase in tax awareness, greater attention to the public expenditure and demand for

more efficient public spending and so on. On the other hand, the program increases the

tax burden of the firms and thus could increase the efficiency costs of the CIT and VAT.

Moreover, I do not study any changes in tax incidence or transfer of the tax burden. Even

though these are interesting and important aspects of tax enforcement they are beyond

the scope of this project.

1.5 Conclusion

This paper studies the role of consumer monitoring on firms’ tax reporting behaviour

along the supply chain. To do so, I exploit rich administrative tax data and an anti-tax

evasion program implemented by the Mongolian government that incentivises consumers

to report their transactions.

I start by studying the effect of the program on tax reporting behaviour of firms at the

end of the supply chain — retailers. Retailers mainly sell to final consumers, and thus

they are directly affected by the program. I document that consumer monitoring increases

retailers’ reported sales on their CIT returns by 20%. However, the effect of larger sales is

partially offset by over-reporting costs. I confirm this by using tax audit data that suggest

a large increase in reported costs on CIT returns is partly explained by cost misreporting.

In other words, because of the consumer monitoring firms find it harder to misreport

56However, such costs should be reflected in firms’ CIT liabilities and I find that retailers’ CIT liabilities
increase by 11%. In that sense, compliance costs for firms are reflected in my analysis.
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their sales and thus substitute away from under-reporting sales to over-reporting costs

to decrease their CIT liabilities. Thus, I find retailers’ CIT liabilities increase by 11%.

On the other hand, I find a stronger effect on retailers’ VAT liabilities, which increase

by 31%. This is because retailers’ reported costs on VAT returns are constrained by the

declarations of suppliers hence they are not freely adjusted. These results suggest that

different opportunities for cost adjustment faced by firms in CIT and VAT ultimately lead

to the different effects of consumer monitoring on their CIT and VAT liabilities.

Next, I examine how the effects of consumer monitoring propagate through the firm net-

work. Because of the self-enforcing mechanism in B2B trade in VAT, any increase in

reported input costs should be associated with an increase in upstream firms’ sales. Ac-

cordingly, I find that upstream firms that sell to retailers increase their VAT liabilities by

17%. In contrast, I do not find any significant effect on their CIT liabilities. These results

highlight the enforcement advantage of VAT compared to CIT and suggest that consumer

monitoring enhances the self-enforcement mechanism in VAT. At the same time, it also

highlights the fact that the credit-invoice system in B2B trade is not a silver bullet. This

is because the self-enforcing mechanism breaks down at the end of the supply chain since

consumers do not usually report their purchase. This creates opportunities for firms to

evade VAT along the supply chain by, for example, colluding with one another. Therefore,

it is important to include the final consumers into VAT reporting and thus ensuring better

enforcement along the whole supply chain.

Taking together the effects of consumer monitoring on downstream and upstream firms,

the economy-wide impact of the policy is larger than previously found in the literature.
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A Appendix

A.1 Share of CIT and VAT in Tax Revenue Across Countries

Figure A1 depicts the composition of total tax revenue across a group of countries: low,

lower-middle, upper-middle and high-income countries. The sample data consist of 115

countries, of which 42 are high-income, 38 are upper-middle, 20 are lower-middle and 15

are low-income.57

Figure A1: Composition of tax revenue

(a) Share of CIT and VAT (b) Share of PIT

Subfigure A1a shows that CIT and VAT constitute around 40% of total tax revenue in

high-income countries. It is slightly higher — 47% — for low and middle-income countries.

On the other hand, Subfigure A1b shows that personal income tax (PIT) make 30% of tax

revenue for developed countries. The share of PIT for low and middle-income countries is

around 15% of tax revenue, which is much lower compared to that of high-income countries.

Therefore, CIT and VAT together make the largest share of tax revenue, especially in low

and middle-income countries.

57Data sources are IMF Macroeconomic and financial data (https://data.imf.org/) and WorldBank open
data (https://data.worldbank.org/)
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A.2 Misreporting on CIT vs VAT Returns for VAT-liable Firms

Audited VAT-liable firms and their misreporting behaviour is summarised in Table A1.

In particular, summary statistics of misreported values on the CIT audit data is reported

in Table A1a and VAT audit data in Table A1b. They show that VAT-liable firms are

more likely to under-report their sales and less likely to over-report their costs on VAT

returns compared to CIT returns. A plausible explanation for this observation is the

existence of the credit-invoice scheme in VAT. For VAT, firms reported purchasing costs

are constrained by suppliers’ declaration and hence it is harder to over-report costs on

VAT returns.

Table A1: Summary statistics - Audit data for VAT-liable firms

(a) CIT returns

mean sd count

Retailers

Under.rep.sales ($) 0.70 5.25 3,723
share (%) 1.60 8.48 3,723

Over.rep.costs ($) 1.15 13.36 3,723
share (%) 0.88 4.30 3,723

Wholesalers

Under.rep.sales ($) 4.04 31.32 7,636
share (%) 2.18 13.18 7,636

Over.rep.costs ($) 5.29 28.76 7,636
share (%) 1.63 6.54 7,636

(b) VAT returns

mean sd count

Retailers

Under.rep.sales ($) 1.80 15.66 3,738
share (%) 3.98 20.62 3,738

Over.rep.costs ($) 0.64 9.00 3,738
share (%) 0.63 4.79 3,738

Wholesalers

Under.rep.sales ($) 4.33 29.73 7,621
share (%) 4.06 23.99 7,621

Over.rep.costs ($) 3.78 40.29 7,621
share (%) 2.04 9.23 7,621

Note: Table A1a and A1b present summary statistics of CIT and VAT audit data, respectively. Specifically,

it summarises (annual) values of under-reported sales and their share in firms’ true sales on each type of tax

returns. The true sales are calculated as the sum of reported sales and hidden sales. Similarly, it provides

summary statistics of (annual) values of over-reported costs, and their share in true costs in each type of

tax return. The true costs are calculated as the difference between reported costs and the over-reported

costs. All nominal values are in thousand USD (1 MNT = 2600 USD).
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A.3 Firms Enrollment in E-receipt Program

Figure A2: Share of retailers issuing E-receipts

Figure A2 shows the total number of retailers that submit corporate income tax as well as

the number and share of retailers that issue E-receipts. It illustrates the gradual enrollment

of the retailers: the share of retailers that were enrolled in the E-receipt program was 51%

in 2016 and increased to 56% in 2018.

A.4 Retailers’ incentive to collude with upstream firms

In this section I explain why the effects of the E-receipt program propagate up the supply

chain. To do so, I use a simple illustration of a supply chain, where I assume a retailer

buys a good from a wholesaler at a price 5, and sells it to a consumer at a price 8 as

illustrated in Figure A3a.

In Figure A3b I show how firms report these transactions in the absence of the E-receipt

program. Since the consumer does not report their purchase to tax authorities the retailer

can hide its final sales of 8. However, if the retailer declares the associated purchasing

costs of 5 but not sales, it might send a red signal to the authorities. Therefore, the retailer

potentially has an incentive to collude with the wholesaler and hide its purchasing costs

of 5. Such misreporting of sales and costs allows the retailer to obtain the profits of 3

without paying any taxes. On the other hand, it is profitable for the wholesaler to hide

its sales of 5, which leads to less tax liabilities. Also, the wholesaler may collude with its

upstream firms/suppliers. Hence such collusion can happen along the whole supply chain.
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Figure A3: Collusion along supply chain

(a) Actual transactions

Wholesaler Retailer Consumer5 8

(b) Reported transactions w/o E-receipt program

Wholesaler Retailer Consumer

Sales: 0 Input: 0
Sales: 0

EAT: 3

N/A

0 0

(c) Reported transactions w/ E-receipt program

Wholesaler Retailer Consumer

Sales: 5 Inputs: 5
Sales: 8

EAT: 3(1-t)

8

5 8

One E-receipt program is in place, the consumer start reporting the purchase of 8, this

forces the retailer to declare its final sales. This, in turn, leads to a break of the collusion

between the retailer and wholesaler as the retailer now has an incentive to declare the

purchasing costs of 5. The sales and costs reported by the firms are illustrated in Figure

A3c. In this case, the retailer has to pay taxes, thus its earnings after tax is 3(1 − t).

Moreover, there could be other reasons why retailers might want to collude with their

upstream firms. For example, upstream firms could offer a discount if they agree to hide

their trade. If retailers do not report their purchase on their tax returns, the sellers would

not have to pay tax on those sales and transfer some of the gains to the retailers. There-

fore, it can be profitable for both upstream firms and retailers to hide their transactions.

Alternatively, the firms could be involved in some underground/illegal activities, selling

alcohol without a license, hence have an incentive to collude and hide their transactions

from tax authorities.
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A.5 Pre-trend in reported sales after quarter fixed effects

In the main text I plot sector-level sales of wholesalers and retailers using firms’ CIT

(VAT) returns in Figure 1.1 (Figure 1.2) to see if the wholesalers are a valid control group.

However, since they are the aggregates of raw reported sales of each firm, they exhibit

spikes in quarter four each year. To control for this seasonality I regress the aggregate

sales on quarter-of-year FEs and analyse the residuals. Figure A4a and Figure A4b show

the CIT and VAT residuals, respectively. They are consistent with the no pre-trend

assumption in the reported sales on CIT and VAT returns.

Figure A4: Pre-trend in sector-level sales, correcting for seasonality

(a) Sales reported on CIT returns (b) Sales reported on VAT returns

Note: Panel (a) displays the changes in the sector-level sales of retailers and wholesalers reported on

CIT returns after controlling for quarter-of-year fixed effect. In other words, each line plots the residuals

after regressing industry-level sales of retailers and wholesalers on quarter fixed effects. Similarly, Panel

(b) displays the residuals using reported sales on VAT returns by retailers and wholesalers. The vertical

dashed red line represents the start of the E-receipt program, which is January 1, 2016.

One might think that the divergence between retailers and wholesalers’ reported sales

appear in quarter one in 2015. This is especially visible for reported sales on VAT returns

in Figure 1.2 and Figure A4b. However, as depicted in Figure A5a, number of VAT-liable

retailers increase more compared to number of VAT-liable wholesalers in quarter one in

2015. This suggests that the slight increase in the retail sales in quarter one in 2015 is

partially due to adjustments at the extensive margin, not due to the changes in firm-level

sales. Once I plot the average reported sales of each sector, which is the ratio between

the aggregate sales divided by the number of firms, in Figure A5b, such early divergence

is not as apparent as before in Figure 1.2.
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Figure A5: Number of VAT-liable firms and average sales in each sector

(a) Number of VAT-liable firms (b) Average sales reported on VAT returns

Note: Panel (a) displays the changes in the number of VAT-liable retailers and wholesalers, scaled by

the pre-intervention average number of retailers and wholesalers. Panel (b) shows the average sales of

VAT-liable retailers and wholesalers reported on VAT returns. Average sales in each sector are calculated

by aggregating reported sales of the firms and dividing the sum by the number of firms. The average sales

are also standardised by dividing by the mean pre-intervention average sales of each sector. The vertical

dashed red line represents the start of the E-receipt program, which is January 1, 2016.

A.6 Pre-trend in reported costs and tax liabilities

In Figure 1.1 and 1.2 I show the parallel trend assumption holds in terms of firms’ reported

sales on CIT and VAT returns. In Figure A6 I do the same thing using firms’ total costs

and CIT liabilities reported on CIT returns in panels (a) and (b), and total purchasing

costs and VAT liabilities from firms’ VAT returns in panels (c) and (d). In particular, panel

(a) plots the aggregate total costs reported on CIT returns of all retailers and wholesalers

scaled by the pre-intervention average quarterly costs each sector group. Panel (b) shows

the CIT liabilities of retailers and wholesalers standardised in the same way using pre-

intervention average CIT liabilities. It shows that there is no pre-trend before January

2016, but total costs of retailers start to increase more compared to wholesalers after 2016.

Panel (b) plots the standardised sector-level CIT liabilities of retail and wholesale sector.

It also confirms the parallel trend assumption, but it exhibits only a short-lived larger

effect on retailers’ CIT liabilities. Panel (c) displays total purchasing costs of retailers and

wholesalers divided by pre-2016 average sector-level purchasing costs, and confirms there

is no-pre trend. Lastly, panel (d) shows sector-level VAT liabilities reported by retailers

and wholesalers, and it confirms the parallel trend assumption as well.
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Figure A6: Pre-trend in CIT and VAT data

(a) Sectors’ standardised total costs - CIT data (b) Sectors’ standardised CIT liabilities

(c) Sectors’ standardised purchase - VAT data (d) Sectors’ standardised VAT liabilities

Note: In panel (a) and (b) I use data from firms’ CIT returns. They display sector-level total costs and

CIT liabilities reported by retailers and wholesalers on their CIT returns. In particular, panel (a) shows

total costs reported by all firms aggregated by retail or wholesale sectors scaled by the pre-intervention

average quarterly costs each sector group. Panel (b) shows the CIT liabilities of retailers and wholesalers

standardised in the same way using pre-intervention average CIT liabilities. Panel (c) and (d) use data

from firms’ VAT returns. In panel (c) I plot standardised total purchasing costs reported by retailers

and wholesalers on their VAT returns. Panel (d) shows the standardised VAT liabilities of retailers and

wholesalers. The graphs plot the raw data, hence there are spikes in quarter four each year due to

seasonality. The vertical dashed red line represents the start of the E-receipt program, which is January

1, 2016.

A.7 Complementary Tables — Unweighted regression

Table A2 presents results from unweighted regressions specified in equation 1.2. The first

three columns show the coefficients from regressions that use a log of quarterly sales, costs

or tax liabilities as dependent variables. In the last three columns I decompose the change

in total costs into changes into its components: log of production, administrative and

other costs are the dependent variables. The results are consistent with outcomes from

weighted regressions shown in Table 1.5. From column 1 we can see that the E-receipt
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Table A2: Direct effect - CIT returns (unweighted)

Main variables Cost decomposition

(1) (2) (3) (4) (5) (6)
Sales Costs CIT Production Admin Other

DD coef 0.147∗∗∗ 0.178∗∗∗ 0.00894 0.216∗∗∗ 0.0403∗ 0.131
(0.0473) (0.0519) (0.0185) (0.0403) (0.0210) (0.104)

Firm FE Yes Yes Yes Yes Yes Yes
Cluster Industry Industry Industry Industry Industry Industry
Observations 202,138 202,138 202,138 144,922 171,558 29,262
Adjusted R2 0.83 0.81 0.69 0.79 0.79 0.59

Note: This table displays the results from the regression equation 1.2. The variable DD coef is defined

as the interaction between a dummy for retail sectors and a dummy that equals 1 for the periods after

January 2016. The first three columns take a log of quarterly sales, costs or tax liabilities as dependent

variables. Only the firms with strictly positive profits are included in the analysis because I take a log

of the dependent variable. That is the firms with zero tax liabilities (firms with zero or negative profits)

drop out of the sample. The last three columns decompose the change in total costs into changes into its

components: they take a log of production, administrative and other costs as dependent variables. Time

and firm fixed effects are included in all regressions. Standard errors are clustered at 4-digit industry level.

* p < 0.10, ** p < 0.05, *** p < 0.01

program induced retailers to report 15% higher sales relative to wholesalers. However,

in column 2, retailers’ reported costs increased by 18%. This increase in costs offsets the

effect on CIT liabilities, and there is no significant increase in CIT liabilities. The last three

columns show that an increase in total costs is mainly driven by the rise in production

and administrative costs. The coefficient on other costs is insignificant even though it is

positive. This result is slightly different from the findings in the existing literature (for

example Carrillo et al. 2017), where they document that firms in Ecuador tend to increase

costs that are more difficult to verify such as “other administrative costs” in response to

increased third-party information on sales.

A.8 Underestimation of Direct Effects

It is important to note that analyses of the direct effect on retailers underestimate the

true effects of the E-receipt program. To identify the direct effect, I use wholesalers as a

control group for retailers. The underlying assumption for this strategy is that wholesalers

would have behaved similarly to retailers in the absence of the intervention (parallel trend

assumption) and that wholesalers are not affected by the program. The data exhibit a

reasonable parallel trend in the sales of retailers and wholesalers before the intervention,

which validates the parallel trend assumption. However, the wholesalers are likely to be

affected by the program both directly and indirectly. Wholesalers are likely to be directly
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Figure A7: Underestimation: Pre-trend in CIT data

(a) Sectors’ standardised total sales (b) Sectors’ standardised total costs

Note: Panel (a) and (b) display the changes in the total sales and costs of retail and wholesale sectors

reported on CIT returns. Wholesale sector contains only the firms that never sell to any retailers between

2014 and 2018. Each line is the total sales reported by all firms aggregated by retail or wholesale sectors

scaled by the pre-intervention average quarterly sales each sector group. The graph plots the raw sales.

Thus there are spikes in quarter four each year due to seasonality. The vertical dashed red line represents

the start of the E-receipt program, which is January 1, 2016.

affected because they could sell to final consumers. Also, not surprisingly, wholesalers are

classified as upstream firms, and I find substantial spillover effect on the upstream firms

in Section 1.3.2. Therefore, the estimated effects are a lower bound of the true direct

effects on retailers. To investigate the extent of the underestimation, I change the control

group to the wholesalers that never sell to any retailers. I identify such wholesalers using

the firm network data from VAT invoice. To test the no pre-trend assumption I plot the

industry level sales and costs from firms’ CIT (VAT) returns in Figure A7 (Figure A8)

and they show reasonable parallel trend.
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Figure A8: Underestimation: Pre-trend in VAT data

(a) Sectors’ standardised total sales (b) Sectors’ standardised total purchasing costs

Note: Panel (a) and (b) display the changes in the total sales and purchasing costs of retail and wholesale

sectors reported on VAT returns. Wholesale sector contains only the firms that never sell to any retailers

between 2014 and 2018. Each line is the total sales reported by all firms aggregated by retail or wholesale

sectors scaled by the pre-intervention average quarterly sales each sector group. The graph plots the raw

sales. Thus there are spikes in quarter four each year due to seasonality. The vertical dashed red line

represents the start of the E-receipt program, which is January 1, 2016.

In Table A3 I report the regression results from the simple DiD specifications in equation

1.2. The results using CIT data are reported in. Similarly, Table A4 reports the results

using VAT data.The estimated coefficients on sales and costs (as well as on VAT liabilities)

are above 60% suggesting a substantial underestimation.

Table A3: Underestimation of the direct effect - CIT returns

(1) (2) (3)
Sales Costs CIT

DD coef 0.608∗∗∗ 0.755∗∗∗ -0.0613
(0.202) (0.224) (0.226)

Firm FE Yes Yes Yes
Cluster Industry Industry Industry
Observations 38,939 38,939 38,939
Adjusted R2 0.87 0.86 0.88

Note: This table displays the results from the regression equation 1.2. The variable DD coef is defined

as the interaction between a dummy for retail sectors and a dummy that equals 1 for the periods after

January 2016. Unlike the main specification in Table 1.5, I use the wholesalers that never sell to retailers

as a control group, which are identified from the firm network data. The dependent variables are a log

of firms’ reported quarterly sales, costs or tax liabilities on CIT returns. Only the firms with strictly

positive profits are included in the analysis because I take a log of the dependent variable. That is the

firms with zero tax liabilities (firms with zero or negative profits) drop out of the sample. Time and firm

fixed effects are included in all regressions. All regressions are weighted by firms’ average quarterly sales

before the intervention and standard errors are clustered at 4-digit industry level. * p < 0.10, ** p < 0.05,

*** p < 0.01
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Table A4: Underestimation of the direct effect - VAT returns

(1) (2) (3)
Sales Purchase VAT (final)

DD coef 0.695∗∗∗ 0.696∗∗∗ 0.640∗∗∗

(0.0375) (0.0597) (0.125)

Firm FE Yes Yes Yes
Cluster Industry Industry Industry
Observations 76,973 76,973 76,973
Adjusted R2 0.72 0.70 0.65

Note: This table displays the results from the regression equation 1.2 using the VAT data. The variable

DD coef is defined as the interaction between a dummy for retail sectors and a dummy that equals 1 for the

periods after January 2016. Unlike the main specification in Table 1.9, I use the wholesalers that never sell

to retailers as a control group, which are identified from the firm network data. The dependent variables

are a log of firms’ reported quarterly sales, costs or tax liabilities on CIT returns. Only the firms with

strictly positive profits are included in the analysis because I take a log of the dependent variable. That is

the firms with zero tax liabilities (firms with zero or negative profits) drop out of the sample. Time and firm

fixed effects are included in all regressions. All regressions are weighted by firms’ average quarterly sales

before the intervention and standard errors are clustered at 4-digit industry level. * p < 0.10, ** p < 0.05,

*** p < 0.01

A.9 Cost Decomposition Sample

Some firms do not report the decomposition of the total costs accurately. For example,

production costs are equal to the total costs and the other two components are zero. I do

the same regression analysis by dropping those firms. The results are reported in Table

A5 and they are consistent with outcomes in Table 1.5.
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Table A5: Direct effect - CIT returns

Main variables Cost decomposition

(1) (2) (3) (4) (5) (6)
Sales Costs CIT Production Admin Other

DD coef 0.182∗∗∗ 0.195∗∗∗ 0.0986∗ 0.223∗∗∗ 0.118∗∗∗ 0.206
(0.0646) (0.0714) (0.0567) (0.0698) (0.0351) (0.230)

Firm FE Yes Yes Yes Yes Yes Yes
Cluster Industry Industry Industry Industry Industry Industry
Observations 139,257 139,257 139,257 125,803 129,517 27,494
Adjusted R2 0.76 0.74 0.59 0.70 0.80 0.40

Note: This table displays the results from the regression equation 1.2 using the cost decomposition sample:

I drop firms that do not report the decomposition of the total costs accurately. For example, I exclude the

firms that report production costs equal to the total costs but the other two components are zero. The

variable DD coef is defined as the interaction between a dummy for retail sectors and a dummy that equals

1 for the periods after January 2016. The first three columns take a log of quarterly sales, costs or tax

liabilities as dependent variables. Only the firms with strictly positive profits are included in the analysis

because I take a log of the dependent variable. That is the firms with zero tax liabilities (firms with zero or

negative profits) drop out of the sample. The last three columns decompose the change in total costs into

changes into its components: they take a log of production, administrative and other costs as dependent

variables. Time and firm fixed effects are included in all regressions. All regressions are weighted by firms’

average quarterly sales before the intervention and standard errors are clustered at 4-digit industry level.

* p < 0.10, ** p < 0.05, *** p < 0.01

A.10 Robustness Checks for Changes in Retailers’ Misreporting Be-

haviour

To study the changes in misreporting behaviour of retailers on CIT returns I use a log of

the original value of misreported sales and costs in Table 1.8. Since some of the audited

firms do not misreport their sales and/or costs in some years and such observations are

dropped out of my sample because I take log. To avoid this I use several other measures

of misreported values sales and costs in Table A6. In particular, I use a log of one

plus the misreported values and a dummy for positive misreported sales and costs. The

results qualitatively confirm the fact that retailers misreport their sales less but more

likely to over-report their costs after the intervention as in Table 1.8. Table A7 presents

the estimated coefficients from the same analysis using VAT audit data.
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Table A6: Other measures for misreported sales and costs on CIT returns

Misreported Sales ($) Misreported Costs ($)

(1) (2) (3) (4) (5) (6)
Original log(x+1) Dummy Original log(x+1) Dummy

DD coeff -0.0151 -0.0328 -0.00531 0.362∗∗ 1.053∗∗∗ 0.0582∗∗∗

(0.249) (0.275) (0.0181) (0.137) (0.296) (0.0192)

Firm FE Yes Yes Yes Yes Yes Yes
Cluster Industry Industry Industry Industry Industry Industry
Observations 2,246 14,100 14,100 3,091 14,100 14,100
Adjusted R2 0.68 0.14 0.14 0.74 0.30 0.29

Note: This table CIT audit data and uses different measures for values of misreported sales and costs.

In particular, for columns 1-3 (4-6), I use a log of the original value misreported sales (costs), a log of one

plus the misreported sales (costs), and a dummy for positive misreported sales (costs), respectively. Since

some firms do not misreport sales and costs (zero value), the number of observations is smaller in columns

1 and 4. The variable DD coef is defined as the interaction between a dummy for retail sectors and a

dummy that equals 1 for the periods after January 2016. All regressions are weighted by firms’ average

annual sales reported on CIT returns before the intervention. Time and firm fixed effects are included in all

regressions as expressed in equation 1.2. Standard errors are clustered at 4-digit industry level. * p < 0.10,

** p < 0.05, *** p < 0.01

Table A7: Other measures for misreported sales and costs on VAT returns

Misreported Sales ($) Misreported Costs ($)

(1) (2) (3) (4) (5) (6)
Original log(x+1) Dummy Original log(x+1) Dummy

DD coeff -0.231 -0.362∗ -0.0206 -0.180 -1.073∗∗∗ -0.0671∗∗∗

(0.149) (0.201) (0.0139) (0.505) (0.278) (0.0180)

Firm FE Yes Yes Yes Yes Yes Yes
Cluster Industry Industry Industry Industry Industry Industry
Observations 2,174 11,606 11,606 1,983 11,606 11,606
Adjusted R2 0.62 0.14 0.14 0.62 0.30 0.31

Note: This table VAT audit data and uses different measures for values of misreported sales and costs.

In particular, for columns 1-3 (4-6), I use a log of the original value misreported sales (costs), a log of one

plus the misreported sales (costs), and a dummy for positive misreported sales (costs), respectively. Since

some firms do not misreport sales and costs (zero value), the number of observations is smaller in columns

1 and 4. The variable DD coef is defined as the interaction between a dummy for retail sectors and a

dummy that equals 1 for the periods after January 2016. All regressions are weighted by firms’ average

annual sales reported on CIT returns before the intervention. Time and firm fixed effects are included in all

regressions as expressed in equation 1.2. Standard errors are clustered at 4-digit industry level. * p < 0.10,

** p < 0.05, *** p < 0.01
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Table A8: Comparison of sales reported on CIT and VAT returns

min mean med max sd count

Sales on CIT return 0 84 18 689 153 82,023

Sales on VAT return 0 124 18 2,442 331 82,023

Difference (CIT-VAT) -2,430 -41 0 674 213 82,023

Share of diff in CIT sales -1,324,575 -58 0 100 4,946 82,023

Note: This table presents summary statistics of total reported sales on CIT and VAT returns

as well as their difference. All nominal values are in thousand USD (1 MNT = 2600 USD).

A.11 Comparison of Sales Reported on CIT and VAT returns

In section 1.3.1.2 I document that retailers’ reported sales on VAT returns respond more

compared to CIT returns. One potential explanation is that firms could be taking advan-

tage of the fact that it is not straightforward to compare CIT and VAT returns for tax

authorities and manipulate their reported values. Specifically, values reported on both

tax returns are cross-checked manually by tax officers and it is not done for all firms.

And it is not straightforward to compare because VAT returns are submitted monthly

and values corresponding to the respective month are reported. In contrast, CIT returns

are sent quarterly and values are in cumulative values. Table A8 compares quarterly total

reported sales (in thousand USD) on CIT and VAT returns and their difference. It shows

that there is a large difference between the sales reported on CIT and VAT returns.
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A.12 VAT Data — Decomposition of Purchasing Costs

In Table 1.9 I document that the purchasing costs of VAT-liable retailers increase by

39%. I decompose the increase in purchases into its components using the equation 1.2:

total purchasing costs are split into the deductible and non-deductible input costs on VAT

returns.58 The results are presented in Table A9. It results show that both deductible and

non-deductible costs increase. It is worth noticing that non-deductible input costs increase

more compared to deductible costs even though it does not affect firms’ VAT liabilities.

Table A9: Decompostion of purchasing costs reported on VAT returns

Weighted No weight

(1) (2) (3) (4) (5) (6)
Total Deductible Non-deductible Total Deductible Non-deductible

DD coef 0.378∗∗∗ 0.296∗∗ 0.883∗∗∗ 0.303∗∗∗ 0.312∗∗∗ 1.010∗∗∗

(0.0579) (0.128) (0.247) (0.0357) (0.0387) (0.198)

Firm FE Yes Yes Yes Yes Yes Yes
Cluster Industry Industry Industry Industry Industry Industry
Observations 130,309 130,164 9,099 130,309 130,164 9,099
Adjusted R2 0.73 0.74 0.55 0.70 0.70 0.60

Note: This table displays the results from regressions expressed in equation 1.2. The first three columns

represent regressions weighted by firms’ average quarterly sales before the intervention. The last three

columns are for unweighted regressions. The dependent variables are a log of the total, deductible and

non-deductible input costs. Variable DD coef is defined as the interaction between a dummy for retail

sectors, and a dummy variable that equals one for the periods after January 2016, zero otherwise. Time

period (before and after-intervention) and firm fixed effects are included in all regressions. Standard errors

are clustered at 4-digit industry level. * p < 0.10, ** p < 0.05, *** p < 0.01

Table A10 presents summary statistics of quarterly total, deductible and non-deductible

purchasing costs reported on VAT returns. It can be seen that deductible costs make 99%

of the total input costs and it equals the total purchasing costs in 90% of the sample.

58Summary statistics are presented in Table A10 and it can be seen that deductible costs make 99% of
the total input costs and it equals the total purchasing costs in the 90% of the sample.
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Table A10: Summary statistics - Purchasing costs decomposition

min mean med max sd count

Value

Total purchase 0 57 6 13,064 237 132,586

Deductible 0 55 5 13,064 226 132,586

Non-deductible 0 2 0 8,259 55 132,586
.

Share (%)

Deductible 0 98.9 100 100 8 132,586

Non-deductible 0 1.1 0 100 8 132,586

Note: Table A10 presents descriptive statistics of quarterly total, deductible and non-deductible purchasing

costs reported on VAT returns. All nominal values are in thousand USD (1 MNT = 2600 USD).

A.13 Analysis of Indirect Effects — Pre-trend in Tax Liabilities

I examine whether the parallel-trend assumption holds for CIT and VAT liabilities of the

upstream firms in Figure A9. In particular, for each quarter, I aggregate the reported

CIT liabilities of the upstream firms in the treatment group and standardise it by dividing

the sums by pre-intervention mean value of the sums. I do the same for the firms in the

control group and plot them over time in panel (a) in Figure A9. Similarly, panel (b) plots

the aggregate VAT liabilities for each group. As we can see from the plots, there is no

pre-trend before the policy change, but total sales of the treatment group start to increase

more compared to the control group in 2016. The gap between them starts widening over

time, and I attribute this divergence to the E-receipt program.
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Figure A9: Indirect effects — Pre-trend in tax liabilities

(a) CIT liabilities (b) VAT liabilities

Note: Panel a (b) displays the changes in the total CIT (VAT) liabilities of the upstream firms in treatment

and control groups. Each line is the sum of sales reported by firms in the treatment or control groups

scaled by the pre-intervention average quarterly tax liabilities of each group. The graph plots the raw sales.

Thus there are spikes in quarter four each year due to seasonality. The vertical dashed red line represents

the start of the E-receipt program, which is January 1, 2016.

A.14 Analysis of Indirect Effects — Transaction-level DiD (no weight)

Table A11 presents results from unweighted regressions specified in equation 1.3. The first

column uses all upstream firms regardless of their industry. In columns 2 I drop upstream

firms that are retailer sector. The last column excludes both retailers and wholesalers from

the analysis. The estimated coefficients are positive even though they are not significant.

Therefore, it also suggests that there is a positive effect on upstream firms’ sales to retailers

compared to their sales to non-trade buyers as discussed in section 1.3.2.
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Table A11: Indirect effects — Transaction-level DiD (no weight)

log(Transaction value)

(1) (2) (3)
All sellers Non-retail Non-trade

DD coef 0.0178 0.0253 0.00825
(0.0454) (0.0305) (0.0551)

Buyer Ind.FE Yes Yes Yes
Seller FE Yes Yes Yes
Weight
Cluster Industry Industry Industry
Observations 119,053 105,776 44,956
Adjusted R2 0.61 0.61 0.60

Note: This table displays the results from the regression equation 1.3. The variable DD coef is defined as

the interaction between a dummy for time period and a dummy that equals one if a buyer’s sector is retail,

zero otherwise. The dependent variable is a log of upstream firms’ quarterly sales to (retail vs non-retail)

downstream firms. The first column uses all upstream firms regardless of their industry. In columns 2 I

drop upstream firms that are retailer sector. The last column excludes both retailers and wholesalers from

the analysis. All regressions are unweighted. Time and supplier fixed effects are included in all regressions.

Standard errors are clustered at 4-digit industry level.

* p < 0.10, ** p < 0.05, *** p < 0.01

A.15 Robustness Checks Using Unbalanced Data

In the main analysis, I focus on firms with strictly positive profits and tax liabilities. This

is because I take a log of the variables but the firms’ profits and tax liabilities can be zero

or even negative. In this subsection, I show that the main results survive qualitatively

even if I include the firms with non-zero profits and tax liabilities in the analysis.

I start by analysing the CIT data as in the main text. Table A12 corresponds to the Table

1.5, and it is consistent the main result. If anything, it suggests that the effects of the

E-receipt program on firms’ reported sales, costs and CIT liabilities are stronger as the

estimated coefficients are larger.

Next, I analyse if there the E-receipt program caused is any real response. That is, I

examine if there are any differential changes in retailers’ number of workers and the value

of wages. Table A13 corresponds to the Table 1.6, and it confirms that there is no real

response. I don’t find any significant effect on retailers’ workers and wages. In other words,

any changes in retailers’ reported sales, costs, and CIT liabilities are due to changes in

reporting behaviour.
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Table A12: Direct effects - CIT returns — Unbalanced data

(1) (2) (3)
Sales Costs CIT

DD coef 0.403∗∗∗ 0.344∗∗∗ 0.141
(0.0331) (0.0424) (0.105)

Firm FE Yes Yes Yes
Cluster Industry Industry Industry
Observations 314,097 314,097 213,168
Adjusted R2 0.51 0.65 0.50

Note: This table displays the results from the regression equation 1.2. The variable DD coef is defined

as the interaction between a dummy for retail sectors and a dummy that equals 1 for the periods after

January 2016. The dependent variables are a log of firms’ reported quarterly sales, costs or tax liabilities

on CIT returns. That is the firms with zero tax liabilities (firms with zero or negative profits) drop out

of the sample. Time and firm fixed effects are included in all regressions. All regressions are weighted by

firms’ average quarterly sales before the intervention and standard errors are clustered at 4-digit industry

level. * p < 0.10, ** p < 0.05, *** p < 0.01

Table A13: No real response by retailers — Unbalanced data

Main variables Real response

(1) (2) (3) (4) (5)
Sales Expenses CIT Wages Workers

DD coef 0.280∗∗∗ 0.228∗∗∗ 0.0763 0.0522 0.0715
(0.0367) (0.0284) (0.0766) (0.0587) (0.0929)

Firm FE Yes Yes Yes Yes Yes
Cluster Industry Industry Industry Industry Industry
Observations 143,795 143,795 94,099 143,795 143,795
Adjusted R2 0.57 0.74 0.53 0.89 0.88

Note: This table displays the results from the regression equation 1.2. The first three columns take a

log of quarterly sales, costs or tax liabilities as dependent variables. The payroll data covers Q1 in 2015

to Q3 in 2018 only. Therefore, less observation compared to Table 1.5. The dependent variables in the

last two columns are log of total wages and number workers. The variable DD coef is defined as the

interaction between a dummy for retail sectors and a dummy that equals 1 for the periods after January

2016. Time and firm fixed effects are included in all regressions. All regressions are weighted by firms’

average quarterly sales before the intervention and standard errors are clustered at 4-digit industry level.

* p < 0.10, ** p < 0.05, *** p < 0.01

Lastly, I turn to VAT data. Table A14 corresponds to the Table 1.9, and it is consistent

the main result. If anything it implies even stronger effects of the E-receipt program on

VAT-liable firms. In particular, it shows that VAT-liable retailers’ reported sales increase

by 45%. Even though the reported purchases increase by 39% as reported in column 2,

they do not cancel out the effect on the final VAT liabilities of the retailers. VAT liabilities

increased substantially, by 31%, in column 3.
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Table A14: Direct effects - VAT returns — Unbalanced data

(1) (2) (3)
Sales Purchase VAT

DD coef 0.450∗∗∗ 0.386∗∗∗ 0.312∗∗

(0.0287) (0.0523) (0.124)

Firm FE Yes Yes Yes
Cluster Industry Industry Industry
Observations 183,793 183,793 130,316
Adjusted R2 0.64 0.70 0.62

Note: This table displays the results from the regression equation 1.2 using the VAT data. The variable

DD coef is defined as the interaction between a dummy for retail sectors and a dummy that equals 1

for the periods after January 2016. The dependent variables are a log of firms’ reported quarterly total

sales, purchasing costs or VAT liabilities. Time and firm fixed effects are included in all regressions. All

regressions are weighted by firms’ average quarterly sales before the intervention and standard errors are

clustered at 4-digit industry level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Chapter 2

Characterising Tax-Evading

Firms: Evidence from Mongolia

Understanding which firms evade taxes is important for developing economies who are try-

ing to broaden their tax base and ensure equitable compliance. In this paper I characterise

tax-evading firms using a Mongolian government program, which incentivises consumers

to report their purchases. I find that as in other countries, this consumer monitoring in-

creases firms’ reported sales and tax liabilities. I then study the firms that reported an

abnormally large growth in their sales in the year that the program was launched, which

suggests that those firms had previously been evading more taxes. I find that tax evasion

was particularly prevalent among smaller firms, and conditional on firm size it was more

common among older firms. My findings also suggest that tax evasion was more common

in the capital city.
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2.1 Introduction

The state capacity of collecting taxes is one of the determinants of long-run economic

growth. A well-designed tax system helps the government to raise public funds to spend

on provision of public goods and services that are essential for economic development.

(Barro, 1990; Besley and Persson, 2013; Acemoglu et al., 2018) However, in reality, tax

structures are distorted by features such as tax evasion and avoidance, particularly in

developing countries. Tax evasion and avoidance not only lead to less tax revenue for

the government but also it causes inequality of tax burden across agents that induce

misallocation of resources in the economy. Therefore, detecting tax evaders is a crucial

step for tax authorities in developing economies to broaden their tax base and ensure

equitable compliance.

Modern tax systems heavily rely on firms because firms remit a large fraction of the

tax revenue either with regard to their own tax liabilities or through the withholding

of taxes of employees or other businesses (Kopczuk and Slemrod, 2006; Slemrod and

Valayudhan, 2017).1 Therefore, identifying tax-evading firms is particularly useful for

raising tax revenue.

In this paper I study the types of firms that are more likely to evade tax. To do so, I

exploit a nationwide anti-tax evasion program, called E-receipt program, implemented by

the Mongolian government in 2016. The program uses consumers as informants about

firms’ sales by incentivising them to report their purchase to the tax authorities.2 In

chapter 1 of this thesis I document that the E-receipt program informs us of the extent

of pre-intervention tax evasion of firms. In particular, I find that the program induces

retailers to report larger sales, at least by 20%. This suggests that the retailers would

have hidden 20% of its sales from the tax authorities and evaded the corresponding tax

in the absence of the E-receipt program. Therefore, to identify tax-evading firms I study

the retailers that reported an abnormally large growth in their sales in the year that the

program was launched. However, this line of reasoning depends on the effectiveness of

the E-receipt program. Retailers are more likely to be classified as tax evaders if they

participate in the E-receipt program diligently. On the other hand, the retailers that

under-report their sales are not labelled as tax evaders if they don’t comply with the

program. Therefore, my measures underestimate the extent of tax evasion by retailers.

1To be specific, firms remit 85% of total tax revenue in OECD countries and India (Slemrod and
Valayudhan, 2017).

2Similar policies were implemented in Brazil, Spain, Taiwan and other countries.
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I begin by estimating the extent of tax evasion for each retailers using annual adminis-

trative tax data from CIT returns that spans the period 2013 and 2018. Specifically, I

use the following three measures for the extent of retailers’ tax evasion: the increase in

retailers’ sales growth above its firm-specific trend in 2016; above its firm-specific trend

after 2016; and finally, the increase in retailers’ sales growth after 2016 compared to that

of wholesalers. The last one uses a difference-in-difference estimation approach, where I

use retailers as the treatment group and wholesalers as the control group. Arguably, each

of these three methods of estimating tax evasion degree has its caveats. The first one,

which looks at a sudden increase in sales growth at the start of the E-receipt program

underestimates firms’ tax evasion extent because of the gradual enrollment of firms (and

consumers). The number of retailers enrolled in the E-receipt program in each year is

shown in Figure B1 and it displays a slightly slow take-up rate by retailers. Therefore,

not all retailers who evade tax are affected by E-receipt program and increase their re-

ported sales in 2016. The second approach fixes the issue of gradual enrollment by firms.

However, it may classify the firms with accelerating growth in sales as tax evaders. As for

the third approach, there are some potential violations to the parallel trend assumption

between retailers and wholesalers as discussed in chapter 1. For example, some wholesalers

could be treated by the E-receipt program because they sell directly to final consumers

and violates assumptions of the control group. These potential violations imply that the

third approach underestimates the extent of tax evasion. Nevertheless, I show that all

three measures produce similar results.

I then associate the estimated tax evasion level of firms to their observable characteristics

on tax returns such as firms’ size, age, location and others. I document several patterns

in the data. First, I find that firm size is negatively correlated with tax evasion. That

is, small firms experience higher growth in their reported sales. There could be many

explanations for this result. For example, firms with different sizes can have distinct tax

evasion tendency because they face different audit probability, risk aversion, and subject

to a different amount of third-party information such as credit card usage. Moreover, for

small firms, the person making the evasion decision (e.g., whether or not to give a receipt)

is also the residual claimant of the tax money saved, while for large firms, this decision is

usually made by an employee who does not benefit directly. It is important to understand

why firm size is negatively associated with tax evasion, but this is beyond the scope of

this chapter.

Second, I find that older retailers evade tax more after controlling for firm size. Third,

retailers in the capital city of Mongolia, called Ulaanbaatar, experience higher growth
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in sales and thus appear to evade tax more. One of the possible explanations is that

firms in Ulaanbaatar are treated intensively (for example, due to better campaigning by

tax authorities) and thus increase their reported sales more compared to firms in other

regions. Fourth, firms that have ever issued E-receipts experience higher sales growth.

This reassures that the changes in reported sales are driven by the E-receipt program.

Other observable location-specific characteristics such as GDP per capita, population,

number of firms in the province, the distance between Ulaanbaatar and the province in

which the firm is located are not related to firms’ tax evasion behaviour.

In the last part of my analysis I study how the estimated tax evasion of firms differ across

different firm size groups. In particular, I associate the mean and standard deviation of

firms’ estimated tax evasion level vary across different decile of firm size distribution. I

find that the mean is decreasing in percentiles, confirming the negative relation between

firm size and tax evasion. This implies that there is vertical inequality across firms in

terms of their tax. Moreover, I document that the dispersion of the estimated tax evasion

of firms is negatively correlated with the size decile. For example, the lowest decile has

the largest dispersion in tax evasion estimates across the firms in the decile. This suggests

that there is horizontal inequality across firms in terms of their tax evasion level.

This paper closely relates to the literature on tax evasion of firms. In particular, several

papers document the negative relationship between firm size and tax evasion (Pomeranz,

2015; Kleven et al., 2016; Naritomi, 2019). They suggest that larger firms evade tax less

because they produce more third-party information such as paper trials. For example,

Kleven et al., 2016 shows theoretically that it becomes harder for firms to evade (payroll)

tax by colluding with employees as the number of employees increases. As for the empirical

studies, Pomeranz, 2015, documents that a significant part of the higher evasion in smaller

firms may be driven by a weaker paper trail as it is associated with the share of the sales

to final consumers. Similarly, Naritomi, 2019, finds that the sheer size of a firm could

deter under-reporting since the number of third-parties firms interact with can have a

monitoring effect. This is because, for example, one of the consumers could become a

whistle-blower and reveal firm’s tax evasion. My results are consistent with such results.

Moreover, I add to this literature by studying the relationship between tax evasion and

other firm-level characteristics such as age and location.

The remainder of this paper is structured as follows. Section 2.2 explains the relevant

datasets and summary statistics. Section 2.3 discusses the empirical analysis and results.

I conclude in Section 2.4.
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2.2 Data

I use administrative tax data from firms’ CIT returns. The data is at an annual frequency

and it covers the period between 2013 and 2018.3 The main analysis uses a balanced

sample, where I observe the firms throughout the sample period.4 Since the main tax

evasion variable is the growth in reported sales, I observe firms’ growth rate in sales for

five years between 2014 and 2018 in the final sample. 2013 data is used to calculate the

sales growth of firms in 2014. Therefore the data covers two years before and three years

after the E-receipt program was initiated. In this paper I mainly focus on retailers (I use

wholesalers in one of the specifications as a control group). The final sample size is 18110,

which consists of 3622 retailers. Their observable characteristics (mostly in year 2015) are

summarised in Table 2.1. The sample mainly consists of small retailers as we can see from

annual sales (Sales15, Salespre) and the number of workers (#workers15).5 Retailers’ age

in 2015 varies between 3 and 24.6 Table 2.1b summarises dummy variables and it shows

that 26% of the retailers (952 out of 3,622 ) are located in the capital city and more than

half of them are VAT-liable throughout the sample. Also, over 85% of the firms (3,107

out of 3,622) has ever issued a E-receipt.

Table 2.1: Firm characteristics

min mean med max sd count

Age15 3 9 9 24 5 3,622
Sales15 0 304 9 170,578 4,529 3,622
Salespre 0 331 8 211,143 5,204 3,622
#workers15 1 6 2 300 18 2,559
Wages15 0 11 2 1,697 62 2,559

(a) Flow variables

Dummy=1 Dummy=0 Total

Capital city 952 2,670 3,622
Always VAT firm 1,941 1,681 3,622
Ever VAT firm 2,412 1,210 3,622
E-receipt firm 3,107 515 3,622

(b) Dummy variables

Note: Table 2.1a (Table 2.1b) summarises firms’ observable characteristics represented by flow (dummy) variables.

Age15, Sales15, #workers15 and Wages15 are firms’ age, number of workers, annual wages and sales in year 2015.

Salespre is the mean sales before the intervention (year 2014 and 2015). Capital city equals one if a firm is located

in the capital city Ulaanbaatar, zero otherwise. E-receipt firm=1 if a firm has ever issued E-receipt between 2016

and 2018. All nominal values are in units of thousand USD.

Definitions of tax evasion are based on how firms’ sales evolve around the start of the

3This chapter uses annual data in contrast to chapter 1, where the data is at a quarterly level. This
is because I am interested in sales growth of retailers. In Mongolia, firms report their sales and costs at
cumulative terms on CIT returns. For example, in quarter 2, firms report the sum of sales in quarter 1
and 2. Similarly, they report their annual sales in quarter 4. Moreover, because firms can use year-end tax
adjustment declarations, tax authorities (as well as firms) care more about what they report at the end of
the year. Thus some firms skip some quarters without reporting their tax liabilities and submit their tax
returns at the end of the year. Therefore, I use annual frequency to minimise the related noise in data.

4I do the same analysis using the unbalanced sample in Appendix B.2 and results are similar.
5The nominal values such as annual sales and (total) wages are in units of thousand USD in Table

2.1a. This is why the minimum value of annual sales and wages in the sample are shown as 0 in Table 2.1a
(they are around $3).

6Since I use the balanced sample between 2013 and 2018, the minimum age for retailers in 2015 is 3.
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Table 2.2: Firms’ annual sales level and growth (by year)

Sales (thousand USD)

min mean med max sd count

2014 0.0004 359 7 251,708 5,918 3,622
2015 0.0004 304 9 170,578 4,529 3,622
2016 0.0001 311 12 173,159 4,327 3,622
2017 0.0004 368 14 216,005 5,111 3,622
2018 0.0000 486 17 320,580 7,099 3,622
Total 0.0000 365 12 320,580 5,491 18,110

(a) Flow variables

Sales growth (%)

min mean med max sd count

2014 -8.42 0.22 0.09 11.78 1.07 3,622
2015 -7.40 0.03 0.01 8.56 0.94 3,622
2016 -13.54 0.28 0.18 8.46 1.02 3,622
2017 -11.27 0.13 0.12 15.72 0.94 3,622
2018 -9.49 0.19 0.17 10.58 0.96 3,622
Total -13.54 0.17 0.10 15.72 0.99 18,110

(b) Dummy variables

Note: Table 2.2a (Table 2.2b) summarises firms’ annual sales level by year (sales growth rate). All nominal values

are in thousand USD and growth rates are in percentages.

E-receipt program. I summarises firms’ annual sales level and growth by year in Table

2.2. Table 2.2a shows summary statistics of sales level in thousand USD, Table 2.2b

summarises sales growth in percentages. We can see that mean and median sales growth

rates are the largest in 2016 (0.28% and 0.18% respectively).

2.3 Empirical analysis

2.3.1 Changes in retailers’ reported sales

I use the timing of the E-receipt program to identify tax-evading retailers. In particular, I

detect the retailers that reported an abnormally large growth in their sales in the year that

the program was launched, which suggests that those firms had previously been evading

more taxes.

To identify tax-evaders I run the following three regressions using the balanced sample

consisting of retailers only.

1. Retailers that increase growth of sales in 2016 above trend

∆ln(Yit) = γi + γt + β16 ·D2016 · Zit + uit (2.1)

where i and t indicate firm and year, respectively. Yit is annual sales and ∆ln(Yit) is

sales growth rate of firm i in year t. D2016 is a dummy for year 2016 and Zit represents

observable firm characteristics of firm i in year t such as firm size, age and location. γi is

the firm fixed effect and it controls for the firm-specific trend in sales growth. Similarly, γt

is the year fixed effect and it controls for common trend across for all retailers each year.

β16 is the coefficient of interest, which shows the correlation between firms’ observable
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characteristics Zit and the extent of tax evasion measured as sales growth in 2016 above

its trend. I associate the sales growth of retailers in 2016 as measured by β16 as the degree

of their tax evasion.7

2. Retailers that increase growth of sales after 2016 above trend

∆ln(Yit) = γi + Postt + βpost · Postt · Zit + uit (2.2)

where Postt = 1 if t ≥ 2016, and equals zero otherwise. It controls for pre and post-

intervention trend in firms’ sales growth. βpost is the coefficient of interest, which shows

the relation between firms’ observable characteristics and the extent of their tax evasion

measured as sales growth after 2016 above its trend. Thus, according to this specification

I classify firms with higher growth rate after 2016 as tax evaders.

3. Retailers that increase growth of sales after 2016 compared to wholesalers

∆ln(Yits) = γi + Postt + β · Treats · Postt + βDiD · Treats · Postt · Zit + uits (2.3)

where s represents sector, which is either retail or wholesale. Treats = 1 if firm i is a

retail firm, and zero otherwise. βDiD is the coefficient of interest, which shows the relation

between firms characteristics and the extent of firms’ tax evasion measured as an increase

in retailers’ sales after 2016 compared to wholesalers.

It is important to acknowledge the potential caveats of these three specifications. The first

one underestimates tax evasion because of the gradual enrollment of firms (and consumers)

shown in Figure B1. The second approach corrects the issue of firms’ gradual enrollment

because it is using the changes in average growth rates pre- and post-intervention. How-

ever, it may classify the firms with accelerating growth in sales as tax evaders, hence

it could result in overestimation of tax evasion. The third approach is subject to any

potential violations to the parallel trend assumption between retailers and wholesalers

discussed in chapter 1. For example, consumer reporting may affect wholesalers reported

sales because some wholesalers sell to final consumers. Therefore, the third approach

underestimates the extent of tax evasion of retailers.

Nevertheless, using the above three specifications I study the relationship between the

extent of tax evasion measured as sales growth and firm characteristics summarised in

Table 2.1. Specifically, I use firm age, different measures of firm size (Sales15, Salespre,

7The identifying assumption is that firm-specific idiosyncratic shocks, uit, are uncorrelated with ob-
servables such as firm size, age and location of the firms expressed by Zit.
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#workers15 and Wages15), location, VAT status, and whether the firm issued any E-

receipt between 2016 and 2018.

Table 2.3: Sales growth and firm characteristics

∆ln(Yit) — Sales growth in 2016 ∆ln(Yit) — Sales growth after 2016

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Dummy*log(Salespre) -0.107∗∗∗ -0.104∗∗∗ -0.119∗∗∗ -0.116∗∗∗ -0.133∗∗∗ -0.0902∗∗∗ -0.0803∗∗∗ -0.118∗∗∗ -0.0907∗∗∗ -0.130∗∗∗

(0.0105) (0.0123) (0.0165) (0.0125) (0.0166) (0.0112) (0.00987) (0.0161) (0.0101) (0.0177)

Dummy*log(Age15) 0.120∗∗∗ 0.103∗∗ 0.204∗∗∗ 0.187∗∗∗

(0.0383) (0.0436) (0.0317) (0.0293)

Dummy*Capital 0.130∗∗∗ 0.116∗∗∗ 0.0630∗∗∗ 0.0461∗∗

(0.0212) (0.0217) (0.0175) (0.0208)

Dummy*V ATalways 0.113 0.0531 0.239∗∗∗ 0.185∗∗∗

(0.0718) (0.0725) (0.0475) (0.0542)

Dummy*E-receipt 0.266∗∗∗ 0.250∗∗∗ 0.211∗∗∗ 0.149∗∗

(0.0663) (0.0776) (0.0490) (0.0563)

Observations 18110 18110 18110 18110 18110 18110 18110 18110 18110 18110
Adjusted R2 0.141 0.141 0.141 0.142 0.143 0.143 0.140 0.142 0.141 0.146

Note: Dependent variables are firms’ annual growth in sales. The first five columns report results from the regression

equations 2.1: Dummy variable interacted with firm characteristics variable is D2016, which is a dummy for year

2016. The last five columns show results from equation 2.2: Dummy variable is Postt, which equals one if the period

is after 2016 and zero otherwise. Independent variable Salespre is the average pre-intervention annual sales and

Age15 is the number of years since the establishment date. Capital, V ATalways and E-receipt are dummy variables

that indicate if the firm is located in the capital city, if the firm has been VAT-liable throughout the sample period,

and the firm has ever issued any E-receipt, respectively. Regressions are weighted by sales at the beginning of the

sample period, 2014. Standard errors are clustered at the province level. * p < 0.10, ** p < 0.05, *** p < 0.01

I begin with the first two specifications in equations 2.1 and 2.2. The results are shown

in Table 2.3. The first five columns report results from the regression equations 2.1: the

dummy variable interacted with firm characteristics is D2016, which equals one for year

2016. The last five columns show results from equation 2.2: dummy variable is Postt,

which equals one if the period is after 2016 and zero otherwise. Regressions are weighted

by firms’ sales at the beginning of the sample period, 2013. The first row shows that

there is a negative relationship between sales growth and firm size measured as mean sales

before the intervention. Specifically, the first 5 columns suggest that 1% increase in size

leads to around 10 percentage points (p.p.) decrease in sales growth in 2016. Similarly, 1%

increase in size results in 9 p.p. decrease in sales growth across the 3-year period following

implementation the program as shown in the last 5 columns. As mentioned before I use

a balanced sample. However, the fact that small firms have higher exit rate and higher

growth could lead to overestimation of small firms’ tax evasion. Therefore, I report results

from unbalanced data in Table B1 and it gives similar results. Moreover, to check the

robustness of the negative relation between size and tax evasion I use different measures

of firm size in Table B2. I use sales in year 2014 and 2015 (Sales14 and Sales15), number

of workers (#workers15) and total wages (Wages15) at the end of 2015 as alternative

size measures and they produce qualitatively the same results. These analyses suggest
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that smaller retailers experience higher growth in sales above its trend compared to larger

retailers due to the E-receipt program. In other words, smaller retailers would have hidden

more sales and evaded more taxes in the absent of E-receipt program.

Moreover, the second row in Table 2.3 also show that older firms evade tax more (after

controlling for size). In particular, retailers’ sales growth rate in 2016 increase by 10 p.p.

as their age increase by 1%. Similarly, 1% increase in age lead to 20 p.p increase in sales

growth in the three-year period after the E-receipt program was initiated. In addition,

the third row suggests that firms in the capital have higher sales growth compared to

firms in other regions. This relation survives even after controlling for Ulaanbaatar’s

distinctive and observable characteristics such as level of economic development, poverty

and population size as shown in Table B3 and B4.8 Last but not least, the last row reports

that firms that issue E-receipt have higher growth in sales, which reassures the effect of

the intervention.

Next, I divide the retailers into two groups: firms in Ulaanbaatar and firms in other regions.

Then I run the regressions specified in equations 2.1 and 2.2 and results are reported in

Table 2.4. The same pattern holds within as well as outside Ulaanbaatar: smaller and

older retailers have higher sales growth.

Table 2.4: Firm size and tax evasion within and outside the capital city

∆ln(Yit) — Sales growth in 2016 ∆ln(Yit) — Sales growth after 2016

(1) (2) (3) (4) (5) (6)

Dummy*log(Salespre) -0.127∗∗∗ -0.140∗∗∗ -0.139∗∗∗ -0.128∗∗∗ -0.131∗∗∗ -0.132∗∗∗

(0.0261) (0.0280) (0.0282) (0.0273) (0.0267) (0.0276)

Dummy*log(Age15) -0.00948 -0.00794 0.186∗∗ 0.186∗∗

(0.139) (0.138) (0.0667) (0.0653)

Dummy*E-receipt 0.345∗ 0.345∗ 0.233∗ 0.233∗

(0.194) (0.195) (0.123) (0.119)

Observations 4760 4760 4760 4760 4760 4760
Adjusted R2 0.136 0.137 0.137 0.138 0.137 0.139

(a) Within Ulaanbaatar

∆ln(Yit) — Sales growth in 2016 ∆ln(Yit) — Sales growth after 2016

(1) (2) (3) (4) (5) (6)

Dummy*log(Salespre) -0.104∗∗∗ -0.110∗∗∗ -0.121∗∗∗ -0.0826∗∗∗ -0.0928∗∗ -0.0951∗∗

(0.0331) (0.0355) (0.0372) (0.0278) (0.0336) (0.0339)

Dummy*log(Age15) 0.143∗∗∗ 0.146∗∗∗ 0.0910∗∗ 0.0921∗∗

(0.0325) (0.0316) (0.0329) (0.0330)

Dummy*E-receipt 0.234∗∗ 0.238∗∗ 0.182∗∗ 0.183∗∗

(0.0915) (0.0962) (0.0684) (0.0691)

Observations 13350 13350 13350 13350 13350 13350
Adjusted R2 0.145 0.145 0.146 0.145 0.145 0.146

(b) Outside Ulaanbaatar

Note: Dependent variables are firms’ annual growth in sales. The first three columns report results from the

regression equations 2.1: Dummy variable interacted with firm characteristics variable is D2016, which is a dummy

for year 2016. The last three columns show results from equation 2.2: Dummy variable is Postt, which equals one

if the period is after 2016 and zero otherwise. Independent variable Salespre is the average pre-intervention annual

sales and Age15 is the number of years since the establishment date. E-receipt is a dummy variable that equals one

if a firm has ever issued any E-receipt. Regressions are weighted by sales at the beginning of the sample period,

2014. Standard errors are clustered at 4 digit industry level. * p < 0.10, ** p < 0.05, *** p < 0.01

Next, I turn to specification in equation 2.3, where I compare reported sales of retailers to

wholesalers pre- and post-intervention using difference-in-difference (DiD) strategy. The

results are reported in Table 2.5. The dependent variables in the first five columns are a

8There could be other unobservable characteristics of Ulaanbaatar that derives the relation. For ex-
ample program campaign is more effective in Ulaanbaatar so that firms and consumers actively participate
in the E-receipt program compared to those in other regions, resulting in higher sales growth for firms in
the city.
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log of sales and the last five columns use annual sales growth. The reason for using the

log of sales is to make the analysis consistent and comparable with chapter 1. The first

column shows that retailers’ sales increase 29% compared to wholesalers after the policy

intervention.9 To see the heterogeneous effect of the intervention on firms with different

characteristics I add terms where I interact firm characteristics with Treat*Post. Columns

2-6 suggest that smaller and older retailers’ sales increase more compared to larger and

younger retailers. From columns 8-12 we can see that smaller and older retailers have

higher sales growth indicating larger tax evasion pre-intervention, which is consistent with

the previous analysis in Table 2.3 and 2.4. Also it is verified that firms in Ulaanbaatar

and that issue E-receipts experience higher growth in sales.

Table 2.5: Sales growth and firm characteristics — DiD

ln(Yit) ∆ln(Yit)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Retail*Post 0.287∗∗∗ 1.842∗∗∗ 0.432∗∗∗ 1.847∗∗∗ 1.915∗∗∗ 1.992∗∗∗ -0.0175 1.341∗∗∗ -0.315∗∗∗ 1.112∗∗∗ 1.122∗∗∗ 1.151∗∗∗

(0.0693) (0.512) (0.0766) (0.481) (0.496) (0.447) (0.0203) (0.166) (0.0808) (0.181) (0.182) (0.189)

Treat*Post*log(Salespre) -0.0898∗∗∗ -0.0895∗∗∗ -0.0934∗∗∗ -0.127∗∗∗ -0.0784∗∗∗ -0.0902∗∗∗ -0.0908∗∗∗ -0.103∗∗∗

(0.0253) (0.0272) (0.0288) (0.0280) (0.00966) (0.0112) (0.0112) (0.0113)

Treat*Post*log(Age15) -0.0682∗ -0.00500 -0.0274 -0.0247 0.140∗∗∗ 0.204∗∗∗ 0.200∗∗∗ 0.201∗∗∗

(0.0335) (0.0399) (0.0307) (0.0310) (0.0347) (0.0317) (0.0318) (0.0305)

Treat*Post*Capital 0.179∗∗∗ 0.181∗∗∗ 0.0265 0.0271
(0.0459) (0.0473) (0.0191) (0.0183)

Treat*Post*E-receipt 0.572∗∗∗ 0.214∗∗∗

(0.0762) (0.0501)

Observations 56895 56895 56895 56895 56895 56895 56895 56895 56895 56895 56895 56895
Adjusted R2 0.845 0.845 0.845 0.845 0.845 0.846 0.105 0.106 0.105 0.106 0.106 0.106

Note: This table reports results from regressions specified in equation 2.3. The dependent variables in the first four

columns are a log of sales and annual sales growth in the last four columns. Regressions are weighted by sales at the

beginning of the sample period, 2013. Standard errors are clustered at the province level. * p < 0.10, ** p < 0.05,

*** p < 0.01

2.3.2 Estimated tax evasion level of retailers

This subsection analyses dispersion in the extent of tax evasion across retailers and studies

whether it is explained by retailers’ observed characteristics. I start by estimating the

degree of tax evasion for each retailer using the three different definitions of tax evasion

specified in the previous subsection 2.3.1. Next, I associate the estimated tax evasion level

to firm characteristics. Last, I analyse if the dispersion in estimated tax evasion level is

explained by the observable characteristics.

9The coefficient is larger than what is found in chapter 1, which is around 20%. This difference is
because I use balanced sample here in chapter 3 and unbalanced sample in chapter 1.
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I use the following equations to estimate tax evasion level βi for each retailer:

∆ln(Yit) = γi + γt +D2016 · βi,16 + uit (2.4)

∆ln(Yit) = γi + Postt + Postt · βi,post + uit (2.5)

ln(Yits) = γi + Postt + Treats · Postt · βi,DiD + uits (2.6)

where subscripts i, t and s indicate firm, year and industry, respectively. Yit is sales and

∆ln(Yit) is growth rate in sales of firm i in year t. D2016 is a dummy for year 2016, and

Postt = 1 if t ≥ 2016, and equals zero otherwise. Treats = 1 if firm i is a retail firm, and

zero otherwise. Equation 2.4 defines tax evaders as retailers with higher sales growth in

2016 above its trend. Similarly, equation 2.5 take retailers with high sales growth after

2016 as tax evaders. Equation 2.6 defines tax evaders as retailers with higher sales increase

compared to wholesalers after the intervention. Equation 2.4 and 2.5 uses sample that

consists of only retailers, while equation 2.6 uses sample of retailers and wholesalers. As

before, I use balanced sample where I observe each firm throughout the period 2014 and

2018. βi,16, βi,post and βi,DiD are the coefficient of interest, which represents firm i’s tax

evasion level according to each definitions of tax evaders.

I summarise the estimated coefficients, β̂is in Table 2.6.10 Table 2.6a shows that estimated

β̂is can be both positive and negative. Firms with positive β̂is are classified as tax evaders

since β̂is are proxies for the extent of firms’ tax evasion. Table 2.6b summarises the

retailers where all three β̂is are positive. Even though all three β̂is aim to identify tax

evaders, their definitions differ slightly. Therefore, I study their correlation in Table 2.7.

The correlation coefficients suggest that they are positively correlated and the relation

becomes stronger if I restrict the sample to retailers with only positive β̂is as shown in

Table 2.7b.

Table 2.6: Summary statistics of retailers’ estimated tax evasion level, β̂is

min mean med max sd count

β̂16 -16.53 0.06 -0.02 10.06 1.21 3,622

β̂post -5.48 0.07 0.07 7.17 0.86 3,622

β̂DiD -8.85 0.24 0.19 6.83 1.07 3,622

(a) All sample

min mean med max sd count

β̂16 0.00 0.98 0.63 10.06 1.22 1,076

β̂post 0.00 0.65 0.44 7.17 0.81 1,076

β̂DiD 0.00 1.02 0.79 6.83 0.90 1,076

(b) Positive β̂is

Note: This table presents the summary statistics of retailers’ β̂is. In particular, the summary statistics in panel

(a) contains all firms, and panel (b) focuses on the retailers with positive β̂is.

10There is variation in the standard errors of the estimated coefficients. For simplicity, I focus on the
estimated coefficients only.

86



Table 2.7: Correlation coefficients between β̂is

β̂16 β̂post β̂DiD
β̂16 1

β̂post 0.529∗∗∗ 1

β̂DiD 0.519∗∗∗ 0.457∗∗∗ 1
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

(a) All sample

β̂16 β̂post β̂DiD
β̂16 1

β̂post 0.814∗∗∗ 1

β̂DiD 0.696∗∗∗ 0.594∗∗∗ 1
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

(b) Positive β̂is

Note: This table presents the correlation coefficients of retailers’ β̂is. In particular, panel (a) shows the correlation

coefficients of all retailers, and panel (b) focuses on the retailers with positive β̂is.

Next, I associate retailers’ tax evasion level, β̂is, to their observable characteristics. In

other words, I use β̂is as dependent variables and run cross-sectional regression specified

in equation 2.7.

β̂i = α+ δ · Zi + ui (2.7)

where subscript i represents retailer. Zit represents observable firm characteristics of

retailer i such as firm size, age and location. The coefficient of interest is δ, which shows

the relation between firm characteristics and the degree of tax evasion of retailers measured

by β̂i.

Since the main dependent variables are estimated in equations 2.4, 2.5 and 2.6 and have

their standard errors, I need to be careful when I interpret the results from equation 2.7.

First, I analyse the extensive margin — compare retailers with positive vs. negative

β̂s. I create dummy variables β̂dummyi that equals one if β̂i is positive, zero otherwise.

Then I regress β̂dummyi on firm characteristics and results are presented in Table 2.8. The

dependent variables in the first six columns use the tax evasion definitions specified in

equations 2.4, 2.5 and 2.6. The dependent variables in the last two columns are β̂dummyAll ,

which equals one if all three β̂16, β̂post and β̂DiD are positive at the same time, zero

otherwise. The coefficients on the first row suggest that smaller retailers are more likely

to have positive β̂s and thus likely to be classified as tax evaders. The rows two and three

imply that older retailers and retailers in Ulaanbaatar are more likely to be tax evaders,

although the coefficients are not always significant.

Second, I analyse the intensive margin using the estimated β̂ and the results are reported in

Table 2.9. The results confirm that smaller and older retailers and retailers in Ulaanbaatar

tend to evade tax more.
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Table 2.8: Sales growth and firm characteristics — extensive margin

β̂dummy16 β̂dummypost β̂dummyDiD β̂dummyAll

(1) (2) (3) (4) (5) (6) (7) (8)

log(Salespre) -0.0504∗∗∗ -0.0516∗∗∗ -0.0462∗∗∗ -0.0464∗∗∗ -0.0310∗∗∗ -0.0317∗∗∗ -0.0470∗∗∗ -0.0488∗∗∗

(0.00514) (0.00505) (0.00806) (0.00785) (0.00724) (0.00718) (0.00566) (0.00558)

log(Age15) 0.0228 0.0181 0.107∗∗∗ 0.106∗∗∗ -0.0199 -0.0227 0.0353∗∗ 0.0282∗

(0.0171) (0.0174) (0.0199) (0.0206) (0.0160) (0.0165) (0.0148) (0.0160)

Capital 0.0365∗ 0.00621 0.0211 0.0547∗∗∗

(0.0180) (0.0197) (0.0177) (0.0163)

Observations 3622 3622 3622 3622 3622 3622 3622 3622
Adjusted R2 0.037 0.038 0.037 0.036 0.033 0.033 0.038 0.041

Note: Dependent variables are dummy variables β̂dummy that equals one if β̂ is positive, zero otherwise. Specifically,

the first six columns use the tax evasion definitions specified in equations 2.4, 2.5 and 2.6. The dependent variables

in the last two columns are β̂dummyAll , which equals one if all three β̂16, β̂post and β̂DiD are positive, zero otherwise.

Salespre is the average pre-intervention annual sales and Age15 is the number of years since the establishment date.

Capital is a dummy variables that indicate if the firm is located in the capital city. Regressions are weighted by

sales at the beginning of the sample period, 2014. Standard errors are clustered at the province level. * p < 0.10,

** p < 0.05, *** p < 0.01

Table 2.9: Sales growth and firm characteristics — intensive margin

β̂16 β̂post β̂DiD

(1) (2) (3) (4) (5) (6)

log(Salespre) -0.131∗∗∗ -0.135∗∗∗ -0.113∗∗∗ -0.114∗∗∗ -0.0966∗∗∗ -0.104∗∗∗

(0.0154) (0.0145) (0.0124) (0.0120) (0.0182) (0.0184)

log(Age15) 0.134∗∗∗ 0.117∗∗∗ 0.219∗∗∗ 0.213∗∗∗ -0.00496 -0.0326
(0.0311) (0.0337) (0.0287) (0.0287) (0.0314) (0.0313)

Capital 0.132∗∗∗ 0.0461 0.212∗∗∗

(0.0331) (0.0334) (0.0488)

Observations 3622 3622 3622 3622 3622 3622
Adjusted R2 0.044 0.046 0.073 0.073 0.042 0.050

Note: Dependent variables β̂16, β̂post and β̂DiD are determined in equations 2.4, 2.5 and 2.6, respectively. Salespre

is the average pre-intervention annual sales and Age15 is the number of years since the establishment date. Capital

is a dummy variables that indicate if the firm is located in the capital city. Regressions are weighted by sales at the

beginning of the sample period, 2014. Standard errors are clustered at the province level. * p < 0.10, ** p < 0.05,

*** p < 0.01

Last, I study the dispersion in β̂ across different size groups of retailers. I calculate

percentiles of size distribution of retailers using reported sales in 2015. Then calculate

mean and standard deviation of β̂ (after controlling for firm age and location) for each

size percentile and plot them in Figure 2.1. We can see from Figure 2.1a that mean value

of estimated β̂ is decreasing in percentiles, confirming the negative relation between firm

size and tax evasion. This implies that there is vertical inequality across firms in terms of

their tax evasion level. Figure 2.1b plots standard deviation in the estimated β̂ for each

decile. It shows that dispersion in the estimated β̂ decreases as the size decile increases.

The lowest decile has the largest dispersion in β̂ across firms in the decile. Moreover, each
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decile has positive standard deviation, which means that there is variation in tax evasion

level across firms within each size groups. This suggests that there is horizontal inequality

across firms in terms of their tax evasion level.

Figure 2.1: Mean and standard deviation of β̂, by size percentiles

(a) Mean (b) Standard deviation

2.4 Conclusion

This chapter utilises an interesting policy intervention in Mongolia, called E-receipt pro-

gram, to study firms tax evasion behaviour. The E-receipt program gives incentives to

final consumers to report their purchases and uses them as third-party reporters of firms

sales. Therefore, this intervention reveals firms’ hidden revenue and exposes associated tax

evasion. In this paper, I use the timing of this policy intervention to identify tax-evading

firms. Specifically, I classify firms with a notable increase in reported sales growth above

their firm-specific trend in the year the E-receipt program was initiated as tax evaders.

Then I associate firms’ changes in sales growth to their observable characteristics. The

empirical analysis shows that smaller firms and older firms evade tax more. I also find

that firms in Ulaanbaatar, the capital city of Mongolia, evade more compared to firms in

other regions. Moreover, firms that issue E-receipts experience higher sales growth, which

reassures the effect of the E-receipt program.
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B Appendix

B.1 Firms enrollment in the E-receipt program

Figure B1: Number of retailers in E-receipt database

Figure B1 shows the total number of retailers that submit corporate income tax as well

as the number and share of retailers that issue E-receipts. It illustrates a slight gradual

enrollment of the retailers: the share of retailers were enrolled in the E-receipt program

was 79% in 2016 and increased to 81% in 2018.

B.2 Robustness checks using unbalanced data

The main analysis uses a balanced data between 2014 and 2018. As a robustness check, I

show the main results hold if I use unbalanced data. The sample size of the unbalanced

data is 23,900 and it contains 6,800 retailers (balanced data size is 18,110 and 3,620

retailers). The results from the regressions specified in equations 2.1 and 2.2 using the

unbalanced data are shown in Table B1 (similar to Table 2.3). Dependent variables are

firms’ annual growth in sales. The first four columns report results from the regression

equations 2.1: Dummy variable interacted with firm characteristics variable is D2016, which

is a dummy for year 2016. The last four columns show results from equation 2.2: Dummy

variable is Postt, which equals one if the period is after 2016 and zero otherwise. All

regressions are weighted by sales at the beginning of the sample period, 2014. Similar to

the main analysis using balanced data, the results show that sales growth is negatively

associated with firm size, positively with age. Moreover, retailers in the capital and
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retailers that issue E-receipts experience higher sales growth.

Table B1: Sales growth and firm characteristics using unbalanced data

∆ln(Yit) — Sales growth in 2016 ∆ln(Yit) — Sales growth after 2016

(1) (2) (3) (4) (5) (6) (7) (8)

Dummy*log(Salespre) -0.107∗∗∗ -0.0993∗∗∗ -0.128∗∗∗ -0.119∗∗∗ -0.0923∗∗∗ -0.0747∗∗∗ -0.137∗∗∗ -0.0913∗∗∗

(0.0121) (0.0116) (0.0202) (0.0122) (0.0111) (0.00932) (0.0146) (0.00974)

Dummy*log(Age15) 0.174∗∗∗ 0.284∗∗∗

(0.0456) (0.0374)

Dummy*Capital 0.162∗∗∗ 0.0574∗∗

(0.0248) (0.0259)

Dummy*V ATalways 0.198∗∗ 0.379∗∗∗

(0.0778) (0.0424)

Dummy*E-receipt 0.312∗∗∗ 0.244∗∗∗

(0.0659) (0.0613)

Observations 23923 23923 23923 23923 23923 23923 23923 23923
Adjusted R2 0.244 0.243 0.243 0.244 0.247 0.242 0.246 0.243

Note: Dependent variables are firms’ annual growth in sales. The first four columns report results from the

regression equations 2.1: Dummy variable interacted with firm characteristics variable is D2016, which is a dummy

for year 2016. The last four columns show results from equation 2.2: Dummy variable is Postt, which equals one if

the period is after 2016 and zero otherwise. Independent variable Salespre is the average pre-intervention annual

sales and Age15 is the number of years since the establishment date. Capital, V ATalways and E-receipt are dummy

variables that indicate if the firm is located in the capital city, if the firm has been VAT-liable throughout the sample

period, and the firm has ever issued any E-receipt, respectively. Regressions are weighted by sales at the beginning

of the sample period, 2014. Standard errors are clustered at the province level. * p < 0.10, ** p < 0.05, *** p < 0.01

B.3 Other size measures

In the main analysis I use pre-intervention mean sales as a measure of firm size. In

this section I use other size measures such as sales in year 2014 and 2015 (Sales14) and

Sales15), number of workers (#workers15) and total wages (Wages15) at the end of 2015.

The results are shown in Table B2 and they confirm that there is a negative relationship

between firm size and tax evasion.

B.4 Tax evasion and characteristics of Ulaanbaatar

Firms in Ulaanbaatar experience higher sales growth as shown in Table 2.3. This ob-

servation is not explained by observable characteristics of Ulaanbaatar. To see this, I

add province-level economic development, poverty and population and firm densities as

additional explanatory variables. The results are reported in Table 2.3 and they suggest

a negative relationship between Capital dummy and sales growth survives. Moreover, I

use the maximum level of night light of provinces as an alternative measure of economic

development and results in Table B4 still suggest that firms in Ulaanbaatar have higher
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Table B2: Sales growth and firm characteristics using different size measures

∆ln(Yit) — Sales growth in 2016 ∆ln(Yit) — Sales growth after 2016

(1) (2) (3) (4) (5) (6)

Dummy*log(Sales14) -0.0713∗∗∗ -0.0686∗∗∗ -0.0761∗∗∗ -0.0461∗∗∗ -0.0372∗∗∗ -0.0427∗∗∗

(0.0100) (0.0118) (0.0120) (0.00870) (0.00864) (0.00930)

Dummy*log(Age15) 0.0970∗∗ 0.174∗∗∗

(0.0371) (0.0324)

Dummy*Capital 0.109∗∗∗ 0.0392∗∗

(0.0212) (0.0174)

Dummy*E-receipt 0.191∗∗∗ 0.121∗∗

(0.0661) (0.0563)

Observations 18110 18110 18110 18110 18110 18110
Adjusted R2 0.138 0.138 0.138 0.138 0.136 0.136

(a) Sales in 2014

∆ln(Yit) — Sales growth in 2016 ∆ln(Yit) — Sales growth after 2016

(1) (2) (3) (4) (5) (6)

Dummy*log(Sales15) -0.172∗∗∗ -0.168∗∗∗ -0.185∗∗∗ -0.150∗∗∗ -0.140∗∗∗ -0.155∗∗∗

(0.0139) (0.0160) (0.0160) (0.0132) (0.0123) (0.0123)

Dummy*log(Age15) 0.167∗∗∗ 0.248∗∗∗

(0.0415) (0.0322)

Dummy*Capital 0.166∗∗∗ 0.0968∗∗∗

(0.0244) (0.0224)

Dummy*E-receipt 0.402∗∗∗ 0.337∗∗∗

(0.0693) (0.0510)

Observations 18110 18110 18110 18110 18110 18110
Adjusted R2 0.154 0.154 0.156 0.158 0.154 0.157

(b) Sales in 2015

∆ln(Yit) — Sales growth in 2016 ∆ln(Yit) — Sales growth after 2016

(1) (2) (3) (4) (5) (6)

Dummy*log(#workers15) -0.0329 -0.0301 -0.0289 -0.0396∗∗ -0.0201 -0.0215
(0.0235) (0.0243) (0.0242) (0.0141) (0.0140) (0.0136)

Dummy*log(Age15) 0.0527 0.196∗∗∗

(0.0392) (0.0344)

Dummy*Capital 0.0463∗ 0.0446∗∗

(0.0248) (0.0198)

Dummy*E-receipt 0.0584 0.125∗

(0.0752) (0.0717)

Observations 12795 12795 12795 12795 12795 12795
Adjusted R2 0.143 0.143 0.143 0.146 0.143 0.143

(c) Number of workers

∆ln(Yit) — Sales growth in 2016 ∆ln(Yit) — Sales growth after 2016

(1) (2) (3) (4) (5) (6)

Dummy*log(Wages15) -0.0319∗ -0.0311 -0.0287 -0.0368∗∗∗ -0.0236∗ -0.0230∗

(0.0179) (0.0202) (0.0195) (0.0112) (0.0115) (0.0113)

Dummy*log(Age15) 0.0558 0.198∗∗∗

(0.0381) (0.0349)

Dummy*Capital 0.0567∗∗ 0.0540∗∗

(0.0273) (0.0196)

Dummy*E-receipt 0.0606 0.128∗

(0.0789) (0.0721)

Observations 12795 12795 12795 12795 12795 12795
Adjusted R2 0.143 0.143 0.143 0.146 0.143 0.143

(d) Total wages

Note: Dependent variables are firms’ annual growth in sales. The first three columns of each table report results

from the regression equations 2.1: Dummy variable interacted with firm characteristics variable is D2016, which is

a dummy for year 2016. The last three columns show results from equation 2.2: Dummy variable is Postt, which

equals one if the period is after 2016 and zero otherwise. Regressions are weighted by sales at the beginning of the

sample period, 2013. Standard errors are clustered at the province level. * p < 0.10, ** p < 0.05, *** p < 0.01

sales growth.

Table B3: Tax evasion and characteristics of Ulaanbaatar

∆ln(Yit) — Sales growth in 2016 ∆ln(Yit) — Sales growth after 2016

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Dummy*log(Salespre) -0.110∗∗∗ -0.109∗∗∗ -0.109∗∗∗ -0.109∗∗∗ -0.109∗∗∗ -0.109∗∗∗ -0.0908∗∗∗ -0.0905∗∗∗ -0.0905∗∗∗ -0.0904∗∗∗ -0.0907∗∗∗ -0.0897∗∗∗

(0.0107) (0.0108) (0.0108) (0.0109) (0.0110) (0.0109) (0.0112) (0.0113) (0.0113) (0.0112) (0.0113) (0.0112)

Dummy*log(Age15) 0.106∗∗ 0.115∗∗ 0.116∗∗ 0.112∗∗ 0.111∗∗ 0.113∗∗ 0.200∗∗∗ 0.205∗∗∗ 0.203∗∗∗ 0.207∗∗∗ 0.207∗∗∗ 0.206∗∗∗

(0.0449) (0.0482) (0.0489) (0.0467) (0.0466) (0.0473) (0.0318) (0.0294) (0.0288) (0.0320) (0.0320) (0.0312)

Dummy*Capital 0.110∗∗∗ 0.181∗∗∗ 0.197∗∗∗ 0.118∗∗∗ 0.110∗∗∗ 0.124∗∗∗ 0.0265 0.0600∗ 0.0490 0.121∗∗∗ 0.123∗∗∗ 0.0908∗∗

(0.0239) (0.0554) (0.0552) (0.0225) (0.0261) (0.0365) (0.0191) (0.0338) (0.0366) (0.0215) (0.0248) (0.0371)

Dummy*GDPPC -0.0986 -0.104 -0.192∗∗ -0.194∗∗ -0.203∗∗ -0.0467 -0.0432 0.0433 0.0386 0.0265
(0.0676) (0.0652) (0.0684) (0.0721) (0.0725) (0.0458) (0.0453) (0.0512) (0.0474) (0.0600)

Dummy*Poverty 0.0540 0.0607 -0.0367 -0.00246
(0.0489) (0.0624) (0.0575) (0.0468)

Dummy*Pop dens. 0.0265∗∗ -0.00986 -0.0255∗∗ -0.0935
(0.0109) (0.0907) (0.00970) (0.0906)

Dummy*Firm dens. 0.0224∗∗ 0.0313 -0.0201∗∗ 0.0604
(0.00986) (0.0797) (0.00802) (0.0796)

Observations 18110 18110 18110 18110 18110 18110 18110 18110 18110 18110 18110 18110
Adjusted R2 0.142 0.142 0.142 0.142 0.142 0.142 0.143 0.143 0.143 0.144 0.144 0.144

Note: Dependent variables are firms’ annual growth in sales. The first six columns of each table report results

from the regression equations 2.1: Dummy variable interacted with firm characteristics variable is D2016, which is a

dummy for year 2016. The last six columns show results from equation 2.2: Dummy variable is Postt, which equals

one if the period is after 2016 and zero otherwise. Regressions are weighted by sales at the beginning of the sample

period, 2013. Standard errors are clustered at the province level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table B4: Ulaanbaatar — night light as a measure of economic development

∆ln(Yit) — Sales growth in 2016 ∆ln(Yit) — Sales growth after 2016

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Dummy*log(Salespre) -0.110∗∗∗ -0.111∗∗∗ -0.111∗∗∗ -0.112∗∗∗ -0.112∗∗∗ -0.112∗∗∗ -0.0908∗∗∗ -0.0910∗∗∗ -0.0913∗∗∗ -0.0897∗∗∗ -0.0899∗∗∗ -0.0895∗∗∗

(0.0107) (0.0103) (0.0103) (0.0103) (0.0103) (0.0104) (0.0112) (0.0114) (0.0114) (0.0116) (0.0116) (0.0113)

Dummy*log(Age15) 0.106∗∗ 0.116∗∗ 0.116∗∗ 0.112∗∗ 0.112∗∗ 0.112∗∗ 0.200∗∗∗ 0.202∗∗∗ 0.203∗∗∗ 0.207∗∗∗ 0.207∗∗∗ 0.206∗∗∗

(0.0449) (0.0473) (0.0472) (0.0465) (0.0464) (0.0461) (0.0318) (0.0317) (0.0320) (0.0322) (0.0322) (0.0322)

Dummy*Capital 0.110∗∗∗ 0.156∗∗∗ 0.156∗∗∗ 0.0885∗ 0.0766 0.0488 0.0265 0.0334 0.0331 0.127∗∗∗ 0.132∗∗∗ 0.0943∗∗

(0.0239) (0.0315) (0.0315) (0.0468) (0.0535) (0.0824) (0.0191) (0.0393) (0.0325) (0.0282) (0.0319) (0.0444)

Dummy*NLmax -0.131∗ -0.135 -0.182∗ -0.196∗ -0.254 -0.0198 -0.0606 0.0510 0.0606 0.00940
(0.0740) (0.0929) (0.105) (0.110) (0.154) (0.0878) (0.0823) (0.0774) (0.0843) (0.0896)

Dummy*Poverty -0.00567 -0.0436 -0.0632 0.00442
(0.0691) (0.0861) (0.0626) (0.0544)

Dummy*Pop dens. 0.0174 -0.0314 -0.0242∗∗ -0.0978
(0.0141) (0.128) (0.00917) (0.0915)

Dummy*Firm dens. 0.0165 0.0474 -0.0204∗∗ 0.0660
(0.0125) (0.115) (0.00850) (0.0801)

Observations 18110 18110 18110 18110 18110 18110 18110 18110 18110 18110 18110 18110
Adjusted R2 0.142 0.142 0.142 0.142 0.142 0.142 0.143 0.143 0.143 0.144 0.144 0.144

Note: Dependent variables are firms’ annual growth in sales. The first six columns of each table report results

from the regression equations 2.1: Dummy variable interacted with firm characteristics variable is D2016, which is a

dummy for year 2016. The last six columns show results from equation 2.2: Dummy variable is Postt, which equals

one if the period is after 2016 and zero otherwise. Regressions are weighted by sales at the beginning of the sample

period, 2013. Standard errors are clustered at the province level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Chapter 3

Resource Misallocation and

Learning-by-Doing

This paper investigates a trade-off between static and dynamic optimality conditions for

resource allocation across firms in the presence of learning-by-doing (LBD). The standard

static efficiency requires firms to have the same marginal revenue products (MRP) within

each sector. In contrast, I show theoretically that dynamic efficiency condition implies

dispersion in the MRP across firms when productivity growth is endogenous due to LBD. I

then compare the implications of the dynamic and static models quantitatively using firm-

level panel data from Indonesia. I show that firms’ productivity growth is consistent with

LBD, whereby small and younger firms have lower productivity, but higher productivity

growth compared to larger and older firms. I simulate the dynamic model and find that

aggregate productivity is higher in the long run when we allow for some dispersion in MRP.
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3.1 Introduction

It is well documented that firms in narrowly defined industries vary a lot in terms of their

size and productivity (for example Foster et al. (2001), Syverson (2010)). The way re-

sources are allocated across those heterogeneous firms both at the extensive and intensive

margins have an important effect on the aggregate productivity and growth (for example

Hsieh and Klenow (2009), Restuccia and Rogerson (2017)). There is considerable con-

sensus that, at the extensive margin, the lowest productive firms should exit the market

(for example Aghion and Howitt (1992), Caballero et al. (2008) and Kwon et al. (2015)).

As for the intensive margin, high-productive firms should use more resources and produce

more than lower productive firms (Bailey et al. (1992), Foster et al. (2008), Syverson

(2010), Foster et al. (2017), and Haltiwanger (2016)). These allocative efficiency condi-

tions require equalised marginal revenue products (MRPs) across firms when there are

diminishing marginal products. Consequently, it is thought that any observed dispersion

in MRPs is a sign of misallocation of resources in the economy (for example Hsieh and

Klenow (2009)).

This paper, however, challenges the idea that it is optimal to eliminate or allocate less re-

sources to firms with currently low-productive firms. Some of the currently low-productive

firms might have a capacity of reaching high productivity in the future, for example

through learning-by-doing (LBD) mechanism. Therefore firms’ future productivity prospects

should be taken into consideration. Specifically, this paper studies the implications of

internalising future endogeneous productivity path into firms optimization problem on

allocation of resources across firms.

First, I study if firms’ productivity process show any signs of LBD mechanism. To do so, I

utilise the Indonesian manufacturing firm-level data and estimate several measures of firm-

level revenue and physical productivity. The estimated productivity measures show that

smaller and younger firms have lower productivity level but their productivity growth is

higher than that of larger and older firms. This pattern holds even after controlling for sur-

vival bias of smaller and younger firms.1 A possible explanation for this empirical pattern

is that small and young firms improve their productivity as they accumulate experience by

producing more, which is the LBD mechanism. More importantly, it suggests diminishing

LBD effect on productivity — the incremental rise in future productivity decreases as the

firm becomes larger and older.

1It is well documented that exit rates of small and young firms are higher than large and old firms.
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Next, to highlight the importance of the inter-temporal link in productivity through LBD

mechanism, I build a dynamic, partial equilibrium model. Specifically, I incorporate the

LBD mechanism into a standard partial equilibrium model discussed in Hsieh and Klenow

(2009), where monopolistically competitive firms maximise their period profits by taking

their demand into account. The LBD effect is modelled in a way that future productivity

of firms depends on the current productivity level as well as the current production. That

is, firms can increase their future productivity by producing more but the increase is

decreasing in current productivity level. Hence, firms maximise their present discounted

future profits by internalising the inter-temporal link in productivity through the LBD

mechanism. I show that the dynamic optimality conditions require dispersion in MRPs as

long as firms are heterogeneous in terms of their current productivity level. The intuition is

that low-productive firms produce more and have lower MRPs in order to take advantage

of the future high productivity through the LBD mechanism. In comparison, in the

absence of the LBD mechanism firms maximise only their period profits. The static

optimality conditions require firms’ MRPs to be equalised within an industry as in the

standard misallocation literature such as Hsieh and Klenow (2009). That is, the currently

high-productive firms use more resources and produce more than currently low-productive

firms to reach the static efficiency. This result highlights that some dispersion in MRPs

could be beneficial in the long run and it is not always the case that all observed dispersion

in MRPs is due to distortions.

To see the implications in the long run I simulate both the static and dynamic models over

time. I feed both models with the same arbitrary productivity distribution and compare

their transitional dynamics and the speed of reaching the steady state. Both economies

start with firms, who are heterogeneous in terms of their initial productivity level, and

converges to the steady state, where all firms reach the highest possible productivity level

in the productivity distribution. Even though firms in the repeated static model do not

internalise the LBD effects their productivity in the next period increases because of the

LBD effect. In contrast, in the dynamic model, lower productive firms produce more to

utilise the LBD effects and thus their productivity increases faster and reach the steady

state faster than the static model.

This paper relates to several strands of literature. First, it contributes to misallocation

literature by showing a mechanism/channel that justifies some degree of dispersion in

MRPs even when there is no distortion. There are other literature that has identified

other possible reasons that lead to heterogeneous MRPs in the no-distortion economy. For

example, overhead input requirements discussed in Bartelsman, Scarpetta and Haltiwanger
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(2013), and quadratic preferences and linear demand schedules discussed in Melitz and

Ottaviano (2008) lead to dispersion in MRPs. I add to this literature by showing that the

LBD mechanism justifies a certain level of dispersion in MRPs as potentially productive

small and young firms should have lower MPRs than older and larger firms.

Next, this paper relates to the productivity estimation literature. In particular, I esti-

mate several measures of firm-level productivity and study their relationship. Estimating

productivity at the firm level has always been a challenge because firm-level prices and

quantities are not widely available. The most commonly used productivity measure is

revenue-based productivity, TFPR, where industry-level prices are used to deflate firms’

sales. Therefore, the estimated TFPR reflects not only the physical productivity of firms,

TFPQ, but also firm-level price heterogeneity and it is affected by the demand structure

that firms face. Broadly, there are mainly two ways to estimate TFPR. The first approach

is to assume Cobb-Douglas revenue function and use industry-level cost shares of input

expenditures as input elasticities. The second approach is to estimate the elasticities using

regression techniques.

A few papers that have access to firm-level prices calculate TFPQ. In particular, Foster et

al. (2008), Foster et al. (2015) study commodity-like manufacturing sectors, such as ready-

mixed concrete and raw cane sugar. In this paper, I estimate two revenue-based firm-level

productivity estimates, TFPRs: one is based on Cobb-Douglas production function, and

the other is based on production/productivity estimation method discussed in Wooldridge

(2009). I also calculate three physical productivity measures using firm-level prices: two

of them are the ratio of the TFPRs and prices, and the last one uses the structural

assumptions used in Hsieh and Klenow (2009), such as Cobb-Douglas production function.I

study the relationship between these productivity measures and find that all of them

are positively correlated. This is consistent with Foster et al. (2017), where they find

that TFPRs based on the Cobb-Douglas function assumption and regression approaches

have similar properties and are highly correlated. Using the firm-level prices of firms in

Indonesian manufacturing sector I estimate not only TFPRs but also TFPQs. I find all

productivity measures are positively correlated.

Lastly, this paper is related to a large body of literature on firm-level productivity. As

discussed in the survey paper Syverson (2010), there are external and internal within-

firm factors that influence firm-level productivity. External factors include, for example,

trade liberalization (e.g. Pavcnik (2002), Eaton and Kortum (2002) and Melitz (2003)),

deregulation (for example, Bridgman et al. (2009)) and FDI-driven productivity spillovers
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(Keller and Yeaple (2009), Arnold and Javorcik (2009), Fernandes and Isgut (2015)).

Especially, Arnold and Javorcik (2009) examine how FDI affect plant-level productivity

using the Indonesian Census of Manufacturing between 1983 and 2001. Their results

suggest that FDI leads to significant productivity improvements and its effects are observed

in the consequent periods.

On the other hand, the internal within-firm elements that affect firm-level productivity

include managerial practice (e.g., Bloom and Van Reenen (2014)) and IT and R&D (for

example, van Ark et al. (2008), Doraszelski and Jaumandreu (2009), Aw et al. (2011)).

LBD mechanism, which is the main mechanism discussed in this paper, is considered one

of such internal factors. I document that the productivity process of firms in Indone-

sia exhibits a LBD mechanism. Specifically, using the productivity estimates mentioned

above I find that young and small firms have lower productivity level but the productivity

increases as the firms become larger and older. This is consistent with the traditional LBD

literature such as Wright (1936), Arrow (1962) and David (1973) document empirically

that firms’ unit cost (productivity) is negatively associated with cumulative output. Also,

there is a large body of evidence that firm size increases with age and this pattern is

attributed to learning in young firms (Dunne et al. (1989), Baldwin et al. (2000)). How-

ever, more recent literature, such as Baily et al. (1992), Bartelsman and Dhrymes (1998),

study firms in the U.S. and find that younger firms have higher productivity, which differs

from my finding. One possible reason is that these studies focus on the U.S, a developed

country, while I use Indonesian manufacturing firms. Moreover, Jensen et al. (2001) finds

that younger firms adopt more modern and productive technology than the average in-

cumbents, but also, older firms are more down on the learning curve. Jensen et al. (2001)

claims that these two channels have similar effects, hence young and old firms do not differ

much in terms of their productivity level.

The rest of the paper is organised as follows. Section 3.2 provides empirical analysis,

where I explain the Indonesian data, estimate firm-level productivity and document LBD

mechanism in the estimated productivity measures. Section 3.3 describes the theoretical

framework, where I discuss the implication of introducing LBD mechanism into a standard

partial equilibrium model. Section 3.4 concludes.
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3.2 Empirical Analysis

In this section I study firms’ productivity process whether it exhibits signs of learning-

by-doing (LBD). First, I estimate firms’ productivity level. Then I study its evolution

over time. To do so, I use Indonesian firm-level annual manufacturing census between

1990-2010, which covers firms with 20 or more employees and has information on their

sales, capital and labour inputs to calculate the revenue productivity measures.

Measuring firm-level productivity is not straightforward. Numerous methods of estimating

productivity are proposed in the literature, and a large fraction of existing work focuses

on estimating revenue-based productivity of firms using the value of sales because physical

quantities are seldom observed in typical firm-level datasets.

In this paper, I estimate not only revenue-based productivity but also physical productiv-

ity measures for each firm using product-level price data from Indonesia, where I observe

firms’ sales and physical output of each product. In particular, I estimate two differ-

ent measures of revenue-based productivity: one is simple revenue productivity based on

Cobb-Douglas production function assumption, and the other one is estimated following

a method proposed in Wooldridge (2009)2 Moreover, I estimate three versions of physical

productivity using product-level price data. The first one is the simple physical pro-

ductivity based on the Cobb-Douglas production function, where I divide the estimated

simple revenue productivity by prices. Similarly, the second measure is the ratio between

Wooldridge revenue productivity and prices. The last measure is borrowed from Hsieh and

Klenow (2015), which uses functional form assumptions to calculate physical productivity

of firms. I adopt Hsieh and Klenow (2009) approach, partly because I compare model

implication with their result in Section 3.3. Based on these five productivity measures, I

examine firms’ productivity process differ across firms with different characteristics such

as age and size.

3.2.1 Data

The main data I use in this paper is an Indonesian firm-level panel data from the Manufac-

turing Survey of Large and Medium-Sized Firms (Statistik Industri).3 Statistik Industri

2This estimator is more efficient compared to semi-parametric approaches introduced by Olley and
Pakes (1996), Levinsohn, Petrin (2003) and Ackerberg et al. (2006). Also this method doesn’t use boot-
strapping techniques to obtain standard errors for the estimates. See Van Beveren (2010) for a detailed
comparison of TFP estimation methods.

3The Statistik Industri has also been used in several studies, please see Amiti and Konings (2007),
Blalock et al. (2008), Yang (2012) and Peters(2013) for detailed description of the dataset.
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encompasses all manufacturing firms with twenty or more employees on an annual basis

between 1990 and 2010, and contains information on firms’ sales, value-added, capital

stock, number of workers, total wages, material costs and other firm characteristics. To

exclude the outliers, I winsorise the main variables such as firms’ sales, value-added, cap-

ital stock, number of workers, total wages, material costs, at 1% in each tail for each

year and 5 digit industry. I deflate nominal variables using industry level price deflators.

Specifically, I use U.S. CPI (base year 1990) to deflate firms’ sales, value-added, total

wages, and material costs; and U.S. price level of the capital stock (base year 1990) to

deflate value capital stock.4 The final unbalanced full sample has 296,300 observations

and 44,000 unique firms.5

More importantly, I complement the firm-level data with product-level data where I ob-

serve product prices. In particular, I have information on product name, 9-digit ISIC.Rev.3

industry code, quantity sold, unit of measurement, monetary value of sales for each prod-

uct that a firm sells in a year. Product name is very detailed and it allows me to distinguish

similar products such as palm kernel, crude palm oil, crude palm kernel oil, which have

different 9-digit industry codes. However, this price data covers the period between 1994

and 2010. I winsorise the sales value and quantity of each type of product at 1% and 99%

each year and deflate sales value using U.S. CPI (base year 1990). The price sample size

is 452,000 and it contains 37,300 unique firms.

To calculate physical productivity, I focus on single-product firms. Single-product firms

are defined as firms that produce only one good, which is measured by product name

and 9-digit industry code, each year. In principle, single-product firms can switch its

product over time.6 On average 35% of the firms are single-product firms each year. They

are younger and smaller compared to multi-product firms. Table 3.1 presents summary

statistics. These datasets allow me to estimate not only revenue-based productivity but

also physical productivity of firms each year.

4U.S. price deflators are downloaded from Penn World Table 9.0.
5Unfortunately, the data does not contain information on capital stock for the year 2006. Even though

I calculate the value of capital stock in 2006 as the average of the capital stock in 2005 and 2007, the
final sample contains 40% fewer observations for 2006: 8,300 observations compared to 14,100, which is
the average number of observations.

6On average, firms produce 2 different types of products over the sample period. For reference, the
largest number of products produced by single firm in the sample period is 14.
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Table 3.1: Summary statistics: Multi vs. single-product firms

Multi Single All

Age 17 16 17
Sales 38,125 13,382 29,352

Observations 150,189 82,514 232,703

Note: Table 3.1 summarises age and size of firms. The sample period covers 1994 and 2010. Column 1

and 2 represents multi- and single-product firms, respectively. Column 3 shows average age and size of all

firms. Size is annual sales value of firms, measured in 1000 Indonesian rupiah.

3.2.2 Productivity estimation

I estimate five different measures of firm-level productivity: two revenue-based firm-level

productivity estimates, TFPRs, and three physical productivity measures, TFPQs, for

each firm each year.7

A few remarks about distinction between TFPR and TFPQ are useful here. First, TFPR

is the most commonly used firm-level productivity measure in the literature, which is based

on firm nominal revenue divided by industry-level price deflator. This implies firm-level

prices are captured in firm-level productivity TFPR. In other words, this revenue-based

productivity reflects both physical productivity TFPQ and demand structure of the firm.

On the other hand, firm-level prices make it possible to calculate TFPQ, which more

closely corresponds to notion of productivity that reflect firms’ ability to turn production

inputs to output. Under constant returns to scale TFPQ equals the ratio between TFPR

and firm-level prices. One of the drawback of this physical-productivity does not reflect

quality of products. Quality of the products are manifested in firm-level prices, in this

sense TFPR can be more suitable for representing firms’ productivity. Therefore, I use

both types of firm-level productivity measures to test if they exhibit LBD process. When

estimating firm-level productivity, I assume that firms in the same industry face the same

production function when I estimate firm-level productivity below.

I introduce the five productivity measures below. The first revenue-based productivity

is based on Cobb-Douglas production function assumption, where the labour share is

assumed to be equal to U.S. labour share in each industry.8 In particular, I estimate the

7Notations TFPR and TFPQ are borrowed from Foster et al. (2008).
8In other words, labour share is allowed to vary across industries, but not within an industry. Moreover,

the reason I use U.S. labour shares instead of calculating labour shares Indonesian data is because it is
considered that distortions are potentially substantial in Indonesia (the same as in Hsieh and Klenow
(2009)) and it is not possible to separately identify industry-level labour distortion and labour elasticity
in each industry.
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productivity as the ratio between firms’ value-added and their composite inputs:

TFPRsimple,it ≡
PitYit

Kα
itL

1−α
it

(3.1)

Here, PitYit is value-added for firm i in time t. I use book value of total fixed assets

for Kit. As the labour inputs, Lit, I use total wage bill which includes both wages and

benefits to the workers. 1−α is the labour share, which is calculated based on NBER-CES

Manufacturing Industry Database for each 4-digit industry.9

For the second revenue productivity measure, one of the widely used revenue-based produc-

tivity measure in the literature. I use Wooldridge (2009) methodology to control for endo-

geneity and selection bias problems when calculating firms’ productivity level, TFPRW,i.

Wooldridge (2009) shows that a one-step generalised method of moments (GMM) can

generate a productivity estimate that is not only consistently but also efficiently.10

Next, I estimate three versions of physical productivity. The first two measures of physical

productivity takes advantage of the price and physical quantity data, which I observe at the

product level. Namely, the first one is the simple physical productivity based on Cobb-

Douglas production function, where I divide the estimated simple revenue productivity

TFPRsimple by product price for each single-product firms and year:

TFPQsimple,it ≡
Yit

Kα
itL

1−α
it

=
TFPRsimple,it

Pit
(3.2)

The second measure is calculated by dividing the Wooldridge revenue productivity by the

single-product firms’ prices:

TFPQW,it ≡
TFPRW,it

Pit
(3.3)

The last measure is based on Hsieh and Klenow (2009), which uses some strong assump-

tions about firms’ demand structure on top of supply side assumptions. Specifically, firms

face an isoelastic residual demand curve and their marginal cost curves are both flat (in-

variant to quantity) and are negative unit elastic with respect to TFPQ. I adopt Hsieh

9I use the NBER-CES Manufacturing Industry Database from 1990 to 2010, to calculate the labour
shares for each industry each year. The reason for I use U.S. labour share from NBER-CES is that U.S.
is considered to be relatively undistorted economy compared to developing countries such as Indonesia.
Similar argument is made in Hsieh and Klenow (2009), where they use the U.S. labour share to calculate
productivity of firms in China and India.

10The estimator is more efficient compared to semi-parametric approaches introduced by Olley and Pakes
(1996), Levinsohn, Petrin (2003) and Ackerberg et al. (2006). Also this method doesn’t use bootstrapping
methods to obtain standard errors for the estimates. See Van Beveren (2010) for detailed comparison of
TFP estimation methods.
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and Klenow (2009) approach, mainly because I compare model implication with their re-

sult, where it is assumed that firms with high real output have a lower price to explain

why buyers would demand the higher output. Therefore, output in physical unit can be

inferred from value-added of a firm, by using demand elasticity σ, which equals 3 as in

Hsieh and Klenow (2009).

TFPQHK,it ≡
Yit

Kα
itL

1−α
it

=
(PitYit)

σ
σ−1

Kα
itL

1−α
it

(3.4)

3.2.3 Learning-by-doing in firm-level productivity

This subsection tests if firms’ productivity level, measured by the previous five measures,

exhibit LBD process. In particular, I test if young and small firms have lower level of

productivity but have higher productivity growth.

I start by examining the relation how they relate to one another. For single-product

firms I use five productivity measures: TFPRsimple, TFPRW , TFPQsimple, TFPQW and

TFPQHK . However, for multi-product firms (as well as single-product firms), I calculate

only the following three productivity measures: TFPRsimple, TFPRW and TFPQHK .

This is because each firm produces more than one product and it is not clear which price

should be used to deflate the revenue productivity measures.

Table 3.2: Correlation coefficients between productivity measures

TFPRsimple TFPRW TFPQHK
TFPRsimple 1
TFPRW 0.00984∗∗∗ 1
TFPQHK 0.793∗∗∗ 0.0563∗∗∗ 1
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

(a) Full sample

TFPRsimple TFPQsimple TFPRW TFPQW TFPQHK
TFPRsimple 1
TFPQsimple 0.0000832 1
TFPRW 0.00128 0.000530 1
TFPQW 0.0000383 0.993∗∗∗ 0.0280∗∗∗ 1
TFPQHK 0.994∗∗∗ 0.0000929 0.0237∗∗∗ 0.000510 1
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

(b) Single-product firms

The correlation coefficients of the productivity measures are presented in Table 3.2. From

Table 3.2a we can see that correlation between TFPRsimple and TFPQHK are strong, and
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it is due to their functional form. Relation of TFPRW to other productivity measures are

weak. For single-product firms, again TFPRsimple and TFPQHK are strongly correlated.

Similarly, TFPQsimple and TFPQW have strong positive relations. Other productivity

measures have weak positive correlations.

To see whether the small and young firms have lower productivity level I run the following

regressions:

log(TFPsit) = β0 + β1log(Charsit) + δ′Z + µs + µp + µl + µt + εsit (3.5)

Here log(TFPsit) is the log of productivity level of firm i in sector s at time t. log(Charsit)

represents firms’ size and age. I use volume of sales to measure firms’ size because I use

value-added to calculate the TFPR and TFPQ. It is worth noting that log(Salessit) is not

cumulative past production, which is often used in the LBD literature. Instead, it is the

current revenue which is closely linked to the theoretical part in Section 3.3. For alternative

measures of size, I use average number of workers per working day as well as value-added,

and the results are qualitatively similar. Z denotes a vector of firm characteristics, which

includes export status, capacity utilization, capital intensity, whether the firm has any

investment financed through equity issue, by foreign loans, by FDI, and any investment

financed on capital markets. µs is a vector of industry fixed effects which are included in

order to control for all time-invariant industry characteristics, µp is a vector of province

fixed effects, which control for time-invariant location specific characteristics, µl is a vector

of legal status fixed effects (for example whether the firm is a state enterprise or a limited

liability company), and µt is a vector of time dummies, included in order to control for

all factors affecting all firms in the same way in a given year. Moreover I cluster the error

terms at industry and province level since firms in the same industry and province are

likely to be correlated with each other.11

The main interest is the sign and statistical significance of β1. Notice that regressions

results in this paper does not imply causations. It only shows the correlation between

dependent variable and the right hand side variables because there is no exogenous vari-

ation in the explanatory variables. Specifically, β1 captures the correlation between firm

characteristics, such as firm size, and its productivity level controlling for other firm char-

acteristics.

Table 3.3 presents the regression using the full, unbalanced sample. The results imply that

11If I cluster the disturbances at industry and regency, industry and sub-regency, and industry and
village level, significance levels are roughly the same and the results survive.
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Table 3.3: Productivity level - full, unbalanced sample

(1) (2) (3)
log(TFPRsimple) log(TFPRW ) log(TFPQHK)

log(Sales) 0.214∗∗∗ 0.416∗∗∗ 0.673∗∗∗

(0.00907) (0.00568) (0.0123)

log(Age) 0.0505∗∗∗ 0.0258∗∗∗ 0.0396∗∗∗

(0.0114) (0.00406) (0.0121)

Observations 296324 296324 296324
Adjusted R2 0.218 0.760 0.631

Note: This table presents regression results specified in equation 3.5 using full, unbalanced sample.

The dependent variables in column 1, 2 and 3 are the simple revenue productivity defined in equation

3.1, revenue-based productivity measure based on Wooldridge (2009) estimation approach, and the log of

physical productivity based on Hsieh and Klenow (2009) approach, defined in equation 3.4, respectively.

I include year, industry, province and legal status fixed effects in all regressions. Control variables include

firm characteristics such as export status, capacity utilization, capital intensity, whether the firm has

any investment financed through equity issue, by foreign loans, by FDI, and any investment financed on

capital markets. The standard errors are clustered at both year and industry level. * p < 0.10, ** p < 0.05,

*** p < 0.01

larger and older firms have higher productive level. This is true for all three measures

of productivity.12 It is worth mentioning the survival bias caused by firms’ entry and

exit. It is well documented that there is higher frequency of entrance and exits among

smaller/younger firms and most of the firms that exit the market have lower productivity

level.13 Given these facts, the estimations above are likely to be underestimating the

difference in productivity level between small/young and large/old firms, and that will

strengthen the results further.

Next I turn to relation between productivity growth rate and firm characteristics. The

Indonesian dataset has a panel dimension, which gives me an opportunity to analyse the

dynamic characteristics of the firm productivity level. Productivity growth is calculated

by taking the log differences between productivity level in the current and the last period.

The regression equation are the following:

grsit+1 = β0 + β1log(Charsit) + δ′Z + µs + µp + µl + µt + εsit (3.6)

This equation is exactly the same as regression (3.5), except that the dependent variable,

grsit+1, is now growth rate of productivity level for firm i in sector s and at time t. The

results are presented in Table 3.4. It shows that firm size and age are negatively correlated

12Table C1 shows regression results where I associate age and size of firms to their productivity sepa-
rately. The results are qualitatively similar to Table 3.3.

13For example see Syverson (2011).

108



with productivity growth rate, which means productivity growth decreases as firm grow

older and larger. In other words, small and young firms have higher productivity growth.14

Table 3.4: Productivity growth - full, unbalanced sample

(1) (2) (3)
∆log(TFPRsimple) ∆log(TFPRW ) ∆log(TFPQHK)

log(Sales) -0.0496∗∗∗ -0.0483∗∗∗ -0.0835∗∗∗

(0.00219) (0.00228) (0.00350)

log(Age) -0.0101∗∗∗ -0.0146∗∗∗ -0.0305∗∗∗

(0.00282) (0.00257) (0.00453)

Observations 252298 252298 252298
Adjusted R2 0.025 0.028 0.035

Note: This table shows estimated coefficients from regression equation 3.6. The dependent variables in

column 1, 2 and 3 are growth rates in the simple revenue productivity defined in equation 3.1, revenue-based

productivity measure based on Wooldridge (2009) estimation approach, and the log of physical productivity

based on Hsieh and Klenow (2009) approach, defined in equation 3.4, respectively. I include year, industry,

province and legal status fixed effects in all regressions. Control variables include firm characteristics such

as export status, capacity utilization, capital intensity, whether the firm has any investment financed

through equity issue, by foreign loans, by FDI, and any investment financed on capital markets. The

standard errors are clustered at both year and industry level. * p < 0.10, ** p < 0.05, *** p < 0.01

It is important to consider the higher exit rate of small and young firms. As previously

discussed, it is known in the literature that small and young firms exit more often that

large and old firms. It is also documented that firms that exit the market have low

productive level. Hence, it is possible that I overestimate the productivity growth rate

of small and young firms because those with low productivity growth leave the market.

Therefore, I study the extent of the potential selection issue of small and young firms. In

particular, I examine if there is differential survival rates for young vs. old and small vs.

large firms. Survival rate is defined as the share of firms appearing in the next year. Using

this definition, I calculate survival rate for each quantiles of size and age distribution each

year. Then I run survival rates on quantiles with and without year fixed effects and results

are reported in Table 3.5. It shows that the higher quantiles in size and age distribution,

the higher the survival rate. In Figure C1 I plot the survival rates of firms in different

size and age quantiles and it also shows that firms in higher quantiles of both size and

age distribution have (slightly) higher probability of appearing in the next year. For the

exit rates of different size and age quantiles tells the same story. Table C3 show that rank

of firms in age and size distributions is negatively correlated with exit rates. Similarly,

Figure C2 shows that firms in lower age and size quantiles have higher exit rates compared

to firms in higher quantiles.

14Table C2 shows regression results where I associate age and size of firms to their productivity sepa-
rately. The results are qualitatively similar to Table 3.3 and imply that larger and older firms have lower
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Table 3.5: Survival rates by size and age quantiles

Size Age

(1) (2) (3) (4)
Survival rate Survival rate Survival rate Survival rate

Quartiles 0.0189∗∗ 0.0189∗∗∗ 0.00875 0.00875∗∗∗

(0.00854) (0.00330) (0.00778) (0.00146)

Year FE No Yes No Yes
Observations 80 80 80 80
Adjusted R2 0.053 0.899 0.003 0.972

Note: The dependent variables in the first 2 columns are survival rates of firms by size quantiles. The

last 2 columns are survival rates of firms by age quantiles. In even columns I include year fixed effects.

* p < 0.10, ** p < 0.05, *** p < 0.01

Lower survival rate for young and small firms could result in over-estimation of produc-

tivity because lower productivity growth firms exit the market. To correct for the survival

bias, I multiply the mean growth rates of each quartiles with its survival rates and study

if young and small firms still have higher adjusted productivity growth compared to old

and large firms. Table 3.6 reports the regression results and it confirms that smaller and

younger firms have higher productivity growth rate compared to larger and older firms

even after correcting for the survival bias.15

To stock, I documented that smaller and younger firms have lower productivity level but

higher productivity growth rate compared to larger and older firms using several measures

of firm-level productivity. This suggests that firms’ productivity process exhibit signs of

LBD mechanism. Therefore I incorporate LBD mechanism in the theoretical model in the

next section and examine its implications on conditions that govern the efficient allocation

of resources in the economy.

productivity growth.
15There could still be some concerns about my estimation of firms’ productivity growth. For example,

some large firms grow by buying small and productive firms. In this case, I over-estimate productivity
level of large firms but under-estimate their productivity growth. However, I cannot test this because the
available data does not have information about firms’ merger and acquisitions.
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Table 3.6: Productivity growth corrected by survival bias - full, unbalanced sample

∆log(TFPRsimple) ∆log(TFPRW ) ∆log(TFPQHK)

(1) (2) (3) (4) (5) (6)
Size Age Size Age Size Age

log of sales -0.0432∗∗∗ -0.0429∗∗∗ -0.0414∗∗∗ -0.0419∗∗∗ -0.0715∗∗∗ -0.0722∗∗∗

(0.00185) (0.00186) (0.00196) (0.00196) (0.00298) (0.00300)

lage -0.00828∗∗∗ -0.00874∗∗∗ -0.0123∗∗∗ -0.0117∗∗∗ -0.0259∗∗∗ -0.0252∗∗∗

(0.00244) (0.00241) (0.00225) (0.00220) (0.00393) (0.00387)

Observations 252298 252298 252298 252298 252298 252298
Adjusted R2 0.024 0.025 0.026 0.027 0.034 0.034

Note: This table shows estimated coefficients from regression equation 3.6. The dependent variables in

odd (even) columns are productivity growth rates multiplied by survival rates of corresponding size (age)

quantiles. The dependent variables in column 1and 2 are based on growth rates in the simple revenue

productivity defined in equation 3.1. Columns 3 and 4 use revenue-based productivity measure based

on Wooldridge (2009) estimation approach, and the last two columns use the log of physical productivity

based on Hsieh and Klenow (2009) approach, defined in equation 3.4, respectively. I include year, industry,

province and legal status fixed effects in all regressions. Control variables include firm characteristics such

as export status, capacity utilization, capital intensity, whether the firm has any investment financed

through equity issue, by foreign loans, by FDI, and any investment financed on capital markets. The

standard errors are clustered at both year and industry level. * p < 0.10, ** p < 0.05, *** p < 0.01

3.3 Theoretical Framework

This section presents a dynamic model where forward-looking firms maximise their present

discounted future profits.

3.3.1 Model Set Up

The general set-up of the model is based on a partial equilibrium model in Hsieh and

Klenow (2009), to which I add the LBD mechanism. The LBD process links firms’ future

productivity level to its current productivity level and production value and thus it creates

an inter-temporal link in firms’ maximisation problem. In other words, firms solve a

dynamic profit maximization problem. For simplicity, I focus on a one-sector economy

but it can easily be changed back to the multi-sector economy by using the Cobb-Douglas

aggregation over industries as in Hsieh and Klenow (2009) and the analytical results would

not change. Moreover, to illustrate the fact that dispersion in marginal (revenue) products

is present even in an undistorted economy, I abstract from any distortions.

I assume there is a single final good Yt produced by the representative firm in a perfectly

competitive final output market. This firm combines M differentiated goods by CES
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function:

Yt =

(
M∑
i=1

Y
σ−1
σ

it

) σ
σ−1

The differentiated goods are produced by monopolistically competitive firms with Cobb-

Douglas technology. The only source of heterogeneity across differentiated good producers

is their level of productivity, Ait. That is, capital and labour, Kit and Lit are choice

variables that depends on Ait of the monopolistically competitive firms:

Yit = AitK
αt
it L

1−αt
it

As seen in the previous section 3.2.3, that larger/older firms have higher productivity

level but lower productivity growth rate compared to the smaller/younger firms. This

can be modeled using a general Cobb-Douglas LBD function, where future productivity

level is a function of current productivity level and current production.16 In other words,

accumulation of knowledge occurs as a by-product of production:

Ait+1 = AθitY
φ
it where 0 < θ < 1, 0 < φ < 1. (3.7)

This model captures the fact that smaller and younger firms have low productivity level

but higher productivity growth compared to larger and older firms. This is because I

implicitly represent the larger and older firms as firms with high initial productivity level

Asi0 and smaller and younger firms as firms with low Asi0. Note that I assume LBD effect

works only through size, but not through age as can be seen from the LBD equation 3.7.

Moreover, I abstract from entry and exit of firms. Since this is a partial equilibrium model,

wages and interest rates are exogenously given every period and they are constant across

periods.17 Hence the producer of differentiated good i solve the following infinite horizon

16If we iterate backwards then this LBD function can we written as below:

Ait+1 = Aθ
t+1

i0 (Y θt

i0 Y θt−1

i1 . . . Y θ0

it )φ

Therefore this functional form can be interpreted as the future productivity level is a function of current
and all past productions.

17The predictions of the model is that firms become more productive over time until the economy
reaches the steady state. And firms demand more capital and labour as they become more productive.
Therefore, constant wages and interest rates over time might cause some problems. I plan to extend the
model into general equilibrium model to explore this further.
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dynamic profit maximization problem:

V (Ait) = max
{Lit,Kit}

PitYit − wLit −RKit + βV (Ait+1) (3.8)

subject to Pit =

[
Y

Yit

] 1
σ

P

Yit = AitK
α
itL

1−α
it

Ait+1 = AθitY
φ
it

A0 given

Here the monopolistically competitive firm producing good i internalise the demand func-

tion and LBD function into the optimization problem. And the FOCs are:

[Kit] :

(
1 − 1

σ

)
α
PitYit
Kit

+ αβφV ′(Ait+1)
Ait+1

Kit
= R (3.9)

[Lit] :

(
1 − 1

σ

)
(1 − α)

PitYit
Lit

+ (1 − α)βφV ′(Ait+1)
Ait+1

Kit
= w (3.10)

From these optimality conditions we can see differences between this dynamic optimization

model with LBD effect and the static model. The first terms on the left hand side of

equations (3.9) and (3.10) are the marginal (revenue) products of capital (MRPK) and

marginal (revenue) products of labour (MRPL), respectively. The second terms reflect the

inter-temporal link in the model through the LBD mechanism. The intuition is that by

increasing current capital Kit we increase the future value of the firm V (Ait+1) through

higher future productivity Ait+1, not only increasing current production by MRPK. On the

other hand, in the static profit maximization problem, because there is no inter-temporal

link, the second terms would be equal to zero. We can see it by setting φ = 0 in the LBD

function and by making productivity process completely exogenous to firms in equation

(3.7). Then the second terms in FOCs will disappear. Both MRPK and MRPL should

be equalised across firms every period because they face the same interest rate and wage.

Depending on the characteristics of these second terms, we can determine whether we

should see any dispersion in MRPK and MRPL across firms.

One thing that is clear at this stage is that if these monopolistically competitive firms

have exactly the same productivity level as well as the same productivity growth rate

then MRP should be equalised across firms despite the LBD effect. The reason is that

if firms have the same Ait then they would choose same level of capital and labour and

follow the same productivity process over time. Hence MRPK/MRPL as well as the second

terms are equalised across firms. On the other hand, as long as there is heterogeneity in
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productivity level of firms then generally we would expect dispersion in MRPK/MRPL.

We can rewrite the FOCs as below to draw more intuition about the optimality condi-

tions:18

Kit

Lit
=

αw

(1 − α)R
(3.11)

R− (1 − 1

σ
)α
PitYit
Kit

= β · α Yit
Kit

· φAit+1

Yit

[
(1 − 1

σ′ )
P ′
itY

′
it

Ait+1
+

θ′

α′φ′
K ′

it

Ait+1

(
R′ − α′(1 − 1

σ′ )
P ′
itY

′
it

K ′
it

)]
(3.12)

As we can see from equation (3.11), it is required to have constant capital-labour ratio for

all firms every period. This is also true for the static model. On the other hand, one can

see the difference between the dynamic and static model from equation (3.12). The left

hand side of the equation represents trade-off between interest rate and MRPK. When

we increase capital by one unit we incur additional interest rate cost but at the same

time increase in capital produces more output, represented by MRPK. As we know, the

static optimality conditions require this difference to be equal to zero. But in dynamic

setting firms can increase their future productivity by producing more and hence have

lower MRPK in the current period. Therefore, the gap between interest rate and MRPK

is typically positive. The right hand side of the equation shows this inter-temporal link.

By increasing current capital, we would be able to increase future productivity level. The

terms outside of the square brackets on the right hand side shows this channel: incremental

increase in capital will cause output to increase by α Yit
Kit

and increase in output will raise

future output by φAit+1

Yit
through LBD mechanism. Since this is in the next period we

discount it by β. The increase in the future productivity will directly increase the output

next period given the inputs. This is given by the first term inside the square brackets on

the right hand side. Moreover, the increase in productivity will also increase the optimal

size of capital inputs next period. Because of this we face the same trade-off between

interest rate and MRPK in the next period. This is given by the second and third terms

inside the square brackets.

3.3.2 Calibration and Simulation Results

I solve the model quantitatively and simulate the dynamic model over time. Moreover,

since I am mainly interested in within-sector resource allocation I run model simulation

within each sector. First, I calibrate/estimate the parameters. I take most of the param-

18Derivation is in Appendix C.1
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eter values from Hsieh and Klenow (2009) partly because I compare the dynamic model

to their static model. I take interest rate R = 0.10 as in Hsieh and Klenow (2009). Here

it is assumed that real interest rate is 5% and depreciation is 5%. Moreover, elasticity of

substitution between plant production σ = 3 and wage w = 1, also taken from Hsieh and

Klenow (2009). Following Midrigan & Xu (2013), I set the intertemporal discounting rate

β = 0.92. Time period I used for simulation is a year.

The most important parameters are the LBD parameters θ and φ, which governs how the

plant level productivity process evolve over time in equation (3.7). Note that, estimating

the LBD parameters from the Indonesian data doesn’t help much. This is because it is

very likely that Indonesian firms face larger distortions compared to developed economies

and their productivity process is somehow deviated from its normal evolution. Hence the

regression is not very informative.19

In order to determine values for LBD parameters, I use the following approach: I start

simulations with a productivity distribution, expressed by grid points. When I choose the

productivity distribution I take the Indonesian data as a reference. Specifically, I take the

lowest and highest productivity of the Indonesian plants as the lower and upper limit of the

grid, respectively. It is important to note that upper limit of the productivity distribution

exogenously sets the steady state productivity level of the firms in the sense that firms

cannot reach higher productivity level than the upper limit. This limit on productivity

level together with LBD equation (3.7) determines how much firms produce at the steady

state.20 In order to make simulation of the dynamic and static models comparable, I

choose the LBD parameters so that firms in dynamic model produce the same amount of

production at the steady state as firms in static model. As a result, I set θ = 0.7 and

φ = 0.35. I experiment with several other values for LBD parameters as well to see how

sensitive my results are.

19Nevertheless, I present the regression results in Table C4 in Appendix C.2.
20Also competition level in the market, the number of firms in the market, also affects how much the

plants produce at the steady state. Hence the simulation results are also affected by it.
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Table 3.7: Simulation — Comparison between dynamic and static models — First year

Note: The top row shows the simulation results of the dynamic model and the bottom row presents the
static model simulation. 1990 is the first year in the sample period as well as the first year of model
simulations.

In the numerical simulations below I focus on the Indonesian textile manufacturing indus-

try, which has the largest number of permanent plants: 443 (permanent) plants in 1990.21

Table 3.7 shows the simulations of both dynamic model and static model in the first year.

In particular, I feed the same productivity distribution of firms estimated from 1990 data

into the model. The first row presents the dynamic model, and the second row shows the

static model simulations.

Column 1 in Table 3.7 shows that low (high) productivity firms in the dynamic economy

produce more (less) than their counterparts in the static model. The reason for low

productivity firms in the dynamic economy produce more than the low-productive firms

in the static economy is the LBD effect: the low-productive firms have more capacity to

increase their future productivity compared to firms with high productivity. Hence, they

invest in their future productivity level by producing more in the current period. This

21ISIC Rev2 code is 3211 and corresponding activity of the industry is spinning, weaving and finishing
textiles.
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fact is reflected in their profit in Column 3 as well, where firms with low productivity

earn negative profits in the dynamic model as opposed to positive profits in the static

model. On the other hand, high-productive firms in the dynamic setting produce less

than what static optimality conditions require because their market share is shrunk due

to overproduction by the low-productive firms. The implication of the LBD effect on firms’

marginal (revenue) products is shown in Column 2. The dynamic efficiency requires firms’

marginal (revenue) products to be increasing function of their current productivity level.

Therefore, it results in heterogeneous MRPK/MRPL across firms. In contrast, the static

efficiency requires marginal (revenue) products to be equalised across firms.

Table C5 and Table C6 in Appendix C.2 present the simulations of the first four years

of the dynamic and static models, respectively. Simulations are done in the following

steps. For the dynamic model, first I the estimated productivity distribution of firms

from 1990 data and I solve the dynamic model numerically. The resulting policy function

gives the productivity distribution for the next period, for the year 1991. I feed it for

the next period simulation and so on. I do it until 1994 and plot it in Table C5. It

shows the convergence of the productivity distribution over time, on the x-axis of the

graphs. More importantly, it shows that there is dispersion in MRPK/MRPL across firms

along the transitional dynamics. On the other hand, for the static model, I use the same

productivity distributions as the dynamic model each year. For example, I start with the

same estimated productivity distribution in year 1990, and for 1991 I use the productivity

distribution generated from the dynamic model’s policy function. The results are shown

in Table C6 and it shows that there is no dispersion in MRPK/MRPL across firms along

the transitional dynamics.

Overtime low productivity firms in dynamic model catch up with high productivity firms

through LBD effect and the firms become homogenous when the economy reaches the

steady state. Table 3.8 shows the steady state of both dynamic model and static model

and it is clear that there is no difference between the two models at the steady state. Row

1 represents the dynamic model, and since all firms have the same level of productivity

level they produce the same amount of production, have same marginal (revenue) products

and earn same amount of profit.

Therefore I conclude this section with the following statement: as long as there is hetero-

geneity in firms’ productivity level, dynamic efficiency requires some level of dispersion

in firms’ marginal (revenue) products. The optimal level of dispersion in MRPK/MRPL

depends on underlying productivity distribution. In contrast, static efficiency requires
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Table 3.8: Simulation — Comparison between dynamic and static models — Steady state

Note: This table shows steady state of the dynamic model in the top row and the static model in the
bottom row.

firms to have the same marginal (revenue) products no matter what is their productivity

distribution.

3.4 Conclusion

It is well-known that misallocation of resources across firms reduce the aggregate produc-

tivity and hinders the long-run economic growth. There is considerable consensus in the

literature on misallocation to regard variation in firms’ MRPs as a sign of misallocation.

In this paper I show theoretically that some dispersion in MRPs could be beneficial for

the economy in the long run in the presence of LBD mechanism. I take a standard model

with monopolistically competitive firms, as in Hseih and Klenow (2009), and incorporate

the LBD mechanism in the model. In particular, I assume that firms’ future produc-

tivity level is endogenous and it depends on firms’ input choices in the current period.
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More importantly, the currently low-productive firms are assumed to be more likely to

have high productivity growth. Therefore, the LBD mechanism turns the standard static

model into a dynamic model, where the inter-temporal link is emerging from the LBD

effects in firms’ productivity process. The Indonesian firm-level panel data supports these

assumptions. I document that smaller and younger firms have lower productivity level but

their productivity growth is higher than that of larger and older firms.

To see the implications in the long run I simulate both the static and dynamic models over

time. I feed both models with the same arbitrary productivity distribution and compare

their transitional dynamics and the speed of reaching the steady state. Both economies

start with firms, who are heterogeneous in terms of their initial productivity level, and

converges to the steady state, where all firms reach the highest possible productivity

level in the productivity distribution. Even though firms in the repeated static model

do not internalise the LBD effects their productivity in the next period increases because

of the LBD effect. In contrast, in the dynamic model, lower productive firms produce

more to utilise the LBD effects and thus their productivity increases faster and reach the

steady state faster than the static model. The main conclusion from this exercise is that

some dispersion in MRPs could be beneficial in the long run, and it has important policy

implications. For example, to promote long-run economic growth, it would be wise to help

young and small firms grow and produce more since they can reach higher productivity

through LBD. This could be done in many ways, such as introducing small business tax

incentives or having fewer and weaker rules and regulations for small and young firms.

This will allow them to use more resources and hire more workers, which results in small

and young firms having lower MRPs.
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C Appendix

C.1 Derivations

Differentiate the value function in (3.8) with respect to productivity Ait:

V ′(Ait) =

(
1 − 1

σ

)
PitYit
Ait

+ βV ′(A′it)θ
A′it
Ait

(13)

Find V ′(A′it) from equation (3.9):

V ′(A′it) =
R− α

(
1 − 1

σ

)
PitYit
Kit

αβφ
A′it
Kit

(14)

Substitute equation (14) into equation (13)

V ′(Ait) =

(
1 − 1

σ

)
PitYit
Ait

+ βθ
A′it
Ait

R− α
(
1 − 1

σ

)
PitYit
Kit

αβφ
A′it
Kit

=

(
1 − 1

σ

)
PitYit
Ait

+
θ

αφ

Kit

Ait

(
R− α(1 − 1

σ
)
PitYit
Kit

)
(15)

Move equation (15) forward by one period:

V ′(A′it) = (1 − 1

σ′
)
P ′itY

′
it

A′it
+

θ′

α′φ′
K ′it
A′it

(
R′ − α′(1 − 1

σ′
)
P ′itY

′
it

K ′it

)
(16)

Substitute V ′(A′it) in equation (3.9) by using equation (16):

(
1 − 1

σ

)
α
PitYit
Kit

+ β · α Yit
Kit

· φA
′
it

Yit
·
[
(1 − 1

σ′
)
P ′itY

′
it

A′it
+

θ′

α′φ′
K ′it
A′it

(
R′ − α′(1 − 1

σ′
)
P ′itY

′
it

K ′it

)]
= R

(17)
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C.2 Other empirical results

Table C1: Productivity level - full, unbalanced sample

(1) (2) (3) (4) (5) (6)
log(TFPRsimple) log(TFPRsimple) log(TFPRW ) log(TFPRW ) log(TFPQHK) log(TFPQHK)

log(Sales) 0.214∗∗∗ 0.416∗∗∗ 0.672∗∗∗

(0.00890) (0.00562) (0.0121)

log(Age) -0.0292∗∗∗ 0.0156 0.0273
(0.0101) (0.0103) (0.0177)

Observations 296324 296324 296324 296324 296324 296324
Adjusted R2 0.217 0.095 0.760 0.458 0.631 0.210

Note: This table presents regression results specified in equation 3.5 using full, unbalanced sample.

The dependent variables in column 1, 2 and 3 are the simple revenue productivity defined in equation

3.1, revenue-based productivity measure based on Wooldridge (2009) estimation approach, and the log of

physical productivity based on Hsieh and Klenow (2009) approach, defined in equation 3.4, respectively.

I include year, industry, province and legal status fixed effects in all regressions. Control variables include

firm characteristics such as export status, capacity utilization, capital intensity, whether the firm has

any investment financed through equity issue, by foreign loans, by FDI, and any investment financed on

capital markets. The standard errors are clustered at both year and industry level. * p < 0.10, ** p < 0.05,

*** p < 0.01

Table C2: Productivity growth - full, unbalanced sample

(1) (2) (3) (4) (5) (6)
∆log(TFPRsimple) ∆log(TFPRsimple) ∆log(TFPRW ) ∆log(TFPRW ) ∆log(TFPQHK) ∆log(TFPQHK)

log(Sales) -0.0498∗∗∗ -0.0485∗∗∗ -0.0841∗∗∗

(0.00218) (0.00227) (0.00349)

log(Age) -0.0150∗∗∗ -0.0194∗∗∗ -0.0389∗∗∗

(0.00229) (0.00215) (0.00354)

Observations 252298 252298 252298 252298 252298 252298
Adjusted R2 0.025 0.018 0.028 0.018 0.035 0.024

Note: This table shows estimated coefficients from regression equation 3.6. The dependent variables in

column 1, 2 and 3 are growth rates in the simple revenue productivity defined in equation 3.1, revenue-based

productivity measure based on Wooldridge (2009) estimation approach, and the log of physical productivity

based on Hsieh and Klenow (2009) approach, defined in equation 3.4, respectively. I include year, industry,

province and legal status fixed effects in all regressions. Control variables include firm characteristics such

as export status, capacity utilization, capital intensity, whether the firm has any investment financed

through equity issue, by foreign loans, by FDI, and any investment financed on capital markets. The

standard errors are clustered at both year and industry level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Figure C1: Survival rate by firm age and size groups

(a) Size quantiles (b) Age quantiles

Figure C2: Exit rate by firm age and size groups

(a) Size quantiles (b) Age quantiles
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Table C3: Exit rates by size and age quantiles

Size Age

(1) (2) (3) (4)
Survival rate Survival rate Survival rate Survival rate

Quartiles -0.0216∗∗∗ -0.0216∗∗∗ -0.00856 -0.00856∗∗∗

(0.00739) (0.00271) (0.00678) (0.00136)

Year FE No Yes No Yes

Observations 80 80 80 80
Adjusted R2 0.096 0.911 0.007 0.970

Note: The dependent variables in the first 2 columns are exit rates of firms by size quantiles. The last 2

columns are exit rates of firms by age quantiles. In even columns I include year fixed effects.

* p < 0.10, ** p < 0.05, *** p < 0.01

Table C4: LBD parameters - single-product firms, unbalanced sample

(1) (2) (3) (4) (5)
log(TFPQsimple) log(TFPQHK) log(TFPRsimple) log(TFPRW ) log(TFPQW )

log(Sales) 0.0365∗∗ 0.468∗∗∗ 0.150∗∗∗ 0.176∗∗∗ 0.0585∗∗∗

(0.0162) (0.0186) (0.0123) (0.00982) (0.0123)

Past log(TFPQsimple) 0.803∗∗∗

(0.0129)

Past log(TFPQHK) 0.389∗∗∗

(0.00957)

Past log(TFPRsimple) 0.529∗∗∗

(0.0100)

Past log(TFPRW ) 0.682∗∗∗

(0.0182)

Past log(TFPQW ) 0.834∗∗∗

(0.0128)

Observations 66428 66428 66428 66428 66428
Adjusted R2 0.667 0.668 0.424 0.717 0.714

Note: This table estimates LBD coefficients expressed in equation 3.7 using single-product firms. The

notations of dependent variables are explained in Section 3.2. I include year, industry, province and legal

status fixed effects in all regressions. Control variables include firm characteristics such as export status,

capacity utilization, capital intensity, whether the firm has any investment financed through equity issue, by

foreign loans, by FDI, and any investment financed on capital markets. The standard errors are clustered

at both year and industry level. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table C5: Simulation — Dynamic model — Transitional dynamics
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Table C6: Simulation — Static model — Repeated cross section
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