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Abstract

In finance and insurance there is often the need to construct multivariate distributions

to take into account more than one source of risk, where such risks cannot be assumed to

be independent. In the course of this thesis we are going to explore three models, namely

the copula models, the trivariate reduction scheme and mixtures as candidate models for

capturing the dependence between multiple sources of risk. This thesis contains results

of three different projects. The first one is in financial mathematics, more precisely

on the pricing of financial derivatives (multi-asset options) which depend on multiple

underlying assets, where we construct the dependence between such assets using copula

models and the trivariate reduction scheme. The second and the third projects are

in actuarial mathematics, more specifically on the pricing of the premia that need to

be paid by policyholders in the automobile insurance when more than one type of

claim is considered. We do the pricing including all the information available about the

characteristics of the policyholders and their cars (i.e. a priori ratemaking) and about

the numbers of claims per type in which the policyholders have been involved (i.e. a

posteriori ratemaking). In both projects we model the dependence between the multiple

types of claims using mixture distributions/regression models: we consider the different

types of claims to be modelled in terms of their own distribution/regression model

but with a common heterogeneity factor which follows a mixing distribution/regression

model that is responsible for the dependence between the multiple types of claims. In

the second project we present a new model (i.e. the bivariate Negative Binomial-Inverse

Gaussian regression model) and in the third one we present a new family of models (i.e.

the bivariate mixed Poisson regression models with varying dispersion), both as suitable

alternatives to the classically used bivariate mixed Poisson regression models.
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Chapter 1

Introduction

1.1 Multidimensionality in finance and insurance

Practitioners in finance and insurance are always juggling multiple sources of risk. For

example in investments there is the need to make predictions on multiple stock prices on

which one is simultaneously investing. Companies need many different supplies and have

to sell their own goods, while the market price of these supplies and goods is in constant

variation. Insurance companies have many different policyholders in their portfolios,

each of them with its own level of riskiness, not to mention that insurance companies

have multiple lines of business at the same time. In mathematics we call each individual

source of risk ”a marginal risk” or ”a marginal”.

This need to take into account more than one source of risk is already very challenging

even if we assume such risks to be independent. How do we represent the different

sources of risk? How do we construct multivariate distributions to take into account

more than one source of risk? Furthermore, these sources of risks are almost surely

not independent. Therefore what if they are not independent? How do we relax the

independence assumption and capture the existing correlation? This still remains an

open question in statistics and many methods have been developed in the course of the

11



years in the attempt to tackle this problem.

The linear correlation coefficient is the easiest method to structure the dependence and

it would not be hard to find someone who still uses it as their sole measure of dependence

between risky assets or exposures, despite its many significant limitations. In particular

it assumes that the correlation can be well synthesised just with one statistical indica-

tor and does not take into account that such correlation may vary depending on the

percentile of the distribution of each risk factor (for instance, equities exhibit a greater

tendency to crash together than to boom together) and also might not be linearly de-

pendent on time.

Therefore the construction, study and applications of multivariate distributions - that

can structure the joint distribution taking into account that the interaction between

different risks may change in different points of the distribution and in different points

in time - is one of the classical fields of research in statistics, and it continues to be an

active one. In particular, it is important not limiting ourselves to multivariate Normal

distributions, as it is now well demonstrated that normality does not work for asset

returns, neither for the payouts from different options, neither for most risks in finance

and insurance.

As summarised by Sarabia and Gómez Déniz (2008), in recent years several books

containing theory about multivariate non-Normal distributions have been published:

Hutchinson (1990), Joe (1997), Arnold et al. (1999), Kotz et al. (2004), Kotz and Nadara-

jah (2004), Nelsen (2007). In the discrete case specifically, the books of Kocherlakota

and Kocherlakota (2004) and Johnson et al. (1997) and the review papers by Balakr-

ishnan (2014) are to be noted. Reviews on constructions of discrete and continuous

bivariate distributions are given by Lai (2004) and Lai (2006). It is though impossible

producing a standard set of criteria that can always be applied to produce a unique

distribution which could unequivocally be called the multivariate version (Kemp and

Papageorgiou (1982)). In this sense, there is no satisfactory unified scheme of classi-
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fying these methods. In the bivariate continuous case Lai (2004) and Lai (2006) have

considered the following clusters of methods: marginal transformation method, methods

of construction of copulae, mixing and compounding, variables in common and trivari-

ate reduction techniques, conditionally specified distributions, marginal replacement,

geometric approach, constructions of extreme-value models, limits of discrete distribu-

tions, some classical methods, distributions with a given variance-covariance matrix and

transformations.

Specifically, in the course of this thesis, we are going to focus on three of the above

cited methods, which allow to capture the dependence in a complete way considering

the whole joint distribution function:

1. copulae (which we will be using in Chapter 2);

2. trivariate reduction scheme (which we will be using in Chapter 2);

3. mixtures (which we will be using in Chapters 3 and 4).

Such methods can be used to represent jointly as many sources of risk as needed, but in

the course of this thesis, for the sake of simplicity, we will be exploring always bivariate

cases: this choice was made to keep the problems as simple and clear as possible. If one

wishes to describe more than two sources of risks, some re-adaptations of the models

are possible in order to take into account in a more exhaustive way of the multiple

dependencies that arise between different pairs of risks. Also, we only focus on positive

correlation between our risks, but extensions of our models to take into account negative

dependence are possible. We will be explaining more about the limitations and possible

extensions of our models in the following chapters of this thesis. We will now start with

an introduction to these models and then in the following chapters we will be exploring

them in a variety of financial and actuarial applications.
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1.2 Copulae

1.2.1 The importance of copulae

Copulae is a relatively recent method that allows flexible manipulation of risk factors

and other relevant variables studied in finance. In particular, when working in multidi-

mensional conditions (i.e. there are multiple risk factors), the assumption of a Normal

multivariate distribution leads to conclusions that are distant from those found em-

pirically. The research of new multivariate distributions that better adapt to the real

behaviour of risk factors led copulae to be a useful tool for solving various problems in

the financial fields.

The characteristic that best defines this instrument of financial analysis is the fact that it

can separate the issues related to the univariate analysis of the margins from those that

refer to the structure of dependence. To be more precise, a copula is used to separate

the pure randomness of one variable (e.g. a financial asset) from the interdependencies

between it and other variables. In this way, one can model each variable separately

and, in addition, have a measure of the relations between those variables. Technically,

this means that the univariate probability distribution, being informative on the prob-

abilities of outcomes of one variable can be modelled by a distribution type of choice,

while another variable can be modelled using another type of probability distribution.

By doing so, one can choose for each and any asset in a spectrum the most appropriate

type of distribution, not influencing the interdependencies between those variables. The

interdependencies between those variables are represented by a multivariate probabil-

ity distribution function, which is informative on the joint outcomes of the variables,

and this multivariate distribution function is the copula as synthesised by Rachev et al.

(2009).
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1.2.2 An historical perspective

The history of copulae may be said to begin with Fréchet (1951). He investigated the

following problem: given the distribution functions Fk with k = 1, 2, ..., d of d random

variables X1, X2, ..., Xd defined on the same probability space (Ω,F , P ), what can be

said about the set Γ(F1, F2, ..., Fd) of the d-dimensional distribution function’s whose

marginals are the given Fk? It is immediate to note that the set Γ(F1, F2, ..., Fd), now

called the Fréchet class of Fk’s, is not empty since, if X1, X2, ..., Xd are independent,

then the distribution function (x1, x2, ..., xd) 7→ F (x1, x2, ..., xd) =
∏d

k=1 Fk(xk) always

belongs to Γ(F1, F2, ..., Fd). But it was not clear which other elements of Γ(F1, F2, ..., Fd)

were. Preliminary studies about this problem were conducted by Féron (1956), Gumbel

(1958) and Fréchet (1956) himself, but the deepest result was obtained by Sklar (1959).

He introduced the notion, and the name, of a copula, and proved the theorem that now

bears his name.

Sklar’s Theorem. If F (x1, x2, ..., xd) is a joint multivariate distribution function with

univariate marginal distribution functions F1(x1), F2(x2), ..., Fd(xd), then there exists a

copula C such that, for each (x1, x2, ..., xd) ∈ <:

F (x1, x2, ..., xd) = C(F1(x1), F2(x2), ..., Fd(xd)).

The theorem also admits the following converse implication, usually very important

when one wants to construct statistical models by considering, separately, the univari-

ate behaviour of the components of a random vector and their dependence properties as

captured by some copula. If C is a copula and F1(x1), F2(x2), ..., Fd(xd), are univariate

distributions functions, then the function F (x1, x2, ..., xd) is the joint distribution func-

tion with margins F1(x1), F2(x2), ..., Fd(xd). The proof to Sklar’s theorem was not given

in Sklar (1959), it was instead provided later for the 2-dimension case.
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For about 15 years, all the results concerning copulae were obtained in the framework of

the theory of Probabilistic Metric spaces (see Schweizer and Sklar (1983)). In the mid-

seventies, Bert Schweizer realized that he could easily construct dependence measures

by using copulae. However, for several other years, Chapter 6 of Schweizer and Sklar

(1983), devoted to the theory of Probabilistic Metric spaces and published in 1983,

was the main source of basic information on copulae. Nevertheless, since interest in

questions of statistical dependence was increasing, others came to the subject from

different directions. In 1990, Dall’Aglio organized the first conference devoted to copulae,

called ”Probability distributions with given marginals” (see Salinetti et al. (1991)). This

led to a series of conferences that considerably helped the development of the field, since

each of them offered the chance of presenting one’s results and to learn those of other

researchers.

At the end of the nineties, the notion of copulae became increasingly popular. Two

books in particular became the standard references for the following decade: Joe (1997)

published his work on multivariate models and in 1999 Nelsen published the first edition

of his introduction to copulae (current edition Nelsen (2007)). But, the main reason of

this increased interest has to be found in the discovery of the notion of copulae by

researchers in several applied fields, like finance.

The advent of copulae in finance originated a wealth of investigations about them and

their applications. At the same time, other fields discovered the importance of this

concept for constructing more flexible multivariate models. Nowadays, it is near to

impossible to give a complete account of all the applications of copulae to the main

fields where they have been used. Genest et al. (2009) identified the most important

areas of application of copulae. They examined 871 documents and grouped them into

nine categories. They found that even though people in finance have been interested

in copulae only since 2000, they produced the largest proportion of documents, i.e.

41%. Moreover, they discovered that two major phenomena account for the rise of
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copula modelling in finance: the lack of normality in log-returns and the dependence

between extreme values of various assets. They checked 353 documents and grouped

their contributions in finance into four categories:

• Risk management : topics included are those covering credit, market, operational

risk and risk aggregation;

• Portfolio management : papers dealing with the dependence between international

financial markets, different classes of assets and currencies;

• Pricing of derivatives : this category comprises work on the pricing of exotic op-

tions, collateralised debt obligations and credit default swaps;

• Risk measurement : papers discussing value-at-risk, expected shortfall and financial

contagion.

Figure 1.1: Breakdown by discipline of 871 documents
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1.2.3 Archimedean copulae

Copulae play an important role in the construction of multivariate distribution functions

and, as a consequence, having at one’s disposal a variety of copulae can be very useful for

building stochastic models having different properties that are sometimes indispensable

in practice (e.g., heavy tails, asymmetries, etc.). Therefore, several investigations have

been carried out concerning the construction of different families of copulae and their

properties (see Durante and Sempi (2010)). Generally, two greatest families of copulae

can be distinguished: Elliptical and Archimedean family.

Elliptical copulae are the copulae with elliptical distributions, which have an elliptical

form and therefore symmetry in the tails. Important copulae in this family are the

Gaussian and the t-copula. The class of elliptical distributions provides useful exam-

ples of multivariate distributions because they share many of the tractable properties

of the multivariate normal distribution. Furthermore, they allow to model multivari-

ate extreme events and forms of non-normal dependencies. Simulation from elliptical

distributions is easy to perform. Therefore, as a consequence of Sklar’s Theorem, the

simulation of elliptical copulae is also easy. However, they suffer from some drawbacks:

elliptical copulae do not have closed form expressions and are restricted to have radial

symmetry. In many finance and insurance applications it seems reasonable that there is

a stronger dependence between big losses (e.g. a stock market crash) than between big

gains. Such asymmetries cannot be modelled with elliptical copulae.

In our work, we will explore the family of Archimedean copulae. This class of copulae

is worth studying since they find a wide range of applications for a number of rea-

sons. Many interesting parametric families of copulae are Archimedean and the class

of Archimedean copulae allows for a great variety of different dependence structures.

Furthermore, in contrast to elliptical copulae, all commonly encountered Archimedean

copulae have closed form expressions.
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These copulae are not derived from multivariate distribution functions using Sklar’s

Theorem and a consequence of this is that we need somewhat technical conditions to

assert that multivariate extensions of Archimedean 2-copulae are proper d-copulae.

A further disadvantage is that multivariate extensions of Archimedean copulae in gen-

eral suffer from lack of free parameter choice in the sense that some of the entries in the

resulting rank correlation matrix are forced to be equal.

As Mikosch (2006) argues, the copula C of a random vector X is a transformation of

the distribution of X. As for the distribution of X we have infinitely many choices for

C. If one chooses a copula it should be related to the problem at hand. For example, if

we are interested in multivariate extremes the copula should be related to multivariate

extreme value theory. In the literature various families of copula families with a name

have been introduced. Their choice is not always based on reasoning but on mathemat-

ical convenience.

Each copula family is different for shape, behaviour and tail characteristics. These dif-

ferences would allow us to fit empirical data to the optimal copula, meaning the copula

that best reflects data behaviour, especially behaviour in the tails. In the literature,

several methods to choose the ”optimal” copula have been implemented. Generally,

Maximum Likelihood or Inference Functions for Margins methods are used for the pur-

pose. However, Maximum Likelihood Estimation is assumed to be a good method,

since:

• it is sufficient: it gives complete information about parameters of interest;

• it is consistent: the true value of the parameters is recovered asymptotically for

sufficiently large samples;

• it is efficient: it achieves asymptotically the lowest possible variance in parameter

estimation.

Following McNeil et al. (2009) a copula C is called Archimedean if it can be written in
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the form

C(F1(x1), F2(x2), ..., Fd(xd)) = φ(φ−1(F1(x1)) + φ−1(F2(x2)) + ...+ φ−1(Fd(xd))),

for (F1(x1), F2(x2), ..., Fd(xd)) ∈ Id and for some generator function φ and its generalized

inverse φ−1.

A function φ : <+ → I is said to be an (outer additive) generator if:

• it is continuous;

• it is decreasing and φ(0) = 1, limt→+∞ φ(t) = 0;

• it is strictly decreasing on [0, t0], where t0 := inf{t > 0 : φ(t) = 0}.

If the function φ is invertible, or, equivalently, strictly decreasing on <+, then the genera-

tor is said to be strict. If φ is strict, then φ(t) > 0 for every t > 0 (and limt→+∞ φ(t) = 0).

The pseudo-inverse of φ is defined as follows:

φ−1(t) :=

{
φ−1(t), 0 ≤ t ≤ φ(0)

0, φ(0) ≤ t ≤ ∞.

A generator φ generates an Archimedean copula in dimension d if and only if it is

d-monotone, that is:

• φ has continuous derivatives on (0,∞) up to order d− 2;

• (−1)kφk(x) ≥ 0 for any k = 1, ..., d− 2;

• (−1)d−2φd−2 is non-negative, non-increasing and convex on (0,∞).

One-parameter copulae, constructed using a generator φθ(t) and indexed by the param-

eter θ, are an important group of Archimedean copulae. In this type of copulae, the

parameter θ is the measure of association, i.e. it defines the strenght of the correlation
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existing between the marginals: the higher the parameter θ, the higher the dependence.

The existing domain of the parameter θ varies depending on the type of copula: when

θ reaches its lower bound it means total independence between the marginals, whereas

the upper bound means complete dependence.

Another measure of association that can be used to calculate the correlation between

marginals is the rank correlation measure called Kendall’s τ , which is another possible

way of fitting copulae to data, because of its direct correspondence with the parameter

θ, i.e knowing one you can easily extract the other one.

Let (x1, y1), ..., (xn, yn) be a set of observations of the joint random variables X and Y ,

such that all the values of (xi) and (yi) are unique (ties are neglected for simplicity).

Any pair of observations (xi, yi) and (xj, yj), where i < j, are said to be concordant if the

sort order of (xi, xj) and (yi, yj) agrees: that is, if either both xi > xj and yi > yj holds

or both xi < xj and yi < yj; otherwise they are said to be discordant. The Kendall’s τ

coefficient is defined as:

τ =
(number of concordant pairs)− (number of discordant pairs)

n(n− 1)/2
. (1.1)

The denominator is the total number of pair combinations, so the coefficient must be

in the range −1 ≤ τ ≤ 1. If the agreement between the two rankings is perfect (i.e.,

the two rankings are the same) the coefficient has value 1. If the disagreement between

the two rankings is perfect (i.e., one ranking is the reverse of the other) the coefficient

has value −1. If X and Y are independent, then we would expect the coefficient to be

approximately zero.

Three of the main one-parameter copulae will now be described. Then in Chapter 2 we

are going to see an application of these three Archimedean copulae to the case where

we need to capture the dependence between multiple Lévy processes: in such context

these one-parameter Archimedean copulae will be called one-parameter Archimedean
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Lévy copulae.

One limitation of one-parameter copulae (both in the regular and in the Lévy setting) is

that they can describe only one measure of association: in our case, since we focus only

on bivariate applications, one measure of dependence suffices to consider the dependence

between two marginals. If there is the need to take into account of more than two, then

it would be useful to use copulae that have more parameters of dependence and can

therefore account for multiple different correlations between different pairs of marginals.

In such cases Vine copulae (or Vine Lévy copulae in the Lévy setting) can overcome

this limitation of one-parameter copulae.

Clayton copula

The Clayton copula has the following expression:

C(F1(x1), F2(x2), ..., Fd(xd)) = max

[( d∑
i=1

(Fi(xi))
−θ − (d− 1)

)1/θ

, 0

]
, (1.2)

where θ ≥ −1/(d−1). The limiting case θ = 0 corresponds to the independence copula.

The generator is:

φ(t) = (max(1 + θt, 0))1/θ.

The Kendall’s τ is:

τ =
θ

θ + 2
. (1.3)

The Clayton copula shows an extremely uprising peak at (0, 0) while a less pronounced

behaviour at (1, 1). Therefore, we can say that there is lower tail dependence, but no

upper tail dependence, i.e.:

λU = 0

λL = 2−1/θ.
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Gumbel copula

The Gumbel copula has the following expression:

C(F1(x1), F2(x2), ..., Fd(xd)) = exp

[
−
[ d∑
i=1

(− ln(Fi(xi)))
θ

]1/θ]
, (1.4)

where θ ≥ 1. For θ = 1 we obtain the independence copula as a special case, and

limθ→+∞C(F1(x1), F2(x2), ..., Fd(xd)) is the co-monotonicity copula. The generator is:

φ(t) = exp(−t1/θ).

The Kendall’s τ is:

τ = 1− θ−1. (1.5)

The Gumbel copula shows an extremely uprising peak at (1, 1) while a less pronounced

behaviour at (0, 0). Therefore, we can say that there is upper tail dependence, but no

lower tail dependence, i.e.:

λU = 2− 21/θ

λL = 0.

Frank copula

The Frank copula has the following expression:

C(F1(x1), F2(x2), ..., Fd(xd)) = −1

θ
ln

[
1 +

∏d
i=1(exp(−θFi(xi))− 1)

(exp(−θ)− 1)d−1

]
, (1.6)
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where θ > 0. The limiting case θ = 0 corresponds to the independence copula. The

generator is:

φ(t) = −1

θ
log(1− (1− exp(−θ)) exp(−t)).

The Frank copula shows no extremely uprising peaks. Therefore, we can say that there

is no tail dependence, i.e.:

λU = 0

λL = 0.

1.3 Trivariate reduction scheme

Copulae have a high degree of precision, which is however not needed for all applications

and comes at the price of reduced analytical tractability. For this reason, several authors

have proposed alternative approaches to generate dependency, which may be less flexible,

but lead to simpler models. One of these methods is the trivariate reduction scheme, also

known as ”the variables in common method”, which is a popular and old technique used

for building dependent variables, both in continuous and discrete cases. This method

cannot capture extreme values as well as copulae, but the estimation and simulation

procedures are much more straightforward than with copulae. As previously mentioned,

in the following we will be focusing mainly on the bivariate case.

The method consists of building a pair of dependent random variables starting from three

(or more) random variables. These initial random variables are usually independent.

The functions that connect initial variables are generally elementary functions, or are

given by the structure of the variables that we want to generate.
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A broad definition can be

{
X = υ1(eX , cXY ),

Y = υ2(eY , c̃XY ).
(1.7)

where eX , eY represent two sets containing the specific variables of X and Y respectively,

and cXY , c̃XY sets containing the common or latent variables. According to Marshall

and Olkin (2007), many of the couples (X, Y ) here presented are associated and

Cov (u(X), v(X)) ≥ 0, (1.8)

for all increasing functions u, v for which the covariance exists, and then only positive

correlations are possible. This method has been used mainly in the bivariate setting,

which as we mentioned is the dimension in which we are also interested, therefore we

wrote the formula for the case of two marginals. Nevertheless this representation can

be used for any dimension d of marginal risks.

Over the last few years, several new dependent distributions using this method have

been proposed. Some relevant models are:

• the bivariate Generalized Poisson distribution (where if the variables are Poisson

random variables, we obtain the classical bivariate Poisson distribution, which is

often used for obtaining compound bivariate Poisson distributions, whereas if we

consider a Generalized Poisson distribution for the random variables, we obtain

the model considered by Vernic (1997) and Vernic (2000));

• the bivariate Beta distribution (proposed by Olkin and Liu (2003), while Sarabia

and Castillo (2006) have considered a generalization of the joint probability density

function under a conditional specification);

• the bivariate t distribution (where the usual bivariate spherically symmetric dis-
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tribution is defined as by Fang et al. (2018), a bivariate distribution with Student

t marginals with different degrees of freedom has been proposed by Jones (2002)

and an alternative bivariate t distribution including the independence case has

been presented by Shaw and Lee (2008));

• the bivariate Marshall-Olkin type distributions (if the components correspond to

Exponential distributions, we obtain the Marshall-Olkin distribution, see Marshall

and Olkin (1967). Other survival models have been considered by Sarhan and Bal-

akrishnan (2007) with the Exponentiated Exponential distribution, as well as a

mixture of the proposed bivariate distribution. Arnold and Brockett (1983) have

obtained a bivariate Gompertz-Makeham distribution using a similar construc-

tion);

• the bivariate F distribution (the classical bivariate F distribution is defined as by

Balakrishnan (2000), while for a bivariate F distribution with arbitrary degrees of

freedom see El-Bassiouny and Jones (2009));

• the Ballotta-Bonfiglioli model (constructed for the case when the random variables

follow Lévy processes, see Ballotta and Bonfiglioli (2016)).

In Chapter 2 we are going to use this last model, which will therefore be described in

such chapter. All the models presented in this section, including the Ballotta-Bonfiglioli

model, can be extended to higher dimensions.

1.4 Mixtures

The use of mixtures to obtain flexible families of densities has a long history, especially

in the univariate case. The advantages of the mixtures mechanism are diverse. The

new classes of distributions obtained by mixing are more flexible than the original,

overdispersed with tails larger than the original distribution and often providing better
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fits. The extension of a mixture to the multivariate case is usually simple, and the

marginal distributions belong to the same family.

The limitation of this method is the same we had with the trivariate reduction scheme,

i.e. that it cannot capture extreme events as well as copulae, but on the other hand,

simulation and Bayesian estimation of mixtures are quite direct. Also mixtures solve the

identifiability issues that can arise with copulae (more about identifiability will follow

in Chapters 3 and 4). Since the introduction of simulation-based methods for inference

(particularly the Gibbs sampler in a Bayesian framework), complicated densities such

as those having mixture representation have been satisfactorily handled.

The multivariate distributions can be both discrete and continuous, but we will be

focusing only on the discrete ones. A broad definition can be

P (x1, x2, ..., xd) =

∞∫
0

d∏
k=1

P (xk|λ) f (λ;θ) dλ, (1.9)

where xk for k = 1, ...d are the marginal risks and λ is the common mixing factor re-

sponsible for the correlation between the marginals, which follows a mixing distribution

f (·) with vector of parameters θ.

In the case of multivariate discrete distributions, the study of the variability of multi-

variate counts arises in many practical situations. In ecology the counts may be the

different species of animals in different geographical areas whilst in insurance, the num-

ber of claims of different policyholders in the portfolio. Some relevant mixtures are

among the class of multivariate mixed Poisson models, such as:

• the multivariate Poisson-Lognormal distribution (see Aitchison and Ho (1989),

other versions of this model can be viewed in Tonda et al. (2005));

• the multivariate Poisson-Generalized Inverse Gaussian distribution (departing from

the Sichel distribution, also called Poisson-Generalized Inverse Gaussian distribu-
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tion, in Sichel (1971) were investigated bivariate extensions of that distribution.

In Stein et al. (1987) one of them is studied in order to obtain the estimation of

the parameters via the likelihood method);

• the multivariate Poisson-Beta distribution (Sarabia and Gómez-Déniz (2011) have

proposed multivariate versions of the Beta mixture of Poisson distribution con-

sidered by Gurland (1957) and Katti (1966). The new class of distributions can

be used for modelling multivariate dependent count data when marginal overdis-

persion is also observed. By choosing the Sarmanov-Lee distribution described in

Sarmanov (1966), Ting Lee (1996) and Kotz et al. (2004) and which has been used

by Sarabia and Castillo (2006), Sarabia and Gómez-Déniz (2011) built a bivariate

distribution that admits non-limited correlations of any sign).

Of course there is no need to restrict ourselves to the class of multivariate mixed Poisson

models. Another relevant multivariate discrete distribution is in fact the multivariate

Negative Binomial-Inverse Gaussian distribution, which was considered by Gómez-Déniz

et al. (2008) as a mixture of a Negative Binomial distribution with an Inverse Gaussian

distribution. This model is tractable and with attractive properties, which makes it

suitable for application in disciplines where overdispersion is observed.

In Chapters 3 and 4 we will be focusing on the multivariate Negative Binomial-Inverse

Gaussian model and on the class of multivariate mixed Poisson models (as previously

mentioned, in our case we use d = 2). All these models only have one mixing distribution,

but of course it is not necessary to limit oneself to only one: mixtures are a flexible

approach that allows to include as many mixing distributions as needed.
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1.5 Outline of the thesis

1.5.1 Chapter 2 - option pricing

Chapter 2 is in financial mathematics, more specifically in option pricing. Such work

focuses on the pricing of American multi-asset options, which are options that can be

exercised at any time between the date of purchase and the expiration date and whose

payoff depends on the overall performance of more than one underlying asset. We use

Lévy processes to represent such underlying assets, which can be described as processes

that can consider a jump component.

In the literature, American multi-asset options under the Lévy processes have generally

been priced under the assumption of linear dependence between the underlying assets,

which was therefore synthesised by the use of the correlation coefficient ρ (which is in fact

the measure of linear correlation between variables). Unfortunately linear dependence

is unable to represent well the complexity of the markets and, even more critically, the

jump components are implicitly considered to be independent. Since the jumps are the

most important component in such processes, by assuming them to be independent, the

entire dependence structure between the processes loses validity.

Therefore we resort to two of the aforementioned models to capture the dependence

between marginal Lévy processes in more complete and realistic fashions:

1. copulae (as presented in Section 1.2, which in the context of Lévy processes are

called Lévy copulae)

2. the trivariate reduction scheme in which the marginals are given by the sum of an

idiosyncratic part plus a common part (as presented in Section 1.3, which in the

context of Lévy processes is called the Ballotta-Bonfiglioli model).

Both models have been previously used only for the pricing of European multi-asset

options and we have extended the literature to the American setting. We develop our
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results particularly for the case of two marginal Variance Gamma processes to price

eight different types of options, but such procedure may be implemented for any kind

of Lévy processes and of multi-asset options. Also, under the Lévy copulae procedure,

we have restricted ourselves to four types of Lévy copulae, but of course it is possible

to extend the framework to other copulae.

In fact one of our limitations is that the suggested copulae can only account for positive

dependence between the variables: it would be interesting to explore the procedure

under copulae that can also account for negative dependence. Furthermore we use

one parameter copulae, which can only describe one measure of dependence between

variables, which is enough if we only have two underlying assets. It would be useful

to readjust the procedure on Vine Lévy copulae, so that in the case of more than

two underlying assets one is not limited by one overall dependence, but also pairwise

dependence can be captured.

Our contributions to the literature are mainly the following two:

1. Regarding Lévy copulae, the literature has only covered European multi-asset

options, therefore we extend the existing work to American options. The literature

as well as our work is done via simulation, therefore the American feature is

managed in practice through the employment of the Longstaff-Schwartz regression

model.

2. Regarding the Ballotta-Bonfiglioli model, work has been done in the European

setting, which we extend to the American setting. We achieve the pricing via gen-

erator (i.e. by solving the partial integro-differential equation), using a procedure

via finite difference method which had been developed for the univariate setting

and we extend it to take into account more underlying assets, whose dependence

is captured through the aforementioned model. We then also develop the pricing

via simulation, applying again the Longstaff-Schwartz algorithm, and we obtain
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comparable results to the ones obtained by solving the partial integro-differential

equation.

Such chapter is authored solely by me but under the invaluable guidance of Dr Tobias

Kley.

1.5.2 Chapters 3 and 4 - pricing premia in the automobile

insurance

Methodology

Chapters 3 and 4 are in actuarial mathematics, more specifically in automobile insur-

ance ratemaking when there is the need to consider more than one type of claims (in

our case, as mentioned, we focus on the bivariate case, therefore two types of claims),

where - again - a complex dependence structure between such types of claims needs to

be represented.

We structure such dependence by using mixtures (as per Section 1.4): we set the re-

sponses (i.e. the number of claims per type) to follow marginal Negative Binomial distri-

butions/regression models (in Chapter 3) and marginal Poisson distributions/regression

models (in Chapter 4) and we set a common heterogeneity factor as the mixing vari-

able, and therefore the distributions/regression models followed by the two responses are

mixtured by the same common mixing distribution/regression model. The mixing com-

ponent in such two chapters is structured to be either an Inverse Gaussian, a Gamma

or a Lognormal distribution/regression model. Therefore, all our models are ideally

suited for capturing overdispersion and positive dependencies in the two-dimensional

count data setting which, as all recent studies suggest, is the norm when the ratemaking

consists of pricing different types of claim counts arising from the same policy.

It is to be noted that our models cannot capture underdispersion and negative depen-

dencies, therefore if dealing with a data set which exhibits these characteristics, other
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models are more advisable: in Chapter 3 for example we refer the reader to the models

by Fung et al. (2019a) and Fung et al. (2019b) for such scenarios.

In the automobile insurance in order to distinguish between individuals with different

risks profiles, Bonus-Malus Systems (BMSs) are applied as experience rating mecha-

nisms. These mechanisms are also called a posteriori ratemaking as they take into

account the number of years that the policyholder has been in the insurance’s portfolio

and of claims reported by each individual during the previous years and apply a penalty

or a reward accordingly. In order to obtain the most accurate BMSs, Bayesian statistics

is employed as it grants the optimal and fairer premia estimates. Before applying a

posteriori ratemaking, the premia are already presorted through the a priori ratemak-

ing, which uses all the available information for the policyholder and its automobile

as covariate information to predetermine the level of riskiness to be expected by each

individual.

Importance of the work

This work is relevant because, firstly, accurate pricing of automobile insurance has be-

come crucial in such context as the premia for automobile insurance have been increas-

ing alarmingly over the past years, with prospects for the future that do not seem any

brighter and show the trend continuing to rise distressingly in the next years. In fact in

the last report issued in the UK, the Association of British Insurers (ABI) states that

average premia have risen by 9% between October and December 2017 and display an

average of £481 which is the highest figure since the ABI started records in 2012, and

the eighth successive quarter in which premia have risen. These increments are partially

caused by a rise in the Insurance Premium Tax, which has reached 12% in June 2017,

and by a decrease in April 2017 of the discount (or Odgen) rate that is applied on in-

surances for the cost of long-term injury claims.

Such worrying scenario is not for Europe only: in the US in fact, due to the additional
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factor of catastrophic disasters (i.e. floods, storms and hurricanes), the problem is even

more significant. According to the National Highway Traffic and Safety Administration,

people’s distraction has caused crashes to rise to numbers that have not been seen in

nearly a decade. This statement is strengthened by the National Safety Council, which

in fact observes an increase of 6% in fatal motor accidents from 2015 to 2016, for a total

of 40,200 fatalities. This combination of natural disasters and accidents has caused a

huge increment in the number of claims, which justifies these high premia.

There have been attempts to reduce the premia in order to relieve the customers, but

in the UK, despite the average price having recorded its first quarterly fall in two years,

average costs during the first quarter of 2018 were the highest that the ABI has ever seen

at this time of year. The Ministry of Justice has anticipated a revision of the Odgen rate

and new legislation that should relieve the current pressure on premia but it is unclear

whether these measures will secure much of an impact.

Furthermore, the calculation of the premium differs between different countries as vary-

ing policies may be applied, as reported by the RAC Foundation: firsty, obviously the

premium is calibrated on the living costs, therefore for example in Europe it is higher

for northern countries; secondly, it is important using models which allow employing

the a priori ratemaking, as different covariate information may be considered since each

country may weigh differently specific explanatory variables. In fact for example France,

Germany and Sweden focus primarily on the type of vehicle, while the UK has a strongly

risk-based approach to underwriting that focuses on the driver. Therefore, despite total

average premia being comparable in the aforementioned countries, they are lower for

young drivers in other European countries than is the case in the UK, and conversely

higher for older drivers.

In addition, when more than one type of claim is taken into account, the pricing poli-

cies between countries differ: being able to consider more than one type of claim is

crucial as not all countries reason only in terms of comprehensive claims, but actually
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distinguish between different types of claims. For example, in many European markets,

such as France, Germany, Italy, the Netherlands, Spain and Sweden, the cover is split

into third party, fire and theft on the one hand, and material damage on the other,

with a lower price being applied when only the first one is chosen. On the contrary, in

the UK, comprehensive cover prevails due to its cheaper price than third-party cover,

since requesting for the latter is acknowledged as a declaration of being a risky profile,

especially for less-experienced drivers.

Hence, it has become crucial for actuaries to tailor their models in concurrence with

the need of absorbing covariate information and of considering more then one type

of claim, leading to the consequent problem of depicting appropriately the correlation

structure between the different kinds of claims and designing an optimal allocation of

the expected costs. The current pressure on the premia has highlighted the urgency of

conceiving more sophisticated models with the ability of capturing all factors affecting

the premia, which could therefore be led to a more accurate and fairer calculation.

Contribution to the literature

In Chapter 3 we extend to the bivariate case a Negative Binomial-Inverse Gaussian

regression model (as mentioned in Section 1.4) which had already been considered in

the context of insurance ratemaking in its univariate version. We then compare it to

the more traditionally used bivariate mixed Poisson models and show that, not only

our model is a better fit (in terms of specification criteria) for the data set of a MTPL

insurance, but also has the following beneficial characteristics:

1. since the marginal responses/type of claims are distributed as two Negative Bi-

nomial distributions/regression models, overdispersion can be taken into account

also when considering separately the two marginals, and not only when considered

jointly. This is actually an important aspect, because, as we will see in Chapters

3 and 4, our data set clearly shows that such overdispersion already exists when
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analysing separately the two types of claims;

2. we develop a novel Expectation-Maximisation type algorithm for maximum likeli-

hood estimation of the bivariate Negative Binomial-Inverse Gaussian model, which

allows to achieve parameter estimation also including covariate information (i.e.

a priori ratemaking), which as we said is necessary if we want a model flexible

and versatile enough to be adaptable to any kind of individual (and its level of

riskiness) and to any country/market;

3. our model shows much less extreme a posteriori, or Bonus-Malus, premia for poli-

cyholders with some claims experience than those produced by the mixed Poisson

models, which is a significant asset, if we consider how high the premia already

are;

4. also, for a given total number of claims, our model can enable the actuary to

differentiate the premium rates based on the exact frequencies of the two types of

claims, whereas the two mixed Poisson models do not allow to price discriminate

by taking into account the difference in the numbers of the two types of claims.

In Chapter 4 we use the family of multivariate mixed Poisson models (as mentioned

in Section 1.4), we extend them and introduce their adjusted version as a new class

of models, the multivariate mixed Poisson models with varying dispersion, which allow

also the mixing component to be modelled as a generalized linear model (GLM). The

main advantages of our approach are the following:

1. as mentioned, we express all parameters of our model in terms of covariate informa-

tion, including the mixing variable, whereas traditionally the mixing component

cannot be represented as a regression model, but only as a distribution. This

characteristic allows our model to take better into account all the available infor-

mation, granting therefore the fairest premium rates possible which are accurately

individually-tailored to each policyholder;
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2. we develop an atypical Expectation-Maximisation algorithm that allows to in-

clude explanatory variables everywhere and that is easily re-adaptable to different

parametric families from the ones suggested;

3. we implement the a posteriori ratemaking not only based on the expected principle,

but we suggest the variance principle as a suitable alternative. In fact it needs to

be noted that the majority of authors rely on the expected value principle, while

the variance principle was suggested in the construction of BMSs with a frequency

component reliant exclusively on the a posteriori criteria. Nevertheless, the latter

principle, when BMSs are used, is much more robust than the expected value

principle.

Chapters 3 and 4 are joint work with Dr George Tzougas, and my contribution to such

chapters is as important as his.
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Chapter 2

American multi-asset option pricing

under Lévy copulae and the

Ballotta-Bonfiglioli model

2.1 Introduction and outline

This chapter focuses on the pricing of American multi-asset options, which are options

that can be exercised at any point in time (American) till the expiry date (if there is

one) and that depend on more than one underlying asset (multi-asset). We consider

the multiple underlying assets to be represented by Lévy processes, which can be de-

scribed as processes that can consider a jump component: for further details on Lévy

processes see Bertoin (1996), Sato (1999) and Kyprianou (2014) for the general setting

and Schoutens (2003) and Tankov (2003b) for financial applications.

We develop our results particularly for the case of two underlying assets which follow

two marginal Variance Gamma processes: full details on the Variance Gamma process

can be found in Madan and Seneta (1990), Madan et al. (1998) and Seneta (2007),

while its fitting is presented by Seneta (2004). As presented in Chapter 1, we need to
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take into account that the marginal underlying assets are in most cases not independent

and therefore we need to model in the most accurate and complete way possible the

dependence structure existing between them. In this chapter we focus on two particular

models that have been developed to capture the dependence between the marginal pro-

cesses: copulae (Section 1.2) and the trivariate reduction scheme (Section 1.3). These

two models have been presented in a more general setting in Chapter 1, but have been

properly adjusted in the existing literature for the case where the marginals follow Lévy

processes.

In particular copulae are in the case of Lévy processes called Lévy copulae. Lévy cop-

ulae were introduced on <d+ by Tankov (2003a) and then extended to <d by Kallsen

and Tankov (2006) and Tankov (2016). Other relevant literature is Barndorff-Nielsen

and Lindner (2007) and Bäuerle et al. (2008). The estimation procedure has been dis-

cussed by Laeven (2009), Bücher et al. (2013), Grothe (2013) and Palmes et al. (2018)

for the nonparametric cases and by Esmaeili and Klüppelberg (2011) and Esmaeili and

Klüppelberg (2013) for the parametric cases. Lévy copulae, thanks to their degree of

accuracy and their ability to calculate extreme events (see Bollerslev et al. (2013) and

Grothe (2013)) have been used for many applications in finance and insurance. In par-

ticular Tankov (2004), Kettler (2006), Tankov (2006) and Linders and Schoutens (2014)

have been using Lévy copulae for the representation of correlated financial processes/un-

derlying assets for the purpose of option pricing. Applications to insurance can be found

in Avanzi et al. (2011) and Bäuerle and Blatter (2011) for correlated claims, portfolios

and business lines. See Böcker and Klüppelberg (2008), Böcker and Klüppelberg (2010)

and Van Velsen (2012) for applications to operational risk.

The trivariate reduction scheme is called the Ballotta-Bonfiglioli model in the case where

each marginal follows a Lévy process. This method was presented by Ballotta and

Bonfiglioli (2016), and then the estimation procedure was developed by Ballotta et al.

(2015b) and Ballotta et al. (2019a). It has been applied abundantly in financial appli-
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cations, such as for the joint dynamics of FX rates and asset prices for the pricing of

Quanto products in Ballotta et al. (2015a) and Ballotta et al. (2017) and then extended

to a Markov-modulated switching regime by Deelstra and Simon (2017). Ballotta and

Fusai (2015) and Ballotta et al. (2019b) have then used it for counterparty credit risk.

Of course there are other efficient methods to capture the correlation between the two

Variance Gamma processes, such as the model suggested by Luciano and Schoutens

(2006) and Linders and Stassen (2016), which represents the two Variance Gamma

processes as time-changed geometric Brownian motions with a common Gamma subor-

dinator.

The reason for which we focus on the aforementioned two models to capture the cor-

relation between the two underlying assets is that Lévy copulae can capture extreme

events better than any other model and have a degree of accuracy which still remains

unparalleled, but this comes at the cost of reduced analytical tractability and much less

convenient estimation and simulation procedure. The Ballotta-Bonfiglioli method can

overcome these flaws, even though we lose on the level of precision. So these two models

can be seen as complementary to one another.

Most importantly, as mentioned in Chapter 1, the linear correlation coefficient is still

commonly used to capture the dependence between the underlying assets, despite its

inability to represent the complexity of the markets and, even more critically, if we

assume that the two marginal underlying assets follow two Lévy processes, it presents

an unrealistic assumption of independence between the two marginal jump components

(see, for example, Jinghui (2009)). Since the jumps are the most important components

in such processes, by assuming them to be independent, the entire dependence structure

between the processes loses validity. The two proposed methods on the other hand are

perfectly able to overcome this issue.

An important limitation of our approach is that we only take into account positive

correlation, but re-adaptations of our two models to take into account also negative
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dependence are possible.

Our contributions to the literature are mainly the following:

1. Under the framework given by Lévy copulae, the literature has only covered the

pricing of European multi-asset options via simulation, therefore we extend the

existing work to the pricing of American options. To price this type of options via

simulation, we need to implement the Longstaff-Schwartz regression model (see

Longstaff and Schwartz (2001)), which can create deficiencies such as a significant

increase in the computational time when dealing with many underlying assets (see

Hanbali and Linders (2019)), but for our bivariate case it has a good degree of

precision and does not create any computational burden.

2. Regarding the Ballotta-Bonfiglioli model, work has been done to price European

contracts via simulation, we implement again the Longstaff-Schwartz regression

model to extend the literature to American contracts.

3. Hirsa and Madan (2004), Fiorani (1999) and Fiorani (2004) had priced American

mono-asset options by solving the partial integro-differential equation (PIDE) via

finite difference method for the case of one marginal underlying asset following

a Variance Gamma process. We extend their work to the multidimensional case,

where we have more underlying assets following marginal Variance Gamma pro-

cesses, whose dependence is captured through the Ballotta-Bonfiglioli model. We

then compare the achieved results to the ones we obtained via simulation and we

see that they are perfectly comparable.

The chapter is structured as follows:

in Subsection 2.2.1 we introduce Variance Gamma processes as the marginal underlying

assets, in Subsection 2.2.2 we show how to apply them for the pricing of options. In

Section 2.3 we achieve the pricing of American multi-asset options under the Lévy
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copulae. In order to do so, the section is arranged as follows: in Subsection 2.3.1 we

introduce Lévy copulae, followed by their simulation procedure in Subsection 2.3.2. We

then introduce the employment of the Longstaff-Schwartz algorithm in Subsection 2.3.3,

which needs to be applied on the simulated pahts for the evaluation of the continuation

region and of the option price. Finally we present the option prices under the Clayton

Lévy bidirectional copula in Subsection 2.3.4, under the Clayton Lévy (unidirectional)

copula in Subsection 2.3.5, under the Gumbel Lévy copula in Subsection 2.3.6 and

under the Frank Lévy copula in Subsection 2.3.7 for different values of the copulae’s

parameters that govern the dependence structure. In Section 2.4 we concentrate on the

pricing of the same options, but by using the Ballotta-Bonfiglioli method to capture

the dependence structure: therefore in Subsection 2.4.1 we present such method and

in Subsection 2.4.2 we present our extension in pricing options by solving the PIDE

developed by Hirsa and Madan (2004), Fiorani (1999) and by Fiorani (2004) to the

multidimensional setting under the Ballotta-Bonfiglioli structure. Then in Subsection

2.4.3 we present some numerical results and in Subsection 2.4.4 we compare them with

the results obtained via simulation. We end by drawing our conclusions in Section 2.5.

2.2 Variance Gamma processes for option pricing

2.2.1 The Variance Gamma process

Given the probability space (Ω,F , P ), let xk(t;σk, αk, θk) for k = 1, 2 be our two marginal

Variance Gamma processes with time t and marginal parameters σk, αk and θk. Variance

Gamma processes, as all processes belonging to the Lévy family, need to be representable

by the triplet of Lévy characteristics (bk, ck, νk) given by the Lévy-Khintchine formula,

such that:

E
[
eiuxk

]
= exp

[
ibku−

u2ck
2

+

∫
R

(
eiuxk − 1− iuxk1{|xk|<1}

)
νk(dxk)

]
. (2.1)
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In the marginal Lévy triplet (bk, ck, νk) for each marginal Lévy process we have:

1. drift term bk ∈ <

2. diffusion coefficient ck ∈ <≥0

3. Lévy measure νk with νk({0}) = 0

∫
<

(1 ∧ |xk|2)νk(dxk) <∞.

According to Madan and Seneta (1990), Madan et al. (1998), Seneta (2004) and Seneta

(2007), the Variance Gamma processes xk(t;σk, αk, θk), for k = 1, 2 in our two-dimensional

case, are defined in terms of Brownian motions Bk(t; θk, σk) with drift θk and indepen-

dent Gamma processes γk(t; 1, αk) for the random time with unit mean rate, as

xk(t;σk, αk, θk) = Bk(γk(t; 1, αk); θk, σk). (2.2)

Variance Gamma processes are obtained by evaluating the Brownian motion at a time

given by the Gamma process and are controlled by three parameters:

1. σk the volatility of the Brownian motion;

2. αk the variance rate of the gamma time change;

3. θk the drift in the Brownian motion with drift.

The processes therefore provide two dimensions of control on the volatility, whereas over

the skew control is attained through θk and over kurtosis through αk. Variance Gamma

processes have different representations and in one of them they can be expressed as the

difference of two independent increasing Gamma processes, specifically

xk(t;σk, αk, θk) = γp,k(t;µp,k, αp,k)− γn,k(t;µn,k, αn,k),
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where

µp,k =
1

2

√
θ2
k +

2σ2
k

αk
+
θk
2

µn,k =
1

2

√
θ2
k +

2σ2
k

αk
− θk

2

αp,k =

(
1

2

√
θ2
k +

2σ2
k

αk
+
θk
2

)2

αk

αn,k =

(
1

2

√
θ2
k +

2σ2
k

αk
− θk

2

)2

αk

and the Lévy measure would consequently be:

νk(xk)dxk =


µ2
n,k/α

2
n,k

[
exp

(
− µn,k

αn,k
|xk|
)
/|xk|

]
dxk, for xk < 0

µ2
p,k/α

2
p,k

[
exp

(
− µp,k

αp,k
xk

)
/xk

]
dxk, for xk > 0.

2.2.2 From Variance Gamma processes to multi-asset option

pricing

We now need to apply a transformation to our marginal Variance Gamma processes,

as in fact the dynamics of the stock prices are described by a transformed version of

our marginal processes. The new specification for the statistical stock prices dynamics

is obtained by replacing the role of the Brownian motion in the original Black-Scholes

geometric Brownian motion model by the Variance Gamma process. In the Variance

Gamma setting the statistical process for the stock prices is given by

Sk(t) = Sk(0) exp((m+ q + ωk)t+ xk(t;σk, αk, θk)), for k = 1, 2 (2.3)
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where xk(t;σk, αk, θk) for k = 1, 2 are our marginal Variance Gamma processes, with

ωk =
1

αk
ln

(
1− θkαk −

σ2
kαk
2

)
,

and m is the mean rate of return on the stocks under the statistical probability measure,

q is the dividend and ωk is necessary to ensure a martingale property.

This exponential transformation is needed for the marginal Variance Gamma processes

to be able to behave like stock prices. Till this point we are using statistical/physical

processes on the probability space (Ω,F , P ), with corresponding marginal statistical/

physical parameters σk, αk, θk. If we want to use the marginal Variance Gamma pro-

cesses for the purpose of option pricing, we need to pass from the statistical/physical

probability space (Ω,F , P ) to an equivalent risk neutral one (Ω,F , Q) as per Girsanov’s

theorem. Under the risk neutral probability measure, the discounted stock prices are

martingales and it follows that the mean rate of return on the stocks under this prob-

ability measure is the continuously compounded interest rate r. Let the risk neutral

processes be given by

SRN,k(t) = Sk(0) exp((r + q + ωRN,k)t+ xk(t;σRN,k, αRN,k, θRN,k)), (2.4)

where the subscript RN on the Variance Gamma parameters indicates that these are

the risk neutral parameters, and

ωRN,k =
1

αRN,k
ln

(
1− θRN,kαRN,k −

σ2
RN,kαRN,k

2

)
.

The densities of the log stock prices relative over an interval of length t are, conditional

on the realizations of the Gamma time changes, normal density functions. The uncon-

ditional densities are obtained by integrating out the Gamma variate and the results

are in terms of the modified Bessel functions of the second kind. There are multiple
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methods to pass from (Ω,F , P ) to (Ω,F , Q): the method we use to obtain an equiva-

lent martingale measure Q is by mean correcting the exponentials of our marginal Lévy

processes. In this case the risk-neutral process is given by

SRN,k(t) = Sk(0) exp((m+ q + ωk)t+ xk(t;σk, αk, θk))

· exp(rt)

E[exp((m+ q + ωk)t+ xk(t;σk, αk, θk))]
.

(2.5)

Instead of using the marginal stock prices SRN,k(t) for k = 1, 2 under the risk-neutral

measure themselves though, we work on the log-returns of the stock prices, rather than

the prices themselves. The problem can therefore be transformed in logarithmic terms

with the following change of variable:

yRN,k(t)
∆
= ln(SRN,k(t)) for k = 1, 2,

The log-returns can now be inserted in the payoff of the multi-asset option. It can be

any kind of multi-asset option, but in our numerical application we will price four types

of multi-asset options, both in their call and put versions, which have a life that goes

for time 0 (today) to time T , therefore t ∈ [0, T ]. Our considered multi-asset options

are:

1. an American equally weighted basket option, with payoff

W (yRN,1(t), yRN,2(t), t) = sup
0≤t≤T

exp(rt)

( 2∑
k=1

wk exp(yRN,k(t))−K
)+

with wk =
1

2
,

(2.6)
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in its call version, and

W (yRN,1(t), yRN,2(t), t) = sup
0≤t≤T

exp(rt)

(
K −

2∑
k=1

wk exp(yRN,k(t))

)+

with wk =
1

2
,

(2.7)

in its put version;

2. an American best-of option, with payoff

W (yRN,1(t), yRN,2(t), t) = sup
0≤t≤T

exp(rt)

(
max[exp(yRN,1(t)), exp(yRN,2(t))]−K

)+

,

(2.8)

in its call version and

W (yRN,1(t), yRN,2(t), t) = sup
0≤t≤T

exp(rt)

(
K −max[exp(yRN,1(t)), exp(yRN,2(t))]

)+

,

(2.9)

in its put version;

3. an American worst-of option, with payoff

W (yRN,1(t), yRN,2(t), t) = sup
0≤t≤T

exp(rt)

(
min[exp(yRN,1(t)), exp(yRN,2(t))]−K

)+

,

(2.10)

in its call version and

W (yRN,1(t), yRN,2(t), t) = sup
0≤t≤T

exp(rt)

(
K −min[exp(yRN,1(t)), exp(yRN,2(t))]

)+

,

(2.11)

in its put version;

46



4. an American barrier up-and-in equally weighted basket option with payoff given

by Eq. (2.6) if call and payoff given by Eq. (2.7) if put, but with the further

boundary condition that the option doesn’t activate unless at least once within

the time frame [0, T ], at least one of the two marginal stock prices SRN,1(t), SRN,2(t)

touches a certain upper barrier B with S1(0), S2(0) < B.

2.3 American multi-asset option pricing under Lévy

copulae

We will now do the pricing of our four types of multi-asset options, both call and put,

using Lévy copulae to describe the dependence structure between our two marginal Lévy

processes. We will start by introducing the model and then the pricing will be achieved

via simulation under four different types of Lévy copulae (the Clayton Lévy bidirectional

copula, the Clayton Lévy unidirectional copula, the Gumbel Lévy copula and the Frank

Lévy copula).

2.3.1 Lévy copulae

Lévy copulae were created in order to describe the dependence between a group of Lévy

processes, paralleling the notion of a regular copula (Section 1.2) on the level of Lévy

measures. In Lévy copulae in fact, instead of working on the cumulative distribution

functions like we did in Chapter 1, our marginal processes are considered through their

tail integrals, which are defined as:

U(x) =


ν([x,∞)), for x ∈ (0,∞)

−ν((−∞, 0]), for x ∈ (−∞, 0)

0, for x =∞,−∞.
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As in regular copulae, the Lévy ones build their foundations on a modified version of

Sklar’s Theorem. Therefore Sklar’s Theorem on the Lévy copulae setting is defined as

follows:

let U be a d-dimensional tail integral with margins U1, U2, ..., Ud, there exists a unique

Lévy copula F such that

U(x1, ..., xd) = F (U1(x1), ..., Ud(xd)).

Therefore, while in the d-dimensional regular copulae you find the joint cumulative

distribution function and then by taking partial derivative of order d you find the joint

density function, in the Lévy setting you find the joint tail integral and then by taking

partial derivative of order d you find the joint Lévy measure which governs the joint

jumps.

In fact, let F be a Lévy d-copula, continuous on <d∞, such that the density

∂dF (U1(x1), ..., Ud(xd))

∂u1...∂ud

exists on <d and let U1, ..., Ud be one-dimensional tail integrals with densities ν1, ..., νd.

Then

ν(dx1, ..., dxd) =
∂dF (U1(x1), ..., Ud(xd))

∂u1...∂ud
ν1(dx1), ..., νd(dxd)

is the Lévy density of a Lévy measure with marginal Lévy measures ν1, ..., νd and Lévy

copula F .

The function F : <̄d → <̄, is called a Lévy copula if:

• F (u1, ..., ud) 6=∞ for (u1, ..., ud) 6= (∞, ...,∞),

• F (u1, ..., ud) = 0 if uk = 0 for at least one k ∈ {1, ..., d},
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• F is d-increasing,

• F k(u) = u for any k ∈ {1, ...d}, u ∈ <.

2.3.2 Simulation of a multidimensional Lévy process

We will now do a brief review of the work by Tankov (2003a), Tankov (2006), Kallsen

and Tankov (2006) and Tankov (2016), which provides us with the simulation procedure

that we will implement for the pricing of options. Such work proposes to simulate

multidimensional Lévy processes based on the conditional probability function, where

you first condition on one variable and then simulate the others, and then you iterate

the procedure conditioning on every single variable. In order to do this we need to start

from the volume function which exists on the interval (a, b]d. For a, b ∈ <̄d we write

a ≤ b if ak ≤ bk, k = 1, ..., d. In this case, let (a, b] denote a right-closed and left-open

interval on <̄d:

(a, b] := (a1, b1]× ...× (ad, bd].

Then, according to Tankov (2006) Definition 3.1, let F : S → <̄ be a function, for some

subset S ⊂ <̄d. For a, b ∈ S with a ≤ b and (a, b] ⊂ S, the F -volume of (a, b] is defined

by

VF ((a, b]) :=
∑

u∈{a1,b1}×...×{ad,bd}

(−1)N(u)F (u)

where N(u) := #{k : uk = ak}, the cardinality of the set {k : uk = ak}.

F is called d-increasing if VF ((a, b]) ≥ 0 for all a, b ∈ S.

For example the volume function for k = 2 is

VF ((a, b]) := F (a1, a2)− F (a1, b2)− F (b1, a2) + F (b1, b2)],
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and similarly it can be extended to any k-dimensional case.

To simulate a Lévy process (xt)0≤t≤1 on <k with Lévy measure ν, we first need to

simulate a Poisson random measure on [0, 1] × <k with intensity measure dt × ν. The

Lévy process can then be constructed via the Lévy-Itô decomposition.

Let F be a Lévy copula such that for every i ∈ {1, ..., d} nonempty,

lim
(xi)i∈I→∞

F (x1, ..., xd) = F (x1, ..., xd)|(xk)k∈I=∞. (2.12)

This Lévy copula defines a positive measure µ on <d with Lebesgue margins such that

for each a, b ∈ <d with a ≤ b,

VF ((a, b]) = µ((a, b]). (2.13)

For a one-dimensional tail integral U , the (generalized) inverse tail integral U−1 is defined

by

U−1(u) :=

{
sup{x > 0 : U(x) ≥ u} ∨ 0, u ≥ 0

sup{x < 0 : U(x) ≥ u}, u < 0.
(2.14)

According to Tankov (2006) Lemma 4.1, we have that for a Lévy measure ν on <d

with marginal tail integrals Uk, k = 1, ..., d, and Lévy copula F satisfying Eq. (2.12), µ

defined by Eq. (2.13) and

f : (u1, ..., ud) 7→ (U
(−1)
1 (u1), ..., U

(−1)
d (ud)), (2.15)

then ν is the image measure of µ by f . To simulate the jumps of a multidimensional

Lévy process (more precisely of the corresponding Poisson random measure), we first

simulate the jumps in the first component, and then the jumps in the other components
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conditionally on the jumps in the first one. We therefore proceed by analysing the

conditional distributions of µ. According to Ambrosio et al. (2000) Theorem 2.28 there

exists a family, indexed by ξ ∈ <, of positive Radon measures K(ξ, dx2...dxd) on <d−1,

such that

ξ 7→ K(ξ, dx2, ..., dxd)

is Borel measurable and

µ(dx1...dxd) = dx1 ×K(x1, dx2...dxd). (2.16)

In addition, K(ξ,<d−1) = 1 for almost all ξ, that is, K(ξ, ·) is, almost everywhere, a

probability distribution. In the sequel we will call {K(ξ, ·)}ξ∈< the family of conditional

probability distributions associated with Lévy copula F .

Let Fξ be the distribution function of the measure K(ξ, ·):

Fξ(x2, ..., xd) := K(ξ, (−∞, x2]× ...× (−∞, xd]). (2.17)

According to Tankov (2006) Lemma 4.2, let F be a Lévy copula satisfying Eq. (2.12),

and Fξ be the corresponding conditional distribution function, defined by Eq. (2.17).

Then, there exists a set N ⊂ < of zero Lebesgue measure such that for every fixed

ξ ∈ < \N , Fξ(·) is a probability distribution function, satisfying

Fξ(x2, ..., xd) = sgn(ξ)
∂

∂ξ
VF ((ξ ∧ 0, ξ ∨ 0]× (−∞, x2]× ...× (−∞, xd]) (2.18)

in every point (x2, ..., xd), where Fξ is continuous.
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Simulation of multidimensional Lévy processes, finite variation case

To simulate Lévy processes it is important to pay attention to whether the chosen Lévy

process has finite or infinite variation. In our case, since we want to simulate Variance

Gamma processes, we are interested in the finite variation case.

As Carr et al. (2002) note, processes of finite variations are potentially more useful than

those ones of infinite variation in explaining the measure change from the statistical to

the risk neutral process as they allow greater flexibility between the local characteristic

of the martingale components under the two measures. In the case of infinite activity

processes like the Brownian motion, the volatility, and hence the local martingale com-

ponent, is invariant under an equivalent change in measure. This equivalence of measure

change for infinite variation jump processes implies that the difference between the risk

neutral and the statistical Lévy densities is of finite variation. This requires that the two

processes have the same exponent. On the other side, if the processes are themselves of

finite variation, then the difference in the Lévy densities will automatically be of finite

variation and therefore no parametric restriction on the processes is required.

According to Tankov (2006) Theorem 4.3, let ν be a Lévy measure on <d, satisfying∫
(|x| ∧ 1)ν(dx) < ∞, with marginal tail integrals Uk, k = 1, ..., d and Lévy copula

F (x1, ..., xd), such that the condition of Eq. (2.12) is satisfied, and let K(x1, dx2..., dxd)

be the corresponding conditional probability distributions, defined by Eq. (2.17). Let

{Vk} be a sequence of independent random variables, uniformly distributed on [0, 1].

Introduce d random sequences {Γ1
k}, ..., {Γdk}, independent from {Vk} such that

• N =
∑∞

k=1 δ{Γ1
k} is a Poisson random measure on < with Lebesgue intensity mea-

sure.

• Conditionally on Γ1
k, the random vector (Γ2

k, ...,Γ
d
k) is independent from Γij with

j 6= k and all i and is distributed on <d−1 with law K(Γ1
k, dx2...dxd).
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Then

(x(τ, t))0≤t≤1, with xi(t) =
∞∑
k=1

U−1
k (Γik)1[0,t](Vk), i = 1, ..., d (2.19)

is a Lévy process on the time interval [0, 1] with characteristic function

E[ei〈u,x(t)〉] = exp

(
t

∫
<d

(ei〈u,x〉 − 1)ν(dz)

)
. (2.20)

Therefore, the simulation procedure for two Variance Gamma processes can be sum-

marised as follows:

1. Simulate ξ (i.e. Γ1
k, where we define Γ1

k = Xk(−1)k), for k+ 1, ..., n, with Xk being

a Poisson process;

2. derive the Volume function;

3. derive the conditional distribution Fξ(x2);

4. find the inverse of Fξ(x2) or, if not invertible, apply a numerical solution, such as

the acceptance rejection method;

5. simulate (x2) | ξ.

2.3.3 Longstaff-Schwartz regression model

To price American multi-asset option we use the Longstaff-Schwartz method, which is

ideal when option pricing needs to be achieved via simulation. The Longstaff-Schwartz

method, developed by Longstaff and Schwartz (2001), uses a dynamic programming ap-

proach to find an optimal stopping time, and Monte Carlo to approximate the expected

value. Dynamic programming is a general method for solving optimization problems by

dividing it into smaller sub-problems and combining their solution to solve the problem.
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In this case this means that we divide the interval [0, T ], where T is the expiry date of

the option, into a finite set of time points [0, t1, t2, ..., tN ] where tN = T , and for each of

these decide if it is better to exercise than to hold on to the option. Starting from time

T and working backwards to time 0, we update the stopping time each time we find a

time where it is better to exercise until we have found the smallest time where exercise

is better.

To perform such regression the procedure is the following:

1. choose:

-number of sample paths,

-number of basis function for the regression,

-type of basis functions,

-number of observation dates;

2. simulate the sample paths for the two Variance Gamma processes at each point in

time;

3. at expiry record the cash flow values, using the payoffs given by Eqs. (2.6, 2.7,

2.8, 2.9, 2.10 and 2.11);

4. move back to the previous observation date for each path where the payoff is

greater than 0 and calculate the continuation value;

5. perform the regression to determine the functional form of the continuation value;

6. recalculate the continuation value;

7. for every two marginal paths of the two underlying assets calculate the correspond-

ing cash flow value;

8. repeat this process for the previous time step until you have all the cash flows;

9. the option value at 0 is then the mean of all the discounted cash flows.
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2.3.4 Option pricing under a Clayton Lévy bidirectional copula

The Clayton Lévy copula has two different representations, one on <d (in which case we

call it the Clayton Lévy bidirectional copula) and one on <d+ (in which case we simply

call it the Clayton Lévy copula), see Kettler (2006). For k = 2, the Clayton Lévy

bidirectional copula on <2 is defined as:

F (u, v) = (|u|−θ + |v|−θ)−1/θ(η1{uv≥0} − (1− η)1{uv<0}) (2.21)

where u and v are the two marginal tail integrals, which in Lévy copulae replace the

marginal cumulative functions F1(x1) and F2(x2) that we had in regular copulae (Sec-

tion 1.2). F is a Lévy copula for any θ > 0 and η ∈ [0, 1]. The parameter η determines

the dependence of the sign of jumps: when η = 1, the two components always jump in

the same direction, and when η = 0, positive jumps in one component are accompanied

by negative jumps in the other and vice versa. The parameter θ is responsible for the

dependence of absolute values of jumps in different components. In particular, if η = 0

and θ → 0, the two components become independent whereas the case η = 1 and θ →∞

corresponds to complete dependence.

At this point, to simulate our two-dimensional Variance Gamma process under the Clay-

ton Lévy bidirectional copula, we need to find the inverse of the conditional distribution

{K(ξ, x2)}ξ∈< from the volume function for a Clayton Lévy bidirectional copula using

the procedure summarized in Subsection 2.3.2. For the volume function, we have:

VF ((a, b]) = VF

(((
a1

a2

))
,

(
b1

b2

)]

= F (a1, a2)− F (a1, b2)− F (b1, a2) + F (b1, b2),
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which, for a Clayton Lévy bidirectional copula, can be rephrased as:

VF ((a, b]) = (|a1|−θ + |a2|−θ)−1/θ(η1a1a2≥0 − (1− η)1a1a2<0)

− (|a1|−θ + |b2|−θ)−1/θ(η1a1b2≥0 − (1− η)1a1b2<0)

− (|b1|−θ + |a2|−θ)−1/θ(η1b1a2≥0 − (1− η)1b1a2<0)

+ (|b1|−θ + |b2|−θ)−1/θ(η1b1b2≥0 − (1− η)1b1b2<0).

The quantity VF

 ξ ∧ 0

−∞

 ,

 ξ ∨ 0

x2

, which appears in Eq. (2.18), will now be

analysed separately for the following four cases:

1. ξ ≥ 0 and x2 ≥ 0

2. ξ < 0 and x2 ≥ 0

3. ξ ≥ 0 and x2 < 0

4. ξ < 0 and x2 < 0.

For the first case we have:

a1 = 0, a2 = −∞, b1 = ξ ≥ 0, b2 = x2 ≥ 0

and by substituting in the Clayton Lévy bidirectional copula:

VF (·) = 0− (|x2|−θ)−1/θη − (|ξ|−θ)−1/θ(−(1− η)) + (|ξ|−θ + |x2|−θ)−1/θη.

For the second case we have:

a1 = ξ < 0, a2 = −∞, b1 = 0, b2 = x2 > 0
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and by substituting in the Clayton Lévy bidirectional copula:

VF (·) = (|ξ|−θ)−1/θη − (|ξ|−θ + |x2|−θ)−1/θ(−(1− η))− 0 + (|x2|−θ)−1/θη.

For the third case we have:

a1 = 0, a2 = −∞, b1 = ξ > 0, b2 = x2 < 0

and by substituting in the Clayton Lévy bidirectional copula:

VF (·) = 0− (|x2|−θ)−1/θη − (|ξ|−θ)−1/θ(−(1− η)) + (|ξ|−θ + |x2|−θ)−1/θ(−(1− η)).

Finally, for the fourth case we have:

a1 = ξ < 0, a2 = −∞, b1 = 0, b2 = x2 < 0

and by substituting in the Clayton Lévy bidirectional copula:

VF (·) = (|ξ|−θ)−1/θη − (|ξ|−θ + |x2|−θ)−1/θη − 0 + (|x2|−θ)−1/θη.

Putting these four cases together we obtain the volume function. Then, differentiating

the volume function with respect to ξ, we find the conditional probability function:

Fξ(x2) = ((1− η) + (1 + |ξ/x2|θ)−1−1/θ(η1x2<0))1ξ≥0

+(η + (1 + |ξ/x2|θ)−1−1/θ(1x2≥0 − η))1ξ<0.
(2.22)
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This conditional distribution function can be inverted analytically. More precisely, we

have:

F−1
ξ (u) = B(ξ, u)|ξ|(C(ξ, u)−θ/(θ+1) − 1)−1/θ,

with

B(ξ, u) = sgn (u− 1 + η)1ξ≥0 + sgn (u− η)1ξ<0

and

C(ξ, u) = (((u− 1 + η)/η)1u≥1−η + ((1− η − u)/(1− η))1u<1−η)1ξ≥0

+ (((u− η)/(1− η))1u≥η + ((η − u)/η)1u<η)1ξ<0.

Let us assume that the marginal Variance Gamma processes xk(t;σk, αk, θk) for k = 1, 2

have marginal parameters σk = 0.6, αk = 0.3 and θk = 0.05 for both processes, while

our American multi-asset options have the following characteristics: r = 0.05, S1(0) =

S2(0) = K, with K = 300, expiry date T = 1 (one year) and for the barrier option

B = 340. We can now simulate the two marginal stock prices defined by Eq. (2.3) under

the Clayton Lévy bidirectional copula: we simulate H = 10, 000 sample paths for the

bivariate Variance Gamma process and we apply variance-reduction on the simulations

through the antithetic variables method. At this point we risk-neutralise each simulated

path by applying the mean correction martingale method given by Eq. (2.5) and end

up with the risk-neutralised paths defined in Eq. (2.4).

We can now apply the Longstaff-Schwartz algorithm (as described in Subsection 2.3.3)

with number of observation dates N = 1, 000 and three basis functions from the set

of (weighted) Laguerre polynomials. Laguerre Polynomials are solutions Ln(x) to the
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Laguerre differential equation with ν = 0, where the Laguerre differential equation is:

xy′′ + (1− x)y′ + λy = 0.

where the first three Laguerre polynomials are:

L0(x) = exp(−x/2)

L1(x) = exp(−x/2)(1− x)

L2(x) = exp(−x/2)(1− 2x+ (x)2/2).

with x =
∑2

k=1wk exp(yRN,k(t)) if we are trying to price an equally-weighted basket

option, x = max[exp(yRN,1(t)), exp(yRN,2(t))] in the case of a best-of option and x =

min[exp(yRN,1(t)), exp(yRN,2(t))] in the case of a worst-of option. As our interest lies on

how a different dependence structure may affect the price of our financial product, we

now show how the prices of the options change for different values of the parameters θ

and η. In Figure 2.1 we see the prices of the four types of multi-asset options, in their

call and put versions, for a value of θ ranging from 0 to 1, 000 but fixing the value of η.

We randomly decided to fix it at η = 0.5.
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Figure 2.1: Option prices under the Clayton Lévy bidirectional copula for a varying θ
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The results are perfectly aligned with what expected: the values of the options are very

high and that is due to the high volatility of the Brownian motion σk of the marginal

Variance Gamma processes and it is due to the long remaining life from 0 to T of the

option.

In their call versions, the best-of option has the highest payoff, since it chooses the

underlying that grants the highest payoff, the worst-of option has the lowest payoff,

since it chooses the underlying that grants the lowest payoff, whereas the basket has

a payoff in the middle since it takes an average of the two underlying assets. Finally,

the barrier option has a payoff very similar to the one of the basket, but sightly lower,

consistent with the fact that the barrier option has a very similar payoff to the one of the

basket, but with an extra boundary condition that decreases its value since it reduces

the number of times in which the option activates and therefore the number of times one

can actually exercise the option. Since the barrier B is set quite low, while, as already

mentioned, the volatility of the Brownian motion σk of the marginal Variance Gamma

processes is quite high and the expiry date of the option is far away in the future, the

value of the barrier option is only slightly lower than the basket, because the probability

of at least one underlying asset hitting the barrier and therefore the option activating

is very high.

Furthermore the best-of option has a payoff which decreases if the correlation increases,

because of course if both assets move in the same direction the probability of having one

of the two assets skyrocketing decreases. In similar fashion, the worst-of option has a

payoff which increases if the correlation increases, because the probability of having one

of the two assets collapsing shrinks. The basket option also has an increasing payoff at

the increasing of the correlation, because the more the correlation, the more the option’s

volatility rises and therefore the payoff of the option increases accordingly. The same

holds for the barrier option, since its payoff is very similar to the one of the basket.

Since the put options have a flipped payoff, their rationale is precisely inverse to the one
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which we described for the call options. In Figure 2.2 we analyse how the option prices

change at the varying of the parameter η from 0 to 1, when the value of θ is fixed at a

level randomly chosen as θ = 100. In this case the interpretation of the results given for

Figure 2.1 still holds, since we are only playing with the other measure of association.
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Figure 2.2: Option prices under the Clayton Lévy bidirectional copula for a varying η
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2.3.5 Option pricing under a Clayton Lévy copula

We now repeat the procedure of Subsection 2.3.2 for the case of a Clayton Lévy (uni-

directional) copula. The formula for the joint cumulative function in the case of a

regular Clayton (unidirectional) copula was given by Eq. (1.2): we will now readjust

such formula to take into account that we are not dealing with two marginal cumulative

functions F1(x1) and F2(x2) but we have two marginal tail integrals u and v respectively.

Therefore the joint tail integral is given by:

F (u, v) = max

[(
u−θ + v−θ − 1

)1/θ

, 0

]
, (2.23)

where θ > 0. We now want to simulate paths for our two marginal Variance Gamma

processes with the marginal parameters and number of simulations defined in Subsection

2.3.4 under this copula structure: we therefore follow the procedure of Subsection 2.3.2,

we then apply the variance reduction technique and risk-neutralise like we did in Sub-

section 2.3.4, we employ the Longstaff-Schwartz algorithm, with the type and number

of basis functions of Subsection 2.3.4, and obtain the option pricing results for the four

types of multi-asset options, in their call and put versions, with options’ characteristics

defined in Subsection 2.3.4. In Figure 2.3 we present the results for our options if we

consider a positive correlation between the two Variance Gamma processes described by

a Kendall’s τ ranging from 0 to 1. The rationale explained before is still valid also for

the unidirectional version of the Clayton Lévy copula.
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Figure 2.3: Option prices under the Clayton Lévy copula for a varying Kendall’s τ
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2.3.6 Option pricing under a Gumbel Lévy copula

The formula for the joint cumulative function in the case of a regular Gumbel copula

was given by Eq. (1.4): readjusting it to the Lévy setting, we obtain the following joint

tail integral:

F (u, v) = exp

[
−
[
(− ln(u))θ + (− ln(v))θ

]1/θ]
, (2.24)

where θ > 0. Following always the same procedure, in Figure 2.4 we present the results

for our options if we consider a positive correlation between the two Variance Gamma

processes described by a Kendall’s τ ranging from 0 to 1. For the Gumbel copula

the trends of the best-of and worst-of options at the increasing on the correlation are

symmetrical to the ones under the Clayton copula. This is due to the fact that the

Clayton copula stresses the correlation on the lower tail, while the Gumbel stresses the

dependence on the upper tail of the joint Lévy measure and therefore the rationale is

symmetrical to the one identified under the Clayton.
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Figure 2.4: Option prices under the Gumbel Lévy copula for a varying Kendall’s τ
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2.3.7 Option pricing under a Frank Lévy copula

The formula for the joint cumulative function in the case of a regular Frank copula was

given by Eq. (1.6): readjusting it to the Lévy setting, we obtain the following joint tail

integral:

F (u, v) = −1

θ
ln

[
1 +

(exp(−θu)− 1) · (exp(−θv)− 1)

(exp(−θ)− 1)

]
, (2.25)

where θ > 0. Following always the same procedure, in Figure 2.5 we present the results

for our options if we consider a positive correlation between the two Variance Gamma

processes described by a Kendall’s τ ranging from 0 to 1. For the Frank copula, like

under the Gumbel, the trends of the best-of and worst-of options at the increasing

on the correlation are symmetrical to the ones under the Clayton copula. In fact the

Frank copula, like the Gumbel, stresses the dependence in higher percentiles of the joint

Lévy measure and therefore the rationale is symmetrical to the one identified under the

Clayton.
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Figure 2.5: Option prices under the Frank Lévy copula for a varying Kendall’s τ
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2.4 American multi-asset option pricing under

the Ballotta-Bonfiglioli model

We will now do the pricing of our four types of multi-asset options, both call and put,

using the Ballotta-Bonfiglioli model to describe the dependence structure between our

two marginal Lévy processes. We will start by introducing the model and then the

pricing will be achieved in two ways: firstly, by solving the partial integro-differential

equation (i.e. PIDE) through finite-difference method and secondly, via simulation.

2.4.1 The Ballotta-Bonfiglioli model on a two-dimensional

multi-asset option

The Ballotta-Bonfiglioli model in Ballotta and Bonfiglioli (2016) structures the depen-

dence between our two marginal Lévy processes by describing each Lévy process as

the sum of two random variables, where the first one is an idiosyncratic part (which is

therefore unique for each Lévy process) and the second one is a common factor (which is

the same for each Lévy process and is therefore responsible for the dependence between

the two Lévy processes). In each Lévy process the common factor is multiplied by a

constant bk (with k = 1, 2 for our two-dimensional case) which can be different for each

Lévy process. The joint two-dimensional process is proved to be still Lévy. In our case

we have two marginal Lévy processes Y1(t) and Y2(t), which will be represented as:

Y1(t) = x1(t;σ1, α1, θ1) + b1x3(t;σ3, α3, θ3)

Y2(t) = x2(t;σ2, α2, θ2) + b2x3(t;σ3, α3, θ3)
(2.26)

where x1(t;σ1, α1, θ1), x2(t;σ2, α2, θ2) and x3(t;σ3, α3, θ3) are independent Variance Gamma

processes on the probability space (Ω,F , P ). The two idiosyncratic processes are de-

noted as x1(t;σ1, α1, θ1) and x2(t;σ2, α2, θ2) with characteristic functions φxk(t;σk,αk,θk)(u, t),
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for k = 1, 2 respectively, and the common factor being x3(t;σ3, α3, θ3) with characteristic

function φx3(t;σ3,α3,θ3)(u, t) and b1, b2 ∈ < being the constants. The joint two-dimensional

process

Y (t) = (Y1(t), Y2(t))T

= (x1(t;σ1, α1, θ1) + b1x3(t;σ3, α3, θ3), x2(t;σ2, α2, θ2) + b2x3(t;σ3, α3, θ3))T

is a Lévy process on <2 with characteristic function:

φY (t)(u; t) = φx3(t;σ3,α3,θ3)

( 2∑
k=1

bkuk; t

) 2∏
k=1

φxk(t;σk,αk,θk)(uk; t)

with u ∈ <2.

The correlation between the two marginal Lévy processes Y1(t) and Y2(t) is equal to:

Corr(Y1(t), Y2(t)) =
b1b2Var(x3(t;σ3, α3, θ3))√

Var(x1(t;σ1, α1, θ1))
√

Var(x2(t;σ2, α2, θ2))
. (2.27)

At this point, to price our four types of options, both call and put, as described in

Subsection 2.2.2, we need to exponentially transform our two marginal Lévy processes

and we need to pass to the risk neutral space (Ω,F , Q) and we obtain:

SRN,k(t) = Sk(0) exp((r + q + ωRN,k + ωRN,3)t+ xk(t;σRN,k, αRN,k, θRN,k)

+ bkx3(t;σRN,3, αRN,3, θRN,3), for k = 1, 2,

and therefore the log-transforms are:

yRN,k(t) = ln(Sk(0)) + (r + q + ωRN,k + ωRN,3)t+ xk(t;σRN,k, αRN,k, θRN,k)

+ bkx3(t;σRN,3, αRN,3, θRN,3), for k = 1, 2.
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The price of our options therefore depends on four sources of randomness: t, x1(·), x2(·)

and x3(·). Our problem has therefore gained an additional dimension from the Lévy

copulae setting: from a two-dimensional Variance Gamma process to a three-dimensional

one. Let us assume b1 = b2 = b, S1(0) = S2(0) = S(0), and let us isolate the common

factor x3(t;σRN,3, αRN,3, θRN,3), so to maintain xk(t;σRN,k, αRN,k, θRN,k) for k = 1, 2, 3

as three independent sources of randomness. We can rewrite the payoff of our function

W (yRN,1(t), yRN,2(t), t) as:

W (yRN,1(t), yRN,2(t), t) = W (z1, z2, z3, t) =

(
1

2
exp(z3)(exp(z1) + exp(z2)−K)

)+

,

in the case of an equally-weighted basket call option; as:

W (yRN,1(t), yRN,2(t), t) = W (z1, z2, z3, t) =

(
K − 1

2
exp(z3)(exp(z1) + exp(z2))

)+

,

in the case of an equally-weighted basket put option; as:

W (yRN,1(t), yRN,2(t), t) = W (z1, z2, z3, t) =

(
max[exp(z1) exp(z3), exp(z2) exp(z3)]−K)

)+

,

in the case of a best-of call option; as:

W (yRN,1(t), yRN,2(t), t) = W (z1, z2, z3, t) =

(
K −max[exp(z1) exp(z3), exp(z2) exp(z3)])

)+

,

in the case of a best-of put option; as:

W (yRN,1(t), yRN,2(t), t) = W (z1, z2, z3, t) =

(
min[exp(z1) exp(z3), exp(z2) exp(z3)]−K)

)+

,
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in the case of a worst-of call option; and as:

W (yRN,1(t), yRN,2(t), t) = W (z1, z2, z3, t) =

(
K −min[exp(z1) exp(z3), exp(z2) exp(z3)])

)+

,

in the case of a worst-of put option; with:

z1 =
1

2
ln(S(0)) +

1

2
(r + q)t+ x1(t;σRN,1, αRN,1, θRN,1) + ωRN,1t,

z2 =
1

2
ln(S(0)) +

1

2
(r + q)t+ x2(t;σRN,2, αRN,2, θRN,2) + ωRN,2t,

z3 =
1

2
ln(S(0)) +

1

2
(r + q)t+ bx3(t;σRN,3, αRN,3, θRN,3) + ωRN,3t.

2.4.2 Multidimensional PIDE on Variance Gamma processes

We are now ready to extend the work by Hirsa and Madan (2004), Fiorani (1999) and

Fiorani (2004) to the multidimensional case. These authors, in fact, had considered an

American mono-asset option (mainly they focused on the cases of a plain vanilla and of a

basket option) assuming that the one underlying asset followed a Variance Gamma pro-

cess and had achieved the pricing solving the PIDE via finite difference method. We will

follow the same procedure but considering four sources of randomness, i.e. t, x1(·), x2(·)

and x3(·), instead of the two under which the work by those authors was built, i.e. t

and the one Variance Gamma process called x(·).

As mentioned, the procedure considers doing the option pricing by solving the corre-

sponding partial integro-differential equation, which needs to be built via generator,

given that f is a sufficiently smooth function. The generator in our three-dimensional
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Lévy process can be defined as:

L(f)
∆
=
∂f(z1, z2, z3, t)

∂t
+ (r − q + ωRN,1)

∂f(z1, z2, z3, t)

∂z1

+ (r − q + ωRN,2)
∂f(z1, z2, z3, t)

∂z2

+ (r − q + ωRN,3)
∂f(z1, z2, z3, t)

∂z3

+
1

2
(r − q + ωRN,1)

∂2f(z1, z2, z3, t)

∂z2
1

+
1

2
(r − q + ωRN,2)

∂2f(z1, z2, z3, t)

∂z2
2

+
1

2
(r − q + ωRN,3)

∂2f(z1, z2, z3, t)

∂z2
3

+

∫ ∞
−∞

[f(z1 + x1, z2, z3, t)− f(z1, z2, z3, t)]ν1(x1)dx1

+

∫ ∞
−∞

[f(z1, z2 + x2, z3, t)− f(z1, z2, z3, t)]ν2(x2)dx2

+

∫ ∞
−∞

[f(z1, z2, z3 + x3, t)− f(z1, z2, z3, t)]ν3(x3)dx3

− rf(z1, z2, z3, t),

(2.28)

where νk(xk) for k = 1, ..., 3 are the Lévy measures for the three independent marginal

Variance-Gamma processes. We will now only show the procedure step by step for the

case of the payoff of an American call equally-weighted basket option: showing it under

all four types of multi-asset options in their call and put versions would be redundant,

as the procedure does not vary, only the payoff of the option needs to be replaced

accordingly. We define the exercise region as the area where

1

2
S(0) exp((r + q + ωRN,1 + ωRN,3)t+ x1(t;σRN,1, αRN,1, θRN,1) + bx3(t;σRN,3, αRN,3, θRN,3))

+
1

2
S(0) exp((r + q + ωRN,2 + ωRN,3)t+ x2(t;σRN,2, αRN,2, θRN,2) + bx3(t;σRN,3, αRN,3, θRN,3))

>
1

2
S(0) exp((r + q + ωRN,1 + ωRN,3)τ + x1(τ ;σRN,1, αRN,1, θRN,1) + bx3(τ ;σRN,3, αRN,3, θRN,3))

+
1

2
S(0) exp((r + q + ωRN,2 + ωRN,3)τ + x2(τ ;σRN,2, αRN,2, θRN,2) + bx3(τ ;σRN,3, αRN,3, θRN,3)),
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which basically means the area in which the underlying at time t is more valuable than

the underlying at time τ , since we are considering a call option, for a put option it would

be the area in which the underlying at time t is less valuable than the underlying at

time τ . In such region the following equation is true:

W (yRN,1(t), yRN,2(t), t) = W (z1, z2, z3, t)

=
1

2
exp(y(0) + (r + q + ωRN,1 + ωRN,3)t+ x1(t;σRN,1, αRN,1, θRN,1) + bx3(t;σRN,3, αRN,3, θRN,3))

+
1

2
exp(y(0) + (r + q + ωRN,2 + ωRN,3)t+ x2(t;σRN,2, αRN,2, θRN,2) + bx3(t;σRN,3, αRN,3, θRN,3))

−K

=

(
1

2
exp(z3)(exp(z1) + exp(z2)−K)

)
,

where y(0) = ln(S(0)). From our generator the continuous time PIDE can be built and

solved through the use of finite difference method by discretizing such PIDE and writing

it down as a linear system. The most significant part of the process is of course the

jump component of the three Variance Gamma processes x1(t;σ1, α1, θ1), x2(t;σ2, α2, θ2)

and x3(t;σ3, α3, θ3), which is represented by the three integrals in Eq. (2.28), which we

have to rewrite differently to allow the numerical computation. Let us start defining the

range of values we are going to consider in our computations as

[0, T ]× [z1,min, z1,max]

[0, T ]× [z2,min, z2,max]

[0, T ]× [z3,min, z3,max].

We can now discretize the system using M + 1 mesh points in the zks-directions for

k = 1, 2, 3 and N + 1 mesh points in the t-direction, with the size of space and time
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intervals given respectively by:

∆Y1 =
z1,max − z1,min

M

∆Y2 =
z2,max − z2,min

M

∆Y3 =
z3,max − z3,min

M

and

∆t =
T − 0

N
.

The notation W (z1,i, z2,i, z3,i, tj) refers to the value of W (·) at the node (i, j) and we use

the following approximation of the partial derivatives:

∂f(z1, z2, z3, t)

∂t
≈ W (z1,i, z2,i, z3,i, tj+1)−W (z1,i, z2,i, z3,i, tj)

∆t
,

∂f(z1, z2, z3, t)

∂z1

≈ W (z1,i+1, z2,i, z3,i, tj)−W (z1,i−1, z2,i, z3,i, tj)

2∆z1

,

∂f(z1, z2, z3, t)

∂z2

≈ W (z1,i, z2,i+1, z3,i, tj)−W (z1,i, z2,i−1, z3,i, tj)

2∆z2

,

∂f(z1, z2, z3, t)

∂z3

≈ W (z1,i, z2,i, z3,i+1, tj)−W (z1,i, z2,i, z3,i−1, tj)

2∆z3

.

Finally, we define:

h1
∆
=

(r − q + ωRN,1)∆t

2∆z1

h2
∆
=

(r − q + ωRN,2)∆t

2∆z2

h3
∆
=

(r − q + ωRN,3)∆t

2∆z3

.
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The PIDE for an American call equally-weighted basket option can be now written

according to Hirsa and Madan (2004), Fiorani (1999) and Fiorani (2004) as

(1 + r∆t)W (z1,i, z2,i, z3,i, tj)

+ h1W (z1,i−1, z2,i, z3,i, tj)− h1W (z1,i+1, z2,i, z3,i, tj)

+ h2W (z1,i, z2,i−1, z3,i, tj)− h2W (z1,i, z2,i+1, z3,i, tj)

+ h3W (z1,i, z2,i, z3,i−1, tj)− h3W (z1,i, z2,i, z3,i+1, tj)

= W (z1,i, z2,i, z3,i, tj+1)

+ ∆t

∫ ∞
−∞

[
W (z1,i + x1, z2,i, z3,i, tj+1)−W (z1,i, z2,i, z3,i, tj+1)

]
ν1(x1)dx1

+ ∆t

∫ ∞
−∞

[
W (z1,i, z2,i + x2, z3,i, tj+1)−W (z1,i, z2,i, z3,i, tj+1)

]
ν2(x2)dx2

+ ∆t

∫ ∞
−∞

[
W (z1,i, z2,i, z3,i + x3, tj+1)−W (z1,i, z2,i, z3,i, tj+1)

]
ν3(x3)dx3

− 1z1,i>z1(τj+1)∆t

[
rK − q

2
ez3,i[ez1,i + ez2,i]

+

∫ z1(τj+1)−z1,i

−∞

(
W (z1,i + x1, z2,i, z3,i, tj+1) +K − 1

2
ez3,i [ez1,i+x1 + ez2,i ]

)
ν1(x1)dx1

]

− 1z2,i>z2(τj+1)∆t

[
rK − q

2
ez3,i[ez1,i + ez2,i]

+

∫ z2(τj+1)−z2,i

−∞

(
W (z1,i, z2,i + x2, z3,i, tj+1) +K − 1

2
ez3,i [ez1,i + ez2,i+x2 ]

)
ν2(x2)dx2

]

− 1z3,i>z3(τj+1)∆t

[
rK − q

2
ez3,i[ez1,i + ez2,i]

+

∫ z3(τj+1)−z3,i

−∞

(
W (z1,i, z2,i, z3,i + x3, tj+1) +K − 1

2
ez3,i+x3 [ez1,i + ez2,i ]

)
ν3(x3)dx3

]
.

As mentioned, the main challenge in the procedure is solving the integrals in the Heav-

iside term, in fact the technique requires to break the integrals in pieces depending on
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the size of the jumps as follows by Fiorani (1999) and Fiorani (2004) in Appendix A:

∫ +∞

−∞

[
W (z1,i + x1, z2,i, z3,i, tj+1)−W (z1,i, z2,i, z3,i, tj+1)

]
ν1(x1)dx1 =∫ z1,0−z1,i

−∞

[
W (z1,i + x1, z2,i, z3,i, tj+1)−W (z1,i, z2,i, z3,i, tj+1)

]
ν1(x1)dx1

+

∫ −∆z1

z1,0−z1,i

[
W (z1,i + x1, z2,i, z3,i, tj+1)−W (z1,i, z2,i, z3,i, tj+1)

]
ν1(x1)dx1

+

∫ 0

−∆z1

[
W (z1,i + x1, z2,i, z3,i, tj+1)−W (z1,i, z2,i, z3,i, tj+1)

]
ν1(x1)dx1

+

∫ ∆z1

0

[
W (z1,i + x1, z2,i, z3,i, tj+1)−W (z1,i, z2,i, z3,i, tj+1)

]
ν1(x1)dx1

+

∫ z1,N−z1,i

∆z1

[
W (z1,i + x1, z2,i, z3,i, tj+1)−W (z1,i, z2,i, z3,i, tj+1)

]
ν1(x1)dx1

+

∫ +∞

z1,N−z1,i

[
W (z1,i + x1, z2,i, z3,i, tj+1)−W (z1,i, z2,i, z3,i, tj+1)

]
ν1(x1)dx1,

with the same procedure being applied for

∫ +∞

−∞

[
W (z1,i, z2,i + x2, z3,i, tj+1)−W (z1,i, z2,i, z3,i, tj+1)

]
ν2(x2)dx2

and for

∫ +∞

−∞

[
W (z1,i, z2,i, z3,i + x3, tj+1)−W (z1,i, z2,i, z3,i, tj+1)

]
ν3(x3)dx3.

Given that we are in the discrete environment, we need

zk(τj+1)− zk,i ≥ ∆zk with k = 1, 2, 3,

and we define:

zk(τj+1)
∆
= l∆zk = zk,l with k = 1, 2, 3,
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for some integer l between 0 and N whose value determines the position of the exercise

boundary in the grid. The main trick that we use to discretize our intervals is using

linear interpolation for which, given a jump of size xk ∈ [g∆zk, (g+1)∆zk] for k = 1, 2, 3

and g = (i− l), (i− l + 1), ..., (i− 1), we can write:

W (z1,i + x1, z2,i, z3,i, tj+1)−W (z1,i+k, z2,i, z3,i, tj+1)

≈ W (z1,i+k+1, z2,i, z3,i, tj+1)−W (z1,i+k, z2,i, z3,i, tj+1)

∆z1

(x1 − g∆z1)

and the same interpolation can be used for z2 and z2. As shown in Fiorani (1999) and

Fiorani (2004) for the one-dimensional case, which therefore considers the one integral

related to the jump component x1 of z1, the jump component is integrated as the sum

of six smaller integrals. Such integrals still hold for our three independent integrals for

the jump components of z1, z2 and z3, so we can simply plug Fiorani’s results in our

PIDE.

2.4.3 Results of the option pricing via finite-difference method

Now that we have solved the PIDE via finite-difference method, we present some nu-

merical results for the prices of our four types of options, both in their call and put

versions, assuming the same marginal parameters for the Variance Gamma processes

and the same options’ characteristics used in Section 2.3. In Figure 2.6 we present the

results for our options if we consider a positive correlation Corr(Y1(t), Y2(t)) between

the two Variance Gamma processes (see Eq. (2.27) for the formula) ranging from 0 to

1.
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Figure 2.6: Option prices via finite-difference method under the Ballotta-Bonfiglioli
model for a varying Corr(Y1(t), Y2(t))
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The results here are similar to the ones of Figures 2.1, 2.2 and 2.3: this is due to the

fact that this model cannot capture extreme events as well as copulae. The Clayton

copula (both bidirectional and unidirectional) can only capture extreme events on the

left tail, which for option pricing is anyways capped at 0. Whereas the right tail is

not capped but the Clayton copula cannot capture dependence on that tail. This is

the reason for the similarity in the results. Whereas the Gumbel and Frank can retain

all the information for the tails, because they stress dependence on higher percentiles

of the joint distributions which are not capped, while they do not put any weight on

the capped left tail anyways. Therefore the Clayton copula and the Ballotta-Bonfiglioli

model present similar findings, while the Gumbel and Frank have symmetrical results.

2.4.4 Results of the option pricing via simulation

For comparative purposes, we also do the pricing via simulation: we simulate Y1(t) and

Y2(t) with the usual marginal parameters and the same number of simulations H used

previously, we apply the mean correcting martingale to risk-neutralise our simulated

paths and we employ the Longstaff-Schwartz algorithm with the same number and type

of basis functions as before. In Figure 2.7 we present the results for our options if

we consider a positive correlation Corr(Y1(t), Y2(t)) between the two Variance Gamma

processes ranging from 0 to 1.
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Figure 2.7: Option prices via simulation under the Ballotta-Bonfiglioli model for a
varying Corr(Y1(t), Y2(t))
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As we see, under the Ballotta-Bonfiglioli model, the results via simulation are consistent

with the ones obtained through the finite-difference method: all differences in values

arise after the third decimal point, therefore they cannot be detected visually by looking

at the graphs. We carried out robustness checks to see whether with different marginal

parameters for the Variance Gamma processes and with different options’ characteristics

the discrepancy between the results obtained via finite difference method and the ones

obtained via simulation varies, but in all our tests the differences in values were stable

and always after the third decimal point. In Table 2.1 we present as an example the

difference in the results via finite difference method and via simulation if we keep the

marginal parameters for the Variance Gamma processes and the options’ characteristics

used before and we only change the value of S1(0) = S2(0) = K and the expiry date T .

Table 2.1: Difference in options’ results via finite difference method and via simulation
for different T and K

K/T T = 0.25 T = 0.5 T = 0.75 T = 1
K = 300 0.000053 0.000035 0.000074 0.000056
K = 305 0.000073 0.000093 0.000048 0.000045
K = 310 0.000060 0.000053 0.000074 0.000035
K = 315 0.000046 0.000075 0.000065 0.000045
K = 320 0.000046 0.000095 0.000049 0.000051
K = 325 0.000081 0.000044 0.000093 0.000092
K = 330 0.000076 0.000064 0.000058 0.000087

We computed the difference in the results for each of the 8 payoffs of the 4 types of

options, both in their call and put versions, and in Table 2.1 we reported the average of

the 8 differences for each value of K and for each T .

In Table 2.2 we present as an example the difference in the results via finite difference

method and via simulation if we keep the options’ characteristics used before and we

change the values for the marginal parameters for the Variance Gamma processes σk and

αk while we keep θk unvaried. As before, for simplicity, let us have the same marginal

parameters for both processes, i.e. σ1 = σ2 and α1 = α2.
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Table 2.2: Difference in options’ results via finite difference method and via simulation
for different σk and αk

σk/αk αk = 0.2 αk = 0.3 αk = 0.4 αk = 0.5 αk = 0.6 αk = 0.7 αk = 0.8
σk = 0.2 0.000063 0.000073 0.000048 0.000073 0.000093 0.000045 0.000056
σk = 0.3 0.000040 0.000089 0.000045 0.000093 0.000078 0.000052 0.000072
σk = 0.4 0.000073 0.000094 0.000082 0.000052 0.000047 0.000073 0.000092
σk = 0.5 0.000071 0.000050 0.000094 0.000083 0.000092 0.000039 0.000071
σk = 0.6 0.000057 0.000059 0.000073 0.000091 0.000045 0.000082 0.000086
σk = 0.7 0.000072 0.000077 0.000083 0.000038 0.000067 0.000054 0.000059
σk = 0.8 0.000081 0.000056 0.000045 0.000059 0.000085 0.000071 0.000087

As before, we computed the difference in the results for each of the 8 payoffs of the 4

types of options, both in their call and put versions, and in Table 2.2 we reported the

average of the 8 differences for each value of σk and for each value of αk.

2.5 Concluding remarks

We therefore showed two possible ways to structure the dependence between the un-

derlying assets in the context of American multi-asset option pricing. Lévy copulae

are more precise and can describe extreme events with high accuracy, but this comes

at the cost of reduced analytical tractability and much less convenient estimation and

simulation procedure. The Ballotta-Bonfiglioli method on the other hand is highly flex-

ible: the great advantage of the Ballotta-Bonfiglioli model is that, since it considers the

marginal Lévy processes for the idiosyncratic components and for the common factor

to be independent, one can easily rely on the work by Hirsa and Madan (2004), Fiorani

(1999) and Fiorani (2004) and add as many components as needed without affecting

the general structure. Fiorani has provided us with solutions for the jump component,

which still hold in increasing dimensions, therefore such work can be used for any kind

of option and on any dimension. Not only one can increase on the overall number of
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underlying assets and idiosyncratic components, it is also possible to add extra common

factors to take into account of the dependence between multiple underlying assets in a

more complete way, so that even pairwise dependence can be absorbed (in the case of

more than two underlying assets, since with only two underlying assets one measure of

dependence is enough, as mentioned in Subsection 1.2.3). It would indeed be interest-

ing to extend the work on Lévy copulae to Vine Lévy copulae (see Grothe and Nicklas

(2013)), so that in the case of more than two underlying assets one is not limited by one

overall dependence, but also pairwise dependence can be captured. Another possible

line of further research would be to extend the European multi-asset option pricing on

a Markov-modulated switching regime by Deelstra and Simon (2017) to the American

contracts. Also, as we said, in our case we only took into account positive correlation,

readaptations for negative dependence would be an interesting further development.
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Chapter 3

The bivariate Negative

Binomial-Inverse Gaussian

regression model with an

application to insurance a posteriori

ratemaking

3.1 Introduction

3.1.1 From univariate to multivariate regression models

Over the last few decades, univariate mixed Poisson regression models, with the Negative

Binomial (NB) and Poisson-Inverse Gaussian (PIG) models being the most traditional

choices, have been established by various previous studies as the appropriate statistical

formalism in the a priori rakemaking process for Motor Third Party Liability (MTPL)

insurance due to their efficiency for quantifying the relation between the overdispersed
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claim counts and the characteristics of the policyholders and their cars. Furthermore,

such models can be used for deriving a posteriori ratemaking mechanisms, or Bonus-

Malus Systems (BMSs), which can take into account both the a priori and a posteriori

criteria, i.e. all the factors that could not be identified, measured and introduced in

the a priori tariff. An excellent account of BMSs can be found in Lemaire (1995). Fur-

ther references for BMSs include, among many others, Tremblay (1992), Picech (1994),

Pinquet (1997), Pinquet (1998), Brouhns et al. (2003), Mert and Saykan (2005), Denuit

et al. (2007), Boucher and Denuit (2008), Gómez-Déniz et al. (2008), Gómez-Déniz et al.

(2014), Ni et al. (2014b), Ni et al. (2014a), Tzougas and Frangos (2014), Santi et al.

(2016), Gómez-Déniz and Caldeŕın-Ojeda (2018), Karlis et al. (2018), Tzougas et al.

(2018), Tzougas et al. (2019) and Tzougas et al. (2020).

However, by adopting the univariate mixed Poisson count regression modelling approach,

the actuary can only specify a separate model for different claim types. Nevertheless, it

is not uncommon for an insurer to find the need in non-life insurance practice to model

the positive association between claim counts of two (and/or multiple) types. In fact,

various studies have reported evidence of a positive correlation between different types

of claims, see, for instance, Bermúdez (2009), Bermúdez and Karlis (2011), Bermúdez

and Karlis (2012), Shi and Valdez (2014) and Abdallah et al. (2016), Bermúdez and

Karlis (2017) and Bermúdez et al. (2018).

As far as MTPL insurance is concerned, which refers to a person’s legal liability for the

bodily injury and property damage sustained by another as the result of an accident,

modelling the two types of claims, which are conceivably positively correlated with each

other, and their associated claim counts, is required for making the Bonus-Malus price

discrimination even more fair and reasonable when the a posteriori correction is going to

be calculated. Nevertheless, the Bayesian approach for calculating Bonus-Malus premia

in the bivariate setting has only been addressed very recently by Bermúdez and Karlis

(2017). The contribution of the latter article can be regarded as a significant improve-
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ment over prior ratemaking literature, which only focused on bivariate experience rating

models that were derived based on the credibility approach.

3.1.2 The bivariate Negative Binomial-Inverse Gaussian

regression model

In the present chapter, the bivariate extension of the Negative Binomial-Inverse Gaus-

sian (NBIG) regression model, which was considered by Tzougas et al. (2019) in its

univariate version, will be employed for examining the relation between the frequency

of the positively correlated claims from MTPL bodily injury and property damage and

the characteristics of the policyholders and their cars. Furthermore, motivated by the

paper of Bermúdez and Karlis (2017), the bivariate Negative Binomial-Inverse Gaussian

(BNBIG) regression model will be employed for calculating Bonus-Malus premium rates

in a way which integrates a priori and a posteriori information on an individual basis.

In what follows we provide a thorough discussion about how our contribution extends

both the statistical and actuarial literature concerning bivariate count regression mod-

els, putting special emphasis on the probabilistic predictive modelling, computational

ML estimation and practical MTPL insurance pricing perspectives.

Firstly, even if, as it was previously mentioned, a plenitude of books and scholarly articles

consistent with the standard probabilistic predictive modelling and MTPL ratemaking

practice have been devoted on the use of univariate mixed Poisson regression models,

there is no guarantee that overdispersion and variation in claim propensity have pre-

cisely the distributional forms implied by mixed Poisson models. Moreover, due to the

complexity of MTPL insurance data, their bivariate versions will not always necessarily

efficiently model the relationship between MTPL bodily injury and property damage

claims and a set of explanatory variables. Therefore, unless the assumption that the

count data are distributed according to a particular member of the mixed Poisson family

is valid, then an inappropriate imposition of the mixed Poisson model may lead to huge
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financial impacts for the insurance company, since, due to the economic importance

of MTPL insurance1, very accurate predictions are required by the actuary for pricing

risks. Furthermore, it should be noted that alternative mixed Poisson models usually

lead to Bonus-Malus premium rates which are not substantially different for policyhold-

ers with some claim experience and hence there is in principle no reason why attention

should be confined to this family of models.

Thus, given the increasing interdisciplinary demand for data driven predictive models

and maximum likelihood (ML) estimation methods, a very important aspect of the actu-

ary’s job is to be able to construct viable alternatives to the traditional mixed Poisson

models that can capture the stylized characteristics of the data, since very accurate

predictions are required for pricing, reserving, estimating future company liabilities and

understanding the implications of these claims to the solvency of the company.

Mixed Negative Binomial models have thick tails and can be considered as candidate

models for analysing highly overdispersed count data in numerous univariate and bi-

variate (and/or multivariate) domains. Nevertheless, even if the literature on mixed

Poisson models is abundant, only very few mixed Negative Binomial models have been

studied in depth because their log-likelihood is complicated and hence its maximisa-

tion needs a special effort. In particular, the Negative Binomial-Pareto distribution

(see Shengwang et al. (1999) and Gómez-Déniz and Vázquez-Polo (2003)), the Negative

Binomial-Beta regression model (see Boucher et al. (2008)), the Negative Binomial-

Gamma (see Gençtürk and Yiğiter (2016)), the Negative Binomial-Lindley distribution

(see Zamani and Ismail (2010) and Gómez-Déniz and Caldeŕın-Ojeda (2017)), the Nega-

tive Binomial-Inverse Gaussian (see Gómez-Déniz et al. (2008) and Tzougas et al. (2019)

who considered the cases with and without covariate information) and the Negative

Binomial-Reciprocal Inverse Gaussian (see Ahmad et al. (2019)) have been considered

in the univariate setting.

1For instance, MTPL insurance, according to the most recent report by Insurance Europe, accounted
for almost one third of non-life business in the European Union, see Insurance Europe (2015).
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Moreover, the literature on the bivariate (and/or multivariate) extensions of mixed Neg-

ative Binomial models is even smaller since computational complexity increases even

further when considering jointly two or more count variables. In fact, the only notable

exceptions so far are the articles by Gómez-Déniz et al. (2008) and Caldeŕın-Ojeda and

Gómez-Déniz (2019) who introduced the multivariate versions of the Negative Binomial-

Inverse Gaussian and the Negative Binomial-Lindley distributions, considered ML esti-

mation methods and gave a very detailed description of statistical methods connected

to both models.

3.1.3 Contribution to the literature

This is the first time that the BNBIG regression model is used in a statistical or actuarial

context because, due to algebraic intractability, direct maximisation of its log-likelihood

is difficult and has not been addressed in the literature so far. The BNBIG regression

model will be constructed based on a mixing between two marginal Negative Binomial

distributions and an Inverse Gaussian distribution. At this point, we would like to call

attention to the fact that the construction of bivariate (and/or multivariate) count re-

gression models that can appropriately model overdispersed two-dimensional positively

correlated count data has only focused on bivariate (and/or multivariate) extensions of

the Poisson distribution and mixed Poisson models, see, for instance, Stein and Juritz

(1987) and Stein et al. (1987), Kocherlakota (1988), Munkin and Trivedi (1999), Gurmu

and Elder (2000) and Ghitany et al. (2012) among many others. The BNBIG model,

which we consider in this study, can be regarded as a prominent candidate for modelling

bivariate positively correlated count data when marginal overdispersion is observed, a

situation which is quite common in the field of MTPL insurance since bodily injury and

property damage claim counts often exhibit a variance that noticeably exceeds their

mean.

Secondly, from a ML estimation point of view, the main contribution of the present
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study is that we develop an EM type algorithm that reduces the computational burden

when maximising the likelihood surface of the BNBIG regression model. In particular,

the EM scheme we present does not require knowledge of the joint probability mass

function (jpmf) of the BNBIG model, which cannot be written in closed form, and can

be implemented by taking advantage of the quintuple Poisson-Gamma-Poisson-Gamma-

Inverse Gaussian mixture representation of the model. Additionally, it is worth noting

that the model is suitable for application not only for modelling the positive association

between the MTPL bodily injury and property damage claims but in can be immedi-

ately generalized to any vector size of positively correlated response variables. However,

for large data sets with several explanatory variables and potentially higher dimensions,

computational speed is a disadvantage since most of the computational costs in the

case of a multidimensional response variable will come from evaluating the expectations

involved at the E-Step of the algorithm, which is not tractable. In such cases, parallel

computing is necessary to achieve a substantial reduction of the computing effort. In

fact, due to the structure of the algorithm for the BNBIG model, the E- and M-Steps

can be executed in parallel across multiple threads to take advantage of the processing

power available in modern-day multicore machines.

Finally, to examine the suitability of the BNBIG model for experience rating purposes,

the a posteriori, or Bonus-Malus, premium rates resulting from this model will be calcu-

lated via the net premium principle and compared to those determined by the bivariate

Negative Binomial (BNB) and bivariate Poisson-Inverse Gaussian (BPIG) models, which

can be regarded as natural extensions of the NB and PIG models that have been rou-

tinely used by actuaries for pricing risks in the univariate setting. The main finding

is that the BNBIG model will show much less extreme a posteriori, or Bonus-Malus,

premia for policyholders with some MTPL bodily injury and property damage claims

experience than those produced by the BNB and BPIG models. Therefore, the work pre-

sented herein can be viewed as complementary to the articles of Shengwang et al. (1999),
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Gómez-Déniz et al. (2008) and Tzougas et al. (2019) who reported similar findings re-

garding the comparison of the mixed Negative Binomial models, which they developed

with the traditional NB and PIG models in a univariate a posteriori ratemaking context.

Also, another striking difference between the BNBIG and the BNB and BPIG models,

is that for a given total number of claims, the former model can enable the actuary to

differentiate the premium rates based on the exact frequencies of MTPL bodily injury

and property damage claims, whereas the latter two mixed Poisson models do not allow

to price discriminate by taking into account the difference in the numbers of the two

types of claims.

Overall, from a practical business perspective, since MTPL remains the most widely

purchased non-life product in the world’s markets with policyholders shopping around

for the best deals, due to the aforementioned reasons, the employment of the new model

is beneficial for insurance companies, since compared to the two bivariate mixed Poisson

models, it can enable them to better refine their a priori risk classification and restore

fairness by designing merit rating plans in accordance with the a priori ratemaking

structure of the company.

3.1.4 Outline

The rest of this chapter proceeds as follows: Section 3.2 presents the derivation of the

BNBIG regression model. Section 3.3 fully describes the ML estimation through the EM

algorithm. Section 3.4 briefly explains the bivariate mixed Poisson models, to which the

BNBIG model is being compared and defended as a suitable alternative. Section 3.5

contains an application to a data set concerning MTPL insurance bodily injury and

property damage claim counts. Finally, concluding remarks can be found in Section 3.6.
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3.2 Description of the BNBIG regression model

Assume that ki,j is the number of claims for the policyholder j, with j = 1, ..., n, where

i = 1, 2 represents the MTPL bodily injury and property damage claims respectively.

Furthermore, let ki =
∑n

j=1 ki,j denote the total number of claims per claim type i =

1, 2 that have been reported to the insurance company by all the n individuals in the

portfolio. Also, suppose that xi,j are the vectors of individual characteristics and/or

characteristics of the car related to the j-th insured person per claim type i = 1, 2.

The two responses k1,j, k2,j|x1,j ,x2,j are assumed to follow a BNBIG regression model,

which can be constructed as follows.

Consider that ki,j|xi,j , λj, per claim type i = 1, 2, follows an NB distribution with

probability mass function (pmf)

P (ki,j|xi,j , λj) =
Γ (ki,j + σi)

ki,j!Γ (σi)

(
λjεi,j

σi + λjεi,j

)ki,j ( σi
σi + λjεi,j

)σi
, (3.1)

with ki,j = 0, 1, 2, 3, ..., λj > 0, σi > 0, where εi,j = exp
(
xTi,jβi

)
and where βi are the

two vectors of the regression coefficients for the two types of claims i = 1, 2. The mean

and the variance of ki,j|xi,j , λj are given by

E (ki,j|xi,j , λj) = εi,jλj

and

Var (ki,j|xi,j , λj) = εi,jλj

[
1 +

εi,jλj
σi

]
.

It is worth noting that the scale parameter σi controls the responsiveness of overdisper-

sion to the mean number of claims, with the degree of overdispersion decreasing when

σi increases per claim type i = 1, 2. Note also that, in the limit, when σi approaches

infinity, P (ki,j|xi,j , λj) tends to the Poisson distribution with mean equal to εi,jλj per
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claim type i = 1, 2.

Let us now assume that λj are independent and identically distributed (i.i.d) random

variables from an Inverse Gaussian (IG) distribution with probability density function

(pdf)

f (λj; γ) =
γ√
2π

exp
(
γ2
)
λ
− 3

2
j exp

[
−1

2

(
γ2

λj
+ γ2λj

)]
, (3.2)

with γ > 0, mean E(λj) = 1 and variance Var(λj) = 1
γ2

. The IG prior, or mixing,

distribution given by Eq. (3.2) has to have unit mean, in order for the model to be

estimable, otherwise identifiability2 issues might arise. Because of this restriction, it

follows that the overdispersion linked to the simple Exponential distribution is 1
γ2

and

hence the IG will reduce to the Exponential if γ tends to infinity. For more information

about the IG distribution, which is a special case of the Generalized Inverse Gaussian

(GIG) distribution, the interested reader can refer to Jørgensen (1982). Note also that

several other parametrisations of the IG can be found in Seshadri (1993).

Under the assumptions in Eqs. (3.1 and 3.2), the joint probability mass function (jpmf)

of the BNBIG distribution is 3

P (k1,j, k2,j|x1,j ,x2,j) =

∞∫
0

2∏
i=1

P (ki,j|xi,j , λj) f (λj; γ) dλj. (3.3)

2The unit mean requirement for the mixing density is essential for constructing mixture models with
regression structures, otherwise identifiability issues can ensue, see, for example, Karlis (2001), Rigby
et al. (2008), Barreto-Souza and Simas (2016), Ghitany et al. (2012) and Tzougas (2020) among many
others. Furthermore, in order to show that no particular identifiability problem exists from a practical
point of view, we checked with many initial values for all the parameters to examine whether the EM
algorithm was trapped with different solutions. This did not happen, and for all cases the algorithm
converged to the same solution.

3Note that, due to its quintuple mixture decomposition in Section 3.3, the jpmf of the BNBIG model
can be written in the form of the jpmf of the bivariate Poisson-Gamma-Inverse Gaussian distribution.
Thus, the model has all the desirable theoretical properties of mixed Poisson models, see for instance
Barndorff-Nielsen (1965), Yakowitz and Spragins (1968), Tallis (1969), Teicher (1963), Ord (1972),
Xekalaki (1981), Al-Hussaini and Ahmad (1981), Xekalaki and Panaretos (1983), Lynch (1988), Lindsay
and Roeder (1993), Willmot (1990) and Sapatinas (1995). Note also that Gómez-Déniz et al. (2008)
gave an excellent account of statistical methods connected to both the univariate and multivariate
versions of the NBIG distribution. The BNBIG distribution as in Eq. (3.3) may be distinguished from
the one by Gómez-Déniz et al. (2008) as the latter does not allow to include covariate information.
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The last integral cannot be solved in closed form but can be calculated through numerical

integration.

Furthermore, three important properties, in the context of MTPL insurance, associated

with the model are given below.

1. The marginal distribution of ki,j|xi,j , with i = 1, 2, is an NBIG distribution. Also,

using the laws of total expectation and total variance and the moments of the NB

distribution, one can find that the mean and the variance of ki,j|xi,j are given by

E (ki,j|xi,j) = Eλj [E (ki,j|xi,j , λj)]] = εi,jEλj [λj] = εi,j (3.4)

and

Var (ki,j|xi,j) = Eλj [Var (ki,j|xi,j , λj)] + Varλj [E (ki,j|xi,j , λj)]

= εi,j

[
1 + εi,j

(
1 + σi + γ2

σiγ2

)]
. (3.5)

2. Based on the laws of total variance and total covariance, we can see that the

covariance (Cov) and correlation (Corr) between k1,j and k2,j are given by

Cov(k1,j, k2,j|x1,j ,x2,j) =

(
1

γ2

)
ε1,jε2,j (3.6)

and

Corr(k1,j, k2,j|x1,j ,x2,j)

=

1
γ2
ε1,jε2,j√[

ε1,j + ε2
1,j

(
1+σ1+γ2

σ1γ2

)]
·
[
ε2,j + ε2

2,j

(
1+σ2+γ2

σ2γ2

)] . (3.7)

3. The generalized variance ratio (GVR) between the BNBIG model, as defined in
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Eq. (3.3), and a simple NB model, i.e. yi,j ∼ NB

(
σi,

εi,j
σi+εi,j

)
is given by

GVR (k1,j, k2,j|x1,j ,x2,j) =

∑2
i=1 Var (ki,j|xi,j) + 2Cov (k1,j, k2,j|x1,j ,x2,j)∑2

i=1 Var (yi,j|xi,j)

= 1 +
1

γ2

[
ε21,j
σ1

+
ε22,j
σ2

+ (ε1,j + ε2,j)
2
]

[
ε21,j
σ1

+
ε22,j
σ2

+ ε1,j + ε2,j

] . (3.8)

The BNBIG allows for the positive correlation between the bodily injury and property

damage claims since Corr (k1,j, k2,j|x1,j ,x2,j) > 0, see Eq. (3.7), and it accommodates

the bivariate overdispersion in the data since GVR > 1. Also, the GVR increases as the

variance of the IG distribution increases, see Eq. (3.8).

Thus, the BNBIG model is ideally suited for modelling two-dimensional MTPL insur-

ance data since, as was previously mentioned, positive correlation and overdispersion

are the two phenomena that have been most commonly reported in the pricing literature

in the bivariate setting.

Finally, it should be noted that there are many factors which cannot be directly observed

by the actuary but can simultaneously affect the joint dynamics of MTPL bodily injury

and property damage claims, leading to extra variation occurring in their associated

claim counts. Thus, the choice of the mixing density, which measures the level of unob-

servable risk associated with each of the policies, is crucial since a potential distribution

misspecification can result in biased and unreliable parameter estimates, which, in turn,

can have an impact on how insurers price the policy, leading to financial implications

for the company, since, if the punishment of all policyholders is not justified on a sound

risk measuring basis, then they may switch to competing companies.

In this study, motivated by the characteristics of the MTPL insurance data which we

will analyse in Section 3.5, we proposed the use of the IG distribution as a suitable mix-

ing density. In fact, as we will observe in Section 3.5, the resulting BNBIG model will
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provide better fitting performances compared to bivariate mixed Poisson benchmarks

which can be derived in a similar way. However, as it can be clearly understood, different

mixing distributions might be more appropriate for different data sets. The EM type

algorithm which we will present in Section 3.3 has the sufficient flexibility to estimate

alternative bivariate (and/or multivariate) Negative Binomial mixture models stemming

from several other continuous and at least twice differentiable mixing distributions with

a unit mean in order to avoid identifiability issues.

3.3 The EM algorithm for ML estimation of the

BNBIG regression model

Let (k1,j, k2,j;x1,j ,x2,j) be a sample of observations, j = 1, ..., n, where the responses

ki,j are the number of claims for the policyholder j and where xi,j are the vectors of

covariate information per claim type i = 1, 2. Considering that the data are produced

according to the BNBIG model, its log-likelihood can be expressed as

l (φ) =
n∑
j=1

log (P (k1,j, k2,j|x1,j ,x2,j)) , (3.9)

where φ = (γ, σ1, σ2,β1,β2) is the vector of the parameters and where

P (k1,j, k2,j|x1,j ,x2,j) is the jpmf of the BNBIG distribution which is given by Eq. (3.3).

The log-likelihood given by Eq. (3.9) does not exist in closed form and hence φ cannot be

estimated via traditional numerical maximisation methods. In such cases, it is necessary

to resort to the EM algorithm (see Dempster et al. (1977) and McLachlan and Krishnan

(2007)). In particular, if one augments the unobserved data, denoted by λj herein, to

(k1,j, k2,j;x1,j ,x2,j) for j = 1, ..., n, then the complete data log-likelihood factorises into
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two parts:

lc (φ) =
n∑
j=1

2∑
i=1

log (P (ki,j|xi,j , λj)) +
n∑
j=1

log (f (λj; γ)) , (3.10)

where P (ki,j|xi,j , λj) is the pmf of each of the two NB distributions, which are given by

Eq. (3.1) for i = 1, 2, and where f(λj; γ) represents the pdf of the IG mixing distribution,

which is given by Eq. (3.2). Direct maximisation of the complete data log-likelihood, as

given by Eq. (3.10), with respect to φ is cumbersome. Fortunately, its ML estimation

can be easily achieved via the EM algorithm, if one takes advantage of the following

quintuple mixture derivation of the model. In particular, the number of claims k1,j is

distributed as:

k1,j ∼ Poisson (ϑ1,j)

with ϑ1,j ∼ Gamma

(
σ1,

σ1

λjε1,j

)
,

(3.11)

the number of claims k2,j is distributed as:

k2,j ∼ Poisson (ϑ2,j)

with ϑ2,j ∼ Gamma

(
σ2,

σ2

λjε2,j

)
(3.12)

and both k1,j and k2,j share the same unobserved heterogeneity variable λj which is

distributed as

λj ∼ Inverse Gaussian (γ) . (3.13)

Also, let us denote

P (ki,j|ϑi,j) = e−ϑi,j
ϑ
ki,j
i,j

ki,j!
,
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for i = 1, 2, to be the two pmfs of k1,j and k2,j respectively, and

g1 (ϑ1,j|β1, σ1, λj) = ϑσ1−1
1,j exp

(
− σ1

λjε1,j
ϑ1,j

)(
σ1

λjε1,j

)σ1
/Γ (σ1)

and

g2 (ϑ2,j |β2, σ2, λj) = ϑσ2−1
2,j exp

(
− σ2

λjε2,j
ϑ2,j

)(
σ2

λjε2,j

)σ2
/Γ (σ2)

to be the pdfs of the two Gamma distributions.

Then, using the mixture representation in Eqs. (3.11, 3.12 and 3.13) the complete data

log-likelihood is proportional to

lc (φ) ∝
n∑
j=1

log (g1 (ϑ1,j|β1, σ1, λj)) +

n∑
j=1

log (g2 (ϑ2,j|β2, σ2, λj)) +
n∑
j=1

log (f (λj; γ)) . (3.14)

The regression coefficients β1 and β2 and the parameters σ1 and σ2 are involved in the

first and second terms and the parameter γ is involved in the third term of Eq. (3.14),

which correspond to the log-likelihoods of the two Gamma components and the Inverse

Gaussian component respectively.

Therefore, the Q-function, which is the conditional expectation of the complete data

log-likelihood, is proportional to

Q
(
φ;φ(r)

)
≡ Eλj

(
lc (φ) |k1,j, k2,j,x1,j ,x2,j , φ(r)

)
∝ Eλj

[
n∑
j=1

log
(
g1

(
ϑ1,j|β1,(r), σ1,(r), λj

))]

+ Eλj

[
n∑
j=1

log
(
g2

(
ϑ2,j|β2,(r), σ2,(r), λj

))]

+ Eλj

[
n∑
j=1

log
(
f
(
λj; γ(r)

))]
,

(3.15)
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where φ(r) =
(
γ(r), σ1,(r), σ2,(r),β1,(r),β2,(r)

)
is the estimate of φ in the E-Step of our

EM algorithm.

In what follows, some functions of the unobserved data λj which are involved in Eq.

(3.15) will be calculated for implementing the E-Step of the algorithm, while the M-

Step involves maximising the Q-function with respect to φ. Also, the following posterior

distributions will be needed in the E-Step of the EM algorithm:

ϑ1,j|k1,j,x1,j , σ1,β1 ∼ Gamma

(
k1,j + σ1,

σ1

λjε1,j
+ 1

)
(3.16)

and

ϑ2,j|k2,j,x2,j , σ2,β2 ∼ Gamma

(
k2,j + σ2,

σ2

λjε2,j
+ 1

)
. (3.17)

The EM algorithm can now be formally described as follows.

E-Step:

• Compute the pseudo-values for j = 1, 2, ..., n, using the parameters’ values after

the r-th iteration

w1,j = Eλj
(
λj|k1,j, k2,j,x1,j ,x2,j , φ(r)

)
=

∞∫
0

λjP (k1,j, k2,j|x1,j ,x2,j , λj) f (λj; γ) dλj

∞∫
0

P (k1,j, k2,j|x1,j ,x2,j , λj) f (λj; γ) dλj

,

(3.18)

w2,j = Eλj
(

1

λj
|k1,j, k2,j,x1,j ,x2,j , φ(r)

)
=

∞∫
0

1
λj
P (k1,j, k2,j|x1,j ,x2,j , λj) f (λj; γ) dλj

∞∫
0

P (k1,j, k2,j|x1,j ,x2,j , λj) f (λj; γ) dλj

,

(3.19)

w3,j = Eλj

(
1(

λjε1,j + σ1,(r)

) |k1,j, k2,j,x1,j ,x2,j , φ(r)

)

=

∞∫
0

1

(λjε1,j+σ1,(r))
P (k1,j, k2,j|x1,j ,x2,j , λj) f (λj; γ) dλj

∞∫
0

P (k1,j, k2,j|x1,j ,x2,j , λj) f (λj; γ) dλj

,

(3.20)
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w4,j = Eλj
(
log
(
λjε1,j + σ1,(r)

)
|k1,j, k2,j,x1,j ,x2,j , φ(r)

)
=

∞∫
0

log
(
λjε1,j + σ1,(r)

)
P (k1,j, k2,j|x1,j ,x2,j , λj) f (λj; γ) dλj

∞∫
0

P (k1,j, k2,j|x1,j ,x2,j , λj) f (λj; γ) dλj

,
(3.21)

w5,j = Eλj

(
1(

λjε2,j + σ2,(r)

) |k1,j, k2,j,x1,j ,x2,j , φ(r)

)

=

∞∫
0

1

(λjε2,j+σ2,(r))
P (k1,j, k2,j|x1,j ,x2,j , λj) f (λj; γ) dλj

∞∫
0

P (k1,j, k2,j|x1,j ,x2,j , λj) f (λj; γ) dλj

,

(3.22)

w6,j = Eλj
(
log
(
λjε2,j + σ2,(r)

)
|k1,j, k2,j,x1,j ,x2,j , φ(r)

)
=

∞∫
0

log
(
λjε2,j + σ2,(r)

)
P (k1,j, k2,j|x1,j ,x2,j , λj) f (λj; γ) dλj

∞∫
0

P (k1,j, k2,j|x1,j ,x2,j , λj) f (λj; γ) dλj

.
(3.23)

• Using Eqs. (3.16, 3.17, 3.20, 3.21, 3.22 and 3.23) we obtain that

s1,j = Eλj
[
Eϑ1,j

(
ϑ1,j

λjε1,j
|k1,j, k2,j,x1,j ,x2,j , φ(r)

)]
=
(
k1,j + σ1,(r)

)
w3,j,

s2,j = Eλj
[
Eϑ1,j

(
log

(
ϑ1,j

λjε1,j

)
|k1,j, k2,j,x1,j ,x2,j , φ(r)

)]
= Ψ

(
k1,j + σ1,(r)

)
− w4,j

and

s3,j = Eλj
[
Eϑ2,j

(
ϑ2,j

λjε2,j
|k1,j, k2,j,x1,j ,x2,j , φ(r)

)]
=
(
k2,j + σ2,(r)

)
w5,j,

s4,j = Eλj
[
Eϑ2,j

(
log

(
ϑ2,j

λjε2,j

)
|k1,j, k2,j,x1,j ,x2,j , φ(r)

)]
= Ψ

(
k2,j + σ2,(r)

)
− w6,j,

with Ψ (·) representing the digamma function. Clearly the expectations given by Eqs.

(3.18, 3.19, 3.20, 3.21, 3.22 and 3.23) cannot be written in closed form and thus they need
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to be evaluated numerically. Alternatively, a Monte Carlo approach can also be used

based on a rejection algorithm. The latter case leads to variants of the EM algorithm

such as the Monte Carlo EM algorithm, see, for example, Booth and Hobert (1999),

Booth et al. (2001) and Karlis (2005)).

M-Step:

In the M-Step, the pseudo-values from the E-Step can be used to maximise the Q-

function.

• Firstly, the Newton-Raphson algorithm is employed to obtain ML estimates of the

two vectors of regression coefficients β1 and β2. Differentiating Q
(
φ;φ(r)

)
with

respect to β1, we find:

g1 (β1) = Eλj
(
∂lc
∂β1

|k1,j, k2,j,x1,j ,x2,j , φ

)
= σ1

n∑
j=1

(s1,i − 1)x1,j

and

G1 (β1) = Eλj
(

∂2lc
∂β1∂βT1

|k1,j, k2,j,x1,j ,x2,j , φ

)
= −σ1

n∑
j=1

s1,ix1,jx
T
1,j = −σ1X

T
1W1X1,

where W1 = diag{s1,i}.

Therefore, the Newton-Raphson iterative procedure for obtaining ML estimates of

the elements of β1 goes as follows:

β1,(r+1) ≡ β1,(r) −
[
G1

(
β1,(r)

)]−1
g1

(
β1,(r)

)
.
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Then, following the same procedure for β2, we obtain:

g2 (β2) = Eλj
(
∂lc
∂β2

|k1,j, k2,j,x1,j ,x2,j , φ

)
= σ2

n∑
j=1

(s3,i − 1)x2,j

and

G2 (β2) = Eλj
(

∂2lc
∂β2∂βT2

|k1,j, k2,j,x1,j ,x2,j , φ

)
= −σ2

n∑
j=1

s3,ix2,j ,x
T
2,j = −σ2X

T
2W2X2,

where W2 = diag{s3,i}.

Therefore the iterated β2 is:

β2,(r+1) ≡ β2,(r) −
[
G2

(
β2,(r)

)]−1
g2

(
β2,(r)

)
.

• Secondly, the one step ahead Newton iteration is used twice for updating σ1 and

σ2:

σ1,(r+1) = σ1,(r) −
Ψ
(
σ1,(r)

)
+ s̄1 − s̄2 − log

(
σ1,(r)

)
− 1

Ψ3

(
σ1,(r)

)
− 1

σ1,(r)

,

σ2,(r+1) = σ2,(r) −
Ψ
(
σ2,(r)

)
+ s̄3 − s̄4 − log

(
σ2,(r)

)
− 1

Ψ3

(
σ2,(r)

)
− 1

σ2,(r)

,

where Ψ3 (·) denotes the trigamma function.

• Finally, update γ with

γ(r+1) = (w̄1 + w̄2 − 2)−
1
2 .

• Note also that if the regression components of the model for the two responses k1,j

and k2,j are limited to the constants β1,0 and β2,0, then we have that E (k1,j|x1,j) =

exp (β1,0) = µ1 and E (k2,j|x2,j) = exp (β2,0) = µ2; and hence the ML estimation
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for the bivariate distribution, i.e. without regression components, can be computed

via the EM type algorithm.

3.4 The BNB and BPIG regression models

In our numerical illustration the a posteriori, or Bonus-Malus, premium rates resulting

from the BNB and BPIG models will be compared to those determined by the BNBIG

model. Therefore, in this section we give some rudimentary facts concerning the BNB

and the BPIG models.

Consider that ki,j = 0, 1, 2, 3, ... are the number of bodily injury and the number of prop-

erty damage claims, when i = 1, 2 respectively, for the policyholder j, with j = 1, ..., n

and suppose that xi,j are the vectors of individual characteristics and/or character-

istics of the car related to the j-th insured person per claim type i = 1, 2. Also,

let εi,j = exp
(
xTi,jβi

)
, where βi are the two vectors of the regression coefficients for

i = 1, 2.

• The jpmf of the BNB model is given by

P (k1,j, k2,j|x1,j ,x2,j) =
Γ
(∑2

i=1 ki,j + γ
)

Γ(γ)
∏2

i=1 ki,j!

γγ
∏2

i=1 εi,j
ki,j

(γ +
2∑
i=1

εi,j)γ+
∑2
i=1 ki,j

, (3.24)

for γ > 0.

• The jpmf of the BPIG is given by

P (k1,j, k2,j|x1,j ,x2,j) =
2γeγ

2

√
2π

K∑2
i=1 ki,j−

1
2
(γω)

(
γ

∆

)∑2
i=1 ki,j−

1
2

2∏
i=1

ε
ki,j
i,j

ki,j!
, (3.25)

where γ > 0, ω =
√
γ2 + 2

∑2
i=1 εi,j and where Kr(·) denotes the modified Bessel

function of the third kind of order r.
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Similarly to the proposed model, the BNB and BPIG are plausible models for overdis-

persed two-dimensional positively correlated MTPL claim count data. For more details

about the BNB and BPIG models, the interested reader can refer to Stein and Juritz

(1987), Stein et al. (1987), Kocherlakota (1988), Munkin and Trivedi (1999), Gurmu

and Elder (2000) and Ghitany et al. (2012).

3.5 Numerical illustration

The data were kindly provided by a major European insurance company and concern a

MTPL insurance portfolio which was observed during the year 2017.

We model two types of claims and their associated claim counts are recorded as k1,j

and k2,j, for the policyholder j, with j = 1, ..., n, which, as was previously mentioned,

represent MTPL bodily injury and property damage claims respectively. The sample

comprised insured parties with complete records; i.e., with the availability of all the

explanatory variables which affect both k1,j and k2,j. There were n = 5186 observations

that met our criteria. Additionally, an exploratory analysis was carried out in order

to adequately select the subset of explanatory variables with the highest predictive

power for both k1,j and k2,j. Additionally, in light of the heterogeneity that exists

within the portfolio, we grouped the levels of each explanatory variable with respect to

similar risk profiles with regard to the MTPL bodily injury and property damage claim

frequencies. This is necessary as it will enable us to achieve ratemaking accuracy and

balance homogeneity and sufficiency of the volume of data in each cell in order to provide

credible patterns. We therefore started with a data set containing ten explanatory

variables: the age of the driver, the brand of the vehicle, the car cubism, the type/price

of policy, the horsepower of the car, the insurance duration, the payment way, the city

population, the vehicle age and the sum insured. We then computed some specification

criteria to test the predictive power of the explanatory variables and kept the ones which
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returned the best values for those criteria. These explanatory variables4 are summarized

in Table 3.1.

Table 3.1: The explanatory variables and their description
Variables Categories

C1 C2 C3

City population (v1) ≤ 1,000,000 1,000,001-2,000,000 ≥ 2,000,001

Number of years that the policyholder
has been registered with the < 5 years > 5 years -

insurance company (v2)

Horsepower of the vehicle (v3) 0-1400 cc 1400-1800 cc ≥ 1800 cc

Table 3.2 presents a summary of the effects of the covariates on the MTPL bodily injury

and property damage claim counts k1,j and k2,j based on all 5186 observations. In the

first column there is a list of all explanatory variables, all broken down in their respective

categories. The second column represents how many policyholders, out of our data set

of 5186 observations, fall into each subgroup/category for every covariate. The rest of

the table shows, conditionally on being included in a certain category per explanatory

variable, the percentage of policies with claim frequencies equal to 0, 1,≥ 2 for k1,j and

k2,j respectively. For example, from Table 3.2, we can make the following observations.

Firstly, in the case of the variable city population (v1) regarding the 2203 policyholders

who live in a small city (C1), 92.81% of them have not made bodily injury claims and

94.68% of them have had no property damage claims. On the other hand, the 597

individuals who live in a large city (C3) seem to make more claims per both types, since

the percentage that has resulted claim-free dropped to 92.34% and 93.46% for bodily

injury and property damage claims respectively. Secondly, as far as the variable number

of years that the policyholder has been registered with the insurance company (v2) is

concerned, we see that the longer a policyholder has been with the company (C2), the

bigger is the probability of its getting involved in an accident. Thirdly, regarding the

4Note that it would be interesting to fit the same models to larger data sets in order to study the
effect of other categorical and continuous explanatory variables such as age of driver, driving experience
or driving zone, which have been traditionally used in MTPL insurance.
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variable horsepower of the car (v3), we observe that a high horsepower (C3) seems to

be a risky category which corresponds to a lower number of claim-free policyholders, for

both k1,j and k2,j.

Table 3.2: Summary statistics for claim frequencies as classified by the explanatory
variables

k1 k2

Covariates Total Count=0 (%) Count=1 (%) Count≥2 (%) Count=0 (%) Count=1 (%) Count≥2 (%)

v1 C1 2203 92.81 5.28 1.91 94.68 5.04 0.28

v1 C2 2386 92.98 4.65 2.37 93.76 5.94 0.30

v1 C3 597 92.34 4.86 2.80 93.46 6.35 0.19

v2 C1 4491 93.00 4.68 2.32 94.25 5.48 0.27

v2 C2 695 91.69 6.81 1.50 93.19 6.48 0.33

v3 C1 2372 92.77 5.02 2.21 94.28 5.50 0.22

v3 C2 1815 93.84 3.99 2.17 94.35 5.36 0.29

v3 C3 999 91.14 6.51 2.35 93.27 6.30 0.43

At this point, in order to motivate the BNBIG regression model and the two bivariate

mixed Poisson models which were presented in Sections 3.2 and 3.4 respectively, we

initially perform a marginal analysis on each claim count response variable k1,j and k2,j.

Table 3.3 shows some standard descriptive statistics for the bodily injury and prop-

erty damage claims k1,j and k2,j respectively, along with the value of the Kendall’s τ

correlation coefficient.
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Table 3.3: Descriptive statistics for the two responses

k1 k2

statistic value statistic value
Minimum 0 Minimum 0
Median 0 Median 0
Mean 0.0954 Mean 0.0618

Variance 0.1375263 Variance 0.06439364
Maximum 4 Maximum 3

Kendall’s τ : 0.17595

Also, we fit the univariate Poisson, NB, PIG and NBIG regression models for the number

of claims5 and we rely on normalized quantile residuals, see Dunn and Smyth (1996), as

an exploratory graphical device for investigating the adequacy of the fit of the Poisson,

NB, PIG and NBIG models for both bodily injury and property damage claim counts k1,j

and k2,j respectively. For these discrete response distributions, the normalized random-

ized quantile residuals are defined as r̂j = Φ−1 (uj) , where Φ−1 is the inverse cumulative

distribution function of a standard Normal distribution and where uj is defined as a

random value from the uniform distribution on the interval
[
Fj(xj − 1|φ̂), Fj(xj|φ̂)

]
,

where Fj is the cumulative distribution function estimated for the j-th individual and

where φ̂ contains all estimated model parameters and xj is the corresponding observa-

tion. Figure 3.1 depicts the normalized (random) quantiles for the Poisson, NB, PIG

and NBIG models per claim type k1,j and k2,j.

5All computing was done using the statistical computing environment language R. The parameters
of the univariate NBIG regression model were estimated via the EM algorithm which was proposed
by Tzougas et al. (2019). Also, ML estimation of the univariate NB and PIG regression models, for
which the definition of a log-likelihood function in closed form is feasible, was straightforward by using
standard statistical packages in R, such as the GAMLSS package. For more details on the GAMLSS
package, see Stasinopoulos et al. (2008).
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Figure 3.1: Normalized quantiles for the Poisson, NB, PIG and NBIG regression models
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The findings of the marginal analysis on each claim count k1,j and k2,j indicate that the

flexibility of the two mixed Poisson models and the NBIG model can be extended to the

bivariate MTPL insurance claim count data setting.

In particular, as anticipated, from Table 3.3 it is evident that k1,j and k2,j have vari-

ances which are greater than their means, indicating that the two marginal variables

are overdispersed already when analysed separately. Marginal overdispersion can be

attributed to the differences among policyholders, which cannot be observed by the ac-

tuary and lead to extra variation in k1,j and k2,j. Similarly, from Figure 3.1, we see

that the NB, PIG and NBIG regression models are better assumptions than the Poisson

regression model which does not capture the tails of the claim frequency distributions

of k1,j and k2,j. Specifically, the residuals of the former three models accounting for

overdispersion are very close to the diagonals and indicate a very good fit to the distri-

butions of both k1,j and k2,j, whereas the sample quantiles of the Poisson model, due to

the equidispersion constraint, near the tail end of the distributions of both k1,j and k2,j

are significantly higher than the theoretical quantiles.

Furthermore, regarding the bivariate extensions of the three models, it should be noted

that the BNBIG is more flexible in capturing overdispersion than its bivariate mixed

Poisson counterparts since, as was previously noted, the dispersion parameters σ1 and σ2

control the extent of overdispersion of the individual bodily injury and property damage

claim count distributions. Moreover, as σ1 and σ2 approach ∞, each individual claim

distribution approaches a Poisson distribution and hence the BPIG model is a special

case of the BNBIG model. Additionally, the common unobserved heterogeneity term,

which is distributed according to the IG in the case of the proposed BNBIG model, in-

troduces positive correlation which is the case for this data since, as we can observe from

Table 3.3, Kendall’s τ is positive. Thus, overall the BNBIG model can be considered as

a plausible model for overdispersed and positively correlated MTPL bodily injury and

property damage claim count data which we use in this study.
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On the other hand, the proposed model allows only for positive correlations between

claim counts, which is the case in the context of MTPL insurance, but in some other

cases negative correlations may be of interest as well. Moreover, underdispersion is not

covered by the model and this is definitely encountered in modeling claim counts in

other insurance settings.

Also, as we can observe from Table 3.3 the value of the Kendall’s τ for our data is

computed at 0.17595 which is positive and small and hence the BNBIG model is a sen-

sible choice for this data but if a negative correlation or a higher right-tailed correlation

is found then copula based models can be used to more accurately model the correla-

tion structure. Regarding the use of copulae for analysing the correlation structure of

discrete variables, see, for example, Cameron et al. (2004), Nikoloulopoulos and Karlis

(2009a) and Shi and Valdez (2014) among many others.

Finally, the Erlang Count Logit-weighted Reduced Mixture of Experts model (EC-

LRMoE) which was recently proposed by Fung et al. (2019a) and Fung et al. (2019b)

can be used in an abundance of actuarial count data settings as it can take into account

both over-and-under-dispersion, positive and negative correlation between the responses

and it is dense, meaning that it is guaranteed the existence of a model within the class

of LRMoE that resembles well the input data, potentially avoiding the need of ad-hoc

model selection procedures where multiple classes of models are fitted by trial and error

in order to obtain a model that adequately represents the data.

3.5.1 Modelling results

This subsection presents the modelling results of the BNB, BPIG, and BNBIG distri-

butions/regression models. The EM algorithm described in Section 3.3 was used to

estimate the BNBIG model both for the cases without and with explanatory variables.

The BNBIG model converged after a few iterations using a rather strict stopping cri-

terion. In particular, we iterated between the E-Step and the M-Step until the relative
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change in log-likelihood, which is given by Eq. (3.9), between two successive iterations

was smaller than 10−12.

We also emphasise that for this model the choice of initial values for the vectors of the

regression coefficients βi and the parameters σi, with i = 1, 2, and the parameter γ of

the Inverse Gaussian mixing density needed special attention because one may obtain

inadmissible values if the starting values are bad. Good starting values for βi and σi,

with i = 1, 2, were obtained by fitting simple univariate Negative Binomial regression

models. Also, a good initial value for γ, which relates to the correlation and overdisper-

sion in the data, was feasible by equating the overdispersion of the model to the average

of the observed overdispersion. Furthermore, standard errors were obtained using the

standard approach of Louis (1982).

Additionally, ML estimation of the BNB and BPIG models was accomplished via the

EM algorithms which were presented in Ghitany et al. (2012). As expected, ML es-

timation of the BNBIG model, which does not have a closed form density, was more

chronologically demanding than that of the BNB and BPIG models both for the cases

without and with covariate information. However, taking into account that there were

5186 policies in the sample of MTPL data that was examined in this study, that we used

a rather strict stopping criterion for EM iterations and that the expectations involved at

the E-Step of the algorithm do not have closed form expressions, the CPU times of the

EM algorithm used for ML estimation of both the BNBIG distribution and the BNBIG

regression model can be characterized as modest since both cases took a few minutes

of CPU time. More importantly, as it will become clear in the following sections, the

trade-off between CPU time requirements and the efficiency of the BNBIG distribu-

tion/regression model for approximating claim frequencies of MTPL bodily injury and

property damage claims in our sample and for deriving a posteriori, or Bonus-Malus,

ratemaking mechanisms in a bivariate context is sifted in favour of the latter two.

The ML estimates of the parameters and the corresponding standard errors in paren-
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theses of the BNB, BPIG and BNBIG models6 are reported in Table 3.4 for the case

without covariates7 and in Table 3.5 for the case with covariates8. As we observe from

Table 3.5 the values of the estimated regression coefficients of the variables v1, v2 and

v3 are almost identical across all three bivariate claim frequency models.

Therefore, the a priori premia per claim type resulting from these models would be

almost identical when the net premium principle is used. However, as we are going to

see in Subsection 3.5.3, due to the discrepancies in the values of the parameters γ, σ1

and σ2, the a posteriori, or Bonus-Malus, premium rates resulting from the BNB, BPIG

and BNBIG models will differ with this difference being more noticeable in the case of

the premia determined by the last model.

Table 3.4: Parameters estimates and in parenthesis the associated standard errors of
the fitted BNB, BPIG and BNBIG distributions

BNB BPIG BNBIG
µ1 µ2 µ1 µ2 µ1 µ2

0.0954 0.0618 0.0954 0.0618 0.0954 0.0618
(0.0542) (0.0639) (0.0535) (0.0633) (0.0526) (0.0629)
σ1 σ2 σ1 σ2 σ1 σ2

- - - - 0.785 11.6814
- - - - (0.0744) (3.4871)

γ γ γ
0.2612 0.4866 0.6028

(0.1037) (0.0554) (0.0671)

6The parameters of the models are statistically significant at a 5% threshold.
7Note that the mean parameters of the BNB, BPIG and BNBIG distributions are denoted by µ1

and µ2 and the dispersion parameter is denoted by φ.
8Note that for larger data sets with more explanatory variables it is crucial to perform variable

selection of the proposed model because we may collect a large amount of policyholders’ information
where not all is useful. To incorporate variable selection, we maximise the penalized log-likelihood
function using penalty functions such as the lasso.
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Table 3.5: Parameters estimates and in parenthesis the associated standard errors of
the fitted BNB, BPIG and BNBIG regression models for each covariate

BNB BPIG BNBIG

Variable Coeff. β1 Coeff. β2 Coeff. β1 Coeff. β2 Coeff. β1 Coeff. β2

Intercept -2.3916 -2.9249 -2.3815 -2.9148 -2.3651 -2.9163
(0.0998) (0.1134) (0.1132) (0.1141) (0.0966) (0.1113)

v1 C2 0.0529 0.1511 0.0422 0.1407 0.0275 0.1459
(0.0243) (0.0718) (0.0119) (0.0587) (0.0087) (0.0566)

v1 C3 0.1543 0.1760 0.1435 0.1645 0.1337 0.1698
(0.0775) (0.0892) (0.0652) (0.0791) (0.0620) (0.0770)

v2 C2 0.0403 0.1733 0.0618 0.1944 0.0739 0.1808
(0.0120) (0.0672) (0.0273) (0.0858) (0.0088) (0.0651)

v3 C2 -0.1232 -0.0216 -0.1390 -0.0376 -0.1537 -0.0311
(0.0526) (0.0080) (0.0557) (0.0056) (0.0494) (0.0119)

v3 C3 0.1733 0.1686 0.1683 0.1636 0.1700 0.1610
(0.0759) (0.0760) (0.0686) (0.0681) (0.0627) (0.0660)

σ1 σ2 σ1 σ2 σ1 σ2

- - - - 0.7834 11.1952
- - - - (0.0721) (3.4842)

γ γ γ

0.2643 0.4892 0.6068
(0.1011) (0.0538) (0.0644)

3.5.2 Model comparison

In this subsection we examine the model fit of the BNB, BPIG, BNBIG distributions/re-

gression models employing the Global Deviance (DEV), Akaike Information Criterion
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(AIC) and the Schwarz Bayesian Criterion (SBC) which are classic hypothesis/specifi-

cation tests9.

The (fitted) DEV is defined as

DEV = −2l̂
(
θ̂
)
, (3.26)

where l̂ is the maximum of the log-likelihood and θ̂ is the estimated parameter vector

of the model. Furthermore, the AIC is given by

AIC = DEV + 2× df (3.27)

and the SBC is given by

SBC = DEV + log (n)× df, (3.28)

where df are the degrees of freedom, that is, the number of fitted parameters in the

model and n is the number of observations in the sample.

Furthermore, regarding the case with covariates, it is important to compare the perfor-

mance of the BNB, BPIG and BNBIG regression models, which are constructed in a

very similar fashion, with other candidate models designed under different approaches.

Therefore, in what follows the DEV, AIC and SBC will be used to compare the fit of

the BNB, BPIG and BNBIG regression models with the EC-LRMoE regression model

which, as was previously mentioned, exhibits a lot of desirable statistical properties that

make it justified for many practical applications.

The pmf of k1,j, k2,j|x1,j ,x2,j in the EC-LRMoE model is given by:

P (k1,j, k2,j|x1,j ,x2,j) =
2∏
i=1

G∑
g=1

exp
(
xTi,jβi,g

)∑G
g=1 exp

(
xTi,jβi,g

) exp(−δi,g)
m−1∑
b=0

δ
mi,gki,j+b
i,g

(mi,gki,j + b)!

(3.29)

9Note that for other data sets with more complex features it is good to conduct further analyses to
investigate the quality of the proposed models.
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where G is the number of latent classes and mi,g and δi,g are the parameters of the

Erlang Count expert function. The EC-LRMoE regression model is fitted to the data

via Expectation-Conditional-Maximisation (ECM) algorithm 10.

The resulting DEV, AIC and SBC values for the BNB, BPIG, BNBIG distributions/re-

gression models and the EC-LRMoE regression model are given in Table 3.6.

Table 3.6: Models comparison based on the DEV, AIC and SBC

Distributions Regression Models
Model df AIC SBC Model df DEV AIC SBC
BNB 3 5615 5635 BNB 13 4520 4546 4631
BPIG 3 5541 5561 BPIG 13 4433 4459 4544

BNBIG 5 5432 5465 BNBIG 15 4334 4364 4462
- - - - EC-LRMoE 14 5330 5358 5450

As is well known, a commonly used rule-of-thumb states that a model significantly out-

performs a competitor if the difference in their log-likelihoods exceeds 5, corresponding

to a difference in their AIC values of more than 10 and to a difference in their SBC val-

ues of more than 5, see Anderson and Burnham (2004) and Raftery (1984) respectively.

This means here that, as can be seen from Table 4.3, the best fit is given by the BNBIG

distribution/regression model.

At this point we perform a 10-fold cross-validation to check the robustness of the pro-

posed models. We calculated the DEV, AIC and SBC values for the BNB, BPIG,

BNBIG regression models and the EC-LRMoE regression model on each of the 10 sub-

sets and in Table 3.7 we report an average of the 10 values that we got from each subset.

Furthermore, we calculated the root-mean-square error (RMSE) on each subset. The

10For more details regarding the ECM algorithm for parameter estimation and the choice of good
starting values, the interested reader can refer to Fung et al. (2019a) and Fung et al. (2019b). Fur-
thermore, an R package for actuarial loss modelling using mixture of experts regression model was
developed by Tseung et al. (2020).
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RMSEs were calculated as follows:

RMSE =

∑h
j=1

∑2
i=1[ki,j − k̂i,j]2

h
(3.30)

where h is the size of each subset, ki,j for i = 1, 2 are the two vectors of responses of

the subset and k̂i,j for i = 1, 2 are the two vectors of predicted values for the responses

obtained with each of the proposed models using as estimates for the parameters the

ones calculated on the subset. In Table 3.7 we report a mean of the 10 RMSEs obtained

on each subset.

Table 3.7: DEV, AIC, SBC and RMSE with the 10-fold cross-validation

Regression Models
Model df DEV AIC SBC RMSE
BNB 13 532 558 613 0.3854
BPIG 13 510 536 591 0.3723

BNBIG 15 441 471 535 0.3710
EC-LRMoE 14 539 567 627 0.3832

At this point it should be noted that, as empirical evidence has shown and as it can

be verified by Shared’s two crossings theorem, see Shared (1980), the overdispersion

phenomenon can be attributed to the excess of zeros and/or heavy upper tails in count

data. Therefore, since, as it can be seen from Table 3.2, most of the claim counts in

our data set are zero, it would be interesting to consider a numerical example where the

number of claims is larger to investigate the performance of the BNB, BPIG, BNBIG

and EC-LRMoE regression models in this case.

In particular, we randomly generated a data set of size n = 5000 from the bivariate nor-

mal copula with weak Kendall’s τ dependence (τ = 0.2) and two NB regressions where

the two response variables k1,j and k2,j represent bodily injury and property damage

claims11. For the covariates and regression parameters, we chose two categorical covari-

11A similar numerical example can be found in Nikoloulopoulos et al. (2011).

117



ates with 3 categories that represent the city size and horsepower, a binary covariate

that represents the car fuel and one continuous covariate that takes integer values and

represents the age of the policyholder. These explanatory variables are summarized in

Table 3.8:

Table 3.8: The explanatory variables of the simulated data set and their description
Variables Categories

C1 C2 C3

City size (v1) Small Medium Large

Horsepower of the vehicle (v2) 0-1400 cc 1400-1800 cc ≥ 1800 cc

Car fuel (v3) Diesel Gasoline -

Age of the policyholder (v4) Continuous, integers from 18 to 73

The descriptive statistics for the simulated data set are presented in Table 3.9:

Table 3.9: Descriptive statistics for the two responses for the simulated data set

k1 k2

statistic value statistic value
Minimum 0 Minimum 0
Median 1 Median 1
Mean 1.038 Mean 1.016

Variance 1.544834 Variance 1.508858
Maximum 9 Maximum 10

Kendall’s τ : 0.1952361

Table 3.10 depicts the DEV, AIC and SBC values for all of the fitted models.

Table 3.10: Models comparison based on the DEV, AIC and SBC on the simulated data
set

Regression Models
Model df DEV AIC SBC
BNB 15 27490 27520 27618
BPIG 15 27398 27428 27526

BNBIG 17 27295 27329 27440
EC-LRMoE 26 27483 27535 27705
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As it can be seen from Table 3.10, in this case as well, the best fitting performances

are provided by the BNBIG model. Of course, it should be noted that for other data

sets the EC-LRMoE which is fully flexible and can capture different types of correlation

and over-and-under-dispersion may perform better than the BNB, BPIG and BNBIG

regression models which are only suitable for examining the relationship between posi-

tively correlated and overdispersed claim counts. In such cases, the EC-LRMoE model

should be preferred over the BNB, BPIG and BNBIG models.

We perform now a 10-fold cross-validation on the simulated dataset and the specification

criteria and RMSEs are reported in Table 3.11.

Table 3.11: DEV, AIC, SBC and RMSE with the 10-fold cross-validation on the simu-
lated data set

Regression Models
Model df DEV AIC SBC RMSE
BNB 15 2852 2882 2945 0.3823
BPIG 15 2763 2793 2856 0.3711

BNBIG 17 2605 2639 2711 0.3693
EC-LRMoE 26 2801 2853 2963 0.3801

In what follows we will restrict our attention to the BNB, BPIG and BNBIG models

which will be used within the Bayesian paradigm for deriving a posteriori, or Bonus-

Malus, ratemaking mechanisms, or Bonus-Malus Systems (BMSs) in the next subsection.

3.5.3 Calculation of the a posteriori premia

In this subsection, we examine the response of the BNBIG distribution/regression model

to claim experience and we compare it to those of the two bivariate mixed Poisson

distributions/regression models which were presented in Section 3.4.

Consider the policyholder j, j = 1, ...n, with number of bodily injury and property

damage claims k1,j,l and k2,j,l respectively, for the year of coverage l, with l = 1, ..., t.

Assume that the cumulative number of claims per type i = 1, 2 for all the years that
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the individual j has been registered with the insurance company is denoted as Ki,j =∑t
l=1 ki,j,l. Also, let the unobserved inverse Gaussian random variable take into account

individual characteristics.

On the path towards actuarial relevance, the Bayesian view is taken12 to compute the

posterior distribution of λj,t+1 for the period t+1 given the observations of the reported

accidents in the preceding t periods and observable characteristics in the preceding

t + 1 periods and the current period. In fact, as we mentioned in Chapter 1, Bayesian

statistics ensures the most accurate BMSs as it grants the optimal and fairer premia

estimates. In particular, the posterior distribution of λj,t+1 can be derived as follows:

f (λj,t+1|k1,j,1, ..., k1,j,t; k2,j,1, ..., k2,j,t;x1,j,1, ...,x1,j,t+1;x2,j,1, ...,x2,j,t+1)

=

t∏
l=1

P (k1,j, k2,j|x1,j ,x2,j , λj) f (λj,t+1)

∞∫
0

P (k1,j, k2,j|x1,j ,x2,j , λj) f (λj,t+1) dλj,t+1

,
(3.31)

where P (k1,j, k2,j|x1,j ,x2,j , λj) is the bivariate Poisson distribution in the case of the

BNB and BPIG models, while it takes the form of the bivariate Negative Binomial in

the case of the BNBIG model and where f(λj,t+1) is the pdf of the Gamma distribution

in the case of the BNB model and the pdf of the Inverse Gaussian distribution in the

case of the BPIG and BNBIG models respectively.

Using the net premium principle and the quadratic loss function, one can easily see that

the optimal estimator of λj,t+1 is the mean of the posterior distribution in Eq. (3.31),

12For more details regarding the Bayesian interpretation of Bonus-Malus systems the interested reader
can refer, for instance, to Dionne and Vanasse (1992) and Lemaire (1995).
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given by

E (λj,t+1|k1,j,1, ..., k1,j,t; k2,j,1, ..., k2,j,t;x1,j,1, ...,x1,j,t+1;x2,j,1, ...,x2,j,t+1)

=

∞∫
0

λj,t+1f (λj,t+1|k1,j,1, ..., k1,j,t; k2,j,1, ..., k2,j,t;x1,j,1, ...,x1,j,t+1;

x2,j,1, ...,x2,j,t+1) dλj,t+1.

(3.32)

• In the case of the BNB model, Eq. (3.31) is a Gamma distribution with parameters

γ +
∑2

i=1 ki,j and γ +
∑t

l=1

∑2
i=1 εi,j , and hence Eq. (3.32) takes the form:

E (λj,t+1|k1,j,1, ..., k1,j,t; k2,j,1, ..., k2,j,t;x1,j,1, ...,x1,j,t+1;x2,j,1, ...,x2,j,t+1)

=
γ +

∑2
i=1 ki,j

γ +
∑t

l=1

∑2
i=1 εi,j

.
(3.33)

• In the case of the BPIG model, Eq. (3.31) is a Generalized Inverse Gaussian

(GIG) distribution with parameters
√
γ2 + 2

∑t
l=1

∑2
i=1 εi,j , γ and

∑2
i=1 ki,j −

1
2

and thus Eq. (3.32) is given by:

E (λj,t+1|k1,j,1, ..., k1,j,t; k2,j,1, ..., k2,j,t;x1,j,1, ...,x1,j,t+1;x2,j,1, ...,x2,j,t+1)

=

γK∑2
i=1 ki,j+

1
2

(
γ
√
γ2 + 2

∑t
l=1

∑2
i=1 εi,j

)
√
γ2 + 2

∑t
l=1

∑2
i=1 εi,jK

∑2
i=1 ki,j−

1
2

(
γ
√
γ2 + 2

∑t
l=1

∑2
i=1 εi,j

) . (3.34)

• In the case of the the BNBIG model, the expectation in Eq. (3.32) cannot be

computed in closed form. However, it can be computed based on either numerical

integration or a Monte Carlo approach since both schemes do not rely on the

knowledge of the pdf given by Eq. (3.31).

Following the aforementioned methodology, we calculate the Bonus-Malus premia re-
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sulting from the BNBIG model and we compare them to those derived by the BNB

and BPIG models based only on the number of individual bodily injury and property

damage claims, i.e. the a posteriori criteria, and based on the characteristics of the

policyholders and their cars, i.e. the a priori criteria. The premium rates will be di-

vided by the premium when t = 0, i.e. we calculate the relative premia, since we are

interested in the differences between various classes and the results are presented so that

the premium for a new policyholder is 100.

Firstly, Table 3.12 depicts comparable relative premia for the BNB, BPIG and BNBIG

distributions, assuming that the number of claims k1,j and k2,j ranges from 0 to 3 for

each claim type and the age of the policy is t = 1, t = 2 and t = 3 years.

Table 3.12: Comparison of the a posteriori, or Bonus-Malus, premium rates for t =
1, 2, 3, bivariate claim frequency distributions

t = 1

BNB distribution

t = 1

BPIG distribution

t = 1

BNBIG distribution

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 72.69 350.98 629.27 907.56 79.80 256.06 553.66 892.83 82.97258 233.17 493.12 809.72

1 350.98 629.27 907.56 1185.85 256.06 553.66 892.83 1240.99 200.62 419.84 696.16 1001.87

2 629.27 907.56 1185.85 1464.14 553.66 892.83 1240.99 1591.52 362.47 603.31 876.47 1171.39

3 907.56 1185.85 1464.14 1742.43 892.83 1240.99 1591.52 1942.92 527.58 770.77 1038.14 1324.29

t = 2

BNB distribution

t = 2

BPIG distribution

t = 2

BNBIG distribution

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 57.10 275.69 494.28 712.87 68.35 197.65 411.53 657.85 72.17 186.15 380.62 622.19

1 275.69 494.28 712.87 931.46 197.65 411.53 657.85 912.20 165.03 332.97 546.14 784.76

2 494.28 712.87 931.46 1150.05 411.53 657.85 912.20 1168.82 294.61 483.14 697.83 931.01

3 712.87 931.46 1150.05 1368.64 657.85 912.20 1168.82 1426.30 430.85 623.93 836.36 1064.56

t = 3

BNB distribution

t = 3

BPIG distribution

t = 3

BNBIG distribution

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 47.01 226.99 406.97 586.96 60.73 162.83 328.94 521.70 64.61 155.89 308.90 500.72

1 226.99 406.97 586.96 766.94 162.83 328.94 521.70 721.75 141.10 275.81 447.09 639.94

2 406.97 586.96 766.94 946.92 328.94 521.70 721.75 923.98 248.54 402.02 576.93 767.35

3 586.96 766.94 946.92 1126.90 521.70 721.75 923.98 1127.06 363.96 522.81 697.36 884.99
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Secondly, when both criteria are considered, we examine three risk class profiles that can

be classified as Best, Average and Worst according to the mean claim frequencies ε1,j

and ε2,j , with j = 1, ..., n, based on the same set of explanatory variables per claim type

i = 1, 2. Specifically, the Best, Average and Worst profiles, for our data, are determined

as such based on category C1 for all three explanatory variables v1, v2 and v3 in the

case of the first, category C2 for v1, v2 and v3 in the case of the second, and category

C3 for v1 and v3 and C2 for v2 in the case of the third. The results for all three profiles

per claim type are presented in Table 3.13 in the case of the BNB, BPIG and BNBIG

models respectively.

Table 3.13: Results of the fitted BNB, BPIG and BNBIG regression models for each
risk class profile

Regression model Profile ε1,j Var (k1,j |x1,j) ε2,j Var (k2,j |x2,j)

Best 0.091483 0.123149 0.053670 0.064569
BNB Average 0.088779 0.118601 0.072650 0.092620

Worst 0.132166 0.198256 0.090085 0.120790

Best 0.092412 0.128097 0.054215 0.066497
BPIG Average 0.089233 0.122506 0.072100 0.095267

Worst 0.134270 0.209604 0.091419 0.126341

Best 0.093940 0.159764 0.054134 0.063065
BNBIG Average 0.089153 0.148440 0.072752 0.088883

Worst 0.137038 0.277115 0.090293 0.115140

We observe from Table 3.13 that, as expected, for all three risk profiles small discrep-

ancies lie in the mean values ε1,j and ε2,j in the case of the BNB, BPIG and BNBIG

regression models respectively. However, when the a posteriori correction will be calcu-

lated, we will see that compared to the relative Bonus-Malus premia provided by the

two bivariate mixed Poisson models, the premia derived from the BNBIG model will

be much less extreme for policyholders with some bodily injury and property damage

claim experience.

This can be clearly justified since given the estimates of σ1 and σ2 of the BNBIG model,

which also appear in the marginal Negative Binomial distributions, see Eq. (3.1), we can
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assess the extent of marginal overdispersion for the bodily injury and property damage

claim distributions of an individual policyholder with any given mean frequency rates

per claim type. Therefore, this situation affects the calculation of the Bonus-Malus pre-

mium rates.

Table 3.14 shows some premia for the three risk profiles during the years t = 1, t = 2

and t = 3 respectively. Such table can provide a more complete picture to the actuary

than Table 3.12, where only the a posteriori criteria were considered, as they include

all available information on the level of riskiness of the individual, as assessed by the

insurance company.
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Table 3.14: A Posteriori, or Bonus-Malus, premium rates for t = 1, 2, 3 for the three
risk profiles, bivariate claim frequency regression models

t = 1

BNB regression model

t = 1

BPIG regression model

t = 1

BNBIG regression model

Best profile Best profile Best profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 73.83 353.16 632.49 911.83 80.31 260.95 566.63 914.58 83.57 236.80 503.08 827.87

1 353.16 632.49 911.83 1191.16 260.95 566.63 914.58 1271.53 203.03 426.77 709.44 1022.71

2 632.49 911.83 1191.16 1470.49 566.63 914.58 1271.53 1630.83 367.29 612.97 892.18 1194.32

3 911.83 1191.16 1470.49 1749.83 914.58 1271.53 1630.83 1991.00 534.58 782.64 1055.99 1349.02

t = 2

BNB regression model

t = 2

BPIG regression model

t = 2

BNBIG regression model

Average profile Average profile Average profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 56.87 272.05 487.22 702.40 68.18 194.75 403.56 644.34 71.95 181.71 365.84 592.13

1 272.05 487.22 702.40 917.57 194.75 403.56 644.34 893.16 163.14 324.61 526.88 750.85

2 487.22 702.40 917.57 1132.75 403.56 644.34 893.16 1144.28 290.75 471.92 675.62 894.52

3 702.40 917.57 1132.75 1347.93 644.34 893.16 1144.28 1396.27 425.52 610.76 812.12 1026.25

t = 3

BNB regression model

t = 3

BPIG regression model

t = 3

BNBIG regression model

Worst profile Worst profile Worst profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 42.19 201.81 361.43 521.05 58.12 141.20 273.16 427.77 60.81 135.37 258.38 414.87

1 201.81 361.43 521.05 680.67 141.20 273.16 427.77 589.46 122.04 229.40 367.95 526.46

2 361.43 521.05 680.67 840.30 273.16 427.77 589.46 753.45 205.75 328.89 471.60 628.84

3 521.05 680.67 840.29 999.91 427.77 589.46 753.45 918.37 296.22 424.87 568.08 723.48

Overall, from Tables13 3.12 and 3.14, we see that the BNB, BPIG and BNBIG distri-

butions/regression models result in a noticeable decrement in the premia that must be

paid by the policyholder j when it has a claim free year for both types of claims i = 1, 2,

whereas if it has one or more claims of type i = 1, 2 the premium rates increase, hence

resulting in bonus or malus in the former and latter case respectively.

13Note that the symmetry of each Table for the bivariate mixed Poisson models is a logical conse-
quence of the common random effects assumption, whereas the premia are distinguishable per claim
type under the BNBIG model which is due to its quantiple Poisson-Gamma-Poisson-Gamma-Inverse
Gaussian mixture decomposition.
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Furthermore, as was previously mentioned, we observe that the BNBIG distribution/re-

gression model returns lower premia for individuals with some claim history per claim

type i = 1, 2 than the two bivariate mixed Poisson distributions/regression models.

For example, under the BNBIG distribution, for a policyholder who had k1,j = 3 and

k2,j = 3 claims, Table 3.12 shows a premium of only 1324.29 for the year of coverage

t = 1. Meanwhile, for the same number of claims per claim type i = 1, 2, we observe

that the BNB and the BPIG distributions result in higher premia of 1742.43 and 1942.92

respectively.

Also, similar discrepancies are observed if we incorporate the a priori information from

Table 3.13. For example, still for the case when k1,j = 3 and k2,j = 3, according to

Table 3.14, an individual with the Best profile is expected to pay a premium of 1349.02

under the BNBIG model as opposed to the higher premia of 1749.83 and 1991.00 under

the BNB and the BPIG regression models respectively for the year of coverage t = 1.

This characteristic of the BNBIG model can be explained by the fact that this model

is constructed by starting with two Negative Binomial models which assume that the

individual bodily injury and property damage claim experience will be overdispersed as

opposed to the two Poisson models in the BNB and BPIG models.

The overdispersion is larger for policyholders with larger mean claim rates per claim

type. Therefore, extreme individual bodily injury and property damage claim counts

are more likely under the BNBIG model, resulting in more moderate relative premia

than under those models based on the bivariate Poisson mixtures14 .

The second noticeable difference between the BNBIG and the two bivariate mixed Pois-

son distributions/regression models in the calculation of Bonus-Malus premia is that

the two bivariate Poisson mixtures can only take into account the policyholder’s total

number of claims, which is computed by aggregating the bodily injury and property

damage claims, but are unable to distinguish between the two types of claims. For

14Similar findings were reported by Shengwang et al. (1999) and Gómez-Déniz et al. (2008) and
Tzougas et al. (2019).
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instance, for the case without covariates, we see from Table 3.12 that for
∑2

i=1 ki,j = 3

the policyholder has to pay premia of 907.56 and 892.83 for t = 1 under the BNB and

BPIG distributions respectively, regardless of the exact frequencies of bodily injury and

property damage claims.

Similarly, for the case with covariates, we see from Table 3.14 that for
∑2

i=1 ki,j = 3, an

individual with the Best profile has to pay premia of 911.83 and 914.58 for t = 1 under

the BNB and BPIG regression models respectively, regardless of the exact composition

per type of claim. Overall, if we consider all the four cases for k1,j and k2,j in Tables

3.12 and 3.14:

1. k1,j = 3 and k2,j = 0,

2. k1,j = 2 and k2,j = 1,

3. k1,j = 1 and k2,j = 2,

4. k1,j = 0 and k2,j = 3,

for the same year of coverage t and the same type of risk-profile, the premium rates do not

vary per claim type in the case of the two bivariate mixed Poisson models. In particular,

in Tables 3.12 and 3.14, the values on the diagonals are always the same for a certain

profile and for a certain year of insurance in the case of the BNB and BPIG models.

However, these premium rates ought to be evaluated differently than under the two

bivariate mixed Poisson models since the two types of claims have different frequencies

and hence different means (as seen in Table 3.3, E(k1) = 0.0954 and E(k2) = 0.0618).

Consequently, the probability of resulting claim free for the first type of claim is not the

same as for the second type of claim. Therefore, from a practical business standpoint,

these discrepancies in the two responses k1,j and k2,j should be taken into consideration

for constructing a bivariate claim frequency model that will be the building block for

the a posteriori ratemaking process.
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Fortunately, as was previously mentioned, the BNBIG distribution/regression model

results in varying premium rates depending on the total number of claims and the

composition of claims. This feature of the BNBIG model enhances its validity as a

model for the claim numbers k1,j and k2,j as it leads to a premium structure that can

be sufficiently explained to policyholders and regulators. In particular, the findings in

Tables 3.12 and 3.14 indicate that under the BNBIG distribution/regression model, a

high number of claims per type two is discouraged more than per type one in all four

above mentioned cases. Thus, since for our data the second response has a smaller mean

than the first, this result is consistent with the core principle underpining the design of

Bonus-Malus systems which is to promote careful driving.

For instance, for the case without covariates, we see from Table 3.12 that for t = 1 the

policyholder has to pay premia of 527.58, 603.31, 696.16 and 809.72 for the cases 1, 2,

3 and 4 respectively. The same holds if we include the a priori information, in fact in

Table 3.14 we see the same diversification in the premium rates depending on the type

of claim. If the policyholder has the Best profile, then it has to pay premia of 534.58,

612.97, 709.44 and 827.87 for the cases 1, 2, 3 and 4 respectively for t = 1.

A graphical representation of Table 3.14 is depicted in Figure 3.2 for the case of the

Best profile in t = 1, in Figure 3.3 for the case of the Average profile in t = 2 and in

Figure 3.4 for the case of the Worst profile in t = 3.
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Figure 3.2: Premium rates for the Best profile at t = 1, bivariate claim frequency
regression models
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Figure 3.3: Premium rates for the Average profile at t = 2, bivariate claim frequency
regression models
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Figure 3.4: Premium rates for the Worst profile at t = 3, bivariate claim frequency
regression models
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3.6 Concluding remarks

In this chapter we demonstrated how to construct the BNBIG count regression model

based on the assumption that both marginals follow the NBIG distribution, which

was recently proposed by Tzougas et al. (2019) for ratemaking purposes. The BNBIG

model accomodates overdispersion and allows for positive correlation structures in two-

dimensional count valued data. Thus, the proposed model is suitable for addressing the

a posteriori, or Bonus-Malus, ratemaking problem of pricing an automobile insurance

contract in the bivariate setting where the dynamics for the premium determination are

governed by the interactions of third party bodily injury claims and property damage

claims, which are conceivably positively correlated with each other.

Furthermore, an EM type scheme was proposed for ML estimation of the parameters of

the BNBIG model which does not have its jpmf in closed form in a computationally par-

simonious manner. The ML estimation procedure we developed avoids overflow issues

that may be plausible in the bivariate context via alternative numerical maximisation

algorithms.

In our numerical illustration, special consideration was put on the comparison of the a

posteriori premium rates derived from the BNBIG distribution/regression model with

those determined by the BNB and BPIG distributions/regression models. The reason

for this is that, in contrast to the numerous studies that have been devoted to univariate

experience rating models, the extent to which the a posteriori tariff system is affected

when the claim frequency experience consists of detailed information on two different

types of insurance claims arising from the same policy has not been fully elucidated in

the MTPL pricing literature thus far. The results indicated that the employment of

the BNBIG regression which presents the most superior fit for our data is beneficial for

the insurance company, since it can enable them to adopt a milder a posteriori pricing

strategy for policyholders with some claim experience and it can provide a more com-
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plete picture about the extent to which the premia vary according to the frequency of

each type of claim.

Furthermore, an interesting line of further research would be to to tackle Bonus-Malus

ratemaking based on generalizations of the proposed model. For instance, two random

effects which are distributed according to different Inverse Gaussian mixing densities

can be added for modelling the unobserved heterogeneity when dealing with different

types of claims from different types of coverage, see Bermúdez and Karlis (2017). Also,

for example, the BNBIG model can be adapted to take into account both the positive

correlation between the MTPL bodily injury and property damage claims and the se-

rial correlation between the observations of the same insured observed over time. This

could be done proceeding along similar lines as Bermúdez et al. (2018), who were the

first to consider a bivariate INAR(1) regression model which can provide an integrated

framework that can take into account both time dependence and cross dependence,

which have been commonly treated as separate entities in the ratemaking. Finally, for

instance, the regression models for the two marginal means of the BNBIG model can be

embedded within neural network architectures in order to explore interactions between

feature components beyond multiplications, see Wüthrich (2019).
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Chapter 4

EM estimation for a new class of

bivariate mixed Poisson regression

models with varying dispersion: an

application to a posteriori

ratemaking

4.1 Introduction

4.1.1 Multivariate models

The rapid advent of big data over the last few decades has motivated the need for con-

structing bivariate (and/or multivariate) regression models that can permit inferences

about dependence structures which typically arise in high-dimensional count-valued data

sets based on explanatory variables. The interested reader is referred to the recent edi-

tions of the books of Winkelmann (2008) and Cameron and Trivedi (2013) for thorough
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reviews of regression models for bivariate (and/or multivariate) count data. In general,

the three main classes of models, that have been widely applied in various fields of

studies, are the bivariate (and/or multivariate) Poisson models, bivariate (and/or mul-

tivariate) mixed Poisson models and copula-based models.

The literature on bivariate (and/or multivariate) Poisson distributions started growing

nine decades ago, see M’Kendrick (1925), and has now reached solid and extensive foun-

dations. In particular, as is mentioned in Cameron and Trivedi (2013), the number of

possible ways in which the univariate Poisson distribution can be generalized to a bivari-

ate (and/or multivariate) Poisson distribution is not exhaustive. Also, many references

for bivariate (and/or multivariate) Poisson distributions, including historical remarks,

can be found in Johnson et al. (1997) and Krummenauer (1998). In the context of re-

gression analysis, different versions of the bivariate (and/or multivariate) Poisson model

have also been studied by many authors, see, for instance, Jung and Winkelmann (1993),

Ho and Singer (2001), Kocherlakota and Kocherlakota (2001), Karlis and Meligkotsidou

(2005), p. 205 of Winkelmann (2008) and Famoye (2010).

The bivariate (and/or multivariate) mixed Poisson models, which belong to the second

class, can permit for overdispersion in the data. The bivariate (and/or multivariate)

extensions of the Negative Binomial, Poisson-Inverse Gaussian and Poisson-Lognormal

regression model have been the most popular choices. The literature along this line

includes, for example, the works of Stein and Juritz (1987), Stein et al. (1987) and

Kocherlakota (1988) for the case without explanatory variables. Also, for instance,

Munkin and Trivedi (1999), Gurmu and Elder (2000), Chib and Winkelmann (2001),

Wang (2003), Alfò and Trovato (2004), Park and Lord (2007), Ma et al. (2008), El-

Basyouny and Sayed (2009), Aguero-Valverde and Jovanis (2009), Famoye (2012), Ghi-

tany et al. (2012), Zhan et al. (2015) and Silva et al. (2017) considered extensions with

regression specifications for the marginal means.

Finally, a multivariate count distribution can be viewed as a continuous copula distribu-
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tion paired with discrete marginals. The copula functions can fully specify the depen-

dence structure separately from the univariate marginals, see, for example, Section 1.6

of Joe (1997). The literature on copula-based regression models includes, among others,

Lee (1999), Cameron et al. (2004), Zimmer and Trivedi (2006), Nikoloulopoulos and

Karlis (2009b), Cook et al. (2010), Nikoloulopoulos and Karlis (2010), Nikoloulopoulos

(2013a), Nikoloulopoulos (2013b) and Nikoloulopoulos (2016). At this point it is worth

noting that some members of the second and the third classes can allow for either pos-

itive or negative correlations between two variables and hence can adequately describe

diverse data situations in numerous bivariate (and/or multivariate) domains including,

but not limited to, marketing, epidemiology, medical science and finance.

4.1.2 Multivariate models in non-life insurance

In non-life insurance practice, it is common for the actuary to observe the existence

of dependence structures between different types of claims and their associated claim

counts. Nevertheless, most of research endeavours have been traditionally confined on

univariate mixed Poisson count regression models which can only be used to specify a

separate model for different claim types, whereas the effort towards relaxing the inde-

pendence assumption is still sparse, even if such an assumption may not be realistic.

As far as ratemaking (which is the main focus of this work) is concerned, notable ex-

ceptions are the articles by Bermúdez (2009), Bermúdez and Karlis (2011), Bermúdez

and Karlis (2012) and Shi and Valdez (2014), who introduced different bivariate (and/or

multivariate) regression and copula based models and also pointed out the existence of a

positive correlation between claim counts of two (and/or multiple) types of claims. Also,

Bermúdez and Karlis (2017) were the first to take the Bayesian view for constructing

two bivariate experience rating models, which integrate the a priori ratemaking based

on bivariate Poisson regression models, extending the existing literature in the bivariate

setting which was confined on ratemaking models that were derived via the credibility
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approach.

Additionally, it should be noted that recently many alternative approaches have been

proposed in the literature for constructing flexible bivariate (and/or multivariate) in-

surance claim frequency regression models, see, for instance, Abdallah et al. (2016),

Bermúdez et al. (2018), Pechon et al. (2018), Pechon et al. (2019b), Pechon et al.

(2019a), Bolancé and Vernic (2019), Denuit et al. (2019), Fung et al. (2019a), Fung

et al. (2019b) and Bolancé et al. (2020).

4.1.3 The class of multivariate mixed Poisson regression

models with varying dispersion

The present study, is concerned with introducing a new class of bivariate mixed Poisson

regression models with varying dispersion for modelling jointly bodily injury and prop-

erty damage claim frequencies in Motor Third Party Liability (MTPL) insurance. This

class is based on a mixing between two marginal Poisson distributions and a unit mean

continuous prior, or mixing, distribution which belongs to a general distribution family

including those which do not belong to the natural Exponential family and/or are not

conjugate to the Poisson. Within the framework introduced here, both marginal mean

parameters and the dispersion parameter of the two-dimensional response variable are

modelled jointly as parametric functions of explanatory variables.

In what follows, we provide a detailed discussion of our contributions putting special

emphasis on the suitability of the proposed family of models when dealing with MTPL

claim count data in the bivariate setting, the Expectation-Maximisation (EM) type al-

gorithm we developed for maximum likelihood (ML) estimation of the bivariate mixed

Poisson model and practical application aspects in the context of a posteriori ratemak-

ing.

Firstly, there are many factors in the MTPL insurance line that can simultaneously affect

the joint dynamics of bodily injury and property damage claims which are conceivably
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positively correlated and may also lead to extra variation occurring in their associated

claim counts. As empirical evidence has shown, these factors are observable variables

concerning the policyholders and their vehicles and differences among policyholders

(which cannot be observed by the actuary) and give rise to marginal overdispersion,

which can be attributed to the excess of zeros and/or heavy upper tails, see Shared

(1980), in MTPL bodily injury and property damage count data.

Moreover, as these factors vary from one country to another, significant differences are

also observed in the frequency of MTPL bodily injury and property damage claims.

For instance, the frequency of claims involving bodily injury for EU member states

ranged from 0.13% in the Czech Republic through 0.98% in Italy to 1.28% in Turkey,

see Insurance Europe (2019). Therefore, in order to capture the influence of risk factors

and unobserved heterogeneity to a good approximation, it is important to have all the

necessary due diligence in place when constructing a bivariate claim frequency regression

model and ensure that it is a suitable candidate for modelling the relationship between

MTPL bodily injury and property damage claims and a set of covariates.

Otherwise, a potential distribution misspecification and other issues, such as its failure

to accurately account for the degree of dependency between the two MTPL claim types

and/or its inability to accommodate marginal overdispersion per MTPL claim type, may

result in biased and unreliable parameter estimates, which, in turn, can have a profound

impact on how accurately insurers carry our different tasks such as pricing the policies

and setting the appropriate level of reserves and reinsurance.

More importantly, due to the economic importance of MTPL insurance, it can be clearly

understood that such shortcomings can subsequently lead to non-negligible financial

implications for the company.
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4.1.4 Importance of the proposed class of models

The family of bivariate mixed Poisson regression models with varying dispersion, which

we present in this chapter, can efficiently capture the complex features of two-dimensional

MTPL data. In particular, it allows for positive dependencies between bivariate re-

sponses, which is what we expect from this data, in very flexible manner since it is

assumed that all the parameters of the bivariate mixed Poisson model can be modelled

as functions of important risk factors. Moreover, this results in an improved risk eval-

uation since it allows to better quantify the extent of the impact of risk factors on the

body and the tail areas of the marginal distributions, which might not necessarily be of

the same magnitude, and allows to more effectively model the changes in the skewness of

the marginal distributions because it depends on the marginal mean and the dispersion

parameters.

Furthermore, as was previously mentioned, our model class permits for a variety of

different distributional assumptions for the mixing density which measures the level of

unobservable risk associated with each policy. Thus, since the thickness of the tail of

a mixed Poisson distribution resembles that of its mixing density, our general approach

can enable the actuary to fit more representative models that can match the tail be-

havior of MTPL bodily injury and property damage claim counts and hence can handle

different levels of marginal overdispersion. For example, mixed Poisson models resulting

from less heavy-tailed mixing densities have a more promising shape for zero and near

zero values in the left tail area, whereas, those stemming from more heavy-tailed mixing

distributions are more suitable for overdispersed claim counts with a long tail.

In this work, following the literature which is devoted to bivariate (and/or multivariate)

mixed Poisson models, we emphasize the utility and generality of our approach by ex-

tending the setup of all the models we discussed above, namely the bivariate Negative

Binomial (BNB), Bivariate Poisson-Inverse Gaussian (BPIG) and bivariate Poisson-
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Lognormal (BPLN) models to allow for regression specifications on both of their mean

parameters and their dispersion parameter.

Secondly, it is worth noting that the development of ML estimation procedures for joint

modelling of all the parameters of mixed Poisson distributions in terms of covariate

information remains a largely uncharted territory even within the univariate regression

analysis context in majority of both statistical and actuarial applications.

In particular, regarding the statistical setting, this approach has only been explored so

far by Rigby and Stasinopoulos (2005) and Barreto-Souza and Simas (2016). Rigby

and Stasinopoulos (2005) proposed the generalized additive models for location, scale

and shape (GAMLSS). The GAMLSS is a general regression framework which allows

for every parameter of the distribution of discrete and/or continuous response distri-

butions to be modelled as parametric and/or as additive nonparametric functions of

covariates and/or random-effects terms including many well known univariate mixed

Poisson distributions such as the Negative Binomial (NB) and Poisson-Inverse Gaussian

(PIG) distributions and their zero-inflated versions for handling data sets that contain

a large number of zeros.

The ML estimation of these regression type models can be carried out either by using

the RS algorithm, which is based on the algorithm of Rigby and Stasinopoulos (1996a)

and Rigby and Stasinopoulos (1996b), or the CG algorithm, which is based on the al-

gorithm by Cole and Green (1992). Furthermore, Barreto-Souza and Simas (2016) used

the EM algorithm for fitting a general family of mixed Poisson regression models with

varying dispersion. In their application they focused on the estimation of the NB and

PIG regression models with regression structures on both their mean and dispersion

parameters.

Regarding the actuarial setting, Tzougas and Karlis (2020) implemented the EM al-

gorithm for estimating the parameters of mixed Exponential regression models with

varying dispersion, which can be used for approximating heavy-tailed losses in non-life
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insurance, and Tzougas (2020) employed the EM algorithm for ML estimation in the

Poisson-Inverse Gamma (PIGA) regression model with varying dispersion, which can

be regarded as a plausible model for deriving ratemaking mechanisms for heavy-tailed

and overdispersed claim counts.

However, using the ML estimation procedure for the case when all the parameters of

bivariate mixed Poisson distributions are allowed to vary through covariates has not

yet been addressed in the statistical or actuarial literature. The reason for this is be-

cause the log-likelihood of the mixed Poisson model becomes more complicated in the

two-dimensional setting and hence allowing for regressors on every parameter further

increases the computational burden especially for the majority of members of the mixed

Poisson family which, as is well known, have complicated densities that are either ex-

pressed in terms of special functions or cannot be written in a tractable closed form.

Such examples are, for instance, the BPIG and BPLN models for which direct max-

imisation of their log-likelihoods via traditional optimization routines may suffer from

computational instability and overflow issues when we allow for regressors on all their

parameters.

4.1.5 Contribution to the literature

The main achievement of this chapter is that it demonstrates that ML estimation for

our class of bivariate mixed Poisson regression models with varying dispersion can be

accomplished via an efficient and easily implementable EM type algorithm which ex-

ploits the latent structure that is implied by the mixture representation of the bivariate

mixed Poisson model and thus it reduces the problem of maximising its joint likelihood

function to the problem of maximising the likelihood function of its mixing distribution.

Moreover, the proposed algorithm can produce the information matrix of the bivariate

mixed Poisson model as a by-product while it is computationally parsimonious.
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Finally, following the setup of Bermúdez and Karlis (2017), the proposed class of mixed

Poisson regression models with varying dispersion will be used within the Bayesian

paradigm for deriving a posteriori ratemaking mechanisms, or Bonus-Malus Systems

(BMSs). At this point we would like to call attention to the fact that, because the

posterior claim frequency distribution is expressed in terms of both mean parameters

and the dispersion parameter of the bivariate mixed Poisson model, using regressors on

every parameter results in better risk adjusted a posteriori, or Bonus-Malus, premia.

More importantly, since the motor insurance market is highly competitive, our family

of models is well justified to be used in practice, as it can enable the actuary to set fair

and equitable premia based on a sound risk measuring basis. These tailor-made to the

risk involved premia are calculated based on the expected value and variance principles1

providing the company with useful alternative tariff structures.

4.1.6 Outline

The remainder of this chapter proceeds as follows: in Section 4.2, we provide an in

depth description of the proposed class of bivariate mixed Poisson regression models

with varying dispersion. Also, we derive the joint probability mass function (jpmf) of

the BNB, BPIG and BPLN regression models with varying dispersion. Section 4.3,

describes the ML estimation via the EM algorithm. Furthermore, we consider detailed

EM algorithms for the BNB, BPIG and BPLN regression models with varying dispersion.

In Section 4.4 we explain how to calculate the a posteriori premia according to the

expected value and variance principles. A real data application based on MTPL data

1Note that Lemaire (1995), Heilmann (1989), Gómez-Déniz et al. (2000) and Gómez-Déniz et al.
(2002) used the variance principle for deriving BMSs in the univariate context based only on the a
posteriori criteria, while Tzougas et al. (2018) proposed its use for developing such sytems based on
both the a priori and the a posteriori criteria. The variance is an important risk measure and the
difference in the Bonus-Malus premia that it implies can act as a cushion against adverse experience.
However, the use of the variance principle for computing Bonus-Malus premia in a way that takes into
consideration the positive correlation between MTPL bodily injury and property damage claims has
not yet been proposed and thus this work expands on this setup as well.

142



is presented in Section 4.5. In Subsection 4.5.4, we describe the computational issues

regarding the use of the EM algorithm for fitting the BNB, BPIG and BPLN regression

models with varying dispersion. Finally, concluding remarks are given in Section 4.6.

4.2 Description of the bivariate mixed Poisson

regression model with varying dispersion

The general class of bivariate mixed Poisson regression models with varying dispersion,

which we consider in this chapter, can be described as follows. Assume that the individ-

ual claim frequencies ki,j, where i = 1 denotes the MTPL bodily injury claims and i = 2

denotes the MTPL property damage claims, arising from a policyholder j, j = 1, ..., n,

are independent per j and consider that given the random variables λj > 0, ki,j|λj per

claim type i = 1, 2, are distributed according to a Poisson distribution with probability

mass function (pmf) given by

P (ki,j|xi,j ,x3,j , λj) =
exp(−(εi,jλj))(εi,jλj)

ki,j

ki,j!
, (4.1)

for ki,j = 0, 1, 2, 3, ..., where εi,j , λj > 0 where E(ki,j|xi,j ,x3,j , λj) = εi,jλj and

Var(ki,j|xi,j ,x3,j , λj) = εi,jλj. Furthermore, suppose that λj are random variables from

a continuous and at least twice differentiable mixing distribution with probability density

function (pdf) f(λj;γj), where we assume that E(λj) = 1 as this ensures that the model

is identifiable and where γj > 0 is the dispersion parameter. Therefore, considering the

previous assumptions, we can easily see that the unconditional distribution of ki,j is a

bivariate mixed Poisson distribution with joint probability mass function (jpmf) given

by

P (k1,j, k2,j|x1,j ,x2,j ,x3,j) =

∞∫
0

2∏
i=1

P (ki,j|λj) f (λj;γj) dλj. (4.2)
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To allow the two mean parameters and the dispersion parameter to be modelled in terms

of explanatory variables with parametric linear functional forms we consider that

ε1,j = exp(xT1,jβ1) (4.3)

ε2,j = exp(xT2,jβ2) (4.4)

γj = exp(xT3,jβ3) (4.5)

where x1,j , x2,j and x3,j are vectors of covariates with dimensions p1×1, p2×1 and p3×1

respectively, with (β1,1, ..., β1,p1)
T , (β2,1, ..., β2,p2)

T and (β3,1, ..., β3,p3)
T the corresponding

parameter vectors and where it is assumed that the matrices X1, X2 and X3, with rows

given by x1,i, x2,i and x3,i respectively, are of full rank. Finally, in context of MTPL

insurance, the following useful properties associated with the bivariate mixed Poisson

models with varying dispersion (which were already presented in Section 3.4 for the case

where the dispersion parameter was not expressed in terms of covariates) are provided

below.

1. The marginal distribution of ki,j, for i = 1, 2, is the same mixed Poisson distribu-

tion as its bivariate counterpart. Also, the mean and the variance of ki,j are:

E (ki,j|xi,j) = εi,j (4.6)

Var (ki,j|xi,j ,x3,j) = εi,j [1 + εi,jVar(λj)] . (4.7)

2. The covariance (Cov) and the correlation (Corr) between k1,j and k2,j are given

by

Cov (k1,j, k2,j|x1,j ,x2,j ,x3,j) = ε1,jε2,jVar(λj) i = 1 6= i = 2. (4.8)
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and

Corr (k1,j, k2,j|x1,j ,x2,j ,x3,j) =
Var(λj)

√
ε1,jε2,j√(

1 + ε1,jVar(λj)

)(
1 + ε2,jVar(λj)

) . (4.9)

3. The generalized variance ratio (GVR) between a bivariate mixed Poisson model

with varying dispersion, i.e. ki,j ∼ Poisson(εi,jλj), with λj ∼ f(λj;γj) which is

the pdf of the mixing density, and a simple Poisson model, i.e. yi,j ∼ Poisson(εi,j),

is given by

GVR (k1,j, k2,j|x1,j ,x2,j ,x3,j) =

2∑
i=1

Var (ki,j) + 2
∑
i<l

Cov (ki,j, kl,j)

2∑
i=1

Var (yi,j)

= 1 + Var(λj)
2∑
i=1

εi,j . (4.10)

As it can be seen from Eqs. (4.9 and 4.10), Corr (k1,j, k2,j|x1,j ,x2,j ,x3,j) > 0 and

GVR (k1,j, k2,j|x1,j ,x2,j ,x3,j) > 1. Also, the GVR increases as the variance of the

mixing distribution increases. Thus, as was previously mentioned, the bivariate mixed

Poisson regression model allows for the positive correlation between the MTPL bodily

injury and property damage claims and accommodates overdispersion. Consequently,

as highlighted before, our models cannot capture underdispersion and negative depen-

dencies, therefore if dealing with a data set which exhibits these characteristics, other

models such as the ones by Fung et al. (2019a) and Fung et al. (2019b) are more advis-

able.

In what follows, different bivariate mixed Poisson distributions with regression struc-

tures on every parameter are used to describe the behaviour of the number of bodily

injury and property damage claims as a function of the explanatory variables including
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the bivariate Negative Binomial (BNB), bivariate Poisson-Inverse Gaussian (BPIG) and

bivariate Poisson-Lognormal (BPLN) distributions. It must be noted that the BNB and

BPIG models were already briefly presented in Section 3.4 for comparative purposes

with the BNBIG model, but there the common heterogeneity factor could only be ex-

pressed in terms of a mixing distribution (i.e. the Gamma in the case of the BNB and

the Inverse Gaussian in case of the BPIG), while here it is a regression itself.

4.2.1 BNB regression model with varying dispersion

Let λj follow a Gamma distribution with a pdf

f(λj;γj) =
γ
γj
j

Γ(γj)
λ
γj−1
j exp(−γjλj), (4.11)

where γj , λj > 0, with mean and variance:

E(λj) = 1

Var(λj) = 1/γj , (4.12)

for j = 1, ..., n. Thus, based on Eqs. (4.1 and 4.11) it is easy to see that the resulting

distribution is the BNB distribution with jpmf

P (k1,j, k2,j|x1,j ,x2,j ,x3,j) =
Γ(γj +

∑2
i=1 ki,j)

Γ(γj)
∏2

i=1 ki,j!

γ
γj
j

∏2
i=1(εi,j)

ki,j

(γj + εi,j)γj+
∑2
i=1 ki,j

. (4.13)

4.2.2 BPIG regression model with varying dispersion

Let λj follow an Inverse Gaussian distribution with a pdf of the form

f(λj;γj) =
γj√
2π
λ
−3/2
j exp

[
γ2
j −

γ2
j

2

(
1

λj
+ λj

)]
, (4.14)
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where γj , λj > 0, with mean and variance:

E(λj) = 1

Var(λj) = 1/γ2
j , (4.15)

for j = 1, ..., n. Therefore, considering the assumptions in Eqs. (4.1 and 4.14) it can be

verified that the resulting distribution is the BPIG distribution with jpmf

P (k1,j, k2,j|x1,j ,x2,j ,x3,j) =
2γj exp(γ2

j )√
2π

K∑2
i=1 ki,j−

1
2
(γj∆j)

(
γj
∆j

)∑2
i=1 ki,j−

1
2

2∏
i=1

ε
ki,j
i,j

ki,j!
,

(4.16)

where ∆j =
√
γ2
j + 2

∑2
i=1 εi,j and Kν(ω) denotes the modified Bessel function of the

third kind of order ν and argument ω.

4.2.3 BPLN regression model with varying dispersion

Let λj follow an Lognormal distribution with a pdf of the form

f(λj;γj) =

exp

[
− (log(λj)+γ

2
j /2)2

2γ2
j

]
√

2πγjλj
, (4.17)

where γj , λj > 0, with mean and variance:

E(λj) = 1

Var(λj) = exp(γ2
j )− 1, (4.18)
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for j = 1, ..., n. Thus, based on Eqs. (4.1 and 4.17) it is easy to see that the resulting

distribution is the BNB distribution with jpmf

P (k1,j, k2,j|x1,j ,x2,j ,x3,j) =

∫ ∞
0

2∏
i=1

exp(−(εi,jλj))(εi,jλj)
ki,j

ki,j!

exp

[
− (log(λj)+γ

2
j /2)2

2γ2
j

]
√

2πγjλj
dλj,

(4.19)

which could not be written in closed form and hence numerical integration is required.

4.3 The EM algorithm

In this section we describe how the EM algorithm (see, Dempster et al. (1977) and

McLachlan and Krishnan (2007)) can be employed for facilitating ML estimation of the

parameters of the bivariate mixed Poisson regression model for marginal means and

dispersion which was described in Section 4.2.

Let (k1,j, k2,j,x1,j ,x2,j ,x3,j), j = 1, ..., n, be a sample of independent observations,

where k1,j and k2,j are the response variables and x1,j ,x2,j and x3,j are the vectors

of covariate information with dimensions p1 × 1, p2 × 1 and p3 × 1 respectively. Also,

suppose that the data are produced according to the bivariate mixed Poisson model:

then, the log-likelihood of the model can be written as

l (θ) =
n∑
i=1

log (P (k1,j, k2,j|x1,j ,x2,j ,x3,j)) , (4.20)

where θ =
(
βT1 ,β

T
2 ,β

T
3

)T
is the vector of the parameters and where

P (k1,j, k2,j|x1,j ,x2,j ,x3,j) is the jpmf of the bivariate mixed Poisson model, which is

given by Eq. (4.2).

Direct maximisation of Eq. (4.20) with respect to the vector of parameters θ is cum-

bersome because the log-likelihood of the bivariate mixed Poisson model is not usu-

ally tractable. Moreover, when both mean parameters and the dispersion parameter
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are modelled as functions of explanatory variables this raises additional computational

challenges.

Fortunately, ML estimation can be accomplished relatively easily via an EM type algo-

rithm which is specifically tailored to ML estimation for univariate and bivariate (and/or

multivariate) mixed Poisson models (see, for instance, Karlis (2001) and Karlis (2005),

Ghitany et al. (2012), Barreto-Souza and Simas (2016) and Tzougas (2020)) since their

stochastic mixture representation involving a non-observable random variable, denoted

by λj herein, can be considered to produce missing data. In our case, if one augments the

unobserved data λj to the observed data (k1,j, k2,j,x1,j ,x2,j ,x3,j), then the complete

data log-likelihood decomposes into two parts

lc (θ) =
2∑
i=1

n∑
j=1

[−εi,jλj + ki,j log (εi,jλj)− log (ki,j!)] +
n∑
j=1

log (f (λj;γj)) , (4.21)

for i = 1, 2 and j = 1, ..., n, where f (λj;γj) is the pdf of the mixing distribution and

where εi,j and γj are given by Eqs. (4.3, 4.4 and 4.5) respectively. The E- and the

M-Steps of our EM type algorithm procedure for the bivariate mixed Poisson regression

model with varying dispersion are described below, including a few comments for each

step.

• E-Step:

The Q-function, which is the conditional expectation of the complete data log-

likelihood in Eq. (4.21), is calculated in a general way so as to elucidate its

features for our general class of bivariate mixed Poisson regression models with
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varying dispersion

Q
(
θ;θ(r)

)
≡ Eλj

(
lc (θ) |ki,j,xi,j ,x3,j ;θ

(r)
)
∝

∝
2∑
i=1

n∑
j=1

[
−εi,jEλj

[
λj|ki,j,xi,j ,x3,j ;θ

(r)
]

+ ki,j log (εi,j)
]

+
n∑
j=1

Eλj
[
log
(
f
(
λj;γ

(r)
j

))]
,

where θ(r) is the estimate of θ at the r-th iteration in the E-Step of our EM al-

gorithm. Then, compute the pseudo-values wj = Eλj
[
λj|ki,j,xi,j ,x3,j ;θ

(r)
]

and

ωk,j = Eλj
[
sk (λj) |ki,j,xi,j ,x3,j ;θ

(r)
]
, for i = 1, 2, j = 1, .., n and k = 1, ...., ν,

where sk (.) are certain functions2 which are involved in the terms needed for max-

imising the part of theQ-function which corresponds to the conditional expectation

of the log-likelihood of f (λj;γj).

• M-Step:

Using the pseudo-values wj and ωk,j from the E-Step and the Newton-Raphson

algorithm three times3, find the maximum global point θ(r+1) of the Q-function,

i.e. obtain the updated estimates β
(r+1)
1 ,β

(r+1)
2 and β

(r+1)
3 .

– Firstly, differentiating the Q-function with respect to β1 gives:

h1 (β1) =
∂Q
(
θ;θ(r)

)
∂β1,l

=
n∑
j=1

(
k1,j − ε(r)

1,jwj

)
x1,j,l, (4.22)

2Note that, as it will be demonstrated in what follows, if sk (λj) is a linear function, then the
conditional posterior expectations can be computed in an easy and accurate way. However, for more
complicated functions, for which an exact solution is not available, one can use Taylor approximations,
or numerical approximations, including numerical integration, and/or simulation based approximations.

3Note also that this procedure can be used for every continuous and at least twice differentiable
mixing distribution, i.e. similar to those we considered in this work. Therefore, we provide a complete
estimation tool for our class of bivariate mixed Poisson regression models with varying dispersion.
However, for some other mixing distributions a special iterative scheme or another EM algorithm inside
the M-Step may be more appropriate.
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H1 (β1) =
∂2Q

(
θ;θ(r)

)
∂β1,l∂βT1,l

=
n∑
j=1

(
−ε(r)

1,jwj

)
x1,j,lx

T
1,j,l = XT

1W1X1, (4.23)

for j = 1, ..., n and l = 1, ..., p1 and where W1 = diag{−ε(r)
1,jwj}. Then, the

iterative procedure for the Newton-Raphson algorithm for β1 is as follows:

β
(r+1)
1 ≡ β(r)

1 −
[
H1

(
β

(r)
1

)]−1

h1

(
β

(r)
1

)
. (4.24)

– Secondly, differentiating the Q-function with respect to β2 gives:

h2 (β2) =
∂Q
(
θ;θ(r)

)
∂β2,l

=
n∑
j=1

(
k2,j − ε(r)

2,jwj

)
x2,j,l, (4.25)

H2 (β2) =
∂2Q

(
θ; θ(r)

)
∂β2,l∂βT2,l

=
n∑
j=1

(
−ε(r)

2,jwj

)
x2,j,lx

T
2,j,l = XT

2W2X2, (4.26)

for j = 1, ..., n and l = 1, ..., p2 and where W2 = diag{−ε(r)
2,jwj}. Then, the

iterative procedure for the Newton-Raphson algorithm for β2 is as follows:

β
(r+1)
2 ≡ β(r)

2 −
[
H2

(
β

(r)
2

)]−1

h2

(
β

(r)
2

)
. (4.27)

– Thirdly, differentiating the Q-function with respect to β3 gives

h3 (β3) =
∂Q
(
θ;θ(r)

)
∂β3,l

=
n∑
j=1

∂Eλj
[
log
(
f
(
λj;γ

(r)
j

))]
∂β3,l

(4.28)

H3 (β3) =
∂2Q

(
θ;θ(r)

)
∂β3,l∂βT3,j

=
n∑
j=1

∂2Eλj
[
log
(
f
(
λj;γ

(r)
j

))]
∂β3,l∂βT3,l

, (4.29)

where for calculating h3 (β3) and H3 (β3) one needs to use the pseudo-values

ωk,j for j = 1, .., n and k = 1, ...., ν since in this case the maximisation of the

Q-function reduces to the maximisation of the conditional expectation of the
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log-likelihood of f (λj;γj). Then, the Newton-Raphson iterative algorithm

for β3 is as follows:

β
(r+1)
3 ≡ β(r)

3 −
[
H3

(
β

(r)
3

)]−1

h3

(
β

(r)
3

)
, (4.30)

for j = 1, .., n and l = 1, ..., p3.

• Finally, iterate between the E- and the M-Steps until some convergence criterion

is satisfied, for example ∣∣∣∣ l(r+1) − l(r)

l(r)

∣∣∣∣ < tol,

where l(r) is the value of the log-likelihood after the r-th iteration and where

tol is a small number usually of the form 10−m, where m ∈ Z. If this stopping

criterion which refers to the progress of the likelihood function, i.e., its convergence,

is satisfied, the EM algorithm stops iterating and the estimate of θ is θ(r+1).

Otherwise, θ is updated by θ(r+1) and the algorithm goes back to the E-Step.

• Note that when the regression specifications for both mean parameters and the

dispersion parameter of the model are limited to the constants β1,0, β2,0 and β3,0,

this EM type algorithm can be employed for the ML estimation of the ”univariate”,

without regression components, model. In what follows, we describe in detail the

E- and the M-Steps of our EM type algorithm for the BNB, BPIG and BPLN

regression models with varying dispersion.

4.3.1 BNB regression model with varying dispersion

In the case of the Gamma mixing distribution with pdf given by Eq. (4.11) we have that

the posterior distribution of λj|ki,j,xi,j ,x3,j ;θ is a Gamma with parameters γj +
2∑
i=1

ki,j

and γj +
2∑
i=1

εi,j , for i = 1, ..., n.
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Then, the EM algorithm goes as follows:

• E-Step:

Calculate for all j = 1, .., n,

wj = Eλj
[
λj|ki,j,xi,j ,x3,j ;θ

(r)
]

=

γ
(r)
j +

2∑
i=1

ki,j

γ
(r)
j +

2∑
i=1

ε
(r)
i,j

(4.31)

ωj = Eλj
[
log (λj) |ki,j,xi,j ,x3,j ;θ

(r)
]

= Ψ

(
γ

(r)
j +

2∑
i=1

ki,j

)
−log

(
γ

(r)
j +

2∑
i=1

ε
(r)
i,j

)
,

(4.32)

where Ψ (·) is the digamma function and where ε
(r)
1,j = exp

(
xT1,jβ

(r)
1

)
, ε

(r)
2,j =

exp
(
xT2,jβ

(r)
2

)
and γ

(r)
j = exp

(
xT3,jβ

(r)
3

)
are the estimates obtained after r-th

iteration.

• M-Step:

– Update the regression parameters β1 and β2 using the pseudo-values wj,

which are given by Eq. (4.31), and the Newton-Raphson algorithms in Eqs.

(4.22, 4.23 and 4.24) and Eqs. (4.25, 4.26 and 4.27) respectively.

– Update the regression parameters β3 using the pseudo-values wj and ωj,

which are given by Eqs. (4.31 and 4.32) respectively, and the Newton-

Raphson algorithm which, in the case of the Gamma mixing distribution,

is as follows

h3 (β3) = γ
(r)
j

[
log
(
γ

(r)
j

)
−Ψ

(
γ

(r)
j

)
− wj + ωj + 1

]
x3,j,l, (4.33)
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H3 (β3) =
n∑
j=1

γ
(r)
j

[
log
(
γ

(r)
j

)
−Ψ

(
γ

(r)
j

)
− wj + ωj

−Ψ3

(
γ

(r)
j

)
γ

(r)
j + 2

]
x3,j,lx

T
3,j,l

= XT
3W3X3, (4.34)

for j = 1, .., n and l = 1, ..., p3, where Ψ3 (.) is the trigamma function and

where

W3 = diag{γ(r)
j log

(
γ

(r)
j

)
−γ(r)

j Ψ
(
γ

(r)
j

)
−γ(r)

j wj+γ
(r)
j ωj−Ψ3

(
γ

(r)
j

) (
γ2
j

)(r)
+

2γ
(r)
j }.

Then, we can obtain the updated estimates of β
(r)
3 using Eq. (4.30).

4.3.2 BPIG regression model with varying dispersion

In the case of the Inverse Gaussian mixing distribution with pdf given by Eq. (4.14),

we have that the posterior distribution of λj|ki,j,xi,j ,x3,j ;θ is a Generalized Inverse

Gaussian (GIG) distribution with pdf

f (λj|ki,j,xi,j ,x3,j ;θ) =

(
ψj
χj

)νj
2Kνj (ψjχj)

λ
νj−1
j exp

[
−1

2

(
χ2
j

λj
+ ψ2

jλj

)]
, (4.35)

where ψj =

√
γ2
j + 2

2∑
i=1

εi,j > 0, χj = γj > 0, and νj =
2∑
i=1

ki,j − 1
2
∈ < for j = 1, ..., n.
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Then, the EM algorithm is as follows:

• E-Step:

Calculate for all j = 1, .., n,

wj = Eλj
[
λj|ki,j,xi,j ,x3,j ;θ

(r)
]

=
γ

(r)
j√(

γ2
j

)(r)
+ 2

2∑
i=1

ε
(r)
1,j

K 2∑
i=1

ki,j+
1
2

(
γ

(r)
j

√(
γ2
j

)(r)
+ 2

2∑
i=1

ε
(r)
i,j

)

K 2∑
i=1

ki,j− 1
2

(
γ

(r)
j

√(
γ2
j

)(r)
+ 2

2∑
i=1

ε
(r)
i,j

) (4.36)

and

ωj = Eλj
[

1

λj
|ki,j,xi,j ,x3,j ;θ

(r)

]

=

√(
γ2
j

)(r)
+ 2

2∑
i=1

ε
(r)
i,j

γ
(r)
j

K 2∑
i=1

ki,j− 3
2

(
γ

(r)
j

√(
γ2
j

)(r)
+ 2

2∑
i=1

ε
(r)
i,j

)

K 2∑
i=1

ki,j− 1
2

(
γ

(r)
j

√(
γ2
j

)(r)
+ 2

2∑
i=1

ε
(r)
i,j

) , (4.37)

where ε
(r)
1,j = exp

(
xT1,jβ

(r)
1

)
, ε

(r)
2,j = exp

(
xT2,jβ

(r)
2

)
and γ

(r)
j = exp

(
xT3,jβ

(r)
3

)
are

the estimates obtained after r-th iteration.

• M-Step:

– Update the regression parameters β1 and β2 using the pseudo-values wj,

which are given by Eq. (4.36), and the Newton-Raphson algorithms in Eqs.

(4.22, 4.23 and 4.24) and Eqs. (4.25, 4.26 and 4.27) respectively.

– Update the regression parameters β3 using the pseudo-values wj and ωj,

which are given by Eqs. (4.36 and 4.37) respectively, and the Newton-

Raphson algorithm which, in the case of the Inverse Gaussian mixing dis-
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tribution, is as follows

h3 (β3) =
[
2
(
γ2
j

)(r) − wj
(
γ2
j

)(r) − ωj
(
γ2
j

)(r)
+ 1
]
x3,j,l, (4.38)

H3 (β3) =
n∑
j=1

[(
γ2
j

)(r) − 2wj
(
γ2
j

)(r) − 2ωj
(
γ2
j

)(r)
]
x3,j,lx

T
3,j,l

= XT
3W3X3, (4.39)

for j = 1, .., n and l = 1, ..., p3, where

W3 = diag{
(
γ2
j

)(r) − 2wj
(
γ2
j

)(r) − 2ωj
(
γ2
j

)(r)}.

Then, we can obtain the updated estimates of β
(r)
3 using Eq. (4.30).

4.3.3 BPLN regression model with varying dispersion

The EM algorithm can also be employed to find the ML estimates of the BPLN model

which was defined in Eq. (4.19). In this case, the complete data log-likelihood takes the

form:

lc (θ) =
2∑
i=1

n∑
j=1

[−εi,jλj + ki,j log (εi,jλj)− log (ki,j!)] +

n∑
j=1

−1

2
log (2π)− log (γj)− log (λj)−

(
log (λj) +

γ2
j

2

)2

2γ2
j

 , (4.40)

for i = 1, 2 and j = 1, ..., n. Thus, the expectations needed for the M-Step are

Eλj
[
λj|ki,j,xi,j ,x3,j ;θ

(r)
]

and Eλj
[
(log (λj))

2 |ki,j,xi,j ,x3,j ;θ
(r)
]
.
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Therefore, the algorithm can be written as follows:

• E-Step:

Calculate for all j = 1, .., n,

wj = Eλj
[
λj|ki,j,xi,j ,x3,j ;θ

(r)
]

=

∫∞
0
λj

2∏
i=1

exp(−ε(r)i,jλj)
(
ε
(r)
i,jλj

)ki,j
ki,j !

exp

−
log(λj)+

(γ2j)
(r)

2


2

2(γ2j)
(r)


√

2πγ
(r)
j λj

dλj

∫∞
0

2∏
i=1

exp(−ε(r)i,jλj)
(
ε
(r)
i,jλj

)ki,j
ki,j !

exp

−
log(λj)+

(γ2j)
(r)

2


2

2(γ2j)
(r)


√

2πγ
(r)
j λj

dλj

,
(4.41)

ωj = Eλj
[
(log (λj))

2 |ki,j,xi,j ,x3,j ;θ
(r)
]

=

∫∞
0

(log (λj))
2

2∏
i=1

exp(−ε(r)i,jλj)
(
ε
(r)
i,jλj

)ki,j
ki,j !

exp

−
log(λj)+

(γ2j)
(r)

2


2

2(γ2j)
(r)


√

2πγ
(r)
j λj

dλj

∫∞
0

2∏
i=1

exp(−ε(r)i,jλj)
(
ε
(r)
i,jλj

)ki,j
ki,j !

exp

−
log(λj)+

(γ2j)
(r)

2


2

2(γ2j)
(r)


√

2πγ
(r)
j λj

dλj

,
(4.42)

where ε
(r)
1,j = exp

(
xT1,jβ

(r)
1

)
, ε

(r)
2,j = exp

(
xT2,jβ

(r)
2

)
and γ

(r)
j = exp

(
xT3,jβ

(r)
3

)
are the estimates obtained after r-th iteration. Note that the expectations in

Eqs. (4.41 and 4.42) do not have closed form expressions and thus have to be

evaluated numerically. Alternatively, a Monte Carlo approach is also possible

using a rejection algorithm. This approach leads to variants of the EM algorithm

such as the Monte Carlo EM (MCEM) algorithm (see, for instance, Booth and
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Hobert (1999), Booth et al. (2001), Karlis (2001) and Karlis (2005)) which do not

require knowledge of the jpmf P (k1,j, k2,j|x1,j ,x2,j ,x3,j) but it suffices to be able

to simulate from the posterior density f (λj|ki,j,xi,j ,x3,j ;θ).

• M-Step:

– Update the regression parameters β1 and β2 using the pseudo-values wj,

which are given by Eq. (4.41), and the Newton-Raphson algorithms in Eqs.

(4.22, 4.23 and 4.24) and Eqs. (4.25, 4.26 and 4.27) respectively.

– Update the regression parameters β3 using the pseudo-values ωj, which are

given by Eq. (4.42) and the Newton-Raphson algorithm which, in the case

of the Lognormal mixing distribution, goes as follows

h3 (β3) =

[
ωj(
γ2
j

)(r)
−
(
γ2
j

)(r)

4
− 1

]
x3,j,l, (4.43)

H3 (β3) =
n∑
j=1

[
−2ωj(
γ2
j

)(r)
−
(
γ2
j

)(r)

2

]
x3,j,lx

T
3,j,l

= XT
3W3X3, (4.44)

for j = 1, .., n and l = 1, ..., p3, where Ψ3 (.) is the trigamma function and

where W3 = diag

{
−2ωj

(γ2
j)

(r) −
(γ2
j)

(r)

2

}
. Then, we can obtain the updated

estimates of β
(r)
3 using Eq. (4.30).

158



4.4 Calculation of the premia according to the

expected value and variance principles

Similarly to what we saw in Subsection 3.5.3, consider the policyholder j, j = 1, ...n,

with number of bodily injury and property damage claims k1,j,l and k2,j,l respectively,

for the year of coverage l, with l = 1, ..., t. Also, assume that, for all the years that the

individual j has been registered with the insurance company, its cumulative number of

claims per type i = 1, 2 is given by Ki,j =
∑t

l=1 ki,j,l. Then, employing Bayes theorem,

we can easily compute the posterior distribution of λj,t+1 for the period t + 1 given

the observations of the reported accidents in the preceding t periods and observable

characteristics in the preceding t+ 1 periods and the current period. In particular, the

posterior distribution of λj,t+1, analogously as we did in Eq. (3.31), can be derived as

follows:

f (λj,t+1|k1,j,1, ..., k1,j,t; k2,j,1, ..., k2,j,t;x1,j,1, ...,x1,j,t+1;x2,j,1, ...,x2,j,t+1;

x3,j,1, ...,x3,j,t+1)

=

t∏
l=1

P (k1,j, k2,j|x1,j ,x2,j ,x3,j , λj) f (λj,t+1;γj)

∞∫
0

P (k1,j, k2,j|x1,j ,x2,j ,x3,j , λj) f (λj,t+1;γj) dλj,t+1

,

(4.45)

where P (k1,j, k2,j|x1,j ,x2,j ,x3,j , λj) is the bivariate Poisson distribution and where

f(λj,t+1;γj) is the pdf of the mixing distribution.

159



4.4.1 Expected value principle

The a posteriori, or Bonus-Malus, premia calculated according to the expected value

principle are given by

P1 = (1 + ω1)E (λj,t+1|k1,j,1, ..., k1,j,t; k2,j,1, ..., k2,j,t;x1,j,1, ...,x1,j,t+1;

x2,j,1, ...,x2,j,t+1;x3,j,1, ...,x3,j,t+1) ,
(4.46)

where ω1 > 0 is a risk load and where the expectation in Eq. (4.46) is that of the

posterior distribution given by Eq. (4.45), similarly to the expectation we had in Eq.

(3.32).

• In the case of the BNB model, Eq. (4.45) is a Gamma distribution with parameters

γj +
∑2

i=1 ki,j and γj +
∑t

l=1

∑2
i=1 εi,j,l, like we had seen in Eq. (3.33) for the case

of the BNB with no covariates in the heterogeneity factor, and hence Eq. (4.46)

takes the form

P1 = (1 + ω1)
γj +

∑2
i=1 ki,j

γj +
∑t

l=1

∑2
i=1 εi,j,l

. (4.47)

• In the case of the BPIG model, Eq. (4.45) is a Generalized Inverse Gaussian (GIG)

distribution with parameters
√
γ2
j + 2

∑t
l=1

∑2
i=1 εi,j,l, γj and

∑2
i=1 ki,j −

1
2
, like

we had seen in Eq. (3.34) for the case on the BPIG with no covariates in the

heterogeneous component, and thus Eq. (4.46) is given by

P1 =

(1 + ω1)γjK∑2
i=1 ki,j+

1
2

(
γj

√
γ2
j + 2

∑t
l=1

∑2
i=1 εi,j,l

)
√
γ2
j + 2

∑t
l=1

∑2
i=1 εi,j,lK

∑2
i=1 ki,j−

1
2

(
γj

√
γ2
j + 2

∑t
l=1

∑2
i=1 εi,j,l

) .
(4.48)

• In the case of the BPLN model, the posterior expectation in Eq. (4.46) cannot be

calculated in closed form but it can be computed via numerical integration which
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does not require the knowledge of the pdf given by Eq. (4.45). Thus, P1 can be

calculated without any special effort as:

P1 = (1+ω1)

∫ ∞
0

λj,t+1

t∏
l=1

2∏
i=1

exp(−(εi,jλj))(εi,jλj)
ki,j

ki,j !

exp

[
−

(log(λj,t+1)+γ
2
j /2)

2

2γ2
j

]
√

2πγjλj,t+1

∞∫
0

2∏
i=1

exp(−(εi,jλj))(εi,jλj)
ki,j

ki,j !

exp

[
−

(log(λj,t+1)+γ
2
j
/2)2

2γ2
j

]
√

2πγjλj,t+1
dλj,t+1

dλj,t+1.

(4.49)

4.4.2 Variance principle

The a posteriori, or Bonus-Malus, premia calculated according to the variance principle

are given by

P2 = (1 + ω2)E (λj,t+1|k1,j,1, ..., k1,j,t; k2,j,1, ..., k2,j,t;x1,j,1, ...,x1,j,t+1;x2,j,1, ...,x2,j,t+1;

x3,j,1, ...,x3,j,t+1)

+ ω2

[
Var (λj,t+1|k1,j,1, ..., k1,j,t; k2,j,1, ..., k2,j,t;x1,j,1, ...,x1,j,t+1;x2,j,1, ...,x2,j,t+1;

x3,j,1, ...,x3,j,t+1)

]
.

(4.50)

where ω2 > 0 is a risk load and where the expectation and the variance in Eq. (4.50)

are those of the posterior distribution in Eq.(4.45).

• In the case of the BNB model, using the result in Eq. (4.47), Eq. (4.50) becomes

P2 = (1 + ω2)
γj +

∑2
i=1 ki,j

γj +
∑t

l=1

∑2
i=1 εi,j,l

+ ω2
γj +

∑2
i=1 ki,j(

γj +
∑t

l=1

∑2
i=1 εi,j,l

)2 . (4.51)
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• In the case of the BPIG model, using the result in Eq. (4.48), Eq. (4.50) becomes

P2 =

(1 + ω2)γjK∑2
i=1 ki,j+

1
2

(
γj

√
γ2
j + 2

∑t
l=1

∑2
i=1 εi,j,l

)
√
γ2
j + 2

∑t
l=1

∑2
i=1 εi,j,lK

∑2
i=1 ki,j−

1
2

(
γj

√
γ2
j + 2

∑t
l=1

∑2
i=1 εi,j,l

)

+ ω2

(
γ2
j

γ2
j + 2

∑t
l=1

∑2
i=1 εi,j,l

)[K∑2
i=1 ki,j+

3
2
(γj

√
γ2
j + 2

∑t
l=1

∑2
i=1 εi,j,l)

K∑2
i=1 ki,j−

1
2
(γj

√
γ2
j + 2

∑t
l=1

∑2
i=1 εi,j,l)

−

(
K∑2

i=1 ki,j+
1
2
(γj

√
γ2
j + 2

∑t
l=1

∑2
i=1 εi,j,l)

K∑2
i=1 ki,j−

1
2
(γj

√
γ2
j + 2

∑t
l=1

∑2
i=1 εi,j,l)

)2]
.

(4.52)

• In the case of the BPLN model, the posterior mean and the posterior variance in

Eq. (4.50) cannot be calculated in closed form. However, both can be calculated

based on numerical integration which does not rely on the knowledge of the pdf

given by Eq. (4.45) and hence P2 can be easily computed as
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P2 =(1 + ω2)

∫ ∞
0

λj,t+1

t∏
l=1

2∏
i=1

exp(−(εi,jλj))(εi,jλj)
ki,j

ki,j !

exp

[
−

(log(λj,t+1)+γ
2
j /2)

2

2γ2
j

]
√

2πγjλj,t+1

∞∫
0

2∏
i=1

exp(−(εi,jλj))(εi,jλj)
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(4.53)

4.5 Numerical illustration

The study is based on the real data set described in Section 3.5 from an MTPL insurance

portfolio observed during the year 2017 from a major European insurance company.

Now we fit the univariate Negative Binomial (NB), Poisson-Inverse Gaussian (PIG) and

Poisson-Lognormal (PLN) regression models with varying dispersion for claim frequen-

cies using the univariate version of the EM algorithm which was presented in Section 4.2.

Additionally, the simple Poisson regression model was fitted for comparison purposes.

As we did in Section 3.5, the normalized randomized quantile residuals, see Dunn and

Smyth (1996), are used as a graphical tool to help us assess the adequacy of the fit of
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the competing models for both bodily injury and property damage claim counts k1,j

and k2,j. The normalized (random) quantiles for the Poisson, NB, PIG and PLN models

are presented in Figure 4.1 per claim type i = 1, 2. From Figure 4.1, we observe that

the NB, PIG and PLN are better assumptions than the Poisson model which does not

capture the tails of the claim frequency distributions of k1,j and k2,j, observation which

had already been made clear from Figure 3.1. In particular, the residuals of the three

mixed Poisson models are close to the diagonal and indicate a good fit to the distribu-

tions of both k1,j and k2,j, whereas the sample quantiles of the Poisson model, due to

the equidispersion constraint, near the tail end of the distributions of both k1,j and k2,j,

are significantly higher than the theoretical quantiles.
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Figure 4.1: Normalized quantiles for the Poisson, NB, PIG and PLN regression models
with varying dispersion
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4.5.1 Modelling results

This subsection describes the modelling results of the BNB, BPIG and BPLN distribu-

tions and regression models with varying dispersion. The ML estimates of their param-

eters and the corresponding standard errors in parentheses are presented in Table 4.1

for the distributions4 and in Table 4.2 for the regression models with varying dispersion

respectively. Note that in the latter case, for illustrative purposes we considered that

the two location parameters ε1,j , ε2,j and the dispersion parameter γj , j = 1, ..., n, of

the aforementioned models are modelled using all three available explanatory variables.

However, it should be noted that for larger data sets variable selection can start with

the examination of the two mean parameters of the bivariate mixed Poisson regression

model with varying dispersion.

This can be achieved by adding all available covariates and testing whether the ex-

clusion of each one lowers the Global Deviance (DEV), Akaike Information Criterion

(AIC) and the Schwartz Bayesian Criterion (SBC) values. Then, after having selected

the best predictors for the two mean parameters, we can continue in determining the

remaining predictors by testing which rating variable between those used in the two

mean parameters would lead to a further decrease of the DEV, AIC and SBC values

when inserted in the dispersion parameter of the bivariate claim frequency model with

varying dispersion.

Additionally, if between the same bivariate mixed Poisson distribution with different

parameter specifications, several models have similar DEV, AIC and SBC values, the

simpler model can be used in order to avoid overfitting. Therefore, in such cases, it

should be expected that the dispersion parameters of the bivariate mixed Poisson re-

gression model with varying dispersion may have fewer predictors than the two mean

parameters.

4Note that the mean parameters of the BNB, BPIG and BPLN distributions are denoted by µ1 and
µ2 and the dispersion parameter is denoted by γ.
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Table 4.1: Parameters estimates and in parenthesis the associated standard errors of
the fitted BNB, BPIG and BPLN distributions

BNB BPIG BPLN
µ1 µ2 µ1 µ2 µ1 µ2

0.0954 0.0618 0.0954 0.0618 0.0954 0.0618
(0.0542) (0.0639) (0.0535) (0.0633) (0.0546) (0.0643)

γ γ γ
0.2612 0.4866 1.4072

(0.1037) (0.0554) (0.0448)

Table 4.2: Parameters estimates and in parenthesis the associated standard errors of
the fitted BNB, BPIG and BPLN regression models with varying dispersion for each
covariate

BNB BPIG BPLN

Variable Coeff. β1 Coeff. β2 Coeff. β3 Coeff. β1 Coeff. β2 Coeff. β3 Coeff. β1 Coeff. β2 Coeff. β3

Intercept -2.3933 -2.9262 -1.1296 -2.3950 -2.9279 -0.5908 -2.3839 -2.9167 0.2380
(0.0981) (0.1121) (0.2126) (0.0997) (0.1010) (0.1418) (0.0898) (0.1374) (0.0474)

v1 C2 0.0524 0.1504 -0.1912 0.0535 0.1518 -0.1157 0.0708 0.1691 0.0905
(0.0238) (0.0711) (0.0940) (0.0232) (0.0698) (0.0564) (0.0329) (0.0808) (0.0436)

v1 C3 0.1556 0.1770 -0.2303 0.1587 0.1793 -0.1364 0.1941 0.2143 0.1223
(0.0798) (0.0938) (0.1268) (0.0804) (0.0939) (0.0732) (0.1003) (0.1149) (0.0685)

v2 C2 0.0452 0.1780 0.3627 0.0465 0.1790 0.1959 0.0348 0.1669 -0.1198
(0.0169) (0.0719) (0.1611) (0.0170) (0.0704) (0.0859) (0.0137) (0.0704) (0.0571)

v3 C2 -0.1216 -0.0203 -0.3144 -0.1203 -0.0190 -0.1769 -0.1000 -0.021 0.1230
(0.0542) (0.0093) (0.1473) (0.0525) (0.0085) (0.0819) (0.0459) (0.0098) (0.0608)

v3 C3 0.1767 0.1712 -0.0883 0.1784 0.1731 -0.0716 0.1934 0.1882 0.0674
(0.0793) (0.0786) (0.0426) (0.0787) (0.0776) (0.0341) (0.0893) (0.0895) (0.0341)

As we can see from Table 4.2, the values of the estimated regression coefficients of the

variables v1, v2, and v3 are almost identical for ε1,j and ε2,j across all three bivariate

mixed Poisson distributions, whereas they differ hugely for the dispersion parameter

γj . Additionally, we observe that the same explanatory variables always have the same

effect (positive and/or negative) on the parameter γj in the case of the BNB and BPIG

models but have a different effect for γj in the case of the BPLN model.
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4.5.2 Model comparison

In this subsection we compare the fit of the BNB, BPIG and BPLN distributions/regres-

sion models with varying dispersion based on the classic hypothesis/specification tests

DEV, AIC and SBC. These specification criteria were already presented in Subsection

3.5.2, in Eqs. (3.26, 3.27 and 3.28). The values of the DEV, AIC and SBC for the com-

peting bivariate mixed Poisson distributions/regression models with varying dispersion

are given in Table 4.3.

As mentioned in Subsection 3.5.2, according to a very well known rule of thumb,

two models can be considered to be significantly different if the difference in the log-

likelihoods exceeds five, corresponding to a difference in their respective AIC and SBC

values greater than ten and five respectively, see Anderson and Burnham (2004) and

Raftery (1995) respectively. Therefore, in this case we see that the best fitting perfor-

mances are provided by the BPIG distribution/regression model with varying dispersion.

Table 4.3: Models comparison based on the DEV, AIC and SBC

Distributions Regression Models
Model df AIC SBC Model df DEV AIC SBC
BNB 3 5615 5635 BNB 18 4388 4424 4542
BPIG 3 5541 5561 BPIG 18 4249 4285 4403
BPLN 3 5684 5704 BPLN 18 4513 4549 4667

It is also to be noted that, compared to Table 3.6, the BNB and BPIG models with

varying dispersion fit significantly better than the corresponding BNB and BPIG with

fixed dispersion, proving to us once more that considering the use of covariates also on

the dispersion parameter is of crucial importance.

At this point we perform a 10-fold cross-validation to check the robustness of the pro-

posed models. We calculated the DEV, AIC and SBC values for the BNB, BPIG and

BPLN regression models on each of the 10 subsets and in Table 4.4 we report an av-

erage of the 10 values that we got from each subset. Furthermore, we calculated the
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root-mean-square error (RMSE) on each subset using Eq. (3.30) and in Table 4.4 we

report a mean of the 10 RMSEs obtained on each subset.

Table 4.4: DEV, AIC, SBC and RMSE with the 10-fold cross-validation

Regression Models
Model df DEV AIC SBC RMSE
BNB 18 450 486 563 0.3941
BPIG 18 431 467 544 0.3699
BPLN 18 461 497 574 0.3730

4.5.3 Application to ratemaking

In this subsection, following the current methodology, as presented in Section 4.4, we

calculate the a posteriori, or Bonus-Malus, premia resulting from the three BNB, BPIG

and BPLN distributions/regression models with varying dispersion using the expected

value and the variance principles. The premium rates will be divided by the premium

when t = 0, i.e. we calculate the relative premia, since we are interested in the differences

between various classes and the results are presented so that the premium for a new

policyholder is 100.

Thus, in what follows, when the expected value principle is used, note the disappearance

of the factor (1 +ω1) from Eqs. (4.47, 4.48 and 4.49). Also, when the variance principle

is used, following and extending to the bivariate case the framework of Lemaire (1995)

and Tzougas et al. (2018), we consider that ω2 = 0.235 in Eqs. (4.51, 4.52 and 4.53),

which corresponds to a safety loading of 25% of the net premium.

Firstly, assuming that the number of individual bodily injury and property damage

claims, k1,j and k2,j respectively, with j = 1, ..., n, range from 0 to 3 and the age of the

policy is t = 1, t = 2 and t = 3 years, we computed comparable relative premia for

the three bivariate mixed Poisson distributions. Tables 4.5 and 4.6, present the premia

rates calculated according to the expected value and variance principles respectively.
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Table 4.5: Comparison of the a posteriori, or Bonus-Malus, premium rates for t = 1, 2, 3,
bivariate claim frequency distributions under the expected value principle

t = 1

BNB distribution

t = 1

BPIG distribution

t = 1

BPLN distribution

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 72.69 350.98 629.27 907.56 79.80 256.06 553.66 892.83 81.47 244.10 510.00 847.30

1 350.98 629.27 907.56 1185.85 256.06 553.66 892.83 1240.99 244.10 510.00 847.30 1227.45

2 629.27 907.56 1185.85 1464.14 553.66 892.83 1240.99 1591.52 510.00 847.30 1227.45 1633.51

3 907.56 1185.85 1464.14 1742.43 892.83 1240.99 1591.52 1942.92 847.30 1227.45 1633.51 2056.12

t = 2

BNB distribution

t = 2

BPIG distribution

t = 2

BPLN distribution

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 57.10 275.69 494.28 712.87 68.35 197.65 411.53 657.85 70.44 193.99 382.91 614.90

1 275.69 494.28 712.87 931.46 197.65 411.53 657.85 912.20 193.99 382.91 614.90 872.58

2 494.28 712.87 931.46 1150.05 411.53 657.85 912.20 1168.82 382.91 614.90 872.58 1145.94

3 712.87 931.46 1150.05 1368.64 657.85 912.20 1168.82 1426.30 614.90 872.58 1145.94 1429.44

t = 3

BNB distribution

t = 3

BPIG distribution

t = 3

BPLN distribution

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 47.01 226.99 406.97 586.96 60.73 162.83 328.94 521.70 62.81 163.41 310.83 488.29

1 226.99 406.97 586.96 766.94 162.83 328.94 521.70 721.75 163.41 310.83 488.29 683.62

2 406.97 586.96 766.94 946.92 328.94 521.70 721.75 923.98 310.83 488.29 683.62 889.94

3 586.96 766.94 946.92 1126.90 521.70 721.75 923.98 1127.06 488.29 683.62 889.94 1103.44
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Table 4.6: Comparison of the a posteriori, or Bonus-Malus, premium rates for t = 1, 2, 3,
bivariate claim frequency distributions under the variance principle

t = 1

BNB distribution

t = 1

BPIG distribution

t = 1

BPLN distribution

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 66.48 321.01 575.54 830.07 72.36 261.00 585.67 951.89 74.79 248.08 553.01 953.33

1 321.01 575.54 830.07 1084.61 261.00 585.67 951.89 1325.81 248.08 553.01 953.33 1411.35

2 575.54 830.07 1084.61 1339.14 585.67 951.89 1325.81 1701.58 553.01 953.33 1411.35 1903.99

3 830.07 1084.61 1339.14 1593.67 951.89 1325.81 1701.58 2078.02 953.33 1411.35 1903.99 2418.52

t = 2

BNB distribution

t = 2

BPIG distribution

t = 2

BPLN distribution

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 49.44 238.71 427.98 617.26 59.00 186.12 399.90 644.15 62.04 182.94 376.80 620.13

1 238.71 427.98 617.26 806.53 186.12 399.90 644.15 895.13 182.94 376.80 620.13 893.03

2 427.98 617.26 806.53 995.80 399.90 644.15 895.13 1147.87 376.80 620.13 893.03 1183.86

3 617.26 806.53 995.80 1185.08 644.15 895.13 1147.87 1401.27 620.13 893.03 1183.86 1486.19

t = 3

BNB distribution

t = 3

BPIG distribution

t = 3

BPLN distribution

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 39.22 189.39 339.56 489.73 50.89 146.12 303.31 484.57 53.94 147.64 289.72 463.44

1 189.39 339.56 489.73 639.89 146.12 303.31 484.57 671.85 147.64 289.72 463.44 655.99

2 339.56 489.73 639.89 790.06 303.31 484.57 671.85 860.82 289.72 463.44 655.99 860.06

3 489.73 639.89 790.06 940.23 484.57 671.85 860.82 1050.43 463.44 655.99 860.06 1071.59

Secondly, when both the a posteriori and the a priori criteria, i.e. the characteristics of

the policyholders and their cars, are considered, we analyse three risk class profiles that

we classify (as we did in Chapter 3) as Best, Average and Worst according to the values

of the mean claim frequencies ε1,j and ε2,j , which are calculated using the same set of

explanatory variables per claim type i = 1, 2 in the case of the BNB, BPIG and BPLN

models respectively. More specifically, for our data, we characterize the Best, Average

and Worst profiles as such based on category C1 for all three explanatory variables v1,

v2 and v3 in the case of the first, category C2 for v1, v2 and v3 in the case of the

second, and category C3 for v1 and v3 and C2 for v2 in the case of the third. Also, the

dispersion parameter γj of the BNB, BPIG and BPLN models is computed for each risk
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class profile. The results are shown in Table 4.7.

Table 4.7: Results of the fitted BNB, BPIG and BPLN regression models with varying
dispersion for each risk class profile

Regression model Profile ε1,j ε2,j γj
Best 0.091327 0.053599 0.323154

BNB Average 0.089161 0.072942 0.280116
Worst 0.133208 0.090727 0.337726

Best 0.091173 0.053509 0.553884
BPIG Average 0.089341 0.073087 0.502832

Worst 0.133801 0.091036 0.547222

Best 0.092194 0.054112 1.268773
BPLN Average 0.092705 0.074147 1.393263

Worst 0.140632 0.095639 1.360708

From Table 4.7 we observe that for all three risk profiles small differences lie in the

mean values ε1,j and ε2,j of the BNB, BPG and BPLN models. On the contrary,

as previously mentioned, more significant differences are noticed across the three risk

profiles in the values of the dispersion parameters γj of the bivariate mixed Poisson

models. Due to these discrepancies, the a posteriori, or Bonus-Malus, premium rates

that will result from the three models by updating their posterior mean and the posterior

variance will be better distinguished under different distributional assumptions. Thus,

as explained before, the proposed modelling framework leads to a better tariffication

than the assumption of a constant dispersion γ, which is what we had in Chapter 3. In

what follows, Tables 4.8, 4.9 and 4.10 depict the premia computed under the expected

value principle for the three risk profiles during the years t = 1, t = 2 and t = 3

respectively. Furthermore, Tables 4.11, 4.12 and 4.13 present the premia calculated via

the variance principle for the same risk profiles and years of insurance policy.
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Table 4.8: Comparison of the a posteriori, or Bonus-Malus, premium rates for t = 1
under the expected value principle, bivariate claim frequency regression models with
varying dispersion

t = 1

BNB regression model

t = 1

BPIG regression model

t = 1

BPLN regression model

Best profile Best profile Best profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 76.36 312.65 548.94 785.23 82.05 239.47 500.38 800.56 83.78 223.13 451.24 749.12

1 312.65 548.94 785.23 1021.52 239.47 500.38 800.56 1110.36 223.13 451.24 749.12 1093.54

2 548.94 785.23 1021.52 1257.81 500.38 800.56 1110.36 1422.85 451.24 749.12 1093.54 1467.98

3 785.23 1021.52 1257.81 1494.10 800.56 1110.36 1422.85 1736.37 749.12 1093.54 1467.98 1862.30

t = 1

BNB regression model

t = 1

BPIG regression model

t = 1

BPLN regression model

Average profile Average profile Average profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 73.18 334.41 595.64 856.88 80.00 247.48 528.29 849.50 81.26 237.30 489.54 808.55

1 334.41 595.64 856.88 1118.11 247.48 528.29 849.50 1179.87 237.30 489.54 808.55 1167.96

2 595.64 856.88 1118.11 1379.35 528.29 849.50 1179.87 1512.72 489.54 808.55 1167.96 1551.97

3 856.88 1118.11 1379.35 1640.58 849.50 1179.87 1512.72 1846.48 808.55 1167.96 1551.97 1951.77

t = 1

BNB regression model

t = 1

BPIG regression model

t = 1

BPLN regression model

Worst profile Worst profile Worst profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 71.49 283.19 494.88 706.58 79.05 210.99 425.43 674.37 79.41 209.86 408.55 653.84

1 283.19 494.88 706.58 918.27 210.99 425.43 674.37 932.83 209.86 408.55 653.84 927.77

2 494.88 706.58 918.27 1129.97 425.43 674.37 932.83 1194.13 408.55 653.84 927.77 1219.52

3 706.58 918.27 1129.97 1341.66 674.37 932.83 1194.13 1456.54 653.84 927.77 1219.52 1522.90
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Table 4.9: Comparison of the a posteriori, or Bonus-Malus, premium rates for t = 2
under the expected value principle, bivariate claim frequency regression models with
varying dispersion

t = 2

BNB regression model

t = 2

BPIG regression model

t = 2

BPLN regression model

Best profile Best profile Best profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 61.76 252.87 443.97 635.08 71.23 189.88 382.67 606.51 73.58 181.78 347.13 554.85

1 252.87 443.97 635.08 826.19 189.88 382.67 606.51 838.91 181.78 347.13 554.85 790.34

2 443.97 635.08 826.19 1017.30 382.67 606.51 838.91 1073.89 347.13 554.85 790.34 1043.81

3 635.08 826.19 1017.30 1208.41 606.51 838.91 1073.89 1309.87 554.85 790.34 1043.81 1309.31

t = 2

BNB regression model

t = 2

BPIG regression model

t = 2

BPLN regression model

Average profile Average profile Average profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 57.70 263.68 469.66 675.64 68.60 191.76 394.00 627.70 70.14 188.56 367.80 587.30

1 263.68 469.66 675.64 881.63 191.76 394.00 627.70 869.56 188.56 367.80 587.30 831.00

2 469.66 675.64 881.63 1087.61 394.00 627.70 869.56 1113.77 367.80 587.30 831.00 1089.59

3 675.64 881.63 1087.61 1293.59 627.70 869.56 1113.77 1358.89 587.30 831.00 1089.59 1357.84

t = 2

BNB regression model

t = 2

BPIG regression model

t = 2

BPLN regression model

Worst profile Worst profile Worst profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 55.64 220.37 385.11 549.85 67.41 163.36 315.66 494.13 67.61 165.48 306.02 474.57

1 220.37 385.11 549.85 714.58 163.36 315.66 494.13 680.83 165.48 306.02 474.57 660.27

2 385.11 549.85 714.58 879.32 315.66 494.13 680.83 870.20 306.02 474.57 660.27 856.74

3 549.85 714.58 879.32 1044.06 494.13 680.83 870.20 1060.64 474.57 660.27 856.74 1060.34
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Table 4.10: Comparison of the a posteriori, or Bonus-Malus, premium rates for t = 3
under the expected value principle, bivariate claim frequency regression models with
varying dispersion

t = 3

BNB regression model

t = 3

BPIG regression model

t = 3

BPLN regression model

Best profile Best profile Best profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 51.84 212.28 372.71 533.14 63.81 159.01 311.21 489.09 66.31 155.60 286.21 446.43

1 212.28 372.71 533.14 693.57 159.01 311.21 489.09 674.74 155.60 286.21 446.43 625.90

2 372.71 533.14 693.57 854.00 311.21 489.09 674.74 862.85 286.21 446.43 625.90 817.88

3 533.14 693.57 854.00 1014.44 489.09 674.74 862.85 1051.94 446.43 625.90 817.88 1018.29

t = 3

BNB regression model

t = 3

BPIG regression model

t = 3

BPLN regression model

Average profile Average profile Average profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 47.63 217.65 387.67 557.69 61.01 158.38 315.63 498.68 62.47 158.82 298.70 466.63

1 217.65 387.67 557.69 727.71 158.38 315.63 498.68 689.11 158.82 298.70 466.63 651.41

2 387.67 557.69 727.71 897.73 315.63 498.68 689.11 881.80 298.70 466.63 651.41 846.62

3 557.69 727.71 897.73 1067.75 498.68 689.11 881.80 1075.38 466.63 651.41 846.62 1048.66

t = 3

BNB regression model

t = 3

BPIG regression model

t = 3

BPLN regression model

Worst profile Worst profile Worst profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 45.54 180.36 315.19 450.02 59.75 135.14 252.57 391.05 59.64 138.67 248.03 376.88

1 180.36 315.19 450.02 584.85 135.14 252.57 391.05 536.82 138.67 248.03 376.88 517.66

2 315.19 450.02 584.85 719.68 252.57 391.05 536.82 685.10 248.03 376.88 517.66 665.98

3 450.02 584.85 719.68 854.51 391.05 536.82 685.10 834.43 376.88 517.66 665.98 819.34
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Table 4.11: Comparison of the a posteriori, or Bonus-Malus, premium rates for t = 1
under the variance principle, bivariate claim frequency regression models with varying
dispersion

t = 1

BNB regression model

t = 1

BPIG regression model

t = 1

BPLN regression model

Best profile Best profile Best profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 71.14 291.28 511.43 731.57 75.56 246.18 534.73 863.49 77.96 228.96 496.95 862.56

1 291.28 511.43 731.57 951.72 246.18 534.73 863.49 1200.74 228.96 496.95 862.56 1294.49

2 511.43 731.57 951.72 1171.86 534.73 863.49 1200.74 1540.17 496.95 862.56 1294.49 1769.17

3 731.57 951.72 1171.86 1392.01 863.49 1200.74 1540.17 1880.38 862.56 1294.49 1769.17 2271.92

t = 1

BNB regression model

t = 1

BPIG regression model

t = 1

BPLN regression model

Average profile Average profile Average profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 67.27 307.42 547.58 787.73 72.87 251.97 558.09 904.78 74.80 240.29 526.97 901.62

1 307.42 547.58 787.73 1027.88 251.97 558.09 904.78 1259.41 240.29 526.97 901.62 1329.89

2 547.58 787.73 1027.88 1268.04 558.09 904.78 1259.41 1616.01 526.97 901.62 1329.89 1790.58

3 787.73 1027.88 1268.04 1508.19 904.78 1259.41 1616.01 1973.31 901.62 1329.89 1790.58 2271.89

t = 1

BNB regression model

t = 1

BPIG regression model

t = 1

BPLN regression model

Worst profile Worst profile Worst profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 66.34 262.76 459.19 655.61 73.04 211.66 440.86 704.99 73.95 208.77 424.18 696.33

1 262.76 459.19 655.61 852.04 211.66 440.86 704.99 977.73 208.77 424.18 696.33 1003.48

2 459.19 655.61 852.04 1048.46 440.86 704.99 977.73 1252.87 424.18 696.33 1003.48 1332.26

3 655.61 852.04 1048.46 1244.89 704.99 977.73 1252.87 1528.92 696.33 1003.48 1332.26 1675.09
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Table 4.12: Comparison of the a posteriori, or Bonus-Malus, premium rates for t = 2
under the variance principle, bivariate claim frequency regression models with varying
dispersion

t = 2

BNB regression model

t = 2

BPIG regression model

t = 2

BPLN regression model

Best profile Best profile Best profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 54.93 224.92 394.90 564.89 62.74 181.82 378.71 605.61 66.00 174.25 348.58 573.77

1 224.92 394.90 564.89 734.87 181.82 378.71 605.61 839.91 174.25 348.58 573.77 832.60

2 394.90 564.89 734.87 904.86 378.71 605.61 839.91 1076.28 348.58 573.77 832.60 1113.15

3 564.89 734.87 904.86 1074.84 605.61 839.91 1076.28 1313.42 573.77 832.60 1113.15 1408.11

t = 2

BNB regression model

t = 2

BPIG regression model

t = 2

BPLN regression model

Average profile Average profile Average profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 50.36 230.12 409.89 589.66 59.61 180.97 383.57 615.93 62.05 177.77 360.91 589.90

1 230.12 409.89 589.66 769.43 180.97 383.57 615.93 855.20 177.77 360.91 589.90 846.51

2 409.89 589.66 769.43 949.20 383.57 615.93 855.20 1096.33 360.91 589.90 846.51 1120.00

3 589.66 769.43 949.20 1128.97 615.93 855.20 1096.33 1338.15 589.90 846.51 1120.00 1404.37

t = 2

BNB regression model

t = 2

BPIG regression model

t = 2

BPLN regression model

Worst profile Worst profile Worst profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 49.39 195.63 341.87 488.12 59.96 154.14 305.77 482.55 60.91 155.65 295.83 466.36

1 195.63 341.87 488.12 634.36 154.14 305.77 482.55 666.61 155.65 295.83 466.36 655.49

2 341.87 488.12 634.36 780.60 305.77 482.55 666.61 852.92 295.83 466.36 655.49 856.22

3 488.12 634.36 780.60 926.84 482.55 666.61 852.92 1040.11 466.36 655.49 856.22 1064.60
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Table 4.13: Comparison of the a posteriori, or Bonus-Malus, premium rates for t = 3
under the variance principle, bivariate claim frequency regression models with varying
dispersion

t = 3

BNB regression model

t = 3

BPIG regression model

t = 3

BPLN regression model

Best profile Best profile Best profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 44.63 182.73 320.83 458.94 54.65 145.58 293.19 464.71 58.13 143.33 272.77 434.72

1 182.73 320.83 458.94 597.04 145.58 293.19 464.71 642.82 143.33 272.77 434.72 617.91

2 320.83 458.94 597.04 735.14 293.19 464.71 642.82 822.90 272.77 434.72 617.91 814.87

3 458.94 597.04 735.14 873.25 464.71 642.82 822.90 1003.75 434.72 617.91 814.87 1021.05

t = 3

BNB regression model

t = 3

BPIG regression model

t = 3

BPLN regression model

Average profile Average profile Average profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 40.12 183.35 326.59 469.82 51.52 142.72 292.14 465.05 53.94 143.75 278.37 442.40

1 183.35 326.59 469.82 613.05 142.72 292.14 465.05 644.11 143.75 278.37 442.40 624.08

2 326.59 469.82 613.05 756.28 292.14 465.05 644.11 824.96 278.37 442.40 624.08 816.63

3 469.82 613.05 756.28 899.52 465.05 644.11 824.96 1006.48 442.40 624.08 816.63 1016.26

t = 3

BNB regression model

t = 3

BPIG regression model

t = 3

BPLN regression model

Worst profile Worst profile Worst profile

k1,j/k2,j 0 1 2 3 0 1 2 3 0 1 2 3

0 39.26 155.51 271.75 388.00 51.97 122.99 234.97 366.53 52.68 126.40 230.59 354.57

1 155.51 271.75 388.00 504.24 122.99 234.97 366.53 504.45 126.40 230.59 354.57 490.66

2 271.75 388.00 504.24 620.49 234.97 366.53 504.45 644.48 230.59 354.57 490.66 634.38

3 388.00 504.24 620.49 736.73 366.53 504.45 644.48 785.36 354.57 490.66 634.38 783.16

From all Tables 4.5, 4.6, 4.8, 4.9, 4.10, 4.11, 4.12 and 4.13 we see that if the policyholder j

has a claim free year, the premium rates reduce, whereas if they have one or more claims,

the premium rates increase, resulting in bonus or malus respectively. For example, for

the case when the expected value principle is used, we observe from 4.5 that a claim

free policyholder for both types of claims i = 1, 2 will receive bonuses of 27.31%, 20.20%

and 18.53% in the year t = 1 in the case of the BNB, BPIG and BPLN distributions

respectively. Furthermore, the insureds who had k1,j = 2 and k2,j = 1 claims in the
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year t = 1 will have to pay a malus of 807.56%, 792.83% and 747.30% in the case of the

BNB, BPIG and BPLN distributions respectively.

Regarding the case with covariates, we see from Table 4.10 that claim free individuals

per claim type i = 1, 2 in the year t = 3 will receive bonuses of 48.16%, 36.19% and

33.69% with the Best profile, of 52.37%, 38.99% and 37.53% with the Average profile

and 54.46%, 40.25% and 40.36% with the Worst profile in the case of the BNB, BPIG

and BPLN regression models with varying dispersion respectively. Additionally, we see

from Table 4.10 that policyholders who had k1,j = 2 and k2,j = 1 claims in the year

t = 3 will have to pay maluses of 433.14%, 389.09% and 346.43% with the Best profile,

of 457.69%, 398.68% and 366.63% with the Average profile and 350.02%, 291.05% and

276.88% with the Worst profile in the case of the BNB, BPIG and BPLN regression

models with varying dispersion respectively.

Similarly, for the case when the variance principle is used, we observe from 4.6 that a

claim free insured for both types of claims i = 1, 2 will receive a bonus of 60.78%, 49.11%

and 46.06% in the year t = 3 in the case of the BNB, BPIG and BPLN distributions

respectively. Also, the individuals who had k1,j = 2 and k2,j = 3 claims in the year t = 3

will have to pay a malus of 690.06%, 760.82% and 760.06% in the case of the BNB,

BPIG and BPLN distributions respectively.

Regarding the case with covariates, we see from Table 4.12 that claim free insureds per

claim type i = 1, 2 in the year t = 2 will receive bonuses of 45.07%, 37.26% and 34.00%

with the Best profile, of 49.64%, 40.39% and 37.95% with the Average profile and of

50.61%, 40.04% and 39.09% with the Worst profile in the case of the BNB, BPIG and

BPLN regression models with varying dispersion respectively. Furthermore, we see from

Table 4.12 that policyholders who had k1,j = 2 and k2,j = 3 claims in the year t = 2

will have to pay maluses of 804.86%, 976.28% and 1013.15% with the Best profile, of

849.20%, 996.33% and 1020.00% with the Average profile and 680.60%, 752.92% and

756.22% with the Worst profile in the case of the BNB, BPIG and BPLN regression
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models with varying dispersion respectively.

Finally, it is worth noting that Tables 4.8, 4.9, 4.10, 4.11, 4.12 and 4.13 provide a

more complete picture to the insurance company than 4.5 and 4.6, when only the a

posteriori criteria were considered, since all the important a priori and a posteriori

information for the number of bodily injury and property damage claims, k1,j and k2,j

respectively, of policyholder j, are considered in order to estimate their risk of having

an accident and thus they permit the differentiation of the a posteriori, or Bonus-Malus,

premia for various numbers of bodily injury and property damage claims by updating

the posterior mean and the posterior variance based on all available information on the

level of riskiness of this individual.

4.5.4 Computational aspects

This subsection discusses the computational issues related to the implementation of the

EM algorithm for the BNB, BPIG and BPLN regression models with varying dispersion.

All computing was made using the programming language R. A rather strict criterion

was used and it took the algorithm, for both the cases with and without covariate in-

formation, a quite large number of iterations to converge. In particular, the stopping

criterion was set as tol = 10−12.

We also call attention to the fact that, because the M-Step involves three Newton-

Raphson iterations, the choice of meaningful initial values for the vectors of regression

coefficients β1, β2 and β3 of all three bivariate mixed Poisson models is important,

as it can influence the speed of convergence of the algorithm and its ability to locate

the global maximum. Good starting values for the regression parameters β1 and β2

were obtained by fitting two simple Poisson regressions. Alternatively, the initial val-

ues can be obtained based on the data as follows: (i) calculate E (ki,j) , with i = 1, 2

and j = 1, ..., n, for the 18 different risk classes, which can be formed by dividing the

portfolio into clusters defined by the combinations of the available explanatory variables
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in Table 3.1 and (ii) assuming log-link functions for εi,j , see Eqs. (4.3 and 4.4), solve

Eq.(4.6) with respect to β1 and β2, in the case i = 1 and i = 2 respectively, since,

under the parameterisation we adopted, the marginal means are explicit parameters of

the bivariate mixed Poisson models with varying dispersion.

Furthermore, meaningful initial values for the regression parameters β3 were obtained

by: (i) calculating Corr (k1,j, k2,j|x1,j ,x2,j ,x3,j) for the 18 different risk classes based on

all observations j = 1, ..., n, (ii) calculating E (ki,j|xi,j) with i = 1, 2 for the 18 different

risk classes (or alternatively calculating µi,j, for i = 1, 2, based on the initial values for

β1 and β2 and on the log-link functions given by Eqs. (4.3 and 4.4)), (iii) solving Eq.

(4.9) with respect to Var(λj) > 0 and subsequently (iv) solving the Eqs. (4.12, 4.15 and

4.18) with respect to γj and using the log-link function for γj , see Eq. (4.5) in the case

of the BNB, BPIG and BPLN models respectively.

Additionally, the standard errors were obtained using the standard approach of Louis

(1982) for the EM algorithm. Finally, in terms of computational time requirements,

the BNB and BPIG distributions/regression models with varying dispersion were sig-

nificantly less demanding than the BPLN distribution/regression model with varying

dispersion because the numerical evaluation of the integrals is time consuming espe-

cially when regression structures are used for all the parameters of the model.

4.6 Concluding remarks

In this chapter, we introduced a general class of bivariate mixed Poisson regression mod-

els with varying dispersion which can efficiently capture overdispersion and accurately

account for the strength of the positive correlation between MTPL bodily injury and

property damage claims by offering full flexibility in the choice of marginals and by

utilizing all the available information from important risk factors through regression

specifications for both mean parameters and the dispersion parameter of the models.
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Our main contribution is that we developed an EM type algorithm which can reduce

the computational burden for ML estimation for our family of models, the majority of

which have cumbersome densities. In order to illustrate the versatility of the EM esti-

mation scheme we presented, we fitted three members of this family, the BNB, BPIG

and BPLN regression models with varying dispersion, on two-dimensional MTPL data

from a European insurance company. Also, reliable estimates for the standard errors of

the parameters of these models were obtained through expressions which were directly

produced by the EM algorithm for the observed information matrix of each model.

Furthermore, the proposed family of models combined with the adopted modeling frame-

work can provide insurance companies with a useful tool (from a practical business point

of view) for pricing motor insurance contracts when the dynamics for premium deter-

mination are governed by the interactions of the different types of MTPL claims. In

our real data application, the Bonus-Malus premia resulting from the BNB, BPIG and

BPLN models were computed via the expected value and variance principles, providing

alternative options to the insurer when deciding on their ratemaking strategies.

Additionally, it is worth noting that this family of models is suitable for applications not

only on bivariate MTPL insurance ratemaking purposes but also in various multivariate

domains, as these models can be easily generalized to any vector size response variable

providing thus a very flexible way of modelling overdispersed high-dimensional count

valued data which contain variables that exhibit complex positive dependencies.

Finally, an interesting future research direction would be to tackle Bonus-Malus ratemak-

ing based on generalizations of the proposed family of models, such as, for example, by

adding different random effects for modelling the unobserved heterogeneity when dealing

with different types of claims from different types of coverage, see Bermúdez and Karlis

(2017), or, for instance, by including time series components to take into account both

cross dependence between different types of claims and time dependence, see Bermúdez

et al. (2018).
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Bolancé, C. and Vernic, R. (2019). Multivariate count data generalized linear models:

Three approaches based on the Sarmanov distribution. Insurance: Mathematics and

Economics, 85:89–103.

Bollerslev, T., Todorov, V., and Li, S. Z. (2013). Jump tails, extreme dependencies, and

the distribution of stock returns. Journal of Econometrics, 172(2):307–324.

Booth, J. G. and Hobert, J. P. (1999). Maximizing generalized linear mixed model

likelihoods with an automated Monte Carlo EM algorithm. Journal of the Royal

Statistical Society: Series B (Statistical Methodology), 61(1):265–285.

186



Booth, J. G., Hobert, J. P., and Jank, W. (2001). A survey of Monte Carlo algorithms

for maximizing the likelihood of a two-stage hierarchical model. Statistical Modelling,

1(4):333–349.

Boucher, J.-P. and Denuit, M. (2008). Credibility premiums for the zero-inflated Pois-

son model and new hunger for bonus interpretation. Insurance: Mathematics and

Economics, 42(2):727–735.

Boucher, J.-P., Denuit, M., and Guillen, M. (2008). Models of insurance claim counts

with time dependence based on generalization of Poisson and Negative Binomial dis-

tributions. Variance, 2(1):135–162.

Brouhns, N., Guillén, M., Denuit, M., and Pinquet, J. (2003). Bonus-Malus scales in

segmented tariffs with stochastic migration between segments. Journal of Risk and

Insurance, 70(4):577–599.
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Gómez-Déniz, E., Hernández, A., Pérez, J. M., and Vázquez-Polo, F. J. (2002). Mea-

suring sensitivity in a Bonus-Malus system. Insurance: Mathematics and Economics,

31(1):105–113.
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324.

Grothe, O. and Nicklas, S. (2013). Vine constructions of Lévy copulas. Journal of
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Lai, C. (2004). Constructions of continuous bivariate distributions. Journal of the Indian

Society for Probability and Statistics, 8:21–43.

Lai, C.-D. (2006). Constructions of discrete bivariate distributions. In Advances in

Distribution Theory, Order Statistics, and Inference, pages 29–58. Springer.

Lee, A. (1999). Applications: Modelling rugby league data via bivariate Negative Bino-

mial regression. Australian & New Zealand Journal of Statistics, 41(2):141–152.

194



Lemaire, J. (1995). Bonus-Malus systems in automobile insurance. Kluwer Academic

Publishers.

Linders, D. and Schoutens, W. (2014). Basket option pricing and implied correlation in

a Lévy copula model. FEB Research Report AFI 1494, pages 1–36.

Linders, D. and Stassen, B. (2016). The multivariate Variance Gamma model: basket

option pricing and calibration. Quantitative Finance, 16(4):555–572.

Lindsay, B. G. and Roeder, K. (1993). Uniqueness of estimation and identifiability in

mixture models. Canadian Journal of Statistics, 21(2):139–147.

Longstaff, F. A. and Schwartz, E. S. (2001). Valuing American options by simulation:

a simple least-squares approach. The Review of Financial Studies, 14(1):113–147.

Louis, T. A. (1982). Finding the observed information matrix when using the EM algo-

rithm. Journal of the Royal Statistical Society: Series B (Methodological), 44(2):226–

233.

Luciano, E. and Schoutens, W. (2006). A multivariate jump-driven financial asset model.

Quantitative Finance, 6(5):385–402.

Lynch, J. (1988). Mixtures, generalized convexity and balayages. Scandinavian Journal

of Statistics, pages 203–210.

Ma, J., Kockelman, K. M., and Damien, P. (2008). A multivariate Poisson-Lognormal

regression model for prediction of crash counts by severity, using Bayesian methods.

Accident Analysis & Prevention, 40(3):964–975.

Madan, D. B., Carr, P. P., and Chang, E. C. (1998). The Variance Gamma process and

option pricing. Review of Finance, 2(1):79–105.

195



Madan, D. B. and Seneta, E. (1990). The Variance Gamma (VG) model for share

market returns. Journal of Business, pages 511–524.

Marshall, A. W. and Olkin, I. (1967). A multivariate Exponential distribution. Journal

of the American Statistical Association, 62(317):30–44.

Marshall, A. W. and Olkin, I. (2007). Life distributions, volume 13. Springer.

McLachlan, G. J. and Krishnan, T. (2007). The EM algorithm and extensions, volume

382. John Wiley & Sons.

McNeil, A. J., Nešlehová, J., et al. (2009). Multivariate archimedean copulas, d-

monotone functions and l1-norm symmetric distributions. The Annals of Statistics,

37(5B):3059–3097.

Mert, M. and Saykan, Y. (2005). On a Bonus-Malus system where the claim frequency

distribution is Geometric and the claim severity distribution is Pareto. Hacettepe

Journal of Mathematics and Statistics, 34:75–81.

Mikosch, T. (2006). Copulas: Tales and facts. Extremes, 9(1):3–20.

M’Kendrick, A. (1925). Applications of mathematics to medical problems. Proceedings

of the Edinburgh Mathematical Society, 44:98–130.

Munkin, M. K. and Trivedi, P. K. (1999). Simulated maximum likelihood estimation

of multivariate mixed-Poisson regression models, with application. The Econometrics

Journal, 2(1):29–48.

Nelsen, R. B. (2007). An Introduction to Copulas. Springer Science & Business Media.

Ni, W., Constantinescu, C., and Pantelous, A. A. (2014a). Bonus-Malus systems with

Weibull distributed claim severities. Annals of Actuarial Science, 8(2):217–233.

196



Ni, W., Li, B., Constantinescu, C., and Pantelous, A. A. (2014b). Bonus-Malus systems

with hybrid claim severity distributions. In Vulnerability, Uncertainty, and Risk:

Quantification, Mitigation, and Management, pages 1234–1244.

Nikoloulopoulos, A. K. (2013a). Copula-based models for multivariate discrete response

data. In Copulae in Mathematical and Quantitative Finance, pages 231–249. Springer.

Nikoloulopoulos, A. K. (2013b). On the estimation of Normal copula discrete regression

models using the continuous extension and simulated likelihood. Journal of Statistical

Planning and Inference, 143(11):1923–1937.

Nikoloulopoulos, A. K. (2016). Efficient estimation of high-dimensional multivariate

Normal copula models with discrete spatial responses. Stochastic Environmental Re-

search and Risk Assessment, 30(2):493–505.

Nikoloulopoulos, A. K., Joe, H., and Chaganty, N. R. (2011). Weighted scores method

for regression models with dependent data. Biostatistics, 12(4):653–665.

Nikoloulopoulos, A. K. and Karlis, D. (2009a). Finite normal mixture copulas for

multivariate discrete data modeling. Journal of Statistical Planning and Inference,

139(11):3878–3890.

Nikoloulopoulos, A. K. and Karlis, D. (2009b). Modeling multivariate count data using

copulas. Communications in Statistics - Simulation and Computation, 39(1):172–187.

Nikoloulopoulos, A. K. and Karlis, D. (2010). Regression in a copula model for bivariate

count data. Journal of Applied Statistics, 37(9):1555–1568.

Olkin, I. and Liu, R. (2003). A bivariate Beta distribution. Statistics & Probability

Letters, 62(4):407–412.

Ord, J. (1972). Families of Frequency Distributions. London. zbMATH.

197



Palmes, C., Funke, B., and Hosseini, B. S. (2018). Nonparametric low-frequency Lévy
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