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Abstract

Chapter 1 studies semiparametric estimation of partially linear single index mod-

els with a monotone link function. Our estimator is an extension of the score-

type estimator developed by Balabdaoui, Groeneboom, and Hendrickx (2019)

for monotone single index models, which profiles out the unknown link function

by isotonic regression. We show that our estimator for the finite-dimensional

components is tuning-parameter-free,
√
n-consistent, and asymptotically normal.

Furthermore, by introducing a single smoothing parameter, we propose an asymp-

totically efficient estimator for the finite-dimensional components.

Chapter 2 proposes an empirical likelihood inference method for monotone index

models. We construct the empirical likelihood function based on the modified

score function of a monotone index model, where the monotone link function is

estimated by isotonic regression. It is shown that the empirical likelihood ratio

statistic converges to a weighted chi-squared distribution. We suggest inference

procedures based on an adjusted empirical likelihood statistic that is asymp-

totically pivotal, and a bootstrap calibration with recentering. A Monte-Carlo

simulation study illustrates the usefulness of the proposed inference methods.

The models in Chapter 1 and 2 can be regarded as special cases of the framework

analyzed in Chapter 3, which studies a general semiparametric estimator, where

the associated moment condition contains a nuisance monotone function esti-

mated by isotonic regression. We show that the properties of the isotonic estima-

tor satisfy the framework of Newey (1994). As a result, the proposed estimator is
√
n-consistent, asymptotically normally distributed, and tuning-parameter-free.

Furthermore, in a number of relevant cases, the estimator is efficient. The esti-

mator generalizes the estimation methods of existing semiparametric models with

monotone nuisance functions. We also apply the estimator to the case of inverse

probability weighting, where the propensity scores are assumed to be monotone

increasing. Simulations show that the proposed estimator has desired properties.

Furthermore, we establish the asymptotic validity of the bootstrap, which ensures

that the estimator is tuning-parameter-free in both estimation and inference.
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Chapter 1

Score estimation of monotone

partially linear index model

1.1 Introduction

This paper is concerned with the monotone partially linear single index (PLSI)

model

Y = X ′β0 + ψ0(Z
′α0) + ε, E[ε|X,Z] = 0, (1.1)

where Y ∈ R is a response variable, X ∈ X ⊆ Rk and Z ∈ Z ⊆ Rd are

covariates, ε ∈ R is an error term, α0 and β0 are finite dimensional parameters,

and ψ0 : R→ R is an unknown monotone increasing function. For identification,

we assume that Z does not contain a constant and α0 belongs to the d-dimensional

unit sphere Sd−1 = {α ∈ Rd : ||α|| = 1}.

Since a seminal work by Carroll et al. (1997), the model (1.1) (without the

monotonicity assumption about ψ0) has been studied by many authors, including

Xia, Tong and Li (1999), Yu and Ruppert (2002), Xia and Härdle (2006), Wang

et al. (2010), and Ma and Zhu (2013), among others. The model (1.1) is very

flexible. If α0 is known, it becomes a partially linear model. If β0 = 0, it becomes

a single index model. See, e.g., Wang et al. (2010) for a review on these models.

Estimation of the model (1.1) typically requires some nonparametric smoothing

method to evaluate the unknown function ψ0, which involves tuning parameters,
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such as bandwidth and series length parameters.

In this paper, we consider the situation where ψ0 is known to be monotone.

Instead of assuming certain degree of smoothness as in the above cited papers,

we impose a shape restriction on ψ0, and propose a
√
n-consistent estimator

for the parameters (α0, β0) that is free from tuning parameters. Furthermore,

we establish the asymptotic validity of a bootstrap inference method based the

proposed estimator, which is also free from tuning parameters.

A natural approach to incorporate monotonicity into nonparametric estimation is

to employ the isotonic regression technique (see, e.g., Groeneboom and Jongbloed,

2014, for a review). For example, one may consider the least square estimation

for the model (1.1), say minα,β[minψ∈M
∑n

i=1{Yi − X ′iβ + ψ(Z ′iα)}2], where M

the set of monotone increasing functions. In this case, we can apply the isotonic

regression technique for each (α, β), and then minimize the concentrated criterion

function with respect to (α, β). However, because of lack of smoothness of the

isotonic regression estimator for ψ0, it is not clear whether such a profile least

square estimator for (α0, β0) will be
√
n-consistent or asymptotically normal.

This point was clarified by Balabdaoui, Groeneboom and Hendrickx (2019) (BGH

hereafter) and Groeneboom and Hendrickx (2018) for single index (and current

status) models.

For this problem, BGH and Groeneboom and Hendrickx (2018) developed a novel

score estimation approach for single index models, say Y = ψ0(Z
′α0) + ε. Their

basic idea is to construct a feasible score equation
∑n

i=1 Zi{Yi − ψα(Z ′iα)} = 0

where ψα is estimated by isotonic regression for given α. Then the estimator for

α0 is obtained by the solution of the feasible score equation. BGH showed that

their score estimator for α0 is
√
n-consistent and asymptotically normal. Further-

more, BGH proposed an asymptotically efficient estimator for α0 by evaluating

an optimal score equation. Groeneboom and Hendrickx (2018) and Groeneboom

and Hendrickx (2017) studied the score-type estimator for current status models

and its bootstrap validity, respectively.

In this paper, we extend the score estimation approach developed by BGH and

Groeneboom and Hendrickx (2018) to the monotone PLSI model in (1.1). We
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show that the proposed score-type estimator for (α0, β0) is
√
n-consistent and

asymptotically normal. Also, by estimating nonparametrically the efficient score

function, we derive an asymptotically efficient estimator for (α0, β0) whose asymp-

totic variance coincides with the efficient variance matrix in Carroll et al. (1997).

Finally, we establish the validity of a bootstrap inference method based on the

score-type estimator. Similar to the existing papers on (not necessarily mono-

tone) PLSI models cited above, the extension from single index or current status

models to the PLSI model is not a trivial task. In particular, the presence of linear

indices both inside and outside the nonparametric monotone function complicates

the theoretical development.

This paper complements the literature on score-type estimation for semipara-

metric models with isotonic nuisance parameter estimates. Groeneboom and

Hendrickx (2018) and BGH argued that score-type estimation and monotone

least square estimation are not equivalent methods; they showed theoretically

and numerically that the score-type estimator behaves at least as well as (or even

better than) the monotone least square in single index models. The present pa-

per shows analogous advantages continue to hold in PLSI models. Huang (2002),

Cheng (2009), and Yu (2014) studied asymptotic properties of the monotone least

square estimator, but it was unclear whether the score-type estimator could also

achieve the
√
n-convergence rate and semiparametric efficiency. Our paper fills

this gap.

Furthermore, the results in this paper can be considered as extensions of the ones

for monotone partially linear models (Huang, 2002, and Cheng, 2009). However,

since the partially linear model does not involve unknown parameters (i.e., α0)

in the argument of the unknown function ψ0, the theoretical development is very

different from ours.

This paper is organized as follows. In Section 2, we introduce our score-type

estimator for the model (1.1) and present its asymptotic properties. We also

propose an asymptotically efficient estimator for (α0, β0) and bootstrap inference

method. Section 3 presents some Monte-Carlo simulation evidence to illustrate

the finite sample performance of our estimators and bootstrap method.
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1.2 Main results

1.2.1 Estimation method

Let us first introduce our estimator for the PLSI model in (1.1). In particular, we

extend the score estimation approach by BGH to estimate the parameters (α0, β0)

in (1.1). Consider a parameterization S from a subset of Rd−1 to Sd−1 such that

for each α in a neighborhood of α0 on Sd−1, there exists a unique γ ∈ Rd−1

satisfying α = S(γ).1 Then the reparameterized model (1.1) is written as

Y = X ′β0 + ψ0(Z
′S(γ0)) + ε, E[ε|X,Z] = 0.

To motivate our estimation approach, we tentatively assume that ψ0 is known.

In this case, the population score equation for θ0 = (β′0, γ
′
0)
′ is

E

[(
X

J(γ0)′Zψ′0(Z
′S(γ0))

)
{Y −X ′β0 − ψ0(Z

′S(γ0))}
]

= 0, (1.2)

where ψ′0 is the derivative of ψ0 and J(γ) is the Jacobian of S(γ). Thus, it is natu-

ral to construct an estimator of θ0 by taking an empirical counterpart of (1.2) and

inserting estimators for ψ′0 and ψ0. However, when we estimate ψ0 by the isotonic

regression method, the resulting estimator of ψ0 is typically discontinuous and it

is not clear how to evaluate the derivative ψ′0 without introducing smoothing pa-

rameters. To address this issue, we follow the idea in BGH and Groeneboom and

Hendrickx (2018) and focus on the following modified population score equation

E

[(
X

J(γ0)′Z

)
{Y −X ′β0 − ψ0(Z

′S(γ0))}
]

= 0. (1.3)

1Examples of such parametrization are the spherical coordinate system S : [0, π]d−2 ×
[0, 2π]→ Sd−1 with

S(γ) =(cos(γ1), sin(γ1) cos(γ2), sin(γ1) sin(γ2) cos(γ3),

. . . , sin(γ1) · · · sin(γd−2) cos(γd−1), sin(γ1) · · · sin(γd−2) sin(γ1−2))′,

and the half sphere S : {γ ∈ [0, 1]d−1 : ||γ|| ≤ 1} → Sd−1 with

S(γ) = (γ1, . . . , γd−1,
√

1− γ21 − · · · − γ2d−1)′.
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Since the error term ε is orthogonal to any function of (X,Z) under E[ε|X,Z] = 0,

(1.3) is also a valid score equation, and we construct an estimator for θ0 based

on this equation.

In particular, for each θ = (β′, γ′)′, we estimate the monotone function ψ0 by the

least squares

ψ̂nθ = arg min
ψ∈M

1

n

n∑
i=1

{Yi −X ′iβ − ψ(Z ′iS(γ))}2,

whereM is the set of monotone increasing functions defined on R. The function

ψ̂nθ can be obtained by isotonic regression (see, e.g., Groeneboom and Jongbloed,

2014, for a review). Then our estimator θ̂ = (β̂′, γ̂′)′ of θ0 is given by the zero-

crossing root of the score function2

φn(θ) =
1

n

n∑
i=1

(
Xi

J(γ)′Zi

)
{Yi −X ′iβ − ψ̂nθ(Z ′iS(γ))}, (1.4)

and α0 is estimated by α̂ = S(γ̂). The reason for the definition based on the

zero-crossing is due to the fact that ψ̂nθ is a discrete function taking finite differ-

ent values. Thus, we might be unable to solve φn(θ) = 0 exactly.3 As n → ∞,

the zero-crossing solution should become an exact solution. In practice, we can

minimize the square sum of the right hand side of (1.4) to obtain a good approx-

imation of the zero-crossing.

Remark 1.1. [Technical intuition for the difference between the score estima-

tion and least square approaches] Our discussion is based on Groeneboom and

Hendrickx (2018, pp. 1419-1420). Let Γn(θ) be some objective function for θ and

Γ(θ) is its population counterpart. The M-estimator is defined as a maximizer of

Γn(θ). The
√
n-consistency of the estimator is typically derived from a quadratic

expansion Γ(θ) − Γ(θ0) ≤ −c||θ − θ0||2 for some c > 0 in a neighborhood of θ0

2We say that θ∗ is a zero-crossing of a real-valued function ζ : Θ → R if each open neigh-
borhood of θ∗ contains points θ1, θ2 ∈ Θ such that ζ(θ1)ζ(θ2) ≤ 0. This definition can be
extended to a vector of functions, where a zero-crossing vector has each of its component to be
a zero-crossing in the corresponding dimension.

3Similar to other estimators by BGH or Groeneboom and Hendrickx (2018), our zero-

crossing estimator θ̂ may not be unique. Indeed there are many flat parts in φn(θ), and the
intersection of φn(θ) and zero could be an interval. In this case, any point on this interval will
satisfy the results in Theorems 1.1 and 1.3 below.
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combined with the approximation to the objective function

Γn(θ)−Γn(θ0) = Γ(θ)−Γ(θ0)+Op(n
−1/2||θ−θ0||)+op(||θ−θ0||2)+Op(n

−1), (1.5)

uniformly over a shrinking neighborhood of θ0. However, when we apply this

argument to the (profile) least square objective function 1
n

∑n
i=1{Yi − X ′iβ −

ψ̂nθ(Z
′
iS(γ))}2, it seems to have an extra term of order Op(n

−2/3) in (1.5) due

to discontinuity of ψ̂nθ in θ (although there is no rigorous proof). If there is such

an extra term, we expect that the least square estimator for θ will not achieve
√
n-consistency.4 On the other hand, it turns out that our score (or Z-) estimat-

ing equation φn(θ) can be approximated by φn(θ) = φ′(θ0)(θ − θ0) + Op(n
−1/2)

uniformly over a shrinking neighborhood of θ0, where φ′(θ0) is the derivative of

the population counterpart of φn(θ) displayed in (1.3). In short, the difference be-

tween the score estimation and least square approaches is due to different orders

of the remainders in the Z- and M-estimation approaches in this setup.

Remark 1.2. [Comparison with smoothing approach] Let us take Xia and Härdle

(2006) as an example for the conventional smoothing approach to estimate the

PLSI model (without monotonicity on ψ0) and compare with our estimation ap-

proach. A common feature is that both methods estimate the nonparametric

function ψ0 with fixed θ, and then optimize or solve for θ̂ in a two step or recur-

sive strategy. The main difference is that we use the isotonic regression to esti-

mate the monotone function ψ0, but Xia and Härdle (2006) employ a weighted

local linear regression to estimate ψ0 for each fixed θ. Our score-type estimation

method does not require any tuning parameter to estimate ψ0, while a smoothing

parameter is innate in Xia and Härdle (2006). The technical arguments are very

different as well. Our consistency and asymptotic normality proofs below heavily

rely on properties of the monotone function class and associated empirical pro-

cesses. On the other hand, the argument in Xia and Härdle (2006) is to show how

the linear regression for θ0 averages out the estimation errors from the local linear

regression for ψ0 based on the U-statistic theory to achieve the
√
n-consistency

of their estimator for θ0.

4We note that even for single index models, the convergence rate and asymptotic distribu-
tion of the least square estimator, arg minγ

{
minψ∈M

1
n

∑n
i=1{Yi − ψ(Z ′iS(γ))}2

}
, is an open

problem.
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1.2.2 Asymptotic properties of estimator

We now investigate asymptotic properties of the estimator θ̂. Let Ik be the k× k

identity matrix, ‖·‖ be the Euclidean norm, B(a0, A) = {a : ‖a− a0‖ ≤ A} be a

ball around a0 of radius A, and

T0 =

 Ik 0

0 J(γ0)
′

 , Vx,z =

 x− E[X|z′S(γ0)]

z − E[Z|z′S(γ0)]

 ,

Vx,z,ψ′ =

 x− E[X|z′S(γ0)]

{z − E[Z|z′S(γ0)]}ψ′0(z′S(γ0))

 .

We impose the following assumptions.

Assumption.

A1 The spaces X and Z are convex with non-empty interiors, and satisfy X ⊂

B(0, R) and Z ⊂ B(0, R) for some R > 0.

A2 There exists K0 > 0 such that |ψ0(u)| < K0 for all u ∈ {z′α : z ∈ Z, α ∈

Sd−1}.

A3 There exists δ0 > 0 such that the function ψθ(u) = ψα,β(u) = E[Y −

X ′β|Z ′α = u] is monotone increasing on Iα = {z′α, z ∈ Z} for each

θ ∈ B(θ0, δ0).

A4 For W = X or Z, the mapping u 7→ E[W |Z ′α = u] defined on Iα is bounded

and has a finite total variation.

A5 There exist c0 > 0 and M0 > 0 such that E[|Y −X ′β|m|Z = z] ≤ m!Mm−2
0 c0

for all integers m ≥ 2, each β satisfying (β′, γ′)′ ∈ B(θ0, δ0) and almost

every z ∈ Z (according to the true distribution).

A6 Cov[(β0 − β)′X + Z ′(S(γ0) − S(γ)), (β0 − β)′X + ψ0(Z
′S(γ0))|Z ′S(γ)] 6= 0

almost surely for each θ 6= θ0.

A7 B = T0
∫
Vx,zV

′
x,z,ψ′dP0(x, z)T

′
0 and BE = T0

∫
Vx,z,ψ′V

′
x,z,ψ′dP0(x, z)T

′
0 are

non-singular.
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A1 and A2, which are similar to the assumptions A1 and A2 in BGH, impose

boundedness on the support of covariates and the monotone function ψ0. These

conditions are used to control the entropy of the function classes that characterize

(1.4). We note that Xia and Härdle (2006) and Wang et al. (2010) imposed similar

conditions. A3, which is an adaptation of BGH’s A3, requires monotonicity of

ψθ in a neighborhood of θ0. This assumption is used to establish the consistency

of the estimator ψ̂nθ(z
′S(γ)) for each θ ∈ B(θ0, δ0). For example, A3 is satisfied

with ψ0(u) = u3, α0 = S(γ0) = (2−1/2, 2−1/2)′, and Z1, Z2 ∼ U [1, 2], which are

independent of X.5 A4 is imposed to control the entropy of function classes to

achieve the
√
n-convergence rate. This assumption can be derived from BGH’s A4

and A5. A5 is a modified version of BGH’s A6. This assumption is introduced to

show that max
θ∈B(θ0,δ0)

sup
z∈Z

ψ̂nθ(z
′S(γ)) = Op(log n), which is used to obtain an entropy

result associated with the
√
n-convergence rate.6 A6 and A7 are to ensure the

consistency and existence of limiting variances of the simple score and efficient

score estimators, respectively. A6 is related to BGH’s A7 after taking expansion

of S(γ0)− S(γ) around γ = γ0.

Under these assumptions, the asymptotic properties of the simple estimator θ̂ are

presented as follows.

Theorem 1.1. Suppose Assumptions A1-A7 hold true. Then θ̂ exists with prob-

5More precisely, take δ0 small enough so that elements of α = (α1, α2) = S(γ) satisfying
(β′, γ′)′ ∈ B(θ0, δ0) are always positive. Then we have Iα = [α1+α2, 2α1+2α2]. If α1 ≤ α2 (the
case of α1 > α2 is analyzed in the same manner), the computation of ψα,β(u) is split into four
cases (i) α1 +α2 < u ≤ 2α1 +α2, (ii) 2α1 +α2 < u ≤ α1 + 2α2, (iii) α1 + 2α2 < u < 2α1 + 2α2,
and (iv) u = α1 + α2 or u = 2α1 + 2α2. For (i), a direct calculation yields

ψα,β(u) =
α1

u− α1 − α2

∫ u−α2
α1

1

{2−1/2z1 + 2−1/2α−12 (u− z1α1)}3dz1 − E[X]′(β − β0).

By taking derivative, we obtain
dψα,β(u)

du = 3u2 + O(||α − α0||). For (ii), (iii), and (iv), similar

arguments also imply
dψα,β(u)

du = 3u2 +O(||α−α0||). Therefore, by taking δ0 small enough, we

obtain
dψα,β(u)

du > 0 for all u ∈ Iα, so A3 is satisfied.
6For example, for given β satisfying (β′, γ′)′ ∈ B(θ0, δ0) and z ∈ Z, we can show that Wβ =

Y − X ′β satisfies E[|Wβ |m|Z = z] ≤ m!Mm−2
0 c0 for all integers m ≥ 2 when the conditional

density function of Wβ |Z takes the form of fWβ |Z(w|z) = h(w, ϑ2,β,z) exp{ϑ−12,β,zw`(ϑ1,β,z) −
ϑ−12,β,zB(`(ϑ1,β,z))}). Here, ϑ1,β,z is the conditional mean (may vary with β and z), ϑ2,β,z is
a conditional dispersion parameter (may vary with β and z), ` is a real valued function with
a strictly positive first derivative on an open interval, B is a real valued function, and h is a
normalizing function. This can be shown by adapting Balabdaoui, Durot and Jankowski (2019,
Proposition 9.2) for the conditional case.
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ability approaching one, θ̂
p→ θ0, and

√
n(θ̂ − θ0)

d→ N(0,Π),

where Π = B−1T0ΣT
′
0(B

−1)′, Σ = Var(VX,Zε), and VX,Z is Vx,z evaluated at

(x, z) = (X,Z).

This theorem says that our score-type estimator θ̂ for the monotone PLSI model

is
√
n-consistent and asymptotically normal without any tuning parameter.7 The

asymptotic variance Π can be estimated by (i) replacing P0 with the empirical

measure Pn, (ii) replacing γ0 with its estimator γ̂, (iii) replacing ψ′0 with ψ̂′nh,θ in

(1.7) below, (iv) replacing ε with the residuals based on our estimator, and (v)

replacing the conditional expectations with kernel estimators.8 Our result can be

considered as an extension of BGH for the monotone PLSI model. Technically a

major difference from BGH is the treatment on the mapping ψθ(·), which involves

an additional term from the linear component X ′β (i.e., the second term of (A.1)

in Appendix). Most entropy results in our proof are modified to accommodate

this additional term.

We note that the estimator θ̂ is derived from the modified population score equa-

tion in (1.3) instead of the original one in (1.2). Consequently, the asymptotic

variance Π of θ̂ is not the efficient variance for the PLSI model. If we allow one

tuning parameter, we can evaluate the efficient score function in (1.2) as

ξnh(θ) =
1

n

n∑
i=1

 Xi

J(γ)′Ziψ̂
′
nh,θ(Z

′
iS(γ))

 {Yi −X ′iβ − ψ̂nθ(Z ′iS(γ))}, (1.6)

where

ψ̂′nh,θ(u) =
1

h

∫
K

(
u− x
h

)
dψ̂nθ(x), (1.7)

7Due to discontinuity in ψ̂nθ, we can only guarantee the existence of θ̂ with probability ap-
proaching one. Similar to other zero-crossing estimators using isotonic regression, its existence
for a given sample size is an open question.

8For example, the conditional expectation µ(z) = E[X|z′S(γ0)] in Vx,z and Vx,z,ψ′ can be
estimated by

µ̂(z) =

∑n
i=1K

(
Z′iS(γ̂)−z

′S(γ̂)
b

)
Xi∑n

i=1K
(
Z′iS(γ̂)−z′S(γ̂)

b

) ,

where K is a kernel function (e.g., Gaussian and Epanechnikov) and b is a bandwidth.

17



is an estimator for the derivative of ψθ (defined in A3) with a kernel function

K and bandwidth h. Let θ̃ = (β̃′, γ̃′)′ be the zero-crossing of (1.6).9 For this

estimator, we add the following assumptions.

Assumption.

A8 ψθ(z
′α) is twice continuously differentiable on Iα = {z′α, z ∈ Z} for each

θ ∈ B(θ0, δ0).

A9 K(·) is a symmetric twice differentiable kernel function with compact support

[−1, 1]. Furthermore, h � n−1/7.

A8 is an additional condition to control the entropy for classes of functions to

achieve the
√
n-consistency of θ̃. A9 contains assumptions for the kernel function

K and bandwidth h to evaluate ψ̂′nh,θ in (1.7). The condition h � n−1/7 is also

imposed in BGH.

The asymptotic properties of the estimator θ̃ are presented as follows.

Theorem 1.2. Suppose Assumptions A1-A9 hold true. Then θ̃ exists with prob-

ability approaching one, θ̃
p→ θ0, and

√
n(θ̃ − θ0)

d→ N(0,ΠE),

where ΠE = B−1E T0ΣT
′
0(B

−1
E )′, Σ = Var(VX,Z,ψ′ε), and VX,Z,ψ′ is Vx,z,ψ′ evaluated

at (x, z) = (X,Z).

If we additionally assume Var(ε|X,Z) = Var(ε) = σ2 (i.e., the error term ε is ho-

moskedastic), then Σ can be written as Σ = σ2
∫
Vx,z,ψ′V

′
x,z,ψ′dP0(x, z). Therefore,

the asymptotic variance becomes ΠE = B−1E , which coincides with the efficient

variance matrix derived in Carroll et al. (1997) and Xia and Härdle (2006). The

asymptotic variance ΠE can be estimated in the same manner as Π.

9Similar to θ̂, the zero-crossing estimator θ̃ may not be unique. If the intersection of ξnh(θ)
and zero is an interval, any point on this interval satisfies the result in Theorem 1.2.
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1.2.3 Bootstrap inference

One advantage of the proposed estimator θ̂ is that it is free from tuning pa-

rameters, such as bandwidths and series lengths. On the other hand, since its

asymptotic variance Π involves conditional means, inference using estimation of

Π requires some smoothing method. To obtain an inference procedure which is

free from tuning parameters, we propose a bootstrap method to approximate the

distribution of the score-type estimator θ̂. Groeneboom and Hendrickx (2017)

established the bootstrap validity of their score estimator for the parametric part

in a current status model. We extend their result to the monotone PLSI model.

Let θ̂∗ be the bootstrap counterpart of θ̂ defined in Section 1.2.1 based on re-

samples from the empirical distribution of {Yi, Xi, Zi}ni=1. The validity of the

bootstrap approximation is obtained as follows.

Theorem 1.3. Suppose Assumptions A1-A7 hold true. Then

sup
t∈Rk+d−1

|P ∗{
√
n(θ̂∗ − θ̂) ≤ t} − P0{

√
n(θ̂ − θ0) ≤ t}| p→ 0,

where P ∗ is the bootstrap distribution conditional on the data.

The bootstrap confidence interval and standard error can be obtained by this

result. Note that computation of θ̂∗ and the resulting bootstrap inference are

free from tuning parameters.

1.3 Monte-Carlo Simulations

In this section, we conduct a Monte-Carlo simulation study to illustrate the finite

sample performance of the proposed estimators.

19



1.3.1 Simple score and efficient score estimators

We consider the following partial linear model:

Y = Xβ0 + ψ0(Z
′α0) + ε,

ψ0(u) = u3, β0 = 1, α′0 = (1, 1)/
√

2 ≈ (0.7071, 0.7071),

where X ∼ N(0, 1) and ε ∼ N(0, 1). For Z, we consider two data generating

processes: (i) Z ∼ U [1, 2]2 (in Table 1.1) and (ii) Z ∼ N(0, I2) with the 2 × 2

identity matrix (in Table 1.2). The sample sizes are n = 100, 500, and 1000.

The number of Monte Carlo replications is 1000. Tables 1.1 and 1.2 present the

Monte Carlo averages (µ̂β, µ̂α1 , µ̂α2) and variances (σ̂2
β, σ̂

2
α1
, σ̂2

α2
) (multiplied by n)

of the estimates (β̂, α̂1, α̂2) and (β̃, α̃1, α̃2) for Cases (i) and (ii), respectively.

In the tables, SSE is the simple score estimator obtained by solving the zero-

crossing of (1.4), and ESE is the efficient score estimator obtained by solving

the zero-crossing of (1.6). SSE L and ESE L are the Lagrange versions of SSE

and ESE suggested by BGH and Groeneboom (2018).10 All these methods are

implemented by the Hooke-Jeeves algorithm to search a minimizer of the sum of

squared score components. In the reported simulation results, we follow BGH and

use the true values as starting values. Preliminary simulation suggests that the

results are not sensitive to local changes for the starting values. For comparison,

we include monotone least square methods (LSE in the tables). We also include

the smoothing method by Xia and Härdle (2006) into our comparison (S LSE in

the tables). Xia and Härdle (2006) showed that the optimal bandwidth for their

methods is of order n−1/5. BGH showed that the optimal bandwidth for their

efficient estimator is of order n−1/7, and suggested to use h = r̂n−1/7, where r̂

is the range of Z ′α, as bandwidth. Here we follow BGH’s practice. We choose

r̂n−1/7 as bandwidth for ESE and r̂n−1/5 for S LSE.

The theoretical asymptotic variances are calculated for SSE, ESE, and S LSE.

10More precisely, the estimator SSE L is obtained by a zero-crossing of

φLn(θ) =

[
1
n

∑n
i=1Xi{Yi −X ′iβ − ψ̂nα(Z ′iα)}

1
n (1− α′α)

∑n
i=1Xi{Yi −X ′iβ − ψ̂nα(Z ′iα)}

]
,

and ESE L is defined analogously.

20



Both ESE and S LSE achieve semiparametric efficiency and therefore they should

have the same limit. The asymptotic variance of LSE is unknown in the literature

(see, Balabdaoui, Durot and Jankowski, 2019, for a detail). It can be shown that

for both settings, Z ∼ U [1, 2]2 and Z ∼ N(0, I2), we have E[X|z′α] = 0 and

E[Z|z′α] =
√
2
2
z′α(1, 1)′. The asymptotic variances of (β̂, α̂) and (β̃, α̃) (the

estimators without reparameterization) can be obtained with Lemma 7 in BGH

and numerical integral. In particular, we have
√
n{(β̂′, α̂′)′−(β′0, α

′
0)
′} d→ N(0, V )

and
√
n{(β̃′, α̃′)′ − (β′0, α

′
0)
′} d→ N(0, VE), where

Case (i) : V =


1 0 0

0 0.0324 −0.0324

0 −0.0324 0.0324

 , VE =


1 0 0

0 0.0315 −0.0315

0 −0.0315 0.0315

 .

Case (ii) : V =


1 0 0

0 0.0555 −0.0555

0 −0.0555 0.0555

 , VE =


1 0 0

0 0.0185 −0.0185

0 −0.0185 0.0185

 .

Tables 1.1 and 1.2 show that the estimation biases are reasonably small for the

both estimators even for n = 100. For the single index part (α̂1 and α̂2), ESE

performs better than SSE in terms of efficiency, which is in accordance with the

implication of Theorems 1.1 and 1.2. As the sample size increases, SSE L and

ESE L become almost identical to SSE and ESE, respectively. LSE performs

differently in two cases. In Table 1.2, LSE performs better than SSE but worse

than ESE. In Table 1.1, LSE performs worse than SSE.

In general, all the variances of SSE and ESE are approaching to their theoretical

limits. It seems that the approaching rates are faster in Case (i) than those in

Case (ii). S LSE is approaching the limit in Case (i), but stays away from the

limit in Case (ii). Note that Case (ii) violates the assumption that the support

of Z is compact required in both Xia and Härdle (2006) and our estimators.

Therefore, some irregular behaviors of those estimators might be expected in

Case (ii). Nevertheless, SSE and ESE seem to be more stable even if the support

of Z is not compact.
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Table 1.1: Monte-Carlo simulation results for Case (i) Z ∼ U [1, 2]2

Methods n µ̂β µ̂α1 µ̂α2 σ̂2
β σ̂2

α1
σ̂2
α2

SSE

100 0.9982 0.7068 0.7068 1.3401 0.0415 0.0416

500 0.9982 0.7068 0.7073 1.0277 0.0364 0.0364

1000 1.0002 0.7069 0.7073 1.1306 0.0322 0.0322

∞ 1 0.7071 0.7071 1 0.0324 0.0324

ESE

100 0.9984 0.7067 0.7069 1.3743 0.0404 0.0404

500 0.9983 0.7068 0.7073 1.0252 0.0360 0.0359

1000 1.0001 0.7069 0.7073 1.1310 0.0319 0.0319

∞ 1 0.7071 0.7071 1 0.0315 0.0315

100 0.9982 0.7072 0.7064 1.3425 0.0420 0.0421

SSE L 500 0.9982 0.7068 0.7073 1.0296 0.0363 0.0363

1000 1.0002 0.7069 0.7073 1.1288 0.0323 0.0323

∞ 1 0.7071 0.7071 1 0.0324 0.0324

100 0.9982 0.7070 0.7066 1.3502 0.0408 0.0410

ESE L 500 0.9982 0.7069 0.7072 1.0262 0.0361 0.0360

1000 1.0001 0.7069 0.7073 1.1336 0.0318 0.0318

∞ 1 0.7071 0.7071 1 0.0315 0.0315

100 0.9972 0.7074 0.7058 1.3967 0.0703 0.0699

LSE 500 0.9984 0.7067 0.7073 1.0330 0.0754 0.0752

1000 1.0002 0.7069 0.7072 1.1253 0.0740 0.0739

∞ 1 0.7071 0.7071 n/a n/a n/a

100 1.0022 0.7071 0.7065 1.2891 0.0441 0.0443

S LSE 500 1.0005 0.7069 0.7072 1.2213 0.0362 0.0361

1000 1.0023 0.7069 0.7072 1.2053 0.0348 0.0348

∞ 1 0.7071 0.7071 1 0.0315 0.0315
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Table 1.2: Monte-Carlo simulation results for Case (ii) Z ∼ N(0, I2)

Methods n µ̂β µ̂α1 µ̂α2 σ̂2
β σ̂2

α1
σ̂2
α2

SSE

100 0.9981 0.7035 0.7075 1.3620 0.2310 0.2301

500 1.0001 0.7065 0.7074 1.1481 0.1087 0.1086

1000 0.9998 0.7079 0.7062 1.0532 0.0932 0.0937

∞ 1 0.7071 0.7071 1 0.0555 0.0555

ESE

100 0.9988 0.7049 0.7080 1.4422 0.0943 0.0940

500 1.0000 0.7069 0.7072 1.1333 0.0356 0.0355

1000 0.9999 0.7075 0.7067 1.0531 0.0309 0.0310

∞ 1 0.7071 0.7071 1 0.0185 0.0185

100 0.9981 0.7037 0.7072 1.3625 0.2352 0.2347

SSE L 500 1.0000 0.7065 0.7074 1.1467 0.1090 0.1091

1000 0.9998 0.7079 0.7062 1.0548 0.0936 0.0941

∞ 1 0.7071 0.7071 1 0.0555 0.0555

100 0.9974 0.7054 0.7074 1.4086 0.0967 0.0973

ESE L 500 1.0000 0.7070 0.7071 1.1357 0.0355 0.0355

1000 0.9999 0.7075 0.7066 1.0589 0.0310 0.0311

∞ 1 0.7071 0.7071 1 0.0185 0.0185

100 0.9978 0.7063 0.7061 1.3306 0.1269 0.1281

LSE 500 1.0001 0.7071 0.7069 1.1441 0.0815 0.0815

1000 0.9998 0.7077 0.7064 1.0595 0.0726 0.0729

∞ 1 0.7071 0.7071 n/a n/a n/a

100 1.0052 0.7058 0.7034 6.2528 0.3584 0.3599

S LSE 500 0.9972 0.7067 0.7065 7.0103 0.3560 0.3589

1000 1.0022 0.7069 0.7068 6.9869 0.3878 0.3878

∞ 1 0.7071 0.7071 1 0.0185 0.0185

1.3.2 Bootstrap

As mentioned in Section 1.2.3, the purpose of our bootstrap method is to obtain

an inference method that is free of tuning parameters. Therefore, we focus on

SSE here, since ESE requires at least one tuning parameter. Since the results are
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analogous, we only consider Case (ii) above. Most notations in Table 1.3 are as

defined in the previous subsection. Results for SSE are replicated from Table 1.2.

SSE b is the bootstrap counterpart of the estimator by SSE, and the number of

the bootstrap replications is 500.

Table 1.3 shows that as the sample size increases, the distribution of SSE b ap-

proaches to that of SSE, which is in accordance with the implication of Theorem

1.3.

Table 1.3: Monte-Carlo simulation results for bootstrap counterparts

Methods n µ̂β µ̂α1 µ̂α2 σ̂2
β σ̂2

α1
σ̂2
α2

SSE

100 0.9982 0.7068 0.7068 1.3401 0.0415 0.0416

500 0.9982 0.7068 0.7073 1.0277 0.0364 0.0364

1000 1.0002 0.7069 0.7073 1.1306 0.0322 0.0322

SSE b

100 1.0599 0.7078 0.7059 1.2614 0.0488 0.0507

500 0.9729 0.6970 0.7170 1.0354 0.0286 0.0270

1000 0.9952 0.7092 0.7049 1.1236 0.0359 0.0364

Overall, the Monte-Carlo simulation results are encouraging to support our esti-

mation strategy.
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Chapter 2

Empirical likelihood inference for

monotone index model

2.1 Introduction

Single index models are widely used in statistics since they compromise inter-

pretability of index coefficients in the parametric part and flexibility of regression

modeling in the nonparametric part (see, ch. 8 of Li and Racine, 2007, for a

review). Many estimation methods have been proposed for single index models,

such as the semiparametric least squares estimator (Härdle, Hall and Ichimura,

1993; Ichimura, 1993), M-estimator (Klein and Spady, 1993), binary threshold

choice model (Matzkin, 1992), and average derivative estimator (Powell, Stock

and Stoker, 1989). Although these estimation methods have desirable theoret-

ical properties under certain regularity conditions, they typically require some

nonparametric smoothing method to evaluate the unknown link function, which

involves tuning parameters, such as bandwidth and series length parameters, and

the optimal choices of them are substantial (theoretical and practical) problems.

The monotone single index model, in which monotonicity is imposed on the link

function, has been studied in recent years. Balabdaoui, Durot and Jankowski

(2019) showed that the least square estimator of a monotone single index model

generally converges at the cube root rate, but its asymptotic distribution is still

unknown. The main difficulty for deriving the asymptotic distribution of the least
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square estimator arises from the non-differentiability of the objective function; in

a monotone single index model, the link function, which is an infinite-dimensional

nuisance parameter, is generally estimated by a nonparametric approach such as

isotonic regression, while the index part is parametrically modeled as a linear

combination of the covariates. Then the derivative of the objective function with

respect to the index coefficients is intractable due to the non-smoothness of the

estimated nuisance parameter.

To overcome this issue, Groeneboom and Hendrickx (2018) developed a score-

type estimator for the current status model, which is a special case of mono-

tone single index models. Their approach is based on the estimating equation

which is the same as the first-order condition of the least square estimator ex-

cept that it ignores the derivative of the estimated link function. They proved
√
n-consistency and asymptotic normality of their estimator without any tun-

ing parameter. Their result was extended to general monotone single index

models by Balabdaoui, Groeneboom and Hendrickx (2019), where they derived
√
n-consistency and asymptotic normality for the parametric component and an

n1/3/ log n convergence rate for the nonparametric estimator of the link function.

Although the score estimation approach is remarkable, the main drawback is

that it requires smoothing parameters to estimate the asymptotic variance to

implement hypothesis testing and interval estimation. Because the estimating

function in the score-type approach is dependent on the estimated link function,

some conditional expectation is involved in the asymptotic variance. Besides, the

partial derivative of the link function is also included in the asymptotic variance

even though the estimated link function is not smooth. Therefore, smoothing

methods, such as the kernel smoothing, are employed to estimate such quantities,

which require us to select multiple smoothing parameters and make statistical

inference cumbersome.

To address this problem, we propose an empirical likelihood inference method

based on the score-type approach for monotone index models. We show that

the empirical likelihood statistic based on the estimating equation of Balabdaoui,

Groeneboom and Hendrickx (2019) converges in distribution to the weighted chi-

squared distribution. Even in our empirical likelihood approach, the conditional
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expectation as mentioned above appears in the asymptotic distribution. To cir-

cumvent selection of smoothing parameters, we adapt the bootstrap calibration

method proposed by Hjort, McKeague and van Keilegom (2009) to our con-

text. Because of the estimating equation with the estimated nuisance parameter

plugged-in, a classical naive bootstrap method is not asymptotically valid. Hjort,

McKeague and van Keilegom (2009) provided a modified bootstrap method by re-

centering and reweighting to deal with such a situation. Combining the empirical

likelihood and modified bootstrap methods, our approach provides a simple and

theoretically justified method for statistical inference in monotone single index

models.

The remainder of this paper is organized as follows. Section 2 presents our basic

setup, methodology, and theoretical results. In Section 3, we conduct a Monte-

Carlo simulation study to illustrate the proposed method. All proofs are con-

tained in the appendix.

2.2 Main result

We closely follow the setup and notation of Balabdaoui, Groeneboom and Hen-

drickx (2019) (hereafter BGH). Consider the monotone index model

Y = ψ0(X
′α0) + ε, E[ε|X] = 0, (2.1)

where Y is a scalar response variable, X is a d-dimensional vector of covariates,

ε is an error term, α0 is a k-dimensional vector of parameters, and ψ0 : R → R

is an unknown monotone increasing function. For identification, we assume that

α0 belongs to the d-dimensional unit sphere Sd−1 = {α ∈ Rd : ||α|| = 1}. We

are interested in conducting statistical inference (i.e., interval estimation and

hypothesis testing) on α0 based on the empirical likelihood approach.

Let S : Rd−1 → Sd−1 be a parameterization such that for each α in a neighbor-

hood of α0 on Sd−1, there exists a unique β ∈ Rd−1 which satisfies α = S(β).

To motivate the score-type approach of BGH, we tentatively assume that ψ0 is
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known. The population score equation for the least square estimation of β0 is

E
[
J(β0)

′Xψ
(1)
0 (X ′S(β0)){Y − ψ0(X

′S(β0))}
]

= 0, (2.2)

where ψ
(1)
0 is the derivative of ψ0 and J(β) is the Jacobian of S(β). Thus, it

is natural to construct an estimator of β0 by taking an empirical counterpart

of (2.2) and inserting estimators for ψ
(1)
0 and ψ0. However, when we estimate

ψ0 by the isotonic regression method, the resulting estimator of ψ0 is typically

discontinuous and it is not clear how to evaluate the derivative ψ
(1)
0 without

introducing smoothing parameters. To address this issue, BGH and Groeneboom

and Hendrickx (2018) considered the modified population score equation

E [J(β0)
′X{Y − ψ0(X

′S(β0))}] = 0. (2.3)

In particular, for point estimation of α0, BGH proposed to solve the following

score-type equation

1

n

n∑
i=1

J(β̂)′Xi{Yi − ψ̂β̂(X ′iS(β̂))} = 0, (2.4)

with respect to β̂, and estimate α0 by α̂ = S(β̂), where for given β, ψ̂β is obtained

by the isotonic regression

ψ̂β = arg min
ψ∈M

n∑
i=1

{Yi − ψ(X ′iS(β))}2, (2.5)

and M is the set of monotone increasing functions defined on R.

In this paper, we employ the score-type equation in (2.3) as a moment function

and propose the following empirical likelihood statistic

`(β0) = −2 max
{pi}ni=1

n∑
i=1

log(npi) s.t.
n∑
i=1

pi = 1,
n∑
i=1

piĝi(β0) = 0, (2.6)

where

ĝi(β) = J(β)′Xi{Yi − ψ̂β(X ′iS(β))}.
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By the Lagrange multiplier argument, its dual form is obtained as

`(β0) = 2
n∑
i=1

log(1 + λ̂′ĝi(β0)), (2.7)

where the Lagrange multiplier λ̂ solves

1

n

n∑
i=1

ĝi(β0)

1 + λ̂′ĝi(β0)
= 0. (2.8)

In practice, we use the dual representation in (2.7) to implement statistical in-

ference. To study the asymptotic properties of the empirical likelihood statistic

`(β0), we impose the following assumptions. Let ‖·‖ be the Euclidean norm and

B(a0, A) = {a : ‖a− a0‖ ≤ A} be a ball around a0 of radius A.

Assumption.

A1 {Yi, Xi}ni=1 is an iid sample generated by (2.1). The support X of X is convex

with a nonempty interior, and X ⊂ B(0, R) for some R > 0. The Lebesgue

density of X has a bounded derivative on X . There exist positive constants

c and C such that E[|Y |m|X = x] ≤ cm!Cm−2 for all integers m ≥ 2 and

almost every x ∈ X .

A2 ψ0 is monotone increasing and there exists K0 > 0 such that |ψ0(u)| ≤ K0

for all u ∈ {x′α0 : x ∈ X}.

These assumptions are adaptations of Assumptions A1-A6 in BGH. Compared to

BGH, our assumptions are simpler because we do not need to control the behavior

of the score function outside the true parameter α0 = S(β0). Assumption A1 is

on the distribution form of the data. The support condition in A1 may be relaxed

by assuming X to follow a sub-Gaussian distribution. The moment condition in

A1, which is analogous to BGH’s A6, is required to guarantee max1≤i≤n |Yi| =

Op(log n) to control the entropy of a class of score functions. Assumption A2 is on

the true link function ψ0. Compared to BGH which considers point estimation,

we only need to impose boundedness, which is a mild requirement.

Under these assumptions, our main result is presented as follows.
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Theorem 2.1. Under Assumptions A1-A2, it holds

`(β0)
d→ Z ′V −1Z,

where Z ∼ N(0,Σ) with Σ = J(β0)
′E[ε2(X−E[X|X ′S(β0)])(X−E[X|X ′S(β0)])

′]J(β0)

and V = J(β0)
′E[ε2XX ′]J(β0).

Remark 2.1. This theorem says that the empirical likelihood statistic `(β0)

is not asymptotically pivotal and converges to a weighted chi-squared distribu-

tion w1χ
2
1,1 + · · · + wd−1χ

2
1,d−1, where w1, . . . , wd−1 are the eigenvalues of Σ−1V

and χ2
1,1, . . . , χ

2
1,d−1 are independent χ2

1 random variables. This lack of asymp-

totic pivotalness is caused by the mismatch in the asymptotic variance Σ of

the score function 1√
n

∑n
i=1 ĝi(β0) and the limit V of the sample variance V̂ =

1
n

∑n
i=1 ĝi(β0)ĝi(β0)

′. In the literature of empirical likelihood, weighted chi-squared

limiting distributions often emerge when the score (or moment) functions involve

estimated nuisance parameters (e.g., Qin and Jing, 2001; Xue and Zhu, 2006;

Hjort, McKeague, and van Keilegom, 2009).

Remark 2.2. One way to conduct statistical inference based on `(β0) is to esti-

mate the critical values of w1χ
2
1,1 + · · ·+wd−1χ

2
1,d−1 based on some estimators of

Σ and V . Based on (B.3), V is consistently estimated by V̂ . On the other hand,

Σ can be estimated by

Σ̂ = J(β0)
′ 1

n

n∑
i=1

ε̂2i {Xi − m̂(X ′iS(β0))}{Xi − m̂(X ′iS(β0))}J(β0),

where ε̂i = Yi − ψ̂β0(X ′iS(β0)) and m̂(·) is a nonparametric estimator of m(·) =

E[X|X ′S(β0) = ·]. An alternative way for statistical inference is to adjust the

empirical likelihood statistic `(β0) to recover the asymptotic pivotalness. Based

on Rao and Scott (1981) (see also Xue and Zhu, 2006), the above theorem implies

`A(β0) =
d− 1

trace(Σ̂−1V̂ )
`(β0)

d→ χ2
d−1. (2.9)

Then the confidence region of α0 = S(β0) can be obtained by {S(β) : `A(β) ≤ qa},

where qa is the (1− a)-th quantile of the χ2
d−1 distribution.

Remark 2.3. A drawback of the asymptotic inference method presented in the

previous remark is that it requires a selection of a tuning parameter to implement
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the nonparametric estimator m̂(·). In order to obtain an inference procedure

which is free from tuning parameters, we adapt the bootstrap method of Hjort,

McKeague, and van Keilegom (2009) as follows.

1. Based on the original sample {Yi, Xi}ni=1, compute β̂ as in (2.4), and then

compute

Mn(β̂) =
1

n

n∑
i=1

ĝi(S(β̂)), V̄ =
1

n

n∑
i=1

ĝi(S(β̂))ĝi(S(β̂))′.

2. Draw {Y ∗i , X∗i }ni=1 from the original sample {Yi, Xi}ni=1 with equal weights.

Then compute

M∗
n(β̂) =

1

n

n∑
i=1

J(β̂)′X∗i {Y ∗i − ψ̂∗β̂(X∗′i S(β̂))},

where ψ̂∗
β̂

= arg minψ∈M
∑n

i=1{Y ∗i − ψ(X∗′i S(β̂))}2.

3. The bootstrap counterpart of `(β0) is given by

`∗ = n{M∗
n(β̂)−Mn(β̂)}′V̄ −1{M∗

n(β̂)−Mn(β̂)}. (2.10)

Under the additional assumptions A3-A5 in the appendix, the validity of this

bootstrap approximation is obtained as follows.

Theorem 2.2. Under Assumptions A1-A5, it holds

sup
t≥0
|P ∗{`∗ ≤ t} − P0{`(β0) ≤ t}| p→ 0,

where P ∗ is the bootstrap distribution conditional on the data.

2.3 Monte-Carlo Simulation

We conduct a Monte-Carlo simulation study to investigate the finite sample per-

formance of the proposed inference methods. We consider the following data
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generation process:

Y = ψ0(X
′α0) + ε, ψ0(u) = u3, α0 = (1, 1, 1)′/

√
3

ε ∼ N(0, 1), X ∼ N(0, I3),

where I3 is the 3×3 identity matrix. We consider sample sizes n = 100, 500, 1000.

The number of Monte Carlo replications is 1000. We consider two testing methods

discussed in Remarks 2 and 3. For the adjusted statistic in (2.9), we estimate

m(·) = E[X|X ′S(β0) = ·] by the Nadaraya-Watson estimator, and choose the

bandwidths based on the expected Kullback-Leibler cross-validation (Hurvich,

Simonoff and Tsai, 1998). To test the null hypothesis H0 : α0 = (1, 1, 1)′/
√

3, we

calculate the test statistic (2.9) and compare it with the 95 percentile of the χ2
d−1

distribution. For the bootstrap-calibrated test statistic (2.10), we compute β̂ as

in BGH (the computer code is available at Groeneboom’s website), and generate

499 bootstrap samples, and calculate the bootstrap counterpart `∗ in (2.10).

Table 2.1 presents the rejection frequencies of the above empirical likelihood tests

for the null H0 : α0 = (1, 1, 1)′/
√

3 when the true values of α0 are (N) α0 =

(1, 1, 1)′/
√

3, (A1) α0 = (1.03, 1, 1)′/
√

1.032 + 2, (A2) α0 = (1.05, 1, 1)′/
√

1.052 + 2,

and (A3) α0 = (1.10, 1, 1)′/
√

1.102 + 2. (N) is for the size properties, and (A1)-

(A3) are to evaluate power properties.

The column “α̂1” reports the Monte Carlos averages and standard deviations of

the first element of the BGH estimator α̂. It shows that the mean is close to the

truth, α01 = 1/
√

3 ' 0.577, while the standard deviation becomes smaller with

the sample size. From the columns (N), we can see that both the adjusted and

bootstrap empirical likelihood tests have reasonable size properties. Both tests

become powerful as the sample size increases and the true values of α0 are more

distinct from the null values (i.e., from A1 to A3). Also, we find that overall the

bootstrap test rejects slightly more often than the adjusted test.
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Table 2.1: Rejection frequencies (in percentage %)

n
Adjusted Bootstrap α̂1

N A1 A2 A3 N A1 A2 A3 mean s.d.

100 4.7 4.9 6.1 8.7 8.1 8.3 9.0 13.9 0.577 0.0528

500 4.2 7.5 15.9 51.1 6.6 10.0 18.1 53.3 0.576 0.0166

1000 7.4 14.8 31.5 86.1 5.6 18.2 34.9 87.8 0.577 0.0113

Overall, our Monte-Carlo simulation results are encouraging.

2.4 Conclusion of Chapter 1 and Chapter 2

In Chapter 1 and 2, we study the estimation and inference methods of the mono-

tone partially linear index model and the monotone single index model. In the

following Chapter 3, we will study a general Z-estimator with plug-in isotonic

estimators, which can encompass the estimation methods of the models in the

first two chapters as special cases.
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Chapter 3

Semiparametric estimation with

plug-in isotonic estimators

3.1 Introduction

This paper is concerned with the following semiparametric estimation problem.

Suppose we have a moment condition

E[m(Z, β0, p0(·))] = 0, (3.1)

where Z is a random vector defined on a probability space (Ω,B,P0) , and β0 ∈

B ⊂ Rk is a real-valued parameter of interest. p0(·) is a monotone increasing

nuisance function, which is the conditional mean of some function of data and

β0. (3.1) can be an unconditional moment restriction or the first-order condition

of a maximization problem. Let {Zi}ni=1 be independent realizations of Z. An

estimator β̂ can be solved from the sample moment condition of (3.1), with a

plugged-in p̂(·):
1

n

n∑
i=1

m(Zi, β, p̂(·)) = 0, (3.2)

where p̂(·) is an isotonic estimator of p0(·).
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3.1.1 Isotonic estimator

Suppose that the conditional expectation E(Y |X) = p0(X) is monotone increas-

ing. For an i.i.d random sample {Yi, Xi}ni=1, the isotonic estimator is the mini-

mizer of the sum of squared errors:

min
p∈M

n∑
i=1

(Yi − p(Xi))
2,

whereM is the class of monotone increasing function. The minimizer can be cal-

culated with Pool Adjacent Violators Algorithm (Barlow et al., 1972), or equiv-

alently by solving the greatest convex minorant of the cumulative sum diagram{
(0, 0), (i,

∑i
j=1 Yj), i = 1, ..., n

}
. See Ayer et al. (1955), Barlow et al. (1972),

and the textbook of Groeneboom and Jongbloed (2014) for details.

3.1.2 Motivation and challenges

Without the monotonicity assumption about p0(·), the model (3.1) and its plug-

in estimator based on (3.2) have been extensively studied, where p0(·) is usually

estimated by smoothing nonparametric methods such as sieve estimator or kernel

estimator. See, e.g., van der Vaart (1991), Newey (1994), Andrews (1994), Ai and

Chen (2003), and Chernozhukov et al. (2018), among others. Our interest in the

case, where p0(·) is monotone increasing and estimated by isotonic estimation, is

motivated by the following reasons.

First, monotonicity is a natural shape restriction which can be justified in many

applications in social science, economic studies, and medical research. Well-

known examples in economics are that the demand function is usually monotone

decreasing, and the supply function and utility functions are often monotone

increasing. Furthermore, many functions derived from CDF functions inherit the

monotonicity from the latter. For example, in a binary choice model

Y =

1 if X ′β0 > ε

0 if X ′β0 ≤ ε

. (3.3)
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We can express the conditional expectation P0(X) ≡ E(Y |X) = P (Y = 1|X) =

Fε(X
′β0), where Fε(·) is the CDF of ε. If we assume ε ∼ N(0, 1), (3.3) becomes

a probit model; if we assume ε ∼ Logistic(0, 1), (3.3) becomes a logit model. If

we don’t impose any distributional assumptions on ε, we can express (3.3) with

a semiparametric model Y = Fε(X
′β0) + ν, with a nonparametric link function

Fε(·). It is monotone increasing by the nature of CDF.

Second, the well-known benefits of isotonic estimation make it a special type

of nonparametric method: (i) the isotonic estimator is a tuning-parameter-free

nonparametric estimator, (ii) isotonic estimation imposes minimal assumptions

on the smoothness of the true function. All these features will be inherited by

the corresponding semiparametric estimator.

Third, as a nonparametric estimator, the isotonic estimator has some drawbacks:

(i) the isotonic estimator has a comparatively slower convergence rate of n−1/3

, while other nonparametric estimators can achieve better rates under moderate

smoothness conditions; (ii) the isotonic estimator is a discrete estimator, which

imposes problems in many applications. Interestingly, these drawbacks can be-

come merits in the semiparametric estimator with isotonic plug-in estimator: the

discrete feature is associated with the tuning-parameter-free property; the low

convergence rate is associated with a smaller bias, and this small bias combined

with monotonicity leads to a nice performance in the second stage semiparametric

estimator. In contrast, a plug-in kernel estimator with optimally chosen band-

width might lead to inefficiency in the semiparametric estimator. (Bickel and

Ritov, 2003).

A challenge of making inference of β̂ based on (3.2) is the discreteness of the

isotonic estimator p̂(·), which could make the traditional inference procedure

(see, e.g., Newey and McFadden, 1994) inapplicable. Particularly in the case

where the estimator p̂(·) depends on β, (3.2) no longer has a continuous total

derivative w.r.t β even if m(Z, β, p0(·)) is differentiable w.r.t. β. Since β̂ and

p̂(·) usually have to be estimated simultaneously in this case, the framework of

Chen et al. (2003) cannot be applied here either. The recent developments in the

monotone single index model provide us with tools for dealing with this problem.

Groeneboom and Hendrickx (2018), Balabdaoui, Groeneboom, and Hendrickx
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(2019) (BGH hereafter), and Balabdaoui and Groeneboom (2020) developed a

novel score-type approach for the monotone single index model. In this paper,

we generalize their methods to the framework of the model (3.1). We show that

under mild conditions, the semiparametric estimator β̂ with a plug-in isotonic

estimator satisfies the framework of Newey (1994), and the associated sample

moment function is within a distance of op(n
−1/2) from its Neyman-orthogonalized

sample moment function. As a result, the proposed estimator is
√
n-consistent,

asymptotically normally distributed, and has many other desirable properties.

3.1.3 Examples and literature

We give examples of semiparametric models, which can be estimated with the

procedure described in (3.1) and (3.2). If no monotonicity assumption is imposed

on nuisance functions, these models have been extensively studied in the litera-

ture. See, e.g., Engle et al. (1986), Robinson (1988), and Stock (1991) for the

partially linear model; Stoker (1986), Hall (1989), and Härdle, Hall, and Ichimura

(1993) for the single index model; Carroll et al. (1997), Xia and Härdle (2006),

and Wang et al. (2010) for the partially linear index model; Robins and Rot-

nitzky (1995), Hahn (1998), Hirano et al. (2003), Bang and Robins (2005), and

Imbens and Rubin (2015) for the inverse probability weighted (IPW) model and

the augmented IPW estimators (AIPW) models, to name a few.

With monotonicity assumptions on nuisance functions, some results have been

obtained for individual cases of semiparametric models in the past decades, in-

cluding Example 1 to Example 3 below.

Example 1: Monotone partially linear model.

Y = Dβ0 + p0(X) + ε with E[ε|X,D] = 0. (3.4)

For monotone increasing p0(X), Huang (2002) estimated β0 with the monotone

least square method. If we set p0(X) = c +
∑k

j=1m
j(Xj), where Xj is the j-th

element of the k-dimensional vector X, we have the monotone additive partially
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linear model, studied in Cheng (2009) and Yu (2014).

Alternatively, β0 can be estimated by solving the problem (3.1), with the moment

condition

E [m(Z, β, p(·))] = E [D(Y −Dβ − p(X))] = 0. (3.5)

As illustrated in Chernozhukov et al. (2018), the simple plug-in method based on

(3.5) could fail sometimes since this moment function is not Neyman-orthogonalized.

In Section 3.2.1, we will show that if p0(·) is monotone increasing and estimated

with isotonic regression, the estimator β̂ based on (3.5) is
√
n-consistent and has

the same asymptotic variance as that in Robinson (1988). We do not need to

orthogonalize (3.5).

Example 2: Monotone single index model

Y = p0(X
′β0) + ε with E[ε|X] = 0. (3.6)

In this example and the next example, p0(·) is a monotone increasing link func-

tion of its index. If Y is a binary random variable taking values in {0, 1}, this

model can be derived from (3.3), and p0(·) is by nature monotone increasing. This

model was studied by Cosslett (1983, 1987), Matzkin (1992), Klein and Spady

(1993), and Cosslett (2007), among others. For continuously distributed Y , if

the parameter β0 is the main interest, Han (1987) and Sherman (1993) showed

its consistency and
√
n−normality respectively. If monotone increasing p0(X)

is estimated with isotonic regression, Balabdaoui, Durot, and Jankowski (2019)

studied (3.6) with the monotone least square method. Groeneboom and Hen-

drickx (2018), BGH, and Balabdaoui and Groeneboom (2020) estimated β0 and

p0(·) by solving a score-type sample moment function1 of:

E [X {Y − p(X ′β)}] = 0. (3.7)

They showed that solving (3.7) can simultaneously estimate β0 and p0(·), at n−1/2-

1Groeneboom and Hendrickx (2018) estimated the current status model by solving a profile
maximum likelihood estimator. The score function of their log-likelihood function takes a
similar form of (3.7).
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rate and n−1/3-rate respectively. Note that (3.7) can be regarded as an individual

case of the model (3.1) with m(z, β, p(·)) = x {y − p(x′β)}.

Example 3: Monotone partially linear index model

Y = D′β0 + p0(X
′α0) + ε, E[ε|D,X] = 0.

Here we let Z = (Y,D,X), and θ = (α′, β′)′ ∈ Θ. This model combines the

features of the model (3.4) and the model (3.6). For monotone increasing p0(·),

Xu and Otsu (2020) extended BGH’s approach and showed that a score-type

estimator, based on the moment condition

E

[(
D

X

)
{Y −D′β − p(X ′α)}

]
= 0,

can achieve the
√
n-consistency and asymptotically normality for θ0. Their

method can also be regarded as an individual case of the model (3.1) with

m(z, θ, p(·)) =
(
d
x

)
{y − d′β − p(x′α)}.

Example 4: IPW and AIPW with monotone increasing propensity

scores

Here we let Z = (Y, T,X), where T is a binary random variable indicating the

treatment status. The propensity score is defined as p0(X) := E(T |X) = P (T =

1|X). Examples of IPW are:

(a) Missing At Random Model (MAR): Among the triple (Y, T,X), only Z =

(T,X, T ·Y ) is observed. Under unconfoundedness and overlapping assumptions,

we are interested in E(Y ) = E( Y ·T
p0(X)

) = β0. We can estimate β0 by solving the

problem (3.1), with the moment condition.

E[m(Z, β, p(·))] = E(
Y · T
p(X)

− β) = 0.

(b) Average Treatment Effect Model (ATE): the triple Z = (Y, T,X) is observed,

where Y takes its values from a random vector (Y (1), Y (0)): we have Y = Y (1)

if only if T = 1, and Y = Y (0) if only if T = 0. Under unconfoundedness and
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overlapping assumptions, we have the average treatment effect β0 = E( Y ·T
p0(X)

−
Y ·(1−T )
1−p0(X)

). We can estimate β0 by solving the problem (3.1), with the moment

condition

E[m(Z, β, p(·)] = E(
Y · T
p(X)

− Y · (1− T )

1− p(X)
− β) = 0.

Example of AIPW:

(c) Doubly robust MAR: in addition to the setting in (a), we also know E(Y |X) =

ψ0(X). Under unconfoundedness and overlapping assumptions, we have the con-

ditional expectation E(Y |X) = E( Y ·T
p0(X)

− T−p0(X)
p0(X)

ψ0(X)) = β0. We can estimate

β0 by solving the problem (3.1), with the moment condition.

E[m(Z, β, p(·))] = E(
Y · T
p(X)

− T − p(X)

p(X)
ψ(X))− β) = 0. (3.8)

Here we need to plug-in the estimators of both p(·) and ψ(·).

IPW and AIPW with monotone increasing propensity scores have rarely been

studied. The only exceptions we found are Qin et al. (2019) and Yuan et al.

(2021). They apply the monotone single index model to estimate the propensity

score p(X) = π(X ′α) of an AIPW model, then plug p̂(·) and another estimator

of ψ0(·) into the sample counterpart of (3.8). Their asymptotic results depend

on the consistent estimations of both p0(·) and ψ0(·), which are different from

our settings. Another different but related paper is Westling et al. (2019). They

studied a continuous version of AIPW, where the monotonicity is imposed on the

relation between the continuous dose of treatments and the outcomes, instead

of on the propensity score. To the best of our knowledge, there is no paper

estimating the IPW model with a plug-in isotonic estimator of the propensity

score. In the following Section 3.2.2, we show that our method can give us a

tuning-parameter free,
√
n-consistent, and asymptotically normal IPW estimator.

3.1.4 Contribution and structure of the paper

The main contributions of this chapter are:

1. We develop a tuning-parameter-free semiparametric estimator of (3.1). It
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generalizes existing semiparametric models with monotone nuisance func-

tions, including those discussed in Chapter 1 and Chapter 2. Furthermore,

we show its potential applicability by applying it to the case of IPW with

monotone increasing propensity score.

2. We show that the sample moment function of the proposed estimator with a

plug-in isotonic estimator is within a distance of op(n
−1/2) from its Neyman-

orthogonalized sample moment function. Therefore,
√
n-consistency is guar-

anteed in many cases, without the need for estimating and adding the cor-

rection term. As a result, the tuning-parameter-free benefit is twofold: we

save the effort to choose tuning parameters to estimate both the monotone

nuisance function and the correction term.

3. We show this estimator is efficient in the case p0(x) is a function of a scalar

x. The semiparametric efficiency here is w.r.t. the unconditional moment

condition (3.1). With x being a multi-dimensional vector, the estimator is
√
n-consistent under different structures combining monotonicity and multi-

dimensional covariates.

4. Monte-Carlo simulation results show that the proposed method is attrac-

tive: (i) while it is more robust against misspecification than parametric

plug-in estimators commonly adopted in applied work, it has similar per-

formance to the latter under correct specifications; (ii) compared to meth-

ods with other nonparametric plug-in estimators, the proposed estimator

requires minimum smoothness conditions on nuisance functions.

5. We develop a bootstrap method to ensure that our semiparametric estima-

tor is tuning-parameter-free in both estimation and inference.

This paper is organized as follows. In Section 2, we present the basic setup

and study the theoretical properties of the proposed estimator. In Section 3,

we discuss different possibilities of allowing multi-dimensional covariates in a

monotone nuisance function, as well as the theoretical properties of the relevant

estimators. In Section 4, we discuss the bootstrap inference. In Section 5, we

perform Monte-Carlo simulation studies to illustrate the proposed method. All

the proofs are presented in the appendix.
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3.2 Z-estimation with a plug-in isotonic estima-

tor

We try to develop a general theory for Z-estimation with its plug-in nuisance

parameter estimated by isotonic estimation. Let (Y,X) be a sub-vector of random

vector Z. To show the idea clearly, we first let X be a random scalar in this

section. In Section 3.3, we will allow X to be multi-dimensional covariates. Now

we have (3.1) and

E(Y |X) = p0(X), (3.9)

where p0(·) is a monotone increasing function in X. Condition (3.9) is needed to

implement isotonic estimation since it is a method for the conditional mean. We

are interested in estimating the parameter β0. To illustrate the idea clearly, we

focus on the just-identified case, where dim(β) = dim(m). All the results can be

extended to over-identified moment conditions with standard GMM procedures.

First, we extend (3.2) around β0, then around p0(·). In the following part, for

any differentiable function g(θ, z), we denote dg(θ,z)
dθ
|θ=θ0 and ∂g(θ,z)

∂θ
|θ=θ0 by dg(θ0,z)

dθ

and ∂g(θ0,z)
∂θ

.

− 1

n

n∑
i=1

∂m(Zi, β0, p̂(·))
∂β

(β̂ − β0)

=
1

n

n∑
i=1

m(Zi, β0, p̂(·)) + op(β̂ − β0)

=
1

n

n∑
i=1

m(Zi, β0, p0(Xi)) +
1

n

n∑
i=1

D(Zi, β0)(p̂(Xi)− p0(Xi))

+
1

n

n∑
i=1

Op(p̂(Xi)− p0(Xi))
2 + op(β̂ − β0)

=
1

n

n∑
i=1

m(Zi, β0, p0(Xi)) + I + II + op(β̂ − β0). (3.10)

D(z, β) is the functional derivative of m(z, β, p(x)) w.r.t. p(·).2
√
n-consistency of

β̂ requires both I and II to converge at least at n−1/2-rate. If ||p̂−p0|| = op(n
−1/4),

2Note that D here is a function of z and β. It should be differentiated from the random
variable D in the examples discussed in the introduction.
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we have II = op(n
−1/2). Many nonparametric estimators can achieve this rate

with properly chosen tuning parameters. For isotonic estimator p̂(·), we usually

have

||p̂− p0||2 = Op((log n)2n−2/3) = op(n
−1/2). (3.11)

(See, e.g., Theorem 9.2 and Lemma 5.15 in van de Geer, S., 2000). The condition

is satisfied without involving any tuning parameter.

We can decompose I into

I =
1

n

n∑
i=1

D(Zi, β0)(p̂(Xi)− p0(Xi))

=
1

n

n∑
i=1

{
D(Zi, β0)(p̂(Xi)− p0(Xi))−

∫
D(z, β0) (p̂(x)− p0(x)) dP0(x, z)

}
+

∫
D(z, β0)(p̂(x)− p0(x))dP0(x, z)

=III + IV.

The condition III = op(n
−1/2) is often referred to as stochastic continuity. The

condition IV = 0 (or = op(n
−1/2)), is referred to as Neyman (Near-) orthogonality.

If we have both stochastic continuity and Neyman (Near-) orthogonality, solving

the moment condition (3.2) with plug-in p̂(·) will not depend on the estimation

of the nuisance function p0(·). In the following sub-section, we discuss the link

between Neyman orthogonality (see, e.g., Chernozhukov et al., 2018) and the

plug-in isotonic estimator.

3.2.1 Properties of the plug-in isotonic estimator

Definition 1. [Neyman orthogonality] Let T be a convex set, and Tn ⊂ T be a

nuisance realization set for p̂(·). We say the moment function m satisfy Neyman

orthogonality condition if we have E[m(Z, β0, p0(X))] = 0 and

E[D(Z, β0)(p(X)− p0(X))] = 0, for all p ∈ Tn

If m does not satisfy Neyman orthogonality condition, β̂ obtained by solving its

corresponding sample moment function (3.2) might suffer from some issues. In
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some cases, it is even no longer
√
n-consistent. The following is an example in

Chernozhukov et al. (2018).

Example 1 continued: The partially linear model

Y = Dβ + p(X) + U E[U |X,D] = 0

implies the moment condition E [D(Y −Dβ − p(X))] = 0. But its moment

function m(Z, β, p(·)) = D(Y −Dβ − p(X)) is not Neyman orthogonal, since

E[
∂m(Z, β0, p0(·))

∂p
(p(X)− p0(X))] = E[D(p(X)− p0(X))] 6= 0 in general

Now we do not assume the monotonicity of p0(·), and let p̂(·) be an arbitrary

estimator. In this case, the plug-in estimator obtained by choosing β̂, such that

1

n

n∑
i=1

Di(Yi −Diβ̂ − p̂(Xi)) = 0, (3.12)

can fail to be
√
n-consistent. Let us rearrange (3.12)

√
n(β̂ − β0) = (

1

n

n∑
i=1

D2
i )
−1 1√

n

n∑
i=1

Di(Yi −Diβ0 − p̂(Xi))

= (
1

n

n∑
i=1

D2
i )
−1 1√

n

n∑
i=1

Di(Yi −Diβ0 − p0(Xi) + p0(Xi)− p̂(Xi))

= (
1

n

n∑
i=1

D2
i )
−1 1√

n

n∑
i=1

Di(Ui + p0(Xi)− p̂(Xi))

= (
1

n

n∑
i=1

D2
i )
−1 1√

n

n∑
i=1

DiUi + (
1

n

n∑
i=1

D2
i )
−1 1√

n

n∑
i=1

Di(p0(Xi)− p̂(Xi)).

1√
n

∑n
i=1Di(p0(Xi)− p̂(Xi)) might explode since it is an average of n terms that

do not have zero mean.

To fix this problem, people usually want to orthogonalize m, i.e., transform m

into mo, such that

1. E[mo(Z, β0, p0(X))] = 0 still holds, and

2. E[Do(Z, β0)(p(X)− p0(X))] = 0 for all p ∈ Tn.
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In general, people obtain orthogonalized moment function by subtracting from

m(Z, β0, p0) its projection on the linear space of its derivatives w.r.t p0(·). For

example, if m is a just-identified moment condition, then

mo(Z, β, p) = (Idm −Gp(G
′
pGp)

−1G′p)m(Z, β, p),

where Gp is the functional derivative of m(Z, β, p) w.r.t p. In our setting (3.9),

where p0(X) is a conditional mean of Y , the orthogonalization can be achieved

by applying Proposition 4 of Newey (1994):

mo
1(Z, β, p) = m(Z, β, p) + E[D(Z, β)|X](Y − p(X)).

We can check the two conditions for the Neyman orthogonalization. For mo
1:

1. E[mo
1(Z, β0, p0(X))] = 0 + E[E[D(Z, β0)|X](Y − p0(X))] = 0,

2. and

E[Do
1(Z, β0)(p(X)− p0(X))]

= E[
∂mo

1(Z,β,p0(X))

∂p
(p(X)− p0(X))]

= E[D(Z, β0)(p(X)− p0(X))]− E[D(Z, β0)|X][(p(X)− p0(X))]

= E[D(Z, β0)|X][(p(X)− p0(X))]− E[D(Z, β0)|X][(p(X)− p0(X))]

= 0.

The equality in Condition 1 and the third equality in Condition 2 follow from the

law of iterated expectation.

In practice, we need to add an estimated correction term of E[D(Z, β0)|X](Y −

p0(X)) into our sample moment function. In Example 1, this term is ̂E[Di|Xi](Yi−

Diβ̂ − p̂(Xi)). Then we have the same estimator as in Robinson (1988).

An interesting feature is that with the following Lemma 3.1, sample moment

function with a plug-in isotonic estimator is within a distance of op(n
−1/2) from

its Neyman-orthogonalized sample moment function.
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Let us have the following assumptions:

A1 X is a random scalar taking value in the space X . The space X is convex

with non-empty interiors, and satisfies X ⊂ B(0, R) for some R > 0.

A2 The true mean function E(Y |X = x) = p0(x) is monotone increasing in x.

There exists K0 > 0 such that |p0(x)| < K0 for all x ∈ X .

A3 There exist c0 > 0 and M0 > 0 such that E[|Y |m|X = x] ≤ m!Mm−2
0 c0 for

all integers m ≥ 2 and almost every x.

A1 and A2 impose boundedness on the monotone function p0 and the support

of X. These conditions are used to control the entropy of the function classes

that characterize (3.2). A3 is to restrict the size of the tail of Y |X. With A3,

we can show that sup
x∈X

p̂(x) = Op(log n), which is used to obtain an entropy re-

sult associated with the
√
n-convergence rate in the second-stage semiparametric

estimator.

Lemma 3.1. p̂(·) is an isotonic estimator of the conditional mean E(Y |X). δ(X)

is a bounded function of X with a finite total variation. Under A1, A2, and A3,

we have
1

n

n∑
i=1

δ(Xi)(Yi − p̂(Xi)) = op(n
−1/2). (3.13)

Remark 3.1. The proof in Appendix is based on techniques applied in Groene-

boom and Jongbloed (2014), Groeneboom and Hendrickx (2018), and BGH, com-

bining the properties of the isotonic estimator and entropy results for monotone

functions. Heuristically, the intuition can be explained with the OLS estimator:

1. The first-order condition of OLS estimation of Y = Xβ + ε is that X ′ε̂ is

equal to zero. The regression residuals ε̂ is, in other words, the projection

residual from projecting Y onto the linear space spanned by the columns

of X. We have the projection residuals on the right-hand-side, and vectors

from the projected space, X, on the left-hand. Their inner product is zero.

2. A similar case is the Lemma 3.1 with isotonic estimators. At the right-

hand side of δ(Xi)(Yi − p̂(Xi)) in (3.13), we have the regression residual

of the isotonic regression, which can be regarded as the projection residual
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of projecting Y onto the space of monotone increasing functions of X. On

the left-hand-side is some function of X, which is assumed to be bounded

and with finite total variations. Any bounded function with finite total

variations can be decomposed into a sum of two monotone functions.

3. Then we have again the residuals of projecting Y onto the space of mono-

tone functions on the right-hand side and the monotone functions on the

left-hand side. It is not exactly zero because, on the right-hand, we have

residuals of projecting Y onto the space of monotone piecewise constant

function (isotonic estimator). It is not perfectly matched to the monotone

functions (but not necessarily piecewise constant) on the left-hand side.

The proof can be reduced to show what is left (the approximation error

of monotone piecewise constant functions to monotone functions, times the

residuals of isotonic estimation) converges to zero faster than n−1/2. And

the monotonicity plays a role here.

Now let us assume

A4 For all β ∈ B, E[D(Z, β)|X] is a bounded function of X with a finite total

variation, and there exist c1 > 0 and M1 > 0 such that for each row of

D(Z, β) (Dj(Z, β) with j ∈ {1 : k}), E[|Dj(Z, β)|m|X = x] ≤ m!Mm−2
1 c1

for all integers m ≥ 2 and almost every x.

we have immediately:

1

n

n∑
i=1

E[D(Z, β0)|Xi](Yi − p̂(Xi)) = op(n
−1/2).

Then we add the following assumption,

A5 The first-order expansion of m(z, β, p(·)) w.r.t p(·) at p∗(·), D(z, β, p(·) −

p∗(·)), is linear in p(·)−p∗(·). Especially, D(z, β, p(x)−p∗(x)) = D(z, β) (p(x)− p∗(x)).

A5 enables us to analyze the impact of the estimation of the nuisance function

p(·), it is similar to (4.1) and (4.2) of Newey (1994). A5 will be implied by the

condition that m(z, β, p(x)) is differentiable in p(x), for almost every x and z.
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Now we have

Proposition 3.1. (Sample moment function) Assuming A1-A5, and p0(·)

is estimated with isotonic estimation and plugged into (3.2), then the semipara-

metric estimator β̂ estimated based on this sample moment function is similar to

that estimated based on its Neyman-orthogonalized sample moment function, in

the sense that
√
n(β̂ − β0) has the same asymptotic distribution.

Remark 3.2. This proposition shows that with isotonic plug-in estimator p̂(·),

the difference between the sample moment function 1
n

∑n
i=1m(Z, β, p̂(·)) and its

orthogonalized version is op(n
−1/2). Therefore, there is no need to orthogonalize

it for the estimation of β0. In this sense, the sample moment function can be

regarded as “automatic” Neyman-orthogonalized.

Remark 3.3. The term “automatic” should be understood only in the context

of the estimation of β0. It does not claim that the original moment function

m(z, β, p(·)) is Neyman-orthogonalized. In general, it is not. However, if the

monotone nuisance function is estimated with isotonic estimation, the impact of

the first-stage isotonic estimation on the moment function (multiplied by
√
n)

will be asymptotically equivalent to a correction term, which would properly

orthogonalize the original moment function.

Example 1 Continued: Let p̂(X) is an isotonic estimator of E[Y − Dβ|X]

and assume E[D|X] is a bounded function of X with a finite total variation. We

have by Lemma 3.2 (A modified version Lemma 3.1 in the following Section 3.2.3,

which can be applied to the case that p̂(·) depends on β.)

1

n

n∑
i=1

Di(Yi −Diβ̂ − p̂(Xi)) = 0

⇒ 1

n

n∑
i=1

(Di − E[Di|Xi])(Yi −Diβ̂ − p̂(Xi)) = op(n
−1/2).

48



Then we have

√
n(β̂ − β0)

= (
1

n

n∑
i=1

(Di − E[Di|Xi])Di)
−1 1√

n

n∑
i=1

(Di − E[Di|Xi])(Yi −Diβ0 − p̂(Xi)) + op(1)

= (
1

n

n∑
i=1

(Di − E[Di|Xi])Di)
−1 1√

n

n∑
i=1

(Di − E[Di|Xi])Ui + op(1)

+ (
1

n

n∑
i=1

(Di − E[Di|Xi])Di)
−1 1√

n

n∑
i=1

(Di − E[Di|Xi])(p0(Xi)− p̂(Xi)).

Now under mild conditions, we have 1√
n

∑n
i=1(Di −E[Di|Xi])(p0(Xi)− p̂(Xi)) =

op(1) and 1
n

∑n
i=1(Di − E[Di|Xi])Di

p→ E[(Di − E[Di|Xi])
2]. Then we have

√
n-

consistent β̂. Also,
√
n(β̂ − β0)

d→ N(0, σ2
uE(D − E[D|X])−2).

Remark 3.4. Huang (2012) showed the same asymptotic variance for the par-

tially linear model with monotone nuisance function, with the monotone least

square method. Here we revisit it from a different angle: we highlight the re-

lation between isotonic plug-in estimator and Neyman orthogonalization. We

start from an unorthogonalized moment function (3.12) and achieve the same

result as in Robinson (1988), without adding the estimated correction term

̂E[Di|Xi](Yi−Diβ̂− p̂(Xi)). Therefore, the benefit of the isotonic plug-in estima-

tor in terms of tuning-parameter-free is doubled: an isotonic plug-in estimator

will save us not only one tuning parameter for estimating the nuisance function

p(·) but also other tuning parameters for estimating the nonparametric part in

the correction term ( ̂E[Di|Xi] in this case).

3.2.2 Efficiency and the plug-in isotonic estimator

The correction term E[D(Z, β0)|X](Y − p0(X)) is also associated with efficiency.

As illustrated in Proposition 4 of Newey (1994), for unconditional moment con-

dition E[m(Z, β, p(X))] = 0, where p0(X) = E(Y |X) for some sub-vector Y , the

efficient influence function ψ is:

ψ(Z) = −
[∂E[m(Z, β0, p(X))]

∂β

]−1
[m(Z, β0, p0(X)) + E[D(Z, β0)|X](Y − p0(X))] .
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If we could show for an isotonic plug-in estimator p̂(·)

1

n

n∑
i=1

m(Zi, β0, p̂(Xi)) =
1

n

n∑
i=1

[
m(Zi, β0, p0(xi)) + E[D(Z, β0)|Xi](yi − p0(xi))

]
+ op(n

−1/2),

we could show the efficiency. Let’s assume the following assumptions:

A6 There are b(z) > 0 and D(z, g) that (i) ||m(z, β, p)−m(z, β, p0)−D(z, β, p−

p0)|| ≤ b(z)||p− p0||2; (ii) E[b(Z)] = op(n
1/6(log n)−2), for all β ∈ B, where

B is compact.

A7 There are ε, b(z), b̃(z) > 0 and p(·) with ||p|| > 0. Such that (i) for all β ∈ B,

m(z, β, p0) is continuous at β and m(z, β, p0) ≤ b(z); (ii) ||m(z, β, p) −

m(z, β, p0)|| ≤ b̃(z)(||p− p0||)ε.

A8 E {m(z, β, p0)} = 0 has a unique solution on B at β0.

A9 For β ∈ interior(B), (i) there are ε > 0 and a neighborhood N of β0

such that for all ||p − p0|| ≤ ε, m(z, β, p) is differentiable in β on N ; (ii)

Mβ = −E
{
∂m(Z,β0,p0(X))

∂β

}
is nonsingular; (iii) E[||m(z, β, p)||2] < ∞; (iv)

Assumption A7 is satisfied with m(z, β, p) equaling to each row of ∂m(Z,β,p)
∂β

.

A6 is an adaption of Newey‘s Assumption 5.1. This assumption requires that the

high order term from a linear approximation is small. Combining (ii) in A6 and

(3.11), we have II in (3.10) converging to zero faster than n−1/2. A7, A8, and

A9 are adapted from Assumption 5.4, 5.5, and 5.6 in Newey (1994). They are

general conditions for the consistency and asymptotical normality for the method

of moment.

Let us define

M(Z) = E[D(Z, β0)|X](Y − p0(X)).

Then we have

Theorem 3.1. (Efficiency) Assuming A1-A9, for unconditional moment con-

dition E[m(Z, β0, p0(X))] = 0, p̂(·) is an isotonic estimator of the conditional

mean E(Y |X) = p0(X).
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Then β̂ obtained by solving the sample moment condition (3.2) is
√
n-consistent

and efficient, with
√
n(β̂ − β0)

d→ N(0, V ),

where

V = M−1
β E[{m(Z, β0, p0) +M(Z)}{m(z, β0, p0) +M(Z)}′]M−1

β .

The proof is in Appendix. It is based on a combination of techniques in Newey

(1994), Hirano, Imbens, and Ridder (2000, 2003), Groeneboom and Jongbloed

(2014), Groeneboom and Hendrickx (2018), and BGH.

We can apply Theorem 3.1 to the IPW model by using the isotonic regression to

estimate the propensity score.

Example 4 (b) continued: For the ATE model, we have m(Z, β, p(·)) =

Y ·T
p0(X)

− Y ·(1−T )
1−p(X)

− β. The p0(x) is the propensity score

p0(x) = E[T |X = x] = Pr(T = 1|X = x).

Let p̂(·) is the isotonic estimator of the propensity score. We are interested in the

plug-in estimator β̂:

β̂ =
1

n

n∑
i=1

{
Yi · Ti
p̂(Xi)

− Yi · (1− Ti)
1− p̂(Xi)

}
. (3.14)

Here we assume

C1 T⊥(Y (1), Y (0))|X, unconfoundedness.

C2 (i) The support X of X is convex and compact; (ii) the density of X is

bounded from 0 on X .

C3 (i) E(Y (0)2) < ∞ and E(Y (1)2) < ∞; (ii) µ0(x) := E(Y (0)|X = x) and

µ1(x) := E(Y (1)|X = x) are continuously differentiable for all x ∈ X .

C4 The true propensity score p0(x) satisfies: (i) p0(·) is continuous and monotone
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increasing; (ii) there exist positive numbers p and p̄, such that 1 > p̄ ≥

p0(x) ≥ p > 0 for all x ∈ X .

And we have

Corollary 3.1. Suppose Assumptions C1-C4 hold. The average treatment effect

estimator β̂ is obtained by (3.14). Then β̂
p→ β0, and

√
n(β̂ − β0)

d→ N(0,Ω),

where Ω = Var(E[Y (1)−Y (0)]|X)+E[Var(Y (1)|X)/p0(X)]+E[Var(Y (0)|X)/(1−

p0(X))]. β̂ reaches the semiparametric efficiency bound.

3.2.3 The case that p̂(·) depends on β

The isotonic estimator p̂(·) can depend on β in some cases, as we have seen

in the partially linear model. We use the notation p̂β(·) to represent such an

estimator. In this case, we might have a problem of finding a root for (3.2).

Since the isotonic estimator p̂β(·) is a step function, changes in β might also

cause discontinuous changes of p̂β(·). Groeneboom and Hendrickx (2018) and

BGH tried to solve this problem with a so-called zero-crossing root, a technique

dealing with discrete score-type functions. Then they found that it is non-trivial

to show the existence of zero-crossing root in finite samples. Balabdaoui and

Groeneboom (2020) proposed another method. They replaced the zero-crossing

root of a score function with the minimizer of its L2-norm. They showed that this

minimizer has the same properties as the zero-crossing root for the single index

model. We extend their methods to the general case of the method of moments.

Let pβ(X) be an isotonic estimator of the conditional mean E[T (Z, β)|X], where

T is a known function of data Z and the given parameter β. Let p̂β(·) be the

isotonic estimator of pβ(·). Note pβ0(·) = p0(·). An example of this case can be

the partially linear model, where T (Z, β) = Y − Xβ. A feasible version of the

plug-in estimator of β̂ w.r.t (3.2) can be

β̂ = argmin
β

∣∣∣∣∣∣∣∣ 1n
n∑
i=1

m(Zi, β, p̂β(Xi))

∣∣∣∣∣∣∣∣2, (3.15)
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where || · || is the Euclidean norm. To implement our method, we need to assume

the monotonicity holding in a neighbor of the true value β0. Let A1’ be the same

as A1, and we modify Assumptions A2 and A3:

A2’ There exists δ0 > 0 such that for each β ∈ B(β0, δ0), E(T (Z, β)|X = x) =

pβ(x) is monotone increasing in x and differentiable in β. There exists

K0 > 0 such that |p0(x)| < K0 for all x ∈ X .

A3’ There exist c0 > 0 and M0 > 0 such that E[|T (Z, β)|m|X = x] ≤ m!Mm−2
0 c0

for all integers m ≥ 2 and almost every x and β ∈ B(β0, δ0).

We have

Lemma 3.2. For fixed β, p̂β(X) is an isotonic estimator of the conditional mean

E(T (Z, β)|X). δ(X) is a bounded function of X with a finite total variation.

Under A1’ - A3’, we have 1
n

∑n
i=1 δ(Xi)(T (Z, β)− p̂β(X)) = op(n

−1/2).

To show the results of Lemma 3.2, we do not need to solve the root of a discrete

moment function. Therefore, the proof is similar to that of Lemma 3.1.

Similarly, let A4’ and A5’ be the same as A4 and A5, then we have

Proposition 3.2. (Sample moment function) Assuming A1’ - A5’, and

p0(·) is estimated with isotonic estimation and plugged into the moment condition

m(Z, β, p(·)). Then the semiparametric estimator β̂ estimated based on (3.15) is

similar to that estimated based on the minimizer of the L2-norm of its Neyman-

orthogonalized sample moment function, in the sense that
√
n(β̂ − β0) has the

same asymptotic distribution.

Now let (i) A6’ be the same as A6; (ii) A7’ to A9’ are modified versions of A7

to A9, where all the conditions in A7 to A9 satisfied with m(z, β, p) equaling to

m(z, β, pβ) :

A6’ There are b(z) > 0 andD(z, g) that (i) ||m(z, β, pβ)−m(z, β, p0)−D(z, β, pβ−

p0)|| ≤ b(z)||pβ−p0||2; (ii) E[b(Z)] = op(n
1/6(log n)−2), for all β ∈ B, where

B is compact.
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A7’ There are ε, b(z), b̃(z) > 0 and p(·) with ||p|| > 0. Such that (i) for all β ∈ B,

m(z, β, pβ) is continuous at β and m(z, β, pβ) ≤ b(z); (ii) ||m(z, β, p) −

m(z, β, pβ)|| ≤ b̃(z)(||p− pβ||)ε.

A8’ E {m(z, β, pβ)} = 0 has a unique solution on B at β0.

A9’ For β ∈ interior(B), (i) there are ε > 0 and a neighborhood N of β0 such

that for all ||p − p0|| ≤ ε, and m(z, β, p) is differentiable in β on N ; (ii)

Mβ = −E
{
dm(Z,β,pβ(X))

dβ

}
|β=β0 is nonsingular; (iii) E[||m(Z, β, pβ)||2] <∞;

(iv) Assumption A7 is satisfied with m(z, β, pβ) equaling to each row of

dm(Z,β,pβ)

dβ
.

Theorem 3.2. (Efficiency) Assuming A1’ - A9’, β̂ obtained by (3.15) is
√
n-

consistent and efficient.

3.3 Multi-dimensional X

The isotonic function is always a mapping from R to R. In order to have wide

applicability, the model should be able to deal with multivariate covariates. In

this section, we consider two different ways to combine the plug-in isotonic esti-

mator with multivariate covariates X: the monotone single index model and the

monotone additive model.

3.3.1 Plug-in monotone single index Model

For a kα-dimensional data sample X, A1 can be modified to

A1” X is a random vector taking value in the space X ⊂ Rkα . The space X is

convex with non-empty interiors, and satisfies X ⊂ B(0, R) for some R > 0.

We model the conditional mean function with E(Y |X) = p0(X) ≡ F0(X
′α0). For

identification, α0 is a kα-dimensional vector normalized with ||α0|| = 1.3 We have

3In the estimation, the constraint ||α0|| = 1 can be dealt with reparameterization or the
augmented Lagrange method by Balabdaoui and Groeneboom (2020). In this section, we
study our model without discussing those technical details. See BGH and Balabdaoui and
Groeneboom (2020) for more details.
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α0 ∈ Skα−1, the unit (kα − 1)-dimensional sphere.

In this case, we need to estimate both p0 and α0 in the first step, then plug them

into (3.2).

To estimate F0 and α0, we can apply the method of BGH. For a fixed α

F̂α = arg min
F∈M

1

n

n∑
i=1

{Yi − F (X ′iα)}2, (3.16)

where M is the set of monotone increasing functions defined on R. Then, F̂α(u)

can be solved with isotonic regression on the data points {ui}ni=1 = {X ′iα}ni=1.

Then α̂ can be estimated by minimizing the square sum of a score function. For

example, the simple score estimator in Balabdaoui and Groeneboom (2020) and

BGH is given by solving

α̂ = argmin
α
|| 1
n

n∑
i=1

X ′i{Yi − F̂α(X ′iα)}||2. (3.17)

Balabdaoui and Groeneboom (2020) and BGH showed that under certain assump-

tions, α̂ is a
√
n-consistent estimator for α0, and E

[
F̂α̂(X ′iα̂)− F0(X

′α0)
]2

=

OP ((log n)2n−2/3). We also include those assumptions in our framework.

We can also allow F̂ depend on β, as we did in Section 3.2.3. In this case, we

should replace Yi in (3.16) by T (Zi, β)

F̂α,β = arg min
F∈M

1

n

n∑
i=1

{T (Zi, β)− F (X ′iα)}2, (3.18)

where T (Zi, β) is differentiable in β. In the second step, we replace (3.17) with

(α̂, β̂) = argmin
α,β
|| 1
n

n∑
i=1

m(Zi, β, F̂α,β(X ′iα))||2.

Let kβ be the dimension of β and the moment condition m. To implement isotonic

estimation to the link function F0, we need that the monotonicity holds in the

neighbors of the true values α0 and β0. We denote θ = (α′, β′)′ ∈ Θ ≡ Skα−1×Rkβ .
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For fixed θ, we define Fθ(u) = Fα,β(u) = E(T (Z, β)|α′X = u). Let Fθ(·) =

Fθ(· ′α), and F0(·) = Fθ0(· ′α0). The assumption A2 is adapted to the current

setting:

A2” There exists δ0 > 0 that for each θ ∈ B(θ0, δ0), the true mean function

u 7→ E[T (Z, β)|X ′α = u] is monotone increasing in u and differentiable in

θ. There exists K0 > 0 such that |F0(·)| < K0 for all x ∈ X .

Now let A3” be the same as A3’. We have

Lemma 3.3. For fixed θ ∈ B(θ0, δ0), F̂θ(·) is obtained by solving (3.18). δ(u) is

a bounded function of u with a finite total variation. Under A1”-A3”, we have

1
n

∑n
i=1 δ(X

′
iα)(T (Zi, β)− F̂θ(X ′iα)) = op(n

−1/2).

A4 is modified to

A4” For all θ ∈ Θ, u 7→ E[D(Z, β)|X ′α = u] is a bounded function of u with

a finite total variation. There exist c1 > 0 and M1 > 0 such that for each

row of D(Z, β) (Dj(Z, β) with j ∈ {1 : kβ}), E[|Dj(Z, β)|m|X = x] ≤

m!Mm−2
1 c1 for all integers m ≥ 2 and almost every x.

Let A5” be the same as A5’. A6” to A7” are modified versions of A6 to A7:

A6” There are b(z) > 0 andD(z, g) that (i) ||m(z, β, Fθ)−m(z, β, F0)−D(z, β, Fθ−

F0)|| ≤ b(z)||Fθ−F0||2; (ii) E[b(Z)] = op(n
1/6(log n)−2), for all θ ∈ Θ, where

Θ is compact.

A7” There are ε, b(z), b̃(z) > 0 and F (·) with ||F || > 0. Such that (i) for all θ ∈

Θ, m(z, β, Fθ) is continuous at θ and m(z, β, Fθ) ≤ b(z); (ii) ||m(z, β, F )−

m(z, β, Fθ)|| ≤ b̃(z)(||F − Fθ||)ε.

Let m1(z, β, Fθ) = x (T (z, β)− Fθ(x′α)) and m∗(z, β, Fθ) =

 m(z, β, Fθ)

m1(z, β, Fθ)

.
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Furthermore, we define

Mα = −E
{

[D(Z, β0)− E(D(Z, β0)|X ′α0)]{X − E[X|X ′α0]}′F (1)
0 (X ′α0)

}
,

Mβ = −E
{
∂m(Z, β0, F0(X

′
iα0))

∂β
+ E[D(Z, β0)|X ′α0]

∂T (Z, β0)

∂β

}
,

Mθ = −E
{
dm∗(Z, β0, Fθ0)

dθ

}
, (3.19)

M(Z) = E(D(Z, β0)|X ′α0)(T (Z, β0)− F0(X
′α0)), (3.20)

and denote Mα,1 as Mα corresponding to the moment function m1. Then we have

the modified A8 and A9:

A8” E {m∗(z, β, Fθ)} = 0 has a unique solution on Θ at θ0.

A9” For θ ∈ interior(Θ), (i) there are ε > 0 and a neighborhood N of β0 such

that for all ||F − F0|| ≤ ε, m(z, β, F ) is differentiable in β on N ; (ii) Mβ

is nonsingular; (iii) Mα,1 has rank kα− 1, and Mθ has rank kα + kβ − 1 (iv)

E[||m∗(Z, β, Fθ)||2] < ∞; (v) Assumption A7 is satisfied with m(z, β, p)

equaling to each row of dm∗(z,β,Fθ)
dθ

.

Note β in A9”(i) is only about the second argument in m, since T (z, β) is assumed

to be differentiable in β. Then we have

Theorem 3.3. Suppose Assumptions A1”-A9” hold, then

√
n(α̂− α0)

d→ N(0, Vα) and
√
n(β̂ − β0)

d→ N(0, Vβ).

where

Vβ = M−1
β E[{m(Z, β0, p0) + A(Z) +M(Z)}{m(z, β0, p0) + A(Z) +M(Z)}′]M−1

β ,

Vα = M−
α,1E[{m1(Z, β0, p0) +B1(Z) +M1(Z)}{m1(Z, β0, p0) +B1(Z) +M1(Z)}′]M−

α,1,

where M−
α,1 is the Moore-Penrose inverse of Mα,1, and A, B1, and M1 are defined

in Appendix C.9.
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Example 2 continued: The simple score estimator (SSE) for the monotone

single index model of BGH can be regarded as an individual case of the es-

timator in Theorem 3.3, where m(Z, β0, F0(X
′α0)) = m1(Z, β0, F0(X

′α0)) =

X {Y − F0(X
′α0)}. Here β0 is absent from the model, thus B1(Z) = 0. We

have

T (Z, β0) = Y,

D(Z, β0) = −X,

E(D(Z, β0)|X ′α0) = −E(X|X ′α0),

M(Z) = M1(Z) = −E(X|X ′α0) {Y − F0(X
′α0)} , and

Mα = Mα,1 = −E
{

[X − E(X|X ′α0)][X − E(X|X ′α0)]
′F

(1)
0 (X ′α0)

}
.

Plugging these values into the formula of Vα, we can see it is the same as the

asymptotical variance of SSE in BGH.

3.3.2 Plug-in monotone additive model

We can also model the conditional mean function with an additive structure.

First we introduce some notations here. k is the dimension of the vector xi.

For j = 1, 2, ..., k, mj
0(·) is a strict monotone increasing function of a scalar xji .

We use xji to represent the j-th element of the observation i, with j = 1, ..., k,

and i = 1, ..., n; we use boldfaced xi to represent the k-dimensional vector of the

observation i, xi = {x1i , x2i , ..., xki }; we use the boldfaced xj to represent the vector

of all the j-row of our n × k matrix of covariates, xj = {xj1, x
j
2, ..., x

j
n}′, and the

boldfaced y = {y1, y2, ..., yn}′. We use the capitals Y,Xj
i ,Xi, and Xj to represent

the corresponding random variable or vectors. A slightly confusing notation is:

we use Xj (non-bold typeface) to represent the j-th element of the k-dimensional

random vector X, without specifying the index of the observation it belongs to.

The plug-in nuisance function is a conditional mean function of some random

scalar, Yi, say. It takes the form of

E(Yi|Xi) = c+m1
0(X

1
i ) + ...mk

0(Xk
i ). (3.21)
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Without loss of generality, we assume each mj
0 is supported on [0, 1]. To identify

each mj
0, we add the normalizing condition

∫ 1

0

mj
0(x

j)dxj = 0 for j = 1, 2, ..., k. (3.22)

The least square estimator of 3.21 can be defined as the minimizer of

arg min
c∈R1,{mj}kj=1∈M0

n∑
i=1

[
Yi − c−

k∑
j=1

mj(Xj
i )

]
, (3.23)

where M0 denotes the class of monotone increasing function satisfying (3.22). We

use {m̂j(·)}kj=1 to denote the estimator from (3.23). Its asymptotic properties were

discussed by Mammen and Yu (2007). Cheng (2009) and Yu (2014) extended their

results to the partially linear monotone additive model. The estimator {m̂j(·)}kj=1

can be obtained with backfitting, an iterative procedure that updates each time

a single sub-function with isotonic estimation while treating other sub-functions

as fixed. See Mammen and Yu (2007) for a literature review of backfitting. The

procedure is described here:

For a fixed sample {yi,xi}ni=1. To solve the problem (3.23), we can first solve the

following problem

min
G

n∑
i=1

(yi −
k∑
j=1

gji )
2, (3.24)

where G is a n× k matrix of real numbers gji , and each of its column, gj, being

an isotonic vector w.r.t to the ordered xj. For example, if k = 3 and n = 3, we

have

Y =


y1

y2

y3

 , x =


x11 x21 x31

x12 x22 x32

x13 x23 x33

 , and the estimator G =


g11 g21 g31

g12 g22 g32

g13 g23 g33

 .

If x12 > x11 > x13, then the isotonic estimator g1 should satisfy g12 > g11 > g13. Given

G solving the problem (3.24), the value of the estimated monotone function m̂ at

the point xji can be assigned with m̂(xji ) = gji − ḡj, where ḡj= 1
n

∑n
i=1 g

j
i that is
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needed for the normalization, and the estimated constant is ĉ =
∑k

j=1 ḡ
j. Since

there is a one-to-one relationship between gji and xji , we can rewrite gji = gj(xji ),

i.e, gj(·) is a monotone function defined on xj.

Let gj[r](·) denote the backfitting estimator of gj(·) updated at the r-th round of

the iteration. In the j-th step of the round r. We see that gj[r](·) is obtained by

regressing

{
Yi − g1[r](X1

i )− ....− gj−1[r] (Xj−1
i )− gj+1

[r−1](X
j+1
i )− ...gk[r−1](Xk

i )
}n
i=1

on {Xj
i }ni=1 with the isotonic regression. In each round and each step, we repeat

this type of isotonic regression recursively for r = 1, 2, ... and j = 1, ..., k. After

some stopping condition is satisfied, we can normalize these backfitting estimators

and obtain ĉ and m̂.

Now we incorporate this method into the estimation of the nuisance function of

the model (3.1). As in Section 3.2.3, we can also allow the estimation of the

additive monotone nuisance function to depend on β, i.e., we can replace Yi by

T (Zi, β).

Without loss of generality, A1” can be modified to

A1(3) X is a random vector taking value in the space [0, 1]k.

and A2 is modified to

A2(3) There exists δ0 > 0 and K0 > 0 that the mean function E[T (Zi, β)|Xi =

xi] = pβ(xi) is a sum of k monotone increasing functions mβ(·), i.e., pβ(xi) ≡

cβ +
∑k

j=1m
j
β(xji ) each β ∈ B(α0, δ0).

Let A3(3) be the same as A3’. Similarly, we have

Lemma 3.4. For fixed β, p̂β(Xi) ≡ ĉβ +
∑k

j=1 m̂β(Xj
i ) is an additive isotonic es-

timator of the conditional mean E(T (Zi, β)|Xi). δ(X) is a bounded function of X

with a finite total variation. Under A1(3) - A3(3), we have 1
n

∑n
i=1 δ(Xi)(T (Zi, β)−

p̂β(Xi)) = op(n
−1/2).
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The proof is in Appendix. It is based on Theorem 2 of Mammen and Yu (2007),

which states that for a given sample of size n, the backfitting estimator of the

problem (3.24) will converge to the least square estimator of this problem, with

r growing to ∞.

Now let (i) A4(3) to A9(3) are the same as A4’ to A9’. We use p0 to denote pβ0 ,

p0(xi) = c0 +
∑k

j=1m
j
0(x

j
i ). And we define

Mβ = −E
{
∂m(Z, β0, p0(X))

∂β
+ E[D(Z, β0)|X]

∂T (Z, β0)

∂β

}
, and

M(Zi) = E(D(Z, β0)|Xi)(T (Zi, β0)− p0(Xi)).

Theorem 3.4. Assuming A1 (3 ) - A9 (3 ), for unconditional moment condition

E[m(Z, β0, p0(X))] = 0, p̂β(·) is an additive isotonic estimator of the conditional

mean E(T (Zi, β)|Xi) = pβ(Xi) ≡ cβ +
∑k

j=1m
j
β(Xj

i ).

Then β̂ obtained by (3.15) is
√
n-consistent and

√
n(β̂ − β0)

d→ N(0, V ),

where V = M−1
β E[{m(Z, β0, p0) +M(Z)}{m(z, β0, p0) +M(Z)}′]M−1

β .

Example 1 continued: If we apply Theorem 3.4 to the partially linear mono-

tone additive model

Yi = Diβ0 + p0(Xi) + ε

= Diβ0 +
k∑
j=1

mj
0(X

j
i ) + ε with E[ε|X,D] = 0.

we can choose m(Z, β0, F0(X
′α0)) = Di

{
Yi − β0Di −

∑k
j=1m

j
0(X

j
i )
}

. For sim-
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plicity we set Di ∈ R1 then we have

T (Zi, β0) = Y − β0Di,

D(Zi, β0) = −Di,

E(D(Zi, β0)|Xi) = −E(Di|Xi),

∂m(Zi, β0, p0(Xi))

∂β
= −D2

i ,

∂T (Zi, β0)

∂β
= −Di,

Mβ = E [D(D − E(D|X))] = E
[
(D − E(D|X))2

]
,

M(Zi) = −E(Di|Xi)

{
Y − β0Di −

k∑
j=1

mj
0(X

j
i )

}
.

Then V = σ2E[(Di−E[Di|Xi])
2]−1. This variance is larger than that achieved in

Cheng (2009), which is σ2E[(Di −
∑k

j=1E[Di|Xj
i ])

2]−1, because he assumed the

pairwise independence of Xi. We do not have this assumption.

3.4 Bootstrap inference

An advantage of the proposed estimator β̂ is tuning-parameter-free. However,

since β̂ is a semiparametric estimator, its asymptotic variance involves conditional

means. The estimation of variances might still require some smoothing methods.

To obtain an estimator that is free from tuning parameters in both estimation

and inference, we propose a bootstrap method to approximate the asymptotic

distribution of β̂.

Groeneboom and Hendrickx (2017) showed the bootstrap validity of the single

index parameter in the current status model. We generalize their result to the

model (3.1).

The bootstrap procedure is:

1. {Z∗i }ni=1 is a resample with replacement from {Zi}ni=1.

2. p̂∗(·) is an isotonic estimator w.r.t. {Z∗i }ni=1.
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3. β̂∗ solves 1
n

∑n
i=1m(Z∗i , β, p̂

∗(·)) = 0 (or argmin
β

∣∣∣∣∣∣∣∣ 1n∑n
i=1m(Z∗i , β, p̂

∗
β(·))

∣∣∣∣∣∣∣∣2).
Theorem 3.5. Let β̂∗ be the bootstrap counterpart of β̂ in Theorem 3.1, 3.2 or

3.3, which are estimated based on resamples from the empirical distribution of

{Zi}ni=1. Suppose the corresponding assumptions for these theorems hold. Then

sup
t∈Rk
|P ∗{
√
n(β̂∗ − β̂) ≤ t} − P0{

√
n(β̂ − β0) ≤ t}| p→ 0,

where P ∗ is the bootstrap distribution conditional on the data.

3.5 Monte-Carlo Simulations

In this section, we conduct four Monte-Carlo simulations for the proposed esti-

mators.

3.5.1 Efficiency for IPW model with single covariates

We use two numerical results to show evidence that MAR model and ATE model

with univariate propensity score can achieve the semi-parametric efficiency bound.

This is in accordance with Corollary 3.1. We also show the bootstrap validity

under each setting.

3.5.1.1 Missing at random model

Example 4 (a) continued: The associated moment condition for the MAR

model is

E[m(Z, β0, p0(·))] = E(
Y · T
p0(X)

− β0) = 0.

Assuming that p0(·) is a monotone increasing function, we are interested in the

asymptotic properties of the plug-in estimator β̂:

β̂ =
1

n

n∑
i=1

yi · ti
p̂(xi)

,
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where p̂(·) is the isotonic estimator of the propensity score

p0(x) = E[T |X = x] = Pr(T = 1|X = x).

The semi-parametric bound for the estimate β̂ is Ω = Var(E[Y |X])+E[Var(Y |X)/p0(X)].

(See, e.g., Section 4.1 of Hirano, Imbens, and Ridder, 2000.)

We set X = 0.15 + 0.7Z, Z and ν are independently uniformly distributed on

[0, 1], and

Y = 2X + ε,

ε ∼ N(0, 1),

T =

0 if X < ν

1 if X ≥ ν

.

In this setting, we have

β0 ≡
∫
E(Y |X)dP (X) = E(2X) = 2× 0.5 = 1.

The efficient variance is

Ω = Var(E[Y |X]) + E[Var(Y |X)/p0(X)] = Var(2X) + E[1/p0(X)]

= 4 · 0.72

12
+

∫ 0.85

0.15

1

x

1

0.7
dx ≈ 2.63.

The Monte-Carlo simulation results are in Table 3.1:

Table 3.1: MAR model

n µ̂β n · σ̂2
β n µ̂∗β n · σ̂2∗

β

100 0.9966 2.9991 100 1.2044 1.3656

1000 0.9959 2.8373 1000 0.9879 2.8921

2000 0.9972 2.7514 2000 1.0721 2.4442

5000 0.9981 2.6845 5000 1.0259 2.4274

10000 0.9987 2.6625 10000 1.0233 2.6815

∞ 1 2.63 ∞ 1 2.63

64



The left panel of Table 3.1 shows the simulation results based on 5000 Monte-

Carlo replications. The sample sizes are n = 100, 1000, 2000, 5000 and 10000.

We present the Monte Carlo averages µ̂β, and variances σ̂2
β (multiplied by n) of

the estimates of β0. We can see with the sample size growing, both µ̂β and σ̂2
β

are converging to their theoretical limit.

In the right panel, we present the corresponding simulation results based on 5000

bootstrap samples, across the same set of sample sizes. µ̂∗β and variances σ̂2∗
β are

defined similarly. Since all the bootstrap samples are originated from one Monte-

Carlo sample, the pattern of biases and variances looks less stable than those in

the left panel, as expected. Nevertheless, µ̂∗β and σ̂2∗
β are still converging to their

theoretical limit.

3.5.1.2 Average treatment effect model

Example 4 (b) continued: The efficient asymptotical variance for ATE model

is Ω = Var(E[Y (1) − Y (0)]|X) + E[Var(Y (1)|X)/p0(X) + E[Var(Y (0)|X)/(1 −

p0(X))]. (See, e.g., Section 4.2 of Hirano, Imbens, and Ridder, 2000.)

We set X = 0.15 + 0.7Z, Z and ν are independently uniformly distributed on

[0, 1], and

T =

0 if X < ν

1 if X ≥ ν

,

Y = 0.5T + 2X + ε,

ε ∼ N(0, 1).

The average treatment effect

β0 = 0.5.
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The efficient variance

Ω2 = Var(E[Y (1)− Y (0)]|X) + E[Var(Y (1)|X)/p0(X)] + E[Var(Y (0)|X)/(1− p0(X))]

= Var(0.5) + E[1/p0(X)] + E[1/(1− p0(X))]

= 0 +

∫ 0.85

0.15

1

x

1

0.7
dx+

∫ 0.85

0.15

1

1− x
1

0.7
dx

≈ 2× 2.47 = 4.94.

The Monte-Carlo simulation results are in Table 3.2:

Table 3.2: ATE model

n µ̂β n · σ̂2
β n µ̂∗β n · σ̂2∗

β

100 0.4242 6.0707 100 0.6692 2.9584

1000 0.4846 5.3859 1000 0.4794 5.8949

2000 0.4900 5.2478 2000 0.5702 5.2076

5000 0.4943 4.9404 5000 0.5013 4.8445

10000 0.4964 4.9492 10000 0.4920 5.3305

∞ 0.5 4.94 ∞ 0.5 4.94

All the simulation settings are similar to those of Table 3.1. In general, Monte-

Carlo averages and variances for both original and bootstrap samples converge

to their theoretical limits.

Table 3.3: Bootstrap coverage rates

n 90% CI 95% CI

100 0.852 0.913

1000 0.885 0.942

2000 0.878 0.940

5000 0.893 0.947

∞ 0.90 0.95

Table 3.3 shows the bootstrap coverage rates. We draw 2000 Monte-Carlo sim-

ulations, and for each simulation we draw 500 bootstrap samples. The coverage
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rates are calculated with these 2000 sets of confidence intervals for both 90% and

95% confidence levels. From Table 3.3, we see clear trends that the bootstrap

coverage rates are converging to their theoretical limits. Overall, the simulation

outcomes for MAR, ATE, and bootstrap are in accordance with our theoretical

results in the previous section.

3.5.2 Comparison with parametric plug-in estimators

3.5.2.1 With correctly specified parametric models

Here we compare the performances of two average treatment effect estimators,

whose propensity scores are estimated with probit estimation and isotonic esti-

mation. We consider the following setting:

Y = X ′γ0 + T · β0 + ε,

T =

0 if X ′α0 < ν

1 if X ′α0 ≥ ν

, (3.25)

where X
i.i.d.∼ U [−1, 1]3. ε and v are independently distributed standard nor-

mal random variables. Under this setting, we have Pr(T = 1|X = x) =

p0(x) = Φ(x′α0), where Φ is the CDF of the standard normal distribution.

α′0 = (1, 1, 1)/
√

3, β0 = 0.5 and γ′0 = (0.1, 0.2, 0.3). The propensity score is

correctly specified in a probit estimation. We are interested in the average treat-

ment effect β0.

Table 3.4: ATE of the model (3.25) with plug-in probit and isotonic estimators

probit normalized probit isotonic

n µ̂β n · σ̂2
β n·MSE µ̂β n · σ̂2

β n·MSE µ̂β n · σ̂2
β n·MSE

100 0.5018 5.9972 5.9975 0.5045 5.7167 5.7187 0.4823 5.8732 5.9047

1000 0.5025 5.2794 5.2855 0.5025 4.9949 5.0010 0.4956 5.0885 5.1081

2000 0.4996 5.4129 5.4133 0.4997 5.0820 5.0822 0.4951 5.1846 5.2330

5000 0.5004 5.4781 5.4788 0.5006 5.2139 5.2154 0.4982 5.2466 5.2634

10000 0.5002 5.3383 5.3388 0.5004 5.0288 5.0303 0.4987 5.0643 5.0807
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Table 3.4 shows the simulation results based on 5000 Monte-Carlo replications.

The sample sizes are n = 100, 1000, 2000, 5000, and 10000. The variances

and MSE’s are scaled with n. In the left panel and the right panel, the ATE

estimators β̂ are calculated with (3.14), where the inversed propensity weights

are not normalized. In the middle panel, we normalize the weights to unity, i.e.,

β̂ =
1

n

n∑
i=1

{
Yi · Ti
p̂(Xi)

/

(
n∑
i=1

Ti
p̂(Xi)

)
− Yi · (1− Ti)

1− p̂(Xi)
/

(
n∑
i=1

1− Ti
1− p̂(Xi)

)}
.

From Table 3.4, we can see that the ATE with isotonic plug-in estimators (the

right panel) outperforms the ATE with correctly specified parametric plug-in

estimators without normalization (the left panel), in every sample size. If we

normalize the parametrically estimated propensity scores, the probit models per-

form better, as pointed out by Imbens (2004). With the sample size growing,

the performance of the ATE with isotonic plug-in estimators are converging to

those with correctly specified parametric plug-in estimators with normalization

(the middle panel). With n = 10000, they are very close to each other. We can

conclude that our semiparametric method performs similarly to the parametric

method under the correct model specification.

3.5.2.2 Robustness

Compared to the popular choice of parametric models for propensity scores, such

as the binary probit model or logit model, the proposed semiparametric estimator

is robust to the model specification. Considering the following setting:

Y = X3 · γ0 + T · β0 + ε (3.26)

with Pr(T = 1|X = x) = x3/10 + 0.5, (3.27)

where ε ∼ N(0, 1) and is independent from X and T , γ0 = 1, and β0 = 0.5.

X ∼ U [−1.5, 1.5]. Figure 3.1 compares the function (3.27), the CDF of the

standard normal distribution and the logistic function.
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Figure 3.1: Normal CDF, logistic function, and the DGP (3.27)

The dotted black line is the DGP (3.27). The solid red line is the CDF of standard normal,

y = Φ(a+ x). The dashed blue line is the logistic function, Pr(T = 1|X = x) = exp(a+bx)
exp(a+bx)+1 .

In this figure for both parametric models, a = 0 and b = 1. Three lines intersect at [0, 1/2].

The idea of (3.27) is to find a monotone increasing function, which cannot be well

approximated by the common choices of parametric models, such as the probit

model or the logit model. The function (3.27) is convex for x > 0 and concave

for x < 0. If we use Pr(T = 1|X = x) = exp(a+bx)
exp(a+bx)+1

to approximate this function,

we have an almost linear fitted line. See Figure 3.2

Figure 3.2: The function (3.27) fitted with logistic function

The dotted black line is the DGP (3.27). The dashed blue line is fitted with the logistic

function, y = exp(a+bx)
exp(a+bx)+1 .

While this line roughly fits the quasi-linear part of the function (3.27) (the part
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around zero), the difference becomes large for |x| > 1.2. If the outcome y has

large values far from zero, as the case in (3.26), we might have large estimation

bias. Table 3.5 confirms this conjecture.

Table 3.5: ATE estimated with logistic and isotonic plug-in estimator

logistic isotonic

n µ̂β n · σ̂2
β n·MSE µ̂β n · σ̂2

β n·MSE

1000 0.5930 5.6958 14.3380 0.4735 5.0426 5.7442

2000 0.6044 5.6533 27.4569 0.4824 4.8256 5.4446

5000 0.6153 5.5104 71.9331 0.4886 4.6304 5.2748

Table 3.5 shows the simulation results based on 5000 Monte-Carlo replications.

The sample sizes are n = 1000, 2000, and 5000. The variances and MSE’s are

scaled with n. In the left panel, the propensity score is estimated with the logistic

function Pr(T = 1|X = x) = exp(a+bx)
exp(a+bx)+1

; in the right panel, the propensity score

is estimated with the isotonic estimation. We can see that the misspecified logit

model cannot lead to satisfying estimators, and it presents stable biases and

growing MSE’s. The right panel with isotonic plug-in estimators does not suffer

from this issue and have stable performances across different sample sizes.

3.5.3 Comparison with other non-parametric plug-in es-

timators: smoothness conditions

√
n−consistency and efficiency can also be achieved with series or kernel plug-in

estimators. However, tuning parameters should be carefully chosen, such that

the high-order residual term and bias term disappear at fast rates. Moreover, the

smoothness conditions for the nuisance function can sometimes be demanding.

For ATE estimators, Hirano, Imbens, and Ridder (2003) require that

p0(x) is continuously differentiable of order s ≥ 7.
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Compared to our assumption:

p0(x) is monotone increasing.

We even do not need continuity. Let’s consider

Y = X · γ0 + T · β0 + ε,

p0(x) = Pr(T = 1|X = x) = 0.1 + 0.8× 1(x > −1), (3.28)

where ε ∼ N(0, 1) and independent from X and T , γ0 = 1, and β0 = 0.5.

X ∼ U [−1.5, 1.5]. We see from (3.28) that p0(x) is a step probability function

with a jump point at −1. Figure 3.3 describe p0(x) and curves fitted with series

estimator and isotonic estimator.

Figure 3.3: The function (3.28) fitted with series estimators and isotonic estima-

tors

The sample size n = 1000. The black dotted lines are the function (3.28). The blue dashed

lines are series estimators. The red lines are isotonic estimators. In the left panel the series

length k = 3. In the right panel the series length k = 6.

We see that series estimators cannot fit the discrete function (3.28) very well,

while isotonic estimators do good jobs.4 The results are collected in Table 3.6.

It compares ATE estimates with series and isotonic plug-in estimators based on

5000 Monte Carlo replications. The sample sizes are n = 100, 1000, 2000, 5000,

and 10000. The MSE’s are scaled with n. Series estimations are conducted with

4We acknowledge that parametric sigmoid-CDF-type link functions, such as Gaussian and
Logistic functions, can also approximate the step function (3.28) well if the scale of the sigmoid
shrinks to 0. However, we would like to point out that (i) in this subsection, we mainly focus
on the comparison with non-parametric plug-in estimator; (ii) the parametric models might no
longer work well if there are multiple jump points.
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different series lengths ranging from 3 to 6.

Table 3.6: ATE estimated with series and isotonic plug-in estimator

series isotonic

length 3 4 5 6 –

n µ̂β n·MSE µ̂β n·MSE µ̂β n·MSE µ̂β n·MSE µ̂β n·MSE

100 0.01 488.48 0.57 100.40 0.56 89.05 0.46 258.53 0.29 22.09

1000 -0.35 1637.11 0.43 72.82 0.44 73.97 0.42 229.40 0.42 19.28

2000 -0.49 3341.69 0.43 67.86 0.44 69.87 0.41 198.41 0.44 19.68

5000 -0.64 8470.42 0.43 82.86 0.45 68.90 0.37 241.87 0.46 20.59

10000 -0.73 17814.28 0.43 112.95 0.45 76.43 0.35 384.80 0.47 21.07

We can see that estimates with the series length 4 and 5 perform comparatively

well, but their MSE’s are still considerably larger than those with isotonic plug-

in estimators, and the biases of them seem not to shrink with the sample size

growing. In comparison, the estimates with isotonic plug-in estimators in the

right panel perform the best: MSE’s are much lower, and with the sample size

growing, biases are shrinking towards zero. Overall, Table 3.6 highlights two

merits of the proposed method: (i) it saves us the bother of selecting the tuning

parameter that delivers the best result; (ii) its performances remain stable and

well in the case of non-smooth monotone nuisance functions.

3.6 Application

Since the work of LaLonde (1986), National Supported Work (NSW) data and

its different variations were analyzed by many authors, including Dehejia and

Wahba (1999, 2002), Smith and Todd (2005), and Dehejia (2005). We follow the

setting in Dehejia and Wahba (1999) (hereafter, DW). The data is downloaded

from the website of Rajeev Dehejia (http://users.nber.org/˜rdehejia/).

3.6.1 Data description

The dataset is a combination of observations from NSW and two other datasets,

Panel Study of Income Dynamics (PSID) and the Current Population Survey
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(CPS). In the NSW dataset, the treatment was randomly assigned, and thus the

ATE estimator calculated from the NSW dataset can be regarded as unbiased

and serve as a benchmark. Since no observation in PSID and CPS was treated,

the dataset, which combines the treated observations from NSW and the observa-

tions from PSID and CPS, can be regarded as a non-experimental dataset. The

comparison of estimators from the NSW dataset and this combined dataset can

be used to evaluate the non-experimental methods.

DW presents estimators from combinations of the NSW treated group and dif-

ferent subsets of PSID and CPS. In our application, we use the PSID-2 as the

control group, which is the second row of Table 3 in DW.

3.6.2 Estimation results

We choose the same set of covariates for the subset PSID-2 as DW. The details

are in the description under DW’s Table 3. Given these covariates, we estimate

ATE and ATT with plug-in logistic estimators and isotonic estimators. In Table

3.7, we compare these four estimators with those obtained by DW for the same

dataset.

Table 3.7: NSW-PSID2 estimation

Method Propensity score β̂ se(β̂)

NWS random (benchmark) — 1,794 633

DW’s stratifying estimator logistic 2,220 1,768

DW’s matching estimator logistic 1,455 2,303

IPW ATE estimator logistic 1,888 2,175

IPW ATE estimator isotonic 1,841 1,723

IPW ATT estimator logistic 1,870 1,149

IPW ATT estimator isotonic 1,802 1,496

The first three rows are from DW’s Table 3. The last four rows are from our calculations. The

standard errors are calculated with bootstrap.

All the estimators from non-experimental data have comparatively large standard
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deviations. This is in line with the results of other authors analyzing this dataset.

Compared to other non-experimental estimators, the ATE and ATT estimators

with isotonic plug-in estimators seem to be closer to the benchmark estimator

in the first row. While the standard deviation of the ATT estimator with the

isotonic plug-in estimator is larger than its counterpart with the logistic plug-in

estimator, the standard deviation of the ATE estimator with the isotonic plug-in

estimator is smaller than its counterpart. Overall, the application results support

our estimation strategy.

3.7 Conclusion

We study a general framework of semiparametric estimation with plug-in isotonic

estimators. We show that the proposed estimator is
√
n-consistent and asymptot-

ically normal. In the univariate case, the estimator is efficient. It generalizes the

estimation methods of existing semiparametric models with monotone nuisance

functions in the literature. Furthermore, we apply the estimator to the case of

inverse probability weighting for ATE models, where the propensity scores are

assumed to be monotone increasing. In this setting, the monotonicity assump-

tion is a natural implication of the binary selection model and characterize many

parametric models widely adopted in applied work.

We show that while the proposed estimator has a similar performance to meth-

ods with parametric plug-in estimators under correct specifications, it is more

robust against misspecification than the latter. Compared to methods with other

nonparametric plug-in estimators, the newly proposed method requires minimum

smoothness conditions on nuisance functions. Finally, we establish the asymptotic

validity of the bootstrap, which ensures that the estimator is tuning-parameter-

free in both estimation and inference.
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Appendix A

Proofs for Chapter 1

A.1 Proof of Theorem 1.1

Notation: We use the following notation. Let ||Gn||F = supf∈F |
√
n(Pn−P0)f |,

|| · ||B,P0 be the Bernstein norm under a measure P0,

HB(ε,F , || · ||B,P0) = logN[](ε,F , || · ||B,P0),

be the entropy of the ε-bracketing number of the function class F under || · ||B,P0 ,

and

Jn(δ) = Jn(δ,F , || · ||B,P0) =

∫ δ

0

√
1 +HB(ε,F , || · ||B,P0)dε.

A.1.1 Proof of existence and consistency

For fixed α and β (γ is also fixed by the uniqueness of reparameterization S(·), so

is θ). Let ψθ(u) = E[Y −X ′β|Z ′α = u], which can be written as (by E[ε|Z] = 0)

ψθ(u) = E[ψ0(Z
′α0)|Z ′α = u] + (β0 − β)′E[X|Z ′α = u]. (A.1)

A similar argument to Theorem 5 of BGH implies that θ̂ exists with probability

approaching one. We now show the consistency of θ̂. Since θ̂ = θ̂n is estimated

in a compact set, there exists a subsequence {θ̂nk}k∈N of {θ̂n}n∈N almost surely
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converging to some point θ∗ = (β∗′, γ∗′)′. By Proposition 4 in BGH combined

with θ̂nk
as→ θ∗, we have

∫ {
ψ̂nk θ̂nk

(z′S(γ̂nk))− ψθ∗(z′S(γ∗))
}2

dP0(z)
p→ 0.

Also by Proposition 9 in supplementary material of BGH (hereafter BGH-supp),

the zero-crossing θ̂ becomes a root of the continuous limiting function, i.e.,

φnk(θ̂nk)
p→ φ(θ∗) = 0,

as k →∞, where φ(θ) =
∫  x

J(γ)′z

 {y−x′β−ψθ(z′S(γ))}dP0(x, y, z), and the

equality follows from the definition of zero-crossing and the continuity of ψθ(·).

Then we have

0 = (θ0 − θ∗)′φ(θ∗)

= (θ0 − θ∗)′
∫  x

J(γ∗)′z

 x′β0 + ψ0(z′S(γ0))− x′β∗

−{E[ψ0(Z′S(γ0))|z′S(γ∗)] + (β0 − β∗)′E[X|z′S(γ∗)]}

 dP0(x, z)

=

 β0 − β∗

γ0 − γ∗

′ ∫  x− E[X|z′S(γ∗)]

J(γ∗)′{z − E[Z|z′S(γ∗)]}

 (β0 − β∗)′{x− E[X|z′S(γ∗)]}

+ψ0(z′S(γ0))− E[ψ0(Z′α0)|z′S(γ∗)]

 dP0(x, z)

= E
[
Cov[(β0 − β∗)′X + (γ0 − γ∗)′J(γ∗)′Z, (β0 − β∗)′X + ψ0(Z

′S(γ0))|Z′S(γ∗)]
]

= E
[
Cov[(β0 − β∗)′X + Z′(S(γ0)− S(γ∗)) + o(γ0 − γ∗), (β0 − β∗)′X + ψ0(Z

′S(γ0))|Z′S(γ∗)]
]

= E
[
Cov[(β0 − β∗)′X + Z′(S(γ0)− S(γ∗)), (β0 − β∗)′X + ψ0(Z

′S(γ0))|Z′S(γ∗)]
]
+ o(γ0 − γ∗),

where the second equality follows from (A.1), the third equality follows from

the law of iterated expectations, the fifth equality follows from an expansion of

S(γ0) around γ0 = γ∗, and the last equality follows from A1. Therefore, by A6,

0 = (θ0 − θ∗)′φ(θ∗) holds true only if θ∗ = θ0, and the consistency of θ̂ follows.

A.1.2 Proof of asymptotic normality

The proof is split into several steps.
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Step 1: Derive a decomposition of φn(θ̂)

For each θ = (β′, γ′)′, let ui = z′iS(γ) and {unj ,θ}kj=1 be the subsequence of {ui}ni=1

representing all the jump points of ψ̂nθ(·). By the construction of ψ̂nθ(·) (see,

Lemmas 2.1 and 2.3 in Groeneboom and Jongbloed, 2014), we have
∑nj+1−1

i=nj
{yi−

x′iβ − ψ̂nθ(ui)} = 0 for each j = 1, . . . , k, which means

k∑
j=1

mj

nj+1−1∑
i=nj

{yi − x′iβ − ψ̂nθ(ui)} = 0, (A.2)

for any weights {mj}kj=1. As in BGH, we define for W = X or Z,

Ēn,θ[W |u] = Ēn,θ[W |z′S(γ)] =


E[W |Z ′S(γ) = unj ] if ψθ(u) > ψ̂nθ(unj ) for all u ∈ (unj , unj+1)

E[W |Z ′S(γ) = s] if ψθ(u) = ψ̂nθ(s) for some s ∈ (unj , unj+1)

E[W |Z ′S(γ) = unj+1 ] if ψθ(u) < ψ̂nθ(unj ) for all u ∈ (unj , unj+1),

(A.3)

for u ∈ [unj , unj+1
) with j = 1, . . . , k (if j = k, set unj+1

= max
i
uni). By (A.2),

it holds

∫
Ēn,θ̂[W |z

′S(γ)]{y − x′β̂ − ψ̂nθ̂(z
′S(γ̂))}dPn(x, y, z) = 0, (A.4)

for W = X and Z. Thus, φn(θ̂) can be decomposed as

φn(θ̂) = Tn

∫
V x,z
I,n {y − x

′β̂ − ψ̂nθ̂(z
′S(γ̂)}dPn(x, y, z)

+ Tn

∫
V x,z
II,n{y − x

′β̂ − ψ̂nθ̂(z
′S(γ̂)}dPn(x, y, z)

= Tn(I + II), (A.5)

where Tn =

 Ik 0

0 J(γ̂)′

,

V x,z
I,n =

 x− E[X|z′S(γ̂)]

z − E[Z|z′S(γ̂)]

 , V x,z
II,n =

 E[X|z′S(γ̂)]− Ēn,θ̂[X|z′S(γ̂)]

E[Z|z′S(γ̂)]− Ēn,θ̂[Z|z′S(γ̂)]

 .
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Step 2: Show II = op(n
−1/2) + op(θ̂ − θ0)

Note that the term II can be decomposed as

II =

∫
V x,z
II,n{y − x

′β̂ − ψ̂nθ̂(z
′S(γ̂))}d(Pn − P0)(x, y, z)

+

∫
V x,z
II,n{y − x

′β̂ − ψθ̂(z
′S(γ̂))}dP0(x, y, z) +

∫
V x,z
II,n{ψθ̂(S(γ̂))− ψ̂nθ̂(z

′S(γ̂))}dP0(x, y, z)

= IIa + IIb + IIc.

First, we consider IIa. Note that Lemma 13 of BGH-supp and Lemma A.1 imply

the following (A.6) and (A.7), with probability approaching one:

HB(ε, F̃a, || · ||B,P0) ≤
C1

ε
, (A.6)

for some C1 > 0, where F̃a = (C2 log n)−1Fa with some C2 > 0 and Fa is defined

in (A.29) below. Also, there exists a constant C3 > 0 such that

||f̃ ||B,P0 ≤ C3(log n)n−1/3, (A.7)

for all f̃ ∈ F̃a. Let δn = C3(log n)n−1/3 and IIa,j be the j-th component of IIa.

For any positive constants A and ν, there exist positive constants K1, B1, and

B2, such that K = K1 log n and

P{|IIa,j| > An−1/2} = P

{
|IIa,j| > An−1/2, sup

θ∈B(θ0,δ0)
sup
z∈Z
|ψ̂nθ(z)| ≤ K

}
+
ν

2

≤ P

{
||Gn||Fa > A, sup

θ∈B(θ0,δ0)
sup
z∈Z
|ψ̂nθ(z)| ≤ K

}
+
ν

2

≤
E[||Gn||Fa | supθ∈B(θ0,δ0) supz∈Z |ψ̂nθ(z)| ≤ K]

A
+
ν

2

=
1

AC2 log n
E[||Gn||F̃a | sup

θ∈B(θ0,δ0)
sup
z∈Z
|ψ̂nθ(z)| ≤ K] +

ν

2

.
1

AC2 log n
Jn(δn)

(
1 +

Jn(δn)√
nδ2n

)
+
ν

2

.
log n

A
(δn + 2B

1/2
1 δ1/2n )

(
1 +

δn + 2B
1/2
1 δ

1/2
n√

nδ2n

)
+
ν

2

.
1

A
(log n)3/2n−1/6

(
1 +

B2

(log n)3/2

)
+
ν

2

. ν,
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for all n large enough, where the first equality follows from Lemma 8 in BGH-

supp, the first inequality follows from the definition of Fa (in (A.29)), the second

inequality follows from the Markov inequality, the second equality follows from

the definition of F̃a, the first wave inequality (.) follows from van der Vaart and

Wellner (1996, Lemma 3.4.3) and the definition of δn, the second wave inequality

follows from (A.6) and Equation (.2) in BGH-supp, the third wave inequality

follows from δn . δ
1/2
n and the definition of δn. Therefore,

IIa = op(n
−1/2). (A.8)

Next, we consider IIb. Note that (see Lemma 17 in BGH-supp)

∂

∂αj
E[ψ0(Z

′α0)|Z ′α = z′α]

∣∣∣∣
α=α0

= {zj − E[Zj|Z ′α = z′α0]}ψ′0(z′α0), (A.9)

for j = 1, . . . , d. Using an expansion around γ̂ = γ0 with (A.9) and E[ψ0(Z
′S(γ0))|z′S(γ0)] =

ψ0(z
′S(γ0)), we have

E[ψ0(Z
′S(γ0))|z′S(γ̂)] = ψ0(z

′S(γ0))+(γ̂−γ0)′J(γ̂)′{z−E[Z|z′S(γ0)]}ψ′0(z′S(γ0))+op(γ̂−γ0).

(A.10)

Then we have

IIb =

∫
V x,z
II,n

 (β0 − β̂)′{x− E[X|z′S(γ̂)]}

+ψ0(z
′S(γ0))− E[ψ0(Z

′α0)|z′S(γ̂)]

 dP0(x, z)

=

∫
V x,z
II,n

 (β0 − β̂)′{x− E[X|z′S(γ̂)]}

−(γ̂ − γ0)′J(γ0)
′{z − E[Z|z′S(γ0)]}ψ′0(z′S(γ0)) + op(γ̂ − γ0)

 dP0(x, z)

= −
∫
V x,z
II,n

 x− E[X|z′S(γ0)]

J(γ0)
′{z − E[Z|z′S(γ0)]}ψ′0(z′S(γ0))

′ dP0(x, z)

 β̂ − β0

γ̂ − γ0

+ op(γ̂ − γ0)

= op(θ̂ − θ0), (A.11)

where the first equality follows from E[ε|X,Z] = 0 and (A.1), the second equality

follows from (A.10), and the last equality comes from
∫
V x,z
II,ndP0(x, z) = op(1) and

boundedness of the functions x−E[X|z′S(γ0)] and J(γ0)
′{{z−E[Z|z′S(γ0)]}ψ′0(z′S(γ0))}.

Finally, we consider IIc. Since E[W |z′S(γ)] has totally bounded derivative for
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W = X and Z by A4, there exists C0 > 0 such that

|E[W |Z ′S(γ) = u]− Ēn,θ[W |Z ′S(γ) = u] ≤ C0|ψθ(u)− ψ̂nθ(u)|, (A.12)

for each θ ∈ B(θ0, δ0) and u ∈ Iα. By this, we obtain

||IIc|| = ||
∫
V x,z
II,n{ψθ̂(z

′S(γ̂))− ψ̂nθ̂(z
′S(γ̂))}dP0(x, z)||

.
∫
{ψθ̂(z

′S(γ̂))− ψ̂nθ̂(z
′S(γ̂))}2dP0(z)

= Op((log)2n−2/3) = op(n
−1/2), (A.13)

uniformly in θ ∈ B(θ0, δ0), where the second equality follows from Proposition 4

in BGH. Combining (A.8), (A.11), and (A.13), we conclude that

II = op(n
−1/2) + op(θ̂ − θ0).

Step 3: Decompose I

The term I can be decomposed as

I =

∫
V x,z
I,n {y − x

′β̂ − ψθ̂(z
′S(γ̂)}dP0(x, y, z)

+

∫
V x,z
I,n {y − x

′β̂ − ψθ̂(z
′S(γ̂)}d(Pn − P0)(x, y, z)

+

∫
V x,z
I,n {ψθ̂(z

′S(γ̂))− ψ̂nθ̂(z
′S(γ̂))}dPn(x, y, z) (A.14)

= Ia + Ib + Ic.

In the following steps, we show that

TnIa = −T0
∫
Vx,zV

′
x,zψ′dP0(x, z)T

′
0(θ̂ − θ0) + op(θ̂ − θ0), (A.15)

TnIb = T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z)

+op(θ̂ − θ0) + op(n
−1/2), (A.16)

Ic = op(n
−1/2). (A.17)
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Step 4: Show (A.15)

Ia =

∫
V x,z
I,n

 (β0 − β̂)′{x− E[X|z′S(γ̂)]}

+ψ0(z
′S(γ0))− E[ψ0(Z

′α0)|z′S(γ̂)]

 dP0(x, z)

=

∫
V x,z
I,n

 (β0 − β̂){x− E[X|z′S(γ̂)]}

−(γ̂ − γ0)′J(γ0)
′{z − E[Z|z′S(γ0)]}ψ′0(z′S(γ0)) + op(γ̂ − γ0)

 dP0(x, z)

= −
∫
Vx,zV

′
x,z,ψ′dP0(x, z)T

′
0

 β̂ − β0
γ̂ − γ0

+ op(γ̂ − γ0), (A.18)

where the the first equality follows from E[ε|X,Z] = 0 and (A.1), and some

rearrangement, the second equality follows from (A.10), and the last equality

follows from the definition of Vx,z,ψ′ and the fact that for W = X or Z, we have

E[W |z′S(γ̂)]− E[W |z′S(γ0)] = Op(γ̂ − γ0). Now, (A.15) follows by

Tn − T0 = Op(γ̂ − γ0). (A.19)

Step 5: Show (A.16)

Decompose

TnIb = Tn

∫
V x,z
I,n {y − x

′β̂ − ψθ̂(z
′S(γ̂)}d(Pn − P0)(x, y, z)

= (Tn − T0)
∫
V x,z
I,n {y − x

′β̂ − ψθ̂(z
′S(γ̂)}d(Pn − P0)(x, y, z)

+T0

∫
V x,z
I,n {x

′β0 − x′β̂ + ψ0(z
′S(γ0))− ψθ̂(z

′S(γ̂))}d(Pn − P0)(x, y, z)

+T0

∫
(V x,z

I,n − Vx,z){y − x
′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z)

+T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z)

= (Tn − T0)Ib1 + T0Ib2 + T0Ib3

+T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z).
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First, consider Ib1. Note that Lemma 13 BGH-supp and Lemma A.2 imply the

following (A.20) and (A.21):

HB(ε,Fb1, || · ||B,P0) ≤
C1

ε
, (A.20)

for some C1 > 0, where Fb1 is defined in (A.31). Also, there exists a constant

C2 > 0 such that

||f ||B,P0 ≤ C2, (A.21)

for all f ∈ Fb1. Let Ib1,j be the j-th component of Ib1. For any A > 0, there

exists a positive constant C such that

P{|Ib1,j| > An−1/2} ≤ 1

A
E[||Gn||Fb1 ] .

1

A
Jn(C2)

(
1 +

Jn(C2)√
nC2

2

)
.
C

A
,

for all n large enough, where the first inequality follows from the definition of Fb1
and the Markov inequality, the first wave inequality follows from van der Vaart

and Wellner (1996, Lemma 3.4.3), and the second wave inequality follows from

(A.20), (A.21), and Equation (.2) in BGH. Thus, we have

Ib1 = Op(n
−1/2). (A.22)

Next, consider Ib2. Let Ib2,j be the j-th component of Ib2. For any positive

constants A, ν, and η, there exist positive constants C ′, C3, C4, and C5 such that

P{|Ib2,j| > An−1/2} ≤ 1

A
E[||Gn||Fb2|Bη] +

ν

2
.

1

A
Jn(C ′η)

(
1 +

Jn(C ′η)√
n(C ′η)2

C3

)
+
ν

2

.
1

A
C4η

1/2

(
1 +

C5(1 + η1/2)√
n(C ′η)3/2

C3

)
+
ν

2
, (A.23)

for all n large enough, where the event Bη is defined in Lemma A.3. The first in-

equality follows from Lemma A.3, the definition of Fb2 in (A.33), and the Markov

inequality, the first wave inequality follows from van der Vaart and Wellner (1996,

Lemma 3.4.2) and Lemma A.3 (by choosing C ′ and η as therein), C3 is a con-

stant envelope of Fb2, and the second wave inequality follows from Lemma A.3

and Equation (.2) in BGH-supp. Since we can choose η arbitrarily small, it holds

Ib2 = op(n
−1/2). (A.24)
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Finally, consider Ib3. This is similar to the case of Ib1 but with one difference,

V x,z
I,n − Vx,z = op(1). Therefore we can use the same methods as for Ib2 to find a

upper bound of the L2-norm (as we did in the proof of Lemma A.3 and (A.23).)

Thus, we have

Ib3 = op(n
−1/2). (A.25)

Combining (A.22), (A.24), and (A.25) with (A.19), we obtain (A.16).

Step 6: Show (A.17)

Decompose

Ic =

∫
V x,z
I,n {ψθ̂(z

′S(γ̂))− ψ̂nθ̂(z
′S(γ̂))}dP0(x, y, z)

+

∫
V x,z
I,n {ψθ̂(z

′S(γ̂))− ψ̂nθ̂(z
′S(γ̂))}d(Pn − P0)(x, y, z)

= Ic1 + Ic2,

For Ic1, the law of iterated expectation yields

Ic1 = E

E
 X − E[X|Z ′S(γ̂)]

Z − E[Z|Z ′S(γ̂)]

∣∣∣∣∣∣Z ′S(γ̂)

 {ψθ̂(Z ′S(γ̂))− ψ̂nθ̂(Z
′S(γ̂))}

 = 0.

(A.26)

Now consider Ic2. For any positive constants A and ν, there exist positive con-

stants C1, C2, and C ′ such that

P{|Ic2| > An−1/2} ≤ C1

A
(log n)1/2η1/2n

(
1 +

C1(log n)3/2η
1/2
n√

nη2n

)
+
ν

2

≤ C2

A
(log n)n−1/6 +

ν

2
≤ ν,

for all n large enough and ηn = C ′(log n)n−1/3, where the first inequality follows

by Lemma A.4 and a similar argument to (A.23), and the second inequality follows

from the definition of ηn. Thus, we have Ic2 = op(n
−1/2), and obtain (A.17).
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Step 7: Conclusion

From Steps 1-6, we obtain

0 = φn(θ̂)

= −T0
∫
Vx,zV

′
x,z,ψ′dP0(x, z)T

′
0(θ̂ − θ0)

+T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z) + op(n
−1/2) + op(θ̂ − θ0).

With B defined in A7, the central limit theorem implies

√
n(θ̂ − θ0) =

√
nB−1T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z)

+op(1 +
√
n(θ̂ − θ0)) (A.27)

d→ N(0,Π).

A.1.3 Lemmas

In this subsection, we use the following notations:

MRK = {monotone non-decreasing functions on [−R,R] and bounded by K},

GRK = {g : g(z) = ψθ(α
′z), z ∈ Z, (ψ, θ) ∈MRK × B(θ0, δ0)},

DRKv = {d : d(z) = g1(z)− g2(z), (g1, g2) ∈ G2RK , ||d(z)||P0 ≤ v},

HRKv = {h : h(ỹ, z) = ỹd1(z)− d2(z), (d1, d2) ∈ D2
RKv, (ỹ, z) ∈ R×Z}.(A.28)

A.1.3.1 Lemma for IIa

Let Wj be the j-th component of X or Z. Then decompose

{E[Wj|z′S(γ̂)]− Ēn,θ̂[Wj|z′S(γ̂)]}{y − xβ̂ − ψ̂nθ̂(z
′S(γ̂))}

= {E[Wj|z′S(γ̂)]− Ēn,θ̂[Wj|z′S(γ̂)]}{y − xβ̂}

−{E[Wj|z′S(γ̂)]− Ēn,θ̂[Wj|z′S(γ̂)]}ψ̂nθ̂(z
′S(γ̂))

= d1(z){y − xβ̂} − d2(z).
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Let

Fa =
{
f : f(x, y, z) = d1(z){y − xβ̂} − d2(z), (x, y, z) ∈ X × R×Z

}
, (A.29)

be a function class of the integrand of IIa. To control the term IIa, we use the

following lemma.

Lemma A.1. For some K ′ ' log n and positive constant v, it holds

Fa ⊂ HRK′v,

with probability approaching one.

Proof. We use the following facts.

a) By A4, E[Wj|z′S(γ̂)] is a bounded function with a finite total variation.

b) Ēn,θ̂[Wj|z′S(γ̂)] is a discrete version of E[Wj|z′S(γ̂)] takes finite different

values from it, so it is also bounded and has a finite total variation.

c) By Lemma 8 in BGH-supp, maxθ̂∈B(θ0,δ0) supz∈Z |ψ̂nθ̂(z′S(γ̂))| = Op(log n).

Thus, there exists K = K1 log n such that ψ̂nθ̂ ∈ MRK with probability

approaching to 1.

d) By Proposition 4 in BGH and (A.12), ||E[Wj|z′S(γ̂)]− Ēn,θ̂[Wj|z′S(γ̂)]||2 ≤

C1(log n)n−1/3 for some C1 > 0.

e) The addition or multiplication of two functions with finite total variations

is a function with a finite total variation.

Then by Jordan’s decomposition and a), b), d), and e), there exist a positive

constant C0 larger than twice the bound of E[Wj|z′S(γ̂)] and v1 = C1(log n)n−1/3

such that

d1(·) ∈ DRC0v1 , (A.30)

with probability approaching 1. Additionally, c) and d) imply d2(·) ∈ DRK′v with

K ′ = K2 log n for a large enough constant K2 > 0 and v = C2(log n)2n−1/3 for

some C2 > 0. Now, since v1 . v and C0 . K ′, setting ỹ = y−xβ̂ in the definition

of HRKv in (A.28) yields the conclusion.
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A.1.3.2 Lemma for Ib1

Let Wj (and wj) be the j-th component of X or Z (x or z), ỹ = y − xβ̂ as in

Lemma A.1, and

Fb1 =
{
f : f(wj, y, z) = {wj−E[Wj|z′S(γ̂)]}{ỹ−ψθ̂(z

′S(γ̂)}, (wj, y, z) ∈ Wj×R×Z
}
,

(A.31)

be a function class of the j-th component of the integrand of Ib1. To control the

term Ib1, we use the following lemma.

Lemma A.2. For some positive constants C and v, it holds

Fb1 ⊂ HRCv,

with probability approaching 1.

Proof. We use the following facts.

a) wj is bounded by [−R,R].

b) By A4, E[Wj|z′S(γ̂)] is a function bounded by [−R,R] and has a finite total

variation.

c) By A1, A3, and (A.1), ψθ̂ is a bounded monotone function.

Let d1(z
′S(γ̂)) = E[Wj|z′S(γ̂)] and d2(z

′S(γ̂)) = E[Wj|z′S(γ̂)]ψθ̂(z
′S(γ̂)). Any

function in Fb1 can be expressed as

{wj − E[Wj|z′S(γ̂)]}{y − x′β̂ − ψθ̂(z
′S(γ̂)}

= wj{y − x′β̂ − ψθ̂(z
′S(γ̂)}+ d1(z

′S(γ̂))(y − x′β̂)− d2(z′S(γ̂)). (A.32)

By b) and c), we have

d1(·) ∈ DRC0v1 ,

for C0 defined in (A.30), which is larger than twice the bound of E[Wj|z′S(γ̂)],

and some v1, which is larger than the L2-norm of a constant function R (the
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upper bound in A1) on a compact support. Additionally, we have

d2(·) ∈ DRC1v2 ,

for some positive constants C1 and v2. Therefore, by setting ỹ = y − xβ̂ in the

definition of HRKv in (A.28), the second and third terms in (A.32) satisfy

d1(z
′S(γ̂))(y − x′β̂)− d2(z′S(γ̂)) ∈ HRC1v1 .

With similar steps we have:

wj{y − x′β̂ − ψθ̂(z
′S(γ̂)} ∈ HRC′1v

′
1
,

for some positive constants C ′1 and v′1. By choosing C ≥ max(C1, C
′
1) and v ≥

max(v1, v
′
1), the conclusion follows.

A.1.3.3 Lemma for Ib2

Let

Fb2 =

{
f : f(wj, x, z) ={wj − E[Wj|z′S(γ̂)]}{x′β0 − x′β̂ + ψ0(z

′S(γ0)− ψθ̂(z
′S(γ̂)}

, (wj, x, z) ∈ Wj ×X×Z
}
, (A.33)

be a function class of the integrand of Ib2,j, the j-th component of Ib2. To control

the term Ib2, we use the following lemma.

Lemma A.3.

For any positive constant η, we define the event Bη as

Bη =

{
sup

x,z∈X×Z,θ̂∈B(θ0,δ0)
|x′β0 − x′β̂ + ψ0(z

′S(γ0))− ψθ̂(z
′S(γ̂))| ≤ η

}
.

1. For some C > 0, it holds HB(ε,Fb2, || · ||P0) ≤ C
ε

.

2. For any positive constants ν and η, it holds P (Bη) ≥ 1− ν
2

for all n large

enough.
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3. In case of the event Bη, there exists C ′ > 0 such that ||f ||2 ≤ C ′η for all

f ∈ Fb2.

Proof. Both E[Wj|z′S(γ̂)] and ψ0(z
′S(γ0)) − ψθ̂(z

′S(γ̂)) are bounded functions

with finite total variations. Thus, they should have entropy of order C1

ε
for some

C1 > 0. Also, both wj and (x′β0 − x′β̂) are bounded. Thus, they should have

entropy of order C2

ε
for some C2 > 0 (see, Example 19.7 in van der Vaart, 2000).

Combining these results, the statement (1) follows. The consistency of θ̂ and

Lemma 19 of BGH-supp imply the statement (2). The statement (3) follows

from the definition of Fb2.

A.1.3.4 Lemma for Ic2

Let

Fc2 =
{
f : f(wj, z) = {wj−E[Wj|z′S(γ̂)]}{ψθ̂(z

′S(γ̂))−ψ̂nθ̂(z
′S(γ̂))}, (wj, z) ∈ Wj×Z

}
,

be a function class of the integrand of Ic2,j, the j-th component of Ic2. To control

the term Ic2, we use the following lemma.

Lemma A.4.

1. For some C > 0, it holds HB(ε,Fc2, || · ||P0) ≤ C logn
ε

with probability ap-

proaching 1.

2. There exists a C ′ > 0 such that ||f ||P0 ≤ C ′(log n)n−1/3 for all f ∈ Fc2.

Proof. We use the following facts.

a) wj is bounded by [−R,R].

b) By A4, E[Wj|z′S(γ̂)] is a function bounded by [−R,R] and has a finite total

variation.

c) By A1, A3, and (A.1), ψθ̂ is a bounded monotone function.
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d) By Lemma 8 in BGH-supp, supz∈Z |ψ̂nθ̂(z′S(γ̂))| = Op(log n). Therefore

there exists K = K1 log n such that ψ̂nθ̂ ∈MRK with probability approach-

ing to 1.

So, in the case that ψ̂nθ̂ ∈MRK :

1) {ψθ̂(z′S(γ̂))− ψ̂nθ̂(z′S(γ̂))} is bounded by K +R with a finite variation.

2) E[Wj|z′S(γ̂)]{ψθ̂(z′S(γ̂)) − ψ̂nθ̂(z
′S(γ̂))} is bounded by R(K + R) with a

finite variation, and the function class has an entropy of order C1 logn
ε

for

some C1 > 0.

3) From Lemma 10 of BGH-supp (by taking wj as β in that lemma) and 1)

above, the function class of wj{ψθ̂(z′S(γ̂))− ψ̂nθ̂(z′S(γ̂))} has an entropy of

order C2 logn
ε

for some C2 > 0.

From 2) and 3), the conclusion follows.

A.2 Proof of Theorem 1.2

Existence and consistency of θ̃ can be shown similarly as in Appendix A.1.1. The

rest of the proof is split into several steps.

Step 1: Derive a decomposition of ξnh(θ̃)

In the same spirit of Step 1 of Appendix A.1.2, we introduce a piecewise constant

function ρ̄n,θ. Let {unj}kj=1 be all the jump points of the monotone LSE ψ̂nθ(u).
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We define for u ∈ [unj , unj+1
) (if j = k, set unj+1

= max
i
uni)

ρ̄n,θ(W |u) = ρ̄n,θ(W |Z ′S(γ))

=



ρ̄n,θ(X|u) =


E[X|Z ′S(γ) = unj ] if ψθ(u) > ψ̂nθ(unj ) for all u ∈ (unj , unj+1),

E[X|Z ′S(γ) = s] if ψθ(u) = ψ̂nθ(s) for some s ∈ (unj , unj+1),

E[X|Z ′S(γ) = unj+1 ] if ψθ(u) < ψ̂nθ(unj ) for all u ∈ (unj , unj+1),

ρ̄n,θ(Z|u) =


E[Z|Z ′S(γ) = unj ]ψ

′
θ(unj ) if ψθ(u) > ψ̂nθ(unj ) for all u ∈ (unj , unj+1),

E[Z|Z ′S(γ) = s]ψ′θ(s) if ψθ(u) = ψ̂nθ(s) for some s ∈ (unj , unj+1),

E[Z|Z ′S(γ) = unj+1 ]ψ′θ(unj+1) if ψθ(u) < ψ̂nθ(unj ) for all u ∈ (unj , unj+1).

Similar to (A.12), we have for each θ ∈ B(θ0, δ0)

|E[Z|Z ′S(γ) = u]ψ′θ(u)− ρ̄n,θ(Z|u)| ≤ C0|ψθ(u)− ψ̂nθ(u)|. (A.34)

Similar to (A.4), we have

∫
ρ̄n,θ̃(W |z

′S(γ)){y − x′β̃ − ψ̂nθ̃(z
′S(γ̃))}dPn(x, y, z) = 0,

for W = X and Z. Thus, ξnh(θ̃) can be decomposed as

ξnh(θ̃) = Tn

∫
V x,z
I,nh,ψ′{y − x

′β̃ − ψ̂nθ̃(z
′S(γ̃)}dPn(x, y, z)

+ Tn

∫
V x,z
II,n{y − x

′β̃ − ψ̂nθ̃(z
′S(γ̃)}dPn(x, y, z)

= Tn(IE + IIE),

where Tn =

 Ik 0

0 J(γ̃)′

, and

V x,zI,nh,ψ′ =

 x− E[X|z′S(γ̃)]

zψ̂′
nh,θ̃

(z′S(γ̃))− E[Z|z′S(γ̃)]ψ′
θ̃
(z′S(γ̃))

 , V x,zI,n,ψ′ =

 x− E[X|z′S(γ̃)]

[z − E[Z|z′S(γ̃))]ψ′
θ̃
(z′S(γ̃))

 ,

Vx,z,ψ′ =

 x− E[X|z′S(γ0)]

[z − E[Z|z′S(γ0))]ψ′0(z′S(γ0))

 ,

V x,zII,n =

 E[X|z′S(γ̃)]− ρ̄n,θ̃(X|z′S(γ̃))

E[Z|z′S(γ̃)]ψ′θ(z
′S(γ̃)− ρ̄n,θ̃(Z|z′S(γ̃))

 .

Note: Tn and V x,z
II,n are redefined for θ̃ in Appendix A.2.
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Step 2: Show IIE = op(n
−1/2) + op(θ̃ − θ0)

Decompose

IIE =

∫
V x,z
II,n{y − x

′β̃ − ψ̂nθ̃(z
′S(γ̃))}d(Pn − P0)(x, y, z)

+

∫
V x,z
II,n{y − x

′β̃ − ψθ̃(z
′S(γ̃))}dP0(x, y, z)

+

∫
V x,z
II,n{ψθ̃(z

′S(γ̃))− ψ̂nθ̃(z
′S(γ̃))}dP0(x, y, z)

= IIEa + IIEb + IIEc .

First, we consider IIEa . By A8, ψ′θ(z
′S(γ̃)) is uniformly bounded with a bounded

total variation. Therefore, E[Z|z′S(γ̃)]ψ′θ(z
′S(γ̃)) is also uniformly bounded with

a bounded total variation, and all the arguments in Step 2 of Appendix A.1.2 can

be applied to show IIEa = op(n
−1/2).

Next, we consider IIEb . For the redefined V x,z
II,n, we still have

∫
V x,z
II,ndP0(x, z) =

op(1) and boundedness of the functions x− E[X|z′S(γ0)] and

J(γ0)
′{{z − E[Z|z′S(γ0)]}ψ′0(z′S(γ0))}. Thus the same argument as in in Step 2

of Appendix A.1.2 yields IIEb = op(θ̃ − θ0).

Finally, we consider IIEc . By (A.12) and (A.34), the same argument in Step 2

of Appendix A.1.2 implies IIEc = op(n
−1/2). Combining these results, we obtain

IIE = op(n
−1/2) + op(θ̃ − θ0).

Step 3: Decompose IE

Note that

IE = Tn

∫
V x,z
I,nh,ψ′{y − x

′β̃ − ψ̂nθ̃(z
′S(γ̃)}dPn(x, y, z)

=

∫
V x,z
I,nh,ψ′{y − x

′β̃ − ψθ̃(z
′S(γ̃)}dP0(x, y, z)

+

∫
V x,z
I,nh,ψ′{y − x

′β̃ − ψθ̃(z
′S(γ̃)}d(Pn − P0)(x, y, z)

+

∫
V x,z
I,nh,ψ′{ψθ̃(z

′S(γ̃))− ψ̂nθ̃(z
′S(γ̃))}dPn(x, y, z)

= IEa + IEb + IEc .
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In the following steps, we show that

TnI
E
a = −T0

∫
Vx,z,ψ′V

′
x,zψ′dP0(x, z)T

′
0(θ̃ − θ0) + op(θ̃ − θ0), (A.35)

TnI
E
b = T0

∫
Vx,z,ψ′{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z)

+op(θ̃ − θ0) + op(n
−1/2), (A.36)

IEc = op(n
−1/2). (A.37)

Step 4: Show (A.35)

Decompose

IEa =

∫
V x,z
I,n,ψ′{y − x

′β̃ − ψθ̃(z
′S(γ̃)}dP0(x, y, z)

+

∫  0

z ˆ[ψ′nh,θ̃(z
′S(γ̃))− ψ′

θ̃
(z′S(γ̃))]

 {y − x′β̃ − ψθ̃(z′S(γ̃)}dP0(x, y, z)

= IEa1 + IEa2.

By a similar argument as in (A.18), we have

IEa1 = −
{∫

Vx,z,ψ′V
′
x,z,ψ′dP0(x, z)

}
T ′0(θ̃ − θ0) + op(θ̃ − θ0).

and

IEa2 = −


∫  0

z{ψ̂′nh,θ̃(z′S(γ̃))− ψ′
θ̃
(z′S(γ̃))}

V ′x,z,ψ′dP0(x, z)

T ′0(θ̃−θ0)+op(θ̃−θ0).

From ψ̂′
nh,θ̃

(z′S(γ̃)) − ψ′
θ̃
(z′S(γ̃)) = op(1), V ′x,z,ψ′ = Op(1), and the compact sup-

ports of x and z, it holds IEa2 = op(θ̃ − θ0). Thus, we obtain (A.35).
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Step 5: Show (A.36)

Decompose

TnI
E
b = Tn

∫
V x,z
I,n,ψ′{y − x

′β̃ − ψθ̃(z
′S(γ̃)}d(Pn − P0)(x, y, z)

+Tn

∫  0

z{ψ̃′
nh,θ̃

(z′S(γ̃))− ψ′
θ̃
(z′S(γ̃))}

 {y − x′β̃ − ψθ̃(z′S(γ̃)}d(Pn − P0)(x, y, z)

= TnI
E
b1 + TnI

E
b2.

By similar steps as in Step 5 of Appendix A.1.2 combined with A8, we can derive

TnI
E
b1 = T0

∫
Vx,z,ψ′{y−x′β0−ψ0(z

′S(γ0)}d(Pn−P0)(x, y, z)+op(θ̃−θ0)+op(n−1/2).

By Lemma 23 in BGH-supp, the analysis for TnI
E
b2 is similar to the one for Ib3 in

Step 5 of Appendix A.1.2. Therefore, we have TnI
E
b2 = op(n

−1/2), and (A.36) is

obtained.

Step 6: Show (A.37)

Decompose

IEc =

∫
V x,z
I,nh,ψ′{ψθ̃(z

′S(γ̃))− ψ̂nθ̃(z
′S(γ̃))}dP0(x, y, z)

+

∫
V x,z
I,nh,ψ′{ψθ̃(z

′S(γ̃))− ψ̂nθ̃(z
′S(γ̃))}d(Pn − P0)(x, y, z)

= IEc1 + IEc2.

For IEc1, note that

IEc1 =

∫
V x,z
I,n,ψ′{ψθ̃(z

′S(γ̃))− ψ̂nθ̃(z
′S(γ̃))}dP0(x, y, z)

+

∫  0

z{ψ̂′
nh,θ̃

(z′S(γ̃))− ψ′
θ̃
(z′S(γ̃))}

 {ψθ̃(z′S(γ̃))− ψ̂nθ̃(z
′S(γ̃))}dP0(x, y, z)

=

∫  0

E[Z|u]
{

1
h

∫
K
(
u−x
h

)
dψ̂nθ̃(x)− ψ′

θ̃
(u)
}

 {ψθ̃(u)− ψ̂nθ̃(u)}dP0(u),

(A.38)
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where the last equality follows from a similar argument in (A.26), a change of

variables u = z′S(γ̃), and the definition of ψ̂nh,θ̃(u). We know E[Z|u] = O(1) and∫
{ψθ̃(u) − ψ̂nθ̃(u)}2dP0(u) = Op((log n)2n−2/3) by Proposition 4 in BGH. Also

note that

1

h

∫
K

(
u− x
h

)
dψ̂nθ̃(x)− ψ′

θ̃
(u)

=
1

h

∫
K

(
u− x
h

)
d(ψ̂nθ̃(x)− ψθ̃(x)) +

1

h

∫
K

(
u− x
h

)
dψθ̃(x)− ψ′

θ̃
(u)

= − 1

h2

∫
K ′
(
u− x
h

)
(ψ̂nθ̃(x)− ψθ̃(x))dx+

1

h

∫
K

(
u− x
h

)
dψθ̃(x)− ψ′

θ̃
(u),

(A.39)

where the second equality follows from integration by parts and A9. With small h,

1
h2

∫
K ′
(
u−x
h

)
(ψ̂nθ̃(x)−ψθ̃(x))dx ∼ 1

h
(ψ̂nθ̃(u)−ψθ̃(u)). And 1

h

∫
K
(
u−x
h

)
dψθ̃(x)−

ψ′
θ̃
(u) is a typical bias term of a kernel estimator, which is of order h2 by A9.

Plugging (A.39) into (A.38), the Cauchy-Schwarz inequality and A9 imply

IEc1 = Op((log n)2n−2/3) ·Op(n
1/7) +Op((log n)n−1/3) ·Op(n

−2/7) = op(n
−1/2).

(A.40)

For IEc2, A8 and Lemma 23 in BGH-supp imply that both zψ̂′
nh,θ̃

(z′S(γ̃)) and

E[Z|z′S(γ̃)]ψ′
θ̃
(z′S(γ̃)) are bounded with finite total variation. By a similar ar-

gument to Step 6 of Appendix A.1.2, we have IEc2 = op(n
−1/2). Combined with

(A.40), we obtain (A.37).

Step 7: Conclusion

From Steps 1-6 above, we obtain

0 = ξnh(θ̃)

= −T0
∫
Vx,z,ψ′V

′
x,z,ψ′dP0(x, z)T

′
0(θ̃ − θ0)

+T0

∫
Vx,z,ψ′{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z) + op(θ̃ − θ0) + op(n
−1/2).
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With BE defined in A7, the central limit theorem implies

√
n(θ̃ − θ0) =

√
nB−1E T0

∫
Vx,z,ψ′{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z)

+op(1 +
√
n(θ̃ − θ0))

d→ N(0,ΠE).

A.3 Proof of Theorem 1.3

Here we adapt the relevant proof in Groeneboom and Hendrickx (2017) (hereafter

GH) to the monotone partially linear single index model. Let φ∗n(·) be the score

function in the bootstrap sample. By definition (1.4),

φ∗n(θ̂∗) =

∫ (
x

J(γ̂∗)′z

)
{y − x′β̂∗ − ψ̂∗nθ̂∗(z

′S(γ̂∗))}dP̂n(x, y, z),

where P̂n is the empirical measure. Suppose

φ∗n(θ̂∗) = −B(θ̂∗ − θ0) + T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(P̂n − Pn)(x, y, z) (A.41)

+T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(Pn − P0)(x, y, z) + oPM (n−1/2 + (θ̂∗ − θ0)).

where PM is defined in p. 3450 of GH. Then with φ∗n(θ̂∗) = 0 and (A.27), we have

√
n(θ̂∗ − θ̂) =

√
nB−1T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(P̂n − Pn)(x, y, z)

+oPM (1 +
√
n(θ̂∗ − θ0))

d→ N(0,Π),

and the conclusion follows by Theorem 1.1.

It remains to prove (A.41). Similarly to Proposition 4 in BGH and (6.21) in GH,

we can obtain the L2-rate as

sup
θ

∫
{ψ̂∗nθ(z′S(γ))− ψθ(z′S(γ)}2dP̂n(x, y, z) = OPM (n−2/3).
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Define

T ∗n =

 Ik 0

0 J(γ̂)∗′

 , V x,zI∗,n =

 x− E[X|z′S(γ̂∗)]

z − E[Z|z′S(γ̂∗)]

 , V x,zII∗,n =

 E[X|z′S(γ̂∗)]− Ēn,θ̂[X|z
′S(γ̂∗)]

E[Z|z′S(γ̂∗)]− Ēn,θ̂[Z|z
′S(γ̂∗)]

 ,

where Ē∗n,θ[W |u] is similarly defined as in (A.3). With similar arguments in Steps

1 and 2 in Section A.1.2, we can show that

φ∗n(θ̂∗) = T ∗n

∫
V x,z
I∗,n{y−x

′β̂∗−ψ̂∗nθ̂∗(z
′S(γ̂∗))}dP̂n(x, y, z)+oPM (n−1/2+(θ̂∗−θ0)).

(A.42)

For the first term of (A.42),

T ∗n

∫
V x,z
I∗,n{y − x

′β̂∗ − ψ̂∗nθ̂∗(z
′S(γ̂∗))}dP̂n(x, y, z)

= T ∗n

∫
V x,z
I∗,n{y − x

′β̂∗ − ψ̂∗nθ̂∗(z
′S(γ̂∗))}d(P̂n − Pn)(x, y, z)

+T ∗n

∫
V x,z
I∗,n{y − x

′β̂∗ − ψ̂∗nθ̂∗(z
′S(γ̂∗))}dPn(x, y, z)

= T ∗nI
∗ + T ∗nII

∗.

T ∗nI
∗ is the bootstrap version of TnIb in (A.16). Therefore, with a similar argu-

ments in Step 5 of Section A.1.2, we have

T ∗nI
∗ = T0

∫
Vx,z{y − x′β0 − ψ0(z

′S(γ0)}d(P̂n − Pn)(x, y, z) + oPM (n−1/2 + (θ̂∗ − θ0)).

(A.43)

T ∗nII
∗ is actually the first item of (A.5), TnI, evaluated at θ̂∗. It can be decom-

posed as in (A.14). With similar argument from Step 3 to Step 6 in Section A.1.2,

we have

T ∗nII
∗ = −T0

∫
Vx,zV

′
x,z,ψ′dP0(x, z)T ′0(θ̂∗ − θ0)

+T0

∫
Vx,z{y − x′β0 − ψ0(z′S(γ0)}d(Pn − P0)(x, y, z) + oP (n−1/2 + (θ̂∗ − θ0))

= −B(θ̂∗ − θ0) + T0

∫
Vx,z{y − x′β0 − ψ0(z′S(γ0)}d(Pn − P0)(x, y, z) (A.44)

+oPM (n−1/2 + (θ̂∗ − θ0)),

where the last equality follows from the definition of B and the fact that any

item of order oP (n−1/2 + (θ̂∗ − θ0)) will be of order oPM (n−1/2 + (θ̂∗ − θ0)).

Combining (A.42), (A.43), and (A.44), we have (A.41).
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Appendix B

Proofs for Chapter 2

B.1 Proof of Theorem 2.1

Here we denote ĝ0i = ĝi(β0), S0 = S(β0), and J0 = J(β0).

Note that (i) X has a bounded support (by Assumption A1), (ii) max |Yi| =

Op(log n) (by Assumption A2 and Lemma 7.1 of Balabdaoui, Durot and Jankowski,

2019), and

(iii) supx∈X |ψ̂β0(x′S0)| = Op(log n) by Lemma 8 of the supplementary material

of BGH (hereafter BGH-supp). Combining these results, it holds

max
1≤i≤n

|ĝ0i| = Op(log n). (B.1)

Thus, an expansion of (2.8) around λ̂ = 0 using the same argument in Owen

(1991, proof of Theorem 2) based on (B.1) implies

λ̂ =

[
1

n

n∑
i=1

ĝ0iĝ0i
′

]−1
1

n

n∑
i=1

ĝ0i + op(n
−1/2). (B.2)
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A second-order expansion of (2.7) around λ̂ = 0 using (B.2) yields

`(β0) = 2λ̂′
n∑
i=1

ĝ0i − λ̂′
[

n∑
i=1

ĝ0iĝ
′
0i

]
λ̂+ op(1)

=

(
1√
n

n∑
i=1

ĝ0i

)′ [
1

n

n∑
i=1

ĝ0iĝ
′
0i

]−1(
1√
n

n∑
i=1

ĝ0i

)
+ op(1).

Then it is enough for the conclusion to show that

1

n

n∑
i=1

ĝ0iĝ
′
0i

p→ V = J′0E[ε2XX ′]J0, (B.3)

1√
n

n∑
i=1

ĝ0i
d→ N(0,Σ). (B.4)

We first show (B.3). Decompose

1

n

n∑
i=1

ĝ0iĝ
′
0i = J′0

[
1

n

n∑
i=1

ε2iXiX
′
i

]
J0 + J′0

[
1

n

n∑
i=1

{ψ0(X
′
iS0)− ψ̂β0(X ′iS0)}2XiX

′
i

]
J0

+J′0

[
2

n

n∑
i=1

εi{ψ0(X
′
iS0)− ψ̂β0(X ′iS0)}XiX

′
i

]
J0. (B.5)

By the law of large numbers, the first term of (B.5) converges to V ; by Proposition

4 of BGH and Assumption A1, the second term converges to zero; by p.23 of

BGH-supp and Assumption A1, the third term converges to zero. Combining

these results, we obtain (B.3).

We now show (B.4). Let Pn be the empirical measure of {Xi, Yi}ni=1, P0 be the

true measure of (X, Y ), and

E[X|x′S0] = E[X|X ′S0 = u] evaluated at u = x′S0.
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Decompose

1

n

n∑
i=1

ĝ0i = J′0
∫
x{y − ψ̂β0(x′S0)}dPn(y, x)

= J′0
∫
{x− E[X|x′S0]}{y − ψ̂β0(x′S0)}dPn(y, x)

+J′0
∫
{E[X|x′S0]− Ēn(x′S0)}{y − ψ̂β0(x′S0)}dPn(y, x)

+J′0
∫
Ēn(x′S0){y − ψ̂β0(x′S0)}dPn(y, x)

= J′0(I + II + III),

where

Ēn(u) =


E[X|x′S0 = τi,S0 ] if ψ0(u) > ψ̂β0(u) for all u ∈ (τi, τi+1),

E[X|x′S0 = s] if ψ0(s) = ψ̂β0(s) for some s ∈ (τi, τi+1),

E[X|x′S0 = τi+1,S0 ] if ψ0(u) < ψ̂β0(u) for all u ∈ (τi, τi+1),

(B.6)

and τi,S0 is the sequence of jump points of ψ̂β0 . By the definition of Ēn(x′S0), it

holds III = 0 (see, (C.10) in BGH-supp).

For II, decompose

II =

∫
{E[X|x′S0]− Ēn(x′S0)}{y − ψ̂β0(x′S0)}d(Pn − P0)(y, x)

+

∫
{E[X|x′S0]− Ēn(x′S0)}{y − ψβ0(x′S0)}dP0(y, x)

+

∫
{E[X|x′S0]− Ēn(x′S0)}{ψ̂β0(x′S0)− ψ0(x

′S0)}dP0(y, x)

= IIa + IIb + IIc. (B.7)

The same argument as in pp. 19-20 of BGH-supp guarantees IIa = op(n
−1/2) and

IIb = op(n
−1/2). For IIc, using (C.11) of BGH-supp and Proposition 4 of BGH,

we have

‖IIc‖ ≤ C

∫
{ψ̂β0(x′S0)− ψ0(x

′S0)}2dP0(y, x)

= Op((log n)2n−2/3) = op(n
−1/2),
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for some C > 0. Therefore, we obtain

II = op(n
−1/2). (B.8)

For I, decompose

I =

∫
{x− E[X|x′S0]}{y − ψ0(x

′S0)}dPn(y, x)

+

∫
{x− E[X|x′S0]}{ψ0(x

′S0)− ψ̂β0(x′S0)}dPn(y, x)

= Ia + Ib.

From pp. 21-22 of BGH-supp, we can show that Ib = op(n
−1/2). Therefore,

1

n

n∑
i=1

ĝ0i = J′0
∫
{x− E[X|x′S0]}{y − ψ0(x

′S0)}dPn(y, x) + op(n
−1/2)

= J′0
1

n

n∑
i=1

{Xi − E[Xi|X ′iS0]}εi + op(n
−1/2), (B.9)

and the central limit theorem implies (B.4). Therefore, the conclusion is obtained.

B.2 Proof of Theorem 2.2

Based on Hjort, McKeague and van Keilegom (2009), it is sufficient for the con-

clusion to show that

V̄
P0→ J′0E[ε2XX ′]J0, (B.10)

√
n{M∗

n(β̂)−Mn(β̂)} d→ N(0,Σ), (B.11)

where β̂ is obtained by solving (2.4). For the validity of bootstrap, we add the

following assumptions.

A3 There exists δ0 > 0 such that the mapping u 7→ E[Y |X ′α = u] is monotone

increasing on Iα = {z′α, z ∈ Z} for each α ∈ B(α0, δ0).

A4 For all β 6= β0 with S(β) ∈ B(α0, δ0), Cov
[
(β0−β)′J(β)′X,ψ0(S(β0)

′X)|S(β)′X
]
6=

0 almost surely.
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A5 J′0E[ψ
(1)
0 (X ′α0)V ar(X|X ′α0)]J0 is non-singular.

By BGH, it can be shown that under A1-A5, β̂ is consistent and
√
n(β̂ − β0) is

asymptotically normal. Let ψβ(u) = E[Y |X ′S(β) = u]. For (B.10), note that

V̄ = J(β̂)′

[
1

n

n∑
i=1

Xi{εi + ψβ̂(X ′iS(β̂))− ψ̂β̂(X ′iS(β̂))}2X ′i

]
J(β̂) + op(1)

= {J0 + op(1)}′
{

1

n

n∑
i=1

ε2iXiX
′
i + op(1)

}
{J0 + op(1)},

where the first equality follows from ψ0(x
′S(β0)) − ψβ̂(x′S(β̂)) = Op(β̂ − β0) for

almost every x (by p. 26 and Lemma 17 of BGH-supp) and the consistency

of β̂; the second equality follows from a combination of Proposition 4 of BGH,

Assumption A1 and A3, p.23 of BGH-supp, and the consistency of β̂. Thus, by

the law of large numbers, we obtain (B.10).

We now prove (B.11). Note that M∗
n(β̂) −Mn(β̂) = M∗

n(β̂) by (2.4). Let P̂n be

the empirical measure of the bootstrap resample. Decompose

M∗
n(β̂) = J(β̂)′

∫
{x− E(X|x′S(β̂))}{y − ψ̂∗

β̂
(x′S(β̂))}dP̂n

+J(β̂)′
∫
{E(X|x′S(β̂))− Ē∗n(x′S(β̂))}{y − ψ̂∗

β̂
(x′S(β̂))}dP̂n

+J(β̂)′
∫
Ē∗n(x′S(β̂)){y − ψ̂∗

β̂
(x′S(β̂))}dP̂n

= I∗ + II∗ + III∗, (B.12)

where Ē∗n(·) is defined similarly to (B.6) with respect to ψ̂∗
β̂
. Again, we have

III∗ = 0 by the definition of Ē∗n(·). For II∗, similar to (B.8) and p. 3481 of

Groeneboom and Hendrickx (2017) (GH hereafter), we have II∗ = oPM (n−1/2),

where PM is defined in p. 3450 of GH.
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For I∗, decompose

I∗ = J(β̂)′
∫
{x− E(X|x′S(β̂))}{y − ψ̂∗

β̂
(x′S(β̂))}d(P̂n − Pn)

+J(β̂)′
∫
{x− E(X|x′S(β̂))}{y − ψ̂β̂(x′S(β̂))}dPn

+J(β̂)′
∫
{x− E(X|x′S(β̂))}{ψ̂β̂(x′S(β̂))− ψ̂∗

β̂
(x′S(β̂))}dPn

= I∗a + I∗b + I∗c .

For I∗b , (2.4) and pp. 19-20 of BGH-supp combined with β̂ − β0 = Op(n
−1/2)

imply

I∗b = J(β̂)′
∫
x{y − ψ̂β̂(x′S(β̂))}dPn

−J(β̂)′
∫
{E(X|x′S(β̂))− Ēn(x′S(β̂))}{y − ψ̂β̂(x′S(β̂))}dPn

= op(n
−1/2).

For I∗c , (6.21) in GH and pp. 21-22 of BGH-supp yield

I∗c = J(β̂)′
∫
{x− E(X|x′S(β̂))}{ψβ̂(x′S(β̂))− ψ̂∗

β̂
(x′S(β̂))}dPn

+J(β̂)′
∫
{x− E(X|x′S(β̂))}{ψ̂β̂(x′S(β̂))− ψβ̂(x′S(β̂))}dPn

= op(n
−1/2).

Finally, for I∗a , we have

I∗a = J(β̂)′
∫
{x− E(X|x′S0)}{y − ψ0(x

′S0)}d(P̂n − Pn) + oPM (n−1/2 + (β̂ − β0))

= J(β̂)′
∫
{x− E(X|x′S0)}εd(P̂n − Pn) + oPM (n−1/2),

where the first equality follows from a similar argument to (6.25) in GH, and the

second equality follows from a rearrangement and β̂−β0 = Op(n
−1/2). Combining

these results, we have

M∗
n(β̂)−Mn(β̂) = J(β̂)′

∫
{x− E(X|x′S0)}εd(P̂n − Pn) + oPM (n−1/2).

Comparing this and (B.9), the central limit theorem yields (B.11). Therefore,

the conclusion follows.
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Appendix C

Proofs for Chapter 3

C.1 Proof of Lemma 3.1

The proof here is based on the supplementary material of BGH (hereafter BGH-

supp). Similar techniques can also be found in Groeneboom & Jongbloed (2014)

and Groeneboom & Hendrickx (2018).

Let {xnj}kj=1 be the subsequence of {xi}ni=1 representing all the jump points of

p̂(·). By the construction of p̂(·) (see, e.g., Lemmas 2.1 and 2.3 in Groeneboom

and Jongbloed, 2014), we have
∑nj+1−1

i=nj
{yi − p̂(xi)} = 0 for each j = 1, . . . , k,

which implies
k∑
j=1

mj

nj+1−1∑
i=nj

{yi − p̂(xi)} = 0, (C.1)

for any weights {mj}kj=1. (See also Barlow and Brunk, 1972). We define the step

function δ̄n(x):

δ̄n(x) =


δ(xnj) if p0(x) > p̂(xnj) for all x ∈ (xnj , xnj+1

)

δ(s) if p0(s) = p̂(s) for some s ∈ (xnj , xnj+1
)

δ(xnj+1
) if p0(x) < p̂(xnj) for all x ∈ (xnj , xnj+1

)

,

for x ∈ [xnj , xnj+1
) with j = 1, . . . , k (if j = k, set xnj+1

= max
i
xni). By (C.1), it

holds ∫
δ̄n(x){y − p̂(x)}dPn(z) = 0,
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Thus, we have

1

n

n∑
i=1

δ(Xi)(Yi − p̂(Xi))

=

∫
δ(x){y − p̂(x)}dPn(z)

=

∫
[δ(x)− δ̄n(x)](y − p̂(x))dPn(z). (C.2)

By assumption, δ(x) is a bounded function with a finite total variation, so is

δ̄n(x). Therefore, by a similar argument as in pp. 18-20 of BGH-supp, we have∫
[δ(x)−δ̄n(x)](y−p̂(x))dPn(z) = op(n

−1/2). We see that (C.2) can be decomposed

as:

∫
[δ(x)− δ̄n(x)](y − p̂(x))dPn(z)

=

∫
[δ(x)− δ̄n(x)](y − p̂(x))d (Pn(z)− P0(z))

+

∫
[δ(x)− δ̄n(x)](y − p0(x))dP0(z)

+

∫
[δ(x)− δ̄n(x)](p0(x)− p̂(x))dP0(z)

=I + II + III.

By Lemma 21 in BGH-supp, both δ(x)− δ̄n(x) are bounded functions with finite

total variations. With similar arguments in Groeneboom and Jongbloed (2014)

we have some C0 > 0, with all x ∈ X

|δ(x)− δ̄n(x)| ≤ C0|p0(x)− p̂(x)|. (C.3)

For I, let us define the following function classes

MRK = {monotone increasing functions on [−R,R] and bounded by K},

GRK = {g : g(x) = p(x), x ∈ X , p ∈MRK},

DRKv = {d : d(x) = g1(x)− g2(x), (g1, g2) ∈ G2RK , ||d(x)||P0 ≤ v},

HRKv = {h : h(y, x) = yd1(x)− d2(x), (d1, d2) ∈ D2
RKv, z ∈ Z}. (C.4)
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And we have the integrand of I

[δ(x)− δ̄n(x)](y − p̂(x))

=[δ(x)− δ̄n(x)]y − [δ(x)− δ̄n(x)]p̂(x). (C.5)

Let

Fa =
{
f : f(z) = [δ(x)− δ̄n(x)]y − [δ(x)− δ̄n(x)]p̂(x), z ∈ Z

}
.

We note:

(i) By Lemma 21 in BGH-supp, [δ(x) − δ̄n(x)] is a bounded function of x with

finite total variation.

(ii) By Assumption A3, we can show supx∈X |p̂(x)| = Op(log n) (See, e.g., Lemma

7.1 in Balabdaoui, Durot, and Jankowski, 2019). Therefore, there exists K1 > 0,

such that p̂(x) ∈ GR(K1 logn) with probability approaching one.

(iii) By (3.11) and (C.3), we have ||δ(x) − δ̄n(x)||2 ≤ C1(log n)n−1/3, for some

C1 > 0. Thus, there exists a positive constant C2 that is larger than twice the

bound of δ(x), and v1 = C1(log n)n−1/3, such that [δ(x)− δ̄n(x)] ∈ DRC2v1 .

(iv) By (ii), a similar argument of (iii), (3.11), and Jensen’s inequality, we have

[δ(x) − δ̄n(x)]p̂(x) ∈ DR(K2 logn)v2 for a large enough constant K2 > 0 and v2 =

C3(log n)2n−1/3 for some C3 > 0, with probability approaching one.

We choose K = max{C2, K2 log n} and v = max{v1, v2}. Now we have (C.5)∈

HRKv.

Define ||Gn||F = supf∈F |
√
n(Pn − P0)f |. Let N[](ε,F , || · ||) be the ε-bracketing

number of the function class F under the norm || · ||, and

HB(ε,F , || · ||) = logN[](ε,F , || · ||)

be the entropy of N[](ε,F , || · ||), and

Jn(δ,F , || · ||) :=

∫ δ

0

√
1 +HB(ε,F , || · ||)dε.
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Let || · ||B,P0 be the Bernstein norm under a measure P0. In this section, we use

Jn(δ) to denote Jn(δ,F , || · ||B,P0) .

By similar arguments in Lemma 13 of BGH-supp (In our case we can ignore the

single-index coefficients), we have, with probability approaching one:

HB(ε, F̃a, || · ||B,P0) ≤
C3

ε
, (C.6)

for some C3 > 0, where F̃a = (C4 log n)−1Fa with some C4 > 0. Also, there exists

a constant C5 > 0 such that

||f̃ ||B,P0 ≤ C5(log n)n−1/3, (C.7)

for all f̃a ∈ F̃a, with probability approaching one. We use E to denote the event

that both (C.6) and (C.7) happen, and we have lim
n→∞

P (E ) = 1.

Let δn = C5(log n)n−1/3 and Ij be the j-th component of I. For any positive

constants A and ν, there exist positive constants B1, and B2, for all n large

enough, such that

P{|Ij| > An−1/2} ≤ P
{
|Ij| > An−1/2,E

}
+ P (E c)

≤ P {||Gn||Fa > A,E }+
ν

2

≤ E[||Gn||Fa |E ]

A
+
ν

2

=
C4 log n

A
E[||Gn||F̃a |E ] +

ν

2

.
C4 log n

A
Jn(δn)

(
1 +

Jn(δn)√
nδ2n

)
+
ν

2

.
log n

A
(δn + 2B

1/2
1 δ1/2n )

(
1 +

δn + 2B
1/2
1 δ

1/2
n√

nδ2n

)
+
ν

2

.
1

A
(log n)3/2n−1/6

(
1 +

B2

(log n)3/2

)
+
ν

2

. ν, (C.8)

The second inequality follows from the definition of Fa; The third inequality

follows from the Markov inequality, the first equality follows from the definition

of F̃a, the first wave inequality (.) comes from Lemma 3.4.3 of van der Vaart
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and Wellner (1996) and the definition of δn, the second wave inequality comes

from (C.6) and Equation (.2) in BGH-supp, the third wave inequality follows

from δn . δ
1/2
n and the definition of δn. Therefore,

I = op(n
−1/2). (C.9)

For II, we have by the law of iterated expectation.

II =

∫
[δ(x)− δ̄n(x)](y − p0(x))dP0(z) = 0.

For III, we have

III =

∫
[δ(x)− δ̄n(x)](p0(x)− p̂(x))dP0(z)

.
∫

(p0(x)− p̂(x))2dP0(z)

= Op((log)2n−2/3) = op(n
−1/2),

Where the first wave inequality follows from (C.3), the second equality follows

from (3.11).

Combining the rates for I, II, and III, the conclusion follows.

C.2 Proof of Proposition 3.1

Under A1-A4 and Lemma 3.1, we have 1
n

∑n
i=1E[D(Z, β0)|Xi](Yi − p̂(Xi)) =

op(n
−1/2). Then we have

1

n

n∑
i=1

m(zi, β, p̂(·)) = 0 (C.10)

⇒ 1

n

n∑
i=1

{m(zi, β, p̂(·)) + E[D(Z, β0)|Xi](Yi − p̂(Xi))} = op(n
−1/2).

(C.11)
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Let β̂ be the solution of (C.10), and β̃ be the solution of

1

n

n∑
i=1

{m(zi, β, p̂(·)) + E[D(Z, β0)|Xi](Yi − p̂(Xi))} = 0.

Then by (C.11), the difference of
√
n(β̂ − β0) and

√
n(β̃ − β0) is op(1).

C.3 Proof of Theorem 3.1

The proof is a combination of the techniques for isotonic regression applied

in Groeneboom and Hendrickx (2018) and BGH, and the framework of Newey

(1994).

Let u = y − p0(x) and M(z) = δ(x)u. We verify Assumptions 5.1-5.6 of Newey

(1994).

Step 1: Verify Assumption 5.1 of Newey (1994).

Assumption 5.1 (Newey, 1994): (i) There is a function D(z, p) that is linear in p

such that for all p with ||p− p0|| small enough,

||m(z, p)−m(z, p0)−D(z, p− p0)|| ≤ b(z)||p− p0||2;

(ii)E(b(Z))
√
n||p̂− p0||2

p→ 0.

(i) is a restatement of A6 (i). (ii) can be derived by A6(ii) and the fact

||p̂− p0||2 = Op((log n)2n−2/3).

(See, e.g., Theorem 9.2 and Lemma 5.15 in van de Geer, S., 2000).

Step 2: Verify Assumption 5.2 of Newey (1994).

Assumption 5.2 (Newey, 1994): 1
n

∑n
i=1D(z, p̂(x)−p0(x))−

∫
D(z, p̂(x)−p0(x))dP0(z) =

op(n
−1/2).
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By A5, we have

1

n

n∑
i=1

D(Z, β0, p̂(x)− p0(x))−
∫
D(z, β0, p̂(x)− p0(x))dP0(z)

=

∫
D(z, β0)(p0(x)− p̂(x))d(Pn − P0)(z) (C.12)

let

Fb =
{
f : f(z) = D(z, β0)(p0(x)− p̂(x)), x ∈ X

}
.

To avoid heavy notations, we re-define some constant terms in this subsection,

such as Ai, Ci, Ki, δn, and v, etc.. They are not related to those constants with

the same names in other sections.

By similar arguments as in Section C.1, for some C1, C2 > 0, we have

p0(x)− p̂(x) ∈ DR(C1logn)(C2n−1/3 logn), (C.13)

with probability approaching one.

By Theorem 2.7.5 in van der Vaart and Wellner (1996) and Lemma 11 in BGH-

supp, with R,C, v > 0, we have

HB(ε,DRCv, || · ||P0) ≤
AC

ε
,

for some A > 0. Now we define

H(2)
RKv = {h : h(z) = D(z, β0)d(x), d(·) ∈ DRCv, z ∈ Z}.

Now we let D(z, β0) ∈ R1. This is just to simplify the notation of the following

proof, i.e., the following steps hold for any Dj(z, β0) with j ∈ {1 : k}, the j-th

row of D(z, β0).
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Let
(
dL, dU

)
to be any ε-bracket of the function class DRKv, and

hL =

D(z, β0)d
L(x) if D(z, β0) ≥ 0

D(z, β0)d
U(x) if D(z, β0) < 0

,

and

hU =

D(z, β0)d
U(x) if D(z, β0) ≥ 0

D(z, β0)d
L(x) if D(z, β0) < 0

.

We see that
(
hL, hU

)
is a bracket of h, its size is

∫
Z

[
hU(z)− hL(z)

]2
dP0(z) =

∫
Z
D(z, β0)

2
(
dU(x)− dL(x)

)2
dP0(z)

=

∫
X
E
[
D(z, β0)

2|x
] (
dU(x)− dL(x)

)2
dP0(x)

= A1ε
2,

for some A1 > 0. The last equality follows from Assumption A4 and the definition

of ε-bracket. Now for some Ã > 0, we have

HB(ε,H(2)
RCv, || · ||P0) ≤

ÃC

ε
. (C.14)

Now we switch to Bernstein norm since we do not want to put a bound on

D(z, β0). By the definition of Bernstein norm

||h||2B,P0
= 2P0 [exp(|h|)− |f | − 1]

= 2

∫ ∞∑
k=2

1

k!
|h|kdP0(z),

where the second equality follows by the extension of the natural exponential

function. Now we try to bound the Bernstein norm of h(·)
H

, where H is some

positive number we choose in the following steps to achieve a finite upper bound.
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||H−1h||2B,P0
= 2

∫ ∞∑
k=2

1

Hk

1

k!
|D(z, β0)d(x)|kdP0(z)

≤ 2

∫ ∞∑
k=2

1

Hk

1

k!
|D(z, β0)|k|d(x)|kdP0(z)

≤ 2
∞∑
k=2

1

Hk

(2C)k−2

k!
k!Mk−2

1 c1

∫
|d(x)|2dP0(z)

=
2

H2

∞∑
k=2

(2M1C)k−2

Hk−2 c1

∫
|d(x)|2dP0(z)

=
2

H2

∞∑
k=2

(
2M1C

H

)k−2
c1v

2

=

(
2

H

)2

c1v
2.

The second inequality follows from Assumption A4 and the fact d(·) ∈ DRCv,

where c1 and M1 are the same constants in Assumption A4. (different from the

capital C1 defined before (C.13)) The third equality follows from the definition

of v in DRCv. The last equality follows by choosing H = 4M1C. Now we have

|| h
H
||B,P0 .

v

H
. (C.15)

Now we set C = C1logn, v = C2n
−1/3 log n

Fb ⊂ H(2)

R(C1logn)(C2n−1/3 logn)
.

and let H̃ = 4M1C1logn, then we have for some C3 > 0,

F̃b = H̃−1Fb.

Combined with (C.14) and (C.15), we have with probability approaching one

HB(ε, F̃b, || · ||B,P0) ≤
C3

ε
, (C.16)

for some C3 > 0, and

and ||f̃ ||B,P0 ≤ C4n
−1/3, (C.17)
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for all f̃b ∈ F̃b, for some C4 > 0.

We use E1 to denote the event described in (C.16) and (C.17), and use S to denote

the value of (C.12). Let δn = C4n
−1/3. Now For any A2 > 0.

P{|S| > A2n
−1/2} ≤ P

{
|S| > A2n

−1/2,E1

}
+ P (E c

1 )

≤ P {||Gn||Fb > A2,E1}+
ν

2

≤ E[||Gn||Fb |E1]

A2

+
ν

2

.
log n

A2

E[||Gn||F̃b |E1] +
ν

2

.
log n

A2

Jn(δn)

(
1 +

Jn(δn)√
nδ2n

)
+
ν

2

.
log n

A2

(δn + 2B
1/2
1 δ1/2n )

(
1 +

δn + 2B
1/2
1 δ

1/2
n√

nδ2n

)
+
ν

2

.
1

A
(log n)3/2n−1/6

(
1 +

B2

(log n)3/2

)
+
ν

2

.
log n

A2

n−1/6B2 +
ν

2

. ν, (C.18)

Each steps are similar to those of (C.8). Thus, we have
∫
D(z, β0)(p0(x)−p̂(x))d(Pn−

P0)(z) = op(n
−1/2), and Newey’s Assumption 5.2 is satisfied.

Assumption 5.3 (Newey, 1994):∫
D(z, p̂(x)− p0(x))dP0(z) = 1

n

∑n
i=1M(zi) + op(n

−1/2). 1

We have

∫
D(z, β0, p̂(x)− p0(x))dP0(z) =

∫
D(z, β0)(p̂(x)− p0(x))dP0(x)

=

∫
E(D(Z, β0)|X = x)(p̂(x)− p0(x))dP0(x)

=

∫
δ(x)(p̂(x)− p0(x))dP0(x).

The first equality follows from A5. In the last equality, we set E(D(Z, β0)|X =

x) = δ(x).

1This is a simplified version of Assumption 5.3, which is mentioned in p.1366 in Newey
(1994).
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Therefore, by plugging in M(z) = δ(x)u

∫
D(z, p̂(x)− p0(x))dP0(z)− 1

n

n∑
i=1

M(Zi)

=

∫
δ(x)(p̂(x)− p0(x))dP0(x)− 1

n

n∑
i=1

δ(Xi)(Yi − p0(Xi))

=

∫
δ(x)(p̂(x)− p0(x))dP0(x)−

∫
δ(x)(y − p̂(x) + p̂(x)− p0(x))dPn(z)

=

∫
−δ(x)(y − p̂(x))dPn(z) +

∫
−δ(x)(p̂(x)− p0(x))d(Pn − P0)(x)

= I + II. (C.19)

By Lemma 3.1, we have I = op(n
−1/2).

For II, by A4 and a similar argument as in p. 23 of BGH-supp, we have II =

op(n
−1/2). Thus, Newey’s Assumption 5.3 is satisfied.

Newey’s Assumptions 5.4 to 5.6 are adapted as A7 to A9 in this paper. Then

the consistency can be proved by similar arguments as in Lemma 5.2 of Newey

(1994). Finally, we have by Lemma 5.3 of Newey (1994)

√
n(β̂ − β0)

d→ N(0, V ),

where

V = M−1
β E[{m(Z, β0, p0) +M(Z)}{m(z, β0, p0) +M(Z)}′]M−1

β ,

The efficiency is proved according to Proposition 4 of Newey (1994) (See also his

Theorem 2.1).

C.4 Proof of Corollary 3.1

Let us check A1 to A9 of Theorem 3.1 for m(Z, β0, p(·)) = Y ·T
p0(X)

− Y ·(1−T )
1−p0(X)

− β0.

C2 directly implies A1; C4 implies A2; A3 is satisfied by the fact that T ∈

{0, 1}. (Y in A3 is T in Corollary 3.1). For A4, we have for the ATE model
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E[D(Z, β)|X] = −(µ1(x)
p0(x)

+ µ0(x)
1−p0(x)). It a bounded function of X with finite total

variation by C2 and C3.

A5 is satisfied since we haveD(z, β, p(x)−p0(x)) =

(
y·t

p0(x)2
+ y·(1−t)

(1−p0(x))2

)
(p(x)− p0(x)) .

A6-A9 is satisfied by the same arguments in pp.26-33 of Hirano, Imbens, and

Ridder (2000).

Therefore, we have all the assumptions for Theorem 3.1 satisfied. The asymptotic

variance matrix Ω can be obtained in the same way as pp.34-35 of Hirano, Imbens,

and Ridder (2000).

C.5 Proof of Lemma 3.2.

The additional complication caused by the possible dependence of p(·) on β does

not affect this lemma. The proof is similar to that for Lemma 3.1 in Appendix

C.1, with Y replaced by T (Z, β).

C.6 Proof of Proposition 3.2.

The proof is similar to that of Proposition 3.1 in Appendix C.2.

C.7 Proof of Theorem 3.2

Here we might not be able to solve the sample moment condition (3.2)

1

n

n∑
i=1

m(Zi, β, p̂β(·)) = 0,

as we did in Theorem 3.1, since changing β might change the left-hand side

discretely.
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Now for β ∈ B(β0, δ0), we have

1

n

n∑
i=1

m(Zi, β, p̂β(Xi))

=
1

n

n∑
i=1

{m(Zi, β, pβ(Xi)) +D(Z, β)[(p̂β(Xi)− pβ(Xi)]}+ op(n
−1/2)

=
1

n

n∑
i=1

{m(Zi, β, pβ(Xi)) +D(Z, β)[(p̂β(Xi)− pβ(Xi)]}

+
1

n

n∑
i=1

E(D(Z, β)|Xi)(T (Zi, β)− p̂β(Xi)) + op(n
−1/2)

=
1

n

n∑
i=1

{m(Zi, β, pβ(Xi)) +D(Z, β)[(p̂β(Xi)− pβ(Xi)]}+ op(n
−1/2)

+
1

n

n∑
i=1

{E(D(Z, β)|Xi)(T (Zi, β)− pβ(Xi)) + E(D(Z, β)|Xi)[(p̂β(Xi)− pβ(Xi)]}

=
1

n

n∑
i=1

{m(Zi, β, pβ(Xi)) + E(D(Z, β)|Xi)(T (Zi, β)− pβ(Xi))}

+
1

n

n∑
i=1

[D(Z, β)− E(D(Z, β)|Xi)][(p̂β(Xi)− pβ(Xi)] + op(n
−1/2)

=
1

n

n∑
i=1

{m(Zi, β, pβ(Xi)) + E(D(Z, β)|Xi)(T (Zi, β)− pβ(Xi))}+ op(n
−1/2).

(C.20)

The first equality follows from A5’ and A6’. The second equality follows from

Lemma 3.2. The third equality and the fourth equality are some rearrangements.

The last equality is by 1
n

∑n
i=1[D(Z, β) − E(D(Z, β)|Xi)][(p̂β(Xi) − pβ(Xi)] =

op(n
−1/2), which can be proved by A4’ and similar arguments in p.23 BGH-supp.

By (C.20) and the definition of β̂ in (3.15), we have

|| 1
n

n∑
i=1

m(Zi, β̂, p̂β̂(Xi))||

= inf
β
|| 1
n

n∑
i=1

m(Zi, β, p̂β(Xi))||

≤ inf
β
|| 1
n

n∑
i=1

{m(Zi, β, pβ(Xi)) + E(D(Z, β)|Xi)(T (Zi, β)− pβ(Xi))}+ op(n
−1/2)||.
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The leading term in the last expression,

1

n

n∑
i=1

{m(Zi, β, pβ(Xi)) + E(D(Z, β)|Xi)(T (Zi, β)− pβ(Xi))} ,

does not depend on the discrete estimator p̂(·). It is a smooth moment function

of β. Thus, under A9’, with n large enough, we have

inf
β
|| 1
n

n∑
i=1

{m(Zi, β, pβ(Xi)) + E(D(Z, β)|Xi)(T (Zi, β)− pβ(Xi))} || = 0,

and by (C.20) we have

|| 1
n

n∑
i=1

m(Zi, β̂, p̂β̂(Xi))|| = op(n
−1/2). (C.21)

Let

Mn,β = − 1

n

n∑
i=1

{
∂m(Zi, β0, p0(Xi))

∂β
+ E[D(Zi, β0)|Xi]

∂T (Zi, β0)

∂β

}
,

Mβ = −E
{
∂m(Z, β0, p0(X))

∂β
+ E[D(Z, β0)|X]

∂T (Z, β0)

∂β

}
, and

M(Zi) = E(D(Z, β0)|Xi)(T (Zi, β0)− p0(Xi)).

Note we also have

Mβ = −E
(
dm(Z, β, pβ)

dβ
|β=β0

)
,

since

dm(Z, β, pβ)

dβ
|β=β0

= lim
β→β0

(
∂m(Z, β0, p0)

∂β

β − β0
β − β0

+
∂m(Z, β0, p0)

∂p

pβ(X)− p0(X)

β − β0
+ op(β − β0)

)
=
∂m(Z, β0, p0)

∂β
+D(Z, β0)p

′
β0

(X), (C.22)

where p′β0(x) =
d(pβ(x))

dβ
. Its existence is by A2’.
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Then

E

(
dm(Z, β, pβ)

dβ
|β=β0

)
= E

(
∂m(Z, β0, p0)

∂β
+D(Z, β0)p

′
β0

(X)

)
= E

(
∂m(Z, β0, p0)

∂β

)
+ E

{
E [D(Z, β0)|X] p′β0(X)

}
= E

(
∂m(Z, β0, p0)

∂β

)
+ E

(
E(D(Z, β0)|X)

∂T (Z, β)

∂β

)
,

where the third equality follows from the definition of pβ(X) and Law of iterated

expectation: from definition pβ(X) = E [T (z, β)|X], we have E [T (z, β)− pβ(X)|X] =

0, then E
(
∂T (z,β0)

∂β
|X
)

= E
(
p′β0(X)|X

)
.

Now we have

op(n
−1/2) =

1

n

n∑
i=1

m(Zi, β̂, p̂β̂(Xi))

=
1

n

n∑
i=1

m(Zi, β̂, p̂β̂(Xi)) + op(n
−1/2)

+
1

n

n∑
i=1

E(D(Z, β0)|Xi)(T (Zi, β̂)− p̂β̂(Xi))

= −Mn,β(β̂ − β0) +
1

n

n∑
i=1

m(Zi, β0, p̂β̂(Xi)) + op(n
−1/2)

+
1

n

n∑
i=1

E(D(Z, β0)|Xi)(T (Zi, β0)− p̂β̂(Xi)) + op(β̂ − β0)

= −Mβ(β̂ − β0) +
1

n

n∑
i=1

m(Zi, β0, p0(Xi)) + op(n
−1/2)

+
1

n

n∑
i=1

E(D(Zi, β0)|Xi)(T (Zi, β0)− p0(Xi)) + op(β̂ − β0)

= −Mβ(β̂ − β0) +

{
1

n

n∑
i=1

m(Zi, β0, p0(Xi)) +M(Zi)

}
+ op(n

−1/2 + (β̂ − β0)). (C.23)

The first equality follows from (C.21). The second equality follows from Lemma

3.2. The third equality follows from the expansion around β0 and the definition of

Mn,β. The fourth equality follows from Mn,β−Mβ = op(1) and similar arguments

in Step 1 and 2 of Appendix C.3. The last equality follows from the definition of

M(Z).
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With Assumption A7’ and A8’, the consistency of β̂ can be proved by similar

arguments as in Lemma 5.2 of Newey (1994).

Finally, we have

√
n(β̂ − β0) = M−1

β

1√
n

n∑
i=1

{m(Zi, β0, p0(Xi)) +M(Zi)}+ op(1)

d→ N(0,Π), (C.24)

where Π := M−1
β Var {m(Z, β0, p0(X)) +M(Z)}M−1

β . NoteM−1
β {m(Zi, β0, p0(Xi))+

M(Zi)} is the efficient influence function. (See pp.1357-1361 of Newey, 1994).

Thus, Π is the efficient variance matrix.

C.8 Proof of Lemma 3.3

The proof is similar to that on pp. 18-20 of BGH-supp and that for Lemma 3.1.

We replace E(X|S(β)′X) and Yi in BGH-supp with δ(X ′α) and T (Zi, β) in our

setting.

C.9 Proof of Theorem 3.3

Now the nuisance function F̂α̂,β̂(x′α̂) depends on α̂ and β̂. By a similar argument

to (C.21), we have

|| 1
n

n∑
i=1

m(Zi, β̂, F̂α̂,β̂(X ′iα̂))|| = op(n
−1/2).

With Assumption A7” and A8”, the consistency of θ̂ can be proved by similar

arguments as in Lemma 5.2 of Newey (1994).
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Let us define

E[·|u] = E[·|X ′α̂ = u],

Mn,β = − 1

n

n∑
i=1

{
∂m(Zi, β0, F0(X

′
iα0))

∂β
+ E[D(Zi, β0)|X ′iα̂]

∂T (Zi, β0)

∂β

}
, and

Mβ = −E
{
∂m(Z, β0, F0(X

′α0))

∂β
+ E[D(Z, β0)|X ′α0]

∂T (Z, β0)

∂β

}
.

We have

op(n
−1/2) =

1

n

n∑
i=1

m(Zi, β̂, F̂α̂,β̂(X ′iα̂))

=
1

n

n∑
i=1

{
m(zi, β̂, F̂α̂,β̂(X ′iα̂)) + E(D(Zi, β0)|X ′iα̂)(T (Zi, β̂)− F̂α̂,β̂(X ′iα̂))

}
+ op(n

−1/2)

= −Mn,β(β̂ − β0) +
1

n

n∑
i=1

m(zi, β0, F0(X
′
iα0)) + op(n

−1/2 + (β̂ − β0))

+
1

n

n∑
i=1

{
D(Zi, β0)(F̂α̂,β̂(X ′iα̂)− F0(X

′
iα0)) + E(D(Zi, β0)|X ′iα̂)(T (Zi, β0)− F̂α̂,β̂(X ′iα̂))

}
= −Mβ(β̂ − β0) +

1

n

n∑
i=1

m(Zi, β0, F0)

+
1

n

n∑
i=1

{
[D(Zi, β0)− E(D(Zi, β0)|X ′iα̂)](F̂α̂,β̂(X ′iα̂)− F0(X

′
iα0))

}
+

1

n

n∑
i=1

E(D(Zi, β0)|X ′iα0)(T (Zi, β0)− F0(X
′
iα0)) + op(n

−1/2 + (β̂ − β0)).

(C.25)

The second equality follows from Lemma 3.3. The third equality follows from

extending m(Zi, β̂, F̂α̂,β̂(X ′iα̂))+E(D(Zi, β0)|X ′iα̂)T (Zi, β̂) around β0 and F0, and

some rearrangements. The last equality follows from Mn,β −Mβ = op(1) and

1

n

n∑
i=1

[E(D(Zi, β0)|X ′iα0)− E(D(Zi, β0)|X ′iα̂)] (T (Zi, β0)− F0) = op(n
−1/2),

which can be shown by a similar argument about (C.20) in pp.21-22 of BGH-supp.
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The second term in the last equality of (C.25) can be rewritten into:

1

n

n∑
i=1

{
[D(Zi, β0)− E(D(Zi, β0)|X ′iα̂)](F̂α̂,β̂(X ′iα̂)− F0(X

′
iα0))

}
=

1

n

n∑
i=1

{
[D(Zi, β0)− E(D(Zi, β0)|X ′iα̂)](F̂α̂,β̂(X ′iα̂)− Fα̂,β̂(X ′iα̂))

}
+

1

n

n∑
i=1

{
[D(Zi, β0)− E(D(Zi, β0)|X ′iα̂)](Fα̂,β̂(X ′iα̂)− F0(X

′
iα0))

}
=Im + IIm,

Im = op(n
−1/2) by a similar argument about (C.22) in p.23 of BGH-supp.

For IIm, we have by Lemma 17 of BGH-supp.

∂

∂αj
Fα(X ′α)

∣∣∣∣
α=α0

= {xj − E[Xj|X ′α0 = x′α0]}F (1)

0,β̂
(x′α0),

= {xj − E[Xj|X ′α0 = x′α0]}F (1)
0 (x′α0) +Op(β̂ − β0),

where αj and xj are j-th elements of α and x. Then we can extend IIm around

α0:

IIm =
1

n

n∑
i=1

{
[D(Zi, β0)− E(D(Zi, β0)|X ′iα̂)]{Xi − E[Xi|X ′iα0]}′F (1)

0 (X ′iα0) +Op(β̂ − β0)
}

(α̂− α0)

+ op(α̂− α0)

=
1

n

n∑
i=1

{
[D(Zi, β0)− E(D(Zi, β0)|X ′iα̂)]{Xi − E[Xi|X ′iα0]]}′F (1)

0 (X ′iα0)
}

(α̂− α0) + op(α̂− α0)

= E
{

[D(Z, β0)− E(D(Z, β0)|X ′α0)]{X − E[X|X ′α0]]}′F (1)
0 (X ′α0)

}
(α̂− α0) + op(α̂− α0).

(C.26)

The second equality follows from β̂ − β0 = op(1) The last equality follows from

α̂ − α0 = op(1) and E(D(Zi, β0)|X ′iα̂) − E(D(Zi, β0)|X ′iα0) = op(1). Now let us

define

M(Z) = E(D(Z, β0)|X ′α0)(T (Z, β0)− F0(X
′α0))

Mα = −E
{

[D(Z, β0)− E(D(Z, β0)|X ′α0)]{X − E[X|X ′α0]}′F (1)
0 (X ′α0)

}
.

(C.27)
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Combining (C.26) and (C.27) with (C.25), we have

1

n

n∑
i=1

m(Zi, β̂, F̂α̂,β̂(X ′iα̂))

= −Mβ(β̂ − β0)−Mα(α̂− α0) +
1

n

n∑
i=1

m(zi, β0, F0)

+
1

n

n∑
i=1

M(Zi) + op(n
−1/2 + (β̂ − β0) + (α̂− α0)). (C.28)

Combining the fact E [m(Z, β0, F0)] = 0 and E [M(Z)] = 0 with the assumptions

A3”, A4”, and A9”, we have 1
n

∑n
i=1m(zi, β0, F0) + 1

n

∑n
i=1M(Zi) = Op(n

−1/2).

Then (C.25) and (C.28) imply α̂ − α0 = Op(n
−1/2) and β̂ − β0 = Op(n

−1/2).

Besides, from (C.28) we can see that α̂−α0 and β̂−β0 are asymptotically linear.

Thus, we can rewrite the first term in the last row into:

−Mα(α̂− α0) =
1

n

n∑
i=1

A(Zi) + op(n
−1/2),

with E [A(Zi)] = 0. Similarly, we can rewrite

−Mβ(β̂ − β0) =
1

n

n∑
i=1

B(Zi) + op(n
−1/2),

with E [B(Zi)] = 0.

Now we can rewrite (C.28) to obtain asymptotical expressions of α̂ and β̂.

Note that given β, α̂ is solved with the α̂ = argmin
α
|| 1
n

∑n
i=1X

′
i{T (Zi, β) −

F̂α(X ′iα)}||2. It corresponds to the moment condition

m1(Z, β, F (X ′α)) := X {T (Z, β)− F (X ′α)} .

We can express
√
n(α̂− α0) by replacing m in (C.28) by m1. Then we have

√
n(α̂− α0) = M−α,1

1√
n

n∑
i=1

{m1(Z, β0, p0) +B1(Z) +M1(Z)}

= M−α,1
1√
n

n∑
i=1

[
X − E(X|X ′α0)

]{
T (Zi, β0) +

∂T (Zi, β0)

∂β
(β̂ − β0)− F0(X

′α0)

}
,

where Mα,1, B1, and M1 are Mα, B, and M corresponding to the moment
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function m1. M
−
α,1 is the Moore-Penrose inverse of Mα,1.

Combining with (C.28), we have

√
n(α̂− α0)

d→ N(0, Vα) and
√
n(β̂ − β0)

d→ N(0, Vβ),

where

Vα = M−
α,1E[{m1(Z, β0, p0) +B1(Z) +M1(Z)}{m1(Z, β0, p0) +B1(Z) +M1(Z)}′]M−

α,1,

Vβ = M−1
β E[{m(Z, β0, p0) + A(Z) +M(Z)}{m(z, β0, p0) + A(Z) +M(Z)}′]M−1

β .

C.10 Proof of Lemma 3.4

Let’s implement the iteration procedure described in p. 184 of Mammen and

Yu (2007) and stop at r-th round and j-th elements. In the last step, we actu-

ally apply isotonic regression to regress T (Zi, β)− g1[r](X1
i )− ....− gj−1[r] (Xj−1

i )−

gj+1
[r−1](X

j+1
i )− ...gk[r−1](Xk

i ) = Ỹi on Xj
i , and the last sub-function updated in the

iteration is gj[r](X
j
i ). We can replace the Yi in Lemma 3.1 with Ỹi, and replace Xi

in Lemma 3.1 with Xj
i . δ(X) is assumed to be a bounded function with a finite

variation of X. Since Xj
i is an element of Xi, δ is also a bounded function of Xj

i

as well. Therefore, all the arguments in the proof of Lemma 3.1 still hold. We

have

1

n

n∑
i=1

δ(Xi)(T (Zi, β)− g1[r](X1
i )− ....− gj−1[r] (Xj−1

i )− gj[r](X
j
i )− g

j+1
[r−1](X

j+1
i )− ...gk[r−1](Xk

i ))

= op(n
−1/2). (C.29)

By Theorem 2 of Mammen and Yu (2007), with r →∞, the backfitting estimator

{gj[r](·)}kj=1 is converging to the least square isotonic estimator of the problem

(3.24), {gj(·)}kj=1, i.e.,

lim
r→∞

gj[r](·) = gj(·) for all j = 1, ..., k (C.30)

in a fixed sample. As mentioned in Section 3.3.2, the least square estimator of

the problem (3.23) is obtained by normalizing {gj(·)}kj=1. Therefore, we have
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ĉ+
k∑
j=1

m̂j(Xj
i ) =

k∑
j=1

gj(Xj
i ). (C.31)

Combining (C.29), (C.30), and (C.31), we have

1

n

n∑
i=1

δ(Xi)(T (Zi, β)− ĉ−
k∑
j=1

m̂j(Xj
i )) = op(n

−1/2).

C.11 Proof of Theorem 3.4

The following proof is mostly similar to that in Appendix C.7. The only difference

is that we need to bind the L2-norm of the additive monotone nuisance function,

as discussed in Mammen and Yu (2007).

Now the nuisance function p̂β̂(X) depends on β̂. By a similar argument to (C.21)

we have

|| 1
n

n∑
i=1

m(Zi, β̂, p̂β̂(Xi)|| = op(n
−1/2).

Then

op(n
−1/2) =

1

n

n∑
i=1

m(Zi, β̂, p̂β̂(Xi))

=
1

n

n∑
i=1

{
m(zi, β̂, p̂β̂(Xi)) + E(D(Zi, β0)|Xi)(T (Zi, β̂)− p̂β̂(Xi))

}
+ op(n

−1/2)

= −Mn,β(β̂ − β0) +
1

n

n∑
i=1

m(zi, β0, p0(Xi)) + op(n
−1/2 + (β̂ − β0))

+
1

n

n∑
i=1

{
D(Zi, β0)(p̂β̂(Xi)− p0(Xi)) + E(D(Zi, β0)|Xi)(T (Zi, β0)− p̂β̂(Xi))

}
= −Mβ(β̂ − β0) +

1

n

n∑
i=1

m(zi, β0, p0)

+
1

n

n∑
i=1

{
[D(Zi, β0)− E(D(Zi, β0)|Xi)](p̂β̂(Xi)− p0(Xi))

}
+

1

n

n∑
i=1

E(D(Zi, β0)|Xi)(T (Zi, β0)− p0(Xi)) + op(n
−1/2 + (β̂ − β0))

= −Mβ(β̂ − β0) +
1

n

n∑
i=1

{m(Zi, β0, p0(Xi)) +M(Zi)}+ op(n
−1/2 + (β̂ − β0)).
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The second equality follows from Lemma 3.4. The third equality follows from

the expansion around β0 and the definition of Mn,β. The fourth equality follows

from Mn,β −Mβ = op(1). The last equality follows from the similar arguments

in p.187 of Mammen and Yu (2007) (see also Theorem 9.2 in van de Geer, 2000)

and Step 1 and 2 of Appendix C.3.

With A7(3) and A8(3), the consistency of β̂ can be similarly proved as in Lemma

5.2 in Newey (1994).

Finally, we have

√
n(β̂ − β0) = M−1

β

1√
n

n∑
i=1

{m(Zi, β0, p0(Xi)) +M(Zi)}+ op(1)

d→ N(0, V ).

C.12 Proof of Theorem 3.5

The proof is based on Groeneboom and Hendrickx (2017) (hereafter GH). Here

we prove the counterpart for Theorem 3.2. It can be easily adapted to the settings

of Theorem 3.1 and Theorem 3.3 by changing the relevant notations.

Let Z∗ is the bootstrap sample of the data. β̂∗ and p̂∗(·) are the corresponding

estimators for the parameter and the nuisance monotone function. By similar

arguments to (C.20) and (C.21), we have

|| 1
n

n∑
i=1

m(Z∗i , β̂
∗, p̂∗

β̂∗
(X∗i ))|| = oPM (n−1/2), (C.32)

where PM is defined in p. 3450 of GH. Let

M∗
n,β = − 1

n

n∑
i=1

{
∂m(Z∗i , β0, p0(X

∗
i ))

∂β
+
∂ {E[D(Z∗i , β0)|X∗i ]T (Z∗i , β0)}

∂β

}
, and

Mβ = −E
{
∂m(Z, β0, p0(X))

∂β
+
∂ {E[D(Z, β0)|X]T (Z, β0)}

∂β

}
.
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Step 1: Show

Mβ(β̂∗ − β0) =
1

n

n∑
i=1

{m(Z∗i , β0, p0(X
∗
i )) +M(Z∗i )}+ oPM (n−1/2 + (β̂∗ − β0)).

(C.33)

By extending (C.32) we have

oPM (n−1/2) =
1

n

n∑
i=1

m(Z∗i , β̂
∗, p̂∗

β̂∗
(X∗i ))

=
1

n

n∑
i=1

m(Z∗i , β̂
∗, p̂∗

β̂∗
(X∗i )) + oPM (n−1/2)

+
1

n

n∑
i=1

E(D(Z, β0)|X∗i )(T (Z∗i , β̂
∗)− p̂∗

β̂∗
(X∗i ))

= −M∗
n,β(β̂∗ − β0) +

1

n

n∑
i=1

m(Z∗i , β0, p̂
∗
β̂∗

(X∗i )) + oPM (n−1/2)

+
1

n

n∑
i=1

E(D(Z, β0)|X∗i )(T (Z∗i , β0)− p̂∗β̂∗(X
∗
i )) + oPM (β̂∗ − β0)

= −Mβ(β̂∗ − β0) +
1

n

n∑
i=1

m(Z∗i , β0, p0(X
∗
i )) + oPM (n−1/2)

+
1

n

n∑
i=1

E(D(Z∗i , β0)|X∗i )(T (Z∗i , β0)− p0(X∗i )) + oPM (β̂∗ − β0)

= −Mβ(β̂ − β0) +
1

n

n∑
i=1

{m(Z∗i , β0, p0(X
∗
i )) +M(Z∗i )}+ oPM (n−1/2 + (β̂∗ − β0)).

All steps are similar to what we have in (C.23). In the fourth equality, we use

M∗
n,β −Mβ = op(1), and the conditional bootstrapped L2-result:

1

n

n∑
i=1

{p̂∗
β̂∗

(X∗i )− p0(X∗i )}2 = OPM ((log n)2n−2/3) = oPM (n−1/2). (C.34)

See (6.21) in GH and Proposition 4 in BGH. Now we have shown (C.33). The

consistency follows from Assumption A7’, A8’, and C.34.

Step 2: Rearrangement
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(C.33) can be rearranged to

Mβ(β̂∗ − β0) =

{
1

n

n∑
i=1

m(Z∗i , β0, p0(X∗i ))− 1

n

n∑
i=1

m(Zi, β0, p0(Xi))

}
+

{
1

n

n∑
i=1

M(Z∗i )− 1

n

n∑
i=1

M(Zi)

}

+
1

n

n∑
i=1

{m(Zi, β0, p0(Xi) +M(Zi)}+ oPM (n−1/2 + (β̂∗ − β0)). (C.35)

Then we could subtract (C.23) from (C.35) and get

Mβ(β̂∗ − β̂) =

{
1

n

n∑
i=1

m(Z∗i , β0, p0(X
∗
i ))− 1

n

n∑
i=1

m(Zi, β0, p0(Xi))

}

+

{
1

n

n∑
i=1

M(Z∗i )− 1

n

n∑
i=1

M(Zi)

}
+ oPM ((β̂∗ − β0) + n−1/2),

Note the bootstrap mean E∗[m(Z∗i , β0, p0(X
∗
i ))] = 1

n

∑n
i=1m(Zi, β0, p0(Xi)) and

E∗[M(Z∗i )] = 1
n

∑n
i=1M(Zi). Then we have by CLT

√
n(β̂∗ − β̂)

d→ N(0,Π),

where Π is defined in (C.24).
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